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SUMMARY 

DNA mismatch repair-deficient colorectal tumors exhibit a high-frequency of 

microsatellite instability (MSI-H) and accumulate somatic frameshift mutations in 

genes harboring repetitive DNA sequences. Biallelic frameshift mutations in the A8 

coding repeat of the activin receptor type 2 A (ACVR2A or ACVR2) gene occur at 

high frequency in these tumors thereby abrogating normal receptor and signaling 

function. Nevertheless, it is not clear if protein deficiency is modifying the 

glycosylation pattern as well as the whole proteomic constellation of cells, since it 

has been shown that proteomic and glycomic alterations have emerging significance 

in cancer cells. Here, we compensated the loss of function by reconstitution of 

ACVR2 into a MSI-H colon cancer cell line and analyzed its impact on the protein 

pattern of these cells. As a model system we used the MSI colorectal cancer cell line 

HCT116-AWE that enables doxycycline-inducible expression of target genes. 

Applying retroviral genomic targeting and recombination-mediated cassette 

exchange (RMCE) technology we have generated stable clones that allow dox-

regulated expression of a single copy ACVR2 transgene. Fragment analysis, 

determination of the transgene transcript level, dox-inducible expression of wildtype 

ACVR2 protein and functional analysis by ligand-stimulated activation of signal 

transduction and expression of specific target genes confirmed successful gene 

reconstitution. Upon induction of receptor expression, glyco-gene chip expression 

analysis of ACVR2-induced versus -uninduced cells revealed ACVR2-dependent 

upregulation of the glycosyltransferase LNFG, an important regulator of Notch 

signaling. Moreover, metabolic labeling experiments showed a significant decrease in 

fucose incorporation and a modest increase in mannosamine uptake, indicating 

significant glycan alterations of newly synthesized proteins due to ACVR2 re-

expression. By applying a Click-it chemistry approach and subsequent mass 

spectrometry analysis a list of proteins, differentially expressed between ACVR2-

deficient and -proficient cells, was identified. 

These results suggest that ACVR2 signaling can affect glycomic and proteomic 

modifications that might cause alterations in many cellular processes like growth 

suppression, cell death, cell adhesion and communication properties or invasion and 

metastasis of these MSI tumor cells. This study is of major relevance because it may 
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define and provide a novel source of MSI tumor-specific carbohydrate epitope 

changes in cell surface levels, thereby initiating analysis of glycan function related to 

MSI. At the same time new tumor markers could be established, which are not only 

monitors for diagnosis or therapy, but also represent the biological characteristics of 

cancer cells. 

 

 

ZUSAMMENFASSUNG 

Mikrosatelliten-Instabilität (MSI) tritt in etwa 15% aller Darmtumoren auf und beruht 

auf dem Funktionsverlust des zellulären DNS Mismatch-Reparatursystems (MMR). 

Das MMR-System ist für die Korrektur von Basenfehlpaarungen und kleinen 

Insertionen / Deletionen, die während der DNS-Replikation auftreten, von essentieller 

Bedeutung. MSI führt zur Anhäufung von somatischen Frameshift-Mutationen, 

insbesondere in Genen mit repetitiven DNS Sequenzen. In ~85% aller MSI-

Darmtumoren kommt es zu Frameshift-Mutationen des Gens, das für den Activin 

Rezeptor Typ 2 A (ACVR2A oder ACVR2) kodiert. Hierbei handelt es sich um eine 

kleine Deletion einer Polyadenin-Mikrosatellitensequenz (A8) in Exon 10 dieses 

Gens, die beide Allele betrifft und damit zur Inaktivierung der normalen Signal-

transduktionsfunktion des ACVR2 Rezeptors führt. Gegenwärtig ist noch unklar, wie 

sich der Funktionsverlust von ACVR2 auf das Proteom und auf postranslationale 

Proteinmodifikationen, insbesondere das Glykosylierungsmuster, auswirkt. Es gibt 

bereits eine Vielzahl von Hinweisen, dass neben Veränderungen im Tumor-Proteom 

auch spezifische Veränderungen im Tumor-Glykom auftreten können. Um den 

Einfluss des ACVR2-Funktionsverlusts sowohl auf das Glykom als auch auf das 

Proteom an einem geeigneten MSI-Tumorzelllinien Modell untersuchen zu können, 

kompensierten wir den ACVR2-Funktionsverlust in einer MSI-Darmkrebszelllinie 

durch die Rekonstitution des ACVR2-Gens. Dazu verwendeten wir die MSI-

Darmkrebszelllinie HCT116-AWE, die eine Doxycyclin-induzierbare Expression von 

Zielgenen ermöglicht. Durch die Anwendung eines retroviralen genomischen 

Targetings und der Rekombinations-vermittelten Kassettenaustausch Technologie 

(RCME) stellten wir stabile Zellklone her, bei denen die erfolgreiche Rekonstitution 

des ACVR2-Gens auf DNA-, RNA- und Protein-Ebene sowie durch eine funktionelle 
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Analyse der Signaltransduktion bestätigt werden konnte. Eine RNA-Chip-

Expressions-Analyse von Genen, die an der Glykosylierung beteiligt sind, zeigte 

außerdem eine ACVR2-abhängige Hochregulation der Glykosyltransferase LNFG. 

Dies belegt erstmals einen direkten Zusammenhang zwischen veränderter ACVR2-

Signaltransduktion und der Expression einer Glykosyltransferase. Darüber hinaus ist 

LFNG ein wichtiger Regulator der Notch-Signaltransduktion. Radioaktive 

Markierungsexperimente zeigten eine signifikante Abnahme der Protein-

Fucosylierung sowie eine geringe Zunahme in der Protein-Sialylierung. Damit 

konnten erstmals signifikante ACVR2-abhängige Änderungen in den 

Oligosaccharidstrukturen neu synthetisierter Glykoproteine nachgewiesen werden. 

Zur Identifizierung der davon betroffenen Glykoproteine als auch von ACVR2-

abhängigen Veränderungen im Proteom der Zellen wurde die sogenannte Click-it 

Technologie zur Isolierung neu-synthetisierter Proteine mit massenspektrometrischer 

Identifizierung kombiniert. So konnte eine Liste der durch den ACVR2-Verlust in MSI-

Kolonkarzinomzellen auftretenden Veränderungen im Proteom als auch der Proteine 

mit veränderter Glykosylierung erstellt werden. Diese Listen stellen die Grundlage für 

weiterführende Untersuchungen dar, mit dem Ziel, neue Tumormarker, die für die 

Diagnostik und Therapie Verwendung finden können, zu etablieren. Darüber hinaus 

eröffnen die beobachteten Veränderungen neue Möglichkeiten für detaillierte 

Untersuchungen zum Einfluss des ACVR2-Verlustes auf Tumor-relevante zelluläre 

Prozesse. 
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1. INTRODUCTION 

1.1 Colorectal Cancer 

1.1.1 Epidemiology and Prevalence 

Cancer is a leading cause of death worldwide, accounting for 7.6 million deaths 

(Globocan 2008, World Health Organization (WHO)). Colorectal cancer (CRC 

includes cancerous growth in the colon, rectum and appendix. According to the 

World Health organization (WHO), it is the third most common form of cancer and the 

second leading cause of cancer-related death in the western world. The incidence of 

colorectal cancer in the western world is relatively high and steadily increasing [1]. In 

the general population, the life time risk of developing sporadic colorectal cancer is 5-

6% [2]. Population screening for sporadic colorectal cancer, mostly based on faecal 

blood tests, is planned or implemented in many European countries. [3-5]. Optimizing 

population screening with e.g. colonoscopy, CT colonography, or DNA-based stool 

tests is currently under investigation [6-8]. Colorectal carcinomas arise both 

sporadically at a median age of 67 years and hereditarily at a median age of 42 years 

[9]. Approximately 80% of colorectal cancers are sporadic tumors, 15% occur on a 

familial basis without a known underlying genetic event and 5% of all colorectal 

cancers develop as part of rare hereditary syndromes [10, 11]. These hereditary 

syndromes include hereditary non-polyposis colorectal cancer (HNPCC or Lynch 

syndrome), familial adenomatous polyposis syndrome (FAP) and even more rare, 

hamartomatous polyposis syndromes including Peutz-Jeghers, Juvenile Polyposis 

and Cowden Syndrome [10, 12]. Patients with FAP are almost certain to develop 

colorectal cancer before the age of 40 and patients with HNPCC have a 70-80% life-

time risk of colorectal cancer and intensive screening or preventive surgery is 

indicated. 

 

1.1.2 Progression of Colorectal Cancer 

Colorectal adenoma, a benign neoplasm, remains the one reliable biomarker of risk 

for colorectal cancer. Adenoma patients have markedly higher risk of developing 

colorectal cancer and removing adenomatous polyps reduces the risk for future 
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colorectal cancer [13-15]. The colonic epithelium contains about 107 crypts that are 

the main morphologic units of the colorectal mucosa (Figure 1.1). Colonic epithelial 

cells originate from stem cells at the base of the crypt and migrate upward towards 

the surface epithelium layer. The cells differentiate and mature during their migration 

to the surface where they are replaced by a new generation of cells about every 3 – 6 

days. 

 

 

 

 

 

 

 

Figure 1.1: Morphology of normal colon tissue [16]. Labels 

show surface epithelium (SE), colon crypts (CC), goblet cells 

(GC), lamina propria (LP), and muscularis mucosa (MM).  

 

 

The progression from an adenoma to a cancer passes through a series of defined 

histological stages referred to as the adenoma-carcinoma sequence (Figure 1.2) [17-

19]. Colorectal cancer arises in epithelial cells lining the interior of the large intestine 

[20]. The pathologic transformation of normal colonic epithelium to benign tumors 

and finally invasive tumors requires several years and multiple genetic alterations. A 

genetic pathway of carcinogenesis is a process in which one particular type of 

genomic instability predominates, causing tumors to progress through characteristic 

histopathological stages with similar genetic alterations [21]. There are two main 

categories of genomic instability in colorectal cancer. The most common one is 

chromosomal instability (CIN), characterized by accumulation of numerical or 

structural chromosomal abnormalities. The second type is microsatellite instability 

(MSI), which is a consequence of impaired recognition and repair of mismatched 

bases in the daughter strand of the DNA during DNA replication. Either pathway is 

sufficient to drive colorectal carcinogenesis. 
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Figure 1.2: The adenoma-carcinoma sequence [22]. Colorectal cancers arise from areas of hyper-

proliferative epithelium through early, intermediate and finally late adenomas. APC indicates 

adenomatous polyposis coli, hMSH2 human mutS homolog 2, hMLH1 human mutL homolog 1, K-ras 

kirsten rat sarcoma viral oncogene homolog, DCC deleted in colorectal carcinoma and p53 indicates 

the p53 tumor suppressor. 

 

1.1.3 Pathogenesis of MSI and CIN 

Approximately 85% of colorectal cancers develop via the traditional chromosomal 

instability pathway [23]. Mostly one oncogene (K-ras) and three tumor suppressor 

genes (APC, DCC and p53) are sequentially genetically altered. Whereas the 

oncogene K-ras only requires a genetic event in one allele, the tumor suppressor 

genes require genetic events in both alleles [12] according to Knudson’s two-hit 

hypothesis [24, 25]. The event that triggers the adenoma-carcinoma sequence and 

thereby leads to the development of malignant cancers is the activation of the Wnt 

signaling pathway in consequence of mutations in the adenomatous polyposis coli 

(APC) tumor suppressor gene [26, 27]. According to a current model, wild-type APC 

binds nuclear β-catenin and exports it to the cytoplasm [28], where it is 

phosphorylated by a complex of various proteins. Phosphorylated β-catenin becomes 

ubiquitinated and therefore targeted for degradation by the proteasome [29, 30]. 

Mutations in APC prevent degradation of β-catenin and lead to its accumulation in 

the nucleus [12]. Nuclear β-catenin functions in association with the HMG (high 

mobility group) box protein T cell factor (TCF)-4 as a transcriptional coactivator and 

thereby enables the expression of genes controlled by promoters with TCF4 binding 
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sites [31], for example, c-MYC [32] and Cyclin D2 [33]. These in turn activate cell 

proliferation. The subsequent genetic alteration occurring in the adenoma-carcinoma 

sequence affects the oncogene K-ras. The K-ras gene encodes a membrane-

localized G-protein involved in signal transduction critical for normal proliferation. 

Mutations lead to constitutively activated Ras protein, which is stimulating cell 

proliferation [34]. Proceeding in the adenoma-carcinoma sequence, alterations in 

components of the TGF-ß (transforming growth factor beta) signaling pathway like 

SMAD2, SMAD4 and DCC (deleted in colorectal cancer) are affected. Through 

inactivation of these tumor suppressor genes cells become resistant to TGF-β-

mediated growth suppression [35]. The tumor suppressor gene p53 was termed as 

“guardian of the genome” [36], as p53 mediates growth arrest or apoptosis as 

response to various cellular stresses, like DNA-damage or oncogenic activation. 

Therefore, inactivation of p53 allows the survival of aberrant cells. p53 is esteemed, 

for example, to be responsible for the transition from adenoma to carcinoma [34]. 

Although the majority of CRCs shows CIN, about 15% are attributable to defects in 

the DNA mismatch repair (MMR) system [37, 38]. It seems, however, that patients 

with MMR-deficient adenomas have greater risk of progressing into invasive cancer 

than those having CIN adenomas [21]. MMR-deficient CRCs may develop 

sporadically or in the context of hereditary non-polyposis colorectal cancer [39, 40]. 

The main feature of the MMR pathway is the interruption of the normal review and 

repair of DNA after replication. The MMR system is composed of at least 7 proteins: 

hMLH1, hMLH3, hMSH2, hMSH3, hMSH6, hPMS1 and hPMS2, which are 

associated with specific partners to form functional heterodimers [41]. DNA MMR 

deficiency induces a high number of mutational events characterized by small 

alterations at the nucleotide level like missense, nonsense and frameshift mutations 

[42]. These mutations occur mainly at short repetitive DNA sequences, termed 

microsatellites, because these structures are particularly prone to DNA polymerase 

slippage during DNA replication. The resulting phenotype is termed microsatellite 

instability (MSI). Five microsatellites (BAT25, BAT26, D5S346, D2S123, and 

D17S250) were identified as the most common sites of such mutations. Cancers that 

have mutations in two or more of these microsatellites are defined as high 

microsatellite instability (MSI-H) cancers; tumors with only one of these sites mutated 

are regarded as low microsatellite instability (MSI-L) cancers. Microsatellite stable 

(MSS) neoplasms do not have mutations in any of the five microsatellites. While CIN 
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cancer is characterized by large chromosomal alterations like allelic losses, 

chromosomal amplifications and translocations, as well as loss of heterozygosity 

(LOH), tumors with MSI show, after the initial loss of the MMR function, mutations in 

specific target genes [43, 44].  

 

1.2 Microsatellite Instability 

Depending on the length of the repeated unit, microsatellites are classified as mono-, 

di-, tri-, tetra-, penta- and hexanucleotide repeats. Microsatellites represent the most 

variable types of DNA sequences in the genome and are estimated to account for 

about 3% of the human genome. They are non-randomly distributed throughout the 

human genome [45], thus they can be distributed in non-coding regions (intragenic or 

intergenic) or in coding regions. Intragenic regions like promoters, 3`-untranslated 

regions and introns can be important regulators of gene expression, while intergenic 

regions could have functions in chromatin organization and recombination [46]. 

Because of their high variability, microsatellites in intergenic and non-coding regions 

are frequently used as molecular markers in forensics, paternity testing and linkage 

mapping. The maintenance of microsatellite stability is controlled by the MMR 

system, which is able to correct base substitutions and mismatches as well as 

insertion / deletion mutations, which can occur during DNA replication due to a 

polymerase slippage [46]. Figure 1.3 shows the role of the MMR system in 

maintaining the length of microsatellite sequences. This MMR system is comprised of 

two major heterodimeric protein complexes, MutS and MutL: initiation of the DNA 

repair is performed by recognition and binding to the mismatch mainly by MutSα 

(MSH2 and MSH6) or MutSß (MSH2 and MSH3), depending on the length and type 

of the mismatch. After recruitment of the key heterodimer MutLα (MLH1 and PMS2) 

the endonuclease activity of PMS2 introduces single-strand breaks proximal to the 

mismatch, followed by additional proteins that excise the mispaired DNA section, 

synthesize the missing nucleotides and finally ligate the corrected DNA. 
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Figure 1.3: Molecular mechanisms underlying microsatellite instability (MSI) (modified according 

to [47]). For illustration, a microsatellite of eight adenine nucleotides (A8) is represented. Functional 

mismatch repair system recognizes slippages and repairs them. Accumulations of deletion (A7) or 

insertion (A9) mutations arise in 15% of all CRC cases during DNA replication due to a non-functional 

mismatch repair system. 

 

In Lynch syndrome, germline mutations in one of four MMR genes (MLH1, MSH2, 

MSH6 and PMS2) are responsible for dysfunction of the DNA MMR system. 

However, in sporadic MSI tumors epigenetic silencing of MHL1 by promoter 

methylation is responsible for loss of DNA MMR function and consequently 

development of colorectal cancer [42, 48]. In addition to MLH1 promoter methylation, 

these sporadic MSI-H tumors are associated with BRAF mutations [49]. BRAF is a 

serine / threonine kinase involved in the MAPK signaling pathway [50]. The 

occurrence of MLH1 promoter hypermethylation and BRAF mutations distinguish 

HNPCC from sporadic MSI-H colon cancers. Heterozygous germline mutations in 

Lynch syndrome patients most frequently affect the MLH1 (50%) and MSH2 (40%) 

genes [51] and to a lesser extent PMS2 and MSH6 (10%). In addition to the germline 

mutated MMR gene, a second somatic mutation in the remaining wildtype allele is 

required to cause MMR deficiency in tumor cells of Lynch syndrome patients. 

Mutations in microsatellites located in coding regions of expressed genes might lead 

to a loss of protein function or the translation of truncated proteins due to frameshift 

mutations. Frameshift-derived truncated proteins may harbor neopeptide tails that 

represent potentially antigenic epitopes capable to induce cellular or humoral 

immune responses [52, 53]. It is generally assumed that coding microsatellite 

frameshift mutations in some of these genes provide a growth advantage to MMR-

deficient cells and hence drive MSI tumorigenesis [54]. Coding microsatellites 



INTRODUCTION 

14 

consisting one type of nucleotide (like the A8 repeat shown in Figure 1.3) are known 

as mononucleotide repeats (cMNRs). Woerner et al. has established a database of 

human cMNR mutations (www.seltarbase.org) and proposed a statistical model that 

allows the prediction of genes, that when mutated might provide a growth advantage 

to affected cells [54]. The statistical model is based on a sigmoid regression analysis 

aiming at the identification of genes involved in MSI carcinogenesis by their mutation 

frequency in cMNRs. A given cMNR length correlated with the average mutation rate, 

revealing genes with increased or decreased mutation frequency. Among the most 

frequently mutated genes frequently affected by cMNR mutations in MSI tumors are 

two members of the TGF-ß superfamily, TGFßR2 (transforming growth factor beta 

receptor type 2) and ACVR2A (activin receptor type 2 A) [54-56]. In this thesis, the 

ACVR2A (or shortly ACVR2) is of particular interest, because it is a key mediator of 

the activin A-mediated signaling pathway that regulates normal growth and 

differentiation of colon epithelium. More than 80% of MSI colorectal tumors are 

known to exhibit biallelic cMNR frameshift mutations in the ACVR2 gene that 

inactivate this pathway [57]. 

 

1.3. Activin Receptor Type 2 

The initial discovery of activin was for its ability to regulate follicle stimulating 

hormone production and is among the first identified members of TGF-ß superfamily 

[58]. Activin exists in three isoforms that are homo- and heterodimers and it regulates 

cell differentiation, proliferation, and apoptosis in many epithelial and mesenchymal 

cells [59]. A family of transmembrane kinases, present on the cell surface, act as 

receptors for these TGF-ß superfamily ligands. These receptors fall into two distinct 

subfamilies known as type 1 and type 2 receptors that are distinguished by the level 

of sequence homology of their kinase domains and by other structural and functional 

features. Type 1 and type 2 receptors act cooperatively to bind ligand and transduce 

signals. Type 2 receptors bind ligand on their own, whereas the type 1 receptors bind 

ligand only when co-expressed with the corresponding type 2 receptors [60, 61]. 

Genetic and biochemical evidence indicates that co-expression of type 1 and type 2 

receptors in the same cell is required for signaling [62, 63]. Both activin receptor type 

1 (ACVR1) and activin receptor type 2 (ACVR2) are transmembrane proteins with 

ligand-binding activity in the extracellular domain and serine / threonine kinases in 
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their cytoplasmic domain. Potential ligands for activin receptors type 2 include activin 

A, activin B, and inhibin A [64], however they also work as receptor for a subset of 

bone morphogenetic proteins (BMP) [65, 66]. There are two subtypes of ACVR2 

receptors, designated ACVR2A and ACVR2B. ACVR2A, also often termed ACVR2, 

is located on chromosome 2 and harbors 2 coding polyadenine tracts (A8). ACVR2B, 

located on chromosome 3, is 69% identical to ACVR2A and has similar binding 

characteristics to ACVR2A but does not contain any polyadenine tract. Control of 

expression of both receptors appears to occur in a tissue and gene-specific manner 

during human development [67].  

During activin signaling, ligand induced activation of ACVR2 allows the type 2 

receptor to phosphorylate serine and threonine residues in the GS (glycerine- and 

serine-rich) -domain of the type 1 receptor, thus, inducing its kinase activity (Figure 

1.4) [68]. Once phosphorylated, it will in turn transduce the signal to the downstream 

signaling molecules, the Smad proteins. Thus, activated type 1 receptor leads to the 

phosphorylation of receptor specific Smads (Smad2 / 3) which form a complex with 

the common Smad4 protein and subsequently this complex translocates to the 

nucleus where it regulates together with different transcription factors the expression 

of specific target genes like SMAD7 [69], SERPINE [70] and C-MYC [71]. 

 

 

 

 

Figure 1.4: Overview of activin receptor mediated signaling transduction pathway (modified 

according to [68]). Act indicates activin, ACVR activin receptor and TF transcription factor. 
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ACVR2 contains polyadenine tracts at both exons 3 and 10 but only the A8 tract in 

exon 10 is mutated in 85% of MSI-H colorectal cancers [72, 73]. The biallelic 

frameshift mutation causes ACVR2 protein loss, and is associated with histologically 

poor grade tumors and significantly larger volume tumors [73, 74]. Restoration of 

ACVR2 in colon cancer cells causes growth suppression [57]. Both ACVR2 and 

TGFBR2 mutations often occur simultaneously in MSI cancers [73] and in several 

MSI-H CRC cell lines [75]. However, both receptors are less commonly mutated in 

MSS colon cancers, which tend to have a worse prognosis than MSI-H colon cancers 

[9] and both pathways may function independently. Indeed, recent findings 

demonstrate signaling induced by TGF-ß is leading to growth suppression, while 

activin signaling is targeting apoptosis [76]. Further, growth suppression and 

apoptosis by both ligands are dependent on Smad4. However, activin down-

regulates p21 protein in a Smad4-independent fashion leading to increased 

ubiquitination and proteasomal degradation, while p21 is up-regulated by TGF-ß in a 

Smad4-dependent fashion to affect growth arrest. Activin-induced growth 

suppression and cell death are dependent on p21, while activin-induced migration is 

counteracted by p21 [76]. 

Unlike TGFBR2, in MSS tumors loss of ACVR2 arises through a combination of LOH 

(loss of heterozygosity) at ACVR2 and distinct ACVR2 promoter methylation, but not 

genetic mutation [77]. In colon cancer cell lines, mechanisms for ACVR2 loss also 

segregate according to microsatellite status, with MSI-H cell lines showing ACVR2 

polyadenine tract mutation and MSS colon cancer cells demonstrating promoter 

hypermethylation [77]. Thus, disruption of activin signaling occurs in MSI and MSS 

colon cancers by distinct mechanisms, revealing activin signaling as an important 

target in the two most common genomic subtypes of colon cancer. 

 

1.4 Glycosylation 

1.4.1 Structure and Synthesis of Glycans 

Considering the central role of activin signaling in the regulation of cellular behavior 

also significant biochemical alterations, including changes in protein expression as 

well as post-translational protein modifications, like glycosylation, are expectable. 

Posttranslational modification of proteins is an important biological feature, which 

expands the functional space of the proteome manifold [78]. This expansion is 
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believed to be a highly efficient way of evolving more complex and robust organisms. 

A single posttranslational modification is able to change the biochemical, functional 

or structural properties of many gene products at once, virtually doubling the 

genome. For example chemical groups like phosphates are added or removed from 

proteins to modulate their function [79]. Lipids are transferred to proteins to anchor 

them in membranes [80]. The polypeptide ubiquitin is attached to proteins to mark 

them for degradation [81]. The human genome contains just twice the number of 

genes comparing to fly or worm genomes. However, the increased complexity of the 

human organism is mainly the result of the posttranscriptional and posttranslational 

modification and alternative splicing. Typically, the genomes of more complex 

organisms contain more genes for the expression of various components of the 

posttranslational modification machineries [78]. 

The most frequent protein modification, glycosylation, has a huge variety of roles 

since it is estimated that more than 50% of all proteins are glycosylated [82]. 

Glycosylation is the enzymatic attachment of carbohydrates to proteins or lipids by 

glycosyltransferases and is found in all kingdoms of life, including some viruses [83]. 

Thus, glycosylation is a highly conserved and important protein modification from 

single cell to multicellular organisms. 

The high level of complexity of the oligosaccharide chains attached to proteins is 

achieved by the combination of nine different monosaccharides: glucose (Glc), 

galactose (Gal), mannose (Man), N-acetylglucosamine (GlcNAc), N-

acetylgalactosamine (GalNAc), fucose (Fuc), sialic acid (Sia), xylose (Xyl) and 

glucuronic acid (GlcA) [84] (Figure 1.5). Further modifications of these 

monosaccharides such as epimerization of GlcA to iduronic acid (IdoA) and sulfation 

of Gal, GlcNAc, GalNAc, GlcA and IdoA can occur after the incorporation of the 

monosaccharides into a glycan chain [85, 86]. Depending on the carbohydrate-

peptide linkage, different types of protein glycoconjugates are formed like 

proteoglycans and glycophosphatidylinositol (GPI)-anchored-, O-GlcNAc-, C-

mannosylation-, O-linked- and N-linked- glycoproteins [87]. 
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Figure 1.5: Chemical structure of the nine carbohydrates used in mammalian glycoconjugates 

(adapted from [88]). 

 

Glycan synthesis is initiated by attachment of a monosaccharide to different chemical 

groups of amino acids or lipids. The type of chemical group modified, on a specific 

peptide or lipid substrate, by a specific monosaccharide provides a first level of 

diversity and complexity to the process of glycosylation. A second level of complexity 

derives from a diversity of chemical linkages between monosaccharides of 

carbohydrate chains. Further complexity arises from the length of the carbohydrate 

chain and the presence or absence of branches in the chain. A final level of 

complexity arises from heterogeneity at sites of glycosylation, where specific sites in 

a protein or lipid can be modified by different glycan structures or no glycan at all 

depending on the cell type or the stage of development. The level of diversity is such 

that even identical substrates produced in a single cell can acquire different glycan 

compositions. This high degree of heterogeneity and complexity implies a broad 

range of functions for glycans and requires a high level of control of glycosylation 

reactions [88]. 

Glycan biosynthesis mainly takes place at the endoplasmic reticulum (ER) 

membrane and in the Golgi apparatus. The exception is cytoplasmic / nuclear 

glycosylation. Key components of glycosylation reactions are the glycosyl-

transferases, which catalyze the formation of a glycosidic bond. Most Golgi 
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glycosyltransferases are type II transmembrane proteins with a short cytosolic tail 

and a large luminal catalytic domain, whereas many ER glycosyltransferases are 

proteins spanning the transmembrane several times [89]. With few exceptions, 

glycosyltransferases are specific for acceptor substrate, donor substrate, and 

linkage. Therefore, they can be named by the donor substrate that they utilize and 

the carbohydrate linkage they produce. 

 

1.4.2 Glycosylation Changes in Cancer 

The addition of complex carbohydrate groups to biomolecules creates several 

populations of biological entities that are rich in information and diverse in function. 

Glycosylation plays a central role in many biological processes, including protein 

folding, oligomerization and stability, cell signaling, cell-cell communication, cell 

growth, immune response, host-pathogen interaction and inflammation [90]. Links 

between specific glycosylation states and diseases were first postulated more than 

40 years ago [91]. Evidence has linked certain inflammatory, immune and 

neurodegenerative diseases, several cancers and other pathological states with 

alterations of glycan structures. Aberrant patterns of N- and O-linked oligosaccharide 

modification in cell surface proteins and in circulating plasma proteins are found in 

almost all human cancers and are correlated with the progression and metastatic 

potential of the disease [92, 93]. However, aberrant glycosylation is not a random 

outcome due to disordered biology in cancer cells. Numerous studies have shown 

that aberrant glycosylation could be both a result of oncogenic transformation as well 

as a crucial event for survival of cancer cells and induction of metastasis [94-96]. The 

expression level of GlcNAc transferase V (GlcNAcT-V) enzyme and thus the level of 

ß(1,6) branching of N-glycans has been shown to increase during carcinogenesis 

[97]. A further example is the increased expression of N-acetylglucosaminyl-

transferase V (MGAT5) shown in a number of tumors, which is leading to increased 

glycan branching on proteins and thereby to increased tumor growth and metastasis 

[98, 99]. A classic cancer associated change in glycosylation is increased sialylation 

often manifested as specific increases in α(2,6)-linked sialic acids attached to outer 

N-acetyllactosamine units [100]. Increased outer-chain polyfucosylation and sialyl 

Lewisx production is another important feature of many cancer cell types [101]. In 

fact, some glycan epitopes, shown in Figure 1.6, are of well-established value for 

detecting and monitoring the growth status of tumors. Sialyl Lewisx, sialyl Lewisa, and 
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sialyl Tn are well established tumor antigens. Sialyl Tn is a glycan epitope over 

expressed in ovarian cancer. Overexpression of sialyl Lewisa-related glycans in lung 

and breast cancers has long been shown [102]. Several other cancer biomarkers are 

mucin type proteins: a class of heavily O-glycosylated proteins produced by epithelial 

tissues and secreted onto mucosal surfaces. The glycoepitope CA19-9 (sialyl Lewisa) 

is a prognostic marker for pancreatic cancer. Also the high-molecular weight 

carbohydrate antigen CA15-3 also known as mucin 16 or MUC16 is aberrantly 

expressed in more than 90% of breast carcinomas and appears to strongly correlate 

with invasiveness of breast adenocarcinomas [103]. Using monoclonal antibody 

based assays, the level of these glycan biomarkers in the serum are measured in 

order to monitor the amount of tumor remaining in patients after surgery or 

chemotherapy. 

 

 

 

Figure 1.6: Schematic overview of selected glycan determinants (adapted from [104]). Sialyl 

Lewisx, sialyl Lewisa tumor antigen carried on O-glycans as well as on N-glycans. Sialyl Tn, commonly 

seen in carcinoma mucins, are the results of incomplete glycosylation in the O-linked pathway. 

 

1.4.3 Glycosylation Changes in CRC 

Altered protein glycosylation is a characteristic feature of human colon cancer. The 

colon is particularly rich in glycoproteins, such as mucins that are either secreted or 

membrane bound. In the normal colon, mucins are highly O-linked glycosylated 

proteins produced by goblet cells and play an important protective role in the 

intestine. In CRC there is a dysregulation in mucin gene expression. MUC1 is an 

independent prognostic factor found at higher levels in metastatic CRC, while MUC5, 
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which is normally not switched on in the colon, becomes expressed in CRC. In the 

tumors of the colon, changes in the glycans on mucins have been described, the 

most notable being an increase in truncated and negatively charged glycans as a 

result of incomplete glycosylation reactions. It is important to note that when cancer 

cells are treated with molecules that inhibit the attachment of O-linked glycans, mucin 

glycosylation is largely abrogated and cancer cell attachment to endothelial cells is 

much reduced. Thus, CRC uses glycan-endothelial cell interactions as an important 

step in the metastatic process. Furthermore MUC1 overexpression has been shown 

to be associated with poor prognosis in MSS tumors [105, 106]. In comparison to 

normal colonic mucins, cancerous human colonic mucins have reduced 

oligosaccharide length and total carbohydrate content [107, 108]. These changes 

have often been studied using lectins. Lectins are multimeric proteins, which normally 

have a single carbohydrate binding site per domain. Using the lectin from the pea, 

Arachis hypogea (PNA), the tumor-associated glycoprotein of colon polyps detected 

in tissue and serum is the Thomsen-Friedenreich “T-antigen” (Gal(β-1,3)GalNAc-

Ser/Thr) [109]. T, Tn (GalNAc(α1)-Ser/Thr) and sialyl-Tn (Neu5Ac(α2-6)GalNAc-

Ser/Thr) antigens are colon cancer associated antigens. Tn and sialyl-Tn may be 

useful markers of poorly differentiated adenocarcinomas and mucinous carcinomas 

[110]. Tn and T antigens were found to be sialylated in the majority of cancer 

metastatic colon cells [111].  

Moreover, highly metastatic human colon carcinomas express more poly-N-

acetyllactosaminyl side chains in N-glycans of lysosomal membrane glycoproteins, 

which are more sialylated but less fucosylated, and correlate with the increased 

expression of sialyl Lewisx structures, than cells with low metastatic potential [112]. 

Increased N-glycan branching detected by the usage of lectins is associated with 

colorectal tumor recurrence, patient survival and the presence of lymph node 

metastases [113]. Additionally, applying lectin glycol-array and lectin blotting 

revealed that elevated N-glycan sialylation in complement C3, histidine-rich 

glycoprotein and kininogen-1 occurs in the colorectal adenoma to carcinoma 

sequence [114]. Galectins-1 and -3, animal lectins that are specific for N-glycan 

associated galactose, are up-regulated in human colon tumor and increased 

Galectin-3 expression correlates with colorectal tumor progression, liver metastasis, 

poor patient survival and tumor aggressiveness [115-117]. 
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However most of these previous studies on glycosylation alterations did not account 

for the different genetic characteristics of CRC’s, e.g. MSI versus MSS tumors. In 

particular, there are only a few anecdotal reports on MSI-specific glycosylation 

changes. For example, gene expression of GALNT5, that catalyzes the formation of 

the T-antigens sugar structure, was found to be up-regulated by microarray analysis 

on MSI-H compared to MSS colorectal carcinomas [118]. The expression of two 

other glycosyltransferases was also found to be up-regulated in a MSI-specific 

manner. B4GALT1 that is known to transfer galactose to the branched 

oligosaccharide chains of N-glycans [119] and SIAT4B that is responsible for the 

α2,3-sialylation of O-glycans [120]. Further, coding microsatellites of several genes 

involved in the glycosylation machinery are frequently mutated, including lectin 

mannose-binding 1 (LMAN1), xylosyltransferase 2 (XYLT2) and OGT [56, 121]. 

Preliminary evidence indicates that the inactivation of some MSI targets, ACVR2, 

TGFBR2 and AIM2, may influence protein glycosylation pattern of CRC cells, which 

has been shown by transient reconstitution experiments [122].  

In conclusion, MSI-specific glycosylation changes are a rather unexplored field and 

thus, more work needs to be carried out to obtain a better understanding in this field. 

Particularly, despite the obvious important functions of glycan structures only few 

reports are available on the regulation of glycosylation by cellular signaling [123, 

124]. 

 

1.5 Challenges in Analyzing Proteomic Alterations in Cancer 

Besides tumor-associated glycosylation changes human tumors acquire a large 

number of genetic and epigenetic alterations that arise during progression from 

preneoplastic lesions to metastatic disease. However, the diversity of these 

alterations reflects the intratumoral heterogeneity and represents the genomic 

landscape of tumors. Among a high background of irrelevant passenger alterations, 

only a limited number of genetic alterations are considered to be driving events that 

confer a selective advantage to tumor cells. Major signaling pathways affected by 

such driver mutations include the TGF-ß, BMP, Activin, Wnt and Notch pathways 

thereby abrogating normal regulation of key cellular processes like cell fate, cell 

survival and genome maintenance. Both, tumor-relevant driver mutations in a major 

signaling receptor as well as tumor-irrelevant passenger mutations can also cause 
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changes at the proteomic level. Passenger mutation-associated proteomic patterns 

are propagated randomly and do not represent generic tumor-associated changes 

[125]. Therefore, focusing on proteome alterations associated with single driver 

mutations is necessary to identify specific changes that underlie tumor development. 

However, such analyses encounter two major limitations at different levels. 

At the molecular level, the genetic heterogeneity of tumors especially those of the 

microsatellite unstable and mutator phenotype poses a significant problem in 

determining mutation-specific effects. Two principal strategies to detect cellular 

consequences of a single mutation have been applied. First, targeted gene knock out 

in target gene proficient cell lines by homologous recombination, adeno-associated 

viral delivery or zinc finger nucleases has been used successfully applied [126-128]. 

However, these approaches are often limited by their low efficiency, are laborious 

and time-consuming and bear the potential for confounding off-target effects. 

Second, transfer of the target gene into deficient cell lines by gene insertion or gene 

targeting methods has been extensively applied. However, insertion methods are 

often affected by random insertion, variable number of integrated gene copies per 

cell and inconsistent integration sites eventually resulting in unpredictable expression 

patterns [129]. On the other hand, many non-integrating vectors, like adenoviral 

DNA, are not often replicated during cell division thereby limiting their use in basic 

research. 

At the protein level, sample complexity is a major limiting factor. In addition to 

prefractionation methods, metabolic labeling is a versatile tool to focus on proteomic 

changes induced by gene activation. Since activation of tumor suppressor pathways 

directly regulates target gene expression, analysis of tumor suppressor dependent 

alterations of newly synthesized proteins by metabolic labeling is a reasonable 

approach to restrict the proteomic complexity. Conventional methods for metabolic 

labeling usually rely on amino acids containing either radioactive or stable isotopes. 

Although radioactive labeling enables extremely sensitive detection methods, its use 

for proteomic analysis is limited due to the need of special handling precautions and 

contamination of the analytical instrumentation. Stable isotopic labeling, in particular 

the SILAC (stable isotope labeling by amino acids in cell culture) methodology, is 

currently the preferred method for most metabolic labeling approaches in proteomic 

analyses especially for cell lines [130]. However, when applying the SILAC 

technology, mass spectrometric detection of labeled peptides has to be conducted in 
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the presence of high abundant irrelevant unlabeled peptides, thereby hampering the 

detection of labeled low-abundance peptides. A relatively new method, termed Click-

it labeling, that enables labeling of nascent proteins comparable to a radioactive 

compound can overcome this problem since upon incorporation of the labeled 

compound also a handle for specific extraction of the labeled protein is worked in. 

The click reaction makes use of a methionine derivative that is functionalized with an 

azide (L-Azidohomoalanine; AHA). During protein synthesis AHA is incorporated into 

proteins which can then be tagged with a biotin alkyne (PEG4 carboxamide-

Propargyl Biotin) resulting in the specific biotinylation of the metabolically labeled 

proteins [131]. The final step is extraction of the labeled proteins by streptavidin 

beads. This new method provides a fast, sensitive, nontoxic and non-radioactive 

alternative to the traditional radioactive technique and enables the detection of newly 

synthesized proteins as well as post-translational protein modifications. Irrespective 

of the utilized technique the advances in the fields of proteomics are hoped to help 

understanding the molecular protein complexity, especially of the disease process 

and thus enable the development of tools to use in treatment as well as in detection 

and prevention of diseases. 

 

1.6 Aims of the Present Study 

Microsatellite unstable (MSI) tumors exhibit a variety of histoclinicopathological 

features including mucinous histology and improved prognosis when compared to 

their microsatellite stable (MSS) counterparts. Biallelic mutational inactivation of 

some MSI target genes is generally believed to drive MSI tumorigenesis. Focusing 

on the pathogenetic mechanisms of these MSI tumors, a potential correlation 

between functional inactivation of specific MSI target genes and cell surface 

glycosylation pattern has been recently uncovered [122]. The present study aims to 

explore MSI target gene-dependent alterations of cell glycosylation and also glycomic 

signatures in MSI colorectal cancer cells. Thereby one of the most frequently 

mutated MSI target genes, the activin receptor type 2 (ACVR2), is of special interest 

in order to obtain a better understanding of ACVR2-dependent MSI tumorigenesis. 

The biological effects of activin in colon cancer have not been previously appreciated 

and recently came to light when the ACVR2 receptor was discovered to be mutated 

in the majority of MSI-H colon cancers [73, 132]. Although ACVR2 signaling is 
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involved in many major cellular processes, including cell differentiation, proliferation 

and apoptosis, the role of this pathway with respect to the proteomic constellation, 

thereby mainly focusing on the glycosylation of proteins, is largely unexplored.  

Therefore, the first specific aim was to generate a MSI colorectal cancer cell line 

model system enabling a stable and doxycycline inducible ACVR2 expression. After 

generating this model cell line the signaling ability of reconstituted ACVR2 needs to 

be confirmed. Thus, the effects of activin-mediated signaling on the glycosylation 

profile could be examined by using different approaches. First fluorescence activated 

cell sorting (FACS) analysis using a panel of different plant lectins was applied to 

determine ACVR2-dependent changes of cell surface glycoproteins. At the same 

time, the transcript level of genes involved in glycosylation should be obtained by 

performing a Glyco-Gene Chip analysis in the presence or absence of ACVR2 

expression. Since these approaches determine the steady state levels of the 

proteins, a further goal was to analyze also newly synthesized proteins. For this 

purpose, radioactive labeling experiments were performed in order to evaluate the 

incorporation of 3H-labeled saccharides, L-fucose and ManNAc. Furthermore, a 

relatively new method, termed Click-it labeling, which enables labeling of nascent 

proteins and at the same time an easy extraction of the labeled compounds, was 

established. 

The results of these diverse experiments should provide the basis for the 

identification and characterization of candidate proteins and possibly deliver insights 

into the mechanism of ACVR2-dependent proteomic and glycomic alterations (Figure 

1.7). Taken together, this study should give a better understanding of MSI tumor-

specific protein profile in general and particularly of the MSI target gene ACVR2-

dependent protein changes. 
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Figure 1.7: Schematic overview of the hypothesis. Upon ligand binding, activin-mediated signaling 

is initiated and Smad proteins become phosphorylated inducing the transcription of target genes 

involved in many cellular processes like proliferation, differentiation, apoptosis and adhesion. Since in 

over 85% of MSI tumors the microsatellite of the ACVR2 gene is mutated leading to inactivation of its 

protein, the question is if the absence of ACVR2 may have effects on the protein profile of these cells. 
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2. MATERIAL 

2.1 Instruments 

Device Supplier 

Agarosegel Chamber Sub Cell GT Biorad (München, Germany) 

ÄktaPurifier FPLC System  GE Healthcare (München, Germany) 

Analytical scale (BP 210 D) Sartorius (Göttingen, Germany) 

Camera (Electrophoresis Docu System 120) Kodak (Stuttgart, Germany) 

Camera (Biorad Gel Doc 2000) Biorad (München, Germany) 

Centrifuge (5810R) Eppendorf (Hamburg, Germany) 

Centrifuge (Biofuge 13) Heraeus Holding (Hanau, Germany) 

Centrifuge (Microcentrifuge 1-14) Sigma Laborzentrifugen (Osterode, Germany) 

Centrifuge (Sigma 3MK) Sigma Laborzentrifugen (Osterode, Germany) 

Centrifuge (Varifuge 3.0R) Heraeus Holding (Hanau, Germany) 

Centrifuge Heraeus (Modell T 110 L)  Heraeus Holding (Hanau, Germany) 

Digital pH Meter pH 525  WTW (Weilheim, Germany) 

Electrophoresis chamber (Sub Cell GT)  Biorad (München, Germany) 

Electroporator for cells (Nucleofector 1)  Lonza Biosystems (Basel, Switzerland) 

ELISA-Reader (GENios)  GENios Tecan (Crailsheim, Germany) 

FACS (FACSCalibur)  Becton Dickinson (Franklin Lakes, USA) 

Genetic analyzer (ABI 3100)  Life Technologies  (Darmstadt, Germany) 

Incubator (BD6220) Fisher Scientific (Loughborough, UK) 

Liquid Scintillation Counter (TRI-CARB 2900)  Perkin Elmer (Boston, USA) 

LTQ Orbitrap XL mass spectrometer Thermo Scientific (Bremen, Germany) 

Luminometer (Lumat LB9507)  Berthold (Bad Wildbad, Germany) 

Magnetic Separation Rack (6-Tube) New England Biolabs (Frankfurt, Germany) 

Microscope (DMBRE)  Leica (Bensheim, Germany) 

Microscope (Leica DMIL)  Leica (Bensheim, Germany) 

Microscope CK 40  Olympus Holding (Hamburg, Germany) 

Microwave Siemens (Munich, Germany) 

nanoAcquity UPLC system Waters GmbH (Eschborn, Germany) 

NuPAGE X-Cell Sure Lock  Life Technologies (Darmstadt, Germany) 

NuPAGE ZOOM IPG Runner Cassette  Life Technologies (Darmstadt, Germany) 
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NuPAGE Protein Electrophoresis System  Life Technologies (Darmstadt, Germany) 

PCR system (GeneAmp 22400)  Perkin Elmer (Waltham, USA) 

PCR System (Robo Cycler Gradient96) Stratagene (Böblingen, Germany) 

PH meter (Calimatic 761)  Knick (Berlin, Germany) 

Photometer (Ultrospec 3300)  Amersham Pharmacia (Cambridge, UK) 

Pipet aid (Pipetman)  Gilson (Limburg-Offheim, Germany) 

Pipetboy plus TecNoMara (Fernwald, Germany) 

Pipettes (2 µl; 10 μl; 20 μl; 200 μl; 1000μl)  Gilson (Limburg-Offheim, Germany) 

Power supply (Consort E835)  Peqlab (Erlangen, Germany) 

Power supply (Power Pac 300)  Bio-Rad (München, Germany) 

Rotating mixer RM5 NeoLab (Heidelberg, Germany) 

Shaker (Certomat H)  Sartorius (Göttingen, Germany) 

Sonopuls-Bandelin (ultrasonic homogenizer) Bandelin electronic (Berlin, Germany) 

StepOnePlus™ Real-Time PCR Systems ABI, (Darmstadt, Germany) 

Thermomixer (5436)  Eppendorf (Hamburg, Germany) 

Ultracentrifuge (TLA-100.2 rotor)  Beckmann Coulter (Krefeld, Germany) 

Ultra-Low Temperatur Freezer MDF-U53V  Sanyo (München, Germany) 

UV Transilluminator  Konrad B. Laborgeräte (Wiesloch, Germany) 

Vortex (MS1 Minishaker)  IKA (Staufen, Germany) 

Waterbath (Grant SUB6)  Grant (Cambridge, UK) 

Waterbath (SW 20)  Julabo Labortechnik (Seelbach, Germany) 

 

2.2 Commercially Available Kits and Assays 

Item Supplier 

Amaxa Cell Line Nucleofector Kit V Lonza Biosystems (Basel, Switzerland) 

BigDyeTerminator v1.1 Sequencing Kit Life Technologies (Darmstadt, Germany) 

Biorad Protein Assay BioRad (München, Germany) 

Cell Line Nucleofactor Kit V Lonza Biosystems (Basel, Switzerland) 

One Solution Cell Proliferation Assay (MTS) Promega (Madison, USA) 

Click-iT Protein Reaction Buffer Kit Life Technologies (Darmstadt, Germany) 

DNeasy Blood & Tissue Handbook Qiagen (Hilden, Germany) 

Endo-free Plasmid Maxi Kit Qiagen (Hilden, Germany) 

FuGENE HD Transfection Reagent Roche (Mannheim, Germany) 



MATERIAL 

29 

High Pure PCR Product Purification Kit Roche (Mannheim, Germany) 

JetQuick Gel Extraction Kit Genomed (Löhne, Germany) 

Luciferase Assay System Promega (Mannheim, Germany) 

Mycoplasma Detection Kit for conventional PCR Minerva Biolabs (Berlin, Germany) 

NucleoSpin Plasmid Kit Machery Nagel (Düren, Germany) 

Plasmid Maxi Kit Qiagen (Hilden, Germany) 

Power SYBR Green PCR Master Mix Life Technologies (Darmstadt, Germany) 

QIAquick Gel Extraction Kit Qiagen (Hilden, Germany) 

Rapid DNA Dephos & Ligation Kit Roche (Mannheim, Germany) 

RNeasy Mini Kit Qiagen (Hilden, Germany) 

Vectastain Elite ABC Kit (Universal) Vector Laboratories (Burlingame, USA) 

 

2.3 Reagents 

Reagent Supplier 
3H-Acetyl-D-mannosamine (N-[6-3H]; 1 mCi/ml) American Radiolabeled Chemicals (St.        
3H-L-Fucose (L-[6-3H]; 1 mCi/ml) Louis, USA) 

Acetic acid  Serva (Heidelberg, Germany) 

Activin A Sigma-Aldrich (Taufkirchen, Germany) 

Ammonium bicarbonate Sigma-Aldrich (Taufkirchen, Germany) 

Ampicillin sodium salt Sigma-Aldrich (Taufkirchen, Germany) 

Anti-FLAG M2 Affinity Gel  Sigma (Taufkirchen, Germany) 

Bacto-Agar Fluka Chemie (Buchs, Switzerland) 

Biotin Alkyne (PEG4 carboxamide-Propargyl) Life Technologies (Darmstadt, Germany) 

Biotin Azide (PEG4 carboxamide-6-Azidohexanyl) Life Technologies (Darmstadt, Germany) 

Boric acid Merck (Darmstadt, Germany) 

Bovine Serum Albumin (BSA) Sigma-Aldrich (Taufkirchen, Germany) 

Calcium chloride (CaCl2) Merck (Darmstadt, Germany) 

Chloroform Carl Roth (Karlsruhe, Germany) 

Citric acid  Merck (Darmstadt, Germany) 

Click-iT AHA (L-azidohomoalanine) Life Technologies (Darmstadt, Germany) 

Click-iT Fucose Alkyne Life Technologies (Darmstadt, Germany) 

Click-iT Protein Buffer Kit Life Technologies (Darmstadt, Germany) 

Complete Protease Inhibitor Cocktail Tablets Roche (Mannheim, Germany) 



MATERIAL 

30 

Coomassie Brilliant Blue G250 Biorad (München, Germany) 

DAB-chromogene Dako (Hamburg, Germany) 

Denucleoside triphosphate (dNTP) -Mix  Life Technologies (Darmstadt, Germany) 

Diaminobenzidine (Liquid DAB + substrate)  DAKO (Hamburg, Germany) 

Dimethyl sulfoxide (DMSO) Merck (Darmstadt, Germany) 

Disodium hydrogen phosphate VWR International (Bruchsal, Germany) 

DMEM/Ham's F-12 (1:1) with L-Glutamine PAA (Cölbe, Germany)  

Doxycycline Sigma-Aldrich (Taufkirchen, Germany) 

Dithiothreitol (DTT) Life Technologies (Darmstadt, Germany) 

Dulbecco's PBS (1x) without Ca & Mg  PAA (Cölbe, Germany) 

Dynabeads MyOne Streptavidin T1 Life Technologies (Darmstadt, Germany) 

Ethanol absolute  Merck (Darmstadt, Germany) 

Ethidiumbromide  Sigma-Aldrich (Taufkirchen, Germany) 

Ethylenediaminetetraacetic acid (EDTA) Merck (Darmstadt, Germany) 

Fetal Bovine Serum Gold (FCS) PAA (Cölbe, Germany) 

Folin-Ciocalteus phenol reagent  Merck (Darmstadt, Germany) 

Formaldehyde (37%) Carl Roth (Karsruhe, Germany) 

G-418 Sulphate  PAA (Cölbe, Germany) 

Ganciclovir Roche (Mannheim, Germany) 

GelRed Biotium (Heyward,USA) 

Glycerol Carl Roth (Karlsruhe, Germany) 

HI-DI-formamide  Life Technologies (Darmstadt, Germany) 

Horse serum Vector Laboratories (Burlingame, USA) 

Human TGF-ß1 Cell Signaling Tech. (Danvers, USA) 

Hydrogen chloride (37%; HCl) Merck (Darmstadt, Germany) 

Hygromycin B PAA (Cölbe, Germany) 

Kodak BioMax films  Sigma-Aldrich (Taufkirchen, Germany) 

Lipofectamine 2000 Reagent  Life Technologies (Darmstadt, Germany) 

Methanol  AppliChem (Darmstadt, Germany) 

Magnesium chloride (MgCl2)  Merck (Darmstadt, Germany) 

Milk powder  Carl Roth (Karlsruhe, Germany) 

NuPAGE 4 – 12% Bis-Tris Mini Gel  Life Technologies (Darmstadt, Germany) 

NuPAGE Antioxidant Life Technologies (Darmstadt, Germany) 

NuPAGE MES Running buffer  Life Technologies (Darmstadt, Germany) 

NuPAGE Sample Reducing Agent (10x) Life Technologies (Darmstadt, Germany) 
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NuPAGE Transferbuffer (20x) Life Technologies (Darmstadt, Germany) 

Oligo (dT) Primer  Life Technologies (Darmstadt, Germany) 

Ponceau S Sigma-Aldrich (Taufkirchen, Germany) 

Penicillin/Streptomycin (100x)  PAA (Cölbe, Germany) 

Phosphoric acid Carl Roth (Karlsruhe, Germany) 

PhosSTOP Phosphatase Inhibitor Cocktail Tablets Roche (Mannheim, Germany) 

Potassium chloride  J.T. Baker (Deventer, Netherland) 

Potassium dihydrogenphosphate  Gerbu Biochemicals (Gaisberg, Germany) 

Potassium sodium tartrate Merck (Darmstadt, Germany) 

Puromycin Sigma-Aldrich (Taufkirchen, Germany) 

RNAstable Biomatrica (San Diego, USA) 

RPMI 1640 with L-Glutamine  PAA (Cölbe, Germany) 

RPMI-1640 without methionine and L-glutamine Sigma-Aldrich (Taufkirchen, Germany) 

Silver nitrate Carl Roth (Karlsruhe, Germany) 

S.O.C. Medium  Life Technologies (Darmstadt, Germany) 

Sodium acetate J.T. Baker (Deventer, Netherland) 

Sodium bisulfite Merck (Darmstadt, Germany) 

Sodium carbonate J.T. Baker (Deventer, Netherland) 

Sodium chloride AppliChem (Darmstadt, Germany) 

Sodium hydroxide (NaOH) AppliChem (Darmstadt, Germany) 

Streptavidin Agarose Beads Life Technologies (Darmstadt, Germany) 

Streptavidin-HRP SouthernBiotech (Alabama, USA) 

Streptavidin ⁄ R-phycoerythrin Sigma-Aldrich (Taufkirchen, GER) 

SYPRO Ruby Protein Gel Stain Life Technologies (Darmstadt, Germany) 

Trifluoroacetic acid Thermo Scientific (Bremen, Germany) 

Trichloracetic acid Carl Roth (Karlsruhe, Germany) 

Tris Base  Carl Roth (Karlsruhe, Germany) 

Tris-HCl  Carl Roth (Karlsruhe, Germany) 

Triton-X-100  Sigma-Aldrich (Taufkirchen, Germany) 

Trypsin-EDTA (1x) PAA (Cölbe, Germany) 

Trypsin Promega (Madison, USA) 

Tween-20  Sigma-Aldrich (Taufkirchen, Germany) 

Ultima Gold LSC Cocktail  Perkin Elmer (Boston, USA) 

UltraPureTM Agarose  Life Technologies (Darmstadt, Germany) 

Water, DNase, RNase-FREE MP Biomedicals (Solon, USA) 
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Western Lightning Plus ECL Perkin Elmer (Boston, USA) 

Yeast extract  Carl Roth (Karlsruhe, Germany) 

 

2.4 Antibodies, Enzymes and Lectins 

Antibody Supplier 

Anti-Actin (clone C4, mouse mAb) MP Biomedicals (Solon, USA) 

Anti-ACVR2 ([149/1], mouse mAb) Abcam (Cambridge, UK) 

Anti-ACVR2 (rabbit pAb) B.H. Jung, MD (Northwestern Memorial 

 Hospital, Chicago, USA) 

Anti-Flag (clone M2, mouse mAB) Sigma-Aldrich (Taufkirchen, Germany) 

Anti-mouse IgG (HRP conjugate, sheep) GE Healthcare (Munich, Germany) 

Anti-rabbit IgG (HRP conjugate, goat) Promega (Madison, USA) 

Anti-Phospho-Smad2 ([Ser465/467], rabbit mAb) Cell Signaling Tech. (Danvers, USA) 

Anti-Smad2 ([86F7], rabbit mAb) Cell Signaling Tech. (Danvers, USA) 

Enzyme Supplier 

DNase I, Amplification Grade Life Technologies (Darmstadt, Germany) 

HOT FIRE Pol DNA Polymerase Solis Biodyne (Tartu, Estonia) 

Phusion High-Fidelity DNA Polymerase  New England Biolabs (Frankfurt, Germany) 

Restriction enzymes New England Biolabs (Frankfurt, Germany) 

Restriction enzymes Promega (Mannheim, Germany) 

Restriction enzymes Roche (Mannheim, Germany) 

RNase OUT Life Technologies (Darmstadt, Germany) 

Superscript II Reverse Transcriptase  Life Technologies (Darmstadt, Germany) 

T4-Ligase Roche (Mannheim, Germany) 

Taq DNA Polymerase  Life Technologies (Darmstadt, Germany) 

Lectin Supplier 

AAL (Aleuria aurantia, biotinylated) Vector Laboratories (Burlingame, USA) 

DBA (Dolichos biflorus agglutinin, biotinylated) Vector Laboratories (Burlingame, USA) 

JAC (Jacalin, biotinylated) Vector Laboratories (Burlingame, USA) 

LEA (Lycopersicon esculentum agglutinin, biotinylated) Prof. Dr. H.J. Gabius (Ludwig-Maximilians-

 University, Munich, Germany) 

PSA (Pisum sativum agglutinin, biotinylated) Vector Laboratories (Burlingame, USA) 

SNA (Sambucus nigra, biotinylated) Vector Laboratories (Burlingame, USA) 
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VAA (Viscum album agglutinin, biotinylated) Prof. Dr. H.J. Gabius (Ludwig-Maximilians-

 University, Munich, Germany) 

 

2.5 Other Materials and Markers 

Material Supplier 

0,5, 1,5, 2 ml Eppendorf Tubes Greiner Bio-One (Frickenhausen, Germany) 

15, 50 ml Falcon Tubes Greiner Bio-One (Frickenhausen, Germany) 

Cell Scraper Greiner Bio-One (Frickenhausen, Germany) 

Disposable Serological Pippette Corning (New York, USA) 

Multiwell Plates Greiner Bio-One (Frickenhausen, Germany) 

nanoAcquity C18 column Waters GmbH (Eschborn, Germany) 

Nitrocellulose Membrane Filter Paper Sandwich Life Technologies (Darmstadt, Germany) 

PCR tubes Carl Roth (Karsruhe, Germany) 

Sterile Pipet Tips Corning (New York, USA) 

Tissue Culture Dish Orange Scientific (Braine-l'Alleud, Belgium) 

Tissue Culture Flask Greiner Bio-One (Frickenhausen, Germany) 

Marker Supplier 

1 Kb DNA Ladder  Life Technologies (Darmstadt, Germany) 

100 Bp DNA Ladder  Life Technologies (Darmstadt, Germany) 

Mark12 Unstained Standard  Life Technologies (Darmstadt, Germany) 

SeeBlue Plus2 Pre-Stained Standard  Life Technologies (Darmstadt, Germany) 

 

2.6 Oligonucleotides 

All oligonucleotides were synthesized by Thermo Fisher Scientific (Ulm, Germany). 

Primers for quantitative Real-Time reverse transcription-polymerase chain reaction 

(qRT-PCR) were generated by using the Universal ProbeLibrary Assay Design 

Center from Roche. (http://www.roche-applied-science.com/sis/rtpcr/upl/index.jsp?id= 

UP030000). The melting temperature of all primers was designed for 60 °C. The 

primers for frameshift mutation analysis were labeled with fluorescein. 
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Cloning Sequence (5’ – 3’) 

ACVR2_Stu_S AAGAGGCCTGTTTTAAGAGATTA 

ACVR2_nSmaNot_A AAAGCGGCCGCTAGACTCCCGGGTAGACTAGATTCTTTGGGAG 

ACVR2_OneStep_A AAAGCGGCCGCTCACTTGTCATCGTCGTCCTTGTAGTCTAGACTA
 GATTCTTTGGGAG 

ACVR2_FlagStop_S: TTTCCCGGGGACTACAAGGACGACGATGACAAGTGAGCGGCCG
 CTTT 

ACVR2_FlagStop_A: AAAGGGCCCCTGATGTTCCTGCTGCTACTGTTCACTCGCCGGCG
 AAA 

Sequencing Sequence (5’ – 3’) 

ACVR2_seq_F_1156 GGGATGCATTTTTGAGGATAG 

M 13_rev CAGGAAACAGCTATGAC 

S2F_seq_R1 AACAAATTGGACTAATCCGGA 

S2F_seq_F1 CTGGAGACGCCATCCACGC 

Frameshift Analysis Sequence (5’ – 3’) 

ACTR2_a8b-s GTTGCCATTTGAGGAGGAAA 

ACTR 2_a8b_a CAGCATGTTTCTGCCAATAATC 

RT-PCR Sequence (5’ – 3’) 

ACVR2_seq_F_1156 GGGATGCATTTTTGAGGATAG 

pTRE_Tight_BI_rev GACTAGAGGATCCCCAATTCGGC 

ACVR2_for_1547 CAAATGTTGACTTTCCTCCCAAA 

ACVR2-3’UTR-S GGGACTCTGAACTGGAGCTG 

pTRE_Tight_BI_A2 CTGGAGATATCGTCGACAAGC 

pTRE_Tight_BI_A1 CCGCGCTAGCACGCGTCAGCT 

ACVR2_5’UTR_S AGCGAGAACTTCCTCCGGATT 

ACVR2_143_rev TCACCATAACACGGTTCAACA 

ACVR2_3’UTR_A TCCCAGAGCAACATTTTTCA 

qRT-PCR Sequence (5’ – 3’) 

ACVR2-3’UTR-S GGGACTCTGAACTGGAGCTG 

pTRE_Tight_BI_A2 CTGGAGATATCGTCGACAAGC 

ACVR2_for_1547 CAAATGTTGACTTTCCTCCCAAA 

S2F_Seq_R1 AACAAATTGGACTAATCCGGA 

ACVR2_3’UTR_A TCCCAGAGCAACATTTTTCA 

ACVR2_seq_F_1156 GGGATGCATTTTTGAGGATAG 

ACVR2 rev 1247 TACAGGTCCATCTGGTCCATCTGCAGCAG 

ALG11_for CTGGTGGAGGAGGAGAAAGA 

ALG11_rev TGACATTAACATCGCCGGTA 

B4GALNT4_for GGCCTGCAATTTGTGTACCT 
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B4GALNT4_rev GAGACTCGCGGTAGAAGCAC 

DPM3_for AGTTTGGTCCGCTTTTCCTT 

DPM3_rev AGGATCGCTAGTCCCCAAAG 

GALNAC4S_for GGTTGGGCTCTATGCTGTGT 

GALNAC4S_rev ACTTGACGTTGGATGCATGA 

IDS_for GCCTCTTGAGTGCTTTGGAC 

IDS_rev CCCATTCTCCATGTTCACCT 

LGALS3_for CTGGGGAAGGGAAGAAAGAC 

LGALS3_rev CTGCAACCTTGAAGTGGTCA 

MGEA5_for CAAGAGTTTGGTGTGCCTCA 

MGEA5_rev AGGGTGCTGCAACTAAAGGA 

OGT_for TCAAGGGCACAGTTGTGGTA 

OGT_rev GGGCAGTCAAGGGTAAAACA 

SLC17A5_for CAACAACACTGGGAGGCTTT 

SLC17A5_rev TGTATTTGTGATGCCCAGGA 

VCAN_for GACAAGAAAGCAGCACCACA 

VCAN_rev GTTGGGAATCCATCAGCAGT 

Smad7_for CTCGGAAGTCAAGAGGCTGT 

Smad7_rev GCAGAGTCGGCTAAGGTGAT 

c-Myc_for CAACAACACTGGGAGGCTTT 

c-Myc_rev TGTATTTGTGATGCCCAGGA 

Serpine_for CAACTTGCTTGGGAAAGGAGC 

Serpine_rev AGTCGGGGAAGGGAGTCTTC 

GAPDH_for AGCCACATCGCTCAGACAC 

GAPDH_rev GCCCAATACGACCAAATCC 

18sRNA_for AAACGGCTACCACATCCAAG 

18sRNA _rev CCTCCAATGGATCCTCGTTA 

JUNB_for GACCAAGAGCGCATCAAAGT 

JUNB_rev AGCGTCTTCACCTTGTCCTC 

PDGFB_for AATTCAAGCACACGCATGAC 

PDGFB_rev ATAACCCTGCCCACACACTC 

HES1_for GTGAAGCACCTCCGGAAC 

HES1_rev GTCACCTCGTTCATGCACTC 

LFNG_for GTTTGAAAACAAGCGGAACG 

LFNG_rev GTGTGTCCGGGTACAGGTG 

FGF9_for GAACCAGGAAAGACCACAGC 

FGF9_rev TCCCGAGGTAGAGTCCACTG 

BMP4_for GGAGGAGGAAGAGCAGATCC 

BMP4_rev ATGTTCTTCGTGGTGGAAGC 

SLC35F2_for ATCCTGACAGCGGACCTCTA 
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SLC35F2_rev AACCCCACCATGATGACAGT 

KLRF1_for GACTTGGGTGGATGGTTCTC 

KLRF1_rev GCTTTCCTTAATGGCAGCAC 

FGF18_for GGCAAGGAGACGGAATTCTA 

FGF18_rev CCAGAACCTTCTCGATGAACA 

FUT1_for AAAAGCGGACTGTGGATCTG 

FUT1_rev AGGACACAGACTAGCAGGAAGG 

FUT2_for GACCCAGAGGGAACACTGAG 

FUT2_rev GGGAAAGGAGAAAGGCATCT 

FUT3_for AGCTGTCCTCATCCACTGCT 

FUT3_rev GGCGATTTTCAGGCCTCT 

FUT4_for CCCAAGAGCATACGGAACTT 

FUT4_rev CTGTGCATCTCCTTGACTGC 

FUT5_for CGACGACCCCCTGAACTAC 

FUT5_rev AGACCATCCTGGCTAACACG 

FUT6_for AAAGGCCTGTCTCCAGATCC 

FUT6_rev GGGATCCATGGGTCAGAGTA 

FUT7_for GGAGACTGTGGATGAATAATGCT 

FUT7_rev CAGCCACAGGAGCCAGAG 

FUT8_for TGATTAACTGGACAAATTCAGCAT 

FUT8_rev TGGTAGTCCTGCAGTGAATCTTT 

FUT9_for ACGTGCTTCCCATGATATGTT 

FUT9_rev GTTTGATGTAAATGAGAAGACATGC 

FUT10_for GTGGGCTAATATCAGGCTTCA 

FUT10_rev GGGCAACTCAGGTGGGTAT 

FUT11_for CATCCCGGTAGACTCCTACG 

FUT11_rev GGGCCAAGTGGAACTTATAGC 

POFUT1_for AAGCCTCCTTTCACCAACCT 

POFUT1_rev CTGATGACCCGATGGTAAGC 

POFUT2_for AGGACAAGCACGAGTACTACAGAG 

POFUT2_rev CGGACAGACAGGAGACGTTTA 

FUCA1_for GTGCACCAGCATTGACAAGT 

FUCA1_rev CCCAAACTTACTGTCTGAACCA 

FUCA2_for TCTTGGCCTGGTTATATAATGAAAG 

FUCA2_rev AGAAGCCACCATGCTTACAGA 

FUK_for GAGATTCAGCGGTGTGTCAG 

FUK_rev TCTCCACAGAGAAGAAGACAACC 

TNNI3K_for CCCTTGGAGTTCAATATCACG 

TNNI3K_rev AGTGTTGATCCTCCATTTCCA 

TSTA3_for GCCTGTTCCGGAATATCAAA 
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TSTA3_rev AGGACGTTGTCGTTCATGTG 

SLC35C1_for TGCTCACCTGCGGTATCAT 

SLC35C1_rev ACGACAGGGTGCCTTCTG 

GMDS_for GATGGTTCCTACCTGGCTGA 

GMDS_rev GACCGCCGTACAATTCCAT 

GMDS_HCT116_for GTGCAGGAAATACCCCAGAA 

GMDS_HCT116_rev ACGGAAGTTCACCACAATCC 

s: sense; a: antisense; for: forward; rev: reverse 

 

2.7 Plasmids 

pcDNA3.1/His-ACVR2 and pTRE-Tight-BI-DsRed-ACVR2 plasmids were kindly 

provided by Dr. G. Patsos [122] and used as template DNA for the cloning of the 

wildtype ACVR2 gene. The following plasmid vectors were kindly provided by Dr. I. 

Weidenfeld and Dr. K. Schönig (Central Health Institute, Mannheim, Germany) and 

used for the recombination-mediated cassette exchange (RMCE): the retroviral 

vector S2F-cLM2CG-FRT3 [133] contained a tetracycline (tet)-controlled bidirectional 

transcription unit for concurrent regulation of the two reporter genes firefly luciferase 

and red fluorescent protein mCherry for the screening of the stable integration site of 

the HCT116-mCherry cell line. The same plasmid backbone was used for replacing 

the mCherry gene by the ACVR2 gene. The plasmid pE11.F3.HygTK.F [133] 

encoding a hygromycin B phosphotransferase-thymidine kinase (HygTK) 

translational fusion protein was used for antibiotic selection and generation of the 

HCT116-HygTK master cell line [134]. For retroviral assembly, the vectors pVPack-

GP and pVPack-VSV-G from Stratagene (Böblingen, Germany) were used. 

Recombination was mediated by the enzyme flpo-recombinase that is encoded by 

the plasmid pCAGGS-Flpo-IRES-Puro which has been kindly provided by Dr. M. 

Hahn (DKFZ, Heidelberg, Germany).  

 

2.8 Solution Recipes 

Coomassie staining solution  5% Aluminium sulfate 

 10% Ethanol 

 0.02% Coomassie brilliant blue G250 

 2% Phosphoric acid 
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Developing solution for silver staining 6% Sodium carbonate 

 4 mg/l Sodium thiosulfate 

 0.0074% Formaldehyde 

 

1x DNA sample buffer (pH 7.6) 25 mM Tris 

 0.042% Bromophenol blue 

 10% Glycerol 

 

Fixation buffer for Coomassie staining 30% Ethanol 

 2% Phosphoric acid 

 

Fixation buffer 1 for Silver staining 40% Methanol 

 10% Acetic acid 

Fixation buffer 2 for Silver staining 10% Ethanol 

 5% Acetic acid 

Fixation buffer 3 for Silver staining 10% Ethanol 

 

Fixation buffer for Sypro staining 50% Methanol 

 7% Acetic acid 

 

LB-medium 1% Trypton 

 0.5% Yeast extract 

 1% Sodium chloride 

 

LB-Agar with ampicillin LB-medium with 2% Bacto-agar 

 50 μg/ml Ampicillin 

 

Oxidating solution for silver staining 0.02% Sodium thiosulfate 

 0.0074% Formaldehyde 

 

PBS  137 mM NaCl 

 27 mM KCl 

 100 mM Na2HPO4 (anhydrous) 

 20 mM KH2HPO4 
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PBST  PBS containing 0.1% Tween-20 

 

1x RIPA buffer (pH 7.4) 50 mM Tris-HCl 

 150 mM NaCl 

 1% Triton X-100 

 1% Sodium deoxycholate 

 0.1% SDS 

 0.1 mM CaCl2 

 0.01 mM MgCl2 

 

Silver staining solution 2 g/l Silver nitrate 

 0.0185% Formaldehyde 

 

1x TBE buffer (pH 8) 0.1 M Tris-base 

 83 mM Boric acid 

 1 mM EDTA 

 

TBS (pH 7.5) 20 mM Tris-HCl 

 0.5 M NaCl 

 

TBST (pH 7.5) TBS containing 0.1% Tween-20 

 

Washing buffer for Sypro staining 10% Methanol 

 7% Acetic acid 

 

2.9 Biological Material 

Bacterial Strain Characteristics Supplier 

E. coli DH5α F- Φ80lacZ∆M15 ∆(lacZYA-argF) Life Technologies 
 U169 recA1 endA1 hsdR17(rk

-, mk
+)  (Darmstadt, Germany)

 phoA supE44 thi-1 gyrA96 relA1 λ- 

Cell Line Characteristics Supplier 

HCT116 Human colorectal carcinoma cell line American Type Culture 
  Collection (ATCC)  
  (Wesel, Germany) 
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HCT116 AWE17 HCT116 derivative expressing reverse Dr. A. Welman (Uni. of 
 transcriptional transactivator gene (rtTA) Edinburgh, UK) & Dr. C. 
 and EGFP fluorescent protein Dive (Uni. of Manchester, 
  UK)  

HepG2  human liver hepatocellular carcinoma Dr. K. Breuhahn (Uni. 
 cell line Hospital Heidelberg, 
  Germany) 

293T Human embryonic kidney cell line  ATCC (Wesel, Germany) 
 expressing the SV40 large T-antigen 

 

Cell lines were cultured in DMEM / Ham's F-12 (1:1) or RPMI 1640 with L-Glutamine 

supplemented with 10% heat-inactivated fetal bovine serum (FBS) Gold and 100 

U/ml penicillin and 100 µg/ml streptomycin. In order to freeze the cells, freezing 

medium containing 10% DMSO in heat-inactivated FBS Gold was used. Transfection 

experiments were carried out using Fugene HD Transfection Reagent according to 

the manufacturer‘s instruction. Hygromycin B (Hyg, 100 µg/ml), puromycin (1.5 

µg/ml) and ganciclovir (Gan, 40 µM) were used for antibiotic selection. To examine 

signaling effects, cells were starved for 18 h in the presence and absence of 0.5-1 

µg/ml Doxycycline and subsequently incubated with 10 ng/ml recombinant Activin A 

for 2 h. For metabolic labeling experiments using L-Azidohomoalanine cells were 

cultured in methionine-free RPMI medium supplemented with 10% heat-inactivated 

FBS Gold and 100 U/ml penicillin and 100 mg/ml streptomycin using standard 

conditions. 
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3. METHODS 

3.1 Molecular Biology Methods 

3.1.1 Isolation of Genomic DNA and RNA  

1-7x106 cells were harvested and washed by using PBS. gDNA and total RNA was 

extracted from the cells by using the DNeasy Blood & Tissue Kit and the RNeasy 

Mini Kit from Qiagen (Hilden, Germany), according to the manufacturer‘s protocol, 

respectively. The concentration of eluted gDNA or total RNA was subsequently 

determined by photometric measurement at 260 nm. 

 

3.1.2 PCR 

Standard PCR was performed by using the HOT FIRE Pol DNA Polymerase with the 

following cycling conditions: initial denaturation at 95 °C 15 min; 30-40 cycles at 

95 °C denaturation for 30 s, 60 °C annealing for 30 s, 72 °C elongation for 30-60 s 

and a final elongation step at 72 °C for 2-10 min.  

Inserts for cloning were amplified by using the proofreading Phusion High-Fidelity 

DNA Polymerase. The specificity of the PCR reaction was tested by using the same 

reaction batch without template DNA. The reactions were prepared on ice according 

to the standard protocol depicted in Table 3.1. After PCR, DNA fragments for cloning 

were purified by using the High Pure PCR Product Purification Kit from Roche 

(Mannheim, Germany), following the manufacturer’s protocol. 

 

Table 3.1. Standard PCR reaction mixture (1x). 

Component Final Concentration Volume [µl]

Template DNA cDNA ~20 ng; plasmid DNA ~0.1-20 ng; gDNA ~200 ng 4 

Buffer 1x 2.5 

MgCl2 2 mM 2 

dNTP Mix 0.2 mM 2.5 

Primer forward 0.5 mM 2.5 

Primer reverse 0.5 mM 2.5 
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DNA Polymerase 0.625 U 0.125 

Water, DNase, RNase-FREE - up to 25 

 

3.1.3 Restriction Digest 

In general, reactions were performed on ice with 30 μg of vector DNA and 60-100 μl 

of purified PCR product. For the restriction digestion, 1x BSA and 1x NEBuffer of the 

respective enzyme was added according to the manufacturer’s recommendations. 

Reactions were filled up to an appropriate volume with double-distilled water and 

incubated for at least 3 h at 37 °C. In particular, for sticky end cloning, the PCR 

products of the ACVR2 wildtype cDNA (insert) containing an EcoRI restriction site at 

the 5´-end and a NotI at the 3´-end were digested in one reaction. The vector S2F-

cLM2CG-FRT3, harboring the EcoRI/NotI mCherry fragment was also digested in a 

double digestion reaction. Both enzymes were used each at a concentration of 40 

U/µl.  

In contrast to this preparative restriction digestion, analytical digestions were 

performed in order to verify proper ligation after cloning of the DNA fragments. 

Therefore, smaller amounts of plasmid DNA (0.2-1 µg) were used and incubated for 

a minimum of 1 h. After enzymatic digestion, the enzymes were heat-inactivated for 

20 min at 65 °C.  

For the PCR products, an additional purification step was performed by using the 

High Pure PCR Product Purification Kit, following the manufacturer’s protocol. The 

vector DNA fragments were separated by agarose gel electrophoresis and 

subsequently excised from the gel with a scalpel using low energy UV light (366 nm) 

for visualization. Isolation of the DNA fragments was performed by using the High 

Pure PCR Product Purification Kit, following the manufacturer’s protocol. 

 

3.1.4 Agarose Gel Electrophoresis 

The size, quality and quantity of DNA were controlled by agarose gel electrophoresis. 

Depending on the size of the DNA fragments, 0.8-2% agarose was heated and 

dissolved in 1x TBE buffer. After the gel solution had cooled down, 0.1-0.5 μg/ml 

ethidium bromide or 1x GelRed was added. The gel polymerized at room 

temperature and was mounted in an electrophoresis chamber filled with 1x TBE 
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buffer. The samples were diluted in 1x DNA sample buffer before loading into the 

wells. To determine the correct size of the DNA fragments, 5 μl of the DNA Ladder (1 

Kb or 100 Bp) from Life Technologies was loaded. The gel was run at a constant 

voltage of 120 V and the DNA was visualized by UV light. The amount of the DNA 

was estimated by comparing the band intensities with the known amount of the 

marker bands. 

 

3.1.5 Dephosphorylation and Ligation 

After estimating the DNA concentration by using agarose gel electrophoresis and 

calculating the required amounts of DNA fragments in moles, assuming a molecular 

weight of 325 g/mol for a single nucleotide, DNA was dephosphorylated and ligated 

by using the Rapid DNA Dephos & Ligation Kit from Roche following the 

manufacturer’s protocol. For sticky end cloning, a molar ratio of 1:5 (vector:insert) 

was applied. As a control for vector self-ligation, an additional reaction was 

performed in the absence of the insert DNA. 

 

3.1.6 Transformation 

For transformation, 50 μl of chemo-competent E. coli DH5α bacteria were thawed on 

ice and 1-2 μl of ligation mixture was added to the cells. The cells were incubated for 

30 min on ice and subsequently heat-shocked at 42 °C for 45 s. After an incubation 

time of 2 min on ice, the cells were resuspended in 300 µl S.O.C. medium and 

incubated for 1 h while shaking at 300 rpm at 37 °C. Finally, the cells were 

transferred to pre-warmed LB-agar plates, including 50 µg/ml ampicillin. The agar 

plates were incubated overnight at 37 °C and then stored at 4 °C. 

 

3.1.7 Colony-PCR 

In order to screen for bacterial clones that carry the correct DNA insert, colony-PCR 

was carried out by using the grown bacterial colonies on the LB-agar plates as the 

template. At least 5 single colonies were subjected to colony-PCR by using primers 

that specifically amplify the ACVR2 cDNA insert. The colonies were either plated 

onto a fresh 50 µg/ml ampicillin-containing LB-agar plate or directly inoculated into 3-
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5 ml of LB-medium, supplemented with 50 µg/ml ampicillin, and grown overnight at 

37 °C at 200 rpm for plasmid isolation. 

 

3.1.8 Plasmid Isolation 

Depending on the desired amount of plasmid, two alternative scales of DNA 

preparation were performed: for small-scale plasmid DNA preparation, single 

colonies were inoculated into 3-5 ml and for large-scale plasmid DNA preparation 

into 200 ml LB-medium containing 50 µg/ml ampicillin. The bacteria were incubated 

overnight at 37 °C at 200 rpm and plasmid DNA was prepared either by using the 

NucleoSpin Plasmid Kit for small-scale and the Plasmid Maxi Kit for large-scale 

plasmid isolation, according to the manufacturer’s protocol. To clear the bacterial 

lysate of precipitated cell material prior to subjecting it to the column, folded filters 

were used instead of the supplied QIAfilter Cartridges. The plasmid DNA 

concentration was determined by a photometer at 260 nm. 

 

3.1.9 Glycerol Stock of Bacteria 

For long-term storage, 800 µl of growing overnight cultures of bacteria, containing the 

correct plasmid, were mixed with 200 µl of glycerol to obtain a final concentration of 

20% of glycerol. After vortexing, the bacteria were stored at -80 °C. 

 

3.1.10 Ethanol DNA Precipitation 

Since the DNA fragments were eluted in a volume of ~100 µl, it was necessary to 

perform an ethanol precipitation step to enrich the DNA in a smaller volume suitable 

for ligation. To this end, 0.3 M sodium acetate, pH 5, 2 volumes of 100% ethanol (or 

0.7 volume of isopropanol) and 0.3 µg/µl glycogen (carrier) was added to the sample 

and vortexed thoroughly. After 5 min incubation at room temperature (or 20 min at -

20 °C for lower amounts of DNA), the sample was centrifuged for 20 min at 12,000 g. 

The pellet was then washed with 1 ml of 70% ethanol (10 min centrifugation at 

12,000 g), air-dried for approximately 10 min at room temperature and resuspended 

in 11 µl of double-distilled water.  
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3.1.11 Frameshift Mutation Analysis 

Frameshift mutational analysis was performed as described by Woerner et al. [56]. In 

brief, ~100 ng of gDNA was used for the PCR reaction by using a fluorescein labeled 

primer. The resulting PCR product was visualized by agarose gel electrophoresis in 

order to estimate the DNA amount. Approximately 2 µl of this PCR reaction was 

mixed with 13 µl of HI-DI-Rox and analyzed on the ABI Prism 3100 genetic analyzer 

by using the Sequencing Analysis software Applied Biosystems (version 3.7). 

 

3.1.12 Sequence Analysis 

For sequencing of the PCR-amplified ACVR2 insert, ~200 ng of the cloned S2F-

cLM2CG-FRT3-ACVR2 plasmid were used. PCR analysis was carried out by using 

the plasmid as a template and primers which are specific for the wildtype ACVR2 

transgene. The PCR products were purified by using the High Pure PCR Product 

Purification Kit and 6-10 µl of the eluate were subjected to the sequencing reaction. 

Sequencing was performed by using the BigDye Terminator v1.1 Cycle Sequencing 

Kit and the subsequent analysis was carried out on an ABI Prism 3100 genetic 

analyzer by using the Sequencing Analysis software Applied Biosystems, version 

3.7. 

 

3.1.13 cDNA Synthesis 

One µg of total RNA was reverse transcribed by using Oligo (dT) primer and 

SuperScript II Reverse Transcriptase according to the manufacturer‘s protocol. In 

order to exclude amplification from remaining genomic DNA, one sample was 

processed in parallel in the absence of the SuperScript II Reverse Transcriptase 

enzyme. To validate successful cDNA synthesis, PCR was performed using 1:5 

diluted cDNA as template and primer recognizing the housekeeping gene GAPDH 

(glyceraldehyde 3-phosphate dehydrogenase) or 18S rRNA. 

 

3.1.14 Real-time RT-PCR Analysis 

For real-time RT-PCR experiments, primers for the respective genes and Power 

SYBR Green PCR Master Mix were used. Triplicates of different 1:5 diluted cDNA 

samples (-dox versus +dox) were analyzed in the StepOnePlus Real-Time PCR 
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System with the following program: 95 °C for 10 min, followed by 40 cycles of 95 °C 

for 15 s and 60 °C for 1 min. Data were analyzed by the StepOne Software, v2.1. 

Analysis of the gene expression was performed by relative quantification by using the 

2-∆∆C
T method as described by Livak and Schmittgen [135]. Gene expression was 

normalized to the expression of the reference genes GAPDH or 18S rRNA. 

 

3.2 Biochemical Methods 

3.2.1 Protein Extraction 

A minimum of 5x106 cells were washed once with PBS and then scraped off the 

plates. Cell pellets were washed with PBS and then resuspended in 1x RIPA buffer. 

After sonication and incubation for 1 h at 4 °C, the suspension was centrifuged 

(12,000 g, 20 min, 4 °C) and the protein concentration of the lysate was measured. 

 

3.2.2 Protein Precipitation 

For protein precipitation, two methods were performed by using either methanol 

chloroform or TCA (trichloroacetic acid). 

Methanol chloroform precipitation was performed as follows: three volumes of 

methanol were added to the sample and mixed. Then 0.75 volume of chloroform was 

added and vortexed, followed by the addition of 2 volumes of double-distilled water 

and vortexing. Phase separation was achieved by centrifugation at 12,000 g for 5 

min. Since the interface contained the proteins of interest, the upper aqueous phase 

was carefully removed and discarded. The sample was washed twice by using 2.25 

volumes of methanol, vortexed and centrifuged at 12,000 g for 5 min. The pellet was 

air-dried and resuspended in required buffer.  

The second method for protein precipitation was performed by using trichloroacetic 

acid. The sample was mixed with 1 volume of 10% TCA, vortexed and centrifuged for 

10 min at 12,000 g. The pellet was dissolved in 50 µl of 0.2 N NaOH for 10 min at 

56 °C or in required buffer. 
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3.2.3 Determination of Protein Concentration 

Protein concentration was measured by using two different methods, the Bradford or 

the Lowry assay.  

The Bradford assay was performed by using the Bio-Rad Protein Assay according to 

the manufacturer‘s instruction. Protein concentration was measured in a photometer 

at 595 nm.  

For the Lowry protein assay [136], the sample was precipitated by using TCA and 

then dissolved in 50 µl of 0.2 N NaOH at 56 °C for 10 min. The sample was 

incubated for 20 min at room temperature with 500 µl of a solution, containing 0.02% 

copper(II) sulfate, 39.98 g/l sodium carbonate, 8 g/l NaOH and 0.4 g/l potassium 

sodium tartrate, followed by the addition of 500 µl of 1x Folin-Ciocalteu‘s phenol 

reagent and an incubation step of 30 min at room temperature. The absorbance was 

measured by using the photometer at 630 nm.  

To obtain a standard curve, 3-5 different concentrations of BSA were also treated 

under the same conditions and measured to determine the correct concentration of 

the samples. 

 

3.2.4 Sodium Dodecylsulfate-Polyacrylamide Gel Electrophoresis  

13 µl of sample (20-50 µg protein) were mixed with 5 µl of 4x NuPAGE LDS Sample 

Buffer and 2 µl of 10x NuPAGE Sample Reducing Agent and incubated for 5 min at 

99 °C for denaturation of the proteins. The sample was separated on a gradient 

NuPAGE 4-12% Bis-Tris Gel by using 1x NuPAGE MES SDS Running Buffer 

containing 0.25% NuPAGE Antioxidant at 200 V, 250 mA, 50 W for 35-45 min. The 

SeeBlue Plus2 Pre-Stained Standard protein marker was loaded when the gel was 

subjected to Western blot analysis. The Mark12 Unstained Standard protein marker 

was applied when the gel was directly used for staining the proteins in the gel. 

 

3.2.5 Western Blot Analysis 

After SDS-PAGE, the separated proteins were electroblotted onto a nitrocellulose 

membrane at 30 V, 400 mA and 50 W for 1 h in a buffer containing 10% methanol, 

0.1% NuPAGE Antioxidant and 1x NuPAGE Transferbuffer. The membrane was 

briefly washed in TBST. After blocking the membrane for 30 min at room temperature 

by using 5% skim milk in 1x TBST (blocking solution), the following primary 
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antibodies were added to the blocking solution: mouse anti-ß-actin (1:20,000, room 

temperature, 1 h); mouse anti-ACVR2 (1:1000, 4 °C, overnight); rabbit anti-ACVR2 

(1:500, 4 °C, overnight); rabbit anti-phospho-SMAD2 (1:1000, 4 °C, overnight); rabbit 

anti-SMAD2 (1:1000, 4 °C, overnight); mouse anti-FLAG (1:500, 4 °C, overnight). 

After several washing steps (10 min each at room temperature) in TBST, the blots 

were incubated with the secondary antibodies anti-mouse IgG-HRP (1:5000) and 

anti-rabbit IgG-HRP (1:2500) for 1 h at room temperature, respectively. After three 

washing steps (10 min each at room temperature) in TBST, the signals were 

detected by using Western Lightning Plus ECL. As transfer and loading control some 

of the blotting membranes were stained with 0.1% Ponceau S (w/v in 5% acetic 

acid). 

 

3.2.6 Lectin-Western Blot Analysis 

Lectin-Western blotting was performed according to the protocol for Western blot 

analysis as described above with the exception that biotinylated AAL (2 ng/ml) was 

used as primary antibodies and streptavidin-HRP (1:20,000) as secondary antibody.  

 

3.2.7 Gel Staining Methods 

Three different methods to stain proteins in the gel were performed by using 

coomassie, SYPRO-Ruby and silver nitrate. 

The colloidal coomassie staining was performed as described by Kang et al. [137]. 

Briefly, after washing the gel three times with de-ionized water, the proteins were 

fixed by using 30% ethanol and 2% phosphoric acid for 30 min. The gel was stained 

by using the coomassie staining solution. Destaining of the gel by de-ionized water 

was performed until the bands were clearly visible.  

In order to detect lower amounts of proteins (>1 ng/band), the fluorescent SYPRO-

Ruby solution was used according to the manufacturer‘s instruction. The rapid 

protocol was performed: fixation of the proteins twice for 15 min by using 50% 

methanol and 7% acetic acid, staining by using the SYPRO-Ruby Gel Stain. After 

adding this solution, several rounds of heating in the microwave and agitating at 

room temperature were performed (30 s heating, 30 s agitating, 30 s heating, 

agitating 5 min, heating 30 s and agitating for 23 min). The gel was subsequently 

washed by using a mixture of 10% methanol and 7% acetic acid for 30 min. The gel 
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was subjected to de-ionized water and the fluorescence signal was visualized by UV 

light. 

Silver staining was performed according to the following scheme: fixation for 1 h with 

40% methanol and 10% acetic acid, followed by 30 min incubation 10% ethanol and 

5% acetic acid, and 15 min with 10% ethanol. The gel was washed once with de-

ionized water followed by a 1 min incubation step with an oxidating solution. After 

three times washing in de-ionized water for 1 min, the gel was incubated in the 

staining solution for 15 min, washed three times for 20 s with de-ionized water and 

incubated in the developing solution until the protein bands were visible. The gel was 

washed with de-ionized water 3x 1 min and staining was terminated by the addition 

of 10% acetic acid for 15 min. After 3x 5 min washing in de-ionized water, the gel 

was scanned for documentation.  

 

3.3 Cell Culture Experiments 

3.3.1 Maintenance of Cell Lines 

All cell lines were grown in culture media (as described in 2.9) at 37 °C in an 

atmosphere of 5% CO2. For subculture, confluent cells were washed once with PBS, 

trypsinized and split into new flasks 2-3 times per week. To ensure that the cells were 

free of mycoplasm contaminations, the cultures were continuously checked by 

conventional PCR using a Mycoplasma Detection Kit, according to the 

manufacturer‘s protocol. 

 

3.3.2 Freezing and Thawing of Cells 

For cell line preservation, cells were washed with PBS, trypsinized and approximately 

5x106 cells / cryo vial were resuspended in cold freezing medium. The cells were first 

frozen at -80 °C and transferred to liquid nitrogen for long-term storage. In order to 

thaw cells, a vial of frozen cells was placed in a 37 °C water bath, thawed and cells 

were directly washed with 10 ml of regular cell culture medium. Finally, the cells were 

centrifuged at 1000 g for 10 min, resuspended in culture medium and seeded in T75 

flasks.  
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3.3.3 Cell Transfection  

Transfection experiments were carried out by using different methods: FuGENE HD-

mediated lipofection or electroporation. 

The FuGENE HD Transfection Reagent was used according to the manufacturer‘s 

instruction. Briefly, prior to the transfection, 1x106 cells were seeded on 6-well plates 

to reach a confluency of ~80% at the day of transfection. For HCT116 cells, a ratio of 

4:2 (4 µl transfection reagent and 2 µg of total DNA) has been used.  

For electroporation, 1x107 cells were harvested at confluency of approximately 80% 

and electroporated by using 6-10 µg of DNA. Electroporation was conducted by the 

Amaxa Cell Line Nucleofector Kit V according to the manufacturer‘s instruction by 

using the program D32 of the Nucleofector I device for HCT116 cells. After 

electroporation, the cells were transferred to 10 cm culture dishes.  

 

3.3.4 Recombinase-Mediated Cassette Exchange  

The recombinase-mediated cassette exchange (RMCE) strategy was performed as 

described previously [133]. The HCT116-HygTK master cell line, which was Hyg-

resistant and sensitive to Gan (Hygr, Gans), was generated by a first RMCE step as 

described by Lee et al. [134]. This master cell line was subjected to a second RMCE 

step resulting in HCT116-ACVR2 #2 clones that conferred dox-inducible expression 

of ACVR2 with a FLAG-tag and luciferase concurrently. Quantification of dox-

inducible expression levels were determined by luciferase assays. 

 

3.3.5 Luciferase Assay 

2x105 cells / 24-well or 4x105 cells / 12-well of HCT116-ACVR2 cells were seeded in 

duplicates one day prior to the assay and grown in the presence and absence of 1 

µg/ml dox. Luciferase activity in cell lysates was measured by the Luciferase Assay 

System by using a luminometer according to the manufacturer‘s instruction. The 

luciferase activity was normalized to the protein concentration, which was determined 

by Bradford assay.  

 

3.3.6 Proliferation Assay 

Cells were plated in 96-well plates at densities of 1x103 and grown for one to five 
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days. Proliferation assays were performed in triplicate by using the CellTiter 96 

AQueous One Solution Cell Proliferation Assay (MTS) Kit according to the 

manufacturer‘s instruction. The formation of soluble formazan product is directly 

proportional to the number of living cells and was determined by measuring the 

absorbance at 485 nm in an ELISA-Reader. 

 

3.3.7 Glyco-Gene Chip Analysis 

For the Glyco-Gene Chip analysis, HCT116-ACVR2 cells were starved overnight in 

the absence or presence of 1 µg/ml dox in triplicate. After incubation with 10 ng/ml 

activin A for 2 h RNA was isolated, RNA integrity was verified by agarose gel 

electrophoresis and the concentration was measured spectrophotometrically at 260 

nm. 3 µg of RNA was stored in RNAstable according to the manufacturer‘s protocol 

and subsequently sent to the Consortium for Functional Glycomics (CFG) for Glyco-

Gene Chip analysis (for detailed information see the internet webpage: 

www.functionalglycomics.org/static/consortium/resources/resourcecoree.shtml). 

Additionally, 1 µg of the same RNA was reverse transcribed for further analyses by 

real-time RT-PCR. 

 

3.3.8 Lectin-FACS Analysis 

Lectin-FACS analysis was performed as described previously [122]. Cells were 

grown in the presence or absence of 1 µg/ml dox and 10 ng/ml activin A for 24 h or 

72 h. For analysis 4x105 cells were first washed with PBS to remove the residual 

medium (1000 g for 5-10 min at 4 °C). Then cells were resuspended in PBS 

containing 0.1% BSA and incubated with one of the biotinylated plant lectins for 30 

min on ice. After washing the cells with PBS / 0.1% BSA, the cells were incubated 

with streptavidin-R-phycoerythrin (streptavidin-R-PE) in 1:40 dilution for 30 min on 

ice. The cells were washed once again and then analyzed in the FACSCalibur 

instrument. The parental HCT116 cell line (negative) and the HCT116-Tet-On cell 

line (EGFP) were used for adjusting the parameter settings. 10,000 counts were 

acquired for each data file and subsequent analysis was performed using the 

CellQuest Pro Software. 
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3.3.9 Immunoprecipitation Analysis 

For immunoprecipitation of FLAG-labeled ACVR2 the anti-FLAG M2 Affinity Gel was 

applied according to the manufacturer`s instructions. 5 mg of HCT116-ACVR2 #2 

protein dissolved in a total volume of 600 µl RIPA buffer were mixed with 130 µl of 

affinity gel slurry and incubated overnight on a rotor mixer. After 3 washes with 1 ml 

TBS, the immunoprecipitated ACVR2-FLAG protein was eluted with 70 µl of 2x SDS-

PAGE sample buffer at 99 °C for 5 min. After centrifugation at 1000 g 20 µl of the 

supernatant was subjected to SDS-PAGE and subsequently analyzed by Western 

blotting. 

 

3.3.10 Immunocytology 

For immunocytology (IC) experiments, 1x104 cells were seeded on diagnostic slides 

in 50 µl volume of medium. After 24 h incubation, the cells were fixed: the medium 

was discarded, the cells washed once with PBS and sparkled with a Cytofixx pump 

spray. The cells were additionally fixed by incubating the slides with ice-cold 

methanol for 8 min at -20 °C, followed by ice-cold aceton for 8 min at -20 °C. The 

cells were stored at -20 °C until further processing. The fixed cells were washed in 

PBS and then treated with methanol containing 0.6% hydrogen peroxide for 20 min 

at room temperature in order to block the endogenous peroxidase enzyme. The cells 

were washed several times in de-ionized water and the Dako Pen was used to 

encircle the wells. Subsequently, the cells were washed with PBS / 0.1% Tween-20 

for 1 min and blocked with 10% horse serum in PBS for 30 min at room temperature 

in a humid chamber. The cells were washed 3x 10 min by using PBS and incubated 

with AAL (1:500) in PBS / 1% BSA (biotin-free) overnight at 4 °C in a humid chamber. 

The following day, the diagnostic slides were washed 3x 10 min with PBS / 0.1% 

Tween-20 and incubated for 30 min at room temperature in PBS / 1% BSA. The 

slides were again washed 3x 10 min with PBS / 0.1% Tween-20 and incubated with 

the pre-incubated (30 min 1:50 in PBS at 4 °C) AB-Complex (Vectastain Elite ABC 

Kit (Universal)) for 30 min at room temperature. The cells were washed twice for 3 

min with PBS / 0.1% Tween-20 and incubated with the DAB-chromogene (1 drop/ml) 

until staining was sufficient (~15 min). De-ionized water was used to stop the reaction 

and fresh haemalum solution to counterstain the nuclei for 15 s. The slides were 
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washed again in tap water and finally in de-ionized water. The wells were covered 

with aquatex and cover slips and subsequently analyzed by microscopy. 

 

3.4 Labeling Experiments 

3.4.1 Radioactive Labeling 

7x104 cells / well were seeded in triplicate on a 6-well plate. After 24 h, cells were re-

fed with 2 ml new media containing 0.185 MBq of the respective 3H-labeled 

saccharide (Acetyl-D-mannosamine, N-[mannosamine-6-3H] (3H-ManNAc) [185-370 

GBq/mmol] or Fucose, L-[6-3H] (3H-L-fucose) [1.48-2.22 TBq/mmol]) and 10 ng/ml 

activin A. Cells were grown in the presence or absence of 0.5 µg/ml dox until they 

reached a confluency of 60-80%. After 72 h, the cells were washed 3 times with PBS 

and scraped off. The cells were centrifuged for 5 min at 1000 g at room temperature 

and washed with PBS. The cell pellet was solubilized in 400 µl of 0.2 N NaOH for 1 h 

at 56 °C. The protein concentration of two aliquots (25 µl each) was determined by 

the Lowry assay. 10 µl of 10 µg/µl BSA (precipitation aid) and 400 µl of 10% TCA 

were added to precipitate the proteins by centrifugation (10 min, 12,000 g, room 

temperature) and to remove unincorporated labeled saccharides. The pellet was 

resuspended in 400 µl of 1 N NaOH and neutralized by the addition of 200 µl of 2.5 N 

acetic acid and subsequently mixed with 10 ml of Ultima Gold LSC Cocktail. The 

samples were counted by using a liquid scintillation analyzer and dpm measurements 

were conducted with automatic quench correction applying the transformed Spectral 

Index of the External Standard / Automatic Efficiency Control (tSIE / AEC) method. 

Results were expressed as decays per minute (dpm) and normalized to the protein 

amount (mg). 

 

3.4.2 Click-it Technology with Immunoprecipitation Analysis 

3-6 x 105 cells / dish were plated in triplicate onto 100 mm dishes suspended in 10 ml 

RPMI cell media containing -/+ 0.5 µg/ml dox. After 24 h cells they were metabolically 

labelled with either 40 µM fucose-alkyne or azido-homoalanine (AHA). AHA-labelling 

was performed for 4 h in methionine-free RPMI cell medium in the absence or 

presence of 0.5 µg/ml doxycycline and 10 ng/ml activin A. For fucose-labelling 

normal RPMI cell medium with the same conditions was used for 72 h. Cells were 
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harvested with PBS, cell pellets were lysed in 1% SDS in 50 mM Tris-HCl, pH 8, 

supplemented with protease inhibitor cocktail and phosphatase inhibitor cocktail. 

After sonication and incubation for 30 min at 4 °C on a rotator, cell lysates were 

centrifuged at 12,000 g for 20 min at 4 °C. Protein concentration was determined 

using Bradford assay and 200 µg protein was used for detection reaction. For 

detecting fucose-alkyne biotin-azide and for azido-homoalanine biotin-alkyne was 

used together with the Click-it Protein Reaction Buffer Kit following the 

manufacturer’s instructions. Unincorporated labeling and detection reagents were 

removed by methanol-chloroform-precipitation. To extract labeled proteins affinity 

chromatography using streptavidin-coated magnetic beads was performed. 

Precipitated samples were resuspended in 200 µl RIPA buffer and incubated with 80 

µl streptavidin bead suspension (40 µl pure beads) for 2 h at 4 °C on a rotator. 

Before usage, bead slurry was washed three times with 1 ml PBST with the help of a 

magnetic device (6-Tube Magnetic Separation Rack). After incubation of the beads 

with the samples, the resin was washed three times with 1 ml PBST containing 2% 

SDS. Finally, protein-bound resin was stored in 100 µl PBS for subsequent mass 

spectrometry. 

 

3.5 Mass Spectrometry and Data Analysis 

3.5.1 Sample Preparation for Mass Spectrometry 

Supernatant of samples, which were resuspended in 100 µl PBS, was discard by 

using a magnetic device and resin was washed with 100 µl 40 mM ammonium 

bicarbonate. 100 μl DTT (10mM DTT in 40 mM ammonium bicarbonate) was added 

to the resin and bound proteins were reduced at 45 °C for 1h in a thermomixer at 800 

rpm. Free cysteine residues were alkylated with 100 μl iodoacetamide (55 mM in 40 

mM ammonium bicarbonate) for 30 min at room temperature in the dark. Between 

each step resin was washed with 100 µl 40 mM ammonium bicarbonate. Afterwards, 

samples were digested at 37 °C over night using 50 µl trypsin solution (5 µl of 0,5 

µg/µl trypsin in 1mM HCl diluted in 495 µl 40 mM ammonium bicarbonate). After 

overnight digestion the supernatant was collected into PCR tubes. After adding 5µl 

1% trifluoroacetic acid, samples were sonicated for 5 min. After centrifugation at 

13,000 rpm, 5 µl of each sample was transferred into new tubes and subsequently 

analysed by nanoLC ESIMS / MS. 
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3.5.2 ESI-MS/MS Analysis and Database Search 

Tryptic peptide mixtures were separated using a nanoAcquity UPLC system. 

Peptides were trapped on a nanoAcquity C18 column, 180 µm x 20 mm, particle size 

5 µm. The liquid chromatography separation was performed on a C18 column (BEH 

130 C18 100 µm x 100 mm, particle size 1.7 µm) with a flow rate of 350 nl/min. For 

all samples, the chromatography was carried out using a 3 h gradient of solvent A 

(98.9% water, 1% acetonitrile, 0.1 % formic acid) and solvent B (99.9% acetonitrile 

and 0.1% formic acid) in the following sequence: from 0 to 4% B in 1 min, from 4 to 

30% B in 140 min, from 30 to 45% B in 15 min, from 45 to 90% B in 5 min, 10 min at 

90% B, from 90 to 0% B in 0.1 min, and 9.9 min at 0% B. The nanoUPLC system 

was coupled online to an LTQ Orbitrap XL mass spectrometer. The mass 

spectrometer was operated in the sensitive mode with the following parameters: 

capillary voltage 2400 V; capillary temperature 200 °C, normalized collision energy 

35 V, activation time 30000 ms. Data were acquired by scan cycles of one FTMS 

scan with a resolution of 60000 and a range from 370 to 2000 m/z in parallel with six 

MS/MS scans in the ion trap of the most abundant precursor ions. 

The mgf-files generated by Xcalibur software (Thermo Scientific, Bremen, Germany) 

were used for database searches with the MASCOT search engine (Matrix Science, 

London, UK; version 2.2) against SwissProt database (http://www.expasy.ch/ 

sprot/sprot-top.htmlRel.2011_05). Taxonomy was set to human. The peptide mass 

tolerance for database searches was set to 5 ppm and fragment mass tolerance to 

0,5 Da. Carbamidomethylation of C was set as fixed modification. Variable 

modifications included oxidation of M and deamidation of N and Q. One missed 

cleavage site in case of incomplete trypsin hydrolysis was allowed. Furthermore, 

proteins were considered as identified if more than one unique peptide had an 

individual ion score exceeding the MASCOT identity threshold (ion score cut-off of 

30). Identification under the applied search parameters refers to False Discovery 

Rate (FDR) < 3,5% and a match probability of p<0.05, where p is the probability that 

the observed match is a random event. 

 

3.5.3 Data analysis 

Microsoft Office Excel was used to identify proteins, which were found at least in one 

sample of the triplicates. ACVR2-proficient proteins are defined as proteins that were 
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found in at least in one of the +dox triplicates but not in any of the -dox samples. For 

ACVR2-deficient proteins the reverse situation was considered. For classification and 

functional analysis Web-based tools were used. Blast2GO was applied for functional 

annotation of the identified sequences by their GO number. 
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4. RESULTS 

4.1 Establishment of the Model Cell Lines 

4.1.1 Generation of Doxycycline-inducible HCT116-ACVR2 Clones  

In order to investigate whether disturbances of ACVR2 expression and signaling, 

which frequently occur in mismatch repair (MMR)-deficient and high-level 

microsatellite unstable (MSI-H) colorectal tumors might cause alterations in the 

protein glycosylation or even in the “de novo” or steady state cellular proteome, we 

established a cell line based model system. Since constitutive ACVR2 expression 

could show growth inhibiting effects, we decide to get use of a tet-inducible system in 

order to control ACVR2 expression. We pursued two approaches to generate ACVR2 

stable transfectants, but for both we used a model system requiring HCT116 cells 

that contain both a constitutively-expressed transactivator gene as well as a dox-

regulated ACVR2 cDNA stably integrated into the cellular genome. This is a two-

component expression system (Figure 4.1). The CRC cell line HCT116 is MMR-

deficient and therefore exhibits the MSI phenotype. Furthermore, this cell line is 

refractory to activin A-mediated signaling due to biallelic frameshift mutations in the 

A8 coding microsatellite of the endogenous ACVR2 gene (www.seltarbase.org). 

These HCT116 cells (HCT116 AWE17) [138] have been engineered to stably 

express the reverse transcriptional transactivator gene (rtTA) under the control of the 

chicken β-actin promoter. This first component (upper part Figure 4.1) allows 

monitoring of rtTA expression via IRES-based EGFP fluorescence detection and has 

been successfully used for expression of several different genes [139, 140]. These 

herein termed HCT116-tet-on cells enable dox-inducible gene expression and are 

used as the parental cell line. The second component (lower part Figure 4.1) 

containing a tet-controlled bidirectional transcription unit for simultaneous regulation 

of the reporter gene firefly luciferase or red fluorescent protein DsRed and the gene 

of interest is stably transfected into the parental HCT-tet-on cell line. 
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Figure 4.1: HCT116 model system. The model cell system is comprised of two components: the first 

includes a ß-actin promoter for constitutive expression of the tet-controlled reverse transcriptional 

transactivator (rtTA) followed by an internal ribosomal entry site (IRES) that allows concurrent 

transcription of the enhanced green fluorescence protein (EGFP) to monitor gene expression. The 

parental cell line encoding this component is referred to as HCT116-tet-on cell line. The second 

component is a construct that contains a bidirectional dox-inducible promoter (Ptetbi) allowing 

concurrent expression of two marker genes (luciferase or DsRed and ACVR2). The retroviral 

expression cassette is flanked by mutant (F3) and wildtype Flp-recombinase target sites (F). The 

resulting cell line is designated as HCT116-ACVR2 #1 and #2. 

 

In the first approach ACVR2 was cloned by PCR into the dox-regulatable plasmid 

pTRE-Tight-BI-DsRed and verified by DNA sequencing. This expression constructs 

was then co-transfected into HCT116-tet-on cells with a selectable marker plasmid 

conferring Hygromycin B resistance. Once hyg-resistant clones have grown to 

reasonable size they were split and grown in the presence and absence of 1 µg/ml 

dox. Clones that display strong DsRed fluorescence under the fluorescent 

microscope in the presence of dox were also expected to express the candidate 

gene because both are transcribed from the same dox-regulatable bidirectional 

promoter. One clone, HCT116-ACVR2 #1, obtained by this approach was used for 

subsequent studies (left lower panel of Figure 4.1). 

In the second approach we aimed to overcome the problem of stable integration of 

multiple copies at different genomic sites. Therefore, a retroviral vector that - 
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depending on the multiplicity of infection (MOI) - allows isolation of clones with single 

copy integration was used. This approach is based on the publication of Weidenfeld 

et al. [133] and was applied to establish a second ACVR2-reconstituted cell line. As 

recipient cells we used the recently described colorectal cancer master cell line 

HCT116-HygTK [134] that carry at a specific genomic site a HygTK marker gene 

flanked by two recombination sites enabling integration of any gene of interest at this 

particular site (Figure 4.2). For generation of the retroviral vector S2FcLM2CG-FRT3-

ACVR2, the wildtype ACVR2 cDNA was amplified by PCR from the expression 

plasmid pcDNA3.1/His-ACVR2 and a FLAG-tag was added at the C-terminus directly 

before the stop-codon of ACVR2 by PCR. Using the two recombination sites of the 

master cell line, in a subsequent genomic targeting approach (Figure 4.2), the dox-

regulated Luciferase-ACVR2–FLAG expression cassette was inserted into this 

specific genomic site of HCT116-HygTK cells by a single recombination step thereby 

replacing the HygTK expression cassette and conferring ganciclovir-resistance to the 

recombinant clones. The resulting HCT116-ACVR2 # 2 cells showed bi-directional 

expression of an ACVR2 and luciferase reporter gene expression in a dox-dependent 

manner (right lower panel of Figure 4.1).  

Since this reversible expression occurs in an otherwise isogenic background, 

ACVR2-dependent effects can be specifically examined. It is important to note that 

results obtained from both ACVR2-reconstituted systems should reflect the inverse 

situation of the ACVR2-deficient status in MSI primary colorectal tumors. Both 

genetically modified HCT116-ACVR2 clones (#1 and #2) were further characterized 

and used for subsequent analyses. 

 

 

 
 

Figure 4.2: Recombination-mediated cassette exchange (RMCE) strategy. The previously 

described HCT116-HygTK master cell line (HygR, GanciclovirS) carries a HygTK expression cassette 

that is regulated by a constitutive promoter (PCMV) and is flanked by mutated (F3) and wildtype (F) 
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recombination sites. Co-transfection of these cells with the targeting vector S2F-cLM2CG-FRT3-luc-

ACVR2 and a Flpo recombinase encoding plasmid leads to recombination-mediated replacement of 

the HygTK expression cassette by the dox-regulated bi-directional luciferase-ACVR2 expression 

cassette.  

 

4.1.2 Characterization of the HCT116-ACVR2 Clones 

Next these two HCT116-ACVR2 clones were characterized in more detail. Using 

fluorescence microscopy HCT116-ACVR2 #1 cells showed inducible DsRed 

expression in a dox-dependent manner. Moreover, inducible expression of this 

marker was maintained for several months. Luciferase analysis of HCT116-ACVR2 

#2 cells revealed an approximately 250-fold increase of luciferase activity compared 

to the same cells grown in the absence of dox.  

Since these model cell lines lack normal DNA mismatch repair function and thus 

have an increased mutation rate, the A8 coding microsatellite of the reconstituted 

ACVR2 gene might be affected by frameshift mutations during selection and growth 

of HCT116-ACVR2 cells. Therefore, we performed DNA fragment length analysis on 

genomic DNA of HCT116-tet-on control cells and both HCT116-ACVR2 cell clones. 

This type of analysis allows amplicon length resolution at the single nucleotide level. 

Amplification of the A8 repeat of the integrated ACVR2 cDNA from both ACVR2-

reconstituted cell clones (#1 and #2) revealed two peaks (Figure 4.3). The first peak 

corresponds to an amplicon harboring the ACVR2 A7 mutant coding microsatellite 

whereas the second peak originates from an amplicon comprised of the ACVR2 A8 

wildtype repeat (-/wt). In contrast, HCT116-tet-on control cells showed only a single 

peak that reflects A7 coding repeat frameshift mutations in both alleles of the 

endogenous ACVR2 gene (-/-). These results demonstrate that both HCT116-ACVR2 

cell clones have successfully integrated a wildtype copy of the ACVR2 transgene into 

their genome. 
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Moreover, we asked whether the integrated ACVR2 transgene is successfully 

transcribed and therefore transcript-specific primers in real-time RT-PCR analysis 

were used to compare the expression of the endogenous A7 mutant ACVR2 

transcript with the transgenic A8 ACVR2 wildtype transcript. No change in the 

endogenous mutant ACVR2 transcript level was observed for both reconstituted cell 

clones. Instead, dox treatment (1 µg/ml; 20 h) led to a strong induction of the 

transgenic ACVR2 wildtype transcript. HCT116-ACVR2 #1 showed a 23-fold 

induction and HCT116-ACVR2 #2 a 63-fold induction (Figure 4.4).  

 

Figure 4.3: Fragment analysis of the ACVR2 

A7/A8 coding repeat. Electropherograms show a 

single peak in HCT116-tet-on cells (homozygous 

mutant A7 alleles of the endogenous ACVR2 gene) in 

contrast to the both HCT116-ACVR2 cell clones that 

carry a wildtype A8 allele (asterisk) in addition to the 

endogenous mutant allele. 
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Figure 4.4: Reconstitution of ACVR2 on transcript level. Real-time RT-PCR analysis of the 

endogenous mutant (A7) and the transgenic wildtype (A8) ACVRR2 transcripts in the absence and 

presence of dox. Results represent the mean of three independent observations ± S.D. 

 

In addition to these genetic reconstitutions of the ACVR2 gene and transcript 

analyses, the inducibility and functionality of the ACVR2 protein was examined by 

Western blot analysis. First expression of the ACVR2 protein was analyzed for both 

reconstituted cell clones by using a commercially obtained anti-ACVR2 antibody as 

well as an antibody kindly provided by the group of Barbara H. Jung (Northwestern 

Memorial Hospital, Chicago, USA). Different conditions were carried out (for culturing 

the cells as well as for performing the Western blot), but none was successful to 

detect an induction of ACVR2 protein level in the presence of dox of the expected 

size range of 60 kDa (data not shown). Since the HCT116-ACVR2 #2 cell clone 

contained a C-terminal FLAG-tag, the induced ACVR2-FLAG was immune-

precipitated by targeting its FLAG-tag and subsequently immunoblotting was 

performed. The ACVR2 protein was detected as a pattern of bands with an apparent 

molecular weight in the range of 62 kDa in immunoprecipitates from induced (+dox) 

HCT116-ACVR2 cells but not from uninduced (-dox) HCT116-ACVR2 or parental 

HCT116 cells (Figure 4.5). HEK293 cells transiently transfected with an ACVR2 

expression plasmid showed the same band pattern and served as positive control. 
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In addition to proving induction of ACVR2 protein expression, we also examined the 

functional reconstitution of the ACVR2 signaling pathway as an indirect proof. 

Canonical ACVR2-mediated signaling is initiated by the ligand activin A (Act A), 

which upon ACVR1-ACVR2 receptor heterodimerization leads to recruitment and 

phosphorylation of receptor-regulated Smad proteins (Smad2, Smad3). Accordingly, 

phosphorylation of Smad2, the first downstream effector, was examined by Western 

blot analysis. Both HCT116-ACVR2 cell clones exposed to dox (1 µg/ml; 20 h) and 

the ligand Act A (2 h; 10 ng/ml) displayed higher levels of pSmad2 in comparison to 

cells grown in the absence of dox (Figure 4.6). In the absence of Act A and 

independent of ACVR2 reconstitution, almost no pSmad2 protein was observed in 

HCT116-ACVR2 cells. This is similar to the marginal pSmad2 protein expression in 

the HepG2 control cells grown in the absence of TGFß1. This low pSmad2 level was 

increased upon Act A exposure even in the absence of functional ACVR2 protein 

(+Act A, -Dox). However, the significant additional increase of pSmad2 level 

observed upon dox-induction was much higher than the basal level and this 

difference is clearly ACVR2-dependent. This ACVR2-dependent signaling activity can 

thus be interrogated by comparative analysis of both HCT116-ACVR2 cell clones 

grown in the presence of ligand and in the presence / absence of dox. The observed 

alterations are pSmad2-specific because overall Smad2 protein levels remained 

unaffected (Figure 4.6). 

 

Figure 4.5: Reconstitution of ACVR2 on protein 

level. Inducible ACVR2 expression using immuno-

precipitation (anti-Flag) followed by Western blot 

analysis (anti-ACVR2A) (upper section) and Ponceau 

S staining as a loading control (lower section). In the 

presence of dox for 24 h the expression of the 

receptor protein was detected after IP in the 

established HCT116-ACVR2 #2 cell line, whereas in 

the absence of dox no protein was visible just as in 

the parental HCT116 cell line. 293T cells were 

transiently transfected using the pcDNA3.1/His-

ACVR2 construct and used as positive control. 



RESULTS 

64 

 
 

Figure 4.6: Reconstitution of ACVR2 signaling. Detection of Smad2 phosphorylation (pSmad2) by 

Western blot analysis. Treatment with dox (1 µg/ml) and Act A (10 ng/ml) displayed higher levels of 

pSmad2 in comparison to cells grown in the absence of dox. TGFß1-responsive HepG2 cells were 

used as a positive control. Total Smad2 levels were considered as a loading control. 

 

To further validate proper signaling conferred by the reconstituted ACVR2 protein, we 

determined the transcriptional regulation of well-known ACVR2 target genes like 

SMAD7, SERPINE and MYC-C. Real-time RT-PCR analysis revealed dox-dependent 

up-regulation of Smad7 and Serpine transcripts in both reconstituted cell lines. cMyc 

transcript showed a modest down-regulation for HCT116-ACVR2 #2 whereas no 

effect was detected for HCT116-ACVR2 #1 (Figure 4.7). These results are in 

agreement with the literature data and confirmed the functional reconstitution of 

ACVR2-dependent signaling in HCT116-ACVR2 cells. 
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Figure 4.7: ACVR2-dependent regulation of target gene transcription. Real-time RT-PCR 

experiments displayed dox-dependent Smad7 and Serpine up-regulation for both ACVR2-

reconstituted cell lines, whereas cMyc showed a gently dox-dependent down-regulation for the 

HCT116-ACVR2 #2 cell clone, however HCT116-ACVR2 #1 shows no dox-effect. Data are expressed 

as the mean and S.D. of three independent experiments. 

 

In order to investigate whether ACVR2 reconstitution alters cell growth, proliferation 

assays were carried out. When both cell clones (#1 and #2) and the parental cell line 

were grown in the presence or absence of 0.5 µg/ml dox and in the presence of 10 

ng/ml Act A over a period of 5 days the parental HCT116-tet-on cell line grew slightly 

faster than both ACVR2-reconstituted cell clones. Comparison of ACVR2 cell clones 

which each other showed that clone #1 grew slightly faster than clone #2. 

Nevertheless, a significant decrease in proliferation of both ACVR2-expressing cells 

after five days was observed, whereas the parental cell line displayed no growth 

inhibitory effect (Figure 4.8).  

Overall, these results demonstrate that both ACVR2-reconstituted clones express a 

functionally intact ACVR2 protein that exhibits proper ACVR2-mediated signaling and 

confers a growth suppressive effect.  
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Figure 4.8: Proliferation assay of ACVR2-reconstituted cell clones. The growths of the parental 

HCT116-tet-on cells were compared with both HCT116-ACVR2 clones (#1 and #2) in presence and 

absence of dox over a period of five days. Results represent the mean of three independent 

observations ±S.D. 

 

4.2 Analyses of ACVR2-dependent Glycosylation Changes 

4.2.1 Glycosylation Alterations by Lectin Analysis 

In recent work with ACVR2 transiently transfected cells we have obtained preliminary 

evidence that ACVR2 might affect the glycosylation pattern on the cell surface [122]. 

Therefore, and as a first approach to identify ACVR2-dependent glycosylation 

changes, a panel of different plant lectins was chosen. Like in the previous transient 

approach lectin-FACS analyses were performed. However the stable reconstituted 

ACVR2 cell clone #2 showed no significant alterations (Figure 4.9). Similar results 

were obtained for the HCT116-ACVR2 #1 cell clone (data not shown). Even upon 

different cell culture conditions (with / without starvation; 24, 48 or 72 h dox induction) 

no apparent changes between the parental cell line and the ACVR2-reconstituted cell 

clones could be detected. Even when lectin-based immunocytological stainings 

(Figure 4.10) or Western blot analyses (data not shown) were performed, we did not 

uncover any ACVR2-dependent alterations in protein glycosylation. Most likely, these 

methods lack sufficient sensitivity that would be required to uncover dynamic 

changes instead of steady state levels among the total cellular surface proteome.  
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 HCT116-tet-on HCT116-ACVR2 #2 
Lectins -Dox +Dox -Dox +Dox 

AAL 24.5 25.1 25.8 24.5 
DBA 88.1 99.3 46.5 54.8 
JAC 125.5 157.5 89.9 112.3 
LEA 144.5 159.0 219.9 218.3 
PSA 96.0 127.2 95.8 123.1 
SNA 74.0 92.8 116.3 124.5 
VAA 59.6 67.0 83.8 85.9 

 

 

Figure 4.9: Lectin-FACS analysis. (A) Representative FACS analysis of the HCT116-tet-on and 

HCT116-ACVR2 #2 cells by using biotinylated AAL. Cells were grown in the presence or absence of 

dox for 72 h. (B) Panel of biotinylated plant lectins used for FACS analysis. Values represent the Y 

geometric mean fluorescence intensities of three independent experiments. FL1-H: EGFP; FL2-H: 

streptavidin-PE. 
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Figure 4.10: Immunocytology (IC) analysis using Aleuria Aurantia Lectin (AAL). IC Staining of 

both ACVR2-reconstituted cell lines (#1 and #2) in the presence or absence of dox. AAL performed 

diffuse staining without showing differences in treated versus untreated cells.  

 

4.2.2 Glycosylation Alterations by Radioactive Labeling 

Based on these results, we assumed that glycan variations at steady state levels 

might not be detectable proteins. Accordingly, radioactive labeling experiments were 

performed using two independent 3H-labeled saccharides, L-fucose and ManNAc. 

With this experimental approach, measurements were focused on newly synthesized 

glycoproteins. As a first approach, different time periods (24 h, 48 h and 72 h) were 

examined. It turned out, that the incorporation of 3H-ManNAc, a precursor of sialic 

acid, increased over time with a peak at about 72 h. Therefore measurements were 

performed after 72 h incorporation. Upon dox (0.5 µg/ml) induction and addition of 

Act A (10 ng/ml) for 72 h, a significant reduction of incorporated 3H-L-fucose occurred 

in both ACVR2 clones but not in the parental HCT116-tet-on cell line (Figure 4.11 A). 

Reconstituted expression of wildtype ACVR2 led to a reduction of 11% and 25% for 

HCT116-ACVR2 #1 and HCT116-ACVR2 #2 cells, respectively. These results 

suggest that ACVR2 regulates the fucosylation of newly synthesized proteins. After 

induction of ACVR2 expression, incorporation of 3H-ManNAc showed a significant 

increase in protein sialylation only in one of both clones (HCT116-ACVR2 #2) (Figure 

4.11 B).  

In order to identify if differential expression of one of the enzymes known to be 

involved in fucosylation might have caused the observed reduction of incorporated 
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fucose, real-time RT-PCR analysis was performed. However, neither 

fucosyltransferases nor fucosidases nor enzymes involved in the de novo or salvage 

pathway showed any significant alterations (< 0.5- or > 2-fold induction) at the 

transcript level in dox-treated versus untreated cells (Table 4.1). This was not due to 

short term treatment because similar results were obtained after 48 h and 72 h. 

 

 

 

 

 
 

Figure 4.11: Incorporation of 3H-labeled saccharides. Radioactive labeling experiments were 

performed with both ACVR2-reconstituted cell clones and the parental cell line. Cells were grown in 

the presence and absence of dox and by exposure to Act A for 72 h. (A) Incorporation of 3H-L-fucose 

was reduced in presence of dox in both ACVR2 clones, in contrast to HCT116-tet-On cells. (B) 

Incubation with 3H-ManNAc resulted in an increase of incorporated ManNAc in the HCT116-ACVR2 

A 
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#2 cells, but neither in the HCT116-ACVR2 #1 cell clone nor in the parental HCT116-tet-on cell line. 

Values represent the mean of three independent experiments ±S.D. 

 

Table 4.1: Expression analysis of fucosyltransferases, fucosidases and enzymes involved in 

the fucose pathway by real-time RT-PCR analysis.  

Enzyme Description Fold induction

POFUT2 Protein O-fucosyltransferase 2 1.55 
FUCA1 Fucosidase, alpha-L- 1 1.50 
POFUT1  Protein O-fucosyltransferase 1 1.42 
FUCA2 Fucosidase, alpha-L- 2 1.36 
FUT2 Fucosyltransferase 2 1.32 
FUT11 Fucosyltransferase 11 1.31 
FUT 1 Fucosyltransferase 1 1.27 
FUT10 Fucosyltransferase 10 1.24 
FUK Fucokinase 1.15 
FUT8 Fucosyltransferase 8 1.09 
TSTA3 GDP fucose synthase 0.97 
TNNI3K GDP-fucose pyrophosphorylase 0.95 
GMDS GDP-mannose 4,6-dehydratase 0.90 
SLC35C1  Solute carrier family 35, member C1 0.85 
 

4.2.3 Glycosylation Alterations by Glyco-Gene Chip Analysis 

In order to get a more comprehensive view on transcript alterations induced by 

ACVR2 expression and possible specific mechanisms of glycan alterations in 

ACVR2-deficient tumor cells, a glyco-gene oligonucleotide microarray analysis was 

performed. At this time point only one of both cell clones, namely HCT116-ACVR2 

#2, was used for further analysis, since both clones showed similar characteristics in 

all previous experiments. For this purpose, RNA was extracted from the HCT116-

ACVR2 #2 cells and sent to the Consortium for Functional Glycomics (CFG) to 

compare the transcription of genes involved in glycosylation in the presence or 

absence of ACVR2. The Glyco-Gene Chip contained transcripts of approximately 

1000 human genes, including glycosyltransferases, galectins, growth factors and 

receptors and glycan-degrading proteins. The results of the Glyco-Gene Chip 

analysis are summarized in Table 4.2 and revealed changes in several transcripts 

comparing dox-treated versus untreated cells after 20 h induction and exposure to 

Act A for 2 h. Notably, the transcript level of ACVR2 itself remained unchanged by 

the Glyco-Gene Chip analysis, whereas real-time PCR analysis demonstrated dox-

inducible increase in ACVR2 transcript level. The microarray data also showed that 

transcripts of enzymes involved in fucosylation were not regulated by ACVR2 

expression, confirming the previous results of the real-time RT-PCR (Table 4.1).  
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Strikingly, two transcripts involved in the Notch pathway (LFNG and HES1), seemed 

to be associated with the ACVR2 signaling pathway. The glycosyltransferase LFNG 

is involved in Notch receptor signaling by changing the binding affinities of the Notch 

ligands. LFNG transfers GlcNAc onto fucose residues of the EGF repeats of the 

Notch receptor. GlcNAc is the precursor substrate for the assembly of additional 

saccharides, such as galactose and α2,3-sialic acid. Thus, studying the interaction 

between Notch and ACVR2 signaling would be an interesting point for further 

analysis. 

 

 

Table 4.2: Glyco-Gene Chip analysis of the HCT116-ACVR2 #2- cell clone.  

HCT116-ACVR2 #2 
  Accession No Gene Title Category Fold Change 

u
p

re
g

u
la

te
d

 

NM_002229 JUNB Miscellaneous 2.01 

NM_005524 HES1 Notch pathway 1.95 

NM_001040167 LFNG Glycan-transferase 1.80 

NM_002608 PDGFB Growth Factors & Receptors 1.71 

uc001pjs SLC35F2 Nuc. Sugar 1.38 

NM_003862 FGF18 Growth Factors & Receptors 1.32 

d
o

w
n

-
re

g
u

la
te

d
 

NM_016523 KLRF1 CBP:C-Type Lectin 0.75 

NM_130851 BMP4 Growth Factors & Receptors 0.71 

NM_002010 FGF9 Growth Factors & Receptors 0.61 
 

4.3 ACVR2-Dependent Alterations of Newly Synthesized Proteins 

4.3.1 Analysis of the Whole De Novo Proteome 

Since studying newly synthesized proteins seemed to be more promising than 

addressing the steady state levels, newly (de novo) synthesized proteins were 

analyzed as a next step. Therefore, the genetically modified cell line clone #2 was 

used for a click chemistry approach to determine which proteins might contribute to 

MSI colorectal tumorigenesis. As a basic principle, the click chemistry approach 

relies on metabolic labeling with azidohomoalanine, an azide-bearing analog of 

methionine, that upon incorporation into the nascent polypeptide chain can form a 

stable triazole conjugate with alkyne-activated biotin thereby enabling selective 

capture and covalent binding of de novo synthesized proteins to streptavidin-

conjugated magnetic beads and subsequent identification of tryptic peptides by mass 
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spectrometry. Applying this approach to Act A stimulated HCT116-ACVR2 #2 cells 

grown either in the presence or absence of dox and using several filter and selection 

criteria we identified a set of 513 proteins termed herein the “de novo proteome” 

(Figure 4.12).  

 

 

 
 

Figure 4.12: De novo proteome of HCT116-ACVR2 #2 cells. Individual metabolically labeled protein 

species detected by mass spectrometry in both ACVR2-proficient as well as in ACVR2-deficient cells 

(light grey area). The subset of differentially expressed proteins is indicated (dark grey) and splits up 

into protein species expressed exclusively in ACVR2-proficient (dashed area) or ACVR2-deficient cells 

(dotted area). 

 

Only proteins recognized by at least two unique peptides and with an ion score of at 

least 30 were considered valid candidates. The majority of these de novo 

synthesized proteins (78%, 400/513) were detected in both dox-induced and -

uninduced cells and hence remained unaffected by the ACVR2 expression status 

(Figure 4.12). However, a subset of proteins (22%, 113/513) showed a clear ACVR2 

dependency and thus defined the ACVR2-dependent de novo proteome. Most of 

these proteins (68%, 77/113) were detected exclusively in dox-treated ACVR2-

proficient HCT116-ACVR2 cells (Figure 4.12, Table 4.3 A). For some of these 

proteins like CALU, DEK, LETM1, IBP2, IF4B, KI67, MCM2, NP1L1, RBM8A and 

S10AB a link to tumorigenesis has been reported [141-150]. In contrast, a much 

smaller number of de novo synthesized proteins (32%, 36/113) was associated with 
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lack of ACVR2 expression in HCT116-ACVR2 cells (Figure 4.12, Table 4.3 B). 

Candidate proteins of this subset include the Flap endonuclease 1 (FEN1), a histone 

H2A variant (H2A1C), a Rho-related GTP-binding protein (RhoC), a 60S ribosomal 

protein (RL10a), and a subunit of the facilitator of chromatin transcription-complex 

(SPT16H). Human keratins detected within this set are well known contaminants 

resulting from sample processing. Analyzing the magnetic beads used to capture the 

modified proteins identified 5 proteins resulting from preblocking of the beads by the 

manufacturer (Table 4.4). 
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Table 4.3. De Novo Proteome of ACVR2-Proficient (A) and ACVR2-Deficient Cells (B). Occurrence under these conditions is mutually exclusive. Only protein 

hits with at least two unique peptides and with a minimal ion score of 30 were considered as identified. Experiments were performed in biological triplicates. 

Protein molecular weights (Mass), Mascot scores (Score), number of unique peptides (Peptides) and protein sequence coverage (Cov.[%]) are displayed for each 

protein with highest score annotated in UniProt. 

 

 

ACVR2 proficient 
Accession No Protein Description Mass [Da] Score Peptides Cov. [%] 
1B15_HUMAN HLA class I histocompatibility antigen, B-15 alpha chain  40648 153 3 15.5 
1C17_HUMAN HLA class I histocompatibility antigen, Cw-17 alpha chain  41612 243 5 19.9 
ABHDA_HUMAN Mycophenolic acid acyl-glucuronide esterase, mitochondrial  34253 99 2 8.8 
ADT3_HUMAN ADP/ATP translocase 3  33073 255 5 18.5 
APLP2_HUMAN Amyloid-like protein 2  87927 107 2 5.2 
AT2A2_HUMAN Sarcoplasmic/endoplasmic reticulum calcium ATPase 2  116336 80 2 2.7 
CAB45_HUMAN 45 kDa calcium-binding protein 41895 75 2 11 
CALU_HUMAN Calumenin 37198 308 7 49.8 
CC124_HUMAN Coiled-coil domain-containing protein 124 25820 122 2 26 
CERU_HUMAN Ceruloplasmin 122983 126 2 3.8 
CHRD1_HUMAN Cysteine and histidine-rich domain-containing protein 1 38264 72 2 9.3 
DCTN2_HUMAN Dynactin subunit 2 44318 92 2 8.5 
DDX1_HUMAN ATP-dependent RNA helicase DDX1 83349 80 2 5.3 
DEK_HUMAN Protein DEK 42933 81 2 5.9 
DNJA2_HUMAN DnaJ homolog subfamily A member 2 46344 105 2 9.2 
DX39B_HUMAN Spliceosome RNA helicase DDX39B 49416 301 4 16.6 
EIF3H_HUMAN Eukaryotic translation initiation factor 3 subunit H 40076 77 2 8 
EIF3M_HUMAN Eukaryotic translation initiation factor 3 subunit M 42932 75 2 10.2 
EMD_HUMAN Emerin 29033 84 2 8.7 
GDIR1_HUMAN Rho GDP-dissociation inhibitor 1 23250 86 2 15.2 
GRB2_HUMAN Growth factor receptor-bound protein 2 25304 191 5 35.5 
H2A2B_HUMAN Histone H2A type 2-B 13987 93 2 12.3 
H31T_HUMAN Histone H3.1t  15613 214 3 33.1 
HP1B3_HUMAN Heterochromatin protein 1-binding protein 3  61454 103 2 5.6 
IBP2_HUMAN Insulin-like growth factor-binding protein 2  35875 117 2 7.7 

A 
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IF2A_HUMAN Eukaryotic translation initiation factor 2 subunit 1  36374 128 2 6.3 
IF4B_HUMAN Eukaryotic translation initiation factor 4B  69167 107 3 7.9 
ITB4_HUMAN Integrin beta-4  205745 125 2 1.8 
JUNB_HUMAN Transcription factor jun-B 36028 145 2 13.8 
KI67_HUMAN Antigen KI-67  360698 112 2 1 
LAP2B_HUMAN Lamina-associated polypeptide 2, isoforms beta/gamma  50696 306 5 24 
LC7L3_HUMAN Luc7-like protein 3  51834 84 2 5.8 
LETM1_HUMAN LETM1 and EF-hand domain-containing protein 1, mitochondrial  83986 122 3 6.1 
MCM2_HUMAN DNA replication licensing factor MCM2  102516 70 2 3.9 
METK2_HUMAN S-adenosylmethionine synthase isoform type-2  43975 96 2 10.9 
NOP56_HUMAN Nucleolar protein 56  66408 70 2 4 
NP1L1_HUMAN Nucleosome assembly protein 1-like 1  45631 155 2 11.8 
OCAD1_HUMAN OCIA domain-containing protein 1  27780 101 2 9.4 
PDCD5_HUMAN Programmed cell death protein 5 14276 97 2 20.8 
PDIA6_HUMAN Protein disulfide-isomerase A6  48490 163 2 12 
POMP_HUMAN Proteasome maturation protein 15836 75 2 17.7 
PRS8_HUMAN 26S protease regulatory subunit 8 45768 168 3 11.8 
PSA_HUMAN Puromycin-sensitive aminopeptidase  103895 60 2 2.7 
PSA5_HUMAN Proteasome subunit alpha type-5 26565 113 2 12 
PSME1_HUMAN Proteasome activator complex subunit 1  28876 63 2 14.5 
PSME2_HUMAN Proteasome activator complex subunit 2  27555 57 2 14.6 
PUR2_HUMAN Trifunctional purine biosynthetic protein adenosine-3  108953 141 2 6 
RBM8A_HUMAN RNA-binding protein 8A  19934 92 2 10.9 
RBP56_HUMAN TATA-binding protein-associated factor 2N  62021 177 3 9.6 
RCN1_HUMAN Reticulocalbin-1 38866 120 2 11.5 
RL17_HUMAN 60S ribosomal protein L17  21611 145 3 21.7 
RL36_HUMAN 60S ribosomal protein L36  12303 131 2 34.3 
RL6_HUMAN 60S ribosomal protein L6  32765 119 3 13.5 
RS17L_HUMAN 40S ribosomal protein S17-like  15597 83 2 24.4 
RS27L_HUMAN 40S ribosomal protein S27-like  9813 85 2 25 
RS7_HUMAN 40S ribosomal protein S7  22113 69 2 17 
RUXGL_HUMAN Small nuclear ribonucleoprotein G-like protein  8595 64 2 25 
S10A6_HUMAN Protein S100-A6  10230 84 2 16.7 
S10AB_HUMAN Protein S100-A11  11847 116 2 30.5 
SF3B3_HUMAN Splicing factor 3B subunit 3 136575 114 2 2.1 
SMD2_HUMAN Small nuclear ribonucleoprotein Sm D2  13632 109 2 32.2 
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SRSF9_HUMAN Serine/arginine-rich splicing factor 9  25640 111 2 14.9 
SYNC_HUMAN Asparagine--tRNA ligase, cytoplasmic  63758 78 2 3.5 
SYTC_HUMAN Threonine--tRNA ligase, cytoplasmic  84294 88 2 3 
TBA4A_HUMAN Tubulin alpha-4A chain  50634 566 9 39.7 
TBB4A_HUMAN Tubulin beta-4A chain  50010 794 13 44.4 
TCTP_HUMAN Translationally-controlled tumor protein  19697 135 2 23.3 
TMX1_HUMAN Thioredoxin-related transmembrane protein 1  32170 73 2 7.9 
TNPO1_HUMAN Transportin-1 O 103771 128 2 3.6 
TRAP1_HUMAN Heat shock protein 75 kDa, mitochondrial  80345 198 3 6.4 
TRI25_HUMAN E3 ubiquitin/ISG15 ligase TRIM25  72581 64 2 4.4 
TXNL1_HUMAN Thioredoxin-like protein 1  32630 110 2 19.7 
TXNL1_HUMAN Thioredoxin-like protein 1  32630 110 2 19.7 
UBP2L_HUMAN Ubiquitin-associated protein 2-like  114579 90 2 1.8 
UBQL1_HUMAN Ubiquilin-1  62479 112 2 7.8 
VAPA_HUMAN Vesicle-associated membrane protein-associated protein A  28103 150 2 17.7 
VDAC3_HUMAN Voltage-dependent anion-selective channel protein 3  30981 75 2 8.1 

 

 

 

ACVR2 deficient 
Accession No Protein Description Mass [Da] Score Peptides Cov. [%] 
1C06_HUMAN HLA class I histocompatibility antigen, Cw-6 alpha chain  41399 185 3 15.8 
ACTBL_HUMAN Beta-actin-like protein 2  42318 280 5 14.6 
BUB3_HUMAN Mitotic checkpoint protein BUB3 37587 83 2 7 
C1TC_HUMAN C-1-tetrahydrofolate synthase, cytoplasmic 102180 66 2 2 
CBX1_HUMAN Chromobox protein homolog 1 21519 75 2 21.6 
CNN3_HUMAN Calponin-3 36562 72 2 6.7 
DHX15_HUMAN Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15 91673 89 2 3.8 
DJB11_HUMAN DnaJ homolog subfamily B member 11 40774 93 2 7.5 
DLDH_HUMAN Dihydrolipoyl dehydrogenase, mitochondrial 54713 118 2 6.9 
DNJB1_HUMAN DnaJ homolog subfamily B member 1 38191 68 2 7.4 
DSG2_HUMAN Desmoglein-2 123016 187 3 4.6 
EFHD2_HUMAN EF-hand domain-containing protein D2 26794 73 2 7.5 
FEN1_HUMAN Flap endonuclease 1 42908 92 2 9.7 

B 
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G6PI_HUMAN Glucose-6-phosphate isomerase 63335 140 2 7.2 
GDIB_HUMAN Rab GDP dissociation inhibitor beta 51087 64 2 6.7 
GLOD4_HUMAN Glyoxalase domain-containing protein 4 35170 69 2 7.3 
H2A1C_HUMAN Histone H2A type 1-C 14097 189 3 32.3 
HNRH3_HUMAN Heterogeneous nuclear ribonucleoprotein H3  36960 67 2 5.2 
IF4G2_HUMAN Eukaryotic translation initiation factor 4 gamma 2  102810 107 2 4 
KIF5C_HUMAN Kinesin heavy chain isoform 5C  109997 113 2 2.6 
MAGB2_HUMAN Melanoma-associated antigen B2  35426 149 3 15 
MTAP_HUMAN S-methyl-5'-thioadenosine phosphorylase  31729 79 2 9.5 
NAA50_HUMAN N-alpha-acetyltransferase 50  19614 70 2 11.8 
PSIP1_HUMAN PC4 and SFRS1-interacting protein 60181 111 2 8.5 
PSMD4_HUMAN 26S proteasome non-ATPase regulatory subunit 4  40939 152 2 16.2 
RAB5C_HUMAN Ras-related protein Rab-5C  23696 71 2 10.6 
RHOC_HUMAN Rho-related GTP-binding protein RhoC  22334 229 2 46.6 
RL10A_HUMAN 60S ribosomal protein L10a  24987 80 2 11.1 
RS21_HUMAN 40S ribosomal protein S21  9220 93 2 22.9 
RU2B_HUMAN U2 small nuclear ribonucleoprotein B''  25470 86 2 11.6 
RUVB1_HUMAN RuvB-like 1  50538 86 2 7.5 
RUVB2_HUMAN RuvB-like 2  51296 124 3 7.1 
SP16H_HUMAN FACT complex subunit SPT16  120409 133 2 5.2 
SQSTM_HUMAN Sequestosome-1  48455 164 4 14.8 
SRP14_HUMAN Signal recognition particle 14 kDa protein  14675 72 2 16.2 
SYG_HUMAN Glycine--tRNA ligase  83854 131 3 3.9 

 

 

Table 4.4. Proteins Comprising Blocked Beads. These proteins were detected by tryptic digestion of streptavidin-coated beads washed and incubated with 

pure sample buffer instead of protein samples. 

Accession No Protein Description Mass [Da] Score Peptides Cov. [%] 
ALBU_BOVIN Serum albumin  71244 3326 42 82.4 
APOA1_BOVIN Apolipoprotein A-I  30258 162 2 14 
CERU_SHEEP Ceruloplasmin  120020 305 3 8.6 
SAV_STRAV Streptavidin  18822 445 4 41 
TTHY_BOVIN Transthyretin  15831 403 5 50.3 
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4.3.2 Analysis of Fucosylated De Novo Proteins 

In a next step the focus was set on the fucosylated proteins, since previous 

radioactive labeling experiment indicate an ACVR2-dependent change in fucose 

incorporation. Therefore, the ACVR2-reconstituted cell line clone #2 was used again 

for a click chemistry approach to determine ACVR2-dependent alterations of the de 

novo synthesized fucosylated proteins. This time, the click chemistry approach relies 

on metabolic labeling with fucose-alkyne, which can form a stable triazole conjugate 

with azide-activated biotin. Identification of tryptic peptides was also performed by 

mass spectrometry. Applying this approach to Act A stimulated HCT116-ACVR2 #2 

cells grown either in the presence (+ACVR2) or absence (-ACVR2) of dox and using 

several filter and selection criteria identified a set of 70 candidate proteins (Figure 

4.13). 

 

 

 
 

Figure 4.13: Fucosylated de novo proteins of HCT116-ACVR2 #2 cells. Individual metabolically 

labeled protein species detected by mass spectrometry in both ACVR2-proficient as well as in 

ACVR2-deficient cells (light grey area). The subset of differentially expressed proteins is indicated 

(dark grey) and splits up into protein species expressed exclusively in ACVR2-proficient (dashed area) 

or ACVR2-deficient cells (dotted area). 
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Almost half of these de novo synthesized proteins also including the non-specifically 

bound proteins (49%, 34/70) were detected in both dox-treated and -untreated cells 

and hence remained unaffected by the ACVR2 expression status (Figure 4.13). 

However, a similar number of proteins (51%, 36/70) showed a clear ACVR2 

dependency and thus defined ACVR2-dependent de novo synthesized fucosylated 

proteins. Most of these proteins (64%, 23/36) were detected exclusively in dox-

treated ACVR2-proficient HCT116-ACVR2 cells (Figure 4.13, Table 4.5 A). For some 

of these proteins like ANXA2, HMGA1, NUCL, PRIO, S10A8 and SRSF3 a link to 

tumorigenesis in the colon has been reported [2-6, 151]. Notably, we also identified a 

smaller set of newly synthesized proteins (36%, 13/36), that were detected 

exclusively in ACVR2-deficient HCT116-ACVR2 cells (Figure 4.13, Table 4.5 B). 

Proteins synthesized under this condition might be of particular clinical relevance 

because loss of normal ACVR2 signaling is one of the most frequent events that 

occurs during the development of MSI colorectal tumors. Candidate proteins of this 

subset including CD166, EZRI, ITA3 and PODXL are already known to be associated 

with colon cancer [7-9, 11].  

More detailed information about all proteins identified by these mass spectrometry 

approaches is provided on the CD as annex to this work. Overall, these results 

illustrate the potential of our approach to correlate a tumor-relevant driver mutation 

(ACVR2) with specific changes in the tumor cell proteome. Moreover, the 

combination of our cellular model system with specific proteomic analysis represents 

a powerful novel approach to identify gene-specific cellular proteomic states and also 

can easily be adapted to other genes or modulators of cellular growth in a time- and 

dose-dependent manner. 
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Table 4.5. Fucosylated De Novo Synthesized Proteins of ACVR2-Proficient (A) and ACVR2-Deficient Cells (B). Occurrence under these conditions is 

mutually exclusive. Only proteins hits with at least two unique peptides and with a minimal ion score of 30 were considered as identified. Experiments were 

performed in biological triplicates. Protein molecular weights (Mass), Mascot scores (Score), number of unique peptides (Peptides) and protein sequence 

coverage (Cov.[%]) are displayed for each protein with highest score annotated in UniProt. 

 

 

ACVR2-Proficient 
Accession No Protein Description Mass [Da] Score Peptides Cov [%] 
1B13_HUMAN HLA class I histocompatibility antigen, B-13 alpha chain 40791 186 4 15.5 
1B15_HUMAN HLA class I histocompatibility antigen, B-15 alpha chain  40648 201 5 19.3 
ANXA2_HUMAN Annexin A2  38808 158 2 13 
H2A1A_HUMAN Histone H2A type 1-A  14225 99 2 12.2 
HMGA1_HUMAN High mobility group protein HMG-I/HMG-Y  11669 83 2 23.4 
LDHA_HUMAN L-lactate dehydrogenase A chain  36950 95 2 8.1 
NOLC1_HUMAN Nucleolar and coiled-body phosphoprotein 1  73560 301 7 13 
NUCL_HUMAN Nucleolin  76625 526 11 23.2 
PCLO_HUMAN Protein piccolo  554704 57 2 0.3 
PRIO_HUMAN Major prion protein  27871 106 2 12.3 
RU17_HUMAN U1 small nuclear ribonucleoprotein 70 kDa  51583 114 2 5.7 
S10A8_HUMAN Protein S100-A8  10885 88 2 19.4 
SRS10_HUMAN Serine/arginine-rich splicing factor 10  31339 108 2 10.3 
SRSF1_HUMAN Serine/arginine-rich splicing factor 1 27842 744 13 47.6 
SRSF2_HUMAN Serine/arginine-rich splicing factor 2  25461 249 5 20.8 
SRSF3_HUMAN Serine/arginine-rich splicing factor 3  19546 419 6 43.9 
SRSF5_HUMAN Serine/arginine-rich splicing factor 5  31359 122 2 10.7 
SRSF6_HUMAN Serine/arginine-rich splicing factor 6 39677 195 4 12.2 
SRSF7_HUMAN Serine/arginine-rich splicing factor 7  27578 340 6 28.6 
SRSF9_HUMAN Serine/arginine-rich splicing factor 9  25640 87 2 8.1 
TCP4_HUMAN Activated RNA polymerase II transcriptional coactivator p15  14386 191 3 30.7 
TR150_HUMAN Thyroid hormone receptor-associated protein 3  108658 146 2 4.1 
TRA2B_HUMAN Transformer-2 protein homolog beta  33760 143 2 12.8 

 

A 
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ACVR2-Deficient 
Accession No Protein Description Mass [Da] Score Peptides Cov [%] 
1A02_HUMAN HLA class I histocompatibility antigen, A-2 alpha chain  41181 82 2 6 
1A33_HUMAN HLA class I histocompatibility antigen, A-33 alpha chain 41151 235 5 21.4 
1B07_HUMAN HLA class I histocompatibility antigen, B-7 alpha chain  40777 95 2 6.1 
1B44_HUMAN HLA class I histocompatibility antigen, B-44 alpha chain  40798 183 4 13.3 
1C12_HUMAN HLA class I histocompatibility antigen, Cw-12 alpha chain  41316 197 4 19.1 
CAB45_HUMAN 45 kDa calcium-binding protein  41895 86 2 9.7 
CD166_HUMAN CD166 antigen  65745 80 2 3.6 
EZRI_HUMAN Ezrin  69484 96 2 4.1 
GOLM1_HUMAN Golgi membrane protein 1  45477 269 4 24.7 
ITA3_HUMAN Integrin alpha-3  117735 100 2 2.9 
PODXL_HUMAN Podocalyxin  59055 63 2 3.8 
TGON2_HUMAN Trans-Golgi network integral membrane protein 2 51082 120 2 8.1 
TMED9_HUMAN Transmembrane emp24 domain-containing protein 9  27374 75 2 7.2 

 

 

B 
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5. DISCUSSION 

5.1 Inducible ACVR2 Expression in a MSI CRC Cell Line Model 

System 

The development of colorectal cancer is a multistep process occurring in a timeframe 

of many years, whereby the maintenance of healthy colon tissue homeostasis which 

is regulated by the balance between several key signal transduction pathways, 

including TGF-ß, Activin, BMP, Wnt and Notch pathways [152, 153] gets disrupted. 

Comprehensive molecular characterization of CRC tumors at the DNA and RNA level 

has shaped our current knowledge about the molecular mechanisms that drive the 

formation of CRC. The next step is to assign molecular, cellular and biochemical 

functions to these predicted gene products and to explain how these products 

regulate complex physiological processes in cancer. In MSI CRC one main signaling 

pathway, mediated by the TGF-ß superfamily, controlling many major cellular 

processes is inactivated. In this study the signaling pathway mediated by activin A is 

focused. Mutations in several genes involved in the activin signaling pathway have 

been characterized in colon cancers. One of these genes reported to show a high 

frequency of coding microsatellite frameshift mutations in MSI colorectal tumors is 

the gene encoding the activin receptor type 2 A. ACVR2 contains polyadenine tracts 

at exons 3 and 10 but only its exon 10 A8 tract is mutated in ~85% of colorectal 

cancers with MSI [72, 73]. The biallelic frameshift mutation causes ACVR2 protein 

loss, signaling disruption and is associated with histologically poor grade tumors and 

significantly larger volume tumors [73, 74]. In the early phase of cancer development 

activin signaling inhibits cancer cell growth. At later stages it acts as a tumor 

promoter as it is coupled to MSI tumorigenesis. It has been reported that restoration 

of ACVR2 in colon cancer cells causes growth suppression [57]. Apart from such 

genetic alterations resulting primarily in proteomic changes, glycosylation changes 

are also a universal feature of malignant transformation and tumor progression. 

Therefore, it is reasonable to assume that the mutator phenotype in MSI tumor cells 

also affects the cellular glycosylation machinery either directly by mutational 

inactivation of the enzymes or indirectly by interfering with key signaling pathways 

like the ACVR2 pathway that might regulate normal cellular glycosylation signatures. 
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As a major goal of this work, ACVR2-specific downstream signaling effects were 

analyzed in an ACVR2 deficient and MSI colorectal cancer cell line (HCT116) 

genetically modified to re-express a wildtype ACVR2 cDNA in a doxycycline-

regulated manner (HCT116-ACVR2). Reconstitution of wildtype ACVR2 expression 

already has been reported in one previous study demonstrating growth inhibition and 

enhanced migration of recombinant clones [57]. However, these authors stably 

introduced an entire copy of chromosome 2 into HCT116 cells and thus could not 

exclude potential confounding effects by other genes residing on this additional 

chromosome.  

Therefore, the first aim of this study was to generate a HCT116-derived MSI CRC 

cell line that allows inducible expression of an ACVR2 transgene in a time-dependent 

manner. To this end, the tetracycline-controlled gene expression system (tet System) 

[154] was used, which drives expression of the ACVR2 gene only in presence of 

doxycycline (dox). It is important to note that results obtained from this ACVR2-

reconstituted model system should reflect the inverse situation of the ACVR2-

deficient status in MSI primary colorectal tumors, since induction with dox activates 

the wildtype ACVR2 signaling pathway. While the first ACVR2-reconstituted cell 

clone was established by applying conventional transfection, for the second one the 

problem of stable integration of multiple copies at different genomic sites should be 

overcome by using a retroviral vector that - depending on the multiplicity of infection 

(MOI) – allows isolation of clones with single copy integration. This approach is 

based on the publication of Weidenfeld et al. published in 2009 [133]. Lee et al. [134] 

generated the HCT116-HygTK master cell line, being Hyg-resistant and sensitive to 

Gan (Hygr, Gans), which underwent a second RMCE resulting in a second ACVR2-

reconstituted cell clone that conferred dox-inducible expression of ACVR2 and 

luciferase concurrently and had at the same time a C-terminal FLAG-tag. These two 

HCT116-ACVR2 cell clones were studied in detail regarding the DNA, RNA and 

protein level and its effect on proliferation. The integration of a wildtype copy of the 

ACVR2 transgene into the HCT116 cell genome and the dox-inducible increase of 

the transgenic ACVR2 have been nicely displayed. However, ACVR2 protein 

expression in dox-induced cells could not be confirmed by analyzing the protein 

lysates directly to Western blot analysis. Although this strategy aims to detect 

physiological expression levels, this detection limit is apparently not reached for low 

abundant proteins like the ACVR2 receptor which is present in less than 500 copies 
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per cell [155]. However, the ACVR2 induction was verified by combining 

immunoprecipitation with Western blot analysis. Thereby, for HCT116-ACVR2 #2, 

containing a FLAG-tag, the reconstitution of the ACVR2 protein could be shown. 

Additionally, our proof of reconstituted ACVR2 signaling in the dox-induced cells 

demonstrates that functional amounts of the receptor are expressed. This is shown 

by two approaches – pSmad2 Western blot analysis and real-time RT-PCR of three 

known target genes of the ACVR2 pathway. In the Smad signaling experiment, 

increased pSmad2 levels were clearly detected upon exposure to exogenous activin 

A when wildtype ACVR2 protein was expressed. However, even in the absence of 

wildtype ACVR2 protein, there was a basal amount of pSmad2. This is consistent 

with the observation that activin A is also able to bind to other receptors, like 

ACVR2B [156]. While ACVR2B is abundant in normal sera, a significant increase in 

the expression level of ACVR2B on CRC cell lines and colonic mucosa was shown 

by immunoblotting and immunohistochemistry on tissue microarray [157]. 

Furthermore, increased concentrations of activin A have been observed in malignant 

conditions [158, 159]. Measuring the proliferation of HCT116-ACVR2 cells compared 

to the parental cell line showed like expected a dox-dependent slower proliferation 

rate. Thus, restoration of ACVR2 in colon cancer cells caused growth suppression. 

Since both cell clones showed similar characteristics, we decided to perform further 

approaches using only one clone, representing ACVR2 reconstitution.  

Taken together, the experimental system established in this present study includes a 

variety of different advantages. First of all it enables switching the gene of interest on 

and off, thus overcoming the troubles of continuous gene expressing. At the same 

time, the consequences of short-term and long-term ACVR2 expression and 

signaling can be easily determined. In fact, these cells have been cultured for almost 

three years without losing their ability to inducibly express ACVR2. This model cell 

line can easily be used for large-scale production and isolation of altered proteins, 

including glycoproteins, which may provide novel targets or biomarkers suitable for 

MSI tumor diagnostics and therapy. It is important to emphasize that the HCT116-

HygTK master cell, which has been used in this study to generate the HCT116-

ACVR2 clones, can be used for retargeting any gene of interest at the identified 

genomic loci. Thus, this model system allows addressing any tumor target gene and 

thereby provides a broad applicability to study the functional consequences and 

biological relevance of a given MSI tumor-associated mutation. 
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5.2 ACVR2-Dependent Glycosylation Changes 

The transition of healthy tissue to tumor tissue is associated with multiple changes, 

one of which is the glycosylation status of proteins, especially at the surface of the 

tumor cell. Normal regeneration of the mucosa of the gut, which is faster than in any 

other tissue, may cause unrestricted proliferation of colon cells and create benign 

colon neoplasm through mutation of oncogenes and / or tumor suppressor genes 

[160]. Since, the intestinal epithelial coat consists largely of various glycoconjugates, 

understanding the signaling events changing these glycan changes are a major task 

of this study. Therefore, the challenge was to examine if and how ACVR2, a key 

signaling receptor in normal and malignant colon epithelium, might affect the cellular 

glycosylation profile. 

Lectins are carbohydrate-binding proteins that are useful markers for localization and 

characterization of glycoconjugates. They derive from plants, prokaryote and 

invertebrate species and have been applied to characterize some peripheral sugars. 

Thus, lectins have frequently been used as a tool to study glycosylation of tumor 

tissues. In previous work lectin-FACS analysis proved useful for detecting alterations 

of cell surface protein glycosylation in MSI colorectal cancer cells transiently 

transfected with different MSI target genes [122]. Accordingly, the same technique 

was applied to determine cell surface glycan changes in the stably transfected 

HCT116-ACVR2 cells. However, in our inducible ACVR2 expression system no 

alterations of overall cell surface protein glycosylation could be detected by lectin-

FACS analysis. It is reasonable to assume that such glycan alterations might only be 

detected at high levels of ACVR2 expression that are usually obtained by transient 

transfections. In addition, applying lectins only detect global changes of steady state 

levels without considering any dynamic variations. Although lectins are powerful tools 

for simple oligosaccharide analyses, their cross-reactivity and low affinity restrict their 

use. 

Therefore, in the next step a method should be applied that also accounts for such 

kinetic changes and at the same time addresses specific modifications of 

glycoproteins like sialylation and fucosylation. Such alterations of protein modification 

have been reported for cancers of the colon [161]. One of the most frequent 

alterations in the normal glycosylation pattern observed during carcinogenesis is the 

alteration of fucose residues of glycoproteins [162, 163]. Also sialic acids are a key 

component of glycoproteins and have been correlated with cancer metastasis [164]. 
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Correlations between sialic acid with tumorgenicity in the CRC cell line HCT116 have 

been demonstrated [165]. However, analysis of modifications of sialic acids and 

fucosylated proteins in MSI colorectal tumors remains a mainly uncovered field. As a 

major finding of these radioactive metabolic labeling experiments, ACVR2 signaling 

turned out to be a regulator of fucosylation of newly synthesized glycoproteins. 

Hence, fucosylation of proteins appears to be a dynamically regulated process 

modulated by a major signaling pathway in MSI colon cancer cells. Besides the 

prominent effects of activin A signaling on protein fucosylation, a modest increase of 

sialylation upon ACVR2 reconstitution has been observed, but to a lesser extent and 

only in one of both cell clones. It has been recently shown that TGF-ß signaling is 

associated with the sialylation pattern of MSI colon cancer cells [134]. Thus, it is 

conceivable that ACVR2 might contribute to the regulation of protein sialylation as 

well, but further investigations need to be performed to resolve this issue. 

Fucosylation is catalyzed by fucosyltransferases, guanosine 5’-diphosphate (GDP)-

fucose synthetic enzymes and GDP-fucose transporter(s). So far thirteen 

fucosyltransferase genes have been identified in the human genome. GDP-fucose, 

which is a common donor substrate to all fucosyltransferases, is synthesized in the 

cytosol via two pathways, namely the salvage pathway and the de novo pathway 

(Figure 5.1). The salvage pathway synthesizes GDP-fucose from free L-fucose, 

derived from extracellular or lysosomal sources, whereas the de novo pathway 

transforms GDP-mannose into GDP-fucose. The salvage pathway is responsible for 

only about 10% of the cellular pool of GDP-fucose. Thus, cellular GDP-fucose is 

mainly produced by the de novo pathway. After GDP-fucose has been synthesized in 

the cytosol, it is transported to the Golgi apparatus through GDP-fucose transporter 

to serve as a substrate for fucosyltransferases [166]. In the de novo pathway GDP-

mannose is transformed into GDP-fucose through 3 steps that are catalyzed by 

GDP-mannose-4,6-dehydratase (GMDS) [167] and GDP-4-keto-6-deoxymannose-

3,5-epimerase-4-reductase (FX) [168]. FX knockout mice showed an embryonic 

lethality phenotype because of a virtually complete deficiency of cellular global 

fucosylation [169]. Thus, fucosylated oligosaccharides are involved in early growth 

and development as well as many pathologic conditions. It has already been shown 

that HCT116 cells lack fucosylation because of a GMDS mutation, consequently 

leading to the escape from NK cell–mediated tumor surveillance through the 
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acquisition of resistance to tumor necrosis factor-related apoptosis-inducing ligand 

(TRAIL), followed by tumor progression and metastasis [170]. 

 

 

 

Figure 5.1: Fucose metabolism [166]. GDP-fucose is synthesized through two pathways, the salvage 

pathway and the de novo pathway. Labels schow GDP-4,6-dehydratase (GMDS) and GDP-4-keto-6-

deoxymannose-3,5-epimerase-4-reductase (FX).  

 

Since previous studies reported that the activity of the fucosyltransferases might be 

affected and that the expression of Fut8 is markedly enhanced in several types of 

cancer cell lines [171], analysis of the fucose pathway was initiated by examining 

ACVR2-dependent transcriptional regulation of candidate enzymes. Analyzing all 

known human fucosyltransferases, fucosidases and enzymes involved in the fucose 

pathway by real-time RT-PCR analysis, mRNA levels remained unaffected by 

reconstituted ACVR2 signaling. This result is well in agreement with our Glyco-Gene 

Chip data that did not reveal transcriptional alterations of any of these enzymes upon 

reconstituted ACVR2 signaling. 

Since activin signaling is known to regulate the expression of different target genes at 

the transcriptional level, a Glyco-Gene Chip approach was applied to identify 

potential glycosylation-associated targets. By this time point we decided to use only 



DISCUSSION 

 88

HCT116-ACVR2 #2, having a single copy integrated ACVR2 transgene, as a 

representative for the ACVR2 reconstitution. Overall, six genes (JUNB, HES1, LFNG, 

PDGFB, SLC35F2 and FGF18) showed ACVR2-dependent up-regulation at the 

transcriptional level, whereas three genes (KLRF1, BMP4 and FGF9) appeared to be 

ACVR2-dependent down-regulated in the model system. However, it is important to 

mention that this Glyco-Gene Chip represents a limited choice of about 1000 human 

glycosylation-associated genes, including enzymes, transporters, receptors, 

transcription factors, etc. Accordingly, there might be some numerical limitation 

leading to the small number of identified glycosylation-associated targets in our cell 

line system. This chip analysis enables a systematic screening approach, which 

might be less sensitive, however more genes in one experimental set up can be 

identified than in real-time RT-PCR analysis. This can be used to explain why 

ACVR2 itself was not found to be up-regulated in the chip analysis. Two of the 

identified to be up-regulated transcripts are known to be involved in the Notch 

signaling pathway: HES1 and LFNG. Both were also validated by real-time RT-PCR 

and thereby represent actual ACVR2-dependent target genes. The Notch receptors 

are large transmembrane proteins which are highly glycosylated at their extracellular 

epidermal growth factor (EGF) repeats. The Notch pathway plays a fundamental role 

in developmental processes. Aberrant Notch signaling was further implicated in many 

human disorders [172, 173]. The signaling of the four mammalian Notch receptors is 

modulated by binding to Delta-like and Jagged family ligands. The specificity of their 

interactions is determined by glycan changes mediated by fringe glycosyl-

transferases, including LFNG [174]. LFNG (O-fucosylpeptide 3-beta-N-acetyl-

glucosaminyltransferase or Lunatic Fringe) functions as a fucose-specific, Golgi-

localized glycosyltransferase. It leads to elongation of O-linked fucose-residues on 

Notch, which alters Notch signaling. Thereby it is modulating Notch activity by 

differential glycosylation. HES1 is a well-known target gene of Notch [175]. Some 

reports indicate a crosstalk between TGF-ß / activin and Notch through the signaling 

molecule Smad3 thus explaining the increased expression of HES1 [176]. However, 

understanding this interaction between ACVR2 and Notch signaling needs further 

investigations, which could be addressed in further studies. 

Taken together, so far the hypothesis that ACVR2 expression alters protein 

glycosylation is supported by the observation of decreased overall de novo 

fucosylation in presence of ACVR2. Furthermore, a potential ACVR2-dependent 
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glycosylation target gene, LFNG, was found by using the dox-inducible HCT116-

ACVR2 cell line. Thus, the created model system is usable to determine ACVR2-

regulated genes involved in the glycosylation machinery. Remarkably, 25% of newly 

synthesized fucosylated proteins were altered by ACVR2, further approaches need to 

be carried out to identify which glycoproteins may be affected. 

 

5.3 ACVR2-Dependent Proteome and Glycome Analysis 

As described above, metabolic labeling experiments with radioactively labeled 

precursors of glycan structures showed results that in contrast to the lectin-FACS 

experiments are not based on the analysis of the bulk of all cellular glycoproteins. 

Rather metabolic labeling focuses on changes in de novo glycoprotein biosynthesis. 

Thus, these changes are more specifically linked to the induced expression of 

reconstituted ACVR2. These experiments clearly indicate changes in newly 

synthesized fucosylated glycoproteins after ACVR2 induction. In order to adapt the 

successful metabolic labeling experiments to subsequent glycome and proteome 

analyses, the Click-it system, which enables to label molecules of interest in complex 

biological samples similar to a radiolabeled compound, was applied. Click-it 

technology allows robust and reliable detection and extraction of labeled molecules 

with high sensitivity and extremely low background. Before performing a glycome 

analysis, to proof the recently established technique, we decided to start by whole 

nascent protein labeling. Screening the proteome of tumors is a complex issue 

because the proteome is a dynamic and constantly changing process due to a 

combination of several factors [177]. These include differential splicing of the 

respective mRNAs, posttranslational modifications, and temporal and functional 

regulation of gene expression [178]. Many studies have identified colon cancer-

associated proteins, however only few studies focus on the functional protein 

interaction networks derived from the proteomics data. Therefore, the strength of this 

approach lies in studying the consequences of a major signaling pathway on the 

proteomic assembly with emphasis on the de novo proteome. The incorporation of 

azido-homoalanine can be compared to metabolic labeling using [35S]-methionine, 

but avoids the use of radioactive compounds and enables the specific isolation of the 

labeled proteins. Thus, the labeled proteins can be tagged with biotin alkyne resulting 

in the specific biotinylation of the metabolically labeled proteins, which enables the 
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extraction streptavidin beads. Our model system is not only of broad and easy 

applicability, but also enables highly sensitive analyses, since more than 500 

metabolically labeled proteins were identified. 113 of these proteins showed a clear 

ACVR2 dependency. 36 of these proteins were specifically identified in ACVR2-

deficient cells and are involved in key cellular processes like DNA repair and/or 

chromatin dynamics (e.g. FEN1, HIST1H2AC, SPTH16), protein translation (e.g. 

RPL10A) and signal transduction (e.g. RHOC). Some of these candidates have 

already been linked to colorectal cancer or play a key role in cell growth or apoptosis 

control. For example RhoC, a member of the Ras homologous (Rho) sub-family of 

low molecular-weight GTP-binding proteins, is known to be overexpressed in colon 

cancer and various other malignancies. It can promote post-EMT (epithelial to 

mesenchymal transition) cell migration and due to its correlation with tumor 

progression has been proposed as prognostic marker for colon carcinoma [179, 180]. 

Also, the DNA repair protein FEN1 has been reported to show high expression levels 

in proliferative tissues and its expression in tumor tissues has been correlated with 

increased tumor grade and invasiveness [181, 182]. Moreover, several studies 

suggest that expression of the histone chaperone SUPT16H – as part of the 

heterodimeric Facilitates Chromatin Transcription (FACT) complex – can act in a pro-

tumorigenic manner because it modulates nucleosome assembly and chromatin 

architecture including exchange of histone variants. Since the SUPT16H subunit of 

FACT preferentially binds to the core histone complex H2A-H2B [183] there might be 

a causal link to the core histone H2A family member H2A1C that we also found to be 

expressed in ACVR2-deficient cells. According to these correlations it is tempting to 

speculate, that the de novo synthesized candidate proteins identified in ACVR2-

deficent HCT116 cells might help to establish their tumorigenic phenotype, a 

hypothesis that requires further investigation. 

In contrast to ACVR2-deficient HCT116 cells, a much larger number of de novo 

synthesized candidate proteins were observed upon reconstitution of ACVR2 

signaling. The resulting proteomic changes are expected to reflect the growth 

suppressing and apoptosis promoting effects of this signaling pathway. In fact, 

several of the candidate proteins like CALU, IBP2, LETM1, PRS8, SF3B3 and 

TNPO1 have been reported to confer such growth inhibitory effects [141, 143, 150, 

184, 185]. For example, the calcium-binding protein Calumenin (CALU) can interfere 

with cytokinesis when added exogenously and also has been found to be associated 
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with mitotic arrest and late apoptosis upon translocation from the membrane to the 

cytoplasm [186, 187]. Similarly, the delicate balance between insulin like growth 

factor receptors (IGF-IR, IGF-IIR), ligands (IGF1/2) and binding proteins (IGFBP1-6) 

usually ensures proper survival factor signaling in epithelial cells [188], but would be 

severely disturbed by for instance high levels of IBP2 and resulting inadequate low 

levels of IGF1/2 thereby restricting tumor cell growth and proliferation [189]. LETM1, 

another ACVR2-dependent candidate protein, is known to exhibit a very complex 

pathophysiology due to its involvement in Wolf-Hirschhorn Syndrome, ion 

homeostasis and mitochondrial biogenesis [190], but also can induce programmed 

tumor cell death upon over-expression [150]. Likewise, the 26S proteasomal 

component PRS8, also known as PSMC5, has been demonstrated to suppress colon 

cancer stem cell growth in mouse xenografts and its yeast ortholog is capable to 

initiate caspase-8-dependent cell death [184, 191]. Overall, these examples illustrate 

the potential of this approach to detect tumor relevant proteomic changes. 

Nevertheless it is also important to emphasize that candidate proteins not yet linked 

to tumor-relevant functions should not be completely ignored, since some yet 

unknown mechanism or interaction with other proteins might be effective. 

To focus again on fucosylation, also the glycome analysis of the CRC model cell line 

was established. To this end [3H]-L-fucose applied in the initial metabolic labeling 

experiments was substituted by fucose-alkyne. Thus, the model system allowed the 

ACVR2-dependent incorporation of the alkyne-containing fucose and thereby also 

the simple and efficient isolation of newly synthesized, labeled proteins from a 

complex proteomic background by click chemistry. Overall, 70 proteins were 

identified, 36 of these indicating a clear ACVR2-dependency. Since, the salvage 

pathway is responsible for only about 10% of the fucose metabolism, the amount of 

detected newly synthesized protein was low. Five of the thirteen proteins specifically 

identified in ACVR2-deficient cells belong to the HLA class I histocompatibility 

antigen, which are involved in the presentation of foreign antigens to the immune 

system. A reduction or loss of HLA-A, B, C antigens in colorectal carcinoma has 

been reported with an inverse correlation with the degree of differentiation [192]. 

Some others of the identified proteins are involved in key processes like inter- or 

intra-cellular activities and / or dynamics (CAB45, CD166, EZRI, ITA3, TGON2 and 

TMED9) and cellular response to viral infection (GOLM1). A last ACVR2-deficient 

identified protein was podocalyxin (PODXL), a sialoglycoprotein thought to be the 
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major constituent of the glycocalyx of podocytes. Podocalyxin-like 1 has been found 

to be expressed in several CRC cell lines [193] and its over-expression is an 

independent factor of poor prognosis in colorectal cancer [194]. Furthermore, PODXL 

has been shown to interact with other proteins such as ezrin (EZRI), an established 

mediator of metastasis [195]. In contrast a much larger number of fucosylated 

candidate proteins were observed upon reconstitution of ACVR2 signaling. Also in 

this case some interesting proteins involved in key cellular processes like DNA repair 

and / or chromatin dynamics (H2A1A, NOLC1 and NUCL), transcription or translation 

regulation (HMGA1, RU17, TCP4, TR150, TRA2B, Serine / arginine-rich splicing 

factors) and signal transduction (ANXA2) were found. Some of these candidates 

have already been linked to colorectal cancer or play a key role in cell growth or 

apoptosis control. For example Annexin A2 (ANXA2), which is a calcium-dependent, 

phospholipid-binding protein found on various cell types. It is associated with various 

tumor types and plays multiple roles in regulating cellular functions, including 

angiogenesis, proliferation, apoptosis, cell migration, invasion and adhesion [196]. It 

has been indicated to be abundantly expressed in many cancer tissues and is 

believed to play an important role in tumorigenesis and breast cancer progression 

[197]. ANXA2 consists of phosphorylation sites for different kinases and it has been 

reported that Tyr23 phosphorylation of Annexin A2 mediates cell scattering and 

branching morphogenesis [198], and regulates Rho-mediated actin rearrangement 

and cell adhesion. The dynamic remodeling of the actin cytoskeleton is required for 

cell spreading, motility, and migration [199]. Overall, these examples illustrate the 

potential correlation to ACVR2-signaling, but nevertheless, further investigations are 

needed to understand the underlying mechanisms of these linked processes.  

Based on current knowledge, several of the whole de novo protein candidates as well 

as of the fucosylated glycoproteins identified in ACVR2-deficient as well as in 

ACVR2-proficient HCT116 cells can be functionally assigned to hallmark processes 

of cancer development (Figure 5.2). Altogether this study provides a versatile 

platform to analyze the glycomic and proteomic de novo assembly of any MSI-

relevant target gene of interest. This isogenic MSI tumor cell line model system 

provided analyzing the ACVR2 signaling mechanisms that contribute to the de novo 

protein synthesis in MSI tumor cells and identifying the proteomic assembly. Thus, 

this approach might facilitate the identification of tumor markers that could be used 

for diagnostic and therapeutic applications. 
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Figure 5.2: Functional association of de novo candidate proteins (modified according to [200]). 

Several proteins labeled with AHA or fucose-alkyne (underlined) expressed in ACVR2-deficient 

(stippled ring) or in ACVR2-proficient (white ring) HCT116-ACVR2 #2 cells were assigned to hallmark 

processes (grey ring) of cancer development. 
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5.4 Perspectives 

This study was largely focused on ACVR2-dependent activin signaling and its role in 

altering glycan signatures in MSI CRC cells. Some key findings have been described, 

including the ACVR2-dependent fucosylation changes of newly synthesized proteins 

in the HCT116 MSI colon cell line. A further finding of this study was the interaction 

with LFNG in ACVR2 expressing cells. The importance of this finding is underlined by 

the involvement of this glycosyltransferases in the regulation of Notch signaling. This 

leads to the assumption that Notch itself may be affected by ACVR2-dependent 

glycoprotein alteration. It could be speculated that the LFNG enzyme, which transfers 

GlcNAc onto fucose residues of the Notch receptor, might not be able to elicit its 

function, when the incorporation of the fucose residue is altered. Finally, the 

pathologic role of fucosylation in this model cell line remains to be elucidated in 

detail. 

The second main focus of this approach was directed on the screening of the 

proteome und glycome. A universal feature of cancer cells are direct proteome 

alterations and the change in their glycosylation phenotype, with several effects on 

this tumor cells behavior [201, 202]. In this sense, glycosylation analysis has become 

an important target for proteomic research and has reached great interest to 

understand the molecular events associated with tumor development and 

progression. Although demonstrating the principle utility of our approach in detecting 

tumor-relevant proteomic and glycomic changes, there is also potential for further 

development and refinement of the methodology. The present study focused on 

soluble proteins. Since the extraction of the labeled proteins with high concentrations 

of detergents or chaotropic substances would not interfere with subsequent binding 

of biotin-labeled proteins to streptavidin beads, it would be possible to also apply it to 

membrane-bound or other difficult-to-solubilize proteins. An attractive refinement 

would be the combination of our strategy with quantitative proteomic analytical 

methods. Thus, this approach could be combined with the SILAC- or ITRAQ-

quantification. Finally a combination with various prefractionation methods, including 

electrophoretic and chromatographic methods is feasible. 

Most analyses within this study were performed with two independent HCT116-

ACVR2 clones. In order to strengthen the ACVR2-dependent glycosylation changes, 

the results need to be extended to additional MSI colorectal cancer cell lines. Most 

importantly, the results gained from this in vitro cell culture model system need to be 
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confirmed in primary tissues. This requires MSI and MSS colorectal cancer tissues 

enabling immunohistochemical analyses of glycan and / or glycoprotein alterations. 

At the same time glycan-specific tools like antibodies need to be developed. 

Moreover, the altered glycan structures need to be identified and characterized. 

Thus, new tumor markers could be established, which are not only monitors for 

diagnosis or therapy, but also represent the biological characters of cancer cells. 

In summary, the established MSI CRC cell line model system provides a unique 

experimental platform to determine ACVR2-dependent alterations of the MSI tumor 

cell proteome and glycome. 
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