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Zusammenfassung

Die Physik der sogenannten Vortex-Strahlen ist ein neues, sich schnell entwickelndes For-
schungsfeld, das vielfältige Themen umfasst, wie Optik, Quanteninformation und Materialwis-
senschaften. Die Vortex-Strahlen besitzen einen wohldefinierten Bahndrehimpuls entlang ihrer
Propagationsrichtung, der zu helixförmigen Wellenfronten führt. Solche getwistete Strahlen
von Licht und Elektronen wurden Anfang der 1990er beziehungsweise Ende der 2000er the-
oretisch vorhergesagt und im Experiment beobachtet. In dieser Doktorarbeit legen wir den
Schwerpunkt auf einen speziellen Typ von Vortex-Strahlen, Bessel-Strahlen genannt. Wir
untersuchen getwistete Materiewellen, wie Elektronen und Atome, die in einem Laserfeld
propagieren. Wir entwickeln eine exakte analytische Beschreibung dieser Teilchenzustände,
indem wir die Dirac-Gleichung durch Verallgemeinerung der kürzlich beschriebenen feldfreien
Elektronen-Vortex-Strahlen lösen, mit dem Ziel die Wechselwirkung zwischen Vortex-Strahlen
und dem Laserfeld zu untersuchen. Hierzu überlagern wir eine Vielzahl von Dirac-Wolkow-
Wellenfunktionen mit wohldefinierten Amplituden, die zu einer mono-energetischen Verteilung
der Elektronen in den Vortex-Strahlen mit einem nichtverschwindenden Bahndrehimpuls führt.
Außerdem unternehmen wir eine detailierte Untersuchung eines anderen Typs von Materie-
wellen: Bessel-Strahlen aus Zwei-Niveau-Atome, die mit dem Laser-Licht resonant wechsel-
wirken. Insgesamt demonstrieren wir, dass die Profile von Laser-beeinflussten Elektronen- und
Atom-Vortex-Strahlen ein nicht triviales Verhalten, vom Typ einer quadrierten Besselfunktion,
besitzen. Wir nehmen eine Momentaufnahme dieser Strahlprofile und zeigen, dass wir in der
Lage sind, ihre Intensitätverteilung durch die Einstellung des Laserfeldes zu kontrollieren und
zu manipulieren.

Abstract

Physics of vortex beams is a new, fast developing research field that covers diverse topics,
such as optics, quantum information, materials science. Vortex beams are known to carry
well-defined orbital angular momentum along their propagation direction that gives rise to
their helical wavefronts. Such twisted beams of light and electrons have been discovered both
theoretically and experimentally in the beginning of 1990s and in the end of 2000s, respectively.
In this thesis, we put the emphasis on a special type of vortex beams, called Bessel beams,
and present a theoretical study for twisted matter waves, such as electrons and atoms, that are
driven by a laser. First, in order to examine the interaction of relativistic electron vortex beams
(EVBs) with a laser light we obtain exact analytical solutions for Dirac equation by generalizing
recently constructed (field-)free EVBs. To do so, we superimpose a multitude of Dirac-Volkov
wave functions with well-defined amplitudes that correspond to the monoenergetic distribution
of electrons in vortex beams with non-zero orbital angular momentum. Second, we extend our
study of EVBs to another type of matter waves and produce Bessel beams of two-level atoms
that resonantly interact with a laser light. Moreover, we demonstrate that the profiles of both
the laser-driven electron and atomic vortex beams obtain a non-trivial, Bessel-squared-type
behavior. We take a snapshot of these profiles and show that we are able to control and
manipulate the intensity distribution of beams by tuning the laser field.
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Introduction

Vortex beams

In optics, it is well known that circularly polarized light beams carry a non-zero spin angular
momentum (SAM) of magnitude ±~, in units of the reduced Planck constant ~ = h/(2π).
Here h is the famous Planck constant and the signs “±” represent the left- and right-circular
polarizations, respectively. This spin degree of freedom for photons has been demonstrated
by Beth already in 1930s [1, 2]. Surprisingly, only about 60 years later Allen and coworkers
discovered that the linearly polarized light may also carry a quantized angular momentum ℓ~,
defined along the propagation direction of the beam [3]. The quantity ℓ~ is a fundamentally
new degree of freedom for photons and is often called (longitudinal) orbital angular momen-
tum (OAM) or topological charge of light. The existence of the non-zero OAM yields to helical
wavefronts of light. Such a wavefront rotates around the propagation axis while the Poynt-
ing vector draws a corkscrew and results in a vortex-type distribution of the field intensity.
These optical vortex beams have a phase singularity (called also a topological defect or a wave
dislocation) at their center, where the beam intensity is zero and the phase is undetermined.
Generally it is considered, moreover, that ℓ takes integer values. However, the value of ℓ is not
restricted to integer numbers only: the vortex structure of the beam is still present also for
fractional OAM [4].

Since the seminal article [3] there was a growing interest in the angular momentum of
light and its connection to the beam trajectory [5]. Quanta of light prepared in states with
well-defined OAM are often called twisted photons [5–7]. Nowadays, such light beams have
found a range of applications in optical manipulation [8–10], quantum information [11] and
atomic physics [12–14], they have also led to recognizable advances in optical tweezers [15,16].
Moreover, twisted photons are employed to transfer the OAM to a system of atoms [17–19]
and to reveal the influence of OAM on beam shifts [20–23].

In the beginning of 1920s, Uhlenbeck and Goudsmit introduced the concept that electrons
possess a spin angular momentum of magnitude ±~/2, a fundamental degree of freedom for
quantum particles with no classical analogue [24, 25]. Since then properties of the electron
spin and its influence upon different elementary and complex processes have been studied
extensively, both in theory [26,27] and in experiments [28,29]. For example, the electron spin
causes the Stern-Gerlach effect for electrons bound to an atom [30], is utilized to measure the
dynamics of nuclear spins that weakly couple to electrons [31, 32]. One can also analyze the
spin dynamics of electrons via the electron’s self-interaction with its own radiation field [33]
or via the Kapitza-Dirac scattering from a standing wave of a laser [34].

In contrast to the discovery of the electron spin, the story of electron vortex beams (EVBs)
starts very recently and stems from the original work by Bliokh and coworkers [35]. In anal-
ogy with optical vortex beams, EVBs also carry a well-defined OAM along their propagation
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INTRODUCTION

Figure 1: Generation of EVBs via a spiral phase plate, as depicted in [36]. (a) Wavefronts of
plane-wave electrons, normal to their axis of propagation. (b) Spiral phase plate, thickness of
which remains constant along the radial direction, while increases along the azimuthal direction
(the curved arrow). (c) Wavefronts of EVB with a characteristic spiral-type shape.

Figure 2: Production of EVBs via a computer gener-
ated “fork”-like hologram, as depicted in Ref. [40]. Spa-
tially coherent plane-wave electrons (a) are incident on
the nanofabricated “fork”-like hologram (b) where they
diffract into multiple EVBs (c), that are imaged (d) using
a so-called charge-coupled device. The circles show the
measured electron intensity distributions corresponding
to different ℓ. The depiction of plane-wave and twisted
electrons simulate their wavefronts and not the trajecto-
ries.

direction. In Ref. [35], authors have
shown that the Schrödinger equa-
tion can have a vortex-type solution
describing the motion of a twisted
electron in free space. This solu-
tion implies, moreover, that the cur-
rent of the EVB coils around the
electron’s main (linear) momentum,
a behavior, which is quite similar
to the propagation of optical vortex
beams with helical wavefronts.

EVBs have been experimentally
generated – for the first time – in
2010, three years after their theo-
retical proposal, although the op-
tical beams with phase singulari-
ties have been produced already in
1990s. Due to the short wavelength
of electrons, nanoscale diffraction
gratings were needed in order to cre-
ate twisted electron beams with a
subnanometer spot size. This tech-
nical challenge has been solved by
Uchida and Tonomura [36] when
they have nanofabricated a graphite
thin film with continuously chang-
ing thickness. Such spiral phase
plates were originally used in op-
tics [37, 38] in order to generate
laser beams with helical wavefronts.
For 300 keV electrons in transmis-
sion electron microscope, the spiral
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INTRODUCTION

phase plate has a step height of about 84 nm, as used in [36]. When the plane-wave passes
through such a plate (that has some “Y ”-like pattern) a helical wavefront character is im-
printed on the plane-wave, where the phase singularity at the core of the beam is generated
[cf. Fig. 1]. Different magnitudes of OAM ℓ~ could be obtained by changing the height or the
material of the spiral phase plate. However, the experiment [36] was limited to a low mag-
nitude of ℓ because of the absorption of electrons in the plate that otherwise would become
too thick. This disadvantage has been soon eliminated in subsequent works [39, 40], where
a new approach with the so-called computer generated hologram has been applied, again, by
borrowing the analogous idea from optics [41,42]. The advantage of this technique over spiral
phase plates is that the diffracted beam automatically possesses integer ℓ. In order to create
computer generated holograms one has to define (i) the target or the outcome, which is the
vortex beam, and (ii) the incoming plane wave vector [cf., e.g., [39]]. These target and reference
waves are further employed in an inverse interference problem to compute a virtual hologram
that has a “fork”-like shape. When the hologram is ready it is then transformed into a binary
mask to create EVBs. Such masks can be easily produced from a thin platinum foil (with a
thickness of ∼ 100 nm) and provide a complete control over the beam characteristics, such
as the phase and the amplitude. When the plane-wave electron is incident on the “fork”-like
hologram, the diffracted beams propagate at discrete angles relative to each other and form
even number sidebands with OAM ±ℓ~ and the central band ℓ~ = 0 [cf. Fig. 2]. In order to
generate isolated EVBs one has to use holograms with sufficiently small grating periods, e.g.,
50÷100 nm. By decreasing the size of the period one can produce EVBs with various amounts
of topological charge enabling to demonstrate beams with OAM up to 100~ [40]. In addition,
the technique with computer generated holograms is nowadays widely used to enhance the
resolution in studying magnetic and biological materials (twisted electron microscopy) [43], to
further explore the Larmor and Gouy rotations of an EVB in a magnetic field [44]

In above mentioned experiments, (i) the electron beams were well-collimated such that
their propagation was described within the so-called paraxial regime, and moreover, (ii) the
spin degree of freedom – the SAM – of electrons did not manifest itself in the beam profile.
In order to (theoretically) take into account the electron spin, however, one has to deal with
the Dirac equation that describes the relativistic motion of electrons. It was again Bliokh
et al. [45], who constructed vortex-type solutions – this time – for the Dirac equation to
demonstrate that, apart from the SAM, the relativistic twisted electron carries also a non-zero
OAM. The authors have shown, moreover, that for electrons with relatively high energies of
about 800 keV and for the non-collimated, i.e. non-paraxial, regime of the beam propagation,
the presence of both SAM and OAM gives rise to an intrinsic spin-orbit interaction (SOI) in
the EVB. This SOI leads to a spin-dependent distribution of the EVB intensity, an effect that
should be experimentally observable [46,47]. The idea of the intrinsic SOI dates back into 1990s
when the investigations by Allen et al. eventually led to the discovery of the coupling that
may occur between the angular momentum (either spin or orbital) and the linear momentum
of a beam of light [cf., e.g., [48]]. The SOI can take various forms in different systems, but
the unifying feature in all cases is the coupling between the spin and the momentum of the
particle [48]. Nowadays, the SOI especially for optical vortex beams – called also “SAM-
to-OAM conversion” – is quite thoroughly studied for various types of beams, such as the
so-called Laguerre-Gauss [49] and Bessel beams [50]. These analytical functions and their
superpositions are presently known to adequately describe the theory of vortex beams, both
optical and matter.
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INTRODUCTION

Throughout this thesis, we put the emphasis only on Bessel beams in order to theoretically
discuss twisted electrons and atoms that interact with a (non-twisted) light beam. A Bessel
beam of any particle represents a special type of vortex beam that carries a well-defined OAM.
The wave function of Bessel beams is mathematically described by means of the Bessel function
of the first kind which is a solution to the so-called full Helmholtz equation. This is in contrast
to the Laguerre-Gauss modes, which are a solution only to the paraxial form of the Helmholtz
equation [cf., e.g., Ref. [51]]. Thus, the advantage of using of Bessel beams is that they ab
initio involve both the paraxial and non-paraxial regimes of the beam propagation. The profile
(which represents the transverse structure) of Bessel beams is independent of the longitudinal
coordinate that is aligned along the beam propagation direction. This means that the beam do
not spread out while it propagates forward, as first noted by Durnin [52]. Due to this feature,
Bessel beams are also called non-diffracting or diffraction-free. The profile of the ideal Bessel
beam can contain an infinite number of concentric circles, as seen below, meaning that an
infinite area would carry an infinite power. However, Durnin and co-workers showed that one
could experimentally make an approximation to a Bessel beam (a quasi-Bessel beam) which
possesses the properties of the mathematical entity over a finite distance [53]. In this first
experiment, authors could create a (zeroth order) Bessel beam of light that does not spread
over the distance of ∼ 40 cm. We refer the reader to Refs. [54–56] and [57] for further insight
about how to create optical Bessel beams of higher order ℓ and with a more complex structure,
respectively. Recently, moreover, non-diffracting Bessel beams of electrons have been also
generated that propagate for 60 cm without a measurable spread [58]. Finally, Bessel beams
have another intriguing property: they can be partially obstructed at one point, due to some
external distortions, but will eventually re-form at a further point of the beam axis. This effect
is called self-healing studied both experimentally [59–61] and theoretically [62,63].

Scalar Bessel beams in free space: a theoretical construct

Before to start with our theory, we introduce here a recipe how to theoretically construct
Bessel beams by employing the superposition principle of linear, both relativistic and non-
relativistic quantum theories. We illustrate this construction for free propagating scalar waves
by considering a particle without spin. The existence of the spin would lead to the so-called
vector Bessel beams, as we will study quite in detail in the first part of this thesis.

A Bessel beam of any quantum particle is defined as a twisted state with its well defined
energy E0, longitudinal momentum p||0, absolute value of the transverse momentum p⊥0 as
well as the quantized projection ℓ~ of the OAM on the propagation axis [cf., e.g., [45]]. Vortex
beams exhibit a particular phase structure that is incorporated by the phase factor eiℓϕ in the
“spectrum” (or the momentum distribution) of the Bessel beam

ψ̃ℓ (p) = δ (p⊥ − p⊥0)
eiℓϕ

2πiℓp⊥0
, (1)

where ϕ ∈ [0, 2π) is the azimuthal angle of p⊥0, ℓ is an integer, and moreover, the denom-
inator is present for mathematical convenience. Equation (1) means that the particle has a
monoenergetic distribution of momentum over some cone with a slant length

p0 =
√
p||02 + p2⊥0 = const (2)

4
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and a fixed polar (opening) angle θ0 with respect to the beam propagation direction which we
choose to be the z-axis [cf. Fig. 3 (a)]. The opening angle of this cone is defined as

p||0 = p0 cos θ0 , p⊥0 = p0 sin θ0 . (3)

It is sufficient to write only one δ-function in Eq. (1) to indicate the conservation of energy
and longitudinal and transverse components of the linear momentum. Indeed, expressions (2)-
(3) and the δ-function δ (p⊥ − p⊥0) result in the conservation of longitudinal momentum, i.e.
δ
(
p|| − p||0

)
. If we also take into account the known, non-relativistic

p20 = 2mE0 (4)

or relativistic

c2p20 = E2
0 +m2c4 (5)

energy-momentum relations, the necessity is eliminated to include another δ (E − E0) in the
Bessel spectrum (1). In Eqs. (4)-(5), moreover, m is the mass of the particle and c is the speed
of light.

Owing to the conical symmetry of the momentum distribution, we shall use cylindrical
coordinates p = (p⊥, ϕ, p||) = (p sin θ, ϕ, p cos θ) in momentum space and construct Bessel
beams

ψℓ (r, t) =

∫
ψ̃ℓ (p) ψp (r, t) p⊥dp⊥dϕ (6)

of either non-relativistic or relativistic particles as a superposition of their orthogonal wave
functions ψp over the distribution (1). For these particles, the functions ψp correspondingly
represent solutions of linear differential equations that are usually referred as the Schrödinger
and the Dirac equations. For example, in order to examine the free propagation of scalar
particles, we have to deal with the free-wave equation(

∇2 − 1

v2
∂2

∂t2

)
ψp (r, t) = 0 , (7)

where ∇2 ≡ ∆ is the Laplace differential operator that is expressed via ∂2/∂x2 + ∂2/∂y2 +
∂2/∂z2 in Cartesian coordinates (x, y, z). The constant v is usually associated with the velocity
of propagation of the wave in free space. Furthermore, the plane-wave solution of the free-wave
equation is given by

ψp (r, t) = ψPW (r, t) =
√
N e

i
~ (p·r−Et) , (8)

where N is some normalization constant. We can employ this form in order to construct Bessel-
type solutions of Eq. (7) by using cylindrical coordinates also in real space, r = (r, φ, z), due to
the cylindrical symmetry of the beam propagation. The integral (6) can be readily calculated
if we re-write the scalar product in the phase of the plane-wave, Eq. (8), as

p · r = p⊥r cos (ϕ− φ) + p||z (9)

and exploit the integral representation of the Bessel function, Ref. [64],∫ 2π

0
dϕ eiℓϕ eiξ cos(ϕ−φ) = 2πiℓeiℓφJℓ (ξ) . (10)

5
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Direct integration simply leads to the wave function of the scalar Bessel beam

ψfree
ℓ (r, t) =

√
N e

i
~ (p||0z−E0t) eiℓφJℓ (ξ) , (11)

where ξ = p⊥0r/~ is the dimensionless transverse coordinate which characterizes the width of
the beam. The wave function (11) is orthogonal. The normalization constant can be found
if we integrate the squared modulus |ψfree

ℓ |2, for instance, over a large, but finite cylindrical
volume (see the Appendix of Ref. [65]). For our further analyzes, however, the normalization
is not of a crucial interest. Thence, we will drop the pre-factor N and evaluate all forthcoming
figures in arbitrary units. In addition, it is worth to mention that Eq. (11) can be derived also
from the free-wave equation (7) if we solve it in cylindrical coordinates, by reducing to the full
Helmholtz equation [51].

Equation (11) describes the main properties of scalar Bessel beams of (field-)free particles.
The wave function ψℓ (r, t) represents a delocalized beam that propagates freely along the
z-direction, eip||0z/~, and does not spread out. Indeed, we can easily demonstrate that the
distribution of the beam probability density has a simple, Bessel-squared-shape in the radial
dimension

ρfree
ℓ (ξ) ≡ |ψfree

ℓ (r, t)|2 = NJ2
ℓ (ξ) . (12)

This z-independent form exhibits the diffraction-free propagation of ideal Bessel beams. The
transverse distribution of the probability density, that represents concentric circles, remains
invariant under the transformation ℓ→ −ℓ, i.e.

ρfree
ℓ = ρfree

−ℓ , (13)

as also illustrated in Figs. 3 (b)-(c). Moreover, the probability density vanishes at the beam
center (ξ = 0) for all non-zero values of the longitudinal OAM, since Jℓ (0) = 0 for ℓ ̸= 0. This
reflects the vortex nature of the Bessel beam: zero intensity ρfree

ℓ = 0 and undetermined phase
ℓφ at ξ = 0.

The vortex phase factor eiℓφ ensures that the scalar Bessel beam (11) is an eigenstate of
the z-component of canonical OAM operator L̂z that has the form

L̂z = (r × p̂)z = −i~ ∂

∂φ
(14)

in the coordinate representation. Here “×” means vector product and

p̂ = −i~∇ = −i~
(
ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

)
(15)

is the linear momentum operator, where (ex , ey , ez) are the unit vectors in the Cartesian
coordinate system. One can readily check that the corresponding eigenvalue of the operator
L̂z is the longitudinal OAM ℓ~, i.e.

L̂zψ
free
ℓ = ℓ~ψfree

ℓ . (16)

This reflects the existence of the well-defined OAM along the propagation direction of the beam.
As we introduced before, being a fundamentally new degree of freedom for free particles, the
OAM ℓ~ of Bessel beams can nowadays be observed in experiments especially with photons [54]
and, very recently, with electrons as well [58].
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Figure 3: Basic characteristics of Bessel beams. (a) Cone of monoenergetic distribution of the
linear momentum, z-axis is chosen along the beam propagation. (b) Distribution of probability
density ρfree

ℓ (in arbitrary units) of a free propagating scalar Bessel beam as a function of
the dimensionless transverse coordinate ξ. Red (blue) curves correspond to the particle’s
longitudinal OAM 2~ and −2~ (3~ and −3~). (c) Snapshots of non-diffracting beam profile
for different values of OAM, shown by the variation of colors from black to white within the
“sunset” scale. Black and white correspond to the minimum and maximum values of the
probability density. (d) Distribution of the azimuthal current j(φ)free

ℓ (in arbitrary units) of
the field-free scalar Bessel beam as a function of ξ. Solid (dashed) lines correspond to the
positive (negative) values of the OAM. (e) Streamlines and vector-plots show the direction
of the transverse current of a scalar particle, jtr, free

ℓ (x , y , t), evaluated for ℓ = ±2 (e1-2) and
ℓ = ±3 (e3-4). The thickness of red vectors shows the strength of the current, the thickest
vectors indicate the circles where the electronic distribution has a maximum. In Figs. (c) and
(e), moreover, the beam propagates toward the reader.
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In order to introduce another important feature – the twisting motion – of vortex beams,
we further construct the current of the scalar Bessel beam defined as [66]

jfree
ℓ = ℜ

[
(ψfree

ℓ )
∗ ~
im

∇ψfree
ℓ

]
,

where “asterisk” means complex conjugate. Since the wave function (11) is expressed in cylin-
drical coordinates it is now convenient to represent the differential operator ∇ as

∇ = er
∂

∂r
+ eφ

1

r

∂

∂φ
+ ez

∂

∂z
= er

p⊥0

~
∂

∂ξ
+ eφ

p⊥0

~ξ
∂

∂φ
+ ez

∂

∂z
,

where (er , eφ , ez) are the unit vectors in the longitudinal, azimuthal and radial directions,
respectively. By employing this form we can easily calculate the current of the Bessel beam
and show that it acts as a sum of the longitudinal and transverse components

jfree
ℓ (ξ) = j long, free

ℓ (ξ) + jtr, free

ℓ (ξ) . (17)

The longitudinal (component of) the current

j long, free

ℓ (ξ) = v||0ρ
free
ℓ (ξ) ez (18)

is responsible for the free propagation of the beam along the direction of the linear momen-
tum p||0, chosen to be the z-axis. This is quite similar to the plane-wave-type motion, a
propagation with a velocity v||0 = p||0/m and an intensity distribution ρfree

ℓ . In contrast, the
transverse current

jtr, free

ℓ (ξ) =
p⊥0ℓ

mξ
ρfree
ℓ (ξ) eφ =

ℓ~
mr

ρfree
ℓ (r) eφ (19)

gives rise to a new type of motion of particles inside the wave packet in the radial direction.
To show this, we note that the transverse current has an azimuthal (or tangential) component

j(φ)free

ℓ (r) =
ℓ~
mr

ρfree
ℓ (r) , (20)

proportional both to the reduced Planck constant ~ and the topological charge ℓ, but no radial
component, i.e. j(r)freeℓ = 0. This means that the current coils around the “main” direction of
the linear momentum along the concentric circles, as shown in Figs. 3 (e1-4). Moreover, the
transverse (azimuthal) current changes its sign when ℓ→ −ℓ:

jtr, free

ℓ = −jtr, free

−ℓ , j(φ)free

ℓ = −j(φ)free

−ℓ . (21)

For positive (negative) ℓ such a rotating motion occurs counterclockwise (clockwise) with
respect to the reader. This implies that the particle “trajectories” inside the Bessel beam
are effectively a spiral in free space, identical to an analogue motion of scalar particles inside
the Laguerre-Gauss beams [35]. A similar behavior, moreover, is characteristic for the Poynting
vector of optical vortex beams that can be associated with a helical or twisted wavefront [3,5].

There is a relativistic quantum analogy that also explains the twisting motion of particles.
The existence of the transverse current can be regarded as a Zitterbewegung of particles due
to their OAM, a trembling motion of a force-free particle [35]. Such a motion vanishes in
the classical limit ~ → 0 [66] and/or when ℓ → 0. In addition, we can recover the plane-wave
behavior of particles from Eqs. (11), (12), (17)-(20) by setting limiting values for the polar angle
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θ0 → 0 (or the transverse momentum p⊥0 → 0) and the OAM ℓ~ → 0. We will end up with
Eq. (8), and expressions ρPW = N , jPW = j long,PW = ezp0N/m and jtr,PW = eφj

(φ)PW = 0, as
one would expect.

Both the existence of the non-zero OAM and the diffraction-free propagation – that may
occur, especially, in non-paraxial domain – make the Bessel beams attractive to researchers.
Recent discoveries of vortex beams of electrons motivated us to further analyze the properties
of electron Bessel beams and their behavior inside an electromagnetic field. Moreover, we go
a step forwards and explore also another type of twisted waves, such as the atomic Bessel
beams and their interaction with a laser light. The external electromagnetic field which we
apply throughout our study acts as an additional “apparatus” that enables us to drive and,
therefore, to manipulate matter vortex beams.

In this thesis, we describe Bessel beams of electrons and atoms that are driven by a laser
light. In the first part of the thesis, we study the interaction of relativistic twisted electrons
with a laser light. We pay a particular attention to the OAM-properties of such electrons and
demonstrate that the spin- and orbital-degrees of freedom give rise to the intrinsic SOI inside
the (vector) Bessel beam of electrons. Furthermore, we explore how this intrinsic SOI is
modified within a linearly polarized, few-cycle laser pulse. To do so, we generalize the field-
free wave functions of EVBs, as reported in Ref. [45], to the field-affected ones. Based on
these generalized solutions, we calculate the probability density and the current components of
Bessel beams of electrons in order to reveal the influence of the laser field on the electron beam
dynamics. Particularly, we demonstrate the shift of the center of the field-affected EVB with
respect to the center of the field-free EVB. We also show that this shift is accompanied with a
finite probability for finding an electron at the dark center of the initially field-free beam. In
the second part of the thesis, we extend the study of EVBs to another type of matter vortex
beams and create a theoretical construct for atomic Bessel beams that are resonantly driven
by a monochromatic plane-wave electromagnetic field. Such a resonant interaction allows us to
approximate the atom as a two-level system. We furthermore assume that the two-level atom
moves with a velocity far below the speed of light and determine its states in the field by taking
into account the propagation direction of both atomic and laser beams. For such laser-driven
two-level atoms, we construct atomic vortex beams, by using the plane-wave decomposition
of the Bessel-beam atomic state. We calculate the probability density of these beams and
show that it exhibits a non-trivial, Bessel-squared-type behavior. We demonstrate how one
can control the profile of laser-driven Bessel beams of atoms, by tuning the parameters of the
“atom + laser” system. To this end, we spatially and temporally characterize the profiles
of Bessel beams of hydrogen and selected neutral alkali-metal atoms. The developed theory
enables us to conclude that the two main characteristics of (laser-driven atomic) Bessel beams
are fulfilled: (i) they carry a non-zero longitudinal OAM and (ii) experience a non-diffracting
propagation.

9



Part I

Angular momentum representation
of laser-driven relativistic electrons
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In the first part of this thesis, we construct a relativistic theory of electron vortex beams that
interact with a plane-wave electromagnetic field. For this purpose, we divide the current part
into two chapters.

In chapter 1, we describe the dynamics of relativistic plane-wave electrons within an ex-
ternal field. To do so, in section 1.1, we start from the Dirac equation for free electrons and
introduce the free-electron wave function (subsection 1.1.1) along with the so-called Dirac al-
gebra (subsection 1.1.2), relevant for our further calculations. Next, in section 1.2, we “switch
on” the laser field and examine the behavior of electrons within this field. Particularly, we
introduce the Dirac equation for field-affected electrons (subsection 1.2.1) and obtain the well-
known Dirac-Volkov solutions (subsection 1.2.2).

In chapter 2, we derive the theory of laser-driven relativistic electron vortex beams that
carry both spin- and orbital-angular momenta defined with respect to the beam axis. In
section 2.1, we introduce relativistic electron Bessel beams in free space, by deriving their
wave functions (subsection 2.1.1) and calculating the 4-current (subsection 2.1.2). In section
2.2, we reveal the influence of laser light on the dynamics of such electron beams. To this end,
in subsection 2.2.1, we obtain the so-called Volkov-Bessel wave functions by making use of
the (Dirac-Volkov) plane-wave decomposition of the Bessel-beam electron state. Furthermore,
in subsection 2.2.2, we calculate the 4-current of the laser-driven EVB in order to spatially
and temporally characterize the profile of Bessel beams of electrons that couple to a few-cycle
femtosecond laser pulse. By constructing the components of the 4-current, moreover, we show
how the laser beam can be employed in order to control and manipulate the EVB.

We conclude each chapter with a summary.
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Chapter 1

Relativistic theory of the
electron-light interaction

God used beautiful mathematics
in creating the world.

P.A.M. Dirac

In this chapter, we shall discuss the relativistic theory of interaction of plane-wave electrons
with a plane electromagnetic wave. This external electromagnetic field will be regarded as
“given”, which means that all the radiative corrections will be neglected, such that the number
of particles remains unchanged. We work in a single-particle approximation which neglects the
Coulomb interaction between electrons inside the beam, thus, allowing us to use the terms
“electron” and “electron beam” equivalently. Such an approximation is well suited for electron
beams, for example, in transmission electron microscopes. Below, we use relativistic Gaussian
units c = 1, ~ = 1 and, for the scalar product of any two 4-vectors a =

(
a0,a

)
and b =

(
b0, b

)
,

we adopt the notations (ab) ≡ aµbµ ≡ a0b0 − a · b, where µ ∈ {0, 1, 2, 3} and the “dot” means
the three-dimensional scalar product. By a widely followed convention, moreover, the 4-vectors
that are written with lower (upper) indices are called covariant (contravariant) vectors.

1.1 Relativistic electrons in free space

1.1.1 Dirac equation for free electrons

We consider an electron with mass m and 4-momentum pµ = (E ,p) that fulfills the standard,
relativistic energy-momentum relation

p2 = E2 − p2 = m2 . (1.1)

Here E and p are the energy and the three-dimensional momentum of the electron, respectively
(see also Eq. (5)). The electron and its antiparticle – positron, being fermions, are described

12



1.1. Relativistic electrons in free space

via the so-called Dirac bi-spinor [68]

ψ =


ψ1

ψ2

ψ3

ψ4

 . (1.2)

The equation that governs the dynamics of such a bi-spinor in free space is the free-(particle)
Dirac equation

(γp̂−m)ψ = 0 , (1.3)

where p̂µ ≡ ∂µ = (i∂/∂t,−i∇) is the particle’s 4-momentum operator. The 4 × 4 matrices
γµ =

(
γ0, γ1, γ2, γ3

)
=
(
γ0,γ

)
are the Lorentz-invariant1 Dirac matrices that have the following

explicit form

γ0 =

(
1 0

0 −1

)
, γ =

(
0 σ

−σ 0

)
(1.4)

in the so-called standard representation (which we will employ from now on). Here the 2 × 2
matrices

σ = (σx , σy , σz) =

((
0 1

1 0

)
,

(
0 −i

i 0

)
,

(
1 0

0 −1

))
(1.5)

are the well-known Pauli matrices. Moreover, the scalar 4-product in the free Dirac equa-
tion (1.3) can be expanded as

γp̂ = iγ0
∂

∂t
+ iγ ·∇ = iγ0

∂

∂t
+ iγ1

∂

∂x
+ iγ2

∂

∂y
+ iγ3

∂

∂z
,

that contains partial derivatives both with respect to space and time coordinates.

Although the equation (1.3) describes the motion of electrons and positrons, however, in
this thesis, we are interested only in relativistic electron beams. Therefore, to describe the
state of a free particle with a positive energy, i.e. the electron state, we express the solution of
Eq. (1.3) in terms of a plane-wave

ψp =
1√
2E

upe
−ipx . (1.6)

Here the amplitude up is a constant suitably normalized bi-spinor

ūpup = 2m,

where the “bar” denotes Dirac conjugation, ūp = u†pγ0, and the “dagger” is Hermitian con-

jugation. The normalization of up is done such that the condition ψ†
pψp = 1 is satisfied. For

1Lorentz invariance is a fundamental requirement in physics, meaning that the laws of physics must look the
same in all reference frames [67].
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CHAPTER 1: Relativistic theory of the electron-light interaction

the positron, moreover, one should change p → −p and, therefore, replace ψp with ψ−p in
Eq. (1.6).

If we substitute the plane-wave wave function (1.6) into the free-electron Dirac equation
(1.3) and use the standard representation (1.4) of Dirac matrices, we can find the explicit form
of the bi-spinor up

up =


√
E +mw

√
E −m

(p · σ)

p
w

 . (1.7)

Here the spinor w is an arbitrary two-component matrix that has to be normalized as

w†w = 1 .

There are three possible ways to physically describe the latter spinor. It can be chosen as the
polarization states of the electron such that w has a defined component of the electron spin
on some axis. For example, one can choose the following spin states of the electron in the rest
frame

σzw
(s) = sw(s) , (1.8)

as an eigenstate of the σz matrix with the eigenvectors

w(s) =

(
α

β

)
(1.9)

and the eigenvalues s = ±1/2, where {α , β} = {0 , 1}. The eigenvector w(1/2) =

(
1
0

)
with

its positive eigenvalue s = 1/2 describe the “spin-up” state, while the eigenvector w(−1/2) =(
0
1

)
with the negative eigenvalue s = −1/2 represent the “spin-down” state. In our further

discussion, we will explore such electron beams for which the polarization states are chosen to
be these spin states.

Another possibility for the choice of the spinor w is the so-called helicity states that appear
as an eigenstate of the operator (p · σ) / (2p) with eigenvalues Λ = ±1/2 [68]. For the sake
of completeness, we conclude this subsection with a discussion of the third possible way to
describe the Dirac bi-spinor. Whilst both the polarization and the helicity are properties of
the spinor w, the chirality is a property of the bi-spinor (1.2). These states are the eigeinstates
of the γ5 matrix (see the next subsection) with eigenvalues ±1. The helicity and chirality are
important quantum numbers, especially, in high energy physics, where the fermions can be
approximately considered massless, as, for instance, the neutrino [69].

1.1.2 Algebra of Dirac matrices

In our further calculations, we will use some rules for γ matrices, independent of their particular
representation. In this subsection, we shortly introduce the general properties of Dirac matrices
that form the so-called Dirac algebra. First of all, these matrices satisfy the anticommutation
relation

γµγν + γνγµ = 2gµν , (1.10)
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where µ, ν ∈ {0, 1, 2, 3} and gµν is the metric tensor of the flat Minkowski 4-space which has
the form

gµν = gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (1.11)

in the matrix representation. Such a choice of gµν corresponds to the 4-metric with a signature
(+,−,−,−). The metric tensor relates to each other the covariant and contravariant 4-vectors
by lowering and raising the indices as follows, xµ = gµνx

ν and xµ = gµνxν , where repeated
indices imply summation. From Eq. (1.10), for squares of γ matrices, we can obtain(

γ0
)2

= 1 ,
(
γ1
)2

=
(
γ2
)2

=
(
γ3
)2

= −1 , (1.12)

where

1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (1.13)

is the unit (or identity) matrix.

The γ matrices satisfy also extra hermiticity conditions which are, however, restricted by
anticommutation relation (1.10). Thence, we can impose [68](

γ0
)†

= γ0 , (γ)† = −γ , (1.14)

where, again, “†” denotes the Hermitian conjugate of γ matrices. Taking the Hermitian con-
jugate of any m× n matrix

M =


M11 M12 · · · M1n

M21 M22 · · · M2n

...
...

. . .
...

Mm1 Mm2 · · · Mmn


means first taking its transpose by making a new, n×m matrix, i.e. exchanging the rows and
columns with each other,

MT =


M11 M21 · · · Mn1

M12 M22 · · · Mn2

...
...

. . .
...

M1m M2m · · · Mnm

 , (1.15)
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CHAPTER 1: Relativistic theory of the electron-light interaction

and then taking the complex conjugate (denoted by the “asterisk”) of every element in already
transposed matrix

M† =
(
MT

)∗
=


M∗

11 M∗
21 · · · M∗

n1

M∗
12 M∗

22 · · · M∗
n2

...
...

. . .
...

M∗
1m M∗

2m · · · M∗
nm

 . (1.16)

Formally, one can also write M†
mn = M∗

nm. In addition, the hermiticity conditions (1.14) can
be easily checked for the standard representation (1.4) of γ matrices.

For the completeness of the description of γ matrices, we introduce here also another 4× 4
matrix γ5 that is defined as

γ5 = −iγ0γ1γ2γ3

and has the following properties:

γ5γµ + γµγ5 = 0 ,
(
γ5
)2

= 1 ,
(
γ5
)†

= γ5 .

As already mentioned, this matrix plays an important role for investigation of chiral states of
particles.

In relativistic quantum theory (of electrons), important expressions are used that contain
scalar 4-products of γ matrices and other 4-vectors. For any two 4-vectors aµ and bµ, for
example, one can obtain the following relations from the anticommutation relation (1.10):

(aγ) (bγ) + (bγ) (aγ) = 2 (ab) , (aγ) (aγ) = a2 . (1.17)

Moreover, the scalar product of Dirac matrices with themselves gives (γγ) = γµγµ = 4, where
γµ = gµνγ

ν .

The above introduced rules for γ matrices are relevant to carry out relativistic calculations
for describing the electron-field interaction. By employing the Dirac algebra, we are now ready
to generalize the free-electron Dirac equation (1.3) and its solution (1.6) for electrons that
couple to an external electromagnetic field.

1.2 Relativistic electrons in the presence of the electromag-
netic field

In this section, we shall introduce the Dirac equation for electrons inside an external elec-
tromagnetic field. We will also obtain the well-know, exact Dirac-Volkov solutions when the
external field is regarded as a plane-wave field.

1.2.1 Dirac equation for laser-driven electrons

The wave equation of an electron in a given external field can be derived in the same way as
in non-relativistic theory [70]. To obtain the desired equation for a field-affected electron, let
us consider an electromagnetic field with the 4-potential Aµ (x) =

(
A0 (x) ,A (x)

)
, where A0
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1.2. Relativistic electrons in the presence of the electromagnetic field

and A are the scalar and vector potentials, respectively. They define the electric and magnetic
fields via the corresponding relations

E = −∂A
∂t

−∇A0 , B = ∇×A , (1.18)

where the “cross” denotes the vector product.
If we replace the 4-momentum operator p̂ in the free Dirac equation (1.3) by the operator

p̂− eA, following the minimal coupling prescription, we will obtain a first-order equation

[γ (p̂− eA) −m]ψ = 0 . (1.19)

Here the charge e appears together with its sign, so that for electrons we have e = − |e|. In
order to solve Eq. (1.19), however, one has to transform it into the second-order equation by
applying the operator γ (p̂− eA) +m[

γµγν (p̂µ − eAµ) (p̂ν − eAν) −m2
]
ψ = 0 . (1.20)

Furthermore, we introduce the antisymmetric 4-tensor

σµν =
1

2
(γµγν − γνγµ)

and combine it with anticommutation relation (1.10) to re-write the product γµγν as

γµγν = gµν + σµν .

The latter expression enables one to antisymmetrize the quadratic form (1.20) and to re-write
it in the form [68] [

(p̂− eA)2 −m2 − i
e

2
Fµνσ

µν
]
ψ = 0 , (1.21)

which is suitable for integration. Moreover, the tensor

Fµν = ∂µAν − ∂νAµ (1.22)

is the so-called electromagnetic field tensor that is antisymmetric under the interchange µ ↔
ν, i.e. Fµν = −Fνµ. It has six independent components which give the relevant electric
E = (Ex, Ey, Ez) and magnetic B = (Bx, By, Bz) fields, formally shown through the matrix

Fµν =


0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 .

There are a number of advantages for using the electromagnetic field tensor. For example,
one can represent the well-known Maxwell equations in the compact form, convenient for
relativistic calculations [67,71],

∂µF
µν = Jν

ext , (1.23)

∂λFµν + ∂νF λµ + ∂µF νλ = 0 , (1.24)
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CHAPTER 1: Relativistic theory of the electron-light interaction

where λ = {0, 1, 2, 3} and Jν
ext = (ρext,Jext) is the 4-current of some external charges. Equa-

tion (1.23) leads to the Gauss and Ampér circuital laws:

∇ ·E = ρext , ∇×B − ∂E

∂t
= Jext .

While, Eq. (1.24) yields to

∇ ·B = 0 , ∇×E +
∂B

∂t
= 0 ,

the Gauss law for magnetism and the Faraday law for induction, respectively. Finally, the field
tensor (1.22) enables one to directly derive the field invariants

FµνF
µν ∼ B2 −E2 = inv , ϵµνµ

′ν′FµνFµ′ν′ ∼ E ·B = inv ,

that remain unchanged under the Lorentz transformations [67]. Here ϵµνµ
′ν′ = −ϵµνµ′ν′ is

the so-called Levi-Civita’s antisymmetric symbol of rank-4 which is equal either to 1 or −1
according to whether {µ, ν, µ′, ν ′} is an even or odd permutation of {0, 1, 2, 3}, and zero oth-
erwise [67].

Thus, we have generalized the free-electron equation (1.3) to the Dirac equation of the
form (1.21). This second-order differential equation can be utilized in order to find analytical
solutions for field-affected electrons. The only constraint that we imposed on the field is that it
is a classically given one. In the next subsection, moreover, in order to construct an analytically
exact solution we shall assume that this field is a plane-wave field and derive the Dirac-Volkov
wave function.

1.2.2 Dirac-Volkov solutions for electrons in the plane-wave field

So far, we have derived the Dirac equation (1.21) that describes the motion of an electron in any
arbitrary electromagnetic field which is classical (i.e. non-quantized) and satisfies the Maxwell
equations (1.23)-(1.24). There are very few cases when Eq. (1.21) can be solved analytically
exact [26]. One of these cases is restricted to plane-wave fields which is originally discussed
by Volkov [72]. We here follow the textbook [68] and obtain the Dirac-Volkov solutions by
performing Lorentz-invariant calculations. To do so, let us consider an electron that moves
in the field of a plane-wave electromagnetic field with a wave 4-vector kµ = (ω,k) and the
dispersion relation

k2 = ω2 − k2 = 0 . (1.25)

For such a field, the 4-potential Aµ depends only on the scalar product of kµ and the 4-
coordinate xµ = (t, r), namely Aµ = Aµ (ζ). Here the 4-product

ζ ≡ (kx) = ωt− k · r (1.26)

is a Lorentz-invariant quantity, called laser phase, that plays a crucial role in our further
derivations.

We now assume that no external charges and currents are applied such that the field tensor
(1.22) satisfies the homogeneous Maxwell equations, i.e. Eqs. (1.23)-(1.24) with Jν

ext = 0.
The plane-wave structure of the electromagnetic field is incporporated by the most general
antisymmetric form of the field tensor [73]

Fµν = fµνG (ζ) , (1.27)
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where fµν is a constant antisymmetric tensor. Whereas, G (ζ) is an arbitrary function of ζ
obeying the physical requirement that the field vanishes at infinity, i.e. G (±∞) = 0. In the
meantime, we also assume that the 4-potential obeys the Lorenz gauge [74]

∂µA
µ = 0 . (1.28)

If we combine this gauge condition with Maxwell equations, we can derive wave equations and
express their solutions in terms of the retarded (scalar and vector) potentials. This is in contrast
to the Coulomb gauge, ∇ ·A = 0, which gives rise to an instantaneous, action-at-a-distance,
scalar potential and to some complicated vector potential [75].

Given that the 4-potential is a function of only the laser phase ζ, we can reduce the Dirac
equation (1.21) with partial derivatives with respect to the 4-coordinates xµ to an equation
that contains only total derivatives with respect to the same ζ-variable. To do so, we transform
the partial derivative ∂µ = ∂/∂xµ as

∂µ =
∂ζ

∂xµ
d

dζ
= kµ

d

dζ
, (1.29)

such that the field tensor (1.22), Maxwell equations (1.23)-(1.24) and the Lorenz gauge (1.28)
can now be correspondingly re-written as

Fµν = kµA
′
ν − kνA

′
µ , (1.30)

kµf
µν = 0 , kλfµν + kνfλµ + kµfνλ = 0 , (1.31)

kµA
µ′ = kA′ = 0 . (1.32)

Here “prime” means derivation with respect to the laser phase ζ.
Let us now obtain a simpler form for the Lorenz gauge (1.32), quite important for our

further analyses. By comparing Eqs. (1.27) and (1.30), one can express the antisymmetric
tensor in the form (see also Ref. [76])

fµν = kµaν − kνaµ , (1.33)

where aµ is some constant 4-vector. We can therefore re-write the field tensor as Fµν =
kµaνG−kνaµG, combine it with Eq. (1.30) and find A′

µ = aµG. This allows us (i) to represent
the 4-potential in terms of the integral

Aµ(ζ) = aµ

∫ ζ

0
dζ̃G(ζ̃)

and (ii) to re-write the gauge condition (1.32) as

ka = 0 .

The latter two expressions directly lead to the following form of the Lorenz gauge

kA = 0 . (1.34)

We should note, moreover, that the Maxwell equations are automatically fulfilled if we insert
the tensor (1.33) in Eqs. (1.31) and take into account the dispersion law (1.25) along with the
gauge condition ka = 0.
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CHAPTER 1: Relativistic theory of the electron-light interaction

To simplify the Dirac equation (1.21) for plane-wave fields, we now expand the square
(p̂− eA)2 and consider that ∂µ (Aµψ) = Aµ∂µψ due to the Lorenz gauge (1.28). The resulting
equation is [

−∂2 − 2ie (A∂) + e2A2 −m2 − ie (γk)
(
γA′)]ψ = 0 , (1.35)

where ∂2 = ∂µ∂
µ = ∂2t − ∇2 is the 4-dimensional Laplace operator, also called D’Alembert

operator. The form of Eq. (1.35) enables one to factorize the wave function ψ and represent
it as a product of the “free motion of the electron” and the “influence of the laser on such a
motion”. Thus, we can use the Ansatz

ψ = e−ipxF (ζ) (1.36)

to seek a solution of Eq. (1.35). Here the exponential e−ipx describes the free motion of
electrons and F (ζ) is some smoothly changing function that arises due to the presence of the
external field. In other words, the field modifies both the phase and the constant amplitude
of the initially free electron (see the upcoming Eq. (1.38) for contribution of the field into the
electron phase).

If we insert the Ansatz (1.36) into the Dirac equation (1.35) and utilize Eqs. (1.25) and
(1.29) (to show that ∂2F = k2F ′′ = 0 and ∂µF = kµF ′), we will obtain a homogeneous
first-order differential equation for F (ζ)

2i (kp)F ′ +
[
−2e (pA) + e2A2 − ie (γk)

(
γA′)]F = 0 . (1.37)

We should remind the reader that this equation has been obtained from Eq. (1.19) under
the only assumption about the plane-wave nature of the external field. We are now ready to
integrate the Dirac equation for field-affected electrons. In fact, we can represent the formal
integral of the equation (1.37) as

F =
up√
2E0

exp

[
−iF + iG +

e (γk) (γA)

2 (kp)

]
.

Here the constant bi-spinor up is chosen to coincide with the free-particle bi-spinor (1.7) in
order to ensure that we recover the field-free solutions when we remove the field. The terms

F ≡
∫ ζ

0
dζ̃

e(pA(ζ̃))

(kp)
, G ≡

∫ ζ

0
dζ̃

e2A2(ζ̃)

2 (kp)
(1.38)

describe the field-affected phase of the electron, thus, giving rise to the quasimomentum and
quasienergy of such an electron. Furthermore, in order to simplify the latter exponential we
notice that all the powers of (γk) (γA) beyond the first order are zero. Indeed, if we employ
the properties (1.17) of Dirac matrices and take into account the dispersion relation (1.25) and
the Lorenz gauge (1.34) we obtain

(γk) (γA) (γk) (γA) = − (γk) (γk) (γA) (γA) + 2 (kA) (γk) (γA) = −k2A2 = 0 .

Thence, the exponential can be (exactly) replaced by a simpler form

exp
e (γk) (γA)

2 (kp)
= 1 +

e

2 (kp)
(γk) (γA) .
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1.2. Relativistic electrons in the presence of the electromagnetic field

Finally, the solution (1.36) of the Dirac equation (1.35) for electron(s) inside the plane-wave
field takes the well-known Dirac-Volkov form [68]

ψp (x) =

[
1 +

e

2 (kp)
(γk) (γA)

]
up√
2E

eiS . (1.39)

Here the exponential S = − (px) −F + G is proportional to the classical action of an electron
within a plane-wave electromagnetic field [67]. When we switch off the field, i.e. A = F = G =
0, we recover the free-electron solution (1.6), as one would expect. Moreover, the infinitely slow
application of the field does not alter the orthonormalization of Dirac-Volkov solutions [68]∫

ψ†
p′ψpd

3x = (2π)2 δ
(
p′ − p

)
,

a form that also holds for field-free electrons.

Derivation of the exact, Dirac-Volkov solution for the interaction of plane-wave electrons
with a plane-wave field is the first main results of this chapter. To already give a hint, we shall
use the solution (1.39) in order to construct Bessel-type solutions of the Dirac equation (1.21) or
(1.35). We will realize this by superimposing the Dirac-Volkov wave functions over well-defined
amplitudes representing the characteristic momentum distribution of Bessel beams.

Let us now consider a particular case of electron-field interaction when the electron “collides
head-on” with a linearly polarized laser beam meaning that the two beams counter-propagate
with respect to each other. We choose the z-axis directed along the electron propagation
direction, while the y-axis shows the polarization direction of the field. In virtue of this
assumption, 4-momenta of the electron and the field can be expressed as pµ =

(
E , 0, 0, p||

)
and kµ = (ω, 0, 0,−k), respectively. Moreover, the 4-potential Aµ = (0, 0, A (ζ) , 0). For this
particular scenario, the Dirac-Volkov solution (1.39) can be simplified to

ψp (x) =

[
1 +

e

2 (kp)
(γk) (γA)

]
up||√

2E
exp

[
i
(
p||z − Et

)
+ i

∫ ζ

0
dζ̃

e2A2(ζ̃)

2 (kp)

]
. (1.40)

Here the constant bi-spinor

up|| =

( √
E +mw

√
E −mσzw

)
, (1.41)

and the 4-products take the form

(γk) = γ0ω + γ3k , (γA) = −γ2A , (kp) = ωE + kp|| . (1.42)

In our forthcoming study, we shall use Eq. (1.40) to compare it with our generalized solutions
for laser-driven electron vortex beams, representing the same geometry of the head-on collision.

1.2.3 4-current of the Dirac-Volkov electron

The Dirac-Volkov wave function can be employed in order to construct measurable quantities
for field-affected electrons, such as the electron 4-current in the presence of the field

jµ = (ρ, j) = ψ̄pγ
µψp . (1.43)
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CHAPTER 1: Relativistic theory of the electron-light interaction

Here ρ = ψ̄pγ
0ψ = ψ†

pψ and j = ψ̄pγψp are the probability density and the three-dimensional
current of laser-driven electrons, respectively. To calculate these quantities we first have to
define the Dirac conjugate of the wave function (1.39). For this purpose, we note that the
hermiticity conditions (1.14) yield

[(γk) (γA)]† = (γA)† (γk)† = γ0 (γA) (γk) γ0 . (1.44)

If we combine this expression with the anticommutation relation (1.10) we can represent the
Dirac conjugate wave function in the form

ψ̄p (x) =
ūp√
2E

[
1 +

e

2 (kp)
(γA) (γk)

]
e−iS , (1.45)

where

ūp = u†pγ
0 =

(√
E +mw†,−

√
E −mw† (p · σ)

p

)
is a 1 × 4 bi-spinor, the Dirac conjugate of the free electron bi-spinor (1.7).

To evaluate the 4-current we substitute Eqs. (1.39) and (1.45) in Eq. (1.43) and make use
of relations (1.17) and the Lorenz gauge (1.34), resulting in[
1 +

e

2 (kp)
(γA) (γk)

]
γµ
[
1 +

e

2 (kp)
(γk) (γA)

]
= γµ − eAµ (γk)

(kp)
+ kµ

[
e (γA)

(kp)
− e2A2 (γk)

2 (kp)2

]
.

Furthermore, for quantum-mechanical averages of γ matrices and of their 4-products with kµ

and Aµ, we obtain

ūpγ
µup = 2pµ , ūp (γk)up = 2 (kp) , ūp (γA)up = 2 (pA) .

Inserting last four expressions into Eq. (1.43), we will arrive to a final form of the 4-current of
laser-driven plane-wave electrons

jµ =
1

E

{
pµ − eAµ + kµ

[
e (pA)

(kp)
− e2A2

2 (kp)

]}
. (1.46)

Equation (1.46) is the second main result of this chapter and will also be generalized for laser-
driven twisted electron beams. In addition, non of components of the 4-current depends on
the polarization states of electron, i.e. neither spin nor helicity states are involved here, in
contrast to the wave function (1.39). Nevertheless, to already give a hint, we stress here that
the analogous 4-current of field-affected electron Bessel beams depends on the polarization
states of electron. This is due to the new fundamental degree of freedom – the electron OAM –
that couples to the spin of electron and gives rise to the so-called intrinsic spin-orbit interaction.

For the head-on scenario, represented by the wave function (1.40), the components of the
4-current take the simpler form

ρ = 1 − ωe2A2

2 (kp) E
, (1.47)

j(x) = 0 , (1.48)

j(y) = −eA
E
, (1.49)

j(z) =
1

E

[
pz +

ke2A2

2 (kp)

]
, (1.50)
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1.3. Summary

where, to remind the reader, the z-axis is chosen along the propagation direction of electrons,
and the y-axis is aligned along the field polarization. Again, as we explicitly recognize, the
spin of electron is not enrolled in the formulae (1.47)-(1.50). However, the twist of electron
would split such a spin-degeneracy of the 4-current, as we discuss quite in details in the next
chapter.

1.3 Summary

In this chapter, we have studied the relativistic quantum theory of electrons that interact with a
given electromagnetic field. We have described the dynamics of both field-free and field-affected
plane-wave electrons by finding analytically exact solutions to the Dirac equation. Particularly,
we have obtained the known Dirac-Volkov solutions that characterize the coupling of electrons
with a plane electromagnetic field. Furthermore, we have calculated the 4-current of Dirac-
Volkov electrons to reveal the influence of the radiation field onto the electron dynamics.
We have shown that the components of the 4-current are degenerated with respect to the
polarization states of the electron, despite the fact that the Dirac-Volkov wave function depends
on spin. In the next chapter, we shall employ these wave functions in order to construct exact
Bessel-type solutions of the Dirac equation for twisted electrons inside the plane-wave field. For
this purpose, we will make use of the superposition principle of relativistic quantum theory and
superimpose the Dirac-Volkov solutions with well-defined monoenergetic spectrum of Bessel
beams. In contrast to scalar Bessel beams in free-space, as discussed in Introduction, we
naturally expect essential changes in properties of laser-driven vector Bessel beams due to
both the relativistic nature of electron dynamics and the presence of the laser field. The next
chapter is completely devoted to such an analysis, where we discuss very recent developments
of the theory of electron vortex beams, part of which has been originally done by us.

23



Chapter 2

Interaction of relativistic electron
vortex beams with a laser light

The research worker, in his efforts to express the
fundamental laws of Nature in mathematical form,
should strive mainly for mathematical beauty.

P.A.M. Dirac

In this chapter, we shall derive Bessel-type solutions of the Dirac equation for electrons both
in the absence and presence of an external plane-wave electromagnetic field. These solutions
will enable us to describe the dynamics of the field-free and laser-driven electron vortex beams
both in paraxial and non-paraxial domains. We will further show that apart from the spin
degree of freedom such beams carry non-zero OAM along their direction of propagation. We
shall explicitly demonstrate how the presence of the SAM and OAM leads to the intrinsic SOI
inside the EVB and how this SOI is modified within the laser field. Moreover, we will construct
measurable quantities, namely the components of the 4-current, to illustrate the influence of
both the electron and laser parameters upon the intensity and current distributions of EVBs.
We shall pay a specific attention to the non-paraxial and relativistic regimes of electron prop-
agation where these observables experience a fine spin-slitting. Although our theory enables
one to consider plane-wave fields of any shape, we shall carry out our computations especially
for few-cycle laser pulses.

2.1 Electron vortex beams in free space

In this section, we recover the results of the original work by Bliokh and coworkers for field-
free EVBs [45] in order to provide an appropriate introduction to our advanced studies of
laser-driven EVBs.
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2.1. Electron vortex beams in free space

2.1.1 Bessel-type solutions of the free-electron Dirac equation

We consider a free electron beam which moves along a direction that is chosen to be the z-
axis. We examine such a propagation of electrons with their well-defined spin z-component in
the rest frame. In order to construct exact Bessel-type solutions that represent the angular
momentum eigenstates of a free Dirac electron, we start from the free-electron equation (1.3)
with solutions expressed via the orthonormalized states (1.6)-(1.7). We recall the recipe for
production of Bessel beams (see Introduction) and write the field-free EVB state as

ψℓs (x) =

∫
ψ̃ℓ (p) ψp (x) p⊥dp⊥dϕ . (2.1)

Here the Bessel spectrum ψ̃ℓ is defined via Eq. (1), ψp is the free-electron wave function,
Eq. (1.6), and the indices ℓ and s correspondingly indicate the presence of non-zero OAM and
SAM for field-free EVBs, as we show below.

To evaluate the integral (2.1), we substitute here Eq. (1.6) and assume that the polarization
amplitudes (1.7) are the same for all the plane-waves. First, we carry out the integral with
respect to p⊥ and obtain

ψℓs (r, t) = eiΦ
∫ 2π

0
dϕ

eiℓϕ

2πiℓ
up0√
2E0

eiξ cos(ϕ−φ) , (2.2)

where the index “0” means that the energy as well as the longitudinal and transverse compo-
nents of the electron momentum are taken at the monoenergetic cone [cf. Fig. 1a]. Moreover,
ξ = p⊥0r describes the width of the beam and

Φ (z, t) = p||0z − E0t (2.3)

is both z- and t-dependent phase that demonstrates the non-spreading propagation of EVBs
along the z-axis, similar to the same behavior of scalar Bessel beams of electrons.

To perform the integration (2.2) with respect to ϕ, we express the constant bi-spinor up0
via the cylindrical coordinates in momentum space as

up0 =

 √
E0 +mw(s)√

E0 −m
p||0

p0
σzw

(s)

+


0

0√
E0 −m

p⊥0

p0

(
0 e−iϕ

eiϕ 0

)
w(s)

 . (2.4)

Here the spin states of electron are chosen to be the eigenstates w(s) = (α, β)T of the σz
operator with eigenvalues s = ±1/2 [cf. Eq. 1.9], in contrast to Ref. [77] where the basis states
of polarization for EVBs are chosen to be the helicity eigenstates of σ ·p/(2p). Our particular
choice of the basis states for the spin is natural for massive particles [45,50].
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CHAPTER 2: Interaction of relativistic electron vortex beams with a laser light

Let us now insert Eq. (2.4) into the integral (2.2) and obtain

ψℓs (r, t) =
eiΦ√

2




√
1 +

m

E0

(
α

β

)
√

1 − m

E0
cos θ0

(
α

−β

)

∫ 2π

0
dϕ

eiℓϕ

2πiℓ
eiξ cos(ϕ−φ)

+



0

0

0

α

√
1 − m

E0
sin θ0


∫ 2π

0
dϕ

iei(ℓ+1)ϕ

2πiℓ+1
eiξ cos(ϕ−φ)

+


0

0

β

√
1 − m

E0
sin θ0

0


∫ 2π

0
dϕ

−iei(ℓ−1)ϕ

2πiℓ−1
eiξ cos(ϕ−φ)

 . (2.5)

If we utilize the integral representation (10) of Bessel functions we will arrive to the final form
of the wave function of a field-free EVB

ψℓs (r, t) =
eiΦ√

2

[
A1e

iℓφJℓ (ξ) + A2e
i(ℓ+1)φJℓ+1 (ξ) + A3e

i(ℓ−1)φJℓ−1 (ξ)
]
, (2.6)

where the following (constant) bi-spinors are introduced for notational convenience:

A1 ≡


√

1 +
m

E0

(
α

β

)
√

1 − m

E0
cos θ0

(
α

−β

)
 , A2 ≡


0

0

0

iα
√

∆

 , A3 ≡ −


0

0

iβ
√

∆

0

 . (2.7)

Moreover, the parameter

∆ =

(
1 − m

E0

)
sin2 θ0 < 1 (2.8)

determines the strength of coupling between the orbital and spin degrees of freedom in the
relativistic EVB. It is called intrinsic spin-orbit interaction parameter, that vanishes in the
paraxial (θ0 → 0) and/or in the non-relativistic (p0 → 0) limits, as ∆ ≈ θ20p0/m [45]. The
intrinsic SOI arises only for vector Bessel beams, when the spin degree of freedom is taken into
account, and naturally vanishes for scalar Bessel beams.

The exact wave function (2.6) is the first main result of this chapter. It describes relativistic
electron Bessel beams in free space, i.e. the electron counterpart of optical (vector) Bessel
beams [50]. The first term in square brackets represents a scalar Bessel beam of the order of ℓ:

ψscalar
ℓs (r, t) =

1√
2
A1e

i(Φ+ℓφ)Jℓ (ξ) , (2.9)
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2.1. Electron vortex beams in free space

whereas, the second and third terms, proportional to
√

∆, characterize the polarization-depen-
dent Bessel beam of the order of ℓ + 2s. Such terms represent the intrinsic SOI and give rise
to both the spin- and orbital-angular-momentum-dependent dynamics of relativistic EVBs, as
we discuss in the next subsection.

We can find an “integral of motion” to demonstrate the conservation of the (z-component)
of the total angular momentum ℓ + s that acts as a “good” quantum number for relativistic
field-free EVBs. To this end, we first define the TAM operator projected onto the z-axis as a
sum of z-components of the canonical OAM (the same as Eq. (14))

L̂z = −i ∂
∂φ

(2.10)

and the SAM operators [68]

Σ̂z =
1

2
diag (σ,σ)z =

1

2

(
σz 0

0 σz

)
, (2.11)

i.e.

T̂z = L̂z + Σ̂z . (2.12)

We are now ready to show that the free EVB wave function (2.6) is the eigenmode of the
operator T̂z. To do so, we act with operators (2.10) and (2.11) on Eq. (2.6) and obtain

L̂zψℓs =
eiΦ√

2

[
A1ℓe

iℓφJℓ (ξ) + A2 (ℓ+ 1) ei(ℓ+1)φJℓ+1 (ξ) + A3 (ℓ− 1) ei(ℓ−1)φJℓ−1 (ξ)
]
,

Σ̂zψℓs =
eiΦ√

2

[
A1se

iℓφJℓ (ξ) − 1

2
A2e

i(ℓ+1)φJℓ+1 (ξ) +
1

2
A3e

i(ℓ−1)φJℓ−1 (ξ)

]
, (2.13)

where the following expressions are taken into account:

Σ̂zA1 = sA1 , Σ̂zA2 = −1

2
A2 , Σ̂zA3 =

1

2
A3 .

If we add Eqs. (2.13) we find the desired relation

T̂zψℓs = (ℓ+ s)ψℓs , (2.14)

which exhibits the conservation of the z-component of the TAM for relativistic non-paraxial
EVBs. In contrast, in paraxial regime, i.e. when ∆ → 0, one can readily notice that the scalar
Bessem beams (2.9) are the eigenmodes of both OAM and SAM operators at the same time:

L̂zψ
scalar
ℓs = ℓψscalar

ℓs , Σ̂zψ
scalar
ℓs = sψscalar

ℓs . (2.15)

This scenario is quite similar to the simultaneous conservation of both OAM and SAM of
Laguerre-Gauss (optical) modes in the paraxial regime proposed already by Allen and co-
workers [3]. Moreover, Eqs. (2.14) and (2.15) exactly coincide with similar predictions for
optical Bessel beams in non-paraxial and paraxial domains, respectively [50].

Until now, we have obtained exact, Bessel-type solutions of the free-electron Dirac equation.
These solutions can be used in order to calculate measurable quantities for free EVBs, such
as the probability density and the components of the three-dimensional electronic current. In
order to demonstrate how the intrinsic SOI affects these quantities, in the next subsection, we
construct the relativistic 4-current of field-free EVBs.
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CHAPTER 2: Interaction of relativistic electron vortex beams with a laser light

2.1.2 4-current of field-free EVBs

To determine observables from the wave function (2.6), we here calculate the 4-current of
the field-free EVB and show how the intrinsic SOI manifests itself in both SAM- and OAM-
dependent distributions of the electronic probability density and current. These quantities
are correspondingly defined as scalar and vector components of the 4-dimensional current
[cf. Eq. (1.43)]

jµℓs = (ρℓs , jℓs) =
(
ψ̄ℓsγ

0ψℓs , ψ̄ℓsγψℓs

)
=
(
ψ†
ℓsψℓs , ψ

†
ℓsγ

0γψℓs

)
. (2.16)

Here ψ̄ℓs is the Dirac conjugate of the wave function (2.6) and can be written as

ψ̄ℓs (r, t) =
e−iΦ

√
2

[
Ā1e

−iℓφJℓ (ξ) + Ā2e
−i(ℓ+1)φJℓ+1 (ξ) + Ā3e

−i(ℓ−1)φJℓ−1 (ξ)
]
, (2.17)

with the conjugated constant 1 × 4 bi-spinors (compare with Eqs. (2.7))

Ā1 = A†
1γ

0 =

(√
1 +

m

E0
(
α , β

)
,

√
1 − m

E0
cos θ0

(
−α , β

))
,

Ā2 = A†
2γ

0 =
(
0 , 0 , 0 , iα

√
∆
)
, Ā3 = A†

3γ
0 = −

(
0 , 0 , iβ

√
∆ , 0

)
.

We can further multiply the above expressions by γ matrices and bi-spinors (2.7) to evaluate
products of the form Āiγ

µAi (i = {1, 2, 3}), values of which are shown in tables. While
calculating these products, we take into account that αβ = 0 and α2 + β2 = 1 since the
spin-up and spin-down states “exclude” each other.

γ0A1 γ0A2 γ0A3 γ1A1 γ1A2 γ1A3

Ā1

(
α2 + β2

)
(2 − ∆) 0 0 0 iα2 p⊥0

E0
−iβ2 p⊥0

E0

Ā2 0 α2∆ 0 −iα2 p⊥0

E0
0 0

Ā3 0 0 β2∆ iβ2
p⊥0

E0
0 0

Table 2.1: Products Āiγ
0Ai and Āiγ

1Ai, where i = {1, 2, 3}.

γ2A1 γ2A2 γ2A3 γ3A1 γ3A2 γ3A3

Ā1 0 α2 p⊥0

E0
β2
p⊥0

E0
(
α2 + β2

) 2p||0

E0
0 0

Ā2 α2 p⊥0

E0
0 0 0 0 0

Ā3 β2
p⊥0

E0
0 0 0 0 0

Table 2.2: Products Āiγ
2Ai and Āiγ

3Ai, where i = {1, 2, 3}.
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2.1. Electron vortex beams in free space

Thus, after readily performed calculations we obtain the components of the 4-current of
the relativistic field-free EVB

ρℓs (ξ) =

(
1 − ∆

2

)
J2
ℓ (ξ) +

∆

2
J2
ℓ+2s (ξ) , (2.18)

j(x)ℓs (ξ, φ) = −p⊥0

E0
sinφJℓ (ξ) Jℓ+2s (ξ) , (2.19)

j(y)ℓs (ξ, φ) =
p⊥0

E0
cosφJℓ (ξ) Jℓ+2s (ξ) , (2.20)

j(z)ℓ (ξ) =
p||0

E0
J2
ℓ (ξ) . (2.21)

We can immediately recognize that both x- and y-components of the current depend on the
azimuthal angle φ and the dimensionless transverse coordinate ξ, in contrast to the probability
density ρℓs and the z-component of the current, j(z)ℓ . If we employ, however, the cylindrical
symmetry of the EVB propagation and re-write the three-dimensional current in cylindrical
coordinates, jℓs =

(
j(r)ℓ , j(φ)

ℓ , j(z)ℓ

)
, we can show that the azimuthal current j(φ)

ℓ becomes only

ξ-dependent. Whereas, the radial current j(r)ℓ vanishes due to the non-diffracting propagation
of the (field-free) electron Bessel beam, in agreement with the same type of propagation of
optical Bessel beams [54]. To show these features, let us make use of standard relations
between components of a vector in Cartesian and polar coordinates

j(r) = j(x) cosφ+ j(y) sinφ ,

j(φ) = −j(x) sinφ+ j(y) cosφ . (2.22)

By combining these relations with Eqs. (2.19) and (2.20), we get

j(r) = 0 , (2.23)

j(φ)

ℓs (ξ) =
p⊥0

E0
Jℓ (ξ) Jℓ+2s (ξ) , (2.24)

such that the three-dimensional current of relativistic twisted electrons can be represented as
a sum of the longitudinal

j long

ℓ (ξ) =
p||0

E0
J2
ℓ (ξ) ez (2.25)

and transverse

jtr
ℓs (ξ) =

p⊥0

E0
Jℓ (ξ) Jℓ+2s (ξ) eφ (2.26)

components, i.e.

jℓs (ξ) = j long

ℓ (ξ) + jtr
ℓs (ξ) . (2.27)

Here ez and eφ are the unit vectors in z- and azimuthal directions, respectively. Moreover,
the ξ-dependency of both the probability density and the transverse current means that the
intensity of the EVB is distributed along some concentric circles around the axis ξ = 0, since
j(r) = 0, as we illustrate in Figs. 2.1-2.2.
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CHAPTER 2: Interaction of relativistic electron vortex beams with a laser light

Figure 2.1: Spin-dependent distribution of the probability density of non-paraxial EVB, as
depicted in Ref. [45]. The two-dimensional transverse distribution of the probability density as
a function of dimensionless coordinates p⊥0x/~ and p⊥0y/~ represents concentric circles (left
panel). The transverse distribution of the EVB intensity as a function of the dimensionless
transverse coordinate ξ, indicated in arbitrary units of the same scale, obtains a Bessel-squared-
type behavior (right panel). The probability density distributions are shown for the OAM
ℓ = 1 (a) and ℓ = 3 (b). The s = ±1/2 spin states are indicated by “+” (red solid curves)
and “–” (blue dashed curves), respectively. The intrinsic SOI parameter ∆ = 0.3, which
corresponds to the electron energy 817.4 keV and the opening angle θ0 = π/4. In density
plots, the variation of colors is the same as for Fig. 3(c) and, moreover, the beam propagates
toward the reader.

Distributions of the probability density (2.18) as well as the longitudinal (2.25) and the
transverse (2.26) currents are the second main result of this chapter. Equations (2.18) and
(2.26) demonstrate that the transverse structure of the EVB shows distinct dynamics for dif-
ferent spin states, a new effect that is related to the existence of the electron’s intrinsic OAM
along its propagation direction. To emphasize once again, such an OAM for free propagating
electrons itself is a new degree of freedom that couples to the SAM of electron – as it is evident
from the wave function (2.6) with non-zero bi-spinors A1 and A2 – and eventually gives rise
to the intrinsic spin-orbit coupling. The intrinsic SOI manifests itself in the spin-dependent
observables ρℓs and jtr

ℓs. This is quite in contrast to the plane-wave electrons for which the
4-current does not depend on spin [68], unless one takes into account some quantum electro-
dynamical effects, such as the electron’s self-interaction with its (virtual) photon field [33].

In contrast to the probability density ρℓs and the transverse current jtr
ℓs, Eq. (2.25) demon-

strates the spin-degeneracy of the longitudinal current j long

ℓ . In fact, it has the same value for
both s = ±1/2, though takes different values for different OAM ℓ. Such a spin-independent
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2.1. Electron vortex beams in free space

behavior is characteristic for scalar Bessel beams. If we construct the 4-current from the scalar
EVB (2.9), we get the only contribution both from the probability density

ρscalar
ℓ (ξ) = J2

ℓ (ξ) ,

which in this case exhibits the same dynamics for different spin states, and from the total
current

jscalar
ℓ (ξ) =

p||0

E0
J2
ℓ (ξ) ez ,

defined only via the longitudinal component. This is in correlation with the fact that in
the paraxial regime, i.e. when we turn from vector to scalar beams by setting p⊥0 → 0 (or
θ0 → 0), the azimuthal current vanishes and only the z-component of the current survives.
Terms proportional to the transverse momentum p⊥0 and the intrinsic SOI parameter ∆ will
just be zero (see the above tables).

Now let us examine in more details some properties of the probability density and current
of EVBs. One can easily check that the distributions of ρℓs and |jℓs| are invariant with respect
to the transformation (ℓ, s) → (−ℓ,−s), but neither with respect to (ℓ, s) → (ℓ,−s) nor
(ℓ, s) → (−ℓ, s). This invariance reflects the typical symmetry of the intrinsic SOI. Figure 2.1
shows the fine spin-dependent splitting of the probability density due to the both non-paraxial
and relativistic regimes of the twisted electron beam propagation [c.f. Eq. (2.18)]. Despite
the fact of the usual vortex behavior, i.e. zero intensity and undefined phase, there can be a
finite probability to find an electron at ξ = 0 for relativistic vector Bessel beams. For example,
in the case when ℓ = 1, the last term in Eq. (2.18) leads to a radically different behavior at
ξ = 0 and there appears an effect of a drastic enhancement of the probability density for the
spin-down states [cf. Fig. 2.1(a)]. Whereas, the intensity of the EVB is zero for the spin-up
state. In the case when, for example, ℓ = 3 the probability density is zero for both spin states
at ξ = 0 [cf. Fig. 2.1(b)]. It turns out, however, if we “switch on” some external influence,
such as a laser light, we can “enhance” the electronic intensity at ξ = 0 even for ℓ = 3 by just
shifting the EVB as a whole. We discuss such a scenario quite in details in the next section.

Figure 2.2 shows the manifestation of the intrinsic SOI in the transverse current of EVBs.
The SOI between the spin- and orbital-degrees of freedom leads to a fine spin dependent-
splitting for the transverse (or azimuthal) current, in the same way as for the probability
density ρℓs. Particularly, in accordance with Eqs. (2.23), (2.24) and (2.26), Fig. 2.2 exhibits
the spin-dependent distribution of the transverse current (a1,a2,b1,b2,c1,c2) and the splitting
of the azimuthal current (a3,b3,c3) for different values of OAM ℓ. Figures 2.2(a1,a2,b1,b2,c1,c2)
also show the absence and the presence of the “flow” of electronic current along the radial and
azimuthal directions, respectively. This means that the azimuthal component of the current
takes distinct values for different circles, representing different ξ, and remains constant in
the azimuthal direction. Thus, the transverse current coils around only the z-axis along the
concentric circles. Such a coil of the current is accompanied with the longitudinal propagation
of electrons and results in the helical wavefront of the beam, characteristic for the spiraling
Pointing vector of optical vortex beams [3,5]. This (oscillatory) effect disappears in the paraxial
limit p⊥0 → 0 and is the relativistic generalization of the similar trembling motion of scalar
Bessel beams of electrons (see Introduction).

There is an intriguing difference between the transverse components of the electronic current
for scalar and vector Bessel beams. As we have seen before, the current of a scalar beam always
rotates along the same direction in all circles for the given value of the OAM ℓ [cf. Figs. 3(e1-4)].
Whereas, the direction of the transverse current for vector beams varies depending on the radial
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CHAPTER 2: Interaction of relativistic electron vortex beams with a laser light

Figure 2.2: Representation of the spin-dependent transverse current jtr
ℓs =

(
j(x)ℓs , j

(y)

ℓs

)
=(

j(r)ℓs , j
(φ)

ℓs

)
for OAM ℓ = 0 (a), ℓ = 1 (b) and ℓ = 3 (c). Streamlines and vector plots are gen-

erated to show the vector field
(
j(x)ℓs , j

(y)

ℓs

)
as a function of dimensionless coordinates p⊥0x/~

and p⊥0y/~ (the beam propagates toward the reader). Thickness of vectors increases with
increasing absolute value of the transverse current |jtr

ℓs|. Figures (a3), (b3) and (c3) show the
distribution of the azimuthal current as a function of the dimensionless transverse coordinate ξ
(in arbitrary units). The parameters of the electron beam are the same as for Fig. 2.1. Red solid
(“+”) and blue dashed (“–”) curves indicate the spin-up and spin-down states, respectively.
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2.2. Laser-driven relativistic electron vortex beams

coordinate ξ. This effect is also due to the intrinsic SOI and vanishes in the non-relativistic
and/or paraxial regimes.

In this section, we have built the wave function of field-free EVBs (2.6) and calculated
distributions of their probability density (2.18) and transverse current (2.26). We have demon-
strated how the presence of the SAM and the longitudinal OAM of the electron gives rise to
the intrinsic SOI that, in turn, leads to a spin-dependent dynamics of the EVB. Such analyzes
have been performed for EVBs that propagate in free space. A natural question that arises
out of this study is: what happens if we replace the free space with the electromagnetic radi-
ation? In other words, how one can control and manipulate the properties of electron vortex
beams by means of a laser light? To answer these questions, in the next chapter, we generalize
the field-free states (2.6) to a laser-driven ones by superimposing the Dirac-Volkov solutions
(1.39) with well-defined amplitudes corresponding to the monoenergetic distribution of elec-
trons in Bessel beams. Such a construction would enable us to obtain yet another solution of
the Dirac equation – the so-called Volkov-Bessel solution – to describe the interaction of the
two feasible beams, namely the relativistic EVB and a plane-wave laser pulse. Moreover, we
shall construct measurable quantities to characterize the profile and the helical wavefront of
field-affected twisted electron beams in order to reveal the influence of a laser light.

2.2 Laser-driven relativistic electron vortex beams

In this section, we introduce our advanced studies of field-affected EVBs by recovering the
results of our recent Letter [78] and expanding them for a more detailed examination of the
“twisted electron–laser pulse” interaction.

2.2.1 Volkov-Bessel solutions of the Dirac equation

Until now, we have derived Bessel-type solutions (2.6) for the free-Dirac equation (1.3) and
showed that they represent the eigenstates of the longitudinal component of the TAM operator.
Based on these solutions, we have calculated the 4-current of field-free EVBs and demonstrated
that it has a distinct dynamics for spin-up and spin-down states due to the intrinsic SOI. In
order to see how this SOI is modified within the laser field, we here construct Bessel-type
solutions of the Dirac equation (1.21) for an electron inside a given electromagnetic field. To
do so, we make use of the standard procedure for constructing Bessel beams as a superposition
of orthonormalized waves – which in our case will be Dirac-Volkov solutions (1.39) – over
the monoenergetic momentum distribution (1). In more technical terms, again, we use the
cylindrical coordinates in momentum space, p = (p⊥, ϕ, p||) = (p sin θ, ϕ, p cos θ), and build the
Volkov-Bessel solutions as a superposition

Ψℓs (x) =

∫
ψ̃ℓ (p) ψp (x) p⊥dp⊥dϕ . (2.28)

Our aim is to generalize the wave function of the field-free EVB (2.6) to the laser-driven ones
such that Ψℓs → ψℓs when we switch off the field. The Ansatz (2.28) allows us to realize this
goal for a specifically chosen geometry of the EVB-laser coupling.

The Dirac-Volkov solution (1.39) is valid independent of the polarization of electromag-
netic wave and for arbitrary relative (directions of) propagation of the electron and laser
beams. To evaluate the integral (2.28), however, we here restrict ourselves to a “head-on” sce-
nario, in which the electrons and the linearly polarized photons propagate antiparallel to each
other (see Fig. 2.3). For this geometry, we choose the z-axis directed along the propagation of
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CHAPTER 2: Interaction of relativistic electron vortex beams with a laser light

the EVB which implies that the laser propagates backward along z, such that the 4-momentum
of the twisted electron and the wave 4-vector of the laser take the form

pµ = (E ,p) =
(
E , p⊥ cosϕ , p⊥ sinϕ , p||

)
= (E , p sin θ cosϕ , p sin θ sinϕ , p cos θ)

and

kµ = (ω,k) = (ω , 0 , 0 ,−k) ,

respectively. The laser phase, therefore, will then be written as

ζ = (kr) = ωt+ kz , (2.29)

that depends only on the longitudinal coordinate z and time t.
To describe the given electromagnetic field we assume that no external charges are applied

such that the field propagates freely. We choose, moreover, the y-axis to be the polarization
axis of photons

Aµ = (0 , 0 , A (ζ) , 0) ,

where – for the moment – we do not specify the shape of A (ζ). For this linearly polarized
field, the exponent F [cf. Eq. (1.38)] contributes into the dynamics of the EVB via the p⊥- and
ϕ-dependent term p⊥A sinϕ, whereas, the exponent G remains independent of both p⊥ and ϕ,
since its denominator (kp) = ωE + kp||:

F ≡
∫ ζ

0
dζ̃

ep⊥A(ζ̃) sinϕ

ωE + kp||
, G ≡

∫ ζ

0
dζ̃

e2A2(ζ̃)

2
(
ωE + kp||

) .
Furthermore, we make use of the ϕ-dependency of F and employ the Jacobi-Anger expansion

eif sinϕ =

+∞∑
n=−∞

Jn (f) einϕ (2.30)

to express the exponential of the sine in the basis of its harmonics, i.e. to “decouple” the
variable ϕ from the sine. This expansion enables us to reveal the so-called intrinsic orbit-orbit
interaction (OOI) between the orbital-degree of freedom of the electron, described by ℓ, and the
OAM-components of the plane-wave electromagnetic field, described by n (see below). Here
the function f depends only on the laser phase and is originated from F :

f (ζ) ≡
∫ ζ

0
dζ̃

ep⊥A(ζ̃)

ωE + kp||
. (2.31)

We should stress here that we have a freedom to consider a large class of plane-wave lasers,
such as monochromatic waves, few-cycle or chirped pulses, for which the latter integral can
be calculated analytically. In our further study, however, we will put the emphasis on the
ultrashort few-cycle pulses that have attracted the interest of a wide range of audience and have
found numerous applications in research over the last years (see, e.g., [79–81] and references
therein).

After we have characterized the polarization of the field and the geometry of the “twisted
electron + laser beam” system, we are ready to carry out the integral (2.28). For this purpose,
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2.2. Laser-driven relativistic electron vortex beams

Figure 2.3: Geometry of head-on collision of relativistic EVB (with a momentum distribution
indicated in blue) and linearly polarized, few-cycle laser pulse (red waveform). The z-axis is
chosen parallel (anti-parallel) to the electron (laser) propagation direction, the y-axis is set
to show the polarization direction of the field. Controlled by a laser field, the center of the
field-affected EVB experiences a shift in comparison to the center of the field-free EVB and
undergoes temporal oscillations along the field polarization direction, as shown in Figs. 2.5,
2.6, 2.8.

we again utilize the cylindrical coordinates in real (or position) space due to the cylindrical
symmetry of the beam propagation, r = (r , φ , z). First, we integrate over p⊥ and obtain

Ψℓs (r, t) =

[
1 +

e

2 (kp0)
(γk) (γA)

]
ei(Φ+G(p0))

√
2

+∞∑
n=−∞

Jn (f0)

∫ 2π

0
dϕ

ei(ℓ+n)ϕ

2πiℓ
eiξ cos(ϕ−φ)up0

=

[
1 +

e

2 (kp0)
(γk) (γA)

]
ei(Φ+G(p0))

√
2

+∞∑
n=−∞

Jn (f0)

×

[
A1

∫ 2π

0
dϕ

inei(ℓ+n)ϕ

2πiℓ+n
eiξ cos(ϕ−φ)

+ A2

∫ 2π

0
dϕ

inei(ℓ+n+1)ϕ

2πiℓ+n+1
eiξ cos(ϕ−φ) + A3

∫ 2π

0
dϕ

inei(ℓ+n−1)ϕ

2πiℓ+n−1
eiξ cos(ϕ−φ)

]
,

quite similar to the analog integration (2.5) for the field-free EVB, but with some modification
arising from the presence of the external field. We further employ the integral representation
of the Bessel function (10) and arrive to the following exact form of the Volkov-Bessel wave
function:

Ψℓs (r, t) =

[
1 +

e

2 (kp0)
(γk) (γA)

] +∞∑
n=−∞

inJn (f0)ψℓ+n,s (r, t) . (2.32)

Here the function f0 ≡ f (p0) is taken for those values of momentum and energy that represent
the monoenergetic cone (1). As for the field-free EVB, the dimensionless transverse coordinate
ξ = p⊥0r effectively defines the width of the laser-driven EVB. Moreover, the states

ψℓ+n,s (r, t) =
eiΦ̃√

2

[
A1e

i(ℓ+n)φJℓ+n (ξ)

+ A2e
i(ℓ+n+1)φJℓ+n+1 (ξ) + A3e

i(ℓ+n−1)φJℓ+n−1 (ξ)
]
, (2.33)
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with constant bi-spinors (2.7), look like the Bessel-type solution (2.6) of the free Dirac equation,
but with some modified phase (compare to Eq. (2.3))

Φ̃ (z, t) ≡ p||0z − E0t+ G (p0) = Φ (z, t) + G (p0)

and modified OAM ℓ + n, where ℓ is the OAM of the (initially) field-free EVB [45]. This
modified OAM arises naturally due to the coupling between the phase factors einϕ (from the
Jacobi-Anger expansion) and eiℓϕ (from the Bessel spectrum). In other words, the change of the
OAM is due to the intrinsic OOI between the OAM of the electron and the OAM-components
of the field. Such an orbit-orbit coupling enables one to interpret n as an additional OAM
due to the laser. Let us also note that the wave function (2.32) represents a superposition of
infinitely many modes Jℓ+n and Jℓ+n±1 (for a given ℓ), similar to the expression of plane-waves
as an infinite sum of spherical harmonics.

Apart from the OOI, the presence of both the non-zero SAM and OAM of the electron
gives rise to the intrinsic SOI in the laser-driven EVB, in a similar way as for field-free EVBs.
Equation (2.33) shows that the coupling between the spin and angular degrees of freedom is de-
scribed via the modes Jℓ+n±1 which appear with the coefficients A2 and A3 [cf. Eq. (2.7)] that,
in turn, are proportional to the square root of the intrinsic SOI-parameter,

√
∆. To remind the

reader, again, the coefficients A2 and A3 remain finite in both the non-paraxial (θ0 ̸= 0) and
relativistic (p0 ̸= 0) regimes. Whereas, in paraxial (θ0 → 0) and/or in non-relativistic (p0 → 0)
limits the SOI parameter vanishes and, therefore, only the “scalar” mode Jℓ+n contributes in
the Volkov-Bessel states (2.32)-(2.33). Indeed, the corresponding approximated wave function
in the paraxial domain takes the form

Ψscalar
ℓs (r, t) =

[
1 +

e

2 (kp0)
(γk) (γA)

] +∞∑
n=−∞

inJn (f0)
1√
2
A1e

i(Φ̃+(ℓ+n)φ)Jℓ+n (ξ) , (2.34)

which is the generalization of the scalar, field-free wave function (2.9). In nowadays experiments
[cf., e.g., Ref. [39]], the EVBs are produced only within the paraxial regime. Therefore, our
scalar wave function (2.34) is of particular interest to understand the outcome of experiments.

The exact Volkov-Bessel solution (2.32) of the Dirac equation (1.21) is the second main
results of this chapter. It describes the motion of relativistic electron vortex beams that are
driven by a linearly polarized plane-wave laser field with the vector potential A (ζ) of an
arbitrary shape. Our newly obtained solution generalizes, on one hand, the recently obtained
field-free relativistic electron vortex beams [cf. Eq. (2.6) and Ref. [45]], on the other hand, the
Dirac-Volkov solution (1.39) for the laser-driven plane-wave electrons (see also Ref. [68]). We
can easily demonstrate how to recover these known results if we consider appropriate limiting
cases. First, let us switch off the laser field by setting A = 0, which gives rise to the vanishing
function f0, f0 = 0 [cf. Eq. (2.31)]. Therefore, Bessel functions in the Volkov-Bessel solution
(2.32) can be replaced by their particular values

Jn (f0 = 0) =

{
1 , for n = 0

0 , for n ̸= 0
, (2.35)

such that the only non-zero contribution comes from the summand with the index n = 0.
This can be interpreted as “switching off the OOI” or “switching off the field”. Equations
(2.32) and (2.35) eventually lead to the wave function of the field-free EVB (2.6), as one would
expect. Second, let us now keep the field on and switch off the “twistedness” of the electron by
considering its plane-wave limit, i.e. by setting the opening angle θ0 = 0, transverse momentum
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p⊥0 = 0 and the longitudinal OAM ℓ = 0. For these vales, the intrinsic SOI-parameter ∆ = 0
and the Bessel functions in Eqs. (2.32)-(2.33) take the form

Jℓ+n (ξ = 0) =

{
1 , for n = 0 , ℓ = 0

0 , for n ̸= 0 , ℓ = 0
. (2.36)

We can, therefore, formally write

Ψℓs (r, t) −−−−−−−−−−−−−−−−→
twisted wave→plane-wave

[
1 +

e

2 (kp0)
(γk) (γA)

]
A1√

2
eiΦ̃ ,

that exactly coincides with the Dirac-Volkov solution (1.40) if we notice that A1 = up||0/
√
E0

(compare Eqs. (1.41) and (2.7) for θ0 = 0).
After we have constructed the Volkov-Bessel solutions and discussed their limiting cases,

we are now ready to employ them in order to calculate the 4-current of laser-driven relativistic
EVBs. We shall study how the intensity and the current distribution of the twisted electron
change within an external laser field in both non-paraxial and paraxial regimes.

2.2.2 4-current of field-affected EVBs

The Volkov-Bessel solutions (2.32) can be employed to calculate various different observables
related to the EVB-laser interaction. For instance, we can analyze the 4-current of the laser-
driven EVB by using Eqs. (2.32)-(2.33) to better understand how a linearly polarized laser
field affects an EVB with a given energy in both non-paraxial (∆ < 1) and paraxial (∆ → 0)
regimes. For this, we have to evaluate all the components of the 4-current

J µ
ℓs = (Ξℓs ,J ℓs) = Ψ̄ℓsγ

µΨℓs , (2.37)

where Ξℓs and J ℓs are the probability density and the three-dimensional current of the laser-
driven EVB, respectively. The presence of the electromagnetic field does not violate the (gen-
eral) cylindrical symmetry of the EVB propagation. Therefore, we shall make use of the cylin-
drical coordinates and express the current J ℓs as a sum of the longitudinal and transverse
components

J ℓs = J long

ℓs + J tr
ℓs , (2.38)

in analogy with field-free EVBs (2.27). Moreover, we expect that the Volkov-Bessel 4-current
(2.37) experiences a spin-splitting due to the intrinsic SOI, however, with some dynamic mod-
ification due to the laser field.

To calculate the 4-current (2.37), we write the Dirac conjugate of the wave function (2.32)
in the form

Ψ̄ℓs (r, t) =
+∞∑

n=−∞
i−nJn (f0) ψ̄ℓ+n,s (r, t)

[
1 +

e

2 (kp0)
(γA) (γk)

]
, (2.39)

where

ψ̄ℓ+n,s (r, t) =
e−iΦ̃

√
2

[
Ā1e

−i(ℓ+n)φJℓ+n (ξ)

+ Ā2e
−i(ℓ+n+1)φJℓ+n+1 (ξ) + Ā3e

−i(ℓ+n−1)φJℓ+n−1 (ξ)
]

(2.40)
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is the Dirac conjugate of the modified (field-free) EVB (2.33). In order to proceed analytically,
we make use of the summation rule

+∞∑
n,n′=−∞

Cn,n′eiΩ(n′−n) =
1

2

 +∞∑
n,n′=−∞

Cn,n′eiΩ(n′−n) +

+∞∑
n,n′=−∞

Cn′,ne
iΩ(n−n′)


=

+∞∑
n,n′=−∞

Cn,n′ cos
(
Ω
(
n− n′

))
, (2.41)

valid for an arbitrary Ω and coefficients Cn,n′ with the only constraint that they are symmetric
under the interchange n ↔ n′, i.e. Cn,n′ = Cn′,n. By substituting the wave functions (2.32)-
(2.33) and their conjugates (2.39)-(2.40) into Eq. (2.37) and utilizing the rule (2.41), we obtain
the following exact components of the 4-current:

Ξℓs (r, t) = J 0
ℓs (r, t) =

+∞∑
n,n′=−∞

Jn (f0) Jn′ (f0)

×
{

cos
[(
n′ − n

) (π
2

+ φ
)]

·

[(
1 − δ2

2

)
ϱℓsnn′ (ξ) −

δ2p||0

2E0
Jℓ+n (ξ) Jℓ+n′ (ξ)

]

+
δp⊥0

E0
cos
[
2s
(
n′ − n

) (π
2

+ φ
)

+ φ
]
· Jℓ+n (ξ) Jℓ+n′+2s (ξ)

}
. (2.42)

J (x)

ℓs (r, t) = −p⊥0

E0

+∞∑
n,n′=−∞

Jn (f0) Jn′ (f0)

× sin
[
2s
(
n′ − n

) (π
2

+ φ
)

+ φ
]
· Jℓ+n (ξ) Jℓ+n′+2s (ξ) , (2.43)

J (y)

ℓs (r, t) =
+∞∑

n,n′=−∞
Jn (f0) Jn′ (f0)

×
{
p⊥0

E0
cos
[
2s
(
n′ − n

) (π
2

+ φ
)

+ φ
]
· Jℓ+n (ξ) Jℓ+n′+2s (ξ)

− δ cos
[(
n′ − n

) (π
2

+ φ
)]

·
[
ϱℓsnn′ (ξ) +

p||0

E0
Jℓ+n (ξ) Jℓ+n′ (ξ)

]}
, (2.44)

J (z)

ℓs (r, t) =
+∞∑

n,n′=−∞
Jn (f0) Jn′ (f0)

×
{

cos
[(
n′ − n

) (π
2

+ φ
)]

·
[
p||0

E0

(
1 +

δ2

2

)
Jℓ+n (ξ) Jℓ+n′ (ξ) +

δ2

2
ϱℓsnn′ (ξ)

]

− δp⊥0

E0
cos
[
2s
(
n′ − n

) (π
2

+ φ
)

+ φ
]
· Jℓ+n (ξ) Jℓ+n′+2s (ξ)

}
. (2.45)
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Here

δ ≡ ωeA

(kp0)
(2.46)

is a dimensionless parameter which shows how strong or weak the laser is. Moreover,

ϱℓsnn′ (ξ) ≡
(

1 − ∆

2

)
Jℓ+n (ξ) Jℓ+n′ (ξ) +

∆

2
Jℓ+n+2s (ξ) Jℓ+n′+2s (ξ) (2.47)

looks like the probability density of the field-free EVB (2.18), again with modified OAMs ℓ+n
and ℓ + n′. It coincides exactly with the intensity of the EVB in free space if n = n′ = 0.
Equations (2.42)-(2.45) are the fourth main result of this chapter. They enable us to reveal
the influence of the electromagnetic field on the EVB dynamics and, therefore, to show how
the beam can be controlled and manipulated by the laser.

We can now calculate the components of the transverse current J tr
ℓs =

(
J (x)

ℓs ,J (y)

ℓs

)
to

construct also the radial J (r)

ℓs and the azimuthal J (φ)

ℓs currents. To this end, we use similar
relations (2.22) between the Cartesian and polar coordinates of the two-dimensional vector
J tr

ℓs and obtain

J (r)

ℓs (r, t) =

+∞∑
n,n′=−∞

Jn (f0) Jn′ (f0)

×
{
− p⊥0

E0
sin
[
2s
(
n′ − n

) (π
2

+ φ
)]
Jℓ+n (ξ) Jℓ+n′+2s (ξ)

− δ sinφ cos
[(
n′ − n

) (π
2

+ φ
)]

·
[
ϱℓsnn′ (ξ) +

p||0

E0
Jℓ+n (ξ) Jℓ+n′ (ξ)

]}
, (2.48)

J (φ)

ℓs (r, t) =
+∞∑

n,n′=−∞
Jn (f0) Jn′ (f0)

×
{
p⊥0

E0
cos
[
2s
(
n′ − n

) (π
2

+ φ
)]

· Jℓ+n (ξ) Jℓ+n′+2s (ξ)

− δ cosφ cos
[(
n′ − n

) (π
2

+ φ
)]

·
[
ϱℓsnn′ (ξ) +

p||0

E0
Jℓ+n (ξ) Jℓ+n′ (ξ)

]}
. (2.49)

Equations (2.42), (2.45), (2.48), (2.49) show that apart from the dimensionless transverse
coordinate ξ, the probability density and the cylindrical components of the three-dimensional
current depend on the longitudinal coordinate z, time t [cf. the expression for f0] and the
azimuthal angle φ, quite in contrast to the corresponding quantities of the field-free EVB
[cf. Eqs. (2.18),(2.21), (2.23), (2.24)]. The φ-dependency is due to the (polarization of the)
laser field and can be regarded as an influence of the Lorentz force upon the EVB. Whereas,
both the z- and t-dependencies arise from the laser phase ζ [cf. Eq. (2.29)]. The longitudinal
coordinate z defines the transverse plane where the EVB-laser interaction takes place at time
t. We should emphasize here that the EVB is delocalized both in the z-direction and in time,
while the laser beam, being delocalized in the xy-plane, can have a finite wave-packet spread
both along z and in time, as depicted in Fig. 2.3. The extension of such a wave packet becomes
infinitely large for a monochromatic laser beam.
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CHAPTER 2: Interaction of relativistic electron vortex beams with a laser light

We can now discuss the limiting cases of the 4-current of generalized, laser-driven EVBs
and show how to recover the expressions for 4-current of both the field-free EVBs and the
field-affected plane-wave electrons. To this end, first, we switch off the laser field by setting
A = 0 and take into account the particular values of the Bessel function (2.35). This results in

Ξℓs (Eq. (2.42))

J (x)

ℓs (Eq. (2.43))

J (y)

ℓs (Eq. (2.44))

J (z)

ℓs (Eq. (2.45))

J (r)

ℓs (Eq. (2.48))

J (φ)

ℓs (Eq. (2.49))

−−−−−−−−−−−−−→
switching off the field

ϱℓs00 = ρℓs (Eqs. (2.18), (2.47))

j(x)ℓs (Eq. (2.19))

j(y)ℓs (Eq. (2.20))

j(z)ℓ (Eq. (2.21))

j(r) (Eq. (2.23))

j(φ)

ℓs (Eq. (2.24)) .

We can also demonstrate that the spin-dependent 4-current of the Volkov-Bessel electron con-
tains, as a special case, the spin-degenerated 4-current of the Dirac-Volkov electron. Indeed, if
we switch off the “twistedness” of the electron beam, by setting ℓ = 0 and θ0 = 0, and employ
Eq. (2.36), we obtain

Ξℓs

J (x)

ℓs

J (y)

ℓs

J (z)

ℓs

−−−−−−−−−−−−−−−−→
twisted wave→plane-wave

1 − δ2

2

(
1 +

p||0

E0

)
0

−δ
(

1 +
p||0

E0

)
p||0

E0
+
δ2

2

(
1 +

p||0

E0

)
.

The expressions on the right-hand-side coincide with the known components of the 4-current
of laser-driven plane-wave electrons in the head-on scenario (compare with Eqs. (1.47)-(1.50)).
This becomes obvious if we take into account the definition of the parameter δ (2.46) and
notice that ϱℓsnn′ → 1 for ∆ → 0, p⊥0 → 0 and ℓ→ 0. For plane-wave electrons, moreover, the
spin-dependency is naturally eliminated in the “squared” modulus of the Dirac-Volkov wave
function due to the vanishing OAM ℓ. Generally, this is true only for such plane-wave electrons
that do not experience a self-interaction with their virtual photon field.

In our further discussion, we are interested in describing the profile of the field-affected
EVB for a relatively weak laser with |δ| ≪ 1, a condition that will be later specified in terms of
numbers. We can therefore sufficiently simplify the above formulae of the probability density
and current components of the EVB

Ξℓs (r, t) ≈
+∞∑

n,n′=−∞
Jn (f0) Jn′ (f0) cos

[(
n′ − n

) (π
2

+ φ
)]

· ϱℓsnn′ (ξ) , (2.50)

J (y)

ℓs (r, t) ≈ p⊥0

E0

+∞∑
n,n′=−∞

Jn (f0) Jn′ (f0) cos
[
2s
(
n′ − n

) (π
2

+ φ
)

+ φ
]

× Jℓ+n (ξ) Jℓ+n′+2s (ξ) , (2.51)
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J (z)

ℓ (r, t) ≈
p||0

E0

+∞∑
n,n′=−∞

Jn (f0) Jn′ (f0) cos
[(
n′ − n

) (π
2

+ φ
)]

× Jℓ+n (ξ) Jℓ+n′ (ξ) , (2.52)

J (r)

ℓs (r, t) ≈ −p⊥0

E0

+∞∑
n,n′=−∞

Jn (f0) Jn′ (f0) sin
[
2s
(
n′ − n

) (π
2

+ φ
)]

× Jℓ+n (ξ) Jℓ+n′+2s (ξ) , (2.53)

J (φ)

ℓs (r, t) ≈ p⊥0

E0

+∞∑
n,n′=−∞

Jn (f0) Jn′ (f0) cos
[
2s
(
n′ − n

) (π
2

+ φ
)]

× Jℓ+n (ξ) Jℓ+n′+2s (ξ) . (2.54)

Figure 2.4: Mirror-reflection symmetry of the
approximated probability density Ξℓs, trans-
verse J tr

ℓs = J (r)

ℓs er + J (φ)

ℓs eφ and longitudinal
J long

ℓs = J (z)

ℓs ez currents.

Note that the x-component of the cur-
rent (2.43) does not depend on the param-
eter δ and, therefore, remains unchanged
under |δ| ≪ 1. Furthermore, both the
(approximated) probability density Ξℓs and
the current J ℓs = J tr

ℓs + J long

ℓs of the
laser-driven EVB possess a mirror-reflection
symmetry with respect to the y-axis, i.e.
Ξℓs (x) = Ξℓs (−x) and J ℓs (x) = J ℓs (−x),
as schematically illustrated in Fig. 2.4. This
symmetry can be interpreted classically as a
manifestation of the “standard” Lorentz force
F = e (E + v ×B) caused by the laser field
which is applied along the y-axis. Here v is
the electron velocity, the electric E and mag-
netic B fields are defined via Eq. (1.18) with
A0 = 0. To prove the mirror-reflection sym-
metry, that arises despite the complicated az-
imuthal dependence of the EVB profile, we only need to make the replacement φ → π − φ in
Eqs. (2.50), (2.52)-(2.54) and consider the following trigonometric identities:

cos
[(
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2
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(
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−
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)]

=
+∞∑
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2s
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) (π
2
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.

Here the function gn,n′ combines all the terms in Eq. (2.53) that do not depend on the azimuthal
angle φ. Moreover, since the indices n and n′ run from −∞ to +∞, the function gn′,n can
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CHAPTER 2: Interaction of relativistic electron vortex beams with a laser light

be replaced by gn,n′ under the summation sign. In the following, we will explicitly exhibit the
mirror-reflection symmetry of the EVB profile with regard to the y-axis when we depict the
electron intensity distribution in the transverse plane perpendicular to the EVB propagation
axis. In addition, a similar symmetric azimuthal dependence appears also in the profile of
laser-driven twisted atoms [82,83], as we discuss in the second part of this thesis.

The 4-current components (2.50)-(2.54) can be constructed also from the Volkov-Bessel
states (2.32)-(2.33) if we approximate them via

Ψℓs (r, t) ≈
+∞∑

n=−∞
Ψ̃ℓ+n,s (r, t) , (2.55)

where we introduce the wave function

Ψ̃ℓ+n,s (r, t) ≡ inJn (f0)ψℓ+n,s ,

with ψℓ+n,s defined by Eq. (2.33). If we now utilize this approximated form of Ψℓs we can find
an “integral of motion” for laser-driven EVBs which also explains our motivation to consider
the weak-field regime 1. Indeed, we can easily demonstrate that the components Ψ̃ℓ+n of
the decomposition (2.55) are the eigenstates of the longitudinal “total” angular momentum
operator T̂z [cf. Eq. (2.12)] with

L̂z = −i∂/∂φ

and

Σ̂z =
1

2
diag (σz, σz)

representing the longitudinal OAM and SAM operators of the electron, respectively. The
corresponding eigenvalues of the TAM operator will then be ℓ + n + s, i.e. the sum of the
electron and the laser OAMs and the electron SAM along the z-axis. Thus, we can write

T̂zΨ̃ℓ+n,s = (ℓ+ n+ s) Ψ̃ℓ+n,s ,

derivation of which is very similar to the analogous calculations for field-free EVBs (see Eqs.
(2.12)-(2.14)). In the paraxial regime, moreover, we shall use the scalar Volkov-Bessel state
(2.34) and express it in the following approximated form

Ψscalar
ℓs (r, t) ≈

+∞∑
n=−∞

Ψ̃scalar
ℓ+n,s (r, t) , (2.56)

with the decomposition components

Ψ̃scalar
ℓ+n,s (r, t) ≡ inJn (f0) e

iG(p0)ψscalar
ℓ+n,s (r, t) .

Here the wave function ψscalar
ℓ+n,s looks like the wave function of the field-free scalar EVB (2.9),

but with the modified OAM ℓ + n. One can readily verify that the components Ψ̃scalar
ℓ+n,s are

simultaneously the eigenstates of the OAM and SAM operators

L̂zΨ̃
scalar
ℓ+n,s = (ℓ+ n) Ψ̃scalar

ℓ+n,s , Σ̂zΨ̃
scalar
ℓ+n,s = sΨ̃scalar

ℓ+n,s , (2.57)

1Examination of the strong-field regime deserves a specific attention as it would require a more complicated
“integral of motion”.
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2.2. Laser-driven relativistic electron vortex beams

Figure 2.5: Spin-, time- and azimuthal-angle-dependent distributions of the probability density
of laser-driven non-paraxial EVB (in arbitrary units of the same scale). The s = ±1/2 spin
states are indicated by “+” (solid curves) and “–” (dashed curves), respectively. At t = 0 fs
and t = 6.9 fs the profile corresponds to the field-free propagation of EVB. The parameters of
the laser pulse and the EVB are given in the text. The variation of colors at the snapshots is
the same as for Fig. 3(c).
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CHAPTER 2: Interaction of relativistic electron vortex beams with a laser light

again, similar to those for the field-free EVB (2.15). Finally, when we switch off the laser field,
from Eqs. (2.56) and (2.57), we get (2.14) and (2.15) for non-paraxial and paraxial regimes,
respectively.

We are now ready to investigate the spatiotemporal characteristics of the EVB profile. So
far, we kept the form of the vector 4-potential Aµ general that appears in the argument f0 of
the Bessel function in Eqs. (2.50)-(2.54) (see also Eq. (2.31)). We shall, however, specify the
shape of the applied laser field in order to carry out numerical simulations. To this end, as
already mentioned above, we examine a few-cycle Gaussian pulse [cf. Fig. 2.3]

A = A0e
−ζ2/a2 cos ζ ,

where A0 is a constant amplitude of the potential and a is a dimensionless waist size of the
laser beam. For this specific waveform, f0 can be integrated exactly

f =
ep⊥0A0a

√
π

4 (kp0)
e−a2/4

[
erf

(
i
a

2
+
ζ

a

)
+ erf

(
i
a

2
− ζ

a

)]
,

where

erf (Z) =
2√
π

∫ Z

0
e−τ2dτ

is the so-called Gauss error function [64]. Furthermore, for the sake of definiteness and also
to fulfill the condition |δ| ≪ 1, we consider a laser pulse with the electric field amplitude
E = 108 V/cm, central angular frequency ω = 1016 Hz and the waist size a = 9, corresponding
to the pulse duration τ ≈ 5.5 fs, number of cycles N ≈ 5 and the intensity I ≈ 1.3 ·1013 W/cm2

[cf., e.g., Ref. [84]]. We also consider an EVB in the non-paraxial regime with the OAM ℓ = 3,
the opening angle θ0 = π/4 and the kinetic energy 817.4 keV corresponding to the intrinsic
SOI parameter ∆ = 0.3, as discussed in [45] (see also the caption of Fig. 2.1). For these
values, |δ| . 10−4 and, therefore, we can replace in very good approximation expressions
(2.42), (2.45), (2.48), (2.49) by the simpler form (2.50), (2.52), (2.53), (2.54), respectively.
Moreover, the terms with the laser OAM greater than n = n′ = 7 no longer contribute in
Eqs. (2.42)-(2.50).

After we have chosen the parameters of the “EVB + laser” system we return to the “head-
on” scenario, in which the free EVB propagates along the positive direction of z and collides
with the laser pulse, localized both in z and in time t [cf. Fig. 2.3]. For this collision, we
choose the initial condition such that the laser pulse is switched on at t = 0 in the transverse
xy-plane at z0 = −1100 nm. This means that at t ≤ 0, the EVB is described by means of
the field-free state (2.6) [cf. Figs. 2.5(a), 2.6(a1-a3), 2.7(a)]. When the laser is switched on the
EVB evolves within the electromagnetic field and propagates through the peak of the laser
pulse at t ≈ 3 fs. After the pulse passes the plane z0, the EVB still remains affected within the
next ∼ 1.4 femtoseconds. This period, in principle, is enough in order to reveal the influence
of the field on the dynamics of the EVB profile. Figures 2.5, 2.6 and 2.7 display both the
spin- and azimuthal-dependent distributions of the probability density, the transverse and the
azimuthal currents of the laser-driven EVB, respectively. The snapshot of these quantities are
depicted as a function of the dimensionless transverse coordinate ξ for selected time intervals.
The dependence on the spin can be clearly seen in all figures due to the non-paraxiality of
the relativistic EVB propagation, i.e. as a result of the intrinsic SOI in EVB both in the
presence and absence of the laser (compare dashed and solid lines as well as the left and right
density plots and streamlines). The dependence of the probability density and the transverse
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2.2. Laser-driven relativistic electron vortex beams

Figure 2.6: Representation of the spin-, time- and the azimuthal-angle-dependent transverse
current of laser-driven non-paraxial EVB, J tr

ℓs =
(
J (x)

ℓs ,J (y)

ℓs

)
=
(
J (r)

ℓs ,J (φ)

ℓs

)
. Streamlines and

vector plots are generated to show the vector field
(
J (x)

ℓs ,J (y)

ℓs

)
as a function of dimensionless

coordinates p⊥0x/~ and p⊥0y/~ (the beam propagates toward the reader). Thickness of vectors
increases within increasing absolute value of the transverse current |J tr

ℓs|. Figures (a3), (b3),
(c3) and (d3) show the distribution of |J tr

ℓs| as a function of the dimensionless transverse
coordinate ξ (in arbitrary units of the same scale). The s ± 1/2 spin states are indicated by
“+” (solid curves) and “−” (dashed curves), respectively. Moreover, the parameters of electron
and laser beams are the same as for Fig. 2.5 and are given in the text.
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CHAPTER 2: Interaction of relativistic electron vortex beams with a laser light

Figure 2.7: Spin-, time- and azimuthal-angle-dependent distributions of the azimuthal current
of laser-driven non-paraxial EVB (in arbitrary units of the same scale). Solid and dashed
curves indicate the spin-up and spin-down states, respectively

(azimuthal) current on the azimuthal angle manifests itself in the profile of the EVB due to
the electron-laser coupling [cf. Figs. 2.5(b-d), 2.6(b-d), 2.7(b-d) and Eqs. (2.50), (2.53), (2.54)].
This φ-dependency is incorporated via the shift of the center of the EVB with respect to the
center of the (initially) field-free EVB both along the positive (Figs. 2.5(b), 2.6(b1,b2)) and
negative (Figs. 2.5(c,d), 2.6(c1,c2,d1,d2)) directions of the y-axis. Overall, Figs. 2.5(b-d) and
2.6(b1,b2,c1,c2,d1,d2) show that the cylindrical symmetry of the probability density and the
transverse current remains the same also in the presence of the laser field, as we expected. Only
the “center” of this symmetry is shifted along the direction of the field polarizaton (y-axis), due
to the “standard” Lorentz force. For t = 6 fs, the numerical estimate of this shift gives ∼ 0.009
nm which is the 19.9% of the beam width ~ξ0/p⊥0. Here we have taken ξ0 = 20 for which
the distribution of the electronic probability density and the transverse current is effectively
zero. Moreover, such a shift causes a non-zero probability for finding an electron at the center
(ξ = 0) of the initially field-free beam [cf. Figs. 2.5(c,d), 2.6(c,d), 2.7(c,d)]. Finally, at t = 6.9
fs the EVB evolves back to the field-free EVB and, therefore, obtains the same distribution of
the probability density, transverse and azimuthal currents as for t = 0 fs [Fig. 2.5(a), 2.6(a),
2.7(a)].

Until now, we have discussed only how the laser pulse affects the dynamics of the relativistic
EVB in the non-paraxial regime. Since the first EVBs [36, 39, 40, 85] have been constructed
for electrons with energies ∼ 200 − 300 keV and opening angles θ0 ≤ 20 mrad, which are
within the paraxial regime, we find desirable also to discuss the influence of the laser field
onto the EVB dynamics for these – nowadays available – experimental parameters. This
would motivate the experimentalists to consider the EVB-laser interaction and to reveal the
influence of the laser light upon many various parameters of the twisted electron beam. In
particular, we again examine the “head-on” scenario for the propagation of electrons and the
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Figure 2.8: Time- and azimuthal-angle-dependent distribution of the probability density of
laser-driven paraxial EVB (in arbitrary units of the same scale). At t = 0 fs and t = 6.5 fs
the profile corresponds to the free motion of EVB. The variation of colors in snapshots is the
same as for Fig. 3(c) and the parameters of the “EVB + laser” system are given in the text.

Figure 2.9: Spin-, time- and azimuthal-angle-dependent distributions of modulus of the trans-
verse current of laser-driven paraxial EVB (in arbitrary units of the same scale). Solid and
dashed curves indicate the spin-up and spin-down states, respectively. Parameters of both the
electron and laser beams are the same as for Fig. 2.8 and are given in the text.
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laser beam. If we consider an EVB with the OAM ℓ = 3, opening angle θ0 = 20 mrad and the
kinetic energy 300 keV, corresponding to the SOI parameter ∆ = 0.0015, and the few-cycle
laser pulse with the same parameters as taken before, the probability density of the EVB is
no longer spin-dependent, as shown in Fig. 2.8 and in contrast to the non-paraxial regime.
However, the presence of the field gives rise to a shift of the center of EVB with respect to the
center of the initially free paraxial beam (compare the density plots in Figs. 2.8a and 2.8d).
For t = 5.5 fs, this shift is ∼ 0.02 nm which is the 20% of the full width at half maximum
diameter of the EVB [86], thus making it accessible for measurement. Additional analyzes of
the current of laser-driven paraxial EVBs, J ℓs, show that it has a similar spin-independent
behavior, as the probability density. The dominant contribution in the paraxial domain comes
from the longitudinal component of the current since p⊥0/p||0 ≪ 1 (compare Eqs. (2.52) with
Eqs. (2.53), (2.54)). However, the transverse current still exhibits a spin-dependent dynamics,
as demonstrated in Fig. 2.9, that vanishes in the plane-wave limit of electron, when p⊥0 → 0
and ℓ→ 0.

The relativistic EVB as a whole is spatially shifted along the (linear) polarization direction
of the laser field, while the overall transverse structure of the (shifted) beam remains the same.
Since the field oscillates in our case on a subfemtosecond time scale, the spatial shift of the
beam center performs oscillations with a similar frequency. Additional computations show
that these oscillations occur for all values of the (longitudinal) OAM ℓ and vanish only in the
plane-wave limit θ0 = 0 and ℓ = 0. Furthermore, the interaction with the laser pulse may lead
to a pronounced probability to detect electrons at the (initially dark) center of the incident
EVB (as seen at ξ = 0 in Figs. 2.5(c,d), 2.6(c,d), 2.7(c,d), 2.8(c) and 2.9(b)). Both the shift of
the beam center and the pronounced probability on the geometrical axis of initially field-free
electrons remain rather universal for both the non-paraxial and paraxial regimes, as we predict
in our theory. Altogether, such a behavior of the beam can be interpreted classically: the EVB
experiences the “standard” Lorentz force caused by a laser field, as already mentioned before.
As a consequence of this Lorentz-like behavior, one can control and manipulate EVBs with
all the experimental techniques which have been developed over the years for other kinds of
(localized) electron beams.

2.3 Summary

In this chapter, we have examined quite in detail vector Bessel beams of relativistic elec-
trons – electron vortex beams – that were constructed recently both in the absence [45] and
presence [78] of an electromagnetic field. We have shown that the field-free EVBs carry a well-
defined TAM along their propagation direction which represents the sum of the longitudinal
SAM and OAM of the electrons. These two degrees of freedom couple to each other and give
rise to the intrinsic SOI inside the EVB. We have calculated the components of the 4-current
of field-free EVBs and demonstrated the fine spin-dependent splitting of distributions of elec-
tronic probability density and transverse current due to the intrinsic SOI. Furthermore, we
have examined a head-on collision of two feasible beams, namely the relativistic EVB and the
few-cycle laser pulse, to show how the intrinsic SOI is modified inside the field. To do so, we
have generalized the free EVB states (2.6) [cf. [45]] to the laser-driven Volkov-Bessel states
(2.32) [cf. [78]] by utilizing the Dirac-Volkov solution (1.39). Apart from the intrinsic SOI, our
solutions exhibit the intrinsic OOI between the electron OAM and OAM-components of the
plane-wave laser. Both the SOI and (the infinite summation of) the OOI contribute in the
spin- and laser-dependent distribution of the 4-current of field-affected EVBs. By calculating

48



2.3. Summary

the components of this 4-current, we have shown the shift of the center of the laser-driven
EVB, with respect to the center of the initially field-free EVB. We have analyzed this shift
both in the non-paraxial and paraxial regimes, and we have seen that it can give rise to a finite
probability to detect an electron at the center of the initially free EVB. Such a pronounced
probability and the shift are unavoidably accompanied with an azimuthal dependence of the
electron intensity and can be important observables that manifest themselves in the interac-
tion of the twisted electrons with laser pulses. We believe that recent advances in electron
microscopy [43,87–90] will enable one to observe the above introduced effect by employing, for
instance, the so-called pump-probe experiments.
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Part II

Angular momentum representation
of laser-driven two-level atoms
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In an effort to extend the study of electron vortex beams to another type of matter vortex
beams, in the second part of the thesis, we create a theoretical construct of Bessel beams of
two-level atoms that are driven by a laser light. To demonstrate this construction, we divide
the current part into two chapters.

In chapter 3, we describe the semi-classical coupling of a neutral two-level atom with a laser
field in a general case when the atom is not at rest but possesses a momentum which forms
an arbitrary angle with respect to the wave vector of the field. In section 3.1, we describe the
Hamiltonian of this “atom + field” system. Particularly, in subsection 3.1.1, we first define
the atomic external and internal variables to describe the quantum dynamics of electron(s)
inside the atom and the semi-classical motion of the atomic center-of-mass, respectively. Next,
in subection 3.1.2, we introduce the atom-field Hamiltonian in the long wave approximation
(LWA) where we assume that the wavelength of the laser field is much larger than atomic
sizes. In subsection 3.1.3, we also define the electric field which depends both on space- and
time-coordinates and resonantly drives the two-level atom. For such an atom, in section 3.2,
we make an Ansatz for the wave function of the “atom + field” system and factorize it to
separate the dependence upon the external and internal coordinates in the LWA. In order to
describe probability amplitudes of laser-driven two-level atoms, in the last section of chapter 3,
we find solutions to the space- and time-dependent Schrödinger equation. To do so, we employ
the same mathematical method as it is done for the Dirac equation to describe the dynamics
of laser-driven electrons.

In chapter 4, we construct Bessel beams of laser-driven two-level atoms. For this purpose,
we superimpose the wave function of plane-wave atoms, obtained in the previous chapter,
with well-defined amplitudes corresponding to the typical monoenergetic distribution of atoms
in Bessel beams. Particularly, we define the wave function of such atomic beams in the so-
called collinear- (subsection 4.1.1) and crossed-beam scenarios (subsection 4.1.2) where the
atomic and laser beams correspondingly propagate parallel or perpendicular to each other.
Furthermore, we show that Bessel beams of atoms carry non-zero OAM along their direction
of propagation. This longitudinal OAM represents a new, fundamental degree of freedom for
atom beams, in analogy with electron and optical vortex beams. Finally, in section 4.2, we
spatially and temporally characterize the atomic Bessel beams and discuss the influence of the
resonantly driving laser light on the beam profile.

We conclude each chapter with a summary. Moreover, notations for physical quantities do
not coincide with those of the first part of the thesis.
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Chapter 3

Semi-classical coupling of two-level
atoms to a laser field

A great deal of my work is
just playing with equations
and seeing what they give.

P.A.M. Dirac

The coherent interaction of a two-level atom with a radiation field has been explored since
the early days of quantum optics [91–94]. Nowadays, this atomic coherence is known as an
effective tool for achieving control about (atomic and molecular) samples [95–97] and it can be
utilized to examine various effects with atomic beams, such as generation of entanglement [98],
investigation of the optical force [99,100] or exhibition of vortices [101–103] in beams. In order
to examine how this coherent control can be exploited also for tuning and guiding atomic
Bessel beams, in the following, we shall describe the coherent coupling of a moving atom to a
laser field that depends both on spatial and temporal coordinates. To do so, in this chapter we
solve the Schrödinger equation for laser-driven two-level atoms by applying the method known
from the Dirac theory of the electron-field interaction. Such a solution enables one to enroll
the directions of linear momenta of both atom and laser beams in the space-time-dependent
wave function that adequately describes the “atom + laser” system. In addition, we here
also assume that the external field of the laser is a classically “given” one, i.e. the number of
particles is conserved and no quantization of the field is considered. Moreover, we shall work
in the single-particle approximation meaning that the atoms inside the beam do not couple
with each other, thus, enabling us to use the terms “atom” and “atom beam” equivalently.

To describe the interaction of a two-level atom with a classical radiation field and to start
our derivations, let us first characterize the field and the interaction Hamiltonian between the
atom and this field. We hereby assume that the atom has the (rest) mass m, a dipole moment
d, and that it moves as a whole with constant momentum p along some given direction.
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3.1 Hamiltonian of the “atom + laser” system

Here we review and comment upon a few basic concepts regarding atom-laser interaction that
is useful for our further discussion.

3.1.1 External and internal atomic variables

For the atom, a clear distinction must be made between the external, that characterize the
motion of the center-of-mass of the atom, and the internal variables, that describe the internal
dynamics of the atom in its rest frame. The separation of these two types of variables is well
known for one-electron atoms, such as hydrogen and alkali metal atoms. Let re and rN be the
positions of the electron and the nucleus, with mass me and mN , and linear momenta pe and
pN , respectively. We introduce new, relative or internal variables (see, e.g., [94]) r̃ = re − rN ,

p̃ =
m̃

me
pe −

m̃

mN
pN ,

(3.1)

with r̃ and p̃ being the electron’s relative coordinate and momentum with regard the nucleus.
We also introduce center-of-mass or external variables{

r =
mere +mNrN

m
,

p = pe + pN ,
(3.2)

where r and p are the atom center-of-mass coordinate and momentum, respectively. Moreover,
m = me +mN is the total mass of the atom and m̃ = memN/m is the so-called reduced mass.

The Hamiltonian of the two particles interacting by a potential V , that depends only on
the distance between them, has the form

Hatom =
p̂2
e

2me
+

p̂2
N

2mN
+ V (|r̂e − r̂N |) ,

where “hat” means operators of the corresponding variables. In the coordinate representation,
i.e. when p̂e = −i~∇e = −i~∂/∂re and p̂N = −i~∇N = −i~∂/∂rN , the Hamiltonian reads

Hatom =
p̂2
e

2me
+

p̂2
N

2mN
+ V (|re − rN |) . (3.3)

We can further simplify this Hamiltonian by employing the relative (3.1) and center-of-mass (3.2)
coordinates. The outcome is the following

Hatom =
p̂2

2m
+

ˆ̃p2

2m̃
+ V (|r̃|) , (3.4)

where the relative and center-of-mass momentum operators are expressed via p̂ = −i~∇ =
−i~∂/∂r and ˆ̃pe = −i~∇̃ = −i~∂/∂r̃, respectively. We can clearly see that the coordinates in
Hamiltonian (3.4) are now separated, in contrast to the form (3.3). Such a separation is very
important in order to find analytical solutions to the corresponding Schrödinger equation by
factorizing the wave function, as we do below. Although we here consider one-electron atoms,
the separation of coordinates can be extended also to many-electron atoms if interactions

53



CHAPTER 3: Semi-classical coupling of two-level atoms to a laser field

depend only on the relative positions of particles [104]. In addition, the new variables, Eqs. (3.1)
and (3.2), obey the same commutation relations as re and rN , i.e.[

r̃i, ˆ̃pj

]
= i~δij , [ri, p̂j ] = i~δij , {i, j} = {1, 2, 3} ,

where

δij =

{
1, i = j

0, i ̸= j

is the Kronecker symbol.
The Hamiltonian (3.4) describes a two-particle system without an external field. In the

next subsection, we “switch on” the laser field and examine how this Hamiltonian is modified
in the presence of an external field.

3.1.2 Atom-field interaction Hamiltonian in the long wave approximation

So far, we have discussed the Hamiltonian of the one-electron atom without external influences.
From now on, we are interested in the dynamics of such an atom within the laser field with
the scalar U and vector potentials A. To modify the Hamiltonian (3.3), we follow the minimal
coupling prescription and replace the operators p̂e and p̂N with p̂e − qeA and p̂N − qNA,
respectively (see also the subsection 1.2.1). Here qe and qN are the electron and nucleus charges,
respectively, which for the neutral (one-electron) atom are nothing but qN = −qe = |e|.

In the semi-classical theory, the quantum dynamics of the atom is driven by the external
field but this “motion” does not re-act back upon the field as this would require a quantization
of the electromagnetic field [91]. Therefore, the Hamiltonian of the “atom + laser” system
does not contain a term that describes only the field such that the Hamiltonian of an atom in
the classical field takes the form

Hatom+laser =
1

2me
(pe − qeA (re, t))

2 +
1

2mN
(pN − qNA (rN , t))

2

+ eU (re, t) + eU (rN , t) + V (|re − rN |) . (3.5)

Formally, we can write

Hatom+laser = Hatom +Hint ,

where Hatom is given by Eq. (3.3) and the interaction Hamiltonian reads

Hint = − qe
me

A (re, t) p̂e −
qN
mN

A (rN , t) p̂N +
q2eA

2 (re, t)

2me
+
q2NA2 (rN , t)

2mN

in the Coulomb gauge (∇e · A (re) = 0, ∇N · A (rN ) = 0) and for a free propagating field,
i.e. in the absence of external charges (U = 0). If we consider also single photon transitions,
moreover, last terms quadratic in A can be ignored [94]. Thus, for the neutral one-electron
atom, that couples to a classical electromagnetic field, the interaction Hamiltonian reads

Hint = |e|
(
A (re, t) p̂e

me
− A (rN , t) p̂N

mN

)
,

a form which can be further simplified if we restrict ourselves to the optical frequencies of the
electromagnetic wave.
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In our further examination, we are interested in such a regime where the wavelength of the
field is very large compared to the size of the atom. Such an approximation is well-justified
especially for optical range of frequencies. In this long wave approximation (LWA), called also
dipole approximation, we may neglect the variation of the field over distances of the order of
atomic sizes and replace the vector potential at rj = {re , rN} with its value taken at the
center-off-mass position r

A (rj) = A (r + rj − r) ≈ A (r) . (3.6)

Thence, the interaction Hamiltonian can be re-written as

Hint ≈ |e|A (r, t)

(
p̂e

me
− p̂N

mN

)
=

|e|
m̃

A (r, t) · ˆ̃p , (3.7)

where the vector potential is a function of the center-of-mass position of the atom. In LWA,
one can perform a unitary transformation on the atom-field Hamiltonian to re-write Hint in a
more familiar form [105,106]

Hint = −d ·E (r, t) , (3.8)

which describes the interaction of the electric dipole moment d = − |e| r̃ of the atom (being
an internal operator) with the electric field E (r, t) (being an external classical field taken
at the center-of-mass position of the atom). As we learn below, the interaction Hamiltonian
in its form (3.8) and the unperturbed atomic Hamiltonian in its form (3.3) would enable us
to factorize the wave function of the “atom + laser” system. Before we proceed with our
calculations, in the next subsection, we shall characterize the classically given electromagnetic
field, by considering a linearly polarized monochromatic plane-wave field.

3.1.3 Characterization of the classical field

We consider the classical electric field of laser beam as a monochromatic plane-wave

E = ε ei(k·r−ωt) , (3.9)

with a constant electric-field amplitude ε, angular frequency ω and wave vector k ≡ kn, which
satisfies Maxwell’s equations, and where the unit vector n defines the propagation direction of
the wave [67, 107]. While, in general, E and ε are both complex-valued vectors in Eq. (3.9),
the physically relevant electric field is given by the real part, ℜ(E), and is for transverse waves
always perpendicular to its propagation, i.e. n · ε = 0. For our further discussion, moreover,
it is useful to introduce a set of real and mutually orthogonal unit vectors (ϵ1 , ϵ2 ,n), and to
re-write the field amplitude in terms of these vectors as

ε = ϵ1 ε0 + ϵ2 ε
′
0 ,

with the two (in general complex) constants ε0 and ε′0.
Most generally, the laser field amplitude ε in Eq. (3.9) describes an elliptically polarized

plane wave; as a special case, this definition includes linearly polarized waves if the complex
constants ε0 and ε′0 fulfill proper relations. We choose ε′0 = 0 which corresponds to a linearly
polarized field in ϵ1 direction

E (r, t) = ϵ1 ε0 e
i(k·r−ωt)
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Figure 3.1: Collinear-beam (a) and crossed-beam (b) scenarios for the interposition of linearly
polarized plane-wave laser and atomic Bessel beams. Red sketches indicate directions of the
field polarization and the wave vector. Blue sketches indicate the momentum distribution of
the atomic Bessel beam. A twisted two-level atom driven by the laser field is a superposition
of the orthonormalized waves (3.39) (a) or (3.41) (b) with a fixed conical momentum spread
p0 = const, polar angle θ0 and the azimuthal phase factor eiℓϕ.

with the (real) amplitude ε0. Therefore, for this wave the relevant electric field is given by

E = ϵ1ε0 cos ζ = ε cos ζ , (3.10)

where ζ ≡ k · r − ωt is the phase of the plane-wave laser independent of its particular po-
larization properties. We here should remind the reader that the field is evaluated at the
center-of-mass position r ≡ (x, y, z) of the atom.

The field and the atom propagation directions, in principle, can be chosen arbitrarily which
will form the geometry of the “atom + laser” system. To describe the linearly polarized
laser field we specify this geometry already in this subsection. We examine two scenarios
that depend on the interposition of propagation directions of laser and atomic beams. These
are the so-called collinear- and crossed-beam scenarios for which the laser and the atomic
beams correspondingly propagate parallel or perpendicular to each other [cf. Figure 3.1]. We
choose the z-axis along the propagation direction of the atomic beam. In collinear-beam
scenario, moreover, we chose the x- and z-axes directed along the polarization ϵ1 and laser
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beam propagation, respectively. In contrast to this, in crossed-beam scenario, we restrict
ourselves with the polarization along z-axis and consider propagation in xy-plane, where the
x-axis is declined from the laser propagation direction under ϕL angle.

With the distinction of these collinear- and crossed-beam scenarios the laser field (3.10)
and the phase ζ obtain the form

E(||) =
(
ε cos ζ(||), 0, 0

)
, ζ(||) = k||z − ωt , (3.11)

E(⊥) =
(
0, 0, ε cos ζ(⊥)

)
, ζ(⊥) = k⊥r cos (ϕL − φ) − ωt , (3.12)

respectively, with a transverse coordinate r =
√
x2 + y2 of the atomic center-of-mass.

In the following, we assume that the field resonantly excites only one level of the atom such
that the atom can be considered as a two-level system within a good approximation. We also
define the Hamiltonian of such a system and determine the atomic states that are driven by
the laser field (3.11) or (3.12).

3.2 Solution of the Schrödinger equation in the center-of-mass
frame of the atom

In this section, we consider a beam of two-level atoms that interact with a monochromatic
plane-wave laser, polarized linearly. For such atoms, we take into account that the de’ Broglie
wavelength of the atom is much smaller than the laser wavelength in order to utilize the so-
called eikonal approximation. This will allow us to reduce both the space- and time-dependent
Schrödinger equation for probability amplitudes of atomic levels to a system of coupled, first-
order linear differential equations. We assume, moreover, that the laser field resonantly drives
the atoms in order to employ the rotating wave approximation and to construct exact analytical
solutions for such “atom + laser” systems.

3.2.1 Schrödinger equation in the center-of-mass frame of the atom

We consider a beam of neutral one-electron atoms in the single-particle approach, i.e., inside
the beam, we neglect the interaction of atoms with each other. For such atom(s), we re-write
the atomic Hamiltonian (3.3) in the form

Hatom =
p̂2

2m
+H0 , (3.13)

where p̂2

2m denotes the kinetic energy (operator) as associated with the center-of-mass motion,
whereas

H0 ≡
ˆ̃p2

2m̃
+ V (|r̃|)

refers to the internal “motion” of the atom and describes the quantum dynamics of the electron
in the field of a positively charged “core”. If we consider a hydrogen atom, for instance, the
interaction potential V is nothing else but the Coulomb potential

VCoulomb (|r̃|) = − e2

|r̃|
= −e

2

r̃
.
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Such a potential leads to an analytically exact solution of the corresponding Schrödinger equa-
tion for the Hamiltonian H0 [c.f., e.g., [93,108]]. In contrast to hydrogen atom, the Schrödinger
equation for alkali-metal atoms can be solved only numerically or by approximated methods
[cf., e.g., [93]].

Next, we “switch on” the external monochromatic electromagnetic field and assume that
the field frequency is nearly in resonance with the atomic transition frequency between two,
upper and lower levels. This means that the atom can be described as a two-level system
within a good approximation. Therefore, the internal dynamics of such a two-level atom can
be characterized via the Hamiltonian

H0 = Ea |a⟩ ⟨a| + Eb |b⟩ ⟨b| , (3.14)

where the two state vectors |a⟩ and |b⟩ denote the upper and lower levels of the atom and are
supposed to be eigenstates of the Hamiltonian H0:

H0 |a⟩ = Ea |a⟩ ,

H0 |b⟩ = Eb |b⟩ .

Here Ea and Eb are the energies of upper and lower states, respectively.

Thus, for two-level atoms, that are driven by a monochromatic field, the “atom + field”
Hamiltonian (3.5) takes the form

Hatom+laser =
p̂2

2m
+ Ea |a⟩ ⟨a| + Eb |b⟩ ⟨b| +Hint , (3.15)

where the Hint is given via Eq. (3.8) to characterize (as usual) the minimal coupling between
atom and field in the LWA. Making use of the completeness relation

|a⟩ ⟨a| + |b⟩ ⟨b| = 1

for a two-level system, the interaction Hamiltonian of the atom with a linearly polarized wave
can be written in the form

H (||)
int = −~ΩRx

(
eiϕdx |b⟩ ⟨a| + e−iϕdx |a⟩ ⟨b|

)
cos ζ(||), (3.16)

H (⊥)

int = −~ΩRz

(
eiϕdz |b⟩ ⟨a| + e−iϕdz |a⟩ ⟨b|

)
cos ζ(⊥) (3.17)

for collinear- and crossed-beam scenarios, respectively. In accordance to these scenarios, here

ΩRx =
|e ⟨b |x̃| a⟩| ε0

~
, ΩRz =

|e ⟨b |z̃| a⟩| ε0
~

denote the Rabi frequencies that describe the coupling strength of the atom either with
the x- (3.11) or z-polarized (3.12) field, respectively. With this distinction for the Rabi
frequencies, the exponentials ϕdx and ϕdz denote the phases of the dipole matrix elements
e ⟨b |u| a⟩ = |e ⟨b |u| a⟩ |eiϕdu where u = x̃, z̃. Here both x̃ and z̃ refer to the internal variables,
Eq. (3.1), of the atom and are the electron’s relative coordinates with regard to the nucleus.
The Rabi frequencies, moreover, arise naturally as non-diagonal matrix elements of the atom
dipole moment if we express the interaction Hamiltonian in the {|a⟩ , |b⟩} basis. This, in turn,
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makes the interaction Hamiltonian dependent on atomic states |a⟩, |b⟩ and the center-of-mass
coordinate of the atom 1.

For such an effective factorization of the interaction Hamiltonian, and as described in many
texts before [91–93], the two-level atom undergoes Rabi oscillations between its lower and
upper states with frequency ΩRx or ΩRz , quite analogue to a spin-1/2 system in an oscillating
magnetic field [109]. In contrast to the standard derivation (see, for example, Ref. [91]),
however, the interaction Hamiltonian (3.16)-(3.17) now also depends on the phase ζ(||) and
ζ(⊥) of the radiation field to account for the time- and space-dependency of the atom-laser
interaction. In addition, some time ago an approximate technique, i.e. expansion of the
exponent (1.6) in the interaction Hamiltonian, has been applied to the helium and hydrogen
atoms in order to examine their coupling to an intense laser field [110].

To explore the time evolution of the atom, let us search for solutions of the time-dependent
Schrödinger equation

Hatom+field ψ = i~
∂ψ

∂t
. (3.18)

If we utilize the (effective) factorization of the interaction Hamiltonian (3.16)-(3.17) we can
use the Ansatz

ψ (r, t) = e
i
~ (p·r−Et) (ψa(ζ) |a⟩ + ψb(ζ) |b⟩) , (3.19)

as a solution of the Schrödinger equation. Here ζ ≡ ζ(||), ζ(⊥) is the laser phase for collinear-
or crossed-beam scenarios, respectively. The constant (non-relativistic) momentum p ≡ mv of

the center-of-mass of atom hereby gives rise to the space-dependent “translation factor” e
i
~pr

to account for its overall motion with energy E within the given coordinates. This factorization
of the wave function is very similar to that of laser-driven electrons (compare with Eq. (1.36)).
In other words, the propagation of the two-level atom inside the field is represented as a “plane-

wave” motion e
i
~ (p·r−Et) with a modified (non-constant) amplitude ψa(ζ) |a⟩ + ψb(ζ) |b⟩. In

addition, a similar Ansatz has been employed in [111] in order to investigate Stark splitting of
a three-level atom, by applying Fourier-transform of the space-dependent wave function.

In the next subsection, we solve the Schrödinger equation (3.18) by applying the follow-
ing, physically relevant assumptions. We prepare the atom initially in the upper state and
then employ the typical, eikonal and rotating wave approximations, for which the atom rest
energy is much larger than the photon energy (EA) that, in turn, is resonant to the atomic
transition energy (RWA). For light two-level atoms, both the EA and RWA are valid with high
accuracy [91].

3.2.2 Solutions to the Schrödinger equation

To determine the probability amplitudes ψa and ψb for the atomic states |a⟩ and |b⟩ , we
take into account that the overall dynamics of the (plane-wave) atom-laser system remains
the same for the collinear- and crossed-beam scenarios (compare Eqs. (3.16)-(3.17)), though
they imply different coupling strengths and phases in the interaction Hamiltonian. For these
similar Hamiltonians, in our further calculations we will adopt generic notations ΩR, ϕd and ζ
in order to replace the Rabi frequencies ΩRx , ΩRz , the dipole matrix element exponentials ϕdx ,

1Hereinafter, for notational convenience we drop the “tilde” of the indices x and y at the Rabi frequencies
and the exponentials of the dipole matrix elements. This will not cause a confusion since already at this step
the dependence on the electron’s relative coordinate is eliminated in the interaction Hamiltonian (3.16)-(3.17).
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ϕdz and the laser phases ζ||, ζ⊥, respectively. The replacement of these laser phases is justified
since the solution which we construct contains terms with scalar products of the form k ·r and
p · r [cf. Eq. (3.19)] that, in turn, remains unchanged in any system of reference.

In order to describe the dynamics of laser-driven two-level atoms we take into account the
fact that the laser phase ζ contains both, the time- and space-variables. This enables one to
express the corresponding partial derivatives by the total derivative with respect to this phase

∂

∂r
= k

d

dζ
,

∂

∂t
= −ω d

dζ
, ∆ ≡ ∂2

∂r2
= k2 d

2

dζ2

(compare with the relativistic analogue, Eq. (1.29)). Based on this mathematical trick we
can re-write the (space- and time-dependent) Schrödinger equation as an ordinary differential
equation of only one variable, in a similar way as the Dirac equation has been examined
earlier by Volkov [68] (see also section (1.2.2)) and by Skobelev [112,113] who found solutions
for the relativistic motion of electrons and neutrons, respectively. Such a method is for the
first time applied for describing the motion of two-level atoms inside the radiation field in
Refs. [82, 83]. Thus, by making use of this technique and substituting the Ansatz (3.19) into
the time-dependent Schrödinger equation (3.18), we obtain the following two coupled equations

~2k2

2m
ψ′′
a + i~ (v · k − ω)ψ′

a − Eaψa + ~ΩR e
−iϕd cos ζ ψb = 0 ,

~2k2

2m
ψ′′
b + i~ (v · k − ω)ψ′

b −Ebψb + ~ΩR e
iϕd cos ζ ψa = 0 .

Here the prime denotes derivation with regard to the phase ζ and v = p/m is the center-of-
mass velocity of the atom that moves with the non-relativistic energy E = p2/(2m). Similar
techniques have been applied more recently also to the Mott scattering of an electron in the
presence of intense single-mode laser fields [114], both within the relativistic and non-relativistic
regimes. For non-relativistic electrons and neutrons, moreover, such an approach was taken in
Refs. [115] and [116,117], respectively.

Owing to the large mass m of the atom, whose rest energy mc2 is much larger than the
photon energy ~ω, we typically have ~2k2/(2m~ω) ≤ 10−10 even for ultraviolet frequencies and
can hence make use of the EA [67]. In this approximation, we will drop the first terms in the
last system of equations and rewrite them in the form

ψ′
a + iαψa = iΩ e−iϕd cos ζ ψb, (3.20)

ψ′
b + iβψb = iΩ eiϕd cos ζ ψa, (3.21)

by introducing the following notations

α ≡ Ea

~ (vk − ω)
, β ≡ Eb

~ (vk − ω)
, Ω ≡ ΩR

vk − ω
. (3.22)

The denominator v · k − ω hereby illustrates the Doppler shifted radiation frequency as seen
by the moving atom [67].

Eqs. (3.20) and (3.21) describe the evolution of the probability amplitudes in EA. To find
solutions for these two first-order equations, we may use the Ansatz

ψa = A(ζ) e−iαζ , (3.23)

ψb = B(ζ) e−iβζ (3.24)
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to bring them into the simpler form

A′ = iΩ e−iϕd cos ζ ei(α−β)ζ B, (3.25)

B′ = iΩ eiϕd cos ζ e−i(α−β)ζ A , (3.26)

in which the second terms on the left-hand side of Eqs. (3.20) and (3.21) have been eliminated.
As we will see below, this re-definition (3.23) and (3.24) of the probability amplitudes facilitates
the integration of Eqs. (3.25)-(3.26). In addition, we could also decouple these two equations
by taking the second derivative with regard to the phase ζ,

A′′ + (−i(α− β) + tan ζ)A′ + Ω2 cos2 ζ A = 0 (3.27)

B′′ + (i(α− β) + tan ζ)B′ + Ω2 cos2 ζ B = 0 , (3.28)

and for which solutions can be obtained in terms of hypergeometric functions [64]. However, in
this work we are interested in laser frequencies which are nearly resonant to atomic transition
frequency. Therefore, we apply RWA to obtain solutions to Eqs. (3.27) and (3.28) in terms of
elementary functions.

In our further discussion, as usual, we consider frequencies (of the radiation field) which
are in resonance with (or nearly resonant) to the atomic excitation, ~ω ≈ Ea − Eb. In
such a resonance regime, it is justified to apply the RWA [cf., e.g. [92]] for which the exact
solutions can be found for Eqs. (3.25) and (3.26). If the counter-rotating terms proportional
to exp [±i (α− β − 1) ζ] are ignored on the right-hand side, these equations take the form

A′ =
iΩ

2
e−iϕdei(α−β+1)ζ B , (3.29)

B′ =
iΩ

2
eiϕde−i(α−β+1)ζ A . (3.30)

An exact solution for A and B is then given by

(µ1 − µ2)A (ζ) =

[
A(0)µ1 −

iΩ

2
e−iϕdB(0)

]
eµ2ζ −

[
A(0)µ2 −

iΩ

2
e−iϕdB(0)

]
eµ1ζ , (3.31)

(µ1 − µ2)B (ζ) =

[
B(0)µ1 +

iΩ

2
eiϕdA(0)

]
e−µ2ζ −

[
B(0)µ2 +

iΩ

2
eiϕdA(0)

]
e−µ1ζ , (3.32)

with

µ1,2 =
i

2
(α− β + 1 ± δ) , (3.33)

δ ≡
√

(α− β + 1)2 + Ω2 , (3.34)

and where A (0) and B (0) refer to “initial” conditions with regard to the laser phase, ζ = 0.
These initial conditions are fulfilled, for instance, at the origin r = 0, t = 0 of the space and
time coordinates. Owing to the existence of the phase ζ, however, the solutions (3.31) and
(3.32) are more general and can be analyzed in order to explore the time- and space-dependency
of the probability amplitudes explicitly, if one wishes to take into account the wave vector of
the laser field and the motion of the atom as a whole. For the atom at rest (p = 0) and if we
also ignore the k-dependence of the laser beam, i.e. simply perform a replacement ζ → −ωt,
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the solutions (3.31) and (3.32) simplify to

A (t) =

{
A(0)

[
cos

Λ2t

2
− i

Λ1

Λ2
sin

Λ2t

2

]
+ i

ΩR

Λ2
e−iϕd B(0) sin

Λ2t

2

}
ei

Λ1t
2 ,

B (t) =

{
B(0)

[
cos

Λ2t

2
+ i

Λ1

Λ2
sin

Λ2t

2

]
+ i

ΩR

Λ2
eiϕd B(0) sin

Λ2t

2

}
e−i

Λ1t
2 ,

that are in full agreement with standard texts on the two-level atom [91]. Here ~Λ1 = Ea −
Eb − ~ω and Λ2

2 = Λ2
1 + Ω2

R. Using Eqs. (3.31) and (3.32), moreover, the conservation of the
overall probability of the atom, namely of being in one of the two states, |ψa|2 + |ψb|2 = 1,
can be verified quite easily.

Although an oscillation of the probability amplitudes ψa and ψb can be seen already from
Ansatz (3.23)-(3.24), further insights are obtained if we specify the “initial” conditions for
these probability amplitudes and modulate the field in a resonance regime with the atomic
transition frequencies. Therefore, two remarks are in order here before we shall further examine
the solutions (3.31)-(3.32) for the amplitudes A(ζ) and B(ζ). First, the initial condition for
ζ = 0 should be chosen properly. If we assume the atom initially to be in the upper state, we
have

A (0) = 1 , B (0) = 0 , (3.35)

for the interaction of the atom with linearly polarized field [91]. Second, we still have some
freedom in general of how to choose the physical parameters, such as the momentum p of the
atom, its energies Ea, Eb of the upper and lower states, the frequency ω of the coupling field
as well as the Rabi frequency ΩR. Apart from a suitable choice of the two-level atom, these
parameters are often controlled by the intensity and the propagation direction of the external
field(s) acting upon the atom. For example, we may readily fulfill the resonance condition by
assuming a field with frequency ω, so that

Ea − Eb = ~ω eff ≡ ~ω
(

1 − v · n
c

)
,

and where n = k/k is the unit vector along the propagation direction of the field, as introduced
in subsection 3.1.3. This resonance condition gives rise to the simpler relation for the reduced
quantities (3.22)

α− β + 1 = 0 . (3.36)

Thence, the fast oscillating terms have the form ± (α− β − 1).
If we substitute the initial condition (3.35) into the solutions (3.31)-(3.32) for a linearly

polarized field, the phase-dependent probability amplitudes read as

A =
iµ2
δ
eµ1ζ − iµ1

δ
eµ2ζ ,

B =
Ω

2δ
eiϕde−µ2ζ − Ω

2δ
eiϕd e−µ1ζ ,

and, together with the resonance condition (3.36), take the simple form

A = cos
Ωζ

2
, (3.37)

B = ieiϕd sin
Ωζ

2
, (3.38)
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where we have used the relations (3.33)-(3.34). Finally, if we use the Ansatz (3.19) and
Eqs. (3.23)-(3.24) and then recover the corresponding expressions of generic notations ΩR,
ϕd and ζ, we will arrive to the desired form of the wave function of laser-driven two-level
atoms in both the collinear- and crossed-beam scenarios. The orthonormalized solution of the
Schrödinger equation takes the form

ψ(||) (r, t) = e
i
~ (p·r−Et)

(
e−iα(||)ζ(||) cos

Ω(||)ζ(||)

2
|a⟩ + ieiϕdxe−iβ(||)ζ(||) sin

Ω(||)ζ(||)

2
|b⟩
)
(3.39)

that represents the state of the laser-driven two-level atom in the collinear-beam scenario with
some reduced quantities [cf. Eq. (3.22)]

{
α(||) , β(||) , Ω(||)

}
≡ {Ea , Eb , ΩRx}

~
(
kv|| − ω

) . (3.40)

Whereas, in the crossed-beam scenario, the atomic state is given by

ψ(⊥) (r, t) = e
i
~ (p·r−Et)

(
e−iα(⊥)ζ(⊥)

cos
Ω(⊥)ζ(⊥)

2
|a⟩ + ieiϕdz e−iβ(⊥)ζ(⊥)

sin
Ω(⊥)ζ(⊥)

2
|b⟩
)
(3.41)

with reduced quantities

~
{
α(⊥) , β(⊥) , Ω(⊥)

}
≡ {Ea , Eb , ΩRz}

kv⊥ cos(ϕL − ϕ) − ω
. (3.42)

In Eqs. (3.39)-(3.42), p2 = p2|| + p2⊥ is the squared total momentum of the atom with its

longitudinal p|| and transverse p⊥ components and the atomic velocities v|| = p||/m and v⊥ =
p⊥/m, respectively. The solutions (3.39) and (3.41) represent a superposition of the upper
|a⟩ and lower |b⟩ states with ζ(||)- or ζ(⊥)-dependent coefficients. The “translation” factor

e
i
~ (p·r−Et), as mentioned above, describes the motion of the atom as a whole with momentum

vector p along some (chosen) direction and energy E .
So far, the focus of this subsection was placed on determining solutions of the Schrödinger

equation (3.18) for the linearly polarized field (3.11) or (3.12). In next chapter, we will utilize
the explicit r-dependency of (exact) solutions (3.39) and (3.41) and exploit them in order to
construct a Bessel beam of laser-driven two-level atoms.

3.3 Summary

We have examined the resonant coupling of (the beam of) two-level atoms with a laser light.
For such a system, we have represented the space- and time-dependent Schrödinger equation as
an ordinary differential equation of one variable by applying the known technique for relativistic
Dirac equation for laser-driven electrons. We have found analytical solutions (3.39) and (3.41)
for a particular coupling of the atomic motion to the radiation field by imposing physically
relevant conditions, such as the eikonal, long-wave and rotating-wave approximations. These
solutions are the main result of this chapter: they generalize the known wave functions for laser-
driven two-level atoms to the case when both the atomic linear momentum p and the laser
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CHAPTER 3: Semi-classical coupling of two-level atoms to a laser field

wave vector k are non-zero. In our forthcoming discussion, we shall utilize this p-dependence
of wave functions (3.39) and (3.41) in order to extract the monoenergetic distribution of linear
momenta representing the Bessel-beam state of laser-driven two-level atoms. These states
will eventually enable us to calculate the probability density of atomic Bessel beams and to
characterize their (field-affected) transverse structure.

In practice, the above mentioned approximations are well justified if the frequency of the
electric field is nearly resonant to the two-level excitation energy (for the RWA), the laser
wavelength is larger than the atomic sizes (for the LWA) and the de’ Broglie wavelength of
an atom is much smaller than the wavelength of the radiation field (for the EA). Of course,
these approximations might fail in other systems leading to new effects. For example, if the
resonance condition is not fulfilled to a sufficient degree then the RWA fails and causes the
standard Bloch shift [118] or some generalized Bloch-Siegert shift [119].

64



Chapter 4

Twisted two-level atoms driven by a
laser light

As time goes on, it becomes increasingly evident that
the rules which the mathematician finds interesting
are the same as those which Nature has chosen.

P.A.M. Dirac

In this chapter, we recover and expand the results of our advanced studies [82,83] and investi-
gate the dynamics of Bessel beams of two-level atoms that are resonantly driven by a laser light.
In order to construct such field-affected atomic Bessel beams we make use of the superposition
principle of the linear quantum theory and superimpose the laser-driven plane-wave atoms,
obtained in the previous chapter, with well-defined monoenergetic spectrum corresponding to
Bessel beams. We shall show that these atomic beams carry a non-zero OAM defined along
the direction of propagation. Furthermore, we spatiotemporally characterize the transverse
structure of such laser-driven twisted beams by calculating their probability density. We ex-
plicitly show that the distribution of intensity of the atomic beam remains unchanged along
the propagation direction: the beam does not spread out even though it is driven by a laser
field. Finally, we exhibit how one can control and manipulate the beam profile by tuning the
laser intensity.

4.1 Twisted states of laser-driven two-level atoms

In the previous subsection, we have analyzed the time- and space-dependent interaction of
two-level atoms with a linearly polarized laser field and have built the states (3.39) and (3.41)
which describe the spatiotemporal dynamics of laser-driven atoms. In the following, we shall
utilize these states in order to construct atomic Bessel beams which carry a non-zero OAM
and meanwhile do not diffract along the propagation direction.

The wave function of the laser-driven two-level atom with the projection ℓ~ of the OAM on
the (atomic beam) propagation axis can be constructed as a superposition of orthonormalized
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CHAPTER 4: Twisted two-level atoms driven by a laser light

solutions (3.39) and (3.41) of the time-dependent Schrödinger equation (3.18)

Ψℓ (r, t) =

∫
ψ̃ℓ (p) ψ (r, t) p⊥dp⊥dϕ (4.1)

over the monoenergetic cone, Eq. (1) [cf. Fig. 3a]. This step in the construction of twisted
atomic beams is analogue to the use of twisted electrons [45, 77, 78] (see also the previous
part).

4.1.1 Collinear-beam scenario

Let us start with the collinear-beam scenario for which the integration (4.1) can be carried
out easily in a similar way as for the twisted state (11) of a free (scalar) particle. Indeed, by
performing the same steps, i.e. substituting the state (3.39) into Eq. (4.1) and making use
of the integral representation (10) of Bessel function, we obtain a simple form for the twisted
state of a laser-driven two-level atom

Ψ(||)
ℓ = e

i
~ (p||0z−E0t)eiℓφJℓ (ξ)

(
e−iα

(||)
0 ζ(||) cos

Ω(||)
0 ζ(||)

2
|a⟩

+ ieiϕdxe−iβ
(||)
0 ζ(||) sin

Ω(||)
0 ζ(||)

2
|b⟩
)
. (4.2)

Here the dimensionless transverse coordinate ξ = p⊥0r/~ describes the width of the beam, and
the reduced quantities α(||)

0 , β(||)
0 and Ω(||)

0 are taken on the cone surface p = p0 [cf. Eq. (3.40)
and Figure 3a].

The state (4.2) is the eigenstates of the z-component of OAM operator ℓ̂z = −i~∂/∂φ
due to the presence of the vortex phase factor eiℓφ. Hence, apart from the free propagation
along the z-direction, eip||0z/~, and the Bessel-dependency on the (dimensionless) transverse
coordinate, the twisted state Ψ(||)

ℓ also carries a well-defined longitudinal OAM ℓ~ quite similar
to the scalar [35,120] and spin-dependent [45] electron Bessel beams.

It is obvious that when the field is switched off, i.e. Ω(||)
0 = ζ(||) = 0, the free twisted state

(11) is recovered. The presence of the field causes only Rabi flopping of (already) twisted two-
level atoms between the upper |a⟩ and lower |b⟩ states and meantime does not influence the
Bessel-squared-shape of the beam profile. Alluding to Section 4.2, let us note that the absence
of the field’s impact on the beam profile is quite expected since the laser phase ζ(||) = k||z−ωt
in collinear-beam scenario contributes only in the free motion of the atomic beam along the
z-axis and does not contain the radial coordinate r. This is in contrast to the laser phase ζ(⊥)

in the crossed-beam scenario where both r and the azimuthal angle φ are involved (compare
Eqs. (3.11) and (3.12)). It is the presence of r and φ that enables one to explore an intriguing
dynamics of atomic twisted states in the crossed-beam scenario as we exhibit in details in our
forthcoming discussion.

4.1.2 Crossed-beam scenario

So far, we have investigated the twisted state of laser-driven atoms in the collinear-beam
scenario (4.2). This state involves a stationary Bessel-dependency Jℓ(ξ) in the profile of the
beam. In contrast, the crossed-beam scenario gives rise to a time-dependent atomic beam
profile. To investigate this we shall evaluate the integral (4.1) by employing the solution (3.41).
This integration cannot be carried out by means of exact methods since the reduced quantities
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4.1. Twisted states of laser-driven two-level atoms

α(⊥), β(⊥) and Ω(⊥) depend on the ϕ angle [compare Eqs. (3.40) and (3.42)]. However, if
we consider a non-relativistic regime for the propagation of the atomic beam we can easily
proceed analytically. For this purpose, we again represent the scalar product in the form
p · r = p⊥r cos (ϕ− φ) + p||z and evaluate the integral (4.1) first with respect to transverse
p⊥ and longitudinal p|| components of the linear momentum

Ψ(⊥)

ℓ =
e

i
~ (p||0z−E0t)

4πiℓ

∫ 2π

0
dϕ eiℓϕeiξ cos(ϕ−φ)

4∑
n=1

eiAnζ(⊥) |Bn⟩ , (4.3)

where the state vectors

|B1,2⟩ ≡ |a⟩ , |B3,4⟩ ≡ ±eiϕdz |b⟩

refer to the upper and lower levels of the atom, respectively. For the sake of brevity, moreover,
we introduce the dimensionless parameters

A1,2 ≡ −α(⊥)

0 ± Ω(⊥)

0

2
, A3,4 ≡ −β(⊥)

0 ± Ω(⊥)

0

2
, (4.4)

which carry information about the internal structure of the atom and the strength of the atom-
field coupling. These parameters are given in terms of the reduced quantities α(⊥)

0 , β(⊥)

0 and
Ω(⊥)

0 and are taken at the cone surface p = p0.
Now we apply our assumption about the non-relativistic regime for the propagation of

atomic beam and Taylor expand An (n = 1..4) by keeping only the terms up to the first power
in v⊥0/c

An ≈ Cn
(

1 +
v⊥0

c
cos(ϕL − ϕ)

)
.

Here

C1,2 ≡ 2Ea ∓ ~ΩRz

2~ω
, C3,4 ≡ 2Eb ∓ ~ΩRz

2~ω

are dimensionless constant energies normalized to the photon energy. This expansion enables
one to re-write the wave function (4.3) in a desired form

Ψ(⊥)

ℓ =
e

i
~ (p||0z−E0t)

4πiℓ

4∑
n=1

eiCnζ
(⊥)

∫ 2π

0
dϕ eiℓϕeiXncosϕeiYnsinϕ |Bn⟩ (4.5)

which is appropriate for analytical integration. Here the dimensionless coordinates

Xn (ξ, φ, t) ≡ ξ cosφ+ Cnζ(⊥) v⊥0

c
cosϕL ,

Yn (ξ, φ, t) ≡ ξ sinφ+ Cnζ(⊥) v⊥0

c
sinϕL (4.6)

contain the (time-dependent) laser phase

ζ(⊥) =
~k
p⊥0

ξ cos (ϕL − φ) − ωt , k ≡ k⊥ (4.7)

that, in turn, is independent of the integration variable ϕ.
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CHAPTER 4: Twisted two-level atoms driven by a laser light

In order to calculate the integral (4.5) we introduce a new system of “Cartesian” Rn ≡
(Xn,Yn,Z) and “cylindrical” Rn ≡ (Ξn,Φn,Z) coordinates with standard transformations

Xn = Ξn cos Φn , Yn = Ξn sin Φn , Z = p⊥0z/~ , (4.8)

where Ξn =
√

X 2
n + Y2

n is the “radial” coordinate and Φn is the “azimuthal” angle in the
(Xn,Yn)-plane. By inserting these new coordinates in Eq. (4.5) and making use of a sim-
ple trigonometric relation, we can exploit the integral representation of the Bessel function
[cf. Eq. (10)] ∫ 2π

0
dϕ eiℓϕeiΞn cos(ϕ−Φn) = 2πiℓeiℓΦnJℓ(Ξn)

and obtain the final form of the twisted state of laser-driven two-level atoms in the crossed-
beam scenario

Ψ(⊥)

ℓ =
1

2
e

i
~ (p||0z−E0t)

4∑
n=1

eiCnζ
(⊥)
eiℓΦnJℓ(Ξn) |Bn⟩ . (4.9)

It is important to note that we recover the free twisted state (11) if we switch off the laser field
(i.e. ζ(⊥) → 0), since in this case the coordinates Ξn and Φn coincide with ξ and φ, respectively,
as (Xn,Yn) → (p⊥0x/~, p⊥0y/~) [cf. Eq. (4.6)].

Equations (4.2) and (4.9) are the first main result of this chapter. They describe the laser-
driven twisted two-level atom in both the collinear- and crossed-beam scenarios, respectively.
Since no restriction has been made on the longitudinal p||0 and transverse components p⊥0 of
the atom momentum, the states (4.2) and (4.9) apply generally for scalar Bessel beams of two-
level atoms beyond the typical paraxial approximation for both scenarios. As we stressed in
Introduction, we are not interested in the normalization of these states since it does not provide
too much insight in the overall dynamics of the beam. To give a hint, however, we would like
to point out that these beams, can be normalized, on one hand, by integrating their squared
modulus wave function in a large, but a finite cylindrical volume, as already mentioned above
and also done in [65] for twisted photons. On the other hand, we could regularize the Dirac
δ-function, which arises after the integration of squared Bessel functions over the whole space,
by rigorously re-defining it as a limit of regular functions (e.g. Gaussian), as also mentioned
in [45] for electron Bessel beams.

In the last discussion of this section, we put the emphasis on finding an “integral of motion”
that describes the propagation of the laser-driven twisted atom in the crossed-beam scenario.
A similar operator description of angular momentum properties of light Bessel beams has been
done in [50]. Given that the photon energy and momentum are much less than the atom rest
energy and transverse momentum, respectively, i.e. ~ω/(mc2) ≪ 1 and ~k/(mv⊥0) ≪ 1, we
replace (4.6) with the following approximate relations

Xn ≈ ξ cosφ− Cnv⊥0kt cosϕL ,

Yn ≈ ξ sinφ− Cnv⊥0kt sinϕL , (4.10)

that are valid with high accuracy for a wide range of frequencies, from infrared to ultraviolet
regions. The wave function (4.9), therefore, can be re-written as

Ψ(⊥)

ℓ ≈
4∑

n=1

Ψ(n)

ℓ , (4.11)

Ψ(n)

ℓ ≡ 1

2
e

i
~ (p||0z−(E0+Cn~ω)t)eiℓΦnJℓ(Ξn) |Bn⟩ , (4.12)
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where we have replaced the laser phase (4.7) with ζ(⊥) ≈ −ωt. One can immediately recognize
that the exponential eip||0z/~ describes the diffraction-free propagation of the beam along the
z-axis. Moreover, this free propagation occurs as a sum of four scalar Bessel modes Ψ(n)

ℓ , each
of which carries a quasi-energy E0 + Cn~ω because the atom is dressed by the field.

The notable difference between the twisted states of laser-driven (also of free) atoms in
collinear- and crossed-beam scenarios is that here the Bessel function depends on the new
coordinate Ξn and, consequently, on time (compare Eqs. (4.2), (11) with Eqs. (4.11), (4.12)).
Due to this (different) dependency, the state (4.11) is no longer the eigenstate of the conven-
tional OAM operator ℓ̂z = −i~∂/∂φ, instead each of the modes (4.12) represents an eigenstate
of the operator

L̂(n)
z ≡ −i~ ∂

∂Φn
, (4.13)

an OAM operator which acts in (Xn,Yn,Z) configuration space, upon which our physical
system depends. It is easy to verify that this operator has the eigenvalue ℓ~, i.e.

L̂(n)
z Ψ(n)

ℓ = ℓ~Ψ(n)

ℓ .

Whereas, as mentioned in the previous subsection, the states (4.2) are the eigenstates of ℓ̂z
with the same eigenvalue ℓ~, i.e.

ℓ̂zΨ
(||)
ℓ = ℓ~Ψ(||)

ℓ .

In addition, as one may expect the operator (4.13) coincides with the operator ℓ̂z when the
field is switched off, L̂(n)

z → ℓ̂z (see also Eq. (4.14)).
To get a deeper insight let us now calculate the mean value of the conventional OAM opera-

tor averaged over the modes Ψ(n)

ℓ . For this purpose, we express ℓ̂z in terms of coordinates (4.8)
by employing the relations (4.10)

ℓ̂z = −i~ ∂

∂φ
= −i~

(
∂Φn

∂φ

∂

∂Φn
+
∂Ξn

∂φ

∂

∂Ξn

)
= −i~

[
∂

∂Φn
+ Cnv⊥0kt

cos (Φn − ϕL)

Ξn

∂

∂Φn
+ Cnv⊥0kt sin(Φn − ϕL)

∂

∂Ξn

]
. (4.14)

Let us note that a similar operator has been derived in [77] to describe the electron with non-
zero OAM and helicity in the presence of a strong laser field. Furthermore, for the quantum
mechanical mean value of ℓ̂z, when normalized to the overall intensity of the mode (4.12), we
obtain

⟨ℓ̂z⟩ =

∫
dRn

(
Ψ(n)

ℓ

)∗ (
ℓ̂zΨ

(n)

ℓ

)
∫

dRn

∣∣Ψ(n)

ℓ

∣∣2 = ℓ~ . (4.15)

Here dRn = ΞndΞndΦndZ is the elementary cylindrical volume in the configuration space
which is related to the elementary volume in position space via dr = (~/p⊥0)

3dRn. The last
two terms of the operator (4.14) do not contribute to the integral after the integration over
Φn. As seen, the mean values of both OAM operators coincide, ⟨L̂(n)

z ⟩ = ⟨ℓ̂z⟩. This means
that, apart from the diffraction-free propagation along z-axis, the state (4.11) describes a
superposition of four modes (4.12) each of which carries a non-zero OAM with respect to the
same axis. This is the second main result of this chapter.
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To stress, again, the time-dependent profile of the beam reveals a non-trivial dependency on
the transverse coordinate ξ and the azimuthal angle φ, as seen from Eqs. (4.9) and (4.12). In
the next subsection, we examine this non-triviality in details and spatiotemporally characterize
Bessel beams of two-level hydrogen and selected alkali-metal atoms that are resonantly driven
by the laser field without the level damping.

4.2 Spatial and temporal characterization of laser-driven atomic
Bessel beams

So far we have built the twisted states (4.2) and (4.9), (4.11)-(4.12) of laser-driven two-level
atoms for collinear- and crossed-beam scenarios, respectively. These states can be used in order
to study the space- and time-dependent profile of atomic beams inside an electromagnetic field.
In this section, therefore, we put the emphasis on the crossed-beam scenario and investigate
how the radial distribution and the time evolution of the probability density of laser-driven
atoms are affected by the atomic beam velocity, the nuclear charge Z and the laser intensity.

To proceed with our further discussion, we define the probability density of atoms in a
twisted state with a non-zero OAM ℓ~ as

ρℓ = |Ψℓ|2 , (4.16)

such that ρ = 1 for beams (3.39) and (3.41) of non-twisted atoms. Depending on which of the
two scenarios occurs, the probability density (4.16) acquires different forms. To show this, we
substitute the wave function (4.2) into Eq. (4.16) and obtain the probability density for the
collinear-beam scenario

ρ(||)
ℓ = J2

ℓ (ξ) , (4.17)

as a function of only the dimensionless transverse coordinate ξ. Figures 3(b,c) show the typical
“non-diffracting” distribution of the probability density, Eq. (4.17), that coincides with the
beam profile of field-free twisted atoms. This coincidence is due to the transverse-coordinate-
independent laser phase (3.11), as also pointed out in subsection 4.1.1.

Let us now calculate the probability density in the crossed-beam scenario. By inserting the
state (4.9) into Eq. (4.16), after straightforward derivations, we obtain

ρ(⊥)

ℓ = ϱℓ + ∆ℓ . (4.18)

Here the space- and time-dependent term

ϱℓ =
1

4

4∑
n=1

J2
ℓ (Ξn) (4.19)

is responsible for the Bessel-squared-type distribution of the probability density, and the term

∆ℓ =
1

2
cos

(
ΩRz

ω
ζ⊥ + ℓ(Φ2 − Φ1)

)
Jℓ (Ξ1) Jℓ (Ξ2)

− 1

2
cos

(
ΩRz

ω
ζ⊥ + ℓ(Φ4 − Φ3)

)
Jℓ (Ξ3) Jℓ (Ξ4) , (4.20)

is a small summand that can be neglected with high accuracy under properly tuned parameters
of the “atom + laser” system, as shown below. Equation (4.19) is the third main result of
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Figure 4.1: Distribution of probability density ρ(⊥)

ℓ of laser-driven non-paraxial atomic vortex
beams (in arbitrary units of the same scale) as a function of dimensionless transverse coordinate
ξ = p⊥0r/~ (left panel) and azimuthal angle φ (right panel) for ℓ = 2, as depicted in Ref. [83].
The probability densities are shown for Bessel beams of H (a1-2) with atomic velocity 1.4 · 106

cm/s and of Li (b1-2), Na (c1-2), K (d1-2) with atomic velocity 0.7 · 106 cm/s for different
propagation times 10 fs (gray solid curves), 15 fs (blue dashed curves) and 20 fs (red dot-dashed
curves). The laser intensity is I ≈ 2.12 · 1016 W/cm2.
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Figure 4.2: Distribution of probability density ρ(⊥)

ℓ of laser-driven non-paraxial atomic vortex
beams (in arbitrary units of the same scale) as a function of dimensionless transverse coordinate
ξ = p⊥0r/~ (left panel) and azimuthal angle φ (right panel). The atom and laser beam
parameters are the same as for Fig. 4.1, apart from the laser intensity that is now doubled, i.e.
I ≈ 4.24 · 1016 W/cm2.
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Figure 4.3: Distribution of probability density ϱ̃(⊥)

ℓ of laser-driven non-paraxial atomic vortex
beams (in arbitrary units of the same scale) as a function of the transverse coordinate ξ =
p⊥0r/~ for ℓ = 2 and φ = ϕL, as depicted in Ref. [82]. The parameters of the “atom + laser”
system are the same as for Fig. 4.1.

this chapter; it enables one to realize the control and manipulation of atomic vortex beams via
the laser field. Moreover, this formula can be sufficiently simplified along the direction that is
perpendicular both to the polarization and the wave vector of the laser, i.e. when φ→ ϕL,

ϱ̃(⊥)

ℓ −−−−−−→
φ−ϕL→0

1

4

4∑
n=1

J2
ℓ

(
ξ + Cnζ⊥

v⊥0

c

)
.

In order to explore and exhibit the temporal and spatial characteristics of atomic Bessel
beams let us consider, for example, two-level hydrogen, lithium, sodium and potassium, and
assume that these atoms are driven on the 1s ↔ 2p, 2s ↔ 2p, 3s ↔ 3p and 4s ↔ 4p atomic
transitions, respectively. For the sake of simplicity, however, we here also suppose that no
decay occurs for upper levels and, thus, that no damping applies in the time-evolution of the
probability amplitudes (3.37)-(3.38). For the 1s↔ 2p transition, the laser and Rabi frequencies
for hydrogen can be easily expressed as

ω =
3e2

8a0~
, ΩRx =

27a0eε0
35~

, ΩRz =
√

2ΩRx (4.21)

by using the well-known properties of hydrogen-like ions [108]. Here a0 is the famous Bohr
radius that defines the approximate size of hydrogen atom, and is expressed via a0 = ~2/

(
mee

2
)

in Gaussian units. For alkali-metal atoms, moreover, we make use of the known values of their
spectrum [121] and dipole matrix elements [122]. Moreover, we here restrict our discussion to
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CHAPTER 4: Twisted two-level atoms driven by a laser light

Figure 4.4: Snapshot of atomic Bessel beam profiles at t = 20 fs after the laser, which drives
the atom, is activated [83]. The laser wave propagates along the positive direction of y-axis,
the polarization vector of the field and the longitudinal linear momentum of the atomic beam
point toward the reader. The Bessel beam does not change its transverse structure along the
propagation axis. The parameters of the “atom + laser” system and the variation of colors
are the same as in Figure 4.1 and 3(c), respectively.

low- and medium-Z atoms since the interaction Hamiltonian (3.16)-(3.17) is valid only within
the LWA, i.e. when the radiation wavelength exceeds the atomic sizes.

After we have specified the type of a laser-driven two-level atom we are ready to explore
both the spatial and temporal characteristics of atomic Bessel beams. When the laser field
is switched off, i.e. for t = 0, both curves for collinear- and crossed-beam scenarios coincide.
This is quite expected since in the absence of the laser radiation only a free Bessel beam
propagates, as one might also expect due to the initial conditions (3.35). Once the laser is
switched on, the atomic beam starts evolving in the field and changing its conventional Bessel-
squared-shape. Figure 4.1 displays the probability density profile (i) at various dimensionless
transverse coordinates ranging from 0 to 15 at given azimuthal angle φ = π/3 (left panel) as
well as (ii) at various azimuthal angles ranging from 0 to 2π at given (two different values of)
transverse coordinate ξ = 3 and ξ = 5 (right panel). In particular, results are shown for the
nonparaxial atomic beam with transverse momentum p⊥0 = p0/5 and OAM ~ℓ = 2~ as well
as for the field strength ε = 4 GV/cm, which corresponds to the laser intensity I ≈ 2.12 · 1016
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4.2. Spatial and temporal characterization of laser-driven atomic Bessel beams

Figure 4.5: Snapshot of atomic Bessel beam profiles at t = 20 fs after the laser, which drives
the atom, is activated. The parameters of the “atom + laser” system are the same as for
Fig. 4.4, but with twice the laser intensity, I ≈ 4.24 · 1016 W/cm2.

W/cm2, and laser propagation angle ϕL = π/2 for three different evolution times, 10, 15 and
20 fs. Figure 4.2 displays the same distribution of the probability density but with double the
laser intensity, i.e. I ≈ 4.24 · 1016 W/cm2. In addition, Fig. 4.3 shows the Bessel-squared-type
profiles for the simplified ϱ̃(⊥)

ℓ when the azimuthal dependence of the probability density is
eliminated via the condition φ = ϕL. Finally, Figs. 4.4 and 4.5 combine both the ξ- and
φ-dependencies and show the actual profile of Bessel beams of the same atoms when they
propagate 20 fs in the field.

In order to get a deeper insight about the transverse structure of atomic Bessel beams,
we compare Figs. 4.1, 4.2 with density plots 4.4, 4.5. As seen in Figs. 4.1-4.3, the deviation
of curves from each other increases the longer the atom propagates in the laser field. This
deviation is caused by all four Bessel modes in Eq. (4.19) containing the arguments

Ξn =

√
ξ2 + 2ξCnζ(⊥)

v⊥0

c
cos (ϕL − φ) +

(
Cnζ(⊥)

v⊥0

c

)2
≈

√
ξ2 − 2ξCnv⊥0kt cos (ϕL − φ) . (4.22)

The time factor 2ξCnv⊥0kt cos (ϕL − φ), which involves both the transition energy and the
atom-laser coupling strength, can lead to an enhancement of the second maximum of the
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CHAPTER 4: Twisted two-level atoms driven by a laser light

Figure 4.6: Distribution of ∆ℓ for ℓ = 2 as a function of dimensionless transverse coordinate
ξ = p⊥0r/~ for hydrogen with different propagation times (left panel) and for alkali-metal
atoms with an evolution time 10 fs (right panel). The laser intensity is I ≈ 2.12 · 1016 W/cm2.

beam profile during its evolution in the laser field. This enhancement depends crucially on
how the parameters of the “atom + laser” system are tuned. For instance, when the beam of
potassium is evolved in the field within 20 fs, the first two maxima become of the same order
[cf. Figure 4.1(d1)]. Such well-separated maxima can be clearly seen also (i) from Figs. 4.1(d2)
and 4.2(a2-d2) in the region where the red dot-dashed curves intersect for ξ = 3 and ξ = 5
(φ ∼ π/2) and (ii) from the white areas in the vertical direction for the potassium profile in
Fig. 4.4 and for the profile of all four atoms in Fig. 4.5, especially, for the azimuthal angle
φ ∼ π/2.

Figures 4.1 and 4.2 exhibit also another intriguing feature of the beam profile in the crossed-
beam scenario. This characteristic of atomic vortex beams, in fact, eventually leads to the
enhancement of the second maximum of the atomic probability density. Since the term Cnv⊥0kt
reveals different values for different atoms, this Z-dependency gives rise to a field-induced
“spread” of the Bessel-squared-shape of the atomic probability density [cf. Figs. 4.1(b1-d1) (red
dot-dashed curves) and 4.2(b1-d1) (gray solid curves)]. This behavior can be well established
if we also increase the intensity of the laser beam, as shown in Fig. 4.5. However, if the
beam propagates long enough inside the field, such a broad peak splits into two maxima
(see, for example, the blue dashed and red dot-dashed curves in Figs. 4.2(b1-d1)). Both the
field-induced spread and split of Bessel-squared-shape are rather universal and remain the
same along the longitudinal coordinate z. Indeed, as both the nuclear charge and the laser
intensity increase the white areas in Figs. 4.4 and 4.5 start to symmetrically spread along and
against the propagation direction of the field, meanwhile keeping their shape constant along
the atom propagation axis. All these non-trivial spatiotemporal characteristics are caused by
the coherent interaction of atomic and laser beams and are quantitatively reflected both in the
Z-dependent atomic transition energy and the atom-field interaction strength, i.e. the Rabi
frequency. In addition, we note that the term ∆ℓ does not contribute in the radial distribution
of the probability density since it is effectively zero for an evolution time varying in 0, ..100 fs
and for low- and medium-Z atoms [cf. Fig. 4.6].

As, for example, in the case of optical [123, 124] and electron [124] Bessel beams, we have
spatially and temporally characterized the Bessel beams of two-level atoms that are driven
by the laser field. In contrast to these studies, laser-driven atomic Bessel beams, that carry
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4.3. Summary

a non-zero longitudinal OAM, acquire a special type of behavior, as illustrated in Figs. 4.1-
4.6, due to the coherent coupling of an atom to the laser field. To study these properties of
laser-driven Bessel beams experimentally, we hope that similar methods as for the creation
of electron vortex beams via nanofabricated fork-like hologram [cf. Refs. [39, 40, 43]] will be
be developed for atomic systems. Moreover, for neutral atoms, that barely interact with the
matter, we believe that this can be achieved by means of (i) atomic microscopes which deliver
resolution of the order of few nm and (ii) laser systems which provide a resolution of the order
of 10-20 fs.

4.3 Summary

The twisted states of laser-driven two-level atoms have been built and investigated, especially,
in crossed-beam scenario when the laser and atomic beams are perpendicular to each other.
In more detail, the interaction of a two-level atom with a linearly polarized electromagnetic
field has been described by using the space- and time-dependent laser phase for solving the
Schrödinger equation in a similar way as known from relativistic quantum theory of electron.
Exact analytical solution to the Schrödinger equation was found within the eikonal, rotating-
wave and long-wave approximations (to deal with fields nearly resonant to the two-level ex-
citation energy and with wavelengths larger than the atomic size). Our treatment enables
one to construct a twisted state of laser-driven two-level atoms with their well defined energy,
transverse and longitudinal momentum components as well as the projection of the orbital
angular momentum along the propagation direction. By making use of these states, detailed
calculations have been performed for the distribution of the probability density of hydrogen,
lithium, sodium and potassium for the 1s↔ 2p, 2s↔ 2p, 3s↔ 3p and 4s↔ 4p atomic transi-
tions, respectively, without (level) damping. For the crossed-beam scenario, we have exhibited
a non-trivial, Bessel-squared-type behavior of the beam profile that applies for both paraxial
and nonparaxial regimes and depends on time. We have shown, moreover, that a possible
enhancement of the second maximum of probability density may occur under a specific choice
of laser and atom parameters, such as the nuclear charge, atomic velocity, the laser intensity.
propagation direction and frequency that is fixed by means of the resonance condition. As we
have also learnt, we are able to change the transverse distribution of the probability density
of atomic vortex beams to a sufficient degree, by tuning the intensity and meanwhile keeping
the propagation direction of the laser the same. Thus, we can certainly conclude that the
resonantly driving laser beam acts as an apparatus which manipulates vortex beams of neutral
atoms.
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Outlook
Twist and shine: Controlling twisted electrons and

atoms with laser light

This thesis is devoted to the theory of angular momentum representation of laser-driven matter
waves. It consists of two parts. In the first part, we have developed an advanced, relativistic
quantum theory for describing the interaction of electron vortex beams with linearly polar-
ized laser pulses. In the second part, we have built a non-relativistic semi-classical theory to
examine the resonant coupling of vortex beams of two-level atoms with a linearly polarized
monochromatic electromagnetic wave.

Before we considered the interaction of twisted particles with laser light, we put emphasis
on a special type of vortex beam, called the Bessel beam, and discussed a number of its prop-
erties in free space (or vacuum). The first (and most important) feature is that such a beam
propagates with its corckscrew-like revolving wavefronts – much like “quantum” tornadoes –
and possesses an orbital angular momentum along the direction of propagation, a fundamen-
tally new degree of freedom. Another intriguing feature of Bessel beams is that they do not
spread out while they propagate forward, i.e. their profile in free space remains the same at any
point of the propagation axis. This means that the transverse extension of twisted wavefronts
also remains constant.

To distinguish between the two types of Bessel beams, namely the scalar and vector beams,
we have examined transverse distributions of their probability density and current. For vector
Bessel beams, the existence of both the spin- and orbital-degrees of freedom gives rise to the
intrinsic SOI. Such an interaction, in turn, causes a fine spin-dependent splitting of observables,
as we have shown for the intensity distribution of relativistic EVBs. We have also demonstrated
that the non-diffracting intensity profile of Bessel beams consists of concentric circles around
the beam axis where the beam intensity is zero and the phase is undetermined. Despite the
vortex nature of Bessel beams, however, the presence of the SOI in vector beams can lead
to an enhancement of the spin-splitting of intensity at the beam center, quite in contrast to
scalar beams. This fundamental difference between scalar and vector Bessel beams is due to
the fact that the longitudinal OAM is well-defined only for scalar ones. Whereas, for vector
Bessel beams, only the sum of longitudinal components of OAM and SAM – called TAM –
represents a well-defined quantity. We have highlighted, moreover, another crucial difference
between scalar and vector beams that is related to their current. The transverse current of
scalar Bessel beams coils around the beam center and changes its direction depending on the
sign of the OAM. In addition to this, the direction of an analogous flow of the transverse
current in vector Bessel beams may vary from one circle to another.
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OUTLOOK

In order to observe how the laser light can be employed for manipulating (and therefore
controlling) both the electron and atom Bessel beams, we constructed an advanced theory
of interaction of twisted matter waves with an electromagnetic field. To this end, we first
examined the coupling of both plane-wave electrons and atoms with a plane-wave laser field.
We then made use of the superposition principle of the linear quantum theory and superimposed
the field-affected plane-wave electrons and atoms with well-defined amplitudes corresponding
to a characteristic monoenergetic spectrum of Bessel beams. Thus, we have found new solutions
for laser-driven electron and atom Bessel beams that enabled us to show the influence of a laser
light upon the dynamics of twisted matter waves. In more detail, we proceeded as follows.

In chapter 1, we have studied the well-known Dirac-Volkov theory quite in details in order to
describe the interaction of relativistic electrons with a plane-wave electromagnetic field. We
have found the exact Dirac-Volkov wave functions that allowed us to immediately calculate
the 4-current of such field-affected electrons.

In chapter 2, we have examined how twisted electrons interact with laser pulses. To this goal,
we first recovered the results of Ref. [45] for field-free relativistic EVBs by finding Bessel-
type solutions of the free-electron Dirac equation and calculating their 4-current. Next, we
generalized these solutions to the laser-driven ones [78] and – at the meantime – showed that our
new solutions contain also the Dirac-Volkov solution in the plane-wave limit for electrons [68].
Furthermore, we explicitly demonstrated that the electron OAM couples to both the SAM of
electron and OAM-components of the laser field and gives rise to intrinsic spin-orbit and orbit-
orbit interactions, respectively. Such (complex) interactions enabled us to illustrate that the
laser light permits to control the profile of the twisted electron beam via the shift of the beam
center, even in the weak-field regime. This shift can be an important observable that manifests
itself in the interaction of twisted electrons with laser pulses. For example, the shift may lead
to a pronounced probability to detect electrons at the (initially dark) center of the incident
EVB. This phenomenon is nowadays accessible in experiments performed with paraxial EVBs.

In chapter 3, we focused on a beam of two-level atoms that are resonantly driven by a laser light.
Although this fundamental problem is widely investigated in literature, we aimed to construct
wave functions that explicitly contain linear momenta of both the atomic and laser beams,
analogous to Dirac-Volkov wave functions for laser-driven electrons (see also chapter 1). To
do so, we expressed both the space- and time-dependent Schrödinger equation as an ordinary
differential equation of only one variable, the (Lorentz-invariant) laser phase, and obtained
analytical solutions in physically relevant approximations, namely the LWA, EA and RWA.

The prime purpose of chapter 4 was to extend the study of field-affected electron vortex
beams to atomic vortex beams which are resonantly driven by a monochromatic laser light.
To the best of our knowledge, such a construction of twisted atoms have been done for the
first time in our group [82, 83]. Twisted electrons and atoms are the massive twins of twisted
photons: there are some similarities yet some striking differences between them. On one hand,
in analogy with optical and electron vortex beams, laser-driven atomic Bessel beams carry a
non-zero OAM that is defined along the direction of propagation. The non-diffracting nature
of such beams also remains unchanged: their transverse structure does not vary along the
beam propagation direction. On the other hand, in contrast to the profile of laser-driven
EVBs, which is spatially shifted in the transverse direction and at the same time depends
on the longitudinal coordinate, the profile of laser-driven atomic vortex beams experiences
a field-induced broadening in the transverse direction (without being shifted) and does not
depend on the longitudinal coordinate. Such a distinct behavior between electron and atom
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OUTLOOK

Bessel beams is caused by the minimal coupling prescription that leads to different mechanisms
of interaction of either charged or neutral particles with a laser light. This is the interaction
between the atomic dipole moment and the electric field of the laser that enabled us to spatially
and temporally manipulate the transverse structure of the atomic beam, by tuning the laser
parameters, such as the intensity and the angular frequency. As we have shown, moreover, we
are able to strongly modify the beam profile if we let the atom propagate long enough inside
the (monochromatic) field. However, the time interval for such a (non-decaying) propagation
should be restricted due to the finite lifetime of excited atomic level(s). Therefore, the extension
of our study to this more realistic case is of a particular interest. Such a generalization would
provide us a proper knowledge about the lifetime of Bessel beams of driven two-level atoms.

We would like to conclude this thesis with the following remark about future prospects
of both electron and atom Bessel beams. Twisted electron beams were developed with an
unique purpose to improve the magnetic mapping of materials by means of twisted electron
microscopy. We believe that our results can open a new route to investigate numerous effects
for these beams in external light fields for current experiments in the paraxial regime as well
as for future experiments in the non-paraxial domain. It would be certainly of a broader
interest to study the effective mass shift and the quantum Hall effect for relativistic twisted
electrons in external fields, to also examine the interaction of both scalar and vector Bessel
beams with complex systems, such as structured condensed matter, atomic clusters, etc. Our
newly constructed atomic Bessel beams, in turn, can be useful for quantum communication
and atomic microscopy. Since the first electron vortex beams were generated in laboratories in
2010, we are very hopeful that in the near future the atomic vortex beams can also be produced
experimentally. The experimental generation of atomic vortex beams can be accomplished by
employing similar production techniques already developed for both optical and electron beams
with phase singularities and twisting wavefronts.
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Post Scriptum: Novel beams made
of twisted atoms

As a postscript of the thesis, we here present the article by the science writer Sabine Louet
devoted to our paper [83]. This article appeared in http://www.epj.org, as the EPJ D highlight
from 01 August 2013, as well as in http://www.eurekalert.org, http://www.alphagalileo.org
and http://www.sciencedaily.com.

Scientists can now theoretically construct atomic beams of a particular kind, opening the door
for applications in fields like quantum communication.

Physicists have, for the first time, now built a theoretical construct of beams made of
twisted atoms. These findings are about to be published in EPJ D by Armen Hayrapetyan
and colleagues at Ruprecht-Karls-University Heidelberg in Germany. These so-called atomic
Bessel beams can, in principle, have potential applications in quantum communication as well
as in atomic and nuclear processes.

The concept for twisted atom beams stems from a similar approach with twisted photon
beams, which are currently used as optical tweezers, for instance. It was later extended to
twisted electron beams, which are used to improve the magnetic mapping of biological speci-
mens and magnetic materials by means of twisted electron microscopy.

The authors focused on a beam made of twisted two-level atoms, which are driven by a
laser field. They created a theoretical construct by using an equation, referred to as the non-
relativistic Schrödinger equation, for atoms which are moving much slower than the speed of
light. Hayrapetyan and colleagues solved this equation by taking into account the propagation
directions of both the atomic and laser beams. By superimposing a multitude of plane-waves
with well-defined amplitudes, they produced Bessel beams for two-level atoms that resonantly
interact with the laser field.

The authors confirmed that their atomic beams fulfilled the two main characteristics of
Bessel beams. First, they showed that these beams carry a non-zero orbital angular momentum,
as reflected by a rotation of the beams wave front around the propagation axis in a corkscrew-
like manner. Second, by taking a snapshot of the atomic beam intensity they demonstrated
that these beams do not spread along the propagation axis. Moreover, they were able to control
the profile of laser-driven atomic Bessel beams by tuning the parameters of both the atomic
and laser beams.
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