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Proteinmobilitäts- und Interaktionsmessungen mithilfe von Zwei-Farben-
Multi-Fokus-Fluoreszenz-Kreuzkorrelations-Spektroskopie in lebenden Zellen 
 
Das Innere lebender Zellen ist ein dicht gepacktes und heterogenes Medium, das aus festen 
Strukturen und einer einbettenden viskosen Flüssigkeit besteht. In dieser komplexen 
Umgebung sind der Transport und die Interaktionen von Proteinen räumlich moduliert. 
Außerdem werden anormale Phänomene des Proteintransportes in lebenden Zellen 
beobachtet, die Einfluss auf die Kinetik biologischer Reaktionen und die Effizienz von 
Suchprozessen haben. Für das Verständnis des anormalen Proteintransportes in Zellen 
muss die Mobilität von Proteinen mit hoher Auflösung auf multiplen Skalen aufgenommen 
werden. In dieser Arbeit werden experimentelle und theoretische Grundlagen für parallele 
Mobilitätsmessungen auf vielen Längenskalen durch Fluoreszenz-Korrelations-
Spektroskopie mit linien-konfokalen Mikroskopen entwickelt. Aufgenommene 
Fluoreszenzsignale werden entweder für Proteinmobilitätskartierungen autokorreliert oder 
zur Bestimmung der Permeabilität intrazellulärer Strukturen kreuzkorreliert. Diese 
Methodik wird zur Kartierung der skalenabhängigen Mobilität von Monomeren und 
Multimeren des inerten grün fluoreszierenden Proteins (GFP) im Cytoplasma und Zellkern 
lebender Zellen genutzt. Darüber hinaus wird aus der Zeitabhängigkeit des apparenten 
Diffusionskoeffizienten extrahiert, dass die Struktur der intrazellulären Umgebung der 
eines porösen Mediums gleicht. Die hier entwickelte Methodik liefert auf multiplen Skalen 
quantitative Daten für Mobilität und Interaktionen, die in der Systembiologie für das 
Verständnis der funktionellen Organisation lebender Zellen verwendet werden können. 
 
 

 

 

Protein mobility and interaction measurements in living cells by dual-color 
multi-focus fluorescence cross-correlation spectroscopy 
 
The interior of living cells is a crowded and heterogeneous medium that consists of solid 
structures and an embedding viscous fluid. In this complex environment, protein transport 
and interactions are spatially modulated. Further, anomalous protein transport phenomena 
are observed in living cells that impact on the kinetics of biological reactions and 
efficiency of target search processes. To understand anomalous protein transport in cells, 
protein mobility has to be mapped with high resolution on multiple scales. In this thesis, an 
experimental and theoretical framework for parallelized mobility measurements on 
multiple length scales by fluorescence correlation spectroscopy with line confocal 
microscopes is developed. Acquired fluorescence signals are either auto-correlated for 
protein mobility mapping or cross-correlated to probe the permeability of the intracellular 
structure. By applying this methodology, the scale-dependent mobility of inert green 
fluorescent protein (GFP) monomers and multimers is mapped in the cytoplasm and 
nucleus of living cells. Furthermore, it is retrieved from the time dependence of measured 
apparent diffusion coefficients that the structure of the intracellular environment appears as 
that of a porous medium. The methodology developed here yields quantitative mobility 
and interaction data on multiple scales that can be used in systems biology for 
understanding the functional organization of living cells. 
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I Introduction 

The interior of living cells is a crowded and highly heterogeneous environment (Ellis, 

2001) that is composed of solid structures such as membrane-enclosed organelles, vesicles 

and cytoskeletal filaments in the cytoplasm or chromatin in the nucleus (Alberts et al., 

2002). These intracellular structures are embedded by viscous fluid. In this complex 

medium, most proteins are randomly transported by diffusion to the sites where they are 

active (Gorski et al., 2006; Phair and Misteli, 2000). However, diffusive motions of 

proteins are hindered in living cells due to confining geometries and binding interactions. 

By surrounding highly accessible regions with dense materials that are barriers for 

diffusing molecules, cells can create specific reaction volumes and guide proteins like 

enzymes or transcription factors to sites where they are active. In addition to collisions 

with obstacles, proteins can form complexes or transiently bind to slowly moving cellular 

structures. Due to these microscopic interactions, the diffusion of molecules in living cells 

deviates significantly from that in homogeneous aqueous solutions (Hofling and Franosch, 

2013; Wachsmuth et al., 2000; Weiss et al., 2003). It is spatially modulated and slowed 

down in a time and length scale dependent manner. Therefore, this kind of motion is called 

anomalous diffusion. For these anomalous transport phenomena, an increased rate of 

biological reactions and efficiency of target search processes was postulated (Guigas and 

Weiss, 2008). To study protein transport and interaction processes in living cells, it is 

important to map molecular mobility with high spatial and temporal resolution over a large 

time and length scale range. 

To meet these high methodological demands, an experimental and theoretical framework 

for parallelized fluorescence correlation spectroscopy (FCS) measurements along a line in 

the sample, which is referred to as 1D-FCS, was developed in this thesis. It allowed for 

measuring protein mobility at hundreds of positions within a length scale range from 200 

nm to 3.0 µm at 50 µs temporal resolution and 200 nm spatial resolution by line-confocal 

fluorescence microscopy. In the setup used here, a line in the sample is continuously 

illuminated with laser light. The emitted fluorescence light is recorded at equally spaced 

detection positions with a highly sensitive electron-multiplying charge-coupled device 

(EM-CCD) camera (Heuvelman et al., 2009). For protein mobility mapping, each acquired 

fluorescence signal is auto-correlated with a copy of itself and the calculated correlation 
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curves are fitted with model functions that describe the underlying transport process. 

Additionally, signals from different detection volume elements can be cross-correlated to 

measure molecule transport between them via a spatial FCCS analysis (Brinkmeier et al., 

1999; Dertinger et al., 2007; Dittrich and Schwille, 2002). Cross-correlation analysis is 

used for imaging of diffusion barriers and permeability of intracellular structures (Digman 

and Gratton, 2009). In addition to spatial cross-correlation, signals from two spectral 

detection channels can be cross-correlated, which is referred to as dual-color fluorescence 

cross-correlation spectroscopy (dual-color FCCS) (Bacia et al., 2006; Rippe, 2000; 

Schwille et al., 1997; Weidemann et al., 2002). Such experiments can probe the 

interactions between proteins that were fluorescently labeled with different color, allowing 

for studying a protein’s interaction kinetics.  

The methodology developed here mapped the mobility of inert green fluorescent protein 

(GFP) monomers and multimers (Dross et al., 2009; Pack et al., 2006) in human U2OS 

cells to identify diffusion barriers. Since 1D-FCS with line-confocal microscopes measures 

diffusion of molecules on multiple length scales, their mean squared displacement (MSD) 

was reconstructed as a function of time. Scale-dependent diffusion of GFP monomers and 

multimers was measured in the cytoplasm and nucleus of living cells. The observed time 

dependence of the apparent diffusion coefficient was that for diffusion in porous media and 

revealed how the cellular environment was ‘sensed’ from a diffusing protein’s point of 

view. Several structural parameters of the intracellular environment, e.g. the connectivity 

of the accessible space or the specific structure surface probed by the protein were 

retrieved. The drug-induced perturbances of these features and their effect on protein 

transport were evaluated with respect to the depolymerization of cytoskeletal filaments and 

the decondensation of chromatin. Furthermore, the time-dependence mobility of non-inert 

endogenous STAT2 signaling proteins (Stark and Darnell, 2012) was measured in the 

cytoplasm. In the nucleus, the mobility of chromatin-interacting heterochromatin protein 1 

(HP1) (Grewal and Jia, 2007; Müller et al., 2009) and its isolated chromodomain was 

measured on multiple scales. Finally, interactions of STAT1 and STAT2 proteins in the 

cytoplasm of living U2OS cells were studied with dual-color FCCS analysis. 

The methodology developed in this thesis lays the groundwork for a multi-scale spatial 

FCCS analysis of protein mobility and interactions in living cells. It can be easily 

transferred to recently emerging FCS techniques with single plane illumination 

microscopes (SPIM) (Capoulade et al., 2011; Singh et al., 2013; Wohland et al., 2010).  
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II Theory 

II.1 Diffusion 

In living cells, molecules are mostly randomly transported to sites where they are active by 

diffusion (Gorski et al., 2006; Phair and Misteli, 2000). Diffusion is a random movement 

of particles driven by thermal energy that is of the order of     

� 

Etherm = kBT , with the 

Boltzmann constant     

� 

kB and the absolute temperature   

� 

T  (Einstein, 1905). Due to frequent 

collisions with other moving particles, their momenta change continuously in direction and 

magnitude. Particle concentration gradients are equilibrated by diffusion (Fick, 1855). On 

the micrometer scale, spreading of particles in space by diffusion is a very efficient 

transport process. However, in complex and crowded media like the interior of living cells, 

free spreading of diffusing molecules is hindered due to collisions with immobile obstacles 

and adherence to cellular material due to transient binding interactions (Hofling and 

Franosch, 2013; Wachsmuth et al., 2000; Weiss et al., 2003). These microscopic processes 

result in anomalous diffusion phenomena that are different to normal diffusion in aqueous 

solution and dependent on the observation time and length scale. Only effective or 

apparent diffusion coefficients can be measured in living cells because of microscopic 

interactions. 

II.1.1 Normal diffusion 

II.1.1.1 Random walks 

A theoretical approach to describe the random movement of molecules due to diffusion is 

the concept of so-called random walks (Berg, 1993; Stewart, 2001). Simple realizations of 

random walks are for example discrete movements of particles on two-dimensional 

Cartesian grids: Particles move randomly in one time step with equal probability from one 

grid vertex to one of the neighboring vertices. Each time step mimics a collision event with 

other diffusing particles. This model gives non-self-avoiding random walks, i.e. vertices 

can be visited arbitrarily often by particles. After n time steps, the net displacement of a 

particle is expressed by 

 

  

� 

! r n( ) = ! e i
i=1

n

∑ . (Eq. 1) 
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The unit vectors   

� 

! e i in Eq. 1 represent the ith time step of a random walker’s trajectory on 

the grid. In this simplified model, only the direction of movement changes, whereas the 

step size is constant. Since particles move randomly from one grid vertex to another one 

with equal probability, different steps of their walks are not correlated (Bunde and Havlin, 

1995): 

 

  

� 

! e i ⋅
! e j i≠ j

= 0 . (Eq. 2) 

 

Accordingly, the limit of the random walks’ mean displacements after a large enough 

number n of time steps approaches zero:  

 

      

� 

limn→∞
! r n( )( ) =

! 
0 . (Eq. 3) 

 

Therefore, the mean squared displacements (MSD) of the random walks are used to 

characterize this random movement (Bunde and Havlin, 1995) 

 

      

� 

MSD n( ) = ! r 2 n( ) = ! e i
i=1

n

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

= n + 2 ! e i ⋅
! e j = n

i< j

n

∑ . (Eq. 4) 

 

Remarkably, the MSD of normal random walks grows linearly with the number of time 

steps   

� 

n . The MSD is proportional to the circular area on a two-dimension grid that is 

covered by the particles’ trajectories. For illustration, three exemplary computer-simulated 

random walks on a two-dimensional Cartesian grid with a total number of N = 500 time 

steps that start at the origin     

� 

x = y = 0  are depicted in Figure 1a. The corresponding squared 

displacements of the random walks’ trajectories are shown in Figure 1b. Additionally, the 

ensemble average of one thousand random walks’ squared displacements is illustrated as 

black curve in Figure 1b. As theoretically calculated in Eq. 4, the average MSD of the 

random walks grows linearly as function of the number of time steps   

� 

n . Isotropic diffusion 

in homogeneous environments can be understood as the continuous limit of these computer 

simulated random walks. 

To simulate the hindrance due to collisions with immobile obstacles, lattice vertices were 

randomly blocked by these obstacles (Saxton, 1994). The effect of binding on the diffusion 
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process was studied by Monte Carlo simulations for different binding energy distributions 

and for long-tailed waiting time distributions (Saxton, 1996). 

 

Figure 1: (a) Three simulated random walks on a Cartesian grid with a total number of N = 500 time steps. 

(b) The corresponding squared displacements of the random walks in panel a. By averaging over one 

thousand squared displacement curves, the MSD of the ensemble grows linearly with time (black line). The 

random walks were simulated with MATLAB.  

II.1.1.2 The master equation 

Another approach to describe diffusion theoretically is based on the master equation that 

gives the time evolution of a particle’s probability to occupy a vertex of the Cartesian grid 

(van Kampen, 1992). A sketch of a one-dimensional grid with all relevant variables for the 

formulation of the master equation is given in Figure 2. 

 

 

Figure 2: Random walk on a one-dimensional grid with a vertex distance Δx. The rate constants for particles 

to jump to the neighboring vertex on the right and left side are kr and kl, respectively. 
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The temporal change of the probability   

� 

P x,t( ) that a particle occupies the grid vertex at 

position   

� 

x  and time   

� 

t  is given by 

 

      

� 

∂
∂t

P x,t( ) = klP x + Δx,t( ) + krP x − Δx,t( )
Gain

! " # # # # # $ # # # # # 
−klP x,t( ) − krP x,t( )

Loss
! " # # # $ # # # 

. (Eq. 5) 

 

Particles have two possibilities to reach the grid vertex   

� 

x  within a time step   

� 

Δt : Either 

from the vertex on the left or from the vertex on the right side. Furthermore, particles can 

move from a vertex   

� 

x  to the neighboring vertex on their left or on their right side. 

Expanding the probability   

� 

P x,t( ) around the position   

� 

x  into a Taylor series results in 

 

    

� 

P x ± Δx,t( ) = P x,t( ) ± Δx
∂
∂x

P x,t( ) +
Δx2

2
∂2

∂x2 P x,t( ) + O Δx3( ) . (Eq. 6) 

 

By inserting Eq. 6 into Eq. 5 one obtains the Fokker-Planck equation (Fokker, 1914; 

Planck, 1917), which is a second order partial differential equation: 

 

    

� 

∂
∂t

P x,t( ) = kl − kr( )Δx
∂
∂x

P x,t( ) + kl + kr( ) Δx2

2
∂2

∂x2 P x,t( ) . (Eq. 7) 

 

In Eq. 7, the term of order   

� 

Δx  is the drift term that vanishes for symmetric transport 

processes, i.e.     

� 

kr = kl . Furthermore, the term of order     

� 

Δx2  describes diffusion processes 

with a diffusion coefficient 

 

    

� 

D = kl + kr( ) Δx2

2
. (Eq. 8) 

 

If the jump rates to the left and right vertex are     

� 

kr = kl = 0.5, then Eq. 7 is equivalent to the 

diffusion equation. Normal isotropic diffusion in only one dimension is described by Eq. 9, 

but it can be easily generalized for higher dimensionality: 

 

    

� 

∂
∂t

P x,t( ) = D
∂2

∂x2 P x,t( ). (Eq. 9) 
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II.1.1.3 Fick’s laws of diffusion 

An empirical approach to diffusion was introduced by Adolf Fick in 1855 (Fick, 1855) 

who used continuous concentration scalar fields. Fick’s first law postulates that gradients 

in the particle concentration     

� 

c ! r ,t( )  generate particle flux     

� 

! 
J ! r ,t( )  from positions of high 

concentration to positions of low concentration: 

 

    

� 

! 
J ! r ,t( ) = −D

! 
∇ c ! r ,t( ) . (Eq. 10) 

 

In Eq. 10,   

� 

D  is the diffusion coefficient (or tensor for anisotropic diffusion) and   

� 

! 
∇  is the 

vector differential operator or Nabla operator. According to Fick’s first law, particle 

concentration heterogeneities are equilibrated by diffusive flux. The temporal evolution of 

the concentration field is described by Fick’s second law, which can be derived by using 

the mass continuity equation 

 

      

� 

∂
∂t

c ! r ,t( ) = −div
! 
J ! r ,t( ) . (Eq. 11) 

 

It states that if the concentration in an infinitesimal volume   

� 

dV  around position     

� 

! r changes, 

there is a particle flux     

� 

! 
J  through the volume’s surface. By inserting Eq. 10 into Eq. 11, 

Fick’s second law is obtained: 

 

      

� 

∂
∂t

c ! r ,t( ) =
! 
∇ D
! 
∇ c ! r ,t( )[ ] . (Eq. 12) 

 

For isotropic diffusion,   

� 

D  is a constant and Eq. 12 simplifies to the diffusion equation: 

 

      

� 

∂
∂t

c ! r ,t( ) = DΔc ! r ,t( ) . (Eq. 13) 

 

In Eq. 13, 

� 

Δ  represents the Laplace operator  

 

      

� 

Δ =
! 
∇ 2 =

! 
∇ ⋅
! 
∇ =

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 . (Eq. 14) 
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The solution of Eq. 13 in   

� 

d  dimensions for the initial condition that     

€ 

N0  particles are 

localized at position     

� 

! 
′ r  at time     

� 

t = 0 , i.e.       

€ 

c  r ,t = 0( ) = N0δ
 r −  ʹ′ r ( ) , is given by 

 

      

€ 

c  r ,Δt( ) =
N0

4πDΔt( )d /2 exp −
 r −  ʹ′ r ( )2

4DΔt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ . (Eq. 15) 

 

The probability density     

� 

pdiff  for a particle to be after a time lag     

� 

Δt = 0  at position     

� 

! 
′ r  and 

after a time lag   

� 

Δt = t  at position     

� 

! r  can be calculated by normalizing Eq. 15 with the 

initial particle number     

€ 

N0 . The result is the so-called diffusion propagator, which is in 

three dimensions given by 

 

      

€ 

pdiff
 r ,  ʹ′ r ,t( ) =

1
4πDt( )3 /2 exp −

x − ʹ′ x ( )2
+ y − ʹ′ y ( )2

+ z − ʹ′ z ( )2

4Dt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ . (Eq. 16) 

  

It describes the diffusive spreading of particles that are released at position     

� 

! 
′ r  into space 

after time   

€ 

t  by a three-dimensional Gaussian function with   

€ 

1 e half widths     

€ 

4Dt . An 

exemplary one-dimensional probability density function is depicted in Figure 3 for a 

diffusion coefficient D = 30 µm2s-1 and different time lags. 

 

Figure 3: One–dimensional probability density function pdiff(x,t) for spreading of particles in space due to 

diffusion with a diffusion coefficient D = 30 µm2s-1 after t1 = 10 ms, t2 = 15 ms and t3 = 30 ms. 
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The MSD of particles as a function of time can be calculated as the second moment of the 

particles’ probability density distribution 

 

      

€ 

MSD t( ) =
 r 2 pdiff

−∞

+∞

∫  r ,t( )d 3r . (Eq. 17) 

 

It can be shown that diffusing particles’ MSD grows linearly with time   

� 

t  and that the 

proportionality constant is the diffusion coefficient   

� 

D : 

 

    

� 

MSD t( ) = 2dDt . (Eq. 18) 

 

The variable   

� 

d  in Eq. 18 represents the dimensionality of the diffusion process. One-

dimensional is for example the diffusion of proteins like transcription factors due to 

unspecific binding and sliding along DNA fibers until a specific binding site is reached. 

Two-dimensional is the diffusive movement of proteins or lipids in cellular membranes, 

and three-dimensional is diffusion of signaling molecules in the cellular fluid. 

The Stokes-Einstein equation (Einstein, 1905) gives a relation between the diffusion 

coefficient of spherical particles of radius   

� 

r  in fluids of viscosity 

� 

η at low Reynolds 

numbers and at the absolute temperature   

� 

T : 

 

    

� 

D =
kBT

6πηr
. (Eq. 19) 

 

II.1.2 Anomalous diffusion 

The interior of living cells is crowded due to high concentrations of macromolecules and 

cellular organelles. Furthermore, interacting molecules can bind to sites on cellular 

structures with broad affinity distributions. In this complex and disordered environment, 

diffusion of molecules is hindered and their MSD cannot be described by linearly growing 

functions (Hofling and Franosch, 2013; Schwille et al., 1999b; Wachsmuth et al., 2000). In 

this thesis diffusion of particles with a non-linear MSD will be in general called anomalous 

diffusion – independent of the origin of the anomaly and the actual time dependence. 

Anomalous diffusion was found in simulations including collisions with immobile 
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obstacles (Saxton, 1994) and binding reactions (Saxton, 1996). In the literature, anomalous 

diffusion processes with MSDs growing faster than linearly with time are called 

superdiffusive. Here, only diffusion processes with less than linearly growing MSD that 

are called subdiffusive were studied. For the description of anomalous diffusion by random 

walks, different steps are not independent, i.e. the correlation term in Eq. 4 does not vanish 

for   

� 

i ≠ j . An anisotropy in the step direction probability may occur due to collisions with 

impermeable and immobile obstacles: After the collision with an obstacle, a backward step 

is more probable than a forward step into the occupied space. Other disturbing factors of 

random walks’ isotropy are for example drift processes like flow or directed motion due to 

active transport and interactions with the surrounding structure because of attractive and 

repulsive electrostatic forces or binding reactions. The cross-correlation term in Eq. 4 

vanishes for random walk steps that are far apart in time (  

� 

i << j ), so that the diffusion 

process finally becomes normal again on large time and length scales. 

Percolation clusters with a fractal geometry that is self-similar on all length scales are 

commonly used to describe the spatial distribution of obstacles in living cells. The fractal 

geometry is characterized by a single parameter, which is the fractal dimension     

� 

df  that 

gives the mass   

� 

m  enclosed in a sphere of radius   

� 

r  (Bunde and Havlin, 1995) 

 

    

� 

m r( ) ~ r d f . (Eq. 20) 

 

In a three-dimensional rigid body, the fractal dimension     

€ 

df  is an integer. However, the 

fractal dimension of fractal structures is reduced and non-integer. The trajectories of 

particles’ random walks in fractal structures are also described as fractal structures of 

fractal dimension     

� 

dw .  

The MSD of a random walk in   

� 

d  dimensions is related to its fractal dimension     

� 

dw  by a 

power law: 

 

    

€ 

MSD t( ) = 2dDapp t( )t = 2d Γt dw 2 = 2d Γtα , (Eq. 21) 

 

with the transport coefficient 

� 

Γ, the anomaly parameter     

� 

α = dw /2  and the time-dependent 

apparent diffusion coefficient  
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� 

Dapp t( ) = Γtα−1. (Eq. 22) 

 

If the fractal dimension of random walks is     

� 

dw = 2 , Eq. 21 gives the MSD of normally 

diffusing particles that is proportional to time. For fractal dimensions     

� 

dw < 2 , the MSD 

grows less than linearly with time (Figure 4 a).  

The corresponding random walks are more compact than for normal diffusion. Therefore, 

the probability to return to an already visited position is increased. If the obstacle 

concentration is higher than a critical value, the so-called percolation threshold, the 

accessible open space is not connected over long distances anymore. Only for obstacle 

concentrations near the percolation threshold, analytical and numerical relations between 

the fractal dimension     

� 

dw  of random walks in a static structure of fractal dimension     

� 

df  were 

derived (Havlin et al., 1984). Moreover, random walks can have fractal dimensions of 

    

� 

dw > 2 , if active transport accelerates the diffusion process (superdiffusion).  

To describe subdiffusion, continuous time random walks (CTRWs) can be used to include 

waiting times between consecutive steps of the walk (Condamin et al., 2008). Long-tailed 

waiting time distributions of CTRWs can mimic transient immobilization of particles due 

to binding reactions or trapping in dead ends of the cellular structure. 

 

Figure 4: (a) Characteristic MSD plots for free diffusion, hindered diffusion in fractal percolation clusters or 

media with random barriers, and confined diffusion in corralling structures. (b) The corresponding apparent 

diffusion coefficients are plotted as a function of time in a double-logarithmic representation. In this 

representation, the difference between the diffusion laws in fractal and random structures is more 

pronounced. 

More complicated time dependencies of the MSD (Figure 4a) than a simple power for 

diffusion in a fractal percolation cluster were found for diffusion in media of randomly 



Theory 
 

 12 

distributed barriers (Novikov et al., 2011) and in porous media with broad distributions of 

pore sizes (Loskutov and Sevriugin, 2013). Characteristic for these diffusive processes are 

normal diffusion regimes on the microscopic and macroscopic scale that are connected by 

a crossover regime. 

II.1.3 Confined diffusion 

In disordered media with high obstacle concentrations, the accessible open space is not 

completely connected for diffusing molecules: There are corrals formed by impermeable 

barriers that prevent molecules from diffusing out of these regions. This diffusion behavior 

was observed by single particle tracking of nuclear bodies in the nucleus of living cells 

(Görisch et al., 2004). The confined diffusion of particles in corrals can be theoretically 

described by using three-dimensional harmonic potentials 

 

      

� 

U ! r ( ) =
k
2
! r − ! r c( )2

, (Eq. 23) 

 

which generate restoring forces that keep the particles near the center of the corral       

� 

! r c  and 

mimic the corral boundaries: 

 

      

� 

! 
F ! r ( ) = −

! 
∇ U ! r ( ) = −k ! r − ! r c( ). (Eq. 24) 

 

These forces generate an additional particle flux  

 

      

� 

! 
J " r ,t( ) = −

c " r ,t( )
γ
" 
∇ U " r ( ). (Eq. 25) 

 

The additional particle flux in media with friction coefficient 

� 

γ  has to be considered in the 

diffusion equation (Eq. 13). The modified diffusion equation is given by   

                                                                                                                 

      

� 

∂
∂t

c ! r ,t( ) = DΔc ! r ,t( ) +
1
γ
! 
∇ 
! 
∇ U ! r ( )c ! r ,t( )[ ]

= DΔc ! r ,t( ) +
k
γ
! 
∇ ! r − ! r c( )c ! r ,t( )[ ]

. (Eq. 26) 
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The solution of this partial differential equation for the boundary condition that a particle is 

at time     

� 

t = 0  at position     

� 

! 
′ r  describes the so-called Ornstein-Uhlenbeck process and is 

given by the transition probability density     

� 

pconf  (van Kampen, 1992) 

 

      

€ 

pconf
 r ,  ʹ′ r ,t( ) =

k
2πDγ 1− exp −2kγ −1t( )[ ]
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

3 /2

exp −
k  r −  r c( ) −  ʹ′ r −  r c( )exp −kγ −1t( )( )

2

2Dγ 1− exp −2kγ −1t( )[ ]

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ . 

 (Eq. 27) 

 

Eq. 27 converges to the transition probability density     

� 

pdiff  of free diffusion (Eq. 16) for a 

vanishing potential, i.e. for     

� 

kγ −1 →0 . 

II.2 Confocal fluorescence microscopy 

II.2.1 Fluorescence 

The phenomenon of fluorescence is the observation that certain matter emits light after 

illumination with mostly shorter wavelength light. This can be explained on a molecular 

level since atoms and molecules have different quantum states of distinct energy values. 

Transitions between different energy states are correlated to absorption or emission of 

photons. These transitions can be illustrated in so-called Jablonski energy diagrams as 

shown in Figure 5. Fluorescent dyes can be excited from the ground state S0 to a higher 

energy state S1 by absorption of photons that correspond to light of frequency   

� 

νA and 

energy     

� 

hνA  (  

� 

h is the Planck constant) if the photons’ energy matches the energy 

difference between these states (Lakowicz, 2006). After non-radiative relaxation to a lower 

energy level of S1 by disposing energy for vibration and rotation of the dye molecule, a 

fluorescence photon of lower energy     

� 

hνF  is emitted. The difference between the frequency 

of the absorption and fluorescence photon   

� 

Δν =νA −νF  is called Stokes shift. A typical 

lifetime of several nanoseconds is observed for the first excited singlet state S1. If a second 

photon is absorbed during this time period, the fluorescent dye is excited to even higher 

energy levels, which may result in covalent interactions that change the molecular structure 

and may finally lead to irreversible photobleaching of the fluorophore. Furthermore, dye 

molecules can undergo an electron spin conversion to the first triplet state T1. This process 

is called intersystem crossing. The T1 state has a lifetime of milliseconds to several 
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seconds because the crossover to the singlet ground state via emission of a 

phosphorescence photon of energy     

� 

hνP  is extremely unlikely according to quantum 

mechanics. From the triplet state T1, the dye molecule can undergo a second intersystem 

crossing back to the first excited singlet state S1 and emit a fluorescence photon. This 

process can lead to blinking of the fluorescent molecule on different time scales, 

depending on the lifetimes of the involved quantum states. The discovery of fluorescent 

proteins allows for non-invasive labeling of molecules like DNA or proteins with 

fluorophores in living cells, which is the basis of fluorescence confocal microscopy. 

 

Figure 5: Jablonski energy diagram for absorption, fluorescence, photobleaching and phosphorescence. 

Different quantum states (grey lines) of a fluorescent molecule are depicted. By absorbing a photon (blue), 

the fluorophore can be excited from the ground state S1 to a higher energy level. From there, it can relax to 

lower energy levels of S1 by converting energy into molecular vibrations or rotations (black dashed arrows) 

and finally emit a fluorescence photon (green). Additionally, it can either absorb a second photon in the 

excited state, which may result in irreversible photobleaching (black). Another possible transition is the 

crossover to a long-lived triplet state T1 from which it can relax to the ground state by emitting a 

phosphorescence photon of longer wavelength (red).  

II.2.2 Confocal laser scanning microscopy 

For imaging the microscopic processes of life in living cells with high spatial resolution, 

labeling of cellular components like DNA or proteins with fluorescent dyes is used in 

combination with confocal laser scanning microscopes (CLSM). CLSMs are optimized for 

detection of fluorescence light. In commercially available CLSM systems, collimated laser 

beams are focused into the sample by an objective lens with high numerical aperture (NA) 

to excite fluorescently labeled molecules in a small diffraction-limited volume (Pawley, 

2006). Acousto-optical devices are used to separately modulate the intensities of spectrally 

different illumination laser beams. The emitted fluorescence light is collected from the 



Confocal fluorescence microscopy 
 

15 

detection volumes in the sample by the same objective lens that was used for illumination. 

Subsequently, the light is detected by photomultiplier tubes (PMT) or photodiodes through 

a pinhole that allows for optical sectioning and an enhanced spatial resolution. 

Fluorescence light that is not emitted near the focus point is blocked by the pinhole in 

conjugate or confocal position to the focus point. The principal of confocal microscopy is 

illustrated in Figure 6. 

 

Figure 6: The principal of contrast and resolution enhancement in confocal microscopy. Fluorescence light is 

collected by an objective lens from the sample and focused on a pinhole in confocal position. Fluorescence 

light emitted near the focus can pass unaffectedly through the confocal pinhole (red rays). Only a small 

fraction of fluorescence photons emitted near the optical axis but farther above or below the focal plane (blue 

rays) can pass through the pinhole to the detector. Fluorescence light emitted farther apart from the focus but 

in the focal plane (green rays) is mostly blocked by the confocal pinhole. 

The optical resolution of conventional widefield (WF) microscopes, defined as the full 

width at half maximum (FWHM) of the microscope’s point spread function, is given by 

(Wilhelm et al., 2003) 

 

� 

FWHMlateral,WF =
0.51λdet
NA

 (Eq. 28) 

 

in lateral direction and  

 

� 

FWHMaxial,WF =
nλdet
NA2

 (Eq. 29) 

 

in direction of the optical axis. In Eq. 28 and 29, the wavelength of the detected light is 

denoted by 

� 

λdet , the numerical aperture of the objective lens is   

� 

NA and the refractive 
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index of the immersion medium is   

� 

n . For a water objective with     

� 

NA = 1.2, the refractive 

index of water     

� 

n = 1.33 and a fluorescence wavelength of   

� 

λdet = 525 nm, a lateral 

resolution of   

€ 

FWHMlateral,  WF = 220 nm and an axial resolution of   

� 

FWHMaxial,  WF = 485 nm 
was calculated.  

For CLSMs with small pinholes, the resolution can be calculated as (Wilhelm et al., 2003) 

 

� 

FWHMlateral,CLSM =
0.37λ 
NA

 (Eq. 30) 

 

for the lateral direction and  

 

� 

FWHMaxial,CLSM =
0.64λ 

n − n2 − NA2( )  (Eq. 31) 

 

for the axial direction. Because of the difference between illumination and detection 

wavelength, a mean wavelength defined by Eq. 32 is used 

 

� 

λ ≈ 2 λdetλill
λdet
2 + λill

2
. (Eq. 32) 

 

Accordingly, the improved resolution of CLSMs due to illumination of a single point with 

laser light of wavelength   

� 

λill = 488 nm  and enhanced contrast due to a confocal pinhole 

was caculated as   

� 

FWHMlateral,CLSM = 160 nm  and   

� 

FWHMaxial,CLSM = 430 nm. 

For three-dimensional imaging of living cells, mirror galvanometers are used to 

sequentially scan a plane in the sample point by point in lateral direction, and a 

galvanometer driven stage is used to position the focus in axial direction. Finally, a three-

dimensional image stack can be reconstructed with a computer. 

II.2.3  Molecule detection efficiency of confocal microscopes 

The imaging properties of fluorescence CLSMs are described by their molecule detection 

efficiency (MDE), which is the diffraction limited three-dimensional image of an 

infinitesimally small fluorescent point light source acquired by the optical system. It has to 

be determined for quantitative analysis of fluorescence fluctuation microscopy (FFM) 



Confocal fluorescence microscopy 
 

17 

measurements and for increasing the contrast and resolution of fluorescence images by 

deconvolution algorithms. For CLSMs, the MDE 

� 

Ψ is given by the product of their 

illumination point spread function (PSF) and detection PSF (Stelzer and Lindek, 1994): 

 

      

� 

Ψ ! r ( ) = PSFill
! r ( )⋅ PSFdet

! r ( ) . (Eq. 33) 

 
The illumination and detection PSF can be calculated near the focus according to the 

Debye diffraction theory (Born, 1999; Hecht, 1989). An empirical model function for the 

detection probability that accounts for the double cone shaped beam profile in axial 

direction was proposed by Dertinger et al. (Dertinger et al., 2007). 

II.2.3.1 MDE near the focus described by Debye diffraction theory 

According to Debye diffraction theory, the illumination amplitude     

� 

hill  of the 

electromagnetic field near the focus point can be described as superposition of plane waves 

integrated over the aperture of a circular lens. The illumination PSF is given by the 

absolute square of the illumination amplitude     

� 

hill : 

 

  

� 

PSFill = hill
! r ( ) 2

=
sin uill

uill

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2 2J1 vill( )

vill

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 with (Eq. 34)   

 
 

� 

uill = n 2π
λill

zsin2 α 2( )  and 

� 

v ill = n
2π
λill

x 2 + y 2 sinα . (Eq. 35)  

 

Here,     

� 

J1 is the Bessel function of the first kind and order. Furthermore,   

� 

λill  is the 

wavelength of illumination light,   

€ 

n  is the refractive index of the optical medium and 

� 

α  the 

half-angle of the maximum cone of light that is collected from the lens. The NA of the 

objective lens is defined by: 

  

  

€ 

NA = n sinα . (Eq. 36) 
 

The detection PSF for high NA objective lenses can be approximated by Debye diffraction 

theory. According to that the detection PSF can be described by 
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� 

PSFdet = hdet
! r ( ) 2 =

sinudet
udet

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2 2J1 vdet( )

vdet

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

 with (Eq. 37) 

 

� 

udet = n 2π
λdet

zsin2 α 2( ) and 

� 

vdet = n
2π
λdet

x 2 + y 2 sinα . (Eq. 38) 

 

The wavelength of the emitted fluorescence light is represented in Eq. 38 by   

� 

λdet . The 

resulting molecule detection efficiency (MDE) function is illustrated in Figure 7.  

A central maximum (Airy disk) and first order diffraction ring (Airy ring) of the lateral 

MDE can be observed in logarithmic representation. In lateral direction, the diffraction 

pattern is that of a circular aperture and in axial direction that of a slit diaphragm 

(Guenther, 1990; Sheppard and Matthews, 1987).  

By neglecting the low amplitude Airy rings, the MDE of CLSMs with high numerical 

apertures is often approximated by a three-dimensional Gaussian function with beam 

waists given by the 1/e2 radii     

� 

w0  and     

� 

z0  in lateral and axial direction, respectively (Qian 

and Elson, 1991): 

 

      

€ 

Ψ
 r ( ) = exp −2

x2 + y2

w0
2 − 2

z2

z0
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . (Eq. 39) 

 

This approximation of the MDE is only valid near the focal plane. 

II.2.3.2 Empirical model for the double cone shape of the MDE 

An empirical model for confocal fluorescence microscope’s MDE that describes the 

double cone shape of focused and diverging light beams was introduced and validated with 

experimental data by Dertinger et al. (Dertinger et al., 2007). However, diffraction patterns 

are completely neglected in this model. The double cone MDE function 

� 

Ψ is given by: 

 

      

� 

Ψ ! r ( ) =
κ z( )
w2 z( ) exp −2

x2 + y2

w2 z( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . (Eq. 40) 

 

Each plane along the optical axis z is approximated by a two-dimensional Gaussian 

function with 1/e2 radius   

� 

w(z) .  
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The lateral beam waist as a function of the axial position z is described by 

 

    

� 

w(z) = w0 1+
λillz
πw0

2n
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

. (Eq. 41) 

 

Here,     

� 

w0  gives the beam waist in the focal plane,   

� 

λill  is the wavelength of the illumination 

light and   

� 

n  the refractive index of the corresponding immersion medium.  

The function   

� 

κ z( )  accounts for blocking of fluorescence light that is emitted in out-of-

focus regions by a pinhole with an aperture radius projected into the focal plane of   

� 

a: 

 

� 

κ z( ) = 2
ρdρ
R2 z( ) exp −2

ρ2

R2 z( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

a∫ =1− exp −2
a2

R2 z( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . (Eq. 42) 

 

In Eq. 42, the function R(z) is defined similarly to Eq. 41: 

 

� 

R(z) = R0 1+
λdetz
πR0

2n
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

. (Eq. 43) 

 

The parameter   

� 

λdet  in Eq. 43 is the wavelength of the emitted fluorescence light and     

� 

R0 is a 

(generally unknown) model parameter that is determined experimentally. 

This double cone shaped model of the MDE is depicted in Figure 7. Notably, it is 

consistent with the three-dimensional Gaussian model approximation of the MDE in the 

focal plane but diverges farther apart from the focus. The double cone MDE model 

function reflects more realistically the experimental situation since it describes the double 

cone shaped profile of focused light beams, as previously measured by Dertinger et al. 

(Dertinger et al., 2007). A comparison of the MDE model function derived by Debye 

theory that is only valid near the focal plane and the double cone MDE model is shown in 

Figure 7.  
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Figure 7: Model functions for the molecule detection efficiency (MDE) derived by Debye diffraction theory 

(only valid near the focus plane) and by empirically modeling the double cone shaped profile of a focused 

light beam in lateral and axial direction. The functions are plotted for an illumination wavelength λill = 488 

nm, a detection wavelength of λdet = 525 nm, the refractive index of water as immersion medium n = 1.33, a 

half angle of the focused light cone α = 68° and the double cone model parameters w0 = 150 nm, R0 = 130 

nm as well as the radius of the confocal pinhole projected into the focal plane a = 250 nm. All functions were 

shown in linear (left) and logarithmic (right) representation 

II.3 Fluorescence fluctuation microscopy techniques 

The mobility and interactions of fluorescently labeled molecules can be non-invasively 

measured in living cells by fluorescence fluctuation microscopy techniques. One approach 

is to acquire the fluctuating fluorescence signals of diffusing molecules emitted in 

diffraction-limited illumination volumes followed by a correlation analysis (Elson and 

Magde, 1974; Magde et al., 1972; Magde et al., 1974). This approach is called 

fluorescence correlation spectroscopy (FCS). Different modifications of FCS were 

developed over recent years, e.g. fluorescence cross-correlation spectroscopy of signals 

from different spectral detection channels (dual-color FCCS) (Rarbach et al., 2001; 

Schwille et al., 1997; Weidemann et al., 2002) or fluorescence cross-correlation 

spectroscopy of signals from spatially separated detection volumes in the sample (dual-

focus FCCS) (Brinkmeier et al., 1999; Dertinger et al., 2007). A complementary approach 

is bleaching of fluorescent molecules in a region of interest and acquiring the recovering 
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fluorescence signals due to exchange of bleached and unbleached molecules by diffusion 

(Axelrod et al., 1976; Reits and Neefjes, 2001). This methodology is called fluorescence 

recovery after photobleaching (FRAP). 

II.3.1 Fluorescence recovery after photobleaching 

Mobility, kinetic binding parameters and fractions of immobilized fluorescent molecules 

arising from trapping or strong binding can be measured in living cells by bleaching the 

fluorophores in a region of interest (ROI) with high laser illumination directly followed by 

imaging the equilibration or recovery of the fluorescence intensity over time (Figure 8). 

Bleaching and imaging is generally done with confocal laser scanning microscopes 

(CLSM) so that the ROI cannot be bleached instantaneously, as assumed for most 

theoretical FRAP models. Rather, the ROI is bleached sequentially point by point in a 

raster scan process. Fluorescent and bleached molecules redistribute during the bleach 

phase and before the acquisition of the first post-bleach image frame. Furthermore, a 

quantitative description of the evolution of fluorescence profiles during the scan process is 

pixel-wise photobleaching profile evolution analysis (3PEA) developed by Erdel and 

Rippe (Erdel and Rippe, 2012).  

 

 

Figure 8: Principle of fluorescence recovery after photobleaching experiments. Fluorescent molecules are 

bleached in a region of interest (ROI), here a circular area, followed by recording of the fluorescence 

recovery as a function of time. From the recovery time, the mobility of fluorescent molecules can be 

determined. Furthermore, incomplete recovery of the fluorescence intensity Favg(t) shows a fraction ftrap of 

molecules that is immobilized by trapping for longer period of times (Braga et al., 2004). 
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Here, a simple diffusion FRAP model function (Braga et al., 2004) was used that accounts 

for partial recovery of the fluorescence during the bleach process by both analyzing the 

radial profile of the first post-bleach image frame and the time evolution of the recovery. 

Notably, this model function can only be used for inert molecules since binding reaction 

are not included. 

The temporal evolution of the fluorescence intensity distribution     

� 

F ! r ,t( ) due to diffusion of 

mobile fluorescently labeled molecules with diffusion coefficient   

� 

D  can be described by 

the diffusion equation 

 

    

� 

∂
∂t

F ! r ,t( ) = DΔF ! r ,t( ) . (Eq. 44)  

 

According to Braga et al. (Braga et al., 2004), a good approximation of the three-

dimensional bleach volume in the sample as observed in the first post-bleach frame (    

� 

t = 0) 

is given for mobile fluorescent molecules by 

 

      

� 

FM
! r ,t = 0( ) = F0 exp −KM exp −2

x2 + y2

wM
2 − 2

z2

zM
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . (Eq. 45)  

 

In Eq. 45,     

� 

wM  and     

� 

zM  are the profile width in lateral and axial direction, respectively. The 

bleach efficiency of the mobile fluorescent molecules is given by     

� 

KM .  

The partial differential equation given by Eq. 44 was solved by (Blonk et al., 1993) using 

the approximation suggested by Eq. 45 as initial condition and the boundary condition for 

a much larger sample volume than the bleach volume  

 

    

� 

FM x = ∞, y = ∞, z = ∞, t( ) = F0 . (Eq. 46)  

 

A solution of Eq. 44 is given by  

 

      

� 

FM
! r , t( ) = F0zMwM

2

−KM( )n
exp

−2nz2

zM
2 + 8nDt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ exp

−2n x2 + y2( )
wM

2 + 8nDt

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

n! zM
2 + 8nDt wM

2 + 8nDt( )n=0

∞

∑ . (Eq. 47)  
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For analysis of the recovery curve of the fluorescence intensity   

� 

F t( ) , the fluorescence 

distribution that is theoretically described by Eq. 47 is averaged over a circular area of 

radius     

� 

wS  to improve the signal to noise ration (Braeckmans et al., 2003; Klonis et al., 

2002). The fluorescence intensity averaged over a circular area in the focal plane (    

� 

z = 0) 

can be calculated by 

 

      

� 

ˆ F M
avg ! r , t( ) =

1
πwS

2F0

FM x, y, z = 0,t( )dxdy
x 2 + y2 ≤wS

2

∫ . (Eq. 48)  

 

Inserting of Eq. 47 into Eq. 48 finally yields 

 

      

� 

ˆ F M
avg ! r , t( ) =

1
2

wM
2

wS
2

−KM( )n

n!n
zM

zM
2 + 8nDt

1− exp
−2nwS

2

wM
2 + 8nDt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n=1

∞

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ + 2

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
. (Eq. 49)  

 

A two-dimensional approximation of the system holds if the laser beam bleaches 

completely through the sample in axial direction (    

� 

zM →∞ ): 

 

      

€ 

ˆ F M
2D  r , t( ) =

1
2

wM
2

wS
2

−KM( )n

n!n
1− exp −2nwS

2

wM
2 + 8nDt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

n=1

∞

∑
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ + 2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
. (Eq. 50)  

 

If a fraction     

� 

f trap  of molecules is immobilized due to trapping, the normalized recovery of 

the fluorescence signal     

� 

ˆ F avg t( ) , averaged over a circular area, reads 

 

    

� 

ˆ F avg t( ) = 1− f trap( ) ˆ F M
avg t( ) + f trap

ˆ F IM
avg . (Eq. 51)  

 

The normalized fluorescence of the immobile molecules is represented in Eq. 51 by     

� 

ˆ F IM
avg . 

Since the radius     

� 

wM  of the first post-bleach profile depends on the mobility of the 

fluorescent molecules, partial recovery of the fluorescence during the raster-scan process is 

roughly accounted for.    
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II.3.2 Fluorescence correlation spectroscopy 

Conventional laser-scanning confocal microscopes (CLSMs) with high detection 

sensitivity are ideal instruments for fluorescence correlation spectroscopy (FCS) 

measurements in living cells (Politz et al., 1998; Schwille et al., 1999a; Schwille et al., 

1999b; Wachsmuth et al., 2000; Weiss et al., 2003). After acquisition of an overview 

image, the laser beam can be positioned to a location of interest from which fluorescence 

photons emitted by fluorescently labeled molecules in the illumination volume are 

detected. The acquired fluorescence intensity   

� 

I t( ) can be theoretically described by 

integration of the fluorophore distribution   

� 

C ! r ,t( ) over the observation volume defined by 

the MDE function   

� 

Ψ ! r ( )  in the sample volume   

� 

V  (Lakowicz, 2006): 

 

      

€ 

I t( ) = B Ψ
 r ( )C  r ,t( )d3r

V∫ . (Eq. 52)  

 

In Eq. 52, the brightness   

� 

B of the fluorophores depends on the quantum efficiency   

� 

q  for 

detection of fluorescence photons, the absorption cross-section 

� 

σ and the quantum yield   

� 

Q 

for emission of fluorescence photons: 

 

� 

B = qσQ. (Eq. 53)  

 

The distribution of   

� 

N  fluorophores at time   

� 

t  can be expressed by 

 

      

€ 

C  r ,t( ) = δ
 r i t( ) −  r ( )

i=1

N

∑ . (Eq. 54)  

 

The mobility of molecules in living cells can be extracted from relative intensity 

fluctuations 

 

� 

δI t( ) = I t( ) − I t( )  (Eq. 55)  

 

of the fluorescence signal   

� 

I t( ) due to diffusion of fluorescent molecules into and out of the 

diffraction-limited focus volume. In Eq. 55, the angular brackets   

� 

…  denote the time 



Fluorescence fluctuation microscopy techniques 
 

25 

integral     

€ 

…dt∫ . The probability for molecules to be still detected in the focus volume after 

a time lag 

€ 

τ  is proportional to the value of the so-called normalized autocorrelation (AC) 

function: 

 

    

€ 

G τ( ) =
δI t( )δI t +τ( )

I t( ) 2 =
I t( ) − I t( )( ) I t +τ( ) − I t( )( )

I t( ) 2 =
I t( )I t +τ( )

I t( ) 2 −1. (Eq. 56)  

 

Accordingly, the autocorrelation function for the fluorescence intensity fluctuations due to 

fluorophore concentration fluctuations in the observation volume reads 

 

      

€ 

G τ( ) =
B2 Ψ

 r 1( ) δC  r 1,t( )δC  r 2,t +τ( ) Ψ  r 2( )d 3r1d
3r2∫∫

BC Ψ
 r ( )∫ d 3r( )

2 . (Eq. 57)  

 

Remarkably, the correlation function in Eq. 57 is independent of the fluorophores 

brightness. The concentration of molecules at time 

� 

t  and position   

� 

! r 1  is correlated with that 

at position   

� 

! r 2  and time 

� 

t +τ  due to diffusion (Lakowicz, 2006): 

 

  

� 

δC ! r 1,t( )δC ! r 2,t +τ( ) = C 4πDτ( )−3 / 2 exp −
! r 1 −
! r 2( )2

4Dτ

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ . (Eq. 58)  

 

Inserting of Eq. 58 and the double-cone shaped MDE function given by Eq. 40 into Eq. 57 

yields 

 

    

� 

G τ( ) =
1
C 

1
4πDτ

κ z1( )κ z2( )
8Dτ + w2 z1( ) + w2 z2( ) exp −

z1 − z2( )2

4Dτ

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ dz1dz2∫∫

π
2

κ z( )dz∫( )2 . (Eq. 59)  

 

The integrals in Eq. 59 can only be solved numerically.  

By correlation analysis of the recorded fluorescence signal, a so-called auto-correlation 

curve can be calculated that can be fitted by an appropriate model function (Figure 9). The 
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width of the calculated correlation curves is proportional to the mean residence time of the 

molecules in the focus volume. If the focus geometry is known, the molecules diffusion 

coefficient can be determined. Furthermore, the correlation curves’ amplitude is 

proportional to the average number of molecules in the focus volume. The molecules’ 

concentration can be calculated if the volume of the focus was determined before, or 

according to a reference measurement. FCS is ideally suited to measure the diffusion 

coefficient of fast molecules at moderate to low concentrations, since high concentrations 

result in low molecule number fluctuations in the focus volume and thus low correlation 

amplitudes. The shape of calculated correlation curves is dependent on photophysical 

effects, mobility and interactions of the fluorophore and the MDE volume geometry. 

 

 

Figure 9: Fluorescent molecules diffuse into and out of a diffraction-limited illuminated focus volume. The 

fluctuating number of molecules in the focal volume results in a fluctuating fluorescence signal as a function 

of time recorded by a detector. This fluorescence signal can be correlated with a copy of itself to obtain a so-

called auto-correlation function G(τ). From the amplitude of G(τ), the molecules’ concentration can be 

determined and its width is proportional to the mean residence time and thus inversely proportional to the 

molecules’ diffusion coefficient. The slope at the inflection point of G(τ) is related to the anomaly parameter 

of fractal diffusion models. 

II.3.3 Dual-color fluorescence cross-correlation spectroscopy  

The binding reaction of two interacting molecules of similar molecular weight cannot be 

measured by conventional FCS experiments, due to an only slightly slower component in 

the auto-correlation curve. For this purpose, the interacting molecules are labeled with 

fluorophores of spectrally separated emission maxima, e.g. with a red and a green 
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fluorescent dye (Rarbach et al., 2001; Rippe, 2000; Schwille et al., 1997; Weidemann et 

al., 2002). Two laser beams for excitation of the red and green dyes are focused to the 

same position in the sample and the emitted fluorescence light is collected by an objective 

lens. The red and green signals are separated on the detection light path of the microscope 

by a dichroic mirror.  

In the sample, three species of molecules can be distinguished: Only green labeled 

molecules (G), only red labeled molecules (R) and complexes of interacting red and green 

labeled molecules (GR).  By correlating the green fluorescence signal, molecules G and 

complexes GR contribute to the calculated auto-correlation curve. The auto-correlation 

curve of the red fluorescence signals consists of contributions of both R and GR, 

accordingly. To solely measure diffusion of complexes GR, the green fluorescence signal 

can be cross-correlated (CC) with the signal of the red detection channel. Only molecules 

that have a red and a green label contribute to the CC curve. The fluorescence intensity 

Igreen that is detected in the green channel is emitted by molecules G and complexes GR as 

given by Eq. 52, if the quantum yield of green dye is not changed in the complex: 

  

      

€ 

Igreen t( ) = Igreen,G t( ) + Igreen,GR t( ) = Bgreen Ψgreen
 r ( )

V∫ Cgreen,G
 r ,t( ) + Cgreen,GR

 r ,t( )( )d 3r . 

 (Eq. 60)  
 

Accordingly, the fluorescence intensity     

€ 

I red  in the red detection channel is given by 

 

      

€ 

I red t( ) = I red,R t( ) + I red,GR t( ) = Bred Ψred
 r ( )

V∫ Cred,R
 r ,t( ) + Cred,GR

 r ,t( )( )d 3r . (Eq. 61)  

 

Therefore, the auto-correlation function     

� 

Ggreen  of the green detection channel without 

spectral cross-talk between both detection channels reads 

 

    

� 

Ggreen τ( ) =
δIgreen t( ) δIgreen t +τ( )

Igreen t( )
2

=
δIgreen,G t( ) δIgreen,G t +τ( ) + δIgreen,GR t( ) δIgreen,GR t +τ( )

Igreen,G t( ) + Igreen,GR t( )( )2

.

 (Eq. 62)  
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By inserting the auto-correlation function of a single component given by Eq. 59 into Eq. 

62, it can be expressed by 

 

    

� 

Ggreen τ( ) =
C G

2

C G + C R( ) Ggreen,G τ( ) +
C GR

2

C G + C R( ) Ggreen,GR τ( ) . (Eq. 63)  

 

 Accordingly, the auto-correlation function     

� 

Gred  of the red detection channels is 

 

    

� 

Gred τ( ) =
C R

2

C G + C R( ) Gred,R τ( ) +
C GR

2

C G + C R( ) Gred,GR τ( ) . (Eq. 64)  

 

To obtain the fraction of complexes RG, the cross-correlation function of the green and red 

fluorescence signals can be calculated by 

 

    

� 

Gcross τ( ) =
δIgreen t( ) δI red t +τ( )

Igreen t( ) I red t( )
=

δIgreen,GR t( ) δI red,GR t +τ( )
Igreen t( ) I red t( )

. (Eq. 65)  

 

By inserting Eq. 60 and Eq. 61 into Eq. 65, the following expression can be derived for the 

cross-correlation function: 

 

      

€ 

Gcross τ( ) =
BgreenBred Ψgreen

 r 1( ) δCGR
 r 1,t( )δCGR

 r 2,t +τ( ) Ψred
 r 2( )d 3r1d

3r2∫∫
BgreenBred CG + CGR( ) CR + CGR( ) Ψgreen

 r 1( )d 3r1 Ψred
 r 2( )d 3r2∫∫

. (Eq. 66)  

 

If the complex concentration CGR at time t and position   

� 

! r 1 is correlated with that at time 

� 

t +τ  and position   

� 

! r 2 due to diffusion, Eq. 66 can be converted to 

 

    

€ 

Gcross τ( ) =
C GR

C G + C GR( ) C R + C GR( )
1

4πDGRτ

⋅

κgreen z1( )κ red z2( )
8DGRτ + wgreen

2 z1( ) + wred
2 z2( )

exp
− z1 − z2( )2

4DGRτ

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ dz1dz2∫∫

π
2

κgreen z1( )dz1 κ red z2( )dz2∫∫
.

 (Eq. 67)  
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Because spectral crosstalk of the green fluorophores into the red detection channel cannot 

be avoided experimentally, measured AC and CC curves have to be corrected. A correction 

approach was proposed by Erdel (Erdel, 2012). According to this approach, crosstalk 

corrected curves can be calculated from the measured curves (Eq. 68) if the bleed through-

factor 

� 

κ  of green fluorescent light into the red detection channel is determined. It has to be 

measured for each combination of fluorophores and optical filter sets. 

 

    

€ 

Ggreen
i τ( )

Gcross
i τ( )

Gred
i τ( )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

=

1 0 0
−γ 1− γ( )−1 1− γ( )−1 0
γ 2 1− γ( )−2

−2γ 1− γ( )−2 1− γ( )−2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

Ggreen τ( )
Gcross τ( )
Gred τ( )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
. (Eq. 68)  

  

In Eq. 68, 

� 

Ggreen
i τ( ) , 

� 

Gcross
i τ( )  and 

� 

Gred
i τ( )  are the ideal or crosstalk free correlation curves 

that can be calculated from the measured curves     

€ 

Ggreen τ( ) ,     

€ 

Gcross τ( ) and     

€ 

Gred τ( ). The 

parameter 

� 

γ  is calculated from the averages of the fluorescence intensities     

€ 

Igreen  and     

€ 

I red  

measured in the green and red detection channel, respectively: 

 

    

€ 

γ = κ Igreen I red
−1

. (Eq. 69) 

  

II.3.4 Dual-focus fluorescence cross-correlation spectroscopy  

Anisotropic transport phenomena like flow or diffusive flux can be measured based on 

FCS by creating a second illumination and detection volume in the sample that is spatially 

separated from the first one (Brinkmeier et al., 1999). This approach is called dual-focus 

fluorescence cross-correlation spectroscopy (dual-focus FCCS). If the distance between 

both detection volumes is known, diffusion coefficients can be measured with high 

precision (Dertinger et al., 2007). Dual-color FCCS is robust against experimental artifacts 

due to optical factors like cover slide thickness variations, refractive index changes of the 

sample, laser beam geometry and optical saturation of the fluorophores (Dertinger et al., 

2008). If the distance between both focus volumes is large in comparison to the focus size, 

the shape of calculated cross-correlation curves gets independent of the actual detection 

volume geometry. Two spatially separated focus volumes can be created in the sample by 

using a Normarski prism in the illumination beam path and two orthogonally linear-
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polarized laser beams (Brinkmeier et al., 1999). A Normarski prism has two principal axes 

that are aligned with the orthogonal polarizations of the laser pulses. For this alignment, 

the prism deflects the laser beams into two different directions according to their 

polarization. By focusing this light through the objective lens into the sample, two spatially 

shifted illumination volumes are generated (Figure 10). Fluorescence photons that are 

emitted in the excitation volumes are acquired with two detectors, each corresponding to a 

detection volume. The signal of each detection volume can be either auto-correlated with a 

copy of itself or additionally cross-correlated with the signal of the other detection volume. 

Cross-correlation analysis allows for determining the probability of a molecule to be 

detected at time t in the first volume and after a time lag τ in the second volume.  

 

 

Figure 10: Two laser beams are focused into the sample. The created focus volumes are a distance δ apart 

from each other. Fluorescent molecules enter and leave the illuminated focus volumes by transport processes 

like diffusion or flow. The fluorescence signal emitted in each focus volume is acquired with a detector. They 

can be either auto-correlated with a copy of themselves or cross-correlated with the signal of the other 

detection volume. Molecule detection at time t1 in the first focus volume and at time t2 in the second focus 

volume are correlated events due to the underlying transport process. For large distances, cross-correlation 

curves have a distinct peak at the molecules’ most probable translocation time. 

By reverse cross-correlation, anisotropy of molecules’ transport process can be 

determined: For molecule exchange between two focus volumes by directed motion, the 

two acquired fluorescence signals are correlated in one, but not in the other direction. If 

molecules cannot be exchanged between the detection volumes due to an impermeable 

diffusion barrier, the amplitude of the cross-correlation curve is zero.  
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The cross-correlation between the fluorescence signals of detection volume   

� 

Ψ1 at the origin 

      

� 

! r =
! 
0  and 

� 

Ψ2  at position   

� 

! r = 0,δ,0( )  due to three-dimensional diffusion calculates as 

 

      

€ 

Gcross τ( ) =
Ψ1
 r 1( ) δC  r 1,t( )δC  r 2,t +τ( ) Ψ2

 r 2( )d 3r1d
3r2∫∫

C 2 Ψ1
 r 1( )∫ d 3r Ψ2

 r 2( )∫ d 3r2

. (Eq. 70)  

 

Remarkably, the cross-correlation function given by Eq. 70 is independent of the 

brightness B1 and B2 that are influenced by the quantum efficiency for detection of 

fluorescence photons of the detectors corresponding to detection volume 1 and 2, 

respectively. The MDE functions 

� 

Ψ1 and 

� 

Ψ2  are given by Eq. 71 and Eq. 72:  

 

  

� 

Ψ1
! r 1( ) = κ1 z1( ) w0,1

2

w1
2 z1( ) exp −2

x1
2 + y1

2

w1
2 z1( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟  (Eq. 71)  

 

  

� 

Ψ2
! r 2( ) = κ2 z2( ) w0,2

2

w2
2 z2( ) exp −2

x2
2 + y2 −δ( )2

w2
2 z2( )

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ . (Eq. 72)  

 

By inserting the MDE functions Eq. 71, Eq. 72 and the diffusion propagator Eq. 58 into 

Eq. 70, the cross-correlation function can be written as 

 

    

€ 

Gcross τ( ) =
1
C 

1
4πDτ

κ1 z1( )κ2 z2( )
f z1, z2,τ( )

exp −
z1 − z2( )2

4Dτ
− 2 δ 2

f z1, z2,τ( )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ dz1dz2∫∫

π
2

κ1 z1( )dz1 κ2 z2( )dz2∫∫
. (Eq. 73)  

 

The function     

� 

f z1, z2,τ( )  is defined by  

 

� 

f z1,z2,τ( ) = 8Dτ + w1
2 z1( ) + w2

2 z2( ) . (Eq. 74)  
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If the cross-correlation amplitudes are smaller than expected for free diffusion in aqueous 

solutions, molecules might get trapped or bound in crowded media like the interior of 

living cells. 

II.3.5 Scanning FCS and pair-correlation analysis 

Instead of acquiring fluorescence signals for FCS analysis from a single position in a cell, 

confocal laser scanning microscopes (CLSMs) can be used to sequentially acquire FCS 

signals from multiple positions by either repeatedly scanning a line or circle in the sample 

with a laser beam (Petrasek and Schwille, 2008) as depicted in Figure 11 a and c for a line 

scan measurement.  

 

Figure 11: Line-scanning FCS data acquisition with confocal laser-scanning microscopes (CLSMs). (a) A 

line is repeatedly scanned in living cells to acquire fluorescence signals for scanning FCS analysis. (b) NPixel 

detection positions along a line in the sample are repeatedly scanned with a laser beam. The time period of 

the line scan process τLine is the temporal resolution of fluorescence signals recorded from single positions. 

The dwell time of the laser beam at each position τPixel determines the number of recorded fluorescence 

photons. c Fluorescence signals acquired by CLSMs. The time lag between subsequent line-scans is τLine and 

between subsequent detection positions τPixel. Sequentially acquired fluorescence signals of the same scan 

cycle are depicted in a horizontal line. 

Scanning FCS allows for precise measurements of the diffusion coefficient in solution 

since it is less dependent on the microscope’s MDE volume geometry and size. The 

inherent time information of the scan process allows for auto-correlation of signals from 

each position and for cross-correlation of signals from different positions along the scan 

trajectory. Correlation curves of several detection positions are commonly averaged to 
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compensate for limited dwell time of the illumination and detection beam at a certain 

position. Cross-correlation, or also called pair-correlation, analysis can be used to measure 

particle transport between different detection positions along the scan trajectory. It was 

used for imaging barriers for diffusing molecules (Digman and Gratton, 2009) and 

molecular flow (Hinde et al., 2010; Hinde et al., 2012) in living cells. For this purpose, 

correlation curves are plotted in columns of so-called correlation carpets. Each column of 

these carpets represents a position along the scan trajectory. Diffusion barriers are visible 

as gaps in the correlation carpets. 

II.3.6 Multi-focus fluorescence (cross-) correlation spectroscopy 

The principle of FCS measurements at a single position (point-FCS) or with two focus 

volumes (2f-FCS) can be further extended by illuminating a several microns long line in 

the sample and detecting the emitted fluorescence signals with an electron multiplying 

charge-coupled device (EM-CCD) camera (Figure 12a). With this line-confocal 

microscopy setup (Heuvelman et al., 2009), hundreds of FCS measurements can be 

simultaneously conducted along a line (1D-FCS) to efficiently map molecules’ mobility, 

concentration and interactions with high spatial and temporal resolution in living cells 

(Erdel et al., 2011). Besides the advantage for mobility mapping, a special feature of multi-

focal setups is that the simultaneously acquired data of a single measurement contain 

information about molecules’ mobility on multiple time and length scales. This 

information can be retrieved by spatially cross-correlating fluorescence signals acquired 

from different detection volumes in the sample for multiple separation distances. 

Calculated cross-correlation curves are proportional to probability distributions for the 

time 

� 

τ  molecules need to diffuse the distance between two detection volumes (Figure 

12b). A peak in the spatial cross-correlation curves marks the most probable translocation 

time. With recently developed single plane illumination microscopes (SPIM), parallel FCS 

measurement can be performed in a plane, which is referred to as 2D-FCS or SPIM-FCS 

(Capoulade et al., 2011; Singh et al., 2013; Wohland et al., 2010). Due to simultaneous 

illumination of a line or a plane in the sample and simultaneous detection of emitted 

fluorescence signals with high spatial resolution, detection crosstalk between neighboring 

detection volumes cannot be avoided. This auto-correlation type contribution to cross-

correlation curves has to be described by accurately determining the microscope’s MDE. 

The approaches for theoretically describing and for measuring microscopes’ MDE 
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developed in this thesis can be easily adapted to analyze data that were acquired by SPIM 

setups. 

 

 

Figure 12: Data acquisition and analysis with a line illuminating and detecting microscope. (a) The line 

shaped laser beam profile is positioned to a region of interest in cells. Fluorescently labeled molecules 

diffuse into and out of the line illumination volume and emit fluorescence light that is detected by an EM-

CCD camera – each pixel corresponds to a detection volume in the sample. The acquired fluorescence signals 

fluctuate due to fluctuating numbers of fluorescent molecules in the detection volumes. These intensity 

fluctuations can be analyzed by signal correlation to determine the molecules’ diffusion coefficient and 

concentration. (b) The correlation analysis can be done in two different modes: Signals can either be auto-

correlated with copies of themselves, e.g. signal of pixel 2 with itself, or cross-correlated with signals of 

other detection pixels for different separation distances, e.g. signal of pixel 2 with that of pixel 7 or 17. The 

width of auto-correlation (AC) curves is proportional to the mean residence time of molecules and the 

amplitude is inversely proportional to the mean molecule number in the detection volume. Cross-correlation 

(CC) curves show a peak at the time most molecules need to diffuse the distance between the corresponding 

detection volumes. The shape of short-distance CC curves depends on the detection crosstalk between 

detection volumes. 
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III Biological background 

Cells are the basic building units of all living organisms. In complex multicellular 

organisms like humans they have to fulfill a variety of different tasks. For example, in 

bones specialized cells give stability as structural building elements. Furthermore, 

electrical signals are transmitted over long distances by nerve cells, so-called neurons. For 

this purpose, they have to differentiate from the same pluripotent stem cell type to very 

specialized cell types. Despite this divergence between cells of the same organism, they 

have all the same inherited genetic information – but different functional programs are 

executed. The genome of eukaryotic cells is preserved in the nucleus, which is a cellular 

compartment enclosed by a lipid bilayer. It is surrounded by the cytoplasm, which consists 

of intracellular fluid, membrane-enclosed organelles and cytoskeletal filaments. To be 

viable, organisms have to react on stimuli from their environment, which are transmitted 

by complex signaling cascades to the different destination cells.  

III.1 Cytoplasm 

In the cytoplasm, most of the cellular machinery, e.g. enzymes, is produced. It contains a 

scaffold structure of different protein filaments (cytoskeleton) and membrane-enclosed 

cytoplasmic organelles embedded by a viscous and crowded solution of various 

macromolecules (cytosol) (Alberts et al., 2002).  

III.1.1 Cytoskeleton 

Cytoskeletal filaments are polymers that are built of monomeric protein subunits. The 

cytoskeleton structure has different functions. (i) The cytoskeleton forms a scaffold 

structure that stabilizes and dynamically regulates the cellular shape as response to 

mechanical forces (Fletcher and Mullins, 2010). (ii) Parts of it are the driving force for cell 

division (Alberts et al., 2002), forming the mitotic spindle apparatus.  (iii) It serves as rail 

system for active transport of small cellular organelles and vesicles by motor proteins like 

kinesin and dynein (Kamal and Goldstein, 2000; Vale and Milligan, 2000). (iv) The 

cytoskeleton allows for cell motility.  

Three different classes of cytoskeletal protein filaments are known: microfilaments, 

intermediate filaments and microtubules. Microfilaments are flexible structures that are 

built of actin protein subunits. They have diameters of 5 - 9 nm (Alberts et al., 2002). 
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Intermediate filaments are ropelike fibers that have diameters of ~10 nm and are composed 

of a heterogeneous group of proteins, e.g. vimentin, keratin or lamin proteins (Alberts et 

al., 2002). The largest cytoskeletal fibers are the microtubules, which are hollow cylinders 

with an outer diameter of ~25 nm made of α-tubulin and β-tubulin protein subunits. 

Microtubules form the mitotic spindle during cell division (Alberts et al., 2002). All three 

cytoskeletal filaments are dynamically assembled from subunits in the cytosol and 

disassembled. 

III.1.2 Cytoplasmic organelles and vesicle traffic  

Besides cytoskeletal elements, several membrane-enclosed reaction volumes with defined 

pH values and ion concentration are found in the cytoplasm. One of these compartments is 

the endoplasmatic reticulum (ER) (Ellgaard and Helenius, 2001), which consists of 

multiple membrane stacks. It serves as a packaging center for sorting proteins that were 

previously produced in the cytosol or on the ER surface. Other cytoplasmic compartments 

are the mitochondria, the power stations of the cell, in which the cell’s energy storage 

molecules, adenosine triphosphates (ATP), are synthesized (Alberts et al., 2002). Cell 

waste and messenger molecules are transported in vesicles through the cytoplasm to the 

cell surface where they fuse with the membrane to release their content into the 

extracellular space. On the contrary route, nutrients are imported in vesicles into the 

cytoplasm (Alberts et al., 2002). 

III.1.3 Cytosol 

The cytosol is a viscous and crowded solution of highly concentrated macromolecules like 

nucleic acids, lipids and proteins. A total concentration of macromolecules in the range of 

50 - 400 g/l, which corresponds to an occupied volume fraction of 5 – 40 % for the cell, 

was reported (Ellis and Minton, 2003). It embeds the cytoskeleton and cytoplasmic 

organelles. The viscous and elastic properties of the cytoplasm were described as 

homogeneous viscoelastic medium (Guigas et al., 2007). On the macroscale, the 

viscoelastic properties may be determined by the cytoskeleton whereas the nanoscale 

viscoelasticity may be determined by macromolecular crowding of the cytosol. Further, the 

cytoplasm is described by a coarse-grained model as biphasic system of a porous elastic 

solid meshwork bathed in interstitial fluid (Moeendarbary et al., 2013). 
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III.2 Nucleus 

The cell nucleus is surrounded by the cytoplasm. It is a hollow sphere with a diameter of 

10 – 20 µm (Wachsmuth et al., 2008) that is delimited by the nuclear envelope, which is 

formed by two concentric lipid bilayer membranes, and occupies ~ 10 % of the cellular 

volume (Alberts et al., 2002). The interior of the nucleus is packed with proteins, 

ribonucleic acids (RNA) and long polymers, so-called desoxyribonucleic acids (DNA) that 

encode the inherited genetic information of the organism (Rippe, 2007). DNA molecules 

form a highly compacted complex with proteins, so-called chromatin, which is 

heterogeneously distributed in the nucleus: Compartments of high chromatin density are 

surrounded by lacunae of less compacted chromatin (Cremer and Cremer, 2001). Many 

nuclear activities are concentrated in nuclear subcompartments or organelles (Handwerger 

and Gall, 2006) like the nucleolus (Boisvert et al., 2007), Cajal bodies (Cioce and Lamond, 

2005) or PML nuclear bodies (Bernardi and Pandolfi, 2007; Chung et al., 2012). 

Furthermore, the nucleus is the principal site of RNA and DNA synthesis in cells (Alberts 

et al., 2002).  

Small pores perforate the nuclear membrane to connect cytoplasm and nucleus. These 

pores are called the nuclear pore complexes (NPC). They allow small particles like ions or 

water molecules to freely exchange between both compartments. However, the exchange 

of larger molecules is actively controlled by the NPC, which results in different 

compositions and concentrations of cytoplasmic and nucleoplasmic ingredients. Therefore, 

different reaction environments are established.  

The nucleus of healthy human cells contains 23 pairs of double-stranded DNA molecules, 

the so-called chromosomes that have double helical structure. Each double-strand DNA 

unit is highly compacted during cell division to a structure that is called metaphase 

chromosome. Condensed chromosomes are visible structures in conventional widefield 

microscopy images. 

III.2.1 Desoxyribonucleic acid 

Single-stranded DNA molecules are linear polymers that are built of nucleotides as 

subunits and have a diameter of about 2 nm (Alberts et al., 2002).  Each nucleotide consists 

of a five-carbon sugar (deoxyribose), a phosphate group and one of the four bases guanine 

(G), adenine (A), thymine (T) or cytosine (C). The bases A and T as well as the bases C 
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and G interact by forming non-covalent hydrogen bonds between them. Therefore, the 

pairs A-T and C-G are called complementary base pairs (bp). Two single-stranded DNA 

molecules are connected via hydrogen bonds between complementary base pairs to a 

double-stranded DNA unit. Therefore, double-stranded DNA contains twice the identical 

information, which can be valuable for repair of DNA damage. The actual sequence of 

base pairs along the DNA encodes the genetic information: A combination of three 

nucleotides encodes one amino acid. The assignement of nucleotide triplets to amino acids 

is called genetic code. A unit of genetic information that is required to build a protein 

consisting of a sequence of amino acids is called gene. 

III.2.2 Chromatin fibers 

The total contour length of the double-stranded DNA in a human cell is about 2 m. Thus, 

DNA has to be highly compacted to fit into the relatively small cell nucleus with typical 

diameters of 10-20 µm. This is accomplished by wrapping 147 bp of negatively charged 

DNA around a positively charged core of eight proteins, the so-called histone proteins. The 

complex of 147 bp DNA with the octamer of histone proteins is called nucleosome. Two 

of each of the histone proteins H2A, H2B, H3 and H4 form the octameric nucleosome core 

particle.  

The nucleosomes along double stranded DNA appear as “beads on a string” and the 

resulting chromatin fiber has a diameter of about 10 nm (Woodcock and Ghosh, 2010). 

Nucleosomes are stabilized by linker histone protein H1. Each of the histone proteins has a 

tail that can be modified by covalently attaching or removing molecule groups like acetyl 

groups or methyl groups – so-called epigenetic modifications.    

III.2.3 Higher order chromatin structures 

The cell nucleus is not homogeneously packed with chromatin: In fluorescence microscopy 

images of stained DNA, differently compacted regions are clearly visible (Cremer and 

Cremer, 2001). The following chromatin structures can be clearly observed by diffraction-

limited fluorescence microscopy. 

III.2.3.1 Heterochromatin foci 

Different combinations of histone tail modifications are an additional opportunity for cells 

to store information on top of the genome. Therefore, this information is called epigenetic 

information. Epigenetic modifications like di- or trimethylation and hypoacetylation of 
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histone protein tails contribute to the formation of spherical spots of high chromatin 

density that are called heterochromatin foci (Grewal and Jia, 2007; Müller et al., 2009). 

These foci are surrounded by more loosely packed chromatin, so called euchromatin. 

Heterochromatin foci contain repeated sequences of non-coding DNA that are 

transcriptionally silenced. Euchromatic chromatin, however, is more permeable for 

transcription factors and RNA polymerase. Therefore, a higher transcription activity is 

observed in euchromatin.  

III.2.3.2 Chromosome territories and interchromosomal space model 

A modulation of the chromatin density on a larger length scale occurs because different 

chromosomes are not intermingled in the cell nucleus. Instead, chromosomes segregate 

during interphase to discrete chromosome territories (CT) (Cremer and Cremer, 2001) that 

can be colored by fluorescence in situ hybridization (FISH) and visualized by confocal 

fluorescence microscopy (Figure 13).  

Figure 13: Cross-section through a chicken cell’s nucleus. Different chromosomes (1-6) are stained by 

different fluorescent dyes via fluorescence in situ hybridization (FISH). Separation of the chromosomes into 

distinct territories is clearly visible. For chromosomes 4 and 6, only one territory is visible in this section. 

Image from Cremer and Cremer (Cremer and Cremer, 2001). 

CT surround more open space that is called interchromosomal space (IC). The IC can form 

lacunas with diameters up to several micrometers (Figure 14) and small channels of several 

nanometers width (Cremer and Cremer, 2001). It permeates the CT with highly branched, 

interconnected channel networks and is enriched with protein complexes required for DNA 

transcription, replication and damage repair (Cremer and Cremer, 2010).  
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The IC is a highly transcriptional active compartment with a higher accessibility of genes 

at the surface of CT for chromatin binding proteins like transcription factors or 

polymerases. Each CT has a variable chromatin density. Denser chromatin regions are 

positioned near the CT centers, whereas loose chromatin loops expand to the IC, where 

they can interact with chromatin loops of other chromosomes. Dynamic modulation of the 

chromatin structure is proposed to be a mechanism for gene expression regulation by 

orchestrated gene activity and silencing. Overall, chromatin in the cell nucleus was 

described as a sponge like structure. 

 

 

Figure 14: Illustration of the CT and IC model. (a) A large chromatin loop extends from a CT into the IC 

space where active genes are more accessible for transcription factors and polymerases. (b) Genes that are 

recruited to centromeric heterochromatin (asterisks) are silenced. (c) Heterogeneous chromatin density in CT 

(dark brown: high density, light yellow: low density). Loosely packed chromatin extends into IC space and 

densely packed chromatin with silenced genes is inside CT. (d) Gene rich chromatin domains (green) and 

gene poor domains around the nucleus (nuc) and near the nuclear lamina (yellow). (e) Active genes (white 

dots) at the surface of densely packed chromatin fibers and silenced genes (black dots) hidden inside 

chromatin structures. (f) The IC may contain large protein complexes (orange dots) for transcription, 

splicing, DNA replication and repair. (g) CT with domains (red) and IC (green) surrounding these domains. 

IC can be highly branched and from small channels. Image from Cremer and Cremer (Cremer and Cremer, 

2001). 
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III.3 STAT signalling to chromatin as response to viral infections 

As a response to viral infections or virus-

associated tumors, cells can react by 

releasing interferon (IFN) proteins into the 

extracellular fluid (Platanias, 2005; Stark 

and Darnell, 2012). These IFN proteins 

bind to IFN-receptors on the plasma 

membrane of other cells and activate 

receptor-associated JAK (Janus activated 

kinase) enzymes inside the cell. These 

enzymes phosphorylate STAT (signal 

transducer and activator of transcription) 

proteins (Figure 15). Several types of 

STAT proteins are known (Platanias, 

2005), of which STAT1 and STAT2 were 

studied in this thesis. Phosphorylated 

STAT1 proteins can either form 

homodimers or heterodimers with 

phosphorylated STAT2 proteins. These 

dimers are imported into the nucleus, 

where they act as transcription activating 

factors upon binding to chromatin. As a 

result, the activated genes are transcribed. 

Finally, proteins are produced in response 

to the extracellular stimulation by 

interferons that are used for the defense of 

a viral infection of the cell. 

The JAK/STAT signaling pathway is a 

typical example for transduction of 

extracellular stimuli into the nucleus and 

subsequent activation of gene 

transcription.

Figure 15: Interferon-mediated signaling by STAT 

proteins to chromatin. In response to viral 

infections, interferon (IFN) proteins are released 

that bind to receptors on the plasma membrane. 

Further, receptor-associated JAK enzymes are 

activated in the cell and phosphorylate STAT1 

proteins. These activated STAT1 proteins form 

homodimers and heterodimers with STAT2 

proteins that are imported into the nucleus, where 

they activate IFN-stimulated genes. As a result, 

proteins are expressed that are associated with 

virus defense. Image from Platanias (Platanias, 

2005). 
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IV Results 

IV.1 Instrument characterization and reference measurements 

The microscope setup and data analysis workflow for spatial FCCS were characterized by 

in vitro measurement before protein transport and interactions could be reliably and 

quantitatively measured in living cells. For this purpose, an offset present in experimental 

correlation curves had to be corrected. Further, the impact of the laser illumination 

intensity on mobility measurements was tested. The precision of mobility mapping by EM-

CCD camera based FCS with the line confocal microscope was determined. Finally, the 

accuracy of the derived correlation model function for diffusion was characterized. 

IV.1.1 Correction of correlation curves’ offset 

Spatial cross-correlation functions for pixels with very large spatial separation (>5 µm) are 

expected to equal zero since there should be no significant particle transport between them. 

Instead, experimental cross-correlation curves for those separation distances converged to 

a constant correlation offset that is shown in Figure 16a. This offset within the correlation 

curves persisted even if the acquired fluorescence signals were corrected for slow signal 

trends. The average offset curve of a 1D-FCS measurement in a 20 nM aqueous solution of 

quantum dots (QDots) is depicted in Figure 16a. QDots are semiconductor nanocrystals 

that are extremely robust with regard to photobleaching of the fluorescence (Medintz et al., 

2005). Most probable, this correlation offset originated from slow temporal fluctuations of 

the illumination intensity due to laser power instabilities that were not easily to correct. 

The resulting low-amplitude correlation was negligible for auto-correlation analysis at 

moderate molecule concentration. However, these offset correlation were more 

pronounced for long-distance cross-correlation curves that have much lower amplitudes.  

By increasing the stringency of the developed signal trend correction filter, this low-

amplitude correlation offset could be removed. However, it had to be assured that low-

amplitude correlations in long-distance cross-correlation curves that arise from transport of 

fluorescent molecules were not affected. Therefore, the average of about 30 long-distance 

cross-correlation curves that did not show diffusion peaks was subtracted from each single 

correlation curve, as shown by Figure 16b. 
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Figure 16: Correction of artificial offset in correlation curves. Cross-correlation curves were acquired in 20 

nM aqueous solutions of QDots. (a) Cross-correlation curves (black) for separation distances in the range 

from 1.4 µm to 8.0 µm. The correlation curves converge for large distances to a correlation offset (red). (b) 

This offset can be corrected by subtracting the average of long-distance cross-correlation curves from each 

single curve. After correction, the values of long-distance cross-correlation curves fluctuate around zero. 

IV.1.2 Impact of laser illumination intensity on measured mobility 

It was shown that FCS measurements depend on the laser illumination intensity due to 

optical saturation effects that impact on the shape of the MDE volume and thus on the 

measured diffusion coefficients and concentrations (Enderlein et al., 2005; Gregor et al., 

2005). To check the influence of the line-confocal microscope’s illumination intensity on 

the shape of acquired correlation curves, the fluorescence intensity of GFP was measured 

in a mixture of glycerol (  

� 

φ = 25%) and phosphate buffered saline (PBS) solution as a 

function of the laser illumination intensity (Figure 17a). Optical saturation of fluorescence 

signal emitted by GFP was not achieved with the maximum laser power of 200 mW, 

because only a small fraction of the initial laser output intensity was transmitted through an 

optical fiber, a beam profile cropping rectangular aperture and the objective lens into the 

sample. Furthermore, the remaining illumination intensity was distributed in the focal 

plane over an about 50 µm long and 200 nm wide area. Currently, only half of the emitted 

fluorescence signal could be detected since the longest commercially available confocal 

slit allowed for transmission of fluorescence light from only half of the illuminated area in 

the focal plane. The highest illumination intensity in the focal plane of the line-confocal 

microscope was 6.5 kW/cm-2, which is well below the saturation intensity of ~33 kW/cm-2 

for a typical fluorophore (Enderlein et al., 2005). 
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Figure 17: (a) Fluorescence saturation measurement of GFP in PBS buffer (black diamonds) including a 

linear fit of the data points (red line) that yields a background signal of 220 counts. Saturation of fluorescent 

dyes could not be achieved for the maximum available laser power. (b) Dependence of correlation curves on 

the laser illumination intensity. The correlation curves were normalized for a better comparison of their width 

at half maximum. No significant deviations between the diffusion times (width) from calculated correlation 

curves due to photobleaching of fluorophores was observed for illumination intensities in the range from 0.6 

kW/cm2 to 6.5 kW/cm2.  

A potential problem for diffusion coefficient measurements is photobleaching of 

fluorescent molecules during their movement through the illumination PSF volume, which 

results in an apparently reduced residence time of the molecules in the focus volume. 

Glycerol was used to reduce the mobility of GFP molecules by increasing the solutions 

viscosity to mimic cellular conditions. Lower mobility of the fluorophore results in an 

increased amount of bleached fluorophores due to a longer excitation time. Even for the 

maximum available illumination intensity in the focal plane of the line-confocal 

microscope, no significant distortions of the correlation curves’ shape (Figure 17b) and 

measured diffusion coefficients compared to low illumination intensities were observed.  

IV.1.3 In vitro characterization and reference measurements 

IV.1.3.1 Precision of 1D-FCS mobility mapping 

The precision of mobility mapping by 1D-FCS with the line-confocal microscope was 

assessed in vitro as a reference for mobility measurements in the spatially heterogeneous 

and crowded environment of living cells. For this purpose, the variation between the 

measured diffusion coefficients within a 1D-FCS measurement in a 20 nM aqueous 

solution of QDots was determined. Fluorescence signals recorded by the detector pixels of 
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the EM-CCD camera were auto-correlated and fitted with a model function (Eq. 92). The 

resulting auto-correlation curves calculated from fluorescence signals recorded by 40 

neighboring pixels of the EM-CCD camera chip and their average are shown in Figure 18a. 

Profiles of the measured diffusion coefficients and concentrations along the detection line 

are depicted in Figure 18b. The relative standard deviation of both profiles is less than 4 % 

and the mean diffusion coefficient is     

� 

Dmean  = (31 ± 1) µm2s-1. As quality criterion, auto-

correlation curves that were acquired by neighboring pixels of the line-confocal 

microscope’s EM-CCD camera should be scattered over a narrow range so that the 

measured diffusion coefficients have a small enough relative standard deviation (< 5%). If 

this criterion is fulfilled, the spatial heterogeneity of 1D-FCS mobility measurements in 

living cells can be meaningfully interpreted. Homogeneous 1D-FCS measurement results 

for diffusion coefficients and concentration can be achieved by correct alignment of the 

line-confocal microscope so that the resulting MDE volumes are comparable along the 

illuminated line. The confocal slit in the fluorescence detection light path should be 

aligned if the results of in vitro mobility measurements are heterogeneous since it has a 

major influence on the MDE volume geometry. 

 

 

Figure 18: (a) Individual auto-correlation curves (black) and their average (green) from a 1D-FCS 

measurement in 20 nM concentrated aqueous solution of QDots. Correlation curves were calculated from the 

acquired signals of 40 neighboring detector pixels. The curves are scattered over a narrow range. (b) 

Diffusion coefficient and concentration profile along the detection line determined by fitting a model 

function to each calculated correlation curve. Both profiles have a relative standard deviation of about 4 %. 
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IV.1.3.2 Precision of 1D-FCS multi-scale mobility measurements  

In addition to a small variance between mobility measurement results from different 

detector pixels, the diffusion coefficients of in vitro measurements for normal diffusion in 

aqueous solution have to be independent on the observation time and length scale, which is 

given for spatial FCCS measurements by the separation distance between corresponding 

detection volumes of cross-correlated fluorescence signals. It has to be validated, that the 

MSD of diffusing fluorescent dyes in aqueous solution is a linear function of the diffusion 

time. As shown in Figure 19a, a linear diffusion law was measured for QDots in aqueous 

solution. Additionally, the corresponding diffusion coefficients were plotted as a function 

of time in a double logarithmic representation (Figure 19b). This representation is more 

suitable for studying different scaling behaviors of the diffusion coefficient than MSD 

plots. As shown in Figure 19b, only minor differences were obtained for different cross-

correlation distances. The results of spatial FCCS measurements depend strongly on the 

MDE’s structural parameters assumed for the correlation model function (Eq. 92), 

especially for cross-correlation functions with short and medium separation distances (< 3 

µm). For larger separation distances, the measured diffusion coefficients become 

independent on the actual MDE geometry.  

 

 

Figure 19: (a) MSD as a function of time for QDots diffusing in aqueous solution. The MSD grows linearly 

with time, as expected for normal diffusion. (b) Time dependence of the measured diffusion coefficient as a 

function of the diffusion time that is related to the spatial cross-correlation distance. In aqueous solution, the 

diffusion is independent on time and length scale of the applied mobility measurement technique. 
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In vitro, diffusion coefficients and concentrations measured by spatial FCCS should be 

independent of separation distances between detection volumes from. If these values 

change with different time and length scales, the structural parameters of the MDE 

function have to be measured again and adjusted correspondingly in the correlation model 

function (Eq. 92) by least squares fitting. A scale-independent mobility of reference dye 

molecules measured in vitro by spatial FCCS is essential for determining anomalous 

diffusion laws of molecules in the complex environment of living cells. 

IV.1.3.3 Accuracy of the diffusion correlation model function 

Another important criterion for quantitative analysis of spatial FCCS measurement is that 

experimental cross-correlation curves for different separation distances are equally well 

described by the same correlation model function. For this purpose, an accurate 

determination of the microscope’s MDE’s structural parameters is essential. Cross-

correlation curves of QDots diffusing in aqueous solution and the corresponding fitted 

model functions for distances up to 3.8 µm are depicted in Figure 20 for an optimized set 

of the line-confocal microscope’s MDE structural parameters. As shown in Figure 20, the 

auto-correlation type contribution to cross-correlation curves arising from spatially 

overlapping MDE volumes and the resulting detection crosstalk was correctly described 

for all correlation distances. Poor fitting quality of the model function (Eq. 92) would lead 

to incorrect results for the measured diffusion coefficients and concentrations. If 

significant deviations between experimental correlation data and the correlation model 

function are observed, the assumed structural parameters for the microscope’s MDE 

function have to be checked. Only when these quality criteria are met in in vitro 1D-FCS 

measurements with the line-confocal microscope, reliable mobility mapping and spatial 

FCCS measurements on multiple scales can be conducted in living cells. 
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Figure 20: Auto- and cross-correlation curves of a 1D-FCS measurement in a 20 nM concentrated aqueous 

solution of QDots for distances up to 3.8 µm (black diamonds). Additionally, the fitted model functions are 

depicted (red lines). For quantitative spatial cross-correlation analysis in living cells, cross-correlation curves 

for different distances have to be correctly described by the same correlation model function that depends for 

medium separation distances on the MDE function of the microscope. Detection crosstalk between 

neighboring detection volumes results in auto-correlation type contributions to cross-correlation curves that 

was observed for correlation distances up to 3.8 µm. 
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IV.2 Signal correction in Fourier space 

Fluorescence signals that were acquired with line-confocal microscopes in the nucleus of 

living cells were usually exponentially decaying as a function of time due to 

photobleaching of fluorescent molecules in the illumination volume. 1D-FCS 

measurements are comparable to parallelized conventional FCS measurements at several 

hundred positions. This results in significant bleaching of the limited pool of fluorescent 

dyes in the nucleus in mostly out-of-focus regions, which does not affect the measured 

diffusion times but deforms the calculated correlation curve. Exponentially decaying 

fluorescence signals due to photobleaching (Figure 21a) are temporarily correlated as 

calculated and shown in Figure 21b.  

 

Figure 21: Correlation resulting from a trend in the fluorescence signal, for example due to bleaching of 

fluorescent dyes. (a) A constant signal (green) and an exponentially decaying signal (blue) with equal mean 

values. The decaying signal is similar to that of a recorded fluorescence signals with photobleaching of the 

fluorescent dyes. (b) Correlation curves of the constant signal and the bleach signal. The exponentially 

decaying signal is temporarily correlated, whereas the constant signal shows zero correlation. Real FCS 

signals have additional signal fluctuations due to diffusion of fluorescent molecules that are correlated. 

For a quantitative analysis of FCS experiments, this trend of fluorescence signals has to be 

corrected properly. For this purpose, different strategies were compared, including 

correction by a moving average approach or by fitting an exponentially decaying function. 

Both strategies work fine for constant or smoothly decaying signals. However, 

fluorescence signals from measurements in living cells are commonly shaky, e.g. due to 
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movements of large non-fluorescent cellular components through the detection volumes. 

These signals can only be incompletely corrected by the previously introduced strategies. 

The resulting correlation artifacts are particularly pronounced in cross-correlation curves 

for large separation distances, whereas auto-correlation curves are only moderately 

affected. Therefore, a new approach was developed in this thesis that allows quantitative 

analysis of spatial FCCS measurements - even in the heterogeneous environment of living 

cells. This new approach is based on transforming the fluorescence signals   

� 

I t( ) to 

frequency space  

 

  

� 

˜ I v( ) = FT I t( )( )  (Eq. 75) 

 

and correcting the low frequency components of the Fourier spectra   

� 

˜ I v( ) to remove slow 

intensity fluctuations in the time domain: 

 

    

� 

Icorrected t( ) = FT −1 ˜ I corrected ν( )( ). (Eq. 76) 

 

For correction of the Fourier spectra, the spectra of signals of measurements in 

homogenous aqueous solutions were used as references. For the theoretical description of 

Fourier spectra an envelope function was calculated for each spectrum. The envelope 

function values   

� 

ei  was based on the mean value   

� 

µi  and the standard deviation   

� 

σ i calculated 

within a moving window   

� 

i  of twenty data points along the frequency axis. The envelope 

function   

� 

ei  was defined as  

 

    

� 

ei = µi + 3σ i . (Eq. 77) 

 

The envelope of the Fourier spectrum of GFP in aqueous glycerol solution (  

� 

φ = 25%) was 

fitted by an empirical model function given by  

 

    

� 

fwater ν( ) = a1exp −k1ν( ) + a2 exp −k2ν( ) + a3 exp −k3ν( ) . (Eq. 78) 

 

In this manner, the water envelope parameters     

� 

a1,     

� 

a2,     

� 

a3,     

� 

k1 ,     

� 

k2  and     

� 

k3  were determined as 

reference. For comparison, an aqueous glycerol solution was used to match the diffusion 
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coefficient to that in cell measurements. For the correction of trend-containing Fourier 

spectra of GFP in living cells, an envelope function   

� 

f ν( ) was proportional to the water 

envelope function     

� 

fwater ν( )  with the parameters determined above was fitted to the Fourier 

spectra obtained in living cells. The envelope model function with a fit parameter   

� 

C  is 

defined by Eq. 79: 

 

    

� 

f ν( ) = C ⋅ fwater ν( ). (Eq. 79) 

 

By cropping the high amplitude values at low frequencies of trend-containing Fourier 

spectra according to the fitted water envelope function and subsequent back transformation 

into the time domain, fluorescence signals were trend-corrected prior to correlation 

analysis. 

 

 

Figure 22: (a) Fourier spectra of fluorescence signals obtained from GFP in aqueous glycerol solution (blue) 

and from GFP in the nucleus of a living cell (red). The Fourier spectrum obtained in cells shows higher 

amplitude values at lower frequencies compared to a Fourier spectrum obtained from a water measurement. 

The envelope of the water spectrum, defined by Eq. 77, was fitted by an envelope function (dark grey) given 

by Eq. 78. (b) The water envelope function (dark grey) was fitted to the envelope values ei (light grey) of the 

cell measurement Fourier spectrum (red) for subsequent trend correction. 

The Fourier transformation based approach for signal trend correction was validated by 

artificially adding a signal function to data obtained from 20 nM QDots in aqueous 

solution and subsequent correction (Figure 23).  
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Figure 23: Validation of the Fourier transformation based approach for signal trend correction. An artificial 

signal function (middle) was added to a fluorescence signal of diffusing QDots in aqueous solution (left).  

The auto-correlation curve of the trend-containing fluorescence signal is distorted, whereas after correction 

of the Fourier spectrum (middle), the original auto-correlation curve could be recovered (right). 

After correction in frequency space by fitting a reference envelope function and cropping 

the high amplitude values at low frequencies accordingly, the original auto-correlation 

curves could be reconstructed without deformations. 

The approach was further validated by correcting the signals of larger and therefore slower 

TetraSpeck beads with a diffusion coefficient of ~4.4 µm2s-1 (Muller et al., 2008). 
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Furthermore, the approach was tested by correcting the shaky decaying signals of the 

chromatin-interacting heterochromatin proteins 1 (HP1) labeled with green fluorescent 

protein (GFP) in the nucleus of living cells. A comparison between the moving average 

approach and the developed Fourier transformation based approach is shown in Figure 24. 

 

 

Figure 24: Comparison between moving average and Fourier transformation based signal trend correction 

approaches. (a) Decaying fluorescence signal of a 1D-FCS measurement of HP1-GFP fusion protein in the 

nucleus of a living cell. (b) Fluorescence signals corrected by the moving average approach with a correction 

window size of 1 s (blue) and by the Fourier transformation approach (green). (c) Calculated auto-correlation 

curves of moving average trend corrected fluorescence signals with 10 s, 3 s, and 1 s (blue) window size as 

well as a Fourier spectrum corrected signal (green). The shape of auto-correlation curves that were calculated 

based on signals corrected with the moving average strategy (blue) depends on the used trend correction 

window size. Furthermore, these curves (blue) show a dip at the time of the half window size, whereas the 

correlation curve of Fourier trend corrected signal is smooth. For moving average corrected signals, all 

correlations above time lags larger than half of the correction window size are removed. 

As shown in Figure 24c, correlation curves that were calculated based on fluorescence 

signals corrected with the moving average approach show a dip at the time of the half 

window size and correlations above a longer time period are removed. For these reasons, 

the Fourier transformation based correction is better suited for spatial FCCS analysis since 

the measured diffusion times are longer and the relevant information is shifted to larger 

time scales in cross-correlation curves compared to auto-correlation curves. 
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IV.3 Improved MDE model for line-confocal microscopes 

IV.3.1 Derivation of an MDE model function for line-confocal microscopes 

For quantitative auto- and cross-correlation analysis of 1D-FCS measurements with line-

confocal microscopes, the microscope’s MDE function has to be theoretically described 

with high accuracy since spatially overlapping detection volumes result in detection 

crosstalk. For this purpose, a theoretical model function for line-confocal microscopes’ 

MDE function with improved accuracy was derived to correctly account for 

autocorrelation (AC)-type contributions due to spatially overlapping detection volumes. 

The MDE function 

� 

Ψ of confocal microscopes in general can be calculated as the product 

of the microscope’s illumination and detection PSF 

 

      

� 

Ψ ! r ( ) = PSFill
! r ( )⋅ PSFdet

! r ( ) . (Eq. 80) 

 

For fluorescence correlation spectroscopy (FCS) with conventional point illumination and 

detection confocal microscopy setups with high numerical aperture (NA) objective lenses, 

the MDE is approximated with sufficient accuracy by rotationally symmetric two-

dimensional Gaussian functions in the focal plane, since diffraction rings of the 

illumination PSF and the detection PSF interfere destructively. However, the diffraction 

pattern surrounding the central main lobe cannot be neglected if the illumination PSF is 

constant in one direction (Figure 25). The MDE function of the microscope used here is 

theoretically described by a non-paraxial MDE model function (Dusch et al., 2007) that is 

only valid near the focal plane (z = 0). It is given by 

 

    

� 

ΨNP x, y, z( ) = cos Θ( ) exp −ikex x sin Θ( )( )exp −ikex zcos Θ( )( )kex cos Θ( )dΘ
−α

α∫
2

× cos Θ( )J0 kem sin Θ( ) y2 + x − xs( )2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ⋅ exp −ikem zcos Θ( )( )kem sin Θ( )dΘ

0

α∫−s

s∫
2

dxs

.  

 (Eq. 81) 

 

In Eq. 81, x and y are the axes perpendicular to and along the illumination line, 

respectively, and kex and kem are the excitation and emission wave numbers, respectively. 

This MDE model function in the focal plane (z = 0) is illustrated in Figure 25.  
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The model function Eq. 81 was approximated in the focal plane by a central asymmetric 

two-dimensional Gaussian function and four asymmetric two-dimensional Gaussian 

functions of lower amplitudes on each side of the main lobe in direction of the illumination 

line. The central main lobe is elongated in y-direction along the line, whereas the side lobes 

are elongated in x-direction perpendicular to the line (Figure 25). Diffraction rings 

perpendicular to the x-direction could be neglected due to their low amplitude for the 

description of the detection crosstalk along the illuminated line (x-direction). 

 

Figure 25: (a) Complex diffraction pattern of the MDE function according to (Dusch et al., 2007) for a line-

confocal microscope in the focal plane (z = 0). Only the first three side lobe orders are depicted. (b) 

Approximation of the diffraction pattern’s main and side lobes by multiple asymmetric two-dimensional 

Gaussian functions. The diffraction rings perpendicular to the illumination line (x-direction) were neglected. 

Because the model above derived by Dusch et al. (Dusch et al., 2007) is only valid near the 

focal plane, the MDE function is modeled in axial direction by a double cone shaped 

function motivated by Dertinger et al. (Dertinger et al., 2007). Accordingly, the complete 

three-dimensional MDE function with four side lobes on the left and on the right side of 

the central main lobe is approximated by Eq. 82 

 

      

� 

Ψ ! r ( ) = ψn
! r ( )

n=−4

4

∑ .  (Eq. 82)  

 

Each lobe   

� 

ψn  of the line-confocal microscope’s MDE function is described by Eq. 83 
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� 

ψn(
! r ) = Anκ(z)

wx,n(0)
wx,n(z)

wy,n(0)
wy,n(z)

exp −2
x2

wx,n
2 (z)

− 2
(y − yn(z))

2

wy,n
2 (z)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ .  (Eq. 83) 

 

The functions   

� 

wx,n(z)and   

� 

wy,n(z)  in Eq. 83 describe the width of the nth MDE function lobe 

at axial position z in x– and y-direction, respectively:  

 

    

� 

wx,n z( ) = wx,n 0( )⋅ 1+ kx z( )2( )αx

, (Eq. 84) 

 

    

� 

wy,n z( ) = wy,n 0( )⋅ 1+ k yz( )2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
α y

. (Eq. 85) 

 

Further, the parameter   

� 

An  gives the amplitude and   

� 

yn z( )  the center position of the two-

dimensional Gaussian function describing the nth MDE lobe in a cross section through the 

MDE at a distance z from the focal plane:  

 

    

� 

yn z( ) = yn 0( )⋅ 1+ k yz( )2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 
α y

.  (Eq. 86) 

 

The structural parameters kx, ky, αx and αy can be determined by fitting the model functions 

to experimentally acquired three-dimensional image stacks of fluorescent beads that reveal 

the microscope’s MDE. Out-of-focus light is blocked by a slit of width a in confocal 

position and by detection on a quadratic pixel of the EM-CCD camera detection array with 

side length b. Thus, the microscope’s resolution in axial direction is improved by reducing 

the MDE extension, and the contrast is enhanced. The reduction of the MDE in axial 

direction can be calculated as follows: Without a confocal slit, the line-confocal 

microscopes MDE is described by Eq. 87 

 

      

� 

˜ Ψ ! r ( ) = ˜ ψ n
! r ( )

n=−4

4

∑  (Eq. 87) 

 

with the lobe functions given by Eq. 88 
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� 

˜ ψ n(! r ) =
ψn(! r )
κ (z)

= An

wx,n(0)
wx,n(z)

wy,n(0)
wy,n(z)

exp −2
x2

wx,n
2 (z)

− 2
(y − yn(z))2

wy,n
2 (z)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ . (Eq. 88) 

 

The fraction of fluorescence light from an axial position z that can pass through the 

confocal slit aperture can be described as being cropped by a rectangular aperture, which is 

expressed by Eq. 89 

 

      

� 

κ (z) =
˜ Ψ (! r )

−b /2

b /2∫ dxdy
−a /2

a /2∫
˜ Ψ (! r )

−∞

∞∫−∞

∞∫ dxdy
. (Eq. 89) 

 

The MDE side lobes in Eq. 89 can be neglected, because in this approximation the MDE is 

cropped by the confocal slit and thus only the main lobe contribution is remaining. Thus, 

the maximum value of the MDE at a distance z from the focal plane is given by Eq. 90 

 

      

� 

κ( z) =
ψ0,0( ! r )

−b / 2

b / 2∫ dxdy
−a / 2

a / 2∫
ψ0,0( ! r )

−∞

∞∫−∞

∞∫ dxdy
= erf

a
2wx,0( z)

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ erf

b
2wy,0( z)

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ . (Eq. 90) 

 

The resulting MDE model function for line-confocal microscopes is depicted in Figure 26. 

 

 

Figure 26: Illustration of the MDE model function expressed by Eq. 82. In the xy–cross-section (z = 0), the 

central main lobe and four side lobes on its left and right side can be seen (left panel). The xz–cross-section (y 

= 0) of the MDE function is similar to that of a conventional point-confocal microscope with a pinhole 

instead of a slit aperture. It shows the double-cone shape of a focused beam in axial direction (middle panel). 
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IV.3.2 Derivation of a spatial cross-correlation function for double cone MDE 

The shape of auto-correlation and medium-distance cross-correlation curves is determined 

by the microscope’s MDE, photophysical properties of the fluorescent dyes and transport 

processes like diffusion or directed flow that are detected as intensity fluctuations of the 

fluorescence signal. To account for the properties of the crowded interior of living cells an 

anomalous diffusion propagator with a power law relation between the molecules’ mean 

squared displacement (MSD) and time was used. However, the final results were 

essentially model-independent by calculating the effective diffusion time teff for the 

translocation of molecules from detection volume k to detection volume l. The anomalous 

diffusion propagator used here reads as follows 

 

      

� 

PD
! r 2,τ |
! r 1,0( ) =

1

4πΓτα( )3 2 exp −
! r 2 −
! r 1( )2

4Γτα

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ . (Eq. 91) 

 

With the improved MDE model function (Eq. 82) and the anomalous diffusion propagator 

(Eq. 91) a correlation model function   

� 

Gkl τ( )  for diffusion was derived according to Eq. 70 

that is given by Eq. 92. It can be applied for quantitative description of correlation curves 

obtained by correlating fluorescence signals acquired from MDE volumes   

� 

Ψk  and   

� 

Ψl:  

 

      

€ 

Gkl(τ) =
Ψk
 r 1( ) PD

 r 2,τ |
 r 1,0( )Ψl

 r 2( )d 3r1d
3r2V∫V∫

Ψk (
 r 1)d

3r1 Ψl(
 r 2)d

3r2V∫V∫
=

1
cVeff

Hklmn(τ)
n=−4

4

∑
m=−4

4

∑ .           (Eq. 92) 

 

For   

� 

k = l , an auto-correlation (AC) curve is obtained, while   

� 

k ≠ l  yields a cross-

correlation (XC) curve. The mean number of particles in the focus volume is given by 

    

� 

N = cVeff . An effective volume is obtained by Eq. 93 

 

      

� 

Veff = Ψ(! r )d 3r
V∫ =

π
2

Anwx,n(0)wy,n(0)
n=−4

4

∑ κ(z)dz
−∞

∞∫ .  (Eq. 93) 

 

The function   

� 

Hklmn τ( )  in Eq. 92 is defined by Eq. 94 and gives the probability that a 

particle is detected at time     

� 

t = 0  in lobe   

� 

m  of detection volume   

� 

k  and after a time   

� 

t = τ  in 

lobe   

� 

n of detection volume   

� 

l . 
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� 

Hklmn τ( ) =
Am An

2Veff

wx,m 0( )wy,m 0( )wx,n 0( )wy,n 0( )hklmn τ( ) . (Eq. 94)                                              

 

The function   

� 

hklmn τ( )  in Eq. 94 is given by Eq. 95: 

 

    

� 

hklmn τ( ) =
π

4Γτα
ζklmn z1, z2,τ( )dz1dz2−∞

∞∫−∞

∞∫ . (Eq. 95)   

 

The expression     

� 

ζklmn z1, z2,τ( )dz1dz2  in Eq. 95 yields the probability for molecules to be 

detected at time     

� 

t = 0  in a     

� 

dz1 thick cross-section through lobe   

� 

m  around the axial position 

    

� 

z1 and after a time   

� 

t = τ  in a     

� 

dz2  thick cross-section through lobe   

� 

n at position     

� 

z2 and vice 

versa. The function     

� 

ζklmn z1, z2,τ( ) is given by Eq. 96 

 

    

� 
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κ z1( )κ z2( )
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exp −
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⎛ 
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⎠ 
⎟ 
⎟ . (Eq. 96) 

 

Here, the functions     

� 

Δ klmn z1, z2( ) and     

� 

fmn,i z1, z2,τ( ) with   

� 

i = x  or   

� 

i = y  are given by Eq. 97 

and 98, respectively: 

 

    

� 

Δ klmn(z1, z2) = ym(z1) − (dkl + yn(z2)) , (Eq. 97) 

 

    

� 

fmn,i(z1, z2,τ) = wi,m
2 (z1) + wi,n

2 (z2) + 8Γτα . (Eq. 98) 

 

Since the correlation model function given by Eq. 92 contains two integrals that can only 

be solved numerically, all auto- and cross-correlation curves were fitted by a least squares 

fitting routine of the GNU Scientific Library (GSL) (Galassi et al., 2003).  

IV.3.3 Measurement of the MDE structural parameters 

The shape of experimental auto- and medium-distance cross-correlation curves depends 

strongly on the observed transport processes and the microscope’s MDE function. In 

contrast, the particle transport process solely determines long-distance cross-correlation 
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curves’ shape. For quantitative analysis of spatial FCCS measurements, our microscope’s 

MDE function was determined with enhanced accuracy. For this purpose, the structural 

parameters for the previously derived double cone MDE model function (Eq. 92) were 

determined by a three-step approach: First, the structural parameters for the double cone 

geometry of the MDE were measured by three-dimensional imaging of fluorescent beads 

with a diameter of 0.1 µm. Second, a self-developed highly sensitive method that is based 

on FCS was used to determine the amplitudes, widths and positions of the low-amplitude 

MDE side lobes. Third, fine-tuning of the measured MDE function’s structural parameters 

was achieved by a computer routine that makes use of the fact that the MSD of diffusing 

fluorescent beads in aqueous solution grows linearly with time. 

IV.3.3.1 Double cone structural parameters 

Fluorescent beads with a diameter of 0.1 µm were fixed on an object slide and used as 

fluorescent point light sources to determine the structural parameters that describe the 

double cone shaped MDE in axial direction. In the derived MDE model function (Eq. 92), 

the double cone geometry is determined by the cone angles in x– and y–direction that are 

related to the parameters   

� 

kx  and   

� 

k y  as well as by the curvatures of the cone envelope that 

are represented by parameters   

� 

αx  and   

� 

α y. These parameters were measured by acquiring 

three-dimensional image stacks of fixed fluorescent beads (Figure 27).  

As can be seen, the acquired image stack of a fluorescent bead was not symmetrical in 

axial direction due to deformation of the MDE at the object slide surface. Furthermore, a 

diffraction pattern similar to that in Figure 25a was observed. However, it was 

asymmetrical perpendicular to the illumination line. Probably, the line shaped profile of 

the fluorescence light beam was not exactly aligned to the center of the confocal slit.  
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Figure 27: Images of a fluorescent bead’s diffraction pattern at different axial position in the range from -2.5 

µm to 3.0 µm with a step size of 0.5 µm. At position z = 0 µm, the fluorescent bead that was fixed on an 

object slide is in the microscope’s focal plane. Above and below this plane, the images of the fluorescent 

bead were blurred and the width of the lateral intensity distribution increased. For z = 1.5 µm, z = 2.0 µm and 

z = 2.5 µm, the first airy ring of the MDE function can be observed. Furthermore, the images above and 

below z = 0.0 µm were not symmetrical, i.e. they did not show the same intensity distribution. The mean 

intensity of the images decreased for z > 0.0 µm and z < 0.0 µm due to cropping effect of the confocal slit. 

The lateral intensity distribution of each layer of the fluorescent bead image stacks was 

roughly approximated by a two-dimensional Gaussian function.  

Because of the disturbing object slide surface on which the beads were fixed, a 

symmetrized axial cross-section (yz-plane) through the experimental MDE of a fluorescent 

bead and the fitted 3D–Gaussian and double cone model functions is shown in Figure 28.  
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 Figure 28: Axially symmetrical view of a cross-section through an acquired bead image stack, the fitted 

double cone and 3D-Gaussian model functions and the resulting residuals. Obviously, the double cone model 

describes the actual MDE of the microscope with a significantly higher accuracy. 

The maximum intensity of the background corrected images expressed by     

� 

κ z( ) κ 0( )  as 

well as the width   

� 

wx z( )  and   

� 

wy z( ) in x- and y–direction, respectively, of the 2D-Gaussian 

fits are plotted as a function of the axial position z in Figure 29. By fitting Eq. 89, Eq. 84 

and Eq. 85 to these data, the double cone parameters   

� 

kx ,   

� 

k y ,   

� 

αx  and   

� 

α y were determined.  

 

Figure 29: Maximum intensities κ(z)/κ(0) of the background corrected bead image stack layers (left panel) 

as well as the widths wx(z) (middle panel) and wy(z) (right panel) of the 2D-Gaussian approximation in x- and 

y–direction, respectively, as a function of the axial position z.  
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The integrated intensity of images at different axial positions was not equal due to the 

cropping effect of the confocal slit and the limited detection sensitivity. The determined 

structural parameters for the geometry of the line-confocal microscope’s MDE function’s 

double cone shape are summarized in Table 1. 

 

αx 0.60 ± 0.03 
Cone curvature 

αy 0.64 ± 0.02 

kx 4.3 ± 0.4 
Cone angle parameters 

ky 3.2 ± 0.1 
a 5.7 ± 2.4 

Rectangular aperture size (µm) 
b 0.6 ± 0.1 

Table 1: Summary of experimentally determined structural parameters for the double cone shape of the line-

confocal microscope’s MDE function. 

IV.3.3.2 MDE main lobe and side lobe structural parameters 

For determining the amplitudes, widths and positions of the theoretically expected MDE 

side lobes, a highly sensitive approach was developed that is based on spatial FCCS 

measurements. When determining the MDE from image stacks of fluorescent beads, as 

described in the section above, the background signal consisting of camera readout noise 

and scattered light has to be accounted for. This is especially relevant for accurately 

measuring the low-amplitude MDE side lobes of line-confocal microscopes. In this thesis, 

an approach was developed that intrinsically separates the fluorescence signal from 

uncorrelated background noise. It allows for measuring the relevant MDE geometry for 

FCS model functions, since factors that affect imaging and correlation analysis differently 

are properly captured. The experimental setup of this approach is depicted in Figure 30. 

Fluorescent beads were immobilized with a sufficient low areal density for single particle 

experiments on an object slide. Single QDots, which are semiconductor nanocrystals, were 

used as fluctuating point light sources. Emission from single fluorescing QDots turns on 

and off intermittently with a characteristic timescale of about 0.5 s (Nirmal et al., 1996). 

Their emitted fluorescence signals were recorded until the QDots switched to a long-

lasting non-fluorescent state. Fluorescence signals were analyzed by cross-correlating 

signals of spatially separated detection volumes. Each curve reflects the QDots’ blinking 

spectrum (Figure 30b).  
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Figure 30: Determination of the structural parameters of the MDE’s main and side lobes with high precision 

by spatial cross-correlation analysis. (a) Microscope setup for acquiring images and blink spectra of 

immobilized QDots. (b) Blink spectra of QDots for different cross-correlation distances d = |k-l|.To obtain 

the MDE’s structural parameters in the focal plane (z = 0) in direction of the illuminated line (x = 0), we 

evaluated the fluorescence data as follows: The recorded signal Sn(t) of detection volume n is assumed to 

contain uncorrelated background noise Nn(t) and fluctuating fluorescence signal Fn(t) emitted by a single 

blinking QDot as given by Eq. 99. 

To obtain the MDE’s structural parameters in the focal plane, the fluorescence data were 

evaluated as follows: The recorded signal   

� 

Sn(t)  of detection volume   

� 

n  was assumed to 

contain uncorrelated background noise   

� 

N n(t)  and fluctuating fluorescence signal   

� 

Fn(t)  

emitted by a single blinking QDot as given by Eq. 99 

 

  

� 

Sn(t) = N n(t) + Fn(t). (Eq. 99) 

 

Accordingly, the corresponding relative signal fluctuations   

� 

δSn(t)  consist of fluorescence 

fluctuations   

� 

δFn(t)  and fluctuations due to noise   

� 

δN n(t)  as given by Eq. 100 

 

  

� 

δSn(t) = δN n(t) +δFn(t). (Eq. 100)   

 

The noise fluctuations   

� 

δN n(t)  are temporarily uncorrelated, whereas the fluorescence 

fluctuations   

� 

δFn(t)  are correlated according to QDot blinking dynamics. Thus, background 

noise   

� 

δN n(t)  was removed by correlation of the relative signal fluctuations   

� 

δSn(t)  as 

shown in Eq. 101: 
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� 

δS(t)δS(t +τ) = δF(t)δF(t +τ) + δF(t)δN (t +τ) + δN (t)δF(t +τ) + δN (t)δN (t +τ)
= δF(t)δF(t +τ)   

 (Eq. 101) 

 

Fluorescence signals     

� 

Fn = αnF0 recorded by each detector pixel   

� 

n  were proportional to the 

signal emitted by a single QDot with a proportionality coefficient   

� 

αn, which was used to 

determine the MDE at the corresponding distance   

� 

dn from the Qdot position. The intensity 

parameter   

� 

αn was extracted by cross-correlation of relative signal fluctuations of spatially 

separated detection volumes according to Eq. 102.  

 

    

� 

δS0(t)δSi(t +τ) = α i δS0(t)δS0(t +τ) ⇒α i =
δS0(t)δSi(t +τ)
δS0(t)δS0(t +τ)

=
δF0(t)δFi(t +τ)
δF0(t)δF0(t +τ)

    

 (Eq. 102)
  

The correlation analysis eliminated uncorrelated background noise Nn(t) and thus provided 

a robust approach for measuring the MDE’s main lobe. Significant MDE amplitudes were 

measured even for distances larger than 2 µm but positions and widths of the side lobes 

were difficult to resolve (Figure 31). For determining the side lobe structural parameters 

and positions, a theoretical model function (Dusch et al., 2007), which is valid near the 

focal plane for x = z = 0, was fitted to the measured MDE data. 

 

 

Figure 31: (a) Measured MDE function in the focal plane in direction of the illumination line (y-direction). 

MDE data (black crosses) from the spatial cross-correlation analysis were fitted with Eq. 81 (red line). (b) 

Each lobe of the model function (red line) was approximated by a Gaussian function (blue line). 
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Furthermore, MDE side lobes of the derived model function were approximated in the 

focal plane by asymmetric two-dimensional Gaussian functions (Figure 25). The structural 

parameters for the MDE function’s main lobe and side lobes are summarized in Table 2. 

 

Lobe number n 0 1 2 3 4 

Amplitudes An 1.000 0.044 0.016 0.007 0.002 

wx,n (µm) 0.19 1.25 wx,0(0) 
Width 

wy,n (µm) 0.32 0.53 wy,0(0) 

Position  δn(0) (µm) 0 0.58 δ1(0) + 0.41 (n-1) 

Table 2: Summary of the determined structural parameters of the line-confocal microscope’s main lobe and 

side lobes. 

IV.3.3.3 Fine-tuning of the measured MDE structural parameter set 

The geometry of the MDE main and side double cones in yz-direction, given by cone 

angle, curvature of the cone and decrease of the mean intensity in axial direction, strongly 

influenced the shape of spatial cross-correlation curves due to spatially overlapping 

neighboring detection volumes. To enhance the accuracy of the cross-correlation model 

functions, the previously measured MDE structural parameter set was further improved by 

a computer optimization routine (Figure 32). The optimization was based on the invariance 

of the measured diffusion coefficients and concentrations with respect to the correlation 

distance for photo-stable fluorescent particles in pure distilled water. An additional 

condition was that experimental correlation curves are adequately described by the model 

functions with good fit quality. Thus, cross-correlation curves were fitted for 0 µm, 1 µm, 

2 µm, 3 µm and 4 µm correlation distance of QDots diffusing in aqueous solution with the 

improved double cone model function and checked for the scale-invariance of the resulting 

diffusion coefficients and concentrations. The same procedure was repeated for different 

MDE structural parameter sets. Finally, the MDE structural parameter set was selected for 

which the experimental correlation curves were well described by the model functions and 

additionally the best scale-invariance of the fit results was observed. 
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Figure 32: MDE optimization according to reference measurements of QDots in aqueous solution. The 

correlation model functions G (MDE(x, y, z, εn), di, τ ) for different MDE geometries were defined by 

structural parameters εn that matched the experimentally determined MDE structural parameters. The 

correlation model functions G (MDE(x, y, z, εn), di, τ ) were fitted to experimental correlation curves for 

different correlation distances di. In the next step, the goodness of the correlation function fits Xn and the 

coefficients of variation CVn of the fit results were combined into a global fit quality parameter gn. This 

procedure was repeated for each structural parameter combination εn. The MDE model function MDEopt(x, y, 

z, εopt) yielding the best value of gn was selected for least squares fitting of experimental spatial FCCS curves. 
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IV.4 Mobility and diffusion barrier mapping by 1D-FCS 

Protein transport in the heterogeneous and crowded environment of living cells was 

measured by mapping the mobility of inert fluorescent proteins by 1D-FCS with a line-

confocal microscope. GFP monomers (GFP1), trimers (GFP3) and pentamers (GFP5) were 

used as inert tracers to probe the impact of the intracellular structure on protein transport. 

For this purpose, the mobility of these proteins was measured in the nucleus and cytoplasm 

of human U2OS cells. As a reference measurement, the mobility of GFP1 was additionally 

determined in homogeneous aqueous solutions. Representative fluorescence microscopy 

images of GFP1, GFP3 and GFP5 expressing U2OS cells are shown in Figure 33. For 

increasing size of the fluorescent proteins, they are less efficiently transported from their 

place of production in the cytoplasm into the nucleus, as can be seen by the distribution of 

the fluorescence intensities in Figure 33.  

Figure 33: Fluorescence microscopy images of GFP monomers (GFP1), trimers (GFP3) and pentamers 

(GFP5) in cytoplasm and nucleus of living human U2OS cells. GFP1 molecules were equally distributed 

between cytoplasm and nucleus, whereas for increasing molecule size the cytoplasm appeared brighter than 

the nucleus, i.e. the concentration of fluorophores was lower in the nucleus.   

Auto- and cross-correlation curves were acquired at about 50 positions that were equally 

distributed along a line of 10 µm in the cells. The arrows in Figure 33 indicate the 

positions of the 1D-FCS measurements. Homogeneously appearing regions in the 

cytoplasm and nucleus were chosen for acquisition of fluorescence signal with the line-

confocal microscope.  
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To map the spatial arrangement of regions with fast and slow protein transport, auto- and 

cross-correlation carpets for 0.6 µm and 1.2 µm separation distance between detection 

volumes were plotted for measurements in aqueous solution, in the nucleus and the 

cytoplasm, as shown in Figure 34.  

Each column of the carpets represents a correlation curve at the accordant position in the 

cell. In the cytoplasm and particularly in the nucleus, the protein mobility was significantly 

reduced at a subset of positions. These indicate the presence of diffusion barriers created 

by impermeable regions that hinder molecular transport (Digman and Gratton, 2009; 

Ellgaard and Helenius, 2001). At the same time, the correlation carpets revealed large 

domains with high protein mobility in both cytosol and nucleus representing extended 

accessible subcompartments that are separated by transport barriers. Furthermore, the 

heterogeneous amplitude values and diffusion times in the correlation carpets of GFP1 in 

the nucleus indicate an increased heterogeneity of chromatin on the molecular scale 

compared to the cytoplasmic environment. This is consistent with previous studies (Dross 

et al., 2009; Moeendarbary et al., 2013; Pack et al., 2006). To quantify the spatial variance 

of the protein mobility, all correlation curves were fitted by a correlation model function 

for anomalous diffusion (Eq. 92). The unit-free retardation of the protein mobility   

� 

R y( ) 

was defined as the ratio of the mean value of the auto-correlation diffusion coefficient 

ensemble     

� 

DAC  to the individual diffusion coefficient   

� 

D y( ) at position   

� 

y  by 

 

    

� 

R y( ) =
DAC

D y( ) . (Eq. 103) 

 

Accordingly, lower mobility is expressed by higher retardation values. Below the carpets 

in Figure 34, the fold increases   

� 

ΔR y( )  of retardations   

� 

R y( ) are plotted to visualize clusters 

of high protein mobility positions and diffusion barriers. Positions with significantly 

slower protein transport are highlighted as red tips on the retardation bars. Histograms of 

the measured retardation values are plotted in Figure 35. In aqueous solution, the mean 

diffusion coefficient of GFP1 was independent of the translocation distance, which is 

characteristic for normal diffusion that is not hindered by diffusion barriers. However, the 

standard deviation increased due to decreasing signal-to-noise ratios for larger separation 

distances, as can be observed in Figure 35 and Table 3.  
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Figure 34: Auto- and cross-correlation carpets for 0.0 µm, 0.6 µm and 1.2 µm separation distance of GFP1 

molecules in aqueous solution, the cytoplasm and nucleus of living human U2OS cells. Regions with 

diffusion barriers can be identified from the fold increase of the retardation ∆R plotted below the carpets. 

Negative ∆R values correspond to an increase of the diffusion coefficient. An example for a diffusion barrier 

that was most pronounced for the 0.6 µm separation distance is marked with a black arrow. 

In contrast to the 1D-FCS measurement results of GFP1 in aqueous solution, the mean 

diffusion coefficients of GFP1, GFP3 and GFP5 in cytoplasm and nucleus decreased with 
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increasing separation distance due to hindered diffusion in the heterogeneous cellular 

environment (Figure 35 and Table 3). 

Thus, in cells protein transport by diffusion processes was significantly slowed down in a 

length scale-dependent manner and deviated significantly from normal diffusion in 

aqueous solution. Interestingly, the mobility histograms for larger translocation distances 

were broader than the reference histograms and showed an increasing fraction of proteins 

that were significantly slowed down compared to their mobility measured on small scales. 

Mobility histograms of measurements in the nucleus appeared more asymmetric than those 

of measurements in the cytoplasm. 

 

 

Figure 35: Retardation coefficient RAC = <DAC>/D histograms, which corresponds to the translocation time 

of GFP monomer (GFP1), trimer (GFP3) and pentamer (GFP5) molecules relative to the average value 

obtained from the autocorrelation analysis. Measurements were conducted at about 50 positions equally 

distributed on a 10 µm long line for separation distances of 0 µm (auto-correlation), 0.6 µm and 1.2 µm 

(spatial cross-correlation) in aqueous solution, the nucleus and the cytoplasm. 

This suggests that the cytoplasm appeared more homogeneously and the nucleoplasm more 

heterogeneously to diffusing proteins. Altogether, the cellular interior appeared 
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heterogeneous (Table 3) and some particles became at least transiently trapped. The mean 

value 

� 

µ , standard deviation 

� 

σ  and skewness 

� 

γ  of the ensembles of measured GFP1, GFP3 

and GFP5 diffusion coefficients are summarized in Table 3. 

 

0.0 µm 0.6 µm 1.2 µm 
 

µ σ  γ  µ  σ  γ  µ  σ  γ  

PBS 1.0 0.3 1.0 1.0 0.3 1.7 1.0 0.6 0.8 

Cyt. 1.0 0.7 1.5 1.0 0.8 2.5 1.7 1.1 1.2 GFP1 

Nuc. 1.0 0.6 1.1 1.1 0.7 1.4 1.9 1.0 1.1 

Cyt. 1.0 0.5 2.4 1.0 0.6 2.5 1.6 0.9 0.9 
GFP3 

Nuc. 1.0 0.5 0.6 1.3 0.7 1.9 2.0 1.0 0.6 

Cyt. 1.0 0.4 0.5 1.0 0.5 0.8 1.6 1.2 1.3 
GFP5 

Nuc. 1.0 0.5 0.7 1.4 0.8 0.7 1.7 1.0 1.3 

Table 3: Summary of statistical parameters of mobility histograms for GFP1, GFP3 and GFP5. Measurements 

were conducted in aqueous solution (phosphate buffered saline, PBS), cytoplasm (Cyt.), and nucleus (Nuc.). 

Fitting of correlation functions for distances of 0.0 µm, 0.6 µm as well as 1.2 µm yielded histograms with 

mean value µ, standard deviation σ and skewness γ as indicated. Each histogram contains at least N > 200 

values. 

To quantify the amount of trapped GFP monomers and multimers in dense structures of 

U2OS cells’ cytoplasm and nucleus, complementary fluorescence recovery after 

photobleaching (FRAP) measurements were conducted. As a reference monomeric red 

fluorescent protein (RFP1, equivalent to GFP1 with a hydrodynamic radius (rH ≈ 2.8 nm) 

was measured simultaneously with GFP3 (rH ≈ 5.5 nm) or GFP5 (rH ≈ 7.9 nm).  

A model function that was derived for diffusion of particles without binding interactions 

was used for the analysis of the FRAP experiments (Braga et al., 2004). It was introduced 

in the theory section of this thesis. Since immobile fluorescent molecules were observed as 

a “step” in the intensity radial profiles at a radial distance     

� 

wb = 1.3 µm from the circular 

bleached region center in the first post-bleach image frame (Figure 36), the model function 

given by Eq. 45 was modified accordingly. A term with a Heaviside function that accounts 

for a trapped fraction     

� 

f trap 100 ms( )  of molecules on the 100 ms time-scale (corresponding 

to the frame acquisition time) was added: 
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� 

F r( ) = exp −KM exp −2
r2
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2

⎛ 
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⎜ 

⎞ 
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⎟ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − f trap 1−Θ r − wb( )( ). Eq. 104 

 

By least squares fitting of Eq. 104 to the measured radial profiles the width     

� 

wM  of the 

bleached region and the trapped molecule fraction     

� 

f trap 100 ms( )  was determined as shown 

in Table 4. The amount of RFP1 that was trapped for at least 100 ms in the nucleus was 

negligible (Figure 36 and Table 4). In contrast, significant fractions of about 6 - 8% 

trapped GFP3 and GFP5 were present.  

The amounts of molecules that are trapped on the minute time scale was quantified by 

conventional FRAP analysis of the average fluorescence recovery as a function of time. 

For this purpose, the model function given by Eq. 105 was fitted to the recovery curves 

(Figure 36) of the averaged fluorescence intensity with the previously determined radial 

profile widths     

� 

wM : 
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The obtained fit results were the bleach depth     

� 

KM , the trapped fraction     

� 

f trap 1 min( )  on the 

minute time-scale and the diffusion coefficient 

� 

D = wM
2 4τD( ) .  

Hardly any trapped GFP5 molecules were detected in the cytoplasm, while the immobile 

fraction of GFP5 in the nucleus persisted longer than 1 min. The results obtained by FRAP 

suggest that the throat size of small pores in the chromatin structure that confine the 

diffusion of GFP5 in the nucleus was comparable to the effective hydrodynamic diameter 

of GFP5 which is about 15 nm. However, in the cytoplasm correspondingly dense regions, 

probably created by the cytoskeleton network, appeared to open up faster so that trapping 

was detected there only for shorter time at about 100 ms. 
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Figure 36: FRAP measurements of RFP1, GFP3 and GFP5. (a) The fraction of trapped protein ftrap was 

obtained from the analysis of the post-bleach radial intensity profile after 100 ms. (b) The average recovery 

curve on the minute time scale. Apparent diffusion coefficients were determined by least squares fitting from 

the average recovery curves. 

All results that were obtained by least squares fitting of the radial profiles of the first post-

bleach image frames by Eq. 104 and of the recovery curves of the average intensity by Eq. 

105 are summarized in Table 4.  

Information about the fraction of immobilized fluorescent proteins could be determined 

100 ms and 1 min after the bleach process. The diffusion coefficients of RFP1, GFP3 and 

GFP5 determined by FRAP using a bleach spot with a radius of 1.3 µm were in good 

agreement with the values obtained here by spatial FCCS measurements for a separation 

distance of detection volumes of 1.2 µm and with the values obtained recently by pixel-

wise photobleaching profile evolution analysis (3PEA) (Erdel and Rippe, 2012) on the 

same length scale (Table 9). Therefore, mobility measurements on multiple time and 

length scales by spatial FCCS measurements allow for comparing results of mobility 

measurements in living cells that were obtained by techniques operating on different time 

and length scale ranges.  
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 Post-bleach radial profile Average recovery curve 

 KM wM (µm) ftrap
a (%) Dapp (µm2/s) ftrap

b (%) 

RFP1, nuc. 0.90 8.8 0 31 ± 7 1 ± 1 

GFP3, nuc. 0.88 ± 0.02 5.0 ± 0.1 6 ± 1 15 ± 4 1 ± 1 

GFP5, nuc. 0.98 ± 0.06 4.4 ± 0.2 8 ± 3 10 ± 1 6 ± 1 
GFP5, cyt. 0.83 ± 0.01 4.9 ± 0.01 6 ± 1 14 ± 4 2 ± 1 

Table 4: Results of FRAP measurements according to the analysis of the radial intensity profile 100 ms after 

the bleach (left) as well as the average recovery curve (right). Values for RFP1, GFP3 and GFP5 in the 

cytoplasm and the nucleus of U2OS cells are shown. At least 10 measurements were conducted for each 

protein and cellular compartment. a Immobile fraction due to trapping by the cellular structure observed 100 

ms after the bleach process. b Immobile fraction observed 1 min after the bleach process. 

IV.5 Mobility measurements on multiple time and length scales 

IV.5.1 Inert GFP monomers and multimers in unperturbed living cells 

In the crowded interior of living cells, diffusion of proteins is hindered by collisions with 

cellular obstacles. These collisions make the diffusion process anomalous, i.e. the MSD is 

a non-linear function of time (Wachsmuth et al., 2000; Weiss et al., 2004; Weiss et al., 

2003). The scale-dependent diffusion laws of inert GFP1, GFP3 and GFP5 molecules were 

measured by spatial FCCS with a line-confocal microscope in the cytoplasm and nucleus 

of human U2OS cells. For this purpose, the illumination and detection volume of the line-

confocal microscope was positioned in regions in the cell that appeared homogeneous in 

confocal fluorescence microscopy images. From the fluorescence signals acquired at about 

50 positions along a 10 µm long line, auto- and cross-correlation curves were calculated 

and ensembles of correlation curves for equal separation distances were averaged. The 

average curves of the ensembles were fitted by a model function (Eq. 92) that describes 

anomalous diffusion of particles in fractal media. Representative average correlation 

curves for separation distances of 0.0 µm, 0.6 µm and 3.0 µm that were acquired in 

cytoplasm and nucleus as well as the fitted model functions are depicted in Figure 37. 

Peaks appeared in cross-correlation curves at the time most proteins needed to diffuse the 

distance between the detection volumes of the correlated fluorescence signals. For 

increasing molecular weights of the proteins and increasing separation distances, these 

peaks shifted to longer time lags.  
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Figure 37: Representative average auto- (0.0 µm) and cross-correlation curves (1.6 µm and 3.0 µm) acquired 

for GFP1, GFP3 and GFP5 in the cytoplasm and nucleus of living U2OS cells. The fitted model functions are 

depicted as red and blue lines for mobility measurements in cytoplasm and nucleus, respectively. Cross-

correlation curves showed a peak at the time most molecules needed for diffusing the corresponding distance. 

This peak shifted for increasing molecular weight and separation distance to larger time lags.  

A model for correlation of fluorescence signals due to anomalous diffusion that is given by 

Eq. 92 was fitted to the average curves of the correlation curve ensembles. The fit results 

of the anomalous diffusion model, i.e. transport coefficient 

� 

Γ and anomaly parameter 

� 

α , 

were only valid on the length scale (or the corresponding time scale) of the spatial cross-

correlation measurement. However, they could be used to calculate an effective diffusion 

time for the distance covered between two detection events. The effective distances 

molecules diffuse if they are detected in both detection volumes   

� 

Ψk  and   

� 

Ψl, depend on the 

line-confocal microscope’s MDE volume geometry and the distance between the centers of 

the detection volumes. For large separation distances, the actual size and geometry of the 

volumes becomes negligible. The effective diffusion distance between two detection 

volumes is the typical length scale of the corresponding spatial FCCS analysis. It was 

calculated as the mean distance between two points in different MDE volumes weighted 

with the corresponding detection efficiencies at these positions given by the microscope’s 

MDE function. The effective diffusion distance is larger than the distance 

� 

Δ  between the 

MDE volumes’ centers due to the spatial extension of the detection volumes. Thus, the 

mean effective diffusion distance   

� 

dkl  was calculated by  
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� 

dkl =
ψ0,k x1, y1,0( ) ! r 2 −

! r 1 z =0
ψ0,l x2, y2,0( )dx1dy1dx2dy2∫

ψ0,k x1, y1,0( )dx1dy1∫ ψ0,l x2, y2,0( )dx2dy2∫ .                                 (Eq. 106) 

 

For simplicity, only the main lobes of the MDE functions were considered and low 

amplitude side lobes were neglected.  

The effective diffusion time   

� 

tkl  for the translocation of molecules between the line-

confocal microscope’s detection volumes   

� 

k  and   

� 

l  were calculated based on the resulting 

fit parameters, i.e. transport coefficient 

� 

Γ and anomaly parameter 

� 

α . It is given by  

 

    

� 

tkl =
dkl

2

6Γ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

1α

.                                 (Eq. 107) 

 

The effective diffusion time   

� 

tkl  is a good measure for characterizing the scaling behavior 

of transport processes, since it is rather independent of the specific propagator of the 

transport process used for least squares fitting of the acquired correlation curves. This is 

due to the fact that the maximum amplitude of the correlation curve determines the 

effective diffusion time, which is thus robustly obtained even without fitting. With this 

information on multiple time and length scales, the MSD of the proteins could be 

reconstructed as a function of time by plotting the squared effective diffusion distance 

    

� 

dkl
2  as a function of the effective diffusion time   

� 

tkl  (Figure 38).  

An instructive illustration for studying the scaling of diffusion processes in living cells is a 

double-logarithmic representation of the time-dependent apparent diffusion coefficient 

    

� 

Dapp that is defined by 

 

    

� 

Dapp =
dkl

2

6 tkl
.                                 (Eq. 108) 

 

Figure 38 shows the calculated time-dependent diffusion coefficients of GFP1, GFP3 and 

GFP5 molecules in the cytoplasm and nucleus of human U2OS cells.  
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Figure 38: MSD as a function of time for diffusion of GFP1, GFP3 and GFP5 in the cytoplasm (red diamonds) 

and nucleus (blue circles) of living human cells (upper row). The fitted model function for diffusion in a 

porous environment is shown as red (cytoplasm) and blue (nucleus) lines. The time-dependence of the 

apparent diffusion coefficient Dapp is shown in the row below. Data points followed a sigmoidal shape in a 

double-logarithmic representation as observed for diffusion in porous media. 

By assuming that the trajectories of diffusing proteins in living cells have fractal 

geometries, the slope of the apparent diffusion coefficient function     

� 

Dapp t( )  at time   

� 

t  is 

given by   

� 

α −1( )  in this representation, according to the relation 

 

    

€ 

log Dapp t( )( ) = α −1( ) log t( ) + log Γ( ) .                              (Eq. 109) 

 

However, the time-dependent apparent diffusion coefficients of GFP1, GFP3 and GFP5 

acquired by spatial FCCS in living cannot be described by fix values for transport 

coefficient 

� 

Γ and anomaly parameter 

� 

α . Rather, a plateau phase of     

� 

Dapp t( )  on a 

microscopic time and length scale that represents normal diffusion (

� 

α  = 1) is followed by 

an anomalous diffusion regime (

� 

α  < 1) that cannot be described by a single anomaly 

parameter 

� 

α . Finally,     

� 

Dapp t( )  reaches a second plateau phase of normal diffusion with a 

reduced diffusion coefficient on a macroscopic time and length scale. The crossover time 

from the fast normal diffusion regime on microscopic scales to the slow normal diffusion 

regime on macroscopic scales is characteristic for each     

� 

Dapp t( )  curve. For inert tracer 
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molecules, the crossover regime contains information about interactions with the cellular 

structure. For a quantitative description of the acquired multi-scale mobility data, a simple 

model function for diffusion in porous media was adapted (Loskutov and Sevriugin, 2013). 

It was derived to describe the time-dependence of diffusion coefficient measurements of 

tracers in different materials, e.g. rocks, soils and biological tissues, by nuclear magnetic 

resonance (NMR) spectroscopy with pulsed gradients of the applied magnetic field 

(Fordham et al., 1994; Latour et al., 1994). The model function that was derived by 

Loskutov and Sevriugin to describe tracer diffusion in porous media on multiple scales 

(Loskutov and Sevriugin, 2013) is given by  

 

    

€ 

Dapp t( ) = D0 −D∞( )exp −
4 D0 t
πλ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ + D∞ .                              (Eq. 110) 

 

This equation contains the following components: (i) Unhindered normal diffusion in a 

fluid without interactions with the embedding structure is described by the microscopic 

diffusion coefficient     

� 

D0 . (ii) A characteristic parameter 

� 

λ  for a medium that has the 

dimension of a length. It gives the mean diffusive distance between two consecutive 

collisions with obstacles. (iii) In the limit of long times, the diffusion process is described 

by the macroscopic diffusion coefficient   

� 

D∞. In this limit, all particles have collided with 

the pore wall several times, so that the on a macroscopic scale the structure looks 

homogenously again. 

Previously, the measured time-dependence of liquids’ diffusion coefficients in porous 

media was separately described for the short-time limit (Sen et al., 1994) and the long-time 

limit (De Sweit and Sen, 1996). The formula for short times reads 

 

    

� 

Dapp t( ) = D0 1−
4

9 π
S
V

D0 t
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ .                              (Eq. 111) 

 

Here, the surface to volume ration   

� 

S V  gives the specific surface of the porous medium 

that was sensed by diffusing tracers. By expanding the exponential function in Eq. 110 into 

a Taylor series, it was approximated for short times by 
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� 

Dapp t( ) = D0 −
D0

R
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⎜ 

⎞ 
⎠ 
⎟ 1−

4
π

D0 t
λ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ +

D0

R
.                              (Eq. 112) 

 

The retardation     

� 

R = D0 D∞  in Eq. 112 gives the reduction of the microscopic diffusion 

coefficient     

� 

D0 compared to the macroscopic diffusion coefficient   

� 

D∞. It is a measure for 

the connectivity of the accessible space for tracers in porous media and also for the amount 

of long detours that tracers have to diffuse around impermeable regions. 

A relation between the mean diffusive distance 

� 

λ  between two consecutive collisions with 

obstacles and the specific surface   

� 

S V  of the porous medium sensed by tracers can be 

calculated by comparison of Eq. 111 and Eq. 112. The specific surface   

� 

S V  is given by 

 

    

� 

S
V

= 9 1−
1
R

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1
λ

.                              (Eq. 113) 

 

The model parameters microscopic diffusion coefficient     

� 

D0, macroscopic diffusion 

coefficient   

� 

D∞ and characteristic length 

� 

λ  as well as the derived parameters retardation   

� 

R  

and specific surface   

� 

S V  are depicted in schematic illustration for the time-dependent 

apparent diffusion coefficient of tracers in porous media in Figure 39. 

 

Figure 39: Parameters of the model function used for fitting the time-dependence of the apparent diffusion 

coefficient in porous media (Loskutov and Sevriugin, 2013). The initial slope of the D(t) curve is related to 

the surface-to-volume ratio or also called specific surface S/V. Extrapolation of D(t) to t=0 yields the 

microscopic diffusion coefficient D0 that would be measured in free solution, and extrapolation of D(t) to 

t=∞ yields the macroscopic diffusion coefficient D∞ for large translocations. The ratio between both diffusion 

coefficients is referred to here as retardation R. The squared mean diffusive displacement λ between two 

consecutive collisions with obstacles is proportional to the time at the point of inflection of the D(t)-curve. It 

is proportional to the length scale above which the medium appears homogeneous. 
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The model function that is valid for all time scales (Eq. 110) was fitted to the measured 

time-dependent apparent diffusion coefficients. Fit curves are plotted in Figure 38 as red 

and blue lines for cytoplasm and nucleus data, respectively. 

The obtained fit results, i.e. the microscopic diffusion coefficient     

� 

D0, the macroscopic 

diffusion coefficient   

� 

D∞ and the correlation length of the porous medium 

� 

λ , are 

summarized in Table 5. Furthermore, the retardations     

� 

R = D0 D∞  and specific surfaces 

  

� 

S V  given by Eq. 113 were calculated. 

 

GFP1 GFP3 GFP5 
 

Cyt Nuc Cyt Nuc Cyt Nuc 
D0  (µm2/s) 69 ± 6 66 ± 6 29 ± 1 25 ± 2 14 ± 1 13 ± 1 
D∞  (µm2/s) 30 ± 4 29 ± 3 9 ± 1 8 ± 1 2 ± 1 ~1 * 

R = D0/D∞ 2.3 ± 0.2 2.3 ± 0.2 3.2 ± 0.1 3.1 ± 0.3 6.6 ± 0.7 ~33 * 
S/V (µm-1) 6.3 ± 1.3 6.3 ± 1.4 4.0 ± 0.4 3.9 ± 0.7 2.5 ± 0.7 1.6 ± 0.2 
λ  (µm) 0.8 ± 0.2 0.8 ± 0.2 1.5 ± 0.2 1.6 ± 0.3 3.1 ± 0.9 n. d. 

Table 5: Fit results for the time-dependence of the apparent diffusion coefficient. The parameters were 

obtained by least squares fitting of the model function for diffusion in porous media (Loskutov and 

Sevriugin, 2013) to the experimental data. * Since a significant fraction of GFP5 is trapped in the nucleus 

according to the FRAP analysis, these values apply only for the mobile GFP5 subpopulation. 

The viscosity of the cellular fluid that is sensed by diffusing tracers on a microscopic 

length scale was compared to that in aqueous solution according to the Stokes-Einstein 

equation and the measured microscopic diffusion coefficients: 

 

    

� 

η 0,cell

η 0,water

=
D 0,water

D 0,cell

.                              (Eq. 114) 

 

In Figure 40, the relative viscosities   

� 

η 0,cell η 0,water , specific surfaces   

� 

S V  and retardations 

    

� 

R = D0 D∞  of GFP monomers and multimers in the cytoplasm and nucleus of living U2OS 

cells are plotted in bar plots as a function of the molecular weight   

� 

M . GFP1, GFP3 and 

GFP5 have molecular weights of 27 kDa, 81 kDa 135 kDa, respectively. 
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Figure 40: Summary of the determined parameters of the fit model function for diffusion in random media. 

Values for measurements in the cytoplasm are shown as red bars and in the nucleus as blue bars. (a) From the 

microscopic diffusion coefficient D0 and the diffusion coefficient of the proteins in aqueous solution, the 

apparent viscosity of the cellular fluid was determined. Remarkably, the apparent viscosity increased for 

proteins of higher molecular weights. (b) The specific surface that was sensed by diffusing proteins. It 

decreased with increasing protein size due to the lower permeability of the cellular medium for larger 

particles. (c) Inverse values of the retardation 1/R of the microscopic diffusion coefficient D0 to the 

macroscopic limit D∞. The retardation R, a measure for long detours that proteins had to diffuse through 

around impermeable regions. It is inversely related to the connectivity of proteins’ accessible space. 

The retardation   

� 

R  depends on the proteins’ size since dense cellular regions are only 

permeable for smaller proteins. An empirical relation between retardation   

� 

R  of a diffusing 

tracer with radius     

� 

rtracer  in a random fiber network was proposed previously by Phillips 

(Phillips, 2000). The occupied volume fraction   

� 

Φ0  by fibrous obstacles and their radius 

    

� 

rfiber  and characterize the random fiber network.     

� 

λP = rfiber rtracer  is the ratio of the fiber 

radius to the tracer radius. 

Eq. 115  gives the retardation   

� 

R  as a function of the tracer radius     

� 

rtracer :  

 

    

� 

1
R

= F λP,Φ0( ) S λP,Φ0( ) .                              (Eq. 115) 

 

The term     

� 

F λp,Φ0( ) in Eq. 115 is represented by Eq. 116 that accounts for hydrodynamic 

effects.  

 

    

� 

F λ,Φ0( ) = exp −a λP( ) Φ0
b λP( )( ).                              (Eq. 116) 

 

Further, the term     

� 

S λP,Φ0( ) in Eq. 115 accounts for steric or tortuosity effects: 
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� 

S λ,Φ0( ) = exp −0.84 ⋅ f λP,Φ0( )1.09( ),                              (Eq. 117) 

 

with an adjusted volume fraction that reads as follows 

 

    

� 

f λ,Φ0( ) = 1+
1
λP

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

Φ0 .                              (Eq. 118) 

 

This model is applicable for small and moderate concentrations of obstacles in cytoplasm 

and nucleus since in this regime the mobility constraints imposed by a polymer network or 

a random obstacle distribution are similar (Fritsch and Langowski, 2010).  

To fit the hindered diffusion model, the polynomial interpolation for the hindered diffusion 

parameters     

� 

a λP( )  and     

� 

b λP( )  as functions of the ratio     

� 

λP = rfiber /rtracer  of fiber radius     

� 

rfiber  to 

tracer radius     

� 

rtracer  as reported previously (Phillips, 2000) was replaced by an exponential 

interpolation (Figure 41). This approximation fitted similarly well as the polynomial 

approximation but avoided very large     

� 

a λP( )  and negative     

� 

b λP( ) parameters for   

� 

λP  values 

that were larger than the ones included by Phillips, which is advantageous for the fitting 

process and allowed for moderate extrapolation to larger   

� 

λP  values. 

 

Figure 41: Interpolation of hindered diffusion parameters. The original polynomial interpolation for the 

hindered diffusion parameters a and b according to Philipps (Phillips, 2000) (red dashed lines) were 

compared to the modified exponential approximation (black lines). Both approximations yielded fits with 

reasonable quality. However, the modified interpolation avoided very large a parameters and negative b 

parameters for λP > 2, which could prevent successful fitting and preclude extrapolation for slightly larger λP 

values. 
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The empirical model function for diffusion in random fiber networks (Phillips, 2000)  was 

fitted to the inverse values of the measured retardation of GFP1, GFP3 and GFP5 as a 

function of their molecular weights (Figure 38c). For the relation between the molecular 

weight   

� 

M  and effective hydrodynamic radius     

� 

rtracer  the expression for ellipsoidal 

molecules with a rigid α-helical shaped linker between neighboring GFP molecules was 

used (Pack et al., 2006). The effective hydrodynamic radius of monomeric GFP was 

calculated according to the Stokes-Einstein relation for the measured diffusion coefficient 

DGFP = (88 ± 3) µm2/s in aqueous solution at temperature T = (295 ± 1) K as rGFP = (2.8 ± 

0.1) nm. The value for the diffusion coefficient of GFP in aqueous solution agreed well 

with results from scanning FCS measurements (Petrasek and Schwille, 2008). The 

hydrodynamic radii for GFP3 und GFP5 were calculated as 5.5 nm and 7.9 nm, 

respectively.  

An occupied volume fraction of   

� 

Φ0 = 12 ± 9( )% and a fiber radius of     

� 

rfiber = 4 ± 2( ) nm 

were obtained for the cytoplasm. Similar values were determined for occupied volume 

fraction in the nucleus   

� 

Φ0 = 18 ± 5( )%  and the obstacle fiber radius     

� 

rfiber = 6 ± 2( ) nm. The 

results for the fiber obstacle radii are of the same size as that of cytoskeletal filaments and 

chromatin fibers with a diameter of 10 nm.  

IV.5.2 Mobility of inert GFP3 after degradation of cytoskeletal filaments 

Cytoskeletal filaments were degraded in living U2OS cells to measure their impact on 

protein transport in the cytoplasm. For this purpose, actin filaments that are built of actin 

protein subunits were degraded by addition of the drug cytochalasin D (CYTD) to the cell 

culture medium (Rubtsova et al., 1998). CYTD binds to the ends of actin filaments and 

thereby inhibits their dissociation and association. This results in almost complete 

disorganization of the actin network. Short actin filaments were observed in the cytoplasm 

(Cooper, 1987). The distribution of intermediate filaments was disrupted by treatment of 

the U2OS cells with withaferin A (WFA) that binds to their main building unit vimentin 

(Grin et al., 2012). Microtubule filaments that are built of α tubulin and β tubulin proteins 

were depolymerized by nocodazole (NOC) (Jordan et al., 1992).  

A confocal microscope was used to acquire images of U2OS cells with fluorescently 

labeled cytoskeletal filaments before and after treatment with cytoskeletal filaments 
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degrading drugs. After treatment of the U2OS cells, disassembly of the cytoskeletal 

filament networks was observed (Figure 42).  

 

 

Figure 42: Fluorescence microscopy images of human U2OS cells before and after treatment with 8 µM 

cytochalasin D (CYTD), 2 µM withaferin A (WFA) and 10 µM nocodazole (NOC). Actin filaments were 

stained with β-Actin-RFP, intermediate filaments were stained with vimentin-GFP and microtubule filaments 

were stained with MAP4-RFP. Disassembly of cytoskeletal filaments was observed after treatment with 

CYTD, WFA and NOC. 

Cytoskeletal filaments’ subunits were more heterogeneously distributed in the cytoplasm 

after treatment. Further, aggregation of filament components was observed.  

After treatment, time-dependent apparent diffusion coefficients of GFP3 were measured in 

the cytoplasm of at least 10 different U2OS cells by spatial FCCS with the line-confocal 

microscope. Eq. 110 was used for least squares fitting of the scale-dependent mobility data 

(Figure 43). The apparent diffusion coefficients as function of time deviated only 

moderately after treatment with WFA and NOC from that of unperturbed cells (Figure 43). 

Therefore, only minor effects of intermediate filaments and microtubuli on GFP3 transport 

in the cytoplasm were revealed as compared to untreated cells. A significant difference 

was observed after treatment with CYTD (Figure 43). Here, the measured retardation of 

GFP3 mobility was reduced compared to that in untreated cells, i.e. diffusing proteins 
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collide less frequently with barriers. However, the moderate effects observed here after 

disassembly of cytoskeletal filaments suggest that other cytosolic components also have a 

significant impact on molecular transport. 

 

Figure 43: Time-dependent apparent diffusion coefficient (red) of inert GFP3 in the cytoplasm of U2OS cells 

after degradation of cytoskeletal filaments with CYTD, WFA and NOC compared to that in unperturbed cells 

(black). (a) Depolymerization of actin filaments by cytochalasin D. (b) Disruption of intermediate filaments 

by withaferin A. (c) Disruption of microtubule by nocodazole. 

All parameters that were obtained by least squares fitting of the model function for 

diffuion in porous media given by Eq. 110 to the measured mobility data for GFP3 are 

summarized in Table 6. According to Eq. 113, the obstacle surface sensed by diffusing 

GFP3 was calculated from the retardation   

� 

R  and the correlation length 

� 

λ . The 

corresponding data for GFP3 in the cytoplasm of unperturbed U2OS cells are listed in 

Table 5. 

 

Treatment D0  (µm2/s) R = D0/D∞ S/V (µm-1) λ  (µm) 
CYTD 30 ± 1 2.4 ± 0.3 3.5 ± 1.0 1.5 ± 0.4 
WFA 26 ± 2 2.8 ± 0.3 4.8 ± 1.2 1.2 ± 0.3 
NOC 31 ± 2 3.3 ± 0.5 4.2 ± 0.9 1.5 ± 0.3 

Table 6: Result for least squares fitting of the model function for diffusion in porous media (Loskutov and 

Sevriugin, 2013) to the time-dependent apparent diffusion coefficient of GFP3 in cytoplasm of U2OS cells 

after treatment with cytochalasin D (CYTD), withaferin A (WFA) and nocodazole (NOC). 

IV.5.3 Mobility of inert GFP3 after perturbations of the chromatin structure 

Furthermore, the scaling behavior of protein transport was measured in the nucleus of 

human U2OS cells by spatial FCCS measurements after treatment with drugs that alter the 
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spatial organization of the chromatin. Trichostatin A (TSA) was used to modify the 

chromatin structure via epigenetic modifications of histone protein tails, more accurately 

the acetylation state (Fejes Tóth et al., 2004). Inhibition of histone deacetylation enzymes 

by TSA results in increased acetylation of histone tails and thus in decondensation of dense 

chromatin. Additionally, chloroquine (CQ) was used to modify the accessibility of the 

chromatin structure (Toiber et al., 2013). It intercalates into the DNA structure and thus 

changes the axial twist of linker DNA segments between neighboring nucleosomes.  

 

Figure 44: Time-dependent apparent diffusion coefficient (blue) of inert GFP3 in the nucleus of U2OS cells 

after perturbation of the chromatin structure with trichostatin A (TSA) and chloroquine (CQ) compared to 

that in unperturbed cells (black). (a) Perturbation of chromatin by TSA. (b) Perturbation of chromatin by CQ. 

Spatial FCCS measurements were conducted in at least 10 different human U2OS cells 

after treatment with the chromatin decondensing drugs TSA and CQ. Figure 44 shows the 

averaged time dependence of the apparent diffusion coefficient for GFP3 molecules in the 

nucleus of perturbed cells as well as reference measurements in unperturbed cells. The 

mobility data were fitted by the model for diffusion of tracers in porous media given by 

Eq. 110. All determined parameters are summarized in Table 7.  

 

Treatment D0  (µm2/s) R = D0/D∞ S/V (µm-1) λ  (µm) 
TSA 30 ± 2 2.8 ± 0.7 2.9 ± 1.2 2.0 ± 0.8 
CQ 28 ± 1 2.1 ± 0.3 2.8 ± 1.2 1.7 ± 0.7 

Table 7: Result for least squares fitting of the model function for diffusion in porous media (Loskutov and 

Sevriugin, 2013) to the time-dependent apparent diffusion coefficient of GFP3 in the nucleus of U2OS cells 

after treatment with trichostatin A (TSA) and chloroquine (CQ).  
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The measured microscopic diffusion coefficients of GFP3 in the nucleus were moderately 

increased after TSA and CQ treatment (Table 7) compared to that in untreated U2OS cells 

(Table 5). However, a significant effect was observed as reduced retardation value after 

treatment with CQ. 

IV.5.4 Non-inert and endogenous STAT2 proteins and chromodomains 

To study endogenous proteins’ or respectively protein domains’ time-dependent apparent 

diffusion coefficient, the mobility of STAT2 signaling pathway proteins (Stark and 

Darnell, 2012) in the cytoplasm and chromatin binding chromodomains (Brehm et al., 

2004) in the nucleus of U2OS cells was measured by spatial FCCS.  

Fluorescence microscopy images of typical cells that expressed GFP1 labeled STAT2 

proteins or chromodomains are shown in Figure 45. 

 

 

Figure 45: Fluorescence microscopy images of U2OS cells. The white scaling bars correspond to 5 µm. (a) 

STAT2 proteins fluorescently labeled with GFP1 (fusion proteins). STAT2 proteins were homogeneously 

distributed in the cytoplasm. The concentration of STAT2 was higher in cytoplasm as in the nucleus. The 

observable bright spot in the nucleus is an invagination of the cytoplasm. (b) Fusion proteins of the 

chromodomain and GFP1. In nucleus, chromodomains were enriched at the boundaries of nucleoli.      

The fusion protein of the chromodomain (CD) and GFP1 was chosen since it is comparable 

in molecular weight to the inert GFP1. Furthermore, a fusion protein of STAT2 and GFP1 

was used for comparison with the inert GFP5. The measured apparent diffusion coefficients 

were fitted by the model function for diffusion in porous media that is given by Eq. 110 
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(Loskutov and Sevriugin, 2013). Resulting parameters are summarized in Table 8. STAT2 

proteins were faster than GFP5 molecules in the cytoplasm (Figure 46a and Table 8) 

although both have comparable molecular weights of ~140 kDa. The difference between 

their mobility is assumed to originate from the difference in their molecular structures 

because GFP5 is expected to have a more rod-like structure whereas for STAT2 proteins is 

expected (Dross et al., 2009).  

Figure 46: Time-dependent apparent diffusion coefficient of non-inert endogenous proteins and protein 

domains in the cytoplasm and nucleus of human U2OS cells. (a) Time dependent mobility of STAT2 

proteins (red) in the cytoplasm compared to that of GFP5 (black). (b) Mobility of chromodomain CD in the 

cytoplasm (red) and nucleus (blue) compared to that of GFP1 (black) in the cytoplasm. Additionally, the 

measured time-dependence of the mobility of heterochromatin protein 1 (HP1) in the nucleus (grey) is 

depicted. These data could not be quantitatively analyzed, since only a limited time scale range was covered. 

However, both proteins sense comparable environments (Table 8). In the cytoplasm, the 

time dependent mobility of CD was reduced compared to that of GFP1 but revealed similar 

results for the intracellular structure (Table 8).  

 

 D0  (µm2/s) R = D0/D∞ S/V (µm-1) λ  (µm) 
Cyt 51 ± 2 2.3 ± 0.2 3.9 ± 0.9 1.3 ± 0.3 CD Nuc 51* 9.4 ± 0.9 5.4 ± 0.4o 1.5 ± 0.1 

STAT2 Cyt 24 ± 1 3.8 ± 0.8 3.3 ± 1.3 2.0 ± 0.8 

Table 8: The results for chromodomain (CD) and STAT2 protein in the cytoplasm (Cyt) and nucleus (Nuc) 

of human U2OS cells are listed. * This value was fixed for least squares fitting to the microscopic diffusion 

coefficient of CD in the cytoplasm since these values should be similar in the short timescale limit. o Only an 

effective specific surface value can be determined since CD is binding to chromatin. 

The mobility of CD in the nucleus was significantly reduced compared to that in the 

cytoplasm due to transient binding to chromatin. Additionally, a time-dependence of the 
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apparent diffusion coefficient was observed that is not implemented in the model for 

diffusion of inert tracers in porous media. It is assumed that the measured devations from 

the sigmoidal functional relationship of the apparent diffusion coeffiecints origin from 

binding fluctuations on short time scales that are superposed with the hindrance by the 

intracellular structure. In the short time scale limit, the microscopic diffusion coefficient of 

CD in the nucleus should be similar to that in the cytoplam. With this assumption, an 

increased effective retardation value could be estimated for CD in the nucleus (Table 8). 

IV.6 Protein interaction measurements by dual-color FCCS 

IV.6.1 Reference measurements 

IV.6.1.1 TetraSpeck beads in aqueous solution 

Dual-color FCCS with the implemented second detection channel for red fluorescence 

light was tested by measurements of diffusing TetraSpeck beads in aqueous solution. The 

TetraSpeck beads are made of polystyrene and have a diameter of 0.1 µm. Their surfaces 

are labeled with blue, yellow-green, orange and dark dyes. Accordingly, cross-correlation 

between red and green fluorescence signals was expected for dual-color FCCS 

measurements. Excitation and emission spectra for these dyes as well as illumination laser 

wavelength and optical filters are depicted in Figure 47.  

 

 

Figure 47: Fluorescence excitation (dashed lines) and emission (solid lines) spectra of the blue, yellow-

green, orange and dark red dyes on the surface of polystyrene TetraSpeck beads. The wavelength of the laser 

(488 nm) is depicted as light blue line. Emission spectra are normalized according to the excitation efficiency 

with laser light of 488 nm. A bandpass filter (525/50 nm) in the detection light path was used for the green 

fluorescent light and a longpass filter (561 nm) for the red fluorescent light. 
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Spectral crosstalk was corrected according to an approach introduced previously (Erdel, 

2012). Calculated auto-correlation curves for the crosstalk corrected signals acquired by 

the detection channel for green and red fluorescence light as well as the dual-color cross-

correlation curve of both signals are depicted in Figure 48. Since the correlation amplitude 

of the green signal was higher than that of the red signal, it seems that either about every 

fourth TatraSpeck bead had photobleached green dyes or the labeling efficiency of 

TetraSpeck beads was not equal for the red and green dyes. Furthermore, the MDE of the 

line confocal microscope’s green and red detection channels could be different. However, 

strong cross-correlation between the red and green fluorescence signals was obtained in a 

first proof-of-concept dual-color FCCS measurement with the line confocal microscope. 

 

Figure 48: Auto-correlation (AC) and cross-correlation (CC) curves of TetraSpeck beads in aqueous solution 

calculated from the crosstalk corrected signals acquired by the green and red fluorescence detection channel. 

Since the amplitude of the AC curve of the green channel was higher than that of the red channel, it seems 

that about every fourth TetraSpeck had photobleached green dyes. 

IV.6.1.2 Fusion protein of GFP and LSS-mKate2 in living cells 

To validate dual-color FCCS with the setup developed here, the mobility of fusion proteins 

of LSS-mKate2 and GFP was measured by 1D-FCS with the line-confocal microscope in 

human U2OS cells. LSS-mKate2 is a monomeric red fluorescent protein that has a long 

Stokes shift between its excitation maximum at 460 nm and its emission maximum at 605 

nm (Piatkevich et al., 2010). It allows for single wavelength excitation of GFP and LSS-

mKate2 molecules, which intrinsically avoids potential misalignment between different 

illumination volumes in the sample (Hwang and Wohland, 2004). As a negative control, 

the mobility of GFP and LSS-mKate2 was measured in cells that expressed both proteins 

separately. The fluorescence signals of the red and green detection channels were either 
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auto-correlated or cross-correlated with the corresponding signal of the other detection 

channel at the same position. Subsequently, correlation curves were corrected for spectral 

detection crosstalk of the green fluorescent dye into the red detection channel according to 

Eq. 68. Calculated AC and XC curves acquired at 30 positions in the cell were averaged 

and fitted with Eq. 92 (Figure 49). 

 

Figure 49: Negative and positive control for dual-color FCCS analysis of 1D-FCS measurements in the 

cytoplasm of U2OS cells. Experimental AC and CC curves acquired at 30 positions were averaged and 

corrected for spectral crosstalk. (a) AC and CC curves (diamonds) acquired in cells expressing GFP and 

LSS-mKate2 separately, including the fitted model functions (lines). After spectral crosstalk correction, no 

significant cross-correlation between the red and the green detection channels was observed. (b) Results of 

dual-color FCCS analysis of 1D-FCS measurements in cells that expressed a fusion protein of LSS-mKate2 

and GFP. A significant cross-correlation between red and green detection channels remained after spectral 

crosstalk correction. 

After spectral crosstalk correction, the cross-correlation amplitude of fluorescence signals 

from GFP and LSS-mKate2 vanished in cells that expressed both proteins separately 

(Figure 49a). However, significant cross-correlation was obtained in cells that expressed a 

fusion protein of GFP and LSS-mKate2 (Figure 49b). The fraction   

€ 

θGFP  of GFP molecules 

that were in a fusion protein with both fluorescent proteins in an active state was calculated 

from the amplitudes of the fit curves obtained by fitting Eq. 92 to the acquired AC and CC 

curves according to Eq. 119 (Bacia et al., 2006; Weidemann et al., 2002): 

 

    

� 

θGFP =
GCC 0( )
Gr 0( ) =

N Kate2-GFP

NGFP + N Kate2-GFP

. Eq. 119 

 

    

� 

Gr 0( )  and     

� 

GCC 0( ) in Eq. 119 are the amplitudes at time   

� 

τ = 0  of the red channel’s AC 

curve and that of the CC curve. The number of red and green fluorescent fusion proteins is 
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represented by     

� 

N Kate2-GFP , whereas the number of fusion proteins that were only green 

fluorescent is given by     

� 

NGFP. Accordingly, the ratio   

� 

θKate2  of LSS-mKate2 proteins that 

were in red and green fluorescent proteins reads: 

 

    

� 

θKate =
GCC 0( )
Gg 0( ) =

N Kate2-GFP

N Kate2 + N Kate2-GFP

. Eq. 120 

 

From the fractions   

€ 

θGFP  and   

€ 

θKate2 , the ratios between the numbers of only green, only red 

as well as green and red fluorescent fusion proteins was calculates as 6:4:1. The number of 

fusion proteins that were fluorescent both in the red and green channel might be reduced 

since not all fluorescent proteins are completely maturated and therefore stay dark. 

IV.6.2 Dimerization of STAT1 and STAT2 proteins in the cytoplasm  

Dimerization of the signaling proteins STAT1 and STAT2 (Stark and Darnell, 2012) was 

measured in the cytoplasm of human U2OS cells with and without interferon stimulation 

by dual-color FCCS with single wavelength excitation. For this purpose, STAT1 proteins 

were fluorescently labeled with LSS-mKate2 and STAT2 proteins were fluorescently 

labeled with GFP. Representative fluorescence microscopy images are shown in Figure 50.  

 

Figure 50: Fluorescence microscopy images of STAT1 and STAT2 proteins expressing human U2OS cells. 

STAT1 proteins were fluorescently labeled with LSSmKate2 and STAT2 proteins with GFP. The white 

scaling bars correspond to 5 µm. (a) A representative cell without stimulation by interferon. (b) A 

representative cell after stimulation with interferon. A slight enrichment of STAT1 and STAT2 proteins in 

the nucleus was observed after stimulation with interferon (INF) compared to the unstimulated case. 
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Binding of interferon molecules to receptors on the plasma membrane finally leads to 

formation of heterodimers of STAT1 and STAT2. It is expected that the heterodimer 

protein of STAT1 and STAT2 is transported into the nucleus after interferon stimulation, 

where it binds to chromatin and activates gene expression. However, only a slight 

enrichment of STAT1 and STAT2 was observed in the nucleus after treatment with 

interferon (Figure 50), which might be due to inefficient stimulation or saturation by 

overexpressed STAT proteins. Interactions of STAT1 and STAT2 proteins were measured 

by dual-color FCCS analysis of 1D-FCS data acquired with the line-confocal microscope 

at 30 positions in the cytoplasm of living U2OS cells. The calculated AC and CC curves 

were averaged and corrected for spectral crosstalk of GFP into the red detection channel. 

Least square fitting with Eq. 92 yielded the amplitudes     

€ 

G 0( ) of AC and CC curves. 

 

Figure 51: Interaction measurements of STAT1 and STAT2 proteins in the cytoplasm of U2OS cells by 

dual-color FCCS analysis of 1D-FCS data acquired with the line-confocal microscope. (a) AC and CC curves 

(diamonds) of the red and green detection channel acquired in unstimulated cells, including the fitted model 

functions (lines). (b) After treatment of the cells with interferon, significant cross-correlation was observed, 

indicating the presence of heterodimers between STAT1 and STAT2 in the cytoplasm. 

After stimulation with interferon, a fraction of   

� 

11 ± 1( )%  STAT1 proteins were observed in 

a heterodimer with STAT2, whereas   

� 

7 ± 1( )%  STAT1 dimerized with STAT2 proteins 

without external stimulation. The fractions of STAT1 proteins that formed a heterodimer 

with STAT2 was calculated from the correlation amplitudes according to Eq. 120. 
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V Discussion 

V.1 Impact of the microscope’s MDE on FCS measurement results 

The shape of AC and CC curves obtained from FCS measurements is affected by the 

concentration and mobility of fluorescent particles, optical saturation effects (Enderlein et 

al., 2005; Gregor et al., 2005) as well as photophysical effects of the fluorophore (Haupts 

et al., 1998) and the geometry of the MDE volume (Enderlein et al., 2004). In the 

correlation model function for FCS used for confocal microscopes, the MDE is typically 

described by a three-dimensional Gaussian function (Rigler et al., 1993). However, this 

does not represent the experimental situation accurately and thus causes deviations of the 

measured diffusion coefficients and concentrations (Enderlein et al., 2004; Hess and 

Webb, 2002). A more accurate model function for the MDE of confocal microscopes was 

reported previously (Dertinger et al., 2007). It uses a double cone shape of the excitation 

and detection volume in axial direction.  

For determining the MDE of a microscope, fluorescent beads with diameters below the 

diffraction limit are commonly fixed on the surface of object slides and subsequently 

imaged. The resulting three-dimensional image stacks are then fitted by model functions 

that describe the MDE for quantitative analysis of FCS measurements. However, diffusion 

coefficients of inorganic dyes measured in aqueous solution by point FCS and three-

dimensional Gaussian MDE model function were significantly underestimated compared 

to that measured by dual-focus FCS and the double cone MDE model (Dertinger et al., 

2007; Müller et al., 2008), mostly due to the inaccurately described MDE geometry. 

Multi-focus FCS measurements allow for precise quantification of absolute diffusion 

coefficients (Dertinger et al., 2007; Müller et al., 2008). The results of spatial FCCS 

become independent of the MDE volume geometry for large separation distances between 

the detection volumes. The measured diffusion coefficients are comparable to those 

obtained by pulsed field gradient nuclear magnetic resonance (PFG-NMR) experiments 

(Gendron et al., 2008), dynamic light scattering measurements (DLS) (Muller et al., 2008) 

and 3PEA (Erdel and Rippe, 2012). Accordingly, 1D-FCS underestimated diffusion 

coefficients in the AC analysis if the line-confocal microscope’s MDE volume was 

described by a three-dimensional Gaussian function, as shown in Figure 52. However, 

accurate values were obtained by long-distance CC analysis. It is possible to address the 
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discrepancy between the diffusion coefficients determined by AC and long-distance CC 

analysis by adjusting the structural parameters of the three-dimensional Gaussian model 

function. However, the diffusion coefficients obtained by spatial FCCS for intermediate 

separation were nevertheless underestimated, i.e. no structural parameter set for a Gaussian 

MDE description was found that yielded consistent diffusion coefficients for all length 

scales.  

 

 

Figure 52: Diffusion coefficients obtained by spatial FCCS with the line-confocal microscope for a 3D-

Gaussian and a double cone MDE model function. The measured diffusion coefficients were equal for large 

separation distances (> 3 µm). However, AC analysis with 3D-Gaussian MDE model underestimated the 

diffusion coefficient significantly, although MDE model parameters were determined from the same image 

stacks of fluorescent beads. 

Accurate diffusion coefficients could only be obtained from the AC and CC analysis if the 

double cone MDE model function derived here with multiple side lobes was employed 

(Eq. 82). However, the appropriate model function for the theoretical description of the 

correlation curves (Eq. 92) required numerical solution of a double integral. Hence, least 

square fitting of this model to the experimental data is somewhat more computationally 

intensitive and time-consuming. The analysis of the correlation curves can be computed in 

parallel within less than an hour on modern computer hardware. A further speedup could 

be obtained with a theoretical model function for the line-confocal microscope’s MDE of 

double cone geometry that allows for deriving an analytical model function for the 

correlation curves. 
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For correct diffusion coefficient measurements, the structural parameters of the MDE have 

to be determined accurately. However, image stacks of fluorescent beads fixed on the 

surface of object slides showed some distortions (Figure 27). Therefore, structural 

parameters for the MDE measured in this manner deviated significantly from that required 

for the FCS model functions in aqueous solution. In this thesis, an approach for optimizing 

the structural parameters determined by bead imaging on surfaces of object slides was 

developed. It uses a computer optimization routine and reference concentration and 

diffusion coefficient measurements of fluorescent dyes by spatial FCCS in aqueous 

solution where these parameters are independent from the separation distance between 

detection volumes (Figure 32). With this optimization routine, reliable diffusion 

coefficients were obtained by spatial FCCS on different time and length scales, as shown 

in Figure 19. The approach to characterize MDE functions for the quantitative analysis of 

FCS curves is generally relevant for FCS data acquisition with microscopy setups that have 

detection crosstalk due to overlapping detection volumes. This is the case for all optical 

setups that illuminate a region in the sample with continuous laser light and simultaneously 

detect emitted fluorescence signals from multiple positions with high spatial resolution, 

e.g. SPIM setups used for 2D-FCS measurements.   

V.2 Anomalous diffusion measurements in living cells 

Mobility measurements by conventional FCS, FRAP and SPT revealed that diffusion of 

particles in a crowded and heterogeneous environment followed an anomalous diffusion 

law (Brown et al., 1999; Kues et al., 2001; Wachsmuth et al., 2000; Weiss et al., 2004), i.e. 

the MSD of diffusing particles does not increase linearly with time. However, the actual 

relation between MSD and time could not be determined so far for the complete time scale 

range relevant for diffusion of molecules in living cells. For simplicity, the MSD of 

anomalous diffusion in living cells was described by a power law (Eq. 21), which is valid 

only for fractal obstacle distributions (Bouchaud and Georges, 1990; Bunde and Havlin, 

1995). In perfect fractal structures that do not have a characteristic length scale, true 

anomalous diffusion will be observed on all length and time scales. In contrast, real 

physical systems have a finite number of characteristic length scales. As discussed 

previously, diffusion in a complex medium with one characteristic length scale 

€ 

λ  should 

be normal for     

€ 

MSD << λ2  and correspond to that in fluids without obstacles (Banks and 

Fradin, 2005). For     

€ 

MSD >> λ2 , diffusion of tracers should again be normal and correspond 
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to that in the composite medium. If the MSD is comparable to the characteristic length 

scale squared (    

€ 

MSD ≈ λ2), diffusion has to be anomalous to bridge these two regimes with 

normal diffusion. This time-dependence was found for diffusion in environments with 

random barriers (Novikov et al., 2011) and in porous media (Loskutov and Sevriugin, 

2013). 

Accordingly, the mobility of diffusing particles has to be measured on multiple time and 

length scales to reveal diffusion laws in biological cells. Unfortunately, most conventional 

mobility measurement techniques are restricted to a small range of scales. For example, 

FCS measurements at a single point are restricted to the characteristic length of their MDE 

volumes. Anomalous diffusion is extracted from the slope at the point of inflection of the 

calculated AC curves that is related to the anomaly parameter 

€ 

α  of the anomalous 

diffusion propagator given by Eq. 91. The latter is affected by several experimental 

artifacts, e.g. photophysical effects of the fluorophore and the geometry of the MDE 

volume (Enderlein et al., 2004), occurrence of multiple diffusing species of fluorescent 

molecules as well as signal correction (Figure 24c). Based on the ill-defined anomaly 

parameter 

€ 

α , conclusions for smaller and larger length scale ranges are drawn by 

extrapolation of the diffusing particles’ MSD according to a power law (Eq. 21). 

By increasing the size of the focus volume, the accessible scale range can be extended 

(Masuda et al., 2005) until the large number of fluorescent particles in the detection 

volume reduces the relative fluctuations beyond the range that can be reliably measured. 

Another approach is SPT that yields low statistics since single particles can only be traced 

for a limited period of time before they are either lost by the tracking routine or get 

photobleached. Furthermore, the temporal resolution of SPT is too low for tracking of most 

relevant proteins. 

To overcome these limitations, an experimental and theoretical framework for spatial 

FCCS measurements with line-confocal microscopes was developed here. This 

methodology allows for mobility measurements on a length scale range from 200 nm to 

3 µm. With this approach the time dependence of the apparent diffusion coefficient     

€ 

Dapp t( )  

was determined on multiple time and length scales by a single measurement. In living 

cells, it showed a sigmoidal curve in the double-logarithmic representation (Figure 38, 

Figure 43 and Figure 44) that is indicative for diffusion in porous media. By least squares 

fitting of Eq. 110 to the     

€ 

Dapp t( )  curves, microscopic diffusion coefficients were determined 
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that allowed for calculation of the apparent microscopic viscosity. Interestingly, it was 

dependent on the size of the fluorescent molecules (Figure 40 and Table 5). This finding is 

consistent with previous reports and shows that normal diffusion laws do not apply in 

living cells (Luby-Phelps, 1994; Luby-Phelps et al., 1986; Lukacs et al., 2000). Slow or 

even immobile cellular components might be sensed by small particles as obstacles 

whereas the same components contribute to an increased apparent viscosity for large 

particles. This is in accordance with the increase of the effective viscosity of the medium 

due to molecular crowding that is higher for large tracers (Zimmerman and Minton, 1993). 

Furthermore, the difference between microscopic diffusion coefficient     

€ 

D0 and the 

macroscopic diffusion coefficient   

€ 

D∞ was measured (Figure 40 and Table 5). These results 

are consistent with the literature (Busch et al., 2000; Lavalette et al., 1999). They imply 

that anomalous diffusion occurs on the scale range of the crossover between both diffusion 

coefficients. Accordingly, the model for anomalous diffusion in fractal structures applies 

only for a limited scale range of this crossover regime as discussed previously (Bancaud et 

al., 2009). Multiple fractal dimensions are required for the description of the scale-

dependence of anomalous diffusion in the complex environment of living cells. 

Mobility measurement techniques that operate on different time and length scales may 

yield deviating results in living cells due to the time-dependence of the apparent diffusion 

coefficient – even if the results are consistent for measurements in aqueous solution.  

 

Spatial FCCS in living cells (nucleus) D (µm2s-1) 

GFP1 32 ± 3 x 

GFP3 14 ± 2 x 

GFP5 11 ± 1 x 

FRAP in living cells (nucleus) D (µm2s-1) 

RFP1 31 ± 7 o 

GFP3 15 ± 4 o 

GFP5 10 ± 1 o 

Table 9: Mobility parameters obtained for different tracer molecules in the nucleus of living cells by spatial 

FCCS and FRAP with radial profile analysis. Spatial FCCS results in living cells agreed very well with 

FRAP experiments on the same length scale. x Diffusion constants for spatial FCCS analysis with an 

effective distance of deff = 1.2 µm. o FRAP results for a bleach circle radius of wb ≈ 1.3 µm. 
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Therefore, the spatial FCCS approach developed here is ideally suited to obtain reference 

measurements for the comparison of results obtained with different methods. This is 

illustrated by the diffusion coefficient data for RFP1, GFP3 and GFP5 measured by FRAP 

with a bleach radius of 1.3 µm in comparison for those obtained by spatial FCCS for 1.3 

µm separation distance (Table 9). The results of both methods are in excellent agreement 

when compared on the appropriate length scale. The time-dependence of the apparent 

diffusion coefficient impacts on the kinetics of diffusion-limited reactions in living cells 

(Gauthier and Bechhoefer, 2009) and on the efficiency of target search processes (Guigas 

and Weiss, 2008). Further, the stability of pattern formation processes is linked to 

anomalous diffusion (Weiss, 2003). 

The scale range of the approach described here can be further extended in a 

straightforward manner. Shorter time and length scales down to 30 nm could be reached by 

using FCS in combination with stimulated emission depletion microscopy (STED) 

(Mueller et al., 2013). For reaching larger scales one would have to improve the detection 

sensitivity of the line-confocal optical system and/or use brighter and more photostable 

fluorescent dyes. Furthermore, the experimental and theoretical methodology developed 

here for 1D-FCS with a line-confocal microscope setup can be easily transferred to 2D-

FCS measurements with SPIM instruments. One caveat could arise from the higher total 

laser light illumination exposure of molecules in the complete plane 2D-FCS as compared 

to that of 1D-FCS setup. This might result in higher photobleaching rates of fluorophores, 

although line-confocal setups illuminate regions in axial direction that are not detected. 

The intensity decreases rapidly in axial direction due to the diverging laser beam so that 

the laser intensity is distributed over larger areas with increasing distance from the focal 

plane. Therefore, the maximum total measurement time of 2D-FCS measurements will 

strongly depend on photobleaching of the limited amount of fluorophores present in the 

cell that is studied. 

Due to simultaneous illumination of extended volumes in the sample with laser light, a 

notable fraction of fluorescent proteins is photobleached also in the 1D-FCS setup in 

mostly out-of-focus regions during an experiment. To reduce the amount of 

photobleaching, the excitation volume has to be confined. This can be achieved by two-

photon excitation of fluorescent dyes with infrared light of pulsed lasers (Bhawalkar et al., 

1996; Denk et al., 1990; Helmchen and Denk, 2005). Two-photon excitation was already 

applied for FCS measurements with conventional confocal microscopes (Berland et al., 
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1995; Schwille et al., 1997). The intensity of the pulsed excitation laser light is high 

enough for nonlinear excitation processes only near the focal plane, which limits the 

extension of the microscope’s MDE volume and thereby reduces the amount of bleached 

fluorophores. Besides, detection crosstalk due to overlapping neighboring detection 

volumes could be reduced. Multi-photon excitation by longer-wavelength laser light could 

also be valuable for 2D-FCS measurements with SPIM setups. 

V.3 Intracellular structure from a diffusing protein’s point of view 

The measured time dependence of GFP monomers’ and multimers’ apparent diffusion 

coefficients in the crowded environment of living cells (Figure 38) were consistent with 

that obtained from PFG-NMR experiments in porous media, e.g. for diffusion of water 

molecules in biological tissue (Latour et al., 1994) and in rocks (Fordham et al., 1994). 

Therefore, a simple model for diffusion in such an environment was fitted to the 

experimental data (Loskutov and Sevriugin, 2013). In this manner the microscopic 

diffusion coefficient     

€ 

D0 for diffusion in the cellular fluid without obstacles, the mean 

diffusive displacement 

€ 

λ  between two consecutive collisions with obstacles, and the 

macroscopic diffusion coefficient   

€ 

D∞ were determined. From these parameters, the 

specific surface   

€ 

S V  (surface-to-volume ratio) that is sensed by diffusing particles and the 

retardation   

€ 

R  of the apparent diffusion coefficient from its microscopic value to the 

macroscopic limit can be calculated. The retardation is a measure for the connectivity of 

the space that is accessible for diffusing particles or, in other words, the amount of long 

detours that particles have to diffuse around impermeable cellular obstacles. A small R 

value indicates a high permeability of the medium and a high connectivity of the accessible 

open space. The increase of R for larger effective hydrodynamic radii observed here (Table 

5) is consistent with mobility measurement results in the literature (Busch et al., 2000; 

Lavalette et al., 1999). 

The retardation measured here was further analyzed as a function of molecule size with an 

empirical model for diffusion of tracers in random fiber networks (Phillips, 2000). With 

this approach, the volume fraction that is occupied by obstacles and the fiber radius could 

be estimated for the cytoplasm and the nucleus. The experiments revealed that cytoskeletal 

filaments have only a moderate impact on the time-dependence of the apparent diffusion 

coefficients in the cytoplasm. Thus, other obstacles like membrane stacks or vesicles also 
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seem to hinder diffusing particles. The volume fraction of   

€ 

Φ0 = 18 ± 5( )%  and fiber 

diameter of     

€ 

rfiber = 12 ± 4( ) nm in the nucleus were in very good agreement with the width 

of 11 nm for nucleosome chains (Fussner et al., 2011; Maeshima et al., 2010) and the 

chromatin volume fraction of ~18 % (Fussner et al., 2011; Rippe, 2007). 

Thus, in the framework of porous media, the cellular interior consist of obstacles that build 

a sponge-like structure with various pore sizes and geometries as well as an embedding 

viscous fluid due to macromolecular crowding. Retrieving information about confining 

geometries from the time dependence of the apparent diffusion coefficient is a well-

established concept in the field of PFG-NMR spectroscopy (Sen, 2004). In contrast to the 

multi-scale spatial FCCS technique developed here, measurements of time-dependent 

diffusion coefficients in compartments of single are not feasible with PFG-NMR 

spectroscopy. 

The results of least squares fitting of Eq. 111 to the apparent diffusion coefficients     

€ 

Dapp t( )  

(Figure 38) of GFP1, GFP3 and GFP5 in the cytoplasm and nucleus of U2OS cells revealed 

that small particles sense a quite different environment than large particles since the 

characteristic length 

€ 

λ  of the structure, the retardation   

€ 

R  and the specific surface   

€ 

S V  

were dependent on the molecules’ size (Table 5). The increase of the characteristic length 

€ 

λ  with molecules’ effective hydrodynamic radius could be explained by a decreasing 

difference between the mobility of the tracers and the intracellular structure: Faster 

particles would be deflected from the bordering regions of dense domains, e.g. 

chromosome territories in the nucleus, more frequently than slower ones. Regions with 

moderate density are sensed as obstacles by small particles whereas they only enhance the 

macromolecular crowding effect for large particles. Furthermore, small particles can 

penetrate into smaller pores, which shift the mean pore size for their mobility to smaller 

length scales compared to that of large particles. The characteristic length scales measured 

here fit very well to the values reported for the interchromosomal space between 

chromosome territories in the nucleus (Cremer and Cremer, 2001). 

The   

€ 

S V  values increased as a function of the molecules’ effective hydrodynamic radii 

(Table 5). Small particles have access to dense regions that are impermeable for large 

particles. Thus, the total surface that is sensed by small particles is larger than that of large 

particles. The size-dependent accessibility of the intracellular structure could act as a 

molecular sieve. It allows for creating reaction volumes with different compositions of 
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interacting molecules. In the nucleus, denser regions, for example heterochromatic regions 

near the nuclear lamina and the interior of chromosome territories, exclude large particles 

so that preferentially smaller particles can interact in this environment (Cremer and 

Cremer, 2001). A schematic illustration for all structural parameters is depicted in Figure 

53. 

 

Figure 53: A model for the cellular structure as porous medium composed of randomly distributed obstacles. 

Smaller proteins have access to denser regions of the random obstacle network, and therefore have to take 

fewer detours around impermeable obstacles (i.e. their open space is more connected) that are measurable as 

lower retardation R. Further, small proteins sense more obstacle surface than larger ones (higher surface-to-

volume values S/V). The apparent viscosity ηapp of the cellular fluid is lower for smaller proteins than for 

larger ones, since smaller components of the cellular interior appear for them as immobile obstacles whereas 

the same components enhance the apparent viscosity for larger proteins. Accordingly, their mean diffusive 

displacement λ between two consecutive collisions with obstacles is smaller.  

The dynamic compartmentalization mechanism of chromatin unraveled here has important 

implications for the kinetics of enzymatic reactions, the target search process of proteins 

and the formation of chromatin states with different epigenetic modifications patterns and 

protein composition. In particular, permeation of small enzymes into distinct chromatin 

pores represents a simple but highly efficient mechanism to guide enzymatic reactions 

within compartments that are not partitioned by membranes. This mechanism might 

explain the differential enzymatic endowment in various parts of chromatin that serve 

distinct functions. Examples are the lamina-associated domains (Kind and van Steensel, 

2010), the perichromatin compartment (Cremer and Cremer, 2010) or pericentric 

heterochromatin (Grewal and Jia, 2007). In these nuclear domains crucial enzymatic 

activities like transcription or recombination function very differently (Agmon et al., 2013; 
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Feuerbach et al., 2002) although the same soluble enzymes like polymerases or chromatin 

modifiers can access them. Thus, size-dependent protein mobility and permeability of 

chromatin are important aspects for the establishment of spatial patterns. This could 

include the formation of epigenetic patterns that are generated by the local enrichment or 

depletion of differently-sized complexes with distinct enzymatic activity that range from 

100 kDa to several MDa in molecular weight as discussed recently for histone 

(de)methylases (Erdel et al., 2013).  

V.4 Perspectives and conclusions 

Cells can dynamically regulate the accessibility to different compartments by adapting the 

compaction state and the plasticity of their nanostructure (Görisch et al., 2005; Hihara et 

al., 2012). As shown above, the multi-scale spatial FCCS approach developed here allows 

for noninvasively measuring the interplay between intracellular structure and diffusive 

protein transport. It can be used to investigate numerous other biological systems in 

addition to those described here. For example, a change from open and plastic chromatin 

structure to a more compact state was observed for the differentiation of embryonic stem 

cells, which is accompanied by a reduction of global histone acetylation (Gaspar-Maia et 

al., 2011). The more open chromatin state in embryonic stem cells was linked to an altered 

gene expression profile that is characterized by low-level expression of a large number of 

genes, which is referred to as “promiscuous transcription”, which is correlated with an 

increased mobility and accessibility of protein factors. Further, it was found here that 

treatment of U2OS cells with the DNA-intercalating drug chloroquine used for treatment 

of malaria significantly changes diffusive protein transport and accessibility within the 

nucleus. Likewise, other DNA intercalators like doxorubicin that is used for anticancer 

chemotherapies are expected to exert similar effects on chromatin structure. Thus, the 

altered protein mobility could be relevant to the clinical activities of these drugs in addition 

to their established mode of action. It is suggested that the multi-scale spatial FCCS 

methodology developed here can be a valuable tool for drug researchers to measure the 

impact of the intracellular structure’s compaction and plasticity state on the activity of 

different drugs. 

Furthermore, it is noted that the integration of the second detection channel for red 

fluorescent light into the optical setup of the line-confocal microscope opens up another 

large field of application. It can be used for imaging the (co)localization of green and red 
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fluorescently labeled molecules in living cells as demonstrated in a proof-of-concept 

experiment for STAT1 and STAT2 proteins (Figure 50). Further, the dimerization of 

STAT1 and STAT2 proteins in the cytoplasm of human U2OS cells could be evaluated by 

dual-color FCCS. However, the full potential of 1D-FCS measurements with the line-

confocal microscope was not taken advantage of since AC and CC curves were averaged 

due to the limited brightness of the fluorescent protein LSSmKate2. With an approach 

improved in this respect, spatially resolved protein interaction mapping, i.e. mapping of 

dissociation equilibrium constants will be feasible, which is highly relevant because the 

local molecular crowding impacts on the formation of molecular complexes (Ellis, 2001; 

Minton, 2001; Rivas et al., 2001; Zimmerman and Minton, 1993). Spatially resolved 

interaction mapping with dual-color 1D-FCS will thus be applicable to measure 

dimerization of STAT proteins in the nucleus of interferon-stimulated cells. 

Another future extension of the present work would be to combine spatial FCCS analysis 

and dual-color FCCS analysis of fluorescence signals in a single experiment. Dual-color 

spatial FCCS allows for simultaneous measurement of the mobility of proteins and their 

complexes on multiple time and length scales. Thus, differences in the sensed cellular 

environment could be detected. Additionally, the kinetic dissociation rates of molecular 

complexes could be determined in living cells by measuring the lifetimes of these 

complexes. This approach could be used to dissect anomalous diffusion in relation to a so-

called strange kinetics of reactions in cells (Shlesinger et al., 1993). Thus, one or two-color 

spatial FCCS yields experimental data for the scale dependence of diffusive molecule 

transport as well as protein association properties. It provides a novel approach to dissect 

inherent protein mobility, spatial confinements due to the intracellular environment and 

binding interactions with other proteins or nucleic acids, which is not possible with current 

fluorescence microscopy based approach. Thus, essential information is obtained for 

deriving quantitative descriptions of cellular functions in systems biology approaches.  
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VI Materials and Methods 

Fluorescence microscopy and spectroscopy 

Imaging and 1D-FCS measurements were performed on a further developed optical setup 

of a custom-made line-confocal microscope that had been introduced previously as Spatial 

and Temporal Fluctuation Microscope (STFM) (Heuvelman et al., 2009). The STFM 

continuously illuminates a line-shaped volume in the sample with coherent light at 488 nm 

from a continuous wave solid-state laser with 200 mW output power (Coherent). Emitted 

fluorescence signals from multiple detection volumes equally distributed along a line are 

recorded on pixels of a high quantum efficiency electron multiplying charge-coupled 

device (EM-CCD) camera  (iXon Ultra DU-897, Andor Technology). Additionally, an 

acousto-optical tunable filter (AOTFnC-400.650, AA Opto-Electronic) was integrated into 

the microscopy system to minimize unintentional bleaching of fluorescence dyes by fine-

adjustment of the illuminating laser beam power. Fluorescence signals of more than 

hundred detection volumes equally distributed on a line in the sample were detected on an 

EM-CCD pixel array detector and recorded on a personal computer via USB connection. 

For imaging, the illumination laser beam was deflected by a galvanometric mirror (GSI 

Lumonics) to scan a two-dimensional region of interest with the illumination line in one 

dimension. Integration of a commercially available optical component (OptoSplit II LS 

Image Splitter, Cairn Research) allowed for simultaneous imaging of two fluorescence 

emission wavelengths on the same EM-CCD camera’s detector chip. The optical pathway 

in the OptoSplit II component was inspired by (Kinosita et al., 1991). It was optimized for 

imaging and 1D-FCS data acquisition of GFP and RFP by including a dichroic mirror that 

splits the green and red fluorescence light at 560 nm (HC – Beamsplitter BS 560 imaging, 

BFi OPTiLAS), a bandpass filter with a wavelength range between 500 nm and 550 nm 

(Bandpass ET 525/50m, BFi OPTiLAS) and a long pass filter (Edge Basic Long Pass Filter 

561 LP, BFi OPTiLAS). 

 

STFM Data Acquisition Software (STFM DAQS) 

Fluorescence images and data for 1D-FCS measurements were acquired by using software 

with graphical user interface (GUI) that was developed in this thesis. It allows for setting 

of camera acquisition parameters and the laser illumination intensity as well as controlling 

of the galvanometric mirror for imaging. Data are read from the EM-CCD camera and 
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either displayed in the profile panel for 1D-FCS measurements or in the image panel for 

imaging of the GUI. Further, users can toggle between the red and green detection channel 

of the line-confocal microscope. 

The software was written in C# with Microscoft Visual Studio 2013 by using the NI 

Measurement Studio suite (National Instruments). A data input and output PCI board (NI 

PCI-6251, National Instruments) was used to control the galvanometric mirror and the 

AOTF. The EM-CCD camera was controlled with the Andor Software Development Kit 

(Andor Technology). The GUI of the STFM DAQS is shown in Figure 54. 

 

 

Figure 54: Graphical user interface (GUI) of the STFM Data Acquisition Software (STFM DAQS). 

Acquired fluorescence images are displayed in the imaging panel. Fluorescence profiles at the position of the 

green line cursor of the imaging panel are shown in the 1D-FCS panel. Users can toggle in both display 

panels between the green and the red detection channel of the line-confocal microscope. Further, the scaling 

is adaptable in both panels. Additionally, the imaging and 1D-FCS measurement parameters can be changed 

in the imaging and 1D-FCS settings control panels, respectively. The laser intensity can be controlled in the 

illumination settings panel.  
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Data processing and spatiotemporal analysis 

Acquired fluorescence signals of 1D-FCS measurements were trend-corrected according to 

a Fourier transformation-based approach developed in this thesis. For this purpose, the 

acquired signals were transformed with a fast Fourier transformation (FFT) routine and the 

resulting spectra were fitted by a least squares fitting routine of the GNU Scientific Library 

(GSL) (Galassi et al., 2003) on a computer cluster. 

Trend-corrected fluorescence signals were analyzed by calculating the auto-correlation 

curves of each acquired signal and cross-correlation curves of each combination of signals 

from different detection volumes for a given separation distance as described previously 

(Heuvelman et al., 2009). Due to the large number of correlations, these were calculated by 

parallelized jobs on a computer cluster. 

Further, the model function that describes the acquired correlation curves (Eq. 92) required 

numerical solution of a double integral, which was accomplished with a multidimensional 

numerical integration algorithm extension to the GNU Scientific Library (GSL) (Galassi et 

al., 2003). Fitting of the non-linear model function to the calculated correlation curves was 

done with a least-squares minimization algorithm of the GSL. Correlation curves were 

fitted with self-written software in C++ on a compute cluster. Results of the correlation 

analysis and least squares fitting routine were further processed and plotted with 

MATLAB (The MathWorks). 

 

Sample preparation 

Measurements of the line-confocal microscopes MDE were carried out by acquiring image 

stacks of 100-nm-diameter fluorescent beads with an excitation maximum at 505 nm and 

an emission maximum at 515 nm (yellow-green carboxylate-modified FluoSpheres, 

Molecular Probes). FluoSpheres were fixed on Poly-L-lysine (Sigma-Aldrich) coated 

cover slides. Additionally, 13-nm-diameter fluorescent quantum dots with an emission 

maximum at 525 nm (yellow-green streptavidin conjugated QDots, Invitrogen) were used 

as fluctuating point light sources. QDots were immobilized on biotinylated bovine serum 

albumin (BSA) coated LabTek chambered coverglasses (Nunc) by incubating a 0.3 nM 

QDot solution for 1 hour. Unbound QDots were removed by rinsing the slides with 1× 

PBS buffer and water. 

FCS measurements were conducted in LabTek chambers. The in vitro measurements were 

conducted with a solution of QDots in water or purified GFP diluted in 1x PBS buffer at 
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concentrations of 20 nM or 100 nM, respectively. For studies in living cells, GFP multimer 

plasmids (Pack et al., 2006) were transfected into human U2OS cells with Effectene 

(Qiagen). Cells were cultured in DMEM supplemented with penicillin-streptomycin and 

10% fetal bovine serum at 37 °C and 5% CO2. For perturbation experiments, U2OS cells 

were incubated with either 8 µM Cytochalasin D for 20 minutes, 10 µM Nocodazole for 30 

minutes, 2 µM Withaferin A for 3 hours, 400 nM TSA for 18 hours, or Chloroquine for 12 

hours. The perturbations were validated based on the distribution of overexpressed β-

Actin-mRFP, mCherry-MAP4 or GFP-Vimentin that was observed by confocal 

fluorescence imaging. 

For constructing the STAT2-GFP plasmid, the coding sequence of human STAT2 was 

cloned into a pEGFP-N1 backbone (Clontech) via KpnI and AgeI. For constructing the 

CD-GFP plasmid, the chromodomain of human HP1β (aa 1- 69) was cloned into a pEGFP-

N1 backbone (Clontech) via BglII and HindIII. 
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