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SUMMARY 

The kinetochore (KT) is a complex structure that enables attachment of chromo-

somes to spindle microtubules (MTs). Several MT associated proteins (MAPs) contrib-

ute to the KT-MT interface and regulate the dynamics of kinetochore microtubules 

(kMTs). In addition, these MAPs localize to interpolar MTs and regulate spindle stabil-

ity. One of these proteins is the S. cerevisiae CLASP (cytoplasmic linker associated 

protein) Stu1, an essential protein that has several functions during mitosis and there-

fore localizes differently in the course of each cell division. The aim of this work was to 

investigate which domains of Stu1 are important for its cell cycle specific localization, 

how this contributes to a coordinated action of Stu1 and how localization and function 

of Stu1 are regulated. Structural predictions of Stu1 suggest the organization in six 

domains. The following observations were made with the focus on three of them: the 

TOGL2 domain, the minimal MT-binding loop (ML) and the C-terminal loop (CL). 

 

The TOGL2 domain solely achieves binding of αβ-tubulin and drives spindle 

formation 

Co-immunoprecipitations identified the TOGL2 domain to be sufficient to bind free 

αβ-tubulin. This feature of the TOGL2 domain is essential and solely responsible for 

the important role of Stu1 in driving spindle formation. Thus, the TOGL2 domain en-

sures the function of Stu1 as a MT polymerase or rescue factor. Domain swapping ex-

periments demonstrated that the function of the TOGL2 domain of Stu1 is very specific 

and cannot be easily taken over by another TOG domain.  

 

MT binding via the ML domain is required for efficient metaphase spindle for-

mation, but is dispensable for midzone localization 

Besides the TOGL2 domain, efficient spindle formation in metaphase additionally 

depends on the binding of Stu1 to the MT lattice via the ML domain. Thereby, the CL 

domain specifies Stu1 localization to the region of the MT overlap. Midzone localization 

of Stu1 in anaphase, however, is independent of the ML domain and therefore must be 

ensured in a manner that is not based on MT binding. 

 

An interplay of the CL domain with the ML domain specifies Stu1’s sequestration 

at unattached KTs 

The CL domain was found to specify Stu1 for the sequestration at unattached KTs, 

most likely by inhibiting the MT binding affinity of the ML domain. Thus, the CL domain 

indirectly prevents spindle formation in the presence of unattached KTs. 
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Efficient KT capture relies on unperturbed MT dynamics ensured by the Stu1 

TOGL2 activity 

Capturing experiments of the CL deletion mutant revealed that Stu1 localization to 

unattached KTs is not a prerequisite for efficient capturing. However, the ML domain 

and especially the TOGL2 activity are mandatory in this respect. The contribution of 

Stu1 to unperturbed MT dynamics seems to be more important for the capturing pro-

cess than KT localization. This may involve the polymerization of capturing kMTs but 

also, as analyzed, the temporal regulation of KT-generated MTs. 

 

The CL domain makes kMT length dependent on the tension on the KT-MT inter-

face 

The localization of Stu1 to attached KTs is a prerequisite for the polymerization of 

kMTs. In this respect, the CL domain was found to inhibit Stu1‟s ability to stabilize 

kMTs and to make the kMT length dependent on tension on the KT-MT interface.  

 

The CL domain prevents precocious spindle formation to ensure biorientation 

The data showed that the CL domain facilitates bipolar attachment by ensuring un-

perturbed dynamics of interpolar MTs. Therefore, the CL domain seems to fine-tune 

the MT polymerizing activity of Stu1 by regulating the MT affinity of the ML domain. 

 

Stu1 phosphorylation within the CL domain contributes to Stu1 regulation 

Finally, this work revealed that phosphorylation of Stu1 contributes to the regulation 

of Stu1. SILAC analyses identified 15 phosphorylation sites that mainly reside within 

the ML and the CL domain of Stu1 and are putative target sites of various serine/ thre-

onine kinases like Cdk1, polo-like kinase, Ipl1 and Mps1. Furthermore, these analyses 

demonstrated that Stu1 gets phosphorylated and dephosphorylated throughout the cell 

cycle suggesting a regulatory role for kinases. Consistent with that, in vitro kinase as-

says identified Stu1 N- and C-terminus as targets of Ipl1 and Mps1 kinases. Analyses 

of phosphomutants eventually suggested that phosphorylation of the CL domain con-

tributes to the regulatory impact of the CL domain on the MT affinity of the ML domain. 

 

Taken together, the present study supports the theory that Stu1, similar to other 

CLASP proteins acts as a local modulator for MT dynamics and stability. While the 

TOGL2 domain accomplishes the essential function of tubulin incorporation in MT plus-

ends, the other domains are required to regulate the localization of Stu1 and (probably 

therefore) control the MT polymerizing activity. 
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ZUSAMMENFASSUNG 

Das Kinetochor (KT) ist eine komplexe Struktur, die die Anhaftung von Mikrotubuli 

(MT) an Chromosomen ermöglicht. Mehrere MT-assoziierte Proteine (MAPs) tragen zu 

dieser Schnittstelle zwischen KT und MT bei und regulieren die Dynamik von Kineto-

chor-Mikrotubuli (kMT). Diese MAPs lokalisieren außerdem an interpolare MT und re-

gulieren die Spindelstabilität. Eines dieser Proteine ist das essentielle CLASP Stu1 der 

Bäckerhefe, das während der Mitose gleich mehrere Funktionen hat und deshalb im 

Laufe des Zellzyklus unterschiedlich lokalisiert. Ziel dieser Arbeit war es herauszufin-

den, welche Proteindomänen für diese Zellzyklus-abhängige Lokalisierung von Bedeu-

tung sind, wie dies wiederum dazu beiträgt die Aktivität von Stu1 zu koordinieren und 

wie sowohl Lokalisierung als auch Funktion dabei geregelt werden. Vorhersagen für 

die Struktur von Stu1 legen eine Unterteilung in sechs Domänen nahe. Bei den im Fol-

genden beschriebenen Beobachtungen standen drei davon im Fokus: die TOGL2 Do-

mäne, der minimalen MT-Binde-Loop (ML) und der C-terminale Loop (CL). 
 

Die TOGL2 Domäne alleine bindet αβ-Tubulin und treibt die Spindelbildung voran 

Co-Immunopräzipitationen zeigten, dass die TOGL2 Domäne für die Bindung von 

αβ-Tubulin ausreicht. Dieses Merkmal der TOGL2 Domäne ist essentiell und alleinig 

für die wichtige Rolle von Stu1 in der Spindelbildung verantwortlich. Auf diese Weise 

sorgt die TOGL2 Domäne für die Funktion von Stu1 als MT-Polymerase oder -Ret-

tungsfaktor. Der Austausch der TOGL2 Domäne zeigte, dass ihre Funktion sehr spezi-

fisch ist und nicht einfach von anderen TOG Domänen übernommen werden kann 
 

Die MT-Bindung mittels der ML Domäne wird für effiziente Metaphasen-Spindel-

bildung benötigt, ist aber später für die Lokalisierung zur Spindelmitte unwichtig 

Eine effiziente Spindelbildung in der Metaphase ist neben der TOGL2 Domäne auch 

von der Stu1-Bindung an die MT-Oberfläche mittels der ML Domäne abhängig. Dabei 

bestimmt die CL Domäne die Lokalisierung von Stu1 an die überlappenden interpola-

ren MT. Die Lokalisierung zur Spindelmitte während der Anaphase ist jedoch unab-

hängig von der ML Domäne und muss daher auf eine Weise gewährleistet werden, die 

nicht auf MT-Bindung beruht.  
 

Eine Wechselwirkung zwischen CL Domäne und ML Domäne bestimmt die Stu1 

Lokalisierung an nicht-anhaftende KTe 

Indem sie wahrscheinlich die Affinität der ML Domäne für die MT-Bindung inhibiert, 

stellt die CL Domäne die Bindung von Stu1 an nicht-anhaftende KTe sicher. Dadurch 

verhindert die CL Domäne indirekt die Spindelbildung solange nicht-anhaftende KTe 

vorhanden sind. 
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Effizientes Einfangen der KTe beruht auf ungestörter MT Dynamik, die durch die 

TOGL2 Aktivität sichergestellt wird  

 „Capturing“-Experimente mit der CL-Deletionsmutante zeigten, dass die Lokalisierung 

von Stu1 an nicht-anhaftende KTe keine Voraussetzung für ein effizientes Einfangen 

der KTe ist. Die ML Domäne und vor allem die TOGL2 Domäne sind in diesem Zu-

sammenhang allerdings zwingend notwendig. Die Beteiligung von Stu1 an ungestörter 

MT Dynamik scheint für das Einfangen wichtiger zu sein als die KT-Lokalisierung. 

 

Die CL Domäne macht die Länge der kMT von der Spannung an der Grenzfläche 

zwischen KT und MT abhängig 

Die Lokalisierung von Stu1 an anhaftende KTe ist eine Voraussetzung für die Poly-

merisierung der kMT. In dieser Hinsicht zeigte sich, dass die CL Domäne die Fähigkeit 

von Stu1 inhibiert kMT zu stabilisieren und die Länge der kMT abhängig von der Span-

nung an der KT-MT Grenzfläche macht. 

 

Die CL Domäne verhindert verfrühte Spindelbildung, um bipolare Anhaftung si-

cherzustellen 

Es konnte gezeigt werden, dass die CL Domäne die bipolare Anhaftung erleichtert 

indem sie eine ungestörte Dynamik der interpolaren MT gewährleistet. Daher scheint 

die CL Domäne die Aktivität von Stu1 bei der MT-Polymerisierung zu steuern indem 

sie die Affinität der ML Domäne für die MT reguliert. 

 

Phosphorylierung innerhalb der CL Domäne trägt zur Regulation von Stu1 bei 

In dieser Arbeit konnte gezeigt werden, dass die Phosphorylierung von Stu1 zu 

dessen Regulation beiträgt. Mittels SILAC-Analyse wurden 15 Phosphorylierungsstel-

len identifiziert, die größtenteils innerhalb der ML und der CL Domäne von Stu1 liegen 

und mögliche Ziele verschiedener Serin/Threonin-Kinasen wie der Cdk1, der 

Polokinase, Ipl1 und Mps1 sind. Darüber hinaus zeigte sich, dass Stu1 während des 

Zellzyklus sowohl phosphoryliert, als auch dephosphoryliert wird. Passend dazu wer-

den der N- und C-Terminus von Stu1 in vitro von Ipl1 und Mps1 phosphoryliert. Die 

Analyse von Phosphorylierungsmutanten legte schließlich nahe, dass die Phosphory-

lierung der CL Domäne zum regulatorischen Effekt der CL Domäne auf die MT Affinität 

der ML Domäne beiträgt. 

 

Zusammengefasst unterstützt diese Arbeit die Theorie, dass Stu1, ähnlich wie andere 

CLASP Proteine, als ein lokaler Modulator für MT-Dynamik und -Stabilität fungiert. 

Während die TOGL2 Domäne die essentielle Funktion der MT-Inkorporation in MT 

übernimmt, werden die anderen Domänen dafür benötigt die Lokalisierung von Stu1 zu 

regulieren und steuern daher die Aktivität der MT Polymerisierung.  
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1 INTRODUCTION 

Eukaryotic cells undergo mitotic cell divisions resulting in two genetically identical 

cells. Therefore, the chromosomes containing the genetic information have to be faith-

fully duplicated and segregated. Incorrect chromosome segregation can lead to aneu-

ploidy and cell death caused by chromosome loss. The highly regulated cell cycle ma-

chinery ensures the precise spatial and temporal coordination of events taking place to 

activate processes during cell division. Microtubules (MTs) that attach to chromosomes 

via the kinetochore (KT) thereby enable chromosome separation and distribution. De-

fective attachment of chromosomes is one of the most prominent causes of chromo-

somal instability. Studies over the last years have advanced the knowledge about the 

interface between KTs and MT plus-ends giving more insight in the mechanisms of 

attachment, its regulation and error correction.  

In higher eukaryotes cell cycle deregulations and aneuploidy are the reasons for 

several congenital disorders and cancer. Tumor cells accumulate mutations that gen-

erate uncontrolled cell proliferation, missegregated chromosomes and chromosome 

instability. Thus, an important prerequisite to improve cancer therapeutic strategies that 

target the cell division cycle is to increase our understanding of the concerted mecha-

nisms during mitosis (Manchado, E. et al., 2012). 

The current work focused on the eukaryotic model organism Saccharomyces 

cerevisiae. Thus in the following, the key aspects of the cell cycle in budding yeast are 

discussed. 

 

1.1 The cell cycle in S. cerevisiae 

Each cell cycle has the function to accurately duplicate the genetic information of 

the mother cell and proliferate it to the daughter cell. Thereby the DNA, arranged in 16 

chromosomes, has to get replicated and equally distributed between mother and 

daughter cell in a highly ordered and regulated process that can be divided into four 

discrete cell cycle phases (Fig. 1-1). The phases of DNA synthesis (S) and mitosis (M), 

separated from each other by the gap phases G1 (gap 1) and G2 (gap 2). 

Thereby the first three consecutive phases of the cell cycle (G1, S and G2) are col-

lectively referred to as interphase and represent the most time consuming part of the 

cell cycle. During all three phases, the cells grow by producing proteins and cytoplas-

mic organelles. Assuming that the environmental conditions like nutrients, space and 

temperature are sufficient, cells in G1 prepare for DNA replication by the synthesis of 
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proteins required for duplication of the genetic material in the following S-phase. In re-

sponse to insufficient environmental requirements however, mitosis is prevented and 

cells move into a quiescent stage called G0. After accurate DNA replication and spin-

dle pole body (SPB, microtubule organizing centers in higher eukaryotes) duplication in 

S-phase, cells move into the second pause called G2-phase and prepare for their entry 

into M-phase. In contrast to higher eukaryotes, S. cerevisiae cells undergo a closed 

mitosis. This implies that the nuclear envelope stays intact during mitosis and cells 

therefore have no distinct G2-phase or G2/M-transition. In higher eukaryotes, the nu-

clear envelope breakdown indicates the start of M-phase. 

 

The aim of mitosis is to distribute the replicated chromosomes between mother and 

daughter cell, a process that is arranged in five mainly consecutive phases: pro-, 

prometa-, meta-, ana- and telophase. However, S. cerevisiae cells have no specific 

 

Fig. 1-1. Model of the S. cerevisiae cell cycle. 

During one cell cycle, cells progress through the phase of G1 (gap 1), S (synthesis) and G2 (gap 2), also 

taken together as interphase and the phase of chromosome segregation and cell division, called mitosis or 

M-phase. Whereas the G1- and G2-phase are mainly used for cell growth and expression of required 

mRNA and proteins (A), S-phase serves for DNA replication, SPB duplication and bud formation (B). Mito-

sis is characterized by the formation of a short spindle with bipolar attached sister-KTs in metaphase (C) 

and cleavage of cohesin followed by spindle elongation and chromosome segregation in anaphase (D). 

Subsequently one cell cycle is completed by cytokinesis and cell division in telophase (E). Under insuffi-

cient environmental conditions mitosis is stalled before S-phase and cells move into the quiescent G0 

state (F). 
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prophase where chromosomes condense and prometaphase is not distinctly separable 

from late S-phase. During late S-/prometaphase sister chromatids get attached to MTs 

emanating from the SPB and separated SPBs initiate the formation of the spindle ap-

paratus. In addition, bud formation is initiated. In metaphase, sister chromatids bi-orient 

to opposing SPBs and a stable bipolar spindle is established. During anaphase, the 

separation of chromosomes is accomplished when sister chromatids get separated and 

the spindle apparatus pulls them to the opposite poles of the cell. In telophase, which 

represents the end of mitosis, the spindle apparatus disassembles and cells undergo 

cytokinesis. This process divides the nucleus, the cytoplasm, the organelles and the 

cell membrane and results in two genetically identical cells. During all these steps vari-

ous checkpoints guarantee the completion of the previous cell cycle step before the 

next one can start (Nasmyth, K., 1993, 1996a, 1996b; Israels, E. D., 2000; Pinheiro, D. 

et al., 2012).  

In the following, the current knowledge of the processes taking place at each cell 

cycle phase and the regulatory function of the involved cell cycle checkpoints are de-

scribed. 

 

1.2 The cell cycle phases in S. cerevisiae 

1.2.1 G1-phase 

During G1-phase, cells grow and prepare for S-phase by the synthesis of mRNAs 

and proteins required for DNA replication. In early G1-phase, haploid S. cerevisiae 

cells are able to respond to mating pheromones, which induce the expression of genes 

involved in the conjugation process and prevent the progression into S-phase. If no 

mating partner is available and cells have achieved a minimum size, mitosis is initiated 

by passing the G1/S-transition (START) (Nasmyth, K., 1993). In budding yeast, KTs 

are attached to SPBs almost throughout the entire cell cycle (Fig. 1-2 A) (Guacci, V. et 

al., 1997; Winey, M. et al., 2001). Thereby the centromeres are clustered in the vicinity 

of the SPB by the attachment to relatively short MTs (Jin, Q. W. et al., 2000). The 

SPBs are embedded within the nuclear envelope and are the origin for the nucleation 

of almost all kinds of MTs (Winey, M. et al., 2001; Jaspersen, S. L. et al., 2004). The 

SPB duplication takes place in three major steps described as the SPB duplication 

pathway. The first step already takes place early in G1. SPBs start to prepare for dupli-

cation by the elongation of the so called half-bridge which initially connects the old and 

the new SPB. In addition, the satellite material required to form the new SPB in the 
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following S-phase gets assembled at the distal end of the half bridge (Jaspersen, S. L. 

et al., 2004). 

 

1.2.2 S-phase 

In S-phase, chromosomes replicate, SPB duplication is completed and required pro-

teins are transported to the prospective bud site to initiate budding (Nasmyth 1993; 

Winey and O‟Toole 2001). To allow centromere replication in early S-phase, KTs have 

to disassemble and as a consequence, chromosomes get detached from MTs for a 

short period of time (1-2 min) (McCarroll, R. M. et al., 1988; Pearson, C. G. et al., 2004; 

Tanaka, K. et al., 2005; Kitamura, E. et al., 2007). Once the replication of the 

centromeric region is completed, the KT reassembles and reconnects preferentially to 

a MT emanating from the old SPB (Fig. 1-2 B), because the new, immature SPB is not 

able to form MTs yet (Janke, C. et al., 2002; Tanaka, T. U. et al., 2002; Kitamura, E. et 

al., 2007). As soon as the new SPB gets operative, KTs reorient between the old and 

the new SPB with the help of the tension checkpoint machinery (Fig. 1-2 C) (Tanaka, 

T. U. et al., 2002). The processes of capturing unattached KTs and SPB duplication 

and separation are subjects of intensive research and are described in detail below 

(see 1.2.2.2 and 1.2.2.3). 

To guarantee an accurate DNA replication during S-phase this process is controlled 

by two distinct checkpoints, called the DNA replication and the DNA damage check-

point. 

 

Fig. 1-2. Scheme of mitosis from G1 to metaphase. 

(A) In G1, all chromosomes are attached to MTs via the KT. (B) For centromere replication in S-phase, 

KTs have to disassemble and consequently chromosomes detach. After KT assembly, unattached KTs get 

captured by MTs mainly emanating from the old SPB. (C) SPB separation and re-orientation of sister 

chromatids allow for the formation of bipolar spindle in metaphase (D). According to Kitamura, E. et al. 

(2007). 
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1.2.2.1 The DNA replication and damage checkpoint 

DNA damage occurs throughout every cells life by the exposure to radiation, reac-

tive oxygen species or replication across nicked DNA. To ensure the cells survival, 

DNA damage has to be sensed and repaired during every cell cycle.  

Whereas the DNA damage checkpoint delays cell cycle progress in response to 

DNA damage in G1- or G2-phase, the DNA replication checkpoint gets activated when 

the DNA replication fork stalls as a result of nucleotide deficiency or DNA alkylation in 

S-phase. Both DNA checkpoints can delay cell cycle progression and arrest the cells 

prior to anaphase onset at the G2/M transition in budding yeast. Therefore, the check-

points do not only sense the damage signal, but also transfer the signal in order to ac-

tivate the mechanisms for cell delay and DNA repair. The main key players in this re-

spect are the sensor kinase Mec1 (homolog of the human ataxia telangiectasia and 

Rad3-related, ATR) and the effector kinase Rad53 (CHK2 in human cells). They also 

play a crucial role during an unperturbed S-phase by stabilizing the replication forks 

(Harrison, J. C. et al., 2006). 

Initial processing of DNA-damages by the DNA repair machinery, but also stalling of 

the replication fork in response to replication stress, results in single stranded DNA 

(ssDNA) that promotes binding of the single-stranded-binding protein RPA (replication 

protein A) and further activating factors that recruit the kinase Mec1. Mec1 promotes 

the DNA repair mechanism by phosphorylating the histone variant H2AX which recruits 

Rad9 to the region of modified histones. After phosphorylation of Rad9 by Mec1, the 

effector kinases Chk1 (checkpoint kinase 1) and Rad53 (CHK 2 in human cells) 

(Navadgi-Patil, V. M. et al., 2011) get recruited and activated by Mec1. Whereas 

Rad53 is required for a DNA damage response throughout the cell cycle, the kinase 

Chk1 is mainly involved in the G2/M-phase. Another checkpoint mechanism can direct-

ly recognize blunt-ended DNA as a result of double-strand chromosomal breaks by the 

binding of the MRX (Mre11-Rad50-Xrs2) complex and recruitment of the kinase Tel1 

(homolog of the human ataxia-telangiectasia mutated, ATM). Similar to Mec1, this ki-

nase activates the DNA repair by histone phosphorylation and subsequent recruitment 

and activation of Rad53 (Harrison, J. C. et al., 2006). The generation of ssDNA during 

the DNA damage repair additionally activates the RPA-dependent recruitment of Mec1. 

In response to the stalled replication, the Rad53-dependent mechanism further sta-

bilizes the existing replication fork and suppresses the activation of late origins of repli-

cation, causing a delay in DNA synthesis. Upon all kinds of DNA damage responses, 

the activation of Rad53 initiates the damage-inducible gene expression and inhibits 

homologous recombination (Santocanale, C. et al., 1998; Segurado, M. et al., 2009). In 
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addition, precocious chromosome segregation is prevented by the direct regulation of 

the spindle dynamics by modulating the levels and activities of the MT-associated pro-

teins Cin8, Stu2 and Kip3 (Krishnan, V. et al., 2004). Entry into mitosis is further re-

strained by the prevented degradation of securin (Pds1 in budding yeast). Pds1 is sta-

bilized by its Mec1-, Rad9- and Chk1-dependent hyperphosphorylation that inhibits its 

ubiquitination and therefore degradation. This is supported by blocking the interaction 

between Pds1 and Cdc20 in a Rad53 dependent manner, most likely by the direct 

phosphorylation of Cdc20. Besides that, Rad53 delays anaphase entry and hinders 

mitotic exit through the inhibition of Cdc5, probably achieved by its direct phosphoryla-

tion. This might decrease APC activity and maintains the Clb2/Cdk1 activity. As a re-

sult, cells stably arrest with the sister chromatids of replicated chromosomes bipolarly 

attached to a short mitotic spindle (Sanchez, Y., 1999; Harrison, J. C. et al., 2006). 

 

1.2.2.2 Capturing of unattached KTs 

During S-phase, another important step that follows the replication of the 

centromeric region is the reattachment of chromosomes to MTs, a process that is 

called capturing. Capturing of the reassembled, but unattached KTs is thought to be 

evolutionary conserved within eukaryotic cells (Hayden, J. H. et al., 1990; Rieder, C. L. 

et al., 1990; Tanaka, K. et al., 2005; Franco, A. et al., 2007; Gachet, Y. et al., 2008) 

and is achieved within the following steps reviewed in Tanaka, T. U. (2010). Initially, 

the KTs make lateral contact with the MT lattice of MTs emanating from the SPB (ki-

netochore-MT, kMT). This facilitates the first encounter of kMTs and KTs by providing a 

larger surface for the KTs to contact the MTs. The initial contact between the kMT and 

the KT was suggested to be achieved by a simple search-and-capture mechanism, but 

the efficiency of this mechanism suggests additional processes that support capturing. 

Wollman et al. propose that in vertebrate cells a gradient of RanGTP generates a spa-

tial bias for kMT growth (Wollman, R. et al., 2005). But S. cerevisiae cells are thought 

to be too small to create a gradient of RanGTP (Kitamura, E. et al., 2010). Therefore 

other mechanisms, also suitable for short distances, facilitate KT capture. One of these 

mechanisms are KT-generated MTs (Fig. 1-3). These MTs frequently emanate from 

the KTs themselves, particularly when the KT-MT interaction is delayed, and facilitate 

the loading of KTs on the kMT lattice. Thereby the two types of MTs can achieve the 

first contact in two different orientations along their length: in a parallel or antiparallel 

manner (Maiato, H. et al., 2004; Kitamura, E. et al., 2010). In budding yeast, the plus-

ends of these kMTs are facing away from the KTs, whereas the minus-ends reside at 

the unattached KTs. Stu2 (the budding yeast XMAP215/ ch-TOG ortholog) localizes to 
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these unattached KTs and is crucial for the nucleation and the extension of the KT-

generated MTs. Localization of Stu2 on the other hand is dependent on an intact KT 

structure. The elongation of KT-generated MTs however additionally requires the two 

MT plus-end tracking proteins Bim1 and Bik1 (Kitamura, E. et al., 2010). As soon as 

the KTs are loaded on the kMTs, KT-generated MTs rapidly depolymerize and disap-

pear, probably by Stu2 leaving the KT and dispersing along the kMT (Kitamura, E. et 

al., 2010). 

 

Subsequently, KTs slide along the kMTs towards the SPB promoted by the force of 

minus-end directed motor proteins like the kinesin Kar3 in budding yeast (Tanaka, K. et 

al., 2005, 2007) or dynein in vertebrates (King, J. M. et al., 2000; Yang, Z. et al., 2007). 

When kMTs shrink and reach the KT, the lateral attachment is often turned into a more 

stable end-on attachment by connecting the KT to the plus-end of the kMT (Tanaka, K. 

et al., 2007). This end-on pulling is dependent on the Dam1 complex and allows a fast-

er transport of the KT. The Dam1 complex localizes along the kMT and accumulates at 

the plus-end as a result of the depolymerizing kMT. Upon end-on attachment the Dam1 

complex gets loaded on the KT and is thought to convert the MT depolymerization into 

a KT-pulling force (Tanaka, K. et al., 2007). Thereby it is thought that multiple Dam1 

complexes assemble in a ring structure encircling the end-on attached MT as observed 

in in vitro analyses (Miranda, J. J. L. et al., 2005; Westermann, S. et al., 2005). Conse-

quently, further depolymerization of the kMT pulls KTs to the SPB (Tanaka, T. U., 

2010). 

 

Fig. 1-3. Capturing of unattached KTs is facilitated by KT-generated MTs.  

(A) KTs form KT-generated MTs in a Stu2 dependent manner. (B) KT-generated MTs and kMT can 

achieve the first contact in an antiparallel or parallel manner. (C) Chromosomes get moved towards the 

SPB by lateral sliding along the kMT. (D) When kMTs shrink, this movement is converted into „end-on 

pulling‟ by the Dam1 complex. According to Kitamura, E. et al. (2010). 



8  INTRODUCTION 
 
 
1.2.2.3 SPB duplication and separation 

In order to prepare for the bi-orientation of the captured sister-KTs and for the for-

mation of a bipolar spindle in metaphase, SPB duplication is completed during S-

phase. In this second step of SPB duplication, the satellite material forms the duplica-

tion plaque, a layered structure that reminds of the cytoplasmic part of the mature SPB. 

A major part of this plaque consists of the self-assembled Spc42 which is induced upon 

phosphorylation (Bullitt, E. et al., 1997; Adams, I. R. et al., 1999). The third major step 

of SPB duplication is the insertion of the duplication plaque into the nuclear envelope 

and the subsequent formation of the nuclear part of the SPB. Therefore, duplicated 

SPBs reside side-by-side within the nuclear envelope linked by a complete inter-SPB 

bridge until late S-phase (Byers and Goetsch, 1975; Lim, H. H. et al., 1996; Lim, H. H. 

et al., 2009). SPB duplication was found to be a mostly conservative mechanism, 

meaning that the old SPB stays intact whereas the emerging SPB is formed completely 

new (Pereira, G. et al., 2001). 

As DNA replication is close to be completed, SPB separation is initiated by dissolv-

ing the connecting bridge between the old and the new SPB. The nuclear MTs have to 

assemble to enable the two kinesin-like motor proteins Cin8 and Kip1 to push the 

SPBs apart. They generate an outward directed force as they crosslink the antiparallel 

interpolar MTs and slide them apart (Jacobs, C. W. et al., 1988; Hoyt, M. A. et al., 

1992; Roof, D. M. et al., 1992). Thereby the minus-end directed motor protein Kar3 

counteracts the forces of Cin8 and Kip1 (Saunders, W. S. et al., 1992; Hoyt, M. A. et 

al., 1993). In addition, another pathway containing the MT-bundling protein Ase1 regu-

lates spindle assembly in parallel to the Cin8 and Kip1 motor pathways. Ase1 and oth-

er spindle midzone proteins crosslink the interdigitating antiparallel MTs prior to SPB 

separation. This allows the motor proteins to induce the outward forces that contribute 

to break the inter-SPB bridge and separate SPBs (Kotwaliwale, C. V. et al., 2007). In 

anaphase Ase1 localizes to the MT overlap of the spindle midzone and recruits further 

MAP proteins. The MAP protein Stu1, a the non-motor MT-binding protein was also 

found to be required for SPB separation and spindle formation (Yin, H. et al., 2002). At 

late S-phase SPBs have slightly moved apart and a very short spindle is assembled 

(Lim, H. H. et al., 2009). 

 

1.2.3 G2- and metaphase 

After DNA replication and a first slight SPB separation have been successfully com-

pleted in S-phase, cells proceed into G2/metaphase. Since the nuclear envelope does 

not break down and chromosome condensation is not evident in budding yeast, bipolar 
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spindle formation is the main indicator for the beginning of mitosis in these cells. The 

aim of metaphase is to form a stable bipolar spindle with each sister chromatid at-

tached to one kMT emanating from opposite SPBs to ensure accurate chromosome 

segregation (Fig. 1-2 D). 

Therefore, the sister-KTs of the still monopolar attached chromosomes have to at-

tach to MTs emanating from the opposing SPB and achieve bi-orientation (bipolar or 

amphitelic attachment) (Fig. 1-4). Two mechanisms seem to promote bipolar attach-

ment. One is the avoidance of aberrant attachments due to the back-to-back geometry 

of the sister-KTs (Östergren, G., 1951; Indjeian, V. B. et al., 2007; Sakuno, T. et al., 

2009) and the other one is the tension dependent error-correction. If the sister-KT ac-

cidently gets attached to the MT extending from the same SPB (syntelic attachment), 

these errors have to be corrected before SPBs separate at anaphase onset. Therefore, 

the tension checkpoint (see 1.2.3.1) and the spindle assembly checkpoint (SAC; see 

1.2.3.2) collaborate to accomplish the turnover and correction of KT-MT attachments 

(Tanaka, T. U. et al., 2002).  

 

 

Another prerequisite for sister-KT bi-orientation is the stable connection of sister-

KTs by the cohesin complexes that withstand the pulling forces of the kMTs (Tanaka, 

T. U. et al., 2000; Dewar, H. et al., 2004). Only when bipolar attachment and therefore 

tension across the sister-KT is achieved, a stable connection between KTs and SPB 

via the MT is formed (Nicklas, R. B. et al., 1969; Tanaka, T. U. et al., 2002; Dewar, H. 

et al., 2004). As a consequence, a very dynamic equilibrium is maintained between the 

forces of the kMTs that pull sister-KTs towards the opposing SPBs and the forces of 

the cohesin that holds the sister-KTs together. This determines a certain level of ten-

sion on the KT-MT interface and is mandatory for a stable bipolar spindle (Skibbens, R. 

 

Fig. 1-4. Model of the possible modes of KT-MT attachment in S. cerevisiae. 

(A) Monotelic attachment: only one sister-KT is attached to a SPB, the other one is unattached. (B) 

Syntelic attachment: Both sister-KTs are attached to the same SPB. (C) Amphitelic or bipolar attachment: 

Sister-KTs are attached to MTs emanating from opposing SPBs. According to Tanaka, T. U. (2008). 
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V. et al., 1993; Inoué, S. et al., 1995). Thereby the Dam1 complex is required to sus-

tain bi-orientation most likely by withstanding the forces of the depolymerizing kMTs 

and transfering them into pulling forces on the KTs (Janke, C. et al., 2002).  

 

1.2.3.1 The tension checkpoint 

In order to prevent the unequal distribution of chromatids, the tension checkpoint 

has to sense erroneous attached sister-KTs (monotelic and synthelic) that lack tension. 

When the new SPBs become operative, cells have to achieve re-orientation between 

the old and the new SPB and particularly bipolar attachment when a spindle is formed. 

Therefore, erroneous KT-MT attachments, sensed by the lack of tension on the KT-MT 

interface, get destabilized by Aurora B (Ipl1 in budding yeast) kinase-mediated phos-

phorylation (Fig.1-5) (Biggins, S. et al., 1999; Tanaka, T. U. et al., 2002; Dewar, H. et 

al., 2004). This activates the spindle assembly checkpoint (SAC) by either creating 

unattached KTs (Pinsky, B. A. et al., 2006) or by the phosphorylation of Mad3 (King, E. 

M. J. et al., 2007). 

 

 

Ipl1 kinase together with Bir1, Sli15 and Nbl1 (Survivin, INCENP and borealin in 

higher eukaryotes) forms the Ipl1 complex, also called chromosome passenger com-

plex (CPC). Whereas Ipl1 is the catalytic subunit of the complex, the other proteins are 

regulatory subunits for Ipl1 localization and activity (Ruchaud, S. et al., 2007; Carmena, 

M. et al., 2009).  

 

Fig. 1-5. Model of the error correction of KT-MT attachments.  

(A) The Ipl1 kinase induces the turnover of syntelic KT-MT attachments that lack tension by the phosphor-

ylation of KT components. This promotes the bi-orientation of sister-KTs. (B) Upon bipolar attachment the 

tension on the KT-MT interface delocalizes KT substrates from the Ipl1 kinase and therefore stabilizes the 

KT-MT attachment. According to Tanaka, T. U. (2010). 
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To date, the only identified substrates of Ipl1 that are involved in bi-orientation of 

KTs are the two major MT binding complexes, Dam1 (Cheeseman, I. M. et al., 2002; 

Zhang, K. et al., 2005) and Ndc80 (Akiyoshi, B. et al., 2009a). The phosphorylation of 

the Dam1 or the Ndc80 protein by Ipl1 directly weakens the interaction with MTs. Addi-

tionally phospho-mimetic Dam1 was shown to destabilize the kMT tip, indirectly con-

tributing to the KT release (Sarangapani, K. K. et al., 2013). Phosphorylation of these 

two proteins seems to be important, but additional Aurora B substrates like KLN1 of 

higher eukaryotes (Spc105 in budding yeast) are suggested to be involved in the re-

lease (Akiyoshi, B. et al., 2009a; Liu, D. et al., 2010; Welburn, J. P. I. et al., 2010). Up-

on bipolar attachment and tension on the KT-MT interface, these substrates get 

dephosphorylated by the antagonizing protein phosphatase 1 (PP1, Glc7 in budding 

yeast) (Francisco, L. et al., 1994; Pinsky, B. A., Kotwaliwale, C. V., et al., 2006; Liu, D. 

et al., 2010). 

Since Ipl1 localizes to the inner KT that faces the centromeric DNA (see 1.3), a 

mechanism based on the spatial distance between the kinase and the substrates at the 

outer KT providing the interaction with the MT is suggested. If the sister-KTs are not 

under tension, the substrates at the KT-MT interface are in close proximity to the highly 

active Ipl1 kinase and get phosphorylated (Fig. 1-5). However, when sister-KTs are 

under tension Ipl1 is spatially distant and the substrates get dephosphorylated 

(Tanaka, T. U. et al., 2002; Liu, D. et al., 2009; Lampson, M. A. et al., 2011). Neverthe-

less this model bears some caveats. It is still unclear how Ipl1 activity is suppressed to 

achieve a general initial KT-MT attachment that always lacks tension. A possible ex-

planation would be a balance between Ipl1 activity and the activity of the antagonizing 

PP1 (Glc7 in budding yeast) (Pinsky, B. A., Kotwaliwale, C. V., et al., 2006; Rosenberg, 

J. S. et al., 2011). On the other hand Ipl1 just recently was found to contribute to bi-

orientation even when its absent from the inner KT (Campbell, C. S. et al., 2013). 

Therefore another possible model proposes a tension-dependent activity of Ipl1 where 

tension is directly sensed by the Ipl1 binding partners Bir1 and Sli15 (Sandall, S. et al., 

2006). An alternative mechanism suggests that MTs and KT proteins that come in 

closer proximity to Ipl1 when tension is missing, activate the Aurora B kinase 

(Rosasco-Nitcher, S. E. et al., 2008).  

Besides the bi-orientation via Ipl1, also Mps1 kinase contributes to the bi-orientation 

of sister KTs (Maure, J.-F. et al., 2007) and phosphorylates the Dam1 and Ndc80 pro-

tein (Shimogawa, M. M. et al., 2006; Kemmler, S. et al., 2009). Since Mps1 localizes to 

the outer KT, a mechanism different from the one suggested for Ipl1 might regulate bi-

orientation. Thereby it is unclear whether Mps1 acts in a separate pathway together 
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with Bub1 and Sgo1 (Storchová, Z. et al., 2011) or if these proteins contribute to the 

rapid accumulation and activation of Ipl1 (Jelluma, N. et al., 2008; van der Waal, M. S. 

et al., 2012). So far it is known that the recruitment of the Ipl1 complex (CPC) to the 

inner KT depends on the interaction of Bir1 with Sgo1 (Kawashima, S. A. et al., 2007), 

whereas Sgo1 itself localizes to the histone H2A after phosphorylation by Bub1 

(Kawashima, S. A. et al., 2010). This is similar to another recruitment pathway of Ipl1 

where phosphorylated histone H3, modified by the Haspin kinase, binds Bir1 (Tanaka, 

T. U., 2010; Yamagishi, Y. et al., 2010). 

 

1.2.3.2 The spindle assembly checkpoint 

One of the most important surveillance mechanisms of the cell cycle is the spindle 

assembly checkpoint (SAC) that delays cell cycle progression until all sister chromatids 

are bipolar attached. Upon defective KT-MT attachments, more precisely unattached 

KTs, the SAC induces a cell cycle arrest by the inhibition of Cdc20, an activator of the 

ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C) (Yu, H., 2007; 

Biggins, S., 2013). The inactive APC/C therefore fails to initiate the downstream mitotic 

events by the polyubiquitination of cyclin B and securin (Pds1 in budding yeast) that 

labels them for degradation by the 26S proteasome (King, R. W. et al., 1995; Peters, 

J.-M., 2002). Cyclin B, an activator of the cyclin dependent kinase (Cdk1) in mitosis 

(Nurse, P., 1990) has to be degraded to induce anaphase (King, R. W. et al., 1994). 

Securin inhibits the protease separase (Esp1 in budding yeast) that cleaves the 

cohesin complex that holds sister chromatids together. Degradation of securin is re-

quired to initialize anaphase (Cohen-Fix, O. et al., 1996; Uhlmann, F. et al., 1999) . 

Genetic screens identified the MAD (mitotic-arrest deficient) genes MAD1, 2 and 3 

(BubR1 in human), the BUB (budding uninhibited by benzimidazole) genes BUB1 and 

BUB3 and MPS1 (multipolar spindle 1) as genes that are involved in the checkpoint 

signaling (Hoyt, M. A. et al., 1991; Li, R. et al., 1991; Weiss, E. et al., 1996). In contrast 

to animal cells, only MPS1 is essential during a normal cell cycle in budding yeast. 

Nevertheless deletions of the other checkpoint proteins cause segregation defects of 

various strength (Biggins, S., 2013).  

Since all checkpoint proteins except of Mad3 localize at the KT, the checkpoint sig-

nal is most likely generated there (Musacchio, A. et al., 2007). Whereas Bub1 and 

Bub3 are always found at KTs in mitosis, Mad1 and Mad2 specifically localize only to 

unattached KTs (Waters, J. C. et al., 1998; Gillett, E. S. et al., 2004). Thereby the KT 

subcomplexes Ndc80 and COMA (see 1.3) contribute to the SAC, probably by recruit-

ing the checkpoint proteins in a direct or indirect way (McCleland, M. L. et al., 2003; 
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Matson, D. R. et al., 2012). If this recruitment and/or the KT structure is impaired, the 

SAC activity is inhibited (Musacchio, A. et al., 2007).  

The Mps1 kinase interacts most likely with Ndc80 at the KT (Kemmler, S. et al., 

2009) and is thought to be the most upstream signal that recruits further checkpoint 

proteins to the KTs. Bub1 and Bub3 localize to the KT upon the phosphorylation of 

Spc105 by Mps1 (Fig. 1-6) (London, N. et al., 2012; Shepperd, L. A. et al., 2012; 

Yamagishi, Y. et al., 2012). Mad1 and Mad2 recruitment is dependent on Mps1, Bub1 

and Bub3, but the binding partner of Mad1 at the KT is still unknown. Mad2 is suggest-

ed to exist in two different forms, an conformational „open‟ (Mad2-O) and „closed‟ 

(Mad2-C) form (Shah, J. V et al., 2004; Antoni, A. De et al., 2005). Upon recruitment to 

Mad1, Mad2-O changes its conformation to Mad2-C that stably localizes to Mad1. The 

bound Mad2-C serves as a receptor for the transient binding of soluble Mad2-O that 

subsequently gets converted to Mad2-C. This allows Mad2-C to interact with Cdc20. 

The Cdc20-Mad2-C complex then dissociates from the KT and additionally serves as a 

structural equivalent of the KT bound Mad1-Mad2-C complex to promote the conforma-

tional change of Mad2-O to Mad2-C. Therefore the Mad1-Mad2-C complex is thought 

to serve as a template for the formation of the Cdc20-Mad2-C complex copy (“Mad2-

template model”) (Luo, X. et al., 2002; Antoni, A. De et al., 2005; Nezi, L. et al., 2006; 

Mapelli, M. et al., 2007). 

 

 

Formation of the Cdc20-Mad2-C complex is followed by the assembly of the effector 

of the SAC, the soluble mitotic checkpoint complex (MCC) comprised of Mad2-C, 

Mad3, Bub3 and Cdc20. As a consequence, Cdc20 and therefore the APC/C is inhibit-

ed (Sudakin, V. et al., 2001). Thereby it is worth to mention that MCC formation in-

 

Fig. 1-6. The pathway of the spindle assembly checkpoint.  

Phosphorylation of the KT protein Spc105 by Mps1 kinase recruits Bub1 and Bub3 to the unattached KT. 

Binding of Bub1/3 promotes the recruitment of the Mad1/ Mad2 complex accompanied by a conformational 

change of the open (Mad2-O) to the closed (Mad2-C) Mad2 form. Mad2-C interacts with Cdc20 and forms 

the mitotic checkpoint complex (MCC) consisting of Mad2-C, Cdc20, Bub3 and Mad3. This inhibits the 

APC activator Cdc20 and blocks the metaphase to anaphase transition. According to Biggins, S. (2013). 
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duced by just one single unattached KT is sufficient to cause a cell cycle arrest 

(Rieder, C. L. et al., 1995). 

Upon bipolar attachment of all chromosomes, Mad1 and Mad2 are removed from 

the KT. In metazoans the motor protein dynein is required to turn off the SAC by „strip-

ping” off the checkpoint proteins (Howell, B. J. et al., 2001; Wojcik, E. et al., 2001). The 

minus-directed motor protein Kar3 might have an equivalent function in S. cerevisiae 

(Musacchio, A. et al., 2007). In order to silence the checkpoint, the phosphatase PP1 

reverses the Mps1 phosphorylation. Thereby it is a matter of debate if Spc105 or which 

other proteins are receptors for PP1 at the KT and if and how PP1 regulates Spc105 

and other so far unknown checkpoint proteins.  

Additionally, phosphorylation and de-phosphorylation events mediated by other ki-

nases like Ipl1, Cdk1 or Bub1 or of other checkpoint proteins might contribute to the 

very complex regulatory mechanism of the SAC (Biggins, S., 2013). 

 

1.2.3.3 The bipolar metaphase spindle 

In budding yeast, the metaphase spindIe has a length of about 1.5-2 µm and three 

different kinds of MTs ensure the maintenance, stability and position of the spindle. 

The minus-end of all these MTs is anchored to the SPB, whereas the plus-end faces 

away from the SPB. Exactly one kinetochore MT (kMT) emanating from the nuclear 

side of each SPB attaches to one of the sister-KTs of the 16 chromosomes. Three to 

four interpolar MTs extend from each opposing pole and interdigitate to an antiparallel 

overlap. This MT bundle at the spindle center stabilizes the spindle and supports its 

elongation during anaphase. In addition, two to three astral MTs emanate at the cyto-

plasmic side of the SPB and position the spindle within the cell (Winey, M. et al., 1995; 

Toole, E. T. O. et al., 1999).  

Various motor proteins and microtubule-associated proteins (MAPs) contribute to 

the formation, stabilization and later elongation of the spindle by crosslinking and regu-

lating the spindle MTs. Thereby the spindle length is always determined by the balance 

between the outward and the inward forces on the spindle (Winey, M. et al., 2012). 

Four kinesin-like proteins were found to act on the nuclear mitotic spindle: Cin8, Kip1, 

Kar3 and Kip3. The kinesin-5 family members Cin8 and Kip1 are plus-end directed 

motor proteins and have redundant functions. They provide outward pushing forces by 

sliding the antiparallel interpolar MTs apart. In addition, Cin8 was found to work as a 

main plus-end depolymerase that regulates the length-dependent disassembly of kMTs 

(Gardner, M. K. et al., 2008). Cin8 localization and therefore function is regulated by 

the MT-bundling protein Ase1 (Khmelinskii, A. et al., 2009). Kar3, a minus-end directed 
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kinesin-14, was found to antagonize these forces. Thereby it is unclear if Kar3 creates 

an inward force by walking to the minus-end or opposes the outward force by cross-

linking the antiparallel interpolar MTs (Roof, D. M. et al., 1992; Saunders, W. S. et al., 

1992; Saunders, W. et al., 1997). Kip3, a kinesin-8 family member, does not regulate 

the spindle length itself, but provides the clustering of kinetochores on the metaphase 

spindle by adjusting the kMT length (Varga, V. et al., 2006; Wargacki, M. et al., 2010). 

In addition, Kar3 and Kip3, together with two further kinesin-like proteins (Kip2 and 

Smy1) and one dynein (Dhc1) operate on the cytoplasmic MTs to position the spindle 

and the nucleus within the cell (Winey, M. and Bloom, K., 2012). Despite their specific 

functions, none of the kinesins is individually essential and yeast cells containing only 

two of the motor proteins are viable: Cin8 and Kar3 or Kip3 respectively (Cottingham, 

F. R. et al., 1999). 

A highly diverse group of MT regulators are the MT-associated proteins (MAPs). A 

common feature of all these MAPs is that they are non-motor proteins that bind to MTs 

and most of them show plus-end tracking. There are five major proteins of different 

MAP-families in budding yeast: Bim1 (EB1), Bik1 (CLIP-170), Stu1 (CLASP), Stu2 

(XMAP215) and Nip100 (p150glued). For MT (or tubulin)-binding they use calponin ho-

mology (CH) domains, protein glycine-rich (CAP-GLY) domains and tumor overex-

pressing gene (TOG)-domains respectively. In addition, the MT-bundling protein Ase1 

also localizes to the metaphase spindle and crosslinks interpolar MTs (Schuyler, S. C. 

et al., 2003). Their diversity in structure also reflects their various functions for the in-

tegrity of the spindle (Winey, M. et al., 2012). Due to their relevance for this work, 

CLASP proteins and particularly Stu1 and TOG domains are described in more detail 

below (see 1.4). 

 

1.2.4 Anaphase 

Following the formation of a stable bipolar spindle during metaphase, chromosomes 

get separated into mother and daughter cell in anaphase. When all sister-KTs are bipo-

lar attached to the SPBs, the SAC is turned off and the APC/C gets activated. Subse-

quently the cleavage of the cohesin complex initiates anaphase (Uhlmann, F. et al., 

1999) and kMTs depolymerize to pull the sister chromatids towards the SPBs (ana-

phase A). Almost simultaneously the spindle elongates rapidly and SPBs move apart 

(anaphase B) (Fig. 1-7) (Winey, M. et al., 1995; Toole, E. T. O. et al., 1999). 
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At the metaphase to anaphase transition (Fig. 1-7), the ubiquitin protein ligase 

APC/C together with the activator protein Cdc20 mediate ubiquitination of Pds1 fol-

lowed by its degradation (King, R. W. et al., 1995; Cohen-Fix, O. et al., 1996). Proteol-

ysis of Pds1 subsequently activates the separase Esp1 to cleave the cohesin subunit 

Scc1 and the sister chromatids get segregated (Ciosk, R. et al., 1998; Uhlmann, F. et 

al., 1999). In budding yeast, the separation of the sister chromatids starts at the 

centromeric region and continues along the chromosomal arm until telomeres are 

reached (Renshaw, M. J. et al., 2010). Activation of Esp1 additionally promotes the 

release of the protein phosphatase Cdc14 from the nucleolus (FEAR, Cdc fourteen 

early anaphase release; see 1.2.4.1) (Sullivan, M. et al., 2003; Baskerville, C. et al., 

2008).  

As kMTs depolymerize, the pulling forces of the kMTs rapidly move the sister chro-

matids poleward (anaphase A). Simultaneously, the spindle midzone (see 1.2.4.2), the 

overlap region of interpolar MTs emanating from opposing SPBs, is formed by the re-

cruitment of motor proteins and MAPs (Glotzer, M., 2009). This stabilizes spindles by 

crosslinking interpolar MTs and drives their elongation. Subsequently, the spindles 

elongate by sliding interpolar MTs apart and the distance between the SPBs increases 

up to 10 µm (anaphase B) (Winey, M. et al., 1995; Toole, E. T. O. et al., 1999). There-

by spindles elongate in two phases: An initially fast elongation with a velocity of ~ 

1µm/min that brings the old SPB and one set of chromosomes in the daughter cell, and 

a second slower elongation phase until the final spindle length is reached (Kahana, J. 

A. et al., 1995; Yeh, E. et al., 1995). 

 

Fig. 1-7. Mitosis from anaphase onset until late anaphase.  

Upon bipolar attachment of all sister-KTs, APC/C
Cdc20

 gets activated and promotes the degradation of 

Pds1 (securin). This activates Esp1 (separase) which subsequently cleaves the cohesin that holds sister 

chromatids together. As a consequence, sister chromatids rapidly get dragged to the opposing SPBs by 

the depolymerizing kMTs (anaphase A), followed by rapid sliding apart of the overlapping interpolar MTs, 

decreasing the region of overlap (anaphase B). Formation of the midzone by the recruitment of various 

midzone proteins stabilizes the interpolar MTs until their depolymerization in late anaphase/ telophase. 

According to Peters, J.-M. (2002).  
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1.2.4.1 The Cdc14 early anaphase release 

During metaphase cells show a high activity of Cdk1 which is diminished in ana-

phase and substituted by an increased phosphatase activity. The main antagonizing 

phosphatase for Cdk1 phosphorylation in budding yeast is the Cdc14 phosphatase. 

Cdc14 is sequestered at the nucleolus by binding to the nucleolar protein Net1/Cfi1 

most of the time during the cell cycle, but undergoes two cycles of release during ana-

phase. The first partial and transient release in early anaphase is achieved by the 

FEAR network consisting of Esp1, Slk19, the polo-like kinase (Cdc5), Spo12 and Bns1. 

Cdc5 inactivates the Cdk1 inhibitor Swe1 and therefore the phosphorylation of Net1 by 

Clb2-Cdk1 activates the Cdc14 release (Stegmeier, F. et al., 2002; Torres-Rosell, J. et 

al., 2005; Liang, F. et al., 2009). Subsequently, Cdc14 promotes a drastic change in 

MT dynamics and spindle stability by the dephosphorylation of spindle-associated tar-

gets like the MT-bundler Ase1, Sli15 (CPC), Ask1 (Dam1 complex) and Fin1 

(Khmelinskii, A. et al., 2008). 

 

1.2.4.2 Formation of the spindle midzone 

Sliding apart the antiparallel interpolar MTs that overlap in the spindle midzone gen-

erates the forces for spindle elongation. In budding yeast, the spindle midzone of ana-

phase spindles initially consists of about 8 antiparallel interpolar MTs (3-4 emanating 

from each SPB) and this number decreases down to about 2 in late anaphase.  

At anaphase onset, various proteins are recruited to the central region of the spindle 

to form the spindle midzone. Some of these proteins like the MT-bundling protein Ase1, 

the plus-end binding proteins Bim1 and Bik1, the motor proteins Cin8 and Kip3 and the 

MAP Stu1 already localize to the spindle in metaphase. Others like the FEAR-complex 

separase-Slk19 and Pds1 however get recruited to the spindle only upon anaphase 

onset.  

After dephosphorylation by the separase-activated phosphatase Cdc14, Ase1 local-

izes to the spindle midzone and subsequently is essential to recruit additional midzone 

proteins. Therefore, Ase1 does not only stabilize the spindle by bundling interpolar MTs 

in an antiparallel fashion, but also acts as the main organizer of the spindle midzone. 

The Ase1-dependent binding of the Esp1-Slk19 complex then defines and restricts the 

localization of Ase1 and further midzone proteins to the center of the midzone 

(Khmelinskii, A. et al., 2007). The recruitment of Cin8 to the midzone promotes the slid-

ing of antiparallel MTs for spindle elongation (Khmelinskii, A. et al., 2009). However, 

some proteins like the Ipl1 complex, but also Dam1 or Ndc10 stay localized along the 
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spindle in early anaphase and localize to the spindle midzone in late anaphase 

(Buvelot, S. et al., 2003; Bouck, D. C. et al., 2005; Nakajima, Y. et al., 2011).  

 

1.2.5 Telophase and exit from mitosis 

When chromosome segregation is completed, cells exit from mitosis. This critical 

cell cycle transition is concomitant with the disassembly of the spindle and subsequent 

cytokinesis. Only if the spindle is correctly aligned along the mother-bud polarity axis 

with one SPB in the mother cell and the other SPB reaching the cell cortex of the 

daughter cell, the spindle position checkpoint (SPOC) is satisfied and the mitotic exit 

network (MEN) gets active. This ensures that one chromosome set is indeed trans-

ferred to the bud, whereas the other chromosome set remains in the mother cell 

(Caydasi, A. K. et al., 2010). The degradation of Ase1 (Juang, Y.-L., 1997), but also the 

localization of the Ipl1-Sli15 complex to the midzone in late anaphase (Buvelot, S. et 

al., 2003) are thought to induce the disassembly of the spindle. 

The signaling cascade of the MEN, which is regulated by the small Ras-like GTPase 

Tem1, activates the kinases Cdc15 and Dbf2 (in complex with its regulatory binding 

protein Mob1). This promotes the full release of Cdc14 from the nucleolus and there-

fore the complete inhibition of the Cdk1 activity in three pathways (Caydasi, A. K. et al., 

2012). Firstly, dephosphorylation of Cdh1, which is the second activator protein of the 

APC/C, activates the APC-Cdh1 complex that achieves the degradation of the cyclin 

Clb2 (Jaspersen, S. L. et al., 1998). Secondly, the dephosphorylation of the transcrip-

tion factor Swi5 induces the expression of the Cdk1 inhibitor Sic1 and thirdly, Sic1 is 

stabilized by its own dephosphorylation (Dumitrescu, T. P. et al., 2002). 

When the Cdk1 is inactive, the kinases of the MEN and Cdc14 localize to the bud 

neck as the site of cell division, and initiate the cortical actomyosin ring contraction, 

septum formation and cytokinesis (Meitinger, F. et al., 2012).  
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1.3 The kinetochore 

The KT is a complex structure that mediates the attachment of chromosomes to 

kMTs and regulates the progress of mitosis via the spindle assembly checkpoint. In all 

eukaryotes this complex is essential for accurate segregation of duplicated chromo-

somes to daughter cells. Although composed of more than 70 proteins, the S. 

cerevisiae KT is considered relatively simple since it provides only one MT binding site. 

Many components of the S. cerevisiae KT have orthologs in KTs of higher eukaryotes, 

especially the KT-MT interface appears to be very similar. Several MAPs contribute to 

this interface and regulate the dynamics of kMTs. In addition, the same MAPs also lo-

calize to interpolar microtubules and regulate spindle stability. The distinct 

subcomplexes of the KT form a structure that can be subdivided in the inner KT, the 

linker layer and the outer KT (Fig. 1-8). These KT subcomplexes are thought to be as-

sembled in a hierarchal manner at a specific DNA region, called the centromere 

(Biggins, S., 2013). 

 

 

1.3.1 The centromere 

The centromere of budding yeast is a point-centromere with a defined DNA region 

of 125 bp. In contrast to most eukaryotic centromeres, epigenetic mechanisms might 

not contribute to their generation. However, a specific chromatin structure is the hall-

 

Fig. 1-8. Model of the kinetochore structure and the KT-MT interface.  

Scheme indicating the rough position and stoichiometry of the S. cerevisiae KT subcomplexes. According 

to Westermann, S. et al. (2007) and Biggins, S. (2013). 
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mark of all eukaryotic centromeres. Whereas regular nucleosomes consist of a histone 

octamer containing two copies of each H2A, H2B, H3 and H4, the centromeric nucleo-

some comprises a H3 variant called Cse4 (CENP-A in higher eukaryotes) (Palmer, D. 

K. et al., 1987; Stoler, S. et al., 1995). The point-centromere is composed of three con-

served centromere-determining elements (CDE): CDEI, an 8 bp palindrome, CDEII, a 

78 to 86 bp stretch of AT-rich DNA and CDEIII, a conserved 26 bp element (Hieter, P. 

et al., 1985; Cottarel, G. et al., 1989; Clarke, L., 1998). The centromeric DNA gets rep-

licated early in S-phase (McCarroll, R. M. et al., 1988), most likely to give cells enough 

time for KT assembly followed by KT-MT attachment until the end of S-phase 

(Kitamura, E. et al., 2007). In order to build up the KT, the CDEI and CDEIII consensus 

sites initiate the assembly of the inner KT by the binding of Cbf1 and the CBF3 com-

plex (Cai, M. et al., 1990; Lechner, J. et al., 1991).  

 

1.3.2 The inner kinetochore 

The inner KT is formed by the proteins that achieve the contact with the centromere 

and serve as a platform for the further assembly of the KT components. One of the key 

nucleating factors for the KT is the CBF3 complex, consisting of the four essential pro-

teins Ndc10, Cep3, Ctf13 and Skp1 (Lechner, J. et al., 1991; Connelly, C. et al., 1996). 

A network of different subcomplexes called the constitutive centromere associated 

network (CCAN) was determined in vertebrates. Most of these identified proteins also 

have orthologs in budding yeast. These include Mif2 (Meeks-Wagner, D. et al., 1986; 

Meluh, P. B. et al., 1995), the histone H3 variant Cse4 and the CDEI binding protein 

Cbf1 (Cai, M. et al., 1990). The model that the inner KT could be structured as a loop 

around the Cse4-nucleosome arose from the finding that Ndc10 binds to CDEIII, but 

also to the CDEI binding protein Cbf1 (Cho, U.-S. et al., 2012; Biggins, S., 2013). An 

additional component of the inner KT is the Ipl1 complex, consisting of the Ipl1 kinase, 

Sli15, Bir1 and Nbl1. This complex localizes to the KT from G1 until anaphase via bind-

ing of Bir1 to the CBF3 complex (Yoon, H. et al., 1999) and Sli15 interaction with the 

COMA complex of the linker layer (Knockleby, J. et al., 2009).  

 

1.3.3 The linker layer 

The linker layer serves as a bridge between the centromere-binding proteins of the 

inner KT and the MT-binding proteins of the outer KT (Westermann, S. et al., 2007). A 

protein complex that is also counted to the CCAN, but is also part of the linker layer is 

the COMA complex containing of the proteins Ctf19, Okp1, Mcm21 and Ame1 (Ortiz, J. 
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et al., 1999; De Wulf, P. et al., 2003). Various additional proteins that bind to the CO-

MA complex are taken together as the Ctf19 complex in budding yeast and are also 

counted among the CCAN. Additionally the essential subcomplexes Spc105/KNL-

1/Blinkin complex (containing Spc105 and Kre28), the Mtw1/MIND/Mis12 (composed of 

Mtw1, Dsn1, Nnf1 and Nsl1) and Ndc80 complex (composed of Ndc80, Nuf2, Spc24, 

Spc25) contribute to the linker layer (Westermann, S. et al., 2007; Biggins, S., 2013). 

They can be summarized as the highly conserved KMN (KNL-1, Mis12, Ndc80) net-

work that represents the main MT-binding site of the KT (Cheeseman, I. M. et al., 

2006).  

The Ndc80 complex is a heterotetramer with globular head domains that are con-

nected by a long rod-shaped coiled-coil structure. The crucial function of MT binding is 

achieved by the interaction of the positively charged CH domains with the negatively 

charged MT interface (Wei, R. R. et al., 2005; Ciferri, C. et al., 2008). Phosphorylation 

of Ndc80 by the protein kinase Mps1 plays an important role for the activation of the 

SAC at the KT (Kemmler, S. et al., 2009). A loop that interrupts the rod of the Ndc80 

protein is suggested to connect Ndc80 with the outer KT complex Dam1, but the exact 

role of this loop is still unclear (Maure, J.-F. et al., 2011). Besides the Dam1 complex 

also other proteins of the outer KT are dependent on Ndc80 either because they direct-

ly bind to Ndc80 or more likely because the KT-MT attachment is impaired upon Ndc80 

disruption (Westermann, S. et al., 2007).  

In addition, the Mtw1 complex forms an elongated structure with a globular head, in-

teracting with the C-terminal globular head of Ndc80 (consisting of Spc24 and Spc25) 

(Maskell, D. P. et al., 2010). The Spc105 complex, similar to the Mtw1 complex does 

not show MT-binding activity on its own, but it is suggested to serve as a scaffold for 

further proteins of the outer KT. Therefore it binds Bub1 and Bub3 checkpoint proteins 

and may be a regulatory subunit for the PP1 phosphatase (Kiyomitsu, T. et al., 2007; 

Rosenberg, J. S. et al., 2011; London, N. et al., 2012). 

 

1.3.4 The outer kinetochore 

The outer KT is assembled of the proteins that form the interface between KTs and 

MTs and described the site where the chromosome movement is generated. 

Like the Ndc80 complex, the outer kinetochore Dam1/DASH complex directly binds 

to MTs. This essential complex consists of 10 proteins and localizes to KTs in a KMN 

and MT dependent way (Janke, C. et al., 2002; Li, Y. et al., 2002). Thereby it is uncer-

tain if the Dam1 complex assembles a ring-structure surrounding the MT protofilament 
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like it was detected in vitro (Miranda, J. J. L. et al., 2005; Westermann, S. et al., 2005). 

It is known that the interaction with the MT lattice requires the C-terminus of Dam1 and 

αβ-tubulin (Westermann, S. et al., 2005). Lateral sliding of the Dam1 ring-structure 

along the MT lattice would allow to convert the energy of the depolymerizing MT into a 

pulling force of the end-on attached KT. Taken together, the Ndc80 complex and the 

Dam1 complex are thought to be the key player to promote a robust, but also dynamic 

interaction of KTs and MTs (Westermann, S. et al., 2007). 

In addition, the checkpoint proteins Mps1, Mad1, Mad2, Bub1 and Bub3 count to the 

outer KT (Biggins, S., 2013). The four nuclear MT motor proteins Kar3, Cin8, Kip1 and 

Kip3 and several MAPs like Stu1, Stu2, Bik1 and Bim1 are further components of the 

outer KT. Most of them localize to the dynamic plus-ends of MTs and regulate MT dy-

namics and interactions of MTs with other cellular structures (Schuyler, S. C. et al., 

2001; Tytell, J. D. et al., 2006; Wolyniak, M. J. et al., 2006). These proteins do not con-

tribute to the core structure of the KT, but transiently localize to the KT to fulfill regula-

tory functions. They are required for KT-MT attachment and stabilization of interpolar 

MTs and kMTs (Lin, H. et al., 2001; Yin, H. et al., 2002; Biggins, S., 2013). Further-

more, some of them experience a dramatic reorganization to the spindle at the begin-

ning of anaphase and thus stabilize the mitotic spindle. The S. cerevisiae CLASP hom-

olog Stu1 (suppressor of β-tubulin) is an impressive example in this respect (Yin, H. et 

al., 2002; Ortiz, J. et al., 2009). 

 

1.4 CLASP proteins and the S. cerevisiae Stu1  

One of the proteins that contribute to the outer KT and therefore to the KT-MT inter-

face is Stu1. This essential protein was originally found as a suppressor of a beta-

tubulin mutation and turned out to be an essential component of the mitotic spindle 

(Pasqualone, D. et al., 1994; Yin, H. et al., 2002).  

Stu1 belongs to the evolutionary conserved CLASP family, which includes CLASP1 

and CLASP2 in vertebrates, MAST/orbit in D. melanogaster, Cls-2 in C. elegans and 

Cls1 in S. pombe (Akhmanova, A. et al., 2005). CLASP proteins are characterized by 

binding to MTs, preferentially to their plus-end tips and by promoting MT stability or 

polymerization by the incorporation of tubulin subunits (Maiato, H. et al., 2005). In all 

characterized organisms, CLASP proteins play an essential role for the formation and 

maintenance of a bipolar spindle (Pasqualone, D. et al., 1994; Inoue, Y. H. et al., 

2000). The budding yeast Stu1 for example is required to drive and maintain the sepa-

ration of the SPBs (Yin, H. et al., 2002). In contrast to the human CLASP1, Stu1 cannot 

be found at SPBs (centrosomes in higher eukaryotes) or outside the nucleus at astral 
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MTs, nor does it particularly localize to the plus-ends of MTs in a regular cell cycle 

(Maiato, H. et al., 2003; Ortiz, J. et al., 2009).  

Recent findings revealed that in the progress of mitosis Stu1 first localizes to KTs, 

then binds to the metaphase spindle, focuses to the midregion of interpolar MTs in an-

aphase and diffusely surrounds SPBs in late anaphase (Ortiz, J. et al., 2009). More 

detailed analysis demonstrated that Stu1 specifically binds to unattached KTs and thus 

facilitates capturing of unattached KTs by MTs. The displacement of Stu1 from the KT 

and re-localization to interpolar MTs is putatively initiated when both sister KTs engage 

in MT interaction. Since detached KTs in competition with interpolar MTs apparently 

recruit almost all cellular Stu1, they might indirectly regulate the spindle formation. If 

Stu1 is absent from the spindle, SPBs stay in close proximity to each other and this is 

likely to facilitate bipolar KT attachment (Ortiz, J. et al., 2009). 

Interestingly, CLASP1 was suggested to bind to the outer KT (called outer corona) 

of vertebrate cells to regulate kMT dynamics by providing tubulin for the incorporation 

into kMTs (Maiato, H. et al., 2003). CLASP2 has only partially redundant functions dur-

ing mitosis and has a key role for efficient chromosome poleward movement. Never-

theless, CLASP1 and CLASP2 are thought to work together to ensure mitotic fidelity. 

They both are suggested to incorporate tubulin not only in kMTs when localizing to the 

KT, but also to plus-ends of interpolar MTs in anaphase (Pereira, A. L. et al., 2006).  

In agreement with this, proteins of the CLASP family were found to use conserved 

TOG-like (TOGL) domains to directly bind tubulin, similar to the mechanism firstly dis-

covered for Dis1/XMAP215 family members like the budding yeast Stu2. Two pairs of 

TOG domains of a protein dimer are thought to wrap around a tubulin heterodimer like 

a clamp. In combination with their ability to interact with the MT lattice, they recruit free 

tubulin to MTs and provide αβ-tubulin for MT polymerization or stabilization (Al-

Bassam, J. et al., 2006, 2010).  

TOG domains are repeats of about 200 amino acids consisting of up to six HEAT 

motifs that arrange in parallel to form a characteristic flat paddle-like domain (Al-

Bassam, J. et al., 2006). One HEAT repeat consists of one pair of antiparallel alpha-

helical structures connected by a so called intra-HEAT repeat loop (Fig. 1-9 A). HEAT 

motifs were generally found as protein-protein interaction domains and are comprised 

within various proteins (Neuwald, A. F., 2000). The name originates from four proteins 

in which the repeat was detected: huntingtin, elongation factor 3 (EF3), the regulatory 

A subunit of protein phosphatase 2 A (PP2A) and TOR1 (Andrade, M. A. et al., 1995). 

Especially the intra-HEAT repeat loops appear to be highly conserved within the 

XMAP215 and CLASP family members (Fig. 1-9 B).  
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In contrast to XMAP215/CLASP proteins of higher eukaryotes that contain five or 

three arrayed TOG domains at the N-terminal region of the protein, yeast proteins only 

have two TOG domain repeats (Ohkura, H. et al., 2001). Therefore, Stu2 or Cls1 func-

tion as a homodimer, in contrast to higher eukaryotes that act as a monomer (Al-

Bassam, J. et al., 2006). Often an additional C-terminal coiled-coil region contributes to 

MT-binding or localization to the centrosome (SPB in budding yeast) or the KT. 

Whereas XMAP215 family members are suggested to have the function of a MT poly-

merase when localizing to MT plus-ends, CLASP family members are thought to stabi-

lize MTs by promoting MT rescue and preventing MT catastrophe events (Al-Bassam, 

J. et al., 2011). For instance, the S. pombe CLASP Cls1 locally increases MT rescue 

frequency and decreases MT catastrophe frequency in vitro. Thereby, unimpaired tu-

bulin binding by the TOGL domains is critical for the MT rescue activity of Cls1 (Al-

Bassam, J. et al., 2010).  

Along with other CLASP proteins, Stu1 was also suggested to contain TOGL do-

mains at the N-terminal part of the protein (Al-Bassam, J. et al., 2011), but nothing is 

known about the biological significance of these domains for the function of Stu1.  

 

 

Fig. 1-9. TOG domains and the tubulin binding loops 

(A) Overlaid crystal structure of TOG domains from the XMAP215 homologs S. pombe Stu2, C. elegans 

Zyg9 and D. melanogaster Msps with indicated intra-HEAT repeat loops (L1-L5). Six HEAT repeats, each 

consisting of two antiparallel alpha-helical structures that are connected via five intra-HEAT repeat loops, 

form a characteristic paddle-like domain. Adapted from Al-Bassam, J. et al. (2011). (B) Alignment of the 

highly conserved tubulin binding turns, the intra-HEAT repeat loops (L1-L5). Residues that are strictly 

conserved within TOG and TOGL domains of CLASP and XMAP215 proteins are highlighted in cyan, 

moderately ones in bright blue and weakly conserved ones in green. Alignments of indicated proteins of 

Saccharomyces cerevisiae (Sc), Kluyveromyces lactis (Kl), Schizosaccharomyces pombe (Sp), Homo 

sapiens (Hs), Xenopus laevis (Xl) and Mus musculus (Mm) were performed using ClustalW. Conservation 

is indicated according to Al-Bassam, J. et al. (2011).  
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1.5 The aim of the study 

The S. cerevisiae CLASP homolog Stu1 is an essential protein that localizes to dif-

ferent molecular structures and has various functions during mitosis. But only little is 

known about the structural requirements that direct and regulate Stu1 and about their 

mechanism of action. Earlier studies demonstrated that the determined MT-binding 

domain (MBD) of Stu1 (Yin, H. et al., 2002) is essential for cell viability and binding to 

MTs also in vivo. Additionally, the MBD seems to ensure a proper KT-MT attachment 

(Ortiz, J. et al., 2009). The C-terminal domain was found to be required for the localiza-

tion to unattached KTs (Ortiz, J. et al., 2009). This work had the purpose to contribute 

to a better understanding of the function of Stu1 as an essential midzone protein, its 

role in spindle dynamics and capturing, but also the basic mechanisms of the regula-

tion of this protein. One strategy to characterize the impact of different domains on the 

localization and function of Stu1 at KTs and at the spindle was to evaluate the pheno-

types of various deletion mutants. Another strategy was to analyze the impact of modi-

fications like phosphorylation on the properties of Stu1 in order to gain more insight in 

the regulatory mechanism of this protein. Identified phosphorylation sites were ana-

lyzed in regards to their biological significance for the function of Stu1. 
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2 MATERIALS 

2.1 Organisms 

2.1.1 Escherichia coli strains 

Strain Genotype Reference 
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2.1.2 Saccharomyces cerevisiae strains 

Strain Genotype Reference 

YPH499 MATa ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 
Sikorski and 

Hieter (1989) 

YMS231 MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre this lab 

YMS299 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

PDS1-9MYC::klTRP1 
this lab 

YSK633 
MATalpha ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

cyh2R [CF CEN6 URA3 SUP11 CYH2S] ∆mad2::klTRP1 
this lab 

YBK2137 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

∆stu1::HIS3MX6 lys2-801ambre::pSTU1-FLAG-stu1(aa261-aa762)-NLS-GFP::LYS2 
this lab 

YBK2139 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 ∆stu1::HIS3MX6 

 lys2-801ambre::pSTU1-FLAG-stu1(aa261-aa569)-NLS-GFP::LYS2 + pCF1137 (pSTU1-STU1-Term) 
this lab 

YBK2241 

MATa ∆sst1 trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

stu1∆(995-1180)-CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::TetR-GFP::ADE2 

CEN5-tetO2x112::URA3 LEU2::pMET25-CDC20 ∆cin8::natNT2 

this lab 

YBK2242 

MATa ∆sst1 trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

STU1-CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::TetR-GFP::ADE2 CEN5-

tetO2x112::URA3 HIS3MX6::pMET25-CDC20 ∆cin8::natNT2 

this lab 

YCF1778 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

STU1-ProtA-7HIS::HIS3MX6 lys2-801ambre::pGAL1-FLAG-stu1(K428A,K429A)-NLS-GFP::LYS2 
this lab 

YCF2177 
MATalpha ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

cyh2R [CF CEN6 URA3 SUP11 CYH2S] 
this lab 

YCF2226 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 ∆stu1::HIS3MX6 

 lys2-801ambre::pSTU1-FLAG-STU1-NLS-GFP::LYS2 cdc20::LEU2-pMET25-CDC20 
this lab 

YJO1164 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

STU1-ProtA-7HIS::HIS3MX6 
this lab 

YJO1334 

MATa ∆sst1 trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

ade2-101ochre::TetR-GFP::ADE2 CEN5-tetO2x112::URA3 SPC72-Cherry::hphNT1 stu1::klTRP1-

pGAL-UbiR-STU1-CFP::KANMX4 

this lab 

YJO1392 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

STU1-ProtA-7HIS::HIS3MX6 cdc20::KANMX4-pMET25-CDC20 
this lab 

YVS1408 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3  

STU1-NLS-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1421 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

∆stu1::HIS3MX6 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1459 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

cdc15-1 ura3::GFP-TUB1::URA3 STU1-ProtA-7HIS::HIS3MX6 
this work 

YVS1536 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S497A, S602A, S690A, S745A, S1001A, S1018A, T1034A, T1047A, S1060A, S1113A, T1134A, 

S1167A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 

this work 

YVS1543 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

∆stu1::HIS3MX6 + pCF1137 (pSTU1-STU1-Term) 
this work 

YVS1553 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(T1047A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1554 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(T1134A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1562 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S602E)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 
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Saccharomyces cerevisiae strains continued 

Strain Genotype Reference 

YVS1565 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S602A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1580 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

arg4∆::loxP-KANMX4-loxP STU1-ProtA-7HIS::HIS3MX6  
this work 

YVS1582 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

cdc15-1 ura3::GFP1-TUB1::URA3 arg4∆::loxP-KANMX4-loxP STU1-ProtA-7HIS::HIS3MX6 
this work 

YVS1596 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S1113A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1597 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S1113E)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1611 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S497A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1613 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S497E)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1614 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

stu1(T1047A, S1113A, T1134A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-

Cherry::hphNT1 

this work 

YVS1615 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S745E)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1616 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(K428A, K429A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT 
this work 

YVS1626 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 stu1(T1047E, S1113E, T1134E)-

EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1627 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 stu1(S497E, T1047A, S1113A, 

T1134A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1628 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 stu1(S497A, T1047E, S1113E, 

T1134E)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1634 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S745A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1648 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 stu1(S497A, S745E, T1047E, 

S1113E, T1134E)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1649 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 stu1(S497E, S745A, T1047A, 

S1113A, T1134A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1651 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1∆(995-1180)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1662 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

stu1(S265A, S276A, T277A, S497E, S745A, T1047A, S1113A, T1134A)-EGFP::klTRP1 lys2-

801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 

this work 

YVS1718 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 his3-∆200 ura3-52::CFP-TUB1::URA3  

AME1-Cherry::hphNT1 lys2-801ambre::pGAL1-STU1-NLS-GFP::LYS2 
this work 

YVS1718 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

STU1-ProtA-7HIS::HIS3MX6 
this work 

YVS1743 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S265E, S276E, T277E, S497A, S745E, T1047E, S1113E, T1134E)-EGFP::klTRP1 lys2-

801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 

this work 

YVS1757 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S1001A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1768 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S997A, S1000A, S1001A, S1003A, T1005A, S1018A, T1034A, T1047A, S1060A, S1113A, 

T1134A, S1167A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 

this work 

YVS1772 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 stu1∆(aa301-aa569)-EGFP::klTRP1 

lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 + pCF1137 (pSTU1-STU1-Term)  
this work 

YVS1814 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

stu1(W339A, R342A, K428A, K429A)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-

Cherry::hphNT1 + pCF1137 (pSTU1-STU1-Term) 

this work 

YVS1919 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 STU1-ProtA-7HIS::HIS3MX6 lys2-

801ambre::pGAL1-FLAG-stu1(W339A, R342A, K428A, K429A)-NLS-GFP::LYS2 
this work 

YVS1933 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 stu1(S276A, T277A, S602A)-

EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1971 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

STU1-ProtA-7HIS::HIS3MX6 lys2-801ambre::pGAL1-FLAG-stu1(aa261-aa569)-NLS-GFP::LYS2 
this work 

YVS1972 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

STU1-ProtA-7HIS::HIS3MX6 lys2-801ambre::pGAL1-FLAG-stu1∆(301-560)-NLS-GFP::LYS2 
this work 

YVS1986 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3  

stu1∆(aa717-aa994)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS1994 

MATa ∆sst1 ade2-101ochre trp1-∆63 ura3-52 his3-∆200 stu1(W339A, R342A, K428A, K429A)-

EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 leu2-∆1::pGAL1-UbiR-

STU1::LEU2 

this work 
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Saccharomyces cerevisiae strains continued 

Strain Genotype Reference 

YVS2000 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

stu1(S602A)-ECFP::KANMX6 lys2-801 GFP-TUB1::TRP1 SPC72-Cherry::hphNT1  
this work 

YVS2001 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3  

stu1∆(aa570-aa716)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS2028 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

STU1-CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::TetR-GFP::ADE2 CEN5-

tetO2x112::URA3 

this work 

YVS2029 
MATa ∆sst1 trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre stu1∆(aa995-aa1180)-

CFP::KANMX6 Spc72-3mCherry::hphNT1 ade2-101ochre::TetR-GFP::ADE2 CEN5-tetO2x112::URA3 
this work 

YVS2046 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 stu1∆(aa570-aa716, aa995-

aa1180)-EGFP::klTRP1 lys2-801ambre::CFP-TUB1::LYS2 AME1-Cherry::hphNT1 
this work 

YVS2078 

MATa ∆sst1 ade2-101ochre leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

ade1::pURA3-TetR-3xCFP::hphNT1 CEN5-tetO2x112::URA3 SPC72-Cherry::natNT2 trp1-∆63::GFP-

TUB1::TRP1 KANMX6::pGAL1-UbiR-STU1 

this work 

YVS2085 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 

ade1::pURA3-TetR-3xCFP-HPH1 CEN5-tetO2x112::URA3 SPC72-Cherry::natNT2 trp1-∆63::GFP-

TUB1::TRP1 KANMX6::pGAL1-UbiR-STU1 lys2-801ambre::pSTU1-FLAG-STU1-NLS::LYS2 

this work 

YVS2086 

MATa ∆sst1 ade2-101ochre leu2-∆1 ura3-52 his3-∆200 ade1::pURA3-TetR-3xCFP-HPH1 CEN5-

tetO2x112::URA3 SPC72-Cherry::natNT2 trp1-∆63::GFP-TUB1::TRP1 KANMX6::pGAL1-UbiR-STU1 

lys2-801ambre::pSTU1-FLAG-stu1(W339A, R342A, K428A, K429A)-NLS::LYS2 

this work 

YVS2087 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 ade1::pURA3-TetR-3xCFP-HPH1 

CEN5-tetO2x112::URA3 SPC72-Cherry::natNT2 GFP-TUB1::TRP1 KANMX6::pGAL1-UbiR-STU1 

lys2-801ambre::pSTU1-FLAG-stu1∆(aa301-aa560)-NLS::LYS2 

this work 

YVS2104 

MATa ∆sst1 trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

stu1∆(995-1180)-CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::TetR-GFP::ADE2 

CEN5-tetO2x112::URA3 LEU2-pMET25-CDC20 

this work 

YVS2113 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

stu1(S1113A)-CFP::KANMX6 SPC72-3mCherry::hphNT2 ade2-101ochre::TetR-GFP::ADE2 CEN5-

tetO2x112::URA3  

this work 

YVS2114 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1(S1113E)-CFP::KANMX6 SPC72-3mCherry::hphNT2 ade2-101ochre::TetR-GFP::ADE2 CEN5-

tetO2x112::URA3 

this work 

YVS2152 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

stu1∆(aa995-aa1180)-EGFP::klTRP1 ade1::pURA3-TetR-3xCFP::hphNT1 SPC72-3mcherry::natNT2 

CEN5-tetO2x112::URA3 

this work 

YVS2153 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1∆(aa570-aa716)-EGFP::klTRP1 SPC72-3mCherry::natNT2 ade1::pURA3-TetR-3xCFP::hphNT1 

CEN5-tetO2x112::URA3 

this work 

YVS2154 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

stu1∆(aa570-aa716, aa995-aa1180)-EGFP::klTRP1 ade1::pURA3-TetR-3xCFP::hphNT1 SPC72-

3mcherry::natNT2 CEN5-tetO2x112::URA3 

this work 

YVS2156 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1(S997A, S1000A, S1001A, S1003A, T1005A, S1018A, T1034A, T1047A, S1060A, S1113A, 

T1134A, S1167A)-EGFP::klTRP1 SPC72-3mCherry::natNT2 ade1::pURA3-TetR-3xCFP::hphNT1 

CEN5-tetO2x112::URA3 

this work 

YVS2159 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1(T1047E, S1113E, T1134E)-EGFP::klTRP1 SPC72-3mCherry::natNT2 ade1::pURA3-TetR-

3xCFP::hphNT1 CEN5-tetO2x112::URA3 

this work 

YVS2160 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1(S1001A, T1034A, T1047A, T1134A)-EGFP::klTRP1 SPC72-3mCherry::natNT2 ade1::pURA3-

TetR-3xCFP::hphNT1 CEN5-tetO2x112::URA3 

this work 

YVS2161 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1(S497A, S745A, S1167A)-EGFP::klTRP1 SPC72-3mCherry::natNT2 ade1::pURA3-TetR-

3xCFP::hphNT1 CEN5-tetO2x112::URA3 

this work 

YVS2162 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1(S276A, T277A, S602A)-EGFP::klTRP1 SPC72-3mCherry::natNT2 ade1::pURA3-TetR-

3xCFP::hphNT1 CEN5-tetO2x112::URA3 

this work 

YVS2163 

MATa ∆sst1 ade2-101ochre leu2-∆1 ura3-52 his3-∆200 trp1-∆63::GFP-TUB1::TRP1 SPC72-

3mCherry::natNT2 ade1::pURA3-TetR-3xCFP::hphNT1 CEN5-tetO2x112::URA3 KANMX6::pGAL1-

UbiR-STU1 lys2-801ambre::pSTU1-FLAG-stu1(aa261-aa569)-NLS::LYS2 

this work 

YVS2199 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1(T1047A, S1113A, T1134A)-EGFP::klTRP1 SPC72-3mCherry::natNT2 ade1::pURA3-TetR-

3xCFP::hphNT1 CEN5-tetO2x112::URA3 

this work 

YVS2199 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1(T1047A, S1113A, T1134A)-EGFP::klTRP1 ade1::pURA3-TetR-3xCFP::hphNT1 SPC72-

3mCherry::natNT2 CEN5-tetO2x112::URA3 

this work 

YVS2201 
MATalpha ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 cyh2R [CF: CEN6 URA3 CYH2S 

SUP11] stu1∆::HIS3MX6 lys2-801ambre::pSTU1-FLAG-stu1∆(aa995-aa1180)-NLS-GFP::LYS2  
this work 
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YVS2206 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1(S602E)-EGFP::klTRP1 SPC72-3mCherry::natNT2 ade1::pURA3-TetR-3xCFP::hphNT1 CEN5-

tetO2x112::URA3 

this work 

YVS2209 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

stu1∆(aa570-aa716)-EGFP::klTRP1 ade1::pURA3-TetR-3xCFP::hphNT1 SPC72-3mcherry::natNT2 

CEN5-tetO2x112::URA3 LEU2::pMET25-CDC20 

this work 

YVS2210 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre  

stu1∆(aa570-aa716, aa995-aa1180)-EGFP::klTRP1 ade1::pURA3-TetR-3xCFP::hphNT1 SPC72-

3mcherry::natNT2 CEN5-tetO2x112::URA3 LEU2::pMET25-CDC20 

this work 

YVS2211 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

STU1-CFP::KANMX6 SPC72-3xHA::HIS3MX6 ade2-101ochre::TetR-GFP::ADE2 CEN5-

tetO2x112::URA3 SPC42-EQFP::hphNT1 

this work 

YVS2212 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1∆(995-1180)-CFP::KANMX6 SPC72-3xHA::HIS3MX6 ade2-101ochre::TetR-GFP::ADE2 CEN5-

tetO2x112::URA3 SPC42-EQFP::hphNT1 

this work 

YVS2213 

MATa ∆sst1 ade2-101ochre trp1-∆63 ura3-52 his3-∆200 

∆stu1::HIS3MX6 ade1::pURA3-TetR-3xCFP::hphNT1 SPC72-3mcherry::natNT2 lys2-

801ambre::pStu1-Flag-STU1-NLS::LYS2 CEN5-tetO2x112::URA3 leu2-∆1::GFP-TUB1::LEU2 

this work 

YVS2214 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 ∆stu1::HIS3MX6 ade1::pURA3-

TetR-3xCFP::hphNT1 SPC72-3mcherry::natNT2 lys2-801ambre::pStu1-Flag-stu1∆(aa995-aa1180)-

NLS::LYS2 CEN5-tetO2x112::URA3 leu2-∆1::GFP-TUB1::LEU2 

this work 

YVS2220 
MATalpha ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 cyh2R [CF: CEN6 URA3 CYH2S 

SUP11] ∆stu1::HIS3MX6 lys2-801ambre::pSTU1-FLAG-stu1∆(aa717-aa996)-NLS-GFP::LYS2  
this work 

YVS2222 
MATalpha ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 cyh2R [CF: CEN6 URA3 CYH2S 

SUP11] ∆stu1::HIS3MX6 lys2-801ambre::pSTU1-FLAG-stu1∆(aa570-aa716)-NLS-GFP::LYS2  
this work 

YVS2230 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 his3-∆200 lys2-801ambre  

ura3-52:: CFP-TUB1::URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL1-UbiR-STU1 
this work 

YVS2231 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 his3-∆200  

ura3-52::CFP-TUB1::URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL1-UbiR-STU1 lys2-

801ambre::pSTU1-FLAG-stu1(W339A, R342A, K428A, K429A)-NLS-GFP::LYS2 

this work 

YVS2232 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 his3-∆200  

ura3-52::CFP-TUB1::URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL1-UbiR-STU1 lys2-

801ambre::pSTU1-FLAG-stu1∆(aa301-aa569)-NLS-GFP::LYS2 

this work 

YVS2234 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 his3-∆200  

ura3-52:TUBI-CFP::URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL1-UbiR-STU1 lys2-

801ambre::pSTU1-FLAG-(aa261-aa716)-NLS-GFP::LYS2 

this work 

YVS2294 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 lys2-801ambre  

ura3-52::CFP-TUB1::URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL1-Ubi-R-STU1  

pSTU1-FLAG-stu1∆(aa301-aa569)::Hs_CLASP1-TOGL2(aa284-aa552)-NLS-GFP::LYS2 

this work 

YVS2295 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 lys2-801ambre ade1::pURA3-TetR-3xCFP::hphNT1 

CEN5-tetO2x112::URA3 SPC72-Cherry::natNT2 stu1::KANMX6-pGAL1-UbiR-STU1 pSTU1-FLAG-

stu1∆(aa301-aa569)::Hs_CLASP1-TOG2(aa284-aa552)-NLS-GFP::LYS2 

this work 

YVS2296 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 lys2-801ambre ade1::pURA3-TetR-3xCFP::hphNT1 

CEN5-tetO2x112::URA3 SPC72-Cherry::natNT2 stu1::KANMX6-pGAL1-UbiR-STU1 pSTU1-FLAG-

stu1∆(aa301-aa569)::STU2-TOG1(aa1-aa318)-NLS-GFP::LYS2 

this work 

YVS2298 
MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 lys2-801ambre::pSTU1-FLAG- stu1(S602E)-NLS-

GFP::LYS2 ade1::pURA3-TetR-3xCFP::hphNT1 SPC72-3mcherry::natNT2 CEN5-tetO2x112::URA3 
this work 

YVS2301 

Mata ade2-101ochre leu2-∆1 ura3-52 his3-∆200 ∆stu1::HIS3MX6 ade1::pURA3-TetR-

3xCFP::hphNT1 SPC72-3mcherry::natNT2 lys2-801ambre::pSTU1-Flag-STU1-NLS::LYS2 CEN5-

tetO2x112::URA3 trp1-∆63:12xGFP-LacI::TRP1 CEN15-lacOx256::LEU2-CEN15 

this work 

YVS2302 

Mata ade2-101ochre leu2-∆1 ura3-52 his3-∆200 ∆stu1::HIS3MX6 ade1::pURA3-TetR-

3xCFP::hphNT1 SPC72-3mcherry::natNT2 lys2-801ambre::pSTU1-Flag-stu1∆(aa995-aa1180)-

NLS::LYS2 CEN5-tetO2x112::URA3 trp1-∆63::12xGFP-LacI::TRP1 CEN15-lacOx256::LEU2-CEN15 

this work 

YVS2304 

Mata ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

SPC72-3mcherry::hphNT1 lys2-801ambre::pSTU1-FLAG-stu1∆(aa301-aa569)-NLS-GFP::LYS2 

pSTU1-FLAG-stu1∆(aa1181-aa1513)-ZIPPER-NLS-ECFP::KANMX4 

this work 

YVS2311 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 his3-∆200 lys2-801ambre  

ura3-52::CFP-TUB1::URA3 STU1-GFP::HIS3MX6 cdc20::LEU2-pMET25-CDC20 ASE1-

Cherry::hphNT1 

this work 

YVS2313 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

∆stu1::HIS3MX6 lys2-801ambre::pSTU1-FLAG-stu1∆(aa995-aa1180)-NLS-GFP::LYS2 

CDC20::LEU2-pMET25-CDC20 ura3-52::CFP-TUB1::URA3 ASE1-Cherry::natNT2 

this work 

YVS2316 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200  

∆stu1::HIS3MX6 ade1::pURA3-TetR-3xCFP::hphNT1 SPC72-3mcherry::natNT2 lys2-

801ambre::pSTU1-FLAG-STU1-NLS::LYS2 CEN5-tetO2x112::URA3 ASE1-GFP::KANMX6 

this work 

YVS2317 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 ∆stu1::HIS3MX6 ade1::pURA3-

TetR-3xCFP::hphNT1 SPC72-3mcherry::natNT2 lys2-801ambre::pSTU1-FLAG-stu1∆(aa995-

aa1180)-NLS::LYS2 CEN5-tetO2x112::URA3 ASE1-GFP::KANMX6 

this work 
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YVS2334 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 lys2-801ambre  

ura3-52::CFP-TUB1::URA3 AME1-3mCherry::hphNT1 KANMX6::pGAL1-Ubi-R-STU1  

pSTU1-FLAG-stu1∆(aa301-aa569)::STU2-TOG1(aa1-aa318)-NLS-GFP::LYS2 

this work 

YVS2336 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

STU1-CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::TetR-GFP::ADE2 CEN5-

tetO2x112::URA3 ∆ase1::HIS3MX6 

this work 

YVS2338 

MATa ∆sst1 ade2-101ochre trp1-∆63 leu2-∆1 ura3-52 his3-∆200 lys2-801ambre 

stu1∆(995-1180)-CFP::KANMX6 SPC72-3mCherry::hphNT1 ade2-101ochre::TetR-GFP::ADE2 

CEN5-tetO2x112::URA3 ∆ase1::HIS3MX6 

this work 

 

Strain Legend - figures 

Figure Strains 

Tab. 4-1 
YVS1408, YVS1772, YVS1814, YVS2001, YVS1987, YVS1651, YBK2137, YBK2139, YCF2177, YSK633, YVS2201, 

YVS2220, YVS2222  

Fig. 4-2 YVS1718, YJO1164, YVS1971, YVS1972, YVS1919, YCF1778 

Fig. 4-3 
YVS1408, YVS2230, YVS2232, YVS2001, YV1987, YVS1651, YVS2046, YVS2231, YVS2234, YCF2170, YVS2104, 

YVS2209, YVS2210, YVS1772, YVS1814  

Fig. 4-4 YVS2311, YVS2313 

Fig. 4-5 YVS1408, YVS2001, YV1987, YVS1651, YVS2046, YVS2304 

Fig. 4-6 YVS1408, YVS2232, YVS2231, YVS2001, YV1987, YVS1651, YVS2046, YVS2028, YVS2029, YVS2152, YVS2154 

Fig. 4-7 YVS2085, YVS2078, YJO1334, YVS2087, YVS2086, YVS2028, YVS2153, YVS2029, YVS2154 

Fig. 4-8 YVS2085, YVS2078, YVS2087, YVS2086 

Fig. 4-9 YVS2001, YVS2231, YVS2234 

Fig. 4-10 YCF2170, YVS2104, YVS2028, YVS2153, YVS2029, YBK2242, YBK2241 

Fig. 4-11 YCF2170, YVS2104, YBK2242, YBK2241 

Fig. 4-12 YVS2028, YVS2029, YVS2336, YVS2338 

Fig. 4-13 YVS2028, YVS2029, YVS2336, YVS2338, YVS2152, YVS2316, YVS2317 

Fig. 4-14 YVS2301, YVS2302, YVS2211, YVS2212 

Fig. 4-15 YVS2334 ,YVS2294, YVS2295, YVS2296 

Fig. 4-16 YMS231, YMS299 

Fig. 4-17 YVS1580, YVS1582, YJO1164, YJO1392, YVS1459 

Fig. 4-20 pCF1377, pVS1437, pET28-Ipl1-Sli15, pBL902 

Fig. 4-22 YVS1408, YVS1536 

Fig. 4-23 YVS1408, YVS1628, YVS1627, YVS1648, YVS1649, YVS1743, YVS1662 

Fig. 4-24 YVS1408, YVS1596, YVS1597, YVS2028, YVS2113, YVS2114 

Fig. 4-25 
YVS1408, YVS1611, YVS1613, YVS1565, YVS1562, YVS1634, YVS1615, YVS1757, YVS1553, YVS1554, YVS2028, 

YVS2111, YVS2206, YVS2298  

Fig. 4-26 
YVS1408, YVS1462, YVS1564, YVS1614, YVS1626, YVS1933, YVS2028, YVS2161, YVS2160, YVS2199, YVS2159, 

YVS2162 

Fig. 4-27 YVS1408, YVS1768, YVS2028, YVS2156 

 

2.2 Plasmids 

Plasmid Description Purpose 

pASF125 pTUB1-GFP-TUB1::URA3 URA3 integration 

pBK1487 pSTU1-FLAG- stu1(aa261- 762 )-NLS-GFP in YDpK LYS2 integration 

pBK1503 ∆cin8::NatNT2 in pUC18 deletion of CIN8 

pBK1506 pSTU1-FLAG-stu1∆(aa301-aa569)::STU2-TOG1(aa1-aa318)-NLS-GFP in YDpK LYS2 integration 

pBK1508 pSTU1-FLAG-stu1∆(aa301-aa569)::Hs_CLASP1-TOGL2(aa284-aa552)-NLS-GFP in YDpK LYS2 integration 

pBL902 pT7-10xHIS-Mps1- in pET16b expression 

pBL929 KANMX6::pGAL1-UbiR 
template for N-terminal 

pGAL1-UbiR tagging 

pBSII/SK ori, lacZ, bla 
subcloning of PCR 

fragments 

pCF1137 pSTU1-STU1-Term CEN plasmid 

pCF1377 pT7-6xHIS-SUMO1-stu1(aa716-aa1513)-EGFP expression 
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Plasmid Description Purpose 

pCF1421 pGAL1-FLAG-Stu1(aa261-aa569)-NLS-GFP in YDpK LYS2 integration 

pCJ092 TetR-GFP::ADE2 ADE2 integration 

pCM79-2 pFA6a-3mCherry::hphNT1 fluorescent tagging 

pCM80-1 pFA6a-3mcherry::natNT2 fluorescent tagging 

pDB075 ADE1::pURA3-TetR-3xCFP::HPH1 ADE1 integration 

pET28-

Ipl1-Sli15 
pT7-IPL1-6xHIS-SLI15-6xHIS expression 

pHM105-6 EQFP::hphNT1 fluorescent tagging 

pJO719 klTRP1::pGAL1-UbiR 
template for N-terminal 

pGAL1-UbiR tagging 

pMK1168 KANMX4::pMET25-CDC20 
integration N-terminal 

tagging CDC20 

pMK1169 HIS3MX6::pMET25-CDC20 
integration N-terminal 

tagging CDC20 

pSH47 pGAL1-P1CRE 

expression of P1 phage 

Cre protein 

(recombinase) for marker 

recycling 

pSM1026 pTUB1-GFP-TUB1::TRP1 TRP1 integration 

pUG6 ori, loxP-KANMX4-loxP 
template for loxP-

KANMX4-loxP cassette 

pVS1181 pSTU1-stu1(S497A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1182 pSTU1-stu1(S1001A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1233 
pSTU1-stu1(S497A, S602A, S690A, S745A, S1001A, S1018A, T1034A, T1047A, S1060A, 

S1113A, T1134A, S1167A)-EGFP::klTRP1 in pBSII/SK 
endogenous integration 

pVS1241 pSTU1-stu1(S602A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1242 pSTU1-stu1(E1043V, T1047A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1243 pSTU1-stu1(T1134A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1246 pSTU1-stu1(S1113A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1248 pSTU1-stu1(S602E)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1275 pSTU1-stu1(S1113E)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1285 pSTU1-stu1(T1047A, S1113A, T1134A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1286 loxP-LYS2-loxP 
template for loxP-LYS2-

loxP cassette 

pVS1286 pSTU1-stu1(S497E)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1287 pSTU1-stu1(S745A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1288 pSTU1-stu1(S745E)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1292 pSTU1-stu1(S497E, T1047A, S1113A, T1134A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1295 pSTU1-stu1(S497A, T1047E, S1113E, T1134E)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1296 pSTU1-stu1(T1047E, S1113E, T1134E)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1303 pSTU1-stu1(S497E, S745A, T1047A, S1113A, T1134A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1304 pSTU1-stu1(S497A, S745E, T1047E, S1113E, T1134E)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1309 pSTU1-stu1∆(aa995-aa1180)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1310 
pSTU1-stu1(S265E, S276E, T277E, S497A, S745E, T1047E, S1113E, T1134E)-

EGFP::klTRP1 in pBSII/SK 
endogenous integration 

pVS1312 
pSTU1-stu1(S265A, S276A, T277A, S497E, S745A, T1047A, S1113A, T1134A)-

EGFP::klTRP1 in pBSII/SK 
endogenous integration 

pVS1322 pGAL1-FLAG-stu1(K428A, K429A)-NLS-GFP in YDpK LYS2 integration 

pVS1325 pGAL1-FLAG-STU1-GFP in YDpK LYS2 integration 

pVS1328 pSTU1-stu1∆(416aa-716aa, aa995-aa1180)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1338 pTUB1-GFP-TUB1::LEU2 LEU2 integration 

pVS1345 pSTU1-STU1-CFP::KANMX6 in pBSII/SK endogenous integration 

pVS1346 pSTU1-stu1∆(aa995-aa1180)-CFP::KANMX6 in pBSII/SK endogenous integration 

pVS1359 
pSTU1-stu1(S997A, S1000A, S1001A, S1003A, T1005A, S1018A, T1034A, T1047A, 

S1060A, S1113A, T1134A, S1167A)-EGFP::klTRP1 in pBSII/SK 
endogenous integration 

pVS1362 pSTU1-stu1∆(aa301-aa569)-EGFP::klTRP1 in pBSII/SK  endogenous integration 

pVS1369 pSTU1-stu1(W339A, R342A, K428A, K429A)-GFP::klTRP1 in pBSII/SK endogenous integration 

pVS1391 pSTU1-stu1(S602A)-CFP::KANMX6 in pBSII/SK endogenous integration 

pVS1400 pSTU1-stu1∆(aa717-aa994)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1410 pGAL1-FLAG-stu1∆(aa301-aa560)-NLS-GFP in YDpK  LYS2 integration 
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Plasmids continued 

Plasmid Description Purpose 

pVS1412 pGAL1-FLAG-stu1(W339A, R342A, K428A, K429A)-NLS-GFP in YDpK LYS2 integration  

pVS1415 pSTU1-stu1(S276A, T277A, S602A)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1422 pGAL1-UbiR-STU1 LEU2 integration 

pVS1437 pT7-6xHIS-SUMO1-stu1(aa1-aa716)-EGFP expression 

pVS1444 pSTU1-stu1∆(aa570-aa716)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1455 pSTU1-stu1∆(aa570-aa716)∆(aa995-aa1180)-EGFP::klTRP1 in pBSII/SK endogenous integration 

pVS1470 pSTU1-Flag-STU1-NLS in YDpK LYS2 integration 

pVS1471 pSTU1-FLAG-stu1(W339A, R342A, K428A, K429A)-NLS in YDpK LYS2 integration 

pVS1472 pSTU1-FLAG-stu1∆(aa301-aa569)-NLS in YDpK LYS2 integration 

pVS1488 LEU2-pMET25-CDC20 
integration N-terminal 

tagging CDC20 

pVS1489 stu1(S1113A)-CFP::KANMX6 in pBSII/SK endogenous integration 

pVS1490 stu1(S1113E)-CFP::KANMX6 in pBSII/SK endogenous integration 

pVS1493 pSTU1-FLAG-stu1(aa261-aa569)-NLS-GFP in YDpK LYS2 integration 

pVS1512 12xGFP-LacI::TRP1 TRP1 integration 

pVS1513 CEN15-lacOx256::LEU2 
integration close to 

CEN15 

pXH136 CEN5-tetO2x112::URA3 
integration close to 

CEN5 

pYM10 TEV-ProtA-7xHIS::HIS3MX6 tagging 

pYM12 GFP::KANMX4 fluorescent tagging 

pYM28 EGFP::HIS3MX6 fluorescent tagging 

pYM29 EGFP::klTRP1 fluorescent tagging 

pYM30 ECFP::KANMX4 fluorescent tagging 

YDpK ori, LYS2 between polylinker for LYS2 integration 

 

2.3 Oligonucleotides 

All oligonucleotides were dissolved in 10 mM TE to a final concentration of 100 pmol/μl. 

Dissolved oligonucleotides were stored at -20°C. 

 

Name Sequence (5’-3’) Description 

AME1-S2 
TATATATATATATATATATATATATACATCTTTTGAACCAATTCCatcgatgaattcgagctc

g 
C-terminal tagging 

AME1-S3 
GATAAATAAAATTAATGAAAATCTTTCTAACGAATTACAACCAAGTCTAcgtacgctgc

aggtcgac 
C-terminal tagging 

ASE1-3/KAN-1 
AGAATTCAAAGGTTTCATTTTGGATTCACTACTTTTGATGTTGAAccagcgacatggag

gccca 
deletion ASE1 

ASE1-4 GAGACATGCAACTTGTATTTC analyical PCR 

ASE1-S2 
TGGAAAAATGAGCAAGTTTCGAAATTGAATGGATTCTCCTTTACAGATATTcgtacg

ctgcaggtcgac 
C-terminal tagging 

ASE1-S3 
TATTAATCCAGAGTCACGGTGCAATGGAAAAAGGAAAGGGAGAATGATAGatcgat

gaattcgagctcg 
C-terminal tagging 

KAN+HIS TGGGCCTCCATGTCGCTGG analyical PCR 

pYM28-3 tagcggtaattattagggtttttggagagaccttgtattcttcagaaataCTTTCCTGTAGGTCAGGTTGC deletion STU1 

SPC42-S2 
AATAATATGTCAGAAACATTCGCAACTCCCACTCCCAATAATCGAatcgatgaattcgag

ctcg 
C-terminal tagging 

SPC42-S3 
AACGCTTTAAGAATGCGCCATACTCCTTAACTGCTTTTTAAATCAcgtacgctgcaggtc

gac 
C-terminal tagging 

SPC72-S2 
TGACTGAGTGTTACATTAAATATATTTATATATAAACGTATGATATatcgatgaattcgag

ctcg 
C-terminal tagging 

SPC72-S3 
TGAGTCATTGAGATCGAAACTTTTCAACCTATCAATCAATCCCcgtacgctgcaggtcga

c 
C-terminal tagging 

STU1-S2 
AAGAAACTCTGGTGAGACGCGTCACGGTAAAAAAAAATTACGCGTatcgatgaattcga

gctcg 
C-terminal tagging 

STU1-S3 
CCTAAGAATGTCTTTAAAATGATCATGTTCATCGCCTCAAACGAAcgtacgctgcaggtc

gac 
C-terminal tagging 
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Oligonucleotides continued 

Name Sequence (5’-3’) Description 

STU1-fUbiR-26 
GACAGGCATATTTAGCGGTAATTATTAGGGTTTTTGGAGAGACCTTGTATTCTTC

Agcgcgcgtaatacgactcac 
N-terminal tagging 

STU1-rUbiR-27 
TCGTCTGGATGTGTATTAGTGTTGCTGTTATTATTGGTCTCATTGTTGAAGGACG

Aggatccgtgcctaccacct  
N-terminal tagging 

STU1-28 ACTAAAAGAAAAGTTgcTGCCCCTCCTTCgTCgACTGCCGCCA S690A ; Sal1 fw 

STU1-29 TGGCGGCAGTcGAcGAAGGAGGGGCAgcAACTTTTCTTTTAGT S690A ; Sal1 rev 

STU1-30 GGGGATGAGGAAgCCGACGATGCTGTcGACGAAAATGATG S1018A ; Sal1 fw 

STU1-31 CATCATTTTCGTCgACAGCATCGTCGGcTTCCTCATCCCC S1018A ; Sal1 rev 

STU1-32 GTTGGAAAAAGAACAagcgctACAGACAGCGTAGTT S1060A ; Afe1 fw 

STU1-33 AACTACGCTGTCTGTagcgctTGTTCTTTTTCCAAC S1060A ; Afe1 rev 

STU1-36 CAATTCAAATACAACggCGCCAACCTCAAAG S497A; Nar1 fw 

STU1-37 CTTTGAGGTTGGCGccGTTGTATTTGAATTG S497A; Nar1 rev 

STU1-38 GTTTCGATGTCAagcgCTCCAATCTCATTAAAAG S745A; AfeI fw 

STU1-39 CTTTTAATGAGATTGGAGcgctTGACATCGAAAC S745A; AfeI rev 

STU1-40 CTAGAGAAAGcgCTGTAAGCTTCACTCC S1001A; Afe1 fw 

STU1-41 GGAGTGAAGCTTACAGcgCTTTCTCTAG S1001A; Afe1 rev 

STU1-48 CTGATTTGAATTTAgcTGAgATTTTTCAAAACAGTGG S1113A; -XmnI fw 

STU1-49 CCACTGTTTTGAAAAATcTCAgcTAAATTCAAATCAG S1113A; -XmnI rev 

STU1-44 GAGAAAACCGTAACACCGAG analytical PCR 

STU1-45 GCTAGCTGATTTTGACATTG analytical PCR 

STU1-46 CTGATTTGGAAACcATGgCACCAATCAAAATAAACG S1167A; NcoI fw 

STU1-47 CGTTTATTTTGATTGGTGcCATgGTTTCCAAATCAG S1167A; NcoI rev 

STU1-50 GCATGGAAATGgCcATGATTAATCCCTTCAAAAAC T1034A; MscI fw 

STU1-51 GTTTTTGAAGGGATTAATCATgGcCATTTCCATGC T1034A; MscI rev 

STU1-52 GACGATAATGAACCggCcGTAAAATTCAGTACAGATC T1134A; Eco52I fw 

STU1-53 GATCTGTACTGAATTTTACgGccGGTTCATTATCGTC T1134A; Eco52I rev 

STU1-55 CTTGGAAACTGATAAAgCACTAGAGcTcAAGAATAACG T1047A; SacI fw 

STU1-56 CGTTATTCTTgAgCTCTAGTGcTTTATCAGTTTCCAAG T1047A; SacI rev 

STU1-57 CTTCtAGAAAgACCgcTTTACTGGAGCAGAAAAGG S602A; XbaI fw 

STU1-58 CCTTTTCTGCTCCAGTAAAgcGGTcTTTCTaGAAG S602A; XbaI rev 

STU1-59 CTTCAAGAAAAACCgagcTcCTGGAGCAGAAAAGGAAC S602E; SacI fw 

STU1-60 GTTCCTTTTCTGCTCCAGgAgctcGGTTTTTCTTGAAG S602E; SacI rev 

STU1-61 CTTGGAAACTGATAAAgagCTAGAGcTcAAGAATAACG T1047E; Sac1 fw 

STU1-62 CGTTATTCTTgAgCTCTAGctcTTTATCAGTTTCCAAG T1047E; Sac1 rev 

STU1-63 CTGATTTGAATTTAgagGAgATTTTTCAAAACAGTGG S1113E; -XmnI fw 

STU1-64 CCACTGTTTTGAAAAATcTCctcTAAATTCAAATCAG S1113E; -XmnI rev 

STU1-65 GAAGGACGATAATGACCCcgagGTAAAATTCAGTACAGATC T1134E; AvaI fw 

STU1-66 GATCTGTACTGAATTTTACctcgGGGTCATTATCGTCCTTC T1134E; AvaI rev 

STU1-67 
CACAGGACCAGCATGGTgCACAAGAAGATAAAgCGACCTTGTTTGACGAAGAGT

ACG 
S276A; ApaLI fw 

STU1-68 
CGTACTCTTCGTCAAACAAGGTCGcTTTATCTTCTTGTGcACCATGCTGGTCCTGT

G 
S276A; ApaLI rev 

STU1-71 
CTTTAAGGTAGAAGACATCATTgCTAGAGAAgcTgCTGTAgcCTTCgCTCCCATCGA

CAATAAA 

S997A, S1000A, 

S1001A, S1003A, 

T1005A; -XbaI, -HindIII 

fw 

STU1-72 
TTTATTGTCGATGGGAGcGAAGgcTACAGcAgcTTCTCTAGcAATGATGTCTTCTAC

CTTAAAG 

S997A, S1000A, 

S1001A, S1003A, 

T1005A; -XbaI, -HindIII 

rev 

STU1-73 GAACAagtgctACAGACgcCGTAGTTATTCATGATG 
S1060A, S1063A; -AfeI 

fw 

STU1-74 CATCATGAATAACTACGgcGTCTGTagcactTGTTC 
S1060A, S1063A; -AfeI 

rev 

STU1-75 ACTAAAAGAAAAGTTgagGCgCCTCCTTCTTCTACTGCCGCCA S690E; EheI fw 

STU1-76 TGGCGGCAGTAGAAGAAGGAGGcGCctcAACTTTTCTTTTAGT S690E; EheI rev 

STU1-77 CAATTCAAATACAACTgaGCCAACCTCAAAG S497E; BplI fw 

STU1-78 CTTTGAGGTTGGCtcAGTTGTATTTGAATTG S497E; BplI rev 
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Oligonucleotides continued 

Name Sequence (5’-3’) Description 

STU1-81 GTTTCGATGTCATCTgagCCAATCTCATTAAAAG S745E; BplI fw 

STU1-82 CTTTTAATGAGATTGGctcAGATGACATCGAAAC S745E; BplI rev 

STU1-83 GAACTTGTTATCATCTACCgcGgcAATCTCTTCACAAACTGC K428A, K429A; SacII fw 

STU1-84 GCAGTTTGTGAAGAGATTgcCgcGGTAGATGATAACAAGTTC K428A, K429A; SacII rev 

STU1-86 AATTCATAAGcTTAGCAAAGgCACAGGACCAGCATGGTTCAC S265A; HindIII fw 

STU1-87 GTGAACCATGCTGGTCCTGTGcCTTTGCTAAgCTTATGAATT S265A; HindIII rev 

STU1-88 GCAAAAATTCATAAGcTTAGCAAAGgagCAGGACCAGCATGGTTCACAAGAAG S265E; HindIII fw 

STU1-89 CTTCTTGTGAACCATGCTGGTCCTGctcCTTTGCTAAgCTTATGAATTTTTGC S265E; HindIII rev 

STU1-90 CCAGCATGGaTCcCAAGAAGATAAAgcggCCTTGTTTGACGAAGAGTACGAG 
S276A, T277A; BamHI 

fw 

STU1-91 CTCGTACTCTTCGTCAAACAAGGccgcTTTATCTTCTTGgGAtCCATGCTGG 
S276A, T277A; BamHI 

rev 

STU1-92 
CAGGACCAGCATGGTTCACAAGAAGATAAAgaggagcTcTTTGACGAAGAGTACGA

GTTTC 
S276E, T277E; SacI fw 

STU1-93 
GAAACTCGTACTCTTCGTCAAAgAgctcctcTTTATCTTCTTGTGAACCATGCTGGTC

CTG 
S276E, T277E; SacI rev 

STU1-94 ACTGTGATCCTTTGgtcttctaccttaaagttggcatc ΔCL(aa995 - 1180) 

STU1-95 CTTTAAGGTAGAAGACcaaaggatcacagtaaagagag ΔCL (aa995 - 1180) 

STU1-100 ATCAAAGGTGGAAACGGCCATGG analytical PCR 

STU1-102 CCTGGAAACTTGATAGTTgttgtttgataactgcggc ΔTOGL2 (aa 300-569) 

STU1-103 GCAGTTATCAAACAACaactatcaagtttccagggtgtcc ΔTOGL2 (aa 300-569) 

STU1-108 CAGAACAAAATgcGAAGCTtgcGCAATCAAATATAATTG 
W339A, R342A; HindIII 

fw 

STU1-109 CAATTATATTTGATTGCgcaAGCTTCgcATTTTGTTCTG 
W339A, R342A; HindIII 

rev 

STU1-115 CTTTCTCTAGAAATGATgatttggtttgacggaaagtc ΔD3 (aa717-994) 

STU1-116 TTCCGTCAAACCAAATCatcatttctagagaaagttc ΔD3 (aa717-994) 

STU1-NotI-118 GCATCATTGCGGCCGCtGTAAAGGGTTTCATATTCAC NotI, in YDpK 

STU1-NotI-119 TTGTATTCGCGGCCGCaaATGTCGTCCTTCAACAATGA NotI, in YDpK 

STU1-128 GATAACTCATCAGTCAAGTCtatattcaaatgagcagggattgc ΔML (aa570-716) 

STU1-129 GCAATCCCTGCTCATTTGAATATAgacttgactgatgagttatc ΔML (aa570-716) 

STU1-130 ATGTCGTCCTTCAACAATGAGACC analytical PCR 

 

2.4 Antibodies 

Name Description Company/ Reference 

FLAG mouse, 1:10.000, M2 Sigma 

myc mouse, 1:10.000, 9E10 Convence 

Stu1 rabbit, 1:2.000 mix of N-terminal and C-terminal 

antibody1:1 
Ortiz, J. et al. (2009) 

mouse
HRP

 sheep, 1:10.000, HRP conjugate Sigma 

mouse
AP

 goat, 1:15.000, AP conjugate Sigma 

mouse
Alexa680

 goat, 1:10.000, Alexa 680 conjugate Invitrogen 

rabbit
HRP goat, 1:10.000, HRP conjugate Sigma 

rabbit
AP

 goat, 1:15.000, AP conjugate Sigma 

rabbit
Alexa680

 goat, 1:10.000, Alexa 680 conjugate Invitrogen 
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2.5 Equipment 

Equipment Company 

Power supply PowerPac basic, Protein electrophoresis equipment Mini 

PROTEAN, Semi-Dry blotting apparatus 
BioRad 

Table centrifuges (5417C, 5417 R, 5424), Thermo mixer Eppendorf 

Pulverisette6 Fritsch 

Platform shaker Heidolph Polymax 1040, Vortexer Heidolph Reax top Heidolph 

Rotina 46R Centrifuge Hettich 

Power Supply Hölzel-diagnostics 

Shaker Vibrax VXR basic, universal hot plate magnetic stirrer RCT basic IKA 

Incubator Shaker MULTITRON Infors 

XCell SureLock™ Mini-Cell Electrophoresis System Invitrogen 

Circulating bath E100 Lauda 

Precision Balance Mettler-Toledo 

Water purification system Milli Q plus Millipore 

Olympus CellR Imaging Station. Olympus 

Microfluidizer 
Parker/Watts 

FluidAir 

pH-metre WTW pH 526 MultiCal Sigma-Aldrich 

Sorvall centrifuge Sorvall 

Tube Rotator SB3 Stuart 

Thermal cycler Techne 

Spectrophotometer Genesys 10 Bio, Safety bench Heraeus, Savant 

Speed Vac SPD111v 
Thermo 

Light-microscope Axiolab Zeiss 

 

2.6 Chemicals, Enzymes and Disposals  

Standard chemicals were purchased from AppliChem (Darmstadt, Germany), Becton 

Dickinson (Heidelberg, Germany), Fermentas/Thermo Scientific (Darmstadt, Germany), 

Merck (Darmstadt, Germany), New England Biolabs (Höchst, Germany), Carl Roth 

(Karlsruhe, Germany), Serva (Heidelberg, Germany) or Sigma-Aldrich (Steinheim, 

Germany). Suppliers of special reagents are mentioned in the corresponding method 

section. Disposable lab ware was purchased from Greiner bio-one (Kremsmünster, 

Austria), Kisker (Steinfurt, Germany) or Sarstedt (Nümbrecht, Germany). 

 

2.7 Service Providers, Web Services and Software 

Service providers 

DNA sequencing eurofins mwg/operon (Hamburg, Germany) 

Protein mass spectrometry Protein Mass Spectrometry Facility (BZH, Uni-

versity of Heidelberg) in cooperation with the 

Core Facility for Mass Spectrometry and Prote-

omics (ZMBH, University of Heidelberg)  
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Web services 

ExPASy http://expasy.org/ 

ClustalW2 http://www.ebi.ac.uk/Tools/msa/clustalw2/ 

Google Scholar http://scholar.google.de/ 

NCBI http://www.ncbi.nlm.nih.gov/ 

Saccharomyces genome database http://www.yeastgenome.org/ 

 

Software 

DNA/ protein sequence analysis BioEdit, MegAlign, SeqBuilder  

Illustrations Adobe Illustrator, Adobe Photoshop 

Microscope image processing Fiji, Olympus xcellence software 

Primer Database Amplify 

Reference Manager Mendeley (Mendeley Ltd.)  

Strain Database FileMaker Pro 
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3 METHODS 

3.1 Cultivation conditions for Microorganisms 

3.1.1 Escherichia coli 

E. coli cultures were grown in 2TY or LB liquid media or on LB plates [18 g/l agar] at 

37 °C overnight. The culture medium was supplemented with 100 µg/ml ampicillin to 

keep selective pressure on the plasmid. For protein expression in E. coli, media was 

supplemented with 30 µg/ml Kanamycin and/or 34 µg/ml Chloramphenicol. Glycerol 

stocks were prepared by the addition of glycerol to 800 µl of an overnight culture to a 

final concentration of 15 % (v/v), frozen in liquid nitrogen and stored at -80 °C. Optical 

density (OD) was measured using a photometer at a wavelength of 600 nm. 
 

2TY medium  LB medium 

10 g/l yeast extract  5 g/l yeast extract 

16 g/l tryptone  10 g/l tryptone 

5 g/l NaCl              pH 7.0  10 mM NaCl 

   2.5 mM KCl 

   10 mM MgCl2/MgSO4    pH 7.0 

SOC medium    

5 g/l yeast extract    

20 g/l tryptone    

0.5 g/l NaCl    

2.5 mM KCl    

10 mM MgCl2    

0.4 % (w/v) glucose    
 

3.1.2 Saccharomyces cerevisiae 

3.1.2.1 Regular growth conditions 

Raffinose media contained 2 % (w/v) raffinose. Galactose media was supplemented 

with 2 % (w/v) raffinose and the indicated amount of galactose (indicated by x %). For 

better cell growth, medium was supplemented with 100 mg/ml adenine and 30 mg/ml 

uracil (indicated with +2) and additional 50 mg/l tryptophane (indicated with +3). 

Media used for microscope experiments was filter sterilized instead of autoclaved. 

When antibiotics were used for selection, media was supplemented with 0.02 % (w/v) 

Geneticin (Sigma-Aldrich, Steinheim, Germany), 0.04 % (w/v) Hygromycin (Cayla-

InvivoGen, Toulouse, France) and 0.01 % Nourseothricin (Werner Bioagents, Jena, 

Germany) respectively. Synthetic media was prepared with Kaiser Drop-out supple-

ment (Formedium, Norfolk, UK) and was used in amounts as recommended by the 

manufacturer (indicated by y) (Kaiser, C. et al., 1994). 5-Fluoroorotic acid (5-FOA) 

(Apollo Scientific, Tokyo, Japan) was used for URA3 based counter selection of cells. 

For plates, media was supplemented with 2 % agar. 

Unless not indicated differently yeast cultures were grown overnight in media contain-

ing 2 % (w/v) glucose at 25 °C. Strains containing pGAL-UbiR-STU1 constructs were 



38  METHODS 
 
 
routinely grown in 0.8 % galactose to ensure cell survival. Plates were incubated at 

25 °C for several days. Optical density of liquid cultures was determined at 578 nm 

(OD578). For long-term storage yeast cells were grown on plates for several days, cells 

were scraped off the plates and resuspended in glycerol to a final concentration of 

15 % (v/v), frozen in liquid nitrogen and stored at -80 °C. 
 

Yeast rich media 

YPD/R+2 (+3)  YPRG (x %)+2 (+3) 

10 g/l yeast extract  10 g/l yeast extract 

20 g/l peptone  20 g/l peptone 

2 % (w/v) glucose/ raffinose  2 % (w/v) raffinose 

100 mg/l adenine  x % (w/v) galactose 

30 mg/l uracil  100 mg/l adenine 

(50 mg/l tryptophane)  30 mg/l uracil 

   (50 mg/l tryptophane) 

     

Yeast synthetic media 

SCD/R   SCRG (x %) 

6.75 g/l yeast nitrogen base wo aa  6.75 g/l yeast nitrogen base wo aa 

y g/l SC -(his/leu/lys/trp/ura/met)  y g/l SC -(his/leu/lys/trp/ura/met) 

2 % (w/v) glucose  2 % (w/v) raffinose 

100 mg/l adenine  x % (w/v) galactose 

   100 mg/l adenine 

     

SCD +FOA  SCRG (x %) +FOA 

6.75 g/l yeast nitrogen base wo aa  6.75 g/l yeast nitrogen base wo aa 

0.79 g/l SC complete  0.79 g/l SC complete 

2 % (w/v) glucose  2 % (w/v) raffinose 

1 g/l  5-FOA  x % (w/v) galactose 

   1 g/l  5-FOA 
 

3.1.2.2 Growth conditions for SILAC approaches 

SILAC (stable isotope labeling by amino acids in cell culture) was used to compare two 

S. cerevisiae cultures arrested in two different cell cycle stages.  

To be able to distinguish the proteins purified simultaneously from the two different 

cultures, amino acids with substituted stable isotopic nuclei were supplemented to the 

media to be incorporated into the proteins. Thus one of the cultures contained a „light‟ 

and the other one a „heavy‟ form of a particular amino acid (13C and 15N labeled lysine 

and arginine). To avoid that the strains used are capable to produce their own lysine or 

arginine, strains contained an early ambre stop codon in lysine and were knocked out 

for arginine. 

Cells used for SILAC approaches were grown in the synthetic medium containing the 

„heavy‟ or „light‟ form of amino acids for a minimum of ten cell divisions to ensure effi-

cient incorporation of these amino acids in the newly synthesized proteins prior to har-

vesting. Stock solutions of supplemented amino acids were filter sterilized instead of 

autoclaved. For the SILAC approaches performed within the thesis the α-factor arrest-

ed cells were grown in synthetic media containing the „heavy‟ form of amino acids 

whereas the comparative culture was grown in media containing the „light‟ form of ami-
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no acids. To be able to arrest cells in nocodazole, these cells exceptionally were culti-

vated in YPD+2 media. 
 

Synthetic media with ‚heavy„ or „light‟ amino acids 

SDC „heavy‟/„light‟   

6.75 g/l yeast nitrogen base wo aa    

0.68 g/l SC - arg, - lys, - ade    

2 % (w/v) glucose    

50 mg/l adenine    

20 mg/l arginine („heavy‟ or „light‟)    

20 mg/l lysine („heavy‟ or „light‟)    

     
 

3.2  Molecular Biology 

3.2.1 Polymerase chain reaction (PCR) 

PCRs were routinely performed adjusting the annealing temperature (X) and the ex-

tension time according to the Tm of the oligonucleotides, the used polymerase and the 

length of the expected PCR product. 

3.2.1.1 Preparative amplification of DNA fragments for cloning 

DNA fragments required for cloning procedures were amplified using Phusion High 

Fidelity DNA Polymerase (Fermentas, Darmstadt, Germany) with the supplied buffers.  
 

50 µl reaction contained  program 

10-50 ng plasmid DNA or genomic DNA  98 °C 3 min  

1x Phusion Buffer  98 °C 30 s  

200 µM of each dNTP    X °C 45 s 25-30 cycles 

1 µM of each oligonucleotide  72 °C 30 s/kb  

0.5 U Phusion DNA Polymerase  72 °C 10 min  

ad 50 µl mpH2O  10 °C pause  
      

3.2.1.2 Preparative amplification of DNA fragments by overlap extension muta-

genesis 

To carry out site-specific mutagenesis or deletion of DNA fragments, overlap extension 

mutagenesis was performed as described in (Ho, S. N. et al., 1989). Phusion High Fi-

delity DNA Polymerase was used as in 3.2.1.1. Products of the first amplification reac-

tions were used as templates and oligonucleotides for the second round of amplifica-

tion. No additional oligonucleotides were added for the second round. A scheme of 

how single amino acid substitutions were generated is shown in Fig. 3-1. 
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Figure 3-1. Scheme of site-directed mutagenesis. 

(A) A plasmid containing the STU1-GFP::klTRP1 construct was used as a template for the preparative 

amplification of the DNA fragments. Primer pairs A and B, with the reverse primer of pair A and the forward 

primer of pair B containing the DNA sequence resulting in the requested amino acid substitution (indicated 

by the red crosses) were used for the first round of amplification. (B) PCR-products A and B were mixed in 

approximately equimolar amounts, denatured and slowly cooled down to RT to allow the overlapping DNA 

regions to anneal.(C) Annealed products were used for a second round of PCR amplification without addi-

tion of further primers. (D) This resulted in the full-length PCR product containing the base pair substitu-

tions. 

 

3.2.1.3 Preparative amplification of DNA fragments for PCR-mediated tagging 

of proteins 

DNA fragments transformed into S. cerevisiae cells to perform PCR-mediated tagging 

of proteins were amplified using the Long PCR Enzyme Mix (Fermentas, Darmstadt, 

Germany) and supplied buffers. 
 

50 µl reaction contained  program 

0,5-1 µg plasmid DNA  95 °C 3 min  

1x Long PCR Buffer  95 °C 20 s  

2.75 mM MgCl2  54 °C 45 s 10 cycles 

500 µM of each dNTP  68 °C 2 min 30 s   

1 µM of each primer  95 °C 30 s  

2.5 U Long PCR Enzyme Mix  54 °C 45 s 15 cycles 

ad 50 µl mpH2O  68 °C 2 min 30 s + 20 s/cycle  

   72 °C 10 min  

   10 °C pause  
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1 µl of the PCR was checked by agarose gel electrophoresis, the rest of the reaction 

was ethanol precipitated, the pellet was dried at RT and stored at -20 °C. Before trans-

formation the DNA pellet was resuspended in 10 µl mpH2O.   
  

3.2.1.4 Analytical amplification of DNA fragments 

Analytical amplification of DNA fragments was used to verify correct clones of E. coli 

and S. cerevisiae. Colonies of E. coli cells were resuspended in 5 µl mpH2O, incubated 

at 95 °C for 3 min and used as template DNA. To verify S. cerevisiae cells, gDNA was 

isolated as described in 3.2.15. 0.5 µl of gDNA were used as template. 10x Taq poly-

merase buffer contained 100 mM Tris-Cl pH 8.3, 500 mM KCl and 15 mM MgCl2. 
 

25 µl reaction contained  program 

 DNA as indicated above  98 °C 3 min  

1x Taq polymerase buffer  98 °C 30 s  

200 µM of each dNTP  X °C 45 s 25-30 cycles 

0.5 µM of each oligonucleotide  72 °C 30 s/kb  

1 µl homemade Taq polymerase  72 °C 10 min  

ad 50 µl mpH2O  10 °C pause  
      

3.2.2 Agarose gel electrophoresis 

To separate DNA fragments, agarose gel electrophoresis was routinely performed with 

1 % agarose (Roth, Karlsruhe, Germany) using TAE-buffer (40 mM Tris acetate, 1 mM 

EDTA pH 8.0) at a constant voltage of about 120 V. DNA molecular weight size mark-

ers (Fermentas, Darmstadt, Germany) were used to determine the size of the DNA 

fragments. 
 

3.2.3 DNA precipitation 

DNA precipitation was carried out by adding mpH2O to a final volume of 100 µl, sup-

plementing the sample with 10 µl of 10 mM LiCl and 300 µl of EtOH (100 %, 4 °C). Af-

ter incubation for 30 min until overnight at 4 °C, the DNA pellet was collected by cen-

trifugation (20,000 g, 20 min, 4 °C) and air-dried. 
 

3.2.4 Cloning procedures 

DNA manipulations like DNA restriction, phosphatase treatment, kinase treatment or 

blunting of DNA fragments were carried out using restriction enzymes, calf intestinal 

phosphatase, T4 polynucleotide kinase, T4 DNA polymerase and Klenow fragment 

from Fermentas or New England Biolabs (NEB, Frankfurt/Main, Germany), respectively 

following the manufacturer‟s instructions. 
 

3.2.5 Purification of DNA fragments 

DNA fragments were purified using the GeneJetTM PCR purification Kit or the 

GeneJETTM Gel Extraction Kit from Fermentas following the manufacturer‟s instruc-

tions.  



42  METHODS 
 
 

3.2.6 Determination of DNA contents 

The amount of DNA contents was determined by agarose gel electrophoresis in com-

parison with applied DNA molecular weight size markers.  

 

3.2.7 Ligation of DNA fragments 

DNA fragments were ligated using T4 DNA ligase from Fermentas using the provided 

buffers. 
 

20 µl reaction contained  

50 ng linear vector DNA  

100 ng 

2:1 molar ratio over plasmid 

insert DNA  

1x T4 DNA ligase buffer  

5 % PEG 4000  

1 U T4 DNA Ligase  

ad 20 µl mpH2O  
 

Linear vector DNA, insert DNA and mpH2O were incubated for 3 min at 42 °C. Subse-

quently remaining reaction components were added and incubated for 1 h at RT. 5 µl 

of the ligation reaction were transformed into chemically competent E. coli cells. 
 

3.2.8 Preparation of chemically competent E. coli cells 

Chemically competent E. coli cells were prepared according to Inoue, H. et al. (1990). 

60 µl aliquots contained about 0.54 OD cells. Transformation rates were determined 

with 0.1 ng pUC18 and ranged between 6.4 x 107 and 1.0 x 108 colonies/µg DNA. 
 

3.2.9 Transformation of E. coli cells 

60 µl aliquots of chemically competent E. coli cells were thawed on ice, free plasmid 

DNA or 5 µl ligation reaction was added and tubes were incubated on ice for 30 min. 

Subsequently cells were heat-shocked for 60 s at 42 °C in a water bath, cooled down 

on ice for 2 min and supplemented with 440 µl of SOC media. After incubation for 

60 min (37 °C, 180 rpm) cells were transferred on selective plates. 
 

3.2.10 Isolation of plasmid DNA from E. coli 

Plasmids were isolated using the alkaline extraction procedure adopted from Birnboim, 

H. C. et al., (1979). E. coli cultures of 3-5 ml were grown overnight at 37 °C in 2 TY 

medium supplemented with antibiotic to select for the corresponding plasmid. Cells 

were harvested (10 min, 2.770 g) and cell pellets were resuspended in 300 µl P1 buffer 

complemented with 0.1 mg /ml RNase A. 300 µl of P2 buffer were added, tubes were 

gently mixed and incubated for 4 min at RT. Cell lysis was stopped with 300 µl P3 buff-

er, solutions were gently mixed by inversion and incubated on ice for 10 min. Cell de-

bris was pelleted (20 min, 20,000 g) at 4 °C, supernatants were transferred to fresh 

tubes and DNA was precipitated by the addition of 0.7x volume of 2-propanol. After 

incubation for 10 min at RT, tubes were centrifuged at RT (20 min, 20,000 g), superna-
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tants were discarded and pellets were washed with 70 % (v/v) ethanol. Pellets were 

air-dried at RT and isolated DNA was dissolved in 30-50 µl of TE. Plasmid DNA was 

stored at -20 °C. 

 

P1 buffer  P2 buffer  P3 buffer 

50 mM  Tris-Cl pH 8.0        0.2 M NaOH  2.6 M potassium acetate pH 5.2  

10 mM  EDTA  1 % (w/v) SDS   (pH was set with 2.6 M acetic 

acid) 

TE buffer       

10 mM Tris-Cl pH 8.0       

1 mM EDTA       
        

3.2.11  Transformation of S. cerevisiae cells 

S. cerevisiae cells were transformed according to Gietz, D. R. et al. (1995). Routinely, 

5 OD cells of a logarithmically growing culture were transformed with 0.1-1 µg of free 

plasmid DNA, 10 OD cells were transformed with 0.5-5 µg of linearised vector DNA or 

one reaction of amplified DNA fragment as described in 3.2.1.3. Per OD cells 10 µg 

single stranded DNA were used. Heat-shock was performed at 37 °C for 15 min. Un-

less cells were transformed with free plasmid DNA, cells were incubated in the accord-

ing media without selective pressure for 1-3 h at 25 °C for recovery. Subsequently, 

cells were evenly distributed on plates selective for the integrated DNA and incubated 

for several days at 25 or 30 °C.  
 

LiSorb  LiPEG  

10 mM  Tris-Cl pH 8.0  10 mM  Tris-Cl pH 8.0  

100 mM  LiAc  100 mM LiAc  

1 mM EDTA  1 mM EDTA  

1 M Sorbitol  45 % PEG 4000  
 

3.2.12  Construction of genomically modified S. cerevisiae strains 

Genomically modified S. cerevisiae strains were generated by homologous recombina-

tion (Longtine, M. et al., 1998). Linear vector DNA was generated by linearising DNA 

by restriction digest. DNA fragments for PCR-mediated tagging were generated by 

PCR according to 3.2.1.3. Oligonucleotides contained ~60 nucleotides identical to the 

upstream and downstream region of the genomic integration locus. 
 

3.2.13  System for the integration of Stu1 mutants in the endogenous 

DNA locus 

A shuffle strain constructed as depicted in the scheme below was used to integrate the 

mutated STU1 constructs into the endogenous STU1 DNA locus. 



44  METHODS 
 
 

 

Figure 3-2. Scheme of the integration system for mutated STU1 constructs in the endogenous 

STU1 locus. 

(A) The endogenous STU1-ORF was substituted with a HIS3MX6 cassette after integration of a CEN-

plasmid containing the STU1-ORF and a URA3 marker. (B) The linearised STU1 mutant construct was 

integrated by replacing the HIS3MX6 cassette. (C) To test if the integrated STU1 construct supports viabil-

ity and to select for cells that lost the CEN plasmid that contains the STU1-ORF, cells were counter select-

ed on FOA. (D) The mutated STU1 construct is integrated at the endogenous locus representing the only 

STU1 copy in the cell. Striped areas indicate homologous sequences responsible for recombination. 

 

3.2.14  Labeling of CEN DNA 

CEN5 was labeled fluorescently with CFP or GFP by using the tetO/tetR system 

(Michaelis, C. et al., 1997). A multitude of tetracycline operators (tetO) were integrated 

1.4 kb upstream of the centromere 5. Tetracycline repressor (tetR) fused to a fluores-

cent tag was integrated in the locus of the selective marker and both were constitutive-

ly expressed. By recruitment of the tetR-CFP/GFP to the tetO, the region very close to 

the CEN5 can be visualized by fluorescent microscopy. In a very similar way the 

lacO/lacR system (Straight, A. F. et al., 1996) was used to visualize the centromere 15. 

A multitude of lac operators (lacO) were integrated upstream of the centromere 15 and 

the lac repressor (lacR) was fused to 12xGFP. 
 

3.2.15  Isolation of chromosomal DNA from S. cerevisiae 

For the isolation of yeast genomic DNA cells were picked from plates or pelleted from 

liquid cultures and resuspended in 100 µl of NTES buffer (10 mM TrisCl pH 8.0, 

100 mM NaCl, 1 mM EDTA pH 8.0 and 1 % SDS). Glass beads were added and 

probes were incubated on a shaker for 20 min at 4 °C. After cells lysis, 100 µl of phe-
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nol:chloroform:isoamyl alcohol (25:24:1) were added, tubes were vortexed for 30 s and 

centrifuged at RT (5 min, 20,000g). 50 µl of the aqueous layer were transferred to a 

fresh tube und supplemented with 25 µl of chloroform. Tubes were vortexed and centri-

fuged again at RT (5 min, 20000g). 10 µl of the aqueous layer containing the genomic 

DNA were transferred carefully to a fresh tube. 0.5 µl of genomic DNA were used to 

perform analytical amplification of DNA fragments. If genomic DNA was used as a 

template for preparative amplification of DNA fragments DNA was purified by ethanol 

precipitation in addition. 

 

3.3  Cell biology 

3.3.1 Methods for S. cerevisiae cell synchronization 

3.3.1.1 G1 arrest 

Logarithmically growing cultures were diluted to an OD of 0.5. Cultures were arrested 

in G1 by the addition of 200 ng/ml alpha factor (α-factor, Applichem) for 2 h if not indi-

cated differently. When cells were grown in media containing galactose incubation time 

was extended to 2.5 h. 

3.3.1.2 G2- /metaphase arrest with unattached kinetochores 

To achieve cells arrested in G2-/metaphase with unattached KTs, cells were released 

from α-factor arrest by washing the cell pellet twice with mpH2O and once with fresh 

medium (RT, 1 min, 2,100 g). Subsequently, cells were resuspended in fresh medium 

containing 15 µg/ml nocodazole (Nz, Applichem) and incubated for 3 h. 

3.3.1.3 Metaphase arrest 

Cells containing CDC20 under the control of a pMET25 promoter were routinely kept in 

SDC media without methionine (SDC -met) to ensure cell survival. To arrest the cells in 

metaphase, they were depleted of Cdc20 as follows. Logarithmically growing cells 

were washed once (RT, 1 min, 2100 g) with YPD+3 +2 mM methionine (Met) and sub-

sequently released into the same medium to achieve an OD of 0.5. Cells were incubat-

ed for 2-5 h. 

3.3.1.4 Anaphase arrest 

A temperature sensitive cdc15-1 mutant was used to arrest cells in anaphase. A loga-

rithmically growing culture was diluted to an OD of 0.5 and shifted to the non-

permissive temperature of 37 °C. Cells were analyzed after 3 h of incubation. 
 

3.3.2 Stu1 shutdown conditions 

For the analyses of cells absent of Stu1 or cells containing nonviable Stu1 mutants 

cells were depleted of WT Stu1. Cells containing the pGAL-UbiR-STU1 construct were 

routinely grown in 0.8 % galactose. Incubation at 0.1 % galactose over night reduced 

levels of STU1 expression before the experiment. To start the shutdown, logarithmical-

ly growing cells were washed twice with YPD+3 (RT, 1 min, 2,100 g) and released into 
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YPD+3 to achieve an OD of 0.5. Cells were incubated for 3 h before cells were treated 

for further cell cycle arrests. 
 

3.3.3 Stu1 overexpression 

In order to overexpress Stu1 from a galactose inducible promoter, cells were grown in 

2 % raffinose prior to the experiment. Expression was then induced by the addition of 

2 % galactose and incubation for 8-10 hours. 
 

3.3.4 Chromosomal loss assay 

Chromosomal loss assays were performed using cells carrying a chromosomal frag-

ment as described in Shero, J. et al., (1991). To select for the chromosomal fragment, 

cells were routinely grown in SCD -ura, shifted to YPD+2 for 3 h and diluted to 1 x 103 

OD/ml. Cells were plated on YPD plates supplemented with 4 % glucose and incubat-

ed at 30 °C for 3-4 days. Colonies that showed red sectors covering at least half of the 

size of the colony were counted as colonies that had lost the CF. A minimum of 5,000 

colonies were counted per strain. 
 

3.3.5 Fluorescent Microscopy 

3.3.5.1 Cell preparation for microscopy 

Cells used for microscope experiments were grown in medium that was filter-sterilized 

instead of autoclaved. In preparation for the microscope 1 ml of yeast culture was har-

vested (1 min, 1,300 g) and cells were washed 2-3 times with mpH2O before they were 

resuspended in 8-15 µl non-fluorescent media (NFM) containing glucose and galactose 

respectively. When treated with nocodazole, cells were kept on ice to avoid formation 

of microtubules. For Cdc20-depleted cells NFM medium was supplemented with 2 mM 

methionine.  
 

NFM  NFM Gal   

0.79 g/l SC complete  0.79 g/l SC complete   

2 % glucose  2 % galactose   

0.9 g/l KH2PO4  0.9 g/l KH2PO4   

0.23 g/l K2HPO4  0.23 g/l K2HPO4   

0.5 g/l MgSO4  0.5 g/l MgSO4   

3.5 g/l (NH4)2SO5 pH 5.5 3.5 g/l (NH4)2SO5  pH 5.5  
 

3.3.5.2 Live-cell imaging 

To perform live-cell imaging, fluorescently labeled proteins were visualized using the 

Olympus CellR Imaging Station. The microscope was equipped with a piezo, an auto-

mated Z-stage, an emission filter wheel and a sensitive ORCA/ER cooled CCD cam-

era. Images were taken using a 100x oil immersion objective. Routinely nine picture 

stacks with a distance of 0.25-0.30 µl were acquired. Images were taken with a resolu-

tion of 15.625 pixels/µm and a bit depth of 16 bit. 
 

3.3.5.3 Analysis of microscope images  

Images were processed and analyzed using the image processing program Fiji. 
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3.3.5.3.1 Processing of microscope images 

Routinely images were processed by Z-stack projection and adjustment of color bal-

ance. Color channels were adjusted individually with a linear LUT that covered the full 

range of data. Measurements of spindle length or SPB distances were carried out us-

ing the “measure” tool of Fiji.  
 

3.3.5.3.2 Generation of intensity profiles 

Intensity profiles created along the spindle axis were generated using the “plot profile” 

tool. Therefore cells with about the same spindle length were chosen. Data points were 

obtained every 0.064 µm. Received data was normalized and converted to values be-

tween 0 as the minimum and 1 as the maximum. Values of each data point received 

from the indicated number of cells were averaged and depicted in the graph. 
 

3.3.5.3.3 Generation of box-whisker-plots 

Box-whisker-plots were created to depict the distance of SPBs, the inter-KT distance 

and the kMT lengths shown in Fig 4-10. The boxes cover 50 % of the data (quartile 2 

and 3) and the horizontal line represents the median of the whole range of data. 

Whiskers span the whole range of data (quartile 1 to 4) with a maximum of 1.5x inter-

quartile range. The interquartile range is defined as the calculated difference between 

the maximum value of the quartile 3 and the minimum value of the quartile 2. Upper 

and lower maximal outliers are indicated as crosses. P-values were calculated using a 

two-tailed unpaired t-test. 

 

3.4  Protein Biochemistry 

3.4.1 Protein expression and purification from E. coli cells 

Rosetta BL21 cells containing the particular expression construct were routinely grown 

on LB medium containing 30 mg/ml Kanamycin and 34 mg/ml Chloramphenicol. The E. 

coli culture was inoculated from fresh plates to an OD of 0.05, grown for about 2 h at 

37 °C (180 rpm) to an OD of 0.5-0.6 and cooled down for 5 min on ice. Protein expres-

sion was induced with 1 mM IPTG for 3 h at 25 °C (180 rpm). Subsequently cells were 

harvested by centrifugation (Sorvall SLC 6000, 20 min, 4 °C, 5,000 rpm), washed once 

with Lysis buffer containing 2 mM PMSF and 2 mM DTT and thoroughly resuspended 

in 15 ml of Lysis buffer additionally containing all protease inhibitors. Cells were lysed 

using the micro fluidizer two times. Lysates were clarified by two sequent centrifugation 

steps (Sorvall SS34, 30 min, 4 °C, 23,500 g). Supernatant was supplemented with 

400 µl of 50 % Ni-NTA beads (Qiagen) that were pre-equilibrated in lysis buffer and 

incubated at 4 °C for 3 h under constant rotation (4 rpm). Beads with bound proteins 

were washed by gravity flow using a column. Subsequent washing steps with 20 ml of 

lysis buffer, 20 ml of wash buffer I, 20 ml of wash buffer II and 10 ml of wash buffer III 

were performed before eluting the purified protein in 5 times 1 ml fractions of elution 

buffer. All washing and elution buffers contained 2 mM PMSF and 2 mM DTT. 
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Buffers for purification of 6His-Stu1: 

Lysis buffer  buffer was supplemented prior to use with 

25 mM HEPES pH 8.0   2 mM  DTT 

500 mM  KCl  protease inhibitors 2 mM PMSF 

0.1 % NP-40   10 µg/ml Pepstatin A 

5 mM Imidazole   10 µg/ml Leupeptin 

    40 µg/ml TPCK 

    10 µg/ml Aprotinin 

    2 mM Benzamidin 

 

Wash buffer I pH 8.0   Wash buffer II pH 8.0 

25 mM HEPES pH 8.0   25 mM HEPES pH 8.0 

500 mM  KCl   500 mM  KCl 

0.1 %  NP-40   0.1 %  NP-40 

10 mM Imidazole   40 mM Imidazole 

      

Wash buffer III pH 8.0   Elution buffer pH 8.0 

25 mM HEPES pH 8.0   25 mM HEPES pH 8.0 

375 mM  KCl   250 mM  KCl 

0.1 %  NP-40   0.1 %  NP-40 

60 mM Imidazole   500 mM Imidazole 

    20 % glycerol 

Purified 6xHis-Stu1 C-terminus was a gift from Caroline Funk. 

 
 

Buffers for Purification of Ipl1-6xHis-Sli15-6xHis: 

Lysis buffer  buffer was supplemented prior to use with 

50 mM NaPO4 pH 8.0   2 mM  DTT 

300 mM NaCl  protease inhibitors 2 mM PMSF 

    10 µg/ml Pepstatin A 

    10 µg/ml Leupeptin 

    40 µg/ml TPCK 

    10 µg/ml Aprotinin 

    2 mM Benzamidin 

 

Wash buffer pH 8.0   Elution buffer pH 8.0 

50 mM NaPO4 pH 8.0   50 mM NaPO4 pH 8.0 

300 mM  NaCl   300 mM  NaCl 

5 %  glycerol   5 %  glycerol 

20 mM Imidazole   250 mM Imidazole 

5 mM -mercaptoethanol   5 mM -mercaptoethanol 
 

To further purify the Ipl1-6His-Sli15-6His construct, the elution fraction containing the 

highest amount of protein was centrifuged for 15 min at 20.000 g at 4 °C and the su-

pernatant was separated by gel filtration using a Superose 6 10/300 Column. Fractions 

of 0.5 ml were collected. Fractions containing the highest amounts of Stu1 (14-16) 

were combined and concentrated by the factor of ten by centrifugation (12 min, 4,000 

rpm) using a VIVASPIN2 (Sartorius) column. Sli15, but not Ipl1 could be detected by 

Western blot, as the result of a stop codon at the end of Ipl1 (verified by sequencing), 

but was active as determined by the phosphorylation of Sli15. 
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Buffers for Purification of His-Mps1: 

Lysis buffer  buffer was supplemented prior to use with 

50 mM HEPES pH 8.0  protease inhibitors   

200 mM NaCl     

5 mM Imidazole     

Wash buffer pH 8.0   Elution buffer pH 8.0 

50 mM HEPES pH 8.0   50 mM HEPES pH 8.0 

200 mM NaCl   200 mM NaCl 

20 mM Imidazole   400 mM Imidazole 

    10 % glycerol 
 

Purified 6His-Mps1 was a gift from Manuel Stach. The protein was expressed using 

0.8 mM IPTG for 4 h at 23 °C. For purification, cobalt beads were used. To remove 

imidazole, the buffer was exchanged for 50 mM HEPES pH 8.0, 200 mM NaCl and 10 

% glycerol using a PD10 desalting column (GE Healthcare). 
 

3.4.2 Protein extraction from S. cerevisiae cells 

Cells were grown overnight and treated according to the experimental setup. Routinely 

10-20 ml of the culture were harvested (4°C, 3 min, 2100 g), washed once with 500 µl 

of ESB buffer (80 mM Tris-Cl pH 6.8, 2 % SDS, 10 % glycerol, freshly supplemented 

with 1 mM PMSF and 6.5 mM DTT) and resuspended in 50-100 µl ESB buffer. After 

incubation for 3 min at 95 °C cells were put on ice for 2 min and frozen in liquid nitro-

gen. For cell lysis probes were thawed on ice, supplemented with glass beads (Ø = 

0.4 0.6 nm, Sartorius) and vigorously mixed on a Vibrax shaker at 4 °C for 30-40 min. 

Cells lysis was microscopically verified. The lysate was collected through the punctured 

bottom into a fresh tube by centrifugation at 4 °C (20 s, 500 g). Tubes were centrifuged 

at 4 °C for 30 min (20000 g) to clarify the lysate. Supernatants were transferred into 

fresh tubes.  
 

3.4.3 Determination of protein concentrations via Bradford assay 

Protein concentrations were determined photometrically. 1 µl of the sample (whole cell 

extract) was added to 100 µl of mpH2O and 1 ml of Bradford Solution (100 mg/l 

Coomassie Brilliant Blue G250 (Serva), 5 % EtOH, 4.25 % H3PO4). 0-25 µg of IgG rab-

bit (Sigma) or 0-12.5 µg BSA were used for calibration. 
 

3.4.4 Immunoprecipitation of Flag-Stu1 with M2α-Flag Magnetic 

Beads 

To purify Flag-Stu1 from S. cerevisiae a protocol applied to isolate KTs (Akiyoshi, B. et 

al., 2009b) was adapted. Cells containing pGAL-Flag-STU1-GFP constructs were 

grown in YPR+2 and supplemented with 2 % galactose to induce expression of Flag-

Stu1-GFP. After about 10 h cells were harvested (4 °C, 5 min, 2,100 g), washed with 

ice-cold mpH2O, transferred to a round bottom tube and resuspended in buffer BH/0.1 

– 2.5 times the volume of OD cells (for example 450 OD cells were resuspended in 

1.125 ml). Cell lysis was performed by the addition of about 70 % volume glass beads 

and cells were vigorously shaken at 4 °C (30 min, 2,000 rpm). The lysates were col-
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lected through the punctured bottom into fresh falcon tubes by centrifugation at 4 °C 

(20 s, 500 g) and transferred to 1.5 ml tubes. Lysates were clarified for 30 min (4 °C, 

20,000 g) and supernatants were transferred to fresh tubes. Flag-tagged Stu1 was 

immunoprecipitated using M2α-Flag Magnetic Beads (Sigma) in the amount of 1/10 of 

the volume of OD cells. Lysate and beads were rotated for 3 h at 4 °C (10 rpm). Beads 

were washed six times with BH/0.1. Proteins were eluted under gentle agitation at RT 

for 25 min (500 rpm) with 3Flag peptide (Sigma) in BH/0.1 at a final concentration of 

0.5 ng/µl. Subsequently, samples were visualized by SDS-PAGE and Western Blot 

analysis. 
  

BH/0.1  buffer was supplemented prior to use with 

25 mM HEPES pH 8.0   2 mM  DTT 

2 mM  MgCl2  protease inhibitors 20 µg/ml Leupeptin 

0.1 mM EDTA pH 8.0   20 mg/ml Pepstatin A 

0.5 mM EGTA pH 8.0   20 µg/ml Chymostatin 

0.1 % NP-40   0.2 mM PMSF 

150 mM KCl  phosphatase inhibitors 1 mM  Sodiumpyrophosphate 

10 %  glycerol   2 mM Na-β-glycerophosphate 

    0.1 mM Vanadate 

    5 mM NaF 

    100 nM Microcystein 
 

3.4.5 Immunoprecipitation of Stu1-ProtA with IgG beads 

For large-scale protein purifications 2-3 l of S. cerevisiae cells containing a Stu1-ProtA 

construct were grown under the conditions of the respective experiment in YPD+2. 

Cells were harvested at 4 °C (SLC-4000, 15 min, 5,000 rpm) using a Sorvall centrifuge, 

washed once with ice-cold mpH2O and once with 1x pellet volume Lysis buffer (5 min, 

2,100 g). Pellets were resuspended in Lysis buffer+ (supplemented with protease and 

phosphatase inhibitors) to a final concentration of 200-350 OD/ml and cells were lysed 

with glass beads using a bead mill (Pulverisette6, Fritsch). Cells were broken three 

times at 500 rpm for 4 min at 4 °C with a pause of 2 min in between the lysis cycles. 

Lysates were clarified with three sequential centrifugation steps of 25 min using a 

Sorvall centrifuge (SS-34, 1x 17,000 g, 2x 20,500 g). Lysates were supplemented with 

300-400 µl 50 % human IgG beads resuspended in lysis buffer and incubated for 3.5 h 

at 4 °C on a tube rotator (10 rpm). Subsequently beads were washed with 10 ml of 

lysis buffer and 10 ml of wash buffer supplemented with 1 mM PMSF, followed by a 

washing step with 0.5 ml of NH4OAc pH 5.0. Purified proteins were eluted with two 

times 0.5 ml of 0.5 M HAc pH 3.4 and completely dried using a speed vac (Savant). 

Purified proteins were run on NuPAGE® gels for mass spectrometric analyses. 
 

Lysis buffer  buffer was supplemented prior to use with 

50 mM Tris-Cl pH 8.0   2 mM  DTT 

5 mM  MgCl2  protease inhibitors 1 mM PMSF 

140 mM KCl   2 mM Benzamidin 

0.1 % NP-40   5 µg/ml Leupeptin 

10 %  glycerol   10 µg/ml Pepstatin A 

    10 µg/ml Aprotinin 

    40 µg/ml TPCK 

   phosphatase inhibitors 60 mM Na-β-glycerophosphate 
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    1 mM Vanadate 

    10 mM NaF 

Wash buffer     

10 mM Tris-Cl pH 8.0     

250 mM LiCl     

1 mM EDTA     

0.5 %  NP-40     
 

3.4.6 Immunoprecipitation of Stu1-ProtA with IgG beads with SILAC 

SILAC approaches were used for in vivo incorporation of a label into proteins to quanti-

tatively analyze protein phosphorylation by mass spectrometry. Cells were grown as 

described in 3.1.2.2. G1-arrested cells were compared with nocodazole-arrested cells 

and cdc15-1 arrested cells respectively (described in 3.3.1). To be able to combine 

equal amounts of cells, additional to the OD also the cell number of each culture was 

determined by using a hemocytometer. After combining the cultures, Stu1-ProA was 

immunoprecipitated as described in 3.4.5. 
 

3.4.7 In vitro phosphatase treatment 

For phosphatase treatment 75 µg of protein extracts from S. cerevisiae (3.4.2) were 

treated with 100 U of CIP (Fermentas) in 1x CIP Buffer (10 mM Tris-Cl pH 7.5, 10 mM 

MgCl2) for 30 min at 37 °C. Before SDS-PAGE, EDTA pH 8.0 was added to a final con-

centration of 10 mM. Samples were supplemented with final 1x SDS sample buffer and 

heated for 3 min at 95 °C. 
 

3.4.8 In vitro kinase assay 

For in vitro kinase assays 90 ng of Stu1 N-terminal or C-terminal fragments purified 

from E. coli (3.4.1) were incubated with final 1x kinase buffer (25 mM HEPES pH 7.5, 

150 mM KCl, 4 mM MgCl2, 10 % glycerol) and 65 ng of kinase Ipl1-Sli15 and Mps1 

purified from E. coli respectively. 5x kinase buffer was supplemented with 0.05 mM 

cold ATP and 10 mM DTT prior to the experiment. For the samples containing radioac-

tive labeled ATP the samples were supplemented with 2.5 µCi γ-[32P]-ATP (SRP501; 

specific activity: 6000 Ci/mmol, 10 µCi/µl; Hartmann Analytic, Braunschweig, Germany) 

per 50 µl reaction that was added to the kinase buffer. Samples were carefully mixed 

and incubated for 1 h at 30 °C. To stop the kinase reaction, probes were completed 

with final 1x SPB and heated for 3 min at 95 °C followed by SDS-PAGE (3.4.9.1). After 

the gel run proteins were fixed by incubating the gel in 10 % HAc for 5 min and two 

times 15 min in fixing solution (40 % MeOH, 2 % HAc, 0.4 % glycerol). Subsequently, 

gels were washed for 5 min in 5 % glycerol, dried on Whatman® paper for 1 h at 80 °C 

and low pressure (Slab Gel Dryer SGD4050; Bachofer Laboratoriumsgeräte, Reut-

lingen, Germany). The incorporation of 32P was visualized by exposing the dried gel to 

a film for several hours until overnight at -80 °C. 

For the identification of phosphorylation sites by mass spectrometry, kinase assays 

were performed without γ-[32P]-ATP. Despite of that, 0.2 mM cold ATP was used. Addi-

tionally, the amount of substrate was raised to 550-600 ng and 35 ng of Mps1 was 

used. 
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3.4.9 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Depending on the later processing of protein samples, extracts were separated by ei-

ther glycine SDS-PAGE or NuPAGE Novex Bis-Tris SDS-PAGE. 

3.4.9.1 Glycine SDS-PAGE 

Protein extracts that were visualized by general coomassie staining or western blot 

analysis were separated using 6-10 % glycine SDS polyacrylamide gels (Laemmli, U. 

K., 1970). Samples were mixed prior to loading with 4x sample buffer (1x: 62.5 mM 

Tris-Cl pH 6.8, 10 % glycerol, 5 % β-EtSH, 2 % SDS, 0.02 % bromophenol blue) and 

incubated for 4 min at 95 °C. The gel run was performed at constant 135 V for 

1 h 20 min until 2 h 20 min. 
 

6-12 % separating gel  4 % stacking gel 

0.377 M TrisHCl pH 8.8  0.125 M TrisHCl pH 6.8 

0.1 % (w/v) SDS  0.1 % (w/v) SDS 

6-12 % (v/v) Bis-Acrylamid (37.5:1)  4 % (v/v) Bis-Acrylamid (37.5:1) 

0.05 % (w/v) APS  0.065 % (w/v) APS 

0.05 % (w/v) TEMED  0.15 % (v/v) TEMED 
     

SDS-Running buffer    

25 mM  Tris-Cl     

192 mM  Glycine    

0.1 % (w/v)  SDS    
     

3.4.9.2 NuPAGE® Novex Bis-Tris SDS-PAGE 

Purified proteins for mass spectrometric analyses were separated using a 4-12 % 

NuPAGE® Novex Bis-Tris gradient gel (Invitrogen). Samples were prepared according 

to the manufacturer‟s instructions with 1x NuPAGE® SDS Sample Buffer and 0.05 M 

DTT and incubated for 10 min at 70 °C. The NuPAGE® MOPS buffer in the inner 

chamber was supplemented with 500 µl NuPAGE® Antioxidant. The gel run was per-

formed for 1 h 40 min at 80 V constant. 
 

3.4.10  Coomassie staining 

3.4.10.1 Colloidal Coomassie staining of SDS-gels 

Colloidal Coomassie staining of polyacrylamide gels was performed with Coomassie 

Brilliant Blue (Carl Roth GmbH). After electrophoresis, gels were fixed with 2 % HAc in 

40 % MeOH for 1 h. Subsequently, gels were incubated in Colloidal Coomassie solu-

tion (0.8 % Coomassie Brilliant Blue in 20 % MeOH) for 1-24 h and destained in 

mpH2O. 

3.4.10.2 Regular coomassie staining for SDS-gels or PVDF 

SDS gels or PVDF membranes were coomassie stained to visualize the marker and 

the amount of transferred proteins after Western blot analysis. Gels and membranes 

were stained in Coomassie Staining solution for 10-20 min followed by destaining with 

the Destaining solution. 
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Coomassie staining solutions  

SDS-gel PVDF membrane  

0.25 % (w/v) 0.2 % (w/v) Coomassie Blue G250 

50 % (v/v) 50 % (v/v) MeOH 

10 % (v/v) 10 % (v/v) HAc 

   

Destaining solutions 

SDS-gel PVDF membrane  

30 % (v/v) 50 % (v/v) MeOH 

7 % (v/v) 10 % (v/v) HAc 
 

3.4.11  Western blot analysis 

For Western blot analyses proteins were transferred onto PVDF membranes (Millipore) 

with 16 V constant using a Trans-Blot® SD Semi-Dry Transfer Cell (BioRad, München, 

Germany). Time of blotting depended on the size of the protein of interest and varied 

between 1-2 h. Transfer buffer contained 48 mM Tris pH 9.2, 39 mM glycine, 0.025 % 

(w/v) SDS and 20 % (v/v) MeOH. Transfer efficiency was monitored by staining the gel 

as described in 3.4.10.2. Membranes were blocked with 5 % milk powder in PBS-T for 

1 h at RT or 4 °C overnight to avoid unspecific antibody binding. For immune-

decoration, primary and secondary antibodies were diluted in PBS-T containing 3 % 

milk powder (for dilutions see 2.4). For detection using the Licor system, secondary 

antibodies were supplemented with 0.02 % SDS. Membranes were incubated for 1-2 h 

at RT or overnight at 4 °C. In between the antibody incubation times membranes were 

washed three times for 10 min with PBS-T.  

Protein-antibody complexes were visualized dependent on the secondary antibody 

using the Immobilon Western Chemiluminescent HRP Substrate (Millipore) or the 

Immobilon Western AP Substrate (Millipore), X-ray films Fujifilm Super RX (Fujifilm, 

Düsseldorf, Germany) and the X-ray film processor SRX-101A (Konica Minolta, 

Langenhagen, Germany). Protein-antibody complexes with fluorescently labeled 

secondary antibodies were detected by the LI-COR Odyssey® Infrared Imaging Sys-

tem (Licor, Lincoln, USA). 
 

PBS  PBS-T 

1.8 g/l Na2HPO4*2H2O  PBS with 0.1 % Tween20 

0.24 g/l KH2PO4    

8 g/l NaCl    

0.2 g/l KCl                    pH 7.4    
 

3.4.12  Mass Spectrometry 

Mass spectrometric analyses were carried out by the Protein Mass Spectrometry Fa-

cility of the BZH in cooperation with the Core Facility for Mass Spectrometry and Pro-

teomics of the ZMBH at the University of Heidelberg.  

For the determination of Stu1 phosphorylation sites, the bands of interest were cut out 

from the Coomassie-stained SDS-PAGE gel. The gel slice was reduced, alkylated and 

in-gel trypsin digested according to an adapted protocol from Rosenfeld, J. et al. 

(1992). The gel slice was washed once with mpH2O (10 min, RT), followed by a shrink-
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age step with acetonitrile (15 min, RT). Then cysteine residues were reduced with 

10 mM DTT in 100 mM NH4HCO3 (30 min, 56 °C), followed by another shrinkage step 

with acetonitrile (15 min, RT). Cysteine residues were alkylated with 55 mM jodacet-

amide (20 min, RT, darkness). Subsequently, the gel slice was washed with 100 mM 

NH4HCO3 (15 min, RT) and another shrinkage step was performed using acetonitrile 

(15 min, RT). For the proteolytic digest, the gel slice was incubated with 20 ng/µl tryp-

sin over night at 37 °C. Trypsin cuts specifically after the basic amino acids arginine 

and lysine. Subsequently, the pH of the tryptic digest was adjusted to pH 1-3 using 

trifluoroacetic acid. 

Each peptide mixture was separated by HPLC (nanoAcquity, Waters) and analyzed by 

mass spectrometry using a LTQ-Orbitrap (Linear Trap Quadropole-Orbitrap, Thermo 

Scientific). After a survey scan (300-2000 amu) the double or multiple charged peptide 

masses of the 3-6 most prominent peptides were selected for fragmentation (selected 

ion monitoring). To increase the sensitivity of this selection for phosphorylated pep-

tides, a parent mass list was used containing all possible phosphorylated peptides that 

emerge upon Stu1 digestion with trypsin. Analysis and data interpretation of the pep-

tide mixture was done using Mascot Daemon and Distiller (Matrix Science). 

To evaluate the differences of phosphorylation comparing Stu1 from two different cell 

cycle arrests, the ratio of the intensity of the ‟light‟ and the „heavy‟ peptide was calcu-

lated for each phosphorylated peptide and the corresponding unphosphorylated pep-

tide. To correct for unequally combined amounts of Stu1, the overall ratio of „light‟ to 

„heavy‟ Stu1 was calculated based on unmodified peptides. The L/H ratio for the 

nocodazole-arrest/G1 SILAC assay was 5.5 and 7.14 for the anaphase/G1 SILAC as-

say. Therefore, the L/H ratio of each peptide was corrected by division with this ratio. 

Peptides were considered to be highly significant when the L/H ratio of the phosphory-

lated peptide was higher than 10 and the L/H ratio of the corresponding unmodified 

peptide was smaller than 0.5. This indicated that the phosphorylated peptide was high-

ly enriched in a certain cell cycle stage, whereas the corresponding unphosphorylated 

peptide was depleted. Peptides that were found phosphorylated with an L/H ratio be-

tween 2 and 10 and unmodified with a ratio between 0.5 and 1 were considered as less 

strong, but still significant. 
 

 

3.5 In silico analysis 

3.5.1 Secondary structure prediction 

Secondary structure prediction was based on the amino acid sequence using the 

SYMPRED server (http://www.ibi.vu.nl/programs/sympredwww/). For the PSI-BLAST 

the database NR and a combination of PROFsec, SSPro 2.01, YASPIN and PSIPred 

was chosen as secondary structure prediction methods. POLYVIEW 2D (Porollo, A. A. 

et al., 2004) was used for visualization. 
 

3.5.2 Isoelectric point calculator 

The theoretical isoelectric point (pI) of single Stu1 domains was calculated using the 

Expasy Compute pI/Mw tool (Bjellqvist, B. et al., 1993, 1994; Gasteiger, E. et al., 

2005). 

http://www.ibi.vu.nl/programs/sympredwww/
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4 RESULTS 

4.1 Stu1 domains and their functions 

The S. cerevisiae CLASP homolog Stu1 is an essential protein that localizes to dif-

ferent cell structures and fulfills various functions during mitosis (Pasqualone, D. et al., 

1994; Khmelinskii, A. et al., 2007; Ortiz, J. et al., 2009). Stu1 is a large protein consist-

ing of 1513 amino acids that can be divided into different subdomains. In the following 

thesis some of these subdomains will be characterized in more detail.  

 

4.1.1 Introduction of putative Stu1 domains 

Based on homology with Stu1 orthologs (Al-Bassam, J. et al., 2011) and secondary 

structure predictions (Fig. 4-1), Stu1 can be subdivided into six structural different do-

mains. Structural homology to other CLASP proteins suggest two TOG-like (TOGL) 

domains at the very N-terminus of Stu1 (TOGL1 and TOGL2). These two domains are 

followed by a presumable unstructured region containing a basic serine-rich stretch 

(the minimal MT-binding loop, ML) and a domain consisting of mainly alpha helical 

structures (domain three, D3). Another alpha helical domain at the very C-terminus 

(domain four, D4) is attached via a second rather unstructured region (the C-terminal 

loop, CL). 

 

Whereas the TOGL1 domain was found to be less conserved, but essential for Stu1 

binding to KTs (Funk, C. et al., submitted), the intra-HEAT repeat loops of TOGL2 

show a high sequence conservation when compared with other CLASP proteins (see 

Fig. 1-9 B; Al-Bassam, J. et al., 2011). A part of the TOGL2 and the ML domain were 

suggested to embody the MT-binding domain (MBD) of Stu1 (Yin, H. et al., 2002, see 

Fig. 4-1). Just very recently, the C-terminal D4 domain was identified to enable Stu1 

 

Figure 4-1. Putative domain organization of Stu1.  

Helical structures (red), unstructured regions (blue) and beta-sheets (green) were predicted using the 

SYMPRED server and visualized by POLYVIEW 2D (see 3.5.1). The subdomains TOGL1, TOGL2, ML, 

D3, CL and D4 and the corresponding amino acid regions are depicted. The MBD consisting of part of the 

TOGL2 and the ML domain is indicated. 
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dimerization, a prerequisite for efficient meta- and anaphase spindle formation, but also 

KT binding. In addition, this domain is able to drive the midzone localization of Stu1 

most likely via the direct interaction with another so far unidentified midzone protein 

(Funk, C. et al., submitted). 

To which extent the TOGL2, ML, D3 and CL domains contribute to the localization 

of Stu1 to MTs and KTs will be analyzed in detail below. Therefore, deletion mutants of 

single or multiple Stu1 domains were created and characterized further. Complementa-

tion assays demonstrated that TOGL2 is the only essential domain (Table 4-1) (Funk, 

C. et al., submitted). Point-mutations of four of the most highly conserved amino acids 

within the intra HEAT-repeat loops of TOGL2 (W339, R342, K428, K429) (see Fig. 1-9 

B) also resulted in non-viable cells. A chromosomal loss assay revealed that the ML 

domain, similar to TOGL1 (Funk, C. et al., submitted), is strongly required for a faithful 

chromosome segregation, whereas the deletion of D3 and CL only caused a very mild 

segregation defect (Table 4-1). 
 

strain viability chromosome loss per 1000 cells 

WT + 2.4 

∆mad2 + 27.5 

stu1∆TOGL2 - n.d. 

stu1TOGL2-4A - n.d. 

stu1∆ML + 955.6 

stu1∆D3 + 9.4 

stu1∆CL + 3.2 

TOGL2 - n.d. 

TOGL2-ML + n.d. 

 

Table 4-1.  The integrity of TOGL2 is essential for cell viability whereas ML strongly contributes to 

correct chromosome segregation.  

Indicated Stu1 deletion- and point-mutations were integrated at the endogenous STU1 locus of a shuffle 

strain and tested for viability. Chromosomal loss assays were performed determining the loss of a chromo-

somal fragment. 

 

4.1.2 The role of Stu1 domains for spindle localization and for-

mation in meta- and anaphase 

4.1.2.1 The TOGL2 domain is sufficient for tubulin interaction 

The conserved intra HEAT-repeat loops of TOG domains have been suggested to 

bind free tubulin (Al-Bassam, J. et al., 2006, 2010; Ayaz, P. et al., 2012; Wilbur, J. D. et 

al., 2013) in order to catalyze its incorporation in MTs. Indeed, Stu1 was found to 
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copurify tubulin when isolated from yeast cells (Fig. 4-2 A). To investigate if this binding 

is accomplished by the TOGL domains of Stu1, Flag-tagged Stu1 deletion- and point-

mutation constructs were immunoprecipitated and analyzed by Western blot for tubulin 

binding (Fig. 4-2 B and C). The results revealed that the TOGL2 domain alone is suffi-

cient to bind tubulin, whereas deletion of the TOGL2 domain prevented copurification 

of tubulin. In addition, the mutation of two (K428, K429) or four (W339, R342, K428, 

K429) conserved amino acids of the intra HEAT-repeat loops of TOGL2 strongly inter-

fered with the tubulin interaction. This suggests that the TOGL2 domain provides the 

tubulin binding capability of Stu1 via the highly conserved intra-HEAT repeat loops. 

Notably, immunoprecipitations of TOGL1 did not copurify tubulin and TOGL1 was dis-

pensable for tubulin binding (Funk, C. et al., submitted). 

 

 

Figure 4-2. The TOGL2 domain is sufficient to bind tubulin via the conserved intra-HEAT repeat 

loops. 

(A) Stu1 binds free tubulin. Flag-Stu1 was expressed from a galactose inducible promoter and 

immunoprecipitated. Tubulin was identified by mass spectrometry. Black arrows indicate purified Stu1 

constructs. (B) TOGL2 is sufficient to copurify tubulin. Cells were treated as in A, except that tubulin was 

additionally visualized by Western blot analysis. The input represents 0.4 % () and 0.6 % (TOGL2 and 

Stu1TOGL2) of the immunoprecipitation (IP). (C) The integrity of the conserved intra HEAT-repeat loops 

is a prerequisite for tubulin binding via the TOGL2 domain. Cells were treated and analyzed as in B. 
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Taken together, these data suggest that Stu1, in contrast to other CLASP proteins 

only requires one TOGL domain to mediate tubulin binding. 

 

4.1.2.2 Stu1 requires the TOGL2 and ML domain for the efficient formation of 

metaphase spindles 

Since Stu1 is required for spindle formation (Yin, H. et al., 2002), the question arose 

how the individual domains contribute to this important function of Stu1. Very recent 

work already demonstrated that the dimerization of Stu1 via the D4 domain is important 

for stable formation of (metaphase) spindles (Funk, C. et al., submitted).  

In order to gain more insight in the further domain requirements for Stu1 localization 

and spindle formation, synchronized cells of Stu1 mutants were analyzed 2 h and 

2 h 30 min after release from a G1 arrest (Fig. 4-3 A-C). Subsequently, metaphase 

(1.3-2 µm length) as well as anaphase (≥ 2µm) spindles could be investigated. Due to 

different requirements for spindle stabilization in meta- and anaphase, different Stu1 

domains might be involved to fulfill the corresponding functions in the two cell cycle 

steps. In metaphase, MTs of the antiparallel overlap need to be crosslinked and bun-

dled to sustain the outward, but also inward forces that operate on the bipolar spindle. 

In anaphase however, these overlapping MTs have to be able to slide apart, while they 

still get stabilized. 

At first, metaphase spindle formation and localization were addressed in more de-

tail. Therefore, in addition to the release from G1 (Fig. 4-3 A-C), some of the mutant 

cells were arrested in metaphase by Cdc20 depletion (Fig. 4-3 D). More than 80 % of 

WT cells showed spindles longer 0.6 µm at both time points after G1 release. About 

40 % of cells had prometa- to metaphase spindles of a length between 0.6 and 2 µm 

(Fig. 4-3 A and C). As expected, Stu1 depletion („stu1‟), but also the deletion of the 

TOGL2 domain almost completely blocked spindle formation (Fig. 4-3 A and C) and 

resulted in the formation of only a few spindles with prometaphase length (0.6-1.3 µm). 

The deletion of the ML domain prevented efficient metaphase spindle formation. Two 

third of cells failed to elongate their spindles longer than 0.6 µm, and only 29 % man-

aged to form short prometaphase spindles (Fig. 4-3 A and C). Metaphase-arrested 

stu1ML cells formed spindles with only one third of the length compared to WT cells 

(Fig. 4-3 D). In contrast, stu1D3 and stu1CL cells did not show a significant defect in 

spindle formation in comparison to WT cells (Fig. 4-3 A, C and D), but a closer look 

revealed a slightly faster SPB separation in stu1∆CL cells (Fig. 4-3 C).  
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Figure 4-3. TOGL2 is essential for spindle formation in general, whereas ML is specifically required 

for proper metaphase spindle formation.  

(A-C) Cells were released from G1 arrest and analyzed after 120 min and 150 min for spindle formation. 

For the analysis of nonviable Stu1 constructs shutdown of WT Stu1 was started 3h prior to the addition of 

α-factor. (A) The TOGL2 and ML domain are required for metaphase spindle formation. Images of indicat-
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ed Stu1 mutant cells representing their metaphase spindle phenotype are shown; bar, 2 µm. (B) 

Stu1TOGL2-4A fails to form metaphase spindles. Images of indicated Stu1 mutant cells representing their 

metaphase spindle phenotype are shown; bar, 2 µm. (C) Spindle formation of depicted mutant strains was 

quantified according to the indicated spindle lengths; n > 150. (D) The ML domain contributes to meta-

phase spindle formation. Cells were arrested in metaphase by Cdc20 depletion for 5 h. Spindle length was 

measured as the distance between two Spc72 signals. Error bars represent the standard deviation for two 

independent experiments; n > 100; bar, 2 µm. (E) Stu1TOGL2 and Stu1TOGL2-4A only weakly localize 

to the metaphase spindle in WT STU1 background; bar, 2 µm. 

 

Interestingly, the combined deletion of the ML and the CL domain partially improved 

the spindle formation compared to stu1∆ML cells (Fig. 4-3 A and C), but the average 

SPB distance in metaphase-arrested cells was only slightly longer than in stu1∆ML 

cells (Fig. 4-3 D). 

Since a part of the TOGL2 and the complete ML domain were determined as the 

MBD of Stu1 (see Fig. 4-1; Yin, H. et al., 2002), the question arose if a Stu1 localiza-

tion defect is the reason for the defects in spindle formation in these cells. Indeed, 

Stu1ML only very weakly localized to metaphase spindles (Fig. 4-3 A and D). Be-

cause stu1TOGL2 cells failed to form spindles (Fig. 4-3 A and C), the spindle localiza-

tion of Stu1TOGL2 was difficult to determine. Stu1TOGL2 could be only detected as 

a faint signal in a region where collapsed SPBs, KTs and MTs reside (Fig. 4-3 A). To 

overcome this problem, this Stu1 construct was analyzed in the background of WT 

Stu1. Even when a part of the determined MBD was missing Stu1TOGL2 still weakly 

localized to the metaphase spindle under these conditions (Fig. 4-3 E). Stu1TOGL2-

4A, which contains an unimpaired MBD domain, localized to the metaphase spindle in 

a quite similar strength than WT Stu1 (Fig. 4-3 E). A slightly more diffuse signal could 

be explained by the competition of MT binding of this Stu1 construct with WT Stu1. 

This indicates that the C-terminal part of the TOGL2 domain contributes to the binding 

of Stu1 to the MT lattice, but the ML domain has the main MT binding capability.  

Although the binding of Stu1TOGL2-4A to the MT lattice was much stronger com-

pared to Stu1ML, the spindle defect in these cells was much more severe. 

stu1TOGL2-4A cells, similar to stu1TOGL2 cells, mostly failed to separate their SPBs 

beyond 0.6 µm (Fig. 4-3 B and C). This indicates that the interaction of Stu1 with the 

MT lattice facilitates efficient metaphase spindle formation, but that another function of 

Stu1 TOGL2 domain is even more important in this respect. Since Stu1TOGL2-4A is 

not capable to bind free tubulin, the TOGL2 domain might contribute to spindle for-

mation and stabilization by providing free tubulin like other CLASP or XMAP215 pro-

teins (Al-Bassam, J. et al., 2006, 2010; Brouhard, G. J. et al., 2008; Leano, J. B. et al., 

2013). 
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Due to the fact that the ML and the TOGL2 domain are required for spindle for-

mation, it was tested if these two domains are sufficient to fulfill this function on their 

own. Indeed, the TOGL2-ML construct (Table 4-1) was viable, but was not sufficient to 

bind to the MT lattice and could only slightly rescue the spindle formation in these cells 

(Fig. 4-3 B and C). This is in agreement with the finding that Stu1 dimerization via the 

D4 domain is required for MT lattice binding and efficient metaphase spindle formation 

(Funk, C. et al., submitted). 

In summary, the TOGL2 and the ML domain are required for proper metaphase 

spindle formation. Thereby, SPB separation and spindle formation is driven by the 

TOGL2 activity that might provide free tubulin for MT rescue and polymerization. This 

is substantially facilitated by the MT lattice binding of Stu1 via the ML (and partially 

TOGL2) domain.  

 

4.1.2.3 The CL domain specifies Stu1 localization to the MT overlap in meta-

phase 

Although spindle formation of stu1CL cells was mostly indistinguishable from WT 

cells (Fig. 4-3 A, C and D), the localization of Stu1CL in metaphase arrested cells 

differed from WT Stu1 (Fig. 4-3 D). Whereas WT Stu1 was more focused in the center 

of the metaphase spindle, deletion of the CL domain distributed Stu1CL along the 

complete spindle in closer vicinity to the ends of the spindle. In WT cells, Stu1 was 

found to preferentially bind to antiparallel MT overlaps not only in anaphase, but also in 

metaphase (Funk, C. et al., submitted).This raised the question if the deletion of the CL 

domain causes metaphase spindles with an extended overlap of antiparallel MTs or if 

the CL domain specifies Stu1 binding to this overlap region. Therefore, the distribution 

of Ase1 as an indicator for antiparallel MT overlap (Schuyler, S. C. et al., 2003) was 

analyzed by measuring the intensity profile of Ase1 along the metaphase spindle axis 

(Fig. 4-4). The localization of Ase1, indicating the extension of the overlap region, was 

not severely different in stu1CL cells compared to WT cells (Fig. 4-4 A and B). This 

indicates that the CL domain indeed specifies the localization of Stu1 to antiparallel 

interpolar MTs in metaphase. 
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4.1.2.4 The TOGL2 and ML domain are dispensable for midzone localization of 

Stu1 in anaphase 

In anaphase, WT Stu1 was found to localize to the midzone of anaphase spindles to 

contribute to spindle stability (Yin, H. et al., 2002; Ortiz, J. et al., 2009).  

Surprisingly, even though stu1ML cells were strongly affected in metaphase spin-

dle formation, about 18 % of cells showed intact anaphase spindles when analyzed 

2 h 30 min after the release from a G1 arrest (Fig. 4-3 C). This indicates that in ana-

phase the function of Stu1 in spindle stabilization differs in comparison to metaphase. 

Indeed, Stu1ML localized to the midzone of anaphase spindles similar to WT Stu1 

(Fig. 4-5 A). This reveals that the interaction with the MT lattice via the ML, which is 

needed for proper metaphase spindle formation, is not required for Stu1 midzone local-

ization and consequently stable spindle formation during anaphase. Deletion of the D3 

or the CL domain had no crucial effect on anaphase spindle formation or Stu1 midzone 

localization (Fig. 4-3 C, 4-5 A). 

 

Figure 4-4. The CL domain is required to focus Stu1 to antiparallel MTs in metaphase. 

(A-B) Indicated cells were arrested in metaphase by Cdc20 depletion for 2 h. Ase1 is used as a marker for 

antiparallel MT overlap. Plot profiles were generated by measuring the intensity of tubulin, Ase1 and Stu1 

along the spindle axis; n = 11 (WT) and 13 (stu1ΔCL); bar, 2 µm. 
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Since stu1TOGL2 cells were not able to drive spindle formation (Fig. 4-3 C), the 

localization of Stu1TOGL2 in anaphase was analyzed in the background of WT Stu1 

to enable spindle formation. Quantification revealed that Stu1TOGL2 localized to the 

spindle midzone, but somewhat weaker than in WT cells (Fig. 4-5 B). To exclude that 

Stu1TOGL2 could only localize to the midzone by forming a heterodimer with WT 

Stu1, Stu1TOGL2 localization was also analyzed in the background of Stu1D4-ZIP. 

 

Figure 4-5. The ML and the TOGL2 domain are dispensable for midzone localization of Stu1.  

(A) Anaphase spindles of the indicated STU1 mutant cells are depicted representing the Stu1 midzone 

localization; bar, 2 µm. (B) The TOGL2 domain is not required for midzone localization of Stu1. Midzone 

localization of WT Stu1 and Stu1ΔTOGL2 in the background of WT Stu1 and Stu1ΔD4-ZIP respectively 

was analyzed according to the indicated phenotypes. Images were taken 120 min after release from G1 

arrest; n > 50; bar, 2 µm. 
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The Zipper (ZIP) represents an ectopic dimerization domain that allows Stu1D4 to 

dimerize, but prevents binding of Stu1TOGL2 via the D4 dimerization domain. Dele-

tion of the D4 domain usually causes a very severe spindle defect, but „artificial‟ dimer-

ization of Stu1D4 via the ZIP domain enables spindle formation in almost 50 % of 

cells (Funk, C. et al., submitted). In the Stu1D4-ZIP background, Stu1TOGL2 locali-

zation to the midzone was quite similar to WT Stu1. This indicates that the TOGL2 do-

main is also dispensable for midzone localization of Stu1. A possible reason why 

Stu1TOGL2 showed a weaker binding to the midzone in the WT background com-

pared to the Stu1D4 background could be that WT Stu1 and Stu1TOGL2 compete 

for the binding site of a certain protein in the midzone. This is not the case in the 

Stu1D4-ZIP background. Since the D4 domain is required for midzone localization, 

Stu1D4-ZIP consequently fails to bind there (Funk, C. et al., submitted). 

Conclusively, neither MT binding via the ML domain, nor the TOGL2 domain is essen-

tial for the midzone localization of Stu1. Nevertheless this does not exclude that the 

TOGL2 activity of midzone localized Stu1 contributes to the stabilization of spindles in 

anaphase. 

 

4.1.3 The role of Stu1 domains for unattached KT localization  

4.1.3.1 The CL domain specifies Stu1 localization to unattached KTs 

It has been shown before that Stu1 accumulates at unattached KTs (Ortiz, J. et al., 

2009), but also localizes to attached KTs in metaphase (Funk, C. et al., submitted). 

Very recent experiments revealed that dimerization of Stu1 via the D4 domain and 

most likely direct binding via the TOGL1 domain are mandatory for KT localization 

(Funk, C. et al., submitted). Thereby it is unclear how Stu1 distinguishes between an 

unattached and an attached KT and which role the other domains play in this respect. 

To provoke a high number of unattached KTs, cells were released from a G1 arrest 

into media containing the MT-depolymerizing drug nocodazole. Subsequently, Stu1 

localization to the generated unattached KTs was analyzed. 

Deletion of the TOGL2, the ML or the D3 domain and the point mutations in the 

Stu1TOGL2-4A construct had no observable effect on the sequestration of Stu1 at un-

attached KTs compared to WT cells (Fig. 4-6 A). Deletion of the CL domain however 

caused a severe mispositioning of Stu1CL to the vicinity of the SPB in about 95 % of 

cells (Fig. 4-6 A and B). This resulted in no detectable (34 %) or only a weak (61 %) 

residual Stu1 signal at the unattached KTs. In order to test if the mislocalized Stu1CL 

fraction represents Stu1 that is bound to short MTs at the SPB that had resisted the 
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nocodazole treatment binding to the MT lattice was prevented by the additional dele-

tion of the ML domain. This could partially restore the localization of the major fraction 

of Stu1 to unattached KTs in about 64 % of cells (Fig. 4-6 A and B). Thus, in the ab-

sence of the CL domain MTs more efficiently compete for Stu1 interaction than unat-

tached KTs. Nevertheless it remains unclear where the residual SPB located Stu1 frac-

tion is binding to.  

 

 

Figure 4-6. The CL domain regulates Stu1’s sequestration at unattached KTs.  

(A) Localization of indicated Stu1 constructs to unattached KTs (uaKTs). Cells were released from a G1 

arrest into nocodazole and analyzed after 3 h. For the nonviable Stu1ΔTOGL2 or Stu1TOGL2-4A con-

structs shutdown of WT Stu1 was started 3 h prior to the addition of α-factor. White arrows indicate unat-

tached KTs; bar, 2 µm. (B) Additional deletion of the ML domain partially rescued Stu1 localization to unat-

tached KTs in stu1ΔMLΔCL cells. Cells were treated as in A and localization of Stu1 to unattached KTs 

was quantified as indicated. Arrows indicate Stu1 at unattached KTs; n > 100; bar, 2 µm. 
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4.1.3.2 Efficient capturing does not require Stu1 localization to unattached KTs 

– but TOGL2 activity 

A function that has been suggested previously for Stu1 at unattached KTs is the ef-

ficient capturing of unattached KTs (Ortiz, J. et al., 2009).Therefore, the deletion mu-

tants were analyzed in regards to their capturing capability. In cells containing KT5s 

labeled by using the tetO/tetR system, unattached KT5s were quantified as signals 

absent from the SPB signals or the spindle axis.  

 

 

Figure 4-7. The CL domain and localization to unattached KTs are no prerequisites for capturing, 

but the TOGL2 activity is essential. 

(A) A functional TOGL2 domain is mandatory for efficient capturing. Cells were released from a G1 arrest 

into nocodazole. After 3 h, nocodazole was washed out and cells were analyzed at the indicated time 

points. For shutdown of WT Stu1, cells were shifted to glucose 3 h prior the initiation of the α-factor arrest. 

Unattached KT5s were quantified for each time point; n > 100; error bars represent the standard deviation 

(STD) of minimum three independent experiments. (B) The ML domain contributes to efficient KT capture, 

whereas the CL domain has an inhibitory effect. Cells were treated and analyzed as in A without Stu1 

shutdown conditions; n > 100; error bars represent the STD of two independent experiments. (C) In order 

to compare capturing of the indicated mutant cells independent of the initial number of unattached KTs, the 

data derived from experiment B was depicted as relative capturing of KT5. Therefore the number of unat-

tached KT5s at time point 0 min was set to 100 %. 
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In WT cells that were released from a nocodazole arrest, the majority of the unat-

tached KT5s were captured after 80 min, whereas the depletion of Stu1 resulted in a 

strong capturing defect (Fig. 4-7 A). These cells showed a higher number of unat-

tached KT5s (38 %) in comparison to WT cells (25 %) at time point 0 min that got only 

slowly reduced and stagnated at about 18 % of unattached KT5s up to 140 min. Inter-

estingly, cells containing the Stu1TOGL2 or the Stu1TOGL2-4A construct showed 

mainly the same defect as Stu1 depletion (Fig. 4-7 A). These results suggest that the 

TOGL2 activity of binding tubulin is important for efficient capturing of unattached KTs. 

Deletion of the ML domain also resulted in a high number of unattached KT5s at time 

point 0 min after nocodazole release (Fig. 4-7 B) and this number slowly decreased to 

6 % over time. To be able to compare the velocity of capturing of stu1∆ML and WT 

cells independent of the initial number of unattached KTs, the percentage of unat-

tached KT5s was calculated relative to the starting number of unattached KT5s 

(Fig. 4-7 C). Deletion of the ML domain only slightly reduced the velocity of the captur-

ing process in the beginning when compared to WT. But cells maintained a higher in-

termediate (80 to 100 min) number of unattached KTs (Fig. 4-7 B and C). These data 

suggest that stu1∆ML cells are able to efficiently capture KTs that are in close proximi-

ty to the SPBs, but are impaired in capturing KTs that localize further away. Surprising-

ly, stu1∆CL cells showed an even improved capturing of unattached KT5s compared to 

WT cells (Fig. 4-7 B). The already low number of unattached KT5s (20 %) at time point 

0 min was reduced down to 3 % within 60 min, indicating that sequestration of Stu1 at 

unattached KTs is not mandatory for efficient capturing. Interestingly, also the captur-

ing of stu1∆ML∆CL cells was significantly improved in comparison to stu1∆ML cells, 

resulting in 95 % proper attached KT5s in cells analyzed 60 min after nocodazole re-

lease (Fig. 4-7 B). This proposes that deletion of the CL domain can partially compen-

sate for the defect caused by the deletion of the ML domain. 

Taken together, these results suggest that TOGL2, but also the ML domain are re-

quired for efficient capturing and KT attachment, whereas the CL domain has an inhibi-

tory function in this respect. The finding that Stu1 function on MTs is more important for 

efficient capturing than the localization to unattached KTs, suggests that Stu1 regulates 

the dynamics of capturing kMTs or KT-generated MTs. 

 

4.1.3.3 The TOGL2 domain might be required for the temporal regulation of KT-

generated MTs  

KT-generated MTs were found to play an important role for the capturing of unat-

tached KTs (Kitamura, E. et al., 2010). In addition, CLASP proteins were suggested to 
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drive MT rescue or polymerization by recruiting and providing free tubulin that was 

bound via the TOG domains (Al-Bassam, J. et al., 2010). Our findings that TOGL2 ac-

tivity is required for efficient capturing raised the question if Stu1 facilitates the nuclea-

tion and polymerization of these KT-generated MTs when sequestered at unattached 

KTs and if this function is stalled in cells with an impaired tubulin binding capability. 

Accordingly, the stu1ΔTOGL2 and stu1TOGL2-4A mutant cells were analyzed for the 

nucleation or presence of KT-generated MTs at different time points after the release 

from nocodazole arrest. Already 40 min after nocodazole washout 95 % of WT cells 

showed nucleated (25 %) or already polymerized (70 %) KT-generated MTs (Fig. 4-8). 

However, cells depleted of Stu1 (‘∆stu1’) had only nucleated (6 %) or formed (16 %) 

KT-generated MTs in 22 % of cells analyzed at the same time. Nevertheless, over time 

this number increased up to 69 %. Cells containing the Stu1∆TOGL2 or the 

Stu1TOGL2-4A construct showed a very similar effect (Fig. 4-8).  

 

 

Figure 4-8. Stu1 or rather the TOGL2 activity is important for a temporal efficient formation of KT-

generated MTs.  

Cells were released from the G1 arrest into nocodazole. After 3 h, nocodazole was washed out and cells 

were analyzed at the indicated time points. Shutdown of WT Stu1 was started 3 h prior the initiation of the 

α-factor arrest. Phenotypes of KT-generated MTs (kgMTs) were quantified as depicted. Arrows indicate 

tubulin signals at unattached KTs; n > 48; bar, 2 µm. 

 

In summary, these results indicate that Stu1 and especially the TOGL2 activity are 

not essential for the formation of KT-generated MTs in general, but might strongly in-

fluence the efficiency and temporal regulation of the generation of these MTs.  
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4.1.4 Stu1’s localization and role at metaphase KTs 

4.1.4.1 The ML domain is required for proper KT attachment to MTs 

The TOGL2 and to a lesser extent the ML domain are important for efficient captur-

ing of unattached KTs (see 4.1.3.2). Interestingly, cells absent of these domains al-

ready showed increased amounts of unattached KTs during a normal cell cycle. To 

quantify the extent of this defect, stu1∆TOGL2, stu1TOGL2-4A and stu1∆ML cells were 

analyzed 120 min after release from a G1 arrest. In 10 % of cells Stu1∆ML could be 

detected as a signal completely off the spindle indicating the presence of unattached 

KTs (Fig. 4-9).  

 

 

Figure 4-9. The TOGL2 activity and the ML domain might be required for proper KT attachment.  

stu1∆TOGL2, stu1TOGL2-4A and stu1∆ML cells were analyzed 120 min after release from a G1 arrest. 

The localization of the Stu1 construct was quantified as indicated; n > 100; bar, 2 µm. 

 

In 44 % of cells Stu1∆ML was visualized as a strong dot in close vicinity to the very 

short spindle and the major KT signal. The latter may represent a Stu1 fraction that 

localizes to KTs that are in close vicinity to the spindle and the SPBs, but were not able 

to achieve a proper end-on attachment yet. In support of this, CHIP analysis revealed 

that the ML domain is required for binding to attached KTs in metaphase (Funk, C. et 

al., submitted). Alternatively, this SPB localized Stu1 indicates that Stu1∆ML has diffi-

culties to leave attached KTs, due to its weak MT binding capability. stu1∆TOGL2 and 

stu1TOGL2-4A cells showed a very similar defect (Fig. 4-9), indicating that not only the 

binding of Stu1 to the MT lattice, but also the binding and providing of free tubulin 

might be important for a correct attachment of KTs. 
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4.1.4.2 The CL domain inhibits Stu1’s ability to stabilize kMTs 

Very recently, CHIP assays revealed that Stu1 localizes to attached KTs in meta-

phase, but the CL domain was shown to be dispensable for this binding (Funk, C. et 

al., submitted). Intriguingly, the absence of Stu1 from attached KTs in stu1∆TOGL1 

cells resulted in very short and dynamically disturbed kMTs suggesting an important 

role of Stu1 in the formation of kMTs (Funk, C. et al., submitted).  

 

 

Figure 4-10. Deletion of the CL domain resulted in cells with over-elongated kMTs and a very short 

inter-KT distance. 

(A) stu1∆CL cells showed a slightly increased kMT length. Cells were arrested in metaphase by Cdc20 

depletion for 5 h. Representative WT and stu1∆CL cells are shown. SPB distance and inter-KT distance 

were measured as the distance between the Spc72 and the KT5 signals respectively. kMT length was 

calculated accordingly. Boxes of box-whisker plots represent the middle 50 % of the data with the median 

as the horizontal line. Whiskers cover the full range of data (maximal 1.5x the interquartile range) except of 

outliers. Outliers are depicted as blue crosses; n > 220. p-values were calculated applying a two-tailed 
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unpaired t-test. Asterisks indicate a significant difference compared to WT values with p < 0.0001. Bar, 2 

µm. (B) Scheme representing the values achieved from the analysis shown in A. (C) Over-elongation of 

kMTs in stu1∆CL cells is independent of tension. Cells were arrested in G1 for 3 h. Distances between 

SPB and KT5 were measured as the kMT lengths; n > 150; error bars represent the STD of two independ-

ent experiments. (D) Deletion of Cin8 intensified the effect of Stu1∆CL on the kMT length. Cells were ar-

rested and analyzed as in A; n > 200. 

 

When stu1∆CL cells were arrested in metaphase, cells showed a similar SPB dis-

tance than WT cells (Fig. 4-3 D and 4-10 A). However, the length of kMTs was slightly, 

but reproducibly longer in these cells (Fig. 4-10 A). Consequently, this resulted in a 

shorter inter-KT distance (Fig. 4-10 A and B). In order to analyze if this effect is de-

pendent on tension of a bipolar spindle, the kMT length of G1 arrested cells was 

measured. Also under these conditions, the kMT length of stu1∆CL cells was increased 

compared to WT cells, indicating that tension, put on the KT-MT interface, is not man-

datory for the effect of over-elongated kMTs in stu1∆CL cells (Fig. 4-10 C). 

It was shown before that the assembly of longer kMTs is suppressed by Cin8 to en-

sure chromosome congression (Gardner, M. K. et al., 2008). Indeed, the additional 

deletion of Cin8 even increased the effect of Stu1∆CL on kMTs (Fig. 4-10 D). kMTs 

elongated even further compared to WT and, most likely as a consequence to keep a 

minimum level of tension on the KT-MT interface, the average SPB distance increased. 

This kept the inter-KT distance at a constant minimum length of about 0.5 µm. So in-

deed, the CL domain seems to attenuate the polymerization of kMTs driven by Stu1.  

 

 

Figure 4-11. The CL domain is required to adapt kMT length to tension on the KT-MT interface. 

(A-B) A higher percentage of spindle elongation is compensated by kMT elongation in stu1∆CL cells com-

pared to WT cells. (A) Cells were arrested in metaphase by Cdc20 depletion for 2 and 5 h. For each cell, 

values of kMT length and inter-KT distance were plotted against the corresponding SPB distance illustrat-

ing to which extent the kMT length or the inter-KT distance increased with increasing spindle length; n > 

200. (B) The percentage of spindle elongation compensated by the elongation of kMTs was obtained by 

the two-fold slope of the trend line depicted in A. Error bars represent the STD of two independent experi-
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ments. (C) Upon Cin8 deletion, the percentage of spindle elongation that is compensated by the elonga-

tion of kMTs is even increased in stu1∆CL cells. ∆cin8 strains containing WT or Stu1∆CL were treated and 

analyzed as described in A and B; n > 195. Error bars represent the STD of two independent experiments.  

 

4.1.4.3 The CL domain makes kMT length dependent on tension 

Earlier studies revealed that polymerization and stability of kMTs increases with in-

creasing tension on the KT-MT interface, whereas low tension causes enhanced 

depolymerization (Akiyoshi, B. et al., 2010). To gain more insight in the dependencies 

between the kMT length and the tension on the KT-MT interface in this mutant, the 

inter-KT distances and kMT lengths were plotted against the corresponding SPB dis-

tances (Fig. 4-11 A). To achieve a broad range of data, we took advantage of the ob-

servation that SPB distances increase over time in metaphase arrest. Therefore, the 

values of 2 h and 5 h of metaphase arrest were combined for this analysis. These 

analyses revealed that in stu1∆CL cells a higher percentage (89 %) of spindle elonga-

tion was compensated by the elongation of the kMTs than in WT cells (78 %) 

(Fig. 4-11 A and B). As a consequence, the inter-KT distance in stu1∆CL cells only 

slightly changed, independent of the SPB distance. This effect again was intensified by 

the additional deletion of Cin8 (Fig. 4-11 C). In stu1∆CL ∆cin8 cells, the kMTs almost 

completely (95 %) compensated the spindle elongation compared to only 71 % in ∆cin8 

cells alone (Fig. 4-11 C) and the inter-KT distance was kept at a constant low level of 

about 0.5 µm (Fig. 4-11 D). This indicates that a very low level of tension was kept on 

the KT-MT interface that was sufficient to maintain the increased kMT length. In addi-

tion, this means that in stu1∆CL cells Cin8 counteracts the over-polymerizing power of 

Stu1∆CL at the kMTs. However, in the ∆cin8 background this antagonizing force is 

missing and kMTs can even elongate further. Taken together, these data suggest that 

the CL domain of Stu1 regulates kMT polymerization and makes the kMT length de-

pendent on the tension on the KT-MT interface. 

 

4.1.5 Disturbed (k)MT dynamics result in bipolar attachment defects 

The analysis of cells arrested in metaphase revealed that stu1∆CL cells had a 

slightly increased defect in bipolar attachment in comparison to WT cells (Fig. 4-12 A). 

This defect was much more severe when cells were released from nocodazole treat-

ment (Fig. 4-12 B). When analyzed 80 min after the nocodazole release, 84 % of 

stu1∆CL cells with a SPB distance longer than 3 µm still showed monopolar attached 

KT5s. In WT cells, only 11 % of cells had the same defect. However, only 12 % of 

stu1∆CL cells that further progressed into G1 after this treatment manifested the bi-
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orientation defect and revealed missegregated KT5s, compared to 5 % of WT cells 

(Fig. 4-12 C). This indicated that the very strong initial bipolar attachment defect could 

be corrected in the majority of cells, but nevertheless caused an increased number of 

cells with missegregated KT5s. In addition, it took about 180 min until the majority of 

stu1∆CL cells had undergone cytokinesis after nocodazole release and were arrested 

in G1 again, in comparison to about 120 min in WT cells.  

 

 

Figure 4-12. Deletion of the CL domain resulted in a bipolar attachment defect. 

(A) Deletion of the CL domain resulted in an increased bipolar attachment defect. Cells were arrested in 

metaphase by Cdc20 depletion for 2 h. KT5 attachment was quantified as indicated; n > 150. (B) stu1∆CL 

cells showed a severe initial attachment defect when released from nocodazole arrest. Additional deletion 

of Ase1 could mainly rescue this defect. After G1 arrest cells were released into nocodazole. After 3 h, 

nocodazole was washed out and cells were analyzed 80 min later. Cells with a SPB distance larger than 

3 µm were quantified for monopolar attached KT5; n > 50. (C) After nocodazole treatment stu1∆CL cells 

showed an increased KT missegregation. Cells were treated as in B, but -factor was added after 

nocodazole washout. After 3 h, the G1 arrested cells were analyzed. Cells with two KT5 signals were 

quantified as cells that show missegregation; n > 380. (A-C) Error bars represent the STD of two inde-

pendent experiments; bar, 2 µm. 

 

Since the CL domain appears as a negative regulator for Stu1 binding or function on 

MTs, not only the kTMs, but also the spindle dynamics might be influenced by 

Stu1∆CL. Therefore, the SPB distances were measured after the release from 

nocodazole treatment. Indeed, stu1∆CL cells separated their SPBs much faster, with 

an average SPB distance of more than 3 µm only 40 min after nocodazole release in 

comparison to 1.1 µm in WT cells (Fig. 4-13 A). Strikingly, Stu1∆CL localized all along 

these spindles as described before for metaphase spindles (Fig. 4-13 B). When Ase1 

was visualized as an indicator for the overlap of interpolar MTs, it revealed that these 

spindles had a much more extensive overlap region of interpolar MTs than WT spin-
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dles of about the same length (Fig. 4-13 B). This indicated that these spindles, irre-

spective of their length of up to 5 µm, still had metaphase character and that the 

stu1∆CL cells did not prematurely enter anaphase. In order to investigate if the preco-

cious SPB separation could be the reason for the bi-orientation defect in stu1∆CL cells, 

Ase1 was deleted to downregulate spindle elongation. Indeed, the deletion of Ase1 in 

stu1∆CL cells reduced the rates of SPB separation down to WT levels (Fig. 4-13 A). 

Analysis of KT bi-orientation in these cells revealed that the number of monopolar at-

tached KT5s was also strongly reduced, but could not be completely lowered to WT 

levels (Fig. 4-13 B). In conclusion, these data suggest that the premature SPB separa-

tion is the main reason for the bi-orientation defect detected in stu1∆CL cells. While 

cells try to achieve bipolar attachment, the early spindle elongation might prevent the 

attachment of KTs to both SPBs due to the spatial distance. Another possible explana-

tion is that a delayed bipolar attachment of KTs enables the SPBs to separate that fast 

and far. Nevertheless, the disturbed dynamics of the interpolar MTs might not be the 

sole factor for this defect. Also the dynamics of other MTs, like the kMTs, that seem to 

be finely regulated by Stu1 via the CL domain, might contribute to faithful chromosome 

segregation. 

 

 

Figure 4-13. Precocious SPB separation is the main reason for the bipolar attachment defect. 

(A) Deletion of the CL domain caused a precocious SPB separation after cells were released from 

nocodazole treatment. Additional deletion of Ase1 almost completely diminished this effect. Cells were 

treated like in Fig. 4-11 A. Indicated time points after nocodazole washout were analyzed for SPB distanc-

es. To exclude the majority of cells that have already initiated anaphase, cells with SPB distances larger 

than 5 µm were excluded; n > 80. Error bars represent the STD of two independent experiments; bar, 2 

µm. (B) Premature anaphase entry is not the reason for the precocious SPB separation. Cells were treat-

ed like in Fig. 4-11 A. Ase1 serves as a marker for interpolar MT overlaps. Plot profiles represent the aver-

age intensities of 10 (stu1∆CL) or 4 (WT) measured cells; bar, 2 µm. 
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Surprisingly, the deletion of the CL domain did not cause a chromosomal loss as 

severe as expected considering this observed defect in bi-orientation (Table 4-1). One 

reason could be that due to the small size of the chromosomal fragment used in this 

assay the attachment and segregation behavior is altered compared to a regular chro-

mosome. On the other hand, most KTs could missegregate together with the same 

SPB. Thus, the loss of the chromosomal fragment would frequently come along with 

the loss of a regular chromosome. Since all regular chromosomes contain essential 

genes, these cells would be inviable and overlooked in this assay. To test this hypoth-

esis, stu1∆CL cells that contained two different labeled KTs (KT5 and KT15) were ana-

lyzed in regard to their segregation phenotype. Indeed, in 74 % of stu1∆CL cells in 

which KT5 and KT15 showed a bi-orientation defect at the same time (48 % of the cell 

population), both KTs were attached to the same SPB (Fig. 4-14 A). This finding sup-

ports the assumption that in the chromosomal loss assay the loss of the chromosomal 

fragment might frequently coincide with the loss of a regular chromosome. 

 

 

Figure 4-14. Monopolar attached KTs mainly missegregate together, preferentially to the old SPB. 

(A) Two different monopolar KTs mainly attached to the same SPB. stu1∆CL cells with two labeled KTs 

(KT5, KT15) were treated as in Fig. 4-12 A. Cells that contained KT5 and KT15 monopolarly attached were 

quantified according to their localization to the same or different SPBs; n > 100. Error bars represent the 

STD of two independent experiments; bar, 2 µm. (B) Monopolar KTs preferentially localize to the old SPB. 

Cells were released from G1 arrest into nocodazole. After 90 min, nocodazole was washed out and cells 

were analyzed 80 min later as indicated. Spc42 and its slow maturation after SPB duplication was used as 

an indicator to distinguish the old and new SPB. Arrows indicate old SPB; bar, 2 µm.  

 

Analysis of stu1∆CL cells with Spc42 labeled as an indicator to distinguish between 

the old and the new SPB revealed that more than 80 % of the monopolar attached 
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KT5s resided with the old SPB (Fig. 4-14 B). Previous studies have shown that defec-

tive reorientation from the old to the new SPB in ipl1 (or sli15) mutants causes mono-

oriented KTs mainly segregating with the old SPB during anaphase (Tanaka, T. U. et 

al., 2002). Treatment with nocodazole however tended to abolish the tendency of 

chromosomes to cosegregate with the old SPB. Based on these findings we assume 

that most of the KTs get monopolarly attached to the old SPB in stu1∆CL cells and fail 

to re-orientate to the new SPB. 

 

4.1.6 Deletion of the TOGL2 domain cannot be rescued by the 

CLASP1 TOGL2 or Stu2 TOG1 domain 

In order to address the question if the TOGL2 domain of Stu1 works like a polymer-

ase like TOG domains of XMAP family members, this domain was replaced by the 

TOG1 domain of the S. cerevisiae XMAP215 homolog Stu2. This chimeric construct 

however resulted in inviable cells. In order to compare the specific functions of the two 

TOG domains, the chimeric construct was analyzed in regards to Stu1 function under 

WT Stu1 shutdown conditions. The Stu2 TOG1 domain could not substitute for the 

function of the Stu1 TOGL2 domain in spindle formation (Fig. 4-15 A) or KT capture 

(Fig. 4-15 C). These results suggest that the Stu1 TOGL2 domain does not work in the 

identical way as the TOG1 domain of the XMAP215 protein Stu2. 

Since the TOG domain of a XMAP family member could not compensate for the 

function of the TOGL2 domain of Stu1, the question raised if a TOGL domain of a 

CLASP family member can fulfill this function. Therefore, the TOGL2 domain of Stu1 

was replaced by the TOGL2 domain of the H. sapiens CLASP homolog CLASP1. Sur-

prisingly, also this chimeric construct was not viable and could not rescue the function 

of Stu1 (Fig. 4-15 A and C). This indicates that the TOGL2 domain of Stu1 does also 

not work in the identical way as the TOGL domains of higher eukaryotes. 

The TOG1 domain of Stu2 and the TOGL2 domain of CLASP1 were determined to 

be capable of tubulin binding (Al-Bassam, J. et al., 2006; Leano, J. B. et al., 2013) per 

se. But it remains to be tested if these TOG domains are indeed still capable to bind 

free tubulin when they are embedded within the Stu1 protein structure. The fact that 

both chimeric Stu1 constructs were able to localize to unattached KTs undistinguisha-

ble from WT Stu1 (Fig. 4-15 B) at least demonstrated that the substitution of the 

TOGL2 domain by these domains did not cause a completely inactive or misfolded 

Stu1 protein. 
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In conclusion, the function of the Stu1 TOGL2 domain differs from the function of 

TOG domains of other XMAP215 proteins or CLASP proteins of higher eukaryotes. 

Simple binding of free tubulin might not be the only function of the Stu1 TOGL2 domain 

that is essential for the activity of Stu1 and therefore for the survival of the cell. 

 

 

Figure 4-15. Swapping the TOGL2 domain of Stu1 with another TOG domain did not result in cells 

capable to form spindles or to achieve capturing.  

(A-C) The TOGL2 domain of Stu1 was substituted with the TOG1 domain of Stu2 or the TOGL2 domain of 

CLASP1 respectively. (A) Chimeric Stu1 constructs were not able to form spindles. Shutdown of WT Stu1 

was started 3 h prior to the initiation of G1 arrest. Cells were released and analyzed for metaphase and 

anaphase spindle formation at the indicated time points. Data of WT and stu1∆TOGL2 cells are as in Fig. 

4-3 C; n > 130; bar, 2 µm. (B) Chimeric Stu1 constructs localized to unattached KTs. Cells were released 

from a G1 arrest into nocodazole and analyzed for Stu1 construct localization after 3h. Cells were grown 

under WT Stu1 shutdown conditions; bar, 2 µm. (C) Chimeric Stu1 constructs are not able to facilitate 

capturing of unattached KTs. Cells were treated under Stu1 shutdown conditions and released from G1 

arrest into nocodazole. After 3 h, nocodazole was washed out and cells were analyzed at the indicated 

time points. Data of WT and stu1∆TOGL2 cells are as in Fig. 4-7 A; n > 100. 
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4.2 Various cell cycle dependent phosphorylations of Stu1 indi-

cate a complex way of regulation 

4.2.1 Stu1 phosphorylation in mitosis causes a mobility shift on 

SDS-PAGE 

Analysis of the Stu1 domain mutants already gave more extensive insights in the 

domain requirements to achieve the various Stu1 localizations (this work; Funk, C. et 

al., submitted), but the mechanisms that ensure the temporal and spatial regulation of 

Stu1 remained elusive. Interestingly, Stu1 did not appear as one discrete band when 

analyzed by Western blot (Fig. 4-16 A). This suggested a post-translational modifica-

tion of Stu1. Indeed, treatment with calf intestine phosphatase (CIP) revealed that this 

mobility shift on SDS-PAGE is caused by phosphorylation (Fig. 4-16 A).  

 

 

Figure 4-16. Stu1 gets phosphorylated in a cell cycle dependent manner. 

(A) The form of Stu1 resulting in a mobility shift on SDS-PAGE was caused by phosphorylation. Protein 

extracts were isolated from asynchronized WT cells and treated with calf intestine phosphatase (CIP) in 

vitro. Western blot analysis was performed using anti-Stu1 antibody. (B) Phosphorylation of Stu1 is cell 

cycle dependent. WT cells were arrested in G1 and analyzed at the indicated time points after release. -

factor was added 80 min after release to trap the cells in G1 again. Western blot analysis was performed 

using anti-Stu1 and anti-Myc antibody. The indicated cell cycle stages were determined based on the 

Pds1 levels and the budding index of the mitotic cells. Pds1 degradation indicates anaphase onset. (C) 

Phosphorylation pattern of Stu1 arrested at indicated cell cycle stages. Stu1-ProtA was affinity purified 

from cells arrested in G1, metaphase, anaphase and G2-/metaphase with unattached KTs. Western blot 

analysis was performed using anti-Stu1 antibody. 

 



RESULTS  79 

 
 

Following one cell cycle after G1 release demonstrated that this phosphorylated 

form of Stu1 is not present in G1, but appears at the onset of metaphase and disap-

pears in late anaphase (Fig. 4-16 B), indicating that this particular modified form of 

Stu1 is cell cycle dependent (cdStu1). This was confirmed by the analyses of Stu1-

ProtA affinity-purified from cells arrested in different cell cycle stages (Fig. 4-16 C). 

Whereas in G1 only one form of Stu1 was visible, Stu1 purified from metaphase or an-

aphase arrested cells additionally showed the slower migrating Stu1 form. This was 

also the case when cells were treated with nocodazole to isolate Stu1-ProtA from 

G2-/metaphase arrested cells with unattached KTs. 

Posttranslational protein modifications like phosphorylations are known to fulfill 

regulatory roles by affecting protein activity, interaction, stability or localization (Fu, J. 

et al., 2010). The fact that Stu1 gets phosphorylated and dephosphorylated during the 

cell cycle led to the question for the associated functional relevance of this modifica-

tion. 

 

4.2.2 Stu1 gets phosphorylated and dephosphorylated throughout 

the cell cycle 

To address the question which sites of Stu1 get phosphorylated, large-scale protein 

purifications of Protein A-tagged Stu1 were performed using stable isotope labeling of 

amino acids in cell culture (SILAC). This method allowed to quantitatively analyze the 

relative phosphorylation of Stu1 at different times and stages of the cell cycle. On the 

one hand, WT cells arrested in G1 for 2 h were combined with WT cells arrested with 

nocodazole in G2-/metaphase for 3 h to recruit Stu1 to unattached KTs. On the other 

hand, WT cells arrested in G1 were mixed with temperature sensitive cdc15-1 cells 

arresting in anaphase upon incubation at 37 °C for 3 h. In each case the cultures were 

combined in an approximate cell number ratio of 1:1 and affinity-purified collectively. 

Coomassie stained gels show the purified Stu1-ProtA at a size of about 195 kDa 

(Fig. 4-17 A) which was analyzed by mass spectrometry. Further mass spectrometric 

analyses of unlabeled Stu1-ProtA purified from cells arrested in G1, metaphase, ana-

phase or G2-/metaphase with unattached KTs confirmed the SILAC results and identi-

fied additional phosphorylation sites (Fig. 4-17 B). In total, 15 phosphorylation sites 

could be mapped on Stu1 (Fig. 4-17 C). Interestingly, the identified sites were not ran-

domly distributed throughout the protein, but clustered mainly within the ML (or the 

MBD) and the CL domain. This is in agreement with the finding that both of these do-
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mains are mainly unstructured regions and therefore preferentially accessible for modi-

fications. 

 

Figure 4-17. Phosphorylation acceptor sites cluster within the ML and the CL domain of Stu1. 

(A) Stu1-ProtA was affinity purified using SILAC. Protein A-tagged Stu1 was purified from cells arrested in 

G1 and in G2-/metaphase (using nocodazole) or in anaphase (using a temperature-sensitive cdc15-1 

mutant) respectively. For each approach cells were combined and processed collectively. Black arrows 

indicate purified Stu1-ProtA. (B) Stu1-ProtA was affinity purified from cells arrested in G1, metaphase, 

anaphase and G2-/metaphase with unattached KTs. (C) Mass spectrometric analyses revealed 15 puta-

tive phosphorylation sites predominantly located within the ML and CL domain. A model of Stu1 with iden-

tified phosphorylation sites is shown. The ML and the CL domain are highlighted in green and blue. 

 

Detailed quantitative analysis of the SILAC results showed phosphorylation of Stu1 

throughout the cell cycle (Fig. 4-18 A and B). In G1 especially serine 497, located with-

in the TOGL2 domain, was found to be strongly phosphorylated, but was dephosphory-

lated in nocodazole or anaphase arrested cells. At unattached KTs (represented by 

results of the G2-/metaphase arrested cells), S745 in the D3 domain and three sites 

within the CL domain (T1047, S1113, T1134) were found to be more than 10 fold more 

phosphorylated than in G1. These sites were also accordingly more often phosphory-

lated in anaphase, indicating that they might get phosphorylated during the onset of 

mitosis and dephosphorylated after anaphase. In anaphase two additional sites (S265, 

T277) located between the TOGL1 domain and the TOGL2 domain were found to be 

strongly phosphorylated in comparison to G1. 
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 Interestingly, the sites S594, S602 and S690 that are mainly located within the ML 

domain, were found to be phosphorylated in G1 and phosphorylation levels decreased 

by a factor of three when Stu1 localized to unattached KTs in prometaphase. Compar-

ing phosphorylation levels of these sites from G1 and anaphase however revealed a 

five-fold increase in phosphorylation of Stu1 in anaphase. Taken together, these re-

sults indicate that Stu1 experiences a fifteen-fold increased phosphorylation from met-

aphase to anaphase at these sites. This alternating phosphorylation during the cell 

cycle and their location within the ML domain nominates them as interesting candi-

dates to regulate the MT binding ability of Stu1. 

 

 

Figure 4-18 SILAC results suggest cell cycle dependent phosphorylation patterns of Stu1.  

(A) Sites of Stu1 that were found to be phosphorylated in G1 or mitosis (G2-/metaphase or anaphase 

respectively) according to the SILAC assays were identified by mass spectrometry. The enrichment in 

phosphorylation was calculated for each site as the ratio between the intensity of the „light‟ (from cells 

arrested in mitosis) and the „heavy‟ (from cells arrested in G1) phosphorylated peptide (M/G1), as well as 

the corresponding unmodified peptide (for further explanation see 3.4.12). Asterisks indicate when the 

ratio was calculated vice versa (G1/M). Results were considered to be very significant when the ratio for 

the phosphorylated peptide (P) was higher than 10 and the ratio for the unphosphorylated peptide (unP) 
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was smaller than 0.5. These results are highlighted in orange. (B) Models of Stu1 in the different cell cycle 

stages depict the results shown in A. Sites predicted to be phosphorylated with a ratio > 10 are highlighted 

in orange, the ones with a ratio between 2 and 10 are highlighted in yellow. 

 

Most of the suggested phosphorylation sites contain consensus sequences targeted 

by different kinases (Fig. 4-19). Sites like S497, S745 or S1167 are predicted phos-

phorylation sites for Cdk1, the major regulatory kinase of the cell cycle. Phosphoryla-

tion of S745 by Cdk1 would make this site suitable to serve as a polo-box binding mo-

tif. The sites S1001, T1047 and T1134 that are located within the CL domain could be 

targets for the polo-like kinase Cdc5. Similar consensus sequences (Fig. 4-19 A) also 

suggest S1001, T1047, S1113 and T1134 as targets of Mps1 phosphorylation. In addi-

tion, T277, S602 (and S690) are possible Ipl1 kinase sites. 

 

 

Figure 4-19. Identified sites are predicted to be phosphorylated by different kinases. 

(A) The determined consensus sequences for Cdk1 (Nigg, E. A., 1993), Ipl1 (Cheeseman, I. M. et al., 

2002), the polo-like kinase (Nakajima, H. et al., 2003) and the polo-box binding motif (Elia, A. E. H. et al., 

2003) that resembles a Cdk1 consensus site is depicted. Additionally, the consensus sequence for Mps1 

(Dou, Z. et al., 2011) that is similar to the polo-like kinase motif is shown. pS/pT is the phosphorylated 

serine or threonine, the symbol ϕ indicates a hydrophobic amino acid, X stands for any amino acid. 

(B) Phosphorylation sites were arranged according to their predicted kinases. Kinase predictions are 

based on their known consensus sites as in A.  

 

In conclusion, Stu1 is a protein that is phosphorylated throughout the cell cycle. The 

phosphorylation pattern certainly varies during the cell cycle and various kinases might 

contribute to these concerted modifications. 

 

4.2.3 Ipl1 and Mps1 phosphorylate Stu1 in vitro 

In order to determine if Stu1 indeed is a substrate of Ipl1 or Mps1, in vitro kinase as-

says with γ-[32P]-ATP were performed using the N- or C-terminus of Stu1 as sub-

strates. The His-tagged N-terminal (aa1-aa716) and C-terminal part (aa716-aa1513) of 
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Stu1 was expressed and affinity purified from E. coli cells using Ni-NTA beads. Addi-

tionally, Ipl1 together with its activator protein Sli15 (Ipl1-6xHis-Sli15-6xHis) and His-

Mps1 were expressed and affinity purified. Incorporation of radioactive labeled 32PO4 

determined that Ipl1 (Fig. 4-20 A) as well as Mps1 (Fig. 4-20 B) have the capability to 

phosphorylate both termini of Stu1 in vitro. Stu1 N-terminus and Mps1 unfortunately 

could not be separated on SDS-PAGE due to the same molecular weight. An increase 

in signal intensity nevertheless suggests the Stu1 N-terminus as a substrate of Mps1 

(Fig. 4-20 B). Kinase assays using cold ATP followed by mass spectrometric analysis 

determined T760, S1034, T1047, S1113 and T1134 as target sites for Mps1 phosphor-

ylation in vitro. However, T760 and S1034 were never found to be phosphorylated in 

vivo. Probably due to the low amount of Ipl1 kinase and a low sequence coverage 

when analyzed by mass spectrometry, no phosphorylation sites could be determined 

for Ipl1 kinase in vitro. Taken together, Ipl1 as well as Mps1 can phosphorylate Stu1 in 

vitro. Both of them target the N-terminal and the C-terminal part of Stu1. 

 

 

Figure 4-20. Stu1 N- and C-terminus get phosphorylated by Ipl1 and Mps1 in vitro. 

(A) Ipl1 kinase is capable to phosphorylate Stu1 in vitro. His-tagged Stu1 N- and C-terminus and Ipl1-

Sli15-His were expressed from E. coli cells and purified by Ni-NTA beads. Grey arrow indicates Sli15, also 

phosphorylated by Ipl1. Asterisks label phosphorylated Sli15 degradation bands. (B) Stu1 gets phosphory-

lated by Mps1 in vitro. Stu1 N- and C-terminus and Mps1 were expressed from E. coli cells and purified by 

Ni-NTA beads. Grey arrow indicates autophosphorylated Mps1. 
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4.2.4 Analysis of Stu1 phosphorylation mutants 

As an approach to analyze the effect of Stu1 phosphorylation on the localization and 

function of the protein, identified phosphorylation sites were mutated to alanine and 

glutamate respectively. Mutation to alanine abolishes the phosphorylation of Stu1 at 

this site, whereas mutation to glutamate was used to mimic the negative charge that is 

created by the phosphorylation of a specific site of the protein. Subsequently, the 

phosphorylation mutants were analyzed in regards to the function of Stu1 in spindle 

formation and Stu1 localization to the spindle midzone (Fig. 4-21 A) and to unattached 

KTs (Fig. 4-21 B). In general the value of one or the average of two clones is depicted 

for each mutant. Phenotypic examples of spindle defects and Stu1 mislocalizations are 

depicted (Fig. 4-21) and were quantified accordingly in the following analyses. In some 

cases the capturing ability, bipolar attachment and SPB separation after nocodazole 

treatment were tested in addition.  

 

 

Figure 4-21. Phenotypic examples of spindle and Stu1 localization defects.  

(A-B) Representative images of Stu1 localization defects caused by Stu1 mutations are shown; bar, 2 µm. 

Schemes represent the phenotypes that are quantified in the following analyses. KTs are depicted in blue 

and Stu1 is in green. (A) Spindle phenotypes and Stu1 localization defects in anaphase. Cells were re-

leased from G1 arrest and analyzed after 120 min. (B) Stu1 mislocalization phenotypes in the presence of 

unattached KTs. Cells were released from a G1 arrest into nocodazole and analyzed 3 h later. Arrows 

indicate Stu1 at unattached KTs. 

 

Simultaneous mutation of the majority of the identified phosphorylation sites 

(S497A, S602A, S690A, S745A, S1001A, S1018A, T1034A, T1047A, S1060A, 

S1113A, T1134A and S1167A) resulted in a severe defect in spindle formation and 
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Stu1 12A localization to the spindle midzone and to unattached KTs (Fig. 4-22). In 

12 % of cells with intact spindles Stu1 localized along the spindle (Fig. 4-22 A). 55 % of 

anaphase spindles were broken and Stu1 localized along these residual spindles. 67 % 

of cells showed a strong and the residual 33 % a weak mislocalization for Stu1 to the 

SPB (Fig. 4-22 B). This indicated that phosphorylation indeed has a regulatory function 

for Stu1 localization, but did not allow further conclusions about the involvement of cer-

tain kinases or specific phosphorylation sites. 

 

 

Figure 4-22. Mutation of multiple phosphorylation sites resulted in a severe spindle formation and 

Stu1 localization defect.  

(A) Stu1-12A mislocalizes along the spindle and causes instable spindles. Cells were released from a G1 

arrest and analyzed after 120 min. Spindle and Stu1 localization defects (see Fig. 4-21 A) were quantified 

as depicted. (B) Stu1-12A showed a strong localization defect to unattached KTs. Cells were released 

from a G1 arrest into nocodazole treatment and analyzed after 3 h. Stu1 localization defects (see Fig. 4-21 

B) were quantified as depicted. Arrows indicate Stu1 at unattached KTs. 

 

To gain more insight in the functional relevance of each phosphorylation site, mu-

tants were created following different strategies. One approach was to simultaneously 

mutate phosphorylation sites that are modified during specific cell cycle stages (see 

Fig. 4-18). Secondly, single substitutions of the most prominent phosphorylation sites 

were created. Finally, phosphorylation sites were mutated according to the respective 

predicted kinases and according to their localization within the CL domain. 

 

4.2.4.1 Analysis of Stu1 phosphomutants created according to SILAC results 

SILAC results suggested the phosphorylation of S497 in G1 and dephosphorylation 

of this site in mitosis. The sites S745, T1047, S1113 and T1134 however are supposed 

to be phosphorylated when Stu1 localizes to unattached KTs in prometaphase and in 
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anaphase. In addition, sites S265 and T276 get phosphorylated when cells proceed 

into anaphase. 

In order to investigate the biological significance of these sites for the function of 

Stu1, at first mutants were created that mimic the antagonistic phosphorylation state as 

predicted for Stu1 at unattached KTs. Therefore the phosphorylation of sites T1047, 

S1113 and T1134 was prevented by the mutation to alanine, whereas phosphorylation 

of S497 was mimicked by the mutation to glutamate. Unexpectedly, the mutations in 

stu1-E+3A (S497E, T1047A, S1113A, T1134A) cells caused only a mild average local-

ization defect to unattached KTs (Fig. 4-23 B). Furthermore, the two analyzed clones 

considerably differed in the localization of Stu1-E+3A to unattached KTs (Fig. 4-23 C). 

Surprisingly, the additional mutation of S745 to alanine improved the localization of the 

mutated Stu1-E+4A (S497E, S745A, T1047A, S1113A, T1134A), which harbors muta-

tions in all strong cell cycle dependent sites to WT localization. stu1-E+7A (S265A, 

S276A, T277A, S497E, S745A, T1047A, S1113A, T1134A) cells that harbor all muta-

tions in strong cell cycle dependent sites and particularly mimic the opposite phosphor-

ylation state as found for Stu1 in anaphase, did not cause any mislocalization of the 

mutated Stu1 (Fig. 4-23 A-C). 

As a control, mutations were created that contain the opposite mutations, mimicking 

the phosphorylation states that Stu1 was predicted to have at unattached KTs and in 

anaphase respectively. stu1-A+3E (S497A, T1047E, S1113E, T1134E) and stu1-A+4E 

(S497A, S745E, T1047E, S1113E, T1134E) cells that mimic the phosphorylation state 

suggested for Stu1 localizing to unattached KTs showed a mild defect for spindle for-

mation („broken‟) and Stu1 localization to the midzone („along‟) (Fig. 4-23 A). However, 

most notably, these mutations resulted in a quite strong localization defect of mutated 

Stu1 to unattached KTs, especially when additionally S745 was mutated to alanine 

(Fig. 4-23 B). Furthermore, two clones of stu1-A+3E and stu1-A+4E cells showed very 

differently severe phenotypes (Fig. 4-23 C). Moreover, the additional mutation of S265, 

S276 and T277 to alanine (Stu1-A+7E) resulted in a phenotype very similar to WT Stu1 

(Fig. 4-23 A and B). The observed localization defects to unattached KTs are in conflict 

with the idea that mutations that reflect the phosphorylation of Stu1 at unattached KTs 

are not expected to cause a localization defect to unattached KTs. A possible explana-

tion for the defects could be that the mutation to glutamate does not precisely reflect 

the phosphorylation of these sites. Nevertheless, how the additional mutation of certain 

sites can improve the Stu1 localization in this respect remains unclear. 
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In summary, these data propose that the cell cycle dependent phosphorylation of 

the identified sites that was suggested by the SILAC results does not exhibit the major 

regulatory function for the examined localizations and functions of Stu1. However, 

since different clones showed contrasting effects, it is difficult to draw firm conclusions 

from these investigations. 

 

 

Figure 4-23. Analysis of cell cycle specific phosphomutants of Stu1.  

(A) stu1-A+3E and stu1-A+4E cells showed a defect in spindle formation and Stu1 spindle localization, but 

stu1-E+7A cells did not. Cells were treated as in Fig. 4-21 A. The averaged data of two clones was depict-

ed. Asterisks indicate when two clones showed very different effects; n > 34. (B) The Stu1 mutations in the 

stu1-A+3E, stu1-E+3A and stu1-A+4E cells, but not the stu1-E+4A cells resulted in a Stu1 localization 

defect to unattached KTs. Cells were treated as in Fig. 4-21 B and Stu1 localization defects were quanti-

fied. The averaged data of two clones was depicted. Asterisks indicate when two clones showed very 

different effects; n > 70. (C) Different clones of the same mutant had differently severe defects in stu1-

A+3E, stu1-E+3A and stu1-A+4E cells. The table lists the values of each analyzed mutant clone. Values 

that differed severely from one clone to the other are highlighted in red. 
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4.2.4.2 Phosphorylation site S1113 is responsible for the conformational 

change causing the mobility shift on SDS-PAGE 

Analysis of the single substitution of S1113, located within the CL domain, to alanine 

and glutamate respectively revealed that phosphorylation of this site is solely responsi-

ble for the mobility shift of Stu1 on SDS-PAGE (Fig. 4-24 A). Mutation of S1113 to ala-

nine resulted in a faster running protein form, whereas Stu1-S1113E appeared as a 

slower running form.  

 

Figure 4-24. Phosphorylation of S1113 affects the mobility shift of Stu1 on SDS-PAGE. 

(A) Modification of S1113 determines the mobility of Stu1 on the SDS-PAGE. Stu1-GFP constructs of 

protein extracts of asynchronized WT, stu1-S1113A and stu1-S1113E cells were detected using α-Stu1 

antibody. (B) stu1-S1113A and stu1-S1113E cells showed only a mild defect in spindle formation and Stu1 

spindle localization. Cells were treated as in Fig. 4-21 A. The data represent the average of two different 

clones; n > 23. (C) Stu1-S1113A and Stu1-S1113E caused only a very mild defect in Stu1 localization to 

unattached KTs. Cells were treated as in Fig. 4-21 B. The data represent the average of two individual 

clones; n > 89. (D) Capturing was slightly improved in stu1-S1113E cells compared to WT cells. Cells were 

released from G1 arrest into nocodazole. After 3 h, nocodazole was washed out and cells were analyzed 

for unattached KT5 at the indicated time points; n > 67. (E) stu1-S1113A and stu1-S1113E cells had a 

slightly increased bi-orientation defect. Cells were treated as in D and analyzed 80 min after nocodazole 

washout. Cells with a SPB distance larger than 3 µm were quantified for monopolar attached KT5; n > 33. 

(F) SPB separation in stu1-S1113A and stu1-S1113E cells is very similar to WT cells. Cells were treated 
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as in D, SPB distances were measured at the indicated time points after nocodazole release. To exclude 

the majority of cells that have already initiated anaphase, cells with SPB distances larger than 5 µm were 

excluded; n > 42. 

 

Phosphorylations are thought to decrease the mobility of a protein due to the inhibit-

ed binding of SDS to the phosphorylated protein region. In the case of Stu1 however 

only one of many phosphorylation sites is responsible for the distinct mobility shift. This 

suggests that the phosphorylation of S1113 causes a conformational change that can 

be detected as a mobility shift on SDS-PAGE. Despite the very strong putative effect 

on the conformation of Stu1, these mutations only caused a very mild defect in Stu1 

localization to spindles or to unattached KTs (Fig. 4-24 B and C). Unexpectedly, the 

mutation to glutamate (stu1-S1113E), which should reflect Stu1 phosphorylation at 

unattached KTs, even showed a stronger localization defect to unattached KTs than 

the mutation to alanine (Fig. 4-24 C). Consistent with the stu1ΔCL mutant, which also 

has a defect in unattached KT localization, this mislocalization also resulted in an im-

proved capturing phenotype (Fig. 4-24 D). Only 16 % of KT5s detached upon 

nocodazole treatment in stu1-S1113E cells and only 2 % of unattached KT5s were 

detectable 40 min after nocodazole washout. stu1-S1113A cells did not capture much 

differently than WT cells. Both mutants showed a slightly higher number of monopolar 

KT5s after nocodazole release (Fig. 4-24 E), but separated their SPBs with a similar 

timing than WT cells (Fig. 4-24 F). 

Conclusively, the strong effect of the modification of serine 1113 on the mobility of 

Stu1 on SDS-PAGE and therefore most likely on the conformation of Stu1, was not 

reflected by any of the analyzed Stu1 localization phenotypes or Stu1 functions. 

 

4.2.4.3 Analysis of single mutations of Stu1 phosphorylation sites 

To avoid compensatory effects of the multiple mutations based on the SILAC anal-

yses, single mutants of the most prominent phosphorylation sites were analyzed. Cells 

containing Stu1-S497A, Stu1-S497E, Stu1-S745A or Stu1-S1001A did not show a 

phenotype distinguishable from WT cells when analyzed for spindle localization and 

recruitment to unattached KTs (Fig. 4-25 A and B). stu1-S745E, stu1-T1047A and 

stu1-T1134A cells had a very mild defect in spindle formation and Stu1 midzone locali-

zation in anaphase, but an increased mislocalization of Stu1 to SPBs (Fig. 4-25 A and 

B). In average, the mutation of S602 to alanine or to glutamate produced a quite se-

vere defect of Stu1 localization to spindles or to unattached KT, but individual clones 

revealed differently strong phenotypes (Fig. 4-25 C).  
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Figure 4-25. Analysis of single phosphomutants of Stu1. 

(A) stu1-S602A and stu1-S602E cells in average showed a defect in spindle formation and Stu1 spindle 

localization. Cells were treated as in Fig. 4-21 A. The data represent the average of one to three different 

clones; n > 31. (B) In average, stu1-S602A and stu1-S602E cells had a quite strong defect of Stu1 local-

ization to unattached KTs. Mutation of T1047 and T1134 to alanine resulted in a mild mislocalization of 

Stu1 to SPBs. Cells were treated as in Fig. 4-21 B. The data represent the average of one or more indi-

vidual clones; n > 73. Asterisks indicate that different clone showed differently severe phenotypes. (C) 

Different clones of the same mutant or differently integrated Stu1 constructs varied in the strength of 
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their defects in stu1-S602A or stu1-S602E cells. The table lists the values of each analyzed mutant 

clone. Strain YVS2298 contained Stu1-S602E-GFP integrated at the LYS2 locus whereas all other Stu1-

S602E-GFP constructs were integrated at the endogenous STU1 locus using the klTRP1 marker. V1-V4 

indicate individual experiments with the same clone 32. (D-F) Analyzed cells contain mutated Stu1-GFP 

constructs integrated in the LYS2 locus. (D) stu1-S602A cells captured KT5s slightly faster than WT 

cells. Cells were treated and analyzed as in Fig. 4-23 C; n > 116. (E) stu1-S602A and stu1-S602E cells 

showed a mild bipolar attachment defect. Cells were treated and analyzed as in Fig. 4-24 E; n > 42. (F) 

stu1-S602A cells separated their SPBs somewhat faster than WT cells. Cells were treated as in Fig 4-24 

F; n > 62. 

 

The two analyzed clones of stu1-S602A cells already showed differently severe lo-

calization defects to unattached KTs, but this was even more distinct in stu1-S602E 

cells. Weak mislocalization ranged from values of 42 to 82 %, whereas a strong defect 

was detectable in a range from 6 to 58 % of cells. Not only different clones and strains 

varied in their phenotypes, but also the same clone in different experiments. This al-

lowed only the conclusion that the mutation of S602 to glutamate might result in a lo-

calization defect of Stu1-S602E to unattached KTs, but the strength of this defect re-

mained unclear. 

In agreement with the Stu1∆CL mutant, the mild mislocalization of Stu1-S602A to 

the vicinity of the SPB resulted in a slightly faster capturing of unattached KTs (Fig. 4-

25 D), a mild increase in monopolar attached KT5s (Fig. 4-25 E) and a slightly in-

creased velocity of SPB separation (Fig. 4-25 F). However, the same analyses of Stu1-

S602E integrated in the LYS2 locus revealed no significant difference in capturing and 

bi-orientation or SPB separation when compared to WT cells (Fig. 4-25 D-F). SPBs 

separated a bit faster than in WT cells, but did not move apart precociously 

(Fig. 4-25 F). One possible explanation for the varying localization defects of Stu1-

S602E could be different expression levels of this Stu1 construct dependent on the 

way of integration (see discussion). 

 

4.2.4.4 Analysis of Stu1 phosphomutants according to predicted kinases 

Another approach to analyze the phosphorylation of Stu1 was to address the phos-

phorylation sites according to their predicted kinases. Mutation of the putative Cdk1 

(S497A, S745A, S1167A) and polo-like kinase (S1001A, T1034A, T1047A, T1134A) 

sites did not cause any spindle phenotype different from WT cells, but showed a mild 

localization defect of the mutated Stu1 to unattached KTs, especially in stu1-polo-4A 

cells (Fig. 4-26 A and B). According to stu1∆CL cells, mislocalization in stu1-polo-4A 

cells also resulted in improved KT capturing (Fig. 4-26 C) and an increased bi-

orientation defect (Fig. 4-26 D), most likely caused by the precocious SPB separation 

(Fig. 4-26 E). stu1-Cdk1-3A cells showed the same phenotypes in a milder extent, but 
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surprisingly did not separate the SPBs prematurely (Fig. 4-26 C-D). Therefore, the rea-

son for the slightly increased bipolar attachment defect remained unclear.  

 

 

Figure 4-26. Phosphorylation of the CL domain by polo-like kinase might have a regulatory func-

tion for Stu1 sequestration at unattached KTs.  

(A) stu1-Mps1-3A and stu1-Mps1-3E cells showed a very mild defect in spindle localization of Stu1. Cells 

were treated and analyzed as in Fig. 4-21 A; n > 23. (B) stu1-Cdk1-3A and stu1-polo-4A cells showed a 

defect of Stu1 localization to unattached KTs. Cells were treated as in Fig. 4-21 B; n > 77. (C) stu1-Mps1-

3E cells displayed a capturing defect, whereas stu1-Cdk1-3A cells and stu1-polo-4A cells showed im-

proved capturing. Cells were treated and analyzed as in Fig. 4-23 D; n > 76. (D) Analysis of stu1-Cdk1-3A 

cells and stu1-polo-4A cells revealed a mild bipolar attachment defect. Cells were treated and analyzed as 

in Fig 4-23 E; n > 55. (E) stu1-polo-4A cells precociously separated their SPBs. Cells were treated and 

analyzed as in Fig. 4-23 F; n > 61. 

 

Mutation of three possible Mps1 phosphorylation sites (T1047, S1113, T1134) to al-

anine or glutamate resulted in both cases in a very mild spindle localization defect (Fig. 

4-26 A), but no significantly increased localization defect to unattached KTs. stu1-

Mps1-3E cells showed a high number of unattached KT5s when treated with 

nocodazole and capturing was slower than in WT cells (Fig. 4-26 C and D). This might 

also be the reason for the faintly increased bi-orientation defect and the delayed SPB 

separation (Fig. 4-26 D and E). stu1-Ipl1-3A cells that contain the sites S276, T277 and 
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S602 mutated to alanine did not show any severe localization defect to spindles or to 

unattached KTs (Fig. 4-26 A and B). Cells started with a low number of unattached 

KT5s when treated with nocodazole and therefore already had captured most of the 

KTs 40 min after nocodazole release (Fig. 4-26 C). This could also explain the some-

what faster SPB separation compared to WT cells (Fig. 4-26 E). Besides that, stu1-

Ipl1-3A cells showed a slightly increased bipolar attachment defect. 

Taken together, these data suggest that the polo-like kinase could indeed be part of 

the regulatory machinery that sequesters Stu1 at unattached KTs in order to prevent 

precocious SPB separation and to ensure proper bipolar attachment. In addition, the 

dephosphorylation of phosphorylation sites targeted by Mps1 (or polo-like kinase) 

could be important to achieve efficient capturing and therefore SPB separation on time. 

 

4.2.4.5 Analysis of Stu1 phosphorylation sites located in the CL domain 

The results above indicate that mutations in the CL domain contribute to the regula-

tion of Stu1 localization via the CL domain. To test if this is indeed the case, phosphor-

ylation of the CL domain was mostly prevented by the mutation of 12 potential phos-

phorylation sites (S997, S1000, S1001, S1003, T1005, S1018, T1034, T1047, S1060, 

S1113, T1134, S1167) located within the CL domain to alanine.  

Stu1-CL-12A localized to the midzone of anaphase spindles like WT Stu1, but 

weakly mislocalized to the vicinity of SPBs in 55 % of cells (Fig. 4-27 A and B). Similar 

to stu1-∆CL cells, this resulted in an improved capturing of unattached KTs 

(Fig. 4-27 C), but a high number of cells with monopolar attached KT5s (55 %) 80 min 

after cells were released from nocodazole (Fig. 4-27 D). Most likely also in these cells 

the precocious SPB separation (Fig. 4-27 E) is the main reason for the increased bi-

orientation defect. 

In conclusion, the phenotype of the stu1-CL-12A mutant resembles the phenotype 

of stu1-∆CL cells, but reveals milder effects. This supports the idea that the CL domain 

indeed contributes to the regulation of the Stu1 localization to unattached KTs and 

therefore delays precocious SPB separation to allow for KTs to bipolarly attach. This 

regulation might be achieved by the multiple phosphorylation of the CL domain.  
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Figure 4-27. Phosphorylation of the CL domain is important for efficient Stu1 sequestration at unat-

tached KTs. 

(A) stu1-CL-12A cells did not show a defect in Stu1-CL-12A localization to the midzone of anaphase spin-

dles. Cells were treated and analyzed as in Fig. 4-21 A. The data represent the average of two different 

clones; n > 33. (B) Stu1-CL-12A weakly mislocalized to SPBs. Cells were treated as in Fig. 4-21 B. The 

data represent the average of two different clones; n > 100. (C) stu1-CL-12A cells showed improved KT 

capture. Cells were treated and analyzed as in Fig. 4-23 D; n > 125. (D) stu1-CL-12A cells had a severe 

bipolar attachment defect. Cells were treated as in Fig. 4-23 E; n > 66. (E) stu1-CL-12A cells precociously 

separated their SPBs. Cells were treated and analyzed as in Fig. 4-23 F; n > 73. 
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5 DISCUSSION 

5.1 An interplay of Stu1 domains regulates Stu1 localization 

and controls TOGL2 activity  

S. cerevisiae Stu1 is an essential protein that was found to have several functions 

during mitosis. In S-phase Stu1 facilitates capturing of unattached KTs. In metaphase, 

Stu1 is required to establish and maintain metaphase spindles and kMTs. In anaphase 

it is found in the midzone of anaphase spindles stabilizing the overlap of interpolar MTs 

(Funk, C. et al., submitted; Ortiz, J. et al., 2009). In order to be able to fulfill all these 

diverse functions, Stu1 has to be differently localized during each cell division (see Fig. 

5-1). The intention of this work was to gain more insight in the precise and flexible 

regulation of Stu1 during mitosis. 

 

5.1.1 Metaphase spindle formation requires the TOGL2 activity of 

binding free tubulin 

Stu1 belongs to the family of CLASP proteins which promote MT polymerization 

and/or rescue by providing free tubulin bound via their TOG domains (Al-Bassam, J. et 

al., 2010, 2011). Stu1 also forms a stable complex with free tubulin (see 4.1.2.1; Funk, 

C. et al., submitted). Co-immunoprecipitation revealed that the TOGL2 domain of Stu1 

alone is sufficient to bind free tubulin in vivo and that the intact intra-HEAT repeat loops 

of the TOGL2 domain are mandatory for this function. Recent findings showed that the 

TOGL1 domain, which is less conserved when compared to other homologs, is not 

able to copurify tubulin (Funk, C. et al., submitted). Thus, Stu1 indeed has a tubulin 

binding capability as demonstrated for CLASP homologs of other organisms before. 

However, in contrast to earlier studies on CLASP proteins like the S. pombe Cls1 (Al-

Bassam, J. et al., 2010) or the related XMAP215 proteins (Al-Bassam, J. et al., 2011), 

Stu1 only uses the second TOGL domain to achieve the interaction with free tubulin. 

The result that the TOGL2 domain of Stu1 is sufficient to bind free αβ-tubulin is in 

agreement with the findings that the TOG1 (Al-Bassam, J. et al., 2006) and TOG2 

(Ayaz, P. et al., 2012) domains of XMAP215 Stu2 can bind free αβ-tubulin per se. The 

way the TOG1 domain interacts with the tubulin heterodimer even excludes a concur-

rent binding of the same heterodimer by a second TOG domain (Ayaz, P. et al., 2012), 

indicating that each TOG domain might bind one αβ-tubulin on its own. In addition, re-

cent work on the D. melanogaster homolog MAST/Orbit revealed that the TOGL1 do-
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main, which is also less conserved as it is the case for Stu1, is not able to bind 

heterotubulin in vitro (De la Mora-Rey, T. et al., 2013). This suggests that MAST might 

also interact with αβ-tubulin via the TOGL2 domain. 

This work revealed that the TOGL2 domain, more precisely the ability of the TOGL2 

domain to bind tubulin, is absolutely mandatory for the formation of (metaphase) spin-

dles (see 4.1.2.2). Deletion of the TOGL2 domain or impairing the tubulin binding by 

the mutation of the TOGL2 tubulin binding interface abolished the separation of SPBs. 

In support of this finding, not only the TOGL2 domain of Stu1, but especially the ability 

of this domain to bind tubulin is essential for the cell (see 4.1.1; Funk, C. et al., 

submitted). Correspondingly, preventing tubulin binding by mutating the same con-

served intra-HEAT repeat loops in the S. pombe homolog Cls1 also caused nonviable 

cells and spindle instability (Al-Bassam, J. et al., 2010). Within the XMAP215 family 

multiple domains, mainly TOG1 and TOG2, contribute to increase the affinity to free 

tubulin and this affinity correlates with the polymerase activity of the protein (Widlund, 

P. O. et al., 2011). However, how many TOGL domains contribute to polymerization or 

rescue activity in CLASP proteins remained unclear so far. The data of this thesis sug-

gest that the S. cerevisiae CLASP Stu1 only requires one TOGL domain for the poly-

merizing activity. The fact that the deletion of the TOGL1 domain did not result in a 

defective SPB separation and spindle formation (Funk, C. et al., submitted) supports 

that the TOGL2 domain is not only the sole tubulin binding domain, but also solely re-

sponsible for the polymerizing function of Stu1.Taken together, these data emphasize 

that the function of the Stu1 TOGL2 domain in providing free tubulin is highly important 

for the formation and maintenance of the spindle and, as a consequence, for the sur-

vival of the cell. In addition, these data suggest that the Stu1 TOGL2 domain alone 

fulfills the function of a MT polymerase or a rescue-promoting factor. 

Even when the TOGL2 domain of a Stu1 monomer is sufficient to bind tubulin, the 

dimerization of Stu1 might enhance the stability of this interaction with free tubulin and 

improve the function of Stu1 as it was demonstrated for the S. pombe CLASP Cls1 and 

the S. cerevisiae XMAP215 Stu2 (Al-Bassam, J. et al., 2006, 2010). 

In agreement with the fact that part of the TOGL2 domain was determined to con-

tribute to the MBD domain (Yin, H. et al., 2002), the deletion of the TOGL2 domain 

weakened the binding of Stu1 to the MT lattice of metaphase spindles. This indicates 

that (part of) the TOGL2 domain might support the binding to the MT lattice. Such a 

function was also predicted for the D. melanogaster CLASP homolog MAST. Whereas 

the TOGL1 domain was suggested not to interact with free tubulin (De la Mora-Rey, T. 

et al., 2013), the TOGL2 domain seems to be able to fulfill two distinct functions. On 
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the one hand the tubulin binding interface binds to the MT lattice probably by undergo-

ing a conformational change, on the other hand MAST TOGL2 was found to promote 

MT polymerization in vitro (Leano, J. B. et al., 2013). Stu1TOGL2-4A, however, which 

contains an intact MBD domain, but an impaired tubulin binding interface showed a 

quite similar localization to the MT lattice as WT Stu1. This indicates that the tubulin 

binding interface per se is not important for the MT lattice binding of Stu1. Therefore, 

mislocalization of Stu1 is very unlikely to be the reason for the lethal spindle defect, 

especially because Stu1∆ML shows a much more severe localization defect to the MT 

lattice, but nevertheless is able to form anaphase spindles. 

 

In order to investigate if the function of the TOGL2 domain of Stu1 is evolutionary 

conserved, chimeric Stu1 constructs were analyzed. Previous findings revealed that 

the TOG1 domain of S. cerevisiae XMAP215 Stu2 and the TOGL2 domain of H. sapi-

ens CLASP1 are individually sufficient for tubulin binding (Al-Bassam, J. et al., 2006; 

Leano, J. B. et al., 2013). However, the chimeric constructs that contain the TOGL2 

domain of Stu1 replaced by the Stu2 TOG1 domain and the CLASP1 TOGL2 domain 

respectively, were not able to achieve spindle formation or capturing, two functions that 

are strongly impaired in stu1∆TOGL2 cells. It remains to be tested if these chimeric 

constructs are indeed still able to bind free tubulin, but it was shown for the TOG1 do-

main of Stu2 in vitro (Al-Bassam, J. et al., 2006) and for Stu1 TOGL2 in vivo (this work) 

that they can bind tubulin independent of the surrounding protein structure.  

The data suggest that the TOGL2 domain of Stu1 has a specific essential function 

that cannot be simply substituted by another tubulin binding TOG domain. This is 

astonishing, since the intra-HEAT repeat loops of the TOGL2 domain of Stu1 and 

CLASP1, which form the interface for tubulin interaction, are highly conserved in their 

amino acid composition (Al-Bassam, J. et al., 2011). On the other hand, slight varia-

tions in the sequence of intra-HEAT repeat loops are suggested to determine the dif-

ferent kinetics of tubulin binding and release (Al-Bassam, J. et al., 2011). In addition, 

despite the strong conservation of tubulin interacting intra-HEAT repeat loops of Stu2 

TOG1 and CLASP1 TOGL2, the conformation of the TOG domain and especially the 

tubulin interaction was predicted to be drastically different between these two domains 

(Leano, J. B. et al., 2013). These data support the idea that the function of TOG do-

mains is not just simply the binding and release of free tubulin, but that the underlying 

mechanism and concerted activity of these domains is more complex and regulated. 
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5.1.2 MT lattice binding via the ML domain is required for meta-

phase, but not anaphase spindle formation  

In addition to the TOGL2 domain, the ML domain is required for the efficient for-

mation of metaphase spindles. In agreement with the fact that this domain is part of the 

proposed MBD (Yin, H. et al., 2002), the ML domain seems to mainly achieve the bind-

ing of Stu1 to the MT lattice. This serine-rich domain is highly basic with a predicted pI 

of 10.4 and a strongly positive net charge which might be responsible for the affinity to 

MTs. This is consistent with the findings of the S. pombe homolog Cls1 or the 

S. cerevisiae XMAP215 Stu2 – both proteins use a basic linker region to bind to the 

lattice of MTs (Al-Bassam, J. et al., 2006, 2010). 

Together with the finding that dimerization is important for efficient spindle formation 

(Funk, C. et al., submitted), a possible model would be that the ML domains of a Stu1 

dimer (probably supported by the TOGL2 domains) are required for efficient localiza-

tion of Stu1 to the MT lattice (see Fig. 5-1 E). Being at the right place, the TOGL2 do-

mains could release the bound tubulin and therefore drive efficient spindle polymeriza-

tion in metaphase. Thereby it is unclear if Stu1 indeed promotes the incorporation of 

tubulin in the growing MT, serving as a polymerase or if Stu1 releases tubulin to in-

crease the local tubulin dimer concentration which then facilitates MT polymerization. 

 

Although stu1∆ML cells are compromised in metaphase spindle formation, the ML 

domain is dispensable for the formation of anaphase spindles (see 4.1.2.4). Neither the 

ML, nor the TOGL2 domain is required for the localization of Stu1 to the midzone of 

interpolar MTs in anaphase. This indicates that midzone positioning of Stu1 is inde-

pendent of the Stu1 interaction with the MT lattice, but based on another mechanism. 

In support of this, the interaction with the midzone, in contrast to the localization to the 

metaphase spindle (Funk, C. et al., submitted), is dependent on Ase1 (Khmelinskii, A. 

et al., 2007). Since the D4 domain is obligatory for Stu1 midzone localization inde-

pendent of its dimerizing function (Funk, C. et al., submitted), this domain might directly 

provide the interaction with another midzone protein (see Fig. 5-1 H). For instance, the 

midzone localization of the S. pombe homolog Cls1 is mediated by a direct interaction 

with Ase1 (Bratman, S. V. et al., 2007) and the X. laevis homolog CLASP was found to 

copurify with Ase1/PRC1 when isolated from Xenopus egg extracts (Patel, K. et al., 

2012). Since there is no evidence for a direct interaction of Stu1 and Ase1 so far, fur-

ther studies will be required to detect the interaction partner of Stu1 at the spindle 

midzone.  
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These data suggest that the way Stu1 is binding to MTs changes during meta- to 

anaphase transition. In metaphase, spindles have to stay short, but resist the antago-

nizing forces of tension on the KT-MT interface to prevent SPB collapse. Thereby, a 

Stu1 dimer could stabilize the spindle by crosslinking or bundling antiparallel MTs and 

providing tubulin (see Fig. 5-1 D and E). Upon cleavage of cohesin at anaphase onset, 

this rigid crosslinking would be a hindrance for the fast elongation of anaphase spin-

dles by the gliding of antiparallel MTs. Therefore, Stu1 dissociates from MTs, but 

midzone localization is ensured by the interaction with another protein (see Fig. 5-1 G 

and H). This allows gliding, but at the same time stabilizes the interpolar MT overlap by 

providing free tubulin. A previous study already suggested that CLASP proteins sup-

port midzone stability by contributing to the incorporation of tubulin at the plus-ends of 

the overlapping interpolar MTs (Pereira, A. L. et al., 2006).  

 

5.1.3 Stu1 localizes to attached KTs in metaphase and regulates 

kMT formation 

CHIP analyses revealed that Stu1 does not only accumulate at unattached KTs 

(Ortiz, J. et al., 2009), but also localizes to attached KTs in metaphase (Funk, C. et al., 

submitted). This localization is dependent on dimerization of Stu1 and the TOGL1 do-

main (Funk, C. et al., submitted). Interestingly, in contrast to unattached KTs, the ML 

domain, but not the CL domain is required for the interaction with attached KTs (Funk, 

C. et al., submitted), indicating that a simultanious interaction with the MT lattice might 

be required for the binding of Stu1 to attached KTs. The absence of Stu1 from attached 

KTs in stu1∆TOGL1 cells resulted in very short kMTs (Funk, C. et al., submitted), indi-

cating that Stu1 and its KT localization is important for the polymerization of these MTs. 

This is in agreement with the previous findings that depletion of CLASP homologs in 

Drosophila or human cells resulted in the formation of monopolar asters with chromo-

somes close to the collapsed centrosomes, indicating that kMTs are very short (Maiato, 

H. et al., 2002, 2003). In addition, CLASP proteins are suggested to regulate the dy-

namics of kMTs by mediating the incorporation of MT subunits at the KTs (Maiato, H. 

et al., 2005). Since yeast CLASPs were not found to localize to plus-ends of MTs, the 

attached KT could serve as a factor to accumulate Stu1 in close proximity to kMT plus-

ends. This might be necessary to ensure efficient Stu1 activity for kMT polymerization. 

For instance, only certain local concentrations of S. pombe CLASP molecules are suf-

ficient to induce MT rescue events in vitro (Al-Bassam, J. et al., 2010).  
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Interestingly, stu1∆CL cells showed slightly longer kMTs than WT cells (see 

4.1.4.2). This effect was even increased upon the deletion of Cin8, a protein suggested 

to have a depolymerizing function on kMTs (Gardner, M. K. et al., 2008). Cin8 pro-

motes plus-end disassembly of kMTs specifically in response to an increasing kMT 

length. This length-dependent regulation of kMT assembly allows chromosome 

congression, but also a balanced tension on the KT-MT interface (Gardner, M. K. et al., 

2008). In agreement with this, the findings suggest that the CL domain of Stu1 has an 

inhibitory function on the polymerizing or rescue activity of Stu1 that is antagonized at 

least partially by Cin8. Upon the additional deletion of Cin8 the equilibrium between 

polymerization by Stu1 and depolymerization is shifted, resulting in over-elongated 

kMTs. Since the polymerization of kMTs does not seem to be unlimited, other depoly-

merizing proteins might still counteract the polymerizing activity of Stu1. Kip1 for ex-

ample was also found to suppress kMT plus-end assembly, but to a lesser extent than 

Cin8 (Gardner, M. K. et al., 2008). Analysis of the kMT dynamics in WT cells revealed, 

as expected, that spindle elongation in metaphase is compensated partially by the 

elongation of the kMTs as well as an increased inter-KT distance, resulting in a higher 

level of tension on the KT-MT interface (see 4.1.4.3). However, when the CL domain is 

deleted, kMTs over-elongate and SPBs only separate to an extent that keeps the inter-

KT distance at a minimum of about 0.5 µm. This might represent the minimum level of 

tension on the KT-MT interface that is sufficient to satisfy the tension checkpoint. This 

indicates that less tension is required to keep the kMTs polymerized. Conclusively, the 

CL domain seems to make kMT elongation dependent on the tension on the KT-MT 

interface. 

Thereby it is unclear, if the kMTs over-elongate because the CL domain usually has 

a direct inhibitory effect on the incorporation of tubulin in the kMTs or because of the 

indirect effect that the CL domain is usually concentrating Stu1 preferentially at the 

region of overlapping interpolar MTs in metaphase (see 4.1.2.3). Since deletion of the 

CL domain seems to increase the amount of Stu1 on the kMTs, higher amounts of free 

tubulin might be provided to the KT-MT interface for incorporation. The fact that KT 

localization of Stu1 is absolutely mandatory for kMT polymerization makes the first the-

ory more likely, but does not exclude the second one. 

In summary, these data suggest that Stu1 has to bind to attached KTs via the 

TOGL1 and ML domain to promote the incorporation of tubulin in kMT plus-ends and 

that the CL domain fine-tunes the polymerizing activity of Stu1 to optimize the balance 

between tension and kMT elongation (see Fig. 5-1 F). Correspondingly, CHIP analysis 

could not detect Stu1 at attached KTs in anaphase when kMTs are very short and keep 
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the attached KTs close to the SPB to ensure faithful segregation into mother and 

daughter (Ortiz, J. et al., 2009). Therefore, not only solving the precise mechanism that 

regulates kMT elongation, but also the mechanism that controls the detachment of 

Stu1 from KTs at anaphase onset is an interesting goal for future studies. 

 

5.1.4 The CL domain specifies Stu1 for unattached KTs 

Stu1 gets sequestered at the reassembled, but unattached KT after centromeric 

DNA replication (Ortiz, J. et al., 2009). Very recent studies revealed that similar to at-

tached KTs this recruitment is dependent on Stu1 dimerization and the binding to KTs 

via the TOGL1 domain (Funk, C. et al., submitted; see Fig. 5-1 A and C). In contrast to 

attached KTs, the ML domain is dispensable for this localization (see 4.1.3.1), strongly 

suggesting that the binding to unattached KTs differs from the binding to attached KTs. 

This is in agreement with the fact that Stu1 has a strong preference in binding to unat-

tached KTs even in the presence of attached KTs and MTs (Ortiz, J. et al., 2009). In-

terestingly, the CL domain was found to have a regulatory function in this respect. The 

deletion of the CL domain mislocalized the majority of Stu1∆CL to the vicinity of the 

SPB, but additional deletion of the ML domain could partially rescue the localization to 

unattached KTs. Therefore, the CL domain could specify Stu1 for the sequestration to 

unattached KTs in different possible ways that are not mutually exclusive. One possibil-

ity is that the CL domain serves as an additional direct (weaker) binding site for unat-

tached KTs, whereas a second possibility is that the CL domain initiates a certain con-

formational change of Stu1 that allows Stu1 sequestration at unattached KTs. As a 

third possibility the CL domain might reduce the MT affinity of Stu1 by the direct inhibi-

tion of the MT-binding ML domain, specifying Stu1 for the binding to unattached KTs. 

 

5.1.5 TOGL2 activity and the ML domain, but not KT localization are 

prerequisites for efficient capturing of unattached KTs 

One suggested function of Stu1, accumulated at unattached KTs, is that it facilitates 

efficient capturing of unattached KTs (Ortiz, J. et al., 2009). Indeed, this work reveals 

that the TOGL2 activity of tubulin binding (and providing) plays a crucial role for the 

capturing of unattached KTs, since cells with an impaired TOGL2 activity were as de-

fective in capturing as cells depleted of Stu1. Preventing the binding to the MT lattice 

by the deletion of the ML domain also diminished the capturing of unattached KTs. This 

suggests that the TOGL2 activity, but also MT binding of Stu1 are important require-

ments for efficient KT capturing. Surprisingly, the analysis of the stu1∆CL strain re-
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vealed that the sequestration of Stu1 to unattached KTs is not a prerequisite for effi-

cient capturing. Although the majority of Stu1∆CL mislocalized to MTs or attached KTs 

in the vicinity of the SPB, these cells captured unattached KTs even faster than WT 

cells. In agreement with this, also the deletion of the TOGL1 domain, which prevents 

Stu1 localization to unattached KTs in favor of MT binding, resulted in an improved 

capturing of unattached KTs (unpublished data, Funk, C.). These results suggest that 

an unimpaired action of Stu1 on MTs is more important for efficient capturing than the 

localization of Stu1 at unattached KTs. On the other hand, in the stu1∆CL and 

stu1∆TOGL1 cells the defective KT localization that would per se interfere with captur-

ing might be compensated by the ectopic binding and function of Stu1∆CL and 

Stu1∆TOGL1 on MTs. 

 

These data raise the question how Stu1 influences MTs to facilitate KT capturing. 

Two types of MTs, the KT-generated MTs and the capturing kMTs emanating from the 

SPB, are directly involved in the capturing process (Kitamura, E. et al., 2010) and could 

be regulated by Stu1. KT-generated MTs were found to form at unattached KTs to fa-

cilitate the capturing process by initiating a parallel or antiparallel contact with the cap-

turing kMTs (Kitamura, E. et al., 2010). Since Stu1, more precisely the TOGL2 activity, 

is important for the formation and polymerization of kMTs and interpolar MTs, it is con-

clusive that also the polymerization of KT-generated MTs might be affected by the mu-

tation of Stu1. Although the mutation of the TOGL2 domain of Stu1 did not prevent the 

formation of KT-generated MTs completely, the polymerization of KT-generated MTs 

was substantially delayed (see 4.1.3.3). In agreement with this, CLASP1 is also dis-

pensable for the formation of K-fibres, the bundles of kMTs elongating from KTs in 

Drosophila cells, in general, but is required to maintain their length by providing tubulin 

for a mechanism called the MT subunit flux (Maiato, H. et al., 2005). Hereby, KT-

generated MTs undergo constant depolymerization from the non-anchored minus-end 

and polymerization at the plus-end that is facing the KT. Even though in S. cerevisiae 

the minus-end of KT-generated MTs is at the KT (Kitamura, E. et al., 2010) and no MT 

subunit flux was detected at the KT-generated MTs in these cells, Stu1 might contrib-

ute to the incorporation of tubulin at KT-generated MT plus-ends facing away from the 

KT. Consistent with this, the XMAP215 ortholog Stu2 was found to provide the nuclea-

tion and elongation of KT-generated MTs at unattached KTs (Kitamura, E. et al., 2010). 

Conclusively, these data indicate that Stu1 is not mandatory for the nucleation of KT-

generated MTs, but facilitates their rapid formation by providing tubulin.  
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Stu1 was found to support the elongation of kMTs in metaphase (see 4.1.4.2; Funk, 

C. et al., submitted). Therefore, it is likely that the dynamics of the capturing kMTs are 

also regulated by the Stu1 activity. Until now, Stu1 was found to work on MT bundles 

or overlaps in meta- and anaphase and at KTs to regulate MTs from there. Particularly 

when the localization of Stu1 to KTs is disturbed in stu1∆CL (and stu1∆TOGL1) cells, 

Stu1 also operates on single MTs (this work; Funk, C. et al., submitted). In WT cells 

however, Stu1 strongly localizes to unattached KTs and is not visible at MTs, but nev-

ertheless the TOGL2 activity is highly important for the capturing process. One possi-

bility is that small amounts of Stu1 nevertheless operate on capturing kMTs that are not 

detectable by the applied microscopic approach. Unfortunately, approaches to gain 

more insight in the dynamics of capturing kMTs using the stu1∆TOGL2 or the 

stu1TOGL2-4A cells were difficult due to unexplained effects on cytoplasmic MTs. Alt-

hough the formation of spindle MTs was impaired upon Stu1 depletion or the mutation 

of the TOGL2 domain, unusually long and numerous MTs emanated from the col-

lapsed SPBs of these cells. A similar effect was observed when spindle formation was 

inhibited in the stu1-5 temperature sensitive mutant (Yin, H. et al., 2002). Most of these 

MTs might be cytoplasmic and therefore astral MTs (Yin, H. et al., 2002), but some 

also could be capturing kMTs. Unfortunately, it was not possible to establish a tool that 

allowed a reliable determination of the types of MTs so far. This restricted further ap-

proaches to analyze the influence of Stu1 on the dynamics of the capturing kMTs. Tak-

en together, Stu1 may indeed have a function on MTs for the capturing of unattached 

KTs, but the exact role of Stu1 in this process is still poorly understood. 

  

5.1.6 The TOGL2 and ML domain contribute to faithful KT attach-

ment 

Supportive to the theory that undisturbed MT dynamics are important for efficient 

capturing, all mutant cells that revealed defective spindle formation and capturing 

(stu1ΔTOGL2, stu1TOGL2-4A, stu1ΔML), also displayed unattached KTs during a 

regular cell cycle when released from G1 arrest (see 4.1.4.1). Besides the quite mod-

erate amount of unattached KTs that were completely off the spindle, a lot of cells 

showed a strong Stu1 signal in the close vicinity of the spindle and the major KT signal 

respectively. The fact that the majority of WT Stu1 usually leaves the KT as soon as 

monopolar attachment is achieved (Ortiz, J. et al., 2009), suggests that these KTs are 

not end-on, but only lateral attached to kMTs.  
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A possible explanation for this effect in stu1ΔML cells could be that Stu1ΔML is im-

paired in achieving proper end-on attachment of KTs and MTs. The finding that the ML 

domain is important for the localization of Stu1 to attached KTs in metaphase suggests 

that a proper KT-MT end-on attachment requires KT binding via the TOGL1 domain 

and MT binding via the ML domain, probably bridging the gap between the two struc-

tures (see Fig. 5-1 F). A failure in MT binding might destabilize the KT-MT interaction in 

metaphase.  

A more general explanation for all these mutants would be that due to the lack of 

tension on the KT-MT interface, which results from the impaired spindle formation, the 

tension-checkpoint constantly creates unattached KTs. This could be verified by the 

analysis of these mutants in the background of an Ipl1 mutant that is defective to re-

spond to a lack of tension on the KT-MT interface. 

Another possible explanation is that the mutated Stu1 constructs have difficulties to 

leave the KT after attachment to MTs due to their lower MT binding affinity. An intact 

Dam1 complex was shown to be required for the majority of Stu1 to leave the captured 

KT and move on to the spindle (Ortiz, J. et al., 2009), indicating that end-on attachment 

is a prerequisite for the dissociation of Stu1 from KTs. Vice versa an impaired dissocia-

tion of Stu1 might also interfere with the Dam1-KT association. Thus, the accumulation 

of Stu1 at the KT could hinder a proper end-on attachment to MTs by occupying re-

quired interaction sites on the KT interface. As a consequence, the only lateral at-

tached KTs more frequently detach and cause unattached KTs. This theory is support-

ed by the observation that overexpression of a Stu1 mutant lacking the MT-binding 

domain (Stu1ΔMBD) provokes unattached KTs during a normal cell cycle even in the 

presence of WT Stu1 (Ortiz, J. et al., 2009). Since Stu1ΔMBD competes for WT Stu1 

at unattached KTs and thus supplies a pool of Stu1 for proper spindle formation, unat-

tached KTs are provoked even under conditions that would allow tension on the KT-MT 

interface. 

Taken together these data propose that either the impact of Stu1 on the MT and 

spindle stability is important for a proper KT-MT attachment or more likely that the ma-

jority of Stu1 has to leave the KT after reaching the SPB to ensure a proper MT end-on 

attachment of KTs. 
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5.1.7 Sequestration of Stu1 at unattached KTs prevents precocious 

SPB separation to ensure bipolar attachment  

This work demonstrated that the localization of Stu1 to unattached KTs is not a pre-

requisite for successful KT capturing (see 4.1.3.2). Therefore, it is unclear why WT 

Stu1 gets sequestered at unattached KTs even when preferred MT binding seems to 

be an advantage for capturing of these unattached KTs. Defects in the bi-orientation of 

KTs in stu1∆CL cells however emphasize that the, most likely, higher affinity of 

Stu1∆CL to MTs also comes along with deficiencies in correct chromosome segrega-

tion (see 4.1.5). These caveats have only a weak effect during a regular cell cycle, but 

become much more evident after the treatment with nocodazole. Upon the release 

from nocodazole, spindles form and elongate remarkably fast in these cells, associated 

with a severe initial bi-orientation defect. This defect is corrected over time in the ma-

jority of cells, but results in a massive delay in cell cycle progression. During that time, 

the majority of spindles in these cells have still metaphase character with Stu1∆CL 

completely along the spindle and an extended interpolar MT overlap indicated by an 

extended Ase1 signal. Both effects verify that the cells did not prematurely enter ana-

phase, but that an intact tension checkpoint delays anaphase onset to allow for the 

correction of the erroneous attachments. There are various explanations for the preco-

cious SPB separation and spindle elongation in stu1∆CL cells. The three most likely 

ones that are not mutually exclusive are discussed in the following.  

One possibility is that stu1∆CL cells prematurely drive spindle formation and elonga-

tion due to a stronger polymerizing activity of Stu1∆CL. The large distance between the 

SPBs then impedes bi-orientation of KTs. This is in agreement with the finding that 

precocious SPB separation causes defects in bipolar attachment after nocodazole re-

lease (Liang, H. et al., 2012). Evidence that the precocious SPB separation is indeed 

the main reason for the initial bipolar attachment defect is given by the improved bi-

orientation of KTs when spindle length was decreased close to WT levels by the addi-

tional deletion of Ase1.  

Vice versa, another explanation is that Stu1∆CL delays the bi-orientation of KTs by 

a so far unknown defect. The presence of many monopolar attached KTs reduces the 

inward forces that keep SPBs in close proximity and spindles can elongate further than 

under WT conditions (Liu, H. et al., 2008). This could explain the slightly higher number 

of monopolar KTs compared to WT cells even after abrogation of the premature SPB 

separation in ∆ase1 stu1∆CL cells. 

In addition, the possibility that not only the spindle length, but also the dynamics of 

kMTs play a role for efficient bipolar attachment, could also explain the still slightly in-
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creased bi-orientation defect in ∆ase1 stu1∆CL  cells when compared to WT cells. 

Analyses of β-tubulin mutants revealed that decreased MT dynamics cause a defect in 

bi-orientation (Huang, B. et al., 2006). Since kMTs are over-elongated and most likely 

hyper-stable in stu1∆CL cells in metaphase, their dynamics might be also altered after 

nocodazole release. However, in contrast to β-tubulin mutants stu1∆CL cells did not 

have a defect in capturing of unattached KTs. 

 

It is astonishing why the defect in bi-orientation is much more severe in stu1ΔCL 

cells after nocodazole treatment than during a regular cell cycle. This is similar to the 

findings in mammalian cells that the effect of merotelic attached KTs, which are fre-

quently found during early mitosis, is strongly intensified in cells released from 

nocodazole treatment, because they display a delay in KT bi-orientation (Cimini, D. et 

al., 2003). 

Analyses in budding yeast also revealed that Cdk1 is required for efficient bi-

orientation after recovery from a nocodazole arrest to prevent premature SPB separa-

tion, but is dispensable during normal S-phase (Liang, H. et al., 2012). This indicates 

that the conditions required to achieve bipolar attachment are different after 

nocodazole arrest. A possible explanation could be that during a normal S-phase, cen-

trosomes get replicated early and reassembled KTs attach already to the old SPB 

while the new SPB still needs time to mature (Kitamura, E. et al., 2007). When the new 

SPB starts to emanate MTs, bipolar attachment and formation of the overlap of 

interpolar MTs might happen mainly simultaneously, so SPBs cannot be pushed apart 

prematurely. However, when cells get released from a metaphase arrest with 

nocodazole, both SPBs are already mature and the outward pulling forces have to be 

stalled until all KTs are captured and bipolar attached. Thereby the CL domain seems 

to play an important role. This indicates that a delay in bi-orientation emerging from the 

nocodazole treatment causes the premature SPB separation in stu1ΔCL cells, which is 

prevented by the simultaneous bi-orientation and SPB separation during an unper-

turbed cell cycle. 

The findings that the monopolar KTs are preferentially attached to the old SPB in 

stu1∆CL cells released from nocodazole treatment suggest that most of the KTs get 

monopolar attached to the old SPB and fail to reorient to the new SPB. Previous stud-

ies revealed that mono-oriented KTs mainly segregate with the old SPB during ana-

phase when the reorientation from the old to the new SPB is defective in ipl1 (or sli15) 

mutants (McCarroll, R. M. et al., 1988; Tanaka, T. U. et al., 2002, 2005). It is suggested 

that KTs of replicated chromosomes preferentially attach to the old SPB, because rep-
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lication of the centromeric DNA is completed early in S-phase before the new SPB is 

fully operative. After nocodazole treatment however, the unattached KTs usually ran-

domly attach to the old or the new SPB in WT and ipl1 mutant cells (Tanaka, T. U. et 

al., 2002). Considering this, the aberrant phenotype in stu1∆CL cells could be ex-

plained by different, not mutually exclusive effects. One reason might be that the reori-

entation of the monopolarly attached KTs by the tension checkpoint machinery is com-

plicated in stu1∆CL cells because spindles elongate very fast after nocodazole wash-

out. A more interesting explanation would be that most of the KTs that got attached to 

the old SPB right after replication fail to reorient during nocodazole treatment when 

SPBs would be close because the correction by Ipl1 works in a CL domain dependent 

manner. Phosphorylation of the CL domain by Ipl1 might regulate the interaction be-

tween the CL and the ML domain and therefore destabilize the KT-MT interaction. On 

the other hand phosphorylation of the CL domain could also be involved in the recruit-

ment of Ipl1 to the monopolar attached KT.  

All these described defects support the suggested theory that the sequestration of 

Stu1 by unattached KTs has the function to inhibit premature localization of Stu1 to the 

spindle to prevent precocious spindle elongation (Ortiz, J. et al., 2009; see Fig. 5-1 A-

C). Keeping the SPBs in close proximity until all chromosomes are bipolarly attached 

and the tension checkpoint is satisfied, facilitates the reorientation of KTs and therefore 

ensures faithful chromosome segregation.  

Nevertheless, the biological function that underlies this mechanism that only gets 

important after nocodazole treatment is unclear. A possible explanation is that outside 

the controlled laboratory conditions cells are exposed to a higher environmental stress 

that more easily generates unattached KTs. For instance a fluctuating temperature 

could impair MT polymerization that results in delayed KT capturing after replication 

and therefore necessitates a mechanisms that controls premature spindle elongation. 

 

5.1.8 The regulatory interplay between the CL domain and the ML 

domain 

Various observations throughout the analyzed cell cycle events suggest that the CL 

domain has an inhibitory function on the localization of Stu1 to the MT lattice. In G1, in 

contrast to WT Stu1, Stu1∆CL can be found slightly bound to kMTs (data not shown), 

in metaphase Stu1∆CL localizes not only to the overlap region of interpolar MTs, but 

also along non-overlapping MTs. In nocodazole arrested cells, Stu1∆CL mislocalizes to 

the MTs close to the SPBs and after release from nocodazole Stu1∆CL could be found 
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along the entire spindle. Supportively, a truncated version of Stu1, lacking the 797 C-

terminal amino acids including the CL domain, was found to have a higher affinity for 

MTs than full-length Stu1 in vitro (Yin, H. et al., 2002). Since it cannot be completely 

excluded that the additionally lacking D4 domain contributes to this effect in this case, 

further MT co-sedimentation assays would be required to confirm the influence of the 

CL domain on the MT affinity of Stu1. In summary, the CL domain might fine-tune the 

affinity of Stu1 to the MT lattice, probably by an intramolecular mechanism. This 

intramolecular regulation could take place by a direct interaction of the CL domain and 

the ML domain. Since the net charge of the ML domain is strongly positive (Yin, H. et 

al., 2002) with an pI of 10.4 whereas the CL domain has an overall strongly negative 

net charge with an pI of 4.4, such an interaction could be accomplished by electrostatic 

forces.  

It is unclear if the over-elongation of kMTs in G1 and metaphase or the precocious 

spindle elongation after nocodazole treatment is only a consequence of the higher MT 

affinity of Stu1 that results in an increased amount of Stu1 at MTs providing free tubu-

lin. Another possibility is that the CL domain also inhibits the Stu1 TOGL2 activity to 

ensure a regulated incorporation of αβ-tubulin.  

Upon anaphase onset however, Stu1∆CL, like WT Stu1, leaves the length of the 

spindle and localizes to the spindle midzone. This suggests that, in favor of midzone 

localization in anaphase, unspecific MT binding by the ML domain is inhibited by a 

mechanism independent of the CL domain (see Fig. 5-1 H). 

 

Taken together, all the data support the theory that Stu1, similar to other CLASP 

proteins (Mimori-Kiyosue, Y. et al., 2006), acts as a local modulator for MT dynamics 

and stability. While the TOGL2 domain accomplishes the essential function of tubulin 

incorporation in MT plus-ends, the other domains are required to regulate the localiza-

tion of Stu1 and (probably therefore) control the MT polymerizing activity. Thereby, the 

CL domain specifies the localization of Stu1 to the MT overlap or to unattached KTs in 

metaphase, probably by a direct inhibiting function on the ML domain. In addition, the 

CL domain seems to make the incorporation of free tubulin in kMTs dependent on the 

tension on the KT-MT interface. 
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Fig. 5-1. Model of the domain requirements for Stu1 localization and function. 

(A-B) Sequestration of Stu1 by unattached KTs prevents spindle formation. Thereby Stu1, dimerized by 

the D4 domain, binds to unattached KTs via the TOGL1 domain. (C) The CL domain specifies the localiza-

tion of Stu1 to unattached KTs by inhibiting the ML domain for MT binding. (D) Regulated spindle dynam-

ics supported by the TOGL2 activity and the ML domain of Stu1 ensure the efficient capturing of unat-

tached KTs. After all KTs are attached, the TOGL2 activity and Stu1 localization to the MT lattice via the 

ML domain are required to drive spindle formation. (E) In metaphase, a Stu1 dimer binds the MT lattice of 

preferably overlapping interpolar MTs via the ML domain. Thereby, Stu1 might serve as a stabilizing cross-

linker that antagonizes the outward forces of the spindle. Spindle stability might be also supported by the 

TOGL2 activity. (F) In addition, a Stu1 dimer localizes to attached KTs in a TOGL1 and ML domain de-

pendent manner. KT localization is a prerequisite for kMT polymerization which might be regulated by the 

CL domain. Upon low or no tension on the KT-MT interface, the CL domain inhibits the TOGL2 activity. 

However, when tension is applied, the inhibitory effect of the CL domain is reduced and the TOGL2 do-

main can provide αβ-tubulin for the incorporation in the kMT plus-end. This contributes to a tension-

dependent regulation of kMT elongation. (G-H) At anaphase onset, binding to the MT lattice is prevented 
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by a mechanism independent of the CL domain. Stu1 interacts with the spindle midzone via the D4 do-

main, most likely by the interaction with another midzone protein. Thereby, the TOGL2 activity might con-

tribute to midzone stability. (I) Stu1 leaves attached KTs that are dragged to the SPBs by the 

depolymerization of kMTs. The model is mainly based on the findings of this work, Funk, C. et al. 

(submittted), Yin, H. et al. (2000), Ortiz, J. et al. (2009) and Al-Bassam, J. et al. (2010). 

 

5.2 Phosphorylation might contribute to regulate the MT affinity 

of Stu1 

Stu1 is a protein that undergoes various changes in localization during each cell cy-

cle. This work suggests that the CL domain regulates the specificity of Stu1 localization 

by fine-tuning the MT binding affinity of the ML domain. In addition, Stu1 is phosphory-

lated in a cell cycle dependent manner (see 4.2.1 and 4.2.2). Phosphorylation is sug-

gested to regulate MT association of several MAP proteins, especially CLASP proteins, 

with phosphorylation within the MT-binding domain reducing the affinity for MTs 

(Akhmanova, A. et al., 2001; Cassimeris, L. et al., 2001). Therefore, it is very likely that 

a concerted series of phosphorylation and dephosphorylation events ensures the local-

ization and proper activity of Stu1. Thereby, an interplay of temporally and locally ac-

tive kinases and phosphatases might contribute to the regulatory mechanisms of Stu1.  

 

5.2.1 Cell cycle specific phosphorylations within the ML and the CL 

domain contribute to regulate Stu1 localization 

Mass spectrometric analyses identified 15 phosphorylation sites that were mainly 

located within the ML domain (and the MBD respectively) and the CL domain of Stu1 

(see 4.2.1). Both domains are predicted to be mainly unstructured, making them easily 

accessible for post-translational modifications. Some of the sites (S276, S497, S690, 

S997, S1001, S1018, T1047 and S1167) were also found by a global screen for phos-

phorylation sites of modified proteins in S. cerevisiae cells after DNA damage 

(Albuquerque, C. P. et al., 2008). Furthermore, SILAC results propose that Stu1 is 

phosphorylated and dephosphorylated throughout the cell cycle. The determined 

phosphorylation sites represent the consensus sequences of several different kinases, 

namely Cdk1, polo-like kinase, Ipl1 kinase, Mps1 kinase and casein kinase.  

stu1-12A cells, carrying 12 of the identified phosphorylation sites mutated to alanine 

(S497A, S602A, S690A, S745A, S1001A, S1018A, T1034A, T1047A, S1060A, 

S1113A, T1134A, S1167A), revealed a defect in specific Stu1 midzone localization. In 

addition, the localization to unattached KTs was strongly diminished. These findings 
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showed that preventing the modification of the main Stu1 phosphorylation sites com-

pletely disturbed the regulated localization of Stu1. This supported the idea that the 

phosphorylation of primarily the ML and the CL domain is indeed involved in the regu-

lation of Stu1, but the numerous mutated sites did not allow a specification of certain 

responsible phosphorylation sites. 

 

5.2.2 Phosphorylation of the CL domain might contribute to a bal-

anced Stu1 sequestration at unattached KTs 

Stu1 sites that were dominantly phosphorylated in G2-/metaphase after nocodazole 

treatment and in anaphase are T1047, S1113 and T1134. All three sites are located 

within the CL domain and are predicted targets of the polo-like kinase (T1047 and 

T1134) or Mps1 (T1047, S1113 and T1134). Indeed, sites T1047, S1113 and T1134 

were confirmed to be Mps1 targets in vitro (see 4.2.3).  

Interestingly, the single mutation of the serine 1113 revealed that this site alone de-

termines the conformational change of Stu1 that can be detected as a distinct mobility 

shift on SDS-PAGE. It is intriguing that the modification of one single site has such a 

strong impact on the running behavior on SDS-PAGE, whereas all the other mutations 

have not. One explanation would be that phosphorylation of site S1113 causes a con-

formational change of Stu1 that results in decreased mobility on SDS-PAGE. If this 

potential conformational change is prevented, one would expect a strong defect of Stu1 

localization and/or function. Therefore, it was disappointing that mutation of this site to 

alanine had no effect on Stu1 localization and function. Moreover, the mutation to glu-

tamate unexpectedly resulted in a weak localization defect, to the MT midzone as well 

as to unattached KTs.  

The single mutation of T1047 and T1134 to alanine caused a slightly increased de-

fect in midzone localization in anaphase and a mild delocalization from unattached 

KTs. Unexpectedly, the phenotype of cells containing all three sites (T1047, S1113, 

T1134) mutated to alanine (stu1-Mps1-3A) was mainly indistinguishable from WT cells. 

stu1-Mps1-3A cells showed normal capturing and bipolar attachment and a slightly 

faster SPB separation. Upon mutation of these three sites to glutamate, as expected, 

the localization was similar to WT, but capturing of unattached KTs was severely de-

celerated in these cells. Most likely as a consequence, bi-orientation and SPB separa-

tion were also slightly delayed compared to WT cells. This suggests that inhibited 

dephosphorylation of these sites implies a stronger KT binding of Stu1 which could be 

a hindrance for efficient KT capturing (see 5.1.6). This would be in agreement with the 
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suggested model that the CL domain has an inhibitory function on the MT affinity of the 

ML domain. Mimicking constant phosphorylation increases the negative charge of the 

CL domain and therefore might increase the inhibitory effect of the CL domain. Accord-

ingly, Mps1 and Ipl1 are highly active at incorrect attached KTs to destabilize KT-MT 

interactions, but KT substrates have to get dephosphorylated to allow KT-MT attach-

ment of unattached KTs (Jelluma, N. et al., 2010; Funabiki, H. et al., 2013). 

Preventing the phosphorylation of the putative polo-like kinase sites S1001, T1034, 

T1047 and T1134 together, revealed a mild delocalization from unattached KTs, that 

resulted in accordingly faster capturing and increased monopolar attached KTs, most 

likely as a consequence of a faster SPB separation. 

In summary, this emphasizes that phosphorylation of the CL domain by the polo-like 

kinase and Mps1 might contribute to the regulation of Stu1 localization to unattached 

KTs and therefore controls SPB separation and spindle elongation to ensure bi-

orientation of chromosomes. The main target sites that are important for this regulation 

might be T1047 and T1134. 

Similar to the stu1∆CL mutant, the stu1-CL-12A mutant that contained the majority 

of possible phosphorylation sites within the CL domain (S997, S1000, S1001, S1003, 

T1005, S1018, T1034, T1047, S1060, S1113, T1134, S1167) mutated to alanine 

showed the strongest delocalization from unattached KTs of all CL domain mutants. 

This resulted in a faster capturing of unattached KTs, but also in a quite high defect in 

bi-orientation, most likely again as a result of the precocious SPB separation. Notably, 

the relatively mild mislocalization to the vicinity of the SPB in nocodazole treated cells 

had a quite strong impact on SPB separation and the bi-orientation of the KTs. There-

fore, preventing the phosphorylation of the CL domain indeed resulted in a very similar, 

but somewhat milder defect than the complete deletion of the CL domain. This sup-

ports the hypothesis that the MT affinity of the ML domain is controlled by the CL do-

main and that the strength of inhibition is regulated by the phosphorylation of the CL 

domain. 

In summary, analyses of mutants affecting phosphorylation sites within the CL do-

main support the idea that the CL domain has a regulatory impact on the MT binding 

affinity of the ML domain (see Fig. 5-2). This activity might be controlled by the phos-

phorylation of the CL domain. The more the CL domain is phosphorylated, the more 

negative is the overall net charge of the CL domain. This might increase the inhibitory 

impact on the positively charged ML domain. However, analyses of the 

phosphomutants could not determine specific phosphorylation sites or kinases to be 

solely responsible for this fine-tuned regulation, but sites within the CL domain at least 
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seem to contribute to this mechanism. Maybe the interplay between the two domains is 

primarily based on numerous electrostatic interactions, suggesting that the concerted 

modification of multiple sites is important, but not a specific single site could be deter-

mined to be critical. A similar phenomenon was observed for the N-terminal tail of 

Ndc80 (Akiyoshi, B. et al., 2009a). The overall charge state, but not a specific site, is 

suggested to be important for the function of Ndc80. This would indicate that concerted 

phosphorylation events on the CL domain, accomplished by the interplay of different 

kinases, increase the inhibitory effect of the CL domain on the MT affinity of the ML 

domain. This enables cells to balance the inhibitory effect on Stu1 MT binding to fulfill 

two functions: sufficient capturing by supporting MT dynamics, but also sequestration 

of the majority of Stu1 at unattached KTs to prevent precocious spindle elongation and 

to ensure bi-orientation of sister chromatids. 

 

5.2.3 Phosphorylation of Stu1 in the ML domain 

Interesting phosphorylation sites are S594, S602 and S690 because their phos-

phorylation status was found to fluctuate during mitosis with a minimum in nocodazole 

treated cells. All three sites are located within the ML domain and therefore could be 

important candidates to regulate the MT affinity of Stu1. In general, the ML domain has 

a strongly positive net charge that is suitable for the binding to the overall negatively 

charged MTs (Yin, H. et al., 2002), as it was also described for the MT-binding do-

mains of other MAP proteins before (Akhmanova, A. et al., 2001; Cassimeris, L. et al., 

2001). As a consequence, one would expect that phosphorylation of the positively 

 

Fig. 5-2. Model of the impact of phosphorylation within the CL domain on the MT affinity of the ML 

domain. 

(A) Phosphorylation of the CL domain enhances its negative net charge resulting in a strong inhibitory 

impact on the overall strongly positive charged ML domain. This prevents MT binding and ensures seques-

tration of Stu1 at unattached KTs. (B) Preventing the phosphorylation of the CL domain reduces the inhibi-

tory effect of the CL on the ML domain. Therefore, Stu1 has a higher affinity for MT binding. 
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charged ML domain attenuates the MT affinity of the ML domain by making it more 

negative (Akhmanova, A. et al., 2001; Cassimeris, L. et al., 2001).  

Therefore, it was surprising that these sites were found to be non-phosphorylated in 

G2-/metaphase under nocodazole treatment. Under these conditions, Stu1 exclusively 

localizes to unattached KTs and not to MTs. One explanation is that the inhibitory in-

teraction of the under these conditions phosphorylated and therefore strongly negative 

CL domain is sufficient to sequester the majority of Stu1 at unattached KTs. Phosphor-

ylation of the ML domain would interfere with the putative crosstalk between the CL 

and the ML domain and increase the MT affinity of the Stu1 ML domain. 

In addition, the site S602 and probably also S690 locate within the consensus site of 

the Ipl1 kinase. Since unattached KTs are not under tension, one would expect that 

also in this case these sites should be phosphorylated by Ipl1 under nocodazole treat-

ment. According to the SILAC results however, this is not the case. Anyhow, Ipl1 ki-

nase is suggested to be active at monopolar attached KTs that are not under tension 

(Tanaka, T. U. et al., 2002; Dewar, H. et al., 2004), but not at completely unattached 

KTs. It would be logical that Ipl1 is active at monopolar attached KTs to facilitate their 

detachment, but is inactive at unattached KTs to enable capturing and KT-MT attach-

ment. This would explain why Stu1 is non-phosphorylated at these putative Ipl1 sites at 

unattached KTs. 

In contrast to expectations, the mutation of site S602 to alanine resulted in a quite 

strong localization defect to unattached KTs and a strong interaction with MTs. Muta-

tion of this site to glutamate resulted in a very similar defect, which would be expected 

of the mutant that mimics constitutive phosphorylation of S602 at unattached KTs, but 

not in anaphase. In addition, the results of different clones were quite contradictive for 

both mutants. This is discussed in more detail below. Overall, these contradictions 

made a clear conclusion impossible.  

 

Taken together, SILAC results suggest a fluctuating phosphorylation of sites located 

within the ML domain of Stu1 during the cell cycle with a minimum in nocodazole treat-

ed cells and a maximum in anaphase. Sequestration of Stu1 at unattached KTs there-

fore might be achieved by a direct interaction of the overall negatively charged CL do-

main and the unphosphorylated and therefore strongly positively charged ML domain 

(see Fig. 5-2). This decreases the MT affinity of the ML domain and therefore fine-

tunes the localization of Stu1 to the KT.  

In anaphase however, these sites within the ML domain were shown to be phos-

phorylated. Since Stu1 does not interact with the anaphase midzone via the MT lattice, 
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but most likely by the interaction with another midzone protein via the D4 domain 

(Funk, C. et al., submitted), MT binding has to be prevented in anaphase. Considering 

the fact that the CL domain is dispensable for midzone localization (see 4.1.2.4), the 

CL domain cannot inhibit MT binding of the ML domain in anaphase. As suggested by 

the SILAC results, phosphorylation events within the ML domain might be sufficient to 

lower the affinity of the ML domain to MTs in favor of midzone localization in anaphase. 

Unfortunately analyses of neither the phosphorylation mutants of site S602, nor the Ipl1 

sites allow any convincing conclusions in this respect.  

The question if phosphorylation events within the ML and/or the CL domain contrib-

ute to the severe change of localization from the KT to the MT lattice after attachment 

of all KTs in metaphase remains completely unclear. Since Stu1 midzone localization 

in anaphase emerged to be independent of MT interaction (see 4.1.2.4), detailed anal-

ysis of the phosphorylation pattern of Stu1 binding to the MT lattice is missing. There-

fore, it would be interesting to perform SILAC analyses comparing the phosphorylation 

state of Stu1 from cells arrested in metaphase when Stu1 localizes to the MT lattice 

with cells arrested in G1 or in anaphase. Possibly this would give more insight in the 

phosphorylation or dephosphorylation events that enable the ML domain to efficiently 

interact with the MT lattice.  

 

5.2.4 Phosphorylation of putative Cdk1 sites  

One Cdk1 (Cdc28) site, S497, is suggested to be significantly phosphorylated in G1, 

but is not found phosphorylated in the later analyzed cell cycle steps, indicating that it 

might get dephosphorylated at the beginning of mitosis. Neither the mutation of this site 

to alanine nor to glutamate had an effect on Stu1 localization to the anaphase spindle 

or to unattached KTs. Another suggested Cdk1 site, S745 was found to be phosphory-

lated in G2-/metaphase and anaphase, indicating that this site gets phosphorylated at 

the beginning of mitosis. Interestingly, upon phosphorylation this site becomes a polo-

box binding site. Within various organisms and proteins, CDK was detected as the 

„priming‟ kinase that phosphorylates the S-pS/pT-P motif to initiate subsequent phos-

phorylation by the polo-like kinase (Cdc5 in budding yeast) (Elia, A. E. H. et al., 2003; 

Litvak, V. et al., 2004; Preisinger, C. et al., 2005; Qi, W. et al., 2006). For instance, 

„priming‟ phosphorylation of CLASP2 by CDK1 is required for an efficient recruitment of 

Plk1 (polo-like kinase in mammalian cells) to the KT (Maia, A. R. R. et al., 2012). This 

suggests that the phosphorylation of S745 by Cdk1 at the beginning of mitosis could be 

the „priming‟ phosphorylation for modifications by the polo-like kinase. However, pre-
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venting the phosphorylation of this site did not have any effect on Stu1 function. Muta-

tion to glutamate slightly increased Stu1 binding to the MTs in anaphase, increased the 

number of broken spindles and showed a very mild mislocalization from unattached 

KTs. Therefore, there is no evidence for a distinct relevance of S745 as a „priming‟ 

Cdk1 site. 

Concerted mutation of the predicted Cdk1 sites (S497, S745 and S1167) to alanine 

did not affect Stu1 localization to the midzone, but caused a mild delocalization from 

unattached KTs in favor of the vicinity of the SPB. Similar to the stu1∆CL mutant, but in 

a substantially milder extent, these cells also showed a faster capturing and a defect in 

bipolar attachment, most likely caused by the slightly faster SPB separation. These 

data suggest that phosphorylation by the Cdk1 could be part of the regulation for Stu1 

sequestration at unattached KTs, but that the investigated sites only slightly contribute 

to the regulatory mechanism. 

 

5.2.5 Phosphorylation of the main cell cycle dependent sites 

 Mutants that were created according to the SILAC results contain mutations of the 

most prominent cell cycle dependent phosphorylation sites to prevent or mimic the 

phosphorylation pattern of Stu1 at different cell cycle stages. Unexpectedly, neither 

stu1-E+4A (S497E, S745A, T1047A, S1113A, T1134A), nor stu1-E+7A (S265A, 

S276A, T277A, S497E, S745A, T1047A, S1113A, T1134A) cells did show any Stu1 

localization defect. Thereby, the first construct mimics the opposite phosphorylation 

state as suggested for Stu1 at unattached KTs, whereas the second one mimics the 

converse phosphorylation state as proposed for Stu1 at the midzone. Therefore, for 

both constructs a localization defect was expected. In contrast, mimicking the phos-

phorylation state predicted for Stu1 at unattached KTs (stu1-A+3E, stu1-A+4E) result-

ed in a strong localization defect to unattached KTs and in a strong average spindle 

defect. In addition, two different clones showed very different phenotypes, which is dis-

cussed in more detail below. Moreover, adding further mutations to create stu1-A+7E 

cells completely improved the Stu1 localization close to the WT phenotype. Taken to-

gether, analyses of Stu1 phosphorylation mutants created according to the SILAC re-

sults were too contradictive to contribute to the understanding of the regulatory mecha-

nisms of Stu1.  
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5.2.6 Problems of reproducibility due to strain variations  

As mentioned before, to some extent, the evaluation of the phosphorylation mutants 

was very contradictive. Especially the analyses of the single mutant S602 and the mu-

tants created according to the SILAC results gave very inconclusive results. Various 

clones showed very diverse results, and moreover, in case of the S602E mutant, the 

same clone even revealed differently strong defects in individual experiments. Possible 

reasons for this are discussed in the following.  

(1) Recent FRAP analyses indicated that the localization of Stu1 to unattached KTs is 

usually very static in WT cells (Ortiz, J. et al., 2009). Therefore, one possibility could be 

that some of the mutations like S602 to glutamate resulted in a Stu1 construct that 

shows a very dynamic localization. The mutated Stu1 construct is not stably seques-

tered at unattached KTs, but dynamically localizes to unattached KTs and to the vicini-

ty of the SPBs. This would explain the inconsistent localization phenotypes of Stu1.  

(2) Another possibility could be a dosage-dependent effect. The background strain 

used for these integrations carried only a N-terminal deletion of the TRP1 marker (trp1-

Δ63) and no complete knock-out (Sikorski, R. S. et al., 1989). Positive clones selected 

for the integration of the Stu1 construct in the endogenous DNA-locus using the 

klTRP1 marker (replacing the HIS3MX6 marker) therefore could erroneously integrate 

an additional copy of the Stu1 construct in the TRP1 locus. Twice the content of the 

Stu1 construct could explain why different clones showed diverse phenotypes and 

sometimes also variable strong Stu1 signals. Noticeably, the transformation of the 

linearised plasmids containing the klTRP1 marker, in contrast to the KanMX marker, 

resulted in a high number of false positive clones. They were positive for growth on 

plates devoid of tryptophane and showed a Stu1-GFP signal by microscopy, but could 

still grow on plates devoid of histidine. To avoid this caveat in future strain construc-

tions, other integration mechanisms using the KanMX marker or integration of the 

STU1 construct in the LYS2 locus might be advisable. 
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