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Abstract

Efficient numerical methods for the real-time solution of optimal control problems arising
in nonlinear model predictive control (NMPC) are presented. The practical applicability
of the methods is demonstrated in an experimental application to a pilot plant distillation
column, involving the real-time optimization of a large scale differential algebraic process
model, with sampling times of only a few seconds.

The solution approach is based on the direct multiple shooting method, which allows
to combine the use of advanced, fully adaptive DAE solvers with the advantages of a simul-
taneous strategy. The real-time approach is characterized by an initial value embedding
strategy, that efficiently exploits solution information in subsequent optimization problems.
Dovetailing of the solution iterations with the process development in a real-time iteration
scheme allows to reduce sampling times to a minimum, but maintains all advantages of a
fully nonlinear treatment of the optimization problems. It is shown how the computations
in each real-time iteration can be divided into a preparation phase and a considerably
shorter feedback phase, which avoids the delay of one sampling time that is present in all
previous NMPC schemes. A Gauss-Newton approach for least squares integrals is realized
which allows to compute an excellent Hessian approximation at negligible computational
costs.

The contraction properties of the algorithm are investigated theoretically, and contrac-
tivity of the real-time iterates is shown under mild conditions. Bounds on the loss of
optimality with respect to the optimal solution are established.

In an experimental proof-of-concept study the developed numerical methods are applied
to the NMPC of a pilot plant distillation column situated at the Institut fir Systemdy-
namik und Regelungstechnik at the University of Stuttgart. A suitable system model is
developed, which is stiff and comprises more than 200 state variables, and the system pa-
rameters are fitted to experimental data. A variant of the Extended Kalman Filter (EKF)
is developed for state estimation. Using the real-time optimization algorithm, sampling
times of less than 20 seconds and feedback delays below 400 milliseconds could be realized
under practical conditions. The scheme shows good closed-loop performance, especially for
large disturbances.

In a numerical experiment, the periodic control of an unstable system, an airborne
kite that is flying loopings, is investigated. The algorithm shows excellent robustness and
real-time performance for this challenging on-line optimization example.

Keywords

Boundary Value Problems, Constrained Gauss-Newton, Differential Algebraic Equations,
Direct Multiple Shooting, Distillation Columns, Dynamic Chemical Processes, Embedding
Techniques, Index One DAEs, Large-Scale Systems, Newton Type Methods, Nonlinear
Model Predictive Control, Optimal Feedback Control, Periodic Control, Real-Time Opti-
mization






Acknowledgements

I thank my advisors Prof. Dr. Dr. h.c. Hans Georg Bock and Dr. Johannes Schléder, Inter-
disziplindres Zentrum fiir Wissenschaftliches Rechnen (IWR), University of Heidelberg, for
their excellent support over the last three years, and for their contribution to major ideas of
the presented real-time optimization scheme. It was a pleasure to build on their extraor-
dinary knowledge in the area of dynamic optimization, and their open minded attitude
towards applied research deeply influenced my view on mathematics and its applications.
I also thank Prof. Dr. Frank Allgower, Institute for Systems Theory in Engineering (IST),
University of Stuttgart, for the direct and indirect support that he provided for my work.
His enthusiasm initially convinced me to enter the area of Nonlinear Model Predictive
Control, and his talent to ask the right questions at the right time did decisively influence
the course of my work.

[ owe an enormous debt of gratitude to Rolf Findeisen from the IST, for his willing-
ness and extraordinary ability to explain engineering issues to a numerical analyst, which
helped considerably to make a fruitful and lasting collaboration possible. I want to thank
him and Dr. Ilknur Uslu and Stefan Schwarzkopf from the Institut fir Systemdynamik
und Regelungstechnik (ISR), University of Stuttgart, for many inspiring discussions and
for their commitment to our project, the experimental application of nonlinear model pre-
dictive control to a pilot plant distillation column at ISR. All experimental results with
the distillation column were obtained together with them. Furthermore, I want to thank
Prof. Dr.-Ing. Dr. h.c. mult. Ernst Dieter Gilles, Dr.-Ing. Achim Kienle and Erik Stein,
Mazx-Planck-Institut fiir Dynamik komplezer technischer Systeme, Magdeburg, for support
of the project.

Many people have directly or indirectly contributed to the success of this work: first
and foremost, I thank Dr. Daniel Leineweber, who not only introduced me into the world
of numerical process optimization, but also continued to be a constant source of advice. I
had the chance to build on the software in the simulation and optimization group at IWR,
especially on his well structured software package MUSCOD-II, which significantly helped
towards the successful realization of the numerical methods developed in this thesis. I
also thank Andreas Schifer, the coauthor of MUSCOD-II, for many invaluable discussions
about implementation details, and for his generous willingness to help with diverse software
problems. It was a pleasure to share a room with him.

[ am grateful to Tobias Biirner, who provided valuable help in the area of parameter
and state estimation. Dr. Zoltan Nagy from Babes-Bolyai University, Cluj, Romania, de-
veloped large parts of the employed distillation model during a research stay in Heidelberg,
and I want to thank him and Rolf Findeisen for the productive time we had together in
Heidelberg. Moritz Wendt from the Institut fiir Prozess- und Anlagentechnik, Technical
University Berlin, gave helpful advice about the modelling of hydrodynamics.

In the very final phase of this work, several colleagues helped with proofread-
ing and critical remarks. 1 especially thank Wolfgang Bangerth, Ulrich Brandt-
Pollmann, Dr. Chrys Correa, Julia Hartmann, Dr. Ekaterina Kostina, Jan Schrage and
Dr. Michael Winckler.



I heartily thank our group’s secretary Margret Rothfufs for her contribution to the
friendly environment in the workgroup, and our system administrator Thomas Kloepfer
for many hours he spent helping me in various respects. I like to extend my thanks to the
other people of the group for creating the open and constructive atmosphere that made
my time there very pleasant.

Here I like to express my gratitude to Prof. Dr. Dr. h.c. mult. Willi Jager for having
incited my interest in applied mathematics through his inspiring introductory lectures and
for his support and advice at several stages of my career. I thank him and the managing
board of directors of the IWR for creating a great environment for doing interdisciplinary
research. T have been particularly lucky to be a member of the IWR’s postgraduate program
“Modeling and Scientific Computing in Mathematics and Natural Sciences” (Chairman:
Prof. Dr. Dr. h.c. Hans Georg Bock), which provided many inspiring interdisciplinary
contacts.

Financial support by the Deutsche Forschungsgemeinschaft (DFG) within this post-
graduate program as well as within the DFG-Schwerpunktprogramm “Real-Time Opti-
mization of Large Systems” in the project “Echtzeit-Optimierung bei grofien nichtlinearen
DAFE Modellen der Verfahrenstechnik am Beispiel gekoppelter Destillationskolonnen” is
gratefully acknowledged.

Finally, I happily thank my friends, my flat mates, my family and my girlfriend Anne
for the wonderful support and encouragement at home.



Contents

Acronyms
List of Selected Symbols
Introduction

1 Real-Time Optimal Control
1.1 Optimal Control Problems in DAE . . ... ... .. ... .........
1.1.1 Problem Formulation . . . . . . ... ... ... ... ... .....
1.2 A Guiding Example: Continuous Stirred Tank Reactor . . . . ... .. ..
1.2.1 Dynamic Model of the CSTR . . . .. .. ... ... ... .....
1.2.2  The Optimal Control Problem . . . . . . . ... ... ... .....
1.3  Optimal Feedback Control . . . . . . . . ... ... ... ... .......
1.3.1 Linearized Neighboring Feedback Control . . . . . . . . . ... ...
1.3.2 Infinite Horizon Problems . . . . . .. . ... ... ... ......
1.4 Nonlinear Model Predictive Control . . . . . . . . . ... ... .. .....
1.4.1 Schemes to Ensure Nominal Stability . . . . . ... ... ... ...
1.4.2 Alternative Feedback Strategies . . . . . . . ... ... ... ....

2 Direct Multiple Shooting
2.1 Problem Parameterization . . . . . . . . . . . ... ... ... .. ...,
2.1.1 Time Transformation . . . . . . . . . . . . . ... ... ... ...
2.1.2 Control Discretization . . . . . . . . . . . . ... ... ... ...
2.1.3 State Parameterization . . . . . . . .. .. ... L.
2.1.4 Discretization of Path Constraints . . . . . . . . . . ... ... ...
2.2 The Nonlinear Programming Problem . . . . . . ... ... ... ......
2.2.1 Free and Dependent Variables . . . . . ... ... ... .......

3 Local Optimality and SQP Methods
3.1 Local Optimality Conditions . . . . . . . .. .. ... ... .. ... ...,
3.2 Piecewise Differentiable Dependence on Perturbations . . . . . .. ... ..

3.3 Sequential Quadratic Programming . . . . . . ... ..o
3.3.1 The Full Step Exact Hessian SQP Method . . . . . .. .. ... ..

Vil

xi

xiii

12
12
12
15
17
18
19
21
21
24

27
27
27
28
28
30
30
32



viii CONTENTS
3.3.2  Active Set Determination . . . . . .. ... ... 46

3.4 SQP for a Parameterized Problem Family . . .. .. .. ... ... ..., 46
3.4.1 Large Disturbances and Active Set Changes . . . . ... ... ... 50

4 Real-Time Iterations 53
4.1 Practical Real-Time Optimal Control . . . . . . . .. .. ... ... .... 53
4.1.1 A Conventional Approach . . . ... ... ... ... ........ 54
4.1.2 The Real-Time Iteration Idea . . . . . .. .. ... .. ... .... 25

4.2 The Initial Value Embedding . . . . . . . ... ... 000 26
4.3 Real-Time Iterations on Shrinking Horizons . . . . . . .. . ... ... .. 58
4.3.1 A Real-Time Algorithm . . . . . ... ... ... ... .. ..... 59
4.3.2 Comparison with Linearized Neighboring Feedback Control . . . . . 60
4.3.3 Problems with Free Final Time . . . ... .. ... ... ...... 62

4.4  Real-Time Iterations on Moving Horizons . . . . . . . ... ... ... ... 63
4.4.1  Shift Strategy . . . . . ... 64
4.4.2  Warm Start Technique . . . . . . .. ... ... ... ... ... 65

5 Contractivity of the Real-Time Iterations 69
5.1 The Off-Line Problem . . . . . . . .. .. ... ... ... ......... 70
5.1.1 Newton Type Optimization Methods . . . . . ... ... ... ... 70
5.1.2  The Constrained Gauss-Newton Method . . . . .. ... ... ... 71
5.1.3 Sufficient Conditions for Local Convergence . . . . .. .. ... .. 73

5.2 The On-Line Problem . . . . . ... ... ... ... ... ......... 7
5.2.1 The Fixed Control Formulation . . . . . .. ... ... ... .... 7
5.2.2  Fixing Some Controls . . . . . . . . .. ... ... 80
5.2.3 Convergence of the Real-Time Iterations . . . . .. ... ... ... 85

5.3 Comparison of On-Line and Off-Line Solutions . . . . . . . ... ... ... 89
5.3.1 Distance to Optimal Solutions . . . . . .. ... ... ... ..... 89
5.3.2 Size of First Step after Initial Value Embedding . . . . . . . . . .. 90
5.3.3 Bounds on the Loss of Optimality . . . . . . . ... .. ... .... 91

6 A Close Look at one Real-Time Iteration 93
6.1 Problem Structure . . . . . . . . . .. ... 94
6.2 The Partial Reduction Technique . . . . . .. ... ... ... .. ..... 95
6.3 Efficient Sensitivity Computation . . . . . . . .. .. ... L. 97
6.3.1 Directional Derivatives . . . . . . . . . . . ... ... ... ... 98

6.4 A Gauss-Newton Method for Integral Least Squares Terms . . . . . . . .. 100
6.4.1 A Partially Reduced Hessian Approximation . . . . .. .. ... .. 100

6.5 QP Solution by a Condensing Approach . . . .. .. ... .. ... ... .. 101
6.5.1 First Condensing Step . . . . . . . . . ... oL 102
6.5.2 Second Condensing Step and Immediate Feedback . . . . . . . . .. 103
6.5.3 Expansion of the QP Solution . . . . . . .. ... ... .. ..... 105

6.6 A Riccati Recursion Approach . . . . . . .. ... 000 106



CONTENTS

ix

6.6.1 Backwards Recursion . . . . . . ... ... ... ... ...
6.6.2 Immediate Feedback . . . ... .. ... ... ... .. .......
6.6.3 Forward Recursion . . . . . .. . ... .. ... ... ... ...
6.6.4 Comparison of Condensing and Riccati Recursion . . . . . . . . ..
6.7 Division into Preparation and Feedback Phase . . . . . .. ... ... ...
6.7.1 Five Computation Steps . . . . . . . . .. ... ... ... ...
6.7.2 The Off-Line Steps in a Rotated Order . . . . . . . ... ... ...

7 Control of a Distillation Column
7.1 The Distillation Column . . . . . . .. . ... .. .. ... .. .......
7.1.1 The DAE Model . . . ... .. ... ... ... .. .. .. .....
7.2  Determination of the System Parameters . . . . . . . ... .. ... ....
7.2.1 Static System Parameters . . . .. .. ... ... ... . ... ...
7.2.2  Dynamic System Parameters . . . . . . . ... ... ... ... ...
7.3 Optimal Control Problem Formulation . . . .. ... ... .........
7.3.1 Steady State Determination . . . . . . ... ... ... .. .....
7.3.2 The Optimal Control Problem . . . . . ... ... ... .......
7.3.3 Numerical Realization . . .. ... ... ... .. ..........
7.4 Experimental Setup . . . . . . . ..o
7.4.1 NMPC Controller Setup . . . . . ... ... ... ... .......
7.4.2 PI Controller Setup . . . . . . . ... ... ... ... ... .....
7.5 Experimental Results . . . . . . . . .. .. .o
7.5.1 Feed Flow Change . . . .. .. .. ... ... ... .. ... ....
7.5.2 Feed Concentration Change . . . . .. ... ... ... ... ....
7.5.3 Short Reflux Breakdown . . . . .. .. ... ... ..........
7.5.4 Large Disturbance Scenario . . . . . . .. ... .. ... .. ....
7.5.5 Brief Discussion . . . . . . .. ... ...

8 Control of a Looping Kite
8.1 The Dual Line Kite Model . . . . . . . ... .. ... ... ... ......
8.1.1 Newton’s Laws of Motion in Polar Coordinates . . .. .. ... ..
8.1.2 Kite Orientation and the Aerodynamic Force . . . . . . .. ... ..
8.2 A Periodic Orbit . . . . . . . . . ..
8.2.1 Stability Analysis of the Open-Loop System . . . . .. .. ... ..
8.3 The Optimal Control Problem . . . . . . . ... ... ... .........
8.4 Closed-Loop Simulations . . . . . . .. .. ... ... ... .........

Conclusions and Outlook

A An Extended Kalman Filter Variant
A.1 Problem Formulation . . . . . . . . . . . ... ... ... ...
A.2 The EKF Type Algorithm . . . . . . . . ... ... .. ... .. ..
A.3 Heuristic Motivation . . . . . . . . . . . e

107
108
109
109
110
110
110

113
113
114
119
120
121
123
124
124
126
127
127
129
129
129
130
131
133
133

139
139
139
141
144
146
147
148

153



B Details of the Distillation Model

C Proof of Theorem 3.4

D Proof of Theorem 5.3

E The Recursive Condensing Technique

Bibliography

163

167

171

173

175



Acronyms

BDF
CSTR
DAE
EKF
END
HJB
IND
TPM
VP
LMPC
LQR
KKT
NLP
NMPC
ODE
PRSQP
QIH
QP
RHC
SQP
7TC

Backward Differentiation Formulae
Continuous Stirred Tank Reactor
Differential Algebraic Equation
Extended Kalman Filter

External Numerical Differentiation
Hamilton-Jacobi-Bellman

Internal Numerical Differentiation
Interior-Point Method

Initial Value Problem

Linear Model Predictive Control
Linear Quadratic Regulator
Karush-Kuhn-Tucker

Nonlinear Programming

Nonlinear Model Predictive Control
Ordinary Differential Equation

Partially Reduced Sequential Quadratic Programming

Quasi-Infinite Horizon

Quadratic Programming

Receding Horizon Control
Sequential Quadratic Programming
Zero Terminal Constraint

xi






List of Selected Symbols

Symbol Meaning Defined in
G equality constraint function Sec. 3.1
G equalities and active inequalities Sec. 3.1
Gs equalities and stricly active inequalities Sec. 3.1
H inequality constraint function Sec. 3.1
Hat active components of H, Sec. 3.1
Hs-act strongly active components of H Sec. 3.1
HY2t  weakly active components of H Sec. 3.1
A Lagrange multiplier vector for equality constraints Sec. 3.1
1 Lagrange multiplier vector for inequality constraints Sec. 3.1
N number of multiple shooting intervals Sec. 2.1
P constant system parameter vector Sec. 1.1
P,.(xo) optimal control problem for initial value z, Sec. 1.1.1
P(zp)  multiple shooting NLP for initial value Sec. 2.2
P(t) NLP for fixed homotopy parameter ¢ Chap. 3
P(f) augmented version of P(t) Sec. 3.4
Py(x)  k-th shrinking horizon problem, initial value xy Sec. 4.3
P* fixed control formulation of Py (zy) Sec. 5.2.1
q vector of “free” NLP variables (controls qo, ... ,qn_1) Sec. 2.2
i control parameter value on i-th multiple shooting interval Sec. 2.1
s vector of “dependent” NLP variables (states sq, ... , sxy) Sec. 2.2
Si state node value s; = (s7, s7) Sec. 2.1
s7 differential state node value Sec. 2.1
87 algebraic state node value Sec. 2.1

xiii



xiv

List of Selected Symbols

Meaning

length of the time horizon

optimal horizon length for problem P, ()

1) physical time

2) scalar parameter for problems P(t)
rescaled time 7 =¢/T

control vector

steady state controls

optimal feedback control (shrinking horizon)
optimal feedback control (infinite horizon)
NMPC feedback control (horizon length T')
optimal control trajectory for problem P,.(zo)
vector of all NLP variables w = (q, )
differential state vector

differential state of closed-loop system

initial value

differential steady state

optimal differential state trajectory for problem P,.(zo)
KKT triple y = (w, A, p)

1) solution of off-line problem (= yg)

2) real-time iteration limit point

solution of shrunk problem P*

algebraic state vector

algebraic state of closed-loop system

optimal algebraic state trajectory for problem P,.(z)

Defined in

Sec. 1.1.1
Sec. 1.1.1
Sec. 1.1
Chap. 3
Sec. 2.1.1
Sec. 1.1
Sec. 1.2
Eq. (1.5)
Sec. 1.3.2
Sec. 1.4
Sec. 1.1.1
Sec. 2.2
Sec. 1.1
Sec. 1.3
Sec. 1.1
Sec. 1.2
Sec. 1.1.1
Sec. 3.3
Sec. 5.1
Sec. 5.2
Sec. 5.3
Sec. 1.1
Sec. 1.3
Sec. 1.1.1



Introduction

Optimization techniques have a fundamental impact on current industrial practice. Opti-
mization plays a crucial role not only in operations research and in product design, but also
in the design of dynamic industrial processes. In many cases, an optimal control problem
is solved off-line, i.e., before the actual process operation begins, and a variety of highly
developed algorithms have been developed to attack this task.

In practical applications, however, control trajectories that are the result of an off-line
optimization are of limited applicability, as the real process does not typically coincide
completely with the mathematical model and is most probably subject to disturbances.
Therefore, the generation of optimization-based feedback controls is of major practical
interest. As optimal feedback controls cannot usually be precalculated in advance for all
possible disturbances, the need for real-time optimization of the controlled process arises.

Model Predictive Control

The idea of model predictive control (MPC) is to determine the control at time ¢y by
solving an optimal control problem on a prediction horizon [ty,to + T (see Fig. 1). The
resulting optimal controls are given to the real process for a short time ¢ only, and at time
to + 6 a new problem is solved on a horizon [ty + 6,ty + T + 6] that is moved forward. A
sequence of optimization problems is formulated and solved in real-time, which provides
the possibility of reacting to disturbances. Linear model predictive control (LMPC), that
is based on constrained linear system models, has achieved a state of considerable maturity
(cf. Garcia et al [GPM89)|, Lee et al. [LMG94|). It has had a strong impact on industrial
control practice and LMPC techniques are nowadays widely applied, especially in the
process industries (cf. Qin and Badgwell [QB96]).

Nonlinear Model Predictive Control

For processes operating during load changes, or for batch and periodic processes, however,
nonlinear models that are based on first principles are expected to capture the system be-
haviour more accurately than linear ones. Nonlinear model predictive control (NMPC)
promises to increase productivity and control performance and has long been investi-
gated theoretically (for overview articles see e.g. Rawlings et al. [RMM94|, Allgower et
al. [ABQ™99], De Nicolao et al. [DMS00], or Mayne [May00]).

1



2 Introduction
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Figure 1: The principle of model predictive control: The optimization problem at time %,
for the current system state xg.

In the industry, however, NMPC is still being perceived as an academic concept rather
than a practicable control strategy, and in a recent survey, Qin and Badgwell [QBO0O|
report only 88 NMPC applications worldwide, only 5 of which are based on first principle
models. As detailed nonlinear process models are increasingly being used for the design
of industrial processes (see, e.g. Pantelides and Barton [PB93|, Ross et al. [RBP99],
or Sorensen [Sor99|) they may, as a byproduct, also become easily available for NMPC
applications.

The difficulty of solving the arising optimal control problems in real-time, however, is
widely regarded as the principal impediment to a practical application of NMPC. In their
survey, Qin and Badgwell [QBO00| point out that “speed and the assurance of a reliable
solution in real-time are major limiting factors in existing applications.”

In this thesis, we present a new approach to respond to the challenge of real-time
optimization in NMPC.

Existing Real-Time Optimization Approaches

In the last decade, the area of numerical techniques for the on-line solution of dynamic
optimization problems in NMPC has undergone rapid development. Most real-time ap-
proaches are applications of optimal control methods which were originally developed for
off-line use, and therefore they can be easily classified within the established framework of
dynamic optimization methods.



Dynamic optimization algorithms based on the direct solution approach have proven
to be particularly successful for the practical solution of constrained optimal control prob-
lems. In the direct approach, the originally infinite optimal control problem is parame-
terized to yield a finite dimensional Nonlinear Programming (NLP) problem, that can be
solved efficiently by highly developed variants of sequential quadratic programming (SQP)
(Han [Han76] and Powell [Pow78]). A variety of strategies for formulating the finite di-
mensional NLP exists. The approaches can roughly be classified into sequential and simul-
taneous solution strategies.

Sequential Approach

The sequential approach parameterizes the control trajectory and eliminates the cor-
responding state trajectory from the optimization problem by a numerical solution of
the dynamic model equations (cf. Hicks and Ray [HR71|, Sargent and Sullivan [SS78§],
Kraft [Kra85]). Only the control parameters remain as degrees of freedom in the NLP. Sim-
ulation and optimization calculations are performed sequentially, one after the other. The
approach can easily be coupled with advanced simulation tools and is applied in many prac-
tical off-line applications (cf. e.g. Pantelides et al. [PSV94], Vassiliadis [VSP94a, VSP94b|,
Engl et al. [EKKvS99|; an overview of existing software packages can be found in Binder
et al. [BBBT01]).

Many real-time optimization schemes for NMPC are based on the sequential approach.
We particularly mention the so called multistep, Newton-type control algorithm that was
proposed by Li and Biegler [LB89] and de Oliveira and Biegler [OB95b| and which cor-
responds to a constrained Gauss-Newton method. This approach was often applied for
numerical tests of NMPC, see e.g. Abel et al. [ADM95| and M’hamdi et al. [MHAM96]. A
sequential approach was also used, e.g., by Weber [Web95| and Chen [Che97|. For a large-
scale application of the sequential approach in real-time optimization see also Kronseder
et al. [KvSBO1].

Sequential optimization schemes for NMPC suffer from the drawback that poor initial
guesses for the control trajectory may lead the predicted state trajectories far away from
desired reference trajectories. This often causes an unnecessarily strong nonlinearity of
the resulting NLPs and poor convergence behaviour, especially for unstable systems. In
some cases, an open-loop simulation on a longer horizon is even impossible (see Fig 8.4 in
Chap. 8 for an example).

Simultaneous Approach

The simultaneous approach avoids this difficulty by parameterizing both, the control and
the state trajectory, and by solving the dynamic model equations and the control op-
timization problem simultaneously in a large constrained NLP. The parameterized state
trajectory becomes a part of the optimization variables, and instability and nonlinearity
of the dynamic model can be better controlled.



4 Introduction

Many researchers have applied collocation in order to parameterize the dynamic model
(see e.g. Tsang et al. [THE75|, Bock [Boc83|, Biegler [Bie84], Cuthrell and Biegler [CB89,
Schulz [Sch96]), resulting in very large, but also very sparse NLPs. The collocation ap-
proach has been proposed for the solution of NMPC optimization problems by Biegler
in [Bie00|.

A second simultaneous approach to optimal control, the direct multiple shooting
method, was presented by Plitt in 1981 [Pli81]. This method forms the basis for our
real-time algorithm. The optimization horizon of interest is divided into a number of
subintervals with local control parameters, and the dynamic model equations are solved
independently on each of these subintervals, cf. Chap. 2. Continuity of the state trajectory
from one interval to the next is enforced on the NLP level only, thus offering the possi-
bility to deal with unstable and strongly nonlinear system models, as collocation. The
method has long been known as a fast off-line optimization method in ODE and DAE (see
e.g. Bock et al. [BP84, BES88, Boc87, BBLS99|, Tanartkit and Biegler [TB95, TB96|,
Leineweber [Lei96, Lei99], Petzold et al. [PRG197], Hinsberger et al. [HMP96, Hin98]).

Recently, the direct multiple shooting method was proposed for real-time optimization
problems and NMPC. Santos et al. [SOB95] emphasize the strength of the method in
dealing with unstable modes and apply it to an NMPC simulation example, the Tennesse
Eastman problem (Downs and Vogel [DV93]), but do not address the question of real-time
feasibility. Leineweber et al. [LBS97| proposes a scheme for the fast reoptimization of batch
processes after large disturbances and presents an application example from biochemical
engineering.

In the last year, an experimental feasibility study of NMPC based on the conventional
direct multiple shooting method has been presented by Santos et al. [SACT00, San00],
for an experimentally simulated unstable continuous stirred tank reactor. The nonlinear
first principle model consists of four differential states and two controls. Choosing short
prediction horizons, optimization times of a few seconds are realized, which is sufficiently
fast for the considered example.

Despite these successful applications of direct multiple shooting to real-time optimiza-
tion, the use of an algorithm that was essentially designed for off-line use certainly has
its limits, and this fact is reflected in the moderate system sizes of the above examples.
Large scale problems with strict real-time constraints have therefore not been treated in
experimental application examples so far.

The Conventional Scheme

Most numerical real-time optimization schemes are based on the idea that one moving
horizon optimization problem can be formulated after the other, and that each of these
problems can be solved independently, with higher or lower accuracy. The solution method
itself is, in direct approaches, typically an iterative SQP type method. The following
algorithmic scheme summarizes the conventional scheme:

1. Formulate an optimization problem according to the k-th data



2. Initialize the solution procedure.
3. Perform iterations.

4. Stop when a termination criterion is satisfied (or when the time limit is reached)
5. Give the first control value to the plant.
6. Increase k by one and go to 1.

The focus is on chosing an efficient off-line method and to formulate the optimization
problems in such a way that the real-time requirements can be met. Note that a delay of
one sampling time is present in this scheme.

The Real-Time Iteration Scheme

In contrast to a conventional scheme, our real-time iteration approach shifts the focus from
the sequence of optimization problems towards the solution algorithm itself. The algorithm
is regarded to be iterating continuously — and while the algorithm is iterating, the problem
data are modified from one iteration to the next. The scheme can be sketched as follows:

1. Prepare the k-th real-time iteration as far as possible without knowledge of the k-th
data.

2. When the k-th data are available, modify the problem, and perform quickly those
calculations that are necessary to obtain the first control value.

3. Give this control value immediately to the plant.
4. Perform the remaining calculations of the k-th iterate.
5. Increase k by one and go to 1.

This approach does only perform one iteration per sampling time and thus allows to reduce
the sampling times considerably. Furthermore, the feedback step 2 is itself much shorter
than a full iteration, so that the response delay can practically be avoided. Note that
the scheme still offers the advantages of a fully nonlinear treatment of the optimization
problems.

The approach can only perform well if the iteration scheme has good contraction prop-
erties — this is typically the case for simultaneous approaches like direct multiple shooting
— and if the problem modifications are implemented in such a way that they have minimal
interference on the iterates.
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The Initial Value Embedding Strategy

The crucial observation is that essentially one parameter suffices to distinguish between
different optimization problems, the initial value zq of the state trajectory (cf. Fig. 1). If
derivative information with respect to xy is available, which is the case for simultaneous
solution approaches, neighboring problems can be initialized very efficiently by a so called
initial value embedding strategy. After each problem modification, the strategy obtains
an excellent first order correction in the state and control trajectory that is based on the
previous system linearization. Roughly spoken, the approach allows the inclusion of linear
MPC feedback into the predicted trajectory, before a new system linearization is performed.
The approach exploits the similarity between subsequent problems as much as possible. In
conjunction with the excellent contraction properties of a simultaneous solution approach
like direct multiple shooting, the real-time iterates stay very close to the exact solutions of
the optimization problem.

The idea to dovetail the solution iterations by employing the initial value embedding
idea was first proposed by Bock et al. [BDLS00|, with a focus on shrinking horizon pro-
cesses. The initial value embedding strategy without a dovetailing of iterations and pro-
cess was implemented in a first version of the on-line direct multiple shooting method
(Diehl [Die98]), and several numerical feasibility studies have been carried out with this
algorithm: in Diehl et al. [DBLS99| real-time feasibility of the NMPC of a continuous
stirred tank reactor is shown for rather long control horizons (cf. Sec 1.2); in Nagy et
al. [NFD*00|, Allgower et al. [AFNT00], and Findeisen et al. [FAD*00] the NMPC of a
large scale process control example, namely a binary distillation column, is considered, and
real-time feasibility is demonstrated in numerical simulations.

In this thesis we present the newly developed real-time iteration scheme and inves-
tigate the contraction properties of the approach, and present experimental results that
have been obtained by an application of the developed algorithm to the NMPC of a pilot
plant distillation column at the Institut fir Systemdynamik und Regelungstechnik (ISR),
University of Stuttgart, employing a stiff DAE optimization model with over 200 states.

We mention here that several singular features of algorithm have been presented by
other researchers in the area of practical real-time optimization.

In particular, a one-iteration scheme has been proposed by Li and Biegler [LB89], for the
sequential approach. Their scheme, however, did not include the initial value embedding
strategy for the initialization from one problem to the next, and it seems that the scheme
was not further pursued in application examples. In a subsequent paper, de Oliveira and
Biegler [OB95a| focus on the converged form of the algorithm, which essentially equals a
conventional Gauss-Newton method for the sequential approach.t

In the application of conventional optimization schemes to on-line control, the question
of how to initialize subsequent problems has found some attention in the literature. Lieb-
man [LEL92| observes that warm starts of the optimization algorithm can save up to 80%

!Note that it would be possible to combine the initial value embedding idea with a sequential approach,
though it is not as straightforward as for simultaneous approaches.



computation time, cf. also Biegler and Rawlings [BR91|. A shift strategy that accounts for
the movement of the optimization horizon forward in time is proposed, e.g., by de Oliveira
and Biegler [OB95a| for the sequential approach.

Highlights of the Thesis and Overview

The aim of this thesis is threefold. First, we want to describe in full detail how the real-time
iteration scheme can be realized for the direct multiple shooting method. This is done in
Chapters 2, 4 and 6. Secondly, the theoretical properties of the scheme are investigated
in Chapter 5, which contains a contractivity result and bounds on the loss of optimality.
Finally, we demonstrate the practical applicability of the approach in an ezperimental
study that involves the NMPC of a pilot plant distillation column, which is modelled by a
large scale process model (Chapter 7), and show in a simulation study that the approach
can successfully be applied to an unstable periodic control example with strict real-time
requirements (Chapter 8).

1. In Chapter 1, we introduce the class of real-time optimal control problems that
can be treated with our approach. We also introduce a guiding example problem
from chemical engineering that will be used several times in the thesis for illustra-
tive purposes. Some theory regarding optimal feedback control and nonlinear model
predictive control is briefly reviewed.

2. The direct multiple shooting parameterization is reviewed in Chapter 2 and the
parameterized nonlinear programming (NLP) problem that will be regarded in the
remainder of this thesis is formulated and discussed.

3. In Chapter 3, we recall optimality conditions for constrained NLPs and review a
result from parametric optimization, which investigates the solution of neighboring
optimization problems. The Sequential Quadratic Programming (SQP) technique is
described, and its astonishing power in the solution of perturbed optimization prob-
lems is shown for a one dimensional analog of the initial value embedding strategy.

4. The new real-time iteration algorithm is presented in Chapter 4. We present the
initial value embedding strategy and show how the approach can be realized on
shrinking and on moving horizons.

5. Chapter 5 contains the major theoretical results of this thesis. After a review of the
convergence properties for general off-line Newton type methods in Sec. 5.1, we show
contractivity of the real-time iterates for the on-line problem on shrinking horizons
(Sec. 5.2). The contractivity result is exploited to investigate the properties of the
on-line solution, compared to the optimal off-line solution.

6. The specific algorithmic realization of one real-time iteration is described in Chap-
ter 6. The chapter mostly presents well known techniques from the off-line direct
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multiple shooting method in a new setting, leading to the division into preparation
and feedback phase. However, a newly developed Gauss-Newton approach for least
squares integrals is presented in Sec. 6.4, which can be employed for both, the off-
and the on-line direct multiple shooting method.

7. Experimental results are presented in Chapter 7. The study involves the NMPC of a
pilot plant distillation column using a stiff differential algebraic optimization model
with over 200 states. We develop the system model and describe how the system
parameters were determined using experimental data from the real column. The
experimental results demonstrate that NMPC with a large scale process model is
feasible.

8. To demonstrate the power and versatility of the proposed real-time iteration scheme,
we present in Chapter 8 numerical simulations for an unstable periodic control exam-
ple, namely an airborne kite. Control aim is to let the kite fly loopings. A new kite
model is developed and a periodic orbit determined. Numerical tests show the real-
time feasibility and an astonishing robustness of the real-time optimization approach
even for large disturbances.

9. We finally conclude this thesis with a summary and an outlook of interesting future
developments.

The developed real-time algorithm, that has also been presented in some publications
(Bock et al. [BDST00], Diehl et al. [DBST01, DUF*01]), is currently considered for use in
an industrial application.



Chapter 1

Real-Time Optimal Control

In this chapter we will first introduce a general class of optimal control problems for which
our algorithms are designed, and review some theory regarding optimal feedback control
and nonlinear model predictive control.

1.1 Optimal Control Problems in DAE

Differential Algebraic System Models

Let us assume that a system that we want to control can be described by a differential-
algebraic equation (DAE) model of the following form:

B(a(t), 2(t), u(t),p,t) - &(t) = [f(z(t), 2(1),
0 = g(x(t),2(t),

t),p, 1)
(t),p,t).

=

I~

Here, x € R™ and z € R" denote the differential and the algebraic state vectors, re-
spectively, u € R™ is the vector valued control function, whereas p € R™ is a vector of
constant system parameters such as reaction constants or material parameters.

We also assume that the Jacobian 22(-) and the matrix B(-) are invertible, so that the

oz
DAE is of index-one and of semi-explicit type.

Objective Functional

Let us introduce a general Bolza type objective functional on a time horizon [to, ;] with
start time ¢y and final time ¢

/ " L) () ult)p At Ealty). 2(ty).p.ty).

to

where L is often called the Lagrange term, and E the Mayer term of the objective. This
objective functional defines the overall “costs” that shall be minimized.

9
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Least Squares Objectives for Tracking Problems: An important subclass of optimal
control problems are tracking problems that have as their aim to determine controls that
lead the system state or more general an output function I(xz(t), z(t), u(t), p,t) € R™ “close”
to some specified reference output trajectory I"(p,t) € R™ on the interval ¢ € [to,y].
Typically, the distance from the reference trajectory is measured by the integral of a
squared difference, that may be weighted by a positive definite matrix ), so that the
integral

[ "1QE - Uat). 2(t). ult). p. 1) — (1, p)) 2t

shall be minimized.!

By redefining [(x(t), 2(t), u(t), p, t), we can assume that Q = I and {"(p,t) =0, Vt €
[to,t¢]. By also introducing a least squares Mayer term with a vector valued residual
function e(z(ts), 2(ts),p,tf) € R, the general form of an objective functional in least
squares form is given as

[ e, 20.u0p0Bde + etates). 0.0l

to

This form can be exploited for the efficient solution of the optimization problems by a
Gauss-Newton approach that is presented in Section 6.4.

Path Constraints and Boundary Conditions

The state and control trajectories are required to satisfy so called path constraints on the
horizon of interest

h(z(t), z(t), u(t),p,t) > 0, t € [to,ts].

The most common form of this constraint type are minimum and maximum values for the
controls, but also e.g. safety restrictions on the system state may enter here. In addition,
terminal equality or inequality constraints

ré(z(ts), 2(ty),p, ty) =0
r(z(ty), 2(ts), p,ty) > 0

may be imposed, e.g. to specify that a semi-batch process should stop when the tank is
full. In some nonlinear model predictive control formulations, the terminal constraints help
to guarantee nominal stability (cf. Sec. 1.4.1).

One constraint that plays an important role in the presented algorithms is the initial
value constraint

z(tg) = xo.

'We use the definition ||I[|3 := >, 12

1=1"2"
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We will also treat the fixed parameters p and the initial time ¢, as if they were constrained
variables:

p:
t():

St

The introduction of ty and p as trivially constrained optimization variables seems to be an
unnecessary blow-up of the problem. However, this formulation will turn out to be crucial
for the proposed real-time algorithms.

Elimination of Parameter and Time Dependence

For notational simplicity we will in the remainder of this thesis drop the dependence of the
problem functions on the system parameters p and the time ¢. This is no loss of generality:
by introducing an augmented state vector

x Zo
2= 1|p and initial condition zg:=| p |,
t to

i B() 0 0 3 f()
B(\) = 0 I, 0],and f(:):= 0 1,
0 1 1

the original formulation of the initial value problem formulation can be recaptured if the
“clock” variable £(t) is inserted wherever a direct dependence of the time ¢ was present.

Note, however, that the trivial additional differential equations are treated indepen-
dently from the others in the numerical solution procedures, for reasons of efficiency. Fur-
thermore, only those parameters p that may have different values at practically relevant
process conditions should be kept in this way, whereas all definitely known parameters can
be taken as constants that are “hidden” in the problem functions.

As the optimization problem has become time independent, the time horizon of interest
may start at £ty = 0. Let us define 7" to be the horizon length.

If the final time ¢; should be fixed, this can now be achieved by formulating a terminal
equality constraint

r*((T)) := £(T) — t; = 0.

Note that in this case the duration 7" depends implicitly on the initial value z,, because
at a feasible solution ty = t(T') = t(0) + T =ty + T, so that T = t; — 1.
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1.1.1 Problem Formulation

We can now formulate an optimal control problem

P,c(xo) : min /0 L(xz(t), 2(t),u(t)) dt + E(x(T),2(T)) (1.1a)

subject to
B(x(t), z(t),u(t)) - (t) — f(x(t), 2(t),u(t)) = 0, te][0,T], (1.1b)
g(x(t), z(t),u(t)) = 0, tel0,T], (1.1c)
2(0) — 29 = 0, (1.1d)
ré(x(T),2(T)) = 0, (1.1e)
r(z(T),2(T)) > 0, (1.1f)
h(x(t), 2(t),u(t)) > 0, tel0,T] (1.1g)

The length T may either be fixed, or appear as a degree of freedom in the optimization
problem.

Solving the optimal control problem (1.1) for an initial value z, we obtain optimal tra-
jectories z*(t; xo) and z*(t; z9) and an open-loop optimal control u*(¢; xg), for t € [0, T (x)].
In order to keep the dependency of the optimal trajectories on the initial value xq in mind,
we have taken them as additional arguments to the solution functions.

We shall now introduce as a guiding example an optimal control problem from chemical
engineering, which will be cited several times in this thesis for illustrative purposes.

1.2 A Guiding Example: Continuous Stirred Tank Re-
actor

Let us consider a continuous stirred tank reactor (CSTR) model that was introduced by
Chen et al. [CKA95] as a benchmark example for Nonlinear Model Predictive Control. The
reactor is designed to produce cyclopentenol from cyclopentadiene by an acid-catalyzed
electrophilic hydration in aqueous solution, an exothermal reaction that makes a cooling
jacket necessary. The considered ODE model was originally introduced by Klatt and
Engell [KE93|.

1.2.1 Dynamic Model of the CSTR

A schematic diagram of the reactor (taken from [CKA95]) is shown in Fig. 1.1. The reac-
tion and heat transfer scheme developed by Klatt and Engell [KE93| is based on physical
modelling; it leads to an ODE model with four states and two controls.
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Q

V,A,B,C,Dy

Figure 1.1: Schematic diagram of the CSTR (as shown in [CKA95|)

The feed inflow has temperature ¥y and contains only cyclopentadiene (substance A)
with concentration c4o. Its flow rate V can be controlled. In order to keep the liquid tank
volume constant, the outflow is kept at the same rate as the inflow. The outflow contains a
remainder of cyclopentadiene, the product cyclopentenol (substance B), and two unwanted
by-products, cyclopentanediol (substance C) and dicyclopentadiene (substance D), with
concentrations c4, cg, ¢¢, and cp. The scheme for this so-called van der Vusse reaction is
given as

A M B F oo
24 *, D

The reaction rates k; depend on the reactor temperature ¥ via an Arrhenius law

B ,
kl(ﬁ) = kiO * €Xp (,19/00 + 27315> U= 17273-

The temperature ¥ in the cooling jacket is held down by an external heat exchanger
whose heat removal rate Qi can be controlled. As the substances C' and D are unwanted
and do not react further, it is not necessary to keep track of their concentrations.
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The nonlinear ODE model can be derived from component balances for the substances
A and B in the aqueous solution, and from enthalpy balances for the reactor and cooling
jacket:

1%

T V(CAO—CA) —k1(9)ea —k3(9)c4
R

, 1%
s = —ycCB +ki1(9)ca —ka(P)ep

R
) = K(19 gy ¢ Eedn g ) 2

N VR ) 0 pCpVR K
_pT (kl(ﬁ)cAHl + k?g(ﬁ)CBHQ + k53(19)6124H3)
p

. 1 .

Here, Cpk and C), denote the heat capacities of coolant and aqueous solution, p the solu-
tion’s density, Hy,Hy, and Hj3 the reaction enthalpies. Values of these parameters as well
as for the Arrhenius coefficients k;y and E; for i = 1,2, 3 and the employed reactor specific
quantities (volume Vg, surface Ar and heat transfer coefficient ky for cooling jacket and
coolant mass mpg) are listed in Table 1.1. By introducing the system state z and the

control vector u as
v
T = Céf and u= Vr
Qk

we can summarize Eqs. (1.2) as
T = f(z,u).

The result of a steady state optimization of the yield = CCBT‘: with respect to the design
parameter ¥y (feed temperature) and the two controls yields the steady state and controls

mol
2.1402 mel
~ | 1.0903 nd [ 14.19h7!
571 114.19°C R e F R N2
112.91°C

We will take this steady state as a desired reference value in the optimal control problem
that follows — please note that it is of no importance in the following that x5, ug was itself
the result of an optimization; the only property that is important for the optimal control
problem is that f(xg,us) = 0.

Note that we do not introduce the constant system parameters as additional variables,
because we assume that they will never be subject to changes.
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Symbol | Value Symbol | Value

k10 1.287 -10%ht || p 0.9342 *&
ka0 1.287 -10"h7! || C, 3.01 %
k30 9.043 -10°h™" || Ky 4032 &
E, -9758.3 Ag 0.215 m?
E, -9758.3 Vi 10 1

H, 4.2 X Crx 2.0 klg%}K
H, -11.0 &% Ca0 5.1 =l

H, -41.85 =L 6o 104.9 °C

Table 1.1: Constant system parameters.

1.2.2 The Optimal Control Problem

Given an initial state xg, the optimal control problem P,.(zg) is to steer the system safely
and quickly into the steady state z5. We take the formulation chosen by Chen in [Che97],
that aims at minimizing the integrated weighted quadratic deviaton of the trajectory from
the optimal steady state values. We define a Lagrange term

L(z,u) == (v — 25)"Q(x — z5) + (u — us)" R(u — ug)

with diagonal matrices

0.2 mol 2 12 0 0 0

o 0 1.0 mol * 12 0 0

Q:= 0 0 0.5°C2 0
0 0 0 0.2°C2

and

. 0.5h? 0
‘_ 0 50-107kJ%2h% )-

Control bounds upp < u(t) < uyp are given by

w307 nd e o (35007
BB —9000 & uB -~ 0k ’

so that we define the path inequality constraint function to be:

ha(t), u(t)) = (”“) - “) > 0.

UuyB — U(t)

We formulate the following optimal control problem P,.(zo):
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Figure 1.2: Example solution of the optimization problem (1.3). The first four graphs show
the optimal state trajectories z*(¢;zo) and the last two the optimal control trajectories
u*(t; o).
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min /0 L(x(t),u(t))dt (1.3)

u(-),z (")
subject to
i(t) = f(z(t), u(t), Vtel0,T],
x(to) = o,
h(z(t),u(t)) > 0, Vtelo,T).

In contrast to the formulation chosen in [Che97]| we choose a considerably longer horizon
length of T = 2000 seconds, which is sufficiently large to allow the assumption that our
problem formulation is a good approximation for 7" = oc.

The optimal trajectories z*(t; zo) and u*(¢; zo) of an example solution of this optimiza-
tion problem for the initial value

1.0 el
_ | 05z
To - — 100 °C (14)

100°C

are shown in Figure 1.2.

1.3 Optimal Feedback Control

Let us for a moment assume that we can precompute, for all xg € R™ for which the
optimization problem P,.(x) has a solution, the optimal control trajectories u*(¢;xq) as
well as the corresponding optimal state trajectories x*(¢;xg) and z*(¢;x9) on the time
horizon ¢ € [0, T (zo)]. We will assume that T is not fixed, but open to optimization. The
length T may, however, be determined by the final state constraint (1.1e), e.g. in the case
of a fixed end time ¢;. Note that in this case the “clock” variable ¢ is part of the system
state .

Let us pick a fixed value of zy and consider the optimal solution trajectories z*(-; x),
2*(+; o), and u*(+; zg) of Py(xg). Let us also pick a time t; € [0, T (z0)] and the correspond-
ing state x; := x*(t1;x0) on the optimal differential state trajectory x*(-;x,). Consider
now the related optimization problem P,.(z;1). How are its optimal solution trajectories
x*(+;x1), 2*(+; 1), and w*(+; 1) on [0, T (x1)] related to those of Pye(xo)? From the principle
of optimality, also known as the optimality of subarcs, it follows that T'(x1) = T(zo) — t1
and that the solution trajectories of P,.(x1) coincide with the remaining part of the solution
trajectories of P,.(xq) after ¢, i.e.,

x*(t;xy) = x*(t; +t; o)
Z(tyxy) = 2¥(ti+t;z) pVEe[0,T ()]
w(tie) = u'(t 4t 20)
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By chosing t = 0 and formulating the last identity for all ¢; € [0, T(xo)], we can conversely
yield the optimal control trajectory u(-;xq) by

u(ty; zo) = w*(0;2%(t1;20)), Vit € 0,7 (o))

Hence, the result of the precomputation can be captured in an optimal feedback control
(cf. [BH69]) function u' that is defined as

uf(20) 1= u*(0; z0). (1.5)
This function may be used as a feedback control that leads to the closed-loop DAE system

B(:)-da(t) = f(wcl(t)ach(t)vuf(17cl(t)))
0 = g(za(t), za(t), u' (za(?))).

One computationally expensive and storage consuming possibility would be to precalculate
such a feedback control law off-line on a sufficiently fine grid. The technique of choice to
compute this feedback control would be dynamic programming [Bel57|, or an approach
using the Hamilton-Jacobi-Bellman (HJB) equation [LM68, Son90]. However, even for
moderate state dimensions n, this would require a prohibitively large computational effort.

In contrast to this our work is concerned with efficient ways to calculate the optimal
feedback control u!(zg) in real-time while the real process runs.

1.3.1 Linearized Neighboring Feedback Control

One possibility to approximate the optimal feedback control law u!(x(t)) in the vicinity
of a reference trajectory is provided by linearized neighboring feedback control (also called
perturbation feedback control [BH69]). It requires a nominal or reference solution x*(-; xg),
2*(+;z0), and u*(+; zo) of a nominal problem P,.(x(), and is a good approximation if the
distance ||x(t) — 2*(t; z0)|| of the real trajectory z(t) to the reference trajectory remains
small. The idea is to approximate

uf(za(t)) = u*(0;2q(t)), Vt € [0,T(x0)],
by the linearization
u(za(t)) = w*(t; x0) + K () (zalt) — 2" (t; 0)),

where

out

K(t) = —
(t) = o~
that is defined for all ¢ € [0,7(z)]. Note that the constant term u*(¢;xo) is equal to
uf(x*(t;29)) = u*(0;2*(t;29)) due to the principle of optimality. The derivative or gain
matriz K, if it exists, can efficiently be calculated by using first and second derivative

CHGED)
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information along the reference trajectory x*(-; zo), 2*(-; zo), and u*(+; xg), see e.g. Bryson
and Ho [BHG69].

The method can be extended to the case that the derivative K does not exist in a strict
sense, e.g. in the case of bang-bang controls, but where it is still possible to use deriva-
tive information along a reference trajectory. Numerical techniques to compute linearized
neighboring feedback controls have been developed, e.g., by Pesch [Pes78|, Kramer-Eis et
al. [KE85, KEB87|, and Kugelmann and Pesch [KP90a, KP90b|. Linearized neighboring
techniques have been applied for on-line control of batch reactors, e.g., by Terwiesch and
Agarwal [TA94].

Note that the approximations provided by these techniques are only valid in the neigh-
borhood of a reference trajectory. If the real-system has moved far away from the reference
trajectory during process development, the approximation of the optimal feedback control

may become very poor and may drive the system even into directions opposite to what is
desired. Cf. Sec. 4.3.2 and Example 4.4.

Example 1.1 (Optimal and Linearized Neighboring Feedback)

As an example for a tabulation of the optimal feedback controls u'(x), and for the linearized
neighboring feedback approzvimation u™(x) we show in Figure 1.8 a one dimensional cut
through the four dimensional state space of the CSTR of Section 1.2, for initial values

Te = x5+ €(xg — x5),

that interpolate between the steady state xg and the disturbed initial value xo from (1.4).

The graphs for uf(z.) := u*(0;x.) have been obtained by a numerical solution of the
optimal control problem (1.3) (which we take as an approzimation for T = oo) for 141
initial values x., € € {—0.20,—0.19, ... ,1.19,1.20}, whereas u™*(z.) := us+ K(0)(z. —15)
is based on a linearization of u(-) at the steady state xg. For a closed-loop trajectory due
to a linearized neighboring feedback technique, cf. Fxample J.J.

In our considerations about optimal feedback control we have assumed that the horizon
length T of the optimization problem (1.1) is a variable in the optimization problem that
is either determined by some constraints or a real degree of freedom. In this case we speak
of “shrinking horizon problems”, because the time horizon T is shrinking during optimal
process development, as we have seen by the principle of optimality for subarcs. In chemical
engineering this problem type arises typically for batch or semi-batch processes, in robotics
e.g. for time optimal maneuvers.

1.3.2 Infinite Horizon Problems

On the other hand, a major application for feedback control systems are systems that
run infinitely long, so that the choice T' = oo would be appropriate. It is straightforward
that the principle of optimality holds also for the solution trajectories =% (-; xo), 2% (+; zo),
and u’_(-; o), and we may accordingly define an optimal feedback control law for infinite
horizon problems

Uge(w0) = g, (0; 20).
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Figure 1.3: Optimal (solid) and linearized neighboring feedback controls (dashed), for the

initial values x. := zg + €(xg — xg) of Example 1.1. The dots indicate the optimal feedback

controls for the steady state zg (e = 0) and the disturbed value zy (¢ = 1) (cf. Fig. 1.2,
= 0)

Nominal Stability

For steady state tracking problems with an objective [ L(x(t), z(t), u(t)) d¢ that satisfies
L(z,z,u) > 0 for all (x,z,u) # (zg, zs,us) and L(zg, zs,us) = 0 at the steady state, the
principle of optimality ensures nominal stability of the corresponding closed-loop system,
as the optimal cost function

Vi (o) = / L (8 20), % (8 00), w2 (8 0)
0

if it remains finite, serves as a Lyapunov function (as defined e.g. in [Son90]) for the
closed-loop system.
To sketch the idea of the nominal stability proof, let us assume that V() € C! and
that u*_(+;z9) € C°V z¢, and furthermore that the level sets of V. (+) are compact in R".
First note that V(zs) = 0 and V(xg) > 0,20 # zg. It will now be shown that

d

ﬁvoo(xd(t)) <0, Vazq(t) # s, (1.6)

so that the only accumulation point of the closed-loop trajectory z(t), t € [0,00), can be
rg. As the level sets are compact, an accumulation point must exist, so that asymptotic
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stability follows. To show the descent property (1.6), first note that the closed-loop trajec-
tory zq(+) for the initial value z( coincides with the optimal trajectory x*_(+; zo). Therefore
it needs only to be shown that

d
Evoo(x;(t;xo)) <0, Vai(t;xg) # xs. (1.7)

Differentiation of the identity

Voo (25, (t;20)) = Voo (o) — /0 L(z: (150), 25, (T; T0), us, (75 20)) dT,

(which is a direct consequence of the principle of optimality) with respect to ¢ yields

d

%Voo(x;(t;xg)) = —L(xX (t; o), 22 (t; wo), us (t;20)) <0, Vi (t;x0) # xs.

1.4 Nonlinear Model Predictive Control

Unfortunately, infinite horizon problems are in general very difficult to handle for nonlinear
and constrained systems. Therefore, a so called “moving horizon” approach is often used
instead, where a constant control horizon of length T is chosen in all optimization prob-
lems. If the constant 7" is sufficiently large, the computed optimal trajectories . (-; xo),
, 2n(+;x0), and wi(+;xg) are expected to be similar to the corresponding infinite horizon
values z¥_(+; o), 22 (; o), and u’ (+;xo) on [0, 7] so that the definition for moving horizon
problems,

b (20) = uj(0; 2o)

is a good approximation for the infinite horizon optimal feedback control u’_(z). We call
the resulting feedback law ul,(z) “optimal moving horizon feedback control” [BBB*01] or
“Nonlinear Model Predictive Control” (NMPC). Often also the term “Receding Horizon
Control” (RHC) [MM90] is used to denote this moving horizon scheme. The computation
of the optimal moving horizon control law uf.(xg) in real-time is the main application of

our algorithms.

1.4.1 Schemes to Ensure Nominal Stability

Note that the principle of optimality does no longer hold for moving horizon problems;
however, a variety of schemes to ensure nominal stability for steady state tracking problems
has been devised. These schemes make strong use of artificially introduced end point
constraints as formulated in Eqgs. (1.1e) and (1.1f), and of the Mayer term E(z(T), 2(T))
in the objective functional (1.1a). The principal idea is to formulate the optimization
problems in such a way that the optimal cost function

Vr(xg) == /0 L(x(t; x0), 21 (t; x0), up(t; o)) dt + E(x3(T; x0))
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can serve as a Lyapunov function of the closed-loop system, as for infinite horizon problems.
For an overview of such schemes, we refer to the articles by Mayne [May96, May00] or De
Nicolao, Magni, and Scattolini [DMS00|. Here, we will briefly introduce three of these
schemes. All three have in common that the so called monotonicity property [DMS00]
holds in a neighborhood Q7 of the steady state xg:

Vr(x) < Vpgs(z), V6>0,6<T,xe Q. (1.8)

Nominal stability follows together with the principle of optimality for subarcs, which states
that

Vr(xg) = /o L(x5(t; z0), 25(t; o), wip(t; o)) dt + Vs (x5(6; 20))

so that (using x¢ = 2%(0; z))
V(2785 20)) — V(2705 20)) < Vm&(x?(és x0)) — Vr(27(0; 20))
= — [y L@} (t; o), 25 (t; o), wy(t; x0)) dt.
Differentiating this inequality by 6 we can deduce that

AVr(ap(0;20)) = G (2705 20)) 35(0; 7o)
< —L(x%(0;20), 25(0; 20), ui(0; z9)) < 0,V zg # ws.

Let us now choose zg := x4 (t) to be one state of the closed-loop trajectory, at time ¢. The
time development of the nominal closed-loop system obeys the same DAE as the model;
because at time ¢ the differential system state is zq(t) = xo = 2%(0;z9) and the closed-
loop control is chosen to be ul(zq(t)) := u%(0; zp), the algebraic state also coincides with
the start of the optimal trajectory: zq(t) = 25(0;z0) (due to the algebraic consistency
condition); therefore, the time derivatives coincide:

da(t) = 27(0; o).

This allows to conclude that

d oVr .
%VT@cl(t)) = E(%l(t)) za(t) < 0,Veq(t) # xs.

Zero Terminal Constraint

The idea of the zero terminal constraint (ZTC) scheme is to formulate the terminal point
constraint

r(z(T)) = 2(T) — ws,

where xg is the differential part of the desired steady state, and to employ no final penalty
E(z(T)). Nominal stability for nonlinear continuous time systems was proven by Mayne
and Michalska [MM90]. The monotonicity property (1.8) follows from the fact that the
optimal solution . ;(t; xo), 25 5(t; z0), and wh s(¢; x9) of a problem P, 1 (o) on a short
horizon [0, 7—6] can be prolonged to a feasible trajectory of the problem P,.r(z() on a long
horizon [0, 7], by adding for ¢ € [T'—6,T] the final parts a.(t; o) := xs, 25(t; x0) == zg,
and uk(t; xg) := ug, that have no additional costs, cf. Fig.1.4.
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Figure 1.4: Monotonicity property for the zero terminal constraint (ZTC) scheme: the
solution trajectories of problem P, 7.s(xo) can be prolonged to feasible trajectories for
problem P, r(x¢) without increasing the objective.

Quasi-Infinite Horizon NMPC

The quasi-infinite horizon (QIH) scheme employs a positive definite penalty matrix P €
R™*"= that allows to formulate a terminal penalty term

1
E(z(T)) == [|=(T) — zs|[p := | P2 (x(T) — z5)|)3
and a terminal constraint
(7)) = o — ||l2(T) — zs|| > 0,

(with a > 0) that constrains z(T') to be in an elliptic region Q := {x € R™|||z—zs|% < a}.
Chen and Allgéwer [CA98, Che97| have shown how the matrix P and the constant « can
be computed so that the monotonicity property (1.8) is satisfied. Their approach, that
was originally formulated for ODE systems, was generalized to DAE systems of index-
one by Findeisen and Allgower [FA00]. Using the system linearization around the steady
state and a linear closed-loop law u(x) = ug + K - (z — zg), the matrix P is computed
as the solution of a Lyapunov equation, and the constant « is determined so that the
elliptic region () is positively invariant for the linearly controlled closed-loop system, and
so that the path constraints h(z,z,us + K - (x — xg)) < 0 are not violated in the set
{(z,2) € R"™ x R"|z € Q,g(z, z,us + K - (x — xg)) = 0}.

Infinite-Horizon Closed-Loop Costing

The idea of the infinite-horizon closed-loop costing approach, that was proposed by De
Nicolao, Magni, and Scattolini [DMS96], is to introduce a terminal penalty that is itself
the infinite integral of the Lagrange objective

o0

E(a(T)) == / L(i(t: 2(T)), 3(; 2(T)). alt; 2(T))) dt

T
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where Z(¢;2(T)) and 2(t; (7)) are the trajectories corresponding to the following closed-
loop initial value problem on the horizon [T, 00):

B()-a(t) = f@(t),2(1), K(&(1))),
0 = g(2(t),2(), K(2(t))),
#T) = a(T).

The function K : R™ — R™ is chosen so as to stabilize the system in the vicinity of the
steady state (typically by a LQR control law for the system linearization). The final state
constraint r'(z(T)) > 0 must constrain x(T) so that all predicted closed-loop trajectories
z(t; x(T)), 2(t;2(T)), and a(t; x(T)) := K(z(t; (T))) remain feasible and have finite costs.
The monotonicity property (1.8) follows from the fact that a prolongation of the horizon
from [0,7—6] to [0,7T] only increases the degrees of freedom; the new degrees of freedom,
the controls u(t) for t € [T'—6,T], can still be chosen to be u(t) = K(z(t)), which would
yield equal costs as for the short horizon. A practical implementation of this approach must
overcome the nontrivial problems of determining the final state constraint r'(z(7)) > 0,
and the on-line computation of the infinite integral to determine E(x(7T")). Note, however,
that the computation of a finite horizon approximation of E(z(T")) can be very cheap even
on relatively long horizons, if adaptive implicit DAE solvers are used, as the stepsizes in
the vicinity of the steady state can be made very large. We have employed such a scheme
for the control experiments with a distillation column that are presented in Chap. 7, where
the trivial closed-loop law K (-) := ug could be chosen because the system is stable.

1.4.2 Alternative Feedback Strategies

Optimal feedback control and nonlinear model predictive control as defined above are not
the only ways to derive feedback laws, and among these they are not necessarily the best.
They suffer from an inherent contradiction: on the one hand the employed system model
is deterministic, but on the other hand the necessity for feedback control is created by the
non-deterministic behaviour of the system, or by the presence of model-plant mismatch.
There are several strategies that include some sort of knowledge that the real system does
not obey the deterministic model equations. We will briefly mention two of these here.

Stochastic Optimal Control

Stochastic optimal control techniques employ a stochastic system model instead of a de-
terministic one, and aim at optimizing the expectation value of an objective functional.
The stochastic point of view makes it possible to design feedback controllers that take
future disturbances into account — provided that realistic assumptions on the governing
stochastics are available. The method of choice for the solution of stochastic optimal con-
trol problems is dynamic programming, which is originally due to Bellman [Bel57]. (We
recommend the two excellent books on Optimal Control and Dynamic Programming by
Bertsekas [Ber95a, Ber95b| and refer also to Bertsekas et al. [BT96, BS96]). For linear sys-
tems with quadratic costs the solution of stochastic optimal control problems is equivalent
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to the solution of a corresponding deterministic optimal control problem (see e.g. Bryson
and Ho, [BH69|), a fact that leads to the separation theorem or certainty-equivalence prin-
ciple [Sim56, JT61| for linear systems. Nonlinear stochastic optimal control problems,
however, are difficult to solve even for moderate system sizes.

Robust Control

The area of so called robust control techniques is vast and has undergone rapid development
in the last two decades. Roughly spoken, robust control techniques aim at designing
feedback control laws u™(z) that are not only able to stabilize a nominal system model,
but that show a good control performance for a whole set of perturbed/disturbed systems.
For an introduction into linear robust control techniques we refer to Zhou et al. [ZDG96|
or to Morari [Mor87]. Though robust control theory is highly developed for linear systems,
only a few extensions exist that take explicitly nonlinear system models into account. The
question of robustness of NMPC is mostly unsolved. Some preliminary steps have been
outlined for example in [OM94, MM93, YP93|, and even some approaches exist that try
to synthesize robust NMPC controllers, e.g. Chen et al. [CSA97] (cf. also [May00]).






Chapter 2

Direct Multiple Shooting

In this chapter we will present, as a first step towards the numerical solution of the optimal
control problem (1.1), the so called direct multiple shooting parameterization which is
the basis for all algorithms presented later in this thesis. The direct multiple shooting
parameterization transforms the original infinite optimal control problem P,.(zq) (1.1) into
a finite dimensional Nonlinear Programming (NLP) problem that we will denote by P(xy).
The direct multiple shooting method is originally due to Bock and Plitt [P1i81, BP84],
and its most recent form has been developed by Leineweber [Lei99| and implemented
in his optimal control package MUSCOD-II, which also forms the basis for the actual
implementation of the real-time algorithms presented in this work.

2.1 Problem Parameterization

In order to reformulate the infinite optimal control problem (1.1) as a finite dimensional
nonlinear programming (NLP) problem, both its controls and its states are parameterized
in the direct multiple shooting method. Let us first introduce a time transformation that
prepares the control and state parameterization.

2.1.1 Time Transformation

In order to be able to treat problems with a variable horizon length T' conveniently, we
introduce a time transformation

t:[0,1] — [0, 7], 7—t(r,T):=T7

which allows us to regard an optimization problem on the fixed horizon [0,1] only. By
interpreting the trajectories of z, z, and u as functions of 7 € [0, 1] we can formulate a
problem on the horizon [0, 1] that is equivalent to problem (1.1). If the horizon length T
is variable, we will treat it as a free global parameter, that can conceptually be localized
by introduction of an additional trivial differential equation 7'(7) = 0 with a free initial
value. To keep notation simple we will in the following subsections assume that T is fixed,
but keep in mind that the case of a variable horizon is captured by this approach, too.

27
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Figure 2.1: Control and state parameterization (N = 5).

2.1.2 Control Discretization

In the direct multiple shooting method (as in all direct solution approaches) the infinitely
many degrees of freedom u(7) for 7 € [0, 1] are approximated by a finite control represen-
tation. For this aim we choose a multiple shooting grid

O=7p < 71 < ... < Ty= 1, (21)

and approximate the control u(7) by a piecewise constant control representation, i.e., we
set

u(r):=g¢q; for 7 € [, 7i41), 1=0,1,...N —1, (2.2)

with N vectors ¢; € R™, as sketched on the left hand side of Fig. 2.1. For completeness,
we set, as control at the final time

u(l) :==qn == qn-1,

where the vector ¢y is introduced for notational convenience only and will not be regarded
as a new parameter, but just as a second name for gy_;. Note that the point value u(1)
of the control may directly influence the final algebraic state z(1) (that is determined by
g(xz(1),2(1),u(1)) = 0) and can therefore not be neglected in the case of DAE models.

It is possible to use other, possibly higher order control parameterizations on the in-
tervals (e.g. linear or cubic polynomials), but it is of crucial importance for the direct
multiple shooting method that the control parameterization has local support on the mul-
tiple shooting intervals [7;, 7;11], so that the control parameters have a local influence only
(cf. Sec. 6.1).

Where continuity of the controls is desired, the control can e.g. be treated as an
additional differential system state whose time derivative can be controlled.

2.1.3 State Parameterization

In a crucial second step, 2(/N +1) additional vectors s§, s7,... , sk and s§, s7,... , sk of the
same dimensions n, and n, as differential and algebraic system states are introduced, which
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we will denote differential and algebraic node values. For brevity we will often combine
them in the vectors s; := (s7, s7).

All but the last node value serve as initial values for N independent relazed initial value
problems on the intervals [, 7;11]:

B()-ai(r) = T fles(r)5(7).) (2.3
0 = gla(r),=(r).q) — cxp (—ﬁ%) ostsig)  (24)
zi(r) = s (2.5)

The decaying subtrahend in (2.4) with 5 > 0 is deliberately introduced to facilitate an effi-
cient DAE solution for initial values and controls s7, s7, ¢; that may temporarily violate the
consistency conditions (1.1c) (note that (s¥, s?,g;) is per definition a consistent initial value
for the relaxed initial value problem). This modification (Bock et al. [BES88]), is commonly
referred to as a relared DAE formulation, cf. Schulz et al. [SBS98|, Leineweber [Lei99].

The solutions of these initial value problems are N independent trajectories z;(7), z;(T)
on [7;, Ti+1], which are a function of s; and ¢; only. In order to keep this dependency in
mind, we will denote them often by x;(7;s;,¢;) and z;(7;s;,q;). See the right hand side of
Fig. 2.1 for an illustration.

By substituting the independent trajectories x;(7), 2z;(7) into the Lagrange term L in
Eq. (1.1a) we can simultaneously calculate the integral objective contributions L;(s;, g;)
that are given by

Ti+1
Lz(sz;(b) = / TL(.CI}l(T),ZZ(T),qZ))dT (26)

The introduction of the values s7 and s? has introduced non-physical degrees of freedom
that have to be removed by corresponding equality constraints in the NLP. First, we have
to require that the relaxation terms in the relaxed DAE formulation (2.4) vanish, i.e.,
formulate the algebraic consistency conditions

g(st,s7,¢;)=0 i=0,1,...,N. (2.7)

Secondly, we have to enforce continuity of the differential state trajectory by formulating
the following matching conditions which require that each differential node value s}, ;
should equal the final value of the preceding trajectory x;:

Siv1 = i(Tiz1; 8i,¢i), 1=0,... , N —1. (2.8)

The first differential node value s is required to be equal to the initial value o of the
optimization problem:

So = Xo- (29)
Together, the constraints (2.7), (2.8), and (2.9) remove the additional degrees of freedom
which were introduced with the parameters s;, ¢ = 0,...,N. It is by no means necessary

that these constraints are satisfied during the optimization iterations — on the contrary, it
is a crucial feature of the direct multiple shooting method that it can deal with infeasible
initial guesses of the variables s;.
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2.1.4 Discretization of Path Constraints

Using the multiple shooting grid 79, ..., 7w, the infinite dimensional path inequality con-
straints (1.1g) are transformed into N + 1 vector inequality constraints

h(s?,si,q;) >0, i=0,1,...,N.
Note that it would be equally possible to use a finer grid for the discretization of the path
constraints.
2.2 The Nonlinear Programming Problem

The finite dimensional NLP in the direct multiple shooting parameterization is given as

N-1
P(xp) : min Z Li(s?,s7,qi) + E(sk, s¥) (2.10a)
q0;--- ;dN-1, =0
80y.+. ,SN

subject to
sy — @i(Tig5 87, 87,¢) =0, i=0,...,N—1, (2.10Db)
9(si,si,q) =0, i=0,...,N, (2.10c)
sg — o =0, (2.10d)
(s, siv) = 0, (2.10e)
(s, sy) >0, (2.10f)
h(sf,si,qi) >0, i=0,...,N (2.10g)

This is the NLP problem formulation that we will use as a reference in the following
chapters. For a visualization of the NLP variables, see Fig. 2.2. Tt turns out that the NLP
has a very favourable sparse structure, due to the fact that all constraint functions and the
additive terms of the objective function each depend only on a small number of variables,
and conversely, each variable appears only in a few problem functions.

To conveniently write the NLP (2.10) in a shorter form let us introduce the vectors

qo So
q:= : e R™, s:= : eR™, and w:= (g) e R"™

gN-1 SN

with n, := Nn,, ns = (N + 1)(n, + n.), and n, = n, + ns, and define F(w) :=
Nlp $i, ;) + E(sy) and summarize all equality constraints in a function G : R™ —
=0
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Figure 2.2: The NLP variables in the multiple shooting parameterization

R"¢ and all inequality constraints in a function H : R™ — R™#. The NLP can then be
summarized as

0,

: . G(w)
min  F(w) subject to {H 0.

w e R™ (w)
We will in the following Chapter 3 discuss how to decide if a point w € R™ is a local
optimum of the NLP 2.10. But let us beforehand briefly mention some structural features
of the NLP, and also give an example for the multiple shooting parameterization.

VI

Remark on the Initial Value Constraint

In a real-time application of our optimization algorithms, the problem P(z() has to be
solved several times, each time for a different initial value xy. In our real-time strategies
we will exploit the fact that the actual value of zy enters the problem P(zy) only via the
initial value constraint (2.10d). We may therefore isolate this constraint, and summarize
the optimization problem P(z) as

s —x9 = 0,
P(zy) : min F(sg,w) subject to G(s§,w) = 0,
sEeR"z HeR(Mwnz) H(sg 121) > 0.

This formulation will become crucial in our description of the real-time iteration scheme
in Chapter 4.
Remark on Free Horizon Lengths

Note that in the case that the horizon length 7' is variable, we simply augment the dif-
ferential state vectors by an additional component T'(7) = 0, V7 € [0, 1]; in the multiple
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shooting formulation, the continuity conditions (2.10b) enforce that T is constant over the
whole horizon; its initial value, however, is free, in contrast to the other initial values z.
To capture problems with variable 7" in the above NLP formulation, we therefore only have
to modify the initial value constraint s —xzo = 0 to (I,,,|0)s* —xo = 0 (note that zo € R"=
and s¥ € R™=T1),

2.2.1 Free and Dependent Variables

Note that the variables ¢ = (qo, g1, - - - ,qv—1) may be denoted the “free” components, and
s = (S0,81,...,5n) the “dependent” components, since the constraints (2.10b)-(2.10d)
allow to determine all variables s uniquely if ¢ is given (in the case of a free horizon length,
as discussed above, the last initial value sg, ., is also free and actually becomes a part of
q). If we assume for a moment that no final equality constraint (2.10e) and no inequality
constraints (2.10f),(2.10g) are present, we can write the optimization problem in the form

min F(q,s) subject to G(q,s) = 0,
qER”q,sER”S( ) (@)

where the function G has the useful property that its Jacobian 2€ with respect to the

Jds
dependent variables, s, is invertible. To see this, note that % is lower block triangular
I,
Og 9g
9sf 0sg
__ Oz (m1) __ Oz (m1) I
0s§ 0s§ N

_ Oznaly) Oznalw) I
CE 953, , I ma
dg dg
0s%,  0s%;
with invertible blocks I,,, and 885? on the diagonal (the invertibility of 885? follows from the

index one assumption of the DAE system).

In the presence of final equality constraints (2.10e) some previously free variables of
the vector ¢ may be declared dependent and it may again be possible to find a separation
into free and dependent variables ¢ and s with the invertibility of %—f. The same may be
done in the presence of active inequality constraints (2.10f) or (2.10g).

The separability into free and dependent components will be used for some convergence
results in Chapter 5; it is also exploited by the numerical solution algorithms described in
Sections 6.5 and 6.6.

Example 2.1 (Direct Multiple Shooting for the CSTR)

Let us again consider the guiding example of Section 1.2. Choosing N =100 multiple
shooting intervals each of 20 seconds length, we arrive at an NLP formulation that com-
prises ny = ng +ns = Nn, + (N + 1)n, = 100 x 2 + 101 x 4 = 604 NLP variables.
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Figure 2.3: Content of NLP variables in the direct multiple shooting method, corresponding
to the solution of Figure 1.2. The dots in the first four graphs indicate the multiple shooting

node values s;, the last two graphs show the piecewise constant controls g;.

The overall number of continuity constraints (2.10b) is Nn, = 400, the initial value
constraint (2.10d) has dimension n, = 4. Together, they form ng constraints, so that
Ny —Ns = 604 —404 = 200 = ny effective degrees of freedom remain. The values for all 60/
multiple shooting variables at the solution of problem P(xq), with xo according to (1.4), are

visualized in Figure 2.35.






Chapter 3

Local Optimality and SQP Methods

This chapter is aimed at the preparation of our numerical methods for the solution of
neighboring optimization problems in real-time. We will therefore consider not only one
single NLP problem, but a parameterized family of optimization problems

P(t): min F(t,w) subject to { Gt, w)
w e R™ t

=
&
AV
]

with C? functions F' : Rx R™ — R, G : Rx R™ — R"%, and H : R x R™ —
R™# . Please note that the scalar homotopy parameter ¢t has no relation to the physical
time t. It can be thought of as a one dimensional analog for the initial value x, that
distinguishes between different optimization problems P(zy) as they arise in the multiple
shooting parameterization. The vector w can be regarded as the multiple shooting variables
q,--- ygN-1,50y--- SN

We will first review in Sec. 3.1 some conditions which allow to decide if a point w*(t) is
a (local) solution of an optimization problem P(t) for fixed ¢. In Section 3.2 we will review
a result from parametric optimization that allows to conclude that the solution manifold
w*(t) is continuous and piecewise differentiable with respect to ¢, in all “benign” points
w*(t) that satisfy rather mild conditions. The nondifferentiable points are those points
where the set of binding inequalities changes.

The so called “Sequential Quadratic Programming” (SQP) method is an approach to
find a (local) minimum w*(¢) of a problem P(t) for fixed homotopy parameter ¢. It will
be introduced in Sec. 3.3. We also show in Sec. 3.4 that its prototype algorithm, the so
called exact Hessian SQP method, when applied to an optimization problem P(¢ + €) and
initialized with the solution of problem P(t), is able to provide a prediction for w*(t+¢€) that
is of O(||€]|?), even if the set of binding inequalities changes at the point ¢. This astonishing
property, however, requires a slight reformulation of the optimization problems, which leads
directly to the idea of the initial value embedding strategy, a crucial feature of the real-time
iteration approach presented in Chap. 4.
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3.1 Local Optimality Conditions

For notational convenience, let us first drop the parameter ¢ and treat a single NLP problem

min  F(w) subject to {g(w) (3.1)

w e R™ (w)

AV
o

where the functions F' : R™ — R, G : R™ — R"¢, and H : R™ — R" are twice
continuously differentiable.

Let us generalize the definition of the gradient VI of a scalar function F' to the gradient
V.G of vector functions G as the transpose of the Jacobian matrix

VuG(w) = (@(w))T :

A feasible point is a point w € R™ that satisfies G(w) = 0 and H(w) > 0. A local minimum
of the NLP (3.1) is a feasible point w* which has the property that F'(w*) < F(w) for all
feasible points w in a neighborhood of w*. A strict local minimum satisfies F'(w*) < F(w)
for all neighboring feasible points w # w*.

Active inequality constraints at a feasible point w are those components H,;(w) of H(w)
with H;(w) = 0. We will subsume the equality constraints and the active inequalities at a
point w (the so called the active set) in a combined vector function of active constraints:

6= (i)

Note that the active set may be different at different feasible points w.

Regular points are feasible points w that satisfy the condition that the Jacobian of
the active constraints, VG(w)7, has full rank, i.e., that all rows of VG(w)T are linearly
independent.

To investigate local optimality in the presence of constraints, it is very useful to intro-
duce the Lagrangian multiplier vectors A € R"¢ and p € R"#, that are also called adjoint
variables, as they correspond one-to-one to the constraint functions G and H, and to define
the so called Lagrangian function L by

L(w,\, p) := F(w) — \N'G(w) — p' H(w). (3.2)

We will now state a variant of the Karush-Kuhn-Tucker necessary conditions for local
optimality of a point w*. These conditions have been first derived by Karush in 1939 [Kar39]
— and independently by Kuhn and Tucker in 1951 [KT51]|. (A proof of the following two
theorems can be found in virtually any textbook on nonlinear programming, e.g. Bazaara
and Shetty [BS79] or Nocedal and Wright [NW99|.) For brevity, we will restrict our
attention to regular points only.
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Theorem 3.1 (Karush-Kuhn-Tucker Conditions)

If a regular point w* € R™ is a local optimum of the NLP (3.1), then there exist unique
Lagrange multiplier vectors A\* € R™¢ and p* € R™ so that the triple (w*, \*, u*) satisfies
the following necessary conditions:

Vi L(w*, X, %) = 0 (3.3a)
G(w*) = 0, (3.3b)

H(w*) > 0, (3.3¢)

© >0, (3.3d)

w; Hy(w*) = 0, j=1,2,... ,ng. (3.3e)

A triple (w*, A*, u*) that satisfies the Karush-Kuhn-Tucker conditions (3.3) is called a KKT
point. Note that the so called complementarity condition (3.3e) implies that p} = 0 at
inactive constraints H;(w*) > 0. At active constraints H;(w*) = 0 the corresponding
multipliers p* may also become zero. Active constraints with zero multipliers are called
weakly active, and those with positive multipliers strongly active. Let us subdivide the
active set vector function H**(w*) at a KKT point (w*, \*, u*) into its strongly and weakly
active parts, i.e., let us write

ac * HS'aCt *
) = ( fune ) ()

A KKT point for which all active constraints are strongly active is said to satisfy the strict
complementarity condition.

Quadratic Programs

One special class of optimization problem plays a preeminent role in the SQP algo-
rithms that are presented later in this chapter and deserves some remarks: quadratic pro-
grams (QP) are those optimization problems (3.1) that have a quadratic objective function
and linear constraint functions, i.e., problems of the type

1
min  —w? Aw + a’w  subject to {
w e R™ 2

b+ Bw
c+ Cw

e}

(3.4)

Vvl
o

with vectors a € R™, b € R"¢, ¢ € R™, and matrices A € R™ x R"™, B € R"¢ x R",
and C' € R™"# x R"™.

A variety of highly developed algorithms to solve QPs exists, and the success of SQP
type methods is to a large part due to the fact that QPs are very efficiently solvable.
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The conditions (3.3) for a point (w*, A*, u*) to be a KKT point of the above QP are:

Aw* 4+ a — BTN — CTp
b+ Bw* =
c+ Cw*

*

0
; (cj + Cjw")

(AVARAY]

o oo o o

s j:1,2,...,nH.

For QPs without inequalites, the KK'T conditions can be written in the compact form

A BT w*\  [—a

B 0 =X\ =b)"’
The matrix on the left hand side is called the KKT matrix. It is invertible, if B has full
rank ng and A is positive definite on the null space of B, as stated in the following lemma.

The invertibility of the KKT matrix implies that the equality constrained QP has a unique
KKT point.

Lemma 3.2 (Invertibility of the KKT Matrix)
Let us assume that A € R™ x R" is a symmetric matriz and B € R™ x R™ has full rank
m < n. Let us furthermore assume that A is positive definite on the null space of B. Then

the matriz
A BT
B 0

A short proof of this lemma can be found in Nocedal and Wright [NW99, Lemma 16.1].
The existence and uniqueness of a KKT point can also be shown for inequality con-
strained QPs, e.g. under the two additional assumptions that the feasible set is non-empty,
and that the combined constraint matrix (B?, CT) has full rank ng+ng. We will encounter
such a uniquely solvable quadratic programming problem in Theorem 3.4.
First, however, let us review sufficient conditions for a KKT point to be a strict local
optimizer.

18 tnvertible.

Theorem 3.3 (Strong Second Order Sufficient Conditions)
Sufficient conditions for a point w* € R™ to be a strict local minimizer of (3.1) are:

e w* is a reqular point,

e there exist multiplier vectors \* € R"¢ and p* € R™, such that (w*, \*, u*) is a
KKT point, and
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e the Hessian matriz V2L(w*, \*, u*)" is positive definite on the null space N*® of the
linearized strongly active constraints

6w i= (o ) ),
i.e., for every non-zero vector Aw € N,
N® = {Aw € R™|V,G*(w*)T Aw = 0},
it holds that

Aw” V2L (w*, N, 1) Aw > 0.

Remark: The sufficient conditions of the theorem are called “strong” second order suffi-
cient conditions, because weaker sufficient conditions exists, which require only the positive
definiteness of V2L (w*, \*, u*) on a cone

NY = {Aw € N3N, H¥**(w*) T Aw > 0}.

We have chosen the strong formulation, as it turns out that the strong second order suffi-
cient conditions for optimality, as stated in Theorem 3.3, have the desirable property that
a KKT point (w*, \*, u*) that satisfies them is stable against perturbations in the problem
functions F', G and H, as we will investigate in the following section.

3.2 Piecewise Differentiable Dependence on Perturba-
tions

Let us now consider a parameterized family of optimization problems P(t)

min  F(t,w) subject to {g(t,w)

o DR (tw) > 0 (3:6)

where the functions F': RxR™ — R, G: Rx R"™ — R", and H : R x R™ — R"#
are C2. We want to investigate how the solution points (w*(¢), \*(¢), u*(t)) depend on the
variable ¢, or, in the language of parametric optimization, we want to investigate the set

Yoe :={(t,w) € R x R™|w is a local minimizer for P(t))}.

We restrict our attention to the subset of points (¢, w*(t)) from X, that satisfy the strong
second order sufficient conditions of Theorem 3.3. The main result of this section is that

" 2
"Here we use the definition V2L := 2£.
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the points (w*(t), A*(t), p*(t)) form a continuous and piecewise differentiable curve on this
subset, if an additional technical assumption is satisfied. For a much more detailed discus-
sion of the properties of the set X, we refer to the book on parametric optimization by
Guddat, Guerra Vasquez and Jongen [GVJ90].

Before we formulate this theorem, we will give a simple example for illustration.

Example 3.1 (Piecewise Differentiability)
Consider the family P(t) of simple optimization problems

1
min 5 w® subject to  —t +sinh(w) > 0

w € R

The solution curves w*(t), p*(t) can easily be found to be

w*(t) = max(0,arcsinh(t)),

w* ()
*(t _ .
it cosh(w*(t))
These curves are continuous and piecewise differentiable with piecewise derivatives
ow* (1) = 0, if t <0,
ot ~ | cosh(arcsinh(¢))~t, if >0,
ou* ow*

5 (t) = cosh(w*(t))"*(1 — tanh(w*(t))) 5 (t).

The graph of w*(t) is depicted in Figure 3.1. How can the manifold be characterized in
the vicinity of the continuous but non-differentiable point w*(0)?

We will now formulate the basic theorem of this section, which is proved in Appendix C.
A very similar formulation of the theorem and a proof can be found in [GVJ90| (Theo-
rem 3.3.4 and Corollary 3.3.1 (2)).

Theorem 3.4 (One Sided Differentiability)
Consider a parameterized family of optimization problems P(t) as defined in (3.6). Let
us assume that we have found, for problem P(0), a KKT point (w*(0), A*(0), x*(0)) that
satisfies the sufficient optimality conditions of Theorem 3.3, with strongly and weakly active
set vectors H>** and HY-2<.

Let us furthermore assume that the solution (8w., M., dus>t du¥2°*) of the following

quadratic program (with all derivatives evaluated at the solution point (w*(0), A*(0), u*(0))
fort=0)

: Lo 1 oo 0 !
min - 6w VL ow + |Vl bw
sweRmw 2 ot
% +V,GT6w = 0 (3.7)
subject to 3H5:d + (V) 5w = 0.
aHgt-act + (vaw.act)T Sw > 0
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w(t)
o

Figure 3.1: Graph of the solution manifold w*(¢) of Example 3.1.

satisfies the strict complementarity condition for the multiplier vector Su¥-** of the in-

equality constraints.
Then there exists an € > 0 and a differentiable curve v : [0,€) — R™ x R"¢ x R™#,

w*(t)
t— | A\* (t)
© ()

of KKT points that satisfy the sufficient optimality conditions of Theorem 3.3 for the
corresponding problems P(t), t € [0,¢€). At t = 0 the one sided derivative of this curve is

given by

dw, ow,
1 w*(t) — w*(0) O« O«
Jim o f AT = X(0) | = = | o
’ p(t) = p*(0) T Opyt
0

Remark 1: Note that the QP (3.7) always has a unique solution (dw., O\, Ous2t, du¥-2<t).
This is due to the positive definiteness of V2L on the null space of the equality constraint
matrix V,,G57, the feasibility of the QP (§w = 0 is feasible), and the fact that the constraint
matrix (V,G, N, H3** N, H¥-*°*) has full rank due to the assumption that w*(0) is a regular
point.
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Remark 2: The only further requirement in addition to the sufficient conditions of The-
orem 3.3 is the — technical — assumption of strict complementarity in the solution of the
QP (3.7). It is needed to guarantee that there exists an € > 0 so that the active set of the
local solutions of P(t) does not change for t € (0, ¢).

Remark 3: The theorem treats only the existence of the “right” hand side of the solution
curve (w*(t), A*(t), u*(t)) on the interval t € [0, €). If the strict complementarity condition
is also satisfied for the solution (§w’,dN.,8us2Y, §u¥2Y) of an inverted version of the
QP (3.7), namely of

S P 9 !
min iéw VoL ow + | —xVL)] dw

SweERNw ot
d T
—22) 4+ V,G" 6
8Hs.act ( 8t ) s.act T v (38)
subject to (_ at > + (Vo H>*) " bw =

(-22) + (V) 6w > 0,

then also the “left” hand side solution curve ¢t € (—€¢,0] — (w*(¢), \*(t), u*(t)), € > 0,
exists, with the one sided derivative

—ow’,
|0t —wr(0) —6X]
hm - )\*(t) _ )\*(0) — _6lui.act/
t—0,t<0 ¢ ,U* (t) N M*(O) _5M1v.act’
0

This is an immediate consequence of the theorem, applied to the reversed problem family
P'(t) := P(—t).

Remark 4: If the reference point (w*(0), A*(0), u*(0)) itself satisfies the strict comple-
mentarity condition, then no weakly active constraints H%-** exist, and the original and
inverted QP, (3.7) and (3.8), do not contain any inequality constraints. Therefore, the
assumption of strict complementarity in the QP solution is trivially satisfied for both
problems, and the solution curve exists on both sides, for ¢t € (—¢’, €). Furthermore, from
symmetry follows that the QP solutions coincide (up to a sign change),

ow, —ow!,
sh, | = —sx |,
6Ni.act _6Mi.act/

so that the derivative of the curve t € (—¢',€) — (w*(¢), \*(t), u*(t)) exists and is continu-
ous everywhere, also at the point £ = 0.
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Figure 3.2: Two sided derivative of the solution manifold w*(t) of Example 3.1.

Example 3.2 (One Sided Differentiability)

Let us again consider the family P(t) of simple optimization problems of FExample 3.1.
For t = 0 the reference solution is w*(0) = p*(0) = 0, and the quadratic programming
subproblem (3.7) as in Theorem 3.4 is

1
min - dw? subject to -1 + 6w > 0,
SweR 2

with the solution

w.act __ 1

ow, =1 and ou.*" =1,

which corresponds to the “right” hand side derivatives of w*(t), u*(t) fort — 0,t > 0.
Conversely, the inverted quadratic programming subproblem (3.8) is

1
min - éw? subjectto 1 4+ dw > 0,

ow € R

which has the solution
Sw.=0 and ¥ =0.

This solution corresponds to the (inverted) derivatives of w*(t), u*(t) fort — 0,t < 0. The
two sides of the derivative are illustrated in Figure 3.2.
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3.3 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is an iterative technique to find a KKT point
(w*, \*, u*) of an NLP

0

: . G(w)
min  F(w) subject to {H 0

w € R™ (w)

Starting with an initial guess yo = (wo, Ao, 120), an SQP method iterates

Vvl

Ye+1 = Yr + apAyy (3.9)
where oy € (0,1] and
Awk ~ Awk
Ayk = A)\k = )\k — )\k
A, e — 4

is obtained from the solution point (Awy, N, fix) of the following quadratic program

min % AwT Ay Aw + Y, F(wp)" Aw

Aw € ),
G(wi) + VG (wp) T Aw

B (3.10)
subject to T N
H(wy) + Vi H(wg) Aw >

0
0
Existing SQP methods differ mainly by the choice of the steplength «y, the choice of

the so called Hessian matrix Ay and the choice of the set €2, C R™. The iterates y
according to Eq. (3.9) form a sequence that is expected to converge towards a KKT point

*

y* = (w*, A*, u*) of the NLP. In practice, the iterations are stopped when a prespecified
convergence criterion is fulfilled.

We will in this section introduce only one SQP method that is theoretically very appeal-
ing: the full step exact Hessian SQP method, that was first introduced by Wilson [Wil63].

3.3.1 The Full Step Exact Hessian SQP Method

The full step exact Hessian SQP method is distinguished by the choices oy, := 1, €y := R™>,
and, most important,

Ay = V2L (why A, fik)-

To see why this choice is advantageous, let us first regard an equality constrained problem.
In this case, the necessary optimality conditions for the QP solution (Awy, Ay) are

Vjﬁ(wk, k) Awy, + N, F(wy,) — VwG(wk)S\k = 0,
G (wy) + VG (wp)T Awy, = 0.
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By substituting M = M. + A\, we can write this equivalently as

Vwﬁ(wk,)\k) +V£E(wk,)\k) Awk —VwG(wk) A)\k = 0,
G(wk) —I—VwG(wk)T Awk =0

which corresponds to the Newton-Raphson iteration rule
G(wy) d(w, \) G(wy,) ANy ) 7
for the solution of the KKT system

<VwéEZSA)> _ <VwF(w)G—(1;wG(w))\> o

This equivalence proves that the full step exact Hessian SQP method shows the same
excellent local convergence behaviour as the Newton-Raphson method, in the vicinity of
a solution (w*, \*) of the KKT system. Note, however, that it is necessary to start with
a good initial guess not only for the primal variables w, but also for the multipliers .
Fortunately, it turns out that the initial guess )y of the multipliers is not as crucial as the
initial guess wy for the primal variables, due to the special structure of the KKT system.
This is expressed in the following theorem (for a proof we refer to Fletcher [F1e87]).

Theorem 3.5 (Convergence of the Exact Hessian SQP Method)

If a point (w*, \*) satisfies the sufficient optimality conditions of Theorem 3.3 of an
equality-constrained NLP problem, and if wy is sufficiently close to w*, and if Ay is chosen
such that the matriz

(S 5)

s invertible, then the sequence of iterates generated by the full step exact Hessian SQP
method, i.e., the sequence (wy, \) of iterates that satisfies

(B ) ("2") - -(%49)

converges q-quadratically to (w*, \*), i.e.,

(st )) = e ()

with some constant C > 0.

2
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3.3.2 Active Set Determination

In Theorem 3.5, local convergence is only proven for equality constrained problems. In the
presence of inequality constraints, however, we may assume that close to the solution the
active set does not change, so that the reasoning for equality constrained problems is still
applicable. This assumption is valid in the vicinity of a KKT point (w*, \*, u*) that satis-
fies the second order sufficient conditions of Theorem 3.3 and the strict complementarity
condition.

The strength of the QP formulation (3.10) during the SQP iterations is that it allows
to determine the multipliers and the active set without prior knowledge of them. To show
this, let us assume that we have found a KKT point y* = (w*, A*, u*) that satisfies the first
order necessary conditions of Theorem 3.1:

VF(w*) = V,G(w* )\ = VH(w")u* =

AVARAVARNI
o o o o o

=
<Ux
=
S
*
Nyl
I

L i=1,2,... .0y

Let us now assume that we formulate the first QP 3.10 for the determination of Ay,
initialized at yo = y*, with some Hessian matrix Ao. The necessary conditions of optimality
for the QP solution (Awy, Ao, fig) are

Ay Awy + VF(w*) — V,Gw)Ng — VH(w" ) fig = 0
G(w*) + V,G(w*) ' Awg = 0
H(w*) + Vo H(w*) " Awy > 0
fo = 0
fio; (H(w*) + Vo H(w*) Awg); = 0, j=1,2,...,ng.
It can be seen that (Awg, Ao, fio) = (0, A\*, u*) satisfies these conditions, and assuming

positive definiteness of Ay on the null space of the equality constraints V,G(w*)?, this
solution is also the unique optimum of the QP: multipliers and active set are detected
from knowledge of w* only. We may therefore infer that even in a neighborhood of a
local optimum w*, the multipliers and active set can be determined by the SQP algorithm,
under a weak positive definiteness assumption on the matrix Ay. This can indeed be
proven, under the condition that (w*, \*, u*) satisfies the second order sufficient conditions
of Theorem 3.3 and the strict complementarity condition. For a detailed discussion and a
proof we refer to Robinson [Rob74].

3.4 SQP for a Parameterized Problem Family

Let us in the sequel consider the parameterized family of augmented optimization problems



3.4 SQP for a Parameterized Problem Family 47

t—t =0
P@) : min _ F(t,w) subject to G(t,w) = 0 (3.14)
teR,weR™ H(t,w) > 0

where the functions F': RxR™ — R, G: Rx R"™ — R, and H : R x R"™ — R"#
are in C2. This family is equivalent to the family P(t) of problems (3.6) in Section 3.2,
with the only difference that ¢ is now introduced as an additional variable which is fixed
by the additional constraint ¢t — f = 0. This addition of ¢ to the SQP variables has the
consequence that derivatives with respect to ¢ are evaluated in the SQP algorithm, which
allows to perform the transition between different optimization problems in such a way
that a first order approximation of the solution manifold as in Theorem 3.4 is provided by
the first iterate.

Let us for brevity define

o= (o) = () e ()

so that the Lagrangian function L of problem ]5(5) can be written as

L, A ) = F(w) = N'G(w) — p" H (i)
= F(t,w) — M(t =) = MNTG(t,w) — p" H(t, w)
= L(t,w, A\, ) — \(t — f),

where
Lt w, A ) = F(t,w) = NGt w) — p" H(t, w)

is the Lagrangian function for the parameterized family of optimization problems P(t) of
Section 3.2.

We will now show that the first full step exact Hessian SQP iterate for the enlarged
problem P(¢), when started at the solution (w*(0), A*(0), u*(0)) of P(0), is closely related
to the one sided derivative of the solution manifold (w*(-), A*(+), #*(-)) of the problems
P(t), as in Theorem 3.4.

Theorem 3.6 (First Order Prediction by Exact Hessian SQP)

Let us assume that we have found a KKT point (10*(0), A*(0), u*(0)) of problem P(0) that
satisfies the sufficient optimality conditions of Theorem 3.3. If a full step SQP algorithm
with exact Hessian for the solution of the problem p(e), with € > 0 sufficiently small,
s started with this solution as an initial guess, then the nontrivial part of the first SQP
step, (Aw, AN, Ap), is identical to € times the one sided derivative of the solution manifold
(w*(+), \*(+), u*(+)) of problems P(t) as given in Theorem 3.4, i.e.,

1 Aw ow, 1 w*(t) — w*(0)

Slan) = e | = aim s | X0 -2

€ —U, * *
Ap Ot p(t) = p(0)
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Remark: The first order prediction provided by the exact Hessian SQP is equivalent to
one step of the Euler predictor pathfollowing method in parametric optimization [GVJ90,
Sec. 3.3, p. 73|.

Proof: For a proof first note that Vj[ﬁ = V2L due to the linearity of the constraint
t —e =0, so that the value of the additional multiplier A; plays no role in the QP (3.10).
Furthermore, it can easily be seen that (w*(0), A*(0), u*(0)) satisfies the sufficient optimal-

ity conditions of Theorem 3.3 for problem P(0) if and only if (w*(0), A*(0), #*(0)) satisfies

them for problem P(0), and A;(0) = 2.L£(0,w*(0), A*(0), 1*(0)).

The QP (3.10) for the first SQP iterate can be written in the form

R o . . OF . 1L,
— — A F A —A ———A
AIEIAI}U 2Aw VwEAw—i—AtatiE w+ 'V, w + T t+ 2 82 t
At—e = 0
subject to G+ AL+ V,GT Aw 0

H+ 2Nt +V,H Aw > 0,

where all functions and derivatives are evaluated at the point ¢ = 0, w*(0), A*(0) and p*(0).

The variable At = € can directly be eliminated, and using the fact that G(0,w*(0)) =0
and H**(0,w*(0)) = 0 as well as the fact that

Y F(0,w*(0)) = V,G(0, w*(0))\*(0) + Vi H (0, w*(0)) * (0)

we can formulate the equivalent QP (dropping the constant %—fe + %8272562 in the objective)

1
min ~ AwTV2LAw + EQVW[,TAUJ + (VyGX*(0) 4+ Vi, H 1*(0))" Aw

Aw 2 875
%e +V,GTAw = 0
subject to ag:a e+ VoH*"Aw > 0
[ inact + aH(;;'act €+ vw HinactT Aw > 07
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The conditions (3.3) according to Theorem 3.1 for a triple (Aw, A, 1) to be a KKT point
of this QP problem are, using A = A*(0) + A\ and p = p*(0) + Ap:

VjL’Aere%Vw/L—VwGA)\—VwHAu = 0, (3.15a)
oG
Ee—kaGTAw = 0, (3.15b)
Hs.act
0 5 e+ V,H**"Aw > 0, (3.15¢)
Hw.act
0 o e+ VH" " Aw > 0, (3.15d)
. Hinact )
Hm“wa 5 e+ V,H"™ Aw > 0, (3.15¢)
,u*,s.act(o)_i_Alus.act Z 0, (315f)
Ap™et >0, (3.15g)
Ap™t >0, (3.15h)
6Hs.act
(1 (0) + Ap)5™ <76+VwHS'aCtTAw> = 0, (3.151)
J
Hw.act
Alu;v.act <8 o 6+vaw.actTAw> _ 0, (315J)

J
8 Hinact

ot

AM;naCt <Hinact_|_ €+VwHinaCtTAw> = 0. (3151{)

J

By assuming that Aw, Apu can be made arbitrarily small by choosing € small, we can assume
that Finact 97 e 4 Vo H™<t" Ay > 0 and therefore drop (3.15¢), and replace (3.15k)

by Ap** = 0. Additionally, we conclude that (u*(0) —l—Au);'aCt > 0, so that (3.15i)
and (3.15¢) can be replaced by

8Hs.act

T v, ;52T Ay = 0.

By a division by € and a redefinition
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we can write the necessary conditions as

V2L6w, + QVH,E — VGO, = V,Hop, = 0,

ot
0G

E‘I—VwGT&UJ* = O,

aHs.act
5+ Vel sw, =0,

an.act
o +V,H Y sw, > 0,
6M:v.act Z 07

an.act
6M*‘;v.act ( o +VwHw.aCtT6w*> _ 07
. J

5'u:knact — O7

which are exactly the KKT conditions for the QP (3.7) that is formulated in Theorem 3.4.
By the unique existence of this solution we confirm our assumption that Aw and Ay can
be made arbitrarily small by chosing e sufficiently small.

a

3.4.1 Large Disturbances and Active Set Changes

In the proof of Theorem 3.6 we have made e sufficiently small to ensure that the active set
of the first QP corresponds to the active set in the immediate vicinity of the solution point
w*(0) — in this way it was possible to show that the first iterate of the exact Hessian SQP
method, when started at a solution y*(¢) delivers a prediction y*(t) + Ay(e) of the solution
y*(t+¢€) that is ||y*(t +¢€) — (y*(t) + Ay(e))|| = O(||€]|?) under rather mild conditions, even
at the points where the active set changes, as treated in Theorem 3.4.

In practical applications, however, when we want to solve a problem P(t,) starting
with the solution of a problem P(t;), we will typically encounter the case that the non-
differentiable point of the solution curve w*(t) lies somewhere in the interval between t;
and ty. It is very important to note that the SQP method is in practice also able to treat
this case, as it can even reproduce distant active set changes, which will be illustrated by
the following example.

Example 3.3 (First Order Prediction of Exact Hessian SQP)
Let us again consider the family ofvsimple optimization problems of Examples 3.1 and 5.2,

[

but in an augmented formulation P(t)
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*
w +Aw

w'=0.48

-5 .0 5
t +¢

Figure 3.3: First step Aw of exact Hessian SQP method for Example 3.1, as a function of
¢, for the initialization t* = 0.5, w* = 0.48 = arcsin(0.5).

t—1

. 1, . =
min i subject to { ¢+ sinh(w) > 0

teRwelR

Initialized at o solution t* = {, w* = max (0, arcsin(t*), u* = w*/ cosh(w*) of P(), the QP
of the first exact Hessian SQP iteration for the solution of P(f + €) is

1
min — Aw” (1 — tanh(w*)w* Aw + w* Aw
AteR,AweR 2

At — € 0

subject to { —t* + sinh(w*) — At + cosh(w*) Aw > 0,

which has the solution

At = ¢,
- B w* t* —sinh(w*)+e
Aw = Il’laX( 1—tanh(w*)w*’  cosh(w*) )’
~  _  w*+(1—tanh(w*)w*)Aw
Ho= cosh(w*)

as depicted in Figure 3.8 for an initialization t*,w* that is in the neighborhood of the
“corner”t =0,w = 0.






Chapter 4

Real-Time Iterations

In this chapter we will develop the main algorithmic ideas of our real-time iteration ap-
proach. We will first present in Sec. 4.1 the challenges that every real-time optimal control
scheme has to face, and motivate the idea of the real-time iteration scheme. In Sec. 4.2 we
present the initial value embedding approach for perturbed problems, that arises quite nat-
urally in the framework of the direct multiple shooting method. The algorithm is described
in Sec. 4.3 for shrinking horizon problems, and in Sec. 4.4 for moving horizon problems,
that are typical for practical NMPC applications.

After the presentation of the real-time iteration idea in this chapter, we will in Chap. 5
prove that the proposed approach leads to a contractive algorithm under suitable condi-
tions, and in Chap. 6 we will have a close look at one real-time iteration.

4.1 Practical Real-Time Optimal Control

In a real-time scenario we aim at not only solving one optimization problem, but a whole
sequence of problems. Let us denote the differential state of the plant at time ¢ by xo(t).
Then, ideally, at every time t, the optimal control problem of Sec. 1.1.1 with an initial
value z((t) would be solved instantaneously, and the optimal control u*(0;zo(t)) be given
as a control to the real plant at time t. This strategy would yield an optimal feedback
control, or, for moving horizons, a Receding Horizon Control (RHC) law as e.g. defined
in [MM90]. In all real implementations of NMPC, however, two approximations to this
ideal approach are made:

e First, it is not the infinite optimal control problem from Sec. 1.1.1 that is solved, but
a parameterized, finite dimensional formulation of it. In our approach it is the NLP
from Sec. 2.2 that arises after the direct multiple shooting parameterization, which
was denoted P(zo(t)).

e Secondly, the optimization problems cannot be solved instantaneously, so that the
problems are solved only at discrete sampling times ...  t;,t;11,..., with interval

53
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durations ¢; = t;;1 — t; that are long enough to perform the necessary computations
for the solution of problem P(xzq(t;)).

Note that in this framework the optimal control corresponding to the system state
xo(t;) at time ¢; is usually only available at time t;,q, after the computations have been
performed. This leads to a delay that may result in poor real-time performance, if the
sampling intervals §; are not short enough.

In principle, it is possible to predict the state zo(t;11) already at time ¢; and to solve the
corresponding problem P(zo(t;+1)) during the time interval [t;,t;11], so that at time ¢;,4
the optimal solution for the problem P(z((t;+1)) is already available. However, unpredicted
disturbances that have occured in the interval [¢;,¢;,1] are not taken into account, so that
the feedback delay of one sampling time is still present.

4.1.1 A Conventional Approach

A straightforward approach to real-time optimal control would be to just employ a fast
off-line algorithm to solve the arising optimization problems, and use the completely con-
verged solution of the optimization problem to provide the feedback. We call this approach
the conventional approach to NMPC', and it is for example described by Binder et al.
in [BBBT01]. Note, however, that the duration §; may not be known in advance, if it is
insisted that each solution should satisfy a prespecified convergence criterion: in fact, the
number of SQP iterations cannot be bounded at all! In all practical implementations some
safeguards must exist, that stop the solution algorithm in time, e.g. after a fixed number
of SQP iterations, even if the convergence criterion is not met.

Example 4.1 (Conventional NMPC)

Let us consider again the scenario that was presented in Sec. 1.2 and introduce it as a
real-time example. We assume that the system state is disturbed at time to = 0, so that
it suddenly jumps to the disturbed initial value xq, that is known immediately, but could
not be known in advance. We choose a multiple shooting parameterization with N = 100
intervals each of 20 seconds length. Let us assume that one SQP iteration takes 20 seconds
computation time, and that after 5 iterations all occuring optimization problems are solved
with satisfying accuracy: therefore, we can choose a sampling time of 6 = 100 seconds.
During this time we have to apply the best available controls to the real plant, which are
the steady state controls in the first 100 seconds, and in the following sampling times the
outcome of the previous optimization. The optimizations are carried out for the predicted
initial values after 100 seconds, to alleviate the effect of the delay. We will assume that the
model and the real plant coincide, so that the open-loop solution that is available after the
first 100 seconds corresponds already to the closed-loop trajectory and is not modified in
the following sampling intervals. The resulting closed-loop trajectory is shown in Fig. 4.1,
and compared to the optimal feedback control. The integrated least squares objective that we
can regard as a performance measure of the closed-loop trajectories, is for the conventional
NMPC' scheme increased by 17 % compared to the optimal feedback control.
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Figure 4.1: State and control trajectories of a conventional NMPC scheme, compared with
optimal feedback control (which is dotted).

4.1.2 The Real-Time Iteration Idea

The reason for the poor performance of the conventional NMPC scheme is that we have to
wait a long time until a feedback to disturbances is delivered, and in the meantime we have
to apply a rather arbitrary, uncorrected control. Would it not be possible to use some other
feedback control that is not necessarily optimal, but better than the uncorrected values?
In Example 3.3 at the end of Chap. 3 we have seen that the first QP solution of a full step
exact Hessian SQP algorithm provides already a rather good approximation of the exact
solution, if the algorithm is initialized in a neighborhood of this solution. Motivated by
this observation, we conclude that — in a real-time scenario — it would probably be better
to use the result of this first correction instead of waiting until the SQP algorithm has
converged (without reacting to disturbances). After the first SQP iteration, there would
already be the chance to react to new disturbances — and if no further disturbance occurs,
the algorithm could continue to improve the outcome of the previous iterates. Compared
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with the conventional approach, our real-time algorithm differs therefore in two important
respects:

e We restrict the number of solution iterations that are performed for each problem to
one single SQP iteration, allowing to reduce the sampling intervals ¢; to a minimum.
This approach is only possible if we ensure that the subsequent optimization problems
are carefully initialized in order to maintain the excellent convergence properties of
the direct multiple shooting method in the absence of disturbances.

e Secondly, we divide the necessary computations during each real-time iteration into
a (long) preparation phase that can be performed without knowledge of xg, and a
considerably shorter feedback phase that allows to make the delay even shorter than
the sampling time §;. As this remaining delay is typically orders of magnitude smaller
than §;, we will in the following neglect it and assume that the result of each real-time
iteration is immediately available, and that the sampling time ¢; is only needed to
prepare the following real-time iteration.

Both algorithmic features are based on an initialization strategy that can be understood
as an initial value embedding, which will be described in the following section.

4.2 The Initial Value Embedding

In Theorem 3.6 of Sec. 3.4 we have shown that the first iterate of a full step exact Hessian
SQP algorithm that is initialized at a neighboring solution delivers a first order approx-
imation of the exact solution, if an augmented problem formulation (3.14) is used. The
crucial feature of this augmented formulation is that the actual value of the parameter that
distinguishes between different problems is introduced as an additional NLP variable, that
is fixed by a trivial equality constraint, so that derivatives with respect to the parameter
are present in the SQP framework. Fortunately, in the direct multiple shooting NLP for-
mulation of Sec. 2.2, the distinguishing parameter of the NLPs P(x;) is the initial value
xo, that is itself constraining s§ by a trivial equality constraint s§ — zy = 0. Therefore, we
may regard the NLP formulation (2.10) as an embedded problem formulation of the form

sg—xo = 0,

min F(sg,w) subject to G(sf,w) = 0,
sEeRnz HeR(Mwnz) H(sg,ﬁ)) > 0,
with w = (s§, @) (cf. Sec. 2.2). Comparing with the notation of (3.14), sf has taken the

place of ¢, and z, the place of .

Let us assume that we have found a solution y*(zg) = (w*(zo), A*(x0), u*(x¢)) of prob-
lem P(zg). If the SQP algorithm for the solution of a neighboring problem P(zy + €) is
initialized with this solution, the first full step exact Hessian SQP iterate provides already
an excellent (first order) approximation of the solution y*(xo+ €). This first iterate is even
able to approximate distant active set changes, as was shown in Example 3.3, and will also
be illustrated in the following example for a parameterized optimal control problem.
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Figure 4.2: First order correction in ¢} and ¢2 after initial value embedding as a function of
€, for two different initializations: on the left hand side the algorithm was initialized with
the steady state trajectory, on the right hand side with the outcome of the first iterate for
e =1 from the left hand side. The exact solution manifold (cf. Fig. 1.3) is dotted.

Example 4.2 (Initial Value Embedding)

Let us again consider the continuous stirred tank reactor with a disturbed initial value xg
as in Example 4.1. We will regard a whole family of optimization problems P(x.) with
perturbed initial values

T = x5+ (g — x5),

that interpolate between the steady state xg and the disturbed initial value xo (cf. Eram-
ple 1.1). Let us initialize the SQP algorithm with the steady state trajectory, which is the
solution of P(xg) (e = 0). The number n, of NLP variables is 604, as discussed in Ez-
ample 2.1. We restrict our attention only to the first control vector, qo. A comparison of
the first correction in qu after the initial value embedding with the exact solution manifold
(cf. Example 1.1) is shown on the left hand side of Fig. 4.2 for different values of €; this
illustrates that the initial value embedding strategy provides a first order approrimation of
the exact solution manifold, that takes active set changes into account (cf. lower left graph
of Fig. 4.2). On the right hand side of Fig. 4.2 we investigate what happens if we choose the
first iterate itself as an initialization of the algorithm, so that we obtain a second iterate.
Note that the first iterate itself is not the solution of any problem, so that the manifold of
second iterates does not touch the exact solution manifold at a reference point, as before.
But it can be seen that in the vicinity of € = 1 it provides already a quite good approximation
of the exact solution manifold.
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4.3 Real-Time Iterations on Shrinking Horizons

So far we have assumed that the initialization of the SQP algorithm is given. In a real-
time scenario, there is essentially only one source which can provide an initial guess for the
current problem: the outcome of the previous iterate. Depending on the problem class,
different strategies come to mind to use the previous real-time iteration to initialize the
current one.

In the case of shrinking horizon problems, there exists a very natural initialization that
is based on the principle of optimality: if a solution z*(¢), 2*(t), u*(¢) is optimal on the time
horizon ¢ € [t;, tf] for an initial value o (¢;), its restriction to the shrunk horizon [t;;1,tf] =
[t; + 6i,ty] is still optimal for the initial value zo(t;+1) = 2*(¢;+1). This can be translated
into the direct multiple shooting context, if the length of the multiple shooting intervals,
T(1i11 — 1), corresponds to the length of the sampling intervals, §; = t;11 — t;. Let us for
this scope regard a problem discretization with N multiple shooting intervals, and let us
assume that for the optimization problem P(z((ty)) on the full horizon [tg, to+T] a solution
w* = (q0,--- ,qN-1,S0,--- ,Sn) has been found. At time t; = to + Zle b =to+ T, a
reduced problem can be formulated, on a shrunk horizon with only N — k& multiple shooting
intervals, for the initial value x := (). We will denote this problem by Py(zy). Let
us adopt the convention that the multiple shooting variables w,, of the reduced NLP are
numbered so that the indices start with &, i.e., wx = (qg,- - ,qN_1, Sk, - - - , SN), SO that the
problem Py (zy), k=0,...,N — 1 can be written as:

N-1
Py(xy) : min Z Li(s?,s7,q;) + E(s}, sy) (4.1a)
Qky--- ygN—-1, =k
Sky--- s SN

subject to
st = xi(Tip st s, 4) =0, i=k,...,N—1, (4.1b)
g(si,s;,q) =0, i=k,...,N, (4.1¢c)
sp — =0, (4.1d)
(55, 53) = 0, (410
r(sk, si) 2 0, (4.1f)
h(s,s%,q) >0, i=Fk, ... N. (4.1g)

Note that Py(zo) corresponds to the original problem P(zg) formulated in (2.10).

Clearly, if we have found a solution y; = (w§, A}, u}) of problem Py (zy), and if the state
Zk11 corresponds to the predicted optimal value on this trajectory, i.e., xp, 1 = (siﬂ)z, the
restriction of the solution to the remaining horizon provides the solution y;_ ; for the shrunk
problem Py 1(zx41), which is a good initialization also for disturbed initial values zx,1 +€,
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when the initial value embedding is employed. Let us introduce the “shrink” operator S,
that just removes the first components qi, s and the corresponding multipliers from a
vector yr = (W, Ag, fix), i-€., the operator that projects the variables and multipliers of
Py(-) to the variable and multiplier space of Py.(-). Using Sk, the above statement can
be expressed as

Yri1 = Silp-

4.3.1 A Real-Time Algorithm

In the real-time iteration context, the algorithm would proceed as follows: Starting with
an initial guess y§ = (w), A, uJ) for the problems Py(-) prepare the first real-time iteration
as far as possible without knowledge of zy. Then perform for for £ = 0,... N — 1 the
following cycle:

1. At the moment ¢, that xzj, is known, perform the prepared real-time iteration (based
on a linearization at yf and the initial value embedding idea) towards the solution of

Pi(z1,). This yields the first order correction y; .

2. Give the resulting value of the first control vector (g,)¥™ (which is contained in the

vector yf“) immediately as a control to the plant.

3. Shrink the first order correction y{j“ to the variable space of the new problem Py +(+),

i.e., define the new iterate
k k
Vit = Skyp

4. Prepare the first iterate of problem Py.(-) as far as possible without knowledge of

Zk+1, using the shrunk vector y],jﬂ as an initialization.

5. Increase k£ by one and go to 1.

Note that in our algorithm the first two steps do only need a very short computation time
compared to the fourth step (cf. Chap. 6).

Example 4.3 (Real-time iterations)

The closed-loop trajectory resulting from the real-time iteration approach for the scenario
that was presented in Sec. 1.2 is shown in Fig. 4.3. The number of multiple shooting
intervals 1s N = 100, with intervals of equal length 6, = 20 sec for k=0,... ,N — 1. The
initialization y§ was chosen to be the steady state trajectory, i.e., the solution of P(xg). We
assume that the preparation time per real-time iteration is exactly 20 seconds (in reality,
the computation time per iteration was always less than 1 second, cf. Fig. 4.5).

It can be seen that the real-time iteration approach delivers a trajectory that is nearly
identical with an optimal feedback control (dotted line) — apart from the “outlier” of uy in the
first interval which is due to linearization errors, and which corresponds to the first iterate
wn Fig. 4.2. In the second real-time iteration, when nonlinearities are taken into account,
uy s already very close to its optimal value. The performance indez is only increased by 3
% compared to optimal feedback control.
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Figure 4.3: State and control trajectories of the real-time iteration approach. The dotted
lines, that are nearly identical, show the trajectory due to optimal feedback control.

4.3.2 Comparison with Linearized Neighboring Feedback Control

It is interesting to compare the above real-time iteration scheme with a well-known approx-
imation of optimal feedback control, namely with linearized neighboring feedback control
as introduced in Sec. 1.3.1. For this aim let us assume that the initial guess g is the solu-
tion of a nominal problem Py(Zo), and that the predicted optimal trajectory goes through
the points Z1,...,Zy, that we call the nominal or reference trajectory. By the principle
of optimality it is clear that for a given k < N the restriction of y to the variable space of
Py(+), that we denote by y?, is the solution of the problem Py (z;). The idea of linearized
neighboring feedback control is to use only the initial guess y5 and its subvectors y} for
the initialization of the real-time iterations. The preparation of the first iterate for all
problems Py (-) can be performed off-line, reducing the necessary on-line computations to
a minimum.

In linearized neighboring feedback control, usually the assumption is made that the
active set does not change during the on-line QP solutions, so that the QP can largely be
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presolved, leaving only one matrix vector multiplication that has to be performed on-line:
the control uy on the interval [tg, ;1] is given by uy = @y — Ki(z, — Tx), where @y, is the
nominal control, and the matrix K} is the precomputed gain matriz. Virtually no on-line
computations have to be performed in this case, and very short sampling times can be
realized.

For larger deviations in xy — Ty, however, this may lead to control responses that exceed
the control bounds — therefore we present here a modified linearized feedback control scheme
that solves the prepared QPs on-line, so that all linearized constraints can be taken into
account, when active set changes occur. Note that bounds are linear constraints and
therefore exactly satisfied in each QP solution. The difference to the real-time iteration
scheme is that all control responses are based on the same system linearization, at the
reference solution yj). This algorithm would proceed as follows:

Based on the reference solution yy = (w),A),ud) and on its subvectors y) =
SkSk_1...51yy (that are the solutions of the nominal problems Py (Z)), prepare the first
QP solution of the problems Py(-) as far as possible without knowledge of xj. Then perform
for for K =0,... , N — 1 the following cycle:

1. At the moment ¢, that z; is known, perform the prepared QP solution towards the
solution of Py(x). This yields the first order correction y;.

2. Give the resulting value of the first control vector (qi); (which is contained in the
vector ;) immediately as a control to the plant.

3. Increase k by one and go to 1.

Note that this linearized neighboring feedback control scheme is very closely related to
linear model predictive control on shrinking horizons, as it is based on a linear system
model, and only a QP has to be solved in each iteration. It is superior to what is commonly
called linear model predictive control, however, in the respect that nonlinearities of the
system equations along the nominal trajectory are taken into account, and that the Hessian
matrix does not only represent a quadratic objective, but the full second order information
of the Lagrangian function along the nominal trajectory. Note that the values y; are first
order approximations of the optimal solutions y; of the full nonlinear problems Py (zy), i.e.,
lly: — yill = O(||lzx — Zx||?), due to the initial value embedding.

The low computational on-line cost of linearized neighboring feedback control, however,
comes along with the inability to adapt to large deviations from the nominal solution (i.e.,
for big ||z — Z||), as the system nonlinearity is not taken into account in the on-line
context.

Example 4.4 (Linearized neighboring feedback control)

In Fig. /.4 a closed-loop trajectory corresponding to the described linearized neighboring
feedback control for the same scenario as in Fxample /.3 is shown, and compared with the
real-time iteration scheme. It can be seen that the two trajectories differ significantly, and
that the linearized neighboring feedback control shows considerably poorer performance, see
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Figure 4.4: Linearized neighboring feedback control: state and control trajectories, com-
pared with the real-time iteration trajectories (dotted). Both schemes coincide on the first
interval, but the linearized neighboring scheme does not take nonlinearities into account.

Table 4.1. Note that the two schemes coincide on the first interval, where they both use
the same initialization (cf. Fig. 4.2). In the linearized neighboring feedback control, this
initialization is kept for the whole trajectory, whereas it is continuously updated during the
real-time iteration cycles.

4.3.3 Problems with Free Final Time

So far we have focused on problems where the overall duration was prespecified. In practical
shrinking horizon problems, however, often the final time is open to optimization, or is
determined implicitly by terminal constraints. As discussed in Sec. 2.2, the formulation of
a free final time can be achieved by an augmentation of the differential state vectors s7 by
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Strategy relative costs
Optimal Feedback Control 100 %
Real-Time Iterations 103 %
Conventional NMPC Approach 117 %

Linearized Neighboring Feedback 121 %

Table 4.1: Performance of different real-time strategies, measured in terms of the objective
function, from Examples 4.1, 4.3, and 4.4.

one component, and the formulation (4.1) of the optimization problem Py (zj) needs to be
modified only at the initial value constraint (4.1d), which is changed to

I, |0)sy —x, = 0.
(In,|0) s

As before, the principle of optimality holds, so that a solution of problem Py (zy) provides
a solution of the shrunk problem Py, q(zg.1), if 2341 corresponds to the predicted value
(In,10)sf, ;. If disturbances occur, the initial value embedding and real-time iteration
scheme can be applied without modifications; however, it should be kept in mind that the
interval durations may now change during the real-time iterations.

Apart from the shrinking problem formulation as described above, there exists an in-
teresting second possibility to formulate the series of optimization problem on a shrinking
horizon with free final time: instead of the problems Py(zo), Pi(21), ..., Pnv_1(zn_1) with
shrinking multiple shooting interval numbers, we can consider always the same multiple
shooting discretization and regard only one type of parameterized problem, P(-) = Py(:),
i.e., we treat successively P(xzg), P(x1),..., P(xy_1). In this case it is not straightforward
how to initialize the subsequent real-time iterations. One way would be to take the vari-
able and multipliers from the previous iterate without any modification, i.e., to perform
successive warm starts and to rely on the approximation capacities of the initial value em-
bedding (cf. Sec. 4.4.2). Though such a scheme can be successful in practical applications,
especially for short sampling times, it is difficult to prove convergence, as it will be done
for the shrinking problem formulation in Chap. 5.

4.4 Real-Time Iterations on Moving Horizons

In applications of nonlinear model predictive control (NMPC) to continuous processes
the optimization problems are typically formulated on moving horizons, which aim to
approximate an infinite prediction horizon. This results in problems which all have the
same horizon length, and which are only distinguished by the initial value x. We will
therefore only treat one type of optimization problem P(-), and adopt the convention that
the subvectors of the primal variables w are denoted by qo, ... ,qyv_1 and sgp, ..., sy in all
problems, i.e., we disregard the absolute position of the moving horizon in time, in contrast
to the shrinking horizon case.
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We will present two basic strategies how to proceed from one optimization problem
to the next. Both show their advantages in different circumstances: the first, the shift
strategy, is especially advantageous for periodic or time dependent processes, as it considers
the movement of the horizon in time explicitly. The second strategy, the warm start, is
especially useful in applications where the multiple shooting intervals are chosen to be
considerably longer than the sampling times.

4.4.1 Shift Strategy

The principle of optimality does not hold for finite moving horizons, but it is approximately
valid if the horizon length is long enough to justify the assumption that the remaining costs
on the infinite horizon can be neglected. This motivates an adaptation of the shrinking
horizon initialization strategy to moving horizons that we call the shift strategy.

For the initialization of a problem P(z;) it uses the iterate yy ™ = (wp™, A\ ufth),
that is the outcome of the previous iteration towards the solution of problem P(zy), to

initialize the new problem with y; '} as follows.

Shift in the Primal Variables

If the primal variables wi ™! are denoted by

E4+1 _ .
Wy = (QO, q1y--- y4dN—-2,4dN—-1550,S51y--- , SN—2, SN—1, SN)

then the shift initialization sets

k+1 . new . new new
wk i (QDQZ;"' ydN—-1,9N_-1,51,52,--- ,SN-1,SN_1) SN );

new new new

where the new values g%, siy™;, and sk’ can be specified in different ways:

e One straightforward way is to keep the old values at their place, i.e., to initialize

new new

P new ,__ —
AN =qn-1, Snoqp:=5Nn-1, and Sy" :=sn,

which has the advantage that the only infeasibility that is introduced into a feasible
trajectory is the violation of the continuity condition at the start of the last interval,
i.e., at Ty_1.

e A second possibility would be to solve the DAE on the new last interval, starting
new

with sy, and employing the control gx_1, which yields the final value si" (sn, gn_1)
for differential and algebraic states, i.e., we initialize:

new new new( new new )

L new ,__ —
dN-1 ‘= 4N-1, SN-1 ‘= SN, and sy = sy (SN, AN

In this case, both the continuity condition and the algebraic consistency condition at
Tn_1 are fullfilled, if the previous solution was feasible: for the continuity condition
this is trivially true, and for the consistency condition note that previously, at 7,
0 = g(sn,qn) = 9(sn,qn-1), as gny_1 provides per definition the control gy at the
final multiple shooting node. However, path and terminal constraints may be violated

new

by the new final value sji™.
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e Yet another possibility is to solve the DAE on the last interval starting at sy, but to
employ a different control than gx_;. Though this may sacrifice algebraic consistency
at 7y _1, this strategy may be advantageous, e.g. for periodic processes, where a time
dependent nominal control may be taken. This strategy was employed for the periodic
control example of Chap. 8.

Note that the initial violation of constraints is naturally treated in the direct multiple
shooting framework and does not create any additional difficulty in the following SQP
iterations. During the real-time iterations the outcome of the previous iterate will usually
not be feasible anyway, and additional infeasibility is introduced by initial values z; that
are not in accordance with the predictions.

Shift in the Multipliers

The initialization of the multipliers is also performed by a shift; for the multiplier values
on the final interval we usually keep the old values. It is clear that a shifted solution, even
if it may be feasible, is in general not optimal. For sufficiently long horizons, however,
we expect the principle of optimality to hold, so that the shifted primal variables and the
shifted multipliers ;7| are close to a solution of P(z441) if y; ™' was a solution of P(xy)

and the system has developed as predicted (i.e., zx11 = s7).

4.4.2 Warm Start Technique

On the other hand, if the horizon length is relatively short, so that the principle of optimal-
ity does not hold at all, subsequent, optimization problems may have very similar solutions,
that are mainly determined by terminal conditions, such as e.g. a Mayer term and terminal
constraints that are introduced to bound the neglected future costs (cf. Sec. 1.4). In this
case the best initialization of subsequent problems should be a warm start strategy, which

takes the result of the previous iteration, y,’j“, without further changes to initialize the

current iteration: yy | =yt

If y#+! was the solution to problem P(zy), then the only infeasibility in problem P(z4;)
is introduced by the initial value constraint, as in general x; 1 # ). In this case, however,
the next iterate yfﬁ is identical to the first order correction to the optimal solution, as
we proved in Theorem 3.6, i.e., its distance to the optimal solution is ||y;T7 — i 4[| =
O(||wrs1 — zxl|?), if an exact Hessian SQP method is used. To shed more light on this
desirable property, we regard the (unsolved) problem P(xj,;) as a member in a family
of perturbed problems P(zy + €(zx+1 — %)), where a solution for € = 0 exists, and the
solution for e = 1 is desired (cf. Example 4.2). The warm start strategy therefore has a

very natural connection to the initial value embedding strategy.

Interpretation as Modified SQP Iterations

Another interesting property of the warm start technique occurs if the initial values xy, xg1
coincide during some iterates k,k + 1,.... In this case, all real-time iterations treat the
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same problem, so that the standard convergence properties of SQP methods can be ex-
pected. This observation motivates a new look on the real-time iteration idea: rather
than interpreting the real-time iterations as many prematurely stopped solution attempts
of subsequent optimization problems, we regard them as a continuous series of SQP it-
erates with the particularity that one parameter, the initial value xg, is slightly modified
during the iterations. This interpretation captures very well the philosophy of the real-
time iterations; in every practical implementation of a real-time iteration algorithm it has
meticulously to be taken care that the initialization from one problem to the next does
preserve all informations that are necessary to guarantee the convergence properties of an
off-line method. This is most easily realized for the warm start strategy.

Short Sampling Times

In some practical NMPC applications it may be desirable to choose the multiple shooting
intervals longer than the sampling time; this allows e.g. long prediction horizons with a
limited number of multiple shooting nodes, which may be a crucial real-time advantage,
as the computation time generally grows with the number of multiple shooting nodes.
Another practical reason for choosing relatively long control intervals may be to detune
the NMPC controller, whose aggressive response may otherwise excite unmodelled system
modes with short timescales.

In the warm start technique, short sampling times can be treated without difficulty.
Even sampling times of variable size are allowed — the only requirement for good perfor-
mance is that the problems (i.e., the initial value xy) do not change too much from one
iteration to the next. Therefore, the shorter the sampling time, the better the contraction
behaviour.

Self-Synchronization of the Real-Time Iterations

Where a continuous stream of state estimates is available, the warm start technique even
offers the possibility to let the sampling times be determined on-line by the optimizer itself.
Whenever a new real-time iterate is prepared, say at time t;, the current state estimate
xo(tx) is used to perform the next real-time iteration towards the solution of P(x(tx)),
whose response is given immediately to the real-plant, and then the next iterate is prepared,
until the algorithm is ready to perform, at time ¢, the next feedback phase. Note that
in this scheme it is not necessary to know the computation time ¢;,; — t; in advance. In
our practical implementation of NMPC in Chap. 7 we have employed this scheme.

Successive Generation of Feedback Laws

Yet another possibility, that can be employed if a full real-time iteration takes too long to
be able to respond to relevant disturbances, is to separate the preparation phase and the
feedback phase of each real-time iteration completely. Then, the self-synchronized major
SQP iterations are performed as one process, that gives all data that are necessary for the
immediate feedback to another process. This feedback process delivers a feedback wu(zo(t))
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with a frequency that can be considerably higher than that of the major nonlinear iterates.
Only at the end of each major SQP iteration, say at the time points t;, all updated data
are transferred from the SQP process to the feedback process, and simultaneously the the
current system state zo(tx) is given to the SQP process, to modify the next major real-time
iteration. The scheme can be visualized as follows:

updates u(wo(t))

Major Immediate |

1-Ti
e fame | ao(te) | Feedback | (1)

System

Note that between the updates (that occur only at the major sampling times t;) the
feedback is based on a linear system model that is obtained by a linearization along the
best available predicted trajectory, similar to the linearized neighboring feedback control
scheme that was presented in Sec. 1.3.1.

Example 4.5 (Comparison of Moving Horizon Strategies)

The CSTR real-time scenario that was treated in the previous examples can in a straight-
forward way be formulated as a moving horizon problem. Instead of shrinking the time
horizon of the problems, the time horizon is kept at constant length and moved forward.
We can imagine that we continuously “append” multiple shooting intervals at the end of the
horizon. With the chosen horizon length of 2000 seconds the closed loop system was already
at steady state in the middle of the horizon of the first optimization problem; therefore the
appended parts do practically not matter at all, and for the shift strategy with exact Hessian
SQP we obtain exactly the same closed loop trajectory as before in the real-time iteration
Example 4.3 on a shrinking horizon. We have carried out closed-loop simulations for the
same scenario also with the warm start technique, and the result is that the closed-loop
trajectories are practically identical. We also carried out tests with an algorithm where the
exact Hessian matriz was replaced by a Gauss-Newton approximation, which again yields
no wisible difference of the trajectories. The performance of the different strategies can be
measured by the objective function on the considered interval of 2000 seconds compared to
the optimal value, as in Table 4.1. For all four moving horizon strategies we have observed
nearly identical values of 103 % of the optimal costs.

For the chosen application, all strategies require more or less the same computational
costs per real-time iteration, which is dominated by linear algebra, because the ODE solution
and sensitivity computation do not require much time for a system of such a small size.
The necessary CPU time per iteration, and the share of it which is needed to deliver the
“tmmediate feedback” are depicted in Fig. 4.5 for the above scenario, where a Gauss-Newton
method was employed. First, it can be seen that the overall cost of at most one second is
much below the 20 seconds that we have chosen as sampling time, thus ensuring practical
applicability of the algorithm for this type of problem. But it can also be seen that the
“tmmediate” feedback requires a considerable proportion of the overall CPU time for this
example problem and is therefore not as immediate as postulated. Note, however, that in
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Figure 4.5: Preparation and feedback times for the real-time iterations for the moving
horizon CSTR scenario of Example 4.5, on an AMD Athlon processor with 1009 MHz.
The horizon length was chosen to be N = 100 multiple shooting intervals.

large scale applications the lion’s share of the computational cost is incurred by the DAFE
solution, which does not contribute to the response time, so that the immediate feedback
is indeed orders of magnitude smaller than the overall computation time (cf. Figs. 7.7
and 7.16 in Chap. 7). Details on the separation into preparation and feedback phase are

given in Chap. 6.



Chapter 5

Contractivity of the Real-Time
Iterations

In the last chapter we have presented a new scheme for the approximate solution of op-
timization problems in real-time, which shows very promising performance in numerical
examples. From the previous discussion, however, it is far from clear how this scheme
behaves theoretically.

To motivate why this is important, let us imagine that we apply the real-time iteration
scheme in a NMPC framework to stabilize a system, and that the real system coincides
with the employed system model. If the subsequent optimization problems could be solved
exactly in real-time, proofs exist that ensure nominal stability of the closed-loop system
for different NMPC schemes (cf. Sec. 1.4). Now the question arises if it is also possible
to establish nominal stability results if the optimization problems are not solved exactly,
but with our real-time iteration scheme. Otherwise, it may be possible that the real-time
controller does not stabilize the system, but drives it in the worst case even away from
the desired operating point: linearization errors may increase from iteration to iteration,
and the approximations to the exact solutions may become worse and worse. We will
show that this need not be feared, and we will prove that the real-time iterations deliver
approximations of the exact solutions that become better and better, under reasonable
conditions.

Unfortunately, standard convergence results for off-line SQP methods cannot be ap-
plied, because each real-time iteration belongs to a different optimization problem. Never-
theless, we will start the chapter in Sec. 5.1 by reviewing the local convergence properties
for a class of off-line optimization algorithms that are commonly referred to as “Newton
type methods”, which comprise the exact Hessian SQP method and the Constrained Gauss-
Newton method. We will then in Sec. 5.2 present the real-time iteration scheme in a new
setting, which allows to compare the real-time iterates on shrinking horizons with those
of the off-line method. This makes it possible to prove contractivity of the real-time iter-
ations. We usually avoid the term “convergence” in the real-time framework on shrinking
horizons, because the iterates stop after N cycles, when the time horizon of interest is over.

69
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The principal result is that the real-time iteration scheme on shrinking horizons is
contracting under the same sufficient conditions as the corresponding off-line scheme. This
result can conceptually be generalized to the shift strategy on infinite moving horizons and
allows to conclude that the real-time iteration scheme leads to a convergent closed-loop
behaviour in this case. Finally, in Sec. 5.3 we investigate how far the result of the real-time
iterations deviates from the theoretical optimal solutions.

Throughout the chapter we will assume that the iterates are started sufficiently close
to a KKT point that satisfies the sufficient conditions of Theorem 3.3 and the strict com-
plementarity condition, so that we can assume that the active set is known and we can
restrict our attention to equality constrained problems. Furthermore, we will assume that
the variables w can be split into free variables ¢ € R™ and dependent ones s € R™s, so
that the off-line optimization problem on the full horizon of interest can be formulated as
follows:

P(xo) : min F(q,s) s.t. G(g,s)=0 (5.1)

q7s

with F : D ¢ R x R* — Rand G : D C R x R — R"™ twice continuously
differentiable, where we assume that the constraint function G is such that % is invertible

for all (q,s) € D. This last property can naturally be achieved for the direct multiple
shooting method, as discussed in Sec. 2.2.1, where ¢ are the controls, and s the state
variables. This separation helps to formulate the shrinking of the time horizon in the
real-time setting; the shrinking will be expressed by decreasing step-by-step the degrees of
freedom for the controls.

5.1 The Off-Line Problem

5.1.1 Newton Type Optimization Methods
Using the Lagrangian function L : D xR >R
L(q,5,)\) = F(q,s) — \TG(q, s)
we can formulate necessary optimality conditions of first order, according to Theorem 3.1:

VF (g, s) = VoG(g, s)A

V(q,s,f)\)‘c(% S, )‘) = vsF(Q> 8) - vsG(Q> 8))‘ = 0. (52)
G(g,s)
Let us define for later convenience the vector y € R™ with n := n, + n, + ns and the
function R: D C D x R™ — R" as
q V,F(q,8) — V,G(g,s)A
y:=1| s and R(y):= | VsF(q,s)—VsG(g,s)\ |, (5.3)

- G(q, )
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so that the above system (5.2) is equivalent to R(y) = 0. To solve this system, the exact
Newton-Raphson method would start at an initial guess y° and compute a sequence of
iterates y!, 42, ... according to

Y = yF + AyF, (5.4)

where each Ay* is the solution of the linearized system

OR
R(y*) + a—(yk)Ayk =0, (5.5)
Yy
or, fully written,
92  o2cT saT
V‘Z‘C 8_(12 dq0s B_q Aqk
VoL |+ | 2L 2% %_GT Ast | =0. (5.6)
G(q,s) i_G 86_6* 0 —ANF
q s

We have seen in Sec. 3.3.1 that these Newton-Raphson iterates are identical to the full step
exact Hessian SQP method.
The Newton type methods considered in this chapter differ from the exact Newton-

Raphson method in the way that the exact Hessian -2%5 is replaced by a (symmetric)

. ) 9(q,s)?
approximation

A, AT
Aly) = ( o Azz),

so that we can define an approximate derivative of R by:

T 8GT
Aqq Aqs

e
Jy) = A, A, %" |. (5.7)
oG oG 0

dq ds

For our Newton type method, Eq. (5.5) is replaced by the approximation

R(y®) + J(yF)Ay* = 0. (5.8)

5.1.2 The Constrained Gauss-Newton Method

An important special case of the Newton type methods considered in this chapter is the
constrained Gauss-Newton method, which is applicable for problems with a least squares
form of the objective function F"

1

Flg,s) = 5[Ua,9)ll5 (5.9)
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with [ : D — R™, n; > 1, a vector valued function. For this case, the Hessian approxima-

tion A is defined to be
ol T( ol )
Alg,s) = =) (=), 5.10
(@) <3(q,8)) A(q, s) (510

% — A can be quantified by calculation of %

0L ( ol )T( ol ) 92, 926G,
9(g,s)>  \0(g,s)) \0(g,s) Zl 9(q, s)? Zl 9(q, s)?

At a solution y* = (g%, s*, \*), the necessary optimality conditions (5.2) require that

The error

BN
V. —V,G\' = <%) l(g*,s*) — V,G\* =0,
so that
* —1 8lT * * * *
A= -=V,G s (g, s") = O(lll(q", s7)l) ,

which allows to conclude that

0*L
- - A * * — O l * * .
| = At = Ol )
Thus we expect the Gauss-Newton method to work well for small residual vectors I(g, s).
Note that A(q, s) is independent of the multiplier vector A.

Remark: The least squares function I(g,s) needs not to be a mapping into a finite
dimensional space R™, but may more generally be a mapping into any Hilbert space H. If
(-,-)g is the inner product in H, the least squares objective function of Eq. (5.9) is then
written as

1

F(q> 5) = §<l(q?5)?l(q?5>>H>

and the Gauss-Newton approximation of the Hessian in Eq. (5.10) is given by the symmetric

matrix
ol ol
A(q, s)i; := Re , ,
@) = Re (g a(q,s>j>H

where the indices 7, j run through all components of (g, s). Note that this matrix is finite
dimensional, which allows to treat this general case with the presented numerical methods.
In Sec. 6.4 it is shown how to compute A(q, s) efficiently in the presence of integral least
squares terms as introduced in Sec. 1.1.
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5.1.3 Sufficient Conditions for Local Convergence

Let us now state sufficient conditions for convergence of a series of general Newton type
iterates (y*), k= 0,1,... in a space R™ defined by

yk+1 — yk + Ayk — yk o J(yk)flR(yk), (511)
towards a solution of the system
R(y) = 0. (5.12)

Theorem 5.1 (Local Convergence of Newton Type Methods)

Let us assume that R : D C R™ — R" is continuously differentiable and that the approzi-
mation of the derivative J : D C R™ — R™™ s continuous and has a continuous inverse
on D. Furthermore, let us make the following assumptions:

OR
J(y) ™t (J(yg) - 6—y(y2)> <k<l, VYy,y€D (5.13a)
and
()" (J(y2) = T (s))|| < wllyz —wsll,  Vy1,92,u3 € D. (5.13b)
Additionally, we suppose that the first step Ay® := —J(y°)"*R(y°) starting at an initial
quess y° is sufficiently small, so that
8o = K+ %HAyOH <1 (5.13¢)
and that
A 0
Dy = {y eR |ly —° < ‘1’7?’6”} c D. (5.13d)
— 0o

Under these conditions the sequence of Newton type iterates (y*) defined by Eq. (5.11)
remains inside Dy and converges towards a y* € Dy satisfying the sytem (5.12), R(y*) = 0.

Proof: Slightly modifying a proof that can be found in Bock [Boc87|, we first show that
the norm of the steps Ay* contracts, and show then that (y*) is a Cauchy sequence. The
contraction can be shown as follows:
[Ay*HH = (™)~ Ry

= 7@ (R — R(y") = J(6") - Ay

= YT f (GRR + tAYR) — T(F)) - AyF dt|

= Iy (BRE + tAYY) — T(yF 4 tAyR)) Ayt di

+J(y T fol(J(y’“ +tAY") — J(y*) Ayt di| (5.14)

< Iy 17647 G + 89 = T+ i)y di
+ R0 (6 + 08y = TR A9 d
A+ fy ot Ay d

I IA

(r + 5l Ay H) |AY*]| = bkll Ay
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If 6, < 1, then [[Ay*|| < ||Av*||, and 6py1 < 8 < 1. Therefore, we can inductively
deduce that

Ay < &ollAYF|l, VE>0

so that

[y ™ — ¥ < 17||Ay I< 1=+ ||A °I. Vk,m>0. (5.15)

In particular,
ly™ =9Il < 57— ||Ay I, ¥m>0.

Therefore, (y*) is a Cauchy sequence that remains inside the compact set Dy and hence
converges towards a limit point y*. By continuity of R and J !,

0= lim Ay* = hm —J(y ) 1R(yk) = —J(y*)'R(y")

k—o0

so that R(y*) = 0. a

We will state a second, stricter form of the above theorem, which is applicable to opti-
mization problems only, and implies local convergence of the Newton type iterates towards
a strict local minimum. Before this second version of the theorem can be formulated, we
have to give an explicit formula for the inverse of the approximate derivative J(y).

Lemma 5.2 (Inverse of the KKT Matrix)
Let us assume that J(y) is a matriz as defined in Eq. (5.7), i.e

T 9GT
Aqq Aqs Bg

aqT
Jy)=| A, A, %
oG  9G 0

dq ds
with % invertible, and let us also assume that the so called reduced Hessian matriz
_ A AT I
Ary::(ﬂ—@T@ T)( a qS) ! 5.16
( ) dq ( ds ) Aqs Ass (%f) % ( )

is positive definite. Then the inverse of J(y) exists and is given by the formula

J(y) ™t = Ci(y) An(y) 'Ci(y)" + Caly) (5.17)
with
i
Ci(y) = - (%)% (5.18)

o (%)_T (Aqs — Ass (%)_1 %)
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and

0 0
0 22_(5)‘1 . (5.19)
(29)" - (%) " A ()

Remark: Note that the assumptions of this lemma coincide with those of Lemma 3.2,
with the constraint matrix B set to B = (%@)—f). They are also closely related to the
sufficient optimality conditions of Theorem 3.3. The positive definiteness of A, will be
used in the proof of Theorem 5.3 to show that the Newton type iterates converge towards

a local minimum.

Ca(y) =

o O O

Proof: The invertibility follows from Lemma 3.2. The inversion formula (5.17) can be
verified by checking that

J(y)(Ci(y) A (y) " Cr(y)" + Ca(y)) =1

and using the fact that

A (y) Ci(y)"
J(y)Ci(y) = 0 and  J(y)Ca(y) =1— 0
0 0

Theorem 5.3 (Off-Line Convergence)
Let us assume that R : D — R™ is defined according to (5.3) to be the residual of the
necessary optimality conditions of the equality constrained optimization problem (5.1).

We assume that the reduced Hessian approzimation A.(y) from Eq. (5.16) is positive
definite on the whole domain D, with bounded inverse:

|A(y) 7" < Ba < o0, VyeD. (5.20a)
We also assume boundedness of ||C1|| and ||Cs|| as defined in Egs. (5.18) and (5.19) on D:

[C1(W)]| < Bey, < o0, Vye D, (5.20b)
and

1C2(y)|| < Be, <00, VyeD. (5.20¢)
Let us define B := B, BaBe, + Be,. Let us suppose that a Lipschitz condition

BII(w) = Jw)ll S wllyr —woll, w<oo, Vyi,y2 €D, (5.20d)

holds for the derivative approzimation J(y) and that
02L

B HA(ZJ) BCICE

(y)H <k, K<l VyeD. (5.20¢)
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Figure 5.1: Convergence rates for off-line Newton type methods, for the solution of Exam-
ple 5.1. Comparison of Newton and Gauss-Newton method, when started at the steady
state trajectory.

Additionally, we assume as in Theorem 5.1 that the first step Ay® = —J(y°) *R(y°)
starting at an initial guess y° is sufficiently small, so that
w 0
8o := Kk + §|\Ay | <1 (5.20f)
and that
A°
Dy = {y e R"| |ly —4°| < |1|—7y6(|)|} c D. (5.20g)

Under these circumstances the Newton type iterates (y*) according to Eq. (5.8) converge
towards a KKT point y* = (¢*,s*,\*) € D whose primal part (q*,s*) is a strict local
minimum of Problem (5.1).

A proof of the theorem is given in Appendix D.

Example 5.1 (Continuous Stirred Tank Reactor)

Let us again consider the optimal control problem that was introduced in Sec. 2.1, respec-
tively its multiple shooting parameterization as described in Example 2.1. The solution w*
of the NLP with initial value as in Sec. 2.1 was shown in Fig. 2.3; a comparison of the
convergence rates for the Newton and Gauss-Newton method is given in Fig. 5.1, where the
algorithm is started at the steady state trajectory. The plot for the Gauss-Newton method
allows us to estimate that k ~ 0.1.
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5.2 The On-Line Problem

We will now regard real-time iterations on shrinking horizons as introduced in Sec. 4.1.2,
in the framework of the off-line optimization problem. It is shown in Sec. 5.2.1 that the
essential difference to the off-line iterations is that after each Newton type iteration some
components of the free variables ¢ are fixed, i.e., that the optimization problem (5.1) is
changed to a problem in the same space, but with some more (trivial) equality constraints.
In the following Sec. 5.2.2 we will show that the nonlinearity and incompatibility constants
w and k for the off-line problem are still valid for a problem with some fixed controls. This
allows to conclude in Theorem 5.6 that the real-time iterations contract if the sufficient
conditions for off-line convergence of Theorem 5.3 are satisfied, which is the main result
of this chapter. In Sec. 5.3 we investigate how far the result of the real-time iterations
deviates from the theoretical optimal solutions.

Let us first discuss why fixing of some free components is equivalent to the real-time
iteration scheme as introduced in Sec. 4.1.2.

5.2.1 The Fixed Control Formulation

In the real-time iteration framework for shrinking horizons of Sec. 4.3, we have reduced the
number of multiple shooting nodes from one problem to the next, in order to keep pace
with the process development.

We regard a problem discretization with N multiple shooting intervals on a fized length
time horizon with duration 7', and assume that the computation time for the k-th real-time
iteration is 6x, and that Zivzl Or = T (this is e.g. the case if all iterations take the same
time § and the time horizon of interest has the length " = N§). The multiple shooting
points are chosen so that the times t, := T'1;, satisfy t, — tx_1 = O, i.e.,

k
t():O, tk:Z6i, for :]_,...,N.
i=1
Let zg,z1,...,xy5 denote the differential system states of the real system at times
to,t1,... ,ty, that serve as initial values for the parameterized optimization problems

Py (zy) of shrinking length, as defined in Sec. 4.3, Eq. (4.1).

At time ¢ the state xg is known, and the initial value embedding strategy quickly yields
the control value ug that will be implemented on the first time interval, up to time t;. At
time t; the next immediate feedback has been prepared, and is applied to the shrunk
problem Pj(z1). If the model and the real system coincide, the new system state z; is
identical to the final value z(¢;) of the initial value problem

~— ~—

B()z(t) = f(z(t),2(t),ug), tE€E [to,t1],
( ()) g(x(t), 2(t),up), tE€ [to,t1],
xo(to) = o,

and the initial value constraint for the problem P (x;) is

s] = 7.
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Let us now regard the original problem Py(zg) on the full horizon, but with an additional
constraint that fixes the control gy on the first interval to be equal to the implemented
value ug = q) + Ag) = ¢j. This problem then contains the constraints

T . X z —
S1 — $0(t1750730a%) - 07

T oz _
g(807507QO) _07

x _
Sy — o =0,

QO—U0:07

which constrain s, s, ¢o and s{ uniquely. In the solution, s{ = z;, because the relaxed
initial value problem

B()Zo(t) = f(zo(t),20(t),q), t Et[fgytl],
= g(zo(t), 20(t), q0) — 675“%09(35, s, q), t € [to,tal,
zo(to) = s5,

is equivalent to the real system dynamics if st = xg, qo = wo, 9(s§, 8§, q) = 0, so that
xo(t1; 85, 85,q0) = z(t1) = x1. Once the correct values for sg, gy are found during the
iterative solution procedure, they are not changed anymore, and the above constraints are
completely equivalent to s{ = ;.

For ODE models, the correct solution for s§, gy is already found after the first iterate,
due to the linearity of the initial value constraint, and due to the fact that uy was set just
to the outcome of this first iterate. Therefore, fixing of ¢ is completely equivalent to the
shrinking of the horizon. One slight complication arises, however, for DAE models: after
the first iterate, s§ may still not be at its correct value in the fixed control formulation (i.e.,
9(s8,s6,q0) # 0) and this may result in a value zo(t1; S5, s§, qo) that is slightly different
from the correct value z(¢;), due to the DAE relaxation. We will disregard this slight
difference that is only present in the relaxed DAE case (and that could even be interpreted
as a slight superiority of the real implementation over the fixed control formulation, which
we only introduce here for theoretical purposes).

Let us therefore assume in the remaining part of this chapter that the real-time itera-
tions on shrinking horizons are identical to a subsequent fixing of the controls qq, ... ,qn_1
in the original off-line optimization problem (5.1), which we denoted by P(zq) or Py(zo).
For notational convenience, we will in the following define P° := Py(zg) = P(xg) to be
the original (off-line) problem, and denote by P* the problems with more and more fixed
controls that are generated during the real-time iterations and which are equivalent to the
shrinking horizon problems Py (xy). A visualization of the outcome of the first two real-time
iterations is given in Figures 5.2 and 5.3.

The series of problems P*, k =0,... , N are given by

P*: min F(q,s) subject to { Gla,9) =
q,s qi — U

I
=
5]
I
=
a3
|
—
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Figure 5.2: NLP variable content after the first real-time iteration. The next optimization

problem, P!, is formulated by fixing the first control value gy, which implicitly fixes the
value ;.
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Figure 5.3: NLP variable content after the second real-time iteration. The problem P? can
be formulated by fixing ¢y and ¢;, which implicitly fixes x,.
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(Recall that ¢ = (qo,q1,--- ,qv—1).) In a shorter formulation, we will also write these
problems as
G(q,s) = 0,

P*: min F(q,s) s.t. { Q’fT(q—Uk) _—

q78

Here, the matrices Q% € R"*™* m, = kn,, are of the form

= (H’gk) : (5.21)

and the vectors u* € R™ are defined as

U
. qo — Uo
k._ : : kT k\ _ .
U = ) with Ql (q —u ) - . ;
Uk—1
% Qk—1 — Uk—1

so that the last components of u*, that are introduced only for later notational convenience,
can carry arbitrary values. Note that in the last problem PY no degrees of freedom remain,
as all components of ¢ are fixed.

5.2.2 Fixing Some Controls

We will now prove that the nonlinearity and incompatibility constants w and « from the
off-line problem (5.1) are still valid for any modified problem P*, when some controls are
fixed. Let us in this subsection consider only one modified optimization problem P* and
drop the index k for notational simplicity:

min F(q,s)  s.t. {QIT(C;(?Zi z 8 (5.22)

q7s

where the matrix @; € R"*™, m < n, consists of m orthonormal columns, as in (5.21).
We also introduce the orthonormal complement of (); by

L e
I p—)

Let us formulate the necessary first-order conditions of optimality for the modified problem.
We introduce the Lagrangian function £ of the modified problem (5.22)

Z’(‘]? S, >‘7 ,LL) = [’(q7 S, )\) - )\QTQ{(Q - U),

where L is the Lagrangian function of the original problem (5.1). The necessary conditions
of optimality for the modified problem are:
VL — Qi)
5 VL -
V(%&_)\’_)\Q)E(q, S, )\, )\Q) = G(q, 8) = 0 (523)

Q1 (q—u)
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Multiplying the first component of this vector by the orthogonal matrix (Q;|Q2)? € R™a*ms
yields

Ao +QTV,.L
(Tuee ™)
V.L =0
G(q,s)
Qi (g —u)

and it can be seen that the upper part can always be made zero by choosing
)\Q = 1TVq£

Therefore, the trivial first condition can be omitted in the formulation of the necessary
conditions for optimality of the modified problem and we do not have to regard the addi-
tional multipliers Ag. This allows us to treat the modified problem in the same primal-dual
space of y € R™ as the original problem, with n = ny 4+ ng +n,. Defining the essential part
of the residual of the necessary optimality conditions to be

Qngq — u) Q1 (g —u) 0
Rp= | =l o |+ | rw
G(q,s) 0 I

we can compute the derivative

0
& |om
I oy
I

6_R
Oy

+

(5.24)

ooo;gﬂ

and provide an approximation of this derivative which uses the approximation J(y) of the
original problem

Q1 0
~ 0 T
i o= o [+ |w
0 I
QT 0 0 (5.25)
T
_ | Q1A Q1A Q?%
Aqs Ass 83_5
9G oG 0
dq ds

Theorem 5.4 (Contraction Constants for the Modified Problem)
Let us assume that the sufficent conditions for local convergence of Theorem 5.3 are satisfied
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for the original (off-line) problem (5.1). Then the derivative approzimation J : D — R”
of the modified problem (5.22) satisfies the two conditions

<k<l1l, Vuy,ys €D, and (5.26a)

J(y) ™ (j(yz) - (;_}j(yz))
Hj(yl)_l (j(y2) - j(y3)> H <wllyz —ysll, Vyi,92,93 €D, (5.26b)

with the same values of k and w as the off-line problem.

Remark: These two bounds correspond to the properties (5.13a) and (5.13b) in Theo-
rem 5.1.3, thus allowing to conclude that the contraction inequality

w
|Ay™ < (k+ 129 ) 129"

also holds for the modified problem. This implies that the optimization problem does not
become less tractable from the algorithmic viewpoint when we add additional constraints.
However, we do not address the question a suitable problem initialization, yet.

To prove the theorem, let us first give an explicit formula of the inverse J (y)~L.

Lemma 5.5 (KKT Inverse for the Modified Problem)
The inverse of the matriz J(y) as defined in Eq. (5.25) is given by the formula

I I
- —OTA,0, |1
Jy) ' =Q CLATLET 4 Gy 324 g?l I , (5.27)
" ac:
— 50 @1 I
with
Q1 Q2
Q= I :
I
A (y) = Q7 Ar(y) Q2 (5.28a)
5
Ci(y) == I C1(y)Q2, (5.28b)
I
and
N Qs Qs
I I

where A.(y), C1(y), and Cy(y) are defined as in Lemma 5.2 for the original problem.
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Proof of Lemma 5.5: We will check that J(y)J(y)~! = I. First note that

I
o | FAuQ QFAnQ: QIAL Q55
Aqul Aqu2 Ass %
oG 8G 0
2 Os

9G 9G
dq 1 dq

The inverse of the lower-right part of this matrix can be obtained by an application of

Lemma 5.2 (using QT Q, = T). Its inverse is given as

T
QFAQ: QFAL Q1% o
ApQs A, % = Ci1(y)A, (y)Ci (y) + Cy
oG oG 0
dq 2 Js
Therefore,
I ‘ I
7 . QgAqul I
J(y)Q élA;lé?‘f‘C(Q N fgésQl I ’
e @ I

which is the inverse of the rightmost block Frobenius matrix in formula (5.27).

Proof of Theorem 5.4: Note that C, (y) and Cy(y) as defined in Eqs. (5.28b) and (5.28¢)
are projections of C(y) and Cs(y), so that their (spectral) matrix norm satisfies

ICv )l < ICL ()| < By, Yy € D,

and
ICow)l < IICo(y)|| < Bews Yy € D.

~! we have to use the fact that A,(y) is

To provide a bound on the inverse A,(y) )
positive definite. First we show that the eigenvalues of the projection A,(y) = QL A, (y)Q2
lie between the maximum and minimum eigenvalues of A,(y). To prove this we note that

A,(y) is a submatrix of A,(y), as
= (5) 2w @ea= (5, )
r\Y) = Q%“ r\Y 1[%2) — * Ar(y)
By the interlacing property (see e.g. [Wil65], pp. 103-104),
AM(Y), - s Ang—m)(y) of the submatrix A,(y) must lie in the spectrum of A.(y), i.e.,
Me(y) € M) Ang(y)]. In particular, A\i(y) < A (y) for the smallest eigenvalues. The

the eigenvalues
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inverse of the smallest eigenvalue corresponds to the spectral norm of the inverse of a
positive definite matrix, so that we deduce that

. 1 1
1A () 7 = —— <

— |A! |
My ~ M) AWl < Bas VyeD

This allows to find a bound on the central part of the inverse J(y)~! in formula (5.27):

Hél(y)’i"(y)_lél(y)T + CN’z(y)H < BcBaBey + Be, =B, Vy € D.

From Eqs. (5.24) and (5.25) it follows that

~ 0
i) - Gem = | 4| (v - )
I
and
0
j(yz) - j(y3) = 2 I (J(?Jz) - J(y3))
I

and from formula (5.27) that
0

Py | @

I

Q2 i i L Q3
= I : (Cl(yl)Ar(yl)*Cl(yl) +Cz(y1)> I L

which has a spectral norm less or equal to 3. This allows to establish the desired bounds:

jfl(yl) (j(yz) - %(%)) "
0

= || () Q2 I (J(y2)—88_];(y2))
I

OR

J(y2) — 8—y(y2) <k<l1l, Vy,y €D,

=
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and
[ 7 ) (T62) = Tw9)|
=B J(y2) — ( )| < wllya —ysll,  Vyi,42,y3 € D.

5.2.3 Convergence of the Real-Time Iterations

In this subsection we finally consider the scenario that we subsequently fix more and more
free components during the Newton type iterations. To be able to speak conveniently
about convergence, and to be able to define a limit point y* of the real-time iterates y*, we
will regard an infinite sequence of optimization problems P*, k = 0,1, ..., where we define
PN+E .= PN for k > 0. Following the N-th iterate, no degrees of freedom remain, but the
iterates may still be converging towards feasibility.!

As discussed above, at the k-th iterate the problem P*

G(g,s) = 0

) = 0 (5.29)

Pk . r{ll’LnF(q,s) s.t. {Qk (

is treated, where the matrices Q} € R™*™r and their orthonormal complements Q5 €
R™a*(ma=m%) are of the form

I 0
k .__ mg k .__
Q1= ( 0 ) and Q= (H(nq—mw)

with nondecreasing integers m;, that satisfy 0 = my < my < n,. Note that

0

H(nq*mkﬂ)

M= QI with Tl := ( ) e RMa=m)x(ng=mii1)

The vectors u* will be defined during the iterations with iterates y* = (¢¥, s*, \¥), to be
F=q¢* k=0,...

Note that the first problem P° has no additional constraint, because mg = 0, and corre-
sponds to the original off-line problem (5.1) that was treated in Sec. 5.1. In contrast to PP,
the problems P!, P2 ... are only generated during the iterations and therefore depend on
the initialization 3° and on the chosen Newton type method.

Each problem P* is equivalent to finding the zero of a function R* as follows:

Q' (q —ub)

kT
RMy) = L VL:I'C — 0.

G(q, s)

!Note, however, that for ODE models a feasible solution is already obtained after the N-th iterate.
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Note that the necessary optimality conditions R%(y) = 0 correspond to the off-line condition
R(y) = 0 that was defined in Eq. (5.3) in Sec. 5.1.1. The derivative approximation J*(y)
is defined according to Eq. (5.25) to be

or" 0

" 0 KT

Jo(y) = 0 + 2 I J(y),
0 i

where J(y) is the derivative approximation of R(y).
During the real-time iterations, each step Ay* = y*+1 — ¥ is generated by an attempt
to attack problem P*, starting at the current best guess y*:

Ay* = =5y R Y. (5.30)

Theorem 5.6 (Convergence of the Real-Time Iterations)

Let us assume that the sufficent conditions for local convergence of Theorem 5.3 are satis-
fied for the original (off-line) problem (5.1). Then the sequence of real-time iterates (y*)
according to Eq. (5.30) converges towards a feasible point

1Ay°

y*€Dg=<yeR|ly—1y°| <
1— 6,

ben sa=rtSlayL

Remark: Though this theorem uses the term “convergence” and regards the infinite
sequence y*, it is not the behaviour for & — oo that causes the difficulty, as from k = N
on we treat always the same optimization problem P¥; the difficulty lies in showing that
the first iterates y',y?, ...,y remain in the set Dj.

Proof: We will follow the lines of the proof of Theorem 5.1. Note that the first step Ay
of the real-time iterations coincides with the first step of the off-line iterations. Therefore,
to prove convergence towards a limit point y* = (¢*, s*, A*), we only have to show that the
contraction propery

w
1Ay < (e + S 1A ) 1Ay (5:31)

is satisfied for the real-time iterates. In a second step, we will show that the primal part
(q*, s*) of the limit point is feasible.

In Theorem 5.4 in Sec. 5.2.2 we have already shown that fixing of components does not
increase the constants x < 1 and w that are used to prove the contraction property for a
single optimization problem. This means that all derivative approximations J* satisfy the
bounds (5.13a) and (5.13b).

But how to compare the steps Ay* and Ay
functions R* and RF*+1?

k+1 that correspond to different residual
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The trick to prove the contraction property (5.31) is to treat two subsequent steps Ay*
and Ay*T! as if they were belonging to the same optimization problem P*' with residual
function RETL. If this is true, Eq. (5.14) can directly be used to prove the contraction
property. This trick is paradoxical because it assumes that the constraint

T T
71€+1 (q o uk—‘rl) _ Qllc-‘rl (q - qk+1) -0

is already defined before the iterate y*™! = (¢**1, s¥*1 \F1) is computed, i.e., before ¢*+1
is known!

Fortunately, it can be shown that the step Ay* is not changed, if it would have been
defined by

Ayk — _Jk+1(yk)71 Rk+1(yk)
instead of
Ay* = =Ty RM )

as in Eq. (5.30). To see this, note that Ay* is the unique solution of R*(y*)+J%(y*)Ay* = 0.
We will show that it also satisfies RFt(y*) + JEH(y*)Ayk = 0.

Rk+1(yk) + Jk+1(yk) Ayt
T T
Qlfﬂ (qk—qm) 1T T T Bk
b1l b+l EATyT ToaT q q
_ ST V,L i 2 Ag Q37 Ay Q3 0q Gk _ gk
Glars) A A ey
q,s e B 0
O aaT
k+1T VL Aqq Aqu a_qT i
0 oaT
HTQkT vq[’ Aqq Ag; a_qT
- k2 I GVS[, + ,ggs /612;, ga Ay*
0 T T Ty T
o QL' L KA, QFAL Q’S%
= k I V.. + Aqs A, % Ayk
I G(q,s) & 8a 0
0
7 0
= k I 0 = 0
0
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Figure 5.4: Limit point w* of the real-time iteration approach (with Gauss-Newton it-
erations) in Example 5.2, which is very similar to the exact off-line solution (dotted, cf.
Fig. 2.3).

Therefore, the iterations converge towards a limit point y* € Dy. To show that this
point is feasible, note that at some problem P* no more components can be fixed (to
be specific, kg = N in the real-time iterations for the multiple shooting method), so that
RF = R*_ Yk > ko. Therefore

0= lim —J"(y*) " RE(y") = lim —J%(y") TR () = —T"(y") TR (y"),

k—o0 k—o0

so that R*(y*) = 0 which implies G(q*, s*) = 0. a

Example 5.2 (Continuous Stirred Tank Reactor)

Let us again consider Example 5.1. The limit point w* = (q*, s*) is shown in Fig. 5.4; a
comparison of the convergence rates for the Newton and Gauss-Newton method is shown
i Fig. 5.5.
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“z Gauss—-Newton
a

Newton

index k

Figure 5.5: Convergence rates for Newton type methods, for the real-time iterations of
Example 5.2. Comparison of Newton and Gauss-Newton method. The dotted lines indicate
the convergence rates for the off-line solution (cf. Example 5.1).

5.3 Comparison of On-Line and Off-Line Solutions

We will now investigate the error that we make by using the real-time iteration scheme,
compared to the exact off-line solution of P°. We denote the off-line solution now by i to
distinguish it from the limit point y* of the real-time iterations. We will also compare y*
with the exact solutions y; of the optimization problems P* for £ > 1. Note that not only
the limit point y* depends on the initial guess y° and the chosen Newton type method, but
also the exact solutions y;, because the optimization problems P* are generated on-line.

Several results are established; first, we bound the distances ||y* — y;|| in the space of
KKT points y = (g,s,A) by the size of the first step Ay’. Secondly, we show how the
first step Ay itself is bounded, if the initial guess y° was the solution of a neighboring
optimization problem. Finally, we will investigate how much optimality is lost with respect
to the objective function.

5.3.1 Distance to Optimal Solutions

Theorem 5.7 (Distance to Off-Line Solution)

If the sufficient conditions for off-line convergence of Theorem 5.3 are satisfied, the distance
between the limit point y* of the real-time iterations as defined in Eq. (5.30) and the solution
yy of the off-line optimization problem P° can be bounded by

260(| Ay°|

w
] < 8o = =1AY°|. 5.32
ly" —yoll < s 0 D kot S l1AY7] (5.32)

Proof: We make use of the fact that the iterates for the solution of the off-line problem as
in Theorem 5.3 and the real-time iterations (y*) coincide on 3° and y! before they separate.
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As they have the same contraction constants x < 1 and w, also &y is identical for both.
Using the property (5.15) from the proof of Theorem 5.1 for the Newton type iterates

k

- 5
ly* ™ —y*|| < [Ay*| < 1_7050HA1/°H, Vk,m >0,

1— 6
we deduce that
bo
16
For the off-line solution y; of PP, the same inequality holds, so that
260
1—6

ly" =yl = lim [ly"™" =y < 1857

ly* =il < lv* = 'l + llve — v < 1AY°l.

An interesting corollary of this theorem is the following:

Corollary 5.8 (Shrinking Distance to Optimal Solutions)
The distance between the limit point y* of the real-time iterations as defined in Eq. (5.30)
and the rigorous solution y; of the k-th on-line optimization problem P* can be bounded by

260 Ayt _ 2651 AY°|

This means that the limit point y* of the real-time iterations is close to the rigorous
solution of a problem P*, if k < N is chosen large enough (note that for k > N, yi = y*
anyway, as the problem does not change anymore). Note that the iterates converge in
typical application problems much faster than the horizon shrinks (e.g. Example 5.2).
This allows to conclude that the real-time iterates practically provide an optimal solution
y; of a problem P* with a relatively small k& < N, i.e., for a problem with a slightly
shortened horizon only.

ly™ —yill <

5.3.2 Size of First Step after Initial Value Embedding

To know more about the distance between the two points y* and g, it is necessary to find
a bound on the first step Ay°. Let us therefore go back to the formulation for the off-line
optimization problem P° = P(z,) that was given in Sec. 2.2, which keeps the initial value
constraint separate:

T — 0
P°: minF ' 5=
min (q,s) subject to { Glg,s) = 0.
The optimality residual vector therefore has the structure
V,L
VL
Ry, (y) = sE — 1o

G(q, s)
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Note that the derivative %—5 and the derivative approximation J do not depend on the
value of the parameter xy. We will now establish a bound on the first step Ay after the
initial value embedding, if the iterations are started at an initial guess 3° that is itself the
result of a neighboring optimization problem (cf. Theorem 3.6 on the first order prediction

by an exact Hessian SQP, and the initial value embedding idea in Sec. 4.2).

Lemma 5.9 (Bound on First Step)

Let us assume that y; is the solution of an optimization problem Py(Zy), and that xy = Zo+e.
Then the first step Ay° of the iterations for the solution of problem P° = Py(xy) when
starting at yo := Y5 can be bounded by

18" < Bllell,
where 3 is defined as in Theorem 5.3.

Proof: We make use of the fact that Rz, (y°) = Rz, () = 0 and calculate Ay® directly:

Ay® =—J(uy°) " Ra(y°)

0 0
0)—1 0 0 0)—1 0
=—JW) T | Ba(W) + | || =00
0 0

The proof is completed by using ||.J(y°) 7| < 8 as shown in the proof of Theorem 5.3. O

As an immediate consequence of this lemma and of Theorem 5.7, we obtain the following:

Corollary 5.10 (Distance after Initial Disturbance)

The distance between the rigorous solution yi of the optimization problem Py(zo) and the
limit point y* of the real-time iterations, when started at the solution y; of a neighboring
optimization problem Py(Zo), is — for a general Newton type method — of first order in the
size of the disturbance € = o — Zg

ki 5 0llell
— (k4 50lel)

and — for an exact Newton method — of second order in the size of the disturbance

ly" —y5ll <2 Bllell,
1

w
ly* = w3l < — B llell”.
T 1= 4l

5.3.3 Bounds on the Loss of Optimality

Now that we know how far the limit point y* is from the optimal solution, we can also
investigate how much optimality is lost, in terms of the objective function F'(¢*, s*).
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Theorem 5.11 (Loss of Optimality)
Let us assume that the sufficient conditions for off-line convergence of Theorem 5.3 are
satisfied. Let us also assume that the exact derivative matriz 2 3y 15 bounded on Dy:

Hz—];(y)” < Bgr, Vye€ Dy.

Denoting the limit point of the real-time iterations by y* = (q*,s*, \*), and the optimal
off-line solution by y§ = (5, ¢, \y), the loss of optimality can be bounded by

* * * * 1 * *
F(q S ) - F(QO’SO) < §BRHy - y0||2' (533)

Proof: First note that not only the point (g, s5), but also the point (¢*, s*) is feasible
according to Theorem 5.6, i.e., G(q}, s§) = G(¢*, s*) = 0. Therefore, we can compare the
values of the Lagrangian function £(q,s,\) = F(q,s) — ATG(q, s) that coincide with the
objective in both points.

L(y)—L(y5) = 0 ay =y + 1y — ) (v° — vg) dty
= fo (o +ta(y* — y5))" (y*—yp) dta

T
- fo< o B (s + (=) (=) dt2)(y*—y8) dt;
T
(v —v5) (fo o R (s + ta(y =) dt dt1>(y*—y’6)

where we have used the fact that R(yj) = 0. We conclude that

W)~ LI < 5Bl il

This theorem together with Corollary 5.10 implies the following:

Corollary 5.12 (Loss of Optimality after Initial Disturbance)

The loss of optimality due to the real-time iterations for the approzimate solution of Po(xo)
s of second order in the size of an initial disturbance € as in Corollary 5.10 for a general
Newton type method:

Pl ) Plas ) <28 (2 2 g e (5.34)
’ T = (k4 B8l ’
and — for an exact Newton method — of fourth order in the size of the disturbance:
* * * * BTw2ﬂ4
F(q*,s") = Flgg, 85) < 2 lell. (5.35)

2 (1= 5Bell)



Chapter 6

A Close Look at one Real-Time
Iteration

In this chapter we describe in detail what computations are necessary to perform one real-
time iteration, and we show how these computations can be performed efficiently. Starting
with the current iterate of the variables (w, A, ut), we describe how to finally arrive at the
solution (Aw, \, i) of the QP (3.10), that allows to generate the next iterate. Though most
parts of the algorithm are well known, we present all details here, to be able to show what
is meant by the separation into preparation and feedback phase, which is important for
the real-time iterations. The feedback phase comprises only a small fraction of the overall
computations, which can be found in Subsections 6.5.2 and 6.5.2 for two alternative QP
solution approaches.

We will start the chapter by briefly investigating the structure of the nonlinear pro-
gramming problem in Sec. 6.1, and show how this structure leads to a favourable structure
of the QP that has to be generated and solved in each cycle. In our approach, QP genera-
tion and QP solution are intertwined, so that we cannot clearly separate these two steps.
In Sec. 6.2 we show that only a so called partially reduced QP has to be generated if some
solution steps are performed in advance, and in Sec. 6.3 we will explain how the remaining
sensitivities can be computed efficiently. We closely follow the lines of Leineweber [Lei99],
who developed the employed partial reduction strategy.

An newly developed Gauss-Newton approach to obtain an excellent approximation of
the Hessian in the presence of integral least squares terms is presented in Sec. 6.4.

We present two alternative approaches to solve the partially reduced QP: in Sec. 6.5
we describe the so called condensing technique, which we actually used for the presented
numerical examples, and which condenses the large, but structured QP into a small, but
unstructured QP, which is then solved by standard techniques. The alternative approach
presented in Sec. 6.6 does directly attack the large structured QP by a dynamic program-
ming approach that leads to a Riccati recursion. Both methods allow to perform the
most expensive steps before the actual value of zj is known, thus allowing to prepare an
“immediate feedback”. Finally, we give a summary of the necessary computation steps
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per real-time iteration, and show that the algorithm can be interpreted as a successive
generation of approximated optimal feedback control laws.

6.1 Problem Structure

An important feature of the direct multiple shooting method is the sparse structure of the
large scale NLP (2.10). Its Lagrangian function £(w, A, 1) can be written as

Llwdpw) = ko Lilst, s, a0) + Blsky, s3)
— Yo ALt (@ilTi) — sT)
— 2 o (57,55, 4) = A5 (@0 —5) = \r* (s, s)

_/‘Lr (SN’ SN) - Zz 0 'LLT]’L(SZ ) 87, ) Qz)
with A = (A5, ..., AR, A8, ..., AR, ) and g = (o, o, - - -, ). This Lagrangian function
is partially separable: Let us reorder the vector w = (wy, ... ,wy) with w; = (s¥,s7,¢;).!
Then it can be seen that the Hessian matrix V2L is block diagonal with non-zero blocks
A; that correspond each to the variables w; only (Bock and Plitt, [BP84]), i.e

Ao

VAL =
AN
An
The unreduced QP that could be formulated at a current iterate w looks as follows:

2 Zz =0 AwTA sz + ZN ' V L (81, ) Sz ) QZ)Tsz

min 6.1a
Awo,... ,A'LUN +V SstN)E(SN7SN)TA(SN7SN) ( )
subject to
z x Oz;(Tiy1) _ .
s71 — Ti(Tipr) + Asfy — TAwi =0, 1=0,...,N—1, (6.1b)
dg dg .
T oF g As? 2 Ag; =0, i=0,... N, 6.1
sg — xo + Asy =0, (6.1d)
ore
($] xr z 7A xr z — O 6,]_
r°(sn, Sn) + (5%, 5%) (5%, s%) ) (6.1e)
i(z z)+ 8ri A(x z)>0 (61f)
r(s%, s ——A(s%, s )
N»°N 8(8?\/, S?V) NyYy°N) = Y
h(s?, s; )+6h >0, =0 N (6.1g)
ST, 8% q; ; >0, i=0,...,N. )
1) Z’q 8wz g
Agy —Agn-1=0 (6.1h)

!'We recall here that qn := gn_1 is only introduced for notational convenience and has to be eliminated
again. Due to the linearity of the constraint ¢y = gy_1 it does not affect the Hessian matrix.
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It is a crucial feature of our algorithm that this QP is never generated directly. Instead,
following the partial reduction approach developed by Leineweber [Lei99]|, first only the
linearized consistency conditions (6.1c¢) are generated that allow to eliminate As? from the
QP, as will be described in the following section.

6.2 The Partial Reduction Technique

The partial reduction approach starts as follows: once the linearized consistency condi-
tions (6.1c)

s 2 dg
g(sia8i7Qi) + <88f

Jg | Og .
Aw; = =0,...,N
68'12 6(]1) wl 0’ ? 0’ Y )

are generated, the (usually sparse) systems
dg . dg .
d? | D" | D) = — L8t q , =0,...,N
<88§>( g ‘ 7 2 ) (g(SZ,SZ,q) 8%) ¢

are resolved.? The matrix (39 > is always invertible due to the index-one assumption for

9g
Os?

0s?
the DAE system. The solution ( di | D"
vector and matrix

D! ) of this system allows to construct the

0 I 0
d; = | d? and D;:= | D DI |,
0 0 I

that are called the range space and null space component of the linearized consistency
conditions, because

8g(8iw> 8?7 qz) 8g(sf, Sfa ql)

8(8%, Sf? QZ) 9(31 vt ) o 8(‘9%7 8?7 QZ)
It is straightforward to see that
As?

satisfies the linearized consistency conditions (6.1c) for arbitrary values of As? and Ag;. It
is therefore possible to formulate an equivalent, reduced QP, where the variables As? are
completely eliminated. For this aim let us define

. oT
<Ql SZ )::D;'TAiDh i=0,...,N,

<zlq) = D'V, Li+ Dl Aid;, i=0,...,N—1, (6.3a)
(gév ) = DV E(sk, s%) + Dy Andy, (6.3b)
N

2We employ an advanced direct sparse solver, the Harwell subroutine MA48 by Duff and Reid [DR96].
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for the reduced objective, as well as

8mi (Ti+1)

Civ1 = iy — Ti(Tit1) — defa (X3[Y7) = %{ZQD“ (6.4)
hi :=h(s?, s3,q;) + g;df, (Hf|HY) = ;ZDZ-, i=0,...,N—1,
and
e =r(sy, sy) + i%dfv, (R®"|R*Y) := 88’LZ;DN’
= sk sk) + iy (R¥IR) = 57Dy,

for the constraints, so that we can formulate the following reduced QP that is equivalent
to (6.1)

. Vit 3AsTTQidst + 58] Ril\ay (6.50)

Ast, ... As%, +Aq] SiAsT + giT Asf + g Agi }

Aqo, ... ,Agqn
subject to

Ci1 + Asi — X;Asy —YiAg; =0, i=0,...,N—1, (6.5b)
sg — xo + Asf =0, (6.5¢)
r®+ R**Asy + R*1Aqy = 0, (6.5d)
r 4+ R As% + R Aqy > 0, (6.5€)
hi+ H'As? + HIAg; >0, i=0,...,N, (6.5¢)
Aqy — Agqn-1 = 0. (6.5g)

In partial reduction approaches the full space Hessian blocks A; are never computed. There-
fore, the terms DT A;d; are usually dropped in the definitions (6.3), causing only a minor
change, as d; are proportional to g(s?,s?,q;), which are expected to be close to zero near
a solution. However, in Sec. 6.4 we present a newly developed approach to compute effi-
ciently approximations of both, the reduced Hessian DT A; D; and the gradient contribution
DT Ayd;, that is based on a Gauss-Newton approach for least squares integrals. But let us
first describe how the linearized continuity conditions (6.5b) of the partially reduced QP
can be generated efficiently.
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6.3 Efficient Sensitivity Computation
On each multiple shooting interval [7;, 7;11], the relaxed initial value problems (2.3)-(2.5)
B()-ai(r) = T f(zi(1), 2:(7), &)
0 = g(xir), 2i(7), ;) — exp (—5

.TZ(TZ) = S;

T —T; z 2
) 957, 5%, )

Tiv1 — T

have to be solved to yield the solution trajectories x;(7) and z;(7). These trajectories
depend on the initial values s7, s7 of differential and algebraic states, and on the control
parameters ¢;. In a naive implementation, we would also have to compute the derivatives
of the final value z;(7;;1) with respect to these quantities. As mentioned above, a crucial
feature of Leineweber’s partial reduction approach to multiple shooting for DAE [Lei99] is
that the full derivative matrices

81%(7}_,_1)
8(8:;7 Sfa ql)

are never calculated, but instead directly the directional derivatives

ory(r) [ O L]0
(ki Xi|Yi) == | di | DY | Df
6(Si7siaQi) 0 0 I

that are actually needed to formulate the partially reduced QP (6.5).> This saves a consid-
erable amount of computational effort for problems with a large share of algebraic variables.
Before we describe this approach in detail, a remark is in order about how to generally
approach the problem of computing derivatives of a DAE solver output.

Remark on External and Internal Numerical Differentiation

One straightforward approach that is simple to implement is to start an existing DAE solver
several times with perturbed initial values and control parameters, and to subtract the
perturbed outputs z;(7;+1) to compute an approximation of the desired matrix (k;|X;|Y;)
by finite-differences (see e.g. Rosen and Luus [RL91]). This approach, which may be
called External Numerical Differentiation (END), has serious drawbacks, as the output of
a modern, adaptive DAE solver is usually a discontinuous function of the initial values
and control parameters. If the inputs for the DAE solver are varied continuously, the
output z;(7;41) usually jumps discontinuously, with jumps that have to be expected to be
as big as the integrator tolerance permits (see e.g. Gear and Vu [GV83]). If the perturbed
trajectories are chosen close to each other, as it is required in finite-difference schemes to
yield a good approximation of the derivative, these discontinuities can outweigh the desired

3The vectors k; = %df are needed to generate ¢;1+1 according to Eq. (6.4).

z
Si
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derivative information, if the integrator accuracy is not chosen extraordinarily high; if such
an accuracy is feasible at all, this will cause excessive computation times.

An approach which avoids the drawbacks of END is the so called Internal Numerical
Differentiation (IND) as described by Bock [Boc81]. The idea is to freeze the discretiza-
tion scheme for the neighboring trajectories, so that the output becomes a differentiable
function of the inputs. This allows to perform the DAE solution even with low accuracy,
without jeopardizing the accuracy of the derivative approximation. The frozen discretiza-
tion scheme is usually adapted to the nominal trajectory.

In addition, much effort can be saved if the perturbed trajectories are computed simul-
taneously, as many matrix evaluations and factorizations then need to be performed only
once for all trajectories.

A related approach that may be interpreted as the “analytical limit of IND” [Boc83]
is to solve the sensitivity equations along the nominal system trajectory. We will briefly
describe how this approach can be used to compute directional derivatives.

6.3.1 Directional Derivatives

Let us for notational convenience assume that the DAE is explicit, i.e., that B(-) = I, and
let us also assume that 7" = 1, so that the initial value problem (2.3)-(2.5) can be written
as

(1) = flzi(7), 2:(7), @), B

B T oz
0 = g(mz(T)7ZZ(T)aQZ) —e Tt ng(siasiaQi)7
() = s}

Differentiation of this system with respect to the initial values and control parameters
(s?,sZ,¢q;) and a multiplication from the right by the matrix (d;|D;) yields a linear matrix
DAE. Defining the matrix functions

(R(r) | Xir) | Yilr) ) = giiy (di| Di ),
(B X0 |YE)) = gy (di] D),

this matrix DAE can be written as

ki(r) | Xi(7) | Yi(7)
i = 78](() 2(r (T Z (T
dT ( ‘X ‘Y ) 8(1,, 27,“) ( kz((] ) Xzo( ) Y;H( ) )
ki(t) | Xi(7) | Yi(7
O e P PO
Oz, z,u) 0 0 I
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The consistent initial value for the algebraic matrix ( k7 | X7 | Y7 ) is

(Ki(m) | Xi(r) | Yi(m) ) = (d | DF

D! Y.

This linear matrix DAE can be solved simultaneously with the original initial value prob-
lem (2.3)-(2.5), as it is done e.g. in the version of the advanced BDF integrator DAESOL
(Bauer [Bau00]) that we used for most computations that are presented in this thesis. The
final values are then used to define

( ki ‘ X ‘ Y; ) = ( ki(Ti-i-l) ‘ Xi(Ti+1) ‘ Y;(Ti—f—l) ) .

Computation of the Reduced Objective Gradient

We have so far not discussed how to compute the reduced objective gradients D'V, L;
that are needed to compute
9¢ >
9i =
l (g?

in (6.3a), i.e., how to compute the directional derivatives of the objective integrals

Ti+1
Li(s%, 55 qi) = / Lizi(r), 2(7), 1)) dr.

The objective integrals can be computed by introducing an additional differential state
2, and solving the following initial value problem together with the original initial value
problem:

ip(t) = L(xi(1),zi(7),¢)), for 7€ [n, mil,

The directional derivatives can then be computed as above.

Numerical Calculation of the Exact Hessian Matrix

Leineweber [Lei99] has developed a scheme to compute a finite-difference approximation
of the exact Hessian matrix blocks A;, which is so far only applicable to systems described
by ordinary differential equations (ODE). His approach generalizes the idea of Internal
Numerical Differentiation to second order derivatives, by solving the first order sensitivity
equations several times for perturbed initial values, with a fixed discretization scheme. We
have employed this method in some examples for comparison with our newly developed
Gauss-Newton approach that is described in the following section.
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6.4 A Gauss-Newton Method for Integral Least Squares
Terms

In the case of a Lagrange term L that has least squares form, i.e., if

L(zi(7), 2(7), qi) = ||l(xz(7—)7zz(7—)7%)”%

with a vector valued function [(-), there exists a possibility to obtain a cheap approximation
of the Hessian blocks A; by an extension of the Gauss-Newton approach to least squares
integrals. This approximation is good if the residual I(-) and if the multipliers A\, and p
are close to zero (cf. the discussion in Sec. 5.1.2).

To derive an expression for the Gauss-Newton approximation of the full Hessian let
us neglect the constraint contributions and regard only the objective contribution of the
Hessian that is

Tit1
v%5f7557qz') / Hl(xi(T)? Zi(T)? qz') H% dr.

%

A Gauss-Newton approximation of the Hessian can be obtained by differentiating twice
under the integral and dropping terms that contain [(x;(7), z;(7), ¢;):

Ti+1
A =2 / Ji(T) T Ji(7) d, (6.7)
where

aag (1) aag (1) aag (1)
) ) ) 5% 52 q;
Ji(1) = <al(ml(”’ 4i(7), ql)) dzi(r) | Bzi(r) | 0zi(r)

Oz, z,u) 382” 3(8)? 3]111‘

6.4.1 A Partially Reduced Hessian Approximation

If we are interested only in the Gauss-Newton approximation DI A;D; of the reduced
Hessian , we can multiply Eq. (6.7) from the left and the right with DI and Dj:
Ti+1

D] A;D; =2 DI Ji(1)Y Ji(T)D; dr.

Ti

Fortunately the matrix products J;(7)D; are cheaply available, if directional derivatives
are calculated as described in the previous section. Using the notation of that section,
J;(T7)D; can be seen to have the simple form

1= i) i= (P (i) | v
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The partially reduced objective gradient

Tit+1
g: = 2D} (v(sfvsfyfh‘)/ Hl(%’(T)’Zi(T)’qi))H%dT) + D} Ad;.
as defined in Eq. (6.3a) can also be calculated exactly, without ever computing the full
Hessian approximation. For the exact computation of the reduced obejctive gradient (6.3)
we also need the terms DT A;d;. A multiplication of Eq. (6.7) from the left and the right
with DT and d; yields

DT Ayd; — 2/:“ J(r)" (Gl($i(87();;()7)7%)> (@(T)) dr.

so that

s [ i r0+ (A0) ()

%

The matrix J;(7) can be computed simultaneously with the DAE solution. The integral
can be calculated by using a suitable integration formula. Note that the evaluation of the
integrand is very cheap compared to the computations necessary for the DAE solution.
Furthermore, if an interpolation of the sensitivity matrices is employed in the DAE solver,
the integrand can be evaluated at arbitrary points on the interval, without the necessity to
stop the integration routine (cf. Bock and Schléder [BS81]); these evaluation points are in
particular independent of the stepsizes of the DAE solver.

We have implemented this extension of the Gauss-Newton method, which delivers
the Hessian approximation at virtually no additional costs, in the current version of
the optimal control package MUSCOD-II, in conjunction with the implicit DAE solver
DAESOL [BBS99, Bau00].

Remark: In previous Gauss-Newton approaches to NMPC, only least squares terms at
discrete time points had been formulated (cf. de Oliveira and Biegler [OB95b] for the
sequential approach, and Santos et al. [SOB95| for the direct multiple shooting method),
which leads to an unnecessary overhead especially on long prediction intervals with constant
controls.

6.5 QP Solution by a Condensing Approach

After we have discussed how the partially reduced QP (6.5) can be generated, we will in
this and the following section present two alternative strategies to solve such a QP.

The so called condensing approach reduces the QP further to yield a smaller QP in the
variables Aqp,...,Aqy_1 only. In the real-time context, the algorithm proceeds in two
steps: first, it uses the linearized continuity conditions (6.5b) to eliminate As7,...Ask
from the QP (6.5). We will also eliminate Agy using (6.5g). The resulting QP is called the
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condensed QP. In a second step, the initial value constraint (6.5¢) will be used to eliminate
Asg, so that a fully reduced QP in the variables Aq := (Aqo, ... ,qn-1) only needs to be
solved by a standard QP solver. Finally, the solution of the fully reduced QP is expanded
to yield the solution in variable and multiplier space of the partially reduced QP.

6.5.1 First Condensing Step

For the first condensing step, let us reorder the variables of the partially reduced QP and
summarize them into a partitioned vector

Asy Asg
: A
(Aw1> ,  with  Aw; := : , and Awy:= _qo
Aws Asy, :
Agn Agn-1
By introducing
C1 I
Co —X1 I
C3 —Xg I
bl = . 5 Bll = . . y
CN —XN_1 I
0 I
and
—Xo —Yo
-
-Ys
Blg = )
YN
—I

the continuity conditions (6.5b) and (6.5f) can be written as
b1 + BHAwl + BlQAwQ = 0,

and the uncondensed QP (6.5) can be summarized as
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min %AwlTAHAwl + A’w,{AlgAwg
Awi,Aws

6.8
+ sAwl ApAwy + af Awy + af Aw, (6.8)

subject to
b1 -+ BHA’LUI —+ BlgA'LUQ =0
bz + BglAwl -+ BQQAUJQ =0
c+ C1Aw; + CoAwy > 0

The idea of the condensing approach is to exploit the invertibility of By; to eliminate Aw;
by

Aw1 = —B;ll(BlgAwg + bl) =. MAUJQ +m (69)

and to replace the above QP by a so called condensed QP:

o

1 _
min —AwZTAAwg + at Aw,

6.10a
xin 5 ( )

AVANI
o

s.t I;‘i‘B;A’U)Q

with

A=MTALM + MT Ay + ALM + Ay,
a=M"Aym+ Alym 4+ M ay + as,
b= by + Bym,
B = Boy M + By,
c=c+Cm, and

C = CiM + Cs.

The generation of the condensed QP can be achieved efficiently by recursive techniques that
have been introduced by Bock and Plitt [P1i81, BP84|. They are described in Appendix E.

6.5.2 Second Condensing Step and Immediate Feedback

In the real-time context it is important to note that all computations of the first condensing
step can be performed before the actual value of zy is known, allowing to prepare an
“Immediate Feedback”. So let us have a close look at the condensed QP (6.10a). Since
Awy = (Asf, Aq), it has the following structure
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min  1AsETAGASE + LA¢T A Ag
Asgag 200 TR0 e (6.10b)
+AsTT A Aq + al Ast +al Ag

subject to

s§ —xo+Asy =0
b, + BisAs§ + BiqAq = 0
¢+ C;Asg + CqAq > 0.

At the moment when z( is known, the fully reduced QP can be formulated:

rriiqn %AqTfquAq + ((xo — 58T Ay + dg) Agq (6.11)

subject to

This dense QP can be solved by a standard QP solver. It is of rather small size compared
to the original uncondensed QP (6.8), and bears nearly no sparsity. We usually employ
QPSOL* by Gill, Murray, Saunders, and Wright [GMSW83|, a routine that makes use of
an active set strategy and is able to cope with indefinite Hessian matrices. Note that in
principle even large parts of the fully reduced QP (6.11) can be precomputed before
is available, if matrix factorizations based on the active set for zy = s§ are calculated in
advance, as proposed in [BDLS00].

The solution of the fully reduced QP are the optimal values for Aqq, ..., Agy_1. The
value of Agg plays a crucial role in the real-time context, as it is this control that is given
directly to the real system as an immediate feedback.

Remark: The fact that an active set strategy is used to determine the active set carries
some danger in the real-time context, as it is well known that the worst case complex-
ity of such an algorithm can be exponential in the number of variables (cf. Klee and
Minty [KM72|). Experience shows, however, that the computational burden of this dense
QP solution is bounded in practice. In typical applications of our real-time algorithms it is
considerably smaller than the effort needed for the first condensing step, which itself needs
only a small share of the overall time of a full real-time iteration cycle. A theoretically
appealing alternative to active set strategies is provided by Interior-Point Methods (IPM),

4QPSOL is available as a NAG routine under the name E04NAF.
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that have polynomial run time bounds. For an introduction into IPM algorithms and
their application to quadratic programs we refer e.g. to Nocedal and Wright [NW99| or
Wright [Wri97].

6.5.3 Expansion of the QP Solution

The expansion of the QP solution passes through the two condensing steps in reverse order:
first the fully reduced QP solution is expanded to the condensed QP solution, and secondly,
the condensed QP solution is expanded to the full solution of the uncondensed QP (6.8).

First Expansion Step

The solution (Ag, A, i) of the fully reduced QP (6.11) can trivially be expanded to yield

the solution (Awsg, A2, fi) of the condensed QP (6.10a) (resp. (6.10b) ) with

As® ~ \E
Aw,y = 0 d = [7%°
o= ()0 ma A= ()

by computing
Ast =xg—s%,  and A = AGAs® + A Aq+ as — BLN, — CT .

That (Aws, Aa, i) is a solution of the condensed QP can be seen by comparing the KKT
conditions of (6.10b) with those of (6.11).

Expansion of the Condensed QP Solution

Similarly, the solution (Aws, 5\21,&)~0f the condensed QP (6.10a) can further be expanded
to the full solution (Awy, Awsy, A1, Ag, i) of the uncondensed QP (6.8) by computing

Aw; = MAws +m
and
5\1 = Bl_lT(AllAwl + AlgAwg +a; — Bglj\g - C?ﬂ) (612)

To justify Eq (6.12) let us formulate the stationarity condition of the Lagrange gradient of
the uncondensed QP (6.8) as follows:

AHAwl + AlgAwg +a; — Bﬂj\l - B§15\2 - Cf/jb = 0,
AgAwy + AL, Awy +ay — BN, — BLN, — CT i = 0.
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The first condition is equivalent to Eq. (6.12), whereas the second can be seen to be satisfied,
if Lagrange stationarity with respect to Aws is attained in the condensed QP (6.10a):

0 = AAw,+a— BTX\—CTph
= (MTAGM + MT Ay + ALM + Ago) Aws + MTAym + ALm
+MTG1 + as — (leM + BQQ)T)\Q — (ClM + CQ)T[L
= AQQA’ZUQ + A%A’wl + ag — Bg;j\g — C2T/1
+MT{Ay Awy + Ay Awy + ay — BE X, — CT i}
= ApAw, + AL, Awy + ay — BLA — BL), — CT .

The expansion step can efficiently be performed by a backwards recursion that is e.g.
described by Leineweber [Lei99]. We mention here that the partial reduction approach
does not allow to recapture the multipliers A7 of the algebraic consistency conditions,
because this would require knowledge of derivatives that are not computed. Fortunately,
these multipliers are of minor importance in our real-time iteration scheme, as the current
multiplier values only enter the next QP formulation through the Hessian approximation.
If the extended Gauss-Newton approach is used, the multiplier values do not matter at all
in the QP formulation.

6.6 A Riccati Recursion Approach

A second basic strategy to attack the solution of the partially reduced QP (6.5), that
leads to a Riccati recursion scheme, can best be presented in the framework of dynamic
programming. We will here only introduce the underlying idea, and refer the interested
reader to Steinbach [Ste95| or Rao et al. [RWR98| for a more detailed description of the
approach. For ease of presentation, we restrict our attention to QP problems (6.5) without
final state and inequality constraints (6.5d)-(6.5f). We will also assume that Ry, Sy, and
g% are zero, so that the last control Agy can directly be eliminated from the problem, i.e.,
we consider the QP

N-1
min Z{%AqiTRiAQi + A¢FS; As® + gPTAs® + ngAqi

ASS, Ce ’AS%\/ =0

Aq()v o .. ’Aqul

(6.14)
+%AszQiAsf} + %AS?VTQNAS?V + g% As%

subject to

Ci+1—|—AS;~B+1 —XZASZ:—Y;AQZ :O, ZIO, ,N—l,
sg — xo + Asg = 0.

The idea of the recursive algorithm to solve the above QP can be summarized as follows:
starting with the cost function

1
[y (Asy) = §AstTQNAst + g% T A%, (6.15)
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of the final node, we construct the so called optimal cost-to-go function IIy_1(As%_;) of
the previous stage, by choosing for each value As%,_; the control Agy_; that optimizes
the added costs to go to the final stage, i.e., the sum of the stage costs and the final stage
costs IIy. This procedure is repeated for IIy_o down to Ily. At each step the following
small optimization problem

1 1
IL;(Asf) := min aAszQiAsf + aAqiTRiAqi + Ag] S;As?

Asi+1,Aqi
+ge AT+ g1 Agi + Tl (Asy ) (6.16)
subject to
Cip1 + Asf — XjAsY —YiAg =0

is solved. It turns out that the cost-to-go functions II;(As¥) remain quadratic functions, a
fact that makes the dynamic programming approach so efficient. Let us therefore write

1
IL;(As?) = §AszPiAs§ +plAst +m;, for i=0,... N.

The algorithm that we propose for the real-time solution of the QP consists of three steps,
first a backwards recursion that prepares the second step (the immediate feedback), and
finally a forward recursion which recovers the full QP solution.

6.6.1 Backwards Recursion

The backwards recursion is started by defining IIy according to Eq. (6.15), i.e.,
Py :=Qn, pnv:=gy, and wy=0.

For the recursion step, let us assume that the optimal cost-to-go function II; 1 (As?, ;) has
already been computed, i.e., that the matrix P;,;, the vector p;;; and the scalar m;,; are
known. The QP (6.16) can be solved as follows: first we eliminate

Asi | = —cip1 + X;As) + YiAg (6.17)
in the objective function
Fi(As?, Agi, As?y) == 2AsTTQ;AST + TAq] RiAg; + Aq] S;As? + gPTAs? + 97" Ag;
+3 A% T P AsEy + ploa AsTyy + i
that becomes

Fi(-) = 3A¢[ (R + Y P Yi)Ag
+((Si + Y Py Xi)As? + g = YT Pryacipa + Y pina) " Ag,
+5AsTT(Qi + XT Py Xo)Asy + g7 T Asy + ¢ P
—ci P XiAs? — plijcin + plo XaAs + miga.
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The minimum of this function with respect to Ag; is attained at

Ag = —(Ri+YPY;) ' (Si+Y P1X;) As?
—(Ri + Y PiaYy) " (gf = Vi Pipaciva + Y pita) (6.18)
= —KlAST — ki,

which inserted into the objective function F; gives the optimal cost-to-go according to
(6.16) as

1
IL;(As?) = §AszPiAsf +pl Asty +

with

P = Qi+ X/'P X,
—(S; +YIP X)) T (R + YT P ) (S + Y P X)),

pi= gf + XIpis1 — X P
—(Si+ Y P 1 X)) (R + K-TPiHYi)‘l(gf — Y Piciia + Y i),

mii= T+ Picio — piacinn — (g8 = Y Piacip + Y pi) ™
(Ri + Y Pi1Yy) (g = Y Pipacin + Y piga).

The values m;;; are irrelevant for the determination of Asy ; and Ag;; therefore they are
usually omitted. The matrix recursion formula for P; is also known as the discrete-time
Riccati matrix equation for time-varying systems.

The only quantities that have to be stored for subsequent use in the forward recur-
sion are the matrices Kg,... ,Ky_1 and F,,..., Py, and the vectors koy,... ,ky_1 and

DPoy--- yDN-

6.6.2 Immediate Feedback

The complete backwards recursion can be performed before the actual value of xq is known.
Then, at the moment when x4 is known, the control response Aqg can be quickly determined
according to Eq. (6.18),

Agy = —Ko(% - sé) — ko,

and can immediately be given to the plant. The control response can be interpreted as
the first part of the forward recursion that will be described in the following. However, we
stress the fact that it is only the above matrix vector multiplication and vector addition
that needs to be performed to deliver the part of the QP solution, Aqg, that is actually
needed for the approximate optimal feedback control response.

This computation requires only n, xn,+n, floating point operations which can certainly
be considered an immediate feedback, when compared to the complete real-time iteration
cycle, which needs many orders of magnitude higher computational effort.
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6.6.3 Forward Recursion

Starting with a known value of Asf = zo — s§, Eqgs. (6.18) and (6.17) are alternately used
to compute

and

AqZ:—KZASf—k‘Z, for iZO,...,N—l,

Asi | = —cip1 + X;Asy +YiAq; for i=0,... N -1

The QP multipliers 5\;” fort=20,..., N are computed as follows

5o _ OIL(As)

1 8AS;E Sz +p

6.6.4 Comparison of Condensing and Riccati Recursion

The Riccati recursion scheme allows to solve the QP with a numerical effort of O(N),
which is in sharp contrast to the condensing approach, which in turn is of O(N?) for the
condensing itself, and even O(N?3) for the solution of the dense QP, if we disregard active
set, changes. For the practical applications that we have encountered so far, however, we
have employed the condensing approach. This was motivated by the following observations:

e Active set changes during the QP solution are rather expensive in the Riccati ap-

proach, as each active set change would require a full backwards and forward recur-
sion. In practical implementations, the Riccati recursion is therefore usually imple-
mented in conjunction with an interior-point method (IPM) to treat the inequalities
(cf. [Ste95, Wri96, RWR98|). But even the IPM approach requires some complete
recursions until the QP solution is found, and is therefore not strictly in line with
our idea of an immediate feedback, that takes active set changes into account.

Furthermore, practical experience shows that the sensitivity computation dominates
by far the overall computational effort during each real-time iteration cycle for typical
application problems which have large state dimensions n, and a small number N of
multiple shooting intervals, when the condensing approach is employed. This reduces
the practical benefits of alternative QP solution procedures.

Though the condensing approach works well in current applications, we want to point out
that it has its limits, especially for long horizon lenghts N, and that a solution scheme
that employs the Riccati recursion with an interior-point method, as e.g. developed by
Steinbach [Ste95| for the multiple shooting method, promises to offer advantages in the
real-time context and deserves further investigation.
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6.7 Division into Preparation and Feedback Phase

We will now summarize the version of the real-time algorithm that we used for most
numerical tests in this thesis. It makes use of the newly developed Gauss-Newton approach
to obtain the Hessian approximation, and employs the condensing strategy to solve the
partially reduced QP. Though we first present the necessary computations in the same
order as in the above presentation, we will give a second ordering of the steps that allows
to interpret the algorithm as the successive generation of approximated optimal feedback
control laws.

6.7.1 Five Computation Steps

During each real-time iteration the following steps have to be performed:

1. Partial reduction: Linearize the consistency conditions and resolve the linear system
to eliminate the As? as a linear function of As? and Ag;, as described in Sec. 6.2

2. DAE solution and derivative generation: Linearize the continuity conditions by solv-
ing the relaxed initial value problems and computing directional derivatives with
respect to Asy and Ag; following the scheme of Sec. 6.3. Simultaneously, compute
the gradient of the objective function, and the Hessian approximation according to
the Gauss-Newton approach described in Sec. 6.4. Linearize also the remaining point
constraints.

3. First condensing step: Using the linearized continuity conditions, eliminate the vari-
ables As{,...As%,. Project the objective gradient onto the space of the remaining
variables Asj, Aqo,...,Agn_1, and also the Hessian and the linearized point con-
straints.

4. Step generation: at the moment that x( is known, perform the second condensing step
and solve the fully reduced QP with an efficient dense QP solver using an active set
strategy. The solution yields the final values of Aqp, ..., Aqy_1. The value gy + Aqo
can immediately be given as a control to the real-system.

5. Expansion: Expand the fully reduced QP solution to yield the full QP solution
(Aw, A\, 1). Based on this QP solution, pass over to the next SQP iterate and go
back to step 1.

6.7.2 The Off-Line Steps in a Rotated Order

It is an important feature of the above cycle that the value xg needs only to be known
before step 4 can be performed. In our real-time implementation, we isolate step 4 and
rotate the order of the above steps, to yield the following scheme:
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) Feedback phase: After observation of the current value xy perform only step 4 and
apply the resulting value of ¢y + Agp immediately to the real process. Maintain the
new control value during some process duration 6 which is sufficiently long to perform
all calculations of one cycle.

IT) Preparation phase: During this period ¢ first expand the outcome of step 4 to the
full QP solution (expansion step 5), then compute the new iterate w*+! = wk + Aw*,
and based on this new iterate, perform the steps 1, 2 and 3 to prepare the feedback
response for the following step. Go back to 1.

The feedback phase itself is typically orders of magnitude shorter than the preparation
phase (cf. Fig 7.7). Thus, our algorithm can be interpreted as the successive generation of
immediate feedback laws (cf. Sec. 4.4.2) that take state and control inequality constraints
on the complete horizon into account. Experience with the investigated large scale examples
shows that the active set does not change much from one cycle to the next so that the
computation time for the feedback is bounded and very small in practice.






Chapter 7

Control of a Distillation Column

As an application example for the proposed real-time iteration schemes we consider the
control of a high purity binary distillation column. We have performed a variety of closed-
loop experiments at a pilot plant distillation column that is located at the Institut fiir
Systemdynamik und Regelungstechnik (ISR) of the University of Stuttgart. All experi-
ments were carried out in collaboration with Dr. Ilknur Uslu, Stefan Schwarzkopf, and
Rolf Findeisen. Financial support by the Deutsche Forschungsgemeinschaft (DFG) within
the DFG-Schwerpunktprogramm “Real-Time Optimization of Large Systems” is gratefully
acknowledged.

In first numerical tests, the feasibility of the real-time optimization scheme could be
shown, with computation times in the range of seconds for a 164th order model [DBS*01],
and the practical applicability was confirmed in a first series of closed-loop experi-
ments [DUF*01]; however, the observed closed-loop performance suffered from oscillations
that were due to time delays in the real plant, that have not been captured by the 164th
order distillation model. We therefore improved the model by including hydrodynamic
effects that have been responsible for the time delays, resulting in a considerably stiffer
and larger system model. We will in this chapter present new numerical and experimental
results that have been obtained with this improved system model. Parts of the presenta-
tion, especially of the experimental setup, follow the lines of a previous paper [DUFT01],
from which originate also the Figures 7.1, 7.8, and 7.9.

7.1 The Distillation Column

The distillation column is used for the separation of a binary mixture of Methanol and
n-Propanol. It has a diameter of 0.10 m and a height of 7 m and consists of 40 bubble
cap trays. The overhead vapor is totally condensed in a water cooled condenser which
is open to atmosphere. The reboiler is heated electrically. A flowsheet of the distillation
system is shown in Fig. 7.1. The preheated feed stream enters the column at the feed
tray as saturated liquid. It can be switched automatically between two feed tanks in
order to introduce well defined disturbances in the feed concentration. In the considered
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Figure 7.1: Flowsheet of the distillation column

configuration, the process inputs that are available for control purposes are the heat input
to the reboiler, @), and the reflux flow rate L,.. Control aim is to maintain high purity
specifications for the distillate and bottom product streams D, and B,,.

The column is controlled by a distributed control system (DCS), that is used for the
lower level control and data acquisition. Basic control loops for the levels, the flow rates,
and the heat input are realized on the DCS system. To implement more advanced con-
trol schemes the DCS is connected to a PC from and to which direct access from UNIX
workstations is possible.

7.1.1 The DAE Model

We will refer to the N = 40 trays by £ = 1,2,... , N, counting from the bottom to the top,
with ¢ = Nr = 20 being the feed tray. For notational convenience, let us refer with £ = 0
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We assume that the pressures P, of reboiler, trays and condenser are constant, as well
as the volume holdups ng and nj% ; of reboiler and condenser. The liquid volume holdups
n; of the trays may vary. All volume holdups are related to the molar holdups n, by

nZ:Vm(Xg,Tg)ng for{=0,... , N+1,

The molar volumes V™ (X, Ty) of the liquid mixture are specified in Appendix B.

To determine the (constant) pressures we assume that the condenser pressure is fixed
to the outside pressure, i.e., Py;1 = Piop Whereas the pressures P, on the trays and the
reboiler are calculated under the assumption of constant pressure drop from tray to tray,
ie.,

PgIPngl—l—APg {=N,N-1,...,2,1,0.

The tray temperatures 7T, are implicitly defined by the assumption that the sum of the
partial pressures equals the total pressure on each tray, i.e.,

P, — Pls(Tg)Xg — P;(Tg)(l — Xg) =0, £=0,1,... ,N+1, (71)

where the partial pressures P;(7}) are computed according to the Antoine Equation, as
specified in Appendix B.

The derivative of the temperature with respect to time, T}, is given by the implicit
function theorem:

(Pi(Ty) — P5(To) Xe

Ty=~ oP; oP; :
o Xe+ 57 (1= Xy)

To account for non-ideality of the trays and other unmodelled effects we have introduced
the tray efficiencies oy for £ =1,2,... , N to calculate the composition Y; of the vapor flow
out of tray ¢ as a linear combination of the ideal vapor composition on the tray and the
incoming vapor composition from the tray below, i.e.,

Py (T,
Yi=q lézg)XZ_'_(l_a’Z)nl; ‘6217"'>N7
starting with Yy = %OTO)XO. The concentration of the liquid outflow D at the top of the

column is equal to the condenser concentration Xpy,.

Mass balances: The differential equations that determine the change of the molar
holdups n, of the trays are given by the mass conservation for / =1,2,... ,Np — 1, Np +
1,...,N

ng= Vi1 — Vo + Lep1 — Ly, (7.2)
and for £ = Np by

g = Vg1 = Vg + Lngt1 — L + F, (7.3)
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where F' is the molar inflow on the feed tray, that can be determined from the volume feed
flow F,., the Methanol concentration Xz in the feed and its temperature T via

Foo = V™ Xp,Tr)F.
Mass conservation in reboiler and condenser are given by
ng=—Vo+ Ly — B, (7.4)
and
nyt1 = VN —D — Ly (7.5)

The assumption that reboiler and condenser volume ng and n% ; are fixed leads to two
further equations for / =0, N + 1

ovm

— = V™(X,. T,s
0=mny; =V"(X,, g)n€+8(X,T)

(Xg, Tg)T Ty, (76)

that allow to eliminate ng and n41. Therefore, ng and ny, 1 are chosen to be no differential
variables.

The liquid reflux stream L., from the condenser is controlled and allows to determine
LN+1 via

Lvol = Vm(XNJrl; TC)LNJrl;

where T¢ is the temperature of the condensate.
The componentwise mass conservation in the reboiler requires

Xono + Xong = —VoYy + L1 X, — BX,, (7.7)
on the trays ¢ =1,2,... ,Np—1,Np+1,...,N,
Xene + Xetg = Vo1 Yoo — ViYy + Lepi Xewr — LeXo, (7.8)
on the feed tray

XNFnNF + XNFnNF = VNF71YNF71 - VNFYNF (79)
+LNF+1XNF+1 - LNFXNF _'_ FXF7

and in the condenser

Xnnne + Xnoinne = VeYy — DXy — Ly X (7.10)
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Enthalpy balances: With the liquid and vapor stream enthalpies abbreviated as h} :=
hE(X,,Ty) and h) = Y (Y,, Ty, Py) for £ = 0,... , N (see Appendix B), we can formulate
the enthalpy balance in the reboiler that allows to determine the vapor stream Vj:

Oht Oht
nohd + no (8)(90)(0 + aTO TO) = Q — Qioss — Vohy + L1kt — BhY. (7.11)

Here @ is the applied heat input, and with Q),.ss We account for possible heat losses in the
reboiler. The enthalpy balances for the trays £ =1,2,... ,Np —1,Np+1,... ,N — 1 are

nehk + ny (8’” X+ 2 o Tg> = Vioih)_, = Vih) + L by,

7.12
Lok (7.12)

and for the feed tray

. OhL L .

nNFhJLVF + an —3X11v\71;~ XNF + —3TZ§: TNF 7 13

= VNF_lhxpfl - VNFth/vF + LNF+1h%F+1 - LNFh%F ( . )
+Fh*(Xp, Tr, Pr).

As the liquid reflux Ly, of the condensate is at a temperature T, the enthalpy balance
on tray N reads

nnhk +ny (a Xy + 6hNTN>

(7.14)
= Vn_ihy = Vnhy + Lysih*(Xns1, To, Prya) — Lvhy.
Hydrodynamics: To determine the liquid outflow L, of each tray, we use a heuristic
scheme that is based on the so called “Francis weir formula”. It requires only two parameters
per tray, one is a reference volume ni*f, the second is denoted by W,. The formula postulates

that

LeV™X, T)) = Wy(n¥ —nihz, £=1,... N, (7.15)

and can be derived by an analysis of the gravity flow over a horizontal weir with vertical
walls, that is given in Appendix B.

Summarizing the DAE

We can subsume all system states in two vectors = and z which denote the differential and
the algebraic state vectors, respectively.

The (molar) Methanol concentrations in reboiler, on the 40 trays, and in the condenser
Xyfor 0 =0,1,... ,N+1 are the first 42 components of the differential state vector x, and
the molar tray holdups n, for £ = 1,... , N are the second 40 components.

The liquid and vapor (molar) fluxes L, and V; (¢{ = 1,2,...,N) out of the
40 trays as well as the 42 temperatures 7, ({ = 0,1,2,... , N + 1) of reboiler,
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trays and condenser form the 122 components of the algebraic state vector z =
(Li,..., Ly, Vi, ... .V, Ty, ... ,Tny1)T.! Note that many algebraic variables that can
easily be eliminated (as e.g. h¥, Pg(T;), Vo, etc.) do not count as algebraic variables in
this formulation.

The two components of the control vector u = (Lo, Q)T are the volumetric reflux flow
Ly, and the heat input @), that determines implicitly the molar vapor flux V4 out of the
reboiler. All remaining system parameters, i.e., ng, Piop, ny,1, AR, N, nff”’N, a1, N,
Foot, Xp, Wi ~, Tr, Quoss, and T, can be subsumed in a vector p.

The equations (7.7)—(7.10) and (7.2)-(7.3) are the 82 differential equations f, and
(7.15), (7.12)—(7.14), and (7.1) form the 122 algebraic equations g of the system.

After substituting n, in Eqgs. (7.7)—(7.10) and dividing these equations by n,, we can
summarize the DAE system, which has index one, in the following form:

w(t) = [fla(t),z(t), u(t), p) (7.16)
0 = g(z(t),2(t), u(t), p). (7.17)

The employed values for the parameters p have been estimated and are listed in Table 7.1
in Section 7.2. A complete reference to the material property functions V™ (x,T), PS(T),
hE(X,T), and hY (Y, T, P) is given in Appendix B.

7.2 Determination of the System Parameters

In the actual application, the performance of NMPC crucially depends on the quality of
the model. Considering this fact, steady state and open-loop dynamic experiments have
been performed. To obtain measurements of the dynamic behaviour of the column step
changes in the feed rate F,, and composition X, the reflux rate Lo, and heat input )
were performed. Measurements of all 42 temperatures T, ... ,Ty.1 were taken to obtain
a least squares fit of the simulated to the observed behaviour. The additional assumptions
for this fit are that the tray efficiencies are constant on each of the two column sections,

ie., oy =...=ap, and ay,+1 = ... = ay, that the pressure losses are constant on both
sections: APy = ... = APy,_1 and APy, = ... = APy, and that the volumetric reference
tray holdups coincide: n*f = ... = ni¢f. Reboiler and condenser holdup are difficult to

determine from temperature measurements, as they both contain very pure liquids during
reasonable operating conditions and which have constant boiling temperatures. Conversely,
these two volumes do not matter much for the NMPC performance. They were determined
according to user knowlegde.

IThe equilibrium temperature of the condenser mixture may help to define the temperature of the
reflux by T¢ := Tn+1 when T¢ is not specified. Otherwise, this last algebraic variable could be eliminated
without changing the dynamics.
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Symbol | Value Symbol | Value

ng 8.51 Piop 939 h Pa
n%., | 0171 APyuip | 2.5 h Pa
nye 0.155 1 APt | 1.9h Pa
Qsrip | 62 % Tr 71°C
Qrect 35 % TC 47200
Wiray | 016617787 || Fiy | 14.01h7!
Quss | 0.51 kW Xp 0.32

Table 7.1: Constant system parameters

The 10 parameters that could be adjusted to dynamic experimental data were:

Olstrip -=— Q1,... ,Np»

Qrect = ONp+1,...,N,
Ptop;

APstrip = APO,...,NF—h
APrect = APNF,...,Ny

) (7.18)
0SSy
TF;
Tc
f .__ . ref
nifay = N and
Wtray = W17...7N.

During the test series, these parameters have been adjusted several times using static and
dynamic experiments, exploiting both, engineering intuition and advanced software tools.
The finally estimated system parameters are listed in Table 7.1.

7.2.1 Static System Parameters

The estimation of the first eight of the parameters (7.18), that we call the static system
parameters, can in principle be performed using steady state data only. Denoting the
measured steady state temperature averages of a steady state experiment by the vector
™ = (Ty", ..., Txt,;)" and the averaged steady state controls by u™ := (L2, @™)T, and

vol?
introducing the projection matrix 7' that extracts the temperatures from the algebraic
system state, so that Tz = (Tp, ... ,Tw41)T, we can formulate the following least squares
problem:
: m||2

_min 1Tzs —T™5 (7.19)

S)28,P
subject to

f($57257um,p) = 07
9(1’S> Z8, um7p)

I
o
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Figure 7.3: Comparison of temperature measurements and estimated steady state temper-
ature profile (solid line).

where the constraints ensure that only steady states are allowed. The positive definite
weighting matrix @) would ideally be the inverse of the covariance matrix of the tempera-
ture measurements, that can be expected to be diagonal with equal entries. For the NMPC
performance tests, however, we have explicitly given more weight to the controlled tem-
peratures, Thg and T4, by a factor of ten, to avoid steady state offset due to model-plant
mismatch.

7.2.2 Dynamic System Parameters

The last two parameters from the set (7.18), nj  and Wiy, can only be estimated by

dynamic experiments. They have been determined by the solution of a nonlinear least
squares fit of the dynamic model to the measurement data. Let us for this aim define
the time dependent temperature measurement function 7™(¢) and the measured control
trajectory u™(t), on a horizon [0,7]. Then the estimation problem can be formulated as:

T
min / I T2(t) — T™(t)|I7, dt (7.20)
z(-),2(-)p Jo
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Figure 7.4: Comparison of measured (noisy) and simulated trajectories (smooth) of the
temperatures Tog and T4, for a small step change in the reflux L.

subject to

#(t) = f(z(t), 2(2),
g(a(t), 2(t),

If the dynamic experiment starts in steady state, we add the steady state constraint

f(2(0), 2(0), w(0),p) = 0,
u™(0),p) = 0.

Though specifically tailored parameter estimation algorithms based on the multiple
shooting method exist for the solution of this type of problem (see, e.g., Bock et
al. [Boc87, BES88|), we have solved the least squares problems with our current implemen-
tation of the Gauss-Newton approach in the software package MUSCOD-II, as described
in Sec. 6.4 (with a piecewise polynomial representation of the temperature measurement
data). This approach has the practical advantage of being able to perform both, parameter
estimation and dynamic optimization, in the same modelling environment, and thus re-

duces the risk of transcription errors. The finally employed parameter values for niffly and

Wiray have been determined by Biirner in a MUSCOD-II/MATLAB environment [Biir01].

m(t)?p) = 0,te [OaT]a

u™(t),p) = 0,te€]0,T].
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Figure 7.5: Comparison of measured (noisy) and simulated trajectories (smooth), for an
a posteriori test with a control scenario which involves large but short reflux variations
(right). The dotted lines show for comparison a simulation with an equilibrium model,
which does not capture hydrodynamic effects.

In Fig. 7.4, simulated and measured profiles for the temperatures Tog and T4 are shown,
for an experiment involving a step change in the reflux L., and starting at the nominal
operating conditions. The compared temperature profiles show that the medium time scale
dynamics are captured well by the model.

An a posteriori test of the model can be seen on the right hand side of Fig. 7.5, where a
simulation was performed using the same control profiles as in a closed-loop experiment (cf.
Fig. 7.14), with very large steps in L. The time horizon is shorter and the comparison
shows that the model does roughly capture short time scale effects that are due to hydro-
dynamics, in contrast to an equilibrium model, that cannot reproduce the corresponding
delays (dotted line) (cf. [DUF*01]).

7.3 Optimal Control Problem Formulation

The control aim is to maintain the specifications on the product purities Xy and Xy, in
reboiler and condenser despite disturbances.

As usual in distillation control, the concentrations Xy and Xy,; are not controlled
directly — instead, an inferential control scheme which controls the deviation of the con-
centrations on tray 14 and 28 from a given setpoint is used. These two concentrations are
much more sensitive to changes in the inputs of the system than the product concentra-
tions; if they are kept constant, the product purities are safely maintained for a large range
of process conditions. As concentrations are difficult to measure, we consider instead the
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tray temperatures, which correspond directly to the concentrations via the Antoine equa-
tion. In the following we will use the projection Tz = (Tas, T14)T to extract the controlled
temperatures from the vector z, and define Tye¢ := ( Tost, Trgt )T = (70°C, 88°C)T for
the desired setpoints.

7.3.1 Steady State Determination

Alternative A (Algebraic Constraints): A desired steady state zg, zg, and the corre-
sponding control ug could in principle be determined, for given parameters p, as a solution
of the steady state equation

f(.TS,ZS,’US,p) 07
9(1’5>2S>U57p) = 07
0.

TZS - Tref -

Here the last equation restricts the steady state to satisfy the inferential control aim of
keeping the temperatures at the fixed reference values. The necessary degrees of freedom
are provided by the two components of the steady state controls ug. This approach was
used in the first series of numerical and experimental tests [DBS*T01, DUFT01].

Alternative B (End Point Constraint): In the practical computations in this thesis,
however, we have adopted an alternative approach to determine the desired steady state: to
this end note that the steady state xg, zg for given p and ug could equally be determined by
an integration of the model DAE over a sufficiently long time horizon with constant controls
ug, yielding xg, zs as final values, which are practically independent of the initial values.
The requirement that the steady state should satisfy Tzs = Tref can then be formulated
as a final state constraint that implicitly determines ug. We employ this second approach
to determine ug by using an additional long prediction interval at the end of the control
horizon in the problem formulation. Note that the use of this approach does not cause
additional numerical effort if a prediction horizon is employed anyway; on the contrary,
this formulation avoids introducing additional variables zg, zg into the NLP.

7.3.2 The Optimal Control Problem

Objective Function: The open-loop objective is formulated as the integral of a least
squares term

L(zuyus) = ||Tz = T3+ | R(u—us)l;, (7.21)
where the second term is introduced for regularization, with a small diagonal weighting

matrix
R 0.05°Chl1? 0
- 0 0.05°CkW—t |-
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Prediction Interval: To ensure nominal stability of the closed-loop system, an addi-
tional prediction interval [ty + T¢,to + T} is appended to the control horizon [ty,ty + T,
with the controls fixed to the setpoint values ug. The objective contribution of this interval
provides an upper bound of the neglected future costs that are due after the end of the
control horizon, if its length is sufficiently large (cf. Sec. 1.4.1). A length of T, —T.. = 36000
seconds has been considered to be sufficient in all performed experiments. Note that the
optimized system state x(to+ T.) at the start of this interval (i.e., at the end of the control
horizon) is in practice already very close to the desired steady state value xg.

Problem Formulation

The resulting optimal control problem is formulated as follows:

to+Tp 5 5 2
min / { |72(0) — Tos
u(')vx(')J”US to 2

subject to the model DAE

£ Ru() - us>||§} i (7.22)

@(t) = f(x(t), 2(t), u(t), p)
0 = g(z(t),2(t),ult),p) for ¢ € [to, to + T].

Initial values for the differential states and values for the system parameters are prescribed:

CL'(t()) = Xy,

p = Do
State and control inequality constraints are formulated by
h(]](t), z(t),u(t),p) 2 0 te [t07t0 + Tp]>
where h := (D, B)T is the function calculating the fluxes D and B out of condenser and
reboiler according to the model equations which cannot become negative. This implicitly
provides upper limits to the controls.

The steady state control ug is determined implicitly by the requirements that u is
constant on the long prediction interval

u(t) =ug fort e [ty + Te,to + 1)),
and by the final state constraint

Tz(to + Tp) — Tref =0.
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Figure 7.6: Numerical simulation of a closed-loop response after a reflux breakdown of five
minutes and snapshot of a predicted trajectory (dotted). The right hand side shows the
first 2100 seconds of the predicted trajectory, for the solution of the optimization problem
at time t=400 seconds. The remaining 34500 seconds of the prediction horizon are not
shown.

7.3.3 Numerical Realization

The length T, of the control horizon and the control discretization have to be chosen such
that the computation time for one real-time iteration does not exceed the relevant time
scale of the system or of the disturbances. Based on numerical experiments on the available
computer (AMD Athlon processor with 1009 MHz) and on the requirement that one real-
time iteration should not exceed 20 seconds, we found that 7,=600 seconds with 5 control
intervals each of 120 seconds length is a good choice. For a visualization of the control
horizon, see the right hand side of Fig. 7.6, which shows an example solution profile.

As the control interval length is 6 times longer than the desired sampling time, the
initialization strategy for subsequent real-time iterations was chosen to be the warm start
strategy (cf. Sec. 4.4.2). For the Hessian approximation we have chosen the Gauss-Newton
approach for least squares integrals that is described in Sec. 6.4.
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Full Real-Time Iteration Feedback Phase
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Figure 7.7: CPU times for the full real-time iteration cycles and time that is needed in the
feedback phase, for the numerical experiment in Fig. 7.6.

As a first numerical test of the closed-loop algorithm we consider the following scenario:
starting at the nominal operating conditions, a reflux breakdown happens and leaves the
control inputs fixed to Ly, =0.51h™! and Q=2.5 kW for a duration of five minutes. After
these five minutes the plant can again be controlled by the NMPC scheme. The optimizer
works all the time, even if the feedback is not given to the simulated plant. The closed-loop
behaviour is shown in Fig. 7.6.

The necessary CPU times for each real-time iteration, as well as the recorded response
times are shown in Fig. 7.7. Note that the response times are roughly two orders of
magnitude smaller than the CPU time for one iteration.

7.4 Experimental Setup

As said above, we have tested the described NMPC scheme on the pilot plant distillation
column for various scenarios. For comparison, we also performed closed-loop experiments
with a conventional controller, namely a Proportional Integral (PI) control scheme. We
describe in this section how the two schemes were practically set up.

7.4.1 NMPC Controller Setup

On-Line State Estimation

To obtain an estimate of the 82 differential system states and of the model parameter Xz
by measurements of the three temperatures T4, T5; and Tog only, we have implemented a
variant of an Extended Kalman Filter (EKF).

In contrast to an ordinary EKF our estimator can incorporate additional knowledge
about the possible range of states and parameters in form of bounds. This is especially
useful as the tray concentrations need to be constrained to be in the interval [0,1] from
physical reasoning. The algorithm is described in Appendix A. A comparison of esti-
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Figure 7.8: Closed-loop NMPC setup

mated and measured temperature profiles can be found in Fig. 7.15 — note that only the
temperatures T4, T5, and Ty are available to the state estimator.

The described EKF type algorithm is currently extended by Biirner to a moving horizon
estimator [Biir01|. This new algorithm — so far with a horizon length of 10 seconds only —
was already employed for one of the closed-loop experiments, which involved a step change
in Xp (cf. Fig. 7.12). The performance in the estimation of X can be seen in Fig. 7.13.
The large estimation offset is due to model-plant mismatch.

Coupling with the Process Control System

As mentioned above, the distillation column is controlled by a lower level distributed control
system (DCS), which is connected to a PC (cf. Fig. 7.1). Access to this PC from UNIX
workstations is possible via ftp, so that all higher level algorithms, in particular the state
estimator and the real-time iteration scheme, could be implemented on a powerful LINUX
workstation with an AMD Athlon processor (1009 MHz). With the given equipment it was
only possible to obtain measurements and to write the computed control inputs to the DCS
every 10 seconds, i.e., a sampling time of 10 seconds was used for the state estimator. The
real-time iteration scheme was implemented in a self-synchronizing way (cf. Sec. 4.4.2),
which made it robust against CPU load changes due to other users; its adaptive sampling
time did in practice never exceed 20 seconds (cf. Fig. 7.16).

The three processes — data acquisition, state estimation and real-time optimization —
were running independently and communicating only via input and output files, in such
a way that a breakdown of one component did not cause an immediate breakdown of the
others. Missing new inputs were simply replaced by old values. This construction made the
whole system sufficiently stable against unexplained delays in the data transfer between
the UNIX workstation and the PC. Figure 7.8 shows the overall controller/plant/estimator
setup.
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Figure 7.9: Closed-loop PI setup

7.4.2 PI Controller Setup

To be able to assess the performance of the proposed NMPC scheme, we also carried out
experiments with an existing PI controller that is usually employed for the control of the
column. This conventional control scheme consists of two decoupled single-input/single-
output PI loops, one of which uses the heat input @) to control the temperature 114, the
other using the reflux L., to control the temperature Thg.

The controlled variables are, as in the NMPC case, the temperatures T4 and T5s. The
manipulated variables are the heat input @ to the boiler (corresponding to the liquid flow
Vo out of the boiler) and the reflux flow L,. The PI setup is shown in Fig. 7.9.

7.5 Experimental Results

We have tested the NMPC scheme and the PI control scheme on various scenarios. As
scenarios we used step changes in the feed flow rate (Fyo); a step change in the feed
composition (X); a short reflux breakdown of five minutes (L ); and a large disturbance
scenario where the column was driven with too much heat input and too low reflux flow
for over ten minutes.

7.5.1 Feed Flow Change

Figure 7.10 shows the controlled outputs (T5s and T3i4) and input responses (Lyo and Q)
where the feed flow rate F,o is changed by —10 % at time ¢t = 1000 seconds. The plots on
the left hand side show the results of the NMPC scheme and those on the right hand side
belong to the PI controller. It can be seen that the performance of the NMPC scheme is
better than that of the PI controller, both with respect to the size of the oscillation, mainly
in Thg, and with respect to the attenuation time: 1000 seconds after the feedflow change
the system is more or less in the new steady state, whereas the PI closed-loop system is
still oscillating 3000 seconds after the load change. In Fig. 7.11 we show a second step
change in F,,. Starting from the steady state for a feedflow that is reduced by —10 %
from its nominal value, we increase it at time ¢ = 1000 sec. by 20 %, to + 10 % of the



130 Control of a Distillation Column

NMPC Pl
70.4 70.4
[ [
6 702 [ Y 1 6 702 [ Y 1
o I ] ) I |
% 70 WWWMW g /0 |
F69.8f | : : S F69.8f i : : SR
69.6 L : : : 69.6 L : : :
0 1000 2000 3000 4000 0 1000 2000 3000 4000
90 T 90 T
[ [
o [ o [
=88 MUt > g A At W
= | [ |
[ [
86 ‘ ‘ ‘ ‘ 86 ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 0 1000 2000 3000 4000
5 l ; ; ; 5 l ; ; ;
— I — I
< <
_24 % §4 W
- -
[ [
3 t ‘ ‘ ‘ 3 t ‘ ‘ ‘
0 1000 2000 3000 4000 0 1000 2000 3000 4000
I ‘ ‘ I ‘ ‘ ‘
g 2.6} | ] E 26t
© 2.2} | : : : 1 © 2.2¢
2 § L " L 2 H n " "
0 1000 2000 3000 4000 0 1000 2000 3000 4000

time [s] time [s]

Figure 7.10: Feed flow change: Comparison of real-time iteration NMPC with a conven-
tional PI controller, for a step reduction of 10 % in the feed flow F.q.

nominal value. Again, the NMPC performance is considerably better, having completed
the transition 1000 seconds after the feed flow change, and with a maximum deviation
in Tos of 0.3°C. This is in sharp contrast to the PI performance, which has a maximum
deviation of 0.8°C, and which did not even complete the transition to the new steady state
3500 seconds after the step change.

7.5.2 Feed Concentration Change

For the next test, a step change in the feed composition is considered; X is decreased from
0.320 to 0.272 at t=1000 sec. In Fig. 7.12, the NMPC closed-loop response is compared to
that of the PI controller; here the NMPC controller shows no superior performance to the
PI. The steady state offset can be explained by the fact that the NMPC controller does
not have an integral term (as the PI controller), that is able to remove steady state offset
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Figure 7.11: Feed flow change: Comparison of real-time iteration NMPC with a conven-
tional PI controller, for a feed flow step change by 20 % (from -10% to +10 % of the
nominal value).

in the presence of model-plant mismatch, which has been increased due to the change in
Xr. Note that the NMPC performance depends crucially on the quality of the on-line
state and parameter estimates, as the jump in Xz has to be detected correctly to yield an
appropriate response. For a comparison of estimated and real values of X, see Fig. 7.13. It
can be seen that it took roughly 600 seconds to detect the composition change completely.

7.5.3 Short Reflux Breakdown

In the previous two cases the disturbing effects of load changes (in the feed flow and
composition) on the controlled temperatures Tog and T34 are relatively small. In order to
have a larger disturbance effect we simulated a short reflux flow breakdown, i.e., we fixed
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Figure 7.12: Feed concentration change: Comparison of real-time iteration NMPC with a
conventional PI controller, for a feed concentration change from Xp = 0.32 to Xz = 0.275.

the inputs for five minutes, setting the reflux to a very small value of L, = 0.5 1/h. At
time ¢ = 1000 sec., the reflux breakdown is assumed to be over, so that feedback can again
be applied to the column. The closed-loop responses of NMPC and PI controllers are
shown in Fig. 7.14 (this result can also be found in [DUF*01]). Note that both controllers
start with the same system state at ¢ = 1000 sec.; the PI performance is worse than the
NMPC scheme, as T»g is increasing up to 72°C, whereas it only increases to 71.3°C for
the NMPC scheme, and the disturbance effects last until 3000 sec. after the disturbance,
compared to less than 2000 sec. for NMPC.

Valve Saturation: The micro reflux breakdown that happens for both scenarios in the
feedback phase is due to wvalve saturation, i.e., due to the fact that the filling level of the
reflux drum was shortly becoming too low because more reflux L was desired than the
amount of vapor flow Vy entering the condenser (cf. Fig. 7.2). This causes an automatic
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Figure 7.13: On-line estimate of X (solid), compared to the real value (dashed), in the
scenario of Fig. 7.12.

stop of the reflux pump. In the NMPC scheme, this phenomenon should have been avoided
by the constraint D > 0, i.e., the requirement that the distillate outflow remains non-
negative (note that in the model the condenser hold up is assumed constant). However,
due to model-plant mismatch, the constraint was violated in the real-plant even though it
was satisfied in the model prediction. To account for the uncertainty, we have sharpened
the constraint to D > 0.2 - 10*5% in the following experiments, to provide a security
margin of 10 % of the nominal value of D. For the PI controllers, there is no easy way
to circumvent valve saturation in the presence of large disturbances; therefore we did not
perform the large disturbance scenario with the PI controllers.

7.5.4 Large Disturbance Scenario

To have even larger disturbance effects, we consider the following scenario: starting with a
steady state for an increased feed flow rate (by 20 %), we reduce at time ¢t = 700 seconds
simultaneously the feedflow (back to its nominal value) and the reflux, from Lyo = 5.3
down to Ly, = 2 %, while maintaining the heating power constant at its (high) value
@ = 2.9kW. These inputs, that are maintained constant for 800 seconds, heat the column
up and move the temperature profile far away from the nominal operationg conditions, as
can be seen in the right hand side of Fig. 7.15, where the distorted temperature profile at
time ¢t = 1500 is shown. Only at this time the NMPC feedback is switched on. The closed-
loop response can be seen on the left hand side in Fig. 7.15. While ) jumps immediately
down to its minimum value of 1.5kW, L., is not increased to its maximum value, as would
from first sight be the best thing to cool the column. However, this would have resulted in
valve saturation, as discussed above; it was the constraint D > 0.2 - 10*5% that caused
this interesting feature of the closed-loop behaviour.

7.5.5 Brief Discussion

We have seen that the proposed real-time iteration NMPC control scheme is not only fea-
sible for a practical large scale application, but that it results in a good performance when
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Figure 7.14: Reflux breakdown: Comparison of real-time iteration NMPC with a con-
ventional PI controller, after a reflux breakdown of 5 minutes. At time t=1000 s both
closed-loop scenarios start at the same state.

no estimation difficulties exist. The poorest performance occurred in the feed composition
change scenario, where the state estimator was not able to track the system parameter
Xp instantly. On the other hand, the NMPC scheme shows good performance when con-
straints play a role, which are difficult to handle with a PI control scheme. Especially
the closed-loop response of the large disturbance scenario shows interesting features and
deserves further analysis. We will have a closer look at the observed real-time performance,
and we will also compare the experimentally observed trajectory with computations that
have been performed a posteriori.

Observed Computation Times: Let us first have a look on the computation times
under experimental conditions. We measure not only the overall time for each real-time
iteration, but also the response time, i.e., the time between the moment that the current
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Figure 7.15: Large disturbance scenario. Left: Closed-loop response. Feedback starts only
at time ¢t = 1500 seconds. The temperature profile at this time is shown on the right hand
side (+), together with the estimated profile (solid) and compared to the nominal profile
(dots/dashed).

observed state x( is given to the optimizer, and the moment that the control response is
available for the data transfer to the column. Both time measurements were done externally
(from a MATLAB environment), i.e., they are not CPU times in the strict sense, but the
overall times that the computations required under the given CPU load conditions. The
observed times can be seen in Fig. 7.16. Note that due to the fact that the communication
sampling rate was technically restricted to be not shorter than 10 seconds, the immediate
response may in our realization have taken up to 10 seconds until it arrives at the distillation
column, depending on the phase difference of the (self-synchronizing) optimizer and the
data transfer system.
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Figure 7.16: Overall computation times for the full real-time iteration cycles and the time
that is needed in the feedback phase, for the large disturbance experiment (cf. Fig. 7.15).

Prediction Horizon Contents: To analyse the working of the NMPC controller better,
we will have a look at the predicted control trajectory at the time point ¢ = 1500 seconds,
and compare it to the final closed-loop response, in Fig. 7.17. It can be seen that the
predicted and real trajectory differ significantly. This is mainly caused by the fact that
the control horizon of 600 seconds is too short to capture all necessary control actions for
a disturbance as large as the one considered.

We will compare the experimentally observed performance with a simulated closed-loop
trajectory, and with the optimal solution, according to the model.

Closed-Loop Simulation: It is interesting to test how similar the experimental result
in Fig. 7.15 is to a closed-loop simulation, where noise effects and model-plant mismatch
do not play a role. We have therefore taken the (estimated) system state at time ¢t = 1500,
to start a closed-loop simulation, using the same controller setup as before, but under the
assumption that the plant is identical to the model. The result of this simulation can be
seen in the central column in Fig. 7.18.

Optimal Solution: For completeness, the experimental and simulated closed-loop tra-
jectories are compared with a theoretical off-line result, namely with the optimal open-loop
trajectory, that can be seen on the right column of Fig. 7.18. It can be seen that the ex-
perimental and simulated closed-loop trajectories show considerable similarity with the
theoretically optimal solution.

The computation of the optimal trajectory with the off-line multiple shooting method
required 23 major SQP iterations with a CPU time of 3356 seconds (AMD Athlon processor
with 1009 MHz), where the control horizon was chosen to consist of 45 multiple shooting
intervals, each of 30 seconds length. Note that the computation time for this problem is
in the same order as the whole process duration.
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Figure 7.18: Comparison of experimental closed-loop trajectory (left) with simulated

closed-loop (center) and theoretical optimal trajectory (right).




Chapter 8

Control of a Looping Kite

In order to demonstrate the versatility of the proposed real-time iteration scheme we present
here the control of an airborne kite as a periodic control example. The kite is held by two
lines which allow to control the lateral angle of the kite, see Fig. 8.1. By pulling one line
the kite will turn in the direction of the line being pulled. This allows an experienced kite
pilot to fly loops or similar figures. The aim of our automatic control is to make the kite
fly a figure that may be called a “lying eight”, with a cycle time of 8 seconds (see Fig. 8.2).
The corresponding orbit is not open-loop stable, so that feedback has to be applied during
the flight — we will show simulation results where our proposed real-time iteration scheme
was used to control the kite, with a sampling time of one second.

8.1 The Dual Line Kite Model

The movement of the kite at the sky can be modelled by Newton’s laws of motion and
a suitable model for the aerodynamic force. Most difficulty lies in the determination of
suitable coordinate systems: we will first describe the kite’s motion in polar coordinates,
and secondly determine the direction of the aerodynamic forces.

8.1.1 Newton’s Laws of Motion in Polar Coordinates

The position p € R3 of the kite can be modelled in 3-dimensional Euclidean space, choosing
the position of the kite pilot as the origin, and the third component ps to be the height of
the kite above the ground. With m denoting the mass of the kite and F' € R3 the total
force acting on the kite, Newton’s law of motion reads

d’p F

2 m’

Let us introduce polar coordinates 6, ¢, r:

p=

) rsin(6) cos(¢)
p=|p2| = | rsin(0)sin(¢p)
D3 rcos(6)

139
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Figure 8.1: A picture of the kite.

Note that the distance r between pilot and kite is usually constant during flight, and @ is
the angle that the lines form with the vertical. In these coordinates, p looks as follows

A (o . 0,
P =a <890+a¢¢+a/) 2
Ops, Opy , Op. Opg  Op 8172
— s bt —_£ - 8.1
6092+ aqs‘“az * a2’ ; a¢2¢ ) (8.1)
0°p 0°p 0°p
2 70 + 2
* a¢aa¢ 255670 255577
Let us introduce a local right handed coordinate system with the three basis vectors
cos(0) cos(¢) — sin(¢) sin(6) cos(¢)
eg = | cos(f)sin(g) |, e,=| cos(¢) |, and e, = | sin(f)sin(e)
— sin(0) 0 cos(6)

In this coordinate system, the partial derivatives of p with respect to 6, ¢, r become
dp op dp

50 = €6 % =rsin(f)ey, and 5 — °
and
82]) 82]) .. 92 . 82]?
502 = e 907 —rsin(f)e, — rsin(f) cos(f)ey, and 52 = 0,
as well as
&*p &p d%p
ogon ~ "o Grgg = e and ggg = sinle
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Eq. (8.1) can therefore be written as:

p = eq (7‘«9 — rsin(f) cos(0)$? + 27'“9)
+ e (r sin(0)¢ + 2r cos(¢)ph + 2 Siﬂ(@)i‘qﬁ)
+ e (r — > —r sin2(9)g252> :
Defining
Fy:=F-e, Fy:=F-e4, and F,:=F-e,
we can write Newton’s laws of motion in the form
r6 — rsin(0) cos(0) > + 270 =

rsin(0)¢ + 2r cos(0)dh + 2sin(0)i¢ =

S IeENICERIS

i — 1% — rsin®(0)p* = (8.2)
If the length of the lines, denoted by r, is kept constant, all terms involving time derivatives
of r will drop out. Furthermore, the last equation (8.2) will become redundant, as the
force in the radial direction will be augmented by a constraint force contribution F, so
that Eq. (8.2) is automatically satisfied when the augmented force F, := F, — F, replaces
F,, with F, = F, + rf? 4+ rsin?(#)¢2. In this case the equations of motion! simplify to

F,

0 = %—Fsin(@)cos(@)q'ﬁz, (8.3)
¢ = %—2(:0‘5(9)&9. (8.4)

In our model, the force vector F' = F*&™® 4+ " consists of two contributions, the grav-
itational force F'#? and the aerodynamic force F?*. In cartesian coordinates, F®&?% =
(0,0,—mg)T with g = 9.81 m s™2 being the earth’s gravitational acceleration. In local
coordinates we therefore have

Fy = F{™ + F;" =sin(0)mg + Fj*  and  Fy = F§.

It remains to derive an expression for the aerodynamic force F2<.

8.1.2 Kite Orientation and the Aerodynamic Force

To model the aerodynamic force that is acting on the kite, we first assume that the kite’s
trailing edge is always pulled by the tail into the direction of the effective wind, as seen

INote that the validity of these equations requires that F, = F, + r6% + rsin?(0)¢2 > 0, as a line can
only pull, not push.
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Name Symbol | Value
line length r 50 m

kite mass m 1 kg
wind velocity Vup 6 m/s
density of air p 1.2 kg/m?3
characteristic area | A 0.5 m?
lift coefficient C 1.5

drag coefficient Cy 0.29

Table 8.1: The kite parameters.

from the kite’s inertial frame. Under this assumption the kite’s longitudinal axis is always
in line with the effective wind vector w, := w — p, where w = (v, 0,0)7 is the wind as seen
from the earth system, and p the kite velocity. If we introduce a unit vector e; pointing
from the front towards the trailing edge of the kite (cf. Fig. 8.1), we therefore assume that

We

€ = .
e

The transversal axis of the kite can be described by a perpendicular unit vector e; that is
pointing from the left to the right wing tip. Clearly, it is orthogonal to the longitudinal
axis, i.e.,

€t * We

= 0. (8.5)

T Tl

The orientation of the transversal axis e; against the lines’ axis (which is given by the
vector e,) can be influenced by the length difference Al of the two lines. If the distance
between the two lines’ fixing points on the kite is d, then the vector from the left to the
right fixing point is de;, and the projection of this vector onto the lines’ axis should equal
Al (being positive if the right wingtip is farther away from the pilot), i.e., Al = de; - e,.
Let us define the lateral angle ¢ to be

- (Al
v = arcsin <7) .

We will assume that we control this angle ¢ directly. It determines the orientation of e,
which has to satisfy:

Al
€rrer=— = sin(v)). (8.6)
A third requirement that e; should satisfy is that
(€1 X e) - e, = We X & ce, >0, (8.7)

[[wel
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which takes account of the fact that the kite is always in the same orientation with respect
to the lines.

How to find a vector e, that satisfies these requirements (8.5)—(8.7)? Using the projec-
tion w? of the effective wind vector w, onto the tangent plane spanned by ey and ey,

w? = eg(ep - we) + egley - we) = we — e,(€, - we),
we can define the orthogonal unit vectors

P
e

ew - and e, = e, X €,

[l

so that (e, e,,e,) form an orthogonal right-handed coordinate basis. Note that in this
basis the effective wind w, has no component in e, direction, as

We = ||w?|ley + (we - €,)e,.
We will show that the definition
er 1= ey (—cos(yh) sin(n)) + eo(cos(v) cos(n)) + €, sin(y)
with

. (we e
7 := arcsin
[|we ||

satisfies the requirements (8.5)—(8.7). Equation (8.5) can be verified by substitution of the
definition of n into

%ww)

60 -, = — cos(®) sin(n) || + sin()(w, - &) = 0.
Eq. (8.6) is trivially satisfied, and Eq. (8.7) can be verified by calculation of

(we X €p) - € = (We -+ €4) cos(?h) cos(n) — (we - €,)(— cos(v) sin(n))
= [[wgl| cos(¥) cos(n)

(where we used the fact that w, - e, = 0). For angles ¢ and 7 in the range from —m/2 to
/2 this expression is always positive. The above considerations allow to determine the
orientation of the kite depending on the control 1) and the effective wind w, only. Note
that the considerations would break down if the effective wind w, would be equal to zero,
or if

We * €
We * €y

tan(zﬂ)’ > 1.

The two vectors e¢; X e; and e; are the directions of aerodynamic lift and drag, respectively.
To compute the magnitudes F; and Fj; of lift and drag we assume that the lift and drag
coefficients C} and C, are constant, so that we have

1 1
F, = §P”we”2ACl and [y = §P”we”2ACd>
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with p being the density of air, and A being the characteristic area of the kite.
Given the directions and magnitudes of lift and drag, we can compute F*" as their
sum, yielding

et = E(el X 6t) -+ Fdel
or, in the local coordinate system
g = Fi((er X e:) - €g) + Faler - €g) and FJ™ = Fi((e; X e;) - eg) + Fuler - €g).

The system parameters that have been chosen for the simulation model are listed in Ta-
ble 8.1. Defining the system state z := (0,0, ¢, )T and the control u := 1) we can summa-
rize the system equations (8.3)—(8.4) in the short form

'j; = f(x7 u)?
with
0
g

F3r(0,0,6,0,9) . ;
), &, ¢ + sin(f)= + sin(6) cos(#)¢
T L .
£((0,0,¢,0)"¥) = rm T "
F¢> (9773;?7 ¢> w) _9 COt(Q)Q'ﬁé

8.2 A Periodic Orbit

Using the above system model, a periodic orbit was determined that can be characterized
as a “lying eight” and which is depicted as a ¢ — —plot in Fig. 8.2, and as a time plot
in Fig. 8.3. The wind is assumed to blow in the direction of the p;-axis (6 = 90° and
¢ = 0°). The periodic solution was computed using the off-line variant of MUSCOD-II,
imposing periodicity conditions with period 7' = 8 seconds and suitable state bounds
and a suitable objective function in order to yield a solution that was considered to be
a meaningful reference orbit. Note that the control ¢ (see Fig. 8.3) is positive when the
kite shall turn in a clockwise direction, as seen from the pilot’s viewpoint, and negative
for an anti-clockwise direction. We will denote the periodic reference solution by x,.(t) and
u,(t). This solution is defined for all ¢ € (—o0, 00) and satisfies the periodicity condition
2. (t+T)=z(t) and u,.(t + T) = u,(t).

It is interesting to note that small errors accumulate very quickly so that the uncon-
trolled system will not stay in the periodic orbit very long during a numerical simulation
(see Fig. 8.4). This observation can be confirmed by investigating the asymptotic stability
properties of the periodic orbit.
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Figure 8.2: Periodic orbit plotted in the ¢ — #—plane, as seen by the kite pilot. The dots
separate intervals of one second.
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Figure 8.3: Periodic orbit: system states and control ¢ plotted for one period 7' = 8 s .
Note that 6 and 6 oscillate with double frequency.
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Figure 8.4: Open-loop control applied to the undisturbed system.

8.2.1 Stability Analysis of the Open-Loop System

To determine the asymptotic stability properties of the open-loop system along the periodic
orbit, let us consider an initial value problem for the open-loop system on the interval [0, T']
corresponding to one period:

2(t) = f(x(t), ur(t), Vtel[0,T],

z(0) = xo.

The solution trajectories z(¢) can be regarded as functions of the initial value zo. Note that
for xy = z,.(0) the solution is identical to the reference trajectory x.(t). The sensitivity
matrices

dx(t)
8.170

can therefore be obtained as the solution of the matrix initial value problem:

W) = o (t),u,)) - W) vie o1

W(0) =1I,,.

W(t) = (.(0)), tel0,T],

The final value W(T') is called the monodromy matriz. It characterizes the sensitivity of the
final state of each period with respect to the initial value. Asymptotically stable periodic
orbits are characterized by a monodromy matrix whose eigenvalues (also called “Floquet
Multipliers”) all have a modulus smaller than one, which means that initial disturbances
are damped out during the cycles. For a proof see e.g. Amann [Ama83|.
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A numerical computation of W (T") for the kite model along the chosen periodic orbit
yields

3.0182 24014 0.9587 —0.1307
3.3399  2.5500 0.0054 —0.3935
—2.7170 —1.8596 0.8436 0.5072 ’
—2.8961 —2.0491 0.5601 0.4640

W(T) =

which has the eigenvalue spectrum
o(W(T))={529, 153, 6.16-1072, 4.17-107" },

containing two eigenvalues that have a modulus bigger than one. This confirms that the
system is asymptotically unstable in the periodic reference orbit.

8.3 The Optimal Control Problem

Given an initial state x;, at time %y, an optimal control problem can be formulated that
takes account of the objective to keep the system close to the reference orbit. For this aim
we define a Lagrange term

L(z,u,t) = (2 — 2,(t)) 7 Q(z — 2,()) + (v — u,(t))" R(u — u,(t))

with diagonal weighting matrices

1.2 0 0 0
2
Q:=- 8 3'88 300 8 107*deg ?s™' and R:=1.0-102deg s .
0 0 0 3.0s

A hard constraint is given by the fact that we do not want the kite to crash onto the
ground (6 = 90 degrees), and for security, we require a path constraint function

h(z,u) := (75 deg — 0)

to be positive. Using these definitions, we formulate the following optimal control problem
on the moving horizon [ty, to + 277):

to+2T
u%r)uwr%)/t L(z(t),u(t),t) dt (8.8)
subject to
z(t) = f(z(t),u(t)), Yt € [to, to + 271,
:L'(to) = Ttg,
h(z(t),u(t)) >0, Yt € [to, to + 2T.
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Figure 8.5: Closed-loop control applied to the undisturbed system, simulation of 100 peri-

ods. Numerical errors are attenuated by very small control responses (with u(t) — u,(t) in
the order of 1072 degree) and do not accumulate.

8.4 Closed-Loop Simulations

In the multiple shooting discretization the multiple shooting intervals were chosen to be
each of one second length, thus allowing eight control corrections per period 7'. The Hessian
matrix was approximated using the Gauss-Newton approach for integral least squares terms
described in Sec. 6.4. The initialization of subsequent optimization problems was achieved
with a shift strategy where the new final interval was initialized by an integration using
the nominal open-loop control w,(t), cf. Sec. 4.4.1.

As a first test of the algorithm we try to control the undisturbed system, and the result
of a simulation of 100 periods is depicted in Fig. 8.5. It can be seen that the reference
orbit is perfectly tracked. The dots separate intervals of one second length and correspond
to the sampling times.

For a second test we give the kite a slight “kick” at time ¢ = 1.0 seconds that leads
to a disturbance in the angular velocity 6. It changes from —1 deg/s to +5 deg/s. The
closed-loop response is depicted in Fig. 8.6 as a ¢ — 8—plot.

As a third test we give the kite a moderate “kick” at time ¢t = 3.5 seconds that lets the
angular velocity 6 change from 12 deg/s to 25 deg/s. The closed-loop response is depicted
in Fig. 8.7. For a comparison we also show the open-loop response to this disturbance in
Fig. 8.8, which results in a crash 5 seconds after the disturbance.

In a fourth test we “kick” the kite strongly at time ¢ = 4.0 seconds so that the angular
velocity 6 changes abruptly from 20 deg/s to —7 deg/s. The closed-loop response is depicted
in Fig. 8.9.
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Figure 8.6: Closed-loop response to a small disturbance in 6 that changes from —1 deg/s to
+5 deg/s at time ¢t = 1.0 seconds. After one period the disturbance is nearly attenuated.
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Figure 8.7: Closed-loop control response to a moderate disturbance in 0 that changes

from 12 deg/s to 25 deg/s at time ¢t = 3.5 seconds. After 1.5 periods the disturbance is
attenuated.
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Figure 8.8: Open-loop response to the same disturbance as in Fig. 8.7, at time ¢ = 3.5 sec-
onds. Five seconds after the disturbance the kite crashes onto the ground (=90 degrees).
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Figure 8.9: Closed-loop response to a strong disturbance in 0 that changes from 20 deg/s

to a value of —7 deg/s at time ¢t = 4.0 seconds. After two periods the disturbance is
completely attenuated.
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Figure 8.10: Closed-loop trajectory for the weak disturbance test, simulated over 100
periods.

As a last test we apply random noise of various magnitude to the system: disturbances
happen with probability p = 10% s~!, and they simultaneously disturb all 4 components
of the system state, with independent magnitudes that are characterized by the standard
deviations

s = 0.9deg, s;=0.9deg st sy =0.6deg, and s;=0.6deg st

for the weak disturbance test, and

sg = 4.5deg, s;=4.5deg st sp =3deg, and sy =3degs”

1
for the strong disturbance test. For each scenario, we have carried out simulations for
100 periods (i.e., for 800 seconds). The resulting ¢ — §—plots can be seen in Fig. 8.10 for
the weak disturbance scenario, and in Fig. 8.11 for the strong disturbance scenario. While
the weak scenario shows how nicely the closed-loop system behaves even in the presence
of moderate disturbances, the strong disturbance scenario is certainly at the limits of
the applicability of the chosen control approach, as the disturbances sometimes push the
system state out of the state bounds specified in the optimization problem (6 < 75 degrees).
The resulting infeasibility of the optimization problems was cushioned by the relaxation
strategy of the QP solver. However, this does not give any guarantee for the working of
our approach in the presence of severe disturbances. Instead, a scheme employing soft
constraint formulations should be employed.

The computation time for each real-time iteratiion cycle did not exceed the sampling
time of one second in all simulations and averaged to 0.45 seconds with a standard deviation
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Figure 8.11: Closed-loop trajectory for the strong disturbance test, simulated over 100
periods.

of 0.02 seconds (on a Compaq Alpha XP1000 workstation). The immediate feedback took
in average one tenth of this value, 0.05 seconds.



Conclusions and Outlook

Summary and Conclusions

We have presented a new numerical method for the real-time optimization of constrained
nonlinear processes and have demonstrated its practical applicability in an experimental
case study, the nonlinear model predictive control of a distillation column which is de-
scribed by a large scale stiff DAE model. Sampling times in the range of seconds could
be realized. The theoretical contraction properties of the algorithm have been investigated
and computable bounds on the loss of optimality with respect to a rigorous solution could
be established.

Description of the Method (Chapters 1 — 4 and 6)

The proposed approach is based on the direct multiple shooting method (Chap. 2) that
allows to combine the use of efficient state-of-the-art DAE solvers with the advantages of a
simultaneous strategy, like the possibility to treat unstable system models. In particular,
the presented algorithm is characterized by the following, newly developed features:

e The initialization of subsequent optimization problems with an initial value em-
bedding strategy delivers, for an exact Hessian SQP, a first-order predictor for the
solution of new problems even in the presence of active set changes (Chap. 3). For
general Newton type methods, the initial value embedding still delivers an excellent
predictor (Chap. 5, Sec. 5.3).

e Dovetailing of the solution iterations with the process development in a real-time
iteration scheme allows to reduce sampling times to a minimum, but maintains all
advantages of a fully nonlinear treatment of the optimization problems (Chap. 4).

e A separation of the computations in each real-time iteration into a preparation
phase and a feedback phase is realized (Chap. 6). The feedback phase is typically
orders of magnitude shorter than the preparation phase, and allows to deliver a
linearized feedback that takes all linearized constraints into account. This feedback
is equivalent to linear MPC schemes, using a system linearization along the current
optimal reference trajectory. The delay of one sampling time that is present in all
previous NMPC schemes is avoided.
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¢ A Gauss-Newton approach for least squares integrals allows to compute an ex-
cellent Hessian approximation at negligible computational costs. The Gauss-Newton
Hessian is computed simultanously with the sensitivity computation without the ne-
cessity to stop the integration routine (Sec. 6.4). This is especially useful on long
prediction intervals with constant controls.

Contractivity of the Real-Time Iteration Scheme (Chapter 5)

Contractivity of the scheme is proven for real-time iterations on shrinking horizons, and
the outcome of the iterates is compared to the corresponding exact solution on the full
horizon. The scenario assumes that plant and optimization model coincide, but that one
unpredicted disturbance happens at the start of the considered time period.

e The real-time iteration scheme is contracting under the same conditions as the off-
line method (Theorem 5.6). This means: if the full horizon optimization problem
and a given initialization satisfy the sufficient conditions for local convergence of the
off-line Newton type method, then the real-time iteration scheme is contracting.

e The iterates approach the optimal solution on the remaining horizon, with
a velocity that depends on the contraction rate (Corollary 5.8). Due to the excellent
contraction properties of the direct multiple shooting method, this means that after
a few iterations the real-time solution is practically identical to the exact solution on
the remaining horizon.

e We establish a bound on the loss of optimality with respect to the optimal
solution on the full horizon (Theorem 5.11). This bound limits possible losses on
the first intervals, before the iterates approach the optimal solution on the remaining
horizon.

o If the algorithm was initialized at a neighboring solution, as it typically happens
in practice, the loss of optimality is of fourth order in the size of the initial
disturbance for an exact Newton method (Corollary 5.12).

Application Tests of the Scheme (Chapters 7 and 8)

Experimental Control of a Distillation Column: The algorithm is successsfully
applied to a nontrivial process control example, namely the NMPC of a pilot plant distil-
lation column situated at the Institut fiir Systemdynamik und Regelungstechnik, Stuttgart.
A model for the column is developed, considering enthalpy balances and hydrodynamics,
which results in a stiff DAE with 82 differential and 122 algebraic state variables. Model
parameters are fitted to experimental dynamic data.

The optimization problem is formulated using the integrated squared deviation of two
controlled temperatures as objective, and employing a control horizon with 5 sampling
intervals of 120 seconds each, and a prediction horizon of 36 000 seconds. The computation
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times for each real-time iteration are below 20 seconds, and the realized feedback times are
under practical conditions below 400 milliseconds. The experimentally observed closed-
loop behaviour shows good performance, especially for large disturbances.

The study proves that NMPC using large scale process models is feasible under practical
conditions, when the real-time iteration scheme is used (Chap. 7).

Simulated Control of a Looping Kite: In a second example, the real-time iteration
approach is applied to a simulated unstable periodic process, an airborne kite. The newly
developed kite model consists of four differential states and one control. The control aim
is to let the kite fly an unstable periodic trajectory with a period of eight seconds. The
real-time iteration scheme is able to successfully stabilize the system for all investigated
disturbance scenarios, meeting the real-time requirement of at maximum one second per
iteration. Simulation results show excellent robustness of the real-time optimization algo-
rithm even in the presence of large disturbances. (Chap. 8).

Outlook

Within this thesis, we have demonstrated the practical feasibility of NMPC using large scale
detailed process models. Several future developments of numerical methods for NMPC
come to mind, which may extend its area of applicability.

Parallelization

A parallelization of the developed algorithm, which has already been achieved for the off-
line direct multiple shooting method, promises to reduce computation times considerably.
The method is particularly well suited for parallel computation, since the most expensive
part of the algorithm, the integrations and sensitivity computations, are decoupled on
different multiple shooting intervals and can be performed in parallel [GB94, BS01|. For
the distillation model developed in this thesis, processor efficiencies in the range of 80 %
for 8 nodes have been observed. Only minor modifications have to be made to adapt the
existing parallel version of the off-line method to the real-time iteration context.

Reduced Approach

Another interesting future development is to employ a reduction approach that exploits the
initial value constraint and the continuity conditions for an efficient derivative computation
in the multiple shooting method. The approach, that is originally due to Schléder [Sch88|,
has long been successfully applied to large scale parameter estimation problems (see e.g.
Dieses [Die01] for recent developments and applications). An application of the approach
to the described Gauss-Newton method for optimal control is possible and promises large
savings in computation times in the sensitivity generation, thus allowing to further reduce
sampling times. The reduced approach is fully compatible with most algorithmic ideas of
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this thesis, especially with the initial value embedding and the dovetailing of the solution
iterations with the process development. However, the separation into preparation and
feedback phase cannot be realized as easily as before, as some parts of the DAE sensitivity
calculation can only be performed after the initial value xq is known.

The approach would be especially efficient for models with large differential state di-
mensions and a relatively small number of control parameters.

On-Line Parameter and State Estimation

In the application of NMPC techniques, an important requirement is knowledge of the
system state and of the current values of the system parameters. Moving horizon strategies
to attack this task have been formulated (see e.g. Rao and Rawlings [RR00]), but the field of
numerical methods for the real-time solution of the resulting optimal control problems still
needs considerable development. A transfer of the real-time iteration scheme to this type
of problem promises to deliver a powerful method for the on-line solution of moving horizon
state estimation problems, and is currently under investigation (cf. Biirner [Biir01]).

Periodic Control

In the last numerical example we showed the feasibility of an NMPC approach designed to
control an unstable periodic system. Given the existing optimization scheme, the stabilizing
periodic feedback law was easily obtained by a straightforward periodic formulation of the
least squares objective. In the area of periodic control, the use of NMPC techniques may
allow new periodic process designs that have so far been avoided, and an application of
the developed numerical methods to this problem class deserves further investigation.



Appendix A

An Extended Kalman Filter Variant

We will here describe the variant of the Extended Kalman Filter (EKF) that was used for
the state estimation in the experimental tests of Chap. 7. For an introduction into current
developments in the area of nonlinear state estimation we refer e.g. to Muske and Edgar
[ME96] or to Rao and Rawlings [RR00]. We also refer to an overview article by Binder et
al. [BBBT01] that discusses some aspects of state estimation, and to the work of Biirner
on numerical methods of moving horizon state estimation [Biir01].

In contrast to a standard Extended Kalman Filter (EKF), our variant is able to treat
bounds on the system state, a feature that can be crucial for the practical applicability
of the algoritm. We will first formulate the on-line estimation problem in Sec. A.1 and
introduce the EKF type algorithm in Sec. A.2, and afterwards motivate it by heuristic
arguments in Sec. A.3.

A.1 Problem Formulation

Transformation into Discrete Time

Let us consider the system development on intervals of fixed length 6 only, which correspond
to the sampling rate of measurements. Given initial values x; (that may also comprise
constant system parameters, cf. Sec. 1.1) and controls ug, the system DAE can be solved
on the interval [tg, t; + 6]

B()a(t) = fla(t), 2(t), w),
( ()) = gla(t), 2(t), ur), (A1)
:L'tk = Tk-

In the following, we are interested only in the values z(t;+6) and z(t) of this solution. Let
us denote them by Xy (zx) and Zi(xy), where the constant control values uy, are accounted
for by the index k. As some of the states can be measured, let us also introduce the
measurement function
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with constant matrices H, and H,. For the distillation model with temperature mea-
surements we have set H, = 0, and chosen H, such that it just extracts the measured
temperatures from the algebraic state vector.

The undisturbed system development {yx, 1 }3°, with an initial value ¢ under a given
control sequence {uy}72, can then be described by the equations

Tpt1 — Xk(.'li'k), for k}:O,l, s A
.2
Y = hk($k) ( )

Stochastic Formulation

The necessity to estimate the system state arises because the real system does not coincide
with the model. To account for this, we model the discrete time system as a stochastic
system, and we also assume that the measurements are distorted by noise. Let us therefore
regard the discrete time stochastic system and measurement model

Trr1 = Xp(xk) + wi, A
3
ye = hig(zg) + vk (4.3)

The state disturbance and measurement noise sequences {wy}°, and {v;}3°, are assumed
to be independent and identically distributed, both with zero mean and known (positive
definite) covariance matrices

Yo = E{wpwl} and 3, :=E{vw}}.

The notation E{-} denotes the expectation values. From the real system behaviour at a
sampling time &, only the measurement sequence {y;}¥_; is available. Additional knowledge
exists in form of state bounds that require that

rg <z <zxyg for ¢=0,... k.

The problem is to infer the system state xz; from this given information.

The Idea of Kalman Filtering

The Extended Kalman Filter (EKF) for nonlinear systems proceeds in principle as the
linear Kalman filter [Kal60, Son90|, but is based on subsequent linearizations of the sys-
tem model at the best available estimate. The idea of the Kalman filter is to compare
each measurement with the prediction of the model, and to correct the estimated state
Z according to the deviation. The weight of past measurement information is kept in a
weighting matrix P.

A.2 The EKF Type Algorithm

Given a current estimate 2 € R™, a nonsingular square weighting matrix Py (of the same
dimension R™*"= as ¥,,) and a measurement y; € R™ at time k, the recursive algorithm
computes the matrix Py, and the vector z;,, as follows:
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1. Compute h := hy (&) and H := 2l

Oy,

2. Compute a QR decomposition

e\ Zoon A4
sohi = Q (A.4)

with R upper triangular and of full rank (note that this is always possible as Py is
nonsingular). Obtain a corrected differential state value

I~ D-1AT ) 0
=z, — R Q (252(}1_%)). (A.5)

3. To avoid a violation of upper and lower bounds (that may make the DAE solution
impossible), solve

min || R(z — 2')]|?2  subject to z1s < z < zys.
x

Denote the solution by Z. Once the active set and Z are known, define a matrix QQ; =

(e1,€3,...,6y,,) consisting of n, unit vectors e; corresponding to the n, components
of the active set, so that the equivalent problem
min ||R(z — 2)||?  subject to QT (z — %) =0, (A.6)
xX

can be formulated (which has the solution Z itself). Denote by @2 the orthonor-
mal complement to @1, so that (Q1|Q2) is an orthonormal (permutation) matrix.
Perform another QR factorization RQ, =: Q'R’ to yield the invertible matrix
R € R=—a)x(ne—a)  This is the only step that is additional to a standard EKF
scheme, and it can be justified heuristically. If no bounds are active, & = 2’ and
R =R.

00Xy (%)
or

4. Compute Zyy1 := Xy(Z) and G :=

5. Compute a complete QR decomposition

S TS|

~ 0
Pri = Q" ( 2 ) :

Note that our algorithm produces predictive estimates 251 with knowledge of the k-th
measurement y; (and the control value wuy) only.

o =
N——

with R non-singular.

6. Compute
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Derivative Generation

The function Xy (zx) and its derivative %—2‘ can efficiently be computed by a DAE solver
using the principle of internal numerical differentiation (IND) (cf. Sec. 6.3). We use the
DAE solver DAESOL [Bau00|. The computation of hy(xy) = Hyxr+ H, Zx () requires the
determination of consistent algebraic variables Zj(zy) that satisfy g(zx, Zg(xk), ux) = 0.
This is achieved in our implementation by a (damped) Newton’s method which causes
very little computational effort compared to the DAE solution. By the implicit function

theorem, the derivative 2% can be evaluated to be

oxy,
Oy, g\ " dg
— =H,+H, | = .
Oxy, e (82) Ox

A.3 Heuristic Motivation

The idea behind the EKF algorithm is based on dynamic programming arguments. Let us
define a function

Jlgk(ﬂf — Z)
F(z,z):= Z;?(hk(ﬂﬁ) ~ k)
Yuw? (T — Xp(x))

that represents the costs on stage k, given a past state estimate Z, and a weighting matrix
Py. The idea is to approximately summarize the optimal value

min || F(z,7)|)5 subject to zrp <z < zys, (A.7)
T
that depends on the state Z, in a quadratic function

| Pri1(Z—2gs) |5 + const .

To obtain this approximation, we will linearize the system, as only then it is possible to
summarize the optimal stage costs in a quadratic function (using the discrete time Kalman
filter idea).

The linearization of problem (A.7) does not only concern the function F, as usual
in EKF algorithms, but also the constraints, which have to be converted into appropriate
equality constraints to make the problem truly linear. The procedure of the previous section
can be regarded as a dovetailing of the problem linearization and the linear Kalman filter
algorithm.

We linearize the problem during the solution procedure, as described in the previous
section: let us linearize hy(x) at the point 2y to yield the approximation h+ H (z —Zy,) (step
1), then let us choose a point Z (the outcome of the QP solution, steps 2 and 3) at which
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we linearize X () to yield the linearization &y +G(x — ) = T1 +G(Tr — T) + G(x — Ty)
(step 4). We can therefore approximate F(x,Z) by the linear function

0 P, 0
_1 _1 — 5
= | =h—w) |+ SPH | O (x N )
_1 _1 _1 T — Tg+1

Fixing also the active set we transform the inequality constraints into equalities

Qi (x— i) =0,

so that the linearization of problem (A.7) can be written as

P im0

T — Tg

2

min subject to QT (z — %) =0,

2

or, equivalently, as an unconstrained problem, where we directly substitute x = Z 4+ Qsy
(using the orthonormal complement Q2 of Q1):

2

min |7+ (B ()] (A8
with
0 Py
Jo=F+F@—a) = | S (h—y) | + | 50H | (@20, (A.9)
0 0

Our EKF type algorithm computes a QR factorization of (F,Qs|F}), as

PQ2 0 5 0 20 0
[ [ - _% = 1 2 1
e B s I < 0 1 ) ( ~,0GQr T )

with R" := QT (

(@)

2

Q/T 0 QT 0 _ R R y
0 H)( 0 ]I)f+(0 Pk+1>(x—:%k+1)

min .
Y 2
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The optimal solution of this linearized problem can be summarized as

| Pos1(Z— 2w 13-

- /T 3T _
(% 1) (% )i

To see that this is indeed the case, note that

(5 0)e= (")

due to (A.4), (A.5) and (A.9), and that

if

Q"R — ) =R T(RQ:)"R(E — ')

must be zero, because y = 0 is solution of the following optimization problem, that is
equivalent to (A.6) with z = T + Qay:

min | R(@ — o) + RQuyl3
)

Note that at the solution y = 0 the gradient of the objective with respect to y is
2(RQ2)TR(Z — «’), which is zero due to the necessary optimality conditions.
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Details of the Distillation Model

Physical Property Functions

Molar Volume V™(X,T)

The molar volume V™ (z,T') of the liquid tray content is calculated as a linear combination
of the molar volumes of the undiluted components, i.e.,

VX, T) = XV™(T)+ (1 - X)V;™(T).

with V;*(T) calculated according to

m 1
Vi (T) = a—k eprk(l + exp(l_T/Ck)(dk)).

The molar volume coefficients ay, by, cx, di. b are given in Table B.1.

Partial Pressures P;(T)

The partial pressures P7(T') of the undiluted components are determined by the Antoine
equation

B,
P (T) := Ay — k=1,2.
(1) o (A= i) k=L

The employed Antoine coefficients are given in Table B.2.

Component Molar volume coefficients
k ag [kmol 1_1] ‘ by ‘ Ck [K] ‘ d,
1 (Methanol) 2.288 0.2685 512.4 0.2453
2 (n-Propanol) 1.235 0.27136 | 536.4 0.2400

Table B.1: The molar volume coefficients
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Component, Antoine coefficients

k Ay | By [K] | G [K]
1 (Methanol) | 23.48 | 3626.6 | -34.29
2 (n-Propanol) | 22.437 | 3166.4 | -80.15

Table B.2: The Antoine coefficients

Enthalpy coefficients

k| hog (KT | how [K™?] | hap [K?] || TF [K]| P¢lPal | O
18.31 1.713 1072 | 6.399 107° || 512.6 | 8.096 10° | 0.557
2 31.92 4.49 1072 | 9.663 107° || 536.7 | 5.166 10° | 0.612

—_

Table B.3: The enthalpy coefficients

The Enthalpies h"(X,T) and A" (Y, T, P)
The vapour and liquid stream enthalpies h* (X, T) and hY (Y, T, P) are given by
Y (X, T) :== Xh{(T) + (1 — X)h5(T)
and
RV (Y, T, P) :=Yh{(T,P)+ (1 -Y)hy (T, P).
The pure liquid enthalpies hZ(T') are determined according to
hi(T) := C {hip(T = To) + ho (T = To)* + ha (T — Tp)*}

with Ty = 273.15 K and C' = 4.186 J mol™', and the pure vapour enthalpies h} (T, P)
according to

35

-3
hY (T, P) = hE(T) + RT,g\/1 - £ ( )

{a—leﬁ—FC(%)?—i_Qk (d_eTlﬁJrf(Tlﬁ)?)}

with R = 8.3147 Jmol ' K1, a = 6.09648, b = 1.28862, ¢ = 1.016, d = 15.6875, e =
13.4721, and f = 2.615.
The employed coefficients are given in Table B.3.

x

Derivation of the Francis Weir Formula

The Francis weir formula that was introduced in Eq. (7.15), gives a relationship between
the volumetric flowrate L., and the volume holdup n" of an idealized tray by

Ly = W(n® — ™)z,
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Figure B.1: Cross section of the liquid flow out of a weir.

where the flow constant W and the reference volume n*f are constant. For a derivation,

let us regard the gravity flow over a horizontal weir of width w with vertical walls, where
the water level is at height h over the lower edge of the weir, as depicted in Figure B.1.
The liquid level A can be determined from the excess volume on the tray, if its ground area
A is known:

Introducing a coordinate y that starts at the liquid surface and measures the depth, we
can determine the (horizontal) water velocity v(y) due to gravity by Bernoulli’s equation

Ly
-V =

5P PeY;
where p is the mass density and g the gravity constant. Note that v(y) = /2gy is inde-
pendent of the liquid’s density p. The overall outflow rate L., can now be determined by
an integration over y from the top level (y = 0) down to the weir’s upper edge (y = h):

Lt = J} vlyywdy = wyBE [} yidy = wy/Tg2hi
= w 2g§A_% (nU _ ,’,Lref)i = W (nv . nref)§ )

The real values of the flow width w depend on the tray geometry (see e.g. Lockett [Loc86]).
However, since we know that the geometry of the bubble cap trays in the pilot plant
distillation column is different from ideal trays, we use the Francis weir formula as a
heuristic scheme only, and estimate the two parameters W and n™f by using dynamic
experimental data.






Appendix C

Proof of Theorem 3.4

In this appendix we will give a proof of Theorem 3.4 from Sec. 3.2. A similar proof of the
theorem can be found in [GVJ90, Theorem 3.3.4 and Corollary 3.3.1 (2)].

To prove the theorem, let us subdivide the weakly active constraints HY-2°* into those
components HY-2%" with §u¥2** > 0 and those H¥-2%0 with §u¥*%% = ( in the solution
of QP (3.7), i.e., we write

w ac Hw.act,-i-
1 (t0) = (‘i ) (80

Let us introduce the function

B G
G(t,w):= [ H*** | (t,w).
Hw.act,+

We will see that this is the function of active constraints for all P(¢) on ¢ € (0,¢€), and
furthermore, that all these constraints are strongly active on (0, €). Let us therefore consider
the family of equality constrained problems

min  F(t,w) subject to G(t,w) = 0,
w e R™

with Lagrangian function L£(t,w,)\) := F(t,w) — A'G(t,w). The system of necessary
optimality conditions 3.3 for these problems can be stated as

Vo L (1, 0" (), X (8)) = (Vwﬁ(’* w(t) X*(”)) _ 0. (1)

A tentative total differentiation of these conditions with respect to ¢ yields

0

SV LW W)+ T L w0, X () 0 (’L_U*@)):Q

at \ X (t)
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168 Proof of Theorem 3.4

The matrix

is the Karush-Kuhn-Tucker (KKT) matrix of the nonlinear problem. For ¢t = 0 it is
invertible as can be proven with the help of Lemma 3.2. To apply the lemma, we set
A = V2L(0,w*(0), \*(0)) and B := —V,,G(0,w*(0))?, and note that V,GT has full rank
due to the regularity of w*(0), and that A = V2L = V2L because the multipliers of the
weakly active and inactive constraints are zero. Matrix A is positive definite on the null
space N'B of B = V,G7, because N'? is a subspace of the null space A/® of the linearized
strongly active constraints V,G*T, and A is positive definite on A’® due to the sufficient
conditions 3.3.

By the implicit function theorem, the invertibility of the KKT matrix at ¢ = 0 ensures
that there exists for a sufficiently small € > 0 a curve v : (—e¢,€) — R™ xR"¢, ¢ — <t)—l\]* ((f))>
of points satisfying condition (C.1), with continuous derivative

% (1)1\}((;)) ) - —(V(i,;)ﬁ(t, wit), A*(t)))1 %v(mﬁ(t,w*(t), (). (C.2)

Let us enlarge this curve o in a straightforward way to yield a curve v : (—e¢,e) — R™ X
R"G x R™H

w* w* w*(t)
A* A*
*s.act ok
I A*(t
l— IU* = M*W'aCt’+ (t) = ( )
,u*w.act,o 0
'u*inact 0

By comparing the necessary optimality conditions 3.3 for the quadratic programming prob-
lem (3.7) with Eq. (C.2) for ¢t = 0 it can be verified that

w* w* ow,
A* O
) M*s.act (0) B ) 5\* (O) B 6Ni.act
(975 N*w.act,+ - 8t - 5M1v.act,+
N*w.act,O 0 0
lu*inact 0 0

We will show that the restriction of this curve to the interval ¢ € [0, €) is the desired curve
v of strictly optimal KKT points of the corresponding problems P(t). For this aim we
show that the points w*(t), t € [0,¢€), are feasible and that the multipliers p*(t) remain
non-negative for ¢ € [0, €).
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First, by continuity of the function H™ it is clear that
H™ < (¢, w*(t)) >0, Vtel0,e)

if € is chosen sufficiently small. The total derivative of the “zero” part HV-2%9 of the weakly
active constraints with respect to ¢ is the vector

8HW'aCt’O

d
D = — HY-3%0(0, w*(0
(0,w*(0)) N

w.act,0 T
pn + (Vi HY 0" w, > 0,

whose components are positive due to the strict complementarity assumption for the solu-
tion of the quadratic programming problem (3.7). Therefore,

HW'aCt70(t, w*(t)) = Dt + O(t2) Z 0, Vt c [07 6)7

if € is chosen sufficiently small. Taking into account that all other constraints are contained
in the vector G, and exploiting the fact that G(w*(¢)) = 0 along the curve, we can conclude
that w*(t) are feasible points for all ¢ € [0, €).

Conversely, let us check that the multipliers p*(¢) remain non-negative for t € [0, ).
From continuity we can conclude that p*2* > 0,¢ € [0,¢€), and from SpY2t > 0 we
conclude that

M*W.act,-i- — 5MY'aCt’+t + O(t2) Z O, Vt € [07 6)‘

*w.act,0 *xinact

The multipliers p and p are identical to zero on the curve. Therefore, the points
(w*(t), A*(t), p*(t)) are KKT points for ¢ € [0, ¢).

Furthermore, we can ensure by continuity of the first and second order partial
derivatives 'V, x,L(t, w*(t), \*(t), p*(t)) and V2, L(t,w*(t),\*(t), u*(t)) that the two
remaining conditions of Theorem 3.3 (regularity and positive definiteness on the lin-
earized strongly active constraints), are satisfied at all points on the curve v, by
choosing € suitably small. Note that the set G of strongly active constraints on the
curve (w*(t), \*(t),*(t)), t € (0,€), comprises always the set G® of strongly active
constraints at the point (w*(0), A*(0), #*(0)). As the Hessian is positive definite on the null

space of the linearized constraints G%, it is also positive definite on the null space of the
linearized strongly active constraints at a point (w*(¢), A*(t), u*(t)), which is a subspace. O






Appendix D

Proof of Theorem 5.3

We will prove Theorem 5.3 in two steps: first it is shown that the assumptions of The-
orem 5.1 are met and that the iterates therefore converge towards a KKT point y*, and
secondly it is shown that this point also satisfies the sufficient conditions of optimality as
stated in Theorem 3.3.

Using the inversion formula (5.17)

J(y) ™t = Ciy) A (y) 'CLy)" + Caly)

from Lemma 5.2 and the bounds (5.20a), (5.20b), and (5.20¢), a bound on the norm of the
inverse of J~! on the domain D can be established:

|7 (y1) || < BeyBabey, + Be, =B < o0, Vyi €D.

From continuity of J(y), J(y)~! is continuous on D. Using the definition (5.7) of J and
the full form of g—g as shown in Eq. (5.6), we can conclude with assumption (5.20e) that

(y2)

OR
H VZJ2€D>

J(y2) — 8_y(y2)

- o -5

K
< 2

B
and therefore that the first condition (5.13a) of Theorem 5.1 is satisfied:

OR

Hj(yl)_l <J(y2) - 8—y(y2)) H <k<l, Vy,y€D.

Assumption (5.20d) ensures that condition (5.13b) of Theorem 5.1 is also satisfied:

(1)t (J(y2) — T ()| S wllya —wsll, V1,902,935 € D.

This allows to apply Theorem 5.1 to conclude that the iterates converge towards a point
y* € Dy C D which satisfies R(y*) = 0.

To prove that this point y* is not only a regular KKT point, but also satisfies the
sufficient conditions of optimality according to Theorem 3.3, it suffices to show that the
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Hessian matrix V(i S)E(q*,s*,)\*) is positive definite on the null space of the linearized
constraints Vi, G(q*, s*). For this scope first note that the null space of the linearized
constraints is spanned by the matrix

(s)

and therefore it only needs to be shown that the reduced ezxact Hessian

2L a2cT I
T _r dq 0q0s
Are(y") == ( I ‘ — 2% (9 > ag\—1 o
(@) 2L o -(5) &
0q0s 0s2

is positive definite. To show this, let us introduce the homotopy A, : [0, 1] — R(™a*74)

Ay = (1— )AL (y") + aAe(y"),

(-ee)

o= A = (1]-2" (@) " ) a(:2% - 4) ( _(a_gﬂ)—@ )

(6 7x%
< fBo Be, <

K
BerBabor + By T Ba’

A, is invertible for all o € [0, 1], as its inverse can be written

and note that

< HCIH < ﬁ017

so that

AT = (A= (A = AATIA)) T = (1= (T- A7 4,) T A

T
and

IT— A Aql [A (A — Ao

414, — Aol
ﬁAﬁ_A
As Ayg = A, is positive definite and A, remains invertible for all a € [0, 1], none of the

eigenvalues of A, can become negative on the way from o« = 0 to @ = 1, so that in
particular A; = A,. is positive definite. a

VANVANI

=ak < k<1



Appendix E

The Recursive Condensing Technique

For the first step of the condensing approach that was introduced in Sec. 6.5, some matrix
products and sums have to be computed that involve the block sparse matrices By, Bia,
Ba1, Boo, A1, A1, and Ay, as defined in Sec. 6.5. We will show how the sparsity can be
exploited to perform these computations efficiently.

The matrix M := —BﬂlBlg and the vector m := —Bl_llbl can be calculated as follows.
Computing

XO\O = ]I, Xi+1|0 = XiXi\()) 1= 0, ce 7]\7 - 1,
and for j=0,... ,N—1
)/}+1|j = }/ja }/;l-i-l\j = Xz}/;\]a Z:j+17 aN_]-7

as well as mg :=0, my; :=Xm;—c¢;, ©+=0,...,N—1, the matrix M and the vector
m can be written as

X1|o Y1|o my
X2|0 Yz|0 Yz|1 ma
M = X-3|0 YE"»IO YE?,|1 5.@\2 and m:= 77_23
Xnjo Ynpo Yap YN\2 e YN\N—1 my
0 0 0 0 0 I 0

The condensed Hessian matrix A := MTA;; M + MT Ay, + AT, M + Ay, of the condensed
QP can be efficiently computed if the structure of A and M is exploited. Computing

ss Zij\io XiT\on‘Xi\m

Ly = XS] + S s Xio@iYay,  for  j=0,...,N,
Ay =R+, YiiQiY, for i=0,...,N,

Ay = Y0ST 0L VY, for 0<i<j <N,

A,‘Nfl =Ana1+ AN, for =0,... N—-2
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174 The Recursive Condensing Technique

and A/ JN-1 = ASN 1 +ASN as well as AN 1,N—1 = ANfl,Nfl +AN71,N "‘AJJ\},LN +AN,N7
we can define

A’flss {1570 Tt A’ils,N—2 {1;,1\/‘71
Agjo AO,O Tt AO,N—Q A{)’N_l
A= : ) :
filsT,Nf2 Ag,Nﬂ e 4%72,N72 "é}lN72,N71
A/S,Nfl AIO,Nfl T A/NfZ,Nfl AIN—l,N—l

Similarly, the condensed objective gradient a = MTA;m + ALm + MTa; + ay =
(G, @g, - .. ,an—_2,ay_;) can be calculated with

aZ3:go +Z m; Ql+gz ) i]05

and for j =0,... ,N

N
. T z
al = g7 + m] ST + Z (mi Qi+ g7") QY
k=j+1

and
~/ L~ ~
An_1 ‘= AN-1 +ay.

The two remaining condensed constraint functions
b+ BAw, := (gs) + <§S) Aw,,

B
G G
. A Co Co
¢+ CAwy = + Aws,

are built according to

—x9, Bs:=—I,
= r° + R%"my, = R (Xnjo|Yol - - - [Yayn—1) + (0] ... [0|R*9),
G =1+ R"™my, = R" (Xnpo|Ynpol - - - [Yanv—1) + (0] ... [0 R™),
& = h + Hfmy, C; = (HF Xio| HEYipo| - - | HF Yy | HYO] ...
¢n = hy + Hymy,
Cy = (HyXno|Hy Y| - - | HyYin—o| HyYniv-1 + HY) -

by =
by :

B, :
C, :
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