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Zusammenfassung

In der jüngsten Vergangenheit wurde die Entwicklung von Wettervorhersagen über Ensemble Vor-
hersagesysteme zum Standard in der Meteorologie. Vorhersage Ensembles werden generiert aus
mehreren Durchläufen dynamischer Wettervorhersagemodelle, mit unterschiedlichen Anfangs- sowie
Randbedingungen oder Parametrisierungen. Jedoch sind auch die Ensemble Vorhersagen nicht in der
Lage, die Vorhersageunsicherheit der numerischen Wettermodelle vollständig zu erfassen. Deshalb
weisen Ensembles oft Verzerrungen und Dispersionsfehler auf, sind also mangelhaft kalibriert. Um
dieses Problem zu beheben wurden bereits erfolgreich statistische Methoden zur Nachbearbeitung
von Ensemblevorhersagen entwickelt. Dennoch sind viele dieser etablierten Verfahren ausgelegt auf
die Anwendung auf eine einzelne Wettervariable, an einem festen Ort und für einen festen Vorher-
sagehorizont. Diese Arbeit präsentiert Erweiterungen der etablierten Nachbearbeitungsmethoden
Bayesian model averaging (BMA) und Ensemble model output statistics (EMOS), mit dem Ziel
Abhängigkeiten zwischen Wettervariablen sowie räumliche Abhängigkeiten zu erfassen, welche in
den ursprünglichen Ensemblevorhersagen implizit vorhanden sind. Zu diesem Zweck wird eine
Mehrschrittprozedur vorgeschlagen, welche sowohl für die Modellierung von Abhängigkeiten zwi-
schen Wettervariablen als auch für die Modellierung räumlicher oder zeitlicher Abhängigkeitsstruk-
turen geeignet ist. Diese Prozedur kombiniert ein univariates Nachbearbeitungsmodell wie BMA
oder EMOS mit einer multivariaten Abhängigkeitsstruktur, z.B. mit Hilfe einer Korrelationsmatrix
oder der multivariaten Rangstruktur des Vorhersageensembles. Eine auf BMA basierende multi-
variate Nachbearbeitungsprozedur, welche die Abhängigkeit zwischen Wettervariablen modelliert,
wird auf das 8-Mitglieder UWME Ensemble für den Nordwesten der USA angewendet. Das Ergeb-
nis einer entsprechenden Fallstudie ist eine multivariate Vorhersageverteilung mit guter multivariater
Kalibrierung und Schärfe. Eine räumliche Variante dieser multivariaten Nachbearbeitungsmethode
basierend auf EMOS wird angewendet auf Temperatur Vorhersagen des 50 Mitglieder ECMWF En-
sembles in Deutschland. Es wird eine räumlich adaptive Erweiterung von EMOS verwendet, welche
von kürzlich entwickelten Methoden für eine schnelle und genaue Bayesianische Schätzung räum-
licher Modelle profitieren kann. Die Prozedur führt zu guter univariater und multivariater Kalib-
rierung und Schärfe. Außerdem können die räumlichen Strukturen der beobachteten Wetterfelder
durch die Methode angemessen wiedergegeben werden. Beide hier betrachteten Erweiterungen ver-
bessern Kalibrierung und Schärfe im Vergleich zum ursprünglichen Vorhersageensemble und zu
etablierten univariaten Nachbearbeitungsverfahren.





Abstract

In the recent past the state of the art in meteorology has been to produce weather forecasts from
ensemble prediction systems. Forecast ensembles are generated from multiple runs of dynamical
numerical weather prediction models, each with different initial and boundary conditions or param-
eterizations of the model. However, ensemble forecasts are not able to catch the full uncertainty of
numerical weather predictions and therefore often display biases and dispersion errors and thus are
uncalibrated. To account for this problem, statistical postprocessing methods have been developed
successfully. However, many state of the art methods are designed for a single weather quantity
at a fixed location and for a fixed forecast horizon. This work introduces extensions of two estab-
lished univariate postprocessing methods, Bayesian model averaging (BMA) and Ensemble model
output statistics (EMOS) to recover inter-variable and spatial dependencies from the original ensem-
ble forecasts. For this purpose, a multi-stage procedure is proposed that can be applied for modeling
dependence structures between different weather quantities as well as modeling spatial or temporal
dependencies. This multi-stage procedure combines the postprocessing of the margins by the applica-
tion of a univariate method as BMA or EMOS with a multivariate dependence structure, for example
via a correlation matrix or via the multivariate rank structure of the original ensemble. The multivari-
ate postprocessing procedure that models inter-variable dependence employs the UWME 8-member
forecast ensemble over the North West region of the US and the standard BMA method, resulting in
predictive distributions with good multivariate calibration and sharpness. The spatial postprocessing
procedure is applied to temperature forecasts of the ECMWF 50-member ensemble over Germany.
The procedure employs a spatially adaptive extension of EMOS, utilizing recently proposed methods
for fast and accurate Bayesian estimation in a spatial setting. It yields excellent spatial univariate and
multivariate calibration and sharpness. Further the method is able to capture the spatial structure of
observed weather fields. Both extensions improve calibration and sharpness in comparison to the raw
ensemble and to the respective standard univariate postprocessing methods.
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Chapter 1

Introduction

Analysis and prediction of current and future weather conditions has always been of great
interest. In this day and age, an accurate forecast of weather becomes increasingly impor-
tant in many economic and social areas, in the management of safe air and ship traffic, in
agriculture and forestry, in efficient generation of energy with sustainable technologies as
wind power and solar cells, or in civil protection in case of natural disasters such as floods,
droughts, storms, forest fire and others. It is even of interest in the financial sector, for
example considering the weather derivative.

During the past decades a change in the practice of weather prediction has been observed.
Up to the beginning of the 1990s, weather prediction was a purely deterministic venture.
National and international weather research centers run different sophisticated numerical
weather prediction (NWP) models. The output of these models are deterministic point fore-
casts for future weather conditions. However, deterministic point forecasts cannot address
uncertainties such as imperfect model formulations or incorrect initial and boundary condi-
tions used to run the model (Leutbecher and Palmer, 2008).

Numerical weather prediction models are still run today, but with a change towards the im-
plementation of (dynamical) ensemble forecast methods. Ensembles of forecasts address
prediction uncertainty and allow for probabilistic forecasting. A forecast ensemble is cre-
ated by multiple runs of the numerical model, with a set of different initial conditions and
lateral boundary conditions and/ or with different representations of the mathematical models
used to describe the atmosphere. Dynamical ensembles can capture nonlinear uncertainties
in forecasts, but they require considerable computational power.
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CHAPTER 1. INTRODUCTION

However, ensemble forecasts still have their shortcomings. Often, ensembles exhibit sys-
tematic biases as well as dispersion errors. The ensembles therefore lack calibration (Hamill
and Colucci, 1997) and are typically underdispersed. To address these shortcomings several
statistical methods of postprocessing the ensemble forecasts have been developed (Wilks and
Hamill, 2007). Such methods correct for biases and dispersion errors in light of the principle
’maximizing sharpness subject to calibration’ proposed by Gneiting et al. (2007). An addi-
tional advantage of statistical postprocessing is the fact that the postprocessing models yield
full predictive probability distributions for the weather quantities of interest. In many appli-
cations, the postprocessed ensemble outperforms the raw ensemble in terms of calibration
and sharpness.

There are two main approaches of postprocessing, which are the basis for several extensions.
The Ensemble Bayesian model averaging (BMA) proposed by Raftery et al. (2005) estimates
the predictive density as a mixture of the individual densities associated with each ensemble
member. The Ensemble model output statistics (EMOS) technique introduced in Gneiting
et al. (2005) combines all ensemble forecasts in a multivariate regression approach. These
methods, especially BMA, have been adapted in various ways to account for the character-
istics of different weather quantities.

Many of the postprocessing techniques based on BMA and EMOS, however, are designed for
a single weather quantity and a fixed location. They do not take into account dependencies
between weather quantities or spatial dependencies between observation locations. For ex-
ample for accurately forecasting composite quantities such as minima, maxima or averages,
it is important to incorporate spatial structures and correlations among the location-specific
forecast uncertainties.

Several approaches have already been developed on the basis of BMA or EMOS that account
for spatial dependency structures in different ways. The main approaches are the Geostatis-
tical model averaging (GMA) introduced by Kleiber et al. (2011a) and methods based on the
Geostatistical output perturbation (GOP) method (Gel et al., 2004). While the first approach
estimates spatially adaptive model parameters from all ensemble members, the second one
aims at sampling spatially consistent and jointly calibrated samples of weather fields by em-
ploying only a single ensemble member or point forecast.

This work contributes to the postprocessing literature in two ways. On the one hand, it intro-
duces a new way of multivariate postprocessing where dependencies between weather quan-
tities are incorporated in the predictive distribution by combining existing variants of BMA
for different types of weather quantities with a multivariate dependence structure induced
by a Gaussian copula. This method yields a joint predictive distribution for several weather
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quantities with good multivariate (as well as univariate) calibration properties. The presented
approach was originally designed to employ a Gaussian copula for constructing the multi-
variate dependence structure. Nonetheless, a generalization to other types of dependence
structures is straightforward and already utilized in the spatial approach discussed next. In
the postprocessing literature multivariate postprocessing approaches are rarely found. Al-
though Schoelzel and Friederichs (2008) consider the estimation of bivariate copulas to
model the distribution of two weather quantities jointly (they apply this method to weather
quantities as well as to other environmental variables), they are not employing these copula
approaches in a context of ensemble postprocessing, only for observations of weather quan-
tities. The work published by Möller et al. (2013) that is presented here, explicitly develops a
multivariate ensemble postprocessing procedure to jointly model several weather quantities
that closes a gap in the postprocessing literature.

On the other hand, this thesis develops a spatial postprocessing method by combining the
advantages of GMA and GOP based methods. This postprocessing approach, called Marko-
vian EMOS (MEMOS), extends the standard EMOS model to have spatially adaptive model
parameters by assuming spatial Gaussian fields on them. The method additionally allows for
producing samples from a spatial joint distribution by combining the basic MEMOS method
with certain types of multivariate dependence structures in a multi-stage procedure. A fur-
ther advantage is the possibility to utilize a recently developed methodology that allows to
compute an explicit Gaussian Markov random field representation of a Gaussian field with
Matérn covariance function (Lindgren et al., 2011). A direct link between the two types
of random fields can be established via the solution of a stochastic partial differential equa-
tion (SPDE). This methodology yields a considerable computational benefit when estimating
the parameters of the postprocessing model. The resulting postprocessing model was called
Markovian EMOS to honor the specific markovian structure of the underlying GMRF repre-
sentation.

The remainder of this work is organized as follows. Chapter 2 gives an overview on prob-
abilistic weather forecasting in general as well as on several established univariate postpro-
cessing methods. Chapters 4 and 5 present the multivariate and spatial extensions of the
BMA and EMOS methods. For the spatial version the theory of Gaussian Fields, Gaussian
Markov random fields and the link between both concepts via the solution of an SPDE is
introduced. The respective chapters review the theory behind the developed methods and
present the data employed for each of the approaches along with case studies analyzing their
predictive performance.

3



CHAPTER 1. INTRODUCTION

In Chapter 3 some general theory about copulas is introduced, as Gaussian copula methods
are employed in Chapter 4 to set up a multivariate dependence structure.

Chapter 6 briefly summarizes the key results of this work and discusses alternative ap-
proaches as well as an outlook on future research plans extending the obtained methods
in various directions.
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Chapter 2

Probabilistic Weather Forecasting

Current practise in predicting future weather is the use of numerical weather prediction
(NWP) models. These are deterministic numerical simulation models representing the phy-
sics of the atmosphere. The NWP models are based on several dynamical partial differential
equations in different variables describing the evolution of the states of atmosphere. To
obtain deterministic forecasts for future atmospheric states the involved equations are dis-
cretized on a grid with a certain resolution (differing with the type of NWP model) and run
forward in time. A set of initial and boundary conditions describing the current state of
the atmosphere at time step t is assimilated from observations at time step t. The informa-
tion is then used to run forward the NWP model in time and obtains predictions of future
atmospheric states at time steps t+ l, l ≥ 1.

There are different types of NWP models that are run operationally, among them global mod-
els and mesoscale (limited-area) models. Different global models are run in real time all over
the world, such as the European Centre for Medium-Range Weather Forecasts (ECMWF)
model in Europe, the National Centers for Environmental Prediction (NCEP) model in the
United States or the Meteorological Service of Canada (MSC) in Canada. Global models
typically have a horizontal resolution of 36 - 100 km. The mesoscale models have a much
higher resolution, typically about 2 - 36 km horizontally. They usually employ initial and
boundary conditions provided by one or several global models.

An NWP model issues a single deterministic forecast and is therefore not capable of as-
sessing the forecast uncertainty. However, there are major sources of uncertainty present
in NWP models, such as an incomplete network of observations, measurement errors or in-
correct model formulations due to incomplete knowledge of all physical processes in the
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atmosphere.

The atmosphere is a chaotic system, very small perturbations of the current state can already
lead to an increasingly large change in the evolution of the atmosphere so that after some
time the development of the original state and the perturbed state are completely different
(Lorenz, 1963). The chaotic nature of the atmosphere leads to significant forecast errors as
minute errors in the initial conditions can grow exponentially during the integration process
of the NWP model. This makes a single deterministic forecast useless when it comes to the
assessment of the forecast uncertainty.

Ensemble methods are one manner of accounting for this problem. They lead to consider-
able improvements in the forecast skill. This was explored elaborately for medium-range
forecasts (2-10 days) (Toth and Kalnay, 1993; Molteni et al., 1996) and there is also research
concerning the application of ensembles to short-range forecasts (0-48h) (Eckel and Mass,
2005; Hamill and Colucci, 1997).

Ensemble forecasting adopts the idea of predicting probabilities for future weather events
(Leutbecher and Palmer, 2008). Pushing forward the ensemble forecasting in daily weather
prediction lead to a change from purely deterministic weather forecasts to a more probabilis-
tic approach. The idea of probabilistic forecasting through ensemble forecasts is carried out
by using a set of different initial and boundary conditions, all consistent with observations
and observation errors, different model physics or model perturbations or even different nu-
merical models. An ensemble of forecasts is then generated by running an NWP model with
a varied set of initial conditions and/or perturbations or by employing a different unique nu-
merical model for each run. There are several types of ensembles, according to the way their
members are generated, see e.g. Eckel and Mass (2005):

Multi-analysis ensembles are produced by employing a single numerical model and run it
multiple times, each time with a different set of initial conditions. Multi-model ensembles
are obtained by employing a separate numerical model for each ensemble member, but run
these multiple models with a single set of initial conditions. Multi-model multi-analysis
ensembles are a combination of both types described above. Multiple numerical models are
run, each with multiple sets of initial conditions, so each ensemble member is a specific
combination of a certain numerical model with a certain set of initial conditions.

An example for a multi-analysis mesoscale ensemble system is the University of Washing-
ton Mesoscale Ensemble (UWME), operating at lead times up to three days (Grimit and
Mass, 2002; Eckel and Mass, 2005). It comprises of eight members that are obtained by
using eight analyses from different operational forecast centers as initial conditions in the
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fifth-generation Pennsylvania State University - National Center for Atmospheric Research
Mesoscale Model (PSU-NCAR MM5). The PSU-NCAR MM5 model is succeeded by the
WRF (Weather Research and Forecasting) model presently. In Section 4 some more infor-
mation on the UWME ensemble is given, as the WRF UWME ensemble is employed in the
case study for the multivariate postprocessing extension.

A forecast ensemble allows to combine the individual members for example by using the
ensemble mean as a single deterministic forecast, as well as to estimate the forecast uncer-
tainty by considering the ensemble variance or the root mean square error. On average, the
ensemble mean outperforms each of the individual ensemble members (Grimit and Mass,
2002).

For a unimodal predictive distribution, variations in the width of the distribution from fore-
cast to forecast can be directly linked to the predictive skill of the mean forecast. The spread
of the ensemble measures the width of the predictive distribution and therefore provides a
tool to assess the predictive skill of the ensemble mean. Specifically, Whitaker and Loughe
(1998) found a positive correlation between the ensemble spread, which is known a priori,
and the forecast errors, only known a posteriori. This phenomenon is called spread-error
correlation or spread-skill relationship.

2.1 Postprocessing methods for ensemble forecasts

Ensembles allow for probabilistic forecasts of continuous weather variables, such as sea
level pressure or surface temperature. Ideally, a probabilistic forecast takes the form of a
predictive cumulative distribution function (CDF) or a predictive probability density func-
tion (PDF). However, ensemble forecast systems are finite, they typically employ 5 up to
50 members. Hence, the raw ensemble output does not provide full predictive PDFs for
continuous quantities, and some form of postprocessing is required.

Besides this, there are several additional challenges in the development of appropriate sta-
tistical postprocessing methods. The current NWP systems typically show systematic biases
(forecast errors) and the ensembles lack calibration, for details see Section 2.2.1, they are
very often underdispersed (Hamill and Colucci, 1997), as the ensembles only capture some
of the uncertainties of numerical weather forecasting (Raftery et al., 2005).

Many different postprocessing methods are available these days, most of them can be mod-
ified to be suited for various weather quantities. There are two main approaches in the
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existing postprocessing literature. The first type of methods is based on the ensemble BMA
approach, where the predictive distribution is constructed as a mixture of individual kernel
densities assigned to each forecast member. Each kernel density depends only on a specific
forecast member. The weights of the mixture components are obtained from the predictive
skill of the respective ensemble member. The second type of methods is based on the EMOS
approach, where the predictive distribution is obtained via a multiple linear regression of the
observations on all ensemble members.

These two basic postprocessing approaches have been extended and modified in various
ways to account for the need of the applications to other than normally distributed weather
quantities as well as for other requirements as taking into account dependency structures.

The following sections give an overview on the most important methods, that are frequently
used, without any claim to be complete.

2.1.1 Ensemble Model Output Statistics (EMOS)

The ensemble model output statistics (EMOS) methodology was introduced by Gneiting
et al. (2005). It addresses bias and dispersion errors of the raw forecast ensemble. The
EMOS technique is motivated by the multiple linear regression model called model output
statistics (MOS) in the context of applying linear regression equations to output of numerical
weather prediction models (Glahn and Lowry, 1972; Klein and Glahn, 1974; Wilks, 2006,
2009). It has enjoyed popularity in the application to deterministic-style and probability of
precipitation forecasts. The general idea of the MOS method is to combine the output of the
numerical weather prediction models (numerical deterministic-style forecasts for different
variables) with real observations made at observation stations to get improved forecasts at the
considered stations. By taking into account the observations as well, the numerical forecasts
can be verified or adapted to the situation at a specific station, after having interpolated the
numerical forecast from the model grid to the respective station location. The regression
model uses those parameters of the numerical model output that have an effect on a weather
quantity of interest, like e.g. surface temperature or sea level pressure.

The EMOS technique is typically designed for the application to a univariate weather quan-
tity, a fixed location and for a fixed forecast horizon. The basic method is not taking into
account dependences with other weather quantities nor is it able to capture spatial or tem-
poral dependencies. Specifically, let x1, . . . , xm denote a forecast ensemble of size m for
a univariate quantity Y , where all individual forecast members are distinguishable. Using
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the ensemble members as predictors in the multiple linear regression model this leads to the
regression equation

Y = a+ b1x1 + . . .+ bmxm + ε, (2.1)

where a, b1, . . . , bm are regression coefficients and ε is an error term with variance σ2 and
mean 0.

Equation (2.1) is defined for each considered observation case i = 1, . . . , N and the error
terms εi are assumed to be independent of εi′ for all i 6= i′. For convenience, the index i for
the observations is omitted.

The model (2.1) can easily be adapted for indistinguishable forecast ensembles, as e.g. the
ECMWF ensemble utilized in Chapter 5, by assuming all multiplicative bias-correction pa-
rameters to be equal, that is, bk = b, k = 1, . . . ,m.

Gneiting et al. (2005) propose this approach to improve the predictive performance of the
ensemble with the additional benefit that the postprocessing method yields full predictive
PDFs from a forecast ensemble for a continuous weather quantity. When assuming the error
term to be normally distributed, that is ε ∼ N(0, σ2), this leads to the following distribution
of the quantity Y given the m ensemble members:

Y |x1, . . . , xm ∼ N
(
a+

m∑
k=1

bkxk, σ
2
)
. (2.2)

This conditional distribution allows to obtain estimated PDFs and CDFs from the regression
Equation (2.1) in a straightforward way. The EMOS approach corrects for model biases
and accounts for dispersion errors by performing a simple bias correction through the linear
combination of the ensemble members with the bk as multiplicative coefficients and a as
additive coefficient. However, with the assumption of a constant model variance the spread
of the original ensemble is not taken into account in the model, and so it ignores the spread-
skill relationship (Whitaker and Loughe, 1998; Barker, 1991). Gneiting et al. (2005) propose
to model the variance of the error term as a linear function of the ensemble spread:
Var(ε) = c+dS2, where S2 is the ensemble variance and c and d are nonnegative coefficients.
In this case the predictive distribution of the quantity Y given the ensemble members is given
as

Y |x1, . . . , xm ∼ N
(
a+

m∑
k=1

bkxk, c+ dS2
)

(2.3)

In the above model formulation the regression parameters bk can be positive and negative.
In applications positive as well as negative regression coefficients may occur. Negative co-
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efficients are typically caused by collinearities of the ensemble member forecasts, but they
are hard to interpret. To avoid this problem Gneiting et al. (2005) propose an alternative
implementation of the EMOS technique, which constrains the coefficients b1, . . . , bm to be
nonnegative. This variant of the EMOS technique is called EMOS+. For details on the
implementation see Gneiting et al. (2005).

The predictive mean of the EMOS model is a bias-corrected weighted average of the en-
semble members and provides a deterministic forecast. The coefficients b1, . . . , bm reflect
the overall performance of the individual ensemble members over the training period as well
as correlations between ensemble members. The coefficients c and d reflect the ensemble
spread and the performance of the ensemble mean forecast. All else being equal, larger val-
ues of d suggest a more pronounced spread-error relationship, while d will be estimated very
small if spread and error are independent.

Estimation of the EMOS model parameters can be conducted with maximum likelihood
methods (ML) from a set of training data. However, Gneiting et al. (2005) found that pre-
dictive PDFs estimated with ML methods tend to be overdispersive and to have wide pre-
diction intervals with higher than nominal coverage. Therefore, they suggest an alternative
approach. As the log-likelihood is essentially the negative of the ignorance score, they pro-
pose to choose a scoring rule of interest, express this score as a function of the coefficients
for the training data and optimize this function with respect to the coefficient values. They
argue that the continuous ranked probability score (CRPS, for definition and details see Sec-
tion 2.2) is the most appropriate score. Due to the choice of the CRPS as reference score they
call their estimation technique minimum CRPS estimation. This strategy obtains the values
of a, b1, . . . , bm, c, d in the EMOS model that minimize the mean CRPS for a given set of
training data.

In case of the EMOS model (2.3) with normally distributed error terms εi for each observa-
tion case i, it is possible to express the CRPS as an analytic function of the coefficients in
closed form, as a sum over all observation cases in the training data:

Γ(a, b1, . . . , bm, c, d) =
1

n

n∑
i=1

(c+ dS1
i )1/2

[
Zi (2Φ(Zi)− 1) + 2φ(Zi)−

1√
π

]
, (2.4)

where
Zi =

Yi − (a+ b1xi1 + · · ·+ bmxim)

(c+ dS2
i )

1/2

is a standardized forecast error, φ and Φ denote the PDF and the CDF of a N(0, 1) distribu-
tion, and the sum is taken over the training data. The coefficients that minimize (2.4) have to
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be determined numerically.

To fit the nonnegative regression coefficients in the EMOS+ approach the authors describe
a stepwise procedure. They first estimate the full unconstrained EMOS model, then set all
those coefficients to zero that have negative estimates and finally estimate the minimum
CRPS estimators in this new model, where the ensemble variance has been recomputed as
well. This procedure is iterated until all coefficients have nonnegative estimates.

Gneiting et al. (2005) applied the EMOS technique to surface temperature and sea level pres-
sure. For both quantities it is reasonable to assume a normal distribution. It is possible to
adapt the EMOS technique to continuous quantities with other distributions as well. How-
ever, the original EMOS model does not apply directly to non-negative weather quantities
such as wind speed. For this case Thorarinsdottir and Gneiting (2010) propose an adaptation
of the EMOS+ model, employing truncated normal distributions with a cut-off at zero. Tho-
rarinsdottir and Gneiting (2010) employ a heteroscedastic censored (tobit) regression model
to estimate the model parameters. The truncated normal distribution is conditional on the
forecast ensemble, while the unconditional (marginal) distribution of wind speed is often
modeled with Weibull densities.

There are two different variants of estimating the EMOS parameters. The first possibility is
to estimate only one set of parameters for all observation locations simultaneously for each
given day. This is called global or regional EMOS. The second possibility is to estimate a
separate set of parameters for each observation location on a given day. This procedure is
called local EMOS.

While local EMOS leads to an improved local calibration as the forecast errors are estimated
locally at each station, the resulting predictive weather fields are not necessarily spatially
consistent. Research has been conducted that aimed at modifying the basic EMOS approach
to account for spatial dependence structures. Similar to the spatial BMA approach described
in Section 2.1.4 that combines the standard BMA method (Section 2.1.2) with the GOP
approach (Section 2.1.3), a spatially adaptive extension of EMOS called spatial EMOS was
developed in Feldmann (2012).

2.1.2 Bayesian Model Averaging (BMA)

In the EMOS approach them ensemble forecast members are combined in a linear regression
model Y = a + b1x1 + · · · + bmxm + ε, resulting in a single model formulation, where it
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remains to specify the coefficients. Alternative models are not taken into account.

However, conditioning on a single selected model ignores model uncertainty and leads to
underestimation of uncertainty when making inference. Raftery et al. (1997) and Hoeting
et al. (1999) among others discussed this problem. A standard Bayesian approach to this
problem is averaging over all possible models. Such a technique was originally developed by
Leamer (1978) as a method to combine predictions and inferences from multiple statistical
models. LetM = {M1, . . . ,Mk} denote the set of all models taken into consideration and
∆ the quantity of interest. Then the posterior distribution of ∆ given the data D reads

P (∆|D) =
k∑
i=1

P (∆|Mi, D) P (Mi|D). (2.5)

The sum in Equation (2.5) is an average of the posterior distributions of ∆ under each model
Mi, weighted by their posterior model probabilities. Raftery et al. (1997) call this procedure
Bayesian Model Averaging (BMA). The BMA approach enjoys high popularity in the social
and health sciences, where it is frequently applied.

Averaging over all possible models in the above described fashion improves predictive abil-
ity. The implementation of BMA, however, can be difficult in specific applications as the
number of terms in (2.5) can be large. To get around this problem, Raftery et al. (1997)
propose to reduce the set of possible models by some selection algorithm and only average
over the reduced set. In case studies Raftery et al. (1997) showed that their reduced model
averaging approach provides better predictive performance than any single model that might
have been reasonably selected.

Several years later Raftery et al. (2005) extended the original BMA technique to statisti-
cal postprocessing of forecast ensembles. In this context the models Mk are not referring
to different statistical models, but they are implicitly identified with the different runs of
the dynamical numerical model(s) producing the ensemble members. The ensemble BMA
method can be seen as a kernel dressing approach where each ensemble member xk is asso-
ciated with a kernel density gk(y|xk). EMOS on the contrary assigns each member its own
bias-correction parameter, but not its own density function.

Like EMOS, BMA is designed for a univariate weather quantity, for fixed locations and a
fixed forecast horizon. In its basic form it cannot capture spatial or temporal dependencies.
The ensemble BMA predictive density, as proposed for example in Raftery et al. (2005), is
given by a mixture of individual kernel densities,

f(y|x1, . . . , xm) =
m∑
k=1

ωk gk(y|xk), (2.6)
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where the weights ωk are assumed to be non-negative with
∑m

k=1 ωk = 1. The weights can
be interpreted as the posterior probability of forecast xk being the best one, based on the
performance of this member in the training period.

In the BMA model, bias-correction is achieved by a linear transformation b0k+b1kxk of each
ensemble member. The linear transformation is linked to the mean of the kernel density gk.
The parameters b0k are additive and the b1k multiplicative bias correction terms, estimated
member specifically. If all kernel densities gk are chosen to be Gaussian, the predictive
distribution of Y given a single ensemble member has the form

Y |xk ∼ N(b0k + b1kxk, σ
2).

The type of distribution assumed for the kernel gk is not a feature estimated within the BMA
procedure. It needs to be specified by the user and the choice depends on the weather variable
of interest. Raftery et al. (2005) propose the application of BMA to surface temperature
and sea level pressure. They apply Gaussian kernels in both cases. Sloughter et al. (2010)
consider the postprocessing of wind speed forecasts and apply gamma kernels.

Sloughter et al. (2007) develop a BMA variant for precipitation amount, utilizing a discrete-
continuous mixture distribution to account for the large number of zero observations, while
precipitation observations in general are non-negative. The kernel density gk is defined in
two parts. One part models the probability of zero precipitation with a (discrete) point mass
at zero, the other part describes the distribution of precipitation amount given that it is non-
zero. As in the latter case the distribution can be assumed to be skewed, Sloughter et al.
(2007) employ a gamma kernel. The gamma distribution Γ(α, β) is parameterized in terms
of a shape parameter α and a scale parameter β. Its mean is obtained as αβ and its variance
as αβ2. Sloughter et al. (2007) found that employing the cube root of the precipitation
amount yields a more appropriate model fit than a model in terms of the original amounts.
They introduce the kernels gk in the overall BMA model (2.6) for the weather quantity y
describing the cube root of precipitation amount as

gk(y|xk) = P (Y = 0|xk) I{y=0} + P (Y > 0|xk) hk(y|xk) I{y>0}.

In this equation, hk denotes a gamma density in terms of the cube root of precipitation
amount and I{y∈A} the indicator function with I{y∈A} = 1 if y ∈ A for a desired set A and
I{y∈A} = 0 for y 6∈ A.

The probability of zero precipitation is modeled with a logistic regression approach where
the predictor variable is defined as cube root of the original forecasts

P (Y = 0|xk) =
exp(a0k + a1kx

1/3
k + a2kδk)

1 + exp(a0k + a1kx
1/3
k + a2kδk)
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Variable Range Kernel Mean Variance

Temperature y ∈ R N(µk, σ
2
k) b0k + b1kxk σ2

Pressure y ∈ R N(µk, σ
2
k) b0k + b1kxk σ2

Wind speed y ∈ R+ Γ(αk, βk) b0k + b1kxk c0 + c1xk

Precipitation amount y1/3 ∈ R+ Γ(αk, βk) b0k + b1kx
1/3
k c0 + c1xk

Table 2.1: The ensemble BMA kernel functions for different weather variables and the
associated link functions for mean value and variance

with δk = 1 if xk = 0 and δk = 0 otherwise. Although the BMA model of Sloughter et al.
(2007) is defined for the cube root of the precipitation amount, the resulting probabilistic
forecast can easily be expressed in terms of the original amounts.

Table 2.1 is taken from Möller et al. (2013), where the BMA methodology is reviewed. It
gives an overview on the four most popular BMA models for the quantities temperature,
pressure, wind speed, precipitation amount and their model properties. The estimation pro-
cedure for the BMA models summarized in Table 2.1 are implemented in the R package
ensembleBMA (R Development Core Team, 2011; Fraley et al., 2011).

The (member specific) bias correction parameters b0k and b1k specifying the mean of the
kernel gk are estimated with linear regression of the observations on the forecasts from the
training data. In case of precipitation amount, the parameters for the probability of zero pre-
cipitation part, a0k, a1k and a2k, are estimated by logistic regression. The weights wk, the
variance σ2, and in case of wind speed and precipitation, the variance parameters c0 and c1,
are estimated by maximum likelihood from the training data. As the likelihood cannot be an-
alyzed analytically, an EM-algorithm is employed by introducing the unobserved quantities
zkst = 1 if ensemble member k is the best for observation site s at time point t and zkst = 0

otherwise. For each (s, t) only one of the {z1st, . . . , zmst} is equal to 1, all others are zero.
The estimate for σ2 obtained by the EM algorithm can then be refined so that the CRPS is
minimized for the training data. For this, a numerical search over a range of values of σ2

is performed while all other parameters remain fixed. For details on how the estimation is
conducted for a specific BMA model, see Raftery et al. (2005), Sloughter et al. (2007) and
Sloughter et al. (2010).

Other variants of the ensemble BMA method are available that will not be discussed here, see
for example the work by Roquelaure and Bergot (2008), Bao et al. (2010), and Chmielecki
and Raftery (2010).
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As for the EMOS model, there exists a global and a local BMA version, where on a given
day either only one set of parameters is estimated over all locations or a separate set of
parameters is provided for each station individually.

2.1.3 Geostatistical Output Perturbation Method (GOP)

Gel et al. (2004) introduced a quite different postprocessing approach than the others de-
scribed above. Methods like EMOS and BMA are employed to perform postprocessing of
an ensemble of forecasts. The forecast ensemble is available from large weather centers
running the numerical models and the postprocessing is applied to improve the predictive
quality of the ensemble.

In contrast to this, the Geostatistical output perturbation method (GOP) aims at producing
probabilistic weather forecasts from a single numerical model, instead of postprocessing an
already existing ensemble of forecasts. This method applies to whole weather fields simul-
taneously rather than just to weather events at individual locations. As BMA and EMOS,
GOP is designed for univariate weather quantities and fixed forecast horizons. However, in
contrast to these two methods it incorporates spatial dependencies between forecast errors at
different locations.

The basic idea behind GOP is to perturb output from the numerical model, instead of going
down the traditional road of perturbing model inputs to obtain an ensemble. This basic idea
is not necessarily including spatial correlation. As actual error fields show substantial spatial
correlation, the idea of GOP is to account for this by modeling errors using a geostatistical
model preserving the spatial correlation structure of the weather field. Spatially consistent
ensembles of forecasts fields can easily be generated by simulating a desired number of real-
izations from the resulting spatial random field model. The idea for developing this method
originally came from the fact that generating a mesoscale forecast ensemble was typically
not feasible for smaller weather organizations that perform mesoscale weather prediction
locally without the computing resources of national weather centers.

Gel et al. (2004) consider a weather quantity Y (s) at a spatial point s ∈ R2 verifying at a time
point t, for a given forecast horizon andX(s) denotes the forecast for this quantity. The focus
lies on forecasting the spatial field Y = {Y (s), s ∈ S} for all points s on a large but finite set
of locations S simultaneously using the spatial field of forecasts X = {X(s), s ∈ S}, while
the forecast horizon and the time point t remain fixed. The goal is to get jointly calibrated
probabilistic forecasts of the whole weather field, rather than just forecasts that are calibrated
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at each of the individual locations. In the GOP model of Gel et al. (2004), the finite set S can
be distinct model grid points as well as observation locations.

To forecast Y (s), a finite set of variables Z(s) that are related to forecast bias might be
included in the model. They can for example be functions of time (e.g. time of year or time
of day) or functions of space, like latitude, longitude, altitude, land use type and others. The
general form of the model for predicting Y (s) proposed in Gel et al. (2004) is then given as

Y (s) = b′0Z(s) + (b′1Z(s))X(s) + ε(s). (2.7)

Here b0 and b1 are parameter vectors, while ε(s) is a Gaussian stationary space-time process
with mean zero and covariance matrix Σ. Furthermore, b′0Z(s) is an additive bias-correction
term and b′1Z(s) a multiplicative one.

For the spatial error field ε(s), Gel et al. (2004) assume that

1

2
Var(ε(si)− ε(sj)) = ρ2 + τ 2

(
1− exp

(
− ||si − sj||

r

))
, (2.8)

where || · || is the Euclidean norm and si 6= sj are locations in the set S. The parameter ρ2

is called the nugget effect, describing the measurement error variance of the observations,
ρ2+τ 2 is the marginal variance of ε(s) and r is a range parameter, indicating the rate at which
the spatial correlations of the errors decay. In terms of a geostatistical model, Equation (2.8)
implies that the error field has an exponential variogram (Gelfand et al., 2010; Diggle and
Ribeiro Jr., 2010)

γ(d) = ρ2 + τ 2(1− e−d/r), (2.9)

where d = ||si − sj|| denotes the Euclidean distance between locations si and sj , i 6= j, as
in Equation (2.8).

Gel et al. (2004) propose a three-stage estimation method that approximates a full maximum
likelihood approach to estimate the parameters in (2.7) and (2.8).

The GOP method allows for generating a spatial forecast ensemble of any desired size by
simply simulating realizations from the process defined through (2.7) and (2.8). It is im-
plemented in the R package ProbForecastGOP. For the simulation, the current forecast
X(s) and the parameters estimated from past data are needed.

The original GOP method is not belonging to the class of methods with spatially varying
parameters. Spatial correlations are introduced by dressing the outputs of numerical weather
models with spatially correlated error fields produced by a geostatistical model, where the
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parameters are estimated globally. However, the possibility to generate spatially calibrated
field forecast ensembles from the output of numerical models is a useful tool.

A disadvantage of the method proposed by Gel et al. (2004) is the fact that the technique
does not honor the flow-dependent information of a forecast ensemble, as it only employs
a single numerical forecast for the postprocessing (e.g. a single ensemble member). BMA
and EMOS on the contrary account for the information of the full ensemble. However, the
basic methods are not designed to include spatial correlations between forecast errors in the
model. Therefore a natural extension is to combine both types of methods. The next section
presents such an extension.

2.1.4 Spatial BMA

Berrocal et al. (2007) introduced the spatial BMA technique, which combines the standard
BMA and GOP approaches, thus taking advantage of the benefits of both methods. Spatial
BMA resembles the original BMA technique, the predictive PDF is a weighted average of
the individual forecast densities with weights reflecting the skill of the forecast members.

However, in the spatial BMA model the forecast PDFs are multivariate densities with covari-
ance structures that reflect the spatial dependency of the real observations. The technique
has the ability to generate statistical ensembles of whole weather fields simultaneously, of
any desired size, similar to GOP. At the same time spatial BMA reduces to the original BMA
at any individual location, while it reduces to the original GOP method if only an ensemble
of size m = 1 is considered, that is, when a single deterministic forecast is employed.

Berrocal et al. (2007) obtain the spatial BMA forecast members by dressing the weather
field forecasts of the ensemble members with simulated spatially correlated error fields, in
proportions corresponding to the BMA weights of each individual member.

Let Y = {Y (s), s ∈ S} denote an observational weather field for a large but finite set of
locations S and consider the m ensemble forecast fields X1 = {x1(s), s ∈ S}, . . . ,Xm =

{xm(s), s ∈ S}. Denote by n the dimension of the finite set of locations S. In this setting,
x1(s), . . . , xm(s), s ∈ S are the m (univariate) ensemble forecasts at location s and Y (s)

is the random variable describing the observational field at location s, with corresponding
realization ys.
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The predictive PDF of the field Y is modeled as

f(Y|X1, . . . ,Xm) =
m∑
k=1

wk gk(Y|Xk). (2.10)

The parameters are the same as in the original BMA technique with the only difference
being that the conditional PDFs are multivariate densities, while the densities are univariate
in the original BMA technique. Similar to the univariate BMA version a multivariate normal
distribution can be assumed for the kernel densities gk in case temperature or pressure is
considered. The densities gk are centered at the bias-corrected forecast fields, b0k1 + b1k Xk,
where 1 denotes the vector of ones with dimension equal to the dimension of the field Y.

In case of kernel densities having a multivariate normal distribution, Equation (2.10) indi-
cates that the predictive multivariate distribution of the weather field Y given one of the m
ensemble field forecasts is multivariate normal with the following appearance:

Y|Xk ∼ Nn(b0k1 + b1k Xk,Σ
∗
k), (2.11)

where Σ∗k is a spatially structured covariance matrix and Nn(b0k1 + b1k Xk,Σ
∗
k) denotes

the n-variate normal distribution of its arguments. Berrocal et al. (2007) showed that the
matrix Σ∗k for member k can be derived from the original BMA model variance σ2, the
GOP variance parameters ρ2

k, τ
2
k and the GOP covariance matrix Σk when applying GOP to

member k. The resulting representation of the covariance matrix is the following:

Σ∗k =
σ2

ρ2
k + τ 2

k

Σk. (2.12)

The factor αk = σ2

ρ2k+τ2k
describes the ratio of the BMA variance to the GOP variance of

member k for the errors. It is therefore called deflation factor for member k. The deflation
factor stems from the assumption of forecast member k being the best in the ensemble. In
the original GOP approach no such assumption is necessary, as only a single forecast is
considered.

For the estimation of the full set of parameters of spatial BMA it is necessary to first fit the
original BMA model. Given the estimates for the BMA parameters, the GOP model is fitted
for each ensemble member separately. By combining the estimates from both procedures,
the full set of spatial BMA parameters is obtained.

After parameter estimation it is possible to obtain a spatial BMA ensemble of any desired
size by repeatedly choosing a random number k ∈ {1, . . . ,m} and then drawing a sample
from (2.11) for the chosen k. This sample is generated by dressing the bias-corrected weather
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field forecasts b0k1 + b1k Xk with simulations from the spatially structured conditional error
fields defined through the geostatistical model. For details on this sampling procedure see
Berrocal et al. (2007).

The method described in Berrocal et al. (2007) was designed for weather quantities with a
multivariate normal distribution. In Berrocal et al. (2008) a similar spatial postprocessing
procedure was developed for precipitation amount, where the authors adapted the univariate
BMA version for precipitation amount proposed by Sloughter et al. (2007).

Recently a similar extension was developed for the basic EMOS model. The method is called
spatial EMOS in analogy to spatial BMA. It combines the standard EMOS model with GOP
and accounts for extending the specific EMOS variance to a spatially structured covariance
matrix. For details on this method see Feldmann (2012).

2.1.5 Geostatistical Model Averaging (GMA)

Kleiber et al. (2011a) modify the global BMA method to obtain a locally adaptive technique,
called Geostatistical model averaging (GMA). This method estimates biases and variances
at the observation stations and interpolates them to arbitrary points on the model grid with a
geostatistical model. Kleiber et al. (2011a) apply the method to temperature forecasts, where
the predictive distribution can be assumed to be normal. The authors devoted further research
to the GMA model and modified it for application to quantitative precipitation (Kleiber et al.,
2011b).

Let s = s1, . . . , sn ∈ R3 denote a set of n training locations, x1st, . . . , xmst an m member
forecast ensemble at location s, valid at time point t, and yst the corresponding verifying
observation.

Generalizing Raftery et al. (2005), the bias-correction coefficients and the variance are de-
fined to vary not only by member and time point, but also by location. Therefore, GMA is an
approach that uses spatially varying parameters. Concerning the bias correction parameters,
Kleiber et al. (2011a) use a simplified version of the basic BMA model with only an additive
bias-correction term:

yst = xkst − aks + εst, (2.13)

where aks denotes an additive bias-correction parameter for member k at site s, xkst the
forecast of member k for (s, t) and εst ∼ N(0, σ2

s). The error term εst is assumed to have a
spatially varying variance not depending on the time index t.
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The GMA predictive density is given by

f(yst|x1st, . . . , xmst) =
m∑
k=1

wk gk(yst|xkst), (2.14)

and the predictive distribution of the quantity y given the kth ensemble member at location
s and time point t reads

yst|xkst ∼ N(xkst − aks, cσ2
s), (2.15)

where σ2
s = exp(νs). The variance deflation factor c is supposed to improve the calibration

of the forecast densities. Following Raftery et al. (2005), a common variance σ2
s among all

members is used, and aks and σ2
s are estimated from training data as

âks =
1

T

T∑
t=1

(xkst − yst) (2.16)

σ̂2
s =

1

mT

T∑
t=1

m∑
k=1

(xkst − yst − ēs)2. (2.17)

In these equations, T denotes the length of the training period and ēs is the average of the
m× T errors est = xkst − yst.

The empirical estimates {âksi}ni=1 are viewed as a sample drawn from a stationary Gaussian
random field with mean µak and covariance function

Cak(si, sj) = C(ak,si , ak,sj) = ρ2
ak + τ 2

ak exp
(
− ||si − sj||

ra1k
− |h(si)− h(sj)|

ra2k

)
, (2.18)

where || · || is the Euclidean norm, ρ2
ak is the nugget effect describing the measurement error,

τ 2
ak is a variance parameter, ra1k is the range corresponding to horizontal distance, ra2k the

range corresponding to vertical distance and h(s) is the elevation at location s.

The estimates for νs = log(σ2
s) are ν̂s = log(σ̂2

s). In a next step the {ν̂si}ni=1 are viewed as
a partial realization from a stationary Gaussian random field with mean µνk and covariance
matrix

Cν(si, sj) = C(νsi , νsj) = ρ2
ν + τ 2

ν exp
(
− ||si − sj||

rν1
− |h(si)− h(sj)|

rν2

)
. (2.19)

The parameters of the random fields are estimated by maximum likelihood, using {âksi}ni=1

and {ν̂si}ni=1 (estimated from the training data at the n locations) as data. Estimation has to
be performed numerically. The BMA weights w1, . . . , wm and the deflation parameter c are
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estimated with the EM algorithm, similar to the global BMA model. The predictive distri-
bution at a location s for time point t is then given by (2.14), with the estimated parameters
plugged in. However, this only holds for locations s that are training sites. For other loca-
tions s0 there are no direct estimates of aks0 and σ2

s0
. To obtain the predictive distribution for

ys0t at a location s0 not present in the training data, the geostatistical interpolation method
kriging (Cressie, 1993; Stein, 1999) is employed to get estimates for aks0 and νs0 at the un-
known site s0. Plugging in these estimates in (2.14) for the location s0 yields the predictive
distribution for ys0t.

In contrast to GOP and spatial BMA, GMA first estimates forecast error characteristics in a
spatially adaptive way at the available observation stations and then interpolates the estimates
to unknown locations using kriging. With this technique, it is possible to compute forecast
errors and the postprocessed predictive density at any arbitrary location, not only at the in-
sample observation locations. However, the basic GMA model is not designed to sample
ensembles of spatially correlated weather fields, as GOP or spatial BMA.

2.1.6 Ensemble Copula Coupling (ECC)

Many of the presented postprocessing methods are designed to be applied to a single weather
quantity at a fixed location and for a fixed forecast horizon. They are not able to account
for dependence structures between weather quantities or spatial and temporal dependencies.
The ensemble forecasts on the other hand may capture many of these multivariate depen-
dence structures present in the weather and climate processes, as they are solutions of the
discetized differential equations describing the physics of the atmosphere. When individu-
ally postprocessing the univariate margins, one may fail to retain the dependence structure
present in the ensemble forecasts. This implies a need for multivariate postprocessing and
research has already been conducted in this direction. Methods such as spatial BMA and
spatial EMOS extend the basic BMA and EMOS methods to account for spatial structures in
forecast errors and forecast variances. Other parametric models, for example to postprocess
bivariate wind vectors (Schuhen et al., 2012; Pinson, 2012; Sloughter et al., 2013) account
for a special case of inter-variable dependency.

The ECC approach discussed in this section is more general with respect to the type of de-
pendency that is considered. It can be applied to incorporate inter-variable as well as spatial
or temporal dependencies. The general formulation allows for considering all dependence
structures simultaneously.

21



CHAPTER 2. PROBABILISTIC WEATHER FORECASTING

The approach was developed in Schefzik (2011) and investigated further in Schefzik et al.
(2013). It utilizes the information present in the rank structure of the original raw ensemble.
As the raw ensemble represents some of the true multivariate dependence structures of the
atmosphere, incorporating its information in the postprocessing procedure typically leads to
an improvement in predictive performance.

ECC is a multi-stage procedure resulting in a postprocessed ensemble of the same size m as
the raw ensemble. This procedure can be seen as a multivariate postprocessing method, being
able to preserve dependence structures between different weather quantities as well as spatial
and temporal dependence structures. This is achieved by individually postprocessing the
margins of the considered multivariate forecasts and then reorder them according to the rank
structure of the raw ensemble. The approach is flexible in that the postprocessing method for
the margins can be chosen as desired. There is no restriction to a certain method.

Let xl1, . . . , x
l
m, l = 1, . . . , L, denote the l-th univariate margins of the raw ensemble. Here,

l may indicate a multi-index, l = (i, s, t), for weather quantity i = {1, . . . , I}, location
s = {1, . . . , N} and forecast horizon t = {1, . . . , T}, in case of considering several multi-
variate variables simultaneously. However, ECC allows to fix one or more of these indices
and consider only specific types of all possible dependencies. Then the ECC postprocessed
ensemble can be generated as follows:

• Univariate postprocessing: For each margin l apply a univariate postprocessing tech-
nique to the raw ensemble

xl1, . . . , x
l
m (2.20)

and obtain a postprocessed predictive distribution F l. The univariate postprocessing
method utilized can be selected according to the user’s needs.

• Quantization: Draw a discrete sample of size m,

x̃l1, . . . , x̃
l
m, (2.21)

from each univariate postprocessed predictive distribution Fl.

• Reordering: Determine the permutation σl of the integers {1, . . . ,m} induced by the
order statistics of the raw ensemble, xl(1), . . . , x

l
(m), for each margin l. The permu-

tation is defined by σl(k) = rank(xlk) for k = 1, . . . ,m. In case of ties among the
ensemble members the ranks are allocated randomly. Then the l-th margin of the ECC
postprocessed ensemble is given by

x̂l1 = x̃l(σl(1)), . . . , x̂
l
m = x̃l(σl(m)). (2.22)
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The discrete sample drawn in the quantization step can be generated in different ways.
Schefzik et al. (2013) propose three different generation methods. The first method takes
equidistant quantiles from the distribution Fl and is therefore called ECC-Q:

x̃l1 = F−1
l

( 1

m+ 1

)
, x̃l2 = F−1

l

( 2

m+ 1

)
, . . . , x̃lm = F−1

l

( m

m+ 1

)
. (2.23)

The second method, called ECC-R, is just drawing a simple random sample

x̃l1 = F−1
l (u1), . . . , x̃lm = F−1

l (um), (2.24)

where u1, . . . , um
iid∼ Unif[0, 1].

The third method, the ECC-T, is a quantile transformation approach. It fits a parametric con-
tinuous cumulative distribution function Sl to the raw ensemble margin. Then the quantiles
from Fl that correspond to the percentiles of the raw ensemble values in Sl are extracted, so
that

x̃l1 = F−1
l (Sl(x

l
1)), . . . , x̃lm = F−1

l (Sl(x
l
m)). (2.25)

For details on the sampling procedures see Schefzik et al. (2013). These authors also state
that the ECC-Q approach is the most favorable, due to theoretical aspects as well as due to the
experiences in their case study comparing the predictive performance of the three sampling
methods.

A huge advantage of the ECC approach is its low computational cost. The modeling of
the multivariate dependence structure of the considered quantities can be performed by only
calculating marginal ranks.

Schefzik et al. (2013) show that the ECC method can be interpreted as a nonparametric
empirical copula approach. How they define an empirical copula in the context of ECC is
briefly summarized below.

Let {(x1
k, . . . , x

L
k )|k = 1, . . . ,m} denote a data set of size m taking values in RL. Assum-

ing that there are no ties, denote by rank(xlk) the rank of xlk within xl1, . . . , x
l
m. Then the

corresponding empirical copula Em is defined as

Em

( i1
m
, . . . ,

iL
m

)
=

1

m

m∑
k=1

I{rank(x1k)≤i1,...,rank(xLk )≤iL} (2.26)

for integers 0 ≤ i1, . . . , iL ≤ m and the indicator function IA with IA = 1 on the chosen set
A and IA = 0 on the complement of A.
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Let then R1, . . . , RL denote the corresponding marginal empirical cumulative distribution
functions of the raw ensemble, which take values in the set Im = {0, 1

m
, . . . , m−1

m
, 1}. The

multivariate empirical cumulative distribution function R of the raw ensemble is defined
as the mapping R : RL → Im. Then there exists a uniquely defined empirical copula
Em : ILm → Im such that

R(y1, . . . , yL) = Em(R1(y1), . . . , RL(yL)), (2.27)

for all y1, . . . , yL ∈ R. Additionally, let F̃ and F̂ denote the multivariate cumulative distri-
bution functions of the quantized independently postprocessed ensemble (2.21) and the ECC
postprocessed ensemble (2.22), respectively. The marginal empirical cumulative distribution
functions of the quantized independently postprocessed ensemble are denoted by F̃1, . . . , F̃L,
the corresponding copula denoted by Ẽm. Then, Schefzik et al. (2013) show that

F̃ (y1, . . . , yL) = Ẽm(F̃1(y1), . . . , F̃L(yL)) (2.28)

F̂ (y1, . . . , yL) = Em(F̃1(y1), . . . , F̃L(yL)), (2.29)

for all y1, . . . , yL ∈ R. Therefore, the quantized independently postprocessed ensemble and
the ECC ensemble have the same margins, while the raw ensemble and the ECC ensemble
have the same copula. The relationships to empirical copulas and the corresponding theoret-
ical background are investigated further in Schefzik (2013).

Chapter 3 presents some basic and fundamental facts on parametric copulas along with ex-
amples of statistical approaches employing copulas. Chapters 4 and 5 introduce two different
ways of combining a parametric Gaussian copula with a univariate postprocessing method.

2.2 Verification methods

This section presents methods to verify or assess the predictive quality of probabilistic fore-
casts, e.g. obtained from a statistical postprocessing method.

An important aim of probabilistic forecasting was stated for example in Gneiting et al.
(2003), Gneiting et al. (2005) and Gneiting et al. (2007), and picked up by many others.
Gneiting et al. (2005) characterize the main issue of probabilistic forecasting as follows:

“The goal of probabilistic forecasting is to maximize the sharpness of the fore-
cast PDFs subject to calibration (Gneiting et al., 2003). Calibration refers to the
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statistical consistency between the forecast PDFs and the verifications and is a
joint property of the predictions and the verifications.[...] Sharpness refers to the
spread of the forecast PDFs and is a property of the predictions only.[...] The
more concentrated the forecast PDF, the sharper the forecast, and the sharper the
better, subject to calibration.”

Proper scoring rules play an important role in assessing forecasts as they address sharpness
and calibration simultaneously. One example for a proper scoring rule is the CRPS men-
tioned in Section 2.1.1, which will be explained in more detail here.

As this work considers univariate as well as multivariate forecasts, verification tools for both
cases are introduced.

Probabilistic forecasts can take the form of a discrete distribution associated with the forecast
ensemble or of a full (continuous) predictive distribution, e.g. derived from the ensemble by
employing a postprocessing method. When having a full predictive (postprocessed) distri-
bution, it is nonetheless possible to sample a discrete ensemble of any desired size from
this distribution. Therefore verification methods designed for a forecast ensemble can indi-
rectly be applied to postprocessed distributions as well, by generating an ensemble from the
respective distribution.

2.2.1 Calibration

Calibration describes the consistency between the ensemble forecasts or other probabilistic
forecasts and the verifying observations. It is also referred to as reliability. A simple example
can explain the basic idea of reliability: If the occurrence of precipitation is predicted to have
probability p in certain circumstances and it really occurs with a frequency of (nearly) p in
these circumstances, then the forecast is said to be reliable (Candille and Talagrand, 2005;
Hamill, 2001). Calibration is a joint property of the forecasts and the observations.

Univariate calibration
To assess the calibration of a univariate probability distribution, the (relative) frequencies
of the Probability Integral Transform (PIT) values can be plotted in equidistant bins. This
representation of the frequencies of the PIT values is called the PIT histogram. The univariate
ensemble forecasts are assessed with a discrete version of the PIT histogram, the Verification
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rank histogram (VRH). The VRH can be employed to assess an ensemble sampled from a
full predictive distribution as well.

The basic idea of the PIT histogram is the assumption of a true (univariate) probability dis-
tribution F for the weather quantity considered (Dawid, 1984; Gneiting et al., 2007). An
observation y can then be interpreted as a random sample from that true distribution. If the
predicted distribution F ′ is identical to the true distribution F , the predictive CDF F ′ eval-
uated at an observation y, p = F ′(y), is a realization of a uniform distribution on [0,1]. In
this case the plot obtained by computing the values p for all available observations and sort
them into bins on the interval [0,1] produces a uniform histogram. Departures from unifor-
mity can indicate that the predictive distribution is uncalibrated in some way. The number of
bins on [0,1] used to obtain the PIT histogram can be chosen as desired, as long as they are
equidistant.

There are some rules of thumb for the interpretation of different kinds of departure from
uniformity. A U-shaped histogram can be seen as indicator for a predictive distribution
with too small spread compared to the spread of the observations (underdispersion), while a
hump-shaped histogram indicates the opposite, a distribution with too large spread (overdis-
persion). A skewed histogram indicates a biased predictive distribution.

Although the theory indicates that a well calibrated predictive distribution displays a uniform
PIT histogram (or VHR histogram, see below), Hamill (2001) showed that an uncritical use
of the histograms can lead to incorrect conclusions on the predictive distribution or the en-
semble. Applying the principle of maximizing sharpness subject to calibration (Gneiting
et al., 2007), further measures of predictive quality need to be employed to identify the pre-
dictive distribution/ensemble with the best qualities. In either case it is important to interpret
the PIT (and VRH) histograms with care.

To illustrate possible appearances of the histograms, Figure 2.1 shows different shapes of
PIT histograms. The U-shaped histogram in panel (a) indicates underdispersion, the skewed
U-shape in panel (b) often appears when the predictive distribution exhibits a strong bias, the
hump-shaped histogram in panel (c) is an indicator for overdispersion, while a nearly uniform
PIT histogram like the one in panel (d) indicates a well calibrated predictive distribution.

To assess the calibration of a univariate forecast ensemble x1, . . . , xm, xi ∈ R, for a real-
valued univariate weather quantity, the verification rank histogram (VRH) or Talagrand di-
agram (Anderson, 1996; Hamill and Colucci, 1997; Talagrand et al., 1997; Hamill, 2001;
Candille and Talagrand, 2005) can be employed.
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(d) Calibration

Figure 2.1: Different shapes of PIT histograms

As it is possible to draw a sample from a predictive distribution and interpret this sample as
an ensemble, the VRH can be employed for such a sampled ensemble as well. A sampled
ensemble of size m can for example be generated by drawing the equidistant i

m+1
-quantiles,

i = 1, . . . ,m from the respective predictive distribution.

The VRH can be obtained as follows (see for example Candille and Talagrand (2005); Tala-
grand et al. (1997)):

1. Compute the order statistics x(1), . . . , x(m) of the ensemble. The x(i) partition the real
line into m+ 1 bins.

2. Obtain the empirical rank of the observation y by determining its position within the
bins induced by x(1), . . . , x(m).

3. The verification rank histogram plots the empirical frequency of the observation ranks.

If the ensemble members x1, . . . , xm and the observation y are statistically indistinguishable
(exchangeable), the rank of the observation with respect to the ensemble members has a
discrete uniform distribution on {1, . . . ,m+ 1}.

In case of an ensemble of larger size, e.g. the ECMWF ensemble with m = 50 members
employed in Section 5, the resolution of the rank histogram might be to high when consid-
ering all possible m + 1 bins to classify the ranks. For those larger ensembles it is often
reasonable to reduce the resolution by classifying the ranks into only r bins, where r is an
integer such that m+1

r
is an integer, too. The general interpretation of the appearance of the

rank histogram is the same as for the PIT histogram.

The deviation from uniformity can be quantified by the reliability index ∆ (Delle Monache
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et al., 2006; Candille and Talagrand, 2005),

∆ =
m+1∑
j=1

∣∣∣fj − 1

m+ 1

∣∣∣,
where fj is the observed relative frequency of rank j. The reliability index measures the
deviation of the observed relative frequency fj from its ’ideal’ value 1

m+1
occurring in case

of perfect calibration.

Multivariate calibration
To assess the quality of multivariate forecasts, the methods described in Gneiting et al. (2008)
can be applied. The authors develop multivariate extensions of the univariate assessment
methods and apply them to bivariate wind vectors.

A direct generalization of the univariate assessment of calibration with the VRH is the multi-
variate rank histogram (MRH). It assesses calibration of an ensemble sampled from a multi-
variate predictive distribution or of a raw multivariate forecast ensemble. The only challenge
lies in defining a multivariate rank order, as no natural ordering exists for multivariate vec-
tors. Gneiting et al. (2008) propose a method for computing a multivariate ordering. This
procedure is described below.

Given an ensemble of vector forecasts x1, . . . , xm, with xk ∈ Rp for k = 1, . . . ,m, for the
respective verifying observation vector x0 ∈ Rp, the following steps yield the multivariate
rank.

1. For k = 0, . . . ,m assign pre-ranks ρk to each xk within the pooled set of the observa-
tion and the ensemble members by computing

ρk =
m∑
j=0

I{xj�xk}.

The pre-ranks are integers between 1 and m + 1. Here u � v means that ul ≤ vl

∀ l = 1, . . . , p and u, v ∈ Rp.

2. Find the multivariate rank r, which is the rank of the observation’s pre-rank (ties re-
solved randomly). For this, consider

s< =
m∑
k=0

I{ρk<ρ0} and s= =
m∑
k=0

I{ρk=ρ0}.

28



2.2. VERIFICATION METHODS

In step 1 and 2, IA denotes the indicator function with IA = 1 on the chosen set A
and IA = 0 otherwise. Then the multivariate rank r is chosen from a discrete uniform
distribution on {s< + 1, . . . , s< + s=} and is an integer between 1 and m+ 1.

3. The multivariate rank histogram is a plot of the empirical frequency of the multivariate
ranks.

Before computing the pre-ranks in step 1 of the procedure it is possible to standardize the
observation and the forecast ensemble by a principal component transformation.

As in the univariate case, the reliability index can be computed to quantify the deviation from
uniformity. The generalization to the multivariate case is straightforward. The definition is
the same as before, namely

∆ =
m+1∑
j=1

∣∣∣fj − 1

m+ 1

∣∣∣,
where fj is the observed relative frequency of the multivariate rank j.

An alternative to the multivariate rank histogram to assess the calibration of a multivariate
forecast ensemble is the minimum spanning tree (MST) histogram (Smith, 2001). The inter-
pretation is slightly different from the one of the (univariate or multivariate) rank histogram
and the PIT histogram. Underdispersed or biased ensembles lead to a high number of low
MST ranks, while overdispersed ensembles result in too many high MST ranks. Only in the
case of calibration, the appearance of the rank or PIT histograms and the MST histograms
have the same interpretation: a uniform histogram indicates good calibration.

2.2.2 Sharpness

The assessment of sharpness is also important. Sharpness is a property of the forecasts (or
the predictive distributions) only, as it refers to the concentration of the distribution or a
forecast ensemble. The sharper a (calibrated!) distribution, the less is the amount of predic-
tion uncertainty, therefore a calibrated sharp predictive distribution provides more accurate
forecasts.

Univariate case
The sharpness of an ensemble of forecasts can be assessed by its empirical standard deviation
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or range. For a univariate predictive distribution, the standard deviation can be employed as
well. Alternatively, the width of prediction intervals can be determined. To have a direct
comparability between forecasts from a predictive distribution and a raw ensemble forecast
with m members, the nominal m−1

m+1
· 100% prediction interval is employed, as its nominal

coverage corresponds to that of the ensemble range.

Multivariate case
In the multivariate case the determinant sharpness (DS) is a useful multivariate measure for
sharpness. It is a direct generalization of the standard deviation and is defined as

DS = (det Σ)1/(2p), (2.30)

where Σ is the covariance matrix of an ensemble or a multivariate predictive distribution
for a p-dimensional quantity. For ensemble forecasts the matrix is generated by using the
empirical variances and correlation of the ensemble. In case of a predictive distribution
a requirement for the application of the DS is the existence of the second moment of the
respective distribution.

However, the application of the DS has a major disadvantage in case of a nearly singular
covariance matrix. This problem was discussed by Jolliffe (2008). For highly correlated
variables the DS value can become very small, although the individual variances may be
large. Therefore, the interpretation of the DS value in such situations can be misleading.
A possible way to come around this problem is to reduce the dimension of the covariance
matrix to nearly orthogonal components.

2.2.3 Proper scoring rules

Scoring rules for the verification of deterministic or probabilistic forecasts are well known
and have been widely used in forecast assessment, as they provide summary measures for
the quality of probabilistic forecasts. Very popular scores are for example the absolute error
and the continuous ranked probability score (Matheson and Winkler, 1976; Hersbach, 2000;
Gneiting and Raftery, 2007; Gneiting, 2011)

By assigning a numerical score based on the predictive distribution and the respective verify-
ing observation, a scoring rule can be utilized to assess the quality of probabilistic forecasts.
Besides this straightforward application, scoring rules can be employed as loss functions in
estimation problems, as they are flexible to be tailored to the estimation problem at hand. A
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detailed discussion of scoring rules and their mathematical background in measure theory is
given in Gneiting and Raftery (2007).

A scoring rule is a function S(P, y), where P denotes the predictive distribution used for
forecasting and y denotes the verifying observation. Scoring rules are negatively orientated,
a smaller value indicates a more appropriate forecast. The function S(P, ·) takes values in R
(or R). For y drawn from a distribution Q, the expected value of S(P, ·) under Q is S(P,Q).

As the intention is to minimize the value of the scoring rule a reasonable property is that the
minimum value is attained if the true distribution is predicted. If

S(Q,Q) ≤ S(P,Q)

holds for all P and Q, the scoring rule is called proper. It is called strictly proper in case
equality holds if and only if P = Q. Strictly proper scoring rules provide attractive measures
to assess the quality of probabilistic forecasts.

In meteorological applications, the scores are typically averaged over all locations and dates
in a prescribed test set employed for prediction:

Sn =
1

n

n∑
i=1

S(Pi, yi),

where the sum is computed over all data points i = (t, s) in the test set.

Univariate scoring rules
The continuous ranked probability score (CRPS) is a very attractive scoring rule as it is
measured in the same units as the observations. Predictive PDFs and deterministic forecasts
can both be assessed directly by the CRPS. The CRPS generalizes the absolute error AE and
it reduces to it in case a deterministic forecast is used instead of a probability distribution F .

The CRPS for a predictive distribution F and a verifying observation y is defined as

CRPS(F, y) =

∞∫
−∞

(F (x)− I{x≥y})2dx, (2.31)

where I{x≥y} denotes the indicator function, taking the value 1 if x ≥ y and 0 otherwise.
For some distributions, as for example the normal distribution, the CRPS can be evaluated
analytically. However, in many cases it has to be approximated by simulation.
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Gneiting and Raftery (2007) show that if F has a finite first moment then the CRPS can
alternatively be written as

CRPS(F, y) = EF |X − y| −
1

2
EF |X −X ′|, (2.32)

where X and X ′ are independent random variables with distribution F . If F is the cumu-
lative distribution function associated with a forecast ensemble of size m, the CRPS can be
computed as

CRPS(F, y) =
1

m

m∑
j=1

|xj − y| −
1

2m2

m∑
i=1

m∑
j=1

|xi − xj|. (2.33)

Generally, the CRPS can be approximated by

CRPS(F, y) ≈ 1

n

n∑
j=1

|xj − y| −
1

2n

n∑
j=1

|xj − x′j|, (2.34)

where {xj}nj=1 and {x′j}nj=1 are two independent samples from F . In case F is the normal
distribution, a formula for the CRPS can be derived in closed form. See for example Equation
(2.4), where the likelihood of the EMOS parameters is expressed in terms of the CRPS.

If µi denotes a deterministic forecast and yi is the corresponding verifying observation, the
absolute error is the absolute difference of the forecast and the observation,

AE = ei = |µi − yi|. (2.35)

When averaging the AE values over all data points i in the test set, this is called the mean
absolute error (MAE):

MAE(µi, yi) =
1

n

n∑
i=1

ei. (2.36)

In case of a predictive distribution F or if F is the cumulative distribution function associated
with a forecast ensemble x1, . . . , xm, µ ought to be taken as the median of F (Gneiting,
2011).

Alternatively to the absolute error, the squared error (SE) can be considered for a determin-
istic style forecast (Gneiting and Raftery, 2007; Gneiting, 2011). It is defined as

SE = (µi − yi)2. (2.37)

When averaging the SE values over all data points in the test set this results in the mean-
square error (MSE).
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In case of an ensemble or a predictive distribution F , µ ought to be taken as the mean of the
respective distribution (Gneiting, 2011). The MSE is then defined as

MSE =
1

n

n∑
i=1

(yi − µi)2. (2.38)

The RMSE is the square root of the MSE,

RMSE =
√

MSE (2.39)

and has the advantage of being recorded in the same unit as the verifying observations.

Multivariate scoring rules
Gneiting et al. (2008) developed generalizations of several univariate verification methods,
such as scores and rank histograms. Among them are the Energy score and the multivariate
rank histogram described above.

Similar to the univariate case the multivariate forecasts and predictive distributions can be
assessed with multivariate generalizations of the univariate scoring rules. The Euclidean
error (EE) is a multivariate generalization of the absolute error and is defined as

EE(F,y) = ‖µ− y‖, (2.40)

where µ is taken to be the median of F and || · || the Euclidean norm. For an ensemble or a
sample from a predictive distribution, the median µ is defined as the vector that minimizes
the sum of the Euclidean distance to the individual forecast vectors,

µ = min
λ

{ m∑
i=1

‖λ− xi‖
}
.

It can be determined numerically using the algorithm described in Vardi and Zhang (2000)
as implemented in the R package ICSNP.

Gneiting and Raftery (2007) introduced the energy score (ES) as a multivariate generaliza-
tion of the continuous ranked probability score defined in Equations (2.31) and (2.32). The
ES is defined as

ES(F,y) = EF ||X− y|| − 1

2
EF ||X−X′||, (2.41)

where || · || denotes the Euclidean norm and X and X′ are independent random vectors with
distribution F and finite first moments. In case F is a forecast ensemble of sizem, the energy
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score can be computed as

ES(F,y) =
1

m

m∑
j=1

||xj − y|| − 1

2m2

m∑
i=1

m∑
j=1

||xi − xj||. (2.42)

A general Monte-Carlo approximation for the energy score is given by

ES(F,y) ≈ 1

n

n∑
j=1

||xj − y|| − 1

2n

n∑
j=1

||xj − x′j||. (2.43)

In this approximation, {xj}nj=1 and {x′j}nj=1 are two independent samples from F . For further
details, see Gneiting et al. (2008), where an overview on the ES is given along with an
application to wind vectors.
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Chapter 3

Copulas

This chapter provides a short review of the general theory of copulas. For more details on the
topic see for example Nelsen (2006), Joe (1997) or Sempi (2011). Furthermore, a Gaussian
copula multi-stage procedure is proposed, which is designed to set up multivariate ensemble
postprocessing methods by utilizing univariate state of the art postprocessing models.

3.1 Notation and preliminaries

A copula is a function C : [0, 1]n → [0, 1] connecting multivariate distribution functions
with their one-dimensional marginal distribution functions. The special feature about the
marginal distribution functions of a copula is that they are uniform on the interval [0, 1].
In case of a continuous multivariate distribution function, the copula is simply the original
multivariate distribution function with transformed univariate margins. However, in other
cases the construction of a copula is not straightforward and it is necessary to define what is
meant by a multivariate distribution function.

For that reason, this section gives an overview on some slightly more abstract concepts of
copula theory. The presented notation, theorems and properties basically follow the line of
Nelsen (2006). The following short introduction to copulas starts with general multivariate
distributions and then moves on to the special subset of copulas and their properties. For
a more details on copulas see Nelsen (2006), which is the basis for this short overview, or
Sklar (1996) for a general overview on the topic.

Throughout the following, let R denote the extended real line R = R∪{−∞,∞}, Dom(H)
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the domain of a function H and Ran(H) the range of H .
Furthermore, a one-dimensional function f : R→ R is called increasing (nondecreasing) if
x ≤ y implies f(x) ≤ f(y) and strictly increasing if x < y implies f(x) < f(y).
For points in Rn, a vector notation is used: For a = (a1, . . . , an) and b = (b1, . . . , bn), a ≤ b

means ak ≤ bk for all k ∈ {1, . . . , n}.

For a positive integer n let Rn
denote the Cartesian product R×R× . . .×R. For a,b ∈ Rn

with a ≤ b, [a,b] denotes the n-dimensional box B = [a1, b1]× . . .× [an, bn], which is the
product of n closed intervals. The vertices of such a box B are of the form c = (c1, . . . , cn),
where each ck is equal to either ak or bk.
The n-dimensional unit cube is denoted by In = I× . . .× I︸ ︷︷ ︸

n times

, where I = [0, 1] denotes the

unit interval.
Further, an n-place real function H is a function whose domain Dom(H) is a subset of Rn

and whose range Ran(H) is a subset of R.

To introduce copulas in a general setting, it is necessary to define multivariate distribution
functions. Before introducing multivariate distribution functions, the one-dimensional ver-
sion is presented along with the inverse and pseudo-inverse of a one-dimensional distribution
function. These definitions are not only important in the framework of copula theory. They
are fundamental concepts in general statistical theory and statistical modeling.

DEFINITION 3.1

A function F : R→ R is called (one-dimensional) distribution function if F is nondecreas-
ing, F (−∞) = 0 and F (∞) = 1.

A continuous distribution function F which is strictly increasing has a unique inverse F−1.
However, in the case F is only nondecreasing or not necessarily continuous, a more general
definition of an inverse is needed.

DEFINITION 3.2

Let F be a one-dimensional distribution function. A function F (−1) with domain I = [0, 1]

such that

(a) t ∈ Ran(F ) implies that F (−1)(t) is any number x ∈ R such that F (x) = t, that is
F (F (−1)(t)) = t holds for all t ∈ Ran(F ), and

(b) t 6∈ Ran(F ) implies that F (−1)(t) = inf{x|F (x) ≥ t} = sup{x|F (x) ≤ t}

is called pseudo-inverse of F .
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If F is strictly increasing and continuous, the pseudo-inverse is equal to the ordinary inverse
F−1.

The definitions above were based on the concept of a (strictly) increasing one-dimensional
function. The property of an increasing function can be generalized to n-place real functions
defined on a subset of Rn

. To introduce the generalized concept of an n-increasing function,
the H-volume of a box B with respect to the n-place real function H needs to be considered.
These definitions are the basis for defining a multivariate n-dimensional distribution function
with properties analogue to the properties in the one-dimensional case. Having a definition
of a multivariate distribution function allows to move on to the definition of a copula.

First, the H-volume of a box B with respect to the n-place real function H is introduced:

DEFINITION 3.3

Let S1, . . . , Sn ⊆ R, Si 6= ∅, i = 1, . . . , n. Further, let H be an n-place real function with
domain S1 × . . .× Sn and let B = [a,b] be a box all of whose vertices lie in the domain of
H . Then the H-volume of B is defined as

VH(B) =
∑

sgn(c)H(c).

The sum is taken over all vertices c of B and the sgn function evaluated at a vertex c is given
as

sgn(c) =

{
1, if ck = ak for an even number of k′s
−1, if ck = ak for an odd number of k′s,

for k ∈ {1, . . . , n}.

REMARK 3.4

The H-volume of B, VH(B) can equivalently be represented as the nth order difference of
H on B:

VH(B) = ∆b
a(t) = ∆bn

an ∆bn−1
an−1

. . .∆b1
a1
H(t),

where ∆bk
ak
H(t) = H(t1, . . . , tk−1, bk, tk+1, . . . , tn)−H(t1, . . . , tk−1, ak, tk+1, . . . , tn)

and t = (t1, . . . , tn).

After defining the H-volume of an n-dimensional box B, the concept of an n-increasing
function can be introduced, along with the property of a function being grounded.
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DEFINITION 3.5

(a) An n-place real function is said to be n-increasing if VH(B) ≥ 0 for all B whose
vertices lie in the domain Dom(H) of H .

(b) Suppose the domain of an n-place real functionH is given by Dom(H) = S1×· · ·×Sn,
where each Sk has a smallest element ak. Then H is called grounded if H(t) = 0 for
all t = (t1, . . . , tn)Dom(H), such that tk = ak for at least one k.
H is said to have margins if each Sk is nonempty and has a greatest element bk.
The one-dimensional margins of H are given by the functions Hk with Dom(Hk) =

Sk, where Hk(x) = H(b1, . . . , bk−1, x, bk+1, . . . , bn) for x ∈ Sk. Higher dimensional
margins are defined by fixing fewer places in H .

The following definition extends the concept of an n-increasing function to an n-dimensional
function that is increasing in each argument.

DEFINITION 3.6

Let S1, · · · , Sn be nonempty subsets of R. A grounded and n-increasing function H with
domain S1× . . .× Sn is called increasing in each argument if (t1, . . . , tk−1, x, tk+1, . . . , tn),
(t1, . . . , tk−1, y, tk+1, . . . , tn) ∈ Dom(H) and x ≤ y implies that H(t1, . . . , tk−1, x, tk+1, . . . , tn)

≤ H(t1, . . . , tk−1, y, tk+1, . . . , tn).

LEMMA 3.7

From Definition 3.3, Remark 3.4 and Definition 3.5 (a) it follows directly, that for S1, . . . , Sn

nonempty subsets of R and a grounded n-increasing function H with domain Dom(H) =

S1 × . . .× Sn, H is increasing in each argument.

With Definition 3.5 (a) and (b) it is now possible to formally define the n-dimensional dis-
tribution function. This definition is needed later on to state Sklar’s theorem, which is fun-
damental for copula theory.

DEFINITION 3.8

A function H : Rn → R is called an n-dimensional distribution function if

(a) H is n-increasing and

(b) H(t) = 0 for all t ∈ Rn
such that tk = −∞ for at least one k ∈ {1, . . . , n}, and

H(∞,∞, . . . ,∞) = 1.
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REMARK 3.9

From Lemma 3.7 it follows that the one-dimensional margins of the n-dimensional dis-
tribution function H are (one-dimensional) distribution functions. They are denoted by
F1, . . . , Fn.

3.2 Copulas and Sklar’s Theorem

After introducing preliminary notation and basic concepts such as distribution functions,
n-dimensional distribution functions, grounded and n-increasing functions, a formal mathe-
matical definition of a copula can be given. This definition leads to the important theorem of
Sklar, that directly relates a multivariate distribution function to its one-dimensional margins.

One way to formulate a rigorous mathematical definition of a copula is to introduce subcop-
ulas.

DEFINITION 3.10

An n-dimensional subcopula C ′n is a real-valued function with the following properties.

(a) The domain of C ′n is the set S1 × · · · × Sn with Sk ⊆ I, k = 1, . . . , n , where 0 and 1
are contained in each Sk

(b) C ′n is grounded and n-increasing

(c) C ′n has (one-dimensional) margins C ′k, k = 1, . . . , n, satisfying C ′k(u) = u for all
u ∈ Sk.

With Definition 3.10, an n-dimensional copula can be introduced as a subcopula with domain
In.

DEFINITION 3.11

An n-dimensional copula Cn is an n-dimensional subcopula whose domain is In.

The following remark gives an alternative characterization of an n-dimensional copula.

REMARK 3.12

Equivalently, an n-dimensional copula Cn is a function Cn : In → I with the following
properties:
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(a) For every u ∈ In, Cn(u) = 0 if at least one coordinate of u is 0. If all coordinates of
u are 1 except uk, then Cn(u) = uk.

(b) For each a,b ∈ In with a ≤ b, it holds for the Cn-volume VCn([a,b]) ≥ 0.

Definition 3.11 and Remark 3.12 state that a copula Cn is defined on the unit cube In and has
uniform margins on I. However, there are many more interesting and useful properties of
copulas. The most important one is given in the theorem of Sklar, connecting copulas with
multivariate distribution functions and their margins.

THEOREM 3.13 (SKLAR)

For any n-dimensional distribution function H with margins F1, . . . , Fn there exists an n-
dimensional copula Cn such that for all x ∈ Rn

H(x1, . . . , xn) = Cn(F1(x1), . . . , Fn(xn)).

If F1, . . . , Fn are all continuous, then the copula Cn is unique, otherwise Cn is uniquely de-
termined on Ran(F1) × · · · × Ran(Fn). Conversely, for an n-dimensional copula Cn and
distribution functions F1, . . . , Fn, the function H defined above is an n-dimensional distri-
bution function with margins F1, . . . , Fn.

A proof of Sklar’s theorem can be found in Nelsen (2006).

With Sklar’s theorem it is possible to express a joint distribution function in terms of an
n-dimensional copula and n univariate marginal distribution functions. A reverse character-
ization of the copula Cn in terms of a multivariate distribution function and pseudo-inverses
of its margins follows directly from Theorem 3.13.

COROLLARY 3.14

Let H , Cn, F1, . . . , Fn be as in Theorem 3.13. Further, let F (−1)
1 , . . . , F

(−1)
n be pseudo-

inverses of F1, . . . , Fn. Then for any u ∈ In it holds that

Cn(u1, . . . , un) = H
(
F

(−1)
1 (u1), . . . , F (−1)

n (un)
)
.

In case the distribution functions F1, . . . , Fn are all continuous, Corollary 3.14 provides a
straightforward method for constructing copulas from n-dimensional distribution functions.
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3.3 Copulas and random variables

Up to now copulas were introduced on a general mathematical background. No probabilis-
tic concepts like random variables are mentioned in the previous section and the definitions
of one-dimensional and multivariate distribution functions are non-probabilistic. However,
distribution functions, their (pseudo-) inverses and the central theorem of Sklar can be for-
mulated on a probabilistic background. Chapters 4 and 5 are concerned with an application
of copulas in a statistical framework, where postprocessing distributions are estimated from
ensemble forecasts and verifying observations. The postprocessing models are based on the
implicit assumption of an underlying random variable describing the outcome of a weather
quantity of interest.

In a probabilistic framework, a random variable X is said to have a (one-dimensional) dis-
tribution function F if F (x) = P (X ≤ x) for x ∈ R and F is assumed to be continuous
from the right. A multivariate (joint) distribution of a vector of n random variables X =

(X1, . . . , Xn) is defined in analogy as FX1,...,Xn(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

for x = (x1, . . . , xn)′ ∈ Rn.

The results described in the previous section hold for the probabilistic definition of a (multi-
variate) distribution function as well. In particular, Sklar’s Theorem 3.13 can be formulated
in terms of random variables.

THEOREM 3.15

Let X1, . . . , Xn be random variables with distribution functions F1, . . . , Fn and joint distri-
bution function H . Then there exists an n-dimensional copula Cn such that

H(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn) = Cn(F1(x1), . . . , Fn(xn))

for all (x1, . . . , xn)′ ∈ Rn. If the distribution functions F1, . . . , Fn are all continuous, Cn is
uniquely defined. Otherwise, it is uniquely determined on Ran(F1)× · · · × Ran(Fn).

Sklar’s theorem for random variables allows for a connection to an important and well known
relationship in statistics, the probability integral transform.

THEOREM 3.16

Let X be a random variable with values in R and a continuous distribution function F . Then
F (X) ∼ Unif[0, 1].
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The multivariate distribution function fully describes the dependence structure among the
random variables X1, . . . , Xn. According to Theorem 3.15, the copula Cn separates the
multivariate dependence structure from the marginal distribution functions F1, . . . , Fn by
applying the probability integral transform to the margins.

A random variable version of Corollary 3.14 can be formulated as well.

COROLLARY 3.17

Let H , Cn, F1, . . . , Fn be as in Theorem 3.15. Further, let F (−1)
1 , . . . , F

(−1)
n be pseudo-

inverses of the one-dimensional distribution functions F1, . . . , Fn. Then it holds that

Cn(u1, . . . , un) = H
(
F

(−1)
1 (u1), . . . , F (−1)

n (un)
)

for all (u1, . . . , un)′ ∈ In.

Corollary 3.14 and 3.17 provide an explicit way to construct a copula from a given multivari-
ate distributionH with margins F1, . . . , Fn. Besides this method known as inversion method,
other ways of explicitly constructing a copula are available, see Nelsen (2006) for examples.

Another result that connects a well known fact from probability theory with copulas in the
context of random variables is the following theorem that can be obtained from Sklar’s the-
orem for random variables. It connects the so called product copula or independence copula
Πn(u) = u1 · · ·un (which is an n-dimensional copula for all n ≥ 2) with independence
of random variables. The n random variables X1, . . . , Xn are independent if and only if
H(x1, . . . , xn) = F1(x1) · . . . · Fn(xn) for all x1, . . . , xn ∈ R and joint probability distribu-
tion function H .

THEOREM 3.18

Let X1, . . . , Xn, n ≥ 2, be continuous random variables. Then X1, . . . , Xn are independent
if and only if the n-dimensional copula Cn of X1, . . . , Xn is the product copula, that is
Cn = Πn.

3.4 Gaussian copulas

A very common and useful parametric model is the Gaussian copula, which is an especially
tractable type of copula. It is fully defined by the margins and the dependence parameter
represented by a correlation matrix. Nelsen (2006) and Hoff (2007) for example present an
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overview on Gaussian copulas. The Gaussian copula is of particular interest in this work,
as it will be employed in Chapters 4 and 5 to recover the multivariate dependence structure
that is not preserved when performing univariate postprocessing for each considered weather
quantity and at each location individually.

The Gaussian copula belongs to the family of elliptical copulas defined for elliptical distribu-
tions like for example the normal distribution or the t-distribution. According to Embrechts
et al. (2003), an elliptical distribution can be defined as follows:

DEFINITION 3.19

Let X be an n-dimensional random vector, µ ∈ Rn, and Σ a nonnegative definite and
symmetric n × n matrix. Further, let the characteristic function of X − µ, ϕX−µ(t), be a
function of the quadratic form t′Σt, that is ϕX−µ(t) = φ(t′Σt). Then, X has an elliptical
distribution with parameters µ,Σ and φ. This is denoted by X ∼ En(µ,Σ, φ).

For a random vector Y = (Y1, . . . , Yn) with marginal distribution functions F1, . . . , Fn, each
Yj can be transformed to a Gaussian random variable. By first employing the probability
integral transform (3.16), a random variable with uniform distribution is obtained:

Uj = Fj(Yj) ∼ Unif[0, 1]

for j ∈ {1, . . . , n}. Transforming the Uj with the inverse of the standard normal distribution
Φ−1 yields

Zj := Φ−1(Uj) = Φ−1(Fj(Yj)) ∼ N(0, 1).

Assume further that Z = (Z1, . . . , Zn) ∼ Nn(0,Σ) with corresponding CDF Φn, where
Nn(0,Σ) denotes the n-dimensional normal distribution with mean vector 0 and covariance
matrix Σ. With Sklar’s Theorem for random variables the multivariate distribution function
H = Φn of the vector Z can be expressed in terms of a copula Cn as follows

H(z1, . . . , zn) = Φn(z1, . . . , zn) (3.1)

= Cn(FZ1(z1), . . . , FZn(zn)) (3.2)

= Cn(Φ(z1), . . . ,Φ(zn)), (3.3)

where FZj = Φ denotes the marginal distribution function of Zj , j = {1, . . . , n}, which is
identical to the distribution function of the standard normal distribution for all j.

According to Corollary 3.17, the copula Cn of the n-dimensional normal distribution Φn for
a random vector Y = (Y1, . . . , Yn) is given as

Cn(u1, . . . , un|C) = Φn(Φ−1(u1), . . . ,Φ−1(un)|C),
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where u = (u1, . . . , un) ∈ In and Φn(·|C) is the CDF of the n-dimensional normal dis-
tribution having mean vector zero and n × n correlation matrix and C, Φ−1 is the inverse
of the CDF of the univariate standard normal distribution and F1, . . . , Fn are the marginal
distributions of Y1, . . . , Yn. Due to the relationships obtained above, this can be equivalently
represented as

Cn(u1, . . . , un|C) = Φn(Φ−1(F1(y1)), . . . ,Φ−1(Fn(yn))|C), (3.4)

Equation (3.4) shows that the Gaussian copula only requires the marginal distribution func-
tions F1, . . . , Fn of the original random variables Y1, . . . , Yn and the dependence parameter
represented by the correlation matrix C to be specified. This makes the Gaussian copula
model a particularly tractable copula model.

In case of the Gaussian copula (3.4), the parameter describing the dependence between the
random variables Y1, . . . , Yn is therefore chosen to be the correlation matrix C obtained
from the covariance matrix Σ of the n-variate normal distribution by standardizing. The
standardization results in a positive definite matrix with ones on the diagonal and the pairwise
correlations on the off-diagonals. Since the main interest of the Gaussian copula lies in
modelling the dependence structure of the random variables Y1, . . . , Yn and not in the specific
scaling of this dependence, the correlation matrix C instead of the covariance matrix Σ is
employed.

Several statistical applications utilize Gaussian copula models to account for multivariate
dependence structures.

Song (2000) for example discusses the Gaussian copula as a way of formulating multivariate
models with given margins. He proposes a maximum likelihood method for estimating the
parameters of the marginal models in case they are continuous.

Hoff (2007) introduces a semiparametric estimation method for a Gaussian copula model via
an extended rank likelihood of the copula parameters, not depending on any parameters of
the marginal distributions. This approach generalizes the marginal likelihood estimation, de-
pending only on the parameters of interest but not on the nuisance parameters. The proposed
extended rank likelihood does not need any (parametric) assumptions about the marginal dis-
tributions, it is a function of the association parameters of the Gaussian copula model only.
Therefore the approach is suitable for any kind of multivariate data, even for mixed contin-
uous and discrete marginal distributions. Parameter estimation is performed in the context
of Bayesian inference using a Gibbs sampling scheme. The method is implemented in the R
package sbgcop.
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Pitt et al. (2006) propose an estimation procedure for Gaussian copula models that handles
the problem of forming a multivariate distribution when some of the marginal distributions
are non-gaussian. In their approach the marginal distributions are assumed to belong to spec-
ified parametric families, in contrast to the method of Hoff (2007), where assumptions about
the distributions of the margins are not necessary and not needed for the estimation proce-
dure. They present a general Bayesian approach for estimating the Gaussian copula model,
applicable for arbitrary combinations of discrete and continuous margins and introduce a
prior for the correlation matrix that relates to covariance selection models.

Masarotto and Varin (2012) discuss the use of Gaussian copulas to introduce multivariate
dependence structures in marginal regression models and call their method Gaussian cop-
ula marginal regression (GCMR). This method is suitable for continuous as well as non-
continuous margins and provides an extension of standard regression models with normal
correlated errors. Masarotto and Varin (2012) suggest a likelihood inference and provide
numerical approximations for the non-continuous case, while the likelihood is available in
closed form for the continuous case. The procedure is available in the R package |gcmr|.

To conclude this short overview, Mikosch (2006) outlines drawbacks of Gaussian copula
approaches and discusses some of the criticism that this method occasionally receives. Some
of the arguments presented there are taken up and integrated in the general discussion at the
end of this work.

Gaussian copulas also enjoy high popularity in applications related to the ensemble postpro-
cessing of weather forecasts considered in this work. Among other application fields, they
are popular in problems of hydrology. For some examples see the work of Genest and Favre
(2007), Schoelzel and Friederichs (2008) and Kao and Govindaraju (2010).

Gaussian copulas provide convenient approaches for modeling multivariate dependence in
statistical applications. However, other parametric and semiparametric copula models are
available, as for example the family of elliptical copulas (Demarta and McNeil, 2005), Archi-
median copulas (McNeil and Nešlehová, 2009), extremal copulas (Davison et al., 2012) or
pair copulas (Aas et al., 2009). Especially in financial statistics and econometrics, these
alternative copula families are employed frequently.
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3.5 A Gaussian copula multi-stage procedure

To introduce a flexible method capable of extending the standard univariate postprocessing
methods discussed in 2.1 to account for inter-variable as well as spatial and/or temporal de-
pendencies, this work proposes a Gaussian copula multi-stage procedure. Developed for
extending the univariate postprocessing methods to account for multivariate dependences,
this procedure combines the individual univariate postprocessing of the margins with mod-
eling a dependence structure via a correlation matrix C.

The disadvantage of the Gaussian copula marginal regression model proposed by
Masarotto and Varin (2012) is the fact, that their parametric multivariate likelihood esti-
mation requires identical margins or at least margins that are all of continuous or all of
non-continuous type. When developing a multivariate postprocessing procedure to recover
inter-variable dependence a method is required that is capable of mixed types of marginal
models. In contrast, the semi-parametric method of Hoff (2007) is not restricted to cases of
identical types of margins as the margins are only nuisance parameters in the model. The
main interest of Hoff (2007) lies in estimating the dependence parameter C of the Gaussian
copula model. He suggests to combine the posterior distribution of the dependence param-
eter with the empirical univariate marginal distributions obtained from the data to sample
from the multivariate distribution. However, when performing postprocessing of ensemble
weather forecasts, the focus additionally lies in specifying the marginal postprocessing mod-
els to account for biases and dispersion errors of the raw ensemble.

This section proposes a multi-stage procedure employing a Gaussian copula as well as uni-
variate postprocessing models. The approach allows for the marginal models to take any
desired form, continuous as well as non-continuous, and is additionally capable of handling
a multivariate vector with a mixture of continuous and non-continuous margins, which is
highly useful in the context of multivariate ensemble postprocessing. Although the approach
was originally developed for the application to ensemble postprocessing, it is not restricted
to this context and may well be modified to be suitable for other applications, e.g. for a more
general framework as the Gaussian copula marginal regression.

As the method needs to be suitable for various types of multivariate postprocessing, including
to fit a dependence model for a vector with quite different types of margins, the multivariate
distribution function defined through the Gaussian copula is not available in closed form in
many considered situations. Thus a sampling scheme like the one described for example in
Hoff (2007) is employed that yields an arbitrary number of Monte Carlo samples from the
multivariate predictive distribution.
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The proposed multi-stage Gaussian copula postprocessing procedure works as follows:

Let Y = (Y1, . . . , Yk) denote the vector of weather variables of interest. The index j =

1, . . . , k can refer to any multivariate setting tailored to weather forecasting the user might
desire. It can be the index of a set of (different) weather quantities, as e.g. temperature,
pressure, precipitation or others, at a fixed location and for a fixed date. Alternatively it can
denote a set of spatial locations considered for a single weather quantity for a fixed date or a
set of dates considered for a single weather quantity at a fixed location.

1. The univariate marginal models Fj for each Yj are specified by applying an ensemble
postprocessing method for each j = 1, . . . , k individually. Additionally, a k × k cor-
relation matrix C between the considered k margins is obtained within this procedure.
Here, an appropriate way of estimating this correlation matrix may be chosen by the
user.

2. In the second step the joint predictive distribution F of Y is set up via a Gaussian
copula model as described in Section 3.4:

F(y1, . . . , yk|C) = Φk(Φ
−1(F1(y1)), . . . ,Φ−1(Fk(yk))|C), (3.5)

where Φ is the CDF of the standard normal distribution and Φk the CDF of the k-variate
standard normal distribution with mean vector 0 and correlation matrix C.

3. To generate samples from the multivariate predictive distribution F, the following
sampling model is employed, that relates the margins Yj to latent Gaussian values
Zi = (Zi1, . . . , Zik)

′:

Z1, . . . ,Zn|C
iid∼ Nk(0,C), (3.6)

Yij = F−1
j (Φ(Zij)), (3.7)

where i = 1, . . . , n and j = 1, . . . , k.

Via this procedure, an arbitrary number N of samples can be generated from the multivariate
predictive distribution.

The method allows to construct a multivariate postprocessing procedure applicable in many
situations concerning ensemble forecasts. Any desired univariate postprocessing model can
be chosen to set up the margins Fj . Concerning the estimation strategies of the dependence
parameter C of the Gaussian copula, several methods are possible. Chapter 4 gives an exam-
ple for the application of this procedure to recover inter-variable dependence structure and
presents a simple estimation strategy for C. Some other alternatives are discussed at the end
of this work.
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Chapter 4

Multivariate extension of BMA

The state of the art postprocessing techniques discussed in Section 2.1 are designed to be
applied to a univariate weather quantity. Many of these methods are flexible to be adapted
to weather quantities of various types. However, none of these methods take into account
the fact that different weather quantities may exhibit different types of interaction. A joint
predictive distribution of several quantities, that reflects the dependency structure properly
can improve predictive performance. There is for example a well known inverse relationship
between temperature and pressure, and precipitation and temperature might be correlated to
some extent as well. When applying a postprocessing technique designed only for a univari-
ate quantity to several variables independently, the postprocessed forecasts may violate the
multivariate correlation structure of the original ensemble forecasts and the observations.

In low-dimensional multivariate settings it is possible to model the correlation structure di-
rectly with a parametric model. This has already been explored in applications to bivariate
wind vectors, see for example the work of Pinson (2012), Schuhen et al. (2012) and Sloughter
et al. (2013).

In higher dimensions, joint parametric modeling becomes much more of a problem, espe-
cially in the case of fitting a joint distribution of weather quantities with marginal distribu-
tions that are assumed to be of different types as e.g. in the case of temperature, precipitation
and wind speed. In such situations copula methods can be a useful tool. Gaussian copula
methods related to the approach presented in the following have already been discussed in
the previous chapter.

The next section proposes an application of the Gaussian copula multi-stage procedure pre-
sented in Section 3.5 in the context of recovering inter-variable dependence structure from
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ensemble forecasts. The univariate BMA method was chosen for individually postprocessing
the margins of the considered weather quantities.

In Möller et al. (2013), the multivariate postprocessing procedure involving a Gaussian cop-
ula and the BMA methodology is described in detail along with a case study where the
method is applied to 48-h forecasts of the 8-member University of Washington Mesoscale
Ensemble (UWME, see Chapter 2) for five weather quantities. The following sections give
an account of the theory of the multivariate procedure and present the results of the case
study in Möller et al. (2013). The review of the theory part and especially the results of the
case study are taken almost literally from Möller et al. (2013).

4.1 Combining BMA and Gaussian copulas

The standard ensemble BMA methods described in Section 2.1.2 have proven to work well
for post-processing ensemble forecasts of univariate quantities. As already mentioned, treat-
ing each weather quantity of interest individually ignores multivariate dependence structures
that may be present in the raw ensemble.

To account for this specific shortcoming of the standard BMA method, Möller et al. (2013)
propose to model the joint distribution of several weather quantities. They propose to set
up a Gaussian copula model, that has already been presented in Section 3.4 in a general
framework. Möller et al. (2013) combine the individual postprocessing of the marginal dis-
tributions F1, . . . , Fp of the p considered weather quantities with a Gaussian copula model
as defined in Equation (3.4) in Section 3.4. The procedure of combining univariate post-
processing models and a Gaussian copula is performed according to the general multi-stage
procedure described in Section 3.5. This provides the possibility to estimate the joint depen-
dence structure represented by the Gaussian copula parameter C in Equation (3.4) and the
univariate postprocessed marginal distributions separately. In the following, the approach of
Möller et al. (2013) is outlined in detail.

Let F1, . . . , Fp be the marginal distribution functions (CDFs) of the p weather quantities of
interest, represented by random variables Y1, . . . , Yp with Yj ∼ Fj for j = 1, . . . , p. It is
assumed that for each considered observation day t, the random variable Y (t)

j has its own
distribution model F (t)

j . However, for a general introduction of the postprocessing model
the time index is often omitted for convenience. The Fj need not to come from the same
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distribution family. They are generally defined by

Fj(y) =

y∫
−∞

fj(u|x1j, . . . , xmj) du, (4.1)

where fj(u|x1j, . . . , xmj) represents the ensemble BMA density introduced in Equation 2.6
for quantity j, evaluated at u and depending on the ensemble members x1j ,. . .,xmj .

Further, let C be a p× p correlation matrix, i.e. a positive definite matrix with unit diagonal
as in Equation (3.4). As outlined in Section 3.4, the dependence parameter C of the Gaussian
copula is chosen to be the correlation matrix obtained from the covariance matrix of the n-
dimensional normal distribution by standardization. This standardized dependence structure
ensures that the characteristics of the marginal distributions F1, . . . , Fp of each univariate
quantity remain unchanged, while the dependence structure of the p random variables is
fully defined. In the case of forming a multivariate distribution of several (different) weather
quantities, C represents the dependence structure between these weather quantities. As out-
lined in Section 3.4 a Gaussian copula model combines the marginal distributions Fj in a
p-dimensional normal distribution to form the joint distribution function F.

As explained in Section 3.4, it follows from Corollary 3.14 that the joint distribution F of
the p weather quantities takes the form

F(y1, . . . , yp|C) = Φp(Φ
−1(F1(y1)), . . . ,Φ−1(Fp(yp))|C), (4.2)

where Φ−1(·) is the inverse CDF of a standard Gaussian distribution, and Φp(·|C) is the CDF
of a p-dimensional Gaussian distribution with mean vector 0 and correlation matrix C. See
Section 3.4 for a detailed account of Gaussian copulas.

In terms of the general multi-stage procedure described in Section 3.5, the index j = 1, . . . , k

corresponds to the different weather quantities, the total number of considered quantities is
k = p. The index t = 1, . . . , n corresponds to the days utilized for the estimation of the
latent Gaussian random variables Zj explained below (not to be confused with the training
days employed for each of the BMA models), where the total number of days is n = T .
Step 1 of the procedure outlined in Section 3.5 involves performing postprocessing with
standard BMA for each univariate weather quantity, for each day and at each considered
station individually. The model for the joint distribution (4.2) equals the model (3.5) in step
2, with k = p.

The Gaussian copula model only requires the marginal distributions F1, . . . , Fp and the cor-
relation matrix C to be fully defined. The marginal distributions of the weather quantities
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Fj are directly estimated by the univariate BMA procedure described in Section 2.1.2. It
remains to consider a suitable way of estimating the dependence parameter C.

The Gaussian copula sampling model described in Equations (3.6) and (3.7) in Section 3.5
can be set up for the specific situation at hand as follows (Möller et al., 2013).

Let

Z(1), . . . ,Z(T )|C iid∼ Np(0,C) (4.3)

and for t = 1, . . . , T and j = 1, . . . , p set

Y
(t)
j = F−1

j (Φ(Z
(t)
j )), (4.4)

where

F−1
j (u) = sup{y : Fj(y) ≤ u}

denotes the pseudo-inverse of the marginal Fj , as introduced in Definition 3.2. Furthermore,
Z(t) = (Z

(t)
1 , . . . , Zt

p) is the vector of p latent Gaussian random variables associated with
each of the quantities 1, . . . , p at day t = 1, . . . , T . The corresponding realizations are
denoted by z(t) = (z

(t)
1 , . . . , ztp). The set of considered weather quantities at a specific day t

is represented by the vector of random variables Y(t) = (Y
(t)

1 , . . . , Y
(t)
p ) with corresponding

realizations y(t) = (y
(t)
1 , . . . , y

(t)
p ), as noted at the beginning of this section.

With the representation (4.2) it follows from (4.3) and (4.4) that Y(t) = (Y
(t)

1 , . . . , Y
(t)
p ) ∼ F,

for all t = 1, . . . , T . The construction also highlights that each Y (t)
j is marginally distributed

according to Fj and creates a link between a vector Y distributed according to F and a latent
Gaussian variable Z.

In the following, the index t is omitted for convenience. In case of a continuous marginal
distribution Fj it is immediately obvious that

Zj = Φ−1(Fj(Yj)). (4.5)

Therefore, is is possible for the majority of weather quantities to directly infer a latent real-
ization zj , given Fj (or at least an estimate of Fj) and an observed yj .

However, when building a model that forms a joint distribution of arbitrary weather quanti-
ties, there might occur quantities not having a continuous distribution. The general Gaussian
copula model (4.2) is capable of any type of marginal distribution Fj . Nevertheless, for ap-
plying the sampling model described in (3.6) and (3.7), an appropriate way of defining the
inverse of a discrete marginal distribution Fj is necessary.
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In case of considering precipitation, the standard approach in ensemble postprocessing is a
mixed discrete-continuous distribution with a point mass at zero (Sloughter et al., 2007). The
following construction can be employed in case weather quantity j describes precipitation
amount: Suppose Yj ∈ [0,+∞), where Fj(0) = α with 0 < α ≤ 1 and Fj is otherwise
continuously increasing on (0,+∞). Then

−∞ < Zj ≤ Φ−1(α) (4.6)

holds for Yj = 0 and

Zj = Φ−1(Fj(Yj)) (4.7)

for Yj > 0.

With a collection of observations y(1),. . .,y(T ) is is therefore possible to infer the latent
Gaussian values z(1),. . . ,z(T ), where z(t) = (z

(t)
1 , . . . , z

(t)
p ) and y(t) = (y

(t)
1 , . . . , y

(t)
p ), for

t = 1, . . . , T . The latent Gaussian values are then employed to estimate the correlation ma-
trix C. Due to (4.6) and (4.7) this procedure can also be performed for the case of a mixed
discrete-continuous distribution assumed for precipitation amount. In case Fj is purely dis-
crete, a similar construction as described above can be used.

Now, let y(1), . . . ,y(T ) denote a collected set of multivariate observations of the p weather
quantities over T days, which are assumed to be realizations of Y(1),. . .,Y(T ). As noted
above, Y(t) = (Y

(t)
1 , . . . , Y

(t)
p ) and y(t) = (y

(t)
1 , . . . , y

(t)
p ), for t = 1, . . . , T . According to

Möller et al. (2013), each Y(t) is associated with its own Gaussian copula F(t):

Y(t) ∼ F(t)(·|C), (4.8)

meaning that the model (4.2) is set up for each day t separately as

F(t)
(
y

(t)
1 , . . . , y(t)

p |C
)

= Φp

(
Φ−1

(
F

(t)
1 (y

(t)
1 )
)
, . . . ,Φ−1

(
F (t)
p (y(t)

p )
)
|C
)
. (4.9)

Here, F (t)
j denotes the ensemble BMA marginal distribution for weather quantity j at day t

using the (multivariate) m ensemble members x
(t)
1 ,. . . x(t)

m , where x(t)k = (x
(t)
1k , . . . , x

(t)
pk ) is

the vector containing the k-th ensemble forecast for each variable 1 . . . , p.

Although a separate multivariate model F(t) is assumed on each random vector Y(t) for a day
t, the distribution of the latent factor Z(t) remains independent of t, despite the time index t in
the superscript. This fact was already indicated by the model specification in (4.3), where the
parameter C of the Normal distribution is independent of t. Equation (4.3) therefore means
that Z(t) ∼ Np(0,C) for all t. This allows for utilizing the latent Gaussian observations of
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the days t = 1, . . . , T to estimate the dependence parameter C. Möller et al. (2013) employ
the sample correlation matrix of the latent Gaussian values z(1), . . . , z(T ) as an estimator for
C.

As pointed out above, Möller et al. (2013) assume that the dependence parameter C of the
Gaussian copula is constant over time. In the general Gaussian copula multi-stage procedure
for multivariate postprocessing proposed in Section 3.5 no specific estimation strategy is
predetermined. The Gaussian copula model itself is not requiring any specific properties on
C except that it is a correlation matrix (see Section 3.4 for details). A constant correlation as
well as a time varying version fits the context of ensemble postprocessing. What estimating
strategy is the most appropriate depends on the specific problem hat hand. If the method aims
at taking into account seasonal effects present in the data, a time varying correlation matrix
might be preferred. Instead of choosing a parametric estimation method like the sample
estimator for the correlation, a Bayesian approach as discussed in Hoff (2007) is possible as
well. Möller et al. (2013) refer to this topic in a short discussion, outlining other alternatives
and possible benefits.

To form the predictive distribution for a day s coming some time after T , the (multivariate)
m ensemble members x

(s)
1 , . . . ,x

(s)
m at time point s and the estimate Ĉ obtained from the

latent Gaussian vectors z(1), . . . , z(T ) are needed.

The first step in the multivariate postprocessing procedure conducted in Möller et al. (2013)
is performed according to step 1 of the multi-stage procedure in Section 3.5, namely to
estimate the ensemble BMA predictive marginal distributions F (s)

1 , . . . , F
(s)
p from a training

period consisting of days prior to s. Note that the training period for forming the predictive
ensemble BMA margins on day s is not necessarily identical with the days t = 1, . . . , T

denoting the indices of the training days used to estimate the dependence parameter C of the
Gaussian copula.

Step 2 of the multi-stage procedure involves defining the Gaussian copula model (3.5) for
each considered s and plug in the estimate for the parameter C:

Y(s) ∼ F(s)(·|Ĉ). (4.10)

This joint predictive distribution does not have an easy analytic structure and a parametric
estimation is not at all trivial, see e.g. Song (2000).

Step 3 of the multi-stage procedure comprises of producing a desired number of Monte Carlo
samples Ŷ from the joint predictive distribution F(s) by employing the sampling procedure
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(3.6) and (3.7): This implies first sampling

Ẑ ∼ Np(0, Ĉ) (4.11)

and then setting

Ŷj = (F̂
(s)
j )−1(Φ(Ẑj)). (4.12)

Here Ẑ = (Ẑ1, . . . , Ẑp) and F̂
(s)
j , j = 1, . . . , p denotes the estimated ensemble BMA

marginal distribution for day s. A large number of these Ŷ samples effectively describes
the entire joint predictive distribution. As noted before, the marginal distributions of F(s)

for each individual quantity remain the ensemble BMA margins F (s)
1 , . . . , F

(s)
p due to the

properties of a Gaussian copula.

To close the description of the multivariate postprocessing procedure, a brief comment is
given on the interpretation of the correlation matrix C representing the dependence param-
eter in the Gaussian copula. It describes the correlation between the quantiles of the predic-
tive distribution after postprocessing the raw ensemble. It is a residual correlation matrix,
not directly modelling the physical relationship between the considered weather quantities.
The true relationships are largely accounted for directly by the ensemble itself. Instead C

accounts for any subsequent correlation between the weather quantities after performing uni-
variate postprocessing.

4.2 Data

For the case study conducted in Möller et al. (2013), daily 48-h forecasts based on the Uni-
versity of Washington Mesoscale Ensemble (UMWE, Eckel and Mass, 2005) with valid
dates in the calendar year 2008 are employed. The UWME is an eight-member multi-
analysis ensemble using initial and lateral boundary conditions from operational centers
around the world. Currently, the UWME employs the WRF mesoscale model that is suc-
ceeding the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). Further informa-
tion as well as real time forecasts and observations can be found on the web page http:
//www.atmos.washington.edu/~ens/uwme.cgi.

The forecasts are made on a 12 km grid over the Pacific Northwest region of Western North
America. As the observation stations are scattered around the region and usually do not
correspond to any of the grid points, the forecasts need to be bilinearly interpolated from the
four surrounding grid points to the station locations of interest. The observation locations
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considered for the case study are situated in the US states of Washington, Oregon, Idaho,
California, and Nevada, see Figure 4.3 for an impression of the region and the distribution
of the stations. The daily observations are provided by weather observation stations in the
Automated Surface Observing Network (National Weather Service, 1998).

Möller et al. (2013) aim at forming a multivariate predictive distribution of five weather
quantities: 2-m surface maximum and minimum temperature, sea level pressure, 10-m max-
imum wind speed, and 24-h precipitation accumulation. Both forecasts and observations are
initialized at 00 UTC (Universal Time Coordinated) which is 5pm local time when daylight
saving time operates and 4pm local time otherwise. To remove dates and locations with any
missing forecasts or observations, quality control procedures as described by Baars (2005)
were applied to the entire data set.

The complete data employed in the case study contains dates from the calender years 2006
up to 2008. From the data of the complete year 2008, 60 distinct observation locations are
used for the analysis of predictive performance of the proposed method. The 60 stations
offer between 95 and 271 days in which all ensemble forecasts and verifying observations
were available. The additional data from 2006 and 2007 was utilized to provide an appro-
priate rolling training period for all days in 2008 and 2007 and to estimate the correlation
matrix for the Gaussian copula. The estimate Ĉ is obtained from the latent Gaussian ob-
servations z(t) for all days t = 1, . . . , T available in the 2007 data. To compute the latent
z(t), the marginal BMA densities for the T days in 2007 were estimated. The 2006 data was
only employed to provide appropriate training periods for the beginning dates of 2007. The
procedure results in a single correlation matrix based on all available dates in 2007. The
data of 2008 was employed for forming the predictive distributions that are assessed with
multivariate verification tools.

4.3 Results

This section reproduces (in some parts literally) the results of the case study conducted in
Möller et al. (2013). They applied the multi-stage Gaussian copula procedure to maximum
and minimum temperature, sea level pressure, maximum wind speed and precipitation over
the North American Pacific Northwest in 2008. The univariate postprocessing of each quan-
tity with the BMA method is performed at each observation location separately (local BMA).
Based on an exploratory analysis using a subset of the data set, a 40-day sliding training
period was employed for the parameter estimation of the BMA model. This time period
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maxwsp precip mintemp maxtemp pressure

maxwsp 1 −0.016 0.032 0.139 −0.123

precip −0.016 1 −0.001 −0.174 −0.015

mintemp 0.032 −0.001 1 0.239 −0.110

maxtemp 0.139 −0.174 0.239 1 −0.203

pressure −0.123 −0.015 −0.110 −0.203 1

Table 4.1: Estimated correlation matrix at the station KSEA, Sea-Tac Airport, based on data
from the calendar year 2007

consists of the 40 most recent days prior to the forecast date for which the ensemble forecast
and the verifying observation were available. Typically, this period corresponds to more than
40 calendar days (see e.g. Wilson et al., 2007, for similar settings).

As the values of the five weather variables considered are given on scales that vary by sev-
eral orders of magnitude, the components are normalized (using observed mean values and
standard deviations) before the scores are calculated over the test set.

4.3.1 Results at Sea-Tac Airport

The first part of the case study conducted in Möller et al. (2013) focused on the predictive
performance of the proposed multivariate postprocessing method at a single station. The
authors consider the KSEA observation station as an example for the single station perfor-
mance. The station is located at Sea-Tac Airport, a major transportation hub in the area.

The first step within the multivariate postprocessing procedure is the estimation of the cor-
relation matrix from the latent Gaussian observations. Using all available data from 2007,
the ensemble BMA methodology is run for each of the five variables as described in Section
2.1.2. The observations for these data and the estimated marginal distributions are employed
to infer the latent Gaussian observations z as described in Section 4.1. This is performed
separately for each day in 2007 and the resulting latent data are then used to estimate a
single correlation matrix. Table 4.1 shows the entries of this correlation matrix for the five
quantities at the station KSEA.

The displayed correlation matrix shows strong negative correlations between the forecast
errors of pressure and both maximum and minimum temperatures. This is in line with the
known inverse relationship between temperature and pressure systems. A positive correlation
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between the forecast errors of the minimum and maximum temperatures is visible as well,
which is intuitively right. These patterns within the correlation matrix imply that a joint
distribution of the five weather quantities captures additional information that is ignored in a
univariate postprocessing approach.

After estimating the correlation matrix from the data of 2007, the univariate ensemble BMA
method is run individually for each of the five quantities to obtain the marginal predictive
distributions for all dates in the test data set of 2008. The estimated correlation matrix and
these marginal distributions are employed to obtain 20,000 samples from the joint predictive
distribution for each day, as described in Section 4.1.

Figure 4.1, taken from Möller et al. (2013), shows a pairwise plot of the estimated joint
predictive distribution for January 1, 2008 at the station KSEA. The plot presents a heat map
for each pair of quantities, where lighter regions correspond to higher values of probability
mass. The 8 ensemble members are represented by red circles and the verifying observation
is displayed as a blue square. The diagonal elements of the plot show the marginal ensemble
BMA predictive distributions for each of the five quantities. Wind speed is given in meters
per second, precipitation in millimeters, temperature in degrees C, and pressure in millibar.

The correlation structure for KSEA presented in Table 4.1 has clearly been carried over
to the predictive distribution. The positive correlation between maximum and minimum
temperatures is evident as well as the negative correlation of each of these quantities with
pressure. The predictive distribution in Figure 4.1 exhibits the effect of postprocessing the
marginal distributions with BMA as well: On the one hand, the predictive distributions are
often centered away from the ensemble members, which is an effect of the bias-correction
embedded in the postprocessing procedure. On the other hand, the spread of the distributions
increased in comparison to the raw ensemble. By construction, the margins of the joint
distribution displayed on the diagonals remain the unchanged univariate BMA distributions.

To assess the predictive quality of the multivariate postprocessing distribution, the multivari-
ate verification tools described in Section 2.2 are employed.

Table 4.2 presents the values of multivariate verification metrics, namely the energy score
(ES), the Euclidean error (EE), the determinant sharpness (DS) and finally the reliability
index (∆). Table 4.2 compares the predictive performance of three different methods, where
the scores are averaged over all dates in 2008 at the station KSEA.

The first method is the Gaussian copula approach proposed by Möller et al. (2013), where
the correlation structure between the weather quantities is estimated from past data. The
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Figure 4.1: Estimated joint predictive distribution for January 1, 2008 at the KSEA obser-
vation station along with ensemble predictions (circles) and verifying observation (square)

second method called Independence is a Gaussian copula approach with correlation matrix
C equal to the identity matrix and therefore assuming that the margins of the five quantities
are independent. In principle this approach is simply performing univariate postprocessing
of the margins with BMA and combines them in a multivariate distribution not taking into
account any dependence structures estimated from the observation data. Note that the Copula
and Independence approach have the same marginal distributions and thus differ only in the
manner in which the joint distribution is constructed. These two postprocessing approaches
are then compared to the raw UWME ensemble.

The Copula and the Independence approach both improve considerably on the raw ensemble
in all metrics except the determinant sharpness (DS). However, as the 8 ensemble members
naturally impart greater sharpness in comparison to an estimated multivariate predictive dis-
tribution, this is not surprising. The high level of sharpness of the raw ensemble is not of
great use as the ensemble lacks calibration.

It can be noticed further that the Copula approach improves on the Independence approach
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ES EE ∆ DS

UWME 0.938 1.081 0.185 0.566

Independence 0.637 0.982 0.047 7.516

Copula 0.636 0.982 0.019 6.971

Table 4.2: Predictive performance at the KSEA observation station, averaged over the 271
available days in 2008
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Figure 4.2: Multivariate rank histograms for the Copula and Independence approaches as
well as the raw UWME ensemble for the KSEA observation station over the 295 available
days in 2008

under all metrics. According to the values of the reliability index and the DS, the predictive
distribution of the copula approach is both better calibrated and somewhat sharper than the
distribution of the Independence approach. The Euclidean scores are essentially the same
for the two approaches, since the different correlation matrices cannot be expected to have
much influence on the median values of the underlying distributions. According to Equa-
tion (2.40), the Euclidean errors of both approaches are based on the median values of their
respective distributions. Therefore similar median values lead to similar results for the Eu-
clidean errors. The fact that both distributions have similar median values while the Copula
approach displays an improved sharpness leads to a lower energy score value for the Copula
approach in comparison to the Independence approach.

To investigate the multivariate calibration of the three approaches, Möller et al. (2013) con-
sider multivariate rank histograms, displayed in Figure 4.2. Both postprocessing methods
improve calibration considerably over the raw ensemble. However, in the Independence ap-
proach the final bins are somewhat less filled than in the multivariate rank histogram for the
Copula approach, though neither returns a completely uniform rank histogram.
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4.3.2 Aggregated results over the Northwest US

Möller et al. (2013) conducted a similar analysis for 60 distinct observation stations in the
Northwest US. The univariate ensemble BMA model was run individually for each station,
day and weather quantity during 2007. Then a correlation matrix was estimated from the
verifying observations separately for each observation station. Figure 4.3 shows that there is
considerable agreement in the estimated correlations between individual stations, although
they were estimated locally.

Figure 4.3(a) shows the pairwise estimated correlation between minimum and maximum
temperature at each observation station considered for the analysis. As is to be expected, the
majority of estimates are positive, up to values of 0.51.

Figure 4.3(b) shows the correlation between minimum temperature and pressure plotted for
each observation station. While the previous figure showed limited similarity in the esti-
mated correlations, this figure exhibits considerable agreement between observation stations.
All values are negative and the majority lies between −0.2 and −0.4. Apart from this, the
plot shows some spatial structure in the correlation estimates. The values near the northern
end of the Puget Sound are all roughly between −0.1 and −0.2, while those closer to the
Seattle/Tacoma area are grouped between −0.22 and −0.26. A tight group of observation
stations in the Columbia River Valley, on the border of Washington and Oregon, all have
correlations between −0.31 and −0.35 and finally those in Eastern Washington and Eastern
Oregon exhibit stronger correlations typically below −0.4.

The correlations among the weather quantities as well their spatial structure visible in panels
(a) and (b) of Figure 4.3 suggest that incorporating this structure by using the Gaussian
copula methodology captures important features of the true multivariate distribution that are
ignored in the Independence approach.

Figure 4.4 compares the multivariate rank histograms (averaged over all observation sta-
tions) for the Copula approach, the Independence approach and the raw UWME ensemble.
The overall results are similar to those obtained for the station KSEA. Both multivariate
postprocessing methods improve the calibration considerably in comparison to the raw en-
semble. The effect already described for the station KSEA is visible as well: namely that the
last bin is slightly less filled in the Independence approach than in the Copula approach.

The verification metrics results averaged over the 60 stations and all available days in 2008
are presented in Table 4.3. The scores exhibit essentially the same structure as for the station
KSEA. The determinant sharpness value improves for the Copula versus the Independence
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Figure 4.3: Estimated correlation at 60 observation stations in the Northwest US using 2007
data and the Gaussian copula approach
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(c) Copula

Figure 4.4: Multivariate Rank histograms for the Copula, the Independence approach and
the raw UWME ensemble over all available observations at 60 observation stations in 2008
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4.4. ASSESSING STATISTICAL SIGNIFICANCE

ES EE ∆ DS

UWME 0.881 1.061 0.161 0.811

Independence 0.586 0.914 0.071 1.945

Copula 0.585 0.914 0.066 1.905

Table 4.3: Predictive performance of the Copula and Independence approaches and the raw
UWME ensemble, averaged over 60 observation stations in the Northwest US and all avail-
able days in 2008

approach, while the Euclidean score is essentially the same. The energy score improves for
the Copula approach, as well as the level of calibration measured by the reliability index.

4.4 Assessing statistical significance

The results presented in Table 4.3 show a small improvement in the energy score when
moving from the Independence to the Copula approach, which is considerably less than the
improvement when moving from the raw UWME ensemble to the Independence approach.

To assess the significance of the presented results, Möller et al. (2013) conduct a permutation
test to show that the small magnitude of the difference is nevertheless not purely the result
of sampling variability.

The permutation test is treating the two populations of energy scores as interchangeable
under a null hypothesis that the scores come from the same distribution (see Good, 1995, for
a detailed discussion of the permutation test and its properties).

Then a large number of synthetic datasets is constructed under this assumption of exchange-
ability. Thus, for every day and station combination in which the two energy scores were
calculated, one score is randomly assigned to the Copula group and the other to the Inde-
pendence group. This pairwise reassignment is performed since the magnitude of the single
energy score values can vary dramatically throughout the year, while the differences vary to
a much smaller degree.

Once a synthetic dataset is constructed in this manner, the difference in the means of the two
groups is computed and retained. The entire process is repeated a large number of times.
Möller et al. (2013) construct 10,000 synthetic datasets to conduct the permutation test.
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Figure 4.5: Permutation distribution of difference between energy scores for the Copula
and Independence approaches along with true value (solid vertical line) as well as 0.025 and
0.975 quantiles (dotted vertical lines)

Figure 4.5 shows the distribution of these permutation scores along with the true difference
of -0.00145. As would be expected, the permutation distribution is centered about 0, with
0.025 and 0.975 quantiles of -0.000243 and 0.000245, respectively. None of the 10,000
sampled values from the permutation distribution approaches the true value.

This shows the statistical significance of the results presented in Table 4.3. While the magni-
tude of the difference is not large, especially in comparison to the initial improvement over
the raw ensemble, the result could not have come about purely from sampling variability.

Möller et al. (2013) argue that intuitively, it is reasonable that the improvement when employ-
ing the Copula approach instead of the Independence approach would be orders of magnitude
smaller than the initial improvement over the raw ensemble, especially for the dataset under
consideration. The raw ensemble consists of only 8 forecasts, and thus the UWME results
are computed over a 5-dimensional predictive distribution with only 8 points to fill the entire
space. By returning a full distribution, as opposed to such a sparse, discrete distribution,
ensemble BMA will undoubtedly yield a substantial improvement in the performance of the
predictive distribution.

By contrast, the improvement in moving from the Independence approach to the Copula ap-
proach is understandably less dramatic, as both procedures return full predictive distributions
and also have the same marginal distributions. Nevertheless, the permutation test indicates
that the small improvement in Table 4.3 is not due to sampling variability.
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Chapter 5

Spatially adaptive extension of EMOS

While the previous section was concerned with extending a univariate postprocessing method
to incorporate inter-variable dependencies, this section aims at spatially adaptive estimation
of a standard postprocessing method for a single weather quantity. To introduce a spatial
dependence structure, the ECC procedure in Section 2.1.6 can be applied to the individu-
ally postprocessed margins. This method recovers multivariate dependencies from the rank
structure of the original ensemble.

Currently, the method developed in this section is designed for a normally distributed weather
quantity such as temperature, but adaptations to weather quantities with other distributions
are possible. The basic univariate method employed for the extension is the EMOS model,
see Section 2.1.1. However, similar procedures may be developed for other univariate post-
processing models as well.

In a case study analyzing the predictive performance of the EMOS extension, not only the
univariate margins from different competing postprocessing methods are compared. An ad-
ditional case study assesses the multivariate predictive performance of the predictive distri-
butions obtained by providing each univariate method with the ECC induced dependence
structure or an Independence structure.

In methods such as GMA (Section 2.1.5) a geostatistical model is used to interpolate esti-
mates to any arbitrary location where no observations are available.

The method developed in this chapter has similar goals.

The standard EMOS method is extended by assuming Gaussian fields (GF) on the bias-
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correction parameters. These Gaussian fields are approximated with Bayesian methods,
where a recently developed Gaussian Markov random field (GMRF) representation of a GF
is utilized to benefit from the computational speed-up.

The following sections outline some of the theory employed in the approach. The theory of
GFs and GMRFs is briefly reviewed, along with the INLA methodology to estimate Bayesian
models fast and accurately and the SPDE approach of finding a GMRF representation of a
GF.

5.1 Gaussian fields and Gaussian Markov random fields

This section gives an overview on the theory of Gaussian fields (GFs) and Gaussian Markov
random fields (GMRFs). The presented theory is the background for the SPDE approach
introduced in Section 5.3 and employed for the spatially adaptive extension of EMOS in
Section 5.4.

Gaussian Fields
A Gaussian field is a specific stochastic process on a domain D ⊆ Rd of interest. In the
context of this work, spatial stochastic processes are of particular interest. For an overview on
(spatial) stochastic processes and especially Gaussian fields see for example the monograph
of Gelfand et al. (2010) and the references therein. Diggle and Ribeiro Jr. (2010) also provide
a short introduction to Gaussian fields in the context of geostatistical models. The main
facts presented here were taken from these two monographs. For some basic mathematical
properties of stochastic processes in general see e.g. Liptser and Shiryaev (2010).

Let D ⊆ Rd and s ∈ D. In spatial applications typically d = 2 or d = 3. Then a spatial
stochastic process {X(s), s ∈ D ⊆ Rd} is defined as the collection of random variables

X(s) = X(s, ω), s ∈ D,ω ∈ Ω

with a well-defined joint distribution. For any fixed s ∈ D, X(s) is a random variable
X(s, ω), with Ω being some abstract sample space and ω ∈ Ω. For each fixed finite set of
spatial locations (s1, . . . , sn)′ ⊂ D, the vector

(X(s1), . . . , X(sn))′

is a random vector with a specific multivariate distribution. The distribution of the process
{X(s), s ∈ D ⊆ Rd} is given by the finite-dimensional distribution function F of the finite
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collections s1, . . . , sn:

F (x1, . . . , xn; s1, . . . , sn) = P (X(s1) ≤ x1, . . . , X(sn) ≤ xn)

of the random vector (X(s1), . . . , X(sn))′ for any arbitrary n and any collection s1, . . . , sn ∈
D. For a fixed ω ∈ Ω,

(x1, . . . , xn)′ = (X(s1, ω), . . . , X(sn, ω))′

are realizations of the spatial process {X(s), s ∈ D ⊆ Rd}.

In the special case of a spatial Gaussian process, {X(s), s ∈ D ⊆ Rd} is called a Gaussian
Field (GF) if and only if

(X(s1), . . . , X(sn)) ∼ Nn(µn,Σn)

for all finite collections of points s1, . . . , sn ∈ D.

A GF is fully determined by its mean function µ(s) = E(X(s)) and its covariance function
C(s, s′) = Cov(X(s), X(s′)), s, s′ ∈ D. For any arbitrary finite set of locations s1, . . . , sn,
the resulting n-dimensional vector (X(s1), . . . , X(sn)) has an n-variate normal distribution
with n-dimensional mean vector µn = (µ(s1), . . . , µ(sn))′ and an n × n covariance matrix
Σn with elements Σij = C(si, sj), i, j = 1, . . . , n.

A spatial stochastic process defined on Rd is called weakly stationary, if and only if for any
s,h ∈ Rd

E(X(s)) = E(X(s + h)) = µ (5.1)

C(s, s + h) = Cov(X(s), X(s + h)) = Cov(X(0), X(h)) = C(h). (5.2)

In the special case of a GF, weak stationarity is equivalent to strict stationarity. A general
spatial stochastic process is called strictly stationary, if for all finite dimensional collections
s1, . . . , sn ∈ Rd, all h ∈ Rd and all x1, . . . , xn ∈ R the distribution function F fulfills

F (x1, . . . , xn; s1 + h, . . . , sn + h) = F (x1, . . . , xn; s1, . . . , sn).

The covariance function of a weakly stationary stochastic process needs to be positive def-
inite to be valid. A function C defined on Rd is called positive definite if the respec-
tive covariance matrix of a finite dimensional distribution is nonnegative definite for any
collection s1, . . . , sn. Furthermore, the covariance matrix of a finite dimensional vector
X(s) = (X(s1), . . . , X(sn)) needs to be nonnegative definite in general to be valid: For any
vector a = (a1, . . . , an), the marginal variance σ2

L of any linear combination L = a′X(s) is
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required to be nonnegative. As a′Σna = σ2
L

!

≥ 0, it follows directly that this constraint is
only fulfilled if Σn is nonnegative definite.

A case of special interest in many applications is when for a weakly stationary process the
covariance function depends on h only in terms of the Euclidian distance ||h||. A covariance
function with this property is called isotropic. Setting (without loss of generality) C(0) = 1,
an isotropic covariance function can be written as

C(h) = g(||h||), h ∈ Rd, (5.3)

for a continuous function g : [0,∞) → R with g(0) = 1. When defining Gd as the class of
all continuous functions g generating a valid isotropic covariance function on Rd via (5.3),
the following properties hold:

G1 ⊇ G2 ⊇ . . . and Gd ↓ G∞ =
⋂
d≥1

Gd,

as it is possible to restrict an isotropic process in Rd to any lower-dimensional subspace.

The class of valid isotropic covariance functions contains many different parametric families
of covariance functions. The most popular one is the Matérn family (Matérn, 1986; Guttorp
and Gneiting, 2008). Other parametric families of interest are for example the powered expo-
nential family or the Cauchy family. The Matérn, powered exponential and Cauchy family
belong to the class G∞, meaning they generate valid isotropic covariance functions in all
dimensions d ≥ 1. For more details on some families of covariance functions and their prop-
erties see for example Gelfand et al. (2010) and the references therein. The family of Matérn
covariance functions will be of particular interest in Section 5.3, where their properties are
briefly discussed.

Gaussian Markov random fields
While GFs are specific continuous (spatial) random processes, a Markov random field (MRF)
is a finite-dimensional vector (X1, . . . , Xn)′ having a specific parametric distribution and sat-
isfying certain conditional independence properties inducing a Markovian structure. A Gaus-
sian Markov random field (GMRF) denotes the special case where the finite-dimensional
vector has a normal distribution. For details on GMRFs see the monograph of Rue and Held
(2005), which is essentially the basis for the overview presented here. Further, in Gelfand
et al. (2010) some facts on general MRFs as well as on GMRFs are presented. For con-
venience, the GMRF is introduced in the general notation of an arbitrary random vector
X = (X1, . . . , Xn)′ in the following. However, all the definitions and properties directly
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translate to the special case of a spatial GMRF X = (X(s1), . . . , X(sn))′ for a finite collec-
tion of spatial locations s1, . . . , sn ∈ Rd.

To understand the underlying structure of a GMRF (or a MRF in general), a short re-
view of the definition of (marginal) independence and conditional independence is nec-
essary. Two continuous random variables X and Y are independent if and only if and
only if pX,Y (x, y) = pX(x) · pY (y) for the respective marginal PDFs pX(·), pY (·) and
the joint PDF pX,Y (·, ·). This property is denoted by X⊥Y . The random variables X
and Y are called conditionally independent given a third random variable Z, if and only
if pX,Y |Z(x, y|z) = pX|Z(x|z) · pY |Z(y|z), where pX,Y |Z(·, ·|·) is the joint PDF of X and Y
given Z, pX|Z(·|·) the conditional PDF of X given Z and pY |Z(·|·) the conditional PDF of Y
given Z. The conditional independence is denoted by X⊥Y |Z. In the case of conditional
independence ofX and Y , the two random variables can still be marginally dependent. Con-
ditional independence can be defined for random vectors as well: X and Y are conditionally
independent given Z if and only if pX,Y|Z(x,y|z) = pX|Z(x|z) · pY|Z(y|z) for the respective
conditional densities.

A knowledge of some basic notions about graph theory is useful in the context of random
variables, as the conditional independence structure of a GMRF can be visualized with an
undirected graph G = (V,E), where V denotes the set of vertices (also called nodes) in the
graph and E denotes the set of edges. In the special case of V = {1, . . . , n}, V defines a
labelled graph. The set of edges contains all {i, j} with i, j ∈ V and i 6= j. If {i, j} ∈ E,
there is an edge from node i to node j. In case {i, j} ∈ E for all i, j ∈ V with i 6= j,
G is called fully connected. See for example Lauritzen (1996) and Whittaker (1990) for
an introduction to graphical models, their basic notions and applications in (multivariate)
statistics.

Before giving a formal definition of a GMRF, some preliminary notation has to be intro-
duced. An (n× n) matrix A is called positive definite if and only if

x′A x > 0 ∀x 6= 0.

In case A is also symmetric, it is called symmetric positive definite (SPD). In the following
only SPD matrices are considered.

Regarding a GMRF, there is a connection between the graph G and the parameters of the
normal distribution (that need not to be valid in a general MRF), which is described by the
following theorem (Rue and Held, 2005):
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THEOREM 5.1

Let the random vector X = (X1, . . . , Xn)′ be normally distributed with mean µ and an SPD
precision matrix Q, where Q = Σ−1 is the inverse of the SPD covariance matrix Σ. Then
for i 6= j:

Xi⊥Xj|X−ij ⇐⇒ Qij = 0.

The theorem states that the non-zero pattern of Q directly relates to the structure of the graph
G. If an elementQij of the precision matrix is zero,Xi andXj are conditionally independent
given X−ij .

This leads directly to the definition of a GMRF.

DEFINITION 5.2

Let X = (X1, . . . , Xn)′ be a random vector with realizations in Rn. Then X is called a
GMRF with respect to a labelled graph G = (V,E) with mean µ and SPD precision matrix
Q, if and only if its density has the form

p(x) = (2π)−n/2 |Q|1/2 exp
(
− 1

2
(x− µ)′Q(x− µ)

)
(5.4)

and for all i 6= j

Qij 6= 0 ⇐⇒ {i, j} ∈ E.

Besides the well known parametrization via the mean µ and the precision Q matrix used in
the definition of a GMRF above, there is a canonical parametrization of a GMRF. It is given
in the following definition.

DEFINITION 5.3

A GMRF X with respect to a graph G with canonical parameters b and Q, where Q is an
SPD matrix, has a density p(x) with the property

p(x) ∝ exp
(
− 1

2
x′Qx + b′x

)
,

where Q = Σ−1 is the precision matrix and the mean of the distribution can be obtained via
the relationship µ = Q−1b. The canonical representation is denoted by X ∼ NC(b,Q).

There is a direct relationship between the canonical and the standard parametrization of the
normal distribution, given by N(µ,Q−1) = NC(Qµ,Q).
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As mentioned above, a GMRF is characterized in terms of the precision matrix Q instead of
the covariance matrix Σ. The elements of Q have a direct conditional interpretation. How-
ever, the precision matrix Q is hard to interpret in terms of marginal dependence. The diag-
onal elements of Q are the precisions of Xi given X−i, while the off-diagonal elements de-
scribe the conditional correlation (with proper scaling) between the random variables Xi and
Xj given X−ij . Conversely, the covariance matrix Σ provides information on the marginal
variance of Xi and the marginal correlation between Xi and Xj , but do not provide any
information on the conditional dependence structure.

GMRFs are a useful concept in hierarchical models, where they can describe stochastic de-
pendence between a set of unknown parameters. A typical application defines a GMRF X

on a vector of unknown hyperparameters θ in a three stage procedure:

θ ∼ p(θ) (5.5)

X ∼ p(x|θ) (5.6)

Yi
iid∼ p(yi|xi), i = 1, . . . , n. (5.7)

Such hierarchical model connects the latent field X to the observational variables Y, which
are assumed to be conditionally independent given X. Then the joint posterior of the latent
field and the hyperparameters reads

p(x,θ|y) ∝ p(θ)p(x|θ) Πn
i=1 p(yi|xi). (5.8)

This way of employing a GMRF in a hierarchical model is also utilized in the recently
proposed INLA approach, developed by Rue et al. (2009) and described in the next section.

5.2 Integrated Nested Laplace Approximation (INLA)

Bayesian methods have become more and more popular during the last three decades, as they
provide several advantages. The possibility to specify prior distributions allows for including
information obtained in advance, e.g. from previous studies or experts in the considered
field. Bayesian models readily allow for defining a hierarchical structure on the data or the
parameters of the model, making prediction or imputation of missing values easy.

A main challenge when employing Bayesian methods is computational. Markov chain
Monte Carlo (MCMC) methods provide an extremely flexible approach to estimate Bayesian
models, they can essentially deal with any type of Bayesian model and any type of data.
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Nonetheless, MCMC simulations to obtain posterior distributions can become computa-
tionally intensive as the model gets complex. Therefore, an application of MCMC based
inference can be restricted to relatively simple models, while complex models and high-
dimensional data still pose challenges.

The recently developed Integrated Nested Laplace Approximation (INLA), proposed by Rue
et al. (2009), provides a computationally efficient alternative to MCMC methods. The INLA
methodology has a wide range of possible applications, as it is designed for the class of
latent Gaussian models. This class contains for example (generalized) linear mixed mod-
els, spatial and spatio-temporal models, and many more standard models widely applied in
statistics. As INLA is available as an R package, R-INLA, the method can easily be accessed
by any researcher. The web page www.r-inla.org provides information on the use of
the R-INLA package, papers on background theory and applications as well as discussion
groups and further help.

In the following, the basic ideas of the INLA procedure described in Rue et al. (2009) are
explained.

Latent Gaussian models are a subclass of the so called structured additive regression models.
In this class of models the response variables Yi, i ∈ I with corresponding realizations yi (the
observations) are assumed to belong to an exponential family. Here, I is a finite index set
that can be defined according to the needs of the application. The aim of a model belonging
to this class is to estimate the effect of a set of covariates on some functional, e.g. the mean
µi, of the conditional predictive distributions.

To derive a general model, the mean µi is linked to a structured additive linear predictor ηi
through a link function g(·) by g(µi) = ηi. The structured additive linear predictor includes
the effects of various covariates. It is generally defined as

ηi = γ +
K∑
k=1

βk zki +
L∑
l=1

fl(uli) + ξi, (5.9)

where γ denotes a scalar overall intercept, the vector β = (β1, . . . , βK) contains the coef-
ficients for the linear effects of the covariates z = (z1, . . . , zK) on the response variable,
f = {f1(·), . . . , fL(·)} are unknown functions of the covariates u = (u1, . . . , uL), and the
components of ξ = (ξi, i ∈ I), are unstructured terms. The vector of all linear predictor
components is given as η = (ηi, i ∈ I) As the functions fl(·) can take many different forms,
this model has a wide range of applications.

Rue et al. (2009) denote by x := (γ,β, f ,η) the vector of all parameters of interest in the
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model (5.9).

The class of latent Gaussian models is a subclass of additive Bayesian models, where a
Gaussian prior is assumed on the components of x. For the INLA procedure, Rue et al.
(2009) go one step further and assume a GMRF prior with mean zero and precision matrix
Q(θ1) on x, depending on a vector of hyperparameters θ1. This is denoted by

x|θ1 ∼ N
(
0,Q−1(θ1)

)
, (5.10)

where N
(
0,Q−1(θ1)

)
denotes the multivariate normal distribution with mean vector 0 and

covariance matrix Q−1(θ1). This precision matrix has a sparse structure and therefore al-
lows for sparse matrix algorithms (Rue and Held, 2005). This assumption is reasonable as
many latent Gaussian models exhibit the properties underlying this assumption. The specific
Markovian structure of such a model is useful to facilitate the approximations performed by
INLA.
Rue et al. (2009) further assume that the response variables Y = (Yi, i ∈ I) are conditionally
independent given x and a second vector of hyperparameters θ2. The specific distribution
of Y|x,θ2 depends on the distributional family that was assumed for the response variables
Y = (Yi, i ∈ I) themselves. Let then

θ = (θ1,θ2) (5.11)

denote the vector of all hyperparameters of the specified model, where θ1 is the sub-vector
of hyperparameters associated with the parameter vector x and θ2 the sub-vector of hyper-
parameters associated with the response variables Y = (Yi, i ∈ I). Rue et al. (2009) state
that the dimension m of θ needs to be much smaller than the dimension of x (m ≤ 6) for
the INLA procedure to work properly. The vector of hyperparameters is not necessarily
Gaussian.

In the following, let p(·|·) denote a conditional density. The main objective of the INLA
procedure is to obtain accurate approximations for the posterior margins of the xi, the com-
ponents of the latent Gaussian vector x, given the observations y = (yi, i ∈ I), namely

p(xi|y) =

∫
p(θ|y) p(xi|θ,y) dθ, (5.12)

as well as for the posterior margins of the vector of hyperparameters θ and its components
θj given y = (yi, i ∈ I), namely

p(θj|y) =

∫
p(θ|y) dθ−j. (5.13)
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To determine the integrals (5.12) and (5.13), p(θ|y) and p(xi|θ,y) need to be computed or
approximated.

The basic idea of the INLA approach is to construct nested approximations of the form

p̃(xi|y) =

∫
p̃(θ|y) p̃(xi|θ,y) dθ (5.14)

and

p̃(θj|y) =

∫
p̃(θ|y) dθ−j, (5.15)

where p̃(·|·) is an approximation to the respective conditional density. After approximating
the conditional densities p(θ|y) and p(xi|θ,y) by p̃(θ|y) and p̃(xi|θ,y) respectively, nu-
merical integration is performed to integrate out θ in Equations (5.12) and (5.13). This is
possible because of the small dimension of θ.

Approximating the posterior margins of interest takes advantage of the Gaussian model as-
sumptions. These approximations are further based on the Laplace approximation (Tierney
and Kadane, 1986). Due to the nested approach, the Laplace approximation works especially
well when applied to latent Gaussian models. Because of this feature, Rue et al. (2009) called
their approach Integrated Nested Laplace Approximations (INLAs). The INLA appraoch for
approximating the posterior margins p(xi|y) of the components of the latent field x is per-
formed in three steps. The first step is concerned with the approximation of the posterior
margin p(|y) of the vector of hyperparameters θ as outlined below in Equations (5.18) and
(5.19). The second step computes the Laplace approximation or the simplified Laplace ap-
proximation of p(xi|θ,y) for selected values of θ, to improve the Gaussian approximation
p̃G(x|θ,y). The Gaussian approximation itself is shortly explained below. These two steps
are combined in a third step by using a numerical integration of the form (5.25).

The approximation of the posterior density p(θ|y) utilizes a Gaussian approximation in the
way described below.

Since p(x,θ|y) = p(x|θ,y) · p(θ|y) it follows that

p(θ|y) =
p(x,θ|y)

p(x|θ,y)
=

p(x,θ,y)/p(y)

p(x|θ,y)
(5.16)

∝ p(x,θ,y)

p(x|θ,y)
(5.17)

≈ p(x,θ,y)

p̃G(x|θ,y)

∣∣∣
x=x∗(θ)

(5.18)

=: p̃(θ|y), (5.19)
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where p̃G(x|θ,y) denotes the Gaussian approximation of p(x|θ,y) and x∗(θ) its mode.
Expression (5.18) is equivalent to the Laplace approximation of a marginal posterior distri-
bution presented in Tierney and Kadane (1986). The INLA approach of Rue et al. (2009) is
based on Gaussian approximations to densities that are of the form

p(x) ∝ exp
(
− 1

2
x′Q x +

∑
i∈I

gi(xi)
)
, (5.20)

where gi(xi) = log(p(yi|xi,θ)) and Q is the precision matrix of x. The Gaussian approxi-
mation p̃(x) is obtained by matching the curvature of the density and the values of x at the
mode. The computation of the mode is performed iteratively with a Newton-Raphson algo-
rithm known as scoring algorithm or its variant, the Fisher scoring algorithm. For details on
this procedure see Rue et al. (2009).

For computing p(xi|θ,y), Rue et al. (2009) discuss three different alternatives. A straight-
forward strategy would be to use the Gaussian approximation p̃G(xi|θ,y), which is a compu-
tationally cheap way. As p̃G(x|θ,y) was already computed within the exploration of p̃(θ|y),
the only remaining task would be the additional computation of the marginal variances. The
drawback of the Gaussian approximation is that there can be errors in the location of the
posterior density and/or errors produced by a lack of skewness (Rue and Martino, 2007).

As a way to improve the Gaussian approximation, Rue et al. (2009) propose a Laplace ap-
proximation. As in most cases x has more elements than the hyperparameter vector θ, the
computation is more expensive. When rewriting x as x = (xi,x−i) and with the identity
p(x−i|xi,θ,y) · p(xi|θ,y) = p((xi,x−i)|θ,y) Laplace approximation yields

p(xi|θ,y) =
p((xi,x−i)|θ,y)

p(x−i|xi,θ,y)
=

p(xi,x−i,θ,y)/p(θ,y)

p(x−i|xi,θ,y)
(5.21)

∝ p(xi,x−i,θ,y)

p(x−i|xi,θ,y)
(5.22)

≈ p(xi,x−i,θ,y)

p̃GG(x−i|xi,θ,y)

∣∣∣
x−i=x∗−i(xi,θ)

(5.23)

=: p̃LA(xi|θ,y), (5.24)

where p̃GG(x−i|xi,θ,y) is the Gaussian approximation to x−i|xi,θ,y and x∗−i(xi,θ) de-
note the values of x−i at its mode. The Gaussian approximation p̃GG is different from
the conditional density corresponding to p̃G(x|θ,y). The Gaussian approximation p̃GG

in Equation (5.23) needs to be recomputed for each xi and θ, as the precision matrix of
x−i|xi,θ,y depends on xi and θ. This re-computation makes the above described approx-
imation p̃LA(xi|θ,y) very expensive. Therefore, modifications are necessary that make the
approximation computationally more feasible. For details on this see Rue et al. (2009).
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The third alternative discussed in Rue et al. (2009) is a simplified Laplace approximation
p̃SLA(xi|θ,y). It can be obtained via a Taylor series expansion of p̃LA(xi|θ,y) around xi =

µi(θ). This procedure corrects the Gaussian approximation p̃G(xi|θ,y) for location and
skewness resulting in sufficiently accurate approximation for many common observational
models. This procedure yields a high computational benefit. See Rue et al. (2009) for details
on the simplified Laplace approximation.

INLA starts exploring the marginal joint posterior for the hyperparameters, p̃(θ|y), to locate
its mode. Within a grid search, a set of J ’relevant’ points {θk} along with a corresponding
set of weights {∆k}, k = 1, . . . , J , is determined to approximate p̃(θ|y). The marginal
posteriors p̃(θj|y) can be computed by using interpolation based on the computed ’relevant’
values. Then for each θk the conditional posteriors p̃(xi|θk,y) of the latent Gaussian field
components are evaluated on a grid of selected xi values. By employing numerical integra-
tion, the marginal posteriors of the latent Gaussian field can be determined as

p̃(xi|y) ≈
J∑
k=1

p̃(xi|θk,y) p̃(θk|y) ∆k. (5.25)

For further details on the INLA procedure and its applications see Rue et al. (2009). They
also discuss the error rates of INLA and its performance in some simulated and real exam-
ples. A short introduction to the INLA as well as to the SPDE method (see Section 5.3)
within the R-INLA package together with examples of applications can be found in Blan-
giardo et al. (2013).

5.3 The SPDE approach

In Section 5.1 the concepts of continuous random fields (such as Gaussian fields) and of
finite-dimensional random fields admitting conditional independence properties (such as
Gaussian Markov random fields) were introduced.

In many applications a continuously indexed field is an appropriate model with an intuitive
interpretation of the resulting field. When the aim is, for example, to predict surface temper-
ature over Germany, it is of interest to issue predictions at any arbitrary location, including
locations where no observations are available.

While GFs are very popular in geostatistics (Cressie, 1993; Stein, 1999), have good ana-
lytic properties and a natural interpretation, as they are specified in terms of the mean and
covariance function, they are hampered with the ’big n problem’ for high dimensions n:
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The general cost of factorizing dense n × n (covariance) matrices is O(n3). As GFs are
parameterized in terms of (dense) covariance matrices, this results in high computational
costs. Especially in Bayesian hierarchical models, where often repeated computations are
necessary to perform simulation-based model fitting, this can be very slow.

In contrast, GMRFs have good computational properties, which is of high importance in
Bayesian inference. As they are parameterized in terms of a (sparse) precision matrix, they
allow for fast numerical algorithms as, for example, sparse matrix routines (Rue and Held,
2005). These advantages of GMRFs have been enhanced with the recent development of
INLA (Rue et al., 2009) (see the previous Section 5.2), as INLA allows for fast and accurate
Bayesian inference in latent Gaussian models.

Despite these good computational properties, current statistical models based on GMRFs are
relatively simple. The reason is that it is not straightforward to parameterize the precision
matrix of a GMRF to obtain the desired behavior in terms of marginal correlations and vari-
ances. This difficulty is due to the need of constructing a positive definite precision matrix to
obtain a positive definite covariance matrix as its inverse. It is not in general evident how this
global positive definiteness constraint influences the parametrization of the full conditionals.

Much research has been conducted in the direction of finding GMRF approximations for
common covariance functions in geostatistics and using these approximations instead of the
respective GFs. However, past approaches were restricted to relatively simple domains like
lattices or toruses and included time consuming computational steps themselves.

Nonetheless, the research so far leads to a general strategy tackling the computational prob-
lems of a GF:
Employ a GF on a set of locations {si} to set up the statistical model and construct a dis-
cretized version of this GF with covariance matrix Σ. Then find an appropriate GMRF
representation of this GF (with local neighbourhood and precision matrix Q) and perform
the computations for model fitting with the GMRF representation. This strategy is only
reasonable in case it is possible to compute this GMRF representation at any desired loca-
tion and in case the computation of the GRMF representation is fast enough that an overall
computational-speed up is achieved in comparison to treating the GF directly.

This leads to the question, when does such a GMRF representation exist and how can it be
obtained?

Lindgren et al. (2011) showed that for certain GFs with a Matérn covariance function on
Rd as defined in Equation (5.26), a direct GMRF representation is available. An explicit
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representation can be obtained via a certain stochastic partial differential equation (SPDE),
having GFs with Matérn covariance function as a solution when driven by Gaussian white
noise. The result can be formulated as a basis function representation with piecewise lin-
ear basis functions and Gaussian weights defined on a triangulation of the original domain,
inducing the specific Markovian dependence structure. A clear advantage of this approach
is that the covariance function is implicitly defined through the SPDE equation and needs
not be computed directly. Further, the GMRF representation can be constructed from the
basic SPDE equation in a straightforward way, without the need of going into the theory of
stochastic differential equations in general.

Surprisingly, the basic (stationary) SPDE approach can easily be extended to cover more
involved modelling problems. Lindgren et al. (2011) and Bolin and Lindgren (2011) discuss
extensions to Matérn fields on manifolds, to non-stationary fields, to fields with oscillating
or anisotropic covariance functions, and to non-separable space-time models. Even for these
complex models an explicit GMRF representation may still be available.

Because of its usefulness in model fitting and its direct connection to the INLA methodology,
the SPDE method was implemented within the R-INLA package, see www.r-inla.org
for references and tutorials on INLA as well as SPDE-INLA. Although some of the imple-
mentation is still in progress, many SPDE features are already directly usable within the
R-INLA package and can be combined with the standard INLA features. Examples for
applications of the SPDE-INLA methodology to environmental data that are related to the
approach presented in Chapter 5 can be found in Cameletti et al. (2013) and Blangiardo et al.
(2013).

In the following, basic facts about the SPDE approach presented in Lindgren et al. (2011)
are summarized.

Stationary SPDEs
Before introducing the SPDE equation connecting the parameters of a GF with Matérn co-
variance function to the parameters of the GMRF representation, the general definition of the
Matérn covariance function is recapitulated.

The Matérn covariance function is defined as (Matérn, 1986; Gelfand et al., 2010; Guttorp
and Gneiting, 2008)

C(s, s′) =
σ2
C

2ν−1 Γ(ν)
(κ||s− s′||)ν Kν(κ||s− s′||), (5.26)

where s, s′ ∈ Rd, || · || denotes the Euclidean norm, Kν is the modified Bessel function of
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the 2nd kind and order ν > 0, κ > 0 is a scaling parameter, and σ2
C = Γ(ν)

Γ(ν+d/2)(4π)d/2κ2ν
is

the marginal variance.

The parameter ν describes the smoothness of the underlying process in terms of mean-square
differentiability, in that the associated Gaussian sample paths are m-times differentiable if
and only if m < ν. In most applications ν is set to a fixed value, as its identification is dif-
ficult. The scaling parameter κ is related to the range parameter r describing the distance at
which X(s) and X(s′), the values of the underlying GF at s and s′, become nearly indepen-
dent. Lindgren et al. (2011) use the empirically derived relationship r =

√
8ν/κ throughout

their paper, which corresponds to correlations near 0.1 at distance r, for all ν.

As discussed in Section 5.1, the Matérn covariance family belongs to the class of isotropic
covariance functions, so according to (5.3), (5.26) can be written as

C(h) =
σ2
C

2ν−1 Γ(ν)
(κ||h||)ν Kν(κ||h||) = g(||h||), (5.27)

where g(t) =
σ2
C

2ν−1 Γ(ν)
(κt)ν Kν(κt) with g ∈ G∞, as noted in Section 5.1, as Matérn

covariance functions are valid for all dimensions d ≥ 1.

Lindgren et al. (2011) noted that a GFX(s) = {X(s), s ∈ D ⊆ Rd} with Matérn covariance
function (called Matérn field in the following) is a solution to the linear fractional SPDE

(κ2 −4)α/2X(s) = W (s), (5.28)

where s ∈ Rd, α = ν + d/2, κ > 0, ν > 0, 4 =
∑d

i=1
∂2

∂s2i
defines the Laplace operator,

and W is spatial white noise with unit variance. For all κ > 0 and ν > 0, the solution X(s)

of the SPDE is a Matérn field. Familiar special cases are for example κ = 1, ν = 1
2
, where

the resulting field has exponential covariance function, or the limiting solution ν → ∞,
κ = 1

2
√
ν
, leading to a squared exponential covariance function.

For the special limiting cases κ → 0 or ν → 0, the SPDE still has well-defined solutions.
However, they do not have covariance functions belonging to the Matérn family.

The parameter α in (5.28) is the power of the fractional differential operator. Its value influ-
ences the structure of the precision matrix Q of the GMRF approximation. The differential
operator can be defined through its spectral properties by using the Fourier transform defini-
tion of the fractional Laplace operator in Rd. Whittle (1954) and Whittle (1963) show that
the wave number spectrum of a stationary solution is given as

S(k) = (2π)−d (κ2 + ||k||2)−α, (5.29)
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where k ∈ Rd. A Matérn field has the continuous Markov property (Rue and Held, 2005), if
and only if and only if the spectrum of X(s) is proportional to the inverse of a non-negative
symmetric polynomial P (k): SX(k) ∝ P (k)−1 (Rozanov, 1977). In the case of the SPDE
(5.28), the Matérn field X(s) is Markov if α = ν + d/2 is an integer.

To obtain a discrete approximation to the SPDE solution, the spatial domain is discretized
into some kind of (regular or irregular) grid or lattice. Lindgren et al. (2011) investigate a
regular two-dimensional lattice as well as an irregular triangulation of the domain of interest.
For the regular lattice, the approximate solution to the SPDE can be obtained in a straight-
forward way, see Lindgren et al. (2011) for the details. However, a triangulation where the
size and the number of the triangles can be adapted to the situation at hand, is more flexible
and more appropriate in practical applications. Lindgren et al. (2011) derive explicit results
for triangulated domains on R2. However, their results are valid on Rd as well as on general
manifolds. They refer to these generalizations in the appendix.
The following overview is restricted to the results on R2, as this case is needed for the
application in this chapter. The triangulation is obtained by dividing R2 into a set of non-
intersecting triangles, where two triangles have at most one common edge or corner. The
three corners of a triangle are called vertices. A set of initial vertices (the locations of the ob-
servations) is used and further vertices are added to satisfy overall constraints. Those points
where triangle vertices meet are called nodes. The set of all nodes of the triangulation is
denoted by {1, . . . , n}. In the final triangulation, each node is surrounded by a set of trian-
gles having this node as a vertex. Lindgren et al. (2011) propose the use of the so called
Delaunay triangulation, which maximizes the minimum interior angle of each triangle. This
method makes transitions between large and small triangles smoother. For further details
and references see Lindgren et al. (2011).
After a Delaunay triangulation of the domain of interest is obtained, the stochastic weak so-
lution to the SPDE (5.28) is approximated in a discretized space spanned by a set of chosen
basis functions ψk. The stochastic weak solution can be obtained by requiring

{〈φj, (κ2 −4)α/2X〉, j = 1, . . . ,m} D
= {〈φj,W 〉, j = 1, . . . ,m} (5.30)

for any set of test functions {φj}. Here, X is the Matérn field and W spatial white noise as
in Equation (5.28), 〈f, g〉 =

∫
f(u)g(u) du, u ∈ R2, denotes the inner product of f and g,

and D refers to equality in distribution.

The approximation of the stochastic weak solution to the SPDE is constructed via a finite
element representation of the Matérn field. It is a weighted sum

Xn(s) :=
n∑
k=1

ψk(s)wk. (5.31)
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of basis functions ψk(s), k = 1, . . . , n, s ∈ R2, where the wk are Gaussian distributed
weights and n is the total number of nodes in the triangulation. Lindgren et al. (2011) choose
the basis functions ψk to be continuous piecewise linear with support on the triangles that are
attached to the node k. That is, ψk is a linear function from R2 to [0, 1] such that ψk(r) = 1

for r = k and ψk(r) = 0 for r 6= k, r, k = 1, . . . , n.

With this choice of the functions ψk, the weights wk determine the values of the field Xn(s)

at locations s ∈ R2 that correspond to the nodes k = 1, . . . , n in the triangulation, while
values in the interior of the triangles can be determined by linear interpolation. Therefore,
the distribution of the continuous field X(s), s ∈ R2, is already fully determined by the joint
distribution of the weights w = (w1, . . . , wn)′.

To obtain the approximate solution Xn it is required to determine the distribution of the
weights wk such that it fulfills the stochastic weak formulation (5.30) of the SPDE for a
specific set of test functions with m = n. The specific choice of the test functions in relation
to the basis functions influences the approximation properties of the resulting representation.
Lindgren et al. (2011) choose φk = (κ2 −4)1/2 ψk for α = 1 and φk = ψk for α = 2. The
solutions for α ≥ 3 are obtained recursively: For l = 3, 4, . . . , α, set α = l on the left-hand
side of Equation 5.28, replace the right-hand side with a field generated from the case l − 2

and choose φk = ψk. Details on this recursive approach can be found in the appendix of
Lindgren et al. (2011).

Lindgren et al. (2011) show that the vector of weights w = (w1, . . . , wn)′ is a GMRF with
mean zero and precision matrix Qw, which is a function of the Matérn covariance parameter
κ2. This establishes an explicit link between the parameters of the covariance function of the
Matérn field and the elements of the precision matrix Q = Qw of the GMRF representation.

The approximate solution Xn obtained in the above described way converges weakly to the
true solution X . Weak convergence of a bounded sequence Xn ∈ L2 is defined as:

E(〈f,Xn〉) → E(〈f,X〉),

Cov(〈f,Xn〉, 〈g,Xn〉) → Cov(〈f,X〉, 〈g,X〉),

for any f, g ∈ L2 (say: Xn
d(L2)→ X).

With this definition it can be shown that if X is the stochastic weak solution to the SPDE
(κ2 − 4)α/2X = W and Xn =

∑n
k=1 ψk wk the finite weak approximation (5.31) to X ,

81



CHAPTER 5. SPATIALLY ADAPTIVE EXTENSION OF EMOS

then:

Xn
d(L2)→ X,

(κ2 −4)α/2Xn
d(L2)→ (κ2 −4)α/2X.

See the appendix in Lindgren et al. (2011) for proofs.

Extension to nonstationary SPDEs
The above described approach is suitable for stationary models. However, the SPDE ap-
proach can easily be extended to handle non-stationary models with the advantage that a
GMRF approximation is still available in explicit form.

To introduce non-stationarity, the parameters in the SPDE (5.28) are allowed to depend on
the location s ∈ Rd. Instead of introducing a non-constant innovation variance in the spatial
white noise W (s), an additional scaling parameter τ is introduced and the non-stationary
SPDE can be written as

(κ(s)2 −4)α/2 (τ(s)X(s)) = W (s). (5.32)

As in the stationary version, s ∈ Rd, α = ν + d/2, κ > 0, ν > 0, 4 =
∑d

i=1
∂2

∂s2i
and

W is spatial white noise. By letting one or both of the SPDE parameters vary by location,
non-stationarity is achieved in the resulting model.

A special case that is very useful is when the SPDE parameters vary slowly with s, as in a
low-dimensional log-linear representation like

log(κ2(s)) =
∑
i

β
(κ2)
i B

(κ2)
i (s), (5.33)

log(τ(s)) =
∑
i

β
(τ)
i B

(τ)
i (s), (5.34)

with basis functions {B(·)
i (·)} that are smooth over the domain of interest. This approach

preserves the local interpretation of the SPDE (5.32) as a Matérn field, while the actual form
of the non-stationarity covariance function might be unknown.

Further extensions of the SPDE model
Apart from the extension to non-stationarity, Lindgren et al. (2011) introduce five further
extensions of the basic SPDE method. In the following, these approaches are mentioned
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briefly. Bolin and Lindgren (2011) additionally introduce a more general way of construct-
ing the SPDE to obtain many of the extensions described in Lindgren et al. (2011). The
development of these more complex SPDE variants is currently a very active line of research.

The first extension is to consider solutions to the SPDE on manifolds. Here, the main interest
are Matérn fields on spheres, as this is particularly useful for the analysis of global spatial
and spatio-temporal data. A second extension is employing a complex-valued version of
the basic SPDE (5.28), resulting in oscillating covariance functions. In the complex version
two independent white noise processes and an oscillation parameter ϑ are introduced. With
increasing ϑ, oscillations are increasing. In the special case of ϑ = 0, the regular Matérn
covariance function is recovered. A third extension is achieved by allowing a non-isotropic
Laplace operator and adding a directional derivative term. This results in an anisotropic
SPDE model. It is a generalization of the non-stationary SPDE model described above,
which locally behaves isotropic, while globally behaving non-stationarily. The last extension
presented by Lindgren et al. (2011) is a non-separable space-time SPDE model. While the
construction of non-separable covariance functions is difficult, a non-separable SPDE model
can be obtained easily using locally specified parameters. A simple but useful example is
the transport-diffusion equation. Allowing the parameters of this equation to vary with space
and/or time yields a large class of interesting models.

5.4 Markovian EMOS (MEMOS)

This section introduces a spatially adaptive extension of the standard univariate EMOS post-
processing method described in 2.1.1. The aim of this extension is to improve the predictive
performance of EMOS by incorporating spatial dependence structures. The proposed exten-
sion is called Markovian EMOS due to the Markovian dependence structure present in the
model.

The current version of MEMOS is developed for temperature, which can be assumed to have
a normal distribution. In its current form however, it can be employed for the postprocessing
of other weather quantities with a normal distribution as well. As the MEMOS model uti-
lizes the SPDE and the INLA methodology and both methods are not restricted to normally
distributed responses, it is in general possible to extend the idea of MEMOS to weather
quantities with other than a normal distribution. However, as the basic EMOS method itself
is designed for a normally distributed weather quantity and only a few extensions exist, it
might be necessary either to develop an EMOS version suitable for the desired distribution
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or to choose another univariate postprocessing method and develop an extension similar to
the one described below.

In the following, the MEMOS method designed for the weather quantity surface temperature
is described. Possible modifications are mentioned in the discussion.

Let {Y (s), s ∈ D ⊆ R2} be a spatial process representing surface temperature in a domain
D ⊆ R2 for a fixed date t, where t = 1, . . . , T . As the current model is not considering
temporal dependence structures, the time index t is omitted in the notation below. In this
analysis, the domain D corresponds to the spatial region of Germany, defined in terms of the
respective longitude and latitude values covering that region. In the following, a finite set of
spatial indices s = s1, . . . , sN is employed for model estimation, representing the locations
of the observation stations in Germany. For convenience, the random variables Y (s) at
the locations s = s1, . . . , sN are denoted by Y1, . . . , YN and the respective realizations by
y1, . . . , yN . In analogy, the random variables ε(s) at s = s1, . . . , sN introduced in (5.35) are
denoted by ε1, . . . , εN .

The general form of the proposed extension has a similar appearance as the basic regression
equation of the standard EMOS model (2.1):

Ys = γ + as + b1,s x1,s + . . .+ bm,s xm,s + εs, (5.35)

εs ∼ N(0, σ2), (5.36)

with s = 1, . . . , N . Here, x1,s, . . . , xm,s denote the m raw ensemble members at location
s, Ys is the random variable representing surface temperature at location s as introduced
above, γ an overall fixed effect intercept parameter, and εs a normal variable representing
measurement error at location s. Furthermore, εs is assumed to have variance σ2, and εs is
independent of εs′ for s 6= s′. Moreover, as and b1,s, . . . , bm,s are the additive and multiplica-
tive bias-correction parameters of the postprocessing model.

The special feature about this proposed extension is that as and b1,s, . . . , bm,s are no fixed-
effects parameters as in (2.1), but assumed to be realizations of latent GFs a(s), b1(s), . . .,
bm(s) with Matérn covariance function as defined in (5.26). The proposed method aims at
utilizing the SPDE approach described in Section 5.3, meaning that GMRF representations
an(s), bn,1(s), . . . ,bn,m(s) will be obtained via the approximation of the stationary solution
to the SPDE (5.28). Due to the Markovian structure induced by the GMRF representations of
the GFs, the EMOS extension is called Markovian EMOS, in short MEMOS. For the basic
MEMOS method developed and applied in this work, the simplest stationary form of the
SPDE (5.28) is employed. However, research to modify MEMOS by utilizing the extended
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SPDE versions discussed in Lindgren et al. (2011) is planned and will be referred to in the
discussion.

The model (5.35) is designed for a non-exchangeable forecast ensemble (as e.g. the UWME
ensemble discussed in Section 4). In the case study conducted in the following sections, how-
ever, the exchangeable ECMWF ensemble is employed. As already mentioned in Section
2.1.1, in case of an exchangeable ensemble, the multiplicative bias-correction parameters
can be chosen as b1,s = . . . = bm,s = bs for all s and the model (5.35) reduces to

Ys = γ + as + bs x̄s + εs, (5.37)

εs ∼ N(0, σ2), (5.38)

where all parameters have the same meaning as in (5.35), while x̄s = 1
m

∑m
k=1 xks rep-

resents the mean over all m ensemble members xks, k = 1, . . . ,m at location s, and again
as and bs are realizations of latent GFs a(s) and b(s), for which GMRF representations are
constructed via the stationary SPDE equation (5.28).

In the current MEMOS version, the Gaussian error process ε = (ε1, . . . , εN)′ is spatially
unstructured, so that

ε = (ε1, . . . , εN)′ ∼ NN(0, σ2 IN),

with a spatially constant variance term σ2, introduced in Equation (5.35), on the diagonal.
Here, NN(0, σ2 IN) denotes the N -dimensional normal distribution with mean vector zero
and covariance matrix equal to σ2 IN , where IN is the identity matrix of dimension N . In
contrast to this, the standard EMOS model (2.3) includes the (spatially varying) ensemble
spread in the variance term for the error process. Employing the non-stationary SPDE model
(5.32) results in spatially varying SPDE parameters that correspond to a non-stationary pre-
cision matrix of the GMRF representation of the fields a(s) and b(s) assumed for the bias-
correction parameters in the MEMOS model. However, this model still lacks a spatially
varying variance in the error process ε in a similar way to the EMOS model. To achieve a
more complex version of MEMOS with a variance term similar to the EMOS model (2.3),
some of the other SPDE extensions need to be considered in future research.

As the SPDE approach as well as the INLA procedure are utilized to fit the MEMOS model,
a slight reformulation of the model (5.37) is presented that directly corresponds to the model
specification within INLA. The model (5.37) can equivalently be written as

Ys = ηs + εs, (5.39)

where ηs denotes the linear predictor utilized to formulate a latent Gaussian model within
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the INLA framework as described in (5.9). For model (5.37), ηs is defined as

ηs = γ + as + bs x̄s. (5.40)

Then it follows directly from (5.39), (5.38), and from the INLA theory outlined in Section
5.2 that Ys given ηs, σ2, and the (deterministic) m ensemble forecasts at location s has the
normal distribution

Ys|ηs, σ2, x1,s, . . . , xm,s ∼ N(ηs, σ
2), (5.41)

where ηs is part of the vector x of all model parameters, and σ2 is the variance of the error
term εs introduced in (5.37), which is part of the hyperparameter vector θ2 associated with
the response variables Ys. The hyperparameter vectors θ1 and θ2 will be introduced below.

According to the theory presented in Rue et al. (2009) and briefly summarized in Section 5.2,
the vector x contains all model parameters present in the linear predictor (5.9), including the
linear predictor components themselves. The vector of hyperparameters θ1 associated with
x contains additional parameters that are required to define the prior distribution of x. For
the linear predictor (5.40) of the MEMOS model the vector x is defined as

x = (γ, f = (f1(s), f2(s)),η) = (γ, a,b,η). (5.42)

Here, the components γ, η, a and b of x are defined in analogy to Section 5.2. For the linear
predictor (5.40) of the MEMOS model defined in Equations (5.37), the sub-components of x

are η = (ηs, s = s1, . . . , sN), a = (as, s = s1, . . . , sN), and b = (bs, s = s1, . . . , sN). The
parameter γ is a scalar component not depending on the locations s1, . . . , sN . The associated
vector of hyperparameters is

θ1 = (κa, κb, σ
2
C,a, σ

2
C,b). (5.43)

This vector contains the parameters that are required to define the prior distributions of the
sub-components a and b of x, the other components of x are not contributing additional
parameters. More precisely, κa and σ2

C,a are the parameters of the Matérn covariance function
(5.26) of the GF a(s), and κb and σ2

C,b are the Matérn covariance function (5.26) parameters
of the GF a(s). In Equations (5.47) and (5.48) introduced later, the hyperparameters of the
GFs a(s) and b(s) are collected within sub-vectors θa = (κa, σ

2
C,a) and θb = (κb, σ

2
C,b),

respectively.

Besides the hyperparameter vector θ1 associated with x, Rue et al. (2009) define a second
hyperparameter vector θ2 containing all additional parameters required to define the con-
ditional distribution of the response variables Ys that are not already part of θ1. From the
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definition of the MEMOS model in Equations (5.37) and (5.39) it follows that the only addi-
tional parameter required to specify the conditional distribution of the Ys that is not part of
θ1 is the variance σ2 of the error term εs introduced in Equation (5.37) and (5.38). Therefore,
it follows that θ2 = σ2.

According to Equation (5.11) and Rue et al. (2009) the full vector of hyperparameters θ for
the MEMOS model is then given as

θ = (θ1,θ2) = (κa, κb, σ
2
C,a, σ

2
C,b, σ

2). (5.44)

In the general INLA framework, the mean µ of the distribution of Y|x,θ2 is linked to the
linear predictor through a link function g(·) via g(µi) = ηi, i ∈ I. As the conditional
distribution Ys|ηs, σ2 is Gaussian in the MEMOS model, the link function g is the identity
mapping, hence µs = ηs. Further, in the Gaussian case the INLA calculations are exact (the
only approximation is performed when computing p̃(θ|y) as explained in Equation (5.18)).

The ηs are components of the parameter vector x defined in (5.42) and σ2 is part of the
hyperparameter vector θ defined in (5.44). Both, x and θ are assumed to be random vectors
that are assigned a prior distribution in the INLA framework. INLA then approximates
the posterior distribution of each component of θ and utilizes the results to approximate
the posterior distribution of each component of x, see Section 5.2 for details on the INLA
procedure. In practise it is therefore necessary to first obtain samples from the marginal
posteriors of ηs and σ2 to be able to generate a sample from the conditional distribution
(5.41). When having estimated the MEMOS model for day t from previous training data,
the SPDE-INLA output provides approximations of the posterior predictive margins of ηs,
σ2 and the other components of x and θ at all locations s that are present on prediction
day t. By default, the output further provides summary statistics (posterior mean, posterior
standard deviation, and the posterior 0.25-, 0.5- and 0.75-quantiles) for each approximated
predictive posterior margin.

To generate samples from an unconditional version of (5.41), the first step is to obtain the
desired number of samples ηs,i, i = 1 . . . ,N.sample, from the posterior predictive marginal
of ηs for every location s present on the currently considered prediction day t. In a sec-
ond step, the posterior mean µ̂σ2 of the posterior predictive marginal for σ2 for the current
prediction day t is extracted from the INLA output. As σ2 was assumed to be constant
over s, its posterior predictive marginals (and therefore its posterior mean values) are iden-
tical at all locations s. This posterior mean value is then used to obtain a sample of size
N.sample from a N(0, µ̂σ2) distribution. This sample from this distribution is denoted by
Zi, i = 1, . . . ,N.sample. The last step then sets Ys,i = ηs,i + Zi. For the univariate case
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study conducted in Sections 5.9.1 and 5.9.2, N.sample = 5, 000 samples were obtained sep-
arately for each location s present on the current prediction day t. Algorithm 5.1 presents
pseudo-code that sums up the procedure of sampling from an approximation to the MEMOS
predictive distribution.

The above defined MEMOS model lacks the parameter vector β present in the general defini-
tion of η in (5.9), meaning covariates with fixed-effects parameters are not included, except
for the overall intercept γ. Besides the intercept, two spatially structured effects defined
through functions fl are included, as = f1(s) and bs = f2(s). As already mentioned, the
structured effects as and bs are assumed to be realizations of GFs a(s) and b(s), for which
GMRF representations an(s) and bn(s) are obtained via the SPDE equation (5.28) by setting
up a basis function representation (5.31) defined on a triangulation with n nodes:

an(s) =
n∑
k=1

ψk(s) ãk, (5.45)

bn(s) =
n∑
k=1

ψk(s) b̃k. (5.46)

Here, the ψk are piecewise linear basis functions, while ãk and b̃k both are zero mean Gaus-
sian distributed weights, as described in Section 5.3. According to the theory of Lindgren
et al. (2011) presented in Section 5.3, the weights ã = (ã1, . . . , ãn)′ and b̃ = (b̃1, . . . , b̃n)′

are Gaussian with mean zero:

ã = (ã1, . . . , ãn)′ ∼ N(0,Q−1(θa)) (5.47)

b̃ = (b̃1, . . . , b̃n)′ ∼ N(0,Q−1(θb)), (5.48)

where n is the total number of nodes in the triangulation that was used to approximate the
solution to the SPDE, and Q(θa) and Q(θb) are the precision matrices of the Gaussian
distributions of ã and b̃. Each precision matrix depends on a set of hyperparameters θa =

(κa, σ
2
C,a) and θb = (κb, σ

2
C,b), linking the GMRF representations (5.45) and (5.46) to the

GFs a and b via the elements of θa and θb, which are the parameters of the respective
Matérn covariance functions (5.26). The two vectors θa and θb are also part of the overall
hyperparameter vector θ of the MEMOS model defined in (5.44).

Despite utilizing finite element versions an(s) in (5.45) and bn(s) in (5.46), the SPDE ap-
proach provides a full representation of the processes a(s) and b(s) varying continuously
over the considered domain D, at any desired location s, not only at those locations corre-
sponding to the nodes s = 1, . . . , n used to approximate the SPDE solution. The precision
matrices Qa and Qb of the Gaussian distributed weights ã and b̃ are obtained from the ap-
proximate solution to the SPDE (5.28) at the nodes k = 1, . . . , n of the triangulation that

88



5.4. MARKOVIAN EMOS (MEMOS)

is employed. With these precision matrices the distributions of the two Gaussian weights
vectors are fully determined. Due to the properties of the basis function representations
(5.45) and (5.46), the precision matrices of the Gaussian weights vectors are identical to the
precision matrices of the GMRF representations an(s) and bn(s).

To utilize the SPDE model, the parameter α in the SPDE equation (5.28) needs to be chosen
to run the SPDE-INLA procedure. As mentioned in Section 5.3, α needs to be an integer
to obtain a GMRF representation of a GF with Matérn covariance (5.26). In the current
version of the R-INLA package, the values α = 1 and α = 2 are available. Preliminary
case studies for different types of meshes revealed that a MEMOS model with α = 1 yields
better predictive performance than α = 2. As α = 2 corresponds to a smoother spatial
field than α = 1, it seems that a field with a too smooth spatial structure is not appropriate
for the temperature data in Germany analyzed here. Therefore all subsequent analyzes are
performed with α = 1.

The variance parameter σ2 that is a component of the hyperparameter vector (5.44) is rep-
resenting the variance of the conditional distribution of the response variables, Ys|ηs, σ2, in
Equation (5.41). Within the R-INLA framework this parameter is internally parameterized
as σ2 = 1

qτ
, where q > 0 is a fixed scaling factor, that can be specified by the user and τ is

the precision parameter of the conditional distribution of Ys|ηs, σ2 in (5.41). R-INLA inter-
nally approximates the posterior marginal for the hyperparameter τ instead of the one for σ2.
However, R-INLA provides a way to transform the approximated posterior marginal for τ
into a marginal for σ2 with the call inla.tmarginal(). The default value for the scaling
is q = 1, which implies a nonspecific scaling constant over all data points. It is possible to
choose any other value of q that is constant over all data points as well as a non-constant
scaling by specifying q as a vector of values for each observation case handed over to the
INLA procedure.

The MEMOS model (5.41) employed here was chosen to have a constant scaling q = 1,
resulting in a spatially constant variance σ2. Choosing q to be a vector equal to the ensemble
variance S2 or the ensemble standard deviation S at each date-station pair present in the
observations would result in a similar variance approach like in the EMOS model (2.3), only
without an additive variance parameter c as in (2.3). The absence of an additive parameter
in the variance term can lead to a very large value of 1

qτ
in case q is small, while 1

qτ
gets

very small in case q is large. Thus, when choosing q = S2 or q = S the variance σ2 can get
very extreme when the ensemble spread or variance takes too large or too small values. This
might result in a predictive distribution that lacks calibration and sharpness, as the spread
of the predictive distribution increases too much. A small empirical case study showed that
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q = 1 yields better predictive performance than q = S or q = S2 in the MEMOS model
(5.41). To obtain a MEMOS variant with a variance approach as in (2.3), other features
of the SPDE-INLA approach need to be investigated. This could be the subject of further
research.

For a final overview, the pseudo code in Algorithm 5.1 sums up the procedure of estimating
the MEMOS model and generating samples from an approximation to the MEMOS predic-
tive distribution (5.41).

Algorithm 5.1 Procedure to obtain samples from the predictive MEMOS distribution
for t in 1:T do

Set up the training data consisting of the n.train days prior to prediction day t

Construct mesh from merged training-prediction data and set up SPDE object

for s in (s1, . . . , sN) do
Approximate posterior predictive marginals of the hyperparameter-vector,
namely σ2, κa, κb, σ

2
C,a, σ

2
C,b

and of the components of the latent field x, namely γ, as, bs, ηs
for location s and prediction day t with R-SPDE-INLA
by utilizing current training data prior to day t

Extract posterior predictive mean µ̂σ2 of posterior marginal for hyperparameter
component σ2 for prediction day t, where µ̂σ2 is constant over all locations s

for i in 1:N.sample do
sample ηs,i from the posterior predictive marginal of ηs
for location s and prediction day t
sample Zi ∼ N(0, µ̂σ2)

put Ys,i ← ηs,i + Zi

end for
end for

end for
return (Yt,s,1, . . . , Yt,s,N.sample), t = 1, . . . , T, s = s1, . . . , sN

5.5 Multivariate dependence structures

The INLA-procedure itself only provides approximations for the posterior distributions of all
marginal components of the parameter vector x. An approximation of the joint posterior dis-
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tribution of the complete x vector or of a sub-vector like for example the full linear predictor
vector η would be computationally expensive and is therefore not performed directly.

In case of the MEMOS postprocessing model, the marginal posterior distributions of the
linear predictor components ηs are the posterior predictive MEMOS postprocessed distribu-
tions for temperature at location s (on a fixed day t) whose predictive performances are to
be assessed with verification methods. Therefore the x components ηs are of main inter-
est here. Approximations of the posterior predictive distributions along with their posterior
mean, standard deviation and a set of quantiles are automatically provided within the INLA-
procedure for each component ηs (as well as for all other marginal components of x), namely
at the observation locations s = s1, . . . , sN . These posterior approximations can directly be
assessed with univariate verification methods.

As the MEMOS model indirectly incorporates spatial dependencies through the SPDE mod-
els placed on the bias-correction parameters and therefore is not a univariate postprocessing
model in the classical sense, it is of interest to assess the predictive quality of a multivariate
predictive MEMOS distribution with multivariate verification methods.

The following paragraphs describe different ways of supplying the basic MEMOS method
with a multivariate dependence structure in a multi-stage procedure. To compare the predic-
tive performance of the combined MEMOS versions with the performance of other postpro-
cessing methods, the other postprocessing methods in question are supplied with the depen-
dence structures as well.

For MEMOS as well as for other univariate postprocessing methods, the multi-stage proce-
dure works as follows:

1. Perform univariate postprocessing of the raw ensemble with the desired postprocessing
model separately for each location s = s1, . . . , sN .

2. Combine the N spatial margins within the chosen dependence structure and sample
from the resulting multivariate distribution.

The samples obtained from these different multivariate predictive distributions are assessed
with multivariate verification methods.

Independence
The first and most basic type of dependence structure is the Independence structure. Pro-
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viding a univariate postprocessing method with the Independence structure results in a mul-
tivariate predictive distribution with independent margins. For each combined multivariate
postprocessing distribution, the margins are equal to the marginal predictive distributions
obtained with the respective univariate postprocessing method.

For the raw ensemble, a sample from the multivariate raw ensemble Independence distribu-
tion is obtained by randomly permuting the univariate m ensemble members at each consid-
ered observation location s and each fixed day t separately.

For providing one of the univariate postprocessing methods as e.g. EMOS or MEMOS with
the Independence structure, one simply obtains a large number of random samples indepen-
dently from each marginal postprocessed distribution.

Ensemble Copula Coupling (ECC)
Here, the univariate postprocessing methods are combined within the ensemble copula cou-
pling (ECC) procedure, which recovers the multivariate dependence structure present in the
original raw ensemble forecast. The ECC method is a multi-stage procedure as well, where
in a first step the margins are postprocessed individually with a method of choice. Then a
sample of the size m of the original ensemble is drawn from each predictive distribution.
This sample is reordered according to the rank order structure of the raw ensemble. See
Section 2.1.6 for details.

For the raw unpostprocessed ensemble, raw ensemble ECC is simply the raw ensemble itself,
as it already possesses the rank structure employed for the reordering.

In case of applying the ECC procedure to the margins of a postprocessing method such as
EMOS or MEMOS, the regular ECC steps can be performed:

1. Postprocess the margins individually with the method of choice.

2. Obtain a sample of size m, the size of the original ensemble, from each postprocessed
margin by applying the ECC-Q sampling strategy described in Equation (2.23) in Sec-
tion 2.1.6.

3. Reorder the samples from each margin according to the rank structure of the corre-
sponding raw ensemble forecasts.

4. The result is a multivariate ECC ensemble of the size m of the original ensemble.
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5.6 Data

The data used for the analysis contains observations and forecasts for surface (2-m) tempera-
ture in Germany. The time period considered ranges from February 2010 to April 2011. The
observation data was provided by the German Weather Service (DWD). For the case study,
observations that were initialized at 00 UTC are employed, which corresponds to 1am local
time in Germany, and to 2am local time during the daylight saving period. For temperature
observations there are 518 stations available during the considered time period.

The forecast ensemble is provided by the European Centre for Medium-Range Weather Fore-
casts (ECMWF, Molteni et al. (1996); Palmer et al. (1997); Buizza (2006)). The ensemble
comprises of one control forecast (not used here) and 50 (exchangeable) members. The fore-
casts are initialized at 00 UTC for different forecast horizons in 3 hour steps up to 144 hours.
In the conducted case study the 24-h ahead ECMWF forecasts are utilized. The original
ECMWF forecasts have been issued on a grid over Germany, at 31 km resolution. To use
them in combination with the observations, bilinear interpolation of the forecasts from the
four surrounding grid points to the station locations of interest is performed.

Panel (a) of Figure 5.1 shows the observation stations in Germany available for temperature,
where stations that are considered as examples in the case study are marked in red. Details
on the different case studies with the selected stations can be found in Sections 5.9.2, 5.9.3
and 5.9.4. The considered stations are the four North Sea Island stations Borkum, Norderney,
Sylt, and Helgoland, Frankfurt and Baden-Baden in the South of Germany, eleven stations
along the North Sea coastline, and finally three stations in the very east of Germany, Berts-
dorf, Görlitz, and Bad Muskau. Panel (b) shows an example of a triangulation (also called
mesh), namely the mesh that was constructed to estimate the MEMOS model from training
data prior to October 3, 2010, which was then used to issue predictions on October 3, 2010.
This specific day is considered later on in the case study as example for samples from differ-
ent versions of the MEMOS method. Panel (c) shows the same mesh with additional orange
points at the locations of the observation stations present on October 3, 2010. The mesh can
be constructed automatically with the functions

inla.mesh.create(loc=, ...)

or

inla.mesh.create.helper(points=, ...)

within the R-SPDE-INLA package. To obtain a mesh with these functions, a matrix with
the coordinates of the observation locations needs to be specified along with additional pa-
rameters controlling the appearance of the mesh, like for example the length of the triangle
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edges or the size of the interior angles, which are controlled by the argument refine. The
mesh in Figure 5.1 (b) was created by the call

inla.mesh.create(loc=locations, cutoff=0,

refine=list(max.edge=5, min.angle=0.1)),

where the locations specified for loc are all observation locations present in the com-
bined data set containing the training data and the data for the prediction day October 3,
2010. In Figure 5.1 (b), the training data that was used consists of the recent 25 days
prior to October 3, 2010, namely all dates from September 8, 2010 to October 2, 2010.
This means the combined training-prediction data set employed to construct the mesh con-
sists of all dates from September 8, 2010 to October 3, 2010 and the observation locations
present in this data set are the initial vertices in the triangulation algorithm performed by
inla.mesh.create(). The cutoff value chosen to create the mesh implies that no
locations that are close together will be merged to a single location. The refine argument
gives additional constraints on the maximum edge length and the minimum interior angle in
each triangle. For further details on the mesh parameters and their effect on the appearance
of the mesh see Section 5.7.
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(b) MEMOS mesh on October 3,
2010 with 536 vertices and 1046
triangles
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(c) MEMOS mesh on October 3,
2010 along with the station loca-
tions on that day

Figure 5.1: Available station locations for temperature, where the stations considered in the
case study are displayed in red (a), along with the mesh used for MEMOS on October 3,
2010 constructed by R-SPDE-INLA (b), and the same mesh together with the locations of
the observation stations on that day (c)

The density of the stations varies over Germany. In regions with more cities and high indus-
trial development such as, for example, the Rhine-Neckar region, the Rhine-Ruhr region and
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big cities like Berlin or Munich, there are more observation stations than in the rural areas of
north Germany. In addition to this there are a few stations outside of Germany and several
offshore stations on the islands in the German North Sea and Baltic Sea. The flexibility of
the triangulation approach is useful, as it is possible to construct triangles of different size,
adapting locally to the density of observation locations. The mesh in Figure 5.1 (b) consti-
tutes a middle course between large and small triangles, where the total number of vertices
(536 vertices) is close to the number of observation stations (508 stations). Panel (c) shows
that most of the vertices in the mesh correspond to real station locations. Only a few loca-
tions are not lying on a triangle vertex. However, in addition to those vertices overlapping
with actual observation locations, there are several vertices with no observation locations
close by. These vertices are mainly outside of Germany. So a triangulation with larger trian-
gles outside of Germany and smaller triangles in the interior is reasonable for constructing
the approximate solution of the SPDE (5.28), which rules the dependence structure of the
GMRF representation.

5.7 Mesh configuration

To get smoother transitions between regions with a dense network of station locations and
regions with only a few observation stations, control parameters in the mesh functions can
be set. Depending on the specific choice of these mesh parameters, the desired mesh config-
uration can be created.

There are two main parameters influencing the mesh configuration. The cutoff value
specifies the minimum distance between two points. Points that are closer to each other than
the value chosen for cutoff are merged to a single location in the mesh construction. The
refine parameter specifies whether the mesh construction should be refined by setting it
either to TRUE or FALSE. Alternatively, the refine argument allows to specify constraints
for the refinement, like the maximum length of the edges and the minimum interior angle of
the triangles. By choosing different values for these two parameters different mesh types can
be obtained: Meshes with very small or very large triangles, meshes with smooth transitions
between the triangle sizes, or meshes with an abrupt change of the triangle sizes. A small
empirical case study showed that the mesh configuration has a large influence on the predic-
tive quality of the estimated MEMOS model. Figure 5.2 shows examples of four different
mesh configurations obtained by choosing different values for cutoff and refine for the
station locations in Germany. All four meshes in Figure 5.2 were obtained by specifying the
argument loc in inla.mesh.create() as the 518 distinct observation locations of the
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full data set containing the dates from February 2010 to April 2011.
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Figure 5.2: Mesh configurations with different parameters

The mesh in the top left panel of Figure 5.2 has a high cutoff value and allows for short
edges only, resulting in a high number of small triangles. The call to obtain this mesh is

inla.mesh.create(loc=locations, cutoff=0.8,

refine=list(max.edge=0.4)).

The mesh in the top right panel has a high cutoff value as well, but no constraints on the
edge length. Therefore the mesh has less and larger triangles. While the transition between
the triangle sizes is very smooth in the top left mesh, it is less smooth in the top right mesh.
Here the triangles covering the borders of Germany are larger than in the interior. However,
the transition is still smoother than in the bottom right mesh. This mesh is obtained via the
call

inla.mesh.create(loc=locations, cutoff=0.5, refine=TRUE).

The bottom left mesh has a small cutoff value, yet the constraint on the edge length is not
as tough as in the top left mesh. This results in somewhat larger triangles than in the top left
mesh, while the transition between the triangle sizes in the top left mesh is still quite smooth.
This mesh is produced via the call

inla.mesh.create(loc=locations, cutoff=0.3,

refine=list(max.edge=0.9)).
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The bottom right mesh has a cutoff value of zero and very soft constraints on the edge
length. This choice of parameters results in a crude triangulation with a very rough transition
between large and smaller triangles. The call for this mesh is

inla.mesh.create(loc=locations, cutoff=0,

refine=list(max.edge=5, min.angle=0.1)).

It should be noted, that the arguments in this call are the same as for the mesh in Figure 5.1.
The only difference is that the mesh in Figure 5.1 is constructed from the locations present in
the combined data set containing the 25 training days September 8, 2010 to October 2, 2010
as well as the data for the prediction day October 3, 2010, as already described in Section
5.6. In contrast, the meshes in Figure 5.2 are constructed from the observation locations
present in the complete data set containing dates from February 2010 to April 2011.

From the empirical inspection of different mesh types, a rule of thumb for the application
within the MEMOS model was derived.
A mesh where the triangles and vertices reflect the structure of the observation stations yields
better predictive performance. Where the density of stations is higher, small triangles should
be employed, and in regions with very low density only a few and large triangles should be
placed. Using an overall smooth triangulation with small triangles everywhere, regardless of
the real density of stations, yields a deterioration of the predictive performance. A further
experience is that the model yields better predictive performance when the number of vertices
resembles the number of observation stations. The predictive performance deteriorates when
the number of vertices becomes much larger than the number of observations available, such
as in the top left panel of Figure 5.2. A mesh reflecting the structure of the observation
stations, such as the one in the bottom right panel of Figure 5.2, yields the best results
concerning predictive quality. A possible explanation is that the vertices of the mesh are
the discrete points where the SPDE solution is approximated. If there are more locations
where an approximation is computed than observations, this might have a negative effect on
the quality of results. Especially in the case of a too large number of vertices not having
any observations in their vicinity, the accuracy of the approximated SPDE solution at those
vertices might deteriorate.

5.8 Training period

When choosing an appropriate training period for estimating the model parameters there is
a trade-off. A short training period can adapt quickly to seasonally varying model biases,
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changes in the performance of the ensemble member models, and changes in environmental
conditions. On the other hand, longer training periods provide more data for the estimation
procedure and reduce the statistical variability in the estimation of the parameters.

In the postprocessing literature, a common practise is to use rolling training periods between
20 and 40 days. A rolling training period of length T consists of the most recent T days
for which data is available. Therefore, it can consist of more than T calender days. To
investigate the best length of a rolling training period for the MEMOS method, the predictive
performance of MEMOS for 15, 20, 25, 30, 35, 40, 45, and 50 training days is investigated
in terms of the CRPS, the MAE, and the RMSE, see Section 2.2. These training lengthes
consist of the most recent 15, 20, 25, 30, 35, 40, or 50 days prior to the day on which
a prediction is issued with the respective estimated postprocessing model. As the CRPS
assesses sharpness and calibration simultaneously and is measured in the same unit as the
observations, it is a reasonable choice to judge the performance of MEMOS for different
training periods. However, the MAE and RMSE are additionally considered as a function of
the length of the training period.

The scores for each training length were computed for the same prediction days, for a fair
comparison. Therefore, the prediction days available for the longest period of 50 days are
considered as prediction days in all training length settings. This approach ensures that the
scores are based on the same dates for each training length. The set of test days therefore
contains March 24, 2010 to April 30, 2011.

As the optimal length of training period for local EMOS, which is a natural benchmark for
the MEMOS method, is not necessarily the same as for MEMOS, MEMOS might be favored
when judging on the basis of the best training length for MEMOS. To have a fair comparison,
the optimal training length for local EMOS is additionally investigated, for the same training
lengths of 15, 20, 25, 30, 35, 40, 45, and 50 days as described above.

Figure 5.3 shows the CRPS, MAE, and RMSE values of local EMOS and MEMOS for all
tested training periods.
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Figure 5.3: CRPS, MAE and RMSE for local EMOS and MEMOS plotted against length of
training period

This analysis implies that the best training length for MEMOS is 25 days, as all scores have
their minimum in that value. On the other hand, the different scores do not suggest a unique
optimal value for local EMOS. A length of 30 days is suggested when considering MAE and
RMSE, while the minimum CRPS value is attained for 45 days. Despite slightly different
results concerning the optimal training length of both methods, Figure 5.3 reveals that the
values of the three considered scores for MEMOS are always smaller than the values of local
EMOS, for each of the considered training lengths.

In conclusion, a training length of 25 days is employed for all postprocessing methods ana-
lyzed in the case study.

5.9 Results

5.9.1 Aggregated univariate results

The first objective of the case study is to assess the predictive quality of the basic MEMOS
method described in Section 5.4 in comparison to standard univariate postprocessing meth-
ods. This section presents results of the univariate methods aggregated over all available
stations in Germany. As the considered postprocessing methods (including MEMOS) issue
predictions for days after the last day of the rolling training period, the presented results are
out-of-sample regarding time. However, as the predictive distributions include the predic-
tion at all stations that were present in the training data as well, the results are in-sample

99



CHAPTER 5. SPATIALLY ADAPTIVE EXTENSION OF EMOS

concerning the spatial component.

The complete data employed for the case study consists of February 2, 2010 to April 30,
2011, which are 453 days in total. As already mentioned in Section 5.8, where training
period lengthes from 15 up to 50 days were assessed, the prediction days finally considered
for verification are only those available for the longest training period of 50 days. These
days comprise of all dates from March 24, 2010 on. Therefore only the days from March
24, 2010 to April 30, 2011 were considered for prediction in the subsequent analysis. This
is a total of 403 days. Section 5.8 suggested 25 days as the optimal length of training period.
The total number of distinct stations present in this data set is 518.

The univariate methods compared in the case study are the raw ensemble, global EMOS,
local EMOS, and the proposed extension MEMOS. Their predictive performance is mea-
sured in terms of the CRPS, the MAE, and the RMSE, calibration is assessed in terms of
VRH histograms (in case of the raw ensemble) and PIT histograms (in case of the predic-
tive postprocessed distributions). For the raw ensemble, the ensemble versions of the scores
are employed, for global and local EMOS, the predictive distribution is a normal distribu-
tion with estimated parameters. Therefore exact formulas for normal distributions can be
employed. The posterior predictive MEMOS distribution is not exactly normal, so approxi-
mative versions of the scores are utilized.

The global and local EMOS predictive distributions are estimated in the standard way as
described in Section 2.1.1 with a rolling training period. The estimation of the MEMOS
model is performed automatically with the SPDE-INLA function according to the theory
in Section 5.4. However, the generation of the the training and prediction data used for
constructing the mesh and computing the approximate posterior predictive distributions for
desired components of the parameter vector x defined in (5.42) is slightly more involved as
in the case of EMOS. The procedure of data extraction is described in the following:

The data corresponding to the current 25 days rolling training period and the data correspond-
ing to the associated prediction day (the day after the last training day, as 24-h forecasts are
employed) are extracted.

At the beginning of each estimation-prediction step, both data parts are merged and all dis-
tinct observation stations contained in this training-prediction data are used to construct the
mesh for this step. The mesh is reconstructed in each estimation-prediction step from the
current training-prediction data, to take into account the specific spatial structure present on
that day. The call to generate the mesh in each step is the same as for the mesh in Figure 5.1,
namely
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inla.mesh.create(loc=locations, cutoff=0,

refine=list(max.edge=5, min.angle=0.1)),

where the locations in the loc argument in each estimation-prediction step are specified
as all locations present in the combined data set containing the data of the current training
period and the data for the current prediction day. In Figure 5.1 this combined data consists
of the 25 training days September 8, 2010 to October 2, 2010 along with the data for October
3, 2010, as described in Section 5.6.

The data part corresponding to the current training period is used for estimating the MEMOS
model parameters, the components xi of the full parameter vector x in (5.42). INLA approx-
imates those components xi not defined through an SPDE model directly for all observation
cases, here corresponding to the observation locations s = s1, . . . , sN handed over to INLA
with the observation vector. The only parameter in (5.42) not connected to an SPDE model
is the fixed effect intercept γ. As the linear predictor η depends on the two bias-correction
parameters defined through an SPDE model, it is implicitly derived from the posterior dis-
tributions of those two parameters. The components of a and b are approximated via an
SPDE model at the nodes k = 1, . . . , n of the current mesh. The SPDE-INLA procedure
automatically interpolates them internally to the observation locations s = s1, . . . , sN to
obtain approximations of the linear predictor components ηs at s = s1, . . . , sN . By speci-
fying appropriate linear combinations Bη within the inla() call as described in the third
paragraph of Section 5.5, the approximations for the part of η corresponding to the current
prediction day t and all locations s present on that day are extracted and displayed separately
in the SPDE-INLA output. This part of the output can directly employed for computing
verification measures for the current prediction day t.

Table 5.1 presents the verification results for the raw ensemble, global and local EMOS, and
MEMOS in terms of the univariate scores CRPS, MAE, and RMSE. The scores are averaged
over all prediction days and all available stations. Note that the local EMOS method was
estimated by using a 25 days training period for each station, even if this corresponds to
more than 25 calendar days.

Table 5.1 shows that the MEMOS method performs best in terms of all considered scores.
The largest improvement can be seen for the CRPS. For all scores, global EMOS improves
significantly on the raw ensemble, as it corrects for biases and dispersion errors in. How-
ever, global EMOS estimates only a single set of parameters for all stations and is thus not
accounting for local differences. In contrast to this, local EMOS estimates a separate set
of parameters at each considered station, resulting in better local calibration. As stations in
quite different regions with a high variability in temperature are considered, the information
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CRPS MAE RMSE

Raw ECMWF 2.50 2.81 3.76

Global EMOS 1.79 2.49 3.24

Local EMOS 1.42 1.96 2.55

MEMOS 1.38 1.94 2.51

Table 5.1: Univariate predictive performance of the MEMOS methodology with α = 1

in comparison to the raw ensemble, global and local EMOS, over all stations and dates in
March 24, 2010 to April 30, 2011

incorporated in the local EMOS parameters leads to improved scores. However, the improve-
ment from global to local EMOS is not as large as the improvement from the raw ensemble
to global EMOS. Going from local EMOS to MEMOS yields another small improvement.
Performing any type of postprocessing has the largest effect on the aggregated results and
yields a significant improvement in the scores, while employing more complex postprocess-
ing methods in comparison to a simple model often yields only small improvements. As the
raw ensemble provides only 50 discrete forecasts, the ECMWF results are computed over
a distribution with a spatial dimension of approximately 500 with only 50 points to fill this
entire space. A full predictive distribution as returned by global EMOS therefore results in
a substantial improvement in comparison to the sparse and discrete ECMWF distribution.
Local EMOS additionally accounts for local differences. The weather over the North Sea
region is for example similar for all stations there, but different in comparison to the weather
predominant in the slightly continental East Germany or the warm Rhine-Neckar Region.
A postprocessing method like MEMOS that is able to borrow information from neighbour-
ing stations through the Markovian dependence structure of the GMRF approximations can
improve predictive performance further. MEMOS yields the best results in all scores, so in-
troducing a Markovian dependence structure among the stations provides useful information
that local EMOS cannot capture.

Figure 5.4 presents the verification rank histogram for the raw ECMWF ensemble (a) along
with the PIT histograms for global (b) and local EMOS (c) and MEMOS (d). The ranks and
PIT values are aggregated over all available stations and dates in the period of March 24,
2010 up to April 30, 2011. As the resolution of the verification rank histogram is quite high
when using all 51 bins to classify the ranks, a slightly lower (1/3 of the original) resolution
was applied by classifying the 51 possible outcomes for the ranks in 17 bins. The frequencies
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of the ranks falling in each of the 17 bins are then plotted as usual. The PIT values in panels
(b)-(d) are classified into 17 bins as well, to have better comparability to the rank histogram.

For the raw ensemble the verification rank histogram is obtained by computing the rank of
the observation within the 50 member ensemble for each date-station pair. This partitions the
real line into 51 bins. The occurring ranks are then classified in 17 bins as described above.

For the predictive distributions, PIT values are obtained by evaluating the estimated predic-
tive cumulative distribution function for each date-station pair at the respective observation.
In case of local and global EMOS, the PIT values are computed by evaluating the normal cu-
mulative distribution function with parameters estimated from the respective EMOS method
at the observations. For MEMOS, the PIT values are obtained by evaluating the empiri-
cal CDF at the observations, as the posterior predictive MEMOS distribution is not exactly
normal.
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Figure 5.4: Univariate verification rank histogram and PIT histograms over all stations and
dates in March 24, 2010 to April 30, 2011

The VRH in panel (a) indicates a heavy underdispersion of the raw ECMWF ensemble and
an additional bias in the forecasts, as the last bin is more occupied than the first one. This
suggests a strong need for postprocessing. The PIT histogram for global EMOS in panel
(b) already shows a quite good calibration. This is in line with the large improvement in
the scores in 5.1. While the scores improve for local EMOS, the PIT in panel (c) exhibits a
slight underdispersion, that is clearly more pronounced than in panel (b). However, a more
or less pronounced underdispersion is typical for local EMOS, as it only uses the data of a
single station to estimate the model parameters for this station. This can result in a too small
variance of the predictive distribution, as the observations in the vicinity of the station are not
taken into account. The PIT histogram for MEMOS in panel (d) exhibits the best calibration.
The histogram is closer to uniformity than the histograms for global and local EMOS. The
first and last bin are less pronounced for MEMOS than they are for global and local EMOS.
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These calibration results line up with the results for the scores in Table 5.1.

5.9.2 Univariate results at single stations

This section presents univariate verification results for the raw ensemble and the three com-
petitive postprocessing methods at selected single stations situated in different regions of
Germany. The results at each considered station are aggregated over all available predic-
tion days, containing the same dates from March 24, 2010 to April 30, 2011 that have been
considered in Section 5.9.1. As in the previous section, the ranks and PIT values of the
single station examples are classified into 17 equidistant bins to reduce the resolution of the
histograms.

The first station considered is a station on the north sea island Borkum belonging to the East
Frisia region and having a healthy offshore climate. Borkum is the westernmost island of
the seven East Frisian islands, with a size of 31 km2. The only town on the island is named
Borkum as well. The elevation of the Borkum observation station is 3 m above sea level, and
the site situated near the small airport of the island. Table 5.2 shows the scores for Borkum,
Figure 5.5 shows the verification rank histograms.

CRPS MAE RMSE

Raw ECMWF 1.59 1.89 2.35

Global EMOS 1.14 1.52 1.92

Local EMOS 1.08 1.49 1.93

MEMOS 1.06 1.47 1.86

Table 5.2: Univariate predictive performance at the station Borkum over all dates in March
24, 2010 to April 30, 2011

The results in Table 5.2 exhibit a similar structure to the overall results in Table 5.1. The
largest improvement in all three scores is achieved when going from the raw ensemble to
global EMOS. The local EMOS method estimating the bias-correction parameters locally
at the station Borkum improves the CRPS and MAE further. The calibration of the predic-
tive distribution for Borkum improves by estimating local parameters, resulting in improved
CRPS and MAE. However, the RMSE deteriorates slightly for local EMOS. In combina-
tion with the shape of the local EMOS PIT histogram, this indicates that the local EMOS
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predictive distribution still has a small bias paired with a too low spread in the distribution.
For MEMOS however, all scores improve further. The ability of MEMOS to incorporate
information from stations in the vicinity through a Markovian dependence structure makes
it possible to account for the information of other stations in offshore regions and along the
coastline of North Germany and by this allowing to learn more about the local setting. This
reduces the bias of the predictive distribution for Borkum and simultaneously increases the
spread in comparison to the too small spread of the local EMOS predictive distributions.
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Figure 5.5: Univariate verification rank histogram and PIT histograms for Borkum, over all
dates in March 24, 2010 to April 30, 2011

Panel (a) of Figure 5.5 shows a heavy underdispersion of the raw ensemble at the station
Borkum and an additional forecast bias. The PIT histogram in panel (b) indicates an overdis-
persion of the global EMOS predictive distribution. As global EMOS estimates only a single
set of parameters for all stations, it is not calibrated for a specific station like for example
Borkum, leading to a lack of calibration in the sense that the spread of the predictive dis-
tribution is too large in comparison to observed values. The global EMOS methods seems
to overestimate the local variability present at an offshore island. However, in comparison
to the raw ensemble, there is a huge improvement, which is visible in the scores in Table
5.2 as well. In contrast, the PIT histogram for local EMOS in panel (c) indicates a slight
underdispersion of the predictive distribution, although not at all that severe as for the raw
ensemble. This goes in line with the scores for the station Borkum. Compared to the his-
tograms of global and local EMOS the histogram of MEMOS is much closer to calibration.
It still exhibits a slight tendency to overdispersion. However, this is much less pronounced
as for global EMOS.

The next station considered is at Frankfurt airport, at an elevation of 113 m above sea level.
Frankfurt is a city in the south-west of Germany, situated at the river Main. The area of
Frankfurt is an area of very high traffic density, but on the other hand it is close to the
Taunus, a popular local recreation area. It is the largest city of Hessen, famous for being a
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financial and industrial center in Germany. Due to its central position within Germany, the
airport of Frankfurt is one of the largest in the world. The climate in the Rhine-Main region
is very mild and belongs to the warmest within Germany. Table 5.3 shows the scores for this
station and Figure 5.6 the verification rank and PIT histograms.

CRPS MAE RMSE

Raw ECMWF 2.10 2.41 2.90

Global EMOS 1.60 2.24 2.84

Local EMOS 1.32 1.86 2.31

MEMOS 1.28 1.83 2.26

Table 5.3: Univariate predictive performance at the station Frankfurt over all dates in March
24, 2010 to April 30, 2011

The results for Frankfurt are similar to the results at Borkum. The largest and most significant
improvement in all three scores is when going from the raw ensemble to global EMOS. Panel
(a) of Figure 5.6 shows the verification rank histogram for the raw ensemble, exhibiting
heavy underdispersion and significant bias. The last bin is significantly higher than the first
one. Panel (b) shows the PIT histogram for global EMOS. It displays the same skewed
structure as panel (a) to some extent, however, much less pronounced. Moving from the raw
ensemble to global EMOS corrects for the strong bias present in the raw ensemble forecasts
and improves calibration. This effect is consistent with the highly improved scores. The PIT
histogram of local EMOS in panel (c) displays a further improvement in calibration, although
underdispersion is still present. However, the skewed form of the histogram is attenuated.
The PIT histogram for MEMOS in panel (d) exhibits the best calibration. The U-shape is
not visible any more and the histogram is close to uniformity. In comparison to the station
Borkum the improvement achieved with MEMOS is slightly more distinct, the same holds
for the improvements when moving vom the raw ensemble to global EMOS and from global
to local EMOS. It should be noted that the weather on a North sea island as Borkum is quite
special in comparison to other regions of Germany, like e.g. the Rhine-Main region around
Frankfurt, where the weather is more stable than around the coast region of North Germany.
Postprocessing can generally improve the shortcomings of the raw ensemble, however the
improvement obtained by performing postprocessing seems to be larger in regions where the
temperature or the weather in general is more stable.
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Figure 5.6: Univariate verification rank histogram and PIT histograms for Frankfurt, over
all dates in March 24, 2010 to April 30, 2011

The next station considered is even more southward than Frankfurt. The city of Baden-
Baden is in the western part of the northern Black Forest, one of the largest forested areas
within Germany and a very popular recreation area. The station is at 240 m above sea level.
Baden-Baden is a world famous health resort with genuine mineral springs and with a not
less famous casino. Table 5.4 shows the scores for this station and Figure 5.7 the verification
rank and PIT histograms.

CRPS MAE RMSE

Raw ECMWF 2.53 2.83 3.54

Global EMOS 1.80 2.50 3.27

Local EMOS 1.64 2.24 2.95

MEMOS 1.56 2.15 2.79

Table 5.4: Results for univariate predictive performance at the station Baden-Baden over all
dates in March 24, 2010 to April 30, 2011
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Figure 5.7: Univariate verification rank histogram and PIT histograms for Baden-Baden,
over all dates in March 24, 2010 up to April 30, 2011

The scores are similar to those at Frankfurt. All three scores improve significantly when
going from the raw ensemble to global EMOS. The largest improvement can be seen for
the CRPS. The verification rank and PIT histograms are shown in Figure 5.7. The raw
ensemble is heavily underdispersed, quite similar to the raw ensemble for Frankfurt. As for
Frankfurt, the PIT histogram for global EMOS at Baden-Baden displays a bias and a lack of
calibration. However, compared to the raw ensemble, the calibration improves. In case of
local EMOS, the PIT histogram for Baden-Baden exhibits underdispersion. All scores for
MEMOS improve on local EMOS for Baden-Baden. The calibration is improved slightly in
comparison to local EMOS, nonetheless, the PIT histogram of MEMOS still exhibits a trace
of underdispersion. The additional information provided by the Markovian structure utilized
by MEMOS constitutes an improvement in comparison to only utilizing the information of
the station alone as local EMOS does.

The three examples show that the univariate MEMOS method outperforms the standard
EMOS postprocessing methods with respect to the three considered aggregated verification
scores CRPS, MAE, and RMSE.

The stations considered in the analysis had a very moderate elevation. A preliminary case
study for a larger set of single stations revealed that the results deteriorate when considering
stations with extreme elevation (e.g. stations on the mountains Zugspitze, Kahler Asten,
Feldberg). In those cases MEMOS can perform worse than local EMOS, as MEMOS is
not considering the station elevation as an explicit covariate in the model. Although local
EMOS is not doing so either, its advantage is the separate parameter estimation for each
station. Only data from the station in question is employed for parameter estimation, which
improves the predictive performance at that specific station. However, when it comes to
coherently predict the temperature for a (large) region, a postprocessing method accounting
for the spatial dependence structure has the edge over a purely univariate method.
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An extended postprocessing model considering other covariates explaining the response vari-
able, such as elevation, land use type, or other weather quantities, might lead to further im-
provement in predictive performance. Extensions in this direction will be mentioned in the
discussion.

5.9.3 Multivariate results

In this section the predictive performance of the univariate postprocessing methods provided
with different types of multivariate dependence structure is compared.

The univariate methods to be combined with the dependence structures are the same as in
the fully univariate analysis. Two types of dependence structure are considered for the anal-
ysis, the Independence structure and the ECC structure, which are described in Section 5.5.
The predictive performance of these multivariate methods are analyzed with the multivariate
verification methods described in Section 2.2. To inspect multivariate calibration, the mul-
tivariate rank histogram is used, which is described in Section 2.2.1. As in the univariate
analysis in Sections 5.9.1 and 5.9.2, the possible 51 outcomes for the multivariate ranks are
classified into 17 bins to reduce the resolution of the rank histogram. Further, the determinant
sharpness (2.30) and the energy score (2.41) are employed.

For each of the multivariate raw ensemble versions, samples of the same size as the original
ensemble, m = 50, are obtained. These samples are analyzed with the ensemble versions of
the scores. The covariance matrix used for the determinant sharpness (2.30) is the empirical
covariance matrix of the raw ensemble. The ensemble version of the energy score is given in
Equation (2.42). When combining the postprocessing methods global EMOS, local EMOS
and MEMOS with the Independence structure, 5,000 samples are obtained for each method.
The multivariate ranks, the determinant sharpness, and the energy score are computed from
the respective samples. For the determinant sharpness (2.30), the empirical covariance matrix
of the respective postprocessing method is employed, which is a diagonal matrix with the
estimated marginal variances on the diagonal. To compute the energy score from the 5,000
multivariate samples, the approximative version (2.43) is used. In case of combining global
EMOS, local EMOS and MEMOS with the ECC structure, samples of the same size as the
original ensemble, m = 50, are obtained, as for the multivariate raw ensemble versions.
The samples from the different ECC variants are analyzed with the ensemble versions of the
scores as well, as described above. Note that for all forecast methods and the corresponding
observations only those days where used for verification, on which all of the selected stations
are available. Those days on which at least one of the selected stations is missing were
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Borkum Norderney Helgoland List, Sylt

Borkum 3 31 100 190

Norderney 11 70 165

Helgoland 4 98

List, Sylt 26

Table 5.5: Pairwise distances in km (upper triangle) between the stations on the North Sea
islands Borkum, Norderney, Helgoland, and Sylt and their elevation in m (diagonal)

removed.

For analyzing multivariate predictive performance, several sets of stations in different regions
of Germany are considered. The multivariate predictive performance over these chosen sta-
tions is analyzed with the multivariate verification methods described in Section 2.2.

The first example consists of stations situated on four North Sea islands: Borkum, Norder-
ney, Sylt, and Helgoland. Borkum, Norderney, and Helgoland belong to the East Frisian
islands, while Sylt is a North Frisian islands near the border to Denmark. Table 5.5 shows
the pairwise distances between the four stations along with the elevation of each station. All
four stations have an elevation close to sea level. While Borkum and Norderney are part of
the East Frisian chain of islands and very close to each other, the position of Helgoland is
much more offshore. The position of the stations within Germany is presented in panel (a)
of Figure 5.1.

The distance between Borkum and Norderney is about the same value as the horizontal
resolution of the ECMWF forecast grid. So the two islands may well be within the same
grid box. The distances between Norderney and Helgoland as well as between Borkum and
Helgoland and the distances of all other islands to Sylt are larger. Panel (b) and (c) of Figure
5.1 indicate further that in the presented mesh used for the MEMOS model, Borkum and
Norderney (the two red dots side by side in the East Frisian Islands chain) are indeed located
in two different triangles though sharing one edge, while Helgoland lies in a triangle at least
sharing a vertex with the Norderney triangle.

Table 5.6 presents the energy score (ES) for the raw ensemble, global and local EMOS,
and MEMOS, each provided with the twi types of dependence structures described above.
Table 5.7 shows the respective values for the determinant sharpness (DS), while Figure 5.8
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presents the multivariate rank histograms for all methods. The results for the ES show a
general improvement when going down each column: When going from the raw ensemble
to MEMOS, the results improve for each of the dependence structures. This is in line with the
univariate results of Section 5.9.1. The improvement in multivariate predictive performance
when going from the raw ensemble to global EMOS, to local EMOS and then to MEMOS
holds both for the Independence and the ECC approach.

The results for the ES lead to the conclusion that for a fixed method of constructing the mul-
tivariate predictive distribution from the univariate margins of the respective postprocessing
model, the best results are obtained when choosing MEMOS as the model for the margins.
This is in line with the univariate results presented in Section 5.9.1.

The next question is that of the influence of the way the multivariate dependence structure
is constructed. For the raw ensemble, the best results are obtained when providing it with
the Independence structure. However, when applying any of the competitive postprocessing
methods to the margins, the best results are obtained for the ECC structure.

These ES values can be explained as follows. The raw ensemble exhibits strong underdisper-
sion and therefore lacks calibration in the univariate case. Passing from the ECC structure
to the Independence structure decreases the sharpness of the predictive distribution, see Ta-
ble 5.7. In this case the increased spread in the predictive distribution has a positive effect
due to the lack of calibration in the raw ensemble, resulting in better ES values. However,
when combining the EMOS or MEMOS margins with dependence structures, the effect is
the other way around. The margins obtained from univariate global and local EMOS and
MEMOS correct the raw ensemble for dispersion errors and display quite good calibration.
In this case the decreased sharpness of the Independence approach in comparison to the ECC
approach (see again Table 5.7) has a negative effect on the ES values, as the distributions al-
ready have a good univariate calibration.

The DS values in Table 5.7 complement and support the discussion of the ES values in Table
5.6. As already mentioned, the highest level of sharpness is obtained for the ECC dependence
structure. The Independence structure exhibits the highest level of spread, therefore the
lowest level of sharpness. As the margins are assumed to be independent this results in more
variability in the joint distribution.

The columns of Table 5.7 show a specific pattern as well. For each of the dependence types,
the raw ensemble is sharpest. This is reasonable, as the 50 ensemble members impart greater
sharpness than a full predictive distribution estimated in the case of EMOS and MEMOS.
Global EMOS reduces the sharpness significantly, du to the global parameter estimation
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Independence ECC

Raw ECMWF 3.80 3.81

Global EMOS 2.76 2.66

Local EMOS 2.37 2.35

MEMOS 2.37 2.29

Table 5.6: Multivariate predictive performance measured with the energy score (ES) for
the North Sea islands Borkum, Norderney, Helgoland, and Sylt, aggregated over all days in
March 24, 2010 to April 30, 2011

Independence ECC

Raw ECMWF 0.63 0.39

Global EMOS 2.91 1.72

Local EMOS 1.43 0.84

MEMOS 2.30 1.36

Table 5.7: Multivariate predictive performance measured with the determinant sharpness
(DS) for the North Sea islands Borkum, Norderney, Helgoland, and Sylt, aggregated over all
days in March 24, 2010 to April 30, 2011

in the model that admits more variability. For all local EMOS variants, the sharpness is
increased. For each station a separate set of parameters is estimated, based only on data for
that specific station. This univariate procedure results in margins with a high sharpness level,
that is adopted by the multivariate distribution. For MEMOS, the sharpness is again reduced
due to the fact that the method is taking into account information from several neighbouring
stations. However, in comparison to global EMOS, MEMOS exhibits higher sharpness for
all the multivariate versions.

The multivariate rank histograms for the different methods are presented in Figure 5.8. Al-
though the ECC distributions are the sharpest ones, the inheritance of the rank structure of
the original ensemble improves the calibration as it utilizes the information from the NWP
models underlying the raw ensemble forecasts.
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Figure 5.8: Multivariate verification rank histograms for the North Sea islands, over all dates
in March 24, 2010 to April 30, 2011
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L PO FB LK KH LW WH BH CH NH E

Leck (L) 7 57 143 91 90 115 161 142 103 115 193

St. Peter-Ording (PO) 5 168 110 100 58 105 87 49 60 137

Fehmarnbelt (FB) 4 58 70 212 255 206 178 186 290

LH Kiel (LK) 5 17 155 200 154 123 132 235

Kiel-Holtenau (KH) 27 142 186 138 109 117 220

LH Alte Weser (LW) 32 47 48 38 37 81

Wittmundhafen (WH) 8 60 77 70 35

Bremerhaven (BH) 7 39 27 91

Cuxhaven (CH) 5 12 112

Nordholz (NH) 25 104

Emden (E) 0

Table 5.8: Pairwise distances in km (upper triangle) between the 11 stations along the North
Sea coastline and their elevation in m (diagonal)

The second multivariate example consists of eleven stations along the North Sea coastline.
The chosen stations cover a large region, ranging from the East Frisian region to the North
Frisian region and even over to the coast of the Baltic Sea. Most of the stations are directly
situated at the onshore coast. However, some of the stations are on small offshore islands
or lighthouses very close to the onshore coast. Together with the stations from the other
multivariate and univariate examples, the eleven stations are marked in red in Figure 5.1 (a)
as well.

Table 5.8 shows the pairwise distances between the eleven stations along with the elevation
of each station. All stations have an elevation close to sea level, the city of Emden is actually
at sea level.

Table 5.9 presents the energy score (ES) values for the raw ensemble, global and local
EMOS, and MEMOS, each provided with the types of dependence structure described above.
Table 5.10 shows the respective results for the determinant sharpness (DS), while Figure 5.9
presents the corresponding multivariate rank histograms. The patterns are quite similar to
those in the North Sea islands example. Even the multivariate rank histograms have nearly
the same appearance.

For each dependence structure, the predictive performance increases when going from the
raw ensemble to global EMOS, local EMOS, and finally MEMOS. MEMOS is the best
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Independence ECC

Raw ECMWF 6.33 6.37

Global EMOS 5.41 5.24

Local EMOS 4.80 4.74

MEMOS 4.74 4.61

Table 5.9: Multivariate predictive performance measured with the energy score (ES) for
eleven locations along the North Sea coastline, aggregated over all days in March 24, 2010
to April 30, 2011

choice for the marginal model, regardless which dependence structure is added. MEMOS
even improves on its natural benchmark, local EMOS. This result is in line with the univariate
results presented in Section 5.9.1 and with the results from the North Sea islands example.

As in the previous example it is not only of interest which of the marginal models yields
the best predictive performance, but the aim is to additionally investigate the question to
what extent the multivariate dependence structure influences the predictive quality. The best
results are obtained for the ECC variant. Only for the raw ensemble the pattern is different.

This structure within the ES values can be explained as already mentioned in the North Sea
islands example. The univariate raw ensemble is heavily underdispersed. The DS values in
Table 5.10 show that the sharpness of the multivariate predictive distributions is highest for
the ECC approach. In case of the univariate raw ensemble not yet corrected for dispersion
errors, a larger spread in the multivariate distribution has a positive effect. Therefore raw
ensemble Independence yields the best ES value, while the ES value for the ECC approach
deteriorates due to a too small spread in the multivariate distribution.

Going down the columns of Table 5.10 the sharpness decreases when moving from the raw
ensemble to global EMOS, it increases from global to local EMOS, but decreases again when
going from local EMOS to MEMOS. This is reasonable, as a predictive global EMOS distri-
bution exhibits more spread than the 50 raw ensemble members. As local EMOS estimates
the predictive distributions from the data of each station individually, this imparts greater
sharpness than global EMOS. MEMOS utilizes a Markovian structure, taking into account
the information from neighbouring stations. This increases the spread in the predictive distri-
bution in comparison to local EMOS. However, as MEMOS is a spatially adaptive method,
it produces predictive distributions with higher sharpness than global EMOS.
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Independence ECC

Raw ECMWF 0.62 0.19

Global EMOS 2.96 1.01

Local EMOS 1.75 0.60

MEMOS 2.36 0.81

Table 5.10: Multivariate predictive performance measured with the determinant sharpness
(DS) for eleven locations along the North Sea coastline, aggregated over all days in March
24, 2010 to April 30, 2011

Figure 5.9 presents the multivariate rank histograms for all considered methods. The his-
tograms for the raw ensemble versions are in the top row. Raw ensemble Independence
displays a bias, the bin for the highest ranks is more occupied than the bin for the lowest
ranks. Raw ensemble ECC exhibits underdispersion, but here the low ranks are more pro-
nounced than for raw ensemble Independence. The second row presents the multivariate
rank histograms for the global EMOS versions. For global EMOS ECC the improvement is
significantly, the multivariate rank histogram is very close to uniformity. The underdisper-
sion of raw ensemble ECC is not visible any more. These observations for the global EMOS
histograms are in line with the ES values in Table 5.9. The multivariate rank histograms for
local EMOS in the second row and for MEMOS in the bottom row are similar to the global
EMOS histograms. However, local EMOS ECC exhibits a weak tendency to underdispersion
in contrast to global EMOS ECC. MEMOS ECC is very close to uniformity.
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Figure 5.9: Multivariate verification rank histograms for the North Sea coastline, over all
dates in March 24, 2010 to April 30, 2011
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Bad Muskau Bertsdorf Görlitz

Bad Muskau 125 74 50

Bertsdorf 270 30

Görlitz 238

Table 5.11: Pairwise distances in km (upper triangle) between the stations Bad Muskau,
Görlitz and Bertsdorf and their elevation in m (diagonal)

Independence ECC

Raw ECMWF 4.02 4.04

Global EMOS 3.38 3.32

Local EMOS 3.08 3.03

MEMOS 3.06 3.01

Table 5.12: Multivariate predictive performance measured with the energy score (ES) for
the cities Bad Muskau, Görlitz, and Bertsdorf near the Polish border, aggregated over all
days in March 24, 2010 to April 30, 2011

The third multivariate example concerns three stations in the eastern part of Germany, at the
Polish border, namely Bad Muskau, Bertsdorf, and Görlitz, the easternmost city of Germany.
Table 5.11 shows the pairwise distances between the three stations and their elevations. Fig-
ure 5.1 (a) shows the three stations marked in red in the very eastern part of Germany. When
looking additionally at panel (b) and (c) it is clear that two of the cities are vertices of the
same triangle, while the third one is at the vertex of an immediate neighbour triangle.

Tables 5.12 and 5.13 present the ES and DS values, the respective multivariate rank his-
tograms can be found in Figure 5.10. The pattern within the ES and DS values directly
corresponds to the results in the two North Sea examples. Going down each column of the
ES values in Table 5.12 yields an improvement. The most significant one is visible from the
raw ensemble to global EMOS, as in the other examples. The improvements from the simple
to the more refined marginal postprocessing models yields smaller improvements.

The pattern of the ES values within each row is similar to the North Sea examples as well.
For the raw ensemble, the best results are obtained with the Independence approach. For
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Independence ECC

Raw ECMWF 0.67 0.41

Global EMOS 2.90 1.74

Local EMOS 2.36 1.41

MEMOS 2.30 1.38

Table 5.13: Multivariate predictive performance measured with the determinant sharpness
(DS) for the cities Bad Muskau, Görlitz, and Bertsdorf near the Polish border, aggregated
over all days in March 24, 2010 to April 30, 2011

ECC, the ES value deteriorates and for the Copula approach it deteriorates slightly more.
This is explained by the heavy underdispersion present in the univariate raw ensemble, as
already discussed in the previous examples. A lower level of sharpness as for Independence
(see Table 5.13) yields better results in case of underdispersion, while an underdispersed and
sharp distribution as in the case of ECC deteriorates the results. Increased sharpness only
has a positive effect on the scores subject to good calibration.

For the three postprocessing models, the effect is the other way around, as in the previous
examples. The best ES values are obtained when combining the respective univariate post-
processing model with ECC.

The respective multivariate rank histograms can be found in Figure 5.10. Their appearance is
similar to the histograms in the other two examples. It is clearly visible that ECC obtains the
best calibration for all univariate postprocessing models and the raw ensemble. In the top row
the histograms for the raw ensemble versions are presented. Raw ensemble Independence
exhibits a strong underdispersion and bias, the last bin is over-occupied. Raw ensemble
ECC has a reduced bias, but still displays heavy underdispersion. The second row shows
the multivariate rank histograms for the global EMOS variants. Calibration is improved
significantly in comparison to the raw ensemble. For global EMOS Independence, a small
bias and dispersion error is still visible, while the calibration of global EMOS ECC is pretty
good. The histograms for local EMOS are similar to the ones for global EMOS. However,
the local EMOS variants exhibit slightly stronger underdispersion than the global EMOS
variants. Nonetheless, local EMOS ECC yields the best calibration, very close to uniformity.
The bottom row presents the histograms for the MEMOS variants. They are nearly identical
to the histograms of local EMOS. Although the scores improve for MEMOS in comparison
to local EMOS, the multivariate rank histograms stay essentially the same.
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Figure 5.10: Multivariate verification rank histograms for the cities Bad Muskau, Görlitz,
and Bertsdorf over all dates in March 24, 2010 to April 30, 2011
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To sum up the results of the considered multivariate examples, MEMOS improves the pre-
dictive performance in comparison to the multivariate versions of standard EMOS. The
MEMOS versions yielded the best ES values in the different station settings. It can be noted
further that for each univariate postprocessing model the best results are obtained when com-
bining it with ECC. This holds for global and local EMOS, as well as for MEMOS. Adding
a multivariate dependence structure to the univariate postprocessing models yields an im-
provement in predictive performance. Especially the combination of MEMOS with the ECC
structure constitutes a multivariate postprocessing procedure that results in high univariate
and multivariate predictive quality.

5.9.4 Univariate results for composite quantities

The previous section assessed the multivariate predictive performance of the univariate meth-
ods combined with two types of dependence structure. Now, the univariate predictive per-
formance of a composite quantity like minimum, maximum, or average temperature over a
set of stations is assessed with univariate verification methods. Such a composite quantity
displays the information about spatial structures in a compressed form.

The composite quantities are directly computed from the multivariate samples that were
obtained from the combined methods as described in Section 5.9.3. The samples already
produced and employed in the previous section can be used for this analysis, the only extra
work is to compute a desired composite quantity from the original samples. The composite
quantity of choice is computed over all selected stations, for each prediction day separately.
The same procedure is applied to the observations. On every day, the composite quantity over
the observations at the chosen stations is computed. Note that for all considered methods
and the corresponding observations only those days where used in the verification process,
on which all of the selected stations are available. Days on which at least one of the selected
stations is missing were removed, as in Section 5.9.3.

For the case study that analyzes the univariate predictive performance of a composite quan-
tity, the Polish border example already considered in Section 5.9.3 was chosen, to have
a direct comparison of multivariate and univariate performance. The analyzed composite
quantity is the minimum temperature over the three cities.

Tables 5.14, 5.15, 5.16 show the CRPS, the MAE, and the RMSE values for the three mul-
tivariate variants of each univariate method. The respective univariate rank histograms can
be found in Figure 5.11. The pattern is similar to the one within the multivariate results.
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The only difference is the raw ensemble, where now ECC exhibits the best predictive per-
formance among the raw ensemble versions. In the multivariate examples as well as in this
composite example, the ECC dependence structure yields the best scores and calibration for
all considered univariate postprocessing models.

Independence ECC

Raw ECMWF 2.12 2.05

Global EMOS 2.01 1.80

Local EMOS 1.83 1.70

MEMOS 1.82 1.68

Table 5.14: CRPS for minimum temperature over the cities Bad Muskau, Görlitz, and Berts-
dorf near the Polish border, aggregated over all days in March 24, 2010 to April 30, 2011

Independence ECC

Raw ECMWF 2.38 2.36

Global EMOS 2.70 2.45

Local EMOS 2.45 2.34

MEMOS 2.42 2.31

Table 5.15: MAE for minimum temperature over the cities Bad Muskau, Görlitz, and Berts-
dorf near the Polish border, aggregated over all days in March 24, 2010 to April 30, 2011

The univariate rank histograms presented in Figure 5.11 have a similar appearance as the
multivariate rank histograms in Figure 5.10. However, the univariate rank histograms for the
raw ensemble versions displayed in the top row exhibit a stronger underdispersion than the
respective multivariate rank histograms. The improvement in calibration when moving from
the raw ensemble to one of the postprocessing models is clearly visible.

The current and the previous section were presenting two different ways of analyzing sam-
ples from a multivariate predictive distribution, constructed by providing univariate methods
with certain types of multivariate dependence structures. The first possibility is to directly
assess samples from the multivariate distribution with multivariate assessment tools. The
second possibility is to reduce the dimension of the multivariate distribution to a univariate
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Independence ECC

Raw ECMWF 3.00 2.96

Global EMOS 3.46 3.23

Local EMOS 3.12 2.98

MEMOS 3.05 2.92

Table 5.16: RMSE for minimum temperature over the cities Bad Muskau, Görlitz, and
Bertsdorf near the Polish border, aggregated over all days in March 24, 2010 to April 30,
2011

one by considering a composite quantity over the spatial dimensions. This composite values
can be assessed with the standard univariate verification tools.

Both procedures showed that the multivariate versions of MEMOS outperform the respective
multivariate versions of global and in most cases even of local EMOS, although the improve-
ment when moving from local EMOS to MEMOS is often only a small one. However, the
choice of the type of dependence structure employed to construct the multivariate distribu-
tion from the original univariate methods has a significant influence. The ECC procedure
yields strong improvements in predictive performance, regardless which univariate model is
employed.
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Figure 5.11: Univariate verification rank histograms for minimum temperature over the
cities Bad Muskau, Görlitz, and Bertsdorf, over all dates in March 24, 2010 to April 30,
2011
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5.9.5 Samples from multivariate MEMOS versions

Sections 5.9.3 and 5.9.4 showed results for predictive performance of the multivariate post-
processing methods, obtained by providing each univariate model with different dependence
structures as described in Section 5.5. To conclude the previous analysis, this section exem-
plarily presents samples at all observation stations present at a chosen prediction day from
the multivariate predictive MEMOS distributions obtained by combining the basic MEMOS
model with the ECC structure. The samples are compared with the true observations and
with randomly selected raw ensemble members.

The prediction day October 3, 2010 was chosen for displaying the observations and samples
from the multivariate MEMOS methods, as the spatial temperature distribution over Ger-
many was particularly interesting during the night from October 2 to October 3, 2010. The
mesh employed for estimation of the basic MEMOS model that is used for prediction on Oc-
tober 3, 2010, along with the 508 available observation stations on that day, is displayed in
Figure 5.1 in Section 5.6. The original raw ECMWF 24-h ahead forecasts and observations
employed in the case study were initialized at 00 UTC. For this example 00 UTC corre-
sponds to 2am local time (daylight saving time operates until the end of October). The raw
ECMWF forecasts and the samples obtained from the predictive postprocessing distributions
displayed in Figure 5.12 are valid at 2am on October 3, 2010. In that specific night, quite
interesting and for autumn unusual change concerning the temperature took place.

In the top row of Figure 5.12 three randomly selected raw ensemble members are shown.
The second row displays three of the 50 MEMOS ECC members, where the rank dependence
structure is adopted from the raw ensemble member in the respective place in the row above.
The true observations on October 3, 2010 are shown in the left and right panel of the bottom
row.

According to information from achieves about past weather concerning the night in question1

there was a low pressure area over the Northern Atlantic Ocean ranging to Western Europe
and deep into southern regions. The tail of the low pressure area was affecting middle Europe
from a westward direction. The result was cloud cover and precipitation in the western and
middle parts of Germany. However, the eastern part of Germany benefited from the influence
of a high pressure area being centered on the western part of Russia. This lead to sunny
weather in the easternmost regions of Germany. Between these two pressure areas masses

1 http://www.wetter24.de/wetter-news/archiv.html,
http://www.wetter.de/wetterarchiv/wetterbericht/2010-10-02, and
http://www.wetterzentrale.de/topkarten/fscfsreaeur.html
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Figure 5.12: Samples from MEMOS ECC predictive distribution for surface temperature
over Germany in degrees Celsius, along with raw ensemble forecasts and the observations
at all 508 available stations. All forecasts and the observations are valid 2am on October 3,
2010.

of warm air coming from the Mediterranean Sea streamed over to central Europe, yielding
very warm late summer temperatures in Germany, slightly untypical for the beginning of
October. However, the masses of warm air in combination with the high cloud cover in the
western part and a nearly cloudless night in the eastern part induced an east-west partitioning
in the temperature level. While the temperatures in the western regions of Germany stayed
very mild throughout the night, they dropped heavily in the eastern regions of Germany. In
some geographically sheltered regions in Northern East Germany and in Eastern Bavaria the
temperature could have even dropped to freezing levels.

This east-west temperature partition with especially low temperatures in the easternmost
parts and some south-eastern parts of Germany is clearly visible in the observations (bottom
row) for the night of October 3, 2010. The warmest temperatures can be found in the mid-
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5.9. RESULTS

west of Germany, where the influence of the low-pressure area is strongest. The temperatures
decrease in eastward direction where the influence of the high-pressure area increases. The
described east-west pattern of the temperature is visible in the raw ensemble members as
well. However, all three considered members show a strong tendency to issue more extreme
temperature forecasts than the observations. In the mid-west region of Germany with quite
warm temperatures for an October night the considered ensemble members issue even higher
temperature forecasts than the observations. For the regions of Bavaria with very low tem-
peratures, the raw ensemble forecasts provide even cooler temperature forecasts than present
in the observations. The east-west partitioning in the temperature level is much more pro-
nounced in the raw ensemble forecasts. The raw ensemble overestimates the temperature
at most of the stations with an already high observed temperature and underestimates it at
stations with an already low observed temperature. However, the general spatial structure of
the temperature observations is clearly present in the raw ensemble forecasts.

The samples from MEMOS ECC correct at least for the extreme low temperature forecasts,
resulting in a more balanced spatial structure. Nonetheless, at some of the stations with an
already high observed temperature value, the method still issues too high temperatures in
comparison to the observations. In the MEMOS ECC samples, the general spatial structure
present in the original raw ensemble is clearly visible, only the levels of the temperature
forecasts are adapted by employing univariate MEMOS to the margins. MEMOS ECC pre-
dicts too warm temperatures in East Germany. The ECC member in the left column provides
quite suitable forecasts for the south-east region. The other two members, especially the
ECC member in the right column, issue too cold forecasts for that region.

Obviously, the structure of the east-west partition present in Germany during the night in
question is captured by the raw ensemble. Nonetheless, the raw ensemble cannot forecast the
temperature levels themselves adequately. The postprocessing methods are able to correct
the temperature levels in the right direction. However, the unusual east-west structure is not
captured to its full extent. As this night presents not a common everyday weather situation,
it is harder for a postprocessing method to catch up with such a situation when having only
past data not foretelling such a change. At days with a more standard weather situation that
slowly develops over the training period, the MEMOS postprocessing versions may well be
capturing the spatial structure even more adequately.
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Chapter 6

Discussion

The standard practice to forecast future weather variables such as surface temperature, wind
speed, precipitation amount or other quantities of interest is to employ deterministic numeri-
cal weather prediction (NWP) models on the basis of of differential equations describing the
physics of the atmosphere. However, the outputs of these models provide single deterministic
point forecasts, not allowing to assess the forecast uncertainty of the NWP models properly.
To account for this, ensembles of NWP forecasts have been proposed. The ensemble mem-
bers are generated by running the NPW models with different initial conditions or model
formulations. Forecast ensembles allow for probabilistic weather forecasting, and it is possi-
ble to obtain information about predictive uncertainty via the ensemble spread. Nonetheless,
ensembles tend to be biased and often exhibit dispersion errors. In particular, many ensem-
bles are underdispersed. To correct for these shortcomings, statistical postprocessing of the
NWP output has become routine. However, many of the standard postprocessing methods
are designed for a single weather quantity, a fixed forecast horizon and for fixed locations.
As the raw ensemble forecasts consist of NWP model output describing a variety of aspects
of the atmospheric processes, it can be assumed that multivariate structures are present in the
ensemble forecasts. By applying univariate postprocessing methods to the forecast ensem-
ble, these multivariate structures are ignored.

These shortcomings require the development of postprocessing methods taking into account
inter-variable, spatial, or temporal dependence structures. Several techniques of that type
have already been proposed. This work introduces two extensions of already existing stan-
dard postprocessing methods, namely BMA and EMOS, to account for shortcomings of the
basic versions. Similar procedures to the ones presented here can be developed on the basis
of any desired univariate postprocessing method.
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CHAPTER 6. DISCUSSION

The first extension proposed by Möller et al. (2013) and discussed in Chapter 4 aims at
recovering inter-variable dependence structures that are ignored by standard univariate post-
processing methods. By employing a univariate postprocessing model it is possible to correct
for dispersion errors and biases present in the raw ensemble. However, the dependence struc-
tures of the raw ensemble are not inherited. The proposed extension compensates for this
by providing the univariate margins with a multivariate dependence structure induced by a
Gaussian copula model. The dependence structure is represented by a correlation matrix.
The margins for each weather quantity are postprocessed with the basic univariate method
at hand, here the BMA model. Apart from the postprocessing distributions of the margins
the only parameter that needs to be estimated is the dependence parameter of the Gaussian
copula model. The Gaussian copula model separates the estimation of the margins from the
estimation of the dependence structure. The introduced postprocessing procedure is simple
and not restricted to BMA. It should be noticed, however, that the Gaussian copula procedure
models the multivariate correlation structure only, leaving the margins unchanged. A useful
feature about this approach is the fact that the procedure models the multivariate distribution
after postprocessing. By first applying a univariate postprocessing model to the margins and
then learning about the dependence parameter and the latent Gaussian factors using a verify-
ing observation, the joint residual structure implied by the univariate postprocessing method
is implicitly modeled. This strategy reflects the modeling process in the context of ensemble
postprocessing in an appropriate way. The case study for five weather quantities conducted
in Chapter 4 utilizes the UWME ensemble and revealed that the Gaussian copula multi-stage
procedure yields a multivariate predictive distribution with good multivariate calibration and
sharpness properties. A further advantage of the multi-stage procedure is its flexibility in
the application: It is not restricted to the weather quantities considered there. In general,
the method can be applied to arbitrary weather quantities, as long as a suitable univariate
postprocessing model is at hand.

While the approach presented in Chapter 4 employs a constant correlation matrix for all
observations, more involved estimation strategies might be considered, e.g. a time-varying
correlation matrix. Further investigations performed by Möller et al. (2013) revealed no
additional benefit in the conducted case study. However, for future research and different
data sets the type of the employed correlation matrix should be reconsidered, especially in
high-dimensional situations.

Some alternatives to the Gaussian copula approach use discrete copulas. Examples are the
above mentioned ECC method (Schefzik et al., 2013) or the Schaake shuffle (Clark et al.,
2004). ECC learns the multivariate rank structure from the original raw ensemble, while the
Schaake shuffle investigates historical observations. The advantage of the Gaussian copula
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procedure discussed in this work is that it is not requiring subsequent samples from the
predictive distribution to strictly obey any observed rank structure. While the Schaake shuffle
additionally requires a large number of observations, ECC relies on a sample of the same size
as the original ensemble. Thus, a disadvantage of the current ECC version is the fact that
it only generates an ECC sample of the size of the original ensemble, while the Gaussian
copula approach allows to obtain an arbitrary number of samples. Further research should
be undertaken to investigate the quality of these and other alternative methods to construct
multivariate distributions. The statistics literature has started to discuss these questions (Hoff
et al., 2011) and subsequent work to compare these methods in the ensemble postprocessing
context will be necessary and fruitful.

The Gaussian copula model has received occasional criticism (Mikosch, 2006) as it belongs
to the family of elliptic distributions and is thus not capturing the dependence in the tails of a
multivariate distribution adequately. Other copula models exist that focus on modelling ex-
treme events and heavy tailed distributions. However, in the context of the developed multi-
stage procedures for ensemble postprocessing this concern is not of main interest. The goal
of the procedures developed in this work is to construct a multivariate predictive distribution
after postprocessing a raw forecast ensemble with univariate methods. In case of extreme
weather events, this information is likely to be incorporated to some extent in the ensemble
itself. The Gaussian copula would simply indicate the variability about these extreme values.
The modeling task of main interest in ensemble postprocessing focuses on day-to-day predic-
tion of weather quantities. In the context of predicting and analyzing extreme events, other
copula models may be preferable. Further research is planned in the direction of employing
other copula models, especially vine copulas (Aas et al., 2009), for ensemble postprocessing
and compare the predictive quality to the Gaussian copula approach. An additional research
project that aims at joint modelling of two weather quantities, surface temperature and wind
speed, was started recently. The 2-dimensional Gaussian copula approach will be compared
to a bivariate version of BMA for the ALADIN-HUNEPS ensemble provided by the Hun-
garian Meteorological Service (HMS). For this setting, an alternative BMA version for wind
speed, proposed by Baran (2013) and Baran et al. (2013) will be employed.

The procedure discussed in Chapter 5 introduces a spatially adaptive extension of EMOS,
while considering a single weather quantity. The procedure utilizes two recently developed
methods, the INLA-technique (Rue et al., 2009) and the SPDE approach (Lindgren et al.,
2011), which allows for computing a GMRF representation of a GF. Both techniques are
conveniently implemented in the R-INLA package and can directly be used for model esti-
mation. The key feature is the spatially adaptive extension of the univariate EMOS model,
where the bias-correction parameters are assumed to be realizations of latent GFs. This is
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combined with the SPDE approach allowing to obtain a GMRF representation of these GFs,
resulting in additional computational benefits. The method was developed for temperature,
which can be assumed to have a normal distribution. However, extensions for weather quan-
tities with other marginal distributions are possible, as INLA is not restricted to normally
distributed responses. A future area of research may for example be the development of spa-
tially adaptive models for precipitation or wind speed. In the case of wind speed an modified
version of univariate EMOS exists (see Section 2.1.1 and Thorarinsdottir and Gneiting, 2010)
that can directly be extended in a similar way as the EMOS version for normally distributed
variables. For precipitation, a postprocessing model needs to be employed, that is designed
for the specific situation of precipitation, as for example the EMOS variant proposed by
Scheuerer (2013). However, the discussed extension may well be expanded to other univari-
ate postprocessing models, as the INLA procedure captures a wide range of models and is
very flexible. A generalization of this approach may be a conceivable and interesting area of
research in the context of ensemble postprocessing.

The case study over Germany conducted in this work revealed that MEMOS outperforms
global and local EMOS in its univariate version. The multivariate versions with different
dependence structures improve the multivariate predictive performance as well. When in-
specting the samples from the multivariate MEMOS distributions visually, it can be seen
that these methods are able to capture the spatial structure of temperatures in Germany.

The current MEMOS method relies on the simplest stationary version of the SPDE model
with Matérn covariance function. More involved versions of the SPDE methodology are
possible and the theoretical development is in general straightforward. Of special interest
in climate and weather prediction are non-stationary and anisotropic fields as well as fields
capturing spatio-temporal dependencies. To forecast extreme weather events like a long
period of heavy rain, heavy storms or sudden hail showers, a method taking into account
temporal structures may provide additional benefit. The derivation of more general versions
of the SPDE model as well as their implementation in the R-SPDE-INLA framework is in
progress, for details see Bolin and Lindgren (2011) and Lindgren et al. (2011). Therefore, a
refinement and extension of the basic MEMOS method within the SPDE framework might
be available in near future and further research can be conducted in this direction.

The approximative procedure to sample from the MEMOS predictive distribution (5.41) de-
scribed in Algorithm 5.1 is not a genuinely Bayesian approach, as it only involves sampling
from the posterior marginal distribution of ηs. Instead of additionally sampling from the
posterior marginal of σ2, the posterior mean of σ2 is plugged in and samples Zi ∼ N(0, µ̂σ2)

are obtained. These Zi are used to generate a sample Ys,i = ηs,i + Zi. A more refined and

132



purely Bayesian version of this sampling procedure will be developed in future research.
The refined approach involves to also obtain samples σ2

i from the posterior marginal of σ2.
The sample from the MEMOS predictive distribution (5.41) can then be obtained by sam-
pling Z∗i ∼ N(0, 1) and setting Ys,i = ηs,i + σi · Z∗i . This approach is likely to increase the
spread in the samples Ys,1, . . . , Ys,N.sample, s = s1, . . . , sN and therefore may yield an addi-
tional improvement in the scores and the calibration of the MEMOS predictive distribution.
Due to the Bayesian nature of MEMOS, a further extension of the multivariate MEMOS
ECC procedure is possible that yields a predictive sample of any desired size. That is, for
a single set of parameter values drawn from the posterior distributions of ηs and σ2, a mul-
tivariate MEMOS ECC sample is constructed conditional on the current parameter values.
This procedure may then be repeated arbitrarily often until the predictive sample has reached
the required size. Such an ECC variant would provide a more accurate visualization of the
multivariate predictive distribution and might yield an additional improvement in predictive
performance.

As already discussed in Chapter 5, the current MEMOS version employs a constant variance
in space. A possibility to obtain a model with spatially structured variance may be via one of
the more complex SPDE extensions. Another alternative is to consider a different model that
directly incorporates a spatially varying model variance, as for example stochastic volatility
models. Huang et al. (2011) investigate the application of stochastic volatility models in
an environmental context. They extend existing models to a heteroscedastic version with a
non-stationary covariance structure in space and time. However, they do not employ INLA
or the SPDE method to estimate their model. Further research in this direction may include
a modification of the volatility models implemented in INLA to fit the context of ensemble
postprocessing or alternatively move away from INLA and extend the model of Huang et al.
(2011) to be suitable for the desired purpose of ensemble postprocessing. A comparison be-
tween INLA-based models, standard postprocessing models including a spatially structured
variance (e.g. GMA, see below) and stochastic volatility models similar to the one proposed
by Huang et al. (2011) might be of interest in the ensemble postprocessing context.

Several postprocessing methods utilizing spatially adaptive model parameters or aiming at
producing coherent and calibrated weather fields are already available. Among them are,
for example, methods like spatial BMA (Berrocal et al., 2007, 2008), spatial EMOS (Feld-
mann, 2012) and Geostatistical Model Averaging (GMA, Kleiber et al., 2011a,b). A com-
parison of the predictive performance of the proposed MEMOS method to these state of the
art methods is of interest for future research. A very recently developed spatially adaptive
extension of EMOS utilizing an intrinsic and stationary Gaussian random field model to
perform spatial interpolation of the model parameters was proposed by Scheuerer and Büer-
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mann (2013). This approach represents the predictive mean as a sum of short-term averages
of local temperature observations and functions of the ensemble forecasts. It constitutes a
useful alternative to the current MEMOS version for temperature. Especially concerning
spatial out-of-sample predictive performance, a comparison between MEMOS, the method
proposed by Scheuerer and Büermann (2013), spatial BMA and GMA is of high interest. As
in the current work only spatial in-sample performance was considered, a special interest for
future research will be the assessment of spatial out-of-sample performance of the univari-
ate as well as the multivariate MEMOS variants in comparison to other spatially adaptive
postprocessing methods.

To improve the predictive performance of MEMOS further one may think about incorporat-
ing other covariates in the model that explain the temperature level, such as the elevation
at the stations. Preliminary case studies revealed that the predictive performance of the
MEMOS model deteriorates at stations with a very high elevation. For example, the moun-
tains Zugspitze and Wendelstein in Bavaria, the mountain Feldberg in the Black Forest, or
the mountain Brocken in the Harz region differ significantly in their elevation from stations
in the very north of Germany, which are only several meters above sea level. This suggests
an inclusion of an additional covariate describing the elevation of the observation stations, or
to perform other correction methods within the estimation procedure. Future research may
investigate wether this leads to an improvement in the predictive performance of MEMOS.

To conclude, the two proposed extensions presented in this work lead to an improvement
in predictive performance and yield multivariate predictive distributions with improved mul-
tivariate calibration properties. The methods proposed utilize already existing univariate
postprocessing methods, which makes them easy to handle. The conjunction of marginal
and joint calibration is a very promising concept that can be followed up in further research.
The fact that the statistical postprocessing literature is currently investigating numerous mul-
tivariate postprocessing procedures indicates the relevance of this topic. Both extensions pre-
sented in this work aim at recovering multivariate dependence structures. The first method
models several weather quantities jointly and thus accounts for dependencies among these
quantities while ignoring spatial structures. The second method incorporates spatial depen-
dencies but only for a single weather quantity. A natural extension of high relevance is the
combination of both ideas to model weather quantities jointly in a spatio-temporal domain.
Such a procedure can utilize advanced features of the SPDE approach, where spatio-temporal
modelling is possible. With the ongoing development and implementation of more complex
features in the R-SPDE-INLA framework, the tools to analyse such models are provided.
Several years from now, joint univariate and multivariate postprocessing in a combined inter-
variable and spatio-temporal setting may well become feasible.
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