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On the Thermodynamics and Phase Structure
of Strongly-Interacting Matter in a

Polyakov-loop–extended Constituent-Quark Model

Abstract

Polyakov-loop–extended constituent-quark models are useful to investigate the chiral
and (de)confinement phase structure and the thermodynamics of strongly-interacting
matter. It is shown that taking into account the quark backreaction on the gauge-field
dynamics as well as quantum and thermal fluctuations of quarks and mesons is cru-
cial in such models to achieve results for order parameters and thermodynamics that
are in line with non-perturbative calculations at vanishing chemical potential. The de-
pendence of the results on remaining parameters is discussed. The investigations are
extended to nonzero quark density and isospin. The impact of unquenching effects in
the Polyakov-loop potential on the phase structure at non-vanishing quark densities
is discussed. Predictions for thermodynamics at nonzero isospin are shown. Further-
more, the reliability of those models is tested by confronting its results with lattice data
on the isospin dependence of the transition temperature. The phase structure of the
three-dimensional temperature - isospin - quark density phase diagram is investigated.
Moreover, the process of nucleation at small temperatures and large densities is invest-
igated and the surface tension for the phase transition calculated. Some consequences
of the results for the early Universe, for heavy-ion collisions, and for proto-neutron stars
are discussed.
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Über die Thermodynamik und Phasenstruktur
stark wechselwirkender Materie in einem

um den Polyakov-loop erweiterten
Konstituentenquark-Modell

Zusammenfassung

Um den Polyakov-loop erweiterte Konstituentenquark-Modelle sind nützlich um die
chirale Phasenstruktur und diejenige des Farbeinschlusses und die Thermodynamik
stark wechselwirkender Materie zu erforschen. Es wird gezeigt, dass das Einbeziehen
der Quarkrückwirkung auf die Eichfelddynamik, sowie von Quanten- und thermischen
Fluktuationen von Quarks und Mesonen in solche Modelle entscheidend ist, um Er-
gebisse für Ordnungsparameter und die Thermodynamik zu erhalten, die im Einklang
mit nicht störungstheoretischen Rechnungen bei verschwindendem chemischen Potential
sind. Die Abhängigkeit der Ergebnisse von verbleibenden Parametern wird diskutiert.
Die Untersuchungen werden zu nicht verschwindender Quarkdichte und Isospin erwei-
tert. Die Auswirkungen von Unquencheffekten des Polyakov-loop Potentials auf die Pha-
senstruktur bei nicht verschwindenden Quarkdichten wird diskutiert. Vorhersagen für
die Thermodynamik bei nicht verschwindendem Isospin werden gezeigt. Des Weiteren
wird die Verlässlichkeit solcher Modelle getestet, in dem dessen Resultate Daten von
Gitterrechnungen zur Isospinabhängigkeit der Übergangstemperatur gegenübergestellt
werden. Die Phasenstruktur des dreidimensionalen Temperatur - Isospin - Quarkdichte
Phasendiagramms wird untersucht. Ferner wird der Prozess der Nukleierung bei kleinen
Temperaturen und großen Dichten eruiert und die Oberflächenspannung für den Pha-
senübergang berechnet. Einige Konsequenzen der Ergebnisse für das frühe Universum,
für Schwerionenkollisionen und für Proto-Neutronensterne werden diskutiert.
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1. Introduction

«Un pays nouveau, un port magnifique,
l’éloignement de la mesquine Europe, un nouvel
horizon politique, une terre d’avenir et un passé
presque inconnu qui invite l’homme d’étude à des recherches,
une nature splendide et le contact avec
des idées exotiques nouvelles.»

From „Brasilien - Ein Land der Zukunft“ by Stefan Zweig

„Was die Welt im Innersten zusammenhält“, this was the topic of a lecture about
elementary particles and fundamental forces that I attended at the event „Physik im
Blick“ at Gießen University as a high school pupil. Now, a decade later, it’s myself
contributing to the investigations of the properties of strongly-interacting matter.

The determination of the properties of the elementary particles in the phase diagram
of strongly-interacting matter at high temperatures and baryon densities is one of the
major challenges of present high-energy physics research.

The thermodynamics of strongly interacting matter under such extreme conditions
as shortly after the Big Bang [12–14], in high-energy heavy ion collisions [15–17], in
the mechanism of supernovae explosions [18–21], and in the structure of compact stars
[22–24] plays a major role in the understanding of these physical scenarios.

The possibility to probe such large temperatures and densities in current experiments
at the Large Hadron Collider at CERN and the Relativistic Heavy Ion Collider at the
Brookhaven National Laboratory, and especially in future experiments at the Facility
for Antiproton and Ion Research at GSI and the Nuclotron-based Ion Collider Facility
at the Joint Institute for Nuclear Research [25–29], calls for a detailed study of the
transition between the low-temperature hadronic phase associated with confinement of
massive constituent quarks and the high-temperature chirally symmetric quark-gluon
plasma phase.

To interpret the data of these experiments and for theoretical predictions on the above
discussed scenarios a thorough understanding and reliable description of the thermody-
namics and equation of state of strongly-interacting matter is necessary. To approach
this task different approaches exist.

Functional continuum methods are well suited for a combined study of the chiral
and confining dynamics of quantum chromodynamics (QCD) at finite temperature and
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Chapter 1. Introduction

density [30–35]. In recent years, much progress in this direction has been made within the
functional renormalisation group (FRG) approach to QCD. However, to perform these
non-perturbative calculations is highly non-trivial and computational time consuming
such that they are limited so far to two quark-flavours in the chiral limit [36,37].

A discretised version of QCD can be studied in Monte-Carlo calculations on a lattice.
The latest generation of these calculations [38–42] are performed with physical quark
masses and the results are extrapolated to the continuum. Nevertheless, there are still
differences in the predicted equation of state. These type of calculations have been ex-
tended to non-vanishing isospin density [43–46] and can include the impact of magnetic
fields [47–50]. But extensions to a non-vanishing (real) quark chemical potential remain
a considerable obstacle due to the lack of an importance sampling procedure that is free
of ambiguities in that case [51,52].

Therefore, to obtain an adequate description of the hadron-quark phase transition and
an equation of state at finite baryon density, low-energy effective models that capture
the most important properties of strongly-interacting matter can be useful [53].

The Nambu–Jona-Lasinio model [54,55] and Linear-σ model [56,57] or Quark-Meson
model [58–66] describe the strong interaction by meson exchange and include the gen-
eration of constituent-quark masses by spontaneous chiral symmetry breaking. In fact,
these models emerge dynamically from first-principle QCD-flows at low energies. Their
parameters that are defined at a certain infrared-scale can be extracted from a QCD
RG-flow starting with the classical QCD action at a high (perturbative) ultraviolet scale.
But these models do not account for confinement and therefore they fail in describing
the QCD thermodynamics.

The inclusion of gluons can be obtained by coupling the constituent quarks to the
gauge fields in form of the Polyakov-loop which results in the Polyakov-loop–extended
Nambu–Jona-Lasinio [67–71] and Quark-Meson [72–78] models.

But on the mean-field level these models show nevertheless a sharper transition at zero
densities than non-perturbative calculations as was shown in Ref. [73]. The proper renor-
malisation of the contribution of quantum fluctuations of quarks [75] and mesons [79]
smoothens the transition. This effect gets enhanced by considering thermal fluctuations
of quarks and mesons beyond one-loop with the help of the renormalisation-group flow
equation [74,76].

In these models for strongly-interacting matter the gauge potential is adjusted to
lattice calculations of pure gauge theory [69, 71, 80, 81]. Such an analysis lacks the full
inclusion of glue-matter dynamics to both the chiral as well as the (de)confinement
physics. A first step towards the inclusion of the back-reactions of quarks on the gauge
sector was done in Ref. [72] by estimating the change of the transition temperature of
the Polyakov-loop potential when going from pure gauge theory to QCD.

In the functional renormalisation-group approach the pure gauge potential as well as
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the glue part of the full effective potential in QCD can be calculated [36,37,82–84].
In the present work, these potentials are compared and a relation of both is extracted
in Sec. 3.2.1 that allows to mimic the effect of the quark backreaction on the gauge sector.

Throughout this thesis this improvement of the Polyakov-loop potential from a pure
gauge potential to the unquenched glue potential in full QCD is applied in the Polyakov-
loop–extended Quark-Meson model with 2+1 quark flavours to which are also included
thermal fluctuations of quarks and mesons and quantum fluctuations of quarks at one-
loop order.

The results of this improved 2+1 flavour Polyakov-loop–extended Quark-Meson model
for the temperature dependence of the quark condensates, the Polyakov loop and ther-
modynamic observables at vanishing chemical potential are compared to the results of
latest non-perturbative lattice calculations [38–42] in Sec. 4.1. The impact of the dif-
ferent ingredients of the presented framework are discussed throughout this section and
the robustness of the results is tested by analysing remaining parameter dependences.

In Sec. 4.2, the investigation of the phase structure of strongly-interacting matter in
the presented framework is extended to non-vanishing quark chemical potential. It is
explored how the different constituents of the model affect the phase structure and the
applicability of such a model at nonzero densities is tested by comparison to results of
non-perturbative calculations.

In all systems mentioned in the beginning, matter does not consist of equal amounts
of protons and neutrons, i.e. one has a non-vanishing isospin density. Using Au or Pb
beams in heavy ion collisions, the proton to neutron ratio is ∼ 2/3. In astrophysical
environments the initial proton fraction in supernovae is 0.4, reduces to 0.2 and finally
reaches values of less than 0.1 in cold neutron stars. In the universe a large asymmetry
in the lepton sector is allowed (−0.38 < µν/T < 0.02) [85], which can shift the equilib-
rium conditions at the cosmological QCD transition [86]. Hence, in the description of
the thermodynamics of strongly-interacting matter in all these scenarios of nature the
impact of a non-zero isospin should not be overlooked.

One of the aspects in the extension of the phase diagram of strongly-interacting matter
to nonzero isospin is the arising of a new phase. Charged pions couple to the isospin
chemical potential and when this is equal to the in-medium pion mass there is the
onset of pion condensation [87]. The running of the pion mass in the medium shifts the
appearance of pion condensation to larger temperatures and densities.

To date, most of the calculations at non-vanishing isospin were done with only two
quark flavours, neglecting strange quarks as relevant degrees of freedom at the energy
scale of the chiral and deconfinement transition Furthermore, lattice calculations at
nonzero isospin were performed so far only with unphysical heavy pion masses.

The extension of the Polyakov–Quark-Meson model to nonzero isospin is build in
Sec. 2.3.1 and Chap. 3. The phase structure of strongly-interacting matter at non-
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vanishing isospin before the onset of pion condensation is investigated in Sec. 4.3. The
evolution of the order parameters and all relevant thermodynamic quantities with in-
creasing isospin are calculated for 2+1 quark flavours and physical pion mass. The
phase diagram for a nonzero isospin chemical potential is discussed and the impact of
the pion mass on the curvature of the transition line is pointed out. For vanishing
baryon chemical potential, the results for the isospin dependence of the pseudocritical
temperature is compared to lattice data since in this case lattice calculations are free of
the sign problem.

Testing the effective model with its parameters adjusted to provide a good description
of lattice data at zero density in this fashion against lattice data at nonzero isospin is
crucial to understand whether these models provide qualitative and quantitative accur-
ate descriptions of the phase structure of strong interactions in general.

As discussed for example in Refs. [88–90], not only lattice QCD, but also effective
models that possess gauge degrees of freedom do present the sign problem at nonzero
quark chemical potential. This manifests in the appearance of an imaginary part of
the in-medium effective potential. For such a complex function of complex variables,
special care must be taken with respect to the meaning of a minimisation procedure that
leads to the state of equilibrium of the system. Following an approach similar to the
one in Ref. [90] in the context of the Polyakov–Nambu–Jona-Lasinio model, a change
of variables is proposed in Sec. 3.3, followed by a simple approximation that renders
the in-medium effective potential a real function of real variables at all quark chemical
potentials. As a consequence, the effective potential in this approach possesses minima,
as demanded for systems in equilibrium.

The computation of the surface tension and nucleation rates between two phases which
are separated by a first-order phase transition, requires actually a precise definition and
location of the minima of the potential. As discussed for example in Refs. [13, 91–98],
the surface tension is a crucial parameter for the dynamics of a first-order phase trans-
ition in many scenarios of high-energy physics. A high surface tension can dynamically
suppress a first-order phase transition that would be otherwise allowed if only the bulk
equilibrium thermodynamics were considered. Its evaluation, however, is not available
from first-principles QCD but can be performed in a relatively straightforward manner
using effective models. In Secs. 5.1 and 5.2 the general computation of surface tensions
in a first-order phase transition is reviewed. After that, it is discussed in Sec. 5.3 how
to obtain an overestimate of the surface tension of a phase interface in the Polyakov–
Quark-Meson model. The results for the surface tension are shown in Sec. 5.4 and the
implications of these results are discussed.

Finally, in Sec. 6 are given the conclusions and the final discussions of the obtained
results and possible continuations are outlined.
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2. Quantum Chromodynamics

2.1. Historical Review and Fundamental Properties of QCD
1 The search for the basic building blocks of matter is a fundamental question for
philosophers and scientists since millennia. The four classical elements of alchemy have
already been replaced by the consideration of smallest indivisible particles of matter by
the Greek philosopher Democritus around 450 B.C. who coined the term ‘átomos’. In
the first decade of the 20th century the gold foil experiment performed by H. Geiger
and E. Marsden under the direction of E. Rutherford [103] lead to the discovery that
what is considered as a atom in its scientific definition contains an atomic nucleus [104].
Still in the same decade it was the same E. Rutherford who performed the first fission
of an nucleus in which he discovered the proton as one of the building blogs of nuclei
and conceived the possible existence of neutrons [105]. The neutron was discovered as
second constituent of nuclei by J. Chadwick, an associate of E. Rutherford in 1932 [106],
for which he was awarded the Nobel prize in 1935.

The first step in the exploration of the strong interaction was done by H. Yukawa
who investigated which interaction binds protons and neutrons inside a nucleus. His
considerations have been that it has to be a force that is stronger than electromagnetism
and that it has to have a short range to be able to explain the size of nuclei of a
few fermi. H. Yukawa predicted in 1935 a ‘medium-heavy’ particle called meson which
mediates this strong force. It creates between nucleons a Yukawa-potential VYukawa(r) =
−g2 exp(−mr)/r, which is a screened Coulomb-potential [107]. Heisenberg’s uncertainty
principle ∆E∆t ≥ 1 allows to estimate the mass of this particle and its range of a few
fermi corresponds to a mass of the order of 100 MeV.
Particle accelerators did not reach this energy scale at that time but researches tried
to detect this particle in the cosmic rays that have been discovered by V. F. Hess in
1912 [108]. This led first to the discovery of the muon but its long range in matter ruled
out that it participates in the strong interaction. D. H. Perkins and C. M. G. Lattes,
G. P. S. Occhialini and C. F. Powell discovered in 1947 with the charged pions the first
mesons in the microscopic inspection of photographic emulsions that they had exposed
at high altitudes [109–111]. In 1948, E. Gardner, C. M. G. Lattes and their team first
artificially produced pions at the Lawrence Berkeley National Laboratory [112]. Finally,
H. Yukawa received the Nobel prize in 1949 for his theoretical prediction of the existence
of mesons.

1The structure of this section is inspired by Refs. [99–101] with further information gained from
Refs. [28, 102] and the given original references.
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Chapter 2. Quantum Chromodynamics

With the improvement of cyclotron accelerators to synchrotrons and the development
of new particle detection techniques such as bubble chambers, photomultipliers and
calorimeters, a hole zoo of resonances was observed in particle collisions at the leading
accelerator facilities, the Lawrence Berkeley National Laboratory, the Brookhaven Na-
tional Laboratory and the European Organization for Nuclear Research (CERN) in the
1950’s and 60’s. The detection of this zoo of hadrons imposed the question of a further
substructure. To gain information about possible building blocks of these particles sci-
entists classified them according to their properties such as electric charge and isospin
as suggested by W. Heisenberg [113, 114] and E. Wigner [115] for the classification of
nuclei and strangeness that was introduced by K. Nishijima and M. Gell-Mann in the
1950’s [116–118].
With this criteria Y. Ne’eman and M. Gell-Mann could group the mesons and spin-
1/2 baryons 1961 into octets [119, 120], a classification which M. Gell-Mann called the
Eightfold Way. Applying the same principles of categorisation to baryons with spin
3/2 these form a decoupled. Combining the SU(2) symmetry group of isospin with the
quantum number strangeness, M. Gell-Mann and G. Zweig independently found in the
first half of the 1960’s that this classification of the detected hadrons can be explained
by composing them of constituent particles with an underlying SU(3) quantum num-
ber symmetry [121–124]. M. Gell-Mann coined the name quarks for these elementary
particles and flavour for the distinguishing quantum number. This was the birth of the
three lightest quark flavours, up, down and strange quarks. Mesons than consist of a
quark and a antiquark and baryons contain three quarks. In 1969, M. Gell-Mann was
awarded the Nobel prize for his contributions concerning the classification of elementary
particles.
M. Gell-Mann considered that quarks could be fictitious constituents, while R. P. Feyn-
man regarded them as obvious candidates for partons which he predicted to describe the
character of the longitudinal momentum distributions in high energy hadron collisions
in 1969 [125–127]. J. D. Bjorken and E. A. Paschos explained in the same year with
the parton picture of hadrons the momentum-dependent scaling of the deep inelastic
scattering cross section of electrons on nucleons [128]. Experimental evidence for the
existence of quarks inside nucleons has been found throughout the second half of the
1960’s at the Stanford Linear Accelerator Center. The deep inelastic scattering of elec-
trons on protons and bound neutrons revealed the existence of three point-like centres
of diffraction [129–131]. J. I. Friedman, Henry W. Kendall and Richard E. Taylor got
honoured with the Nobel prize in 1990 for this finding.

As H. Yukawa investigated which force binds protons and neutrons inside nuclei, the
question evolved to which interaction confined the quarks into nucleons. Evidence for an
additional quantum number gave the observation of the resonances ∆++, ∆− and Ω−.
Its electric charge and decay products and total angular momentum of 3/2 oblige that
they consist of three quarks of the same flavour with zero orbital angular momentum
and all spins aligned, a state that contradicts Pauli’s exclusion principle that no two

8



2.1. Historical Review and Fundamental Properties of QCD

identical fermions may have the same quantum numbers. In 1964, O. W. Greenberg
[132] and in 1965 M.-Y. Han and Y. Nambu [133] independently resolved the problem
by proposing that quarks possess an additional SU(3) symmetry. M. Gell-Mann and
H. Fritzsch phrased this observation in the first half of the 1970’s in today’s terms of a
SU(3) gauge theory in which the three values that the quantum number could take are
referred to as colours and the strong interaction is mediated by gluons that possess colour
charge themselves [134]. Together with H. Leutwyler, they coined the term quantum
chromodynamics (QCD) as the gauge theory of the strong interaction [135].
According to this theory all hadrons are colour-neutral states, meaning that the quark
and antiquark of a meson carry a certain colour and its corresponding anti-colour and
that the three quarks in baryons represent all three colours red, green and blue so that all
hadrons are white. As a non-abelian gauge theory also the force mediators are charged
and local gauge symmetry implies that these are massless as will be explained in the
next section. Therefore, eight linear combinations are possible and gluons form a cloud
octet. Because of the self-interaction of the gluons the force of the strong interaction
increases at large distances.
The first experimental signature of the existence of gluons have been found in 1979
at the ‘Doppel-Ring-Speicher’ (DORIS) and ‘Positron-Elektron-Tandem-Ring-Anlage’
(PETRA) of the ‘Deutsche Elektronen-Synchrotron’ DESY in three jet events [136–138].

S. L. Glashow and J. D. Bjorken predicted a fourth quark flavour in 1964 [139] and the
GIM mechanism developed in 1970 by S. L. Glashow, J. Iliopoulos and L. Maiani [140]
to explain the suppression of flavour-changing neutral currents required the existence
of this fourth quark flavour. These charm quarks were identified experimentally as
the constituents of a newly observed meson in 1974 at the Stanford Linear Accelerator
Center under B. Richter [141] and at the Brookhaven National Laboratory under S. Ting
[142]. Both received the Nobel prize in 1976 for their discovery of this new, heavy
particle.
The existence of a third generation of quarks was theorised in 1973 by M. Kobayashi and
T. Maskawa to explain the observed charge-conjugation parity symmetry violation [143].
The bottom quark was discovered in 1977 at the Fermi National Accelerator Laboratory
in a experiment led by L. M. Lederman, where proton-nucleus collisions produced the
Υ-meson [144].
Finally, experimental evidence for the SU(6) flavour structure of QCD was found in 1995
by the observation of the top quark in proton-proton collisions at the Fermilab [145,146].

That the detection of the different quark flavours extended overall several decades can
be attributed to the fact that their mass scales differ by several orders of magnitude. The
current quark masses are given together with the numbers characterising the properties
of strongly-interacting particles in Table 2.1. Today’s standard model of particle physics
compromises besides the elementary particles of the strong interaction also those of the
electroweak interaction and their gauge bosons and the Higgs particle. It is depicted in
Fig. 2.1.
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2.1. Historical Review and Fundamental Properties of QCD

Figure 2.1.: Illustration of the standard model of particle physics. From Ref. [148]
with courtesy of the Fermilab Visual Media Services.

The considerations of R. P. Feynman and J. D. Bjorken to describe the observations
of deep inelastic scattering experiments implied that the nucleon constituents behave
quasi free and interact only weakly inside a nucleon, so on very short distances or at
very high momentum transfer. This was in opposition to the fact that the search for
isolated quarks by that time didn’t show any evidence which implies that at very long
distances or small momentum transfer the strong interaction has to be very strong.
The former behaviour is known as asymptotic freedom which was discovered and de-
scribed in 1973 by D. Gross and F. Wilczek [149–151] and independently by H. D. Politzer
the same year [152,153]. For their discovery, all three shared the Nobel Prize in physics
in 2004. G. ’t Hooft also noted the effect in 1972 but did not publish.
The variation of a coupling constant under changes of the scale can be understood as
a consequence of shielding. In the vicinity of a charge the vacuum becomes polarised
and when one approaches the source of the charge one penetrates the shielding cloud
surrounding it and the effective charge one sees changes due to the loss of shielding.
In case of the strong interaction this is a quantum effect and virtual quark-antiquark
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Chapter 2. Quantum Chromodynamics

pairs tend to screen the colour charge of a quark. But since gluons have colour charge
themselves as well, also virtual gluons appear around a free quark that do not screen its
field, but augment it. Getting closer to the central charge, one sees less and less of the
effect of the vacuum. With decreasing distance the diminishing of the screening effect
of the surrounding virtual quark-antiquark pairs increases the effective charge while the
diminishing of the anti-screening effect of the surrounding virtual gluons weakens the
effective charge. So virtual quarks-antiquark pairs and virtual gluons contribute oppos-
ite effects and which effect wins depends on the number of quark flavours and colour
charges. In QCD, with three colours and six flavours anti-screening prevails and the
theory is asymptotically free at short distances and large momentum transfer.
The variation of the theory’s coupling constant is quantified in the β-function. In
the lowest order in a renormalisation group expansion in the coupling constant the β-
function is positive when the charge grows with shorter distances or negative when the
charge decreases at short distances. Until 1973 only theories with the former behaviour
of their β-function were known. D. Gross, H. D. Politzer and F. Wilczek discovered
that non-abelian gauge theories allow for a negative beta function and concluded that
the theory of colour charges had to be a of this type discovered by C. N. Yang and
R. L. Mills in 1954 [154]. In lowest order in the coupling constant αs = g2s /(4π) the
β-function of the strong interaction is, see e.g. Ref. [102]

β = − g2s
48π2

(11Nc − 2Nf) . (2.1)

So for any QCD-like theory with Nf < 5.5Nc it is negative and the running coupling gs
decreases with increasing energy.

The finding that the strong coupling decreases towards high energies, justifies the ap-
plication of perturbation theory for the theoretical description of high-energy scattering
processes. On the other hand it implies that for small momenta the coupling tends to-
wards a pole and a perturbative description breaks down. Therefore the long distance,
strong-coupling behaviour which is thought to account for preventing the unbinding of
quarks from hadrons, known as confinement cannot be addressed with perturbation the-
ory. The running of the strong coupling shown in Fig. 2.2 illustrates the asymptotic free
behaviour at large momentum transfers where it can be well described by perturbative
QCD and its divergence at small energies.

At present there is no mathematical proof that QCD should be colour confining but
the rise of the strong coupling constant with decreasing energy is compatible with it
and a symmetry can be associated with confinement as will be discussed in detail in
Sec. 2.2.2. But the confinement phenomenon is not sufficient to account for the observed
mass spectrum of hadrons. This is characterised by light mesons that are much lighter
than other hadrons. This observation can be attributed to spontaneous breaking of
chiral symmetry at low energies. It justifies the effective description of the strong inter-
action at low energies via only weakly interacting pion degrees of freedom like H. Yukawa
started the exploration of the strong interaction.

12
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Figure 2.2.: Experimental data for the energy dependence of the strong coupling
αs = g2s /(4π) fitted with the 4-loop prediction of perturbation theory.
From Ref. [147] with courtesy of the Particle Data Group.

In 1965 it was realised by R. Hagedorn that the application of a statistical thermal
model to the particle production in heavy-ion collisions results in a resonance formation
that grows exponentially towards a limiting temperature [155]. N. Cabibbo and G. Parisi
suggested in 1975 that this exponential spectrum can be connected to a phase transition
to a different phase where quarks are not confined [156]. In the late 1970s and beginning
of the 80s investigations on space-time lattices of pure gauge theory and including quarks
confirmed that at a certain temperature far before the asymptotic scenario the hadrons
dissolve into a quark-gluon plasma [157–160]. It was as well realised in the 1970’s that
while a dilute system could be described in terms of hadronic degrees of freedom, with
increasing density these extended composite particles would overlap and quarks and
gluons would be free to roam in very dense systems [161–163].
From these two observations one can deduce a temperature-density phase diagram of
strongly-interacting matter with one phase in which quarks are confined into massive
hadrons and another phase of almost free, massless quarks and gluons as illustrated
in Fig. 2.3. Two properties of strongly-interacting matter are entangled with these
phases. One is the confinement of quarks into colour-singlet hadrons. The other one
is quarks becoming massive which is connected to chiral symmetry breaking. So the
question arises if these two transitions coincide and if they are linked over the whole
phase diagram, at all temperatures and densities. Another question is the nature of the
transition over the phase diagram, if it changes for large density and small temperature

13



Chapter 2. Quantum Chromodynamics

Figure 2.3.: Illustration of the temperature-density phase diagram of strongly-
interacting matter. The abscissa is given in units of normal nuclear
density ρ0. It is expected that the quarks and their bonding particles,
the gluons that are locked up inside massive hadrons at small temper-
ature and/or density become liberated from confinement and move as
free particles in a quark-gluon plasma at high temperature and/or dens-
ity. From Ref. [164] with courtesy of the GSI Helmholtzzentrum für
Schwerionenforschung GmbH.

compared to small density and large temperature. These are issues that will be addressed
in the present work. A more detailed illustration of the phase diagram of strongly-
interacting matter is shown in Fig. 2.4 in the plane of temperature and the quark
chemical potential µ. At very high chemical potential and small temperature further
phases could exist by effects like colour superconductivity and colour-flavour locking.
These phenomena are beyond the scope of the present investigations. Inside the hadronic
phase at small temperature and chemical potential is another phase transition that
separates the vacuum that is characterised by vanishing baryon density from the nuclear
matter phase. Different regions in the phase diagram have been, are and will be probed
in nuclear collision experiments to find evidence of the phase transition from normal
nuclear matter to a quark-gluon plasma and explore the nature of the transition and to
investigate the properties of the quark-gluon plasma.

2.2. The QCD Lagrangian and its Symmetries

2 The basic constituents of strongly-interacting matter are quarks and gluons. The
quarks can be collected in a spinor in flavour space where each component is a spinor
of Nc colour components. Free quarks obey a Lagrangian that is build up by a kinetic

2The line of argumentation of this section is inspired by that of Refs. [101,166].
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Figure 2.4.: Schema of the phase structure of strongly-interacting matter in the plane
of temperature and quark chemical potential. After Ref. [165] with cour-
tesy of B.-J. Schaefer.

term, a mass term and a chemical potential term

q̄ (iγµ∂
µ −m+ γ0 µf ) q , (2.2)

where γµ denotes the Dirac matrices, the quark masses build up the diagonal matrix
m and µf denotes the chemical potential of a quark flavour. In the Lagrangian the
combination of the quark field q and antiquark field q̄ has to be invariant under rotations
in colour space

q (x) → q′ (x) = U(x) q (x) with U(x) = exp

(
i ϵa(x)

λa

2

)
, (2.3)

where ϵa are the real parameters of the transformation and λa/2 are the N2
c −1 hermitian

generators of the gauge group SU(Nc). In the physical world with Nc = 3, λa are the
Gell-Mann matrices. Obviously, Eq. (2.2) is only invariant under this transformation
if the transformation parameters are space-time–independent, i.e. under global SU(Nc)
transformations. But the space-time dependence of the transformation parameters for a
local transformation implies the necessity of a modification of Eq. (2.2) to ensure gauge
invariance. The simple way out is to replace the partial derivative of the kinetic term
by the covariant derivative

Lq = q̄ (iγµD
µ −m) q with Dµ = ∂µ − i g

λa

2
Aµ

a + δµ0µf , (2.4)

where g is the strong coupling constant and Dµ contains the N2
c − 1 gauge fields of

SU(Nc). In QCD with Nc = 3 these gauge bosons are the gluons. Indeed the trans-
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formation law of the gauge fields

Aµ =
λa

2
Aa

µ → A′
µ = U

(
Aµ − i

g
U †∂µU

)
U † (2.5)

ensures the gauge invariance of the Lagrangian (2.4).
Having introduced the gauge fields to the system one has to consider as well a kinetic

and a mass term for these in the Lagrangian of QCD. But a mass term of the form
AµA

µ breaks gauge invariance explicitly and therefore, gauge fields have to be massless.
The kinetic term of the vector gauge fields should contain the field strength tensor

Fµν = ∂µAν − ∂νAµ . (2.6)

But also in case of the gauge fields the most trivial ansatz for the kinetic term is not
invariant under SU(Nc) transformations and the latter require the modification of the
field strength tensor to

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν , (2.7)

where fabc denote the structure constants of the gauge group. The behaviour of this
field strength tensor under a gauge transformation

Ga
µν → Ga

µν
′ = U Ga

µν U
† (2.8)

implies that the colour trace

Lg = −1

2
Trc |Gµν | = −1

4
Ga

µν G
µν
a (2.9)

is a gauge invariant quantity which can be used as kinetic term for the gauge fields. This
defines the Lagragian of pure gauge (Yang-Mills) theory. Having now gauge invariant
kinetic and mass terms for the constituents of QCD, so quarks and gluons at hand, these
can be collected to build up the Lagrangian of QCD

LQCD = q̄ [ i γµ (∂
µ − i gAµ)−m+ γ0 µf ] q −

1

4
Ga

µν G
µν
a . (2.10)

According to the principle of minimal coupling it only contains a coupling between
quarks and gluons via the covariant derivative, so the coupling stems from the necessity
of gauge invariance.

Besides the symmetry of the QCD Lagrangian (2.10) under SU(Nc) gauge transform-
ations that was explicitly implied in its construction it is also interesting to study its
behaviour under other transformations that characterise the properties of QCD.

A simple transformation is a global U(1) transformation which just multiplies the
fields by a phase factor

q (x) → q′ (x) = exp (iΘ) q (x) , (2.11)
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with Θ ∈ R. According to Noether’s theorem, for every continuous transformation under
which a Lagrangian is symmetric there exists a conserved current jµ with corresponding
conserved charge that is given by the space integral over the 0th component of the
current. In case of the U(1) symmetry of QCD the conserved charge is the baryon
number

B =
1

3

∫
d3x q̄ (x) γ0 q (x) =

1

3

∫
d3x q†q . (2.12)

The vector current belonging to a global SU(Nf) symmetry is

V a
µ (x) = q̄ (x) γµ

λa

2
q (x) , (2.13)

with λa/2 as the N2
f − 1 generators of the group SU(Nf), where λa are the Gell-Mann

matrices for Nf = 3. The divergence of this current

∂µV a
µ = i q̄

[
m,

λa

2

]
q (2.14)

only vanishes, so that the current (2.13) is conserved, if the quarks of all flavours are
degenerated in mass because then the mass matrix is proportional to the unit matrix
which commutates indeed with the generators of the group SU(Nf).
Therefore, the Lagrangian of strongly-interacting matter consisting only of up and down
quarks and being isospin symmetric is symmetric under SU(Nf) vector transformations.
Including the heavier strange quarks in Nf = 2+1 the Lagrangian is no longer invariant
to rotations in flavour space. Together with the even heavier quark flavours they break
the flavour symmetry in QCD explicitly. Furthermore, Eqs. (2.13) and (2.14) show that
the interaction between quarks and gluons is flavour-independent.

2.2.1. Chiral Symmetry

The energy range of the interesting phase structure of strongly-interacting matter is
the low energy limit of QCD. Compared to the energy scale of the quark-hadron phase
transition the masses of the five heaviest quark flavours are large and their dynamics
can be neglected at these temperatures and densities. On the other hand, this scale is
significantly larger than the masses of the light and strange quarks so that in a first
approximation these can be assumed to be massless.

The Lagrangian in this so-called ‘chiral limit’ for reasons that become clear during
the further discussion, is invariant under the following vector and axial-vector trans-
formations in flavour space

q (x) → q′ (x) = exp

(
i ϵa(x)

λa

2

)
q (x) , (2.15)

q (x) → q′ (x) = exp

(
i γ5 ϵa(x)

λa

2

)
q (x) , (2.16)
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with γ5 = iγ0γ1γ2γ3 in Minkowski space. The corresponding conserved vector and
axial-vector currents are

V a
µ (x) = q̄ (x) γµ

λa

2
q (x) , (2.17)

Aa
µ (x) = q̄ (x) γµγ5

λa

2
q (x) (2.18)

and the group structure of this symmetry of the Lagrangian of strongly-interacting
matter in the chiral limit can be written as SU(3)V ⊗ SU(3)A .
For another approach to this symmetry one can use the projection operators

PR.L =
1

2
(1± γ5) (2.19)

to define right- and left-handed quarks as

qR.L = PR.L q (2.20)

with which the Lagrangian in the chiral limit separates into independent contributions
for left- and right-handed quarks

Lchiral limit = q̄RiγµD
µqR + q̄LiγµD

µqL − 1

4
Ga

µν G
µν
a . (2.21)

In this form one sees very well that this Lagrangian is invariant under separate trans-
formations of right- and left-handed fermions

qR,L (x) → q′R,L (x) = exp

(
i ϵaR,L(x)

λa

2

)
qR,L (x) . (2.22)

So the symmetry group of chiral symmetry can be as well written as SU(3)R ⊗ SU(3)L.
The correspondence to vector and axial-vector symmetry can be shown explicitly using
the conserved currents

ja,µR,L (x) = q̄R,L(x) γ
µ λ

a

2
qR,L(x) (2.23)

and exploiting that the vector and axial-vector currents (2.17) and (2.18) can be written
as linear combinations of these

V a,µ (x) = ja,µR (x) + ja,µL (x) , (2.24)

Aa,µ (x) = ja,µR (x)− ja,µL (x) . (2.25)

The vector current (2.17) is of the same structure as that of the global SU(Nf) sym-
metry transformation (2.13), so for non-zero but degenerated quark masses it is still
conserved and SU(2)V is a symmetry group of the Lagrangian of strongly-interacting
matter. But the divergence of the axial-vector current takes the form

∂µA
µ
a = i q̄

{
m,

λa

2

}
γ5 q (2.26)
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which is non-vanishing for any non-zero quark masses. Therefore, a non-vanishing mass
of a quark flavour breaks chiral symmetry explicitly which implies that the mass term
in the Lagrangian mixes left- and right-handed quarks

LQCD = q̄RiγµD
µqR + q̄LiγµD

µqL + q̄RmqL + q̄LmqR − 1

4
Ga

µν G
µν
a . (2.27)

In general, a meson-like quark-antiquark state or quark condensate ⟨q̄q⟩ mixes left-
and right-handed quarks,

⟨q̄q⟩ = ⟨q̄RqL⟩+ ⟨q̄LqR⟩ . (2.28)

So, even though the Lagrangian itself is invariant under chiral transformations for mass-
less quarks, the appearance of a non-vanishing quark condensate ⟨q̄q⟩ breaks chiral
symmetry spontaneously. Altogether, the quark condensate ⟨q̄q⟩ is a order parameter
for chiral symmetry breaking. The relation between quark masses, chiral symmetry and
quark condensate can be exploited to explain the generation of constituent quark masses
by spontaneous chiral symmetry breaking. The constituent quark mass of up and down
quarks that are confined in protons or neutrons is of the order of one third of the mass
of these nucleons, O ∼ 300MeV which is significantly larger than their current quark
masses, O ∼ MeV. While the non-zero current quark masses are responsible for expli-
cit chiral symmetry breaking the constituent quark masses are dynamically generated
by spontaneous chiral symmetry breaking, m ∼ ⟨q̄q⟩. This requires a mechanism that
couples quarks to mesons which can be obtained by a Yukawa coupling.

With the spontaneous breaking of a symmetry comes along the appearance of a mass-
less excitation in the particle spectrum which is called a ‘Goldstone’ boson. The addi-
tional explicit breaking of chiral symmetry by non-zero quark masses implies that these
bosons are not massless. However, the current mass of the light up and down quarks
is comparatively small, so that in this light quark sector axial-vector transformations
are approximately symmetric and the axial-vector current is partially conserved. There-
fore, the bosons belonging to spontaneous chiral symmetry breaking of light quarks are
comparatively light compared to those associated to the heavier quark flavours.

2.2.2. Centre Symmetry

The opposite to the chiral limit of QCD is to consider all quarks as infinitely heavy so
that one is left with the gluon dynamics. The Lagrangian then reduces to

LYM = −1

4
Ga

µν G
µν
a , (2.29)

which represents the SU(Nc) pure gauge theory which is a ‘Yang-Mills’ theory. The
corresponding partition function is

Z = Tr [exp (−βH)] or Z =

∫
DAµ exp (−S [Aµ]) (2.30)
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in the path integral formulation. So the Euclidean action reads

S [Aµ] = −1

2

∫ β

0
dτ

∫
d3x Tr (Gµν G

µν) (2.31)

where the gauge fields obey the periodic boundary condition

Aµ (τ + β, x⃗) = Aµ (τ, x⃗) . (2.32)

To the latter corresponds the following gauge transformation

U (τ + β, x⃗) = hU (τ, x⃗) , (2.33)

with h being an element of the gauge group SU(Nc) itself.
The transformation law of gauge fields (2.5) and the condition of gauge invariance of
the Lagrangian restrict h to commute with the gauge fields. Elements of a group that
commute with all elements of this group constitute the so-called centre of the group. So
h has to be a member of the centre of SU(Nc), h ∈ Z (SU(Nc)). These centre elements
of SU(Nc) can be written as multiples of the Nc-dimensional unit matrix

h = z1 with z = exp (2π in/Nc) and n ∈ {0, 1, . . . , Nc − 1} . (2.34)

So, a gauge symmetry under which the SU(Nc) pure gauge Lagrangian is invariant is
centre symmetry.

Lifting the condition that the quarks are infinitely heavy they become dynamical
fields again and one recovers the QCD Lagrangian (2.10). Under centre symmetry
transformations quarks obey the transformation law (2.3) and furthermore, they fulfil
anti-periodic boundary conditions

q (τ + β, x⃗) = −q (τ, x⃗) . (2.35)

This implies that quark fields transform under centre symmetry as

q′ (τ + β, x⃗) = −hU (τ, x⃗) q (τ, x⃗) (2.36)

= −z q′ (τ, x⃗) . (2.37)

This equation picks out a single centre element, namely z = 1 or n = 0, respectively.
Hence, quarks are not symmetric under centre symmetry transformations and the pres-
ence of dynamical quarks breaks centre symmetry of the QCD Lagrangian explicitly.

For antiquarks the transformation law and anti-periodic boundary condition imply
that they get multiplied with a factor −z† under a centre symmetry transformation.
Therefore, a quark-antiquark state obeys centre symmetry. The same is true for a state
consisting of Nc quarks or Nc antiquarks for which a centre symmetry transformation is
just a rotation by a multiple of 2π. Therefore, a hadronic phase where quarks and anti-
quarks are confined into mesons and baryons respects centre symmetry while deconfined
quarks in a quark-gluon plasma phase break centre symmetry. Hence, the realisation
or breaking of centre symmetry serves as an indication if strongly-interacting matter is
confined or deconfined. Besides this explicit centre symmetry breaking by deconfined
(anti-)quarks, the discussion of a order parameter for centre symmetry in Sec. 2.3.2 will
reveal that it gets also spontaneously broken in the deconfined phase.
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2.3. Effective Description of Symmetries

For any effective description of strongly-interacting matter it is important to capture
the above discussed symmetries that reflect important properties of QCD, namely con-
stituent quark masses and (de)confinement. In the 1960’s, M. Gell-Mann and M. Levy
and Y. Nambu and G. Jona-Lasinio made up the Linear-σ model [56, 57] and Nambu–
Jona-Lasinio (NJL) model [54, 55] to describe spontaneous chiral symmetry breaking.
For recent reviews of these models for QCD, see e.g. Refs. [60,167]. At non-zero temper-
ature and quark density the former model can be extended to the Quark-Meson (QM)
model. For centre symmetry the so-called Polyakov-loop can serve as an order para-
meter [157, 168, 169]. In this way, the Polyakov-loop extended versions of the NJL and
QM models, PNJL [67–71] and PQM [4,72–74,76–78], take into account (de)confinement
besides constituent quark masses.

2.3.1. Linear-σ Model

The quark condensate ⟨q̄q⟩ represents a meson, so that one has to construct a Lagrangian
for meson fields that describes spontaneous and explicit breaking of chiral symmetry and
that reflects the above explained origin of explicit and spontaneous chiral symmetry
breaking. Reference [57] found that it is governed by the following Lagrangian of the
Nf = 3 Linear-σ model

Lm = Tr
(
∂µϕ

†∂µϕ
)
−m2Tr

(
ϕ†ϕ

)
− λ1

[
Tr
(
ϕ†ϕ

)]2
− λ2Tr

[(
ϕ†ϕ

)2]
+

+ c
(
detϕ+ detϕ†

)
+Tr

[
H
(
ϕ+ ϕ†

)]
, (2.38)

where ϕ combines the scalar and pseudo-scalar meson fields

ϕ = Ta ϕa =
λa
2

(σa + iπa) . (2.39)

The Gell-Mann matrices λ1,...,8 are completed by λ0 =
√

2
31 as the nine generators

of U(3). So the Lagrangian (2.38) covers besides chiral symmetry also U(1) trans-
formations, U(3)=SU(3)⊗U(1). The U(1) transformation discussed in Sec. 2.2 under
which the Lagrangian is symmetric is the vector transformation while the symmetry un-
der axial-vector U(1) transformations is explicitly broken by the determinant terms in
Eq. (2.38) and the coefficient c determines the strength of U(1) axial-symmetry break-
ing. It is the last term in Eq. (2.38), with H = Ta ha that breaks chiral symmetry
explicitly.

Writing the matrix (2.39) explicitly out in its nine scalar and pseudo-scalar fields it
consists of

Ta φa =


φ0√
6
+ φ3

2 + φ8

2
√
3

φ1

2 − iφ2

2
φ4

2 − iφ5

2
φ1

2 + iφ2

2
φ0√
6
− φ3

2 + φ8

2
√
3

φ6

2 − iφ7

2
φ4

2 + iφ5

2
φ6

2 + iφ7

2
φ0√
6
− φ8√

3

 , (2.40)
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with φb ∈ {σb, πb}.
To implement spontaneous breaking of chiral symmetry one shifts the scalar meson

fields by a vacuum expectation value ϕ̄ ≡ Ta σ̄a while the vacuum expectation value of
the pseudo-scalar mesons is zero. Then the Lagrangian becomes [60]

Lm =
1

2

[
∂µσa∂

µσa + ∂µπa∂
µπa − σaM

2
s,abσb − πaM

2
p.abπb

]
+

+

(
Gabc −

4

3
Fabcdσ̄d

)
σaσbσc − 3

(
Gabc +

4

3
Habcdσ̄d

)
πaπbσc −

− 2Habcdσaσbπcπd −
1

3
Fabcd (σaσbσcσd + πaπbπcπd)− U (σ̄) , (2.41)

where

M2
s,ab = m2δab − 6Gabcσ̄c + 4Fabcdσ̄cσ̄d , (2.42)

M2
p,ab = m2δab + 6Gabcσ̄c + 4Habcdσ̄cσ̄d , (2.43)

U (σ̄) =
m2

2
σ̄2a − Gabcσ̄aσ̄bσ̄c +

1

3
Fabcdσ̄aσ̄bσ̄cσ̄d − haσ̄a , (2.44)

with

Gabc =
c

6

[
dabc −

3

2
(δa0d0bc + δb0da0c + δc0dab0)+

+
9

2
d000δa0δb0δc0

]
, (2.45)

Fabcd =
λ1
4

(δabδcd + δadδbc + δacδbd) +

+
λ2
8

(dabndncd + dadndnbc + dacndnbd) , (2.46)

Habcd =
λ1
4
δabδcd +

λ2
8

(dabndncd + facnfnbd + fbcnfnad) , (2.47)

where dabc and fabc are the structure constants of SU(3) that are symmetric or antisym-
metric, respectively. These are given in App. B.

Equation (2.44) is the potential of the Linear-σ model at tree level and its derivative
with respect to the scalar fields is

∂U(σ̄)

∂σ̄a
= m2σ̄a − 3Gabcσ̄bσ̄c +

4

3
Fabcdσ̄bσ̄cσ̄d − ha . (2.48)

The expectation values of the fields are minima of the potential so that ∂U(σ̄)/∂σ̄a = 0

puts a necessary condition on the expectation values of the fields. To exclude other
extrema than minima from the roots of Eq. (2.48) all eigenvalues of the Hessian matrix
∂2U(σ̄)/ (∂σ̄a∂σ̄b) have to be positive.

To ensure the quantum numbers of the vacuum in SU(3) only the condensates σ0, σ3
and σ8 can be non-zero and the vacuum expectation value reduces to

ϕ̄ = T0σ̄0 + T3σ̄3 + T8σ̄8 . (2.49)

22



2.3. Effective Description of Symmetries

As a generalisation of Refs. [60,66] the potential (2.44) then takes the form

U (σ̄0, σ̄3, σ̄8) = m2 σ̄
2
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2
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+
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3σ̄8√
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)
−

− c

(
σ̄30
3
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− σ̄38
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√
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− σ̄0σ̄

2
3

2
√
6
− σ̄0σ̄

2
8

2
√
6
+
σ̄23σ̄8

2
√
6

)
−

− h0σ̄0 − h3σ̄3 − h8σ̄8 . (2.50)

Its derivatives are given in App. B.

Coupling quarks to the mesons the masses of the quarks are generated dynamically
by the Yukawa coupling to the mesons and therefore, the quark contribution (2.4) to
the Lagrangian becomes

Lq = q̄ (iγµD
µ − g ϕ5) q . (2.51)

ϕ5 is defined similarly to ϕ but extended by a Lorentz structure

ϕ5 =
λa
2

(σa + i γ5πa) , (2.52)

where γ5 = i γ0γ1γ2γ3. Using Eqs. (2.40) and (2.49) this implies that the quark masses
are

mu = g

(
σ̄0√
6
+
σ̄3
2

+
σ̄8

2
√
3

)
, (2.53a)

md = g

(
σ̄0√
6
− σ̄3

2
+

σ̄8

2
√
3

)
, (2.53b)

⇔ ml =
mu +md

2
= g

(
σ̄0√
6
+

σ̄8

2
√
3

)
, (2.53c)

ms = g

(
σ̄0√
6
− σ̄8√

3

)
. (2.53d)

So, it is the condensate σ̄3 that breaks the SU(2) isospin symmetry.

For the later discussion it is convenient to go from the SU(3) basis to that of the
quark-flavour condensates. Using the result for the quark masses (2.53) these can be
defined as

ϕ̄ =
1

2

 σ̄u 0 0

0 σ̄d 0

0 0
√
2σ̄s

 (2.54)
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so that they are

σu =

√
2

3
σ0 + σ3 +

σ8√
3
, (2.55a)

σd =

√
2

3
σ0 − σ3 +

σ8√
3
, (2.55b)

σs =
σ0√
3
−
√

2

3
σ8 . (2.55c)

In these coordinates the self-interaction potential (2.50) of the meson fields reads

U (σ̄u, σ̄d, σ̄s) =
λ1
4

[(
σ̄2u + σ̄2d

2

)2

+ σ̄4s +
(
σ̄2u + σ̄2d

)
σ̄2s

]
+
λ2
4

(
σ̄4u + σ̄4d

4
+ σ̄4s

)
+

+
m2

2

(
σ̄2u + σ̄2d

2
+ σ̄2s

)
− c

2
√
2
σ̄u σ̄d σ̄s −

−hud
2

(σ̄u + σ̄d)− hs σ̄s. (2.56)

In accord with the Vafa-Witten theorem [170] isospin symmetry of the vacuum is not
broken and therefore only one single explicit symmetry breaking term for the up- and
down-quark sector hud is considered, which implies h3 = 0 in Eq. (2.50). The corres-
ponding derivatives of the potential are given in App. B.

To see the effects introduced by isospin breaking it is convenient to separate the effect
of the isospin-breaking condensate σ3 = (σu−σd)/2 from that of the average light quark
condensate σl = (σu + σd)/2,

U (σ̄l, σ̄s, σ̄3) =
2λ1 + λ2

8
σ̄4l +

λ1 + λ2
4

σ̄4s +
2λ1 + λ2

8
σ̄43 +

+
λ1
2
σ̄2l σ̄

2
s +

λ1
2

(
σ̄2l + σ̄2s

)
σ̄23 +

3

4
λ2 σ̄

2
l σ̄

2
3 +

+
m2

2

(
σ̄2l + σ̄2s + σ̄23

)
− c

2
√
2

(
σ̄2l − σ̄23

)
σ̄s − hlσ̄l − hsσ̄s . (2.57)

Its derivatives with respect to the condensates are given in App. B. The derivative of
the potential with respect to the isospin-breaking condensate σ3 shows that in order
to preserve the isospin symmetry of the vacuum, i.e. σ̄3 = 0, explicit isospin symmetry
breaking has to be avoided, i.e. h3 = 0.

For the illustration that the Linear-σ potential describes spontaneous and explicit
breaking of chiral symmetry it is advantageous to argue with the corresponding isospin
symmetric potential for Nf = 2,

U (σ, π⃗) =
λ

4

(
σ2 + π⃗2 − v2

)2 − hσ . (2.58)

The coefficient λ has to be positive so that the potential is bounded from below and v
can be considered as radius of the ‘chiral circle’. A sketch of the potential is shown in
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Figure 2.5.: Illustration of the Linear-σ potential for Nf = 2 as a function of the
fields σ and π.

Fig. 2.5. Indeed, it fulfils that the expectation value of the pseudo-scalar field vanishes,
i.e. π = 0, that without explicit symmetry breaking the potential would be symmetric
but that the scalar field σ takes a non-vanishing expectation value so that chiral sym-
metry is spontaneously broken and that the explicit symmetry breaking term singles
out one specific minimum.

The determination of the parameters of the mesonic potential is discussed within its
embedment in the Polyakov–Quark-Meson model in Sec. 3.1.

2.3.2. Polyakov-loop

Reducing the local gauge symmetry implied for the derivation of the QCD Lagrangian
(2.10) to a global symmetry, the necessity of introducing gluon fields to achieve gauge
invariance drops and with these the information about confinement gets lost. Never-
theless, it was shown in Sec. 2.2.2 that information about confinement can be taken
into account via centre symmetry. The commonly used effective order parameter for
(de)confinement is the expectation value of the traced Polyakov-loop operator,

Φ ≡ Φ [A] =
1

Nc
Trc

[
P exp

(
i g

∫ β

0
dτ A0 (x0)

)]
, (2.59)

25



Chapter 2. Quantum Chromodynamics

where P stands for path ordering, g denotes here the bare gauge coupling, β = 1/T is the
inverse of the temperature and A0 is the temporal component of the gauge field Aµ [157].
What is commonly called Polyakov loop is then given by the thermal expectation value
⟨Φ⟩. The Polyakov-loop operator itself is a Wilson loop in temporal direction

P = P exp

(
i g

∫ β

0
dτ A0 (x0)

)
. (2.60)

With a gauge that ensures the time-independence of A0, one can perform the integration
easily and the path ordering becomes irrelevant [171,172], so that P = exp (iβgA0). In
this form, it is trivial to see that the Polyakov-loop variable,

Φ =
1

Nc
Trc P (2.61)

is a complex scalar field Φ = Φr + iΦi. Furthermore, one can rotate the gauge field in
the Cartan subalgebra Ac

0 =
λ3
2 A

(3)
0 + λ8

2 A
(8)
0 [82]. Within this diagonal representation,

one sees that the adjoint Polyakov-loop variable becomes simply Φ̄ = Φr − i Φi.
Under gauge transformations concerning centre symmetry, the Polyakov loop oper-

ator and its variable are multiplied with a centre element h, Φ → hΦ. Therefore, the
Polyakov-loop is an order parameter for centre symmetry [169].

The logarithm of the Polyakov loop ⟨Φ⟩ can be associated to the negative of half of
the free energy of a static quark-antiquark pair Fqq̄ at infinite distance. When there are
no dynamical quarks present and all gluons are confined the free energy is infinite which
implies that the Polyakov loop vanishes in the confined phase of pure gauge theory. For
this value, the Polyakov loop is symmetric under centre symmetry transformations.
Deconfinement is characterised by the appearance of free quarks or gluons. Therefore,
the static quarks get screened and the free energy of the static quark-antiquark pair gets
finite. This in turn implies a non-vanishing value of the Polyakov loop that is no longer
symmetric under centre symmetry transformations and centre symmetry gets broken
spontaneously.
Light, dynamical quarks and antiquarks can build a meson state with the static anti-
quark or quark, respectively in the ‘confined’ phase. This restricts the free energy of
the static quark-antiquark pair meaning that the Polyakov loop takes a non-zero value
already in the confined phase. This is the explicit breaking of centre symmetry as dis-
cussed in Sec. 2.2.2.
In the limit when the free energy of the static quark-antiquark pair vanishes the Polyakov
loop becomes one, which restricts the domain of the Polyakov loop to ⟨Φ⟩ ∈ [0, . . . , 1].
At a non-zero quark chemical potential the screening of the static antiquark differs from
that of the static quark and the Polyakov loop is a measures of the screening of the
quark while the adjoint Polyakov loop Φ̄ tests this of the antiquark. In general, at a
positive net quark density one can expect a stronger screening of the antiquark than the
quark so that the adjoint Polyakov loop ⟨Φ̄⟩ should be larger than the Polyakov loop
⟨Φ⟩.
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In addition to the standard Polyakov loop ⟨Φ [A]⟩, other order parameters for quark
confinement have been introduced. The functional renormalisation group (FRG) cal-
culations discussed in App. A and that will be applied in Sec. 3.2.1 consider an order
parameter which is closely related to the Polyakov loop, namely Φ[⟨A0⟩]. In Polyakov-
Landau-DeWitt gauge, it can be indeed shown that Φ[⟨A0⟩] also is an order parameter,
see Refs. [82,172]. Here, ⟨A0⟩ is a constant element of the gauge group and denotes the
ground state of the corresponding order-parameter potential. So this gluonic background
is determined by the constant solution of the equations of motion. Such a solution can
always be rotated in the Cartan subalgebra as well,

⟨Aµ⟩ = δµ0

(
λ3
2
⟨A(3)

0 ⟩+ λ8
2
⟨A(8)

0 ⟩
)
, (2.62)

with constant ⟨A(3,8)
0 ⟩. The minima and maxima of the potential are accessed for ⟨A8

0⟩ =
0, see Refs. [36,82–84,172]. Then this Polyakov-loop observable reads

Φ [A0] =
1

3

[
1 + 2 cos

(
βg

2
A0

)]
with A0 = ⟨A3

0⟩ . (2.63)

Both Polyakov-loop order parameters ⟨Φ [A0]⟩ and Φ [⟨A0⟩] are related according to
Jensen’s inequality by

Φ [⟨A0⟩] ≥ ⟨Φ [A0]⟩ . (2.64)

The potential of the Polyakov loop, U
(
Φ, Φ̄;T

)
should mimic a background of gluons

and controls the dynamics of the Polyakov loop.
First computations of the effective potential in gauge theories have been performed in

the 80’s at asymptotically high temperatures using perturbation theory [173–175] and
in the strong coupling limit on a lattice [176]. In recent years, the non-perturbative
Polyakov-loop potential has been studied using various different approaches [36, 37,
82–84, 172, 177–183]. First principle calculations of the potential are performed using
different functional methods, mainly the FRG approach but as well Dyson-Schwinger
equations and the 2PI-approach [82–84,172]. In Refs. [36,37] the Polyakov-loop potential
in two flavour QCD in the chiral limit has been analysed. This computation includes
the full back-coupling of the matter sector on the propagators of the gauge degrees of
freedom via dynamical quark-gluon interactions [184–186].

A much simpler way to obtain an effective Polyakov-loop potential U
(
Φ, Φ̄;T

)
is to

construct a potential that respects all given symmetries and contains the spontaneous
breaking of Z(3) symmetry if the system is in the deconfined phase [176,187,188]. The
actual form and construction of the Polyakov-loop potential will be discussed in Sec. 3.2.

Overall, the Lagrangian of QCD (2.10) reduces in this effective description of the im-
portant symmetries of strongly-interacting matter that are chiral symmetry and centre
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symmetry to

LPQM = q̄

[
i γµ

(
∂µ − iAµδµ0 + µf δ

µ0
)
− g

λa
2

(σa + iγ5πa)

]
q +

+
1

2
(∂µσa∂

µσa + ∂µπa∂
µπa)−

− U (σa, πa)− U
(
Φ, Φ̄;T

)
. (2.65)

To avoid a confusion of the coupling constants of quarks to gauge fields and to mesons,
the former is absorbed into the definition of the gauge field, i.e. gAµ → Aµ form here
on. This Lagrangian defines the Polyakov-loop extended Quark-Meson model and will
serve as basis to derive the grand-canonical potential of the PQM model in the next
chapter.
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3. The Polyakov–Quark-Meson Model

3.1. Formulation of the Polyakov–Quark-Meson Model

The particle content of the Polyakov–Quark-Meson model model are constituent quarks
minimally coupled to gauge fields and coupled to mesons via a Yukawa-type term.

The starting point for the analysis of the system is the in-medium effective action of
the theory. It is the space-time integral over the Lagrangian density

SPQM [σa, πa, A0, q, q̄;T, µf ] =

∫ β

0
dτ

∫
d3x LE

PQM [σa, πa, A0, q, q̄;µf ] . (3.1)

Here, it is referred to the definition of the action in the Euclidean metric. The Wick-
rotation of the time coordinate leads to a flipped sign of the potential terms in the
Euclidean formulation of the Lagrangian density LE

PQM compared to that in Minkowski
space-time in Eq. (2.65). The corresponding partition function is a path integral over
all occurring fields

ZPQM =

∫ ∏
a

Dσa
∫ ∏

a

Dπa
∫

DA0

∫
Dq
∫

Dq̄ exp (−SPQM [σa, πa, A0, q, q̄]) .

(3.2)
The thermodynamic quantities and the behaviour of the order parameters of the theory
can be derived from the thermodynamical effective potential. It is proportional to the
logarithm of the partition function, with a prefactor that accounts for the normalisation
of the space-time integral in the action,

ΩPQM [σa, πa, A0, q, q̄;T, µf ] = −T
V

lnZPQM . (3.3)

Hence, it is a function of the order-parameters and thermodynamical control parameters.
Characterising the system by its temperature, the chemical potentials of the quark
flavours and the volume, the effective potential (3.3) is the grand-canonical potential.
Normalising it by the volume, it is strictly speaking a density.

The difficultly in finding a final expression for the effective potential is performing the
path integral over the fields. In order to evaluate it, an initial approximation is to refer
to thermal equilibrium, which is described by homogeneous field configurations. In this
mean-field approximation one ignores all the dynamics of the fields and excludes fluc-
tuations. These can be again taken into account starting with the mean-field potential
at some ultraviolet (UV) scale and considering the fluctuations in the flow towards the
infrared (IR), see e.g. Refs. [4, 74,76,78].
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In more detail, in the mean-field approximation a field ϕ = ϕ̄+ δϕ is replaced by its
spatially and temporally constant background ϕ̄, ignoring fluctuations δϕ. Doing this
the path integral turns into an ordinary integral over the field,∫

Dϕ exp (−S [ϕ]) →
∫

dϕ̄ exp
(
−S

[
ϕ̄
])

. (3.4)

Furthermore, the field configuration that contributes the most to the partition function
is that that minimises the in-medium effective action or potential. All other extrema of
the effective action are exponentially suppressed and give negligible contributions to the
equilibrium thermodynamics of the system. This implies that the integral is trivially
restricted to that mean-field which minimises the action∫

dϕ̄ exp
(
−S

[
ϕ̄
])

→ exp
(
−S

[
ϕ̄
])

. (3.5)

In the mean-field approximation of the PQM model this is how the meson and gluon
fields are treated. Substituting the meson fields by their expectation values their deriv-
ative terms in the Lagrangian (2.65) vanish. The gauge fields are considered as constant
background fields as well and therefore, one is left with an integration over the quark
fields that keep their character as quantum fields,

ZPQM =

∫
Dq̄
∫

Dq exp
{
−
∫ ∫ β

0
q̄

[
i γµ

(
∂µ − iAµδµ0 + µf δ

µ0
)
− g

λa
2
σa

]
q+

+U (σa) + U
(
Φ, Φ̄;T

)
dτ d3x

}
(3.6)

= exp

{
−V
T

[
U (σa) + U

(
Φ, Φ̄;T

)]}∫
Dq̄ Dq ×

× exp

{
−
∫ β

0
dτ

∫
d3x q̄

[
i γµ

(
∂µ − iAµδµ0 + µf δ

µ0
)
− g

λa
2
σa

]
q

}
. (3.7)

Since the potential of the meson fields and the Polyakov-loop potential don’t depend
on the quark fields and are independent of space-time they can be put out of the path
integral and the space-time integral can be performed trivially. This implies that he
final expression of the grand-canonical potential (3.3) takes the form

Ω
(
σa,Φ, Φ̄;T, µf

)
= U(σa) + U

(
Φ, Φ̄;T

)
+Ωqq̄ (σa, A0;T, µf ) . (3.8)

The last term represents the constituent quark sector. It includes the coupling of the
dynamical quarks to mesons via a Yukawa-type term and the minimal coupling to the
background gauge field ⟨A0⟩. This coupling to the colour fields can be rewritten in terms
of a coupling to the Polyakov-loop variable Φ[⟨A0⟩].

The remaining integration over the fermions can be performed following the standard
derivation [102] as Gaussian integral over Grassmann fields. This yields a determinant
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which can be rewritten as a trace over a logarithm. Evaluating this trace in momentum-
space within the Matsubara formalism one obtains within a 1-loop approximation

Ωqq̄

(
σa,Φ, Φ̄;T, µf

)
= −2

∑
f

∫
d3k

(2π)3

{
NcEf +

+ T ln
[
1 + 3

(
Φ+ Φ̄e−(Ef−µf)/T

)
e−(Ef−µf)/T + e−3(Ef−µf)/T

]
+

+T ln
[
1 + 3

(
Φ̄ + Φe−(Ef+µf)/T

)
e−(Ef+µf)/T + e−3(Ef+µf)/T

]}
. (3.9)

A detailed derivation is e.g. given in Refs. [101,166]. The following discussion proceeds
with the interpretation of Eq. (3.9). It includes the coupling of the dynamical quarks
to the Polyakov-loop variable Φ[⟨A0⟩] and the mesons. The dependence on the quark
condensates σa is implicit in the quasi-particle dispersion relation for the constituent
quarks

Ef =
√
k2 +m2

f (3.10)

since the constituent quark masses are mf ∝ gσf .
The first term of the quark-antiquark contribution results from the negative energy

states of the Dirac sea and is ultraviolet divergent. In the standard, no-sea mean-field
(MF) approximation it is neglected [61] saying that it can be absorbed in the renorm-
alisation of the vacuum since it has no explicit dependence on temperature and quark
chemical potentials. However, this term can be normalised, e.g. in the dimensional regu-
larisation scheme yielding a logarithmic correction that is implicitly medium-dependent
via the quark condensates [75,77,79,189,190],

Ωvac
qq̄ (σa) = −2Nc

∑
f

∫
d3k

(2π)3
Ef = − Nc

8π2

∑
f

m4
f ln

(mf

Λ

)
. (3.11)

The regularisation scale Λ corresponds to the UV scale of the renormalisation group
(RG) flow equation. From the RG flow equation it can be inferred that the effective
quark-antiquark potential has to change under a variation of this scale since it also
plays the role of an IR scale, up to which fluctuations are integrated out [4, 74, 76, 78].
The origin of Λ in the flow equation makes clear that Eq. (3.11) includes that part
of the quantum fluctuations of quarks related to momenta larger than the UV scale.
Consequently one expects a significant contribution in particular for high temperature,
large chemical potentials and large mass scales. Hence, it is interesting to study its
impact on the T − µ phase diagram.
Note that in the extended mean-field (eMF) model that takes into account the fermionic
sea contribution (3.11), this term contributes to the vacuum properties besides the
mesonic potential U(σa). This will become of importance in the latter adjustment of the
parameters of the mesonic potential to meson masses in the vacuum, so at T = µf = 0.

The remaining part of Eq. (3.9) is the kinetic quark-antiquark contribution that is a
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function of the thermodynamic variables

Ωth
qq̄

(
σa,Φ, Φ̄;T, µf

)
= −2T

∑
f

∫
d3k

(2π)3
×

×
{
ln
[
1 + 3

(
Φe−(Ef−µf)/T + Φ̄e−2(Ef−µf)/T

)
+ e−3(Ef−µf)/T

]
+

+ ln
[
1 + 3

(
Φ̄e−(Ef+µf)/T +Φe−2(Ef+µf)/T

)
+ e−3(Ef+µf)/T

]}
. (3.12)

The Quark-Meson model limit of the PQM model, that only covers chiral symmetry but
does not contain any information about confinement, can be recovered for Φ = Φ̄ ≡ 1.
Then the logarithms reduce to

3× ln [1− nf (T, µf )] with nf (T, µf ) =
1

1 + exp [(Ef ± µf ) /T ]
(3.13)

as the occupation numbers of free quarks and antiquarks, respectively.
Including the Polyakov loop, it is such that it takes small values in the confined phase
and the logarithms take the form ln {1 + exp [−3 (Ef ± µf ) /T ]}. So, they take the
same form of a free fermion gas but with an additional factor of 3. This indicates the
dominance of states consisting of three quarks or antiquarks, respectively, that have the
same quark number as a (anti-)baryon. Confinement is mimicked in a Polyakov-loop–
extended constituent-quark model in this statistical sense. In the deconfined phase
centre symmetry breaks spontaneously so that the Polyakov loop takes significantly
larger values which implies that the single- and two (anti-)quark states contribute. For
the limit Φ, Φ̄ → 1 the logarithms take the form given in Eq. (3.13) which is a gas of
non-interacting quarks and antiquarks in three colours.

The thermodynamic potential (3.8) is complemented by a potential energy for the
expectation value of the Polyakov loop U

(
Φ, Φ̄;T

)
that will be derived in the following

section and the tree-level contribution of the mesonic degrees of freedom U(σa). In
summary, the effective potential of the Nf = 2+ 1 Polyakov–Quark-Meson model reads

Ω
(
σu, σd, σs,Φ, Φ̄; T, µf

)
= U (σu, σd, σs) + Ωvac

qq̄ (σu, σd, σs)+

+ U
(
Φ, Φ̄; T

)
+Ωth

qq̄

(
σu, σd, σs,Φ, Φ̄; T, µf

)
. (3.14)

It is a function of the order parameters for chiral symmetry in the light and strange
quark sector and deconfinement of quarks and antiquarks. Additionally, it depends on
the thermodynamic variables that are the temperature and the quark chemical potentials
of each quark flavour.

In equilibrium, the expected values for the order parameters at given temperature
and chemical potentials are those at the minimum of the effective potential. Therefore,
a necessary condition are vanishing derivatives of the effective potential with respect to
each order parameter,

∂Ω

∂σu
=
∂Ω

∂σd
=
∂Ω

∂σs
=
∂Ω

∂Φ
=
∂Ω

∂Φ̄
= 0 . (3.15)
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This set of coupled equations are taken as equations of motion of the PQM model.
Under which conditions that extremum which minimises the effective potential is indeed
a global minimum of the effective potential is analysed in Sec. 3.3. In general, those
solutions of the equations of motion are minima of the potential for which all eigenvalues
of the Hessian matrix

Hij =
∂2Ω

∂ψi∂ψj
with ψi ∈

{
σu, σd, σs,Φ, Φ̄

}
(3.16)

are positive.
The equations of motion (3.15) allow to analyse which values the order parameters

take in dependence of temperature and quark chemical potentials. This implies the
investigation of the phase structure of the PQM model. Furthermore, one can specifically
map out the transition between phases where chiral and centre symmetry are only broken
explicitly and those where spontaneous symmetry breaking occurs.

An order parameter for chiral symmetry that combines non-strange or light and
strange condensates is the so-called subtracted condensate

∆l,s =

σl − hl
hs
σs

∣∣∣
T,µf

σl − hl
hs
σs

∣∣∣
T=µf=0

. (3.17)

This quantity is better accessible in lattice simulations than the quark condensates
themselves and hence will be used in Chap. 4 for the comparison of the behaviour of
the chiral sector in the PQM model with lattice calculations.

The transition between the different phases is also reflected in thermodynamic quant-
ities. These depend on if the degrees of freedom are massive or massless or if they
are baryons and mesons or deconfined quarks and gluons. In difference to the order
parameters these are also experimental accessible quantities and can be compared as
well between different effective and non-perturbative descriptions of strongly-interacting
matter. The starting point for the determination of thermodynamic quantities is the
identification of the effective thermodynamical potential as the negative of the pressure

p = −Ω , (3.18)

where it is useful to remember from the definition of the effective potential (3.3) that
it is normalised by the volume and therefore, a density. From the Euler equation for
the energy follows the relation between all basic thermodynamic quantities that are the
pressure p, the energy density ϵ, the entropy density s and the quark flavour densities
nf ,

−p = Ω = ϵ− Ts−
∑
f

µf nf . (3.19)
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Since the effective potential is a grand canonical potential these are mean densities.
They can be derived from the effective potential by the Gibbs-Duhem relations

s = − ∂Ω

∂T

∣∣∣∣
µf=const

, nf = − ∂Ω

∂µf

∣∣∣∣
T=const

and ϵ = Ts+Ω+
∑
f

µfnf . (3.20)

The derivation of the effective potential (3.14) in the mean-field approximation implies
that only thermal fluctuations of quarks (3.12) contribute to thermodynamics but it does
not contain any thermal contribution of the mesons. To achieve a better description of
the thermodynamics in the phase where mesons are the dominant degrees of freedom,
the thermodynamics is augmented by the contribution of a gas of thermal mesons. The
contribution to the pressure of each meson species is

pϕi
=

1

(2π)3

∫ ∞

0
d3k

k2

3Eϕi

1

e(Eϕi
−µϕi

)/T − 1
with Eϕi

=
√
k2 +m2

ϕi
. (3.21)

The total contribution of the mesons to the pressure is accordingly pϕ =
∑

i pϕi
and

overall

p = −Ω+ pϕ . (3.22)

The meson masses that enter to the dispersion relations of the mesons in Eq. (3.21) are
medium dependent and are determined by the second derivatives of the thermodynam-
ical potential with respect to the (pseudo-)scalar fields as will be discussed below. The
medium dependence of the meson masses makes the pressure of the mesons pϕ strictly
speaking to a field-dependent correction to the thermodynamical potential that con-
tributes as well to the equations of motion, ∂Ω/∂ψi − ∂pϕ/∂ψi and the (pseudo-)scalar
masses themselves. In a lowest order approximation this correction is neglected, saying
that the dynamics of the system is governed by the grand canonical potential Ω alone
which determines the meson masses as well. An uncoupled meson gas with these meson
masses is then added to thermodynamics as in Eq. (3.22). All thermodynamic quantities
are derived from Eq. (3.22) ensuring the Gibbs-Duhem relation,

ϵ = Ts− p+
∑
Nf

µf nf , s =
∂p

∂T

∣∣∣∣
µf=const

and nf =
∂p

∂µf

∣∣∣∣
T=const

. (3.23)

All contributions stemming from ∂pϕ/∂ψi are neglected here consistently as well.

A remaining task is to determine the parameters of the model. The mesonic po-
tential U(σu, σd, σs) has seven parameters, that are the couplings m2, λ1, λ2, the U(1)
axial-vector symmetry breaking coefficient c and the explicit chiral symmetry breaking
terms hl, hs and h3. The quark contribution Ωqq̄

(
σu, σd, σs,Φ, Φ̄; T, µf

)
depends on the

Yukawa coupling strength g between quarks and mesons. Furthermore, the values of
the quark condensates σu, σd, σs in the vacuum have to be determined. Parameters of
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the Polyakov-loop potential U
(
Φ, Φ̄; T

)
are independent of the other contributions and

will be discussed together with the potential in Sec. 3.2.
The term that includes quantum fluctuations of the quarks above some UV scale Λ,
Ωvac
qq̄ (σu, σd, σs) seems to introduce additionally a dependence on this scale. But this

dependence cancels neatly with that of the parameters of the mesonic potential that
are adjusted to vacuum properties to which the vacuum quark-term contributes as well.
This is shown explicitly in the further discussion. Therefore, the PQM model is inde-
pendent of the regularisation scale and includes all quantum fluctuations of the quarks.
In an FRG calculation the Λ-independence can be directly computed from the flow
and follows from the invariance of the effective action at vanishing cutoff scale under a
variation of Λ, see the reviews [30–35,37,191–193].

The parameters of the mesonic potential can be adjusted to vacuum properties of
mesons. A starting point for the description of the vacuum in the PQM model are the
equations of motion (3.15). In the vacuum, i.e. T = µf = 0 only the mesonic potential
and the quark quantum-fluctuations contribute,

∂Ω

∂ψi

∣∣∣∣
T=µf=0

=
∂U

∂ψi
+
∂Ωvac

qq̄

∂ψi
. (3.24)

To implement isospin symmetry of the vacuum, i.e. σ3(T =µf =0) = 0, ∂Ω/∂σ3|T=µf=0 =

0 is the related equation. The contribution of the mesonic potential is given in Eq. (B.7)
and is
∂U

∂σ̄3
= m2 σ̄3 + λ1

(
σ̄2l + σ̄2s

)
σ̄3 +

3

2
λ2 σ̄

2
l σ̄3 +

2λ1 + λ2
2

σ̄33 +
c√
2
σ̄3σ̄s − h3 . (3.25)

In the standard mean-field model this is the only contribution and isospin symmetry
of the vacuum, i.e. σ3(T = µf = 0) = 0, implies h3 = 0. The derivatives of the quark
quantum-fluctuations contribution with respect to the (pseudo-)scalar fields are in gen-
eral

∂Ωvac
qq̄

∂φa
= − Nc

16π2

∑
f

m2
f m

2
f,a

[
4 ln

(mf

Λ

)
+ 1
]

with m2
f,a =

∂m2
f

∂φa
, (3.26)

with φa ∈ {σa, πa}. So the dependence on the meson fields enters via the dynamically
generated quark masses (2.52). In App. B are summarised the derivatives of the squared
quark masses with respect to the meson fields. The flipped sign inm2

d,3 compared tom2
u,3

is such that ∂Ωvac
qq̄ /∂σ3 = 0 for σ3 = 0 as well. So, the condition of isospin symmetry of

the vacuum implies no explicit isospin-symmetry breaking, h3 = 0 and the expectation
value of the chiral condensate σ3 vanishes in the vacuum so that the up and down quark
condensates σu and σd, take the same value in the vacuum.
The values of the light and strange quark condensates in the vacuum can be determined
by decay constants fa corresponding to pseudoscalar fields πa. They follow from the
partially conserved axial-vector current as [60]

fa = daab σ̄b , (3.27)
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and are given explicitly in App. B. The pion decay constant can be identified by the
three degenerate decay constants f1 = f2 = f3. For σ3 = 0, four more decay constants
take the same value, f4 = f5 = f6 = f7 so that they can be identified as the kaon decay
constant fK. For the values that the light and strange quark condensates take in the
vacuum this implies

σ̄l = σ̄u = σ̄d = fπ , (3.28)

σ̄s =
2fK − fπ√

2
. (3.29)

In the next step, the Yukawa coupling between quarks and (pseudo-)scalar mesons
can be fixed by choosing a constituent mass of the light quarks in the vacuum,

g =
ml

fπ
. (3.30)

The couplings of the mesonic potential and the axial-vector breaking coefficient can
be adjusted to the meson masses in the vacuum. The masses of the scalar and pseudo-
scalar mesons in the PQM model are the second derivatives of the potential with respect
to the (pseudo-)scalar fields.

m2
i,ab =

∂2Ω(σ̄, π̄)

∂φi,a∂φi,b
= m2

i,ba . (3.31)

In the vacuum, only the mesonic contribution and the contribution of the quark quantum-
fluctuations contribute to the meson masses. But in general, the meson masses are
medium dependent via the thermal quark fluctuations. The second derivatives of the
quark quantum-fluctuations contribution with respect to the (pseudo-)scalar fields are

∂2Ωvac
qq̄

∂φa∂φb
= − Nc

16π2

∑
f

{
m2

f,am
2
f,b

[
4 ln

(mf

Λ

)
+ 3
]
+m2

f,ab

[
4 ln

(mf

Λ

)
+ 1
]}

with m2
f,ab =

∂2m2
f

∂φa∂φb
, (3.32)

where besides the first order derivatives of the quark masses with respect to the meson
fields m2

f,a, also the second order derivatives m2
f,ab enter. These are also given in App. B.

Equations (2.42) and (2.43) give the contributions of the mesonic potential to the scalar
and pseudoscalar meson masses since they can be written as second derivatives of the
potential (2.44), e.g.

M2
s,ab =

∂2U (σ̄)

∂σ̄a∂σ̄b
= M2

s,ba . (3.33)

They are explicitly given in App. B.
It is important to notice that the contributions (2.42) and (2.43) of the mesonic po-
tential as well as the contributions of the quantum-fluctuations of quarks (3.32) to the
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meson masses have off-diagonal components. In the mass matrix defined by the second
derivatives of the potential as in Eq. (3.31), the 0 − 3 − 8 components mix and this
sector has to be diagonalised to obtain a mass matrix of the physical states, m̃2

i,00 0 0

0 m̃2
i,33 0

0 0 m̃2
i,88

 = RT

 m2
i,00 m2

i,03 m2
i,08

m2
i,03 m2

i,33 m2
i,38

m2
i,08 m2

i,38 m2
i,88

R . (3.34)

With the rotation matrix

R =

 cos θi 0 − sin θi
0 1 0

sin θi 0 cos θi


 cosφi − sinφi 0

sinφi cosφi 0

0 0 1

 =

=

 cos θi cosφi − cos θi sinφi − sin θi
sinφi cosφi 0

sin θi cosφi − sin θi sinφi cos θi

 (3.35)

the entries of the diagonalised matrix become

m̃2
i,00 =

(
m2

i,00 cos
2 θi +m2

i,88 sin
2 θi + 2m2

i,08 sin θi cos θi
)
cos2 φi +

+ m2
i,33 sin

2 φi + 2
(
m2

i,03 cos θi +m2
i,38 sin θi

)
sinφi cosφi , (3.36a)

m̃2
i,33 =

(
m2

i,00 cos
2 θi +m2

i,88 sin
2 θi + 2m2

i,08 sin θi cos θi
)
sin2 φi +

+ m2
i,33 cos

2 φi − 2
(
m2

i,03 cos θi +m2
i,38 sin θi

)
sinφi cosφi , (3.36b)

m2
i,88 = m2

i,00 sin
2 θi +m2

i,88 cos
2 θi − 2m2

i,08 sin θi cos θi (3.36c)

with the mixing angles

tan (2θi) =
2m2

i,08

m2
i,00 −m2

i,88

, (3.37a)

tan (2φi) =
2
(
m2

i,03 cos θi +m2
i,38 sin θi

)
m2

i,00 cos
2 θi −m2

i,33 +m2
i,88 sin

2 θi + 2m2
i,08 sin θi cos θi

. (3.37b)

Note that for isospin symmetry, i.e. σ̄3 = 0 as in the vacuum the above results simply
reduce to that of Refs. [60,66,190].
From the mass hierarchy and number of degenerated components, the mass eigenstates
can be associated with physical mesons as given in Table 3.1. Since the couplings and
the axial-vector symmetry breaking coefficient of the mesonic potential are adjusted to
the meson masses in the vacuum, where σ3 = 0, solving of selected meson masses for
these parameters is the same as in Refs. [60,66,190].

Finally, the coefficients of the chiral symmetry explicitly breaking terms remain to
be determined. This can be done by solving the equations of motion corresponding
to the light and strange quarks in the vacuum for them. Also this is analogous to
Refs. [60, 66,190] for a isospin-symmetric vacuum.
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Table 3.1.: Association between the mass eigenstates of the diagonalised matrix
∂2Ω/ (∂φi,a∂φi,b) and physical mesons.

m̃2
s,00 m2

s,11 = m2
s,22 m̃2

s,33 m2
s,44 = m2

s,55 m2
s,66 = m2

s,77 m̃2
s,88

m2
f0(500)

m2
a+0

= m2
a−0

m2
a00

m2
κ+ = m2

κ− m2
κ0 = m2

κ̄0 m2
f0(1370)

m̃2
p,00 m2

p,11 = m2
p,22 m̃2

p,33 m2
p,44 = m2

p,55 m2
p,66 = m2

p,77 m̃2
p,88

m2
η′ m2

π+ = m2
π− m2

π0 m2
K+ = m2

K− m2
K0 = m2

K̄0 m2
η

Table 3.2.: Values of decay constants of pseudoscalar mesons and meson masses in the
vacuum according to Ref. [147], to which the parameters of the mesonic
potential are adjusted, as well as the chosen value of the constituent quark
mass of the light (up and down) quarks that is used to fix the quark-meson
Yukawa coupling.

Constant fπ fK mπ mK mη mη′ mσ ml

Value [MeV] 92 110 138 495 548 958 400-600 300

The values of the pion and kaon decay constants and of meson masses in the vacuum to
which the parameters of the mesonic potential and the vacuum expectation values of the
quark condensates are adjusted are listed in Table 3.2. Note that in the determination
of the parameters only the sum of the squared masses of the η- and η′-mesons, m2

η+m
2
η′

enters.
The mass of the resonance f0 (500) is not exactly known. The most recent compila-

tion of the Particle Data Group [147] considers that it can vary between 400MeV and
550MeV. Usually, the resonance f0 (500) is considered as the chiral partner of the pion,
so as the σ-meson [147]. To keep the notation short this labelling is adopted in the
following and mσ = (400− 600)MeV is considered to be a reasonable parameter range.
Note however that in Ref. [194] it was demonstrated that within an extended quark-
meson model that includes vector and axial-vector meson fields, the resonance f0 (1370)
was identified as the non-strange scalar quarkonium state.

As canonical value for the constituent mass of light quarks ml = 300MeV is taken,
which results according to Eq. (2.53) in ms ≃ 417MeV for the constituent mass of
strange quarks.

To the thermal contribution of mesons to the thermodynamics in Eq. (3.21) enter the
meson masses (3.31) in the medium. To these do not only contribute the derivatives of
the mesonic potential (2.42) and (2.43) and the contribution of quantum fluctuations of
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quarks (3.32) but as well the derivatives of the potential of thermal quark fluctuations
(3.12) with respect to the meson fields. For the QM model these derivatives are given
in Ref. [66] but for the PQM model they are not yet available in the literature and are
derived in App. B.

Now, there all contributions at hand required for calculations with the PQM model
except of that ingredient that is improved in this work. This is the potential of the order
parameter for deconfinement, the Polyakov loop. How its general form can be deduced
by the considerations of centre symmetry given in Sec. 2.3.2 is explained in the next
section. There are serval forms of the potential that are widely used. The adjustment of
their parameters and the quality of their description of pure gauge theory is compared
and discussed. How the Polyakov-loop potential for the PQM model can be improved
by considering the effect of the backreaction of quarks onto the gauge fields is discussed
in Sec. 3.2.1.

Since the Polyakov loop and its conjugate are in general complex variables, the effect-
ive potential of the PQM model has an imaginary part as well. This is shown explicitly
in Sec. 3.3 and different ways to circumvent this ‘sign problem’ are discussed. To define a
potential which equilibrium states are minima of the effective potential is of importance
for the calculation of quasi-equilibrium properties in Chap. 5.

3.2. The Polyakov-loop Potential

First computations of the effective potential in gauge theories have been performed in the
80’s at asymptotically high temperatures using perturbation theory [173–175] and in the
strong coupling limit on a lattice [176]. In recent years, the non-perturbative Polyakov-
loop potential has been studied using various different approaches [36,37,82–84,172,177–
183]. First principle calculations of the potential are performed using different functional
methods, mainly the functional RG approach but as well Dyson-Schwinger equations
and the 2PI-approach [82–84, 172]. In Refs. [36, 37] the Polyakov-loop potential in two
flavour QCD in the chiral limit has been analysed. This computation includes the full
back-coupling of the matter sector on the propagators of the gauge degrees of freedom
via dynamical quark-gluon interactions [184–186].

A much simpler way to obtain an effective Polyakov-loop potential U
(
Φ, Φ̄;T

)
is to

construct a potential that respects all given symmetries and contains the spontaneous
breaking of Z(3) symmetry if the system is in the deconfined phase [176,187,188].

The simplest terms that lead to a real potential, respect centre symmetry and are
able to describe spontaneous symmetry breaking is a combination of terms of second
and forth order U ∼ p2ΦΦ̄+p4

(
ΦΦ̄
)2. The combination ΦΦ̄ is also invariant under U(1)

transformations. But the potential governing centre symmetry should not introduce any
additional symmetries. Therefore, the potential has also to contain terms that break
the global symmetry down from O(2) to Z(3). The simplest real term that is invariant
under Z(3) but breaks U(1) and is symmetric under charge conjugation is

(
Φ3 + Φ̄3

)
.
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The only scale to give the potential its correct dimension is the temperature1, U ∼ T 4.
The above mentioned terms form the minimal content of a Polyakov-loop potential and
the easiest ansatz is a polynomial [69,168]

Upoly

(
Φ, Φ̄, t

)
T 4

= p2(t)ΦΦ̄ + p3
(
Φ3 + Φ̄3

)
+ p4

(
ΦΦ̄
)2

. (3.38)

The coefficient of the forth order term has be positive so that the potential is bounded
from below for large Φ and Φ̄. The coefficient p2 has to be temperature dependent
to realise the transition to a phase where Z(3) symmetry is spontaneously broken.
For the later use, this temperature dependence is written here in terms of a reduced
temperature t = (T − Tc) /Tc where Tc = T0 is in this case the transition temperature
of the Polyakov-loop potential. A negative cubic term forces the nature of the transition
to be of first order that would be of second order otherwise.

The ansatz for the Polyakov-loop potential can be enhanced by including the term
that arrises if one integrates out the SU(3) group volume in the generating functional for
the Euclidean action. This integration can be performed via the so-called Haar measure
and takes the form of the Jacobian determinant J

(
Φ, Φ̄

)
. Its logarithm adds as an

effective potential to the action in the generating functional [197],∫
DA

∫
Dq̄
∫

Dq exp (−S)

∼
∫ ∏

j=1,2,4,5,6,7

dAj

∫
dA3

∫
dA8

∫
dq̄

∫
dq exp (−S)

=

∫
DA3

∫
DA8

∫
Dq̄
∫

Dq J (A3, A8) exp
(
−S′)

=

∫
DA3

∫
DA8

∫
Dq̄
∫

Dq exp
[
−S′ + ln J (A3, A8)

]
. (3.39)

The explicit computation of the SU(3) Haar measure that leads to the functional de-
pendence of J on Φ and Φ̄ results from integrating out the six non-diagonal Lie algebra
directions while keeping the two diagonal elements A3,8 that build up Φ. This function
already breaks the U (1) symmetry and with a positive coefficient the logarithm bounds
the potential from below for large Φ and Φ̄, so that one can drop the cubic and forth
order terms of the polynomial while the kinetic part ∼ ΦΦ̄ remains [68,71],

Ulog

(
Φ, Φ̄, t

)
T 4

= p2(t)ΦΦ̄ + l(t) ln
[
1− 6ΦΦ̄ + 4

(
Φ3 + Φ̄3

)
− 3

(
ΦΦ̄
)2]

. (3.40)

This potential is also qualitatively consistent with the leading order result of the strong
coupling expansion [198,199]. An additional feature of the logarithmic term is that the
potential diverges for Φ, Φ̄ → 1 thus limiting the Polyakov loop to be always smaller

1When the Polyakov loop is coupled to quarks in the PQM model, the quark chemical potentials
µf can be adopted as another scale to set the dimension of the potential [195, 196]. But then the
Polyakov loop would contribute to the quark densities, ∂ U/∂µf ̸= 0.
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than one, reaching this value only asymptotically as T → ∞. This is consistent with
the domain of the Polyakov loop found by its relation to the free energy of a static
quark-antiquark pair in Sec. 2.3.2.

Reference [81] went beyond a minimal content for the Polyakov-loop potential and
kept the higher order terms of the polynomial parametrisation of the Polyakov-loop
potential and added the logarithmic term to consider the group volume additionally,

Upolylog

(
Φ, Φ̄, t

)
T 4

= p2(t)ΦΦ̄ + p3(t)
(
Φ3 + Φ̄3

)
+ p4(t)

(
ΦΦ̄
)2

+

+ l(t) ln
[
1− 6ΦΦ̄ + 4

(
Φ3 + Φ̄3

)
− 3

(
ΦΦ̄
)2]

. (3.41)

Furthermore, they consider all coefficients as temperature depend.

In Refs. [69,71,80] the temperature dependence of the coefficients c of the polynomial
and logarithmic parametrisations is parametrised as a polynomial

c (t) =
∑
n

Cn

(1 + t)n
, (3.42)

where t = (T − Tc) /Tc defines a reduced temperature and Tc = T0 is in this case the
transition temperature of the Polyakov-loop potential.
The coefficients of the polynomial-logarithmic parametrisation were defined in Ref. [81]
in a more complex way,

pi (t) =

[
P

(i)
0 +

P
(i)
1

1 + t
+

P
(i)
2

(1 + t)2

]/[
1 +

P
(i)
3

1 + t
+

P
(i)
4

(1 + t)2

]
(3.43)

and

l(t) =
L0

(1 + t)L1

[
1− eL2/(1+t)L3

]
. (3.44)

The number of independent parameters of the different parametrisations can be re-
duced by imposing some general constraints. One condition is that the Polyakov-loop
variables approach unity for large temperatures. A necessary condition for the expect-
ation values of the Polyakov loops is ∂U/∂Φ = ∂U/∂Φ̄ = 0. This leads to the following
constraints on the parameters:

Upoly : P0 + 3p3 + 2p4 = 0 , (3.45a)

Ulog : L0 = 0 , (3.45b)

Upolylog : P
(2)
0 + 3P

(3)
0 + 2P

(4)
0 = 0 . (3.45c)

To fix further parameters one applies and restricts the Polyakov-loop potential to pure
gauge (Yang-Mills) theory. The non-presence of dynamical quarks restricts the Polyakov-
loop variable to be real, Φ = Φ̄ as will be explained in Sec. 3.3. Then the expectation

41



Chapter 3. The Polyakov–Quark-Meson Model

value of the Polyakov loop is a root of

∂Upoly

T 4∂Φ
= 2p2(t)Φ + 6p3Φ

2 + 4p4Φ
3 , (3.46a)

∂Ulog

T 4∂Φ
= 2p2(t)Φ + l(t)

−12Φ + 24Φ2 − 12Φ3

1− 6Φ2 + 8Φ3 − 3Φ4
, (3.46b)

∂Upolylog

T 4∂Φ
= 2p2(t)Φ + 6p3(t)Φ

2 + 4p4(t)Φ
3 + l(t)

−12Φ + 24Φ2 − 12Φ3

1− 6Φ2 + 8Φ3 − 3Φ4
. (3.46c)

and thus it is given by

Φmin = 0
∨ Φpoly

min =
−3p3±

√
9p32−8p2(t)p4
4p4

Φlog
min =

p2(t)±
√

4 p22(t)−18 p2(t)l(t)

3p2(t)

(3.47a)

At the transition scale of the Polyakov-loop potential T0 a first order phase transition
is required. This implies U (Φ = 0, t = 0) = 0 = U (Φmin ̸= 0, t = 0) and results in the
following condition:

Upoly : (P0 + 2 p4)
2 − 9 p4

∑
n

Pn = 0 , (3.48a)

Ulog :
∑
n

Ln = 0.216
∑
n

Pn , (3.48b)

If a reliable prediction of the value of the Polyakov-loop at the phase transition would
be available it would further constrain the parameters,

Φpoly
t=0 =

P0 + 2p4 +
√

(P0 + 2p4)
2 − 8 p4

∑
n Pn

4p4
, (3.49a)

Φlog
t=0 =

∑
n Pn −

√
4 (
∑

n Pn)
2 − 18

∑
n Pn

∑
m Lm

3
∑

n Pn
, (3.49b)

Furthermore, a gas of quarks and gluons should approach the Stefan-Boltzmann limit
as T → ∞. The pressure of Nc − 1 non-interacting, massless gluons is

pSB/T
4 =

(
N2

c − 1
)
π2/45 . (3.50)

Since p = −U this implies in turn for the parameters of the parametrisations

Upoly : P0 − p4 = −8π2

15
, (3.51a)

Ulog : P0 = −8π2

45
, (3.51b)

Upolylog : P
(2)
0 + 2P

(3)
0 + P

(4)
0 = −8π2

45
. (3.51c)
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Table 3.3.: Parameters of the different parametrisations of the Polyakov-loop poten-
tial for fits to the lattice Yang-Mills simulations [200,201] and [202,203].

P0 P1 P2 P3 p3 p4
Poly-BNL [80] -0.765 -0.48 1.15 1.425 -2.223 3.72
Poly-TUM [69] -3.375 0.975 -1.3125 3.72 -0.125 1.875

P0 P1 P2 L3

Log [71] -1.755 1.235 -7.6 -1.75

Poly-Log [81] P
(2)
0 P

(2)
1 P

(2)
2 P

(2)
3 P

(2)
4

22.07 -75.7 45.03385 2.77173 3.56403
P

(3)
0 P

(3)
1 P

(3)
2 P

(3)
3 P

(3)
4

-25.39805 57.019 -44.7298 3.08718 6.72812
P

(4)
0 P

(4)
1 P

(4)
2 P

(4)
3 P

(4)
4

27.0885 -56.0859 71.2225 2.9715 6.61433
L0 L1 L2 L3

-0.32665 -82.9823 3.0 5.85559

The remaining open parameters are determined in Refs. [69,71,80,81] by fitting both
the lattice data for pressure, entropy density and energy density and the evolution of
the Polyakov loop ⟨Φ⟩ on the lattice in pure gauge theory. Reference [81] adjusted their
parameters in addition to lattice data of the longitudinal and transverse Polyakov-loop
susceptibilities.
The different parameter sets are summarised in Table 3.3. Reference [81] uses with not
less than 19 parameters a huge parameter set compared to the other parametrisations
to adjust the potential to the results of Yang-Mills theory. Note that in Ref. [80]
the polynomial of p2 contains all summands up to n = 6. To harmonise it with the
parametrisation of Ref. [69] the parameter P3 is adjusted in Ref. [1] to account for the
higher order coefficients.

The results for the above discussed quantities that characterise the Polyakov-loop po-
tential are given in Table 3.4. Some differences become apparent. First, the polynomial
potential with the parameters of Ref. [80] converges only towards ∼ 85% of the Stefan-
Boltzmann limit and the polynomial-logarithmic parametrisation reaches only ∼ 93%

of this high temperature expectation. Second, for the polynomial potential with the
parameters of Ref. [69] the Polyakov-loop expectation value at the phase transition is
a order of magnitude smaller than for the other parametrisations. The most accurate
result for this number is Φt=0 = 0.354± 0.008 [81] calculated on a 643 × 8 lattice and is
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Chapter 3. The Polyakov–Quark-Meson Model

Table 3.4.: Numbers characterising the Polyakov-loop potential. It should be
ΦT→∞ = 1, (U/pSB)T→∞ = 1 and U (Φt=0) = 0.

Φt=0 U/T 4 (Φt=0) ΦT→∞ (U/pSB)T→∞

Poly-BNL 0.599 5.66× 10−4 0.9993 0.852
Poly-TUM 0.072 −4.05× 10−6 1.0 0.997
Log 0.449 −8.84× 10−4 1.0 1.0
Poly-Log 0.348 −1.18× 10−4 1.0 0.933

of the order like in the other parametrisations of the Polyakov-loop potential.

The Polyakov-loop potentials for the different parametrisations and parameter sets2

are compared in Fig. 3.1. They are displayed for different relative temperatures and are
compared to the FRG glue potential where these data are available. At temperatures
below the transition temperature all potentials have a global minimum at Φ = 0 but the
form and slope of the potential varies considerably between the different parametrisa-
tions at non-zero values of the Polyakov loop. But this is the region of the potential that
is probed when the Polyakov loop is coupled to dynamical quarks, so in the Polyakov–
Quark-Meson model. Hence, one has to expect different results for the Polyakov-loop
expectation value and contribution of the Polyakov-loop potential in the fully coupled
theory. This dependence of the results of the Polyakov–Quark-Meson model on the
parametrisation of the Polyakov-loop potential will be analysed in Sec. 4.1.4.

In the confined phase all potentials are characterised by the identical minimum
(Φ,U(Φ)) = (0, 0). The minimum of the deconfined phase at a non-zero value of Φ

does not show this uniqueness between the different parametrisations. The value of the
Polyakov loop at which it becomes the global minimum close to T03 differs significantly
between the different parametrisations as quantified in Table 3.4.
But Fig. 3.1 shows another important difference between the different parametrisations.
The barrier between the two minima at the transition temperature differs significantly
in its width and height between the different parametrisations. This affects nucleation
in Yang-Mills theory and in Sec. 5.4.2 will be discussed how one can account partially for
the impact of these different barriers on nucleation within the Polyakov–Quark-Meson
model and how they influence the result of the surface tension.
Finally, at temperatures above the transition temperature not only the location of the
absolute minimum differs between the different parametrisations but also the depths of

2In the following the notion ‘different parametrisations’ will include the different parameters sets of
the polynomial parametrisation.

3Unfortunately, not all parametrisations are tuned such that their critical temperature agrees exactly
with the parameter T0.
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Figure 3.1.: Different parametrisations of the Polyakov-loop potential compared to
the FRG glue potential at different temperatures: t = −0.4 (top left),
t = −0.25 (top right), t = −0.05 (centre left), t = 0 (centre right),
t = 0.05 (bottom). Note that the abscissae of the parametrisations is
the expectation value of the Polyakov loop ⟨Φ [A0]⟩ while that of the
FRG glue potential is Φ [⟨A0⟩] with Φ [⟨A0⟩] ≥ ⟨Φ [A0]⟩. See Sec. 2.3.2
for details.
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Figure 3.2.: Polyakov loop as a function of the temperature in pure-gauge theory for
the different parametrisations of the Polyakov-loop potential, compared
to corresponding lattice results taken from Refs. [81, 200].

the potentials. This has an effect on the thermodynamics that is quantified in Figs. 3.3
and 3.4 for pure gauge theory.

But to begin with, Fig. 3.2 shows the Polyakov loop as a function of the temperature
in pure SU (3) Yang-Mills theory or, equivalently the location of the global minimum of
the Polyakov-loop potential. The data points are results for the renormalised Polyakov
loop in lattice simulations of Yang-Mills theory. Those of Ref. [200] have been obtained
with a spatial lattice extent of 32 and temporal size of 4 and 8 and Ref. [81] used a
643 × 8 lattice.
The confined phase is characterised by centre symmetry and, therefore the Polyakov loop
vanishes for all parametrisations below the transition temperature.4 The temperature
dependence of the Polyakov loop differs between the different parametrisations above
the transition temperature. The logarithmic and polynomial-logarithmic parametrisa-
tions only deviate slightly from each other for Φ ≲ 0.7 and follow closely the lattice
data up to Φ ≲ 0.9. At larger temperature the lattice data rise more rapidly and exceed
unity while the parametrisations that include the Haar measure are restricted to Φ < 1.

4This is not the case for the lattice data due to the finite volume of the lattice. A finite volume prohibits
a first order phase transition and at fixed temporal lattice extent the renormalised Polyakov loop in
the confined phase shows a 1/

√
V volume dependence, see e.g. Ref. [81].
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The polynomial parametrisation of Ref. [69] undershoots the lattice data for Φ ≲ 0.6,
exceeds them for 0.6 ≲ Φ ≲ 0.9 and shows a shallow evolution for larger temperatures
falling below the logarithmic and polynomial-logarithmic parametrisations for t ≳ 2.
The polynomial parametrisation of Ref. [80] shows the largest deviation of the Polyakov
loop from the lattice data. The deconfined phase starts with the largest value for the
Polyakov loop of all parametrisations. It rises fast towards unity and therefore, exceeds
the other parametrisations for all temperatures and is the closest to the lattice data at
t ≈ 2.
The right part of Fig. 3.2 shows a zoom into the transition region. Here, the different
starting values of the Polyakov loop in the deconfined phase for the different paramet-
risations are easy to identify. The polynomial-logarithmic and logarithmic paramet-
risations start with Φ ≈ 0.35 and Φ ≈ 0.45, respectively and are the closest to the
starting values of the lattice data they are fitted to: (t,Φ) = (0, 0.354± 0.008), [81],
(t,Φ) = (0.01, 0.420± 0.003), [200]. The value of the Polyakov loop where the decon-
fined phase becomes the dominant minimum of the polynomial potential of Ref. [80] is
of the same order as these lattice data but exceeds them: Φ ≈ 0.60. The other extreme
is the polynomial parametrisation of Ref. [69]. This potential features a comparatively
week first order phase transition to a value for Φ of ∼0.07. Hence, even with the same
height of the barrier between the two coexisting minima at the transition as the other
parametrisations the probability to tunnel from one minimum to the other is signific-
antly larger for the polynomial potential of Ref. [69]. How this affects nucleation within
the Polyakov–Quark-Meson model will be quantified in Sec. 5.4.2.
The dotted lines in the right part of Fig. 3.2 show the extent of the metastable region
where a local minimum coexists. Also this quantity varies considerably between the
different parametrisations of the Polyakov-loop potential. The parameterisations that
show the broader and taller barrier between the two minima at the transition have
also a larger extent of the metastable region. Hence, the polynomial parametrisation of
Ref. [69] has a negligible metastable region (−1×10−4 ≲ t ≲ 9×10−4). The one of the
polynomial-logarithmic parametrisation (−0.008 ≲ t ≲ 0.062) is significantly smaller
than the one of the logarithmic parametrisation (−0.02 ≲ t ≲ 0.21) since the barrier of
the polynomial-logarithmic parametrisation is much shorter at a similar width as the
one of the logarithmic parametrisation. The metastable region of the polynomial poten-
tial of Ref. [80] extends from t ≈ −0.03 to t ≈ 0.40. In general, the metastable region
has an asymmetric extent. The minimum at Φ = 0 persists in a larger temperature
range above the transition than the metastable minimum of the deconfined phase below
the transition temperature. This asymmetry is also suggested in the FRG result of the
glue potential in Fig. 3.1.

While Fig. 3.2 reveals the temperature dependence of the location of the minimum of
the Polyakov loop potential, Fig. 3.3 shows the depths of the global minimum (p = −U)
as a function of the temperature. At Φ = 0 the pressure of the Polyakov-loop poten-
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Figure 3.3.: Scaled pressure as a function of the reduced temperature in the pure-
gauge sector for the different parametrisations of the Polyakov-loop po-
tential, compared to corresponding lattice results taken from Ref. [203].

tial vanishes. The continuum extrapolated lattice results of Ref. [203]5 show a slight
increase of the pressure already below the transition temperature up to ∼ 1.3% of the
Stefan-Boltzmann limit. This can be attributed to the thermal excitation of glueballs
and is reproduced in Ref. [203] within a glueball resonance model including a Hagedorn
spectrum. These are additional ingredients of the gauge sector that are not governed
by centre symmetry. The confinement of gluons into glueballs can be associated with
the breaking of scale symmetry in the confined phase [204–206]. In an extension of
the present work a potential for the dilaton field that is the order parameter for scale
symmetry can be added to the Polyakov-loop potential to include also this property of
the gauge sector.6

For the evolution of the pressure of the different parametrisations relative to the lat-
tice data qualitatively similar conclusions hold as for the temperature dependence of the
Polyakov loop. In the deconfined phase the minimum of the polynomial parametrisation
of Ref. [69] is considerably less deep than the lattice data suggest. It reaches the lattice
result at ∼68% of the Stefan-Boltzmann limit and exceeds the data from there on. The
polynomial potential of parametrisation [80] has the largest slope of the temperature

5The continuum limit can be achieved by performing an 1/Nt → 0 extrapolation on the data at a set
of fixed physical temperatures.

6This implies that the parameters of the Polyakov-loop potential have to be readjusted such that both
potentials together reproduce the thermodynamics of lattice Yang-Mills theory.
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Figure 3.4.: Scaled trace anomaly as a function of the reduced temperature in the
pure-gauge sector for the different parametrisations and parameter sets
of Table 3.3, compared to corresponding lattice results taken from
Ref. [203].

dependence of the pressure for 0 < t ≲ 0.6 in comparison to those potentials that con-
sider the Haar measure. It only deviates slightly from the lattice data up to ∼50% of
the Stefan-Boltzmann pressure before exceeding them more visibly and showing a shal-
low evolution at even larger temperatures. The depth of the polynomial-logarithmic
potential at its minimum is very precisely adjusted to the lattice Yang-Mills pressure
of Ref. [203] over the whole temperature range. While it slightly underestimates the
pressure for p ≲ 0.5 pSB, the logarithmic potential is the closest to the lattice data in
this range above the transition temperature.
For the sake of completeness, the upper part of Fig. 3.3 shows the high temperature
convergence of the pressure. While this tests the description of pure gauge theory by
the Polyakov-loop potentials their behaviour in this temperature range is not relevant
for predictions on the QCD phase transition at a much lower scale. The polynomial-
logarithmic potential reaches ∼ 92% of the Stefan-Boltzmann pressure at tYM = 10

and coincides with the lattice data in this temperature regime. The result of the log-
arithmic potential and the polynomial parametrisation of Ref. [69] exceeds them and
they converge towards 0.95 pSB in the shown region. The polynomial parametrisation
of Ref. [80] fails to describe the high temperature convergence of the depth of the gauge
potential. Instead of converging towards the Stefan-Boltzmann limit its pressure reaches
a maximum of ∼0.87 pSB at tYM ≈ 6.2 and slightly decreases from there on.
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While the pressure of a theory probes the depths of the minimum of a potential, the
entropy density s = −∂Ω/∂T tests its temperature dependence. For the evolution of
the entropy and energy density (ϵ = Ts − p) with temperature qualitatively the same
conclusions hold as for the discussion of the pressure. To avoid a tedious discussion the
comparison of the entropy and energy density of the different parametrisations of the
Polyakov-loop potential and its comparison to lattice data is transferred to App. B.

Here, the discussion proceeds with the combined quantity ϵ − 3p. If this is nonzero
it deviates from the trace of the energy momentum tensor of an ideal gas for which
reason this quantity is also called trace anomaly or interaction measure. Figure 3.4
shows the result of the dimensionless trace anomaly as a function of the temperature
for the different parametrisations of centre symmetry breaking. Here, the conclusions
drawn from the evolution of the pressure about the minimum of the different potentials
appear even clearer. The development of the centre symmetry breaking minimum in the
polynomial potential of Ref. [69] lags behind the lattice data and the other potentials
what leads to an offset of the maximum of the interaction measure towards larger tem-
peratures. Only at temperatures more than two times larger than the transition scale
of the Polyakov-loop potential this potential approaches the trace anomaly of lattice
gauge theory. The other potentials scatter close around the lattice data. Those poten-
tials that include the Haar measure are the closest to the data points. The maximum
of the trace anomaly of the polynomial potential [80] overshoots the lattice data by
∼ 6% and the polynomial-logarithmic potential shows a slight offset of the maximum
towards larger temperatures. None of the parametrisations reproduces the temperature
dependence of the depth of the potential at the transition temperature on the lattice(
t, (ϵ− 3p)/T 4

)
= (0, 1.0008± 0.0672). The polynomial potential of Ref. [69] clearly

underestimates it (0.0423), while the polynomial parametrisation of Ref. [80] (2.1785),
the logarithmic potential (2.0885) and the polynomial logarithmic potential (1.4519)
overshoot it.

To summarise this discussion one can conclude that the polynomial parametrisation
of the Polyakov-loop potential with the parameter set of Ref. [69] is the least suited
to reproduce with its location, depth and temperature dependence of the depth of its
minimum the lattice data of the Polyakov loop and the thermodynamics of pure gauge
theory. Using instead the parameter set of Ref. [80] only the Polyakov loop is too much
off compared to the lattice data but the thermodynamics is reasonable for temperatures
up to t ∼ 6. Only the parametrisations of the Polyakov-loop potential that respect the
Haar measure lead to a satisfying agreement of all above discussed observables with
the results of lattice simulations.7 How these different potentials adjusted more or less
precisely to the deconfined phase of Yang-Mills theory prove their value in the Polyakov–
Quark-Meson Model to describe the QCD phase transition will be analysed in Chaps. 4

7Reference [81] showed that the logarithmic potential can’t reproduce their lattice result for the
curvature δ2U/δΦ2 above the transition temperature and they fitted the parameters of the
polynomial-logarithmic parametrisation to reproduce also these data.
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Table 3.5.: Transition scale of the Polyakov-loop potential T0 in the presence of Nf

massless quark flavours and in the physical case with massive strange
quarks with a current strange quark mass of 95 MeV [147], according to
Eq. (3.53).

Nf 0 1 2 3 2 + 1

T0 [MeV] 270 239 208 178 182

and 5.

The construction of the Polyakov-loop potential U and the fitting of its parameters
entails that it models the pure gauge potential UYM (tYM) /T 4. The transition scale of
the Polyakov-loop potential entering the reduced temperature is accordingly the critical
temperature of pure gauge theory, TYM

0 = 270MeV. However, in full dynamical QCD,
one important effect of fermionic matter fields is to change the scale ΛQCD to which
the transition temperature of the Polyakov-loop potential is linked to. To consider this
aspect of the backreaction of quarks to the gauge sector, Ref. [72] estimated the running
coupling of QCD by consistency with hard thermal loop perturbation theory calculations
[185,207] and they mapped the effect to an Nf -dependent modification of the expansion
coefficients of the Polyakov-loop potential. Their result of the Nf -dependent decrease of
T0 is given in Table 3.5. This accounts partially for the unquenching of the pure gauge
Polyakov-loop potential to an effective glue potential in QCD.
Besides the flavour dependency of the transition scale of the glue sector, one can consider
its dependence on the quark density. Such a dependency has to be expected in view
of a µq-dependent colour screening effect due to quarks. In Ref. [72] a µq-dependent
small correction to the running coupling was motivated by using HTL/HDL theory and
by comparison to the one found in FRG calculations [36]. The description presented in
Refs. [72,78] can be generalised to allow for different chemical potentials for each quark
flavour,

T0 (µf ) = mτe
−1/(α0b(µf)) with b (µf ) = b̄ (Nf )− bµ

∑
Nf

µ2f
m2

τ

T̃ 2
0

T̃ 2
0 +m2

f

(3.52)

and bµ ≃ 16/π. The parameter b̄ can account for the dependence on the number of
quark flavours. For the results presented in Table 3.5 the following Nf dependence was
chosen

b̄ (Nf ) =
1

6π

11Nc − 2
∑
Nf

T̃ 2
0

T̃ 2
0 +m2

f

 . (3.53)

The pure gauge limit (Nf = 0) allows to fix the running coupling at a UV-scale of
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Figure 3.5.: Comparison of the SU(3) Yang-Mills [82–84] and glue effective poten-
tials [36, 37] as functions of the background gauge field A0 = ⟨A3

0⟩ (left,
from Ref. [2]) and of the related order parameter Φ[⟨A0⟩] (right) for
several reduced temperatures. The form of the potentials is very sim-
ilar, however, the temperature scale changes. Only the glue part of the
full effective potential is shown here and compared to the Yang-Mills
potential.

mτ ≃ 1.777 GeV to α0 ≃ 0.303. The impact of massive quarks is suppressed by their
current quark mass mf relative to the critical temperature of one massless flavour T̃0 .

3.2.1. The Polyakov-loop Potential with Functional Methods in Pure
Gauge Theory and Full QCD

So far, the Polyakov-loop potential is an approximation to the Yang-Mills glue poten-
tial. However, in Polyakov-loop extended models for (full) QCD, this Polyakov-loop
potential has to be replaced by the QCD glue potential effectively generated by pure
gluodynamics. It is therefore beneficial to amend the pure gauge Polyakov-loop poten-
tial by utilising available information on the potential stemming from the gauge degrees
of freedom in the presence of dynamical quarks. Using the functional renormalisation
group (FRG) approach outlined in App. A, Refs. [82–84] calculated the non-perturbative
Polyakov-loop potential of pure gauge theory and Refs. [36,37] the QCD analogue taking
into account the backreaction of the quark degrees of freedom on the gluon propagators.
Figure 3.5 compares the effective potential of SU(3) Yang-Mills theory as obtained in
Refs. [82–84] with the Polyakov-loop potential of the glue sector [36, 37]8. The latter
includes also the quark part of the gluonic vacuum polarisation but does not include the
fermionic part of the full QCD potential. The respective reduced temperature scales of

8In these references they considered the Polyakov-loop potential which has been computed by con-
sidering two quark flavours with vanishing current masses. The strange quark has been ignored.
Corrections resulting from the inclusion of a strange quark are expected to be subleading in these
studies [2].
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both potentials are

tglue =
T − T glue

cr

T glue
cr

and tYM =
T − TYM

cr

TYM
cr

. (3.54)

The order parameters ⟨A0⟩ and Φ[⟨A0⟩] show a first-order phase transition for both, the
glue potential and the Yang-Mills potential. One sees in Fig. 3.5 a shift between both
potentials for a given nonzero reduced temperature or in other words, the temperature
scale of the various Yang-Mills potentials and the glue potentials differ. These differences
are induced by the matter fluctuations altering the propagators of the gauge fields. One
observes furthermore that although the temperature scales are different, the shape of
the order-parameter potentials is not. This observation can be exploited to estimate
how the temperature of a given pure gauge Polyakov-loop potential has to be modified
to be closer to the unquenched glue potential. For a quantitative comparison of the
potentials one needs to define a measure,∫ 2π/β

0
dA0 |UYM (A0)− Uglue (A0)|2 . (3.55)

The comparison of the potentials then yields the translation of the two temperature
scales: given a reduced QCD temperature tglue, the related Yang-Mills temperature tYM

is that which minimises Eq. (3.55). This leads to

tYM(tglue) ≈ 0.57 tglue . (3.56)

This relation between pure gauge and unquenched glue potential is displayed in Fig. 3.6.
Strictly speaking, this approximation holds only for small and moderate temperatures,
as at high scales the slope of Eq. (3.56) saturates, where one reaches the perturbative
limit and the potentials reach their asymptotic form. In fact, one should expect that
the results for the reduced temperatures agree at (very) high temperatures where the
quark degrees of freedom are parametrically suppressed. The relation (3.56) serves
together with the absolute temperature scales T glue

cr and TYM
cr in the definition of the

reduced temperatures (3.54) as an important input for Polyakov-loop model studies. In
Refs. [82–84] they got TYM

cr = 276MeV which is in quantitative agreement with the
results from lattice studies TYM

0 = 270MeV. In Refs. [36,37] where they considered two
quark flavours with vanishing current masses they obtained T glue

cr = 203MeV. Note that
this is not the critical temperature obtained from the full effective potential including
pure quark loops but only from the contribution stemming from the glue part of the
potential for two massless quark flavours. But in Ref. [36] the absolute temperature
scale was not computed in a chiral extrapolation with physical quark masses. Hence,
throughout this work the glue critical temperature will be considered as a free parameter
in the range

180MeV ≲ T glue
cr ≲ 270MeV . (3.57)

The upper limit is the critical temperature of Yang-Mills theory and the lower limit is
the estimate of Ref. [72] given in Table 3.5. For the chemical potential dependence of
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From Ref. [2].

T glue
cr the estimation (3.52) of Ref. [72] can be applied.

To summarise this section, one can conclude that the thitherto use of the model
potentials U incorporates several approximations and deficiencies. Firstly, a Yang-Mills
potential is used instead of the glue potential. Secondly, it only models the Polyakov-
loop potential in Yang-Mills theory by using the location of its absolute minimum and
the value at the minimum. Below T0 this basically provides no information about the
potential. Thirdly, the potential has to be known as a function of Φ[⟨A0⟩] as the coupling
to the matter sector is described in this variable as will be discussed in Sec. ??. Strictly
speaking, Φ [⟨A0⟩] ≈ ⟨Φ⟩ is only valid in the Gaußian approximation but in general it is
Φ[⟨A0⟩] ≥ ⟨Φ⟩ up to renormalisation issues [82,172]. In this work the first approximation
is resolved by using the relation between pure gauge and glue effective potential (3.56).
This allows to convert the Yang-Mills potential for the Polyakov loop to a glue potential
of full QCD,

Uglue

T 4

(
Φ, Φ̄, tglue

)
=

UYM

T 4
YM

(
Φ, Φ̄, tYM(tglue)

)
, (3.58)

with tYM(tglue) in Eq. (3.56). The absolute temperature scale is then determined by the
value of the transition temperature (3.57). The resolution of the other two approxima-
tions remains for the future.
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3.3. The Sign Problem in the Polyakov–Quark-Meson
Model

Given the temperature T and the quark chemical potentials µf , the effective potential
(3.14) is then given as a function of the order parameters of the model. In thermal equi-
librium, the field configurations that contribute the most to the partition function are
those that minimise the in-medium effective potential (or the in-medium effective action,
for non-homogeneous systems). All other extrema of the effective action are exponen-
tially suppressed and give negligible contributions to the equilibrium thermodynamics
of the system. Only with equilibrium states described by minima of the effective po-
tential one can calculate quasi-equilibrium properties of the system, such as the surface
tension and nucleation rate in a first-order phase transition, as will bee done in Chap. 5.
The calculation of these properties explicitly demands not only the localisation of the
minima of the effective potential, but also the precise form of the potential between
them.

The one-loop effective potential of the PQM model at finite temperature and quark
chemical potential, as defined in Eq. (3.14), is in general a complex function of complex
variables. Therefore, it can have no minima and, as it stands, it cannot provide a
standard description for a thermodynamical system in equilibrium. Finally, it only
makes sense to identify the extrema of a function with maxima, minima and saddle-
points if it is a real function of real variables. In order to make this statement clearer,
it is helpful to identify the real and imaginary parts of the effective potential at finite
T and µf . Thus, one must write down the effective potential in terms of these real
variables only. To this end one can start with a change of variables in the potential by
introducing the real and imaginary parts of the Polyakov-loop variables as

Φr ≡
Φ+ Φ̄

2
and Φi ≡

Φ− Φ̄

2i
. (3.59)

The parametrisations of the Polyakov-loop potential (3.38), (3.40) and (3.41) can be
rewritten as functions of the real variables Φr and Φi as

Upoly (Φr,Φi, t)

T 4
= p2(t)

(
Φ2
r +Φ2

i

)
+ 2p3

(
Φ3
r − 3ΦrΦ

2
i

)
+ p4

(
Φ2
r +Φ2

i

)2
, (3.60a)

Ulog (Φr,Φi, t)

T 4
= p2(t)

(
Φ2
r +Φ2

i

)
+

+ l(t) ln
[
1− 6

(
Φ2
r +Φ2

i

)
+ 8

(
Φ3
r − 3ΦrΦ

2
i

)
− 3

(
Φ2
r +Φ2

i

)2]
, (3.60b)

Upolylog (Φr,Φi, t)

T 4
= p2(t)

(
Φ2
r +Φ2

i

)
+ 2p3(t)

(
Φ2
r − 3ΦrΦ

2
i

)
+ p4(t)

(
Φ2
r +Φ2

i

)2
+

+ l(t) ln
[
1− 6

(
Φ2
r +Φ2

i

)
+ 8

(
Φ3
r − 3ΦrΦ

2
i

)
− 3

(
Φ2
r +Φ2

i

)2]
. (3.60c)
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Let us now turn to the contribution from the quarks at finite temperature and chemical
potentials. Once Φ and Φ̄ are complex-valued variables, the potential (3.12) can take
complex values. To make this statement explicit Ωth

qq̄ can be rewritten as a function of
real variables. Dropping the flavour indices to keep the notation simpler, one can define

z+ ≡ 1 + 3
(
Φ+ Φ̄e−(E−µ)/T

)
e−(E−µ)/T + e−3(E−µ)/T , (3.61)

and

z− ≡ 1 + 3
(
Φ̄ + Φe−(E+µ)/T

)
e−(E+µ)/T + e−3(E+µ)/T , (3.62)

such that Eq. (3.12) can now be written as

Ωth
qq̄ = −2T

∑
f=u,d,s

∫
d3k

(2π)3
ln (z+z−) . (3.63)

After using Eq. (3.59) and performing some straightforward manipulations, one can see
that the argument of the logarithm in Eq. (3.63) is complex, that is,

z+z− = R+ iI, (3.64)

where

R ≡ 1 + e−3(E−µ)/T + e−3(E+µ)/T + e−6E/T +

+ 6Φr e
−E/T

[
cosh

(µ
T

)
+ e−E/T cosh

(
2µ

T

)]
+

+ 6Φr e
−4E/T

[
cosh

(
2µ

T

)
+ e−E/T cosh

(µ
T

)]
+

+ 9
(
Φ2
r +Φ2

i

) (
1 + e−2E/T

)
e−2E/T + 18

(
Φ2
r − Φ2

i

)
e−3E/T cosh

(µ
T

)
(3.65)

and

I ≡ 6Φi e
−E/T

[
sinh

(µ
T

)
− e−E/T sinh

(
2µ

T

)]
+

+ 6Φi e
−4E/T

[
e−E/T sinh

(µ
T

)
− sinh

(
2µ

T

)]
−

− 36ΦrΦi sinh
(µ
T

)
e−3E/T . (3.66)

The complex argument of the logarithm can be written in polar form, R + i I = ρeiθ,
with

ρ ≡
√
R2 + I2 and θ ≡ arctan (I/R) , (3.67)

so that the potential can be cast in a manifestly complex form,

Ωth
qq̄ = ΩR

qq̄ + iΩI
qq̄ , (3.68)
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where

ΩR
qq̄ ≡ −2T

∑
f=u,d,s

∫
d3k

(2π)3
ln ρ (3.69)

and

ΩI
qq̄ ≡ −2T

∑
f=u,d,s

∫
d3k

(2π)3
θ (3.70)

The imaginary part (3.70) is the manifestation of the fermion sign problem in the context
of the Polyakov–Quark-Meson model already at the one-loop level. Note that it is very
closely related to the sign problem in lattice QCD, in the so-called matrix model and
in the PNJL model [52, 88–90]. An important aspect of Eq. (3.70) is that it vanishes
for µf = 0, so that the effective potential becomes real and free of the sign problem.
Furthermore, Eq. (3.70) is odd in Φi, while the real part (3.69) is even in Φi. This means
that one must have ⟨Φi⟩ = 0, i.e., ⟨Φ⟩ = ⟨Φ̄⟩ for µf = 0, which is a well-known result.

In order to make the sign problem in the PQM model explicit, let us write the grand
partition function for the model in the mean-field approximation

Z =

∫
DΨ⃗ exp

[
−V
T
Ω(Ψ⃗)

]
, (3.71)

where V is the volume of the space and Ψ⃗ = (σu, σd, σs,Φr,Φi) formally represents the
(real) order parameters.

Notice from Eqs. (3.60) and (3.68) that the imaginary part of the quark contribution
is odd in Φi and all the other contributions to the effective potential are even in Φi.
So one can split the effective potential in a Φi-odd part that coincides with ΩI

qq̄ and a
Φi-even part. The functional integral is to be performed for every possible (real) value
that Φi can assume. One can organise the sum such that the contributions for a given
Φi and its negative −Φi are assembled. After a few simple manipulations, one finds

Z =

∫
Φi∈R

DΨ⃗ exp

[
−V
T

(
ΩΦi−even + iΩI

qq̄

)]
=

∫
DΨ⃗ exp

[
−V
T
ΩΦi−even

]
cos

[
−V
T
ΩI
qq̄

]
. (3.72)

The integrand in the partition function (3.72) is not positive defined, as a sound Boltz-
mann factor should be. Recall that the integrand of the partition function (the dens-
ity matrix elements) corresponds to a sort of probability density, which must be non-
negative. This is not true for the grand-partition function (3.72) and one can conclude
that the Polyakov–Quark-Meson model has the sign problem at the mean-field level for
a finite chemical potential. If one insists in writing the partition function (3.72) in the
same form as (3.71), one ends up with

Ω = ΩΦi−even − T

V
ln

[
cos

(
V

T
ΩI
qq̄

)]
, (3.73)
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Figure 3.7.: Polynomial Polyakov-loop potential [80] at t = 0 as a function of real
coordinates Φ and Φ̄. One recognises its saddle-point structure and that
it is unbounded for

(
Φ, Φ̄

)
→ (0,∞) , (∞, 0).

This function is not physically acceptable as an effective potential. First, it is a volume-
dependent effective potential and therefore, it is not intensive and second, it is not
defined in the thermodynamical limit V → ∞.

The standard approach in the literature to circumvent the sign problem of the PQM
model is to restrict the Polyakov-loop variables Φ and Φ̄ to be two independent, real
variables. But by this approach, the effective potential has no minima, but only saddle-
points. The state of thermodynamical equilibrium is then chosen among the extrema of
the effective potential as the one with the lowest value of the potential. The chosen point
is then not a minimum, but a saddle-point of the effective potential. This ‘saddle-point’
approach is particularly troublesome for the evaluation of the surface tension and thus
of the nucleation rate in the region of the phase diagram of the model where a first-order
phase transition separates two phases. It can be easily seen that the effective potential
is unbounded from below. Just consider Φ = 0 in Eqs. (3.38), (3.40) or (3.41) and one
can realise that the Polyakov loop potential is unbounded from below for Φ̄ → ∞ [72].
This is illustrated together with the saddle point structure of the potential in Fig. 3.7.

Another possibility to avoid the sign problem, as indicated in Ref. [90] is to treat the
imaginary part of the effective potential perturbatively in an expansion in powers of
T/V . In the first order of the approximation (which the authors of Ref. [90] identify
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Figure 3.8.: Polynomial Polyakov-loop potential [80] at t = 0 as a function of real
coordinates Φr and Φi.

with the mean-field approximation), one simply ignores the imaginary part (3.70) of
the effective potential at finite chemical potentials. Ignoring ΩI

qq̄ is equivalent to taking
the modulus of the Dirac determinant that is tacitly present in Eq. (3.72). However,
if one neglects ΩI

qq̄, the expectation value of Φi is zero due to the even parity of U
and ΩR

qq̄ with respect to Φi. As a consequence, the difference ⟨Φ̄ − Φ⟩ = 0, which is
in disagreement with complex Langevin [208] and Monte-Carlo simulations [51, 52]. In
spite of this setback, the approach presented here can be understood as an approximation
scheme that has the strong theoretical advantage of dealing with the well-established
minimisation procedure for finding the state of equilibrium, as can be seen in Fig. 3.8.
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4. Thermodynamics and Phase
Structure

4.1. Order Parameters and Thermodynamics at zero
Chemical Potentials

In this section results of sophisticated lattice QCD calculations are used to adjust the
uncertain parameters of the Polyakov–Quark-Meson model. More precisely, the para-
meters will be chosen such that results for basic observables of strongly-interacting
matter at zero quark densities are reproduced. This allows to achieve a reliable basis
for the subsequent investigations at nonzero quark and isospin densities. The impact
of the parameters within their uncertainties is discussed in the following subsections.
Information on the method of lattice calculations can be found e.g. in Refs. [28,102] or
in the reviews [209,210] or in the detailed literature [211,212].
For an explicit crosscheck of the model and the numerics the pseudocritical temperatures
for deconfinement and chiral symmetry restoration where compared to those calculated
in Refs. [66,72,73,77] using their parameter sets.

The uncertainties of the Polyakov–Quark-Meson model include the parametrisation
of the Polyakov-loop potential, the transition temperature of the Polyakov-loop poten-
tial and the mass of the σ-meson. The different parametrisations of the Polyakov-loop
potential that will be discussed are (3.38), (3.40) and (3.41) with the parameters of
Table 3.3. As discussed around Eq. (3.57), the glue critical temperature is expec-
ted to be in the range 180MeV ≲ T glue

cr ≲ 270MeV. Usually, the chiral partner of
the pion is identified with the experimentally measured resonance f0 (500) with mass
mf0 = (400− 550) MeV [147]. Note however that in Ref. [194] it was demonstrated that
within an extended quark-meson model that includes vector and axial-vector mesons the
resonance f0(1370) was identified as the nonstrange scalar quarkonium state. Within
the present work, mσ = (400− 600)MeV will be considered as parameter range for the
mass of the σ-meson. The scalar coupling between quarks and (pseudo-)scalar mesons
g is kept fixed such that the constituent mass of the light quarks is ml = 300MeV

according to Eq. (3.30). The impact of varying the Yukawa coupling on the evolution
of the order parameters and equation of state is e.g. investigated in Refs. [10,213].

The equilibrium states of the system are solutions of the equations of motion (3.15).
For zero quark chemical potentials µf = 0 they are indeed minima of the effective
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Figure 4.1.: Scaled pressure p/T 4 (left) and trace anomaly (ϵ− 3p) /T 4 (right) as a
function of temperature at µf = 0. The results are compared to the
lattice calculations of Refs. [39, 41].

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

reduced temperature t

0

0.2

0.4

0.6

0.8

1

s
u
b
tr

a
c
te

d
 c

h
ir
a
l 
c
o
n
d
e
n
s
a
te

∆
l,
s Wuppertal-Budapest

Borsanyi et al.

JHEP 9, 2010

HotQCD
Bazavov et al.

Phys. Rev. D 87, 2013

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

reduced temperature t

0

0.2

0.4

0.6

0.8

P
o
ly

a
k
o
v
 l
o
o
p
 v

a
ri
a
b
le

s
Φ

,Φ_
,Φ

r Wuppertal-Budapest
Borsanyi et al.

JHEP 9, 2010

HotQCD
Bazavov et al.

Phys. Rev. D 87, 2013

Figure 4.2.: The subtracted chiral condensate ∆l,s (left) and the Polyakov-loop ex-
pectation value Φ (right) as a function of temperature at µf = 0. The
results are compared to the lattice calculations of Refs. [38, 42].

potential as shown in Sec. 3.3 and the ‘saddle-point’ approach and the ‘minimisation’
procedure discussed in that section lead to identical results.

Figures 4.1 and 4.2 show those results for thermodynamics and order parameters
that are the closest to the results of lattice calculations. These are achieved using
the polynomial Polyakov-loop potential (3.38) with the parameters of Ref. [80] with a
transition scale of T glue

cr = 270MeV and mσ = 400MeV as mass of the σ-meson.
The lattice results to which the results are compared to are the continuum extrapol-

ations of the Wuppertal-Budapest collaboration of Refs. [38,39] using the ‘stout’ action
and those of the HotQCD collaboration using the highly improved staggered quark
(HISQ) action, with a temporal lattice extent of Nτ = 12 (open circles) and Nτ = 8

(open squares) [41] and continuum extrapolated [42], all with physical quark masses.
The results for the chiral order parameter and thermodynamics either agree quantit-

atively with the lattice results or are at least within the trend of the data. A big differ-

62



4.1. Order Parameters and Thermodynamics at zero Chemical Potentials

Table 4.1.: Pseudocritical temperatures on the lattice for the crossover transition at
µf = 0. They are determined by the peak position of the temperature
derivatives of the subtracted chiral condensate ∆l,s.

Wuppertal-Budapest HotQCD
[38] continuum [42] Nτ = 12 & 8 [40]

Tc [MeV] 157± 3 154± 9 159± 3 & 163± 3

ence is seen in the Polyakov-loop expectation value. The lattice data shows a smoother
transition with significant smaller values. However, at least a part of this discrepancy
originates in the inherent approximations which are still present: the derivation of the
Polyakov–Quark-Meson model entails that the Polyakov-loop variable in the thermal
fermionic determinant (3.12) is Φ [⟨A0⟩] and not ⟨Φ [A0]⟩ as used in the Polyakov-loop
potentials U and computed on the lattice. However, the continuum definition serves as
an upper bound for the lattice one, Φ [⟨A0⟩] ≥ ⟨Φ⟩ as discussed in Sec. 2.3.2.

The abscissæ of the figures are in units of the reduced temperature of full QCD
t = (T − Tc)/Tc. This choice allows to compare the overall shape of the observables
and thereby the proper inclusion of the relevant dynamics independent of a possible
mismatch of the pseudocritical temperature Tc that is scaled out. To have a unique
criterion for lattice and model calculations the pseudocritical temperature of the cros-
sover transition are determined by the peak of the susceptibility of the subtracted chiral
condensate. Table 4.1 summarises the hereby defined pseudocritical temperatures for
the lattice calculations. The chiral transition temperature of the model calculation is
Tc = 164MeV and Td = 153MeV for the Polyakov-loop related transition. These values
coincide with the transition range on the lattice, (144− 170) MeV [38] defined by the
peaks and inflection points of various observables.

In summary, the parameters have been adjusted in this section in order to reproduce
lattice results at zero quark densities. The important ingredients to achieve compatib-
ility with lattice data for the order parameters and thermodynamics are given by the
inclusion of quark quantum fluctuations (3.11), to unquench the Polyakov-loop potential
by including the quark backreaction via relation (3.58) and to consider the contribution
of thermal meson fluctuations (3.21). This setting constitutes an adequate framework
to investigate the phase structure of strongly interacting matter at nonzero quark and
isospin densities and to test the applicability of the model at nonzero densities.

Before the study will be extended to nonzero chemical potentials in the following
sections, the impact of the before mentioned ingredients is illustrated and the influence
of the parameters within their uncertainties is discussed.
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Figure 4.3.: Scaled pressure p/T 4 (left) and trace anomaly (ϵ− 3p) /T 4 (right) as a
function of temperature at µf = 0. The red dashed line is the result
using as Polyakov-loop potential the pure Yang-Mills potential, the full
green line is the case for the unquenched glue potential. The results are
compared to the lattice calculations of Refs. [39, 41].

4.1.1. Impact of Unquenching the Polyakov-loop potential

An important improvement of the Polyakov-loop extended Quark-Meson model is the
unquenching of the Polyakov-loop potential (3.58) by using the relation between pure
gauge and glue effective potential (3.56) that is extracted from renormalisation group
calculations.

The enhancement of the Polyakov-loop potential smoothes the phase transition sig-
nificantly. This can be seen in the comparison of thermodynamics and order paramet-
ers using the Yang-Mills and the unquenched Polyakov-loop potential as displayed in
Figs. 4.3 and 4.4. Unquenching the Polyakov-loop potential brings the effective model
in close agreement with the lattice calculations. This improvement holds in the low as
well as in the high temperature phase.

One can see in the interaction measure that is shown on the right of Fig. 4.3 that the
unquenched glue potential leads to a emergence of the quark degrees of freedom in a
larger temperature interval and its amplitude is in better agreement with lattice results.
By applying the unquenched glue potential, the Polyakov loop is shifted differently in
the two phases as one sees on the right of Fig. 4.4. This could also be anticipated in
Figs. 3.5 and 3.6 and Eq. (3.56). So, the Polyakov-loop variables are shifted to higher
expectation values in the confined phase and to lower values in the deconfined phase.
This shift in the respective phases is what leads to a overall smoother transition, not
only of the Polyakov-loop. The evolution of the Polyakov loop when the unquenched
potential is considered has also the advantage that its expectation value is shifted to a
value of ∼0.5 at t = 0 which is a reasonable criterion to define a transition between the
confined phase and the quark gluon plasma in case of a crossover.
The adjustment of the Polyakov-loop potential from the pure gauge potential to the
unquenched glue potential does not only affect the Polyakov-loop but also quarks and
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Figure 4.4.: The subtracted chiral condensate ∆l,s (left) and the Polyakov-loop ex-
pectation value Φ (right) as a function of temperature at µf = 0. The
red dashed line is the result using as Polyakov-loop potential the pure
Yang-Mills potential, the full green line is the case for the unquenched
glue potential. The results are compared to the lattice calculations of
Refs. [38, 42].

mesonic degrees of freedom because of their nontrivial coupling to the gauge field. There-
fore, on the left of Fig. 4.4 it is shown how the subtracted chiral condensate is affected
by unquenching the Polyakov-loop potential. The results of the PQM model using as
Polyakov-loop potential the pure gauge potential and the glue potential show that the
adjustment of the Polyakov-loop potential leads also to a smoother chiral transition and
to a further agreement with the result of lattice calculations.

Using the unquenched Polyakov-loop potential the chiral transition temperature is
Tc = 164MeV and Td = 153MeV for the Polyakov-loop related transition. These
values coincide well with the transition range on the lattice, (144− 170) MeV [38].
In contrast to this the pseudocritical temperature Tc ∼ Td ≈ 188MeV achieved with
the pure gauge Polyakov-loop potential exceeds this range. So, applying the quark-
improved Polyakov-loop potential not only smoothes the transition but leads as well to
an important reduction of the pseudocritical temperature.

In summary, adjusting the Polyakov-loop potential from a pure gauge potential to the
unquenched glue potential in full QCD by applying Eqs. (3.58) and (3.56) improves the
description of the chiral and (de)confinement phase transition with effective models.

4.1.2. Impact of Mesonic Fluctuations

To achieve a better description of the thermodynamics in the phase where chiral sym-
metry is broken, the thermodynamics has been augmented by the contribution of a gas
of thermal mesons. For the meson masses the in-medium masses are taken. The evol-
ution of the masses for the calculation presented in Figs. 4.1 and 4.2 at µf = 0 for the
lightest mesons, the pions and the σ-meson are shown in Fig. 4.5.

The mass of the pions stays practically constant at its vacuum value mπ = 138MeV
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Figure 4.5.: The in-medium masses of pionsmπ and the σ-meson (left) and the scaled
pressure pπ/T 4 of a gas of thermal pions (right) as a function of tem-
perature at µf = 0. The polynomial parametrisation of the Polyakov-
loop potential with the parameters of Ref. [80] with a transition scale of
T glue
cr = 270MeV and mσ = 400MeV as vacuum mass of the σ-meson is

used.

in the chirally broken phase. Therefore, the gas of thermal pions represents a significant
contribution to thermodynamics for t ≲ 0 as shown in the right part of Fig. 4.5. With
the effective restoration of chiral symmetry the mass of the pions rises linearly with
temperature and the contribution of the thermal pion gas to thermodynamics dimin-
ishes accordingly. Physically, the mesonic degrees of freedom dissolve with the onset of
deconfinement and there are no pions in the deconfined phase that contribute to thermo-
dynamics. This aspect of deconfinement is not covered by centre symmetry restoration.
The mass of the second lightest meson, the σ-meson is larger than mπ in the chirally
broken phase as can be seen in Fig. 4.5. This justifies to only consider the contribution
of a gas of thermal pions but no other mesons.

To illustrate how the total pressure is build up, Fig. 4.6 shows the contributions of
quarks and mesons separately. For t ≲ 0 the mesons represent a significant contribution
to thermodynamics and are those degrees of freedom that allow compatibility with
lattice data. For t ≳ 0 the pressure of quarks alone coincides better with lattice results
than the total pressure with the inclusion of the mesonic contribution. Indeed a proper
inclusion of deconfinement would dissolve the mesonic degrees of freedom for t ≳ 0.
The increase of the pion masses in the chirally restored phase leads to a decrease of the
mesonic contribution to thermodynamics but this suppression is not enough. A melting
of the mesonic degrees of freedom when centre symmetry gets broken would further
improve the description of the deconfined phase. Work in this direction has been put
forward in Ref. [196].

The inclusion of quantum fluctuations of mesons in a renormalisation group framework
would not further improve the agreement for the order parameters and thermodynamics,
as is shown in Figs. 4.7 and 4.8.
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Figure 4.6.: Contributions of mesons and quarks to the scaled pressure p/T 4 as a
function of temperature at µf = 0. The results are compared to the
lattice calculation of Ref. [39].
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4.1.3. Impact of Quantum Fluctuations of Quarks

A proper renormalisation of the one-loop contribution from quarks [75, 77, 79, 189, 190]
leads to the contribution of fermionic quantum fluctuations (3.11) to the in-medium
effective potential. In the so-called extended mean-field (eMF) analysis this term is
taken into account while in standard mean-field (MF) calculations it was traditionally
neglected.

Figures 4.9 and 4.10 show the impact of neglecting the fermionic quantum fluctu-
ations. Keeping the parameters fixed as in the extended mean-field calculation this has
tremendous implications. The transition becomes considerably steeper and even changes
its natures to a first order transition. The liberation of quark degrees of freedom in a
smaller temperature interval in the mean-field calculation is overlaid in the pressure by
the missing contribution (3.11). The critical temperature Tc = Td = 144MeV is very
low.

Changing the parameters within their uncertainties one can achieve also within the
standard mean-field analysis a result that is closer to the best extended mean-field
calculation and in better agreement with the lattice results. Those results are presented
in Figs. 4.11 and 4.12. The standard mean-field calculation is performed using the
logarithmic parametrisation of the Polyakov-loop potential with a transition scale of
T glue
cr = 210MeV and mσ = 500MeV as vacuum mass of the σ-meson. This leads to

a pseudocritical temperature of Tc = 158MeV which is in very good agreement with
lattice calculations.
The pressure shown on the left of Fig. 4.11 shows that the transition is marginally steeper
in the standard mean-field calculation. A quantitative probe of this slight deviation is
the interaction measure which tests not only the free energy or minimum of the potential
but contains as well information about its temperature derivative. In the right part of
Fig. 4.11 are compared the results for the trace anomaly. Even though the agreement of
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Figure 4.12.: The subtracted chiral condensate ∆l,s (left) and the Polyakov-loop ex-
pectation value Φ (right) as a function of temperature at µf = 0. The
red dashed line is the best result without fermionic quantum fluctu-
ations at one loop and the full green line is the case including these.
The results are compared to the lattice calculations of Refs. [38, 42].
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the normalised pressure of the effective model and the lattice calculation is remarkably
close the slight differences get more visible in the trace anomaly. The amplitude is in
good agreement with lattice results, nevertheless the transition in the effective model
without vacuum-loop contribution is steeper. The results of the order parameters show
as well a steeper change in the transition region in the standard mean-field calculation
as is shown in Fig. 4.12.

4.1.4. Dependence on the Parametrisation of the Polyakov-loop Potential

In Polyakov-loop extended chiral models one uncertainty in the gluonic sector is the
parametrisation of the Polyakov-loop potential. Ideally, the Polyakov-loop potential of
full QCD from first principal calculations should be applied but this is not yet directly
applicable. So one chooses a parametrisation of the Polyakov-loop potential and fits its
parameters to available pure gauge lattice data as discussed in Sec. 3.2. In Figs. 3.2,
3.3 and 3.4 it was demonstrated that the different approximations of the potential show
already significant differences for pure Yang-Mills theory. However, in this manner only
the region close to the minimum is constrained but not the overall shape. That can differ
considerably as shown in Fig. 3.1. But when the Polyakov-loop is coupled to the matter
sector, regions away from the minimum are probed and one should not expect to find
exactly the same results with different versions of the potential. So here is considered
the uncertainty that comes along with the different parametrisations and parameter
sets.

For the comparison of the different parametrisations of the Polyakov-loop potential a
σ-meson mass of 400MeV and a transition temperature of the Polyakov-loop potential
of T glue

cr = 270MeV is chosen.
The normalised pressure displayed in Fig. 4.13 shows the steepest rise in the transition

region for the polynomial parametrisation with the parameters of Ref. [80] (Poly-BNL
potential). This is in accord with the description of pure Yang-Mills theory discussed
in Sec. 3.2. Overall, the difference in the results for the scaled pressure for the different
parametrisations is not large around the transition region.

As seen before, the differences are more pronounced in the interaction measure which is
shown in Fig. 4.14. The slopes of the curves are similar for the polynomial potential [80]
and logarithmic parametrisation but with a larger amplitude in the case of the Poly-
BNL potential. This originates from the description of pure Yang-Mills theory as seen in
Fig. 3.4. The normalised trace anomaly with the polynomial parametrisation of Ref. [69]
continues to increase above the transition temperature. This is a feature of the offset
of the maximum of the trace anomaly in Yang-Mills theory seen in Fig. 3.4. This offset
is also seen in calculations with the PQM model using the Yang-Mills Polyakov-loop
potential [5, 73]. The overall reduction of the amplitude in the transition region with
the unquenched Polyakov-loop potential leads to the behaviour seen in Fig. 4.14.

The evolution of the Polyakov-loop shown in Fig. 4.15 reveals that the onset of the
transition in the confined phase is the steepest with those potentials that include a
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Figure 4.13.: Scaled pressure p/T 4 as a function of temperature at µf = 0 for the
different parametrisations of the Polyakov-loop potential. The results
are compared to the lattice calculation of Ref. [39].
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Figure 4.15.: The Polyakov-loop expectation value Φ as a function of temperat-
ure at µf = 0 for the different parametrisations of the Polyakov-
loop potential. The results are compared to the lattice calculations
of Refs. [38, 42].

logarithmic term. The polynomial potential [69] leads to the smoothest evolution of
the Polyakov loop. Note that the Polyakov-loop expectation values for the calculations
with the polynomial parametrisation are normalised such that they tend towards unity
at infinite temperature. Overall, the differences in the Polyakov-loop variables due to
the different parametrisations are so large that it should be considered before making
quantitative statements.

Nevertheless, the differences in the glue sector due to the different parametrisations are
considerably smaller in the evolution of the subtracted chiral condensate. This is shown
on the left of Fig. 4.16. As for the Polyakov-loop, the polynomial parametrisation [69]
leads to the smoothest evolution.

In all quantities shown in Figs. 4.13, 4.14, 4.15 and 4.16 it can be seen that using the
polynomial-logarithmic potential the results follow those with the logarithmic potential
below Tc and run towards the results with the polynomial potentials in the chirally
restored and deconfined phase.

The slightly stronger transition in the gluonic sector for the polynomial parametrisa-
tion [80] shifts the pseudocritical temperature to a smaller value compared to the other
potentials as seen in Table 4.2. Only the result with the polynomial Polyakov-loop po-
tential [80] coincide with the transition range on the lattice, (144− 170) MeV [38] that
is defined by the peaks and inflection points of various observables.

With the other Polyakov-loop potentials one can achieve pseudocritical temperatures
that are closer to the transition region on the lattice when changing the other uncer-
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Figure 4.16.: The subtracted chiral condensate ∆l,s as a function of temperature
at µf = 0 for the different parametrisations of the Polyakov-loop
potential. The results are compared to the lattice calculations of
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Table 4.2.: Pseudocritical temperatures for the crossover transition at µf = 0 with
different parametrisations and parameter sets of the Polyakov-loop po-
tential. They are determined by the peak position of the chiral sus-
ceptibility ∂∆l,s/∂T and of the temperature derivative of the Polyakov
loop ∂Φ/∂T . As transition temperature of the Polyakov-loop potential
T glue
cr = 270MeV is used and mσ = 400MeV as vacuum mass of the
σ-meson.

Poly-BNL Poly-TUM Log Poly-Log

Tc [MeV] 164 183 180 188
Td [MeV] 153 176 165 180
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Table 4.3.: Pseudocritical temperatures for the best results for the crossover trans-
ition at µf = 0 with the different parametrisations and parameter sets
of the Polyakov-loop potential presented in Figs. 4.17, 4.18, 4.19 and
4.20. They are determined by the peak position of the chiral suscept-
ibility ∂∆l,s/∂T and of the temperature derivative of the Polyakov loop
∂Φ/∂T . As vacuum mass of the σ-meson mσ = 400MeV is used.

Poly-BNL Poly-TUM Log Poly-Log
T glue
cr [MeV] 270 240 240 240

Tc [MeV] 164 176 175 179
Td [MeV] 153 166 152 165

tainties to bring thermodynamics and order parameters to the closest agreement with
lattice data. This can be achieved by reducing the transition scale of the unquenched
Polyakov-loop potential to T glue

cr = 240MeV for the polynomial parametrisation [69]
and those parametrisations that consider the SU(3) group volume. This reduces the
pseudocritical temperatures as well as can be seen in Table 4.3. Still, only the trans-
ition region with the polynomial Polyakov-loop potential [80] is a subset of the transition
range of the lattice calculation [38] while the others now have an intersection with the
lattice result. Using a polynomial Polyakov-loop potential, the chiral and deconfinement
transitions lie closer to each other than with those that include a logarithm.

Figures 4.17, 4.18, 4.19 and 4.20 show those results with all parametrisations of the
Polyakov-loop potential that are closest to the results of lattice calculations. The evol-
ution of the pressure and chiral condensate agree well which each other and the only
characteristic is that with the polynomial Polyakov-loop potential [69] the transition is
the smoothest. The results of the interaction measure and Polyakov loop show a larger
sensitivity on the form of the Polyakov-loop potential. The logarithmic Polyakov-loop
potential leads to the steepest increase of the Polyakov loop. Characteristics of the
interaction measure are that the polynomial Polyakov-loop potential [69] leads to a sig-
nificant offset of the maximum and that with the polynomial-logarithmic potential the
decrease of the trace anomaly in the chirally restored and deconfined phase is the largest
.

In conclusion, the differences due to the different parametrisations of the the Polyakov-
loop potential are so large that they should be considered before making quantitative
statements. Further input to constrain the form of the potential or a potential from
first principal calculations are important to improve the reliability of results of effective
models.
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Figure 4.17.: Best results for the scaled pressure p/T 4 as a function of temperature
at µf = 0 for the different parametrisations of the Polyakov-loop po-
tential. The results are compared to the lattice calculation of Refs. [39].
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Figure 4.18.: Best results for the scaled trace anomaly (ϵ− 3p) /T 4 as a function
of temperature at µf = 0 for the different parametrisations of the
Polyakov-loop potential. The results are compared to the lattice cal-
culations of Refs. [39, 41].

76



4.1. Order Parameters and Thermodynamics at zero Chemical Potentials

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

reduced temperature t

0

0.2

0.4

0.6

0.8

1

s
u
b
tr

a
c
te

d
 c

h
ir
a
l 
c
o
n
d
e
n
s
a
te

∆
l,
s

Poly-Log

Log

Poly-TUM

Poly-BNL

HotQCD
Bazavov et al.

Phys. Rev. D 87, 2013

Wuppertal-Budapest
Borsanyi et al.

JHEP 9, 2010

Figure 4.19.: Best results for the subtracted chiral condensate ∆l,s as a function
of temperature at µf = 0 for the different parametrisations of the
Polyakov-loop potential. The results are compared to the lattice cal-
culations of Refs. [38, 42].
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Figure 4.20.: Best results for the Polyakov-loop expectation value Φ as a function
of temperature at µf = 0 for the different parametrisations of the
Polyakov-loop potential. The results are compared to the lattice cal-
culations of Refs. [38, 42].
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Figure 4.21.: Scaled pressure p/T 4 (left) and trace anomaly (ϵ− 3p) /T 4 (right) as
a function of temperature at µf = 0 for four different glue critical
temperatures. The results are compared to the lattice calculations of
Refs. [39, 41].

4.1.5. Dependence on the Glue Critical Temperature

The second uncertainty in the gluonic sector is the transition temperature of the un-
quenched Polyakov-loop potential. It is not yet uniquely defined so that it is considered
as a parameter. According to the discussion in Sec. 3.2.1 around Eq. (3.57) it is expected
to be in the interval (180− 270) MeV.

For the investigation of the impact of T glue
cr the polynomial parametrisation of the

Polyakov-loop potential with the parameters of Ref. [80] and a vacuum σ-meson mass
of mσ = 400MeV is used.

All quantities shown in Figs. 4.21 and 4.22 show that the transition sets on already at
smaller relative temperatures when the critical temperature of the unquenched Polyakov-
loop potential is lowered. This is due to a broadening of the transition range with de-
creasing glue critical temperature while the pseudocritical temperature defined by the
chiral susceptibility remains on the upper end. The respective pseudocritical temperat-
ures are summarised in Table 4.4.

The the best agreement with lattice results and a transition region that is in accord-
ance with the lattice result is achieved for T glue

cr = 270MeV. But for all glue critical
temperatures is the chiral pseudocritical temperature in the transition region of lattice
calculations.

Another aspect that one sees in Fig. 4.21 is that the slope of the trace anomaly be-
comes smaller above Tc with increasing critical scale of the Polyakov-loop potential.
This behaviour has two reasons. First, the transition range diminishes for larger critical
temperatures of the glue potential, so that the impact of the emergence of the quark
degrees of freedom is larger close above Tc. Second, the saturation scale of the adjust-
ment between pure gauge potential and unquenched glue potential, i.e., the upper limit
of validity of Eq. (3.56), is closer to the transition scale for larger critical temperatures
of the Polyakov-loop potential.
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Figure 4.22.: The subtracted chiral condensate ∆l,s (left) and the Polyakov-loop ex-
pectation value Φ (right) as a function of temperature at µf = 0 for
four different glue critical temperatures. The results are compared to
the lattice calculations of Refs. [38,42].

Table 4.4.: Pseudocritical temperatures for the crossover transition at µf = 0 for
four different glue critical temperatures. They are determined by the
peak position of the chiral susceptibility ∂∆l,s/∂T and of the temperature
derivative of the Polyakov loop ∂Φ/∂T . The polynomial Polyakov-loop
potential with the parameters of Ref. [80] and mσ = 400MeV as vacuum
mass of the σ-meson is used.

T glue
cr [MeV] 180 210 240 270

Tc [MeV] 151 155 159 164
Td [MeV] 119 131 142 153
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Chapter 4. Thermodynamics and Phase Structure

Figure 4.22 shows the dependence of the evolution of the Polyakov-loop expectation
values on the critical temperature of the Polyakov-loop potential. The magnitude of
the transition increases when the transition temperature of the Polyakov-loop potential
is lowered and the transition regions is shifted towards smaller relative temperatures.
So the onset of deconfinement is shifted further away from Tc with decreasing critical
temperature of the Polyakov-loop potential. This is a natural consequence, as decreasing
the scale of the Polyakov-loop potential leads to a relative shift of the glue part towards
a lower scale in the full theory.

Due to the nontrivial coupling between Polyakov loop, quarks and mesons, the on-
set of deconfinement at lower temperatures with decreasing critical temperature of the
Polyakov-loop potential shows its impact also in the chiral condensate. It deviates at
relative smaller temperatures from its vacuum value when the transition temperature of
the Polyakov-loop potential is lowered. This effect gets enhanced due to the simultan-
eous lowering of the pseudocritical temperature. Apart from that, the chiral condensate
shows only a very mild dependence on the transition temperature of the glue potential.

As discussed in the previous section one can also achieve results for the evolution
of thermodynamics and the order parameters that are consistent with the lattice data
for T glue

cr = 240MeV if on choses one of the other parametrisations of the Polyakov-
loop potential. But then the transition range shows less overlap with that of lattice
calculations as was shown in Table 4.3.

For even lower glue critical temperatures no consistency with lattice data can be found
within the presented framework, also not if changing the remaining uncertainty which
is the mass of the scalar meson σ.

4.1.6. Dependence on the Sigma-Meson Mass

An uncertainty in the mesonic sector of chiral models is the vacuum value of the mass of
the σ-meson. Usually, the chiral partner of the pion is identified with the experimentally
measured resonance f0 (500) which is rather broad, mf0 = (400− 550) MeV [147]. Note
however that in Ref. [194] it was demonstrated that within an extended quark-meson
model that includes vector and axial-vector interactions the resonance f0(1370) was
identified as the nonstrange scalar quarkonium state. Here, mσ = (400 − 600)MeV is
considered as parameter range for the mass of the σ-meson.

To investigate the role of the mass of the scalar meson σ the polynomial paramet-
risation of the Polyakov-loop potential with the parameters of Ref. [80] and a transition
scale of T glue

cr = 270MeV is used in the following.
The change of the pressure for an increasing mass of the σ-meson is opposite to the case

of an increasing glue critical temperature (Fig. 4.21). Therefore, to get agreement with
the pressure of the lattice calculation for a σ-meson masses of 500MeV and 600MeV

one would have to choose an even larger critical temperature of the glue potential. So
the lower the mass of the σ-meson, the smaller the transition temperature of the glue
potential has to be in order to reproduce the lattice results. This is due to the fact that
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Figure 4.23.: Scaled pressure p/T 4 (left) and trace anomaly (ϵ− 3p) /T 4 (right) as a
function of temperature at µf = 0 for three different values of the mass
of the σ-meson. The results are compared to the lattice calculations of
Refs. [39, 41].

Table 4.5.: Pseudocritical temperatures for the crossover transition at µf = 0 for
three different masses of the σ-meson. They are determined by the
peak position of the chiral susceptibility ∂∆l,s/∂T and of the temper-
ature derivative of the Polyakov loop ∂Φ/∂T . The polynomial Polyakov-
loop potential with the parameters of Ref. [80] and a transition scale of
T glue
cr = 270MeV is used.

mσ [MeV] 400 500 600

Tc [MeV] 164 175 187
Td [MeV] 153 156 158

a decrease in the mass of the σ-meson lowers the scale of the chiral transition as can
be seen in Table 4.5 and Ref. [66]. So the scale of the (de)confinement transition has
to decrease as well. Note that the combination of mσ = 400MeV and T glue

cr = 270MeV

leads to a transition region that fits to the one of lattice calculations.
The results of the trace anomaly and chiral and (de)confinement order parameters for

different σ-meson masses show that the transition region broadens for a larger mass of
the σ-meson.

The observation that a larger mass of the σ-meson requires also a larger glue crit-
ical temperature to achieve consistency with lattice results implies that with the other
Polyakov-loop potentials one can get results that match the lattice data for mσ =

500MeV with T glue
cr = 270MeV. This is shown in Figs. 4.25 and 4.26 where the

polynomial-logarithmic form of the Polyakov-loop potential is used. But even if the
evolution of the observables for mσ = 500MeV is then consistent with the lattice data,
the transition range moves further away from the lattice result as can be seen from the
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Figure 4.24.: The subtracted chiral condensate ∆l,s (left) and the Polyakov-loop ex-
pectation value Φ (right) as a function of temperature at µf = 0 for
three different values of the mass of the σ-meson. The results are com-
pared to the lattice calculations of Refs. [38, 42].
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Figure 4.25.: The best results for the scaled pressure p/T 4 (left) and trace anomaly
(ϵ− 3p) /T 4 (right) as a function of temperature at µf = 0 for different
values of the mass of the σ-meson. The results are compared to the
lattice calculations of Refs. [39, 41].
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Figure 4.26.: The best results for the subtracted chiral condensate ∆l,s (left) and the
Polyakov-loop expectation value Φ (right) as a function of temperature
at µf = 0 for different values of the mass of the σ-meson. The results
are compared to the lattice calculations of Refs. [38, 42].

Table 4.6.: Pseudocritical temperatures for the crossover transition at µf = 0 for
different combinations of σ-meson masses and glue critical temperatures.
They are determined by the peak position of the chiral susceptibility
∂∆l,s/∂T and of the temperature derivative of the Polyakov loop ∂Φ/∂T .
The polynomial-logarithmic parametrisation of the Polyakov-loop poten-
tial is used.

(mσ, T glue
cr ) [MeV] (400, 240) (500, 270)

Tc [MeV] 179 197
Td [MeV] 165 183

values in Table 4.6.

In summary, in this section the impact of the improvements of the presented frame-
work and the robustness of the results has been tested by the analyses of the impact of
the different ingredients and the dependence on the parametrisation and the transition
temperature of the Polyakov-loop potential as well as the σ-meson mass. A parameter-
dependence of the results has been found, which can not be ignored in a quantitative
analysis. To be more specific, when varying the glue critical temperature and the mass
of the scalar σ-meson one observes that a larger glue critical temperature has a similar
effect on the results as a decrease of the mass of the σ-meson.

Comparing the impact of the different ingredients and the parameter dependences
discussed in this section unquenching the Polyakov-loop potential has the biggest impact
on the nature of the transition and is most important to bring Polyakov-loop extended
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Figure 4.27.: Evolution of the chiral condensates and the Polyakov loop with increas-
ing temperature at vanishing density (left) and with increasing quark
chemical potential at a temperature of 10MeV (right).

chiral models to qualitative agreement with results of lattice calculations at zero quark
chemical potentials.

4.2. Thermodynamics and Phase Structure at nonzero
Quark Chemical Potentials

In the previous section the unquenching of the Polyakov-loop potential showed to be an
important improvement for the description of the phase structure and thermodynamics
at zero quark chemical potentials with Polyakov-loop extended chiral models.

Now, the applicability of this improved Polyakov–Quark-Meson model will be tested
at nonzero quark chemical potentials. The impact of unquenching the Polyakov-loop
potential onto the phase diagram will be discussed as well as the differences between
those combinations of the parameters that have been adjusted to lattice data at zero
chemical potentials throughout the previous subsections.

The results presented in the following are obtained using the polynomial-logarithmic
Polyakov-loop potential. They correspond to the magenta dashed–double-dotted line in
Figs. 4.17 to 4.20 for zero chemical potentials. Why a parametrisation is chosen that
limits the Polyakov loop to be always smaller than one will become clear during the
discussion.

The evolution of the order parameters with increasing quark chemical potential at
a small temperature is qualitatively different than that at small chemical potentials
with increasing temperature as is shown in Fig. 4.27. At low temperatures, the order
parameters have a discontinuity at some finite chemical potential which signals a first-
order phase transition.

Displayed are the results for the expectation values of the light and strange chiral
condensates σl and σs normalised by the vacuum value of the nonstrange condensate
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Figure 4.28.: Zoom into the transition region for the evolution of the chiral condens-
ates and the Polyakov loop with increasing quark chemical potential at
a temperature of 10 MeV. The left figure shows the differences between
the ‘saddle-point’ approach and the ‘minimisation’ procedure and the
right figure indicates the extension of the metastable region.

⟨σl⟩vac = fπ as well as of the Polyakov loop variables in the ‘saddle-point’ approach and
the ‘minimisation’ model. Figure 4.27 shows that solving the sign problem of the PQM
model by neglecting the imaginary part of the effective potential leads qualitatively to
the same results as circumventing the sign problem by assuming that the Polyakov-loop
variables are two independent, real quantities. That even the quantitative differences
between (Φ, Φ̄) and Φr are small shows the zoom into the transition region shown in
Fig. 4.28. The real part Φr of the in general complex Polyakov loop takes values that
are in between the real variables Φ and Φ̄ with

(
Φ̄− Φ

)
≥ 0 and visible differences exist

only in the confined phase. Important to observe is as well that the chiral fields take
the same values independent of the realisation of the glue sector.

The right part of Fig. 4.28 is a further zoom into the transition region and shows in
addition the extension of the metastable region and how the order parameters in the one
minimum evolve while it coexists as a local minimum. The extension and asymmetry
of the metastable region will be analysed further later on.

The impact of a quark-backreaction onto the Polyakov-loop potential at finite quark
densities is shown in Fig. 4.29. The upper panels are results obtained with the un-
quenched Polyakov-loop potential while for the results in the lower part a pure Yang-
Mills Polyakov-loop potential has been used. Obviously, using the quark-enhanced
Polyakov-loop potential the chiral and (de)confinement transition remain linked at small
temperatures and large quark chemical potentials.
The question is whether the use of the same functional relation between pure Yang-Mills
and glue effective potential found in the transition region for zero chemical potentials is
justified at small temperatures and large quark chemical potentials. At small temper-
atures and zero density one should actually expect that Yang-Mills and effective glue
potential become asymptotically the same. So the question specifies to if the impact of
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Figure 4.29.: Evolution of the chiral condensates and the Polyakov loop with in-
creasing quark chemical potential at a temperature of 10 MeV with the
unquenched Polyakov-loop potential with a density independent T glue

cr

(top left), with T glue
cr (µf ) (top right), with the Yang-Mills Polyakov-

loop potential with TYM
cr (µf ) (bottom left) and with a density inde-

pendent TYM
cr (bottom right).
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4.2. Thermodynamics and Phase Structure at nonzero Chemical Potential

quarks to the Polyakov-loop potential at small temperatures and chemical potentials of
the order of the critical one can be approximated by their impact at zero density and
temperatures around the pseudocritical temperature.
The pure Yang-Mills Polyakov-loop potential does as such not contain any direct de-
pendence on quark densities and therefore, the Polyakov-loop remains at its vacuum
value ∼ 0 at small temperatures when the quark chemical potential is increased as is
shown in the lower right part of Fig. 4.29. Only the coupling to quarks and mesons
leads to an extremely small variation.
One way to include a density-dependent matter backreaction onto the Polyakov-loop
potential is to consider the chemical potential dependence of its transition temperat-
ure [72, 78] as generalised in Eq. (3.52). This implies that the transition scale of the
Polyakov-loop potential decreases with increasing chemical potential. This in turn lowers
the pseudocritical temperature of the crossover transition of the Polyakov-loop at a large
chemical potential towards the critical temperature of the chiral first order transition.
This is shown in the lower left panel of Fig. 4.29 and Refs. [72, 76–78]. With the in-
clusion of meson fluctuations in a renormalisation group framework this backreaction
is enough to see the chiral and (de)confinement transitions remaining linked at large
chemical potentials as shown in Refs. [76,78].
Therefore, the coincidence of the chiral and (de)confinement transition at large chem-
ical potentials with the unquenched Polyakov-loop potential is qualitatively a welcome
feature. Taking additionally into account the chemical potential dependence of the glue
critical temperature shows then a minor impact as can be seen in comparing the upper
right and upper left figures of Fig. 4.29. The consequence of adjusting T glue

cr with µq
is as for the Yang-Mills Polyakov-loop potential to move the Polyakov-loop to larger
values at a given chemical potential.
Interestingly enough, the evolution of the chiral order parameters is perfectly independ-
ent of the realisation of the Polyakov-loop potential as is shown in Fig. 4.29, except of a
1% decrease of the chiral condensates just before the transition when the unquenched
Polyakov-loop potential is used.

Even the qualitative impact of unquenching the Polyakov-loop potential, that it links
chiral and (de)confinement transition is reasonable its quantitative magnitude remains
in question. While pure gauge theory allows to adjust parametrisations of the Polyakov-
loop potential to the minimum of the potential and the PQM model at zero densities
but nonzero temperature probes regions of the Polyakov-loop potential away from the
minimum, the PQM model at large quark chemical potentials probes the form of the
Polyakov-loop potential far away from the minimum. The impact of applying relation
(3.56) to unquench the Polyakov-loop potential is such that the Polyakov-loop becomes
unbound at small temperatures and large chemical potentials for polynomial paramet-
risations. Only the limitation of the Polyakov loop to be smaller than one when the
Haar measure is considered avoids this artificial behaviour.

87



Chapter 4. Thermodynamics and Phase Structure

0 100 200 300

Quark chemical potential [MeV]

0

50

100

150

200

T
e

m
p

e
ra

tu
re

[M
e

V
]

UPloop = Uglue

UPloop = UYM

QM

0 0.2 0.4 0.6 0.8 1

Quark chemical potential µ / µc
0

0

0.2

0.4

0.6

0.8

1

T
e
m

p
e
ra

tu
re

T
 /

T
c0

UPloop = UYM

UPloop = Uglue

Figure 4.30.: Phase diagram with the Yang-Mills Polyakov-loop potential and the
unquenched one, in absolute units (left) and relative units (right). The
(lighter) crossover lines are the pseudocritical values of the subtrac-
ted chiral condensate. The thiner, outer lines around the first-order
transition lines retrace the extension of the metastable regions.

Having found a crossover at small chemical potentials and a first-order transition at
small temperatures, the next step is to investigate the complete T − µq phase diagram
considering the before mentioned observations.

The phase diagram of the PQM model is shown in Fig. 4.30. The effect of unquench-
ing the Polyakov-loop potential onto the phase diagram is displayed by the compar-
ison of the results using the Yang-Mills Polyakov-loop potential and its quark-enhanced
counterpart. The (lighter) crossover lines are the pseudocritical values of the subtrac-
ted chiral condensate. These results are obtained using the polynomial-logarithmic
Polyakov-loop potential with a density-independent critical temperature of 240MeV
and mσ = 400MeV as adjusted to lattice results at zero density.

For all values of the quark chemical potential µq = µu = µd = µs, unquenching
the Polyakov-loop potential has the consequence of lowering the transition temperature
which has its origin in the effect of lowering the transition scale of the Polyakov-loop.
In the zero temperature limit T → 0 the Polyakov-loop potential becomes independent
of its variables U (Φr,Φi;T = 0) = 0 ∀ (Φr,Φi) since gluon excitations are entirely in-
dependent of the quark chemical potential and therefore, the phase structure is that of
the Quark-Meson model that is shown as well in Fig. 4.30.

With all uncertainties adjusted to lattice data at zero quark chemical potential, there
remains a region at large chemical potentials where the phase transition is discontinuous
and the order parameters show a jump. The thiner, outer lines around the first-order
transition line retrace the extension of the metastable region, so to which extent the
one phase remains as local minimum while the system is in the other phase which is
the global minimum. The coordinates of the critical endpoints (CEP) are (T, µ)CEP =

(65, 276) MeV with the unquenched Polyakov-loop potential and (94, 283) MeV with
the Yang-Mills potential. So the main effect of including the quark backreaction onto
the gluons is to lower the temperature of the CEP at a similar chemical potential.
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4.2. Thermodynamics and Phase Structure at nonzero Chemical Potential

At these large values of the quark or baryon chemical potential (µb = 3µq), baryons are
the relevant degrees of freedom that are not contained in the PQM model. To implement
baryons as bound states of quarks and diquarks using the Fadeev and Bethe-Salpeter
equations, see e.g. Refs. [214–217], to the PQM model remains for future work. Even
this region of the phase diagram at large chemical potentials and small temperatures is
speculative within the present model, general methods to analyse the properties of this
region will be derived in the next chapter.

An important aspect of the phase diagram at small chemical potentials is the curvature
of the transition line. This can also be extracted from lattice calculations that are
hampered at nonzero quark chemical potentials due to the sign problem. In the right
part of Fig. 4.30 the transition lines are normalised by the respective pseudocritical tem-
peratures at zero density, T 0

c and the critical chemical potential at zero temperature,
µ0c to allow for a comparison of the curvatures. One sees that applying the unquenched
Polyakov-loop potential lowers the pseudocritical temperature relatively stronger with
increasing chemical potential such that the curvature of the phase transition line in-
creases.

It is a general observation that in effective models the pseudocritical temperature
drops faster with increasing baryon chemical potential compared to the results of func-
tional [218] and lattice [219] calculations. This discrepancy is not cured by unquenching
the Polyakov-loop potential. One ingredient that brings the result of the curvature
of the crossover line closer to the one of nonperturbative calculations is the inclusion
of meson fluctuations in a renormalisation group framework [76, 78]. In Ref. [220] it
was shown that including repulsive vector interactions can lead to a slope of the phase
transition line that agrees with the result of lattice calculations. But one should be
aware that by including the vector meson exchange, the model fails to describe lattice
results of quark number susceptibilities as was shown in Refs. [221,222]. Therefore, it is
important to overcome the later failure to investigate the impact of vector interactions
onto the curvature of the crossover line and the nature of the transition at large chemical
potentials.

The influence of lowering the critical temperature of the Polyakov-loop potential with
increasing density according to Eq. (3.52) has a smaller effect on the phase diagram
than applying Eq. (3.58) to unquench the Polyakov-loop potential, as can can be seen
in the comparison of Figs. 4.30 and 4.31. To illustrate the impact on the curvature of the
transition line, in the right part of Fig. 4.31 the square of the chemical potential is chosen
as abscissa. In this unit the pseudocritical temperature follows a straight line for small
values of the chemical potential. Lowering the glue critical temperature with increasing
chemical potential has the impact of decreasing the pseudocritical temperature such that
the curvature of the transition line gets larger. The location of the critical endpoint is
lowered further in temperature to (T, µ)CEP = (47, 280) MeV when the glue critical
temperature is decreased with growing chemical potential.

The analysis of how well the different parametrisations of the Polyakov-loop potential
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Figure 4.31.: Phase diagram for a constant critical scale of the unquenched Polyakov-
loop potential and with the density dependence of Eq. (3.52), in abso-
lute units (left) and relative units (right).

are adjusted to lattice data of Yang-Mills theory in Chap. 3.2 and the investigation
of the impact of the parametrisations on the evolution of order parameters and ther-
modynamics at zero chemical potentials when the potential is coupled to quarks and
mesons in Sec. 4.1.4, showed that the results show similar qualitative behaviour (except
of the trace anomaly of pure gauge theory and the full model with the parameters of
Ref. [69] in the polynomial parametrisation) but differ quantitatively. Figures 4.32 and
4.33 compare the phase diagrams for the different parametrisations using the parameters
as they were determined in Sec. 4.1.4 to get as close as possible to the lattice results
for the order parameters, thermodynamics and pseudocritical temperatures. Character-
istics are the lower pseudocritical temperatures with the parameters of Ref. [80] in the
polynomial Polyakov-loop potential and that the polynomial-logarithmic Polyakov-loop
potential leads to larger transition temperatures from medium chemical potentials on.
The former observation is the result that only this potential allowed to achieve a pseudo-
critical temperature that corresponds well to the lattice result together with a relative
evolution of the analysed observables that matches the lattice data. The overall shape
of the phase boundaries is similar and only the critical endpoint with the polynomial-
logarithmic Polyakov-loop potential shows a larger deviation than the difference between
the other parametrisations. The coordinates are summarised in Table 4.7. The exten-
sions of the metastable regions for the different parametrisations of the Polyakov-loop
potential will be compared below. The fact that the Polyakov loop is unbounded with
the unquenched polynomial Polyakov-loop potentials at small temperatures and large
chemical potentials does not affect negatively the phase structure nor the location of
the critical end point.

In Sec. 4.1.3 it was shown that also omitting the contribution of fermionic quantum
fluctuations (3.11), one can achieve results for thermodynamics, order parameters and
the pseudocritical temperature at zero density that are in close agreement with lattice
results as long as the unquenched Polyakov-loop potential is considered. One could
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Figure 4.32.: Phase diagram for the different parametrisations of the Polyakov-loop
potential, in absolute units.
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Table 4.7.: Temperature and quark chemical potential coordinates of the critical end
points found with the different parametrisations and parameter sets of
the Polyakov-loop potential.

Poly-BNL Poly-TUM Log Poly-Log
T glue
cr [MeV] 270 240 240 240

(T, µ)CEP [MeV] (36, 282) (45, 279) (47, 280) (65, 276)
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Figure 4.34.: Phase diagram with and without fermionic quantum fluctuations at
one loop, in absolute units (left) and relative units (right).

recognise in Figs. 4.11 and 4.12 that the crossover in this standard mean-field analysis
is nevertheless slightly steeper that in the extended mean-field calculation that includes
the fermionic quantum fluctuations at one loop order. However, even the difference in
the steepness of the transition at zero chemical potentials is small, neglecting the fermi-
onic quantum fluctuations has tremendous implications on the location of the critical
endpoint and the extent of the metastable region. The phase diagrams corresponding
to the MF and eMF model adjusted at zero density in Figs. 4.11 and 4.12 are com-
pared in Fig. 4.34. The curvature of the phase transition line is similar in both cases
with a slightly larger curvature from medium chemical potentials on when the fermi-
onic vacuum loop is taken into account. But the location of the critical endpoint is
shifted to much smaller values of the chemical potential when the field-dependent nor-
malisation term of the one-loop contribution from quarks is neglected, as was previously
observed in Ref. [77] using the Yang-Mills Polyakov-loop potential. Its coordinates are
(T, µ)CEP = (137, 135) MeV. The location of the critical end point at a smaller chem-
ical potential entails that the transition is steeper at larger chemical potentials and
the extent of the metastable region therefore much larger. Hence, it will be import-
ant to consider the impact of the fermionic quantum fluctuations in the analysis of the
first-order transition region in Chap. 5.
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(right).
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Figure 4.36.: Metastable regions of the PQM model for different combinations of
masses of the σ-meson and glue critical temperatures. Their extension
is compared in absolute units (left) and with respect to the transition
line (µc) and the temperature of the critical end point TCEP (right).

In Figs. 4.26 and 4.25 of Sec. 4.1.6 it was shown that different combinations of the
mass of the σ-meson and glue critical temperatures lead to a relative evolution of ther-
modynamics and order parameters that is consistent with lattice data. At zero density
the effect of changing these parameters within their uncertainty is to shift the trans-
ition region. This implication is also seen over the hole phase diagram as is shown in
Fig. 4.35. Once the axis are normalised as on the right side of Fig. 4.35 the location
of the transition lines agree but the location of the critical endpoint is sensitive to the
parameters. For mσ = 500MeV and T glue

cr = 270MeV the critical endpoint is shifted to
(T, µ)CEP = (30, 310) MeV. So the first order region as well as the extent of the meta-
stable region shrink when the mass of the σ-meson and the glue critical temperature are
increased. The later observation can be seen in more detail in Fig. 4.36 which displays
the metastable region in detail on the left and analyses its relative extent on the right.
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Figure 4.37.: Metastable regions of the PQM model with the Yang-Mills Polyakov-
loop potential and the unquenched one. Their extension is compared
in absolute units (left) and with respect to the transition line (µc) and
the temperature of the critical end point TCEP (right).

In general, the two minima of the potential that are degenerate on the coexistence
line persist as a global and a metastable local minimum in some region of the phase
diagram around the phase transition line. Going away from the coexistence line, the
intervening maximum approaches the local minimum until these two extrema meet and
form an inflection point that defines the spinodal line.

Figure 4.37 compares the extension of the metastable region that is limited by the
spinodal lines using the unquenched Polyakov-loop potential and the Yang-Mills po-
tential. The absolute location of the critical endpoint and therefore of the metastable
region differs except for the lowest temperatures when the Polyakov-loop independent
Quark-Meson limit is reached. But the relative extent is similar as is shown on the
right side of Fig. 4.37. Here, the from changes from a convex shape with the Yang-
Mills Polyakov-loop potential to a concave form when the matter backreaction to the
Polyakov-loop potential is considered.

The zoom into metastable regions achieved with different parametrisations and para-
meter sets of the Polyakov-loop potential shown in Fig. 4.38 shows in more detail that
the critical endpoint with the polynomial-logarithmic glue potential deviates from the
location of the critical endpoint calculated with the other Polyakov-loop potentials. But
once the metastable regions are corrected for the different coordinates of the critical en-
dpoints, all parametrisations and parameter sets lead to an extent of the metastable
region that is largely independent of the form of the Polyakov-loop potential. This is
shown in Fig. 4.39. Furthermore, one finds that the degree of metastability that can
be reached is relatively modest. The extent of the metastable region shows an asym-
metry for the lowest temperatures in which the spinodal line in the chirally restored
and deconfined phase has a larger distance to the coexistence line than the spinodal in
the chirally restored and confined phase. This observation on the asymmetric extent of
the metastable region holds as well for the description of Yang-Mills theory with the
different Polyakov-loop potentials as could be seen in the right part of Fig. 3.2 and in
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Figure 4.38.: Metastable regions of the PQM model for the different parametrisations
of the Polyakov-loop potential.
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Figure 4.40.: Metastable regions of the QM model with and without fermionic
quantum fluctuations at one loop. Their extension is compared in
absolute units (left) and with respect to the transition line (µc) and
the temperature of the critical end point TCEP (right).

the pure chiral Quark-Meson model as is shown in Fig. 4.40.

To analyse the impact of the fermionic vacuum loop contribution (3.11) onto the loc-
ation and extent of the metastable region, Fig. 4.40 shows results for the Quark-Meson
model. Neglecting centre symmetry has the advantage that different choices of the
Polyakov-loop potential, glue critical temperature and for the mass of the σ-meson as
in Fig. 4.34 don’t interfere with the effect of considering or not the medium independ-
ent contribution of the quark loop. The left part of Fig. 4.40 confirms the observation
that fermionic vacuum fluctuations are crucial for the nature of the phase transition
at large densities. The region of the phase diagram where the transition is discontinu-
ous is significantly larger when the fermionic quantum fluctuations to the in-medium
effective potential are neglected. Furthermore, the transition is much stronger at small
temperatures and large chemical potentials in that case. Therefore, it is important to
consider the effect of fermionic vacuum fluctuations when investigating systems that
probe the low temperature and high density region of the phase diagram like compact
stars and supernova explosions, see e.g. Refs. [9, 10]. Important for the properties of
the transition in these systems is as well the extent of the meltable region. The right
part of Fig. 4.40 entails that it differs significantly between the mean-field and extended
mean-field analysis.

In summary, in the present study the biggest impact on the nature of the transition
at large densities and small temperatures have the fermionic vacuum fluctuations. For
the position of the transition line unquenching the Polyakov-loop potential has the
biggest effect, even if the backreaction of the quarks onto the gluons is considered as
density independent. So considering the quark-enhanced Polyakov-loop potential proved
to be decisive to find results for the phase structure at zero density that agree with
results of lattice calculations, the curvature of the transition line of the PQM model

96



4.3. Thermodynamics and Phase Structure at nonzero Isospin

with the unquenched Polyakov-loop potential remains larger than in nonperturbative
functional and lattice calculations. This entails that the density dependence of the
quark backreaction has to analysed in more detail and further ingredients to the effective
model have to considered, such as repulsive interactions by exchange of vector mesons
and meson fluctuations.

In Chap. 5 the properties of the phase transition in the high density and low temper-
ature region of the phase diagram will be analysed. But before, the application of the
model at nonzero isospin will allow for another and more detailed test of the reliability
of Polyakov-loop extended chiral models in systems containing other control parameters
besides the temperature.

4.3. Thermodynamics and Phase Structure at nonzero
Isospin

In this section the phase structure of strongly interacting matter at nonvanishing isospin
will be investigated. Vanishing quark chemical potential but nonzero isospin has the
advantage that the results can be compared directly to lattice data since this case is
free of the sign problem [51,52].

In the description of strongly interacting matter in its natural environment isospin
should not be overlooked. Using Au or Pb beams in heavy ion collisions, the proton
to neutron ratio is ∼ 2/3. In astrophysical environments the initial proton fraction
in supernovae is 0.4, reduces to 0.2 and finally reaches values of less than 0.1 in cold
neutron stars. In the universe a large asymmetry in the lepton sector is allowed (−0.38 <

µν/T < 0.02) [85], which can shift the equilibrium conditions at the cosmological QCD
transition [86]. Hence, in all systems mentioned above matter does not consist of equal
amounts of protons and neutrons, i.e. one has a nonvanishing isospin density.

Effective chiral models, combined with the different versions of the Polyakov-loop
potential, usually have their parameters adjusted to provide a good description of lat-
tice data at zero density. Testing the model built in this fashion against lattice data
at nonzero isospin is crucial to understand whether such an effective model provides
qualitative and quantitative accurate descriptions of the phase structure of strong in-
teractions in general, when also other control parameters besides the temperature are
involved.

To date, most of the calculations at nonvanishing isospin were done with only two
quark flavours, neglecting strange quarks as relevant degrees of freedom at the energy
scale of the chiral and deconfinement transition [43–45, 223–237]. Furthermore, lattice
calculations at nonzero isospin were performed so far only with unphysical heavy quark
masses [43–45]. The impact of the quark mass on the deconfining critical temperature
at nonzero isospin was investigated in Refs. [223,224], using a framework that combines
chiral perturbation theory to describe the low-energy sector with the phenomenological
fuzzy bag model for high energies, showing that quark masses play a relevant role.
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Previously, there have also been investigations with the hadron resonance gas model
[238], the O(2N)-symmetric ϕ4-theory [239], the Nambu–Jona-Lasinio model [225–233,
240], the Quark-Meson model [234], and its Polyakov-loop extended versions [235–237].

One of the aspects in the extension of the phase diagram to nonzero isospin is the
arising of a new phase. Charged pions couple to the isospin chemical potential and at
µI = µu−µd = mπ there is the onset of pion condensation [87]. The running of the pion
mass in the medium shifts the appearance of pion condensation to larger temperatures
and densities. Depending on the analysed region of isospin, temperature and quark
chemical potential, pion condensation must be taken into account [43,44,223,224,227–
235,239,240] or not [45,225,226,237,238].

The omission of pion condensation in the presented framework limits the upper value
of isospin chemical potential that can considered to moderate isospin chemical potential
values.

In difference to two-flavour investigations, in the case of 2+1 quark flavours one has to
choose the quark chemical potential of strange quarks as well. In the case of supernovae
and in the early universe there exists a local β-equilibrium with respect to weak flavour-
mixing interactions so that µs = µd. In heavy ion collisions no net strangeness can
be produced and the strange quark chemical potential has to be adjusted accordingly.
However, the case that can be considered in lattice calculations avoiding the sign problem
corresponds to the choice µs = 0. Therefore, for µu = −µd results for the case with
vanishing strange chemical potential will be shown which corresponds in this limit also
to the heavy ion case of zero net strangeness. Differences to µs = µd will be briefly
discussed. The result for nonvanishing light quark chemical potential will be presented
for astrophysical environments (µs = µd).

Figure 4.41 shows the impact of moderate isospin on the temperature dependence of
the order parameters and thermodynamics at vanishing quark chemical potential. One
can see from the plot that a nonzero isospin brings the transition to smaller temperat-
ures. Furthermore, although the chiral condensate decreases appreciably, the pressure
hardly rises and the maximum of the interaction measure experiences a certain increase.
Qualitatively, this dependence of the chiral condensate and pseudocritical temperat-
ure on the isospin is also seen in the lattice calculation of Ref. [43]. Furthermore, one
observes that the chiral condensate gets smaller with increasing isospin for all temperat-
ures. This means a shrinking of the ‘chiral circle’ of the tilted Mexican hat potential with
increasing isospin due to an increasing contribution of the thermal quark fluctuations.
At a isospin chemical potential beyond the onset of pion condensation an additional
effect would be a rotation from the chiral condensate to the pion condensate [231].

This is also reflected in Fig. 4.42 where the evolution of the order parameters (left)
and all relevant thermodynamic quantities (right) as functions of the isospin chemical
potential for vanishing quark chemical potential and at the pseudocritical temperature
Tc (µI = 0) (therefore, the order parameters start at around 0.5) are shown. One can see
that the chiral condensate of the light quarks decreases for increasing isospin chemical
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Figure 4.41.: Subtracted chiral condensate, normalised pressure and trace anomaly
as functions of the temperature for different isospin at vanishing net
quark density. The arrow indicates from which temperature on the
in-medium pion mass exceeds the isospin chemical potential in the cal-
culation with µI = 1.5mπ where mπ = 138MeV is the vacuum pion
mass. From Ref. [3].
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Figure 4.42.: Order parameters (left) and thermodynamic quantities (right) as func-
tions of the isospin at Tc (µI = 0) and vanishing quark density. The
arrows indicate from where on the isospin chemical potential exceeds
the in-medium pion mass. From Ref. [3].

potential. On the other hand, chiral symmetry tends to remain broken in the strange
quark sector, since the strange quark chemical potential is zero. Only the nonzero
temperature reduces the strange chiral condensate and the coupling to the light quarks
induces a slight decrease of this condensate for increasing isospin chemical potential. The
Polyakov-loop observables (Φ, Φ̄) and Φr coincide at vanishing quark chemical potential.
The different impact of a finite chemical potential of the up quarks µu onto Φ and Φ̄ in
Eq. (3.12) is just the opposite of the effect of the down quarks with µd = −µu. This
restriction onto Φ = Φ̄ at nonzero isospin but vanishing quark density implies that the
sign problem is not present in this case. In the right part of Fig. 4.42 one sees that
the pressure and the trace anomaly change moderately with isospin at vanishing quark
chemical potential but the energy density is more sensitive to the variation in isospin.

The dependence of the phase structure on the isospin chemical potential is shown
in the phase diagram of Fig. 4.43. It shows the decrease of the pseudocritical temper-
ature with the isospin chemical potential at vanishing quark chemical potential. The
results are confronted to the recent lattice simulation of Ref. [45] and to results of
Ref. [223] where the authors combine chiral perturbation theory, including nucleons,
for the low-energy sector with the phenomenological fuzzy bag model at high energy.
The pseudocritical temperatures of the lattice calculation [45] and of the model calcula-
tion [223] are that of the deconfinement transition. For the PQM model calculation the
deconfinement transition line coincides with the chiral transition presented in Fig. 4.43.
Note that in all model calculations the pseudocritical temperatures are linear functions
when plotted against µ2I in agreement with lattice data [43,45].

All these calculations are performed with different pion masses. To correct for the
effect of the pion mass onto the abscissae of the temperature-isospin phase diagram, the
isospin chemical potential can be normalised by the individual pion masses. So pion
condensation at zero temperature where no medium modifications are present sets in
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at the same point µI = mπ in all calculations. This removes a general offset between
calculations with different pion masses. One observes that in the range before the onset
of pion condensation the curvature of the transition line is much more sensitive to the
pion mass than to the number of quark flavours.

The arrows in Fig. 4.43 indicate the points on the phase transition lines where the
isospin chemical potential exceeds the in-medium pion mass, so that condensation of
charged pions should no longer be neglected. The upper line of Ref. [223] includes a range
where a superfluid pion condensate is present (short dot-dashed line), but the curvature
of the transition line is hardly affected by this correction. The lattice calculation, on
the other hand, is performed for values of the isospin chemical potential below the onset
of pion condensation.

Figure 4.43 contains results for 2+1 and 2 flavours and physical pion mass (light blue,
solid curve and green, dashed curve) and for 2 flavours and mπ = 400 MeV (dark blue,
dotted curve), the latter being more appropriate to compare to the currently available
lattice data [45]. In the case with mπ = 400MeV, the dependence of the nucleon mass
on the pion mass is considered according to Ref. [241] and therefore, the scalar coupling
g is increased by a factor of 1.25. The coupling λ is also adjusted to preserve the mass
difference m2

σ −m2
π in the vacuum.

The results for 2 flavours and mπ = 400 MeV (dark blue, dotted line in Fig. 4.43) show
a decrease with µI that is significantly larger than the one obtained on the lattice. This
corresponds to the observation that the pseudocritical temperature drops faster with
increasing quark chemical potential in low-energy effective models compared to func-
tional methods [218] and the lattice [219] as discussed in the previous section. Further
ingredients that can alleviate this discrepancy are repulsive vector interactions [220] and
the inclusion of meson fluctuations [76, 78]. Besides this investigation at nonvanishing
isospin, Polyakov-loop extended chiral models seem to face difficulties describing lat-
tice data also when one considers the dependence of the critical temperature on quark
masses or on a magnetic field, see e.g. Refs. [242,243].
Some studies compared the curvature of the crossover line along the isospin and light
quark chemical potential axes within their calculations. While in older investigations the
pseudocritical temperatures are almost identical along both axes [43,225,238], Ref. [45]
found a difference of about 10 % of the slope parameters. The framework applied here
implies the former result. To address this issue thermal fluctuations of the pion fields
should be considered which remains for future work [11].

The results presented here and those of Ref. [223] at two different pion masses illustrate
the impact of the pion mass on the phase transition line. A larger pion mass increases the
curvature of the transition line significantly. Hence, the solid line in Fig. 4.43 provides
a lower limit of the pseudocritical temperature at nonzero isospin chemical potential for
the case of 2 + 1 quark flavours and physical quark masses. Results from the lattice in
the physical limit would be very helpful to constrain further the applicability of effective
chiral models at nonzero densities.
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Figure 4.44.: Phase diagram, three dimensional in temperature, quark chemical po-
tential and isospin space.

The impact of the pion mass on the transition line is much larger than that of adding
strange quarks to the system. The pseudocritical temperatures for Nf = 2 lie relatively
close but below the Nf = 2 + 1 result and the transition temperatures only deviate by
two percent just before the onset of pion condensation.

An effect of similar magnitude and in the same direction has a nonvanishing strange
quark density with µs = µd, as is the case in the astrophysical and cosmological scen-
arios. It increases the curvature of the transition line. For instance, the value of the
transition temperature in the region just before the onset of pion condensation becomes
two percent smaller.

The plot in Fig. 4.44 shows the global, three dimensional phase diagram. The kink in
the phase transition surface at small temperatures, large quark chemical potential and
moderate isospin is due to the splitting of the chiral transition in the up and down quark
sectors. When a nonzero value for the chiral condensate σ3 arises the evolution of the
condensates of up quarks (σu = σl + σ3) and down quarks (σd = σl − σ3) splits around
the average light quark condensate σl = (σu + σd) /2 as is discussed below in Fig. 4.47.
Since the transition surface in Fig. 4.44 is defined by the peak of the susceptibility
of the subtracted chiral condensate, the transition shifts depending on the dominant
contribution. A criterion that would lead to a smooth transition surface would be to
use the half-value of the condensates.
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Figure 4.45.: First order region of the three dimensional phase diagram in temper-
ature, quark chemical potential and isospin space.

At zero isospin there remains a small region at large quark chemical potential where
the transition is of first order that is shown in more detail in Fig. 4.45. This first-order
region shrinks with increasing isospin. With growing isospin the quark chemical poten-
tial of the down quarks gets reduced and therefore, the phase transition gets weaker.
The critical endpoint disappears at not so large values of the isospin chemical poten-
tial: from an isospin chemical potential of µI ≈ 80MeV on, the transition is a smooth
crossover for all quark chemical potentials.

In the case of a quark-hadron phase transition during the evolution of a supernova
[19,244,245], the system evolves from a hadronic phase with µI = µcharge ≈ 100MeV and
T ≈ 50MeV to a quark phase with µI ∼ T ∼ O (1MeV). So, within the uncertainties
of the present description, at large quark chemical potential the phase transition in
supernovae could be of first order, which would have several observable implications.
One observable signal would be a second peak in the neutrino signal dominated by
the emission of antineutrinos and with a significant change in the energy of emitted
neutrinos [18,246].

That a nonvanishing isospin can have an impact even on the nature of the phase
transition is shown in Fig. 4.46. While it is of first order at small temperature and
large quark density at zero isospin it becomes again a crossover at large enough isospin.
So the reduction of the down quark chemical potential with increasing isospin (µd =

104



4.3. Thermodynamics and Phase Structure at nonzero Isospin

0 200 400 600 800 1000

Quark chemical potential [MeV]

0

0.2

0.4

0.6

0.8

1

Φr

σs / fπ

σl / fπ

+

0 200 400 600 800 1000

Quark chemical potential [MeV]

0

0.2

0.4

0.6

0.8

1

Φr

σs / fπ

σd / fπ

σu / fπ

+

Figure 4.46.: Evolution of the chiral condensates and the Polyakov loop at a temper-
ature of 10 MeV with increasing quark chemical potential at vanishing
isospin (left) and at a isospin chemical potential of µI = µu − µd =

mπ = 138MeV.
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Figure 4.47.: Evolution of the chiral condensates and the Polyakov loop at a temper-
ature of 10 MeV with increasing quark chemical potentials at a isospin
chemical potential of µI = µu − µd = mπ = 138MeV.

µl − µI/2)1 is not compensated by the simultaneous further increase of the up quark
chemical potential (µu = µl + µI/2). The difference of the chemical potentials of up
and down quarks leads to a splitting in the evolution of the chiral condensates of up
and down quarks. To compensate for the isospin chemical potential the down quark
sector requires a larger average quark chemical potential so that chiral symmetry gets
restored. This implies that the decrease of the chiral condensate of the down quark
sector is shifted towards larger quark chemical potentials compared to the up quark
chiral condensate.

In terms of the meson fields σ0, σ3 and σ8 the splitting of the chiral condensates of
up and down quarks is created due to a nonvanishing expectation value of σ3 in the
transition region. This is shown on the right of Fig. 4.47. While the chiral condensate
σ3 takes a nonzero value the evolution of the condensates of up quarks (σu = σl + σ3)

1With µl = (µu + µd)/2 being the average chemical potential of the light quarks.
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Figure 4.48.: Evolution of the chiral condensates and the Polyakov loop at the
pseudocritical temperature with increasing up quark chemical potential
at vanishing down quark chemical potential, so along µI = 2µl. The
nonvanishing value of the condensate σ3 (shown additionally on the
right) induces the splitting of the chiral condensates of up and down
quarks and their deviation from the average light quark condensate.

and down quarks (σd = σl − σ3) splits around the average light quark condensate σl =
(σu + σd) / 2.

The splitting between the light chiral condensates becomes enhanced if one considers
the evolution of the order parameters along µl = µI/2, so at vanishing chemical potential
of down quarks but increasing up quark chemical potential. This is displayed in Fig. 4.48.
With increasing isospin the difference in the chiral condensates of up and down quarks
develops and increases. The quark chemical potential drives chiral symmetry restoration
in the up quark sector but the vanishing chemical potential of down quarks implies a
residual symmetry breaking in the down quark sector.

Assuming local β-equilibrium with respect to weak flavour-mixing interactions so that
µs = µd not only the down quark chemical potential vanishes but also µs = 0 so that
a change in the strange chiral sector is only induced due to the coupling to the chiral
condensates of the light quarks and the Polyakov loop and the chiral condensate in the
strange sector tends to stay constant.

In conclusion, this section presents predictions on the dependence of order paramet-
ers and thermodynamics on a isospin chemical potential for 2+1 quark flavours and
physical quark masses. The investigation of the three dimensional temperature - isospin
chemical potential - quark chemical potential phase diagram showed that it is import-
ant to consider the isospin of a system to determine the nature of the phase transition,
especially at low temperatures and large quark chemical potential. The comparison of
the isospin dependence of the curvature of the phase transition line with recent lattice
data confirmed the conclusion of Sec. 4.2 that the model in its here presented form faces
difficulties describing nonperturbative results for the transition temperature when one
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4.3. Thermodynamics and Phase Structure at nonzero Isospin

considers further dimensions besides the temperature as nonvanishing quark chemical
potential, isospin or magnetic fields [243]. Possible improvements on this situation can
be the inclusion of repulsive vector interactions, considering meson fluctuations within
the renormalisation group framework and investigating the medium dependence of the
quark-backreaction on the Polyakov-loop potential.
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5. Nucleation

5.1. Homogeneous Thermal Nucleation

The dynamics of a first-order phase transition at small metastability as found in the
PQM model in Sec. 4.2, can be described by phenomenological droplet nucleation models
[91, 247–250]. In such a family of models, the transition between a metastable and a
stable phase takes place by the appearance and growth of domains (droplets or bubbles)
of the stable phase inside the metastable phase. The phase conversion is finished when
these domains grow and coalesce completely. In any case, a minimum-sized bubble is
needed for the beginning of the phase transition, as can be inferred from the following
heuristic argument. The bulk free energy density of the metastable phase, often called
‘false vacuum’, is by definition higher than that of the stable phase, the ‘true vacuum’.
Therefore, the conversion of a given fraction of the system into the stable phase makes
the bulk free energy of the whole system lower. However, given that such a conversion
takes place within a connected domain of the system, most likely in a spherical bubble
[251], an interface is needed in order to separate the stable interior from the metastable
exterior of this domain. Once the creation of an interface represents an energy cost, the
mechanism of phase conversion through bubble nucleation settles a competition between
the free energy gain from the phase conversion of the bulk and the energy cost from
the creation of an interface. Roughly, one can say that the free energy shift due to the
appearance of a spherical bubble of the stable phase of radius R inside a metastable
system is

∆Fb =

[
4π

3
R3fstable + 4πR2fwall

]
−
[
4π

3
R3fmetastable

]
=

4π

3
R3∆f + 4πR2fwall , (5.1)

where fstable and fmetastable are, respectively, the bulk free energy densities of the stable
and metastable phases, and fwall is the surface energy density of the bubble wall, that is,
the surface tension of the interface between the two phases. This formula clearly shows
the competition between bulk (negative) and surface (positive) contributions. Notice
that the shift in the bulk free energy, ∆f ≡ fstable − fmetastable < 0 is proportional to
the volume of the bubble, while the surface free energy cost is proportional to its area.
For the nucleation of small bubbles, the energy cost is higher than the energy gain.
Therefore, small bubbles shrink. On the other hand, a very large bubble represents
a large bulk energy gain, which is higher than the surface energy cost in creating the

109



Chapter 5. Nucleation

bubble. As a consequence, large bubbles tend to grow even more and to occupy the
whole system, completing the phase transition. Consequently, this energy competition
implies the existence of a so-called ‘critical bubble’: any bubble smaller than the critical
bubble will shrink and any larger bubble will grow and drive the phase conversion. For
this reason, the critical bubble is the crucial object in the theory of dynamical first-order
phase transitions of slightly metastable systems.

The appearance of a bubble, critical or not of the stable phase inside a metastable
system is a natural consequence of the never-ending thermal and quantum fluctuations
of any thermodynamical system sufficiently close to a first-order phase transition. As
just discussed, each bubble created by these fluctuations may grow or shrink, depending
on its energy budget with regard to a homogeneous metastable phase. One should also
have in mind that larger fluctuations (like a critical bubble) should be less common than
smaller ones. Although small bubbles are frequently created, they rapidly disappear and
do not contribute to the process of phase conversion with the exception in a weak first-
order phase transition, when coalescing subcritical fluctuations [252, 253] can complete
the phase transition without the nucleation of critical bubbles. Only those fluctuations
that have a size equal to or larger than the critical bubble have a decisive role. The
smallest and therefore the most probable among them is the critical bubble. This means
that the mean time that it takes for random fluctuations to create a critical bubble is
the shortest time scale for the creation of a lasting domain of the stable phase, which is
the dynamical seed of the phase conversion.

Assume that the system is in a metastable state in quasi-equilibrium with a reservoir
with intensive coordinates generically represented by R such as temperature, quark
chemical potentials, etc. Being metastable, bubbles of the stable phase with different
sizes randomly appear and subsequently disappear. This process keeps happening until
a critical bubble is nucleated and the phase conversion effectively starts. It can be shown
by different approaches that the rate at which critical bubbles are nucleated per unit
time, per unit volume can be expressed in the form [91,92,247,254,255]

Γ (R) = P(R) exp

[
−∆Fb(R)

T

]
, (5.2)

where T is the temperature of the system in equilibrium with the reservoir. The prefactor
P(R) corresponds to the probability for a critical bubble-like field fluctuation ϕb to be
generated and grow [91–93]. The exponential factor in Eq. (5.2) is a Boltzmann factor
in which ∆Fb(R) is the shift of free energy as compared to the homogeneous metastable
phase due to the formation of a critical bubble. It can be easily shown that ∆Fb(R)

can be cast as in Eq. (5.1) for a small degree of metastability, where the thin-wall
approximation is valid [256] and where it is proportional to f3wall/(∆f)

2. In spite of
the general importance of the prefactor in Eq. (5.2), its specific form is not crucial for
the nucleation rate at a small degree of metastability. Close to the coexistence of both
phases, it shows a proportionality to f7/2wall/∆f , so that the nucleation rate is strongly
dominated by the exponential factor [92]. For this reason, it will be enough to focus on
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the free energy shift ∆Fb in the following.
The process of bubble nucleation in an impurity-free environment is called ‘homo-

geneous nucleation’. In this work we shall only consider the process of homogeneous
nucleation, which is not the most common in natural environments, such as in a boiling
liquid. In such cases, the presence of impurities can drastically accelerate the nucle-
ation of bubbles, and the process is called ‘inhomogeneous nucleation’ which is also
the case when subcritical thermal fluctuations can dominate [252, 253]. The process of
inhomogeneous nucleation can be orders of magnitude faster than homogeneous nucle-
ation because impurities, like dust often reduce the free energy cost for the formation
of a critical bubble, raising the probability for its formation [257,258]. This will not be
considered here for two reasons. First, the following approach will underestimate the
nucleation rate and inhomogeneities could only increase this rate, and second, the used
approach will be kept as simple as possible.

5.2. The coarse-grained Free Energy for a single scalar
Order-Parameter

As discussed in Refs. [93, 256, 259, 260], the nucleation rate of critical bubbles can be
calculated from the microphysics using semiclassical methods in Euclidean thermal field
theory. It is important to consider the effective action in the problem of bubble nuc-
leation, and not simply the effective potential, since a critical bubble is clearly a non-
homogeneous field configuration. A simple model to discuss the derivation of the free
energy shift due to the formation of a critical bubble is the Euclidean Lagrangian density
for a single scalar order-parameter field called ϕ,

LE =
1

2
(∂µϕ)

2 + V (ϕ) . (5.3)

In this simple model, one assumes that the order parameter for a system in thermody-
namical equilibrium is given by the expectation value of ϕ. In general, it depends on
the properties of the reservoir, such as its temperature or chemical potential, which are
here generally denoted by R. The corresponding action is

SE (ϕ,R) =

∫ β

0
dτ

∫
d3xLE [ϕ(x⃗, τ)] . (5.4)

In the high-temperature limit, β ≡ 1/T → 0, the imaginary time dependence of the
order parameter can be neglected [259] and therefore, one can make the approximation

SE (ϕ,R) ≡ F (ϕ,R)

T
, (5.5)

where one identifies

F (ϕ,R) =

∫
d3x

[
1

2
(∇ϕ)2 + Veff (ϕ,R)

]
, (5.6)
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with the coarse-grained free energy of the system. Notice that the coarse-grained free
energy is a sort of dimensionally reduced effective action, so that the tree-level potential
V (ϕ) must be replaced by the medium-dependent effective potential Veff (ϕ,R). In full
thermodynamical equilibrium, the minimisation of the coarse-grained free energy, which
is equivalent to the minimisation of the Euclidean action is achieved by a constant field
configuration ϕ (x⃗) = ϕ0 so that the gradient term vanishes and Veff (ϕ0,R) must be a
global minimum of Veff .

The possibility of a metastable state arises when Veff develops some local minimum
other than the global minimum at ϕ = ϕ0. In this framework, a metastable state is
described by a constant field configuration ϕf that is a local minimum of Veff . For this
reason, this second minimum is often called a ‘false vacuum’ of the potential, while the
global minimum is called the ‘true vacuum’ of the theory, ϕt ≡ ϕ0. A bubble is then
represented as a non-homogeneous spherically symmetric field configuration ϕ (r) such
that [94,95,256]

lim
r→∞

ϕ (r) = ϕf and
dϕ

dr
(0) = 0 , (5.7)

where ϕf is the value of the order-parameter field at the false vacuum. That is, away
from the centre of the bubble, the system is in the metastable phase. But, in the
vicinity of its centre, the field configuration should be close to the stable minimum but
not necessarily exactly on it.

The critical bubble is a saddle point field configuration ϕb that extremises the func-
tional F , i.e., it solves the Euler-Lagrange equation

δF (ϕ,R)

δϕ(x⃗)
= 0 ⇒ ∇2ϕ(x⃗)− ∂Veff

∂ϕ
[ϕ(x⃗)] = 0 . (5.8)

It can be shown [251] for a wide class of Lagrangians, including Eq. (5.3), that the
smallest value of F indeed corresponds to a spherically symmetric solution of Eq. (5.8),
ϕ (r), so that the equation to be solved is therefore the non-linear ordinary differential
equation

d2ϕ(r)

dr2
+

2

r

dϕ(r)

dr
=

∂Veff
∂ϕ

[ϕ(r)] , (5.9)

with the boundary conditions (5.7).
The coarse-grained free energy associated with a spherical bubble ϕb is then

Fb = 4π

∫ ∞

0
dr r2

{
1

2

[
dϕb(r)

dr

]2
+ Veff [ϕb(r)]

}
, (5.10)

which directly follows from Eq. (5.6).
Once the solution for Eqs. (5.9) and (5.7) is found, that is, the critical bubble profile

ϕcrit (r), the shift in the coarse-grained free energy due to the appearance of a critical
bubble,

∆Fb(R) = F (ϕcrit,R)− F (ϕf ,R) , (5.11)
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needed in the nucleation rate (5.2), can be readily calculated.
For a generic effective potential Veff , the solution of Eq. (5.9) with boundary conditions

(5.7) cannot be obtained analytically. However, an approximate solution can be found
when the system is very close to the coexistence line, so that it is slightly metastable
and the thin-wall approximation [254, 256, 259] is applicable. Within these limits, the
coarse-grained free energy shift (5.11) can be well approximated by the expression

∆Fb(R) =
16π

3

Σ3

(∆Veff)
2 , (5.12)

where

Σ (R) ≡
∫ ∞

0
dr

[
dϕcrit(r)

dr

]2
, (5.13)

is the surface tension of the critical bubble interface between the phases. Notice that the
surface tension is calculated directly from the critical bubble solution ϕcrit. It must be
so because the surface tension must contain information about how the system reacts
to inhomogeneities, e.g. a wall. That is, any description of a critical bubble has to
take into account more than just the bulk thermodynamics. This is the reason why the
coarse-grained free energy (5.6) is needed in the formalism for bubble nucleation.

The quantity ∆Veff = Veff (ϕt)−Veff (ϕf ) is the difference between the bulk free energy
in the two homogeneous vacua. In the grand canonical potential, it can be identified
as ∆Veff (R) ≡ −∆p (R), i.e. minus the difference of pressures between the two phases.
Using the thin-wall approximation, the surface tension integral (5.13) can be calculated
without solving for the profile. After changing variables from r to ϕ, one finds

Σ (R) =

∫ ϕf

ϕt

dϕ
√

2Veff(ϕ,R) , (5.14)

so that only the effective potential Veff(ϕ,R) is needed to calculate Σ(R) in the thin-wall
approximation. Notice that Veff is normalised so that its global minimum is located at
ϕ = ϕt = 0. Exactly at the coexistence points, where the thin-wall approximation is
exact, the minima are degenerate with Veff = 0.

As a last remark, one should notice that the surface tension cannot be correctly
defined unless ϕt and ϕf are actual minima of the effective potential. This a further
motivation for the minimisation approach discussed in Sec. 3.3.

5.3. The coarse-grained Free Energy for the
Polyakov–Quark-Meson Model

In order to calculate the free energy shift ∆Fb(R) due to the nucleation of a critical
bubble within the Polyakov–Quark-Meson Model model, one first needs to define the
coarse-grained free energy functional and then identify an order parameter.
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Just as in the case of a single order-parameter, the coarse-grained free energy of the
PQM model has its origin in the in-medium effective action of the theory. In the PQM
model, the Lagrangian density of the chiral fields directly leads to a kinetic term of the
form |∇ϕ|2. The kinetic term for the Polyakov loop variable, however, is not determined
a priori. If one considers the Polyakov loop order parameters Φ and Φ̄ as independent
variables at finite chemical potentials a simple assumption for the kinetic term is [168]

Lkin (Φr,Φi) =
κ2

2
(∂µΦ)

2 +
κ2

2

(
∂µΦ̄

)2
. (5.15)

Effective models cannot do much more than estimate the value of the kinetic para-
meter κ. From dimensional arguments, it is estimated to be κ2 = Nc T

2
0 /g

2
s [80, 168].

For Nc = 3 and assuming αs = g2s/4π ≃ 0.3, one finds κ ≃ 0.9T0, which is of the order
of magnitude of the only scale in the glue part of the model, the transition temperature
T0. Another consistent approach is to consider as an input the surface tension of the
pure gauge SU(3) theory calculated through lattice Monte-Carlo simulations [261, 262]
and in an effective matrix model [179], ΣSU(3) ≃ 0.02T 3

0 . With a given parametrisation
of the Polyakov-loop potential, the parameter κ can then be fitted from the value of the
surface tension at T = T0 using Eq. (5.14). The implications of this second approach in
order to fix the parameter κ will be discussed in Sec. 5.4.2.

The coarse-grained free energy for the Nf = 2 + 1 PQM model can be written as

F
(
σ0, σ3, σ8,Φ, Φ̄;R

)
=

∫
d3x

[
1

2
(∇σ0)2 +

1

2
(∇σ3)2 +

1

2
(∇σ8)2+

+
κ2

2
(∇Φ)2 +

κ2

2

(
∇Φ̄
)2

+Ω
(
σ0, σ3, σ8,Φ, Φ̄;R

)]
. (5.16)

As discussed above, the critical bubble is a solution of the four coupled Euler-Lagrange
equations that arise from the functional (5.16). There is no general procedure to solve
this set of coupled equations, even though some ansatz solutions can be eventually tried
for very simple effective potentials [263].

There are two possible ways in which one can tackle the problem. The first is, of
course, to numerically solve the four equations that follow from the extremisation of
F simultaneously. The exact solution will define a path in the four-dimensional space
of order parameters. Notice, however, that this path is in general not in the ‘valley’
that connects the two minima, as can be intuitively seen from the inverted potential
mechanical analog.

The approach applied in the following will lead to an overestimate of the surface ten-
sion or, equivalently, to an underestimate of the nucleation rate. According to Eq. (5.2),
the higher the free energy shift of the critical bubble, the lower is the nucleation rate, at
least as long as the thin-wall approximation is valid. Now consider that the exact critical
bubble solution is found. Consider also a small deviation from it that follows a differ-
ent path in the order-parameter space. Once the true critical bubble is a saddle point
solution in a functional space, one expects that the distorted path will have a higher
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value of ∆F as compared with the true bubble. Hence, one can artificially constrain the
configuration path to a given arbitrary line that connects the two vacua in the space of
order parameters. This path will give an overestimate of the free energy and, therefore,
of the surface tension. The simplest choice is, of course, a straight line that connects
both minima.1 For example, let σ(1)l and σ(2)l be the values of the σl order-parameter in
the two minima of Ω close to the coexistence line. The interpolation

σ0 = ξσ
(1)
0 + (1− ξ)σ

(2)
0 (5.17a)

is such that for 0 ≤ ξ ≤ 1, the value of σl varies from one minimum to the other. If
the same function ξ is used to parametrise the path followed by the remaining order
parameters,

σ3 = ξσ
(1)
3 + (1− ξ)σ

(2)
3 , (5.17b)

σ8 = ξσ
(1)
8 + (1− ξ)σ

(2)
8 , (5.17c)

Φ = ξΦ(1) + (1− ξ)Φ(2) (5.17d)

Φ̄ = ξΦ̄(1) + (1− ξ) Φ̄(2) , (5.17e)

then this path is a straight line in the four-dimensional order parameter space.
It is then natural to define the four-dimensional order-parameter for the PQM model

as

Ψ⃗ =
(
σ0, σ3, σ8, κΦ, κΦ̄

)
. (5.18)

It can be easily shown from Eqs. (5.17) and (5.18) that if one writes the coarse-grained
free energy (5.16) in terms of the field ξ, it assumes the form

F̃ (ξ,R) =

∫
d3x

[
h2

2
(∇ξ)2 + Ω̃ (ξ,R)

]
, (5.19)

where

h2 =
(
Ψ⃗0 − Ψ⃗1

)2
(5.20)

= (∆σ0)
2 + (∆σ3)

2 + (∆σ8)
2 + (κ∆Φ)2 +

(
κ∆Φ̄

)2 (5.21)

=
1

2
(∆σu)

2 +
1

2
(∆σd)

2 + (∆σs)
2 + (2κ∆Φr)

2 − (2κ∆Φi)
2 , (5.22)

and Ω̃ (ξ,R) is the projection of the effective potential Ω(Ψ⃗,R) along the straight line
defined by Eqs. (5.17). Notice that the coarse-grained free energy F̃ is formally equi-
valent to the single field coarse-grained free energy (5.6) and one can now consider ξ as

1In the whole range of interest in the T − µ plane, always either one or two minima have been found.
The case of three or more minima, which is not encountered, would lead to a much more complicated
analysis.
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a scalar order-parameter. As a result, the surface tension in the PQM model can be
overestimated by

Σ(R) = h

∫ 1

0
dξ

√
2Ω̃(ξ;R) , (5.23)

where the domain of integration ranges from one minimum of Ω and thus of Ω̃ to the
other along a straight line path in the four-dimensional order-parameter space.

Notice that a path other than a straight line in the space of order parameters would
not lead to a simple coarse-grained free energy with the same form as Eq. (5.19). In
the general case, even the definition of the surface tension should be reformulated. This
problem remains for future work.

5.4. Results

The derivation of an overestimate of the surface tension for bubble nucleation within the
thin-wall approximation, Eq. (5.23) shows that it is determined by two contributions.
On the one hand by the distance between the two degenerate minima in the space of the
order parameters, i.e. the factor h and on the other hand by the shape of the effective
potential along the straight line that connects both minima.

To discuss how the different contributions to the Polyakov–Quark-Meson Model build
up the result of the surface tension, Sec. 5.4.1 presents the results within the Quark-
Meson Model and Sec. 5.4.2 discusses the effects of the Polyakov-loop extension.

5.4.1. Nucleation within the Quark-Meson Model

The PQM model reduces to the Quark-Meson Model that governs only chiral symmetry
breaking and restoration by fixing (Φr,Φi) ≡ (1, 0) at all temperatures and densities.
This implies that the coarse-grained free energy and the estimate of the surface tension
become independent of the kinetic parameter κ of the Polyakov-loop order parameters,

Σ
SU(3)
QM (T, µl, µs) =

√
(∆σl)

2 + (∆σs)
2
∫ 1

0
dξ

√
2Ω̃(ξ;T, µl, µs) . (5.24)

The contribution of the light quark sector is already present in the SU(2) Quark-Meson
Model, where the overestimate of the surface tension simply reduces to

Σ
SU(2)
QM (T, µl) =

∫ σ
(2)
l

σ
(1)
l

dσl
√

2Ω(σl;T, µl) . (5.25)

Hence, differences in the surface tension of the two-flavour and 2+1–flavour Quark-
Meson model arise due to a possible modification of the degenerate values of the light
chiral condensate, the additional dimension of the strange chiral condensate and a pos-
sible modification of the effective potential along the straight line connecting the minima.
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Figure 5.1.: Degenerate values of the chiral condensates σl and σs along the first-
order transition line in the two and 2+1–flavour Quark-Meson model.
The left figure is the result with the fermionic quantum fluctuations at
one loop and the right figure is the case without these.
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Figure 5.2.: Surface tension along the coexistence line in the two and 2+1–flavour
Quark-Meson model with (left) and without (right) fermionic vacuum
loop contribution.

To investigate the impact of the values of the chiral condensates, Fig. 5.1 shows the de-
generate values that the chiral order parameters take at the first-order phase transition.
Notice that the minima merge smoothly at the critical end point. In the Quark-Meson
model without the fermionic quantum fluctuations, adding strange quarks to the sys-
tem doesn’t affect the light chiral condensate at the phase transition. Consequently,
extending the analysis from two to 2+1 quark flavours, the jump in the strange chiral
condensate at the transition adds an additional dimension to the path between the min-
ima and the surface tension increases accordingly. This is shown on the right hand side
of Fig. 5.2.

As for the temperature and density dependence of the order parameters and ther-
modynamics and for the phase structure, taking into account the fermionic quantum
fluctuations (3.11) has also a severe impact on the result for the surface tension. Com-
paring the values of the chiral condensates in the minima at the phase transition one
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sees that the transition becomes weaker in the light quark sector when fluctuations are
considered while the strange chiral condensate is hardly affected. This is because the
vacuum loop has the largest effect on the evolution of the order parameters in the trans-
ition region as could be seen in Figs. 4.11 and 4.12 and the first order transition is that
that restores chiral symmetry in the light quark sector but the chiral condensate of the
strange quarks takes large values at both sides of the phase transition line. The left
panel of Fig. 5.1 illustrates also that the main effect of the fermionic vacuum loop to
weaken the transition is to shift the chirally restored phase of the light quarks to larger
values of the light chiral condensate.

Even though the vacuum loop contribution of the strange quarks does not change the
values of the strange chiral condensate at the discussed transition it has the effect of
further weakening the transition in the light quark sector as can be seen in Fig. 5.1. This
counteracts partially the increase of the factor h in the surface tension when strange
quarks are taken into account. But the upper limit on the surface tension presented
in Fig. 5.2 is even smaller for the 2+1 quark flavour Quark-Meson model than in the
two-flavour calculation. This observation is opposite to the build-up of the surface
tension when the fermionic vacuum loop contribution is neglected. This is because the
contribution of fermionic quantum fluctuations at one loop order

Ωvac
qq̄ ∼ −

∑
f=u,d,s

m4
f ln (mf ) , (5.26)

decreases the thermodynamical potential and the height of the barrier at the first-order
phase transition and each quark flavour leads to a further decrease that is even larger
the heavier the quark species are.

In general, Fig. 5.2 shows the overestimate of the surface tension in the thin-wall
approximation of the QM model along the first-order transition line. The temperature
dependence of the surface tension and its value at zero temperature without fermionic
quantum fluctuations is similar to the results found in Refs. [264,265], which considered
the two-flavour Quark-Meson and Nambu–Jona-Lasinio models, respectively. Including
the fermionic quantum fluctuations to the model the zero-temperature value of the
surface tension decreases by a factor 2-3 and the hierarchy of the two-flavour and 2+1–
flavour result changes.

5.4.2. Nucleation within the Polyakov–Quark-Meson Model

With the Polyakov-loop extension of the Quark-Meson model, the system contains an-
other order parameter, the Polyakov loop and the effective potential gets an additional
contribution, the Polyakov-loop potential U . Therefore, the Polyakov loop adds an
additional contribution to the distance between the degenerate minima at the phase
transition, so to the factor h in Eq. (5.22). Another effect of the Polyakov-loop exten-
sion onto this quantity can be the modification of the values of the chiral condensates
at the minima compared to the Quark-Meson model.
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Figure 5.3.: Degenerate values of the chiral condensates σl and σs (left) and the
Polyakov loop Φr (right) along the first-order transition line. Compared
are the results of the PQM model with the Yang-Mills Polyakov-loop
potential with constant and density dependent critical scale and with
the unquenched Polyakov-loop potential with constant T glue

cr . Note that
the results for the Polyakov loop are scaled as given in the label so that
they start out at similar values at the critical endpoint.

The left part of Fig. 5.3 shows how the values of the chiral condensates of the degener-
ate minima at the phase transition are altered by the coupling to the Polyakov-loop. This
result shows a slight dependence if and which kind of back coupling of the quarks onto
the quenched Polyakov-loop potential is considered. With the Yang-Mills Polyakov-loop
potential with constant transition scale the values of the chiral condensates are hardly
altered compared to the Quark-Meson model result. Lowering the critical temperature
of this potential with increasing density increases the gap between the values of the
chiral condensates in the degenerate minima. This is not the case when the unquenched
Polyakov-loop potential with constant critical scale is considered but it shifts the values
of the condensates somewhat to larger values. The latter observation can be attributed
to the close link of (de)confinement and chiral transition. The values that the Polyakov
loop takes in the degenerate minima at the transition are much more sensitive to the
kind of Polyakov-loop potential as is shown on the right of Fig. 5.3. As discussed in
detail in the discussion of Fig. 4.29, the (de)confinement and chiral transition of the
light quarks remain linked in the low temperature and high density region of the phase
diagram with the unquenched Polyakov-loop potential. The opposite behaviour occurs
with the pure Yang-Mills Polyakov-loop potential with which the Polyakov loop takes
only very small values at temperatures far below the critical scale of the Polyakov-loop
potential. An intermediate behaviour for the Polyakov loop is observed with the chem-
ical potential dependence of the transition temperature of the Polyakov-loop potential
(3.52). Close to the critical endpoint the Polyakov loop takes at the phase transition
values of the same order as with the unquenched Polyakov-loop potential but never-
theless the (de)confinement transition decouples from the chiral phase transition of the
light quarks at even smaller temperatures.
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Figure 5.4.: Surface tension along the coexistence line. Compared are the results
of the PQM model with the Yang-Mills Polyakov-loop potential with
constant and density dependent critical scale and with the unquenched
Polyakov-loop potential with constant T glue

cr .

These results are obtained with the polynomial-logarithmic parametrisation of the
Polyakov-loop potential with the best fit parameters of Sec. 4.1.4. Figure 5.4 presents
the corresponding results of the surface tension.2 The Polyakov-loop extension of the
pure chiral Quark-Meson model leads to an increase of the surface tension. Nevertheless,
the zero temperature limit is the same since gluon excitations are independent of the
quark chemical potential in this limit, U (Φr,Φi;T = 0) = 0 ∀ (Φr,Φi). Except than very
close to the critical endpoint, ∆σl is much lager than ∆Φr, ∆Φi and ∆σs so that the
order of magnitude of the surface tension is set by the two-flavour Quark-Meson model.
The maximum in the surface tension with the unquenched Polyakov-loop potential is the
result of the increasing strength of the (de)confinement transition that comes along with
the stronger transition in the chiral sector at larger chemical potentials and the tendency
that a (de)confinement crossover transition sets on at chemical potentials slightly below
the chiral first-order transition.

To compare the results with the different parametrisations of the Polyakov-loop po-

2The kinetic parameter κ of the Polyakov-loop in Eq. (5.22) is adjusted via the pure gauge surface
tension as discussed in detail below, κ ≃ 0.818T0.
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Figure 5.5.: Degenerate values of the chiral condensates σl and σs (left) and the
Polyakov loop Φr (right) along the first-order transition line for the dif-
ferent parametrisations of the Polyakov-loop potential.

tential, the Yang-Mills potential with density dependent critical scale according to
Eq. (3.52) is chosen. This is because with the polynomial form of the Polyakov-loop
potential the Polyakov-loop is not bound at small temperatures and large densities when
the potential is unquenched as is discussed in Sec. 4.2.

Figure 5.5 shows that the values of the chiral condensates at the first order phase
transition are practically independent of the parametrisation the Polyakov-loop potential
but the Polyakov-loop extension slightly strengthens the transition compared to the
pure Quark-Meson model. Qualitatively, the values that the Polyakov loop takes in the
minima along the phase transition line are similar but with quantitative differences. In
general the Polyakov loop takes smaller values in both minima when the SU(3) group
volume is considered.

As discussed in Sec. 5.3 to calculate the coarse-grained free energy and surface tension
of the PQM model, the kinetic prefactor κ of the Polyakov-loop variables has to be
determined. Dimensional arguments lead to the estimate κ ≃ 0.9T0 as discussed above.
Alternatively, it can be adjusted to the surface tension of pure Yang-Mills theory ΣYM ≃
0.02T 3

0 [179, 261, 262]. For bubble nucleation with in the thin-wall approximation its
dependence on the Polyakov-loop potential is

ΣYM (T ) =
√
2κ

∫ Φ
(2)
r

Φ
(1)
r

dΦr

√
2U(Φr;T ) . (5.27)

The integral can be calculated for the individual parametrisations and this leads to the
values for the kinetic parameter κ that are given in Table 5.1.
Figure 3.2 showed that the polynomial-logarithmic parametrisation is adjusted the best
to the width of the barrier at the Yang-Mills phase transition of latest lattice calcu-
lations, Φ(2) ≃ 0.35 and its kinetic parameter fitted to the pure gauge surface tension
is of the same order as the dimensional estimate. The logarithmic potential and the
polynomial form with the parameters of Ref. [80] show a broader and higher barrier as
is shown in Fig. 3.1 so that the parameter κ has to be smaller to get the same result for
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Table 5.1.: Values of the kinetic parameter κ in the coarse-grained free energy and
surface tension of the PQM model adjusted to the surface tension of
pure Yang-Mills theory ΣYM ≃ 0.02T 3

0 [179, 261, 262] for the different
parameterisations of the Polyakov-loop potential. Dimensional arguments
lead to κ ≃ 0.9T0.

Poly-BNL Poly-TUM Log Poly-Log

κ [T0] 0.146 145 0.211 0.578

the surface tension. The height of the barrier of the potential calculated with the FRG
is larger than that of the polynomial-logarithmic parametrisation as can be also seen in
Fig. 3.1 so that for the true value of the kinetic parameter should hold κ ≲ 0.6T0.
A striking difference is the kinetic parameter of the polynomial potential with the para-
meters of Ref. [69] that is two to three orders of magnitude off scale compared to the
other results. This is because the width and height of the barrier at the phase transition
is significantly smaller with this potential as was discussed in the discussion of Figs. 3.1
and 3.2. Therefore, to compensate for this in the result for the surface tension in pure
gauge theory, the kinetic parameter of the Polyakov loop has to be significantly larger.

But this has tremendous implications for the result of the surface tension of the PQM
model as shows the inset of Fig. 5.6. When quarks and mesons are coupled to the
Polyakov loop all parametrisations show similar values for the Polyakov loop at the
phase transition as can be seen in Fig. 5.5. But the much larger kinetic parameter κ
in Eq. (5.22) for the polynomial Polyakov-loop potential [69] that enters the surface
tension (5.23) implies that ∆Φr determines the result of the surface tension and leads
to a result that is off scale. The results for the surface tension along the coexistence line
with the other Polyakov-loop potentials are similar to each other as is shown in Fig. 5.6.

For the results shown on the right of Fig. 5.6 the same kinetic parameter κ ≃ 0.9T0 is
chosen for all parametrisations of the Polyakov-loop potential. This implies that also the
polynomial potential [69] leads to a result for the surface tension that is similar to that
with the other Polyakov-loop potentials. On the other hand with this value for κ the
result for the surface tension in Yang-Mills theory for the polynomial parameterisation
[69] would be 161 times smaller than the result of lattice calculations [261, 262] and in
effective matrix model calculations [179].
For the other Polyakov-loop potentials this choice of the kinetic prefactor of the Polyakov
loop gives a larger weight to the jump of the Polyakov loop at the phase transition
and Fig. 5.6 shows that than the results for the surface tension vary more at small
temperatures where the differences in the Polyakov-loop coordinates is larger between
the different parametrisations.
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Figure 5.6.: Surface tension along the coexistence line for the different parametrisa-
tions of the Polyakov-loop potential. Compared are the results when the
kinetic parameter κ is adjusted to the pure gauge surface tension (left),
see Table 5.1 and with κ = 0.9T0 from dimensional arguments (right).

5.4.3. Implications for proto-neutron stars, the early Universe and heavy
ion collisions

The values of surface tension for the isospin symmetric Nf = 2 + 1 PQM model found
here have interesting implications for several physical scenarios. For example, compact
stars can be considered as laboratories for nuclear matter at low temperatures and at
such high densities that they may contain quark matter [22, 24]. Possible scenarios for
the formation of quark matter in compact stars are old accreting neutron stars, proto-
neutron stars after a supernova explosion or during the early postbounce evolution of
core collapse supernovae [18,21]. Physical conditions and time scales in these cases imply
equilibrium with respect to weak interactions and low electron fractions. Estimates
from Ref. [98] show that a hadron-quark phase transition during the bounce phase of
a core-collapse supernova can be dynamically suppressed if the surface tension of this
phase interface is much larger than, say, 20 MeV/fm2. The estimates from Refs. [264,
265] and the present work consistently point towards low values of the surface tension,
which would be compatible with the formation of quark matter during the bounce.
An observable signal would be a second peak in the neutrino signal dominated by the
emission of antineutrinos and with a significant change in the energy of emitted neutrinos
[18,246]. However, none of these calculations really takes into account realistic equations
of state for supernova matter, which has to include not only scalar mesons, but also
vector mesons, nucleons and, very importantly, leptons. A calculation of surface tension
in such a complete model is a future task.

In the cosmological case, physical boundary conditions to describe the QCD phase
transition in the early Universe include charge neutrality, equilibrium with respect to
weak interactions and baryon and lepton asymmetries consistent with observations.
Observations of the cosmic microwave background radiation and constraints from prim-
ordial nucleosynthesis require a tiny baryon asymmetry at relatively low temperatures
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(T ≲ 1MeV) [12]. In the standard scenario this observational constraint is extrapolated
up to the scale of the QCD phase transition that is then a smooth crossover. In the
scenario of little inflation [266], the Universe enters the QCD era with a very high quark
density. As a result, the quark-gluon plasma (QGP) that fills the Universe cools down
until it eventually crosses a first-order line of the phase diagram, becoming metastable.
While the QGP is metastable, the conditions for a cosmic inflation can be met and the
extra quark density becomes very diluted. Observational signals of this evolution in-
clude an enhancement of primordial density fluctuations on stellar up to galactic scales,
production of galactic and extragalactic magnetic fields and a modification of the grav-
itational wave spectrum [13, 267]. At some point of the expansion, however, the phase
transition from a QGP to hadronic matter must happen, most likely through bubble
nucleation. In order to be effective, the baryon dilution required by the little inflation
scenario needs to be long enough. This requires that the QGP remains metastable even
for high degrees of supercooling, something that requires a very low nucleation rate and,
therefore, a large value of surface tension. As we have discussed, however, the values of
surface tension found with chiral models, including the study presented here, are relat-
ively small and possibly do not allow the strong metastability required by the scenario
of little inflation. However, also a large lepton asymmetry can drive the evolutionary
path of the Universe towards larger quark chemical potentials [86].

In heavy ion collisions the phase boundary of hadronic and quark matter is, if at all,
crossed twice. First, as formation of a quark gluon plasma in a hadronic gas and then
as rehadronisation of the fireball. Complications in studying nucleation in heavy ion
collisions are the short time scales and the finite size of the system. Additionally, the
nucleation rate has to be considered in relation to the expansion time. These conditions
can lead to the fact that the system stays in the metastable state close to the spinodal
instability and that the dominant mechanism for phase conversion is the alternative
scenario to homogenous nucleation, namely spinodal decomposition [94]. Nevertheless,
the growth rate of fluctuations by spinodal instabilities is closely related to the surface
tension [268, 269]. They can lead to observable signatures for the value of the surface
tension found here [269]. Additionally, these fluctuations can be amplified by nucleation
in the metastable region. The relatively small values of the surface tension found in
the present study suggest a early nucleation of small quark-gluon plasma droplets at
relatively modest energies like at FAIR’s SIS 100 [270]. The details of rehadronisation
leave their fingerprints on those observables that are sensitive to the life-time of the
fireball. Weak supercooling favours the thermal freeze-out to happen in the hadronic
phase with impact on particle yields and spectra [271] and a distinct hydrodynamic
expansion pattern [94].

In summary, in this chapter a formalism was derived that allows to calculate an upper
limit of the surface tension for bubble nucleation in the thin wall approximation in a
model with more than one order parameter as e.g. in the PQM model. It was shown
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that the Nf = 2 + 1 PQM model yields results very similar to those of the two-flavour
NJL and QM models, so that the influence of both the strange quark and the Polyakov
loop at low temperatures is small. The conservative upper bound of 10MeV/fm2 for the
surface tension allows a quick hadron-quark phase conversion which implies interesting
implications for several physical scenarios, be it heavy ion collisions, proto-neutron stars
or the early Universe. The analysis revealed a shortcoming of a widely used Polyakov-
loop potential, that of Ref. [69] that is incapable to describe Yang-Mills theory and full
QCD at the same time.
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6. Conclusions and Outlook

«Et dans 150 ans, on n’y pensera même plus
A ce qu’on a aimé, à ce qu’on a perdu,

. . . Alors souris.»

Raphaël Haroche

In this work, thermodynamical properties and the phase structure of strongly-inter-
acting matter have been analysed in an improved framework of the Polyakov-loop–
extended Quark-Meson model with 2+1 constituent quark flavours. This effective low-
energy model for strongly-interacting matter describes the generation of constituent-
quark masses by spontaneous chiral symmetry breaking and is extended by an order
parameter for colour confinement, the Polyakov loop, that is actually an order para-
meter for centre symmetry.

In the theoretical derivation of the framework, special emphasise was put on the gen-
eralisation to isospin-symmetry breaking and on the consideration that the in-medium
effective potential of the model is in general not a real function of real variables. The ef-
fective potential has been rewritten in terms of real variables only, such that the real and
imaginary parts of the potential could be separated. This allowed to discuss the relation
between the imaginary part of the effective potential and the fermion sign problem and
to compare ways how to circumvent this problem in effective models.

Furthermore, low-energy effective models include confinement only in a statistical
manner via a phenomenological Polyakov-loop potential fitted to lattice data of Yang-
Mills theory. Therefore, they lack the coupling of the matter sector to the gauge
sector in QCD describing the confining dynamics. References [82–84] calculated non-
perturbatively the Polyakov-loop potential for Yang-Mills theory and Refs. [36, 37] the
QCD analogue taking into account the full back-coupling of the matter sector on the
gauge degrees of freedom in a functional renormalisation-group approach, which is out-
lined in App. A. In Sec. 3.2.1 it was shown that the two potentials can be simply
related by an appropriate rescaling of the temperature to mimic the effect of the quark
backreaction on the gauge sector. This offered a simple and systematic approach to
improve the Polyakov-loop potential of effective models from a pure gauge potential to
the unquenched glue potential in full QCD.

Moreover, as another step beyond usual mean-field analyses not only quark quantum
fluctuations at one-loop have been considered but the contribution of thermal meson
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fluctuations to thermodynamics was taken into account.

The results of this improved 2+1 flavour Polyakov-loop–extended Quark-Meson model
for the temperature dependence of the quark condensates, the Polyakov loop and ther-
modynamic observables at vanishing chemical potential have been compared to the
results of latest non-perturbative lattice calculations [38–42]. This allowed to adjust the
remaining parameters and to investigate the impact of the different ingredients of the
presented framework and to test the robustness of the results by analysing parameter
dependences.

The important improvement to achieve agreement with lattice data for the order
parameters and thermodynamics proved to be the enhancement of the Polyakov-loop
potential from a pure gauge potential to the unquenched glue potential in full QCD
by applying Eqs. (3.58) and (3.56). Further ingredients for a reliable description of
the chiral and (de)confinement phase transition with effective models showed to be the
inclusion of the contribution (3.11) of fermionic quantum fluctuations and to consider
the contribution of thermal meson fluctuations (3.21). The inclusion of meson and
quark fluctuations beyond one loop with a renormalisation group framework changes
the values of the parameters within their uncertainties for which best agreement with
results of lattice calculations is achieved but would not further improve this agreement
as was shown in Figs. 4.7 and 4.8.

A parameter-dependence of the results has been found, which cannot be ignored in
a quantitative analysis. When varying the critical temperature of the Polyakov-loop
potential and the σ-meson mass it was observed that a larger glue critical temperature
has a similar effect on the results as a decrease of the mass of the σ-meson. The widely
used, polynomial parametrisation of the Polyakov-loop potential with the parameter
set of Ref. [69] showed to be the least suited to reproduce lattice data of Yang-Mills
theory and full QCD. Only the parametrisations of the Polyakov-loop potential that
respect the SU(3) group volume measure led to a satisfying agreement of all discussed
observables with the results of lattice simulations. Further input to constrain the form
of the potential or a potential from first-principal calculations are important to improve
the reliability of results of effective models. One possibility is e.g. to work-in the height
of the barrier and the difference of the potential at the minima in the metastable region
of the QCD glue potential.
Another improvement on the parameter dependence of low-energy effective models would
be the determination of the input parameters in the chiral sector, like the σ-meson mass
from first-principle functional renormalisation-group flows.

Overall, the biggest impact on the nature of the transition at zero quark chemical
potentials of the different ingredients and parameter dependences discussed, showed to
have the unquenching of the Polyakov-loop potential.

With the parameters adjusted in order to reproduce lattice results at zero quark dens-
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ities this setting constituted an adequate framework to investigate the phase structure
of strongly-interacting matter at nonzero quark and isospin densities and to test the
applicability of such a model at nonzero densities.

As well for the position of the transition line at non-vanishing densities unquenching
the Polyakov-loop potential revealed the biggest effect, even if the backreaction of the
quarks onto the gluons is considered as density independent. Using the quark-enhanced
Polyakov-loop potential the chiral and (de)confinement transition remain linked at small
temperatures and large quark chemical potentials. The biggest impact on the nature of
the transition at large densities and small temperatures had nevertheless the fermionic
vacuum fluctuations in the present study.

Even though considering the quark-enhanced Polyakov-loop potential proved to be
decisive to find results for the phase structure at zero density that agree with res-
ults of lattice calculations, the curvature of the transition line of the Polyakov–Quark-
Meson model with the unquenched Polyakov-loop potential remained larger than in
non-perturbative functional and lattice calculations. The comparison of the isospin
dependence of the curvature of the phase transition line with recent lattice data in
Sec. 4.3 confirmed this conclusion that the model in its here presented form faces dif-
ficulties describing non-perturbative results for the transition temperature when one
considers further medium-dependences besides the temperature such as non-vanishing
quark chemical potential, isospin or magnetic field [243].
This entails that the medium dependence of the quark backreaction has to analysed in
more detail and further ingredients to the effective model have to be considered, such as
repulsive interactions by exchange of vector mesons and meson and quark fluctuations
with the renormalisation-group flow.

Calculations at non-zero isospin density are performed with different pion masses
in the literature. To correct for the effect of the pion mass onto the abscissae of the
temperature-isospin phase diagram, the isospin chemical potential has been normalised
by the individual pion masses. This removed a general offset between calculations with
different pion masses and one could observe that in the range before the onset of pion
condensation the curvature of the transition line is much more sensitive to the pion mass
than to the number of quark flavours. A lower limit of the pseudo-critical temperature at
nonzero isospin chemical potential for the case of 2+1 quark flavours and physical pion
mass was presented as well as predictions on the isospin-density dependence of order
parameters and thermodynamics for 2+1 quark flavours and physical quark masses

The investigation of the three dimensional temperature - isospin chemical potential
- quark chemical potential phase diagram showed that it is important to consider the
isospin of a system to determine the nature of the phase transition, especially at low
temperatures and large quark chemical potential. This can affect a possible phase
transition in the evolution of a supernova explosion.
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These calculations can be extended by considering nonzero pion fields to include the
possibility of pion condensation at larger isospin [11].

The careful circumvention of the fermion sign problem in a way that preserved the
solutions of the equation of motion as minima of the effective potential allowed to derive
a formalism to study homogeneous nucleation of bubbles in a first-order phase transition.
An upper limit of the surface tension for bubble nucleation in the thin-wall approxima-
tion has been calculated. It was found that the Polyakov–Quark-Meson model with 2+1
quark flavours yields results similar to those of the two-flavour Quark-Meson model, so
that the influence of both, the strange quark and the Polyakov loop at low temperatures
is small. The conservative upper bound of 10MeV/fm2 found for the surface tension
allows a quick hadron-quark phase conversion. The implications of this result for several
physical scenarios, be it heavy ion collisions, proto-neutron stars or the early Universe
have been discussed.

The outcomes of these investigations motivate several applications and further exten-
sions. They are discussed in the order of the occurrence of the related topics in the
thesis.

• Further symmetries of QCD Lagrangian can be included to the presented frame-
work such as scale symmetry which is related to the non-vanishing trace anomaly
of gauge theory. This introduces a dilaton field as the order parameter of scale-
symmetry breaking, representing a glueball. With this extension, one has to adjust
the parameters of the dilaton potential and the Polyakov-loop potential to a com-
bined description of the gauge sector via Polyakov loop and dilaton field. As well,
the dilaton field enters to the adjustment of the parameters of the Dilaton–Quark-
Meson model to vacuum properties.

• The parameter dependence of the Linear-σ potential (including a dilaton) can be
constrained by determining the low-energy input parameters from first-principle
flows.

• The situation of the description of the gauge sector via a phenomenological Polya-
kov-loop potential is very unsatisfying. One should further constrain the form
of the potential by including more information of the FRG-QCD glue potential,
e.g. about the separation of the minima and the hight of the barrier in the coex-
istence phase. Furthermore, more first-principle information on the slope of the
potential at temperatures below its critical temperature, especially in the tem-
perature range of the chiral and (de)confinement transition in the full model is
required. At these temperatures, regions of the potential away from the minimum
at the origin are probed but the available parametrisations are only adjusted to
this single point.
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• The sign problem of effective models that include gauge degrees of freedom should
be solved beyond the lowest order approximation in order to search for an effective
potential that possesses minima at non-vanishing quark chemical potential and
that describes the expected order of the Polyakov-loop observables related to the
free energy of a static quark and to that of a static antiquark, i.e. ⟨Φ̄−Φ⟩ > 0 at
µq > 0.

• One should overcome the mixture that the Polyakov-loop potential is expressed
as a function of ⟨Φ [A0]⟩ since it is fitted to lattice calculations that use this order
parameter while the coupling of quarks to the gauge fields results in the use of
Φ [⟨A0⟩] in the contribution of thermal quark fluctuations. This could be achieved
by using the gauge field itself as order parameter instead of the Polyakov loop and
by the application of a first-principle glue potential from functional calculations.

• At one-loop order, one should include the thermal meson fluctuations in the presen-
ted framework not only to thermodynamics but consider their contribution to the
equations of motion consistently.

• In general, the presented investigations can be improved by considering the thermal
and quantum fluctuations of quarks and mesons beyond one-loop order with the
flow equation of the renormalisation group approach.

• In general, low-energy effective models contain only mesonic degrees of freedom to
describe the confined phase. This is justifiable at vanishing and up to moderate
quark chemical potential. But to capture the correct degrees of freedom in the
low temperature and large quark chemical potential region of the phase diagram,
baryons have to be included.

• Including the quark-backreaction on the gauge sector showed to have a big impact
on the interrelation of the chiral and (de)confinement transition at non-vanishing
chemical potential and these transitions remained linked even in the high quark-
density and small temperature region of the phase diagram. This result is obtained
ignoring any density dependence of the quark-backreaction. So, to confirm or
reject this trend it is important to investigate a density dependence of the quark-
backreaction on the gauge sector.

• It would be preferable to describe confinement in effective models beyond a stat-
istical way. The too large curvature of the phase transition line along the quark
chemical potential and isospin chemical potential axes found and the failure to
reproduce inverse magnetic catalysis [243] indicate a need for improvement in this
direction.

• Including repulsive vector interactions allows for an equation of state of quark
matter that leads to a maximum mass of compact stars that is consistent with
observations [10] and in Ref. [220] it was shown that these can lead to a slope of the

131



Chapter 6. Conclusions and Outlook

phase transition line at nonzero baryon chemical potential that corresponds to the
data of lattice calculations. But on the other hand, it was shown in Refs. [221,222]
that the results for quark number susceptibilities are in tension with lattice data for
significant vector interactions. This shows that further investigations are required
to include repulsive vector interactions properly to these models.

• In a continuation of the presented work, one can consider nonzero pion fields
to include the possibility of pion condensation at non-vanishing isospin. This
allows to investigate the phase structure and thermodynamics up to larger isospin
chemical potential. In this regime latest lattice data for thermodynamics with
nearly physical pion mass are available [46].

• One can compare the three-dimensional temperature - isospin chemical potential -
quark chemical potential phase diagram for the scenario of vanishing net strange-
ness as it is the case in heavy ion collisions and for local β-equilibrium with respect
to weak flavour-mixing interactions as in the case of supernovae and in the early
universe which is presented here.

• The isospin dependence found for the nature of the phase transition in the high
density, low temperature region of the phase diagram can be considered in the
equation of state of quark stars and in the occurrence of a phase transition during
the evolution of a supernova.

• One can extend the calculation of the surface tension and nucleation rate to the
complete metastable region also away from the transition line, as well as over its
hole extension of the first order region at nonzero isospin. This would provide
further insight on nucleation of quark matter in dynamical environments.

• The presented framework is able to describe the result of the temperature depend-
ence of the light and subtracted quark condensates of lattice calculations. But it
fails to reproduce the decrease of the strange chiral condensate when increasing the
temperature at zero density as seen on the lattice [42]. This calls for considering a
medium dependence of the explicit chiral-symmetry breaking and axial-symmetry
breaking.

• An ingredient of investigations of quarkonium suppression in a quark-gluon plasma
formed in heavy-ion collisions is the expansion of the plasma itself [17,272]. Here,
the temperature and density dependence of quark and meson masses found in the
presented framework can serve as an input.

• The Quark-Meson part of the model including the quark quantum-fluctuations and
the thermal meson-fluctuation contribution to thermodynamics can be applied to
calculate the equation of state of quark-star matter and to investigate the resulting
mass-radius relation of these.
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• The conditions in the early Universe can be included to the presented framework
to elucidate the nature of the cosmological QCD phase transition at non-vanishing
lepton number [86].
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A. QCD with functional methods

Functional continuum methods are well suited for a non-perturbative study of the chiral
and confining dynamics of QCD at finite temperature and density. In recent years, much
progress in this direction has been made within the functional renormalisation group
(FRG) approach to QCD [36,37]. Low-energy effective models emerge dynamically from
the first-principle QCD-flow. The parameters of these models defined below a hadronic
mass scale of ∼1GeV can be extracted from a QCD RG-flow starting with the classical
QCD action at a given high (perturbative) scale Λ ≫ ΛQCD. This first-principle determ-
ination of the input parameters can be used to systematically remove the ambiguities
of the low-energy effective models. For the Polyakov-loop–extended quark-meson model
this is discussed in Refs. [4,72,76,78]. Detailed QCD-related introductions and reviews
to the functional-RG approach are e.g. Refs. [30–35,37].

The QCD flow-equation of the effective action Γk[Ā;ϕ] in the background Landau-
DeWitt gauge is [36, 37]

∂t Γk

[
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]
=
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2
Tr
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k

[
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Ā;ϕ

]
∂tR

c
k

)
−
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[
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)
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1

2
Tr
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k

[
Ā;ϕ

]
∂tR

H
k

)
. (A.1)

Its diagrammatic representation is shown in Fig. A.1. The full field content of QCD of
constituent quarks (q, q̄), the corresponding hadrons (H) and the ghost (c, c̄) and gluon
(A = Ā+a) fields with a constant background Ā and a fluctuating part a is collected in
ϕ = (a, c, c̄, q, q̄, H). The traces in Eq. (A.1) involve d-dimensional integrations over
momenta or coordinates, respectively as well as summations over internal indices such

∂tΓk[φ] = 1

2
− − + 1

2

Figure A.1.: Partially bosonised version of the FRG flow-quation for QCD. The loops
denote the gluon, ghost, quark and hadronic contributions, respectively.
Lines with filled circles represent fully dressed field-dependent propag-
ators Gk

[
Ā;ϕ

]
and crossed circles denote the regulator insertion ∂tRk.

t = log k/Λ with the infrared momentum scale k and the references
scale Λ. From Ref. [2].
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∂tΠ
ferm
A,k �

Figure A.2.: Quark polarisation contribution to the gluon propagator representing a
contribution to the matter backcoupling. From Ref. [2].

as flavour, colour and Dirac indices. To the flow-equation enter the full field-dependent
propagators

Gϕ
k

[
Ā;ϕ

]
(p, q) =

1

Γ
(2)
k

[
Ā;ϕ

]
+Rϕ

k

with Γ
(2)
k

[
Ā;ϕ

]
=

δ2 Γk

δϕ(p) δϕ(q)
, (A.2)

and the regulator functions Rϕ
k . The momentum dependence of these is such that

they act as a mass for small momenta and vanish for large momenta. Overall, they
act as momentum-dependent additional mass-terms. The loops depicted in Fig. A.1
are intrinsically coupled to each other. In particular, there are contributions from the
matter sector to the diagrams for the gluon propagator as the quark part of the gluonic
vacuum polarisation as illustrated in Fig. A.2.

For temperatures below the chiral and (de)confinement phase transitions the glue
dynamics decouples from the matter dynamics. In the Landau gauge this physical de-
coupling is realised simply by a mass gap in the gluon propagator, that is k2G a

k → 0 for
small momenta, see e.g. Ref. [273] and references therein. As the ghost-matter coupling
is mediated by the gluon this decoupling extends to the full ghost-gluon dynamics and
one is left with the flow equation of the dynamical matter-sector,

∂t Γ
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k

[
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]
= −Tr

(
G q
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[
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]
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q
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+
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2
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k

[
Ā;ϕ

]
∂tR

H
k

)
, (A.3)

which is depicted in Fig. A.3. Even though the glue-dynamics decouples for low temper-
atures, the gluonic background Ā = ⟨A⟩ does play an important role. In the confining
phase it screens the propagation of the quarks which confines them even statistically as
discussed in Sec. 3.1, leaving aside the confining potential. The expectation value ⟨A⟩ is
given by the solution of the QCD equations of motion which also requires the first part

∂tΓk[φ] =

Figure A.3.: FRG flow for the matter sector of QCD. The loops denote the quark
and hadronic contributions, respectively. From Ref. [2].
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Figure A.4.: Functional flow for the gauge part of the effective action. From Ref. [2].

of the QCD flow (A.1),
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k

[
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)
− Tr
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]
∂tR

c
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)
, (A.4)

which is depicted in Fig. A.4. The fluctuation ϕ is evaluated at the equation of motion,
ϕ = ϕ̄. Therefore, the gluonic fluctuation background is vanishing, ā = 0 whereas the
mesonic background leads to the running quark masses (2.53) that enter to the quark
vacuum polarisation shown in Fig. A.2. The flow equation for the ghost-gluon sector
can then be written as that of a glue potential, encoding the ghost-gluon dynamics in
the presence of matter fields,

∂t Γ
glue
k

[
Ā;ϕ

]
= β V ∂t Uglue [⟨A⟩] (A.5)

where V is the spatial volume and β = 1/T the inverse temperature. Structurally,
the flow of the gluonic background in QCD (A.4) resembles the pure Yang-Mills flow-
equation,

∂t Γ
YM
k

[
Ā; a = 0, c = 0, c̄ = 0

]
= β V ∂t UYM [⟨A⟩] (A.6)

which also has the pictorial form of Fig. A.4. The ghost and gluon propagators in
Eq. (A.5), however, are those of QCD. In particular, the flow of the gluon propagator
receives contributions from matter loops, e.g. the quark contribution to the vacuum
polarisation in Fig. A.2. Based on this functional-RG approach Refs. [82–84] calcu-
lated the non-perturbative Polyakov-loop potential for SU(Nc) Yang-Mills theories and
Refs. [36,37] the QCD analogue taking into account the full backcoupling of the matter
sector on the propagators of the gauge degrees of freedom via dynamical quark-gluon
interactions [184–186].

As explained in Sec. 3.2, in low-energy effective models confinement is only included
in a statistical manner via a phenomenological Polyakov-loop potential. This potential
is fixed to the temperature dependence of the Polyakov loop and the thermodynamics
of pure Yang-Mills theory as obtained in lattice simulations. Hence, it approximates
the Polyakov-loop potential generated by pure gluodynamics, UYM in Eq. (A.6). The
coupling of the matter sector to the gauge sector is lost in such an approach which lacks
the glue-matter dynamics to both the chiral as well as the (de)confinement physics.
This entails that the glue potential of full QCD, Uglue in Eq. (A.5), encoding the gauge
dynamics in the presence of matter fields, is replaced by a phenomenological Polyakov-
loop potential U .
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A first step towards the inclusion of the backreaction of quarks on the gauge sector in
low-energy effective models is to estimate the change of the transition temperature of
the Polyakov-loop potential when going from Yang-Mills theory to QCD. This has been
done in Ref. [72] by a perturbative estimate of the change of ΛQCD when going from
Yang-Mills theory to QCD based upon Refs. [185,207].
To bring low-energy effective model studies even closer to (full) QCD, their Polyakov-
loop potential U has to be replaced by the QCD glue potential Uglue, i.e. by the contribu-
tion stemming from the gauge degrees of freedom in the presence of dynamical quarks.
It is therefore beneficial to amend these model calculations by utilising the available
information on the QCD glue potential Uglue and its Yang-Mills analogue UYM. One
can extract the relation of both potentials as discussed in Sec. 3.2.1 and apply it then to
improve the Polyakov-loop potential U entering low-energy effective models, as shown
in this thesis.

In the FRG-approach quantum and thermal fluctuations are self-consistently taken
into account and hadronic states can be included successively within dynamical hadron-
isation [32, 184, 274, 275]. This technique describes the following physical mechanism.
When lowering the RG-scale in the QCD flow-Eq. (A.1), strongly-bound quark correl-
ations, i.e. quark-antiquark (mesons), diquark, and three-quark (baryons) correlations,
will be dynamically created by the flow. These correlations can be parameterised in
terms of mesonic, diquark and hadronic operators respectively, whereupon the diquark
operators do not describe asymptotic states but only intermediate correlations. The
respective coupling of the hadronic operators is dynamically enhanced by the quark-
gluon fluctuations at higher scales, while it takes over the dynamics from the quark-
gluon sector at lower scales, hence the name dynamical hadronisation. This fluctuation-
triggered dynamical hadron creation within the QCD-flow avoids any double-counting
problem since the respective couplings are created from the QCD input. The results
of Refs. [36,37] used in Sec. 3.2.1 were computed within the two-flavour approximation
of QCD which takes into account the lowest mesonic multiplet, the σ-meson and the
pions π⃗ in this way. Motivation for considering only these is that close to the phase
boundary between the quark-gluon plasma phase and the hadronic phase and at not
too large chemical potential mesonic degrees of freedom, and in particular the pion and
σ-fluctuations, become important while baryonic fluctuations are considered as sublead-
ing at vanishing density.

The systematic embedding of low-energy effective models in first-principle FRG-QCD
is the following. The background gluon-field Ā as well as the ghost- and gluon-fluctuation
fields, c, c̄ and a are simply spectators in Eq. (A.3). If setting these spectator fields to
zero the flow equation (A.3) reduces to that of generic low-energy models of QCD. The
respective models are then singled out by specifying the hadronic content of the flow.
In the Quark-Meson model truncation one considers that close to the phase boundary
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between the quark-gluon plasma phase and the hadronic phase and at not too large
chemical potential mesonic degrees of freedom, in particular the pion and σ-fluctuations,
are important. This leads to a quark-meson flow-Eq. (A.3) with a constant temporal
gauge-field background which defines the Polyakov-loop–extended Quark-Meson model
[72,76], including quantum and thermal matter fluctuations.
NJL-type truncations of the matter sector miss any hadronic loops and the full matter
dynamics is described by the quark loop. This is a description of the low-energy matter
dynamics of QCD purely in terms of quark correlation functions. Hence, it can only
capture the correct QCD dynamics if the hadronic spectrum is taken into account via
resonances in the scattering amplitudes of quarks.

In Eq. (A.3), the presence of a quark loop should not be confused with the presence
of quarks as observable (asymptotic) states. The presence of this loop only states that
quark loops are still present ‘internally’ and required to give a microscopic description
of the interaction of the hadronic degrees of freedom. In the same spirit, gluon loops
also play a role in the low-energy sector even though they do not represent observable
(asymptotic) states in this regime as well. However, gluon loops govern the dynamics
of the confinement order-parameter potential which in turn determines the background
gluon-field entering Eq. (A.3) as discussed above.
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B. Further Calculations and Results

Entropy and Energy density of Yang-Mills theory

In Polyakov-loop–extended constituent-quark models a phenomenological Polyakov-loop
potential is used that is fixed to the temperature dependence of the Polyakov loop and
the thermodynamics of pure Yang-Mills theory as obtained in lattice simulations. There
are several parametrisations of the Polyakov-loop potential available in the literature
with different parameter sets as presented in Sec. 3.2. The main text in Sec. 3.2 con-
tains the comparison of the results of the different parametrisations with latest lattice
calculations for the Polyakov loop, the pressure and the trace anomaly in Figs. 3.2, 3.3
and 3.4, respectively.
Other quantities to which the parameters of the potentials are adjusted to are the en-
tropy density and energy density. The results for these are compared in Figs B.1 and
B.2. The conclusions one can conclude from these are similar as these of Figs. 3.2, 3.3
and 3.4. The evolution of the centre symmetry breaking minimum in the polynomial
potential of Ref. [69] lags behind the lattice data and the other potentials which scatter
close around the lattice data and those potentials that include the Haar measure are the
closest to the data points. The polynomial parametrisation of Ref. [80] fails to describe
the high temperature convergence of the entropy density and energy density. Instead
of converging towards the Stefan-Boltzmann limit it reaches a maximum and slightly
decreases from there on. None of the parametrisations reproduces the discontinuity at
the transition temperature exactly. The polynomial potential of Ref. [69] clearly under-
estimates it, while the other parametrisation slightly overshoot it but give the correct
order of magnitude, especially the polynomial-logarithmic potential.

Structure constants of SU(3)

To the potential of the Nf = 3 Linear-σ model in its general form (2.44) enter the
structure constants of SU(3), dabc and fabc. They are given by

dab0 =
√

2/3 δab , (B.1a)

d118 = d228 = d338 = −d888 = 1/
√
3 , (B.1b)

d448 = d558 = d668 = d778 = −1/(2
√
3) , (B.1c)

d146 = d157 = −d247 = d256 = d344 = d355 = −d366 = −d377 = 1/2 , (B.1d)
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Figure B.1.: Scaled entropy density as a function of the reduced temperature in the
pure-gauge sector for the different parametrisations of the Polyakov-
loop potential, compared to corresponding lattice results taken from
Ref. [203].
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Figure B.2.: Scaled energy density as a function of the reduced temperature in the
pure-gauge sector for the different parametrisations of the Polyakov-
loop potential, compared to corresponding lattice results taken from
Ref. [203].
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and

fab0 = 0 , (B.2a)

f123 = 1 , (B.2b)

f147 = −f156 = f246 = f257 = f345 = f367 = 1/2 , (B.2c)

f458 = f678 =
√
3/2 , (B.2d)

These are symmetric or antisymmetric, respectively

{Ta, Tb} = dabcTc , [Ta, Tb] = ifabcTc . (B.3)

Ta = λa/2 are the generators of the group.

Derivatives of the Linear-σ potential U (σ)

The expectation value of a field is given by the absolute minimum of the effective
potential. So the first derivative of the potential with respect to the field has to vanish.
The derivatives of the potential of the Linear-σ model in its form in Eq. (2.50) are
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]
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2
σ̄0σ̄

2
3 +
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3

(√
2σ̄0σ̄8 − σ̄23 + σ̄28

)
− h8 . (B.4c)

The Linear-σ potential can be given either in the basis of the condensates σ̄0, σ̄3 and
σ̄8 as in Eq. (2.50) with the derivatives in Eqs. (B.4) or in the basis of the quark-flavour
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condensates σ̄u, σ̄d and σ̄s as in Eq. (2.56). Then the corresponding derivatives are

∂U

∂σ̄u
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m2

2
σ̄u +

λ1
4

[
σ̄u
(
σ̄2u + σ̄2d

)
+ 2σ̄uσ̄

2
s
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4
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− c

2
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2
σ̄dσ̄s −

hud
2

, (B.5a)

∂U

∂σ̄d
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m2

2
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λ1
4

[
σ̄d
(
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)
+ 2σ̄dσ̄

2
s

]
+
λ2
4
σ̄3d −

− c

2
√
2
σ̄uσ̄s −

hud
2

, (B.5b)

∂U

∂σ̄s
= m2σ̄s + λ1

[
4σ̄3s + 2

(
σ̄2u + σ̄2d

)
σ̄s
]
+ λ2σ̄

3
s −

− c

2
√
2
σ̄uσ̄d − hs , (B.5c)

and
∂2U

∂σ̄2u
=

m2

2
+
λ1
4

(
3σ̄2u + σ̄2d + 2σ̄2s

)
+

3

4
λ2σ̄

2
u , (B.6a)

∂2U

∂σ̄2d
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2
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4

(
σ̄2u + 3σ̄2d + 2σ̄2s
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+
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4
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2
d , (B.6b)

∂2U
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[
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(
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)]
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2
s , (B.6c)
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, (B.6d)
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, (B.6e)
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2
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. (B.6f)

To see the effects introduced by isospin breaking it is convenient to separate the effect
of the isospin-breaking condensate σ3 = (σu−σd)/2 from that of the average light quark
condensate σl = (σu + σd)/2. The derivatives of this notation of the potential of the
Linear-σ model (2.57) are

∂U

∂σ̄l
= m2 σ̄l + λ1 σ̄l

(
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)
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2
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2
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2
l σ̄3 +
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σ̄33 +

+
c√
2
σ̄3σ̄s − h3 . (B.7c)
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Pseudoscalar decay constants

Two of the constants to which the parameters of mesonic potential of the PQM model
are adjusted, are the pion decay constant fπ and kaon decay constant fK. In general, the
decay constants fa corresponding to the pseudoscalar fields πa follow from the partially
conserved axial-vector current [60]

fa = daabσ̄b . (B.8)

Explicitly, these are

f0 = d00bσ̄b =

√
2

3
σ̄0 , (B.9a)

f1 = f2 = f3 = d11bσ̄b =

√
2

3
σ̄0 +

1√
3
σ̄8 , (B.9b)

f4 = f5 = d44bσ̄b =

√
2

3
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1

2
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1

2
√
3
σ̄8 , (B.9c)

f6 = f7 = d66bσ̄b =
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3
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1
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2
√
3
σ̄8 , (B.9d)

f8 = d88bσ̄b =

√
2

3
σ̄0 −

1√
3
σ̄8 . (B.9e)

Derivatives of the quark masses with respect to the meson
fields

To the equations of motion and meson masses enter the derivatives of the squared
quark masses (2.52) with respect to the meson fields. The first order derivatives are
summarised in the table below. They are given in the basis of the average light, strange
and isospin-symmetry breaking condensate to illustrate the effect of isospin-symmetry
breaking. All entries have the unit g2.

m2
u m2

d m2
s

∂/∂σ0 (σ̄l + σ̄3)/
√
6 (σ̄l − σ̄3)/

√
6 σ̄s/

√
3

∂/∂σ3 (σ̄l + σ̄3)/2 − (σ̄l − σ̄3)/2 0

∂/∂σ8 (σ̄l + σ̄3) /
(
2
√
3
)

(σ̄l − σ̄3) /
(
2
√
3
)

−2σ̄s/
√
3

The meson masses depend as well on the second order derivatives of the quark masses
on the (pseudo-)scalar fields. These are given below and are as well in units of g2.
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m2
u m2

d m2
s

∂2/∂σ20 1/3 1/3 1/3

∂2/ (∂σ0∂σ3) 1/
√
6 −1/

√
6 0

∂2/ (∂σ0∂σ8) 1/
(
3
√
2
)

1/
(
3
√
2
)

−
√
2/3

∂2/∂σ23 1/2 1/2 0

∂2/ (∂σ3∂σ8) 1/
(
2
√
3
)

−1/
(
2
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∂2/∂σ28 1/6 1/6 2/3

Contributions of the mesonic potential U (σ̄) to the meson
masses

The couplings and the axial-vector symmetry breaking coefficient of the mesonic po-
tential are adjusted to meson masses in the vacuum. Equations (2.42) and (2.43) give
the contributions of the mesonic potential to the scalar and pseudoscalar meson masses.
For the vacuum expectation value ϕ̄ = (λ0σ̄0 + λ3σ̄3 + λ8σ̄8) / 2 the contributions to the
scalar-meson masses are
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The contributions of the Linear-σ model to the pseudoscalar-meson masses are
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Derivatives of the potential of thermal quark fluctuations
with respect to the meson fields

To the in-medium masses of the mesons contribute besides the mesonic potential and
the quark quantum fluctuations also the thermal quark fluctuations. For the QM model
the derivatives of the thermal quark fluctuation potential with respect to the meson
fields are given in Ref. [66] but for the PQM model they are not yet available in the
literature and a are derived as follows. The first order derivative of the thermal quark
fluctuation potential (3.12) with respect to the (pseudo-)scalar fields is

∂Ωth
qq̄

∂φa
= 3

∑
f

∫
d3k

(2π)3
m2
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Φ̄ + 2Φe−(Ef+µf)/T + e−2(Ef+µf)/T

]}
, (B.12)

where the square brackets contain the arguments of the logarithms in Eq. (3.12). The
contributions of thermal quark fluctuations to the squared meson masses can then be
displayed as
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 ,

(B.13)

where the square brackets [. . . ]f,1 and [. . . ]f̄ ,1 abbreviate the square brackets in Eq. (B.12)
and the empty braces contain the content of the braces in Eq. (B.12).
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