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Abstract  

Among the different biofouling species, barnacles resemble a specific threat as they are 

difficult to remove, able to damage fouling release coatings and increase the drag force of 

ships. Additionally, barnacles are a good model system for research on permanent underwater 

adhesion strategies. This study aims to understand and compare the spatial organization and 

the chemistry of the adhesive secreted by two different species (Balanus amphitrite and 

Balanus improvisus) of cyprid larvae and juvenile barnacles for settlement. Raman 

spectromicroscopy and synchrotron based X-ray microprobe fluorescence analysis have been 

applied for the in-situ and ex-situ investigation of juvenile barnacle cement chemistry. 

Confocal Raman spectromicroscopy revealed the chemical heterogeneity of the barnacle 

baseplate and allowed to distinguish three regions of various chemical compositions. The 

adhesive of cyprids was different from the one of larvae and analyzed in detail from the 

metamorphosis to the age of fourteen days. The results of these studies provided information 

on the chemical composition and morphological structure of both barnacle species at different 

life stages.  
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Kurzfassung 

Unter den verschiedenen Biofoulern stellen die Seepocken ein besonderesgroßes Problem 

dar. Es ist schwer sie von Oberflächen zu entfernen, sie sind dazu in der Lage Fouling-

Release Oberflächen zu beschädigen, und wenn sie an Schiffsrümpfen vorkommen, erhöhen 

sie die Reibung des Schiffs im Wasser. Ausserdemstellen die Seepocken ein hervorragendes 

Modellsystem zur Untersuchung von Unterwasserhaftungsstrategien dar. Diese Studie zielt 

darauf ab die räumliche Organisation und die chemische Zusammensetzung des Klebstoffs zu 

verstehen, der von Seepockenlarven und adoleszenten Seepocken zweier verschiedener 

Gattungen (Balanus amphitrite und Balanus improvisus) abgesondert wird. Raman 

Spektromikroskopie und Synchrotron basierte Mikrofokus-Röntgenfloreszenzanalyse wurden 

zur in-situ und ex-situ Analyse des Klebstoffs adoleszenter Seepocken angewendet. 

Konfokale Raman Spektromikroskopieoffenbarte die chemische Heterogenität der 

Seepockengrundplatte und ermöglichte die Unterscheidung dreier Regionen unterschiedlicher 

chemischer Zusammensetzung. Der Klebstoff der Larven unterscheidet sich von dem 

Klebstoff der jungen Seepocken, welcher enDétail für Seepocken verschiedener 

Entwicklungsstufen, von der Metamorphose hin zu 14 Tage alten Seepocken, untersucht 

wurde. Die Ergebnisse dieser Untersuchungen liefern Informationen über die chemische 

Zusammensetzung und die Morphologie beider Seepockenspezies während verschiedener 

Lebensabschnitte.  
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1. Introduction 

Have you ever seen a beautiful assembly of different shells and seaweeds on the waterline 

at pier or on the bottom of boats pulled out of water to the beach? Is not it amazing (Figure 

1), the way these organisms form a solidary community and attach to the surface? However, 

the ordinary life of these marine dwellers conceals a number of undesirable drawbacks. 

Marine biofouling is an abundant conglomeration of marine organisms on immersed substrata 

and is one of the significant problems that subaquatic surfaces suffer from [1]. Just a few 

detrimental impacts that biofouling leads to are metal corrosion and decrease in efficiency of 

underwater constructions and equipment, e.g. ships and water cooling systems [1–3]. 

 

 

Figure 1: Variety of marine biofouling organisms [4–8]  

 

Study of adhesive material of one of these sessile marine biofoulers, a barnacle, is the 

main aim of this research work. Barnacles are one of the most frequently observed calcareous 

biofouling organisms that attach to submersed surfaces by secreting a special, still obscure in 

composition, adhesive material, usually named ‗cement‘ [9–11]. A number of scientific 

groups study this field intensively, trying to reveal the secrets of underwater adhesion and to 

find a solution for the economic and environmental problems caused by biofouling [11–13]. 

To prevent biofouling a detailed understanding of the barnacle adhesive cement, changes in 

its chemical composition and its interaction with different substrata will be very helpful. New 

knowledge about subaquatic adhesion mechanism will further help to develop new 

techniques to detach adult organisms from infected surfaces. 

Barnacles produce several types of cement, [12] but not all of them are to date well 

studied. In contrast to adult cement, a detailed understanding of the temporary adhesive  

(footprints), and adhesives involved in the early stages of settlement (cyprid cement) is still 

lacking due to small amount of material and complexity of the experiments needed to be 
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conducted. Thus, there are still numerous questions which have not been answered yet.  What 

is the difference between the temporary (footprint) and the permanent adhesives? Is the 

juvenile barnacle cement proteinaceous as the adult cement and if so, does it have the same 

type of protein with a similar secondary structure as the adult? Do different species have the 

same adhesive composition? How do the different chemical components distribute 

throughout the baseplate? Does the cement adhesive keep the same chemical composition 

throughout its life cycle, or does it change with time? What is the origin of the carotenoid 

signals? When do barnacles start to form their calcareous shells? 

 To answer these questions, this study focuses mainly on the determination of 

functional groups contained in juvenile barnacle cement and at the beginning of shell 

calcification, finding the origin of carotenoid signals in cement, and obtaining a elemental 

distribution map. Comparison between different barnacle species is important since not all 

barnacle species live in similar environmental conditions, which means that such 

environmental factors as temperature and salinity may cause differences in chemical 

composition and in the curing mechanisms of barnacle adhesives. The study of adhesives at 

the early life stages will show what changes, if any, occur in chemical composition and 

therefore may give a hint for developing antifouling techniques to prevent adhesive curing. 

To date, the majority of research on barnacles was conducted ex-situ, which means that 

some specific information about the cement chemical composition could be lost after the 

death of the organism, its drying or treatment as a part of sample preparation, e.g. removal of 

the calcarious baseplate or bacterial contamination. Though experimentally more demanding, 

in-situ studies are a sensible way out. Thus, the aim of this work is to study the chemical 

composition of the temporary adhesive (footprint), as well as the time depending chemical 

distribution within juvenile barnacle baseplates of different species (Balanus amphitrite (B. 

amphitrite) and Balanus improvisus (B. improvisus)) using in-situ microanalysis techniques 

such as Micro-Raman spectroscopy, IR spectroscopy, and X-ray microprobe fluorescence 

analysis. Auxiliary results provided in this study, such as calcification starting time point; in-

situ adhesive cement morphological information, including size and shape, at the early time 

points; and origin of the carotenoids found in the cement will help to add new pieces of 

information to the overall picture of barnacle cement enigma. 
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2. Theoretical background 

2.1. Biofouling 

Marine biofouling is an undesirable accumulation of organisms on immersed substrata 

(Figure 2), that is formed due to the special adherence to the surface. The highly adapted 

processes for temporary or permanent surface attachment that these organisms use [14] are 

usually referred to as ―bioadhesion‖. Biofouling occurs naturally in a wide range of surfaces, 

either natural or man-made [1], and plays a vital role in organisms‘ life cycles and survival 

[14, 15]. Viscous substances, secreted by marine biofoulers, enable permanent or temporary 

adhesion, the mechanisms of which are not yet entirely understood. It is believed though, that 

two main steps determine the interaction between the adhesive, produced by biofouling 

organisms, and the surface [16]. The first step is wetting of the surface by the adhesive, while 

its curing process is the second step. The actual area of contact between the adhesive material 

and the substrate is defined during the wetting process, which is determined by the interaction 

force between the adhesive and the substrate. In the meanwhile, the curing process influences 

mechanical properties and strength of adhesion and is important for the solidified layer 

microstructure [16]. 

 

 

Figure 2: Different species of marine biofouling organisms settled on immersed substrata 

[17, 18] 

 

Artificial objects that marine biofoulers choose are ship walls, underwater pipes, bulky 

subaquatic industrial equipment and water purifying or cooling systems at plants and power 

stations [16, 19]. Biofouling typically occurs in shallow coastal and tidal marine areas due to 

the comfortable conditions these waters provide for fouling invertebrates to grow [16, 20]. 

However, a great number of parameters may influence the degree of biofouling. Among all 

the factors temperature can be put into the first place. Even though extremely severe 
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biofouling majorly takes place in tropical areas, any warm waters and especially near-surface 

substrata, heated by the sun, are potential areas for fouling development. At present more 

than 4000 [21] biofouling species are known but their favorable conditions for settlement 

differ substantially.  

 

2.1.1. Classification of marine biofouling organisms 

Marine biofouling organisms can be divided into two main groups, micro-fouling and 

macro-fouling (Figure 3) [16]. Micro-fouling organisms include primarily bacterial and other 

microbial organisms which form biofilms on the submerged surfaces. Macro-fouling 

organisms such as, mussel, barnacle, sponge and tubeworm are more detrimental for offshore 

structures, ships, oceanographic instruments, etc. than micro-fouling due to its larger 

contribution to weight or hydrodynamic loading. This grouping includes abundant large 

plants and animals (100 µm to few centimeters), that may settle as independently or in large 

colonies. Macro-fouling organisms are generally classified into "hard" and "soft" fouling 

[16]. Calcareous shell-shaped hard skeleton is a distinguishing characteristic feature of hard 

fouling organisms and is designed to protect the organism's body from invasions or 

aggressive ambient media such as waves and water streams. The soft species such as sponges, 

anemones, bryozoans, contrariwise lack this kind of protection but have developed 

sophisticated protection mechanisms, for instance, toxicity. 

 

 

 

Figure 3: Classification of marine biofouling organisms. 
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2.1.2. Colonization process 

In general, biofouling process starts instantly after the surface is immersed in water, no 

matter whether it is marine or fresh. When a clean surface is submerged in water, it adsorbs a 

number of organic macro-molecules, such as proteins, humic acids and carbohydrates that are 

present with minerals in the ambient water in order to build the initial form of the biofilm 

which is known as a conditioning layer [22–24]. Colonization of the conditioned substrata, 

being a highly dynamic process, depends on the surface characteristics, availability of the 

colonizing stages, speed of organisms surface exploration and attachment, season and 

geography of the place, and bio-ecological factors like predation and competition [25].  

For quite a while it was reported that surface colonization occurs in a succession of steps, 

meaning that firstly the biofilm is formed on the substrata and within a week various fungi, 

protozoa and seaweed attach to it, which in several weeks is followed by settlement of larva 

of different invertebrate biofoulers, like barnacles. However, this is an oversimplification and 

a rather rough description model, since mobile spores of seaweeds and larvae of some 

bryozoans, hydroids and barnacles may settle in several minutes and in several hours, 

respectively, after immersion of the substrata. In comparison to linear succession model, the 

―dynamic‖ model gives a more balanced understanding of the surface colonization process, 

even though it is still misleading to assume that there is any direct relationship between the 

steeps following each other and that biofouling can easily be stopped by decreasing the extent 

or even completely eliminating one of the colonization stages. It has been observed in 

controlled laboratory experiments that attachment of larvae and spores can be affected by 

colonization of other organisms in positive, negative and neutral way [25]. 

 

2.1.3. Consequences of biofouling settlement 

To date the problem of biofouling has become a matter of human concern in waters with 

widely varying salinity, streams and state of pollution [20]. Some percent of these species 

particularly selects vessel hulls as their target colonization place. In this case organisms, 

appearing as biofoulers, must be able to adapt to altering ambient conditions [20]. This 

becomes possible for those species that secrete special adhesives, i.e. barnacles, diatoms, 

tubeworm, mussels, green and brown algae. Furthermore, this adhesive substance is able to 

cope with constant changes in water salinity, temperature and vorticity of water flows around 

the hull. Despite these harsh conditions, invertebrates fouling have become a significant 

problem, which leads to diminishing the efficiency of subaquatic acoustic systems, e.g. sonic 

sound devices, corrosion or even destruction of underwater constructions [26–28]. 

Especially for marine vessels, barnacles resemble a tremendous challenge for shipping and 

industry [14, 29, 30]. Generally biofoulers tend to form an extensive colony, tightly attaching 

one to another. The weight of biomass, inhabiting 100 cm
2 

of surfaces, cans increase to 0.7 kg 

in just five months after first settlement [19]. Moreover, accumulating organisms increase 

hull roughness and thus ship‘s frictional resistance, and reduce the power of water vortexes 

around the hull, thus helping new organisms to settle much easier with faster progression. 
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Consequential decrease in speed and maneuverability, e.g. loss of 86% efficiency at cruising 

speed to medium-sized naval combatant [31], may lead to increase of fuel consumption to 

40% [20, 32], thus causing overall voyage costs augmentation to 77% [20, 33] and increased 

greenhouse gas emissions [20, 30]. Additionally, long-distance voyaging ships may cause 

occupation of different marine communities by non-native invaders, thus greatly affecting 

local ecology [20, 34, 35]. 

Due to the detrimental impacts biofouler colonization has to various aquatic structures, 

annually enormous efforts are put into development of innovative, environmentally benign 

antifouling solutions [36]. Each year world marine husbandry spends overall billions of 

dollars for various antifouling procedures, including preventive surface treatments, repair, 

and cleaning [14]. 

 

2.1.4. Antifouling approaches 

The competition between ship's biofouling invaders and humans lasts since 2000 years. 

Since the beginning of navigation, different methods to avoid the undesirable effects of 

biofouling are being sought and specific antifouling approaches has been developed in 

science. Two main approaches, marked out through the centuries, are removal of adult 

organisms after substrata are abundantly fouled and preventing or diminishing the settlement 

from the beginning.  

First approach turns out to be rather costly but is sometimes the only possible solution. 

Calcareous foulers may be dislodged by applying immense mechanical force, i.e. scraped off 

with a excavator bucket [20]. Another way of biofouling removal is application of different 

chemicals, most of which are toxic, in order to dissolve the calcareous shells and proteinous 

remains of organisms. Additionally, high voltages, UV, ultrasonication and laser treatment 

have been applied [20]. All these antifouling technologies require a significant increase in 

frequency of dry docking operations, which in turn includes time loss, waste of resources, 

and toxic wastes that has to be individually disposed. 

The second approach is prevention of biofouling from the beginning and development of 

techniques that can restrain its rapid extension. Generally modern ways to maintain this are 

special antifouling coatings, emitting special chemical substance that deter attachment or 

secure settlement and specific surface morphology, uncomfortable for marine organisms to 

populate. Typically water flow around moving ship hulls is not strong enough to remove 

biofoulers that settle on biocidal antifouling paints [37]. 

In the middle of 1800s an idea of dispersing a toxicant in a polymeric carrier was 

employed in the development of paints [3]. Among the toxic antifouling paints modernly 

used are conventional paints based on paints pigmented with copper, usually cuprous oxide 

(Cu2O), or soluble matrix paints; ablative paints, that are modern versions of conventional 

paints, and self-polishing systems, that clean themselves from organism by emission of 

toxicant that kills the settled organisms and surface becomes polished. The highly toxic 

component of self-polishing copolymer paints, introduced in 1974, tributyltin (TBT), turned 

out to cause diseases and genetic mutations in non-target organisms, and therefore is 
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currently prohibited worldwide and awoke special regulations to be applied to antifouling 

biocides. Just a few of biocide paints are contemporary in use, i.e. Sea-Nine 211 (an 

isothiazolone), zinc pyrithione (an fungicide also used in anti-dandruff shampoos) and Irgarol 

1051 (a triazine herbicide) [16].As an alternative to biocide-containing paints, silicone release 

antifouling coatings have been developed. They minimize the adhesion strength of attached 

organisms, but are expensive and prone to tearing, and thus are employed only in specific 

applications, for instance, in locations where toxic paints cannot be used or on high speed 

vessels where release of biofouling is effective [16]. Additionally, biofouling organisms give 

their preference to ship hulls painted in dark or calm colors [20], whereas bright, toxic-

colored surfaces are inhabited less frequently, therefore even this easy type of antifouling 

procedures can be effective. Furthermore, there are some works that suggest to stop fouling 

from the early life stages of biofoulers, for instance [38], that introduce Alcalase that inhibits 

barnacle cyprid settlement in a non-toxic way. Although all these approaches are quite 

different, the study of marine biofouling organisms is required for their optimization. A close 

collaboration of materials scientists, coatings specialists, chemists and biologists may result 

in development of innovative solutions or improving existing technologies. The knowledge 

about the settlement behavior of biofouling organisms is important for implementation of 

new antifouling ideas, but the mechanisms of underwater attachment remain poorly 

understood [36]. 

 

2.1.5. Dispersal stage 

To solve the biofouling problem requires control of the dispersal life cycle stage. 

Biological dispersal is a dissemination process of various life forms, such as animals, plants, 

fungi, bacteria, etc., intended to find a new area for living and reproduction.  The dispersal 

process of an organism can be divided into three main phases: larva release, transfer and 

settlement. During each of these phases different fitness costs and benefits are expected. 

Dispersal stage can be truly treated as the key life stage of sessile organisms, as molds 

conditions of organisms and the subsequent development stages by specifying its place of 

settlement, or to be precise, a place for all its future life. The abundance of adult biofouling 

species is strongly affected by the percentage of the successful larva settlement, which in turn 

is a direct consequence of successful larvae dispersal [39]. According to McQuaid studies, 

dispersal distance and successfulness of settlement will greatly influence not only a life cycle 

of an individual organism, but a whole population in general: neighborhood size, area where 

breeding geographically occurs, and ecological effects, e.g. genetic diversity [39]. Even a 

slight swimming ability of some animal biofouling species may have a dramatic influence on 

dispersal. Dispersal is hard to be assessed in a direct way that is why different modeling 

techniques and indirect estimation methods are generally used. In general dispersal can be 

discriminated into localized (for algae spore lings the distances may reach hundred meters) 

and long-distance types (animal larvae travelling distances may vary from tens of meters to 

thousands of kilometers) [39]. In order to complete this important life history process 

invertebrate larvae and algae spores must rapidly find an appropriate place for attachment and 
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safely bind to the surface. Upon the average, the duration of this process last for seconds, 

within which these organisms adhere to Subaquatic substrates under a wide range of relevant 

environmental parameters, e.g. water temperature, salinity and vorticity. Adhesion may 

become permanent from the beginning, but some species take some time to explore the 

surface to find the best settlement area and in this case the first attachment is not final and 

several places can be tested until the best one is found.  Initial, first-contact adhesion is 

known as ‗first-kiss‘ and is typical for different single- and multi-cellular fouling organisms, 

e.g. barnacles and tubeworms [16]. Contemporary marine fouling studies aim to conceive the 

cellular and molecular processes occurring within the materials involved. Dispersal stage is 

the perfect moment to prevent the fouling process from the start and therefore avoid all the 

undesirable impacts biofouling may cause. Therefore, further investigation of this early life 

stage of fouling organisms is highly desired. 

 

2.2. Barnacle 

The taxonomy of the barnacle family puts them in the phylum Arthropoda ("joint footed"), 

the class Crustacea ("the shelled ones") and the order Cirripedia ("curl-footed"), and 

barnacles are related to crabs and lobsters [40]. These cirripedia, whose around 

1,220 species are known to date, are the most frequently observed biofouling organisms 

(Figure 4) [41].  Existing since Jurassic times, barnacles are thought to be one of the oldest 

surviving creatures on the planet, and their ancestry can be traced back nearly 500 million 

years [42]. Although there will have been some adaptations, the barnacle is thought to have 

changed very little over that time [43]. 

 

http://en.wikipedia.org/wiki/Crab
http://en.wikipedia.org/wiki/Lobster
http://en.wikipedia.org/wiki/Species
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Figure 4: Consequences of barnacle invasion on boat hulls and pier structures. Images have 

been taken in Dekheila port, Alexandria, Egypt. 

 

There are two general kinds of barnacles: stalked, that attaches to surface with a stipe, and 

the non-stalked barnacle (acorn, or sessile barnacle), growing their shells directly onto the 

substrate [49]. The majority of barnacles is hermaphroditic; however, most barnacles should 

be fecundated by a neighboring individual, that is why they tend to form extensive colonies. 

The average life span of most barnacles is from three to five years, sometimes up to ten, but 

some of the larger species are known to be much older. The most common barnacle belongs 

to the order Balanus. 

Barnacles exclusively occur in the marine environment and prefer to inhabit shallow 

waters, three fourth of all species favor depth of less than 100 m, the rest are comfortable in 

the intertidal zone, although sometimes these marine biofoulers may settle up to 600 m deep 

[44]. Breaking waves may sometimes uncover the coastal line even for a significant period of 

time, but barnacles are well protected from drying out and water loss – they are capable to 

tightly close their shell, so the necessary amount of water is kept inside until the new tide 

comes [44]. 

Barnacles are most often seen as roughly circular sessile invertebrates, and are 

permanently attached to the substrate they live on. In their larval form they are free-floating, 

but eventually they attach themselves to any nearby rock, shell, or other object, even turtles 

or whales (Figure 5), and stay there for the rest of their lives [16]. Barnacles suffer from 

numerous predators, particularly at the larvae stage, when they float in the water searching 

for the most benign attachment site. At the adulthood, when their hard calcite shells are 

formed, they are well protected from the majority of predators, although whelks are capable 
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to break the shell. Some barnacle species are edible for humans, for instance, goose barnacles 

that are eaten in Spain and Portugal and Balanus nubilus, found in Puget Sound, which can 

grow as big as a foot in diameter [45]. 

 

 

Figure 5: Barnacles settled on top and bottom sides of a turtle. Images have been taken in 

Dekheila port, Alexandria, Egypt. 

 

The calcareous carapace of a barnacle consists of several plates, usually six: lateral and 

carino-lateral, two of each kind, a rostrum and a carina [46], which are allocated in the form 

of a ring and can be firmly intercoalesced or held together by muscles or other means. The 

inner surface of carapace is dissolved with a special chemical secreted when the shell 

becomes too tight for the growing barnacle, and new calcareous layer is simultaneously 

augmented from the outside. An operculum, possibly recessed into the carapace, covers 

barnacle‘s body from the top, which is oriented upside down, with limbs neighbouring the 

opening in the shell. Barnacle filter out food from the ambient water and move it closer to the 

mouth with help of ―cirri‖– six pairs of long (Figure 6), feathery thoracic limbs, being very 

sensitive, since barnacles‘ main sense is touch. It is hard to distinguish between different 

parts of barnacle‘s body, but generally it is subdivided into two major parts - a head, with 

several appendages, one of which is a vestigial pair of antennae attached to the cement gland 

and thorax, sometimes with the negligible abdomen present. Barnacles possess a minimal 
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cardio-vascular system, with a cavity close to the gullet, fulfilling the functions of heart. The 

oxygen is absorbed by barnacles from water through cirris and inner membrane of the shell. 

Maxillary glands serve as execratory organs. Barnacle may distinguish the difference 

between darkness and light with help of a single eye, originating from primary one of 

naupilius [47, 48]. 

 

 

Figure 6: Anatomy of an adult barnacle [49] 

 

Barnacles play an important role in structuring marine communities, and therefore are a 

matter of interest to community and behavioral ecologists [50, 51]. The key question these 

specialists are trying to solve is the chemistry that makes barnacles form gregarious 

settlement sites [10]. 

 

2.2.1. Barnacle life cycle 

Barnacles, being among the most widespread intertidal organisms, undergo several 

transformations before they turn into harmful biofoulers. In general, the barnacle life cycle 

can be divided into three main phases: planktonic (pelagic), plankto-benthic and benthic [10, 

46, 52]. The typical life-cycle of a barnacle is depicted in Figure 7, where the aforementioned 

major life stages are marked with capital letters A, B and C and sub-stages are references 

throughout the chapter. Successful conversion from a freely swimming naupli (A) into sessile 
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juveniles (C1) is crucial not only for organisms development, but is also important for the 

overall colony development and species spreading [12]. 

 

 
Figure 7: Main stages of the barnacle life cycle: planktotrophic nauplius (A), with the main 

function to store energy for the next phase; lecithotrophic benthic phase (B), exploration 

process (B1), permanent settlement (B2), and benthic phase (C): metamorphosis (C1), juvenile 

barnacle (C2), adult (C3). 

 

 

The first phase of the barnacle life cycle includes six pelagic nauplius stages (A), and 

plankton is the major food for this organism during the last five of these stages [12]. The 

main aim of this period in barnacle life is to devour/consume as much food as it possibly can 

in order to store enough energy for the future metamorphosis process (C1). 

After six naupilar substages [53], barnacle nauplii transform into a cyprids (B). Under 

laboratory conditions at 28°C it takes 5 days for B. amphitrite to complete all the stages from 

nauplius to the cyprid [12, 54]. Within cyprid phase the organism explores the surface and 

selects the most suitable area for settlement, and afterwards is competent to attach on a 

suitable substratum and undergo metamorphosis into the sessile juvenile stage [12, 53, 55, 

56]. This attachment step is considered to be one of the most important in barnacle‘s life 

cycle. Instant settlement immediately after moult is possible for cyprids due to their peculiar 

adaptations, i.e. compound eyes that are developed in the nauplius stage VI [12]. 

Not all surfaces are, though, suitable for permanent barnacle settlement, and cyprids have 

a rather critical approach for making the final decision in order to ensure their survival and 

reproduction [12]. The substratum must have a specific microtopography, wettability, local 

hydrodynamics, surface colour, and presence of any other properties [16, 20, 57–61]. 

Moreover, recent research shows that there is a specific surface chemistry involved in 

barnacle choice of surface, particularly, cyprids of B. amphitrite prefer hydrophobic surfaces 

[56]. Furthermore, there are some additional factors that can influence colonization of the 



2. Theoretical background  
 

13 
 

chosen surface. For instance, low concentration of external Ca
2+ 

can inhibit B. amphitrite 

larval settlement [52, 61, 62]. In order to ensure a successful metamorphosis into a sessile 

juvenile barnacle, cyprids must settle within days to weeks depending on culture conditions 

[12]. 

In order to find the most appropriate place for settlement, the cypris larvae initiate 

exploring process. At first cyprids descend from the water column, by navigating with 

paddle-like appendiges to potential settlement sites and for careful exploration [63, 64], but 

can return to the water column if substrata are found to be unsatisfactory [12]. Cyprid may 

develop maximum speed up to 60–95 body lengths per second, depending on species, and 

thorapod beat frequencies are approximately 15Hz for B. amphitrite [64–67]. If the surface is 

considered suitable, cyprid attaches to it using temporary adhesive, secreted from two 

specialized antennules, present already in nauplius, but transformed by cyprid stage to bear 

sensory structures located in an adhesive disc [12, 68, 69]. This initial, first contact 

attachment to substratum is known as ―first kiss‖ [16]. Usually the place of initial attachment 

does not satisfy the cyprids completely and it needs to inspect the vicinity of the first 

attachment area by walking on their antennules as on stilts [63] (B1) and thereby terminating 

the exploration process. Thus, cyprids take some additional effort to wander across the 

surface in a bi-pedal fashion at a maximum rate of two body lengths per second before they 

adhere permanently [12, 56, 69]. As an organism walks on the surface it leaves blobs of 

temporary adhesive, termed ―footprints‖ (B1), that have to date an unknown proteinaceous 

composition. Barnacles tend to form gregarious colonies, expansion of which is reinforced by 

settlement-inducing protein complex (SIPC), a large glycoprotein acting as a pheromone 

attracting new cyprids to inhabit the neighborhood [12, 70–72]. Both SIPC and footprint 

protein are possibly related, since footprints exhibit some pheromonal activity and they both 

are likely to be epidermal in origin [12, 50, 72, 73]. 

When the most appropriate settlement site is found, cyprid secures itself in a vertical 

position (B2) and starts the process of permanent adhesion via secretion of permanent cement. 

This permanent adhesive is stored in secretory granules in a pair of specialized glands within 

the body of the cyprid [38]. Antennules, excited by neurotransmitter simulation [74], exude 

two cement components via exocytosis [69]. These components embed cyprid antennules into 

a globular disc less than 100 μm in diameter [12] by curing after being mixed together, and, 

therefore, adhere cyprid permanently to the selected substratum [63]. For B. amphitrite total 

curing time is estimated to be approximately 15 hours for the entire permanent cement 

plaque, and two hours for just the cement surface [12, 75]. 

After permanent settlement is successfully accomplished, cyprids start metamorphosis 

(C1) into juvenile barnacles (C2) that lasts around 12 hours [12]. During this process several 

major morphological changes take place: cyprid carapace is decorticated and a new chitinous 

layer is formed, compound eyes and setae degenerate, naupilar eye migrates and feeding cirri 

are developed [76]. 

Juvenile barnacles (C2) grow secreting the permanent cement to enhance anchoring on the 

substratum and develop into adults with repetitive moulting, calcification of the outer shell 

and baseplate, and cementing [63,77]. Within a few months barnacles will be sexually mature 
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to bear eggs within the mantle cavity, that will eventually hatch and new nauplii will continue 

the life cycle in the water column [12].  

Adult cement is secreted by adult cement glands 40 days after the metamorphosis [63, 78]. 

As adult barnacle grow, calcified material is deposited on the bottom of a set of 

interconnected side (parietal) plates, so the size of the organisms increases radially, 

expanding from the periphery [14] and thus, creating a series of concentric rings, visible 

underneath the barnacle and evolving from sequential growth involving molt cycles [13]. The 

enlarged marginal area in the calcareous base should be further fixed to the substratum, so it 

is assumed that the timing of cement secretion is tuned to the molting cycle [38, 63]. The 

rings are formed by extension of the cuticular membrane [89] followed by calcification; the 

adhesive is secreted and cured in place under the protection of the barnacle shell and 

continuous secretion throughout the life increases adhesive strength to the surface to reinsure 

organisms survival and successful continuation of the life cycle [13]. 

Thus, barnacles pass through three attachment processes in its life cycle: temporary 

attachment during the cyprid behavior, attachment with cyprid cement for settlement, and 

permanent fixation by adult cement [63, 77]. 

To date compositions of both, cyprid temporary and permanent adhesives, are high interest 

and investigation of them may allow to find innovative solutions for antifouling techniques, 

as well as integration of new biomimetic materials in human everyday life, i.e. dental service. 

 

2.2.2. B. amphitrite vs B. improvisus 

In this chapter the two barnacle species, B. amphitrite and B. improvisus, chosen in the 

current research work for cement properties comparison, are shortly described. Both species 

were first identified and characterized by Darwin in the middle of the 19
th

 century [80, 81]. 

Balanus amphitrite, shown in Figure 8 (a), is a striped worldwide spread fouling barnacle, 

found in harbours and favouring the hulls of ships, rocks, pilings, seawalls, the shells of 

living oysters, mussels and crabs and can be found only in salty water. This species has a 

calcareous shell in conical shapes which consist of six red-brown rough integrated plates.  

The adult of this species can grow with a maximum diameter of about 20 mm. B. amphitrite 

may tolerate water temperature down to 12°C, but temperatures of at least 15–18°C and 

salinities of at least 10–15 ppt are required for it to breed [82]. In the Netherlands and Britain, 

barnacles settle in waters heated by the flow from sewers of power plants [82]. 

B. improvisus, shown in Figure 8 (b), is a sessile crustacean with a smooth white 

calcareous shell consisting of six integrated plates with diamond-shaped slightly toothed 

opening [81]. Adults of these species can grow up to 17 mm in diameter and 10 mm in 

height. It inhabits marine and brackish environments and does not reproduce in fresh water. 

The temperature range benign for B. improvisus is 0–30 °C, but optimum conditions for free 

swimming larvae are ~14°C. These species inhabit waters with a wide salinity range but 

major larval settlement is observed at medium salinities of 3–10 ppt. Large colonies of  B. 

improvisus can be found attached to surfaces at six-meter depths, but these animals also 

http://www.norsas.eu/species/balanus-amphitrite-amphitrite#footnote1_yaa0hja
http://www.norsas.eu/species/balanus-amphitrite-amphitrite#footnote1_yaa0hja
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prefer waters up to the splash zone, although any long-run deaquation will be lethal to them 

[81]. 

 

 

Figure 8: a) Balanus amphitrite, courtesy of Andrew N. Cohen, Center for Research on 

Aquatic Bioinvasions.  [6] and b) Balanus improvisus, [83]. 

 

Native range of B. improvisus is Atlantic Ocean, most likely from American coast, but 

currently they have invaded Atlantic coast of Europe, Baltic, Caspian, Azov and Black Seas, 

Hawaii, African coast, Japan, Australian East Coast, New Zealand, Pacific coast of USA, 

Mexico, Columbia, Peru [84]. The native range of B. amphitrite is uncertain, but may be 

located in the Indian Ocean in the southwestern Pacific [85]. It has now spread to most of the 

warm and temperate seas of the world [86]. 

Both species are hermaphrodites, and reproductive individuals may simultaneously 

produce male and female gametes. However, the fertilizing generally occurs throughout 

crossing with neighbouring individuals that happen through sperm depositing into the mantle 

cavities of neighbouring barnacles via a long intermittent tube and following internal 

fecundation of eggs. Nevertheless, self-fertilization is also reported to occur [86–89]. 

Spawning for both species seasonality varies by location, averaging to two spawns in 

temporal areas, whereas barnacles living in tropical waters may spawn throughout the year, 

releasing 1,000–10,000 eggs/brood during maximum 24 broods/year [89]. 

The comparative study of both species (B. amphitrite and B. improvisus) may help to 

reveal any relationship between the environmental factors, such as temperature and salinity, 

and difference in chemical composition and adhesives‘ curing mechanisms of different 

barnacle species, if any exists. Moreover, this study may provide further information about 

applicability of the same antifouling techniques for different species. 

 

2.3. Barnacle adhesives 

The sophisticated attachment mechanism of Barnacle cirripedia includes several types of 

adhesives, that are represented in Figure 9. The first classification distinguishes temporary 

adhesive, that assumes reversible attachment, [16, 90] and permanent adhesive, designed for 

secure perpetual settlement [77]. Temporary adhesive, known as footprints and used by 

http://www.norsas.eu/species/balanus-amphitrite-amphitrite#footnote1_fgofj1o
http://www.norsas.eu/species/balanus-amphitrite-amphitrite#footnote2_e41nzco
http://www.norsas.eu/species/balanus-amphitrite-amphitrite#footnote8_pxff5op
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cyprids during surface exploration, will be discussed in subsection 2.3.1. The notion of 

permanent adhesive includes cyprid cement, that is secreted during the first 5 weeks of 

barnacle life and is intended to safely anchor the organism on chosen surfaces and which is 

exuded [78], and adult cement, that corresponds to the whole bulk of material, coupling 

invertebrate to substrata, and new portions that are secreted during the growth of the 

organism [13]. Permanent cement in turn can be divided into primary and secondary 

adhesive. Secondary cement is secreted out when barnacle is dislodged from the surface, and 

the layer formed is much thicker than of primary cement. Despite the structural differences 

secondary cement allows repeated attachment [12, 63, 91]. Both cyprid and adult cements are 

reviewed in subchapters 1.3.2 and 1.3.3, respectively. 

 

 
Figure 9: Classification of barnacle adhesives. 

  

Barnacle cement study is a hard nut to crack, due to low amount of the material available 

at the earlier time points and underwater conditions that complex the in-situ analysis. 

However, there are a number of techniques applicable for barnacle cement physical, 

mechanical and chemical properties study. In this chapter major techniques will be mentioned 

in respect to their application. 

 

2.3.1. Temporary adhesive "Footprint" 

To date the majority of barnacle fouling studies are devoted to the adult barnacles, leaving 

out the exploration stage of cypris larva, that is an indisputable neglect, because this phase of 

Lifecycle can be truly treated as a key one. As described in subsection 2.2.1, after ―first-kiss‖ 

affiliation to the supposedly benign neighborhood, cypris larva initiates an exploratory 

process, by walking in a stilt-like fashion along the surface [38]. While the organism 

examines the settlement suitability of a yet foreign substrata, it leaves behind blobs of a 
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proteinaceous secretion, known as ―footprints‖, that can be detected by staining with the 

protein dye reagent Coomassie Brilliant Blue (CBB) [68, 90], particularly on a high protein-

binding surface such as nitrocellulose membrane [50, 71]. Function and chemical content as 

well as physical properties of the footprint material is yet poorly understood due to the small 

amount of substance available for analysis. This substance is thought to function as 

temporary cement, granting cyprid the ability to adhere temporarily while ‗walking‘ over the 

substratum, and secondary cue in entry-level settlement interactions [50]. In this chapter the 

major results of recent studies are reviewed.  

The first attempts to interpret the mechanism of reversible, or temporary, attachment of 

cyprids started to appear in 1980s [12]. Due to the high inherent viscosity, the proteinaceous 

cyprids' footprint material has always been thought to maintain the adhesion between 

substrata and attachment disc, and thus considered as a ‗wet‘ adhesive [12]. It is yet 

uncertain, if the adherence to surfaces is maintained only due to high viscosity of cement or 

barnacle can itself regulate and influence the adhesion [92]. Previously there existed a 

hypothesis that attachment may occur due to suction, created by encircling cuticular velum 

[93], but it was questioned by the fact that cyprids may explore even those areas where their 

antennular discs are not wholly connected to the surface, i.e. fine surface edges [78]; and 

finally refuted by Barnes 1970 [94], and Lagersson 2002 [95], who proved that low pressure 

underneath the adhesive disc cannot be created by the existing musculature of antennule. 

Later it has also been speculated [6] that the temporary adhesive may have several 

applications, e.g. it may act as a release agent or a substitute for water, favouring van der 

Waals interactions between the surface and the cuticular villi, due to a low dielectric constant 

environment created [38]. Phang 2008 [96], suggested that cuticular villi of the barnacle's 

attachment disc may adhere alike spatulae of geckos or pulvilli of flies [97], through 

increasing adhesion by contact cleaving [12]. Additionally, work [96] states the hypothesis 

that there might be other processes involved in viscosity of footprint, apart from the 

attachment tenacity of cyprids [12]. Thus, latest studies reveal that barnacle footprint cement 

is not just an adhesive, acting by wetting the substrata, but it can be a part of a complex 

adhesive system, that might consist of muscular behavior of the organism, chemical 

interactions between cement and substrata and other yet unknown factors [36]. 

Proteinaceous footprint cement is thought to be exuded on the coupled attachment discs of 

the ambulatory antennules by modifying tegumental glands, located in one of the segments of 

the antennules [50, 69, 98]. Two interfaces are characteristic to the deposited cyprid 

footprints: the protein-substratum and the protein-seawater interfaces; the latter of which is in 

contact with the cyprid antennular disc during adhesion [12, 36]. In the previous works [10, 

38, 96, 99] cyprid footprints are referred to as a characteristic halo or oval doughnut shaped 

deposit, with a central circular area of approximately 10 μm in diameter, containing slight 

glycoprotein secretion. The sizes of individual footprints are measured to be 34.8±6.5 μm 

[50, 68, 71]. Examination of cyprid wide exploratory behaviour [95, 100] showed that 

average step between footprints equals 361.4±52.5μm [50, 68]. The tenacity with which 

cyprids attach to the surface are estimated around 0.026 MPa [12] from theoretical 

calculations, while the empirically obtained values are around 0.068–0.076 MPa on glass for 
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Semibalanus balanoides [72] Even though researchers managed to acquire values for 

temporary adhesion strength, the mechanism of tenacity stays unclear [12]. 

It is believed that footprints may serve as a pheromone, because gregarious settlement 

occurs even for surfaces that have been just explored by cyprids and do not have any adult 

barnacles attached [68, 72]. As mentioned in subsection 1.2.2, presence of footprints induces 

the settlement of conspecific cyprids [50, 68, 72], for instance footprints of Semibalanus 

balanoides may continue to attract new neighbors for over three weeks of exposure to 

running natural seawater [50, 72]. 

To date it is believed [50, 71, 72, 101] that the inducing protein complex (SIPC) is 

somehow related to the footprint. Firstly similarities between footprints and SIPC were 

noticed by Yule and Walker 1985 [72], who reported that they both are proteinaceous and are 

related to cuticle. Work of Matsumura 1998 [71], proved that they are related 

immunologically and suggested SIPC might be a component of the footprint or equivalent to 

it. Studies of Dreanno 2006 [101, 118], and Matsumura 1998 [71], showed that for B. 

amphitrite, SIPC is expressed in the larval stage, as well as shell and soft tissues of an adult 

barnacle - cirri, egg mass, and  penis, all of which are parts of cuticle[101]. Additionally, 

glycoprotein complexes, i.e. α2-macroglobulin-like protein, are found in both SPIC and 

footprints. Studies have shown that footprint proteins left on the surface after it has been 

explored by cyprids are contained SIPC [71]. Research of Dreanno 2006 [50], suggested that 

both SIPC and footprints might have epidermal origin, and according to Dreanno 2006 [50], 

and Nott and Foster 1969 [36], are a secretion of exocrine and tegumentary glands, 

respectively. Thus, it is currently believed that SIPC is a large cuticle glycoprotein contact 

pheromone [101–103], and is a part of footprint material or very similar to it [71]. Since SIPC 

is expressed in an entire cuticle [101], it is possible that this substance may also serve as a 

waterborne cue if released into the ambient environment [101]. 

Cyprid behaviour on different chemically functionalized surfaces are of high interest, and 

it is expected that the physiochemical properties of the footprint adhesive could be conceived 

through investigation of the bioadhesive morphology of cyprids [56]. There has been several 

research works conducted to reveal to which surface type, hydrophobic or hydrophilic, 

footprint has a greater affinity [97], and both works state that footprints show a 

morphological difference depending on what kind of surface they are deposited on. The work 

of Phang 2009 [97], declares that if secreted on hydrophobic surfaces (CH3-glass) footprints 

are ―larger in size and porous, with thick microsized fibres spreading across the surface‖. 

Structural investigation of temporary adhesive on –NH2-glass [95, 97] showed that footprints 

are still porous, but are much more restricted/bound and highly condensed with proteinaceous 

fibers at various length scales from nano- up to a few micrometers, containing isolated chains 

and bundles of protein aggregates in their network [56]. 

Despite a number of works on footprints overviewed in this chapter, it is still under the 

question if the footprint material is actually an adhesive or not. Unfortunately, barnacle 

footprints, e.g. B. amphitrite [50] are rarely observed due to their tiny dimensions, 

translucency and sparse distribution. Even though these properties of footprints hinder to use 

them as a realistic analytical sample, but currently they can be stained and examined with the 

help of AFM [38, 95] However, footprint adhesive material is a fruitful material for study, for 
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the reason that if the chemical composition of footprints is understood, the optimal solution to 

prevent fouling from the beginning might be found. 

 

2.3.2 Cyprid cement 

Alike temporary adhesive, described in section 2.3.1, that is not extensively described in 

literature, permanent adhesion of cyprids did not receive proper attention of researches due to 

the difficulty of its investigation [12]. The first study of cyprid barnacle cement, introduced 

by Walker in 1971 [104], opened the intricate study of young barnacle permanent adhesive. 

To date, more than 40 years later, total number of research articles about cyprid cement, 

studying its composition[10, 104], delivery [74, 105] and curing [12, 106], amounts to just 

6pieces, latest published in 2009 by Schmidt [10].  

Cyprid cement is a term usually referred to cementing exudate, secreted by cyprids at the 

antennule region during attachment and during the first 5 weeks of the organism‘s life until it 

becomes an adult [78]. As described in subsection 2.2.1, after the most suitable place for 

settlement has been found, cyprid secrets out of cement glands localized inside the body a 

liquid permanent adhesive, that is stored in secretory granules and is conducted through 

antennular cement ducts under nervous control [69, 104] and deposited on the surface in a 

globular disc around 100 µm (B. amphitrite) in diameter, that safely attaches cyprid to the 

substrata. 

There has been stated a hypothesis that cyprid and adult cement are related, but there is 

still no solid evidence to prove it.  Currently it is known that cyprid cement gland cells 

migrate and participle in the development of adult cement glands [104], but no adult cement 

genes were found in cyprids [107]. Work of Aldred 2008 shows that morphology of the 

cyprid cement studied with AFM differs dramatically from the adult adhesive, as examined in 

[108–110]. Protein chains of cyprid barnacle cement has been analyzed using the worm-like-

chain model [13], but no novel information has been obtained and the protein structure of 

cyprid cement stays unrevealed. It is likely that adult and cyprid cement are not related 

according to molecular and morphological studies, described in [10, 12, 107–111]. 

Even though the exact composition of cyprid cement is still unknown, it is believed that it 

contains proteinaceous components and might be a highly tenacious heterogeneous 

glycoprotein material [10, 14, 38, 77, 104]. This fact is supported by presence of spatial 

distribution of the CH stretching (str.) bands in in-situ confocal Raman study of the juvenile 

barnacle cement confirming that cyprid cement has an organic matrix [10]. Furthermore, it is 

believed that proteins contained in this adhesive are initially water soluble, but cure 

underwater [69]. According to Phang 2006 [106], the cyprid cement of B. amphitrite cures 

within hours [75], or more precisely, within 70–120 minutes [38] after it has been secreted on 

the surface, which possibly can occur via quinine-tanning [10, 104], which is supported by 

the presence of diphenols and the enzyme polyphenoloxidase in the cement secreting 

apparatus. 

The chemical composition of cyprid barnacle cement of B. amphitrite was examined in-

situ with use of scanning confocal Raman microscopy [10]. The results of this study have 
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shown higher concentration of –OH groups present in the cement which supports an idea that 

water may influence the curing of the cyprid adhesive; that cyprid barnacle cement truly has 

an organic matrix what is proved by spatial distribution of C–H str. bands; but low signal for 

amide I band, which is anticipated to be contained in proteinaceous cement, but it is believed 

that a more careful experiment will reveal its spectra. Furthermore, according to the results of 

this Raman research, carotenoid signal is localized in the region where barnacle cement is 

expected, i.g. areas where cyprid cuticle contacts the surface, and carotenoids are mainly 

distributed in the outer boundary of the antennular discs and spreads to the sides from these 

organs [10]. In addition Martin Schmidt [10] suggested that the presence of highly intense 

carotenoid bands could be attributed to: a) the disc‘s cuticular villi and the vellum around the 

disc, or b) cyprids footprint adhesive blobs left behind after surface exploration. Furthermore, 

the structure of barnacles bodies have been reported to contain carotenoids. For example, the 

study of muscle fibers of the giant barnacle using Raman and resonance-enhanced Raman 

spectroscopic techniques has revealed two main bands of β–carotene at 1158 and 1520 cm
-1

 

[112]. Carotenoids are in general known to play a role in antioxidation [113] and membrane 

reinforcement, e.g. cuticle [114]. In the current study, heightened attention to the presence of 

carotenoid in the material has been paid. 

Additionally, some cyprid cement proteins were identified, for instance calmoduline (B. 

amphitrite), identical to one found in sea urchin, anemone, slug and copepod, that is 

suggested to be related to cement protein secretion [115]. 

Study of cyprid barnacle cement may elucidate the adhesion mechanism of barnacles, 

knowledge about its chemical composition may help in development of new antifouling 

materials and techniques. 

 

2.3.3. Adult barnacle cement 

In this subsection a short overview of the major up-to-date knowledge about one of the 

most lasting and a tenacious adhesive in the subaquatic environment [116], adult barnacle 

cement, is given. It is believed that permanent adult barnacle cement is started to be secreted 

by adult cement glands approximately 40 days after permanent attachment [78], although 

there are suggestions that it is obtained from the organism‘s circulatory system, since a 

number of blood proteins and cells was found in unpolymerized cement [9]. Burden et al 

2012 [13], suggested that barnacle cement is exuded by at least two different secretions 

known as first barnacle cement secretion (BCS1) and second autofluorescent fluid (BCS2): 

BCS1 is released continuously during an animal‘s life, while the BCS2 is secreted only 

periodically. 

As described in section 2.3, adult barnacle cement can be subdivided into two types – 

primary and secondary cement, based on differences in formation mechanism [91]. Primary 

adult barnacle cement is the material that occupies the place between substratum and 

baseplate, and its detailed study is a hard task, since this layer is normally not thicker than 5 

µm [91]. On the contrary secondary cement samples can be collected much easier [117], 

since secondary cement is ascribed as hardened layer of white non-transparent material [117], 
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secreted after barnacle is detached from the surface. Delivery of primary adult adhesive is 

maintained through a network of ducts and capillaries, that could also provide extra adhesive 

material to repair the existing level by filling the gaps, or to conduct the new adhesive for 

reattachment after barnacle‘s dislodgement [13]. Both being proteinaceous in origin [118, 

119], these cements are similar in amino acid composition [120] as well as peptide maps 

[119]. 

 

2.3.3.1. Morphological structure 

In natural environment the thickness of dried layer of B. amphitrite primary cement is 

normally around 600 nm, but underneath a living organism it may reach up to several 

micrometers. In work of Sangeetha 2010 [28], it is reported that the overall structure of the 

primary barnacle cement layer is formed as shown in Figure 10. Thus, the layer consists of 

three parts: two smooth highly dense interface layers at baseplate-adhesive and adhesive-

substratum boundary and the space between them is filled with mesh-like pattern of cement. 

It is believed that the dense layer neighbouring the substratum plays the role of etchant for 

metal surfaces and may act as a bacterial shield for the mesh-like layer [28].Work of 

Barlowet al 2010 [14], proved previous results of Wiegemann 2003 [121], that nanoscale 

morphology of primary barnacle cement is represented by fibrillar structures, what is also 

supported by Sangeetha [28]. 

 

 
 

 

 

 

However, the thickness and morphology of barnacle adhesive layer differ dramatically 

depending on the nature of the substrata. On antifouling surfaces the layer is most likely to be 

thick and consist of non-transparent gummy material [14, 112–124]. According to Sangeetha 

2011 [125], only 3mm of fibrous adhesive separate barnacle from the metallic substrata, 

whereas in order to attach to Poly(methyl methacrylate) (PMMA) surface 30 mm of porous 

sponge-like adhesive are needed. The explicit work of Berglin 2003 [110], shows that the 

Figure 10: A schematic representation of solidified structure of barnacle cement over the 

substrate ([28] modified). 
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layer of primary barnacle cement on PMMA is hard and difficult to deform, with streaks from 

center to the periphery of barnacle and thicker in the center of barnacle. Moreover, it 

represents a continuous layer with traces of individual granules, and possesses good adhesion 

and mechanical locking into substrata. The primary cement on Polydimethylsiloxane (PDMS) 

has densely packed ellipsoidal granules of 75 or 85 nm by 10 nm, that are likely to be a 

conglomeration of several proteins and most likely other components. 

The secondary cement is believed to consist predominantly fibrils, which proves that the 

major structural components for primary and secondary cements correspond [9]. 

According to both of Sangeetha 2011 [125] and Sullan 2009 [37], secondary cement of B. 

amphitrite is ascribed as a blend of globular, rod- and mesh-like constituents at aluminum foil 

substrata. In work of Daniel Barlow 2010 [9], it was reported that secondary cement layer of 

reattached barnacles was thicker at the periphery with expressed dense fibrils and thinner to 

the center of the baseplate with rare individual fibrils. The fibrils observed had a different 

thickness (from 2 to 25 nm), which probably means the various stages of fibril formation and 

appeared in 50–100 nm length segments and maximum height of 25 nm. Sangeetha 2011 

[125], reports that secondary cement of B. crenatus contains 0.5 nm pores. One of the main 

features of secondary cement is that these fibrils can cross each other and form cross sections 

of a greater height in comparison to non-contacting ones [9]. Layer formed on low surface 

energy materials such as silicone rubber and PDMS are usually concave without easily 

distinguishable concentric ring cement structure [125].Therefore, adult cement morphology 

depends strongly on the type of substratum and its surface energy, barnacle species and 

formation mechanism – primary or secondary cement [125]. 

 

2.3.3.2. Mechanical properties 

Adult barnacle cement is a viscoelastic adhesive, which hardness and modulus values 

greatly depend on the adhering substratum [125]. Work of Sangeetha 2011 [125] and Sullan 

2009 [37], reports the modulus of 0.0002–0.09 GPa for fibrous matrix, rod-like structures and 

unstructured agglomerations in the adult barnacle cement. In the work of Dougherty 1990 

[126], it is said that pull-of strength for barnacle cement lies in range (0.14–2.79)*10
5
 N/m

2 

for polystyrene substrata and its bond strength is reported on the work of Bowlin 2008 [127], 

to be 0.48*10
5
 N/m

2 
for wet plastic substrata. 

It is believed that the mechanical stability of the interface may be accomplished due to 

physical or chemical anchoring of interface proteins to the substrata in interconnected fibers 

and phenolic compounds present in adult barnacle cement [14]. Furthermore, it is likely that 

toughness on the 1–100 nm length scale is created by some structures of mechanically mobile 

100 kDa cement protein [18]. Mechanical interlocking is another important property of adult 

barnacle cement [128], and plays a significant role in adhesion by taking the advantage of 

surface roughness already at nm scale. On surfaces, easy for attachment, a rigid structure is 

formed that may endure high tensile and shear forces, while a rubber-like cement formed on 

release coating resists a peeling load well [128].However, the details of the physical and 

chemical mechanisms enhancing the mechanical properties still remain an open question. 
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2.3.3.3. Chemical characteristics and spectroscopic studies 

 The adult barnacle cement is predominantly a proteinaceous substance, consisting of more 

than 90% protein [117–119, 129]. The primary cement of the adult barnacle (B. amphitrite) is 

reported to contain 20–50% of water by weight, while secondary cement contains as much as 

87% [14], but a series of experiments showed that water is weakly bound [14]. 

On the base of Walker 1972 [118], Naldrett 1993 [130], and Kamino 1996 [119] research 

that several barnacle species have similarities in amino acid composition, an average 

composition suggested by Nakashima 1990 [131], was supported, but a usual component of 

mussel foot proteins, 3,4-Dihydroxyphenylalanine (DOPA) was however not found in the 

barnacle cement [119, 130]. 

The biochemical analysis shows the presence of amino acid compounds in adult barnacle 

cement and several proteins, six of which, with sizes of 7–165 kDa, have been identified [37, 

119, 130, 132, 133]. The proteins identified in adult barnacle cement are extremely insoluble 

[132, 133], while others are easily soluble, thus revealing the complexity of chemistry 

involved in the interactions of cement constituents to maintain its unique properties [63]. 

Furthermore, it is believed that hydrophobic interactions may be responsible for the self 

assembly of adult barnacle cement [37]. Studies of chemical composition and chemical 

interactions within the cement are of the high importance to understand the unique properties 

of this underwater adhesive. 

Through AFM, FTIR, IR-excited Raman, confocal Raman and other spectroscopic 

techniques, it has been proved that adult barnacle cement is proteinaceous material that 

contains multiple protein secondary structures [10, 110, 134–136]. Some of ex-situ FTIR 

studies were analyzing the secondary cement of dislodged barnacles and showed that adult 

barnacle cement is proteinaceous material that has various composition and structure 

depending on the surface types that barnacles were grown on [2, 28, 110]. 

Other alternative modern ex-situ IR approaches have also been used to examine the 

adhesive ex-situ, thus avoiding sometimes encountered difficulties in dislodging barnacles 

and manual collection of adhesive, e.g. in works of Sullan et al. [37] and Barlow et al. [9]. 

Sullan et al., collected the secondary cement of reattached barnacles that after being removed 

from the first time became repeatedly strongly adhered on CaF2 substrata, while Barlow et 

al., [9] using the same system, compared between primary and secondary cement that was left 

on CaF2 surfaces. Both works of Sullan et al. and Barlow et al., are focused to study the 

amide-I bands for determining the protein secondary structure of adult barnacle cement with 

use of Fourier Self-Deconvolution (FSD) and peak fitting. 

Works of Sullan et al., [37] described that the protein secondary structure of the secondary 

cement of adult barnacle showed one dominant peak assigned to random coil structure with 

relation peak area 75%, and other three inferior peaks assigned to β-sheet. While, the works 

done by Barlow et al., showed that both primary and secondary barnacle cements have 

similar protein secondary structure primarily β-sheet secondary structures, but also α-helix, 

turn and disordered structures [10, 110, 134–136], generally with peaks at 1620 cm
-1

, 1640 

cm
−1

,1654 cm
−1

and 1685 cm
−1 

for amyloid β-sheet, disordered, α-helix and β-turn structure, 

respectively (Table 1). Further information from amide-I analysis reports that β-sheet 
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structure was consisted of both globular and amyloid cross-β-sheet components. The 

important protein structure found frequently in marine adhesives and other biomaterials is 

amyloid [9, 11, 37, 137,138], with lower-frequency of amide I band at 1610–1630 cm
−1

 [14, 

139].Works of Naldrett et al., and Kaminoet al., [130, 132, 133, 140] suggest high cysteine 

content of adult barnacle cement. The amyloid content may be higher than 20% of the overall 

peak areas, content of cross β-sheet is estimated to be in the range 22–28%, considering pure 

amyloid cross β-sheet in 35–80% range [14].  

 

Table 1: Assigned ranges for protein secondary structures in Raman spectroscopy 

Protein secondary structure Range (cm
-1

) Mostly (cm
-1

) References 

Amyloid β-sheet 1610 – 1630 1622 [9, 13, 14, 134] 

Non-amyloid β-sheet 1630 – 1640 1633 [9, 13, 14, 134] 

Disordered 1640 –1650 1645 [9, 13, 14, 134] 

α-helix 1650 – 1655 1653 [9, 13, 14, 134] 

β-turn 1670 – 1695 1685 [9, 13, 14, 134] 

 

Barlow et al 2009 [134] with use of ATR-FTIR spectroscopy were able to study buried 

undisturbed interfaces of live adult barnacle cement settled under different conditions on 

double-side polished wafers. Results of this study showed that the main interface is 

essentially a proteinaceous material, as specified by both amide-I and amide II bands at 1637 

and 1531 cm
-1

 respectively. In addition to amide bands there was a small peak at 1081 cm
-

1
related to presence of some polysaccharide materials. This result is in concordance with 

former biochemical analysis [127]. Furthermore, this study showed the difference in water 

content between the hard cement of removed barnacle (20% – 50% by weight) and the 

gummy cement of the live barnacle (up to 87% water by weight) [141]. This difference 

related to exposure of baseplate in case of ex-situ study to dry nitrogen for 48 h that removed 

approximately all the water in the sample content. Knowledge about water content of the 

untouched interface is significant for understanding the action of water displacement in 

marine bioadhesion.  

To provide a general analysis of barnacle cements composition, Raman spectroscopy is 

considered a useful technique among other complementary biochemical methods [10, 136]. 

IR-excited Raman spectroscopy has been used by Wiegemann et al. to investigate disulfide 

(S–S) bond in the adhesive of adult barnacle (Balanus crenatus) [136]. Interestingly, 

Wiegemann et al. did not find any sign for S–S bonding in their Raman spectra, bringing it 

into correlation with the impact of polydimethylsiloxane (PDMS) release substrate (that 

barnacles had been attached to) on the cross-linking chemistry [142] through prevention of 

S–S bonding. Additionally, these authors noted that Raman S bands might be weaker in 

natural bioadhesives [138] than in reference protein spectra of materials with a high–cysteine 

residue fraction. 

Furthermore, the chemistry of cyprid permanent cement was investigated by Shmidt et al 

[10], by applying confocal Raman spectroscopy technique to live juvenile, right after 

metamorphosis, uncalcified barnacles. This study showed the chemical differences between 

the remaining cyprid cement plaque and area around it. Despite the fact that water is a 

relatively weak Raman scatterer, a broad peak for –OH str. of water (3000–3800 cm
−1

) is 
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observed in this study in the cured cement. Quinone chemistries have also been reported to be 

involved intocyprid attachment adhesives [74, 106]. What is more, the results of this study 

showed a strong band of C=C str. vibration (1480–1580 cm
-1

) related to carotenoid [14].  

Results of in-situ Raman spectroscopy holds great promise for real-time analyses of the 

adhesive chemistries of both permanent and temporary bioadhesives. 

 

2.4. Barnacle cement as biomimetic material 

For decades, scientists have been investigating the up growing problem of marine bio-

fouling that causes damage to various underwater constructions and, therefore, bring about 

enormous financial losses. Various barnacle species are among the most widespread bio-

fouling crustaceans and numerous minds toiling at solving this problem through development 

of new antifouling coatings and removal techniques. On the other hand, despite the great 

annual expenses that barnacles as marine bio-foulers put to worldwide marine industry and 

vessel husbandry, these benthic animals should not be though considered as just pernicious 

organisms. History of science shows that human may borrow numerous splendid ideas from 

essential to naturalistic mechanisms of survival and adaptation.   

Cirripedia are unique benthic dwellers, that can inspire scientists to create new materials, 

that can find application in building industry, applied sciences and medicine. Barnacles 

possess two main characteristic features, hard calcareous shell and advance submersible 

adhesive, investigation of which may lead to significant and beneficial results.  One of the 

most promising fields for adoption of new barnacle-related technologies are biocompatible 

materials such as bone implants and dental coatings. 

The rigid outer shell of barnacles consists mainly of calcite (more than 90% calcite and 

about 1–5% other organic material) [2], a carbonate mineral and the most stable polymorph 

of calcium carbonate (CaCO3) [143]. Due to the higher porosity of calcite crystals, they could 

favor better bonding with bone and hence can be an alternative to nacre which has aragonite 

crystals of higher density [144]. Calcium carbonate (CaCO3) in many respects resembles 

hydroxyapatite, found in bones and teeth and used as implant material, and thus is 

biocompatible and osteoconductive [145]. Therefore, investigation of calcareous shell 

structure, chemical composition, terms of its build-up and shaping may help in the 

development of new biocompatible materials, i.e. bone implants. 

Additionally, barnacle adhesive may suppress a fresh departure in dental treatment. Stable 

to chemical and enzymatic degradation within a wide range of temperatures, barnacle cement 

is a material consisting of 90 % protein [146]. Being insoluble in water and famous for its 

mechanical properties, B. amphitrite barnacle cement is thought to possess properties, 

sufficient for it to serve as an adhesive and sealant in dentistry [6]. Studies on barnacle 

cement can lead to the development of innovative biomimetic materials which can be used in 

dental biomedical applications and this approach will be overviewed in more detail in this 

chapter. 

Dental adhesives and sealants used in contemporary dental treatment are intended to be 

resistant and protect teeth from penetration of carious bacteria [147]. However, biomedical 
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engineers face a number of problems in developing new materials of this type. Placed in the 

oral cavity, they must endure constant saliva wetting and exposure to various acidities as well 

as temperatures. Major requirements that a dental adhesive or sealant must meet to be 

clinically successful are colour stability, biocompatibility, convenience in use and secure 

bonding to teeth surface, considering that surface energy of enamel and dentin is relatively 

low and may be rough from various debris and have contaminations [147]. 

Barnacle cement may potentially serve as a powerful dental adhesive, due to its 

insolubility, short polymerization times, especially possible under water, and easy adherence 

to a variety of subaquatic substrata. Moreover, bonding strength of barnacle cement can be 

favourably compared to other modern dental adhesives. According to Despain1973, [148] 

barnacle cement has some advantages over some dental adhesives, i.e. zinc phosphate 

cement, when placed on a wet surface. However the majority of researchers in this field 

considers the potential of barnacle cement in dentistry solely based on its mechanical 

properties and biochemical composition. Application of barnacle cement as a dental adhesive 

and sealant was studied in [147], where acid resistance, biocompatibility, speed of 

polymerization and aesthetic appeal have been studied. 

According to this study, barnacle cement has been found to be non-toxic for human and 

other living beings. Applied to teeth it keeps them aesthetically appealing, having a tint close 

to the natural teeth colour [149]. The polymerization can be speeded up under infra-red 

radiation with use of Ca
2+

 catalysts. However, one of the main obstacles to usage of barnacle 

cement in dentistry is its low resistance to a long-term strong acidic exposure. Nevertheless, 

the innovative dental adhesives and sealants based on barnacle adhesive are still possible to 

develop if the way to enhance the acid-tolerance and polymerization rate of the cement can 

be found [147]. 
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3. Motivation 

Barnacles, being among the most predominant bio-foulers in the world, are widely used as 

a ―model for research on underwater adhesion‖ [10]. The study of this organism may help to 

understand the settlement mechanism of marine invertebrates and therefore lead to the 

development of preventive antifouling strategies [115]. Barnacles should be interesting to 

those who would like to use their adhesives commercially [4, 11]. Despite the extensive 

knowledge published on barnacles, the reader is likely to come across numerous questions 

that are still left without an answer and numerous assumptions that lack trustworthy proof. 

First of all, understanding the spatial organization of chemical components contributing to 

the bio-adhesion chemistry is of fundamental scientific relevance with significant potential 

for commercial underwater adhesives and to develop new antifouling strategies [10]. Changes 

in chemical composition at the interface with time will allow to understand the chemical 

interaction of the cement and the substrate [28]. Furthermore, very little is conceived about 

the chemical changes that happen when barnacles secret and cure their adhesives. Barlow and 

Wahl [14] noted that interfacial approaches that use time- and spatially resolved spectroscopy 

for chemical analysis are essential to understand the curing chemistry of subaquatic bio-

adhesives, which is a likely trend in material science, i.e., supra-molecular chemistry [117, 

150] A library of these physiochemical properties of macro-foulers adhesives should be 

established and utilized in the design of new antifouling surfaces [4]. 

To date, many studies of marine bio-adhesion employ ex-situ methods to understand the 

bio-chemical composition of marine bio-adhesives but just several [9, 10, 110, 130, 134] 

conduct in-situ studies that allow to make noninvasive analysis [151]. 

Research in-situ is intended to conduct the study in original environment or an 

environment similar to the original excluding any significant altering of the system or its 

parameters. This study gives the advantage to acquire information that is much closer to real 

data since changes occurring in the sample are negligible. However, the difficulty of 

conducting such studies can surely be counted as its disadvantage. 

Ex-situ study gives great opportunities to investigate a wide range of parameters, but it is 

necessary to check the correspondence of these results to the results obtained from an 

unaffected interface. In order to do that use of vibrational spectroscopy is a possible solution, 

since the ability to study intact interface is one of the advantages of this technique. Despite 

the difficulty of conducting in-situ experiment, almost all aspects of live adhesive interface 

can be assessed closely to the real characteristics, avoiding false underestimation that might 

stem from altering the sample during ex-situ analysis or simplified model study. 

What is more, in-situ analysis may offer acquisition of information about a wide range of 

processes occurring in bio adhesives: from adsorption and water displacement, to adhesion 

and cohesion processes. Sometimes model characterization can be used for complex cases, 

but its validity should be verified by real-time in-vivo study. Furthermore, phenomena that 

take place on the surfaces, that are crucial for bioadhesion may be observed, e.g. wetting and 

surface conditioning [14].  
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Cyprid stage is unarguably the critical phase in the barnacle colonization of surfaces [12], 

and in several works it is emphasized this settlement stage, cyprid‘s exploratory behavior and 

cements, despite their significance for antifouling means [12, 152, 153], has surprisingly not 

received a proper scientific insight [10, 4, 12, 38]. Work of Alred 2008, [12] suggests that the 

future barnacle research should focus on cyprid adhesion and surface selection, because if 

substrata can be made unfavourable to them or if their adherence  mechanism  can be 

intervened, avoiding their settlement, the barnacle fouling in general may be prevented from 

the beginning and adult barnacles will not be necessary to be dislodged. Moreover, the 

adhesion strategy used by cyprids is also interesting in terms of creating a synthetic reversible 

adhesion system [4]. 

Moreover, temporary adhesion, or reversible attachment, of barnacles is even less deeply 

understood and although the proteinaceous liquid they secret as footprints is thought to 

maintain temporary adhesion, its exact contribution to adherence is still unclear [4, 12, 38]. 

Studies of footprints morphology as well as the cyprid settlement beahviour may help to 

understand the spreading and adhesion of footprint adhesive to the surface [4]. The probable 

relation of footprint and SIPC is also to be carefully investigated in order to find the ways 

how gregarious settlement behavior may be controlled and new ecologically-sensitive anti-

fouling technologies may be developed [102]. 

Furthermore, more profound insight into processes of calcification and cementing are 

required [117]. Further studies are necessary to identify the presence of carotenoids in 

footprint, that can be done using Raman spectroscopy to scan substrata previously explored 

by cyprids, and perhaps their putative function will be known [10]. 

Thus, Raman spectroscopy and µ-XRF techniques have been applied to conduct research 

of juvenile barnacle cement in-situ and ex-situ. Raman spectroscopy has been used to study 

the chemical composition of barnacle cement and to identify distribution of functional groups 

in barnacle baseplates, whereas µ-XRF has been used to identify elemental distribution, in 

them.    

 

 

 



4. Analytical techniques  
 

29 
 

4. Analytical techniques 

In this section the analytical methods which were used in the both in-situ and ex-situ 

studies included in the current thesis are described. 

 

4.1. Raman spectromicroscopy 

In structural studies of molecules, polymers and crystals the phenomenon of Raman 

scattering, i.e. an inelastic photon scattering from a monochromatic excitation source, is 

widely used [154]. For instance, Raman spectroscopy, a method to determine modes of 

molecular motions, particularly vibrations, is based on this effect and is generally utilized for 

quantitative and qualitative analysis molecules that are bound covalently [155]. 

This effect was discovered experimentally in 1928 by subsequent Nobel Prize laureate 

C.V. Raman and named after him. Raman scattering can occurs when incident photon is in 

elastically scattered in two possible ways: a) when incident photon deposits its energy by 

exciting a ―static‖ bond to vibrating, and scattered photon yet possesses less energy; and b) 

when incident photon gains energy after being scattered off a vibrationally excited bond. 

These effects are called Stokes- and anti-Stokes-shifted Raman scattering, respectively [156]. 

Afterwards, the intensity of this scattered light is measured and information about 

composition types of chemical bonds present in the sample can be obtained through 

automatically plotted spectra. A Raman spectrum is a plot of Raman scattered radiation 

intensity as a function of its frequency differencefrom the incident radiation,usuallyreferred 

to as Raman shift and expressed in units of wavenumbers, cm
-1

.In both scattering cases, 

described above, Raman shift will have the same absolute value, but different charge. 

The Raman effect has only a small probability and 1 out of 10
7
 incident photons are 

Raman shifted. For this reason, the Raman line intensity isabout 0.001% of the source 

intensity, which complicates their detection and measurement. However, in general intensity 

of a normal Raman peak is a complex function of molecule polarizability, intensity of the 

source, the concentration of the active groups, and increases with the fourth power of the 

frequency of the source and is usually directly proportional to the concentration of the active 

species [154, 157]. Thus, intensity of a Raman signal IRaman can be expressed in the following 

way: 
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where IRaman and Il are the intensities of the Raman line and the excitation laser, respectively; 

N is the number of bonds; L is the length of the focal volume; Ω is the solid angle over which 

the signal is collected; α is the polarizability; ωk is the frequency of a normal mode of 

vibration of the molecule; (..)0 indicates the value at equilibrium; ωl is the frequency of 
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induced dipole moment; m is the reduced mass of the vibrating molecule; and change in 

polarizability dα/dr can be equaled to the differential scattering cross-section d𝜎/dΩ [156]. 

Generally, according to rule of mutual exclusion, or so called selection rule, molecular 

vibrations symmetric with respect to the main axis of symmetry are forbidden in the IR 

spectroscopy, whereas antisymmetric and some symmetrical molecular vibrations are both 

allowed in Raman spectroscopy [158]. Thus, due to this contrasting feature Raman 

spectroscopy can be considered as a complementary technique to Infrared spectroscopy, since 

it allows to analyze vibration modes that are IR inactive according to the mutual excusion 

rule. Infrared absorbtion is related to the variation of the electric dipole moment, whereas 

Raman scattering is concerned with the variation of the polarizability due to vibrations [158]. 

If the polarizability α in a molecule is changed during the normal vibration, a Raman active 

vibration can be detected [159]. Thus, due to the selection rules, Raman spectroscopy is 

specifically applicable in characterization of the carbon backbone of organic substances and 

polymers. 

The main components of the Raman setup are a laser illuminating the sample, optics 

collecting the backscattered radiation, a high-efficiency laser line rejection filter, a 

spectrometer with an entrance slit, a diffraction grating, and a CCD camera. During the 

experiment, the intensity of the inelastic scattered light arising from monochromatic light 

focused on the sample is detected. A Raman spectrometer is usually used in combination with 

an optical microscope, which gives benefit in high spatial resolution of a confocal optical 

setup. A basic scheme of a simple Raman spectrometer is shown in Figure 11 [160]. Confocal 

Raman micro-spectrometers are capable to produce blur-free images of thick samples at 

various depths depending on both of wavelength and the optics. For example, in case of using 

wavelength: 532 nm and 20X objective (NA 0.45), the depths will be much greater than 20 

micrometers [157]. A comparison of the optics of a confocal and a conventional Raman 

microscope is shown in Figure 11 (b). 

 

 
 

 

 

Figure 11: a) Scheme of a Raman spectrometer [160]. b) Conventional and confocal 

Raman microscope optics [161] (modified). 
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Raman spectroscopy as an investigation tool has several advantages. One of the major 

advantages of Raman spectroscopy is the possibility to study aqueous solutions or samples in 

aqueous media since water is a weak Raman scatterer [155]. It can be used to study a variety 

of samples, such as organic, inorganic or biological, in vacuum and in ambient conditions or 

even through different container walls. The possible of an in-situ analysis, is a great 

advantage over IR techniques [154]. In addition, minimal preparation is needed for gaseous, 

liquid and solid samples. An extensive Raman databases to date available to identify 

chemical components [155]. The region 4000 cm
-1

 to 50 cm
-1

 can be covered in a single scan 

without changing any bulky accompanying equipment, and small laser spot sizes allow to 

sample small areas [155] as the laser beam can be focused to 1 µm or less [157].  

In comparison to IR spectroscopy, Raman spectroscopy provides information over a wider 

wavenumber range in a single measurement and its spatial resolution is much better due to 

the shorter wavelength of the probing light. Furthermore, the totally symmetric vibrations can 

be identified from the measurement of the depolarization ratios of Raman lines [154]. 

For decades Raman has been applied for protein analysis and has given an opportunity to 

study protein or peptide secondary structure and side-chain chemistries [162–164]. 

Vibrational modes of the protein amide band are used to observe secondary structure. Among 

amide bands of Raman spectroscopy amide I and amide III are those to which this technique 

is the most sensitive [165–166]. Furthermore, Raman spectroscopy is responsive to sulfur and 

ring structures of amino acid side chains [167]. 

However, Raman spectroscopy faces a number of problems. For instance, fluorescence 

and emission from hot samples may affect Raman spectroscopy. Furthermore, if the 

wavelength of the laser beam coincides with the absorption of the sample, than even an 

uncolored sample may be damaged during continuous irradiation by intense visible or near-

ultra-violet laser beams [154]. 

 

4.2. µ-X-ray microprobe fluorescence (µ-XRF) 

First proposed by Glocker and Schreiber in 1928, the use of fluorescent radiation excited 

by primary X-ray beam has become a powerful non-destructive analytical spectrometric 

technique. Attempts to confine the beam in X-ray fluorescence spectrometry taken over the 

last 20 years resulted into development of micro-XRF (µ-XRF) analysis, one of the modern 

beam impingement techniques. This method is based on the localized excitation and analysis 

of a microscopically small area on the surface of a larger sample, providing information on 

the distribution of major, minor, and trace elements in heterogeneous materials [168]. 

Laboratory X-ray sources are generally used for µ-XRF spectroscopy, but this technique 

becomes significantly more powerful when exploited with X-rays emitted from a synchrotron 

radiation (SR) source that is ideal for the generation of microscopically confined X-ray 

beams due to their high intensity and directionality. SR-based µ-XRF combines high 

sensitivity with high spatial resolution and possesses a number of advantages in comparison 

to other microprobe techniques. The extremely high-obtained brilliance, possibility to be used 

in atmospheric conditions, completely non-destructiveness and high intensity and 
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directionality are other particular advantages of SR µ-XRF if it is compared to conventional 

X-ray tubes. Currently, the intensities of X-ray micro beams exceed 10
10

 photons/s·µm
2
. A 

high SR photon flux is another advantage to utilize it on microscopically small areas of 

samples as it allows multi-elemental XRF analysis of small amounts of material. SR is 

particularly useful for trace element detection at sub-ppm level, i.e. ~10ng/g for Sr in organic 

matrix [168–169]. 

To date, µ-XRF experiments are conducted on a large number of existing storage rings, 

which make it possible to combine the unique possibilities of SR with the advantages of XRF 

as an analytical tool [168]. The SR-µXRF spectroscopy experiments in this thesis were 

performed at ANKA synchrotron radiation source (Karlsruhe, Germany) at the FLUO 

beamline, the general scheme of which is shown in Figure 12 [169]. 

 

 

 
 

 

 

 

 

The synchrotron radiation beam from a storage ring is monochromated by a double 

multilayer W-Si monochromator system with a fixed exit direction. Then, the beam passes 

through a monitoring ionization chamber, and enters the experimental vacuum chamber filled 

with inert gas and/or air under 10
-2 

mbar pressure. The energy of the photons can be selected 

between 1.5 keV and 33 keV with ΔE/E resolution of 2x10
-2

, which is sufficient for 

experiments close to the absorption edge. By X-ray lenses or polycapillaries the beam is 

focused onto the sample. The sample is placed on a mechanical sample stage with precision 

computer controlled micro stepping motors for X, Y, Z, that allow the sample to be moved 

over the beam path for acquiring the spectra for the measurement of elemental distribution 

maps. The size of the beam at sample can be adjusted from 5 mm x 2 mm down to 2 µm x 1 

µm. The fluorescence radiation excited by the beam is measured by a semiconductor detector 

of the choice: energy dispersive Si(Li) detector, high purity Germanium detector or Silicon 

Multi-cathode Detector (SiMCD). PIN-Diodes (positive intrinsic negative diodes) at the exit 

Figure 12: General scheme of SR-µXRF experiment at ANKA synchrotron source 

(Karlsruhe, Germany) [169] (modified). 

[169]. 
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of the beam path are also used for monitoring the beam characteristics. Conducting 

experiments at FLUO beamline, it is possible to obtain 2D mapping of the sample with µm 

resolution and 3D information using confocal detector geometry or X-ray fluorescence 

computer tomography [169]. 

 

4.3. Scanning Electron Microscopy (SEM) 

A scanning electron microscope (SEM), developed in USA in the beginning of the Second 

World War, is a type of electron microscope that scans the sample with a focused high energy 

electron beam and produces images containing information about the sample's surface 

topography and composition, that are computed from signals detected from electrons‘ 

interaction with sample atoms [170]. 

The region where the low energy secondary electrons can escape from is referred to as 

activated region and its size depends on the morphology of the sample surface. The deviation 

of the sample surface from flat topography induces a greater activated region and thus a 

greater number of secondary electrons that reach the detector what subsequently results in a 

higher signal [170]. 

A tungsten filament, a tungsten field-emission tip or Schottky emitter are typically 

employed in the SEM as electron source and the maximum accelerating voltage applied is 

typically 30 kV. Above the specimen, there two or three axially symmetric magnetic lenses, 

acting like condenser lenses, are placed (Figure 13). The diameter of the incident beam, also 

referred to as electron probe, in the SEM is usually10 nm, but can be reduced down to 1 nm 

or better if a field-emission source is used. Due to the method used to obtain the image, the 

performance of the final objective lens determines the spatial resolution of the instrument that 

can never be better than its incident-probe diameter. Specimens can be observed in high or 

low vacuum and in wet environmental conditions [170]. 
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Interaction of the primary electron beam with sample atoms results in shell transitions, 

which lead to the X-ray emission with energy characteristics of the parental element, 

integrated detection and measurement of which provides the elemental analysis of the 

sample. This technique is called Energy Dispersive X-ray Spectroscopy (EDS or EDX) and 

can provide fast qualitative or quantitative analysis of elemental composition with 1–2 µm 

sampling depth and maps or line profiles of the elemental distribution of sample surface. 

 

4.4. Confocal 3D laser scanning microscopy 

Confocal 3D laser scanning microscopy (CLSM), is a valuable technique for obtaining 

high-resolution optical images and 3-D reconstructions (Figure 14 (a)) [172]. In a CLSM, the 

sample is irradiated by a laser beam, focused to a diffraction-limited spot, which illuminates 

one spot at a time and the specimen is therefore measured in a point-wise fashion [173]. A 

laser beam is focused by means of a microscope objective onto the specimen, where it excites 

fluorescence. A dichroic beam splitter efficiently directs the fluorescent radiation collected by 

objective to the detector. An emission filter is used to choose the fluorescence spectrum 

wavelength range of interest and also blocks the excitation laser line. The pinhole is arranged 

in front of the detector, on a plane conjugate to the focal plane. The radiation strikes the area 

surrounding the pinhole, when it is out of focus, and being excluded, therefore, does not 

contribute to image formation (Figure 14 (b)) [173]. 

 

 

Figure 13: Schematic diagram of scanning electron microscope [171]. 
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LSM gives thepossibility to make an optical sectioning, that is to observe a single slice, 

less than 500 nm in thickness, out of a ―thick‖, up to 100 µm, specimen in good contrast.The 

translation of the build-in controllers allows scanning the sample and obtaining information 

about the entire specimen. Therefore, confocal systems are also referred to as point-probing 

scanners. In confocal LSM a pinhole, or a confocal aperture, is arranged in a number of slices 

and recording them. The thickness of the slice and spacing between the successive slices 

affects the accuracy and quality. The speed of halfslice thickness is usually used as plane that 

is conjugate to the intermediate image plane and objectplaneofthe microscope. The confocal 

ray path implies that illuminated andobserved point are focused onto each other lying on 

conjugate planes. The confocal LSM is intrinsically depth-discriminating optical system, 

because varying the diameter of the pinhole allows to exclude the extraneous signal from 

object area outside the focalplane from the detection and moreover the degree of confocality 

can be adapted. The image becomes non-confocal when the aperture isfully open. 

Furthermore, the image contrast may be enhanced by suppressing the stray light by 

minimizing the pinhole diameter [173]. 

What is more the 3D information about the spatial  structure of the object can be obtained 

by moving the sample to different Z planes, cutting out a great optimum Z-direction scanning 

rate [173].  

The 3D data setobtained during scanning makes it possible to compute further information 

about the object, such as 3D reconstruction, sections of any spatial orientation, stero pairs, etc 

[173]. 

 

Figure 14: a) The general view of a 3D LSM [174], and b) Ray path in a confocal LSM 

[173]. 
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5. Experimental procedure 

This section illuminates the details of conduct experiments and procedure of sample 

preparation for both barnacle species. 

 

5.1. In-situ studies 

Both, Raman spectromicroscopy and µ-X-ray microprobe fluorescence (µ-XRF) have 

been selected for the in-situ studies. On the other hand, to carry out in-situ studies a 

researcher faces several principal problems, and selection of surfaces to be used for each 

measurement technique is in the first place. The second significant issue is the way organisms 

(cyprids and juvenile barnacles) can be kept alive during the measurement. The solution of 

these two problems will describe in details for both techniques in the next subsections (5.1.1. 

and 5.1.2.). 

 

5.1.1. Raman spectromicroscopy 

A Senterra Raman spectrometer (Bruker Optics, Germany) (Figure 15 (a)) has been used 

in-situ to determine the chemical composition of both temporary and permanent barnacle 

adhesion at different life stages. In addition to chemical information on the molecules 

present, Raman spectroscopy provides information on the protein secondary structure [175]. 

Calcium fluoride disks (CaF2 IR window 25±0.2 mm Ø X 1.5±0.1 mm polished, s/d: 80/50, 

Korth Kristalle GMBH, Kiel, Germany) have been used as substrates. Calcium fluoride has 

been chosen as a substrate for Raman studies due to its transparency which to identify the 

surface plane for depth profiling in confocal mode and give an intensive Raman band at ~320 

cm
-1

 which can be used for normalization and allows, as well as its potential compatibility 

with future IR measurements. To conduct the in-situ measurements, a specific holder (Figure 

15 (b)) compatible with the sample holder dimensions of the measurement device has been 

designed and manufactured from polytetrafluoroethylene (PTFE) (Figure 16). This 

configuration allows mounting samples with attached cyprids or juvenile barnacles in upside-

down position and therefore, the cement layer will be the closest object for Raman 

investigation, while the organism is kept alive in its natural aquatic environment during the 

entire measurement (Figure 17 (c)). 
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Figure 15: a) Real image of Senterra Raman spectroscopy, b) sample holders and 

CaF2disck and c) general setup of in-situ Raman spectroscopy. 

 

Figure 16: CAD drawing of sample holder and holder plate have been designed to support 

standard 25mm CaF2 disk and has been manufactured in Heidelberg University workshop. 
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Raman spectroscopy has been excited by a frequency doubled diode pumped solid state 

Nd: YAG laser (wavelength: 532 nm) coupled into a 20X objective (NA 0.45) with spatial 

resolution of ~ 9–18 cm
-1 

resolution. Olympus BX51reflection confocal microscope that has 

been used to allow x-y movement (up to 2μm precision) and has trinocular head equipped 

with a CCD camera. The scattered light has been collected by the same objective and coupled 

into the spectrograph with reflection geometry 180ºC. The depth of the probed volume has 

been ˃20 μm. The spectra have been obtained with a resolution of 9 cm
-1

 in the range of 75 

cm
-1

 to 4100 cm
-1

 at 20 mW laser power. The integration time of 4 minutes has been chosen 

for a single spectrum. For most positions, 4 morphologically similar points on the surface 

have been measured. At each measurement position, optical micrographs have additionally 

been recorded to document the exact position of measurement for each spectrum. Confocal 

Raman spectroscopy has been used in-situ to obtain 2D maps of juvenile barnacle base plates. 

Switching from Raman to confocal Raman is achieved by introducing an additional aperture 

into the beam path in order to allow only radiations collected in the focal plane to reach the 

detector. This allowed to obtain depth resolutions down to 20±5 µm instead of ˃ 20 µm. As 

the intensity of the Raman bands can be affected by scattering, absorption, and changes in 

laser intensity as well as the different morphology of the sample, the absolute comparison of 

intensities in the spectra require normalization. This has been accomplished normalizing the 

spectra to the CaF2 substrate signal at 320 cm
-1

.The data were acquired using both of OPUS 

6.5 and OPUS 7.2 software (Bruker Optics, Ettlingen, Germany). 

 

5.1.2. µ-X-ray microprobe fluorescence (µ-XRF) 

The µ-X-ray fluorescence measurements have been performed at the X-ray fluorescence 

beamline FLUO at the synchrotron radiation facility ANKA (KIT, Eggenstein-

Leopoldshafen, Germany) using an excitation energy of 17.2 keV. A custom-made 

polycapillary (XOS, East Greenbush, NY, USA) has been used to focus the beam to a spot 

size of approximately 15 µm x 15 µm (FWHM). µ-X-ray microprobe fluorescence (µ-XRF) 

has been used in order to evaluate the ‗distribution map‘ of the constituent elements of the 

interface area between the organism and the substrate. Kapton
®

 (polyamide) foils (8 µm 

thickness and 64 mm diameter, SPEX Sample Prep, Metuchen, NJ, USA) have been selected 

for µ-XRF studies (Figure 17 (a)). Kapton
®
 foil has been chosen as a substrate for µ-XRF 

because of its high transparency for the X-ray energy range and it has a very low level of 

metal impurities, which could interface with the X-ray fluorescence measurements. On the 

other hand, kapton
®
 substrate shows a high bio-compatibility: marine biofoulers readily settle 

on this substrate, which is a prerequisite for the experiments. To work in-situ in artificial 

seawater, 40 mm disposable closed X-ray cells made of contaminant-free polypropylene 

(SPEX Sample Prep) were used (Figure 17 (a)). This kind of cells consists of a polyethylene 

snap-ring and cup with snap-post vent and reservoir.  Beforehand the Kapton
®
 foils have 

been checked for any contaminations of any elements apart from those forming Kapton
®

 

structures that can interfere with the µ-XRF results which might interfere with the µ-XRF 

measurements. After the cyprids settlement on kapton
®
 foil the reservoirs were filled with 
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artificial seawater and the kapton
®
 foil was placed on top of the cell. Afterwards, the cells 

were sealed with the snap-ring. Finally, the water tighted sample was placed in a sample 

holder and the µ-XRF microprobe scans can be performed (Figure 17 (b)). As mentioned in 

Figure 17 (b), the monochromatic X-ray beam (blue line) is focused on the organism settled 

on the Kapton
®
 window film. The emitted X-ray fluorescence signal is detected at a right 

angle (green line) with a silicon drift detector. An optical microscope aligned to the X-ray 

micro-focus at an 45° angle (red line) is used to align the sample for the scans.  

The window films show a high transparency for energies greater than 2 keV. Energies 

below this threshold are not relevant in this technique as they are not accessible with the 

silicon drift detectors used in the microprobe XRF analysis. Finally, Dr. Rolf Simon and Dr. 

David Batchelor have performed experiments of XRF, in addition that Mr. Tobias Senkbeil 

has analyzed all data obtained. 

 

 

 

 

 

5.2. Ex-situ studies 

Simultaneously with the in-situ studies, there have been a number of ex-situ studies made 

such as scanning electron microscopy (SEM), and 3D scanning laser microscopy. 

 

5.2.1. Scanning Electron Microscopy (SEM) 

The morphology of dried samples (adult barnacle shells and baseplates, cypris larva, 

juvenile barnacles, remaining barnacle cements as well as cyprid footprints) have been 

measured by SEM. All microscopic measurements are carried out in a FEI Philips XL 30 

Field Emission Gun Environmental Scanning Electron Microscope (FEG-ESEM) (Figure 18 

Figure 17: a) sample holders and kapton
®
 foil and b) experimental setup of in-situ XRF 

(photo in Fig. 17 (b) provided by Tobias Senkbeil). 
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(a)). Samples under investigation were placed on carbon stubs and in order to avoid charging, 

insulating materials have been coated with a thin layer of conductive Gold/Palladium-film 

using coating system (3ΔL-TEC, MED 020) (Figure 18 (b)). Then the specimen were imaged 

under high vacuum conditions (10
-5

 Pa) using acceleration voltages between 5 and 20 kV. In 

adult barnacle shell and baseplate have been fixed directly on the carbon stubs without any 

additional surfaces, however, the other samples of barnacle larva, juvenile barnacles, 

remaining cements as well as footprints where placed first on 100 nm gold substrates that 

purchased from Georg Albert (PVD-Beschichtungen, Germany). 

 

 

 

 

 

Elemental analysis has been performed using the energy dispersive X-ray fluorescence 

spectroscopic unit (EDX) from EDAX with a liquid nitrogen cooled Sapphire Si(Li) detector. 

For the spectra collection the microscope was operated with a 100 µm aperture. 

 

5.2.2. 3D scanning laser microscopy 

For further morphological assessments, color 3D laser scanning microscope (VK-9710, 

Keyence, Germany) has been used (Figure 19) to screen the remaining barnacle cements after 

removing the organisms. This investigation is necessary before the start of the measurements, 

in order to make sure that there are solely cements attached to surfaces. The 3D laser 

microscope has also provided us with the dimensional information of the remaining barnacle 

cements, which was not clear before. 

Figure 18: Real image of a) Scanning Electron Microscopy, and b) coating system that 

have been used in this study. 
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5.3. Strategies of sample preparation 

Barnacle larvae of both species (B. amphitrite and B. improvisus), being stored at 6°C, 

have been transported from Newcastle University (School of Marine Science and 

Technology, Newcastle University, UK) to Karlsruhe Institute of Technology (KIT, 

Germany) for experiments. Ten vital cyprids have been selected using a pipette and set free in 

1 cm
3
 of artificial seawater (ASW, Instant Ocean, in distilled water; salinity ~ 32 ppt for B. 

amphitrite and ~15 ppt for B. improvisus) to settle on both CaF2 disks and kapton
®

 foils. Both 

of calcium fluoride disks and kapton
®

 foils have been placed in a dark and humid 

environment (65±5%) at room temperature (22–25°C) for different time periods depending 

on the developmental stage to be studied (5 hours for footprint and from one-day to fourteen-

days-old for juvenile barnacles). Subsequently, the substrata with the attached organisms 

were turned upside-down and mounted into the wet cell filled with ASW and transferred into 

the measurement devices for measurement (Figure 20). In order to prepare samples for ex-situ 

studies, juvenile barnacles settled on both substrata (CaF2 disks and kapton
®

 foils), have been 

rinsed with milli-Q water (Millipore Corp., Billerica, Ma, USA), and carefully removed 

(Figure 21). The remaining cement specimen on the surfaces have been washed gently with 

distil water to avoid any contamination of the remaining organs/parts of the organism as well 

as any other impurities from the ambient water. Directly after washing ready for studying 

cement samples have been transferred into fresh artificial seawater. 

Figure 19: a) Real image of 3D laser scanning microscope (VK-9710, Keyence, 

Germany), that has been used in this study, and b) example of 3D image taken by 3D laser 

microscope for 2 days old juvenile barnacle  (B. amphitrite) 
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Figure 20: General setup of in-situ X-ray microfluorescence and μ-Raman analysis 

 

Figure 21: Orientation of the samples in regards to the incident beam. 

 



5. Experimental procedure  
 

43 
 

Tetraselmis algae: Green algae (Tetraselmis) sent by Newcastle University have been 

used to feed the settled juvenile barnacles. The green algae were maintained in the lab for 

several days at a temperature of 20
°
C, light source (bright lighting 24L:0D), and an oxygen 

supply. Juvenile barnacles were given the same amount of food at each time point equalling 

to 1 ml of green algae suspension per 30 ml artificial seawater. 

 

5.4. Reference substances 

Insulin (Insulin, human, Sigma-Aldrich, Louis, Germany), pepsin (Pepsin, from porcine 

gastric mucousa, Sigma-Aldrich, Louis, Germany) and amyloid (Amyloid β-protein fragment 

1–42, Empirical Formula (Hill Notation):  C203H311N55O60S, Molecular Weight: 4514.04, 

Sigma-Aldrich, Louis, Germany) were purchased to be used as a sample reference for 

different protein secondary structures. Standard β-carotene (Type II, synthetic, ≥ 95% 

(HPLC), crystalline Sigma-Aldrich, Louis, Germany (C40H56)), has been exploited as a 

reference sample for C=C str. bands identification.  
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6.  Results and discussion 

This chapter summarizes the key findings of the thesis and is divided into three major 

subsections. First, the in-situ and ex-situ results of µ-Raman spectroscopy of cyprid and 

juvenile barnacle cements are presented and discussed. The results of in-situ and ex-situ µ-X-

ray fluorescence (µ-XRF) of cyprid and juvenile barnacle cements are included into the 

second subsection. Additionally, a comparison of two different species (B. amphitrite and B. 

improvisus) using µ-Raman and µ-XRF techniques is presented in subsection 6.3. Finally, the 

major results of both aforementioned techniques are summarized in the last subchapter. 

 

6.1. Raman spectroscopy results 

6.1.1. In-situ results of µ-Raman spectroscopy 

The in-situ experiments are intended to study barnacle cements without removing the 

organism from the original adhesion position, while at the same time it stays in an 

environment similar to its natural habitat in terms of temperature, salinity, lighting etc. 

In spite of several advantages of ex-situ analysis of adhesive proteins, it is necessary to 

evaluate the extent to which the information obtained from such studies reflects the chemistry 

in the intact interface. An advantage of vibrational spectroscopy techniques for under water 

bio adhesion studies is its capability to characterize buried adhesive interfaces of live 

organisms. 

In this subsection all in-situ results of µ-Raman spectroscopy will be presented and 

discussed in detail. 

6.1.1.1. Chemical variations across the juvenile barnacle baseplate 

To visualize the distribution of molecular composition in the barnacle baseplate, 4 days 

old barnacles have been grown on calcium fluoride disks and imaged by µ-Raman 

spectromicroscopy. The measurements were done in a conventional (nonconfocal) mode and 

are sensitive to the interface area up to a depth of ˃ 20 µm. An optical micrograph of the 

adherent barnacle is shown in Figure 22(a). Figure 22(b) shows the sum of 400 individual 

Raman spectra recorded at different positions within the barnacle baseplate. It is obvious that 

the chemistry at the interface is composed of a variety of chemical groups and components, 

including calcite (277 cm
-1

 and 1085 cm
-1

) [176], amides (e.g. amide-I bands at 1640 cm
-1

, 

υ(C=O)), conjugated, unsaturated components (υ(C=Cconj) modes (1518 cm
-1

), a pronounced 

C–H stretching region (2880–2980 cm
-1

) [10, 177], a broad band of amine contributions at 

≈3250 cm
-1

, and a broad OH band at ≈3400 cm
-1

 [10, 177, 178]. The assignment of the 

different vibrational modes according to literature references is compiled in Table 2. In order 

to visualize the spatial distribution of the different Raman bands within the baseplate, the 

intensity of selected bands (indicated by the colored bars in Figure 22(b)) at the different scan 

positions was evaluated and represented as color images (Figure 22(c–h)). The subfigures in 
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Figure 22 show the spatial distribution of amide-I contributions (panel c, υ(C=O), 1600–1700 

cm
-1

), calcite (panel d, υ1(CO3
2-

), 1000–1100 cm
-1

), the distribution of unsaturated, 

conjugated C=C double bonds (panel e, υ1(C=C str.), 1480–1540 cm
-1

), C–H stretching of 

different vibration modes  between 2880–2980 cm
-1

 (panel f), hydroxyl stretching modes at 

3300–3500 cm
-1 

(panel g), and amine modes (panel h, 3200–3300 cm
-1

). 

 

 
Figure 22: (a) Light microscopy image (20 X) of four-days-old juvenile barnacle B. 

amphitrite settled on CaF2 disk, (b) Sum of all (400) Raman spectra measured across the 

whole baseplate, (c) micro Raman map integrating the Raman signal at 1600 – 1700 cm
-1

 for 

amide I, (d) 1000 – 1100 cm
-1

 for calcite, (e) 1480 – 1540 cm
-1

 for the conjugated C=C 

stretching, (f) C–H stretching modes between 2900 – 2980 cm
-1

 (g) 3300 – 3500 cm
-1

 for OH 

modes, and (h) 3200 – 3300 for N–H stretching vibrations. 

 

From the Raman-maps in Figure 22, three prominent regions of different chemistry were 

distinguished (labeled I–III in Figure 22a): (I) calcite rich regions (Figure 22d) close to the 
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exterior part of the barnacle (shell region). Beside the strong calcium carbonate modes, 

significant conjugated C=C contributions were found (Figure 23e). The baseplate region (II) 

is characterized by a homogeneous appearance in the optical micrograph and a low and even 

distribution of amide-I (Figure 22c), N–H (Figure 22h), and –OH (Figure 22g) vibrational 

modes. However, within this baseplate area, two distinct spots became obvious in the optical 

micrograph, which we assigned to region III. In the amide-I distribution in 22(c) and the CH-

stretching region 22(f), a significantly different signal was observed compared to the rest of 

the baseplate. A morphological comparison with the optical micrographs revealed a relation 

of the Raman bands to the attachment position of the antennules, which established the first 

contact of the cyprids with the surface. Obviously, the cyprid cement area gave a significantly 

different Raman signal compared to the rest of the baseplate area. 

 

TABLE 2: Assignments of the vibrational modes found in the µ-Raman spectromicroscopy 

data of barnacles. 

Assignment Band position [cm
-1

] Corresponding References 

Calcite (CaCO3) 277 & 1085 [176] 

CaF2 320 [179] 

υ(C–CH2) 1003 [10, 177, 180] 

υ2(C–C) 1155 [10, 177, 180] 

δ(O–H) 1335 [181] 

υ1(conjugated C=C) 1518 [10, 182] 

Amide-II 1580 [177, 183] 

Amide-I 1640 [10, 177, 183] 

υ(C=O) 1748 [177, 178] 

υ 1+υ 2(C=C) 2673 [10, 182] 

υs,as(C–H) 2880 –2980 [10, 177, 180] 

2 υ1(C=C) 3036 [10, 182] 

υ(N–H) ≈ 3250 [10] 

υ(O–H) ≈ 3400 [10, 177, 178] 

 

Spectra of the three distinct regions and their development at different time points after 

metamorphosis are shown in Figure 23. All spectra were normalized to the CaF2 peak to 

account for intensity variations that might occur during long-term measurements. The 

normalized spectra in the calcareous region (I) (Figure 23 (c)) show the expected two main 

peaks of the calcite group at ≈277 cm
-1 

(Lattice mode), and ≈1085 cm
-1

(υ1(CO3
2-

 ) str. mode) 

[176]. These peaks are only prominent in the exterior region and intensity strongly decreases 

towards the interior of the barnacle (Figure 23 (a and b)). It is noticeable that the calcareous 

region shows weak peaks for amide-I, amide-II, amide-III and amide IV at 1636 cm
-1

, 1565 

cm
-1

, 1265 cm
-1 

and 747 cm
-1

, respectively (Table 2) [10, 180, 183], indicating the presence 

of small amounts of organic, amide rich material even in the mineralized part of the juvenile 

barnacle. The baseplate area surrounding the antennules (II), and the antennule region (III) 

reveal much higher intensities of the amide bands, presumably due to larger amounts of 
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proteinaceous material. Considering the penetration depth of the µ-Raman experiment of 

˃ 20 μm, it is possible that besides the cement also soft tissue inside the organism contributed 

to the amide signal.  

Despite the fact that water is a relatively weak Raman scatterer, a broad peak for –OH str. 

of water at ≈3420 cm
-1

 is observed outside of the barnacle (Figure 22h) [10, 177,178]. In the 

shell region, this signal is strongly decreased, pointing to a much lower presence of water and 

hydroxyl groups in the mineralized area. Interestingly, the signal is surprisingly high in the 

baseplate region (II). The presence of hydroxyl-rich material could indicate a high amount of 

hydrated, hydroxylated functional groups. The intensity of –OH modes is depleted in the 

antennule region. It could be speculated that the highly crosslinked cyprid cement, is less 

hydrated and its composition contains less hydroxyl groups. 

The main peaks of different CH vibration modes (symmetric CH3, symmetric CH2 and 

asymmetric CH2 at 2880, 2935 and 2973 cm
-1

 respectively) [180] appear in all spectra 

(Figure 23). As shown in the Raman map (Figure 22f), the intensity of these band ranges 

from 2880 to 2980 cm
-1 

is located in the antennule region. These CH bands have been found 

in each in-situ spectra of antennule region of B. amphitrite juvenile barnacles from one up to 

fourteen days old with rather high intensity and therefore has drawn attention (Figure 23). 

This result may indicate that juvenile barnacle cement is an hydrophobic material in 

agreement with the work of Kei Kamino [140], who stated that barnacle cement is a 

proteinaceous material that consists of hydrophobic amino acids.   
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Figure 23: Raman spectra of juvenile barnacles at different time points after settlement (one 

day up to 14 days). a) Antennule region (III), b) baseplate region surrounding the antennule 

(II) and c) calcareous region (I). 
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At early time points after settlement (one-day to four-days), the main peaks of C–CH2 

stretching mode at 1003 cm
-1

, υ2(C–C) at 1155 cm
-1 

[10, 177, 179, 180] and the conjugated 

C=C str. (υ1(C=C)) at 1550 cm
-1 

in the calcareous region (I) were very weak. At later time 

points, these peaks have significantly increased. Especially the strong presence of unsaturated 

compounds (C=C vibration modes) has been surprising and recent measurements of Schmidt 

et al [10] assigned them to carotenoids. Additionally, in the antennule region (III) and the 

area surrounding the antennule (II), the C–C str. and the C=C str. modes were very prominent 

and their intensities changed with time. At all time points, a weak band of C=O str. at 1750 

cm
-1 

[177–178] was observed in the calcareous region (I), while it was lacking in all other 

areas (antennule region and/or baseplate area around the antennule). This C=O str. band 

might be related to the chemical composition of the mantle epidermis, which is the primary 

substrate for calcareous shell formation [184]. 

6.1.1.2. Reproducibility of spectra 

An important question stated at the beginning of the study has been the repeatability of 

spectra taken at apparently similar positions in different barnacles or even for different 

footprints. As illustrated in Figure 24, the five different individual Raman spectra have been 

recorded within the region where footprints are expected after one-day of surface exploration 

on a CaF2 disk (Figure 24(c)). Furthermore, three spectra (Figure 24 (b)) have been recorded 

for the remaining cement of two-days-old juvenile barnacle after removal of the organism 

from the surface. Additionally, spectra of four different, four-days-old settlement juvenile 

barnacles (B. amphitrite), recorded at the antennule region are shown in Figure 24 (a). Most 

importantly, it has been found that all the spectra from similar regions, but different 

individuals, look alike, that is have similar shape and peak intensities. This shows that 

reproducible data can be generated from several different individual barnacles for the 

different characteristic regions.  
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6.1.1.3. Comparison of cyprid footprints and juvenile barnacle cement 

As described in subsection 2.2.1, the cypris larva explores surfaces in order to find the 

optimum place for adhesion. In this process, it uses a pair of antennules to secrete an 

appropriate amount of protein temporary adhesive that is left on surfaces and defined as 

footprint (Figure 7 (B)). When the larva finds the right place for adhesion, it secretes another 

type of sticky permanent adhesive known as cyprid cement as shown in (Figure 7(C)). 

Figure 25 (b) shows the average spectra of five individual Raman spectra recorded within 

the region where footprints are expected after one-day of cyprids‘ exploration of CaF2 disks. 

In addition, average of 4 Raman spectra recorded within the antennule region of recently 

attached cypris larva (after permanent settlement and before metamorphosis) is shown in 

Figure 25 (a). It can immediately be seen that the intensity of footprints showed much lower 

overall signal intensities compared to the in-situ data of the juvenile barnacles due to the 

Figure 24: a) Four spectra recorded in the antennule region of different four-days-old juvenile 

barnacles (B. amphitrite), b) three spectra recorded in the remaining barnacle cement (after 

juvenile barnacle removal) and c). Five Raman spectra recorded within the region where footprints 

are expected after one day of surface exploration (CaF2 disk). 
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lower total amount of material probed and the fact that in case of in-situ study the high 

penetration depth (˃20 µm) can capture not only the interface area between the surface and 

the baseplate but also part of juvenile barnacle bodies. The noteworthy regions are the amide 

bands and the C=C stretching region. Footprint spectra show the absence of amide-IV at 747 

cm
-1

and relatively weak peaks of C–CH2 str., C–C str., and C=C str. at 1003 cm
-1

, 1155 cm
-1 

and 1550 cm
-1

, respectively. Interestingly, the C=C str. vibrations were much weaker in the 

footprints compared to the cyprid cement. Thus, the carotenoid seems to be rather located in 

the interior of the barnacle than in the cement. 

 

 
  

 

 

 

 

6.1.1.4. Protein secondary structure of cyprid cements at different time points 

It is well known that protein secondary structure is a main characteristic of protein 

biomolecular structure. Protein is a polymer made up from various residues of L-α-amino 

acids. Driven by a number of non-covalent interactions, e.g. ionic interactions, Van der Waals 

forces, hydrogen bonding, hydrophobic, packing, proteins fold into specific spatial 

conformation, one or several at a time, in order to perform their biological functions. Proteins 

can form four different levels of structure: primary, secondary, tertiary and quaternary 

Figure 25:a) Average of 5 Raman spectra (magnified ―X5‖) recorded within the region where 

footprints are expected after one-day of surface exploration (CaF2 disk), compared with b) 

average of 4 Raman spectra recorded within the antennule region of B. amphitrite settled on 

CaF2 disk (first attach). c and d) SEM images of attached cyprid and footprint blobs 

respectively.  
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(Figure 26 (A). Principal protein secondary structures are α-helix, β-sheet, β-turn and 

unordered structure (Figure 26 (B)).The determination of protein three-dimensional structure 

and its type should be performed in order to understand protein functions at a molecular level 

[185]. 

 

 
 

 

 

 

Especially the amide-I band at 1600–1700 cm
-1 

provides information on the secondary 

structure of proteins [188]. As relative peak intensities might change compared to IR 

spectroscopy, insulin and pepsin were included as reference materials in the study (Figure 

27.1 and 27.2). Insulin is a model compound for α-helix and shows, in agreement with both 

IR and Raman measurements [189– 190], a main peak at 1654 cm
-1

. Pepsin in turn is rich in 

parallel β-strands and shows a main band at 1669 cm
-1

, also in good agreement with the peak 

positions found in IR spectroscopy [191]. The vertical lines in the spectra indicate the typical 

positions of the amide-I vibrations of the different secondary structures. In addition to α-helix 

(1654 cm
-1

) and parallel β-strands (1665 cm
-1

), some further wavenumbers are marked: β-turn 

at 1693 cm
-1 

[9], unordered at 1645 cm
-1

 [9, 189], antiparallel β-sheet at 1637 cm
-1

 [9]. At 

lower wavenumbers, two typical ring modes of the phenolic compounds phenylalanine and 

tyrosine, at 1615 cm
-1

 and 1604 cm
-1

 are indicated [192]. At 1622 cm
-1

, phenolic compounds 

or β-motifs of amyloid fibers [13] are likely to contribute. The latter have recently been 

identified in ATIR measurements and assigned to vibrational modes of amyloid structures 

[13]. In order to verify this statement, amyloid reference sample of (Amyloid β-protein 

fragment 1–42, Sigma-Aldrich, Louis, Germany) have been examined and compared with the 

amide-I bands of variously aged cyprid cement specimens. Both amyloid and phenolic 

compound bands will be discussed in detail below. 

 

Figure 26: A) Levels of protein structure [186], and B) main types of protein secondary 

structures [187]. 
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The spectra in Figure 27, compare the reference compounds (27.1 and 27.2) with the 

cyprid footprints (Figure 27.3), and the amide-I spectra recorded at the antennule region of 

the juvenile barnacles settled on CaF2 disks at different time points (Figure 27.4 – 27.9). It is 

to be kept in mind that the spectra in the in-situ analysis of the antennule region by 

conventional Raman microscopy are different as probing is not only sensitive to the surface, 

but also to the bulk of the young barnacle (˃20 µm penetration depth). In the footprint spectra 

(Figure 27.3), the major amide-I band is located at 1622 cm
-1

. This band is associated with 

cross-βmotifs that were previously identified as a major structural feature in deconvoluted 

Figure 27: Raman spectra of the amide-I region. Comparison of cyprid cements with 

reference spectra ((1) pepsin (β-sheet), (2) insulin (α-helix), (3) amyloid β-protein), (4) 

footprint spectra (intensity five times magnified), and (5–10) spectra recorded at the 

antennule regions of the juvenile barnacles settled on CaF2 disks at different time points 

(from one-day to fourteen-days-old). 
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spectra of adult barnacle adhesive [13]. From the first glance, it can be easily seen that 

spectra of permanent cyprid cement are markedly different from the footprint spectrum, 

indicating a different protein secondary structure. In-situ data of the antennule region of the 

juvenile barnacle (one-day up to fourteen-days after settlement (Figure 27.4 – 27.9)) show a 

high variability and the shape of the spectra changes over time. Two dominant peak shapes 

become visible. At the 1, 4 and 8 days time points, major bands at 1637 cm
-1

 and two 

shoulders at lower wavenumbers at 1604 cm
-1

 and 1615 cm
-1 

and another shoulder at high 

wavenumbers at 1665 cm
-1 

is measured. The first and most intense peak is at 1637 cm
-1

 and 

the shoulder at higher wavenumber at 1665 cm
-1

 point towards strong β-sheet contributions. 

Two bands at low wavenumbers were previously assigned in Raman spectroscopy to 

aromatic residues, the band around 1604 cm
-1

 to phenylalanine and the band at 1615 cm
-1

 to 

tyrosine [192]. The majority of the spectra shown in Figure 27 contain contributions at these 

lower wavenumbers, indicating a potential presence of the two amino acids. Indeed it is 

reported that phenolic compounds are essential in cross-linking and adhesion of barnacle 

cement. 

In turn after 6 and 12 days, a strong -helix band at 1654 cm
-1

 is observed. It is also 

interesting to note that the intensity of the two bands at 1602 cm
-1

 and 1615 cm
-1 

seems to be 

correlated with the intensity of the -helix band at 1654 cm
-1

. As mentioned above, these 

Raman signals were previously assigned to aromatic phenylalanine and tyrosine [192] and 

they could be involved in cross-linking of the adhesive.   All the above mentioned results are 

described in detail in subsection 6.2.3. 

 

6.1.1.5. Calcification process 

The calcareous barnacle shell and the baseplate are formed by the deposition of seawater 

elements such as K, Sr, Sn, and mainly Ca on the outer membranes (Mantle epithelium) of 

the organism. The specific structure of mantle epithelium cells allows lime transportation 

through the mantle from the ambient seawater [193]. 

Raman spectroscopy was used in-situ to follow the initial calcification process of a 

barnacle (B. amphitrite). Barnacle specimens were investigated by Raman from the cyprids‘ 

first attachment on the calcium fluoride (CaF2) surface up to several days after juvenile 

barnacles were completely formed and the changes in calcite bands intensity with time was 

quantified. 

During the experiment, artificial seawater inside the sample holder container with 

barnacles was exchanged two times per day in order to maintain the same concentration 

(concentration values) of elements in the barnacle ambient media, because the growth of the 

calcareous shell and baseplate requires continuous availability of calcium from the 

surrounding seawater [193]. 

The results of this study have shown that four-days-old cyprids start to settle on the CaF2 

surface after about 18 hours from the beginning of exploratory process. Within 3–4 hours 

after settlement cyprids go through metamorphosis and become juvenile barnacles within 
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several hours. The characteristic bands of calcite (CaCO3) can be observed at 275±5cm
-1 

and 

1088±5 cm
-1 

[176]. It takes around 3–4 hours for the settled barnacle to start metamorphosis 

that will last for around 5 hours and end by disposal of the a cyprid protective biomembrane 

carapace. Right after the protective carapace is disposed, the calcite peaks start to appear 

(Figure 28 (a)), thus the shell calcification process starts around 8–9 hours after permanent 

attachment. Within the first 8 hours of the calcification process, the intensity of calcite bands 

exhibits a steep growth of about 0.204 a.u./hr as is shown in Figure 28 (b), and decreases 

about 10 times to the rate of 0.022 a.u./hr afterwards. The results obtained correspond to the 

research work of Bourget and Crisp [194], who stated that barnacle shell plates are growing 

rapidly during the first several hours after metamorphosis. The fast growth within first few 

hours is related to high accumulation of the calcium from the ambient water in the epidermis 

layer that is present directly under the shell and is known as mantle epithelium. Scheme of 

barnacle transformations at its early life stages are represented in Figure 29. 

 

 

 
 

 

Figure 28: a) Calcite bands spectra of juvenile barnacle (B. amphitrite) at different 

time points from metamorphosis to 200 hr, and b) calcite bands intensity peak values 

at the same time points, error bars according to Student's t-distribution. 
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6.1.2. Ex-situ Raman spectroscopy results 

Due to the relatively large penetration depth of Raman spectroscopy (˃20 µm), it cannot 

be excluded that besides the adhesive also inner tissues of the organisms contributed to the 

signal. To further enhance surface sensitivity, barnacles have been removed and the 

remaining cements have been studied. As described in section 5.3, barnacle cement samples 

have been obtained through careful removal of settled barnacles, followed by gentle rinsing 

of the baseplate region with distilled water to remove salts and debris. Both light microscopy 

and 3D laser microscopy have been used to select samples which show solely residues from 

the baseplate free from any other remaining parts of the barnacle. It has been observed that 

the majority of remaining cement is localized in the antennule region after barnacle removal. 

Furthermore, it is noteworthy that the diameter of the remaining cement plaque increases with 

time (≈50µm for metamorphosis, ≈80 µm for one-day-old, ≈100µm for two-days-old and 

≈140 µm for six-days-old barnacles) as shown in Figure 30 (B). The increasing diameter of 

the cement plaque can be explained by the fact that juvenile barnacles continue to secrete 

additional cement portions in order to increase the strength of adhesion to the surface. 

Figure 38 (A) shows the average spectra of four individual Raman spectra recorded at the 

antennule region of B. amphitrite settled on CaF2 disks at different time points 

(metamorphosis, one-day, two-days, six-days-old) after barnacle removal ("remaining 

cements"). 

Figure 29: Time scheme of barnacle transformations at early life stages 



6. Results and discussion  
 

57 
 

 
 

  

 

Interestingly, all Raman spectra that have been recorded at different time points are very 

similar in contrast to the in-situ data. This similarity may be explained as termination of the 

crosslinking process of the cement after removal of the organism. Raman spectra of the 

remaining barnacle cements has shown that the original interface consists of proteinaceous 

material, since amide-I and II bands near 1636 and 1565 cm
-1

 [10, 177, 183], respectively, are 

the most dominant peaks. Also, both of amide-III and amide-IV bands were also present, as 

indicated by the small peak at 1265 and 747 cm
-1

, respectively [177, 180–183]. 

All remaining cement spectra that have been recorded at different time points (Figure 30 

(A)) shows an intense bands of CH stretching of different vibration modes at range of  2880–

2980 cm
-1 

[9, 17, 20], which earlier has been detected in the in-situ spectra, specially, in the 

antennule regions of the juvenile barnacles. This result enhances the hypothesis that juvenile 

barnacle cement is a hydrophobic material [140]. 

Furthermore, all spectra of the remaining cements show a weak peaks of amide-IV at 747 

cm
-1

 and a very weak bands related to carotenoid (C=C and C–CH2 str. vibrations at 1550 cm
-

1
 and 1003 cm

-1
 respectively) [10, 177, 178, 180]. Similarly to footprint spectrum (Figure 25 

(a)), the carotenoid seems to be more likely located in the interior of the barnacle rather than 

in the adhesive. 

As in in-situ study, amide-I bands of all remaining cement spectra (Figure 31) are 

examined carefully in order to study the protein secondary structure of the remaining cyprid 

Figure 30: A) Average of four Raman spectra recorded at antennule region of B. amphitrite 

settled on CaF2 disks at different time points (a1 – a4) after barnacle removal. B) SEM of 

the remaining cements at the same ages (b1– b4). 

 



6. Results and discussion  
 

58 
 

cements and to determine if there are any differences in the secondary structure at these 

different time points or not (Metamorphosis, one-day, two-days and six-days-old). 

Spectra of amide-I in Figure 31, compare the reference (insulin, pepsin and amyloid β-

protein) compounds (Figure 31 (1–3)) with the spectra recorded at the antennule regions after 

removal of the barnacles "remaining cements" at different time points (Figure 31 (5–8)). The 

vertical lines in the spectra indicate the typical positions of the amide-I vibration. As 

described before both of insulin and pepsin showed the expected main secondary structure 

which is in agreement with IR measurements [189–191]. While, Amide-I spectrum of the 

amyloid sample showed main band at 1667 cm
-1

 with a small identification band at 1625 cm
-1 

[195].  

Many of the previous studies [9, 11, 37, 137–139] focused on the protein secondary 

structure of the adult barnacle cements by using Fourier Self-Deconvolution (FSD) and peak 

fitting of the amide-I bands of the IR spectra. The results of these studies showed that adult 

barnacle cement has primarily a amyloid-β-sheet secondary structure (~40% of the overall 

peak area) appear at 1620–1630 cm
-1

, in addition to other secondary structures with a low 

percentage of α-helix, β-turn and disordered, which appear at 1655, 1680 and 1640 cm
-

1
respectivily. Amyloid-β-sheet is suggested to be the final form of the secondary structure of 

the adult barnacle cement after completing cross-linking (curing) [14]. In the current, study 

the spectra recorded in the antennule region, after removal of the barnacles (Figure 31 (4–7)), 

show mainly β-sheet structures at 1665 cm
-1

 with a broad contribution at lower 

wavenumbers. Over the course of one week, the general shape of the amide bands remain 

similar and only subtle changes are observed. This observation correlates with the slow 

growth of the plaque of cyprid cement in the antennule region and indicates that no major 

chemical changes occur in the cement over time.  

The reference sample of amyloid β-protein also shows a main peak at 1667 cm
-1

 (Figure 

31 (3)) [52]. However, it is well known that the band at 1665–1670 cm
-1

 is the principle band 

for  a number of proteins, main secondary structure of which is β-sheet. Additionally, ATIR 

measurements have been conducted for the amyloid reference sample that gave typical 

spectrum for amyloid main band at 1628 cm 
-1 

(Figure 32) [52]. Concluding the result of 

these experiments it can be stated that Raman spectroscopy can distinguish between α-helix 

and β-sheet protein secondary structure, but, is however, not sensitive enough to distinguish 

between different types of β-sheet structure, that can also be confirmed by the fact that insulin 

(Figure 31 (2) and Figure 32 (c)) and amyloid structure (Figure 31 (3) and Figure 32(b)) are 

indistinguishable. Thus, this band at 1665 cm
-1

 of the spectra of the remaining juvenile 

barnacle cement could be related to amyloid protein structure. 

In addition to the band at 1665 cm
-1

 of β-sheet, spectra of remaining barnacle cements  

show two bands at low wavenumbers that were previously assigned in Raman spectroscopy 

to aromatic residues, the band around 1604 cm
-1

 to phenylalanine and the band at 1615 cm
-1

 

to tyrosine [192]. As described before, these bands of phenolic compounds are essential in 

cross-linking and adherence of barnacle cementing bioadhesive [13, 25]. 

This similarity of the protein secondary structure of the cyprid cements remaining on the 

CaF2 surfaces at different time points emphasizes the advantage of the in-situ studies, which 



6. Results and discussion  
 

59 
 

enables the follow-up of chemical and physiological changes that happen with time, at 

variance with the ex-situ studies which show only the final form of the protein cement. 

 

 

 

Figure 31: Raman spectra of the amide region. Comparison of cyprid cements with 

reference spectra ((1) pepsin (β-sheet), (2) insulin (α-helix), (3) amyloid β-protein), and 

(4–7) spectra recorded of cements remaining on CaF2 disks after removal the organisms 

at different time points (metamorphosis, one-day, two-days and six-days-old). 
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Figure 32: Comparison between a) amide-I ATIR average spectrum, b) amide-I Raman 

average spectrum of amyloid and c) pepsin as a reference samples of β-sheet secondary 

structure. 
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6.1.3. Discussion of in-situ and ex-situ Raman results 

In this section, results of both in-situ and ex-situ Raman spectroscopy are discussed. As 

has been mentioned before Raman spectroscopy has a relatively large penetration depth (˃20 

µm), therefore, the comparison between in-situ and ex-situ results is a good opportunity to 

check if there is any effect of the penetration depth on the in-situ results.  

6.1.3.1. Comparison of spectra recorded at antennule region (in-

situ), remaining cement (ex-situ), and cyprid footprints 

Figure 33 shows the average spectra of five individual Raman spectra recorded within the 

region where footprints are expected after one-day of cyprids‘ exploration of CaF2 disks. In 

addition, average of 4 Raman spectra recorded within the antennule region of one-day-old 

juvenile barnacle (B. amphitrite) settled on CaF2 disk before (in-situ) and after removing (ex-

situ) the organisms. The intensity of footprints and remaining barnacle cement showed much 

lower overall signal intensities compared to the in-situ data of the juvenile barnacles due to 

the lower total amount of material probed and the fact that in the case of in-situ study the high 

penetration depth (˃20 µm) captured not only the interface area between the surface and 

the baseplate but also part of juvenile barnacles' bodies. Generally, both spectra recorded at 

the antennule region (in-situ), and at remaining cement (ex-situ) showed similarity in most 

bands, while, the noteworthy regions are the amide bands and the carotenoid region. The 

footprint spectra show the absence of amide-IV at 747 cm
-1

, while either of amide-I, II and 

III, at 1640, 1580 and 1266 cm
-1

 respectively spectra have shown shifting, what in case of 

amide-I and amide-III indicate difference in the protein secondary structures. Therefore, 

amide-I bands of all spectra have been taken and plotted separately in order to clarify these 

differences in the protein secondary structures. The differences in the protein secondary 

structures between in-situ (spectra recorded at the antennule region), ex-situ (remaining 

cyprid cement) recorded at the same time point, and the temporary adhesive (footprint) are 

discussed in details in following subsection 6.1.3.1.1. Another important observation in this 

comparison is that in-situ spectrum (recorded at the antennule region) showed quite intense 

bands of all carotenoid peaks (C–CH2 str., C–C str., and C=C str. at 1003 cm
-1

, 1155 cm
-1 

and 

1550 cm
-1

,respectively) [10, 177, 178, 180], while, these bands are much weaker in the 

footprints and approximately vanish in the cement remaining after removal of the barnacle 

compared to the in-situ spectrum. This result supports the previously mentioned hypothesis 

that carotenoid seems to be rather located in the interior of the barnacle than in the adhesive. 

The hypothesis of carotenoid origin is discussed in detail in the following subsection 

6.1.3.1.2. 



6. Results and discussion  
 

62 
 

 
  

 

  

 

6.1.3.1.1. Protein secondary structure in in-situ and ex-situ study 

In-situ and ex-situ spectra from Figures 27 and 31, which are discussed in 6.1.1.3. and 

6.1.2. subsections, are plotted together in Figure 34 for comparison. As in previous Raman 

spectra images, the vertical lines reflect the typical peak positions for different protein 

conformations and compositions.  

General observations that can be made from this image are: 1) the spectra recorded at the 

antennule regions are markedly different from the footprints spectra, 2) ex-situ: all the main 

protein secondary structures in remaining cement stay the same at different time points, 3) in-

situ: data of the antennule region show high variability, shape of the spectra changes with 

time. 

The fact that all the main protein secondary structures in remaining cement stay the same 

at different time points means that what is left on the surface is completely cured cement and 

no more crosslinking occurs. 

Figure 33: Comparison of Raman spectra recorded within the region where footprints are 

expected after one-day of surface exploration (CaF2 disk), with Raman spectra obtained 

from the same one-day-old juvenile B. amphitrite individual settled on CaF2 disk within 

the antennule region, before and after removing the organism. Each spectrum is an 

average of 5, 4 and 4 repetitions, respectively. 



6. Results and discussion  
 

63 
 

 

 
 

The drastic variations in the amide-I band of in-situ results at different time points after 

settlement could be attributed to various reasons. First of all, spectra in the in-situ analysis of 

the antennule region by conventional Raman microscopy may differ as probing is not only 

sensitive to the surface, but also may acquire information from the bulk of the young barnacle 

(≈20 µm penetration depth), so that possibly not only the interface is probed, but also part of 

the interior of the barnacle. Thus, Raman data could be sensitive to physiological processes 

inside the barnacle in addition to cement secretion. However, one could also speculate that 

such fluctuations could also happen due to different secretory activity of the barnacles. 

However, one could also speculate that such fluctuations could also happen due to the 

difference in barnacle secretory activity. Transformation processes between β-sheet and -

helical structure was for example observed by FTIR during the conversion of native insulin 

Figure 34: Raman spectra of the amide region. (a) Comparison of  remaining cement 

region with (a1) footprint spectra (intensity five times magnified), and (a2–a5) spectra 

recorded of cements remaining on CaF2 disks after removal the organisms at different 

time points (metamorphosis, one-day, two-days and six-days-old).  (b) Comparison of 

(b1) footprint spectra (intensity five times magnified) and (b2–b7) spectra recorded at the 

antennule region of juvenile barnacles settled on CaF2 disks at different time points. 
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from the helical form to the fibrillar -conformation [196]. Elhaddaoui et al. [196] observed 

that -helix shifting from 1657 cm
-1

 to 1632 cm
-1

 can be indicative for a conversion to β-

sheet, and a shoulder at 1660 cm
-1

 can be assigned to the vibrations of the non-transformed -

structure incorporated into the -fibres. 

The differences in in-situ spectra might be caused by either the physiology inside the 

barnacle or the secretory activity of the barnacles. The latter hypothesis that this variability is 

related to the resuming secretion of another amount of the cement in order to increase the 

adhesive strength with the surface [13, 25] seems more appealing due to several reasons. 

First, 3D laser microscope images have shown that the thickness of the remaining cyprid 

cements are between 10–20 µm (Figure 35), which means that main information is more 

probably related to the cyprid cement rather than to any other physiological parts of the 

organism. Secondly, this variability does not occur randomly, but there is an organised 

process happening with time, i.e. increasing of α-helix band at 1654 cm
-1 

is accompanied by 

an increasing of the phenolic bands at 1615 and 1604 cm
-1

 (Figure 34 (b4 and b6)) and 

decreasing of the phenolic bands intensities occur with the shifting of the α-helix band at 

1654 cm
-1

 to disorder at 1645 cm
-1

 (Figure 34 (b5 and b7)). The absorption of the α-helix is 

shifting from 1654 cm
-1

 to 1640 cm
-1

 during the conversion to β-sheet, i.e. from liquid to 

solid phase [196]. Finally, it is well known that the phenolic compounds are consumed during 

curing process of barnacle cement [13, 25]. Therefore, the changes in secondary structure 

could be correlated to the cement curing process. 

The result of this comparison between in-situ and ex-situ results have shown the advantage 

of the in-situ studies because in-situ studies allow us to follow the dynamics of the changes in 

real times, depending time step chosen. In order to verify this hypothesis further research is 

needed with use of a different technique or modification of the existing experimental 

methods. 
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6.1.3.1.2. Origin of carotenoid bands 

In agreement with previously published data [10] a high intensity of unsaturated C=C str. 

vibrations at 1518 cm
-1 

has been observed. These signals have been assigned to carotenoid 

components, which are mostly terpenoids that contain polyene hydrocarbon chains. 

Carotenoids are well known for their essential role in colored pigments and light harvesting 

complexes [197]. As shown in Figure 23, these components can be found across the whole 

barnacle and are present in both, the baseplate and the shell region. Interestingly, their 

concentration is very low in the antennule region in the early attachment phase (Figure 23 

(a)). Thus, they have only a weak contribution to the cyprid cement. After barnacle removal 

the C=C str. modes are absent in the remaining cement, but in the footprints spectrum it is 

observed with very low intensity which means that footprints seem to contain some of these 

unsaturated components (Figure 33). This again supports the notion that footprints and the 

cyprid cement use a different chemistry. Especially at later time points of the experiments, 

strongly varying carotenoid content has been observed in the sample (e.g. increase towards 

14 days in Figure 24 (a)). This raised the question about the origin of these compounds. Since 

β-carotenoid is specifically required for the formation of oligomeric forms of the light 

harvesting complex in the green algae [197],  it is possible that the detection of carotenoid 

bands in all juvenile barnacle spectra are related to the green algae (Tetraselmis), which were 

Figure 35: 3D laser microscope images of the cyprid cement remaining on the Kapton
®
 

surfaces at a) first attachment, b) 2-days-old and c) 7-days-old after removing juvenile 

barnacles. 



6. Results and discussion  
 

66 
 

used for feeding. In Figure 36, spectrum of the antennule region (a) of 14 days old juvenile 

barnacle is compared to Raman spectra of Tetraselmis algae (b) and commercially β-carotene 

(c). All three spectra show intense str. vibrations at 1518 cm
-1

 which are related to υ1(C=C 

str.). The υ2(C–C) str.  and C–CH2  str. vibrations, at 1155 cm
-1

and at 1003 cm
-1

, respectively, 

are visible at similar wavenumbers and slightly vary in intensity with respect to the C=C 

band. In all three cases, the overtones of the C=C vibration become additionally visible. The 

similarity of the spectra suggests that one source of carotenoids could indeed be the algae 

used for feeding. 

 

 

   

 

  

 

Figure 36: Agreement of carotenoid bands in Raman spectra of a) antennule region of 14-

days-old juvenile barnacle (B. amphitrite) settled on a CaF2 disk, b) green algae (Tetraselmis) 

used to feed the barnacles, and c) standard β-carotene. 
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To further understand this phenomenon, in-situ Raman measurements were conducted 

within the antennule region of juvenile barnacles one hour before and after feeding the 

organisms with algae. The experiments were conducted with juvenile barnacles between ten 

to thirteen-days after settlement. The results in Figure 37 show that the overall carotenoid 

band intensity decreases over time. This phenomenon could be attributed to the bleaching of 

the photosensitive pigment by the laser beam after a long illumination period, which 

commonly occurs in natural systems with carotenoid pigments [112]. After feeding the 

carotenoid signal is in all cases enhanced compared to the signal before feeding, clearly 

indicating that the algae are the source of unsaturated components visible in Raman. 
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The difference between this result and the results shown before (Figure 23 (a)), occurs 

since barnacle feeding times have not been mentioned in the earlier studies. Therefore, peaks 

intensities of carotenoids in Figures 23 vary greatly at different time points. This fluctuation 

of carotenoid bands intensity in the spectra recorded at different time points (Figure 23 (a)) 

may be related to the amount of food juvenile barnacles were fed. 

 

6.1.3.2. Confocal Raman spectroscopy maps 

Application of confocal mode in Raman spectroscopy allows to restrict the thickness of 

the probed volume and thus to make the measurements more interface sensitive. This 

technique has been used to investigate the chemical distribution of the: 1) juvenile barnacle 

baseplates (B. amphitrite) settled on CaF2 disks at different time points (in-situ study), and 2) 

cyprid cements remaining on the CaF2 disks after juvenile barnacle removal (ex-situ study). 

In course of the in-situ study, firstly some difficulties arose during the initial attempts to get 

explicit mapping due to the numerous movements of organism during measurement since 

after permanent attachment barnacle rotates itself to find the best orientation of cirri 

depending on the currents and other conditions to reassure the easiest flow of food. 

Figure 37:  Young barnacles between 10 and 13 days after settlement were observed. 

Bars represent the mean of Raman intensity of the carotenoid bands one hour before 

and one h after feeding, error bars are related to the student's t-distribution. 
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Therefore, only older juvenile barnacle individuals (over 5 days old) have been chosen for the 

experiment to avoid this problem. 

In order to visualize the spatial distribution of elements, 2D distribution maps have been 

generated by integrating the intensity of 400 scan points of the selected bands over the entire 

baseplate and antennule region and represented as color images in Figure 38 (a and b), 

respectively. The chemical bands included in Figure 38 are calcite υ1(CO3
2-

) vibration (1000–

1100 cm
-1

); amide-I contributions (υ(C=O) str. (1600–1700 cm
-1

); a combination band of CH 

str. (2880–2980 cm
-1

); the broad –OH str. signal (3300–3500 cm
-1

); and unsaturated C=C 

double bond υ 1(C=C str.) vibrations (1480–1565 cm
-1

)). 

 The in-situ results (Figure 38 (a)) have shown that calcite is located at the rim of the 

juvenile barnacle baseplate at the calcareous shell region, whereas in the ex-situ distribution 

map calcite is absent, which means that there is not any calcite present in the composition of 

the cyprid cement. Interestingly, the intensity of the calcite located at the boundary of the 

calcareous rim is not the same in the in-situ maps (Figure 38 (a)), i.e. the intensity 

distribution is not continuous and is separated into discrete peaks. This phenomenon could 

occur due to one or combination of the following reasons. First, presence of the cement ducts 

at specific parts of the rim [13] may lead to the lower thickness at these duct areas than in 

others, and therefore lower intensities at these duct areas can occur. Second, distances 

between the selected measurement points could have resulted in discrete peaks after 

integration. Finally, the calcareous shell could form unevenly and that may have resulted in 

different intensities along the rim. 

Except for calcite, both of in-situ and ex-situ maps showed similarities. Both amide-I and 

CH are localized at the antennule region, where the adhesive is secreted (in case of in-situ), 

and in the remaining cyprid cement (in case of ex-situ). This result supports the previous 

assumption that cyprid adhesive is a proteinaceous material which has hydrophobic 

properties. In the in-situ maps, both amide-I and CH groups appear as two steep ―mounts‖ 

located exactly at the antennule region, which supports the previously mentioned assumption 

that juvenile barnacle cement is localized only at the antennule region in these earlier time 

points.   

Most of the OH str. has been detected in the area surrounding the antennules and 

surrounding the organism itself (Figure 38 (a)). It can be assumed that in comparison to the 

shell and the antennule region, a greater amount of water is present in this region. The 

depletion of OH str. in the antennule region could arise from the highly crosslinked cyprid 

cement, which is less hydrated in comparison to the surrounding baseplate since regions 

around the antennule and around the organism are filled with artificial seawater. 

Confocal results provide further proof that carotenoid signal (υ 1(C=C str.) vibrations) is 

most probably not related to the cyprid cement, since it is present randomly with different 

intensities in entire baseplate region in the in-situ maps (Figure 38 (a)), while it vanishes in 

the ex-situ maps of the remaining cement (Figure 38 (b)).  

Finally, the confocal Raman data is consistent with previous non-confocal Raman 

microspectroscopy results and in both cases the different three regions (calcareous region, 

area surrounding the antennule region and the antennule region) can be distinguished. 
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6.2. µ-X-ray microprobe fluorescence results 

The results presented in the following chapter were obtained through collaborative work 

of several people. The samples with juvenile barnacles of specific ages were prepared 

personally by me. Experiments were conducted by Mr. T. Senkbeil and me under attentive 

guidance of Dr. Rolf Simon and Dr. David Batchelor. The raw data was processed by Mr. T. 

Senkbeil. Finally, I performed the data processing and results are being discussed below. 

6.2.1. In-situ results of µ-X-ray microprobe fluorescence 

The advantage of X-ray microprobe fluorescence technique over electron microscopy is its 

greater penetration depth compared to electron microscopy, i.e. ~100 µm compared to only a 

few nanometers in electron microscopy and ~20 µm in case of Raman spectroscopy. In-situ 

µ-X-ray fluorescence (µ-XRF) has been used in order to provide a ‗distribution map‘ of the 

constituent elements of the baseplate of the juvenile barnacle settled on the Kapton
®
 foil (8 

µm thickness and 64 mm in diameter) in artificial seawater at different time points (from 

cyprid to seven-days-old) in-situ. As described in subsection 5.1.2, kapton
®
 is necessary as 

the substrate needs to be X-rays transmissive. The boundary ages, studied in this experiment, 

metamorphosis and 7 days old, were chosen for a better demonstration of the change in the 

chemical elemental distribution with age and are presented in Figure 39 and discussed below. 

Calcareous shell: Figure 39 shows that at baseplate rims of the juvenile barnacle settled at 

different time points (metamorphosis and 7-days-old), calcium (Ca) is co-localized with high 

concentrations of other elements such as potassium (K), strontium (Sr) and manganese (Mn). 

Figure 38:  3D distribution maps of selected Raman bands intensities: calcite υ1(CO3
2-

) 

vibration (1000–1100 cm
-1

); amide-I contributions (υ(C=O) str. (1600–1700 cm
-1

); a 

combination band of cyanogen bromide type (υ3+2υ2(Br–C≡N) str. ( 2900–2980 cm
-1

); 

the broad –OH str. signal (3300–3500 cm
-1

); and unsaturated C=C double bond υ 1(C=C 

str.) vibrations(1480–1565cm
-1

)) 
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Indeed, Sr and Mn are known to be built into the calcareous shell plates [198]. To build a 

strong calcareous shell these elements were deposited during calcification process on the 

outer membranes (Mantle epithelium) of the organism most likely from artificial seawater 

components. The specific structure of mantle epithelium cells allows lime transportation 

through the mantle from the ambient seawater [193]. µ-XRF maps of metamorphosis showed 

that there are no Ca, K, Sr or Mn at the rim, which means that the calcification process has 

not started yet. This result is supported by the Raman result for calcareous process 

commencement (section 6.1.2), which has shown that the calcification process starts during 

the final stage of metamorphosis along with the disposal of the carapace. 

A general observation of stronger signal on one side of the rim has been made for all 

recorded datasets. Most probably this artifact has occurred due to the geometry of the non-

confocal setup and not due to an asymmetry of the elemental concentrations. Since 

penetration depth for each of the afore mentioned elements is greater than 100 µm, the 

concentrations of each element are seemingly projected into the plane of the Kapton
®
 foil 

under a 45° angle. The signal is intensified on one side and is unaffected on another side of 

the rim, if the orientation of a shell plate coincides with the direction of the X-ray beam, as it 

is the case for the side with high intensity of the rim. 

Center of baseplates: µ-XRF maps of juvenile barnacles have also shown that other 

elements such as iron (Fe), copper (Cu), zinc (Zn), arsenic (As), and bromine (Br) are 

observed near the center of baseplates. It could be possible that both of Fe and Cu are related 

to the blood vessel of the organism [50].  However, to date there is no evidence in presence of 

Zn and Br in barnacle blood or blood vessels. These results of XRF are in agreement with 

results of conventional and confocal Raman, which showed that different regions of juvenile 

baseplate have different chemical structure, exactly what was observed in the XRF results. 

Raman and confocal Raman results showed that calcite is localized at the rim of the 

baseplate, which supports the XRF result for occurrence of Ca also at the rim. Furthermore, 

the distribution of these elements (Fe, Cu, Zn , Br and As) at the center point of the baseplate 

may be related to the specific protein confermation expected in the cement at the antennule 

region. This hypothesis can be supported by the proteinaceous nature of the cement at the 

antennule region what is supported by Raman and confocal Raman spectroscopy results 

described in subsection 6.1.   

The maps recorded for the metamorphosis  show that Fe, Cu, Zn, As and Br are located in 

the middle of the baseplate, which is also truef or juvenile barnacles. However, in the case of 

metamorphosis, other elements (Ni, Mn, Sr) are also located in the middle, but with a low 

concentration. 

 Interestingly, in all maps Cu, Fe and Zn are located at the central part of cyprid, while Br 

is only localized as two points in the antennule region. The shift observed in XRF maps 

between Br position and Fu, Cu, Zn and As could be related to the inner organs of the 

juvenile barnacle related to the high penetration depth. Therefore, these signals might come 

from the abdomen that is why it was necessary to study the food of the juvenile barnacle, 

green algae. Indeed, these elements have been found in the green algae, in addition to high 

signal for Br. The fact that all Br signal is located at the antennule region and no Br signal 

was observed at the abdomen area could have occurred since juvenile barnacle had consumed 
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this element because it plays a role in protein curing process. However in order to avoid the 

penetration depth problem the ex-situ studies were conducted. 

A comparison with control spectra of green algae (Figure 40) has shown similarities and 

thus a potential correlation of feeding with the occurrence of these elements. The presence of 

these elements (Fe, Cu, Zn, As and Br) will be discussed in detail in the subsection 6.2.3. 

 

 
Figure 39: In-situ X-ray fluorescence maps of juvenile barnacle baseplates (B. amphitrite) 

settled on Kapton
®
 foils at: (I) Metamorphosis, and (II) 7 days old. Optical micrographs of 

the scanned barnacles are presented below the XRF maps. 

 

 

Figure 40: In-situ X-ray fluorescence spectrum of green algae (Tetraselmis). (Provided by T. 

Senkbeil) 
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6.2.2. Ex-situ µ-X-ray fluorescence mapping of cyprid cement 

Ex-situ µ-X-ray fluorescence experiments of remaining cyprid cements left on Kapton
®

 

foil organisms at different time points have been conducted at the FLUO beamline. The 

samples were carefully prepared as described in section 5.3. to avoid any contamination. 

Figure 41 shows the elemental distribution maps of the remaining cyprid cements that had 

been left on the Kapton
®
 foils after organisms‘ were carefully removed at different time 

points (1
st
 permanent attachment (Figure 41.1), one-day-old (Figure 41.2), two-days-old 

(Figure 41.3) and 7-days-old (Figure 41.4), which have been recorded ex-situ by using µ-

XRF spectroscopy. By looking at the elemental mapping of the remaining cements (Figure 

41.1–4) one can easily see the similarity of the elemental distributions on the samples at 

different time points, although each sample exhibits different distributional patterns.  The 

distribution of these elements is mainly localized in one smeared spot (Figure 41.3–4), 

whereas in the other two samples they appear as two close adjoining spots (Figure 41.1–2). 

Both single and double spots situated approximately in the center of the juvenile barnacle 

manifest the initial place of the cyprid larvae permanent attachment site. After comparison of 

the spot areas where these elements are observed with the 3D images that have been obtained 

using the 3D laser microscope (Figure 41) it became clear that these high intensity spots are 

located exactly at the antennule region where the cement adhesive is expected at these earlier 

time-points. This deviation in distance between spots occurs due to the fact that a cyprid is 

able to start permanent settlement with different distances between its antennules, so that 

sometimes antennules adhere rather close to each other and attachment place merges in one 

smeared spot.  

µ-XRF maps for all ex-situ samples have shown that bromine (Br), chlorine (Cl), sulfur 

(S), copper (Cu), zinc (Zn), selenium (Se) and scandium (Sc) are mainly concentrated in the 

remaining cements. However, iron (Fe), nickel (Ni), calcium (Ca) and strontium (Sr) are 

found in the cyprid cements as well, but they have shown low concentrations in comparison 

to the other elements. In the two-days-old maps (Figure 41.3), Fe spot shifted to upper left 

corner and is intensely pronounced. This spot rich with Fe could be attributed to 

contamination, so that µ-XRF measurement device could not detect the Fe in all other area of 

the map due to the significant difference in intensity. In addition to location of Cu, Fe, Ca and 

Sr in the spots of the remaining cement they are also concentrated in a ring-like pattern 

bounding the base of the barnacle, and this pattern correlates to the distribution pattern of 

adult cement adhering baseplate yet to be calcified to the substratum. This observation is 

difficult to see at first (Figure 41.1), since at this time point remaining cyprid cement of the 

initial attachment has not any contact yet between the cyprid and the surface but only the pair 

of  antennules.   
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Figure 41: Elemental mappings of the cement deposits of four barnacles (B. amphitrite) 

adherent to Kapton foil. The organisms were removed from the Kapton substrate directly 

after (1) the permanent attachment, (2) one day, (3) two days and (4) seven days after 

settlement and the remains have been analyzed using a non-confocal setup.  

 

 

Interestingly, the remaining cyprid cement of old organism (seven days old) show a quite 

high concentrations of each of Cl, S, Cu, Fe and Zn in the baseplate ring (Figure 41.4), which 

could be attributed to remains of a fine biological membrane forming the baseplate area as at 

earlier life stages before forming the calcareous baseplate. Furthermore, the same sample has 

shown that all Ni, Ca and Sr are found colocalized in a small spot on the outer rim of the 

barnacle baseplate, and is most likely to be the remains of a shell plate. The previous in-situ 

measurements have already confirmed the presence of these three elements in the shell plates. 

However, the role that the majority of these elements, like Br, Se, Sc, play in the marine 

bioadhesives still remains vague. In the following subsection 6.2.3., some possible 
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explanations of the role of the elements detected during in-situ and ex-situ µ-XRF will be 

discussed in detail.    

 

6.2.3. Discussion of In-situ and Ex-situ µ-XRF mapping 

This section is meant to draw the comparison between µ-XRF maps of baseplates of 7-

days-old juvenile barnacles (B. amphitrite) settled on Kapton
®
 foil that have been obtained 

in-situ and ex-situ, i.e. for the remaining cyprid cement left on the Kapton
®
 foil after 

organisms removal. This section is divided into two subsections: the first one contains short 

summary of both in-situ and ex-situ mapping results and the comparison between them, while 

the second subsection produce possible explanations of role of the elements detected in the 

antennule region and remaining cyprid cement as an adhesive constituents. 

6.2.3.1. The comparison between in-situ and ex-situ results 

As shown in Figure 42.1, all calcium (Ca), strontium (Sr), manganese (Mn), sulfur (S) 

potassium (K), nickel (Ni) and chlorine (Cl) are concentrated in the outer rim of barnacles 

and as described before this indicates the bio-mineralization process. Ca, Sr, and Ni appear 

also in the ex-situ maps, but with low concentration and being localized in a small spot on the 

rim that delimits the baseplate of the removed barnacle (Figure 42.2), while high 

concentrations of Cl and S appear in the spot area of the remaining cement. 

As described above, in-situ maps have shown that each of bromine (Br), copper (Cu), iron 

(Fe) and zinc (Zn) are localized approximately in the middle of the barnacle baseplate (Figure 

42.1), but only Br is localized in the two spots closely placed to each other at the antennule 

region, while all other elements (Cu, Fe and Zn) are shifted closer to the gut region of the 

organism. At the beginning this result has been thought to be related to the high penetration 

depth of the X-ray beam, but, interestingly, the ex-situ maps have shown that all of these 

elements in addition to Br are found at the region of the remaining cyprid cement, which 

means that these elements could be a part of the chemical composition of the cyprid cement. 

Each of these elements has been found in the XRF spectrum of the green algae that were used 

for feeding the juvenile barnacles. Therefore, it is possible that barnacles consume these 

elements from the food and employ them in cement formation.  

In the ex-situ maps selenium (Se) and scandium (Sc) are localized in the remaining cyprid 

cement, while these elements are absent in the in-situ maps, which means that in in-situ 

measurement their intensities have been lower than the overall noise signal and therefore they 

have not been included into mapping. Despite the advantages of in-situ experiments, ex-situ 

measurements allow to focus on the cement interface and to avoid signals from the inner 

organs of the organism due to large penetration depth. 
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6.2.3.2. Possible explanations of the role of the detected elements 

As described before, the role of most of these elements (Br, Cu, Fe and Zn) in the marine 

bioadhesives still remains vague. In this subchapter, some ideas that may provide assistance 

to understand the role of these elements are explained.  

Firstly, Bromine (Br): as described above Br has shown a different distribution pattern in 

comparison to all other elements, detected in the middle of barnacle in this study. Although it 

is still not clear which function Br has in barnacles, but perhaps it can be linked to substantial 

amounts of chitin found in barnacle cyprids and juvenile barnacles [199–200]. Since the 

location where Br has been found corresponds to the place of permanent attachment of cypris 

larvae, further experiments have been conducted in order to investigate whether the presence 

of bromine could be linked to the cyprid cement or not.  

 

 
Figure 42:µ-X-ray fluorescence maps of 1) 7-days-old juvenile barnacle baseplates (B. 

amphitrite) settled on kapton (In-situ study) and 2) adherent deposits of 7-days-old juvenile 

barnacle (B. amphitrite) left on a Kapton foil after barnacle removal (ex-situ study). 

 

Secondly, copper (Cu) and zinc (Zn): the presence of these elements may contribute to 

the understanding of the role of Cu and Zn in the cyprid cement. At the early stage of cyprid 

settlement, proteinaceous material is secreted from the tip of each of cyprid‘s two antennules 

and at this stage, cyprids must find or be provided with new interface suitable for amyloid 

fibril like protein formation. This interface of β-sheet, consisting of strands parallel to each 

other, may lead to complexation with some metal ions like Cu and Zn to enhance the 

tendency for β-sheet formation. Interestingly, it was found in recent studies that some metal 

ions such as Cu
2+

 and Zn
2+

 might play an essential role for denaturation of proteins and their 

transformation into amyloid fibers [201]. These two transition metal ions Cu
2+

 and Zn
2+

 are 

related to Alzheimer‘s disease and cause protein denaturation and formation of amyloid fiber. 

At the interface, Cu
2+

 and Zn
2+

 are found to be relevant to the transformation of α-helix to β-



6. Results and discussion  
 

76 
 

sheet leading to protein aggregation [201], which is in agreement with the variability of 

protein secondary structures of the juvenile barnacle cement at different time points that was 

observed in the in-situ amide-I Raman spectra, described in subsection 6.1.1.4. Due to this 

relation between the metal ions complexation with the initial protein used for the settlement, 

in this study it has been possible to detect these ions under the cyprid antennules by using µ-

XRF technique. As the ability of peptide sequence to chelate with zinc ions is not possible in 

the α-helix state and crosslinked β-sheet, new configuration of non-crosslinked antiparallel β-

sheet at the interface is necessary to form metal-peptide complexation accelerating the 

aggregate formation [201]. Therefore, these elements observed could be involved in the 

cement curing process. 

Finally, iron (Fe): As described before in subsection 6.2.1, both Fe and Cu could be 

related to the blood vessel of the organism [50]. However, this suggestion is quite 

controversial because Fe has been found not only in the in-situ maps, but also in the ex-situ 

maps in the remaining cyprid cement. However, metal elements such as Cu and Fe have been 

previously found in bioadhesives of marine organisms, e.g. mussel foot protein [128]. It is 

suggested in [128] that cohesive strength that is based on the same chemical mechanisms as 

adhesive interactions, are governed by the formation of Hydrogen bonds and complexes 

between DOPA (3, 4-dihydroxyphenylalanine), common mussels‘ protein constituent, and 

metal ions. The studies by Taylor et al., [202, 203] and Fant [204] showed respectively that 

Fe
3+

 and Cu
2+

 ions are able to increase the rigidity of the cementing material. Sever et al., 

proposed in [205] that protein cross-linking during mussel adhesive synthesis occurs mainly 

due to the presence of transition metals, especially iron, because this trivalent ion was 

suggested to serve as a center for cross-linking of three DOPA residues. Therefore, a number 

of authors proposed involvement of metal-protein interaction in formation, synthesis and 

curing of marine bioadhesives, including barnacle cement [128]. Although the chemical 

composition, sequence and sticking mechanisms of barnacle adhesive differs from those of 

mussels [128], therefore, it could be possible that elements Br, Cu, Fe and Zn detected in both 

in-situ and ex-situ experiments play similar role in the crosslinking of barnacle cement 

proteins as in mussel adhesive. 

 

6.3. Similarity of juvenile cement of different barnacle species (B. amphitrite 

and B. improvisus) 

The same in-situ and ex-situ experimental techniques, employed in experiments with B. 

amphitrite, have been also applied to another barnacle species known as Balanus improvisus. 

As has been described in subsection 2.2.2, both species are exposed slightly different 

environmental factors such as temperature, salinity etc. Therefore, the aim of studying 

another species has been to see if these differences in the environmental conditions could 

affect the adhesive chemical composition or not. All results (in-situ and ex-situ) obtained for 

B. improvisus have shown similarity with the results for with B. amphitrite, which supports 

the hypothesis that both species use chemically similar adhesives. 
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Following are some of in-situ and ex-situ results obtained for B. improvisus juvenile 

barnacles in comparison with the previous results for B. amphitrite. 

 

6.3.1. Raman spectroscopy 

Raman spectra of the three distinct regions (Calcareous region, area surrounding the 

antennule and the antennule region) for both species (B. amphitrite and B. improvisus), and 

their dynamics at different time points after metamorphosis are shown in Figure 43. The only 

difference we can observe between both species is the intensity of the C=C str. band at 1518 

cm
-1

 related to carotenoid. As has been described in subsection 6.3.1.2, this band is most 

probably related to the green algae and is not related to the barnacle adhesive. Therefore, it 

should not be accounted as a difference criterion for both species. 
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Figure 43: Raman spectra of juvenile barnacles I) B. amphitrite and II) B. improvisusat 

different time points after settlement (one day up to 14 days). (a) Antennule region,(b) 

baseplate region surrounding the antennule and (c) calcareous region. 
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6.3.2. Confocal µ-Raman spectroscopy 

As shown in Figure 44 and 45 the in-situ and ex-situ confocal Raman spectroscopy results 

of both species have shown the same chemical distribution through the juvenile barnacle 

baseplate (in case of in-situ) and the remaining cyprid cement specimens after barnacle 

removal (in case of ex-situ).  

 

 
 

 

 

 

 

Figure 44:  Mapping of confocal Raman spectroscopy for both species I) B. amphitrite 

and II) B. improvisus. (a) and (b) – the microscopic images with the measurement points 

for both species, (c–g) – 2D distribution maps of selected Raman bands intensities: (c) –

calcite υ1(CO3
2-

) vibration (1000–1100 cm
-1

); (d)–amide-I contributions (υ(C=O) str. 

(1600–1700 cm
-1

); (e) –a combination band of C–H str. ( 2880–2980 cm
-1

); (f) –the 

broad –OH str. signal (3300–3500 cm
-1

); and (g)–unsaturated C=C double bond υ 1(C=C 

str.) vibrations(1480–1565cm
-1

). 
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Figure 45:  Mapping of confocal Raman spectroscopy of the remaining cyprid cements 

for both species I) B. amphitrite and II) B. improvises. (a) and (b) – the microscopic 

images with the measurement points for both species, (c–f) – 2D distribution maps of 

selected Raman bands intensities: (c)–amide-I contributions (υ(C=O) str. (1600–1700 

cm
-1

); (d) –a combination band of C–H str. ( 2880–2980 cm
-1

); (e) –the broad –OH str. 

signal (3300–3500 cm
-1

); and (f)–unsaturated C=C double bond υ 1(C=C str.) 

vibrations(1480–1565cm
-1

). 
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6.3.3. Calcification process 

Figure 46 shows the similarity in starting of calcification process of both species (B. 

amphitrite and B. improvisus). Interestingly, both species show the same behavior: within the 

first 8 hours of the calcification process, the intensity of calcite bands exhibits a steep growth, 

and decreases about 10 times afterwards. 

 

 

 

 

 

 

Figure 46: Starting of calcification process of I) B. amphitrite and II) B. improvisus. 

(a) and (c)– Calcite bands spectra of both juvenile barnacle species at different time 

points from metamorphosis to 4 hours after metamorphosis, and (b) and (d) –calcite 

bands intensity peak values at the same time points, error bars according to Student's 

t-distribution. 
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6.3.4. µ-X-ray microprobe fluorescence 

µ-XRF maps of elemental distribution in juvenile barnacle baseplate (in case of in-situ, 

Figure 47) and in the remaining barnacle cement (in case of ex-situ, Figure 48) have shown 

similar results for both species. 

 

Figure 47: In-situµ-X-ray fluorescence maps of juvenile barnacle baseplates: 1) B. 

amphitrite and 2) B. improvisus settled on Kapton
®
 foils at 7 days old. Optical micrographs 

of the scanned barnacles are presented in the figure. 
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Figure 48: Elemental mappings of the cement deposits of juvenile barnacles 1) B. amphitrite 

and 2) B. improvisus adherent to Kapton foil. The organisms were removed from the Kapton
®
 

substrate directly after one day after settlement and the remains have been analyzed using a 

non-confocal setup.  

 

6.4. Conclusion 

Early adhesion of barnacle cyprids has been studied by Raman microspectroscopy and µ-

X-ray microprobe fluorescence (µ-XRF). The settled juvenile barnacles have been 

investigated in-situ using two different substrata (CaF2 disks for Raman studies and Kapton
®
 

foils for µ-XRF studies). All spectra obtained from the cement of living organisms were 

compared to the cement remaining after removal of barnacles (ex-situ results) and to 

footprints (temporary adhesive) of cyprids. 

Firstly, the major Raman spectroscopy results are to be concluded. Raman spectra of 

footprints as well as antennule regions of different individuals look alike, which means that 

Raman spectroscopy results are reproducible measurements for any individual barnacles. 

Raman microspectroscopy measurements recorded at different B. amphitrite and B. 

improvisus juvenile barnacles have shown that the baseplate is divided into three major 

regions (calcareous region, antennule region and the area surround the antennule), which 

have various chemical composition. Additionally, confocal Raman spectroscopy has been 

used to investigate the chemical distribution in juvenile barnacle baseplates (in-situ) and the 

remaining cyprid cement (ex-situ). Firstly, results of confocal Raman spectroscopy have 

shown that calcite is localized only at the rim of the baseplate under the shell ring, and 

vanishes in the remaining cement. These results are in agreement with both in-situ and ex-situ 

µ-XRF maps that have shown that different regions of juvenile barnacle baseplate show 

different elemental distribution. Moreover, Ca has been found in the same region where 

calcite is localized, while it vanishes in the µ-XRF of remaining cement. 
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Both in-situ and ex-situ Raman results have shown that the antennule region as well as the 

remaining cement are rich of amide-I and show different vibrational modes of CH than the 

other regions (calcareous region and the area around the antennule). This result supports the 

fact that juvenile barnacle cement is a proteinaceous material that has hydrophobic properties. 

Raman spectra recorded at the same region at different time points look alike. 

Additionally, ex-situ Raman spectra that have been recorded at the remaining juvenile 

barnacle cement at different time points look the same. Moreover, all spectra obtained during 

in-situ (in the antennule region) and ex-situ (remaining cement) Raman experiments generally 

look the same. The only differences between in-situ and ex-situ results are observed in two 

main types of region: amide-I and carotenoid. Therefore, amide-I bands have been studied 

more carefully in-situ and ex-situ in order to investigate the differences in the protein 

secondary structures. Generally, amide-I spectra of footprint have different protein secondary 

structure than the spectra of permanent cement. This examination revealed that ex-situ spectra 

of amide-I of all remaining cyprid cement over the course of one week of barnacle lifetime 

show similar shapes and mainly β-sheet structures at 1665 cm
-1

. Therefore, this observation 

indicates that all material left on surface is cured cement and there are not any major 

chemical changes occurring in it over time. However, in-situ amide-I band of the spectra 

recorded at the antennule region have shown strong changes over time, which could be 

attributed to continuous juvenile barnacle cement secretion and the cement curing process. 

The carotenoid bands have been detected only in the in-situ Raman spectra, while they 

vanish in the ex-situ spectra recorded for the remaining cement. Comparison of the in-situ 

spectra with reference material and green algae, the main nutrient for the young barnacles, 

has revealed that feeding is the major source of the carotenoids. 

The calcification process of the barnacle calcareous shell has been studied in-situ also 

using Raman spectroscopy. The result of this study has shown that commencement of the 

calcification process coincides with carapace disposal about 8–9 hours after the organism‘s 

permanent attachment. The rate of the calcification process within initial 10 hours for both 

species is 10 times greater, than afterwards. 

Secondly, the major µ-XRF results are to be concluded. µ-XRF has proved to be a 

powerful and useful tool for investigation of marine bioadhesives, since it can be used in-situ 

on biofouling organisms. 

Results of µ-XRF experiments of the juvenile barnacle baseplate have shown that at the 

rim, calcium is colocalized with K, Sr and Mn while in the center part Fe is occurring along 

with Cu, Zn, Br and As. The presence of elements that have been detected at the rim region 

could be attributed to the calcareous shell formation. Interestingly, in-situ µ-XRF maps have 

shown that only the Br signal is localized at the antennule region while all of Fe, Cu, Zn and 

As are shifted closely to the center point of the juvenile barnacle baseplate which is expected 

to correspond to the abdomen position of the organism. In order to clarify this phenomenon, 

Tetraselmis green algae have been studied separately by µ-XRF. µ-XRF spectrum of the 

green algae has shown presence of each of these elements that have been shifted from the Br 

region. This could be related to the high penetration depth of X-ray beam (≈100 µm) and 

these elements might be detected from the abdomen. However, ex-situ µ-XRF maps of the 

remaining cements show presence of all these elements in addition to Br. Therefore, it could 
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be concluded that barnacles consume these elements from food or take them up from the 

seawater in order to use them in adhesive formation or its curing process. 

Nevertheless, the role of these elements in the biofouling adhesives is still to be found. 

All Raman and µ-XRF experiments have been conducted for both B. amphitrite and B. 

improvisus and results have shown the similarity in the chemical composition and elemental 

distribution of the juvenile barnacle baseplate regions and remaining cement studied at 

different time points. 
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7. Summary and outlook 

Biofouling is an undesired agglomeration of maritime organisms, including animals, 

plants and protozoa, on the surfaces immerged into marine environment, and in long term it 

usually constitutes a menace to the durability and functionality of man-made underwater 

surfaces and constructions. These marine dwellers employ different adhering mechanisms in 

order to securely attach themselves to the surfaces and endure violent ambient media, e.g. 

currents and varying water temperatures. For instance, macro-fouling crustaceans that are so 

detrimental for ships and industrial and nuclear plants cooling systems predominately attach 

to the surfaces using permanent or temporary adhesives. Each year billions of dollars are 

spent to repay or at least partially refund damage caused by biofouling. Therefore, nowadays 

approach to find effective solutions to the problem of biofouling has become a complex 

matter of research. Scientific groups throughout the world investigate the conditions required 

for successful biofouler‘s attachment, develop antifouling release coatings, and the 

physicochemical mechanisms of marine bioadhesion.  

Barnacles are abundant marine biofouling crustaceans and their adult cement has been 

extensively studied for years. However, current knowledge about footprint temporary 

adhesive and juvenile barnacle permanent cement is yet quite poor. A number of questions 

are still to be answered: if there is any difference between the temporary (footprint) and the 

permanent adhesives; if the juvenile barnacle cement is proteinaceous as the adult cement or 

has other components and if it has the same type of protein as the adult cement; if different 

species have the same adhesive composition; if the cement adhesive keep the same chemical 

composition throughout its life cycle (i.e first attachment, metamorphosis, juvenile barnacle), 

or changes with time; and finally, when the calcification process starts. 

Therefore, the chemistry behind adhesive mechanisms of barnacles at early life stages, 

abundant marine biofouling crustaceans, has been chosen as the principle subject of current 

PhD thesis. This study aims to understand and compare spatial chemical distribution of the 

adhesive secreted by two different species (Balanus amphitrite and Balanus improvisus) of 

cyprid larvae and juvenile barnacles for settlement. Additionally, it has been inspiring to 

investigate the protein secondary structure content of adhesive cement at early life stages, 

from temporary adhesive secretion during surface exploratory process up to 14 days lifetime 

on the surface after permanent settlement.  

To fulfill this task, both in-situ and ex-situ approaches have been applied. More attention 

has been paid to in-situ experiments since just a few works have studied juvenile barnacle 

adhesives in real time conditions, this method gives an advantage of following the dynamical 

changes occurring in the sample with time in conditions reproduced close to real life without 

its severe alteration. 3D laser microscope images have shown that thickness of the remaining 

cyprid cement left on the kapton
®
 foil after organism‘s removal lies in range of 10 µm to 20 

µm, which means that the main information that has been obtained during in-situ studies are 

related mainly to the cyprid cement. Nevertheless, ex-situ study of the remaining cyprid 

cement have also been conducted in order to eliminate the signal that could come from the 

physiological parts of the organisms, that might be detected during in-situ study due to the 
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penetration depth of laser beam in Raman spectroscopy (˃20 µm) and synchrotron radiation 

in µ-XRF technique (≈100 µm) that sometimes, or usually for µ-XRF, can be greater than the 

thickness of the adhesive plaque.   

In both cases principle techniques used have been Raman spectromicroscopy and 

synchrotron based µ-XRF, Raman also applied in confocal mode, with additional 

experiments in 3D laser microscopy, light microscopy and SEM. As a result, chemical 

distribution of elements throughout the baseplate of barnacle, as well as presence of certain 

functional groups and changes in protein secondary structure has been described for 

permanent juvenile barnacle cement from one day old to the age of fourteen days old. 

Additionally, functional groups detected in footprints (temporary cyprid adhesive) are 

presented. 

Raman spectra taken from different individuals‘ specimens have shown similarity in shape 

and band intensity correlation, which proves the reproducibility of the Raman 

spectromicroscopy results in case of barnacle study. On the first place it was required to 

know how cement is distributed in the space between juvenile barnacle that undergone the 

metamorphosis and the substratum. Confocal Raman spectromicroscopy has revealed the 

chemical heterogeneity of the barnacle baseplate and allowed to distinguish three regions of 

various chemical compositions: calcareous rim, baseplate region surrounding the antennule 

and antennule region. The latter, where presence of cement is expected, has been chosen the 

focus of this study and has been studied in detail for cyprids from metamorphosis to age of 

fourteen days. Although both antennule and baseplate region surround the antennule have 

shown protein signal, but ex-situ study has proved that protein signal in baseplate region 

surround the antennule comes from or its inner organs or biological membrane underneath 

the barnacle, a stage which precedes the formation of calcareous baseplate, because at early 

life stages after removal of the organism the cement is observed merely in the antennule 

region. 

One of the additional focuses of this research work has also been the calcareous shell of 

juvenile barnacles. The calcification of the barnacle outer shell has been studied for juvenile 

barnacles up to the age of 9 days old in order to determine the time-point when the calcareous 

rim starts to be formed and to follow the tendency in its formation rate. It has been shown 

that calcification process starts after ≈ 8–9 hours after permanent attachment, coinciding with 

the carapace removal. Moreover, it has been observed that for both species first 10 hours of 

calcification occurs in a rather intensive rate, which drops 10 times after that time and keeps 

the same tendency of growth up to the 9 days age. Results of confocal Raman spectroscopy 

have shown that calcite is localized only at the rim of the baseplate under the shell ring, and 

vanishes in the remaining cement. In agreement to these results, it has been observed during 

both in-situ and ex-situ µ-XRF study of the elemental distribution of the rim that calcium is 

co-localized there with elements that form the calcareous shell –  K, Sr, Cl, Ni and Mn–while 

these elements vanish in the antennule region and remaining cement in juvenile barnacles (B. 

amphitrite). 

Being in agreement with Raman and confocal Raman results, in-situ µ-XRF study of the 

elemental distribution has shown the localization of high intensity of calcium at the rim, 

while other elements have been found at the center part of the juvenile barnacle baseplate (in-



7. Summary and outlook  
 

88 
 

situ maps) and in the remaining cement (ex-situ maps), which is in agreement with presence 

of some functional groups such as amides and CH vibration modes in both Raman and 

confocal Raman results. 

Ex-situ experiments helped to conclude if any changes occur in the already cured cement, 

left on the surface after barnacle removal. In case of ex-situ study a careful attention must be 

paid to the sample preparation, since parts of the organism may stay after organism‘s 

removal. Therefore, SEM and 3D laser microscope have been used to select the clean 

samples. In addition, SEM images have shown that the diameter of the remaining cement 

plaque increases with time, confirming continuous resuming of adhesive secretion by 

barnacles. 

Comparison between in-situ and ex-situ results have shown that in-situ Raman spectra 

recorded at the antennule region showed peaks similar to the ex-situ spectra that have been 

recorded for the remaining cyprid cement. Additionally, both in-situ and ex-situ µ-XRF 

distribution maps have shown that amide-I and different vibration modes of CH stretching are 

located at the antennule region and the remaining cement, which supports the fact that 

juvenile barnacle cement is proteinaceous material that consist of different hydrophobic 

amino acids. Therefore, amide-I bands have been studied more carefully with Raman 

spectroscopy in-situ and ex-situ in order to investigate the differences in the protein 

secondary structures. This examination revealed that footprints have shown secondary 

structures different from the permanent cement. Additionally, ex-situ amide-I bands spectra 

of remaining cyprid cement over the course of one week of barnacle life-time have shown 

similar shapes and mainly β-sheet structures at 1665 cm
-1

, indicating that after removal of the 

organism crosslinking is could be terminated. However, in-situ amide-I band of the spectra 

recorded at the antennule region have shown strong fluctuations observed over time, which 

could be attributed to continuous juvenile barnacle cement secretion, or, perhaps, to cement 

curing process. 

The main corresponding with each other results of in-situ  and ex-situ µ-XRF maps of the 

cyprid cements in antennule region at different time points have shown localization of Br, Cu, 

Fe, and Zn in this region, that can be consumed from the food, Tetraselmis green algae, that 

has shown the presence of these elements. By analogy to other biofouling organisms' 

adhesives, these elements might play an important role in the crosslinking of the protein and 

thus curing process of barnacle cement. Further research can unshed their influence on 

bioadhesive chemistry. 

Finally, in-situ maps have shown a random distribution of the carotenoid C=C str. band, 

while it completely vanishes in the remaining cement ex-situ maps, which means that 

carotenoid signal seems to be originated from the interior of the barnacle rather than from the 

adhesive. Comparison of the cement in-situ spectra with spectra of green algae specimens, 

the main nutrient for the young barnacles, has revealed similarities in the carotenoid bands, 

which supports the hypothesis that carotenoid signal is related to the green algae that has 

been used to feed the juvenile barnacles. 

To conclude, it has been proven that in-situ approach is very powerful for investigation of 

marine biofouling adhesives at early life stages. The results of this study provide initial 

information about the chemical composition and elemental distribution in both juvenile 
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barnacle baseplate and remaining cement of both barnacle species (B. amphitrite and B. 

improvisus) at different life stages. The obtained results are quite promising and offer an 

interesting path for further investigations. Furthermore, the derived chemical understanding 

of the adhesive composition is supposed to lead to new, environmentally benign antifouling 

solutions, like specially designed antifouling release coatings, aiming on the termination of 

curing process of juvenile barnacles and thus influencing the successful permanent 

settlement. Moreover, the detailed understanding of these bioadhesive may lead to great 

benefits for biomedical industry. 
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List of abbreviations and shortenings 

 

AFM Atomic Force Microscopy 

AFTIR Attenuated Fourier transform Infrared  

ANKA Angstromquelle Karlsrue 

ASW Artificial seawater 

ATR-FTIR Attenuated Total Reflectance-Fourier Transform Infrared 

B. amphitrite Balanus amphitrite 

B. improvisus Balanus improvisus 

BCS1  First Barnacle Cement Secretion 

BCS2 Second Barnacle Cement Secretion 

CBB  Coomassie Brilliant Blue 

CLSM Confocal 3D Laser Scanning Microscopy  

DOPA 3, 4-dihydroxyphenylalanine 

EDX Energy Dispersive X-ray Spectroscopy 

ESEM  Environmental Scanning Electron Microscopy 

FSD Fourier Self-Deconvolution 

PDMS Polydimethylsiloxane 

FTIR Fourier Transform Infrared 

PMMA Poly(methyl methacrylate) 

PTFE polytetrafluoroethylene 

SEM Scanning Electron Microscopy 

SiMCD Silicon Multi-cathode Detector 

SR Synchrotron Radiation 

Str. Stretching 

TBT Tributyltin 

XRF X-ray Fluorescence  

 

http://en.wikipedia.org/wiki/Fourier_transform_infrared_spectroscopy
http://en.wikipedia.org/wiki/Fourier_transform_infrared_spectroscopy
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List of publications 

Articles in preparation 

 T. Mohamed, S. Heissler, A. Di Fino, A. S. Clare, M. Grunze, A. Rosenhahn "In-situ 

Raman spectromicroscopy of the early attachment phase of Balanus amphitrite". 

 

 T. Senkbeil, T.  Mohamed, R. Simon, D. Batchelor, A. Di Fino, A. S. Clare, A. 

Rosenhahn "Elemental mapping of barnacle larvae and juvenile barnacles using in-

vivo and in-situ synchrotron µ-XRF ". 

 

 T. Mohamed, T. Senkbeil, S. Heissler, R. Simon, D. Batchelor, A. Di Fino, A. S. 

Clare, M. Grunze, A. Rosenhahn "In-situ and ex-situ study of juvenile barnacle 

(Balanus amphitrite and Balanus improvisus) cements using µ-Raman spectroscopy 

and X-ray microprobe fluorescence techniques.  
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List of conferences 

 2
nd

 International Workshop on "Advanced Atomic Force Microscopy Techniques" 

Karlsruhe Institute of Technology (KIT), Germany, 28
th

 February - 1
st
 March, 2011. 

 Regular Seminars at KIT as well as at the University of Heidelberg from December 

2010 until December 2013. (Lecturer) 

 Regular SEACOAT meetings (every six months) from December 2010 until 

December 2013. (Lecturer)  

 Retreat meeting 2011 - BioInterfaces International Graduate School, 31
st
  August – 2

nd
  

September 2011, Bad Herrenalb, Germany. (Poster)   

 Workshop with the US Office of Naval Research, entitled ―International Workshop on 

Marine Biofouling‖ Planet Hollywood hotel, Las Vegas, USA, December 4
th

 - 6
th

, 

2011. (Winner Poster) 

 1
st
 International Conference of "Biological and Biomimetic Adhesives" Lisbon 

University, Portugal, May 9
th

 – 11
th

, 2012. 

 16
th

 International Congress on "Marine Corrosion and Fouling" Seattle, Washington, 

USA, June 24
th

 – 28
th

, 2012. (Poster) 

 Webcast On Ethics In Scientific Article Submission &Publishing, In proud 

partnership with Trinty College Dublin, 11
th

 of July 2012, Dublin. 

 Retreat meeting 2012 - BioInterfaces International Graduate School, September 3
rd

 - 

5
th

, 2012, Herrenbad, Germany. (Lecturer) 

 2
nd

 International Conference (30
th

 Annual) on Corrosion Mitigation and Surface 

Protection Technologies, Hurghada, Egypt, December 10
th

 – 13
th

, 2012. (Lecturer)  

 3
rd

 International Workshop on "Advanced Atomic Force Microscopy Techniques" 

Karlsruhe Institute of Technology (KIT), Germany, March 5-6, 2012 
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