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Calcium sensitivity of neurotransmitter release in a glutamatergic
synapse of the central nervous system
During chemical synaptic transmission, the presynaptic action potential couples to the biochemical

release process by the opening of Ca2+ channels and Ca2+-dependent activation of a release sensor that

triggers the release of transmitter. Here, the dependence of transmitter release on the intracellular Ca2+

concentration ([Ca2+]) was determined in a glutamatergic calyx-type synapse in slices of the rat

brainstem by UV-induced Ca2+ uncaging. Because of the fast speed of glutamatergic synapses, an

electrophysiological setup was combined with a rapid fluorescence detection system and a short-pulsed

UV laser in order to both evoke and measure uniform [Ca2+] elevations on a fast time scale.

A homogeneous rise in the presynaptic [Ca2+] to 1 µM resulted in a clearly measurable

increase in release. The peak release rates depended on presynaptic [Ca2+] with more than the fourth

power. A [Ca2+] jump to 30 µM or more depleted the releasable vesicle pool in less than 0.5 ms. A

kinetic model was devised to quantify the release rate-[Ca2+] relation measured in this synapse type. A

comparison with action potential evoked release in the same synapses suggested that a brief elevation

of [Ca2+] to less than 10 µM would be sufficient to reproduce the physiological release pattern. In

summary, the Ca2+ sensitivity of synaptic transmitter release is, at least in some synapses, higher than

previously thought.

Die Kalziumempfindlichkeit der Überträgerstoff-Ausschüttung in einer
glutamatergen Synapse des Zentralnervensystems
Der Signalübertragung an chemischen Synapsen liegt ein Kopplungsmechanismus zwischen dem

präsynaptischen Aktionspotential und der biochemischen Überträgerstoff-Ausschüttung zu Grunde.

Dabei werden Ca2+-Kanäle geöffnet und ein Freisetzungssensor Ca2+-abhängig aktiviert, der schließlich

die Überträgerstoff-Ausschüttung auslöst. In der vorliegenden Arbeit wurde die Abhängigkeit der

Überträgerstoff-Ausschüttung von der intrazellulären Ca2+-Konzentration ([Ca2+]) in einer

glutamatergen kelchförmigen Synapse in Stammhirnschnitten der Ratte unter Verwendung

photolytischer Ca2+-Freisetzungen gemessen. Um [Ca2+]-Sprünge auf einer Zeitskala sowohl

hervorrufen als auch messen zu können, die der schnellen Übertragungsgeschwindigkeit von

glutamatergen Synapsen vergleichbar ist, wurde ein elektrophysiologischer Messstand mit einem

schnellen Fluoreszenzdetektor und einem UV-Kurzpulslaser ausgestattet.

Ein deutlich messbarer Anstieg der Überträgerstoff-Ausschüttung wurde bereits bei einer

homogenen Erhöhung der präsynaptischen [Ca2+] von ca. 1 µM beobachtet. Der Spitzenwert der

Freisetzungsrate wuchs mit mehr als der vierten Potenz der präsynaptischen [Ca2+]-Amplitude. Ein

[Ca2+]-Sprung von mehr als 30 µM löste die Aktivierung aller zur Fusion unmittelbar bereitstehenden

Vesikel innerhalb von 0,5 ms aus. Die in dieser Synapse beobachtete Beziehung zwischen der

Freisetzungsrate und der präsynaptischen [Ca2+] wurde mit Hilfe eines kinetischen Modells quantitativ

beschrieben. Ein Vergleich der Modellvorhersagen mit Freisetzungsraten, die in denselben Synapsen

während eines Aktionspotentials gemessen worden waren, ergab, dass ein kurzer Anstieg der [Ca2+] auf

weniger als 10 µM ausreicht, um den physiologischen Freisetzungsverlauf zu erklären. Die synaptische

Überträgerstoff-Ausschüttung reagiert somit zumindest in manchen synaptischen Systemen

empfindlicher auf Ca2+ als bisher angenommen.
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1. Introduction

Emerging from the two-sided nature of electro- and biochemical neural signaling,

tools from originally distinct scientific disciplines are often combined to successfully

elucidate the underlying mechanisms. In the present study, a biophysical question is

approached with a combination of techniques from electrophysiology, fluorescence

microscopy and photochemistry. A detailed description of the methods applied is

provided in chapters 2 and 3. The present study draws its motivation from a

physiological framework, which shall briefly be introduced in the present chapter.

1.1 Fundamental principles of neural signal processing

The nervous system is composed of cells, which are classified into the group of

excitable neurons and non-neuronal glia cells. The human brain consists of about 1010

- 1012 neurons, while the number of glia cells may be more than ten-fold larger. The

network properties of nervous systems arise from the neurons’ capability to receive

information, to process input and to send resulting information to other neurons. This

section will briefly describe the electrical and chemical processes that enable neurons

to communicate within a network.

1.1.1 Electrical signaling in the neuron

1.1.1.1   Neurons as structural and functional units of the nervous system

Neuronal cells represent the basic structural elements of biological networks. The cell

boundary is defined by a phospholipid bilayer, the plasma membrane, which hosts

numerous proteins such as ion channels and transporters. Thus, a neuron is a closed

system that can interact with its environment by exchange of substances, energy and

information. Although neurons in the central nervous system exhibit a great

morphological diversity, they generally possess similar structural features, which

were initially proposed to define the preferred direction of information flow within a

neuronal network. A century ago, Ramón y Cajal introduced the concept of ‘dynamic

polarization’, in which a neuron receives electrical excitation via its finely branched

dendrites and sends it to other, receiving neurons via its axon (Fig. 1.1). The sending
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neuron contacts the receiving cell at specialized connections, the synapses, at which

electrical excitation is transmitted either chemically or electrically (see section 1.1.2).

The soma of the receiving cell integrates the pattern of electrical signals presented by

its dendritic tree and, if a threshold is reached, generates an action potential (see next

section), which travels along the axon and activates synapses to communicate the

information to succeeding neurons.

This unidirectional model successfully describes a principal pathway of information

processing in biological networks. However, later observations demanded several

extensions to the early concept of neural information flow. Firstly, synaptic contacts

not only exist in the classical axon-to-dendrite arrangement (axo-dendritic), but were

found also between the axon and the soma (axo-somatic), the two axons (axo-axonic)

or between the dendrites (dendro-dendritic) of connected cells. Moreover, neurons

often form reciprocal connections, i.e. the output of the receiving cell is

communicated back to the sending neuron (Fig. 1.1 b). Furthermore, the somatic

action potential was shown to propagate into the dendritic tree, presenting a feedback

signal to the ‘receiving’ elements of the cell (Stuart and Sakmann, 1994). Finally,

dendrites probably function as independent integrating units of synaptic activity and

may generate local regenerative signals (Larkum et al., 1999).

1.1.1.2   Neuronal excitability: resting and action potentials

In biological neural networks, information is encoded and communicated as changes

in the membrane potential. The functional basis of potential changes are the properties

of the plasma membrane, which is impermeable to ion movement in its purely lipid

phase, but possesses numerous proteinaceous ion channels and ion transporters that

mediate ion fluxes across the membrane. Ion channels form an aqueous pore, through

which ions can diffuse passively. The pore opening may be gated by the surrounding

ionic environment, by the membrane potential or by specific ligands. Transporters

carry ions actively, i.e. requiring consumption of chemical energy, across the

membrane and generate concentration gradients between the intra- and extracellular

space. Typical concentration gradients are ([ion]int / [ion]ext): 12 mM / 145 mM for

Na+, 155 mM / 4 mM for K+, 10-4 mM / 1.5 mM for Ca2+ and 4 mM / 123 mM for Cl-

(Dudel et al., 1996). The concentration gradients give rise to passive ion transport

through open ion channels. Since most of the time the permeability for K+ is higher

than for Na+, a dynamic equilibrium state evolves that is close to the Nernst potential

for the concentration gradient of K+. This equilibrium potential is termed the resting

potential and usually ranges between -60 and -90 mV in neurons.
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Fig. 1.1: Neural signal processing. (a) Schematic representation of two pyramidal
neurons, connected by an axo-dendritic synapse. Preferred direction of signal

propagation indicated by solid arrows. Input from dendrites is integrated at the soma
of neuron A. Suprathreshold excitation generates an action potential, which travels

along the axon and activates the synapse at the basal dendrite of neuron B. If the

integrated input at the soma of neuron B exceeds a threshold, an action potential is
initiated, which propagates into the axonal tree of B. Concurrently, somatic action

potential initiation leads to a feedback signal in the dendritic tree, the back-
propagating action potential (open arrows). (b) Light-microscopic reconstruction of

two reciprocally connected pyramidal neurons (blue and red, respectively). Discs

indicate synaptic contacts. Image kindly provided by Dr. O. Ohana.

Electrical activity in a neuron is characterized by the initiation and propagation of

‘action potentials’, which are stereotypic all-or-none events, being the elementary

units of neuronal information processing. The action potential is generated by the self-

amplifying opening of Na+ channels if the membrane is depolarized above a threshold

potential of approximately –50 mV. The membrane potential rapidly rises towards the

Nernst potential for Na+ of about +70 mV due to the increased Na+ permeability. The

rise to positive potentials peaks at ca. 40 mV and is invariably terminated by the rapid

inactivation of the Na+ channels and by the delayed opening of K+ channels, which

initiates the repolarization towards the resting potential. Neuronal action potentials

typically last one millisecond or less, and the triggering of a second action potential

requires the transition of inactivated Na+ channels into the resting closed state, which

may last a few milliseconds. Because of this refractory period, the rate at which

neurons can ‘fire’ action potentials is limited to 100-1000 Hz. Generally, action

potentials are triggered at the soma or axon hillock owing to its high Na+ channel

density, which admits a brief and strong depolarizing Na+ current once the summed

ba
apical
dendritic
tree

basal
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axonal
tree
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synaptic potentials exceed the activation threshold. The action potential travels from

the initiation site along the axon towards the nerve terminals by local membrane

depolarization and Na+ channel activation. Due to the Na+ channel inactivation, action

potentials are not reflected.

1.1.2 Synapses

Synapses are contact sites between two neurons at which electrical activity is

transmitted from one neuron to the other. At a synapse, the plasma membranes of the

connected neurons are separated by a narrow cleft of ca. 20 nm thickness. During

synaptic transmission, the excited, ‘presynaptic’ neuron activates the transmission

process and sends a signal to the ‘postsynaptic’ neuron, either in terms of a chemical

transmitter substance (chemical synapse) or in terms of an ionic current through

membrane spanning, conducting elements (electrical synapse).

A chemical synapse is characterized by pre- and postsynaptic membrane

specializations; the presynaptic ‘active zone’ is a region of electron dense material

close to the presynaptic membrane and contains clusters of small vesicles (30 –50 nm

in diameter) filled with the transmitter substance (Fig. 1.2). Voltage-dependent Ca2+

channels located in or near the active zone mediate local increases in presynaptic

[Ca2+] near the vesicles. The ‘postsynaptic density’ is an electron dense thickening of

the postsynaptic membrane, which contains ion-permeable receptor channels that are

gated by the transmitter substance.

During synaptic transmission, the presynaptic active zone is depolarized and voltage-

dependent Ca2+ channels are opened by an incoming action potential. The resultant

local [Ca2+] elevation triggers the fusion of vesicles with the presynaptic membrane.

Transmitter released from the vesicles rapidly diffuses across the synaptic cleft and

activates the opening of postsynaptic ‘ionotropic’ receptors, thus changing the

postsynaptic permeability for selected ion species. Fast chemical transmission occurs

within a time window of less than a millisecond from the arrival of the presynaptic

action potential to the start of the postsynaptic electrical response.

Chemical synapses can be excitatory or inhibitory, depending on the transmitter and

postsynaptic receptor channel types. Excitatory synapses use transmitters such as

acetylcholine or glutamate, which activate cation-selective receptor channels. The

influx of cations (Na+, Ca2+) results in a depolarization of the postsynaptic

compartment and increases the probability that the postsynaptic neuron fires an action

potential. The evoked, transient depolarization is called an ‘excitatory postsynaptic



Introduction                                                                                                                     5

Fig. 1.2: Schematic diagram of synaptic structures. (a) Axo-dendritic synapse, using

glutamate as excitatory transmitter. During a presynaptic action potential, voltage

dependent Ca2+ channels (VDCC) open and admit Ca2+ influx in the vicinity of small

synaptic vesicles, leading to vesicle fusion and release of their content. Postsynaptic

glutamate receptor channels (AMPA, NMDA) open and generate an excitatory

postsynaptic potential. (b) A calyx-type, axo-somatic synapse, approximately 10-fold

larger than small synapses. The key features of glutamatergic transmission, regarding

excitation-secretion coupling and postsynaptic receptor activation are conserved.

Channels and vesicles not drawn to scale.

potential’ (EPSP) and the underlying current an ‘excitatory postsynaptic current’

(EPSC). Inhibitory synapses use transmitters such as γ-amino-butyric acid (GABA) or

glycine, which activate anion-selective channels. The increased permeability for Cl-

leads to a hyperpolarization of the postsynaptic compartment and/or decreases the

excitability of the membrane by shunting simultaneously occurring, depolarizing

currents. Evoked potential changes and underlying currents are called ‘inhibitory

postsynaptic potentials’ (IPSPs) and ‘currents’ (IPSCs), respectively.

Another type of chemical transmission is mediated by ‘metabotropic’ receptors,

which do not permit ion flux across the membrane when bound to transmitter, but

trigger intracellular signaling cascades by the activation of G-proteins. Their action

occurs on a slower time scale and often exerts a modulatory effect on the excitability

of a neuron or the transmission efficacy of a synapse (e.g. Nakanishi, 1994; Byrne and

Kandel, 1996).
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Electrical transmission is mediated by ‘gap junctions’, which are built of channel

forming proteins (connexins) embedded in the apposing membrane regions of

contacting neurons. Hexameric connexin complexes connect the cytoplasm of the two

neurons by an ion-permeable pore, which is pH- and Ca2+-sensitive. Electrical signals

can propagate directly and without delay across the cell-cell border by ionic current

flow through gap junctions. In particular heart muscle and smooth muscle cells are

electrically coupled by gap junctions; they are also abundantly present in the central

nervous system, where they participate in the synchronization of electrical activity

within a cell ensemble (Draguhn et al., 1998).

The synapse investigated in this study is a large axo-somatic synapse in the medial

nucleus of the trapezoid body (MNTB) in the brainstem, whose presynaptic terminal

forms a large calyx-shaped structure around the postsynaptic cell body (Fig. 1.2 b).

The terminal contains several hundred active zones (Sätzler, 2000) and releases

glutamate from more than a hundred vesicles upon arrival of a single presynaptic

action potential (Borst and Sakmann, 1996). The postsynaptic neuron contains

glutamate channels of both the α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic

acid (AMPA) and the N-methyl-D-aspartate (NMDA) type. A single EPSC is

sufficient for postsynaptic action potential initiation, and therefore ‘suprathreshold’.

1.1.3 Synaptic plasticity

The coupling strength of a chemical synapse can change depending on its previous

activation pattern or the presence of neuromodulatory substances. Frequently,

chemical synaptic transmission is described using Poisson or binomial statistics, in its

simplest form leading to the definition of four quantities (del Castillo and Katz,

1954): Ideally, the amount of transmitter released from one vesicle evokes a

postsynaptic signal, whose size is distributed normally, the mean signal corresponding

to the ‘quantal size’ q. During an action potential, exactly one vesicle can fuse at a

single site, the ‘release site’, with probability p. A synapse contains N such release

sites with uniform release probability p. Then the ‘quantal content’ m, i.e. the number

of transmitter packets (vesicles) released during one action potential, is:

m = N p (1.1)

Short term changes in synaptic strength, which decay within several hundred

milliseconds to seconds, are activity dependent and are known as facilitation,

augmentation, post-tetanic potentiation (PTP) and depression. Facilitation refers to the

increase in a second or later postsynaptic response compared to that evoked by a

conditioning first pulse. It decays on the order of several tens to hundreds of

milliseconds. Augmentation and PTP are induced by a conditioning train of stimuli
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and decay with a time constant of several seconds or minutes, respectively. All forms

of short term enhancement are in part dependent on presynaptic [Ca2+] elevations

following stimulation, called ‘residual Ca2+’, which may act by either increasing N or

p, or both. Both differences in the kinetics of the Ca2+ removal mechanisms and

different molecular targets mediating synaptic enhancement are thought to account for

the various components of increased synaptic strength. Other mechanisms can also

contribute to short term enhancement, such as facilitation of presynaptic Ca2 +

channels or an activity-dependent relief of postsynaptic AMPA receptors from a

polyamine block (reviewed by Zucker, 1999). Another form of short term plasticity is

synaptic depression, i.e. a decrease in quantal content after repetitive stimulation that

usually recovers with time constants of hundreds of milliseconds to several seconds.

A likely mechanism is the depletion of fusion-competent vesicles available at the

active zone, corresponding to a reduction in N in Eq. 1.1, due to previous release.

Alternatively, activation of presynaptic metabotropic receptors or a mechanism that

changes the Ca2+ sensitivity of the release machinery during prolonged exposure to

elevated [Ca2+] (‘adaptation’) may lead to a reduction in p or N (Nakanishi, 1994; Hsu

et al., 1996). Other mechanisms include desensitization of postsynaptic transmitter

receptors and depletion of Ca2+ in the synaptic cleft (Trussell et al., 1993; Borst and

Sakmann, 1999a). Taken together, short term plasticity is often shaped by multiple

mechanisms, which may dominate different temporal phases of the observed changes

in synaptic strength.

Aside from short term changes, many synapses in the central nervous system exhibit

an activity-dependent increase or decrease in synaptic efficacy lasting hours or days

(reviewed by Bliss and Collingridge, 1993). Depending on the direction of change,

they are called long term potentiation (LTP) and long term depression (LTD). While

LTP can be induced by high frequency stimulation (for example, a few pulses at 100

Hz, repeated several times), LTD is induced by sustained low frequency stimulation

(1 – 20 Hz). Alternatively, pairing protocols have been used in hippocampal and

neocortical connections, where paired pre- and postsynaptic action potentials evoke

LTP or LTD, when the postsynaptic action potential succeeds or precedes the

presynaptic action potential, respectively (Magee and Johnston, 1997; Markram et al.,

1997). Currently, no simple model is able to predict the various forms of LTP/LTD

induction found in different synapses suggesting that multiple mechanisms are

involved. However, since both long term effects are often found to depend on the

degree of postsynaptic [Ca2+] elevation, it is thought that LTP induction requires

[Ca2+] to rise above a higher threshold than that imposed by the mechanisms of LTD

induction (Bear, 1995). The postsynaptic rise in [Ca2+] can be mediated by NMDA

receptor channels, voltage dependent Ca2+ channels or intracellular Ca2+ stores and is
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modulated by postsynaptic membrane depolarization. The NMDA receptor channel

represents an ideal substrate for coincidence detection of pre- and postsynaptic

activity, because it permits appreciable Ca2+ influx only when it is activated by

glutamate released from the presynaptic terminal and a simultaneous relief from Mg2+

block by postsynaptic depolarization (Mayer et al., 1984; Nowak et al., 1984).

The capability of pairing protocols to induce LTP/LTD implies that these forms of

plasticity may encode persistent information on coincident activity in a neural

network. In turn, a shift of synaptic weights driven by coincident activity is the key

mechanism suggested by Hebb (1949) to form the basis of learning. Meanwhile,

several genetic studies were performed, in which long term plasticity was

manipulated and its possible role in learning was analyzed in behavioral tasks (recent

studies are, e.g., Tang et al., 1999; Zamanillo et al., 1999). Because interfering with

an isolated mechanism may be masked or compensated by other processes in the

living animal, it is difficult at present to assign well-defined functions to LTP/LTD in

learning and the formation of memory. Thus, intense research currently focuses on

evaluating the significance of LTP and LTD in behavior.

1.2 Exo- and endocytosis

1.2.1 Vesicle cycling

A presynaptic terminal is specialized to release transmitter substances with precise

timing and at high rates. This is achieved by storage of the transmitter in small

packages, the synaptic vesicles, which can fuse with the membrane shortly after a

presynaptic action potential. Presynaptic terminals have developed membrane

trafficking mechanisms to maintain the supply of vesicles in a release-ready state.

A general model of vesicle cycling in the presynaptic terminal is depicted in Fig. 1.3

(Südhof, 1995; Augustine et al., 1999). In the resting terminal, at least two functional

pools of synaptic vesicles can be distinguished (Greengard et al., 1993): (1) a set of

vesicles is found in contact with the presynaptic membrane at the active zone, which

is regarded as the pool of vesicles readily releasable upon arrival of an action

potential. The morphologically docked vesicles found in electron micrographs can be

sub-divided into ‘docked only’ and ‘docked and primed’ vesicles, depending on

whether they have passed through all molecular priming steps necessary for Ca2+-

triggered fusion (Südhof, 1995, see below). (2) Vesicles are observed to form clusters

near the active zone, which are stabilized probably because of the binding of the
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Fig. 1.3: The synaptic vesicle cycle. Before fusing with the presynaptic membrane,

synaptic vesicles have to be translocated to and brought into close apposition with

the presynaptic membrane (mobilization and docking). Further molecular reactions
(priming) are required until a vesicle can undergo Ca2+-triggered fusion. Vesicular

membrane is recycled after coating with clathrin (coating, budding, uncoating).
Endocytosed vesicles may transit by fusion and budding through intracellular

endosomes and are added to the reserve pool (storage). Recycled vesicles are refilled
with neurotransmitter by active transport (uptake) (modified from Augustine et al.,

1999).

vesicle protein synapsin I with cyto-skeletal elements (Pieribone et al., 1995).

Vesicles from this ‘reserve pool’ are translocated to the active zone and repopulate

empty release sites during repetitive stimulation (e.g. Zenisek et al., 2000). After

fusion and transmitter release, clathrin-coated membrane segments bud from the

presynaptic membrane and form vesicles that are thought to be translocated into the

reserve pool, possibly after fusion with and budding from intracellular endosomes

(Heuser and Reese, 1973, see section 1.2.3 for an alternative model). During this

cycling, vesicles accumulate neurotransmitter by active transport, which is driven by

an electrochemical gradient due to a proton pump. Many steps of synaptic vesicle

cycling can be associated with specific molecular reactions by disrupting the cycle at

different stages. Useful tools are microinjection of peptides or antibodies or genetic

manipulations that interfere with one of the putative molecular reactions (Pieribone et

storage

mobilization

docking
priming fusion

Ca2+

budding

budding

uncoating

coating

fusionuptake

uptake
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al., 1995; Südhof, 1995; Augustine et al., 1999). To clarify the role of the numerous

types of presynaptic proteins is still difficult and is the focus of current research. The

following sections will briefly introduce more detailed concepts that have been

proposed for the key events during synaptic transmission.

1.2.2 Exocytosis

1.2.2.1   Some molecules involved in exocytosis

Chemical transmission requires the precisely timed release of transmitter molecules

into the synaptic cleft by the specific fusion of synaptic vesicles with the presynaptic

membrane. The abundance of intracellular membrane in the terminal necessitates that

this signaling process be highly regulated by specific biochemical binding partners on

the vesicle and the target membrane. The vesicular and target membrane contain

numerous proteins, of which well characterized super-families are the GTP-binding

Rab proteins and the soluble NSF attachment protein receptor (SNARE) proteins

(Südhof, 1995). While both protein families may contribute to vesicle transport

specificity and target membrane recognition, the SNARE proteins are thought to be

important also in mediating the last steps of membrane fusion (Jahn and Südhof,

1999; Chen and Scheller, 2001) The vesicular (v-) SNARE protein synaptobrevin and

the target membrane (t-) SNARE proteins SNAP-25 and syntaxin can form a tight

complex, the SNARE core complex, which is likely to play a functional role in

vesicle targeting to the release site and/or fusion of the two lipid bilayers. In this

complex, synaptobrevin and syntaxin both contribute one and SNAP-25 contributes

two α-helical domains, which bind by forming a four-stranded coiled-coil structure.

Because syntaxin and synaptobrevin bind in parallel fashion, i.e. with the amino

termini at one end and the membrane-anchored carboxy termini at the other end of the

core complex, it is thought that the binding reaction between SNARE proteins may

occur in a ‘zipper-like’ fashion, thus exerting mechanical force on the lipid membrane

anchors. The core complex is heat stable up to 90° C and resistant to protease

digestion, biochemical denaturation and cleavage by clostridial neurotoxins, which

are able to cut SNARE proteins in the isolated state (Chen and Scheller, 2001). In

biological systems, SNARE complexes are disassembled by N-ethyl-maleimide-

sensitive fusion protein (NSF) and soluble NSF attachment protein (α-SNAP) under

hydrolysis of ATP. This reaction is thought to reactivate previously used SNARE

proteins for a new fusion cycle.
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Fig. 1.4: Models of lipid membrane fusion in exocytosis. (a) In the ‘proximity’
model, fusion is induced, when the vesicle and presynaptic membrane are forced into

close apposition by the tight binding of v- and t-SNAREs in a zipper-like manner. A
precursor state of the fully fused membranes may be ‘hemifusion’ (3rd step in a),

where the inner membrane leaflets have mixed, but the outer leaflets are intact. (b) In
the ‘fusion pore’ model, the mixing of vesicle and presynaptic membrane lipids is

mediated by a proteinaceous channel connecting both membranes. Binding of v- and

t-SNAREs may anchor vesicles to the target membrane and promote the formation of
fusion pore precursors.

1.2.2.2   The fusion mechanism

The fusion mechanism itself requires that two closely apposed phospholipid bilayers

merge in an aqueous environment. Because of the repulsive forces between the polar

phospholipid head groups, a high energy barrier must be overcome, which is thought

to be mediated by specialized fusion proteins. Two principal hypotheses have been

put forward to describe the fusion reaction of the transmitter vesicle with the target

membrane mechanistically (Fig. 1.4). In ‘proximity’ models it is proposed that the

action of membrane proteins such as SNARE complexes is restricted to reducing the

activation energy by forcing the two lipid bilayers into close apposition, from where

lipids of the two proximal leaflets can mix and form a hemifusion or stalk state (Fig.

1.4 a). It is unclear whether the hemifused state is immediately followed by the break

down and mixing of the distal leaflets, or whether this state is metastable, requiring

another catalyzing step for full fusion to occur (Jahn and Südhof, 1999; Chen and

Scheller, 2001). In the ‘fusion pore model’, the fusion of apposing membranes is

mediated by a proteinaceous channel structure that spans both membranes and

promotes the mixing of the two lipid bilayers (Almers and Tse, 1990). This could

possibly involve radial expansion of the fusion protein’s subunits within the lipid

bilayers, allowing the phospholipids to flow and mix in the expanding space between

a

b

proximity model

fusion pore model
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the subunits. As an example, a membrane spanning, proteolipidic sector of the

vacuolar H+-ATPase in yeast, a proton pump molecule, was recently shown to form

trans-complexes between apposing intracellular membranes and to mediate fusion

(Peters et al., 2001), the latter in the absence of SNARE core complexes. Thus, the

role of various molecular interactions in fusion is still controversial and it remains to

be elucidated to what extent the mechanisms driving membrane fusion are

molecularly conserved in different cells and species.

1.2.3 Endocytosis

Synaptic terminal membrane is recycled during and after transmitter release by local

infolding of the membrane and subsequent budding of small vesicles and/or larger

compartments called cisternae (reviewed by Wilkinson and Cole, 2001). This way, the

increase in terminal surface area due to exocytosis is quickly compensated, which is

necessary to maintain the supply of membrane material for the formation of new

vesicles and to prevent terminal deformation. Based on electron microscopic studies,

two alternative recycling pathways were proposed, which differed in several aspects.

In one model, fused vesicles are thought to collapse completely into the presynaptic

membrane. Membrane retrieval occurs away from the release site and involves

specific membrane recognition mediated by the protein adaptor complex AP2, which

triggers the coating and infolding of the membrane segment mediated by clathrin

(Pearse et al., 2000). Clathrin-coated vesicles pinch off and subsequently discard the

coating; then they are transferred to the reserve pool of vesicles (Heuser and Reese,

1973; Südhof, 1995). In a second model, the fusion of a vesicle is thought to be

reversible, leaving the vesicle membrane largely intact and allowing it to reseal and

detach from the release site quickly after pore opening and transmitter discharge

(‘kiss and run’, Ceccarelli et al., 1973; Fesce et al., 1994). The proposed mechanism

does not require clathrin-mediated endocytosis and makes recycled vesicles available

close to the release site, which could be advantageous to counteract rapid depletion of

the releasable vesicle pool during repetitive stimulation.

Recent experiments using fluorescent membrane markers with different departitioning

properties suggest that at least two endocytotic pathways, which resemble those

proposed originally, may be at work in synaptic terminals. Thus, endocytosis via the

formation of cisternae may serve to supply newly assembled vesicles to the reserve

pool on a slow time scale, whereas a rapid endocytotic pathway near the active zone

may be capable of locally recycling or reusing vesicles previously located in the

readily releasable pool (Pyle et al., 2000; Richards et al., 2000; Stevens and Williams,

2000).
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1.2.4 The role of Ca2+ in exocytosis and endocytosis

In the exocytotic event sequence, vesicles are arrested in a primed state at the release

site. Only after opening of Ca2+ channels in response to a nerve pulse does a rise of

the intracellular Ca2+ concentration trigger the final steps of transmitter release (Katz,

1969). In early experiments it was shown by varying the extracellular [Ca2+] that

transmitter release is controlled by the cooperative action of several Ca2+ ions (Dodge

Jr. and Rahamimoff, 1967). Later, measurements of the dependence of transmitter

release on intracellular [Ca2+] confirmed that at least three Ca2+ ions are required to

trigger the fusion of a vesicle, thus providing the release mechanism with a supra-

linear sensitivity to variations in [Ca2+] (Heinemann et al., 1994; Heidelberger et al.,

1994). Despite considerable effort, the mechanism by which Ca2+ deploys the fusion

machinery is still under debate. Many Ca2+-binding proteins present in presynaptic

terminals have a modulating function in transmitter release (Burgoyne and Morgan,

1998). The most prominent candidate for a neuronal Ca2+ sensor for transmitter

release is synaptotagmin I, which binds to phospholipids and syntaxin and

oligomerizes in a Ca2+-dependent manner. Neurons in which synaptotagmin was

absent or point mutated showed reduced synchronous transmitter release (Nonet et al.,

1993; Broadie et al., 1994; Geppert et al., 1994; Fernández-Chacón et al., 2001).

However, a widely accepted functional model of synaptotagmin-triggered fusion has

not yet emerged.

Aside from being the crucial signal for rapid membrane fusion, Ca2+ is likely to

regulate also other steps in the synaptic vesicle cycle. Increased [Ca2+] following

stimulation may enhance the rate at which the readily releasable pool is replenished

(reviewed by Zucker, 1999; but see Wu and Borst, 1999). It has been observed in non-

neural exocytosis that even the expansion rate of a granular fusion pore may be a

function of intracellular [Ca2+] (Hartmann and Lindau, 1995). Also endocytosis is

regulated by Ca2+ in many systems, although the exact dependence is not generally

established (Henkel and Almers, 1996). Thus it was observed that rapid endocytosis

in endocrine cells is initiated by Ca2+ binding to calmodulin (Artalejo et al., 1996). In

hippocampal synapses, intracellular [Ca2+] was observed to up-regulate endocytosis

(Sankaranarayanan and Ryan, 2001). In contrast, in synaptic terminals of retinal

bipolar cells, increased [Ca2+] levels appeared to inhibit endocytosis (von Gersdorff

and Matthews, 1994).

It can be summarized that many processes in the synaptic vesicle cycle are subject to

Ca2+-sensitive modulation, implying that the balanced operation of this cycle requires

tight regulation of intracellular [Ca2+] levels.
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1.3 Motivation

The speed of chemical transmission is limited by the time the final steps of exocytosis

require for completion after arrival of a presynaptic action potential. These steps

include the opening of presynaptic Ca2+ channels, Ca2+ diffusion to and activation of

the Ca2+ sensor for release and ultimately the fusion of the vesicle and target

membrane. The activation of the release sensor by Ca2+ is of particular interest

because it represents the very relay mechanism by which electrical activity – the flow

of ions across the membrane – is coupled to chemical signal transmission – the

discharge of chemical transmitter molecules from a fused vesicle. Therefore, the

temporal coupling precision will be a main determinant of the synchronicity of pre-

and postsynaptic excitation. As mentioned above, synchronicity and coincidence

detection are important for the activity-dependent adjustment of synaptic weights,

which is considered a possible mechanism for the way a biological network processes

and stores information. In addition, the Ca2+-release sensor reaction not only partially

determines the fidelity of chemical transmission, but may also be a target where the

adjustment of synaptic weights can be implemented. When restricting the view on this

element of the signaling cascade, two basic regulatory mechanisms may be

considered. First, the Ca2+ signal observed by the Ca2 + sensor during an action

potential may be activity-dependent, for instance due to action potential broadening or

modulation of Ca2+ channel opening. Second, the efficacy of the Ca2+ sensor to bind

Ca2+ and trigger fusion – its sensitivity - may be regulated in an activity-dependent

manner.

To better understand the significance of excitation-secretion coupling for transmission

fidelity and synaptic plasticity, the general dependence of the process of transmitter

release on intracellular [Ca2+] should be determined first. Because of its importance,

several investigations have focussed on this issue in other exocytotic systems, for

example in hormone releasing cells or in specialized nerve terminals, however with

divergent findings that apparently cannot be extrapolated to other synapses (see

section 5.3.3 for a more detailed discussion).

In this study, the Ca2+ dependence of rapid synaptic transmission was characterized in

a glutamatergic giant synapse in rat brainstem slices, using pre- and postsynaptic

current recordings (Forsythe, 1994; Borst et al., 1995). Because of the large size of

the pre- and postsynaptic compartment, electrical signals can be detected from both

compartments using the whole-cell patch clamp technique. In this method, a recording

pipette is tightly sealed to a patch of cell membrane, permitting low resistance access

to the intracellular compartment for electrical measurements and diffusional delivery

of substances (Neher and Sakmann, 1976; Hamill et al., 1981; Edwards et al., 1989).
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A UV-sensitive Ca2+ chelator loaded with Ca2+ was introduced to the presynaptic

terminal together with a fluorescent Ca2+ indicator (Kaplan and Somlyo, 1989). The

presynaptic [Ca2+] was artificially raised by brief UV laser pulses and measured using

quantitative fluorescence microscopy. By simultaneously measuring the postsynaptic

currents, the relation between presynaptic glutamate release and intracellular [Ca2+],

in other words the ‘Ca2+ sensitivity of transmitter release’, could be determined for

this mammalian synapse. Furthermore, this relation was described in a quantitative

model, which was subsequently used to estimate the Ca2+ signal triggering synaptic

transmission during physiological activity.
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2. Theory

2.1 Intracellular Ca2+ dynamics

Calcium is probably the most versatile signal transduction element in living cells. It

controls diverse cell functions, of which the fastest are excitation-secretion coupling

in synapses and excitation-contraction coupling in muscle cells, both occurring within

milliseconds. On a time scale of minutes or longer, Ca2+ is a main regulator of cell

cycling, gene expression and programmed cell death (Clapham, 1995). In general,

cells maintain intracellular [Ca2+] at a level ~104-fold lower than the extracellular

level. Furthermore, cells must precisely control local and global [Ca2+] signals in

order to maintain a high specificity when using a single ion type as a quasi-universal

messenger.

In a more abstract view, cells can be regarded as a finite, three-dimensional space

delimited by a closed surface, the plasma membrane, and compartmentalized into

different spatial and functional units. In this volume, the Ca2+ concentration is a

function of space and time, [Ca2+](r,t). The dynamic evolution of [Ca2+](r,t) depends

on three regulatory mechanisms: passive diffusion, chemical reaction and active

transport. In living cells, all three processes exist and contribute to shaping [Ca2+](r,t).

The first one, diffusion in an aqueous medium, naturally occurs wherever

electrochemical gradients are encountered. Thus, Ca2+ diffusion occurs along the

electrochemical gradient over the plasma membrane through Ca2+-permeable channel

proteins, giving rise to localized Ca2+ influx. Intracellular diffusion of Ca2+ within the

cytosol is influenced by diffusional barriers, which contribute to shaping local Ca2+

signals. One example for this compartmentalization of Ca2+ signaling is the restriction

of [Ca2+] elevations during synaptic activation to a postsynaptic compartment, the

‘synaptic spine’: the parent dendrite is largely spared from the Ca2+ signal because of

the narrower spine neck, forming a bottle-neck for Ca2+ diffusion (Yuste and Denk,

1995).

In the second mechanism, Ca2+ can bind to mobile or immobile proteins in a chemical

reaction, which is generally termed ‘Ca2+ buffering’. This mechanism largely

contributes to maintaining low global [Ca2+] levels and to confining [Ca2+] elevations

to the vicinity of their sources. To date, a large number of Ca2+-binding proteins have

been found, of which prominent neuronal members are calbindin, calretinin and
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parvalbumin (Blaustein, 1988). Ca2+ buffering reactions are usually described using

second order reaction rate equations (see next section).

A third mechanism is the active transport of Ca2+ ‘uphill’, against the electrochemical

gradient under consumption of chemical energy. This mechanism is responsible for

the sequestration of Ca2+ across the plasma membrane into the extracellular space and

for the uptake of Ca2+ into intracellular stores, such as mitochondria or the

endoplasmic reticulum. The active transport is taken over by membrane-integral

proteins, e.g. the Ca2+-ATPase or the Na+-Ca2+ exchanger.

Under the combined influence of numerous interactions of the above type, a complex

spatio-temporal pattern of intracellular [Ca2+] is expected to evolve, especially

whenever cellular activity perturbs the electrochemical equilibrium. A special case

important for neuronal exocytosis is the rapid opening of Ca2+ channels during action

potentials which generates highly localized and short-lived [Ca2+] elevations close to

synaptic vesicles at the presynaptic membrane (reviewed by Neher, 1998). These so-

called ‘Ca2+ microdomains’ have been difficult to measure directly, mostly because

light microscopy lacks the spatial resolution. However, spatially and temporally

confined [Ca2+] elevations which probably arise from the opening of a cluster of

several channels have been observed (Llinás et al., 1992; DiGregorio et al., 1999;

Yazejian et al., 2000).

On the other hand, mathematical simulations have given much insight into the

complex distribution of [Ca2+](r,t), especially during channel opening at synaptic sites

(Chad and Eckert, 1984; Simon and Llinás, 1985; Pape et al., 1995; Naraghi and

Neher, 1997; reviewed by Neher, 1998). The modeled [Ca2+](r,t), however, is quite

sensitive to the kinetic properties of the buffer species present in the vicinity of the

Ca2+ channels. For synapses, only little information is currently available regarding

the buffers’ identity, nor is much known about the spatial arrangement of Ca2+

channels, buffers and vesicles (but see Harlow et al., 2001).

Therefore, in the present study a different approach was used to analyze the

dependence of a cellular process on [Ca2 +](r,t). By uniform uncaging of Ca2+

throughout the presynaptic terminal, the spatial dependence of [Ca2+](r,t) was

removed (Fig. 2.1). By choosing a short-pulsed UV source and a rapidly converting

Ca2+ cage and fast Ca2+ indicators, also the temporal dependence of [Ca2+](r,t) was

largely reduced to a brief transition period of 100-200 µs.
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Fig. 2.1: Spatial pattern of [Ca2+] during Ca2+ influx and UV-induced Ca2+ uncaging.

(a) The opening of a Ca2+ channel in the presynaptic plasma membrane mediates the
influx of Ca2+ ions. The concentration profile and the location of vesicles relative to

the Ca2+ channels is generally not known, making it difficult to predict the [Ca2+]
present at the Ca2+ sensor during action potential-evoked release. (b) UV-induced

photolysis of a high-affinity Ca2+ chelator permits spatially homogeneous [Ca2+]

elevations. Volume-averaged [Ca2+] measurements then reflect the [Ca2+] at the Ca2+

sensor for release.

In the following, the general approach to model Ca2+ dynamics will be stated based on

the three regulatory mechanisms mentioned above. A simple approximation is

considered for a single channel Ca2+ domain in order to illustrate the effect of Ca2+

buffers on the spatial extent of the microdomain. Finally, the time course of [Ca2+](t)

evoked by Ca2+ uncaging will be calculated using a detailed model, which takes into

account those Ca2+ buffers also present in the experiments.

2.1.1 Time-dependent Ca2+ diffusion-reaction in an aqueous medium

Firstly, diffusion of Ca2+ and Ca2+ buffering molecules is described by Fick’s law, if

we assume the intracellular volume to be an isopotential space.
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where ∆ is the Laplace operator and DCa the diffusion coefficient of Ca2+, which also

may be a function of space and time. The same applies for the Ca2+ buffers present.

Secondly, the buffering reactions are commonly described with 2nd order reaction rate

equations. The rate of concentration changes during a buffer reaction between Ca2+

and a buffer B1:
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is proportional to the reactants’ concentrations, with association and dissociation rate

constants k1, k-1:
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Thirdly, the action of active transport mechanisms cannot be represented in a general

form, but it is dependent on chemical energy supply and local [Ca2+]. The transport

rate p can often be approximated using a Michaelis-Menten relation, which accounts

for the limited transport capacity at saturating [Ca2+]:
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where pmax is the maximal pump rate in a given volume element, and Km is the [Ca2+]

where p becomes half-maximal.

By combining these mechanisms in the most general form, the spatio-temporal

evolution of [Ca2+](r,t) can be described by a system of partial differential equations:
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Here, Bi denotes n different Ca2+ buffer species with association and dissociation rate

constants ki and k-i, respectively. Ca2+ influx is summarized as j, which depends on

both passive transport through ion channels and active transport, e.g. the Na+-Ca2+

exchanger operating in reverse mode (Regehr, 1997). Furthermore, p comprises the

various Ca2+ sequestration mechanisms.

In general, this set of partial differential equations cannot be solved analytically. For

different spatial arrangements and buffer conditions, [Ca2+](r,t) has been calculated

numerically (e.g. Simon and Llinás, 1985; Yamada and Zucker, 1992; Roberts, 1994).

In parallel, the evolution of [Ca2+](r,t) can be approximated analytically for some

limiting cases, for example, when the concentration of the buffer in its free and Ca2+-

bound form is assumed to be constant (Neher, 1986), when Ca2+ binding is assumed to
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be instantaneous (‘rapid buffer approximation’, Smith, 1996) or when the change in

free buffer concentration is small during a perturbation (‘linearized buffer

approximation’, Pape et al., 1995; Naraghi and Neher, 1997).

2.1.2 Ca2+ microdomains

Numerical and analytical solutions of [Ca2+](r,t) show that increases in [Ca2+] are

defined locally around the site of Ca2+ influx and drop sharply with distance from the

channel. To illustrate this point, Ca2+ influx through a single channel is treated as a

point source in an infinite plane, corresponding to the molar flux Φ (in units mol.s-1)

into a semi-infinite medium (Fig. 2.2 a). It is convenient to use spherical coordinates

and first consider the development of the steady-state solution in the absence of Ca2+

buffering and extrusion. Eq. 2.5 - 2.7 reduce to a radial diffusion equation:
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Assuming that the [Ca2+] is zero prior to channel opening, which occurs at t = 0, and

Φ is constant thereafter, the solution to Eq. 2.8 is given by (Crank, 1975):
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Two characteristics of Ca2+ microdomains can readily be understood from this

equation. Firstly, if a channel is continuously open, a microdomain will reach a

steady-state profile, since the error function erfc will approach unity for large t. With

a value for D Ca = 220 µm2  s- 1  (Naraghi and Neher, 1997), steady-state will be

established in a range of 10-100 nm from the channel within ~10 µs to ~1 ms.

Secondly, assuming a single channel current of iCa = 0.2 pA, (corresponding to a flux

Φ  = iCa/F ≈  2×10-18 mol.s-1; F Faraday’s constant), the steady-state [Ca2+] in the

immediate vicinity of a channel (≤ 10 nm) can reach 70 µM or more and drops with a

1/r-dependence (Fig. 2.2 b). This already emphasizes the local nature of Ca2 +

microdomains.

Ca2+ buffers decrease the range of [Ca2+] even further and reduce the size of

microdomains. If it is assumed that Ca2+ buffering near a Ca2+ channel is dominated

by a single buffer B1 present in large concentrations, the buffered diffusion of Ca2+

can be modeled in a simplified scheme, which formally corresponds to the cable

equation (Neher, 1986):
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In this approximation, it is assumed that the concentrations of the free and Ca2+-bound

buffer are constant and can therefore be incorporated in the apparent rate constants

k1
app = k1 [B1] and k-1

app = k -1 [CaB1]. The steady-state solution of this differential

equation is given by:

∆ Φ
[ ]( , ) exp( / )Ca2+

Ca
Br t

D r
r= −

4π
λ , (2.11)

where λB is determined by the buffer association rate constant k1, its concentration

[B1], and the Ca2+ diffusion coefficient DCa:

λB Ca B= D k/ [ ]1 1 . (2.12)

λB corresponds to the mean radial distance Ca2+ can diffuse away from the channel

before it is bound by the buffer. It is useful to note that the exponential term in

equation (2.11) predicts a sharper decay of the Ca2+ microdomain than equation (2.9)

at steady-state in the absence of Ca2+ buffers, when moving away from the Ca2+

channel.

In many synapses, the dependence of transmitter release on added buffers with

different length constants λB was investigated to estimate the distance between Ca2+

channels and the sites of transmitter release (Adler et al., 1991; Borst and Sakmann,

1996; Ohana and Sakmann, 1998). Fig. 2.2 b shows the predicted effect of two Ca2+

buffers, EGTA and BAPTA, which have similar affinity (KD ~ 200 nM), but different

association rate constants (k1, EGTA = 2.5x106 M-1 s-1, k1, BAPTA =4x108 M–1 s–1; Naraghi

and Neher, 1997). Because EGTA can significantly reduce free [Ca2+] only after

several tens or hundreds of nanometers (Fig. 2.2 b), inhibition of transmitter release

by the relatively ineffective EGTA supports the view that Ca2+ channels and release

sites are not tightly co-localized. Inhibition of release by EGTA varies in different

preparations, which may indicate that there are a variety of synaptic arrangements

between Ca2+ channels and release sites (see section 5.3.3).

This section introduced the concept of Ca2+ microdomains in the simplified case of

single channel domains in the absence of buffer saturation. The analysis becomes

more complicated when the overlap of Ca2+ domains of several channels and the

effect of local depletion of free Ca2+ buffers is to be considered (Naraghi and Neher,

1997; Neher, 1998).
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Fig. 2.2: Steady state [Ca2+] profile near a single Ca2+ channel in the presence of

different Ca2+ buffers. (a) Ca2+ influx through a single channel is treated as diffusion

from a point source into a semi-infinite space (see text). (b) The free [Ca2+] drops
with the buffer length constant λB of the Ca2+ buffer. Single channel Ca2+ domains are

confined to, at most, a few hundred nanometers from the source. Endogenous Ca2+

buffers (not taken into account in this approximation) are likely to further reduce the

spatial extent of the Ca2+ domain.

2.1.3 Simulation of laser-induced [Ca2+] jumps

To circumvent the uncertainties of local Ca2+ domains, spatially homogeneous Ca2+

uncaging was used in this study to characterize the Ca2+ sensitivity of glutamate

release. This permitted calculation of the temporal evolution of [Ca2+] in the absence

of concentration gradients, which largely simplifies the theoretical description.

The temporal evolution of [Ca2+](t) was calculated by numerically solving a set of

differential equations derived from the scheme in Fig. 2.3. A simplified scheme is

shown in Fig. 2.3 a, where a fraction α of the cage DM-nitrophen (DM) is

instantaneously excited to the intermediate state DM* at time t0, and is converted to

the low affinity photoproduct (DMp) at the rate kp,1. The only other Ca2+ buffer present

is the Ca2+-sensitive dye (D). At all times, the buffers bind and unbind Ca2+ at the rates

ki (i = 1, 2, 4, 9), finally reaching a new equilibrium.

In the experiments, however, Ca2+ is also bound by other buffers. Furthermore, DM-

nitrophen exhibits a considerable affinity for Mg2+. Finally, absorption measurements

of the decay of DM-nitrophen intermediates revealed a double-exponential decay

(Ellis-Davies et al., 1996), and measurements of the [Ca2+] time course following laser

photolysis showed a fast and a slow component of [Ca2+] increase. Therefore, the

simple model was extended to account for these conditions (Fig. 2.3 b). Here, the

binding of buffers to both Ca2+ (left column in b) and Mg2+ (right column in b) was

taken into account. The solutions used in this study contained ATP and

phosphocreatine (PC), which also bind Ca2+ and Mg2+ (Fabiato and Fabiato, 1979).
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Furthermore, cells contain endogenous buffers (EB), which can be included in this

scheme once they are kinetically characterized. The photolysis reaction of DM-

nitrophen is divided into two decay pathways, where the photolyzed fraction α is sub-

divided into a fast and a slowly decaying fraction, β1 and β2 = 1-β1, respectively,

which, at t = t0, form the excited intermediate states DM1* and DM2*, respectively.

DM1* and DM2* decay at different rates kp,1 and kp,2 to the low affinity states DM1p

and DM2p, respectively. Both states have the same, low affinity for Ca2+, but DM2p

was modeled to have 100-fold slower association and dissociation rate constants, k5,Ca,

k-5,Ca, than DM1p, which largely improved the overlay of measured and predicted

[Ca2+](t) on a longer time scale (s e e Fig. 4.2). Finally, all buffers interact

simultaneously with Ca2+ and Mg2+, as indicated by the pairs of horizontal arrows.

For the reader’s convenience, the set of differential equations is given in expanded

form below. Buffers not affected by the UV pulse obey the simple buffer reaction

equation (Eq. 2.3). These are non-photolyzed DM-nitrophen (i = 1), ATP (i = 6),

phosphocreatine (i = 7), the endogenous buffer (i = 8) and the indicator (i = 9):

d

dt
k k

k k

[ ]
[ ][ ] [ ]

[ ][ ] [ ]

B
B Ca CaB

B Mg MgB

i
i,Ca i

2
-i,Ca i

i,Mg i
2

-i,Mg i

= − +

− +

+

+
(2.13)

d

dt
k k

[ ]
[ ][ ] [ ]

CaB
B Ca CaBi

i,Ca i
2

-i,Ca i= + −+ (2.14)

d

dt
k k

[ ]
[ ][ ] [ ]

MgB
B Mg MgBi

i,Mg i
2

-i,Mg i= + −+ , (2.15)

where k±i,Ca and k±i,Mg denote the association and dissociation rate constants for Ca2+

and Mg2+, respectively. The excited cage species DMj* (j = 1, 2) in their free and

cation-bound form decay at rates kp,j, and interact with Ca2+ and Mg2+ at rates k±i,Ca/Mg (i

= 2, 3):

d

dt
k k

k k

k

[ ]
[ ][ ] [ ]

[ ][ ] [ ]

[ ]
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DMj Ca CaDMj

DMj Mg MgDMj
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*
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* 2
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*
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− +

−

+

+ (2.16)

d
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k k k
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k k k

[ ]
[ ][ ] [ ] [ ]

MgDMj
DMj Mg MgDMj MgDMj

*

i,Mg
* 2

-i,Mg
*

p, j
*= + − −+ . (2.18)
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Fig. 2.3: Reaction scheme of buffered Ca2+ uncaging. (a) Simple model of Ca2+

uncaging and buffering in the presence of DM-nitrophen (DM), DM-nitrophen
photoproducts (DMp) and the Ca2+ indicator (D). (b) Refined model of [Ca2 +]

dynamics which includes the presence of ATP, phosphocreatine (PC) and an
endogenous buffer (EB) and Mg2+ as a second divalent ion species that is chelated by

DM-nitrophen. In addition, the conversion of excited DM-nitrophen (DM*) proceeds

along two pathways with different rate constants kp,1 and kp,2. The resulting
photoproducts DMp1 and DMp2 have the same affinity for Ca2+, but DMp2 has a

100-fold slower dissociation rate constant. This accounts for the slow component of
Ca2+ uncaging found in photolysis experiments in vitro.

They are converted to the low affinity photoproducts DMpj, where a free intermediate

DMj* is cleaved into two identical photoproduct molecules, whereas a cation-bound

intermediate results in one free and one cation-bound photoproduct molecule (reaction

rate constants are k±i,Ca/Mg, i = 4, 5):
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d
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Finally, the concentrations of free divalent cations, [Ca2+] and [Mg2+], obey simple

reaction kinetics, determined by the rate constants of all buffers, Bi, including the cage

intermediates (i = 2, 3) and the photoproducts (i = 4, 5):

d

dt
k k

[ ]
[ ][ ] [ ]
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B Ca CaB
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d

dt
k k

[ ]
[ ][ ] [ ]

Mg
B Mg MgB
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9

= − +{ }+∑ . (2.23)

Initial conditions were determined by calculating the equilibrium concentrations of all

reactants under the assumption that DM-nitrophen is initially present only in its high

affinity form (DM). This was done by solving the set of equations given by the law of

mass action:

[ ][ ] [ ]([ ] [ ] [ ]) [ ]Ca B Ca B CaB MgB CaB2+
i

2+
i tot i i D,i,Ca i= − − = K (2.24)

[ ][ ] [ ]([ ] [ ] [ ]) [ ]Mg B Mg B CaB MgB MgB2+
i

2+
i tot i i D,i,Mg i= − − = K (2.25)

[ ] [ ] [ ]Ca Ca CaB2+
tot

2+
i

i

− − =∑ 0 (2.26)

[ ] [ ] [ ]Mg Mg MgB2+
tot

2+
i

i

− − =∑ 0 , (2.27)

where [X]tot denotes the total concentration of species X, and KD,i,Ca/Mg denotes the

dissociation constant of buffer Bi, given by KD,i,Ca/Mg = k-i,Ca/Mg/ki,Ca/Mg for Ca2+ and Mg2+,

respectively. The intermediates DMj* (j = 1, 2), present at time zero as a fraction α βj

of [DM]tot, were modeled to have the same rate constants as intact DM-nitrophen

(k±2,Ca/Mg = k±3,Ca/Mg = k±1,Ca/Mg). The perturbation of the system was modeled by allowing

DMj* to decay to the photoproduct, beginning at time zero.

Rate constants used for the calculation of [Ca2+](t) were taken from the literature. For

some buffers, only dissociation constants were available, but not the kinetically

important rate constants. This was the case for Ca2+ and Mg2+ binding to PC. In that
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case, rate constants were chosen to be very slow, such that the buffer had no effect on

the rapidly changing time course of [Ca2+] at the beginning of the perturbation. When

no interaction was expected, e.g. for binding of Mg2+ to Fura-2-FF (Xu-Friedman and

Regehr, 1999), the respective KD was adjusted to 1 M. The choice of Ca2+ cages and

buffers is discussed in greater detail in section 3.4.2, together with the applicable

kinetic constants.

2.2 Fluorescence

Ionic concentrations in small cellular compartments are often measured using

fluorescent indicators, which change their fluorescent properties when bound to the

ionic species of interest. How these fluorescence changes are related to concentration

changes is the subject of a later section (3.4.1). Here, the fundamental concept of

fluorescence will briefly be described.

Fluorescent indicators possess ‘chromophores’, i.e. groups of atoms within the

indicator molecule, which can absorb a photon, leading to electronic state excitation

(Atkins, 1990). The absorption bands depend on the energy gaps between the ground

state and the possible excited states of the group’s electronic system, which are

influenced by the rest of the molecule. In Fig. 2.4, the potential energy of a diatomic

molecule in the ground state and different excited electronic states is diagrammed as a

function of the internuclear distance. According to the Franck-Condon-principle,

absorption of a photon induces a ‘vertical transition’ of the molecule into an excited

state, i.e. the transition occurs without a rearrangement of the massive nuclei of the

system, which react to the new electron density distribution and relax to the new

equilibrium distance only after the transition. Vibrational and rotational states cause a

spread of the energy levels within a given electronic state, which usually causes broad

bands in the absorption spectrum of the molecule rather than sharp spectral lines (see

e.g. Fig. 3.3). The absorption probability is proportional to the square of the transition

dipole moment µ of the chromophoric group, which is determined by the wave

functions of the initial and final state of the system, |ϕ i〉 and |ϕ f〉, respectively:

µ = –e 〈ϕf|r |ϕ i〉, where r  represents the electronic coordinates. In the Born-

Oppenheimer approximation, in which the electrons move in the quasi-static electric

field of the massive nuclei, the complete wave function is the product of the electronic

and vibrational wave functions: |ϕi〉 = |ϕi,e〉 |ϕi,v〉. Therefore, µ = -e 〈ϕf,e|r|ϕi,e〉〈ϕf,v|ϕi,v〉.
Because of the second factor, the system is most likely excited into that vibrational
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sub-state of a given electronic state, that exhibits the largest overlap with the initial

vibrational level of the ground state and which is usually above the lowest vibrational

level of the excited electronic state.

The de-excitation of a chromophore occurs along mechanistically different channels.

Firstly, energy is dissipated by non-radiant, internal conversion (IC, Fig. 2.4). This

means that, within the excited electronic state, the system cascades towards the lowest

vibrational and rotational level by collisional interaction with its molecular

environment (‘thermal decay’). Secondly, a vertical transition to the electronic ground

state can then occur by spontaneous emission of a photon. Since the radiant transition

usually occurs after thermal decay within the excited electronic state, the emitted

photon has a lower energy than the absorbed photon, which results in a shift of the

emission spectrum relative to the absorption spectrum towards longer wavelengths

(Stokes shift). This de-excitation is called ‘fluorescence’, and it is characterized by a

lifetime of a few nanoseconds of the lowest vibrational level of the first excited state.

De-excitation from the excited singlet state to the ground state also occurs by other

mechanisms, such as non-radiant thermal decay or ‘phosphorescence’. In the latter

case, the chromophore undergoes a forbidden transition from the excited singlet state

into the triplet state (intersystem crossing, ISC, Fig 2.4), which has a non-zero

probability, for example because of spin orbit coupling of the electrons’ magnetic

moments. After internal conversion within the triplet state, a radiant transition from

the triplet to the singlet state cannot be mediated solely by emission of a photon, and

therefore the triplet state has a considerably longer lifetime of >10-8 seconds than the

first excited singlet state.

Fig. 2.4: Decay mechanisms of a diatomic
molecule after optical excitation. After
absorption of a photon (A) the

chromophore undergoes a singlet→singlet

state transition. After non-radiant, internal

conversion (IC), it can decay to the ground

state under emission of a fluorescence
photon (F). Alternatively, a forbidden

transition to the meta-stable triplet state
can occur (intersystem crossing, ISC).

Further de-excitation can occur via
emission of a photon (phosphorescence) or

a change in the molecule’s conformation

(photochemical reaction, photo-bleaching,
not shown).

PFA

singlet

triplet

singlet

energy

nuclear distance

ISC

IC



Theory                                                                                                                              29

The fluorescence quantum efficiency η of a chromophore is given by the ratio of

fluorescence photons NF emitted by a molecule over the number of photons absorbed

NA. This is determined by the relative probability of the different decay pathways of

an excited chromophore. Thus:

η = =
+

N

N

k

k k
F

A

F

F iΣ
, (2.28)

where kF is the rate constant of fluorescent decay of the first excited singlet state, and

the ki’s are the rate constants of decay via parallel, non-fluorescent decay mechanisms

such as thermal decay, intersystem crossing into the triplet state or photo-activated,

chemical reaction.

In a later section (3.4.1), it is assumed that the fluorescence intensity is proportional to

the concentrations of the bound and unbound form of a Ca2+ indicator, respectively.

The validity of this assumption will be discussed in the following:

The number of emitted photons F recorded per unit time from a fluorescence indicator

is proportional to the number of photons Iabs absorbed per unit time, the quantum

efficiency η of the indicator and the collection efficiency C of the optical setup, which

is the product of several loss factors that account for the incomplete coverage of the

solid angle by the objective lens, for reflection and absorption of collected photons at

the various optical components as well as for the conversion efficiency of the

photodetector. Lambert-Beer’s law specifies the amount of attenuation when light of

intensity I0 passes through a layer of thickness l of homogeneously distributed

absorbers:

I I I e I lclc lc
abs = − = − ≈− −

0 0
2 303

01 10 1 2 303( ) ( ) ..ε ε ε , (2.29)

where ε is the molar extinction coefficient of the absorbing species and c  its

concentration. The right side of the equation is the first order approximation after

Taylor expansion of the exponential function. In the present study, Ca2+ indicators

were used with molar extinction coefficients of ~25,000 M-1 cm-1 at a concentration of

1 mM, and the dye-filled structures had a cross section of not more than 20 µm along

the optical axis. Omitting the higher order terms of the Taylor expansion therefore

results in an error of ≤ 6%. With this approximation, the collected fluorescence signal

can be written as:

F C I C I l cabs= ≈η η ε2 303 0. . (2.30)

If the time-independent factors η , C , I 0, ε  and l  are combined to a single

proportionality constant S, and the Ca2+-bound and free form of the indicator are

treated as independent species, the individual fluorescent signals can be written in the

simple form:
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FD = SD cD and FCaD = SCaD cCaD, where the index D denotes the Ca2+-free and the index

CaD denotes the Ca2+-bound form of the indicator. The overall recorded fluorescence

signal is:

F = SD cD + SCaD cCaD. (2.31)

This relation will be used in section 3.4.1 to calculate [Ca2+] from fluorescence

recordings according to the ratiometric formalism.

2.3 Kinetic model of vesicle fusion

A kinetic model of the reaction between Ca2+ and the sensor for transmitter release

was implemented for two reasons. Firstly, Ca2+ binding rate constants can be

estimated this way and be compared to in vitro reaction kinetics of putative Ca2+

sensor molecules. Secondly, the model allowed us to calculate the expected release of

the calyx synapse in response to different [Ca2+] waveforms, which are likely to occur

during presynaptic action potentials at the release site, but which cannot be measured

directly.

The model consisted of two uncoupled reaction steps, first the Ca2+ binding and

activation of the Ca2+ sensor unit X, and second the fusion reaction of the vesicle,

which is promoted by the formation of activated Ca2+ sensor units. The sensor unit has

five Ca2+-binding sites with identical Ca2+ association and dissociation rate constants

α, β, respectively. If fully occupied, the sensor switches between the deactivated state

XCa5 and the activated state XCa5
* with rate constants γ, δ, respectively, which are

Ca2+-independent. This is illustrated in the following scheme:

(2.32)

The vesicle fusion reaction is modeled in a second scheme, in which a fusion-

competent vesicle V irreversibly reaches the fused state F at a rate proportional to the

occupancy of the release sensor in the activated state, XCa5
*, at time t:

V Ftρmax
* ( )XCa 5 → , (2.33)

where ρmax is the maximal release rate constant (Fig. 2.5 a). Release rates are

calculated by solving the following equation numerically:

− =dN

dt
t t N t( ) ( ) ( )ρmax 5

*XCa , (2.34)

XCa2 XCa3 XCa4 XCa5 XCa5
*XCaX

5α[Ca2+]

5ββ 3β2β 4β

3α[Ca2+]4α[Ca2+] 2α[Ca2+] α[Ca2+] γ

δ
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Fig. 2.5: Kinetic model of the Ca2+ sensor for release. (a) Schematic diagram of a
readily releasable vesicle (V, left) docked to the membrane. Only if at least one of its

Ca2+ sensor units (blue rectangles) has bound five Ca2+ (green), it can undergo fusion
(F , right) and release its transmitter content (red). (b) Occupancy of the possible

states of the Ca2+ sensor (bottom panel) in response to a [Ca2+] jump to 10 µM (top

panel). (c) Release rate (top panel) calculated from Eq. 2.34, and release rate integral

(bottom panel) in response to the [Ca2+] jump shown in (b). The pool of readily

releasable vesicles is depleted in ~1.5 ms.

where N  is the number of vesicles residing in the readily releasable pool. The

boundary condition is N(0) = 810, the initial size of the vesicle pool, which was

determined independently by action potential trains (see section 4.2.3).

The evolution of the Ca2+ binding reaction in response to a [Ca2+] step is shown in Fig.

2.5 b. The predicted release rate –dN/dt and the decay of the readily releasable pool

N(t) is shown in Fig. 2.5 c.

The system of differential equations arising from the above fusion model were

programmed in Mathematica 3.0 (Wolfram Research, Illinois) and solved

numerically. Parameters used to describe the experimentally observed release rates

were:

α = 3×108 M-1 s-1, β = 3,000 s-1, γ = 30,000 s-1, δ = 8,000 s-1, ρmax = 40,000 s-1.
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The fusion model was adjusted to agree with the experimental values, displayed in

Fig. 4.8 and Fig. 5.2. Initial fitting trials using an optimization routine showed that the

quality of the fit was rather sensitive to variation of the Ca2+ association and

dissociation rate constants, and suggested the above values for α and β. γ , δ and ρmax

were adjusted manually.

To investigate the behavior of the model during simulated action potential-evoked

release, a typical [Ca2+] transient was chosen that is expected to occur near release

sites. To this end, the time course of the Ca2+ current as previously measured (Borst

and Sakmann, 1996; Borst and Sakmann, 1998) was taken as a template for the time

course of the [Ca2+] transient. It has been shown previously that the release of a

vesicle is most likely caused by the Ca2+ elevation of overlapping Ca2+ microdomains

in this synapse (Borst and Sakmann, 1999b). This suggests that the [Ca2+] transient

present at the release site is probably not dominated by the stochastic nature of single

channel openings. The time course of the Ca2+ current was calculated using a

Hodgkin-Huxley model, as described by Borst and Sakmann, (1998). The Ca2+ current

waveform, which had a peak amplitude of –2.6 nA, was multiplied by a constant

conversion factor to convert the current into a [Ca2+] transient. To match the quantal

content during measured and predicted release evoked by an action potential, the

conversion factor was adjusted to 3.4 µM/nA. In Fig. 4.9 and 4.10, predictions of the

present Ca2+ sensor model were compared to experimental findings regarding the

amplitude, rise time and delay of measured EPSCs. In those cases, the release rate

predicted by the Ca2+ sensor model was convolved with the measured time course of

the standard miniature EPSC (see section 4.2.2) to obtain a model version of the

EPSC, which could be analyzed analogously to measured EPSCs.
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3. Methods

This chapter presents the basic measurement techniques as well as the mathematical

tools to analyze and interpret the acquired data. All measured quantities in this and

later sections are specified as mean ± standard error of the mean (SEM), if not stated

explicitly.

3.1 Experimental setup

The Ca2+ sensitivity of glutamate release in the MNTB giant synapse was investigated

using a combination of electrophysiological and fluorometric methods. In the

following, the main components of the setup used in this study are described. While

the presynaptic [Ca2+] was optically manipulated and monitored, the electrical

responses of the pre- and postsynaptic compartments were measured with the

established whole-cell voltage-clamp technique (Hodgkin et al., 1952; Hamill et al.,

1981). The setup consisted of an upright microscope (Axioskop, ZEISS, Germany),

which was equipped with an epifluorescence port used to deliver the UV excitation

light of a monochromator (Monochromator B, TILL photonics, Germany) together

with the UV pulse output of a Nd:YAG laser (Minilite II, Continuum, California) to

the specimen plane (Fig. 3.1). The brain slice was mounted on a continuously

perfused chamber and visualized using infrared trans-illumination, and a video

camera (Vidicon, Hamamatsu, Japan) at one of the imaging ports of the microscope

(see also Fig. 4.1 a). For electrophysiological control, two patch clamp pipettes could

be positioned in the perfusion chamber with micro-manipulators (Maerzhaeuser,

Germany) under video control. Pre- and postsynaptic voltage clamp recordings were

performed using two patch clamp amplifiers (Axopatch 200 A or B, Axon

Instruments, California). Fluorescence emission from the specimen plane was

detected with a photodiode located at the second imaging port of the microscope and

amplified with a third patch clamp amplifier (Axopatch 200 A or B). Stimulation of

afferent nerve fibers could be evoked with a bipolar electrode attached to the

microscope stage with a manually adjustable holder.
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Fig. 3.1: Schematic diagram of the experimental setup. Two patch clamp electrodes
and the photodiode for rapid [Ca2+] measurements are amplified using patch clamp

amplifiers. The signals are sampled and stored by a computer which also triggers the
monochromator for fluorescence excitation and the laser for UV-induced photolysis

of the Ca2 + cage. Both light sources are coupled via light guides into the

epifluorescence port of an upright microscope using two beam splitters. An infrared-
sensitive video camera is used to monitor the electrophysiological recording.

(Infrared trans-illumination pathway not shown for clarity).

3.1.1 Optical components

3.1.1.1   Upright microscope, infrared video microscopy of brain slices

An upright microscope was used to image the brain slice and to measure the

fluorescence from microscopic structures of the biological sample. The microscope

was equipped with a 60x water immersion objective lens (LUMPlanFL/IR, NA 0.9,

Olympus, Japan). Infrared video microscopy has become the standard tool for brain

slice imaging. To improve the contrast of the transparent brain slice, a recently

developed trans-illumination technique was applied, termed ‘gradient contrast

illumination’, in which an asymmetrical spatial filter located in the conjugate aperture

plane of the microscope condenser partially blocks the light from the microscope

lamp. As a result, the light bundles leave the condenser at a preferential angle,

inclined to the optical axis, and illuminate the object in an oblique fashion.
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Fig. 3.2: UV light sources. (a) Schematic design of the laser head (adapted from

Continuum Minilite). Key features are the flash lamp-pumped lasing rod, the Q-
switch (Pockels cell, λ/4 wave plate), and the anisotropic crystals for third harmonic

generation. (b) The monochromator. The spectrum of a Xe lamp is diffracted by a
reflection grating. The scanner position determines the wavelength which is coupled

into the light guide.

This creates a light-shadow pattern, enhancing the contrast of the video image (Dodt

et al., 1999). This system yields a similar image quality as the more common

differential interference contrast (DIC) configuration, but has the additional advantage

that no optical components (DIC prisms, analyser) are required between the objective

lens and the photodetector.

3.1.1.2   Laser and monochromator

Two different UV light sources were used to excite the fluorophore and to photolyze

the Ca2+ chelator, respectively. Ca2+ uncaging was performed using a Q-switched

neodymium-yttrium aluminum garnet (Nd:YAG) laser, whose frequency-tripled

output at 355 nm was coupled into one arm of the epifluorescence port of the

microscope. The quality (Q-) switch is implemented by insertion of a Pockels cell

within the optical oscillator and yields a pulse width of ~5 ns. Frequency tripling of

the fundamental harmonic is based on the principle of higher order harmonic

generation in anisotropic optical crystals. In such a crystal, an incident electric field

induces dipole oscillations not only at the incident frequency, but also at multiple

integers thereof (see e.g. Young, 2000). In the present laser, a first KTP crystal

generates 532 nm light (Fig. 3.2 a). In a second crystal, frequency mixing of the

radiation at 1064 nm and 532 nm results in a fraction of the radiant energy being

emitted at the tripled fundamental frequency, i.e. with a wavelength of 355 nm. The

undesired wavelengths of the laser (1064 nm, 532 nm) are blocked by suitable

dichroic mirrors in the optical path.
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Fig. 3.3: Epifluorescence illumination and spectra of dichroic mirrors and Ca2+

indicators. (a) UV light exiting the two light guides is collimated, spatially filtered
and united before the epifluorescence port of the microscope. A dichroic mirror and a

long pass filter in the microscope tube separate excitation from emission light. (b)
Measured transmittance of the dichroic mirror (solid line) and the long pass filter

(dashed line). The excitation and emission spectra of Fura-2-based Ca2+ indicators

(dotted traces) can be separated with this filter set. Note the characteristic
wavelength shift between the excitation spectrum of the indicator in the free (0 Ca2+)

and in the Ca2+-bound (high Ca2+) state (Filter spectra measured with a Beckman UD-
600 spectrometer, Fura-2 spectra obtained from Molecular Probes).

For dual-wavelength [Ca2+] measurements, the output of a monochromator was

coupled into the second arm of the epifluorescence port of the microscope.

Monochromatic light of four different wavelengths could rapidly be selected by two

TTL bits fed into the monochromator control. The monochromator permits rapid

wavelength switching (~ 1 ms) by rotating a reflection grating, which is mounted on a

scanner, to preselected positions (Fig. 3.2 b). A beam splitter was used to combine the

two UV light sources, nominally reflecting 8% of the monochromator and

transmitting 92% of the laser intensity (Fig. 3.3 a). The collimated output of the light

guides was spatially filtered using two adjustable, rectangular field stops at the level

of the conjugate focal plane in the epifluorescence port.

Excitation and emission light were separated by a dichroic mirror and a long pass

filter (TILL photonics) in the microscope tube. The transmittance of these

components were checked with a spectrometer (Beckman, UD-600) and are displayed

in Fig. 3.3 b.
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Fig. 3.4: Laser beam profile and attenuation. (a) A surface plot of the normalized

pulse energy distribution in a subregion of the specimen plane. The square and the

ellipse drawn in the bottom plane show the location of the detection area of the
photodiode and the idealized boundaries of the postsynaptic neuron, respectively.

The 90% level of the energy profile is outlined as dotted contour in the bottom plane.
(b) The UV pulse energy was attenuated with neutral density filters. Measured pulse

energies (filled triangles) agreed with the nominal transmittance of neutral density
filters (solid line). An estimate of the energy density in the area of the photodiode (20

x 20 µm2, see a) is shown for optical densities of 0, 0.6 and 0.9, respectively (open

circles).

3.1.1.3   Homogeneity of illumination, energy attenuation

An important prerequisite of controlled [Ca2+] jumps induced by UV photolysis in an

extended compartment is the homogeneity of the UV pulse energy over the

boundaries of the compartment. The energy profile in the specimen plane was

therefore tested by uncaging fluorescein (2 mM DMNB-fluorescein, MW 3000,

Molecular Probes, Oregon). It was mixed with glycerol (5% fluorescein/95%

glycerol) to inhibit diffusional spread of the dye, placed under a coverslip and

uncaged with laser pulses of different energy. The fluorescence profiles of uncaged

fluorescein were imaged with a slow scan CCD camera (PXL, Photometrics,

Arizona), and overlaid with the location of the detection area of the photodiode (20 x

20 µm2), which also encloses the typical circular area with the cross-section of the

axo-somatic synapse (15 – 18 µm). The energy profile in the specimen plane (Fig. 3.4

a, average of 6 profiles) is partially shaped by an adjustable rectangular aperture

between the light guide exit and the microscope. The profile returns to zero within the

field of view, of which Fig. 3.4 (a) only shows a central subregion. The possibility

that a single UV pulse saturated the fluorescein uncaging and thus distorted the

recorded energy profiles was excluded in experiments with multiple pulses. These

experiments showed that the relation between the amount of uncaged fluorescence

and the number of pulses was linear. Most importantly, the boundaries of the synapse
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are well located within the 90% level of the energy profile. Thus, the requirement for

homogeneity is met.

To obtain different [Ca2+] jump amplitudes in subsequent physiological experiments,

the pulse energy was attenuated by insertion of neutral density filters in the pathway

between the light guide exit and the beam splitter (‘attenuator’ in Fig. 3.3 a). The

pulse energy was then measured using a pyroelectric joulemeter (ED-100A, gentec,

Canada) at the level of the back aperture of the objective lens and normalized to the

unattenuated peak energy at that location. The peak energy at this level was 47 ± 5 µJ

(mean ± S.D., n = 3 experimental days). The transmittance of the neutral density

filters agreed well with their nominal values (Fig. 3.4 b). Furthermore, the pulse

energy was measured in the focal plane of the objective lens, which yielded a value of

23 ± 3 µJ. With this information, an attempt was made to calibrate the energy density

in the region of interest (ROI) covered by the photometric detection area. The ratio of

energy absorbed in the ROI over that absorbed in the entire field of view is given by

the ratio of the volume integrals of the energy profile measured within the boundaries

of the ROI and the field of view, respectively. This ratio is 0.122. Thus, with no

attenuation, an energy of 0.122 x 23 µJ irradiates on the ROI measuring 400 µm2 ,

which results in an energy density of 700 mJ/cm2. Ca2+ uncaging experiments always

employed neutral density filters of a nominal OD of ≥0.6, limiting the energy density

to < 250 mJ/cm2 in the ROI. This number, however, should only be considered a

rough estimate, because the energy densities measured in the focal plane of the

objective lens were close to the maximum density specified for the used joulemeter.

3.1.1.4   Fast photodetection with photodiode, photodiode holder

One goal of the study was to measure both the [Ca+] signal and the evoked EPSCs at a

high temporal resolution. Therefore, a rapid photometric device was built with a small

photodiode and a patch clamp amplifier. This approach was first used by Escobar et

al. (1997) to measure the Ca2+ uncaging dynamics of Ca2+-DM-nitrophen solutions in

small volumes. The low noise characteristics of the capacitive feedback circuit of the

patch clamp amplifier (Axopatch 200 A or B) make this system ideal for measuring

the small photocurrent in a silicon photodiode (S2386-18K or S5973, Hamamatsu,

Japan). The peak photocurrent is a few tens of pA for an indicator-filled volume like

the Calyx of Held. In the photometric system, the patch clamp amplifier is used as a

current-to-voltage converter. Since the bias voltage of the headstage is limited to 0.2

V and 1 V for the Axopatch 200 A and B, respectively, in some experiments a 9 V
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Fig. 3.5: Rapid fluorescence detection with a photodiode. (a) Photodetection circuit.
The photocurrent is amplified using the headstage of the Axopatch 200 amplifier. To

increase the reverse bias voltage, an external battery (Ub, 9V) is included. (b) Layout
of the photodiode holder (external battery not included). (c) Normalized step

response (top solid line, average of 5 sweeps) and its derivative, the impulse response
(bottom line), to a LED light pulse (top dashed line). (d) Frequency response of the

photodiode circuit, 3 dB cut-off frequency is 4.1 kHz. The dashed line is the

theoretical frequency response of a 4-pole Bessel filter (fc = 4.2 kHz). (e) Signal
recovery following a laser pulse. Top solid trace: Photocurrent evoked by a laser

pulse (indicated by arrow) and a simultaneously rising, step-like LED pulse. Top

dotted trace: Photocurrent evoked by a laser pulse alone. The ‘blank activate (BA)’

period is indicated by the horizontal bar. The subtraction of the two top signals
(bottom diamonds) is virtually indistinguishable from the measured LED pulse in the

absence of a laser pulse (bottom solid line).

battery was added in series with the photodiode to increase the reverse bias voltage

and to reduce the noise generated by the semiconductor capacitance (Fig 3.5 a). To

further minimize the noise level of the photometric unit, a compact holder was built

with short connections between the headstage and the photodiode (Fig. 3.5 b). The

large photodiode (S2386-18K) had an active area of 1.1 x 1.1 mm2 and exhibited a

dark noise level of ~0.25 pArms (5 kHz bandwidth). With the small photodiode

(S5973, active area 0.12 mm2) noise levels below 0.1 pArms could be obtained.
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To characterize the speed of this system, the response to step-like light pulses emitted

from a LED was recorded (Fig. 3.5 c). The step response was filtered by a 4-pole

Bessel (nominal fc = 5 kHz) and sampled at 50 kHz. It exhibits a 10-90% rise time of

84 µs and a 0-50% filter delay of 79 µs. The impulse response of the photometric

circuit was obtained by calculating the derivative of the step response. Then, the

frequency response was calculated as the discrete Fourier transform of the impulse

response (Fig. 3.5 d). In addition, the theoretical frequency response A was calculated

by the formula:

A
A

a P b Pn n
n

=
+ +∏

0
21( )

(3.1)

where n = 2, A0 ≈1, a1 = 1.3397, a2 = 0.7743, b1 = 0.4889, b2 = 0.3890 and P = i f/fc for

a 4-pole Bessel filter (Tietze and Schenck, 1978). The cut-off frequency was adjusted

to fc = 4.2 kHz. The theoretical rise time and filter delay are 84 µs and 78 µs,

respectively, in very good agreement with the measured values. This indicates that the

actual cut-off frequency of the photodiode system is slightly lower than the nominal

value of the output filter of the patch clamp amplifier (4-pole Bessel, fc = 5 kHz). To

account for this filtering, the time course of the [Ca2+]-dependent fluorescent signal

predicted by a model of Ca2+ uncaging was digitally filtered before comparing it with

the experimentally obtained [Ca2+] time course. For simplicity, a digital 4-pole RC

filter (fc = 4.2 kHz) was used to mimic the filtering of the photometric circuit

(implemented in Igor Pro 3.14, Wavemetrics, Oregon).

Next, the ability of the system to accurately measure light signals after a brief, high-

intensity laser pulse was examined. The UV pulse evoked a brief current transient in

the photodiode system, which is likely to originate from luminescence (i.e.

fluorescence and phosphorescence, see section 2.2) in the optical components of the

microscope and in the indicator dyes (Fig. 3.5 e). The so-called flash artifact in the

photocurrent record could largely be suppressed by the ‘blank activate (BA)’ function

of the Axopatch amplifier, which prevents the amplifier output from saturating for the

period the blank activate input sees a high TTL level. To examine the fidelity of the

system immediately after the pulse, a laser pulse was combined with the rising edge

of a LED light pulse (Fig. 3.5 e, top traces). Although the flash artifact exceeds the

BA interval (100 µs), the LED pulse can well be measured ~200 µs after the pulse if

the laser artifact is measured independently and is later subtracted from the recording

that comprises both the LED light step and the coincident laser pulse. During the first

~200 µs, however, the subtraction method is very sensitive to the fast decaying phase
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Fig. 3.6: Whole-cell configuration and Rs compensation. (a) Electrical access and

voltage control over the cell membrane are achieved with a tightly sealed patch
clamp pipette. The holding potential Vhold’ is applied to the non-inverting input of the

operational amplifier, which is laid out as a current-to-voltage converter with a
resistive feedback loop, i.e. the voltage drop across Rf is proportional to the input

current Im. (b) Cell-headstage circuit including Rs compensation. VI is the voltage

drop across R f, measured as the difference between Vout and V hold’ (= VP), and
therefore proportional to Im. To compensate the unavoidable voltage drop across Rs,

which is also proportional to Im, a fraction α of V I is summed to the command

potential Vhold. Thus, the deviation of Vm from Vhold is reduced (‘Rs compensation’, see

text for further details).

of the laser artifact; this interval was therefore not taken into account for further

analysis.

3.1.2 Electrophysiological components

3.1.2.1   Pre- and postsynaptic whole-cell voltage clamp

The pre- and postsynaptic compartments were electrophysiologically controlled using

the whole-cell voltage clamp technique (Hodgkin et al., 1952; Hamill et al., 1981). In

short, small glass pipettes with an inner tip diameter of around 1 µm are filled with a

saline that resembles the cytosol in its ionic composition. It can furthermore be used

to load substances with a special function into the cell interior such as the UV-

sensitive Ca2+ chelator. When the pipette tip is brought into close contact with a cell

membrane and after application of gentle negative pressure, a highly resistive barrier

forms between the glass and the lipid bilayer of the membrane, the ‘giga-seal’. After

rupturing the membrane patch within the pipette tip by a suction pulse, the

intracellular compartment is in electrical contact with the pipette electrode and can be

held at a command voltage supplied by the headstage, which acts as a current-voltage-

converter (Fig 3.6 a).
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3.1.2.2   Bandwidth and fidelity

The bandwidth of the voltage clamp is mainly determined by the electrical access to

the cell interior. This access is impaired by the membrane material in the pipette tip

combined in series with the actual resistance of the pipette, giving rise to the series

resistance Rs. The series resistance Rs combined with the membrane capacitance Cm

form a 1-pole RC filter, which determines the time constant with which voltage steps

can charge the plasma membrane. In the present application, no voltage steps were

applied; however, the series resistance had a severe impact on the measurement of

postsynaptic currents, because together with the membrane resistance Rm, it represents

a voltage divider between the pipette electrode and ground (Fig. 3.6 a). This results in

a reduction of the command voltage over the cell membrane as soon as a current

passes through the series resistance. Just as importantly, the RC filter also limits the

bandwidth of the current recording, which may cause problems when one wants to

faithfully record fast membrane conductance changes. The patch clamp amplifier is

therefore equipped with a feed forward correction loop, called ‘Rs compensation’, that

dynamically corrects the applied command voltage to the desired value,

proportionately to the current that passes through the pipette (Fig. 3.6 b). Furthermore,

a subsequent stage in the amplifier boosts high frequency components to improve the

frequency response of the cell-headstage circuit (not shown). Practically, the electrical

cell parameters (whole-cell membrane capacitance Cm and resistance R m) are

estimated by small voltage steps and adjusted at the amplifier, then the amount of

correction α (60-100%) is chosen to operate the voltage clamp circuit with fast

response characteristics, but without oscillations. The postsynaptic recordings of

glutamate activated, AMPA receptor-mediated currents were performed using 90-95

% correction throughout the present study.

Since measured EPSCs evoked by large laser-induced [Ca2+] jumps exhibited 20-80%

rise times of not less than 190 µs, independent experiments were performed to test

whether this minimum was due to an insufficient bandwidth of the cell-headstage

circuit. A model cell (Patch-1U, Axon Instruments) with typical parameters (Cm = 33

pF, Rm = 500 MΩ, Rs = 10 MΩ) was extended by a rapid bounceless switch in parallel

to the membrane capacitance in order to mimic the rapid conductance change across

the cellular membrane (Fig. 3.7 a). The switch (Sherman et al., 1999) consisted of two

AgCl electrodes that were vertically mounted in a syringe tube and electrically

connected by KCl saline (150 mM; Fig. 3.7 a, inset). The level of the saline surface

could be varied by pressure, which allowed rapid interruption of the electrical contact.

Electronic or electromagnetic switches were not used for this application because
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Fig. 3.7: Bandwidth of the electrophysiological recording system. (a) Simplified
circuit of the model cell and the amplifier headstage. To measure step responses in

the presence of Rs compensation, a rapid bounceless switch (sw) was implemented
using two AgCl electrodes connected with a KCl solution of variable height (inset).

(b) Step responses to a closed→open transition of the switch, measured with

different amounts of Rs compensation, indicated at the traces. (c) Step responses

recorded with 60–70% and 90–98% Rs compensation were averaged and normalized

(top traces, labeled 65% and 95% respectively). Bottom: The corresponding impulse
responses, obtained as derivatives of the step responses. (d) The measured frequency

responses (solid and dotted lines) depend on the amount of Rs compensation. Also
shown is the theoretical response of a 4-pole RC filter (fc = 1.8 kHz, bold dashed

line). (e) Simulated response of the recording system to input signals with a finite rise
time. Top: input 20-80% rise time 198 µs, bottom: input rise time 630 µs. (f) Bottom:

Output vs. input rise time diagram for 65% and 95% Rs compensation, respectively.

The dashed straight line corresponds to the unity relation. Top: Deviation of the rise
time of the output from that of the input wavefom in percent.

they often exhibit a slow gating time, high residual currents in the open state or

bouncing behavior. Next, step responses of the cell-headstage circuit were measured

with different levels of Rs compensation (Fig. 3.7 b), under the assumption that the

switch rapidly undergoes a closed-open transition compared to the response time of

the circuit. Two effects were observed:
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First, the absolute value of the current amplitude in the closed state of the switch

increases with the amount of correction. This is because the deviation of the voltage

drop across Rm from the command potential adjusted at the amplifier control (-30 mV

in this experiment) is reduced with increased correction settings. The residual

deviation can be corrected off-line by calculating the residual series resistance Rres (=

(1-%correction/100)×Rs) and scaling the recorded membrane current Imeas with a factor

that increases with the voltage drop across R res (Traynelis, 1998). The corrected

current Icorr is calculated point-wise by the equation:

I I
V

V I Rcorr meas
hold

hold meas res

=
−

(3.2)

This correction was applied to all compound EPSCs recorded during the physiological

experiments described later.

Second, the rise time of the step responses is a function of the amount of correction

(Fig. 3.7 b,c) and sub-maximal correction settings lead to increased rise times. The

averaged step responses for 60-70% and 90-98% correction were normalized and the

impulse response was calculated by numerical differentiation. The magnitude of the

discrete Fourier transform yielded the effective frequency response of the cell-

headstage circuit, which exhibited a stronger attenuation of frequencies between 0.3

and 5 kHz for the low compensation setting compared to the high setting (Fig. 3.7 d).

The phase response was linear within the pass band of the filter (not shown). The

frequency response of the 95% correction setting was compared to the theoretical

frequency response and could satisfactorily be described by a 4-pole RC filter with fc

= 1.8 kHz (compare Eq. 3.1). An ideal filter of this type has a 10-90% rise time of

190 µs (Tietze and Schenck, 1978), somewhat faster than that of the measured step

response (t10-90% = 226 µs; t 20-80% = 140 µs). Since the ideal 4-pole Bessel filter has a

0–50% filter delay of 141 µs, also the recorded time course of an EPSC will be shifted

in time compared with the real event by that delay. Because in physiological

experiments the cell parameters naturally varied, a value of −100 µs was used to shift

measured EPSCs to the left on the temporal axis, thus accounting for the estimated

filter delay.

The calculated impulse responses were used to compare the systems output with a

given input waveform. Theoretical input signals (mono-exponential functions) were

convolved with the impulse response, and the 20-80% rise time of the output signal

was compared to that of the input signal (Fig. 3.7 e,f). It is observed that, with 95%

compensation, an input signal with t20-80% = 198 µs gives rise to an output with t20-80% =

270 µs, and an input signal with t20-80% = 630 µs yields an output with t20-80% = 670 µs.

The fidelity at 65% Rs compensation is clearly reduced (Fig. 3.7 f, open symbols).
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Since, at 95% correction, the step response exhibits a 20-80% rise time of 140 µs, also

the rise times of the fastest compound EPSCs (t20-80% = 220 ± 12 µs; n = 4) were

probably not limited by the bandwidth of the cell-headstage circuit. Therefore, the

measured compound EPSCs contain sufficient information to analyze the underlying

transmitter release rates, provided the waveform of the EPSC evoked by transmitter

release from a single vesicle is known (see next section). These miniature EPSC

(mEPSC) waveforms were measured in identical experimental conditions and

averaged (see section 4.2.2). The 20-80% rise time of the ‘standard’ mEPSC (120-130

µs), however, was very close to the step response rise time of the system. Thus, the

rise time of the quantal EPSC is only an upper limit for the duration of AMPA

receptor channel activation in response to a single transmitter packet.

3.2 Extraction of transmitter release rates from compound EPSCs

The postsynaptic response to glutamate, i.e. the AMPA receptor mediated EPSC, was

used as an assay of presynaptic vesicle fusion and transmitter release. Strictly, this

observable is a reliable measure of presynaptic fusion rates only, if the compound

EPSC is a linear superposition of identical quantal EPSCs, of which each results from

transmitter release from a single vesicle. Ideally, the time course of the compound

EPSC can be written as:

I t t q F t( ) ( ) ( )= ∗ζ , (3.3)

which is the convolution of the vesicle release rate ζ with the quantal EPSC of peak

amplitude q (quantal size, see section 1.1.3) and normalized time course F(t). This

relation is not valid, if vesicles do not contribute independently to the compound

EPSC, which may be the case if, for example, a build-up of glutamate in the synaptic

cleft leads to postsynaptic receptor desensitization or saturation, which would alter the

quantal EPSC amplitude and time course while the compound EPSC develops. These

effects are discussed in section 5.2.2.2. Here, the validity of the above equation is

assumed for short release periods (≤ 5 ms following the onset of release) and a way is

described to back-calculate the release rate on the basis of Eq. 3.3.

The quantal EPSC amplitude q and waveform F(t) were estimated in independent

experiments as described in section 4.2.2, assuming that the majority of spontaneously

occurring miniature EPSCs (mEPSCs) are evoked by release of a single transmitter

packet. The averaged mEPSC had a peak amplitude of –31.1 pA, a 20-80% rise time
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Fig. 3.8: Calculation of release rates. (a) The rising phase of the measured EPSC

(bottom, solid line) was fit with the convolution (bottom, dashed line) of the
miniature EPSC waveform (mEPSC, middle panel) with a theoretical release rate

(top, solid line). The release rate calculated with Eq. 3.6 is shown for comparison
(top, dotted line). The peak release rate is underestimated using Eq. 3.6, because it

assumes an instantaneous rise of the mEPSC. (b) Same as in (a) for a more slowly

rising EPSC. For slower release events, the release rate calculated with the
convolution algorithm and with Eq. 3.6 give similar results. The mismatch between

modeled and measured EPSCs following the peak of the EPSC may be because of
accumulation of glutamate in the synaptic cleft or because of a slower release

component not accounted for in the theoretical release rate waveform.

of 123 µs (t10-90% = 192 µs) and decayed bi-exponentially (τ1 = 2.4 ms (45.4%), τ2 =

7.0 ms (54.6%); fit to a 25 ms interval beginning at the peak). Alternatively, the

averaged mEPSC could be approximated with an analytical function of the form:

mEPSC(t) = A1 (1+erf(k1(t-t0)))×[A2 exp(-k2(t-t0)) + A3 exp(-k3(t-t0))] (3.4)

(with free parameters Ai, ki (i = 1, 2, 3) and t0), which gave similar rise and decay time

constants (Bollmann et al., 2000). Given the measured average mEPSC, the release

rate was back-calculated from a measured compound EPSC by convolving the

average mEPSC with a theoretical release rate time course of the form:

f t A k t t k t t( ) exp= + −( )[ ]( ) × − −( )[ ]1 1 0 2 0erf (3.5)

and fitting the convolution to the measured EPSC by variation of A, k1, k2 and t0. This

simple release rate waveform yielded good fits of the EPSC between the baseline and

the peak of the EPSC (Fig. 3.8). At later times, the fit could not account for the often

slow decay of the measured EPSC. Probably, this could have been improved by

adding a second, more slowly decaying exponential term to the release rate time

course. In order to reduce the number of fit parameters, this term was not included,

because only peak release rates, which occurred during the fast rising phase of the
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EPSC, were used to compare modeled and experimental release rates. The

optimization was performed using a simplex algorithm (programmed in Igor Pro 3.14;

provided by Dr. G. Borst). The fit release rate was then evaluated at its peak and

compared to the peak release rate calculated with a model of Ca2+-triggered vesicle

fusion (see section 2.3).

A simpler approach to retrieve release rates is described by Van der Kloot (1988),

which is based on the assumption that the rise time of the quantal EPSC is much

faster than the rise time of the compound EPSC and that it decays with a single time

constant τ0. In that case, the quantal EPSC is assumed to rise quasi-instantaneously

and the release rate is simply given by:

ζ
τ

( )
( ) ( )

t
q

dI t

dt

I tEPSC EPSC= +






1

0

(3.6)

where IEPSC is the compound EPSC, and q the peak amplitude of the quantal EPSC.

Using this deconvolution method for very rapid EPSCs measured in the Calyx of Held

leads to an underestimation of maximal release rates (Fig. 3.8 a), because the quantal

EPSC rises only about two times faster than the fastest compound EPSCs.

Conversely, the observation that 20-80% rise times of compound EPSCs reached a

minimum of ~220 µs, clearly slower than the 20-80% rise time of the measured step

response (140 µs) and also slower than that of the mEPSC (120–130 µs) suggests that

the derived maximum release rates reflect the physiological maximum of the release

process rather than the limited bandwidth of the recording system.

3.3 Preparation and electrophysiological recordings

3.3.1 Brain slice preparation, stimulation and extracellular solutions

Transverse brainstem slices were obtained from 8- to 10-day old Wistar rats. Briefly,

the animal was decapitated, and a block containing the brainstem and the cerebellum

was isolated and glued to the bottom of a slice chamber. Using a vibratome (Campden

Instruments, England), four to five 200-µm-thick brainstem slices were cut and

incubated at 37°C for 30 min. The preparation was done in ice-cold solution

containing (in mM): 125 NaCl, 2.5 KCl, 3 MgCl2, 0.1 CaCl2, 25 dextrose, 1.25

NaH2PO4, 0.4 ascorbic acid, 3 myo-inositol, 2 sodium pyruvate and 25 NaHCO3

(bubbled with 5% CO2, 95% O2, pH 7.4). The solution used during experiments had

the same composition, except it contained 1 mM MgCl2 and 2 mM CaCl2. During

electrophysiological recordings, postsynaptic NMDA receptors were blocked by D-2-
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amino-5-phosphonovalerate (D-APV, 50 µM, Tocris Cookson, UK). Cyclothiazide

(CTZ, 100 µM, Tocris) was added to minimize postsynaptic AMPA receptor

desensitization (see section 4.2.1). Experiments were done at room temperature (20-

24°C).

Presynaptic axons were stimulated with a bipolar teflon coated steel electrode

positioned at the midline of the brain slice (Fig. 3.9). For pre- and postsynaptic

recordings, only synapses were selected that exhibited an extracellular field potential

of two spikes separated by ~1 ms, corresponding to the pre- and postsynaptic action

potential. Thus, the size of the releasable vesicle pool could first be estimated by

afferent stimulation of the intact terminal, before it was challenged by photolysis-

evoked [Ca2+] jumps.

3.3.2 Whole-cell recordings, intracellular solutions

Simultaneous pre- and postsynaptic whole-cell recordings from giant synapses were

performed using two Axopatch 200 (A or B) amplifiers. The postsynaptic pipette

solution contained (in mM): 125 cesium gluconate, 20 CsCl, 10 disodium

phosphocreatine, 4 MgATP, 0.3 GTP, 10 HEPES, 0.5 EGTA (pH 7.2). Postsynaptic

pipettes had an open-tip resistance of 2-3 MΩ. The uncompensated series resistance

was 12 ± 1 MΩ (n = 43), electronically compensated to 90–95 %. The recorded

EPSCs were corrected off-line for the voltage error caused by the residual series

resistance (see section 3.1.2.2).

The presynaptic pipette solution contained the Ca2 +-DM-nitrophen complex in

different concentrations, depending on which [Ca2+] levels were desired (see Table

3.1). To keep the osmolality of the solution constant at around 310 mmol/kg, the

potassium concentration was varied. In several experiments, Na2ATP and MgCl2 were

added to test for an effect of MgATP on the release mechanism or on replenishment

of the releasable vesicle pool. Either Mag-Fura-2 (Molecular Probes) or Fura-2-FF

(TefLabs, Texas) were used as low-affinity Ca2+ indicators to circumvent the temporal

filtering effects of Ca2+ buffering that are introduced by Ca2+ indicators of high

affinity. All presynaptic solutions contained in (mM): 20 KCl or NaCl, 30 HEPES

(pH 7.2), 1 Ca2+ indicator (see Table 3.1). Solution A1, A2 and A3 were used to evoke

Ca2+ jumps between 0.5 and 100 µM, B was used for jumps with 0.5 ≤ [Ca2+] ≤ 15

µM. With solutions C, D and E, the calibration constants of the Ca2+ indicator were



Methods                                                                                                                           49

Fig. 3.9: Rat brainstem preparation. The Calyx of Held represents a relay synapse in

the binaural auditory pathway. The presynaptic neuron, the globular bushy cells
(yellow) in the anteroventral cochlear nucleus (AVCN) project contralaterally to the

medial nucleus of the trapezoid body (MNTB), where an excitatory (+),
glutamatergic synapse is formed with the soma of a principal neuron (blue). MNTB

principal neurons form inhibitory (-), glycinergic synapses with neurons in the lateral
superior olive (LSO), which also receive excitatory input from the ipsilateral AVCN.

The convergence of binaural auditory information in the LSO is thought to play a

role in sound localization (Helfert and Aschoff, 1997). Horizontal scale bar: ~0.5
mm.

determined in the presynaptic terminal. Presynaptic pipettes (4–6 MΩ) were used to

dialyze the terminal for at least 4 minutes before a laser pulse was applied.

All compound EPSCs and spontaneous mEPSCs were filtered at 5 kHz (4-pole Bessel

filter), digitized with an A/D-converter (ITC 16, Instrutech, New York), stored and

analyzed using a Power PC 8100/110 (Apple Macintosh, California). Miniature

release events following [Ca2+] jumps to <1.5 µM were filtered at 2 kHz, in some

experiments after wash-out of CTZ. Fluorometric and electrophysiological data were

acquired with the PulseControl Software 4.7 (Herrington et al., 1995) programmed for

the IgorPro 3.14 data acquisition and analysis software package (Wavemetrics,

Oregon). The analysis of digital records was performed by customized routines in the

IgorPro macro programming language.

MNTB
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3.3.3 Adjustment of the DM-nitrophen – CaCl2 equilibrium

The initial [Ca2+] level in the presynaptic solution is an important parameter and

should be adjusted to a pCa ~7. At higher pCa, a large amount of DM-nitrophen

remains in the unbound state and can act as a potent buffer for uncaged Ca2+, thus

producing large and rapid Ca2+ spikes (Escobar et al., 1997). Is it lower, the

intracellular [Ca2+] appreciably exceeds the physiological resting value of 50-100 nM

and the state of the dialyzed terminal may deviate significantly from its resting

conditions. Unfortunately, the purity of DM-nitrophen was quite variable and

therefore, the adjustment of the DM-nitrophen–Ca2+ balance could not rely on

nominal concentration values; this method would have been compromised further due

to pipetting errors when µl volumes are handled. Instead, the presynaptic solution was

prepared with a nominal DM-nitrophen concentration of 11.6 mM, and then a variable

amount of CaCl2 was added. A small sample volume of this solution was mixed with

Fura-2 (0.2 mM) and the free [Ca2+] was fluorometrically determined using

microcuvettes. If it was around 100 nM, the remaining solution was mixed with the

low affinity indicator Mag-Fura-2 or Fura-2-FF for use in subsequent [Ca2+] jump

experiments. Given a KD of DM-nitrophen for Ca2+ of 5 nM (Kaplan and Ellis-Davies,

1988), the purity of the DM-nitrophen stock was calculated to be 70-90%, which

results in an effective DM-n concentration of ~9 mM in solutions A1 and B. The

presynaptic solution was newly prepared on each experimental day and its basal

[Ca2+] was measured to prevent uncertainties in the purity levels of DM-nitrophen,

which may degrade by multiple freezing and thawing cycles (Zucker, 1993).

3.4 Optically controlled, intracellular [Ca2+] jumps

Since the natural ways, in which the presynaptic terminal tightly controls the

intracellular [Ca2+] (localized Ca2+ influx, buffered diffusion, internal uptake and

extrusion), give rise to complex and hardly resolvable fluctuations in the local [Ca2+],

an ‘artificial’ way was employed to rise the presynaptic [Ca2+] homogeneously and to

measure it simultaneously. Both aspects are brought about by optical means. The first

subsection describes the methods of quantifying absolute [Ca2+] changes with

fluorometric Ca2+ indicators, while the second subsection will explain the methods of

UV laser-induced [Ca2+] elevations.
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A

1   2   3

B C

(Rmin)

D

(Rmax)

E

(Keff)

K-gluconate 90/100/100 50 60 60 40*)

DM-n 9 / 4.5 / 2.3 9 9 9 9

CaCl2 8.6 / 4.3 / 2.2 6.5 - 20 171)/ 132)

Na2-ATP - 10 - - -

MgCl2 - 3 - - -

PC / GTP - 10 / 0.3 - - -

EGTA - - 20 -

DPTA - - - - 25

Ca2+ indicator MF or FF FF MF or FF MF or FF MF or FF

Table 3.1: Presynaptic pipette solutions. Concentrations in mM. Solutions A and B

were used for presynaptic Ca2+ uncaging to levels between 0.5 – 100 µM. For small
[Ca2+] jumps (< 6 µM), the relative amount of DM-n/CaCl2  was reduced in solution

A (A2 and A3). C, D and E were used for in situ calibration of the Ca2+ indicators.
All solutions contained HEPES (30 mM), pH ~7.2 (adjusted with KOH or NaOH,

respectively).
1) K eff of Mag-Fura-2 was determined with 17 mM CaCl2, yielding a calculated

[Ca2+]free of 32 µM. 2) For Fura-2-FF, 13 mM CaCl2 were added, yielding a calculated

[Ca2+]free of 14 µM. *) In E, Na-gluconate and NaCl replaced K-gluconate and KCl,
respectively, and the extracellular [Ca2+] was lowered to < 0.1 mM to inhibit the Na+-

Ca2+-exchanger of the presynaptic cell membrane. Abbreviations: MF: Mag-Fura-2,
FF: Fura-2-FF, DM-n: DM-nitrophen, PC: phosphocreatine.

3.4.1 Ratiometric [Ca2+] measurements

The metal complex form of a ratiometric ion indicator exhibits a shifted absorption

spectrum when compared to the spectrum of the free indicator molecule (see Fig. 3.3

b). By measuring the fluorescence of the indicator at two excitation wavelengths, this

property can be used to determine absolute [Ca2+] values independent of the dye

concentration. Fig. 3.10 (a) displays the sequence of illumination intervals, and the

fluorescence signals measured from microcuvettes (inner diameter: 0.2 x 0.02 mm,

Microslides, VitroCom, New Jersey) filled with solution B. After subtraction of the

flash artifact recorded separately (section 3.1.1.4), the fluorescence time course can be

converted to [Ca2+] according to the following formalism:

Let F1 and F2 be the fluorescence intensities measured in a sample (microcuvette or

presynaptic terminal) with the excitation wavelengths λ1 and λ2, respectively.
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According to Eq. 2.31, F1 and F2 are proportional to the concentration of the Ca2+

indicator in the free and the Ca2+-bound form, [D] und [CaD]:

[CaD][D]

[CaD][D]

CaD,2D,22

CaD,1D,11

SSF

SSF

+=
+=

. (3.7)

SD,i, SCaD,i (i =1,2) are constants, which are determined by, for example, the excitation

intensity and quantum efficiency of the detection system, and by the molar extinction

coefficient and the quantum efficiency of the Ca2+ indicator.

The law of mass action predicts:
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where [D]tot = [D] + [CaD] represents the total concentration of indicator in the

sample. The ratio R of the two fluorescence signals is independent of [D]tot and can be

expressed, using Eq. 3.7 – 3.9, as:
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This equation can be solved for [Ca2+]:

CaD,2CaD,1
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Finally, the following calibration constants are introduced:

D,2

D,1
min S

S
R = (3.12)

CaD,2

CaD,1
max S

S
R = (3.13)

CaD,2

D,2
Deff S

S
KK = (3.14)

Keff can simply be expressed in terms of the dissociation constant KD and Rmin and Rmax,

if λ 1 corresponds to the isosbestic wavelength λ iso of the indicator’s excitation

spectrum. At this wavelength, the fluorescence is independent of the fraction of the

indicator bound to Ca2+ such that SCaD,1 = SD,1. In this case, Keff can be written as:
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Fig. 3.10: Ratiometric [Ca2+] measurements and [Ca2+] jumps evoked by laser

photolysis. (a) Sequence of illumination intervals. The fluorescence change in the

test solution (B in table 3.1) was measured in microcuvettes. During the UV pulse
(arrow), the sample is illuminated with λ2 = 380 nm, and the change in [Ca2+] is

detected as a rapid decrease in the photocurrent IPD. Briefly before and after the pulse,
the Ca2+-independent fluorescence is recorded by switching to the isosbestic

wavelength, λ1. The background signal arising from the UV pulse alone (“flash

artifact”) is recorded separately (IPD, BKG), while the monochromator is switched off.
The small transient before the UV pulse is a discharge current of the capacitative

headstage evoked by a controlled ‘forced reset’. (b) Background subtraction and
ratiometric conversion of fluorescence records. (i) After subtraction of the

background (IPD, BKG) from the signal (IPD), the Ca2+-sensitive fluorescence (F2) is
obtained (expressed in arbitrary units, a.u.). (ii) The ratio R  (=F 1/F2) of the

fluorescence record is formed, which exhibits a small discontinuity at the time of the

UV pulse, because F1,pre>F1,post. R can then be converted to [Ca2+], using Eq. 3.16. (c)
Range of [Ca2+] jumps that can be evoked by laser photolysis. Solution A was used in

microcuvettes.
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Inserting Eq. 3.12 – 3.15 into Eq. 3.11 results in the classical equation for ratiometric

[Ca2+] measurements:
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Calibration

In order to obtain absolute [Ca2+] values, the calibration parameters Rmin, Rmax und Keff

must be determined. This is achieved by recording the fluorescence signals from

calibration solutions in which the [Ca2 +] is adjusted to known values, using

appropriate Ca2+ buffers. This should be done in the same experimental environment,

in which the [Ca2+] is to be determined, because the calibration parameters may vary

due to optical and chemical differences. Thus, Rmin, Rmax und Keff were measured in

presynaptic terminals with solutions of similar composition as those used for later

Ca2+ uncaging experiments. In particular, since DM-nitrophen absorbs in the UV

range and may contribute to the fluorescence signal (Zucker, 1992), it was also

included in the calibration solutions.

Rmin was determined by adding the high affinity Ca2+ buffer EGTA to the presynaptic

solution (solution C, Table 3.1), which should buffer the intracellular [Ca2+] to

nanomolar levels. Rmax was measured with a high CaCl2 solution (solution D) such

that the indicator was saturated with Ca2+. To determine the KD of the indicator, a

solution was prepared with a balanced mixture of CaCl2 and DPTA, a low affinity

Ca2+ buffer, at high concentrations (solution E). The KD of DPTA for Ca2+ (80 µM,

Neher and Zucker, 1993) was confirmed by Scatchard analysis with a Ca2+-sensitive

electrode. The free [Ca2+] in this solution (E) was calculated to be 32 µM and 14 µM,

respectively, for the ionic compositions stated in Table 3.1, which were used to

calibrate Mag-Fura-2 and Fura-2-FF, respectively.

Since the UV pulse may change the calibration parameters, Rmin, Rmax und Keff were

analyzed before and after a laser pulse. Thus, pre- and postflash parameters were

obtained for two different attenuation levels (neutral density filter, OD = 0.9 and 1.5)

and interpolated for other attenuation levels (Table 3.2).

3.4.2 Rapid [Ca2+] elevations, evoked by laser photolysis

3.4.2.1   Choice of the UV-sensitive Ca2+ chelator

As mentioned above, the difficulty to resolve local [Ca2+] elevations near the Ca2+

sensor during action potentials is overcome by the much better controllable approach

of raising the [Ca2+] homogeneously, so that the measured intracellular [Ca2+] is most

likely the effective [Ca2+] at the Ca2+ sensor for transmitter release. To do so, the UV-
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Mag-Fura-2 Fura-2-FF

OD 0.9 OD 1.5 OD 0.9 OD 1.5

Rmin, pre
0.358 ± 0.007 (5) 0.734 ± 0.01 (5)

Rmin, post
0.360 ± 0.009 (5) 0.361 ± 0.008 (5) 0739 ± 0.011 (5) 0.743 ± 0.008 (5)

Rmax, pre
4.61 ± 0.52 (5) 6.23 ± 0.27 (5)

Rmax, post
4.65 ± 0.57 (5) 4.32 ± 0.58 (5) 5.65 ± 0.10 (5) 6.04 ± 0.27 (5)

KD, pre
30.9 ± 2.6 (9) 8.89 ± 0.58 (6)

KD, post
32.2 ± 2.4 (9) 29.5 ± 2.3 (9) 7.90 ± 0.64 (6) 8.24 ± 0.66 (6)

Table 3.2: Ratiometric in situ calibration parameters. Calibration constants to
convert fluorescence records into [Ca2+] were determined before and after a UV

pulse, which was attenuated with neutral density filters (optical density 0.9 and 1.5,

respectively). Stated as mean ± SEM (number of cells). Most calibration parameters
were not significantly different before and after the flash (paired t-test, P>0.05).

sensitive Ca2+ chelator DM-nitrophen was dialyzed into the presynaptic terminal and

partially photolyzed with a strong UV pulse. Due to its high affinity (KD = 5 nM

Kaplan and Ellis-Davies, 1988), it can be almost completely loaded with Ca2+, while

the equilibrated free [Ca2+] remains in the 100 nM range. The photoproducts exhibit a

dramatically reduced affinity for Ca2+ (K D = 3 mM). Since DM-nitrophen is a

derivative of the Ca2+ chelator EDTA, it also exhibits a relatively high affinity for

Mg2+ (KD = 2.5 µM), which limits its use when molecular signal cascades are to be

examined that depend on the hydrolysis of MgATP. Other Ca2+ cages are available,

which have a higher specificity for Ca2+, but also lack the very high affinity for Ca2+

compared to that of DM-nitrophen. For example, the UV-sensitive Ca2+ chelator

nitrophenyl-EGTA, (NP-EGTA) has a KD of 80 nM (Ellis-Davies and Kaplan, 1994),

and can therefore be loaded only up to ~60% with Ca2+ if the free [Ca2+] should not

exceed ~100 nM. It also exhibits a ~4-fold lower extinction coefficient compared to

DM-n, while the quantum yield is of comparable magnitude (DM-n: 0.18, NP-EGTA:

0.2-0.23). Thus, NP-EGTA was not suitable to evoke [Ca2+] jumps to more than 5 µM

even when used at a concentration of 10 mM. Therefore, the advantageous properties

of DM-nitrophen were used to evoke large Ca2+ jumps of up to 100 µM (Fig. 3.10 c),

while Mg2+ and ATP were omitted from the presynaptic pipette solution (solution A).

In other experiments, a solution (solution B) was used, in which MgCl2 (3 mM) and

Na2-ATP (10 mM) were included to test whether MgATP affects the rate of

neurotransmitter release at a given [Ca2+] (Heidelberger, 1998). The free [Ca2+] in this

solution was adjusted by addition of CaCl2, until it exhibited a pCa of ~7, as measured

with Fura-2 in microcuvettes (see section 3.3.3). It is calculated that the [MgATP] is
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1.0 - 1.5 mM with this ionic composition. With this saline, [Ca2+] jumps up to 15 µM

could be evoked. The release events measured with this solution were similar to those

measured in the absence of MgATP (solution A).

3.4.2.2 [Ca2+] uncaging dynamics

The time course of the [Ca2+] after partial photolysis of the Ca2+ cage is shaped by

multiple factors and has been minutely analyzed (Zucker, 1993; Ellis-Davies et al.,

1996; Escobar et al., 1997). It mainly depends on the rate of conversion of the cage

into its low affinity photoproducts, and the kinetic properties of the participating Ca2+

buffers including free, unphotolyzed cage and the Ca2+ indicator (see section 2.1.3). It

is known that the liberated [Ca2+] can rise quickly to elevated levels before it is

buffered by the various buffers present. This situation generates an overshoot in

[Ca2+], known as ‘Ca2+ spike’, before it relaxes to a lower steady-state level. This

spike can dramatically exceed the steady-state level resumed thereafter by the system.

Even worse, it cannot be measured if it decays faster than the characteristic

equilibration time of the Ca2+ indicator which is given by:

τ =
++

1
2k kon D off D, ,[ ]Ca

(3.17)

The Ca2+ indicators used in this study were of low affinity and therefore had rapid

response characteristics. However, they partially act as Ca2+ buffers and cannot track

the dynamic [Ca2+] changes that occur before they equilibrate with the new [Ca2+]

level, which is partially determined by the indicator itself. Fura-2-based low affinity

indicators such as Mag-Fura-2 and Fura-2-FF have a Ca2+ association rate constant of

~5x108 M-1 s-1, and relax to steady-state with time constants of 50 – 200 µs (Naraghi,

1997). Thus, Ca2+ spikes can occur during the first 100 – 200 µs, which cannot be

detected fluorometrically. Therefore, one has to rely on kinetic simulations of the Ca2+

uncaging dynamics immediately following the UV pulse. This requires the knowledge

of the kinetic rate constants of the participating Ca2+ buffers, which were taken from

published values. A detailed model of the interaction of rapidly uncaged Ca2+ (and

Mg2+) with the prevalent buffers was therefore devised, which is described in section

2.1.3. It showed that a Ca2+ spike occurred during the first 100 µs after the UV pulse,

whose relative amplitude mainly depended on the ionic composition. It is useful to

define the ‘Ca2+ spike ratio’ as the ratio between the simulated spike amplitude and

the simulated plateau [Ca2+] level, which is fluorometrically measurable. In the

experiments, the amplitude of the [Ca2+] plateau was determined by averaging the

measured [Ca2+] in an interval that was defined by the 20% and 80% crossing levels
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[Ca2+]measured

(µM)

Interval (ms)

Start          End

Ca2+ spike ratio

Sol. A1/MF           Sol. A3/FF           Sol. B/FF

1 1                 10 n.d. n.d. 2.1

2 1.1                4.1 2.8 4.4 1.8

5 0.8               2.7 2.2 3.9 1.6

10 0.7               1.6 1.8 3.4 1.4

15 0.6               1.2 1.7 2.8 1.3

25 0.5                  1 1.5 n.d. n.d.

50 0.4                0.8 1.4 n.d. n.d.

90 0.4                0.8 1.4 n.d. n.d.

Table 3.3: Ca2+ spike ratios calculated for different internal solutions, according to
the kinetic model of Ca2+ uncaging in section 2.1.3. The interval used to obtain

average [Ca2+] amplitudes ([Ca2+]measured) is smaller for larger [Ca2+] jumps, because it
was adapted to the rise time of the EPSC. The Ca2+ spike ratio is the peak amplitude

of the modeled Ca2+ spike divided by the [Ca2+]measured. Ca2+ spike ratios were not
determined (n.d.) for conditions not applicable in the present study.

of the simultaneously measured EPSC and therefore increased for smaller [Ca2+]

jumps. Plateau [Ca2+] levels in simulations were calculated analogously, by averaging

simulated [Ca2+] in the interval that corresponded to the analysis interval for a given

[Ca2+] level in the experiment (Table 3.3). The Ca2+ spike ratio is also a function of the

pulse energy, because the relaxation time constant of the indicator depends on the

[Ca2+] reached, which is higher at higher pulse energies. For solution A1/Mag-Fura-2,

the Ca2+ spike ratio was ≤ 2.8 and decreased for larger [Ca2+] jumps, whereas it could

reach values of ≤ 4.4 for solution A3/Fura-2-FF. In contrast, with solution B/Fura-2-

FF, the Ca2+ spike ratio was ≤ 2.1, which was mostly because of the high amount of

free ATP (calculated 8-9 mM), which has a rapid Ca2+ association rate constant on the

order of ~1x109 M-1 s-1 (Eigen and Wilkins, 1965). Therefore, the comparison of

release rates measured with solutions A/Fura-2-FF and B/Fura-2-FF gave important

information on the possible influence of the Ca2+ spike on the release rate.

3.4.3 Implementation of a kinetic model for Ca2+ uncaging

As described in the previous section, it is necessary to calculate the evolution of the

[Ca2+] by kinetic simulations of the Ca2+ uncaging and buffering reactions. This can be

done if the respective kinetic rate constants are known. The main reactants in solution
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A were DM-nitrophen and its photoproducts, the Ca2+ indicator and Ca2+. For solution

B, also the buffering action of ATP and phosphocreatine and the binding of these

compounds to the divalent Mg2+ had to be taken into account. For the dissociation

constants of these buffers, measured or published values were used in the model.

Where possible, the association and dissociation rate constants were taken from the

literature or otherwise assumed (see Table 3.4).

The general model of Ca2+ uncaging and buffering is described in a previous section

(2.1.3). There, a proportion α of both the Ca2+-bound and free form of DM-nitrophen

are converted to an intermediate state (DM*, CaDM*) at time point t0, which decay to

the low affinity photoproducts of DM-nitrophen (DMp). Kinetic constants for this

reaction have been measured by Ellis-Davies et al. (1996), and Escobar et al. (1997).

In a refined model (Fig. 2.3 b), the presence of Mg2+ was included as well as the

buffering action of other compounds, i.e. ATP, phosphocreatine, and an endogenous

buffer. A second, new feature of the more detailed model is the presence of two

decaying pathways of the DM-nitrophen aci-nitro intermediates to the low affinity

photoproducts. This is similar to a model of Ca2+ uncaging suggested by Ayer and

Zucker (1999), in which the generation of two distinct photoproducts is predicted. In

their model, DM-nitrophen complexed to Ca2+ decays to the low affinity photoproduct

described in earlier studies, whereas a second photoproduct with slower Ca2+ binding

and unbinding kinetics is formed by photolysis of free DM-nitrophen or DM-

nitrophen bound to Mg2+. However, since in the present study a slow [Ca2 +]

component was also observed in a Mg2+-free solution with DM-nitrophen nearly

completely saturated with Ca2+, a model was preferred in which the two

photoproducts are generated independently of the bound or unbound state.

The kinetic parameters of this model are specified in Table 3.4. To compare the

modeled [Ca2+] time course with experimental traces, the modeled time course of the

indicator-Ca2+ complex [CaD](t) was converted to a simulated ‘dye-reported’

[Ca2+]measured(t) according to the equation:

[ ] ( )
]( )

[ ] [ ]( )
Ca

[CaD
D CaD

2
measured D

tot

+ =
−

t K
t

t
. (3.18)

This equation is derived from the calibration equations stated in section 3.4.1, which

are valid only when the Ca2+-indicator reaction is in chemical equilibrium. Therefore,

Eq. 3.18 corresponds to the law of mass action for the Ca2+-indicator reaction, but it

underestimates the true [Ca2+] during the non-equilibrated phase. The modeled dye-

reported [Ca2+] time course was then digitally filtered with a 4-pole RC filter (fc =
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Ca2+ Mg2+

kon

(M-1 s-1)

koff

(s-1)

KD

(M)

kon

(M-1 s-1)

koff

(s-1)

KD

(M)

Reference

DM 30×106 0.15 5×10-9 60×103 0.15 2.5×10-6
Ca2+: 1), 4)

Mg2+: 5)

DMp1 30×106 90×103 3×10-3 60×103 180 3×10-3
Ca2+: 1), 4)

Mg2+: 5)

DMp2 0.3×106 900 3×10-3 60×103 180 3×10-3
Ca2+: from present data

Mg2+: 5)

ATP 1×109 200×103 0.2×10-3 10×106 1×103 0.1×10-3
Ca2+: 3), 8)

Mg2+: 3), 8)

PC 1×106 70×103 70×10-3 1×106 50×103 50×10-3
Ca2+: 6) for KD, kon/off were

Mg2+: 6)              assumed

MF 750×106 23×103 31×10-6 - - -
Ca2+: 7) for kon,

KD measured in situ

FF 550×106 4.9×103 8.9×10-6 550×106 550×106 1
Ca2+: 7) for estimated kon,

KD measured in situ

Table 3.4: Kinetic parameters for simulations of the Ca2+ time course following laser

flash photolysis. Abbreviations: DM: non-photolyzed DM-nitrophen, DMp1:

photoproduct 1 with fast dissociation rate constant, DMp2: photoproduct 2 with
slower dissociation rate constant, PC: phosphocreatine, MF: Mag-Fura-2, FF:

Fura–2–FF.
References: 1) Ellis-Davies et al. (1996). 2) Escobar et al. (1997). 3) Klingauf and

Neher, (1997). 4) Xu et al. (1997). 5) Ayer and Zucker (1999). 6) Fabiato and Fabiato

(1979). 7) Naraghi (1997). 8) Baylor and Hollingworth (1998).

4.2 kHz, see section 3.1.1.4) and overlaid with experimental, ratiometrically

determined [Ca2+] traces (Fig. 4.2).

The set of differential equations derived from the kinetic scheme depicted in Fig. 2.3

was programmed in Mathematica 3.0 (Wolfram Research, Illinois) and numerically

solved. The fit was adjusted by variation of the photolysis efficiency α to obtain

different [Ca2+] levels. The relative fraction of the fast and the slow photoproducts

was empirically adjusted to β1 = 0.8 (DMp1) and β2 = 0.2 (DMp2) to match the

measured data. This is somewhat different from the relative amplitudes of the two

intermediate decay components reported by Ellis-Davies et al. (1996), which were

0.66 for the fast intermediate decay (decay rate constant kp,1 = 80,000 s-1) and 0.34 for

the slower component (kp,2 = 11,000 s-1). Furthermore, the endogenous buffer(s)

present in the presynaptic terminal were not taken into account because no
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information is available about its kinetic properties. Certainly, the above model

cannot fully predict the complex chemistry of DM-nitrophen photolysis and

subsequent Ca2+ buffering, but it accounts for the main features of the measured [Ca2+]

time course. It furthermore agrees with the Ca2+ spike measurements published

previously (Ellis-Davies et al., 1996; Escobar et al., 1997). Therefore, it is assumed

with some confidence that the Ca2+ spike ratio is not appreciably underestimated in

the present kinetic model.
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Fig. 4.1: Pre- and postsynaptic whole-cell recording of the giant synapse in the

MNTB. (a) Video image of a giant synapse in the medial nucleus of the trapezoid
body (MNTB). The pre- and postsynaptic recording pipettes are also weakly visible

to the left and right of the synapse. (b) False color image of the presynaptic terminal
(yellow) and the postsynaptic cell body (blue). The presynaptic terminal was stained

with Mag-Fura-2 and the postsynaptic soma with Oregon-Green Bapta-5N. Images

were taken with two different excitation wavelengths and later overlaid in Photoshop
(Adobe, California). Adapted from Bollmann et al. (1998); image by Dr. F.

Helmchen.

4. Results

The MNTB giant synapse is a large axo-somatic synapse in the auditory pathway of

the brainstem. It can be visualized by infrared video microscopy, and both the pre-

and postsynaptic compartments are electrically accessible with patch pipettes (Fig.

4.1). This favorable situation was used to measure the Ca2+ sensitivity of glutamate

release with high temporal resolution.

In this chapter, the main findings are presented in three sections. First, the kinetics of

rapid Ca2+ uncaging by laser photolysis were investigated under controlled conditions

in microcuvettes. Second, quantal and compound glutamate release was characterized

electrophysiologically at this type of synapse. And third, Ca2+ uncaging was applied to

determine the dependence of glutamate release on the intracellular [Ca2+] level, which

is finally summarized in a kinetic model of Ca2+ binding and vesicle fusion. This

model was used to obtain an amplitude estimate of transient [Ca2+] elevations near

releasable vesicles during action potential-evoked release.

a b
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4.1 Temporal analysis of [Ca2+] uncaging in microcuvettes

4.1.1 Ca2+ uncaging in the presence of different Ca2+ buffers and indicators

Rapid release of Ca2+ from DM-nitrophen (DM-n) photoproducts was employed to

evoke [Ca2+] jumps of variable amplitude, which were used to challenge the

releasable pool of vesicles in the MNTB giant synapse. Since a Ca2+ indicator of low

affinity was co-loaded into the terminals, it was possible to directly measure the

height of the [Ca2+] jump briefly after the photolyzing laser pulse. To obtain estimates

of what [Ca2+] levels could be generated in the different solutions (see Table 3.1) and

with different laser pulse energies, Ca2+ uncaging was first studied in vitro in small

microcuvettes (Fig. 4.2). After subtraction of the background fluorescence and the

pulse artifact, the evoked [Ca2+] levels were reported by the Ca2+ indicators after ~200

µs. After this period, [Ca2+] levels were detected that ranged between 2 and 100 µM

with solution A1 and Mag-Fura-2, and between 0.5 and 15 µM with solutions A2, A3

and B and Fura-2-FF as the Ca2+ indicator (see also Fig. 3.10 c).

4.1.2 A refined model of Ca2+ uncaging with DM-nitrophen

The lag between the laser pulse and the plateau level of the dye-reported [Ca2+]

mainly originates from the finite association rate of the Ca2+ indicator, which is

~5x108 M-1 s-1 for Fura-2-based dyes. Therefore, these rapidly equilibrating indicators

are too slow to report [Ca2+] changes that are likely to occur during the first 100 - 200

µs (see section 3.4.2.2). Therefore, a detailed kinetic model was implemented to

obtain estimates of the true [Ca2+] time course that is expected after rapid laser

photolysis (see section 2.1.3). The time course of [Ca2+] increase during in vitro

uncaging often exhibited not only a rapid component, much faster than the response

time of the indicator, but also a slowly rising component (Fig. 4.2 a-c, Fig. 3.10 c). It

_____________________________________________________________________

Fig. 4.2: Time course of Ca2+ uncaging. (a) [Ca2+] jumps evoked by laser photolysis

in solution A3, which contains no MgCl2 or Na2ATP. Fluorescence changes of the

indicator, Fura-2-FF, were converted ratiometrically to [Ca2+] (noisy traces). Model
predictions of the [Ca2+] time course as it is reported by the low affinity Ca2 +

indicator are overlaid. Note the slow component of [Ca2+] increase in the first three
milliseconds. The photolyzed fraction α was 0.04, 0.128 and 0.179. The initial free

[Ca2+] was 170 nM (measured with Fura-2). (b) [Ca2+] uncaging with solution B,
containing MgCl2 and Na2ATP. The α’s were 0.028, 0.0835 and 0.119. Initial free

[Ca2+] was 176 nM. (c) Ca2+ uncaging detected with Oregon-Green BAPTA-5N.  →
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A slow component in [Ca2+] increase is also detected with this dye, indicating that it

is not an artifact due to indicator bleaching. Model predictions are overlaid (bold

traces; α = 0.024 and 0.036). (d) Same experiment as in (a), but on different scales.

Here, diamonds indicate the experimental [Ca2+] time course, bold traces represent
the predicted dye-reported [Ca2+], and thin lines represent the predicted true [Ca2+]

time course, including the initial [Ca2+] spike. (e) Same experiment as in (b), with

traces having the same meaning as in (d). Note that the amplitude of the predicted
Ca2+ spike is much reduced compared to (d), because of the presence of ATP (10

mM). (f) Uncaging detected with Mag-Fura-2, which has a KD ~3 fold larger than
Fura-2-FF. Measured [Ca2+] (diamonds), modeled dye-reported [Ca2+] (bold traces),

and back-calculated true [Ca2+] (thin traces) are overlaid. The initial Ca2+ overshoot

is comparably small because of the lower affinity of Mag-Fura-2. Solution A1 was
used, calculated α’s were 0.083 and 0.0485.
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was present both with dyes that show decreased fluorescence (Fura-2-based dyes),

and those that show increased fluorescence (Oregon-Green Bapta-5N) when bound to

Ca2+ (Fig. 4.2 a-c). This excluded the possibility that bleaching of the indicator was

responsible for the slow increase in reported [Ca2+]. Therefore, the model was refined

by introducing a second decay pathway of DM-nitrophen that resulted in a

photoproduct with 100-fold slower Ca2+ association and dissociation rate constants.

This may be partially justified by the finding that intermediate decay of DM-

nitrophen also follows a double exponential time course with similar relative

amplitudes (McCray et al., 1992; Ellis-Davies et al., 1996). With this modification,

predicted dye-reported [Ca2+] time courses fit the experimentally observed ones much

more closely under different buffer conditions (Fig. 4.2 a-f).

The model predicts the existence of a brief and transient overshoot of [Ca2+], the ‘Ca2+

spike’ (Zucker, 1993; Ellis-Davies et al., 1996; Escobar et al., 1997), when not all

Ca2+ buffers present are saturated to 100% with Ca2+. As a measure of the amount of

overshoot in [Ca2+], the ‘Ca2+ spike ratio’ is calculated from model predictions (see

section 3.4.2.2, Table 3.3). The Ca2+ spike ratio is smaller, the more DM-nitrophen is

saturated with Ca2+, but also if other rapid, low affinity Ca2+ buffers help damping the

initial overshoot. In the studies designed to evoke large Ca2+ spikes (Ellis-Davies et

al., 1996; Escobar et al., 1997), the Ca2+ spike ratios are much larger than in the

present study, because in the latter the fraction of DM-nitrophen loaded with Ca2+ was

approximately 95%, and a larger concentration of Ca2+ indicator was used (1 mM).

Furthermore, in those sweeps in which ATP (10 mM) was included in the solution,

the Ca2+ spike is damped because of the rapid Ca2+ binding kinetics of ATP (Eigen

and Wilkins, 1965) (Fig. 4.2 b,e). The calculated effect of the Ca2+ spike on the

release rate model is analyzed in section 5.2.1.3.

4.2 Electrophysiological characterization of glutamate release

As a measure of rapid synaptic glutamate release, postsynaptic currents were detected

in the whole-cell configuration of the patch clamp technique. The following

subsections describe the nature of the physiological compound EPSCs, and provide a

characterization of the underlying quantal currents that result from the release of

single transmitter packets from the presynaptic terminal.
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Fig. 4.3: AMPA and NMDA current-voltage relations. (a) Excitatory postsynaptic
currents mediated by AMPA receptor channels, evoked by afferent stimulation.

NMDA receptors were blocked by D-APV (50 µM). (b) Current-voltage relation of
AMPA receptor channels. Current peak amplitudes are plotted versus the

postsynaptic holding potential. (c) NMDA receptor-mediated EPSCs at different

holding potentials. AMPA receptors were blocked by NBQX (10 µM). (d) As in (b).
NMDA EPSC amplitudes exhibit outward rectifying behavior because of an external

Mg2+-dependent block, that is relieved at depolarized potentials.

4.2.1 Multi-quantal excitatory postsynaptic currents in the giant synapse

Glutamate release from the presynaptic terminal evokes EPSCs with dual time course

in the postsynaptic neuron, which can be separated by pharmacological tools (Fig.

4.3). The released glutamate binds and activates ligand-gated receptor channels both

of the AMPA and NMDA receptor type. Both current types are directed inwardly at

negative postsynaptic membrane potentials and are carried mainly by Na+, K+ and

Ca2+ ions. The AMPA current rises in less than 0.5 ms, and decays with fast and slow

time constants of ~1 ms (92%) and ~14 ms, respectively (Borst et al., 1995; Bollmann

et al., 1998). It exhibits a relatively linear current-voltage relation (Fig. 4.3 b). In
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addition, it is characterized by a strong desensitization in the presence of sustained

glutamate levels, which can be inhibited by addition of cyclothiazide (Trussell and

Fischbach, 1989; Yamada and Tang, 1993; Otis et al., 1996a). The NMDA current

has a slower time course; it peaks approximately 10 ms after the presynaptic release

event, and decays with time constants of ~40 ms and ~150 ms (Barnes-Davies and

Forsythe, 1995). It is characterized by an outwardly rectifying current-voltage relation

in the presence of physiological concentrations of extracellular Mg2+ (Fig. 4.3 d). This

is because NMDA receptor channels are blocked by Mg2+ at negative membrane

potentials, while their conductance is increased ~100-fold at positive potentials due to

a voltage-dependent relief of the Mg2+ block (Nowak et al., 1984; Mayer et al., 1984).

In order to detect the fast presynaptic release time course with a high bandwidth, the

slowly-activating NMDA receptors were blocked with the competitive antagonist D-

APV (50 µM). The rapidly responding AMPA receptors were used as postsynaptic

detectors. However, since their marked desensitization to glutamate may mask slow

release events, cyclothiazide (CTZ) was added in all experiments to reduce

desensitization, thus improving the integrating behavior of the postsynaptic detector

(Fig. 4.4 a). This improvement becomes particularly evident during high frequency

stimulation (Fig. 4.4 b), when the recording in the presence of CTZ reveals ongoing

phasic release after more than 10 action potentials, while the response in the absence

of CTZ is largely desensitized.

The postsynaptic response to large, flash-evoked [Ca2+] jumps was often >20 nA at a

holding potential of –80 mV, which saturated the patch clamp amplifier. Therefore,

action potential and flash-evoked EPSCs were measured at a holding potential of –30

mV. To examine the dependence of the time course of the EPSCs on the holding

potential, EPSCs were compared at –30 mV and –80 mV in the same terminal. The

amplitudes of the EPSCs at these holding potentials scaled linearly with voltage, and

their decay time constants (fit within 100 ms) were not significantly different. The 20-

80% rise times were slightly, but not significantly, slower for the EPSCs at –30 mV

(365 ± 19 µs at –30 mV versus 345 ± 23 µs at –80 mV, n = 7, paired t-test, P > 0.05).

Subtraction of a scaled version of the EPSC measured at –80 mV from the EPSC

measured at –30 mV revealed a slow inward current, whose time course resembled

that of NMDA receptor-mediated synaptic currents. Its amplitude (10-20 ms after

stimulation) was 6 ± 2 % (n = 7) of the peak amplitude of the action potential-evoked

AMPA current (Fig. 4.4 d). It probably originated from an activity-dependent relief of

the NMDA receptor block, and might in principle affect the deconvolution analysis of

release rates, which is based on AMPA receptor-mediated miniature EPSCs.
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Fig. 4.4: Time course of AMPA receptor EPSCs. (a) EPSCs (Vhold = -80 mV) in the
absence (gray trace) decay faster than in the presence of cyclothiazide (black trace,

CTZ, 100 µM), which inhibits desensitization of AMPA receptors. (b) A train of
presynaptic action potentials evokes a train of EPSCs of markedly increased

amplitudes in the presence of CTZ. Thus, the release of glutamate is detectable also

at later times in the train, whereas it is obscured in the absence of CTZ by
desensitization. (c) Time course of AMPA EPSCs at –80 and –30 mV holding

potential. (d) A small, slow inward current is revealed by subtraction of the scaled
EPSC-80 mV,scaled from the EPSC-30 mV (see text). The time course within 100 ms of the

EPSC was not significantly different for the two holding potentials. (All recordings
in the presence of D-APV, 50 µM).

However, it developed very slowly compared to the AMPA EPSC and is therefore

unlikely to appreciably distort the calculation of peak release rates, which are

evaluated during the rapid rising phase of the AMPA current.

4.2.2 Miniature excitatory postsynaptic currents

Large compound EPSCs in the giant synapse are composed of many small quantal

currents (Fatt and Katz, 1952; Borst and Sakmann, 1996). A quantal EPSC is

generated by the amount of transmitter released from a single vesicle. In the absence

of stimulation, miniature EPSCs (mEPSCs) are observed in the giant synapse, which

most likely represent quantal EPSCs.
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Spontaneous mEPSCs were measured in ten synapses, under the same conditions as

the compound EPSCs (90-95% Rs compensation, 100 µM CTZ, 50 µM D-APV, 4-

pole Bessel filter, fc = 5 kHz, 50 kHz sampling frequency). The terminals were

dialyzed with solutions A or B (Table 3.1), but no UV flash was applied. Therefore,

the resting [Ca2+] was likely below 0.5 µM, which is too low to evoke synchronous

release, but may increase the probability of release of single (or sometimes two)

quanta. The mEPSCs were identified by eye as rapid inward currents of ~15 pA or

more amplitude. Because of the Rs compensation setting, the current noise level was

relatively high (Irms ≈ 9 pA), which may have prevented the detection of smaller

amplitude mEPSCs. To obtain an average mEPSC for each of the 10 synapses, ca. 10

mEPSCs per synapse were consecutively aligned by maximizing their temporal

overlap, and averaged (Fig. 4.5 a). Temporal overlap of any two mEPSCs was

calculated by cross-correlation in an interval starting 1 ms before, and ending 4 ms

after, the peak of the mEPSC. The average mEPSCs of individual synapses exhibited

significant time course variability (Fig. 4.5 a), possibly because of different synaptic

morphologies and recording conditions. These average mEPSCs were again aligned

and averaged across synapses to obtain a ‘standard’ mEPSC (Fig. 4.4 b), which

should approximate the size and time course of quantal EPSCs under average

recording conditions. This mEPSC could be approximated with an analytical function

(Eq. 3.4; Fig. 4.5 b, top smooth line). The fit had a peak value of –32 pA, a 20-80%

rise time of 130 µs, and decayed bi-exponentially with τ1 = 2.8 ms (54%), τ2 = 7.5 ms.

The amplitude distribution of the 102 individual mEPSCs has a mean value of -34 pA.

A second, small peak at -55 pA may indicate that a minor fraction (< 20%) of the

recorded mEPSCs were composed of two quanta. Despite the high Rs compensation,

which was paid with an increased noise level, the rise time of the mEPSC is likely to

be limited by the bandwidth of the whole-cell/headstage circuit (see section 3.1.2.2).

Nevertheless, it is useful for reconstructing the rising phase of measured compound

EPSCs, which were recorded under the same conditions. Furthermore, the amplitude

of the standard mEPSC could be used to estimate the number of vesicles that can be

released synchronously with a train of presynaptic action potentials. This is described

in the next section.

4.2.3 Pool size estimate with EPSC trains

The absolute release rate of a synaptic terminal depends on the release kinetics of the

individual vesicle and on the number of vesicles in a readily releasable state prior to

stimulation. The size of this vesicle pool may be determined by the biochemical state
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Fig. 4.5: Miniature EPSCs (mEPSCs) in the MNTB giant synapse. (a) mEPSCs

recorded from ten different synapses (Vhold = -80 mV). Each trace is the average of
~10 mEPSCs, measured with 90-95% Rs compensation and aligned by temporal

cross-correlation. (b) Top: Average mEPSC of the 10 mEPSCs shown in (a). Also
shown, a fit with Eq. 3.4. Bottom:A charge of 0.16 pC is transferred by the mEPSC

within 25 ms (lower trace). (c) Amplitude histogram of the 102 individual mEPSCs,

which were averaged in (a),(b).

of the fusion machinery that promotes the fusion of a vesicle, but also by the spatial

arrangement of vesicles relative to the sites of Ca2+ entry. In order to obtain an

estimate of the number of vesicles in the readily releasable pool for a given synapse,

the vesicle pool was first challenged with action potential-evoked Ca2+ influx during

high frequency stimulation (afferent stimulation at 200 Hz, 200 ms, Fig. 4.6 a). The

amplitudes of the EPSCs in a train (measured from the local minimum of the EPSC to

the preceding local maximum, ‘peak-to-peak amplitude’) decreased quickly to a small

steady-state value after about 10 stimuli, which is probably because the number of

readily releasable vesicles was exhausted (von Gersdorff et al., 1997). The size of the

readily releasable vesicle pool was evaluated by summing the peak-to-peak

amplitudes of the EPSCs in a train, yielding the ‘cumulative EPSC amplitude’. Since

the depletion of the readily releasable pool is counteracted by a refilling process (Wu

and Borst, 1999), the cumulative EPSC amplitude at the end of the train does not only

reflect the number of vesicles initially available at the start of the train, but also those

made available during the train. To correct for this mixture of vesicle pools, it was

assumed that the refilling mechanism proceeds at a constant rate and can be
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subtracted by fitting a straight line to the last 20 points of the cumulative EPSC

amplitude, which is back-extrapolated to the beginning of the stimulus train. The

intersection of the straight line fit with the y-axis was taken as the initial size of the

releasable pool (Fig. 4.6 b) in the absence of vesicle refilling (Schneggenburger et al.,

1999), specified as a current amplitude. The cumulative EPSC amplitude was -9.7 ±

0.7 nA (mean ± SEM, n = 43). To convert it to the number of vesicles available in the

initial pool, it was assumed that each vesicle contributes –12 pA to the cumulative

EPSC amplitude, which is the amplitude of the standard mEPSC scaled to a holding

potential of –30 mV. Thus, the initial pool size was estimated to consist of 810 ± 60

vesicles, in agreement with earlier estimates (Schneggenburger et al., 1999; Wu and

Borst, 1999).

The first EPSC in a train had an amplitude of 1.9 ± 0.2 nA (n = 43). This could be

compared to the cumulative EPSC amplitude for the same terminal. The first EPSC

amplitude in a train was 21 ± 2% (n = 43) of the cumulative EPSC amplitude. Taking

the decay of the quantal EPSCs during the rising phase of the compound EPSC into

account, this means that approximately 25% of the readily releasable vesicle pool is

depleted during a single action potential. The first EPSC in a train was further

characterized by its rise time and peak release rate. The 20-80% rise time was 424 ±

11 µs  and the peak release rate (see section 3.2) was 337 ± 28 ms-1 for the whole

terminal, or 0.42 ± 0.04 ms-1 (n = 43) when divided by the number of vesicles in the

releasable pool.

Following the estimation of the pool size in the intact terminal, the terminal was

dialyzed with a presynaptic solution (A or B, Table 3.1) and a UV laser pulse was

applied to induce a jump in [Ca2+] (Fig. 4.6 c). This evoked an EPSC of variable size

and speed, depending on the [Ca2+] reached after the pulse. For [Ca2+] jumps to more

than ~10 µM, the laser-evoked EPSC amplitude approached the cumulative EPSC

amplitude measured in the same terminal (Fig. 4.6 d). This suggests that the two

stimuli activated the release of the same vesicle pool.

In a different set of experiments it was analyzed whether the size of the readily

releasable vesicle pool is changed under whole-cell patch clamp conditions when the

intracellular solution is exchanged. Cumulative EPSC amplitudes in response to

afferent stimulus trains were measured in the intact and dialyzed terminal and

compared (not shown). The cumulative EPSC amplitude of the first afferent

stimulation measured 3 - 11 minutes after presynaptic break-in was not significantly

different from that measured in the same, intact terminal (n = 5; paired t-test, P>0.05),

suggesting that the size of the readily releasable pool was not decreased.
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Fig. 4.6: Comparison of vesicle pools released by afferent stimulation and laser flash

photolysis in the same terminals. (a) A train of EPSCs, evoked by afferent
stimulation (200 Hz), is used to estimate the releasable vesicle pool size of the intact

terminal. The presynaptic pipette is in the cell-attached mode. Stimulus artifacts were
removed. (b) The peak-to-peak amplitude of the individual EPSCs shown in (a) was

summed (cumulative EPSC) and plotted versus the stimulus number. A straight line

is fit to the steady-state component of release and back-extrapolated to the beginning
of the train to estimate the initial pool size. (c) After dialysis of the terminal with

caged Ca2+, a UV flash (arrow) induces a jump in [Ca2+] (upper trace) which evokes
a rapid, large EPSC (lower trace). Its amplitude is close to that of the cumulative

EPSC measured by afferent stimulation in the same terminal. The presynaptic current

(middle trace) remains nearly constant. Vertical scale bars in (c) also apply to (a). (d)
A plot of the EPSC peak amplitude evoked by [Ca2+] jumps normalized to the

cumulative EPSC amplitude measured in the same terminals. Data of 26
experiments.

During multivesicular release, accumulation of glutamate in the synaptic cleft may

lead to prolonged activation and saturation of AMPA receptors (Tang et al., 1994;

Otis et al., 1996b; Silver et al., 1996; Neher and Sakaba, 2001). These mechanisms

may partially account for the build-up and decay of a slow component of the EPSC

train during high frequency stimulation. On the other hand, a comparison of the EPSC

train and the laser-evoked EPSC (Fig. 4.6 a,c) reveals that the latter has a roughly

two-fold larger peak amplitude than the maximal current amplitude during the train
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(occurring at the fourth EPSC in the train). This indicates that, during the EPSC train,

the decline in the peak-to-peak amplitude is probably not a result of considerable

postsynaptic receptor saturation (see section 5.2.2.2).

Estimating the synapse-specific pool size has several advantages. Firstly, the pool size

and the Ca2+ sensitivity of this pool determined later in the course of the experiment is

measured in the same terminals. This can be used to normalize release rates to the

average pool size, thus reducing the considerable cell-to-cell variability of the readily

releasable pool (coefficient of variation ~0.5). Secondly, the pool size and the Ca2+

sensitivity were determined in a subset of synapses that were previously challenged

by afferent stimulation at frequencies typical for the auditory pathway (Rhode and

Smith, 1986; Spirou et al., 1990). It was therefore evaluated in terminals which had an

intact axon and which were already capable of high frequency transmission, which is

a property developing during this age (Taschenberger and von Gersdorff, 2000). On

the other hand, the peak-to-peak amplitude summation does not take the more

asynchronous release following the phasic release period into account. The present

estimate should therefore be regarded as an estimate for the size of a vesicle pool that

can be released in tight temporal synchrony with the presynaptic Ca2+ influx following

an action potential. More vesicles may be releasable with slower kinetics, responding

to the elevated [Ca2+] levels following the decay of the local Ca2+ transient. This, in

fact, has been described recently by Sakaba and Neher (2001b). The present study

focuses on the (ideally) homogeneous vesicle pool released phasically with an action

potential.

4.3 [Ca2+] dependence of glutamate release

4.3.1 Glutamate release evoked by UV-induced [Ca2+] jumps

Laser flash photolysis of the caged Ca2+ compound DM-nitrophen was used to explore

the dependence of the kinetics of glutamate release on the intracellular free [Ca2+]. To

this end, solutions containing a mixture of the DM-nitrophen-Ca2+ complex and of a

low affinity Ca2+ indicator (Mag-Fura-2 or Fura-2-FF, see Table 3.1) were dialyzed

into the presynaptic terminal via the patch pipette. After a loading period of four to

six minutes, a UV pulse from a frequency-tripled Nd:YAG laser was applied to a

region containing the terminal. This pulse evoked a rapid jump in [Ca2+], which

elicited an EPSC of variable size and time course, depending on the [Ca2+] level

attained after the pulse (Fig. 4.7). The rapid photodiode system permitted recording of
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 Fig. 4.7: Time course of EPSCs evoked by [Ca 2+] jumps of different amplitudes. ( a)
[Ca2+] jumps between 2 and 30 µM were evoked in three different synapses (top

panel). The evoked EPSCs, normalized to the respective cumulative EPSC
amplitude, exhibited a strong dependence on the [Ca2+] level between 2 and 10 µM.

(b) Four subsequent [Ca2+] jumps to around 1 µM were evoked in one terminal. The
first and the last of the four [Ca2+] jumps are shown (upper panel). They evoked a

train of mEPSCs (four lower traces). Putative quantal release events are marked by

asterisks.

the Ca2+-related fluorescence before the onset of the EPSC (Fig. 4.6 c). The

fluorescence record could not report the brief [Ca2+] spike occuring before the steady-

state concentration level, because it occurs before Ca2+ is bound to the indicator (see

section 3.4.2.2). The presynaptic current recording usually exhibited only a small and

slow current component, whose onset occurred after the onset of the EPSC. This

indicates that the laser-evoked [Ca2+] jump, rather than presynaptic Ca2+ channels,

caused the postsynaptic current. When the [Ca2+] jump exceeded ~10 µM, the rise

time of the laser-evoked EPSCs was usually faster, and the amplitude larger, than that

of action potential-evoked EPSCs. This indicates that action potential-driven release

does not act at the maximal release rate possible. To determine the intrinsic

dependence of glutamate release on presynaptic [Ca2+], the UV pulse energy was

varied systematically, and peak release rates and synaptic delays were calculated from

the resultant EPSCs.

4.3.2 [Ca2+] dependence of rates and delays of glutamate release

[Ca2+] jumps were evoked in a range between 0.5 and 100 µM in presynaptic

terminals (Fig. 4.7; Fig. 4.8). The measured EPSCs were normalized to the size of the
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readily releasable pool measured prior to dialysis of the presynaptic terminal.

Regarding their amplitude and rise time, the measured EPSCs exhibited a strong

dependence on the [Ca2+] in the range between 0.5 and 10 µM. The 20-80% rise time

decreased from >5 ms to <0.25 ms, when the measured [Ca2+] increased from 2 to 30

µM. For [Ca2+] jumps larger than 30 µM, the rise time became minimal at a value of

220 ± 12 µs. This value is significantly slower than the rise time of the averaged

mEPSC, and is therefore not limited by the bandwidth of the recording system (see

section 3.1.2.2). When [Ca2+] jumps between 0.5 and 1.5 µM were elicited, a train of

individually resolvable mEPSCs could be detected. For compound glutamate release,

usually only the first laser-evoked EPSC was taken for analysis, because the

subsequent flashes evoked EPSCs of slower rise time and smaller amplitude. For

quantal release events, 3 to 5 sweeps were taken for analysis.

The compound EPSCs were fit by a routine to evaluate the underlying vesicle release

rates (section 3.2). The peak release rates were divided by the estimated number of

vesicles in the readily releasable pool of the same synapse to express the release rate

as a vesicle-inherent quantity. The resulting value was plotted versus the measured

[Ca2+], which was averaged in the interval between the 20% level and the 80% level

of the EPSC (Fig. 4.8 a). The peak release rates exhibited a power relation on the

intracellular [Ca2+] which was steepest in the range 0.5 and 5 µM. A straight line fit to

the release rate-[Ca2+] relation after logarithmic transformation has a slope of 4.4 ±
0.3 (not shown). At [Ca2+] greater than 30 µM, the release rates reach a maximum of

5.9 ± 0.4 ms-1 per vesicle.

Also, the synaptic delays were strongly dependent on the [Ca2+] levels reached after

the photolyzing UV pulse (Fig. 4.8 b). They were shortest for [Ca2+] levels larger than

30 µM (0.27 ± 0.02 ms, corrected for an estimated filter delay of 0.1 ms, see section

3.1.2.2), and had a duration of several milliseconds for [Ca2+] jumps to ~1 µM. This

demonstrates that the glutamate release mechanism in the Calyx of Held synapse has

a relatively high Ca2+ sensitivity, which allows it to effectively respond to [Ca2+]

levels between 1 and 10 µM.

For the understanding of rapid synaptic transmission, it is desirable to estimate the

physiological [Ca2+] transient that activates the glutamate release sensor during action

potential-evoked Ca2+ influx. Under this condition, the [Ca2+ ] transient is much more

localized and short-lived than under the conditions of laser photolysis. To this end, a

model of the reaction of Ca2+ binding to the release sensor and of the activation of the

fusion reaction was devised, which will be described in the following section.
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Fig. 4.8: Relation between intracellular [Ca2+] and the rate of glutamate release at the
Calyx of Held synapse. (a) Summary of the dependence of peak release rates on

[Ca2+], displayed on log-log coordinates. Peak release rates of compound EPSCs
(diamonds) were corrected for the finite rise time of the average mEPSC (see section

3.2). For [Ca2+] jumps <1.5 µM, the average mEPSC rate (triangles) was analyzed

during the 20 ms following the mean first latency in 3-5 sweeps per experiment. The
solid line is derived from a model that included five sequential Ca2+ binding steps

followed by the activation of the calcium sensor (see text). Release rates are specified
per vesicle. Pooled data of 31 synapses. (b) The [Ca2+] dependence of the delays

between the laser pulse and the onset of release. The onset of compound release

(diamonds) was defined as the time when the EPSC intersected a threshold of -35
pA; the onset of quantal release (triangles) was defined as the mean first latency of

the mEPSCs. The mean delay predicted by the model between the [Ca2+] jump and
the release of the first transmitter quantum is shown as solid line. 250 µs were added

to the simulated delays in order to match the experimental data (see section 5.2.1.3).

4.3.3 Kinetic model of glutamate release

4.3.3.1   Release promoter model with five Ca2+ binding steps

The Ca2+ sensitivity of glutamate release was described in a kinetic model. This was

done mainly for two reasons. Firstly, the model may define limits regarding the

expected Ca2+ binding and unbinding rates of the Ca2+ sensor and thus its Ca2+ affinity.

This may help in identifying possible candidates for Ca2+ sensor molecule(s), which

play a key role in excitation-secretion coupling during rapid synaptic transmission.

Secondly, a model of glutamate release is required when the expected release evoked

by more complex [Ca2+] time courses is to be investigated. This is the case when, for

example, the amplitude of an idealized, ‘typical’ [Ca2+] transient is to be calculated,

which is assumed to be generated near releasable vesicles by the short opening of Ca2+

channels during presynaptic action potentials.
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The data in Fig. 4.8 (a,b) could be described satisfactorily with a model featuring five

identical Ca2+ binding steps and a final, Ca2+-independent fusion step (see section 2.3).

Our model was inspired by that of Yamada and Zucker (1992, their scheme II), in

which a release-promoting molecule could switch between an active and an inactive

state; in their model, the rate of release was proportional to the fraction of release

promoters residing in an activated state. Five Ca2+ binding steps were required to

model the steep slope of the release rate dependence on [Ca2+] in the range from 0.5 to

5 µM. It was possible to simulate the steep Ca2+ dependence for [Ca2+] lower than 10

µM and the relatively rapid saturation of release rates for [Ca2+] higher than 10 µM

with five identical Ca2+ binding steps, if depletion of the vesicle pool was taken into

account. Stated in more detail, the release of a fixed number of vesicles (readily

releasable pool size) could occur with a variable rate constant; the rate constant was

proportional to the occupancy of the activated release promoter. This activated state

could only be reached if the release promoter had previously bound five Ca2+. The

Ca2+ binding step was modeled to have a kon of 3×108 M-1 s-1 and a koff of 3,000 s-1,

corresponding to a dissociation constant of KD = 10 µM. The rate of rise and the

decay of release probability were largely determined by the Ca2+-independent

activation and inactivation steps of the release promoter (see section 5.3.1.1).

It should be noted that due to the great number of possible reaction schemes and

parameters, the above model is not unique. The stated parameters were not optimized

with, for example, a χ2-minimization of the modeled and experimental data. We also

simulated the experimental data with models previously used to describe the Ca2+

dependence of transmitter release in other synapses. For example, a sequential Ca2+

binding model, in which the affinity for Ca2 + successively increases with each

additional bound Ca2+ ion (Heidelberger et al., 1994; Schneggenburger and Neher,

2000) was similarly successful in describing the data, when the Ca2+ binding and

unbinding rates were adjusted appropriately (not shown). However, we preferred the

model description stated above, for several reasons. Firstly, it does not require Ca2+

binding steps of increasing affinity, where the first step has a high dissociation rate

constant and is therefore rather insensitive to modulation by the basal [Ca2+] levels.

Secondly, the time course of release is determined by the activation and inactivation

rate constants of the release promoter, rather than by the Ca2+ binding kinetics; it is

therefore relatively independent of the size of the [Ca2+] domain, which is also

observed experimentally (Yamada and Zucker, 1992; see also next  section and

section 5.3.1.1). Thirdly, the present model incorporates the concept of a release

promoter, whose occupancy determines the release rate constant of the releasable

vesicle pool. Thus, the model can principally account for the case that the fusion of a

single vesicle may
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Fig. 4.9: A comparison of release rates following action potentials and [Ca2+] jumps.
(a) A step elevation of [Ca2+] to 4.5 µM, (top trace) evoked an EPSC (EPSCexp, 4.5 µM,

bottom panel) that rises almost as fast as an action potential-evoked EPSC (EPSCexp,

AP). The action potential-evoked EPSC was aligned such that the putative peak of the

Ca2+ current coincided with the [Ca2+] jump (arrow). Calibration bars are shown in

(b). (b) Simulation of EPSCs evoked by a brief increase in the [Ca2+]. The time
course of the [Ca2+] transient was assumed to be the same as that of the measured

Ca2+ current during an action potential (top traces). It was scaled and used to drive
the kinetic release model to produce an EPSC (EPSCsim, AP) of the same amplitude as

observed during action potential-evoked release. A peak [Ca2+] transient of <10 µM
was sufficient to simulate action potential-driven release. The simulated EPSC was

shifted to the right by 250 µs (see section 5.2.1.3).

be promoted by several release promoting molecules. This is an attractive hypothesis

when considering the likelihood that a vesicle may contain more than one (SNARE or

other) protein complexes that may function as the vesicle’s release machinery.

4.3.3.2   Estimate of [Ca2+] during presynaptic action potentials

Next, the question was addressed how the typical [Ca2+] transient near releasable

vesicles can be described for action potential-evoked release.

A simple comparison of release rates observed during laser-evoked [Ca2+] jumps and

during afferent stimulation suggests that the required [Ca2+] during action potential-

evoked release is probably much lower than the hundreds of micromolar suggested

previously (Fig. 4.9 a). Since the action potential-evoked [Ca2+] transients have a

much faster decay, they are probably less efficient in triggering release than [Ca2+]

jumps to the same levels. Therefore, the Ca2+ sensor model was used to obtain an
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estimate of the [Ca2+] transient amplitude when the time course of the [Ca2+] transient

was rapidly decaying, as expected for physiological [Ca2+] transients.

It is likely that a vesicle is triggered by the overlapping [Ca2+] domains of several Ca2+

channels, because it was found previously in this synapse that a reduction in the open

probability of Ca2+ channels leads to a supra-linear decrease of the release probability

(Borst and Sakmann, 1999b). This indicates that the step-like nature of single channel

currents is smoothed by the stochastic opening of several channels, and does not

dominate the time course of the [Ca2+] transient near the vesicle (Meinrenken and

Sakmann, 2001). Therefore, it appears justified to approximate the time course of the

[Ca2+] transient near a synaptic vesicle by the time course of the whole-cell Ca2+

current, which was measured previously (Borst and Sakmann, 1998). The Ca2+ current

time course was calculated using a Hodgkin-Huxley model, as described by Borst and

Sakmann (1998). The Ca2+ current time course was used as a template for the local

[Ca2+] transient near the Ca2+ sensor of release. It was scaled and used to drive the

vesicle release model such that the amount of release matched the quantal content

experimentally observed during a single action potential (Fig. 4.9 b). Simulated

EPSCs were calculated by convolution of release rates predicted by the release sensor

model with the time course of the standard mEPSC.

When the Ca2+ sensor model was operated with a [Ca2+] transient that had a peak

amplitude of 9 µM, it predicted an EPSC of 20% normalized amplitude, very similar

to the experimentally observed average value. This indicates that most vesicles do not

experience [Ca2+] transients with amplitudes of hundreds of micromolar because, in

that case, the quantal content of action potential-evoked release would be much larger

than that observed experimentally.

It should be noted that the distance between vesicles and Ca2+ entry sites is probably

distributed in a certain interval, and is not the same for all releasable vesicles. This

means that the typical [Ca2+] transient for which the above estimate was calculated is

probably not what most vesicles see during an action potential. While some vesicles

located close to Ca2+ entry sites may indeed experience a [Ca2+] transient peak of

several tens or hundreds of micromolar, many other vesicles experience [Ca2+]

transients lower than the 9 µM stated above. It was shown recently that a hypothetical

arrangement of vesicles distributed randomly over a range of distances from a distinct

Ca2+ entry site provides a good description of many release characteristics observed

experimentally at this synapse (Meinrenken and Sakmann, 2001). Based on their

detailed simulations that take into account the Ca2+ sensitivity of release described

here, the authors conclude that the [Ca2+] transient amplitude seen by the majority of

vesicles docked to an active zone does not exceed 10 µM.
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4.3.3.3   Dependence of EPSCs on extracellular [Ca2+]

The release model was further tested regarding its suitability to predict other

experimental findings at the MNTB giant synapse. It has often been reported that the

time course of release probability during action potential-evoked release is not very

sensitive to the external [Ca2+] (Datyner and Gage, 1980; Parnas et al., 1986; Yamada

and Zucker, 1992; Borst and Sakmann, 1996). We tested the behavior of our model by

varying the amplitude of the [Ca2+] transients. More precisely, the amplitude was

scaled according to the relationship between Ca2+ influx and the external [Ca2+],

because Ca2+ influx partially saturates for external [Ca2 +] larger 2 mM

(Schneggenburger et al., 1999). The predicted release rates and modeled EPSCs are

shown in Fig. 4.10 (a). A comparison of the time course of the release rate at 0.25 and

2 mM external [Ca2+] shows that the time course of the release probability is almost

invariant at these external [Ca2+] levels (Fig. 4.10 b). In addition, it is in good

agreement with the time course of release probability measured in the Calyx of Held

synapse (Borst and Sakmann, 1996).

The 20-80% rise times and the delays of the modeled EPSCs exhibited a very low

Ca2+ dependence when external [Ca2+] was below 2 mM, but decreased for larger

external [Ca2+]. A Hill-type fit to the relation between the normalized peak amplitude

of the modeled EPSCs and the normalized Ca2+ influx yielded a maximal potentiation

factor Amax of 4.8, a power n of 3.8 and a half-maximal value K of 1.4 (Fig. 4.10 c),

compatible with the measured relation in this synapse (Amax = 5.4, n = 3.5 and K = 1.5;

Schneggenburger et al., 1999). Taken together, the present model is able to predict

many features of glutamate release in the Calyx of Held at this developmental stage,

both during action potential-evoked [Ca2+] transients and during laser-evoked [Ca2+]

jumps. Major refinement of the model may be expected when (use-dependent)

replenishment of the releasable pool size and possible inhomogeneities of the

vesicles’ Ca2+ sensitivity, which may have remained undetected to now, are taken into

account. For example, cyclic AMP may facilitate presynaptic glutamate release by

increasing the number of vesicles in the readily releasable pool (Sakaba and Neher,

2001a). Another possible mechanism of regulating the release probability may be the

presynaptic [Ca2+] levels prior to the stimulation. This will be analyzed in the next

section.
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Fig 4.10: Predictions of the Ca2+ sensor model for varying external [Ca2+]. (a)

Modeled release rates, specified for the whole terminal, with different external
[Ca2+]. External [Ca2+] was (in mM): 10, 4, 2, 1, 0.5 and 0.25. Saturation of Ca2+

influx at high external [Ca2+] was modeled with a Michaelis-Menten relation
(Schneggenburger et al., 1999, their Eq. 2). The release rates at 0.5 and 0.25 mM

[Ca2+]ext are not resolved at this scaling. (b) Modeled release rates at [Ca2+]ext
 = 0.25

mM and 2 mM. The release rate at [Ca2 +]ext
 = 0.25 mM was scaled 622-fold. It

exhibits a time course almost identical to that at [Ca2+]ext
 = 2 mM. Also shown is a

typical delay histogram constructed from miniature EPSCs evoked by afferent
stimulation in [Ca2+]ext

 = 0.25 mM (Borst and Sakmann, 1996). (c) Dependence of

modeled EPSC 20-80% rise times (triangles), delays (squares) and amplitudes
(diamonds) on relative Ca2+ influx, on lin-log and log-log scales, respectively. The

Ca2+ influx at [Ca2+]ext = 2 mM corresponds to 1. For Ca2+ influx below that, modeled
rise times and delays are relatively constant. Bottom: The EPSC amplitude-Ca2+

influx relation was fit (solid line) with a Hill-equation of the form A  = Amax

JCa
n/(JCa

n+Kn), where A is the EPSC amplitude normalized to the value at 2 mM, Amax

the maximal potentiation factor, JCa the Ca2+ influx at a given [Ca2+]ext and n the Hill-

coefficient (compare to Schneggenburger et al., 1999, their Fig. 3).
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4.3.4 Dependence of glutamate release rates on resting [Ca2+] level

When the presynaptic terminal was dialyzed with a caged Ca2+ solution that also

contained Fura-2-FF, it was possible to estimate the presynaptic [Ca2+] present before

the UV laser pulse was applied. Since Fura-2-FF has a KD for Ca2+ of 8.9 µM, the

fraction of indicator bound to Ca2+ varies only little at submicromolar Ca2+ levels, and

is therefore difficult to measure accurately. Nevertheless, the average [Ca2+] in the

terminal before the UV flash ([Ca2+]pre-flash), measured 15 to 5 ms before the UV pulse,

was somewhat larger than zero, as indicated by a fluorescence ratio Rpre-flash that was

larger than the minimal ratio Rmin (Fig. 4.11 a). It was not predictable from the

composition of the presynaptic solution, how much the measured Rpre-flash would

deviate from Rmin, and its variability probably originated in part from errors in the

subtracted fluorescence background. Therefore, the data points obtained with Fura-2-

FF were grouped according to their [Ca2+]pre-flash into two classes, in order to detect a

possible dependence of the release on [Ca2+]pre-flash levels. First, the laser-evoked EPSC

amplitudes, normalized to the cumulative EPSC amplitude, were analyzed (Fig. 4.11

b). In the ‘high [Ca2+]pre-flash group’ the normalized amplitude was reduced by

approximately 50%. This may indicate that the size of the releasable vesicle pool was

diminished, or that a decrease in release probability led to more asynchronous release

and therefore less amplitude summation of the released quanta. Next, the peak release

rates per vesicle were measured as described earlier and plotted versus the amplitude

of the [Ca2+] jump (Fig. 4.11 c). This time, the combined set of the ‘low [Ca2+]pre-flash’

and the ‘high [Ca2+]pre-flash’ group was fit with a Hill-equation (see legend of Fig. 4.10

c). Thus, it was observed that the peak release rates measured in the presence of high

[Ca2+]pre-flash are also reduced compared to the ‘low [Ca2+]pre-flash’ experiments. The

residuals of the data of both groups from the common regression curve were plotted

versus the estimated [Ca2+]pre-flash (Fig. 4.11 d). A regression analysis of the combined

data revealed a negative correlation between the residuals and the basal [Ca2+] level,

indicating that terminals with increased [Ca2+]pre-flash tend to release glutamate at

reduced rates.

This finding may be explained by a steady-state reduction of the vesicle pool size if

the spontaneous release rate before the UV pulse, which has not yet been analyzed, is

increased during elevated basal [Ca2+] levels. Alternatively, a regulatory mechanism

such as adaptation of release-ready vesicles or accumulation of re-supplied vesicles in

a reluctant state may reduce the average release probability at this synapse during

increased basal [Ca2+] levels (Hsu et al., 1996; Wu and Borst, 1999). While it is
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 Fig. 4.11 : Effect of [Ca 2+]pre-flash on peak release rates. ( a) A histogram of pre-flash
fluorescence ratios (F352/F380) of Fura-2-FF. The data are both from the experiments

displayed in Fig. 4.8 for [Ca2+] jumps between 1.5 and 18 µM and from experiments
discarded because of increased [Ca2+]pre-flash. The average pre-flash (F352/F380) deviates

from the minimal ratio (Rmin) measured with solution C. Experiments with a pre-flash
(F352/F380) <0.755 and >0.755 (corresponding to a [Ca2+]pre-flash <300 nM and >300

nM) were classified as ‘low’ and ‘high’ [Ca2+]pre-flash experiments, respectively. The

latter group was not included in Fig. 4.8. (b) The amplitude of flash-evoked EPSCs,
normalized as described in the legend of Fig. 4.6, is plotted versus the [Ca2+] jump

amplitude. The ‘low’ and the ‘high’ [Ca2+]pre-flash groups were fit separately (dotted

and dashed curves). The normalized EPSC amplitudes of the ‘high’ [Ca2+]pre-flash

group were about 50% smaller than those of the ‘low’ [Ca2+]pre-flash group. (c) The
peak release rates per vesicle of the two groups are plotted versus the [Ca2+] reached

after the flash on log-log coordinates and fit as one data set with a Hill-type relation

(K  = 11 µM, n  = 3.1). The peak release rates obtained in the ‘high’ [Ca2+]pre-flash

experiments are smaller than the release rates obtained at low [Ca2+]pre-flash. (d) The

residuals of the fit in (c) are plotted versus the pre-flash [Ca2+] levels measured in the
same experiments. The data are negatively correlated (ρPearson = -0.72), as indicated

by the solid line, suggesting that peak release rates are reduced at increased basal

[Ca2+] levels.

currently difficult to distinguish between these possibilities, an analysis of the

dependence of the cumulative amount of spontaneous release on submicromolar

[Ca2+] levels prior to the first UV pulse may be helpful to say more about the

underlying mechanisms.
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5. Discussion

5.1 Summary

During synaptic transmission, the presynaptic action potential couples to the

biochemical release process by the opening of Ca2+ channels and Ca2+-dependent

activation of a release sensor that triggers the release of transmitter. Here, the

dependence of transmitter release on intracellular [Ca2+] was determined in a

glutamatergic calyx-type synapse in slices of the rat brainstem. Because of the fast

speed of glutamatergic synapses, an electrophysiological setup was equipped with a

rapid fluorescence detection system and a short-pulsed UV laser in order to both

evoke and measure uniform [Ca2+] elevations on a time scale comparable to that of the

release process. The frequency responses of the electrophysiological and optical

recording system were analyzed with appropriate test signals. The kinetics of UV

laser-induced Ca2+ uncaging were analyzed in microcuvettes and quantified with a

numerical kinetic model.

Photolysis of caged Ca2+ and pre- and postsynaptic whole-cell recordings were

performed to determine the Ca2+ sensitivity of release in the absence of sharp spatial

concentration gradients, which are expected to occur during action potential-evoked

release (Ca2+ microdomains). Prior to UV-induced [Ca2+] jumps, the size of the readily

releasable vesicle pool and the release rate evoked by presynaptic action potentials

were measured using afferent stimulation of the intact terminal, indicating a pool size

of ca. 800 vesicles. Following this, the terminal was dialyzed and the releasable

vesicle pool was challenged with [Ca2+] jumps. A homogeneous rise in the

presynaptic [Ca2+] to 1 µM resulted in a clearly measurable increase in release. The

peak release rates depended on presynaptic [Ca2+] with more than the fourth power. A

[Ca2+] jump to 30 µM or more depleted the releasable vesicle pool in less than 0.5 ms.

A kinetic model was devised to quantify the release rate-[Ca2+] relation measured in

this synapse type. The model was used to estimate the [Ca2+] transient during action

potential-evoked release, suggesting that a brief elevation of [Ca2+] to less than 10 µM

would be sufficient to reproduce the physiological release pattern. Furthermore, the

model predictions were consistent with earlier experimental results at this synapse

with respect to the dependence of EPSC size and time course on external [Ca2+].

Finally, increases in the presynaptic [Ca2+] measured before the [Ca2+] jump were

observed to reduce the release rates.
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5.2 Methodological aspects

5.2.1 Optically controlled [Ca2+] elevations in small volumes

5.2.1.1   Homogeneity of the evoked [Ca2+] jump

The analysis of the Ca2+ sensitivity of release rests on the assumption that the UV

pulses evoked uniform [Ca2+] elevations throughout the presynaptic terminal. To

assess whether this assumption holds in the lateral directions, the distribution of

uncaged fluorescein was recorded briefly after a laser pulse. It was verified that the

pulse energy was distributed homogeneously over the region of interest, which

circumscribed the presynaptic terminal (Fig. 3.4). In the axial direction, one might

expect that the pulse intensity would rapidly decrease because of absorption by the

Ca2+ cage and indicator. Therefore, the extent to which the accumulation of absorbing

molecules in the presynaptic terminal leads to a reduction in the pulse intensity was

estimated. The molar extinction coefficient of DM-nitrophen is 4,300 M-1 cm-1

(Kaplan and Ellis-Davies, 1988) and 22,000 M–1 cm-1 for Mag-Fura-2 or 33,000 M–1

cm-1 for Fura-2-FF (Molecular Probes, TefLabs, specification). The calyx-shaped

terminal has a thickness of ~1-2 µm and a diameter of ~17 µm (unpublished

observation). Therefore, the cumulative thickness of presynaptic structures filled with

DM-nitrophen (9 mM) and Ca2+ indicator (1 mM) parallel to the optical axis is well

below 10 µm. Using these numbers as a conservative estimate, Lambert-Beer’s law

(Eq. 2.29) predicts that after passage through the test volume the pulse energy will be

attenuated by, at most, 15% compared to the incident energy. This indicates that the

assumption of homogeneous [Ca2+] elevations throughout the presynaptic terminal is

reasonable.

5.2.1.2   Estimate of error for ratiometric [Ca2+] measurements

The quality of the present estimate for the Ca2+ sensitivity of glutamate release

critically depends on the ratiometric measurement of [Ca2+]. Therefore, some of the

possible sources of error will be considered.

The measurement of fluorescence ratios with ratiometric dyes is a common tool to

measure intracellular [Ca2+] levels. Errors may be introduced if the recorded

background fluorescence does not correspond to the true background fluorescence

that adds to the indicator signal. Because the use of a small photodiode did not allow

for simultaneous background measurement in an adjacent region during the sweep,

background fluorescence was measured from several neighboring regions after the
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Fig. 5.1: Error estimate of the ratiometric [Ca2+] measurement. (a) The conversion

from fluorescence ratios measured with Mag-Fura-2 to [Ca2+] is shown in the
relevant range of the experiments (solid line). The ±1σ levels are also indicated

(dashed lines). (b) Same as in (a), but for Fura-2-FF.

experiment and averaged. Since most background signal is expected to arise from

spilled indicator during the approach of the open patch pipette, the deviation would be

most severe if fluorescent measurements were performed immediately after the cell-

attached configuration had been established. Photolysis sweeps were usually recorded

~10 minutes or more after the presynaptic pipette had been attached to the terminal.

Therefore, spilled indicator has probably been washed out, unless it was immobilized

in some other way. Still, variations in slice autofluorescence are likely to contribute to

the variability in fluorescence measurements of the [Ca2+].

The conversion of fluorescence ratios to [Ca2+] requires the knowledge of the

dissociation constant of the Ca2+ indicator. It should be noted that a systematic error in

the KD measurement propagates directly into the measured [Ca2+] levels. It is known

that the indicator affinity for Ca2+ may vary depending on, for example, the ionic

environment, pH and temperature. Therefore, the KD and Rmin and Rmax were measured

directly in presynaptic terminals, under similar ionic conditions and with a highly

buffered [Ca2+]. The measurement of the KD relies on the assumption that the [Ca2+]

does not change when the solution is introduced into the terminal. The equilibrium of

the Ca2+ buffering, however, may be perturbed by the Ca2+ transport mechanisms in

the terminal membrane. Therefore, external [Ca2+] was reduced and the internal [Na+]

was increased to minimize the [Na+] and [Ca2+] gradients that drive the Na+/Ca2+-

exchanger (Table 3.1, Solution E).

The measured mean values of the dissociation constants fell into a range that has been

measured previously in other preparations (KD, Mag-Fura-2: 20 – 100 µM, Thomas et al.,

1993; Baylor and Hollingworth, 1998; Golovina and Blaustein, 1997; Naraghi, 1997);

[Ca2+] (µM) [Ca2+] (µM)
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(KD, Fura-2-FF: 5 – 30 µM, London et al., 1994; Golovina and Blaustein, 1997; Xu-

Friedman and Regehr, 1999; Schneggenburger and Neher, 2000).

The random error in the [Ca2+] measurement was estimated using standard error

propagation. Since the background fluorescence was typically 5-10% of the indicator

signal recorded from the synapse, it was estimated that the error in the fluorescence

ratio was 10%. Using the errors in the measured calibration constants KD, Rmin and

Rmax, the 1σ-levels for the conversion of fluorescence ratios into [Ca2+] levels were

calculated (Fig. 5.1). The 1σ-error in the estimated [Ca2+] was <50%, when [Ca2+]

measured with Mag-Fura-2 exceeded 12 µM, and when [Ca2+] measured with Fura-2-

FF exceeded 3 µM. It should be noted that data measured with these two dyes fell into

the same region in the peak release rate-[Ca2+] plot (Fig. 4.8) in the range between 5

and 15 µM.

5.2.1.3   Comparison of predicted release rates with [Ca2+] steps and [Ca2+] spikes

It is known that Ca2+ uncaging with short laser pulses does not produce step-like

jumps in the [Ca2+], but leads to a rapid rise in [Ca2+], dominated by the decay rate of

the DM-nitrophen intermediates and the Ca2+ dissociation rates of the photoproducts

(Ellis-Davies et al., 1996; Escobar et al., 1997). The decay of this Ca2+ spike is

governed by the Ca2+ association rates of the buffers present, which comprise the Ca2+

indicator, unphotolyzed DM-nitrophen and, if applicable, ATP, in the solutions used

in this study. Since the kinetic model of the Ca2+ sensor for glutamate release was first

adjusted with rectangular [Ca2+] steps, it was important to test whether the derived

Ca2+ sensor model also predicts the measured release rates, when it is driven with

more realistic Ca2+ spike waveforms. Therefore, the [Ca2+] time course for a given

measured [Ca2+] level was calculated with the Ca2+ buffers known to be present in the

solution, and release rates and delays were calculated with the Ca2+ sensor model (Fig.

5.2), with the same kinetic constants used earlier to calculate rates and delays with

[Ca2+] steps (Fig. 4.8). Because the duration of the modeled [Ca2+] spike with Fura-2-

FF was systematically shorter than that modeled with Mag-Fura-2 (Fig. 5.2 a,b), the

experimental data were re-grouped with respect to the indicator used in the

experiment. When the Ca2+ sensor model was driven with Ca2+ spike waveforms, it

predicted peak release rates very similar to the measured ones for both indicator

conditions (Fig. 5.2 (a,b), and (c,d) upper panels). The model predicts slightly higher

release rates in the case of Mag-Fura-2 than in the case of Fura-2-FF in the range from

2 to 15 µM. This may be because Fura-2-FF has a ~3-fold lower KD
 for Ca2+ than

Mag-Fura-2, and thus, the fraction (α) of DM-nitrophen photolyzed must be ~3-fold

larger in the
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Fig. 5.2: Effect of the Ca2+ uncaging time course on modeled release rates. (a)

Comparison of modeled release rates, specified per vesicle, calculated with a
rectangular [Ca2+] jump (dashed lines), and with the Ca2+ spike time course predicted

by the photolysis reaction scheme (solid lines). Average [Ca2+] between 0.4 and 0.8
ms is 50 µM, measured and modeled with Mag-Fura-2 and solution A1. (b) Same as

in (a), but with an average [Ca2+] of 5.02 µM in the interval [0.8, 2.7] ms. Measured

and modeled with Fura-2-FF and solution B. (c) and (d) Experimentally measured
peak release rates and delays (diamonds), grouped with respect to the used dye. Same

experimental data as in Fig. 4.8. Solid lines indicate the peak release rates and delays
predicted by the kinetic Ca2+ sensor model, when the more realistic Ca2+ spike

waveforms were used to simulate the release time course. Experimental [Ca2+] values
were obtained by averaging the [Ca2+] measured during the rising phase of the EPSC

(e.g. [0.5,1.0] ms for a [Ca2+] jump to 25 µM). [Ca2+] values used to plot simulated

peak release rates and delays were obtained by averaging the simulated [Ca2+] in the
same intervals as the experimentally measured [Ca2+] records for a given [Ca2+] level.

presence of Fura-2-FF than with Mag-Fura-2 to obtain similar measured [Ca2+] levels.

This, in turn, means that after a small [Ca2+] jump in the case of Mag-Fura-2, a larger
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fraction of unphotolyzed DM-nitrophen is present to buffer the briefly increased

[Ca2+] than with Fura-2-FF, resulting in a more strongly decaying predicted [Ca2+] and

a lower measured [Ca2+] in the presence of Mag-Fura-2. Interestingly, this difference

in peak release rates in the presence of different indicators is also observed in the

experimental data (Fig. 5.2 c,d).

The modeled delays between the laser pulse and the onset of release were more

sensitive to the presence of Ca2+ spikes (Fig. 5.2 c,d, lower panels), but a considerable

discrepancy between modeled and measured values was not observed. It should be

stressed again that the Ca2+ dependence of modeled and measured delays agreed well

only in relative terms; when comparing the absolute values, the experimental delays

were about 250 µs larger than the modeled delays. This shift was added to all

modeled delay values in the Fig. 4.8, 4.9 and 5.2. What might be the reason for this

discrepancy? The Ca2+ sensor model features a fast Ca2+ association rate constant

(3×108 M-1 s-1), which was chosen to model the steep increase in release rates over

roughly four orders of magnitude when [Ca2+] varied between 0.5 and 15 µM. If the

chosen association rate was smaller, the modeled delays became larger, but it became

difficult to model the strong Ca2+ dependence of release rates with Ca2+ association

rate constants below 1×108 M-1 s-1. Other factors may contribute to the discrepancy in

delays. First, it is difficult to obtain a measure to compare modeled and experimental

delays. We chose an amplitude threshold of -35 pA for the experimental values,

whereas the modeled delays were calculated as the time when the release rate integral

equaled one vesicle. Probably, an amplitude of –35 pA during compound release at a

holding potential of –30 mV requires the release of more than one vesicle, so that the

experimental delays would be biased towards larger values. Second, the model does

not include biochemical steps that should occur between the activation of the release

promoter molecule and the opening of postsynaptic AMPA receptors. These steps,

which comprise conformational changes of the release machinery, the fusion of

vesicles with the presynaptic membrane, the discharge and diffusion of glutamate

from the presynaptic membrane across the synaptic cleft, and the activation reaction

of the AMPA receptors, may further contribute to the delay observed in our

experiments. For example, the time constant for transmitter discharge through the

putative fusion pore of a synaptic vesicle was estimated to be 100 µs (Almers and

Tse, 1990), illustrating that the order of magnitude of the observed discrepancy is not

unexpected. The biochemical steps following Ca2+ binding to the release sensor are,

however, difficult to estimate quantitatively, because many parameters, for example

regarding the time scale of the fusion reaction, are not known.
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The previous analysis of the impact of Ca2+ spikes on the release rate model depends

on the kinetic parameters chosen to model the Ca2+ spikes. The Ca2+ spike time course

was modeled using rate constants previously published, if available (Ellis-Davies et

al., 1996; Escobar et al., 1997; Ayer and Zucker, 1999). In our modeling, the Ca2+

spike ratio depended to a large degree on the decay rate of the DM-nitrophen

intermediates and on the Ca2+ dissociation rate constant of the photoproduct. If these

constants were much larger than given in the studies mentioned above, larger Ca2+

spike ratios would be encountered. While the intermediate decay rate was measured

directly (Ellis-Davies et al., 1996), the photoproduct’s Ca2+ dissociation rate was

deduced as (kon × KD) from Ca2+ association rate measurements. Probably the best

measurement of the Ca2+ uncaging rate is given by Ellis-Davies et al. (1996, Fig. 4) in

which the Ca2+-sensitive indicator fluorescence reaches a half-maximal value after

~20-25 µs. Although our model of Ca2 + uncaging kinetics features two decay

pathways of DM-nitrophen and uses a photoproduct Ca2+ dissociation rate constant of

90×103 M-1 s-1, similar to that published in Escobar et al. (1997) and Xu et al. (1997)

but ~2.7-fold smaller than that of Ellis-Davies et al. (1996), it is compatible with the

fast rising phase of the [Ca2+] described by the latter authors.

Nevertheless, the Ca2+ spike model is influenced by quantities difficult to measure or

not known. For example, endogenous buffers, which are present in the presynaptic

terminal (Helmchen et al., 1997) but not in the cuvette experiments, cannot be taken

into account quantitatively, because their binding rates have not been determined in

the Calyx of Held synapse. They are expected to further damp the initial Ca2+ spike, if

the association rate constant is as fast as that estimated in chromaffin cells (1x108

M–1 s-1, Xu et al., 1997). Finally, it should be noted that, in the present study, the

experimentally observed glutamate release rates were similar for similar measured

[Ca2+] under different Ca2+ buffer conditions (solutions A1-3 and B), in which the Ca2+

spike ratio is predicted to differ considerably. This suggests that the release rates are

mostly controlled by the sustained measured [Ca2+] levels and not by the variable and

brief overshoot in [Ca2+].

An alternative approach to evoke UV-induced [Ca2+] jumps would be the use of light

sources with a longer pulse duration than that of the nanosecond Nd:YAG laser. For

example, UV flash lamps have been used extensively to uncage Ca2+ in muscle (Rapp,

1998), in endocrine cells (Neher and Zucker, 1993), and in presynaptic terminals

(Delaney and Zucker, 1990; Heidelberger et al., 1994). Typically, the flash lamp

provides a high intensity UV flash of 1-2 ms duration. This has the advantage that a

higher fraction of the Ca2+ cage can be photolyzed, because the pulse duration is much

longer than the lifetime of the excited state of the chelator molecule (~10-8 s), allowing
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for multiple excitation cycles (McCray et al., 1992). In addition, the rising phase of

the [Ca2+] is predicted to be slower than the [Ca2+] rising phase with nanosecond laser

pulses, because the photolysis energy is distributed over the time window of the flash

duration, and therefore not determined by the intrinsic dissociation kinetics of the Ca2+

cage. Early experiments with a xenon flash lamp (Rapp optoelectronics, Germany,

measured pulse duration: ~1.5 ms) revealed, however, that the EPSCs had often

already started in the interval of the UV flash delivery. This prevented the

fluorometric measurement of [Ca2+] levels before and during the EPSCs, and made it

difficult to estimate the [Ca2+] that underlay the observed release rates, because the

onset of release apparently coincided with the rising phase of the [Ca2+]. The recent

development of a UV flash lamp with a short pulse width (<100 µs, FlashMic, Rapp

optoelectronics) may improve this situation. It will be interesting to compare release

rates measured with this system with the release rates obtained with short UV laser

pulses.

5.2.2 Methods for measuring exocytosis

5.2.2.1   Postsynaptic currents, other methods

In the present study, the activation of postsynaptic glutamate receptor channels of the

AMPA type was used to quantify the release of glutamate from presynaptic vesicles.

In principle, this is a useful measure for presynaptic release rates because AMPA

receptor channels exhibit rapid activation kinetics in response to fast glutamate

application (Jonas and Spruston, 1994). Furthermore, their location at the postsynaptic

soma permits recording of glutamate-evoked AMPA currents with little low pass

filtering by the postsynaptic membrane compared to dendritic synapses in other

preparations. In the latter case, the electrical filtering of synaptic currents introduced

by the larger electrotonic distance between the input and the recording site is much

more severe. Other methods to measure rapid exocytosis have been developed

(reviewed by Angleson and Betz, 1997). They comprise time-resolved measurements

of presynaptic capacitance changes using a lock-in amplifier (Lindau and Neher,

1988; Heidelberger et al., 1994). In this method, net changes in capacitance of the

terminal membrane are measured while simultaneously stimulating exocytosis. The

rapid increases of terminal capacitance can be associated with the insertion of vesicle

membrane into the plasma membrane and the release of glutamate (von Gersdorff et

al., 1998). However, only net capacitance changes are reported by this method. It has

been found that, in endocrine cells, non-specific capacitance increases, which are not

accompanied by transmitter release, may contribute to the signal (Oberhauser et al.,

1996). Furthermore, the capacitance increase due to vesicle fusion may be
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counteracted by a concurrent decrease in capacitance due to endocytosis, making the

derivation of release rates from capacitance measurements more complicated. Another

method to measure transmitter release is the amperometric detection of oxidizable

transmitters such as serotonine or catecholamine (Wightman et al., 1991). In this

method, a carbon fiber electrode is brought into close proximity of the releasing cell.

A release event is then detected as a small current in the electrode, originating from

the oxidization of transmitter, which has diffused to the electrode surface. This

method has the advantage that transmitter release is detected directly, with high

spatial resolution because of the rapid dissipation of the transmitter cloud from more

distal release sites. However, it is not applicable to glutamate, which does not give

rise to an oxidization current, and is probably difficult to implement in the MNTB

giant synapse because the pre- and postsynaptic compartments are tightly coupled by

stabilizing contact zones (puncta adherentia), preventing the easy isolation of the

presynaptic release face. Finally, optical tools have been used to measure presynaptic

vesicle fusion, using styryl membrane dyes such as FM1-43 or FM2-10 (Betz et al.,

1992; Klingauf et al., 1998). There, the releasable pool of vesicles is stained with the

indicator, which accumulates in the membrane of endocytosed vesicles during a

loading period. After wash-out of the extracellularly applied indicator, the

fluorescence at putative release sites decreases in a stimulus-dependent fashion. This

is interpreted as the fusion of stained vesicles and the subsequent wash out of the

membrane dye during stimulated exocytosis. This method has been used extensively

to characterize synaptic vesicle cycling (Cochilla et al., 1999) and was also employed

to perform optical quantal analysis in which the release probability of vesicles at

single boutons was estimated (Ryan et al., 1997; Murthy et al., 1997). For the

measurement of the kinetics of release it is of limited use, because the optical signal is

governed by the departition rate of the indicator from the fused membrane, which is

much lower than the release rate encountered during rapid synaptic exocytosis.

In summary, the MNTB giant synapse offers a favorable situation in which the fusion

of synaptic vesicles and subsequent glutamate release can be measured with high

temporal resolution by measuring postsynaptic, AMPA receptor-mediated EPSCs.

5.2.2.2   Saturation of postsynaptic receptors

Vesicle release rates were calculated from compound EPSCs using the average time

course of the miniature EPSC generated by the release of a single transmitter packet.

This analysis is based on the assumption that during compound release, the miniature

EPSC waveform is not altered by the synchronous release of many transmitter quanta.

To prevent a change of the mEPSC waveform because of desensitization,

cyclothiazide was added to the external solution, which slowed the decay of EPSCs
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(compare Fig. 4.4). Nevertheless, the assumption of constant mEPSC waveforms may

be inadequate if the glutamate concentration during multivesicular release

accumulates in the synaptic cleft, such that the postsynaptic receptors become

saturated with transmitter. If a transmitter packet is released onto an ensemble of

receptors partially saturated by previously released glutamate, the resultant mEPSC

will probably have a similar rise time but a reduced amplitude. Evidence from other

synapses suggests that multivesicular release may lead to accumulation of transmitter

in the synaptic cleft, conditioning a high channel open probability and saturating the

postsynaptic release detector (Tong and Jahr, 1994; Otis et al., 1996b; Silver et al.,

1996). To get an estimate for the degree of saturation under our experimental

conditions, experiments were performed in which a rapidly dissociating competitive

antagonist (kynurenic acid, KYN) was used to partially inhibit the binding of

transmitter to the receptors (Clements et al., 1992; Diamond and Jahr, 1997). In the

presence of KYN (1 mM), cumulative EPSC amplitudes were reduced to 58 ± 4 % (n

= 3). The similarity of the time course of EPSC trains in the presence and absence of

KYN suggests that the considerable decrease in EPSC amplitude during the first ~10

action potentials is most likely mediated by the exhaustion of a presynaptic vesicle

pool, and less by postsynaptic receptor saturation (Fig. 5.3 a). When EPSCs were

elicited by large [Ca2+] jumps to ~40 µM in the presence of KYN, they exhibited a

similar rise time and a faster decay than those measured under control conditions in

earlier experiments (Fig. 5.3 b,c). Their peak amplitude was (1.32 ± 0.19)-fold (n = 3)

larger than the cumulative EPSC amplitude in the presence of KYN in the same

experiment, whereas in the control experiments, the peak amplitude of EPSCs evoked

by [Ca2+] jumps >15 µM was (1.03 ± 0.06)-fold (n = 8) larger than the respective

cumulative EPSC amplitude, both measured in the absence of KYN (Fig. 5.3 d). This

indicates that postsynaptic receptors are unlikely to be saturated dramatically during

large EPSCs, because in that case the laser-evoked EPSC in the presence of KYN

should exceed the cumulative EPSC amplitude to a larger degree than observed here,

since more receptors would become available by the rapid dissociation of KYN (koff =

6000 s-1, Diamond and Jahr, 1997).

On the other hand, recent studies suggested that at the MNTB giant synapse, the

estimated size of the mEPSC amplitude may be reduced by 50% or more in the

presence of cyclothiazide during glutamate release evoked by voltage steps. This led

to much larger estimates of 2000 – 5000 for the number of vesicles in the releasable

pool (Neher and Sakaba, 2001; Sakaba and Neher, 2001b; Sun and Wu, 2001). It was
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Fig. 5.3: Absence of profound saturation of postsynaptic glutamate receptors. (a)
Trains of EPSCs evoked by afferent stimulation (200 Hz) in the absence and

presence of the rapidly dissociating antagonist kynurenic acid (KYN, 1mM). The

time course of the EPSC train is similar under both conditions, while the amplitudes
are reduced to ~50 % in the presence of KYN. (b) EPSCs evoked by [Ca2+] jumps to

40-50 µM, from two different experiments. The EPSCs were scaled to the cumulative
EPSC amplitude measured under the same pharmacological conditions as the laser-

evoked EPSCs, i.e. in the presence and absence of KYN, respectively. The rise time
is very similar, but the peak is slightly larger in the presence of KYN. (c) Average of

EPSCs evoked by [Ca2+] jumps >40 µM in the absence (n = 3) and presence of KYN

(n = 2). EPSCs were scaled to the peak current. KYN accelerates the decay of the
EPSC. (d) Comparison of the ratio between laser-evoked EPSC peak amplitudes and

the cumulative EPSC amplitude, both measured in the absence (control, n = 8) and
presence of KYN (n = 3), respectively, for [Ca2+] jumps >15 µM. The increase in the

presence of KYN is not significant (two-tailed t-test, P>0.05). All experiments were

done in the presence of CTZ (100 µM) to inhibit receptor desensitization.

furthermore reported that this pool may comprise vesicles with heterogeneous release

probabilities when challenged with voltage steps (Sakaba and Neher, 2001b). Thus,

the phasic release observed during action potential trains may preferentially draw

from the more sensitive component of this pool, which may partially explain the

difference between our pool size estimate and those of the later studies.

How would a reduction in quantal size during compound release to, for example, 50%

of the isolated mEPSC amplitude affect our estimate for the Ca2+ sensitivity of the

release sensor and for the [Ca2+] transient? In a simplified picture, in which all quanta

experienced the same reduction of mEPSC amplitude during compound EPSCs, the

number of vesicles in the releasable pool would be underestimated by a factor of two
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by the method described in section 4.2.3. Also, the peak release rates during EPSCs

would be underestimated by the same factor, because they are inversely proportional

to the mEPSC amplitude used for the deconvolution method. Therefore, the error

would cancel out by dividing the calculated peak release rate by the estimated number

of vesicles in the releasable pool, which was done to obtain the release rate per vesicle

specified in (Fig. 4.8). Also, the Ca2+ sensor model would remain unaffected because

the predicted peak release rates are directly proportional to the initial number of

releasable vesicles by virtue of Eq. 2.34. If the same amount of saturation is assumed

for the release evoked during an action potential, the peak release rates would be

underestimated correspondingly, but the simultaneous underestimate in the number of

releasable vesicles would compensate for that error such that one would expect a

similar [Ca2+] transient of around 10 µM to be required for the release rates obtained

with a reduced mEPSC amplitude.

Although this picture shows that, if postsynaptic receptors were moderately saturated,

some of the introduced errors still counteract each other favorably for the present

analysis, it is probably oversimplified, since different degrees of saturation would

likely occur at the start and the end of the release period. Therefore, it is necessary to

further investigate the contribution of saturation and to consider the role of

heterogeneous sub-pools in shaping the EPSC time course, in particular during later

phases of the EPSC. Alternatively, it would be desirable to obtain an independent

measure of release rates that is not affected by postsynaptic receptor properties. A

promising route is the optical detection of synaptic vesicle release, which has been

demonstrated recently in retinal bipolar cells, using evanescent wave microscopy

(Zenisek et al., 2000). However, as discussed above, optical methods are still too slow

because of the limiting biochemical properties of the fluorescent vesicle dyes. On the

other hand, genetic vesicle markers such as green fluorescent protein-(GFP)-

synaptobrevin constructs may be used to follow the functional state of a vesicle

optically with improved temporal resolution (Miesenböck et al., 1998;

Sankaranarayanan and Ryan, 2001). For example, GFPs can be used as a pH sensor

that reports the acidification state of a vesicle. If the vesicle releases its contents into

the extracellular space, its lumen will be simultaneously neutralized, which can be

used to detect release events. It is expected that the underlying optical signal is

dominated by the deprotonation reaction of the fluorophore, which should be

considerably faster than the departitioning time constant of styryl dyes from lipid

bilayers. Thus, optical tools should complement electrophysiological approaches to

elucidate rapid release processes at this and other synapses.
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5.3 Physiology

5.3.1 The model of glutamate release

5.3.1.1   General remarks

The experimental study of the Ca2+ sensitivity of glutamate release at the MNTB giant

synapse was complemented by a kinetic model of the Ca2+ sensor that triggers the

fusion of the presynaptic vesicle. This model was useful in describing the

experimental data in quantitative terms, and in particular in obtaining an estimate of

the typical [Ca2+] that is reached at most of the release sites during a presynaptic

action potential. The model yielded an estimate of the Ca2+ affinity of the individual

binding site of ~10 µM. Regarding the Ca2+ binding reaction, the model is similar to

previous release models, which required the sequential binding of three to four Ca2+

ions before vesicle fusion is triggered (Heidelberger et al., 1994; Heinemann et al.,

1994). However, because the experimentally obtained release rates increased with a

power dependence on [Ca2+] larger than four, the fit to the data was clearly improved

when the model comprised another, fifth sequential Ca2+ binding step. The present

model also differed from previous models, because it featured Ca2+-independent

activation and inactivation steps, which may be interpreted as transition time

constants for the sensor to change its conformation, thus catalyzing the fusion of a

vesicle. Different time courses of Ca2+ binding and of a subsequent conformational

change have been reported previously, for example for troponin C (Hazard et al.,

1998). The actual depletion of the releasable vesicle pool was then modeled in a

second scheme, in which the maximal release rate constant (ρmax) was scaled with the

occupancy of the Ca2+ sensor residing in the activated, release-promoting state. This

modification was mainly introduced because many experimental data suggest that the

time course of the release probability is quite insensitive to the external [Ca2+], and

therefore to the intracellular [Ca2+] reached during action potential-evoked release

(Datyner and Gage, 1980; Parnas et al., 1986; Yamada and Zucker, 1992; Borst and

Sakmann, 1996). This suggests that the release time course is controlled not by the

Ca2+ binding kinetics of the Ca2+ sensor, but rather by Ca2+-independent processes.

This experimental observation could be emulated by introducing Ca2+-independent

reaction steps, as was previously suggested by Yamada and Zucker (1992), and also

employed in the present study (Fig. 4.10). It should be noted, however, that the

predicted release rates were not very sensitive to the absolute values of the activation

and inactivation constants (γ, δ). The time course of release was instead defined by
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the ratio of these rate constants, and was similar if both constants were scaled up by a

factor of 10-20.

It is noteworthy that the model offers room for the interesting interpretation that

multiple Ca2+ sensors may promote the fusion of a single vesicle, because the final

release rate is proportional to the occupancy of the activated state of the Ca2+ sensor.

Thus, the individual release probability of the vesicle increases with the number of

release sensors on its surface which reside in the activated state. The occupancy of the

activated state, however, was small, even during larger [Ca2+] jumps (steady-state

occupancy 0.33 for a [Ca2+] of 20 µM). This indicates that only a small fraction of

sensors become activated. If the number of Ca2+ sensors per vesicle is in the order of a

few tens of units, this would mean that less than ten sensors activate, which may

indicate that a continuous solution of the system of differential equations is no longer

applicable. In that case, it would be interesting to extend the simulation to a discrete,

Monte Carlo-type model, in which the influence of a small set of Ca2+ sensors on the

release probability of a single vesicle is explored. For the present study, the model

was mostly used as a tool to quantitatively describe the release rate-[Ca2+] relation and

to estimate [Ca2+] levels reached during action potential-evoked release. However, it

is probably too simplistic to allow for a detailed interpretation of the molecular steps

that underlie the measurable data.

In the following section, the model of the Ca2+ sensor will be analyzed as to what

extent it can reproduce other characteristics of fast central synapses, related to short

term plasticity.

5.3.1.2   Asynchronous release and facilitation

Action potential-evoked transmitter release often exhibits two phases, synchronous

(phasic) and asynchronous (delayed) release (Barrett and Stevens, 1972; Goda and

Stevens, 1994). While the synchronous release period typically lasts a few

milliseconds, in which release rates are increased above resting levels by several

orders of magnitude, the asynchronous release period is characterized by an elevated

frequency of mEPSCs and decays on a time scale of some tens to hundreds

milliseconds. Previous estimates of the Ca2+ sensitivity of the sensor for phasic release

suggested that intracellular [Ca2+] levels of more than 100 µM are required to trigger

release with the rates observed during action potentials (Augustine et al., 1991;

Südhof and Rizo, 1996; Neher, 1998). On the other hand, fluorometric measurements

demonstrated that the volume-averaged presynaptic [Ca2+] following an action

potential peaks at less than 1 µM, and decays on a time scale of 100 ms (Regehr and
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Atluri, 1995; Helmchen et al., 1997; Koester and Sakmann, 2000; but see DiGregorio

et al., 1999). Because of the absence of high [Ca2+] during the asynchronous release

period, it was suggested that two distinct release sensors, having low and high Ca2+

affinity respectively, are responsible for either period of release (Geppert et al., 1994;

Goda and Stevens, 1994). The present results, however, indicate that at least at some

synapses the phasic release sensor may be sufficiently sensitive to bind Ca2+ also

during the slowly decaying [Ca2+] after the collapse of the local [Ca2+] transient, and

to trigger release at much reduced rates. The dependence of asynchronous release

rates on intracellular [Ca2+] levels has not yet been determined in mammalian

synapses, making it difficult to quantitatively compare our model with experimental

values. However, at single boutons of the crayfish neuromuscular junction, Ravin et

al. (1997) measured asynchronous release rates simultaneously with presynaptic

[Ca2+], and observed a cooperativity of four, somewhat lower than the prediction of

our model of around five for submicromolar [Ca2+] levels. Nevertheless, the release

rates predicted by our Ca2+ sensor model agreed within a factor of four with the

experimental values. The release rates measured by Ravin et al. (1997) and those

predicted by our model are (at steady-state, [Ca2+] given in parentheses): 1.2 s-1 and

0.3 s-1 (0.67 µM), 4.2 s-1 and 2.4 s-1 (1 µM), 23 s-1 and 37 s-1 (2 µM), respectively.

Here, release rates, predicted by our model for a single release-ready vesicle (Fig. 5.4

a), were multiplied by a factor of 2, because the number of statistical release sites is

approximately two in boutons of the crayfish neuromuscular junction (Dudel, 1981).

In the Calyx of Held, the volume-averaged presynaptic [Ca2+] following an action

potential peaks at ~0.5 µM and decays with a time constant of ~100 ms (Helmchen et

al., 1997). If the rate of asynchronous release was solely dependent on the

instantaneous residual [Ca2+], the phasic release sensor model predicts a decay of

asynchronous release approximately four-fold faster (Fig. 5.4 c,d). This is because at

submicromolar level, the dependence of release rates on [Ca2+] is determined by a

power of >4. It is noteworthy that measurements of the time course of presynaptic

[Ca2+] and asynchronous release in cerebellar synapses revealed a similar acceleration

of the decay of release rate compared to that of the [Ca2+] (Atluri and Regehr, 1998).

In the same study, however, it is also reported that delayed release rates cannot

properly be described by a model that responds only to instantaneous [Ca2+] levels,

indicating that other processes may contribute to shaping the time course of delayed

release.

Another phenomenon dependent on the volume-averaged [Ca2+] following an action

potential is the enhancement of release evoked by a second stimulus shortly after the

first pulse. This paired-pulse facilitation (PPF, see section 1.1.3), often decays on the

same time scale as the presynaptic [Ca2+] and is also inhibited by the injection of
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exogenous Ca2+ buffers, which speed the decay of residual [Ca2 +] (Kamiya and

Zucker, 1994; Atluri and Regehr, 1996; Zucker, 1999). According to the residual Ca2+

hypothesis, facilitation may be generated by the linear summation of local [Ca2+]

transients and residual [Ca2+] from previous Ca2+ influx (Katz and Miledi, 1968;

Zucker, 1989). This, however, is in conflict with the common view that a low affinity

Ca2+ sensor requires >100 µM of [Ca2+], making it insensitive to the residual [Ca2+]

levels of at most a few micromolar. Alternatively, a second Ca2+ sensor with increased

affinity and slow unbinding kinetics was suggested to explain the “memory effect” of

the nerve terminal to previous stimulation (Zucker, 1996). Since the Calyx of Held

exhibited a much higher affinity of the phasic release sensor compared to the previous

estimates, the effect of residual [Ca2+] on paired-pulse facilitation was analyzed (Fig.

5.4 b-d). Paired-pulse facilitation is often measured as the relative change of the

EPSC amplitude of a second (test) pulse compared to the first (control) pulse. Here,

residual [Ca2+] and the local [Ca2+] transient were summed and the resultant [Ca2+]

waveforms expected for different external [Ca2+] levels were used to drive the Ca2+

sensor model (Fig. 5.4 b). Assuming a rapid refilling process of the vesicle pool with

a time constant of 200 ms (Wu and Borst, 1999), PPF and partial vesicle pool

depletion largely balanced each other at [Ca2+]ext = 2 mM (Fig. 5.4 c). If the quantal

content during the first pulse was reduced by lowering the external [Ca2+], PPF,

calculated as the ratio of the peak amplitude of the second EPSC over that of the first

EPSC, had a value of 131% at an interpulse interval of 5 ms, and decayed with 86 ms,

similar to the residual [Ca2+]. The slower decay of facilitation compared to

asynchronous release is not unexpected, because the second response in PPF profits

from the residual [Ca2+] two-fold; first, the Ca2+ sensor is pre-equilibrated to the

increased basal [Ca2+], and second, the summation of residual [Ca2+] and the local

[Ca2+] transient results in a peak [Ca2+] transient increased to ~105% compared to

control. Both effects lead to a higher occupancy of the release-promoting state during

the peak of the [Ca2+] transient and hence an increased release probability.

The predicted low PPF ratio at a [Ca2+]ext of 2 mM is consistent with the

experimentally observed PPF at that [Ca2+]ext in response to afferent stimulation at 200

Hz in the present study. In nine cells, in which the fraction of the vesicle pool released

during the first EPSC was within ±3% relative to the mean value obtained in all

synapses (21%, see section 4.2.3), the PPF ratio was 112% ± 5% (not shown). It

should be noted that the MNTB giant synapse exhibits little facilitation compared to

other synapses (Zucker, 1989; Atluri and Regehr, 1996; Dobrunz et al., 1997). It is

likely that facilitation is also controlled by other mechanisms. Possible explanations

are the local saturation of Ca2+ buffers by residual Ca2+ (Neher, 1998), differences in
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Fig. 5.4: Asynchronous release and facilitation predicted by the Ca2+ sensor model.
(a) Model predictions of asynchronous release rates for low presynaptic [Ca2+]. (b)

Paired-pulse facilitation (PPF) predicted by the Ca2+ sensor model at [Ca2+]ext = 2 mM

(upper panel) and 1 mM (lower panel), caused by residual [Ca2+]. PPF was calculated
as the ratio of the peak amplitudes A2 and A1 of the test pulse and the first pulse,

respectively. Test pulses for different PPF intervals are shown in the same panels. (c)
Time course of delayed release, PPF and residual [Ca2+] for 2 mM external [Ca2+].

Residual [Ca2+] decay constant is 100 ms, a fit to the delayed release time course
yields an exponential decay time constant of 23 ms. Delayed release rates were

normalized, the maximum corresponds to 0.03 s-1 per vesicle, 5 ms after the

stimulation. No PPF is observed, because the predicted increase in release probability
during the 2nd pulse is counteracted by partial pool depletion evoked by the 1st pulse.

Pool recovery was modeled with a mono-exponential time course (τ = 200 ms) (Wu

and Borst, 1999). (d) At 1 mM external [Ca2+], PPF is predicted due to residual

[Ca2+] activating the Ca2+ sensor of phasic release. The local [Ca2+] transient and
residual [Ca2+] were scaled by 0.64 compared to those at 2 mM, because of Ca2+

influx saturation (Schneggenburger et al., 1999). Delayed release decays with a τ of

25 ms, whereas PPF decays with a τ of 86 ms, similar to the residual [Ca2+] (τ = 100

ms). Peak delayed release is 0.005 s-1 per vesicle, 5 ms after stimulation.

the local uptake and extrusion of [Ca2+] near the release site, which should be

sensitive to the surface-volume ratio of the synaptic terminal (Regehr and Atluri,

1995), stimulus-induced Ca2+ release from internal stores (Emptage et al., 2001), and
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the involvement of a second, high affinity Ca2+ sensor that enhances release when

activated by residual [Ca2+] (reviewed by Zucker, 1999). The different time courses of

asynchronous release and facilitation led to the interpretation that the two phenomena

are controlled by different mechanisms (Zucker, 1996; Atluri and Regehr, 1998).

Since the present Ca2+ sensor readily predicts a slower decay time for facilitation than

for asynchronous release, different mechanisms are not necessarily required to explain

the experimental data. Taken together, the present release model suggests that residual

[Ca2+] levels can influence the release probability during delayed release and

facilitation at least in part by activating the Ca2+ sensor for phasic release.

5.3.2 Molecular candidates for the neuronal Ca2+ sensor

The key role of Ca2+ in triggering the release of neurotransmitter has long been

established (Katz, 1969), but the molecular basis for the coupling of Ca2+ influx to

secretion is still not resolved. Many Ca2+-binding proteins have been found to exist in

secretory systems. The present, quantitative description of presynaptic glutamate

release imposes constraints on the Ca2+ binding properties of a putative Ca2+ sensor,

which may be helpful for its molecular identification. Our Ca2+ sensor model indicates

that several Ca2+ ions have to bind simultaneously to a sensor molecule in order to

promote the fusion of a vesicle, as suggested previously (Dodge Jr. and Rahamimoff,

1967; reviewed by Wu and Saggau, 1997). The observed strong dependence of release

rates on [Ca2+] in the range from 1 to 10 µM suggests that the sensor can bind Ca2+

rapidly with a rate constant > 108 M-1 s-1. Since the release rate-[Ca2+] relation became

much weaker for [Ca2 +] levels greater than 10 µM, the model predicted the

experimental data best when the individual Ca2+ binding site had an affinity of ~10

µM. Furthermore, when the equilibrium occupancy of the activated state of the Ca2+

sensor is calculated, one obtains a saturation curve with a half-maximal concentration

of 26 µM and a Hill coefficient of 1.7 (Fig. 5.5).

A prominent candidate as a neuronal Ca2+ sensor is synaptotagmin I, which is a

membrane-integral protein of synaptic and large dense-cored vesicles (Südhof and

Rizo, 1996; Burgoyne and Morgan, 1998). It can bind several Ca2+ ions via its two C2

domains and binds in a Ca2+-dependent manner to phospholipids and syntaxin, a

member of the SNARE complex, which is thought to be involved in vesicle docking

and fusion (see section 1.2.2.1). Several studies have aimed to elucidate the role of

synaptotagmin I in vesicle fusion by mutagenesis or deletion of expression
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Fig. 5.5: Equilibrium occupancy of the activated Ca2+ sensor. The fraction of the Ca2+

sensors residing in the activated state XCa5
*, when equilibrated with the indicated

[Ca2+] levels (open circles). The solid line is a fit with the equation
0.79×[Ca2+]n/([Ca2+]n + Kn), where n = 1.7 and K = 26 µM. The maximal occupancy

of 0.79 of the activated sensor state is determined by the Ca2+ independent activation
and inactivation constants γ = 30,000 s-1 and δ = 8,000 s-1.

in C. Elegans, Drosophila, and mouse (Nonet et al., 1993; Broadie et al., 1994;

Geppert et al., 1994; Fernández-Chacón et al., 2001). Since the applied manipulations

all resulted in a dramatic impairment of synchronous transmitter release,

synaptotagmin I is likely to play a significant role in the modulation of evoked

transmitter release. Recent biochemical studies reported that the equilibrium binding

of synaptotagmin to phospholipids is half-maximal at [Ca2+] levels of 10-75 µM

(Davis et al., 1999; Fernández-Chacón et al., 2001). The activated state (XCa5
*) of our

Ca2+ sensor model could be interpreted as the state in which the sensor molecule

forms a complex with another molecule to promote release. One possible reaction,

besides a multitude of other schemes, is the binding of synaptotagmin to

phospholipids, which exhibits a similar equilibrium Ca2+ dependence as the

equilibrium occupancy of the XCa5
* state (Fig. 5.5). The Ca2+ association rate constant

was estimated to be larger than 108 M-1 s-1 (Davis et al., 1999). These properties are

principally in line with the constraints suggested by our Ca2+ sensor model. The

binding of synaptotagmin with syntaxin requires [Ca2+] levels of hundreds of

micromolar (Südhof and Rizo, 1996), too high to be involved in the triggering of

vesicle fusion in the Calyx of Held. Very recent evidence, however, suggests that the

Ca2+ requirement of synaptotagmin-syntaxin binding may be considerably lower

(Fernández-Chacón et al., 2001). In summary, synaptotagmin has many properties

that make it a prominent candidate for a neuronal Ca2+ sensor of transmitter release. It
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remains, however, unclear how synaptotagmin can mediate the fusion of the vesicle

and terminal membrane.

Other molecules have been reported to modulate transmitter release at endocrine cells

and nerve terminals, and have been investigated less extensively than synaptotagmin

(reviewed by Burgoyne and Morgan, 1998). They bind Ca2+ via different binding

domains such as C2 domains (Rabphilin 3A, protein kinase C, Rim, Munc-13, Doc 2),

the EF-hand motif (Calcyclin, Calmodulin, Frequenin) or other binding domains

(Annexin, CAPS, Scinderin). These proteins may also contribute to control of evoked

transmitter release in a Ca2+-dependent manner. It remains to be investigated at which

stage of evoked exocytosis these proteins possibly exert a regulatory function.

5.3.3 Exocytosis in other synaptic and endocrine preparations

The fusion of intracellular vesicles with the plasma membrane and the subsequent

release of their messenger molecules is the fundamental mechanism by which cells

communicate with each other. Dependent on the cell function, the transmitters

released can range from classical neurotransmitters, such as acetylcholine, glutamate,

γ-amino butyric acid (GABA) or glycine, through peptides and monoamines, to

globally-acting hormones. The speed of exocytosis varies over a wide range on the

time scale from less than 1 millisecond to tens of seconds, demarcated by synaptic

transmitter release at the faster, and slow hormone release at the lower end (reviewed

by Kasai, 1999). On the other hand, a large body of evidence suggests that the

fundamental mechanism which mediates biological membrane fusion is principally

conserved among species and different cell types (Jahn and Südhof, 1999; Chen and

Scheller, 2001).

In the MNTB giant synapse, relatively low [Ca2+] levels were sufficient to drive

exocytosis. In the following, this high Ca2+ sensitivity will be compared to that of

other fast synaptic and slower endocrine release systems.

5.3.3.1   Other synaptic preparations

• Ribbon-type synapses

Several neuronal cell types found in sensory pathways have specialized synaptic

structures, in which vesicles are tethered to ribbon-like structures, which are thought

to play a role in the rapid transport of reserve vesicles to the release site (von

Gersdorff, 2001). In one type of ribbon-containing synapses, those of the retinal

bipolar cells of the goldfish, the speed of exocytosis was observed by measuring the

rate of capacitance change of the terminal membrane, which is related to glutamate
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release from small vesicles. The Ca2+ dependence of capacitance change has been

determined directly using flash photolysis, which revealed a Ca2+ sensitivity of release

approximately one order of magnitude lower than glutamate release in the Calyx of

Held (Heidelberger et al., 1994). In addition, this cell type was reported to sustain

continuous exocytosis and compensatory endocytosis at [Ca2+] levels of around 1 µM,

suggesting that at least a fraction of the releasable vesicles is more sensitive to small

[Ca2+] elevations (Lagnado et al., 1996). Retinal bipolar cells do not fire fast sodium

action potentials and appear to release transmitter on a time scale of ≥100 ms

(Matthews, 1999), suggesting that they may possess release mechanisms somewhat

different to those of fast releasing central synapses. This idea is supported by the

special morphology of the release sites in ribbon-type synapses (von Gersdorff, 2001).

The capacitance technique has also been applied to saccular and cochlear inner hair

cells in frog and mouse, respectively, which are other members of the family of

sensory cells containing ribbons (Parsons et al., 1994; Moser and Beutner, 2000).

Very recently, the Ca2+ sensitivity of release from cochlear inner hair cells was shown

to be relatively high compared to that in retinal bipolar cells in goldfish, indicating

that the distinction between low and high Ca2+ sensitivity does not correlate with the

presence or absence of ribbons in a presynaptic terminal (Beutner et al., 2001;

Heidelberger et al., 1994).

• Neuromuscular junction

Because of their peripheral location in the central nervous system, neuromuscular

junctions have become easily accessible and therefore very useful to study pre- and

postsynaptic aspects of rapid chemical transmission with electrophysiological tools.

Two types of neuromuscular junctions will be considered here, in which direct or

indirect information on the Ca2+ sensitivity of the release process and the underlying

[Ca2+] signal has been collected. Firstly, the current through presynaptic, Ca2+-

activated potassium channels (IK-Ca) in cultured neuromuscular junctions from

Xenopus laevis and Rana pipiens (frogs) was compared to the activation of

simultaneously recorded EPSCs or EPSPs. In Xenopus, the local [Ca2+] transient was

estimated to peak at 100 µM only within 10-20 nm from the Ca2+ channel (Yazejian et

al., 2000). Based on high resolution measurements of Ca2+-dependent fluorescence in

the same preparation, it was estimated that in most regions of a Ca2+ entry site, [Ca2+]

transients evoked by action potentials peak in the 10 to 20 micromolar range

(DiGregorio et al., 1999). In a related preparation in R. pipiens, the slow Ca2+ chelator

EGTA did not block the Ca2 +-activated potassium channels, consistent with the

concept that they are co-localized closely enough with Ca2+ channels to ‘sense’ high

[Ca2+] peak levels (Robitaille et al., 1993). In contrast, transmitter release was reduced

in the presence of EGTA, indicating that most release sensors are further away from
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the Ca2+ channels than Ca2+-activated potassium channels. Apart from differences in

the Ca2+ binding and activation properties, a likely explanation is that most Ca2+

sensors are located outside the narrow region where hundreds of micromolar [Ca2+]

can be expected.

In the neuromuscular junction of the crayfish opener muscle, the dependence of

transmitter release on intracellular [Ca2+] has been estimated more directly. It was

found that asynchronous release is activated by [Ca2+] levels of around 1 µM (see

section 5.3.1.2) (Ravin et al., 1997). In addition, the same authors measured the

sensitivity of synchronous release to volume-averaged [Ca2+] (Ravin et al., 1999).

They concluded from the relatively strong dependence of quantal content on residual

[Ca2+] that the Ca2+ affinity of the responsible release sensor is in the micromolar

range.

• Squid giant synapse

At the giant synapse in the stellate ganglion of squid, the addition of the slow Ca2+

buffer EGTA, in contrast to the faster BAPTA, had little or no effect on evoked

release (Adler et al., 1991). Because of this and because of the graded inhibition of

release by other BAPTA derivatives with lower affinity, it was estimated that the

[Ca2+] signal triggering release exceeds 100 µM at this synapse. Furthermore, the Ca2+

domains generated during action potentials by Ca2+ influx through single Ca2+

channels probably do not overlap (summarized by Augustine et al., 1991). The

concept of Ca2+ domains reaching high [Ca2+] levels of several hundred micromolar

was corroborated by the detection of highly localized fluorescence dots, using a very

low affinity fluorescent protein (Llinás et al., 1992). Substantial release, however, can

already be detected when [Ca2+] is raised to 10 - 20 µM by flash photolysis (Hsu et

al., 1996).

• Small central synapses

Rapid transmission at most neuronal synapses occurs at small structures of

micrometer size, often located at large distances from the soma in the dendritic and

axonal trees. Therefore, it is difficult to measure the Ca2+ dependence of transmitter

release directly at the synaptic contacts. Most information on Ca2+ sensitivity has been

gained by experiments of the ‘added Ca2+ buffer’ type. As used previously in squid

and other more accessible preparations, slow and fast exogenous Ca2+ buffers such as

EGTA and BAPTA are dialyzed into the presynaptic cell and tested for their capacity

to inhibit action potential-evoked release. The inhibitory action of EGTA differed

between various cortical and cerebellar preparations. In cortical neurons in layer 2/3

and 5 of young rats, EGTA blocked release by approximately 50% when present at
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concentrations between 1 and 10 mM (Ohana and Sakmann, 1998; Rozov et al.,

2001). This is quite similar to the Calyx of Held, where EGTA blocked release by

~40% and ~50%, when present at 1 and 10 mM, respectively (Borst and Sakmann,

1996). Also, in the granule cell to stellate cell synapse in the cerebellum of young rats,

application of EGTA reduced phasic release to a similar degree (Chen and Regehr,

1999). In contrast, in cultured hippocampal neurons, EGTA abolished asynchronous

release, but did not change the amount of action potential-evoked phasic release

(Cummings et al., 1996).

When comparing the above compilation of synaptic properties with that of the MNTB

giant synapse, the squid giant synapse appears most distinct from the MNTB giant

synapse, because, at the MNTB giant synapse, lower [Ca2+] levels were sufficient to

explain action potential-evoked release. Furthermore, it was shown that Ca2+ domains

of multiple channels overlap and cooperate in the triggering of a vesicle during action

potential-evoked release (Borst and Sakmann, 1999b). Finally, the slow Ca2+ buffer

EGTA considerably inhibited release in the MNTB giant synapse, suggesting that

most of the vesicles are not in close vicinity with Ca2+ channels and therefore not in

the range of the sharp peak of a Ca2+ domain (Borst and Sakmann, 1996). These

findings do not contrast with the hypothesis that local [Ca2+] levels may reach

hundreds of micromolar, which is supported by many experimental and theoretical

arguments (reviewed by Neher, 1998). The present results, however, strongly support

the view that most of the vesicles do not experience these peak [Ca2+] levels, because

release would be expected to occur at higher rates if the majority of vesicles

experienced Ca2+ domains peaking at [Ca2+] levels larger 100 µM. Regarding the other

synapses described above, release in the MNTB giant synapse exhibits many

similarities with release detected at those synapses (apart from the vesicle pool of low

Ca2+ sensitivity in ribbon-containing synapses).

When comparing aspects of neurotransmission, it should be considered that

differences may not only be found between species and cell type, but also during

development of the nervous system. Recordings from the Calyx of Held during

different developmental stages (postnatal day 5 and 12-14) indicate that the size of the

releasable vesicle pool increases, whereas the fraction released during an action

potential is reduced (Taschenberger and von Gersdorff, 2000). One possible

explanation is that the intrinsic Ca2+ sensitivity may decrease during maturation of the

synapse. Nevertheless, based on the large body of evidence discussed above, it may

be concluded that the observed high Ca2+ sensitivity of transmitter release is a

property of many synapses and not a unique property of the Calyx of Held.
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5.3.3.2   Slow exocytosis in endocrine cells and neurons

Many cell types are specialized to release hormonal substances (e.g. adrenaline,

insuline) and neuromodulators (e.g. dopamine, neuropeptides), that act more globally

and therefore do not need to be released with the precise timing of fast

neurotransmitters. These cells typically store the transmitter substance in large, dense-

cored vesicles (LDCVs) as opposed to the small, clear vesicles (SVs) found in

presynaptic terminals, which contain fast neurotransmitters. Exocytosis in endocrine

cell types has been measured in real time using for example the capacitance

technique, amperometric detection of oxidizable messenger substances, and

fluorometric measurements using membrane dyes to stain vesicles. Exocytosis in

these systems is expected to be triggered by [Ca2+] levels in the range from one to

several tens of micromolar, because transmitter release is strongly dependent on

[Ca2+] in this range (Thomas et al., 1993; Chow et al., 1994; Heinemann et al., 1994;

Proks et al., 1996) and, furthermore, because Ca2+ entry is less tightly regulated

(Neher, 1998). In that respect, the Ca2+ sensitivity of exocytosis in slow release

systems resembles that measured in the fast transmitting MNTB giant synapse. This

may suggest that the release of SVs and LDCVs is triggered by similar Ca2+ binding

mechanisms. A marked difference, however, lies in the different kinetics of release in

these two systems. For example, in melanotrophs of the pituitary gland, the onset of

release does not occur with delays shorter than a few milliseconds, even if [Ca2+] is

raised to several hundreds of micromolar (Thomas et al., 1993). One explanation of

this disparity may be a significant difference in the Ca2+ association rate of the LDCV

Ca2+ and the SV Ca2+ sensor, implying two distinct release sensor molecules for the

two types of release. Alternatively, the difference in release kinetics can be explained

if processes downstream of Ca2+ binding to the sensor occur on different time scales

for LDCV or SV release. Thus, the delay predicted by our Ca2+ sensor model can be

drastically prolonged, if the Ca2+ independent activation and inactivation rate

constants (γ, δ) are increased by two to three orders of magnitude, but the Ca2+

binding and unbinding rates are left unchanged. At present, it is difficult to distinguish

between these two possibilities. However, experiments with toxins or genetic

alterations that selectively affect the Ca2+ binding reaction or the fusion reaction are

promising approaches to resolve this question (Xu et al., 1999; Fernández-Chacón et

al., 2001).
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5.4 Outlook

The quantitative description of the Ca2+ sensitivity of neuronal transmitter release

presented here is only a first step towards understanding the molecular basis of

excitation-secretion coupling in the Calyx of Held. The model of the Ca2+ sensor

provides predictions for situations of repetitive synaptic activity, which should be

compared to the results of future experiments. It would be interesting to investigate in

a next step, to what extent asynchronous release and short term synaptic plasticity

such as facilitation can be explained with the properties of the present Ca2+ sensor

model. However, such experiments would be affected by the initially stated problem

that the highly localized Ca2+ regulation during action potentials complicates

measuring the relevant Ca2+ signal. An alternative approach would be to extend the

uniform ‘Ca2+ test functions’ evoked by photolysis to more complex waveforms; this

could be done, for example, by the combination of slow Ca2+ uncaging with a steady-

state UV illumination and a brief UV pulse. Furthermore, by using appropriate

combinations of a fast releasing Ca2+ cage and a slowly binding Ca2+ buffer in the

presynaptic solution, one could possibly influence the decay rate of the presynaptic

[Ca2+] after photolysis. This could be useful in determining the off-kinetics of the Ca2+

sensing and fusion mechanism.

The comparison with other synaptic preparations suggests that the Ca2+ dependence of

release varies between synapses and species. Furthermore, it has been observed in the

Calyx of Held that the release probability decreases during early development

(Taschenberger and von Gersdorff, 2000). For a possible generalization of the present

Ca2+ sensor model it would therefore be necessary to do similar experiments both in

the Calyx of Held synapse at older stages and in other, for example cortical synapses.

At present, the latter may be problematic because loading the presynaptic terminal is

only possible by somatic whole-cell recordings. It is not unlikely that the initially

nearly saturated Ca2+ cage would be unloaded during diffusional transport via the

axon by Ca2+ extrusion mechanisms. Recent progress in patch-clamping small

terminals in the hippocampus formation may greatly facilitate Ca2+ uncaging studies

also in smaller synapses (Geiger and Jonas, 2000).

On the other hand, the Calyx of Held synapse provides unique opportunities to

introduce reagents to a presynaptic terminal such as peptides and antibodies that can

selectively interfere with a biochemical reaction and interrupt the vesicle cycle at a

defined stage (Augustine et al., 1999). These approaches and other, genetic techniques

designed to manipulate individual steps in the Ca2+ sensing and fusion reaction may

give further insight into the interplay between synaptic proteins involved in rapid

chemical transmission.
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Finally, optical tools have now been developed to observe vesicle(s) traveling through

different stages of the vesicle cycle, in part by staining with membrane specific dyes

and in part by genetically engineered fluorescent vesicle proteins (Miesenböck et al.,

1998; Richards et al., 2000; Zenisek et al., 2000, Sankaranarayanan and Ryan, 2001).

If different types of synaptic proteins can be labeled by chromophores with distinct

spectral signatures, it may be possible not only to localize these proteins in the

synaptic terminal but also to obtain information about their relative position during

different functional states of a vesicle. Aside from the readily used method of

fluorescent resonance energy transfer, promising optical tools currently being

developed are 4π- and θ-microscopy (Lindek et al., 1995) spectral precision distance

microscopy (SPDM, Cremer et al., 1999), spatially modulated excitation fluorescence

microscopy (SMI, Schneider et al., 1998) and stimulated emission depletion

microscopy (STED, Klar et al., 2000). The most significant advances in elucidating

the molecular basis of chemical transmission and exocytosis may be expected when

optical and electrophysiological techniques are combined with biochemical and

genetic approaches.



References                                                                                                                     109

References

Adler, E. M., Augustine, G. J., Duffy, S. N., and Charlton, M. P. 1991. Alien intracellular calcium
chelators attenuate neurotransmitter release at the squid giant synapse. J. Neurosci.

11:1496-1507.

Almers, W., and Tse, F. W. 1990. Transmitter release from synapses: does a preassembled fusion
pore initiate exocytosis? Neuron. 4:813-818.

Angleson, J. K., and Betz, W. J. 1997. Monitoring secretion in real time: capacitance,
amperometry and fluorescence compared. Trends Neurosci. 20:281-287.

Artalejo, C. R., Elhamdani, A., and Palfrey, H. C. 1996. Calmodulin is the divalent cation receptor
for rapid endocytosis, but not exocytosis, in adrenal chromaffin cells. Neuron. 16:195-

205.

Atkins, P. W. 1990. Physikalische Chemie. VCH Verlagsgesellschaft, Weinheim.

Atluri, P. P., and Regehr, W. G. 1996. Determinants of the time course of facilitation at the granule
cell to Purkinje cell synapse. J. Neurosci. 16:5661-5671.

Atluri, P. P., and Regehr, W. G. 1998. Delayed release of neurotransmitter from cerebellar granule
cells. J. Neurosci. 18:8214-8227.

Augustine, G. J., Adler, E. M., and Charlton, M. P. 1991. The calcium signal for transmitter
secretion from presynaptic nerve terminals. Annals of the New York Academy of Sciences.

635:365-381.

Augustine, G. J., Burns, M. E., DeBello, W. M., Hilfiker, S., Morgan, J. R., Schweizer, F. E.,
Tokumaru, H., and Umayahara, K. 1999. Proteins involved in synaptic vesicle trafficking.

J. Physiol. (Lond.). 520 Pt 1:33-41.

Ayer, R. K., Jr., and Zucker, R. S. 1999. Magnesium binding to DM-nitrophen and its effect on the
photorelease of calcium. Biophys. J. 77:3384-3393.

Barnes-Davies, M., and Forsythe, I. D. 1995. Pre- and postsynaptic glutamate receptors at a giant
excitatory synapse in rat auditory brainstem slices. J. Physiol. (Lond.). 488:387-406.

Barrett, E. F., and Stevens, C. F. 1972. The kinetics of transmitter release at the frog
neuromuscular junction. J. Physiol. (Lond.). 227:691-708.



110

Baylor, S. M., and Hollingworth, S. 1998. Model of sarcomeric Ca2+ movements, including ATP
Ca2+ binding and diffusion, during activation of frog skeletal muscle. J. Gen. Physiol.

112:297-316.

Bear, M. F. 1995. Mechanism for a sliding synaptic modification threshold. Neuron. 15:1-4.

Betz, W. J., Mao, F., and Bewick, G. S. 1992. Activity-dependent fluorescent staining and
destaining of living vertebrate motor nerve terminals. J. Neurosci. 12:363-375.

Beutner, D., Voets, T., Neher, E., and Moser, T. 2001. Calcium dependence of exocytosis and
endocytosis at the cochlear inner hair cell afferent synapse. Neuron. 29:681-690.

Blaustein, M. P. 1988. Calcium transport and buffering in neurons. Trends Neurosci. 11:438-443.

Bliss, T. V., and Collingridge, G. L. 1993. A synaptic model of memory: long-term potentiation in
the hippocampus. Nature. 361:31-39.

Bollmann, J. H., Helmchen, F., Borst, J. G. G., and Sakmann, B. 1998. Postsynaptic Ca2+ influx
mediated by three different pathways during synaptic transmission at a calyx-type
synapse. J. Neurosci. 18:10409-10419.

Bollmann, J. H., Sakmann, B., and Borst, J. G. 2000. Calcium sensitivity of glutamate release in a
calyx-type terminal. Science. 289:953-957.

Borst, J. G., and Sakmann, B. 1998. Calcium current during a single action potential in a large
presynaptic terminal of the rat brainstem. J. Physiol. (Lond.). 506:143-157.

Borst, J. G. G., Helmchen, F., and Sakmann, B. 1995. Pre- and postsynaptic whole-cell recordings in
the medial nucleus of the trapezoid body of the rat. J. Physiol. (Lond.). 489:825-840.

Borst, J. G. G., and Sakmann, B. 1996. Calcium influx and transmitter release in a fast CNS
synapse. Nature. 383:431-434.

Borst, J. G. G., and Sakmann, B. 1999a. Depletion of calcium in the synaptic cleft of a calyx-type
synapse in the rat brainstem. J. Physiol. (Lond.). 521:123-133.

Borst, J. G. G., and Sakmann, B. 1999b. Effect of changes in action potential shape on calcium
currents and transmitter release in a calyx-type synapse of the rat auditory brainstem.

Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354:347-355.

Broadie, K., Bellen, H. J., DiAntonio, A., Littleton, J. T., and Schwarz, T. L. 1994. Absence of
synaptotagmin disrupts excitation-secretion coupling during synaptic transmission.
Proc. Natl. Acad. Sci. USA. 91:10727-10731.

Burgoyne, R. D., and Morgan, A. 1998. Calcium sensors in regulated exocytosis. Cell Calcium.

24:367-376.

Byrne, J. H., and Kandel, E. R. 1996. Presynaptic facilitation revisited: state and time dependence.

J. Neurosci. 16:425-435.



References                                                                                                                     111

Ceccarelli, B., Hurlbut, W. P., and Mauro, A. 1973. Turnover of transmitter and synaptic vesicles at
the frog neuromuscular junction. J. Cell Biol. 57:499-524.

Chad, J. E., and Eckert, R. 1984. Calcium domains associated with individual channels can account
for anomalous voltage relations of Ca-dependent responses. Biophys. J. 45:993-999.

Chen, C., and Regehr, W. G. 1999. Contributions of residual calcium to fast synaptic transmission.

J. Neurosci. 19:6257-6266.

Chen, Y. A., and Scheller, R. H. 2001. SNARE-mediated membrane fusion. Nat. Rev. Mol. Cell Biol.

2:98-106.

Chow, R. H., Klingauf, J., and Neher, E. 1994. Time course of Ca2+ concentration triggering
exocytosis in neuroendocrine cells. Proc. Natl. Acad. Sci. USA. 91:12765-12769.

Clapham, D. E. 1995. Calcium signaling. Cell. 80:259-268.

Clements, J. D., Lester, R. A., Tong, G., Jahr, C. E., and Westbrook, G. L. 1992. The time course of
glutamate in the synaptic cleft. Science. 258:1498-1501.

Cochilla, A. J., Angleson, J. K., and Betz, W. J. 1999. Monitoring secretory membrane with FM1-
43 fluorescence. Annu. Rev. Neurosci. 22:1-10.

Crank, J. 1975. The Mathematics of Diffusion. University Press, Oxford.

Cremer, C., Edelmann, P., Bornfleth, H., Kreth, G., Muench, H., Luz, H., and Hausmann, M. 1999.

Principles of Spectral Precision Distance Confocal Microscopy for the Analysis of
Molecular Nuclear Structure. In Handbook of Computer Vision and Applications. B. Jähne,

H. Haußecker, and P. Geißler, editors. Academic Press, San Diego. 839-857.

Cummings, D. D., Wilcox, K. S., and Dichter, M. A. 1996. Calcium-dependent paired-pulse
facilitation of miniature EPSC frequency accompanies depression of EPSCs at
hippocampal synapses in culture. J. Neurosci. 16:5312-5323.

Datyner, N. B., and Gage, P. W. 1980. Phasic secretion of acetylcholine at a mammalian
neuromuscular junction. J. Physiol. (Lond.). 303:299-314.

Davis, A. F., Bai, J., Fasshauer, D., Wolowick, M. J., Lewis, J. L., and Chapman, E. R. 1999. Kinetics
of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto
membranes. Neuron. 24:363-376.

Delaney, K. R., and Zucker, R. S. 1990. Calcium released by photolysis of DM-nitrophen
stimulates transmitter release at squid giant synapse. J. Physiol. (Lond.). 426:473-498.

del Castillo, J., and Katz, B. 1954. Quantal components of the end-plate potential. J. Physiol.

(Lond.). 124:560-573.

Diamond, J. S., and Jahr, C. E. 1997. Transporters buffer synaptically released glutamate on a
submillisecond time scale. J. Neurosci. 17:4672-4687.



112

DiGregorio, D. A., Peskoff, A., and Vergara, J. L. 1999. Measurement of action potential-induced
presynaptic calcium domains at a cultured neuromuscular junction. J. Neurosci. 19:7846-

7859.

Dobrunz, L. E., Huang, E. P., and Stevens, C. F. 1997. Very short-term plasticity in hippocampal
synapses. Proc. Natl. Acad. Sci. USA. 94:14843-14847.

Dodge Jr., F. A., and Rahamimoff, R. 1967. Co-operative action of calcium ions in transmitter
release at the neuromuscular junction. J. Physiol. (Lond.). 193:419-432.

Dodt, H., Eder, M., Frick, A., and Zieglgansberger, W. 1999. Precisely localized LTD in the
neocortex revealed by infrared-guided laser stimulation. Science. 286:110-113.

Draguhn, A., Traub, R. D., Schmitz, D., and Jefferys, J. G. 1998. Electrical coupling underlies high-
frequency oscillations in the hippocampus in vitro. Nature. 394:189-192.

Dudel, J. 1981. The effect of reduced calcium on quantal unit current and release at the crayfish
neuromuscular junction. Pflügers Archiv. 391:35-40.

Dudel, J., Menzel, R., and Schmidt, R. F. 1996. Neurowissenschaft. Springer Verlag, Berlin.

Edwards, F. A., Konnerth, A., Sakmann, B., and Takahashi, T. 1989. A thin slice preparation for
patch clamp recordings from neurones of the mammalian central nervous system.

Pflügers Archiv. 414:600-612.

Eigen, M., and Wilkins, R. G. 1965. The kinetics and mechanism of formation of metal complexes.

In Mechanisms of Inorganic reactions. Advanced Chemistry series.

Ellis-Davies, G. C., and Kaplan, J. H. 1994. Nitrophenyl-EGTA, a photolabile chelator that

selectively binds Ca2+ with high affinity and releases it rapidly upon photolysis. Proc.

Natl. Acad. Sci. USA. 91:187-191.

Ellis-Davies, G. C., Kaplan, J. H., and Barsotti, R. J. 1996. Laser photolysis of caged calcium: rates
of calcium release by nitrophenyl-EGTA and DM-nitrophen. Biophys. J. 70:1006-1016.

Emptage, N. J., Reid, C. A., and Fine, A. 2001. Calcium stores in hippocampal synaptic boutons
mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter
release. Neuron. 29:197-208.

Escobar, A. L., Velez, P., Kim, A. M., Cifuentes, F., Fill, M., and Vergara, J. L. 1997. Kinetic
properties of DM-nitrophen and calcium indicators: rapid transient response to flash
photolysis. Pflügers Archiv. 434:615-631.

Fabiato, A., and Fabiato, F. 1979. Calculator programs for computing the composition of the
solutions containing multiple metals and ligands used for experiments in skinned muscle
cells. J. Physiol. (Lond.). 75:463-505.

Fatt, P., and Katz, B. 1952. Spontaneous subthreshold potentials at motor nerve endings. J.

Physiol. (Lond.). 117:109-128.



References                                                                                                                     113

Fernández-Chacón, R., Konigstorfer, A., Gerber, S. H., Garcia, J., Matos, M. F., Stevens, C. F., Brose,
N., Rizo, J., Rosenmund, C., and Südhof, T. C. 2001. Synaptotagmin I functions as a
calcium regulator of release probability. Nature. 410:41-49.

Fesce, R., Grohovaz, F., Valtorta, F., and Meldolesi, J. 1994. Neurotransmitter release: Fusion or
'Kiss-and-Run'? Trends Cell. Biol. 4:1-4.

Forsythe, I. D. 1994. Direct patch recording from identified presynaptic terminals mediating
glutamatergic EPSCs in the rat CNS, in vitro. J. Physiol. (Lond.). 479:381-387.

Geiger, J. R., and Jonas, P. 2000. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating
K+ channels in hippocampal mossy fiber boutons. Neuron. 28:927-939.

Geppert, M., Goda, Y., Hammer, R. E., Li, C., Rosahl, T. W., Stevens, C. F., and Südhof, T. C. 1994.

Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell.

79:717-727.

Goda, Y., and Stevens, C. F. 1994. Two components of transmitter release at a central synapse.

Proc. Natl. Acad. Sci. USA. 91:12942-12946.

Golovina, V. A., and Blaustein, M. P. 1997. Spatially and functionally distinct Ca2+ stores in
sarcoplasmic and endoplasmic reticulum. Science. 275:1643-1648.

Greengard, P., Valtorta, F., Czernik, A. J., and Benfenati, F. 1993. Synaptic vesicle phosphoproteins
and regulation of synaptic function. Science. 259:780-785.

Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. 1981. Improved patch-clamp
techniques for high-resolution current recording from cells and cell-free membrane
patches. Pflügers Archiv. 391:85-100.

Harlow, M. L., Ress, D., Stoschek, A., Marshall, R. M., and McMahan, U. J. 2001. The architecture
of active zone material at the frog's neuromuscular junction. Nature. 409:479-484.

Hartmann, J., and Lindau, M. 1995. A novel Ca2+-dependent step in exocytosis subsequent to vesicle
fusion. FEBS Lett. 363:217-220.

Hazard, A. L., Kohout, S. C., Stricker, N. L., Putkey, J. A., and Falke, J. J. 1998. The kinetic cycle of
cardiac troponin C: calcium binding and dissociation at site II trigger slow
conformational rearrangements. Protein Sci. 7:2451-2459.

Hebb, D. O. 1949. The Organization of Behaviour. Wiley, New York.

Heidelberger, R. 1998. Adenosine triphosphate and the late steps in calcium-dependent exocytosis
at a ribbon synapse. J. Gen. Physiol. 111:225-241.

Heidelberger, R., Heinemann, C., Neher, E., and Matthews, G. 1994. Calcium dependence of the rate
of exocytosis in a synaptic terminal. Nature. 371:513-515.



114

Heinemann, C., Chow, R. H., Neher, E., and Zucker, R. S. 1994. Kinetics of the secretory response

in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys. J. 67:2546-
2557.

Helfert, R. H., and Aschoff, A. 1997. Superior olivary complex and nuclei of the lateral lemniscus.
In The central auditory system. G. Ehret and R. Romand, editors. Oxford University Press,

New York. 193-258.

Helmchen, F., Borst, J. G. G., and Sakmann, B. 1997. Calcium dynamics associated with a single
action potential in a CNS presynaptic terminal. Biophys. J. 72:1458-1471.

Henkel, A. W., and Almers, W. 1996. Fast steps in exocytosis and endocytosis studied by
capacitance measurements in endocrine cells. Curr. Opin. Neurobiol. 6:350-357.

Herrington, J., Newton, K. R., and Bookman, R. J. 1995. PULSE CONTROL V4.7: IGOR XOPs for
Patch Clamp Data Acquisition and Capacitance Measurements. University of Miami,
Miami, FL.

Heuser, J. E., and Reese, T. S. 1973. Evidence for recycling of synaptic vesicle membrane during
transmitter release at the frog neuromuscular junction. J. Cell Biol. 57:315-344.

Hodgkin, A. L., Huxley, A. F., and Katz, B. 1952. Measurement of current-voltage relations in the
membrane of the giant axon of Loligo. J. Physiol. (Lond.). 116:424-448.

Hsu, S.-F., Augustine, G. J., and Jackson, M. B. 1996. Adaptation of Ca2+-triggered exocytosis in
presynaptic terminals. Neuron. 17:501-512.

Jahn, R., and Sudhof, T. C. 1999. Membrane fusion and exocytosis. Annu. Rev. Biochem. 68:863-
911.

Jonas, P., and Spruston, N. 1994. Mechanisms shaping glutamate-mediated excitatory postsynaptic
currents in the CNS. Curr. Opin. Neurobiol. 4:366-372.

Kamiya, H., and Zucker, R. S. 1994. Residual Ca2+ and short-term synaptic plasticity. Nature.

371:603-606.

Kaplan, J. H., and Ellis-Davies, G. C. 1988. Photolabile chelators for the rapid photorelease of
divalent cations. Proc. Natl. Acad. Sci. USA. 85:6571-6575.

Kaplan, J. H., and Somlyo, A. P. 1989. Flash photolysis of caged compounds: new tools for cellular
physiology. Trends Neurosci. 12:54-59.

Kasai, H. 1999. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic
diversity for secretory function. Trends Neurosci. 22:88-93.

Katz, B. 1969. The release of neural transmitter substances. Thomas, C., Springfield, IL.



References                                                                                                                     115

Katz, B., and Miledi, R. 1968. The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.).

195:481-492.

Klar, T. A., Jakobs, S., Dyba, M., Egner, A., and Hell, S. W. 2000. Fluorescence microscopy with
diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA.

97:8206-8210.

Klingauf, J., Kavalali, E. T., and Tsien, R. W. 1998. Kinetics and regulation of fast endocytosis at
hippocampal synapses. Nature. 394:581-585.

Koester, H. J., and Sakmann, B. 2000. Calcium dynamics associated with action potentials in single
nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol.

(Lond.). 529 Pt 3:625-646.

Lagnado, L., Gomis, A., and Job, C. 1996. Continuous vesicle cycling in the synaptic terminal of
retinal bipolar cells. Neuron. 17:957-967.

Larkum, M. E., Zhu, J. J., and Sakmann, B. 1999. A new cellular mechanism for coupling inputs
arriving at different cortical layers. Nature. 398:338-341.

Lindau, M., and Neher, E. 1988. Patch-clamp techniques for time-resolved capacitance
measurements in single cells. Pflügers Archiv. 411:137-146.

Lindek, S., Stelzer, E. H. K., and Hell, S. W. 1995. Two new high-resolution confocal fluorescence
microscopies (4Pi, Theta) with one- and two-photon excitation. In Handbook of Biological

Confocal Microscopy. J. B. Pawley, editor. Plenum Press, New York. 417-430.

Llinás, R., Sugimori, M., and Silver, R. B. 1992. Microdomains of high calcium concentration in a
presynaptic terminal. Science. 256:677-679.

London, R. E., Rhee, C. K., Murphy, E., Gabel, S., and Levy, L. A. 1994. NMR-sensitive fluorinated
and fluorescent intracellular calcium ion indicators with high dissociation constants. Am.

J. Physiol. 266:C1313-1322.

Magee, J. C., and Johnston, D. 1997. A synaptically controlled, associative signal for Hebbian
plasticity in hippocampal neurons. Science. 275:209-213.

Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. 1997. Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs. Science. 275:213-215.

Matthews, G. 1999. Synaptic mechanisms of bipolar cell terminals. Vision Res. 39:2469-2476.

Mayer, M. L., Westbrook, G. L., and Guthrie, P. B. 1984. Voltage-dependent block by Mg2+ of
NMDA responses in spinal cord neurones. Nature. 309:261-263.

McCray, J. A., Fidler-Lim, N., Ellis-Davies, G. C., and Kaplan, J. H. 1992. Rate of release of Ca2+

following laser photolysis of the DM-nitrophen- Ca2+ complex. Biochemistry. 31:8856-

8861.



116

Meinrenken, C. J., and Sakmann, B. 2001. Heterogeneous release probability of a fast central
synapse is mediated by a non-uniform topography of its release sites. in preparation.

Miesenböck, G., Deangelis, D. A., and Rothman, J. E. 1998. Visualizing secretion and synaptic
transmission with pH-sensitive Green Fluorescent Proteins. Nature. 394:192-195.

Moser, T., and Beutner, D. 2000. Kinetics of exocytosis and endocytosis at the cochlear inner hair
cell afferent synapse of the mouse. Proc. Natl. Acad. Sci. USA. 97:883-888.

Murthy, V. N., Sejnowski, T. J., and Stevens, C. F. 1997. Heterogeneous release properties of
visualized individual hippocampal synapses. Neuron. 18:599-612.

Nakanishi, S. 1994. Metabotropic glutamate receptors: synaptic transmission, modulation, and
plasticity. Neuron. 13:1031-1037.

Naraghi, M. 1997. T-jump study of calcium binding kinetics of calcium chelators. Cell Calcium.

22:255-268.

Naraghi, M., and Neher, E. 1997. Linearized buffered Ca2+ diffusion in microdomains and its

implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci.

17:6961-6973.

Neher, E. 1986. Concentration profiles of intracellular calcium in the presence of a diffusible
chelator. Exp. Brain Res. 14:80-96.

Neher, E. 1998. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in
neurotransmitter release. Neuron. 20:389-399.

Neher, E., and Sakaba, T. 2001. Combining deconvolution and noise analysis for the estimation of
transmitter release rates at the calyx of held. J. Neurosci. 21:444-461.

Neher, E., and Sakmann, B. 1976. Single-channel currents recorded from membrane of denervated
frog muscle fibres. Nature. 260:799-802.

Neher, E., and Zucker, R. S. 1993. Multiple calcium-dependent processes related to secretion in
bovine chromaffin cells. Neuron. 10:21-30.

Nonet, M. L., Grundahl, K., Meyer, B. J., and Rand, J. B. 1993. Synaptic function is impaired but
not eliminated in C. elegans mutants lacking synaptotagmin. Cell. 73:1291-1305.

Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. 1984. Magnesium gates
glutamate-activated channels in mouse central neurones. Nature. 307:462-465.

Oberhauser, A. F., Robinson, I. M., and Fernandez, J. M. 1996. Simultaneous capacitance and
amperometric measurements of exocytosis: a comparison. Biophys. J. 71:1131-1139.

Ohana, O., and Sakmann, B. 1998. Transmitter release modulation in nerve terminals of rat
neocortical pyramidal cells by intracellular calcium buffers. J. Physiol. (Lond.). 513:135-
148.



References                                                                                                                     117

Otis, T., Zhang, S., and Trussell, L. O. 1996a. Direct measurement of AMPA receptor
desensitization induced by glutamatergic synaptic transmission. J. Neurosci. 16:7496-

7504.

Otis, T. S., Wu, Y. C., and Trussell, L. O. 1996b. Delayed clearance of transmitter and the role of
glutamate transporters at synapses with multiple release sites. J. Neurosci. 16:1634-1644.

Pape, P. C., Jong, D.-S., and Chandler, W. K. 1995. Calcium release and its voltage dependence in
frog cut muscle fibers equilibrated with 20 mM EGTA. J. Gen. Physiol. 106:259-336.

Parnas, H., Dudel, J., and Parnas, I. 1986. Neurotransmitter release and its facilitation in crayfish.
VII. Another voltage dependent process beside Ca entry controls the time course of
phasic release. Pflügers Archiv. 406:121-130.

Parsons, T. D., Lenzi, D., Almers, W., and Roberts, W. M. 1994. Calcium-triggered exocytosis and
endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair
cells. Neuron. 13:875-883.

Pearse, B. M., Smith, C. J., and Owen, D. J. 2000. Clathrin coat construction in endocytosis. Curr.

Opin. Struct. Biol. 10:220-228.

Peters, C., Bayer, M. J., Buhler, S., Andersen, J. S., Mann, M., and Mayer, A. 2001. Trans-complex
formation by proteolipid channels in the terminal phase of membrane fusion. Nature.

409:581-588.

Pieribone, V. A., Shupliakov, O., Brodin, L., Hilfiker-Rothenfluh, S., Czernik, A. J., and Greengard, P.

1995. Distinct pools of synaptic vesicles in neurotransmitter release. Nature. 375:493-497.

Proks, P., Eliasson, L., Ammala, C., Rorsman, P., and Ashcroft, F. M. 1996. Ca2+- and GTP-
dependent exocytosis in mouse pancreatic beta-cells involves both common and distinct
steps. J. Physiol. (Lond.). 496:255-264.

Pyle, J. L., Kavalali, E. T., Piedras-Renteria, E. S., and Tsien, R. W. 2000. Rapid reuse of readily
releasable pool vesicles at hippocampal synapses. Neuron. 28:221-231.

Rapp, G. 1998. Flash lamp-based irradiation of caged compounds. Methods Enzymol. 291:202-222.

Ravin, R., Parnas, H., Spira, M. E., Volfovsky, N., and Parnas, I. 1999. Simultaneous measurement
of evoked release and [Ca2+]i in a crayfish release bouton reveals high affinity of release

to Ca2+. J. Neurophysiol. 81:634-642.

Ravin, R., Spira, M. E., Parnas, H., and Parnas, I. 1997. Simultaneous measurement of intracellular
Ca2+ and asynchronous transmitter release from the same crayfish bouton. J. Physiol.

(Lond.). 501:251-262.

Regehr, W. G. 1997. Interplay between sodium and calcium dynamics in granule cell presynaptic
terminals. Biophys. J. 73:2476-2488.

Regehr, W. G., and Atluri, P. P. 1995. Calcium transients in cerebellar granule cell presynaptic
terminals. Biophys. J. 68:2156-2170.



118

Rhode, W. S., and Smith, P. H. 1986. Encoding timing and intensity in the ventral cochlear nucleus
of the cat. J Neurophysiol. 56:261-286.

Richards, D. A., Guatimosim, C., and Betz, W. J. 2000. Two endocytic recycling routes selectively
fill two vesicle pools in frog motor nerve terminals. Neuron. 27:551-559.

Roberts, W. M. 1994. Localization of calcium signals by a mobile calcium buffer in frog saccular
hair cells. J. Neurosci. 14:3246-3262.

Robitaille, R., Garcia, M. L., Kaczorowski, G. J., and Charlton, M. P. 1993. Functional colocalization
of calcium and calcium-gated potassium channels in control of transmitter release.
Neuron. 11:645-655.

Rozov, A., Burnashev, N., Sakmann, B., and Neher, E. 2001. Transmitter release modulation by
intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal
cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in
presynaptic calcium dynamics. J. Physiol. (Lond.). 531:807-826.

Ryan, T. A., Reuter, H., and Smith, S. J. 1997. Optical detection of a quantal presynaptic
membrane turnover. Nature. 388:478-482.

Sakaba, T., and Neher, E. 2001a. Preferential potentiation of fast-releasing synaptic vesicles by
cAMP at the calyx of Held. Proc. Natl. Acad. Sci. USA. 98:331-336.

Sakaba, T., and Neher, E. 2001b. Quantitative relationship between transmitter release and
calcium current at the calyx of held synapse. J. Neurosci. 21:462-476.

Sankaranarayanan, S., and Ryan, T. A. 2001. Calcium accelerates endocytosis of vSNAREs at
hippocampal synapses. Nat. Neurosci. 4:129-136.

Sätzler, K. 2000. 3D Rekonstruktion von elektronenmikroskopischen Serienschnitten. PhD.

Ruprecht-Karls-Universität, Heidelberg.

Schneggenburger, R., Meyer, A. C., and Neher, E. 1999. Released fraction and total size of a pool of
immediately available transmitter quanta at a calyx synapse. Neuron. 23:399-409.

Schneggenburger, R., and Neher, E. 2000. Intracellular calcium dependence of transmitter release
rates at a fast central synapse. Nature. 406:889-893.

Schneider, B., Bradl, J., Kirsten, I., Hausmann, M., and Cremer, C. 1998. High precision localization
of fluorescent targets in the nanometer range by spatially modulated excitation
fluorescence microscopy. In Fluorescence Microscopy and Fluorescent Probes. j. Slavik,
editor. Plenum Press. 71-76.

Sherman, A. J., Shrier, A., and Cooper, E. 1999. Series resistance compensation for whole-cell
patch-clamp studies using a membrane state estimator. Biophys. J. 77:2590-2601.



References                                                                                                                     119

Silver, R. A., Cull-Candy, S. G., and Takahashi, T. 1996. Non-NMDA glutamate receptor occupancy
and open probability at a rat cerebellar synapse with single and multiple release sites. J.

Physiol. (Lond.). 494:231-250.

Simon, S. M., and Llinás, R. R. 1985. Compartmentalization of the submembrane calcium activity
during calcium influx and its significance in transmitter release. Biophys. J. 48:485-498.

Smith, G. D. 1996. Analytical steady-state solution to the rapid buffering approximation near an
open Ca2+ channel. Biophys. J. 71:3064-3072.

Spirou, G. A., Brownell, W. E., and Zidanic, M. 1990. Recordings from cat trapezoid body and
HRP labeling of globular bushy cell axons. J. Neurophysiol. 63:1169-1190.

Stevens, C. F., and Williams, J. H. 2000. "Kiss and run" exocytosis at hippocampal synapses. Proc.

Natl. Acad. Sci. USA. 97:12828-12833.

Stuart, G. J., and Sakmann, B. 1994. Active propagation of somatic action potentials into
neocortical pyramidal cell dendrites. Nature. 367:69-72.

Südhof, T. C. 1995. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature.

375:645-653.

Südhof, T. C., and Rizo, J. 1996. Synaptotagmins: C2-domain proteins that regulate membrane
traffic. Neuron. 17:379-388.

Sun, J.-Y., and Wu, L.-G. 2001. Fast kinetics of exocytosis revealed by simultaneous measurements
of presynaptic capacitance and postsynaptic currents at a central synapse. Neuron.

30:171-182.

Tang, C. M., Margulis, M., Shi, Q. Y., and Fielding, A. 1994. Saturation of postsynaptic glutamate
receptors after quantal release of transmitter. Neuron. 13:1385-1393.

Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., Liu, G., and Tsien, J.

Z. 1999. Genetic enhancement of learning and memory in mice. Nature. 401:63-69.

Taschenberger, H., and von Gersdorff, H. 2000. Fine-tuning an auditory synapse for speed and
fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic
plasticity. J. Neurosci. 20:9162-9173.

Thomas, P., Wong, J. G., Lee, A. K., and Almers, W. 1993. A low affinity Ca2+ receptor controls the
final steps in peptide secretion from pituitary melanotrophs. Neuron. 11:93-104.

Tietze, U., and Schenck, C. 1978. Halbleiter-Schaltungstechnik. Springer-Verlag, Berlin.

Tong, G., and Jahr, C. E. 1994. Multivesicular release from excitatory synapses of cultured
hippocampal neurons. Neuron. 12:51-59.

Traynelis, S. F. 1998. Software-based correction of single compartment series resistance errors. J.

Neurosci. Methods. 86:25-34.



120

Trussell, L. O., and Fischbach, G. D. 1989. Glutamate receptor desensitization and its role in
synaptic transmission. Neuron. 3:209-218.

Trussell, L. O., Zhang, S., and Raman, I. M. 1993. Desensitization of AMPA receptors upon
multiquantal neurotransmitter release. Neuron. 10:1185-1196.

Van der Kloot, W. 1988. Estimating the timing of quantal releases during end-plate currents at
the frog neuromuscular junction. J. Physiol. (Lond.). 402:595-603.

von Gersdorff, H. 2001. Synaptic ribbons: versatile signal transducers. Neuron. 29:7-10.

von Gersdorff, H., and Matthews, G. 1994. Inhibition of endocytosis by elevated internal calcium in
a synaptic terminal. Nature. 370:652-655.

von Gersdorff, H., Sakaba, T., Berglund, K., and Tachibana, M. 1998. Submillisecond kinetics of
glutamate release from a sensory synapse. Neuron. 21:1177-1188.

von Gersdorff, H., Schneggenburger, R., Weis, S., and Neher, E. 1997. Presynaptic depression at a
calyx synapse: the small contribution of metabotropic glutamate receptors. J. Neurosci.

17:8137-8146.

Wightman, R. M., Jankowski, J. A., Kennedy, R. T., Kawagoe, K. T., Schroeder, T. J., Leszczyszyn, D.
J., Near, J. A., Diliberto, E. J., Jr., and Viveros, O. H. 1991. Temporally resolved
catecholamine spikes correspond to single vesicle release from individual chromaffin
cells. Proc. Natl. Acad. Sci. USA. 88:10754-10758.

Wilkinson, R. S., and Cole, J. C. 2001. Resolving the Heuser-Ceccarelli debate. Trends Neurosci.

24:195-197.

Wu, L.-G., and Borst, J. G. G. 1999. The reduced release probability of releasable vesicles during
recovery from short-term synaptic depression. Neuron. 23:821-832.

Wu, L.-G., and Saggau, P. 1997. Presynaptic inhibition of elicited neurotransmitter release. Trends

Neurosci. 20:204-212.

Xu, T., Naraghi, M., Kang, H., and Neher, E. 1997. Kinetic studies of Ca2+ binding and Ca2+

clearance in the cytosol of adrenal chromaffin cells. Biophys. J. 73:532-545.

Xu, T., Rammner, B., Margittai, M., Artalejo, A. R., Neher, E., and Jahn, R. 1999. Inhibition of
SNARE complex assembly differentially affects kinetic components of exocytosis. Cell.

99:713-722.

Xu-Friedman, M. A., and Regehr, W. G. 1999. Presynaptic strontium dynamics and synaptic
transmission. Biophys. J. 76:2029-2042.

Yamada, K. A., and Tang, C.-M. 1993. Benzothiadiazides inhibit rapid glutamate receptor
desensitization and enhance glutamatergic synaptic currents. J. Neurosci. 13:3904-3915.

Yamada, W. M., and Zucker, R. S. 1992. Time course of transmitter release calculated from
simulations of a calcium diffusion model. Biophys. J. 61:671-682.



References                                                                                                                     121

Yazejian, B., Sun, X. P., and Grinnell, A. D. 2000. Tracking presynaptic Ca2+ dynamics during
neurotransmitter release with Ca2+-activated K+ channels. Nat. Neurosci. 3:566-571.

Young, M. 2000. Optics and Lasers. Springer-Verlag, Berlin.

Yuste, R., and Denk, W. 1995. Dendritic spines as basic functional units of neuronal integration.

Nature. 375:682-684.

Zamanillo, D., Sprengel, R., Hvalby, O., Jensen, V., Burnashev, N., Rozov, A., Kaiser, K. M., Koster,
H. J., Borchardt, T., Worley, P., Lubke, J., Frotscher, M., Kelly, P. H., Sommer, B., Andersen,

P., Seeburg, P. H., and Sakmann, B. 1999. Importance of AMPA receptors for
hippocampal synaptic plasticity but not for spatial learning. Science. 284:1805-1811.

Zenisek, D., Steyer, J. A., and Almers, W. 2000. Transport, capture and exocytosis of single
synaptic vesicles at active zones. Nature. 406:849-854.

Zucker, R. S. 1989. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12:13-31.

Zucker, R. S. 1992. Effects of photolabile calcium chelators on fluorescent calcium indicators. Cell

Calcium. 13:29-40.

Zucker, R. S. 1993. The calcium concentration clamp: spikes and reversible pulses using the
photolabile chelator DM-nitrophen. Cell Calcium. 14:87-100.

Zucker, R. S. 1996. Exocytosis: a molecular and physiological perspective. Neuron. 17:1049-1055.

Zucker, R. S. 1999. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol.

9:305-313.



122



123

Danksagung

Herrn Prof. Sakmann verdanke ich die Möglichkeit, die vorliegende Arbeit in der Abteilung
Zellphysiologie am Max-Planck-Institut für medizinische Forschung realisieren zu können. Von
ihm erhielt ich zahlreiche Anregungen zum wissenschaftlichen Denken sowie viele Beispiele der
Freude am Forschen. Ich danke ihm für die Unterstützung, Motivation und Unabhängigkeit, die
ich in dieser Zeit genießen durfte.

Sehr gedankt sei Gerard Borst für die Aufgabenstellung, die der vorliegenden Arbeit zu Grunde
liegt. Zahlreiche Anregungen, konkrete Verbesserungsvorschläge und konstruktive Kritik haben
das Gelingen dieser Arbeit erst möglich gemacht. Ferner danke ich ihm für die kritische
Durchsicht des Manuskripts. Beste Groeten!

Ich danke Herrn Prof. Cremer für die freundliche Betreuung seitens der Fakultät für Physik und
Astronomie und für das Interesse, das er meiner Arbeit entgegengebracht hat.

Herrn Prof. Neher danke ich für hilfreiche Anregungen und lehrreiche Diskussionen über
zelluläre Ca2+-Signale und Mechanismen der synaptischen Übertragung.

Herzlich danken möchte ich Christoph Meinrenken, Helmut Köster, Ora Ohana und Arnd Roth
für zahlreiche Diskussionen und Anregungen, die zur Erweiterung der vorliegenden Arbeit und
meines Verständnisses derselben beigetragen haben. Arnd Roth danke ich für die Hilfe beim
Einstieg in ‘Mathematica’ und für Programmstrukturen, die in das Ca2+-Sensormodell
eingegangen sind.

Ich danke Hans Engler, Valentin Nägerl und David DiGregorio für Anregungen zur Messung
schneller Fluoreszenzsignale und Diskussionen über Ca2+-Dynamik.

Marlies Kaiser möchte ich für die labortechnische Unterstützung danken, aber auch für ihre
Übersicht. Klaus Bauer danke ich für Rat und Unterstützung bei Computerfragen. Ramon
Granadillo sei gedankt für die bibliographische Hilfe. Frau Dücker, Frau Spiegel und Frau
Matthies danke ich für organisatorische Hilfe.

Für die große Hilfe beim Lösen technischer Probleme sei besonders Herrn Schmidt und Rolf
Rödel sowie Herrn Maier und Herrn Müller aus der Feinmechanik-Werkstatt und dem
Elektroniklabor gedankt.

Suzanne Farley, Troy Margrie, Nathan Urban und Jack Waters haben freundlicherweise die
Durchsicht jeweils verschiedener Teile des Manuskripts auf sprachliche Richtigkeit hin
übernommen. Dafür sei ihnen gedankt.

Allen Mitarbeitern in der Abteilung danke ich für anregende Gespräche und Diskussionen, für
die Bereitschaft, ihr Wissen zu teilen, und für die freundliche (nicht nur Arbeits-)Atmosphäre.

Bernd, Carsten, Nils und Rüdiger danke ich für freundschaftliche Unterstützung in den
vergangenen Jahren.

Ich danke Josephine, u.a. für ihre Neugier und ihren Esprit.

Besonderer Dank gilt meinen Eltern für ihre Unterstützung und ihr Vertrauen.


