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Zusammenfassung. Die vorliegende Arbeit berichtet über die Untersuchung

der Wenigteilchenphysik in einem ultrakalten Gasgemisch mit stark unterschiedli-

chen Massen bei groÿen Streulängen. Zu diesem Zweck wurde ein neues Experiment

für die Erzeugung von quantenentarteten 6Li und 133Cs Gasen aufgebaut. Darin

haben wir 19 interspezies Feshbach Resonanzen in den jeweils zwei Hyperfeinzu-

ständen mit den niedrigsten Energien der beiden Spezies bei Temperaturen im µK

Bereich gemessen. Wir verwenden eine Coupled-Channels Rechnung, das Asymptotic

Bound-state Modell, und die Multichannel Quantum Defect Theorie um die Positio-

nen der Feshbach Resonanzen zu errechnen und vergleichen diese drei Modelle. Alle

Modelle liefern eine konsistente und präzise Beschreibung der Zweikörperstreureso-

nanzen des Gasgemisches. Dreikörperverlustkoe�zientmessungen im Bereich nega-

tiver Streulängen nahe einer breiten Feshbach Resonanz im energetisch niedrigsten

Hyperfeinzustand bei Temperaturen von 450 nK weisen zwei aufeinanderfolgende

E�mov Resonanzen auf. Die zugehörigen Streulängen ergeben einen Skalierungsfak-

tor, welcher mit universellen Vorhersagen bei Nulltemperaturen im Resonanzlimit

konsistent ist. Die vorliegenden Messungen erlauben zum ersten Mal universelle We-

nigteilchentheorien von Mischungen mit unterschiedlichen Massen zu überprüfen.

Abstract. This thesis reports on the investigation of few-body physics in an

ultracold mass-imbalanced mixture at large scattering lengths. For this purpose, a

new apparatus for the creation of quantum degenerate 6Li and 133Cs gases has been

built. We measure 19 interspecies Feshbach resonances in the two energetically low-

est hyper�ne channels of each species of an ultracold mixture with temperatures on

the µK scale. We apply and compare a coupled-channels calculation, the asymptotic

bound-state model, and the multichannel quantum defect theory for the calculation

of the Feshbach resonance positions. All models provide a consistent and accurate

description of the two-body scattering resonances in the mixture. Three-body loss

rate measurements on the negative scattering length side of a broad Feshbach reso-

nance in the energetically lowest hyper�ne channel at 450 nK reveal two consecutive

E�mov resonances. The scattering lengths assigned to the two E�mov resonances

yield a scaling ratio that is consistent with a universal prediction in the zero tem-

perature and resonant limit. The presented measurements provide the �rst test for

universal few-body theories of mixed-species systems with large mass-imbalance.
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Chapter 1

Introduction

In the early 1970's, Vitali E�mov made a bizarre and controversial prediction during

his study on the quantum mechanical three-body problem. He concentrated on a

system of three bosons with equal mass m, at energies su�ciently low to neglect

all higher partial waves, hence requiring only the s-wave scattering length a for its

description. When at least two pairwise interactions are characterized by |a| � r0,

where r0 is the range of the interaction potential, E�mov found that a number of

three-body bound states with geometrically spaced binding energies exist in the

energy range between ~2/(mr0) and ~2/(ma), where ~ is the Planck's constant1.

As |a| increases, more of these bound-states appear, resulting in an in�nite amount

for a → ∞ [E�mov, 1970; E�mov, 1971; E�mov, 1979]. Counterintuitively, the

trimer states persist even for negative scattering lengths, where no shallow dimer

states are supported. Moreover, the size of these trimers also increases for each

higher lying state with a universal scaling factor. These �ndings challenged the

former understanding of quantum physics. However, attempts to prove it wrong

only resulted in additional proof for this e�ect [Amado and Noble, 1971; Amado and

Noble, 1972], ultimately leading to the acceptance of the theoretical predictions.

E�mov's �ndings are linked to a remarkable result in the three-body sector,

obtained by Thomas in 1935 [Thomas, 1935] during his study on the triton. He

considered the case of a generic two particle potential with depth V0 that only

supports a single bound state. In the zero-range limit, i.e. r0 → 0 and V0 → −∞,

he found that the binding energy of the deepest bound trimer diverges to in�nity

when the dimer energy is kept �xed. It is outstanding that a potential which only

allows for a single two-body bound state supports a trimer state with in�nite binding

1For the remainder of the thesis we follow the commonly known standard notation for the
natural constants, and only introduce speci�c constants where necessary.
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Chapter 1. Introduction

energy. This behavior can be ascribed to the large s-wave scattering length a� r0

resulting from the zero-range limit. Obviously, in realistic systems, one has to

account for short-range e�ects, which introduce a lower bound for the depth of this

three-body bound state.

One of the reasons why the results described above were and still are somewhat

di�cult to grasp intuitively is the enormous complexity of the three-body problem.

In contrast, the two-body problem allows for a much simpler treatment. Due to an-

gular momentum conservation it can be reduced to solving an ordinary second-order

di�erential equation in a single spatial coordinate, allowing for intuitive analytical

results. The addition of only one particle increases the degrees of freedom to a point

where no general e�ective mathematical methods exist for the calculation of the

resulting second-order partial di�erential equations in three dimensions. However,

profound knowledge of the interactions in simple three-body system is inevitable

for the understanding of few- and many-body phenomena arising in samples with

a larger atom number. In some cases, for example, the theoretical methods for the

description of three-particle interactions could be generalized to predict the behavior

of more particles, still described within a few-body approach [Blume and Greene,

2000; Mehta et al., 2009; von Stecher, 2010]. In the many-body sector, the study

of three-component fermionic systems provides intriguing prospects for deepening

the understanding of many-body e�ects [Heiselberg et al., 2000; Honerkamp and

Hofstetter, 2004; Paananen et al., 2006; Cherng et al., 2007; Zhai, 2007; Rapp et al.,

2007; Catelani and Yuzbashyan, 2008; Rapp et al., 2008; Bedaque and D'Incao,

2009]. A remarkable result connecting the two �elds is the transition from a few- to

a many-body system, as studied by the group of Selim Jochim at the University of

Heidelberg. Investigations on a single impurity immersed in a one dimensional Fermi

sea with variable atom number have shown how this system evolves from the few-

to the many-body regime when adding particles one by one. Surprisingly, the situ-

ation is well-described by a many-body calculation already for four (non-impurity)

particles [Wenz et al., 2013].

Besides laying the foundation for the understanding of many-body physics, the

three-body problem in general is relevant to a variety of systems in many di�erent

areas of physics. In the realm of molecular and chemical physics, for example, the

three-body problem emerges from applying the Born-Oppenheimer approximation

to separate out the electronic motion [Yuan and Lin, 1998; Launay and Dourneuf,

1982; Honvault and Launay, 1998; Cornelius and Glöckle, 1986; Nielsen et al., 1998;

Esry et al., 1996b]. This description also �nds application in atom-molecule sys-

tems [Robicheaux, 1999; Li and Lin, 1999; Yamazaki, 1999]. On much smaller dis-
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tance scales, the interaction of three-nucleon systems [Carlson and Schiavilla, 1998]

calls for improved models. These can also help understand the behavior of more

complex nuclear clusters, that can be approximated by three-body models [Carlson

and Schiavilla, 1998; Zhukov et al., 1993; Johannsen et al., 1990; Bang and Thomp-

son, 1992; Fedorov et al., 1994a; Fedorov et al., 1994c; Fedorov et al., 1994b]. Even

the neutrons themselves involve interesting three-body problems [Richard, 1992], as

they consist of three quarks. The above mentioned examples are not directly con-

nected to the E�mov e�ect, which occurs only in ensembles with resonant scattering

lengths. However, techniques created in this limit might be generalizable to treat

non-resonant cases, as well.

A more exotic specimen, which is closer related to the studies by E�mov and

Thomas, is the class of Borromean systems [Zhukov et al., 1993], which refers to sys-

tems that support a three-body bound state, even though the two-body subsystems

do not exhibit bound states. Two conspicuous examples for Borromean states with

mass-imbalanced constituents are the 6He and 11Li neutron halos [Riisager, 1994;

Hansen et al., 1995; Tanihata, 1996] near the neutron drip line, where a 4He or 9Li

core, respectively, is surrounded by two loosely bound neutrons.

A speci�c example for a three-body system where the E�mov e�ect is expected

is the 4He3 trimer, which was incidentally considered the prime candidate for its

experimental con�rmation [Lim et al., 1977]. The scattering length2 of a = 189 a0 is

much larger than the e�ective range rs = 14 a0 and the van der Waals length 10 a0

of the potential. A single two-body bound state with binding energy E2 = 1.3 mK

is supported by the potential, whereas two three-body bound states with energies

E
(0)
3 = 126 mK and E

(1)
3 = 2 mK have been predicted. The ground state E(0)

3

has been observed in 1994 [Schöllkopf and Toennies, 1996], but there is an ongoing

discussion whether this state quali�es as an E�mov state (see Sect. 6.8 in Braaten

and Hammer, 2006). The excited state E(1)
3 , which is widely accepted as belonging

to the class of universal E�mov states, has not yet been detected. In fact, the

E�mov states remained unobserved for 35 years after their prediction in all systems

probed, due to a lack of a suitable system with natural parameters that allow for

their observation.

The progress in atomic physics stimulated new interest in low energy few- and

many-body processes, since in ultracold gases the structure and dynamics are dom-

inated by the mutual interaction and not the entropy. The considerable advantage

as compared to the experiments in other sub�elds of physics is the unprecedented

2For the following discussion of 4He3 we employ the values of the TTY potentials [Tang et al.,
1995]. An extensive comparison of di�erent potentials can be found in Braaten and Hammer, 2006.
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Chapter 1. Introduction

level of control over all atomic degrees of freedom. Most notably, the binary in-

teraction between particles can be controlled by use of Fano-Feshbach resonances3.

The formalism for these energy dependent resonances, which arise due to coupling

of a bound-state to the continuum scattering state of two atoms, was independently

developed by Herman Feshbach in the context of nuclear physics [Feshbach, 1958;

Feshbach, 1962] and by Ugo Fano in the realm of atomic physics [Fano, 1961]. The

magnetic �eld dependence of these resonances relevant for low energy scattering was

found by Stwalley, 1976, and Tiesinga et al., 1993 proposed that the resonances can

be used to change the value and sign of the s-wave scatting length, which is the

dominant parameter for the description of interactions in ultracold samples. Fesh-

bach resonances were �rst observed in ultracold gases in 1998 [Inouye et al., 1998;

Courteille et al., 1998], and have since then been applied to control the interactions

in a variety of systems (see e.g. Chin et al., 2010 and references therein).

The advance in the experimental study of ultracold interactions goes hand in

hand with the progress in the theoretical investigation, with experiments stimulat-

ing new theoretical work and vice versa. Particularly the description of two-atom

collisions in the sub-mK regime had to be put on solid mathematical footing [Weiner

et al., 1999; Gao et al., 2005; Gao, 2008; Mies and Raoult, 2000; Raoult and Mies,

2004; Burke, 1999; Burke et al., 1998], because earlier ab initio calculations were

not accurate enough for the precise prediction of Feshbach resonances and �eld de-

pendent scattering lengths. Moreover, typical molecular spectroscopy experiments

(e.g. Staanum et al., 2007) did not probe the relevant region near the asymptote of

the interatomic potentials, which exhibits a dominant in�uence on the low-energy

scattering behavior. With the appropriate measurement data from ultracold ex-

periments available, these potentials can be re�ned to the point where an accurate

assignment of the magnetic �eld dependent scattering lengths is obtained. For 6Li

and 133Cs intraspecies interactions, for example, this has only been achieved re-

cently [Zürn et al., 2012; Berninger et al., 2013]. Even with su�cient experimental

data one cannot obtain an exact analytical solution of the Schrödinger equation, as

it contains terms that couple to an in�nite amount of electronic con�gurations. How-

ever, several approximations from di�erent areas of research on collisional processes

are available for tackling this problem.

The most rigorous and straightforward numerical approach is the coupled-channels

calculation [Hutson, 1994], which has already been extensively used in the realm of

chemistry and chemical physics. However, the calculations typically include a large

3For reasons of brevity we refer to them as Feshbach resonances throughout this thesis.
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number of states and are computationally expensive. Often, the physical interpre-

tation of the results are obscure. The analysis of the �rst measurement of Feshbach

resonances between di�erent species [Stan et al., 2004; Gacesa et al., 2008], for ex-

ample, turned out to be false [Schuster et al., 2012]. Hence, it is useful to compare

the results of the numerical calculations with simpler models that allow for much

more intuitive insight into the scattering process, while reducing the computational

e�ort enormously.

One such model is the multichannel quantum defect theory [Seaton, 1983], which

has been reformulated and adapted to describe all sorts of interactions [Greene

et al., 1979; Greene et al., 1982] (see also Croft et al., 2011 and references therein),

including the collision between ultracold atom pairs. Its main advantage is the

separation of length scales, because at long-range the wavefunctions often take on a

simple and known analytical form. Thus, the numerical calculation only has to be

performed at short range, where couplings can often be neglected. Additionally, the

behavior of the wavefunction in the inner part is smooth, so that it is su�cient to

calculate it only for a few energies, and interpolate between these sampling points,

often referred to as quantum defects. In some cases, the calculation of one quantum

defect describes the scattering behavior near the asymptote and the bound-states

excellently.

Another simple way of calculating Feshbach resonance positions is the use of the

asymptotic bound-state model [Tiecke et al., 2010]. It is based on earlier work by

Moerdijk et al., 1995, and employs only bound-state energies and their wavefunc-

tion overlap as adjustable free parameters for the description of Feshbach resonances.

Thus, the spatial part of the Schrödinger equation is not explicitly solved and the

calculation reduces to a low-order matrix diagonalization. As a result, one can ob-

tain an overview over the expected resonance structure with minimal computational

e�ort.

Besides the advances in the treatment of two-body interactions, tremendous

progress has also been made in the description of three-particle interactions in the

framework of atomic physics [Botero and Greene, 1986; Bohn et al., 1998; Lin,

1981; Koyama et al., 1989; Zhou et al., 1993; Esry et al., 1996b; D'Incao et al.,

2009; Blume and Greene, 2000; Rittenhouse et al., 2010; von Stecher and Greene,

2009]. The interest originates from the fact that atomic systems can be prepared in

the energetically lowest state, making inelastic two-body collisions an endothermic

process and suppressing the associated losses (see e.g. [Söding et al., 1998; Mies

et al., 1996; Leo et al., 1998; Arlt et al., 1998; Guery-Odelin et al., 1998; Hopkins

et al., 2000]). Hence, the leading loss mechanism then becomes three-body losses.

5



Chapter 1. Introduction

These occur in a triatomic scattering event when two atoms form a molecule whose

binding energy is carried away by both the molecule and the third atom, resulting

in losses from the trap. Formerly viewed as undesirable e�ect that limits lifetime

and stability of condensates, it was the achievement of C.H. Greene and collabora-

tors [Esry et al., 1996a] to �nd the intimate connection between three-body losses

and E�mov physics [Nielsen and Macek, 1999; Braaten and Hammer, 2001; Bedaque

et al., 2000; Esry et al., 1999] in the universal regime, where the scattering length

is the dominating length scale. It was concluded that the three-body loss rate co-

e�cient L3, which behaves as L3 ∝ C(a)a4 in this regime, is subject to periodic

modulations in the coe�cient C(a). These modulations are caused by the universal

three-body bound states predicted by E�mov [E�mov, 1970; E�mov, 1971].

They have �rst been observed in the group of R. Grimm in Innsbruck [Kraemer

et al., 2006] in a sample of ultracold 133Cs atoms. Several other experiments with

equal mass systems have subsequently also found evidence for the energetically low-

est E�mov state [Gross et al., 2009; Ottenstein et al., 2008; Pollack et al., 2009;

Wild et al., 2012; Huckans et al., 2009; Zaccanti et al., 2009; Berninger et al., 2011a;

Roy et al., 2013]. The excited state was found in a three-component mixture of 6Li

atoms [Williams et al., 2009], where the interpretation of the E�mov e�ect is more

complex than for a one or two component sample [Braaten et al., 2010]. The scaling

factor in this case is the same as for an equal mass system.

For the con�rmation of the scale invariance predicted by E�mov, it is necessary

to measure a series of at least three E�mov resonances. If the �rst resonance is found

at a(0)
− , the N -th excited state can be found at a(N)

− = a
(0)
− exp(πN/s0). This means

that for a(0)
− ∼ 1000 a0, as is the case for 133Cs, the �rst excited state is positioned

at a(1)
− ∼ 23000 a0, since the scaling factor for equal mass bosons is 22.7. In order to

probe this regime, one requires an extremely stable magnetic �eld control, because

small �eld �uctuations at such high a values result in enormous �uctuations of the

scattering length, thus lowering the signal from an E�mov resonance due to aver-

aging. Moreover, extremely low temperatures on the order of ∼ 1 nK are necessary

for the validity of the zero temperature limit. For higher temperatures, the thermal

de Broglie wavelength is on the order of a(1)
− , and L3 is unitarity limited [D'Incao

et al., 2004]. The Grimm group has reported the measurement of an excited E�-

mov state in a recent publication [Huang et al., 2014] during the completion of this

work, owing to a model [Rem et al., 2013] that allows to take �nite temperature ef-

fects into account by means of an S-matrix formalism [E�mov, 1979; Braaten et al.,

2008]. However, the measurement of a third resonance is too involved for the current

temperature and magnetic �eld control regimes of single species experiments.
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Several publications have pleaded for the use of a mass-imbalanced system for

the detection of a series of resonances [D'Incao and Esry, 2006; Bloom et al., 2013;

Greene, 2010], because here the scaling factor is drastically reduced, e.g. to 4.9

for 6Li-133Cs [Braaten and Hammer, 2006; D'Incao and Esry, 2006], or 6.9 for 6Li-
87Rb [D'Incao and Esry, 2006]. Nonetheless, the only mixture that has been em-

ployed for the investigation of E�mov resonances up to the time of this work is

K-Rb [Barontini et al., 2009; Bloom et al., 2013]. However, the results are not

consistent, and the scaling factor of 131 impedes the detection of excited states.

In this thesis, we present the �rst detection of two consecutive E�mov resonances

in a system with extreme mass imbalance via three-body loss rate measurements.

To this end, we start by introducing the new experimental apparatus that allows to

create ultracold 6Li-133Cs mixtures in Chap. 2. While this apparatus also allows to

bring both gases to quantum degeneracy separately, the control of the temperature

in a mixture is more involved, as discussed in Sect. 2.5. In Chap. 3 we present ex-

perimental data to re�ne the existing 6Li-133Cs potentials [Staanum et al., 2007] by

measuring 19 interspecies Feshbach resonances in the two lowest spin states of each

species at temperatures in the µK regime. The resonance positions are analyzed via

three di�erent models: The coupled channels calculation, the multichannel quantum

defect theory, and the asymptotic bound-state model. All models are consistent and

reproduce the resonance positions with sub-G accuracy. Together with 6498 rovibra-

tional transitions from Fourier transform spectroscopy, the resonance positions are

used to obtain precise molecular 6Li-133Cs potentials and �eld-dependent scattering

length, which is essential for an accurate analysis of E�mov resonances.

In the last part of the thesis (Chap. 4) we turn to the detection of E�mov res-

onances. A broad Feshbach resonance in the energetically lowest hyper�ne channel

allows for an excellent control of the interspecies scattering length. Atom loss fea-

tures at speci�c �elds provide an indication of three consecutive E�mov states. The

time-dependent three-body losses are analyzed by use of a simple model, yielding

the three-body loss coe�cient L3. Two distinct resonances in L3 mark the position

where E�mov states merge into the three free atom continuum. The third resonance

is deeply in the unitarity-dominated regime and can therefore not be resolved in our

L3 measurements. The �nite temperature might even have an e�ect on the position

of the second resonance. Our measurements provide the �rst tests for the mass de-

pendence of the universal scaling factor. An assignment of scattering length to the

�eld positions of the two resonances allows us to compare this ratio with theoretical

values calculated with simplifying approximations [D'Incao and Esry, 2006; Braaten

and Hammer, 2006; Wang et al., 2012b; Esry et al., 2008]. While measured and

7



Chapter 1. Introduction

calculated ratios are consistent, the error is too large to quantitatively test speci�c

models. Also, there are currently no models that account for possible shifts of the

�rst resonance due to �nite range e�ects or the changing value of the background
133Cs-133Cs scattering length. The model in Rem et al., 2013 has not yet been imple-

mented for the heteronuclear case in order to account for �nite temperature e�ects.

We conclude our discussion by summarizing our results and giving an outlook on

future plans and applications for our experiment in Chap. 5.
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Chapter 2

Creation of Ultracold Li-Cs Mixtures

near Quantum Degeneracy

Parts of this chapter are based on the following publications:

M. Repp, R. Pires, J. Ulmanis, R. Heck, E.D. Kuhnle, M. Weidemüller, E. Tie-

mann

Observation of interspecies 6Li-133Cs Feshbach resonances

Physical Review A 87, 010701 (2013)

M. Repp, R. Pires, J. Ulmanis, S. Schmidt, R. Müller, K. Meyer, R. Heck, E.D.

Kuhnle, M. Weidemüller

A helical Zeeman slower for sequential loading of two elements with large

mass di�erence into optical dipole traps

Manuscript in preparation

For the experiments discussed in this work, we require a 6Li-133Cs mixture at

extremely low temperatures and high phase-space densities. A clear observation

of E�mov resonances, for example, requires at least temperatures on the order of

hundreds of nK. Otherwise, the cross-section for binary s-wave collisions (as derived

in Sect. 3.2.1) is limited to σ = 4π/k2 already at relatively low values of a, which

results in unitarity limited three-body loss rates that do not allow to resolve E�mov

features (see Chap. 4). For the observation of Feshbach resonances, as demonstrated

in Chap. 3, the temperatures only need to be on the order of a few µK, since here

it is su�cient to observe losses connected to the increase of the scattering length

9



Chapter 2. Creation of Ultracold Li-Cs Mixtures near Quantum Degeneracy

without resolving additional structure in the loss feature.

In this chapter, we introduce our approach to the creation and investigation of

an ultracold 6Li-133Cs mixture. As we describe our experimental setup extensively

in our earlier work [Repp et al., 2013; Repp, 2013; Repp et al., 2014], we only give

a coarse overview over the experimental apparatus in Sect. 2.1. Our method for the

creation and combination of ultracold 6Li and 133Cs gases at temperatures in the µK

range, as employed for the detection of Feshbach resonances (Chap. 3), is described

in Sect. 2.2. Yet, for the upcoming experiments we need an even colder sample. It is

straightforward to bring both species to quantum degeneracy separately, as discussed

in Sect. 2.3 for 133Cs and Sect. 2.4 for 6Li. Bringing the combined species together

to the temperatures required for the study of E�mov physics or even to quantum

degeneracy, however, is more involved. We discuss the obstacles and describe our

approach to overcoming them in Sect. 2.5.

2.1 Overview of the Experimental Apparatus

The main components of our setup for cooling and trapping of 6Li-133Cs mixtures

are presented in this section. The di�erent segments of our vacuum chamber, which

are required to reach ultra-high vacuum (UHV), are explained in Sect. 2.1.1. The

magnetic �eld coils, which are important for the manipulation of the ultracold atoms,

are introduced in Sect. 2.1.2 and an overview of the lasers required for cooling

and trapping both atomic species is given in Sect. 2.1.3. We brie�y introduce the

computer control of the experiment in Sect. 2.1.4 and demonstrate our methods for

the extraction of the sample properties in Sect. 2.1.5.

2.1.1 Vacuum Chamber

Experiments with ultracold atoms require ultrahigh vacuum in order to minimize in-

teractions with room temperature background gas particles that lead to atom losses.

However, we need to evaporate the condensed samples of 133Cs and 6Li in order to

load the atoms into optical traps. The temperatures required to reach vapor pres-

sures for su�cient atom �uxes from the 133Cs (375 K) and 6Li (625 K) reservoir

lead to partial pressures of 10−3 and 10−5 mbar, respectively. These pressures are

several orders of magnitude too high for our experiments with cold atoms, as colli-

sions with the particles of the background gas would prevent loading and storing the

cold atoms. To resolve this dilemma, we divide our chamber into di�erent segments,

as depicted in Fig. 2.1, in order to control the vacuum conditions in the di�erent
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Figure 2.1: Overview of the experimental apparatus. The upper panel gives
an overview over the complete setup, the lower channel a zoom into the Zeeman
slower and experimental chamber part. The labeled sections of the vacuum
setup are described in Sect. 2.1.1. Figure taken from Repp, 2013.

regions individually via the technique of di�erential pumping.

As a source for the atoms we use a double species e�usive oven (see Fig. 2.1),

modi�ed from the Ketterle design [Stan and Ketterle, 2005] to account for the 6Li

and 133Cs properties (for details see [Repp, 2013]), which allows for an individual

control of the atomic 6Li and 133Cs �uxes via the temperatures of the separate 6Li and
133Cs reservoirs. The vapor pressure in this section is regulated by a combination of

an ion getter1(IGP) and a titanium sublimation pump2(TiSub). The oven segment

is connected to the next section, the di�erential pumping chamber, via a 103 mm

long tube with 7 mm inner diameter, which limits the �ux of particles from the

oven section. An additional ion getter pump3 in this chamber leads to a further

1Starcell, Varian, 75 l/s pumping speed.
2From Varian.
3Starcell, Varian, 45 l/s pumping speed.
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Chapter 2. Creation of Ultracold Li-Cs Mixtures near Quantum Degeneracy

reduction of the vapor pressure. The aforementioned components are connected to

the main experimental chamber4 via a 500 mm long tube with an inner diameter of

10 mm. This section is also used for slowing the atomic beam via light forces (see

Sect. 2.1.2). The low vacuum conductivity through this tube and a non-evaporable

getter coating [Benvenuti et al., 1999] in the main chamber, which is connected

to a UHV pumping chamber that contains an ion getter and titanium sublimation

pump5, lead to vapor pressures on the order of 10−10 mbar and 1/e atom lifetimes

of ∼4 s in the "Experimental chamber" (see Fig.2.1), which is su�cient for the

Feshbach spectroscopy experiments in Chap. 3. We speculate that the reason for

these relatively high pressures are angle valves with Viton6 seals, which were heated

above their speci�ed maximum temperature during the bake-out process. Both

leaks and outgassing might cause these pressures. As the lifetimes of 4 s are not

su�cient for the creation of a 133Cs BEC, we exchange all valves by all-metal valves

and remove the gate valve in the UHV section (see Fig. 2.1) for the experiments

performed in Sect. 2.3, Sect. 2.4, and Chap. 4. The acquired pressures on the order

of ∼ 10−11 mbar yield 1/e atom lifetimes of ∼ 40 s.

The main chamber provides optical access in the horizontal direction via four

CF63 and two CF40 viewports. The vertical optical access is ensured by two cus-

tom made CF150 reentrant viewports7 (see Fig. 2.1), which allow the placement of

magnetic �eld coils at a distance of 19.5 mm from the center point of the chamber

(see Fig. 2.2), where the atoms are trapped. All main chamber viewports are anti-

re�ective (AR) coated for the appropriate wavelengths and are made from Suprasil

3001, which maximizes the transmission of the required high power 1064 nm dipole

trap lasers and thus reduces thermal lensing e�ects. The access for the laser beams

that are used to slow the atomic beam emitted from the oven section is provided by

the "Slower viewport", as indicated in Fig. 2.1. It is made from high temperature

resistant kodial, which allows for heating of this viewport in order to prevent depo-

sition of atoms from the atomic beam. The same AR coating as used for the main

chamber viewports has been applied to the slower viewport.

2.1.2 Magnetic Field Coils

Magnetic �elds are a main handle for the manipulation of ultracold atoms besides

light �elds. They are employed for slowing the atomic beam emitted from the

4MCF800-EO200080.16, Kimball physics Inc.
5VacIon Plus 150 Starcell Kombipumpe, Varian.
6From MDC.
7Bought from UKAEA Culham.
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Figure 2.2: Overview of the relevant magnetic �eld coils. (a) Position of
the MOT (violet) and Feshbach and curvature (green) coils with respect to the
chamber. (b) The measured (circles) and calculated (solid line) �elds of the
MOT coils for a current of 97.7 A. (c) The inhomogeneities of the magnetic
�eld of the Feshbach coils at 400 A (red circles) can be compensated for by the
curvature coils (green circles) operated at a current of ∼208 A. Figure taken
from Repp, 2013.

oven, cooling and trapping the atoms in a MOT, Raman sideband cooling of 133Cs,

selective imaging of di�erent magnetic sublevels, and last but not least for the tuning

of intra- and interspecies scattering lengths. The following section introduces the

coils that are required for these processes.

� Zeeman slower coils. The Boltzmann distribution of 133Cs (6Li) atoms at

a typical oven operating temperature of 375 K (625 K) peaks around 400 m/s

(1700 m/s). These velocities are about two or three orders of magnitude above

typical MOT capture velocities, which are on the order of a few m/s. There-

fore, we slow the atomic beam by use of a Zeeman slower. The atoms that

are emitted from the oven are illuminated with a laser beam that propagates

in the opposite direction of their movement. Absorption of the light leads to

momentum transfer in the direction of the laser beam propagation. The mo-

mentum an atom acquires from spontaneous emission is zero, when averaged

over many emission processes, due to the isotropy of the spontaneous emission

process. The resulting net momentum transfer leads to a reduction of the

atom velocities. However, since this slowing leads to a change of the Doppler

shift, we apply magnetic �elds to keep the atoms resonant with the light. The

required magnetic �eld B, which scales as B ∝
√

1/m [Repp et al., 2014],

where m is the atomic mass, is about a factor of �ve larger for 6Li atoms as

13



Chapter 2. Creation of Ultracold Li-Cs Mixtures near Quantum Degeneracy

compared to 133Cs atoms. Instead of using two di�erent slowers, which would

limit the optical access to the experimental chamber, we use a construction

similar to the one pitch coil presented by Bell and colleagues [Bell et al., 2010].

However, instead of using one coil, we use four interleaved coils (see Fig. 2.1),

where the two "Outer helical coils" (operated at a current of 30 A) are de-

signed in a way that results in optimal slowing �elds for the 133Cs atoms. All

four coils together ( "Outer helical coils" and "Inner helical coils"), operated

at a current of 75 A, provide the �elds necessary to slow 6Li. This compo-

sition allows for a fast switching between the two di�erent con�gurations of
6Li and 133Cs. The scheme of the coils is chosen in such a way that the last

part of the magnetic �eld for deceleration is provided by the MOT coils. In

order to assure a smooth transition from Zeeman slower to MOT �elds, two

additional coils are used. One is mounted between the Zeeman slower and the

main chamber, the other one is on the opposite side of the main chamber. To

remove the heat generated by the high currents, we apply water cooling inside

the hollow core wires. For more details on this novel Zeeman slower scheme

we refer to Repp, 2013 and Repp et al., 2014.

� MOT coils. The quadrupole �elds for the MOTs are created by a pair of

coils in anti-Helmholtz con�guration. A total of 6 layers with 12 windings

each, with a minimal radius of 100 mm and a minimal distance to the chamber

center of 102 mm, generate gradients of ∂Baxial
Cs /∂z= 9.5 G/cm (∂Baxial

Li /∂z=

31 G/cm) at currents of ICs= 30 A (ILi= 97.7 A) for the 133Cs (6Li) MOT (see

Fig. 2.2(b)). As mentioned earlier, the �elds are also used as the last stage

of the Zeeman slower. The heat is dissipated by water cooling through the

hollow core wire. The time required for switching o� the MOT coils from their

operating values exceeds 10 ms, a limit which is given by eddy currents in our

setup.

� Compensation cage. Magnetic stray �elds, as well as the earth's magnetic

�eld, are compensated for by three pairs of rectangular coils with dimension

800 mm × 1380 mm × 660 mm. Homogeneous �elds of up to 2 G can be

created in the center of the cage by 100 windings in one horizontal and the

vertical direction and 150 windings in the other horizontal direction at operat-

ing currents of 2.5 A. Due to the large number of windings, the inductance of

the coils limits the times for switching between di�erent �elds to no less than

∼ 20 ms per 200 mG.

14



2.1. Overview of the Experimental Apparatus

� Raman coils. The small magnetic �elds required for Raman cooling or fast

displacement of the MOT position are created by three pairs of coils that

are wound around the CF63 and CF150 viewports of the chamber. While

the resulting magnetic �elds are not as homogeneous as the ones from the

compensation cage, the switching times for a few 100 mG are only on the

order ∼1-2 ms, due to the low winding number of 13 windings. The �eld

created by these coils is typically on the order of 150− 300 mG/A.

� Feshbach coils. The high �eld coils for the tuning of the scattering length

consist of four windings in axial direction, and six layers in radial direction.

The spacing of 5 mm between neighboring windings and layers provides enough

space for the glass �ber tube8 that is used for electrical isolation. To reduce

inhomogeneities, we use a point symmetric design for upper and lower coil. The

desired �elds of the coils are calculated by use of elliptic integrals [Bergeman

et al., 1987], and the appropriate pro�les for the inner layers are milled into a

peek mount with a CNC milling machine. A low viscosity epoxy is used to glue

the wire, and the pro�les for the outer layers are milled into the epoxy after an

age hardening process. A minimal inner radius of 39.1 mm and a distance from

the center of the chamber of 19.5 mm yields �elds in the center of the chamber

of ∼1350 G at a current of 400 A. The electric heat is dissipated by pumping

water with a pressure of 10 bar through the hollow core wire with a round

inner hole of 2.8 mm diameter and a quadratic cross section of 4 mm × 4 mm.

A custom made industrial water cooling unit9 stabilizes the temperature of

the cooling water to ∆T < 0.3 K, in order to keep changes of the magnetic

�eld due to thermal expansion of the coils to a minimum. The dimension of

the coils follow the geometry of the reentrant viewports, which keeps the coils

from reaching a Helmholtz con�guration. As can be seen in Fig. 2.2(c), the

�eld in the center of the chamber is inhomogeneous. A �t to the measured

�eld values shows that the axial �eld is well described by the functional form

Bz = B + αBz2, where α = 0.0145 cm−2. The �eld is actively stabilized by

using a feedback loop with a current transducer10 and a PID controller.

� Curvature coils. In order to compensate for the inhomogeneities of the

Feshbach coil, we place a pair of coils inside the Feshbach coils. Each of the

two coils have two windings, two layers, a minimal inner radius of 20.1 mm,

8BasTech GSG500.
9WKW100, efcooling.
10LEM IT-600S.
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and a distance from the center of the chamber of 20.5 mm. The �elds of

these coils are curved much stronger than the ones of the Feshbach coils.

This can be quanti�ed by a �t of measured �eld values to the function Bz =

B + αBz2, which yields an order of magnitude larger α = 0.170 cm−2 as

compared to the Feshbach coil. Superposing both �elds in opposite directions

yields a homogeneous axial �eld (see green circles in Fig. 2.2(c)) with less

than 1 � �eld deviation over an interval of 1.4 mm in the center on the

coil axis. The material, as well as the production, symmetry and cooling

procedure is the same as for the Feshbach coils. However, because the MOT

coil switching times limit the Raman sideband cooling for the 133Cs atoms,

we use the curvature coils in a quadrupole magnetic �eld con�guration in the

current setup. The faster switching times of ∼ 1-2 ms between di�erent �eld

gradients on the order of 10 G/cm enable an e�cient cooling of the 133Cs

atoms into the Raman lattice.

2.1.3 Laser Setup for Cooling and Trapping of 6Li and 133Cs

For the cooling and trapping of the 6Li and 133Cs atoms we require laser light of

several di�erent frequencies, powers and beam waists. In this section we provide an

overview on all lasers that are used in our experiments.

6Li MOT lasers

The light for the cooling of 6Li is generated by a commercially available �ber coupled

external cavity diode laser 11(ECDL) at 671 nm (referred to as "Li TA"), which is

internally ampli�ed by a tapered ampli�er (TA) chip. The output power of∼200 mW
is used to create the cooling and repumping beams for MOT and slower, and for

absorption imaging of the atoms when no magnetic �elds are present. We frequency

stabilize this laser 166 MHz below the 22S1/2 |f = 1/2〉 → 22P3/2 transition via

frequency modulation spectroscopy [Bjorklund et al., 1983] (see Fig. 2.3). The choice

of this frequency allows us to generate the required frequencies for transitions of the

two di�erent hyper�ne sublevels of 6Li by use of acousto-optic modulators12(AOMs).

A detailed overview over the frequencies are presented in Fig. 2.3, and for more

details on the optical setup we refer to the diploma thesis of Romain Müller [Müller,

2011]. Due to slow o�set drifts of the error signal, possibly induced by temperature

drifts, we change to a modulation transfer locking scheme [McCarron et al., 2008] for

11Toptica TA pro 671.
12From Crystal Technologies and IntraAction Corp.
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Figure 2.3: Overview of the frequencies required for cooling 6Li and 133Cs.

The frequency shifts generated by AOMs are indicated. For further details see
Sect. 2.1.3. Figure adapted from Repp, 2013.

the experiments shown in Sect. 2.3, Sect. 2.4 and Chap. 4. The details of this setup

are presented in the master's thesis of Stephan Häfner [Häfner, 2013]. The light with

a frequency corresponding to the 22S1/2 |f = 1/2〉 → 22P3/2 (22S3/2 |f = 3/2〉 →
22P3/2) transition is referred to as repumping (cooling) light. In order to observe the

atom number and distribution at high magnetic �elds or to expel one of the hyper�ne

magnetic sublevels from the trap, we employ a homemade ECDL [Salzmann, 2007]

with ∼15 mW output power, which is stabilized to the Li TA via a tunable o�set

lock [Schünemann et al., 1999], as described in the master's thesis of Robert Heck

[Heck, 2012]. This laser is replaced by a more stable, commercially available �ber

coupled ECDL 13 of 12 mW output power for the experiments presented in Sect. 2.4

and Chap. 4.

133Cs MOT lasers

Due to the large hyper�ne splitting of 133Cs of 9.2 GHz [Steck, 2008], we use two dif-

ferent lasers for the cooling and repumping transitions. An ampli�ed �ber coupled

ECDL14 at a wavelength of 852 nm with ∼400 mW output power is used for the

13Toptica DL pro 671.
14Toptica TA pro 852.
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transitions originating from the 62S1/2 |f = 4〉 state (cooling laser). It is stabilized

via modulation transfer spectroscopy [McCarron et al., 2008] to the 62S1/2 |f = 4〉 →
62P3/2 |f ′ = 3〉 transition, and the desired frequencies are generated by four AOMs,

driven by the frequencies indicated in Fig. 2.3. For the transitions originating

from the 62S1/2 |f = 3〉 state (repumping laser) we use a �ber coupled ECDL15

at a wavelength of 852 nm with ∼70 mW output power, which is stabilized via

frequency modulation spectroscopy to the 62S1/2 |f = 3〉 → 62P3/2 |X34〉 transition,
where X34 denotes the spectroscopy crossover peak between the 62P3/2 |f ′ = 3〉 and
62P3/2 |f ′ = 4〉 state. Due to �uctuations of the error signal background, we change
this spectroscopy to modulation transfer spectroscopy for the experiments presented

in Sect. 2.3 and Chap. 4, as given in the master's thesis of Arthur Schönhals [Schön-

hals, 2013]. Here, we also use AOMs to create the desired laser frequencies, as

illustrated in Fig. 2.3. Speci�cs to this setup as used in Chap. 3 can be found in Ste-

fan Schmidt's diploma thesis [Schmidt, 2011]. The experiments presented in Chap. 4

apply high-�eld imaging of 133Cs. Contrary to the case of 6Li, there is no closed

transition for the 133Cs atoms in the energetically lowest state at su�ciently high

magnetic �elds. Thus we use two di�erent lasers, where one is used for pumping the

atom population into the |f = 4,mf = 4〉 state (see also Sect. 2.1.5), and another

one is used for the absorption imaging (see Sect. 2.1.5) of this state. Both lasers

are o�set locked to the cooling and repumping lasers following the scheme presented

in Schönhals, 2013. However, due to the large linewidth of the DBR lasers16 em-

ployed in Schönhals, 2013, only a part of the imaging light is on resonance, which

reduces the e�ective absorption cross section and thus the imaging signal. To resolve

this, we exchange the imaging laser by a ECDL17 with an approximately factor of

ten narrower line width in this work.

Optical distribution system for diode laser light

All the above mentioned diode lasers are placed on an optical table next to the one

containing the vacuum setup. The light is delivered to the experiment by use of

optical �bers. All the beams needed for cooling 6Li are superposed and distributed

by a custom made �ber port cluster18. The light for imaging of lithium is also

delivered to the vertical axis of our main chamber through this cluster (see right

panel of Fig. 2.4 "AbsorbI"), however, the linear polarization inside the �ber is

15Toptica DL pro 852.
16Laser diode: SDL-5712-H by Spectra Diode Lasers Inc.
17Radiant Dyes NarrowDiode 852.
18Delivered by Schäfter&Kirchho�.
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Figure 2.4: Arrangement of beams for optical cooling of 6Li and 133Cs. A
top view (left) and side view (right) is shown. See text for a detailed description.
Figure taken from Repp, 2013.

perpendicular to the one of the MOT light. For the horizontal imaging we use a

separate �ber, because of di�culties with a stable polarization in the �ber port

cluster (see also left panel of Fig. 2.4 "AbsorbI"). The 133Cs MOT and imaging

light is also distributed by a �ber port cluster19 in the same manner, but unlike

the 6Li MOT, which uses a retro-re�ected three beam con�guration, here we use

a six beam con�guration, as we have ample power available. The Zeeman slowing

cooling and repumping beams, as well as the optical pumping beam for the Raman

cooling are delivered by three separate �bers, while the beams for the Raman lattice

use another �ber port cluster 20. As we require certain sections of the viewports

for the Raman sideband cooling and dipole traps beams, we superpose the 133Cs

MOT beams with those of 6Li using dichroic mirrors21 (see Fig. 2.4) before entering

the science chamber, in order to reduce the optical access used by these beams.

The circular polarization is generated by quarter-wave plates22 optimized for both

wavelengths, namely 671 nm and 852 nm. The arrangement of all the beams with

respect to the chamber is summarized in Fig. 2.4.

19See footnote 18.
20See footnote 18.
21Custom made from Laser Components.
22Custom made from Doehrer Elektrooptik GmbH.
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Dipole trap lasers

Because the temperatures available by optical cooling techniques are fundamentally

limited (see e.g.[Metcalf and van der Straten, 1999]), we also perform forced evapo-

rative cooling [Ketterle and van Druten, 1996] in optical dipole traps [Grimm et al.,

2000] in order to reach temperatures below these limits. The working principle of

these traps is based on the interaction of a polarizable atom with an alternating

electric �eld of the trapping beam with amplitude E. The induced dipole moment

d of the atom leads to a potential Udip(x, y, z) = −1
2
d E = 1

2ε0c
Re[α(ω)]I(x, y, z),

where α(ω) is the polarizability of the atom and I(x, y, z) the intensity of the light.

The trapping potential can be rewritten in terms of laser frequency ω as [Grimm

et al., 2000]

Udip(x, y, z) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(x, y, z). (2.1)

For the laser frequencies used in our experiment, the underlying assumption that the

detuning from the atomic resonance frequency ω0 is much larger than the natural

linewidth Γ is justi�ed. From Eq. (2.1) it is evident that for a red detuned (ω < ω0)

laser beam the potential minimum lies in the beam focus, which enables the trapping

of atoms at this position. As the con�nement along the direction of the beam

is typically orders of magnitude wider than the transversal con�nement, we use a

crossed dipole trap (CDT) con�guration, where a second beam enforces the trapping

along the �rst beam's propagation direction.

In thermal equilibrium the atoms con�ned in a CDT only probe the bottom of

the potential. Here, Udip(x, y, z) can be approximated by harmonic potential

Udip(x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.2)

where ωx, ωy and ωz are referred to as trapping frequencies. The thermal density dis-

tribution, which follows the Boltzmann distribution n(x, y, z) = n0 exp(−U(x, y, z)/kBT )

[Grimm et al., 2000] at a temperature T , where n0 is the peak density, can then be

written as

n(x, y, z) = n0 exp

(
− x2

2σ2
x

)
exp

(
− y2

2σ2
y

)
exp

(
− z2

2σ2
z

)
, (2.3)

with

σi = ω−1
i

√
kBT/m. (2.4)
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Figure 2.5: Oscillations of 6Li and 133Cs in the dipole trapping potential.

The data points show the center position of the cloud and the solid lines are a
damped sine �t to determine the 6Li (red) and 133Cs (blue) trapping frequencies
in the axial (left) and radial (right) direction of the cigar shaped trap at 200 mW.
The resulting trap frequencies are also given for each scenario. In cases where
more than one data point was taken, the mean value is shown and the error
bars represent the standard error.

In order to calculate the peak density

n0 = N ω3

(
m

2πkBT

)3/2

, (2.5)

with the mean trapping frequency ω = 3
√
ωxωyωz and total atom number N , we �t

the trapping frequencies to oscillations in our traps. For this purpose, we load a

sample at a lower trap depth and quickly ramp up the laser power to the value of

interest. The resulting oscillations of the center position of the density distribution

are illustrated in Fig. 2.5 for the trap laser powers used in Chap. 4.

Due to the speci�c requirements of trapping frequencies, beam sizes and wave-

lengths, we use the following dipole traps in the experiments performed in this

thesis:

� Li high power/133Cs dimple trap. Because the momentum recoil p = ~k
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55 W 

Reservoir trapHigh power dimple trap

Figure 2.6: Top view on the arrangement of dipole trap beams. The dimple
trap beams are shown in red, the Cs reservoir trap in blue. The tune-out
wavelength trap will be superposed with the high power dimple trap at a later
stage. The �gure is adapted from Ref. [Repp, 2013].

from spontaneous emission results in large atom velocities in a 6Li-MOT due to

the low mass, the lowest achievable temperatures are limited to∼ 200−300 µK

[see e.g. Metcalf and van der Straten, 1999]. In order to create a su�cient

trapping potential that is able to capture a large fraction of MOT atoms, we

use a commercially available Yb doped �ber laser23 with 200 W output power

at 1070 nm for our dipole trap. Two crossed beams (see Fig. 2.6) at an angle of

∼ 8.4◦ with 60 µm waists yield a trapping depth of 1.6 mK, which is su�cient

to capture a few million atoms from the MOT. This design has proven to be

successful for the evaporative cooling of 6Li to the quantum degenerate regime

and is adapted from the group of Prof. Selim Jochim at the University of

Heidelberg (see [Ottenstein, 2010; Lompe, 2011]). More details on our setup

can be found in Robert Heck's master's thesis [Heck, 2012]. Aside from the

evaporative cooling of lithium, we also use this trap for the combined loading

of 6Li and 133Cs in Sect. 2.2 and Sect. 4.3 in order to measure Feshbach and

E�mov resonances, respectively. In Sect. 2.3 we apply this trap at low powers

for a local increase in phase-space density via the dimple trick [Stamper-Kurn

et al., 1998; Pinkse et al., 1997] for 133Cs, which allows us to create a BEC.

Hence we also refer to it as dimple trap.

� Cs reservoir trap. The 133Cs atoms can be optically cooled to temperatures

below 1 µK, and therefore only require trapping depths of about 10 µK for

capturing them in a CDT. However, with a background scattering length of

∼ 2000 a0, large three-body loss rates [Weber et al., 2003a] are expected.

23IPG YLR-200-LP-WC.
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2.1. Overview of the Experimental Apparatus

Since these scale with ∝ n3, we keep the 133Cs densities on the order of ∼
1011 atoms/cm by using a large volume reservoir trap. Two crossed beams

with ∼ 300 µm beam waist and 90◦ crossing angle (see Fig. 2.6), derived from

an ampli�ed Nd:YAG solid-state laser24 with 55 W output power at 1064 nm,

provide suitable trapping potentials for this purpose. The trap is characterized

in the master's thesis of Alda Arias [Arias, 2014], and is implemented for the

condensation of 133Cs, as presented in Sect. 2.3. This trap is also used for a

separate loading of displaced 133Cs atoms in Chap. 4.

� Tune-out wavelength trap. In Sect. 2.5 we show that the trapping poten-

tials from the dimple laser di�er strongly for 6Li and 133Cs (see also Fig. 2.12).

Thus, the atomic species with higher temperature can heat the other species

via collisions, which leads to atomic losses of the latter. Another complication

is the fact that the potential gradient associated with the gravitational force

on the heavier 133Cs leads to a shift of the equilibrium position of 133Cs. Thus,

at low potential depths the spatial overlap is drastically reduced. These obsta-

cles can be overcome by use of a so called tune-out wavelength trap [LeBlanc

and Thywissen, 2007], frequency stabilized to a wavelength of 880 nm, which

is blue detuned from the D1 and red detuned from the D2 line of 133Cs. The

potential contributions from the two transitions cancel and the 133Cs atoms

experience no trapping force. However, heating still arises due to the scatter-

ing of photons, which limits the lifetime of the sample. Since this frequency

is red detuned for the 6Li D1 and D2 transitions, this dipole trap, derived

from a titanium sapphire laser25 with ∼ 3 W output power, acts as a species

selective trap for the manipulation of 6Li. It can be used, e.g. to shift the

equilibrium position of 6Li in order to increase the overlap of both species at

low temperatures. The design is presented in Stephan Häfner's master's thesis

[Häfner, 2013]. In Sect. 2.5 we present results of proof-of-principle experiments

to verify that this laser does not provide a trapping force for 133Cs and can

thus be used in a scheme for the combination of both species.

2.1.4 Computer Control of the Experimental Sequence

We require precise control and timing of all involved equipment and parameters

during our experiments. For this purpose we employ a homemade26 modular FPGA

24Coherent Mephisto MOPA.
25Coherent MBR-110 pumped by a Verdi V-18.
26By the Electronics Workshop of the Physikalisches Institut, Universität Heidelberg.
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design with a 100 MHz internal clock and < 100 ns jitter. The upload of the sequence

parameters and timings is handled by a LabView interface27.

2.1.5 Detection of the Sample Properties

The relevant information of our experiments is extracted after each individual ex-

perimental cycle by means of absorption imaging [Ketterle et al., 1999]. This is

done by recording three pictures with a CCD28 camera either from a horizontal or

vertical perspective (see Fig. 2.4 "X-Imaging" and "Z-Imaging"). The �rst picture

contains the intensity distribution Iabs(x, y) of a light beam that has passed through

a cold atomic cloud, where absorption has occurred. The second picture records

the intensity distribution Idiv(x, y) of the laser light without atoms present, and the

third picture consists of the intensity distribution Iback(x, y) on the camera pixels

when no laser light is present. Following Beer's law, the transmission T (x, y) of an

incident beam with intensity I0(x, y) is given by

T (x, y) =
I(x, y)

I0(x, y)
=
Iabs(x, y)− Iback(x, y)

Idiv(x, y)− Iback(x, y)
= e−σ

∫
n(x,y,z)dz, (2.6)

where I(x, y) is the intensity distribution after absorption. The atomic column den-

sity n(x, y) =
∫
n(x, y, z)dz, which contains the integration along the propagation

axis z of the incident beam, is related to the transmission via the formula

n(x, y) = −1/σ ln[T (x, y)], (2.7)

where σ denotes the absorption cross section, given by σCs = 3.468 · 10−9 cm2 [Steck,

2008] and σLi = 2.150 · 10−9 cm2 [Gehm, 2003] for imaging at zero magnetic o�set

�elds. The projection of circularly polarized light propagating perpendicular to the

magnetic �eld axis leads to a reduction by a factor of four in the case of high-�eld

imaging of 6Li [Heck, 2012]. In order to obtain atom number N and 1/e2 cloud radii

∆x,∆y, we �t the following equation to the observed column density:

n(x, y) =
Nσ√

2π∆x

√
2π∆y

e−[α(x−x0)2+2β(x−x0)(y−y0)+γ(y−y0)2], (2.8)

where α = cos2(θ)
2∆2

x
+ sin2(θ)

2∆2
y
, β = − sin(2θ)

4∆2
x

+ sin(2θ)
4∆2

y
and γ = cos2(θ)

2∆2
y

+ sin2(θ)
2∆2

x
. Here,

(x0, y0) denote the coordinates of the cloud center, and θ denotes the angle between

27Written by Juris Ulmanis and Hanna Schempp.
28Guppy-38B from Allied Vision Technology
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Figure 2.7: Spin selective detection of 6Li at high magnetic �elds The shift
of levels in the 6Li 22S1/2 and 6Li 22P3/2 states in dependence of magnetic
�eld is given on the left. The transition used for spin selectively removing and
imaging atoms in the mj =0 (mj =1) state, corresponding to the |1/2,−1/2〉
(|1/2,+1/2〉) state at zero magnetic �eld, is indicated by a red (orange) arrow.
The frequency dependent atom number at a magnetic �eld of 507.9 G, corre-
sponding to atoms in |1/2,−1/2〉 (|1/2,+1/2〉) state is depicted in the right
upper (lower) panel (data points are taken from Heck, 2012). The �gure is
taken from Ref. [Repp, 2013].

the axis from camera to cloud center and the normal axis of the camera. The

time t dependent cloud sizes after free ballistic expansion allow us to determine the

temperature T of the cloud via the relation

∆x/y(t) =

√
TkB
m

t2 + ∆x/y(t = 0). (2.9)

In cases where we apply magnetic �elds on the order of 800 G, we use the 6Li

high �eld imaging laser (see Sect. 2.1.3) in order to directly image the atoms in that

�eld region. The magnetic �eld dependent energies for the lowest levels, as well

as their quantum numbers mJ , which are good quantum number in the Paschen-

Back regime, are depicted in Fig. 2.7. We also show the transitions we use for the

detection and the dependence of the recorded atom number from the detuning of

the high �eld imaging laser in this �gure. More details on this are presented in the

master's thesis of Robert Heck [Heck, 2012]. The measurement of three-body loss

coe�cients of 133Cs uses a high-�eld imaging scheme in order to detect atoms at
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�elds of about 850 G. The �eld dependent energies and the transitions utilized for

this are shown in Fig. 2.8.

2.2 Scheme for Trapping, Cooling and Combining

Both Species

With the experimental setup and methods being introduced in the last section,

we are now set to describe our experimental sequences for the production of the

ultracold mixture at µK temperatures, which is the starting point for the Feshbach

resonance measurements presented in Chap. 3. We discuss the individual steps of

the creation of our cold 6Li sample in Sect. 2.2.1. In Sect. 2.2.2 we show how we

load a 133Cs sample and combine it with 6Li.

2.2.1 Magneto Optical Trapping and Forced Evaporation of
6Li

We start the preparation of the mixture by loading ∼ 108 atoms in 1 s into a 6Li

MOT. Three retro-re�ected beams (see Fig. 2.4) with 1/e2 diameters of 25 mm and

about 3 mW in each of the cooling and repumping beams29 are employed for MOT

loading, and a total of 34 mW of light for cooling and repumping transitions are

guided to the Zeeman slower (for frequencies see Fig. 2.3). After MOT loading, we

turn o� the slower coils and beams, and wait for 20 ms before we ramp down the

MOT coils from 16 G/cm to 0 G/cm within 20 ms. At the same time we ramp

up the curvature coils from 0 G/cm to 28 G/cm in order to compress the MOT

and move the atoms to the center of the curvature coil. After another 20 ms, the

detuning is reduced to approximately half a natural linewidth, as this minimizes

the temperature [Metcalf and van der Straten, 1999], and the power of the cooling

(repumping) light is reduced to 0.2 mW (0.05 mW) to reduce heating related to

photon scattering. This scheme is summarized in Fig. 2.9.

We turn o� the repumping laser 200 µs before the cooling laser, in order to

optically pump the atoms into the 22S1/2 |f = 1/2〉 state. Simultaneously we turn

on the 6Li high power trap at 150 W, thus providing a trapping potential of 1.6 mK

for the 300 µK cold MOT, which is su�cient to capture ∼ 2 × 106 atoms. Forced

evaporation within 900 ms to a laser power of 0.9 W at a �eld of 760 G yields a

temperature of TLi = 2.5 µK after 200 ms of plain evaporation and thermalization.

29All involved laser powers are listed in great detail in Repp, 2013.
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2.2. Scheme for Trapping, Cooling and Combining Both Species

Figure 2.8: Zeeman splitting of 133Cs energy levels at high magnetic �elds.

The energies for the 62S1/2 (lower panel) and the 62P3/2 (upper panel) are
plotted as a function of magnetic �eld. The transitions used for imaging (red
arrow) and optical pumping (blue arrow) are also shown. Figure taken from
Schönhals, 2013.
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Figure 2.9: Scheme for loading and compressing a 6Li MOT. For a descrip-
tion of the steps see text.

Before we load the 133Cs atoms, we now slowly ramp up the power to 1.8 W within

100 ms. The fact that the trap depth scales linearly with laser power for an adiabatic

ramp, while the temperature scales with the square root of the power, allows for a

deeper con�nement of the 6Li atoms in the trap. It turns out that this is necessary

to prevent losses due to the subsequent switching of magnetic �eld gradients during
133Cs MOT loading, which a�ect the 6Li trapping potentials.

2.2.2 Cooling of 133Cs and Creation of a 6Li-133Cs Mixture

With the 6Li atoms con�ned in a CDT at low power, we now want to add 133Cs

into the trap. Due to the known problems of inelastic collisions between ground

state 6Li atoms with excited state (62P3/2) 133Cs atoms [Schlöder et al., 1999], we

displace the position of the 133Cs MOT by ∼1 mm via a small magnetic o�set �eld

in the horizontal direction. We load 107 atoms in 50 ms in a six beam MOT with

1/e diameters of 20 mm and ∼ 7 − 14 mW (0.5 mW) laser power in the cooling

(repumping) beams and 18 mW (3 mW) in the Zeeman slower cooling (repumping)

beam. After loading the MOT, we turn o� the Zeeman slowing beams and coils,

wait for 30 ms and perform a compression phase [DePue et al., 2000], where the

MOT coils are ramped from 10 G/cm to 0 G/cm within 5 ms, while the curvature

coil is ramped up from 0 G/cm to 22 G/cm within 20 ms. The last step allows us

to exchange the MOT for the curvature coils enabling us to switch o� the gradient

�eld faster (see Sect. 2.1.2), which is advantageous for the subsequent degenerate

Raman sideband cooling cycle. At the same time the cooling (repumping) power
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Figure 2.10: Degenerate Raman-Sideband Cooling. Left: Scheme for DRSC.
The pumping by σ+ and π-polarized light is shown as blue arrows, the spon-
taneous decay as green arrow. The Raman transitions between degenerate
states are indicated as red arrows. The splitting between di�erent Zeeman
levels is given by EZee. Figure inspired by Kerman et al., 2000 and adapted
from Repp, 2013. Right: Absorption image of the Stern-Gerlach type exper-
iment after DRSC. Approximately 85% are prepared in the |3, 3〉 state and
the remaining fraction mainly populates the |3, 2〉 state. Figure adapted from
Repp, 2013.

is decreased to 4 mW (0.05 mW) and 5 ms later the detuning is increased from 20

MHz (0 MHz) to 96 MHz (10 MHz) within 25 ms [Drewsen et al., 1994] in order

to achieve temperatures on the order of 10 µK. We turn o� all �elds and optically

pump the atoms into the 62P3/2, f = 3 manifold by turning o� the repumping laser

before the cooling laser.

With these optimized starting conditions we load the atoms with 2 ms delay into

a so called Raman lattice created by four linearly polarized beams (see Fig. 2.4) with

∼30 mW power per beam at ∼9 GHz detuning30. After 1 ms we add a 10 MHz red

detuned31 pumping beam of ∼ 100 µW power (see "Raman polarizer" in Fig. 2.4)

with circular polarization in order to perform three dimensional degenerate Raman

sideband cooling (DRSC) following the approach by the Stanford group [Kerman

et al., 2000; Treutlein et al., 2001]. The �elds of ∼ 100 mG, which are required

to bring the excited vibrational |f = 3,mf = 3, ν = 1, 2〉 states of ∼ 100 kHz spac-

ing into degeneracy with the lower lying vibrational |3, 2, ν = 0, 1〉 and |3, 1, ν = 0〉
states (see Fig. 2.10), is generated by the Raman coils (see Sect. 2.1.2). Via the

30Derived from the cooling laser as shown in Sect. 2.1.3
31The detuning compensates light shifts that are caused by the lattice.
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compensation cage we slightly tilt the absolute magnetic �eld vector away from the

Raman coil axis, which e�ectively adds a π-polarization component to the pumping

beam. The strong σ+-component of the pumping beam allows for pumping from

the |3, 1, 0〉 into the |3, 2, 0〉 and|3, 3, 0〉 via the 62P3/2, f
′ = 2 state. The vibrational

quantum number does not change during this pumping cycles, as the system is in

the Lamb-Dicke regime, where the spacing between vibrational levels on the order

of 100 kHz is much larger than the recoil energy of 2 kHz [Steck, 2008]. Atoms that

decay to the |3, 2, 0〉 states are in a dark state for light of this polarization, however,

the weak π-polarized component pumps these atoms into the |3, 3, 0〉 state. The

atoms in the higher vibrational |3, 3, ν = 1, 2〉 and |3, 2, ν = 1〉 states are transferred
to the degenerate |3, 1, 0〉 or |3, 2, 0〉 levels via Raman transitions induced by the

lattice beams (indicated by the red arrows in Fig. 2.10). Thus, the only remaining

dark state is the lowest vibrational |3, 3, 0〉 state.
Due to the Gaussian shape of the lattice beams, atoms that are captured in the

wings of the beam experience lower vibrational lattice spacings than atoms in the

center and are therefore not e�ciently cooled. We resolve this by ramping down the

magnetic �elds and laser powers in 2 ms following 20 ms of DRSC, which reduces

the temperature and optimizes the optical pumping. As the potential energy of

the |3, 1, 0〉 state is lower than the other states with ν = 0, the photon from the

spontaneous emission e�ectively removes energy on the order of the lattice spacing

from the kinetic energy of the atoms. Thus, we acquire a sample of 106 atoms at

temperatures of ∼ 1 µK. While all other hyper�ne sublevels are subject to rapid loss

due to inelastic two-body collisions [Guéry-Odelin et al., 1998; Söding et al., 1998],

the energetically lowest |3, 3〉 state is the only stable state, owing to the fact that

only elastic two-body scattering processes are energetically allowed. A summary for

a typical MOT loading, compression and DRSC process, similar to the one described

above, is given in Fig. 2.11.

We check the degree of polarization by performing a Stern-Gerlach type exper-

iment. We levitate the atoms in the |3, 3〉 state after DRSC. After a short time

of separation, where the atoms in the |3, 2〉 states fall down due to gravitation, we

image the clouds and �t two Gaussians to the two clouds in Fig. 2.10. We determine

that 85 % (15 %) of the population is in the |3, 3〉 (|3, 2〉) state. The small population

in the energetically higher state adds additional channels for the Feshbach resonance

spectroscopy, and allows us to observe further Feshbach resonances (see Sect. 3.1),

which enables a more precise calculation of the underlying molecular potentials (see

Chap. 3).

During the DRSC we ramp the power of the dipole trap back down to 0.9 W
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Figure 2.11: Scheme for loading and compressing a 133Cs MOT with sub-

sequent DRSC. For a description of the steps see text.

within 50 ms. We apply a magnetic o�set �eld of 81 G shortly after switching of the

optical pumping beam in order to provide a magnetization axis to keep the atoms

polarized in the |3, 3〉 state. 5 ms later we turn o� the lattice beams and load the

atoms into the dipole trap, which already contains 6Li. The spatial extension of

the 133Cs cloud is larger than the width of the dipole trap beams, thus heating the

atoms at the edge of the trap by converting potential energy to kinetic energy. The

observed oscillations along the weak axis of the trapping potential damp out within

125 ms.

At this point we have 5×104 (2×105) 133Cs (6Li) atoms at temperatures of 8 µK

(2 µK). This di�erence in temperature can be explained by the factor of four between

the polarizabilities of the two species at a wavelength of 1070 nm, which leads to

a di�erence in trapping potentials, as depicted in Fig. 2.12 and further discussed

in Sect. 2.5. In order to measure the trapping frequencies, we prepare the sample

at lower laser powers and abruptly ramp up to 0.9 W. This leads to oscillations,

which we observe by varying the hold time before imaging the atoms. The obtained

trapping frequencies of ωCs/2π = (380, 380, 30) Hz and ωLi/2π = (900, 900, 65) Hz

yield peak densities of nCs = 3× 1011 cm−3 and nLi = 1× 1012 cm−3.

The 6Li sample still contains a mixture of the 22S1/2|1/2,+1/2〉 and 22S1/2|1/2,−1/2〉
states. We �rst remove one of the two in order to unambiguously assign the observed

Feshbach resonances in Chap. 3 to the appropriate channel. This is done via optical

light forces by illuminating the sample for 800 µs with resonant light from the o�set
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Figure 2.12: Optical trapping potentials for 6Li (red) and 133Cs (blue) at

a laser power of 0.9 W in the dimple trap. The 133Cs (6Li) temperature
is 8 µK (2 µK) during the Feshbach resonance measurements. The di�erence
in temperature is caused by the di�erence in trapping potentials, owing to a
factor of four between the polarizabilities of 133Cs and 6Li. Figure taken from
Repp, 2013.

locked 6Li high �eld imaging laser (see Sect. 2.1.3 and Fig. 2.7). We perform this

procedure at a �eld of 530 G, where the scattering length between the two states

is zero [Jochim et al., 2002; O'Hara et al., 2002], which minimizes heating of the

atoms in the non resonant state.

The loading procedure of the mixture is schematically summarized in Fig. 2.13,

and for a more detailed description we refer to the PhD thesis of Marc Repp [Repp,

2013]. The sample prepared in the way described above provides excellent starting

conditions for Feshbach resonance measurements.

2.3 Creation of a 133Cs BEC

For some experiments, lower temperatures are desirable. These cannot be obtained

easily in the mixture (see Sect. 2.5). For a single species, however, the reduction of

temperature down to quantum degeneracy is straightforward. The 133Cs atom is very

well suited for laser cooling techniques [Kastberg et al., 1995; Boiron et al., 1996],

because of the large mass and hyper�ne splitting. Hence, it was originally predicted

to be the �rst atom to reach Bose-Einstein condensation [Monroe et al., 1993].

However, this prediction could not be ful�lled due to several subtleties in the 133Cs-
133Cs collisional behavior. The �rst attempts employed the magnetically trappable

stretched |4, 4〉 state, where spin-exchange collisions are prohibited. It turned out

that the second-order spin-obit interaction is greatly enhanced in 133Cs, which results

in inelastic loss-rates that impede Bose-Einstein condensation [Söding et al., 1998;
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Figure 2.13: Scheme for combining 6Li and 133Cs. For a description of the
steps see text. Figure taken from Repp, 2013.
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Mies et al., 1996; Leo et al., 1998; Arlt et al., 1998]. A change to the |3,−3〉
state, where hyper�ne changing collisions are avoided, only brought the sample

within two orders of magnitude of quantum degeneracy. High inelastic collision

rates also prevented these experiments from reaching quantum degeneracy [Guery-

Odelin et al., 1998; Hopkins et al., 2000]. The �rst creation of a 133Cs BEC was

reported in Weber et al., 2003b, where the |3, 3〉 state was used in connection with an
optical reservoir trap and a tightly focused dimple trap [Stamper-Kurn et al., 1998].

The former had to be su�ciently large in order to keep the 133Cs density nCs low,

because the large background scattering length with a magnitude of ∼ 2000 a0 would

otherwise cause fast three-body losses which scale as n3
Cs. As it turned out, a three-

body recombination minimum due to the E�mov e�ect was coincidentally used for

achieving a su�cient ratio of elastic to inelastic collisions [Kraemer et al., 2006]. A

later experiment presented a di�erent approach, where the reduction of the magnetic

�eld levitation gradient, instead of the optical trap depth, was used to evaporatively

cool the atoms and reach Bose-Einstein condensation [Hung et al., 2008]. Initial

attempts in our group did not succeed to reproduce the latter results, mainly because

the reported trap parameters and trapping frequencies are not consistent [Repp,

2013]. Therefore, we present a new approach, which employs elements of both

concepts. The experimental procedure for this method is discussed in Sect. 2.3.1

and the results are presented in Sect. 2.3.2.

2.3.1 Experimental Scheme for the Creation of a 133Cs BEC

We start our experiments by loading a 133Cs MOT followed by Raman sideband

cooling which yields 2× 107 atoms at ∼ 1 µK. As these steps essentially follow the

procedure given in Sect. 2.2.2 we do not give further details. We turn on the 133Cs

reservoir trap (see Sect. 2.1.3) at 4 W and a magnetic levitation gradient of 31 G/cm,

2 ms before we switch o� the Raman lattice beams. As this gradient leads to an anti-

trapping potential in the horizontal direction, we ramp up the homogeneous �elds of

the Feshbach coils to 70 G, where their �eld curvature (see Fig. 2.2) approximately

cancels the anti-trapping e�ect of the gradient �eld. A detailed explanation of this

process is given in Repp, 2013. The scattering length at 70 G is on the order of

1000 a0, which allows for fast thermalization. The three-body losses do not play a

signi�cant role, as the densities in this trap are su�ciently low, and the trap is only

used as a reservoir for the subsequent loading of a dimple.

At this stage we also ramp up the dimple laser (see Sect. 2.1.3) to a power of

300 mW within 100 ms. This creates a dip in the total optical potential consisting
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Figure 2.14: Trap potential for 133Cs reservoir and dimple trap. A hor-
izontal cut through the trap center is shown. The broad component of the
trapping potential results from the reservoir trap, the narrow feature in the
center from the dimple trap.

of both traps, as shown in Fig. 2.14. While the density is locally increased, the

atoms in the dimple are still in thermal contact with the atoms in the reservoir

trap, thus increasing the phase-space density locally. More details on this concept

are given in Pinkse et al., 1997 and Hopkins et al., 2000. After additional 600 ms

of thermalization and plain evaporation, we obtain a cloud of 2 × 106 atoms at

temperatures of 1 µK.

Instead of following the scheme of Weber et al., 2003b, where the optical power

is reduced for forced evaporation, we linearly reduce the magnetic-�eld gradient to

29.8 G/cm within 1 s. This is similar to the scheme of Hung et al., 2008 and allows

to maintain high trapping frequencies, which results in faster thermalization rates.

As we ultimately want to optimize the loading into the dimple trap, where the peak

density is much higher as compared to the reservoir, we reduce the homogeneous

o�set �eld to 22.8 G. At this �eld, the scattering length is only ∼ 300 a0. A three-

body recombination minimum due to an E�mov resonance [Kraemer et al., 2006]

provides high collision rates with minimal three-body losses at the high densities of

the atoms in the dimple. In a second ramp, we completely turn o� the magnetic

�eld gradient within 1100 ms in order to e�ciently load the dimple trap, since the

reservoir does not exhibit a trapping potential without a gradient �eld applied. At

this point we are left with 4 × 105 atoms at temperatures of 800 nK in the dimple

trap. The reservoir trap laser is turned o�, and the dimple trap power is reduced

to 200 mW within 500 ms, yielding 2 × 105 atoms at ∼ 200 nK. In a last step,

we reduce the power within 2 s to a variable end value Pend between 120 mW and
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Figure 2.15: Experimental sequence for loading of a 133Cs BEC. Schematic
diagram for the timings of selected parameters. For more details see text.

140 mW. Depending on the magnitude of Pend, the sample is either on the onset

of quantum degeneracy for higher laser intensities, or deeply in the BEC regime

for lower values. For the detection of the density distribution, we turn on the

levitation gradient in order to allow the atoms to expand for long time-of-�ights,

while still remaining in the imaging region. The homogeneous �eld is set to a

value near the zero crossing of the scattering length at 17 G, where the mean-�eld

e�ects are reduced (see Sect. 2.3.2). After 70 ms of expansion we image the cloud

at zero �eld, by turning o� the o�set �eld shortly before the imaging pulse. This

sequence is summarized in Fig. 2.15. The �nal results of these experiments and a

characterization of the evaporation process are given in the next section.

2.3.2 Characterization of the Evaporation Process and the
133Cs BEC

Bose-Einstein condensation occurs when the thermal de Broglie wavelength

λdB =
h√

2πµkBT
(2.10)

is on the order of the mean interparticle spacing n−1/3. The phase-space density

(PSD)

D = nλ3
dB (2.11)
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reaches unity for this case. The macroscopic occupation of the sample's ground state

can best be understood by considering the mean occupation number [Mandl, 1988]

Nν =
1

e(εν−µ)/(kBT ) − 1
, (2.12)

of a single-particle state ν with energy εν , where the chemical potential µ is �xed

by N =
∑

ν Nν . Nν is much less than unity for high temperatures, as the particles

distribute among many energy levels. This also means that the chemical potential

is much less than the ground-state energy ε0. When the temperatures are lowered, µ

rises, since N must be conserved. The maximum value it can take must be below ε0,

because else the particle number in the ground-state would be negative or diverging,

which is unphysical. For µ→ ε0 the sum of the occupation numbers in the excited

states (ν > 1) takes on its maximum value

Nex,max =
∞∑

ν=1

1

e(εν−ε0)/(kBT ) − 1
. (2.13)

The onset of Bose-Einstein condensation occurs when the temperature drops below

the temperature TC where Nex,max < N . The atoms that are not in the excited

states populate the ground-state macroscopically. The critical temperature for this

distinct phase-transition is given by

TC = 0.94
~ω̄
kB
N1/3 (2.14)

for a gas of noninteracting atoms in a harmonic trap. The condensate fraction

fC = N0/N = 1 − (T/TC)3 for a harmonically trapped gas also depends on this

parameter. However, the temperature would not be a good criterion to characterize

the progress of the condensation procedure, as it depends on atom number and

trap frequencies, which are subject to change during evaporation. A more suited

parameter is the peak phase-space density

DP = N

(
~ω̄
kBT

)3

, (2.15)

which is acquired by inserting Eq. (2.5) into Eq. (2.11). When TC is introduced

into this expression, we obtain the critical value DP ≈ 1.202 for Bose-Einstein

condensation. Eq. (2.15) is independent of parameters that vary in the course of the

experiment. Thus, DP will be used as a benchmark for the condensation procedure.
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We measure the temperature via time-of-�ight measurements (see Eq. (2.9))

and the trap frequencies via the method explained in Sect. 2.2.2 at each of the

evaporation steps. The results for DP after each step are shown in Fig. 2.16(a) as

a function of time t, where t = 0 denotes the start of the MOT loading. A total of

6.3 s is required to create a 133Cs BEC. For the �nal PSD value at 6.3 s in Fig. 2.16

we chose a sample directly at the phase transition to a BEC.

E�cient evaporation occurs when the fraction of lost atoms is small compared

to the fractional increase in phase-space density. Fig. 2.16(b) shows the evolution of

DP as a function of atom number. A quantitative way of examining the e�ciency of

the evaporation process is to consider the evaporation e�ciency [Ketterle and van

Druten, 1996]

Γ =
ln D
D0

lnN0

N

, (2.16)

where D0 and N0 denote the phase-space density and atom density before the evap-

oration ramp, respectively, and D and N give these quantities after the ramp. This

parameter gives a measure on the orders of magnitude gain in phase-space density in

comparison to an order of magnitude loss in the atom number. In our experiment,

the timings for all evaporation ramps were experimentally determined to optimize Γ.

We also varied the homogeneous o�set �elds from 21.7−25 G during the evaporation

in the dimple, which also has an in�uence on Γ, as it changes the scattering length

and recombination rate. We show Γ for each step in the evaporation in Fig. 2.16(b).

In order to understand the density distribution of the trapped gas, we consider

the general many-body Schrödinger equation in second quantization for interacting

bosons. A simpli�ed ansatz for its solution was proposed in Bogoliubov, 1947 using

a mean-�eld approach and a decomposition of the boson �eld operator

Ψ̂(r, t) = φ(r, t) + Ψ̂′(r, t) (2.17)

into its expectation value φ(r, t) = 〈Ψ̂(r, t)〉, which is also referred to as order param-

eter or condensate wavefunction. The �rst-order perturbation term Ψ̂′(r, t) describes

the excitations of the gas. For T � TC , Ψ̂′(r, t) can be neglected, and the stationary

Schrödinger equation is given by [Gross, 1961; Pitaevskii, 1961]

(
−~2∇

2m
+ U(r) + gφ(r)2

)
φ(r) = µφ(r), (2.18)

which is also referred to as Gross-Pitaevskii equation. The trapping potential in

Eq. (2.18) is denoted as U(r), and the particle interactions enter via g = 4π~2a/m,
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Figure 2.16: Characterization of the 133Cs evaporation process. (a) Phase-
space density as a function of time, where t = 0 marks the start of the MOT
loading procedure. (b) Phase-space density as a function of atom number.
The numbers in the plot indicate the evaporation e�ciency Γ (see Eq. (2.16))
of each evaporation ramp.

where a is the intraspecies scattering length. The solution to this equation is well

understood in the following two limiting cases

In the ideal gas limit, namely a = 0, the interaction term vanishes and the

ground-state wave function takes on the form [Bongs and Sengstock, 2002; Dalfovo

et al., 1999]

φ(r) =
(mω̄
π~

)3/4

exp
(
−m

2~
(
ωxx

2 + ωyy
2 + ωzz

2
))
, (2.19)

which means that the density distribution n(r) = |φ(r)|2 is also of Gaussian shape.

The width of this Gaussian distribution is given by σi =
√

~/(mωi) for i = x, y, z.

In the Thomas-Fermi limit, the interaction term in Eq. (2.18) with the scattering

length a → ∞ dominates, and the kinetic energy term can be neglected. In this

case the density is given by

n(r) =





µ−U(r)
g

, for µ− U(r) > 0

0, otherwise.
(2.20)

In partly condensed clouds, however, the sample is in an intermediate regime, and

the choice of the density pro�le somewhat arbitrary [Ketterle et al., 1999]. Because

of the levitation gradient that we apply to keep the atoms within the imaging region

during the expansion, additional forces from the resulting gradient in the horizontal

39



Chapter 2. Creation of Ultracold Li-Cs Mixtures near Quantum Degeneracy

Pend=135 mW Pend=130 mW Pend=125 mW Pend=120 mW

T=55 nK
fC<0.1 %

T=34 nK
fC~ 4 %

T=23 nK
fC~12 %

T=11 nK
fC~40 %

Figure 2.17: Bose-Einstein condensation of 133Cs. The two dimensional col-
umn densities for four di�erent laser powers Pend are shown. The projections
illustrate a cut through the vertical axis (points), the bimodal distribution
(solid line), and the thermal Gaussian pro�le (gray area). The indicated tem-
peratures T are extrated from the pro�le via Eq. (2.22), and the condensate
fraction fC is obtained from a �t to Eq. (2.21).

direction alter the density pro�le. Therefore, we �t only a cut through the vertical

z-axis to the bimodal density distribution

n(z) =
1− fc√
2πwth

Ae−z
2/2w2

th +
fc√
2πwc

Ae−z
2/2w2

c (2.21)

(cf. Ketterle et al., 1999; Kohnen, 2008), where fc denotes the condensate fraction,

wth (wc) the rms-width of the thermal (condensed) cloud, and A is a normalization

factor that is proportional to the number of atoms. The second summand is only

used in the region where the second Gaussian term is relevant, and we include o�-

sets for the position and the density. The ideal gas limit was chosen in this case

because the o�set �eld was set close to the zero crossing of the 133Cs scattering

length at 17 G during the expansion. We note that using a parabola to describe the

density distribution of the condensate instead, which accounts for residual interac-

tions, yields condensate fractions that di�er by less than 25%. The results of this

�t are illustrated for several �nal values Pend of the dimple trap power in Fig. 2.17.

Depending on Pend, we obtain either a thermal gas, or condensate fractions of up

to 45 %. The temperature of the sample in Fig. 2.17 is extracted from the thermal
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wings of the distribution via [Ketterle et al., 1999]

kBT =
1

2
m

(
ω2
z

1 + ω2
zt

2
z2
th

)
, (2.22)

where a time-of-�ight of t = 70 ms was used.

2.4 Creation of a Molecular 6Li BEC

The behavior of 6Li at ultracold temperatures is fundamentally di�erent than that

of 133Cs. With a total spin of 3/2, the atoms follow Fermi statistics, which prevents

the atoms from accumulating in a single quantum state due to Pauli blocking. The

mean occupation number

〈niF 〉 =
1

e(εi−µ)/kBT + 1
(2.23)

can only take on the values 0 for εi > µ or 1 for εi < µ when T = 0. In this zero

temperature limit, the quantum states are �lled up to the Fermi energy

EF = µ(N, T = 0), (2.24)

which is given by EF = (6N)1/3~ω̄ for a sample in a harmonic trap. Reaching these

temperature scales via evaporation in a single component Fermi gas of alkali atoms

is impeded by Pauli blocking, which prevents thermalization and renders e�cient

evaporation impossible.

A common loophole from this complication is the use of a mixed sample with

two di�erent hyper�ne states involved. Here, collisions between the distinguishable

particles allows for thermalization and thus evaporation to quantum degeneracy. A

desirable side e�ect is the suppression of three-body losses, because two of these

three-particles are identical fermions. Pauli blocking forbids them to come su�-

ciently close together. As a result, the evaporation process is experimentally much

less demanding as compared to 133Cs. While for the latter e�cient evaporative

cooling can only be performed close to an E�mov minimum (see Sect. 2.3), 6Li is

extremely insensitive to the speci�c value or sign of the scattering length.

On the a > 0 side of a broad Feshbach resonance [Zürn et al., 2012], a two-

component Fermi mixture forms universal dimers (see Sect. 3.2.2) for kinetic energies

below the binding energy εB = −~2/2ma2 [Jochim et al., 2003; Chin and Grimm,

2004]. As these molecules composed of two fermions exhibit integer spin, their
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Figure 2.18: Experimental sequence for loading of a 6Li mBEC. Schematic
diagram for the timings of selected parameters. For more details see text.

distribution follows Eq. (2.12) and their energetically lowest state can be occupied

macroscopically. A molecular BEC (mBEC) occurs when the molecular peak phase-

space density [Chin and Grimm, 2004]

Dmol = D2
P eεB/(kBT ) (2.25)

becomes slightly larger than one.

In Sect. 2.4.1 we present our experimental scheme for the creation of such a

mBEC, which follows closely the approach by the Jochim group in Heidelberg [Ot-

tenstein, 2010; Lompe, 2011; Kohnen, 2008]. The production process and the prop-

erties of the degenerate gas are analyzed in Sect. 2.4.2.

2.4.1 Experimental Scheme for Loading a 6Li mBEC

We start our preparation of the mBEC by loading a 6Li MOT for 1566 ms including

subsequent compression in a similar procedure as described in Sect. 2.2.1. 7 ms

before we turn o� the MOT lasers, we illuminate the sample with the light from

the dimple trap (see Sect. 2.1.3) at a power of ∼ 100 W, thus loading ∼ 1.5 × 106

atoms in the two lowest hyper�ne states into the trap. Immediately afterwards,

we turn on the magnetic o�set �eld at 808 G, where the scattering length amounts

to 15600 a0. We begin the forced evaporation by ramping the dipole trap laser

power to 35 W within 0.5 s. In three further ramps with a total duration of 1.3 s

we bring the sample of 2.5 × 105 atoms to a temperature of 900 nK. We �nally

ramp the laser power to values Pend between 70 mW and 220 mW. Depending on

Pend the two-component gas is either at the onset of condensation, or deeply in the

condensed regime. We then ramp to a �eld value of 691 G, where aLi = 1450 a0.

The binding energy of dimers at this scattering length amounts to 7 µK. We allow

the system to thermalize within 100 ms, and image the sample using our high-�eld
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Figure 2.19: Characterization of the 6Li evaporation process. (a) Phase-
space density as a function of time, where t = 0 marks the start of the MOT
loading procedure. (b) Phase-space density as a function of atom number.
The numbers in the plot indicate the evaporation e�ciency Γ (see Eq. (2.16))
of each evaporation ramp.

imaging scheme (see Sect. 2.1.5). The sequence described above is summarized in

Fig. 2.18, and the results and the characterization of this procedure are given in the

subsequent section.

2.4.2 Characterization of the 6Li mBEC

The time evolution of the PSD during our evaporation is illustrated in Fig. 2.19(a).

The value at 4.3 s is taken from an ensemble which is just at the onset of Bose-

Einstein condensation, where the temperature is ∼ 90 nK. At these temperatures,

the sample is in a dynamic equilibrium between two competing processes. One

of them is the formation of molecules via three-body collisions, the other one is

dissociation of molecules into atoms [Jochim et al., 2003; Chin and Grimm, 2004].

Nonetheless, we use the de�nition in Eq. (2.15) of the atomic PSD for all points in

Fig. 2.19, in order to provide a more direct comparison of the di�erent evaporation

steps. Within four seconds, we increase the atomic PSD by four orders of magnitude.

The evaporation e�ciency Γ (see Eq. (2.16)) is shown in Fig. 2.19(b), where the PSD

is given as a function of atom number. In the 6Li case, the total evaporation e�ciency

is higher than for 133Cs, which can mainly be attributed to the more favorable ratio

of elastic to inelastic collisions.

The transition from a thermal gas to a mBEC is summarized in Fig. 2.20. The

atomic column density is shown for three di�erent values of the laser powers Pend
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Pend=220 mW Pend=143 mW Pend=86 mW

T= 240 nK
fC<1%

T= 90 nK
fC~10 %

T= 20 nK
fC~50 %

Figure 2.20: Bose-Einstein condensation of 6Li. The two dimensional column
density for the three indicated dipole trap laser powers Pend illustrate the
transition from a thermal to a bimodal distribution. The projections show a
cut through the vertical axis (points), the �tted bimodal distribution (solid
line), and the thermal Gaussian pro�le (grey shaded area). The temperature
is obtained via time-of-�ight measurements, and the condensate fraction fC
by a �t to Eq. (2.26).

at the end of the last evaporation ramp. One can clearly see how the peak density

increases for lower values of Pend, which corresponds to lower trap depths and lower

temperatures. The density distribution for Pend = 220 mW is well described by a

thermal Gaussian distribution, as shown by the projection of a vertical cut through

the center of the cloud in Fig. 2.20. For lower laser powers, as for example Pend =

86 mW, the cut through the vertical column density is described by the bimodal

distribution in the Thomas-Fermi limit

n(z) =
1− fc√
2πwth

Ae−z
2/w2

th +
15

16wc
Afc

(
1−

(
z

ωc

)2
)2

. (2.26)

In this case, wc denotes the half-width of the condensate where the density goes to

zero. A �t to this function (analogous to the �t performed in Sect. 2.3) is shown in

Fig. 2.20, for which we obtain condensate fractions on the order of 50 %.
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Figure 2.21: Role of the gravitational sag for di�erent trap depth. (a) The
vertical component of the trapping potentials for 6Li (blue line) and 133Cs
(gray line) are plotted for a laser power of 150 mW. The overlap (red area) for
typical density distributions at temperatures of 450 nK of 6Li (blue) and 133Cs
(gray) is ∼ 80%. (b) For a laser power of 106 mW and resulting temperatures
below 100 nK, the overlap is reduced to 12 %. The direction of the gravitation
'g' is shown by the arrow in both plots.

2.5 Requirements for Combination of Both Species

at Higher Phase Space Densities

Bringing both species together to quantum degeneracy is not straightforward. One

can not simply load them in a double MOT and evaporate them in the same opti-

cal dipole trap to quantum degeneracy, because of the following two complications.

Firstly, the atom numbers in a double MOT are severely limited by inelastic colli-

sions with loss rate constants on the order of γLiCs ≈ 10−10cm3/s [Schlöder et al.,

1999]. For the MOT densities in our experiment we measure fast, approximately

exponential 6Li losses with time constants below 100 ms, when we hold 6Li in a

dipole trap and load a 133Cs MOT at the same position. The second complication

is the di�erence in trapping potential that both species experience. One reason for

this is the fact that the polarizability of 133Cs for a laser of 1070 nm wavelength is a

factor of four larger than that of 6Li, as will be discussed further within this section

(cf. Sect. 2.2.2). The second reason is the mass di�erence. While the 6Li mass

only plays a negligible role, the heavier 133Cs experiences a gradient in the trapping

potential due to gravitation. At su�ciently low laser powers, this gradient reduces

the trapping potential signi�cantly and shifts the equilibrium position of 133Cs away

from the one of 6Li. At trap depths on the order of 3 µK, both species experience

approximately the same trap depth and temperatures. The spatial overlap at this
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Figure 2.22: Displacement of reservoir. The reservoir trap is loaded at a dis-
placed position (light blue), and then superposed with the dimple trap (red)
via a piezo driven mirror. The �nal position of the reservoir is illustrated in
dark blue.

stage is calculated to be on the order of 80% (see Fig. 2.21(a)). Lowering the laser

power further then quickly reduces the overlap, and yields a shallower trap depth for
133Cs as compared to 6Li. This scenario is shown in Fig. 2.21(b). The vertical over-

lap (red area) is reduced signi�cantly to ∼ 12% for 133Cs temperatures of ∼ 100 nK,

which are required in order to reach Bose-Einstein condensation. A comparison of

the temperatures at the lowest Pend values in Fig. 2.17 and Fig. 2.20 shows that for

dimple trap powers on the order of ∼ 100 mW the con�nement of 6Li is stronger as

that for 133Cs, causing the 6Li temperature to be higher than that of 133Cs. For laser

powers on the order of a few hundred mW, as shown e.g. in Fig. 2.12, the situation

is reversed, and the 6Li sample is colder than the 133Cs sample.

A scheme that avoids the limitations discussed above is presented as follows. In-

stead of loading the species at the same position, we load both species subsequently

with su�cient displacement. In principle, this has been already done for mixing

the species in Sect. 2.2 by adding an o�set �eld during loading of the 133Cs MOT

while 6Li was already stored in a dimple trap. However, the 133Cs MOT loading

time was limited to t < 200 ms. For longer loading times, the extension of the 133Cs

cloud becomes large enough to overlap with the 6Li MOT, yielding fast inelastic

losses. Displacing the 133Cs MOT further by increasing the o�set �eld is not an

option, as the loading e�ciency of the optical lattice for DRSC, which is in this case

still overlapped with the dimple trap containing 6Li, then becomes insu�cient. In

order to resolve this, we displace the position of the optical lattice and the reservoir

trap su�ciently far away from the dimple trap, and load both species subsequently

at displaced positions into di�erent dipole traps. The 133Cs atoms in the reservoir
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Figure 2.23: Reservoir position as a function of piezo voltage. The reservoir
trap can be displaced up to 1 mm from the position of the dimple trap by help
of a piezo driven mirror.

trap can then be superposed with the dimple trap by use of a piezo driven mir-

ror that allows for shifting of the reservoir trap beams. We illustrate this process

schematically in Fig. 2.22. We implement the piezo driven mirror into our setup

and illustrate the measured position of the 133Cs cloud in the reservoir as a function

of the voltage supplied to the piezo element in Fig. 2.23. With a maximum piezo

voltage of 150 V, we are able to shift the position of the 133Cs reservoir by ∼ 1 mm,

which is su�cient for subsequent loading of both species without inducing inelastic

losses, as performed in Chap. 4.

The problem of the vanishing overlap is approached by using an additional dipole

trap laser that allows for a species selective manipulation of the atoms. In Fig. 2.24

we display the wavelength dependent 6Li and 133Cs polarizabilities

α(ω) =
∑

β

2ωβα |〈α| ê ·d |β〉|2
~(ω2

βα − ω2)
(2.27)

for the ground state |α〉, where ê denotes the unit polarization vector of the light �eld,
d represents the dipole operator, and the sum is performed over the relevant states

|β〉. The polarizability for 133Cs vanishes at a wavelength of 880.18 nm, because the

contributions from the D1 and the D2 lines cancel, when these are the only states

used in Eq. (2.27). Adding a laser at this wavelength to the existing dimple trap

allows us to apply an additional trapping potential only for 6Li without a�ecting the

trapping potential of 133Cs. At low dimple trap powers, which yield gravitational

shifts for 133Cs (see Fig. 2.21), the 6Li potential can be adjusted with this tune-out

trap so that it still overlaps with 133Cs. Alternatively, one can select a wavelength

where for a desired trap depth both species experience the same potential, since the
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Figure 2.24: Polarizabilites α(ω) for 6Li (red) and 133Cs (blue). The tune-
out wavelength λ0,Cs = 880.18 nm for 133Cs is indicated by an arrow. Only
the contributions from the D1 and D2 line have been used for the calculation
of α(ω) (Eq. (2.27)), which is given in atomic units. Figure taken from Häfner,
2013.

laser used for this scheme is tunable over a large range of wavelengths.

In a �rst set of preliminary experiments32 we analyze the behavior of the 133Cs

sample in the tune-out trap with a crossing angle of 90◦. The trapping frequencies

are measured for di�erent wavelengths and laser powers, as summarized in Fig. 2.25.

Close to the tune-out wavelength λ0 we cannot measure 133Cs trapping frequencies,

because the trapping potential vanishes. However, as expected, we observe that the

frequencies decrease for wavelengths approaching λ0, following the calculated theory

curves for the expected behavior. We illustrate three-di�erent curves, because the

beam waist changes slightly with wavelength, as discussed in Häfner, 2013. We also

measure the ac Stark shift on the 6S1/2 |f = 4〉 → 6P3/2 |f ′ = 5〉 imaging transition

caused by the tune-out trap. As this laser shifts both states of this transition, we

show the results for the di�erence of the ac Stark shifts of both states in Fig. 2.26.

This shift also decreases for values approaching λ0. More details on the experiments

with the tune-out trap can be found in Häfner, 2013.

The measurements described above prove that the tune-out wavelength trap can

be employed for a species selective trapping of only 6Li, while the 133Cs trapping

potential remains una�ected. However, the 133Cs atoms still scatter light, which

32These measurements have been performed by S. Häfner within the scope of his master's the-
sis [Häfner, 2013]. At the time of the described measurement, the 6Li sample could not be probed
for technical reasons.
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0) is shown (dashed

lines) for the three indicated beam waists since this parameter slightly changes
with wavelength (see Häfner, 2013). Figure taken from Häfner, 2013.

leads to heating of the atoms. For typical laser intensities, this e�ect can be on the

order of 100 nK/s, which limits the atom lifetime in the trap. Thus, the time for

experiments with mixed species close to or at quantum degeneracy is also limited

to values on the order of 1 s.

A planned step for the near future is to superpose the tune-out trap with the

dimple trap by use of dichroic mirrors. Once this has been implemented, we expect

to bring the mixture to quantum degeneracy simultaneously, while maintaining a

high spatial overlap of both gases via the tune-out trap.
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Figure 2.26: Di�erential ac Stark shift as a function of wavelength. The

measured di�erence of the ac Stark shift between the 6S1/2 |f = 4〉 and
6P3/2 |f ′ = 5〉 states, induced by the tune-out trap, is illustrated as black
squares. The lines show the expected behavior for the di�erentmf sublevels in
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Chapter 3

Analyzing Feshbach Resonances

Parts of this chapter are based on the following publications:

R. Pires, M. Repp, J. Ulmanis, E.D. Kuhnle, M. Weidemüller, T.G. Tiecke, C.H.

Greene, B.P.Ruzic, J.L. Bohn and E. Tiemann

Analyzing Feshbach Resonances - A LiCs Case Study

Manuscript in preparation

M. Repp, R. Pires, J. Ulmanis, R. Heck, E.D. Kuhnle, M.Weidemüller, E. Tie-

mann

Observation of interspecies 6Li-133Cs Feshbach resonances

Physical Review A 87, 010701 (2013)

For the quantitative study of phenomena that depend on particle interactions,

e.g. E�mov resonances, precise knowledge of the �eld-dependent scattering lengths

is essential. In principle, this property can be calculated from accurate interatomic

potentials. However, in the case of 6Li-133Cs the available potentials, constructed

from Fourier-transform spectroscopy in Staanum et al., 2007, contain mainly deeper

lying singlet states, from which the majority are associated with the 7Li-133Cs com-

bination. The sensitivity of these measurements to the 6Li-133Cs potential in the

region of the dissociation threshold, which is the critical part for the position of

Feshbach resonances (FRs), is not su�cient for an accurate prediction of the �eld

dependent scattering length a(B). A powerful tool for obtaining appropriate exper-

imental data for the calculation of a(B) is Feshbach spectroscopy.

A straightforward numerical coupled channels calculation (CC), which often em-
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ploys a large number of channels N , can then be used to calculate the appropriate

wavefunctions and the scattering lengths from this data. As the time for the matrix

operation required to solve this problem is on the order of N3 [Croft et al., 2011],

such a calculation can be computationally expensive. However, su�cient insight into

the resonance structure can be gained by applying models that approximately de-

scribe the scattering properties, while reducing the computational e�ort enormously.

Two such models have been proven as powerful alternatives.

One of these models is the asymptotic bound state model (ABM), which uses

only the bound states close to the asymptote to describe observables like FRs and

the scattering length, neglecting the spatial part of the Schrödinger equation and the

continuum of scattering states. A second approach to calculate scattering observ-

ables is the multichannel quantum defect theory (MQDT), which uses the separation

of length and energy scales to facilitate the calculation.

Even though FRs have been extensively reviewed in Chin et al., 2010, the lit-

erature is currently lacking a detailed juxtaposition of the aforementioned models.

The goal of the present chapter is to �ll this gap by comprehensively comparing

the approaches of CC calculation, ABM, and MQDT and by providing quantitative

results based on the example of the 6Li-133Cs system.

The motivation for this comparison originates from a disagreement between CC

calculation and ABM, as reported in Repp et al., 2013. The CC calculation1 allows

to accurately assign measured FRs (see Sect. 3.1) with a root mean square (rms)

deviation δBrms (for a de�nition see Eq. (3.51)) of 39 mG for the �eld positions

of the observed resonances. An application of the crudest version of the ABM

with six free �t parameters, similar to the one done in Repp et al., 2013, yields

a rms deviation of 877 mG. However, leaving all six parameters as free parameters

in the �t yields unphysical �t values which are not consistent with those of the

CC calculation because the parameters are signi�cantly correlated. Therefore, we

demonstrate how this deviation can be reduced by minimizing the amount of free �t

parameters and by including magnetic dipole-dipole interaction, yielding a slightly

increased δBrms = 965 mG but parameters that are physically consistent with the

CC values.

The 6Li-133Cs combination is a good system for the illustration of this extended

ABM, because its small reduced mass leads to a large spacing between vibrational

states. Therefore, only the least bound states need to be included, which keeps the

number of parameters low, and minimizes the computational e�ort. Other systems

1Calculations performed by E. Tiemann.
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with higher reduced mass would require a larger number n of bound states, which

results in 2n+n2 �t parameters (2n bound states in singlet and triplet potentials and

n2 respective overlap parameters). For example in Rb-Cs at least �ve vibrational

levels have to be included. The required 35 parameter �t to the observed resonances

is asking for an appropriate number of observations if no further theoretical input

is available.

We additionally apply the dressed ABM2, which includes the coupling of the

bound molecular state to the scattering state of the incoming atoms [Tiecke et al.,

2010], to improve the agreement with experimental FR positions in the 6Li-133Cs

system even further. The application of this model is not straightforward due to

a subtlety in the 6Li-133Cs triplet potential. A virtual state, which is close to the

atomic threshold, is not resonant enough to dominate the scattering behavior in the

open channel. Therefore, neither the limiting case where a bound state dominates

[Tiecke et al., 2010], nor the case where only the virtual state dictates the behavior

[Marcelis et al., 2004] is applicable. We will bridge this gap by demonstrating a phe-

nomenological method that includes both e�ects, leading to a convincing description

of the observed FRs with a rms deviation of 265 mG.

Unlike the ABM, the MQDT handles the spatial part of the scattering problem

at large separation r explicitly, and the formalism does not di�erentiate between

dominating bound or virtual states. Thus, the latest version of the MQDT as de-

scribed in Ruzic et al., 2013 can be directly applied3 without extension, resulting

in a rms deviation of 40 mG. Besides giving the results for the 6Li-133Cs case, we

demonstrate how a frame transformation (FT) in a MQDT ansatz can be applied4 to

a system where no accurate potentials and only experimental data for FR positions

are available, in order to assign these resonances and predict other resonance posi-

tions. The rms deviation of the FT approximation for the 6Li-133Cs system becomes

48 mG.

This chapter is organized as follows. We present the measurement of interspecies

FRs in Sect. 3.1. We review the basic concepts of scattering physics in Sect. 3.2

before we explain the basic approach and the underlying assumptions of the applied

models to the scattering problem in Sect. 3.3. In Sect. 3.4 we discuss the results of

the three models and �nally, in Sect. 3.5 we provide the quantitative comparison of

the models and summarize our �ndings.

2Calculations performed by T. Tiecke.
3Calculations performed by B. Ruzic, J. Bohn and C. Greene.
4Calculations performed by C. Greene.
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3.1 Measurement of Feshbach Resonances

In the following section we show how a mixture of ultracold 6Li-133Cs atoms, pre-

pared in the way presented in Sect. 2.2, can be used to perform Feshbach spec-

troscopy. This allows to improve existing 6Li-133Cs molecular potentials [Staanum

et al., 2007] and therefore to calculate accurate values for the �eld dependent scat-

tering length by use of a coupled channels calculation (see Sect. 3.4.1). We start

by outlining the loss processes we expect in an ultracold mixture in Sect. 3.1.1.

Our procedure for calibration of magnetic �elds is explained in Sect. 3.1.2, and de-

tails on our trap loss measurements, as given in a previous publication [Repp et al.,

2013], are illustrated in Sect. 3.1.3. The unique applications for favorably positioned

resonances are described in Sect. 3.1.4.

3.1.1 Loss Processes of Ultracold 6Li-133Cs Atoms in a Dipole

trap

As we want to �nd FRs by observing losses in our 6Li-133Cs mixture, we list the

dominating loss processes that can occur in our trapped ultracold sample:

� One-body losses. Collisions between particles from the background gas and

trapped atoms lead to exponential losses of the latter from our trap. Due to

non optimal vacuum conditions, these losses occur with a relatively small time

constant of τ ∼4 s. However, since our hold times in the trap are shorter than

this time, they do not limit our experiments, but only lead to a constant o�set

in our loss spectra.

� Two-body losses. The 6Li|1/2, 1/2〉⊕ 133Cs|3, 3〉 channel is the energetically
lowest channel, which excludes inelastic losses caused by two body collisions.

For all other channels, however, inelastic two body losses are energetically pos-

sible. While the K2 loss coe�cient in the 6Li|1/2,−1/2〉⊕ 133Cs|3, 3〉 channel
of ∼ 10−18cm3/s is negligible away from resonance [Tung et al., 2013], spin-

dipolar coupling to exit channel d-waves can cause transitions to the energet-

ically lowest channel, thus resulting in additional losses.

� Losses caused by elastic collisions. In our setup, a dominant loss mecha-

nism is caused by elastic interspecies collisions. As explained in Sect. 2.2.2 and

Sect. 2.5, the temperature of the 133Cs atoms is a factor of four higher than

that of the 6Li atoms, which experience a much shallower trapping potential
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(see Fig. 2.12). This leads to additional losses of 6Li due to heating by 133Cs.

As the scattering cross section scales with a2 (see Sect. 3.2.1 and Eq. (3.9)), we

expect increased 6Li losses at the position of a FR, because here the scattering

length diverges (see Fig. 3.8). This is one of the main reasons why we use the
6Li instead of 133Cs atom number for our trap loss measurements.

� Three-body losses. A further loss mechanism occurs during a three-body

collision. When two of the atoms form a molecule, its binding energy is carried

away by all three particles, thus leading to strong losses. It can be shown that

the loss coe�cient L3 scales as [Fedichev et al., 1996; D'Incao and Esry, 2005;

Weber et al., 2003a]

L3 ∝ C(a, T )a4, (3.1)

where the coe�cient C(a, T ) depends on the microscopic details of the involved

atoms. At low temperatures, C(a, T ) shows a modulation that corresponds to

the E�mov e�ect. In fact, a minimum of C(a, T ) at 21 G for 133Cs allowed

us to create a BEC in Sect. 2.3 (c.f. [Kraemer et al., 2004]). The E�mov

e�ect and three-body losses are discussed in more detail in Chap. 4. On a

Feshbach resonance, the power law scaling of the three-body loss coe�cient

with a4 leads to signi�cant losses due to the diverging scattering length (see

Fig.3.8). Hence, increased losses at certain magnetic �elds can be associated

with FRs, as shown in Sect. 3.1.3.

Besides the above mentioned loss processes, there are also higher-order loss pro-

cesses. An n-body loss process requires n particles to approach within distances on

the order of the van der Waals range (see Eq.(3.29)). However, as the probability

to �nd n > 3 atoms in this region is small, these processes are suppressed for the

densities of the experiments discussed in this work.

3.1.2 Magnetic Field Calibration

For a precise determination of the FR positions it is important to calibrate the

magnetic �elds accurately. This is achieved by inducing microwave transitions to

the 6Li mJ = 1/2 manifold (see Fig. 3.1(a)) by a small coil inside our vacuum

chamber. The frequency of the microwave �eld is scanned for a �xed magnetic �eld,

and for a resonant frequency we see a signi�cant reduction in atom number caused

by transitions to the mJ = 1/2 state. A comparison of the energies from the Breit-

Rabi formula (see Fig. 3.1(a)) to the peak position of a Gaussian �t allows us to
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Figure 3.1: Rf transition for the magnetic �eld calibration. Left: The �eld
dependent level splitting of 6Li is depicted. The orange arrow indicates the
transition used for calibration via the energetically lowest 6Li state. Right: A
typical trap loss spectrum, including a Gaussian �t is shown. The FWHM of
156 kHz at 816.24 G corresponds to a �eld accuracy of 110 mG. The error bars
represent the standard error of the mean atom number determined by several
measurements. Figure taken from Repp, 2013.

deduce the magnetic �eld that corresponds to the measured transition frequency,

thus calibrating our magnetic �elds. As the width of the atom distribution along

the weak axis of con�nement is on the order of ∼ 100 µm, we expect a broadening of

the loss feature due to �eld inhomogeneities. While we cannot distinguish between

fast �uctuations of the �eld and inhomogeneity across the sample, we can give

an upper limit for the combined e�ect of both. For the largest measured �eld

of 950 G a Gaussian �t to the loss feature yields a full width at half maximum

(FWHM) of 200 kHz, which corresponds to a magnetic �eld accuracy of 140 mG

across the sample. We perform this measurement at all �elds where a FR occurs and

conclude that the width scales approximately linear with magnetic �eld. A typical

loss spectrum is shown in Fig. 3.1(b). We observe slow drifts of up to 200 mG on

the time scales of a day. For the calculations of the errors in Sect. 3.4 we include

this systematic error.

3.1.3 Trap Loss Spectroscopy

In order to observe FRs via two and three-body losses, as described in Sect. 3.1.1,

we prepare a mixture of 6Li and 133Cs atoms as given in Sect. 2.2. We then hold

the atoms at a certain �eld for a variable hold time. Performing this procedure for

di�erent magnetic �elds and observing the 6Li atom number via high �eld imaging
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(see Sect. 2.1.5) yields loss spectra as e.g. given in Fig. 3.2. We adjust the 133Cs

density by changing the 133Cs MOT loading times, and vary the hold times tHold

between 60 ms and 2000 ms in a way that produces a relative 6Li atom loss of 15

- 55 % on resonance, which provides a clear, non-saturated loss signal that allows

for �tting of a Gaussian pro�le. The 133Cs atom number and tHold is given for each

resonance measurement in Table 3.1.

For the four 6Li|1/2,±1/2〉 and 133Cs|3, f = 2, 3〉 channels, connected to the two

energetically lowest hyper�ne states of each species, we detect a total of 19 loss fea-

tures in the �eld range between 650 G and 950 G. In order to unambiguously assign

the loss feature to interspecies FRs in each observed channel, we repeat the exact

measurement sequence, but remove 133Cs with a resonant light pulse during DRSC,

which makes the loss features disappear. We also repeat the measurement with a

mixture containing the respective other 6Li spin state, and with only 133Cs in the

trap in order to assure that the loss is not connected with intraspecies FRs. The

result of the trap loss spectroscopy from 810 G to 965 G, where the broadest loss

features are observed, is given in Fig. 3.2. These features are assigned to s-wave reso-

nances via the theoretical analysis reported in the remainder of this chapter. Several

of the narrow loss features, which are assigned to p-wave resonances via the CC (see
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Figure 3.3: Trap loss measurement for selected p-wave resonances with

resolved splitting. The remaining atom number in dependence of the mag-
netic �eld, as well as double Gaussian pro�le �ts to the observed loss features
are shown for the indicated channels. Adapted from Repp, 2013.

Sect. 3.4.1) show a splitting. This is depicted in Fig. 3.3 and is a direct consequence

of the second-order spin-orbit and magnetic spin dipole-dipole interaction. In Ta-

ble 3.1 we provide all resonance positions and loss feature widths, as determined by

magnetic �eld calibration via rf spectroscopy (see Sect. 3.1.2) and �ts of Gaussian

pro�les to the loss features. In a measurement with a step size of 150 mG and 500

ms hold time in the �eld region between 0 G and 1300 G containing atoms of all the

relevant hyper�ne states, we observe no additional loss features. We note that the

�ve s-wave FRs which have also been measured by the Chin group at the University

of Chicago [Tung et al., 2013] shortly after our experiments, are consistent with

our �ndings. We assign all resonances via a full coupled channels calculation5 by

adjusting the potentials obtained via laser induced �uorescence Fourier-transform

spectroscopy [Staanum et al., 2007]. As these calculations are extensively described

in Sect. 3.4.1, we only state the results at this point. The �eld dependent scatter-

ing lengths in the region from 810 G to 965 G are depicted in Fig. 3.2(a) for the
6Li|1/2, 1/2〉⊕133Cs|3, 3〉 and 6Li|1/2,−1/2〉⊕133Cs|3, 3〉 channels. In Table 3.1 we

assign the resonances to s- and p-wave, and give the deviation δ = Bexp
res − Btheo

res

between experimentally and theoretically determined resonance positions, the FR

width ∆ and the background scattering length abg, as de�ned in Eq. (3.42). The

total angular momentum f , which does not include l at zero magnetic �eld, as well

5Performed by E.Tiemann, University of Hannover.
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Chapter 3. Analyzing Feshbach Resonances

as G = S + iCs, which is also a good quantum number due to the strong 133Cs

hyper�ne coupling, are also given in Table 3.1 for a unique assignment.

3.1.4 Unique Properties of 6Li-133Cs Feshbach Resonances

Several of the observed loss features provide a unique tunability of intra- and in-

terspecies scattering lengths. For example, the 133Cs zero crossing at 880.2 G [Lee

et al., 2007; Berninger et al., 2013] is close to the 6Li-133Cs resonance at 889.2 G.

Due to the Pauli blocking of spin polarized 6Li, a sample containing atoms in the
6Li|1/2,−1/2〉⊕133Cs|3, 3〉 states experiences strong interspecies interaction, while

intraspecies scattering for both species is suppressed. In Repp, 2013 an interest-

ing application for the simulation of Fröhlich polarons [Fröhlich, 1954; Tempere

et al., 2009; Cucchietti and Timmermans, 2006] via this FR is discussed. The vicin-

ity of the FR at 843.5 G to the broad intraspecies 6Li|1/2,−1/2〉⊕6Li|1/2, 1/2〉
resonance at 832.18 G [Zürn et al., 2012] allows to create a sample with strong
6Li|1/2, 1/2〉⊕133Cs|3, 3〉 and 6Li|1/2,−1/2〉⊕6Li|1/2, 1/2〉 interactions, while the
6Li|1/2,−1/2〉⊕133Cs|3, 3〉 interactions are small. Furthermore, two 6Li-133Cs reso-

nances are close to a three-body loss minimum at 893 G. This allows for sympathetic

cooling between 6Li and 133Cs (c.f.[Mudrich et al., 2002]), with minimized three-body

losses in the 133Cs sample. However, for this approach one requires similar trapping

potentials for 6Li and 133Cs (see Sect. 2.5.).

3.2 Formalism for Scattering at Ultracold Temper-

atures

A recurring theme of this thesis is the concept of the scattering length. It is the

only parameter needed to describe the interaction between two atoms in the realm

of ultracold physics. In this section we revisit the underlying principles of scattering

phenomena which are necessary for the theoretical treatment of such systems. The

Schrödinger equation and its general solutions are introduced in Sect. 3.2.1, deriving

the formulas for experimentally relevant observables in the process. The scattering

length is formally introduced in Sect. 3.2.2, where we start by examining the one

dimensional �nite potential well as text book example for the understanding of

the scattering length. The scattering wavefunctions, which are the solution of the

Schrödinger equation, are then related to the sign of the scattering length. The

divergence due to a shape resonance is presented, as well, which is relevant for the
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3.2. Formalism for Scattering at Ultracold Temperatures

new approach of the ABM presented in Sect. 3.4.2, because the incoming triplet

channel of the 6Li-133Cs potential is close to such a resonance. In Sect. 3.2.3 we

introduce the appropriate Hamiltonian for the description of scattering phenomena

in ultracold atoms and give a detailed discussion of its individual terms.

3.2.1 Key Concepts of Scattering Theory

We start our summary of the quantum mechanical scattering theory by introducing

the general Schrödinger equation for a collision between two particles:

[
− ~2

2µ
~52

+ U(~r)

]
ψ(~r) =

~2k2

2µ
ψ(~r), (3.2)

where |k| =
√

2µ|E|/~ is the collision wavevector,

µ =
m1m2

m1 +m2

(3.3)

is the reduced mass, and U(~r) is an interaction potential. For the investigated

systems, U(~r) vanishes for su�ciently large interparticle spacings r. Thus we can

write the wavefunction Ψ(~r) as a superposition of incoming plane wave and outgoing

spherical wave with scattering amplitude f(θ, k):

ψ(~r) = eikz + f(θ, k)
eikr

r
. (3.4)

For all interactions considered in this thesis, we can assume a spherical symmetric

potential, which allows us to expand the wavefunction in the basis of spherical

harmonics Y m
l (θ, φ):

ψ(~r) =
∞∑

l=0

l∑

m=−l

Y m
l (θ, φ)

χk,l,m(r)

r
, (3.5)

where χk,l,m(r) is a radial function that depends on k, l and m. It should be noted

that the assumption of a spherically symmetric potential is not valid for experiments

with species that exhibit a permanent dipole moment (e.g. [Aikawa et al., 2012;

Stellmer et al., 2009; Stuhler et al., 2007; Lu et al., 2011]), as this alters the symmetry

of the scattering process. Inserting Eq.(3.5) into Eq.(3.2) returns the solution

f(θ, k) =
1

2ik

∞∑

l=0

(2l + 1)(e2iδl − 1)Pl(cos(θ)) (3.6)
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for the scattering amplitude at large r, where Pl is the well known Legendre poly-

nomial. This partial wave expansion introduces the phase shift δl, which contains

all information of the systems interaction. As we demonstrate in Sect. 3.2.3, at the

ultracold conditions of our experiment, s-wave (l = 0) scattering is the only com-

ponent of the partial wave expansion that is necessary to describe the interaction

between atoms, due to the low collision energies. It is convenient to introduce the

s-wave scattering length

a = lim
k→0

−η0

k
, (3.7)

where η0 = tan(δ0(k)), as the only parameter for the description of the scattering

behavior.

Until now, we have not considered the speci�c nature of the colliding particles.

Imposing the requirement of symmetric (anti-symmetric) wavefunctions for bosons

(fermions), yields the expression for the di�erential cross section

dσ(k)

dΩ
= |f(θ, k) + εf(π − θ, k)|2, (3.8)

where ε = +1 (ε = −1) describes the case of identical bosons (fermions). Employing

Eq. (3.7) in this equation yields the following cross sections:

σ0 =





4πa2

1+k2a2
, for distinguishable particles

0, for identical fermions
8πa2

1+k2a2
for identical bosons.

(3.9)

3.2.2 Exploration of the Scattering Length

Considering a simple model potential gives a pedagogical introduction to the scatter-

ing length as de�ned in Eq. (3.7). Despite the vast simpli�cation, the basic physics

is still preserved in real systems. Using the partial-wave expansion in Eq. (3.5) al-

lows us to separate radial and angular coordinates of Eq. (3.2). The solution of the

angular part is straightforward, and inserting its result back into the Schrödinger

equation yields simple equations for the radial wavefunctions Rl(r) = χl(r)/r. As

this is subject to many introductory textbooks of quantum mechanics [Schwabl,
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2007; Merzbacher, 1998; Petrov, 2013]6, we state the solutions without derivation:

R′′l (r) +
2

r
R′l(r) +

2µ

~2
[E − Vl(r)]Rl(r) = 0. (3.10)

Here, the collision energy is given by E, and the potential Vl(r) = U(r) + ~2l(l+1)
2µr2

contains the centrifugal term with angular momentum quantum number l. We

substitute χl(r) = r ·R(r), and rescale ε = 2µE/~2 and V̄ (r) = 2µVl(r)/~2 in order

to get the simpli�ed equation

χ′′l (r) + [ε− V̄ (r)]χl(r) = 0. (3.11)

For the remainder of this section, we consider the case l = 0 and drop the subscript

l for simpli�cation. For free atoms, where V̄ (r) = 0, and E = ~2k2/2µ we obtain

the obvious solution

χ(r) = sin(kr), (3.12)

when the boundary condition χ(0) = 0 is imposed for regularity of R(r).

As we will see in the following discussion, a non-zero potential V̄ changes the

shape of the scattering function in the interaction region, and thus leads to a phase

shift η0 in the wavefunction χ(r) for large distances r, where the interaction potential

is approximately zero:

χ(r) = sin (kr + η0) . (3.13)

η0 can be related to the s-wave scattering length a via Eq. (3.7). We demonstrate,

that a is the only quantity needed to describe the scattering between ultracold alkali

atoms in Sect. 3.2.3. In order to clarify the meaning of η0, we chose the �gurative

example of the �nite potential well as interatomic interaction potential

U(r) =




−V0, if 0 < r ≤ r0

0, otherwise,
(3.14)

as depicted in Fig. 3.4, where we also demonstrate a convenient division of the radial

wavefunction into the two components χI and χII .

We �rst consider the case of a hard-sphere potential, where V0 → −∞. The

wavefunction cannot penetrate into the region r < r0, hence χI(r) = 0. Given the

6In this section we follow the line of thought of Petrov, 2013, which is also similar to the
treatment in Schuster, 2012.
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Figure 3.4: Finite potential well. The potential well of depth −V0 and range
r0 as given in Eq.(3.14) is plotted as blue dash-dotted line. The region for the
wavefunctions χI and χII is separated by a black dash-dotted line.

boundary condition χII(r0) = 0, the solution for r > r0 is

χII(r) = sin (k(r − r0)) . (3.15)

The imposed boundary condition is a direct consequence of our requirement for a

continuous di�erentiable wavefunction at r = r0:

χI(r0) = χII(r0)

χ′I(r0) = χ′II(r0).
(3.16)

Here, the scattering length as de�ned in Eq. (3.7) is simply given by the range

of the potential r0, as is expected for this classical limit.

Taking the more pragmatic example of a �nite potential well with V0 =
~2k20
2µ

> 0,

we also get a �nite solution in the region r < r0

χ(r) =




C1sin (k+r) , if 0 < r ≤ r0

C2sin (kr + η0) , otherwise,
(3.17)

with k2
+ = k2

0 + k2. Again, the regularity of R(r) at r = 0 has been imposed.

Applying the boundary conditions of Eq. (3.16), we get

a = r0 −
tan(k0r0)

k0

. (3.18)

This function is shown in Fig. 3.5, in the scenario as originally envisioned by
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Figure 3.5: Scattering length a versus wavevector k0. The behavior of the
scattering length, as given by Eq. (3.18) is plotted. The positions where a < 0
(see Fig. 3.6(b)), a > 0 (see Fig. 3.6(c)), a = 0 (see Fig. 3.6(d)) and a→∞ (see
Fig. 3.6(e)) are marked with a blue, red, black and orange dot, respectively.

Herman Feshbach [Feshbach, 1958], where the energy of the colliding particles is

varied. For the cases where k0r0 = π/2 + nπ, with integer n, the scattering length

diverges, and the interaction is signi�cantly enhanced.

In Fig. 3.6 we depict the wavefunctions of Eq. (3.17) for typical parameters of

our experiment. A temperature of 200 nK and a potential range of r0 = 45 a0

is assumed, which is on the order of typical temperatures and the van der Waals

range of the 6Li-133Cs interaction potential, respectively. For better visibility, we

reduce the potential depth V0 from ∼ 200 Thz to ∼ 520 GHz, which decreases the

oscillation period for r < r0. For most values of V0 the scattering length is a = 45 a0

(see Fig. 3.6(c)). However, when we reduce V0, the scattering length goes through

a = 0 (see Fig. 3.6(d)) to negative values (Fig. 3.6(b)). Right at the depth for V0

where a new bound state occurs, the scattering length diverges (Fig. 3.6(e)). These

special cases are also related to the general behavior of a via the colored dots in

Fig. 3.5. When r > r0, the radial wavefunction behaves as χ(r)→ C(r − a), which

is also shown as the straight lines in Figs. 3.6(b)-(e). This means that for large

distances, the wavefunction looks like there was an in�nitely repulsive wall at r = a.

To illustrate this behavior, we also show the functions at larger interatomic

distances (see Fig. 3.6(a)). The wavefunction for a < 0 (blue curve) is pulled to closer

distances which corresponds to an attractive potential, while the wavefunction for

positive a (red curve) is pushed away from r = 0, which mimics repulsive interaction.

The wavefunction for a = 0 (black curve) corresponds to the wavefunction for atoms

with zero interaction potential. The e�ect of the Feshbach resonance, where a
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Chapter 3. Analyzing Feshbach Resonances

diverges, is seen in the orange curve, where the phase of the wavefunction is shifted

by π.

The wavefunctions in Fig. 3.6 allow for an intuitive insight into the scattering be-

havior. However, the di�erent scenarios are caused by �ne-tuning of the underlying

interaction potentials. In realistic systems, these potentials cannot be �ne-tuned,

but are given by nature. Thus, in order to obtain large scattering lengths, one relies

on an accidental �ne-tuning, which is for example the case for two neutron or proton-

neutron systems [Braaten and Hammer, 2006]. Both 6Li and 133Cs are also good

examples for an accidental �ne-tuning. In these systems, the potential in the chan-

nel of the incoming atoms7 gives rise to a near resonant bound-state, which results

in large background scattering length. The behavior of the phenomena described

above, where |a| increases due to a bound state in the same channel as the incoming

atoms, is referred to as a shape resonance. As we show in Sect. 3.3.1, aside from

shape resonances, a coupling of the incoming channel to a resonant, bound molecu-

lar state in a di�erent scattering channel can have the same e�ect on the scattering

length. The 6Li-133Cs potential is close to a shape resonance in the triplet channel.

Therefore, the existing approach of the ABM is not suited for an accurate treatment

of this mixture. In Sect. 3.4.2 we extend the existing model in a phenomenological

way, in order to precisely reproduce the observed resonance spectrum.

For completeness we consider the case of bound states with εB = −~2k2
2µ

< 0 in

the above described potentials. The solution for the wavefunction is given by

χ(r) =




C1sin (k−r) , if 0 < r ≤ r0

C2e−kr, otherwise,
(3.19)

where k− = k2
0 − k2. Applying Eqs. (3.16), we get k−cot(k−r) = −r. In the limit

of weakly bound states, k/k0 → 0, we obtain the solution k0r0 = π/2 + nπ which

coincides with the poles found above. This demonstrates that the emergence of

bound states coincides with the divergence of the scattering length.

At this point we can also introduce the universal limit a � r0, in which the

scattering length is much larger than the range of the potential. Using Eq. (3.18),

we obtain

εB = − ~2

2µa2
, (3.20)

for the binding energy, which is completely independent from r0 and thus universal,

as the atoms do not resolve the details of the interaction potential. The only e�ect

7We formally introduce the scattering channels in Sect. 3.2.3.
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and a = 45 a0 (red) are exaggerated for better visibility. The dashed line shows
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from the interaction potential is the phase imprinted on the wavefunction at large

distances, and the atoms never probe the region where r ∼ r0. This can be seen

directly by looking at χ(r), which reads

χ(r) =

√
2

a
e−

r
a . (3.21)

Besides these two-body bound states, there are also universal three-body states,

the so-called E�mov states, which are introduced in detail in Chap. 4.

3.2.3 The Scattering Hamiltonian in Ultracold Atomic Sys-

tems

The model potential of Sect. 3.2.2 introduces the e�ect of shape resonances on the

scattering length. In atomic physics, however, the coupling between two di�erent

scattering channels gives rise to di�erent scattering resonances, which can be tuned

by magnetic �elds (see Sect. 3.3.1). In order to understand this coupling mechanism,

we extend the Hamiltonian of Eq. (3.2) and discuss each of its components in more

detail in this section.

The scattering process of two colliding atoms can be described by the following

Hamiltonian [Stoof et al., 1988]:

H = T + V +Hhf +HZ +Hdd, (3.22)

where T = −~2∆/(2µ) denotes the relative kinetic energy term. The hyper�ne

energy operator

Hhf =
∑

β=A,B

αβ(r)~sβ ·~iβ/~2, (3.23)

contains the electronic and nuclear spin operators ~s and~i, respectively, and the sum-

mation is performed over the two atoms A and B. In the limit of large separations,

the functions αβ(r), which depend on the internuclear separation r, approach the

atomic hyper�ne constant ahf . The Zeeman interaction is given by

HZ =
∑

β=A,B

(gs,βsz,β + gi,βiz,β)µBB/~, (3.24)

where gs (gi) is the electron (nuclear) g-factor, with respect to the Bohr magneton

µB (see Arimondo et al., 1977). Hdd is the Hamiltonian describing direct magnetic

spin-spin, as well as second-order spin-orbit interactions, which causes for example
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the observed splitting of p-wave resonances in 6Li-133Cs (see Sect. 3.1). It can be

given in its e�ective form [Strauss et al., 2010]:

Vdip(r) =
2

3
λ(r)(3S2

Z − S2), (3.25)

where SZ is a projection of total electron spin S onto the molecular axis. The

function

λ(r) = −3

4
α2

(
1

r3
+ aSO exp (−br)

)
, (3.26)

is given in atomic units with the universal �ne structure constant α. The parameters

b and aSO for the assumed e�ective functional form of the second order spin-orbit

interaction depend on the microscopic details of the constituent atoms, and will be

used as �tting parameters in Sect. 3.4.

The interatomic interaction potential V contains a centrifugal term (cf. Sect. 3.2.2)

and the Born-Oppenheimer potentials U(r). The latter incorporates the assump-

tion, that the electron motion occurs much faster than the motion of the heavy

nuclei. Thus, the potential energy at each r is given by the ground-state energy of

the electron clouds.

At short distances, the potential is strongly repulsive due to the interaction of

positively charged atom cores and Pauli blocking of the electrons. In this region, the

orientation of the valence electrons' spins of the two atoms becomes important. For

alkali atoms, they can amount to a total spin S = sA+sB of S = 0 (singlet) or S = 1

(triplet), which exhibit di�erent potential depths, as depicted in Fig. 3.7(a). This

behavior can be explained by the di�erent symmetries of the two con�gurations.

The triplet (singlet) state is symmetric (anti-symmetric), and thus, in order to

obtain asymmetric electron wavefunctions, the spatial part must be anti-symmetric

(symmetric). Hence, for the singlet con�guration the probability of �nding the

electrons between the atom cores is greatly enhanced simply for symmetry reasons.

This position of the negatively charged electrons leads to a screening of the positive

nuclei and therefore to a stronger binding between the positive nuclei which results

in a deeper molecular potential. The energy di�erence of the two con�gurations is

given by the exchange part of the potential

Uex(r) = ±Aexrγexe−βexr, (3.27)

where the plus (minus) sign applies for the singlet (triplet) potential. Here, γex and

βex, as well as the magnitude Aex depend on the details of the electron clouds and
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Figure 3.7: Interatomic interaction potentials for the LiCs mixture. (a)
Full singlet (black) and triplet (blue) ground state potentials as calculated from
a coupled channels calculation (see Sect. 3.4). (b) Long range potential with
only van der Waals and centrifugal terms for l = 0 (black), l = 1 (blue) and l = 2
(red). The dash-dotted lines illustrate the rotational barrier (see Eq. (3.30)).

nuclei. The total potential V = P0V0+P1V1 may be projected onto the singlet (VS=0)

and triplet (VS=1) components by the projection operators P0 and P1, respectively.

For distances that exceed the size of an electron cloud of an individual atom, the

interaction between the atoms is attractive. The polarizability of the electron clouds

induces dipoles, and their Coulomb interaction results in a power-law potential that

has the asymptotic form

U(r)→ −C6

r6
as r →∞, (3.28)

as plotted in Fig. 3.7(b). For systems with angular momentum, a centrifugal term

has to be included, as well. The van der Waals coe�cient C6 depends on the details

of the electronic con�gurations, and contains for example the atoms' ionization

energies. In general, higher order terms (C8, C10, etc.) contribute to the potential

at intermediate regimes, and retardation e�ects change the asymptotic potential to

a 1/r7 form. However, both complications are not essential for the description of

the phenomena discussed in this work.

The length scale of the van der Waals interaction

r0 =
1

2

(
2µC6

~2

)1/4

, (3.29)

which is also called the van der Waals length, is typically on the order of tens of
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Bohr radii for alkali atoms [Chin et al., 2010]. The 6Li-133Cs van der Waals length of

rLiCs
0 = 45a0 is much smaller than the mean interatomic distance n−1/3 ∼ 1 µm for

typical thermal cloud densities of n = 1012 cm−3, which describes the situation of a

dilute system. This con�rms our approach of describing the particle interactions only

via collisions. The thermal de Broglie wavelength (see Eq (2.10)) λdB ∼ 1 µm for

temperatures of T = 450 nK8 is on the same order as the interparticle spacing. This

means that the particles cannot be treated as point-like particles. Their wave nature

has to be taken into consideration, justifying the quantum mechanical treatment

presented in this chapter.

The height of the rotational barrier (see Fig. 3.7)

Urot =
1√
2C6

(
~2l(l + 1)

3µ

)3/2

(3.30)

is on the order of 11 mK for 6Li-133Cs d-waves and 2 mK for p-waves. The temper-

atures used in the current experiments are well below these temperatures, and thus

the s-wave components of the partial-wave expansion (see Eq. (3.5)) are su�cient

to describe the scattering process.

The manifold of di�erent internal states connected to the Hamiltonian of Eq. (3.22)

de�nes a number of channels for a given space �xed projection M of the total an-

gular momentum of the system. Unless otherwise stated, the coordinates connected

to spin and angular momentum are characterized by use of an appropriate basis set

like in Hund's coupling case (e) for an atom pair AB:

|χ〉 ≡ |(sA, iA)fA,mA; (sB, iB)fB,mB, l,M >, (3.31)

where the electron spin s couples with the nuclear spin i to the atomic angular

momentum f with its projection m on the space �xed axis. l is the quantum

number of the overall rotation of the atom pair. The basis vectors in Eq. (3.31)

can be interpreted in two ways, namely for the �eld-free case, where fA and fB are

good quantum numbers or in a magnetic �eld, where the pair is build up by the

eigenvectors of the Breit-Rabi formula and fA and fB are approximate quantum

numbers to label the corresponding eigenvector. The channel with the same spin

state as the incoming atoms is called entrance channel. Those channels with an

asymptotic (r → ∞) energy larger than that of the entrance channel are called

closed channels, all others are referred to as open channels.

8450 nK is the typical temperature of the gas for the experiments in Chpt 4.
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3.3 Three Models for the Calculation of Feshbach

Resonances

We begin this section by phenomenologically introducing the appearance of a FR in

a simpli�ed two-channel picture in Sect. 3.3.1, where we also identify the part of the

Hamiltonian in Eq. (3.22) that causes the coupling between two scattering channels.

In principle, it is impossible to solve the Schrödinger equation corresponding to this

Hamiltonian without any approximations due to the fact that an in�nite number

of coupled equations, from an in�nite number of basis states, are involved. In the

following, we will give a general description how to overcome this di�culty in order to

obtain an accurate description of resonance positions by the help of three di�erent

models, namely the CC calculation (Sect. 3.3.2), the ABM (Sect. 3.3.3) and the

MQDT (Sect. 3.3.4).

3.3.1 Two-Channel Description of a Feshbach Resonance

Other than the shape resonances introduced in Sect. 3.2.2, where the bound-state

that causes the divergence of the scattering length originates from the potential of

the incoming channel, the situation for the magnetically tunable FRs employed in

atomic physics is di�erent. Here, the resonance is caused by a weak coupling to a

bound-state in a di�erent hyper�ne channel. We explore the origin of the resonance

in this scenario following Moerdijk et al., 1995, as this approach is the basis of the

ABM model presented in Sect. 3.3.3.

We start by projecting the Hamiltonian of Eq. (3.22) onto the open and closed

channel subspaces via the projection operators P and Q, respectively. This results

in a set of coupled Schrödinger equations

(E −HPP )ψP = HPQψQ (3.32)

(E −HQQ)ψQ = HQPψP , (3.33)

where P (Q) denotes the projection onto the open (closed) channel Hilbert space

and Hîĵ = îHĵ for
{
î, ĵ
}

= {P,Q}. The energy E for this section is de�ned

with respect to the incoming channel's dissociation threshold. Applying the Green

operator 1
E+−HQQ

with E+ = E = iδ, where δ approaches zero from positive values,

to Eq. (3.33) yields

ψQ =
1

E+ −HQQ

HQPψP . (3.34)
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Substituting Eq. (3.34) into (3.32), results in the e�ective equation for the scattering

process in the open channel

(E −HEff)ψP = 0, (3.35)

with HEff = HPP +HPQ 1
E+−HQQ

HPQ. The second term in HEff mimics a transition

from the open to the closed channel, where the system propagates for a certain

time, and then returns to the P−channel. The Green operator can be expanded

to a complete set of eigenstates of HPP which contains bound-states and energy-

normalized scattering states. In order to avoid the tedious treatment of continuum

states, however, one can alternatively expand the propagator to Gamov resonances,

which leads to a Mittag-Le�er expansion, as explained in Marcelis et al., 2004. This

e�ective single channel treatment forms the validation for the ABM in Sect. 3.3.3.

When a bound-state φB with energy εB is su�ciently close to the energy of the

incoming atoms, so that all other terms of the expansion can be neglected, the

solution of Eq.(3.35) reduces to

|ψP 〉 =
∣∣ψ+

i

〉
+

1

E+ −HPP

HPQ |φB〉
〈
φB|HQP |ψ+

i

〉

E − εB − 〈φB|HQP
1

E+−HPP
HPQ |φB〉

. (3.36)

Here,
∣∣ψ+

i

〉
denotes an incoming wave in channel i, which is also an eigenstate of

HPP . The transition amplitude for an incoming channel i and an outgoing channel

j is given by

Sij = S0
ji − 2πi

〈
ψ−j |HPQ|φB

〉 〈
φB|HQP |ψ+

i

〉

E − εB − 〈φB|HQP
1

E+−HPP
HPQ |φB〉

, (3.37)

where S0
ji is a 'direct' term that describes the coupling within the P -channel. In

our experiments, the atoms are often in their energetically lowest states, reducing

the number of open channels to only one. Hence, the S-matrix for the only open

P -channel with a coupling to a bound-state in the Q-channel can be written as

S(E) = SP (E)

(
1− 2πi

∣∣〈φQ|HQP

∣∣ψ+
P

〉∣∣2

E − εQ −A(E)

)
, (3.38)

where the subscript for the bound-states now indicate their origin in the Q-space,

and the direct matrix in P -space is denoted as S0
ii = SP (E) = SP (k). The elastic

S-matrix element in Eq (3.38) is related to the scattering phase shift δ(k) via S(k) =

e2iδ(k).
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The complex energy shift

A(E) = 〈φQ|HQP
1

E+ −HPP

HPQ |φQ〉 (3.39)

describes the shift of the bare bound-state |φQ〉 due to the coupling with the P -

channel. A(E) = ∆(E) + i
2
Γ(E) can be decomposed into its real component ∆(E)

and the imaginary part Γ(E). For energies above the scattering threshold (E > 0),

the unperturbed bound-state εQ can be interpreted as a quasi bound-state that is

shifted by ∆(E) and has a �nite width Γ(E). For energies below the continuum

threshold, the energy shift is purely real, and Γ(E) = 0.

The closed channel consists of a pair of atoms in a hyper�ne channel (see

Eq. (3.31)) with di�erent nuclear and electron spin quantum numbers as compared

to the incoming channel. Thus, the two channels exhibit di�erent magnetic �eld

dependent energy shifts (cf. Eq. (3.24)). When a bound-state in the closed channel

is su�ciently close to the (threshold) energy of the incoming channel, one can bring

both channels into degeneracy by applying a magnetic �eld B. In this situation the

S-matrix of Eq. (3.38) has a pole, since its denominator becomes in�nitely small,

which results in a diverging scattering length a. In a simpli�ed picture, one would

expect the resonance to occur when the energy of the bare molecular bound-state

is degenerate with the incoming atoms' energy. This is exactly the assumption of

the bare ABM, as introduced in Sect. 3.3.3. This approximation is only appropriate

when the coupling between the incoming atoms and the resonant channel is very

small. In all other cases, Eq. (3.39) shows that the molecular energy including the

shifts due to the coupling need to have the same energy as the incoming pair for a

resonance to occur. This shift is approximated in the dressed ABM in Sect. 3.3.3.

At low collision energies, the surviving part of the incoming wave
∣∣ψ+

P

〉
is propor-

tional to
√
k ∼ E1/4 in the range of the exchange interaction [Taylor, 1972]. When

the direct S-matrix is described via a background scattering length abg, Eq (3.38)

reduces to

S(k) = e−2ikabg

(
1− 2iCk

iCk − εres(B)

)
, (3.40)

where the magnetic �eld dependence of εres(B) = εQ(B) + ∆(B)(E = 0) due to

the Zeeman Hamiltonian in Eq. (3.24) has been included explicitly. C is a positive

constant that characterizes the coupling strength between P and Q space. Setting

Eq. (3.40) equal to e−2iδ(k) yields

a(B) = abg −
C

εres(B)
, (3.41)
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Figure 3.8: Scattering length and binding energy as a function of mag-

netic �eld. The upper panel shows the scattering length according to
Eq. (3.42). The resonance width ∆B is indicated by the arrow. The lower
panels plots the bound-state energy (blue line) with respect to the energy of
the incoming channel (black line) as function of magnetic �eld. For simplicity,
the coupling between bound-state and incoming channel has been neglected.

where abg and C are depending only weakly on B. The resonant part only plays an

important role near the pole BFR of the S-matrix. Taking the �eld dependence of

εres(B) = (2µP (BFR)− µQ(BFR))(B − BFR) into account results in the well-known

dispersive behavior

a(B) = abg −
C

2µP (BFR)− µQ(BFR)

1

B −BFR

= abg

(
1− ∆B

B −BFR

)
, (3.42)

Here, the FR width ∆B, which is the di�erence in �eld between scattering pole and

zero crossing of the scattering length, has been introduced. µP (BFR) is the magnetic

moment of the incoming channel that consists of two single atom magnetic moments,

and µQ(BFR) is the magnetic moment of the two-atom resonant state. This behavior

is schematically shown in Fig. 3.8, where we also illustrate the behavior of εQ(B)

with respect to the energy of the incoming continuum.

Up to this point we have not considered which part of the Hamiltonian in

Eq. (3.22) causes the coupling between di�erent channels. In order to clarify the

actual coupling mechanism, we go to a basis in which T + V is diagonal, namely

|β〉 = |ψSl〉 |σ〉, where |ψSl〉 handles the spatial dependency, and |σ〉 = |S, iA, iB〉
denotes the spin degrees of freedom. For an l = 0 partial wave, Hdd of Eq. (3.22)

couples to d-waves. For l 6= 0 Hdd leads to a coupling between di�erent |β〉 states,
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however, in both cases this coupling is extremely weak and results in FRs that are

usually too narrow to be detected experimentally. Thus, Hdd is not the cause of the
6Li-133Cs resonances found in Sect. 3.1 and merely leads to a lifting of the degeneracy

of di�erent l projections on the space �xed axis, resulting in a splitting of p-wave

resonances, as analyzed in Sect. 3.4.2 and illustrated in Fig. 3.3. The Zeeman term

in Eq. (3.24) is obviously diagonal in |β〉 and thus cannot explain the coupling be-

tween di�erent channels. From the structure of the hyper�ne interactions as given in

Eq. (3.23), one can see that they mix the di�erent |β〉 states. The inelastic collisions
and FRs occur because this term does not commute with the potential operator of

Eq. (3.22). As a result, we can identify the dominating components ofHPQ andHQP

with the hyper�ne interaction. With the complete understanding of the underlying

scattering processes, we can now proceed to explore di�erent ways of calculating the

positions of Feshbach resonances.

3.3.2 The Coupled Channels Calculation

The coupled channels calculation is a numerical approach to solve the Schrödinger

equation resulting from the Hamiltonian of Eq. (3.22). For bound states, r is rep-

resented on a grid and the resulting matrix is diagonalized, while for scattering

solutions, the logarithmic derivative of the wavefunction is propagated in discrete

steps with optimized step size from low r to large r, from which the phase shift is de-

termined by comparing with asymptotic wavefunctions. To calculate bound states,

the wavefunctions at small separations rin and large separations rout (up to 104 a0

for the weakest bound levels, where a0 represents the Bohr radius) are set to zero

as boundary conditions. This is equivalent to adding an in�nitely high potential

wall at rin and rout, resulting in discretized continuum states, often referred to as

box states. As this leads to shifts of the calculated resonance states, the size of the

modeled box potential will be increased until achieving the desired accuracy.

Furthermore, in order to obtain a �nite number of equations, the basis set is

truncated, which is usually called close-coupling calculation. The attribute "close"

refers to the fact that only states which are "close" in energy to each other, are

retained. In the present approach the truncation is only in the space spanned by

the rotational quantum number l and naturally by using only the two molecular

ground states X1Σ+ and a3Σ+. We span all spin channels allowed by given sA

and sB as well as iA and iB and the chosen space �xed projection M of the total

molecular angular momentum. The coupling to higher electronic states exists but

is weak and to some degree contained in Hdd. For collisions of alkali atoms in the
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ground state at ultracold temperatures, only a limited number of partial waves l has

to be included, owing to the small collision energy.

Performing the numerical procedure for a �ne grid of magnetic �elds yields the

�eld dependent collisional properties, e.g. scattering lengths, collisional cross sec-

tions and collision rates. The procedure as we apply it, is speci�ed in Marzok

et al., 2009 and Schuster et al., 2012, and our results for 6Li-133Cs are provided in

Sect. 3.4.1.

3.3.3 The Asymptotic Bound State Model

The ABM simpli�es the calculation of the coupled Schrödinger equations by re-

placing the kinetic energy term and the interatomic potentials in Eq. (3.22) by

their bound-state energies as adjustable parameters for describing the observed FRs,

and neglecting the scattering continuum [Tiecke et al., 2010; Goosen et al., 2010].

Therefore, neither accurate potentials, which are often not available, nor numerical

integration of the spatial Schrödinger equation are needed. Solving the eigenvalue

problem with the approximate Hamiltonian reduces to a simple matrix diagonaliza-

tion of low dimension, which is the major bene�t of the model. The ABM [Tiecke

et al., 2010] has been introduced in Wille et al., 2008 and builds upon a model by

Moerdijk et al. [Moerdijk et al., 1995]. Since then it has been extended to include

various physical phenomena which has been applied to describe FRs in many sys-

tems [Wille et al., 2008; Li et al., 2008; Voigt et al., 2009; Deh et al., 2010; Knoop

et al., 2011; Goosen et al., 2010; Tscherbul et al., 2010; Repp et al., 2013; Park

et al., 2012; Goosen, 2011]. The ABM model is explained in detail in Tiecke et al.,

2010 and here we present a summary and describe various extensions to the model.

We begin by considering zero-energy collisions (Ekin = 0) and restrict ourselves

to s-wave collisions where 〈Hdd〉 = 0. The model introduced by Moerdijk et al. [Mo-

erdijk et al., 1995] neglected coupling of the singlet and triplet states reducing the

Hamiltonian in Eq.(3.22) to: H = ε0,1 +H+
hf +HZ where ε0,1 represent the singlet and

triplet bound state energies and H+
hf is the part of the hyper�ne interaction which

does not couple singlet and triplet states. This is a valid approximation for the

special case that the spacing between the singlet and triplet energies is larger than

the hyper�ne energy. In the ABM, the full hyper�ne interaction H = ε0,1 +Hhf +HZ

is included, which generalizes the Moerdijk model to systems with arbitrary bound

state energies, and the singlet triplet coupling is characterized by the overlap in-

tegral ζl =
〈
Ψl
S=0|Ψl

S=1

〉
of the singlet (|Ψl

S=0〉) and triplet (|Ψl
S=1〉) wavefunctions

times the nondiagonal part of the Hamiltonian.
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In the ABM the Hilbert space consists of only bound states and no scattering

states. Therefore, the calculation includes only the basis states

|σ〉 ≡ |SMSmiAmiBvn,Sl > (3.43)

of pure electron spin states S = 0 or S = 1, which will be related to the respective

channels at a later stage for a pair of vibrational levels of the singlet and triplet

state together. MS,miA and miB are the projections onto the space �xed axis of

the operators S, iA and iB, respectively, and vn,S is the n-th vibrational state in the

S = 1 or S = 0 potential. The FRs are found at the magnetic �elds for which

an eigenstate at the energy of the incoming atom pair at that �eld exists. This

condition corresponds to Ekin = 0. Additionally, if 〈Hdd〉 is small enough to be

neglected, the Hamiltonian in Eq.(3.22) is diagonal in the partial wave quantum

number l. As a result, the only parameters needed for the calculation of the FRs in

each partial wave l are the energies of the bound states εlS of the singlet (S = 0) and

triplet (S = 1) potentials and their wavefunction overlap ζl. In fact, only a small

number of such states has to be taken into consideration, because the FRs usually

arise from the least bound states close to the asymptote. The energies εlS and the

overlap parameters ζl are the free parameters of the ABM and are typically obtained

by �tting to experimentally observed FRs.

The resulting Schrödinger equation can be written in the form of a N × N

matrix, denoted by MABM , where N is determined by the number of spin channels

and the number of selected vibrational states; N is on the order of a few tens. The

diagonalization of this matrix for di�erent �elds provides the molecular energies as

a function of the magnetic �eld. A comparison of this function to the energy sum

of the two atoms yields the magnetic �elds, at which the energies of bound-states

and incoming free atoms are degenerate, thus marking the position of the FRs (as

e.g. depicted in Fig. 3.10).

Close to a s-wave resonance, the molecular state �and therefore the resonance

position� is shifted due to coupling to the scattering states of the open channel.

These states are continuum states and hence not included in the ABM model as

described above. However, in some systems, the coupling has such a severe e�ect

on the resonance position that it cannot be neglected. It can be approximated by

the coupling of the resonant molecular state to the least bound state of the open

channel [Tiecke et al., 2010], which requires assigning the bound-states of MABM to

the scattering channels.

For this purpose, a rotation of the basis of MABM is performed: from the |σ〉
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basis to the basis formed by the eigenvectors of Hhf + HZ at the desired magnetic

�eld (see Eq. (3.31)). This can be ordered in the block matrix

M ′
ABM =

(
HPP HPQ

HQP HQQ

)
, (3.44)

where the index P (Q) stands for the spin states which are associated with an

open (closed) channel and it might include possible l partial waves. This form is

equivalent to the treatment in Sect. 3.3.1. A diagonalization of the submatrix HQQ

provides the bare molecular energies εQ, which are the energies of the molecular

state when no coupling to the open channel bound state occurs. One of these states

is the resonant state which causes the FR under consideration.

With the assumption that near a resonance the system can be described in a two

channel picture, with one incoming, open channel and one resonant, closed channel,

the total S-matrix of the scattering problem in the open channel can be written

in the simple form of Eq. (3.38). For the calculation of the Feshbach resonances,

which are given by the poles of the scattering matrix, the complex energy shift A(E)

locating the pole needs to be estimated. Depending on whether a bound state or

a virtual state dominates the scattering behavior, di�erent expressions have to be

used for A(E).

In 40K-40K collisions, for example, a real bound state of the open channel (with

wavenumber kp = iκbs with κbs > 0) occurs close to resonance resulting in a large

positive background scattering length. In this case A(E) is given by [Tiecke et al.,

2010]

A(E) =
µ

~2

−iA
κbs(k − iκbs)

, (3.45)

where κbs is the wavevector associated with the bare energy of the open channel

εbs < 0, which is found on the diagonal of the submatrix HPP in Eq. (3.44). The

coupling term A is the square of the appropriate o�-diagonal matrix element in

HPQ between the P -channel and the resonant Q-channel, after the Q subspace has

been diagonalized and M ′
ABM has been transformed to the eigenvector of Q space.

This procedure allows for a prediction of the resonance width (imaginary part of

A(E)) and shift (real part of A(E)) arising from coupling to the continuum without

additional parameters. Using the S-matrix, the scattering properties around the

resonance can be derived. In the present case we consider only the positions of

Feshbach resonances; these will appear at E = 0 and k = 0 for a magnetic �eld

where the bare molecular energy satis�es εQ = −(µ/~2)A/κ2
bs = −A/2|εbs|.
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A virtual state, which is also often referred to as an anti-bound state (kp = −iκvs
and κvs > 0 [Marcelis et al., 2004]) results in a large negative background scattering

length. The 6Li−6Li [Abraham et al., 1997] and 133Cs−133Cs [Leo et al., 2000]

systems are excellent examples for a system with a dominating virtual state. In this

scenario, the complex energy shift is given by [Marcelis et al., 2004]

A(E) =
µ

~2

−iAvs
κvs(k + iκvs)

, (3.46)

where the coupling between virtual and bound state Avs enters as new parameter,

while κvs can be estimated from the van der Waals range r0 via abg = r0 − 1/κvs.

To �nd the position of FRs one has to look for magnetic �elds where the binding

energy of the bare molecular state εQ = +(µ/~2)Avs/κ
2
vs.

To calculate the background scattering length of the desired open channel abg, one

requires the singlet (aS) and triplet (aT ) background scattering lengths, as well as a

decomposition of the ABM matrix eigenstates into singlet and triplet components.

aS and aT can be estimated via the accumulated phase method, which employs a

numerical calculation of the singlet and triplet wavefunctions from the asymptotic

form of the inter-atomic potential Vas, using only the van der Waals tail plus adding

the centrifugal barrier and the bound state energies. This procedure is described in

Tiecke et al., 2010 and Verhaar et al., 2009. Obtaining the poles of the S-matrix

for a system in which the virtual state dominates the scattering behavior has been

utilized in Park et al., 2012 to explain FRs in a NaK mixture using the ABM.

The 6Li-133Cs system, however, is in an intermediate regime, where both the

bound state and the virtual state in the open channel are required to describe the

FR positions. In Sect. 3.4.2 we demonstrate an extension of the existing models,

that starts from the virtual state description, but includes the coupling to the bound

state in a phenomenological way.

3.3.4 The Multichannel Quantum Defect Theory

The MQDT uses a separation of the solution to the Schrödinger equation into a

long-range and a short-range part. It is based on a model by Seaton [Seaton, 1983],

which was originally introduced to describe the properties of an electron in the �eld

of an ion. However, it has been generalized in Greene et al., 1979 and Greene et al.,

1982 and can now be applied to a variety of collisional partners, with all sorts of

interaction potentials (see Croft et al., 2011 and references therein). For example,

it has been applied successfully to various neutral atom pairs [Burke et al., 1998;
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Gao et al., 2005; Raoult and Mies, 2004; Mies and Raoult, 2000; Julienne and

Mies, 1989; Gao, 1998; Gao, 2001], and can, in general, be used for all alkali atom

combinations without adaptation. The most recent modi�cation improves the model

for an accurate description of higher partial waves [Ruzic et al., 2013].

The main bene�t of the model stems from the separate treatment of the long-

range part of the scattering problem, where the van der Waals interaction dominates

over exchange interactions and higher order terms. It can be solved accurately using

the Milne phase amplitude method (see Burke et al., 1998 and references therein).

This results in a linearly independent pair of functions (f 0, g0), referred to as base

pair, which are smooth and analytic functions of energy. In the short-range part, the

coupled Schrödinger equation at energy E is numerically integrated outwards to a

radius rlr on the order of a few tens of atomic units (typically 30 a0), beyond which

the exchange interaction is negligible. At rlr it is then connected to the long-range

part of the solution.

The calculation incorporates only those channels which have a non-negligible ef-

fect on the scattering behavior of the system by truncating the basis set of Eq. (3.31)

in the same manner as for the CC model. The solution is given by the square ma-

trix M(r), which contains the independent solutions of each channel in its columns.

Beyond rlr, M(r) can be given as superposition of the base pair:

M(r) = f 0(r)− g0Ksr, (3.47)

where f 0 and g0 are diagonal matrices which contain the base pair evaluated at

the appropriate channel energies εi = E − Ei. In this notation Ei is the energy of

the asymptote of channel i. The short-range reaction matrix Ksr contains all the

system speci�c information for the scattering behavior at low energies. Besides the

short-range reaction matrix, one needs four coe�cients in order to construct the

S-matrix, which delivers the physical observables. Detailed instructions on how to

obtain these coe�cients, which are often noted9 as A, G, γ and η, is given in Ruzic

et al., 2013,Burke et al., 1998, and Burke, 1999.

The next level of simpli�cation of the MQDT is the assumption thatKsr depends

only very weakly on energy. Thus it only needs to be calculated for a few energies,

and can then be interpolated between these values. In the best case, a Ksr matrix

which is only calculated for one energy (typically close to threshold) and at zero

magnetic �eld can be utilized to describe the scattering properties over a wide range

of energies and magnetic �elds. However, for obtaining Ksr, one still has to solve

9Note that the Ruzic et al., 2013 paper changed the notation from tanβ to cotγ.
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the coupled channel equations at short-range.

Nevertheless, the calculation can be facilitated further by using a frame transfor-

mation (FT) approach. The general form of the FT theory as applied to ultracold

collisions of two alkali atoms has been written in Burke et al., 1998, Burke, 1999,

and Gao et al., 2005. The main simpli�cation is to neglect the hyper�ne interaction

at short-range. This is justi�ed by the fact that the exchange splitting is much larger

than the hyper�ne and Zeeman energy. In this case the atomic motion is described

by a set of uncoupled channel equations, whose numerical calculation is much less

complex as compared to coupled equations. Matching the solutions to the analytic

base pair allows one to determine the short-range energy-analytic scattering infor-

mation in terms of quantum defects µsrS (εS) in the single-channel singlet-triplet basis

(equivalently the singlet and triplet scattering lengths recast as quantum defects) in

a diagonal short-range reaction matrixKsr
diag = tan(πµ). An energy independent real

orthogonal transformation turns this short-range single-channel scattering informa-

tion into the �nal channel structure applicable at r →∞, namely the representation

of hyper�ne plus Zeeman atomic energy eigenstates. This procedure, delivers the

real, symmetric, short-range reaction matrixKsr (or corresponding smooth quantum

defect matrix µsr):

Ksr
ij =

∑

α

Ui,α tan(πµα)Ũα,j. (3.48)

Here the tilde denotes the matrix transpose. The dissociation channel index i repre-

sents the set of quantum numbers according to Eq. (3.31) needed to characterize the

internal energies of the separating atoms as well as their relevant angular momen-

tum couplings with each other and with the orbital angular momentum quantum

number l and its projection ml.

As was stressed by Bo Gao in his �angular momentum insensitive� form of quan-

tum defect theory for a van der Waals long-range potential, the l-dependence is

known approximately [Gao, 2001] as µsrS,l ≈ µsrS − l/4 [Ruzic et al., 2013]. When

higher accuracy is needed, a small l−dependent correction αl can be introduced to

this equation, which leads to:

µsrS,l ≈ µsrS − l/4 + αl, (3.49)

where α0 ≡ 0 by de�nition. The FT then simply approximates the real, orthogonal

matrix that diagonalizes Ksr as the angular momentum recoupling matrix that

connects the short-range eigenstates with those appropriate at large r. Speci�cally,

in the absence of any magnetic �eld, good quantum numbers of the atomic energy
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levels are given by Eq. (3.31). In the presence of an external magnetic �eldB directed

along the z-axis, fA and fB are no longer good quantum numbers but mA,mB are

still conserved for the atoms at in�nite separation. However one must diagonalize

the atomic hyper�ne plus Zeeman Hamiltonian to obtain a numerical eigenvector

〈fAmA, fBmB|mAkA,mBkB〉 ≡ 〈i|j〉 and the corresponding �eld-dependent channel

energies, EmAkA,mBkB(B) ≡ Ej(B) (see also the extended interpretation for the

basis given in Eq. (3.31)). We indicate the short-range collision eigenstates by

|(sAsB)S(iA, iB)Ifmf〉 ≡ |α〉. We can now write out the �nal FT matrix Uiα between

the long- and short-range channels, which is needed in Eq. (3.48). Recall that

in the present notation, the long-range scattering channels in the presence of a

magnetic �eld B are written as i = {mA, kA,mB, kB}, and the short-range collision

eigenchannels are α = {(sA, sB)S(iA, iB)I, fmf}, and the unitary transformation

between these is given explicitly in terms of standard angular momentum coe�cients

(Clebsch-Gordan and Wigner 9-j symbol) and the Breit-Rabi eigenvectors such as

〈kA|fA〉(mA), etc. as:

Uiα =
∑

fAfBf

〈kA|fA〉(mA) 〈kB|fB〉(mB) 〈fAmA, fBmB|fmf〉×

〈(sAiA)fA(sBiB)fB|(sA, sB)S(iA, iB)I〉(f)

(3.50)

Note that in the FT approximation, this matrix is independent of l, so this

quantum number is not explicitly represented. The transformation mentioned for

the ABM is constructed in the same way.

Note that the �nal step of computing scattering or bound state observables such

as the FRs at zero incident energy in various scattering channels requires solving

the MQDT equations as a function of energy and/or magnetic �eld. As usual in

MQDT studies, this is the step where exponential decay of the large-r closed-channel

radial solutions is imposed. The determinantal condition for a resonance to occur

at an energy just above an open-channel threshold is det(Ksr
QQ + cot γ) = 0, where

the notation Ksr
QQ indicates just the closed-channel partition of the full short-range

K-matrix. In this equation, γ is a diagonal matrix of long-range negative energy

phase parameters as used above for the MQDT.

The energy- and �eld-analytic nature of the single-channel solutions allows them

to be constructed on a very coarse mesh of energy and magnetic �eld. In its most

simple form, the energy dependence of the quantum defects can be dropped, and

the quantum defects, which are calculated at a speci�c energy only once, can be

used throughout the entire energy and magnetic �eld range of interest. Burke et al.,
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1998 and Gao et al., 2005 demonstrate how the quantum defects can be represented

by only two parameters, namely aS and aT , in the FT formalism. This yields the

crudest, but also computationally lightest realization of the MQDT.

The details for a calculation of 6Li-133Cs FRs using the MQDT are given in

Sec. 3.4.3. Additionally, we introduce a slightly modi�ed MQDT-FT approach,

which allows us to calculate FRs for systems that are lacking a detailed microscopic

model.

3.4 Application of the models to the 6Li-133Cs Sys-

tem

In this chapter we apply the models described in Sect. 3.3 as a case study to the
6Li-133Cs system. Throughout the entire section, we use the C6 coe�cient from

Derevianko et al. [Derevianko et al., 2001] for the description of the van der Waals

interaction, which has been calculated with su�cient accuracy. In order to compare

the models among themselves and with experiment, we calculate the weighted rms

deviation δBrms on the resonance positions, which is de�ned as

δBrms =

√
(
∑N

i δ
2
i /δB

2
i )/N√∑N

i δB
−2
i

. (3.51)

The summation is performed over N resonances, δ = Bexp
res − Btheo

res is the deviation

of experimental (Bexp
res ) and theoretical (Btheo

res ) resonance positions, and δBi contains

the experimental uncertainty of the measured resonance positions, which are given

in Table 3.1, and a 200 mG drift of the magnetic �eld for all resonances.

3.4.1 The Coupled Channels Calculation

We have provided details of the CC calculation for a mixture of 6Li and 133Cs atoms

elsewhere (see Repp et al., 2013 and references therein). Here, we review the method

of our CC calculation and summarize its results, as they are used as benchmark for

the other approximate models presented in the subsections below.

For the CC matrix, the Hamiltonian of Eq. (3.22) is employed, where the ef-

fective form of Hdd (Eq. (3.25)) is used. Only basis states with partial waves up

to l = 2 are included, which is su�cient for the descriptions of alkali atoms in the

µK regime. Besides the atomic constants, which are readily available in the liter-
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Figure 3.9: Scattering length for the two energetically lowest channels.

The scattering lengths (black solid lines) and the background scattering lengths
(black dashed lines) deduced from the ABM are shown for the energetically
lowest (a) and second lowest (b) channels indicated in the �gure title. For
comparison, the scattering lengths from the CC calculation are also plotted
(blue dashed lines), as well as the MQDT values (red dashed line) in (a). The
experimentally measured FR positions are indicated by a black dot.

ature [Arimondo et al., 1977], accurate potentials are crucial in order to precisely

determine the position of FRs. For this purpose, the relevant potential curves for the

a3Σ+ and X1Σ+ states of 6Li-133Cs are expanded in a power series of the internuclear

separation r (similar to Gerdes et al., 2008), where r is mapped onto a Fourier grid

following Tiesinga et al., 1998. Then, the expansion coe�cients, which were initially

determined via Fourier-transform spectroscopy [Staanum et al., 2007], are modi�ed

iteratively in such a way that both the calculated maxima of binary collision rates

and the rovibrational transition frequencies are in agreement with the measured

FRs and with the 6498 previously observed molecular transitions [Staanum et al.,

2007], respectively. The potential parameters are summarized in the online mate-

rial of Pires et al., 2014a, the parameters of the bound states, which are involved

in the observed FRs, are given in Table 3.2 and the resulting resonance positions

in Table 3.3. The rms deviation for this model is 39 mG. The obtained s-wave

scattering lengths are depicted in Fig. 3.9, and the molecular energy levels for the
6Li |1/2,−1/2〉⊕133Cs |3, 3〉 channel with respect to the incoming channel are given

in Figure 3.10.
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Figure 3.10: Molecular energy levels for the 6Li |1/2,−1/2〉 ⊕133 Cs |3,3〉
channel. (a) The energies with respect to the open channel asymptote for
the bare ABM (blue line), dressed ABM (black line), MQDT (red dash-dotted
line) and CC (orange line) are depicted. The horizontal line at zero energy
represents the continuum threshold. The energies of the box states of the CC
model (see Sect. 3.3.2) are also visible for E > 0. (b) A zoom into the region of
the resonance at 889 G is presented. The di�erent crossings of the molecular
channels with the threshold at E = 0 mark the positions of the FRs and show
the deviations of the models.

3.4.2 The Asymptotic Bound State Model

For the ABM calculation of 6Li-133Cs FR positions, we begin using the ABM in

its simplest form starting from the Hamiltonian of Eq. (3.22), replacing T + V by

the bound-state energies and neglecting Hdd. The latter is incorporated at a later

stage. Because the spacing of the vibrational states in the 6Li-133Cs potential is

large compared to the hyper�ne energy, we only include the least bound vibrational

state of the singlet and triplet potential and neglect the role of deeper bound states.

This yields a �t of only three parameters per partial wave. However, the three �t

parameters are not independent with the present set of data, as will be explained

below.

As a prelude to the new �ts in this section, we start with the ABM as practiced

in Repp et al., 2013, where the ABM was applied leaving �ve parameters (ε00, ε
0
1,

ζ0, ε10, ε
1
1) as free �t parameters, while ζ1 was taken to be equal to ζ0

10. In this

thesis we redo the �t, utilizing ζ1 also as a free parameter, thus using six parameters

10Also, the atomic masses in the calculation where not accurate enough, which also had minor
e�ects on the �tting results. In the present work we use atomic masses from [ (version 3.0).
[Online] Available: http://physics.nist.gov/Comp [2013, 12 09]. National Institute of Standards
and Technology, Gaithersburg, MD.]
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as �t parameters to minimize δBrms (see Eq. (3.51)). This quantity gives intuitive

and quantitative insight into the deviations of calculated from measured resonance

positions. In 6Li-133Cs the hyper�ne interaction gives rise to a very strong singlet-

triplet mixing, which is indicated by an expectation value for the total spin S of

〈S〉 ' 0.6 − 0.7 on the resonances. This results in a strong correlation of the �t

parameters and the resonances can be �t with similar rms deviations over a large

range (within a few GHz) of binding energies. The best �t has a rms deviation of

877 mG with the parameters ε00 = 5824 MHz, ε01 = 2995 MHz, ζ0 = 0.559, ε10 = 1844

MHz, ε11 = 3575 MHZ and ζ1 = 0.821. However, since the singlet and triplet

binding energies and their overlap parameter are related to each other through the

interaction potential, the obtained overlap parameter of ζ0 = 0.559 is unphysical for

the �tted binding energies. Additionally, the p-wave shift is unreasonably large for

the singlet channel binding energy, while it has opposite sign for the triplet binding

energy, which are clear indications that the �t results are unphysical.

In order to obtain a �t restrained to physical parameters, we demonstrate how

these discrepancies of binding energies and overlap parameters can be reduced in the

bare ABM (bABM) in three steps. The �rst step is to reduce the number of inde-

pendent �t parameters by deriving the wavefunction overlaps from the two binding

energies via the accumulated phase method (as described in Verhaar et al., 2009)

instead of leaving them as a free parameter, thereby restricting ourselves to only

the physical range of the �t parameters and reducing the �t to two parameters.

The coupling of the bound state to the continuum, which is neglected at this stage,

results in signi�cant shifts for s-wave resonances. Therefore, we use only the nar-

row p-wave resonances for the initial �t, because their widths are not acquired by

coupling to the continuum but rather by tunneling through the centrifugal barrier

which is suppressed at low collision energies. The �t results of ε10 = 1193 MHz,

ε11 = 3638 MHz and the calculated ζ1 = 0.861 agree much better with the CC values

in Table 3.2. The p-wave resonances are reproduced with a rms deviation of 560 mG,

where the mean was used for resonances which are split due to the magnetic spin-

spin and second-order spin-orbit coupling. This demonstrates how the bare ABM

model, which extensively simpli�es the spatial part of the scattering problem, sat-

isfactorily reproduces resonances which are not shifted due to coupling to the open

channel scattering wavefunction.

Since we obtain the asymptotic wavefunctions from the accumulated phase method

in the procedure described above, in the second step it is now also possible to include

the magnetic dipole-dipole and second-order spin-orbit coupling term into the ABM

Hamiltonian (similar to Goosen et al., 2010) in its e�ective form (see Eq. (3.25)).
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Figure 3.11: Wavefunctions for singlet (a) and triplet (b) long-range po-

tentials. The long-range potentials (containing only van der Waals and cen-
trifugal terms) (dashed lines) and the wavefunctions (solid lines) for l = 0
(blue) and l = 1 (black) are depicted. Note the similarity for wavefunctions
with di�erent l at short-range, which justi�es the use of the accumulated phase
method.

With a rms deviation of 375 mG, a �t containing Hdd improves the prediction of

the p-wave resonances by about 185mG, which is the expected order of magnitude,

considering that the splitting is only on the order of a few hundred mG at most.

For calculating the expectation value of Hdd only the long range part of the wave-

function was used. Thus the spin-orbit contribution does not play a role and aSO in

Eq. (3.26) could be set to zero.

In order to include the s-wave resonances in the third and �nal step of the

bABM, the s-wave binding energies are deduced from the �tted p-wave binding

energies using the accumulated phase method as follows. We numerically solve the

Schrödinger equation containing only the van der Waals term in the interaction

potential and using the phases of the obtained p-wave functions at ri and ψ → 0

for r →∞ as boundary conditions. Here, ri is the radius where the van der Waals

energy is larger than the hyper�ne energy, and the exchange energy is large enough

to split the singlet-triplet manifold [Verhaar et al., 2009]. This approach neglects

the l-dependence of the phase-shift at ri which is a small correction in our case

[Verhaar et al., 2009]. For comparison, we illustrate the obtained singlet and triplet

wavefunctions for l = 0 and l = 1 in Fig. 3.11. One can see that for small internuclear

separations, the wavefunctions are approximately equal, which justi�es the use of the

accumulated phase method. The rms deviation for all resonances in the case where

the p-wave resonances are �t and the s-wave resonances are calculated is 1.26 G
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3.4. Application of the models to the 6Li-133Cs System

when Hdd is neglected. Including Hdd into this �t results in the lowest attainable rms

deviation value of 965 mG for a physically meaningful bare ABM �t. The resulting

molecular energy levels for the 6Li |1/2,−1/2〉 ⊕133 Cs |3, 3〉 are shown in Fig. 3.10.

As one can see, the positions where the bound state energies cross the threshold are

not shifted due to interactions, as is the case for the other models. Thus, compared

to the measured values, the broad FRs are systematically shifted to lower magnetics

�elds, as illustrated in Table 3.3, where the resonance positions are given in the

"bABM" column. The positions of the narrow resonances are shifted to higher

values most likely because of the application of the accumulated phase methods,

which introduces errors in the determination of the s-wave binding energies. The

latter are given together with the p-wave binding energies as "bABM" values in

Table 3.2. If one needs a more accurate prediction for the narrow resonances, one

could also �t them using ε00 and ε
0
1 as additional parameters.

The binding energies can be used to derive background scattering lengths via the

accumulated phase method [Verhaar et al., 2009], by propagating the wavefunction

with the known phase at ri to large internuclear separations and then comparing

to a long-range wavefunction which is not shifted by an interaction potential. This

procedure introduces additional errors on the order of ∼ 10%, which are errors

related to the accumulated phase method and not to the ABM. By including the

energy dependence of the accumulated phase as described in Verhaar et al., 2009

the scattering length might be calculated with better accuracy. However, calculating

these derived quantities allows for a comparison with the MQDT-FT (see Sect. 3.4.3)

where no binding energies were derived directly, and yields an additional test of

consistency among the three di�erent models.

In order to achieve higher accuracy, we include the coupling of the closed channel

responsible for the FR to the open channel, which is referred to as dressed ABM

(dABM). In Sect. 3.3.3 we discuss the limiting cases, where the coupling of the

closed channel bound state to either the least bound state, or to a virtual state in

the open channel can be used as an estimate for the shift of the resonance position.

The 6Li-133Cs system, however, is in an intermediate regime, where both of the

approaches do not deliver satisfactory results. The background scattering length of

the triplet channel of aT = −34.3(2) a0 indicates this regime. On the one hand, it is

signi�cantly far from the van der Waals range of r0 = 45 a0, which would indicate

a non-resonant open channel, but on the other hand, it is also not dominating the

scattering process, which would lead to a much larger magnitude of the background

scattering length.

Therefore, we introduce an extension to the ABM similar to the approach pre-

91



Chapter 3. Analyzing Feshbach Resonances

sented in Park, et al. [Park et al., 2012], which includes both e�ects in a phenomeno-

logical manner. We use the complex energy shift of Eq. (3.46), just as in a system

with a resonant open channel [Marcelis et al., 2004; v. Kempen et al., 2004]. To

calculate Avs = K2ζvs, we multiply the square of the appropriate matrix element of

HPQ taken from the matrixM ′
ABM in the form where HQQ is diagonalized (denoted

by K2) with an additional scaling factor ζvs, which handles the spatial part of the

matrix element and is equal for all FRs. However, in contrast to Marcelis et al.,

2004, the molecular energy εQ is not taken to be the bare energy from the subma-

trix HQQ, but we rather diagonalize the full matrix MABM and replace εQ in the

S-matrix of Eq. (3.38) with the dressed resonant molecular state εABM . In doing so,

εABM contains the coupling to the open channel bound state. Therefore, both the

in�uence of the coupling to the bound and the virtual states in the P -channel are

accounted for. The FR positions are now simply obtained at magnetic �elds where

the following identity is satis�ed:

εABM =
µ

~2

ζvsK2

κ2
vs

. (3.52)

κvs is obtained as described in Sect. 3.3.3 and ζvs is left as a free �t parameter.

Within this approach the FRs, including coupling to the (near-resonant) scattering

states, can be found by simple matrix operations and linear equations.

We note that the full scattering properties around the resonance (including the

resonance width and for the case of overlapping resonances [Park et al., 2012)], can

be obtained from the S-matrix by using the complex energy shift Avs as given above.

We start the calculation by only �tting the narrow s-wave resonances, where the

coupling to the open channel is small, in order to �t ε00 and ε01. Their overlap ζ0 is

obtained with the same method as for the bare ABM. The results of this �t are given

in Table 3.2 as "dABM", where the background scattering lengths for the speci�c

incoming channels are deduced in the same manner as described above. The next

step is the �tting of the scaling factor ζvs by performing a weighted least squares

minimization on all observed s-wave resonances, additionally allowing the overlap

parameter to vary by < 0.1%. The result of ζvs = 0.025 yields a rms deviation of

321 mG on all s-wave resonances. Combining with the results of the bare ABM for

the p-wave resonances we obtain a total rms deviation of δBrms = 265 mG on all

resonances. The resonance positions are listed in Tab. 3.3, and selected molecular

energy levels are given as a function of magnetic �eld in Fig. 3.10 for comparison.

The largest deviation between the CC and ABM approach is seen at the broad

resonances, e.g. at 890 G (see inset Fig. 3.10). The coupling to the continuum is
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3.4. Application of the models to the 6Li-133Cs System

obvious by the nonlinear function of the energy with respect to the magnetic �eld.

In Fig. 3.9 we illustrate the scattering length, which can be obtained by inserting

the �t results into Eq. (3.38). Comparing the the results of the CC calculation, it is

obvious that the widths of the FRs are underestimated. This is expected, because

the dressed ABM takes into account only the coupling with one closed channel bound

state. For more accurate results, the couplings to more states should be included,

which would also increase the widths of the FRs.

While the ABM assigns the FRs with a sub-1 G accuracy, there is a signi�cant

deviation of the triplet binding energy ε01 from the CC value. This could arise from

the fact that the coupling to the (near resonant) triplet channel is only included

phenomenologically by adding a single virtual state. Also, only one bound state is

taken into account and we treat the resonances as being non-overlapping.

An additional approximation is introduced by using the accumulated phase

method to derive the overlap parameters, and to relate the s-wave and p-wave

binding energies enlarges the uncertainty. We characterize the accuracy of the accu-

mulated phase method by comparing the obtained binding energies with the bound

states of the full 6Li-133Cs potentials. Using the boundary conditions at ri from

the s-wave binding energies we �nd that the accumulated phase method reproduces

the p-wave binding energies to ∼ 1− 2% for both the singlet and triplet potentials.

Changing the binding energies on the order of ∼ 1−2% increases δBrms on the FRs

with more than a factor 2, indicating that at this level of accuracy the inner part of

the potential has a signi�cant e�ect. Extending the ABM to use more information

of the full potentials to link the s- and p-wave binding energies is straightforward,

however, by this step we would lose the advantage of the simple calculations of the

ABM. We also note that a more rigorous method to include both the bound and the

virtual state is the Resonant State Model as presented in Goosen, 2011. Also, the

accumulated phase methods leads to an error in the derivation of the background

scattering lengths. While this is on the order of ∼ 10%, a signi�cant part of the

deviation of aT is a result of the systematic shift of ε01, in both the bare and the

dressed ABM.

3.4.3 The Multichannel Quantum Defect Theory

We apply the ab initio MQDT treatment, using the potentials of the CC calculation

from Sect. 3.4.1 as input for the calculation. We then slightly modify the inner

wall of these potential in order to minimize the deviation from the experiment. The

present calculation only requires solving the coupled di�erential equations out to
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r0 = 40 a0, and very little di�erence is seen if this matching radius to the long-range

single-channel QDT solutions is reduced to 30 a0. Table 3.3 shows the accuracy

of the FR positions in comparison with the experimentally determined resonances

from Sect. 3.1, and Fig. 3.10 plots three of the obtained energy levels for compar-

ison with the other models. The close agreement between CC and MQDT is very

satisfying. The same holds for the resulting scattering lengths, which are illustrated

in Fig. 3.9(a) for the energetically lowest channel. The bound state energies (see

Table 3.2), which do not play the same central role in the MQDT calculation as

in the ABM model, can be extracted from the underlying modi�ed potentials for

comparison. They show excellent agreement with the CC values and give a measure

as to what degree the potentials from the CC calculation have been modi�ed. This

agreement and the small rms deviation of the FR positions from the experimental

values demonstrate, that MQDT and CC calculation are asymptotically consistent

with regard to δBrms but for the description of individual resonances the two models

deviate up to ∼ 100 mG. This might also indicate the limit for predicting new FRs.

In the present study we test an alternative way to utilize the FT plus MQDT

formulation; the idea is to empirically �t the single-channel singlet and triplet quan-

tum defects so as to achieve optimum agreement with a few measured FRs. In this

treatment, if the long-range van der Waals coe�cient is already known to su�cient

accuracy, as is believed to be the case for 6Li-133Cs, then with two �tted parameters

it is possible to achieve good agreement with all of the s-wave resonances that have

been measured to date, and to predict additional resonances. The l-dependence of

the �tted quantum defects is approximately known, but to achieve sub-1 G accuracy

on other partial waves, it appears to be necessary to �t one small additional correc-

tion for p-waves (see Eq. (3.49)). While the MQDT has been shown in a number

of studies to give a highly e�cient way to calculate ultracold scattering observables

when the interaction potentials are known, there is increasing demand for a robust

method for analyzing new, complex systems where FRs have been measured but not

yet analyzed to the level of yielding a detailed microscopic model. The present test

of the semi-empirical MQDT frame transformation (MQDT-FT) is encouraging in

its potential for such problems, as is seen from the results presented below for the
6Li-133Cs interaction.

In our implementation of the frame-transformed version of MQDT utilized for the

present study, the long-range parameters (A, G, γ and η) are determined once and for

all for a pure van der Waals potential at long-range, −C6/r
6. The long-range MQDT

parameters are standard and can be used for any alkali atom collision, because they

are tabulated as functions of the single dimensionless variable which is the product
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of the van der Waals length and the wavenumber k (see e.g. Ruzic et al., 2013).

Two energy-independent and �eld-independent short-range quantum defects, namely

µsrS,l for S = 0, 1, were adjusted until optimum agreement was achieved with the

experimental resonance positions. Note that a global search was not carried out over

all values of the 0 ≤ µsrS < 1 (mod 1). The starting values of the search came from

quantum defects extracted from the 6Li-133Cs potentials of Sect. 3.4.1 and only small

adjustments of those values were needed in the MQDT-FT �t to achieve the quoted

level of agreement with the experimental resonance locations. In contrast with the

MQDT calculation and the full CC calculation, this MQDT-FT calculation did

not include the magnetic dipole-dipole interaction nor the second-order spin-orbit

interaction term. Nevertheless, the �t with three adjustable parameters (adding α1

of Eq. (3.49)) gives a small rms deviation with experimental resonance positions

in Table 3.3, namely 48 mG. The �tted p-wave correction is α1 = 0.00208 and

the l = 0 quantum defects are {µsr0 , µsr1 } = {0.092115, 0.346848}. These can be

used to derive the background scattering lengths of the singlet and triplet potential,

which are given in Table 3.2. Because the bound state energies are only expected

to be accurate when the binding is quite small, no comparisons with bound levels

obtained in the other methods are presented here. In Table 3.2 one sees that the

largest deviations of the scattering lengths appear for the triplet state. Despite the

very di�erent qualities of the �t for the ABM and MQDT-FT approach, their results

for the triplet scattering lengths are fairly close but deviate signi�cantly from the

result of CC and MQDT. Similarly, the �t quality of MQDT and MQDT-FT are

comparable but the derived scattering lengths deviate strongly. No physical reason

for this behavior is known at present.

3.5 Comparison of the Performance of the Three

Models

In this chapter we have applied three di�erent models for the assignment of the

measured FRs. All three models describe the observed resonances with a sub-1 G

accuracy. However, depending on the desired degree of precision and the availability

of accurate interaction potentials, the models serve di�erent purposes.

In some cases a phenomenon under investigation requires highly accurate knowl-

edge of scattering observables that are not measured but rather deduced from theory,

as for example the scattering length in dependence of the magnetic �eld. In these

cases it is inevitable to use the CC calculation. This demands either accurate ab
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initio potentials or su�cient experimental data to construct such potentials. The

high accuracy of the CC calculation stems from the fact that it incorporates the least

amount of assumptions out of the three models. The rms deviation of 39 mG is the

lowest of all three models. It is a rigorous and straightforward numerical approach,

which comes at the cost of computational power and complex codes. The potentials

for the CC calculations were mainly determined by spectroscopic data and here the

data set for the triplet state is fairly sparse. The minimum is not well characterized

because the vibrational levels from v = 0−4 are not yet observed. Thus, predictions

of FR for 7Li-133Cs may be less accurate than for 6Li-133Cs. Measurements would

be very desirable.

There are situations where the required precision of scattering observables is less

stringent. One example is evaporative cooling of ultracold gases or sympathetic

cooling of ultracold mixtures to quantum degeneracy by means of a FR, or for

initial characterization of FRs. In these cases, the processes are often optimized

experimentally, and it is not necessary to know the exact value of the scattering

length for the start of the optimization. Under these circumstances the two other

simpli�ed models are much more appropriate.

With a rms deviation of 965 mG, the bare ABM explains the FR structure already

on the level of ∼ 1 G. Only two parameters are su�cient for the description of the

FR positions. The relatively large deviation is related to the fact that couplings to

continuum states are neglected, which results in shifts on the order of the FR width

of broad resonances. The fact that the rms deviation of p-wave resonances is only

560 mG, and can be further reduced to 375 mG when the spin-spin interaction is

included, shows that narrow resonances are predicted su�ciently well. An advantage

of the bare ABM is that no molecular information is required, as it builds solely on

atomic constants and few �t parameters. Additionally, the code for the calculation

is extremely simple since it only involves the numerical diagonalization of a small

matrix, which is included in standard computational software programs. Therefore,

it can be applied at low programming expense for all systems, in order to assign

or predict FRs, or quickly map out all resonances of a system. In fact, it was used

to estimate whether there are any FRs expected in experimentally achievable �eld

regions for the 6Li-133Cs system before the experiment was set up. Also, it can

be used to optimize the starting conditions for a CC calculation [Li et al., 2008].

We remark that the open channels for M = 5/2 and M = 3/2 have overlapping

continua, |1/2,−1/2〉⊕ |3,+3〉 with |1/2, 1/2〉⊕ |3,+2〉 or |1/2,−1/2〉⊕ |3,+2〉
with |3/2,−3/2〉⊕ |3,+3〉, respectively. Thus the two-state approach for the S-

matrix derived in Sect. 3.3.1 might not be completely justi�ed.
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For the calculation of scattering properties and an accurate description of broad

resonances, the dressed ABM has to be applied. With a rms deviation of 265 mG

it is somewhat less accurate than the MQDT-FT. Yet, since it does not solve the

Schrödinger equation numerically but rather utilizes an analytical expression of the

S-matrix, it is still computationally not demanding. In cases where the background

scattering lengths for the incoming channel are known, the implementation is sim-

ple, since a comparison with the van der Waals length directly shows whether the

analytical expressions for bound or virtual state or �as is the case for 6Li-133Cs�

for an intermediate regime are appropriate. If this information is not available, we

suggest �rst �tting the narrow resonances, in order to deduce background scattering

lengths from the �tted bound state energies via the accumulated phase method, as

explained in Sect. 3.4.2. Then the right choice of the analytical expression to be

used will become evident by a comparison with the van der Waals range.

In order to gain accurate information from the MQDT, the interaction poten-

tials have to be known su�ciently well. However, compared to the CC calculation,

it reduces the complexity of the problem enormously. As it is still a full scattering

physics approach, employing a coupled-channel solution at short-range, the code is

more complex and lengthy than the ABM code. Yet, once this code is available, it

can be used for any alkali system without adaptation to the system speci�cs and

solves the scattering problem e�ciently. The accuracy of the �nal results with a

rms deviation of 40 mG is nearly indistinguishable from that of the full CC calcula-

tion. Also, both yield smaller values for the FR positions of the broad resonances as

compared to the observations. This deviation stems from the fact that for the exper-

imental determination of the position, a Gaussian pro�le was �t to the loss spectrum,

which neglects its asymmetric line shape and therefore returns slightly larger values

than the actual resonance positions. As a result, the current investigation does not

indicate a model problem of CC and MQDT for the broad resonances.

Many of the above mentioned properties of the MQDT are also true for the

MQDT-FT. The latter is especially useful for systems with little knowledge of in-

teraction potentials and only a few experimentally measured FRs. A two parameter

�t for only s-waves (three-parameters for s+ p etc.) allows to assign the resonances

and to investigate the existence of possibly broader or for speci�c applications more

appropriate FRs. While the rms deviation of 48 mG is comparable to MQDT and

CC models, the predicted values of the bare singlet and triplet scattering lengths

is less accurate. Because the variation of the quantum defects compensates for de-

viations introduced by the assumptions of the MQDT-FT (see Sect. 3.4.3) in order

to recreate the FR positions, the accuracy of other scattering properties should be
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tested in future studies. As it relies on only three parameters for the prediction or

assignment of FR, it is appropriate in systems that are currently lacking accurate

interaction potentials.

In conclusion, depending on the knowledge of molecular parameters, the required

accuracy of the predicted scattering parameters, the complexity of code and the

computational expense, each model has its own strength in applicability.
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Chapter 4

Observation of E�mov Resonances

Parts of this chapter are based on the following publication:

R. Pires, J. Ulmanis, S.Häfner, M. Repp, A. Arias, E.D. Kuhnle and M. Wei-

demüller

Observation of E�mov Resonances in a Mixture with Extreme Mass Im-

balance

Submitted, arXiv:1403.7246

The control of interactions in ultracold atomic systems via magnetically tunable

Feshbach resonances (FRs) opens up new pathways for the investigation of few-

and many-body physics [Chin et al., 2010]. One intriguing example is the access

to the universal regime, which is characterized by a magnitude of the scattering

length a exceeding all other length scales of the system. In the limit of at least

two resonant pairwise interactions, an in�nite series of three-body bound-states, the

so called E�mov states, exists [E�mov, 1971; Braaten and Hammer, 2006; Zinner

and Jensen, 2013]. Counterintuitively, these trimers persist even for a < 0, where

the two body potential does not support a bound-state. The ratio between two

subsequent trimer energies follows a discrete scale invariance with a universal factor

of exp(−2π/s0). Here, s0 only depends on the quantum statistics of the constituent

atoms, their mass ratio, and the number of resonant pairwise interactions [D'Incao

and Esry, 2006; Braaten and Hammer, 2006; Esry et al., 2008]. This scale invariance

also re�ects in those values of a, where the energy of the bound-states coincides with

the threshold of three free atoms for a < 0, resulting in an enhanced three-body loss.

When the position of the �rst resonance is given by a(0)
− , the N−th excited state
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is found at the scattering length a
(N)
− = a

(0)
− exp(πN/s0). It has been shown that

for homonuclear systems a(0)
− only depends on the characteristic range r0 of the

interatomic van der Waals potential [Berninger et al., 2011a; Roy et al., 2013; Wang

et al., 2012a; Sørensen et al., 2012; Schmidt et al., 2012; Naidon et al., 2014]. The

universal scaling factor acquires a value of 22.7 for equal mass constituents and

features a drastic reduction in heteronuclear mass-imbalanced systems of two heavy

and one light particle [Braaten and Hammer, 2006; D'Incao and Esry, 2006; Esry

et al., 2008], resulting e.g. in a factor of 4.9 for a 6Li-133Cs mixture.

In ultracold atom experiments, E�mov resonances become evident in the three-

body loss coe�cient L3 in the rate equation for atom loss ṅ = −L3n
3. Here, n

denotes the number density of atoms, and L3 ∝ C(a)a4. The E�mov physics

are contained in the dimensionless, log-periodic coe�cient C(a). Thus far, E�-

mov resonances have been explored in several equal mass systems [Kraemer et al.,

2006; Gross et al., 2009; Ottenstein et al., 2008; Pollack et al., 2009; Wild et al.,

2012; Huckans et al., 2009; Zaccanti et al., 2009; Berninger et al., 2011a; Roy

et al., 2013], where the scaling between di�erent resonances is predicted to follow

C(a) = C(22.7a). This large scaling factor demands a regime of temperature and

magnetic �eld control that makes the observation of an excited E�mov state highly

involved. There had been indication of such an excited state in a three-component

Fermi gas of 6Li atoms [Williams et al., 2009] exhibiting the same scaling as equal

mass bosons [Braaten et al., 2010]. A �nite temperature model [Rem et al., 2013]

suggests that the observation of a second E�mov resonance in bosonic 7Li is feasible

at current experimental conditions [Rem et al., 2013; Dyke et al., 2013]. During the

completion of this thesis, the Grimm group in Innsbruck succeeded in measuring an

excited E�mov state in a homonuclear 133Cs sample [Huang et al., 2014], con�rming

the prediction of the scaling for the equal mass boson case. In heteronuclear sys-

tems, only the K-Rb mixtures have been investigated so far [Barontini et al., 2009;

Bloom et al., 2013], where a scaling factor of ∼ 131 obstructs the observation of an

excited E�mov state. In 6Li-133Cs the predicted scaling factor of 4.9 [Braaten and

Hammer, 2006; D'Incao and Esry, 2006; Esry et al., 2008] and the ability to tune

the scattering length over a large range due to broad FRs [Repp et al., 2013; Tung

et al., 2013] favor the observability of a series of E�mov resonances.

This chapter describes our observation of E�mov resonances in this system with

extreme mass imbalance. We start by outlining the phenomenon of an E�mov

resonance in the hyperspherical representation in Sect. 4.1. We then demonstrate

our experimental approach to the measurement of E�mov resonances in Sect. 4.2.

Finally, the observation of two E�mov resonances in the three-body loss coe�cient of
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6Li-133Cs-133Cs with a scaling ratio of a(1)
− /a

(0)
− = 5.8(1.0) are discussed in Sect. 4.3.

4.1 The E�mov E�ect

The three-body problem is of interest in various �elds of physics, and therefore

unites groups with a variety of frameworks for its theoretical treatment, as for ex-

ample e�ective �eld theory, renormalization group methods and the hyperspherical

formalism. An excellent summary of these methods can be found in Braaten and

Hammer, 2006 and Wang et al., 2013. In this work we follow closely the discus-

sion in Braaten and Hammer, 2006 of the hyperspherical approach, as it delivers

an intuitive picture in a similar fashion as the treatment of the two-body problem

in Chap. 3. Several di�erent approaches and degrees of approximations have been

proven useful for tackling the three-body problem using this method [Botero and

Greene, 1986; Bohn et al., 1998; Lin, 1981; Koyama et al., 1989; Zhou et al., 1993;

Esry et al., 1996b; D'Incao et al., 2009; Blume and Greene, 2000; Rittenhouse et al.,

2010; von Stecher and Greene, 2009].

We start by separating angular and radial hyperspherical coordinates in Sect. 4.1.1

in order to derive a single simpli�ed Schrödinger equation for the three-body prob-

lem and discuss the solutions for this equation for several scenarios. A separation of

length scales allows to obtain simpli�ed expressions for the S-matrix in Sect. 4.1.2,

based on simple arguments of probability conservation. This matrix allows for the

calculation of physical observables for the manifestation of E�mov resonances, which

is also presented in the latter section.

4.1.1 The Hyperspherical Formalism

We start our discussion by considering the well-known case of three identical bosons

for reasons of simplicity. The appropriate changes for the mass-imbalanced case are

then given at the end of the section.

The time-independent Schrödinger equation

(
− ~2

2m

3∑

i=1

∇2
i + V (r1, r2, r3)

)
Ψ(r1, r2, r3) = EΨ(r1, r2, r3) (4.1)

contains six degrees of freedom, once the equation has been transformed into the

center of mass frame. With the help of the hyperspherical coordinates and appro-

priate approximations, the degrees of freedom can be reduced drastically, while the
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Figure 4.1: Jacobi coordinates and Delves hyperangle. (a) One of three
possible variants of the Jacobi coordinates given by Eq. (4.2). (b) Three di�erent
con�gurations for Delves hyperangle, as de�ned in Eq. (4.4), in the relevant
range between 0 and π/2.

essential key properties of the problem are still contained in the resulting equation.

Using the Jacobi coordinates

rij = ri − rj, rk,ij = rk −
1

2
(ri + rj) (4.2)

(see Fig. 4.1(a)), we can de�ne the hyperradius R as the root-mean-square separation

of the three atoms:

R2 =
1

3
(r2

12 + r2
23 + r2

31) =
1

2
r2
ij +

2

3
r2
k,ij. (4.3)

Three di�erent con�gurations for the Delves hyperangles [Delves, 1960]

αk = arctan

(√
3rij

2rk,ij

)
(4.4)

in the possible range between 0 and π/2 are also shown in Fig. 4.1(b). One of

these angles together with the unit vectors r̂ij and r̂k,ij yield the additional �ve

independent coordinates besides R for the description of the three-body problem.

These dimensionless variables will be denoted Ω in the following discussion. With

the help of hyperspherical coordinates introduced above, we can rewrite Eq. (4.1)

as (
TR + Tα +

Λ2
k,ij

2mR2
+ V (R,Ω)

)
Ψ = EΨ, (4.5)
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where TR and Tα denote hyperradial and hyperangular kinetic operators1, respec-

tively, and Λ2
k,ij = L2

ij/sin
2αk + L2

k,ij/cos2αk is a generalized angular momentum

operator. Here, Lij and Lk,ij are the conventional angular momentum operators

connected to rij and rk,ij, respectively. The formula in Eq. (4.5) is equivalent to

Eq. (4.1) when the latter is transformed to the center of mass system. The following

simpli�cations reduce the complexity of the problem enormously.

For two-atom clusters where the third atom is su�ciently far away, the potential

can be written as

V (r1, r2, r3) = V (r12) + V (r23) + V (r31). (4.6)

While this assumption seems excessively restrictive, Eq. (4.6) describes the low-

energy behavior of a universal sample surprisingly well, because at the large distances

involved in such problems, the potential is well-described by pair-wise terms. In

certain cases where the short-range e�ects need to be included, an additional term

that incorporates real three-body e�ects at short separations can be added [Braaten

and Hammer, 2006; Wang et al., 2013]. The wavefunction can be assumed to take

on the form

Ψ(r1, r2, r3) = ψ(1)(r23, r1,23) + ψ(2)(r31, r2,31) + ψ(3)(r12, r3,12), (4.7)

where each of the summands is a solution to the appropriate Fadeev equation

(
TR + Tαk +

Λ2
k,ij

2mR2

)
ψ(k) + V (rij)

(
ψ(k) + ψ(i) + ψ(j)

)
= Eψ(k). (4.8)

At this point it is convenient to neglect all subsystem angular momentum, which

yields a further simpli�cation for the solution of the three-body problem. The cou-

pling between di�erent subsystem angular momenta only enters at second order for

the potential as given by Eq. (4.6), while it enters at �rst order in Eq. (4.1), which

clari�es why it has been implemented only after simplifying the potential. The

subsequent results can in principle also be obtained when the subsystem angular

momentum is included, as shown in Nielsen et al., 2001. For the phenomenological

introduction, however, we refrain from including it, and thus simplify the wavefunc-

tion of Eq. (4.7) to Braaten and Hammer, 2006

Ψ(r1, r2, r3) = ψ(R,α1) + ψ(R,α2) + ψ(R,α3). (4.9)

1For their explicit formulas we refer to Braaten and Hammer, 2006.
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The three Fadeev equations simplify to2

(TR + Tαk − E)ψ(R,αk) + V (
√

2R sin αk) (ψ(R,αk) + ψ(R,αi) + ψ(R,αj)) = 0

(4.10)

which can be reduced further to only one equation. To this end, we chose k = 1 and

average ψ(R,α2) and ψ(R,α3) over the angular variables r̂23 and r̂1,23, which allows

us to express them as integral operators acting on ψ(R,α1):

〈ψ(R,α2)〉r̂23 ,̂r1,23 = 〈ψ(R,α3)〉r̂23 ,̂r1,23 =
2√
3

∫ π/2−|π/6−α1|

π/3−α1

sin(2α′)

sin(2α1)
ψ(R,α′)dα′.

(4.11)

Inserting Eq. (4.11) into Eq. (4.10) yields the single integro-di�erential low energy

Fadeev equation

(TR + Tα − E)ψ(R,α) =

− V (
√

2R sin α)

[
ψ(R,α) +

4√
3

∫ π/2−|π/6−α|

π/3−α

sin(2α′)

sin(2α)
ψ(R,α′)dα′

]
(4.12)

for the three-body problem, which now only depends on one of the hyperangles

α1 = α.

The hyperspherical expansion

ψ(R,α) =
1

R5/2sin(2α)

∑

n

fn(R)φn(R,α) (4.13)

separates radial and angular coordinates, and the functions φn(R,α) de�ne a set of

channel potentials

Vn(R) = [λn(R)− 4]
~2

2mR2
(4.14)

via the solutions to the α-dependent integro-di�erential equation

[
− ∂2

∂α2
− λn(R)

]
φn(R,α) =

− 2mR2

~2
V (
√

2R sinα)

[
φn(R,α) +

4√
3

∫ π/2−|π/6−α|

π/3−α
φn(R,α′)dα′

]
, (4.15)

where λn(R) denotes the eigenvalue as a function of the hyperradius R, which

2This equation has to be obtained for each permutation of i, j and k, which results in a total
of three equations.
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4.1. The E�mov E�ect

is treated as a parameter. The potentials of Eq. (4.14) can be understood as adi-

abatic potentials controlling the evolution of the system in R, similar as the Born-

Oppenheimer potentials for the two-body system introduced in Chap. 3. Inserting

the channel potentials and the hyperspherical expansion of Eq. (4.13) into the low

energy Fadeev equation, we obtain a set of coupled di�erential equation

[
~2

2m

(
− ∂2

∂R2
+

15

4R2

)
+ Vn(R)

]
fn(R) +

∑

m

[
2Pnm(R)

∂

∂R
+Qnm(R)

]
fm(R)

= Efn(R), (4.16)

where the couplings Pnm and Qnm between di�erent channels depend on the �rst and

second order partial derivative of λn(R) with respect to R, respectively. When λn(R)

varies only slowly with R, we can make the adiabatic hyperspherical approximation

which neglects the coupling between channels. Neglecting also the diagonal coupling

terms in Eq. (4.16), we obtain a reduced radial Schrödinger equation for each of the

hyperspherical potentials

[
~2

2m

(
− ∂2

∂R2
+

15

4R2

)
+ Vn(R)

]
fn(R) ≈ Efn(R). (4.17)

Due to the assumptions made in the derivation, this equation is only valid in the

region r0 � R� a. For R ∼ r0, the previously neglected short range physics a�ect

the behavior of the system, and the simplifying assumptions are no longer valid.

For R ∼ a, the coupling between di�erent hyperangular channels can no longer be

neglected, and Eq. (4.17) loses its validity.

The challenging part of the three-body problem is the solution of Eq. (4.15).

Various numerical methods for its solution are discussed in Braaten and Hammer,

2006 and Wang et al., 2013. One way to obtain the eigenvalues is to assume the

resonant limit, where the scattering length |a| is much larger than the two-body

potential range r0. Solving Eq. (4.15) in regions of extremely small and large values

of R sin α, in which Eq. (4.15) simpli�es, and matching these solutions at small α

yields the following transcendental matching equation for the channel eigenvalues:

cos
(
λ1/2π

2

)
− 8√

3
λ−1/2sin

(
λ1/2π

6

)
=
√

2λ−1/2sin
(
λ1/2π

2

) R
a
. (4.18)

The numerical solutions of Eq. (4.18) can be inserted into Eq. (4.14) to obtain

channel potentials, which are shown in Fig. 4.2. As can be seen in this �gure, the

only eigenvalues of interest for the E�mov e�ect are the lowest ones for the two
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Figure 4.2: The three lowest hyperspherical potentials for positive and

negative scattering lengths. The channel potentials Vn(R) are scaled by
~2/ma2 for a > 0 (solid lines) and a < 0 (dashed lines). Reprinted and adapted
from Braaten and Hammer, 2006 with permission from Elsevier.

cases a < 0 and a > 0, named λ0(R), because they are the only eigenvalues that

yield attractive potentials which support bound-states. In the limit R/a → 0, this

eigenvalue is given by

λ0 → −s2
0

(
1 + 1.897

R

a

)
, (4.19)

where s0 = 1.00624. Inserting this expression into Eq. (4.17) and neglecting the

R/a term yields
~2

2m

[
∂2

∂R2
− s2

0 + 1/4

R2

]
f0(R) = Ef0(R). (4.20)

The E�mov e�ect arises from the long-range nature of the attractive e�ective

potential − s20+1/4

R2 in Eq. (4.20), which features an in�nite amount of bound-states.

The solution of Eq. (4.20) can be identi�ed as exponentially decaying Bessel func-

tions with imaginary argument and imaginary order. The bound-state energies are

then given by

En
T =

(
e−2π/s0

)n−n∗ ~2κ2
∗

m
, (4.21)

where κ∗ denotes the wave vector of an arbitrary bound state labeled by n = n∗.

Obtaining the position of the �rst bound state κ0 requires an accurate treatment

of the interactions at short distance. However, due to the assumptions made in the

derivation of the low-energy Fadeev equation, this information is lost, and needs to

be reintroduced by choosing appropriate boundary conditions of the wavefunction

in the region of R ∼ r0. Equivalently, one can choose a convenient cuto� R0 of

the e�ective potential in Eq. (4.20). Specifying the derivative R0f
′(R0)/f(R0) then
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Figure 4.3: E�mov scenario. The E�mov state energies are plotted in the K-1/a
plane, which is actually given asH1/4 sin ξ versusH1/4 cos ξ for better visibility.
The regions where three-body (atom-dimer) scattering states are allowed are
labeled AAA (AD) and its threshold is indicated by cross-hatching. The dashed
line indicates a �xed �nite a value, for which only a limited number of E�mov
states can be found. The relevant range for ξ is also shown in each quadrant.
Reprinted and adapted from Braaten and Hammer, 2006 with permission from
Elsevier.

yields the position of the �rst bound state. Once this has been �xed, all other

energies are given by the universal Eq. (4.21).

This so called E�mov scenario is demonstrated in Fig. 4.3, where we plot K =

sign(E)(m|E|/~2)1/2 as a function of 1/a. The exact dependence of the energies

on 1/a is derived in Sect. 4.1.2, and our discussion so far only treats the region

a → ∞, where 1/a → 0. For the understanding of this �gure, it is also convenient

to introduce the polar coordinates H and ξ, which are de�ned via

1/a = H cos ξ, K = H sin ξ. (4.22)

Fig. 4.3 can then be understood as a plot of H sin ξ versus H cos ξ. In order to �t

more of the E�mov bound states into the �gure, the axes were rescaled and show

actually H1/4 sin ξ versus H1/4 cos ξ. The angle ξ varies between −π and π. The

appropriate quadrants in the plot can be classi�ed by the range of ξ, as indicated

in Fig. 4.3. The straight line that represents the dimer threshold lies exactly on

ξ = −π/4. The regions where three atom scattering states (AAA) and atom-dimer

scattering states (AD) are possible, are also labeled. Some of the trimer states are

labeled by T, and it should be noted that for better visibility only a limited number
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of these states are shown. The E�mov states merge with the dimer threshold on

the positive a side, and the three free atom threshold on the a < 0 side. As we

will see in the next section, the number of experimentally accessible bound-states is

ultimately limited due to �nite temperature e�ects.

The discussion so far has introduced the E�mov e�ect using the simple exam-

ple of three equal mass bosons. For the description of the resonances in systems

with unequal masses, as for example the 6Li-133Cs system, the general derivation is

still valid, however, one must introduce slightly changed hyperspherical coordinates,

which alters the matching condition in Eq. (4.18). In the remainder of this section

we will outline how to generalize this treatment for such a mass-imbalanced system.

The rij Jacobi coordinate of Eq. (4.2) remains unchanged, while

rk,ij = rk −
miri +mjrj
mi +mj

(4.23)

now contains the masses mi and mj. The hyperradius

R2 =
m1m2r

2
12 +m2m3r

2
23 +m3m1r

2
31

m1m2 +m2m3 +m3m1

, (4.24)

the hyperangles

tan αk =

(
m2
ij(m1 +m2 +m3)

m1m2m3

)1/2
rij
rk,ij

, (4.25)

and the magnitudes of the vectors

rij =

(
m1m2m3

mijm123(m1 +m2 +m3)

)1/2

R sin αk (4.26)

and

rk,ij =

(
mij

m123

)1/2

R cos αk (4.27)

are also rede�ned, using

m123 =
m1m2m3

m1m2 +m2m3 +m3m1

(4.28)

and the well-known two-body reduced mass mij (as denoted by µ in Eq. (3.3)). The

Fadeev wavefunction in Eq. (4.9) must be generalized to the form

Ψ(r1, r2, r3) = ψ(1)(R,α1) + ψ(2)(R,α2) + ψ(3)(R,α3) (4.29)
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and the channel potentials now read3

Vn(R) = −(λn(R)− 1/4)~2(m1 +m2 +m3)

2(m1m2 +m2m3 +m3m1)R2
. (4.30)

If R sin αk is large enough that the two-body potential V (R sin αi) can be neglected

in the generalized version of Eq. (4.15), the i-th Fadeev equation must be of the form

ψ(i)(R,αi) ≈ F (i) sin[λ1/2(R)((π/2)− αi)]
sin(2αi)

, (4.31)

where the R dependent functions F (i) are de�ned in Nielsen et al., 2001. This leads

to the generalized version of the matching conditions (cf. (4.18))

[
cos
(
λ1/2π

2

)
−
(

m1m2m3

mjkm123(m1 +m2 +m3)

)1/2

λ−1/2sin
(
λ1/2π

2

) R

ajk

]
F (i)

−2λ−1/2

[
sin[λ1/2((π/2)− γij)]

sin(2γij)
F (j) +

sin[λ1/2((π/2)− γik)]
sin(2γik)

F (k)

]
= 0,

(4.32)

for the solutions at small and large R sin αk, where ajk denotes the scattering length

between particle j and k. Here, i, j, k are permutations of 1, 2, 3 and the angle γij
satis�es

tan γij =

(
mk(m1 +m2 +m3)

mimj

)1/2

. (4.33)

The equations for the three cyclic permutations of i, j, k can also be written in

matrix form with a vector F = (F (1), F (2), F (3)):

M F = 0. (4.34)

This matrix equation has a non trivial solution only when the consistency equation

det(M) = 0 (4.35)

for the 3× 3 coe�cient matrixM is ful�lled. The solutions of the matrix equation

are the eigenvalues λn(R).

The mass-imbalanced system exhibits the E�mov e�ect, when the lowest eigen-

value of Eq. (4.32) is negative at R = 0 and r0 → 0, because then the e�ective

channel potential has the attractive −1/R2 behavior that supports an in�nite num-

3The leading minus sign is also given in Braaten and Hammer, 2006. It is possible that this is
a typographical error.
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Figure 4.4: Mass dependence of the discrete scaling factor for three reso-

nant pairs. The factor eπ/s0 is shown in dependence of the mass ratio m1/m3

for the scenario of two equal mass particles m1 = m2 in the case were the
interactions between all pairs are resonant. The dotted line indicates the 6Li-
133Cs mass ratio. Reprinted and adapted from Braaten and Hammer, 2006 with
permission from Elsevier.

ber of bound states. It should be noted that in this limit, Eq. (4.35) is independent

of the scattering lengths.

For the case where the s-wave scattering length between all pairs is large4,

Eq. (4.32) always has a negative single channel eigenvalue λ0(0) = −s2
0. There-

fore, the E�mov e�ect occurs for all mass ratios. When m1 = m2, the scaling factor

eπ/s0 ranges from 15.7 in the limit m1 = m2 � m3 to 1 for m1 = m2 � m3, as

depicted in Fig. 4.4. It takes its maximum value of 22.7 for m1 = m2 = m3 and

it does not matter whether particle 1 and 2 are identical bosons or distinguishable

particles.

When only two of the pairs exhibit large s-wave scattering lengths, e.g. a31

and a23, the equation for F (3) in Eq.(4.32) can be ignored, and F (3) can be set to

zero [Braaten and Hammer, 2006] for the equations in F (1) and F (2). Eq. (4.35)

then reduces to

[
cos
(
λ1/2π

2

)
+

2λ−1/2sin[λ1/2((π/2)− γ12)]

sin(2γ12)

]

×
[
cos
(
λ1/2π

2

)
− 2λ−1/2sin[λ1/2((π/2)− γ12)]

sin(2γ12)

]
= 0

(4.36)

for distinguishable equal mass particles 1 and 2. This equation has a single negative

eigenvalue λ0(0) = −s2
0, and therefore exhibits the E�mov states regardless of the

values of the masses. While the �rst factor in Eq. (4.36) does not have a negative

4This assumption inhibits the three particles from being identical fermions.
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Figure 4.5: Mass dependence of the discrete scaling factor for two reso-

nant pairs. The factor eπ/s0 is shown in dependence of the mass ratio m1/m3

for the scenario of two equal mass particles m1 = m2 in the case were only two
of the inter particle interactions are resonant. For large a23 and a31, particles 1
and 2 can be identical bosons or distinguishable particles (solid line) or identical
fermions (dash-dotted line). For large a12 and a31, the two equal mass particles
must be distinguishable (dashed line). The dotted vertical line indicates the
6Li-133Cs mass ratio. Reprinted and adapted from Braaten and Hammer, 2006
with permission from Elsevier.

solution, the second one gives rise to the negative eigenvalue and the E�mov e�ect.

The second factor in Eq. (4.36) also arises for the case when particle 1 and 2

are identical bosons. Thus, the E�mov states are also present in such systems,

with the same discrete scaling factor as for the previous example. The �rst factor in

Eq. (4.36) also appears for the case of two identical fermions. Since it has no negative

eigenvalues, there is no E�mov e�ect in the discussed limit of vanishing subsystem

angular momentum. When the mass ratio m1/m3 is larger than a critical value

δc = 13.6, the E�mov e�ect connected to nonzero subsystem angular momentum

occurs. When a12 and a31 or equivalently a12 and a23 are large, the matching equation

has negative solutions only for distinguishable equal mass particles 1 and 2. The

scaling factor for all the possible scenarios with two resonant interactions, where

two of the particles have equal mass, are summarized in Fig. 4.5.

For the case of 6Li-133Cs the limits of two or three resonant pairwise interactions

do not di�er severely. Based on the treatment in Braaten and Hammer, 2006, we

expect a scaling factor of ∼ 4.3 for three, and ∼ 4.8 for two resonant pairs. The

treatment in D'Incao and Esry, 2006 �nds a consistent value of 4.88 for two resonant

pairs, and the authors of Wang et al., 2012b state agreeing scaling factors of 4.88

for two and 4.30 for three resonant pairwise interactions.
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4.1.2 E�mov's Radial Law and Scattering Observables

In order to obtain experimental observables of interest, as for example the three-

body recombination rate or the E�mov trimer binding energies, we have to proceed

to a more realistic situation with �nite a, and therefore relax our requirement of the

resonant limit a→∞. For this treatment, we go back to the case of three identical

bosons. While the derivation for mass imbalanced particles can be performed analo-

gous to the following discussion, it does not bring any new insights. We refer to the

literature [Braaten and Hammer, 2006; Wang et al., 2013 and references therein] for

this procedure. The e�ects of deeply-bound dimers are neglected in the beginning

of the discussion, as they can be added later in a quite simple fashion.

Instead of solving the Schrödinger equation for the whole range of R, we look

at the evolution of incoming low energy scattering state from large to small values,

and then to large values again. This can typically be described by a 2×2 symmetric

unitary matrix

(
SAAA,AAA SAAA,AD

SAD,AAA SAD,AD

)(
|AAA〉in
|AD〉in

)
=

(
|AAA〉out
|AD〉out

)
, (4.37)

where the entries Si,j describe the amplitude of the evolution from state i to state

k. The subscript in (out) denotes the incoming (outgoing) wavefunction. The ad-

vantage in this approach lies in the fact that for the regions where the derivation of

the wavefunction is not straightforward, we can simply apply probability conserva-

tion arguments in order to acquire information on the total reactive behavior of the

system.

We start by dividing the range of the hyperradius R into four characteristic

regions:

� The asymptotic region R� |a|.

� The long-distance region R ∼ |a|.

� The scale-invariant region r0 � R� |a|.

� The short-distance region R ∼ r0.

The interaction potential in the asymptotic region is negligible. This justi�es

the simple choice of the S-matrix in Eq. (4.37), as the only possible solutions are

atom-dimer and free atom scattering states. The former is a product of a universal
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dimer wavefunction similar5 to Eq. (3.21) and a free atom scattering wavefunction.

The latter can be expressed in terms of Bessel functions. These states are of course

only supported for positive energies, or for negative energies above the atom-dimer

threshold when a > 0 (see Fig. 4.3). In the region where only one (none) of them

is allowed, only one (none) of the matrix elements of Eq. (4.37) is nontrivial, which

further simpli�es the treatment in this region.

In the scale-invariant region, Eq. (4.20) describes the hyperradial wave. Suf-

�ciently deep in this region, E in Eq. (4.20) can be neglected, and the solution

ψhw(R,α) =
sinh[((π/2)− α1)R/a]

R2sin(2α1)

[
Aeis0ln(HR) +Be−is0ln(HR)

]
, (4.38)

can be written as an incoming and an outgoing hyperradial wave with arbitrary

amplitudes A and B.

Obtaining a solution for the wavefunction in the short-distance region is more

involved than for the two regions discussed above. However, when the system does

not decay to deep bound-states, and no coupling to other hyperradial channels

exists, probability must be conserved. Therefore, instead of trying to �nd an explicit

solution, we only consider the e�ect of the short-distance region on the wavefunction

of the scale-invariant region. For a complete re�ection, the outgoing amplitude A in

Eq. (4.38) must be equal in magnitude as the incoming amplitude B,

A = e2iθ∗B, (4.39)

and might only di�er by a phase

θ∗ = −s0 ln(cH/Λ0) (4.40)

which is picked up during the re�ection at short range. Here, c is a numerical

constant, and Λ0 is connected to the wave vector of the ground-state E�mov trimer6.

Thus, θ∗ is fully speci�ed by the boundary condition at short range, or equivalently

by specifying R0f
′(R0)/f(R0) at the short-range cuto� R0.

The long-distance region does not allow for simpli�cations that ease the acquisi-

tion of an explicit wavefunction. Therefore, we also base our treatment on arguments

of probability conservation. The incoming and outgoing probability �ux can only

derive from the scale-invariant and asymptotic regions, for which we know the ex-

plicit wavefunctions. Thus, we describe the evolution in the long-distance region by

5The expression in Eq. (3.21) must simply be be transformed to the hyperspherical basis.
6See Eq.(217) in Braaten and Hammer, 2006.
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a unitary, symmetric7 3× 3 matrix

sij = 〈i in| Û |j out〉 , (4.41)

where Û describes the evolution of a wavefunction through the long-distance re-

gion. The label in (out) denotes an incoming (outgoing) wave with respect to the

long-distance region. The indices i, j = 1, 2, 3 denote hyperradial waves from the

scale invariant region, asymptotic dimer states and asymptotic three-atoms states,

respectively. The diagonal entries sii describe re�ections of the wave i, and the

o�-diagonal elements sij represent the coupling between the waves i and j.

By use of the long-distance s-matrix, we can now state the terms of the S-matrix

in Eq. (4.37) explicitly:

SAD,AD = s22 + s21
1

1− e2iθ∗s11

e2iθ∗s12 (4.42)

SAD,AA = s23 + s21
1

1− e2iθ∗s11

e2iθ∗s13 (4.43)

SAAA,AAA = s33 + s31
1

1− e2iθ∗s11

e2iθ∗s13. (4.44)

The �rst summand in each of the equations represents a direct re�ection of the

incoming wave in the long-distance region. When the second summand is expanded

in a power series of s11, the n-th term describes transmission through the long-

distance region, n cycles of back and forth re�ection at short- and long-distance

regions, and �nally transmission through the long-distance region.

As found by E�mov [E�mov, 1979], the radial variable H enters only through

the angle θ∗ into the S-matrix. Additionally, he demonstrated strict constrains for

the dependence of the matrix on ξ. Thus, the calculation of speci�c properties of the

S-matrix for all values of E, a and κ∗ reduces to the calculation of a few universal

functions depending on ξ.

One example of such a property is the calculation of binding energies. As the

bound-states require a standing wave, they can only occur when the re�ected wave at

the short-distance region is resonant with the re�ected wave from the long-distance

region. This can be expressed in the condition

exp(2iθ∗)s11 = 1, (4.45)

which is equivalent to setting the denominators in Eqs. (4.42)- (4.44) to zero. In

7The symmetric property of the matrix is a consequence of time reversal invariance.
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4.1. The E�mov E�ect

the region −π < ξ < −π/4, where the E�mov states can occur (see Fig. 4.3),

both AAA and AD states are forbidden, which allows us to set s22 = s33 = 1 and

s12 = s31 = s23 = 0. Due to the unitarity of s, we can write s11 in the form

s11 = exp(i∆(ξ)), (4.46)

with ∆(ξ)/2 being the hyperradial phase-shift from the re�ection of the long-distance

region. Combining these two conditions, we can obtain bound-states via the solution

of

2θ∗ + ∆(ξ) = 0 mod 2π. (4.47)

Inserting the appropriate expression for H, ξ and θ∗, we obtain the solution for the

energy of an E�mov state

ET +
~2

ma2
=
(
e−2π/s0

)n−n∗
exp[∆(ξ)/s0]

~2κ2
∗

m
, (4.48)

where tan ξ = −(mET/~2)1/2a. We have derived the dependence of the E�mov

energies on the scattering length a. Eq. (4.48) recovers the spectrum of Eq. (4.21)

in the resonance limit a → ±∞, because in this case ξ = −π/2 and ∆(ξ) → 0.

For all other cases, the universal functions ∆(ξ) have been calculated numerically

via renormalized zero-range models or e�ective �eld theory, and a simple set of

parametrizations for ∆(ξ) is given in Braaten and Hammer, 2006. The scattering

length dependence of the trimer energies is illustrated in Fig. 4.3

So far, the e�ect of deeply bound states has been neglected. However, due

to the separation of length scales, its treatment is facilitated enormously. For the

transitions into deep dimers, the three particles have to be su�ciently close together,

because the size of the bound-state is on the order of r0. When Edeep & ~2/mr2
0

is the energy of the bound state, energy and momentum conservation require the

third atom to acquire a momentum of (4mEdeep/3)1/2. As this is on the order

~/r0, this momentum kick can only be delivered when all three atoms are within

a range of r0. Therefore, the only relevant region for this process is the short-

range region, where the coupling between incoming scattering channel and outgoing

deeply bound-state channel is signi�cant. We can simply include the decay by

accounting for the lost fraction e−4η∗ of the re�ected probability at short range by

adding an appropriate factor to the re�ected amplitude of Eq. (4.39). The parameter

η∗ describes the cumulative e�ect of the decay to all deeply-bound states. The
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equivalent of Eq. (4.39) then reads

A = −e−2η∗+2iθ∗B. (4.49)

The S-matrix can be built up analogous to Eqs. (4.42)-(4.44), when all angles θ∗ are

replaced by θ∗ + iη∗. Like in Eq. (4.41), a matrix

tij = 〈i in| Û |j out〉 (4.50)

for the long-distance region can be de�ned, where now an additional pair of incoming

and outgoing states, labeled with subscriptX, are added for each deeply bound state.

Similar to Eqs. (4.42)- (4.44), we can now write the S-matrix elements for transitions

from the SAAA and SAD states to the deeply bound atom-molecule scattering state

X as

∑

X

|SX,AD|2 =
(1− e−4η∗)|s12|2
|1− e−2η∗+2iθ∗s11|2

(4.51)

∑

X

|SX,AAA|2 =
(1− e−4η∗)|s13|2
|1− e−2η∗+2iθ∗s11|2

, (4.52)

where the sum is performed over all deeply bound states X.

The condition for a bound-state, analogous to Eq. (4.47), becomes

2(θ∗ + iη∗) + ∆(ξ) = 0 mod 2π, (4.53)

which yields the solutions

ET +
i

2
ΓT +

~2

ma2
=
(
e−2π/s0

)n−n∗
exp

[
∆(ξ) + 2iη∗

s0

]
~2κ2

∗
m

, (4.54)

where tan ξ = −(m(ET + iΓT/2)/~2)1/2a. Here, the E�mov states are no longer

sharp, but exhibit a �nite width ΓT due to the decay into deeply bound states. This

width is given by

ΓT ≈
4η∗
s0

(
ET +

~2

ma2

)
(4.55)

for su�ciently small η∗.

Our main motivation for the introduction of E�mov's radial law is the derivation

of the experimentally observable three-body loss coe�cient L3. It is typically de�ned
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4.1. The E�mov E�ect

via
d

dt
n = −L3 n

3 (4.56)

for a thermal gas, and is the most commonly used method to examine the E�mov

e�ect, which reveals itself via modulations in L3. With the help of the previous

derivations, it is straightforward to obtain an analytic expression for L3. As our

experiments focus on the region a < 0, we will not discuss the three-body loss rates

for positive values of a, where both decay into shallow and deep dimers can occur.

In the negative a region, the scattering state can only decay to deeply bound states,

because there are no universal two-body bound states (see Sect. 3.2.2).

Hence, the L3 coe�cient is directly proportional to
∑

X |SX,AAA|2 as given in

Eq. (4.52). The s-matrix elements s11 and s13 can be expanded in powers of K, and

in the low energy limit K → 0, the resulting expression for L3 in a thermal gas on

the negative a side taking only the leading order into account, reads

L3 = 3
4590sinh (2η∗)

sin2[s0ln(a/a∗)] + sinh2η∗

~a4

m
(a < 0). (4.57)

Here, a∗ is the position where an E�mov trimer merges with the three free atom

continuum.

The behavior of this function is schematically shown8 in Fig. 4.6 for three-

di�erent values of η∗. For increasing η∗ values, the peaks become less pronounced,

and for η∗ →∞ the loss rate would just become a straight line in this plot. One can

clearly see the characteristic logarithmic scaling in a, where the loss rate is increased

for those values of a that coincide with an E�mov state merging into the three-body

scattering threshold (see Fig. 4.3). An intuitive explanation for this behavior can be

found in Esry and D'Incao, 2007 and D'Incao and Esry, 2005, where the enhanced

loss rate is interpreted as a shape resonance due to a barrier in the incoming three

free atom channel.

In order to understand this barrier, we have to reanalyze the e�ective channel

potentials of Fig. 4.2. The derivation of these potentials holds only for the region

r0 � R� |a|. The E�mov e�ect arises from the bound-states found in this region.

For R ∼ |a|, D'Incao and Esry, 2005 have shown that the potential takes on the

form

V (R) ∝ λ(λ+ 4) + 15/4

2µijkR2
, (4.58)

where λ is a positive integer and µijk is a three-body reduced mass, as e.g. de�ned

8In reality we use Eq.(25) of Helfrich et al., 2010, since this work gives analytical formulas to
calculate the desired parameters for the heteronuclear case.
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Figure 4.6: Three-body loss coe�cient as a function of scattering length.

L3 of Eq. (4.57) for a
6Li-133Cs mixture is schematically plotted for η∗ = 0.0024

(black solid line), η∗ = 0.024 (blue solid line), and η∗ = 0.24 (red solid line).
The dashed horizontal lines represent the unitarity limit given by Eq. (4.60) for
the indicated temperatures. Instead of using the explicit form of Eq. (4.57), we
employ the analytic form of Eq.(25) in Helfrich et al., 2010, because here the
involved parameters for the heteronuclear case are given explicitly.

in Nielsen et al., 2001. This potential yields a barrier with a position proportional

to |a|, and a height proportional to 1/a2. Tuning of a shifts the height and position

of a quasi-bound state in the inner region of the barrier. When the energy of

the incoming atoms is resonant with such a bound state, the tunneling through

the barrier is enhanced, and the amplitude of the wavefunction behind the barrier

is signi�cantly increased. As explained above, this inner region also contains the

coupling to the deeply bound dimers. The component of the incoming wavefunction

that penetrates into this region can decay to deeply bound states, which explains

the enhanced losses by three-body recombination.

Finally, we consider the limitations on the above derived properties. For the

derivation of the geometric scaling formula in Eq. (4.21), we inherently used the

scaling limit (r0 → 0) and the resonant limit (a → ∞) simultaneously in order to

obtain the channel potentials of Eq. (4.14) via solving Eq. (4.15). If we account

for the �nite range r0 of the interaction potential, these solutions are valid only for
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4.1. The E�mov E�ect

energies above E ∼ ~2/(mr2
0), which is also called ultraviolet cuto�. This gives a

bound of the E�mov trimer energies from below.

Some calculations of physical quantities like the three-body loss rate in Eq. (4.57),

require knowledge of the s-wave phase-shift9. For su�ciently low energies, the ex-

pression for the scattering length can be expanded in powers of k. This so-called

e�ective range expansion

k cotδ0(k) = −1/a+
1

2
rsk

2 + ... (4.59)

is often truncated after the �rst summand on the right side of Eq. (4.59). However,

above (below) a characteristic energy (distance) scale, higher-order terms, e.g. the

term including the s-wave e�ective range rs, have to be incorporated for an accurate

calculation of the desired properties.

Last but not least, experiments are performed at �nite temperatures. This adds

corrections to several expressions, where the low-energy limit was assumed. Most

importantly, the three-body loss rate will have an upper-bound, given by the satura-

tion of the two-body cross section in Eq. (3.9). For su�ciently high a, the a2 factors

cancel, and the cross section is limited to the scattering length independent value

4π/k2. This phenomenon is referred to as unitarity limit. An order of magnitude

estimate for the limit on the three-body loss rate has been calculated by D'Incao

and Greene, 2014 for the case of two bosons and one fermion:

L3,lim =
8π2~5

µ3(kBT )2
, (4.60)

where µ =
√
m2
BmF/(2mB +mF ) is the reduced mass containing the boson mass

mB and the fermion mass mF . For this calculations, only the decay from scattering

states in the lowest angular momentum (J = 0) channel to a few bound states

has been included. For a more elaborate expression, one would have to include

all bound states and higher angular momenta, which can signi�cantly increase this

limit [D'Incao et al., 2004]. When the scattering length is on the order of the thermal

de Broglie wave length (see Eq. (2.10)), the three-body loss coe�cient deviates

from the behavior of Eq. (4.57) and merges to the value given by L3,lim. In this

case, no further modulation due to E�mov resonances can be clearly resolved. This

behavior is a limiting factor in our experiment. L3,lim is depicted in Fig. 4.6 for

9The s-wave phase-shift for the derivation of Eq. (4.57) enters via an expansion of the s-matrix
elements of Eq. (4.41), which is not explicitly discussed in this work. We refer to Braaten and
Hammer, 2006 for a detailed description
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several temperatures. Besides reaching the unitarity limit, the �nite temperature

also washes out the signal of the enhanced losses due to thermal averaging, which

also leads to shifts of the peak position to smaller scattering lengths [D'Incao et al.,

2004].

4.2 Experimental Procedure for the Detection of

E�mov Resonances

We proceed to describe the experimental scheme that we apply for the measurement

of the E�mov states in a 6Li-133Cs mixture. The previously described measurement

of the FRs (see Chap. 3) were performed at 6Li(133Cs) temperatures of 2 µK (8 µK).

The resulting unitarity limited three-body collision rate does not allow for the de-

tection of E�mov related modulations. Hence, we present a new approach to reach

colder temperatures in the following section. The method is somewhat similar to

the one present in Sects. 2.3 and 2.4, with the main di�erence being a spatial dis-

placement of the 133Cs reservoir trap.

We start by loading a 133Cs MOT in typically 2 s, followed by DRSC into the

reservoir trap at 35 W. The atoms at the wings of the trap are heated due to

conversion of potential to kinetic energy. We counteract this e�ect by adding an

additional Raman cooling pulse. To this end, the lattice and the optical pumping

beam are turned o� and after 5.1 ms of propagation in the dipole trap potential

towards the trap center, where the kinetic energy is at its maximum, we turn both

lasers back on for 1.5 ms to remove the excess kinetic energy. We then ramp the

�elds and laser powers of the Raman lasers down (see Sect. 2.2.2), and apply an

o�set �eld of ∼ 4.5 G in order to provide a quantization axis that keeps the sample

polarized.

We continue by loading a 6Li MOT for 1.8 s with a su�cient displacement from

the 133Cs atoms. The 6Li atoms are loaded into the dimple trap at ∼1 mm distance

from the reservoir trap, and the o�set �eld is set to 943 G, where the scattering

length between the two lowest hyper�ne states of 6Li is −5400 a0 and the 133Cs

intraspecies scattering length amounts to 900 a0. The high a values ensure rapid

thermalization, while 6Li three-body losses are strongly suppressed due to Pauli

blocking.

Subsequently, we apply forced evaporation on each of the species in their respec-

tive traps. The 6Li atoms are evaporated in the dimple trap by ramping the power

from ∼ 100 W to 200 mW within 3.7 s. Simultaneously, the reservoir trap is ramped
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Figure 4.7: Experimental sequence for atom loss spectroscopy. The reser-
voir and dimple trap laser powers, o�set �eld, and reservoir trap position are
schematically illustrated as a function of time. For details see text.

from 35 W to 21 W within 3.5 s in order to evaporatively cool 133Cs. Right after the

latter evaporation ramp both traps are superposed. This is performed by moving the

reservoir laser beams with a piezo driven mirror within 600 ms to the direct vicin-

ity of the dimple trap. The clouds are �nally brought together by superposing the

reservoir su�ciently slow within 1 s, in order to ensure approximately an adiabatic

merging of both traps and thus reduce heating. In order to load the 133Cs atoms into

the dimple trap, the reservoir is turned o� in a ramp of 2 s. In this step, the 6Li and
133Cs clouds overlap, and a FR between the 6Li|f = 1/2,mf = −1/2〉 and 133Cs|3, 3〉
hyper�ne states leads to sympathetic cooling of 133Cs by expelling all 6Li|1/2,−1/2〉
atoms from the trap. This is a convenient e�ect, because the remaining 6Li atoms

are only those that are in their energetically lowest |1/2, 1/2〉 state. After allowing
for thermalization within 450 ms, we �nally arrive at an excellent starting point for

our E�mov resonance measurements, with typically 4× 104 6Li and 1.6× 104 133Cs

atoms at trap frequencies of 275× 308× 33 Hz and 114× 123× 11 Hz, respectively.

The temperatures of both species are approximately 400 nK.

For the atom loss spectroscopy, we quickly ramp the �eld to a selected variable

value close to the FR at 843 G. The atom number is then recorded after a �xed

hold time thold at the speci�c �eld value. Both species are then detected at a �eld

of 981 G using the high �eld imaging technique as discussed in Sect. 2.1.5. This

sequence is summarized in Fig. 4.7.

The measurement of the three-body loss coe�cient is performed in a similar

fashion as the atom loss spectroscopy, with only the following three di�erences.

Firstly, instead of the atom numbers given above, we load a mixture of 2 × 104

(3×104) 133Cs (6Li) atoms. The di�erence in 6Li atom number is caused by degrading

of the 6Li MOT laser TA chip, which results in a lower total power available for the
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optical cooling and trapping of 6Li atoms. Secondly, 200 ms after turning o� the

reservoir trap, we increase the dimple trap laser power by ∼10 % within 200 ms, in

order to increase the ratio U/kBT of trap depth U to temperature T . In doing so,

we reduce residual evaporation, but also increase the temperature of both species to

∼ 450 nK. We then ramp the o�set �eld to the vicinity of the FR at 843 G. The

third di�erence is that instead of holding the atoms at the o�set �eld for a �xed

time thold, we vary this parameter in order to track the time evolution of the atom

number, which allows us to extract the three-body loss coe�cient (see Eq.(4.56)).

The results of both the atom loss and three-body loss coe�cient measurements are

presented in the subsequent section.

4.3 Three-Body Loss Coe�cient and Atom Loss Mea-

surements

We start analyzing the E�mov resonances by assessing the atom number after a

�xed hold time in the trap at various �elds close to the FR at ∼843 G. The results

of these measurements are summarized in Fig. 4.8. We clearly observe a modulation

in the 133Cs losses after a storage time of 1 s in Fig. 4.8(b). In the discussion below,

we identify this feature as the �rst E�mov resonance.

Due to the a4 scaling of the three-body loss coe�cient (see Eq. (4.57)), the atomic

losses occur much faster close to the FR, where a increases (see Fig. 3.2(a)). There-

fore, we reduce the hold time to 400 ms for the 133Cs atom number measurements

in the direct vicinity of the FR, which is shown in Fig. 4.8(a). Besides the global

loss maximum, which can be associated with the pole of the FR, we observe a clear

loss feature near 844 G and an additional small atom number decrease at 843 G (see

inset in Fig. 4.8(a)). The former one is identi�ed as the excited E�mov state in the

following paragraphs, and the latter one is presumably the second excited state.

We determine the exact position of the three loss features by �tting Gaussian

pro�les with a linear background to each feature. The result of this �t yields B0 =

849.12(6)stat(3)sys and B1 = 844.89(1)stat(3)sys for the position of the �rst two E�mov

resonances, where the �rst errors denote the statistic uncertainty in the �t, and the

second errors result from the systematic uncertainty in the absolute magnetic �eld

value. For the very narrow feature we obtain the �eld value B2 = 843.03(5)stat(3)sys,

where the �rst error contains the width of the Gaussian pro�le instead. This is

probably the second excited E�mov resonance.

Under the experimental conditions of the measurements in Fig. 4.8(a) and (b),
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Figure 4.8: Magnetic �eld dependent atom loss measurements of the Li-

Cs mixture at a temperature of 400 nK. The 133Cs atom number after a
hold time of 400 ms (a) and 1 s (b) is illustrated. The inset in (a) is a zoom
into the region where a third loss feature can be seen. The 6Li atoms show
resonances at consistent positions after a hold time of 1.2 s (c) and (d), when
the initial 6Li atom number is reduced by a factor of two as compared to the
measurements in (a) and (b). Each of the values are the mean of at least six
independent measurements, and the error bars represent the standard error.
The dashed vertical lines indicate the position of the E�mov resonances. The
resonance positions are determined via a �t of Cs atoms with Gaussian pro�les
with linear background (red solid lines). The scattering length scale has been
assigned via radio frequency association of universal dimers.

the relative loss fraction of 6Li at B0 and B1 is too small to be discerned from atom

number �uctuations caused by instabilities in the experiment. However, lowering

the 6Li atom number by a factor of two as compared to the previous measurements

allows us to increase the relative loss fraction. Hence, we recover the loss features

at consistent magnetic �elds, as presented in Fig. 4.8(c) and (d) for storage times of

1.2 s. The fact that the 6Li atom number losses occur on much slower time scales

already hint at a three-body loss process that is dominated by two 133Cs and one 6Li

atom. This is the most probable loss process, as Pauli blocking reduces the likeliness

of �nding two 6Li atoms in the same spin state at a su�ciently close distance for

three-body recombination to occur.

Even though the above described atom loss features are strong hints of E�mov

resonances, it is inevitable to measure L3 (see Eq. (4.57)) in order to verify that
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Figure 4.9: Time-dependent atom losses in a 6Li-133Cs mixture at a �eld

of 843.9 G. The dots show the 133Cs atom number, where the error is given
by the standard error from �ve measurements. The black solid line shows the
results of a �t to Eq. (4.62), where only Li+Cs+Cs and Cs intraspecies three-
body losses have been included. The blue dash-dotted line demonstrates a �t
to Eq. (4.62) when the Li+Cs+Cs loss channel is replaced by Li+Li+Cs losses
which scale as n2

LinCs.

the observed E�mov resonances are indeed caused by a three-body process with

the same ratio of Cs to Li atoms involved. For this purpose, we now evaluate the

temporal evolution of the atom numbers via the experimental scheme described in

the previous section. A typical result of such a measurement is shown in Fig. 4.9

for the 133Cs atom number. While we lose ∼ 90 % of the 133Cs atoms for typical

hold times on the order of a few seconds, we only lose ∼ 30 % of the 6Li atoms.

The temperature of the mixture remains una�ected within the uncertainties of our

temperature determination (∼ 15%).

The evolution of nCs is given by the rate equation

ṅCs = −LCs
1 nCs − LLiCsCs

3 nLin
2
Cs − LCs

3 n
3
Cs. (4.61)

Here, LCs
1 , L

LiCsCs
3 and LCs

3 are the loss coe�cients for 133Cs background collisions,
6Li+133Cs+133Cs three-body collisions, and 133Cs+133Cs+133Cs three-body colli-

sions, respectively. The inter- and intraspecies two-body losses are ignored in

Eq. (4.61), because the atoms are in the energetically lowest states and thus only

exhibit elastic collisions. Under the conditions of the experiment the temperature

dependence of the three-body loss coe�cients [Rem et al., 2013] can be neglected,

and nLi can be assumed constant to a good approximation. Because the tempera-
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Figure 4.10: 133Cs intraspecies three-body loss coe�cient.The black trian-
gles illustrate the results of our measurements at a temperature of 410 nK in
the relevant �eld region. For comparison, we also present independent data
taken at Innsbruck [Huang and Grimm, 2014] for a sample temperature of
330 nK (red squares). A calculation based on the �nite temperature model
by Rem et al., 2013 for 410 nK (blue diamonds) [Huang and Grimm, 2014]
yields values that are within our systematic error of ∼ 80 %. The 133Cs E�mov
resonance at 853 G [Berninger et al., 2013] does not in�uence the system in
the relevant �eld region between 842 G and 852 G.

ture is nearly constant, the change in density can be directly linked to the change

in atom number.

A comparison of the description of the atom losses via Li+Li+Cs and Li+Cs+Cs

losses is shown in Fig. 4.9. For the calculation of the former process we numerically

solve Eq. (4.61) in the manner described below, replacing the summand containing

LLiCsCs
3 by LLiLiCs

3 n2
LinCs. The �t to Li+Cs+Cs, as also described below, is plotted

in Fig. 4.9, as well. It is obvious that the 133Cs atom loss curves are described by

Li+Cs+Cs and Cs+Cs+Cs losses (black solid line in Fig. 4.9), while a description

via Li+Li+Cs and Cs+Cs+Cs loss rates (blue dash-dotted line in Fig. 4.9) does

not reproduce the shape of the loss curves. This observation veri�es that Li+Li+Cs

three-body losses are indeed strongly suppressed due to Fermi statistics and con�rms

that the observed E�mov resonances originate from the Li+Cs+Cs channel, which

is the only channel for this mixture that is predicted to support universal three-body

bound states [Braaten and Hammer, 2006; D'Incao and Esry, 2006]. This is also

re�ected in the loss ratio of Li to Cs atom numbers of ∼ 1:2 in the entire range of

the probed magnetic �elds.

In order to extract the loss rates from our measurements, we integrate Eq. (4.61)
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over the density distributions given in Eq. (2.3), which yields an equivalent equation

for the atom number evolution:

dNCs

dt
= −LCs

1 NCs − LLiCsCs
3 C1NLiN

2
Cs − LCs

3 C2N
3
Cs. (4.62)

The constants

C1 =
∏

i=x,y,z

(σ2
i,Li + σ2

i,Cs)
−1/2

2πσi,Cs

(4.63)

and

C2 =
(

24
√

3π3σ2
x,Csσ

2
y,Csσ

2
z,Cs

)−1

(4.64)

are determined by a direct measurement of the trapping frequencies and tempera-

tures, which are required for the determination of the widths σi (see Eq. (2.4)).

The coe�cient LCs
1 is measured in a 133Cs single species experiment with very

long hold times and low 133Cs densities near a zero crossing of aCs, where one-

body losses are the dominant loss mechanism. A �t to the time dependent atom

number including only the �rst summand on the right side of Eq. (4.62) yields

LCs
1 = 1/28 s−1.

In order to reduce the number of free �t parameters in Eq. (4.62) further, we also

measure LCs
3 in a single species experiment by observing the time-dependent losses

for �elds near the FR at 843 G. For these measurements, the temperature of the
133Cs sample is ∼ 410 nK. The results of a �t to Eq. (4.62), where the summand con-

taining LLiCsCs
3 is removed, are summarized in Fig. 4.10. The 133Cs three-body loss

coe�cients are approximately constant for the �elds where the 6Li-133Cs E�mov res-

onances occur. The close-by 133Cs intraspecies E�mov resonance at 853 G [Berninger

et al., 2013] does not a�ect our analysis, as it becomes important only for the region

aLiCs > −250 a0, which is not relevant for the 6Li-133Cs E�mov resonances found in

this work. Our results for LCs
3 are consistent with independent measurements from

the Innsbruck group [Huang and Grimm, 2014] taken at temperatures of 330 nK

and a theoretical curve for our temperatures based on the model by Rem et al.,

201310, as shown in Fig. 4.10. The small discrepancy of our measurements, which

are expected to yield slightly smaller values as compared to the measurements at

colder temperatures from the Grimm group and the deviations from the calculated

values, are within the systematic error of ∼ 80 %, given by uncertainties in measured

atom numbers, temperatures, and trap frequencies. For the analysis of LLiCsCs
3 , we

employ the average of LCs
3 in the range from 842− 852 G as a �xed parameter.

10The calculation has been performed by Bo Huang [Huang and Grimm, 2014].
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Figure 4.11: Three-body loss coe�cient LLiCsCs
3 plotted versus inverse

scattering length 1/a. The blue diamonds show the mean of three LLiCsCs
3

measurements, where the error bars are given by the standard errors. The red
solid lines show Gaussian pro�les with linear background �tted to the data to
determine the position of the two E�mov resonances. The grey area illustrates
the systematic error of 80% for the absolute value of LLiCsCs

3 . The inset shows
a zoom into the region of the �rst excited E�mov resonance.

As a result, our analysis of the 6Li-133Cs three-body losses is reduced to a sin-

gle parameter �t of the time-dependent atom number to the numerical solution of

Eq. (4.62). The obtained LLiCsCs
3 coe�cients are displayed in Fig. 4.11. The sys-

tematic error of this value is on the same order of magnitude as that of LCs
3 , as it

also contains atom numbers, temperatures, and trap frequencies. Using the exper-

imentally determined value of LCs
3 which is slightly higher than expected, possibly

leads to a systematic underestimation of LLiCsCs
3 . Additionally, the gravitational sag

reduces the spatial overlap of the atomic cloud. We estimate that this e�ect reduces

the spatial integral over the densities in Eq. (4.62) by ∼ 20%, and include this e�ect

into our analysis. Day to day drifts in the beam pointing of the dimple trap might

cause �uctuations of the overlap.

A precise determination of the �eld dependent scattering length a(B) is essential

for a quantitative analysis. In particular the exact value of the scattering pole

BFR, where |a| diverges, plays a crucial role. We measure this value via radio
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frequency spectroscopy of universal dimers11, which yields BFR = 842.90(20) G and

∆B = 61.4(7)G for the resonance position and width, respectively. These values

are in agreement with the extensive study of 6Li-133Cs FRs via the three di�erent

models presented in Chap. 3. Inserting these results into the relation

a(B) = abg

(
∆B

B −BFR

+ 1

)
(4.65)

which is the equivalent of Eq. (3.42) for negative abg, allows us to determine the

abscissa in Fig. 4.8 and Fig. 4.11, where abg is taken from Repp et al., 2013.

We observe two distinct resonances of LLiCsCs
3 , which are the cause of the en-

hanced atom losses in Fig. 4.8. For large values of the scattering length, the

loss rate approaches a value that is consistent with an order of magnitude esti-

mate [D'Incao and Greene, 2014] for the unitarity limit LLim
3 of Eq. (4.60) yielding

LLim
3 ≈ 10−21cm6/s for the temperatures in our experiments.

Due to the lack of a heteronuclear �nite temperature model similar to the one

in Rem et al., 2013, the position of the resonances is determined via a �t of a

Gaussian pro�le with linear background, which results in B0 = 848.90(6)stat(3)sys G

and B1 = 843.85(1)stat(3)sys G. Using Eq. (4.65), we assign the scattering lengths

a
(0)
− = −320(3)stat(2)sys(10)rf a0 and a

(1)
− = −1871(19)stat(58)sys(388)rf a0 for the

E�mov resonance positions, where the last error accounts for the uncertainties of

FR position and width resulting as extracted from the radio frequency spectroscopy.

All errors are obtained by error propagation of Eq. (4.65).

For the scaling between the �rst and second E�mov resonance position, we obtain

a
(1)
− /a

(0)
− = 5.8(0.1)stat(0.2)sys(1.0)rf . This value is close to the predicted scaling of

4.9 [Braaten and Hammer, 2006; D'Incao and Esry, 2006] for a zero temperature gas

in the resonant limit (|a| � r0).

The assumption of universal behavior is not strictly justi�ed for the �rst reso-

nance, since a(0)
− is only a factor of ∼ 7 (∼ 3) larger than the 6Li-133Cs (133Cs-133Cs)

van der Waals length rLiCs
0 = 45 a0 (rCs

0 = 101 a0), possibly resulting in the neces-

sity to include �nite range corrections. In fact, early predictions have shown that

the ratio between the �rst and second resonance departs from the universal value

and yields larger values due to �nite range corrections [D'Incao and Esry, 2006].

However, these calculations, like the prediction in Braaten and Hammer, 2006, did

not take the actual inter- and intraspecies scattering lengths at the E�mov reso-

nance positions in 6Li-133Cs into account, which were not available at the time of

11These measurements are performed by Juris Ulmanis and will be explained in detail in his
PhD thesis. A short summary is also given in the Supplemental Material of Pires et al., 2014b.

128



4.3. Three-Body Loss Coe�cient and Atom Loss Measurements

the publications.

The second resonance is already in�uenced by the unitarity limit at the tem-

peratures achievable in the current experiment, which leads to a broadening of the

resonance feature and might also cause additional shifts to lower values of a [D'Incao

et al., 2004]. In addition, the fact that the 133Cs intraspecies scattering length varies

between -1200 a0 at B0 and -1500 a0 at B1 [Berninger et al., 2013] still needs to be

accounted for in the theoretical determination of the expected scaling ratio. Pre-

liminary calculations [Wang et al., 2014] based on the model of Wang et al., 2012b

seem to be consistent with a slightly increased value for the ratio. However, these

results are subject to ongoing investigation and are beyond the scope of this thesis.

The position of the third resonance is indicated by a modulation of the atom

losses at B2 = 843.03(5)stat(3)sys G in Fig. 4.8, for which we assign scattering length

a
(2)
− = −13.5(5.2)stat(3.1)sys×103 a0. The error due to uncertainties in BFR is on the

order of a(2)
− and can even result in positive scattering lengths at B2. In a dedicated

measurement of LLiCsCs
3 in the vicinity of B2, we cannot resolve an additional loss

feature that can be associated with the third resonance. The resonance is in a regime

where the scattering length is on the order of the thermal wavelength, and therefore

not the dominating length scale anymore. Hence, we expect the peak height of

the E�mov feature to be signi�cantly reduced to the point where we cannot resolve

it due to technical limitations. As a result, we cannot exclude that the losses at

B2 in Fig. 4.8 are caused by 6Li+6Li+133Cs collisions or other loss processes, e.g.

four-body losses.

After having found clear evidence for consecutive E�mov resonances in the loss

rate coe�cient of a mixture with large mass imbalance, the next sensible exper-

imental step is the creation of a 6Li-133Cs mixture at signi�cantly lower temper-

atures. The unitarity-limited regime will be pushed towards larger values of the

scattering length due to its scaling with ∝ 1/T 2 (see Eq.(4.60)), and the reso-

nances should become narrower and exhibit smaller shifts. In the current experi-

ment, the gravitational sag due to the large mass of 133Cs leads to a separation of

the atom clouds, which limits the lowest achievable temperatures of the mixture.

Therefore, a dedicated engineering of trap potentials with species selective trapping

forces [LeBlanc and Thywissen, 2007] is required to overcome this limitation, as

discussed in Sect. 2.5.

Based on calculations by C. Greene et al. [Wang et al., 2014] we estimate that

temperatures on the order of 30 nK result in a unitarity-limited three-body loss coef-

�cient of ∼ 2×10−19cm6/s, which is more than two orders of magnitude larger than

the current limit. In this case, calculations based on the zero-range model [Helfrich
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et al., 2010] predict the three-body loss coe�cient to be below the unitarity limit.

In order to avoid the in�uence of the unitarity limit on the third resonance, one

would actually require temperatures on the order of ∼ 1 nK. Extending the model

presented in Rem et al., 2013 to the case of heteronuclear mixtures, however, might

allow for a detailed analysis of the in�uence of unitarity even at higher tempera-

tures. Another intriguing perspective is the study of �nite size e�ects on the E�mov

trimers [Portegies and Kokkelmans, 2011], as the size of the second excited E�mov

trimer of ∼ 0.2 µm is not much smaller than the oscillator length of 2 µm of the

trapping potential used in the present experiments.

A second major improvement over the current investigations will be a more

precise determination of the magnetic �eld scattering pole BFR in order to reduce

the uncertainties in the assignment of scattering lengths to the observed resonances.

Here, we expect an improvement by an order of magnitude in the near future by per-

forming additional more accurate spectroscopy on the binding of the universal dimer,

since we have recently reduced our magnetic �eld uncertainties from ∼ 200 mG to

below 30 mG. A more accurate determination of the resonance positions would shed

new light onto application of universal few-body theories to mixed systems with

large mass imbalance addressing, e.g., the question to which extent the position of

the �rst resonances also features universal scaling as recently found in homonuclear

systems [Berninger et al., 2011a; Roy et al., 2013].

Besides our experiments, the Chin group at the University of Chicago also

recently reported on the observation of excited E�mov states. Atomic loss fea-

tures in 6Li-133Cs under comparable experimental conditions are presented in a

preprint [Tung et al., 2014]. While two of the atom loss features agree reasonably

well with our measurements, the position of the �rst E�mov resonance is shifted

by ∼ 0.5 G. The reason for this shift is currently not clear, but its e�ect on a
(0)
−

is only on the order of a few percent. The main di�erence between this work and

Tung et al., 2014 is the determination of the scattering pole position. While we

measure rf association, the authors of Tung et al., 2014 simply chose the global

minimum of the loss spectrum as the scattering pole. However, one has to be cau-

tious which such an assumption. Molecule formation on the a > 0 side of the FR

coupled with atom-dimer scattering might lead to an increase of losses, thus shift-

ing the global loss maximum, as shown in Dieckmann et al., 2002 and Khramov

et al., 2012. If one assumes the scattering pole to be at the �eld found in this work,

the pole determined in Tung et al., 2014 would be on the a > 0 side. Molecules

at this �eld have a binding energy on the order of the temperature sample, hence

three-body collisions can result in signi�cant losses. Of course, the stability and
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lifetime of such molecules also has to be taken into consideration, which is beyond

the scope of this thesis. The authors of Tung et al., 2014 also claim �nding universal

scaling for similar temperatures as ours, due to the position of the third resonance.

Based on our analysis of the three-body loss-rate coe�cients, we cannot con�rm that
6Li+133Cs+133Cs three-body collisions are the cause for the third atom loss feature.

Therefore, we refrain from discussing this resonance in terms of universal scaling.

For comparison, we perform an analysis analogous to Tung et al., 2014, where a

Gaussian pro�le �t to the global loss minimum is used to determine BFR. Using

the positions of atom loss features, we obtain a(1)
− /a

(0)
− = 5.07(6)stat(13)sys(2)FR and

a
(2)
− /a

(1)
− = 3.79(23)stat(39)sys(6)FR for the scaling ratios, where the errors labeled

FR are given by the �t uncertainty of BFR = 842.73(1)stat(3)sys.
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Conclusion and Outlook

Within the scope of this thesis we investigate both two- and three-body interac-

tions in a system with extreme mass imbalance. For this purpose, we built a new

experimental apparatus, which allows to bring both gases to quantum degeneracy

separately. In a 6Li-133Cs mixture, 19 interspecies Feshbach resonances have been

identi�ed in the two energetically lowest spin channels of each species via atom loss

spectroscopy. A coupled-channels calculation, multichannel quantum defect theory

and the asymptotic bound-state model have been applied for the assignment of the

resonances, yielding rms errors of 39 mG, 40 mG and 263 mG, respectively. Con-

sidering the level of simpli�cation of each of the models, the agreement with the

measured positions is excellent. Part of the deviations can be ascribed to the usage

of Gaussian pro�le �t for the determination of the measured Feshbach resonance po-

sition, which does not account for asymmetries in the shape of the loss features due

to di�erences of the three-body loss rate on the a < 0 and a > 0 side [D'Incao et al.,

2004]. Thus, the precision of the determination of the scattering pole is limited to

a few hundred mG for the broad resonances with this method. For a more precise

determination, several di�erent methods for a more direct measurement of the scat-

tering length, e.g. rf association of dimers or magnetic �eld modulation spectroscopy

should be employed. Excellent examples for such measurements of 6Li and 133Cs are

given in Zürn et al., 2012 and Berninger et al., 2013, respectively. In our group, we

are currently applying rf association on several of the resonances, in order to obtain

more accurate scattering pole positions. Additional measurements, for example the

observation of coherent oscillations in a harmonic trapping potential would allow for

a direct observation of scattering length magnitude and sign [Schuster et al., 2012].

The three-body loss rates are measured at a 61 G broad resonance near 843 G in

the energetically lowest 6Li-133Cs hyper�ne channel, yielding clear evidence for two
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consecutive E�mov resonances. This constitutes the �rst measurement of an excited

E�mov resonance in a heteronuclear mixture. While the E�mov feature is obvious in

the 133Cs three-body loss coe�cients, its signal-to-noise in 6Li, which is the majority

species in our experiments, is too low for a more detailed study. Therefore, a major

improvement would be the increase of the 133Cs atom number, which is currently

a limiting factor. With an increased 133Cs atom number, the 6Li loss signal would

improve, and the three-body loss coe�cient could be measured analogously to the
133Cs three-body loss coe�cient, which would yield additional con�rmation of our

measurements.

The obtained scaling ratio of 5.8(1.0) between the scattering length values of the

E�mov resonances is consistent with zero temperature models [D'Incao and Esry,

2006; Braaten and Hammer, 2006; Esry et al., 2008]. However, it is not clear to

what extent the assumptions in these models are ful�lled. For example, typical

calculations assume the resonant limit a � r0. For the �rst resonance, this is not

appropriate, as the scattering length is only a factor of 7 (3) larger than the 6Li-133Cs

(133Cs-133Cs) van der Waals range. Currently, there is no systematic study to what

degree this a�ects the universal scaling ratio. In Fig. 2 of D'Incao and Esry, 2006, a

slightly larger scaling ratio has been illustrated for exactly this scenario, though not

further quanti�ed. The further exploration of mixed species systems in this context

is an interesting challenge for theorists specialized in this �eld.

The second resonance is not in the threshold regime a � λdB for our experi-

ments at 450 nK, which means that the zero temperature assumption also breaks

down. Thus, the resonant feature is broadened and possibly also shifted due to �nite

temperature e�ects and the resulting unitarity limit. In order to further investigate

this feature in the zero temperature limit, we estimate required temperatures in the

order of tens of nK. A scheme to reach this temperature regime using a species se-

lective trap is also presented in this thesis. In the near future, we plan to implement

this trap for the manipulation of 6Li, thus allowing to overcome the limits given by

the gravitational sag in order to reach the required temperatures in the mixture.

Obtaining a mixture at temperatures on the order of one nK, which is necessary

in order to observe a third resonance in the zero temperature limit, is experimentally

more challenging. However, an extension of a �nite temperature model [Rem et al.,

2013] to heteronuclear systems would allow for a study of the third resonance even

for higher temperatures. Even at the temperatures employed in our experiments

we observe a hint of a third resonance in the atomic losses. The scaling ratio of

7.2 is a�icted with a large error, due to the uncertainties in the position of the

resonance pole. Accordingly, the rf measurements mentioned above are essential for
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a quantitative comparison with theory.

The e�ect of the 133Cs-133Cs background scattering length on the scaling factor

is also an interesting aspect for future studies. Its value varies between the �rst and

second observed resonance from −1200 a0 to −1500 a0. The question is whether

these values are already large enough to justify universality, so that the behavior does

not depend on the explicit background scattering length value. Measurement of E�-

mov resonances at di�erent Feshbach resonances, where the 133Cs-133Cs background

scattering length takes on di�erent values, are planned in order to address this ques-

tion. This will allow to test the predictions given in D'Incao and Esry, 2009, where

three-body collisions properties for several regimes of intra- and interspecies scatter-

ing lengths in a Bose-Fermi mixture are discussed. These measurements would also

allow to investigate whether or not the three-body parameters, which are linked to

the appearance of the �rst E�mov resonance, are universal. A recent study predicts

that for a system with two heavy and one light particle, the three-body parameter

is indeed universal, and its speci�c value is given by the heavy-heavy interparticle

interactions [Wang et al., 2012b].

Besides the understanding of three-body loss processes, an intriguing possibility

is also the study of higher order loss processes. Before each E�mov trimer becomes

bound (when scanning the scattering length), two four-body bound states should

be formed [von Stecher et al., 2009; Ferlaino et al., 2009]. The energies of these

four-body states are completely determined by the energy of the three-body E�mov

state, and require no further parameter. In the presented experiments we have

not observed any indications of such resonances. However, this can possibly be

ascribed to the relatively high temperatures. Once our scheme for obtaining colder

samples has been realized, a study of universal bound states involving more than

three constituents could also be performed.

It is indisputable that with the presented experiments a new chapter in the

investigation of universal physics in the mixed species case has opened up. While

the �ndings in this sector will certainly help to sharpen the theoretical methods for

the treatment of the universal three-body problem in the realm of atomic physics, it

will be interesting to see to what extent they will lead to a better understanding of

three-body processes in other �elds (see e.g. Zhukov et al., 1993 and Nielsen et al.,

2001).
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