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Zusammenfassung

Ziel dieser Arbeit ist es den Ursprung von Magnetfeldern im Universum zu er-
forschen. Wir schlagen vor, dass der turbulente oder auch kleinskalige Dynamo, der
in Gegenwart von Turbulenz Saatfelder auf kurzen Zeitskalen verstärkt, eine wichtige
Rolle in der Entwicklung kosmischer Magnetfelder spielt. Das theoretische Mo-
dell des turbulenten Dynamos wird auf verschiedene astrophysikalische Umgebun-
gen verallgemeinert, wobei der Schwerpunkt auf der Beschreibung unterschiedlicher
Turbulenzspektren liegt. Wir leiten analytische Lösungen für die Wachstumsrate
des Dynamos in der kinematischen Phase her und diskutieren die darauf folgende
nicht-lineare Phase sowie die Saturierung. Nach heutigem Erkenntnisstand �ndet
ein e�zientes Treiben von Turbulenz in der Entwicklung des Universums späestens
während der Entstehung der ersten Sterne und Galaxien statt. Hier wird gravi-
tative Energie durch Akktretion von umliegendem Gas in die Dunkle Materie Ha-
los in chaotische Bewegungen umgewandelt. Wir modellieren diese Prozesse semi-
analytisch und implementieren Magnetfeld-Verstärkung durch einen turbulenten Dy-
namo. Unsere Ergebnisse zeigen, dass ungeordnete Magnetfelder mit Stärken, die
vergleichbar mit jenen in heutigen Galaxien sind, schon im primordialen Univer-
sum gegenwärtig gewesen sein können. Abschlieÿend stellen wir eine potentielle
Beobachtungsmethode für Magnetfelder in jungen Galaxien vor, mit der das von
uns beschriebene Szenario für die Entwicklung kosmischer Magnetfelder untersucht
werden könnte.

Abstract

The aim of this work is to explore the origin of magnetic �elds in the Universe. We
claim that the turbulent or small-scale dynamo, which ampli�es weak seed �elds on
short timescales in the presence of turbulence, plays an important role in the evo-
lution of cosmic magnetic �elds. The theoretical model for the turbulent dynamo
is generalized for various astrophysical environments, with a focus on di�erent tur-
bulence spectra. We derive analytical solutions for the dynamo growth rate in the
kinematic phase and discuss the subsequent non-linear evolution as well as satura-
tion. In the history of the Universe turbulence is expected to be driven e�ciently at
the latest during the formation of the �rst stars and galaxies, where gravitational
energy is converted into chaotic motions as the dark matter halos accrete gas from
the environment. We model these processes semi-analytically and implement mag-
netic �eld ampli�cation by a turbulent dynamo. Our results show that unordered
magnetic �elds, with strengths comparable to the ones in local galaxies, were already
present in the primordial Universe. A potential observational test for magnetic �elds
in young galaxies is suggested to probe our proposed scenario for the evolution of
cosmic magnetic �elds.
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CHAPTER 1

Introduction

1.1 The Mysterious Nature of Cosmic Magnetic

Fields

In order to understand the formation, the evolution and the current properties of
astrophysical objects, one needs to estimate the main forces acting on matter. With
its in�nitely extending range, gravity is the main candidate for shaping the large-
scale structure of the Universe. However, with an estimated fraction of more than
99 %, baryonic matter is predominately in a plasma state, i.e. it includes electri-
cally charged particles (see, e.g. Gurnett & Bhattacharjee, 2005). The dynamics of
these are in�uenced by the second long-range fundamental force, the electromagnetic
force. Indeed, observations show that the Universe is highly magnetized. Magnetic
�elds are observed on all scales, from planets (e.g. Stevenson, 2003) and stars (e.g.
Donati & Landstreet, 2009) via galaxies (e.g. Beck & Wielebinski, 2013) up to the
intergalactic medium, where �elds might be correlated on Mpc-scales (e.g. Neronov
& Vovk, 2010). In many cases, for instance in the interstellar medium, the magnetic
energy density is comparable to the thermal energy density and the one of turbulence
and cosmic rays (Draine, 2011). This phenomenon is known as energy equipartition
and indicates a strong coupling between the individual energy components.
With these observational facts many urgent questions turn up, which can be cate-
gorized into two main complexes:

• How are magnetic �elds generated and how do they evolve in time?

• How do magnetic �elds in�uence astrophysical processes?

Even though we will discuss certain aspects of the second question, in this work we
concentrate on the �rst, very general, question of their origin and evolution. This is
a very active area of research (see, e.g. Kulsrud & Zweibel, 2008), which still yields
many uncertainties and unknowns. Strongly debated questions are for example:
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CHAPTER 1 1.2 Magnetic Fields in the Universe

• Under which conditions can magnetic �elds be generated?

• How strong are the �rst magnetic �elds?

• How are they ampli�ed in astrophysical motions?

• Which fraction of the magnetic energy is dissipated again?

• When and in which environments do magnetic �elds reach dynamically im-
portant strengths?

• How is the magnetic energy distributed over spacial scales?

• How changes magnetic topology during the ampli�cation and dissipation pro-
cesses?

In this thesis we address most of the upper questions, while we concentrate on the
question of how week magnetic seed �elds are ampli�ed to dynamically important
magnitudes. For this purpose we use a semi-analytical approach, which allows us to
follow the evolution of cosmic magnetic �elds.

1.2 Magnetic Fields in the Universe

1.2.1 Origin and Evolution of Cosmic Magnetic Fields

Our suggestion for the origin of cosmic magnetic �elds is illustrated in �gure 1.1. In
this section we discuss the basics of the evolution of magnetic �elds in the Universe
from the �rst weak seed �elds to strong large-scale �elds.

Magnetic Seed Fields

Presumably the �rst magnetic seed �elds have already been generated in the very
early Universe, i.e. during in�ation (Turner & Widrow, 1988) and in the early cos-
mological phase transitions (see, e.g. Cheng & Olinto, 1994; Baym et al., 1996; Sigl
et al., 1997). It is important to note that the coherence length of these �elds is al-
ways limited by the Hubble length at the time of generation and that the magnetic
�elds are subsequently diluted by cosmic expansion.
Other generation mechanisms are possible in plasma physical processes, where the
di�erent dynamical behavior of electrons and ions is taken into account. The well-
established Bierman battery (Biermann, 1950) is a consequence of two-�uid magne-
tohydrodynamics and operates when there are non-parallel gradients in density and
temperature leading to charge separation and the generation of a magnetic �eld.
A common property of magnetic seed �elds is, however, their extremely low �eld
strength. Typical �eld strengths produced by a Biermann battery are of the order of
10−19 G (e.g. Gnedin et al., 2000; Xu et al., 2008), while generation mechanisms in
the very early Universe typically predict a �eld strength many orders of magnitude
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kinetic turbulent dynamo phase:
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non-linear turbulent dynamo phase:
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scales
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partial ordering of the magnetic �eld in
large-scale motions

Figure 1.1:

Our suggestion for the origin of cosmic magnetic �elds: From weak magnetic seed �elds

to dynamically important �elds correlated on large scales via magnetohydrodynamical

dynamos.

below that. Thus, in order to explain the nature of magnetic �elds at present day,
which reach values of 10−5 G in ordinary galaxies, phases of e�cient �eld ampli�ca-
tion are unavoidable.

Ampli�cation by a Turbulent Dynamo

The magnetic �eld strength can be increased in gas motions, when the �eld lines
are frozen into the �uid. Ampli�cation takes place in gravitational compression that
goes along with the formation of structure. The absolute factor by which the �eld
strength increases solely in gas compression is, however, not su�cient to explain the
magnetic �elds in present-day astrophysical objects.
Very popular and more e�cient mechanisms for �eld ampli�cation are so-called
magnetohydrodynamical dynamos, i.e. mechanisms that convert kinetic energy into
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CHAPTER 1 1.2 Magnetic Fields in the Universe

magnetic energy (see Brandenburg & Subramanian, 2005, for a detailed review).
Especially the small-scale or turbulent dynamo seems to play an outstanding role
in the history of cosmic magnetic �elds, as it ampli�es �elds exponentially in time
with very large growth rates on small scales. In presence of turbulence, the turbulent
dynamo ampli�es weak seed �elds by randomly stretching, twisting and folding the
�eld lines. As pointed out before, the ampli�cation proceeds predominantly on
tiny scales, however, the magnetic energy is transported also to larger scales in an
inverse cascade during the non-linear dynamo phase (e.g. Schekochihin et al., 2002).
The result is a strong unordered magnetic �eld that is present on all spatial scales
between the viscous and the forcing scale of turbulence.
The requirement for small-scale dynamo action is certainly a su�cient amount of
turbulence in an ionized medium. In the local Universe turbulence is omnipresent
(see e.g. Elmegreen & Scalo, 2004, for a review on interstellar turbulence). We
assume that this is also true for the primordial Universe, were turbulence is driven
at the latest during the accretion of gas in structure formation (Greif et al., 2008).
In combination with the presence of weak magnetic seed �elds the turbulent dynamo
is initiated. Thus, the formation of the �rst stars and galaxies marks not only an
important transition from the dark to the bright Universe, but is also a crucial phase
in the evolution of cosmic magnetic �elds.
The existence of turbulent magnetic �eld ampli�cation during structure formation
has been observed in �rst high-resolution numerical simulations. For example, Sur
et al. (2010) report the exponential growth of the magnetic energy in the collapse
of a primordial minihalo leading to the presence of strong magnetic �elds already
during the formation of the �rst stars in the Universe. A turbulent dynamo also
operates in the simulations of more massive halos (Latif et al., 2012), in which the
�rst galaxies are expected to form. This conclusion is con�rmed by Pakmor et al.
(2014) in full cosmological simulations of Milky Way-like disk galaxies, in which tiny
seed �elds are ampli�ed up to a signi�cant fraction of the kinetic energy on short
timescales.

Ordering of the Random Magnetic Fields

While the �eld ampli�cation by the turbulent dynamo proceeds very fast during
structure formation, it can only explain the build up of unordered magnetic �elds.
However, observations show that the �eld structure in local galaxies includes a large-
scale ordered component (see e.g. Beck & Wielebinski, 2013). The ordering of the
magnetic �eld presumably takes place in large-scale rotational motions, which are
described by a large-scale galactic dynamo. The typical timescales of this large-scale
dynamo should be comparable to the duration of galactic rotation and are thus
usually very long.

18



CHAPTER 1 1.2 Magnetic Fields in the Universe

1.2.2 E�ects of Magnetic Fields on Astrophysical Processes

It is important to realize that cosmic magnetic �elds and other astrophysical pro-
cesses, like the formation of structure in the Universe, evolve in a dynamical inter-
play. The ampli�cation and dissipation of magnetic energy is determined by the
dynamics of astrophysical objects and the other way around.
In galaxies the magnetic energy density reaches values that are comparable to the
thermal one, the turbulent kinetic one and the one of cosmic rays (Beck, 2007;
Draine, 2011). This energy equipartition indicates a strong coupling between the
individual energy components. We know from simulations and observations that the
process of star formation is crucially in�uenced by the galactic magnetic �elds. For
instance the formation of molecular clouds, the birth places of stars, can be explained
by instabilities in galaxies that result from magnetic �elds. To the star formation
process itself magnetic �elds add on the one hand an additional pressure and on the
other hand provide e�cient additional ways to transport angular momentum via
magnetic braking, the magneto-rotational instability and the formation of jets and
out�ows. These processes in�uence the properties of the generated stars strongly in
terms of their multiplicity and mass distribution. Thus, in order to understand the
evolution of galaxies and the stars within them the knowledge of the evolution of
magnetic �elds is crucial.

1.2.3 Prospects of Future Magnetic Field Observations

With future instruments we will be able to observe magnetic �elds at higher red-
shifts and by this gain direct insights into their evolution in time. A very important
role will play a new generation of giant radio telescopes, especially the Square Kilo-
meter Array (SKA) and its path�nders like the Low Frequency Array (LOFAR).
Their sensibility is expected to be high enough in order to detect synchrotron ra-
diation, a signature of cosmic rays spiraling around magnetic �eld lines and thus a
measure for the �eld strength, up to redshifts of 3 for starburst galaxies (Murphy,
2009). A huge impact will probably also come from submillimeter observations of
the Atacama Large Millimeter/Submillimeter Array (ALMA), which is expected to
provide detailed observations of polarized light (Pérez-Sánchez & Vlemmings, 2013).
The fraction of polarization includes information about the large-scale structure of
magnetic �elds. These and other new telescopes will provide unique observations,
which can be used to test our suggested model for the evolution of cosmic magnetic
�elds.
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1.3 Outline of this Thesis

The goal of this work is to better understand the evolution of the turbulent magnetic
�eld during structure formation. To motivate our e�orts of modeling ampli�cation
via a turbulent dynamo, we start with a description of magnetic �elds in the local
Universe in chapter 2. We summarize observational results ranging from small-scale
objects like planets and stars, via the interstellar medium and galaxies up to in-
tergalactic scales. The impact of magnetic �elds on these astronomical objects is
discussed.
In chapter 3 the theoretical principles of magnetic �eld ampli�cation are summa-
rized. Starting from the theory of hydrodynamics, the equations are extended such
that the e�ects of ionized �uid particles and external magnetic �elds are included,
which is known as magnetohydrodynamics (see section 3.1). Secondly, we review
some mechanisms of magnetic seed �eld generation from literature, taking into ac-
count origin from cosmology and plasma physics. These �elds can be ampli�ed in
the motions of gas under the condition of �ux freezing. Simple ampli�cation con-
cepts are discussed in section 3.3, while we give a phenomenological description of
the magnetohydrodynamical dynamos in section 3.4.
The mathematical description of the turbulent dynamo is the topic of chapter 4. As
it is the basis of any small-scale dynamo theory, the �rst section of this chapter is
dedicated to review theoretical models of turbulence. We continue with a summary
of the Kazantsev theory, which can be derived from the induction equation and de-
scribes the evolution of the turbulent magnetic �eld. In sections 4.2.4 and 4.2.5 we
present our analytical results for the growth rate of the dynamo in di�erent physical
environments. The analytical calculations are extracted from Schober et al. (2012c)
and Schober et al. (2012a) and are compared to numerical results from Bovino et al.
(2013). A model for the subsequent non-linear evolution of the dynamo, in which
back-reactions of the magnetic �eld on the dynamics of the �uid are taken into
account, is given in section 4.3, where we closely follow Schleicher et al. (2013).
Furthermore, we present a phenomenological model for the dynamo saturation in
4.4. The main �ndings from numerical simulations from Federrath et al. (2011) of
magnetic �elds in a turbulent box are discussed in section 4.5.
Our aim is to apply these theoretical results of the turbulent dynamo to the forma-
tion of the �rst stars and galaxies. Therefore, we review the current state of research
of this era of the Universe in chapter 5. A well known result from simulations is
that turbulence in structure formation is driven by accretion and also by supernova
explosions, which initiates the small-scale dynamo. The timescales of the turbulent
magnetic �eld ampli�cation are roughly estimated for these astrophysical environ-
ments.
Chapter 6 summarizes our �ndings published in Schober et al. (2012b) for the mag-
netic �eld ampli�cation in primordial star formation. With an one-zone model for
the collapse of a primordial gas cloud, we follow the chemical and thermal evolution
of the gas, which strongly in�uences the turbulent motions. On the basis of our
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theoretical results for the dynamo growth rates, we can calculate the strength of the
turbulent magnetic �eld as a function of particle density. With a simple model of
the non-linear dynamo phase we follow the transport of magnetic energy to larger
scales.
The discussion continues with a model of young galaxies in chapter 7, which is based
on Schober et al. (2013). We model the physical processes in the primordial inter-
stellar medium, including a detailed description of the plasma and the driving of
turbulence. The magnetic �eld evolution is calculated for di�erent types of galaxies
and di�erent types of turbulence. We compare the dynamo results with the �eld
strengths one would expect from the distribution of stellar magnetic �elds in super-
nova explosions.
In order to test the history of cosmic magnetic �elds, observations are necessary.
A common method to measure the �eld strength in local astronomical objects is
the observation of synchrotron emission from cosmic rays. However, synchrotron
emission is not the main cooling channel of cosmic rays at higher redshifts or in
galaxies with extreme star formation, where instead inverse Compton scattering be-
comes important. We suggest an observational method fos tracing cosmic rays and
magnetic �elds via X-ray emission from inverse Compton scattering in chapter 8,
which potentially could improve our knowledge on the evolution of magnetic �elds
in galaxies. This chapter follows closely Schober et al. (2014).
A broad discussion of the main results together with a compilation of open questions
closes the thesis in chapter 9. Here we also provide an outlook to interesting projects
that could lead to a deeper understanding of the evolution of cosmic magnetic �elds.
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CHAPTER 2

The Magnetized Universe

In this section we review the current state of research on magnetic �elds on various
astrophysical scales. Due to the complexity of this topic this review chapter cannot
be complete and only covers selected points. Starting from magnetic �elds of planets
and stars, we move to larger scales up to galaxies, which have typical sizes of a few
kpc, and to intergalactic �elds with coherence length scales that might reach several
Mpc. We summarize the observed structures and strengths of the �elds and discuss
selected e�ects they have on these objects. A compilation of the typical magnetic
�eld strengths in di�erent astronomical (and for comparison non-astronomical) ob-
jects can be found in table 2.1. It demonstrates the large variety of strengths and
length scales of magnetic �elds in the Universe.
There are several techniques for observing of magnetic �elds. One of the most im-
portant technique is the observation of Zeeman splitting in spectral lines. In the
Zeeman e�ect spectral lines split up into multiple lines in the presence of an external
magnetic �eld. The energy di�erence between these closely spaced lines is directly
proportional to the �eld strength. Another important observational method is radio
synchrotron emission of cosmic rays gyrating around magnetic �eld lines. For deter-
mination of the �eld strength from the di�use synchrotron emission, one, however,
needs to make assumptions about the cosmic ray properties. A usual approach is
assuming energy equipartition between the total magnetic and the cosmic ray energy
density (Beck & Krause, 2005). While the last two techniques are used to deter-
mine the strength of the magnetic �eld, observation of polarized light yields also
information about the �eld direction. Light from a background source gets linearly
polarized when traveling through the dusty interstellar medium, in which magnetic
�elds align the elongated dust particles (Hoang & Lazarian, 2008). The dust then
basically acts like a grid. Another very important tool to observe magnetic �elds is
an e�ect known as Faraday rotation, which also is based on linearly polarized light.
When traveling through a magnetized medium, the polarization angle of a linearly
polarized electromagnetic wave rotates. The change of the rotation angle depends
on the line of sight magnetic �eld strength and the electron density.
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object �eld strength [G] length scale [cm]

intergalactic medium
≈ 10−16 − 10−6 (Neronov &
Vovk, 2010)

≈ 1013 − 1028

Milky Way
≈ 10−5 (Beck & Wielebinski,
2013)

≈ 1021

Earth (surface) ≈ 0.5 (Roberts & King, 2013) ≈ 108

refrigerator magnet ≈ 50 ≈ 10

Sun (surface) ≈ 10 (Reiners, 2012) ≈ 1011

Sun (sunspot) ≈ 103 (Solanki, 2003) ≈ 109

(medical) MRI magnet ≈ 104 (Wood et al., 2011) ≈ 100

pulsar ≈ 1012 (Lorimer, 2008) ≈ 106

magnetar
≈ 1015 (Ferrario &
Wickramasinghe, 2007)

≈ 106

Table 2.1:

The magnetic �eld strengths and coherence length scales of selected astrophysical objects.

For comparison we also list also typical numbers for magnets used by humans.

Apart from the observational signature of magnetic �elds, we discuss in this chap-
ter also their direct consequences on the respective astronomical object. Magnetic
�elds in stars lead to complicated physical processes especially on their surface. To
the interstellar medium they add an additional pressure and by this in�uence the
star formation process. Also important in that context is their ability to transport
angular momentum. On galactic scales magnetic �elds in�uence the dynamics of
the interstellar medium and con�ne cosmic rays. The existence and possible conse-
quences of intergalactic magnetic �elds is a highly debated topic in current research.
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2.1 Magnetic Fields in Planets and Stars

2.1.1 Magnetic Field of the Earth and Other Planets

The �rst astrophysical magnetic �eld discovered was the one of the Earth. Early
theoretical explanations of a ferromagnetic origin failed as the temperature in the
interior of the Earth is above the Curie temperature making ferromagnetism impos-
sible. Observations reveal a dipole-like structure of the geological �eld, which �ts
well in the current picture in which the magnetic �eld is generated by a large-scale
dynamo in the core of the Earth. The dynamo converts the kinetic energy from
the highly conductive �uid inner core into magnetic energy (see section 3.4.1 for
more details on large-scale dynamos). The result is a �eld, which has a dipole-like
structure on and above the Earth surface. The typical �eld strength on the surface
is of the order of 0.5 G (Roberts & King, 2013).
The magnetic �eld is extremely important for life on Earth, as it protects the surface
from highly energetic particles coming mainly from the solar wind. The geological
magnetic �eld, which reaches out far into space, traps charged particles and by this
builds up the magnetosphere. The solar wind impinges from the magnetosphere
and a bow shock develops. With the solar wind coming only from one direction, the
magnetosphere becomes very asymmetric and builds up a tails pointing away from
the Sun.
The magnetic �eld of the Earth is not unique. In fact, magnetic �elds have been
observed in all other planets of the solar system (Russell, 1991; Stevenson, 2003).
Their origin lies probably also in planetary dynamos, which are either still active
or already inactive. In the latter case, the magnetic �eld dissipates and becomes
weaker in time. Currently, new observational techniques are developed that could
allow detection of magnetism on planets around other stars then the Sun (Llama
et al., 2013). A detection of this kind could help to decide whether an exoplanet is
habitable or not.

2.1.2 Stellar Magnetic Fields

The era of observing extraterrestrial magnetic �elds began in the early 20th century,
when Hale (1908) detected Zeemann splitting of atomic absorption lines in sunspots.
Today we know that the magnetic �eld of the Sun has a very complicated structure,
which is illustrated in the snapshot in �gure 2.1, and needs to be included in models
to explain various stellar phenomena.
The appearance of sunspots, regions of lower temperature that rotate di�erentially
with the stellar surface, is closely coupled to the magnetic �eld. Statistical observa-
tions of sunspots agree well with the predictions of theoretical α-Ω dynamo models
(see also section 3.4.1 and Charbonneau (2010) for a detailed review article). The
�eld is very strong in sunspots and reaches a typical strength of 3000 G, while the
�eld strength on other sites of the stellar surface is only roughly 1-10 G. The con-
centration of magnetic energy in these regions can be explained in the model of
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Figure 2.1:

Observations of magnetic �eld

lines on the Sun on August 20,

2010. The white lines show closed

�eld lines, which do not release

solar wind, while the golden lines

show open �elds. This image

was observed by the Helioseismic
and Magnetic Imager instrument
(HMI) at the Solar Dynamics Ob-
servatory.
image credit: NASA SDO / Lock-
heed Martin Space Systems Com-
pan

magneto-convection, which says that the �eld is generated in the interior of the Sun
and experiences subsequent magnetic buoyancy to the surface (see for example the
review by Fan, 2009).
The magnetic �eld of the Sun plays also a major role in the corona. Here fast re-
connection, i.e. conversion of magnetic energy into other energy forms like particle
acceleration, generates solar �ares with energies of up to 1032 erg on timescales of an
hour (Shibata & Magara, 2011). Magnetic �elds may also provide an explanation
for the high temperatures of 106 K in the solar corona, which exceeds the surface
temperature of only roughly 6000 K by orders of magnitude. These high tempera-
tures in turn give rise to the solar wind.
Magnetic �elds are commonly observed in other stars, from very low-mass M-dwarfs
to super-massive O-stars (Donati & Landstreet, 2009). Especially observations of
cool stars, i.e. stars with an outer convection layer similar to the Sun, are important
to understand and test the α-Ω dynamo (Reiners, 2012). While magnetic �elds are
frequently observed in low-mass stars, only a few percent of the intermediate and
high-mass stars have detectable magnetic �elds (Landstreet, 1992).
Sights of extreme magnetic �elds are stars at late evolutionary stages, i.e. white
dwarfs and neutral stars (Ferrario & Wickramasinghe, 2007). In fact, the strongest
known �elds in the Universe have been observed in so-called magnetars with a
strength of the order of 1015 G. We note that their magnetic �uxes are comparable
to the ones of magnetic hot main sequence stars, which suggests that at least a large
fraction of magnetic �ux is conserved in stellar evolution.
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2.2 Magnetic Fields in Molecular Clouds and their

Impact on Star Formation

The interstellar medium (ISM) is the inhomogeneously distributed matter in galax-
ies in the space between stars (see Ferrière (2001) for a review). It is composed of
ordinary matter, cosmic rays, i.e. highly energetic charged particles, and magnetic
�elds. The ordinary matter consists of neutral and ionized atoms, molecules and
dust and ranges from densities of n < 0.01 cm−3 and temperatures of T ≈ 106 K to
n > 100 cm−3 and T ≈ 10 − 20 K. The energy densities of the main components
of the ISM, turbulence, cosmic rays and magnetic �elds, are of the same order of
magnitude, which indicates a strong coupling between them.
The ISM is of particular interest as it is the birthplace of stars, which form within its
coldest and densest parts, so-called molecular clouds (McKee & Ostriker, 2007; Mac
Low & Klessen, 2004). These objects come in di�erent classes ranging from giant
molecular clouds with a length scale of a few tens of a parsec, masses of 106 M�
and hydrogen densities of roughly 100 − 1000 cm−3, down to very dense and cold
cores of a size of a few tenth of a parsec, masses of 0.3 − 103 M� and a density of
104 − 106 cm−3 (see, e.g. Larson, 1981).
Observations of Zeemann splitting and polarization indicate that molecular clouds
are highly magnetized (see, e.g. Crutcher, 1999; Bourke et al., 2001; Heiles & Crutcher,
2005; Crutcher, 2012). Detailed observations are available for example for the star-
less core L 183 (Crutcher et al., 2004). Dust polarization measurements indicate
that its magnetic �eld is fairly regular. However, the slight dispersion in position
angles is a sign of an additional turbulent component. The �eld strength detected
in L 183 is roughly 80 µG in the dense core and less then 16 µG in the envelope.
Another object, the magnetic �eld of which has been studied in detail, is NGC 1333
IRAS 4A. The �eld strength in the plane of the sky in this actively star forming
region is roughly 5 mG (Girart et al., 2006). We show the morphology of the mag-
netic �eld in NGC 1333 IRAS 4A in �gure 2.2. The magnetic �eld lines follow the
theoretically predicted hourglass shape in an spherical collapse remarkably well (see
also section 3.3.2).
In the following sections we diskuss the classical picture of star formation in these
dense molecular clouds. We show how the presence of a magnetic �eld changes this
very simpli�ed picture and summarize the most important consequences, like the
transport of angular momentum and disk instabilities.

2.2.1 The Jeans Criterion with Additional Magnetic Pressure

A star forms due to gravitational collapse of the gas, which sets in when the gravi-
tational energy exceeds the internal pressure. In the classical star formation theory
the internal pressure is identi�ed with the thermal pressure. The collapse criterion
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Figure 2.2:

High-angular-resolution observa-

tions of polarized dust emission

in the low-mass protostellar sys-

tem NGC 1333 IRAS 4A. The

morphology of the magnetic �eld

traces the theoretically expected

hourglass shape.

image credit: Girart et al. (2006)

can then be estimated from comparison of the gravitational energy density

Egrav

V
= −3

5

GM2

RV
= −3

5

GM

R
ρ (2.1)

with the thermal energy density

Eth

V
=

ρ

m
kT. (2.2)

Here Egrav and Eth are the total gravitational and thermal energies, respectively, G
the gravitational constant, R,M , V are radius, mass and volume of the system with
mass density ρ = M/V and temperature T . The mass of a single particle is m. The
system is gravitationally bound if

Egrav

V
+
Eth

V
≤ 0, (2.3)

which leads to the condition

c2
s ≤

3

5

(
4π

3

)1/3

GM2/3ρ1/3 ≈ GM2/3ρ1/3, (2.4)

where we introduce the isothermal sound speed cs = (kT/m)1/2 and express the
radius R by (3M/(4πρ))1/3. Hence we can de�ne a critical mass for collapse

MJ ≡
c3

s

G3/2ρ1/2
, (2.5)

the so-called Jeans mass. The scaling ofMJ with T 3/2 and ρ−1/2 indicates that stars
from only in very cold and dense regions.
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Magnetic �elds, which are commonly observed in molecular clouds (see for example
�gure 2.2), add an additional pressure to the problem. Observations show that the
magnetic pressure typically even exceeds the thermal pressure in the ISM (see e.g.
Beck, 2007). We �nd the magnetic Jeans mass in the same way as the classical one
by replacing the thermal energy density by the magnetic one, B2/(8π). This yields
the stability criterion

B2

8π
− 3

5

GM2

RV
≤ 0. (2.6)

The system is thus gravitationally bound if

M2 ≥
(

5

18G

)1/2

BR2. (2.7)

Note, that the last factor BR2 can be identi�ed as the magnetic �ux Φ = BπR2.
The corresponding magnetic Jeans mass is then de�ned as

MJ,mag ≡
(

5

18π2G

)1/2

Φ. (2.8)

Clouds with a mass M > MJ,mag are gravitational unstable and called supercritical,
where as subcritical clouds with M < MJ,mag are stabilized against collapse by the
magnetic pressure.
An important quantity in magnetized star formation is the critical mass-to-�ux ratio,
which is given as

(
M

Φ

)

crit

≡
(
MJ,mag

Φ

)

crit

=

(
5

18π2G

)1/2

≈ 0.17 G−1/2. (2.9)

Our derivation of the critical mass-to-�ux ratio assumes a spherical collapse. If the
magnetic �eld has, however, some orientation, this assumption is not very good. A
numerical calculation following the runaway collapse phase until the accretion phase
(Tomisaka, 1998) yields for the mass-to-�ux ratio

(
M

Φ

)

crit

≈ 0.12 G−1/2, (2.10)

which is indeed comparable to our analytical result above.
Molecular clouds can only collapse, when they are magnetically supercritical. Ob-
servations actually prefer the supercritical state of molecular clouds (Troland &
Crutcher, 2008), which leads to the question, why the magnetic �eld in collapsing
clouds is much weaker than expected from simple �ux freezing. The most common
explanation for this so-called magnetic �ux problem in star formation is ambipolar
di�usion, i.e. a decoupling of neutrals and ions.
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2.2.2 Transport of Angular Momentum Through Magnetic

Fields

Angular momentum in a rotating astronomical object with magnetic �elds reaching
into the ambient medium can be transported e�ciently by magnetic stress. Here
Ferraro's law of isorotation (Ferraro, 1937) plays an important role, which claims
that a steady state can only be established, when the angular velocity is constant
along the �eld lines. Assume an object holds a poloidal magnetic �eld and rotates
di�erentially. Then due to the change of angular velocity as a function of radius
a torodial �eld builds up. In this rearrangement of magnetic structure, magnetic
stresses set in and work needs to be done. This leads to a beak reaction of the �eld,
which tries to impose a rigid rotation on the object.

Magnetic Braking

The situation of magnetic stress forces in rotating objects described above is given
in magnetized star formation. Here an angular velocity Ω of a collapsing cloud
increases under the assumption of conserved angular momentum, Ωr2 = const. If
the central cloud is connected with the environmental ISM a magnetic stress sets
in, which slows down the rotation of the cloud. This process is known as magnetic
braking.
Magnetic braking has a great in�uence on the formation and fragmentation of pro-
tostellar disks. In fact, in simulations of magnetized star formation with �elds
strengths comparable to the observed ones no rotationally disks were found (e.g.
Banerjee & Pudritz, 2007; Peters et al., 2011; Seifried et al., 2011). However, as we
know from observations that disks are present in the earliest stages of protostellar
evolution (Williams & Cieza, 2011), the conclusion from numerical simulations is
obviously not correct. This problem is known as the magnetic braking catastrophe.
Various solutions are suggested in literature, like the possible misalignment of mag-
netic �eld lines (Hennebelle & Ciardi, 2009), inclusion of turbulence in the simulation
(Seifried et al., 2012) or turbulent reconnection (Santos-Lima et al., 2012). Which
one of these solution really solves the magnetic braking catastrophe is, however, still
under debate.

Jets and Out�ows

Closely related to the appearance of disks are stellar jets, which receive their power
from the release of gravitational energy during accretion. These high-velocity mat-
ter out�ows have been observed frequently in low-mass star formation (e.g. Swift
& Welch, 2008; Dunham et al., 2014). Recent observations have also detected jets
in young high-mass stars (Arce, 2005) and even in brown dwarfs (Bourke et al.,
2005). The correlation between the momentum transport rate of the CO molecular
out�ow with the one from the bolometric luminosity, which has been observed to
follow a power law over six orders of magnitude in luminosity (Cabrit & Bertout,
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1992), suggests that the generation mechanism of jets is similar for stars in all mass
ranges.
Theory predicts stellar jets to arise from magnetized disks, assuming that the mag-
netic �eld is frozen in the gas and thus co-rotating (see for example the review by
Pudritz et al., 2012). The magnetic �eld in the disk around the protostar is draged
inwards in the accretion process. Simultaneously, the �eld gets winded up by the
rotation of the disk, which leads to a transport of gas and angular momentum out
of the disk. These so-called disk wind models for (stellar) jets were developed by
Blandford & Payne (1982) and Pudritz & Norman (1983), who show that material
gets ejected from the disk if the inclination angle between the magnetic �eld and
the rotation axes is larger than roughly 30◦. Collimation of the jets follows natu-
rally from magnetic tension of the current carrying jet. We note, that also other
jet models where suggested, for example the X-wind model (Shu et al., 1994, 2000),
that show certain di�erences in the connection between the star, the disk and the
magnetic �eld.
The presence of a jet has important consequences on a star and its disk (see for
example the recent review by Frank et al., 2014). An important result is the mass
loss of the stellar system through the out�ow. Observations of young stellar objects
suggest that the ratio of the jet mass �ux over the accretion rate on the star is
roughly 10 % (Cabrit, 2007; Agra-Amboage et al., 2009; Ellerbroek et al., 2013).
These rates are, however, not constant in time, but change episodically. Further-
more, the �ow of gas in a jet leads to a transport of angular momentum from the
accretion disk (Blandford & Payne, 1982; Pudritz & Norman, 1983). The detailes of
angular momentum transport depend crucially on the launching model of the jet and
there are probably various mechanisms working simultaneously (Frank et al., 2014).
Banerjee & Pudritz (2006) show in simulations of collapsing magnetized cloud cores
that torsional Alfvèn waves transport the angular momentum very e�ciently leading
to a slow down of the rotation of the prestellar cores.
Also the implications of stellar jets on the environmental ISM can be very severe
(Frank et al., 2014). Stellar jets penetrate very far into the clouds where they can
drive turbulence and by this act as a self-regulating process in star formation. The
results of how e�cient this driving is are di�erent in di�erent numerical simula-
tions. For example Mac Low (2000) �nds that turbulence generated by randomly
distributed jets decays again on a short time scale, while Li & Nakamura (2006) �nd
that turbulence in the molecular cloud is maintained. With numerical simulations
Banerjee et al. (2007) investigate in detail the way energy and momentum from jets
is deposited into the environmental clouds. They conclude that collimated super-
sonic jets are not able to drive supersonic turbulence in a large volume, but only
locally, while subsonic, rotational modes spread further. Important consequences of
stellar jets on the parent cloud are moreover heating via shocks and a change of the
chemical composition. All these e�ects can in�uence the subsequent star formation
crucially.
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Magneto-rotational Instability in Disks

Accretion disks play an important role in star formation. However, a long standing
problem in astronomy were the high observed accretion rates, which cannot be
explained by molecular viscosity, convection or tidal mixing. There needs to be
an additional loss on angular momentum in accretion disks. A possible solution
to this problem was proposed by Balbus & Hawley (1991), who claim that weak
magnetic �elds can cause an instability, which in turn leads to turbulent mixing.
This mechanism that is known as magnetorotational instability (MRI) was originally
diskovered by Velikhov (1959) and Chandrasekhar (1960) independently and only
many years later applied to astrophysical systems.
Assume a di�erentially rotating accretion disk has a weak magnetic �eld, which
penetrates the disk perpendicularly. Two �uid elements that lie directly next to
each other are connected by a magnetic �eld line. If there is, however, a small initial
displacement, the inner �uid element has a larger angular velocity due to di�erential
rotation. This leads to an increase of the displacement and thus to an increase of
magnetic tension. Magnetic tension force can be compared to a string that connects
to two �uid elements. Consequently, the inner �uid element slows down, while the
outer one speeds up, which is equivalent to a transport of angular momentum from
the inner to the outer �uid element. The loss of angular momentum slows down
the inner parcel further, leading to a further increase of the displacement. Now the
magnetic tension increases again and a runaway process, i.e. an instability, sets in.
It has been shown in numerical simulations of the multi-phase interstellar medium
that the MRI is a signi�cant source of turbulence, especially at low densities, for
example in the outer regions of the galaxy (see, e.g. Piontek & Ostriker, 2005).

2.2.3 Star Formation in Clusters

So far the diskussion has been focused to the e�ects of magnetic �elds on individual
star formation. Typically stars form, however, in large clusters. For completeness we
report here selected results found for magnetized star formation in clusters, where
the e�ects of the single mechanisms described above are combined.
In complex numerical simulations Price & Bate (2008) test the in�uence of mag-
netic �elds on star formation in turbulent molecular clouds. Interestingly, they �nd
di�erent results in comparison to the pure hydrodynamical runs even for very weak
magnetic �elds. The presence of weak �elds leads to lower accretion rates and dif-
ferent star formation sequences. While in the hydrodynamical case after 1.5 free-fall
times about 16 % of the gas is converted into stars, it is only 4 % in the run with
a slightly supercritical magnetic �eld. Price & Bate (2008) �nd, moreover, that the
structure of the molecular clouds changes drastically, when the pressure is dominated
by magnetic �elds. They observe in their simulations magnetically supported voids
and column density striations. The presence of strong magnetic �elds is expected
to have also important consequences on the initial mass function, as typically fewer
low mass objects are formed.
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As numerical simulations are always limited by resolution the total e�ect of mag-
netic �elds on star formation still yields many open questions. For example in the
large-scale simulations discussed above, small-scale e�ects like the fragmentation of
cores and stellar jets cannot be included. Stellar jets, however, reach length scales
up to a few parsec (Goodman & Arce, 2004) and thus penetrate deep into the envi-
ronmental ISM. In order to overcome the resolution problem Federrath et al. (2014)
apply a subgrid model to study the e�ects of stellar jets. They �nd that the star
formation rate is reduced by a factor of roughly two, when jets are included, and
that the average stellar mass decreases by factor of 3. Thus, jets might in�uence
the initial stellar mass function drastically.

2.3 Magnetic Fields in Galaxies

One of the main �ndings of astronomy in the 20th century was that magnetic �elds
are omnipresent in the Universe. Observations show that strong magnetic �elds are
even present on galactic scales. We summarize the main characteristics of galactic
magnetic �elds in di�erent types of galaxies in this section and also discuss their
role in the dynamics of the large-scale interstellar medium.

2.3.1 Observational Results for Galactic Magnetic Fields

Observational Techniques

For observations of galactic magnetic �elds a variety of techniques is used leading
to information not only about the �eld strength, but also about the structure of the
�eld (see for example the recent review article by Beck & Wielebinski, 2013). The
total synchrotron radiation, which is emitted by cosmic rays spiraling around the
magnetic �eld lines and lies typically in the radio regime, gives the total magnetic
�eld strength. Polarized emission, which results from the alignment of non-spherical
dust particles along the magnetic �eld, traces the ordered (or better regular) mag-
netic �eld component.

Strength and Structure of Galactic Magnetic Fields

In a spiral galaxy the turbulent �eld strength is of the order of 20-30 µG in the
optical spiral arms and bars and up to 50-100 µG in the central starburst region.
This exceeds the strength of the ordered �elds, which are strongest in the interarm
region with typical values 10-15 µG (Beck, 2011). In grand design galaxies, like for
example in M51 shown in �gure 2.3, the ordered �eld component follows the spiral
pattern. Interestingly, the magnetic spiral arms are observed in all disk galaxies even
when there are no optical arms (Soida et al., 2002). Observations show that there
are also large-scale ordered magnetic �elds in disk galaxies that are seen edge-on.
Here the �eld is typically parallel to the disk near the disk plan (Dumke et al., 1995)
and follows a X-shape in the radio halo (e.g. Krause et al., 2006). Comparison with
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Figure 2.3:

The magnetic �eld of the spiral

galaxy M51. The �gure shows

an optical image from the Hub-

ble telescope, overlaid with con-

tours indicating the synchrotron

emission and lines indicating the

polarization measurements.

image credit: Beck (2011)

other forms of energy implies the importance of the galactic magnetic �eld. In fact,
the magnetic energy density in galaxies is typically of the same order of magnitude
as the thermal and turbulent energy density as well as the one of cosmic rays (Heiles
& Crutcher, 2005; Beck, 2007; Draine, 2011).
Observations of magnetic �elds in elliptical galaxies are more di�cult. Without
signi�cant star formation and without an active galactic nucleus, the latter do not
produce cosmic rays, which trace the magnetic �elds by their synchrotron emission.
Hopefully, future telescopes like SKA can detect magnetic �elds in ellipticals by
observing polarized background sources.
Magnetic �elds are better observable in irregular galaxies by using radio continuum
maps. Here �eld strengths of a few µG and spiral pattern are detected (Beck &
Wielebinski, 2013). The total �eld strength in starburst dwarfs is of the order of
10-15 µG, leading to an energy density that is comparable to the one of chaotic gas
rotation. We thus can expect that the evolution of the entire system is in�uenced
by the magnetic �eld.

The Far-Infrared-Radio Correlation

One of the most remarkable correlations in astronomy is the far-infrared(FIR)-radio
correlation, which is observed in galaxies (van der Kruit, 1971, 1973). The tight
correlation holds over �ve orders of magnitude in luminosity (Price & Duric, 1992).
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A detailed study by Yun et al. (2001), who identify approximately 1800 radio coun-
terparts to the IRAS Redshift Survey galaxies (Neugebauer et al., 1984) in the
NRAO VLA Sky Survey data set (Condon et al., 1998), results in the following
correlation:

log (L1.4 GHz) ∝ (0.99± 0.01) log (L60 µm) . (2.11)

The linear nature of the FIR-radio correlation has been interpreted as a direct
relation between star formation and cosmic ray production (Harwit & Pacini, 1975).
While the FIR radiation can be associated with thermal emission from HII regions
around massive stars, and by this traces the star formation in a galaxy, the radio
emission is expected to be synchrotron radiation from cosmic rays traveling in the
galactic magnetic �eld. With massive stars being the common origin of HII regions
as well as cosmic rays, which are accelerated in the �nal phases of massive stars, the
supernova remnants, the tight correlation can be explained.
The FIR-radio correlation has not only been tested in the local Universe with global
galaxy properties, but also in high-resolution observations of individual galaxies (e.g.
Tabatabaei et al., 2013). New studies explore the relation between the FIR and the
radio �ux also as a function of redshift. For example Bourne et al. (2011) did not
�nd a signi�cant evolution of the FIR-radio correlation with redshift up to z ≈ 2.
Depending on the global properties of a galaxy Schleicher & Beck (2013) predict,
however, a breakdown of the correlation at higher redshifts, where the cosmic rays
lose their energy not predominantly via synchrotron radiation, but also via inverse
Compton scattering (see also chapter 8 of this thesis).

2.3.2 Impact on the Large-scale Interstellar Medium

Dynamics of the ISM

Magnetic �elds act as an additional pressure in the gas. In fact, Dobbs & Price
(2008) �nd in their three-dimensional magnetohydrodynamical (MHD) simulations
of a galactic disk, that the magnetic �eld has similar e�ects as an increase in thermal
pressure, which suppresses structure formation and overall smooths out the gas.
With increasing magnetic �eld strength they �nd, moreover, a reduction of the
strength of the spiral shocks. This in turn leads to a decrease of the density in the
spiral arms and to a suppression of spur formation. However, unlike in the 2D MHD
simulations without self-gravity of Shetty & Ostriker (2006), Dobbs & Price (2008)
�nd that some interarm structure remains also with magnetic �elds.

Magnetohydrodynamical Instabilities as a Generator of Molecular

Clouds

The inclusion of magnetic �elds in a galaxy model can initiate some instabilities,
which may help to understand the formation of giant molecular clouds.
One obvious trigger for the condensation of giant, star-forming clumps is the Parker
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instability (Parker, 1966). This instability origins in a disk with uniformly dis-
tributed gas and a magnetic �eld parallel to the disk. If there is a small perturbation
in the magnetic �eld, a part of the �eld lines bulges up. The gas, which is frozen
into the magnetic �eld, is e�ected by the gravity pointing to the disk. However, it
can only move along the �eld lines, which leads to an accumulation of gas in the
�eld line valleys away from the bulge. The �ux of gas makes the bulge lighter and it
rises further, resulting in an instability. The molecular clouds then form within the
�eld line valleys. Numerical studies of Kim et al. (2002), however, suggest that the
Parker instability plays only a secondary role in the formation of giant molecular
clouds.
A more important e�ect for the generation of giant molecular clouds probably has
the magneto-rotational instability (MRI) (Kim et al.; Piontek & Ostriker, 2005),
which has already been diskussed in the context of accretion disks above. Numeri-
cal simulations (Kim et al.) show that MRI-driven turbulence develops rapidly and,
with strong self-gravity, high-amplitude density perturbations form massive bound
clouds.
Another possible instability that might lead to the formation of large-scale cloud
complexes is the magneto-Jeans instability (MJI). In a rotating disk self-gravity
needs to overcome Coriolis forces. This can be achieved via magnetic tension forces
resulting in an instability (Elmegreen, 1987). In simulations by Kim et al. (2002)
MJI turns out to be the most powerful instability to form high-mass clouds from
non-axisymmetric perturbations.

Con�nement of Cosmic Rays

A further consequence of magnetic �elds in galaxies is the con�nement of cosmic
rays. These particles are presumably accelerated in shock fronts (we refer to the
pioneering work by Bell, 1978a,b) and reach energies up to 1021 eV1. However, with
a power-law distribution in energy that decreases with a slope around -2.7, the
majority of cosmic rays have energies around 109 eV. The energy density of cosmic
rays in a typical galaxy is roughly 1.39 eV cm−3 and thus comparable to the kinetic
one of the gas 0.49 eV cm−3 and one of the magnetic �eld 0.89 eV cm−3 (Draine,
2011).
Cosmic rays are charged particles and thus underlie the Lorenz force. When traveling
in a magnetized plasma, they spiral around the �eld lines. By comparing the typical
gyroradius

rg =
pc

eB
≈ E

eB
(2.12)

of a particle with the scale height of the galaxy hgal, one can estimate if cosmic rays
are con�ned. Here p = E/c is the relativistic momentum, E the total energy of a
particle with charge e and c the speed of light. When we assume hgal = 100 pc and

1For comparison the energy protons reach in the Large Hadron Collider is of the order of 1013

eV.
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a B = 10−5 G, which are typical values for the Milky Way disk, we �nd that cosmic
rays up to an energy of 1018 eV are con�ned within the disk. Thus, except for the
ultra energetic particles, most of the high-energy cosmic rays are con�ned within
the galaxy by the magnetic �eld.
The presence of cosmic rays in�uences the interstellar medium crucially. They sig-
ni�cantly change the chemistry by ionizing the gas. Observations by Indriolo &
McCall (2012) indicate an ionization rate as high as 10−16 s−1 in translucent clouds,
while the rate in local ISM is still an open question. A very important consequence
of cosmic ray propagation in the ISM is the additional (and often domininat) source
of heating (Glassgold et al., 2012). The heating proceeds via chemical reactions
that lead to ionization or excitation of molecules. Heating results from the energy of
electrons that origin from ionized atoms and from Coulomb collisions between the
cosmic rays and charged particles (Field et al., 1969).

Galactic Out�ows

The cosmic rays can couple to the a magnetized plasma by the emission of MHD-
waves. Ipavich (1975) shows that coupled dynamics of cosmic rays and magnetic
�elds can lead to out�ows from galaxies, i.e. to a galactic wind. These winds cause
a loss of mass and energy to the galaxy.
Recent simulations of disk galaxies by Pakmor & Springel (2013) show that magnetic
�elds can produce signi�cant out�ows with large mass losses. Supernova feedback
can in their case be excluded as the origin of the out�ows, however they are quali-
tatively similar to ones purely driven by supernovae in other simulations.
Galactic out�ows may play an important role in magnetizing the intergalactic me-
dium. Kronberg et al. (1999) show that a large fraction of the intergalactic medium
can be polluted with magnetic �elds due to out�ows from young starburst galaxies.
Magnetic di�usion may have spread these �elds over great volumes within a Hubble
time. We shortly discuss the current state of intergalactic magnetic �elds in the
next section.

2.4 Intergalactic Magnetic Fields

As we will discuss in the following chapters, any model for magnetic �eld ampli-
�cation requires the existence of a seed �eld. One of the best places to look for
these seed �elds is the intergalactic medium (IGM), because any primordial �eld is
probably the least una�ected within this region.
Up to now there is no direct detection of intergalactic magnetic �elds. Only es-
timates of upper and lower limits of the �eld strength and the coherence length
scale can be found in the literature. These limits are nicely summarized in �gure
2.4, which is taken from Neronov & Vovk (2010). There is a natural lower limit on
the coherence length resulting from the comparison of the magnetic di�usion time
scale and the age of the Universe, while the upper bound on the coherence length
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Figure 2.4:

Limits on the strength and co-

herence length of the intergalac-

tic magnetic �eld as summarized

in Neronov & Vovk (2010). The

lower hatched region is suggested

from observations of TeV blazers.

The orange hatched regions give

the allowed ranges of cosmic mag-

netic �elds generated in the early

Universe.

image credit: Neronov & Vovk
(2010)

is given by the size of the visible Universe. An upper limit on the �eld strength is
easily found from Zeemann splitting of the 21 cm absorption line in the spectra of
distant quasars. Here the detection of the µG galactic �elds rules out stronger �elds
in the IGM. Further upper bounds of the �eld strength are gained from Faraday
rotation of polarized light from quasars (Kronberg, 1994) , distortions and polar-
ization properties of the cosmic microwave background (Seshadri & Subramanian,
2009; Trivedi et al., 2012) and from Big Bang nucleosynthesis (Grasso & Rubinstein,
2001). Neronov & Vovk (2010) claim the detection of a lower bound of 3 × 10−16

G for the intergalactic magnetic �eld strength. For this result they use the γ-ray
emission from distant blazars. These TeV γ-rays decay into electron-positron pairs,
the trajectories of which are in�uenced by an intergalactic magnetic �eld. Thus,
an extended γ-ray emission of the initial blazar point source would indicate a line
of sight magnetic �eld and one expects no observations of GeV γ-ray emission. We
note, however, that there are alternative explanations for the non-detection of GeV-
γ rays from blazar sources, which include plasma beam instabilities (Chang et al.,
2012).
Studying the possible existence of magnetic �elds in the intergalactic medium is
very important, as these could be of primordial origin. This means that, due to a
lake of dynamics in the IGM, these �elds did probably not evolve signi�cantly and
could still be of the same kind as the original magnetic seed �elds.
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Principles of Magnetic Field

Ampli�cation

The aim of this chapter is to provide the relevant theoretical basics for understanding
magnetohydrodynamical dynamos. We start with a broad discussion of the theory
of hydrodynamics, which is step by step extended to magnetohydrodynamics. The
origin of the �rst magnetic �elds in the Universe is discussed, the so-called seed
�elds, which are later ampli�ed by magnetohydrodynamical dynamos. The chapter
ends with a phenomenological description of dynamos.

3.1 Dynamics of Neutral and Ionized Fluids

3.1.1 Hydrodynamics

A complete description of the state of a �uid needs to predict the position and
the velocity of every single �uid particle at every time. In the astrophysical context,
with for example molecular clouds containing about 1063 particles, this is impossible.
Thus, a statistical ansatz is necessary. In this section we sketch an elegant derivation
of the hydrodynamic equations by using the Boltzmann equation. For this purpose
we mainly follow the textbook of Choudhuri (1998).

The Boltzmann Equation

For the description of a �uid that consists of N particles we have to consider a (6+1)-
dimensional coordinate space (3 coordinates for the position, 3 for the velocity vector
and one for the time). In this space we can introduce a distribution function

f(x,u, t) ≡ lim
δV→0

δN

δV
. (3.1)

The volume δV in this limit needs to be small compared to the extension of the
points in space, but still large enough to contain many particles δN .
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If we now consider a �uid, in which the particles do not interact with each other, the
time derivation of the distribution function in our (6+1)-dimensional space along
any trajectory needs to vanish,

Df
Dt

= 0

↔ ∂f

∂t
+ ẋ · ∇f + u̇ · ∇uf = 0, (3.2)

where we de�ne the velocity gradient as

∇u ≡
3∑

i=1

∂

∂ui
ei. (3.3)

Equation (3.2) tells us how the distribution function f(x,u, t) evolves in time. A
�uid without particle interactions is called collisionless and is described by the col-
lisionless Boltzmann equation (3.2).
Now we go one step further and consider the more realistic case of a �uid, in which
the particles interact with each other. Due to collisions particles can change their
velocities. This means that a particle, which has a velocity u before a collision, can
change its velocity leading to a decrease of the distribution function f(x,u, t). On
the other hand, a velocity of a particle which is initially di�erent can be changed to
u and by this increases f(x,u, t). So the general form of the evolution of f(x,u, t)
is given by

Df
Dt

dx3du3 = Cin − Cout, (3.4)

where Cin and Cout describe the number of particles that change their velocity to
and from u, respectively.
These two quantities can be determined for example for a dilute gas, in which only
binary collisions take place. Choudhuri (1998) �nds for this special case

Cin = dx3du3

∫
dũ3

∫
dΩ σ(u, ũ|u′, ũ′) |u− ũ| f(x,u′, t)f(x, ũ′, t), (3.5)

Cout = dx3du3

∫
dũ3

∫
dΩ σ(u, ũ|u′, ũ′) |u− ũ| f(x,u, t)f(x, ũ, t). (3.6)

In the above expressions u and ũ are the velocities of the two particles before the
collision, u′ and ũ′ the ones afterwards, Ω is the scattering angle and σ(u, ũ|u′, ũ)
the cross section for the collision. The full Boltzmann equation for a dilute gas
follows as

∂f

∂t
+ ẋ · ∇f + u̇ · ∇uf =

∫
dũ3

∫
dΩ σ(Ω) |u− ũ| ·

× (f(x,u′, t)f(x, ũ′, t)− f(x,u, t)f(x, ũ, t)) .

(3.7)

The Boltzmann equation governs the time evolution of the distribution function of
the gas.
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The Moment Equations

Now let us consider a quantity χ that is conserved in a binary collision, i.e.

χ+ χ̃ = χ′ + χ̃′, (3.8)

where the ′ denotes a later time. If we multiply the Boltzmann equation with this
quantity χ and integrate over d3u we �nd

∫
d3u χ

Df
Dt

=

∫
d3u

∫
d3ũ

∫
dΩ σ(Ω)|u− ũ| ·

× (f(x,u′, t)f(x, ũ′, t)− f(x,u, t)f(x, ũ, t))χ. (3.9)

One can show that the right hand side equals zero (Choudhuri, 1998). Thus, we are
left with

∫
d3u χ

(
∂f

∂t
+ ui

∂f

∂xi
+
Fi
m

∂f

∂ui

)
= 0, (3.10)

where we have used equation (3.2) and the relations ẋ = u and u̇ = F /m with F
being a force acting on a particle with mass m. We can rewrite equation (3.10) as

∂

∂t

∫
d3u χf +

∂

∂xi

∫
d3u χuif −

∫
d3u uif

∂χ

∂xi

− 1

m

∫
d3u

∂χ

∂ui
Fif −

1

m

∫
d3u χ

∂Fi
∂ui

f = 0. (3.11)

This equation simpli�es when we introduce the de�nition of the average. Given a
quantity Q we de�ne its average 〈Q〉 by

〈Q〉 ≡ 1

n

∫
d3u Qf, (3.12)

where the number density is

n ≡
∫

d3u f. (3.13)

Using the de�nition of the average we can modify equation (3.11) and end up with

∂

∂t
(n 〈χ〉) +

∂

∂xi
(n 〈uiχ〉)−n

〈
ui
∂χ

∂xi

〉
− n

m

〈
Fi
∂χ

∂ui

〉
− n

m

〈
∂Fi
∂ui

χ

〉
= 0. (3.14)

This is the so-called conservation equation, which describes how the volume density
n 〈χ〉 of a conserved quantity χ changes in time. It is of crucial importance for hydro-
dynamics. Evaluation of (3.14) for the conserved quantities in a �uid, the mass, the
momentum and the energy, results in the three central equations of hydrodynamics.
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Conservation of Mass Let us start with substituting the particle mass m, which
is conserved in a binary collision, into the conservation equation (3.14). The value
of the mass does not depend on the position of the particle nor on its velocity (in
the non-relativistic limit at least). If we additionally consider the force F to be
independent of velocity, we end up with

∂

∂t
(nm) +

∂

∂xi
(nm 〈ui〉) = 0. (3.15)

ρ ≡ nm (3.16)

and the average velocity

v ≡ 〈u〉 (3.17)

we can rewrite equation (3.15) as

∂ρ

∂t
+

∂

∂xi
(ρvi) = 0

→ ∂ρ

∂t
+∇ (ρv) = 0. (3.18)

This is the �rst moment of the Boltzmann equation and also known as the continuity
equation.

Conservation of Momentum For deriving the second moment equation we sub-
stitute χ in (3.14) by the momentum muj. This leads to

∂

∂t
(nm 〈uj〉) +

∂

∂xi
(nm 〈uiuj〉)− n 〈Fiδij〉 = 0

→ ∂

∂t
(ρvj) +

∂

∂xi
(ρ 〈uiuj〉)−

ρ

m
Fj = 0. (3.19)

We can simplify this further by de�ning a tensor

Pij ≡ nm 〈(ui − vi)(uj − vj)〉
= nm (〈uiuj〉 − vivj) . (3.20)

With Pij we can bring equation (3.19) into the form

∂

∂t
(ρvj) +

∂

∂xi
(ρvivj) =

ρ

m
Fj −

∂Pij
∂xi

. (3.21)

Using the continuity equation (3.18) we can simplify the left hand side and get

ρ

(
∂vj
∂t

+ vi
∂vj
∂xi

)
=

ρ

m
Fj −

∂Pij
∂xi

. (3.22)
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Conservation of Energy Finally, we calculate the third moment of the conser-
vation equation. For this we assume the translational kinetic energy 1/2m|u − v|2
to be a conserved quantity in a monoatomic gas. Substituting this quantity into the
conservation equation (3.14) we �nd

∂

∂t
(ρε) +

∂

∂xi
(ρεvi) +

∂qi
∂xi

+ PijΛij = 0, (3.23)

with the internal energy per unit mass

ε =
1

2

〈
|u− v|2

〉
, (3.24)

the energy �ux

q =
1

2
ρ
〈
(u− v) |u + v|2

〉
, (3.25)

and

Λij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
. (3.26)

We can simplify equation (3.23) by using the continuity equation (3.18) and end up
with

ρ

(
∂ε

∂t
+ vi

∂ε

∂xi

)
+
∂qi
∂xi

+ PijΛij = 0. (3.27)

The moment equations describe the evolution of the conserved quantities in a �uid.
However, the equations (3.18), (3.22) and (3.27) do not provide a dynamical theory,
as there are to many independent variables. We will solve this problem in the
next subsection, where we derive expressions for q and Pij by taking into account
transport phenomena.

Transport Phenomena

In the equilibrium case we expect the velocity distribution function f to be a
Maxwellian, i.e.

f(x,u, t) = f (0)(x,u, t)

= n(x, t)

(
m

2πkT (x, t)

)3/2

exp

(
−m(u− v(x, t))2

2kT (x, t)

)
. (3.28)

In case there are, however, strong gradients of temperature or velocity in the �uid,
particles with higher velocity will stream into regions that are described by veloc-
ity distributions with lower velocities. We expect then a deviation from the local
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Maxwellian distribution function. In this case we can write the distribution function
as

f(x,u, t) = f (0)(x,u, t) + g(x,u, t), (3.29)

where g(x,u, t) is the deviation from the Maxwellian f (0)(x,u, t). Inserting this
ansatz into the collisional Boltzmann equation (3.7) yields in �rst order of g

∂f

∂t
+ ẋ · ∇f + u̇ · ∇uf = −f − f

(0)

τ
. (3.30)

We have introduced here the collision time τ , which equals approximately the inverse
of the collision integral. For a strong spatial gradient the second term on the left
hand side of (3.30) is dominant. In this case we can approximate equation (3.30) by

|u|f (0)

L
≈ |g|

τ
(3.31)

with |u| being the typical particle velocity and L being the macroscopic size of the
system. Expressing τ by the mean free path λ = τ |u| yields

|g|
f (0)
≈ λ

L
. (3.32)

Thus, if the mean free path is small compared to the macroscopic scale the distri-
bution function will be almost Maxwellian. In this case f can be expanded in terms
of λ/L:

f = f (0) +
λ

L
f (1) +

(
λ

L

)2

f (1) + ... . (3.33)

This series is known as the Chapman-Enskop expansion (see Chapman et al. (1953)
for more details).
When using only the �rst-order corrections, i.e. using f ≈ f (0) on the left hand side
of (3.30), one can show that

g = −τ
[

1

T

∂T

∂xi
Ui

(
m

2kT
U2 − 5

2

)
+

m

kT
Λij

(
UiUj −

1

3
δijU

2

)]
f (0), (3.34)

with U ≡ u− v. Using this expression of g the quantities Pij given in (3.20) and q
given in (3.25) can be calculated. Integration yields

Pij = pδij − 2νρ

(
Λij −

1

3
δij∇ · v

)
(3.35)

with the viscosity

ν =
τkT

m
. (3.36)
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For the quantity q one �nds

q = −K∇T (3.37)

with the coe�cient of thermal conductivity

K =
5

2

τnk2T

m
. (3.38)

A main conclusion of this section is that, both transport coe�cients ν as K depend
on the collision time τ . Under the assumption that the particles are rigid spheres
with radius a Choudhuri (1998) �nds

τ =
1

4na2

( m

πkT

)1/2

. (3.39)

The dependence of the transport coe�cients on τ is intuitively clear as momentum
and temperature are transported in collisions. For higher τ the coe�cients ν and
K become larger. In this case particles can stream into a region from further away
without colliding leading to stronger deviations of the local distribution function
from the Maxwellian.
We note here that more rigorous calculations for the transport coe�cients have
been performed by Braginskii (1965), who takes into account higher orders of the
Chapman-Enskop expansion. He �nds the following expression for the viscosity

ν = 0.406
(kT )5/2

e4m1/2nlnΛ
. (3.40)

The result from this method yields a value of ν that is smaller by only a factor
of roughly 3 compared to the one in equation (3.36). Also the result for K from
the Chapman-Enskop method di�ers only be a factor of 3/2 compared to the result
given in (3.38).

The Set of the Hydrodynamical Equations

Inserting the expressions (3.35) and (3.37) into the equation for momentum conser-
vation (3.22) and the energy equation (3.27) simpli�es these drastically. The set of
the hydrodynamical equations is then given as: the continuity equation

∂ρ

∂t
+∇ (ρv) = 0, (3.41)

the Navier-Stokes equation

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+

1

m
F + ν

(
∇2v +

1

3
∇ (∇ · v)

)
(3.42)

and the energy conservation equation

ρ

(
∂ε

∂t
+ v · ∇ε

)
= ∇ · (K∇T )− p∇ · v. (3.43)
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These three equations constitute a dynamical theory of the �uid, yielding the time
evolution of the variables v, ρ, p, T and ε. Note, however, that the thermodynamical
quantities ρ, p, T and ε are connected via equations of state and only two out of
the four are independent. Thus, for a given viscosity ν, thermal conductivity K
and external force F we have �ve independent variables, the evolution of which is
described by the �ve hydrodynamical equations1.
We have arrived at a theory that describes the dynamics of a neutral �uid. Inter-
actions between the individual particles take place only via direct collisions, while
the trajectories of the particles in between collisions are straight lines. The situa-
tion becomes more complicated when the particles carry charges. Here long-range
interactions via electromagnetic forces occur and the particle trajectories become
more complex. We continue our discussion now with the theoretical description of
the electromagnetic �eld.

3.1.2 The Maxwell Equations

When a �uid is not made of neutral particles, but of ions and electrons, it reacts
to electromagnetic �elds. The electromagnetic �eld, i.e. the electric �eld E and the
magnetic �eld B, is described by the four Maxwell equations that we will discuss in
the following.

Maxwell Equations of the Electric Field

The electric �ux Φ appearing from an arbitrary charge distribution ρel(x) with total
charge Q is given as

Φ =

∫

∂V

E df

=

∫

∂V

∫

V

ρel(x
′)
r

r

3

d3x′df

= 4π

∫

V

ρel(x
′) d3x′

= 4πQ, (3.44)

where we have used Coulombs law for the electric �eld E. The second step in this
calculation can be rewritten with Gauss' theorem, which leads to

∫

∂V

E df =

∫

V

∇ ·E dV

= 4π

∫

V

ρel(x
′) dV. (3.45)

The relation found here,

∇ ·E = 4πρel, (3.46)
1Note, that the Navier-Stokes equation (3.42) is a vector equation, which has three components.
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is the �rst Maxwell equation.
The second Maxwell equation can be derived from Faraday's law of induction, which
claims that the electric voltage is proportional to the change of the magnetic �ux,

∫

c

E ds = −1

c

d
ct

∫

∂V

B df . (3.47)

With Stokes' theorem we �nd
∫

∂V

∇×E df = −1

c

∫

∂V

∂B

∂t
df (3.48)

Thus, we �nd the second Maxwell equation to be

∇×E +
1

c

∂B

∂t
= 0. (3.49)

Maxwell Equations of the Magnetic Field

The derivation of the divergence of the magnetic �eld is simple, when we use our
experience that there are no magnetic charges. So the magnetic �ux through a
closed area always vanishes,

∫

∂V

B df =

∫

V

∇ ·B dV

= 0, (3.50)

and we �nd the third Maxwell equation

∇ ·B = 0. (3.51)

For the last Maxwell equation we have to rewrite Ampere's law, which is given as
∮

c

B dx =
4π

c
I, (3.52)

where I =
∫
∂V

jdf is the electric current. With Stokes law we �nd
∮

c

B dx =

∫

∂V

∇×B df

=

∫

∂V

4π

c
j df . (3.53)

The equation

∇×B =
4π

c
j (3.54)
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does not ful�ll the continuity equation for the charge. For this reason an additional
term, the so-called displacement current c−1∂E/∂t, needs to be included. Thus, we
end up with the fourth Maxwell equation

∇×B − 1

c

∂E

∂t
=

4π

c
j. (3.55)

We found a set of four equations describing the divergence and the rotation of the
electric and the magnetic �eld. According to the fundamental theorem of vector
analysis these equations determine the electromagnetic �eld completely as long as
E and B decrease fast enough for large distances.

3.1.3 A Single Charged Particle in an Electromagnetic Field

A particle with the charge q and a velocity v in an electromagnetic �eld is exposed
to the Lorentz force

F L = q

(
E +

1

c
v ×B

)
. (3.56)

With the de�nition of the current density

j = qv (3.57)

the Lorentz force can be rewritten as

F L = qE +
1

c
j ×B. (3.58)

By replacing the current density with the magnetic �eld according to Amperes law
(3.55), we �nd2

F L = qE +
1

4π
(B · ∇)B −∇B

2

8π
. (3.59)

This form of the Lorentz force shows that the magnetic part consists of two com-
ponents: a force resulting from the gradient of B2/(8π) and a magnetic tension
1/(4π) (B · ∇)B. The term B2/(8π) acts like the thermal pressure and is thus la-
beled magnetic pressure. The magnetic tension force, which directs to the center of
�eld line curvature, tends to straighten the �eld lines and behaves like the force in
an elastic spring.
When solving the equation of motion F L = m du/dt with the Lorentz force (3.56)
one �nds, that charged particles of mass m move in spirals around magnetic �eld
lines if they have a velocity component perpendicular to the magnetic �eld. The
characteristic frequency of this motion is the gyro-frequency

ωc =
|q|B
mc

. (3.60)

2Here we use the vector identity ∇(X ·Y ) = X×(∇×Y )+Y ×(∇×X)+(X ·∇)Y +(Y ·∇)X.
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3.1.4 One-Fluid Magnetohydrodynamical Equations

The evolution of a magnetized �uid is described by the magnetohydrodynamical
(MHD) equations. We present these equations in the following and discuss their
nature.

Continuity Equation The continuity equation (3.41) that has been derived from
the Boltzmann equation in the hydrodynamical case still holds when an electromag-
netic �elds is involved. For completeness we write it down again:

∂ρ

∂t
+∇ · (ρv) = 0. (3.61)

An important special case is a �uid the density of which is constant in time. In this
case we the continuity equation simpli�es to

∇ · (ρv) = 0. (3.62)

If the density is also constant in space we �nd

∇ · v = 0. (3.63)

We speak of an incompressible �uid in this case.

Momentum Equation In absence of a magnetic �eld the time evolution of mo-
mentum is described by the Navier-Stokes equation (3.42). Now let us assume that
the plasma is magnetized. This means that we have to consider an additional mag-
netic force. The Lorentz force (3.56) for a continuous system is 1/c j ×B. Thus,
we have to include the term

1

cρ
j ×B =

1

4πρ
(∇×B)×B

=
1

4πρ
(B · ∇)B − 1

ρ
∇B

2

8π
, (3.64)

where we have used Ampere's law (3.55). Altogether, in MHD we have to use the
following momentum equation

∂v

∂t
+(v ·∇)v = −1

ρ
∇
(
p+

B2

8π

)
+

1

m
F +

1

4πρ
(B · ∇)B+

µ

ρ

(
∇2v +

1

3
∇ (∇ · v)

)
.

(3.65)

One can easily see, that the magnetic �eld leads to an additional magnetic pres-
sure B2/(8π). Furthermore, one can show, that the second term including B is
responsible for a tension along the magnetic �eld lines (see, e.g. Choudhuri, 1998).
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Energy Equation The equation of the internal energy is in MHD almost the
same as it is in hydrodynamics,

ρ

(
∂ε

∂t
+ v · ∇ε

)
= ∇ · (K∇T ) +

j2

σ
− p∇ · v. (3.66)

There is only one additional term, j2/σ, which describes the Ohmic heating.

3.1.5 Collisions and Transport Phenomena in

Magnetohydrodynamics

Collisions play a central role in the dynamics a �uid, as should be clear from the
discussion within neutral �uids in section 3.1.1. The situation becomes more com-
plex when the particles are charged. Not only do we have to treat collisions between
di�erent species, we also need to take into account forces from the electromagnetic
�eld that act on the particles. The mathematical treatment of collisions is very
complicated and we summarize here only the most important results. For detailed
calculations we refer to the textbook by Spitzer (1956).

Resistivity and Ohm's Law

In order to treat collisions between electrons and ions3 we need to use a two �uid
approximation (see, e.g. Choudhuri, 1998). The equation of motion is given by the
Navier-Stokes equation (3.42), in which we assume the viscosity term to vanish.
Then for the electrons holds

men
∂ve

∂t
= −∇pe − ne

(
E +

ve

c
×B

)
−menνie (ve − vi) , (3.67)

where the additional last term describes the energy loss in collisions with ions at a
collision frequency νie. The force that is used here is the Lorentz force (3.56). With
the de�nition of the electric current

j = ne (vi − ve) , (3.68)

equation (3.67) becomes

min
∂vi

∂t
= −∇pi − ne

(
E +

vi

c
×B

)
+
meνie

e
j. (3.69)

The corresponding equation of motion for the ions is

men
∂ve

∂t
= −∇pe + ne

(
E +

ve

c
×B

)
− meνie

e
j. (3.70)

3For simplicity we assume here an ionized hydrogen gas, i.e. the ions are protons.
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Combination of equations (3.69) and (3.70) leads to

E +
1

c
v ×B − 1

σ
j =

1

ne

(
1

c
j ×B −∇pe

)
, (3.71)

where we have used the fact that me � mi. We further have de�ned the electric
conductivity

σ =
ne2

meνie

(3.72)

and the single-�uid velocity

v =
mivi +meve

mi +me

. (3.73)

Equation (3.71) is known as the generalized Ohm's law. Typically the terms j ×B,
which corresponds to the Hall e�ect, and ∇pe are small and we only have to deal
with Ohm's law

j = σ

(
E +

1

c
v ×B

)
. (3.74)

The electrical conductivity σ is related to the electrical resistivity by

η =
c2

4πσ
(3.75)

The resistivity (3.75), which depends on the collision frequency between ions and
electrons νie, can be derived in general way (see the book of Spitzer, 1956). The
result of the closure scheme is found to be

η =
π3/2m

1/2
e e2c2 lnΛ

2γE (2kT )3/2
, (3.76)

where

Λ =
3

2e3

(
k3T 3

πn

)1/2

, (3.77)

and the numerical factor γE is roughly 0.582 for an ionic charge of 1. The factor lnΛ
is called Coulomb logarithm has a typical value of the order of 10.

Ambipolar Di�usion

In many astrophysical environments, like for example in the interstellar medium,
the gas is not fully ionized. In this case MHD can only be applied, when there is
a strong coupling between the electron-ion component and the neutral component
due the collisions. There are, however, cases where this coupling is not perfect.
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An important consequence of this decoupling is ambipolar di�usion, which might
play a crucial role in the initial phase of star formation. With a typical collision rate
between the charged and the neutral particles, one can show that there is a di�usion
process between the two components. In case of a collapsing molecular cloud, the
ionized gas is tied to the interstellar magnetic �eld. A decoupling of the charged
from the neutral component makes gravitational collapse possible. The resulting
�ux is given by

nv = −DAD∇n, (3.78)

with DAD being the coe�cient of ambipolar di�usion (see, e.g. Choudhuri, 1998).

The Presence of a Strong Magnetic Field

In the transition from an unmagnetized to a magnetized state, the plasma becomes
anisotropic, i.e. certain physical quantities depend on their relative orientation to
the magnetic �eld direction.
We have discussed the closure of the hydrodynamical equations in subsection 3.1.1.
The main assumption was that the mean free path is much smaller than the macro-
scopic scales of the system. In presence of a magnetic �eld, a third typical length
scales enters, the gyro-radius of the charged particles

rc =
(2mskT )1/2c

eB
. (3.79)

The index s refers here to the di�erent charged species, i.e. the ions and the electrons.
If the magnetic �eld is very strong the gyro-radius becomes smaller than the mean
free path and one uses the latter for closing the set of equations.
With a strong ordered magnetic �eld the medium becomes anisotropic and one has
to distinguish between the viscosity along (parallel to) and the one perpendicular
to the magnetic �eld lines. The motion of charged particles along the �eld is still
determined by the mean free path and the transport coe�cients are the same as in
the unmagnetized case (see equations 3.36 and 3.75).
Thus the parallel viscosity is given by equation (3.40):

ν‖ = 0.406
(kT )5/2

e4m1/2n lnΛ
. (3.80)

Braginskii (1965) shows that the viscosity perpendicular to the �eld is given by

ν⊥ =
2

5

( π

kT

)1/2 e4 lnΛ

m3/2ω2
c

(3.81)

with the gyro-frequency of the ions from equation (3.60).
For the electric resistivity and the conductivity, the situation is similar. The com-
ponent along the �eld lines is given by the Spitzer expression (3.76):

η‖ =
π3/2m

1/2
e e2c2 lnΛ

2γE(2kT )3/2
(3.82)
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and the one perpendicular to the �eld lines by

η⊥ =
π3/2m

1/2
e e2c2 lnΛ

2γEB(2kT )3/2
(3.83)

with γE ≈ 0.582 and γEB = 3π/32. Note, that η⊥ is, contrary to the case of the
perpendicular viscosity, no function of the magnetic �eld strength and the di�erence
between the parallel and the perpendicular components is just approximately a
factor of two.

3.1.6 The Induction Equation

For a full dynamical theory of MHD we have to �nd one more equation in addition to
the �uid equations discussed in subsection 3.1.4, because there are more independent
variables. We require an equation describing the magnetic �eld B, which we can
derive from the Maxwell equations and Ohm's law (3.74).
By combinating Faraday's law (3.49) with Ohm's law (3.74) we can eliminate the
electric �eld E,

1

c

∂B

∂t
= −∇×

(
j

σ
− v ×B

)
. (3.84)

When we neglect Maxwell's displacement current c−1∂E/∂t in Ampere's law (3.55)
and substitute the current density j into the upper equation we �nd the induction
equation

∂B

∂t
= ∇× (v ×B − η∇×B) , (3.85)

which describes the evolution of the magnetic �eld.
We can make the induction equation dimensionless by introducing the typical quan-
tities of our system: B is the typical �eld strength, L the typical length scale, V the
typical velocity and T the typical timescale. With B = BB̃, ∇ = 1/L∇̃, v = V ṽ
and t = T t̃ we �nd

∂B̃

∂t
= ∇̃ ×

(
ṽ × B̃ − 1

Rm
∇× B̃

)
. (3.86)

We de�ned here the magnetic Reynolds number

Rm ≡ V L

η
, (3.87)

which is an indicator for the importance of the two terms on the right hand side of
equation (3.85). The limit of Rm � 1 leads to a di�usion equation. In this case
the magnetic �eld can only decay. The other limit, Rm� 1, is the limit of perfect
conduction, where the electric conductivity σ � 1. Only in this case the magnetic
energy can increase.
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3.1.7 The Full Set of Magnetohydrodynamical Equations

In presence of a strong magnetic �eld the �uid equations are given by the continuity
equation (3.61), the momentum equation (3.65) and the energy equation (3.66). In
addition to the three components of the velocity v and the thermodynamical quan-
tities ρ, p, T and ε (only two of which are independent), the three components of the
magnetic �eld strength B need to be included. The �ve modi�ed hydrodynamical
equations are thus not enough for the description of the �uid. In order to have a full
dynamical system of equations we need to include the induction equation (3.85).
In conclusion, the complete set of the MHD equations is given by

∂ρ

∂t
+∇ · (ρv) = 0 (3.88)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇
(
p+

B2

8π

)
+

1

m
F +

1

4πρ
(B · ∇)B

+
µ

ρ

(
∇2v +

1

3
∇ (∇ · v)

)
(3.89)

ρ

(
∂ε

∂t
+ v · ∇ε

)
= ∇ · (K∇T ) +

j2

σ
− p∇ · v (3.90)

∂B

∂t
= ∇× (v ×B − η∇×B) . (3.91)

In the case of ideal MHD the transport coe�cients vanish and the upper set of
equations is reduced to

∂ρ

∂t
+∇ · (ρv) = 0 (3.92)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇
(
p+

B2

8π

)
+

1

m
F +

1

4πρ
(B · ∇)B (3.93)

ρ

(
∂ε

∂t
+ v · ∇ε

)
=

j2

σ
− p∇ · v (3.94)

∂B

∂t
= ∇× (v ×B) . (3.95)

We note, that in order to close the system of MHD equations an equation of state
is required that connects two of the thermodynamic quantities.
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3.2 Magnetic Seed Fields

The induction equation (3.85) describes the evolution of a magnetic �eld, i.e. the
ampli�cation and the dissipation of magnetic energy. With B = 0 being a solution
of the induction equation, it provides no explanation for the real origin of the �elds.
In our further analysis we thus need to assume the existence of a magnetic seed �eld.
We discuss possible generation mechanisms of these seed �elds in this section.

3.2.1 Origin within the First Minutes of the Universe

Di�erent mechanisms are proposed in literature, which describe the generation of
magnetic �elds in the very early Universe. These exotic theories predict large-
scale magnetic �elds of various strengths, but are obviously hard to con�rm by
observations. Nevertheless, we shortly discuss the �eld generation in in�ation and
cosmological phase transitions in this section. For more details on that topic we
refer to the reviews by Widrow (2002) and Widrow et al. (2012).

Magnetic Field Inhomogeneities in In�ation

Theoretically, the �rst seed �elds might already have been generated in the very
early Universe during in�ation. In this era of the Universe, where the scale factor
increases exponentially leading to an spatial increase by a factor of roughly 1030,
small spatial quantum �uctuations expand into the large-scale seeds of which stars
and galaxies form.
In the same way magnetic �uctuations could expand into large-scale magnetic �elds
during in�ation. However, under the assumption of conformal invariance of electro-
magnetism the product of the magnetic �eld strength and the scale factor squared,
Ba2, stays constant. With an increase by a factor of 1030, the �eld strength would
decrease by a factor of 1060 and become extremely weak.
Turner & Widrow (1988) �nd that conformal invariance can be broken for example
through gravitational coupling of the photon. The resulting �eld strengths depend
strongly on the model. Typical magnetic �elds that generated in in�ation can be as
strong as B0 ≈ 10−10 G on a Mpc scale. We note, however, that alternative models
predict considerably weaker �elds, which are of the order of B0 ≈ 10−40 G.

Magnetic Field Generation in Phase Transitions

With the expansion of the Universe the temperature decreases. This leads to a series
important phase transitions, i.e. symmetry brakings, in the early Universe changing
the appearance of forces and particles crucially. In these phase transitions typically
a large amount of energy is released and currents of the charged particles are driven.
The generation of electric and magnetic �elds is a natural consequence.
Mostly discussed in this context are �rst-order phase transitions. Here a regime
of mixed phases occurs, in which bubbles of the new phase expand into regions of
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the former phase until they �ll the whole space. Especially the bubble walls, where
energy is released into heat, play an important role. Let us for example consider the
QCD phase transition. As the di�erently charged quarks in the quark-gluon plasma
have di�erent masses, it is has a net positive charge, while the lepton sector has a net
negative charge. This leads to the generation of electric currents on the bubble walls,
which separate the quark sectors from the baryon sectors. Quashnock et al. (1989)
show that this currents can generate magnetic �elds in the QCD phase transition
with a strength of 5 G on a scale of 100 cm. This leads to a typical �eld strength of
10−17 G on a scale of 1011 cm at the time of recombination, when an inverse cascade
of the magnetic energy to larger scales is assumed. Cheng & Olinto (1994) and Sigl
et al. (1997) show that baryons concentrate on the bubble walls during the phase
transition. This e�ect leads to magnetic �elds that are approximately seven orders
of magnitude stronger than the ones predicted without this e�ect.

3.2.2 Origin from Plasma Phenomena

Battery Mechanisms

Besides a cosmological origin of magnetic �elds there are so-called battery mecha-
nisms, which can continuously work in the Universe. We have seen, that the normal
induction equation (3.85) provides no way of creating a magnetic �eld. Every term
of this equation includes B and thus B = 0 is a valid solution. However, we have so
far used the one-�uid approximation for magnetohydrodynamics. We will see that
additional terms will appear in our equations if we go one step further and use a
two-�uid approximation, including two di�erently charged species.
For simplicity we consider a partially ionized hydrogen gas, which consists of elec-
trons, protons and neutrals. In the two-�uid approximation the generalized Ohm's
law is given in equation (3.71). The �rst term on the right hand side of this equation
is responsible for the Hall e�ect. The last term in (3.71), ∇pe/(ne) is the so-called
Biermann term, which provides a way to generate a magnetic �eld. Deriving the
induction equation in the same way like we did in Section 3.1.6, but now using the
generalized Ohm's law, results in (Spitzer, 1956)

∂B

∂t
= ∇× (vi ×B)− η

4π
∇× (∇×B)− ck

e

∇ne
ne
×∇T, (3.96)

where we use pe = nekT . This generalized induction equation has, compared to
equation (3.85), one additional term ck/(ene)∇ne × ∇T , which is independent of
the magnetic �eld B. Thus, this source term can generate a �eld under the condi-
tion that there is a pressure and a temperature gradient that are not parallel.
The descriptive explanation of this generation mechanism, which is also illustrated
in �gure 3.1, uses the fact that our two charged species have very di�erent masses,
i.e. me � mp. If there is a pressure gradient in the plasma the particles get accel-
erated. The electrons are more strongly accelerated than the protons, because they
have a smaller mass. This leads to a separation of charge and an electric �eld is
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Figure 3.1:

The principle of the Biermann bat-

tery: Non-parallel gradients in density

(∇ne)and temperature (∇T ) lead to a

charge separation, by which in turn a

magnetic �eld is generated.

generated. If now the electron density ne is constant in space the electric �eld is
static. But a spatial dependence of ne gives rise to an electric current and thus to
the generation of a magnetic �eld (Biermann, 1950; Kulsrud & Zweibel, 2008).
Let us now estimate how strong the �elds produced by the Biermann battery are
(Kulsrud & Zweibel, 2008). In a system that is formed by gravity, the energy that
can be transformed into magnetic energy is the gravitational energy. The typical
timescale on which the magnetic �eld is generated is then given by the free-fall time
T� = 1/

√
Gmn, where G is the gravitational constant and m the mean partial mass.

From the generalized induction equation (3.96) we �nd

B

T�
≈ ck

e

L−1ne
ne

L−1T

=
ckT

L2e
. (3.97)

The typical length scale L of a gravitationally formed system is the Jeans length
LJ, which is determined by the Jeans mass (2.5) with MJ = 4/3πρL3

J. Hence we set
L ≈ cs(ρG)1/2, where cs = (kT/m)1/2 is the thermal sound speed. Thus, we �nd for
the typical magnetic �eld strength generated by a Biermann battery:

B ≈ c

e
m3/2 (nG)1/2. (3.98)

For the typical intergalactic medium with m ≈ 1.67× 10−24 g and n ≈ 1 cm−3 the
Biermann battery can generate a magnetic �eld of roughly 10−20 G.
On the numerical side, there are a number of MHD simulations including the Bier-
mann battery e�ect. For example Xu et al. (2008) study magnetic �elds in primordial
star formation with a self-consistent three-dimensional adaptive mesh re�nement
simulation. They �nd that the Biermann battery is most important in the early
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evolution of a primordial halo. The generated magnetic �eld gets further ampli�ed
in the collapse through gravitational compression. Xu et al. (2008) �nd a peak
magnetic �eld strength of 10−19 G at a redshift of 17.55.

Aperiodic Plasma Fluctuations

Recently, Schlickeiser (2012) has shown that a turbulent magnetic �eld can be gen-
erated in plasma �uctuations within an unmagnetized non-relativistic medium. He
analyses a special kind of plasma �uctuations, so-called aperiodic �uctuations. These
�uctuations do not propagate in space, but can permanently grow or decrease in
time. Schlickeiser (2012) shows that aperiodic �uctuations can generate a random
magnetic �eld with a typical �eld strength of

B ≈ 4.7× 10−16 G

(
T

104 K

)1/2 ( n

10−7 cm−3

)2/3

. (3.99)

This formula is expressed in terms of the properties of the intergalactic medium,
which is being photoionized by the �rst stars leading to typical temperatures of
T ≈ 104 K and densities of n ≈ 10−7 cm−3. Applying the same formula (3.99) to a
protogalaxy with T ≈ 5 × 103 K and n ≈ 10 cm−3 leads to a seed �eld strength of
the order of 10−10 G.

3.3 Simple Models for Magnetic Field Ampli�cation

3.3.1 Ideal Magnetohydrodynamics and the Concept of Flux

Freezing

In order to amplify a magnetic �eld by dynamical motions of the gas, it needs to
be frozen into the gas, i.e. the �eld lines need to be dragged along with the �uid
elements. This condition is called �ux freezing and is provided in the case of ideal
MHD. Strictly speaking, a system can only be described by ideal MHD if all of the
following conditions are ful�lled:

• The collision rate between the ions and neutrals in an ionized gas needs to be
very high. This ensures that the neutral and the charged particles are coupled
perfectly and behave as one �uid. If there is, for example, a strong external
magnetic �eld the whole �uid feels the Lorentz force and not only the ions.

• The viscosity needs to vanish (ν → 0), i.e. the hydrodynamic Reynolds number
is in�nite (Re ∝ 1/ν →∞).

• The resistivity needs to vanish (η → 0), i.e. the electric conductivity and the
magnetic Reynolds number become in�nite (σ ∝ 1/η →∞ and Rm ∝ 1/η →
∞). Because of this condition ideal MHD is also known as non-resistive MHD.
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Let us now de�ne the magnetic �ux Ψ as

Ψ =

∫

S

B dS, (3.100)

with S being an area through which a magnetic �eld B �ows. Both, B and S, can
change in time. The �rst term of the time derivative of Ψ is

(
∂Ψ

∂t

)

1

=

∫

S

∂B

∂t
dS

= −c
∫

S

∇×E dS, (3.101)

where we used the Maxwell equation (3.49). With ∂dS/∂t = u × dl, the second
term of ∂Ψ/∂t becomes

(
∂Ψ

∂t

)

2

=

∮

c

B · (u× dl)

= −c
∮

c

(B × u) · dl

= −
∫

S

∇× (B × u) dS, (3.102)

Here we use Stoke's law of integration in the last step. In total, this yields a time
derivative of the magnetic �ux of

∂Ψ

∂t
= −

∫

S

∇× (u×B + cE) dS, (3.103)

Comparison with Ohm's law (3.74) results in

∂Ψ

∂t
= −

∫

S

∇× (cηj) dS. (3.104)

As the resistivity vanishes in ideal MHD, the value under the integral becomes zero
and we �nd

∂Ψ

∂t
= 0. (3.105)

Thus, the magnetic �ux is a conserved quantity in ideal MHD and the magnetic �eld
is virtually frozen into the �uid. This behavior is also known as Alvén's theorem of
�ux freezing (Alvén, 1942).
We point out that �ux freezing is only ensured for weak magnetic �elds. With
increasing magnetic energy, magnetic back reactions become more important and at
some point the neutrals will not follow the magnetic �eld any more.
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3.3.2 Compression of Field Lines in Di�erent Geometries

When the magnetic �eld follows the motion of the plasma, i.e. the magnetic �ux
is frozen into the �uid, it can be ampli�ed when the density increases. If and by
how much the �eld strength increases depends on the geometry of the collapse. We
present here derivations for parallel, perpendicular and spherical compression from
the book of Frank-Kamenezki (1967).
A mathematical treatment of ampli�cation by gravitational compression starts with
the continuity and the induction equation, as these describe the evolution of the
density and the magnetic �eld strength. In Lagrangian notation, they are

dρ
dt

= −ρ∇ · v,
dB
dt

= (B · ∇)v −B (∇ · v) . (3.106)

Elimination of ∇ · v leads to
dB
dt

= (B · ∇)v +
B

ρ

dρ
dt

↔ d
dt

(
B

ρ

)
=

(
B

ρ
· ∇
)
v. (3.107)

We now aim to study the evolution of a frozen-in �eld line in a plasma that is
compressed arbitrarily. For this purpose we consider two �uid elements and connect
them through a �uid line l. If these elements have the velocities v1 and v2, the
length of the �uid line l changes as

dl
dt

= (v2 − v1)l, (3.108)

where the index l indicates the protection of the velocities on the �uid line. For an
in�nitesimal �uid line δl this expression becomes

dδl
dt

= (δl∇)v. (3.109)

By comparing the upper equation with equation (3.107), we directly �nd

B

ρ
∝ δl. (3.110)

This means that the ratio of the magnetic �eld strength over the density changes
proportional to the length of the �uid line. We can consider some special cases of
this result.
When the compression of the �uid is, for example, perpendicular to the magnetic
�eld lines, the length of the �eld line δl does not change (see Figure 3.2). With
δl = const, we �nd

B ∝ ρ. (3.111)
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Figure 3.2:

Compression of magnetic �eld lines in di�erent force �elds. A force acting parallel to

the �eld lines does not a�ect the �eld strength, as indicated in part a). Perpendicular

compression, illustrated in picture b), leads to compaction of the �eld lines and thus to an

ampli�cation of the �eld strength. Also the spherical compression in picture c) leads to an

increase of the �eld strength, leaving behind a characteristic hourglass shaped magnetic

�eld.
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In this case the magnetic �eld strength increases proportional to the density, because
the magnetic �eld lines move closer together.
When, on the other hand, the compression takes place parallel to the �eld lines,
the single �uid lines get shorter, but the distance between the �uid lines does not
change (see �gure 3.2). In this change δl changes inversely proportional to ρ, and
we �nd

B = const. (3.112)

In astrophysics the most important case is spherical compression, where ρ ∝ δl−3.
With equation (3.110) we �nd for this case

B ∝ ρ2/3. (3.113)

The geometry of a magnetic �eld that has been compressed spherically is shown in
part (c) of �gure 3.2. The shape is usually refereed to as an hourglass shape, which
has in fact been detected in molecular clouds (see the observation in �gure 2.2).
The e�ect of magnetic �eld ampli�cation due to gravitational compression is also
seen in numerical simulations. Xu et al. (2008) �nd in their simulation of population
III star formation, besides the �eld generation due to the Biermann battery, an
ampli�cation of the �eld roughly proportional to ρ2/3. Also Federrath et al. (2011)
test the ampli�cation due to spherical compression in their MHD simulations. They
start with a weak �eld in z-direction and analyse the magnetic �eld strength during
the collapse. The �eld grows less than proportional to ρ2/3 at the beginning, as
the �eld is not yet isotropic. Due to the collapse, the �eld lines get stretched and
the typical hour-glass shape is generated (see �gure 3.2). Then the �eld becomes
isotropic and grows almost4 proportional to ρ2/3.

3.3.3 Field Ampli�cation in the Spherical Collapse of a

Galaxy

In the astrophysical context we often �nd a spherical collapse for example during
the formation of a galaxy. We now estimate the typical timescale for amplifying a
Biermann seed �eld of B1 = 10−20 G to B2 = 10−6 G, which is observed in the Milky
Way, in gravitational compression. With conservation of �ux we �nd in spherical
compression

B1ρ
−2/3
1 = B2ρ

−2/3
2 , (3.114)

where we take ρ2 = 10−24 g as the density of the Milky Way. We now assume that
the galaxy forms from the collapse of a cloud of density ρ1 within the free-fall time

4However, Federrath et al. (2011) �nd in a test of the ideal MHD-approximation small deriva-
tions from B ∝ ρ2/3, which depend on the resolution of the simulation. This is caused by non-ideal
magnetohydrodynamical e�ects due to small numerical di�usivity.
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T = 1/
√
Gρ1. Thus, we result in

B1G
2/3T 4/3 = B2ρ

−2/3
2

↔ T =

(
B2

B1

)3/4
1√
Gρ2

. (3.115)

For our example, we �nd a typical timescale for ampli�cation by gravitational com-
pression of 1018 years, which is many orders higher than the Hubble time. We thus
conclude that gravitational compression alone cannot explain the strong magnetic
�elds observed in galaxies. Mechanisms that can increase the magnetic �eld strength
more e�ciently are MHD dynamos, which will be discussed phenomenologically in
the next section.

3.4 Overview of Magnetohydrodynamical Dynamos

3.4.1 The Mean-Field Dynamo

In the 20th century various observations of the Sun indicated the complex structure
and time dependency of the solar magnetic �eld. We reported already the discovery
of high �eld strengths in sunspots by Hale (1908). A further important observation
is the variation of the number of sunspots in time with a period of roughly 22 years
(see the butter�y diagram by Maunder, 1904). Any theory of stellar magnetism
needs to explain these properties of sunspots.

Qualitative Description

The �rst theoretical interpretation for the solar magnetic �eld was published by
Parker (1955a,b). Today that mechanism is referred to as the α-Ω dynamo, a qual-
itative picture of which is shown in �gure 3.3. The Parker dynamo starts with an
initially poloidal �eld Bp = Brêr + Bθêθ, which results for instance from gravita-
tional compression during the formation of the Sun5. The poloidal �eld is shown in
part (a) of �gure 3.3. As the Sun rotates di�erentially, i.e. it rotates faster on the
equator than on the poles, the poloidal �eld lines get stretched on the sphere (see (b)
in �gure 3.3). By coiling up the poloidal �eld a torodial magnetic �eld component
Bφêφ is generated. The torodial �eld lines become denser and denser (part (c)) until
a full toroidal �eld is created by magnetic reconnection (part (d)). The process of
making a toroidal �eld from a poloidal one by di�erential rotation is known as the
Ω-e�ect.
There is still a poloidal component in �gure (d), but has been omitted now in the
�gure for simplicity. If there was no mechanism that generates a poloidal �eld it
would decay and thus also the production of the toroidal �eld would stop. Parker

5Poloidal magnetic �elds are �elds with an hourglass shape. These geometries of magnetic
�elds are commonly observed in gravitationally collapsing molecular clouds (see �gure 2.2).
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Figure 3.3:

The schematic evolution of the α-Ω dynamo as given in Love (1999). The illustration

shows how a toroidal magnetic �eld is build up from an initially poloidal �eld (Ω-e�ect).
The toroidal �eld in turn is converted to a poloidal �eld in the α-e�ect.
image credit: Love (1999)

(1955a) solves this problem by including the convective motions inside the Sun into
the model. He assumed that, with partial �ux freezing, the �eld lines of the torodial
�eld are stretched (see (e)) in the helical turbulence initiated by convection. As the
whole process takes place in a rotating system, the Coriolis force leads to vorticity
of the �eld lines and a poloidal �eld is build up again (see part (f) of �gure 3.3).
Turbulent di�usion, in turn, gives rise to a large-scale poloidal magnetic �eld. The
mechanism of converting a toroidal �eld into a poloidal �eld is labeled α-e�ect.

Mean-Field Magnetohydrodynamics

The systematic mathematical description of this large-scale dynamo was formulated
by Steenbeck et al. (1966). It is based on the separation of the mean �elds from the
�uctuating �elds, i.e.

B = 〈B〉+ δB (3.116)
v = 〈v〉+ δv. (3.117)

Here 〈...〉 indicates an ensemble average, while δ... refers to the �uctuating parts of
the magnetic and the velocity �eld, respectively. Substituting this decomposition
into the induction equation (3.85) and using the facts that the mean value of a
mean is again the mean and the mean of a �uctuating quantity vanishes, leads to
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the following equation

d 〈B〉
dt

= ∇× (〈v〉+ 〈B〉) +∇× (〈v′ ×B′〉) + η∇2 〈B〉 . (3.118)

This equation for the averaged magnetic �eld 〈B〉 is identical to the induction
equation except for the additional term ∇× (〈v′ ×B′〉). It can be shown that (see,
e.g. Choudhuri, 1998)

〈v′ ×B′〉 = α 〈B〉 − ηturb∇× 〈B〉 (3.119)

with

α = −1

3
〈v′ · (∇× v′)〉 τ (3.120)

ηturb =
1

3
〈v′ · v′〉 τ. (3.121)

Here we have introduced a correlation time τ . The evolution equation for the mean
magnetic �eld can hence be written as

d 〈B〉
dt

= ∇× (〈v〉+ 〈B〉) +∇× (αB) + (η + ηturb)∇2 〈B〉 . (3.122)

It is clear from the upper equation that ηturb provides a turbulent di�usion. In
astrophysical environments ηturb is actually often much larger the the molecular
di�usivity η. The quantity α is proportional to 〈v′ · (∇× v′)〉, which quanti�es the
helicity of the turbulent motion. It is this e�ect of helicity that twists the toroidal
magnetic �eld lines and by this produces a poloidal �eld component.
For more details about the mathematical description of large-scale dynamos we refer
to the reviews by Roberts & Soward (1992) and Brandenburg & Subramanian (2005)
and the textbook by Krause & Raedler (1980).

3.4.2 The Small-Scale Turbulent Dynamo

As indicated by its name the turbulent dynamo converts kinetic energy from tur-
bulence into magnetic energy. The ampli�cation process is fastest on small length
scales, which leads to the alternative name small-scale dynamo. This type of MHD
dynamo ampli�es a magnetic seed �eld by randomly stretching, twisting and fold-
ing the �eld lines. The di�erent stages of �eld ampli�cation are explained in this
section phenomenologically, while we postpone the mathematical description of the
turbulent dynamo to the next chapter.

Kinematic Dynamo Regime

A schematic model describing the conversion of turbulent kinetic energy into mag-
netic energy is the stretch-twist-fold dynamo (Vainshtein & Zeldovich, 1972). We
illustrate this model in �gure 3.4, which shows the evolution of closed magnetic �ux
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Figure 3.4:

The stretch-twist fold dynamo as a toy model for the turbulent dynamo. The illustration

shows the time evolution a closed magnetic �ux rope. First, it gets stretched, with a

simultaneous increase of the �eld strength. Subsequent twisting, folding and merging of

the �ux rope regains the original shape. The process can now continue in the same fashion.

rope. Starting on the left hand side, the �ux tube with a cross section A is stretched.
This leads to ampli�cation of the magnetic �eld strength, as the magnetic �ux BA
is a conserved quantity. Afterwards the rope is twisted, folded and merged such
that the original shape is regained. After one circle the cross section is the same as
the initial one, but the �eld strength has increased, which is indicated by the denser
magnetic �eld lines in the right hand side of �gure 3.4.
It is intuitively clear that the shorter the turnover time of the turbulent eddies is, the
faster the stretch-twist-fold mechanism proceeds and thus the faster the magnetic
�eld is ampli�ed. The turnover time decreases with decreasing eddy size. Thus, in
the limit of high magnetic Prandtl numbers, which are de�ned as ν/η, the ampli�-
cation rate of the dynamo is most e�cient on the smallest scale of the inertial range,
i.e. the viscous scale `ν , of the turbulent velocity spectrum.
During the transition from large to small magnetic Prandtl numbers, the resistive
scale `η becomes larger than the viscous one. The ampli�cation then takes place
at roughly `η, which lies within the inertial range of the turbulent velocity spec-
trum. Due to larger time scales of the turbulent eddies in the inertial range, we
expect the small-scale dynamo to be less e�cient at low magnetic Prandtl numbers.
While in the large Prandtl regime the hydrodynamical Reynolds number regulates
the dynamo, here the magnetic Reynolds number is the relevant quantity.

Non-linear Dynamo Regime

When the magnetic �eld gets strong enough back reactions from the �eld onto the
�uid dynamics cannot be neglected anymore. The so-called non-linear dynamo phase
sets in. In theoretical models of the turbulent dynamo it usually is assumed that
this phase begins when saturation on the viscous scale is reached. The magnetic
spectrum then peaks at the viscous scale (for large magnetic Prandtl numbers) and
decreases to larger length scales.
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Even though the dynamo is saturated on the viscous scale of the turbulence spec-
trum, ampli�cation continues on larger scales. Here the stretching, twisting, and
folding proceeds, however with a reduced growth rate. As the equipartition �eld
strength is larger on larger scales, the peak of the spectrum moves to larger scales
in the non-linear phase. A typical assumption is that the peak moves on the local
eddy turn-over time. This inverse cascade of magnetic energy continues until the
dynamo is saturated on all scales.

Saturation

With the increasing magnetic �eld strength the electric resistivity increases. This
leads to a decrease of the magnetic Reynolds number Rm. As will be discussed in the
next chapter Rm needs to be larger than a critical value Rmcrit for the small-scale
dynamo to operate. When Rm reaches this critical number the dynamo is saturated
and the ampli�cation comes to an end.
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CHAPTER 4

Theoretical Description of the

Turbulent Dynamo

In this chapter we discuss the theoretical modeling of the turbulent dynamo. As
the energy input of the dynamo comes from turbulent motions we begin the chapter
with a short review on turbulence and how it can be described mathematically. We
develop a model for the turbulent �ow which we can use as an input for the dynamo
equations. In the kinematic phase the dynamo can be explained within the Kazant-
sev theory. We review the main predictions of this theory and apply it to calculate
the growth rate of the dynamo for di�erent types of turbulence.
The analytical results for the turbulent dynamo presented in this chapter are pub-
lished in Schober et al. (2012c) and Schober et al. (2012a), while we summarize also
the numerical solutions for the dynamo from Bovino et al. (2013). Our discussion
continues with a model of the non-linear dynamo phase as published in Schleicher
et al. (2013) and a toy model for the saturation of the turbulent dynamo. Finally,
we compare the analytical results with predictions from numerical simulations as
published in Federrath et al. (2011).

4.1 Turbulence as the Initial Form of Energy

As stressed in the previous chapter the turbulent dynamo converts the kinetic energy
from turbulence into magnetic energy. It is thus crucial to have a suitable model for
turbulence.
Turbulence is chaotic motion of a �uid. We speak of turbulence when the velocity
�uctuates randomly on di�erent scales as a function of space and time. A totally
deterministic description of this phenomenon is not possible and there is no full
theory describing it. The best way to handle turbulence is by using statistical tools,
some of which we will introduce in this section. For more details we refer to the
textbooks on turbulence by Davidson (2004), Pope (2000) and Frisch (1995).
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4.1.1 Chaotic Motion and the Closure Problem of Turbulence

Under certain conditions a �uid can be come unstable and the amplitude of the
perturbations grows. The situation can be illustrated in the phase space of the
�uid. If there is a point P in phase space that is stable, but all the points within
the direct environment of this point are end points of trajectories leading away from
P, one speaks of an unstable equilibrium. A system that lies initially exactly on
P is stable and remains unchanged. However, if the system lies only slightly away
from P its �nal state can di�er signi�cantly. In measurements of �uids one is always
limited by resolution. If one can resolve only a �nite region in phase space that
includes an point of instability, it is impossible to predict the time evolution of the
�uid theoretically. The dynamics of this �uid are chaotic.
Let us now analyze, where this unpredictability appears when starting a theoretical
description from the hydrodynamical equations that have been derived in section
3.1.1. The evolution of the velocity in a �uid is determined by the Navier-Stokes
equation (3.42). Without an external force F and for an incompressible �uid (∇·v =
0) this equation reduces to

∂v

∂t
= −(v · ∇)v − 1

ρ
∇p+ ν∇2v

≡ f1(v, p). (4.1)

The time evolutions of the velocity v is thus expressed by some function f1(v, p).
With the incompressibility of the �uid one �nds

∇2

(
p

ρ

)
= −∇ · (v · ∇v) , (4.2)

when taking the curl of (4.1). Thus, the pressure depends on the velocity �eld and
we can write

∂v

∂t
= f2(v). (4.3)

This shows that the evolution of the velocity �eld is a function of v. The evolution
equation (4.3) is a deterministic equation that can, in principle, be integrated. In
practice, however, a solution of (4.3) is very di�cult to gain due to the complexity
of the velocity �eld and one can do this only numerically.
It turns out that the statistical properties, like 〈v〉 and 〈v2〉1, provide a more practi-
cal description of the turbulent motions and are moreover easier to handle. We can
calculate the �rst moment of equation (4.1) in order to �nd an evolution equation
for 〈v〉. It turns out, due to the non-linear term in (4.1), that this equation depends
also on the second moment 〈v2〉:

∂ 〈v〉
∂t

= f3(〈v〉 ,
〈
v2
〉
). (4.4)

1For simplifying the notation in this subsection, we use here only one-point statistics. Turbulent
�ows are, however, better described by two-point correlation functions, like 〈v(r)v(r + l)〉, which
contain information about the spatial structure.
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When writing down the evolution equation for 〈v2〉 we �nd

∂ 〈v2〉
∂t

= f4(
〈
v2
〉
, < v3 >). (4.5)

This can be continued. The evolution of a velocity moment of the order n always
depends on the velocity moment of the order (n+1). This is called the closure
problem of turbulence and arises from the non-linear term ν∇2v in the Navier-
Stokes equation.
A diagnostic tool for checking whether a �uid system is turbulent or laminar is the
hydrodynamical Reynolds number Re, which indicates how important the non-linear
term is compared to the linear terms in the Navier-Stokes equation. Let us rewrite
the Navier-Stokes equation (4.1) by taking the curl2:

∂ω

∂t
= ∇× (v × ω) + ν∇2v, (4.6)

where we have de�ned the vorticity

ω = ∇× v. (4.7)

The vorticity equation (4.6) can be written down dimensionlessly by de�ning the
quantities x̃ = x/L, ṽ = v/V , t̃ = t V/L, ω̃ = ω L/V , which yields

∂ω̃

∂t̃
= ∇̃ × (ṽ × ω̃) + Re−1∇̃2ṽ. (4.8)

Here the hydrodynamic Reynolds number

Re =
V L

ν
(4.9)

is de�ned, where V is the velocity on the turbulent forcing scale L. The Reynolds
number represents the ratio of vorticity generation and viscous dissipation. For a
large Re the term of vortex generation in (4.8) dominates and chaotic motions are
generated easily, while for small Re the viscous term becomes important and the
�ow is laminar.

4.1.2 Phenomenological Description of Turbulence

Kolomogorov's Theory of Incompressible Turbulence

Kolmogorov (1941) constructs a phenomenological model of incompressible turbu-
lence, which works surprisingly well when the density remains constant. His main
assumption is that energy is transported from large to small scales at a constant

2In (4.1) the external force is neglected. Note, however, that a conservative force would drop
out anyway, when taking the curl of the equation.
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Figure 4.1:

Illustration of the turbulent en-

ergy cascade in the Kolmogorov

model. The forcing of turbulence

takes place on a scale L. In the in-
ertial range the turbulent eddies

cascades into smaller and smaller

eddies down to a scale `ν below

which energy is dissipated.
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rate ε. The transport takes place via turbulent eddies, which are driven on a forc-
ing scale L. These eddies interact and decay into smaller and smaller eddies until
their length scale reaches the viscous scale `ν , below which the energy is dissipated.
This concept is known as the turbulent energy cascade. We illustrate the forcing of
turbulence, the decay of the turbulent eddies in the so-called inertial range, and the
energy dissipation in �gure 4.1.
In fact, the viscous scale `ν is given as the scale where the viscosity ν equals roughly
the product of velocity and length scale vν`ν . From this de�nition follows that the
Reynolds number on `ν is unity:

Reν =
vν`ν
ν
≈ 1. (4.10)

The Reynolds number on the forcing scale of a turbulent �ow, which we usually
refer to if not indicated otherwise, is

Re =
V L

ν
� 1. (4.11)

By dimensional analysis (Kolmogorov, 1941) �nds that the energy transfer rate needs
to be of the order of

ε ≈ v3

`
, (4.12)

where v is the turbulent velocity on a scale `. From the conservation of energy
follows that this rate needs to be the same on all scales. This directly leads to

V 3

L
=
v3
ν

`ν
. (4.13)

Thus, the velocity in the inertial range scales with the size of the eddies as

v(`) ∝ `1/3. (4.14)

The viscous scale in Kolmogorov type turbulence is determined by

`ν =
v3
νL

V 3
=
v3
ν`

3
ν

ν3

ν3

V 3

1

`3
ν

L = Re3
ν

ν3

V 3L3

1

`3
ν

L4 = Re−3 L
4

`3
ν

→ `ν = Re−3/4L, (4.15)

which is also called the Kolmogorov microscale.
In the Kolmogorov picture the energy spectrum in Fourier space is determined by

E(k)dk ≈ E(k)k ≈ 1

2
v(`)2 ≈ 1

2
(ε`)2/3 ≈ ε2/3k−2/3

→ E(k) ≈ ε2/3k−5/3. (4.16)

We used here (4.12) and ` = 2π/k. This spectrum of turbulent kinetic energy is
known as Kolmogorov's 5/3-law. In Kolmogorov turbulence most of the energy is
located at the largest scales, i.e. the driving scale, while energy dissipation occurs
on the smallest scale of the inertial range `ν
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Highly Compressible Turbulence

The assumption of incompressibility is often not applicable in astrophysics. In the
ISM turbulence is driven by shocks with high Mach numbers of the order of 10,
leading to a high compressibility of the gas. The classical Kolmogorov theory of
turbulence is thus strictly speaking not applicable.
Burgers (1948) describes the extreme case of highly compressible turbulence by
assuming that the momentum �ux ṗ in the inertial range is constant. He then
results in

p ∝ v

→ ṗ ∝ v̇ ∝ v

t
=
v2

`
≡ const.

→ v ∝ `1/2, (4.17)

where p is the momentum. The viscous scale in Burgers turbulence is

`ν = Re−2/3L, (4.18)

and thus for a �xed Reynolds number larger than for Kolmogorov turbulence.

Turbulence in Observations and Simulations

So far we have discussed the two extreme and idealized cases of incompressible Kol-
mogorov turbulence and highly compressible Burgers turbulence. Real astrophysical
objects like the ISM are, however, of higher complexity (see �gure 4.2 for an exem-
plary observation of the �lamentary structure in the ISM). First, the interstellar gas
is highly compressible and gas motions are often supersonic with the typical Mach
number in the warm di�use ISM being of the order of unity and the one in cold
dense molecular clouds up to 50. High Mach numbers in compressible gas lead to
strong density perturbations. In supersonic turbulence energy dissipation takes not
only place on the smallest scales of the inertial range, but also within shocks, which
destroys the local nature of turbulence. In addition, the driving of turbulence in
galaxies is very complex. The energy input is, for example, a result of supernova
blastwaves and other inhomogeneous processes. A uniform model for the driving of
turbulence is, thus, an additional simpli�cation of the problem.
In reality, we expect the turbulence spectrum to be somewhere between the two
extreme cases of incompressible and highly compressible turbulence. We can model
the scaling of the velocity in the inertial range as

v ∝ `ϑ. (4.19)

The scaling exponent for Kolmogorov is ϑ = 1/3 and for Burgers turbulence ϑ = 1/2.
Thus, we use the parameter range of 1/3 ≤ ϑ ≤ 1/2.
One of the �rst observational hints towards turbulence in the ISM comes from von
Hoerner (1951), who notes that the rms velocity in the Orion nebula increases with
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Figure 4.2:

Turbulence in the interstellar medium observed in terms of the complex �lamentary struc-

ture of discontinuities in gas density. Shown here are radio polarization gradients for an

18-deg2 region from the Southern Galactic Plane Survey.

image credit: Gaensler et al. (2011)

the projected separation as a power law. The measured slope in these early obser-
vations is, however, very imprecise, but initially Kolmogorov type turbulence was
suggested as an explanation. In later observations Wilson et al. (1959) �nds consid-
erable steeper slopes and argues for compressible turbulence. Larson (1981) uses a
combination of di�erent data sets of several molecular cloud surveys and �nds scal-
ing relations between the velocity dispersion and the cloud sizes. He �nds a scaling
exponent of ϑ ≈ 0.38, which has also been reported by several independent authors
(e.g. Myers & Goodman, 1988; Caselli & Myers, 1995). Ossenkopf & Mac Low
(2002) �nd in their analysis of the velocity structure of molecular clouds a slightly
steeper slope of ϑ ≈ 0.47. Overall, observations indicate the interstellar turbulence
to be highly compressive.
An important tool for studying the nature of turbulence are numerical simulations.
For example Boldyrev et al. (2002) set up direct numerical simulations of driven su-
personic turbulence and analyze the statistical properties of the velocity �eld. The
typical scaling exponent they �nd is ϑ ≈ 0.42. Federrath et al. (2010) investigate
the e�ect of di�erent types of forcing in their numerical experiments, in which they
solve the hydrodynamical equations on a grid. For the two extreme cases, solenoidal
(divergence-free) and compressive (rotation-free) forcing, they �nd characteristic
scaling exponents of ϑ ≈ 0.43 and ϑ ≈ 0.47, respectively.
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4.1.3 Statistical Description of Turbulence

As has been motivated above, one of the best methods to study turbulence is via
its statistical properties. We provide in this section only the most important de�-
nitions and concepts. For detailed discussions on the topic we refer to the standard
textbooks (Frisch, 1995; Pope, 2000; Davidson, 2004).

Three-Dimensional Correlations and the Power Spectrum

A statistical description of turbulence starts with the decomposition of the velocity
�eld v into a mean �eld 〈v〉 and a turbulent component δv:

v = 〈v〉+ δv. (4.20)

From this equation it is clear that the mean of the �uctuations δv vanishes. For
a description of the statistical properties of a �uctuating �eld, we thus need to go
to higher moments. Following the work of Taylor (1935), we model the spatial
appearance of turbulence via the two-point correlation function. The spatial cross
correlation of two turbulent velocity components at the positions r1 and r2 is given
by

〈δvi(r1, t)δvj(r2, s)〉 ≡ Tij(r) (4.21)

with the two-point correlation function Tij(r), where r ≡ r2 − r1.
We can de�ne energy spectrum tensor Eij(k) as

Eij(k) =
1

(2π)3

∫ ∞

−∞
Tij(r)e−ikr dr (4.22)

with the Fourier back transform

Tij(r) =

∫ ∞

−∞
Eij(k)eikr dk. (4.23)

The turbulent kinetic energy Ekin per mass can be expressed via the correlation
tensor with i = j and r = 0:

Ekin =
1

2

〈
δv2

i

〉

=

∫ ∞

−∞

1

2
Eii(k) dk

=

∫ ∞

0

∫
1

2
Eii(k) dS(k)dk, (4.24)

where S(k) is the surface of a sphere with radius k = (k2
i )

1/2. With the de�nition
of the energy power spectrum

E(k) ≡
∫

1

2
Eii(k) dS(k) (4.25)
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Figure 4.3:

Longitudinal (vL) and transversal

(vN) velocity components at two

points in space, r1 and r2.

we can express the kinetic energy per mass as

Ekin =

∫ ∞

0

E(k) dk. (4.26)

The power spectrum, thus, contains information about the spectral distribution of
the turbulent kinetic energy. This makes it an extremely important tool for studying
the properties of turbulence. For Kolmogorov turbulence, for example, E(k) is given
in equation (4.16).

Longitudinal and Transversal Correlation Function

Let us now assume that turbulence is an isotropic and homogeneous Gaussian ran-
dom �eld. It is clear that in this case Tij does not depend on the direction of r
any more, but only on the distance r = |r|. Batchelor (1953) has shown that the
correlation function can then be divided into a transverse part TN and a longitudinal
part TL in the following way:

Tij(r) =
(
δij −

rirj
r2

)
TN(r) +

rirj
r2

TL(r). (4.27)

We neglect here the e�ect of helicity, which would appear as an additional term in
Tij. The decomposition of the velocity is illustrated in �gure 4.3.
In the special case of a divergence-free turbulent velocity �eld (∇ · δv = 0), which
is characteristic for incompressible �uids, we �nd that the transverse correlation
function is connected to the longitudinal one by

TN(r) =
1

2r

d

dr

(
r2TL(r)

)
. (4.28)

For the other extreme case, an irrotational turbulent velocity �eld (∇× δv = 0), as
it is expected for purely shock-dominated �ows, we �nd the relation

TL(r) = r
dTN(r)

dr
+ TN(r). (4.29)

One can easily show that the longitudinal power spectrum can be expressed by the
longitudinal correlation function:

EL(k) =
1

π

∫ ∞

−∞
TL(r) e−kr dr (4.30)
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and the transversal power spectrum by the transversal correlation function:

ET(k) =
1

π

∫ ∞

−∞
TT(r) e−kr dr. (4.31)

4.2 Description of the Kinematic Turbulent

Dynamo within the Kazantsev Theory

Kazantsev (1968) develops a theory for the time evolution of the magnetic energy
that grows due to turbulent motions in a conducting �uid. The mechanism of con-
verting kinetic energy into magnetic energy in this way is known as the turbulent
or small-scale dynamo.
In this section we sketch the derivation of the Kazantsev theory following mainly
the formalism proposed by Subramanian (1997) and used in Brandenburg & Subra-
manian (2005). We use a model for the turbulence spectrum that takes into account
the e�ects of compressibility as an input for the Kazantsev theory. The results from
this approach are published in Schober et al. (2012c), Schober et al. (2012a) and
Bovino et al. (2013).

4.2.1 The Kazantsev Equation

Like the velocity �eld, the magnetic �eld can be separated into a mean �eld 〈B〉
and a �uctuating �eld δB:

B = 〈B〉+ δB. (4.32)

Now let us assume that the �uctuating component δB, like the velocity �eld, is a
homogeneous, isotropic Gaussian random �eld with zero mean. Then we can write
the correlation function as

〈δBi(r1, t)δBj(r2, t)〉 = Mij(r, t) (4.33)

with the two-point correlation function

Mij(r, t) =
(
δij −

rirj
r2

)
MN(r, t) +

rirj
r2

ML(r, t). (4.34)

We will omit the time and space dependencies for a better overview in most of the
following equations.
As the magnetic �eld is always divergence-free, i.e. ∂Mij/∂r1i = ∂Mij/∂r1j = 0,
we can derive a relation between the transverse and the longitudinal correlation
function similar to equation (4.28):

MN =
1

2r

d

dr

(
r2ML

)
. (4.35)
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Here we have used that (rirj/r
2)Mij = ML and (ri/rj)Mij = MN. The time deriva-

tive of 〈δBiδBj〉 is
∂Mij

∂t
=

∂

∂t
(〈δBiδBj〉)

=
∂

∂t
(〈BiBj〉 − 〈Bi〉 〈Bj〉)

=

〈
∂Bi

∂t
Bj

〉
+

〈
Bi
∂Bj

∂t

〉
− ∂

∂t
(〈Bi〉 〈Bj〉) . (4.36)

We can now substitute the induction equation (3.85) and the evolution equation of
the magnetic mean �eld

∂ 〈B〉
∂t

= ∇× [〈v〉 × 〈B〉 − ηeff∇× 〈B〉] (4.37)

with the e�ective parameter ηeff = η + TL(0), into equation (4.36). A lengthy
calculation (see appendix A for a derivation) leads to

∂ML

∂t
= 2κdiffM

′′
L + 2

(
4κdiff

r
+ κ′diff

)
M ′

L +
4

r

(
TN

r
− TL

r
− T ′N − T ′L

)
ML

(4.38)

with

κdiff(r) ≡ η + TL(0)− TL(r). (4.39)

The prime denotes di�erentiation with respect to r. The di�usion of the mag-
netic correlations, κdiff , contains in addition to the magnetic di�usivity η the scale-
dependent turbulent di�usion TL(0)− TL(r).
Once we found a solution forML from equation (4.38) we can determineMN by using
the relation (4.35) and thus have the total correlation function of the magnetic �eld
�uctuations Mij. We note that this quantity is proportional to the energy density
of the magnetic �eld, B2/(8π).
In order to separate the time from the spatial coordinates in equation (4.38) we use
the ansatz

ML(r, t) ≡ 1

r2
√
κdiff

ψ(r)e2Γt. (4.40)

This yields the so-called Kazantsev equation

−κdiff(r)
d2ψ(r)

d2r
+ U(r)ψ(r) = −Γψ(r). (4.41)

The Kazantsev equation formally looks like the quantum-mechanical Schrödinger
equation with a �mass" ~2/(2κdiff) and the �potential"

U(r) ≡ κ′′diff

2
− (κ′diff)2

4κdiff

+
2κdiff

r2
+

2T ′N
r

+
2(TL − TN)

r2
. (4.42)

It describes the kinematic limit of the turbulent dynamo and is only applicable when
the back reaction from the magnetic �eld on the velocity �eld are negligible.
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4.2.2 WKB Approximation

We can use common methods from quantum mechanics, like the WKB approxima-
tion, to solve the Kazantsev equation (4.41). WKB stands for Wentzel, Kramers,
and Brillouin, who have developed this method (Kramers, 1926).

Solution of the Kazantsev Equation in the WKB Approximation

In order to use the standard WKB method, we have to make some substitutions.
Let us �rst introduce a new radial coordinate x by de�ning r ≡ ex. By this (4.41)
changes to

κdiff(x)

ex
d

dx

(
1

ex
dψ(x)

dx

)
− (Γ + U(x))ψ(x) = 0. (4.43)

Next we eliminate the �rst-derivative terms through the substitution

ψ(x) ≡ ex/2θ(x), (4.44)

to obtain

d2θ(x)

dx2
+ p(x)θ(x) = 0 (4.45)

with the de�nition

p(x) ≡ − [Γ + U(x)]e2x

κdiff(x)
− 1

4
. (4.46)

The WKB solutions of equation (4.45) are linear combinations of

θ(x) =
1

p1/4
exp

(
±i
∫ √

p(x′)dx′
)

(4.47)

with the boundary conditions for ψ(r) and θ(x)

ψ(r)
r→0,∞−−−−→ 0

→ θ(x)
x→±∞−−−−→ 0. (4.48)

We can make some predictions about the shape of the function θ(x). For very small
x (x → −∞), p(x) goes to −1/4 < 0, which leads to exponentially growing and
decaying solutions of θ. In the other limit (x → ∞), p(x) → −Γ/η e2x, we have
growing mode solutions only for positive Γ. The boundary conditions require θ to
grow exponentially for x → −∞ and decay exponentially at x → ∞. In order to
arrange this, p(x) must go through zero, thus U(x) needs to become negative for
some r. From now on we label the roots of U(x) as x1 and x2 > x1. As U(r) becomes
negative for some r, p(r) becomes positive for certain values of r. This means that
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we have oscillatory solutions for x1 < x < x2. The condition for the eigenvalues Γ
in this case is (Mestel & Subramanian, 1991)

∫ x2

x1

√
p(x′)dx′ =

2n+ 1

2
π (4.49)

for di�erent excitation levels n ∈ N. In this work we concentrate on the lowest mode
n = 0, which refers to the largest growth rates of the turbulent dynamo.

Validity of the WKB Approximation

In order to �nd the limits in which the WKB method provides valid solutions of the
Kazantsev equation, we derive the di�erential equation that is solved exactly by

θ(x) =
1

p1/4
exp

(
±i
∫ x2

x1

√
p(x′)dx′

)
. (4.50)

The second derivative of θ(x) with respect to x can be written as

θ′′(x) +

(
1 +

p′′

4p2
− 3

16

(p′)2

p3

)
p θ(x) = 0, (4.51)

where now the prime denotes d/dx. This equation results in the Kazantsev equation
(4.45) if

|f(x)| � 1, (4.52)

with

f(x) ≡ p′′

4p2
− 3

16

(p′)2

p3
. (4.53)

We use this result in the appendix B to check the range of parameters in which the
WKB method produces accurate solutions of the Kazantsev equation. The main
result of this analysis is that the WKB approximation is valid for very large and
very small magnetic Prandtl numbers.

4.2.3 Modeling the Turbulent Correlation Function

We aim to analyze the case of general types of turbulence, which can be described
by the relation between the velocity v(`) and the size ` of a turbulent �uctuation,

v(`) ∝ `ϑ. (4.54)

The power-law index ϑ varies for the di�erent types (see also section 4.1.2). It
attains its minimal value of ϑ = 1/3 for Kolmogorov theory (Kolmogorov, 1941),
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i.e. incompressible turbulence. For Burgers turbulence, i.e. highly compressible tur-
bulence, ϑ gets its maximal value of 1/2 (Burgers, 1948). The viscous scale for this
generalized turbulence spectrum is given by

`ν = Re−1/(1+ϑ)L. (4.55)

Motivated by the de�nition of the scale-dependent turbulent di�usion coe�cient in
the last section,

ηturb(r) = TL(0)− TL(r), (4.56)

we construct a model for the longitudinal correlation function of the turbulent ve-
locity �eld TL(r). The di�usion coe�cient is calculated from the power law (4.54)
in the following way:

ηturb(r) ∝ v`` ∝ `ϑ` = `ϑ+1. (4.57)

So we assume the correlation function in the inertial range to be (Vainshtein, 1982;
Subramanian, 1997)

TL(r) =
V L

3

(
1− (r/L)ϑ+1

)
. (4.58)

The pre-factor V L �xes the units, which should be the same as for magnetic dif-
fusivity. V and L are the velocity and the length scale of the largest eddies. On
the di�usive scale the correlation function should be steadily continued and satisfy
the condition that its derivative T ′L(0) vanishes at r = 0. This is accomplished, for
example, for TL ∝ r2. The exact form of TL in the di�usive range does not a�ect
the results crucially (Subramanian, 1997). Furthermore, we expect no correlation
on scales larger than the largest eddies, so TL should vanish there.
Taken all together, we can set up a general turbulence model for the longitudinal
correlation function on the di�erent length scales as follows:

TL(r) =





V L

3

(
1− Re(1−ϑ)/(1+ϑ)

( r
L

)2
)

for 0 < r < `ν

V L

3

(
1−

( r
L

)ϑ+1
)

for `ν < r < L

0 for L < r.

(4.59)

The transverse correlation functions TN for a divergence-free (i.e. Kolmogorov tur-
bulence) and for an irrotational (i.e. Burgers turbulence) turbulent velocity �eld can
be derived from the relations (4.28) and (4.29). Notice, however, that a turbulent
velocity �eld that is divergence free or irrotational in the inertial range does not
have to be this in the di�usive range. We calculate for the extreme cases in the
inertial range (`ν < r < L)

TK
N (r) =

V L

3

(
1− 5

3

( r
L

)4/3
)
, (4.60)

TB
N (r) =

V L

3

(
1− 2

5

( r
L

)3/2
)
. (4.61)
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Figure 4.4:

Dependence of the longitudinal

and transverse correlation func-

tions TL and TN on the dimen-

sionless parameter y ≡ r/L for

Kolmogorov (ϑ = 1/3) and Burg-

ers (ϑ = 1/2) turbulence. We

choose a �xed Reynolds number

of 105. The vertical lines indicate

the viscous scale `ν and the forc-

ing scale L. Notice that the vis-

cous scale for Kolmogorov turbu-

lence (`Kν = Re−3/4L) is di�erent
from the one for Burgers turbu-

lence (`Bν = Re−2/3L). The inset
shows a zoom of the dissipative

range.

image credit: Schober et al.
(2012c)

In order to �nd a general expression for TN we make the ansatz

TN(r) =
V L

3

(
1− t(ϑ)

( r
L

)ϑ+1
)
, (4.62)

where t(ϑ) = a − bϑ. With equations (4.60) and (4.61) we �nd that a = 21/5
and b = 38/5. Furthermore, we calculate the small-scale transverse correlation
(i.e. 0 < r < `ν) by steady continuation. Thus, we end up with the following model
for the transverse correlation function for a general slope of the turbulent velocity
spectrum:

TN(r) =





V L

3

(
1− t(ϑ)Re(1−ϑ)/(1+ϑ)

( r
L

)2
)

for 0 < r < `ν

V L

3

(
1− t(ϑ)

( r
L

)ϑ+1
)

for `ν < r < L

0 for L < r,

(4.63)

with t(ϑ) = (21− 38ϑ)/5.
The longitudinal and transverse correlation functions depend on the dimensionless
parameter y ≡ r/L as shown in �gure 4.4 for Kolmogorov and Burgers turbulence.
We choose here a �xed hydrodynamical Reynolds number of 105. In the inset of
�gure 4.4 we show a zoom into the dissipative range (0 < r < `ν). Furthermore, we
plot the potential of the Kazantsev equation, resulting from our models for TL and
TN for Kolmogorov and Burgers turbulence in �gure 4.5. We choose two di�erent
values for the Reynolds number Re and di�erent magnetic Prandtl numbers. The
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Figure 4.5:

Dependence of the potential on

the dimensionless parameter y ≡
r/L for Kolmogorov (ϑ = 1/3)
and Burgers (ϑ = 1/2) turbu-

lence. We choose two di�erent

Reynolds numbers Re = 105 and

Re = 107, and di�erent Prandtl

numbers Pm = 102, Pm = 104

and Pm = 108. The viscous

scale `ν depends on the turbu-

lence model and the Reynolds

number. For Kolmogorov turbu-

lence `ν = Re−3/4L; for Burg-

ers turbulence `ν = Re−2/3L. A

Reynolds number 10x is indicated

in the viscous scale as `
(x)
ν .

image credit: Schober et al.
(2012c)
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magnetic Prandtl number is de�ned as the ratio of the magnetic Reynolds number
Rm and the hydrodynamical Reynolds number Re:

Pm =
Rm
Re

=
ν

η
. (4.64)

The potential at �xed Re and Pm is deeper in the small-scale range in the Kol-
mogorov case than in the Burgers case. For higher Re the potential gets deeper
and the viscous scale `ν decreases. For higher Pm the potential in the small-scale
range gets broader. From the look on the potential we already see that the magnetic
Prandtl number plays an important role for the turbulent dynamo. In the next two
sections we will learn that the growth rates of the dynamo are very di�erent in the
limit of small Pm and large Pm.
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4.2.4 The Turbulent Dynamo at Large Magnetic Prandtl

Numbers3

In this section we use our model of the turbulent velocity correlation function, given
in (4.59) and (4.63), as the input for the Kazantsev theory. We solve the Kazantsev
equation in order to obtain the characteristic properties of the small-scale dynamo.
We employ the WKB method, which gives a good approximate solution for large
magnetic Prandtl numbers. In fact, in the limit of in�nite Pm the WKB approxi-
mation is an exact solution of the Kazantsev equation. For more details about the
validity of this approximation see the appendix B.

Critical Magnetic Reynolds Number for Small-scale Dynamo Action

Intuitively, one expects that the high magnetic di�usivity for very low magnetic
Reynolds numbers prevents ampli�cation of the magnetic �eld. Even higher dif-
fusivity eventually results in a net decrease of the �eld strength. In this section
we calculate the critical magnetic Reynolds number Rmcrit for small-scale dynamo
action. To accomplish this we set the growth in our equations at zero.
It should be noted that we use the inertial range (`ν < r < L) for determining
Rmcrit as the potential is always negative in this range and for that the growth rate
is positive (see �gure 4.5). In this range with our turbulence spectrum and Γ = 0
we get for the p-function (4.46)

p(y) =
−9/4− a(ϑ)Rmcrity

ϑ+1 + b(ϑ)Rm2
crity

2(ϑ+1)

(
1 + 1

3
Rmcrityϑ+1

)2 (4.65)

with a(ϑ) ≡ 5/6− (79/30) ϑ+ (157/30) ϑ2 and b(ϑ) ≡ (14/15) ϑ− (103/60) ϑ2.
Now we can evaluate the eigenvalue condition (4.49) for this p(y) in the ground state
n = 0:

∫ y02

y01

√
p(y)

y
dy =

π

2
, (4.66)

where the additional y comes from the substitution y = r/L = ex/L. The limits of
the integral are the roots of p(y). There is only one real and positive root of p(y),
which we label y1. For the upper limit we have to realize that the potential (4.42)
changes for y > 1 to 2η/(yL)2, which is clearly always positive. Furthermore, also
the di�usion coe�cient κdiff = η + TL(0) > 0 for y > 1. With U and κdiff being
positive p(y) is negative in this range, which means that p(y) needs to go through
zero during this transition. Thus we have our second root at roughly r ≈ L and
y2 = 1.
We can solve equation (4.66) numerically for the critical magnetic Reynolds number
Rmcrit if we put in a �xed value of ϑ. Recall that ϑ was de�ned in the inertial range
of the turbulence via the relation v(`) ∝ `ϑ. Results for common models in the

3This section follows closely Schober et al. (2012c).
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Figure 4.6:

Dependence of the critical mag-

netic Reynolds number Rmcrit on

the slope of the turbulent veloc-

ity spectrum ϑ. The dashed line

is an empirical �t to our results.

image credit: Schober et al.
(2012c)
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literature can be found in Table 4.1. In �gure 4.6 we show how Rmcrit depends on
ϑ. Here one can see that the critical magnetic Reynolds number increases rapidly
as ϑ gets closer to its maximum value of 1/2. An empirical �t Rmcrit,fit(ϑ) through
these data in the range 0.33 < ϑ < 0.5 is

Rmcrit,fit(ϑ) = 88 [tan(2.68ϑ+ 0.2)− 1] . (4.67)

We �nd that the small-scale dynamo is easiest excited in the case of a purely
rotational turbulent velocity �eld, i.e. for Kolmogorov turbulence, where we �nd
Rmcrit ≈ 110. The critical magnetic Reynolds number for a turbulent �eld with
a vanishing rotational component, i.e. Burgers turbulence, is roughly 2700 in our
model.
From our results for Rmcrit we see that for all types of turbulence a high magnetic
Reynolds number needs to be exceeded for small-scale dynamo action. In astro-
physical objects we often �nd very high magnetic Reynolds numbers (we refer to
the compilation in Childress & Gilbert, 1995). The core of Jupiter, for example, has
Rm ≈ 106, the solar convection zone has Rm ≈ 108, and the solar corona Rm ≈ 1012.
In the interstellar medium we �nd Rm ≈ 1017. Consequently, the critical magnetic
Reynolds number is exceeded by far in nature, and we expect that a small-scale
dynamo is excited in typical astrophysical objects.
There are di�erent ways to obtain approximate solutions of the Kazantsev equation.
In addition to the WKB method there is also an asymptotic solution, which uses the
separation of scales (Zeldovich et al., 1990). The potential U(r) and the mass m(r)
are estimated on di�erent scales, such that a solution of the Kazantsev equation
can be found. Rogachevskii & Kleeorin (1997) use this method to determine Rmcrit

for di�erent compressibilities of turbulence. They �nd that, in the limit of small
magnetic Prandtl numbers Rm needs to be larger than roughly 400 for excitation of
a small-scale dynamo in the case of Kolmogorov turbulence. For a larger compress-
ibility, i.e. toward Burgers turbulence, they �nd that Rmcrit increases sharply. We
see the same trend of increasing Rmcrit for higher compressibility.
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The determination of the critical magnetic Reynolds number is, moreover, the �rst
step to understanding the saturation of the small-scale dynamo. For if the magnetic
�eld in a system increases, back reactions from the gas become more important.
Then processes like ambipolar di�usion can change the properties of the gas and
the magnetic Reynolds number can decrease. If the magnetic Reynolds number be-
comes smaller than the critical magnetic Reynolds number, the magnetic �eld stops
growing and the small-scale dynamo is saturated.

Growth Rate of the Small-Scale Magnetic Field

Growth Rate in the Limit Pm → ∞ In this section we derive a general ana-
lytical solution for the growth rate Γ for an arbitrary slope of the turbulent velocity
spectrum, in the limit of in�nite Prandtl number.
As the potential has its minimum in the small-scale range, i.e. the dissipative range
of the turbulence (see �gure 4.5), the growth rate, which is the eigenvalue of the
Kazantsev equation, takes its maximal value there. So we expect the fastest growing
mode to be in the small-scale range.
In order to have scale-independent equations, we introduce the substitution

z ≡
(
V
√

Re

3Lη

)1/2

r =

(
Re3/2Pm

3

)1/2

y, (4.68)

The p-function (4.46) in z space for the general turbulence spectrum, de�ned by
(4.59) and (4.63), in the dissipative range is

p(z) =
A0z

4 −B0z
2 − 45Re(3+7ϑ)/(2+2ϑ)

20Re1/2
(

Re(1+3ϑ)/(2+2ϑ) + Re1/(1+ϑ)z2
)2 (4.69)

with the de�nitions

A0 = Re(5+ϑ)/(2+2ϑ) (163− 304ϑ)− 20

3
Re5/2Γ̄, (4.70)

B0 = (304ϑ− 98) Re2 +
20

3
Re(2+8ϑ)/(1+ϑ)Γ̄, (4.71)

and the normalized growth rate

Γ̄ ≡ L

V
Γ. (4.72)

In the limit of large Prandtl number z is large, too, and we can neglect the constant
terms. We obtain

p(z) =
Re−(5+ϑ)/(2+2ϑ)

20

A0z
2 −B0

z2
. (4.73)

The one real and positive root of this function is z1 =
√
B0/A0. At the viscous

scale of the turbulence the p-function changes its sign. We take this as our second
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root and �nd z2 =
√

Pm/3 Re(3ϑ−3)/(4ϑ+4). Thus we get for the general eigenvalue
condition

Re−(5+ϑ)/(4+4ϑ)

2
√

5

∫ z2

z1

√
A0z2 −B0

z4
dz =

π

2
, (4.74)

resulting in the analytical solution of the integral

Re−(5+ϑ)/(4+4ϑ)

2
√

5z

[√
A0ln

(
2
(√

A0z +
√
A0z2 −B0

))
−
√
A0z2 −B0

]∣∣∣
z2

z1
=
π

2
.

(4.75)

For z2 � 1 this becomes

Re−(5+ϑ)/(4+4ϑ)

2
√

5

√
A0

[
1− ln

(
4
√
A0z2

)
+

1

2
ln (4B0)

]
=
π

2
. (4.76)

A zero-order iterative solution for Γ̄ gives us

Γ̄ =
163− 304ϑ

60
Re(1−ϑ)/(1+ϑ) −

(
π
√

5 Re(5+ϑ)/(4+4ϑ)

1− ln
(
4
√
A0z2

)
+ 1/2 ln (4B0)

)2

, (4.77)

which becomes for large Prandtl number

Γ̄ =
163− 304ϑ

60
Re(1−ϑ)/(1+ϑ). (4.78)

As a result we get for the absolute growth rate Γ for a general slope of the turbulent
velocity spectrum

Γ =
163− 304ϑ

60

V

L
Re(1−ϑ)/(1+ϑ) (4.79)

in the limit Pm→∞.
In �gure 4.7 we show the dependency of the normalized growth rate Γ̄ on the
Reynolds number for di�erent types of turbulence. One extreme case is incom-
pressible turbulence, i.e. Kolmogorov turbulence, with Γ̄ ∝ Re1/2. In the other
extreme case, highly compressible turbulence, i.e. Burgers turbulence, the growth
rate increases only as Re1/3. Altogether we �nd that the growth rate increases faster
with the Reynolds number when the compressibility is lower.

Growth Rate as a Function of the Prandtl Number In this section we
discard the assumption of in�nite Prandtl number. In this case we have to solve the
full equation resulting from the WKB method (4.49),

∫ √
p(z)

z
dz =

π

2
, (4.80)
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Figure 4.7:

The normalized growth rate of

the small-scale dynamo Γ̄ as a

function of the Reynolds number

Re in the limit Pm → ∞. For

the slopes of the turbulent veloc-

ity spectrum ϑ we choose com-

mon values from the literature:

K41 (Kolmogorov, 1941), SL94

(She & Leveque, 1994), BNP02

(Boldyrev et al., 2002), L81 (Lar-

son, 1981), FRKSM10 (Federrath

et al., 2010) (sol: solenoidal forc-

ing; comp: compressive forcing),

OM02 (Ossenkopf & Mac Low,

2002) and B48 (Burgers, 1948).

image credit: Schober et al.
(2012c)

with p(z) from (4.69). There is no analytical solution of this integral equation.
The numerical results of the normalized growth rate are shown in �gure 4.8 for
Kolmogorov turbulence and in �gure 4.9 for Burgers turbulence. We plot the nor-
malized growth rate as a function of the Prandtl number for di�erent values of the
Reynolds number.

In �gure 4.7 as well as in table 4.1, we present our results for the growth rate of
the small-scale dynamo in the limit of in�nite magnetic Prandtl number. Our re-
sults show that the growth rate is proportional to the velocity V of the largest eddy
divided by its length L. The ratio V/L is the reciprovcal of the turnover time of
an eddy. Thus, the growth rate increases with decreasing turnover time, and the
smallest modes grow at the highest rate. This is expected, because smaller turnover
times lead to a faster tangling of the magnetic �eld lines.
Furthermore, the growth rate increases with increasing hydrodynamical Reynolds
number for all types of turbulence, characterized by v(`) ∝ `ϑ. In order to achieve
the same growth rate for Kolmogorov and Burgers turbulence we have to provide
a larger Reynolds number in the latter case. Assuming a �xed Reynolds numbers
in both extreme cases, ReK and ReB, the growth rates of the two di�erent turbu-
lence types are the same for ReK ≈ 0.18(ReB)3/2. This fact can again be explained
with the stretch-twist-fold model (see section 3.4.2). We need solenoidal modes,
i.e. divergence-free modes, of the turbulence for this process (Federrath et al., 2011),
which explains why incompressible turbulence ampli�es the magnetic �eld more ef-
fectively.
With the asymptotic solution of the Kazantsev equation, Rogachevskii & Kleeorin
(1997) �nd in the limit of small magnetic Prandtl number Γ ∝ ln(Rm/Rmcrit).
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Figure 4.8:

Dependence of the normalized

growth rate Γ̄ of the small-scale

dynamo on the magnetic Prandtl

number Pm for Kolmogorov tur-

bulence. We choose di�erent val-

ues for the Reynolds number Re.

In the limit Pm→∞ the normal-

ized growth rates are Γ̄ = 10.28
for Re = 102, Γ̄ = 102.78 for

Re = 104, and Γ̄ = 10277.78 for

Re = 108. These limits are in-

dicated in the plot as horizontal

lines.

image credit: Schober et al.
(2012c)

10−2

10−1

100

101

102

103

104

105

101 102 103 104

Γ̄

Pm

Re = 102

Re = 104

Re = 108

Figure 4.9:

The same plot as 4.8, but for

Burgers turbulence. In the limit

Pm → ∞ the normalized growth

rates are Γ̄ = 0.85 for Re = 102,

Γ̄ = 3.95 for Re = 104, and

Γ̄ = 85.1 for Re = 108. These

limits are indicated in the plot as

horizontal lines.

image credit: Schober et al.
(2012c)

0.01

0.1

1

10

100

103 104 105 106 107 108 109 1010 1011 1012

Γ̄

Pm

Re = 102

Re = 104

Re = 108

90



CHAPTER 4 4.2 Description of the Kinematic Turbulent Dynamo within the Kazantsev Theory

The constant of proportionality depends on the amount of compressibility. In a
later work Kleeorin & Rogachevskii (2012) �nd that this logarithmic scaling of the
growth rate is valid only in the vicinity of the threshold of small-scale dynamo exci-
tation. For magnetic Reynolds numbers much larger than Rmcrit, they found in the
limit of small magnetic Prandtl number Γ ∝ Rm1/2 for Kolmogorov turbulence. As
for a constant magnetic Prandtl number Rm ∝ Re, this agrees with our result.

4.2.5 The Turbulent Dynamo at Small Magnetic Prandtl

Numbers4

In this section we investigate the limit of small magnetic Prandtl numbers. While
the derivation of the dynamo properties from the Kazantsev theory proceeds in a
similar way, the results found di�er signi�cantly from those of large magnetic Prandtl
numbers.

Critical Magnetic Reynolds Number

For the onset of the small-scale dynamo the magnetic Reynolds number needs to
exceed a critical value Rmcrit. We determine the latter by setting the growth rate
in (4.46) equal to zero and solving equation (4.49) for Rm. As the p-function in the
inertial range only depends on Rm, but not on Re, it is independent of the magnetic
Prandtl number. We list the numerical results for Rmcrit in table 4.1. The critical
magnetic Reynolds number increases with increasing compressibility.
In the limit of large Pm the critical magnetic Reynolds number is not necessarily
the dominant restriction, as Re > 103 is required for turbulent �ows. As Rm� Re
for large Pm, Rm needs to be much larger than 103, which is larger than the critical
magnetic Reynolds number. In the opposite limit of small Pm we have the case
of Rm � Re. For low hydrodynamic Reynolds numbers, the magnetic Reynolds
number can fall below Rmcrit, and the small-scale dynamo can not operate.
We note that, contrary to our results presented here, Iskakov et al. (2007) found a
weak dependence of the critical magnetic Reynolds number on the magnetic Prandtl
number. Therefore, it needs to be explored further whether the discrepancy in our
results is due to approximations in the Kazantsev model or if it is a result of the
relatively narrow inertial range in numerical simulations. The latter provides a
restriction on the number of turbulent eddies resolved in the box, and thus on the
overall statistical sampling of the dynamics. In future studies, it would thus be
desirable to explore this behavior at higher resolution in numerical simulations, and
by relaxing the assumption of the Kazantsev theory in analytical studies.

Growth Rate

We are interested in bound eigenfunctions of the Kazantsev equation (4.45), which
have corresponding real eigenvalues, i.e. growth rates. For this we require part of

4This section follows closely Schober et al. (2012a).
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Model and reference ϑ Γ̄ (Pm�1) Γ̄ (Pm�1) Rmcrit

Incompressible turbulence
(Kolmogorov, 1941)

1/3 0.027 Rm1/2 1.03 Re1/2 ≈ 107

Intermittency of Kolmogorov
turbulence
(She & Leveque, 1994)

0.35 0.027 Rm0.48 0.94 Re0.48 ≈ 118

Driven supersonic
MHD-turbulence
(Boldyrev et al., 2002)

0.37 0.026 Rm0.46 0.84 Re0.46 ≈ 137

Observation in molecular clouds
(Larson, 1981)

0.38 0.025 Rm0.45 0.79 Re0.45 ≈ 149

Solenoidal forcing of the
turbulence
(Federrath et al., 2010)

0.43 0.019 Rm0.40 0.54 Re0.40 ≈ 227

Compressive forcing of the
turbulence
(Federrath et al., 2010)

0.47 0.012 Rm0.36 0.34 Re0.36 ≈ 697

Observations in molecular clouds
(Ossenkopf & Mac Low, 2002)

0.47 0.012 Rm0.36 0.34 Re0.36 ≈ 697

Highly compressible turbulence
(Burgers, 1948)

1/2
0.0054 Rm1/3 0.18 Re1/3 ≈ 2718

Table 4.1:

The normalized growth rate of the small-scale dynamo Γ̄ in the limit of small (Rm�Re)

and large magnetic Prandtl numbers (Rm�Re). We show our results for di�erent types

of turbulence, which are characterized by the exponent ϑ of the slope of the turbulent

velocity spectrum, v(`) ∝ `ϑ. The extreme values of ϑ are 1/3 for Kolmogorov turbulence

and 1/2 for Burgers turbulence. Also listed are the results found for the critical magnetic

Reynolds number Rmcrit.
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Dependence of the potential on

the dimensionless parameter y ≡
r/L for Kolmogorov (ϑ = 1/3)
and Burgers (ϑ = 1/2) turbulence
at Re = 108. We choose di�er-

ent magnetic Reynolds numbers

Rm = 104, Rm = 105 and Rm =
106, resulting in the Prandtl num-

bers Pm = 10−4, Pm = 10−3 and

Pm = 10−2. The viscous scale

`ν depends on the type of tur-

bulence and the Reynolds num-

ber. For Kolmogorov turbulence

`ν = Re−3/4L; for Burgers tur-

bulence `ν = Re−2/3L. The re-

sistive scale is `η = Rm−3/4L for

Kolmogorov and `η = Rm−2/3L
for Burgers turbulence. A mag-

netic Reynolds number 10x is in-
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`
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the potential (4.42) to be negative.
In �gure 4.10 we show the normalized potential (4.42) as a function of y = r/L for
Kolmogorov and Burgers turbulence. We choose a Reynolds number of 108, which is
a typical value for example for the interior of planets (Roberts & Glatzmaier, 2000)
and primordial halos (Schober et al., 2012b). The di�erent lines correspond to dif-
ferent magnetic Reynolds numbers of 104, 105 and 106 and hence represent magnetic
Prandtl numbers of 10−4, 10−3 and 10−2, respectively. The crucial discrepancy to
the contrary limit of large Pm is that the potential only has a negative part in the
inertial range. Thus, there are only real positive eigenvalues of the Kazantsev equa-
tion (4.41) within this range.
With our model for the correlation function of the turbulent velocity �eld, equations
(4.59) and (4.63), the p-function (4.46) in the inertial range is

p(y) =
−3

20 (3 + Rm y1+ϑ)2

(
135 + Rm y

(
60 y Γ̄− a(ϑ)Rm y1+2ϑ

+2 yϑ
(
25− b(ϑ) + 10Rm y2 Γ̄

)))
, (4.81)

where we use the abbreviations

a(ϑ) = ϑ(56− 103ϑ) (4.82)
b(ϑ) = ϑ(79− 157ϑ). (4.83)

For the analytical determination of the zeros of p(y) we use the approximations

p1(y) =
3Rm y1+ϑ

(
a(ϑ)Rm y1+ϑ + 2 b(ϑ)− 50

)
− 405

20 (3 + Rm y1+ϑ)2 , (4.84)

which is valid for Γ̄→ 0, and

p2(y) =
3 a(ϑ)

20
− 3 y1−ϑ Γ̄, (4.85)

where we leave out the constant terms in (4.81). We show p(y) as well as the two
approximations in �gure 4.11 for the exemplary case of Re = 108 and Rm = 105.
By using p1(y) we �nd for the �rst zero of p(y) approximately

y1 =

(
c(ϑ)

Rm

)1/(1+ϑ)

, (4.86)

where we de�ned

c(ϑ) =
25 +

√
135 a(ϑ) + (b(ϑ)− 25)2 − b(ϑ)

a(ϑ)
. (4.87)

With p2(y) we �nd the second zero

y2 =

(
a(ϑ)

20 Γ̄

)1/(1−ϑ)

. (4.88)
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The p-function (red curve) as a

function of the normalized scale

parameter y = r/L in the viscous,

inertial and large-scale range. We

indicate the viscous scale `ν and
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lines. For the plot, we use our

result for the growth rate in the
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function p1 and the dotted purple

line to p2. The upper panel shows

p(y) for Kolmogorov turbulence,

the lower panel for Burgers tur-

bulence.
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The eigenvalue can be determined approximately by the equation
∫ y2

y1

√
p2(y)

y
dy =

π

2
. (4.89)

Here we use the approximative function p2(y) instead of the full function p(y) in
order to �nd an analytical solution of the integral. Note that the scaling of the
abscissa in �gure 4.11 is logarithmic and thus p2(y) is a good approximation of
p(y) for y > y1. The value of the integral does not change by much due to this
simpli�cation.
We can solve the resulting equation from (4.89) with the ansatz

Γ̄ = α Rm(1−ϑ)/(1+ϑ). (4.90)

This is motivated by the result of Schober et al. (2012c) in the limit of large magnetic
Prandtl numbers: Γ̄ ∝ Re(1−ϑ)/(1+ϑ). Here the ampli�cation process takes place
at the viscous scale, which depends on the hydrodynamical Reynolds number. As
mentioned above in the limit of low magnetic Prandtl numbers the dynamo operates
mainly on the resistive scale, which depends on Rm. Thus, our ansatz is to replace
the hydrodynamic Reynolds number by the magnetic one (see also e.g. Boldyrev &
Cattaneo, 2004).
With (4.90) we �nd for the solution of (4.89):

1

ϑ− 1

√
3

5

(√
a(ϑ)− 20 c(ϑ)(1−ϑ)/(1+ϑ) α + log

(
4
√

5Rm(1−ϑ)/(1+ϑ) α
)√a(ϑ)

− log
(

2

√
c(ϑ)

Rm

(ϑ−1)/(ϑ+1) (√
a(ϑ) +

√
a(ϑ)− 20 c(ϑ)(1−ϑ)/(1+ϑ) α

))√a(ϑ)
)

=
π

2
.

(4.91)

As we assume the pre-factor of the growth rate to be very small, i.e. α� 1, we use
a(ϑ)� 20 c(ϑ)(1−ϑ)/(1+ϑ) α to approximate (4.91) as

√
a(ϑ)

ϑ− 1

√
3

5

(
1− log


4

√
a(ϑ)c(ϑ)

Rm

(ϑ−1)/((1+ϑ))



+ log
(

4
√

5Rm(1−ϑ)/(1+ϑ) α
))

=
π

2
. (4.92)

The solution of this equation can easily be found:

α =
a(ϑ)

5
c(ϑ)(1−ϑ)/(1+ϑ) exp

(√
5

3 a(ϑ)
π (ϑ− 1)− 2

)
. (4.93)

We list results for the normalized growth rate of the small-scale dynamo in the
limit of low magnetic Prandtl numbers for exemplary types of turbulence in table
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(She & Leveque, 1994), BNP02

(Boldyrev et al., 2002), L81 (Lar-

son, 1981), FRKSM10 (Federrath

et al., 2010) (sol: solenoidal forc-

ing; comp: compressive forcing),

OM02 (Ossenkopf & Mac Low,

2002) and B48 (Burgers, 1948).

image credit: Schober et al.
(2012a)

4.1. For comparison we also list the results for Pm → ∞ from Schober et al.
(2012c). Moreover, we present the normalized growth rate in �gure 4.12. The lower
abscissa shows the dependency on the magnetic Reynolds number, which is valid
for any hydrodynamic Reynolds number Re � Rm. The upper abscissa in �gure
4.12 shows the dependency on the magnetic Prandtl number for a �xed Re of 108.
We present the results for di�erent types of turbulence reported in the astrophysical
literature (Kolmogorov, 1941; She & Leveque, 1994; Boldyrev et al., 2002; Larson,
1981; Federrath et al., 2010; Ossenkopf & Mac Low, 2002; Burgers, 1948).

4.2.6 Numerical Solution of the Kazantsev Equation5

The Growth Rate in the Full Prandtl Number Regime

Bovino et al. (2013) solve the Kazantsev equation (4.41) numerically by using the
Numerov algorithm. The turbulent correlation function they use is identical to
the one used in the analytical calculations presented above, i.e. equations (4.59)
and (4.63). A comparison of the numerical results with our analytical solution is
shown in �gure 4.13 at a �xed Reynolds number of 1014. The comparison shows
excellent agreement between the numerical and the analytical solutions in the limit
of small (Γ̄ ∝ Rm(1−ϑ)/(1+ϑ) Schober et al., 2012a) and large magnetic Prandtl
numbers (Γ̄ ∝ Re(1−ϑ)/(1+ϑ) Schober et al., 2012c). We �nd that the range where

5This section follows closely Bovino et al. (2013).
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Figure 4.13:

The normalized growth rate Γ̄
as a function of the magnetic

Prandtl number Pm for a �xed

Reynolds number Re = 1014.

The solutions from numerical in-

tegration of the Kazantsev equa-

tion by Bovino et al. (2013) are

indicated as dashed lines, while

the analytical solutions in the

limits of small (Schober et al.,

2012a) and large Prandtl num-

bers (Schober et al., 2012c) are

shown by the solid lines. We

present di�erent types for tur-

bulence, indicated by the slope

of the turbulent velocity spec-

trum ϑ: K41 (Kolmogorov, 1941),
L81 (Larson, 1981), FRKSM10

(Federrath et al., 2010) (sol:

solenoidal forcing; comp: com-

pressive forcing), and B48 (Burg-

ers, 1948).

image credit: Schober et al.
(2012a)
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our analytical solution (4.90) can be used is not restricted to Pm � 1 but is also
applicable in the regime Pm ≈ 1 for all types of turbulence at Re = 1014. We see
a minor o�set between our solutions and the numerical ones for small Pm. This is
probably caused by the approximations we made in equations (4.91) and (4.92).

Numerical Solutions for Higher Modes of the Growth Rate

In �gure 4.14 we show the normalised growth rate Γ̄ found by Bovino et al. (2013)
for di�erent modes and Re = 1014 for the case of Kolmogorov turbulence small to
large magnetic Prandtl . For a narrow range of Pm they �nd a strong increase of
the growth rate, in particular for the fastest growing mode, which depends on the
fact that for 5 ≤ Pm ≤ 105 the potential is negative both in the inertial and in the
viscous range yielding two contributions (see �gures 4.10 and 4.5). We note that the
additional contribution coming from the viscous range is marked only for Pm > 10,
even if it starts to appear for Pm ≥ 5. The higher modes shown in the �gure clearly
depend on the depth of the potential U(x), and only the main growing mode (the
larger in magnitude) was found to exist in the whole range of Pm. It is worth noting
that the small-scale dynamo ampli�cation can occur also for Pm� 1. The presence
of the higher growing modes is important since it gives an additional contribution to
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Log-Log plot of the computed
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ible Kolmogorov turbulence and

for Re = 1014.
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the magnetic �eld ampli�cation that becomes more marked for Pm � 1, where the
Γ̄ values are 6 orders of magnitude larger than for Pm � 1 (for the same Reynolds
number). Especially for Pm � 1, a large number of higher modes has been found.
By taking in consideration Burgers turbulence Bovino et al. (2013) �nd a small
number of modes going to a maximum of 3 (Γ̄0, Γ̄1, and Γ̄2) for Pm→∞ up to only
1 mode for intermediate and small Pm. This provides a further con�rmation of the
fact that for Kolmogorov turbulence there is a larger ampli�cation of the magnetic
�eld.

Dynamo Thresholds

An important criterion for small-scale dynamo action is that the magnetic Reynolds
number needs to exceed a threshold Rmcrit. Bovino et al. (2013) have evaluated
Rmcrit for all types of turbulence considered here. An asymptotic value of Rmcrit =
320 has been found for Kolmogorov turbulence and Re=1014, which is in good agree-
ment with other analytical (Kleeorin & Rogachevskii, 2012) and numerical dynamo
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ϑ Pm � 1 Pm � 1

1/3 1.85×10−2 Rm1/2 9.98×10−1 Re1/2

0.38 1.80×10−2 Rm0.45 7.62×10−1 Re0.45

0.43 1.31×10−2 Rm0.40 5.09×10−1 Re0.40

0.47 8.91×10−3 Rm0.36 3.07×10−1 Re0.36

1/2 3.69×10−3 Rm1/3 1.54×10−1 Re1/3

Table 4.2:

The normalized growth rate of the small-scale dynamo Γ̄ as a function of Re and Rm for

�ve di�erent types of turbulence. The results from the work of Bovino et al. (2013) for

Pm � 1 and Pm � 1 are reported.

studies (Schekochihin et al., 2005; Haugen et al., 2004a; Malyshkin & Boldyrev,
2010), which report a Rmcrit value of 410, 500, 210, and ≈500, respectively. Fur-
thermore, Bovino et al. (2013) con�rm that the threshold for the generation of
magnetic �uctuations by highly compressible turbulent �ows is considerably larger
(Rmcrit = 32000) than for the case of an incompressible �uid. This trend is also
mentioned in Rogachevskii & Kleeorin (1997). It is worth noting that Leorat et al.
(1981) obtained a critical magnetic Reynolds number for compressible Kolmogorov
turbulence of the order of a few tens. In �gure 4.15, Bovino et al. (2013) explore
the dependence of the fastest growing mode on the magnetic Reynolds number for
values in the vicinity of the threshold Rmcrit for turbulence based on Kolmogorov,
Burgers and the Larson relation. We adopt Pm u 1 and analyse the scaling of the
growth rate in the vicinity and far away from the threshold (Rmcrit). For all cases
considered here, the growth rate far from the threshold scales as ∝ Reα for Pm �
1 (or ∝ Rmα for Pm � 1), with α=1/2 for Kolmogorov and 1/3 for Burgers. In
the vicinity of the threshold, the growth rate becomes a function of Re-Rmcrit. Here
Bovino et al. (2013) perform a �t with a logarithmic function, Γ̄ = β ln(Rm) + γ,
with β equal to 0.4214, 0.3356, and 0.10438, and γ = β ln(Rmcrit) to be -2.4516,
-2.0901, and -1.0754 for Kolmogorov, Larson and Burgers turbulence, respectively6.
Table 4.2 reports the �tted growth rate as a function of Re and Rm for magnetic
Reynolds numbers far from the threshold for the di�erent types of turbulence, con-
�rming the most e�cient dynamo growth for the case of Kolmogorov turbulence.

6We note that the functional form near the threshold is not necessarily logarithmic, and a �t

proportional to (Rm1/2-Rm
1/2
c ) also provides a valid description of the data (S. Boldyrev, private

communication).
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4.3 Non-linear Turbulent Dynamo7

The exponential growth phase will come to an end when in the Navier-Stokes equa-
tion (3.42) the tension force of the magnetic �eld, B · ∇B, becomes comparable
to the inertial term of the �ow, u · ∇u. At this point, magnetic �eld ampli�cation
will stop on the scales that ful�ll this condition, and continue to proceed on larger
scales. As discussed by Schekochihin et al. (2002), this condition translates to

B2
`a

`a
≈ u2

`a

`a
, (4.94)

where `a denotes the smallest scale where ampli�cation still occurs. In this regime,
a linear growth of the magnetic energy has been reported in previous studies, based
on the assumption of Kolmogorov turbulence (e.g. Schekochihin et al., 2002; Cho
et al., 2009; Beresnyak, 2012). In the following, we will present a generalization
of these investigations from Schleicher et al. (2013), who employ a simpli�ed toy
model as well as a more sophisticated Fokker-Planck model previously suggested by
Schekochihin et al. (2002). As a result, one can show that di�erent types of power-
law growth can be expected depending on the adopted type of turbulence.
It further is important to point out that in the non-linear regime, we expect the
magnetic Prandtl number to play a less critical role, as the ampli�cation scale of the
magnetic �eld is now expected to be larger than both the viscous and the resistive
scale, such that no strong dependence on Re or Rm can be expected.
We note that the models considered in this section have previously been motivated
in the context of the incompressible induction equation, given as

∂tB + (v · ∇)B = (B · ∇)v + η∆B. (4.95)

However, they can be naturally extended into the compressible regime with the
replacement

B → B

ρ
. (4.96)

Inserting this replacement as well as the continuity equation,

ρ̇ = −∇ · (ρv) , (4.97)

it is straightforward to show that one obtains the compressible form of the induction
equation,

∂tB + (v · ∇)B = (B · ∇)v −B (∇ · v) + η∆B. (4.98)

As long as the mean density 〈ρ〉 in the box is constant, a signi�cant growth of the
quantity 〈B/ρ〉 nevertheless implies a corresponding growth of the magnetic en-
ergy, assuming that the density distribution function will not change signi�cantly

7This section follows closely Schleicher et al. (2013).
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over time. In the case of well-developed driven turbulence, one indeed expects a
characteristic log-normal density probability distribution function, which naturally
complies with these requirements (Vázquez-Semadeni, 1994; Passot & Vázquez-
Semadeni, 1998; Federrath et al., 2008). Strictly speaking, the following consid-
erations apply to the quantity B̃ = B/ρ and W̃ = W/ρ2, with W the magnetic
energy. In the following, the ˜ is however dropped for simplicity.

4.3.1 Non-Linear Magnetic Field Evolution in a Toy Model

In the toy model previously proposed by Schekochihin et al. (2002), the dominant
fraction of the magnetic energy resides on the scale `a, the smallest scale where
magnetic �eld ampli�cation still occurs (thus yielding the shortest ampli�cation
timescale). On that scale, the magnetic energy is expected to be already close to
saturation. The magnetic energy Emag(t) can thus be related to the ampli�cation
scale `a by the approximate relation

Emag(t) ≈ 1

2
〈ρ〉u2

`a(t). (4.99)

The magnetic energy is evaluated here at the mean density 〈ρ〉 of the turbulent box,
as we are interested only in the magnetic �eld ampli�cation by shear. Adopting the
eddy-turnover rate on the scale `a as the growth rate for the magnetic �eld, i.e.

Γ(t) ≈ u`a(t)

`a(t)
, (4.100)

the magnetic energy evolves as

d

dt
Emag = Γ(t)Emag(t)− 2ηk2

rmsEmag(t) (4.101)

with

k2
rms(t) =

1

Emag

∫ ∞

0

k2M(t, k) dk (4.102)

and

M(t, k) =
1

2

∫
〈|B(t,k)|2〉 dΩk. (4.103)

Now, we have Γ(t)Emag(t) ≈ 〈ρ〉u3
`a(t)/`a(t) =: ε(t). Inserting in equation (4.101)

yields

d

dt
Emag = χε(t)− 2ηk2

rms(t)Emag(t), (4.104)

where χ is a constant of order unity. For Kolmogorov turbulence, the quantity
ε(t) = 〈ρ〉u3

`a(t)/`a(t) is a constant (Kolmogorov, 1941). In this case, and as long
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as magnetic energy dissipation is negligible, dEmag/dt = const, implying a phase
of linear growth. In this limit, we obtain the result of Beresnyak (2012), where
a constant fraction of the turbulence dissipation rate is converted into magnetic
energy.
In the general case with u`a ∝ `ϑa , ε(t) is however not constant, but varies as `

3ϑ−1
a .

In the case of Burgers turbulence, we thus obtain ε ∝ `0.5
a . In this case, the growth

of the magnetic energy is no longer linear, as the turbulent energy dissipation rate
is not independent of scale!
For comparison, we note that the quantity ε̃ = ρe

3/2
SGS/`, with eSGS the speci�c energy

density of subgrid-scale turbulence, is practically independent of `. It however has
a weak dependence on the Mach number, and a strong dependence on the type of
forcing (Schmidt & Federrath, 2011). As the density �uctuations will however not
contribute to the shearing, we will adopt ε as the quantity of interest here.
To quantify the expected behavior, we need to solve equation (4.99) for `a. For
this purpose, we recall that u`a is related to the turbulence driving scale L and the
velocity V on that scale via

u`a = V

(
`a
L

)ϑ
. (4.105)

From (4.99), we thus obtain

`a = L

(
2Emag

〈ρ〉V 2

)1/(2ϑ)

. (4.106)

We can now evaluate (4.100) and (4.101), yielding

d

dt
Emag ≈ EmagV L

−ϑ
[
L

(
2Emag

〈ρ〉V 2

)1/(2ϑ)
]ϑ−1

∝ E(3ϑ−1)/(2ϑ)
mag . (4.107)

For Kolmogorov turbulence (ϑ = 1/3), we con�rm that dEmag/dt = const, while
in the more general case, this quantity will increase with increasing Emag. This can
be intuitively understood, as the steep spectra for ϑ > 1/3 imply a more modest
increase of the eddy-timescale with length scale, suggesting that the ampli�cation
rate remains larger when increasing the scale. We re-assess these results with the
Fokker-Planck model below and explore the physical implications in more detail.

4.3.2 Non-Linear Magnetic Field Evolution in a

Fokker-Planck Model

The starting point for our investigations is the Fokker-Planck model of Schekochihin
et al. (2002). Here, the time-evolution of the magnetic-energy spectrum is given as

∂tM =
∂

∂k

[
D(k)

∂M

∂k
− V (k)M

]
+ 2Γ(t)M − 2ηk2M, (4.108)
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with the di�usion coe�cient D(k) = Γ(t)k2/5 and the drift velocity in k-space
V (k) = 4Γ(t)k/5. We recall that the magnetic-energy spectrum M is related to the
magnetic energy Emag via

Emag(t) =

∫ ∞

0

M(t, k) dk. (4.109)

To describe the evolution in the nonlinear regime, Schekochihin et al. (2002) postu-
lated the following expressions:

Γ(t) = c1

[∫ ks(t)

0

k2E(k) dk

]1/2

, (4.110)

Emag(t) = c2

∫ ∞

ks(t)

E(k) dk. (4.111)

The constants c1 and c2 are of order unity, E(k) is the hydrodynamic energy spec-
trum neglecting the in�uence of the magnetic �eld, and the wave vector ks(t) is
de�ned via equation (4.111). It corresponds to the smallest scale where ampli�ca-
tion e�ciently occurs. As input for the Fokker-Planck model, we require an energy
spectrum of the turbulence. As before, we assume that the velocity in the inertial
range scales as

u` ∝ `ϑ. (4.112)

The hydrodynamic energy spectrum is then approximately given as

E(k) =

{
Ctε

2/3k−2ϑ−1 for k ∈ [kf , kν ]

0 elsewhere,
(4.113)

with Ct a constant which depends on the type of turbulence, kf and kν the wave
vectors describing the injection scale of turbulence and the viscous scale, respectively.
The value of kν is set to enforce the condition ε = 2ν

∫∞
0
k2E(k) dk. Unlikely in

(4.59) and (4.63), we do not explicitly model the turbulent spectra in the viscous
regime, as these no longer contribute during the non-linear stage. With these input
data, equation (4.111) can be evaluated as

Emag(t) =
c2Ctε

2/3

2ϑ

[
k−2ϑ
s − k−2ϑ

ν

]
. (4.114)

We further introduce the quantities

Emag,0 = c2

∫ ∞

0

E(k) dk =
c2Ctε

2/3

2ϑ

[
k−2ϑ
f − k−2ϑ

ν

]
, (4.115)

Emag,ν =
c2Ctε

2/3

2ϑ
k−2ϑ
ν . (4.116)
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We note that in the above expressions, the integral
∫∞

0
dk corresponds to an integra-

tion from kf to kν , as the turbulent energy is non-zero only in this regime (see 4.113).
Using these de�nitions, the wave vectors kν , ks and kf can be expressed as

ks =

(
2ϑ

c2Ctε2/3

)−1/(2ϑ)

[Emag(t) + Emag,ν ]
−1/(2ϑ) , (4.117)

kf =

(
2ϑ

c2Ctε2/3

)−1/(2ϑ)

[Emag,0 + Emag,ν ]
−1/(2ϑ) , (4.118)

kν =

(
2ϑ

c2Ctε2/3

)−1/(2ϑ)

E−1/(2ϑ)
mag,ν . (4.119)

Integrating equation (4.110) now yields the following:

Γ(t) = c1

[(
Ctε

2/3

2− 2ϑ

)(
k2−2ϑ
s (t)− k2−2ϑ

f

)]1/2

. (4.120)

Substituting equations (4.117)-(4.119) into (4.120) yields the expression

Γ(t) = c1

(
Ctε

2/3

2− 2ϑ

)1/2(
c2Ctε

2/3

2ϑ

)(1−ϑ)/(2ϑ)

×
[
(Emag(t) + Emag,ν)

(ϑ−1)/ϑ − (Emag,0 + Emag,ν)
(ϑ−1)/ϑ

]1/2

. (4.121)

Considering turbulence models between Kolmogorov and Burgers, we have 1/3 ≤
ϑ ≤ 1/2. We further assume that Emag(t)� Emag,0, implying that the magnetic �eld
is far from saturation on the current ampli�cation scale. In this case, we can neglect
the second term in the square brackets. As we focus here on the non-linear regime,
we can further neglect Emag,ν compared to Emag(t), and obtain the expression

Γ(t) = c1

(
Ctε

2/3

2− 2ϑ

)1/2(
c2Ctε

2/3

2ϑ

)(1−ϑ)/(2ϑ)

W (ϑ−1)/(2ϑ)(t). (4.122)

As in our toy model, the growth of the magnetic energy thus scales as
d

dt
W ≈ Emag(t)Γ(t) ∝ W (3ϑ−1)/(2ϑ). (4.123)

For Kolmogorov turbulence, the growth is thus linear, while it grows faster than
linear for ϑ > 1/3. Integrating equation (4.123), we obtain

Emag(t) =
(
C̃t
)2ϑ/(1−ϑ)

, (4.124)

with

C̃ = c1

(
Ctε

2/3

2− 2ϑ

)1/2(
c2Ctε

2/3

2ϑ

)(1−ϑ)/(2ϑ)(
1− ϑ

2ϑ

)
. (4.125)

From this expression, we already see that the energy grows linearly in t for Kol-
mogorov, while it grows as t2 for Burgers turbulence. For a physical interpretation,
the normalization in terms of the eddy-turnover time Ted on the forcing scale is still
required, which we perform below.
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Figure 4.16:

The power-law growth of mag-

netic energy for di�erent types

of turbulence in the non-linear

regime, following the evolution

equation (4.129).

image credit: Schleicher et al.
(2013)

4.3.3 Physical Implications of the Non-Linear Dynamo

To explore the physical implications of the above-mentioned results, we now perform
a normalization in terms of the eddy-turnover time Ted on the forcing scale k−1

f . For
this purpose, we note that the expression within the central brackets of equation
(4.125) is identical to Emag,νk

2ϑ
ν , and it is straightforward to show that

Emag,νk
2ϑ
ν ≈ Emag,0k

2ϑ
f . (4.126)

If we normalize equation (4.124) in terms of Ted ≈ (kf
√
Emag,0)−1, we thus obtain

Emag(t) =

(
C

t

Ted

)2ϑ/(1−ϑ)

, (4.127)

C = c1E
(1−ϑ)/(2ϑ)
mag,0

(
ϑ

c2(1− ϑ)

)1/2(
1− ϑ

2ϑ

)
. (4.128)

Adopting a system of units with Emag,0 = 1 and kf = 1, it is evident that Ef ≈ 1,
v(kf ) ≈ 1 and thus Ted ≈ 1. We also assume c1 ≈ 1. From equation (4.113), we also
expect ε ≈ 1. In these units, our evolution equations simpli�es as

C =
1

2

√
1− ϑ
ϑ

. (4.129)

We illustrate the behaviour for the di�erent types of turbulence in Fig. 4.16 for
Re = 104, and summarize the power-law behaviour in Table 4.3. We thus obtain a
steeper power-law growth for steeper turbulent spectra, implying that saturation can
be reached in approximately the same time, in spite of the initially lower saturation
level on smaller scales. The latter is fully consistent with our expectations for the
kinematic regime, where the growth rates are higher for Kolmogorov turbulence,
and a larger amount of magnetic energy may build up before the non-linear regime
is reached (due to the increased amount of turbulent energy that is available on the
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Model and reference ϑ W ∝ `a ∝

Kolmogorov turbulence
(Kolmogorov, 1941)

1/3 t1 t3/2

Intermittency of Kolmogorov turbulence
(She & Leveque, 1994)

0.35 t1.077 t1.54

Driven supersonic MHD turbulence
(Boldyrev et al., 2002)

0.37 t1.17 t1.59

Observation in molecular clouds
(Larson, 1981)

0.38 t1.23 t1.61

Solenoidal forcing of turbulence
(Federrath et al., 2010)

0.43 t1.51 t1.75

Compressive forcing of turbulence
(Federrath et al., 2010)

0.47 t1.77 t1.89

Observation in molecular clouds
(Ossenkopf & Mac Low, 2002)

0.47 t1.77 t1.89

Burgers turbulence
(Burgers, 1948)

1/2 t2 t2

Table 4.3:

The power-law behavior of the small-scale dynamo for di�erent types of turbulence in the

non-linear regime taken from Schleicher et al. (2013)
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Figure 4.17:

A sketch of Kolmogorov vs. Burg-

ers turbulence. While the turbu-

lent energy is considerably smaller

for Burgers spectra (ϑ = 1/2)
on small scales, it approaches the

values for Kolmogorov turbulence

(ϑ = 1/3) on larger scales. As a

result, the magnetic energy grows

faster than linear for Burgers tur-

bulence, as the growth rates grad-

ually approach the Kolmogorov

values at later times.

image credit: Schleicher et al.
(2013) k

Kolmogorov

Burgers

E(k)~k

−2
~k

−5/3

cf. Eq. (36)

~k

−2ϑ−1

same scale). We note that in the �nal stage close to saturation, the evolution may
start to deviate from the power-law behavior reported here, providing a transition
to the regime where Emag(t) = const.
From the relation derived above, we further calculate the characteristic scaling of
the current ampli�cation scale ls as a function of time t. Adopting equation (4.99),
we have Emag(t) ≈ 〈ρ〉u2

`a(t) ∝ `2ϑ
a , thus

`a(t) ∝ E1/(2ϑ)
mag (t) ∝ t1/(1−ϑ). (4.130)

For Kolmogorov turbulence, the characteristic length scale of the magnetic �eld thus
grows as t3/2, while it grows as t2 for Burgers turbulence. The results are summarized
for all types of turbulence in table 4.3.
The power-laws derived here depend on the type of turbulence due to the di�erent
eddy-turnover timescales as a function of scale, as we sketch in �gure 4.17. We
summarize the main ingredients based on the toy model developed in section 4.3.1:

Considering a driving scale L with a turbulence velocity V on that scale, the ratio
of the eddy-turnover times on scale l � L for Kolmogorov and Burgers turbulence
is given as

tK
tB

=
(`/L)1−1/3

(`/L)1−1/2
=

(
l

L

)1/6

. (4.131)

During the growth of the magnetic energy, the relevant length scale however shifts
to larger scales. According to equation (4.131), the ratio of the eddy timescales ap-
proaches unity for `→ L. For Burgers turbulence, the magnetic �eld ampli�cation
is thus initially delayed with respect to Kolmogorov, and catches up later, resulting
into the non-linear behaviour and the power-law growth described here.
Due to these results, it is clear that the growth rate of the dynamo is not a �xed frac-
tion of the global turbulence dissipation rate, as previously proposed by Beresnyak
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(2012). Due to the dependence on the turbulent spectrum, such a consideration may
only hold locally, i.e. on a given scale, where the growth rate of the �eld is indeed
related to the local eddy timescale. From a more global perspective, however, the
turbulence dissipation rate changes as a function of scale for models di�erent from
Kolmogorov, such that the previously postulated universal behaviour cannot be ex-
pected. From equation (4.129), it is further evident that the evolution depends on
the Reynolds number of the gas, and that larger Reynolds numbers imply stronger
magnetic �elds at earlier times.

4.4 Saturation of the Turbulent Dynamo

At some point the strength of the magnetic back reactions on the velocity �eld via
the Lorentz force is comparable to the dynamo ampli�cation. When this is the case
on all scales of the system, the magnetic �eld ampli�cation comes to an end, i.e. the
turbulent dynamo is saturated.

4.4.1 Modi�cation of the Magnetic Di�usivity for Strong

Fields

Subramanian (1999) suggests a model for calculating the saturation energy density
of the magnetic �eld, which is based on describing the change of the velocity �eld.
In fact, he introduces an e�ective magnetic di�usivity

ηsat = η + 2aML(0, t), (4.132)

where the parameter a = τ/(4πρ) with τ being the response time of the system and
ρ being the �uid density. With the e�ective di�usivity (4.132) one can, moreover,
de�ne an e�ective magnetic Reynolds number

Rmsat =
V L

η + 2aML(0, t)
, (4.133)

which decreases with increasing magnetic energy density Emag. For large Emag,
i.e. η � 2aML(0, t), this becomes

Rmsat ≈
V L

2aML(0, t)
=

3V L

16aπEmag

. (4.134)

The decrease of Rmsat continues until the critical magnetic Reynolds number is
reached and consequently the dynamo ampli�cation stops. For Rmsat = Rmcrit

saturation occurs and we �nd a �nal magnetic energy density of

Emag,sat ≈
3

2

1

2
ρV 2 L/V

τ

1

Rmcrit

. (4.135)

The response time τ is a free parameter of the model, which should depend on the
nature of turbulence.
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4.4.2 Model for the Response Time

In the model for saturation described above a parameter τ enters, which will be
estimated in this section. The timescale τ on which the �uid reacts to the magnetic
�eld generated by the dynamo should be similar to the timescale of the turbulent
eddies. As the eddy turnover time is di�erent on di�erent length scales, also the
saturation process should be scale dependent.
We model here the response time on a scale ` as

τ(`) =
`

v`
=
Lϑ

V
`1−ϑ, (4.136)

where we used equation (4.54) to �nd a dependency on the forcing length scale
and velocity, L and V . We remind the reader that ϑ is the slope of the turbulence
spectrum. The saturation energy on a scale ` is then given as

Emag,sat(`) ≈ −
3

2

1

2
ρV 2 L/V

τ(`)

1

Rmcrit

, (4.137)

where we have introduced a minus sign for resulting into a positive power spectrum.

4.4.3 Magnetic Field Spectrum at Saturation

The magnetic energy spectrum at saturation in our model of the scale-dependent
response time (4.136) can be de�ned as

εmag,sat(`) =
dEmag,sat(`)

d`
. (4.138)

When we compare this with the initial power spectrum of the turbulent kinetic
energy

εkin,0(`) =
dEkin,0(`)

d`
, (4.139)

with

Ekin,0(`) =
1

2
ρv(`)2 (4.140)

we �nd a scale `crit for which εmag,sat(`crit) > εkin,0(`crit). For scales ` < `crit the
magnetic energy spectrum exceeds the turbulence spectrum, i.e. εmag,sat > εkin,0.
Comparison between the expressions (4.138) and (4.139) yields the critical scale

`crit =

(
3(1− ϑ)

4ϑRmcrit

)1/(1+ϑ)

L. (4.141)

For the viscous scale `ν > `crit the saturation value of the magnetic �eld decreases
with scale ` according to equation (4.138) in the complete inertial range. For large
hydrodynamical Reynolds numbers, however, the usual situation is `ν < `crit. Here
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the response time at scales ` < `crit is very small, such that the term 2aML(0, t) in
equation (4.132) becomes insigni�cant compared to the normal magnetic di�usivity
η. In order to ensure energy conservation in our model, we set (4.139) as an upper
limit for the turbulence spectrum at saturation. The latter then takes the following
form:

Emag,sat(`) =





1

2
ρv(`)2 , `ν < ` ≤ `crit

−3

2

1

2
ρV 2 L/V

τ(`)

1

Rmcrit

, `crit < ` < L.
(4.142)

We note, that for small Reynolds numbers, which are for instance characteristic of
turbulence simulations, the case `ν > `crit can occur. Then we have to replace `crit

by `ν in equation (4.142), which means that we only have to integrate over εmag,sat

in the range `ν < ` < L.
In the general case, the total magnetic energy at saturation on all scales is calculated
in our model as

Emag,sat =

∫ `crit

`ν

εkin(`) d`+

∫ L

`crit

εmag,sat(`) d`

= Ekin,0(`crit)− Ekin,0(`ν) + Emag,sat(L)− Emag,sat(`crit)

=
1

2
ρV 2

[(
`crit

L

)2ϑ

−
(
`ν
L

)2ϑ

+
3

2

1

Rmcrit

((
L

`crit

)1−ϑ
− 1

)]

(4.143)

In typical astrophysical environments the Reynolds numbers are very high, leading
to a large separation between the viscous and the forcing scale, i.e. `ν � L. This
means we can approximate (4.143) by

Emag,sat ≈
1

2
ρV 2

[(
`crit

L

)2ϑ

+
3

2

1

Rmcrit

((
L

`crit

)1−ϑ
− 1

)]
(4.144)

The expression for the total magnetic energy at saturation derived above yields an
important piece of information: The magnetic energy produced by a small-scale dy-
namo depends strongly on the critical magnetic Reynolds number, which determines
also the onset of the dynamo in the �rst place.
The evolution of the magnetic energy spectrum is shown schematically in �gure 4.18,
where the gradient in blue colors represents di�erent times. Initially, the �eld grows
fastest on the viscous scale `ν in the kinematic dynamo phase. When saturation on
`ν is reached, the peak of the spectrum moves to larger scales in the non-linear phase
until saturation on the critical length scale `crit occurs. Up to this scale, according
to our model the turbulent kinetic energy is completely converted into magnetic en-
ergy. This is of course a simpli�ed assumption, however, simulations show that the
magnetic energy dominates the spectrum on small scales very soon after the onset of
the dynamo (Brandenburg & Subramanian, 2005). For scales ` > `crit the saturation
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Figure 4.18:

The schematic spectrum of the

magnetic energy Emag(`) and its

evolution in time. The gradi-

ent in blue color indicates the

time evolution, from light blue

for the initial spectrum to dark

blue for the (almost) �nal satu-

ration spectrum. The saturation

values are limited by the kinetic

energy of the turbulence Ekin up

to a scale `crit. For ` > `crit the

second green line Emag,sat(`) indi-
cates the upper limit of Emag(`).
Note, that the shape of the ki-

netic energy spectrum is expected

also to change slightly with in-

creasing magnetic energy due to

back reaction on the �uid.
`ν `crit L

lo
g(
E

m
a
g
(`
))

log(`)

Ekin
,0
(`)

∝ `2
ϑ

E
mag,sat(`) ∝ `ϑ−1

energy decreases again according to equation (4.138). Thus, the magnetic energy
spectrum has a kink at the scale `crit. The �eld continues to increase by dynamo
ampli�cation on larger scales, but the saturation value decreases with `. The whole
dynamo process comes to an end, when the energy reaches the saturation value on
the forcing scale L.

4.4.4 Turbulence Spectrum at Saturation

Under the assumption of constant forcing of turbulence and a constant �ux of energy
through the inertial range, the turbulent energy spectrum stays constant if there are
no additional energy losses or gains. With a dynamo operating, a certain fraction
of the kinetic energy is, however, converted into magnetic energy. As energy is con-
served, the kinetic spectrum should change when the dynamo reaches saturation.
The evolution of the kinetic energy spectrum, which we expect from our phenomeno-
logical model, is shown schematically in �gure 4.19. The initial energy distribution
scales as Ekin,0(`) ∝ `2ϑ−1. With the dynamo converting turbulent energy into mag-
netic energy this spectrum decreases with Ekin(`) = Ekin,0(`) − Emag,sat(`), which
is indicated by several blue lines. The time increases from light blue lines to dark
blue lines. The kinetic energy decreases and, at the smallest scales of the inertial
range, vanishes during dynamo saturation. For scales larger than `crit the magnetic
energy at saturation is below the equipartition value. Thus for ` > `crit the kinetic
energy dominates. The solid green line represents the turbulence spectrum, when
the dynamo is saturated on all scales.
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Figure 4.19:

The schematic spectrum of the ki-

netic energy Ekin(`) and its evo-

lution in time. The time increases

from the light blue lines to dark

blue lines.

The integrated kinetic energy at dynamo saturation can then be calculated as

Ekin,sat =

∫ `crit

L

(εkin(`)− εmag,sat(`)) d`

= Ekin(L)− Emag,sat(L)− Ekin(`crit)− Emag,sat(`crit)

=
1

2
ρV 2

[
1−

(
`crit

L

)2ϑ

+
3

2

1

Rmcrit

((
L

`crit

)2ϑ

− 1

)]
. (4.145)

4.4.5 Energy Ratios

The most interesting quantities to calculate from our model are the ratio of the
magnetic energy and kinetic energy at saturation

R1 =
Emag,sat

Ekin,sat

(4.146)

and the ratio of kinetic energy at saturation and initial kinetic energy

R2 =
Ekin,sat

Ekin,0

. (4.147)

The total initial turbulent energy is calculated from the integral over the initial
turbulence power spectrum:

Ekin,0 =

∫ L

`ν

εkin,0(`) d` =
1

2
ρV 2

(
1−

(
`ν
L

)2ϑ
)
. (4.148)

Both ratios, R1 and R2, include information about the e�ciency of the turbulent
dynamo. The ratioR1 tells us which fraction of energy equipartition can be reached,
while the ratio R2 tells us how much of the initial turbulent energy is used for the
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ϑ Rmcrit
R1

(Re→∞)

R1

(Re = 1500)

R2

(Re→∞)

R2

(Re = 1500)

1/3 ≈ 107 0.350 0.253 0.741 0.798

0.35 ≈ 118 0.297 0.214 0.771 0.823

0.37 ≈ 137 0.240 0.172 0.806 0.853

0.38 ≈ 149 0.215 0.153 0.823 0.867

0.43 ≈ 227 0.123 0.084 0.891 0.922

0.47 ≈ 697 0.047 0.027 0.955 0.973

1/2 ≈ 2718 0.016 0.005 0.985 0.994

Table 4.4:

Listed are the slopes of the turbulence spectrum ϑ for di�erent types of turbulence (see the
discussion in the text) and the corresponding critical magnetic Reynolds number Rmcrit

from (Schober et al., 2012c). For the di�erent turbulence models we present the ratio of

magnetic to turbulent energy at saturation R1 and the ratio of turbulent kinetic energy

at saturation over the initial turbulent kinetic energy R2. Both quantities are given for

Re→∞ and Re = 1500.

magnetic �eld ampli�cation.
The resulting numerical values for R1 and R2 for a low Re and for the limit Re→
∞ are listed in table 4.4. We use here di�erent types of turbulence, which have
di�erent critical magnetic Reynolds numbers Rmcrit. The slopes given in the table
originate from the following works: incompressible turbulence (Kolmogorov, 1941,
ϑ = 1/3), observations of molecular clouds (Larson, 1981, ϑ ≈ 0.38), theoretical
model of intermittency (She & Leveque, 1994, ϑ ≈ 0.35), simulations of supersonic
magnetohydrodynamical turbulence (Boldyrev et al., 2002, ϑ ≈ 0.37), simulations
with solenoidal (Federrath et al., 2010, ϑ ≈ 0.43) and compressive forcing (Federrath
et al., 2010, ϑ ≈ 0.47), further molecular cloud oversations (Ossenkopf & Mac Low,
2002, ϑ ≈ 0.47) and Burgers turbulence (Burgers, 1948, ϑ = 1/2).

4.4.6 Comparison with Numerical Simulations

The turbulent dynamo has also been studied in numerical simulations (Meneguzzi
et al., 1981; Haugen et al., 2004a; Schekochihin et al., 2004, e.g.) yielding impor-
tant results for comparison with analytical theory. Federrath et al. (2011) test the
in�uence of di�erent types of turbulent forcings on the small-scale dynamo. We will
discuss their simulations in more detail in the next section. Here we refer to their
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ϑ = 1/3,Re → ∞

ϑ = 1/2,
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Figure 4.20:

The ratio of magnetic over ki-

netic energy R as a function of

the Mach number M. The lines

show �ts to the data points mea-

sured in simulations of Federrath

et al. (2011), where the solid line

indicates solenoidal forcing and

the dashed line compressive forc-

ing. Also indicated by dots are

the theoretically expected values

of R for ϑ = 1/3 and ϑ = 1/2 and
Re→∞ and Re = 1500.

results for the dynamo saturation level which, as they show, depends strongly on
the turbulent forcing and the Mach numberM.
A �t to the ratio of magnetic over kinetic energy R1 measured by Federrath et al.
(2011) is shown in �gure 4.20. The value of R1 for solenoidal (divergence-free) ex-
ceeds the one of compressive (curl-free) forcing for all Mach numbers. This can be
intuitively explained by the fact that the stretching, twisting and folding by the dy-
namo works better in divergence-free turbulence. The saturation level for soleniodal
forcing is highest in the subsonic regime. For Mach numbersM > 1 it decreases by
a factor of more than 20 as here shocks become more and more dominant, leading
to strongly compressible �ows. The curve for compressive forcing behaves di�er-
ently. In compressively driven turbulence the saturation level is very low, it peaks
atM≈ 1, where shocks appear, and seems to become constant in the highly super-
sonic regime.
The hydrodynamic Reynolds number in the simulations of Federrath et al. (2011)
can be roughly estimated as Re ≈ 1500. For this value the critical length scale
(4.141) is below the viscous scale `ν for high compressibility, which simpli�es our
equations and the saturation level can signi�cantly di�er from the one for Re→∞.
In general, we expect a slight dependence of R1 on Re, which should be investigated
in future simulations. The resulting theoretical values of R1 and R2 for Re ≈ 1500
are listed in table 4.4. It is found that R1 for the large Re di�ers from the case
of Re = 1500 by a factor of 1.4 for Kolmogorov turbulence and by a factor of 3.2
for Burgers turbulence. We also indicate the theoretical values of R1 obtained from
our model in �gure 4.20. Here the solenoidal driven case is similar to Kolmogorov
turbulence for very low Mach numbers, where there is a di�erence of roughly a factor
3 between theory and simulation. For Burgers turbulence, which is realized at very
high Mach numbers, this di�erence is less than 4.
The di�erences between the numerical simulations and the theoretical are still tol-
erable, as we expect an error in the simulations of a factor of roughly 2. Also the
determination of the hydrodynamical Reynolds number in simulations is di�cult
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and leaves some space for discussion. However, the trend of smaller saturation lev-
els predicted from our theoretical model compared to the simulations, suggests that
we might have overestimated the response time τ(`) in equation (4.136). The re-
sponse from the magnetic �eld on the velocity �elds seems to occur in a fraction of
the eddy turnover time.
The mechanism of saturation of the dynamo in case of compressible forcing of the
turbulence, especially in the subsonic regime, can not be predicted by our model.
Here further analytical investigations are crucial for understanding the underlying
physics.

4.5 The Small-Scale Dynamo in Numerical

Simulations8

Besides with the analytical calculations, magnetic �eld ampli�cation can be explored
in numerical simulations. This approach has the advantage that it is not based on
very simpli�ed assumptions, which enter the theoretical model for example in the
turbulence spectrum. On the other hand, in simulations, the power of the turbulent
dynamo is not visible in full glory, as the scales, on which the fastest ampli�cation
takes place, are typically not resolved well.
In this section we concentrate on the simulations of Federrath et al. (2011). We
describe the basic numerical methods and summarized their numerical results for
the properties of the turbulent dynamo.

4.5.1 Dynamo Experiment in a Box - Numerical Setup

Federrath et al. (2011) perform numerical experiments with the grid-based magne-
tohydrodynamical code FLASH9. They solve the three-dimensional non-ideal MHD
equations namely

∂tρ+∇ · (ρu) = 0, (4.149)

∂t(ρu) +∇ ·
[
ρu⊗u +

(
p+

1

2
|B|2

)
I3 −B⊗B

]
= ρF , (4.150)

∂tε+∇ ·
[(
ε+ p+

1

2
|B|2

)
u− (B · u) B

]
= 0, (4.151)

∂tB +∇ · (u⊗B−B⊗u) = 0, (4.152)
∇ ·B = 0, (4.153)

where u is the velocity, p? = p + (1/2)|B|2 is the total pressure with the thermal
pressure p = c2

sρ and ε = ρeint + (1/2)ρ |u|2 + (1/2) |B|2 is the total energy density.
The turbulent forcing is included in F . Further, I3 is the 3×3 identity matrix, and

8This section follows closely Federrath et al. (2011).
9FLASH webpage: http://�ash.uchicago.edu/site/�ashcode/
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⊗ the dyadic product. Hydrodynamic di�usion is included via the traceless rate of
strain tensor Sij = (1/2)(∂iuj + ∂jui)− (1/3)δij∇ · u and via the kinematic viscosity
ν. The magnetic di�usion is controlled by an explicit magnetic di�usivity η.
In their simulations Federrath et al. (2011) test the e�ect of di�erent driving mech-
anisms of turbulence. For this purpose they model the forcing F by an Ornstein-
Uhlenbeck process (Schmidt et al., 2009; Federrath et al., 2010). In a box with the
size L, F has an autocorrelation time equal to the turnover time of turbulent eddies
at the largest scales ted = L/(2Mcs), where M = urms/cs is the root-mean square
Mach number. As turbulent forcing in astrophysical environments usually takes
place on large scales, F is modeled in Fourier space such that the kinetic energy is
injected on the 1 < |k|L/2π < 3. The force �eld is decomposed into a solenoidal
(P⊥ij ) and a compressive part (P‖ij) by the projection operator

Pζij (k) = ζ P⊥ij + (1− ζ)P‖ij = ζ δij + (1− 2ζ)
kikj
|k|2 . (4.154)

The free parameter ζ allows for applying a purely solenoidal force �eld with ζ = 1,
a purely compressive force �eld with ζ = 0 and mixtures of both with 0 < ζ < 1.
This way various types of turbulence can be realized.

4.5.2 Mach Number Dependence of the Growth Rate and

the Saturation Level

With the numerical setup described above the dynamo ampli�cation is tested for
dependency on the Mach numberM and the type of turbulent forcing.

Initial Conditions

The initial conditions of the simulation are motivated from previous studies of the
small-scale dynamo in astrophysical environments. The initial velocity in the box
with a size of L = 1.24 × 1019 cm is u0 = 0, the initial density is ρ0 = 1.24 ×
1019 g cm−3 and the sound speed is cs = 2× 104 cm s−1. The initial magnetic �eld
is uniform and directed along the z-axes, e.g. B = (0, 0, B0,z) with a �eld strength
of B0,z = 4.4× 10−16 G.

Results from the Simulations

After an initial transient phase that lasts for roughly 2 ted, turbulence is fully de-
veloped and the Mach number reaches its present value, �uctuating on a 10% level.
Figure 4.22 shows the time evolution of the Mach number in all runs. Note the drop
inM for the solenoidally driven runs withM . 1 as soon as the dynamo reaches
saturation. For all subsonic, solenoidal runs the magnetic energy has increased to
a dynamically signi�cant level, causing the Mach number to drop. In contrast, all
supersonic runs and all runs with compressive forcing have saturation levels signif-
icantly below 10%, such that the magnetic �eld has very little dynamical impact
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Figure 4.21:

Three-dimensional plots of the density on a logarithmic scale in the range ρ = [0.5ρ0, 50ρ0],
and magnetic �eld lines for solenoidal forcing (left) and compressive forcing (right) with

M = 0.1 (top), andM = 10 (bottom). The stretch-twist-fold mechanism of the dynamo

(Brandenburg & Subramanian, 2005) is evident in all models, but operates with di�erent

e�ciency due to varying �eld geometries.

image credit: Federrath et al. (2011)
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Figure 4.22:

Mach number M (top) and magnetic

energy Emag/Emag,0 (bottom, here la-

beled as Em/Em,0) as a function of

eddy-turnover time ted for all runs with

solenoidal (sol) and compressive (comp)

forcing. The Mach number is indi-

cated in the legend. We also add non-

ideal MHD models with M ≈ 0.4, 2.5
for solenoidal and compressive forcing,

evolved on 2563, and 5123 grid cells.

These models are hardly distinguish-

able from the corresponding ideal MHD

models. Thin dashed lines show �ts in

the exponential growth phase.

image credit: Federrath et al. (2011)

on the turbulent �ow, and hence the Mach number is una�ected. Although the
dynamics of the �ow are not strongly altered by the magnetic �eld in those cases,
the fragmentation behavior of the gas might still be a�ected by the magnetic �eld
(Hennebelle & Teyssier, 2008).
Figure 4.22 (bottom) shows that the magnetic energy grows exponentially over at
least 10 orders of magnitude in each model and reaches saturation at di�erent lev-
els, which is discussed in detail below. First, the growth occurs only on small scales
(small-scale dynamo). At later stages, i.e. close to saturation, the magnetic energy
cascades to large scales, thus driving the ampli�cation of the mean �eld component
(large-scale dynamo) (Brandenburg & Subramanian, 2005).
Figure 4.21 shows that the high Mach number runs are dominated by shocks. Com-
pressive forcing yields stronger density enhancements for similar Mach numbers.
The magnetic �eld occupies large volume fractions with rather unfolded, straight
�eld lines in the compressively driven cases, while solenoidal forcing produces more
wound-up, tangled �eld con�gurations, suggesting that the dynamo is more e�-
ciently excited by solenoidal forcing. This is quantitatively shown in �gure 4.23,
where we plot the growth rates, Γ, in the relation Emag = Emag,0 exp(Γt), and the
saturation level, (Emag/Ekin)sat with the magnetic and kinetic energies Emag and Ekin

as a function of Mach number. Both Γ and (Emag/Ekin)sat depend onM. Solenoidal
forcing gives growth rates and saturation levels that are always higher than in com-
pressive forcing, as indicted by the di�erent �eld geometries shown in �gure 4.21.
Both Γ and (Emag/Ekin)sat change signi�cantly at the transition from subsonic to
supersonic turbulence.
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Figure 4.23:

Growth rate (top), saturation

level (middle, here labeled as

(Em/Ek)sat), and solenoidal ra-

tio (bottom) as a function of

Mach number, for all runs with

solenoidal (crosses) and compres-

sive forcing (diamonds). The

solid lines show empirical �ts with

equation (4.155); see table 4.5.

The arrows indicate four models

(M ≈ 0.4, 2.5 for solenoidal and

compressive forcing), using ideal

MHD on 1283 grid cells (a), non-

ideal MHD on 2563 (b), and 5123

grid cells (c), demonstrating con-

vergence for the given magnetic

Prandtl, Pm ≈ 2, and kinematic

Reynolds number, Re ≈ 1500.
image credit: Federrath et al.
(2011)
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Γ
[
t−1
ed

]
(Emag/Ekin)sat (Esol/Etot)

(sol) (comp) (sol) (comp) (sol) (comp)

p0 -18.84 2.251 0.020 0.037 0.808 0.423

p1 0.051 0.119 2.340 1.982 2.850 1.970

p2 -1.059 -0.802 23.33 -0.027 1.238 0

p3 2.921 25.53 2.340 3.601 2.850 1.970

p4 1.350 1.686 1 0.395 1 0.535

p5 0.313 0.139 0 0.003 0 0

p6 1/3 1/3 0 0 0 0

Table 4.5:

Parameters in equation (4.155) for the �ts in �gure 4.23 as given in Federrath et al. (2011).

Discussion and Interpretation of the Results

We conclude that the development of shocks at M ≈ 1 is responsible for destroy-
ing some of the coherent vortical motions necessary to drive the dynamo (see also
Haugen et al., 2004b). However, asM is increased further, vorticity generation in
oblique, colliding shocks starts to dominate over the destruction. The very small
growth rates of the subsonic, compressively driven models is due to the fact that
hardly any solenoidal modes are excited in those cases, because of the absence of
colliding, oblique shock fronts. The only way to introduce vorticity in this case
is via viscous interactions and by the non-linear term in the vorticity equation in
the absence of the baroclinic term (Moss & Shukurov, 1996; Mee & Brandenburg,
2006). This however, is such a slow process that dynamo action drops quickly with
decreasing Mach number in compressively driven �ows. Analytic estimates suggest
that Γ ∝ M3 for M . 1 in compressively driven, acoustic turbulence (Moss &
Shukurov, 1996)10, indicated as dotted line in �gure 4.23. The solid lines are �ts
with an empirical model function,

f(x) =

(
p0
xp1 + p2

xp3 + p4

+ p5

)
xp6 . (4.155)

The �t parameters are given in table 4.5. We emphasize that the �ts are empirical
and do not necessarily re�ect the true asymptotic behavior of Γ and (Emag/Ekin)sat.
For the growth rate, we �xed p6 such that Γ ∝ M1/3 for M � 1, in good agree-
ment with our simulation data up toM≈ 20. Even higher Mach numbers have to
be investigated to see if Γ ∝ M1/3 holds in this limit. For the saturation level, it

10Note that we de�ne ted = L/(2Mcs), while in Moss & Shukurov (1996), ted = L/(2cs),
di�ering by a factorM.
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is reasonable to assume that (Emag/Ekin)sat approaches constants for M � 1 and
M � 1, however, the physical saturation levels in these limits are quite uncer-
tain and depend slightly on the Reynolds numbers (see Haugen et al., 2004a, and
section 4.4). The subsonic, solenoidally driven models show high saturation levels,
(Emag/Ekin)sat ≈ 40�60%, explaining the strong back reaction of the �eld on the
�ow, causing the Mach number to drop in the saturation regime (see �gure 4.22).
Federrath et al. (2011) �nd that Γ depends much less onM in the solenoidal forcing
case than in the compressive one. Nevertheless, a drop at M ≈ 1 is noticeable in
both cases. In contrast, theory predicts no dependence of Γ onM.
We can compare the results from Federrath et al. (2011) with other high-resolution
numerical simulations of the turbulent dynamo. As discussed above the extreme
ways of driving turbulence are solenoidal and compressive forcing. Simulations
typically show, in agreement with our analytical study, that solenoidally driven
turbulence leads to larger growth rates of the small-scale dynamo. For example
Waagan et al. (2011) �nd, using a Reynolds number of about 150011, and a mag-
netic Prandtl number of about 1, for totally solenoidal forcing of the turbulence
Γ̄sol = 0.60 and for totally compressive forcing Γ̄comp = 0.28. These values of
the growth rate are about a factor of 17 lower than those from our model (with
Re = 1500), Γ̄sol = Γ̄ϑ=0.43 ≈ 10.07 and Γ̄comp = Γ̄ϑ=0.47 ≈ 4.73. This can be ex-
plained by the fact that the simulations have a very low magnetic Prandtl number of
about 1. However, the result for the growth rate given in the third column of table
4.1 was derived under the assumption of in�nite Prandtl numbers. Still the trend
is that the growth rate decreases for lower Prandtl numbers, which can explain the
lower growth rates from the simulations. Yet the ratio of the growth rate of tur-
bulence driven by solenoidal and compressive forcing is in both cases about 2 (our
analytical model: Γ̄sol/Γ̄comp ≈ 2.1; Waagan et al. (2011): Γ̄sol/Γ̄comp ≈ 2.1), which
supports the analytical prediction that incompressible turbulence is more e�cient
in amplifying a magnetic �eld via the small-scale dynamo.

4.5.3 Critical Magnetic Reynolds Number

Recent high-resolution numerical studies con�rm the existence of a critical magnetic
Reynolds number for small-scale dynamo action. Haugen et al. (2004a) �nd Rmcrit ≈
35 for subsonic turbulence and Rmcrit ≈ 70 for supersonic turbulence at a magnetic
Prandtl number of about unity. In numerical simulations, the magnetic Reynolds
number can be estimated by Rm ≈ (λ/`ν)

ϑ+1, where λ is the typical size of turbulent
structures and `ν is the viscous scale of turbulence. The latter can be estimated by
`ν ≈ 0.5 ∆x with ∆x the minimal resolved size in a simulation (Benzi et al., 2008).
In resolution studies, Sur et al. (2010) and Federrath et al. (2011) �nd that the
typical length of a turbulent �uctuation needs to be resolved with at least 30 grid
cells in magnetohydrodynamic simulations of a self-gravitating gas. Only then the

11Waagan et al. (2011) gave a magnetic Reynolds number of about 200. However, these ideal
MHD simulations were later calibrated with resistive non-ideal MHD-simulations in reference (Fed-
errath et al., 2011), showing that the Reynolds number is about 1500.
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Figure 4.24:

The resolution criterion for small-

scale dynamo action in numerical

simulations. A resolution of at

least 32 cells per Jeans length is

necessary to see turbulent mag-

netic �eld ampli�cation.

image credit: Federrath et al.
(2011)

magnetic �eld is ampli�ed exponentially, which is explained by the action of a small-
scale dynamo. The time evolution of the magnetic �eld strength found by Federrath
et al. (2011) is shown in �gure 4.24. Note, that the �eld strength is divided by
a factor ρ2/3, which gives the increase of the magnetic �eld strength in spherical
collapse (see section 3.3.2). Thus the presented curves show the pure turbulent
dynamo ampli�cation. An increase of the �eld strength is only found for runs with
at least 32 cells per Jeans length.
For a physical interpretation of this result it is useful to take the stretch-twist-fold-
dynamo as a toy-model of the turbulent dynamo (see subsection 3.4). This process
works best in a purely rotational turbulent velocity �eld. Therefore, we expect the
dynamo to be more easily excited in Kolmogorov turbulence. In order to see this
process in simulations, one needs to resolve the stretching, twisting, and folding of
the �eld lines, which explains the required high resolution.

4.6 The Main Theoretical Results for the Turbulent

Dynamo

In this chapter we sketch a mathematical description of turbulence via the two-
point correlation function. We model this function in the di�erent regimes of the
turbulence spectrum, the dissipation range, the inertial range and the large-scale
forcing range. Our model is based on the slope of the �uctuating velocity in the
inertial range ϑ. For this we assume that the turbulent velocity on a length scale `
is

v(`) ∝ `ϑ. (4.156)

We use our model for the turbulent velocity �eld as an input for the dynamo evolu-
tion equations. The basics of the Kazantsev theory, which describes the time evo-
lution of the random magnetic �eld, are summarized. We generalize the Kazantsev
equation (4.41) for di�erent types of turbulence, which distinguish in their spectral
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slope within the inertial range.
By solving the Kazantsev equation for a vanishing growth rate, we �nd a critical
magnetic Reynolds number Rmcrit, which needs to be exceeded for small-scale dy-
namo action. The numerical value of Rmcrit depends on the type of turbulence and
ranges from ≈ 100 for Kolomogorov turbulence to ≈ 2700 for Burgers turbulence.
We list the results for various slopes of the turbulence spectrum in table 4.1.
A central result from the Kazantsev theory is that the magnetic �eld strength grows
exponentially in the kinematic phase:

B(t) = B0 exp(Γt). (4.157)

With our turbulence model, we found analytical solutions for the growth rate in the
limit of large and small magnetic Prandtl numbers Pm:

Γ =





163− 304ϑ

60

V

L
Re(1−ϑ)/(1+ϑ) for Pm� 1

α
V

L
Rm(1−ϑ)/(1+ϑ) for Pm� 1

(4.158)

with α ≈ 0.027− 0.0054 depending on the slope of the turbulence spectrum ϑ. We
refer to table 4.1, in which the growth rates for di�erent types of turbulence are
listed. These analytical results are reproduced the limits of large and small Pm by
a numerical solution of the Kazantsev equation from Bovino et al. (2013) (see �gure
4.13).
In the subsequent non-linear phase back reactions from the magnetic �eld on the
velocity �eld become signi�cant. Under the assumption that the magnetic energy
is shifted towards larger scales on the local eddy timescale Schleicher et al. (2013)
�nd that the magnetic �eld strength increases in this phase as

B(t) = (8π)1/2(C̃t)ϑ/(1−ϑ) (4.159)

with the paramter C̃ given in equation (4.125).
When the magnetic energy reaches a certain fraction of the turbulent kinetic energy,
saturation occurs. This can be modeled via an arti�cial drift in the velocity �eld,
which leads to an increase of the resistivity η and likewise an decrease of the magnetic
Reynolds numbers Rm. With a model that assumes the velocity to react to the
magnetic �eld on a timescale comparable to the scale-dependent eddy timescale, we
calculate the e�ciency of the dynamo. For a large Reynolds number the fraction of
magnetic energy to kinetic energy at saturation is ≈ 0.4 for Kolmogorov turbulence
and ≈ 0.01 for Burgers turbulence.
The results of various numerical simulations have been discussed, with a focus on the
work of Federrath et al. (2011). A typical observation that is made in simulations is
that the small-scale dynamo ampli�cation only takes place above a resolution of 32
cells per Jeans length. This criterion can be associated with the critical magnetic
Reynolds number. The exponential growth of the �eld strength is con�rmed in
simulations, where the growth rates are lower for higher compressibility of the �uid.
The saturation level of the turbulent dynamo is a function of the Mach number (see
�gure 4.23).
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CHAPTER 5

The Turbulent Dynamo as the Most

Important Magnetic Field

Ampli�cation Mechanism in the

Early Universe

In this chapter we give short summary of the history of the Universe, which is nicely
illustrated in �gure 5.1, with a focus on the era of structure formation. In this epoch
the dark ages end and the �rst stars and galaxies reionize the Universe and enrich it
with heavy chemical elements. When these objects, which form in the centers of dark
matter mini halos, accrete matter, turbulence is driven very e�ciently. Supernova
explosions of the �rst stars lead to further turbulent mixing of the primordial gas.
With the onset of turbulence, the small-scale dynamo can for the �rst time e�ciently
amplify the previously generated magnetic seed �elds up to dynamically important
�eld strengths. This makes primordial star formation an important era in cosmic
magnetogenesis.

5.1 Evolution of the Universe

5.1.1 From the Big Bang to the Dark Ages

Before the �rst stars formed the Universe was dark, expect for the cosmic microwave
radiation (CMB). We summarize the cosmic evolution before the birth of stars in the
following. See, for example, Liddle (2003) for an introductory cosmology textbook.

The Very Early Universe

The standard model of cosmology, i.e. the Λ Cold Dark Matter (ΛCDM) model, pre-
dicts that the Universe emerged from a singularity, the so-called Big Bang, roughly

125



CHAPTER 5 5.1 Evolution of the Universe

Figure 5.1:

The schematic evolution of the Universe from the Big Bang to present day.

image credit: http://www.wpclipart.com/space/stars_universe/universe_timeline_light.jpg.html
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13.8 Gyr ago (Planck Collaboration et al., 2013b) and expands ever since. In the
initial Planck epoch the temperature is so high that no matter particles exist and all
four fundamental forces, the electromagnetic force, the weak and the strong force,
and gravity, were combined in one uni�ed force. The physics at these high energies
is poorly understood, since we do not have a satisfying theory of quantum grav-
ity at present. As the temperature decreases with the expansion of space, gravity
separates at approximately t = 10−43 s. The era in which all forces but gravity are
uni�ed is described by a Grand Uni�ed Theory (GUT) and characterized by energies
of the order of 1015 GeV. The GUT era ends at t ≈ 10−36 s, when the strong force
separates.
From t ≈ 10−36 s to t ≈ 10−32 s probably in�ation takes place, a phase of rapid
exponential expansion, in which the scale factor of the Universe increases exponen-
tially by a factor of roughly 1030. This concept was originally suggested by (Guth,
1981) as a solution for the �atness and the horizon problem of cosmology1. During
in�ation small quantum �uctuations are blown up to cosmological scales. These
density inhomogeneities are the seeds of structure formation, and the birth places
of the �rst stars and galaxies (Hawking, 1982).
The extremely high potential energy released from the in�aton �eld goes into a hot
dense mixture of quarks, antiquarks and gluons. The following epoch is the elec-
troweak era, in which the weak and the electromagnetic force are still combined.
The Universe is extremely hot with temperatures of the order of 1015 K and cools
down adiabatically with the expansion. The high temperatures lead to the creation
of W and Z bosons in energetic particle collisions until the temperature decreases to
a critical value, below which no new particles are created and the W and Z bosons
decay. The separation of the weak and the electromagnetic force marks the end of
the electroweak phase. From t ≈ 10−12 s to t ≈ 10−6 s the temperature is still too
high for quarks to combine into mesons and baryons. In this so-called quark era
the Universe consists of a quark-gluon plasma. Eventually, the energy falls below
the binding energy of quarks and they get con�ned into hadrons. In the initial
stage of this hadron era, hadron-antihadron pairs are constantly created and anni-
hilated. The matter is in thermal equilibrium with antimatter. At some point the
temperature is too low to create hadron-antihadron pairs and matter and antimat-
ter annihilates. An asymmetry, the origin of which is not satisfactorily understood,
results in the predominance of matter over antimatter at present day. Roughly 1
s after the Big Bang the lepton era begins, in which the mass of the Universe is
dominated by leptons. Lepton-antilepton pairs are created until the temperature
falls below a certain point and the leptons only annihilate.
The Universe enters now the radiation-dominated era with most of the energy being
stored in photons. These are interacting frequently with charged protons, electrons

1The �atness problem refers to the observations which �nd the Universe to be extremely �at,
while the horizon problem rises from the fact, that the Universe seems to be extremely homogeneous
over scales much larger than the cosmological horizon. These observational facts are found for
example in WMAP data (Komatsu et al., 2009) and were recently con�rmed in the Planck data
(Planck Collaboration et al., 2013b).
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and nuclei until recombination (see the next paragraph). In the radiation-dominated
era the Big Bang nucleosynthesis takes place once the temperature falls below the
point where protons and neutrons can be con�ned in nuclei. In nuclear fusion deu-
terium, helium and traces of other nuclei are formed. 70000 yrs after the Big Bang
the density of non-relativistic matter, i.e. atoms, exceeds the one of photons and the
Universe enters the matter-dominated era. In this era, small density perturbations
are no longer wiped out by radiation and start to grow due to the Jeans instability.

Recombination and the Emergence of the Cosmic Microwave

Background

Approximately 380000 yrs after the Big Bang, at a redshift of 1100, the Universe has
cooled down to a temperature of roughly 4000 K. At this temperature the hydrogen
ions recombine with the electrons and form neutral atoms2. As the photons were
interacting with the gas by scattering with free electrons, at this point the photon gas
decouples from matter and cools down with the further expansion of the Universe.
This radiation �eld is called the cosmic microwave background (CMB) and has
cooled down to a temperature of 2.7 K at present day. Except for the photons of
the CMB, which dilute more and more with cosmic expansion, the Universe is for
now dark. This epoch, which ended with the emergence of the �rst stars, is referred
to as the dark ages.

Growth of the Dark Matter Halos

Even though the CMB is extremely uniform, it includes tiny spatial �uctuations of
the order of 10−5. These �uctuations grow due to gravitational instability and even-
tually form galaxies and the large-scale structure of the Universe (see, e.g. Barkana
& Loeb, 2000).
The cosmic expansion can be modeled as an ideal pressureless �uid, which expands
with the Hubble �ow v = H(t)r, where H(t) ≡ ˙a(t)/a(t) is the Hubble constant.
Note that we refer in this section to r as the �xed coordinate and to x ≡ r/a(t) as
the comoving coordinate with the scale factor a(t). The density perturbations are
given by the function

δ(x) =
ρ− ρ̄
ρ̄

, (5.1)

where ρ is the mass density and ρ̄ its mean value. The evolution of the density
�uctuations is given by the pressureless �uid equations. In the comoving framework

2Note, that according to the equation 13.6 eV = kT , we would expect hydrogen to recombine
at a temperature of T ≈ 105 K. The large fraction of the gas, however, recombines at signi�cantly
lower temperatures. This can be explained by the Boltzmann distribution of the atoms, which
keeps many particles at higher energies then the mean energy.
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the continuity and the Euler equation are given as

∂δ

∂t
+

1

a
∇ · [(1 + δ)u] = 0

∂u

∂t
+Hu +

1

a
(u · ∇)u = −1

a
∇Φ. (5.2)

The potential φ is governed by the Poisson equation ∇2φ = 4πGρ̄a2δ. The �uid
equations can be linearized for small perturbations δ � 1, which results in an
evolution equation for the �uctuations:

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πGρ̄δ. (5.3)

In case of a Universe that is matter-dominated the scaling factor evolves as a(t) ∝
t2/3. The solution of (5.3) is then given by δ(t) = c1 t

2/3 + c2 t
−1, where c1 and c2

are constants. Thus, there is a growing mode and a decaying mode, while only the
�rst one is important for structure formation.
When the �uctuations reach δ ≈ 13 the linear perturbation theory is no longer
applicable and the non-linear equations need to be solved. One needs to use the
full Newtonian theory to describe the non-linear evolution of structure. This can be
done analytically with certain approximations, for example with the Press-Schechter
mechanism (Press & Schechter, 1974). A common approach to describe the non-
linear structure formation is, however, to employ N-body simulations. These simu-
lations are in principle very simple, but become very complicated due to the large
number of particles. Springel et al. (2005) �nd in their Millennium Simulation that
the present-day large-scale structure is characterized by voids and �laments con-
necting dense nodes, a structure that is known as the cosmic web. This �ts perfectly
to �ndings of large surveys such as the 2 degree Field Galaxy Redshift Survey (2dF-
GRS) (Colless et al., 2001) and the Sloan Digital Sky Survey (SDSS) (Tegmark et al.,
2004).

5.1.2 The Birth of the First Stars

The formation of the �rst stars marks an important transition in the Universe. The
dark ages come to an end, the stellar radiation reionizes the baryonic gas and the
medium is enriched with heavy chemical elements. We summarize here the current
knowledge about primordial star formation. For a recent review on this topic we
refer to Bromm (2013).

Dark Matter Minihalos

As discussed above, in�ation increases microscopic quantum �uctuations up to cos-
mological scales, leading to large-scale spacial inhomogeneities. In regions with a

3For a comparison, the density �uctuations for galaxy clusters are of the order of δ = 103,
while they reach values of δ ≈ 106 for galaxies.

129



CHAPTER 5 5.1 Evolution of the Universe

density that is enhanced compared to the mean density, gravity can increase these
perturbations further. Eventually gravity dominates and decouples the region from
the general Hubble �ow of the background Universe. For a spherically symmetric
perturbation in Einstein-de Sitter cosmology, the critical overdensity for gravita-
tional collapse is roughly δcrit = 1.686. The region then begins to collapse and a
dark matter mini-halo forms. Collapse continues until a virial equilibrium is reached,
where the virial density is larger than the background density by a factor of roughly
200 (Loeb, 2010).

Formation of the First Stars

Compared to star formation at present day, primordial star formation is at �rst
sight a relatively simple and well de�ned problem. The reason for that is that the
initial conditions can be directly inferred from the ΛCDM cosmology. The current
standard model of cosmology includes the physics of gravity, of atomic and molecular
hydrogen and helium and the particle physics of cold dark matter.
The birth places of the �rst stars are dark matter minihalos, which accrete baryonic
gas. Due to adiabatic compression and shock heating the temperature of this gas
increases to values of the order of 103 K at z = 20. This temperature is below
the threshold of atomic hydrogen cooling, which is approximately 104 K. Cooling
of the gas thus has to proceed via molecular hydrogen cooling, which makes it
important to model the formation and destruction of H2 carefully (Glover & Abel,
2008). Interestingly, it turns out that the fraction of H2 increases with increasing
virial temperature, thus only very hot halos can form su�cient H2 to cool. If we
now assume that stars do only form, when the cooling timescale is shorter than
the dynamical timescale of the halo (Rees & Ostriker, 1977; Silk, 1977), we �nd a
minimum halo mass of 106 M� for further collapse in a redshift regime z ≈ 20− 30.
The collapse of a primordial gas cloud proceeds in distinct phases. First, the gas is
heated adiabatically up to a density of n = 1 cm−3, where the temperature reaches
T = 103 K. While the gas at these densities is still mostly atomic, the small fraction
of H2 leads to cooling via rotational and vibrational modes. Thus the temperature
decreases down to T = 200 K at a density of n = 104 cm−3, above which the
molecular cooling becomes less e�cient and a quasi-hydrodynamical core forms, also
refereed to as the loitering state (Bromm et al., 2002). In the subsequent collapse
the temperature rises again due to compressional heating. At a particle density of
roughly n = 108 cm−3 H2 can form e�ciently in three-body reactions

H + H + H → H2 + H

H + H + H2 → H2 + H2. (5.4)

The gas becomes fully molecular at densities of n = 1012 cm−3. This leads to a
sudden increase of the cooling rate. However, there is no net decrease of the tem-
perature, as in the molecule formation binding energy is released. The consequence
is a nearly isothermal collapse at a temperature of T ≈ 103 K in addition to a soft-
ening of the equation of state induced by the additional degrees of freedom in the
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molecules. With increasing density the ro-vibrational lines of H2 become more and
more optically thick and the temperature rises in the proceeding collapse.
The high temperatures during the collapse of a primordial gas cloud result in very
high accretion rates, which in turn lead to the obsolete conclusion that the �rst
stars were extremely massive with more than 100 M�. Recent high resolution sim-
ulations paint, however, a di�erent picture (Stacy et al., 2010; Clark et al., 2011;
Greif et al., 2011, 2012). While it has been shown that the initial infall proceeds
mostly spherically and a hydrostatic core builds up in the center, the material that
falls in at later stages has non-negligible angular momentum. This gas does not fall
on the core directly, but instead builds up a rotationally supported disk. The high-
resolution simulations show further, that the disk fragments and instead of a single
very massive star a multiple stellar system with individual stars of lower masses
forms.
The current theory of primordial star formation, however, contains still many open
questions. For example the growing evidence for the presence of strong primordial
magnetic �elds, which is discussed in this thesis. These �elds could lead to e�ects
very similar to the ones observed in present-day star formation, like the transport
of angular momentum and additional pressure (see the discussion in section 2.2).
Further uncertainties are the heating from dark matter annihilation and potentially
cosmic rays.

5.1.3 Formation of the First Galaxies and Reionization

In hierarchical structure formation, initially small structures like stars form followed
by a build up to larger structures like galaxies. The de�nition of the �rst galaxies
is, however, not as clear as the one of the �rst star, which could be identi�ed with
the �rst object in which nuclear fusion sets in after the element synthesis in the very
early Universe. A galaxy could for example be de�ned via its dark matter content,
which should be su�ciently high to retain its stars. Its gravitational potential should
further be deep enough to keep the baryonic gas contained such that star formation
can proceed, even when the negative stellar feedback is taken into account.
The dark matter minihalos, in which the �rst stars form, are probably not the
birthplace of the �rst galaxies. Here the negative feedback, i.e. the ionizing radi-
ation (Alvarez et al., 2006) and the mechanical feedback from the supernova blast
wave (Greif et al., 2007), is expected to lead to emptying of most of the baryonic gas
from the halo. The situation could however be di�erent in more massive (≈ 107 M�)
minihalos and lower mass population III stars (Kitayama & Yoshida, 2005).
In their review article Bromm & Yoshida (2011) discuss the common model that
the �rst galaxies form within atomic cooling halos. These objects have masses of
typically 108 M� and build up at redshifts larger than z ≈ 10. Their virial tem-
perature, which is of the order of 104 K, exceeds the one in dark matter minihalos
and makes cooling via atomic lines possible. Even though atomic cooling halos are
small compared to present-day galaxies, they are massive enough to re-virialize gas
that has been heated by the �rst generation of stars (Dijkstra et al., 2004).
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Modeling the �rst galaxies is challenging as, opposed to the situation for the �rst
stars, the initial conditions are not very clear. In fact, in young galaxies one could
expect already some heavy elements from the very �rst stars, maybe also dust grains,
a very turbulent environment, and in principle also magnetic �elds, as well as com-
plicated radiation �elds. The formation of stars in the �rst galaxies, so-called pop-
ulation II stars, might thus be as complex as present-day star formation.
The appearance of the �rst stars and especial the �rst galaxies as strong sources of
radiation leads to an important phase transition in the Universe known as reioniza-
tion (Meiksin, 2009). The baryonic matter, that was neutral since recombination at
a redshift of roughly 1100, becomes ionized again. While helium reionization was
presumably completed at z ≈ 3.5, the observational evidence for hydrogen reion-
ization is less clear. The new data from Planck suggests that half of the Universe
was reionized at a redshift of z ≈ 11.45 (Planck Collaboration et al., 2013a). The
exact value should be improved with future instruments like SKA, which will be
able to measure the 21 cm line of hydrogen up to high redshifts. The exact time
when reionization takes place and when it is completed provides crucial constraints
of the formation of the �rst stars and galaxies.

5.2 Onset of Turbulence in Structure Formation

In the local Universe turbulence is an omnipresent phenomenon. We observe chaotic
motions on various scales and in all phases of the interstellar medium. However, the
origin of turbulent motions is not entirely clear. When turbulence is not driven, the
kinetic energy is transported to smaller and smaller scales until it dissipates and
the turbulence decays. This process turns out to be rather fast (Mac Low et al.,
1998). So what is the driving mechanism of turbulence? And has there always been
turbulence in these astrophysical objects? Might there even be a way to generate
turbulent motions in early structure formation?
A mechanism that could answer the latter question is studied in Klessen & Hen-
nebelle (2010). They propose that accretion, a process that continuously goes along
with the formation of structure, can e�ciently drive turbulence. An e�ciency pa-
rameter of turbulence driving can be de�ned as

ε =

∣∣∣∣∣
Ėdecay

Ėin

∣∣∣∣∣ , (5.5)

where the loss of turbulent energy is

Ėdecay = − Mσ2

2τdecay

(5.6)

and the energy accreted per time is

Ėin = −1

2
Ṁinv

2
in. (5.7)
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Figure 5.2:

The Mach number in the center

of a primordial halo simulated by

Greif et al. (2008). The virial ra-

dius is indicated by the dashed

green line, where the Mach num-

ber approaches unity at the virial

shock. Supersonic in�ows of cold

gas along �laments generate a high

amount of turbulence in the center

of the galaxy.

image credit: Greif et al. (2008)

Here M is the total mass of the system, σ the three-dimensional velocity dispersion,
Ṁin is the mass accretion rate and ˙vin the infall velocity. The timescale for turbulence
decay is roughly given as τdecay ≈ L/σ, when L is the forcing scale. It is clear
that turbulence is only driven e�ciently for ε < 1. Klessen & Hennebelle (2010)
estimate the e�ciency factor for various astrophysical system by using colliding �ow
simulations and also analytical arguments. They �nd typical values of ε ≈ 0.01−0.1
and claim that accretion-driven turbulence is a universal concept in astrophysics.
Simulations by Greif et al. (2008) show indeed, that accretion �ows lead to a highly
turbulent environment already in atomic cooling halos, the birth places of the �rst
galaxies. In their highly resolved simulations they analyze the velocity �eld of a
galaxy during virialization in detail. They �nd that the accretion process can be
divided in two phases: In the �rst hot accretion phase gas is accreted directly from
the intergalactic medium and heated to the virial temperature in shocks. For the
driving of turbulence the second phase, the so-called cold accretion, is important.
Here the environmental gas cools in �laments before it enters the halo at high
velocities. The Mach number in such a simulated halo is shown in �gure 5.2, where
the cold accretion �ows are clearly visible. Typical Mach numbers in the �laments
are of the order of 10, while they are still around 3 in the very center of the halo
(Greif et al., 2008).
Further sources of turbulence in young galaxies are supernova explosions of the �rst
generations of stars. Korpi et al. (1998) simulate a galactic disk with randomly
distributed supernova explosions. They �nd that the �rst explosions give rise to
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density �uctuations in the interstellar medium. The shock wave of a new supernova
propagates through this clumpy medium, while its velocity changes with changing
density. This way vorticity is generated.
With the evidence from analytical estimates as well as from simulations, there is no
doubt about the presence of turbulent motion in primordial halos. The combination
of turbulence with weak magnetic seed �eld makes turbulent dynamo action in these
objects possible.

5.3 Dynamo Timescales

The typical time scale of the turbulent dynamo can be estimated by the inverse
growth rate of the �uctuating magnetic �eld. In the limit of large magnetic Prandtl
number we have determined the growth rate analytically from the Kazantsev theory
(see section 4.2.4). In this limit the dynamo timescale is

tdynamo =
60 L

(163− 304ϑ) V
Re−(1−ϑ)/(1+ϑ). (5.8)

Let us estimate the dynamo timescale for young galaxies. For this we assume for
example a hydrodynamical Reynolds number of Re = 1011, a forcing scale of turbu-
lence L = 1021 cm and a large-scale turbulent velocity of V = 105 cm s−1. With a
slope of the turbulence spectrum of ϑ = 1/2, which is valid for highly compressible
turbulence, we �nd a typical timescale of

tdynamo ≈ 1013 s ≈ 105 yr. (5.9)

This very short compared to the Hubble time

tHubble =
1

H0

≈ 1010 yr, (5.10)

where H0 = 67.11 km Mpc−1s−1 is the Hubble constant.
Thus the turbulent dynamo can be expected to be a very fast process and should
saturate shortly after the onset of turbulence. Consequently, the dynamo probably
plays a more important role in the early Universe than it does today, as any seed �eld
should have been ampli�ed by the dynamo to a signi�cant fraction of the turbulent
energy up to now. Magnetic energy in galaxies can, of course, also be dissipated
and under suitable circumstances the dynamo can set in again. However, we point
out that the �rst glorious phase of the turbulent dynamo occurs, when turbulence
comes into the game. We expect the �rst e�cient driving of turbulence during the
formation of structure, i.e. during the birth of the �rst stars and galaxies. Hence, it
is worth exploring the role of the dynamo during structure formation in more detail,
which will be the topic of the next chapters.
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CHAPTER 6

The Turbulent Dynamo in the

Formation of the First Stars1

Magnetic �elds play an important role in star formation (we refere to the discussion
in section 2.2). There is increasing evidence that dynamically important magnetic
�elds were also present in the early Universe (Banerjee & Jedamzik, 2004; Silk &
Langer, 2006; Schleicher et al., 2010; Sur et al., 2010; Federrath et al., 2011; Turk
et al., 2012). If this turns out to be true, current models for the formation of the
�rst stars and galaxies need to be revisited.
The theory of primordial star formation has gone through a change recently, as has
been discussed in section 5.1.2. It was previously assumed that the �rst stars were
extremely massive and isolated (Abel et al., 2002; Bromm & Larson, 2004). How-
ever, new high-resolution calculations (Stacy et al., 2010; Clark et al., 2011; Smith
et al., 2011; Greif et al., 2011, 2012) show that the accretion disk of a collapsing
primordial halo fragments into multiple stars. The inclusion of magnetic �elds could
change this picture again. The magnetic pressure can stabilize an accretion disk and,
depending on the �eld strength, suppress the fragmentation (Machida et al., 2004;
Hennebelle & Teyssier, 2008; Price & Bate, 2007; Peters et al., 2011; Seifried et al.,
2011). So far, there are only a few studies on primordial star formation that include
magnetic �elds (Tan & Blackman, 2004; Maki & Susa, 2004; Silk & Langer, 2006;
Maki & Susa, 2007; Schleicher et al., 2010; Machida, 2010; Federrath et al., 2011;
Sur et al., 2012; Turk et al., 2012). The magnetic �eld is expected to have similar
e�ects to those seen in present-day star formation, such as the launching of winds
and jets (Machida et al., 2006, 2008a). The latter eject gas from the accretion disk
which could otherwise have collapsed onto the star. Thus, the star formation e�-
ciency is reduced, especially for high-mass stars (Tan & Blackman, 2004; Machida,
2010). Strong jets can transport matter even out of the star-forming halo, leading
to a magnetization of the intergalactic medium (Xu et al., 2011).
For developing primordial star formation theory further, we need to know structure

1This chapter follows closely Schober et al. (2012b).
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and strength of the magnetic �elds. The mechanism we suggest for producing strong
�elds is the small-scale dynamo, the theoretical description of which has been dis-
cussed in chapter 4 in detail. In this chapter we use the solution for large magnetic
Prandlt numbers proposed by Schober et al. (2012c), which takes into account dif-
ferent types of turbulence.
We model the physical and chemical processes during the collapse of a primordial
halo to quantitatively determine the properties of the small-scale dynamo. We cal-
culate the magnetic Prandtl number and the magnetic Reynolds number. The latter
is compared to the critical magnetic Reynolds number for small-scale dynamo ac-
tion. Furthermore, we calculate the growth rate, which depends on the magnetic
Prandtl number and the hydrodynamic Reynolds number. We assume a weak initial
magnetic �eld of 10−20 G on the viscous scale produced by the Biermann battery
(Biermann, 1950; Kulsrud et al., 1997; Xu et al., 2008). This allows us to determine
the evolution of the magnetic �eld strength during the collapse.
The structure of this chapter, which closely follows Schober et al. (2012b), is as
follows. In section 6.1 we review the properties of primordial gas. We present our
numerical calculation of the chemistry and thermal evolution of the gas and discuss
the characteristic magnetohydrodynamical quantities. Furthermore, we discuss the
origin of turbulence and weak magnetic seed �elds in primordial halos, which are
essential for operation of the small-scale dynamo. In the section 6.2 we apply our
theoretical results for the turbulent dynamo to our model for the collapse of a pri-
mordial halo. We present a simple model for the transport of the magnetic energy
to larger scales in section 6.3. This allows us to calculate the magnetic energy on
the Jeans scale of the primordial halo.

6.1 Properties of the Primordial Gas

6.1.1 Chemical and Thermal Evolution

We determine the chemical and thermal evolution of gravitationally collapsing pri-
mordial gas using the one-zone model of Glover & Savin (2009), together with a
modi�cation implemented by Schleicher et al. (2009) that relates the collapse time
to the equation of state. Moreover, we have included additional Li+ chemistry by
using the reaction rates from Bovino et al. (2011b) and HeH+ chemistry according
to Bovino et al. (2011a). Glover & Savin (2009) model the chemistry of the gas with
a chemical network that includes around 30 di�erent atomic and molecular species
linked by around 400 di�erent chemical reactions. In our calculations, we use the
same initial chemical abundances as in the default model in Glover & Savin (2009).
The elemental abundances of helium, deuterium and lithium relative to hydrogen
are taken to be 0.083 for helium, 2.6×10−5 for deuterium and 4.3×10−10 for lithium
(Cyburt, 2004). The initial density and temperature of the gas were assumed to be
n0 = 1 cm−3 and T0 = 1000 K, respectively, but we have veri�ed that our results are
not sensitive to these values.
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Figure 6.1:

The temperature as a function of

the number density. The di�er-

ent lines indicate di�erent initial

conditions. The dashed green line

corresponds to an initial temper-

ature of 104 K, the dotted red line

to 103 K and the solid orange line

to 102 K.

image credit: Schober et al.
(2012b)

In the one-zone model the mass density ρ evolves as

dρ
dt
∝ ρ

t�
, (6.1)

where t� =
√

3π/(32Gρ) is the free-fall time. Moreover, the temperature evolution
is determined by the energy equation,

dε
dt

=
p

ρ2

dρ
dt
− Λcool + Λheat, (6.2)

where ε is the speci�c internal energy, p is the thermal pressure and Λcool and Λheat

are the total cooling and the heating rate per unit mass, respectively. The resulting
temperature evolution is shown in �gure 6.1. Besides the initial temperature of
103 K, we also show in this �gure the results for the initial temperatures 102 K
and 104 K. Our calculations result in roughly the same evolution for all the initial
temperatures after an increase of the density of about one order of magnitude.
In �gure 6.2, the fractional abundances of H, He, H2, H+, Li+ and free electrons
vary with increasing density in our calculations. The abundance of H is constant
at low densities, but decreases at densities higher than about 1010 cm−3 due to the
formation of H2. As there is no dust in primordial gas, large quantities of H2 are
produced only at high densities, via the three-body reactions:

H + H + H → H2 + H, (6.3)
H + H + He → H2 + He, (6.4)
H + H + H2 → H2 + H2. (6.5)

For the magnetic properties of the primordial gas the abundances of the charged
species are especially important. They determine for example the conductivity,
which is calculated in the next section. At densities n < 108 cm−3, ionized hydrogen
is the main positive ion, while at higher densities, Li+ dominates. The sharp drop
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Figure 6.2:

The fractional abundances of dif-

ferent chemical species as a func-

tion of the number density.

image credit: Schober et al.
(2012b)
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in the H+ abundance at densities n > 108 cm−3 results from the removal of H+ from
the gas by the reaction chain (Glover & Savin, 2009),

H2 + H+ → H+
3 + γ, (6.6)

H+
3 + e− → H2 + H. (6.7)

6.1.2 Characteristic Magnetohydrodynamical Quantities

We have discussed the transport mechanisms in ionized �uids in sections 3.1.1 and
3.1.1. In this place we repeat the result for the viscosity given in section 3.1.5 and
employ a more complex model for the magnetic di�usivity.

Viscosity It can be shown that the kinematic viscosity is

ν =
1

4d2n

(
kT

πm

)1/2

, (6.8)

if the molecules are assumed to be rigid spheres (Choudhuri, 1998). Here, n = ρ/m is
the number density, k the Boltzmann constant and T the temperature. Furthermore,
d =

∑
i ξidi is the mean particle diameter and m =

∑
i ξimi the mean mass. ξi is the

relative abundance of the species i, mi and di are the masses and the Van-der-Waals
diameters, respectively. The temperature as well as the abundances of the individual
species are functions of the number density.

Di�usivity For calculating the magnetic di�usivity η we need the conductivity of
the gas. In a plasma the three most important contributions to the conductivity of
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a neutral species (indicated by index n) are (Wardle & Ng, 1999),

σ||,n =
c

B

∑

s

ξsnqsβns, (6.9)

σP,n =
c

B

∑

s

ξsnqs
βns

1 + β2
ns

, (6.10)

σH,n =
c

B

∑

s

ξsnqs
1

1 + β2
ns

, (6.11)

as given in Pinto et al. (2008). The Hall-parameters βns are de�ned as

βns =
qsB

msc

ms +mn

mnξnn 〈σv〉sn
. (6.12)

Here, mn and ms are the masses of the neutral and the charged particles, ξn and
ξs are the abundance fractions of the species, and 〈σv〉sn is the momentum transfer
rate coe�cient. We take these coe�cients, which are functions of the temperature,
from Pinto & Galli (2008), where we use the polarisation approximation for Li+.
The two dominant e�ects that lead to the dissipation of magnetic energy are the
Ohmic resistivity and ambipolar di�usion. We can neglect the contribution of the
Hall e�ect to the resistivity, as here the force acts perpendicular to the current and,
thus, no energy is dissipated into heat. We calculate the distributions of the Ohmic
resistivity and the ambipolar di�usion by

ηOhm,n =
c2

4πσ||,n
, (6.13)

ηAD,n =
c2

4π

(
σP,n

σ2
P,n + σ2

H,n

− 1

σ||,n

)
. (6.14)

We focus on the most important neutral species H, He and H2 and the charged
species H+, e− and Li+. For each neutral species we calculate the resistivities ηOhm,n
and ηAD,n. The magnetic �eld strength B drops out in the Ohmic case. Finally, the
total Ohmic magnetic di�usivity is ηOhm =

∑
n ηOhm,n and the total resistivity due

to ambipolar di�usion is ηAD = 1/(
∑

n η
−1
AD,n).

2

Reynolds Numbers The hydrodynamic and magnetic Reynolds numbers are de-
�ned as

Re ≡ V L

ν
(6.15)

Rm ≡ V L

η
, (6.16)

where L is the length of the largest turbulent �uctuations and V the typical velocity
on that scale. Notice, that we give these numbers on the forcing scale, i.e. the

2From private communication with Daniele Galli.
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Jeans scale, which means L = LJ and V = VJ. For the calculation of the magnetic
Reynolds number we use the sum of ηOhm and ηAD. The resulting Reynolds numbers
are shown in �gure 6.3 as a function of the density.

Magnetic Prandtl Number The de�nition of the magnetic Prandtl number is

Pm ≡ Rm
Re

=
ν

η
. (6.17)

We can calculate this quantity by using the equations (6.8), (6.13) and (6.14). In
�gure 6.3 the density dependency of the magnetic Prandtl number is shown for both
Kolmogorov and Burgers turbulence. For clari�cation we point out that the rapid
decrease of the magnetic Reynolds and Prandtl number is caused by the dynamo
ampli�cation of the magnetic �eld. In the beginning of the collapse Ohmic resistiv-
ity is the dominant di�usion process. With increasing magnetic �eld ηAD increases
proportional to B2 (see equations 6.1.2 to 6.14) and becomes the main process for
magnetic di�usion. Since Rm and Pm are both proportional to 1/ηAD, in the limit
where ηAD � ηOhm, both decrease rapidly with increasing magnetic �eld strength.
In addition, we tested the in�uence of varying the initial temperature on the evo-
lution of the Reynolds numbers and the magnetic Prandtl number. For the initial
temperature ranging from 102 K to 104 K we found only small variations in the
Reynolds numbers and the magnetic Prandtl number, as illustrated in �gure 6.3.

6.1.3 Turbulence

For the �rst star-forming halos considered here, we assume that turbulence is driven
by virialisation (Wise & Abel, 2007; Greif et al., 2008) or by accretion of gas into
the center of the halos (Klessen & Hennebelle, 2010; Elmegreen & Burkert, 2010;
Federrath et al., 2011). The presence of turbulence a�ects star formation strongly,
as the turbulent pressure works against the collapse to a star (Vazquez-Semadeni
et al., 1998; Mac Low & Klessen, 2004; Krumholz & McKee, 2005; McKee & Os-
triker, 2007). Moreover, Federrath et al. (2011) show in a Fourier analysis that the
turbulence is e�ectively driven on the Jeans scale.
There are di�erent types of turbulence (see also the discussion in section 4.1). In
this paper we concentrate on the two extreme cases, Kolmogorov turbulence and
highly compressible Burgers turbulence. The di�erent types are described in the
inertial range by the relation between the length scale ` and the velocity v on that
scale,

v ∝ `ϑ. (6.18)

The exponent ϑ ranges from 1/3 for incompressible turbulence (Kolmogorov, 1941)
to 1/2 for highly compressible turbulence (Burgers, 1948). In real astrophysical
objects we expect the turbulence index ϑ to lie between these extreme cases (Kritsuk
et al., 2007; Schmidt et al., 2008; Federrath et al., 2010).
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Figure 6.3:

The hydrodynamic and magnetic

Reynolds numbers, Re and Rm,

as well as the magnetic Prandtl

numbers, Pm, on the current

Jeans scale. The numbers are

presented as a function of the hy-

drogen nuclei number density n.
The solid lines represent an initial

temperature of 103 K, the dashed

lines 102 K and the dotted lines

104 K. Moreover, the horizontal

lines indicate the critical mag-

netic Reynolds number for Kol-

mogorov and Burgers turbulence

(RmK
crit = 107 and RmB

crit =
2718) as derived in Schober et al.

(2012c). The rapid decrease

of Rm and Pm from the very

high starting values is caused by

the exponential dynamo ampli�-

cation of the magnetic �eld. We

show the results for Kolmogorov

turbulence in the upper plot and

the results for Burgers turbulence

in the lower plot.

image credit: Schober et al.
(2012b)
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6.1.4 Magnetic Seed Fields

The origin of magnetic seed �elds has been discussed in section 3.2. The conclusion
from this section is that these initial �elds were extremely weak. Recall, that in�a-
tion models predict �eld strengths of the order of B0 ≈ 10−40�10−10 G on a scale
of 1 Mpc (Turner & Widrow, 1988) and models for cosmological phase transitions
B0 ≈ 10−20 G on a scale of 10 Mpc (Sigl et al., 1997). The typical �elds strengths
from a Biermann battery was also estimated to be B0 ≈ 10−20 G. We chose the
latter value as the initial �eld strength in our study of magnetized primordial star
formation.

6.2 Magnetic Field Ampli�cation on the Viscous

Scale

In this section we analyse the evolution of the small-scale magnetic �eld. We outline
the Kazantsev theory, which gives the growth rates of the magnetic �eld on the
viscous scale. Together with the ampli�cation due to gravitational compression
and dissipation processes we can calculate the resulting small-scale magnetic �eld
evolution.

6.2.1 Magnetic Field Ampli�cation and Dissipation

Ampli�cation by a Turbulent Dynamo With a model for the turbulent cor-
relation function, Schober et al. (2012c) solve the Kazantsev equation (4.41) in the
WKB approximation (see section 4.2.4 of this thesis). They �nd that the critical
magnetic Reynolds number for dynamo action Rmcrit increases with compressibility.
The values that Rm needs to exceed are

RmK
crit ≈ 107, (6.19)

RmB
crit ≈ 2718, (6.20)

for Kolmogorov and Burgers turbulence, respectively.
Moreover, Schober et al. (2012c) �nd di�erent growth rates of the magnetic �eld for
di�erent turbulence models, with

Γ =
(163− 304ϑ)

60

V

L
Re(1−ϑ)/(1+ϑ) (6.21)

in the limit of in�nite magnetic Prandtl numbers. Here V is the typical velocity
on the largest scale of the turbulent eddies of size L and Re is the hydrodynamical
Reynolds number.
In this paper we analyse the two extreme types of turbulence, Kolmogorov with
ϑ = 1/3 and Burgers turbulence with ϑ = 1/2. We �nd in the limit of large
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magnetic Prandtl numbers

ΓK =
37

36

V

L
Re1/2, (6.22)

ΓB =
11

60

V

L
Re1/3. (6.23)

For the typical velocity of the largest �uctuations we use the sound speed V = VJ ≈√
γkT/m, as the Mach number in a primordial halo is roughly one (Greif et al.,

2008). Here γ is the adiabatic index. We take L to be the Jeans length, as this is
the e�ective driving scale for turbulence in a collapsing system (Schleicher et al.,
2010; Federrath et al., 2011). Hence we set L ≈ LJ =

√
γkT/(Gm2n), where G is

the gravitational constant.
We compare the growth rate of the small-scale dynamo Γ on the viscous scale `ν =
LJRe−1/(1+ϑ) to the inverse free-fall time 1/t� = [3π/(32Gmn)]−1/2. The result is
shown in �gure 6.4. In our model the magnetic �eld on the fastest growing scale
increases one to three orders of magnitude faster than the halo collapses. Note that
the dynamo growth is exponential in time.
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Ampli�cation by Gravitational Compression The gravitational compression
due to the collapse of the halo provides additional ampli�cation of the magnetic �eld.
As long as the condition of �ux freezing is ful�lled, the magnetic �eld B increases
with density like

B ∝ n2/3 (6.24)

for spherically symmetric collapse. Before the dynamo saturates, the ampli�cation
by gravitational compression is minor compared to the dynamo growth.

Dissipation of Magnetic Energy Part of the magnetic energy is converted into
heat by dissipation processes. The dissipation term in the induction equation (3.85)
is η∇2B. We consider Ohmic dissipation and ambipolar di�usion and approximate
this by ηB/`2 and ∂B/∂t by BΓOhm and BΓAD respectively. We get

ΓOhm ≈ ηOhm
`2

, (6.25)

ΓAD ≈ ηAD
`2

. (6.26)

ΓOhm and ΓAD are the rates of magnetic energy dissipation by Ohmic resistivity and
ambipolar di�usion.

6.2.2 Critical Magnetic Reynolds Number

The dependency of the magnetic Reynolds number Rm on the number density is
shown in �gure 6.3 for the two extreme types of turbulence. We also indicate the
critical magnetic Reynolds number for small-scale dynamo action Rmcrit. One can
see that the magnetic Reynolds number is larger than Rmcrit at the onset of the
collapse. For densities above roughly 4 cm−3 Rm becomes smaller than the critical
value in the case of Burgers turbulence. For Kolmogorov turbulence Rm becomes
also smaller than Rmcrit for high densities, which are not shown in �gure 6.3. How-
ever, as we see below, at this point the dynamo is already saturated on the small
scale as well as on the large scale. Thus, in the density regimes where the small-scale
dynamo operates, the condition Rm > Rmcrit is always ful�lled.

6.2.3 Resulting Small-Scale Magnetic Field

In principle, the magnetic energy density, EB = B2/(8π), evolves as

dEB

dt
=

[
Γ +

4

3n

dn
dt
− ΓOhm − ΓAD(EB)

]
EB, (6.27)

where we assume spherically symmetric collapse.
By solving equation (6.27) numerically we �nd the evolution of the magnetic energy
density on small scales. In �gure 6.7 we show the resulting growth of the magnetic
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�eld strength. As an initial �eld strength B0 we use 10−20 G on the viscous scale,
which is a conservative value for a �eld generated by a Biermann battery (Bier-
mann, 1950; Xu et al., 2008). The �eld strength grows extremely rapidly as the
density increases. However, we cannot trust the whole evolution of the magnetic
�eld exactly as shown in �gure 6.7. When the �eld has become strong enough, the
magnetic Prandtl number becomes unity or less (see �gure 6.3). Then the WKB-
approximation breaks down and equations (6.2.1) are no longer valid. Complemen-
tary studies have shown, however, that the small-scale dynamo still operates for
Pm < 1 (Boldyrev & Cattaneo, 2004; Schekochihin et al., 2005, 2007; Eyink et al.,
2011), although the growth rate may decrease by a factor of a few. We note that
Boldyrev & Cattaneo (2004) �nd in their studies that the critical magnetic Reynolds
number increases with decreasing magnetic Prandtl number. Furthermore, we see
in �gure 6.4 that the ambipolar di�usion rate becomes higher than the growth rate
of the magnetic �eld. In this regime, equation (6.21) is no longer a solution of the
Kazantsev equation. We expect that the �eld grows at the rate (6.21) almost until
saturation, but then decreases and the �eld reaches saturation more slowly.

6.2.4 Validity of our Approximation

In �gure 6.3 the magnetic Prandtl number Pm is shown as a function of the density.
Pm starts with an extremely high value of roughly 1012 and then after a rather con-
stant phase decreases rapidly. The magnetic Prandtl number is de�ned in equation
(6.17) with η = ηOhm + ηAD. For low densities the Ohmic resistivity dominates,
which is independent of the magnetic �eld strength. With increasing density the
magnetic �eld increases due to the dynamo ampli�cation and with ηAD ∝ B2 the
ambipolar di�usion rate becomes dominant. In this regime the magnetic Prandtl
number decreases proportional to B−2. As the magnetic �eld increases exponentially
during the small-scale dynamo ampli�cation in the beginning of the collapse, the
magnetic Prandtl number decreases rapidly.
The approximation of large magnetic Prandtl numbers (Schober et al., 2012c) is
accurate during most of the dynamo growth. At the end of the dynamo phase, how-
ever, Pm reaches unity and decreases even further and our approximations eventually
break down. Schober et al. (2012c) show that for decreasing Pm the growth rate
decreases. However, they make no prediction for the regime Pm ≈ 1. But numerical
simulations show that the dynamo operates also in this regime (e.g. Federrath et al.,
2011). For Pm� 1 there is again analytical evidence for small-scale dynamo action
(e.g. Schekochihin et al., 2007). We note that this treatment concerns the viscous
scale only.
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Figure 6.5:

Schematic time evolution of the

magnetic spectrum in the inertial

range of turbulence. The di�er-

ent colors and line types represent

the spectrum at di�erent times.

The green dashed line shows the

spectrum at saturation on the vis-

cous scale `ν . To larger scales the
spectrum decreases according to

the Kazantsev slope (B ∝ `−5/4).

At a time after saturation on the

viscous scale the spectrum is indi-

cated by the dotted red line. Fi-

nally, the solid orange line shows

the spectrum at saturation on the

Jeans scale LJ.
image credit: Schober et al.
(2012b)
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6.3 Magnetic Field Ampli�cation on Larger Scales

6.3.1 Model for the Transport of Magnetic Energy to Larger

Scales

After the magnetic �eld saturates on the viscous scale the peak of the magnetic
energy spectrum moves to larger scales. In this section we present a model for
the time evolution of the magnetic energy spectrum. The situation is illustrated
schematically in �gure 6.5. For simplicity we use a �xed frame of reference, where
the viscous and the Jeans scale stay constant. Here we indicate three di�erent
curves, which represent di�erent times. The dashed green line is the spectrum at
the time of saturation on the viscous scale, the dotted red line shows a later time and
the solid orange line represents an even later point in time at which the magnetic
�eld has saturated on the Jeans scale.
During saturation, the coherence length of the magnetic �eld shifts towards larger
scales, a well-known behavior for the small-scale dynamo (Schekochihin et al., 2002;
Brandenburg & Subramanian, 2005), recently shown to be true also in a collapsing
system (Sur et al., 2012). Analytical arguments suggest this occurs on the eddy-
timescale of the current peak scale `p

`p
vp

=
LJ

VJ

(
`p
LJ

)1−ϑ
, (6.28)

where we used vp = VJ(`p/LJ)
ϑ. Considering that the peak scale moves from the

viscous scale `ν(tν) towards larger scales, we �nd for the time-dependency of the
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Figure 6.6:

Di�erent characteristic scales as

a function of the density. The

dashed green line indicates the

viscous scale, the dotted red line

the scale corresponding to the

peak of the magnetic energy spec-

trum, and the solid orange line

the Jeans scale. We show the re-

sults for Kolmogorov turbulence

in the upper plot and the re-

sults for Burgers turbulence in

the lower plot.

image credit: Schober et al.
(2012b)

peak scale

`p(t) = `ν(tν) +

(
VJ
LϑJ

(t− tν)
)1/(1−ϑ)

, (6.29)

where tν is the point in time, when saturation occurs on the viscous scale.
The slope of the curves proportional to `−5/4 is known as the Kazantsev slope in
real space3, which can be derived from the Fourier-transformed Kazantsev equa-
tion (4.41) (Brandenburg & Subramanian, 2005). This characteristic slope is also
observed in simulations (Federrath et al., 2011; Xu et al., 2011). The curve that
connects the peak maxima at di�erent times (red-colored curve) is a relic of the
turbulence spectrum and thus is proportional to `ϑ.
At each time step we calculate the peak magnetic �eld strength by solving the sta-
tionary case of equation (6.27). However, we �nd that the magnetic �eld strength

3In many references the magnetic energy spectrum is given as a function of the wave number k,
de�ned for example as B2/(8πρ) = 1/2

∫
M(k)dk. In this case the Kazantsev slope isM(k) ∝ k3/2.

From this we �nd B2 ∝ k5/2 and B ∝ `−5/4.
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exceeds the equipartition �eld strength on scales larger than the viscous scale.
The reason for this is that the ambipolar dissipation rate, which is proportional
to B2/`2, decreases rapidly in this regime. Thus, it cannot balance the growth rate
any longer and we need to set the equipartition �eld strength as an upper limit
B`,max. With B2

`,max/(8π) = 1/2ρv(`)2 we �nd the maximum magnetic �eld strength
B`,max =

√
4πρv(`).

Taking the typical turbulent velocity on the scale of the turbulence ` to be related
to the sound-speed by v(`) = (`/LJ)

ϑcs ' (γkT/m)1/2(`/LJ)
ϑ, we �nd that

B`,max =
√

4πγkTn (`/LJ)
ϑ . (6.30)

Using the Kazantsev slope, we can extrapolate the magnetic �eld strength onto the
current Jeans length. By this we are able to determine the time evolution of the
magnetic �eld on the Jeans scale.
For this process to be relevant during collapse, the eddy-timescale needs to be smaller
than the collapse timescale. Thus, the small-scale dynamo is unlikely to produce
magnetic �elds on scales larger than the Jeans scale. Figure 6.6 shows the viscous,
the peak, and the Jeans scale as a function of density. During the small-scale
dynamo growth the spectrum of the magnetic energy peaks at the viscous scale.
After saturation on the viscous scale the peak moves to larger scales according to
equation (6.29) until it reaches the Jeans scale.

6.3.2 Resulting Jeans-Scale Magnetic Field

As described in the last section, we determine the magnetic �eld on the Jeans scale
by extrapolation from the peak scale. The result of the large-scale magnetic �eld
is shown in �gure 6.7 together with the �eld on the current peak scale and the one
on the viscous scale. One can see that the magnetic energy is shifted rapidly onto
larger scales. For Kolmogorov turbulence the �eld on the Jeans scale saturates at a
density of roughly 3 cm−3 and for Burgers at a density of roughly 4 cm−3. At the
end of dynamo growth on the Jeans scale we have a magnetic �eld strength of about
10−6 G throughout the entire inertial range of the turbulence, i.e. within the Jeans
volume.
After the rapid initial dynamo ampli�cation the only way to amplify the magnetic
�eld on the Jeans scale further is gravitational compression, which leads to B ∝ n2/3.
However, the �eld has already reached equipartition with the kinetic energy at the
end of the dynamo ampli�cation and, thus, increases only with n1/2 (see equation
6.30). The growth rate of the magnetic �eld on the Jeans scale ΓJ is then

ΓJ =
1

n

dn
dt
. (6.31)

In �gure 6.8 we compare the growth rate ΓJ to the ambipolar and Ohmic di�usion
rates on the Jeans scale, ΓAD,J and ΓOhm,J. As ΓJ is always larger than the di�usion
rates in the shown density range, the magnetic energy on the Jeans scale is not
dissipated again during the collapse. At a density of 1012 cm−3, we determine with
B ∝ n1/2 a magnetic �eld strength of 0.4 G.
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Figure 6.7:

The magnetic �eld strength as a

function of the number density on

di�erent scales. The dashed green

line corresponds to the �eld evo-

lution on the viscous scale, the

dotted red line to the peak scale
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6.3.3 Implications for Numerical Simulations

Our calculations show that, due to the rather small viscosity and resistivity in pri-
mordial gas, the hydrodynamical Reynolds number, the magnetic Reynolds number
and the magnetic Prandtl numbers have very high values as long as the magnetic
�eld is not saturated. Such Reynolds numbers are well above what can be reached
in numerical simulations, implying that the physical growth rate of the magnetic
�eld largely exceeds the growth rate obtained in numerical simulations. Partic-
ularly important here is the fact that the typically unresolved viscous scales are
highly relevant for magnetic �eld ampli�cation even on larger scales. In this sense,
numerical simulations can only show the presence of a dynamo, but will typically
underestimate the magnetic �eld ampli�cation rate. This behavior has also been
demonstrated in pioneering studies by Sur et al. (2010) and Federrath et al. (2011).
On the other hand, our results show that magnetic �elds quickly saturate once tur-
bulence forms, and the limiting timescale may thus be the timescale on which tur-
bulence is generated. This is again an issue which can be addressed with numerical
simulations, and indeed, simulations for instance by Turk et al. (2012) convincingly
demonstrated the release of turbulence from the gravitational energy during primor-
dial collapse. Overall, such simulations are thus relevant to explore the origin and
generation of turbulence, while the strength of the magnetic �eld should rather be
estimated based on the physical growth rates. As a net e�ect, we therefore expect
that the magnetic energy is always close to saturation once turbulence is generated
in the halo.

6.4 Summary of Our Dynamo Model in Primordial

Star Formation

In this chapter we compute the evolution of the magnetic �eld and its saturation level
in typical primordial halos based on the Kazantsev theory of the turbulent dynamo
in combination with a detailed description of the physical and chemical processes
in zero-metallicity gas. The model is, in principle, applicable only to magnetic �eld
�uctuations on very small scales. However, when interested in the in�uence of the
�eld on the overall dynamical evolution of the halo gas, it is most important to
understand how saturation occurs on larger scales. To address this problem, we also
consider the transport of magnetic energy from the viscous scale to the Jeans scale.
Starting with a weak magnetic seed �eld of 10−20 G, as can be produced by the
Biermann battery, we follow the evolution of magnetic �eld �uctuations on the
viscous scale and �nd that they are ampli�ed very rapidly on timescales much shorter
than the free-fall time. As a consequence, the �eld saturates almost immediately
after the onset of gravitational collapse in the halo. By extrapolating the small-scale
magnetic �eld to larger scales and assuming the peak of the magnetic spectrum shifts
on the local eddy timescale, we are able to follow the evolution of the magnetic �eld
strength throughout the full inertial range within the Jeans volume. For typical
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halo parameters, the dynamo growth of the magnetic energy saturates at a density
of roughly 3 cm−3 for Kolmogorov turbulence and 4 cm−3 for Burgers turbulence.
At this point in time the �eld has a strength of about 10−6 G. We point out,
however, that the �eld continues to grow in the collapsing gas due to gravitational
compression.
Our results show that the magnetic energy on small scales, and more importantly
also on dynamically important large scales, can grow to very high values. In order
to understand the in�uence of this strong �eld on the evolution of the halo gas, it is
important to know whether the small-scale magnetic �eld can be transformed into a
coherent large-scale �eld. One way to produce more coherent magnetic structures is
by forming disks, which is suggested by Latif et al. (2012). Moreover, the saturation
behavior of the small-scale dynamo should be explored further in the regime Pm < 1,
as we have shown that the magnetic Prandtl number is in this regime for high
densities.
If indeed the processes discussed here can produce dynamically signi�cant �elds
on large scales, then the magnetic �eld will in�uence the star formation process in
high-redshift halos. For example, since recent high-resolution simulations indicate
that the accretion disks around the very �rst stars were strongly susceptible to
fragmentation (Turk et al., 2009; Stacy et al., 2010; Clark et al., 2011; Greif et al.,
2011; Smith et al., 2011) it is expected that most primordial stars formed as members
of binary or higher-order multiple systems with a wide range of masses rather than
being isolated, high-mass stars. From studies of low-mass star formation at present
day, however, we know that magnetic �elds close to the equipartition value can
e�ectively redistribute angular momentum via a process called magnetic braking
(Mouschovias & Paleologou, 1979; Machida et al., 2008b) and can thereby reduce the
fragmentation probability in the disk (Hennebelle & Ciardi, 2009; Peters et al., 2011;
Hennebelle et al., 2011; Seifried et al., 2011). The correct treatment of magnetic
�elds in calculations of primordial star formation therefore seems critical to better
understand the mass function and multiplicity of metal-free stars.
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CHAPTER 7

The Turbulent Dynamo in Young

Galaxies1

In section 2.3 the complex nature of magnetic �elds in galaxies has been discussed.
Local spiral galaxies have a typical turbulent �eld component of (2 − 3) × 10−5 G
within the arms and bars, while a �eld of (5−10)×10−5 G is observed in the central
starburst regions. These �elds appear to be coherent on scales larger than 10 kpc,
which is the same order of magnitude as the size of the galaxy. In disk galaxies
usually an ordered magnetic �eld component is found with its strength peaking at
(1−1.5)×10−5 G in the interarm region (Beck, 2011). Also dwarf irregular galaxies
have magnetic �elds, however they appear not to be ordered on large scales and
have a lower strength of ≤ 4 × 10−6 G (Chy»y et al., 2011). The origin of galactic
magnetic �elds is a highly debated problem in astrophysics.
Moreover, new observations indicate that even highly redshifted galaxies have mag-
netic �eld strengths comparable to present-day galaxies (Bernet et al., 2008). For
instance the rotation measure, a quantity depending on the magnetic �eld along the
line of sight, is constant up to redshifts of roughly 5 (Hammond et al., 2012). Obser-
vations of the intergalactic medium provide further information on primordial seed
�elds. Detailed analysis of the CMB temperature bispectrum using data from the
PLANCK satellite gives an upper limit of the magnetic �eld strength of the order
of a few nG on the Mpc scale (Shiraishi et al., 2012). The increasing evidence for
magnetic �elds in highly redshifted galaxies and the intergalactic medium indicates
an early generation of the magnetic �elds.
We suggest that a dynamo operates in young galaxies, which converts the kinetic
energy from turbulence into magnetic energy. This mechanism provides a rapid
ampli�cation of weak magnetic seed �elds (see section 3.2 of this thesis) up to dy-
namical important values. The origin of turbulence in dark matter halos is been
discussed in section 4.1. In young galaxies accretion as well as the penetration of
supernovae (SN) shocks through the gas generate turbulence initiating small-scale

1This chapter follows closely Schober et al. (2013).
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dynamo action (Beck et al., 2012; Latif et al., 2013).
In order to follow the evolution of the magnetic �eld in an initially weakly mag-
netized young galaxy, we adopt two simpli�ed complementary models: a spherical
galaxy as well as a disk-like system, both with constant density and temperature.
We model microphysical processes, such as the di�usion of the kinematic and mag-
netic energy, in order to �nd the magnetohydrodynamical (MHD) quantities, which
determine the growth rate of the small-scale dynamo. Turbulence can be generated
by accretion �ows into the center of the halo, for which we estimate the typical
Reynolds numbers. Then we follow the evolution of the magnetic �eld strength in
the kinematic and the non-linear phase, until saturation on the driving scale of the
turbulence is reached. Also stellar feedback, in particular SN explosions, in�uences
the evolution of the magnetic �eld. On the one hand supernovae distribute stellar
magnetic �elds in the interstellar medium (ISM) (Rees, 1987), on the other hand
they drive turbulence, which again leads to dynamo action (Balsara et al., 2004).
We compare the resulting magnetic �eld strengths from both mechanisms with the
�eld strength gained by an accretion-driven small-scale dynamo.
The outline of this chapter, which follows closely Schober et al. (2013), is as follows:
In section 7.1 we describe our models for young galaxies. We determine the values of
viscosity and magnetic di�usivity in the interstellar medium and estimate the evo-
lution of SN explosions. Driving mechanisms of turbulence are discussed in general.
We further provide the main theoretical predictions for the turbulent dynamo in the
kinematic and the non-linear phase. In section 7.2 our results for the evolution of
the magnetic �eld in the di�erent types of models are presented. We discuss the
generation of turbulence by accretion and the resulting e�ciencies of the dynamo,
i.e. the saturation magnetic �eld strength and the time until saturation occurs. Fur-
thermore, we analyze the e�ect of stellar feedback. We compare the e�ciency of
distributing stellar magnetic �elds by SNe with the one of the SN-driven turbulent
dynamo.

7.1 Modeling Physical Processes in a Protogalaxy

7.1.1 General Aspects

The nature of young galaxies is still an active topic of research (see Bromm &
Yoshida (2011) for a review). For our order of magnitude estimate of the magnetic
�eld evolution we use a very simpli�ed model, with the choice of parameters being
motivated from numerical simulations (Greif et al., 2008; Bromm et al., 2009; Latif
et al., 2013). We are interested in massive protogalactic objects at redshifts of
roughly 10.
In our model we assume a mean particle density of

n = 10 cm−3, (7.1)
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and a temperature of

T = 5× 103 K. (7.2)

The density as well as the temperature are, as �rst approximation, constant through-
out the whole galaxy. For simplicity we take a gas into account that only consists
of hydrogen, which is at the given values of n and T mostly ionized.
The mean shape of the primordial galaxies di�ers most probably from the one of
present-day galaxies. Due to a signi�cant amount of angular momentum the proto-
galaxies may form in a spherical way and develop a more disk-like structure at later
stages. To account for the unknown typical shape, we model two extreme cases, a
spherical and a disk-like galaxy, which have the same gas mass.

Spherical Galaxy In the case of a spherical protogalaxy we assume the radius to
be

Rsph = 103 pc. (7.3)

As within this radius the density as well as the temperature are constant we �nd a
total mass of the baryonic gas of

M ≈ 109 M�. (7.4)

Disk-like Galaxy As our second �ducial model we use a galaxy with disk scale
height of ten percent of the radius, i.e.

Hdisk = 0.1 Rdisk. (7.5)

With the condition that the gas mass of the disk needs to be the same as in the
spherical case, the disk radius is

Rdisk ≈ 2.4× 103 pc. (7.6)

7.1.2 Microphysics in the ISM

As the temperature in the primordial ISM is very high, we can assume the gas to
be (at least partially) ionized. We thus need to deal with the full plasma equations,
i.e. the continuity, the momentum and the energy equations for both the ions and
the electrons. Closures of these equations were found by Braginskii (1965), who
used the Chapman-Enskog scheme (Chapman et al., 1953). The closure is based on
the assumption that the macroscopic scale of the plasma is large compared to the
mean-free path

`mfp =
1

nd2
, (7.7)

or compared to the gyro-radii of the electrons and the ions

rc(B) =
(2mskT )1/2c

eB
. (7.8)
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Figure 7.1:

The gyro-radii of electrons and

ions ρe and ρp as a function of

magnetic �eld strength compared

to the typical macroscopic scale

L ≈ 103 pc and the mean-free

path `mfp. Within our �ducial

case for the density and the tem-

perature the electron �uid be-

comes magnetized at a magnetic

�eld strength of roughly 10−12 G,

the ion �uid at 10−10 G.

image credit: Schober et al.
(2013)
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Here d = e2/(kT ) is the distance of closest particle approach with e being the ele-
mentary charge and k the Boltzmann constant. The mass of the species is labeled
ms, where the s stands for electrons (e) or protons (p), and c is the speed of light.
Further, we use here the thermal velocity (2kT/ms)

1/2 and assume that the tempera-
tures of the ions and electrons are equal (Te = Tp ≡ T ). In principle, the components
of a plasma can have unequal temperatures as during plasma heating the di�erent
�uids are heated di�erently. However, after a certain time teq, an equilibrium will be
reached. The electron-proton equilibrium time can be computed by (Spitzer, 1956)

teq =
3mempk

3/2

8(2π)1/2nZ2
eZ

2
pe

4ln(Λ)

(
Te,0

me

+
Tp,0

mp

)3/2

, (7.9)

where Zs is the charge of species s, Ts,0 its initial temperature and the Coulomb
logarithm is de�ned by

ln(Λ) ≈ 6.6− 0.5 ln
( n

1014 cm−3

)
+ 1.5 ln

(
kT

1.6× 10−12 erg

)
. (7.10)

If we assume Te,0 and Tp,0 to be extremely di�erent, e.g., Te,0 = 103 Tp,0, the typical
teq for our model is on the order of 440 yr. It will be shown later that this is way
below the typical dynamo timescales, which can be up to many Myr. Thus, the
electron and the proton temperature can be assumed to be equal in our calculation.
A comparison of the length scales (7.7) and (7.8) in our model can be found in �gure
7.1. When the gyro-radius becomes smaller than the mean-free path, the magnetic
�eld dominates the dynamics of the plasma, i.e. it becomes �magnetized�. In our
model the electron �uid becomes magnetized at a magnetic �eld strength of roughly
10−12 G, the ion �uid at 10−10 G.

Viscosity

In the transition from an unmagnetized to a magnetized state, the plasma becomes
anisotropic, i.e. certain physical quantities then depend on their relative orientation
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to the magnetic �eld direction. This has been discussed in detail in section 3.1.5.
On this place, we further analyze the di�erent behaviors of electrons and ions.
In the unmagnetized case the kinematic viscosities for electrons and ions obtained
from the Chapman-Enskog closure scheme are (Braginskii, 1965)

ν‖,e = 0.73
τekT

me

= 1.4× 1014 cm2s−1 (7.11)

ν‖,p = 0.96
τpkT

mp

= 8.7× 1015 cm2s−1 (7.12)

with the collision times for electrons and ions

τe =
6
√

2π3/2√me(kT )3/2

16π2ln(Λ)e4n
(7.13)

τp =
12π3/2√mp(kT )3/2

16π2ln(Λ)e4n
. (7.14)

In the presence of a strong magnetic �eld the viscosity becomes anisotropic and one
has to distinguish between the viscosity along (parallel to) and the one perpendicular
to the magnetic �eld lines. While the parallel viscosity stays the same as in the
unmagnetized case (e.g., equations 7.11 and 7.12), the viscosity perpendicular to
the �eld is given by (Simon, 1955)

ν⊥,e(B) = 0.51
kT

ωc,e(B)2τeme

(7.15)

ν⊥,p(B) =
3kT

10ωc,p(B)2τpmp

(7.16)

with the gyro-frequencies of the electrons and the protons ωc,e(B) = eB/(mec) and
ωc,p(B) = eB/(mpc).
The di�erent viscosities as a function of density are shown in �gure 7.2. Note that the
perpendicular viscosity only becomes valid when the plasma is magnetized, i.e. when
the gyro-radius becomes smaller than the mean-free path. According to �gure 7.1
this is the case above a magnetic �eld strength of 10−11 G for the electrons and 10−9

G for the ions. Thus, the most important part of the viscosity is the parallel one
and we will ignore the perpendicular part, which decreases proportional the 1/B2,
from now on. Furthermore, the viscosity of the ions exceeds the electron viscosity
by roughly two orders of magnitude. This is caused by the fact that the ions carry
the largest part of the momentum. In total, the parallel viscosity of the ions is the
crucial quantity and we will refer from now on to

ν ≡ ν‖,p ≈ 8.7× 1015 cm2s−1. (7.17)
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Figure 7.2:

The kinematic viscosity paral-

lel (ν‖) and perpendicular to

the magnetic �eld lines (ν⊥)
as a function of magnetic �eld

strength B. We show the re-

sults for the electron as well as

for the ion �uid. The range be-

tween 10−11 G and 10−7 G is

not shown, as here the transition

from the unmagnetized to a mag-

netized plasma takes place.

image credit: Schober et al.
(2013)
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Magnetic Di�usivity

For the parallel conductivity the closure scheme yields (Spitzer, 1956)

σ‖ = 1.96
4πne2τe

me

(7.18)

and for the conductivity perpendicular to the magnetic �eld

σ⊥ = 0.51σ‖. (7.19)

The conductivity perpendicular to the magnetic �eld lines is, contrary to the case
of viscosity, no function of the magnetic �eld strength. The di�erence between the
parallel and the perpendicular component of the conductivity is just approximately
a factor of two. Usually, σ‖ is used to determine the magnetic di�usivity η of a
plasma. We thus �nd

η =
c2

4πσ‖
= 4.7× 109 cm2s−1. (7.20)

Magnetic Prandtl Number

With these values of viscosity and resistivity the magnetic Prandtl number (4.64) is

Pm =
ν

η
≈ 2.3× 107. (7.21)

Thus, in young galaxies we are clearly in the large Prandtl number regime. This
implicates that we can use our analytical solutions for the growth rate of the small
scale dynamo.
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7.1.3 Turbulence

Generation of Turbulent Motions by Accretion

Structure formation is always associated with accretion. In order to build up the
�rst stars and galaxies, gas �ows into the potential wells of dark matter halos, where
it gets compressed and cools. The potential energy released during that process in
parts gets converted into turbulent kinetic energy (Klessen & Hennebelle, 2010),
which has been discussed in more detail in section 5.2 of this thesis. Simulations
by Greif et al. (2008) of atomic cooling halos con�rm that accretion is an e�cient
driving mechanism of turbulence. They observe how gas is cooled down and �ows
into the central regions of the halo at high velocities in the cold accretion phase
(Dekel et al., 2009; Nelson et al., 2013).

Generation of Turbulent Motions by Supernova Explosions

Once stars have formed, their feedback strongly in�uences the ISM in galaxies in
terms of ionizing radiation and at later stages by SN explosions, which are especially
important for the generation of turbulence.
In order to calculate the corresponding energy input, we need to estimate the rate of
SN explosions. The star formation rate (SFR) is proportional to the mass density
ρ = nm over the free-fall time tff = (3π/(32Gρ))1/2 (Mac Low & Klessen, 2004;
McKee & Ostriker, 2007):

SFR ∝ ρ

tff
. (7.22)

From the star formation rate we can estimate the supernova rate (SNR). For this
we divide the star formation rate by the typical mass of a star that results in a SN
(10 M�). As not all the gas goes into stars and not all the stars are massive enough
to end in a SN we introduce an e�ciency factor α:

SNR ≈ α
ρ

tff · 10 M�
. (7.23)

The number of supernovae within the whole galaxy with a volume Vgal and a time
interval t is then given by

NSN(t) = SNR Vgal t, (7.24)

where we assume that the SNR stays constant over time. In general the SN rate is
expected to change with time, however, modeling this time dependency goes beyond
the scope of this work.
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7.1.4 Turbulent Magnetic Field Ampli�cation

Kinematic Small-Scale Dynamo

The magnetic �eld grows exponentially in the kinematic phase of the turbulent
dynamo (see section 4.2 for a discussion of the kinematic dynamo phase):

B ∝ exp(Γt). (7.25)

In our model we are in the limit of the very high Pm (see equation 7.21), where
Schober et al. (2012c) �nd the growth rate

Γ =
(163− 304ϑ)

60

V

L
Re(1−ϑ)/(1+ϑ). (7.26)

Here V is the typical velocity on the largest scale of the turbulent eddies of size
L. By solving the Kazantsev equation (4.41) numerically, Bovino et al. (2013) have
recently con�rmed that equation (7.26) describes the growth rate of the dynamo in
the limit large Pm. For our �ducial model with ϑ = 0.4 the growth rate thus scales
with Re0.43.

Nonlinear Small-Scale Dynamo

As soon as the magnetic energy is comparable to the kinetic energy of the turbulence
on the viscous scale the exponential growth comes to an end. We label this point
in time tν . The dynamo is then saturated on the viscous scale and the nonlinear
growth begins, which has been discussed in section 4.3 of this thesis. Schleicher
et al. (2013) the magnetic energy in the non-linear phase scales as

d

dt
Emag ∝ E1+(ϑ−1)/(2ϑ)

mag . (7.27)

Thus, in the case of Kolmogorov turbulence with ϑ = 1/3 the magnetic energy
grows linear in time, while it grows quadratically in case of Burgers turbulence with
ϑ = 1/2. In our �ducial model, where we assume ϑ = 0.4, we �nd Emag ∝ t4/3 on
`a.
In the nonlinear phase the dynamo process shifts the magnetic energy to larger
scales with the peak scale evolving as

`p(t) = `ν +

(
V

Lϑ
(t− tν)

)1/(1−ϑ)

. (7.28)

From the peak scale to larger scales we assume the spectrum to drop o� with the
Kazantsev slope. By this we can determine the magnetic �eld on the forcing scale
L at each point in time as

BL(t) = B`p(t)

(
`p(t)

L

)5/4

. (7.29)

The nonlinear growth phase comes to an end, when saturation on the turbulent
forcing scale is achieved. Now the spectrum of the magnetic energy density scales
as the one of the kinetic energy density.

160



CHAPTER 7 7.1 Modeling Physical Processes in a Protogalaxy

f
(M

)

M

solenoidal forcing
compressive forcing

10−4

10−3

10−2

10−1

100

10−2 10−1 100 101 102

Figure 7.3:

The ratio of magnetic over tur-

bulent kinetic energy at satura-

tion f(M) as a function of the

Mach number M. We present

�ts for solenoidal (solid line) and

compressive forcing (dashed line)

of the turbulence from the driven

MHD simulations by Federrath

et al. (2011).

image credit: Schober et al.
(2013)

Saturation Magnetic Field Strength from Dynamo Ampli�cation

A turbulent dynamo can amplify magnetic �elds at most to equipartition with the
turbulent kinetic energy. However, high-resolution simulations by Federrath et al.
(2011) show that only a certain fraction f of the turbulent kinetic energy can be
transformed into magnetic energy. This fraction depends on the type of forcing as
well as on the Mach numberM. We show f(M) for solenoidal and compressive forc-
ing of turbulence in �gure 7.3. Note, that the e�ciency of the small-scale dynamo in
case of compressive forcing peaks at a Mach number of 1, i.e. at the transition from
the subsonic to the supersonic regime. At this point shocks appear, which generate
solenoidal motions that are more e�cient for dynamo ampli�cation. At larger Mach
numbers the e�ciency decreases again and appears to become constant.
According to Federrath et al. (2010) solenoidal forcing leads to a slope of the tur-
bulence spectrum of 0.43, while compressive forcing results in ϑ ≈ 0.47. For our
�ducial model we choose the saturation e�ciency of solenoidal driven turbulence,
as we assume a spectrum with ϑ = 0.4.
The resulting saturation magnetic �eld strength on the forcing scale is

BL,sat = (4πρ)1/2 V f(M)1/2, (7.30)

where V is again the velocity at the forcing scale. If we scale down the turbulent
velocity to the viscous scale by

vν =

(
`ν
L

)ϑ
V (7.31)

the saturation magnetic �eld strength on the viscous scale is

Bν,sat = (4πρ)1/2

(
`ν
L

)ϑ
V f(M)1/2. (7.32)
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Evolution of a Magnetic Field Ampli�ed by the Small-Scale Dynamo

Summarizing the results of this section gives for the magnetic �eld evolution on the
viscous scale

Bν(t) =

{
Bν,0 exp(Γt) t < tν

Bν,sat t ≥ tν ,
(7.33)

i.e. it grows exponentially with rate (7.26) until saturation on the viscous scale is
reached at the time tν .
The �eld on the turbulent forcing scale evolves as

BL(t) =





B`ν ,0 exp(Γt)

(
`ν
L

)5/4

t < tν

(4πρ)1/2V

(
`p(t)

L

)ϑ+5/4

f(M)1/2 tν ≤ t < tL

BL,sat t ≥ tL.

(7.34)

Until the time tν the �eld grows exponentially in the kinematic phase. For t ≥ tν
the dynamo is in the nonlinear phase, in which the peak of the magnetic spectrum,
which is given by equation (7.28), is shifted toward larger scales. The dynamo is
saturated on all scales of the turbulent inertial range including the driving scale for
times t ≥ tL.
The dynamo ampli�cation of a weak magnetic seed �eld of 10−20 G is shown in �gure
7.4. We choose here a forcing scale of 103 pc, which is the radius of the spherical
halo considered here, and three di�erent turbulent velocities: 1 km s−1, 10 km s−1

and 100 km s−1. The microphysical quantities are taken from the calculations in
the previous sections. In the �gure the dashed lines represent the magnetic �eld
strength on the viscous scale, the solid lines the one on the forcing scale.

7.2 Magnetic Field Evolution in a Protogalaxy

7.2.1 Magnetic Fields from an Accretion-driven Small-scale

Dynamo

Forcing Turbulence by Accretion

Accretion in a Spherical Galaxy During the formation of the primordial halo
turbulence is generated by accretion (Birnboim & Dekel, 2003; Semelin & Combes,
2005; Wise et al., 2008; Vogelsberger et al., 2013). Simulations show that accretion
�ows have high Mach numbers with respect to the cold gas even in the central
regions of the halo (Greif et al., 2008). The characteristic forcing scale in case of a
spherical halo is the radius, where the accretion �ow comes to a halt:

Lacc ≈ Rsph. (7.35)
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Latif et al. (2013) show in their simulation of a nearly isothermal protogalaxy that
the Mach number in such environment is roughly 2. Thus, the typical turbulent
velocities from accretion are on the order of

Vacc ≈ 2 cs β
1/2, (7.36)

where cs = (γkT/m)1/2 is the sound speed and we use an adiabatic index γ of
5/3. Further, we assume here that only a certain fraction β of the kinetic energy of
the accretion �ows goes into turbulence, with β typically depending on the density
contrast between the accretion �ows and the halo (Klessen & Hennebelle, 2010).
Simulations (Latif et al., 2013) indicate that about �ve percent of the kinetic energy
are in turbulent motions, i.e. β ≈ 0.05.
The resulting turbulent length scales, velocities and Reynolds numbers for a spherical
galaxy are given in table 7.1.

Accretion in a Disk-like Galaxy In the case of a disk-like galaxy we adopt the
typical forcing scale of the turbulence by accretion �ows to be the scale height

Lacc ≈ Hdisk. (7.37)

We further estimate the typical velocity for accretion �ows to be on the order of the
Kepler velocity in a disk

VKepler ≈ (G n m π Rdisk Hdisk)1/2 . (7.38)
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If a percentage β of the kinetic energy goes into turbulence, the resulting turbulent
velocity is given by

Vacc ≈ VKepler β
1/2. (7.39)

Typical values of the length scale, the velocity scales and the Reynolds numbers
with a value of β = 0.05 are summarized in table 7.1.

Accretion-driven Small-scale Dynamo

Based on the discussion of the strength of magnetic seed �elds in the introduction,
we assume the initial magnetic �eld strength on the viscous scale to be

Bν,0 = 10−20 G. (7.40)

This is a rather conservative estimate.
The small-scale dynamo ampli�es this seed �eld as soon as su�cient turbulence has
evolved. The typical growth rates in the kinematic phase are summarized in table
7.1. We �nd 150 Myr−1 for the case of a spherical galaxy and 1400 Myr−1 for a disk.
A fraction of the magnetic energy can be dissipated again by Ohmic di�usion. The
dissipation rate on the viscous scale `ν is given by

ΓOhm,ν =
η

`2
ν

. (7.41)

In our model ΓOhm,ν is on the order of 10−12−10−10 Myr−1 and thus can be neglected
compared the growth rate of the magnetic �eld.
With these relatively large growth rates, the small-scale dynamo ampli�cation works
on very short timescales. We �nd that in a spherical galaxy a magnetic �eld of
1.6 × 10−6 G and be reached on a scale of 103 pc after 270 Myr. In a disk the
saturation �eld strength is larger by a factor of more than 2. However, the �eld is
only on a scale of 240 pc, but it is saturated after already 24 Myr.
The e�ciency of the small-scale dynamo, i.e. the saturation magnetic �eld strength
(Bsat,ν or Bsat,L) that can be achieved and the time on which saturation occurs (tν or
tL), depends strongly on the amount of turbulent kinetic energy, controlled by the
parameter β (see equations 7.36 and 7.39). In our �ducial model we use β = 0.05,
however, this is a rough assumption. We test how the dynamo e�ciency changes
when varying β in �gure 7.5.
In the upper panel of �gure 7.5 we show the dependency of the viscous scale `ν and
the forcing scale L on β. Of course L is not e�ected by β, while `ν , which is a
function of the Reynolds number and thus of the turbulent velocity, decreases with
increasing β. The time until saturation of the dynamo, which is shown in the middle
panel of �gure 7.5, also decreases with increasing β. This is a natural consequence
of the larger amount of turbulent kinetic energy. In the same way the plot in the
lower panel can be understood: the more turbulent energy, i.e. the higher β, the
higher is the saturation �eld strength. The magnetic �eld strength on the forcing
scale Bsat,L increases as

Bsat,L ∝ β1/2. (7.42)
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Accretion-Driven Dynamo SN-Driven Dynamo

sphere disk sphere disk

L 103 pc 2.4× 102 pc 7.0× 102 pc 2.4× 102 pc

V 3.7 km s−1 9.7 km s−1 47 km s−1 61 km s−1

Re 1.3× 1011 8.1× 1010 1.2× 1012 5.1× 1011

Rm 2.4× 1017 1.5× 1017 2.2× 1018 9.6× 1017

`ν 1.1× 10−5 pc 3.8× 10−6 pc 1.7× 10−6 pc 1.0× 10−6 pc

Γ 1.5× 102 Myr−1 1.4× 103 Myr−1 7.1× 103 Myr−1 1.9× 104 Myr−1

tν 1.7× 10−1 Myr 1.9× 10−2 Myr 3.8× 10−3 Myr 1.5× 10−3 Myr

tL 2.7× 102 Myr 24 Myr 15 Myr 3.8 Myr

Bsat,ν 1.1× 10−9 G 3.3× 10−9 G 7.5× 10−9 G 1.2× 10−8 G

Bsat,L 1.6× 10−6 G 4.3× 10−6 G 2.1× 10−5 G 2.7× 10−5 G

Table 7.1:

The characteristic quantities of the small-scale dynamo for accretion-driven turbulence (left

hand side) and for SN-driven turbulence (right hand side). In each case we present results

for a spherical galaxy and a disk-shaped galaxy. We list the forcing scale of the turbulence

L, the typical turbulent velocity on that scale V , the hydrodynamic and magnetic Reynolds
numbers Re and Rm, the viscous scale `ν , the kinematic growth rate of the dynamo Γ,
the time until saturation on the viscous and the forcing scale occurs t` and tL and the

saturation �eld strengths on those scales Bsat,ν and Bsat,L. All the given values in this

table are for the �ducial model with a factor β = 0.05 of kinetic energy that goes into

turbulent motions and a SN e�ciency of α = 0.01.
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Figure 7.5:

The dependency of the accretion-

driven small-scale dynamo mech-

anism on the percentage of ki-

netic energy that goes into turbu-

lence β. The upper panel shows

the di�erent length scales, the

middle panel the time until sat-

uration, i.e. tν and tL, and the

lower panel the saturation mag-

netic �eld strength Bsat. We plot

all quantities on the viscous scale

`ν and on the turbulent forcing

scale L as indicated in the �gure.

The solid blue lines show the re-

sults for a spherical galaxy, the

dashed red lines the ones for a

disk.

image credit: Schober et al.
(2013)
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7.2.2 Magnetic Fields from Stellar Feedback

Distributing Stellar Magnetic Fields by Supernovae

A natural source for magnetic �elds in the ISM of galaxies are stellar magnetic
�elds that get distributed over large volumes by SN explosions. Schober et al.
(2012b) have shown that the small-scale dynamo can produce strong magnetic �elds
during primordial star formation. Hints to dynamical important magnetic �elds
during the formation of the �rst stars also come from high-resolution numerical
simulations (Federrath et al., 2011; Turk et al., 2012; Sur et al., 2012) and further
semi-analytical calculations (Schleicher et al., 2010). Thus, we expect the �rst and
second generations of stars to be magnetized.

Properties of Supernova Candidates We assume that a typical star that ends
in a supernova has a mass of

Mstar = 10 M� (7.43)

and a radius of

Rstar =

(
Mstar

M�

)0.8

R� (7.44)

with the solar mass M� = 2× 1033 g and radius R� = 7× 105 km.
It is very di�cult to estimate the magnetic energy in a typical population III star,
as there is not much theoretical work on that topic so far. In principle, one could
assume that a certain percentage of the total energy of the SN energy is within the
magnetic �eld. If the magnetic energy B2

star/(8π) 4/3πR3
star equals e.g., 0.001 ESN,

the stellar magnetic �eld would have a very high value of Bstar = 8× 106 G.
Here, however, we use as a crude estimate for the magnetic �eld of population III
stars based on observations of present-day massive stars. In most high-mass stars
no magnetic �elds are detected, there are few percent of stars with an enhanced
magnetic �eld (see Donati & Landstreet (2009)). These so-called �peculiar A or B�
stars have a typical dipole �eld strength of

Bstar = 104 G. (7.45)

We take this value as an upper limit of magnetic �elds in primordial stars, but also
test lower stellar �eld strengths in the following.

Evolution of a Supernova Remnant Stars with masses above 8 solar are ex-
pected to explode as a core-collapse supernova, introducing additional turbulent
energy into the ISM (Choudhuri, 1998; Padmanabhan, 2001). Initially the shock
front of a SN expands freely, i.e. the pressure of the surrounding ISM is negligible.
The shock velocity ve can then be determined by

ESN =
1

2
Mev

2
e , (7.46)
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Figure 7.6:

The red line shows the radius of

a SN shock RSN(t) as a function

of time. Up to roughly 100 yr

the SN shock expands freely, then

the Sedov-Taylor expansion sets

in. The available maximum ra-

dius for SNe RSN,max(t) as a func-
tion of time is shown for the case

of a spherical halo by the blue

line. This radius decreases in

time, as the number of SN in the

protogalactic core increases. The

�rst SN shocks collide after a time

of approximately 0.36 Myr.
image credit: Schober et al.
(2013)
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where ESN is the energy of a SN (neglecting the energy loss by neutrinos) and Me

the ejected mass. The shock radius RSN as a function of time t is thus

RSN(t) =

(
2ESN

Me

)1/2

t. (7.47)

The free expansion phase ends, when the accumulated mass of the ISM in front of
the shock is of order of Me. This happens at the so-called sweep-up radius Rsw

de�ned by

Me =
4

3
πR3

swρ (7.48)

with ρ being the mean density of the ISM. The shock front reaches Rsw at a time

tsw =
Rsw

ve

=

(
3

4πρ

)1/3(
1

2ESN

)1/2

M5/6
e , (7.49)

which is in our model on the order of 100 yr. For t > tsw the expansion of the
supernova remnant is driven adiabatically by thermal pressure, which is known as
the Sedov-Taylor phase (Sedov, 1946; Taylor, 1950; Sedov, 1959). We can estimate
the radius of the shock in this case with

d

dt

(
4πR3

SNρṘSN

)
= 4πR2

SNP, (7.50)

where the ˙ indicates a time derivative and the pressure P is given by

P = (γ − 1)
ESN

4
3
πR3

SNR

(7.51)
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with γ = 5/3 for adiabatic expansion. We can solve equation (7.50) with a simple
power-law ansatz and �nd

RSN(t) =

(
25ESN

4πρ

)1/5

t2/5. (7.52)

Thus, the evolution of the SN remnant can be described by (Choudhuri, 1998)

RSN(t) =





(
2ESN

Me

)1/2

t t < tsw
(

25ESN

4πρ

)1/5

t2/5 t > tsw.

(7.53)

We assume now that the energy released in a SN explosion is ESN = 1051 erg and that
about 10 percent of the mass of the progenitor star is ejected, i.e. Me ≈ 0.1 Mstar.
In our model the SN remnants evolve as described in equation (7.53) and shown
in �gure 7.6 until they collide. At later stages of shock evolution other energy
loss mechanisms become dominant. The electrons lose their energy by ionization,
bremsstrahlung, synchrotron emission and inverse Compton scattering. The latter
is the most important energy loss channel at high redshifts as here the density of
the CMB photons is considerably larger (Schleicher & Beck, 2013).
If the SNe are distributed homogeneously in the protogalaxy, each SN shell has a
mean maximum radius at the �rst collision of

RSN,max(t) =
R

NSN(t)ξ
, (7.54)

where the radius of the galaxy R is given in equations (7.3) and (7.6) and the
exponent ξ depends on the geometry of the galaxy. In case of a spherical halo
ξ = 1/3, in case of a thin disk ξ = 1/2. The maximum expansion radius of the SN
shock is shown in �gure 7.6 for the spherical case.
By comparing (7.53) to (7.54) we �nd the typical time scale for SN collisions tSN.
At that point the SN bubbles �ll approximately the whole galaxy. In the spherical
case we �nd

tSN ≈ 0.36 Myr, (7.55)

which we take as the typical timescale for SN collisions. Further, we use RSN(tSN)
as the typical length scale of SN shocks.

Magnetic Field Evolution If now all the stellar magnetic energy is distributed
into the volume available by the SN explosion and no signi�cant magnetic energy
is left in the stellar remnant, the resulting magnetic �eld strength in the ISM after
the �rst SN generation is

BISM =

(
Rstar

RSN(tSN)

)2

Bstar. (7.56)
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Here, we assumed a spherical shape of the galaxy and �ux freezing. All the follow-
ing stars will produce roughly the same amount of magnetic energy, that is then
distributed in the ISM by SN. Thus, the time evolution of the stellar magnetic �elds
in galaxies can be approximated by

BISM(t) =

(
Rstar

RSN(tSN)

)2

Bstar
t

tSN

. (7.57)

The values of RSN(tSN) and tSN depend obviously on the SN rate, which is determined
by the parameter α as de�ned in (7.23). We obtain for the spherical case:

tSN ∝ α−5/11 (7.58)
RSN(tSN) ∝ α−2/11 (7.59)

leading to a dependency of the magnetic �eld distributed by SN on the e�ciency of
the SN rate of

BISM(t) ∝ α9/11 t. (7.60)

In �gure 7.7 we show the evolution of the distributed magnetic �elds for di�erent
mean magnetic �elds of the stars (104 to 102 G) and for our �ducial case of α ≈ 0.01.
Note that the case of 104 G is an upper limit of magnetic �elds in massive stars. We
assume the magnetic �elds of the �rst stars to be considerably lower.
The distribution of stellar magnetic �elds by SNe explosions thus does not seem to
be important compared to the dynamo ampli�cation in the ISM. However, after a
su�cient time the SN could contribute to the magnetic energy in the ISM. If the
equipartition �eld strength is roughly 10−6 G, the time after which SN distribution
becomes important is

t ≈ tSN

(
RSN(tSN)

Rstar

)2 (
10−6 G

Bstar

)
. (7.61)

For our �ducial model we �nd that this time is about 2.2×106 Myr in case of typical
stellar �eld strengths of 104 G. Observations of present-day massive stars indicate
that only a few percent have these high �eld strengths. We thus also consider the
more likely case of lower mean stellar �elds. For a mean strength of 103 G we �nd
that a micro-Gauss ISM �eld is only reached after 2.2 × 107 Myr and for a mean
strength of 102 G after 2.2×108 Myr. Thus, the typical timescales of distribution of
stellar magnetic �elds by supernovae exceed the age of the Universe by many orders
of magnitude and this process cannot be an important contribution for the �elds in
the ISM, unless the �rst stars were much stronger magnetized than the present-day
stars.
In the case of a �at disk-shaped galaxy, where we assume the parameter ξ in equation
(7.54) to be 1/2, the distribution of stellar magnetic �elds proceeds marginally faster.
Here the typical time until a �eld strength of 10−6 G in the ISM is reached is roughly
a factor of 10 more quickly.
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Figure 7.7:

The evolution of the magnetic

�eld, when the only source of

magnetic energy in the ISM are

stellar magnetic �elds distributed

by SN explosions. The curves

show the results for a spherical

halo in our �ducial model with a

SN e�ciency of α = 0.01. We

show three di�erent mean stel-

lar �eld strengths: 104 G (yel-

low dotted line), 103 G (green

dashed line) and 102 G (solid red

line). With the thin gray line we

further indicate the typical sat-

uration strength of a magnetic

�eld generated by a small-scale

dynamo.

image credit: Schober et al.
(2013)

In reality the evolution of magnetic �elds in SN shock fronts is of course more
complicated. In addition to simple �ux freezing further ampli�cation processes can
take place. Miranda et al. (1998) argue that in a multiple explosion scenario of
structure formation (Ostriker & Cowie, 1981; Miranda & Opher, 1997) magnetic
seed �elds on the order of 10−10 G can be produced on galactic scales. In their model
a Biermann battery is operating in the shock of SN explosions of the �rst stars as
here unparallel gradients of temperature and density can be established. Recently,
Beck et al. (2013) have also analyzed the magnetic �eld evolution in protogalaxies
based on SN explosions with the cosmological N-body code GADGET. They �nd
that a combination of SNe and subsequent magnetic �eld ampli�cation leads to
magnetic �eld strengths of a few µG, which is comparable to our results, and that
the strength of seed �eld is coupled to the star formation process.

Dynamo Ampli�cation Driven by SN Turbulence

SN-driven Dynamo in a Spherical Galaxy In section 7.1.3 we discussed the
generation of SN turbulence based on numerical simulations. Now we estimate the
typical forcing scale LSN and the �uctuation velocity on that scale VSN in order to
determine the Reynolds number (4.9) and the resulting growth rate of the kinematic
small-scale dynamo (7.26). For that we assume that the turbulence driving in the
galaxy is in equilibrium.
Then the turbulent pressure, which is roughly

Pturb ≈ V 2
SNρ, (7.62)
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Figure 7.8:

The dependency of the SN-driven

small-scale dynamo mechanism

on the percentage of kinetic en-

ergy that goes into turbulence β
and the SN e�ciency α. The

upper panel shows the di�er-

ent length scales, the middle

panel the time until saturation,

i.e. tν and tL, and the lower

panel the saturation magnetic

�eld strength Bsat. We plot all

quantities on the viscous scale

`ν and on the turbulent forcing

scale L as indicated in the �g-

ure. The dashed-dotted blue line

represents the case of a spheri-

cal galaxy with α = 0.001, the
solid blue line the �ducial case of

α = 0.01 and the dotted blue line

the case of α = 0.1. The dashed

red line shows the results for a

disk-like galaxy. There are only 6

lines in the lower plot instead of 8.

This results from the fact, that in

the spherical case the saturation

�eld strength on the forcing scale

does not depend on α nor on β,
in contrast to L and tL (see equa-

tions (7.69) to (7.73)).

image credit: Schober et al.
(2013)
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balances the hydrostatic pressure P determined by

dP

dr
= ρ g(r). (7.63)

The gravitational acceleration in the spherical case is roughly g(r) = 4
3
πρGr. Solving

equation (7.63) and setting it equal to equation (7.62) yields the turbulent velocity
VSN. We �nd in the spherical case:

VSN ≈
(

2

3
πρG

)1/2

Rsph. (7.64)

The forcing length scale can be estimated by comparing the energy input rate with
the dissipation rate:

SNR β ESN =
1
2
ρV 2

SN

tdis

, (7.65)

where the dissipation timescale is

tdis =
LSN

VSN

(7.66)

and SNR is the supernova rate (7.23). Thus, we �nd the typical forcing scale of
SN-driven turbulence

LSN =
ρ V 3

SN

SNR β ESN

. (7.67)

As in the case of the accretion-driven small-scale dynamo we start with an initial
magnetic �eld strength on the viscous scale of

Bν,0 = 10−20 G. (7.68)

The turbulence driven by SN shocks makes dynamo action possible, which leads to
rapid ampli�cation of the seed �eld according to equations (7.33) and (7.34). For
the case of a spherical galaxy we �nd that the growth rate in the kinematic ampli�-
cation phase is 7.1×103 Myr−1. After a time of 15 Myr the saturation �eld strength
of 2.1× 10−5 G is reached on the forcing scale. The characteristic quantities of our
�ducial models for the SN-driven dynamo are summarized in the right part of table
7.1.
As in case of accretion turbulence, the e�ciency of the small-scale dynamo is sen-
sible to the amount of kinetic energy that goes into turbulence β. Moreover, when
modeling the scale of turbulence forcing we add another uncertainty namely the su-
pernova rate, which includes the e�ciency parameter α (see equation 7.23). In our
�ducial model we choose α = 0.01, but there could easily be a variation of a factor
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10. The dependency of the quantities most important for the dynamo ampli�cation
on α and β in case of a spherical halo is the following:

`ν,SN ∝ (αβ)−0.28 (7.69)
LSN ∝ (αβ)−1 (7.70)
VSN = const (7.71)

Bν,sat,SN ∝ (αβ)0.28 (7.72)
BL,sat,SN = const (7.73)

We show the dependency of the length scales, the time until saturation and the
saturation magnetic �eld strength on β and for di�erent values of α in �gure 7.8.

SN-driven Dynamo in a Disk-like Galaxy We perform the same analysis for
the disk case. Here the gravitational acceleration becomes independent of the radius
for a thin disk, i.e. Hdisk � r. In that approximation we �nd g(r) ≈ 2πρGHdisk,
which leads to a turbulent velocity of

VSN ≈ (2πρGRdiskHdisk)1/2 . (7.74)

The forcing scale can be determined by equation (7.67). In case of a disk-shaped
galaxy we �nd that the typical forcing scale LSN

LSN ≈ Hdisk. (7.75)

We �nd that the kinematic growth rate in our �ducial model is 1.9×104 Myr−1. The
time until saturation on the forcing scale is then only 3.8 Myr and the saturation
�eld strength is 2.7× 10−5 G.
In case of a disk-shaped galaxy all the quantities (79) to (7.73) are independent of
α and β. For comparison with the spherical galaxy we show them, however, also in
�gure 7.8.

7.3 Summary of Our Dynamo Model in Young

Galaxies

In this chapter we model the evolution of the (turbulent) magnetic �eld in a young
galaxy. We �nd that weak magnetic seed �elds get ampli�ed very e�ciently by the
small-scale dynamo (see table 7.1), which is driven by turbulence from accretion and
from supernova (SN) explosions. Dynamo theory predicts that the magnetic �eld is
ampli�ed in two phases: in the kinematic phase the �eld grows exponentially until
the dynamo is saturated on the viscous scale. Then the non-linear phase begins,
where the magnetic energy is shifted towards larger scales until saturation on the
turbulent forcing scale.
For our �ducial models of a young galaxy we use a �xed particle density of 10 cm−3

and a temperature of 5 × 103 K. We concentrate on two di�erent geometries: a
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spherical and a disk-shaped galaxy (see section 7.1.1). We determine the viscosity
of the plasma, which gets anisotropic when the plasma becomes magnetized, and
the magnetic di�usivity. Turbulence is generated by accretion �ows on the galactic
core and also by SN shocks. With the typical driving scales and velocities we can
determine the hydrodynamic and the magnetic Reynolds number. The magnetic
�eld evolution depends strongly on the type of turbulence, which we assume to be
ϑ = 0.4 implying that the turbulence in our protogalaxy is a mixture of solenoidal
and compressive modes.
For our �ducial model we �nd that the dynamo saturates on the largest scale in
accretion-driven turbulence after a time of roughly 270 Myr in case of a spherical
galaxy and after 24 Myr in case of a disk. Turbulence generated by SN shocks
can amplify the magnetic �eld on shorter timescales, with saturation occuring after
15 Myr in a spherical galaxy and 3.8 Myr in a disk. The dynamo timescale is thus
comparable to the free-fall time tff = (3π/(32Gρ))1/2 ≈ 16 Myr. The age of the
Universe at the onset of galaxy formation, i.e. at a redshift of 10, is roughly 470
Myr, which is larger than the dynamo timescales by factor of 2 to 120 for our four
�ducial models. In the models with the longest ampli�cation times our assumption of
constant accretion and supernova rates may thus not be very precise. Nevertheless,
these models provide an order of magnitude estimate of the resulting magnetic
strength. In case of a disk-like galaxy we can compare the dynamo timescales
further to the typical time of one rotation, which turns out to be 340 Myr when
using the Kepler velocity (7.38). Thus, we can expect that the small-scale dynamo
is saturated within less then one reversal time, the turbulent magnetic �eld gets
ordered and an α− Ω dynamo, i.e. a galactic large-scale dynamo, sets in.
The magnetic �eld strengths predicted by our �ducial models are very high with
values between 1.6 × 10−6 G and 4.3 × 10−6 G in the accretion-driven case and
between 2.1× 10−5 G and 2.7× 10−5 G in the SN-driven case for a spherical galaxy
and a disk, respectively. These �eld strengths are comparable with the ones observed
in the local Universe, where the typical turbulent �eld component in present-day
disk galaxies is (2−3)×10−5 G in spiral arms and bars and up to (5−10)×10−5 G
in the central starburst regions (Beck, 2011). New radio observations detect also
magnetic �elds in dwarf galaxies. Their �eld strengths, which seem to be correlated
with the SFR, are typically a factor of roughly three lower compared to the one in
spiral galaxies (Chy»y et al., 2011).
Our calculations suggest that the turbulent magnetic �eld of a galaxy was very
high already at high redshifts. An observational con�rmation of this result is very
complicated. A hint towards an early generation of the turbulent magnetic �eld in
galaxies comes from Hammond et al. (2012). They analyze the rotation measure of
a huge catalog of extragalactic radio sources as a function of redshift and �nd that
it is constant up to redshifts of 5.3, which is the maximum redshift in their dataset.
A very powerful tool provides moreover the far-infrared (FIR) - radio correlation,
which relates the star formation rate to the synchrotron loss of cosmic ray electrons.
It is observed to be constant up to redshifts of roughly 2 (Sargent et al., 2010; Bourne
et al., 2011), but is expected to break down at a higher redshift, which depends on
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the star formation rate and the evolution of typical ISM densities (Schleicher &
Beck, 2013). With new instruments like SKA and LOFAR our knowledge about the
evolution of the cosmic magnetic �elds will increase.
Besides our �ducial models we analyze the e�ect of changing the amount of kinetic
energy that goes into turbulence and �nd that the dynamo is more e�cient the larger
the turbulent energy, which is intuitively clear. Furthermore we determine the small-
scale dynamo evolution for a varying SNR, which is important for estimating the
driving scale of SN turbulence in the case of a spherical core. As expected the time
until saturation increases with increasing SNR. However, the typical largest scale
of the magnetic �eld decreases with the SNR.
We further estimate the e�ect of magnetic �eld enrichment in galaxies by distributing
stellar �elds by SN explosions. As an estimate of the magnetic energy in the �rst
stars is very hard, we determine the expected magnetic �eld evolution in the ISM
for three di�erent cases. An upper limit of magnetic �eld strengths of the primordial
stars is 104 G, which is a value observed in a the few percent of present-day massive
stars that are magnetized. Distributing these mean stellar �elds by SNe in the ISM,
we �nd that a ISM �eld strength of 10−6 G is reached after 1.4×102 Myr. For stellar
�elds of 103 G we �nd that a micro-Gauss ISM �eld is only reached after 1.4× 103

Myr and for stellar �elds of 102 G after 1.4× 104 Myr. Thus, the dynamo increases
the magnetic �eld strength much faster.
With our semi-analytical model we have shown that the small-scale dynamo can
amplify weak magnetic seed �elds in the ISM of early galaxies on relatively short
time scales compared to other evolutionary timescales. This leads to the build-up
of strong magnetic �elds already at very early phases of (proto)galactic evolution,
with potentially strong impact on ISM dynamics and subsequent star formation.
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CHAPTER 8

Observational Signatures of Magnetic

Fields in Redshifted Galaxies1

Besides analytical theory and numerical simulations, observations are the third pil-
lar of astrophysics. It is always desirable to �nd an observational con�rmation to
a theory. However, direct observations of the early Universe, for example for the
formation era of the �rst stars and galaxies are not possible. Only indirect observa-
tions of these astronomical objects are available. It becomes even more complicated
to gain hints about the magnetic �eld evolution during this epoch.
This chapter follows Schober et al. (2014), who propose a method for estimating
the magnetic �eld strength in star forming galaxies, which could be applicable up
to intermediate redshifts.

8.1 The Need for Observational Tests

Observations show that magnetic �elds contribute signi�cantly to a galaxys energy
budget. The current values for the solar neighborhood, for example, is 0.89 eV cm−3

for the magnetic energy density, which is comparable to the thermal kinetic energy
density with roughly 0.49 eV cm−3, and the energy density of cosmic rays to be
1.39 eV cm−3 (Draine, 2011). We note, however, that the quoted values include
large uncertainties. The magnetic energy is distributed over many orders of mag-
nitude in physical length scales. It is thus expected that the magnetic �eld plays a
major role in the dynamics of the whole galaxy and also on smaller scales down to
individual star formation processes.
The structure of magnetic �elds in local galaxies is known quiet well (see the dis-
cussion in section 2.3). A spiral galaxy typically shows a large-scale magnetic �eld,
which follows the optical spiral arms and is strongest in the interarm regions. The

1This section follows closely Schober et al. (2014).
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typical coherence length is 10 kpc and the strength roughly 10−5 G. Even more im-
portant in terms of the energy density is the small-scale unordered magnetic �eld,
which exceeds the one of the ordered �eld by a factor of a few.
The origin and evolution of galactic magnetic �elds is still an active �eld of re-
search with many open questions to answer (Kulsrud & Zweibel, 2008). Theory
predicts that unordered �elds were generated already in young galaxies by a tur-
bulent dynamo. This mechanism ampli�es weak magnetic seed �elds by randomly
stretching, twisting, and folding the �eld lines in turbulent motions (Kazantsev,
1968; Brandenburg & Subramanian, 2005; Schober et al., 2012c,a; Bovino et al.,
2013). Semi-analytical calculations (Schober et al., 2013) as well as numerical sim-
ulations (Beck et al., 2012; Latif et al., 2013) show that the turbulent dynamo can
produce a �eld of the order of 10−6 G within a few Myrs. The large-scale magnetic
�eld is likely produced by a large-scale galactic dynamo, which operates on much
longer timescales then the turbulent dynamo.
In order to test the evolution scenario of galactic �elds, in addition to the analytical
and numerical calculations an observational test is essential. However, the prob-
lem is that standard methods for magnetic �eld observations are di�cult to pursue
at high redshifts. Only indirect observations like the CMB bispectrum (Shiraishi
et al., 2012), the non-detection of TeV blazers (Neronov & Vovk, 2010) and Faraday
rotation measurements (Hammond et al., 2012), which detect the magnetic �eld
strength along the line of sight, can be applied at high redshifts.
A very frequently used method to estimate magnetic �eld strengths in galaxies is
synchrotron emission, which is observed in the radio band. This type of radiation is
emitted by high energy cosmic ray electrons traveling through the magnetized inter-
stellar medium (ISM). With the intensity of synchrotron emission one can calculate
the energy density of cosmic rays. By assuming that cosmic rays and interstellar
magnetic �elds are in energy equilibrium the magnetic �eld strength can be com-
puted (Beck & Krause, 2005).
A further important observation was made by Yun et al. (2001), who found a cor-
relation between the radio �ux and the far-infrared (FIR) �ux. This FIR-radio
correlation shows a coupling between the star formation rate (SFR), which deter-
mines the FIR �ux, and the magnetic �eld in the ISM. A new interpretation of
this correlation was suggested by Schleicher & Beck (2013). They claim that the
supernova rate, which is proportional to the SFR, sets the amount of turbulence
in the ISM, which in turn determines the magnetic energy produced by turbulent
dynamo. Due to energy conservation and additional e�ciency e�ects a turbulent
dynamo can only convert a certain fraction of turbulent kinetic energy into magnetic
energy (Federrath et al., 2011). A coupling between the SFR (FIR �ux) and the
magnetic �eld (radio �ux) can thus be assumed in local galaxies.
But what happens in higher redshifted galaxies? Here one needs to take into ac-
count the rapidly growing number of cosmic microwave background (CMB) photons.
These can interact with the cosmic ray electrons in inverse Compton scattering, typ-
ically resulting in X-ray photons. Schleicher & Beck (2013) have shown that inverse
Compton scattering is in fact the dominant energy loss mechanism of cosmic ray
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electrons at high redshifts. Thus, we expect a suppression of the FIR-radio correla-
tion and X-ray bright galaxies above a critical redshift.
We propose here a method based on the inverse Compton scattering process to gain
information about cosmic rays and magnetic �elds in young galaxies. With a given
SFR and interstellar radiation �eld (ISRF) we determine the inverse Compton com-
ponent of the X-ray luminosity of a redshifted starforming galaxy. From this we
calculate the energy of the cosmic ray electrons and the resulting total cosmic ray
energy density. By assuming equipartition between the cosmic ray energy density
and the magnetic energy density, we are able to predict an upper limit of the �eld
strength.
New instruments provide exceptionally good data of galaxies at very high redshifts.
Especially the deep �elds of the Chandra satellite2, the extended Chandra Deep
Field-South (E-CDF-S) and the Chandra Deep Field-North (CDF-N), include lots
of information about the X-ray properties of extremely low luminosity objects. As a
very important future tool we discuss also limits that will be obtained by X-ray ob-
servatory Athena+3. Combination with the new FIR data from the Atacama Large
Millimeter/submillimeter Array (ALMA4) can lead to new conclusions. The ALMA
LABOCA E-CDF-S Submillimeter Survey makes a multi-wavelength analyses pos-
sible.
The chapter is structured as follows: We present our model of young galaxies in
section 8.2, including the SFR, the ISRF and the cosmic ray spectrum. In section
8.3 we summarize the results of Schleicher & Beck (2013), who proposed the sup-
pression of the FIR-radio correlation. The combination of our ISRF and the cosmic
ray spectrum results in a typical inverse Compton spectrum. The derivation of the
inverse Compton X-ray luminosity is given in section 8.4. We discuss additional
X-ray sources in section 8.5. In the last section 8.6 we apply our model to some
exemplary galaxies, for which data from Chandra and ALMA is available. We draw
our conclusions in section 8.7.

2http://chandra.harvard.edu/
3http://www.the-athena-x-ray-observatory.eu/
4http://www.almaobservatory.org/
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8.2 Model of Typical Galaxies

For exploring the X-ray properties of galaxies we use two di�erent models: a model
for a �normal� galaxy and one for a starburst galaxy. The models di�er obviously
in their star formation rates, which has important consequences for the interstellar
radiation �eld and the number density of cosmic rays. We report the details of our
models in the following.

8.2.1 General Aspects

We use a geometrically very simple model of a galaxy, which has the shape of a disk.
The radius R(z) and the scale height H(z) evolve with redshift z. Ferguson et al.
(2004) �nd a change of radius proportional to (1+z)−3/2 for a �xed circular velocity
and proportional to (1 + z)−1 for a �xed mass. Observations of galaxy evolution
show that the mean scaling of the galaxy size lies in between these two extrema.
For our model we choose a scaling of

R(z) = R0(1 + z)−1 (8.1)

and a scale height of

H(z) = H0(1 + z)−1, (8.2)

leading to a galaxy volume of

V (z) = πR2
0H0(1 + z)−3. (8.3)

The normalization of the radius and the scale height, R0 and H0, are set by the
galaxies at present day. We analyze two types of galaxies: a normal Milky Way
like galaxy, for which we use R0 = 1.5 × 104 pc and H0 = 500 pc (Ferrière, 2001),
and a starburst galaxy, which is of a similar type as M82. The radius of the central
starburst region is roughly R0 = 300 pc with a scale height of R0 = 200 pc (de Cea
del Pozo et al., 2009). We note, that our model of perfect disks is very idealized as
the scale height usually changes with the radius.
Further, we assume the particle density of the ISM to scale as

n(z) = n0(1 + z)3. (8.4)

Our �ducial values for the present-day density n0 are listed in table 8.1. With our
model of a uniform density we simplify real galaxies, where there are gradients in
density.
The evolution of the normalized density n(z)/n(0) and galaxy volume V (z)/V (0),
which are proportional to (1 + z)3 or (1 + z)−3, respectively, are shown in �gure
8.1. Note, that our model depends initially only on the normalized volume. Only
when applied to real data in section 8.6, we need the volume of the galaxy when
calculating the magnetic �eld strength from the total magnetic energy.
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normal galaxy starburst core

R0 [pc] 1.5× 104 300

H0 [pc] 500 200

n0 [cm−3] 3 300

Ṁ?(0) [M� yr−1] 2 10

ρ̇?(0) [M� yr−1 pc−3] 1.9× 10−12 3.5× 10−8

Table 8.1:

Properties of our two �ducial models: a normal galaxy comparable to the Milky Way and

a starburst galaxy comparable to M82.

8.2.2 Star Formation Rate

Model for the Star Formation History

In section 8.4 we study the X-ray evolution of an idealized galaxy, which evolves
according to the cosmic mean star formation history (Madau et al., 1996, 1998;
Steidel et al., 1999; Madau & Pozzetti, 2000). The mean star formation rate of the
Universe has been analyzed in simulations by Hernquist & Springel (2003). We use
their relation to follow the evolution of a characteristic galaxy. With this model we
get an idea of the inverse Compton scattering process as a function of redshift.
The star formation rate (SFR) of a galaxy is de�ned as

Ṁ?(z) = V (z) ρ̇?(z), (8.5)

where V (z) is the volume of the galaxy (8.3) and ρ̇?(z) is the star formation rate
density (Hernquist & Springel, 2003)

ρ̇?(z) ∝ κ2 exp[κ1(z − zm)]

κ2 − κ1 + κ1 exp[κ2 (z − zm)]
(1 + z)3, (8.6)

with the parameters κ1 = 3/5, κ2 = 14/15 and zm = 5.4. The factor (1 + z)3 in
equation (8.6) comes from the conversion from comoving into physical units.
In �gure 8.1 we show the evolution of the normalized star formation rate density
ρ̇?(z)/ρ̇?(0) and the normalized star formation rate Ṁ?(z)/Ṁ?(0) with redshift. For
the normalization of the star formation rate we use a typical value observed in the
Milky Way Ṁ?(0) = 2 M� yr−1 for the model of a normal galaxy. Note, that the
proposals of the galactic SFR di�er widely. While for example Diehl et al. (2006)
�nd a value of 4 M� yr−1 from gamma ray observations, Spitzer observations suggest
that the SFR is as low as 0.68−1.45 M� yr−1 (Robitaille & Whitney, 2010). For the
starburst model we use Ṁ?(0) = 10 M� yr−1, which is close to the observed value
of the starburst galaxy M82 (Förster Schreiber et al., 2003).
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Figure 8.1:

The evolution of the normal-

ized star formation rate den-

sity ρ̇?(z)/ρ̇?(0) (Hernquist &

Springel, 2003) and the star for-

mation rate Ṁ?(z)/Ṁ?(0) as a

function of redshift z. We also

show the evolution of the nor-

malized volume of the galaxy

V (z)/V (0), which has been mul-

tiplied by a factor of 103 for bet-

ter visualization, and the normal-

ized particle density n(z)/n(0).
image credit: Schober et al.
(2014) z
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The star formation history of an arbitrary galaxy will, however, di�er signi�cantly
from this idealized picture. There will be phases of extremely high SFR induced, for
example, by mergers with other galaxies followed by quiet phases. Thus, for getting
information about the detailed emission processes of a single galaxy it is better to
use direct observational input of the SFR. We use the model of the star formation
history only in places, where we discuss the general trend of galaxy evolution, while
we take a �xed SFR for single galaxies.
The SFR of a galaxy can be estimated from the observed infrared �ux. Kenni-
cutt (1998) �nds the following correlation between the SFR Ṁ? and the infrared
luminosity LIR:

Ṁ?(z) = 1.8× 10−10 M� yr−1

(
LIR

L�

)
, (8.7)

where L� ≈ 3.8× 1033 erg s−1 is the solar luminosity. In their data set Wang et al.
(2013) employ NIR-through-radio SED �tting according to the work of Swinbank
et al. (2013) to calculate LIR. We will use examples of this multi-wavelength data
set in section 8.6.

8.2.3 Supernova Rate

Cosmic rays are believed to originate in supernova shock fronts. Thus, for determi-
nation of the number and energy of the cosmic rays in a galaxy, the supernova rate
is an important input.
We assume here a Kroupa initial mass function of stars, which decreases propor-
tional to the stellar mass to the power of -1.3 in the range of 0.08 to 0.5 M� and to
the power of -2.3 for larger masses (Kroupa, 2002). The number of supernovae per
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Figure 8.2:

The spectral energy density uISRF,ν (left hand side) and the spectral photon distribution

nISRF,ν (right hand side) of the interstellar radiation �eld for di�erent redshifts between z =
0−10. In the top panels we show our model for galaxies with a normal star formation rate

and in the lower panels for a starburst galaxy. The parameters of the model are summarized

in table 8.2. The vertical lines indicate the typical frequency range of photons that are

inverse Compton scattered into the X-ray regime (see section 8.4.1 for more details).

image credit: Schober et al. (2014)
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time is then roughly

ṄSN = 0.156
Ṁ?

12.26 M�
, (8.8)

with 12.26 M� being the mean mass of a supernova candidate.

8.2.4 Interstellar Radiation Field

An essential role for the inverse Compton scattering plays the ISRF with which the
cosmic rays interact. In our model we consider �ve di�erent radiation components:
the thermal (cold and warm) infrared (IR), optical (opt), ultraviolet (UV) radiation
and the cosmic microwave background (CMB) (Cirelli & Panci, 2009; Chakraborty
& Fields, 2013). The interstellar radiation �eld (ISRF) can then be approximated
by the sum of the individual Planck spectra,

uISRF,ν =
∑

i

fi
8πh

c3

ν3

exp(hν/(kTi)− 1
, (8.9)

with i = IR, opt,UV,CMB. The dimensionless weights fi as well as the di�erent
temperatures Ti at z = 0 are taken from Chakraborty & Fields (2013). Note,
that we model a redshift dependence, which is given in table 8.2. For this we
use TCMB(z) = TCMB(0) (1 + z) and multiply the weights fIR, fopt, fUV with the
normalized star formation rate density ρ̇?(z)/ρ̇?(0). The resulting spectral energy
density uISRF,ν is shown in the left panel of �gure 8.2.
The total energy density of the interstellar radiation �eld is

uISRF =

∫ ∞

0

uISRF,ν dν =
8 π5k4

15 c3h3

∑

i

fiT
4
i (8.10)

From the energy spectrum (8.9) we can calculate the photon distribution by

nISRF,ν =
uISRF,ν

hν
. (8.11)

The result is shown in the right panel of �gure 8.2. Note, that as well uISRF as nISRF

increase with redshift, as the SFR density and the CMB density constantly increase
with z. The peak of the CMB component further moves to higher frequencies with
z due to the increasing CMB temperature.

8.2.5 Cosmic Rays

The origin of high energy cosmic rays is commonly believed to be �rst-order Fermi
shock acceleration in supernova remnants and extragalactic sources (Bell, 1978a,b;
Drury, 1983; Schlickeiser, 2002). However, there are additional models like accelera-
tion by MHD waves (Schlickeiser & Miller, 1998; Brunetti et al., 2001; Fujita et al.,
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Normal Galaxy Starburst Galaxy

fi [ρ̇?(z)/ρ̇?,M82] Ti [K] fi [ρ̇?(z)/ρ̇?,MW] Ti [K]

UV 8.4× 10−17 1.8× 104 3.2× 10−15 1.8× 104

optical 8.9× 10−13 3.5× 103 0.0 3.5× 103

IR (warm) - - 3.61× 10−5 200

IR (cold) 1.3× 10−5 41 4.22× 10−2 45

CMB 1 2.73(1 + z) 1 2.73(1 + z)

Table 8.2:

A model of the interstellar radiation �eld, which includes �ve di�erent radiation com-

ponents: ultraviolet (UV) radiation, optical radiation, thermal (warm and cold) infrared

(IR) radiation and the cosmic microwave background (CMB) (see Cirelli & Panci (2009)

and Chakraborty & Fields (2013)). We give here the dimensionless weights compared

to the CMB fi, which include a scaling with the normalized star formation rate density

ρ̇?(z)/ρ̇?,MW or ρ̇?(z)/ρ̇?,M82, respectively, and the temperatures Ti.
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2003) and magnetic reconnection (de Gouveia dal Pino & Lazarian, 2005). All these
theoretical models result in a power-law distribution.
The injection spectrum of cosmic ray protons can be described by

Qp(γp) = Qp,0 γ
−χ
p , (8.12)

with the Lorentz factor of protons γp. The exponent χ depends strongly on the
properties of the cosmic ray acceleration site, i.e. the supernova shock front. First-
order Fermi acceleration theory predicts for strong shocks a value of χ = 2.0 for
non-relativistic gas and χ = 2.5 for a relativistic gas (Bell, 1978b). More detailed
models of supernova shock fronts (Bogdan & VÃ¶lk, 1983) result in χ = 2.1 − 2.3.
We will use here a �ducial value of χ = 2.2.
We normalize the proton injection spectrum with the total energy injection rate
ξESNṄSN, where ESN is the energy of one supernova and ṄSN the supernova rate
(8.8). This yields a proportionality factor in (8.12) of

Qp,0 =
ξESNṄSN(χ− 2)

(mpc2)2 γ2−χ
p,0

. (8.13)

A typical value of ξ, which is the fraction of the total energy released in supernovae
that goes into cosmic rays, is given in the literature as 0.1. We use this as our �du-
cial value. Moreover, we will analyse values from ξ = 0.05 to ξ = 0.2, as simulations
suggest that there is a density dependency of ξ (Dor�, 2000). As the upper end
of the cosmic ray energy spectrum, which extends up to 1021 eV per particle, does
not contribute signi�cantly to the total cosmic ray energy, only the lower end of the
spectrum γp,0 appears here. For the latter we use a value of γp,0 = 109 eV/(mpc

2).
In this work we assume that cosmic rays consist only of protons p as well as elec-
trons and positrons e±. When the latter follow the same distribution as protons
accelerated in supernova remnants one speaks of primary cosmic ray e±, which have
a similar injection rate as the protons (8.12). However, there is a second source of
cosmic ray e±: pionic secondaries from collisions of cosmic ray protons with the am-
bient gas. Electrons and positrons, which have been produced in this way, are called
secondary cosmic ray e±. The injection spectrum of secondaries can be estimated
as (Lacki & Beck, 2013)

Qe,sec =
fπ
6

mp

me

(
γp

γe

)2

Qp(γp). (8.14)

When assuming that the fraction of proton energy that goes into pion production is
fπ = 0.2− 0.5 (Lacki et al., 2011), the ratio of secondary to total cosmic ray e± Qe,

fsec =
Qe,sec

Qe

, (8.15)

is roughly 0.6 to 0.8. The energy of secondary electrons is γe = mp/(20me)γp (Lacki
& Beck, 2013).
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In our analysis the cosmic ray e± play the most important role, as they are re-
sponsible for energy losses due to inverse Compton scattering. In order to �nd the
steady-state spectrum of the e± Ne(εe) one needs to solve the di�usion-loss equation
(Longair, 2011):

∂N(γ)

∂t
= Q(γ) +

d

dγ
[b(γ)N(γ)]− N(γ)

τ(γ)
+D∇2N(γ). (8.16)

Here Q(γ) is the injection spectrum, b(γ) = −dγ/dt the energy loss rate, τ(γ) the
timescale of escape or total losses, and D the spatial di�usion time scale. The
di�usion loss equation is valid for e± (index e) and for protons (index p). For a ho-
mogeneous medium, Lacki & Beck (2013) �nd for the equilibrium proton spectrum,
i.e. ∂Np(γp)/∂t = 0,

Np(γp) = Qp(γp) fπ τπ, (8.17)

and for the equilibrium e± spectrum, i.e. ∂Ne(γe)/∂t = 0,

Ne(γe) =
Qe(γe) τe(γe)

χ− 1
. (8.18)

The characteristic timescales appearing here are the one for pion production,

τπ = 50 Myr (n/cm−3)−1, (8.19)

and the electron cooling time, τe = εe/be(εe), which is calculated as

τe =
(
τ−1

synch + τ−1
IC + τ−1

ion + τ−1
brems

)−1
. (8.20)

This equation takes into account di�erent energy losses of cosmic ray electrons,
including synchrotron emission (τsynch), inverse Compton scattering (τIC), ionization
(τion) and bremsstrahlung (τbrems). We will discuss the importance of the di�erent
loss timescales in the next section. Combination of the upper equations yields for
the steady-state spectra of cosmic ray protons and electrons

Np(γp) = fπτπQp,0γ
−χ
p (8.21)

Ne(γe) =
202−χfπ

6fsec(χ− 1)
τe

(
me

mp

)1−χ
Qp,0γ

−χ
e , (8.22)

with the normalization of the proton injection spectrum Qp,0 given in equation
(8.13).
With the spectral distribution the energy density of cosmic rays can be computed.
The dominant part of the total cosmic ray energy UCR is contributed from the
protons. It can be calculated by

UCR =

∫ ∞

γp,0

Np(γp) γpmpc
2 dγp +

∫ ∞

γe,0

Ne(γe) γemec
2 dγe, (8.23)

where we assume a lower limit for the energy of cosmic ray e± of γe,0 = 109 eV/(mec
2).

Note, that UCR indicates the total energy, and not the energy density uCR. Assum-
ing a Milky Way like galaxy with the properties given for a normal galaxy at z = 0
in table 8.1, we �nd a total cosmic ray density of uCR = 1.33 eVcm−3.
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8.3 Suppression of the FIR-Radio Correlation at

High Redshifts

Observations of nearby galaxies show that there is a correlation between the far-
infrared �ux and the radio �ux. Yun et al. (2001) combine data from the NRAO VLA
Sky Survey, which includes the 1.4 GHz radio luminosity, with the FIR luminosity
data from the IRAS Redshift Survey. In their sample of around 1800 galaxies they
�nd a tight correlation over roughly �ve orders of magnitude in luminosity.
The origin of the FIR-radio correlation can be understood as a result of coupling
between star formation, cosmic rays and the magnetic �eld. The FIR radiation arises
from the thermal emission of dust, which is heated by the ultraviolet radiation of
massive stars, and thus traces the SFR. The SFR is also directly connected to the
supernova rate, and hence to the cosmic ray production, which has been discussed
before. The highly energetic cosmic rays lose their energy when traveling through the
ISM. At present day one of the most important energy loss mechanism for cosmic ray
electrons is synchrotron emission, which results from the interaction with interstellar
magnetic �eld and lies in the radio regime.
Besides the synchrotron (synch) emission, the cosmic ray e± can lose their energy also
via inverse Compton scattering (IC), ionization (ion), and bremsstrahlung (brems),
see also Oh (2001). The typical timescales of these processes are (Schleicher & Beck,
2013):

τsynch =
3 me c

4 σT uB γe

(8.24)

τIC =
3 me c

4 σT uISRF γe

(8.25)

τion =
γe

2.7 c σT (6.85 + 0.5 lnγe) n
(8.26)

τbrems = 3.12× 107 yr
( n

cm−3

)−1

. (8.27)

Here γe = εe/(mec
2) is the Lorentz factor of a an electron with energy εe, uB =

B2/(8π) the magnetic energy density, uISRF the energy density of the ISRF (8.10),
and n the particle density of the interstellar medium (8.4).
For calculating the timescale of synchrotron emission we use a scaling of the magnetic
�eld strength of B ∝ Ṁ

1/3
? , which has been observed in various galaxies (Niklas &

Beck, 1997; Chy»y et al., 2011). Schleicher & Beck (2013) derive this scaling behavior
from a simple analytical galaxy model, while they assume that the magnetic energy
is always a �xed fraction of the turbulent kinetic energy. This assumption is valid
in the presence of a turbulent dynamo, which ampli�es any weak seed �eld on short
timescales. It leads to B ∝ Σ

1/3
SFRn

1/6, where ΣSFR is the star formation surface
density. In our model with n ∝ (1 + z)3 we would thus expect an additional factor
of (1 + z)1/2 in the evolution of the magnetic �eld strength. These considerations
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Figure 8.3:

Typical timescales of cosmic ray

electrons with an energy of 1 GeV

(blue lines) and 10 GeV (orange

lines) as a function of the star

formation rate Ṁ?. The di�er-

ent panels present the timescales

at di�erent redshifts z. The solid
line indicates the timescale of

inverse Compton scattering τIC,

the dashed line synchrotron emis-

sion τsynch, the dotted line ion-

ization τIC, the dashed-dotted

bremsstrahlung τbrems and the

dashed-dashed pion production

τπ. We show the case of a nor-

mal galaxy up to 10 M�yr−1,

for larger Ṁ? we use the star-

burst properties. The jump in

timescales results from the di�er-

ent particle densities of the two

galaxy models. Note, that τbrems

and τπ are independent of the cos-
mic ray energy.

image credit: Schober et al.
(2014)
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suggest a total scaling relation of

B(z) ∝ Ṁ1/3
? (1 + z)1/2. (8.28)

For the magnetic �eld strength at z = 0 we use B0 = 10−5 G for the normal galaxy
and B0 = 2× 10−4 G for the starburst galaxy, which is motivated from observations
of M82 (de Cea del Pozo et al., 2009).
In �gure 8.3 we show the di�erent timescales as a function of star formation rate
at di�erent redshifts. We present the timescales for two di�erent e± energies, 1
GeV and 10 GeV, indicated by di�erently colored lines. Note, that the jump of
the timescales in the transition from normal to starburst galaxies results from the
increase of density in our model (see table 8.1). While losses by bremsstrahlung
and synchrotron emission dominate in normal galaxies for low redshifts, in starburst
galaxies inverse Compton scattering is the most important e�ect at high star for-
mation rates already at z = 0. With increasing redshift �gure 8.3 illustrates that
the di�erence between synchrotron and inverse Compton increases continuously.
Form the analysis of the timescales we conclude that inverse Compton scattering
is the dominant loss mechanism of cosmic ray electrons for normal galaxies only
at high redshifts (z & 5) and in starburst galaxies with high SFRs at basically all
cosmological times. The typical frequency of photons that have been inverse Comp-
ton scattered with the CMB lies in the X-ray regime. Thus, we expect galaxies to
become bright in X-ray above a critical redshift and star formation rate. In the next
section we present a model for the typical X-ray emissivity due to inverse Compton
scattering.

8.4 Expected X-Ray Luminosity from Inverse

Compton Scattering

8.4.1 Characteristic Frequencies

In the process of inverse Compton scattering a low energy photon scatters on a
high energy electron. Due to the radiation �eld the electron gets decelerated and
transmits energy on the photon. The characteristic frequency of an inverse Compton
scatted photon, which we observe today, is

νcharac(z) = γ2
e,0

νin

1 + z
, (8.29)

where γe,0 is the typical energy of cosmic ray electrons and νin is the frequency of
the incoming photon.
The energy range of the Chandra telescope, which we will use in our calculation if
not indicated otherwise, is

νC1h = 0.5 keV (8.30)
νC2h = 10 keV. (8.31)
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Thus, photons with frequencies between

νin,1 = γ−2
e,0 νC1 (1 + z) ≈ 3.16× 1010 (1 + z) Hz (8.32)

and

νin,2 = γ−2
e,0 νC2 (1 + z) ≈ 6.31× 1011 (1 + z) Hz (8.33)

can be inverse Compton scattered into the detection range. We indicate the range
of suitable frequencies in �gures 8.2 and 8.6 by vertical lines. The most important
components are thus the CMB and the IR component. As there is a distribution in
the incoming photon energy as well as in the the cosmic ray energy, also photons with
an initially di�erent frequency can be scattered into the Chandra range. However,
we expect the majority of detected photons to origin from the calculated energy
regime.

8.4.2 Inverse Compton Luminosity

In a galaxy, the initial photon spectrum can be approximated as the sum of sev-
eral blackbody spectra, which we have modeled in (8.11), and the initial electron
spectrum is a power-law (8.22). Blumenthal & Gould (1970) show that the spectral
distribution of inverse Compton scattered photons, i.e. the total number of photons
that are scattered into the energy ε = hν per time, is

QIC,ν(ν) =

∫ ∞

0

∫ ∞

γmin

Ne(γe)QIC,e(γe, νin) dγe dνin, (8.34)

with the contribution of a single electron of energy εe = γemec
2 being

QIC,e(γe, νin) =
πr2

0ch

2γ4
e

nISRF,ν(νin)

ν2
in

(
2νln

(
ν

4γ2
eνin

)
+ ν + 4γ2

eνin −
ν2

2γ2
eνin

)
.

(8.35)

This result is valid in the so-called Thomson limit, where the energy of the photon
in the electron rest frame before scattering is much less then mec

2.
The aim of this work is to study objects, in which the cosmic ray e± losses are
dominated by inverse Compton scattering. We thus assume, for the analytical cal-
culation in this section, that the timescale τIC is shorter than τsynch, τion and τbrems

(see equations 8.24 to 8.27), which simpli�es equation (8.20) to

τe ≈ τIC. (8.36)

The e± spectrum (8.22) reduces then to

Ne(γe) =
202−χfπ

6fsec(χ− 1)
τIC

(
me

mp

)1−χ
Qp,0γ

−χ
e (8.37)
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with the inverse Compton timescale τIC given in equation (8.25).
In the Thomson approximation the lower integration limit in (8.34) is γmin =
1/2 (ν/νin)1/2. Here νin is the frequency of the incoming photon, while ν is the
frequency of the inverse Compton scattered photon. With the spectrum of cosmic
ray e± (8.37) and the interstellar radiation �eld (8.11), integration over γe yields
again to a power-law in the frequency

QIC,ν(ν) =
πhr2

0c
4m2−χ

e mχ
pfπ

fsecσTuISRF

Qp,0 F̃ (χ) (hν)−(χ+2)/2

×
∫ ∞

0

(hνin)χ/2nISRF,ν(νin) dνin, (8.38)

with the abbreviation

F̃ (χ) =
(χ2 + 6χ+ 16)25−χ52−χ

(4 + χ)2(χ+ 6)(χ+ 2)(χ− 1)
. (8.39)

Further evaluation of the integral over the ISRF (8.11) in equation (8.38) yields

QIC,ν(ν, z) =
4πr2

0cm
2−χ
e mχ

pfπ

fsech2σTuISRF

F (χ) Qp,0 (hν)−(2+χ)/2
∑

i

fi (kTi)
(6+χ)/2 .

(8.40)

Here we have de�ned

F (χ) = Γ

(
6 + χ

2

)
ζ

(
6 + χ

2

)
F̃ (χ), (8.41)

where Γ is the Euler gamma function and ζ the Riemann zeta function. With the
spectral distribution of inverse Compton scattered photons (8.40) we can calculate
the spectral luminosity

LIC,ν(ν, z) = QIC,ν(ν, z) hν (8.42)

and the observed integrated X-ray luminosity

LIC(z) =

∫ ν2

ν1

LIC,ν(ν(1 + z), z) (1 + z) dν

=
16π2r2

0cm
2−χ
e mχ

pfπ

fsech(4+χ)/2σTuISRF

F (χ)

χ− 2
Qp,0(1 + z)(2−χ)/2

×
(
ν

1−χ/2
2 − ν1−χ/2

1

) ∑

i

fi (kTi)
(6+χ)/2 . (8.43)

The observed integrated X-ray luminosity that purely results from inverse Compton
scattering is shown in �gure 8.4. For this plot we use the model of the ISRF given in
table 8.2 with the redshift-dependent SFR model from equation (8.5) in the upper
panel, while we treat the SFR as a free parameter in the lower panels. A result from
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Figure 8.4:

Comparison of the solution for

inverse Compton luminosity LIC

when employing the full cosmic

ray timescale (8.20) with the an-

alytical one in the approximation

τe = τIC. In the upper panel we

apply an evolution of Ṁ? accord-

ing to (8.5), while we use �xed Ṁ?

in the lower panels. In the two

upper panels we present the evo-

lution of LIC with redshift z in a

starburst galaxy. The third panel

shows the ratio of the approxima-

tion to the full solution for di�er-

ent Ṁ?. Here we indicate 1 by a

horizontal black line and provide

a zoom-in to low redshifts in the

inlay panel.

image credit: Schober et al.
(2014)
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Figure 8.5:

A test of the in�uence of the

cosmic ray spectrum (8.22) on

the inverse Compton luminosity

LIC. We show here the numer-

ical solution for the full cosmic

ray timescale (8.20) and use the

mean evolution of the star for-

mation rate (8.5). The di�erent

line colors represent calculations

with di�erent normalizations of

the cosmic ray spectrum ξ rang-

ing from ξ = 0.05 (blue lines) over
ξ = 0.1 (orange lines) up to ξ =
0.2 (green lines). In each case we

also change the slope of the cos-

mic ray spectrum χ. The dashed
lines are results for χ = 2.1, the
solid lines for χ = 2.2 and the

dotted lines χ = 2.3.
image credit: Schober et al.
(2014)
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our timescale analysis is that the inverse Compton scattering is more e�cient the
higher the star formation rate is. Thus, in �gure 8.4 and for most the further analysis
we restrict ourselves to the starburst galaxy model. We present both solutions for
the luminosity, the full numerical one with the cosmic ray timescale (8.20) and the
analytical one (8.43), which is valid for τe ≈ τIC. As expected from the timescale
analysis from section 8.3, the approximation is only reasonable for high redshifts, as
here the CMB temperature is higher and also the mean star formation rate is higher
(for the SFR model from equation 8.5). The ratio of the approximative solution and
the full numerical solution for the inverse Compton luminosity is shown in the third
panel of �gure 8.4. While for a low SFR of 10 M�yr−1 the factor between the full
solution and the approximative solution is 5.7 at z = 2, it is only 1.1 for 103 M�yr−1

at the same redshift.
In �gure 8.5 we test the in�uence of the cosmic ray spectrum, which is given in
equation (8.18), for the full numerical solution of (8.34). The normalization of the
cosmic ray spectrum ξ is varied from ξ = 0.05 to 0.2. From the �gure one notes that
with increasing ξ the luminosity increases, which can also be seen from equation
(8.40) directly, where the total number of injected cosmic ray protons Qp,0 appears,
which is proportional to ξ (see equation 8.21). It is intuitively clear that with a
larger number of cosmic ray protons the number of cosmic ray electrons and thus
the number of scattering events increases, which leads to a larger inverse Compton
luminosity. In �gure 8.4 we also test the in�uence of changing the slope of the
cosmic ray spectrum χ, which we vary from 2.1 to 2.3. We expect that this should
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Figure 8.6:

The e�ciency of inverse Comp-

ton scattering for our model of

the interstellar radiation �eld as

a function of the incoming pho-

ton frequency νin. The di�erent

line styles indicate the e�ciency

at di�erent redshifts: The solid

blue lines give z = 0, the dashed
orange lines z = 5 and the dot-

ted green lines z = 10. The up-

per panel shows the result for a

galaxy with a normal SFR, the

lower panel the one for a starburst

galaxy. We use here the redshift-

dependent SFR model (8.5), the

cosmic ray spectrum (8.13) and

the cosmic ray timescale (8.20).

The di�erent components of the

ISRF are listed in table 8.2. The

vertical lines indicate typical fre-

quency range of photons that are

inverse Compton scattered into

the X-ray regime.

image credit: Schober et al.
(2014)

not change signi�cantly as the basic cosmic ray acceleration mechanism should be the
same for all galaxies and redshifts. With an increasing χ the luminosity decreases.
From equation (8.38) we can calculate the spectral contribution to the inverse

Compton scattering ∂QIC,ν(ν, z)/∂νin, which is shown in �gure 8.6 for the full energy
loss timescale (8.20). For a typical resulting frequency we choose ν = 1017 Hz, which
is motivated by equation (8.29) when using an incoming frequency of νin = 1011 Hz
and an electron energy of γe = 109 eV/(mec

2) Hz. In the top panel of �gure 8.6
we show the e�ciency for the ISRF of a normal galaxy as a function of incoming
frequency. In the case of z = 0 one can clearly distinguish the contributions of
the di�erent ISRF components. From the left to the right one can identify the
CMB, the (cold) IR, the optical and the UV component, while the CMB dominates.
When going to higher redshifts the temperature and with that the peak of the CMB
shifts to higher frequencies. The contribution of the CMB becomes more and more
important. Already at z = 5 the IR component is barley visible anymore. We note
that the e�ciency of inverse Compton scattering in our model decreases again above
z ≈ 5, as the mean SFR decreases above this redshift. To conclude, in a galaxy with
normal star formation the CMB is the dominant incoming radiation �eld for inverse
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Figure 8.7:

The observed inverse Compton

�ux SIC from a starburst galaxy

as a function of star formation

rate Ṁ?. We compare the nu-

merical solution for the full cos-

mic ray timescale with the an-

alytical one for the assumption

τe = τIC for di�erent redshifts be-

tween z = 0.5 and z = 0.5.
image credit: Schober et al.
(2014)

-19

-18

-17

-16

-15

10 100 1000

lo
g
( S

IC
,0
.5
−
1
0
k
eV

[e
rg

s−
1
cm

−
2
])
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Compton scattering. For comparison we show the inverse Compton e�ciency of a
starburst galaxy in the lower panel of �gure 8.6. Here the cold IR component is
the dominant one for the inverse Compton mechanism. Even for the z = 0 case,
the peak of the CMB is almost not visible. Due to the strong IR radiation �eld we
expect starburst galaxies to be more e�cient in inverse Compton scattering and will
only consider these galaxies from now.

8.4.3 Inverse Compton Flux

With the luminosity distance,

dL(z) = (1 + z)2 dA(z), (8.44)

where the angular diameter distance dA can be determined from the Mattig relation,

dA(z) =
c

H0

2

Ω2
m(1 + z)2

(
Ωmz + (Ωm − 2)(

√
1 + Ωmz − 1)

)
, (8.45)

we can moreover calculate the �ux resulting from inverse Compton scattering. We
use the latest cosmological parameters determined by the Planck satellite. The
Hubble constant is H0 = 67.11 km s−1Mpc−1 and the matter density parameter
Ωm = 0.3175 (Planck Collaboration et al., 2013b). We determine the spectral �ux
density by

SIC,ν =
LIC,ν

4πd2
L

(8.46)

and the total �ux density by

SIC(z) =

∫ ν2

ν1

SIC,ν(ν, z) dν. (8.47)
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Figure 8.8:

The observed inverse Compton

�ux SIC in the range 0.5-10 keV

from a starburst galaxy as a

function of star formation rate

Ṁ?. We present here the solution

for the full cosmic ray timescale

(8.20). The di�erent panels rep-

resent di�erent redshifts from z =
0.5 to z = 2. The line colors

indicate the normalization of the

cosmic ray spectrum ξ (see equa-
tion 8.21), while the linestyles

show di�erent slopes of the cos-

mic ray injection spectrum: χ =
2.1 (dashed lines), χ = 2.2
(solid lines) and χ = 2.3 (dotted

lines). We further indicate the

sensitivity limits of Chandra and

Athena+ by the horizontal lines.

image credit: Schober et al.
(2014)
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A comparison between the inverse Compton �ux calculated for the full cosmic ray
timescale (8.20) and the approximation τe = τIC is shown in �gure 8.7. We present
the two di�erent solutions as a function of star formation rate for a redshift range
z = 0.5−2. The approximate analytical solution is comparable to the full numerical
one for high star formation rates and high redshifts.
In �gure 8.8 we test the in�uence of di�erent cosmic ray spectra on the inverse
Compton �ux. The di�erent line styles and colors cover our parameter space of
the cosmic ray spectrum. We again vary ξ from 0.05 to 0.2 and χ from 2.1 to 2.3.
The horizontal lines in the plot give the sensitivity limits of Chandra and the future
X-ray observatory Athena+. For the Extended Chandra Deep Field the �ux limit
in the 0.5-2 keV range is 1.1 × 10−16 erg s−1cm−3 and 6.7 × 10−16 erg s−1cm−3 in
the 2-8 keV range (Lehmer et al., 2005). The expected sensitivity limit for Athena+
is 10−17 erg s−1cm−3 in the 0.5-2 keV band (Nandra et al., 2013). With increasing
redshift the inverse Compton �ux moves more and more out of the detection limits.
However, with Athena+ the pure inverse Compton �ux of objects with high SFRs
should still be visible at redshifts larger than 2.

8.5 Distinguishing Other X-Ray Processes

A typical galaxy contains various sources of X-ray emission (Persic & Rephaeli,
2002). While normal stars only contribute a small fraction to the total X-ray emis-
sion, supernova remnants and the hot thermal ISM gas are more important. It has
been shown, however, that the dominant sources are X-ray binaries. In the follow-
ing we present two methods from literature, which estimate the X-ray emission from
X-ray binaries. We further shortly discuss the X-ray emission from supernovae and
active galactic nuclei.

8.5.1 X-Ray Binaries

Analytical Model for the Mean Evolution of X-Ray Binaries

Observations show that the emission of a normal galaxy is dominated by a few point
sources, which have been identi�ed as X-ray binaries (Fabbiano, 1995). Any model
of the X-ray emission of a normal galaxy should thus show a characteristic scaling
with the number of X-ray binaries and also with the SFR.
Ghosh & White (2001) provide an analytical model for the number of the di�erent
X-ray binary classes. The evolution of the number of high-mass X-ray binaries
(HMXB) in a typical galaxy NHMXB is governed by

∂NHMXB(t)

∂t
= αHMXB

Ṁ?

10M�
− NHMXB(t)

τHMXB

, (8.48)

where the typical HMXB evolution timescale τHMXB is 5 × 106 yr. The parame-
ter αHMXB gives the rate of HMXB formation and can be estimated by αHMXB ≈
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1
2
fbinaryf

HMXB
prim fHMXB

SN . Here, fbinary is the fraction of stars that are in binaries, fprim

is the fraction of binaries, that are in the right mass range for evolving into a X-ray
binary and fSN is the fraction of the binary systems that survive the �rst supernova
explosion.
The evolution of low-mass X-ray binaries (LMXB) is more complicated due to the
similarity of the post supernova binary (PSNB) and the real LMXB timescales,
τPSNB ≈ 1.9× 109 yr and τLMXB ≈ 109 yr. The total abundances NPSNB and NLMXB

are described by the following coupled equations:

∂NPSNB(t)

∂t
= αPSNB

Ṁ?

10M�
− NPSNB(t)

τPSNB

(8.49)

∂NLMXB(t)

∂t
=

NPSNB(t)

τPSNB

− NLMXB(t)

τLMXB

. (8.50)

Here the parameter αPSNB is de�ned as 1
2
fbinaryf

LMXB
prim fLMXB

SN .
The values of the di�erent fractions f (especially as a function of redshift) are
very hard to estimate (Fabbiano, 1995). We thus use the observed number of X-ray
binaries to calibrate αHMXB and αLMXB at z = 0. With a value of roughly 100 LMXBs
and 50 HMXB in the Milky Way (Grimm et al., 2002) we �nd αHMXB ≈ 5.00× 10−5

and αLMXB ≈ 4.35 × 10−7. The resulting numbers of HMXBs and LMXBs are
shown in �gure 8.9. We present here the evolution for the case of a starburst galaxy,
which is expected to have more X-ray binaries due to a larger SFR. Note, that the
evolution of the X-ray binary population follows closely the history of star formation.
The number of HMXBs peaks at a redshift of roughly 5, which corresponds to the
peak of the star formation rate (see �gure 8.1), while the peak of the LMXB is
at a smaller redshift of roughly 1.5. This evolutionary delay comes from the long
LMXB timescales, τPSNB and τLMXB, and results in the fact that the LMXBs are the
dominant type of X-ray binaries at present day.
For computing the X-ray luminosity that results from the X-ray binaries in a galaxy,
we need to know the typical luminosities of LMXBs and HMXBs. In a detailed
study of the Milky Way Grimm et al. (2002) �nd that the total luminosity of all
X-ray binaries in the 2-10 keV range is ≈ 2 − 3 × 1039 erg s−1 (LMXB) and ≈
2 − 3 × 1038 erg s−1 (HMXB). With the total numbers of the X-ray binaries given
above this corresponds to mean luminosities of ≈ 2.5 × 1037 erg s−1 (LMXB) and
≈ 5.0× 1036 erg s−1 (HMXB) in the 2-10 keV band. In our study we use the 0.5-8
keV band and thus need to estimate the luminosity in this band. Wang et al. (2013)
�nd a typical conversion factor of 1.21 between the two bands for X-ray binaries,
which we apply here, too. We thus �nd for the total luminosity due to X-ray binaries
in the 0.5-8 keV band

LXB(z) = 1.21× 2.5× 1037 erg s−1 NLMXB(z)

+ 1.21× 5.0× 1036 erg s−1 NHMXB(z). (8.51)

The evolution of LXB according to the analytical model is presented in �gure 8.10,
where we also plot the luminosities from inverse Compton scattering of a starburst
for comparison.
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Figure 8.9:

The number of X-ray binaries

in a starburst galaxy as a func-

tion of redshift z. We show the

number of low-mass X-ray bina-

ries (LMXB, orange lines), high-

mass X-ray binaries (HMXB,

green lines) and the sum of both

(LMXB+HMXB, blue lines).

image credit: Schober et al.
(2014)
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As HMXBs evolve on very short timescales (see above), they are a good tracer for
the SFR. However, at SFRs comparable to the Milky Way or lower, the X-ray binary
population is dominated by LMXBs, which in return provide a measure for the total
stellar mass in a galaxy. Only in galaxies with high SFRs the X-ray luminosity from
X-ray binaries is dominated by the emission of HMXBs (Persic & Rephaeli, 2007).
For the X-ray binary emission, Lehmer et al. (2010) �nd the following correlation
with the star formation rate

L2−10 keV
XB = 1039.43 erg s−1

(
Ṁ?

M�yr−1

)0.74

. (8.52)

This correlation is valid for the 2− 10 keV range and Kroupa IMF. Converting into
the 0.5− 8 keV the X-ray luminosity changes to (Wang et al., 2013)

L0.5−8 keV
XB = 1.21× 1039.43 erg s−1

(
Ṁ?

M�yr−1

)0.74

.

(8.53)

8.5.2 Supernova Remnants

Besides X-ray binaries, supernova remnants are point sources of X-ray emission in
galaxies. The thermal X-ray radiation is emitted mostly during the free expansion
and the Sedov-Taylor phase with a typical duration of less then τSNR = 103 yr
(Woltjer, 1972; Chevalier, 1977). The typical number of X-ray emitting supernova
remnants that are observed in a galaxy is

NSNR = τSNRṄSN = 12.72
Ṁ?

M�yr−1
, (8.54)
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Figure 8.10:

The luminosities of various galac-

tic X-ray sources as a function

of redshift z. The luminosity

from X-ray binaries is shown by

the dashed blue line, when us-

ing the analytical evolutionary

model, and by the dotted green

line, when using the observational

correlation. The X-ray lumi-

nosity contribution from super-

nova remnants are represented by

the dashed-dotted gray line. For

comparison we show the inverse

Compton scattering luminosity

(solid orange line) for our �du-

cial cosmic ray spectrum (ξ = 0.1
and χ = 2.2) and the timescale

given in (8.20). We use here the

ISRF from table 8.2 and a star-

burst galaxy.

image credit: Schober et al.
(2014)

where we use the supernova rate (8.8). With a typical X-ray luminosity of supernova
remnants of 1037 erg s−1 the total X-ray emission of galaxies with star formation
rates between 10 and 1500 M�yr−1 are roughly 104 − 106 L�. Compared to the
expected luminosity of X-ray binaries presented for example in �gure 8.10, supernova
remnants provide only a minor contribution to a galaxy's total X-ray emission.

8.5.3 Active Galactic Nuclei

If a galaxy hosts an active galactic nucleus (AGN) we expect additional X-ray emis-
sion. Typical X-ray luminosities of nearby AGNs are around 107 L�. We expect
however, that a large fraction of the radiation from the central black hole is ab-
sorbed by dust. We thus use the observed values of the X-ray luminosity that are
not corrected for dust absorption. Ideal for our analysis would be starburst galaxies
at high redshifts without AGNs, which might be detected in future observations.
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8.6 Application to Exemplary Galaxies

In this section we apply our model for the inverse Compton scattering to real galax-
ies in order to determine properties of cosmic rays and magnetic �elds. Our strategy
is illustrated in �gure 8.11. As observational input we need the redshift z of an ob-
ject, the FIR luminosity and the X-ray luminosity. The redshift can be determined
spectroscopically or with photometry. For the FIR luminosity of objects at high
redshift, from which we can determine the SFR Ṁ?, there is a lot of data available
from several surveys and also ALMA will be a powerful tool in the future, and we
can use Chandra data for the X-ray luminosity LX.
From z and Ṁ? we calculate the expected inverse Compton X-ray luminosity ac-
cording to equation (8.43), which however includes the normalization of the cosmic
ray spectrum Qp,0. This quantity depends on the fraction of supernova energy that
goes into cosmic rays ξ that is an open parameter of our model. We get an upper
limit of Qp,0 and accordingly ξ, from which we calculate the cosmic ray energy ECR,
by the equalizing LIC(Qp,0) with the observed X-ray luminosity of a galaxy LX,obs.
In this step we imply that all the X-ray luminosity results from inverse Compton
scattering. With the additional assumption of energy equipartition between cosmic
rays and the magnetic �eld, an assumption which is commonly made in present-day
galaxies (Beck & Krause, 2005), we obtain an upper limit for the magnetic energy
Emag. If one further estimates the volume of the galaxy, also an upper limit to the
magnetic �eld strength B is possible.
The single steps from above are described in more detail in the following.

8.6.1 Cosmic Ray Energy and the Equipartition Magnetic

Field Strength

Cosmic Ray Energy as Function of the Free Parameter ξ

In section 8.4 we determine the expected inverse Compton �ux of a galaxy with a
given cosmic ray spectrum. We model the cosmic ray spectrum by assuming that a
fraction ξ of the supernova energy is converted into kinetic energy of electrons and
protons (see equation 8.13). The energy density of cosmic rays uCR as a function of
the ξ is

uCR(ξ) =
fπ (mpc

2)2 γ2−χ
p,0 τπ(z)

V (z) (χ− 2)
Qp,0(ξ), (8.55)

with Qp,0(ξ) given in equation (8.21). We show uCR(ξ) in �gure 8.12 for di�erent
�xed SFRs and a galaxy volume scaling as in equation (8.3). Note, that the redshift
dependence of uCR(ξ) cancels as the timescale of pion production is also proportional
to (1 + z)−3. With increasing SFR the cosmic ray energy increases for a �xed ξ.
This is intuitively clear.
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Figure 8.11:

Illustration of our strategy for de-

termining the cosmic ray density
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shifted starforming galaxies from

observations of the redshift, the

far-infrared and the X-ray �ux.

For more details see section 8.6.
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Figure 8.12:

The cosmic ray density uCR and

the equipartition magnetic �eld

strength B as a function of the

fraction of energy that goes into

acceleration of cosmic rays in su-

pernovae ξ. We use here a scal-

ing of the galaxy volume pro-

portional to (1 + z)−3 and the

approximation τe ≈ τIC. The

di�erent curves represent di�er-

ent star formation rates: Ṁ? =
10 M�yr−1 (solid line), Ṁ? =
100 M�yr−1 (dashed line) and

Ṁ? = 1000 M�yr−1 (dotted line).

image credit: Schober et al.
(2014)
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Determination of the Cosmic Ray Energy from the Observed X-Ray

Luminosity

From the data we will now directly determine the normalization Qp,0 and thus the
free parameter ξ, to which the X-ray luminosity from inverse Compton scattering
(8.43) is directly proportional. Solving equation (8.43) for Qp,0 and using the ob-
served luminosity LX,obs as an input yields:

Qp,0(LX,obs) =
fsech

(4+χ)/2mχ−2
e σT

16π2cmχ
pfπr2

0

χ− 2

F (χ)

uISRF

(1 + z)(χ−2)/2

(∑

i

fi (kTi)
(6+χ)/2

)−1

× LX,obs

ν
(2−χ)/2
2 − ν(2−χ)/2

1

. (8.56)

Note, that (8.56) depends on the star formation rate only via the total energy density
of the radiation �eld uISRF ∝

∑
i fi T

4
i and the sum over fi T

3+χ/2
i . With a value of χ

very close to 2, these two terms cancel and uCR becomes almost independent of the
star formation rate. Also the dependence on redshift is small as again (1 + z)χ/2−1

is almost constant.
With equation (8.56) our free parameter, the energy input of supernovae into cosmic
ray acceleration ξ, can be expressed as

ξ(LX,obs) =
(mpc

2)2 γ2−χ
p,0

ESNṄSN(χ− 2)
Qp,0(LX,obs), (8.57)

where we used equation (8.13). Further, the energy density of cosmic rays as a
function of the observed X-ray luminosity can then be calculated with

uCR(LX,obs) = Qp,0(LX,obs)
γ2−χ

p,0 mpc
2

χ− 2
fπ

τπ(z)

Vgal(z)
. (8.58)

The luminosity is converted into the observed �ux by equation (8.46). We plot
the cosmic ray energy against the �ux SIC in �gure 8.13. The di�erent line colors
represent di�erent redshifts, while the line styles indicate di�erent SFRs. The �gure
shows clearly that the SFR dependence vanishes in our model of the inverse Compton
scattering, as the individual lines match almost perfectly. Note, however, that the
�ux itself depends on the SFR. As shown in �gure 8.8, the �ux increases with Ṁ?.
Actually, equations (8.46), (8.43), (8.21), and (8.8) indicate that SIC ∝ Qp,0 ∝
ṄSN ∝ Ṁ?, connecting the inverse Compton �ux with the number of cosmic rays,
which is in our model directly proportional to the supernova rate and thus to the
SFR.

Equipartition Assumption

In present-day galaxies the di�erent energy components of the ISM, like the kinetic
energy of the gas, the cosmic rays and the magnetic �elds, are almost in equilibrium.
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Figure 8.13:

The energy density of cosmic rays

(electrons + protons) uCR as a

function of the observed �ux from

inverse Compton scattering SIC

for the approximation τe ≈ τIC.

The blue lines show the results

at a redshift of z = 0.5, the

orange lines at z = 1 and the

green lines at z = 2. The dif-

ferent line styles refer to di�er-

ent star formation rates Ṁ?. We

use here the starburst model with

di�erent line styles corresponding

to di�erent star formation rates

of 10 M� yr−1 (dashed lines),

102 M� yr−1 (solid lines) and

103 M� yr−1 (dotted lines). On

the right hand side y axes we

show the corresponding equipar-

tition magnetic �eld strength B.
image credit: Schober et al.
(2014)

This is a result of the dynamical interplay between the individual components and
known as energy equipartition. It provides a very important tool for studying the
magnetic �eld strength from the observed synchrotron radiation, which is emitted
by cosmic ray e± traveling through the magnetized interstellar medium (Beck &
Krause, 2005).
In highly redshifted galaxies magnetic �elds were assumed to be unimportant, be-
cause the timescales of a galactic large-scale dynamo are high and thus no strong
magnetic �eld can result from this mechanism. However, recent semi-analytical
(Schober et al., 2013) and numerical simulations (Beck et al., 2012; Latif et al.,
2013) have shown that a turbulent dynamo can actually amplify weak magnetic
seed �elds in galaxies on Myr timescales by converting turbulent kinetic energy into
magnetic energy. The turbulent dynamo can amplify �elds up to a certain fraction of
the turbulent kinetic energy even on galactic length scales Federrath et al. (see, e.g.
2011). With this strong unordered magnetic �elds we can again use the assumption
of energy equipartition:

uCR = uB. (8.59)

With the magnetic energy density, uB = B2/(8π), the magnetic �eld strength can
be calculated as

B = (8πuCR)1/2 . (8.60)
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ALESS ID z Ṁ? Lobs,0.5−8 keV

[M� yr−1] [erg s−1]

011.1 2.68 789 3.16× 1043

017.1 2.04 161 2.51× 1042

045.1 2.34 350 1.58× 1042

057.1 2.94 439 5.01× 1043

066.1 1.31 322 3.16× 1044

067.1 2.12 528 2.51× 1042

070.1 2.33 789 1.58× 1043

073.1 4.76 556 5.01× 1043

084.1 2.26 267 1.00× 1043

114.2 1.61 261 6.31× 1042

Table 8.3:

The properties of the ALESS sub-mm objects with X-ray counterparts in the E-CDF-S,

which were discovered by Wang et al. (2013). We list here the ALESS ID, the redshift z,
the star formation rate Ṁ? in M� yr−1 (converted into Kroupa IMF) and the uncorrected

X-ray luminosity Lobs,0.5−8 keV in erg s−1. For more details see section 8.6.2.

Putting the equations together, one can show that the resulting magnetic �eld B
scales with Q1/2

p,0 and also depends on the slope of the cosmic ray spectrum χ. The
equipartition �eld strengths are given on the right side of �gures 8.12 and 8.13.

8.6.2 Available Observational Data at High Redshifts

The combination of X-ray data of the Chandra deep �elds with the sub-millimeter
data from ALMA, provides new insides in the properties of distant galaxies. Our
analyses is based on the processed data given in Wang et al. (2013), who have
identi�ed 10 sub-mm counter sources with objects in the Chandra Deep Field -
South (CDF-S).
Wang et al. (2013) use the X-ray data from the 4 Ms CDF-S (Lehmer et al., 2005)
and the 250 ks E-CDF-S survey (Xue et al., 2011). The E-CDF-S has been observed
by an ALMA Cycle 0 survey at 870 µm, which is called the ALMA LABOCA E-
CDF-S Submm Survey (ALESS) (Hodge et al., 2013; Karim et al., 2013). The whole
ALESS survey detected 99 sub-mm galaxies (SMGs), 10 of which Wang et al. (2013)
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Figure 8.14:

The 0.5-8 keV X-ray luminosity

as a function of star formation

rate Ṁ?. We compare the inverse

Compton luminosity LIC (for the

full cosmic ray timescale 8.20)

with the luminosity of X-ray bi-

naries LXB and the one of su-

pernova remnants. Also plotted

are the X-ray luminosities (with

an 30% error as discussed in Xue

et al. (2011)) of the Chandra deep
�eld galaxies from Wang et al.

(2013). Di�erent line styles rep-

resent di�erent redshifts in the

model from z = 1 (solid lines)

to z = 2 (dashed lines) to z = 5
(dotted lines).

image credit: Schober et al.
(2014)

could identify with X-ray counterparts. These SMGs are listed in table 8.3, where
besides their X-ray luminosities LX,obs, the corresponding redshifts z and SFRs Ṁ?

are provided. Note, that Wang et al. (2013) used a Salpeter IMF to determine
the SFRs. We converted their values to a Kroupa IMF by dividing by a factor of
1.8. Further, we use here the luminosity values, which are not corrected for dust
attenuation, as we assume that the latter is most e�cient for the X-ray emission from
the central black hole. Most of the redshifts z are observed spectroscopically within
the zLESS survey (Danielson et al. 2013, in preparation) or taken from literature,
expect for ALESS 45.1, which is observed photometrically (Simpson et al., 2013).
The SFRs listed in table 8.3 are derived by Wang et al. (2013) from the correlation
with the infrared luminosity by Kennicutt (1998) (see equation 8.7).
The observed X-ray luminosities from Wang et al. (2013) are shown as a function
of SFR in �gure 8.14. All the sources from the catalog have extremely high SFRs
from 161 M�yr−1 up to 789 M�yr−1. In the �gure we show also the expected
luminosity of X-ray binaries from the analytical model of Ghosh & White (2001)
and the observational correlation from Lehmer et al. (2010) LXB, as well as the
luminosity from supernova remnants LSNR and the inverse Compton luminosity LIC.
Most of the observed galaxies have very high luminosities, even above the X-ray
binary predictions. Due to this fact and also as a result of additional tests most
of the galaxies have clearly been classi�ed as AGN hosts, except for ALESS 045.1
and ALESS 067.1. The X-ray luminosity of these two galaxies could be explained
by X-ray binary emission. Alternatively a huge contribution of the luminosity could
come from the inverse Compton scattering.
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In the following we use ALESS 045.1 and ALESS 067.1 as examples, for which we
will derive upper limits for the cosmic ray density from the inverse Compton e�ect.
We make the assumption that the entire X-ray luminosity observed comes from
inverse Compton scattering. With our model we then result in a value for the free
parameter ξ, which is given in the �rst line of tables 8.4 and 8.5 for the two galaxies
and di�erent slopes of the cosmic ray spectrum χ. Note, that all the calculated
values of ξ are larger than our �ducial value ξ = 0.1. This indicates that we are
overestimating the contribution of the inverse Compton luminosity in all cases by
factors up to 111. Consequently the magnetic �eld strength will be overestimated
by a factor of roughly 3. The cosmic ray energies given in the second line of tables
8.4 and 8.5. can thus be only treated as upper limits. In the following lines of
the table we present the cosmic ray densities and the equipartition magnetic �eld
strengths for di�erent �xed galaxy radii. As the galaxies are not spatially resolved
in the observations, we do not have any information about their radius. With radii
comparable to the one of M82 plus radii ten times smaller and larger then that (see
numbers listed in table 8.1), we get hints to the energy density in the galaxies. For
ALESS 045.1, which has a SFR of 350 M�yr−1, we �nd values between 9.05× 10−5

G and 9.05 × 10−4 G for our �ducial cosmic ray spectrum with χ = 2.2. For
ALESS 067.1 the upper limits for the magnetic �eld strength is slightly higher with
B ≈ 1.26× 10−4 G to B ≈ 1.26× 10−3 G.

8.6.3 Uncertainties in the Model and Possible Extensions

Our model for the determination of cosmic ray densities and magnetic �elds in galax-
ies via the inverse Compton scattering process includes many assumptions. We will
discuss the individual problems in the following.
As an input for our semi-analytical model we use integrated properties of the galax-
ies, like the volume, the total cosmic ray energy and the total luminosities. In reality
the energy is not homogeneously distributed over the galaxy, but follows a certain
radial and vertical pro�le. This pro�le might be superimposed with more complex
structures like spiral arms. When applying our model to observational data, there
is often no information about the spatial extension of the galaxies. In the context of
observed point sources we thus can only estimate the total energies and no energy
densities.
Further uncertainties enter the model of the cosmic ray spectrum. The injection of
cosmic rays is entirely based on shock acceleration in supernova remnants, however
cosmic rays might also origin from reconnection sites or extragalactic sources. For
estimating the injection spectrum of cosmic rays we assume that a certain fraction of
the supernova energy, which we treat as an open parameter, is converted into kinetic
energy of charged particles. Also the slope of the spectrum is an open parameter
in our model. For deriving the steady state spectrum we use the di�usion equa-
tion of cosmic rays. We assume spatial homogeneity, and by this ignore any spatial
di�usion of the particles. This so-called leaky box approximation of the di�usion
equation is very common, but implications of non-homogeneity would be interesting
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ALESS ID 045.1

χ = 2.1 χ = 2.2 χ = 2.3

ξ 1.083 0.682 0.567

UCR [erg] 8.63× 1054 5.44×1054 4.51× 1054

Vgal = 0.1 VM82

uCR [erg cm−3] 5.19× 10−8 3.27× 10−8 2.72× 10−8

B [G] 1.14× 10−3 9.07× 10−4 8.26× 10−4

Vgal = VM82

uCR [erg cm−3] 5.19× 10−9 3.27× 10−9 2.72× 10−9

B [G] 3.61× 10−4 2.87× 10−4 2.61× 10−4

Vgal = 10 VM82

uCR [erg cm−3] 5.19× 10−10 3.27× 10−10 2.72× 10−10

B [G] 1.14× 10−4 9.07× 10−5 8.26× 10−5

Table 8.4:

Upper limits on the cosmic ray energy, the cosmic ray density and the magnetic �eld

strength for two objects of the data catalog of Wang et al. (2013) ALESS ID 045.1, which

have not been identi�ed as hosting an AGN. We present results for the assumption that all

X-ray luminosity is produced in inverse Compton scattering. As there are other processes

emitting X-rays, this assumption results only in upper limits, which re�ects in the high

values of the fraction of supernova energy that is transformed into kinetic energy of cosmic

rays ξ (theoretically expected: ξ ≈ 0.1, see text). We show the resulting value of ξ obtained
with this assumption in the �rst line. In the second line we present the total cosmic ray

energy. For determining the cosmic ray densities uCR and the equipartition �eld strengths

B we use three di�erent volumes of the starburst region: the volume of the starburst region

in M82 VM82 and volumes ten times smaller and larger then VM82.
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ALESS ID 067.1

χ = 2.1 χ = 2.2 χ = 2.3

ξ 1.14 0.713 0.591

UCR [erg] 1.68× 1055 1.05× 1055 8.71× 1054

Vgal = 0.1 VM82

uCR [erg cm−3] 1.01× 10−7 6.33× 10−8 5.24× 10−8

B [G] 1.59× 10−3 1.26× 10−3 1.15× 10−3

Vgal = VM82

uCR [erg cm−3] 1.01× 10−8 6.33× 10−9 5.24× 10−9

B [G] 5.03× 10−4 3.99× 10−4 3.63× 10−4

Vgal = 10 VM82

uCR [erg cm−3] 1.01× 10−9 6.33× 10−10 5.24× 10−10

B [G] 1.59× 10−4 1.26× 10−4 1.15× 10−4

Table 8.5:

Same contents as in table 8.4, but for ALESS ID 067.1.
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to study in a more detailed model. We further assume that the cosmic ray protons
only experience catastrophic losses, i.e. escape from the galaxy, while the cosmic ray
e± are modeled to be con�ned within the galaxy. The latter loose their energy in
our model only via di�erent cooling mechanisms. Observations of cosmic rays are
made via the cooling radiation of e±. A potential problem is the interpolation of the
energy in cosmic ray e± to the total cosmic ray energy, which is actually dominated
by the protons. A more direct detection of the cosmic ray energy would be possible
with simultaneous γ-ray observations.
For the energy loss of cosmic ray electrons to be dominated by inverse Compton
scattering one needs to �nd galaxies at high redshift and with large star formation
rates (see �gure 8.3 and the discussion in section 8.3). If inverse Compton scattering
is not the most important loss channel, but similar or below synchrotron emission
or bremsstrahlung, the model of the steady state spectrum needs to be modi�ed.
A detailed analysis of the di�erent energy loss mechanisms will be an interesting
future test.
Another caveat in our calculation remains the in�uence of additional X-ray sources,
such as X-ray binaries and AGNs. The contribution of these can potentially be
investigated in more detail with observations in additional energy ranges. Further-
more, detailed models especially of the luminosity from the accretion on the central
supermassive black hole are required. Galaxies without AGNs would be easier to
handle in the framework of our model and result in better estimates of the cosmic
ray properties. It is, however, very hard to �nd such objects at high redshifts, as
their total luminosity is very low. Hopefully, future observatories like Athena+ will
detect more starburst galaxies without AGNs at large distances.

8.7 Conclusions from Our Inverse Compton Model

In this work we construct a model for the X-ray emission of starforming galaxies via
inverse Compton scattering as a function of redshift. We model the star formation
rate (SFR) history, the evolution of the interstellar radiation �eld (ISRF) and the
cosmic ray spectrum. The inverse Compton scattering process between high energy
cosmic ray electrons and the ISRF is quanti�ed and analyzed in terms of di�erent
properties of the galaxy. We focus on two galaxy models: a galaxy with normal star
formation rate, similar to the Milky Way, and a starburst galaxy similar to M82.
With a detailed description of the ISRF and the steady state cosmic ray spectrum
we are able to calculate the expected inverse Compton luminosity.
We with our galaxy models we �nd that the spectral energy distribution uISRF,ν of
a normal galaxy is dominated by the cosmic microwave background (CMB), while
the one of a starburst galaxy is dominated by the cold infrared (IR) component at
least at moderate redshifts (see �gure 8.2). The strong IR component makes inverse
Compton scattering in starburst galaxies more e�cient (see also �gures 8.6 and 8.4).
Our detailed analysis of the energy loss timescales of cosmic ray electrons (see �gure
8.3) has shown, that the inverse Compton scattering is not dominant in galaxies with

211



CHAPTER 8 8.7 Conclusions from Our Inverse Compton Model

normal star formation. At low redshifts z bremsstrahlung and synchrotron emission
are most important. With increasing redshift the inverse Compton timescale de-
creases, but even at z = 5, bremsstrahlung is still dominating. On the other hand
in starburst galaxies energy losses proceed mostly via inverse Compton scattering.
These galaxies are thus in the focus of this work.
With the cosmic ray spectrum and the ISRF as an input we calculate the luminos-
ity from inverse Compton scattering. We �nd that the X-ray �ux from pure inverse
Compton scattering can be detected with Chandra up to z ≈ 1 for starburst galaxies
with Ṁ? & 200 M�yr−1. With the future X-ray observatory Athena+ detections up
to z & 2 will be possible (see �gure 8.8). In order to estimate the signi�cance of
the inverse Compton scattering compared to other galactic X-ray sources, we inves-
tigate the role of X-ray binaries, which are one of the main X-ray sources in nearby
galaxies. We summarize an analytical model for the number of high-mass X-ray
binaries (HMXB) and low-mass X-ray binaries (LMXB) by Ghosh & White (2001).
For comparison we also discuss an observational correlation for X-ray binary lumi-
nosity by Lehmer et al. (2010). Furthermore, we estimate the in�uence of supernova
remnants on the total galactic X-ray luminosity. Comparison of the expected inverse
Compton luminosity with other X-ray sources shows that supernova remnants are
negligible. X-ray binaries play a more important role. In our model their luminosity
is a factor of 2 brighter than the inverse Compton luminosity at present day. At
redshifts above roughly 2 inverse Compton luminosity becomes comparable or even
dominant over the X-ray binaries (see �gure 8.10).
In the last part of the paper (section 8.6) we apply our model to real observations.
As observational input we use M82 as a test case and two higher redshifted galax-
ies of the data set of Wang et al. (2013), which have not been identi�ed as hosts
of active galactic nuclei (AGNs). We compare the observed X-ray luminosity with
the one resulting from our inverse Compton model. This way we can �x the free
parameter in our model, namely the normalization of the cosmic ray spectrum. In
the next step we calculate the total energy of cosmic rays and assume that it is in
equipartition with the magnetic energy.
With our model the energy density of cosmic rays can be determined directly from
the observed X-ray �ux under the assumption that the �ux only origins from inverse
Compton scattering. The results for di�erent redshifts are plotted in �gure 8.13.
We apply our model to the two galaxies from the data set of Wang et al. (2013) that
have not been clearly identi�ed as hosting an AGN. Our results for the fraction of
energy going from supernovae into cosmic ray acceleration is higher then the the-
oretically expected value of 10 percent. This suggests that we are overestimating
the inverse Compton luminosity and thus the energy of cosmic rays by a factor of
up to 9. Our results for the cosmic ray density and the equipartition �eld strengths
are thus only upper limits. Depending on the galactic volume we �nd values for the
magnetic �eld strength of roughly 10−4 − 10−3 G for the exemplary galaxies (see
tables 8.4 and 8.5).
There are several uncertainties in our model including the modeling of the cosmic
ray spectrum, the additional X-ray sources and the evolution and total size of the
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galaxy volume. Most of the galaxies observed at high redshift include AGNs. We
try not to include the X-ray emission of these by using the uncorrected X-ray lu-
minosities given in Wang et al. (2013). However, we still substantially overestimate
the X-ray luminosity from inverse Compton scattering. It thus is essential to model
the X-ray emission of galaxies in more detail in future. Given all the uncertainties
discussed in section 8.6.3, we mention that our approach might not yet be suitable
for practical usage. It rather provides �rst theoretical estimates for cosmic rays and
magnetic �elds in young galaxies based on a simpli�ed galaxy model. Additional
investigations and improvement of the theoretical models are necessary in order to
draw more quantitative conclusions.
We expect that also the available data of high redshifted galaxies will increase in the
next years. For our studies especially observations of distant starburst galaxies with-
out active galactic nuclei would be important. With X-ray data from the Chandra
deep �elds the next step would be to identify infrared counterparts of X-ray galaxies,
in order to determine their SFR. This is possible with the ALMA telescope. Further
the next generation of X-ray telescopes is planned and we hopefully will receive a
lot of data with Athena+.
With these new technologies our knowledge of the origin and evolution of galactic
magnetic �eld hopefully will increase. This will help us to understand moreover the
evolution of galaxies in total, as magnetic �elds play a crucial role in many physical
processes in the interstellar medium and the dynamics of the whole galaxy.
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CHAPTER 9

Final Discussion

9.1 Summary of the Thesis

In this thesis we present the results of our studies on the evolution of cosmic mag-
netic �elds. A particularly important epoch is the formation of the �rst stars and
galaxies, which is associated with e�cient driving of turbulence. By stretching, fold-
ing and twisting the �eld lines, a turbulent dynamo can amplify preexisting weak
magnetic seed �elds on short timescales. The energy of the unordered magnetic
�elds reaches a certain fraction of equipartition with the turbulent kinetic energy at
saturation.
We investigate the ampli�cation of magnetic �elds by the turbulent dynamo within
the Kazantsev theory. With a model for the correlation function of the turbulent
velocity �eld we describe the e�ects of di�erent types of turbulence, from incom-
pressible Kolmogorov turbulence to highly compressible Burgers turbulence. We
present calculations for the kinematic dynamo phase, in which the �eld strength
grows exponentially, and the non-linear phase, where back reactions from the mag-
netic �eld lead to a time evolution that follows a power-law. With a simple model of
an arti�cial magnetic energy dependent drift in the velocity �eld we make analytical
predictions for the saturation e�ciency of the dynamo. The analytical results are
compared to simulations of the small-scale dynamo in turbulent box. The main
results of the theoretical modeling of the evolution of a turbulent magnetic �eld are
summarized in the following.

Results from the Turbulent Dynamo Theory

• Dynamo ampli�cation only takes place when the magnetic Reynolds number
Rm exceeds a critical Reynolds number Rmcrit. The numerical value of Rmcrit

depends on the type of turbulence and ranges from ≈ 100 for Kolomogorov
turbulence to ≈ 2700 for Burgers turbulence. The results for various slopes of
the turbulence spectrum are summarized in table 4.1.
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• The Kazantsev equation describes the evolution of the magnetic �eld in the
kinematic phase, where the magnetic �eld strength grows exponentially in
time:

B(t) = B0 exp(Γt). (9.1)

The eigenvalues of the Kazantsev equation correspond to the growth rate Γ.
Analytical solutions for the growth rate have been derived in the limit of large
and small magnetic Prandtl numbers Pm = Rm/Re:

Γ =





163− 304ϑ

60

V

L
Re(1−ϑ)/(1+ϑ) for Pm� 1

α
V

L
Rm(1−ϑ)/(1+ϑ) for Pm� 1

(9.2)

with the turbulent velocity V on the forcing scale L and α ≈ 0.027 − 0.0054
depending on the slope of the turbulence spectrum. Moreover, Re and Rm
are the hydrodynamical and magnetic Reynolds number, respectively, and ϑ
is the slope of the turbulence spectrum, v(`) ∝ `ϑ. We refer to table 4.1, in
which the growth rates for di�erent types of turbulence are listed.
These analytical results reproduce the limits of large and small Pm from a
numerical solution of the Kazantsev equation by Bovino et al. (2013), which
we present in �gure 4.13.

• In the non-linear phase, back reactions from the magnetic �eld on the velocity
�eld become signi�cant. Under the assumption that the magnetic energy is
shifted towards larger scales on the local eddy timescale, the magnetic �eld
strength increases as

B(t) = (8π)1/2(C̃t)ϑ/(1−ϑ) (9.3)

with C̃ given in equation (4.125). While there is no more dependence on Rm
nor on Re or Pm, the evolution of the magnetic �eld in this stage still depends
on the type of turbulence characterized by the spectral slope ϑ in the inertial
range.

• Saturation of the turbulent dynamo can be modeled via an arti�cial drift
in the velocity �eld, which leads to an increase of the resistivity η and like-
wise an decrease of the magnetic Reynolds numbers Rm. For large hydro-
dynamic Reynolds numbers we �nd that at saturation the magnetic energy
equals roughly 35 % of the turbulent energy in case of Kolomgorov turbulence.
For Burgers turbulence this fraction is, with approximately 2 %, considerably
smaller.
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• The results of various numerical simulations have been discussed. The onset of
a small-scale dynamo is observed only above a resolution of 32 cells per Jeans
length. This criterion can be associated with the critical magnetic Reynolds
number. The exponential growth of the �eld strength is con�rmed in simula-
tions with the growth rates being lower for higher compressibility of the �uid.
The saturation level of the turbulent dynamo is a function of the Mach number
(see �gure 4.23).

With the onset of turbulence during structure formation and preexisting weak seed
�elds, we expect the turbulent dynamo to play an outstanding role in the early
Universe. We use semi-analytical models for the collapse of a primordial halos,
including a detailed chemical network in order to follow the thermal evolution of
the gas, to model the microphysics in primordial star formation. We assume that
turbulence is driven by accretion and estimate the Reynolds number Re, from which
we calculate the growth rate of the turbulent dynamo.

The Turbulent Dynamo in the Formation of the First Stars

• With a self-consistent chemical network we follow the thermal evolution and
the change of MHD quantities in time or density, respectively. The mircoscopic
quantities like viscosity and magnetic di�usivity are calculated within our
framework. We �nd that the magnetic Reynolds and Prandtl number, Rm
and Pm, decrease rapidly as the magnetic �eld strength increases in dynamo
ampli�cation.

• The evolution of magnetic energy is calculated including dynamo ampli�ca-
tion, spherical compression of �eld lines and dissipation of magnetic energy by
Ohmic and ambipolar di�usion. Especially ambipolar di�usion becomes very
important as it increases rapidly with the magnetic �eld strength and the dis-
sipation rate becomes comparable to the dynamo growth rate, when reaching
saturation. Starting from a seed �eld of 10−20 G on the viscous scale, we �nd
that the �eld strength grows extremely rapidly with the increase of density.

• The transport of the magnetic energy to larger scales is modeled by assuming
that the peak of the magnetic spectrum moves on the turbulent eddy timescale.
In our model the dynamo saturates on all scales, when the density has increased
by a factor of 3 for Kolmogorov turbulence and a factor of 4 for Burgers
turbulence. At saturation the magnetic �eld strength on the Jeans scale is of
the order of 10−6 G.

• Magnetic �eld ampli�cation continues via gravitational compression in the
subsequent collapse. We compare the growth rate of the spherical compression
of �eld lines with dissipation mechanisms on the Jeans scale and �nd that the
magnetic energy is not dissipated up to high densities.
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Our results suggest that the �rst stars form in a magnetized environment. If these
magnetic �elds do, however, remain until the formation of the population III proto-
stars or if they dissipate at densities higher than in our calculation is not answered
conclusively yet.
The next step presented in this thesis is the analysis of the turbulent dynamo in
young galaxies, which form after the �rst stars in more massive cooling halos. We
use semi-analytical one-dimensional models to study the magnetic �eld evolution
in these objects. Turbulence is driven by two di�erent mechanisms, accretion and
supernova explosions. We estimate the properties of turbulence in young galaxies
and use this as an input for our theoretical dynamo model. The central results of
these studies are summarized in the following list.

The Turbulent Dynamo in the Young Galaxies

• In accretion driven turbulence we expect the forcing scales to be roughly the
galactic radius (Lacc ≈ 103 pc in our model) for a spherical galaxy and the scale
hight (Lacc ≈ 240 pc in our model) for a disk galaxy. With the typical Mach
number found in numerical simulations we estimate the turbulent velocity in
the spherical case, while we apply a certain percentage of the Kepler velocity
in a disk. The length scales and velocities for supernova driven turbulence are
estimated from the propagation of shocks in the ISM. We �nd LSN ≈ 700 pc for
a sphere and LSN ≈ 240 pc for a disk. Both driving mechanisms are expected
to lead to compressible turbulence.

• The scenario of magnetic �eld distribution by supernova explosions of magne-
tized stars is tested. For a stellar mean �eld strength of 103 G we �nd that
a micro-Gauss ISM �eld is only reached after 2.2 × 107 Myrs and for a mean
strength of 102 G after 2.2 × 108 Myrs. With these timescales being much
higher than the Hubble timescale, the distribution of stellar magnetic �elds
cannot explain the �elds in the present-day ISM.

• Dynamo ampli�cation is a much more promising candidate for magnetic �elds
ampli�cation in young galaxies. For our �ducial model we �nd that the dy-
namo saturates on the forcing scale in accretion-driven turbulence after a time
of roughly 270 Myrs in case of a spherical galaxy and after 24 Myrs in case of
a disk. Turbulence generated by supernova shocks can amplify the magnetic
�eld on shorter timescales, with saturation after 15 Myrs in a spherical galaxy
and 3.8 Myrs in a disk. The �nal �eld strengths generated by the dynamo are
between a few times 10−6 G and 10−5 G in our galaxy models.

A potential probe for the evolution of magnetic �elds in galaxies can be non-thermal
X-ray emission from cosmic rays, which loose a certain fraction of their energy via
inverse Compton scattering. We present a model for the inverse Compton emission
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from a galaxy. With an expression for the star formation rate history we estimate
the redshift dependence of the inverse Compton luminosity and compare it to other
X-ray sources. We also present calculations for individual galaxies with a given star
formation rate and derive upper limits for the cosmic ray energy density and the
magnetic �eld strength. The main �ndings from this work are listed here.

Observational Signatures from Non-Thermal X-Ray Emission

• The spectral energy distribution of a normal galaxy is dominated by the cosmic
microwave background (CMB), while the one of a starburst galaxy is domi-
nated by the cold infrared (IR) component, at least at moderate redshifts (see
�gure 8.2). The strong IR component makes inverse Compton scattering in
starburst galaxies very e�cient (see also �gures 8.6 and 8.4).

• Inverse Compton scattering is not dominant in galaxies with normal star for-
mation, but becomes more and more important with increasing redshift. In
starburst galaxies energy losses of cosmic ray electrons proceed mostly via in-
verse Compton scattering with the latter mechanism dominating for large star
formation rates even at z = 0 (see �gure 8.3).

• Our models predict that the X-ray �ux from pure inverse Compton scattering
can be detected with Chandra up to z ≈ 1 for starburst galaxies with Ṁ? &
200 M�yr−1. With the future X-ray observatory Athena+ detections up to
z . 2 will be possible (see �gure 8.8).

• Comparison of the expected inverse Compton luminosity with other X-ray
sources shows that supernova remnants are negligible, while X-ray binaries
play a more important role. Only at redshifts above roughly two inverse
Compton luminosity becomes comparable or even dominant over the X-ray
binaries (see �gure 8.10). The modeling of the X-ray contribution of active
galactic nuclei is very complicated.

• With our model the energy density of cosmic rays can be determined directly
from the observed X-ray �ux under the assumption that the �ux origins exclu-
sively from inverse Compton scattering. When applying the model to real ob-
servational data upper limits of the cosmic ray energy density and the magnetic
�eld strength can be gained (see tables 8.4 and 8.5 for exemplary galaxies).
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9.2 Open Questions and Outlook

During the last years a lot of progress has been made in understanding the evolution
of magnetic �elds with analytical methods and numerical simulations. Also obser-
vations were pushed further, which led to the detection of magnetic �elds at higher
and higher redshifts. However, still many open questions remain. In the following,
we suggest possible extensions of the theoretical model and further projects that
need to be investigated, some of which are straight-forward, while others are of a
more complex nature.

Improvement of the Model for the Turbulence Spectrum

In order to solve the dynamo equation, the Kazantsev equation (4.41), we have to
apply a model for the turbulence spectrum as an input. For Gaussian turbulence
the �uctuating velocity �eld is determined by the two-point correlation function
〈δvi(r1, t)δvj(r2, s)〉 (see section 4.1.3).
When assuming a delta correlation in time we can separate the time from the spatial
component of this correlation function. In this step we clearly lose some information
about the velocity �eld, as in real turbulence we would expect a correlation time that
is comparable to the eddy turnover time. However, the turbulent dynamo operates
most e�ciently on the viscose scale, where the eddy timescales are very short and
the delta-correlation is a reasonable approximation. Analytical calculations suggest
that a small but �nite correlation time tends to increase the growth rate of the
turbulent dynamo (Kleeorin et al., 2002). Testing a �nite correlation time within
our framework would still be very interesting, especially for the case of compressible
turbulence.
Homogeneity tells us that the correlation function does not depend on the exact
positions r1 and r2, but only on their di�erence r2−r1. If we also assume the velocity
�eld to be isotropic, one can show that the correlation function can only include
terms proportional to δij, rirj, εijk and functions of r ≡ |r2 − r1| (Batchelor, 1953).
The implications of dropping homogeneity and isotropy need to be investigated and
probably require a numerical solution of the dynamo equations.
An e�ect that has been neglected in this thesis is helicity, a quantity that is given by
v · ∇ × v. Helicity is identi�ed with an additional term in the correlation function
(4.27), which is of the form εijkrkH(r). The inclusion of this term leads to a more
generalized form of the Kazantsev equation (e.g. Boldyrev et al., 2005). Malyshkin &
Boldyrev (2007) �nd for incompressible turbulence at large Reynolds numbers that
the bound eigenmodes, i.e. the growth rates, are signi�cantly a�ected by kinetic
helicity. The e�ects of helical motions on compressive turbulence are subjects for
potential future studies.
The points discussed above show that there are several ways to extend and generalize
the theoretical model for describing a turbulent dynamo.
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Better Comparison with Numerical Simulations

In this thesis we started to compare the analytical results for the turbulent dy-
namo from the Kazantsev theory with the ones obtained from numerical simula-
tions. While it is straightforward to compare the growth rates in the exponential
dynamo phase, other dynamo properties are more di�cult to compare. For example
the critical magnetic Reynolds number is re�ected in the critical resolution of simu-
lations. It is, however, challenging to determine the value of the Reynolds numbers
in simulations, as the latter are often controlled by numerical dissipation e�ects.
Moreover, we use in the theoretical dynamo models the slope of the total turbulence
spectrum as an input. In simulations one can also follow the evolution of energy in
solenoidal and compressive modes. Di�erent types of turbulent forcing result in a
di�erent distribution of the energy on these modes. For a detailed comparison we
would bene�t from an analytical prediction for the energy evolution in the di�erent
modes.

Transition to Ordered Large-Scale Fields

The magnetic �elds observed in local galaxies have, besides the turbulent component,
an ordered �eld component that reaches coherence length scales up to a few kpc
(Beck & Wielebinski, 2013). With our model for the magnetic �eld ampli�cation
we predict only unordered magnetic �elds on galactic scales. The step from the
�uctuating �eld to large-scale ordered �elds is related to large-scale motions like the
rotation of the galaxy. At some point, probably an α-Ω dynamo sets in (see section
3.4.1) and an ordering of the �eld lines takes place. The details of this transition
are, however, not clear.

Impact of Magnetic Reconnection

A mechanism that plays an important role in various astrophysical environments is
magnetic reconnection (see e.g. Zweibel & Yamada, 2009, for a detailed review). In
this process not only the topology of the magnetic �eld changes, but also magnetic
energy is converted into kinetic energy or heat, which could be of crucial importance
in the context of our studies. In the classical theory of reconnection (Parker, 1957;
Sweet, 1958), magnetic �eld lines of opposite direction are brought together and
reconnect at a typical reconnection velocity of vARm−1/2, where vA is the Alfven
velocity. We have seen that the magnetic Reynolds number Rm in astrophysical
environments is typically very high, which results in a very slow classical reconnec-
tion. However, it has been suggested that reconnection becomes much faster in the
presence of turbulence (Lazarian & Vishniac, 1999).
In any system in which a MHD dynamo operates, also reconnection needs to oc-
cur, as a dynamo is always associated with a change of magnetic topology. With
fast reconnection e�ciently converting magnetic energy into other forms of energy,
the question arises which one of the two mechanisms is dominating: magnetic �eld
dissipation by reconnection or ampli�cation by a turbulent dynamo. It will be an

221



CHAPTER 9 9.2 Open Questions and Outlook

important future research project to compare these to processes in di�erent astro-
physical environments.

E�ects of Magnetic Fields on Structure Formation in the Early Universe

The results presented in this thesis suggest that magnetic �elds were already dy-
namically important in the primordial Universe. The consequences of these �elds
on the �rst stars and galaxies could be severe. Especially the possible transport
of angular momentum will change the �nal mass and multiplicity of the �rst stars.
This has been shown in �rst numerical simulations by Machida & Doi (2013). The
e�ects of magnetic �elds on the formation of the �rst stars need, however, to be
studied in more detail to con�rm these results. It will be very interesting to �nd,
for example, results for the initial mass function in magnetized primordial star for-
mation. With magnetic �elds involved, the �rst stars could be more massive than
currently expected, which has important consequences for their lifetimes, the �nal
stellar objects and the subsequent stellar populations. For studying magnetized pri-
mordial star formation in detail, high-resolution numerical simulations are the best
option.

Observations of Magnetic Fields at Higher Redshifts

Observations of magnetic �elds up to higher redshifts are essential to test our theo-
retical models. Fortunately, we are entering an era which provides extremely good
new telescopes for that purpose.
For observations of magnetic �elds, radio telescopes are particularly interesting,
since they can detect synchrotron radiation emitted by cosmic ray electrons spiral-
ing in magnetic �elds. With an assumption about the ratio of the energy density
in cosmic rays to the one in magnetic �elds, it is possible to get an estimate for the
magnetic �eld strength (Beck & Krause, 2005). An important impact is expected to
come from the Square Kilometer Array (SKA) and its path�nders. SKA will be able
to measure polarized synchrotron emission in galaxies up to redshifts of z . 0.5.
Observations of the total synchrotron �ux are possible up to z . 1.5 for Milky Way
type galaxies and up to z . 3 for starbursts (Murphy, 2009). With the galaxy evo-
lution model suggested in chapter 8 of this thesis we can easily predict the expected
radio �ux from distant galaxies as a function redshift and star formation rate. Once
observational data is available, we can use the theoretical model to estimate the
properties of young galaxies.
As discussed in chapter 8 of this thesis, inverse Compton scattering is expected to
be the most important energy loss channel of cosmic ray electrons in galaxies at high
redshift and/or with high star formation rates. The resulting non-thermal emission
is typically in the X-ray regime. We have estimated in a simple one-dimensional
model that this e�ect can be detected with the Chandra telescope up to redshifts
of roughly one. The upcoming X-ray telescope Athena+ should be able to detect
this e�ect also at considerably higher redshifts. Observations in the X-ray regime
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provide an additional measure for the magnetic �eld strength and will complement
results gained by the radio observations.
For interpretation of the data we hope to receive from the new telescopes, detailed
models of magnetic �elds in galaxies are required. It is thus crucial to continue the
improvement of the models, with a focus on the energy losses of cosmic rays and
other observables.

9.3 Closing Remarks

The results presented in this thesis, which are based predominantly on semi-analytical
argumentation, show that magnetic �elds are already important in the early Uni-
verse. This conclusion is supported by numerical simulations of the formation of
�rst stars and galaxies, in which an ampli�cation of magnetic �elds is observed (see,
e.g. Sur et al., 2010; Latif et al., 2013).
Strong magnetic �elds can potentially in�uence the dynamics of the primordial gas
and might change our understanding of the very �rst stars and galaxies. In models
of the early Universe, i.e. of the �rst stars and galaxies, we might have to deal with
a situation of similar complexity as in the local Universe. Phenomena like e�cient
angular momentum transport, jets and out�ows, and various magnetohydrodynam-
ical instabilities need to be taken into account. This could change the properties of
the �rst and second generation signi�cantly. To conclude, magnetic �elds make the
modeling of the primordial Universe even more challenging.
With various upcoming observational machines and the increasing power of numer-
ical simulations, we will be able to test some of the predictions suggested in this
thesis and probably a number of fascinating discoveries lie ahead of us.

Astronomy compels the soul to look upwards
and leads us from this world to another.

(Plato, �The Republic�, 360 B.C.)
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APPENDIXA

Derivation of the Kazantsev

Equation

In this appendix we sketch the derivation of the Kazantsev equation, which describes
the evolution of the �uctuating magnetic �eld component. We follow here closely
the derivation in Subramanian (1997), who considers a very general case of helical
turbulent and includes moreover a non-linear drift in the velocity �eld.
The velocity �eld v can be split in to a mean (〈v〉) and a �uctuating (δv):

v = 〈v〉+ δv. (A.1)

If we assume δv to be an isotropic, homogeneous Gaussian random �eld, which is
delta-correlated in time, the correlation function can be written as

〈δvi(r1, t)δvj(r2, t)〉 = Tij(r)δ(t− s), (A.2)

with

Tij(r) =
(
δij −

rirj
r2

)
TN(r) +

rirj
r2

TL(r). (A.3)

Here, TN is the transversal, TL the longitudinal and H the helical correlation func-
tion. We further use r = |r1 − r2|
The magnetic �eld can be treated in a similar way. We start with decomposing it
into a mean �eld 〈B〉 and a �uctuation part δB:

B = 〈B〉+ δB. (A.4)

Now let us assume that the �uctuating component δB, like the velocity �eld, is a
homogeneous, isotropic Gaussian random �eld with zero mean. Then we can write
the correlation function as

〈δBi(r1, t)δBj(r2, t)〉 = Mij(r, t) (A.5)
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with the two-point correlation function

Mij(r, t) =
(
δij −

rirj
r2

)
MN(r, t) +

rirj
r2

ML(r, t). (A.6)

Again, MN and ML are the transversal and the longitudinal part of the magnetic
correlation function, respectively. As the magnetic �eld is always divergence-free,
i.e. ∂/∂r1i Mij(r, t) = ∂/∂r1j Mij(r, t) = 0, we can derive a relation between the
transverse and the longitudinal correlation function similar to (4.28):

MN =
1

2r

d

dr

(
r2ML

)
, (A.7)

where we have used that (rirj/r
2)Mij = ML and (ri/rj)Mij = MN.

The time derivative of 〈δBiδBj〉 is
∂Mij

∂t
=

∂

∂t
(〈δBiδBj〉)

=
∂

∂t
(〈BiBj〉 − 〈Bi〉 〈Bj〉)

=

〈
∂Bi

∂t
Bj

〉
+

〈
Bi
∂Bj

∂t

〉
− ∂

∂t
(〈Bi〉 〈Bj〉) . (A.8)

In the upper equation we can substitute the induction equation

∂B

∂t
= ∇× v ×B − η∇×∇×B, (A.9)

where η ≡ c2/(4πσ) is the magnetic di�usivity with the speed of light c and the
electrical conductivity σ, and the evolution equation of the magnetic mean �eld

∂ 〈B〉
∂t

= ∇× [〈v〉 × 〈B〉 − ηeff∇× 〈B〉] (A.10)

with the e�ective parameter ηeff = η + TL(0). A lengthy calculation (see Appendix
A of Brandenburg & Subramanian, 2005) leads to

∂Mij

∂t
=

〈∫
yRjpq

[
δvp(y, t)

xRilm

(
δvl(x, s)

[
Mmq + 〈B(x)〉m 〈B(y)〉q

])]
ds

〉

+

〈∫
xRipq

[
δvp(x, t)

yRjlm

(
δvl(y, s)

[
Mqm + 〈B(x)〉q 〈B(y)〉m

])]
ds

〉

+

〈∫
yRjpq [δvp(y, t)

yRqlm (δvl(y, s)Mim])] ds

〉

+

〈∫
xRipq [δvp(x, t)

xRqlm (δvl(x, s)Mmj])] ds

〉

+η
[
∇2
yMij +∇2

xMij

]

+yRjpq

(
〈v(y)〉pMiq

)
+x Ripq

(
〈v(x)〉pMqj

)
. (A.11)
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Here the two operators

xRipq ≡ εilmεmpq
∂

∂xl
(A.12)

yRipq ≡ εilmεmpq
∂

∂yl
(A.13)

have been de�ned. The �rst two terms in (A.11) express the e�ect of velocity
correlations on the magnetic �uctuations and the mean magnetic �eld. Term 3 and
4 represent the turbulent transport of magnetic �uctuations, while term 5 describes
the microscopic di�usion. Finally, term 6 and 7 in (A.11) give the transport of
magnetic �uctuations by the mean �eld.
Equation (A.11) can be simpli�ed signi�cantly when assuming that the mean �eld
quantities are negligible compared to the �uctuating ones. If one further notes, that
the relation

ML = Mij
rirj
r2

(A.14)

holds, one can �nd an equation for ML by multiplying (A.11) with rirj/r2. Subra-
manian (1997) �nds for the evolution equation of ML

∂ML

∂t
= 2κdiffM

′′
L + 2

(
4κdiff

r
+ κ′diff

)
M ′

L +
4

r

(
TN

r
− TL

r
− T ′N − T ′L

)
ML

(A.15)

with

κdiff(r) = η + TL(0)− TL(r). (A.16)

The prime denotes di�erentiation with respect to r. The di�usion of the mag-
netic correlations, κdiff , contains in addition to the magnetic di�usivity η the scale-
dependent turbulent di�usion TL(0)− TL(r).
With the solution of equation (4.38) we can calculate MN also by using the relation
(A.7) and so �nd the total correlation function of the magnetic �eld �uctuations
Mij. We note that this quantity is proportional to the energy density of the mag-
netic �eld, B2/(8π).
In order to separate the time from the spatial coordinates we use the ansatz

ML(r, t) ≡ 1

r2
√
κdiff

ψ(r)e2Γt. (A.17)

Substitution of this ansatz in equation (4.38) gives us

−κdiff(r)
d2ψ(r)

d2r
+ U(r)ψ(r) = −Γψ(r). (A.18)

This is the Kazantsev equation. It formally looks like the quantum-mechanical
Schrödinger equation with a mass ~2/(2κdiff) and the potential

U(r) ≡ κ′′diff

2
− (κ′diff)2

4κdiff

+
2κdiff

r2
+

2T ′N
r

+
2(TL − TN)

r2
. (A.19)

It describes the kinematic limit, because U is independent of the time.
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Validity of the WKB Approximation

B.1 Validity for Large Magnetic Prandtl Numbers

The WKB method is only an approximate solution of the Kazantsev equation. We
have derived condition (4.52), |f | � 1, for which the WKB-method is valid in order
to �nd solutions. In z space, f reads

f(z) ≡ z2p′′(z) + 2zp′(z)

4p(z)2
− 3

16

[zp′(z)]2

p(z)3
. (B.1)

However, we have seen that the magnetic �eld is ampli�ed most strongly on the
scale `c(z) =

√
Pm/3, as here the potential U has its minimum. So we analyze

f(z,Γ) on this scale and get a dependency on the Prandtl number Pm. Hence we
label f(`c,Γ) ≡ f(Pm,Γ).
One can show that f(Pm,Γ) vanishes in the limit of large Prandtl number for all Γ
and all turbulence types,

lim
Pm→∞

f(Pm,Γ) = 0. (B.2)

This means that the WKBmethod is very good in the limit of large magnetic Prandtl
number.

B.1.1 Validity for Kolmogorov Turbulence

In order to check also lower Prandtl numbers we plot f(Pm,Γ) for di�erent normal-
ized growth rates Γ̄ (4.72) and Kolmogorov turbulence in �gure B.1. However, one
can show that f(Pm,Γ) does not depend on the Reynolds number for Kolmogorov
turbulence. So we choose values for Γ̄ between 0 and the maximal value Γ̄max for
the plot in �gure B.1, where Γ̄max is the value for an in�nite Prandtl number and
depends on the Reynolds number. One can see that the critical Prandtl number for
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Figure B.1:

The function f(Pm, Γ̄) for dif-

ferent values of the normalized

growth rate for Kolmogorov tur-

bulence. Γ̄max is the normal-

ized growth rate in the limit of

in�nite magnetic Prandtl num-

bers, Γ̄max = (37/36)Re1/2 (see

Sec. 4.2 for the derivation). The

WKB approximation is valid

within the non-hatched area, i.e.,

for |f(Pm,Γ)| < 0.1. image
credit: Schober et al. (2012c)
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the WKB approximation gets larger with increasing normalized growth rate.
To make a more quantitative estimate of the critical Prandtl number, we have
hatched the area above f(Pm, Γ̄) = 0.1 and below f(Pm, Γ̄) = −0.1. When f
is not in this area its absolute value is smaller than 10% of 1. We take this as a
threshold for our approximation.
We �nd that our method is applicable in the case of Γ̄ = 0 for

Pm & 13. (B.3)

For higher normalized growth rates the critical Prandtl number increases.

B.1.2 Validity for Burgers Turbulence

We can analyze the validity of the WKB solutions for Burgers turbulence in the
same way as for Kolmogorov turbulence using criterion (4.52).
However, we �nd that the function f given in (B.1) now depends not only on the
normalized growth rate Γ̄ and the Prandtl number Pm, but also on the Reynolds
number Re. The result is shown in �gure B.2, where we plot f against the Prandtl
number for di�erent Reynolds numbers and di�erent normalized growth rates.
We again determine the critical Prandtl number for the WKBmethod for a vanishing
normalized growth rate. For our di�erent values of the Reynolds number we get the
following critical Prandtl numbers at vanishing growth rate:

Pm(Re = 102) & 500, (B.4)
Pm(Re = 104) & 1100, (B.5)
Pm(Re = 108) & 5100. (B.6)
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Figure B.2:

The function f(Pm, Γ̄) for �xed

Reynolds numbers and di�erent

values of the normalized growth

rate for Burgers turbulence. No-

tice that in the limit Pm → ∞
the normalized growth rates are

Γ̄ = 0.85 for Re = 102, Γ̄ = 3.95
for Re = 104, and Γ̄ = 85.1 for

Re = 108. The WKB approx-

imation is valid within the non-

hatched area, i.e. for f(Pm,Γ) <
0.1.
image credit: Schober et al.
(2012c)
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Figure B.3:

The function f(Pm) for di�erent
hydrodynamic Reynolds numbers

Re = 106, Re = 108 and Re =
1010 and Kolmogorov turbulence.

We evaluated f(Pm) at the mini-
mum of the potential (4.42). The

WKB approximation is valid for

f(Pm) → 0. The critical mag-

netic Reynolds number gives a

further restriction (see text) lead-

ing to possible values for Pm of

Pm & 10−4 (Re = 106), Pm &
10−6 (Re = 108) and Pm & 10−8

(Re = 1010), which we indicated

by the corresponding arrows.

image credit: Schober et al.
(2012a)
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B.2 Validity for Small Magnetic Prandtl Numbers

In this section we show that the WKB approximation, which we use for solving the
Kazantsev equation, is valid in the limit of small magnetic Prandtl numbers. There-
fore, we have to analyze (4.53) for the inertial range of the turbulence spectrum. As
f is a function of the distance x, i. e. r, we have to evaluate it on the characteris-
tic scale in which we are interested. With the main ampli�cation occurring at the
minimum of the potential, it is rational to use this scale.
In �gure B.3 we show f(Pm) on the scale of the potential minimum for di�erent
Reynolds numbers, Re = 106, Re = 108 and Re = 1010. We choose the example of
Kolmogorov turbulence for the discussion. The test of validity is of course similar
for other types of turbulence.
The magnetic Reynolds number needs to exceed Rmcrit:

Rm = Pm Re > Rmcrit. (B.7)

For Kolmogorov turbulence Rmcrit ≈ 102. Thus, for example in the curve with
Re = 108 in �gure B.3 the threshold is only exceeded for Pm > 10−6. In this regime
the WKB approximation is perfectly valid. In �gure B.3 we use arrows to indicate
the regimes, where the small-scale dynamo can operate.
In principle, �gure B.3 states that our approximation is valid also for larger Pm up
to Pm → ∞. However, at some point we face the problem in which the potential
gets negative also below the viscous range. For Pm → ∞, the negative part of the
potential in the viscous range clearly dominates. As we do not account for this range
in the calculations above, our results are only valid for su�ciently small Pm.
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APPENDIXC

Tables of De�nitions and Constants

Symbol Value (in cgs-units) Name

c 2.998× 1010 cm s−1 speed of light

G 6.673× 10−8 cm3 s−2 g−1 Gravitational constant

h 6.63× 10−27 erg s Planck constant

k 1.38× 10−16 erg K−1 Boltzmann constant

σ 5.67× 10−5 erg cm−2 s−1 deg−4 Stefan-Boltzmann constant

e 4.803× 10−10 √erg cm elementary charge

mu 1.661× 10−24 g atomic mass unit

mp 1.67× 10−24 g proton mass

me 9.109× 10−28 g electron mass

σT 6.65× 10−25 cm2 Thomson cross section

Table C.1: Table of physical constants.
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Symbol Value (in cgs-units) Name

AU 1.50× 1013 cm astronomical unit

pc 3.086× 1018 cm parsec

M� 1.99× 1033 g mass of the Sun

R� 6.96× 1010 cm radius of the Sun

L� 3.90× 1033 erg s−1 luminosity of the Sun

H0 67.11 km Mpc−1 s−1 Hubble constant

Ωm 0.3175 matter density parameter

Table C.2: Table of astronomical constants.

cgs-Unit SI-Unit Physical Meaning

1 cm 1 m = 102 cm distance

1 s 1 s time

1 g 1 kg = 103 g mass

1 dyn = 1 cm g s−2 1 N = 105 dyn force

1 erg = 1 cm2 g s−2 1 J = 107 erg energy

1 esu = 1
√
erg cm 1 C =

3.336 · 1010√erg cm
electric charge

1 G 1 T = 104 G magnetic �eld strength

Table C.3: Di�erent unit systems: cgs verses SI.
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Symbol De�nition Meaning

x scalar

x vector

e unit vector

δij δij =

{
0 , i 6= j

1 , i = j
Kronekar delta

εijk εijk =





+1 , even permutation

−1 , odd permutation

0 , repeated index

Levi-Civita tensor

a · b ∑
i aibi scalar product

a× b
∑

i,j εijkaibjek cross product

∇ ∑
i

∂

∂xi
nabla operator

∇u

∑
i

∂

∂ui
nabla operator for velocity

∂

∂t
partial time derivative

D

Dt

D

Dt
=

∂

∂t
+ ẋ∇+ u̇∇u total time derviative

...′ one-dimensional spatial deriva-
tive

˙... time derivative

〈...〉 ensemble average

Table C.4: Table of the mathematical nomenclature and conventions.
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Name De�nition Physical Meaning

t time

r distance coordinate

x position

v velocity

m mass

n particle density

ρ ρ = mn mass density

µ dynamic viscosity

ν ν ≡ µ

ρ
kinematic viscosity

η η ≡ c2

4πσ
magnetic di�usivity

σ electric conductivity

ω ω = ∇× v vorticity

B magnetic �eld

E electric �eld

j electric current density

ϑ slope of the turbulence spectrum

Re Re =
V L

ν
hydrodynamical Reynolds
number

Rm Re =
V L

η
magnetic Reynolds
number

Pm Pm =
Rm
Re

=
ν

η
magnetic Prandtl
number

L forcing scale of turbulence

`ν `ν = L Re−1/(ϑ+1) viscous scale of turbulence

`η `η = L Rm−1/(ϑ+1) resistive scale
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T ij Tijδ(t− s) ≡ 〈δvi(x, t)δvj(y, s)〉 correlation function of the
turbulent velocity �eld

TL longitudinal correlation function
of the turbulent velocity �eld

TN transversal correlation function
of the turbulent velocity �eld

Mij Mij ≡ 〈δBi(x, t)δBj(y, t)〉 correlation function of the
turbulent magnetic �eld

ML longitudinal correlation function
of the turbulent magnetic �eld

MN transversal correlation function
of the turbulent magnetic �eld

ψ(r) ML ≡
1

r2
√
κdi�

ψ(r)e2Γt eigenfunction of the Kazantsev
equation

θ(x) ψ(x) ≡ ex/2θ(x) eigenfunction of the Kazantsev
equation

p(x) p(x) ≡ −(Γ + U(x))e2x

κdi�(x)
− 1

4
�p-function� (in Kazantsev
equation)

Γ growth rate

Γ̄ Γ̄ ≡ L

V
· Γ normalised growth rate

κdi� di�usion coe�ent

U �potential� in Kazantsev
equation

cs sound speed

T� T� ≡ (Gρ)−1/2 free-fall time

LJ LJ ≡
cs√
Gρ

Jeans length

MJ MJ ≡
4

3
π

(
LJ

2

)3

Jeans mass

Ṁ? star formation rate

z redshift

Table C.5: Table of frequently used de�nitions for physical quantities.
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