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Zusammenfassung
Gegenstand dieser Arbeit ist die nichtlineare Erzeugung von Elektron-Positron-Paaren
im Coulomb-Feld eines Kerns durch ein zweifarbiges Laserfeld hoher Intensität. Der
Schwerpunkt liegt dabei auf zwei komplementären Szenarien:
Zum einen können für kommensurable Kombinationen der zwei Laserfelder Quan-

teninterferenzeffekte auftreten. Diese werden anhand totaler Paarerzeugungsraten und
Emissionswinkelspektren im Ruhesystem des Kerns und im Laborsystem untersucht.
Darüber hinaus zeigt sich, dass die relative Phase zwischen den zwei Lasermoden Kon-
trolle über die Stärke der Interferenzen gewährt. Entsprechend kann dieser Parameter
dazu verwandt werden, die Ausbeute erzeugter Paare zu optimieren.
Zum anderen wird für inkommensurable Frequenzen ein Aufbau betrachtet, in

dem diese stark voneinander abweichen. Dies beschreibt ein starkes Laserfeld im
nicht-störungstheoretischen Regime, welchem von einem einzelnen hochenergetischen
γ-Photon bei der Paarerzeugung assistiert wird. Dies führt zu einer starken Erhöhung
der Paarerzeugungsrate für bestimmte Laserintensitätsbereiche. Außerdem zeigt sich
der Einfluss des γ-Photons in Emissionswinkel- und Energiespektren, welche wiederum
im Ruhesystem des Kerns und im Laborsystem untersucht werden.
Die Unterschiede zwischen diesen beiden Szenarien werden weiterhin über eine

kontinuierliche Variation des Frequenzverhältnisses untersucht. Hier zeigt sich der
starke Einfluss der Interferenzen für kommensurable Frequenzen im direkten Vergleich
zum inkommensurablen Fall. Schließlich wird der Spezialfall zweier Moden mit gleicher
Frequenz betrachtet. In der Variation der Elliptizität des kombinierten Laserfeldes wird
die Abhängigkeit der totalen Paarerzeugungsrate von diesem Parameter im Vergleich
zwischen konstanter totaler Feldintensität und konstanter maximaler Feldintensität
untersucht.

Abstract
Within this thesis, the non-linear creation of electron-positron pairs in the superposition
of a nuclear Coulomb field and a two-colour laser field of high intensity is studied.
Primarily, two complementary scenarios are investigated:

On the one hand, if the two laser frequencies are commensurable, quantum interfer-
ence may occur. This interference manifests in the total pair-creation rate and the
angular distribution of the created particles, which are studied in the nuclear rest
frame and the laboratory frame. Furthermore, the relative phase between the two laser
modes allows to tune the strength of the terms arising from interference. Therefore,
this parameter may be used to optimize the pair-creation yield.
On the other hand, for incommensurable frequencies, a set-up of largely differing

frequencies is considered. This way, a strong laser field in the non-perturbative regime
assisted by a single highly-energetic γ-photon is described. Due to the assistance of the
latter, a strong enhancement of the total pair-creation rate can be found depending
on the laser intensity. Additionally, the influence of the γ-photon on the angular and
energetic distribution of the created particles is investigated, again in the nuclear rest
frame and the laboratory frame.
Furthermore, the differences arising in the two former cases are directly compared

by means of a continuous variation of the laser frequency ratio. This illustrates the
strong modifications due to the interference in the commensurable case. Finally, for
the special case of two modes with identical frequency, the total pair-creation rate is
studied as a function of the ellipticity of the combined laser field. Here, the cases of a
constant total field intensity and a constant maximum field intensity are compared.
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Chapter 1.

Introduction

The subject matter of the presented thesis is a process of energy to mass
conversion: electron-positron pair creation. In the following linear pair-creation
processes induced by single γ-photons and non-linear pair-creation processes
induced by intense laser light are put into context. Particular emphasis lies on
laser fields composed of two modes. Furthermore, the objective of this study is
discussed, as well as an overview of the subsequent chapters given.

1.1. Mass and Energy

One of the most ubiquitously applicable physical concepts is Newton’s lex secunda
[113]. It states that the same force F applied to an object with high mass m will
lead to less acceleration a than it would if applied to a lighter object. It contains
the lex prima in the sense that if no force is applied (F = 0) an object is not
accelerated (a = 0). One can easily argue that it governs daily life more than any
other idea. Therefore, it is surprising that Euler’s mathematical representation
[56],

F = ma, (1.1)
is not the physical formula every non-physicist can instantly quote. This is by
all means Einstein’s mass-energy equivalence [53]:

E = mc2, (1.2)

with the speed of light c. In fact, the latter equation is often used to symbolize
physics – or even science in general – in popular culture, even though it might not
have an application to our usual interaction with our environment. However, its
implication – the conversion of matter to energy, particularly to light, and vice
versa – is intriguing to everyone. It contains physics that exalts the imagination,
while its notation retains remarkable simplicity.
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Chapter 1. Introduction

In the two Eqs. (1.1) and (1.2) an important distinction has to be made as far as
the meaning of the symbol m is concerned. In the relativistic case it is usually
used for the relativistic mass

m = γm0, (1.3)
and the additional m0 is introduced for the rest (or invariant) mass. The Lorentz
factor

γ = 1√
1− β2 (1.4)

is defined by the velocity of the considered object in units of the speed of light
β = v/c. In the classical case m is usually understood as the rest mass, as the
concept of the relativistic mass is not applicable.1

While Eq. (1.2) refers to the relativistic energy, the rest energy

E0 = m0c
2, (1.5)

is analogously defined. Both energies are connected to the momentum p = mv
by the energy-momentum relation

E2 = (pc)2 + E2
0 . (1.6)

1.2. Pair Creation and Gamma Rays

A class of physical processes in which Eq. (1.2) is directly applicable is pair
creation, wherein the energy provided by a photon is converted into a particle-
antiparticle pair. The particles have to be created as pairs, in order to ensure
that all quantum numbers are conserved. The pair that is most likely created
is the lightest lepton, the electron (e−), and its antiparticle, the positron (e+).
Therefore, the photon energy has to overcome the threshold of twice the rest
mass of the electron me,

E ≥ 2mec
2 ' 1.022 MeV, (1.7)

which means that the photon must be a γ-ray2 photon. While energy is conserved
according to Eq. (1.2), momentum conservation leads to the requirement of a
fourth constituent of the process. This can be verified by assuming that the
pair is created from the photon in vacuum and choosing the pair’s centre of

1An expression corresponding to Eq. (1.1) for the relativistic case can be extracted from the
more general F = ṗ with the momentum p = γ(v)m0v.

2Here, γ-ray denotes only the energy of the photon, not its source.
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1.2. Pair Creation and Gamma Rays

mass as reference frame. Therein, the total momentum is zero. For momentum
conservation to be fulfilled, this requires

pγ = p+ + p− ≡ 0. (1.8)

However, a photon with vanishing momentum does not exist.

The additional constituent may be a nucleus with nuclear charge number Z. The
respective process is called Bethe–Heitler effect [22]:

Z + γ −→ Z + e− + e+. (1.9)

The nucleus absorbs a small recoil, and momentum conservation is fulfilled:

pZ + pγ = p′Z + p+ + p−. (1.10)

Alternatively, in the so-called Breit–Wheeler effect, a second photon collides
with the first one [29]:

γ1 + γ2 −→ e− + e+. (1.11)
In the centre of mass of the created pair, the momenta of the two photons have
to cancel, too. Thus, they must counterpropagate and have identical frequency
in that frame of reference.

Both processes have first been studied theoretically in 1934 by the eponymous
authors [22, 29]. In both cases, the obtained rates increase linearly with the
beam intensity I. A few years earlier, the first effects that can be interpreted as
pair creation had been found by Klein for electrons scattering from a rectangular
potential barrier [81] and by Sauter from a linearly increasing potential barrier
[137]. The latter corresponds to a constant electric field [65], and led already to
the so-called Schwinger limit or critical field strength

Ecrit = m2
ec

3

e~
' 1.3× 1018 V/m, (1.12)

i.e., the maximum electric field before the vacuum becomes unstable and emits
e−e+ pairs spontaneously. Here, e is the positive elementary charge and ~ is
the reduced Planck constant. Twenty years later, Schwinger applied the then
still young methods of Quantum Electrodynamics (QED) to the same problem,
leading to a pair-creation rate of the form [141]

R ∼ exp
(
−πEcrit

E

)
, (1.13)

where E ∼
√
I is the applied field strength. The strongly non-perturbative

dependence on E leads to the tunneling picture of pair creation: The electron
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Chapter 1. Introduction

(a) Plate 3.: Fig. 5. [37] (b) Plate 3.: Fig. 6. [37]

Figure 1.1.: Two e−e+ pairs traced in a cloud-chamber – Taken from
Ref. [37], colours inverted and figures cropped. In both figures the upper
trace is due to an electron, the lower to a positron.

tunnels through the gap of 2mec
2 from the negative continuum, the so-called

Dirac Sea, to the positive continuum (cf. also Figs. 1.2 and 2.2).

On the experimental side, two Nobel laureates are directly linked to e−e+ pair
creation. In 1936, Anderson was awarded ‘for his discovery of the positron’ four
years earlier [9]. The positron was found in cloud-chamber traces induced by
cosmic radiation and the accompanying γ-rays. A year after the discovery, in 1933,
Blackett could attribute the origin of these positrons to pair-creation processes
of the Bethe–Heitler type [25, 37], eventually leading to his Nobel prize in 1948.
Two examples of the recorded traces that lead to the hypotheses of electron
and positron created as pairs can be seen in Fig. 1.1. Further early observations
in the laboratory relied on γ-rays from nuclear decays or bremsstrahlung [3,
89, 152]. Nowadays, the process serves for applications such as the generation
of polarized positron beams [5, 118], which are of relevance for experimental
particle physics.

1.3. Non-Linear Pair Creation and Lasers

The demonstration of the first laser in 1960 [96] led to several theoretical
investigations into its applicability to pair creation. Due to its monochromaticity,
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1.3. Non-Linear Pair Creation and Lasers

Positive continuum

Negative continuum

2mec
2

Energy

x

(a) Tunneling (ξ � 1)

Negative
continuum

Positive
continuum

0

Energy

+mec
2

−mec
2

h̄ω

(b) Multiphoton (ξ � 1)

Figure 1.2.: Illustrations of the two commonly used pictures of pair creation
– In the tunneling regime the continua are tilted along the x-axis by the
electric field E thereby forming a barrier. In the multiphoton regime an
appropriate number of photons is “stacked” to overcome the gap of 2mec

2.
In both cases the pair-creation process is a transition from the negative
continuum, the so-called Dirac Sea, to the positive continuum.

coherence, and low divergence, where the latter means that all photons propagate
in the same direction, a laser beam is well described by a unifrequent plane wave.
However, Schwinger had already proven in 1951 that such a field alone can not
produce a pair, regardless of how strong the field or how high its frequency [141].
This can be intuitively explained by the fact that if all photons propagate in the
same direction (obviously with the same velocity) they cannot interact with each
other.3 Again, an additional constituent is necessary. Furthermore, the energy of
a laser photon is usually not in the γ-ray range. Therefore, non-linear extensions
of the Bethe–Heitler and the Breit–Wheeler process have been subject to many
studies (recall Eqs. (1.9) and (1.11), respectively). Instead of a single γ-photon,
the energy to overcome the pair-creation threshold is gained by absorbing n� 1

3However, the plane wave picture is an idealized assumption and an experimental laser has,
e.g, an energetic bandwidth. Furthermore, under the assumption of a finite background
temperature a single plane wave alone was recently found to produce pairs [76].
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Ecrit
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R ∼ exp
(
−Ecrit

E

)

R ∼ ξn0

Figure 1.3.: Regimes of pair creation – Distinction of the non-perturbative
tunneling and perturbative multiphoton regime by means of the intensity
parameter ξ in analogue to the Keldysh parameter [74]. A third regime, that
of the barrier suppression, is also indicated. Once the critical field strength
Ecrit is overcome, the barrier is suppressed sufficiently to allow the electron
to escape over the barrier rather than tunneling through it. This behaviour
has first been found in laser-induced photo-ionization [11].

photons from a laser beam, each with an energy ~ω � 2mec
2, but a total energy

n~ω > 2mec
2. The non-linear Bethe–Heitler effect,

Z + nω −→ Z + e− + e+, (1.14)

has been studied in Ref. [154], just as the non-linear Breit–Wheeler effect,

γ + nω −→ e− + e+, (1.15)

in Refs. [111, 115, 128]. Due to the large and still ongoing progress in high-
intensity laser technology, interest in these two processes has been strongly
revived in recent years (cf. the reviews in Refs. [43, 51] and references therein).
A third alternative, the head-on collision of two laser beams, replacing each γi in
Eq. (1.11) with ni laser photons of frequency ωi, has also been subject to several
more recent studies [19, 34, 102, 135].

For the non-linear pair-creation processes it is commonly distinguished whether
they occur in the tunneling regime (as illustrated in Fig. 1.2(a)) and thus exhibit a
non-perturbative dependence on the applied electric field similar to the Schwinger
case of Eq. (1.13) [35, 49, 64, 83, 132, 136], or in the multiphoton regime (as
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1.3. Non-Linear Pair Creation and Lasers

illustrated in Fig. 1.2(b)). In the latter, the rate is a perturbative sum over the
number of involved photons n [101, 105]:

R =
∞∑

n=n0

Rn, (1.16)

Rn ∼ ξ2n (1.17)

where n0 is the minimal number of photons for which n0~ω ≥ 2mec
2, and

the dimensionless intensity parameter ξ ∼ E (cf. Eqs. (2.7) and (A.11)). As
illustrated in Fig. 1.3, the distinction between the two regimes is usually made
by means of the latter. This may be understood in analogue to the Keldysh
parameter of non-linear photoionization [74]

κion =
√

2meBω

eE
, (1.18)

with the binding energy of the respective electron B. The corresponding param-
eter for non-linear pair-creation is gained if one associates B = 2mec

2 in the
sense that the pair-creation threshold is the energy with which an electron is
“bound” in the Dirac Sea [124]:

κe−e+ = 2mec ω

eE
=
√

2
ξ
. (1.19)

Thus, the tunneling regime4 is assumed for ξ � 1, and the multiphoton regime
for ξ � 1. The latter means that Eq. (1.16) may be approximated by

R ≈ Rn0 ∼ ξ2n0 (1.20)

as orders in n higher than n0 will be suppressed due to ξ � 1.

The only ever experimental realization of a matter from laser light reaction, has
been the E-144 experiment at the Stanford Linear Accelerator Center (SLAC)
[17, 36]. There, e−e+ pairs have been created by colliding a highly relativistic
electron beam with a highly intense optical laser beam. Naïvely, one would

4It is important to stress that limitations of the traditional tunneling picture in strong-field
physics exist [130, 131]. The picture is based on the concept that a laser field in the zero-
frequency limit is quasi-static, i.e., a slowly oscillating field is almost constant. Moreover,
this tunneling limit ξ →∞ (which is also reached for I →∞) is called the classical limit
in the sense that the electron is generated after a tunneling time outside the barrier with
a classical distribution and travels on a classical trajectory afterwards. However, in the
aforementioned Refs. [130, 131] it is shown that for laser fields, due to their transversal
nature, this limit is relativistic instead of classical. Furthermore, figures similar to Fig. 1.3
are shown therein with the limits of the tunneling picture indicated.
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Chapter 1. Introduction

suspect a process of the Bethe–Heitler type from Eq. (1.14), the so-called trident
process, to be the source of the occurring pairs:

eprojectile + nω −→ eprojectile + e− + e+, (1.21)

with the projectile nucleus replaced by an electron from the beam. However,
it turns out that due to the low mass of the projectile (me ≈ mZ/(4000 ·Z)) this
process is a few orders of magnitude weaker [33, 82] than an alternative two-step
variation of the Breit–Wheeler process:

ω + eprojectile −→ γ + e′projectile (1.22a)
γ + nω −→ e+ + e−. (1.22b)

In the first step, a laser photon turns into a highly energetic γ-photon by
Compton-scattering on a projectile electron. The projectile electron is thereby
deflected. Then, in the second step, the γ collides with several (n & 4) laser
photons creating the e−e+ pair, analogously to Eq. (1.15). Even more than a
decade after the measurement, the two processes of Eqs. (1.21) and (1.22) are
still subject to theoretical analysis [68, 70, 77].

For an experimental realization of the non-linear Bethe–Heitler process given
in Eq. (1.14) with a nucleus as projectile, the two-step process corresponding
to Eqs. (1.22) would be strongly suppressed. For instance, the lightest nuclear
projectile, an H+ ion, i.e., a single proton, already has a 1836-times larger mass
than the electron. As the cross section of Compton scattering is proportional to
1/m2

projectile the first step in Eq. (1.22a) becomes very unlikely. Moreover, the non-
linear Bethe–Heitler reaction is accessible by modern experimental techniques,
e.g., by using the highly relativistic nuclear beam from the Large Hadron
Collider (LHC) [32] at CERN (Conseil Européen pour la Recherche Nucléaire) in
conjunction with a counterpropagating highly intense laser beam. In the nuclear
rest frame, the laser frequency and intensity are subject to a strong amplification
by a relativistic Doppler shift, reaching the levels required for pair creation.

The prospect of an experimental test naturally fuels further theoretical investiga-
tions: Production rates and emission spectra in various field parameter regimes
have been calculated (e.g., [14, 60, 87, 105, 106, 145]), as well as more refined
properties, such as nuclear recoil [84, 108], polarization [40] and spin effects
[109]. However, in all mentioned studies the laser field was assumed to be a
monochromatic plane wave with either linear or circular polarization.

8



1.4. Bichromatic Laser Fields

1.4. Bichromatic Laser Fields

A propitious extension to these studies is the non-linear Bethe–Heitler effect em-
ploying a bichromatic laser field, i.e., a laser field comprised of two frequencies:

Z + n1ω1 + n2ω2 → Z + e− + e+. (1.23)

In an appropriate set-up, the addition of a second frequency mode to the laser
field allows the study of quantum interference effects. Therefore, both modes have
to propagate in the same direction and must have commensurable frequencies,
i.e., frequencies with a rational ratio. Then, the total four-momentum of n1
photons from the first mode may equal that of n2 photons from the second mode.
With this condition fulfilled, it is indistinguishable whether a pair was produced
through photon absorption from the first or the second mode. Thus, these two
quantum paths can interfere.

Recently, a process of this kind has been investigated with both modes linearly
polarized along the same direction [85, 86]. In addition, both modes were
assumed to have the same value for the intensity parameter (defined in Eq. (2.7)
below). There, the relative phase between the modes was shown to exhibit a
distinct influence on the angular distributions of the created particles. The
non-linear Bethe–Heitler process was also considered for a bichromatic laser field
of commensurable frequencies and circularly polarized modes [134]. A further
study revealed interference effects in e−e+ pair creation by a highly energetic
non-laser photon in the presence of a bichromatic laser field of commensurable
frequencies [110]. Besides, it is worth mentioning that other types of interference
effects in field-induced pair production have recently been subject to theoretical
investigation as well [4, 38, 48, 73, 77].

Two-colour quantum interference effects are well known for photoinduced atomic
processes [52] and chemical reactions [142], where they can be exploited for
coherent control schemes. Furthermore, in the interaction of a single photon
with a structured target, Bethe–Heitler pair creation may exhibit signatures
of quantum interference. Particularly, coherently enhanced pair creation by a
photon propagating through a crystal has been studied in detail [121, 149]. Similar
interference effects occur in pair creation on molecules [126, 151]. In both cases,
the pairs are produced at two or more Coulombic centres, with the corresponding
process amplitudes adding up coherently and leading to interference. Finally,
a study on entanglement in e−e+ production by two counter-propagating laser
beams is worth mentioning [57].

For the incommensurable case of largely differing frequencies with ω1/ω2 & 100,
where no interference may occur, the influence of an assisting rapidly-oscillating

9



Chapter 1. Introduction

electric field on the strong-field Bethe–Heitler process has been studied [93],
as well as the possibility of controlling the barrier in a tunneling pair-creation
process [41, 42]. Similar studies on dynamically assisted variants of Schwinger
[50, 140] and Breit–Wheeler pair creation [71] exist.

Two-colour laser fields have been successfully employed in several recent experi-
ments on coherent control. By variation of the relative phase between the two
laser modes, control over photo-ionization and -dissociation of various systems
has been gained, such as hydrogen-deuteride molecular ions (HD+) [143], the
asymmetric non-polar molecule ethylene bromochloride (ClCH2 CH2 Br) [117],
deuterium molecules (D2) [127], and several other molecules (e.g., N2, O2, CO,
CO2, and HBr) [23]. In particular, the emission direction of the ejected electrons
and ionic fragments could be steered in these experiments. Note that, a frequency
ratio of ω1/ω2 = 2 has been used in all given examples.

Light sources based on High-Harmonic Generation (HHG) [91] are ideal for the
realization of asymmetric bichromatic laser fields because the two modes are
intrinsically synchronized as they originate from the same pump laser. Therefore,
they exhibit very high temporal resolution. Most commonly used are combina-
tions of infrared (IR) and extreme ultraviolet (XUV) radiation [47, 75]. However,
the intensities typically reached by HHG-based XUV lasers are not yet sufficient
for inducing multiphoton processes.

Higher intensities are available at Free-Electron Lasers (FELs) [133] such as
FLASH5 in Hamburg, where XUV radiation in the multiphoton regime can be
combined with IR laser pulses [139]. Furthermore, joint X-ray FEL radiation
and IR laser beams are available at LCLS6 in Stanford [98]. Additionally,
the X-ray beam of the LCLS can be combined with high-power optical laser
beams by means of the MEC (Matter in Extreme Conditions) instrument in
order to achieve very asymmetric combinations of two frequencies [163]. In
the context of bichromatic laser fields, the recent demonstration [95] of an
intense two-colour X-ray FEL beam achieved by self-seeding [8] at LCLS is
especially worth mentioning. However, FLASH and LCLS are both based on
SASE (Self-Amplified Spontaneous Emission), which is a stochastic process [27].
Therefore, the generated pulses are only partially coherent [123]. They consist
of stochastic spikes [2] whose width of a few femtoseconds corresponds to the
temporal coherence length [104]. Furthermore, the phase changes randomly.
Full control over all pulse parameters – including the phase – may be gained by
laser-seeding both FEL beams, as has been demonstrated recently [7] at FERMI7
in Trieste.

5Free-Electron Laser in Hamburg [58], since 2005, (28–295) eV [156]
6Linac Coherent Light Source [54], since 2009, (270–9500) eV [162]
7Free-Electron Laser for Multidisciplinary Investigations [6], since 2011, (12–124) eV [157]
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1.5. Objective

1.5. Objective

In the present work, the non-linear Bethe–Heitler effect in a bichromatic laser
field is studied for both, commensurable and incommensurable frequencies. Both
field modes are assumed to be linearly polarized with mutually orthogonal
polarization vectors. The presented theory relies on an S -matrix formalism in
the Furry picture using Volkov solutions to the Dirac equation as basis states.
The nuclear Coulomb field is treated in the lowest order of perturbation theory.

For the commensurable case, the focus lies on signatures of two-colour quantum
interference in the pair-creation process. Therefore, the intensity ratio of the
frequency modes is chosen such that the contributions from interference in
the square of the S -matrix is maximized. It will be shown that, the two-
colour interference manifests itself in a modified angular distribution of the
created particles. In particular, shifts of the angular peak positions are found,
as well as increases (or decreases) of the total pair-production rate. These
modifications depend on the relative phase between the two field modes. Thus,
the latter can be chosen to maximize the yield of produced pairs. The results are
discussed in the nuclear rest frame and the laboratory frame. Additionally, an
intuitive explanation for the phase dependence of the total pair production rate
is developed. A special case, a monochromatic laser wave of arbitrary elliptical
polarization, is also investigated by means of a transition from a single linearly
polarized to a circularly polarized laser wave.

Regarding the chosen geometry of the bichromatic laser field, it is worth noting
that the orthogonality of the field modes offers two advantages: On the one hand,
the mathematical treatment of the process is simplified as certain cross terms
will vanish. On the other hand, it is guaranteed that the laser intensity remains
constant under variation of the relative phase between the modes. These two
features facilitate gaining intuitive insights into the rather complex nature of two-
colour quantum interferences in the non-linear Bethe–Heitler effect. Furthermore,
in this context it is interesting to note that, orthogonally polarized two-colour
laser fields have been employed to gain control on the laser-driven recollision
dynamics of field-ionized electrons [31, 78].

The incommensurable case is compared to the commensurable one, in order to
further emphasize the interference effects. In this comparison, it is discussed
that the latter should particularly differ from the former for largely differing
frequencies. Hence, this case is studied in form of the non-linear Bethe–Heitler
process by a highly intense laser in the non-perturbative regime assisted by a
highly energetic photon just below the pair-creation threshold. For this process,
the total rates, just as rates differential in the emission angle, the energy, and the
momentum of the created particles are compared to the unassisted counterpart.

11



Chapter 1. Introduction

This way, the laser intensity regime where the assisted photon leads to a strong
enhancement of the total rate is identified, as well as that where its contribution
is negligible. In the differential spectra, modifications to the width of the
distribution and its peak position are found. Finally, the study is extended
to the next-higher order process. The doubly-assisted pair-creation process is
examined for the same properties as the singly-assisted before, leading to similar
conclusions.

Parts of the results presented in the subsequent sections have been published in
Refs. [12, 13]. A third publication based on the results shown in Sec. 4.2 is in
preparation.

1.6. Outline

This thesis is organized as follows: In the subsequent Ch. 2, the theoretical
framework is discussed. In Sec. 2.1, the laser field geometry is introduced and
the Volkov solutions of the Dirac equation are adapted to it. From this, the
transition amplitude, describing the non-linear Bethe–Heitler process in such a
laser field, and the pair-creation rates are derived in Sec. 2.2. The latter contains
a six-fold integral over the momenta of the created particles and a four-fold
sum over photon numbers, which both can effectively be reduced by one due to
energy constraints. The remaining integrations are performed numerically. The
chapter concludes with remarks on the employed terminology and parameters.

The discussion of the results is divided into two parts: On the one hand, com-
mensurable frequencies are treated in Ch. 3, with an emphasis on the effects of
interference between the two laser modes. On the other hand, incommensurable
frequencies are discussed in Ch. 4, starting with a comparison to the commensu-
rable case, followed by the strongly differing frequencies of a γ-assisted tunneling
pair-creation process. In both parts, pair-creation rates differential in the polar
emission angle and in the radial momentum coordinate are shown for various
frequency ratios and (total) photon energies. Furthermore, total pair-creation
rates are compared for the different occurring processes.

A summary of the found results and the conclusions drawn from them is given
in Ch. 5, as well as a brief discussion of the potential experimental realizations
of the proposed pair-creation schemes. Additionally, in the Appendices an
overview of the applied units (App.A) and notation (App. B) is given, as well as
a derivation of the aforementioned Volkov solutions in App.C and various rules
for the evaluation of products and traces of Dirac γ-matrices in App.D. Finally,
an important caveat for the numerical integration is discussed in App. E.

12



Chapter 2.

Theoretical Framework

In the following, an expression for the fully differential pair-creation rate is
developed by means of the amplitude of the transition from a negative- to a
positive-continuum state. For the latter, Volkov wave functions adapted to
the bichromatic field geometry are introduced. Furthermore, the employed
terminology and parameters are discussed.

2.1. Volkov Solutions and Field Geometry

For an electron interacting with an electromagnetic plane wave in vacuum, the
Dirac equation has an exact solution, the so-called Volkov wave functions. In
the following, their application to pair creation in a bichromatic laser field will
be discussed.

The Dirac equation [46] may be written in a conveniently compact form when
Feynman slash notation /A = γµA

µ and Einstein summation convention8 is
applied (see also App.B): (

i~/∂ + e

c
/A−mc

)
Ψ = 0. (2.1)

Here, e is the positive elementary charge, m the electronic rest mass, and c the
speed of light in vacuum. The four-gradient ∂ =

(
1
c
∂
∂t
,−∇

)
is defined in terms of

partial derivative operators with respect to the four dimensions of the space-time
coordinate x = (ct, r).

A plane-wave vector potential A = A(η), i.e., a potential with constant frequency
and amplitude whose wave fronts are infinite parallel planes perpendicular to

8Implied summation over indices appearing twice in a product (cf. App.B.1):
aib

i =
∑
i aibi = a·b and aµb

µ =
∑
µ aµb

µ = a0b0 − a·b = 〈ab〉.
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Chapter 2. Theoretical Framework

the wave vector k = (ω/c,k), depends only on a phase variable

η = kµx
µ = ωt− k·r. (2.2)

Thus, Lorenz9 gauge ∂µAµ = 0 is fulfilled, which is equivalent to A being
transversal: kµAµ = 0.

From this ansatz, the Volkov solutions [153]

Ψ(±)
p±,s± = N±

(
1± e/k /A

2ckµpµ±

)
exp

( i
~
S(±)

)
u(±)
p±,s± (2.3)

for electrons and positrons, as denoted by the superscripts (−) and (+), respec-
tively, are obtained. The derivation is briefly outlined in App.C. Here, u(±) are
free Dirac spinors with the spins s± and the momenta p± = (Ep±/c,p±), where
p2
± = (mc)2. N± are normalizers, and S(±) is the respective action:

S(±) = ±xµpµ± + e

ckµp
µ
±

∫ η[
Aµ(η̃) pµ± ∓

e

2cA
2(η̃)

]
dη̃. (2.4)

Using these wave functions, the interaction between electrons or positrons and
the laser field are fully taken into account.

As depicted in Fig. 2.1, the laser field is defined as a superposition of two
independent laser modes: A = A1 + A2. With each of them assumed to be a
general plane wave

Ai = ai cos(ηi + ϕi) (i = 1 or 2), (2.5)

with relative phases ϕi, phase coordinates ηi = (ωi/c)κµxµ, where the direction of
propagation κ = (1, 0, 0, 1) is shared among the wave vectors ki = (ωi/c)κ. The
field vectors ai are chosen to be perpendicular, 〈a1a2〉 = 0, and given by

a1 = (0, 1, 0, 0) |a1| and a2 = (0, 0, 1, 0) |a2| . (2.6)

Their absolute amplitudes |ai| are measured by the dimensionless intensity
parameters

ξi = e

mc2
|ai|√

2
. (2.7)

In the superposition of these two fields, one can make use of an advantage of the
considered geometry, namely A2 = A2

1 +A2
2. Therefore, despite the squared laser

9Often erroneously attributed to H.A. Lorentz, however first published by L. Lorenz in
Ref. [92] (cf. also Refs. [26, 112]). This confusion is particularly eminent in the so-called
Lorenz-Lorentz equation of refractivity [146].
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2.1. Volkov Solutions and Field Geometry

z

x

y

Nucleus

e−

e+
A1

A2

A1 = a1 cos(η1 + ϕ1)
A2 = a2 cos(η2 + ϕ2)

Figure 2.1.: The employed laser geometry and pair creation scheme – Two
linearly polarized plane waves with perpendicular field vectors propagating
along the z-axis onto a counter-propagating nucleus, creating an electron-
positron pair.

amplitude in Eq. (2.4), functions of the two phase coordinates are separable:

S(±) = ±〈xp±〉+
∑
i=1,2

S
(±)
i , (2.8)

S
(±)
i = e

c 〈kip±〉

∫ ηi
[
〈p±Ai(η̃i)〉 ∓

e

2cA
2
i (η̃i)

]
dη̃i. (2.9)

Note that, 〈p±Ai〉 = −p±·Ai and A2
i = −A2

i . Upon insertion of the laser fields
from Eq. (2.5), the integral in Eq. (2.9) can be performed:

S
(±)
i = e

c 〈kip±〉

[
〈p±ai〉 sin(η′i)±

e

4ca
2
i

(
sin(2η′i)

2 + η′i

)]
, (2.10)

with the convenient abbreviation η′i = ηi + ϕi. At this point it is useful to define
the laser-dressed momenta [20]

q± = p± + e2A2

2c2 〈p±κ〉
κ (2.11)

=
(
Eq±
c
,q±

)
, (2.12)
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Chapter 2. Theoretical Framework

via the mean square of the laser field amplitude

A2 = 1
2
(
a2

1 + a2
2

)
= m2c4

e2

(
ξ2

1 + ξ2
2

)
. (2.13)

These effective momenta contain the term linear in ηi from Eq. (2.10). However,
the frequencies ωi cancel and only the direction of propagation κ is of relevance.
Furthermore, the term linear in the relative phases ϕi will eventually cancel in
the following steps, particularly in the exponential of Eq. (2.22) as can be seen
in Eq. (2.30), and will thus be dropped here. The average intensity of the total
laser field is also independent of ϕi, due to the perpendicular field vectors.

The normalizers from Eq. (2.3),

N± =
√
mc

q0
±
, (2.14)

may be defined via the effective momenta, while its Lorentz-invariant square

q2
± = p2

± + e2

c2 A2 (2.15)

allows the definition of the effective or laser dressed electron mass [90]

m∗ = m
√

1 + ξ2
1 + ξ2

2 (2.16)

such that q2
± = (m∗c)2.

Finally, the so-called ponderomotive energy is defined by the difference

Eq± − Ep± = c (q0 − p0) = Epond (2.17)

= e2A2

2c 〈p±κ〉
κ0 (2.18)

≈ e2A2

2mc2 = mc2

2
(
ξ2

1 + ξ2
2

)
, (2.19)

where the approximation holds for the non-relativistic limit. In the last step
Eq. (2.13) has been inserted. The ponderomotive energy describes the cycle-
averaged quiver motion of a free electron in an electric field.

2.2. Transition Amplitude and Pair-Creation
Rates

The creation of an e−e+ pair may be modelled as a transition from a state in the
negative continuum Ψ(+) to one of the positive continuum Ψ(−), as illustrated in
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Negative
continuum

Positive
continuum

0

E

+mc2

−mc2

Figure 2.2.: The employed model of e−e+ pair creation – The electron
transitions from the negative continuum, the so-called Dirac sea, to the
positive continuum. This leaves a hole in the former, which corresponds to
the positron. The gap that has to be crossed along the energy axis is 2mc2

wide.

Fig. 2.2. Throughout this study, these states are assumed to be Volkov states,
while the transition is induced by a nuclear Coulomb potential AN . In the rest
frame of the nucleus, the potential consists only of a scalar part, which makes it
convenient to introduce the four-vector ε = (1, 0, 0, 0) and write

AN = Ze

|r|
ε. (2.20)

Pair creation is then described by the transition amplitude10

S = i e
~c

∫
Ψ̄(−)
p−,s−

/ANΨ(+)
p+,s+ d4x, (2.21)

treating the nuclear field in first-order perturbation theory. Upon insertion of
the Volkov wave functions from Eq. (2.3), one obtains

S = N−N+
iZe2

~c

∫ d4x

|r|
ū(−)
p−,s−G u(+)

p+,s+ exp
( i
~
(
−S(−) + S(+)

))
, (2.22)

where all slashed quantities are collected in

G =
(
1− e /A/κ

2c 〈κp−〉

)
/ε

(
1 + e/κ /A

2c 〈κp+〉

)
. (2.23)

10Here, the abbreviation ψ̄ = ψ†γ0 for a spinor ψ is used.
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Chapter 2. Theoretical Framework

This can be rewritten as

G = /ε + e

2c

[
/ε/κ

〈κp+〉
− /κ/ε

〈κp−〉

]
/A+ e2

2c2
〈εκ〉 /κ

〈κp−〉 〈κp+〉
A2 (2.24)

employing

/A/κ/ε/κ /A = −2 〈εκ〉A2/κ, (2.25)
/A/κ/ε = /κ/ε /A, (2.26)

which may be verified using Eqs. (D.4).

Upon insertion of the laser fields from Eq. (2.5), G adopts the form

G = /ε +
∑
i=1,2

(
γi cos(η′i) + δi cos2(η′i)

)
(2.27)

with

γi = e

2c

[
/ε/κ

〈κp+〉
− /κ/ε

〈κp−〉

]
/ai, (2.28)

δi = e2

2c2
〈εκ〉 /κ

〈κp−〉 〈κp+〉
a2
i . (2.29)

Due to Eq. (2.8) and Eq. (2.10), the exponential from Eq. (2.22) may be written
as a product:

exp
( i
~
(
S(+) − S(−)

))
= exp

( i
~

(〈xp−〉+ 〈xp+〉)
) ∏
i=1,2

exp
( i
~
(
S

(+)
i − S(−)

i

))
.

(2.30)
Wherein

i
~
(
S

(+)
i − S(−)

i

)
= −iαi sin(ηi)− iβi sin(2ηi), (2.31)

with the definitions

αi = e

~ωi

(
〈aip−〉
〈κp−〉

− 〈aip+〉
〈κp+〉

)
, (2.32)

βi = e2a2
i

8c~ωi

(
1
〈κp−〉

+ 1
〈κp+〉

)
, (2.33)

allows the identification of a set of three periodic functions b(ηi), c(ηi), and d(ηi)
for each laser mode i:

b(ηi) = exp(−iαi sin(ηi)− iβi sin(2ηi)),
c(ηi) = b(ηi) cos(ηi),
d(ηi) = b(ηi) cos2(ηi).

(2.34)
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2.2. Transition Amplitude and Pair-Creation Rates

A Fourier series expansion of the form

f(ηi) =
∑
ni

Fnie−iniηi , (2.35)

where the function f ∈{b, c, d} as in Eq. (2.34) has the coefficients F ∈{B,C,D},
yields six coefficients:

Bni = J̃ni(αi, βi),

Cni = 1
2
[
J̃ni−1(αi, βi) + J̃ni+1(αi, βi)

]
,

Dni = 1
4
[
J̃ni−2(αi, βi) + 2J̃ni(αi, βi) + J̃ni+2(αi, βi)

]
,

(2.36)

built from generalized Bessel functions J̃n(α, β) [129], as defined via the ordinary
Bessel function Jn(x) by

J̃n(α, β) =
∞∑

l=−∞
Jn−2l(α) Jl(β). (2.37)

Note that, the relative phases ϕi have not been taken into account so far. This is
because they may be treated in general instead of separately for each coefficient
above. A Fourier series of the form

f(η′i) =
∑
ni

Fnie−iniη′i =
∑
ni

Fnie−iniηie−iniϕi (2.38)

leads to the same coefficient as Eq. (2.35), however for each addend an additional
factor φni = e−iniϕi , identical for all coefficients from Eq. (2.36), occurs.

The series expansion introduces two indices ni, which can be interpreted as count
for the number of photons taken from the respective mode i. Upon inserting the
expansions into the transition amplitude, it can be rewritten as summation over
the ni:

S = iZe2mc

~c
√
q0
−q

0
+

∑
n1,n2

φ(n1,n2) M
(n1,n2)
p−p+

∫ d4x

|r|
exp

( i
~
xµQ

µ
(n1,n2)

)
, (2.39)

where the normalizers from Eq. (2.14) have been inserted. Additionally, the
momentum transfer to the nucleus

Q(n1,n2) = q+ + q− − n1~k1 − n2~k2 (2.40)

has been introduced, as well as the matrix element M (n1,n2)
p−p+ = ū(−)

p−,s−Γn1,n2 u
(+)
p+,s+ .

The latter contains all slashed quantities and the Fourier coefficients listed in
Eq. (2.36):

Γn1,n2 = /εBn1Bn2 + (γ1Cn1 + δ1Dn1)Bn2

+ (γ2Cn2 + δ2Dn2)Bn1

(2.41)
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Note that, this form is reminiscent of Eq. (2.27) and the abbreviations from
Eq. (2.28) and Eq. (2.29) have been used. Besides, each coefficient contributes a
phase factor φni , which have been collected in φ(n1,n2) = e−in1ϕ1e−in2ϕ2 .

The four-dimensional integral in Eq. (2.39) may be solved by treating the spatial
and the temporal part separately [24]. For the integral in space, the Fourier
transform of the Coulomb potential

∫
d3r

1
|r|

e− i
~Q·r = 4π~2

|Q|2
(2.42)

is used, while the integral in time (x0 = ct) is a representation of the δ-function:∫
dx0 e i

~Q0 x0 = 2π~ δ(Q0). (2.43)

By definition of Q0
(n1,n2), this δ-function ensures energy conservation.

In order to obtain the pair-creation rate R, the transition amplitude has to be
squared. In particular, the fully differential rate is obtained by summing this
square over the final spin states and dividing by a time interval τ :

d6R = 1
τ

∑
s+.s−

|S |2 d3q−
(2π~)3

d3q+

(2π~)3 . (2.44)

Throughout this work, total rates or spectra of rates differential in one coordinate
are discussed, thus the six integrations have to be performed. Due to the δ-
function introduced above, one integration can be performed analytically, while
the remaining ones are performed numerically (cf. also App. E).

In |S |2, the two photon-counting indices ni introduced by the Fourier series
expansions in Eq. (2.35) have to be accounted for twice each. Thus one finds a
sum over four indices:

|S |2 =
∑
n′1,n

′
2

n1,n2

P[n1,n2,n′1,n
′
2], (2.45)

with the addends being the thereby defined partial contributions

P[n1,n2,n′1,n
′
2] = C φ(n1,n2,n′1,n

′
2) M̄

(n1,n2)
p−p+ M (n′1,n′2)

p−p+

cτ

Q4
(n1n2)

δ
(
Q0

(n1,n2)

)
, (2.46)

with C = Z2e4m2

~2q0
+q

0
−

32π3~5, M̄ = γ0M
†γ0, and the phase factor

φ(n1,n2,n′1,n
′
2) = φ∗(n1,n2)φ(n′1,n′2)

= ein1ϕ1ein2ϕ2e−in′1ϕ1e−in′2ϕ2 = ei(n′1−n1)ϕ1+i(n′2−n2)ϕ2 .
(2.47)
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2.2. Transition Amplitude and Pair-Creation Rates

Note that, the real part of the phase factor

<
(
φ(n1,n2,n′1,n

′
2)
)

= cos((n′1 − n1)ϕ1 + (n′2 − n2)ϕ2) (2.48)

yields the actual dependence on the relative phases once rates are considered.
The imaginary part must vanish so that the rates are real quantities. This may
be verified by studying the summation over the photon numbers: For every
combination of the four indices with ni 6= n′i another combination exists with
the values of ni and n′i switched. For symmetry reasons, these two contributions
are equal apart from the sign in the argument of the exponential from Eq. (2.47).
As the imaginary part is an odd function, i.e., a sine with the same argument as
above, the imaginary parts of the two contributions cancel. The cosine of the
real part is an even function, thus the two contributions are indeed identical.
Additionally, for combinations of the four indices with ni = n′i, the phase factor is
simply unity as the argument of the exponential (or rather the cosine) vanishes.

The δ-function in Eq. (2.46) as introduced in Eq. (2.43) enforces

n1k1 + n2k2 = n′1k1 + n′2k2, (2.49a)
Q(n1,n2) = Q(n′1,n′2). (2.49b)

Therefore, one may use Eq. (2.49a) to define

ϕ′1 = ϕ1 + ω1

ω2
ϕ2 and ϕ′2 = 0. (2.50)

Without loss of generality, it is thus justified to use only a single relative phase
ϕ = ϕ′1 instead of two.

Furthermore, using Eq. (2.49b) the squared δ-function has introduced the time
interval τ into Eq. (2.46) according to [24]:[

2π~ δ
(
Q0

(n1,n2)

)]2
= 2π~ δ

(
Q0

(n1,n2)

)
cτ. (2.51)

As can be seen immediately, τ will cancel once |S |2 and consequently P are
inserted into Eq. (2.44). However, it is of particular interest for the presented
study to define an additional measure via the partial contributions, the differential
partial rates

d6R[n1,n′1,n2,n′2] = 1
τ

∑
s+,s−

P[n1,n′1,n2,n′2]
d3q−

(2π~)3
d3q+

(2π~)3 . (2.52)

With this, Eq. (2.44) may be written as

d6R =
∑
n′1,n

′
2

n1,n2

d6R[n1,n′1,n2,n′2]. (2.53)
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As will be discussed later, different combinations of indices will characterize
and classify the different processes occurring for a given nuclear beam and laser
geometry. However, it is important to note, that the partial rates are, in general,
no experimental observables. Particularly, they may be negative and accordingly
decrease the total rate.

Inserting P from Eq. (2.46) into Eq. (2.52) leads to

d6R[n1,n′1,n2,n′2] = C φ(n1,n2,n′1,n
′
2) T

c

Q4
(n1n2)

δ
(
Q0

(n1,n2)

) d3q−
(2π~)3

d3q+

(2π~)3 , (2.54)

wherein the occurring spin sum T may be expressed as a trace of products of
γ-matrices (cf. App.D):

T =
∑
s+,s−

M̄ (n1,n2)
p−p+ M (n′1,n′2)

p−p+ = tr
(

Γn1,n2

/p+ − c
2c Γ̄n′1,n′2

/p− + c

2c

)
. (2.55)

For the evaluation of the trace, Γ̄ = γ0Γ†γ0 with the complex conjugate

Γ†n′1,n′2 = /εBn′1
Bn′2

+
(
γ†1Cn′1 + δ1Dn′1

)
Bn′2

+
(
γ†2Cn′2 + δ2Dn′2

)
Bn′1

(2.56)

is needed, wherein the Fourier coefficients are real quantities and δi = δ†i , as
it contains only a single γ-matrix. However, for γ†i the order of the contained
slashed quantities has to be reversed (cf. Eq. (D.5)):

γ†i = e

2c/ai

[
/κ/ε

〈κp+〉
− /ε/κ

〈κp−〉

]
, (2.57)

which is connected to γi via

γ†i + γi = e

c
〈εκ〉

[
1
〈κp+〉

− 1
〈κp−〉

]
. (2.58)

Applying the algebra presented in Eqs. (D.4) yields an expression for T of the
form

T = U + V12 + V21 +W, (2.60)
with the individual terms given in Eq. (2.59) on page 23. The result is expectedly
symmetric in the laser amplitudes ai and may be broken up into four parts. The
first part, U , is independent of ai. The second and third part have the same
form, Vij = Vij(ai), and are a function of only one of the amplitudes. Therefore,
the only occurring coefficients for mode j are Bnj and Bn′j

. The fourth part,
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U = 1
4c2 4
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×
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[
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2
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Bn2Dn′2

)}
(2.59c)

Eq. 2.59: Terms from the trace in Eq. (2.55) as defined via Eq. (2.60) –
Each term has been gained by applying the rules presented in App.D. Note
that U is independent of both ai, while Vij = Vij(ai) only depends on one ai
and W depends on both.
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W , is in itself symmetric in ai and the two amplitudes are interchangeable:
W = W (a1, a2) = W (a2, a1). In this term only products of powers of a1 and a2
occur.

It is worth noting that, in case one laser mode was turned off, i.e., ai = 0, the
terms W and Vij would vanish, while U and Vji would remain. This reproduces
the results for a single monochromatic linearly polarized laser beam colliding
with a nucleus, as obtained in Ref. [106]. Moreover, for an appropriate set of
parameters, in particular by defining

|a1| = |a2| = a,

ω1 = ω2 = ω,

ϕ1 = π/2,

ϕ2 = 0,

(2.61)

the results for a circularly polarized laser wave [105] are also reproduced.

The third special case contained in the presented theory is a monochromatic
laser wave of arbitrary elliptical polarization, as will be discussed in Sec. 3.2. It
is achieved by setting only

ω1 = ω2 = ω,

ϕ1 = π/2,

ϕ2 = 0,
(2.62)

and adjusting the intensities such that the desired ellipticity is reached. This
way the ellipticity may be tuned continuously from the linearly polarized case
(e.g., with a1 = a and a2 = 0) to the circularly polarized case (as in Eq. (2.61)).
Alternatively, a similar transition may be achieved with the set-up

|a1| = |a2| = a,

ω1 = ω2 = ω,
(2.63)

and a variation of the relative phases. For ϕ1 = ϕ2 = 0, this corresponds to a
single linearly polarized laser wave with the polarization axis lying diagonally in
the x-y-plane11. For one ϕi set to π/2 instead, one finds a circularly polarized
laser wave. The continuous variation between these two extreme conditions,
again, allows to tune an arbitrary ellipticity.

11This is in contrast to Eq. (2.62) where the linear polarization is either along the x- or y-axis.
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2.3. Terminology and Parameters

In order to ease reading the results presented in the following chapters, a few
short remarks on the applied notation should be made. Throughout this thesis,
the notions laser pair and minimal photon number are used frequently, just as a
classification of the occurring sub-processes by means of the involved number of
photons. These will be introduced in the following. Furthermore, the employed
intensity and nuclear beam parameters are discussed.

2.3.1. Laser Pairs and Minimal Photon Number

A pair of laser waves with frequencies ω1 and ω2 is denoted by (ñ1, ñ2) when
it is indistinguishable whether ñ1 photons were absorbed from the first mode
or ñ2 from the second mode. Here, ñi =

⌈
2m∗c2

ωi

⌉
(see also App.B.4) is the

minimal number of photons needed from mode i to create a pair, using no
photon from the other mode. In this case, the minimal energy absorbed from
mode i is ñi~ωi & 2m∗c2. As long as the intensity parameter ξi is small, this
energy is a good measure because processes involving more than the minimal
number of photons (or the minimal amount of energy) are suppressed. Thus,
for commensurable frequencies, i.e., frequencies with a rational ratio, where
these energies are inherently equal, ñ1~ω1 = ñ2~ω2, they may be associated with
the total photon energy Eph. This energy is absorbed for every process that
significantly contributes to the total rate. Particularly, processes may be possible
in which photons from both modes are absorbed. Then the individual numbers
ni (or n′i, as will be discussed in the subsequent Sec. 2.3.2) may be smaller than
ñi, and

Eph = n1~ω1 + n2~ω2

= n′1~ω1 + n′2~ω2
(2.64)

≡ ñ1~ω1 ≡ ñ2~ω2. (2.65)

For incommensurable frequencies, on the other hand, the minimal photon energies
are not equal and the total photon energies absorbed in the individual sub-
processes may differ.

2.3.2. Term Classification

So far, no formal definition of what sub-processes may occur, has been made.
In the theoretical treatment presented here, it is straightforward to use the
four photon-counting indices introduced in Eq. (2.45) for this distinction. It is
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Type of term Condition (∀i) Example: (2, 4)
Direct ni = n′i, only one ni 6= 0 [2, 2, 0, 0] or [0, 0, 4, 4]
Symmetrically mixed ni = n′i 6= 0 [1, 1, 2, 2]
Interference (Asymmetric) ni 6= n′i [0, 2, 4, 0] or [2, 0, 0, 4]

Table 2.1.: Types, conditions, and examples of the terms [n1, n
′
1, n2, n

′
2] in

the summation from Eq. (2.53) – Note that, the direct and the symmetrically
mixed terms are invariant under exchange of ni and n′i. For an interference
term this leads to a different one. However, these two will contribute equally.

particularly convenient to define different types of terms in the four-index sum of
Eq. (2.53), denoted by their respective combination of indices [n1, n

′
1, n2, n

′
2].

Throughout this work three classes are distinguished: direct, symmetrically
mixed, and asymmetrically mixed terms, where the latter stem from interference
(see Tab. 2.1 for the exact conditions and some examples). Direct terms are
those originating solely from one of the two laser modes and thus would also be
visible if the other mode was turned off. They can serve as contribution strength
references later on, as they could be used in an experimental comparison by
recording the two laser sources one at a time. The symmetrically mixed terms
can be understood as taking a certain number of photons from the first mode
and another number from the second. In these cases, no interference is involved.
For the interference terms, on the other hand, it is, by definition, not obvious
how to interpret their index combination as actual photon numbers from the two
modes. These terms may only occur for commensurable frequencies as Eq. (2.49)
could not be fulfilled otherwise. This can be verified by rewriting Eq. (2.49a) as
either

(n1 − n′1)ω1 = (n′2 − n2)ω2, (2.66)
which will only be true for arbitrary ωi if ni = n′i, or as

n1 − n′1
n′2 − n2

= ω2

ω1
, (2.67)

which demands commensurable ωi for ni 6= n′i. Furthermore, as can be seen in
Eq. (2.47), only interference terms are sensitive to changes of the relative phases
ϕi from Eq. (2.5). For the other types of terms, where ni = n′i, the argument of
the exponential therein vanishes and the whole factor becomes unity.
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2.3.3. Intensity Parameters

In order to investigate interference, it is mandatory to choose a set of parameters
in which contributions from the respective terms are maximal. To ensure this,
the partial rates of the two direct terms with minimal photon number,

R[ñ1,ñ1,0,0] = R1, (2.68)
R[0,0,ñ2,ñ2] = R2, (2.69)

may be used. When these are approximately equal, the interference terms show
their maximal strength, as otherwise they are limited by the smaller of the
two direct terms. A straightforward way of reaching such a configuration is
by introducing a common intensity parameter ζ and defining the two intensity
parameters ξi from Eq. (2.7) via the respective other modes minimal photon
number:

ξ1 ≈ ζ ñ2 ,

ξ2 ≈ ζ ñ1 .
(2.70)

The leading order of the direct rate Ri contains the square of a Bessel function
with an argument that is linear in the intensity parameter ξi. In the multiphoton
regime, i.e., for ξi � 1, this is the ñith order (cf. Eq. (1.20)), and one finds

Ri ∼ ξ2ñi
i . (2.71)

Combined with Eq. (2.70), this ensures

R1 ≈ R2 ∼ ζ2ñ1ñ2 . (2.72)

For a general term [n1, n
′
1, n2, n

′
2], a scaling corresponding to Eq. (2.71) can be

given and the individual ξi can be replaced by the newly introduced ζ:

R[n1,n′1,n2,n′2] ∼ ξ
(n1+n′1)
1 ξ

(n2+n′2)
2 ≈ ζ ñ2(n1+n′1)+ñ1(n2+n′2). (2.73)

However, while these equations give the correct scaling, they do not include the
proportionality factor, which differs for the two direct rates. To take this into
account, a small adjustment to the ξi is necessary. It may be gained from the
ratio of the results of the direct terms Rcalc

i calculated for the ξi from Eq. (2.70),
for instance a modified ξ1 would be:

ξ1 = ζ ñ2

(
Rcalc

1
Rcalc

2

)1/2ñ2

. (2.74)

Note that, due to Eq. (2.71), the ratio of the calculated rates should be approxi-
mately unity and, thus, the introduced change to ξ1 is indeed small.
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2.3.4. Nuclear Beam

For all results shown in this thesis, a proton beam target, and thus Z = 1, is
assumed. As can be seen from Eq. (2.46), particularly from the factor C therein,
for higher nuclear charges the rates would by scaled by a factor of Z2. However,
it is important to note that this is only true as long as Coulomb corrections to
the first-order treatment of the nuclear field may be neglected. This is indeed
the case for all parameters discussed in this work.

Coulomb corrections would include the attraction or repulsion of the created
particles (electron and positron, respectively), due to the field of the nucleus [18,
74]. They have to be considered if the particles are slow enough to be deflected
by the nuclear field. But even for our case of low total photon energy, the kinetic
energy is sufficiently large for the particles to leave the vicinity of the nucleus
without being deflected. To find a measure for the influence of the nuclear field
on a nearby electron or positron, one can compare the squared modulus of the
wavefunction for a Coulomb field with that of the free particle counterpart at the
coordinate origin, i.e., at the position of the nucleus [88]. If no deviation is found,
the assumption that the influence of the nuclear Coulomb field on the trajectory
of the particles can be neglected is justified. Setting the ratio of these squared
moduli, as given in formulæ (134.10) and (134.11) from Ref. [88], to unity, it can
be shown that this is the case if the Sommerfeld parameter is small:

Zα

β±
� 1. (2.75)

Here β± = v±/c is the velocity of the respective created particle in units of the
speed of light. This quantity is indeed small for typical kinetic energies of about
40 keV, corresponding to velocities of β± ≈ 0.4, and small Z < 5. Particularly,
for Z = 1, as considered here, one obtains

Zα

β±
≈ 0.02 . (2.76)

Consequently, Coulomb corrections are of minor importance for the total photon
energies under consideration here. However, for heavier nuclei, i.e., with Z & 10,
they would have to be taken into account.

In this context, it is worth mentioning that a comparison of pair-creation rates
for the two projectiles currently available at the LHC [32], protons (Z = 1) and
fully stripped lead ions (Z = 82), may be found in Ref. [107].
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Chapter 3.

Commensurable Frequencies

In all figures of this chapter where partial rates are discussed, only those are
shown that contribute to the summed-up rate significantly. Partial rates that are
several orders of magnitude smaller than the leading terms (which are generally
the direct terms) are neglected.

For the direct and symmetrically mixed terms, the partial contributions are
invariant under exchange of ni and n′i. For an interference term, this exchange
leads to a second term that contributes identically. In the spectral plots these
two contributions overlap perfectly. Therefore, they will always be depicted by a
single line, which has to be counted twice when summing up all terms.

3.1. Interference of the Two Laser Modes

In the following sections, results for commensurable frequencies are shown. The
arising interference phenomena are discussed by means of angular-differential
(partial) rates for various combinations of laser waves. The influence of a variation
of the total photon energy and of the relative phase is studied in the nuclear rest
frame and the laboratory frame. Parts of the results presented in the following
sections have been published in Refs. [12, 13].

3.1.1. Variation of the Minimal Photon Number in the
Nuclear Rest Frame

For the study of interference phenomena, it is mandatory to identify candidates
of laser wave combinations (ñ1, ñ2), which show strong contributions from inter-
ference terms. To do so, a fixed total photon energy in the nuclear rest frame
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Chapter 3. Results for Commensurable Frequencies

just above the pair-creation threshold is chosen,

ñ1~ω1 = ñ2~ω2 = 1.1 MeV. (3.1)

The relative phase ϕ is set to zero and the intensity parameters are ξi < 1.

Experimentally, photon energies of that magnitude could be achieved, for instance,
by colliding a nuclear beam with a Lorentz factor of γ ≈ 6000, as the LHC
provides in its current state [32], with an XUV laser beam with ω ∼ 50 eV.
Alternatively, a much lower γ of about 50 could be used in conjunction with an
X-ray laser beam of ω . 10 keV.

The considerations in this section, as well as in the following two sections, are
confined to the nuclear rest frame. Therefore, the Lorentz factor γ of the nucleus
is only used to increase the total photon energy from the laboratory by a factor
of approximately 2γ (cf. Eq. (3.8)). The further influence of different values for
γ is discussed in Sec. 3.1.4, where the laboratory frame is studied.

The starting point of the presented investigation is the laser pair with lowest
differing minimal photon numbers: (1, 2). This corresponds to the frequencies in
the nuclear rest frame

ω1 = 1.1 MeV and ω2 = 550 keV. (3.2)

The angular-differential partial rates for the main contributions of this pair are
shown in Fig. 3.1(a). The emission angle θ is measured with respect to the laser
propagation direction. Due to the momentum in forward direction conveyed
by the absorbed photons, the maxima of the spectra are usually below 90◦. As
discussed in Sec. 2.3, the intensities are chosen such that the two direct terms
with minimal photon number contribute equally to the total rate. This is clearly
visible in Fig. 3.1(a) where the direct term with a single photon from the first
mode (long-dashed blue line) and that with two photons from the second mode
(solid red line) are shown. Note that their peak positions deviate slightly. There
is a further direct term using three photons of mode two (dash-dotted magenta
line) visible, whose contribution is much smaller because its order in ζ is higher.
Consequently, the smallest visible terms are of even higher order. These are
another direct term of the first mode (dash–double-dotted cyan line) and another
symmetrically mixed term (double-dashed orange line). In the latter two cases,
the absorbed energy is two times that of the direct terms with minimal photon
number. Therefore, the kinetic energy of the created particles is larger and they
are emitted under a smaller angle.

The description so far also applies to (1, 3), the laser pair with next-higher
differing minimal photon numbers, as shown in Fig. 3.1(b). However, the third
largest contribution, the symmetrically mixed term taking one photon from each
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Figure 3.1.: Angular-differential partial rates for laser pairs (1, 2) and (1, 3)
with total photon energy 1.1 MeV in the nuclear rest frame – The emission
angle θ is measured with respect to the laser propagation direction. The
frequencies are chosen such that the total photon energy is reached for ñ1
photons from the first mode and ñ2 photons from the second mode. The
intensity parameter ξ1 has been adjusted to maintain equally contributing
direct terms. The relative phase is set as ϕ = 0. Both laser pairs show no
significant contribution from an interference term.
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mode (short-dashed green line), shows a considerable difference: It is dominant
in the first example and less pronounced in the second. Due to its higher order
in ζ compared to the direct term with one photon from the first mode, this term
would be expected to be suppressed in both cases. An explanation may be that
the total photon energy of 1.1 MeV is just above the pair-creation threshold. It
is known that the pair-creation rate vanishes at the threshold [100]. A term with
total photon energy farther away from the threshold, here 1.65 MeV, has access
to a substantially larger phase space for the emitted electron-positron pair. This
may compensate the aforementioned suppression, however only if the intensities
are not too small as the suppression gets stronger with decreasing ζ.

In these two examples interference terms (dotted violet lines) do not contribute
significantly to the total rates. This will be remedied in the following. Halving
the individual frequencies used in the above examples, leads to the laser pairs
with doubled minimal photon numbers, (2, 4) and (2, 6), as depicted in Fig. 3.2.
For these two laser pairs significant contribution from interference is visible. For
the chosen relative phase ϕ = 0 this contribution is destructive for laser pair
(2, 4), i.e., it leads to a decreased summed-up rate, or constructive for (2, 6), i.e.,
leads to an increased summed-up rate.

The symmetrically mixed terms expectedly contribute approximately as strong
as the direct terms because they are of the same order in ζ. Instead of taking all
energy from a single mode, one half is taken from the first mode, the other half
from the second mode. Note that, for these two cases intensities smaller than in
the examples before are used. Therefore, contributions of higher orders in ζ are
negligible.

Concluding this section, a comparison to previous work on pair creation by a
highly energetic photon [110] shall be made. There, interference effects were
found to be strongest for a frequency ratio of 3. In the results presented here,
the laser pair with the smallest photon number for this ratio, (1, 3), does not
show a contribution from interference terms. However, a strong contribution
for the combination (2, 6) is visible. Furthermore, laser pair (2, 4) shows the
strongest absolute contribution from an interference term, while no contribution
is found for combination (1, 2), with lower photon number and identical frequency
ratio. These differences to the aforementioned study may be attributed to the
differing laser geometries, as in Ref. [110] parallel field vectors were considered.
In summary, one may note that in the results presented here interference seems
to arise only when both minimal photon numbers ñi are even.
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Figure 3.2.: Angular-differential partial rates for laser pairs (2, 4) and (2, 6)
with total photon energy 1.1 MeV in the nuclear rest frame – If not indicated
otherwise, the parameters are the same as in Fig. 3.1. These two laser pairs
show a large contribution from interference terms. For the relative phase
ϕ set to zero, the interference is destructive for (2, 4) and constructive for
(2, 6).
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3.1.2. Variation of the Total Photon Energy in the
Nuclear Rest Frame

In the previous section, laser pair (2, 4) has shown the strongest absolute con-
tribution from interference. Hence, it shall be used to investigate the influence
of the variation of the total photon energy. In Fig. 3.3, the angular-differential
partial rates are shown for laser pair (2, 4) with total photon energies of 1.25
and 1.35 MeV. One finds that for all terms, a larger energy leads to a narrower
distribution shifted to the lower part of the angular spectrum. The interference
terms (violet dotted line) also show clear changes in their shape. In the 1.25 MeV
case, the absolute value of the rate tends to zero for angles above 45◦. For
1.35 MeV the distribution shows a zero crossing and, thus, the terms decrease
the summed-up differential rate for smaller angles and increase for larger.

Besides these strong modifications for the interference terms, the relative contri-
bution of the symmetrically mixed term (short-dashed green line) grows with
rising total photon energy. It changes from the smallest non-negligible term in
Fig. 3.2(a) to the dominant term in Fig. 3.3(b).

For even higher total photon energies, particularly from 1.363 MeV onwards, a
new direct reaction channel, [0, 0, 3, 3], opens as already three photons from the
second mode are enough to create the e−e+ pair. This channel even dominates
the total rate from 1.375 MeV onwards. This is, however, not representing laser
pair (2, 4) anymore, but rather (2, 3). Therefore, it is not of interest for the
present investigation and 1.35 MeV is the highest depicted total photon energy.

So far one can conclude that the interference is more pronounced close to the
pair-creation threshold. However, the change in their curve shape for higher
energies might lead to interesting effects. A direct result from the modified shape
is shown in the subsequent Sec. 3.1.3 in which the influence of the relative phase
is discussed.

Furthermore, the strong differences of the angular dependence of the interfer-
ence terms compared to the other terms may be explained qualitatively. As
discussed in Sec. 2.3.2, the interference terms are sensitive to the relative phase
between both laser modes. Variations of this phase change the total field vector
of the laser, leading to redistribution of the emission angles, into which the
created particles are ejected. Some angular regions might become more probable,
whereas others become less probable. This redistribution manifests itself in the
angular dependence of the interference terms. Similar conclusions have been
drawn regarding other strong-field processes, such as the two-colour multiphoton
ionization of atoms [125, 138, 148].
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Figure 3.3.: Variation of the total photon energy of the angular-differential
partial rates for laser pair (2, 4) – As the total photon energy increases, the
relative contribution from interference decreases. Additionally, the shape of
the interference terms changes, leading to the zero crossing in Fig. 3.3(b).
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3.1.3. Variation of the Relative Phase in the Nuclear
Rest Frame

As discussed in Sec. 2.3, for terms with ni = n′i the phase factor from Eq. (2.47)
becomes unity. Therefore, only the interference terms are influenced by changes
to the relative phase12 between the two laser modes ϕ.

In this section, laser pair (2, 4) is further studied by means of Fig. 3.4, where
Fig. 3.4(a) treats an energy of 1.1 MeV, just above the threshold of 2m∗c2, and
Fig. 3.4(b) treats 1.35 MeV, just below the energy at which the additional reaction
channel opens, as discussed in the section before. The parameters are the same
as in Fig. 3.2(a) and Fig. 3.3(b), respectively, except for the relative phase, which
is set as ϕ = π/2. This leads to a changed sign for the interference terms, which
thus become constructive.

In order to study how strong interference effects manifest themself in the sum of
all terms (dash-dotted magenta line), it is useful to introduce a few sub-sums of
the sum in Eq. (2.45) and compare them to the individual terms. The sum of
the direct terms [0, 0, 4, 4] and [2, 2, 0, 0] (dash–double-dotted cyan line) shows
the contribution from the two laser modes when their interaction is ignored
or conversely how much their interaction enhances the pair-creation rate. The
sum of the phase-independent contributions (double-dashed orange line), which
are the direct terms and the symmetrically mixed term [1, 1, 2, 2], shows how
much change may be expected from the phase-dependent counterparts. These
are shown in the sum of the two interference terms, [0, 2, 4, 0] and [2, 0, 0, 4]
(double-dash–dotted yellow line).

The comparison shows that for the lower total photon energy (1.1 MeV), the
sum of the direct terms amounts to about 50% of the summed-up rate, the
symmetrically mixed term adds up to about 10%, and the sum of the interference
terms contributes about 40%. For the higher energy (1.35 MeV), the interference
terms are less pronounced, yielding only about 10%, with the phase-independent
terms giving the other 90% (which consists of three similar shares stemming from
the two direct terms and the symmetrically mixed term). This further strengthens
the conclusion from Sec. 3.1.2 that the interference is more pronounced close to
the pair-creation threshold.

However, the two total photon energies allow the illustration of the two distinct
effects arising from changes to the relative phase by means of Fig. 3.5. There
the sum of all terms (top panels) and the sum of the interference terms (bottom
panels) is shown for several values for the relative phase. Additionally, the sum

12Recall that the second relative phase from Eq. (2.5) has been dropped, as – without loss of
generality – a single relative phase is sufficient.
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Figure 3.4.: Individual terms and several sub-sums of the angular-
differential partial rates of laser pair (2, 4) for two total photon energies –
Here “∑ all” is the sum of all individual terms, “∑ direct” is the sum of
the two terms stemming solely from the first or the second laser mode,
“∑ phase independent” is the latter plus the symmetrically mixed term, and
“∑ interference” is the sum of the two interference terms. The relative phase
is set as ϕ = π/2. Otherwise the parameters are the same as in Fig. 3.2(a)
and Fig. 3.3(b), respectively.
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Figure 3.5.: Phase variation in the sums of all terms (top panels) and the
interference contributions (bottom panels) of the angular-differential partial
rates of laser pair (2, 4) for two total photon energies – The sum of the direct
terms as in Fig. 3.4 is given as a strength reference. For laser pair (2, 4),
the interference contribution is maximal (maximally constructive) for the
relative phase ϕ = π/2, is minimal (maximally destructive) for ϕ = 0, and
vanishes for ϕ = π/4. Otherwise the parameters are the same as in Fig. 3.2(a)
and Fig. 3.3(b), respectively.
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of the direct terms is given as a height reference in the top panels. For the lower
energy, one finds a factor of roughly 5 between the height of the distribution for
ϕ = 0 and π/2. This factor carries over to the result of the angular integration,
which means that tuning the relative phase gives – to some extend – direct
control over the total pair-creation rate. In particular, rates larger and smaller
than the sum of the direct terms may be achieved. Additionally, a shift of the
peak position from below to above π/4 occurs. This second effect is even better
visible for the higher energy, as there the influence on the height is rather small
and the aforementioned zero crossing pronounces the angular shift. Thinking
about an experimental application, this may allow to steer the direction of the
peak emission of the e−e+ pairs.

Furthermore, one finds that for laser pair (2, 4) the interference terms show a
sinusoidal behaviour in the relative phase ϕ with a periodicity of 2π/ñ1 = π: For
vanishing ϕ their contribution is maximally destructive and for ϕ = π/2 it is
maximally constructive. Any phase in between will lead to a decrease in the
absolute interference contribution, with ϕ = π/4 removing it completely.

It should be stressed again that the choice of which relative phase to use is
arbitrary. The observation for a varied ϕ2 would be the same and a periodicity of
2π/ñ2 would be found. This result depends on the laser wave frequency and thus
on the respective minimal number of photons ñi. For a more intuitive picture,
the general periodicity

Φi = 2π/ñi (3.3)
may be connected to the electric fields associated with the laser waves Ai given
in Eq. (2.5):

Ei = −1
c

∂Ai

∂t
= aiωi

c
sin(ηi + ϕi) (i = 1 or 2) . (3.4)

Due to the perpendicular laser-wave field-vectors ai, the square of the total
electric field E = E1 + E2 has the form

E 2 =
2∑
i=1

E 2
i =

2∑
i=1

a2
iω

2
i

c2 sin2(ηi + ϕi), (3.5)

with E(i) = |E(i)|. From this, one can gain a measure for the phase dependence
by normalizing the amplitudes

F 2 =
2∑
i=1

c2

a2
iω

2
i

E 2
i =

2∑
i=1

sin2(ηi + ϕi), (3.6)

and taking the modulus of the hence defined F . In Fig. 3.6, its maximum absolute
value max(|F |) as a function of ϕ is compared to the total pair-creation rate
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Figure 3.6.: Comparison of the phase variation of the total pair-creation
rates (top panel) and the measure derived from the combined electric field
(bottom panel) for several laser pair combinations – Line types and colours
are identical for both panels. As before a single relative phase ϕ is used.
To achieve better comparability the total rates have been scaled by a factor
of 1.45×109 for laser pair (2, 6) and by 1.35×1018 for (2, 8). The measure
is defined by the absolute maximum of the sum of the normalized electric
fields from Eq. (3.6). The three laser pairs show qualitatively the same phase
dependence in both panels.

for laser pairs (2, 4), (2, 6), and (2, 8). The three laser pairs show an identical
periodicity in both panels, which allows the conclusion that the phase dependence
of the total rate is directly retained from the electric fields of the input laser
waves. This may be contrasted with the finding that interference patterns in the
spectra of created particles are connected to the phase dependence of the vector
potential, as has been shown in an earlier study [86].

The connection between the phase dependence of the total pair-creation rate
and that of the electric field in form of the parameter max(|F |) holds even when
the contributing terms show a more complex structure. For all cases discussed so
far, the interference terms had the form [0, ñ1, ñ2, 0] or [ñ1, 0, 0, ñ2]. However, as
the only restriction on the occurring combinations of the four indices is imposed
by Eq. (2.49a), terms with all indices differing from zero are possible. This may
be demonstrated by means of laser pair (4, 8), which has the same frequency
ratio as (1, 2) and (2, 4) before, but more photons are involved. Therefore, a
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Figure 3.7.: Angular-differential partial rates for laser pair (4, 8) with total
photon energy 1.15 MeV in the nuclear rest frame – The relative phase is set
as ϕ = 0 and the intensity parameters as ξ1 = 10−4 and ξ2 = 1.31×10−2

larger set of terms contributes, as can be seen in Fig. 3.7.

Analogous to for instance Fig. 3.2(a), two direct terms, [4, 4, 0, 0] and [0, 0, 8, 8],
taking the minimal number of photons from the individual modes are visible,
as well as a symmetrically mixed term, [2, 2, 4, 4], taking half the energy from
each mode. However, two additional symmetrically mixed terms occur, [1, 1, 6, 6]
and [3, 3, 2, 2], differing in how much energy is absorbed from the individual
modes. The main difference between laser pair (4, 8) and the earlier examples
is the relative strength of the individual terms. Before, the direct terms where
dominant (or at least among the dominant), while here they are much smaller
than all the symmetrically mixed terms.

It is convenient to classify the terms by the sum of the indices of each mode,
ni + n′i. This has been done in Tab. 3.1 together with the two parts of the
exponent from Eq. (2.73), which is 64 for all cases. Therefore, all occurring
terms are of the same order in ζ, despite the differing ni + n′i. However, small
differences in the contribution strengths remain due to the different prefactors
contained in each term (cf. Sec. 2.3.3 and Eq. (2.74), therein). Anyway, one
would expect all terms to be similarly strong, which is not the case. Note that,
the same line of argument is true for laser pair (2, 4), where indeed all terms are
of roughly equal strength.
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Terms n1 + n′1 n2 + n′2 ñ2(n1 + n′1) ñ1(n2 + n′2)
[0, 0, 8, 8] 0 16 0 64
[1, 1, 6, 6], 2 12 16 48[0, 2, 8, 4], [2, 0, 4, 8]
[2, 2, 4, 4],

4 8 32 32[0, 4, 8, 0], [4, 0, 0, 8]
[1, 3, 6, 2], [3, 1, 2, 6]
[3, 3, 2, 2] 6 4 48 16[2, 4, 4, 0], [4, 2, 0, 4]
[4, 4, 0, 0] 8 0 64 0

Table 3.1.: Classification of the terms from laser pair (4, 8) by means of
the sum of the indices of each mode – Additionally, the two parts of the
exponent in Eq. (2.73) are shown. Note that, the full exponent, i.e., the sum
of the last two columns, is identical for all terms.

Due to the classification in Tab. 3.1, the interference terms may be grouped with
symmetrically mixed terms with the same ni + n′i. One notices that [1, 1, 6, 6] is
the weakest symmetrically mixed term, while the corresponding [0, 2, 8, 4] and
[2, 0, 4, 8] show the strongest absolute contribution from an interference term.
Conversely, the interference terms [0, 4, 8, 0] and [4, 0, 0, 8] show the smallest non-
negligible contribution, even though the corresponding [2, 2, 4, 4] is the overall
strongest term.

With all terms introduced, the discussion of an analogue to Fig. 3.6 for laser
pair (4, 8) shall conclude this section. As can be seen in Fig. 3.8, here too, the
parameter max(|F |) exhibits qualitatively the same phase dependence as the
total pair-creation rate. Additionally, the phase dependence of the individual
interference terms is depicted in Fig. 3.8(c), where one finds that the periodicity
of the weakest terms [4, 0, 0, 8] and [0, 4, 8, 0] differs from that of the others. For
laser pair (2, 4), a periodicity of 2π/ñi has been found (cf. Eq. (3.3)). However,
from the analytical calculation, particularly from Eq. (2.47), a more general
expression for the periodicity may be extracted

Φi = 2π/∆ni (3.7)

using the difference of the indices of the respective laser mode i: ∆ni = |ni − n′i|.
The six stronger terms share ∆n1 = 2 and accordingly they all exhibit the same
periodicity Φ1 = π, which is also the periodicity of max(|F |). In contrast, the
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Figure 3.8.: Variation of both relative phases ϕi for laser pair (4, 8) –
Parameters as in Fig. 3.7. Comparison of (a) the total pair-creation rate
and (b) the measure defined via the absolute maximum of the sum of the
normalized electric fields from Eq. (3.6) shows qualitatively the same phase
dependence. Additionally, in (c) the relevant partial rates of the interference
terms are shown for a variation of ϕ1. Note the different periodicity of the
terms [4, 0, 0, 8] and [0, 4, 8, 0].

phase dependence of the weakest terms [4, 0, 0, 8] and [0, 4, 8, 0] corresponds to
Φ1 = π/2, in accordance with ∆n1 = 4.

Thus, for laser pair (4, 8), the interference terms that exhibit a different phase
dependence than max(|F |) are contributing only marginally, while all strong
interference terms share the periodicity of this parameter. Therefore, the pe-
riodicity is retained by the sum of all terms and, eventually, by the total rate.
For laser pair (2, 4), the situation is simpler as all significantly contributing
interference terms satisfy ∆ni = ñi, in agreement with Eq. (3.3).

3.1.4. Variation of the Relative Phase in the Laboratory
Frame

So far results found in the nuclear rest frame have been presented. For a
comparison to a potential experimental application these results have to be
transformed to the laboratory frame. As in the previous section, laser pair
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Figure 3.9.: Individual terms and several sub-sums of the angular-
differential partial rates of laser pair (2, 4) for two photon energies in the
laboratory frame – The Lorentz factor is set as γ = 50. Notation, legend,
and parameters are identical to those in Fig. 3.4.
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(2, 4) is studied with total photon energies of 1.1 and 1.35 MeV in the nuclear
rest frame. To reach these energies, the energies supplied in the laboratory
frame may be much smaller depending on the Lorentz factor γ of the nucleus.
Particularly, in the nuclear rest frame the laser frequencies from the laboratory
frame experience a boost:

ωi = (1 + β) γ ωlab
i

≈ 2γ ωlab
i ,

(3.8)

wherein β =
√

1− 1/γ2 ≈ 1 for all subsequently discussed cases. The boost factor
follows from the Lorentz transformation along the z-axis of an energy

E = γ
(
Elab + βplab

z c
)
. (3.9)

For a photon, energy E and momentum p are given by its frequency ω. In
particular, if the photon propagates along the z-axis and, thus, the absolute
momentum is identical to its z-component, p = pz, they are given by

E = pzc = ~ω. (3.10)

It follows that E = γ (1 + β)Elab, which corresponds to Eq. (3.8). Note further
that, β > 0.9 is already true for γ > 2.3, just as β > 0.99 for γ > 7.1, and
β > 0.999 for γ > 22.4.

The following results are obtained for γ = 50. For a total photon energy in the
nuclear rest frame of 1.1 MeV this corresponds to the laboratory frequencies

ωlab
1 = 5.50 keV and ωlab

2 = 2.75 keV, (3.11)

and for 1.35 MeV to

ωlab
1 = 6.75 keV and ωlab

2 = 3.38 keV. (3.12)

Figure 3.9 shows the Lorentz-transformed version of Fig. 3.4. The main differences
are the width and the peak position of the distribution. Note that, the emission
angles shown in these two figures are only in a very small range just below 180◦.
This means that, the created particles are emitted in propagation direction of
the nucleus, which is preferential due to the Lorentz boost. Furthermore, the
shape of the individual graphs differs from the nuclear rest frame. In particular,
here the two direct terms almost perfectly overlap each other, while they exhibit
a crossing at θ ≈ 1 in the nuclear rest frame. Left of this crossing the direct term
of the second mode is larger, and right of it that of the first mode dominates. The
interference term for the higher energy shows a more balanced ratio of negative
and positive amplitude. In the nuclear rest frame, the absolute contribution from
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angles θ . 0.66 is much stronger than for larger angles, while in the laboratory
frame the positive and the negative part are of similar absolute height. It is
also worth pointing out that in Fig. 3.4(b) the positive contribution came from
small angles (< 45◦). Due to the Lorentz boost, the small angles in the nuclear
rest frame are mapped to large angles in the laboratory frame and vice versa.
Therefore, the graph seems inverted in Fig. 3.9(b).

The Lorentz-transformed version of the phase variation from Fig. 3.5 is shown
in Fig. 3.10. The peak height and position shift is again visible, although here,
due to the aforementioned contraction of the spectrum, the latter is over a much
smaller angular range. The inversion of the positive and negative contribution
discussed above is mirrored in the peak position shift. In the nuclear rest frame,
the shift is towards smaller emission angles for a growing relative phase ϕ, while
this direction is reversed in the laboratory frame.

In conclusion, it should be recalled that throughout this section γ = 50 was
used. However, the results for a different γ may be inferred from the presented
figures, as long as the laser frequencies in the laboratory are adjusted so that
the total photon energy in the nuclear rest frame stays the same. The form of
the angular distribution is practically identical to that in the figures above, if
γ is large enough. This is already the case for values as small as about 2. The
difference would only be in the kinematically allowed range of emission angles.
For higher γ, this range gets even more narrowed to the right of the spectrum,
shifting the peak position even further towards 180◦. For an appropriately high
γ, which means larger than about 5, the width of the allowed θ-range shows a
scaling of ∼ 1/γ.

3.2. Monochromatic Laser Wave of Elliptical
Polarization

As introduced in Sec. 2.2, particularly by means of the parameter set given in
Eq. (2.62), a vector potential of the form given in Eq. (2.5) can also describe
a monochromatic laser wave of arbitrary ellipticity. The study of total pair-
creation rates as a function of this ellipticity presented in this section is part of the
publication Ref. [13]. As ω1 = ω2, this represents a special case of commensurable
frequencies with a ratio of 1. In the notation introduced in Sec. 2.3, this kind of
set-up corresponds to laser pairs of the form (ñ, ñ).

The ellipticity may be adjusted in two different ways, both starting from a
circularly polarized wave with |a1| = |a2|, ϕ1 = π/2, and ϕ2 = 0: On the one
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Figure 3.10.: Phase variation in the sums of all terms (top panels) and the
interference contributions (bottom panels) of the angular-differential partial
rates of laser pair (2, 4) for two total photon energies in the laboratory frame
– The sum of the direct terms as in Fig. 3.9 is given as a strength reference.
The Lorentz factor is set as γ = 50. Notation, legend, and parameters are
identical to those in Fig. 3.5.
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hand, one can fix the maximum amplitude of the laser field by keeping one
intensity constant and decreasing the other until it disappears, e.g,

ξ1 = const.,
0 ≤ ξ2 ≤ ξ1.

(3.13)

On the other hand, one can fix the total intensity supplied to the system by
decreasing one intensity while increasing the other, such that

Itot = ξ2
1 + ξ2

2 = const. (3.14)

In both cases, the ellipticity will be measured using the parameter

ε = |ξ
2
1 − ξ2

2 |
ξ2

1 + ξ2
2

=


0 for circular polarization
0 < ε < 1 for elliptical polarization
1 for linear polarization,

(3.15)

which can be rewritten for the case of a fixed total intensity as

ε = 2
Itot

ξ2
1 − 1 = 1− 2

Itot
ξ2

2 . (3.16)

Additionally, a third pathway has already been mentioned in Sec. 2.2 in form of
the parameter set in Eq. (2.63). In this set-up, where |a1| = |a2| = const., the
relative phase is varied instead of the intensity parameters. However, it can be
shown that this pathway corresponds13 directly to the above case of a fixed total
intensity, which is interesting because ϕi and ξi are independent parameters. For
the variation of ϕi, the ellipticity is then given by

ε = |cosϕi| . (3.17)

In Fig. 3.11(a), the two pathways are compared for ñ = 2 photons absorbed
from the wave, i.e., laser pair (2, 2), with a total photon energy of 1.8 MeV. For
the first case of a constant maximum laser wave amplitude (bottom panel), the
total pair-production rate decreases when the transition from circular to linear
polarization (i.e., from left to right) is made. This can be intuitively explained
by the decrease in the supplied total laser intensity as the second laser mode
is gradually turned off. For the second case of a constant total intensity (top
panel), the total pair-production rate increases for the same transition instead.
This can be understood by means of the peak amplitude of the combined laser
13There is a small difference in the direction of the polarization axis, which would be rotated
around the laser propagation direction by 45◦. This, however, does not influence the results
presented here.
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Figure 3.11.: Variation of the ellipticity ε – Total rates for laser pair (2, 2)
with total photon energies in the nuclear rest frame (a) 1.8 MeV and (b)
1.25 MeV, and for (c) laser pair (5, 5) with 1.25 MeV – Comparisons are
shown between (top panels) fixed total intensity using ξ2

1 + ξ2
2 = 2×10−6,

and (bottom panels) fixed maximum laser wave amplitude using ξ2
1 = 10−6

and 0 ≤ ξ2 ≤ ξ1. For the two-photon cases (a) and (b), where it is applicable,
the fully analytical graphs obtained using the formulæ derived in Ref. [100]
coincide perfectly with the results presented here.

wave. In the circularly polarized case the field amplitude is constant, while only
the field vector direction changes, alternately pointing along x-direction e1 and
y-direction e2:

Acirc = a1 cos η + a2 cos(η + π/2) = a (e1 cos η + e2 sin η) , |Acirc| = a. (3.18)

In the linearly polarized case the field amplitude is subject to the sinusoidal
variation of the wave, however the peak amplitude is increased by a factor of√

2 due to the superposition of the two waves:

Alin = a1 cos η + a2 cos η = a (e1 + e2) cos η, |Alin| = a
√

2 cos η.
(3.19)

The previous explanation for the ellipticity dependence for a fixed total field
intensity also applies to lower total photon energies and higher photon orders.
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Corresponding examples are shown in the top panels of Figs. 3.11(b) and (c) for
a total photon energy of 1.25 MeV and ñ = 2 or 5 absorbed photons, respectively.
However, for a fixed maximum field amplitude the argument given before does
not provide an explanation for the ellipticity dependence for these parameters.
As the bottom panels of Figs. 3.11(b) and (c) demonstrate, the rate exhibits
a non-monotonous dependence on the ellipticity here. After passing through
a minimum at about ε ≈ 0.2 and 0.12, respectively, the rate starts growing
again and reaches its maximum value for a linearly polarized wave. This strong
difference might be related to the excess energy above the pair creation threshold
∆E = ñω − 2mc2. Compared to Fig. 3.11(a), it is much smaller in the latter
examples.

Bethe–Heitler pair creation by an elliptically polarized, monochromatic laser
wave has also been studied in Ref. [100] using a polarization-operator approach.
In particular, analytical expressions for the total pair-creation rate by two-
photon absorption were obtained in Eqs. (15) and (26) therein. The ellipticity
dependences following from these expressions coincide perfectly with numerically
integrated results for the two-photon case in Figs. 3.11(a) and (b) (top and
bottom panels). However, the approach presented here allows to extend these
results straightforwardly to higher photon orders. For instance, the five-photon
case shown in Fig. 3.11(c) where features qualitatively similar to the two-photon
case are obtained. It should be noted that a non-monotonous dependence on
the field ellipticity has also been obtained recently for the rate of pair creation
by the non-linear Breit–Wheeler process [63].
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Chapter 4.

Incommensurable Frequencies

While in Ch. 3 various examples for commensurable frequencies of the two laser
modes have been discussed, this chapter shall be dedicated to incommensurable
frequencies. However, it is worth discussing whether the distinction between
these two cases is actually a good choice. This discussion and the accompanying
direct comparison of the two cases presented in the subsequent section have been
published in Ref. [13]. A publication based on the results shown in Sec. 4.2 is in
preparation.

4.1. Comparison to Commensurable
Frequencies

The fundamental difference between commensurable and incommensurable fre-
quencies ω1 and ω2 is that in the former case the total photon energies of both
modes are equal: ñ1ω1 = ñ2ω2 (cf. Sec. 2.3.1). Therefore, it is indistinguish-
able whether ñ1 or ñ2 photons were taken from mode one or two, respectively.
This leads to interference of these two quantum paths, as well as all the ef-
fects connected to interference discussed in Sec. 3.1. They cannot occur in the
incommensurable case.

However, due to two arguments, one physical and the other mathematical, this
strict distinction may not be an ideal choice (a similar line of argument can
be found in Ref. [125]): On the one hand, all physical systems inherently have
finite lifetimes, thus measured energies will have a bandwidth. For instance, an
experimental laser pulse with a finite pulse length will consist of a continuous
range of frequencies, and physical properties should be independent of small
variations therein. On the other hand, it is possible to approximate any irrational
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Chapter 4. Results for Incommensurable Frequencies

number by a ratio of integers with arbitrary precision.14 In the light of these two
points one may conclude that commensurability is practically always fulfilled,
which also means that it does not allow the intended distinction. Obviously, the
question arises what alternative measure does allow it.

A physically meaningful replacement is whether the frequency ratio is comprised
of two small integers or not. For a small-integer frequency ratio, it occurs more
frequently that in the superposition of the two laser modes a maximum of one
mode coincides with a maximum of the other mode. Two coinciding maxima
represent the highest possible field strength of the combined field, which will – in
this case – occur often and periodically. On the other hand, for those ratios with
at least one large integer, two coinciding maxima are very rare. Additionally, the
large integer would correspond to the number of photons15 needed to form an
interference term, and terms with high photon numbers are suppressed due to the
higher order in the intensity parameter. The aforementioned approximation of an
irrational number by a rational will certainly be comprised of two large integers,
and interference terms will be negligible. Thus, incommensurable frequencies
are indeed treated correctly by the alternative distinction.

The theoretical framework used throughout this work does not impose any
limitation on the frequencies of the laser modes. Therefore, a continuous variation
of the frequency ratio ω1/ω2 may be studied, passing by the commensurable laser
pairs (2, 4) and (2, 6) as discussed in Sec. 3.1.1. This way, further insight into
the processes leading to the aforementioned interferences may be gained. In
Fig. 4.1, this variation is plotted for the total pair-production rate and several
summed-up partial rates by keeping ω1 fixed and varying ω2. The total photon
energy is chosen to be 1.05 MeV. Due to ω1 being fixed via ñ1 = 2, the direct
term of the first mode with minimal photon number, [2, 2, 0, 0] (long-dashed red
line), is a constant offset for the sum of all terms (solid black line). In contrast,
the direct terms of the second mode, [0, 0, n, n] for n = (2, 3, 4, 5, 6), exhibit
slowly rising and falling peaks, with the maximum lying approximately at their
respective ñ2 value. The latter is due to two reasons: The chosen total photon
energy, which is only slightly above the pair-creation threshold, and the applied
scaling of the intensities. For a larger total photon energy, the peaks would be
shifted to the left, as the pair-creation threshold is overcome already for smaller
frequency ratios. Conversely, for a smaller total photon energy they would be

14A straightforward way to achieve this is the sequence sn(x) = b10nxc·10−n for an irra-
tional number x, for which obviously holds: lim

n→∞
sn(x) = x. For instance, x = π leads to

(sn(π))n∈N0 = (3, 3.1, 3.14, 3.141, . . .).
15To give an example: Assume ω1 = 99%ω2 = 1.2 MeV. The minimal photon number for both
modes is obviously ñ1 = ñ2 = 1. Therefore, the direct terms with lowest number of photons
are [1, 1, 0, 0] and [0, 0, 1, 1]. However, as Eq. (2.49a) has to be fulfilled, the interference
terms with lowest number of photons are [100, 0, 0, 99] and [0, 100, 99, 0].
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Figure 4.1.: Variation of the frequency ratio ω1/ω2 – Total rate and in-
tegrated partial rates for the total photon energy Eph = 1.05 MeV in the
nuclear rest frame with ω1 = Eph/2 fixed and ω2 varied from Eph/1.8 to Eph/6.2.
Conversely, this means that the pair-creation threshold may be overcome
by absorbing ñ1 = 2 photons from the first mode or dEph/ω2e photons from
the second mode. The intensity parameter ξ2 is scaled according to Eq. (4.1)
similar to Eq. (2.70), with ζ = ξ1 = 10−6 and an empirically found prefactor
approximating the small adjustment explained in Sec. 2.3.3. The relative
phases are set as ϕ1 = ϕ2 = 0. Note that, the partial contributions of the
interference terms are not shown separately as they are clearly visible as the
δ-spikes for the integer frequency ratios.

shifted to the right. The intensity parameter ξ1 = ζ is kept constant, mirroring
the fixed frequency of the first mode. In contrast,

ξ2 =
√
ω1

ω2
ζ
ω2/ω1 (4.1)

is scaled similar to Eq. (2.70). However, an additional empirical prefactor,
√
ω1/ω2 ,

approximates the necessary small adjustment discussed in Sec. 2.3.3. On top
of the peaks of the direct terms, for those commensurable frequencies where
the frequency ratio is an integer, interference terms are contributing sharp δ-
spikes. In the presented theoretical framework, these spikes are infinitely narrow
but of finite height. In the laser pair notation (ñ1 = 2, ñ2) applied for the
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commensurable results in Ch. 3, this corresponds to ñ2 = 2, 4 and 6, of which
the latter two have been studied in Sec. 3.1.1, as well as the first one in Sec. 3.2.
Due to the chosen relative phases ϕ1 = ϕ2 = 0, the interference is constructive
for ñ2 = 2 or 6, and destructive for ñ2 = 4. As has been discussed in Sec. 3.1.3,
a variation of the relative phase only affects the δ-spikes, sinusoidally changing
their height and sign.

Considering the discussion at the beginning of this section, a note on an actual
experimental realization of the proposed schemes should be made: An experimen-
tal laser would not be an infinite plane wave but a finite pulse. Therefore, the
δ-spikes would be expected to be smeared out and, thus, the resulting spectrum
to be continuous. Nevertheless, the strong enhancement or depletion at the
integer frequency ratios can be expected to remain.

4.2. γ-Assisted Tunneling Pair Creation

In Ch. 3 commensurable frequencies have been discussed, in Sec. 4.1 these have
been compared to incommensurable frequencies. An important finding of the
latter has been that, instead of in terms of commensurability, a pair of frequencies
should be classified by whether their ratio consists of small or large integers. To
complement the previously presented results, strongly differing frequencies shall
be considered in this section. Furthermore, the intensity of the smaller frequency
mode shall be increased compared to all results discussed before.

Similar configurations have been used recently in studies on the Schwinger
effect in order to make its non-perturbative character observable with available
technology. Even though the maximal intensities of modern lasers increase with
every new facility, the critical electric field

Ecrit ' 1.3× 1018 V/m, (4.2)

is yet to be reached. Therefore, the dynamically assisted Schwinger effect has
been proposed [50, 140], where a slowly varying electric field (quasi-static, as
in the tunneling picture introduced in Sec. 1.3) is superimposed with a rapidly
oscillating one. This way a strong enhancement of the pair-creation rate is
gained, while the dependence on the field strength is still exponential. Several
related studies on more refined properties of this process, e.g., the momentum
distribution of the created particles, have been performed since [59, 116, 119].
Furthermore, similar enhancement effects were found for the strong-field Breit–
Wheeler process [71] and pair creation induced by two spatially separated electric
fields periodically varying in time [72, 73].
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4.2. γ-Assisted Tunneling Pair Creation

For the strong-field Bethe–Heitler process – the subject of this section – several
studies on the dynamically assisted variant [41, 42, 93] are available, also yield-
ing Schwinger-like behaviour combined with a strong enhancement16 over the
unassisted counterpart. Specifically, the analytical formulæ obtained in Ref. [41]
will be used in comparison with the results presented in this section.

4.2.1. Adapted Notation and Non-Perturbative Regime

Before specifying the subsequently employed configuration, a small remark on
the notation applied in this section is necessary: In the incommensurable case,
no terms with ni 6= n′i may occur (cf. Sec. 2.3.2). Therefore, the notation used so
far can be simplified. Instead of the four-index sum from Eq. (2.53), a two-index
sum is sufficient:

d6R =
∑
n1,n2

d6R[n1,n1,n2,n2]. (4.3)

It is convenient to introduce an alternative definition of the terms in that sum:

d6R[n1,n1,n2,n2] ≡ d6R[n1,n2]. (4.4)

So far, for reasons discussed in Sec. 4.1, only processes where ω1 ≈ ω2 have
been discussed. In this section processes with very asymmetric frequencies are
studied. As the presented theoretical framework is completely symmetric in the
two modes, the choice which mode provides the assisting photons and which
mode is assisted is arbitrary. The results in this section are obtained for a
set-up where ω2 � ω1 . 2mc2, and thus a single photon from the first mode
in conjunction with several photons from the second mode is absorbed. More
specific, the bichromatic laser field in this section is composed of a high-frequency
low-intensity mode with

ω1 . 2mc2 and ξ1 � 1, (4.5)

and a low-frequency high-intensity mode with

ω2 � 2mc2 and ξ2 ≈ 1. (4.6)

This set-up can be interpreted as a source of single γ-photons assisting a strong
laser in the pair-creation process. Therefore, and due to the “photon-counting”
nature of the theoretical framework used here, it seems more natural to speak
16Note that, in Ref. [42] a suppression of the rate is found when the “assisting” light source is
turned on if the highly energetic photon has an energy ~ω � mc2. However, such a set-up
is not considered here.
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Figure 4.2.: Illustration of γ-assisted tunneling pair creation – In the
tunneling regime the continua are tilted along the x-axis by the electric field
E (cf. also Fig. 1.2(a)). The absorption of a high energetic photon lifts an
electron from the Dirac sea towards positive energies. This strongly decreases
the width of the barrier through which the electron tunnels afterwards, as
can be seen by the much shortened upper arrow compared to the lower one.

of γ-assisted tunneling pair creation instead of the aforementioned dynamically
assisted moniker. It is appropriate to distinguish the different occurring processes
by the number of highly energetic photons n1 involved. For each of these processes
the sum over n2 has to be performed17:

d6Rn1 =
∑
n2

d6R[n1,n2]. (4.7)

The summed-up rate from Eq. (2.53) is then given by

d6R =
∑
n1

d6Rn1 . (4.8)

In this notation, R1 and R0 correspond to the rate of Bethe–Heitler pair creation
in the tunneling regime with and without assisting γ-photon, respectively. The
two cases are depicted schematically in Fig. 4.2, particularly illustrating how

17It is important to note that, Rn1 must not be confused with Ri, the rate of the direct terms
with minimal photon number for mode i, as defined in Eq. (2.68).
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4.2. γ-Assisted Tunneling Pair Creation

the width of the barrier decreases due to the assisting γ. An expression for the
barrier widths is gained as follows: For the unassisted case, the boundaries of
the continua, ±mc2, tilted by the electric field E along the x-axis around the
origin, are given by

C±(x) = ±mc2 − eE x. (4.9)

These functions cross the abscissa, i.e., C±(x0,±) != 0, at

x0,± = ±mc
2

eE
. (4.10)

The distance between the two crossing points is thus

l0 = |x0,+|+ |x0,−| =
2mc2

eE
. (4.11)

By subtracting the energy of the γ-photon from Eq. (4.9), the respective expres-
sion for the assisted process is obtained in the same way:

l = 2mc2 − ~ω1

eE
= l0 −

~ω1

eE
, (4.12)

wherein the last term is the aforementioned decrease in the barrier width.

While the first mode should still exhibit the perturbative dependence on ξ1
associated with the multiphoton regime (ξ � 1), a non-perturbative dependence
is expected for the second mode as ξ2 ≈ 1. In particular, the second mode
approaches the tunneling regime (ξ � 1), where a dependence similar to the
Schwinger rate is expected [100] due to the characteristic length scale of the
pair-creation process being much shorter than the laser wavelength.

The non-perturbative nature of the second mode can be seen in Fig. 4.3, where
R[0,n2] is shown as a function of n2 for a range of ξ2-values. One notices immedi-
ately that, the smaller ξ2, the less steps in n2 away from the minimal number of
photons ñ2 are necessary for the sum in Eq. (4.7) to converge to R0(ξ2). For very
small ξ2, the rate shows the typical behaviour of the multiphoton regime, i.e.,
only the ñ2-term contributes non-negligibly. In contrast, for the highest depicted
value, ξ2 = 1.25, more than one hundred steps, from 54 to 159, are necessary to
reach an accuracy of six decimal places.

This type of plot also illustrates nicely how the assisting γ-photon alters the
minimal number of photons from the strong mode necessary to overcome the
pair-creation threshold, as can be seen in Fig. 4.4. The γ-assisted process is
already possible for smaller n2 and the unassisted process has an offset of steps
in n2 corresponding to the ratio of the employed frequencies. It is worth pointing
out that, for the n2-values not depicted in this figure due to their contribution
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Figure 4.3.: Comparison of the perturbative and the non-perturbative
regimes of the intensity parameter ξ2 – The summation steps R[0,n2] in the
photon number n2 necessary to obtain R0 are shown for various intensities
(cf. Eq. (4.7)). The parameters are those given in Eq. (4.13b). The inset
shows a zoom into the upper region of the main plot, focusing on those
ξ2-values also shown in Fig. 4.5. Particularly, the sum over the underlying
points results in the unassisted curve shown in Fig. 4.5(a). Note that here,
the integer steps are very dense and are therefore depicted by lines.
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Figure 4.4.: Example of a non-perturbative dependence on the intensity
parameter ξ2 – The summation steps R[n1,n2] in the photon number n2
necessary to obtain Rn1 are shown for ξ2 = 1 (cf. Eq. (4.7)). The parameters
are those given in Eqs. (4.22). The sum over the underlying points results in
the two points at ξ2 = 1 in Fig. 4.5(b). Note that here, the integer steps are
very dense and are therefore depicted by lines.

to the overall sum being negligible, i.e., from n2 = 115 onwards, the two curves
converge to a single one. This can be understood as a saturation effect, in the
sense that the energy provided by the photons has almost overcome 4 MeV and is,
thus, so far above the pair-creation threshold that it becomes irrelevant whether
or not the γ-photon assists in a specific sub-process, i.e., R[n1,n2≥115].

Note that, these two figures are a slight leap ahead as the parameters used to
produce them are introduced and discussed in the subsequent section. However,
they illustrate the underlying calculations and give context for the following
results.

4.2.2. Total Rates and Intensity Dependence

In Fig. 4.5(a), the total rates Rn1(ξ2) for n1 = 0 and 1 are shown. Here, the
process with n1 = 0 corresponds to the lower arrow in Fig. 4.2, while n1 = 1 is
visualized as the γ-absorption followed by the upper arrow in that figure. The
employed set of parameters is:

ω1 = 924 keV, ξ1 = 10−8, (4.13a)
ω2 = 30.76 keV, 0.5 ≤ ξ2 ≤ 1.25 . (4.13b)

This corresponds to a frequency ratio of ω1/ω2 ≈ 30. In the laboratory frame, this
ratio could be achieved by an XUV source for the weak field, and the IR light

59



Chapter 4. Results for Incommensurable Frequencies

10−36

10−34

10−32

10−30

10−28

10−26

10−24

10−22

10−20

10−18

1.15 1.250.5 0.6 0.7 0.8 0.9 1

T
ot

al
R

at
es

in
au

Intensity Parameter ξ2

unassisted
γ-assisted

(a) γ = 6600, see also Eqs. (4.13)

10−34

10−32

10−30

10−28

10−26

10−24

10−22

10−20

10−18

1.15 1.250.5 0.6 0.7 0.8 0.9 1
T
ot

al
R

at
es

in
au

Intensity Parameter ξ2

unassisted
γ-assisted

(b) γ = 7000, see also Eqs. (4.22)

Figure 4.5.: Comparison of total pair-creation rates of the γ-assisted and
the unassisted process – The assisted process is much stronger for smaller
intensities of the second mode. This reverses at ξ2 ≈ 1, where the two curves
cross. It is interesting to point out that, here the results for the two values
of γ are very similar. In contrast, they differ strongly for the analytical
counterpart shown in Fig. 4.6.

(1064 nm) emitted by an Nd:YAG laser18 combined with a frequency doubler
(532 nm) [120] for the strong field:

ωlab
1 = 70 eV and ωlab

2 = 2.33 eV. (4.14)

The parameters in the nuclear rest frame given in Eq. (4.13) are reached with
a laboratory-frame intensity of the strong mode of roughly (1019–1020) W/cm2

(cf. Eqs. (A.13) and (A.10)) and a Lorentz factor of γ = 6600. The latter is
well within the current limits of the LHC of γ . 7460 [32]. The XUV photon
may be provided be an FEL or a source based on HHG, making a set-up of
technology available today feasible. Moreover, a HHG-based set-up would allow
the bichromatic laser field to be generated by transportable “table-top” devices.

Even though the depicted intensity range of the strong mode is ξ2 ≈ 1, the total

18A neodymium-doped yttrium aluminium garnet (Nd:Y3 Al5 O12) laser is a common solid-state
laser delivering high output power in the IR regime [15].
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4.2. γ-Assisted Tunneling Pair Creation

rates of both processes show a Schwinger-like dependence on this parameter:

Rn1 ∼ exp
(
−Cn1

ξ2

)
. (4.15)

However, the coefficient Cn1 differs for the two cases. In the assisted process it
is smaller, leading to an almost flat curve, while in the unassisted case a steep
increase is visible and saturation will occur only for larger intensities.

The influence of the assisting γ-photon can be deduced from the absolute height
of the two curves: For ξ2 < 1, the assisted process shows a strong enhancement
over its unassisted counterpart. The situation inverses for ξ2 > 1, where the
unassisted process dominates. Here, the two curves cross at ξ2 ≈ 1. The value
for which this crossing occurs may be influenced by adjusting the intensity of the
weak field ξ1. The unassisted process is obviously independent of this parameter.
In contrast, the assisted process depends quadratically on it (cf. Eq. (1.20)).
Therefore, ξ1 allows for a relative scaling of the two curves.

A further point should be stressed here, the R0-curve could be measured experi-
mentally by turning off the assisting γ-source. In contrast, the R1-curve is not
accessible independently, instead the sum over n1, and thus R = R0 +R1, would
be measured in an experimental realization of the assisted process (cf. Eq. (4.8)).
However, for the discussion and comparison of the occurring processes, it is more
illustrative which of the two curves, R0(ξ2) or R1(ξ2), contributes stronger to
the total rate. Therefore, the above representation of separated Rn1 has been
chosen.

As mentioned above, total rates of dynamically-assisted tunneling pair creation
have been investigated fully analytically in Ref. [41] in a scheme very similar
to the one presented here, however, under the assumption that ξ2 � 1. Specif-
ically, Eq. (9) therein (here not quoted verbatim, but with adapted naming
convention),

R ∼ exp
(
−2
√

2
3ζ

)
, (4.16)

with the parameters

ζ = χ

δ3/2
, where χ = 1√

2
ω2

ω1
ξ2, (4.17a)

δ =
(

2mc2

ω1

)2

− 1 ≈ 2mc2 − ω1

mc2 , (4.17b)

can be employed for a comparison of the dependences on the strong field intensity
ξ2 with the results presented here. With the parameter ζ inserted, Eq. (4.16)
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Figure 4.6.: Comparison of total pair-creation rates of the γ-assisted
process obtained from the theoretical framework presented here and the
analytical counterpart extracted from Ref. [41] – The red curve is identical
to that in Fig. 4.5. The two additional curves are for the exact and the
approximated δ given in Eq. (4.17b). The latter two are scaled to the value
of the former at ξ2 = 1.25 . The three curves coincide very well for γ = 6600.
In contrast, a strong deviation is visible for γ = 7000.

reads
R ∼ exp

(
−4

3
1
ω2

ω1 δ
3/2 1
ξ2

)
. (4.18)

For the comparison, this exponential is scaled by a proportionality factor such
that the value at ξ2 = 1.25 coincides with the result obtained from the calculation
presented here. Even though the requirement of ξ2 � 1 is not met in the latter,
the two additional graphs – one for the exact and one for the approximated δ
from Eq. (4.17b) – in Fig. 4.6(a) coincide very well with it. Moreover, to some
surprise, the approximated δ shows the better agreement.

Besides the requirement of very large intensities, two constraints are imposed for
the applicability of Eq. (4.18): The two parameters from Eqs. (4.17) should both
be very small:

ζ � 1 and δ � 1. (4.19)
For the parameter set from Eqs. (4.13), their respective values are indeed relatively
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small, namely
ζ ≈ δ ≈ 0.2 . (4.20)

However, for the same laser combination in the laboratory as in Eq. (4.14), an
increase in γ to 7000 and the accompanying increase in the photon energies in
the nuclear rest frame leads to a larger value for one of the parameters:

ζ ≈ 0.9 . (4.21)

For the resulting set of laser field parameters,

ω1 = 980 keV, ξ1 = 10−8, (4.22a)
ω2 = 32.62 keV, 0.5 ≤ ξ2 ≤ 1.25, (4.22b)

a significant deviation between the results presented here and those obtained from
Eq. (4.18) can be seen in Fig. 4.6(b). For a reduced γ, a similar deviation occurs,
as then the parameter δ (cf. Eq. (4.17b)) grows to and eventually surpasses unity
(cf. Sec. 4.2.4).

Nevertheless, the found results show a strongly non-perturbative dependence
on the intensity parameter ξ2 that is similar to the analytical expression given
in Eq. (4.18). Therefore, a survey of a wider range of parameters, where the
requirements of Eq. (4.19) are not fulfilled, might show if and how an empirical
extension to Eq. (4.18) can be gained. As can be seen from the definition of the
two parameters in Eqs. (4.17), for ξ2 ≈ 1, as considered here, this would mean
for relatively small ω1 and relatively large ω2. Here, this is done by calculating
total rates for various combinations of laser frequencies in the nuclear rest frame
within the bounds

800 keV ≤ ω1 ≤ 1 MeV, (4.23a)
10 keV ≤ ω2 ≤ 100 keV, (4.23b)

and the considered intensity range 0.5 ≤ ξ2 ≤ 1.25. Indeed, one finds that
the results for all tested combinations can be reproduced by introducing an
additional degree of freedom d into Eq. (4.18) with the approximated δ,

R ∼ exp
(
−4

3
1
ω2

ω1

(
2− ω1

mc2

)3/2 1
ξd2

)
, (4.24)

such that the two equations are identical for d = 1. Then, the found results
have been successively fitted with functions extracted from Eq. (4.24), in order
to remove the dependence on the individual ωi. In the first step, a function of
the form

R[ω2, ξ2](ω1) = −A ω1

(
2− ω1

mc2

)3/2

+ B, (4.25)
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is fitted to the logarithm of the results, separately for fixed ω2 and ξ2. Note that,
this is almost a straight line in the considered ω1-range given in Eq. (4.23a). The
fit-parameter B corresponds to the proportionality factor of Eq. (4.24) and is not
further taken into account. In contrast, the obtained values for the fit-parameter
A are then examined for fixed ω2. By fitting a function of the form

Aω2(ξ2) = C 1
ξd2
, (4.26)

one finds that for
d ≈ 0.8, (4.27)

the results for the whole tested parameter range given in Eqs. (4.23) are very well
reproduced. Thus, with only a small modification to the analytical expression
and, consequently, only a small deviation from the Schwinger-like dependence
therein, an empirical extension to Eq. (4.18) is obtained, which works well for a
large range of parameters outside the original requirements.

4.2.3. Momentum, Energy, and Emission-Angle Spectra

So far, the total pair-creation rates of the γ-assisted and the unassisted case have
been compared. Further insight can be gained from analysis of the underlying
differential spectra.

The first two comparisons of differential spectra of pair-creation rates of both
processes are shown in Fig. 4.7. The parameters from Eqs. (4.22) are examined
at ξ2 = 1, the approximate crossing point found in Fig. 4.5(b). For this intensity,
both processes show an approximately equal total rate. Figures 4.7(a) and
4.7(b) depict the radial momentum distribution and the energy distribution,
respectively. The both abscissæ correspond directly to each other by means of
the relativistic energy-momentum relation given in Eq. (1.6). However, they are
not linearly mapped to each other, which leads to the slight alteration of the
curve shapes. Furthermore, the energy distribution is not given in atomic units,
but in seconds and electronvolt. One notices that the distribution obtained for
the assisted process is wider than that of the unassisted counterpart.

The total energy of the created particles is identical to the total energy of the
incoming photons. In this sense the distributions depicted here are closely related
to Fig. 4.3, where the summation steps in the photon number n2 are depicted for
the unassisted process. With each step in n2 the total photon energy is increased
by ω2, making the n2-axis in said figure a quantized energy axis. Moreover, the
peaking curve therein maps to the energy distribution of the created particles.
Conversely, the curves for the γ-assisted process corresponding to those in Fig. 4.3
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Figure 4.7.: Comparison of momentum- and energy-differential pair-
creation rates of the γ-assisted and the unassisted process in the nuclear
rest frame – Both spectra are obtained for the parameters in Eqs. (4.22)
at ξ2 = 1, the approximate crossing of the curves in Fig. 4.5(b). A scaled
version of the γ-assisted spectrum has been added for better comparability.
Momentum and energy are connected according to Eq. (1.6). Since this is
not a linear mapping, slight differences in the curve shapes occur. However,
in both figures the distribution obtained for the γ-assisted process is wider
than the unassisted process.
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Figure 4.8.: Comparison of energy-differential pair-creation rates of the
γ-assisted and the unassisted process in the laboratory frame – The same
parameters as in Fig. 4.7 have been used. Besides the widened distribution
also found in the nuclear rest frame, the peak position is shifted towards
larger energies. Note that, the distribution is converted to second and
electronvolt, instead of the respective atomic units.

are also much wider. This can be seen in Fig. 4.4, for the same parameters as in
Fig. 4.7.

Furthermore, in Fig. 4.8 the results from Fig. 4.7(b) have been transformed to
the laboratory frame. The widened distribution for the assisted process is again
clearly visible. Moreover, the effect is enhanced by the Lorentz transformation
and the width of the distribution of the assisted process is almost doubled
compared to the unassisted process. Additionally, the peak position is shifted
towards larger energies. Both effects can be understood from the subsequently
shown emission angle distributions since the Lorentz transformation mixes the
temporal component of the four-momentum, i.e., the energy, with its spatial
component along the nuclear propagation direction, i.e, the z-component of
the momentum three-vector. The latter is given by the cosine of the emission
angle ϑ (cf. also Eq. (E.6)). Note that, the laboratory frame counterpart of the
momentum distribution in Fig. 4.7(a) is not shown as the differences of the curve
shapes compared to the energy distribution in Fig. 4.7(b) vanishes when the
transformation to the laboratory frame is performed.

In Fig. 4.9, the pair-creation rate differential in the emission angle ϑ is shown for
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Figure 4.9.: Comparison of angular-differential pair-creation rates of the
γ-assisted and the unassisted process in the nuclear rest frame and the
laboratory frame – Both spectra are obtained for the parameters in Eqs. (4.22)
at ξ2 = 1, the approximate crossing of the curves in Fig. 4.5(b). A scaled
version of the γ-assisted spectrum has been added for better comparability.
In both frames of reference, the distribution obtained for the γ-assisted
process is widened compared to the unassisted process. Furthermore, the
peak position is shifted towards larger (smaller) angles in the nuclear rest
frame (laboratory frame).
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both processes for the same parameters as above. Figures 4.9(a) and 4.9(b) depict
the results in the nuclear rest frame and the laboratory frame, respectively. In
both frames of reference, the distribution obtained for the γ-assisted process has
an approximately doubled width compared to the unassisted process. Besides
the strong contraction of the allowed range of emission angles, the Lorentz
transformation maps small angles to large ones, and vice versa. Therefore, the
shift of the emission peak position towards larger angles in the nuclear rest frame
results in a slight shift towards smaller angles in the laboratory frame. Note
that, while in the nuclear rest frame the e−e+ pairs are mainly emitted into
a small cone in laser propagation direction, in the laboratory frame they are
mainly emitted into a very small cone in propagation direction of the nucleus.
This is a general observation imparted by the Lorentz transformation.

4.2.4. Higher-Order γ-Assisted Tunneling Pair Creation

In the theoretical framework employed throughout this thesis, the results pre-
sented in Secs. 4.2.2 and 4.2.3 can be straightforwardly extended to higher-order
γ-assisted processes. In this section, the case of two assisting γ-photons is
discussed and compared to the singly γ-assisted and the unassisted processes
(the latter obviously remains unchanged). To this end, the photon energy of the
highly intense mode is kept as in Eqs. (4.22), while that of the assisting mode is
halved. The intensity of the latter is increased to ensure better comparability of
the three processes of interest. Thus, the employed parameters are:

ω1 = 490 keV, ξ1 = 5×10−5, (4.28a)
ω2 = 32.62 keV, 0.5 ≤ ξ2 ≤ 1.25 . (4.28b)

This corresponds to a frequency ratio of ω1/ω2 ≈ 15. It is worth pointing out that
here, the process with a single assisting photon represents the aforementioned
case where the parameter δ from Eq. (4.17b) is larger than unity since δ ≈ 3.4.

Analogously to Fig. 4.5, the comparison of total pair-creation rates of the three
processes as a function of the intensity parameter ξ2 is shown in Fig. 4.10. Here,
a result consistent with that of Sec. 4.2.2 is found: For the smallest depicted
intensities, ξ2 < 0.85, the doubly assisted process is dominant, then it is overcome
by the singly assisted process. For ξ2 > 1.02, the unassisted process is strongest.
Here it is important to stress again that, these crossing points may be modified by
means of the intensity of the first mode, as the three processes depend differently
on the parameter ξ1. The unassisted case is independent of it, while the singly
assisted case depends on its square and the doubly assisted on its fourth power.
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Figure 4.10.: Comparison of total pair-creation rates of the singly or doubly
γ-assisted and the unassisted process – This figure should be understood as
higher-order version of Fig. 4.5 obtained for the parameters in Eqs. (4.28).
The doubly-assisted process is much stronger for smaller intensities of the
second mode, while the unassisted process dominates for the largest depicted
intensities. In an intermediate range, 0.85 . ξ2 . 1.02, the singly-assisted
process is strongest.

As in Sec. 4.2.3, the differential pair-creation rates of the higher-order assisted
process depicted in Figs. 4.11 and 4.12 shall be discussed in the following for
both frames of reference.

The angular-differential pair-creation rates of the unassisted, the singly and the
doubly γ-assisted process are compared in Fig. 4.11(a) for the nuclear rest frame
at the intensity parameter ξ2 = 1. As can be seen in Fig. 4.10, for this intensity
the unassisted and the singly assisted rates are of approximately equal strength,
while the doubly assisted process is slightly suppressed. Therefore, a scaled
version of its curve has been added to the figure. Just as in Fig. 4.9(a), the more
assisting γ-photons participate in the process, the wider the distribution and
the larger the emission angle to which the peak position is shifted.

In analogue to Fig. 4.9(b), the angular spectrum is transformed to the laboratory
frame in Fig. 4.11(b). Due to the Lorentz transformation, the unassisted process
experiences a slight widening and, consequently, a decrease of the peak height.
Therefore, an additional scaled version of its curve has been added to this
figure. The broadening of the distribution is also found in this frame of reference.
However, the shift of the peak position is less pronounced. Particularly, the main
emission direction of the two assisted processes is almost identical.
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(a) Nuclear rest frame (cf. Fig. 4.9(a))
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Figure 4.11.: Comparison of angular-differential pair-creation rates of
the unassisted, the singly and the doubly γ-assisted process in the nuclear
rest frame and the laboratory frame – These figures should be understood
as higher-order versions of those indicated in their respective caption (cf.
Fig. 4.9). They are obtained for the parameters in Eqs. (4.28) at the intensity
parameter ξ2 = 1. Scaled versions of the unassisted and the doubly assisted
spectrum have been added for better comparability. In both frames of
reference, the more assisting photons participate, the wider the respective
distribution becomes and the more the peak position is shifted towards larger
(smaller) angles in the nuclear rest frame (laboratory frame).
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Figure 4.12.: Comparison of energy-differential pair-creation rates of the
unassisted, the singly and the doubly γ-assisted process in the nuclear rest
frame and the laboratory frame – These figures should be understood as
higher-order versions of those indicated in their respective caption. They are
obtained for the parameters in Eqs. (4.28) at the intensity parameter ξ2 = 1.
Scaled versions of the unassisted and the doubly assisted spectrum have
been added for better comparability. In both frames of reference, the more
assisting photons participate, the wider the respective distribution becomes.
Furthermore, in the laboratory frame, the more the peak position is shifted
towards larger energies.
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Figure 4.13.: Comparison of exemplary energy-differential partial pair-
creation rates of the doubly γ-assisted process in the laboratory frame – The
individual contributions to the total rate (cf. Eq. (4.7)) cover differing energy
ranges since the total energy involved depends on the number of absorbed
photons. Note that, the more photons are absorbed, the lower the peak
energy of the emitted particle. This may be unexpected at first, but is due
to the nature of the Lorentz transformation. In the nuclear rest frame the
order is reversed.

The energy-differential pair-creation rates of the three processes are compared in
Fig. 4.12 for both frames of reference. In the nuclear rest frame, the broadening
found above is again visible for the doubly assisted process. However, the
difference betweens the widths of the unassisted and the singly assisted process
is almost negligible. This might be explained by the fact that even with a single
highly energetic photon of 490 keV assisting the process there are still 30 photons
from the low-energetic mode needed to overcome the pair-creation threshold. In
the laboratory frame both effects, the peak position shift and the broadening
of the distribution, are again clearly visible. This stronger pronunciation of
the modifications may again be attributed to the mix of the energy and the
momentum z-coordinate by the Lorentz transformation, which imparts the effects
on the angular spectrum onto the energy distribution.

Concluding this section it is worth pointing out that in the laboratory frame
shown in Fig. 4.12(b), the energetic spectra of the three processes exhibit promi-
nent differences in their curve shapes. These are also visible in Fig. 4.8, the
corresponding figure for the first-order assisted process. They may be attributed
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to the underlying sub-processes [n1, n2], which all have a different allowed radial
momentum and, thus, energy range (cf. App.E). The total photon energy, as
given in Eq. (2.64), differs for each sub-process leading to a relative shift on
the energy axis in the laboratory frame. In the sum over n2 (cf. Eq. (4.7)) the
structure of the curve shapes appears. The partial rates R[n1,n2] of the doubly
assisted process (n1 = 2) are shown for five exemplary values of n2 in Fig. 4.13.
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Chapter 5.

Conclusion

In the scope of this thesis, e−e+ pair creation in the vicinity of a nucleus induced
by bichromatic or bimodular laser fields has been studied. In the subsequent
sections, the results for the two studied cases, laser pairs with commensurable and
incommensurable frequencies, are summarized. Furthermore, an the prospects
of an experimental realization of the proposed pair-creation schemes is given, as
well as an outlook on the continuation of the theoretical investigation.

5.1. Commensurable Frequencies

In the first part of the presented results, the influence of quantum interference
between two commensurable laser modes, with both intensity parameters ξi � 1,
on the non-linear Bethe–Heitler effect has been investigated. Particularly, total
and differential rates of electron-positron pair creation in the multiphoton regime
have been studied under variation of various parameters.

To allow the distinction between different types of contributing sub-processes for
a given set of parameters, individual terms in a four-index sum were discussed
in form of differential partial rates. This sum has been introduced via a Fourier
expansion of all periodic functions in the squared pair-creation amplitude. The
actual physical observables are gained by performing these four sums and an
appropriate number of integrations in momentum space. This leads to differential
rates and total rates, which are also studied for interference effects.

In a variation of the energy of a single photon and thus the number of photons
needed to provide the energy to overcome the pair-creation threshold, only
laser pairs with even minimal photon numbers for both modes were found to
show contributions from interference terms. Of those, laser pair (2, 4) yields
the strongest interference contribution and has thus been used as the prime
example for the subsequent considerations. Here it is worth noting that, laser
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combination (1, 2) with lower photon number but identical frequency ratio does
not feature interference.

The next step, a variation of the total photon energy for a fixed number of
photons, corresponds to a variation of the excess energy available as kinetic
energy for the created particles. Here, the interference has been found to be
strongest near the pair-creation threshold. However, strong modifications of the
curve shape of the angular distribution occur for higher energies.

The different curve shapes for the various energies lead to differing behaviour once
the variation of the relative phase between the two laser modes, i.e., the lateral
offset between the peaks of the two laser wave amplitudes, is considered. For
the lower energies, phase variation mainly manifests itself in a raised (lowered)
summed-up differential rate and thus eventually in an increase (decrease) in
the total rate. For the altered shape of the angular distribution found for
higher energies, the peak position shift along the emission angle axis is more
emphasized. The latter effects have been explained within an intuitive picture
based on the phase dependence of the peak amplitude of the electric field. The
found connection is – with a slight modification – also applicable for laser pairs
with higher number of involved photons, in particular laser pair (4, 8). However,
for these laser pairs the number of contributing terms increases significantly,
making the results less intuitive.

Furthermore, some results have been transferred to the laboratory frame, where
both interference effects – peak height and position change – are found as well.
However, the shift of the main emission angle is over a much narrower region, as
the whole angular spectrum is Lorentz contracted.

Finally, for two modes with identical frequency, the dependence of the pair-
production rate on the ellipticity of the combined laser wave has been studied.
This dependence shows the expected behaviour when the total field intensity is
held constant, i.e., when the intensity of one mode is decreased, while that of
the other is increased. Thus, in the linearly polarized case the peak amplitude is
higher than in the respective case of circular polarization, leading to an increasing
pair-creation rate when traversing from the former to the latter. In contrast,
interesting features arise when the maximum field amplitude is kept fixed instead.
In this case the intensity of one mode is kept constant and the other mode is
gradually turned off. The field amplitude in the circularly polarized case is
constant, while it varies sinusoidally in the linear case. Thus, the rate would
be expected to decrease monotonously in a variation from the former to the
latter. However, for some parameter sets – instead of such a simple ellipticity
dependence – a minimum is found in this variation. Beyond this ellipticity where
the rate is lowest, the rate rises again towards linear polarization.
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5.2. Incommensurable Frequencies

The second part of the presented results begins with a comparison of commensu-
rable and incommensurable frequencies by continuously varying the frequency
ratio of the two laser modes. This further solidifies the extraordinary role of
commensurable frequencies with even minimal photon numbers, as these show
strong enhancement or decrease due to the interference contribution.

Additionally, it is discussed that instead of the differentiation between commen-
surable and incommensurable frequencies one should distinguish whether the
frequency ratio is comprised of small or large integers. Therefore, to complement
the first part, the focus of this part lies on largely differing frequencies. Particu-
larly, the influence of an assisting highly energetic photon, with an energy just
below the pair-creation threshold, on the non-linear Bethe–Heitler process by a
highly intense laser in the non-perturbative regime is studied.

The two studied cases are chosen such that for a fixed laser combination in
the laboratory the adjustment of the Lorentz factor of the nucleus switches
from a regime where the parameters of a previous fully analytical study [41],
which are required to be small therein, vary from being relatively small to being
approximately unity. The results found for the total pair-creation rate coincide
very well in the former and deviate in the latter case. Nevertheless, a Schwinger-
like dependence of the pair-creation rate on the intensity of the laser is found
in both cases. By studying a wide range of parameters, an empirical extension
to the aforementioned analytical expression for the total pair-creation rate is
obtained, which is applicable when the respective parameters of the analytical
theory are not very small.

When the assisted and the unassisted process are compared, one finds that the
total pair-creation rate is dominated by the assisted case for lower intensities of
the strong laser. For higher intensities the opposite is found and the unassisted
case becomes the stronger of the two. Furthermore, the employed theoretical
framework allows to examine the underlying differential spectra. This is done
for the emission angle and the energy of the created particles, where the latter is
linked to the radial momentum coordinate. One finds that, for both coordinates
the distribution is broadened for the assisted case. Additionally, the main
emission direction is shifted from just above 0◦ to approximately 45◦ in the
nuclear rest frame. In the laboratory frame, this shift is from angles just below
180◦ to slightly smaller angles, due to the contraction of the spectrum and the
reversal of the propagation direction of the created particles imparted by the
Lorentz transform.
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Finally, the assisted process of next-higher order is studied. For two assisting
highly energetic photons, results consistent with those for the single assisting
photon are found. For lower intensities of the assisted mode one finds that,
the more assisting photons are involved, the stronger the contribution to the
total rate from the respective process is. Conversely, for the highest examined
intensities, the unassisted case dominates. Again, the energetic and the angular
distributions show a broadening for the processes with assisting photon(s), just
as the latter shows the shift towards larger angles. Both effects get stronger, as
the number of involved assisting photons rises.

5.3. Experimental Realization

In principle, an experimental realization of the proposed pair-creation schemes
would rely on two counterpropagating components: a laser providing an intense
beam of high-energetic photons, and a relativistic nuclear beam. The LHC,
today’s prime example for a source of the latter, has already been mentioned.
The main objectives of this machine are the search for the Higgs boson [55,
62, 66, 67] and for physics beyond the Standard Model (e.g., supersymmetrie
[1] and strings [94]). However, once its primary tasks have been accomplished,
other research domains – such as pair-creation – might become interesting for
the LHC. Even more so, now that the Higgs boson has been discovered [10,
39]. Nevertheless, it should be noted that there exist several other particle
accelerators (an overview may be found in Ref. [21]) that, while not providing
Lorentz factors as high as the LHC, would still be well suited for pair-creation
experiments. Particularly, when combined with an X-ray laser source – such as
an FEL – a relativistic proton beam with a Lorentz factor of γ ∼ 50 would be
sufficient. The main problem for the realization of these pairings of FELs and ion
accelerator facilities is that they both are large in size and located at different
places. The HERA (Hadron-Elektron-Ring-Anlage) proton accelerator, which is
unfortunately defunct since 2007, is a noteworthy example since it shared the
site with FLASH at DESY (Deutsches Elektronen-Synchrotron).

Pair-creation schemes like the γ-assisted process proposed in Sec. 4.2 are particu-
larly aimed at counter-acting the aforementioned problem by making pair-creation
accessible via table-top laser devices. These could in principle be transported to
or built at CERN. In this context it should be mentioned that, intensities up to
6× 1013 W/cm2 have been reported for HHG-based light sources [97]. However,
that magnitude is not yet commonly reached.

In Sec. 1.4, various laser sources have already been discussed with an emphasis on
bichromatic fields. Besides the FELs mentioned there, FLASH with 1016 W/cm2
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[147], LCLS with 1018 W/cm2 [28], and FERMI, two further FELs situated at
RIKEN should be mentioned: SCSS19 in the XUV regime and SACLA20 in the
X-ray regime. Two hard-X-ray FELs, the SwissFEL at the Paul Scherrer Institut
in Villigen [122] and the European XFEL (X-ray FEL) at DESY in Hamburg
[61], are currently planned and built. Future X-ray FELs are expected to reach
up to 1021 W/cm2 [150].

The most intense laser light sources available today are petawatt-class infrared
lasers with an intensity of ∼ 1021 W/cm2 [16]. For instance, HERCULES21,
PHELIX22, the Texas Petawatt Laser23, and the Vulcan laser24. Two further
light sources currently in planning, ELI25 and HiPER26, aim for even higher
intensities of ∼ 1023 W/cm2.

5.4. Outlook

To conclude this thesis, a few remarks on potential expansions and enhancements
of the presented theoretical approach are expedient. Furthermore, its applicability
to different processes should be briefly discussed.

A natural continuation of the study presented here would be to replace the
idealized picture of a laser field as a plane wave of infinite extent with finite laser
pulses. The Volkov solutions are usually employed for the former case. However,
in the original publication Volkov has already discussed the corresponding
solutions for a superposition of many plane waves with differing frequencies [153].
These could be employed to describe a wave packet and, thus, to realize a pulsed
laser beam. Furthermore, there exist closed-form expressions for a specific form
of an ultra-short single-cycle laser pulse [114].

Another potential area of further development has already been mentioned
in Sec. 2.3.4, where the influence of the nuclear charge Z is briefly discussed.
Since the Coulomb field of the nucleus is only treated in the lowest order of
perturbation theory, the found Z2-scaling of the pair-creation rate is only valid

19SPring-8 (Super Photon Ring – 8 GeV) Compact SASE Source [144]
20SPring-8 Angstrom Compact Free-Electron Laser [69]
21High Energy Repetitive CUOS (Center for Ultrafast Optical Science) Laser System, at the
University of Michigan in Ann Arbor [155].

22Petawatt High Energy Laser for Heavy Ion Experiments, at the GSI (Gesellschaft für
Schwerionenforschung) Helmholtzzentrum für Schwerionenforschung in Darmstadt [159].

23At the University of Texas in Austin [164].
24At Rutherford Appleton Lab in Didcot [161].
25Extreme Light Infrastructure [158].
26High Power Laser Energy Research [160].
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for relatively small nuclear charges. For larger values, the presented treatment
has to be extended. One possibility would be to take the next-higher orders
of perturbation theory of the interaction between the nucleus and the created
particles into account. However, this may not be the best choice as the numerical
effort can be expected to grow immensely.

The methods developed in this thesis could also be applied to other relativistic
quantum processes in bichromatic laser fields. For instance, laser-induced atomic
ionization and e−e+ pair creation are well known to exhibit similar characteristics,
which is explicable by the fact that the latter may be interpreted as “ionization
from the Dirac sea” [106]. With some modifications, the theoretical approach
presented here could also be used to examine ionization of (hydrogen-like) atoms
in bichromatic fields of high intensity. Atomic ionization in the relativistic
regime is currently studied both theoretically [79, 80] and experimentally [44,
45] complementing the available comprehensive knowledge about non-relativistic
laser-induced ionization [99]. As the previous studies have been restricted to
monochromatic laser fields, the question arises how processes of relativistic
ionization are modified by the presence of a second laser mode. Based on the
results presented in this thesis, characteristic quantum-interference and rate-
enhancement effects are to be expected for ionization processes in bichromatic
laser fields, as well. Moreover, these could be probed by modern experimental
techniques.
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Appendix A.

Units

Throughout this thesis, several systems of measurement are used. The first is
the International System of Units (abbreviated SI from French: Le Système
international d’unités). The second is the system of atomic units (au), which
is defined in terms of several universal physical constants such that quantities
on the atomic scale a represented in terms of properties of nature. Therefore,
au are a set of natural units. Furthermore, they are based on the Gaussian unit
system commonly used in electrodynamics. In contrast to SI, which is based
on the units27 metre, kilogram, second, and ampere (MKSA), Gaussian units
are a CGS (centimetre-gram-second) system. As they are the most commonly
used variant of a CGS system, Gaussian units are often referred to as the CGS
system. The main difference between SI and Gaussian units is the “lack” of a
base unit associated with electrical phenomena in the latter. While SI allows
the ampere the same defining status as metre, kilogram, and second, the unit of
the electric current, the franklin, is a derived unit in CGS.

A.1. Atomic Units

The defining constants are chosen to represent the dimensions of the electronic
motion in an atom. This is emphasized by the strong connection between au
and the ground state of hydrogen as described by the Bohr model. There exist
two commonly used variants of au28: Rydberg29 and Hartree units. They differ
in their respective unit of mass and charge, and are named after their respective

27Actually, SI is based on seven units. The remaining ones are candela, kelvin, and mole.
28Besides, the abbreviation au might lead to confusion with astronomical or arbitrary units.
Particularly, the latter are therefore not used in this work.

29Rydberg units are gained by setting 2me = e2
/2 = ~ = 1/4πε0

!= 1. The resulting set of units
is sometimes abbreviated aru (atomic Rydberg units) instead of au. The eponymous unit of
energy, Ry = H/2 ' 13.6 eV, corresponds to the energy required to ionize atomic hydrogen.
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Constant Symbol Dimension SI value [103]
Electron rest mass me mass 9.109× 10−31 kg
Elementary charge e charge 1.602× 10−19 C
Reduced Planck constant ~ = h/2π action 1.054× 10−34 J s
Electrostatic constant 1/4πε0 inverse ε0 8.987× 109 V m/A s

Table A.1.: Numerical values of the four fundamental atomic units in SI
units – Here, the vacuum permittivity ε0 = 8.854× 10−12 A s/V m is used.

unit of energy. In this work, Hartree units are used, which are gained by setting
the electron mass, the elementary charge, the reduced Planck constant and the
electrostatic constant to unity:

me = e = ~ = 1
4πε0

!= 1. (A.1)

An overview of the numerical values of these constants in SI units is given in
Tab.A.1. Note that, in this convention the speed of light c has a value different
from unity. It can be inferred from the dimensionless fine-structure constant

α = e2

4πε0 ~c
' 1

137.036 . (A.2)

Dimensionless constants retain their value independent of the unit system.
Therefore, one finds:

c = 1
α
≈ 137. (A.3)

To be more precise, one may write c ≈ 137 au. However, the au suffix is often
dropped if all quantities are given in atomic units. A full set of units may be
derived from the fundamental atomic units above, a subset of which is given in
Tab.A.2. The au of time is of particular importance, as the results presented
herein are usually pair-creation rates with the dimension particles per time.

A.2. Intensity

A particularly important unit is that of the intensity I. It has the dimension of
a radiative flux, which is W/m2 in SI units. However, as focus sizes of lasers are
usually rather small the more commonly used unit is W/cm2. The corresponding
unit in atomic units is gained from that of the electric field strength via the
Poynting vector

S = ε0c (E×B) , (A.4)
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Constant Symbol Dimension SI value [103] Alternative
Hartree H = meα

2c2 energy 4.360× 10−18 J 27.211 eV
Bohr radius a0 = ~/meαc length 5.292× 10−11 m 0.529Å

~/H time 2.419× 10−17 s
E0 = H/ea0 electric field 5.142× 1011 V/m

Table A.2.: Numerical values of some derived atomic units – For two values
a commonly used alternative representation is given. Note that, the atomic
unit of time corresponds to the time an electron needs for one revolution on
the ground-state orbit of hydrogen according to the Bohr model. Similarly,
the atomic unit of the electric field strength is felt by such an electron.

where E = −1
c
∂A
∂t

is the electric field and B = ∇ × A is the magnetic field
associated with the plane wave potential A as in Eq. (2.5). For the directions
holds A ‖ E ⊥ B and κ = c

ω
k = E×B, therefore it is sufficient to consider only

the absolute values:

A = a cos(ωt− k·r), (A.5)
E = E0 sin(ωt− k·r), (A.6)
B = B0 sin(ωt− k·r), (A.7)

with B0 = E0 = −aω
c
. The intensity is then given by the averaged absolute value

of the Poynting vector:
I = |S| = ε0c

2 E 2
0 , (A.8)

where the factor 1/2 stems from the average of the squared sine. Employing [E0]
from Tab.A.2 the SI value can be given:

[I] ' 3.509× 1016 W/cm2. (A.9)

In atomic units, where ε0 = 1/4π, the conversion formula

[I] = c

8π [E0]2 (A.10)

can be used. Here it is worth pointing out that, [I] is not unity when the
definitions from Eq. (A.1) are inserted. Therefore, it is not an atomic unit in the
formal sense.

In the theoretical framework applied in this work, the intensity is usually given
by means of the intensity parameter ξ defined in Eq. (2.7), which can be rewritten
as

ξ = e

mc

1√
2

E0

ω
. (A.11)
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This allows to give a conversion formula similar to Eq. (A.8) for the intensity
parameter:

I = m2

e2 ε0c
3ω2ξ2 (A.12)

= 1
4πc

3ω2ξ2. (A.13)

A.3. Electronvolt

As for most physical quantities, for those with the dimension energy several
representations are available. Besides the SI unit Joule (J) and the atomic unit
Hartree (H), the electronvolt (eV) is commonly used. It is defined as the amount
of energy gained by moving an elementary charge e across an electric potential
difference of 1V:

e · 1 V = 1 eV ' 1.602× 10−19 J. (A.14)

Furthermore, quantities that are not energies are regularly expressed in eV by
applying the mass-energy equivalence

E = mc2, (A.15)

with the relativistic mass m = γm0, the rest mass m0, the Lorentz factor
γ = 1/

√
1−β2 , and the velocity in units of the speed of light in vacuum β = v/c.

For instance, the electron rest mass me is often expressed as me = 511 keV/c2, in
which the factor 1/c2 is sometimes dropped.

Similarly, from the relation between the frequency ω and the energy of a photon

E = ~ω (A.16)

the reduced Planck constant ~ is often dropped, leading to frequencies given in
electronvolt.

Finally, for the wavelength λ and the energy of a photon

E = ~ω = hc

λ
, (A.17)

with the Planck constant h = 2π~ = 6.626× 10−34 J s, the convenient conversion
formula

E[eV] ≈ 1240
λ[nm] (A.18)

can be found.
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A.4. Ångström

A.4. Ångström

The atomic unit of length, the Bohr radius a0, provides a measure for lengths
on the atomic scale. However, another unit is also commonly employed, the
Ångström (Å):

1Å = 10−10 m ≈ 2a0. (A.19)
While a0 describes the radius of lowest orbit in hydrogen, 1Å may be understood
as the corresponding diameter.
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Appendix B.

Notation

In this appendix a few short remarks on the notation applied throughout this
thesis shall be made. In particular, the employed conventions of the Einstein
summation, the inner products of three- and four-vectors, the Dirac matrices,
and the rounding functions floor and ceiling are introduced.

B.1. Einstein Summation

For brevity, the summation over indices appearing twice in a product is implied.
The standard convention is followed, which means that Latin letters count only
spatial dimensions, e.g.,

i = (1, 2, 3), (B.1)
while Greek letters also count time as the zeroth coordinate, e.g.,

µ = (0, 1, 2, 3). (B.2)

B.2. Inner Products

Inner products are written either as Einstein summation, as scalar product (in
the three-dimensional case), or as bilinear form (in the four-dimensional case):

aib
i =

∑
i

aibi = a·b, (B.3)

aµb
µ =

∑
µ

aµb
µ = a0b0 − a·b = 〈ab〉 , (B.4)

with the four-vectors a = (a0, a) and b = (b0,b) and the (three-)vectors a =
(a1, a2, a3) and b = (b1, b2, b3)
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Note that, here covariant four-vectors aµ = (a0, a1, a2, a3) and contravariant four-
vectors aµ = (a0, a1, a2, a3) = (a0,−a1,−a2,−a3) are used. They are connected
by the metric tensor with the signature (+,−,−,−),

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (B.5)

via the relation
aµ = gµνa

ν . (B.6)

B.3. Dirac Matrices

The Dirac γ-matrices are defined via the anticommutator

{γµ, γν} = γµγν + γνγµ = 2gµν . (B.7)

They are connected to the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
−i 0

)
, and σ3 =

(
1 0
0 −1

)
, (B.8)

via the α = (αi) and β matrices

αi =
(

0 σi
σi 0

)
and β =

(
1 0
0 −1

)
, (B.9)

by γ0 = β and γi = βαi. The four resulting matrices are usually collected in an
object of the form of a four-vector: γ = (γµ). Products of four-vectors a with
this γ are then treated as inner products. Furthermore, a convenient notation
for these particular inner products is the Feynman slash notation:

/a = 〈γa〉 = γµa
µ. (B.10)
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B.4. Floor and Ceiling

Due to the quantized nature of photons, it is often convenient to employ rounding
functions to obtain integer photon numbers from energy ratios.

The floor and ceiling functions map a real number to the largest previous or the
smallest following integer, respectively. They are commonly denoted by symbols
derived from the older Gaussian bracket, a notation for the floor function using
square brackets.

Formally, for a real number x, floor(x) = bxc is the largest integer not greater
than x, while ceiling(x) = dxe is the smallest integer not less than x:

bxc = max{k ∈ Z | k ≤ x}, (B.11)
dxe = min{k ∈ Z | k ≥ x}. (B.12)
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Appendix C.

Volkov Wave Functions

For an electron (or a positron) interacting with the field of an electromagnetic
plane wave in vacuum the Dirac equation may be solved exactly. This leads to
the so-called Volkov solutions, which were first derived in 1935 [153]. A brief
overview of this derivation is given in the following (cf. also Ref. [30]).

Instead of Eq. (2.1), the corresponding second-order equation(
i~/∂ + e

c
/A+mc

)(
i~/∂ + e

c
/A−mc

)
Ψ = 0 (C.1)

may be used as starting point. Here, the four-potential is only required to fulfil
A = A(η) and 〈kA〉 = 0. A specific potential can be found in Eq. (2.5). With
the abbreviation A′ = ∂A

∂η
, this can be rewritten as(

−~2∂2 + 2i~e
c
〈A∂〉+ i~e

c
/k /A
′ + e2

c2A
2 −m2c2

)
Ψ = 0. (C.2)

In the wave function, the dependence on the product 〈px〉 may be separated from
the remaining wave function ψp(η), which depends on the space-time coordinate
x only in form of the phase coordinate η = 〈kx〉. This is achieved by employing
the ansatz

Ψ = e− i
~ 〈px〉ψ(η), (C.3)

wherein p is the four-momentum with p2 = m2c2. Upon insertion of this ansatz
into Eq. (C.2), one finds

2i~ 〈kp〉ψ′ +
(

2e
c
〈pA〉+ i~e

c
/k /A
′ + e2

c2A
2
)
ψ = 0, (C.4)

which can be integrated employing separation of variables30 leading to

ψ = N exp
(

ie
~c 〈kp〉

∫ η [
〈pA(η̃)〉+ e

2cA
2(η̃)

]
dη̃
)

exp
(
− e

2c 〈kp〉
/k /A

)
w, (C.5)

30A differential equation of the form ẋ = λx is written as dx
x = λ dt, such that both sides may

be integrated independently, leading to ln(x) = λt+ c. After applying the exponential, the
integration constant c turns into a normalizer x0 = exp(c) such that x = x0 exp(λt).
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Appendix C. Volkov Wave Functions

with the normalizer N and the spinor w. Note that, the lower limit of the
integral is not necessary, as it would only contribute a constant offset to the
phase coordinate. The second exponential is independent of η. Any term of its
series expansion with an order of two or higher vanishes due to 〈kA〉 = k2 = 0:

(/k /A)2 = 2 〈kA〉 /k /A− /k2/A
2 = −k2A2 = 0, (C.6)

employing the rules from App.D. Therefore, one can simplify:

exp
(
− e

2c 〈kp〉
/k /A

)
= 1− e

2c 〈kp〉
/k /A. (C.7)

The spinor w is identified with the free Dirac spinor up,s by the requirement
that the solution found here has to correspond to that of a free electron with
momentum p and spin s once the external field is turned off (A→ 0).

In the final expression for the Volkov solution

Ψ(−)
p−,s− = N−

(
1− e/k /A

2c 〈kp−〉

)
exp

( i
~
S(−)

)
u(−)
p−,s− (C.8)

with the action

S(−) = −〈xp−〉+ e

c 〈kp−〉

∫ η[
〈A(η̃)p−〉+ e

2cA
2(η̃)

]
dη̃ (C.9)

it is indicated by the superscript (−) that this result describes an electron.
Note that, this distinction extends to several other quantities as denoted by the
subscripted particle charge. The complementary Volkov solution for the positron
is gained by replacing

p− → −p+ (C.10)
and all other subscripts − with +, as well as all superscripts (−) with (+). The
two solutions can be combined into the compact expression given in Eq. (2.3).

Finally, it should be noted that the requirement of the transition to the solution
of a free particle for vanishing external field is fulfilled as

lim
A→0

Ψ(±)
p±,s± = N± exp

(
± i
~
〈xp±〉

)
u(±)
p±,s± (C.11)

corresponds to u(±) in momentum space.
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Spin Sum and Traces of Slashed
Quantities

The spin sum from Eq. (2.55), which occurs when a rate is calculated from the
squared transition amplitude, may be rewritten as a trace of a product of slashed
quantities. This is possible due to the two relations [24]

∑
s±

u(±)
µ ū(±)

ν =
(
/p± ∓ c

2c

)
µν

, (D.1)

with ū = u†γ0.

The aforementioned spin sum is a double sum over a 4×4 matrix Γ containing
the slashed quantities. Using Eq. (D.1) in the first two steps, together with the
abbreviation Γ̄ = γ0Γ†γ0, it may be transformed as follows:∑

s+,s−

∣∣∣ū(−) Γu(+)
∣∣∣2 =

∑
s+,s−

ū(−)
µ Γµν u(+)

ν ū
(+)
ν′ Γ̄ν′µ′ u(−)

µ′

=
∑
s−

ū(−)
µ Γµν

(
/p+ − c

2c

)
νν′

Γ̄ν′µ′︸ ︷︷ ︸
=
(

Γ /p+−c
2c Γ̄

)
µµ′

u
(−)
µ′

=
(

Γ
/p+ − c

2c Γ̄
)
µµ′

(
/p− + c

2c

)
µ′µ

= tr
(

Γ
/p+ − c

2c Γ̄
/p− + c

2c

)
,

(D.2)

where tr(A) = ∑
iAii denotes the trace of a matrix A. The trace is a linear

mapping, which means that additivity and homogenity are fulfilled:

tr(A+B) = tr(A) + tr(B) (D.3a)
tr(cA) = c tr(A) (D.3b)
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for the matrices A and B, and the scalar c.

Traces of slashed quantities may then be evaluated by applying a few rules
derived from the defining properties of the γ-matrices (cf. Eq. (B.7)):

{/a, /b} = /a/b + /b/a = 2 aµbµ (D.4a)
/a/a = aµa

µ = a2 (D.4b)
tr(/a/b) = 4 aµbµ (D.4c)

tr(/a/b/c/d) = 4 [(a·b)(c·d)− (a·c)(b·d) + (a·d)(b·c)] (D.4d)

The occurring factors of 4 stem from the trace of the identity matrix.

The trace is invariant under cyclic permutation or reversal of the order of the
matrices. The latter is of interest as the complex conjugate of a product of
slashed quantities is reversing the order of the product, thus

tr(/a1/a2 . . . /an︸ ︷︷ ︸
/an.../a2/a1

) = tr(/an . . . /a2/a1) = tr(/a1/a2 . . . /an), (D.5)

wherein /a = /a†. Furthermore, the trace of an odd number of slashed quantities
vanishes.
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Integration Bounds

The fully differential rate from Eq. (2.44) contains six integrations in momentum
space, three spherical coordinates for each of the two created particles. Of these
six, one can be performed analytically employing the δ-function introduced in
Eq. (2.43), which has the zeroth component of the momentum transfer to the
nucleus, as defined in Eq. (2.40), as argument. Thus, it is straightforward to
express the radial momentum coordinate of one particle via that of the other,
leaving four angular and one radial integration. In order to obtain total rates or
rates differential in only one coordinate, the remaining integrations are performed
numerically. Therefore, the bounds of the integrations have to be known.

Note that, in the following the symbols m and p will be used for the electron mass
and the momentum. In an actual implementation of the theoretical framework
employed throughout this thesis, the effective counterparts, m∗ and q, have to
be used instead (cf. Eqs. (2.16) and (2.11), respectively).

E.1. Nuclear Rest Frame

In the nuclear rest frame, the angular integrations simply cover the full 4π solid
angle for each created particle (indicated by the subscript ±):

0 ≤ φ± < 2π, (E.1a)
0 ≤ ϑ± ≤ π. (E.1b)

The remaining radial component, however, must not be integrated until infinity,
instead it has a finite upper bound pmax:

0 ≤ p ≤ pmax. (E.1c)
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This upper bound is obtained as follows: The total energy provided by the
involved photons Eph has been introduced in Eq. (2.64). Under the assumption
that one particle is created at rest, the other particle has the maximum energy

Emax = Eph −mc2. (E.2)

By means of the energy-momentum relation from Eq. (1.6),

E2
max = (pmaxc)2 +

(
mc2

)2
, (E.3)

this can be converted to

pmax = |pmax|

= 1
c

√
E2

max − (mc2)2 = Eph

c

√√√√1− 2mc2

Eph
.

(E.4)

Furthermore, from this derivation the necessity of the upper momentum limit
becomes clear: For one particle with pmax, the other particle is created at rest.
Thus, for momenta higher than pmax, the second particle would have to have less
than its rest energy. This obviously must not occur.

E.2. Laboratory Frame

The propagation direction of both, the laser wave and the nucleus, are along the
z-axis. Therefore, the Lorentz transformation does not affect the angle measured
perpendicular to that axis, and its bounds are unchanged in the laboratory
frame, where all coordinates are primed:

0 ≤ φ′± < 2π. (E.5a)

The emission angle, on the other hand, is measured with respect to the laser
propagation direction and is thus influenced by the Lorentz transformation, just
as the radial coordinate:

ϑ′±,min ≤ ϑ′± ≤ ϑ′±,max, (E.5b)
p′min ≤ p′ ≤ p′max. (E.5c)

In the following derivation of these bounds the subscript ± for ϑ′ is dropped,
as the result is applicable for both particles. From the Lorentz transformation
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E.2. Laboratory Frame

of a four-momentum pµ = (E/c,p) with p = (px, py, pz) and |p| = p along the
z-axis,

p′µ =


E′/c
p′x
p′y
p′z

 =


γ 0 0 −βγ
0 1 0 0
0 0 1 0
−βγ 0 0 γ

 pµ = γ


E/c− βpz

px
py

−βE/c + pz

 , (E.6)

the maximum energy in the laboratory frame, corresponding to Eq. (E.2),

E ′max = γEph

1− mc2

Eph
− β

√√√√1− 2mc2

Eph

 , (E.7)

can be calculated. Here, Eqs. (E.2) and (E.4), the Lorentz factor γ = 1/
√

1−β2 ,
the velocity in units of the speed of light β = v/c, and

pz = p cos(ϑ) (E.8)

have been used, where the latter is maximized for cos(ϑ) = 1. The minimal
energy in any frame is obviously mc2.

In between this minimal and maximal energy, the momentum in the laboratory
frame p′ = (p′x, p′y, p′z), with p′z = p′ cos(ϑ′) and p′ = |p′|, has to be calculated for
all potential ϑ′ by means of the energy-momentum relation. The corresponding
four-momentum is then transformed back to the nuclear rest frame analogously
to Eq. (E.6), however with the sign of β switched. This way, the corresponding
energy

E(p′, ϑ′) = γ (E ′ + βc p′ cos(ϑ′)) (E.9)
is obtained. The allowed p′- and ϑ′-ranges are then found by employing the same
condition as in Sec. E.1, i.e.,

E(p′, ϑ′) ≤ Emax, (E.10)

with the maximum energy in the nuclear rest frame Emax as in Eq. (E.2). De-
pending on the order of integration, Eq. (E.10) is either evaluated for a given
value of ϑ′ and the respective allowed p′-range is obtained or vice-versa. Herein,
one has to allow for the range to be empty and, consequently, assume a vanishing
integral.

In the actual implementation of the integrations used to obtain the results
presented throughout this thesis, the variations of E ′, p′, and ϑ′ are not performed
linearly. Instead of testing the combinations of coordinates stepwise, a binary
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search31 is used to reduce the runtime without losing accuracy. However, this is
only possible due to the allowed ranges being continuous. That this is indeed the
case, can be seen immediately from the nature of the Lorentz transformation,
which is only contracting space instead of introducing any subdivision.

31Also known as bisection method or interval halving. Binary search is a search algorithm
applicable for sorted data. By testing the middle of an interval, the half of the data in which
the result cannot lie is eliminated. This is repeated until the result is found. Instead of a
O(n) complexity like the linear approach, a binary search takes O(logn) steps.32 Here, this
is particularly useful as each step is not a mere lookup in an existing array of data, instead
E(p′, ϑ′) is only calculated when needed.

32The complexity is given in the so-called Big O notation, which can be read as “order of”.
More formally, it is a member of a family of notations called Bachmann–Landau symbols.
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