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Abstract  

Marine biofouling, associated with the accumulation of marine colonizers on submerged 

surfaces, has been a longstanding problem. Among different surface properties, 

cell-substrate interaction is strongly influenced by surface topographies. Therefore, in this 

work responses of representative marine fouling species were investigated in relation to 

different topographies. 

The settlement of zoospores of Ulva linza was explored on a hot-embossed 

honeycomb gradient. The highest settlement was found on microstructures with a similar 

or larger size than spores. Spore settlement density correlated with the Wenzel roughness 

of the topographies and ‘kink sites’ resembled preferred attachment positions. Following 

the gradient study, different settlements of cells of Navicula incerta, Ulva zoospores, and 

cyprids of B. improvisus were observed on soft-casted discrete honeycombs with the 

feature size as the only variable. The correlation between the ‘attachment point theory’ 

and the diatom attachment was in line with the literature. Settlement of spores deviated 

from the guideline of Wenzel roughness mainly due to the gregarious settlement on 

PDMS substrates, while the settlement of cyprids could be correlated with both Wenzel 

roughness and the interaction between sensory structures and comparably sized 

microtopographies. Furthermore, tapered microstructures with different feature spacings 

and aspect ratios were prepared via hot embossing and hot pulling to avoid unfavorable 

corners and to minimize the surface contact area. Topographic preferences of Navicula 

diatoms and Ulva spores during settlement were proven to be dominated by the 

‘attachment point theory’ and Wenzel roughness, respectively.  

Topographic cues guiding the settlement turned out to be complicated as they 

were related to both, topographies and fouling species. As effective antifouling strategies, 

the combined effect of a variety of surface properties seems appropriate. Along these 

lines, the concept of slippery liquid-infused porous surfaces (SLIPS), which combined 

both surface lubricity and topographies, were tested against fouling under both laboratory 

and field conditions. Immersion tests suggested a correlation between the stability of 

slippery coatings in seawater and fouling resistance efficacy. On stable slippery surfaces, 

settlement of Ulva spores and Balanus amphitrite cyprids was remarkably reduced. 

Although both marginal fouling-release and poor field performance indicated the 
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requirement of significant improvement of such coatings for practical applications, the 

fouling-resistant potential of the SLIPS concept was demonstrated. 
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Kurzfassung  

Marines Biofouling, die Akkumulation von sessilen marinen Spezies auf Oberflächen, ist 

ein altbekanntes Problem. Neben anderen Oberflächeneigenschaften spielt die 

Topographie eine wichtige Rolle für die Wechselwirkung zwischen Organismus und 

Substrat. Im Rahmen dieser Arbeit wurde daher der Einfluss unterschiedlicher 

Topographien auf die Kolonisierungsantwort verschiedener mariner Modelorganismen 

untersucht.  

Auf heiß-geprägten PMMA-Bienenwaben-Gradienten wurde das 

Besiedlungsverhalten von Sporen der Grünalge Ulva linza analysiert. Die höchste 

Akkumulation konnte auf Mikrostrukturen beobachtet werden, deren Durchmesser 

ähnlich oder größer dem Sporenkörper waren. Die Sporendichte korrelierte außerdem mit 

der Wenzel Rauigkeit. Darüber hinaus wurde festgestellt, dass die Sporen Eckpositionen 

(engl. ‘kink sites’) als Besiedlungsstelle bevorzugen. 

Um den alleinigen Einfluss der Strukturgröße auf die Besiedlung durch die 

Kieselalge Navicula incerta, Ulva linza Sporen und Cyprid-Larven der Seepocke 

Balanus improvisus zu untersuchen, wurden diskrete Bienenwabenstrukturen in PDMS 

gegossen. Das Verhalten der Kieselalge konnte mit der Angriffspunkt-Theorie (engl. 

‘attachment point theory’) in Zusammenhang gebracht werden und stimmte mit der 

Literatur überein. Während die  Ansiedlung der Seepockenlarven mit der Wenzel-

Rauigkeit korrelierte und einen Zusammenhang zwischen der Größe der Sensororgane 

und den Strukturgrößen zeigte, wich das Sporenverhalten bedingt durch die gregäre 

Ansiedlung (engl. ‘gregarious settlement’) auf PDMS Substraten von den Voraussagen 

der Wenzel-Rauigkeit ab. 

Zusätzlich wurden konisch zulaufende Mikrostrukturen durch Heißprägen und 

Heißziehen von  Polycarbonaten präpariert,  um bevorzugte Ecken zu vermeiden und die 

potentielle Kontaktfläche zwischen Substrat und Organismus zu minimieren. Es konnte 

gezeigt werden, dass das Ansiedeln von Navicula durch die Angriffspunkt-Theorie 

beschrieben wird, wohingegen Ulva Sporen hauptsächlich durch die Wenzel-Rauigkeit 

der Topographie beeinflusst wurden. 

Zusammenfassend stellte sich die Korrelation zwischen Besiedlung und 

Topographie als komplex heraus, da sowohl die Art der Strukturierung als auch die 
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Spezies relevant waren. Als effektive Strategie gegen Biofouling bietet sich daher die 

Kombination verschiedener Oberflächeneigenschaften an.  Diesem Gedanken folgend 

wurden s.g. SLIPS (engl. ‘slippery liquid-infused porous surfaces’, rutschige flüssig-

benetzte poröse Oberflächen), welche Strukturierung und Schlüpfrigkeit einer Oberfläche 

kombinieren, in Labor- und Feldversuchen im Hinblick auf Biofouling getestet. 

Inkubationsexperimente zeigten einen Zusammenhang zwischen der Stabilität der 

Beschichtungen in Meerwasser und der Resistenz gegen verschiedene  Organismen. Auf 

stabilen SLIPS war die Ansiedlung von Ulva linza und Balanus amphitrite signifikant 

reduziert. Trotz der nicht optimalen Ergebnisse in Haftstärke-Experimenten und 

Feldversuchen, die auf die Notwendigkeit weiterer Verbesserungen hindeuten, 

demonstrieren die gezeigten Resistenzeigenschaften die potenzielle Anwendbarkeit dieser 

Beschichtungen. 
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Marine biofouling, the undesired colonization of various fouling species on submerged 

natural or man-made surfaces in seawater [1, 2], introduces tremendous problems into 

ocean-related industries [3-5], which sequentially exert a considerable impact on different 

aspects of the modern world [6, 7]. Once underwater devices are encrusted by fouling 

organisms and their by-products, their performance in applications is highly impaired. A 

primary strategy to combat fouling is based on preventing biofoulants from attaching, 

which could be realized by covering the submersed surfaces with an antifouling (AF) 

coating. Most successful antifouling paints in history used biocides to deter/kill marine 

colonizers through a leaching process [8-10]. It is a delicate work to achieve the balance 

between the efficacy and the durability for practice, and besides, it should be noted that 

hazardous toxicants released from previously and currently applied marine coatings are 

one of the main sources responsible for the water pollution along the coastline and in the 

harbors. Due to the ecological concerns [11], gradual banning of the use of biocides in AF 

coatings spurs a huge market to pursue novel non-toxic antifouling solutions, thus 

triggering the incentive for research activities in this field.  

Colonization of a new substrate by algal cells or invertebrate larvae opens a 

prelude to the life story of most marine fouling organisms, e.g., microalgae diatom 

Navicula incerta, macroalgae Ulva linza and invertebrate barnacles of Balanus amphitrite 

and Balanus improvisus. The initial contact between the fouling organisms and the host 

substrates occurs at the interface. As a consequence, understanding of the cell-substrate 

interaction at the interface is essential to the modulation of coating properties to 

eventually achieve anti-biofouling. Among different surface properties, it has long been 

recognized that cells respond to substrate topographies [12]. Additionally, topography has 

been proven to be of comparable importance as chemistry in constructing natural 

antifouling surfaces, e.g., the skin of sharks and pilot whales and the surface of lotus 

leaves [13-15]. Therefore, topography is considered as a fundamental key factor to be 

taken into account for marine coatings design.  

Different topographic features, i.e., feature size, feature spacing, aspect ratio, 

surface roughness, etc., have been investigated with respect to the applications in the 

marine antifouling field. Topography could either enhance or reduce the recruitment of 

fouling organisms. It was indicated in the literature that critical size and spacing of 

topographic features with regards to the dimension of fouling organisms or relevant 

sensory and adhesive organs were fundamental to the surface defense against fouling [16, 
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17]. For instance, Ulva spore settlement on Sharklet AF
TM

 topographies with feature 

width and spacing of 2 µm was reduced by ~85% compared with the smooth control [14]. 

And besides that, contact guidance was also observed to be vital for fouling organisms to 

attain solid adhesion on substrates against external hydrodynamic forces. In addition, as 

the fluid hydrodynamic interaction played an integral role in attracting fouling 

accumulation [18], it was pointed out that the concept of fluid slip might provide a 

possible route to contribute to the antifouling character of marine coatings.  

 

Figure 1-1 Overview of the different patterns and approaches used in this thesis. (a) Honeycomb gradients 

in Section 4.1; (b) discrete honeycombs in Section 4.2; (c) tapered microstructures in Section 4.3; 

(d) microtexture-based slippery liquid-infused porous surfaces in Section 4.4. 

Due to the high diversity in the morphology and the settlement mechanism of 

marine colonizers, it is difficult to come up with a general principle to interpret and 

predict their behaviors. Currently existing models and theories, e.g., ERI model and 

‘attachment point theory’ [16, 19], were limited in their general applicability as they were 
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proposed on the basis of a restricted range of organisms and topographies. Intensive 

research with different fouling species and varying topographic features is necessary to 

gain a more systematic understanding of biofouling and antifouling effects of 

topographies.  

In this study, to obtain topographies of specific interest, a variety of fabrication 

approaches, i.e., hot embossing, hot pulling, PDMS casting and UV-initiated 

polymerization, have been employed, and subsequent biological assays were performed 

with correspondingly targeted fouling organisms. In Section 4.1 (Figure 1-1a), the 

influence of topographic properties (Wenzel roughness, local binding geometry, etc.), in 

terms of honeycomb size gradients, on the settlement behaviors of Ulva spores was 

closely examined. Following the gradient study, a series of discrete honeycombs of 

different sizes (Section 4.2, Figure 1-1b) was constructed and studied to determine the 

size preference of different fouling species. Furthermore, the topographic cues guiding 

the settlement of different fouling species were compared on a set of tapered 

microstructures with minimized contact area on the outmost surface (Section 4.3, 

Figure 1-1c). Finally, going beyond the direct fouling-topography interaction (Section 

4.1-4.3), SLIPS surfaces (Section 4.4, Figure 1-1d) were prepared by infusing a lubricant 

liquid into porous microtopographies to enhance their resistance to fouling. The 

antifouling performance of the SLIPS surfaces was examined with both laboratory and 

field tests. 
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2.1 Marine biofouling 

The detrimental damage to maritime industries (e.g., shipping, aquaculture and ocean 

energy) [3-5] caused by a substantial variety of microfoulers (e.g., bacteria and diatoms) 

and macrofoulers (e.g., macroalgae and barnacles) has been a long-standing issue 

remaining to be addressed. Once natural or manufactured surfaces are immersed in the 

sea, they are immediately subjected to the unwanted colonization of various fouling 

organisms. The consequence of abundant marine biofouling is associated with 

conspicuous economic, environmental and social implications.  

Taking shipping as an example, in the absence of effective fouling-control 

strategies, the vessel surfaces will be dominated by marine lives in a short period of time 

(150 kg fouler/m
2
 within 6 months of immersion) [20]. Because of the increased surface 

roughness caused by hull fouling, the increased hydrodynamic drag has a remarkable 

impact on fuel consumption (up to 40% by minor fouling) and operation efficiency 

(10%-18% by moderate fouling) [20]. The additional expenditure (fuel consumption, hull 

cleaning, repainting, etc.) related to hull fouling of the mid-sized naval surface ships (the 

entire Arleigh Burke class destroyer DDG-51) amounts up to ~56 million US dollars per 

year [6]. Moreover, in parallel with the prosperity of open ocean exchange shipping 

brings together the aquatic invasive species (AIS), one of the greatest threats constantly 

challenging regional ecological balance and public health. Hull fouling has been 

documented as a comparably important vector to ballast water in term of introducing 

these nuisance species [21, 22]. 

In seawater a high diversity of marine organisms (more than 4000 species as 

reported [23]) are involved in the fouling of immersed solid surfaces. As shown in Figure 

2-1, these fouling organisms cover a wide range of sizes (e.g., bacteria 0.25-1 µm, spores 

of Ulva linza 5-7 µm, and cyprid larvae of Balanus amphitrite ~500 µm). The 

accumulation of marine foulers are normally grouped into ‘microfouling’, referring to the 

formation of biofilm by unicellular microorganisms (bacteria, diatoms, etc.); ‘soft 

macrofouling’, involving the recruitment of macroalgae (seaweed) and soft invertebrates; 

and ‘hard macrofouling’, comprised by the colonization of shelled invertebrates (e.g., 

barnacles, tubeworms and mussels) [24].  
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Figure 2-1 Size scales of representative fouling organisms (adapted from Callow et al. 2011 [24]). 

Although the exact sequence of biofouling is unknown, a distinction could be 

made among different key stages of biofouling (Figure 2-2) [23, 25]. Once a clean surface 

is immersed in the ocean, the development of the ‘conditioning’ film, mainly consisting 

of physically absorbed organic and inorganic molecules (proteins, polysaccharides, 

proteoglycans, etc.) [26, 27], will take place within minutes driven primarily by 

electrostatic and Van der Waal's forces. The formation of conditioned surfaces is 

followed in the first 24 h by the accumulation of pioneering bacteria and other unicellular 

microfoulers. As the attachment of a succession of algal cells and invertebrate larvae 

occurs within one-to-several weeks with the promotion of extracellular polymeric 

substances (EPSs) secretion to facilitate the adhesion, a more balanced view of marine 

fouling is provided by the ‘dynamic’ model [28] rather than the linear ‘successional’ 

model. Following the attachment, further colonization between the organisms and the 

substrates is supported by the water movement through Brownian motion, sedimentation 

and convective transport. A mature fouling coverage is eventually attained by the fixation, 

growth or even emigration of settled fouling species under optimized surface conditions. 

It should be noted that this is just a simplified view of colonization, as fouling represents 

a highly dynamic cell-substrate interaction and the degree of fouling and the specific 

fouling community depend not only on the substrate (physicochemical properties, moving 

speed, etc.) but also on the environment (geographical location, season, etc.). 
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Figure 2-2 Scheme of critical biofouling stages (adapted from Chambers et al. 2006 [25]). 

2.1.1 Spores and sporelings of Ulva linza 

Being one of the most frequently observed soft-fouling species in the water line, the green 

algae of Ulva linza have been widely studied as a model marine fouling organism. The 

initial stage in the life cycle of this intertidal macroalgae is accomplished via the 

colonization of various substrates by zoospores (Figure 2-3a) [29-31]. 

The quadriflagellate motile spores are pyriform ‘naked’ cells with the size of 

5-7 µm in length and 5 µm at the widest point of the body [32]. The prominent probing 

ability of spores facilitates the selection among a range of surface properties (topographic, 

chemical, mechanical, etc.) during the temporary exploration phase (pre-settlement). A 

number of motion patterns have been detected, identified and named at this stage [33]. 

Besides passive sensing by swimming spores, the rapid spinning around the temporarily 

attached apical papilla is recognized as an additional way pertinent to spore exploration 

[34]. As long as they sense an appropriate habitat, they complete the fundamental step to 

their survival — the permanent settlement (adhesion) on a foreign substrate in a short 

time (a settled spore, Figure 2-3b). To commit to irreversible attachment, they ‘round up’ 

as the glycoprotein adhesive is exuded via exocytosis from membrane-bound vesicles in 

the front regions of the body, flatten the anterior part against the substrate, and retract the 

flagellar axonemes inside the cell [31].  
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Figure 2-3 (a) Sketch of main stages involved in the exploration and settlement of spores of Ulva linza 

(taken from Maggs et al. 2003 [29]); (b) SEM image of a settled Ulva linza spore; (c) microscopic image of 

sporelings of Ulva linza. 

Following the formation of cell walls, the germination of spores will start within a 

couple of hours. With sufficient supply of nutrients settled spores will finally grow into 

young plants — sporelings (Figure 2-3c), which are commonly cultured particularly for 

fouling-release assays to evaluate the adhesion strength of sporelings on targeted surfaces.   

2.1.2 The diatom Navicula incerta 

Navicula is a genus of boat-shaped unicellular diatoms featured by their sophisticated 

siliceous cell walls termed ‘frustules’, which are comprised of secretion-associated valves 

and highly ordered girdle bands of silica. This benthic raphid microalga constitutes a vital 

part of environmental sustainability by contributing sustainable amount of O2 to the 

atmosphere (~ 25%) [35], fulfilling the aquatic carbon cycle, and supporting the energy 

flow of the ecological food chain.  However, the ubiquitous distribution and outstanding 
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colonization capability render the diatom Navicula one of the greatest barriers with regard 

to anti-biofouling.  

 

Figure 2-4 Schematic sketch of main components of the adhesive complex (AC) presumably involved in 

the motility of a raphid diatom (adapted from Wetherbee et al. 1998 [36]). 

Three key stages are normally involved in the settlement of Navicula diatoms — 

location of the surface, reversible initial contact with the surface, and permanent final 

adhesion on the surface [37]. Since diatoms lack flagella, they could not actively explore 

the surface and hence they are brought into the initial contact with surfaces by water 

movement or simply gravity force in most cases. Following the primary touch with the 

surfaces, diatoms will choose either to settle or to relocate themselves. In the case of re-

orientation, they adopt the adhesive-mediated motion ‘gliding’, flipping at a speed of 

0.1-25 µm/s depending on both the organism and the environment [38]. This mobility is 

caused presumably by either the force generated by myosin in the actin and transferred 

through the path of actin filaments → intracellular motor proteins → transmembrane 

linker molecules → extracellular adhesive attached on the surface [36] (Figure 2-4), or 

the force generated by the directional secretion and hydration of adhesive complex (AC) 

and functioning independently via the guide of actin filaments in each individual part [38, 

39]. Following a period of ‘gliding’, the permanent adhesive-related secondary adhesion, 

or so called sessile adhesion, is initiated.  
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Both transitory/motile and permanent/sessile adhesions are modulated by the 

secretion of extra cellular polymeric substances (EPSs) from the raphe in both valves of 

the cell, although the composition of the mucilage varies in relation with the species and 

the fouling stages. The sticky multicomponent adhesive is mainly comprised of highly 

hydrated carbohydrate macromolecules and it is essential to the biological success of this 

species. 

2.1.3 Cyprids of Balanus amphitrite and Balanus improvisus 

Barnacle, an important member of the hard-fouling community abundant in the intertidal 

zone, is featured by its reprensentative two-phase life cycle (larval phase and adult phase) 

[40]. The sessile and gregarious nature of this organism causes significant problems to 

marine-related industries. As the only sessile crustacean, the sedentary life of barnacles is 

initiated by exploration and adhesion of substrates by cyprid larvae (non-feeding and 

planktonic-benthic phase following the naupliar stage). Briefly speaking (Figure 2-5a), 

sexually mature barnacles are able to release nauplii into the seawater, which later 

metamorphose into cyprids. Cyprids approach and explore surfaces, leaving footprints. 

Depending on the surface properties, cyprids choose to either relocate themselves or 

commit settlement. The metamorphosis into juvenile barnacles is accomplished within 

12 h of permanent attachment [41].  

Among different species of arthropods of Cirripedia, close similarity has been 

observed in the larval stage in contrast to the high diversity found in the adult life. 

Measurements show that although there is no statistically significant variation in the size 

of cyprids, e.g., cyprids of B. amphitrite (ca. 534 µm in length and ca. 249 µm in width) 

and cyprids of B. improvisus (ca. 587 µm in length and ca. 269 µm in width), they could 

be distinguished when they adopt respective characteristic shapes soon after gluing 

themselves onto the substrate (Figure 2-5b) [42].  

The attachment of cyprids onto a foreign surface is essentially composed of three 

stages [43, 44]: (1) exploration characterized by probing in the vicinity of the surface and 

walking on the surface leaving traces of ‘footprints’; (2) adhesion of cyprids supported by 

cyprid cement; and (3) permanent fixation by adult cement after around one month of 

attachment [45]. All three stages rely to great extent on the adhesive/cement mediated 

attachment to substrates. Although the composition of the multiprotein adhesive differs 



2   Background 

12 

between different stages, the attachment strength of all cements could reach up to the 

order of 10
5
 N·m

-2
 [46].  

 

Figure 2-5 (a) Diagram of the simplified two-phase life cycle of a generalized thoracican barnacle (taken 

from Aldred et al. 2008 [41]). A-E represent different stages of a barnacle life cycle, i.e. juvenile barnacle, 

nauplius, swimming cyprid, exploring cyprid and settled cyprid, respectively. (b) Top views of the carapace 

of settled cyprids. Balanus amphitrite, tear-like shape with the anterior end slightly notched; Balanus 

improvisus, cigar-like shape with both ends obviously notched (taken from Doochin et al. 1951 [42] ). 

Prior to settlement, with antennules temporarily adhering to the surface a number of 

sensory setae around the adhesive disk of the adhesion organs and frontier segment are 

responsible for sensing and locating appropriate habitats. Following the exploration 

cyprid adhesive is discharged locally. Studies indicate that the solidification of the dual-

component cement fluid occurs fast via the quinone crosslinking (tanning) to secure 

adhesion [47, 48]. Before the adult cement apparatuses are formed, the metamorphosis 

from larva to juvenile and the early growth of juvenile are dependent on this cyprid 

cement. The adult cement will then be secreted gradually with the development of 

relevant apparatuses to further secure the growth and maturing of barnacles. Mutual 

combination of sensory and adhesive organs of cyprids and the substrates via the bridge 

of cement completes the life story of barnacles. 

2.2  Anti-biofouling strategies 

Regarding the serious issues introduced by marine biofouling, solutions are desired to 

solve this problem. Once fouling organisms get a hold on submersed solid surfaces they 

could rapidly colonize the substrates and therefore are difficult to remove. Thus, 

prevention is a superior option to cure. Marine anti-biofouling refers to the actions which 
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prevent or counteract the recruitment of fouling organisms on underwater surfaces such as 

those of ships, thus improving the performance and durability of underwater devices. This 

could essentially be achieved by applying a specialized coating (an anti-fouling paint) 

onto solid surfaces. To minimize the possible damage, great efforts have been made in 

different fields and over a long time to create the barriers against different fouling 

organisms, such as slime, seaweeds and barnacles. 

2.2.1 Historical development of antifouling coatings  

The adverse influence of unwanted colonization of marine species has been recognized 

for over 2000 years. Since the first reported human activities against marine fouling in 

700 BC, antifouling technologies have highly developed to comply with up-to-date 

requirements [9, 23-25]. 

Prior to 16th century the mixture of petroleum and organic products (pitch, tar, 

tallow, weed, hair, etc.) were widely used to cover the bottom of wooden ships. Despite 

the limited antifouling achievements, these attempts took the first step in the history of 

marine antifouling. Later between 16th and 18th centuries metallic sheading, which could 

effectively resist the accumulation of worms on wooden vessels, dominated the 

antifouling market. However, due to the related galvanic corrosion to metallic parts of 

ships and its poor performance in deterring fouling of other organisms, this protection 

strategy gradually faded out of history from 1682. Meanwhile, the application of copper 

as an antifoulant appeared in 1625 and after around one century’s development copper 

sheading became widespread in preventing fouling. Not until the turn of 19th century it 

was discovered that the dissolution of copper explained the antifouling performance. The 

use of copper sheathing was nearly terminated in the late 18th century as a result of the 

uncertainty of its antifouling function and the galvanic corrosion to the iron ships which 

were newly introduced.  

The appearance of iron ships caused important changes in the ship coatings design. 

From the mid of 1800s until the end of the Second World War the concept of antifouling 

was based on the extensive employment of toxic compositions (copper oxide, arsenic, 

mercury oxide, etc.) in the polymeric coatings. The development of antifouling coatings 

during this period, featured by going from ‘hot plastic paints’ to ‘cold plastic paints’, 

highly focused on improving the antifouling efficiency, extending the service life, and 

simplifying the painting process. 
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Figure 2-6 Working schemes and biocide release diagrams of traditional (a) insoluble and (b) soluble 

matrix coatings. ‘Minimum biocide release’ represents the point where the antifouling coatings reach the 

efficient limit (adapted from Yebra et al. 2004 [9]). 

In 1950s paints composed of tributyltin (TBT) launched the revolution and took 

the dominant place in the antifouling field for the next half century. The extremely toxic 

organotins were first introduced in a ‘free association’ way in the insoluble polymeric 

matrix (Figure 2-6a) [8]. The functioning components were dissolved by the seawater, 

leaving the unsolvable porous texture. With the growing service time, the antifouling 

efficacy went down with the decreasing release rate of biocides due to the longer distance 

that the dissolved pigments had to travel though. This kind of paints was characterized by 

their excellent mechanical stability but limited lifetime (12-18 months). Combining 

soluble binder in coatings was the key to the construction of soluble matrix paints 

(Figure 2-6b), which were then further developed into tributyltin self-polishing 

copolymer (TBT-SPC) paints [10]. The former was a natural rosin-based paint, which 

consisted of a large amount of acids. The carboxyl groups of the acids could be easily 

dissolved in seawater via alkaline hydrolysis and the biocides could then be released [49]. 

Unfortunately this coating was far from being ideal because of the unpredictable fast 
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dissolution rate and the exponential erosion with the growing vessel speed attributable to 

the lack of hydrophobic proportion in the coating, not to mention the instability in air 

because of double bond oxidation. To achieve steady toxicant release and satisfactory 

balance between antifouling performance and mechanical stability, the tributyltin self-

polishing copolymer (TBT-SPC) paints were designed. When coatings were immersed in 

the sea, the top surface was renewed in parallel with the release of biocides due to the 

erosion of the outmost layer. This process was initiated by the saponification of the 

binders (typically carboxyl-TBT linkage) in seawater and resulted in more brittle and 

hydrophilic polymer framework, which could be easily disintegrated in the ocean. The 

vital components of these paints (binder groups, hydrophobic proportion, etc.) could be 

well tailored to achieve expected polishing rates (tunable specific rates in the range of 

5-20 µm per month) and effective lifetime (as long as 5 years) to satisfy the practical 

applications on vessels of different sailing speeds and idle periods. To add to the 

advantages, possible combination of varying biocides (copper, triorganotins and booster 

biocides, etc.) in such systems facilitated the resistance against a wide spectrum of marine 

colonizers. 

With the growing environmental concerns, organotin-based coatings were 

gradually withdrawn from the market due to their detrimental effects on marine ecology 

and human health (i. e. 2003-IMO ban on TBT paint application; 2008-IMO ban on TBT 

based paints). New research started to focus on tin-free biocide-based antifouling coatings 

in the directions of tin-free self-polishing copolymers (tin-free SPCs), controlled 

depletion systems (CDPs) and hybrid systems. The working mechanism of tin-free SPCs 

in seawater is assumed to be the same as TBT-SPCs, while CDPs is an improvement of 

traditional soluble matrix technology by applying modern reinforcing resins. The hybrid 

of CDP and SP, such as Interswift 655, also has an important position in the market. 

Although all these coatings are free of TBT, they are generally functioning on the basis of 

releasing biocides or co-biocides. Due to ecological concerns about the unclear 

consequences of these biocide-containing paints, there is a tendency towards the 

revolution to obtain fully biocide-free antifouling coatings. The difficulty lies in the 

achievement of the balance between economic feasibility, practical success and 

environmental sustainability. Intensive research interest therefore has been raised in the 

new approaches of anti-fouling (AF) coatings (e.g., coatings with bioinspired 

topographies or coatings with low surface energy) and fouling-release (FR) coatings (e.g., 
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PDMS-based coatings) free of toxic components. To optimize their functionality, studies 

on a multi-disciplinary platform are desired. 

2.2.2 Surface properties influencing biofouling 

Modulation of fouling organism recruitment (antifouling) and detachment 

(fouling-release) could be realized by tuning different properties of antifouling coatings, 

such as chemistry, topography, elasticity, etc. The antifouling studies on topographies are 

summarized in Section 2.3. 

Coating chemistry 

The chemical composition of coatings, in part determines the degree of hydration 

and surface wettability of antifouling paints, which have been proven to be critical to their 

antifouling performance.  

 

Figure 2-7 Settlement and adhesion of Ulva spores on OEG and PEG SAMs (taken from Schilp et al. 2009 

[50]). 

A representative example could be given by ethylene glycol (EG) based SAMs. 

Polyethylene glycol (PEG) is one of the most outstanding materials in resisting the 

settlement and adhesion of organic molecules, micro-foulers and macro-foulers [50-53]. 

This prominent antifouling performance is closely correlated with the surface hydration 

of PEG. In aquatic solution (EG)n chains are highly hydrated, representing an 

environment similar to the water surroundings, and could therefore effectively block the 
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interaction between substrates and the adhesive discharged by various colonizers. In the 

work presented by Schilp et al. [50], antifouling investigation was carried out on self-

assembly monolayers (SAMs) constructed with a series of (EG)n thiolates containing 

different numbers of EG units. Results (Figure 2-7) showed that SAMs with more than 

one EG unit per molecule generated sufficient hydration to exclude the irreversible 

attachment of spores. Although spores did settle on EG2-6OH SAMs, the weak adhesion 

could not hold up even slight hydrodynamic force. Comparatively, no settlement was 

found on PEG SAMs and its distinguished resistance to fibrinogen and algal cells was 

independent of the terminal end groups.  

In another study [54], adsorption of fibrinogen proteins and attachment of Ulva 

spores and Navicula cells were tested on hexa(ethylene glycols) (EG6) SAMs terminated 

with different alkoxyl end-groups. Results indicated a dependence of biological 

preference on the surface wettability induced by the end groups. The amount of firmly 

adhered cells, both spores and diatoms, increased with decreasing surface wettability, 

which was consistent with the protein adsorption results. The general trend found in all 

biological tests suggested the difficulties in replacing the water from the interface 

diminished the possibility for bioadhesive to come into direct contact with relatively more 

hydrophilic surfaces. Therefore, compared with hydrophilic surfaces, hydrophobic 

surfaces were more attractive to the attachment of algal cells. 

Coating elasticity 

Another notable route to maintain ship hulls free of fouling relies on the external 

hydrodynamic force generated by the movement in water. The ability to minimize 

attachment of fouling organisms and promote detachment of accumulated foulers is 

determined by both coating properties and operating status of the vessels. Currently 

silicon elastomer-based paints, in particular made of poly(dimethylsiloxane) (PDMS), are 

the most commercially-available fouling-release coatings, as they possess both low 

surface energy and low surface modulus. Biological tests with algal cells [55, 56] showed 

that although no significant influence of PDMS elastic modulus on the attachment of 

Ulva spores (0.2-9.4 MPa) and Navicula diatoms (0.4-2.4 MPa) was detected yet, the 

removal rate of attached spores and sporelings was highly increased when the PDMS 

substrates became very soft (ca. 0.2 MPa). On the other side, Gary et al. [57] reported that 

settlement of larvae was positively related to the surface modulus of PDMS 
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(0.01-0.1 MPa), which could possibly be explained by the influence on mechanosensitive 

ion channels. Similar conclusions were drawn in another long-term in situ study [58] 

showing that the initial settlement and metamorphosis of barnacle larvae increased with 

growing surface elastic modulus (0.01-0.47 MPa) on both hydrophobic PDMS and 

hydrophilic PAMPS/PAAm DN gels, although the growth of barnacle seemed to be 

independent of the elastic modulus of the substrates. It was pointed out by the Brady’s 

group [59, 60] that the coincidence between low bioadhesion and low elastic modulus of 

substrates could be explained by the mobility of the low modulus surface, which reduced 

the energy barrier to promote and expedite the failure of adhesive joins.  

2.3 Biofouling studies on surface topographies 

Topographic cues are among the key physiochemical properties, which influence and 

modulate adhesion on surfaces. Studies related to protein adsorption, cell differentiation 

and microbial response on different surface microtopographies have been reported [61-

63]. For example, the microtopography of honeycomb-patterned porous films has been 

found to strongly affect the morphology and adhesion of cells [64]. Besides the studies in 

biomedical field, the role of surface micro- and nano-topography has been intensively 

investigated and discussed in the area of marine antifouling, as topographic advance is an 

inseparable component of prospective non-toxic antifouling (AF) coatings design. The 

focus of topographic researches is highly diverse in feature shape, feature size, feature 

spacing, aspect ratio, and roughness. 

2.3.1 Influence of topographic features on biofouling 

Among different surface properties, topography has been demonstrated to have both 

deterrent and attractive effects on the settlement of fouling organisms. The settlement is 

highly dependent on topographic features including size, spacing, aspect ratio and 

roughness.  

As fouling organisms diverse highly in the shape and size (bacteria ≤ 1 µm; spores 

ca. 5-7 µm; larvae ca. 120-500 µm) at the attachment stage, feature size plays an 

extensive role to achieve the physical defense of topographic coatings. Effectiveness of a 

topographic design is associated with both the size of topographic features and the 

dimension of organisms in the specific fouling community [65], or in other words, 

effective antifouling topographies should be of a specific size scale which matches critical 
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sizes of targeted fouling propagules or larvae. As contact area is vital for the settlement 

success, microtopographies slightly larger than the cell/larva of fouling organisms 

facilitated settlement [32, 66, 67], in which case a fouling organism could fit inside the 

topographic feature entirely and therefore the degree of contact reached the maximum. 

On the contrary, substantially reduced settlement and attachment strength of the 

propagules could be found on natural or man-made surfaces with topographic features 

smaller than their body [16, 66]. 

It has been well documented in the literature that surface roughness was of great 

relevance to the retention of microorganisms on surface topographies with respect to 

biofouling issues [68]. Generally, surface roughness contributed to the increased total 

surface area which facilitated the adhesion of microorganisms by providing sufficient 

contact area for the secreted adhesive. Additionally, retention of cells by cavities or 

depressed/sheltered corners on a surface of certain roughness might confer the advantage 

to stand the external hydrodynamic force [69]. For example, during settlement spores 

showed their preference for certain attachment positions. Normally areas with higher 

dissimilarity (i.e., recessed areas) were preferentially chosen. 

In the study reported by Schumacher et al. [70], the significant influence of 

microstructure aspect ratio (feature height/feature width) on the antifouling performance 

of topographic coatings was identified. Each unit increase of aspect ratio on the species-

specific Sharklet AF
TM

 surfaces decreased the settlement of both Ulva spores and 

Balanus amphitrite cyprids by 42-45%. Settlement dependence on topographic aspect 

ratio could possibly be related to the underwater superhydrophobicity attained when the 

roughness ratio exceeded the critical limit. 

2.3.2 Models related to biofouling studies on topographies 

For the correlation between surface topographic features and fouling organism responses, 

several empirical models, namely ‘attachment point theory’, engineered roughness index 

(ERI) model, surface energetic attachment (SEA) model, nanoforce gradient, etc. [16, 19, 

71, 72], have been proposed. These models will help understand the settlement 

mechanism of fouling organisms and predict surface performance of antifouling coatings, 

which could finally lead to an optimal antifouling design.  
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Figure 2-8 Schematic illustration of attachment points on topographies of different wavelengths (adapted 

from Scardino et al. 2006 [19]). (a) Multiple attachment points on the smooth surface; (b)-(c) fewer 

attachment points with increasing feature wavelength when the organism size is bigger than the 

microstructure size; (d) multiple attachment points when the organism fits entirely inside the microstructure. 

The ‘attachment point theory’ was first brought up by Scardino et al. [19]. It 

suggested that more attachment points during settlement resulted in higher and stronger 

attachment. It was reported that the settlement of different diatoms, Fallacia carpentariae, 

Nitzschia cf. paleacea, Amphora sp. and Navicula jeffreyi, had a positive relationship 

with the number of available attachment points. Lowest settlement was found on 

microstructures with the feature wavelength slightly smaller than the size of fouling 

propagules/larvae (Figure 2-8c), as only two points were available for attachment. With 

decreasing feature wavelength (Figure 2-8c→Figure 2-8b), the settlement increased with 

the increasing attachment points. Multiple attachment points were present when 

organisms settled on smooth surfaces (Figure 2-8a) or entirely inside the microstructure 

(Figure 2-8d, a microstructure big enough to host the entire organism), and the settlement 

was highly increased in this case. In the continuous work [73], the theory was further 

examined with more fouling species, i.e., the diatom Amphora sp., the green alga 

Ulva rigida, the red alga Centroceras clavulatum, the serpulid tube worm 

Hydroides elegans and the bryozoan Bugula neritina. Generally, lower attachment of 

most tested organisms was observed on microstructures with the feature wavelength 

slightly smaller than the organism size. And the amount of settlement increased when the 

microstructures got wide enough to host one individual organism. Although it turned out 

that the theory was not confirmed for the settlement of non-motile algal spores of 

C. clavulatum, it strongly influenced the attachment of large macrofouling larvae 

(H. elegans and B. neritina) and also correlated with the attachment of small motile 

microfoulers (Amphora sp. and U. rigida). These findings reinforced the possible 

applications of the ‘attachment point theory’ in the field of biofouling to anticipate or 

even control the degree of fouling. 
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Another topographic model, ERI model, was first introduced by Schumacher et al. 

[16]. The model encompassed the Wenzel roughness factor (r), the depressed surface 

fraction (φs) and the degree of freedom to move around the surface (df). The influence of 

topographic feature size, roughness and geometry on the settlement of Ulva spores was 

examined with this model. To expand this correlation for applications on more 

topographies, ERIII  [74] was set up by replacing the degree of freedom (df) in ERII with 

the number of distinct features (n), which was particularly useful for topographies 

composing of more than one features, e.g., Sharklet AF
TM

. 

     
     

    
                  

   

    
 

By multiplying with the Reynolds number (Re) [75], the model was proven to 

correlate well with the attachment of both zoospores of Ulva and cells of Cobetia marina. 

The Reynolds number was calculated from the density (ρ) and viscosity (µ) of the assay 

solution, the velocity (V) of organisms in the solution, and the characteristic length (L) of 

organisms. 

         
   

    
 
   

 
 

However, the application of ERI series was restricted to interpreting and 

estimating the settlement of limited fouling species on specific topographies with fixed 

feature spacing (2 µm) and depth (3 µm). 

A recently reported surface energetic attachment (SEA) model [71] was established 

by combining both the ‘attachment point theory’ and the ERI model. The probability of 

settlement depended on the relative attachment energy at a specific topographic site. This 

model took into account the cell-substrate interface properties and the geometry of the 

topographic features with respect to fouling organisms. Compared with ERI models 

which were only applicable to correlate with the reduced settlement, the SEA model 

could be applied to predict both enhancement and reduction of settlement. 
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2.4 Fabrication and analysis techniques 

2.4.1 Thermal nanoimprint: hot embossing and hot pulling 

 

Figure 2-9 Schematic representation of a hot embossing process (taken from Worgull et al. 2008 [76]). The 

molding part includes a microstructured mold insert, a thermoplastic polymer foil and a rough demolding 

plate. The embossing process is featured by heating the polymer foil above its glass transition temperature, 

a two-cycle embossing with controlled force and velocity, a convective cooling, and finally a vertical 

demolding ensured by the adhesion between the polymeric residual layer and rough demolding plate. 

For sophisticated applications of microstructures (e.g., micro-optical devices, microfluidic 

devices) with the dimensions of several hundred micrometers down to the submicron 

scale, hot embossing is one of the established technologies dedicated for the construction 

of delicate surface topographies. Hot embossing [77] is a micro-replication process which 

reproduces patterns from the mold insert onto the substrate material, typically 

thermoplastic polymer, e.g., polymethylmethacrylate (PMMA) and polycarbonate (PC). 

Compared with other molding techniques such as injection molding, hot embossing is 

highly recommended for producing topographies with micro-cavities, which require 

extremely high pressure to fill the cavities with viscous polymer melt. This replication 

technique is featured by the short flow distance from molten polymer to cavities on the 

mold and the moderate embossing velocity (in the range of 1 mm/min). And these 

characteristics in turn result in a remarkably lower shear stress of the polymer melt and 

therefore a lower residual stress of the molding part. After developing for over a century, 

today hot embossing could be applied to construct microstructures with small feature 

sizes (down to nanoscale), high aspect ratios, and sharp vertical side walls (surface 
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roughness < 40 nm) on a broad variety of materials (thermoplastic polymer, 

shape-memory polymer, metallic glasses, etc.) [78-83]. 

The hot embossing process could be divided into a few steps (Figure 2-9). First, 

under vacuum the thermoplastic material, in the form of a thin polymer film, is heated up 

to the molding temperature, which is typically above the glass transition temperature of 

the polymer. The second step involves an isothermal molding by embossing, i.e., 

stamping the pattern on the mold into the softened polymer with controlled force and 

velocity.  Following the embossing, the whole setup is cooled down to the demolding 

temperature while keeping the embossing force constant. Finally, the structured polymer 

is separated from the instrument by opening the tool. The strong adhesion between the 

residual polymer layer and the substrate plate/demolding plate ensures accurate vertical 

demolding and reduces the risk of damage to the mold. The instrument applied in our 

study is a custom-built Hex03 hot embossing machine (Figure 2-10). 

 

Figure 2-10 Photos of the Hex03 hot embossing machine. The standardized system ensures quick change of 

mold inserts, substrate plates and polymer foils.   

Generally speaking, the total surface area with respect to a certain volume 

generally increases with decreasing microstructure size, and therefore the fabrication of 

submicron features is quite sensitive to the demolding force. Small imperfection of the 

mold insert or tiny deviation from the standard procedure could highly deform or even 
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rupture the replicated microstructures. Micro- or nano-structures and especially 

hierarchical topographies below a certain scale are suggested to be molded with a 

multilevel process combining the hot embossing and hot pulling techniques [84]. When 

microstructures are prepared via standard hot embossing, the aspect ratio of micro-

features is limited by the design of the mold. To obtain microstructures with higher aspect 

ratios (up to 10) compared to that defined by the mold, a modified hot embossing 

process — hot pulling, could be applied by taking advantage of the high demolding force 

when we separate the molding tool. The differences between the conventional embossing 

and the modified pulling lie mainly in the cooling and demolding steps. Instead of cooling 

the tool to solidify the polymer material before demolding in hot embossing, the 

temperature of the mold insert is maintained above the glass transition temperature of the 

polymer for the hot pulling. Therefore, when the mold insert and the substrate plate 

separate from each other, the adhesion between the cavity of the mold and the soften 

polymer will stretch the viscous material to pursue relatively higher microstructures. The 

capability of pulling depends on both the geometry of the mold patterns and the properties 

of the substrate materials, particularly the elastic modulus. As the temperature is kept 

nearly constant throughout hot pulling and thus no time consumption for the heating and 

cooling cycle is required, the cycle time of hot pulling is lower compared with hot 

embossing, which leads to higher cost-effectiveness. 

2.4.2 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) is primarily developed to study surface morphology 

of bulk specimens [85, 86]. Compared with normal light microscopy the combination of 

electromagnetic lenses and deflection coils in SEM enables the achievement of images 

with higher magnification (up to 1000000×), larger depth of field (~40 times superior to 

light microscope), better resolution (typically 1-10 nm) , and greater versatility. In 

principle, SEM images are derived from the interaction between the incident electron 

beam and the objective surface. Signals, particularly secondary and backscattered 

electrons, obtained from the specimen while the focused electron beam is probing the 

surface, are essential to topographic imaging. 

Three most important parameters of SEM are magnification, depth of field, and 

spatial resolution. The magnification (M) depends on the excitation of the scan coils and 

could be calculated from the ratio of the monitor length (Lmon) versus the scan length on 
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the specimen (Lspe). The depth of field (D) is defined as the change in the specimen height 

over which an SEM image in acceptably sharp focus could be obtained. It varies with the 

objective aperture radius (Rape), working distance (Dw) and magnification (M). As 

expressed below,  

  
 

  
 

 

    

  
 

 

where α is the divergence angle. Compared with light microscopy, SEM has a much 

higher depth of field due to the relatively smaller α. The spatial resolution (d), the 

minimum separation that can be resolved by SEM, is given by the following formula, 

  
 

      
 

where n is the refractive index of the imaging medium (which is 1 in the vacuum of an 

electron microscope) and λ is the wavelength of the incident electron beam. This formula 

suggests that with a shorter wavelength of the beam source (extremely short wavelengths 

of accelerated electrons in SEM) and a larger index of the medium refraction, the 

resolution could be improved. 

The operating compartment in SEM generally includes electron gun, lens system, 

scanning coils and electron detector (Figure 2-11). An electron gun consists of an electron 

source known as cathode and an electron accelerating chamber. Electrons could be 

released from the cathode by means of thermionic emission or field emission. In the case 

of thermionic emission, electrons are excited by raising the temperature of the cathode. 

While for field emission sufficient electrostatic field at the cathode is required to decrease 

the surface barrier for electrons to escape. The combination of these two methods, or so 

called Schottky emission, could further increase the emission efficiency. After being 

emitted from the cathode, electrons are accelerated by the high potential difference V0 

between the two poles. A limited amount of electrons with a typical energy of 1-30 keV 

for SEM will reach and pass through the small hole of the anode plate. As the resolution 

of SEM is limited by the diameter of the incident electron beam, the lens systems 

(condenser lenses and objective lenses) serve as the main optical components to focus the 

electron beam. Scanning coils mounted in the optical compartment enable the 

simultaneous scanning in two perpendicular directions known as raster scanning. The 
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amount of electrons which will finally probe the specimen is tuned by the aperture. SEM 

images of varying contrasts could be generated by different detectors (SE detector or BE 

detector) via collecting the back-scattered electrons (BE) and/or secondary electrons (SE), 

as they have different interaction depths with the material. With the electron source 

remaining under high vacuum, the measurement chamber, containing the detector and the 

sample holder, could be purged with N2 for sample exchange. The measurement is carried 

out under high vacuum (< 10
-10

 Pa). A LEO1530 Gemini SEM device (Zeiss, Germany) is 

used in this work. 

 

Figure 2-11 Schematic diagram of a scanning electron microscope (adapted from Goodhew et al. 2001 

[85]). 

2.4.3 Atomic force microscopy (AFM) 

Atomic force microscopy (AFM) [87, 88], a scanning probe microscopy with 

demonstrated high resolution (fractions of a nanometer), is frequently applied to image, 

measure and construct topographies at the nano-scale. As shown in Figure 2-12, at the 

end of each cantilever used for AFM measurement we could find a force-sensing tip, 

which is capable of detecting ultra-small force. With the cantilever scanning parallel to 

the surface, the interaction between the tip and the surface causes the deflection of the 
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cantilever. The corresponding displacement of the beam light reflected from the backside 

of the cantilever is detected by the photodiode. The collected signals are then transformed 

to compile a topographic image of the tested surface. 

 

Figure 2-12 Diagram of atomic force microscopy (AFM). When the cantilever scans over a surface, the 

interaction between the tip and the topography deflects the cantilever, which is then detected by a 

photodiode via the deflection of the laser light reflected from the backside of the cantilever. 

Topographies could be analyzed with AFM under different modes, namely contact, 

non-contact, and tapping modes. In a contact mode, the measuring tip is brought into 

direct contact with surfaces. The same force is exerted on the surface during scanning by 

maintaining a constant deflection via the adjustment of a piezoceramic element (constant-

force mode), or the same distance is maintained between the tip and the sample (constant-

height mode). Due to the direct physical contact, tips and samples with fragile surfaces 

(e.g., biological samples or organic thin films) might be deformed or even damaged 

during measurement. For measuring soft samples, non-contact mode is another option. In 

contrast to contact mode, the tip does not contact the sample surface in a non-contact 

mode [89]. Instead, the cantilever oscillates above the test surface either at or just above 

its resonance frequency. When the tip gets closer to the surface, the van der Waals force 

or other long rang forces will act to decrease the resonance frequency of the cantilever. 

The feedback loop system detects this change and makes corresponding adjustment of the 
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tip-to-sample distance to maintain constant oscillation frequency or oscillation amplitude. 

The topographic images are generated from the change in tip-to-sample distance collected 

during the scanning. However, in the presence of a liquid layer under ambient conditions, 

it is difficult to bring the tip close enough to develop detectable short-rang forces and 

meanwhile prevent the tip from sticking to the surfaces. Therefore, the tapping mode is 

developed to compensate this shortcoming. When AFM is operated under a tapping mode 

[90], intermittent touching or ‘tapping’ occurs on the sample. The tip goes through both 

the attractive and repulsive force region of the tip-surface interaction. The distance 

between the tip and the surface is adjusted by the piezoelectric element to maintain a 

preselected high oscillation amplitude (typically 100-200 nm compared with <10 nm in 

the non-contact mode), which could effectively reduce the dragging forces during the 

scanning. AFM images are generated by imaging the variations of the z-position of the tip 

during scanning. Compared with the other two modes, a relatively higher lateral 

resolution (1-5 nm) could be attained under the tapping mode. The AFM used in this 

work is a MFP-3D BioAFM (Asylum, Germany). 

2.4.4 Contact angle goniometry 

 

Figure 2-13 (a) Contact angle of a liquid droplet on a rigid solid surface; (b) water droplets on hydrophilic, 

hydrophobic and superhydrophobic surfaces. 

Contact angle goniometry quantifies the degree of wetting, or more specifically, the 

ability of a liquid to maintain contact with a solid surface in terms of contact angles. The 
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contact angle (θ) is defined as the angle where the liquid/vapor interface meets the solid 

surface (Figure 2-13a). A smaller contact angle represents higher wettability of the 

surface, which indicates relatively stronger interaction between the liquid and the solid. If 

water is used as the testing liquid, substrates are referred as hydrophilic (θ < 90°), 

hydrophobic (θ ≥ 90°) and superhydrophobic (θ > 150° with the contact angle hysteresis 

smaller than 5°) with increasing water contact angle values (Figure 2-13b).  

On an ideal solid surface, Young’s equation [91] could be applied to calculate 

contact angles (θY) from tensions of three interfaces (γSL, solid-liquid; γSG, solid-gas; γLG, 

liquid-gas). 

       
       

   
 

This ideal equation is only valid when atomically smooth and chemically 

homogeneous surfaces are tested with small droplets of liquid, in which case the 

gravitational force of the droplets could be ignored. As real surfaces are heterogeneous 

complexes which combine physical and chemical differences, this ideal equation is not 

applicable in most cases. 

 

Figure 2-14 (a) Wenzel model representing a homogeneous wetting regime; (b) Cassie-Baxter model 

representing a heterogeneous wetting regime. 

When a liquid droplet is deposited on a structured surface, the interaction could be 

classified into two regimes (Wenzel model [92] and Cassie-Baxter model [93]; Figure 

2-14a and Figure 2-14b, respectively). In the case of homogeneous wetting into the 

structures, the Wenzel contact angle θW could be calculated from the Young contact angle 

θY and the Wenzel roughness factor rWenzel, which is defined as the ratio between the actual 

surface area and geometrical surface area.  
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Some structured surfaces, such as lotus leaves, could not be fully filled with the 

liquid because of the small air pockets remaining between the solid-liquid interface. The 

degree of this incomplete wetting could be quantified by the Cassie-Baxter equation. The 

Cassie-Baxter contact angle θCB  is determined from the surface contact fraction φ of the 

liquid droplet and the Young contact angle θY. 

                       

A custom-built contact angle goniometer with a tilting stage is used in this study.
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3.1 Surface preparation 

3.1.1 Hot embossing and hot pulling 

 

Figure 3-1 Schematic view of the hot embossing process (adapted from Worgull et al. 2008 [76]). 

Microstructured surfaces constructed via thermal nanoimprint were prepared together 

with the group of Dr. Hendrik Hölscher at the Institute of Microstructure Technology, 

Karlsruhe Institute of Technology. Large-area surfaces with micro- and/or nano-structures 

were fabricated by hot embossing (Figure 3-1 and Figure 3-2a), a plastic molding process. 

The embossing parameters (molding temperature, molding force, etc.) were optimized to 

ensure complete constructing of the microstructures on the thermoplastic polymer 

(polymethylmethacrylate, polycarbonate, etc.). The embossing device consisted of the 

molding platform and the demolding plate. Via sandblasting the demolding plate 

maintained a certain degree of surface roughness, which was essential to preserve the 

physical adhesion with polymer sheets and facilitate the demolding process. To 

commence the hot embossing, the structured nickel (Ni) mold insert was fixed on the 

molding platform and an unstructured polymer foil was positioned between the two-part 

molding tool. After closing the embossing chamber, the polymer sheet was heated above 

its glass transition temperature. When the molding temperature was reached, the softened 

polymer was pressed into the cavities of the mold insert with a specified embossing force. 

With the applied force remaining constant, the polymer was cooled below the glass 

transition temperature to ca. 50 °C. Finally, the demolding took place by opening the 

molding tool, and the molded polymer wafer was peeled off the demolding plate.  
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Figure 3-2 Diagrams describing the processes of (a) hot embossing and (b) hot pulling. 

A standard hot embossing procedure produced microstructures with a specific 

feature height defined by the mold layout. To overcome this constraint we employed a 

two-step hot pulling technique (Figure 3-2b) [84] to fabricate features of different heights 

from the same mold. In the first step, a normal hot embossing process was completed 

with a smooth mold to create strong adhesion between the polymer sheet and the 

demolding plate. To start the second step, the smooth mold was first replaced by the 

microstructured mold. The thermal nanoimprint started by increasing only the 

temperature of the mold insert while keeping the temperature constant for the demolding 

stage with the polymer attached on. The micro-patterns were pressed into the softened 

polymer at the molding temperature with a defined molding force. The molding platform 

and the demolding plate were then separated at a steady rate with the temperature of the 

mold insert remaining above the glass transition temperature of the polymer to pull those 

features that had already been constructed. At the end of the pulling step, the whole setup 

was cooled down to ca. 50 °C and the molding tool was opened completely to peel off the 

samples. 

To prepare microstructures of different properties, nickel (Ni) shim molds with 

specific micro-patterns were selected and prepared for microreplication. Hot embossing 

and hot pulling process parameters, i.e., embossing temperature, embossing pressure, 
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demolding/pulling temperature, and pulling speed, were adjusted to obtain desired 

features (Table 3-1).  

Table 3-1 Process parameters of thermal nanoimprint, i.e., embossing temperature, embossing force, 

demolding/pulling temperature, and pulling speed (Section 4.1 and Section 4.3). 

Sample Type 

Embossing 

temperature 

(℃) 

Embossing 

force (N) 

Demolding/pulling 

temperature(℃) 

Pulling 

speed 

(mm/min) 

Honeycomb gradient 

(Section 4.1) 
embossing 155 40000 95 — 

3µm-H (Section 4.3) pulling 260 15000 260 1 

3µm-L (Section 4.3) embossing 155 1000 145 — 

2µm-H (Section 4.3) pulling 280 20000 280 0.5 

2µm-L (Section 4.3) embossing 180 20000 145 — 

230nm-H (Section 4.3) embossing 170 70000 145 — 

230nm-L (Section 4.3) embossing 175 5000 145 — 

 

3.1.2 PDMS casting 

In order to render the SU8 photoresist mold chemically inert before PDMS casting, the 

mold surface was fluorinated with tridecafluorooctyltriethoxysilane (TFS; Degussa, 

Germany) via chemical vapor deposition (CVD). The desiccator was dried in an oven at 

105 °C for half an hour. Around 0.5 ml TFS was deposited in a glass dish placed at the 

bottom of the desiccator and the samples were positioned on a porous ceramic lying 

above the TFS solution. After applying 0.1 mbar vacuum for 5 min, the desiccator was 

sealed and stored under room conditions for 2 days. The mold was then rinsed with 

absolute ethanol and dried with N2. 

Sylgard
® 

184 Silicone Elastomer (Dow Corning, USA) was used for casting 

microstructures from the mold. The base and the curing agent (10:1 by weight) were 

mixed thoroughly in a container by stirring with a glass rod. The capacity of the container 

should be at least four times higher than the volume of the input mixture. The mixture 
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was kept in vacuum (< 1×10
-1

 mbar) for around 30 min to remove all entrapped air 

introduced during the mixing step. Mixture was then poured continuously onto the mold. 

The coated molds were stored steadily under the ambient conditions for 24 h and then 

transferred to the oven where the mixture was further cured at 60 °C for 2 h. The casting 

samples were then peeled off the mold for surface characterization and biological tests.  

3.1.3 Fluorocarbon-infused microporous slippery surfaces 

Fluorocarbon-infused microporous slippery surfaces were prepared in collaboration with 

the group of Dr. Pavel Levkin at the Institute of Toxicology and Genetics, Karlsruhe 

Institute of Technology. All basic chemicals for preparing the microtexture base [poly 

(butyl methacrylate-co-ethylene dimethacrylate), BMA-EDMA] of the slippery surfaces 

were ordered from Sigma-Aldrich, Germany. The covalent binding between the polymer 

and the glass substrate was critical to the homogeneity and stability of the porous 

microtexture. To create the anchoring sites for the polymer layer, Nexterion
®

 glass slides 

(Schott, Germany) were first activated by immersion sequentially in 1M NaOH for 1 h 

and 1M HCl for 30 min, followed by washing with deionized water and drying with 

compressed air. 3-(Trimethoxysilyl)propyl methacrylate ethanol solution (20 % vol, 

pH = 5 adjusted with acetic acid) was deposited onto one slide, which was then covered 

by another slide to assist the spread of the droplets over the whole slide and avoid air 

bubbles that might be trapped between slides. The solution was reapplied after every 

30 min. After 1 h, the slides were washed in acetone and dried with N2. As shown in 

Figure 3-3, to create the mold for polymerization, thin strips of Teflon with a thickness of 

50 μm (American Durafilm Co., USA) as spacers were placed at the edge of both long 

sides between two slides and the stacked slides were then fixed with clamps. A mixture of 

butyl methacrylate (BMA) (20 wt %), ethyleneglycol dimethacrylate (EDMA) (30 wt %), 

1-decanol (50 wt %) and 2,2-dimethoxy-2-phenylacetophenone (DMPAP) (1 wt %, with 

respect to monomers) [94] was injected into the space between the two glass slides. The 

whole setup was irradiated with UV light (260 nm, 12 mW/cm
2
) for 15 min. The slides 

were then carefully opened with a scalpel. Most of the polymer adhered to the upper glass 

slide leaving a very thin layer on the bottom slide possibly due to the reduction of UV 

light intensity through the thickness of the polymer film. The upper slide was then 

washed intensively with methanol and stored in methanol to remove unreacted monomers 

insider the microtexture.  
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Figure 3-3 Preparation of the microtexture BMA-EDMA layer on a glass substrate via UV-initiated 

polymerization. 

Before applying fluorocarbon lubricants, the slides were removed from methanol 

and dried with an air gun. An excess amount of perfluorinated liquids (Krytox
®
 GPL 103 

and Krytox
®
 GPL 100 from H. Costenoble GmbH & Co. KG, Germany, and 

Fluorinert
®
 FC-70 from Sigma-Aldrich, Germany) was applied onto the porous 

BMA-EDMA surfaces respectively. The liquids were maintained on the surfaces 

overnight to fully saturate the pores inside the polymer layer. Afterwards, samples were 

tilted vertically for 4 h to get rid of excess fluorocarbon before use in experiments.  

3.2 Surface characterization 

3.2.1 Scanning electron microscopy (SEM) 

The detailed information about the surface morphology was provided by scanning 

electron microscopy (SEM) measurements. Before imaging, samples (polymer substrates 

with or without organisms) were coated with a thin layer (~40 nm) of gold or 

gold/graphite mixture using a sputter coater (Cressington 108 auto; Cressington Scientific 

Instruments Ltd., UK) to make surfaces electronically conductive, thus preventing the 

accumulation of electrostatic charge during the scanning. Images were recorded in a 

LEO1530 Gemini SEM device (Zeiss, Germany) operating at an electron acceleration 

voltage of 1-2 kV under high vacuum (residual gas pressure < 1×10
-5

 mbar). 

3.2.2 Atomic force microscopy (AFM) 

Atomic force microscopy (AFM) was applied to examine the surface topography of 

samples. The analysis of surface topographies was carried out by a MFP-3D BioAFM 

(Asylum, Germany) in AC-mode using commercial Si3N4 cantilevers with a spring 
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constant of 7.5 N/m (µMasch). The measurement was completed under ambient 

conditions in a closed loop on all three axes with the tip scanning back and forth at 0° 

along the horizontal line. Obtained topographic images were analyzed with the software 

package IGOR (WaveMetrics Inc., USA). 

3.2.3 Optical microscopy 

A Nikon Eclipse 90i light microscope (Nikon, Germany) with a Nikon DIGITAL SIGHT 

DS-5Mc camera was applied for the observation and imaging of surface patterns. Images 

were captured in phase contrast mode with different objective magnifications and 

processed with Nikon NIS-ELEMENTS AR 3.2 software. 

3.2.4 Water contact angle (WCA) 

The wettability of surfaces was assessed by water contact angle measurements with a 

homebuilt contact angle goniometer. Under ambient conditions droplets (around 2-3 µl, 

Milli-Q water) were deposited on samples by a syringe. Images were acquired using a 

digital camera and analyzed with either the Program CAM 3.02.01 (Kölsch, P.; 

Motschmann, H.; Orendi, H.) or the ImageJ software (Rasband, W.) with a Dropsnake 

plugin. The static sessile water contact angles were measured with the tip of the syringe 

withdrawn from the droplet. To acquire advancing and receding water contact angles, a 

constant water application of 12 µl/min was applied. The average was taken from 

5-9 measurements with the error bars describing the standard deviations.  

3.3 Biological evaluation 

3.3.1 Settlement of spores of Ulva linza 

Spore settlement tests were performed together with the group of Prof. James A. Callow 

at School of Biosciences in University of Birmingham, UK. Plants of green macroalgae 

Ulva linza were collected from Llantwit Major, Glamorgan, Wales (52°23' N, 3°30' W) 

2-5 days before the spring tide. Zoospores were released from the reproductive tips into 

filtered artificial seawater (ASW, Tropic Marin
®
, filtered at 0.22 µm) and prepared for the 

assays. In brief, after being filtered through 3 layers of nylon mesh (100 µm, 50 µm and 

20 µm) to remove debris, the spore suspension was stored in a beaker, which was then 

quickly plunged into ice. Due to the low temperature at the bottom of the beaker 

maintained by the surrounding ice, although spores swam rapidly towards the bottom, 
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they would not commit settlement. The concentrated spore suspension at the bottom of 

the beaker was removed with a pipette and refiltered through two layers of 20 µm nylon 

mesh. The spore suspension was then diluted with filtered ASW to attain the required 

concentration according to the experimental design (settlement and growth experiments, 

1×10
6
 spores/ml; toxicity tests, 7×10

5
 spores/ml). The spore suspension was kept on a 

magnetic stirrer and used in assays within 30 min of release.  

Table 3-2 Conditions of spore settlement assays on different surfaces. 

Sample type 
Pre-

incubation  

Suspension 

concentration 

(spores/ml) 

Sample 

dimension 

(length×width,  

cm×cm) 

Assay container 

Amount 

of input 

(ml) 

Settlement 

duration 

Honeycomb 

gradients 

(Section 4.1) 

In ASW with 

vibrating for 

1 h 

1×106 4.5 × 4.5 
9 cm diameter Petri 

dishes 
30 45 min 

Discrete 

honeycombs 

(Section 4.2) 

In ASW with 

vibrating for 

1 h 

1×106 2 × 2 
5 cm diameter Petri 

dishes 
15 30 min 

Tapered 

microstructures 

(Section 4.3) 

In ASW with 

vibrating for 

1 h 

1 ×106 2 × 2 
6-well culture plates 

(ca. 3.5 cm diameter) 
5 45 min 

Slippery 

surfaces 

(Section 4.4) 

In ASW with 

vibrating for 

48 h 

1 ×106 7.5×2.5 
quadriperm dishes 

(ca. 8.2 cm×3.0 cm ) 
10 45 min, 2 h 

 

Detailed conditions for spore settlement assays on different surfaces are illustrated 

in Table 3-2. Generally, to ensure the surfaces were fully wetted prior to the settlement 

assay, samples were pre-incubated in filtered ASW on a vibrating platform (50 rpm) for 

different durations depending on the physicochemical properties of the samples. Right 

before the start of the assay, ASW was removed and quickly replaced with the spore 

suspension to minimize the possibility of drying.  

Spore suspension was added into the assay dishes containing the samples. The 

amount of suspension for each sample was determined by both, the dimension of the 

sample and the volume of the assay container. The dishes were incubated in the dark at 
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room temperature (ca. 20-22 °C) for 45 min [95] or in some cases for 30 min or 2 h. The 

samples were then washed in filtered ASW to remove motile spores (i.e., spores that had 

not settled and undergone permanent attachment), by gently passing the samples 10 times 

through a beaker of ASW. The samples were then fixed in 2.5% glutaraldehyde in ASW 

for 20 min, followed by sequential washing in ASW, 50% ASW and deionized water, and 

subsequently air-drying. Settlement assays with different batches of spores were 

conducted to confirm the reproducibility of the data. 

Spores settled on substrates were visualized and counted by autofluorescence of 

chlorophyll using an AxioVision 4 image analysis system attached to a Zeiss 

epifluorescence microscope (20× objective; excitation and emission wavelengths: 

546 and 590 nm, respectively). For some microstructured samples (e.g., honeycomb 

gradients on PMMA), it was not possible to assess the settlement using automated image 

analysis as the pattern itself was autofluorescent leading to exaggeration of cell numbers. 

Therefore, attached spores were viewed under transmitted light and counted by eye from 

fields of view projected onto a computer screen. Spore settlement density is expressed in 

cells·mm
-2

. Reported values are the mean (± standard errors) of the data (normally 

80-90 counts) collected from a number of replicates (at least 3 replicates of each sample 

type). Repeating settlement assays with different batches of spores were conducted to 

verify the reproducibility of the results. 

3.3.2 Attachment of the diatom Navicula incerta 

Diatom attachment assays were completed together with the group of Prof. James A. 

Callow at School of Biosciences in University of Birmingham, UK. As diatoms do not 

have flagella to support the active exploration of surfaces before committing settlement, 

they are passively brought into the vicinity of surfaces by gravity or water flow. Before 

applying external hydrodynamic force, the cell density appears to be similar on all 

substrates irrespective of the surface properties. The initial attachment of diatoms was 

therefore assessed after a washing step to remove unattached or weakly attached diatoms. 

As a consequence, the resulting density actually revealed the ability of diatoms to attach 

firmly on a specific surface.  

After 3 days’ culture in F/2 medium in an illuminated incubator 

(75 µmol photons·m
-2

·s
-1

) at 18 °C, cells of Navicula incerta were washed three times and 

resuspended in fresh medium. The diatom suspension was then filtered through two 
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layers of 20 µm nylon mesh and diluted with ASW (Tropic Marin
®
) to obtain a 

concentration with ca. 0.25 µg/ml chlorophyll a. Settlement conditions on different 

surfaces are listed in Table 3-3. In general, to perform the settlement assay, a certain 

volume of cell suspension was added onto the samples. After 2 h of incubation at room 

temperature (ca. 20-22 °C), the samples were rinsed by passing 10 times through ASW in 

a beaker. Samples were subsequently fixed with 2.5% glutaraldehyde in ASW and 

washed sequentially in ASW, 50% ASW and deionized water, and subsequently air-

drying. Attached diatoms were visualized through the autofluorescence of chlorophyll 

with an AxioVision 4 image analysis system attached to a Zeiss epifluorescence 

microscope (20× objective; excitation and emission wavelengths: 546 and 590 nm, 

respectively). The number of settled diatoms was counted in 20-30 fields of view on each 

replicate (3-4 replicates of each sample type). The results are expressed as the mean 

number (± standard errors) of settled diatoms per square millimeters. Settlement was 

repeated with different batches of diatoms to confirm the reproducibility of the data. 

Table 3-3 Conditions of diatom attachment assays on different surfaces. 

Sample type 
Pre-

incubation 

Concentration 

of chlorophyll a 

(µg/ml) 

Sample 

dimension 

(length×width, 

cm×cm) 

Assay container 

Amount 

of input 

(ml) 

Settlement 

duration 

Discrete 

honeycombs 

(Section 4.2) 

In ASW with 

vibrating for 

1 h 

0.25 2×2 
5 cm diameter 

Petri dishes 
15 2 h 

Tapered 

microstructures 

(Section 4.3) 

In ASW with 

vibrating for 

1 h 

0.25 0.5×0.5 

6-well culture 

plates (ca. 3.5 cm 

diameter) 

5 2 h 

 

3.3.3 Settlement of barnacle cyprids of Balanus amphitrite and 

Balanus improvisus 

Cyprid settlement assays were conducted together with the group of 

Prof. Anthony S. Clare at School of Marine Science and Technology in Newcastle 

University, UK. Cyprids of Balanus amphitrite and Balanus improvisus were cultured as 

described in the literature [17, 96]. Before settlement, cyprids (Balanus amphitrite: 3-day 
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post moult from the 6
th

-stage nauplius larva; Balanus improvisus: 0-day post moult from 

the 6
th

-stage nauplius larva) were stored in a refrigerator at ~6 °C. One droplet of 

approximately 0.5 ml freshly filtered (filtered at 0.22 µm) seawater (cyprids of B. 

amphitrite) or artificial seawater (Tropic Marin
®

; cyprids of B. improvisus) containing 

around 15-20 cyprids was placed on the surface of each replicate. After incubation for 

48 h in darkness at 28 °C, the amount of settled cyprids was quantified under a light 

microscope. The percentage of settlement was calculated as the ratio between the number 

of settled cyprids and the total number of cyprids. The reported values are the average of 

the data collected from six replicates of each sample type with the error bars showing the 

standard errors. Experiments were repeated with different batches of cyprids to confirm 

the reliability of the data. 

3.3.4 Removal of sporelings of Ulva linza 

Sporeling removal tests of slippery surfaces (Section 4.4) were performed together with 

the group of Prof. James A. Callow at School of Biosciences in University of 

Birmingham, UK. To assess the fouling-release capability of the coatings with a 

reasonable accuracy, a minimum amount of biomass was required to be present on the 

samples before being exposed to a shear stress in a removal experiment. Therefore, spores 

were allowed to settle (attach) on samples for 2 h in darkness as described in 

Section 3.3.1. The suspension with unsettled spores was gently removed with a pipette 

and growth medium [97] was carefully added without disturbing the settled spores. 

Samples were then transferred to an illuminated incubator at 18 °C with a 16:8 light: dark 

cycle (45 µmol photons·m
-2

·s
-1

). The medium was exchanged every two days. 

After growing for 7 days, the attached sporelings were quantified in a plate reader 

as described in the literature [98]. The RFU value of each replicate was the mean taken 

from 70-point readings along the center region of the sample (in a 10×7 grid covering an 

area of ca. 4 cm
2
). 

 
Samples were then exposed to a wall shear stress of 50 Pa in a flow 

channel [99] for 5 min and the remaining biomass was quantified again. Percentage 

removal of biomass was determined by the RFU values before and after flow, 

where           
                  

         
     . The mean percentage removal from six 

replicates of each sample type is reported with the error bars representing 

95% confidence intervals. 
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3.3.5 Field test 

The field test of slippery surfaces (Section 4.4) was performed in collaboration with 

partners in International Paint, AkzolNobel, UK. Samples of microscope glass size were 

adhered on the immersion test board using an epoxy adhesive. When the glue was fully 

cured, an acrylic tiecoat was applied around the samples on the board. Following the 

drying of the tiecoat, the area around the testing surfaces was coated with an addition 

layer of blue top coat Intersleek
®
 970. The testing board was then immersed in Hartlepool, 

UK (International Paint immersion test facility). The percentages of different types of 

fouling (i.e., micro-fouling, weed, soft-fouling and hard-fouling) were assessed by eye 

and images of the testing board were taken after 3 weeks, 5 weeks and 5 months of 

immersion, respectively. Averages were obtained from 10 replicates per each sample type. 

3.4 Other related methods 

3.4.1 Spectral ellipsometry 

The thickness of thin organic films was determined by a spectral ellipsometer M44 

(J. A. Woollam, USA). With a high pressure Xenon lamp serving as the light source, the 

instrument was operated at a wavelength between 280-800 nm. The thickness of the 

PEG2000 self-assembly monolayers (SAMs) surface, which was included as a standard in 

the slippery study (Section 4.4), was determined to be 61±10 Å using a single Cauchy 

model layer with a fixed refractive index of 1.45. The consistency with values reported 

[100, 101] suggested the successful assembly of the monolayer. The reported values are 

the average taken from 9 measurements (measurements of 3 distinct spots on each of the 

3 replicates) and the errors are the standard deviations of the data set. 

3.4.2 Stability test 

The stability test of slippery surfaces (Section 4.4) was done together with the group of 

Dr. Pavel Levkin at the Institute of Toxicology and Genetics, Karlsruhe Institute of 

Technology. Samples were immersed in filtered artificial seawater (ASW, Instant Ocean
®; 

filtered at 0.22 µm) or filtered seawater (filtered at 0.22 µm) on a shaking table at 50 rpm. 

The static, advancing and receding water contact angles were measured after 1 h, 3 h, 

18 h, 1 day, 2 days, 7 days, 9 days, 14 days, 21 days and 28 days of incubation. The 
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expressed values are the average of 9 measurements with the error bars representing the 

standard deviations. 

3.4.3 Toxicity test 

The toxicity test was done together with the group of Prof. James A. Callow at School of 

Biosciences in University of Birmingham, UK. Samples from the slippery study (Section 

4.4) were incubated in 10 ml ASW (Tropic Marin
®
; filtered at 0.22 µm) in separate 

compartments of Quadriperm dishes (Greiner Bio One, UK) on a shaker (50 rpm) at room 

temperature (20-22 °C). After 48 h the ASW (leachate) was pipetted from the dishes and 

replaced with fresh ASW. The leachates collected after 48 h preincubation from three 

replicates of each type of sample were tested in a toxicity assay.  

One milliliter of freshly released spores (7×10
5
 spores/ml) in double strength 

enriched seawater medium (400 µl nutrients / 10 ml ASW) [97] was mixed with 1 ml 

leachate or 1 ml ASW (control) in 24-well plates. The plates were incubated in darkness 

for 2 h at room temperature (ca. 20-22 °C) and then transferred to an illuminated 

incubator with a 16:8 light:dark cycle (45 µmol photons·m
-2

·s
-1

) at 18 °C. After 5 days of 

growth, the medium was removed from the wells. Biomass in the wells was quantified as 

extracted chlorophyll a by adding 1 ml dimethyl sulfoxide (DMSO) into each well. The 

plates were incubated in darkness for 30 min and 200 µl solution from each well was 

pipetted into a 96-well plate. Fluorescence of the DMSO extracts was read in a plate 

reader (Tecan GENios Plus; excitation at 430 nm, emission at 670 nm) connected to a 

computer with Magellan v.4.00 software. All plates were read from the top, and the 

readings were based on four spot readings per well, taken in a 2×2 grid. The results were 

expressed as the relative fluorescence units (RFU). The reported data are the average 

from 3 replicates with ASW as the control, and error bars show the standard errors. The 

test was repeated to verify the reliability of the results. 

3.4.4 Statistical analysis 

The analysis was done together with partners from the group of Prof. James A. Callow at 

School of Biosciences in University of Birmingham, UK and the group of 

Prof. Anthony S. Clare at School of Marine Science and Technology in Newcastle 

University, UK. Biological data were tested for normality using Anderson-Darling test in 

the software Minitab 15. If the data conformed to normality, differences between the 
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surfaces were determined by one-way ANOVA with pairwise Tukey comparison test. If 

the data did not conform to normality, they were analyzed by Kruskal Wallis with post-

hoc Dunn’s multiple comparison test in the software GraphPad to determine the 

differences between surfaces [102, 103] . A p-value of < 0.05, is considered to be 

statistically significant. The complete set of analysis is presented in the supporting 

information in appendix (Section 6.1). 
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Scanning biological reactions with respect to a succession of surface properties could be 

realized on gradient surfaces. In Section 4.1, gradients of honeycomb pits were 

constructed via hot embossing. Across the gradient feature size (ca. 1-10 µm) and feature 

spacing changed simultaneously, while the distance between centers of every two 

adjacent honeycombs remained constant. The fouling responses of spores of Ulva linza 

were examined on these gradient surfaces to investigate the correlation between spore 

settlement and topographic cues and determine the minimum pit size to accommodate 

spores. 

However, to interpret experimental observations in greater detail and avoid the 

possible influence on fouling responses by the gradient itself, a series of structured 

surfaces with a single variable provides an additional option. As depicted in Section 4.2, a 

series of honeycomb pits with the feature size as the single variable (ca. 2.5-250 µm), 

were designed and patterned on SU8 photo-resist molds for PDMS casting. Homogeneous 

honeycomb microstructures of a specific size were produced in an individual region 

(2 × 2 cm
2
). Attachment of spores of Ulva linza, the diatom Navicula incerta and cyprids 

of Balanus improvisus was studied on these discrete honeycombs to obtain a better 

understanding of the size preference of different fouling organisms.  

Sufficient contact at the cell-substrate interface is fundamental to the survival of 

marine colonizers to achieve solid adhesion against external hydrodynamic forces. To 

avoid sites preferred by fouling organisms, i.e. corners formed by two perpendicularly 

joined planes, and meanwhile to diminish the outmost surface area, cone-like tapered 

microstructures with different feature periods and feature heights were fabricated 

(Section 4.3) via hot embossing and hot pulling. The settlement results of U. linza spores 

and Navicula incerta diatom cells were examined for their correlation with different 

topographic cues, namely Wenzel roughness and the attachment point. 

Sections 4.1-4.3 concentrated on the direct interaction between surface 

topographies and fouling organisms. As it is likely that the most successful antifouling 

coatings are the outcomes of multifunctional designs, in Section 4.4 slippery liquid-

infused porous surfaces (SLIPS) were constructed by generating the surface lubricity on 

the basis of surface microtopographies. Porous microstructures were prepared via 

UV-initiated polymerization and subsequent infusion of fluorocarbon lubricants into the 

polymer microtexture produced a series of slippery surfaces. The antifouling and fouling-
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release performance of these SLIPS surfaces was tested against the settlement of both 

Ulva zoospores and Balanus amphitrite cyprids and the removal of sporelings of 

Ulva linza, respectively. Furthermore, the performance of these SLIPS surfaces in the 

field was examined after immersion in the ocean for different lengths of time. 
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4.1 Influence of topographic gradients on Ulva 

settlement 

Surface topography has been recognized as one of the key factors that influence cell-

substrate interaction [104]. To study the antifouling impact of topography, gradient 

surfaces are particularly powerful tools [105, 106]. With position-bound and gradually 

changing topographies on the same surface, high-throughput and cost-effective analysis 

of the responses of fouling organisms can be realized in a single experiment on gradient 

samples. The derived information should inspire novel coatings design.  

Since the first gradient surface was described in the 1960s [107], many new 

approaches have contributed to this field in order to produce gradients of different 

properties (wettability, chemistry, topography, etc.) [108-110]. However, besides the 

investigation of Ulva spores on wettability gradients [111] and hierarchically wrinkled 

coatings [112], there have been few applications in relation to marine antifouling.  

In this Section, we aimed to develop an understanding about the response of 

spores of U. linza, one of the major soft-fouling species, to a range of continuously 

changing microtopographies using a morphological size gradient. Gradients of 

honeycomb pits were constructed on polymethylmethacrylate (PMMA) by hot embossing. 

The feature size of microstructures along the gradient covers the range between 

1 and 10 µm which is especially interesting for zoospores of Ulva linza. The influence of 

topographic properties, i.e., Wenzel roughness and local binding geometry, on the 

settlement behavior of spores was closely examined. Additionally, the minimal pit size to 

accommodate spores was determined. 

4.1.1 Characterization of ‘honeycomb’ size gradients  

The ‘honeycomb’ gradient layout is depicted in Figure 4-1a. The hexagonal 

microstructures appeared as pits on PMMA slides with the feature size (the width of the 

hexagon in x direction in Figure 4-1a) changing continuously in micrometer step from 

1 µm to 10 µm along the gradient, while the distances between the centers of adjacent 

hexagons remained the same (10.00 µm along the x axis and 11.58 µm along the y axis in 

Figure 4-1a). Six structured regions (Figure 4-1b) were patterned on each PMMA sample 

with smooth areas lying inside between, which served as the control for bioassays. 
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Figure 4-1 (a) Schematic illustration of the ‘honeycomb’ gradient microstructures. The gradient is based on 

the honeycomb motif and consists of hexagonal pits. To the left pits are getting smaller until they reach a 

minimal size of 1 µm. On the right hand side, as the size of the pits gets larger and finally exceeds a critical 

diameter, the structure converts into a zigzag pattern. The small circles on the left side of the gradient 

resemble the symmetry of the centers of the hexagonal pits and their corresponding characteristic distances. 

(b) Sketch of the hot-embossed PMMA ‘honeycomb’ gradient replicate (The gray structured areas are 

1.512 cm×1 cm, and the full dimensions of the samples are 4.5 cm × 4.5 cm.). 

PMMA gradient samples were prepared via hot embossing as described in 

Section 3.1.1 in collaboration with the group of Dr. Hendrik Hölscher at IMT, KIT. 

Microstructures were analyzed under phase contrast microscopy (Figure 4-2). The size of 

the hexagonal pits increased across the gradient. As the rims in y-direction (Figure 4-1a) 

were slightly thinner compared to the other two directions (y’ and y”), they became 

smaller and eventually disappeared with the increasing diameter of the hexagons, and the 

surface pattern transformed into zigzag microstructures. The depth of the hexagonal pits 

measured by AFM was 1.57 ± 0.08 µm across the whole gradient. Static water contact 

angle (WCA) measurements showed that the smooth area between the microstructures 

had a contact angle of ca. 77°. Across the gradient the value changed from 77° to 109° 

with increasing size of the hexagons. This increase was expected, as larger structures 

normally had a higher roughness which caused larger WCAs.  
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Figure 4-2 Top-down phase contrast microscopic images of the ‘honeycomb’ gradient topography on 

PMMA. The size of the hexagonal microstructures increases gradually (following the order of 

a→b→c→d→e→f). 

4.1.2 Correlation between Wenzel roughness and spore settlement 

on morphological gradients  

 

Figure 4-3 (a) Schematic representation of the repeating unit of hexagonal microstructures. The distances 

between neighboring hexagonal pits are fixed across the gradient with x/3=10 µm (in x direction) and 

y=11.58 µm (in y direction), while m (the width of the hexagon in x direction or the diameter of the 

inscribed circle of the hexagon) and a (the side length of the hexagon) change according to the size of the 

features and are related with a=
√ 

 
m). (b) The roughness factor increases with the height of the structures h 

due to the increased wall area. 
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To examine the correlation between the surface topography and spore settlement, the 

Wenzel roughness along the gradient was calculated using the variables introduced in 

Figure 4-3, where x and y represented respectively the length and width of the extracted 

unit, m described the width of the hexagonal pit, while a was the side length of the 

hexagon. In Figure 4-3b, h stranded for the height of the microstructures. The Wenzel 

roughness was defined as the ratio between the actual surface area and the geometric 

surface area [92]. The actual surface area was the sum of projected surface area and wall 

area. As the microstructures changed from hexagons to zigzag, the number of walls 

belonging to each hexagon decreased from six to four. Therefore, two sets of formulae 

(equation 1 and equation 2) were applied to calculate the Wenzel roughness factor for 

these two distinctive regions, i.e., the hexagonal region and the zigzag region, 

respectively. For hexagonal microstructures (image a-e in Figure 4-2),  

        
       

          
  

                    

          
   

       

  
   

  √ 

   
     (1) 

While for zigzag microstructures (image f in Figure 4-2), 
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Following the preincubation of samples in ASW for 1 h, spores were settled on 

gradients for 45 min as described in Section 3.3.1. Due to the autofluorescent effect of the 

structured PMMA, spores were counted by eye under the light microscope. Three 

transects, corresponding to thirty-one fields of view, along each gradient were counted. 

Counts were recorded in an area of 0.038 mm
2
 at 0.5 mm intervals along the x axis of the 

gradient (Figure 4-1a). The three cell counts (top, middle, and bottom) taken at each of 

the 31 points along the gradient were averaged to give a mean value (n=3) for each patch 

of gradient. For the background (smooth PMMA control), 31 counts were made along 

each of the three transects of 15 mm length on the smooth area of the wafer. The results 

are expressed in cells·mm
-2

 with respect to the size of micro-hexagonal pits. Reliability of 

the data was verified in repeating experiments with two additional batches of spores 

which yielded the same trends. 

The density of settled spores on different sections of the morphological gradient 

was quantified (Figure 4-4), resulting in curves from five individual replicates patterned 

on the same PMMA wafer. As shown in Figure 4-4, spores attached at a higher density on 
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the structured area than the smooth background. The number of settled spores was found 

to be gradually reduced with decreasing size of the hexagonal pits. The reduction started 

to become apparent when the size of microstructures went below the size of motile spores 

(a diameter of approximately 4-5 μm at the widest part of the pyriform spore). In the other 

direction, as the size of the pits exceeded a diameter of 8.5 µm, the structures changed 

from hexagons to zigzag walls. Along with the structural change, a dramatic decrease in 

spore settlement was found. A closer inspection of the microscopic images revealed that 

the spores preferred to settle against edges in the structures rather than in the middle. The 

gray area in Figure 4-4 represented the change in Wenzel roughness factor across the 

gradient, which showed a close correlation with spore settlement up to the point where 

hexagons converted into zigzag structures. 
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Figure 4-4 Settlement density of spores of U. linza graphed against the Wenzel roughness (gray columns) 

across the gradient. Mean cell counts for 5 individual patches on one wafer; each point is the mean of three 

transects (top, middle and bottom); counts are taken at 0.5 mm intervals along the gradient. The reported 

settlement density on the smooth control is the average of 93 counts.  
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Since the Wenzel roughness factor was introduced [92], it has been applied to a 

range of different studies. Developed by Brennan’s research group [16, 74, 75], the 

dimensionless Engineered Roughness Index (ERI) was used to correlate surface 

topographic properties with biofouling. For the specific microstructure dimensions 

(feature spacing=2 μm and feature depth=3 μm), the spore settlement was inversely linear 

to the ERI. In both ERI equations (ERII and ERIII, equation 3-4), Wenzel roughness (r) 

was proportional to ERI. Besides r, both ERII and ERIII also took into account the 

depressed surface area fraction (    ). The degree of freedom (df) to move on the 

surface was considered in ERII, while df was replaced by the number of distinct features 

(n) in the ERIII equation. 

     
     

    
                  

   

    
                                                         (3, 4) 

Interestingly, our results on the hexagonally structured morphology gradients 

revealed a trend of increasing settlement with increased Wenzel roughness (Figure 4-4). 

This was in contrast to the general ERI models which predicted lower settlement with 

increased Wenzel roughness, although only for microstructures of feature size/spacing of 

2 µm [16]. In the present study even topographies based upon 2 µm stimulated settlement. 

On surfaces with a size gradient it was difficult to determine the number of ‘unique 

features’ at each point. Moreover, the Wenzel roughness factor and depressed surface 

area fraction changed simultaneously across the gradient. Hence it was not possible to 

describe the surface topographic features of the present study by the ERI models and the 

mechanistic basis of the difference in the response of spores to topographies in these 

different studies was not known. It was possible that the presence of the gradient 

modified responses of spores since the results of previous studies on gradients (albeit 

gradients of wettability rather than topography) generated some unexpected results [111]. 

Thus, the settlement of spores of Ulva on surfaces with homogeneous topography was 

substantially different to settlement on equivalent topography when presented as part of a 

gradient.  

4.1.3 Influence of local binding geometry on spore settlement 

A steep drop in spore settlement density was found when the structure changed 

from hexagon to zigzag (hexagonal size of ~8.5 μm, image e→image f in Figure 4-2). 

Scanning electron microscopic (SEM) images revealed that spores preferentially settled in 



4.1   Influence of topographic gradients on Ulva settlement 

55 

the ‘kink sites’ (Figure 4-5a). The number of ‘kink sites’ in the hexagonal area was 

3 times larger compared with the zigzag area. Interestingly, the spore settlement density 

was also reduced to approximately one third in the zigzag area. As shown in Figure 4-4, 

the change in spore settlement density was larger than that expected from the change in 

Wenzel roughness. Thus, a further detailed investigation of SEM images was carried out 

in which the settled spores were classified according to their settlement positions. Figure 

4-5c shows the change in the number of all attached spores, spores at ‘kink sites’ and 

‘non-kink sites’ as the microstructures transform from hexagons to zigzag walls. The 

difference between a ‘kink site’ and a ‘non-kink site’ was that three instead of two side 

walls were available for binding (Figure 4-5a and Figure 4-5b). Figure 4-5c showed that 

during the transition from hexagon to zigzag, the decrease in the number of settled spores 

was mainly caused by the reduction of spores at ‘kink sites’, while the number of spores 

at ‘non-kink sites’ remained almost the same. Therefore, SEM provided a substantial 

proof of the ‘kink site’ effect. This gave rise to the interpretation that spores were able to 

detect sheltered pits and kinks on the surface and these sites facilitated settlement. A 

similar preference was also observed for barnacle larvae, which exhibited strongly 

enhanced settlement on microstructures larger than the size of the cyprids providing 

maximum anchoring sites [66].  

Spores of U. linza are pear-shaped while swimming and will assume a spherical 

shape after they commit to settlement. ‘Kink sites’ provided more attachment points, 

which supported the firm adhesion of spores against external hydrodynamic forces 

(Figure 4-5b). This adhesion was facilitated by the endocytotic fusion and discharge of 

membrane-bound adhesive vesicles with the plasma membrane of the spore to contact the 

surface [113].
 
The area available to be spread by the adhesive determined the effective 

contact area, which obviously was maximized at a ‘kink’ position. This situation was 

qualitatively comparable with the ‘half-crystal position’ or ‘Terrase ledge kink’ site in 

crystal growth on solid interfaces [114]. 
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Figure 4-5 (a) A SEM image showing Ulva spores settled against a ‘non-kink site’ and a ‘kink site’ (b) 

Sketch of local binding geometry of settled spores at a ‘non-kink site’ and a ‘kink site’. (c) Mean cell counts 

of spores at different binding geometries during the gradient transition from hexagon to zigzag; each point 

is the average of three counts taken at 0.5 mm intervals along the gradient with the error bars showing the 

standard errors. 

By analyzing SEM images in greater detail, the smallest size of the pits that spores 

could enter and settle in, could be determined. Visual analysis of the images showed that 

if spores did not fit in the pits, they tended to settle asymmetrically and slightly displaced 

from the center of the pits. The same was observed if the pits were too large as spores 

tended to populate ‘kink sites’ in the pits. This observation was quantified from SEM 

images (Figure 4-6) by measuring the distance between the center of the settled spore and 

the center of the nearest pit. A gradual decrease in the displacement was found when the 

size of the pits increased up to approximately 2.0 μm. A steep drop in the displacement to 

nearly zero was found at a pit size of 2.6 μm, where spores were able to squeeze 

themselves into the pits. Spores remained in the center of the pits until the size of the pits 

increased to around 5 μm. Spores could be found sitting snugly when the size of the pits 

got closer to the dimension of the widest region of the swimming spores (ca. 4-5 μm). 

When the size of the hexagons increased further, spores tended to attach to the corners of 

the pits rather than adhere in the middle and the displacement again increased. Thus, the 

minimum size of the pits across the gradient which spores could fit in was about 2.6 μm, 

which was slightly smaller than the mean diameter of swimming spores (ca. 4-5 μm). 

Spores could fit into the 2.6 µm diameter pits because they were pear-shaped at the time 
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they committed to settlement. After attaching, the spores became round and more 

compact in the pits. 
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Figure 4-6 Distance between the center of the settled spore and the center of the nearest pit at different 

positions along the gradient. 

4.1.4 Conclusions 

Summarizing, morphological gradients allowed the influence of topographic cues on the 

settlement of spores to be studied systematically. A close correlation between spore 

settlement and Wenzel roughness r was observed. The specific role of the ‘kink site’ 

revealed the importance of the local binding geometry as spores selectively populated 

these sites. And in agreement with previous notion our gradient studies also showed that 

spores preferred topographies of a size similar to or slightly larger than their body size 

[14, 32]. Moreover, the smallest size of pits occupied by spores was determined to be 

2.6 µm.  This value was in line with previous studies showing that remarkably reduced 

settlement was found on smaller microstructures (e.g., 2 μm) [15]. 
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4.2 Influence of feature size on settlement of fouling 

organisms 

In our previous study using honeycomb gradients (Section 4.1), settlement of spores was 

guided by the Wenzel roughness factor and the local binding geometry. The gradient is a 

simple yet powerful tool to investigate biological reactions in relation to a series of 

surface properties. However, in some cases, e.g., the settlement of barnacles, 

interpretation of the data turned out to be difficult for two reasons. First, extended 

exploration was found throughout the gradient potentially guiding the cyprid behavior in 

a certain direction along the gradient. Secondly, it was difficult to place the droplet on the 

gradient in order to restrict the movement of the cyprid to a well-defined area and thus to 

avoid its settlement at edges or at the smooth interface. To be able to offer large areas of 

homogeneously structured material, to quantitatively interpret experimental observations 

with respect to local structural features, and to avoid the possible influence of responses 

to the gradient itself, a series of surfaces with ca. 2 cm × 2 cm of homogeneously 

structured areas were investigated. The series of microstructures with different feature 

sizes were designed and fabricated on PDMS substrates via soft lithography, each sample 

possessing a pattern of honeycomb pits of a specific size. The size of honeycomb pits on 

the ultimate PDMS, being the only variable in this study, ranged from ca. 2.5 µm to 

ca. 250 µm. Size preference of spores of Ulva linza, the diatom Navicula incerta and 

cyprids of Balanus improvisus was investigated. 

Compared to the honeycomb gradient, there were several distinctive 

characteristics on this new topographic design. First, such discrete honeycomb 

topographies were constructed on polydimethylsiloxane (PDMS; EYoung=1.57 MPa) via 

soft lithography instead of on polymethylmethacrylate (PMMA; EYoung=2.43 GPa) via hot 

embossing (Table 6-1). Second, symmetrical hexagons of a specific size were patterned 

on each individual sample rather than in a gradient. Third, instead of two variables 

(feature size and feature spacing) on the gradient surface this set of discrete honeycombs 

had the feature size as the only variable. Besides these, the size range of the hexagon units 

was also increased to target more fouling species of interest.  
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4.2.1 Design and characterization of discrete honeycombs  

The layout of the microstructure design is shown in Figure 4-7a. The full dimension of 

the mask was 5×5 inch
2
 (127×127 mm

2
). Sixteen structured regions were centered in the 

circular area (radius R=2 inch (50.8 mm)). The size of the larger squares (1-12) inside the 

circle was 20×20 mm
2
. And the size for the smaller squares (a-d) was 10.5×10.5 mm

2
. 

There were 2.8 mm
 
wide gaps between adjacent squares. Siemens stars (resolution test) 

and group logos were present in the smaller squares. For the larger squares (1-12), each 

one was covered with a symmetrical hexagonal pattern (part of it shown in Figure 4-7b). 

To produce the whole series of microstructures, we changed the size of the hexagonal 

features (inner width of the hexagon e.g. for region 2: W=3 µm), while keeping the 

thickness of the bars constant (d=1 µm). Table 4-1 shows the parameters of 

microstructures in different regions of the mold (1-12). This design covered the 

interesting scales for a variety of fouling species (W=2-250 µm). Despite the change in 

the feature size, the feature spacing was kept constant, thus restricting the study to a 

single variable. 

 

Figure 4-7 (a) Schematic representation of the mask; (b) sketch of the general structure motive. The 

depressed area on the final PDMS sample (pits) is in white and the gray area stands for the protruding part 

(walls). The size of honeycomb pits (W, the inner width of hexagons) differs from region to region with the 

spacing (d, the thickness of the walls) between every two microstructures remaining constant. The 

calculation of Wenzel roughness is based on the extracted unit (the hexagon highlighted with the red dash 

line). 
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Figure 4-8 SEM images of discrete honeycombs on PDMS (images 2-12 correspond to the regions 2-12 

illustrated in Table 1.). 

On the basis of the surface design, the chromium mask was fabricated on quartz 

by Photronics MZD GmbH, Germany. Subsequent UV photolithography using the 

chromium mask as the mold produced SU8 negative photoresist patterns on a silicon 

wafer (IMT, KIT, Germany). As described in Section 3.1.2, the photoresist mold was 

fluorinated to minimize the adhesion of the casted PDMS. To facilitate the casting to 

protect the mold, the wafer was cut into individual square pieces corresponding to the 

regions specified in Figure 4-7a and Table 4-1. The microstructures on these smaller 

molds were then transferred onto PDMS substrates via soft casting (Section 3.1.2). 

The topography of the successfully molded PDMS samples was analyzed under 

SEM (Figure 4-8). The microstructures appeared as pits of different diameters. Highly 

ordered circular pits were found on the smallest sized sample (region 2, W=3 µm). With 
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the increasing size of the microstructures (region 3-12), the edge of the hexagons became 

sharper. We observed hexagonal walls of the similar thickness on all surfaces. Set by the 

resolution limit of UV light during the fabrication of the photoresist mold, the size of the 

hexagonal pits on all the final samples was slightly smaller than that we expected from 

the design (ca. 0.5 µm smaller). The height of the features was determined to be 

ca. 1.3 µm on all samples. 

Table 4-1 Feature size, feature spacing and Wenzel roughness of hexagonal microstructures on the final 

casted PDMS samples replicated from different regions of the mold. 

 

It should be noted that this set of honeycomb microstructures resembled a series 

of varying Wenzel roughness (the ratio between the actual surface area and the geometric 

surface area) on the final casted samples. To calculate the Wenzel roughness factor 

(equation 5), we took the unit highlighted in Figure 4-7b.   
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As shown in Table 4-1, the Wenzel roughness decreased with the increasing size 

of the hexagonal microstructures. This could be attributed to the reduction in the amount 

of wall area per unit projected area as the feature size increased and the feature spacing 

remained unchanged. 

4.2.2 Size-dependent settlement of different fouling organisms 

In the following discussion, the size of the microstructures refers to the designed size. The 

actual hexagonal pit size on the final PDMS samples was ca. 0.5 µm smaller than the 

designed size W illustrated in Table 4-1. Due to the high diversity in size preference of 

fouling organisms during their exploration and selection of habitats, topographies of 

different feature sizes were included for the settlement assays with different fouling 

species. Following a preincubation in artificial seawater (ASW, Tropic Marin
®
) for 1 h to 

ensure the full wetting of the microstructured surfaces, samples with hexagonal pits of 

3 µm, 5 µm, 8 µm, 12 µm, 20 µm and the smooth PDMS were applied to examine the 

responses of zoospores of Ulva linza (Section 3.3.1) and cells of the diatom 

Navicula incerta (Section 3.3.2). To investigate the settlement behaviors of the cyprids of 

Balanus improvisus, hexagonal patterns of 3 µm, 5 µm, 8 µm, 20 µm, 30 µm, 45 µm, 

110 µm, 170 µm, 250 µm and the smooth PDMS were prepared for the test via the 

droplet method (Section 3.3.3).  

Attachment of cells of the diatom Navicular incerta 

As shown in Figure 4-9, relatively smaller amount of attached diatoms were found on 

structured surfaces compared with the smooth PDMS. The dimension of cells of 

Navicula incerta is approx. 13 µm×4 µm. A diatom cell could not fit itself entirely inside 

an individual honeycomb pit on most of the patterned samples (images A-D in Figure 

4-10) except the one with the largest honeycomb size of 20 µm (image F in Figure 4-10). 

When the microstructures (3 µm, 5 µm, 8 µm and 12 µm) were smaller than the diatom 

cells, the available attachment points decreased with the increasing hexagonal size, and 

therefore, the attachment density went down. Although diatoms could possible fit 

completely inside the hexagonal pits of ca. 20 µm and attain multiple attachment points, 

the lowest attachment was found on the largest dilatometer hexagons (20 µm). The 

settlement results suggested that a big proportion of diatoms were ‘hanging’ across 

hexagonal microstructures (image E in Figure 4-10). The attachment data of diatoms were 

well in line with the ‘attachment point theory’ [19, 73]. 
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Figure 4-9 The density of attached N. incerta cells on different honeycomb patterns after washing, i.e., 

initial attachment density. Each value is the mean from 90 counts on 3 replicate slides. Bars show standard 

errors. 

 

 

Figure 4-10 Microscopic images of diatoms attached on discrete honeycombs after washing (images A-D 

correspond to honeycombs of 3 µm, 5 µm, 8 µm and 12 µm, and images E and F are the honeycombs of 

20 µm.). 
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Settlement of spores of Ulva linza 
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Figure 4-11 The density of attached spores of Ulva linza on the honeycomb patterns after 30 min 

settlement. Each point is the mean of 90 counts from 3 replicate slides with the bars showing standard 

errors. 

As spores and diatoms differed highly in their physical morphology and 

attachment mechanisms, the settlement patterns of these two species were expected to be 

different from each other. A 45 min assay indicated very dense settlement of spores on all 

surfaces including the smooth control. Hence, the present data (Figure 4-11) were 

collected after 30 min incubation in spore suspension (Section 3.3.1). The amount of 

settled spores was substantially higher on all structured surfaces than the smooth control, 

which was in line with the observation of spore settlement on the honeycomb gradients 

(Section 4.1.2) but contrary to the diatom attachment in this study. The highest settlement 

was found on the microstructures with the largest feature size (20 µm). There was little 

difference in settlement density between the 3 µm, 5 µm, 8 µm and 12 µm diameter 

hexagons. This contrasted with previous findings on the gradient surface (Section 4.1.2), 

as over the range from 1 μm to 10 μm of the gradient, we found a visible increase in 

settlement density as hexagon size increased. The reasons for this difference probably lay 
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in the pattern layouts which were different in these two studies. Across the honeycomb 

gradient the feature spacing changed simultaneously with the feature size and the distance 

between the centers of adjacent honeycombs remained constant, while on these discrete 

honeycombs the feature spacing stayed the same (ca. 1 µm) and only the feature size 

differed from each other. As a consequence, contrary to the positive correlation found on 

the honeycomb gradient, the Wenzel roughness factors of these discrete honeycombs 

were inversely related to the hexagonal size. The influence on spore behaviors would 

therefore be different.  

 

Figure 4-12 Microscopic images of spores settled on discrete honeycombs (image A is the smooth PDMS 

and images B-F correspond to honeycombs of 3 µm, 5 µm, 8 µm, 12 µm and 20 µm.). 
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Additionally, microscopic images of spore settlement (Figure 4-12) showed that 

although the honeycomb patterns did not affect the settlement density over the range of 

3-12 µm, they did influence spore distribution. Spores settled in groups on the smooth 

PDMS, a distribution typically seen on PDMS-based coatings [32]. On the smallest sized 

pattern (designed size: 3 µm; real size: ca. 2.5 µm), spores were unable to fit inside the 

hexagons and sat on top of the features, which was expected as the smallest size for 

spores to squeeze in was around 2.6 µm (Section 4.1). Consequently, although the 3 µm 

microstructures had the highest Wenzel roughness, the settlement was unfavorable as the 

pits were too small for spores to get in and attach properly. On the 5 µm pattern, single 

spores were able to fit neatly inside the hexagonal features and many small aggregations 

of spores separated by thin walls could be found. These were often composed of 7 spores 

and formed a nearly hexagonally close packed pattern. On the 8 µm pattern, each 

hexagonal unit housed up to 3 spores and adjacent hexagons were often entirely filled, 

forming areas of dense clumping on the surface. While up to 7 spores were able to fit into 

the 12 µm hexagons, which again formed larger clumps of full or half full units. Spores 

tended to settle in groups on 8 µm and 12 µm discrete honeycombs on PDMS in this 

study. On the contrary, clumps of settled spores were rarely found in hexagonal pits of 

similar sizes (8 µm-10 µm) on the PMMA honeycomb gradient in our previous study. 

On the one hand, the physicochemical nature of the PDMS substrate contributed 

to the formation of spore clumps during settlement [95] which was validated by the 

observation on the smooth PDMS in this study. On the other hand, considering the size of 

motile spores (4-5 µm at the widest part of the body), the elastic nature of PDMS material 

enhanced the possibility to host a larger number of spores inside a single pit. This 

explained the similar level of settlement density on 8 µm and 12 µm discrete honeycombs 

to the 5 µm samples, although they had relatively smaller Wenzel roughness. On the 

largest pattern (20 µm), clumps of spores were again present, but the hexagons were 

rarely full. Among all the structured surfaces we tested with spores, the 20 µm sample 

had the smallest area occupied by the wall and the lowest Wenzel roughness. From that 

point of view, it was most similar to the smooth control. However, we actually got the 

highest density of settled spores on this surface. Spores could be seen settled at the ‘kinks’ 

in the hexagonal pits which were normally preferred by spores. The settlement of a spore 

could induce the attachment of other spores as a consequence of both topographic signals 

[32] and chemical signals produced by settled spores, i.e., settled spore released 
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compounds that attracted swimming spores. Moreover, 20 µm pits provided enough 

depressed area to host relatively bigger clumps of settled spores. Therefore, 

microstructures of 20 µm achieved the maximum settlement in this topographic group. 

Settlement of cyprids of Balanus improvisus 
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Figure 4-13 Percentage settlement of cyprids of Balanus improvisus on different surfaces after 48 h. 

Reported values are the means of the data collected from 6 replicates with error bars showing the standard 

errors. The line is intended to guide the eye. The attached SEM image was taken from Phang et al. 2008 

[115]. 

A clear trend in the settlement of Balanus improvisus cyprids was observed in 

relation to the size of honeycomb pits (Figure 4-13). Within the smaller size range from 

the smooth to 5 µm, the settlement went up with the size of the hexagonal microstructures. 

The highest percentage of settlement was found on the microstructures with the pit sizes 

of 5-30 µm. Besides the highest Wenzel roughness obtained in this size region, these 

microtextures were below or similar to the scale of the adhesive discs of cyprids 

(ca. 25 µm in diameter) and they would probably not physically interfere with adhesion. 

Moreover, regarding the fact that on the adhesive disc there were a large number of 

antennular setae (ca. 0.5-2 µm in diameter and ca. 10-30 µm in length) which actively 

functioned as hydrodynamic and chemo-receptors [116], not to mention there were some 
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even smaller sensory structures, it was possible that these sensory organs might perceive 

information on surface texture below the scale of the antennular disc and  probably 

improved adhesion. The further increasing of the feature size (> 30 µm) and decreasing of 

Wenzel roughness (< 1.16) decreased the settlement of cyprids. This could be interpreted 

by the interaction between the microstructures and the adhesive structures of the cyprids 

— the antennular discs. As indicated in the work of Berntsson et al. [17], microtextures 

above the dimension of the adhesive disc could interfere with the exploration behaviors of 

cyprids and thus prevent stable temporary attachment. That study also showed that the 

recruitment of B. improvisus on the field-exposed panels was almost absent when the 

surface topography had a roughness width within 150-200 µm. In the present work, as the 

size of the honeycomb pits increased further up to 250 µm, the amount of settled cyprids 

was reduced to a level comparable to the smooth PDMS control. Cyprids are 

ca. 530-580 µm in length and ca. 250-270 µm in width [42].  They did not prefer 

microstructures of the feature sizes that fell into the range of ca. 100-300 µm, because 

they could not fit their bodies in the microstructures entirely. Additionally, these 

microstructures were also too large to confer any adhesive advantage during temporary 

attachment as the features above 100 µm were essentially flat for the adhesive disc, which 

could also be predicted by comparing the Wenzel roughness values (e.g., 

smooth vs. 250 µm: 1 vs. 1.02). To some extent the general settlement trend on the 

structured surfaces was consistent with the literature. However, in contrast to the 

literature [17], settlement was relatively higher on patterned surfaces than the smooth, 

which could possibly be attributed to the low feature heights (ca. 1.3 µm compared with 

20-100 µm in the literature) used in this study. 

4.2.3 Conclusions 

A series of discrete honeycomb samples, varied in the feature size, were prepared via 

PDMS casting. On each sample contiguous hexagonal pits of a specific size were 

separated by a thin PDMS wall with the fixed thickness for the whole series. 

The attachment density of diatoms decreased with the increasing microstructure 

size, as there were fewer attachment points available for each diatom when the feature 

dimension increased. This was consistent with the ‘attachment point theory’. When the 

microstructure grew large enough to fit in the whole diatom, the attachment density was 

also correlated with the positioning of the attached diatoms. 
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Spore settlement assays showed that all honeycomb patterns stimulated spore 

settlement. The highest settlement density was on the largest sized features (20 µm). 

Different from previous gradient study, no obvious differences had been found in the 

amount of settled spores between microstructures of 3 µm, 5 µm, 8 µm and 12 µm. This 

was primarily related to the different pattern layouts applied in these two studies, 

resulting in inverse correlations between the microstructure size and the Wenzel 

roughness. Additional explanation was provided by the different physicochemical and 

mechanical properties of the base materials (PDMS in discrete honeycomb 

study vs. PMMA in honeycomb gradient study). As PDMS substrates induced the 

aggregation of spores and facilitated the formation of clumps, which therefore led to the 

deviation from the guideline of Wenzel roughness. 

Settlement of cyprids went up with the size of honeycomb microstructures 

(0-5 µm), reached a maximum on the features below or similar to the scale of the 

adhesive disc (ca. 25 µm), and eventually decreased to a level similar to the smooth 

control with the further increasing of the microstructure size. Compared with diatoms and 

spores, the sensory system of cyprids composed of a series of multilevel receptors, which 

were highly diverse in size and function [116]. Responses of cyprids on these discrete 

honeycombs could be associated with both the Wenzel roughness and the scale and 

function of the adhesive disc and the antennular setae. 

To conclude, topographies of varying feature sizes affected the attachment of 

different fouling species in different manners. Generally, the attachment of the diatom 

Navicula incerta was dominated by the density of available attachment points, while the 

settlement of both Ulva spores and Balanus improvisus cyprids could be correlated with 

the Wenzel roughness factor of the structured surfaces. In addition, the gregarious 

settlement on PDMS substrates played an important role in the spore attachment density, 

and the settlement of cyprids was also influenced by the interaction of sensory and 

adhesive structures with topographic features of comparable sizes. 
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4.3 Tapered microstructures for the minimization of 

attachment area 

As described in Section 4.2, we observed different responses of fouling organisms(spores 

of Ulva linza, the diatom Navicula incerta and cyprids of Balanus improvisus) to the 

same set of topographies. The question, whether the species-specific preference correlates 

with different topographic cues which dominate the attachment of different fouling 

organisms, remains to be further confirmed. To commence an additional comparasion of 

the topographic cues which guide the settlement of different fouling species, a series of 

tapered microstructures were fabricated and investigated towards their influence on the 

attachment of Ulva spores and the diatom Navicula. 

Sufficient contact at the cell-substrate interface could be commonly found on 

surface patterns favored by fouling organisms, as it is critical and essential for marine 

colonizers to attain solid adhesion against external hydrodynamic forces. As indicated in 

reported studies [70], sites between the floor and the vertical wall were preferentially 

occupied by Ulva spores in settlement assays. Here cone-like tapered microstructures 

were designed to first avoid these unfavorable corners and meanwhile possess limited 

available contact area on the outmost surface. In our previous discrete honeycomb study 

(Section 4.2), spores and diatoms were examined towards their responses on topographies 

with a broad size range which covered their body sizes. Different from that, tapered 

microstructures were designed to have depressed regions smaller than the dimensions of 

both spores and diatoms, as it was implied in the literature [16, 19, 32] that it was more 

likely to reduce the attachment of fouling organisms on narrow topographies.  

To construct such tapered microstructures of different feature periods and feature 

heights, hot embossing and hot pulling techniques were employed. Settlement of the 

diatom Navicula incerta and zoospores of Ulva linza were then performed on these 

microstructures to explore the topographic cues which guided the attachment of these two 

species. 

4.3.1 Design and characterization of tapered microstructures 

Tapered microstures of different feature periods (3 µm, 2 µm, 230 nm) and feature 

heights were prepared via hot embossing and hot pulling (Setion 3.1.1). Subsequent 
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characterization with SEM and AFM provided the topographic information of samples in 

detail and water contact angle analysis compared the wetability between surfaces of 

different topographies. 

 

Figure 4-14 Schematic diagrams of tapered microstructures: (a) top view; (b) cross-sectional view. 

The total dimensions of the sample were 2×2 cm
2
. Tapered microstructures were 

patterned in a square array (Figure 4-14a). In the cross-sectional view (Figure 4-14b) 

taken along the side of the square array (indicated with the red dash line in Figure 4-14a), 

the feature period (W) and the feature height (H) were defined as the distance between 

the tips of two adjacent microstructures and the fall between the tips and the valleys, 

respectively.  

 

Figure 4-15 SEM and AFM images of tapered microstructures of different feature periods (W) and feature 

heights (H). 45 degree SEM images (A1, A2: W=3 µm; B1, B2: W=2 µm); AFM images (C1, C2: 

W=230 nm). 
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Uniform tapered microstructures (Figure 4-15) were molded in an isotropic area 

on polycarbonate (PC) sheets as described in Section 3.1.1. In brief, hot-embossed 

microstructures (e.g., 3µm-L) were produced by softening the PC foil above its glass 

transition temperature, pressing the mold into the molten polymer with controlled 

embossing temperature and pressure, and demolding after cooling the whole setup down 

to ca. 50 °C. To fabricate the hot-pulled samples (e.g., 3µm-H) for this study, a two-step 

hot pulling technique was employed. First, the PC foil was firmly adhered on the rough 

demolding plate via embossing with a smooth mold. Compared with the standard hot 

embossing procedure, the second step of hot pulling was featured by increasing only the 

temperature of the molding plate to soften the polymer before embossing, and an 

additional pulling action before cooling down and demolding. With the cone-like 

embossed microstructures, the available area on the horizontal plane decreased with the 

increasing feature height, which eventually ended up with sharp tips. Such topographic 

architectures strongly reduced the terminating surface area available for attachment of 

fouling organisms. As any corners were avoided by the smooth, curved pits, the adhesion 

of fouling organisms on such topographies was expected to be unfavorable. The 

corresponding properties of displayed topographies (Figure 4-15) are listed in Table 4-2.  

Table 4-2 Surfaces properties of tapered microstructures (feature period, feature height, Wenzel roughness 

factor, and static water contact angle). 

Name 3µm-H 3µm-L 2µm-H 2µm-L 230nm-H 230nm-H 
Smooth 

PC 

Corresponding 

image (Figure 4-15) 
A1 A2 B1 B2 C1 C2 — 

Feature period 3 µm 3 µm 2 µm 2 µm 230 nm 230 nm — 

Feature height 2.57 µm 1.66 µm 2.78 µm 2.05 µm 170 nm 100 nm — 

Wenzel roughness 1.77 1.39 2.53 2.01 1.62 1.26 1 

Water contact 

angle /  ° 
119 ± 7 126 ± 5 118 ± 6 124 ± 5 121 ± 9 124 ± 8 98 ± 1 
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Figure 4-16 (a) Schematic representation of the repeating unit of tapered microstructures. The side of the 

square unit is 2W and the radius of the projected circle is W/2. (b) L stands for the slant height of the cone. 

The Wenzel roughness factor increases with the height of the structures H due to the increased side walls. 

To calculate the Wenzel roughness of the surfaces, the structure was approximated 

using the shape of a cone. The height of tapered microstructures H was determined from 

SEM and AFM images. As illustrated in the extracted repeating unit for quantification 

(Figure 4-16a), 2W (2 times the feature period) was the side length of the square unit and  

 

 
 (half of the feature period) was the radius of the projected circle. In Figure 4-16b, H 

(the feature height) represented the height of the cone and L stood for the slant height of 

the cone. The Wenzel roughness factor was calculated from the ratio between the actual 

surface area and the geometric surface area (the projected surface area). By deducting the 

base surface area from the lateral surface area of the cone, we got to know the amount of 

increased surface area per cone due to the structuring. Therefore, for the extracted unit the 

actual surface area equaled the sum of the square area and the difference between the 

lateral area and the base area of the four cones. The projected surface area was the total 

area of the square. Hence, for tapered microstructures, 
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As indicated in equation 6, Wenzel roughness factor of tapered microstructures is 

determined by both the feature period (W) and the feature height (H). rWenzel is positively 

correlated with H but negatively related to W. The rWenzel values of all selected 

topographies are reported in Table 4-2. 

The static water contact angle of pristine PC was ca. 98°. We observed an 

increased hydrophobicity on all patterned surfaces. This general trend could be well 

explained by the Wenzel theory of wetting. However, no significant difference in 

wettability was found between surfaces with different microstructures. 

4.3.2 Attachment of the diatom Navicula incerta and Ulva linza 

zoospores on tapered microstructures  

Besides tapered microstructure series (3µm-H, 3µm-L, 2µm-H, 2µm-L, 230nm-H, 

230nm-L, and smooth PC), cell culture plates (polystyrene, PS) and Nexterion glasses 

were also included as standards in spore and diatom settlement assays (Section 3.3.1 and 

Section 3.3.2). All samples were preincubated in filtered ASW (Tropic Marin
®

) with 

shaking for 1 h prior to the assays in order to remove any air that might be trapped 

between microstructures. 2 h settlement of diatoms Navicula incerta and 45 min 

settlement of spores of Ulva linza were carried out to investigate the effect of topographic 

cues on the settlement of these two species. 

 

Figure 4-17 The density of settled diatoms Navicula incerta on different surfaces in a 2 h settlement assay. 

Reported data are the means of 80 counts with 20 counts collected from each of 4 replicates. Error bars 

represent standard errors. Reproducibility of the results has been confirmed in a repeating assay with 

another batch of diatoms. 
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Unlike Ulva spores, diatoms Navicula lack flagella and hence could not actively 

explore the surfaces before the initial contact with the surfaces. After being passively 

brought onto the surface by flow or gravity force, diatoms could either adhere to the 

surface or relocate themselves by ‘gliding’. The amount of settled diatoms had no obvious 

correlation with Wenzel roughness. Previous researches [19, 73] suggested that the 

available attachment area was a key factor that should be taken into account for the 

settlement of diatoms. The numbers of attachment points illustrated in Figure 4-17 were 

estimated from the dimension of the diatom Navicula incerta (around 13 µm in length 

and 4 µm in width) and the size of the microstructures. The attachment of diatoms was 

reduced on structured surfaces compared with the smooth PC. Interestingly, the 

settlement data was highly in line with the number of attachment points 

(smooth PC > 230 nm > 2 µm > 3 µm). As the feature period increased, the number of 

attachment points for diatom adhesion decreased, or in other words, the available 

adhesion area was reduced, which consequentially led to poor adhesion and hence easier 

removal by disturbance (washing) . For instance, only ca. 10 attachment points were 

available for diatoms on topographies of 3 µm period, and therefore, the settlement was 

significantly lower compared with that on the smooth control (ANOVA, Tukey test, 

p < 0.05), which allowed for multiple attachment sites. Comparing the settlement of the 

diatom on topographies of the same feature period but different feature heights 

(3µm-H vs. 3µm-L; 2µm-H vs. 2µm-L; 230nm-H vs. 230nm-L), we noticed that slight 

decrease of settlement occurred with the increasing feature height. A higher degree of 

stretching/pulling resulted in higher microstructures with relatively sharper tips, in which 

case the available contact area was further reduced and so was the settlement. 
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Figure 4-18 The density of zoospores of Ulva linza settled on different surfaces in a 45 min settlement 

assay. Reported data are the means of 90 counts with 30 counts collected from each of 3 replicates. Error 

bars represent standard errors. Reproducibility of the results has been validated in a repeating assay with a 

second batch of spores. 

The settlement of Ulva spores takes place following an active exploration phase 

[33, 34]. After 45 min incubation in spore solution in darkness, more spores settled on PS 

than on Nexterion glass (Figure 4-18). This was consistent with the settlement preference 

of zoospores to hydrophobic surfaces as previously reported [54]. Contrary to diatom 

preference, spores settled at a higher density on structured surfaces than on the smooth 

polycarbonate. Although the differences in settlement between microstructures of the 

same feature period but different feature heights were not generally significant (ANOVA, 

Tukey test, p > 0.05), notably different settlement could be found on topographies of 

different feature periods (2 µm > 3 µm > 230 nm > smooth PC) (ANOVA, Tukey test, 

p < 0.05). In contrast to the attachment of diatoms, the settlement of spores correlated 

well with Wenzel roughness. The highest population of spores was measured on 

microstructures of 2 µm period, so was the largest Wenzel roughness factor. As 

previously discussed, Wenzel roughness (rWenzel) of tapered microstructures increased 

with the feature height (H) but decreased with the feature period (W). The highest 

Wenzel roughness of 2 µm samples was the result of the common-effect of H and W. 

Although spores appeared to sit half inside the features, they achieved biological success 

to adhere on these surfaces with the highest Wenzel roughness. On the other side, despite 

the similarity in Wenzel roughness, the settlement on 3 µm structures was remarkably 

higher than on 230 nm structures (ANOVA, Tukey test, p < 0.05). The SEM image 

(Figure 4-18) showed that on tapered microstructures of 3 µm period the spore could fit 



4.3   Tapered microstructures for the minimization of attachment area 

78 

snugly into the pit generated by four adjacent ‘cones’. Under such a circumstance, spores 

attained highly enhanced contact area and assured solid adhesion against potential 

external hydrodynamic forces. Moreover, the response of spores might not be as sensitive 

as expected on features of submicron scales, which could be emphasized by the fact that 

the settlement on tapered microstructures of 230 nm was only slightly higher than the 

smooth PC considering their relatively big difference in Wenzel roughness. Therefore, 

besides the predominant influence of Wenzel roughness on spore settlement, the local 

binding geometry also played an important role.  

4.3.3 Conclusions 

Our study demonstrated different responses of Ulva spores and diatoms Navicula to the 

same set of tapered microstructures, which was consistent with the previous observation 

on discrete honeycombs (Section 4.2). This species-specific settlement preference could 

be attributed to different topographic cues that actually guided the attachment of these 

two organisms. The attachment of diatoms was mainly regulated by the ‘attachment point 

theory’, while the settlement of zoospores was co-dominated by the Wenzel roughness 

factor and the local binding geometry (available adhesion area), The possible correlation 

between the topographic cues to guide the settlement and the biological nature of fouling 

organisms needs to be further analyzed with additional topographies and more fouling 

species.  
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4.4 Microtexture-based SLIPS as antifouling coatings 

Previous studies (sections 4.1-4.3) focused on the direct influence of surface topographies 

on the settlement of marine fouling organisms. It turned out that fouling responses were 

complicated on sole topographies, e.g., there was no a common driving factor for the 

attachment of different fouling species. As it is most likely that successful novel non-

biocidal coatings need to be multifunctional (i.e., incorporate a range of attributes such as 

topography, surface energy, modulus and lubricity) [24, 117], in this study the concept of 

slippery liquid-infused porous surfaces (SLIPS), which were constructed by combining 

the surface lubricity on the basis of microporous topographies, was tested towards its 

potential in marine antifouling applications.  

Liquid-repellency of surfaces has been shown to contribute to antifouling 

properties of natural or manufactured surfaces, e.g., ‘Lotus-Effect’ [13]. However, liquid-

repellent antifouling surfaces relying solely on complex micro- and nanoscopic 

architectures were limited for practice because of both the intricate and expensive 

fabrication and the indifferent performance in harsh and diverse environment. A novel 

route to liquid-repellency was inspired by the ‘aquaplaning’ of prey on the peristome of 

pitcher leaves, which could be realized by using porous microtextures as the intermediate 

layer to lock in a lubricating film, thus generating fluidity and slipperiness on solid 

substrates [118, 119]. To obtain SLIPS  [120], a microporous substrate was required and 

the surface energies of the solid and the lubricant needed to be well-matched. It was 

reported [121] that the anti-biofilm performance of SLIPS was comparable to that of 

PEGylated surfaces. 

In this section, porous poly(butyl methacrylate-co-ethylene dimethacrylate) 

(BMA-EDMA or BE) microstructures prepared via UV-initiated polymerization [94] was 

covalently bonded on glass substrates. Subsequent infusion of fluorocarbon lubricants 

into the polymer microtexture produced a series of slippery surfaces. The antifouling 

performance of these SLIPS was tested against the settlement of both Ulva zoospores and 

Balanus amphitrite cyprids, which respectively represent the typical colonization of soft-

fouling and hard-fouling species. The investigation of the fouling-release capability of 

SLIPS was completed with the removal of sporelings of Ulva linza. Additionally, SLIPS 

surfaces were immersed in the ocean to check their antifouling performance in the field. 
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4.4.1 Surface characterization 

As described in Section 3.1.3, in collaboration with the group of Dr. Pavel Levkin at ITG, 

KIT, thin porous poly(butyl methacrylate-co-ethylene dimethacrylate) (BE) films were 

synthesized on glasses via UV-initiated radical polymerization and used as the substrates 

to prepare the slippery surfaces. By infusing three different fluorocarbon lubricants 

(Krytox
®
 GPL 103, Krytox

®
 GPL 100 and Fluorinert

®
 FC-70) into the microtextured 

polymer substrates, the water-repellent slippery surfaces were produced. In the previous 

work by Aizenberg et al. [120], the SLIPS surfaces were prepared by infusing a lubricant 

liquid into a porous perfluorinated membrane (Teflon) or into a surface with epoxide 

resin based nanoarray produced by moulding and subsequently functionalized with 

heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane. In comparison, our SLIPS 

surfaces were based on the non-fluorinated polymethacrylate with the microporous 

structure. The polymer substrate was produced in-situ by UV-initiated polymerization. 

Compared with normal moulding this method could be applied to coat relatively larger 

area. And by controlling the composition of the polymerization mixture, it was possible to 

control the pore size, the thickness of the polymer layer as well as the surface 

functionality making this substrate a convenient material for systematic investigation of 

SLIPS properties.  

In the following, BE represents the pristine porous BMA-EDMA, and BE103, 

BE100 and BE70 are porous BMA-EDMA surfaces infused with fluorocarbon liquids 

Krytox103, Krytox100 and Fluorinert FC-70, respectively. Nexterion
®
 Glass B 

microscope slides (Schott, Germany), Teflon sheets (polytetrafluoroethene, PTFE; 

125 µm; American Durafilm Co, USA), PEG2000 self-assembly monolayers on gold, and 

PDMS-coated glass slides (SILASTIC
®

 T-2) were included as standard surfaces for 

biological tests. 

The morphology of the porous BE polymer coating without any fluorocarbon 

liquid represented a homogeneous and interconnected network of polymer globules 

(Figure 4-19a and Figure 4-19b) with the average globule size determined from SEM 

images being 1.14±0.17 µm [122]. The thickness of the porous BE polymer was ~45 µm 

measured from the cross-sectional SEM image (Figure 4-19b) and the size of the pores 

and polymer globules across the polymer thickness was similar. The porosity based on the 

amount of porogens present in the polymerization mixture was ~50%. Such microtextured 
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hydrophobic substrates with large surface area could effectively assist the infusion and 

stabilization of the hydrophobic lubricants applied in the study. As verified by X-Ray 

tomography in the reported article [123], the Krytox lubricant liquids could be easily 

infused into the pores of BE surfaces completely and formed a stable thin lubricant liquid 

layer on top of the surface. 

 

Figure 4-19 SEM images of the microporous BMA-EDMA polymer. (a) Top view; (b) cross-sectional view. 

The stability of antifouling coatings in seawater is essential to the surface design if 

intended for long timescale practical applications. In Figure 4-20, to determine the 

stability of slippery surfaces in the laboratory settlement and growing assays, the 

evolution of surface wettability of BE103, BE100, BE70 and BE with respect to the 

length of incubation time in moving filtered artificial seawater and filtered seawater was 

tracked with water contact angle (WCA) measurements (Section 3.4.2). The WCA 

obtained on pristine BE decreased gradually with time, indicating degradation of the 

surface caused either by adsorption of components from the solution or by the slow 

hydrolysis of the ester bonds on the surface, leading to increased hydrophilicity. On the 

other hand, the WCAs measured on the BE103 and BE100 slippery surfaces (Krytox103 

and Krytox100 infused BE, respectively) remained nearly constant at least up to 7 days of 

incubation in both artificial seawater and seawater. The pristine BE70 surface had a WCA 

of ~114° and very low water contact angle hysteresis (~6°). According to Figure 4-20, 

after 2 days of incubation, the static WCA of the BE70 surface increased slightly while 

the WCA hysteresis increased significantly. Considering the slight increase in static WCA 

of BE70 within 2 days of immersion, the possible explanation for this change was that the 

lubricant layer had been partially removed from the surface making the surface more 

rough and, therefore, leading to the increase of the static WCA and larger WCA 

hysteresis, which was similar to the properties of the BE surface. The further decrease of 
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the static and advancing WCAs could be explained by the change of the surface chemistry 

of the BMA-EDMA porous surface caused by hydrolysis of the ester bonds in slightly 

alkaline environment (pH ~8.2). This behavior was obvious from the decrease of WCA 

on the non-infused BE polymer surface exposed to the solution. 

 

Figure 4-20 Water contact angles of BE, BE70, BE100 and BE103 surfaces as a function of the incubation 

time in both filtered (a) artificial seawater and (b) seawater. The reported values are the means of 

9 measurements collected from 3 replicates with the error bars representing the standard deviations. 

4.4.2 Toxicity test 

As described in Section 3.4.3, to test whether toxic compounds were leached from the 

coatings which might affect the settlement, viability and growth of zoospores, leachates 

of the BE-based SLIPS were collected after 48 h immersion in ASW. The biomass of 

sporelings that developed in the leachates was quantified. The RFU values in Figure 4-21  

for the various leachates, including from the standard surfaces, were statistically 

indistinguishable (ANOVA, Tukey test, p > 0.05). The similarity in the relative number 

of live sporelings found in all media including the ASW control demonstrated that the 

germination and growth of spores was not affected by fluorocarbons in the leachates of 

the BE based SLIPS. Similar results were obtained from two separate tests with different 

batches of spores. 
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Figure 4-21 The relative fluorescence intensity (RFU, relative fluorescence units) of sporelings cultured in 

leachates collected from different samples after 48 h of incubation in ASW. Values are the means of 

12 readings, 4 from each of 3 replicates with the error bars showing the standard errors. 

4.4.3 Laboratory settlement and removal tests 

To study the response of spores to the different surfaces, after 2-day preincubation 

of all samples except PEG2000 self-assembly monolayers (SAMs) in ASW, settlement 

assays were carried out in the laboratory for 45 min and 2 h (Section 3.3.1). Two time 

points were used for settlement, as a preliminary experiment indicated that few spores 

settled on some of the test surfaces when the standard assay (45 min) was used. As shown 

in Figure 4-22, after 45 min settlement, the highest density of settled spores was on the 

Teflon sheets. Compared to Nexterion glass (538±80 spores/mm
2
), a significantly lower 

density of spores was found on the uncoated BE surfaces (148±29 spores/mm
2
) (ANOVA, 

Tukey test, p < 0.05). Furthermore, on BE103 and BE100, the settlement density was 

further reduced to a level comparable to the PEG2000 SAMs. However, the settlement 

density on SLIPS BE70 was significantly higher (245±17 spores/mm
2
) than on BE103 

and BE100 surfaces (ANOVA, Tukey test, p < 0.05). After 2 h incubation, a slight 

increase in spore numbers was observed for most of the surfaces, while the trend between 
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different samples remained the same. It has been reported that hydrophobic surfaces were 

more favorable for spore attachment [27, 54], which was consistent with the high 

settlement on Teflon sheets in our study. Saturating the microtexture and covering the 

surfaces with the lubricating fluorocarbons made BE103 and BE100 water-repellent with 

low water contact angle hysteresis (<10°), reflecting its slippery property. This 

predominant feature in effect rendered the SLIPS unfavorable for spore settlement. 

Settlement of only ca. 12 spores/mm
2
 was found after 45 min incubation for both surfaces, 

and no notable increase of settled spores was observed after 2 h incubation. Statistically 

higher settlement on BE70 (245±17 spores/mm
2
 at 45 min and 471±22 spores/mm

2
 at 2 h) 

compared with BE103 and BE100 (ANOVA, Tukey test, p < 0.05) could at least be 

explained in part by disintegration of the former surface in seawater after 2 days of 

preincubation, as indicated by the increase of the water contact angle hysteresis from 6
o
 to 

138
o
. Similar results were obtained from a repeating experiment with a different batch of 

spores. 

 

Figure 4-22 The density of spores of Ulva linza settled after 45 min and 2 h on different surfaces. Values 

are the means of 90 counts; 30 counts collected from each of 3 replicates. Error bars represent standard 

errors. 
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Figure 4-23 Percentage settlement of Balanus amphitrite cyprids on different surfaces after 48 h. Reported 

values are the average of the data collected from 6 replicates with error bars showing the standard errors. 

The percentage settlement of cyprids (percentage settlement = settled cyprids / 

live cyprids × 100%) was calculated after 48 h incubation (Section 3.3.3). A 

representative set of data of 3 separate settlement assays is shown in Figure 4-23. Cyprid 

settlement on polystyrene, at 35% (PS in Figure 4-23), was consistent with the expected 

settlement for this standard surface. Higher settlement was found on Nexterion glass than 

on PTFE. Compared with Nexterion glass, the settlement was significantly lower on 

PEG2000 SAMs and BE103 (Kruskal Wallis, Dunn’s test, p < 0.05). Around 10% cyprids 

settled on BE and BE70, and the settlement on BE100 was only 2% (±1% SE). Excellent 

resistance to cyprid settlement on PEG2000 SAMs was consistent with the ability of PEG 

to inhibit settlement of different marine fouling species [52, 124]. The comparably water-

repellent and relatively smooth BE103 and BE100 showed a strong inhibition of 

settlement of cyprids (compared to glass and PS), which was not significantly different 

from PEG (Kruskal Wallis, Dunn’s test, p > 0.05). The reduced settlement on these two 

surfaces might reflect poor adhesion during presettlement (‘searching’) behavior (the low 

settlement prevented measures of adhesion of settled cyprids). Because of the instability 
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of Fluorinert FC-70 layer after long contact with seawater, the porous substrate could be 

partially exposed to organisms. This could explain why similar percentages of cyprids 

settled on BE and BE70.  

 

Figure 4-24 Percentage removal of Ulva sporelings from different surfaces after exposure to a shear stress 

of 50 Pa in a water channel for 5 min. Reported values represent the average removal of biomass on 

6 replicates. Error bars represent 95% confidence limits of intervals (CI) and are calculated from arcsine-

transformed data. 

The fouling-release properties of surfaces were assessed by determining the 

adhesion strength of 7-day old sporelings of Ulva, estimated as the proportion removed 

from surfaces under a defined shear stress in a water channel (Section 3.3.4). The removal 

of sporelings after culture under static conditions was performed by application of a high 

shear stress in order to test how easy sporelings could be removed from the surfaces. In 

Figure 4-24, sporelings growing on PDMS were almost completely removed by 50 Pa 

wall shear stress and the removal was significantly higher than that from all the other 

surfaces (ANOVA, Tukey test, p < 0.05). This result was consistent with the known 

fouling-release properties of siloxane-based coatings [98]. The percentage removal from 

Nexterion glass and PTFE was 31%±15% and 73%±7%, respectively, which was 
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consistent with previous data showing relatively strong attachment on hydrophilic 

surfaces such as glass and weak attachment on hydrophobic surfaces such as PTFE [98]. 

Around 20% of the sporelings that attached on BE and BE70 were removed, while on 

BE103 and BE100 the removal increased up to ca. 35%. However, we observed some of 

the rhizoids of sporelings grew into the underlying porous microstructures after 7 days of 

culture. BE103 and BE100 SLIPS surfaces exhibited excellent performance in resisting 

settlement (adhesion) of spores. However, once spores developed into sporelings they 

were able to overcome the oily barrier and attach to the substrate, thus lowering removal 

efficiency. As shown in the stability test, both the morphology and chemistry of the BE70 

surface changed after 7 days incubation in seawater. Therefore, we concluded that the 

change in both morphology and chemistry of the surfaces was the cause of the poor 

fouling release performance of the BE70 surfaces.  

As shown above, excellent anti-fouling properties of BE103 and BE100 surfaces 

were found. An important mechanistic question is whether the ‘fluid’ property alone or its 

combination with the chemical nature of the material is responsible for its anti-fouling 

behavior. In the case of the settlement of spores of Ulva linza (Figure 4-22), the fluidity 

of the coating was clearly an important factor required for reducing the number of 

adhered spores (cf. PTFE vs. BE103 in Figure 4-22). A similar trend was observed for the 

settlement of cyprids on PTFE vs. BE103 (Figure 4-23). However, our study also 

indicated that the chemical nature of the coating influenced the attachment of both spores 

and cyprids. The stability and anti-fouling properties of BE100 and BE70 differed 

significantly (see Figure 4-20, Figure 4-22 and Figure 4-23). However, they had similar 

kinematic viscosity (FC-70: 0.12 cm
2
/s at 25 °C; Krytox100: 0.12 cm

2
/s at 20 °C) [120] 

and, hence, similar thickness of the fluid layer on the porous substrate could be expected. 

Therefore, the different anti-fouling performance observed for BE70 and BE100 could be 

attributed to their different chemical nature (perfluoroalkylated tertiary amine – FC 70 vs. 

perfluorinated polyether – Krytox100 and Krytox103) as well as the difference in the 

molecular weight (Table 6-2 in the supporting information in appendix, Section 6.1). 

Interestingly, the antifouling performance of BE100 was similar to that of BE103, despite 

the higher viscosity of BE103 (Krytox 103: 0.82 cm
2
/s at 20 °C) [120], indicating that the 

possible reduction of the thickness of the fluid layer in BE100 did not affect the 

antifouling properties. 
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4.4.4 Field test 

 

Figure 4-25 Photos of the testing board after immersion for 3 weeks, 5 weeks and 5 months. 
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Figure 4-26 Percentages of micro-fouling, Weed, soft-fouling and hard-fouling on different surfaces after 

immersion for 3 weeks, 5 weeks and 5 months, respectively. Reported values are the means of 5 readings 

from 10 replicates of each sample type. 

As shown in Figure 4-25 and Figure 4-26, after 3 weeks of immersion BE, BE100 and 

BE70 were covered by mainly microfouling. In comparison, BE103 and Nexterion 

glasses had slightly lower degree of fouling (ca. 5%). All surfaces were fully occupied by 

marine colonizers after 5 weeks of immersion with relatively lower amount of hard-
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foulers on BE series than Nexterion glasses. When the testing board was immersed for 

longer time for 5 months, there was no difference between the tested coatings 

performance in terms of percentage fouling. However, the types of fouling developed 

with the immersion time. Compared with immersion results after 3 weeks and 5 weeks, 

weed and soft-fouling composed an important part of the fouling community after 

immersion for 5 months.  

4.4.5 Conclusions 

Water-repellent slippery surfaces were prepared by infusing perfluorinated liquids 

(Krytox103, Krytox100 and Fluorinert FC-70) into the porous hydrophobic poly(butyl 

methacrylate-co-ethylene dimethacrylate) (BMA-EDMA or BE) substrates. Krytox103 

and Krytox100 infused BE surfaces maintained the water-repellent slippery property after 

one month incubation under shaking in artificial seawater and seawater, and revealed a 

significant inertness in inhibiting attachment of both zoospores and cyprids. The 

capability of these two surfaces to reduce the adhesion of sporelings of U. linza was 

enhanced compared with pristine porous BE substrates. The marginal performance of 

Fluorinert FC-70 infused BE could be attributed to the limited stability of the Fluorinert 

FC-70 layer on the microtexture substrates in seawater. The laboratory study indicated the 

feasibility of enhancing antifouling performance by the application of the hydrophobic 

liquid-infused water-repellent concept. However, the poor performance of SLIPS in the 

field testing suggested that to apply the concept in practice, significant improvements are 

required to adapt antifouling coatings to the complex ocean environment. 
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Surface microtopographies are of fundamental importance to the settlement of cells and 

larvae of marine fouling organisms. In this thesis, responses of different fouling 

organisms, including spores of Ulva linza, cells of the diatom Navicula incerta and 

barnacle cyprids of B. improvisus and B. amphitrite, to various topographic features have 

been studied. 

 

Figure 5-1 Overview of the different patterns and approaches used in this thesis. (a) Honeycomb gradients 

in Section 4.1; (b) discrete honeycombs in Section 4.2; (c) tapered microstructures in Section 4.3; (d) 

microtexture-based slippery liquid-infused porous surfaces in Section 4.4. 

Gradients of honeycomb pits (Section 4.1, Figure 5-1a) were hot embossed and 

studied to correlate topographic features with the settlement behavior of spores of 

Ulva linza. Following the gradient study, a series of discrete honeycombs of different 

sizes (Section 4.2, Figure 5-1b) was soft-casted from the photo-resist mold for the 

investigation of the size preference of Ulva spores, Navicula cells and B. improvisus 

cyprids. Moreover, the topographic cues guiding the settlement of spores and diatoms 
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were further tested on tapered microstructures (Section 4.3, Figure 5-1c) prepared via hot 

embossing and hot pulling to achieve minimized outmost surface contact area. By 

combining the surface lubricity on the basis of porous microtopographies, we produced 

slippery liquid-infused porous surface (SLIPS) (Section 4.4, Figure 5-1d). The SLIPS 

concept was examined for its antifouling performance in both the lab and the field. 

Cells of the microalgae diatom Navicula incerta differ from Ulva zoospores in 

both their physical morphology and attachment mechanisms. Unlike spores, diatoms lack 

flagella. Accordingly they reach the surface by passive sinking through the water column 

and relocate themselves by ‘gliding’ on the surfaces [37]. Besides, diatoms are enclosed 

in a rigid cell wall (frustules), and consequently the cells could straddle the 

microtopographies when they attach. The initial attachment of diatoms was studied on 

both discrete honeycombs (Section 4.2, Figure 5-1b) and tapered microstructures 

(Section 4.3, Figure 5-1c). Generally, the attachment of cells of the diatom 

Navicula incerta was mainly regulated by the ‘attachment point theory’ [19]. It means the 

density of attached diatoms increased with available attachment points for each diatom. 

On topographies with depressed regions smaller than the dimension of diatoms, diatoms 

tended to hang over the protruding parts of the microstructures. Different numbers of 

attachment points were available for the attachment of diatoms depending on the 

microstructure features. With feature spacing remaining constant, the attachment points 

decreased with the increasing feature size, hence the amount of attached diatoms 

decreased. On topographies larger than the size of diatoms, e.g., 20 µm discrete 

honeycombs, the study suggested a possible correlation between the attachment density 

and the positioning of the attached diatoms (positioned across microstructures vs. 

positioned inside the depressed region).  

Spores of Ulva linza are responsible for the colonization of substrates to initiate 

the life story of this green macroalgae [125]. When surfaces are exposed to the spore 

solution, Spores commit settlement on selected sites following an active exploration 

phase [34]. Instead of a cell wall motile spores have a flexible plasma-membrane and 

therefore can squeeze themselves into narrow space or up against other spores when they 

settle. The settlement of spores was investigated on topographies of honeycomb gradients 

(Section 4.1, Figure 5-1a), discrete honeycombs (Section 4.2, Figure 5-1b) and tapered 

microstructures (Section 4.3, Figure 5-1c) to explore the correlation with topographic 

cues. In general, the settlement of Ulva spores was primarily guided by the Wenzel 
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roughness factor. As found in the honeycomb gradient study and the tapered 

microstructure study, the amount of attached spores increased with increasing Wenzel 

roughness. It is worth mentioning that the local binding geometry, i.e., available contact 

area, also influenced the settlement, which was more obvious in some special cases, e.g., 

transition from hexagon to zigzag on honeycomb gradient, 3 µm vs. 230 nm of tapered 

microstructures. Substantial proof has been gathered to support the fact that spores 

preferred settlement sites which provided sufficient contact to facilitate the solid adhesion 

against potential external hydrodynamic forces supposing the choice lay between 

topographies with similar Wenzel roughness. However, on some of the discrete 

honeycomb surfaces (Section 4.2, Figure 5-1) the settlement of spores exhibited a 

deviation from the guideline of Wenzel roughness. This could be attributed to the 

substrate material used to construct the microstructures in this study, i.e., PDMS, which 

was highly attractive to spores. As the tendency of spores to settle in groups increased 

with the settlement density [126], gregarious settlement was observed on all PDMS 

samples, which impaired the absolute positive correlation between spore settlement and 

Wenzel roughness. 

The sessile life of barnacles starts following the settlement of cyprid larvae [41]. 

Compared to spores and diatoms, the multicellular cyprid larvae are much more 

complicated as they possess a large number of sensory and adhesive structures, which are 

highly diverse in size and function (e.g., adhesive disc, attenular setae) [116]. The 

settlement of cyprids of B. improvisus was examined on discrete honeycombs 

(Section 4.2, Figure 5-1b) with the feature size between ca. 2.5-250 µm. The percentage 

of settlement was positively correlated with Wenzel roughness on most of the 

microstructures. In line with the literature [17], the settlement choice of cyprids could 

also be explained by the interaction of sensory and adhesive organs with microstructures 

of comparable sizes. 

Going beyond biofouling studies on sole topographies, on the basis of 

hydrophobic microporous topographies we combined the surface lubricity by introducing 

a layer of fluorocarbon lubricant liquid, thus producing water-repellent slippery liquid-

infused porous surfaces (SLIPS) (Section 4.4, Figure 5-1d). In this case, instead of being 

exposed directly to fouling organisms, topographies served as the intermediate layer to 

maintain the lubricity of SLIPS surfaces. Settlement of both Ulva spores and 

B. amphitrite cyprids was highly reduced on the SLIPS surfaces, i.e., BE103 and BE100, 
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which were proven to remain stable over the length of laboratory experiments. This 

indicated the potential of the SLIPS concept to be applied in fouling-resistant marine 

coatings. However, the marginal fouling-release and poor field performance suggested 

that great efforts are still required to improve the resistance to the penetration induced by 

the growth of fouling organisms and both the antifouling ability and the durability when 

the coatings are applied in the complicated and harsh real environment.  

Hierarchical surface topographies have been mentioned and proposed in the 

literature [112, 127] as an ideal model to target multiple fouling species. The topographic 

studies in this thesis showed that the fouling behaviors of different species were actually 

dominated by different surface topographic cues, e.g., spores — Wenzel roughness vs. 

diatoms — ‘attachment point theory’. This implied that the basis to construct a 

hierarchical topography for antifouling applications should be set on the combined 

consideration of different topographic cues instead of the mere mixing of microstructure 

of different sizes. Furthermore, the combination of other surface properties with 

topographies or based on topographies could possibly generate more possibilities to 

realize antifouling and meanwhile reduce the cost. 
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6.1 Supplementary materials 

Table 6-1 Main chemical components, Young’s modulus and water contact angles of polymer materials 

used in this thesis. 

Commercial Name 
Main chemical 

components 

Young’s modulus 

(MPa) [128] 

Water contact 

angle / ° 

(mean±SD) 

PLEXIGLAS
®
 Folie Farblos 99530  

(Röhm GmbH Chemische Fabrik, 

Germany) 

Polymethylmethacrylate  

(PMMA) 
2430 77.3±1.1 

Makrolon
®
 LED2045  

(Bayer MaterialScience AG, USA) 

Polycarbonate  

(PC) 
2350 97.5±0.3 

Sylgard
®

 184 Silicone Elastomer 

(Dow Corning Corporation, USA) 

Polydimethylsiloxane  

(PDMS) 
1.57 110.2±5.1 

 

 

Table 6-2 Properties of the lubricant liquids used to construct slippery surfaces (Section 4.4). 

Commercial Name Chemical Name Kinematic Viscosity (cm
2
/s) 

[120] 

Fluorinert
®
 FC-70 perfluorotri-n-pentylamine 0.12 (at 25°C) 

Krytox
® 

GPL 100 perfluoropolyether 0.12 (at 20°C) 

Krytox
®
 GPL 103 perfluoropolyether 0.82 (at 20°C) 

 

 

Table 6-3 Statistical analysis of the diatom Navicula incerta on discrete honeycombs (Section 4.2). 

smooth 3  µm 5  µm 8  µm 12  µm 20  µm 

a ab a b c c 

Values are significantly different to each other on surfaces which don’t share the same letter (ANOVA, 

Tukey test, p < 0.05). 
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Table 6-4 Statistical analysis of Ulva linza spores on discrete honeycombs (Section 4.2). 

smooth 3 µm 5  µm 8  µm 12  µm 20  µm 

a bc d b cd e 

Values are significantly different to each other on surfaces which don’t share the same letter (ANOVA, 

Tukey test, p < 0.05). 

 

 

Table 6-5 Statistical analysis of the diatom Navicula incerta on tapered microstructures (Section 4.3). 

3µm-H 3µm-L 2µm-H 2µm-L 230nm-H 230nm-L smooth 

a ab ab b c d e 

Values are significantly different to each other on surfaces which don’t share the same letter (ANOVA, 

Tukey test, p < 0.05). 

 

 

Table 6-6 Statistical analysis of Ulva linza spores on tapered microstructures (Section 4.3). 

3µm-H 3µm-L 2µm-H 2µm-L 230nm-H 230nm-L smooth 

a b c c de d e 

Values are significantly different to each other on surfaces which don’t share the same letter (ANOVA, 

Tukey test, p < 0.05). 

 

 

Table 6-7 Statistical analysis of toxicity data on slippery surfaces (Section 4.4). 

ASW Glass PTFE BE BE103 BE100 BE70 

a a a a a a a 

Values are significantly different to each other on surfaces which don’t share the same letter (ANOVA, 

Tukey test, p < 0.05). 
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Table 6-8 Statistical analysis of settlement of spores of Ulva linza on slippery surfaces (Section 4.4). 

 Glass PTFE PEG BE BE103 BE100 BE70 

45min a b c cd c c d 

2h a b c c c c d 

Values are significantly different to each other on surfaces which do not share the same letter (ANOVA, 

Tukey test, p < 0.05). 

 

Table 6-9 Statistical analysis of settlement of cyprids of Balanus amphitrite on slippery surfaces 

(Section 4.4). 

PS Glass PTFE PEG BE BE103 BE100 BE70 

a ab ac c ac c bc ac 

Values are significantly different to each other on surfaces which do not share the same letter (Kruskal 

Wallis, Dunn’s test, p < 0.05). 

 

Table 6-10 Statistical analysis of removal of sporelings of Ulva linza on slippery surfaces (Section 4.4). 

Glass PTFE PDMS BE BE103 BE100 BE70 

ad b c d de ae d 

Values are significantly different to each other on surfaces which do not share the same letter (ANOVA, 

Tukey test, p < 0.05). 
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6.2 Name abbreviations  

AC Adhesive complex 

AF Antifouling 

AFM Atomic force microscopy 

AIS Aquatic invasive species 

BE Poly(butyl methacrylate-co-ethylene dimethacrylate), BMA-EDMA 

BE100 Krytox
®
 GPL 100 infused porous 

poly(butyl methacrylate-co-ethylene dimethacrylate) 

BE103 Krytox
®
 GPL 103 infused porous 

poly(butyl methacrylate-co-ethylene dimethacrylate) 

BE70 Fluorinert
®
 FC-70 infused porous 

poly(butyl methacrylate-co-ethylene dimethacrylate) 

CDPs Controlled depletion systems 

CVD Chemical vapor deposition 

DMSO Dimethyl sulfoxide 

EPS Extracellular polymeric substances 

FR Fouling-release 

PC Polycarbonate 

PEG2000 SAMs PEG2000 self-assembly monolayers 

PDMS Polydimethylsiloxane 

PMMA Polymethylmethacrylate 

PS Polystyrene 

PTFE Polytetrafluoroethene, Teflon 

SEM Scanning electron microscopy 

TBT Tributyltin 

TBT-SPCs Tributyltin self-polishing copolymers 

TFS Tridecafluorooctyltriethoxysilane 

Tin-free SPCs Tin-free self-polishing copolymers 

WCA Water contact angle 
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