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ABSTRACT 

Acute myeloid leukaemia is a malicious disease. Although the initial chemotherapeutic 

treatment often leads to a complete remission (a disappearance of all manifestations of 

disease), the effective survival rate is only (30-40) % over 4 years due to a high relapse 

rate. This relapse is attributed to leukaemic stem cells residing in the protective environ-

ment of the bone marrow niche. There are two major approaches aiming at achieving 

better long-term therapeutic results. The first is to make the leukaemic stem cells more 

susceptible to chemotherapeutic agents and the second is to increase the efficiency of 

haematopoietic stem cell transplants, which are used to regenerate the haematopoietic 

system after failure due to chemotherapy. 

When searching for a receptor-ligand pair suitable as target for therapeutic agents, the 

prerequisite is that it must exhibit differences between the interaction it mediates in 

healthy and leukaemic cells. A detailed understanding of the mediated interaction and 

the differences would then allow exploitation of these to selectively mobilise the 

leukaemic stem cells increasing their susceptibility for chemotherapeutic drugs. In this 

work the flow-induced rolling interaction of leukaemic cells with hyaluronic acid was 

studied in detail using a suspension and an epithelial model cell line. It could be 

demonstrated, that the flow induced rolling interaction on hyaluronic acid observed for 

these cells was solely mediated by the cell surface receptor CD44 and that it was 

independent of the cell type tested. Next to a detailed validation and characterisation of 

this dependency and the properties of the interaction, the relevance of this interaction 

for the haematopoietic system and for leukaemic cells was evaluated. Therefore, the 

CD44 mediated interaction with hyaluronic acid of healthy haematopoietic progenitor 

cells from umbilical cord blood, mobilised peripheral blood and the bone marrow with 

that of leukaemic blasts was compared. Throughout the cell types tested two forms of 

interaction with hyaluronic acid were observed; a flow induced rolling and an immobile 

adhesion. It could be shown that while the rolling interaction was comparable for all cell 

types tested, the immobile adhesion to hyaluronic acid and its susceptibility to a 

monoclonal CD44 antibody (clone BU52) were not. The immobile adhesion was found 

predominantly in leukaemic cells, only playing a subordinate role in the interaction of 

healthy cells with hyaluronic acid. It could be demonstrated that a vicinity of the cells to 

the bone marrow upon isolation was directly correlated to an incomplete suppression of 

the immobile adhesion by BU52. Furthermore, this incomplete suppression could be 

linked to a non-response to induction chemotherapy and subsequently to a poor 
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therapeutic outcome. Besides investigating the interaction with surfaces artificially 

coated with hyaluronic acid, the possibility of using surfaces covered with mesenchymal 

stromal cells isolated from the bone marrow as more realistic binding partners was 

explored. Furthermore, the effect of a routinely used mobilisation reagent, namely 

Plerixafor®, on the migration and cell-surface interaction under flow was investigated. It is 

not only of great interest to understand the mechanisms of retention in the niche, but 

also to develop more sophisticated methods of in vitro stem cell expansion. In this 

context the slow and continuous release of e.g. cytokines or growth factors is of great 

interest. The cavities in porous materials present the unique opportunity of achieving just 

that by being pre-loaded with such agents. These can then under the right conditions be 

released to the cells. Amongst the porous materials the metal-organic frameworks 

protrude due to their high structural and chemical flexibility. In this work a novel 2-D 

metal-organic framework structure, namely SURMOF 2, was tested towards its 

biocompatibility and smart-release properties. It could be shown that SURMOF 2 was 

highly stable in protein free aqueous media and that its building units did not impair the 

growth of rat embryonic fibroblasts. Although the stability in cell culture medium is still 

limited, the water stability and the biocompatibility of the components are the starting 

point for future SURMOF 2 cell culture applications. A first application of SURMOF 2 as a 

smart-release matrix was achieved with the marine bacterium Cobetia marina under salt 

water conditions. The results demonstrated the general applicability of SURMOF 2 as 

bioactive substrates with responsive properties. For the future, fine-tuning of the stability 

of SURMOFs will allow to tailor drug release systems for cytokine or growth factor 

delivery in in vitro stem cell cultures. 
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KURZFASSUNG 

Die akute myeloische Leukämie ist eine heimtückische Erkrankung. Obwohl die 

Induktionstherapie häufig zu einer kompletten Remission (der vollständige Wegfall aller 

Krankheitssymptome) führt, liegt die effektive Überlebenschance lediglich bei (30-40) % 

über einen Zeitraum von 4 Jahren. Dies geht auf eine hohe Rezidivrate zurück, welche auf 

die sogenannten leukämischen Stammzellen zurückgeführt wird. Diese leukämischen 

Stammzellen verweilen in der geschützten Umgebung der Knochenmarksnische. Es gibt 

zwei primäre Ansätze, die darauf abzielen bessere Langzeitresultate zu erreichen. Der 

eine ist es die leukämischen Stammzellen für Chemotherapeutika empfänglicher zu 

machen und der andere ist es die Effizienz der Transplantation gesunder hämato-

poietischer Stammzellen zu verbessern. Diese Stammzelltransplantation dienen zur durch 

die Chemotherapie notwendigen Regeneration des hämatopoietischen Systems. 

Wenn man ein Rezeptor-Liganden-Paar sucht, welches das Ziel therapeutischer Agenzien 

sein kann, ist die Grundvoraussetzung, dass es Unterschiede zwischen der Wechsel-

wirkung aufweist, die es in gesunden und leukämischen Zellen mediiert. Ein genaues 

Verständnis der Wechselwirkung und der Unterschiede würde es dann ermöglichen diese 

auszunutzen um gezielt die leukämischen Stammzellen zu mobilisieren. Dies würde dann 

ihre Empfänglichkeit für chemotherapeutische Agenzien erhöhen. In dieser Arbeit wurde 

das flussinduzierte Rollen leukämischer Zellen auf Hyaluronsäure mit Hilfe einer 

Suspensions- und einer Epithelzelllinie en détail untersucht. Es konnte gezeigt werden, 

dass das flussinduzierte Rollen dieser Zellen auf Hyaluronsäure allein von CD44 mediiert 

wurde und dass es unabhängig von dem Zelltyp war bei dem es auftrat. Nebst einer 

sicheren Validierung dieser Abhängigkeit und einer Charakterisierung der Wechsel-

wirkungseigenschaften wurde die Relevanz dieser Wechselwirkung für das 

hämatopoietische System und für leukämische Zellen untersucht. Dies wurde erreicht 

indem die CD44 mediierte Wechselwirkung gesunder hämatopoietischer Progenitorzellen 

aus Nabelschnurblut, mobilisiertem Peripherblut und dem Knochenmark mit Hyaluron-

säure mit der leukämischer Blasten verglichen wurde. In allen getesteten Zelltypen 

konnten zwei Formen der Wechselwirkung mit Hyaluronsäure beobachtet werden; ein 

flussinduziertes Rollen und eine unbewegliche Adhäsion. Es konnte gezeigt werden, dass 

das Rollverhalten aller untersuchten Zelltypen vergleichbar war. Dies was für die 

unbewegliche Adhäsion und deren Empfänglichkeit für die Unterdrückung durch einen 

monoklonalen CD44 Antikörper (Klon BU52) nicht der Fall. Diese unbewegliche Adhäsion 

wurde vor allem in leukämischen Zellen beobachten. Für die Wechselwirkung gesunder 
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Zellen mit Hyaluronsäure spielte sie lediglich eine untergeordnete Rolle. Es konnte gezeigt 

werden, dass eine Nähe zum Knochenmark bei der Gewinnung der Zellen, direkt mit einer 

Unvollständigen Unterdrückung der unbeweglichen Adhäsion durch BU52 korrelierte. Des 

Weiteren, korrelierte die Resistenz gegen BU52 mit einem Misserfolg der Induktions-

therapie und somit mit einem schlechten langfristigen klinischen Verlauf. Im Folgenden 

wurden erste Tests durchgeführt, die die Erweiterung der Analyse von künstlichen mit 

Hyaluronsäure beschichteten Oberflächen hin zu mit aus der Knochenmarksnische 

isolierten mesenchymalen Stammzellen bedeckten Oberflächen zum Ziel hatten. Zudem 

wurde der Einfluss des vielfach verwendeten Mobilisierungsreagenzes Plerixafor® auf die 

Migration und auf die Zell-Oberflächen Interaktion unter Fluss untersucht. Es ist nicht nur 

von großer Wichtigkeit die Mechanismen der Retention der Zellen in der Nische zu 

verstehen, sondern auch hochentwickelte Methoden zur in vitro Stammzellkultivierung zu 

entwickeln. In diesem Zusammenhang ist die langsame und kontinuierliche Freisetzung 

von beispielsweise Zytokinen oder Wachstumsfaktoren von großem Interesse. Die Hohl-

räume in porösen Materialien bieten die einzigartige Möglichkeit genau das zu erreichen 

indem sie vorab mit solchen Agenzien beladen werden. Diese können dann unter den 

richtigen Bedingungen an die Zellen abgegeben werden. Unter den porösen Materialien 

stechen die metall-organischen Gerüststrukturen durch ihre hohe strukturelle und 

chemische Flexibilität hervor. In dieser Arbeit wurde die neuartige 2-D metall-organische 

Gerüststruktur „SURMOF 2“ in Bezug auf ihre Biokompatibilität und Smart-Release 

Eigenschaften hin untersucht. Es konnte gezeigt werden, dass SURMOF 2 in proteinfreien 

wässrigen Medien äußerst stabil ist und dass die Bausteine das Wachstum von 

Fibroblasten in keiner Weise beeinträchtigt. Obwohl die Stabilität in Zellkulturmedium 

noch beschränkt war, waren die Wasserstabilität und die Biokompatibilität der Bausteine 

ein erster Schritt in Richtung der Applikation von SURMOF 2 in der Zellkultur. SURMOF 2 

konnte jedoch nichtsdestotrotz bereits in Salzwasser mit dem marinen Bakterium Cobetia 

marina als Smart-Release Oberfläche zum Einsatz gebracht werden. Die Beobachtungen 

demonstrierten die generelle Anwendbarkeit von SURMOF 2 als bioaktives Substrat mit 

reaktiven Eigenschaften. In Zukunft wird das Feintuning der Stabilität von SURMOF 2 es 

erlauben gezielt Drug-Release-Oberflächen für die Zytokin- oder Wachstumsfaktorfrei-

setzung in der in vitro Stammzellkultivierung zu designen. 
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1 INTRODUCTION 

Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults. 

The Swedish Acute Leukemia Registry lists 98 % of all patients diagnosed with AML 

between 1997 and 2005 in Sweden. Analysis of the data collected in this registry showed 

that approximately 15 new cases were diagnosed annually per 100,000 citizens under the 

age of 60. This value drastically increased with age reaching over 120 new diagnoses 

annually per 100,000 citizens between the age of 80 and 84. The median age of first 

diagnosis was 72.[1] This demonstrates the threat posed by this disease, especially for the 

elderly. While most patients treated for AML reach complete remission (CR) after initial 

chemotherapy, the relapse rate is high and the overall survival rate is only 30-40 % over 

4 years. The general consent is that leukaemic cells are generated by stem cells, similar to 

healthy blood cells in haematopoiesis.[2-3] These leukaemic stem cells (LSC) are thought to 

share the haematopoietic stem cells (HSC) capability of self-renewal, their vicinity to the 

bone marrow (BM) niche and most inconveniently their chemotherapy resistance.[4] The 

proposed interactions of LSC with their niche are schematically depicted in Figure 1.  

 

Figure 1: Schematic depicting the microanatomy of the leukemic stem cell niche and strategies to target 
the LSC in its niche. Strategies include the blocking of cytokines or adhesion molecules like CD44 or 
integrins, the mobilisation of LSCs out of their niche by GCS-F or AMD3100. Image taken from [5]. The 
interactions with the niche targeted in this work are marked in yellow. 
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The sketch also presents some strategies applicable when aiming at increasing the 

efficiency of the apoptosis induction in LSC by cytostatic and/or chemotherapeutic 

agents. Some of the targets studied in this work are marked in yellow. Thus far targeting 

of adhesion molecules, e.g. CD44 or integrins, could reduce the interaction of LSC with 

their niche[6-7] or the adhesion to fibronectin in the BM microenvironment,[8] respectively. 

Furthermore, the necessity of CD44 for the homing and engraftment of healthy 

haematopoietic progenitor cells (HPC) to the BM niche could be established.[9] Due to the 

apparent relevance of CD44 in this context the interaction of this receptor with its major 

ligand hyaluronic acid (HA) was the main focus of this work. The capability of leukaemic 

cells and HPC from umbilical cord blood expressing CD44 to exhibit a catch-bond like, 

flow-induced rolling interaction with HA under flow conditions was recently 

demonstrated in our workgroup.[10] A microfluidic shear force setup, developed by 

C. Christophis in our workgroup,[11-12] was applied to characterise this interaction. During 

the initial characterisation phase the general dependency of this form of interaction with 

HA on CD44 was verified and the properties of the CD44-HA interaction, such as the 

rolling velocity and its dependency on the availability of the receptor, were illuminated. 

Furthermore, it was determined whether this form of interaction is specific for 

suspension cells, such as HPC, or whether it can also be found in other CD44 expressing 

cells, such as epithelial liver cancer cells. Following the determination of the similarities 

and differences between these two fundamentally unalike cell types, a comparison was 

made between the CD44-HA interaction of HPC from different sources and leukaemic 

blasts (as surrogates for LSC as blasts can be acquired in larger quantities than LSC). In this 

context the interaction of HPC from umbilical cord blood, mobilised peripheral blood and 

the bone marrow was compared to that of leukaemic blasts isolated either from the 

peripheral blood or the BM. The aim was to identify differences that may in the future be 

targeted for the specific mobilisation of LSC from the niche. This would allow the 

application of milder chemotherapeutic agents, sparing the HSC, while still inducing 

apoptosis in the LSC and thereby preventing relapse of the leukaemia. 

The BM niche, in which HSC and/or LSC dwell, is comprised of a variety of cells. All of 

these, less the HSC, can be derived from mesenchymal stromal cells (MSC).[13-14] For this 

reason MSC are widely used as model system for the BM niche. In the context of studying 

the CD44-HA interaction, MSC feeder layers were used instead of artificial HA-coated 

substrates. The aim was to establish a protocol for the growth and measurement 

procedure on MSC feeder layers and to investigate whether a similar interaction could be 

observed on MSC as it could on artificially coated HA surfaces. 

The chemokine stem cell derived factor 1 alpha (SDF-1α) is secreted by MSC in the BM 

niche.[15] This chemokine and its receptor are reported to play a major role in the 
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induction of chemotaxis in HPC[16-18] and in the process of homing of HSC to the BM 

niche.[19] Furthermore, as indicated in Figure 1, mobilisation of the LSC with granulocyte-

colony stimulating factor (G-CSF)[20-22] or AMD3100 (also known as Plerixafor®), which 

antagonises SDF-1α,[23] has also proven promising in increasing chemotherapeutic 

success. First tests concerning the effect of Plerixafor® and SDF-1α on the migration of 

HPC and on the CD44-HA interaction were conducted in this study. 

The haematopoietic stem cell transplantation (HSCT) is commonly applied in the 

treatment of patients with BM failure states often originating from high dosage 

chemotherapy. To achieve maximal tumour-kill efficiency higher doses of chemo-

therapeutic agents are applied and the haematopoietic organ is rescued by HSCT.[24] 

Today, over 350 centres in Europe perform a total of more than 18,000 HSCT per year.[25] 

One has to distinguish between autologous transplantations, which employ a patient’s 

own BM tissue, and allogeneic transplantations, which are conducted between two 

genetically different individuals (with the rare exceptions of transplantations between 

identical twins; often referred to as syngeneic transplantations).[26] The possibility of 

conducting HSCT is often limited by the availability of a donor and by the amount of HSC 

in the graft, which is important to ensure successful engraftment.[27-28] To increase the 

amount of available HSC, it has often been attempted to culture HSC in vitro. Some 

studies could demonstrate modest, transient expansion of long-term repopulating HSC in 

vitro in response to particular cytokines. However, in most cases the in vitro proliferation 

of HSC led to differentiation or apoptosis.[29-34] Ideally the proliferation inducing cytokines 

should be added continuously, as would be the case in vivo. A possibility of doing so 

would be the application of porous materials such as e.g. zeolites or porous silicon. Due 

to the possibility of storing small molecules in their pores, these materials have often 

been applied in areas such as catalysis, sensors and gas filtering or storage.[35-42] Just this 

capability of storing small molecules could be the key to a continuous release of pro-

liferation inducing cytokines during culture. Providing the pore size is sufficient, the 

cytokines would need to be loaded into the pores and then either a continuous release of 

the same or a slow degradation of the host structure, also slowly releasing the incorp-

orated cytokines, would need to be induced. A class of porous materials which is highly 

flexible in its structural and chemical properties are the metal-organic frameworks.[43-45] 

In this study the first analysis of a novel 2-D surface bound metal-organic framework 

(SURMOF) structure, namely SURMOF 2, was conducted investigating the stability in 

aqueous media and the biocompatibility of the building units. Application a as smart-

release surface that responds to the presence of bacteria under marine conditions 

demonstrated the potential of SURMOFs as bioactive surfaces for in vitro culture of HSC 

in the future. 
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2 THEORETICAL BACKGROUND 

In this chapter the theoretical background relevant to this work is discussed. The roles of 

the haematopoietic stem cell and its niche as well as the question of what happens when 

haematopoiesis fails and an illness such as leukaemia arises are examined. The cell 

surface receptor CD44 is known to be involved in the homing and engraftment of both 

healthy haematopoietic and leukaemic stem cells. Therefore, the interaction mediated by 

this receptor is reviewed and in this context the mechanism of cellular rolling on surfaces 

as possibility for extravasation from the blood stream is discussed. Finally, possibilities to 

measure and analyse this interaction in vitro are presented and a class surface coatings, 

namely the surface bound metal-organic frameworks, which may find application in cell 

culture someday, are introduced. 

2.1 HAEMATOPOIESIS, HAEMATOPOIETIC STEM CELLS 

AND THEIR NICHE 

Blood is a highly complex bodily fluid composed of the blood plasma and blood cells. The 

plasma, which is mostly water, carries both nutrients such as proteins, glucose or 

minerals and the blood cells. The blood cells in turn are composed of myeloid cells, e.g. 

erythrocytes, granulocytes and macrophages, and lymphoid cells, e.g. T-lymphocytes, B-

lymphocytes and natural killer cells. In a healthy adult human being each cubic millilitre of 

blood contains approximately (4-6) million cells that circulate in the blood stream for up 

to 120 days.[46] This limited cell life span makes it obvious that new cells must be 

produced continuously. This mammoth task is shouldered by a set of immature HSC 

located in the BM after birth.[47] The most striking characteristics of these HSC are the 

capability of self-renewal and the ability to differentiate into cells of multiple linages as 

schematically shown in Figure 2.[48-51] The differentiation is undergone in steps. The HSC 

develop from multi-potent progenitors (MPP also known and from here on referred to as 

haematopoietic progenitor cells HPC), which still possess the capability of self-renewal, 

over common myeloid progenitors (CMP) or common lymphoid progenitors (CLP) and a 

couple of further differentiation grades to the respective fully developed cell.[26,51] That 

this system is highly effective, can easily be seen from the fact that (2-3) million red blood 

cells alone are released into the blood stream from the BM every second in order to 

maintain steady state levels in the peripheral circulation.[46] 



2.1 Haematopoiesis, Haematopoietic Stem Cells and their Niche 

 

5 

 

 

Figure 2: Haematopoiesis of bone cells and marrow stromal cells. Each differentiation of an HSC results in 
one daughter cell that leaves the marrow and differentiates and one that remains in the niche. The first 
daughter cell then differentiates via a multipotent progenitor (MPP) into various linages. In the marrow the 
HSC are surrounded by osteoblasts, endothelial cells and mesenchymal stromal cells (MSC). The 
differentiation scheme of the MSC is also depicted. Abbreviations used in this scheme: common myeloid 
progenitor (CMP); common lymphoid progenitor (CLP); granulocyte/macrophage progenitor (GMP); 
megakaryocyte erythroid progenitor (MKEP); multipotent progenitor stem cell (MPP); osteoclast progenitor 
(OC); spindle-shaped N-cadherin

+
CD45

–
 osteoblastic cell (SNO cell); trabecular bone area (TBA). Image taken 

from Yin et al., 2006.
[51]

 

The capability of HSC to self-renewal is the key to the constant cell division required for 

the generation of the vast amount of cells necessary to replenish the blood stream. The 

ability of HSC to an asymmetric division,[52] in turn, makes this continuous self-renewal 

possible. While one daughter cell remains a HSC populating the niche the other daughter 

cell undergoes further differentiation.[53] So far it is not fully understood what exactly 

governs the mechanism of self-renewal and differentiation. The importance of such a 

mechanism is clear, however, as the stem cell population would deplete in the case of cell 

differentiation overwhelming self-renewal. Similarly, unchecked self-renewal would lead 

to an increased risk of tumourigenesis.[51,54] The idea of a stem cell niche as a confined 

microenvironment in the BM was first described by Schofield in 1978.[55] This stem cell 

niche is thought to provide the conditions to control proliferation and differentiation of 

HSC. It could be demonstrated that a vicinity of HSC to a stem cell supporting 

microenvironment could induce asymmetric differentiation.[56-57] This could not be 

induced by cytokines alone[58] and thus demonstrates the relevance of the stem cell niche 

for the longevity of the HSC. If HSC are separated from the BM niche, e.g. by endogenous 
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mobilisation,[59-60] induced mobilisation,[61] or after being transplanted[62] they migrate 

back to the BM niche. This process is known as ‘homing’. Figure 3 shows the major steps 

involved in HSC homing. Similar to the homing of leukocytes to sites of inflammation 

(discussed in section 2.3),[63-67] homing of HSC to the BM niche involves tethering and 

rolling on the endothelium, then sticking and subsequent transmigration through the 

endothelium. 

 

Figure 3: Schematic outlining the major steps in HSC homing. The process of HSC homing involves rolling 
on the endothelium, sticking and transmigration before the HSC migrates to the niche where it is capable of 
self-renewal and asymmetric division. Image inspired by Barrett et al., 2008.

[68]
 

In the context of homing it was shown that the cytokine stem-cell-derived factor-1 alpha 

(SDF-1α or C-X-C motif ligand 12; CXCL12) is essential for the process, as HSC home 

towards an SDF-1α gradient.[9,16,69-70] This is produced by a type of cells found in 

abundance in the BM niche; the mesenchymal stromal cells (MSC). In fact, MSC can 

differentiate into all cell types less the HSC found in the niche (indicated in Figure 2).[14,71] 

It was shown that MSC could fully re-establish the BM microenvironment in irradiated 

mice.[72] Considering the abundance of MSC in the BM niche, it is not surprising that they 

play a significant role for maintaining the self-renewal potential of HSC/HPC.[73-75] MSC are 

defined as plastic adherent under standard culture conditions. Furthermore, they must 

present the antigens CD73, CD90 and CD105 and lack haematopoietic antigens (CD45, 

CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules) and they must 

be capable of differentiating into osteoblasts, adipocytes and chondroblasts under in vitro 

conditions.[76-77] The mechanisms of interaction of HSC with the niche are vast. They range 

from cell-cell interactions, over interactions with the extracellular matrix (ECM) to the 

recognition of soluble factors.[78] Figure 4 shows an overview over some of the possible 

interactions between HSC and MSC, the ECM and some soluble factors expressed by 

MSC.[27]  
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Figure 4: Interactions between HSC and their surrounding microenvironment. Interaction with the HSC 
takes place via soluble factors, cell-cell interactions, extracellular matrix components and metabolites and 
oxygen tension. The interaction between the receptor CD44 and HA is of special interest for this study and 
is therefore highlighted. Image taken from Wagner et al., 2008.

[27]
 

2.2 ACUTE MYELOID LEUKAEMIA 

Leukaemia is a carcinoma of the blood. It has been suggested that leukaemia evolves 

when the proliferation of HSC, as described in the last section, is undergone in an 

uncontrolled manner by cells termed leukaemic stem cell (LSC). These cells originate from 

genetic (mutations of the DNA) and/or epigenetic (other heritable modifications) changes 

in HSC or progenitors. The undergone changes detach the LSC from the regulated 

haematopoietic system, thereby, enabling the uncontrolled proliferation of the cells, 

which in turn leads to the flooding of the BM niche and later the circulatory system with 

immature cells.[79-84] Figure 5 demonstrates the progression of leukaemia from healthy 

HSC to leukaemic blasts. With each cellular mutation the rate of proliferation can be 

increased. At some point the transformed cells no longer differentiate into mature cells, 

but rather remain at a very primitive level often even with the capability of self-renewal. 

These primitive blasts flood the haematopoietic system and interfere with normal 

haematopoiesis, resulting in anaemia, thrombocytopenia and neutropenia. 
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Figure 5: Leukaemic progression at the haematopoietic stem cell level. Proliferation of normal HSC yields 2 
HSC, one of which undergoes differentiation. A) Preleukaemic progression of LSC development. Here two 
events are depicted. Each event (2 shown) leads to cells capable of outperforming healthy HSC in terms of 
proliferation. B) Proliferation of HSC leads to progenitors and mature cells (left). Partially transformed cells 
still yield progenitors and mature cells, but in far larger amounts (centre). In fully transformed cells the 
development of mature cells is blocked and large amounts of primitive blast cells are produced (right). 
These cells can be HSC-like or self-renewing transformed progenitors. Image taken from Yin et al., 2006.

[51]
 

Acute myeloid leukaemia (AML) is characterised by the uncontrolled production of 

myeloid blasts. Due to the many different differentiation stages in the myeloid 

differentiation pathway at each of which the leukaemic transformation can take place, 

AML is a highly heterogeneous disease. Though the predominant pathologic cell type is 

not the origin of the disease, different leukaemias are mostly classified by these cell types 

and/or the clinical course of the disease.[26] Two systems are widely used to classify the 

different AML. The French-American-British (FAB) system relies mainly on the final step of 

blast differentiation,[85-86] while the system of the World Health Organisation (WHO) takes 

cytogenetic and molecular factors into account that are known to impact the 

prognosis.[87-88] 

Treatment of AML is undergone by induction chemotherapy (one to two intervals of 

intensive chemotherapy to achieve complete remission (CR)) followed by post-remission 

therapy (to sustain the results achieved during induction therapy). Generally treatment of 

AML with chemotherapy is highly effective and often results in CR. However, the relapse 

rate is also high, resulting in an overall survival rate of only (30-40) % over 4 years. The 

LSC are held responsible for this high relapse rate.[2-3] Lapidot et al. showed that 

CD34+/CD38- cells (these are typical markers for HSC)[89-91] isolated from patients with 

AML could initiate AML in severe combined immunodeficiency (SCID) mice, thus, proving 

the relevance of these cells for the establishment of leukaemia in an organism. As these 

LSC share the vicinity to the niche and the chemotherapeutic resistance of the HSC,[4] high 

dosage chemotherapy is applied to achieve maximum tumour-kill efficiency. As this 

harms the whole haematopoietic system, it subsequently rescued by haematopoietic 

stem cell transplantation (HSCT).[24] This has been done since 1959.[26,92] For 
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transplantation donor HSC are mobilised from the BM niche to the blood stream from 

where they can easily be isolated. In the clinical environment this is achieved by a 

treatment with Plerixafor® (syn.: AMD3100; 1,1-[1,4-phenylene-bis(methylene)]-bis-

1,4,8,11-tetra-azacyclo-tetradecane).[93-95] Although the exact mechanism of the 

treatment with Plerixafor® is not yet fully understood,[96-97] it has been shown to block the 

CXCR4 receptor.[98] This is the receptor for the chemokine stem cell derived factor 1 alpha 

(SDF-1α), which is known to play a major role in the induction of chemotaxis in HPC[16-18] 

and in the process of homing of HSC to the BM niche.[19] Both are essential for the 

repopulation of the niche by HSC/HPC, e.g. after autologous or allogeneic HSCT.[99-101] 

2.3 CELL ADHESION AND ROLLING 

Cellular interactions are involved in a broad range of basic cell functions. Some of these 

are cell growth,[102] differentiation[103] and migration.[104] Furthermore, cell adhesion and 

changes of the same are involved in tissue development,[105] wound healing,[106] cancer 

metastasis[107] and the development of leukaemia.[108] The overall interaction of cells can 

be classified as firm adhesion and short-term adhesion. 

Firm adhesion of cells is of great relevance for the connective tissue, wound healing, 

growth and immune defence processes. Cells express various receptors responsible for 

the binding to different substrates or cells. They may bind to other cells via e.g. tight 

junctions, desmosomes or adherence junctions or to the ECM via e.g. hemidesmosomes 

or focal contacts. The receptors involved in these binding patterns are selectins, integrins, 

cadherins or receptors from the immunoglobulin superfamily.[109-110] 

In contrast to this firm, long-term adhesion stand methods of transient, short-term 

interactions, e.g. the rolling of cells over a surface such as the endothelium. For 

leukocytes, for example, rolling across endothelial cells in blood vessels is a key step in 

the extravasation process at sites of inflammation. Leukocyte rolling, adhesion and 

transmigration was described in the nineteenth century[111-112] and this selectin- and 

integrin-mediated extravasation has been extensively studied ever since.[63-67] A good 

overview is presented in the book ‘The selectins’.[113] A schematic overview of the steps of 

the extravasation process with the most important receptors and binding partners is 

given in Figure 6. Margination is the process of leukocytes moving away from the central 

blood stream towards the endothelium,[114] where the capture may take place. Upon 

inflammation, endothelial cells rapidly express P-selectin which can interact with the 

glycoprotein ligand 1 (PSGL-1) present on the surface of leukocytes.[115] Next to the mere 

presence of selectins and their ligands, threshold fluid shear forces of approximately 
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(0.4-0.5) dyn/cm² are required to promote the P-, E-, or L-selectin-mediated rolling of 

leukocytes on endothelial cells.[116-117] Beyond this value the number of rolling leukocytes 

increases with the shear stress until the optimum level is reached at shear stresses of 

approximately 1 dyn/cm². After surpassing this shear stress level the number of rolling 

cells was reported to then decrease with increasing shear stress.[118] These values 

correspond well with the wall shear stress found in postcapillary venules (approximately 

(1-4) dyn/cm²), where the extravasation of leukocytes mostly occurs.[119] L-selectin is 

supposed to play the most important role in capture and initiation of rolling. P-selectin is 

also reported to be involved in cellular capture, but its importance in this context is 

seemingly inferior to that of L-selectin. Only in the absence of L-selectin, the capture 

becomes P-selectin dependent.[120] The rolling velocity is greater though in this case, 

suggesting a weaker binding to L-selectin than to P-selectin.[113] The overall rolling velocity 

of leukocytes was found to be in the range of (20-40) µm/s under physiologic flow 

rates.[121] It was shown that this value is strongly dependent on the tissue with which the 

leukocytes interact. A span of (5-100) µm/s was observed for the rolling on different 

tissues.[113,122-126] Inflammatory endothelial cells also express E-selectin in response to the 

treatment with inflammatory cytokines. E-selectin participates in the conversion of rolling 

to firm adhesion. It binds to sialylated carbohydrates present in surface proteins of 

leukocytes and reduces the rolling velocity. This speed reduction is important for the 

leukocyte to firmly bind to the endothelium via integrins e.g. VLA-4, which binds to the 

receptor VCAM-1 present on the endothelial cells.[64] 

 

Figure 6: Leukocyte Extravasation. The process of leukocyte extravasation is mainly governed by the steps 
of cell capture, rolling, firm adhesion and transmigration of the cell through the endothelium. Image 
inspired by Ley et al., 2007 and Albelda et al., 1994.

[64,115]
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2.4 CELL SURFACE RECEPTOR CD44 

However, not only the selectin family is capable of mediating a flow-induced interaction. 

It was shown that the transmembrane glycoprotein CD44 also mediates a flow-induced 

rolling interaction of cells on hyaluronic acid (HA). This could be demonstrated for the 

leukaemic suspension cell line KG-1a (Figure 7) on surfaces coated with HA in our 

workgroup by Christophis et al..[10] It was shown that the flow induced interaction was 

only observed for the CD44 positive cell line KG-1a and only on HA. Furthermore, the 

characteristics of the rolling on HA were remarkably similar to those observed for the 

selectin mediated rolling of leukocytes discussed in section 2.3. For the CD44 positive cell 

line, flow induced rolling was observed beyond a threshold shear stress of approximately 

0.2 dyn/cm², with the maximum fraction of interacting cells reached at a shear stress of 

roughly 1 dyn/cm².[10,12] 

 

Figure 7: Interaction of CD44 negative and positive cells with different surfaces. The interaction of the 
CD44 negative leukaemic suspension cell line Jurkat (A) and of the CD44 positive leukaemic suspension cell 
line KG-1a (B) was analysed in the microfluidic setup also used in this study.

[11-12]
 Only the KG-1a cells 

showed the flow induced interaction with HA and not with either of the control surfaces (alginate and 
glass). Image adapted from Christophis et al., 2011.

[10]
 

The cell surface receptor CD44, responsible for this interaction, is an integral membrane 

protein belonging to the link module superfamily.[127-128] It was first identified by Underhill 

and Toole.[129] CD44 mainly binds to HA,[130-132] but is also capable of recognising other 

binding partners,[133] such as collagen,[134] laminin,[134] fibronectin,[135] osteopontin[136] and 

itself.[137] As diverse as the binding partners of CD44 are, as diverse are its functions in the 

body. It has been reported to be involved in morphogenesis and organogenesis,[138-140] in 

haematopoiesis,[141-142] in migration,[143] in homing and proliferation of haematopoietic 

stem cells,[9,144-145] in cancer metastasis[146] and in the activation[141] and rolling[147] of 

leukocytes. 
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The structure of each receptor, as of every other protein generated in the body, is 

encoded in the genome. CD44 is encoded in a single gene containing 20 exons.[148] 

Alternative N- and O-glycosylation[149-155] as well as variability in the mRNA splicing lead to 

a variety of CD44variant isoforms. As shown in Figure 8 the standard isoform CD44s is 

composed of the first and last 5 exons (1-5 and 16-20, standard exon s1-10). This is not 

only the smallest but also the most common isoform. The remaining ten exons (6-15, 

variant exons v1-10) have the potential of being alternatively mRNA spliced during gene 

expression and added to the standard isoform as shown in Figure 9. This results in ten 

isoforms CD44v1-10.[148,156-158] Binding to HA is possible for all CD44variant isoforms, but 

it is strongest for CD44s.[159] The exact mode of interaction between the HA binding 

domain of CD44 and HA has been extensively studied by comparison to other HA binding 

sites, by NMR and by X-ray crystallography. HA is composed of repeating disaccharide 

units of N-acetyl-D-glucosamine and D-glucuronate, connected by β-1,4 and β-1,3 

linkages. It was shown that at least three to five of these disaccharide units are required 

for binding to CD44, that the binding is dependent on the interaction of HA with arginine 

and tyrosine in the binding pocket and that the binding to HA induces a structural 

rearrangement in CD44.[160-164] These structural analyses also undermined the findings of 

a dependency of the CD44 activity on the grade of glycosylation. Glycosylation is, next to 

mitogens and the phosphorylation of specific serine-side chains in the cytoplasmic 

domain, an important regulator of CD44 activity in general. It is because of these 

dependencies that the presence of CD44 on a cell cannot be directly linked to an 

interaction with HA.[159,165-167] Such regulation is mandatory because of the high 

expression of CD44 in mammalian cells[130-132] and because of the variety of processes 

(mentioned above[9,138-147]) in which CD44 is involved. A good example for the regulation 

of the CD44 activity is that while it expressed in most haematopoietic cells in the 

mouse,[168] binding to HA is either often not detectable[169-170] or requires stimulation.[171] 

 

Figure 8: Scheme of the CD44 gene. The scheme shows the standard exons s1-10 and the variant exons 
v1-10. Alternative splicing occurs between s5 and s6. Image taken from Goodison et al., 1999.

[133]
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Figure 9: Scheme of the structure of CD44. The schematic shows the HA binding domain and the region at 
which the alternative slicing occurs. Image taken from Goodison et al., 1999.

[133]
 

2.5 ANALYSIS OF CELL-SURFACE INTERACTIONS 

The methods of characterising the interaction between cells and surfaces are vast. This 

section gives an overview over the most common techniques used for analysis of these 

interactions.  

2.5.1 TECHNIQUES FOR ADHESION STRENGTH MEASUREMENT 

Analysis of the adhesion strength of cells interacting with surfaces varies dramatically 

with e.g. changes of the topography or surface energy. Measurement of the adhesion 

strength can be achieved by a centrifugal force assay or a variety of micromanipulation 

techniques (atomic force microscopes (AFM), microplates,[172] optical tweezers,[173] 

magnetic tweezers[174] and micropipette aspiration[175]) some of which shall briefly be 

described in this section. 

The centrifugal force assay allows a high throughput screening of the adhesion strengths 

of cells under different conditions. Figure 10 gives an overview over the setup and the 

basic functional aspects. Multiwell plates are mounted in a centrifuge (each well can bare 

a different cell treatment such as antibodies, surface type and so forth) and is spun at a 

given rotational speed.  
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Figure 10: Centrifugal force assay. The cells are detached from the surface by centrifugal forces. Image 
taken from Christ et al., 2010.

[176]
 

The force F applied to the cells can be calculated from the cell volume      , the relative 

centrifugal force     and the difference in density between the cell       and the 

medium        . The calculation of     in turn is based on the distance between the 

cell and the rotor centre  , the angular rotor speed   and the gravitational acceleration   

as shown in Equation (1). The formula for the overall force is shown in Equation (2). 

    
   

 
 (1) 

 

  (             )            (2) 

The downside of the technique, opposing the large number of samples that can be 

studied simultaneously, is that only one force may be applied in each experimental run 

making it laborious to determine the actual adhesion strength of a cell sample. 

The cytodetachment technique is a common example for a micromanipulation technique. 

Here a cantilever used in atomic force microscopy is used to detach a cell from a surface 

as shown in Figure 11.  

The force   applied to the 

cantilever in order to detach the cell 

from the sample surface is 

measured in form of the deflection 

of the cantilever   and the stiffness 

of the sample   as shown in 

Equation (3). 

     (3) 

This technique is highly flexible and can apply high forces, allowing the evaluation of the 

adhesion strength of even fully adhered cells. 

 

Figure 11: Cytodetachment technique. An AFM cantilever 
tip is used to detach a cell from a surface. Image inspired by 
Christ et al., 2010.

[176]
 

F



2.5 Analysis of Cell-Surface Interactions 

 

15 

 

2.5.2 HYDRODYNAMIC SHEAR FORCE ASSAYS 

Hydrodynamic shear force assays are also applied for the measurement of the adhesion 

strength of cells to surfaces. The distinctiveness of these assays is, however, that they 

apply shear forces generated by the drag of a liquid along a wall and some of them can, 

therefore, in principle also be used for the observation of the interaction of cells with 

surfaces under shear force conditions. The flow is in all setups kept in the laminar flow 

region, as defined by a Reynold’s number Re < 2300.[177] 

The spinning disc setup allows the determination of the shear stress required to detach 

cells from a surface.[178-179] To achieve 

this cells are seeded on a circular disc 

(hence the name), which is then spun 

in a liquid. The rotation of the disc 

inside the liquid generates a shear 

stress   that is, at a given rotational 

speed   with the viscosity   and 

density   of the fluid, dependent on 

the distance between the cell and the 

disc centre   as shown in 

Equation (4). 

         (    ) (4) 

In the radial flow chamber the shear stress is generated by an active liquid flow. As 

shown in Figure 13 the liquid is 

injected at the centre of the chamber 

and then spreads homogeneously in 

all directions over the surface. With 

increasing distance from the chamber 

centre r the flow and directly propor-

tional to that also the shear stress   

decreases.[180-182] This connection is 

easily deducible from Equation 

(5).[180,182] 

  
   

    
 

    

       
 (5) 

With   being the flow rate,   the viscosity and   the density of the liquid and   the 

distance between the top and bottom plate of the chamber. 

 

Figure 12: Spinning disc setup. The rotation of the disc 
inside a liquid induces a shear force on the cells. Image 
inspired by Christ et al., 2010.

[176]
 

 

Figure 13: Radial flow setup. The liquid is injected at the 
middle of the chamber and flows in all directions. Image 
inspired by Christ et al., 2010.

[176]
 

R

τ

τ

ω

Q

τ
r

h



2 Theoretical Background 

 

16 

 

The parallel plate flow chamber is in its theory closely related to the radial flow chamber. 

Liquid is moved through a rectangular 

channel system (Figure 14) either by 

hydrostatic pressure[183] or pumps.[184] 

The shear stress   in a parallel plate 

flow chamber can be described 

according to Equation (6) if the width 

of the channel is far greater than its 

height.[185-188] 

   
   

   
 (6) 

With   being the volume flow,   the viscosity of the liquid,   the height and   the width 

of the chamber. 

As the parallel plate flow chamber presents the theoretical basis of the channel system 

used in this work it shall be described in more detail later in section 3.8.3, where the 

microfluidic shear force device will be discussed, as well as in the Appendix 

(section 7.1.1.2 and 7.1.1.3). 

2.6 SURFACE-BOUND METAL-ORGANIC FRAMEWORKS 

Metal-organic frameworks (MOF), also known as porous coordination polymers (PCP), are 

a relatively new class of solid state inorganic-organic hybrid materials, which are typically 

characterised by a high crystallinity. They are extremely intriguing due to their structural 

specifications. Similar to zeolites they exhibit a high porosity though lacking the 

restrictions in reagent choice of zeolites. MOFs consist of metal ions or metal oxide 

clusters which coordinate organic linker molecules, hence the name. The combinational 

possibilities are vast resulting in a broad spectrum of MOFs structures with varying pore 

sizes and specific surface areas. According to IUPAC porous materials are classified 

according to the pore size d as micro- (< 2 nm), meso- (2-50 nm) and macroporous 

(> 50 nm).[189] So far micro- and meso-porous MOFs have been synthesised with pore 

sizes of up to 10 nm and specific surface areas of up to 6,000 m²/g clearly exceed those of 

zeolites.[190-191] MOF assembly generally follows the rules of Werner complexes. The 

classical method of MOF synthesis is the deposition from a solvothermal parent solution. 

Hereby, the metals are added to the reaction solution as precursors which coordinate the 

organic linkers to form structures dominated by the preferred coordination geometry of 

the metals.[192] After a short time at RT to 250 °C MOF crystals form from the solution, 

 

Figure 14: Parallel plate setup. The liquid flows through 
rectangular channel. Image inspired by Christ et al., 
2010.

[176]
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yielding the typical MOF powder. Variation of the metal precursor or the organic linker 

group allows the fine tuning of the MOF structure and properties. The variability was 

nicely demonstrated by Rowsell et al. at the example of a series of isoreticular MOFs 

(IRMOFs). The basis of this series was MOF-5, which is synthesised from tetrahedral 

Zn4O6+-metal clusters and terephthalate linkers. As shown in Figure 15 while all 

frameworks are of a cubic nature, variation of the organic linker allows the preparation of 

different pore sizes and functionalities.[193-194] Due to the presence of metals and/or metal 

oxides in the MOFs they can also exhibit electrical or magnetic properties.[195] Many 

applications such as size-, shape-, and enantio-selective catalysis, gas/vapour separation, 

drug storage and delivery or in sensors have been achieved or at least proposed.[191,196-200] 

 

Figure 15: Variation of pore size and functionality by application of different organic linkers. A series of 
IRMOFs demonstrates how variable the synthesis of MOFs is. Image taken from Rowsell et al., 2004.

[194]
 

For some of these applications, e.g. the use in sensors, electrochemistry and chromato-

graphic applications, the deposition of MOFs on solid substrates[201-202] in the form of thin 

films is of crucial importance. The first realisation of such a surface bound MOF (SURMOF) 

was the anchoring of MOF-5 on modified gold substrates.[203] Recently, a number of 

approaches have been presented to yield such porous coatings including quasi-epitaxial 

methods which lead to the formation of structurally nearly perfect, oriented and 

homogeneous coatings.[204-205] The liquid phase epitaxy is an easily controllable method 

for the synthesis of such SURMOFs.[206-209] Here a self-assembled monolayer (SAM) not 

only functions as anchor for the MOF to the surface, but it also controls the orientation in 
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which the MOF crystal grows.[210] For synthesis the SAM is subsequently bought into 

contact with either a solution of the metal precursor or the organic linker as shown in 

Figure 16. Between each step the surface is cleaned, usually by rinsing with the solvent. 

This way, one layer of MOF can be generated in each step allowing for controlled growth 

of the MOF on the substrate and the variation of the building units used in each step.[206-

210] The layer-by-layer method not only allowed the controlled growth of the SURMOF, 

but it also enabled the analysis of the growth in each step. This made an investigation of 

the influence of the structure of the metal precursor possible. Here, it was revealed that 

precursors already exhibiting the coordination sphere present in the MOF later strongly 

supported the growth of the MOF.[210] 

 

 

Figure 16: Liquid phase epitaxy for the synthesis of SURMOF structures. In the method of liquid phase 
epitaxy a SAM and later the SURMOF are brought in turn into contact with solutions of the metal precursor 
and the organic linker. In each step a defined layer of MOF is grown on the surface.

[206-207,210]
 Image adapted 

from Shekhah et al., 2010.
[206]
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3 MATERIALS AND METHODS 

This chapter gives an overview over the techniques used in this work. The theoretical 

background and the practical parameters of the analytical techniques used to 

characterise the surfaces and cells are presented. Further, the methods of surface 

preparation and characterisation are outlined in this section. As a variety of cell lines and 

primary cell materials was used in this study, their isolation, culture and treatment 

protocols are also introduced in this section. Finally, the microfluidic shear force setup 

applied for the cell rolling and adhesion strength measurements is presented and the 

experimental details are discussed. 

3.1 ANALYTICAL TECHNIQUES 

3.1.1 CONTACT ANGLE GONIOMETRY 

Contact angle goniometry is an easy technique to determine the wettability and thereby 

indirectly the free surface energy of a substrate. 

In an ideal planar system without gravitational forces the interaction between a water 

droplet and a surface can be described by three surface tensions (solid/liquid    , 

solid/vapour    , liquid/vapour   ) and Young´s contact angle    between the interfaces 

solid/liquid and liquid/vapour. The relation between these values is given by Young´s 

equation, shown in Equation (7).[211] 

      
       
   

 (7) 

As shown in Figure 17 surfaces with a high energy and high wettability have low water 

contact angles (0° <   < 90°) and are known as hydrophilic, while low energy, non-

wettable surfaces are known as hydrophobic surfaces and exhibit high water contact 

angles (90° <   < 180°). 
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Figure 17: Contact angle of a hydrophilic surface (A) and a hydrophobic surface (B). 

In non-ideal, non-planar systems the surface roughness must be taken into account. The 

first relation considering the surface roughness was the Wenzel equation.[212] Wenzel´s 

contact angle    is related to Young´s contact angle    by a correction factor, the 

roughness ratio   , which is defined as the ratio between the absolute surface area and 

the projected surface area. The relation is shown in Equation (8).[212] 

               (8) 

However, this model is only valid for fully wetted surfaces (Figure 18 A). In the case of 

incompletely wetted surfaces (Figure 18 B), wetting can be described by the Cassie-Baxter 

equation.[213] The Cassie-Baxter contact angle     is related to the material specific 

Young´s contact angle    via the surface contact fraction   as shown in Equation (9).   is 

defined as the ratio between the actually wetted surface area and the maximum possibly 

wettable surface area. 

          (       )    (9) 

 

Figure 18: Theoretical contact of a water droplet as described by the Wenzel (A) and the Cassie-Baxter (B) 
model for wetting. 

In this work contact angle goniometry was used to determine the water contact angles of 

SAMs and polysaccharides bound to surfaces and to thereby verify the quality of these 

substrates. Sessile water droplet contact angles were measured with a custom-built 

contact angle goniometer under ambient conditions.[12] At least three measurements 

were conducted on each sample. Contact between the tip and the droplet was avoided 

during measurement. 
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3.1.2 SPECTRAL ELLIPSOMETRY 

Spectral ellipsometry is an optical technique that allows the determination of material 

properties, e.g. the thickness of thin layers or the refractive index, by measurement of the 

change of the polarisation state of light induced by the interaction with a substrate.[214] 

Linearly polarised light (λ = 280 nm to 800 nm), resulting from the combination of s- 

(perpendicular to the plane of incidence) and p-polarised (parallel to the plane of 

incidence) light of the same phase and amplitude (Figure 19A), is reflected off the sample 

substrate and directed at a detector. Refraction in the substrate changes the phase of the 

beams components leading to a shift from linear polarisation to an elliptical polarisation 

(Figure 19B), hence the name ‘spectral ellipsometry’. The reflected beam passes through 

an analyser and the phase shift of the beam components is measured. The change in 

polarisation can be expressed by the ratio r of the reflection coefficients    and    in the 

form of Equation (10).[215-216] 

  
  

  
    ( )     (  ) (10) 

The phase shift between the p and s components is given by the parameter   and the 

amplitude ratio is denoted by  . As the change between   and   is measured it is not 

necessary to measure a reference beam. This makes the setup robust against external 

disturbances and allows measurement at ambient conditions. The optical constants have 

to be calculated by regression analysis from the experimental data. Therefore a model 

has to be introduced representing the substrate with all known optical properties. With 

knowledge of the substrate´s thickness the optical constants can be determined and vice 

versa.[217] This method allows the calculation of layer thicknesses with sub-nanometre 

precision. In the case of multilayer systems each layer needs to be modelled separately. 
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Figure 19: Polarisation of the light beam before (A) and after (B) being reflected on the sample surface. 
Image taken from S. Bauer (diploma thesis), 2011

[218]
 adapted from jawoollam.com.

[219]
 

In this study spectral ellipsometry was used to verify coupling reactions and to measure 

the thicknesses of SAMs and polysaccharides bound to glass substrates. The film 

thicknesses were measured using a M-44 multiple wavelength ellipsometer 

(J. A. Woollam Co., Inc., Lincoln, NE, USA) aligned at a nominal incidence angle of 

approximately 75 ° to the surface normal (Figure 19C). The light source used was a xenon 

lamp with a polychromatic spectrum. SAM and HA thicknesses were determined with the 

modelling software WVASE™ from J. A. Woollam Co. using a single ‘Cauchy’ model 

layer[214] on a underlying ‘void’ layer. The ‘Cauchy’ relationship shown in Equation (11) 

describes the wavelength dependent refractive index of transparent organic materials.  

 ( )    
 

  
 
 

  
  (11) 

Here,  ,   and   are parameters which are adjusted to match the refractive index of the 

material. From literature values of the refractive index for protein film on surfaces are 

known to be in the range of 1.45-1.50.[220] From this the ‘Cauchy’ parameters were 

chosen as  

                 

On each sample at least three measurements were conducted at different positions. 
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3.1.3 FLUORESCENCE ACTIVATED CELL SORTING 

Fluorescence activated cell sorting (FACS) is a method that allows the high-throughput 

analysis and sorting of heterogeneous cell samples on a single cell basis. Each cell is 

separately passed by a laser beam in a liquid flow and analysed by measurement of the 

interaction with the light. The photons are scattered from the cells and both the 

scattering and the emission pattern are measured. From this different cell properties can 

be determined. 

The intensity of the forward scattered light (FSC) is roughly proportional to the size of the 

cells. Strictly speaking this is only true for homogeneous spherical objects, which cells are 

not, but the relation is sufficient whatsoever. Light, which is scattered orthogonally to the 

incident beam, is known as side scattered light (SSC). Empirical measurements could show 

that the SSC is mainly scattered by internal cell structures and is therefore correlatable to 

the granularity of the cell. These cell properties are known as intrinsic features as they 

can be measured without the addition of exogenous reagents. Extrinsic features can be 

the presence of e.g. cell surface receptors. These must be marked with fluorescent 

antibodies prior to measurement. During FAC sorting, the fluorophor is excited and light is 

emitted in 360° around the cell. Typically this light is measured in the same optical system 

as the SSC. It is guided to different detectors, which measure the intensity at a given wave 

length, i.e. the presence of the stained receptor (Figure 20).[221] 

 

Figure 20: The optical setup of a single-laser flow cytometer with detection of 5 parameters. (FSC/SSC and 
three further parameters FL1, FL2, FL3). FSC = Forward Scatter; SSC = Side Scatter; DM = Dichroic Mirror; SP 
= Short Pass Filter; LP = Long Pass Filter; BP = Band Pass Filter. Image taken from Fruehauf et al.

[221]
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FACS analysis was used in this study to verify the binding of certain antibodies as well as 

to determine the presence of given receptors on cells. The measurements were 

performed on a FACScan flow cytometry system (Becton Dickinson, Heidelberg, Germany) 

by Isabel Hoffmann from the workgroup of Prof. Ho at the University Hospital Heidelberg. 

3.1.4 SCANNING ELECTRON MICROSCOPY 

The scanning electron microscope (SEM) was first designed in 1937[222] and has since been 

developed into one of the most commonly used analytical techniques.[223] The great 

advantage of the SEM over microscopic methods such as light microscopy is the far better 

spatial resolution. While the typical resolution limit of optical microscopes lies in the 

micrometre range, that of an SEM lies roughly three orders of magnitude below that. This 

is due to the use of an electron beam instead of light or more precisely the shorter 

wavelength of electrons compared to photons. Abbe´s diffraction limit   is the minimal 

feature size that can be imaged. The formula to calculate δ is shown in Equation (12).[224] 

  
 

      
 (12) 

The opening angle   of the lens and the refractive index   of the medium, through which 

the beam travels, are the two factors unaffected by the use of electrons instead of 

photons. They are often found combined as the numerical aperture         . The 

third variable in Equation (12) is the wavelength  . The de Broglie relation,[225] which gives 

a relation between the wavelength and the impulse of a particle/wave, is given in 

Equation (13). 

  
 

 
 

 

√      
 (13) 

Where   is Planck´s constant,   the impulse,   the particle´s/wave´s mass and      the 

kinetic energy of the particle/wave. Together with Equation (12) it clearly demonstrates 

that higher energies of the particle/wave and larger masses lead to shorter wavelengths 

and thereby directly to a better resolution. If the wavelength of an electron that is 

accelerated with energies typical for SE microscopes (100 eV) is calculated, the result lies 

in the Angstrom regime. This is roughly three orders of magnitude below that of visual 

light (~ 400 nm to 800 nm).  

SEM is applicable only for conductive samples, as the electrons interacting with the 

sample need to be removed preventing charging of the substrate. For this biological 

samples need to be coated with either graphite of gold in order to gain conductivity and 

contrast. The main components of a SEM are the electron gun, the optics, the 
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measurement chamber and the detector with its electronics. The electron gun is a 

cathode from which electrons are emitted, either by heating (thermionic emission) or by 

applying high voltage (field emission), and an anode which is used to accelerate the 

electrons. The electron beam is then focused by electromagnetic fields and lenses. 

Scanning coils are used to deflect the beam, scanning the area of interest. An aperture is 

used to control the current density. The electrons then ‘hit’ the surface and are either 

deflected as back-scattered electrons (BSE) or induce the emission of secondary electrons 

(SE). These two types of electrons can be measured separately yielding different contrasts 

due to their different penetration depth.  

The microscope used in this work was a LEO 1530 (Zeiss, Oberkochen, Germany). Images 

were recorded with Isabel Thomé and Linlin Xiao from our workgroup. 

3.1.5 X-RAY PHOTOELECTRON SPECTROSCOPY 

X-ray photoelectron spectroscopy (XPS) is an analytical technique used to investigate the 

chemical composition of surfaces. It is based on the photoelectric effect, which describes 

the capability of electromagnetic waves to induce the emission of electrons out of an 

atomic hull. The sample is probed with X-rays, thereby inducing the emission of electrons 

out of the hull of atoms in the top 

layers of the surface. Measurement 

of the kinetic energy of the emitted 

electrons can be used to character-

ise the elemental composition of the 

surface. This is possible because the 

binding energy of electrons is dis-

crete and element specific. As shown 

in Figure 21 and in Equation (14), 

subtraction of the kinetic energy 

     of the electrons and the work 

function of the device         (a 

device specific constant) from the 

energy of the X-rays (  , given by 

the electron source) results in the binding energy   . Therefore, measurement of      

allows the direct calculation of the binding energy of the core level electrons. 

                   (14) 

XPS not only allows the characterisation of the elemental composition of a substrate, but 

also the determination of the film thickness. For electromagnetic waves the empirically 

 

Figure 21: Scheme depicting the photoelectric effect. 
Interaction of X-rays of the energy     with electrons 
results in the emission of these from the atomic orbitals. 
Image based on Ratner et al., 2011

[226]
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determined Lambert-Beer’s law gives a correlation between the properties of the 

material through which the wave passes and the absorption in the same.[227] For thin film 

a slightly modified version of this law applies and allows the calculation of the thickness 

of the film based on the attenuation of the signal of the underlying substrate due to the 

film. This correlation is given by Equation (15). 

          
  
 ( )

 (15) 

 ( ) is the signal intensity after attenuation,    is the substrate signal intensity without a 

film present,    is the attenuation length of photoelectrons with a given      and   is the 

take-off angle. With knowledge of    a measurement of the substrate without the film (  ) 

and with the film ( ( )) is sufficient to calculate the film thickness. The attenuation length 

of the Au 4f signal (   = 37.6 Å), as calculated for organic overlayers according to an 

empirical model presented by Seah and Dench,[228] was used for the calculation of the 

thickness of SAMs or protein layers on gold. 

XP spectra were measured and analysed by Stella Bauer from our workgroup. Using a 

Leybold-Heraeus MAX 200 X-ray photoelectron spectrometer with a polychromatic 

magnesium anode as X-ray source (   = 1253.6 eV). Peak fitting was performed with the 

software XPSPeak 4.1 (Prof. R.W.M. Kwok, Department of Chemistry, University of Hong 

Kong) after using a Shirley background subtraction.[229]  

3.1.6 X-RAY DIFFRACTION 

X-ray diffraction (XRD) spectroscopy is an analytical technique that allows the charac-

terisation of crystalline materials. It is based on the diffraction of X-rays on ordered 

geometries such as crystals or quasicrystals. The diffraction can be described by the Bragg 

and Laue equations, which are equivalent. Bragg´s law is given in Equation (16).[230-231] 

          (16) 

With   being the diffraction order (an integer),   the wavelength of the beam,   the 

distance between the atomic planes and   the angle between the incident beam and the 

atomic plane. As seen in Equation (16) and in Figure 22 the phase difference between the 

two reflected beams (the distance C-D-E) must be equal to        for the scattered 

waves to interfere constructively. 
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Next to the determination of the 

crystallinity of a given sample XRD 

spectroscopy can be used to determine 

the distance between the atomic planes, 

the orientation of crystals, their 

periodicity, the lattice parameter or the 

space group of a given material. 

In this study XRD spectroscopy was 

applied to determine the crystallinity of 

surface bound metal-organic frameworks 

(SURMOFs). Measurements were 

conducted by Hasan K. Arslan or 

Zhengbang Wang from the workgroup of 

Prof. Christof Wöll (IFG, KIT, Karlsruhe, 

Germany). For all SURMOF samples, out-

of-plane XRD  -   scans were recorded after synthesis and after the immersion into 

different solutions. XRD measurements were performed using a Bruker D8-Advance 

diffractometer with  -   geometry and Cu    radiation (  = 1.54 Å) as X-Ray source. 

Measurements were recorded by a PSD detector (MBraun, Garching, Germany) by a 

copper    radiation at 40 kV/30 mA, with a step size of 0.007° and scan time of 3 s in the 

range of    = (5-30)°. 

3.1.7 INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION 

SPECTROMETRY 

Inductively coupled plasma optical emission spectrometry (ICP OES) is an analytical 

method which allows the rapid determination of the atomic composition of a sample.  

For analysis the sample is injected into a plasma jet (typically argon plasma as this gas is 

comparatively cheap and chemically inert). This heat of the plasma jet (5,000 to 10,000 K 

depending on the region of the plasma) completely destroys that the sample with only 

atoms and ions remaining. This is of great benefit to the analysis as it eliminates all 

chemical effects such as e.g. the bond order. The plasma, furthermore, excites the atoms 

and ions to emit light. Spectral analysis of the emitted light gives information about the 

elements contained in the sample, with the intensity of the respective peak being 

proportional to the concentration of the element in the sample. As all elements are 

simultaneously exited they can also be detected simultaneously or in rapid succession. 

This results in very fast measurements (in the range of minutes). This inherent sample 

 

Figure 22: Geometry of a Bragg reflection. The 
incident beams A and B are reflected on the atoms of 
each atomic plane. If the path difference of the beams 
A’ and B’ is equal to a multiple of   a constructive 
interference occurs. 
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orientation of the ICP OES method is one advantage over element oriented methods such 

as atomic absorption spectroscopy where the samples are scanned for a certain element 

and not all elements are analysed at once. Next to the large working range of the ICP OES 

which typically comprises of six orders of magnitude (from sub-µg/L to g/L) is another 

noteworthy advantage of the ICP OES over other analytical techniques.[232] 

Copper concentrations in SURMOF supernatants were measured by Marita Heinle from 

the workgroup of Prof. Matthias Franzreb (IFG, KIT, Karlsruhe, Germany) with an OPTIMA 

8300DV (Perkin-Elmer, USA). The sample flow was set to 1 mL/min. The high frequency 

generator operated at 1400 W. Gas flows were 15 L/min for the plasma, 0.5 L/min for the 

thrust gas and 0.55 L/min for the vaporiser gas. The copper bands analysed were the 

signals at 327.393 nm and at 324.752 nm. 

3.2 SURFACE PREPARATION TECHNIQUES 

3.2.1 PREPARATION OF POLYSACCHARIDES ON GLASS 

The glycosaminoglycans (GAGs) are a group of large polysaccharides without branching of 

the molecular structure.[128,233] Common to this type of polysaccharides are 1,4-linked 

disaccharide units containing at least one uronic acid (e.g. D-Glucuronic acid or L-Iduronic 

acid). This uronic acid is typically linked to an amino sugar by a β-1,3-glycosidic bond. The 

most prominent representatives are hyaluronic acid, chondroitin sulphate, keratin und 

heparin.[234] 

Hyaluronic acid (HA) was first isolated from the vitreous humour of the eye by Meyer and 

Palmer in 1934.[235] The structure was solved 20 years later.[236] It is a large linear polymer 

based on a repeating disaccharide units consisting of N-acetyl-D-glucosamine and D-

glucuronate, connected by β-1,4 and β-1,3 linkages. HA is one of the major components 

of the extracellular matrix. It was demonstrated in rats that HA can be found throughout 

a mammalian organism with the highest amounts located in the skin (~ 50 %), the bones 

and supporting tissues (~ 25 %) and the rest distributed in muscles and viscera.[237] This 

abundance of HA demonstrates its great importance and many functions in mammalian 

organisms. The most relevant for this study is surely its role as binding partner for CD44, 

which shall be examined in detail in section 4. 

Chondroitin sulphate (CS), which also belongs to the GAG-family, can be found among 

others in the extracellular matrix (ECM)[238] or cartilage of mammals and in the slimy fluid 

covering many fish.[239] Each of its disaccharide subunits consists of N-acetyl-D-

galactosamine (GalNAc) and glucuronic acid that are connected by β-1,3 and β-1,4 
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linkages. Due to the pronounced chemical similarities between HA and CS, CS presents an 

ideal reference when analysing the interaction of CD44 expressing cells with HA. 

For cell interaction analysis a homogeneously coated surface, which can be used more 

than once, was of great interest. This could be realised by covalent coupling of the GAGs 

of interest to glass as shown in Figure 23. The GAGs (HA, CS) were coupled to NexterionB® 

glass slides according to previously published protocols.[240-243] Silicon wafers ([100], p-

doped with boron, served as reflecting and conductive surfaces for spectroscopic 

characterisation (Table 1). 

 

Figure 23: Schematic of the coating of glass slides with polysaccharides utilising the EDC/NHS chemistry.  
Image adapted from Bauer et al., 2013.

[244]
 

The substrates were cleaned and activated in an O2-plasma (Pci PCCE, Diener plasma 

GmbH & Co. KG, Ebhausen, Germany) at 150 W power and 0.4 mbar O2 pressure for 

3 min. 3-Aminpropylotrimethoxysilane (APTMS) functionalisation was achieved by 

ultrasonification of the glass slides immersed in a solution of 5 % APTMS in dry acetone 

for 30 min. The surfaces were subsequently immersed in a solution of the GAG 

(1 mg/mL), N-hydroxysuccinimide (NHS, 0.01 M) and 1-ethyl-3-(3-dimethylaminopropyl) 

carbodiimide (EDC, 0.05 M) in 2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethansulphonic acid 

(HEPES)-buffer (10 mM). The reaction took place on a vibrating Table (60 rpm) at room 

temperature (RT) and was quenched after 18 h by flooding with MilliQ® water (8x 

volume). Washing with MilliQ® water was repeated daily for 3 days, before the slides 

were stored in MilliQ® water until further use. After each step of the reaction, the 

surfaces were analysed by static contact-angle measurement and spectral ellipsometry to 

verify successful grafting. 

Table 1 gives the film thickness and contact angle for the APTMS, the HA and CS layers 

prepared in this work. XP spectra of the prepared HA surfaces shown in Figure 24 were 

obtained by Stella Bauer from our workgroup. They clearly demonstrate the successful 
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preparation of an APTMS layer and the binding of HA to that surface. The C 1s spectra of 

the APTMS layer show the signals for an aliphatic carbon and for a carbon with an 

adjacent electronegative (here the amino function) group. As expected from the chemical 

structure of APTMS the two signals are observed in a ration of roughly 2:1. 

The XP spectrum of HA shows three species of carbon. This in line with the chemical 

structure of HA. A small aliphatic group of carbons is observed. This may also to a certain 

extent originate from the underlying APTMS layer. The two other species originate from 

carbons which have one (the centre peak; 287 eV) or two (the left peak; 288.5 eV) 

electronegative groups adjacent. The N 1s spectra show a small accumulation of nitrogen 

on the surface by coating with APTMS and an increased nitrogen occurrence after coating 

with HA. This too is in line with the chemical structure of the two molecules. Both APTMS 

and HA present one nitrogen atom in their monomer structure. 

Table 1: Properties of GAG-coated surfaces. 

Surface Type 

Film Thickness 

Ellipsometry 

[Å] 

Contact Angle 

[°] 

APTMS layer 12 ± 4 38 ± 6 

HA layer 19 ± 6 < 10 

CS layer 24 ± 5 13 ± 5 
 

 

 

Figure 24: XPS analysis of the prepared HA films. The C 1s XP spectra (A) show the occurrence of increasing 
amounts of carbon on the surface. This together with the increasing amounts of nitrogen, as shown in the 
N 1s spectra (B), indicates the formation of the respective layers on the surface. 
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3.2.2 PREPARATION OF GOLD SUBSTRATES 

Homogeneously coated flat gold substrates were required for the preparation of self-

assembled monolayers. The gold substrates were obtained from PVD Beschichtungen 

(Silz, Germany). Thin polycrystalline gold films were prepared by thermal vapour 

deposition of 30 nm gold (99.99 % purity) onto polished float glass slides (Nexterion B®) 

predeposited with a 5 nm titanium adhesive layer. Evaporation was performed at a 

pressure of 2 x 10⁻7 mbar and a deposition rate of 0.5 nm/s resulting in a root-mean-

square roughness of about 1 nm.[245] The gold substrates were kept in argon atmosphere 

until use. 

3.2.3 PREPARATION OF SELF-ASSEMBLED MONOLAYERS ON GOLD 

Self-assembled monolayers (SAMs) present easy to fabricate, highly reproducible surfaces 

with well-defined and tuneable properties.[246-247] While the term SAM describes a thin 

layer of self-organised organic molecules on a surface in general, the most common 

system used is an organic thiol that spontaneously self-assembles on a gold surface as 

shown in Figure 25.[247-250] In this system the driving force of assembly is the formation of 

an Au-S-bond,[249] which is an extremely strong surface bond (homolytic bond strength of 

~ 44 kcal/mol).[251] Ordering of the layers is driven by van der Waals (VdW) forces 

between the alkane chains of the different molecules leading to the formation of 

crystalline monolayers.[251] In order to maximise the VdW forces the Organo-thiols are 

tilted by (30-35)°.[252] The surface properties are now dictated by the terminal functional 

group of the organo-thiol. This explains why the surface properties of SAMs are so easily 

controllable. The use of organo-thiols with different functional end groups results in 

differently terminated surfaces.  

 

Figure 25: Self-assembly of organo-thiols on a gold surface. The organo-thiols are comprised of a thiol 
group (), a CH2-linker group () and a terminal functional group (). The thiol group interacts with the 
gold surface forming an Au-S-bond.

[249]
 The SAM is formed by self-organisation of the molecules on the gold 

surface. 
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In this study SAMs were used as reference surfaces with defined surface properties and 

as anchoring group for metal-organic frameworks to surfaces. The SAMs used for the 

preparation of metal-organic frameworks were 16-Mercaptohexadecanoic acid (MHDA) 

and hexadecane1thiol (HDT) SAMs. These were prepared Hasan K. Arslan (MHDA and 

HDT) and Zhengbang Wang (MHDA) form the workgroup of Prof. Christof Wöll (IFG, KIT, 

Karlsruhe, Germany). 

Prior to the SAM formation, the gold substrates where treated with UV radiation for 2-3 h 

for cleaning. The gold slides were then rinsed with EtOH p.a., cleaned in EtOH p.a. in an 

ultrasonic bath for 3 min and again rinsed with EtOH p.a.. The substrates were then dried 

in a nitrogen stream. Each surface was measured as a reference for later ellipsometric 

measurement of the SAM layer thickness 

MHDA SAMs was prepared on the Au coated glass slides using the following procedure: A 

solution of MHDA was prepared as described by Arnold et al.[253] by dissolving the thiol in 

a 10/90 volume mixture of acetic acid (AcOH) and EtOH to reach the desired 

concentration of 20 μM. To prepare MHDA SAMs, a clean gold substrate was placed in 

this solution for 72 h and then rinsed with the EtOH p.a. and gently dried under nitrogen 

flux. Next to the ellipsometric and the contact angle measurement (Table 2) the MHDA 

SAMs were characterised by Infrared Reflection Absorption Spectroscopy (IRRAS) as 

shown in the supplementary Figure S12 (Appendix section 7.3.1). 

For the preparation of Dodecane-1-thiol (DDT), 11-mercapto-1-undecanol (11-hydroxy-

undecan-1-thiol, HUDT) and HDT SAMs the clean gold substrates were immersed in 1 mM 

ethanolic thiol solutions. After 24 h the substrates were removed from the thiol solution 

and rinsed with EtOH p.a., treated in an ultrasonic bath for 3 min to remove non 

chemisorbed thiols and rinsed again. 

The samples were blown dry in a 

nitrogen stream and were either used 

instantly or kept under argon 

atmosphere until use. The samples 

were characterised by contact angle 

measurement and spectral ellipso-

metry (Table 2). 

The preparation of patterned Cu2+ 

based SURMOF 2 substrates for the 

cell attachment studies was accom-

plished by micro-contact printing 

(CP) of two different SAMs on a gold 

Table 2: Properties of the different SAMs after self-
assembly. The table gives the film thickness as 
determined by spectral ellipsometry and the contact 
angle as measured by contact angle goniometry. The 
error is the standard deviation (SD). 

Surface Type 

Film 

Thickness 

[Å] 

Contact 

Angle 

[°] 

30 nm gold slides --- 65 ± 2 

MHDA SAM 14 ± 2 26 ± 3 

HDT SAM 15 ± 2 98 ± 5 

HUDT SAM 12 ± 2 36 ± 4 

DDT 11 ± 2 101 ± 5 
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substrate.[254] A polydimethylsiloxane (PDMS) stamp with elevated 50 µm x 50 µm 

squares was inked with a 5 mM ethanolic solution of MHDA, dried and gently pressed 

against the gold substrate for 120 s. The bare areas (stripes) between the squares were 

coated with HDT SAMs as described above. The characterisation was done by 

ellipsometric and contact angle measurement (Table 2). 

3.2.4 PREPARATION OF SURMOF SUBSTRATES 

Metal-organic frameworks (MOFs) are a class of highly porous coordination polymers 

which presently attract enormous interest with regard to a broad variety of rather 

different applications ranging from storage of small molecules to nanotechnology and 

applications in drug release.[198,255-256] In this study the stability of different surface-

anchored MOFs (SURMOF) as well as the biocompatibility of the respective SURMOF was 

studied. The spray method, one of the preparation techniques used in this study, is shown 

in Figure 26. Synthesis of the different SURMOF substrates was done by Hasan K. Arslan 

and Zhengbang Wang form the workgroup of Prof. Christof Wöll (IFG, KIT, Karlsruhe, 

Germany). 

 

Figure 26: Setup of a spry coater as used for the preparation of SURMOF 2 substrates in this study. The 
two building units of the SURMOF (B and C) and EtOH p.a. (A) are in turns sprayed on the substrate (5). A 
computer (8) controls the spraying sequence. Image taken from Arslan et al., 2011.

[208]
 

HKUST-1  

To grow the HKUST-1 SURMOF, MHDA SAM substrates were immersed in a 1 mM 

ethanolic solution of Cu(II)Ac2∙2H2O for 15 min and subsequently in a 0.1 mM ethanolic 

solution of benzene-1,3,5-tricarboxylic acid (btc) for 30 min at 50 °C. The samples were 

rinsed with ethanol containing 0.5 % (by volume) of water for 2 min and dried under a 

flow of nitrogen between each step. The cycles were repeated 40 times, thus obtaining a 

40 layer HKUST-1 SURMOF.[257] 
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SURMOF 2 / spray method 

Cu-SURMOF 2 layers were grown on MHDA SAMs on Au substrates by employing the 

spray-method shown in Figure 26[208] with (a) a 1 mM ethanolic solution of Cu(II)Ac2∙2H2O 

respectively for 10 seconds and then (b) with a 0.2 mM ethanolic solution of benzene-1,4-

dicarboxylic acid (bdc) for 20 s at RT. Between each step the substrates were rinsed with 

ethanol for 3 s. 

SURMOF 2 / pump system 

Cu-SURMOF 2 layers were grown on MHDA SAMs on Au substrates. The freshly prepared 

substrates were then immersed subsequently (a) in a 1 mM ethanolic solution of 

Cu(II)Ac2∙2H2O for 30 min and (b) in a 0.2 mM of bdc ethanol solution for 1 h at RT. 

Between each step the substrates were rinsed with ethanol for 2 min and dried under a 

flow of nitrogen between each step. 

All SURMOFs were characterised by XRD in a  -   geometry using Cu    radiation before 

all subsequent measurements were carried out. Characterisation of the SURMOFs shall be 

discussed in the context of the stability analysis in section 5.1. 

3.3 MEDIA STABILITY ANALYSIS OF SURMOFS 

To investigate the stability of Cu-/Zn-SURMOF 2 against MilliQ® water, artificial sea water 

(ASW, type: Instant Ocean®), phosphate buffered saline buffer (PBS), 1 mg/mL fibrinogen 

in PBS and the cell culture medium Dubelcco´s modified eagle medium (DMEM) 

supplemented with 10 % FCS and 5 % L-Glutamine, the Cu-/Zn-SURMOF 2 substrates were 

incubated in the different media in a beaker and shaken for (1-2) h on a vibrational table 

at 90 rpm. Then the samples were removed from the solution and carefully rinsed with 

MilliQ® water before they were used for surface characterisation. The stability of the 

HKUST-1 SURMOF in water was studied analogously but with shorter incubation times as 

the MOF was highly unstable in water. 

3.4 PROTEIN ADHESION ASSAY 

Protein resistance of different SAMs and the Cu-SURMOF 2s was characterised following 

established protocols.[220] The proteins were dissolved in PBS (filtered once with a 

0.45 µm syringe filter; protein concentration: 2 mg/mL) under constant stirring at RT. 

Sample surfaces were preincubated in PBS buffer (10 mL, filtered once) in a 50 mL-beaker 

for 20 min. The clear protein solution was added to the PBS buffer solution, in which the 
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samples were incubated, diluting the protein concentration to 1 mg/mL. After 30 min of 

incubation at RT the adsorption was stopped by careful flooding with 1 l deionised-water. 

The samples were then carefully rinsed with MilliQ® water and dried in a nitrogen stream. 

3.5 CULTURE OF MODEL CELL LINES 

While the interaction of primary human cell material with surfaces is generally of more 

interest than that of cell lines, the cell lines represent the only sensible way of undergoing 

broad mechanistic studies with large amounts of comparable cell material. In this study 

the cell lines were used as model systems for the interaction of cells with HA and as 

references for the analysis of the biocompatibility of SURMOF substrates. 

3.5.1 CULTURE OF SUSPENSION CELL LINES 

The suspension cell lines KG-1a, Jurkat and Kasumi-1 were cultured in 75 cm² culture 

flasks in 10 mL of RPMI 1640 (PAA Laboratories GmbH, Engelsbach, Germany) 

supplemented with 10 % FCS, 1 % penicillin/streptomycin and 1 % L-glutamine. The cells 

were split every 3-4 days in the range of 1:5 to 1:10. Therefore the cell suspension was 

diluted in PBS buffer and centrifuged for 5 min at 1200 rpm. The solution was then 

removed from the pellet, which was subsequently resuspended in fresh medium and 

stored in in a humidified incubator with ~ 5 % CO2 at 37 °C. 

For experiments, the cell concentration was determined with a Neubauer 

haemocytometer for cell counting before the cells were washed and adjusted to a cell 

concentration of 106 cells/mL. 

3.5.2 CULTURE OF ADHERENT CELL LINES 

REF52WT Cells 

REF52WT were cultured in Dubelcco´s modified eagle medium (DMEM) supplemented 

with 10 % FCS, 1 % penicillin/streptomycin and 1 % L-glutamine. They were harvested at 

full confluence from T-25 tissue culture flasks by rinsing with 10 mL PBS buffer and 

subsequent incubation with 2.5 mL 0.05 % trypsin–EDTA solution for 3 min at 37 °C in an 

incubator. Then the suspension was diluted with 10 mL culture medium and centrifuged 

for 3 min at 800 rpm. The cell pellet was resuspended with fresh medium and used for 

experiments instantly. For continuous cultivation the cells were split 1:10 and seeded in 

T-25 tissue culture flasks. Confluent passages were obtained every 2-3 days. 
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For experiments, the cell concentration was determined with a Neubauer 

haemocytometer for cell counting before the cells were washed and adjusted to a cell 

concentration of 106 cells/mL. 

HepG2 and HepG2Iso Cells 

Culture and preparation for microfluidic experiments of HepG2 and HepG2Iso were 

performed by Katharina Fuchs (workgroup of Dr. Véronique Orian-Rousseau, ITG, KIT, 

Karlsruhe, Germany). For culture the cells were grown in either tissue culture flasks or 

plates in DMEM supplemented with 10 % FCS. To passage the cells the old growth 

medium was removed by aspiration. The cells were then washed with PBS. To detach the 

cells from the plate trypsin containing solution (Trypsin 0.25% (w/v) EDTA) was added and 

incubated at 37 °C for approximately 3-10 min. Trypsin-dependent digestion was then 

stopped with serum containing medium, the cells were collected by centrifugation at 

1.200 rpm, resuspended in fresh DMEM and distributed in new tissue culture flasks or 

plates. 

For experiments 3∙106 cells were seeded in 10 cm plates and cultured for 24 h. After 24 h 

of starvation, the cells were washed 3 times with PBS. The following steps were 

performed on ice. The cells were harvested by 5 mM EDTA in PBS and afterwards washed 

three times with PBS. After that, the cells were counted and diluted to a concentration of 

1∙106 cells/mL in DMEM without FCS. They were stored on ice and used within a few 

hours. 

An overview over all cell lines used in this work is given in Table 3. 

Table 3: Overview over the cell lines used in this work. 

Cell line Organism Tissue Description Reference 

KG-1a 

(CCL-246.1) 
Human Bone marrow 

Myeloblast, 

suspension 
[258-259] 

Jurkat 

(TIB-152) 
Human T-cell leukaemia 

Lymphoblast, 

suspension 
[260] 

Kasumi-1 

(CRL-2724) 
Human Peripheral blood 

Myeloblast, 

suspension 
[261] 

REF52WT Rat Embryo 
Fibroblast, 

adherent 
[262] 

HepG2Iso Human Liver 
hepatocellular 

carcinoma, adherent 
[263] 

HepG2 Human Liver 
hepatocellular 

carcinoma, adherent 
[263] 
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3.6 ISOLATION AND CULTURE OF HEALTHY AND 

LEUKAEMIC HAEMATOPOIETIC CELLS 

The progression from the model cell line interaction with HA under flow conditions was 

the analysis of primary material under identical conditions. For this written informed 

consent was obtained according to the guidelines approved by the Ethics Committee of 

the Medical Faculty of Heidelberg for the collection of fresh umbilical cord blood (CB), 

bone marrow from healthy donors (BM), peripheral blood from healthy donors (PB) or G-

CSF-mobilised peripheral blood from healthy donors (mPB) and bone marrow and 

peripheral blood from patients with newly diagnosed AML (PB blasts or BM blasts). 

Collection and purification was conducted by the group of Prof. Anthony D. Ho 

(Department of Medicine V, University of Heidelberg) following established protocols.[264-

265] 

Mononuclear cells (MNC) from healthy donors were isolated by density gradient 

centrifugation on Ficoll-Hypaque from healthy PB. Leukocytes (lymphocytes, monocytes 

and granulocytes) from healthy PB were sorted by FACS (FACSAria, Becton Dickinson) 

based on CD45 expression and SSC characteristics after red blood cell lysis with BD Pharm 

Lyse™. 

CD34+ cells from CB, mPB or BM were selected by magnetic-activated cell sorting (MACS) 

using a monoclonal anti-CD34 antibody labelled with magnetic beads on an affinity 

column (MiltenyiBiotec, Bergisch-Gladbach, Germany). 

Leukaemia blast samples from patients with AML were sorted by fluorescence-activated 

cell sorting (FACS) (FACSAria, Becton Dickinson) based on CD45 expression and SSC 

characteristics (CD45dimSSClow). Between acquisition and use in this study, the AML 

samples were stored in liquid nitrogen at -196 °C. Most samples were isolated from the 

bone marrow of the respective patient. Samples isolated from the peripheral blood are 

marked appropriately in the text. 

Both healthy and leukaemic cells were cultivated in StemlineTM II Haematopoietic Cell 

Expansion Medium supplemented with 100 ng/mL TPO, 100 ng/mL G-CSF, 100 ng/mL SCF, 

500 ng/mL Flt-3L, 2 mmol/L L-glutamine, 1,000 U/mL penicillin and 100 U/mL 

streptomycin for 24 h.[266] The cell density was adjusted to 106 cells/mL, and the cells 

were analysed in the microfluidic cell detachment assay. 
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3.7 CELL TREATMENT AND MODIFICATION 

To characterise the interaction of cells it is often necessary to modulate their binding 

properties. This for example offers the opportunity to determine dependencies on certain 

receptors or on the amount in which these are available for interaction. In this study the 

interaction of both model cell lines and human haematopoietic cells with HA was 

characterised in detail. To achieve this, the cell surface receptor CD44, responsible for a 

flow-induced interaction with HA, was modified and the effects of this modification were 

analysed in a microfluidic shear force device. The treatment with antibodies and siRNA is 

described in this section. It is also described how cells were prepared for SEM imaging. 

3.7.1 ANTIBODY TREATMENT 

The cell surface expression of CD44 in different HPC subpopulations, leukaemic blasts, 

leukocytes and KG-1a cells was investigated by staining with anti-CD44-phycoerythrin or 

anti-CD44-allophycocyanin (clone G44-26, Becton Dickinson) and subsequent FACS 

measurement.  

For antibody blocking experiments, the cells were pre-incubated with different 

concentrations of the monoclonal CD44 antibody clone BU52 (hereafter referred to as 

BU52) or the isotype control anti-IgG1 (hereafter referred to as IgG1) for 30 min. The 

effectiveness of the binding of both BU52 and the isotype control IgG1 was verified by 

FACS measurement using FITC-marked BU52 (hereafter referred to as BU52-FITC, using 

the same protocol as for BU52) or by staining the cells previously incubated with IgG1 for 

20 min with a FITC-marked anti-IgG1 antibody (hereafter referred to as FITC-IgG1). 

3.7.2 SIRNA OLIGONUCLEOTIDES AND TRANSFECTION 

Transfection of HepG2Iso cells with siRNA oligonucleotides were done by Katharina Fuchs 

from the workgroup of Dr. Véronique Orian-Rousseau (ITG, KIT, Karlsruhe, Germany). 

Aliquots of HepG2Iso cells (2∙106) were seeded in 10 cm plates 24 h before transfection. 

The cells were transfected with Lipofectamin 2000, according to the manufacturer’s 

protocol. Per plate, 18 µl of Lipofectamin 2000 was diluted in 547 µl of the corresponding 

serum free cell culture medium (DMEM) and incubated for 10 min at RT. 5 nmol/L of 

CD44pan siRNA (5’-CTGAAATTAGGGCCCAATT-3’; 5’-AATGGTGCATTTGGTGAAC-3’; 5’-

CAGAAACTCCAGACCAGTT-3’), CD44v3 siRNA (5’-TGAAGATGAAAGAGACAGA-3’; 5’-

AGGCATTGATGATGATGAA-3’), CD44v6 siRNA (5’-AGTAGTACAACGGAAGAAA-3’; 5’-

GGATATCGCCAAACACCCA-3’) or control siRNA (5’-UAAUGUAUUGGAACGCAUAUU-3’; 5’-
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AGGUAGUGUAAUCGCCUUGUU-3’; 5’-UGCGCUAGGCCUCGGUUGCUU-3’) was diluted with 

medium reaching a total volume of 547 µl. The two solutions were gently mixed together 

and incubated for 20 min at RT. In the meantime, the cell medium was replaced with 

4.5 mL of fresh serum-containing medium. 1 mL of the siRNA-transfection reagent 

mixture was then applied to the cells. The cells were subsequently incubated with the 

siRNA mixture for 48 to 72 h. 

3.7.3 TRANSWELL MIGRATION ASSAYS 

Transwell migration assays were conducted in cooperation with Rainer Saffrich from the 

workgroup of Prof. Anthony D. Ho (Med.V, Universitätsklinikum Heidelberg). 24-well 

plates with transwell inlets of 3 µm pore size were used in this work. 700 µl of LTBMC 

medium were added to the well plate together with the SDF-1α (100 ng/mL) if required. 

HPC (80,000 cells to 150,000 cells in 200 µl) were either directly added to the transwell 

inlet or first mixed with the Plerixafor® solution (500 ng/mL) and then added to the 

transwell. All concentrations are given as final concentrations in the volume (900 µl) of 

the entire setup. The assay was run for 4 h in an incubator and terminated by fixing of the 

cells with 4 % PFA solution in PBS. The nuclei were marked with Hoechst 33342. The fixed 

HPC were washed into a 96-well plate and images were taken of each fraction. The 

number of migrated cells was then measured by object counting with ImageJ (National 

Institutes of Health, Bethesda, MD, USA). 

3.7.4 SAMPLE PREPARATION FOR SEM IMAGING 

REF52WT were incubated on the surfaces for at least 5 h. The cell culture medium was 

removed and the cells were carefully washed three times with PBS buffer. The PBS buffer 

was then also removed and the cells were incubated with 2 % paraformaldehyde (PFA) in 

PBS buffer for 30 min at RT. After the incubation the cells were washed three times with 

PBS buffer, which was then substituted by MilliQ® water in three dilution steps. The 

water was exchanged every 10 min with water/ethanol mixtures; the amount of ethanol 

increasing by 10 % each step beginning with 50 %. The washing with 100 % ethanol was 

repeated three times. The critical point drying with a CPD 030 (Bal-Tec, Schalksmühle, 

Germany) followed a well-established protocol.[267] The exchange of ethanol to liquid 

carbon dioxide was repeated 10 - 15 times at 10 °C. The temperature was then raised to 

40 °C. By heating the solution the pressure rose from 50 bar up to 70 - 80 bar. The system 

was kept in the critical phase for 10 min before the gas was slowly released. The dried 

samples were then directly sputtered twice with graphite to avoid surface charging 

artefacts in the SEM. 
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HepG2Iso and KG-1a were fixed with 10 % PFA in PBS buffer under flow (approximately 

1 dyn/cm²) in the microfluidic shear force setup. Therefore, the cells were injected in cell 

culture medium and the PFA/PBS solution was then sucked through the channel system 

gradually bringing the cells into contact with the solution. The cells remained in the 

PFA/PBS solution for 10 min. The following washing and drying steps were analogous to 

the procedure for REF52WT. 

3.8 MICROFLUIDIC SHEAR FORCE MEASUREMENT 

The microfluidic shear force setup used in this study was built and developed in our 

workgroup by Christof Christophis.[11-12] It allows the exact application of liquid flow 

speeds to defined channel systems containing modifiable sample surfaces, thereby 

allowing the quantification of the adhesion of objects to a surface and the observation of 

the interaction of cells with these surfaces under flow conditions. 

3.8.1 GENERAL SETUP 

The general setup consists of an inverted TE2000-U microscope (Nikon, Tokyo, Japan) 

housed in a self-built incubator (Figure 27), which allows the adjustment of the 

temperature to cell culture compatible conditions (37 °C). The incubator is further 

equipped with CO2 regulation making long-term cell experiment not only possible, but 

presenting ideal conditions for these (5 % CO2 in the atmosphere).  

 

Figure 27: Photograph (left) and schematic image (right) of the incubator housed microscope TE2000-U. 
Image taken from Christophis, PhD thesis, 2011.

[12] 
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The microfluidic setup consists of a liquid reservoir from which the carrier liquid is sucked 

through the assembled channel system to the syringe pump (Figure 28).[11-12] In detail, the 

liquid is distributed to all channels equally via a manifold. The samples are also directly 

injected into the manifold. Which channel is active is controlled by the selector located 

between the channel holder and the syringe pump. This form of setup allows a parallel 

incubation of e.g. epithelial cells inside of all four channels simultaneously. Friction in the 

tubings leads to a pressure drop, which is compensated by application of an overpressure 

applied to the liquid reservoir. To enable an equilibration of the pressure between the 

syringe pump and the liquid reservoir without requiring the opening of any of the 

channels a by-pass tubing directly connects the syringe pump to the manifold and thereby 

to the liquid reservoir.  

 

Figure 28: Flow path used for the microfluidic shear force experiments. The liquid is sucked from the liquid 
reservoir (a) through the manifold (b) that connects all channels to the reservoir through the channels (c) 
and the selector (d) that allows selection of each channel to which the flow is applied into the syringe pump 
(e) that controls the flow rate. Image taken from Christophis, PhD thesis, 2011.

[12]
 

3.8.2 CHANNEL SETUP AND ASSEMBLY 

The above mentioned channel system is a self-built ‘sandwich-like’ assembly. This allows 

the easy exchange of the substrate, which in itself presents the bottom of the assembled 

channel (Figure 29). The channel walls are a PDMS ring (overall height 130 µm with a 

140 µm high inner ring; 2.5 cm long and 1.5 mm wide, hereafter referred to as ‘25 mm 

channel’) that is cast from a brass mould. The lid is a glass slide (20 × 30 × 2 mm) into 

which 2 holes were drilled (distance = 2.4 mm) with a diamond tip drill. The holes in the 

glass lid were aligned to the beginning and end of the PDMS channel walls and to the inlet 

and outlet tubings fixed in the PDMS seal connecting the assembled channel system to 

the liquid flow path.  
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The assembly of the system is simple 

as all elements are stacked and fixed 

with screws. Solely the fixation of 

the PDMS channel walls requires a 

defined protocol. As previously 

described[12] and shown in Figure 30, 

the PDMS channel walls were rinsed 

with MilliQ® water and iso-propanol 

after each disassembly of the 

system. The channels were then 

immersed in 2 % Extran solution for 

1 h, kept in MilliQ® water over night 

and immersed in iso-propanol for 

~ 30 min (at least 5 min). Before 

channel alignment the glass lid was 

cleaned with 2 % Extran, MilliQ® water and iso-propanol using dust free wipes. A droplet 

of EtOH p.a. on the lid on which the PDMS channel ‘swam’ and two blunt cannulas were 

used to align the PDMS channel to the holes of the glass lid. When the ethanol 

evaporated the channels stuck to the glass lid and were finally rinsed with MilliQ® water. 

 

Figure 30: Cleaning and assembly process of the microfluidic channel. Image taken from [12]. 

3.8.3 MICROFLUIDIC DETACHMENT ASSAY 

The microfluidic shear force setup can be used for the observation of the interaction of 

cells or objects with different surfaces under shear force conditions or for the 

measurement of the shear force required for the detachment of cells or objects from a 

variety of surfaces. In this study both types of utilisation were applied. 

 

Figure 29: Scheme of the parts required for the assembly 
of a microfluidic channel. The in- and outlet tubings are 
held and sealed by the PDMS seal. This is stuck to the glass 
lid into which 2 holes are drilled. The holes are directly 
aligned to the in- and outlet tubing and to the beginning 
and end of the PDMS channel walls. The substrate 
completes the channel system as the bottom of the 
channel assembly. Image taken from [12]. 
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Glass lid
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Substrate
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While the outcome of the two applications was of completely different nature 

(observation of cell/object-surface interaction under flow and comparison of shear stress 

required for detachment), the mode of measurement applied in the microfluidic shear 

force setup was the same. In both cases the detachment assay can be used (Figure 31).[11-

12] For measurement of such an assay the channel system was assembled as described in 

the previous section. The test objects or cells were then injected into the channel system 

via a 2-way valve connected to the manifold. Here, alteration of the selector controlled 

which channels were loaded with test objects. After injection the selector was switched 

to the bypass tubing and the 2-way valve connecting the manifold to the liquid reservoir 

was opened applying an overpressure of 0.6 bar to the entire system. As elaborated in 

detail in the Appendix (section 7.1.1.1), among other things, frictional forces led to a 

pressure loss in the microfluidic setup. This was dependent on the average flow velocity 

of the liquid, meaning that faster liquid flow increased the pressure loss. Too far 

reduction of the overall pressure by the pressure loss led to the formation of gas bubbles 

in the system. As this in essence meant the actual flow differed from the theoretically 

applied flow making an estimation of the shear stress impossible, the overpressure was 

applied in order to avoid this scenario. The timespan for which the system remained in 

this bypass-opened state depended on the type of measurement. In the case of the 

observation of cell-surface interactions and for measurement of shear forces required to 

detach particles from surfaces approximately 5 min were required for the cells/particles 

to sink to the surface and for the pressure to equilibrate between the syringe pump and 

the liquid reservoir. For measurement of the shear force required to detach cells that 

actively adhere to a surface such as e.g. epithelial cells a longer incubation time was 

required. For fibroblasts Christophis et al. demonstrated that 5 h are sufficient to allow 

reproducible adhesion while not risking detachment of the cells due to proliferation.[11] 

After the appropriate incubation time the program controlling the movement speed of 

the syringe pump was started. For nearly all measurements in this study the movement 

speed of the syringe pump and thereby the shear stress was increased by 2.33 % every 

0.5 s, resulting in a logarithmic increase of the shear stress over time (Figure 31 A). The 

only exception to this experimental procedure was necessary for the characterisation of 

the epithelial cell lines HepG2Iso and HepG2 (results shown in section 4.1). Here a pulse 

of approximately 10 dyn/cm² lasting 0.5 s preceded the stepwise increase of the shear 

stress (Figure 31 B). This pulse was necessary as the cells sometimes spontaneously 

adhered to the HA surface after injection and this ensured that all cells were detached 

from the surface at the beginning of the measurement. 
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Figure 31: Scheme of the two types of detachment assay applied in this study. A) The regular detachment 
assay. The shear stress was stepwise increased from ~ 0.01 dyn/cm² to ~ 1,000 dyn/cm² every 0.5 s. 
B) Modified detachment assay with an initial 10 dyn/cm² pulse for 0.5 s used to detach spontaneously 
adhering cells. 

The wall shear stress    applied in each step can generally be described by  

        
  (17) 

With    being the initially applied shear stress,    the growth coefficient, by which the 

shear stress was increased in each step (e.g. 1.0233 for a 2.33 % increase), and   the step 

number. However, the growth coefficient was related to the step duration    (e.g. long 

steps with large    could have the same overall shear stress increase as short steps with 

small   ). This made the comparison of the overall increase between different 

constellations (   and   ) difficult. As shown in Equation (18), substitution of    by the 

step duration independent growth rate of the shear stress    led to a more general 

description of the wall shear stress    . For further elaboration see also the Appendix 

(section 7.1.1.3). 

        
           

    
      (  

 
  )

    

    (  )
       (18) 

    is the wall shear stress (hereafter referred to simply as ‘shear stress’) applied in a 

given step,    is the duration for which the experiment had proceeded (multiple of the 

step duration;    =     ,   = 0,1,2,3…),    (growth rate of the shear stress) is the step 

duration independent factor by which the shear stress was increased each step and    the 

initial shear stress applied to the channel system. The liquid flow rate, which was 

generated by the syringe pump, is directly correlated to the shear stress applied to the 

surface. In fact,    can be calculated from the liquid flow rate ( ), the channel dimensions 

(width   and height  ) and the viscosity of the liquid ( ) according to Equation (19). 
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 (19) 

This calculation follows the Poiseuille model for parallel plate flow channels (Figure 32) 

using the Purday approximation and the fact that the ratio between the channel height 

and the channel width was large.[185-188] The derivation of the formula can be found in the 

Appendix (section 7.1.1.3). A prerequisite for the application of the approximations made 

there is the existence of a fully developed laminar flow. Here, a defined velocity gradient 

along the y-axis (orthogonal to 

the channel bottom/top) can be 

anticipated. In such a setting the 

flow can simply be viewed as a 

stack of non-mixing layers parallel 

to the wall. In the case of turbu-

lent flow the calculation is more 

complicated. It relies on the mod-

elling of the viscosity-affected 

inner region (the near-wall re-

gion) for solving the velocity gradient along the y-axis. This is possible by either applying 

semi-empirical formulas called ‘wall functions’ (the near-wall region is bridged) or by 

‘near-wall modelling’ (the near-wall region is resolved by modifying turbulence models 

with a mesh all the way to the wall). The dimensionless Reynold´s number    can be 

applied to predict if a laminar or a turbulent flow profile develops. At Reynold´s numbers 

below 2300 the flow is laminar and a parabolic flow profile as indicated by the grey 

arrows in Figure 32 can be observed. As shown in the Appendix (section 7.1.1.2) the 

Reynold´s number    can be estimated for a flat rectangular channel (height << width) by 

Equation (20). 

   
   

  
 (20) 

With   being the liquid flow rate,   the liquid density,   the liquid viscosity and   the 

channel width. The maximum flow rate theoretically applicable by the syringe pump was 

~ 81 mL/min. Due to the pressure drop in the tubings and the channel system, the 

practically applicable maximum flow rate was roughly 40 mL/min. Beyond this flow rate 

the formation of bubbles in the setup was observable. As the viscosity   is in the 

denominator the calculation of the maximum Reynold´s number presented here was 

done for the relatively low viscosity of cell culture medium at 37 °C 

(0.72 x 10-3 kg m-1s-1).[187] The viscosity of buffer solutions such as PBS buffer at lower 

temperatures is always larger than this leading to lower Reynold’s numbers. The liquid 

 

Figure 32: Parallel plate model for unidirectional flow. A 
parabolic flow profile between two immobile parallel plates is 
shown. The height is so much smaller than the width of the 
channel that the shear at the channel sides can be neglected. 

x
z

y h

w



3 Materials and Methods 

 

46 

 

density   is ~ 1kg/L. The channel dimensions can be estimated as   = 135 µm and 

  = 1500 µm (which is neglectable due to the ratio   ⁄  being so large). From this the 

Reynold’s number calculates to ~ 830 (~ 1670 for the theoretically applicable 81 mL/min). 

This is well below the threshold Reynold´s number of 2300 for laminar flow.[177] 

By expressing   from Equation (19) with the Reynold´s number as given by Equation (20) 

the shear stress may also be estimated as 

  
  

  
 (21) 

This correlation emphasise the importance of maintaining small channel heights, as at a 

constant Reynold´s numbers the maximum applicable shear stress is correlated to the 

square of the channel height. 

3.8.4 DATA ANALYSIS OF ADHESION STRENGTH EXPERIMENTS 

The critical shear stress     required to detach 50 % of the adhered organisms or particles 

(both hereafter referred to as objects) was an ideal variable to compare the adhesion 

strength of objects to different surfaces. 

To determine the critical shear stress     the number of objects adherent to the surface 

at a given time  ( ) was normalised to the number of objects initially adherent to the 

surface in the field of view (FOV) Nad as 

shown in equation (22).  

 ( )     
        (22) 

    was, therefore, defined as 

     (   )     
        (23) 

with 

 (   )  
 

 
    (24) 

The critical shear stress τ50 could easily be 

derived from the plot by magnification of 

the detachment area of the curve and 

utilisation of the ‘Screen-Coordinates’-tool 

provided by OriginPro 9.1G©. For   = 0.5 the 

 -coordinate was equal to the     value of 

the given object and surface (Figure 33). 

 

Figure 33: Explanatory graph showing the 
evaluation of the detachment of adherent cells or 
particles from surfaces in the microfluidic shear 
force setup. After normalisation of the adherent 
objects  ( ) to the initially adherent objects     
the     value could easily be determined from the 
plot visually. 
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3.8.5 DATA ANALYSIS OF CELL-SURFACE INTERACTION EXPERIMENTS 

The cell concentration of the cell line suspensions injected into the channel system was 

adjusted to 106 cells/mL. In the case of primary material this was not always possible, as 

counting and resuspension of the cells directly before the experiments was avoided to 

prevent stress to the cells or the amount of cells was simply not sufficient. For this reason 

and to ensure ideal comparability between all experiments the number of cells  ( ) 

interacting with the surface at a given time (the time elapsed in the measurement was 

directly correlated to the shear stress) was normalised to the number of cells initially 

visible in the FOV    as shown in Equation (25). By doing so adhesion curves as shown in 

Figure 34 were measured.  

 ( )    
        (25) 

The supplementary Video S3 found in the 

Appendix (description found in 

section 7.1.2.1, video provided on the 

supplementary CD) demonstrates the 

direct correlation between the video 

recorded during measurement and the 

interaction curve obtained after analysis. 

From the interaction curve values such as a 

threshold shear stress, beyond which a 

flow-induced rolling on the surface took 

place, and the shear stress, at which the 

maximum fraction of interacting cells      

was observed, could be derived visually. 

In contrast to the various types of 

suspension cells used in this study, which 

all showed reproducible tendencies to interact with the test surfaces (mainly HA-coated 

substrates), the two related epithelial cell lines HepG2 and HepG2Iso showed a highly 

heterogeneous tendency to interact with the surfaces. Depending on unidentified factors, 

which may involve cellular age, culture density or storage duration on ice, this ranged 

from cells spontaneously adhering to the substrate directly after injection into the 

channel system yielding no chance of observing any interaction under flow, over slow 

adhesion and a strong tendency interact with the HA-coated surface under flow, to a 

generally weak cell-surface interaction.  

 

Figure 34: Explanatory graph showing the 
evaluation of the interaction of suspension cells 
with surfaces under flow in the microfluidic shear 
force setup. The number of interacting cells was 
normalised by the number of cells initially visible in 
the FOV   . 
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To mitigate this issue and to allow comparison of different experiments, an additional 

normalisation was applied for this specific cell type. As for the suspension cells, each 

experiment was normalised to the number of initially visible cells (normalisation to   ), 

yielding the fraction of interacting cells in per cent. In addition, the fraction of interacting 

cells of the corresponding control group (untreated cells or cells treated with siRNA, 

respectively) was defined as full interaction, with the fractions of interacting modified 

cells corresponding to this value. This value was used to compare the influence of e.g. 

antibody blocking or siRNA treatment. 

An example for this normalisation is shown in Figure 35. The two control measurements 

were averaged to the mean curve (black line, Figure 35 B). Due to the correction process 

the values were no longer given in per cent but rather in arbitrary units (a.u.). 

Furthermore, as the initial fraction of cells visible in the FOV was no longer of relevance it 

is not shown in the following graphs depicting the HepG2Iso-surface interaction. 

 

 

Figure 35: Exemplary graph showing the evaluation of the interaction of epithelial cells with surfaces 
under flow in the microfluidic shear force setup. The number of interacting cells was normalised to the 
respective control. 
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3.8.6 OPTIMISATION AND PROOF OF APPLICABILITY OF THE 

MICROFLUIDIC SHEAR FORCE DEVICE 

Earlier studies in our workgroup experienced certain short comings concerning the 

precision and reproducibility of measurements of the shear stress required to detach 

objects or cells from a given surface in the microfluidic shear force device.[268-269] The 

studies focussed on the interaction of marine bacteria and of diatoms with potentially 

adhesion-resistant surfaces. While the recent studies clearly revealed the potential of the 

microfluidic assay to differentiate adhesion strength on different surfaces, the complexity 

of a microfluidic experiment becomes obvious when small effects cannot be distinguished 

due to the variations between experiments. To further optimise the microfluidic setup 

and more importantly to prove the applicability of the same for the use in the context of 

this work, calibration measurements were conducted. The work of Maria Alles 

demonstrated that the position of measurement inside the channel system, the 

concentration of adherent objects, the channel dimensions and the possibility of pressure 

fluctuations due to the pressure reducer were not responsible for the varying critical 

shear stresses τ50 measured for one object-surface type combination.[269] She could show 

that with a different channel assembly as used in this work (13 mm x 0.9 mm x 140 µm, 

hereafter referred to as ‘13 mm channel’) the application of an aluminium spacer could 

increase the reproducibility in one channel while only marginally improving the 

reproducibility between different assemblies of a channel system.[269] 

In this work the effect of aluminium spacers (height 130 ± 5 µm) on the reproducibility of 

the channel dimensions after reassembly, on the stability of the channel dimensions 

during the experiments and on the inter- and intra-channel reproducibility after 

reassembly was studied. The effect of the maximum flow rate applied to the channel 

system during measurements was also analysed. Therefore, the     values derived from 

successive measurements in a single channel and the corresponding channel dimensions 

were obtained. The progression of these variables and the relation between the same 

was then correlated to the presence or absence of a spacer. Finally, the applicability of 

the microfluidic shear force device for cell-surface interaction studies was demonstrated. 
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As in the study of M. Alles, carboxy-terminated poly-

styrene microspheres with a mean size of 4.5 µm (later 

referred to as particles, Figure 36) were used. 40 µl of 

the particle stock solution were diluted in 1 mL PBS 

buffer (pH = 7.4) resulting in a concentration of 

approximately 20∙106 particles/mL. The particles were 

washed thrice in PBS buffer by centrifugation 

(13,000 rpm, 4 min). The prepared particle suspension 

was stored at RT until use and was always used the day 

of preparation. SAMs were chosen as control surface as 

they present a flat surface with reproducible defined 

properties. If not mentioned otherwise the sample 

surface used in this study was a HUDT SAM on which 

the particles were incubated for 5 min prior to detachment. 

3.8.6.1 INFLUENCE OF THE CHANNEL DIMENSIONS 

Table 4 gives the mean channel dimensions observed throughout the particle 

measurements. In contrast to the improvement in the channel height fluctuation during 

assembly with a spacer found by M. Alles, no pronounced differences between the 

channel dimensions with and without a spacer were observed for the 25 mm channels. If 

differences between the measurements with and without a spacer occurred it was not 

due to the channel dimensions after assembly. This was in accordance with the findings of 

M. Alles that showed a general independence of the τ50 value measured from the channel 

dimensions after reassembly.[269] 

Table 4: Mean values measured for the channel dimensions. The table gives the values for the channel 
height and width averaged over all measurements conducted in this section. 17 independently assembled 
channels without a spacer and 13 independently assembled channels with a spacer. 

 

Channel 

height 

[µm] 

SD 

[µm] 

Error 

[%] 

Channel 

width 

[µm] 

SD 

[µm] 

Error 

[%] 

Without spacer 136.5 3.8 2.8 1484.0 73.9 5.0 

With spacer 137.0 2.4 1.8 1477.2 60.3 4.1 
 

Figure 37 shows the correlation between the progression of the     value and the channel 

dimensions in a channel lacking a spacer. It clearly shows that while the     value initially 

decreased reaching a plateau at the third run, the channel dimensions did not noticeably 

change in the relaxed state (measured between experiments, but with the overpressure 

 

Figure 36: SEM image of the 4.5 µm 
carboxy terminated polystyrene 
microspheres used in this study. 
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applied). A similar but inverted approach to a plateau is shown in Figure S3 (Appendix 

section 7.1.3.1). This means that the channel dimensions were not only independent of 

the assembly but they were also not permanently changed by running measurements, 

even though the     value changed. This finding presents an expansion of the findings of 

M. Alles that demonstrated the independence of the dimensions after initial 

assembly.[269] 

 

Figure 37: Correlation between the     values measured in succession in one single channel without 
application of a spacer and the channel dimensions. The     value increased over the first three 
measurements before reaching a plateau. The channel dimensions were measured between the 
experimental runs, thereby only representing the dimensions if no flow is applied. The errors given for the 
channel dimensions are estimated measuring errors. 

3.8.6.2 EFFECT OF CHANNEL-REASSEMBLY AND APPLICATION OF SPACERS 

Figure 38 shows the mean detachment curves 

measured in four channel systems assembled in 

parallel. It is easily seen that not only did the 

mean curves greatly differ from each other but 

the fluctuation in one channel was also appar-

ent. It need not be mentioned that the     

values greatly differed (ranging from 

~ 16 dyn/cm² to 300 dyn/cm²). This figure 

demonstrates not only that was the fluctuation 

between the channels large without application 

of a spacer but so was the fluctuation in the 

measurements in one single assembled channel 

system. For this reason the fluctuations in one 

channel were analysed by repeatedly 
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Figure 38: Detachment curves measured in 4 
different channels assembled in parallel 
with a spacer. The data stems from one 
experimental setup with at least 3 repeats 
per channel. The error bars represent the SD. 
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assembling the channel and conducting measurement series in each assembly. This was 

then compared to the same channel repeatedly assembled with a spacer. The results are 

shown in Figure 39. The overviews over all detachment curves measured with and 

without a spacer give an impression of the fluctuations observed in the one channel 

(Figure 39 A). The graphs depicting the succession of the corresponding     values 

(Figure 39 B) indicate that the fluctuation of the initial     value measured with a spacer 

was larger than that without a spacer. As this is true for this set of measurements it shall 

be mentioned here that strong fluctuations were observed in other channels without a 

spacer. This is indicated in Figure 38, which shows that the     value of channel 2 by far 

exceeded the     values otherwise discussed in this section both with and without a 

spacer. The fact that the application of a spacer did not increase the reproducibility of the 

initially measured     value was in line with the findings of M. Alles who also could not 

observe any improvement of the inter-channel reproducibility when applying a spacer.[269] 

 

 

Figure 39: Comparison between the fluctuation in measurements in one repeatedly assembled channel 
with and without a spacer. The left graph shows all detachment curves measured and the right graph 
shows the progression of the     values in each experimental series. The overviews are shown for 
measurements without (A) and with (B) a spacer. 
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Next to the initially measured shear stress the 

reproducibility in each single assembly was a 

factor that needed to be considered. This 

tendency to of variation in one channel assembly 

was directly correlated to the percentage error of 

the measurement. This error should have been 

larger in a system prone to fluctuation of the 

measured values than in one which was not. 

Figure 40 shows the course of each measurement 

series. The     values were divided by the first 

value measured in the corresponding series, 

resulting in each series beginning at the same 

value. This allowed the direct comparison of the 

course of the different measurement series. Not only did the general trend appear 

broader in the channel lacking a spacer, but outliers concerning the inter-channel 

reproducibility were also only apparent if no spacer was present. 

This observation becomes even more apparent in Figure 41. The figure shows the mean 

    values plotted against the percentage error of the respective measurement series. 

The centre scatter plot is surrounded by box plots of the     values on the abscissa and 

the percentage errors on the ordinate. The box plots give the 1st (lower box margin), 2nd 

(middle line; median) and 3rd (upper box margin) quartile of the data and the whiskers 

represent the standard deviation of the data. A detailed explanation of box plots and 

what they show is given in the Appendix (section 7.1.2.3). To ensure ideal comparability 

only the first five     values of each of the experimental series (ensuring the same 

number of measurements in each series) shown in Figure 39 were used for the calculation 

of the mean     values and the percentage errors. This way lasting trends, such as a 

continuous reduction of the     values in one series, always had the same influence on 

the overall percentage error. The graph clearly shows that, while the     values tended to 

be slightly higher if a spacer was applied, the percentage error and its fluctuation 

(represented in the SD) were lower in the presence of a spacer. The overall mean per-

centage error of the     values without a spacer was 18.1 ± 12.0 % and with that the 

mean value was roughly twice as high and the SD approximately thrice as high as that 

measured for the channel with a spacer (10.9 ± 3.9 %). The complete set of     values and 

the corresponding SD and percentage errors are shown in Table S1 (Appendix 

section 7.1.3.2). These findings demonstrate that the application of a spacer helped im-

prove the reproducibility in one assembled channel, while having nearly no effect on the 

reproducibility between independently assembled channels. Again this correlated well 

 

Figure 40: Progression of the     value of 
each measurement series. 
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with the findings M. Alles, who also observed an improvement of the intra-channel 

reproducibility.[269] 

 

Figure 41: Correlation between the mean critical shear stress     and the percentage error of the 
measurement in dependency of the application of a spacer. The centre graph shows the direct comparison 
of the percentage error for each set of measurements and the corresponding     value for the detachment 
of particles with and without application of a spacer. The left and right box plots show the distribution of 
the percentage errors, while the top and bottom box plots show the distribution of the corresponding mean 
    values. The box plots give the 1

st
 (lower box margin), 2

nd
 (middle line; median) and 3

rd
 (upper box 

margin) quartile of the data and the whiskers represent the standard deviation of the data.  gives the     
values,  is the mean percentage error (left, right) or the mean     value (top, bottom). The whiskers 
represent the SD. The length of each experimental series was the same (n = 5). 

3.8.6.3 DEPENDENCY ON THE EXPERIMENTAL PARAMETERS AND ON THE 

CHANNEL SYSTEM USED 

The experimental parameters (the step duration    and the initial shear stress   ) and the 

channel setup used (13 mm channel or 25 mm channel) were another set of parameters 

studied towards their influence on the reproducibility of the measurements of the critical 

shear stress    . The step duration    represents the time span for which a given shear 

stress was applied and    is the step duration independent factor by which the shear 

stress was increased in each step. Equation (18), first introduced in section 3.8.3, 

demonstrates the calculation of the shear stress     applied to the system after a given 
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time    (=     ,   = 0,1,2,3…) in dependence of the channel dimension dependent initial 

shear stress   . 

       (  )
   (18) 

The influence of the experimental parameters is illuminated first. To determine this 

influence, combinations of two step durations (   = 0.5°s and    = 5°s) and two initial 

shear stresses (   = 0.01 dyn/cm² and    = 0.1 dyn/cm²) were tested in a successive series 

of measurements in a single channel. The overall increase of the shear stress was the 

same in all measurements (   = 1.047). These parameters were chosen as they 

corresponded to those used in this work for cell-surface interaction measurements 

(   = 0.5°s,    = 0.01 dyn/cm²) or to those used by M. Alles and M.P. Arpa Sancet from our 

workgroup for the detachment of marine organisms from various surfaces (   = 5°s, both 

   = 0.01 dyn/cm² and    = 0.1 dyn/cm²).[268-269] The channel dimensions in the relaxed 

state (between two measurements, with the overpressure applied) were recorded 

between the measurements and compared to the     values obtained from analysing the 

detachment curves. From Figure 42 it can be seen that the     values and the channel 

dimensions were completely independent of both the step duration and the initial shear 

stress applied. Comparable results are also shown in Figure S4 (Appendix section 7.1.3.3) 

demonstrating the reproducibility of this finding. 

 

 

Figure 42: Effect of the experimental procedure on the     values. The step duration    and the initial 
shear stress    were varied. A spacer was used. The     values remained nearly constant throughout the 
measurement, as did the channel dimensions. The errors given for the channel dimensions are estimated 
measuring errors. 

 

0.01 0.1 1 10 100
0

20

40

60

80

100

0

10

20

130

135

140

0 1 2 3 4 5 6 7 8 9 10

1480

1490

N
(

)*
N

-1 ad
 [

%
] 

 [dyn/cm²]

 run1 [
i
 ~ 0.1dyn/cm²] 

 run2 [
i
 ~ 0.1dyn/cm²]

 run3 [
i
 ~ 0.01dyn/cm²]

 run4 [
i
 ~ 0.01dyn/cm²]

 run5 [
i
 ~ 0.01dyn/cm²]

 run6 [
i
 ~ 0.01dyn/cm²]

 run7 [
i
 ~ 0.1dyn/cm²]

 run8 [
i
 ~ 0.1dyn/cm²]

˜ 

 5
0
 [

d
yn

/c
m

²]

t = 0.5s

t = 5s

C
h

an
n

e
l

H
e

ig
h

t 
[µ

m
]

Measurement number

C
h

an
n

e
l

W
id

th
 [

µ
m

]



3 Materials and Methods 

 

56 

 

The influence of the setup size was 

investigated by comparing the results for the 

detachment of particles from HUDT SAMs ob-

tained by M. Alles in a 13 mm setup with 

those obtained in this study with a 25 mm 

setup. All detachment curves obtained this 

way are shown in Figure 43. All in all the 

detachment curves overlapped well, with a 

shift to higher shear stresses in the 25 mm 

setup. A more detailed view of the data is 

given in Figure 44. This graph shows the 

correlation between the mean     values and 

the corresponding percentage error in each of 

the two setups. In accordance to the 

detachment curves shown in Figure 43 the 

centre scatter plot and the box plots at the 

abscissa clearly show that the mean     

values measured fluctuated in both setups. As 

each mean     value was calculated from an 

individual experimental series (successive experiments in one fully assembled channel 

system), it can be seen as a measure for the reproducibility of the     values measured 

after the reassembly of the channel (for each channel size the same channel was 

repeatedly reassembly). The fluctuation of the     values, therefore, demonstrates the 

large fluctuation upon reassembly of the channel in both channel systems tested. The fact 

that the fluctuation appears to be bigger for the 25 mm setup may be ascribed to the 

larger number of experimental repeats. Bearing in mind that the dimensions of the two 

setups were so different and that both setups were prone to the just discussed strong 

fluctuations of the     values measured, it was remarkable to see such a good correlation 

between the data obtained. Still, a small statistical indifference between the sample 

cohorts was determined (Student´s t-test; p = 0.09 > 0.05), even though the SD of the two 

sample cohorts fully overlapped. While the distribution of the mean     values gives an 

impression on the reproducibility after reassembly, the mean percentage errors and their 

distribution represent the reproducibility in each experimental series and how this 

deviated between reassemblies. The distributions of the percentage error of the 

individual measurement series were similar, with the mean lying in the range of 5-10 % 

and a clear statistical indifference between the data sets (Student´s t-test; 

p = 0.36 > 0.05). This demonstrated that the reproducibility in each experimental series 

was roughly the same for all measurements independent of the channel system tested. 

 

Figure 43: Comparison between the detach-
ment curves obtained in a 13 mm channel by 
M. Alles and those obtained in a 25 mm chan-
nel. The results were all obtained in one 
channel of each setup that was repeatedly 
reassembled with a spacer. n = 15 in the 13 mm 
channel in 5 independent reassemblies. n = 93 
in the 25 mm channel in 11 independent 
reassemblies. 
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Overall, these findings demonstrate that the error of the measurement should be sought 

for elsewhere than in the channel dimensions. The fluctuation in each of the 

experimental series in both setups was comparable and the largest deviations were 

observed upon reassembly of the channels. 

 

Figure 44: Correlation between the mean critical shear stress     and the percentage error of the 
measurement in dependency of the channel setup used. A spacer was used for all measurements 
presented in this plot. The centre graph shows the direct comparison of the percentage error for each set of 
measurements and the corresponding     value for the detachment of particles from a HUDT SAM in either 
a 13 or 25 mm channel setup. The left and right box plots show the distribution of the percentage errors of 
the mean     values.  gives the     values,  is the mean percentage error (left, right) or the mean     
value (top, bottom). The whiskers represent the SD. The length of each experimental series was the same 
(n = 3). 

3.8.6.4 DEPENDENCY ON THE MAXIMUM SHEAR STRESS APPLIED 

As can be seen from the particle detachment data discussed so far, the     values 

measured were small in comparison to the maximum shear stress that could have been 

applied with the 25 mm channel setup (~ 1,000 dyn/cm², see section 3.8.3). Therefore, an 

analysis of the effect of applying different maximum shear stresses during the 

experimental procedure was undergone (experiment aborted at ~ 200 dyn/cm² or at 

~ 1,000 dyn/cm²). The measurement procedure is shown in Figure 45. Ten measurements 

were conducted in succession in each channel assembly. The first six measurements were 
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aborted at approximately 200 dyn/cm², while the last four were ramped up to 

1,000 dyn/cm². Of these ten data points the first four were compared to the last four to 

ensure ideal comparability between the data sets. 

 

Figure 45: Measurement procedure for the analysis of the effect of the maximal applied shear stress on 
the     values. Ten measurements were conducted in succession in one single channel assembly. Of these 
measurements the first 6 were aborted when the shear stress at the channel floor reached approximately 
200 dyn/cm². The last 4 measurements were aborted only at approximately 1,000 dyn/cm². Of the obtained 
    values the first 4 were combined as ‘data set 1’ (experiment aborted at 200 dyn/cm²) and the last 4 as 
‘data set 2’ (experiment aborted at 1,000 dyn/cm²). This was done to ensure ideal comparability between 
the two data sets. 

The effect of the different maximum shear stresses applied was analysed for channels 

with and lacking a spacer. As shown in Figure 46 the percentage error was larger for 

channels lacking a spacer than it was for those with a spacer if the experiment was 

aborted when a shear stress of approximately 200 dyn/cm² was reached. This undergirds 

the findings discussed in section 3.8.6.2 as nearly the same trend was observed. The final 

measurements (application approximately 1,000 dyn/cm²) of each series exhibited a 

surprisingly low percentage error. It was not only comparable for channel with and 

without a spacer, but it was also lower than that observed during the first measurements. 

A possible explanation for this behaviour could be that the channels somehow adjusted 

themselves during the measurements enabling lower deviations after a sufficient amount 

of experimental runs. Interestingly, the channel dimensions in the relaxed state, meaning 

the state of the channel between experiments when the over-pressure was applied but 

no suction was created by the syringe pump, did not change throughout the 

measurement. As shown in the Appendix section 7.1.3.4 this was regardless of whether a 

spacer was applied or not. 

Measurement no. 1   2   3   4   5   6   7   8   9   10

Data set 1 Data set 2

…200 dyn/cm² …1,000 dyn/cm²
Application of maximum…
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Figure 46: Correlation between the mean critical shear stress     and the percentage error of the 
measurement in dependency of the maximal shear stress applied. The mean values and errors for 
measurements with maximal 200 dyn/cm² applied are the mean of the first 6 values of the series, while a 
maximal application of 1,000 dyn/cm² is given by the following 4 values. The centre graphs shows the direct 
comparison of the percentage error for each set of measurements and the corresponding     value for the 
detachment of particles with either a maximum shear stress of 200 dyn/cm² or of 1,000 dyn/cm² applied. 
Each is shown with and without the application of a spacer. The box plots of the percentage errors shown 
on the outside better demonstrate the differences in the mean percentage error and the distribution of the 
same.  gives the     values,  is mean percentage error and the whiskers represent the SD. 

3.8.6.5 SYSTEM APPLICABILITY FOR THE CHARACTERISATION OF CELL-SURFACE 

INTERACTIONS AT LOW SHEAR STRESSES 

For this entire work the information whether the microfluidic shear force setup was 

capable of measuring with sufficient accuracy and reproducibility at low shear stresses to 

analyse the interaction between cells and surfaces under shear flow was of great 

importance. To gain an impression of the dependency of the behaviour of the     values 

and the percentage errors on the region of shear stress in which they were measured 
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strongly adherent surfaces were compared to the moderately adherent HUDT SAMs 

discussed in this work so far. The highly attractive DDT SAM presents a surface type on 

which high shear stresses are required to detach the particles. Figure 47 shows a 

comparison between the distribution of the     values and the percentage error obtained 

from measurements on HUDT and DDT SAMs. In both cases no spacer was applied to 

maximise the effect and to make a comparison to the cell-surface interaction experiments 

possible, as these too were conducted without spacers. From the centre scatter plot, but 

more clearly from the abscissa box plots, it can be seen that the two sets of mean     

values were clearly distinguishable from each other. This demonstrates that, although the 

measurements were prone to a certain fluctuation between measurements, the setup 

was obviously capable of differentiating between varying surface types. 

 

Figure 47: Correlation between the mean critical shear stress     and the percentage error of the 
measurement on two different SAMs (HUDT and DDT). The centre graph shows the direct comparison of 
the percentage error for each set of measurements and the corresponding     value for the detachment of 
particles from DDT or HUDT SAMs. The left and right box plots show the distribution of the values for the 
detachment from HUDT and DDT respectively.  gives the     values,  is the mean percentage error (left, 
right) or the mean     value (top, bottom). The whiskers represent the SD. The length of each experimental 
series was the same (n = 3). 
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The ordinate box plots, in turn, demonstrate that the percentage errors were not only far 

greater in measurements conducted on highly attractive DDT SAMs, but they were also 

far more diverse than on HUDT SAMs. In fact the percentage error obtained on DDT SAMs 

of (42.1 ± 24.39 dyn/cm² was nearly four times as large as that measured on HUDT SAMs, 

which was (11.9 ± 8.4) dyn/cm². Furthermore, the SD of the percentage error on DDT 

SAMs, which was thrice more than that measured on HUDT SAMs, again demonstrated 

the high fluctuation of the measurements. The complete data set is shown in Table S2 

(Appendix section 7.1.3.5). Concerning the dependency on shear stress applied to the 

system it can be said that the mean percentage error observed throughout the 

measurements was nearly quartered moving from     values in the range of 

(100-1,000) dyn/cm² for DDT SAMs to values in the range of (10-100) dyn/cm² for HUDT 

SAMs. This shows that even without the application of a spacer the fluctuations within 

the measurements decreased with the shear stress applied to the system. The 

measurement of the interaction of cells and surfaces, such as they were studied in the 

context of this work, took place at shear stresses, which were another one to two orders 

of magnitude lower. It can, therefore, be assumed that the percentage error was 

quartered at least once more under the assumption of a nearly linear correlation. This 

good reproducibility was in fact observed. Figure 48 A shows the mean interaction curves 

with hyaluronic acid measured in this work for a model cell line (KG-1a). While the reason 

for this interaction as well as the cells and surfaces involved are beyond the scope of this 

section (theory in section 2.3-2.4, experimental results in section 4.1), the graph clearly 

shows a high reproducibility of the measurement. It shows that averaging of all 

measurements for this example model cell line that were conducted throughout this work 

yielded reproducible results. In fact the height variations observed in Figure 48 A were 

most probably related to deviations in the cell conditions (cell density during culture, cell 

culture passage) or to varying numbers of initially visible cells (the fraction of interacting 

cells was normalised to this value), rather than to imprecise measurements. Figure 48 B 

shows the first two as well as the 11th measurement of a series of measurements that 

were conducted with the model cell line in succession in one assembled channel system. 

The other measurements conducted are not of interest here as treatments of the cells 

modified their behaviour. The comparison shows how well the interaction of the cell line 

with the surface was reproducible in this channel assembly even after as many as ten 

measurements. Therefore Figure 48 in total demonstrates the high reproducibility not 

only between different channels but also after many repeated measurements in one 

channel. This not only supports the notion that fluctuation of the experimental deviation 

decreased with the shear stress applied, but also nicely demonstrates the applicability of 

this setup for the analysis of cell-surface interactions as they are presented in this work. 
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Figure 48: Reproducibility of cell-surface interaction experiments. A) Average of all measurements of the 
interaction of KG-1a cells with HA under shear stress conducted for this entire study (n = 9). B) Example of 
the reproducibility in one experimental setup. After the first two measurements other cell-surface 
interaction experiments were conducted. The 11

th
 run was untreated KG-1a cells again. The interaction 

curve measured was nearly the same as that initially measured. 

3.8.6.6 DISCUSSION 

In this section the effect of different experimental parameters on the intra- and inter-

channel reproducibility was analysed. Table 5 gives an overview over the parameters 

studied in this section and their effect on the reproducibility of the microfluidic shear 

force measurements. As the shear stress applied to the channel system was calculated 

from the liquid flow and the channel dimensions (discussed in section 3.8.3 resulting in 

Equation (19)) it is obvious that a change of the channel dimensions during the 

measurement would have affected the critical shear stress     measured. It could be 

shown that in experiments conducted successively in a single channel assembly the 

channel dimensions in the relaxed state (between experimental runs, but with the 

overpressure applied to the channel) did not change even if a deviation of the     values 

was observed. This was an expansion of the findings of M. Alles that showed that the 

channel height upon assembly was not related to fluctuations between different channel 

assemblies.[269] 
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Table 5: List of parameters studied concerning the optimisation of the microfluidic shear force system.  
indicates an effect of the listed parameter on the improvement of the mean τ50 value measured or on a 
reduction of the τ50 scattering in one experimental setup.  indicates no improvement of the measurement. 

Parameter 

studied 

Effect on 

reproducibility of 

mean τ50  

(Intra-channel 

reproducibility) 

Effect on τ50 

scattering during 

measurement 

(Inter-channel 

reproducibility) 

Conclusion  

Channel 

dimensions vs. 

τ50 progression 
  

Fluctuation of     values was 

independent of channel 

dimensions 

Introduction of 

spacer 
  

Stability of measurement in each 

assembly was increased, but each 

channel differed more 

Comparison of 

sampling 

procedure 
  

Measurement precision and result 

was independent of sampling 

procedure 

Type of channel 

system used 
  

Measurement precision and result 

was independent of channel 

system used 

Maximum shear 

stress applied 
  

Measurement precision and result 

was independent of maximal shear 

stress applied 

Dependency of 

adhesion 

strength 
  

Reproducibility was dependent on 

the range of interest in the shear 

stress spectrum 
 

M. Alles could show that the application of a 130 µm high aluminium spacer to the 13 mm 

channel setup could increase both the reproducibility of the channel height after 

reassembly and the intra-channel reproducibility of the     values. Here, in the 25 mm 

channel setup it could be shown that the usage of spacers had no noticeable effect on the 

channel dimensions after reassembly. This may be related to the by far larger area of the 

outer PDMS ring of the 25 mm channels compared to that of the 13 mm channels. This 

larger area was then less easily compressed and a reproducibility of the channel 

dimensions was internally given. In contrast to this differing observation, the observation 

that the application of a spacer increased the intra-channel reproducibility could be 

confirmed for the 25 mm channel setup. 
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Furthermore, it could be demonstrated that the quality of the measurement was 

independent of either the sampling protocol or even the channel setup itself. To 

determine the effect of the sampling protocol, the protocol was varied in successive 

measurements in a single channel assembly. It could be shown, that neither the step 

duration nor the beginning of the shear stress ramp resulted in a change of the     values 

measured. For comparison of the influence of the channel setup, data acquired by 

M. Alles in the 13 mm channel setup was compared to that measured in this work with 

the 25 mm setup. Here, no differences were apparent between the different channel 

setups. It should be noted that the high comparability between the two setups, the 

dimensions of which were so different, may indicate that the origin of the error lay 

elsewhere than in the channel 

itself. A hint to this was an 

experiment in which the in- 

and outlet tubings were 

incorrectly aligned to the holes 

in the glass lid of the channel 

(Figure 49). Here the     values 

greatly increased with each 

successive measurement. Such an error may be averted if the channel assembly were 

modified in such a manner that the tubings can no longer be misaligned to the holes in 

the glass lid. This could for example be achieved by countersinking the tubings into the 

holes of the glass and, thereby, ideally aligning them to these. 

Another factor that needs to be taken into account when conducting microfluidic shear 

force measurements is the range of shear stress at which the observation of interest 

occurs. Here, this observation was the detachment of the particles from the surface, but 

as discussed later the interaction of cells with surfaces was the major focus of interest of 

this work. To determine the influence of the range of shear stress applied, first the effect 

of the maximum shear stress applied during measurements was evaluated. It could be 

shown that the maximum shear stress applied to the channel system during 

measurement did not affect the     values measured independently of the application of 

a spacer. In fact, it seemed that high shear forces (approximately 1,000 dyn/cm²) could 

positively affect the fluctuations of the     values. This may, however, have been due to 

the protocol of the measurements. This should originally ensure the comparability of the 

data as both different maximum shear stresses tested were applied in the same channel 

system, thereby eliminating the fluctuations due to reassembly of the channel setup. It is, 

possible though that this repeated measurement in one channel may have made an 

equilibration of the channel possible that could have been responsible for the 

 

Figure 49: Progression of the     values in a misaligned channel. 
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compensation of the channel fluctuations. This should in further studies be addressed by 

comparing the percentage error of freshly assembled channels that were either ramped 

to 1,000 dyn/cm² or to only 200 dyn/cm². Furthermore, a comparison was made between 

the weakly attractive HUDT SAM and the highly attractive DDT SAM. It could be shown 

that the fluctuation of the percentage error was by far smaller for the detachment of the 

particles from the HUDT SAMs. This finding was further undergirded by averaging of all 

interaction curves of one of the model cell lines used in this study. Here, it could be 

shown that the interaction with the surface was highly reproducible. From these two 

observations it could be concluded that both the intra- and inter-channel fluctuations 

were reduced with decreasing the range of shear stress in which the observation of 

interest occurred. It is important to mention that although the fluctuations were present 

for the detachment of the particles from both the HUDT and the DDT SAMs, the two 

different chemistries were still clearly distinguishable from each other. This demonstrates 

that the microfluidic shear force setup was indeed applicable for the comparison of the 

shear stress required to detach objects from different surface chemistries. 

In conclusion, it could be shown that although shifts in the     values measured were not 

correlated to permanent changes of the channel dimensions the application of a spacer 

could improve the intra-channel reproducibility. It could also be shown that the 

measurement precision increased with decreasing shear stresses applied. Especially this 

last finding was highly relevant for this work as it clearly demonstrated the applicability of 

this setup for the analysis of cell-surface interactions at very low shear force conditions. 

3.9 ROLLING VELOCITY ANALYSIS USING QUANTUMCAT 

When analysing the rolling interaction of cells with a surface the velocity with which the 

cells roll was an interesting factor. Furthermore, the effect treatments with e.g. 

antibodies, which block the receptor responsible for rolling, had on the rolling velocity 

was also of great interest. To analyse this in detail the MatLab® (MathWorks, Natick, 

Massachusetts, USA) based analysis tool quantumCAT (quantitative analysis of two-

dimensional undirected motion by computer assisted tracking) was developed by Stojan 

Maleschlijski in our workgroup implementing a tracking core algorithm by Prof. Bodo 

Rosenhahn (Leibniz-University of Hannover, Hannover, Germany).  
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3.9.1 MEASUREMENT PROCEDURE OF QUANTUMCAT 

Videos of cells rolling on HA-coated surfaces were obtained using the microfluidic shear 

force device described in section 3.8. The cells were injected into the channel system and 

a flow rate of approximately 1 dyn/cm² was applied. The duration of the videos acquired 

was dependent only on the time for which the cells interacted with the surface. A frame 

rate of 5 fps was set for video acquisition in the imaging software NIS Elements AR 3.0 

(Nikon, Tokyo, Japan). NIS Elements AR 3.0 provided the exact time spans between each 

frame as this was mostly not perfectly constant. These exact time spans were extracted 

from the video file for later use in the calculation of the rolling velocities. For analysis the 

videos were split up into the single frames. The distance between the cell positions was 

calculated between each of those frames and together with the time between the frames 

the rolling velocities were later calculated. The cohort of rolling velocities acquired was 

later used for the comparison between the rolling behaviour of cells. 

A screenshot of the user interface of quantumCAT is shown in Figure 50. The main part of 

the screen is the video which was binarised by thresholding prior to investigation. The 

binarisation procedure was controlled by the parameter ‘Threshold max’ denoting the 

grey value used as threshold in relation to the maximum grey value available in the 

frame. Thus all values above the threshold (ideally only the objects of interest) were 

assigned the value 255 (white) and all values lower than the threshold a value of 0 

(black).The image shows a set of traces (blue lines) and the scan window of each trace 

(red box at the end of a trace). The scan window defined the area in which the tracking 

algorithm searched for the object. The size of the scan window (in pixels), the number of 

windows scanned in each direction and the direction of search could be altered in the top 

right ‘Settings’ and in the centred ‘Direction’ input field. Examples for the resulting 

scanning pattern are shown in Figure 51. As the direction of rolling of cells was dictated 

by the direction of liquid flow the setting shown in Figure 51 B was used in this work. 

Scanning in other directions as that of the flow would have been a waste of resources. 
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Figure 50: Image of quantumCAT with the most relevant functions marked. The picture shows a view of 
quantumCAT with a video loaded. The blue lines represent the traces recorded. At the end of each line is a 
red window, the scanning window. As indicated on the right, the size of the scanning window can be 
adjusted to the type of cells measured. This is also true for the number of steps measured, the direction of 
measurement and the size of the cells tracked. 

The minimal area of the cells (number of pixels) 

could be defined in the ’Thresholds’ input field. 

This allowed the elimination of objects with 

lower areas as potential errors. QuantumCAT 

also allowed the choice of different tracking 

modes. The standard mode was a fully auto-

matic mode in which tracking continued until 

the cell left the field of view. For cases in which 

cells crossed their path in the scan window and 

the software could not perform an unambiguous 

differentiation a semi-automatic mode was 

available. Here, the user must manually place 

the centroid position on the cell in a magnified 

scan window in the bottom right of the screen. 

For each tracked cell, the software created a 

‘.txt’ file, where the positions of the cell in each 

frame of the observation period were recorded, 

thus representing the trajectories of the rolling movement. From the traces (the 

coordinates) and the time spans between each frame the rolling velocities, but 

theoretically also e.g. the direction or the acceleration, could be deducted. 

 

Figure 51: Examples of the orientation of the 
scan window. The black rectangle is the 
origin in which the cell was located in the last 
frame. A) Scanning of 1 scan window in all 8 
directions. B) Scanning for 3 scan windows 
only in the x direction. The setting shown in B 
was used for the analysis of the rolling 
velocity of cells in this work. 
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3.9.2 ANALYSIS OF QUANTUMCAT DATA 

From the distance between the coordinates of a cell centroid in two frames and the time 

span between these two frames a single momentary rolling velocity was calculated as 

shown in Equation (26). The velocity    between the frame   and the following frame 

  + 1was calculated by dividing the distance   between the two points by the time 

  (   )   elapsed between the frames. The distance, in turn, was calculated from the  , -

coordinates of the respective point. As the data was acquired in pixels a conversion factor 

      must be applied to convert the pixels to a metric distance. For the 4x PhL objective 

used for the acquisition of the videos this was       = 1.58 µm/pixel. 

   
 

 (   )  
      

√(       )  (       ) 

       
 (26) 

This led to a velocity for each cell tracked for each pair of frames. Rolling was defined as 

an interaction with the surface, which was slower than the movement of the non-

interacting cells. A threshold of maximal 100 µm/s was set beyond which the velocity was 

defined as too fast for rolling and ignored as a ‘jump’ in the later analysis. 

The velocities in their entirety were used for comparison of the effects of different cell 

treatments on the rolling velocity. The simplest approach to do so would have been to 

compare the mean values and the SD of the measurements. This would have given an 

oversimplified view of the data with very large SD indicating an imprecise measurement. 

The SD, however, was due to the natural inhomogeneities of the interaction between 

cells and a surface (CD44 expressing cells and HA-coated surfaces in the specific case of 

this study) and should not be confused with an inaccurate measurement. The large 

amount of data points (typically at least 250 for very weakly interacting cells up to 25,000 

for readily interacting cells) collected for a given treatment allowed the reliable creation 

of distribution plots such as histograms or box plots. A detailed elaboration of the values 

found in such a box plot is given in the appendix (section 7.1.2.3). 

 



3.9 Rolling Velocity Analysis using quantumCAT 

 

69 

 

4 CD44: HOW STEM CELLS ROLL 

 

Figure 52: Scheme depicting the aims of this chapter. In this chapter the CD44 mediated interaction of cells 
with HA and other cells is addressed. In this context suspension and epithelial cell lines are utilised to gain a 
detailed understanding of this interaction. This knowledge is then applied in the comparison of the 
interaction of healthy HPC and leukaemic blasts with surfaces artificially coated with HA. The next step is 
the establishment of an experimental procedure to study cell-cell interaction under flow. Finally, the effect 
of the cytokine SDF-1α and its antagonist Plerixafor® on migration and the interaction with HA under flow is 
investigated. 

As presented in chapter 1 the first aim of this work was to characterise the CD44 

mediated interaction of healthy and leukaemic cells with HA in order to reveal differences 

between these cells types. Ideally, these can later be exploited for the targeted 

mobilisation of leukaemic stem cells (LSC) from the niche, thereby, making them more 

susceptible to chemotherapy. In the first section of this chapter the characterisation of 

the interaction of CD44 positive cell lines with hyaluronic acid (HA) is presented. For this a 
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comparison was made between the interaction of a leukaemic suspension model cell line 

(KG-1a) and an epithelial liver carcinoma model cell line (HepG2Iso) with HA-coated 

surfaces under flow. In this system the dependence of the interaction with HA on CD44 

was verified and it was studied whether these fundamentally different cell types 

exhibited different interact patterns with HA. In the following section some light is shed 

on the interaction of both healthy haematopoietic progenitor cells (HPC) and leukaemic 

blasts with HA, demonstrating the pronounced differences between healthy and 

leukaemic cells. Furthermore, the establishment of a method to study cell-cell 

interactions under flow is presented. In this context the interaction of both healthy and 

leukaemic cells with mesenchymal stromal cells (MSC) was investigated. Finally, the effect 

of the cytokine SDF-1α and its antagonist Plerixafor® on migration of HPC and on their 

interaction with HA under flow is discussed. 

4.1 ANALYSIS OF THE INTERACTION OF CD44 WITH 

HYALURONIC ACID 

 

Figure 53: Overview over the aims of this section. The flow-induced interaction of CD44 with HA shall be 
studied by analysis of the binding motive, the requirement of CD44 or its isoforms and the rolling velocity.  

Before the valuable and rare primary material could be studied, a detailed understanding 

of the underlying interaction motive was necessary. As mentioned above this was the 

flow-induced interaction between the cell surface receptor CD44 and the 

glycosaminoglycan HA. An overview over the findings that are presented in this section is 

given in Figure 53. Next to a comparison between two fundamentally different cell types, 

suspension cells and epithelial cells, the specificity of this interaction was verified. For this 
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a comparison was made between the interaction of the two model cell lines KG-1a and 

HepG2Iso (Figure 54) with different GAGs and between biologically similar CD44 negative 

cells with HA. Furthermore, the expression of CD44 in general (CD44pan) or different 

CD44variant isoforms was down-regulated to determine the relevance again of CD44 

generally and of the two isoforms. The possibility of blocking the flow-induced interaction 

with HA by a monoclonal antibody and short chain length HA fragments (sHA) was also 

analysed. In this context the rolling velocity of cells was studied using the analysis 

software quantumCAT. All experiments with liver carcinoma cell lines were conducted in 

cooperation with Katharina Fuchs from the workgroup of Dr. Véronique Orian-Rousseau 

(ITG, KIT, Karlsruhe, Germany). 

 

Figure 54: SEM images of the leukaemic suspension cell line KG-1a and the epithelial liver cancer cell line 
HepG2Iso. 

4.1.1 ANALYSIS OF THE BINDING PARTNER NECESSARY FOR ROLLING 

To validate that the rolling interaction with the surface was specific for HA both model 

cell lines were tested on HA- and chondroitin sulphate (CS)-coated surfaces. The chemical 

structure of HA and CS is shown in Figure 55. The only difference between the two 

molecules is the sulphated hydroxyl-group of CS, the location of which is dependent on 

the tissue it originates from and the conditions of synthesis.[270] The hypothesis was that if 

the interaction was specific for either of the two this would point towards a high binding 

partner specificity, due to the only marginal chemical differences exhibited by the 

molecules. 
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Figure 55: Chemical structures of HA (A) and CS (B). HA is composed of N-acetyl-D-glucosamine and D-
glucuronate, connected by β-1,4 and β-1,3 linkages and CS consists of N-acetyl-D-galactosamine and 
glucuronic acid that are in turn connected by β-1,3 and β-1,4 linkages. 

 

Figure 56: Comparison of the interaction between two different chemically similar GAGs. Both the KG-1a 
(A) and the HepG2Iso cells (B) showed a pronounced flow-induced interaction with HA while hardly any 
interaction with the CS-coated surface was observable (n = 4; ≥ 130 cells/FOV). For the HepG2Iso cells the 
fraction of interacting cells ranged from 72-92 % for the cells interacting with HA and from 4-22 % for the 
cells interacting with CS. 

As shown in Figure 56 the flow-induced interaction could be observed on HA for both 

model cell lines, while nearly no interaction was observable with CS. The supplementary 

Video S1 (description found in the Appendix section 7.1.2.1, video provided on the 

supplementary CD) shows an exemplary HepG2Iso cell rolling on HA. The flow-induced 

interaction showed the same characteristics as previously described by 

Christophis et al.[10] At very low flow speeds hardly any cells interacted with HA. Beyond a 

threshold shear stress level the fraction of cells interacting with the surface increased. 

The fraction of interacting cells reached its maximum at approximately (0.7-1) dyn/cm². 

The threshold of interaction was more pronounced for the epithelial cell line HepG2Iso, 

which was surely due to the adherent nature of the cells as well as the flow pulse at the 

beginning of the experiment. The system required a certain time to slow down from the 

pulse, resulting in the actual flow speed being faster than that set in the program of the 

syringe pump. This led to the epithelial cells seeming to interact at flow rates at which the 

suspension cells showed no interaction. This phenomenon could not be avoided as the 
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initial pulse was necessary to avoid crowding of the sample surface due to the 

omnipresent adherent nature of the cells. 

4.1.2 NECESSITY OF CD44 FOR FLOW-INDUCED INTERACTION 

After proving the necessity of the binding partner HA it was important to demonstrate 

that the interaction was solely mediated by CD44. One of the tests used to prove this fact 

was to analyse the interaction of different cell lines expressing and lacking CD44 with HA. 

As suspension cells the model cell line KG-1a (CD44+) was compared to the cell line Jurkat 

(CD44-). For the epithelial cells the model cell line HepG2Iso (CD44+) was compared to the 

related cell line HepG2 (CD44-). As shown in Figure 57 only the CD44 positive cell lines 

KG-1a and HepG2Iso showed the flow-induced interaction with HA. Thus, it could be 

concluded that, at least for these cell lines, CD44 was the only receptor mediating the 

flow-induced interaction with HA. 

 

Figure 57: CD44 required for rolling. A) Comparison of the interaction of two suspension cell lines with HA. 
The CD44 positive cell lines (KG-1a, HepG2Iso; black line) showed a flow-induced interaction with HA, while 
the CD44 negative cell lines (Jurkat, HepG2; red line) did not (n = 4; ≥ 150 cells/FOV). For the HepG2Iso cells 
the fraction of interacting cells ranged from 71-79 % for the untreated HepG2Iso cells and from 4-9 % for 
the HepG2 cells. 

In order to prove that the interaction with HA was mediated by the HA binding domain of 

CD44 an antibody specific for this binding domain was applied. The monoclonal CD44 

antibody (clone BU52, hereafter referred to as BU52) was chosen. Figure 58 shows the 

FACS data for the incubation of KG-1a cells with 9 µg/mL BU52 for 30 min. Figure 58 A 

and D show the cell selection gate for the untreated control (A) and the cells treated with 

BU52 (D). The propydiumiodide (Pi) vs. FSC gate in B and E was used to gate out all dead 

cells for later analysis. From this gate it can also be seen that the treatment with the 

antibody did not harm the cells, as their cellular integrity remained intact. The 
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fluorescence channel in Figure 58 C and F shows that no cells were marked in the 

autofluorescence control (C), while all cells were marked by the antibody. 

 

Figure 58: FACS analysis of the binding efficiency of BU52 to KG-1a. The auto fluorescence (A-C) is 
compared to the cells incubated with FITC-marked BU52 (D-F). The graphs show: SSC vs. FSC with the gate 
selecting only the healthy cells marked by the black line (R1; A, D); Pi vs. FSC to evaluate the amount of 
dead cells in the sample (R2; B, E) and the fluorescence channel for the FITC marked antibody BU52 vs. FSC 
(C, F). It is clearly shown that while nearly all cells were unaffected by the BU52 treatment, all were marked 
by the antibody. 

As shown in Figure 59 A the flow-induced interaction of KG-1a with HA could be inhibited 

in a concentration dependent manner by BU52. While an incubation with 1 µg/mL BU52 

already caused a significant reduction (p < 0.05; Figure 59 B) in the fraction of interacting 

cells (from  ( )   ⁄  ≈ 60 % of the initially visible cells to ~ 35 %), a nearly complete 

suppression of the flow-induced interaction required the application of ≥ 9 µg/mL BU52. 

In all subsequent experiments, 9 µg/mL BU52 was used to block the CD44 mediated 

interaction with HA. This concentration of BU52 could for example suppress the 

interaction of the model cell line HepG2Iso (Figure 60) with HA. The concentration 

dependency with a complete suppression at 9 µg/mL BU52 of the interaction was also 

undergirded by BU52 concentration dependent measurements of the accumulation of 

KG-1a on HA as shown in Figure S7 (Appendix section 7.2.2). 

 



4.1 Analysis of the Interaction of CD44 with Hyaluronic Acid 

 

75 

 

 

Figure 59: Dependency of the interaction of KG-1a cells with HA on the concentration of BU52. Interaction 
curves (A) and the corresponding maximum peak heights (B) measured for the reference cell line KG-1a 
(n ≥ 4 for each treatment with > 300 cells/FOV). Treatment with increasing concentrations of BU52 led to a 
decrease in the fraction of cells interacting with HA. Full suppression of all interactions was achieved with 
9 µg/mL BU52, while the same concentration of the isotype control IgG1 hardly reduced the interaction. 
* indicates a significance of p < 0.05, ** indicates a significance of p < 0.01 in a two-sided Student´s t-test. 
All error bars shown in this figure represent the SD.

[266]
 

 

 

Figure 60: Suppression of the interaction of HepG2Iso with HA by BU52. Exemplary interaction curves (A) 
and the overall maximum peak heights (B) measured for the reference cell line HepG2Iso (untreated: n = 9; 
with BU52: n = 7; with IgG1: n = 4; each treatment with > 200 cells/FOV). Full suppression of all interactions 
was achieved with 9 µg/mL BU52, while the same concentration of the isotype control IgG1 hardly had any 
effect. ** indicates a significance of p < 0.01 in a two-sided Student´s t-test. The error bars represent the 
SD. The fraction of interacting cells in the interaction curve shown ranged from 56-72 % for the untreated 
HepG2Iso cells, from 47-51 % for the HepG2 cells incubated with the IgG1 control antibody and from 1-3 % 
for the HepG2 cells incubated with BU52.  
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Another possibility to determine the necessity of the receptor CD44 for the interaction 

was the knock down of the same by means of siRNA (CD44pan siRNA knocked down all 

CD44variant isoforms as well as the standard form). This methodology also rendered it 

possible to knock down specific CD44variant isoforms on the cells. The relevance of these 

isoforms for the interaction with HA could then also be tested. In this study the two 

isoforms CD44v3 and CD44v6 were knocked down. These isoforms were chosen as a high 

expression of the CD44v3 isoform is correlated with tumour growth and metastasis[271] 

and CD44v6 is a co-receptor for the activation of the receptor tyrosine kinase (RTK) Met 

and their collaboration is reported to be important in tumour progression and 

metastasis.[272] Figure 61 shows the Western Blots acquired by Katharina Fuchs from 

workgroup of Dr. Véronique Orian-Rousseau (ITG, KIT, Karlsruhe, Germany) after the 

treatment of HepG2Iso cells with control siRNA and the either CD44pan, CD44v3 or 

CD44v6 siRNA. The Western Blots reveal a clear repression of the respective receptor 

expression in all cases. 

The results of the microfluidic shear force analysis, shown in Figure 62, reveal that 

treatment of HepG2Iso cells with CD44pan siRNA led to a nearly complete reduction of 

the interaction with HA. This was not the case for the two CD44variant isoforms. In both 

cases no reduction of the fraction of interacting cells was observed compared to the 

siRNA control. This demonstrated that the flow induced interaction with HA was not 

solely mediated or significantly influenced by either of the two isoforms alone, but that 

suppression was only achieved by full knock-down of the CD44 receptor (CD44pan). 

 

 

Figure 61: Western Blot analysis of the siRNA treatment of HepG2Iso cells. The membrane was probed 
with an anti-CD44 antibody that recognises all isoforms (CD44pan) or one of the two CD44variant isoforms. 
An extracellular signal-regulated kinase (Erk)-antibody was used as a loading control. The numbers between 
the panels indicate the fold induction of the respective treatment. 
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Figure 62: Knock down of different CD44 isoforms on HepG2Is. The top graphs show the detachment 
curves of HepG2Iso cells transfected with control siRNA and CD44pan (A), CD44v3 (B) and CD44v6 siRNA (C) 
(n ≥ 4 for each treatment with > 250 cells/FOV). The fraction of interacting cells ranged as followed: A) From 
54-76 % for the HepG2Iso cells treated with control siRNA and from 2-20 % for the HepG2 cells treated with 
the CD44pan siRNA; B) From 21-87 % for the HepG2Iso cells treated with control siRNA and from 34-82 % 
for the HepG2 cells treated with the CD44v3 siRNA; C) From 57-74 % for the HepG2Iso cells treated with 
control siRNA and from 52-90 % for the HepG2 cells treated with the CD44v6 siRNA. The bottom bar graphs 
give the maximum peak heights with significant differences marked. ** indicates a significance of p < 0.01 in 
a two-sided Student´s t-test. All error bars shown represent the SD. 

4.1.3 ROLLING SUPPRESSION BY SOLUBLE GLYCOSAMINOGLYCANS 

As the rolling interaction occurred between CD44 and the surface bound HA the question 

arose if it could be suppressed by soluble macromolecular glycosaminoglycans (GAGs) or 

by the corresponding polysaccharide fragments. To test for this HepG2Iso cells were 

preincubated with 50 µg/ml of four different GAGs. The macromolecular GAGs used were 

HA, CS, heparin sulphate (HS) and keratane sulphate (KS). Figure 63 shows the results 

obtained from the microfluidic shear force experiments obtained with the preincubated 

cells. While a small but not significant reduction of interaction was observed for most 

macromolecular GAGs, only the incubation with HA led to a significant decrease of cells 

interacting with the HA-surface. 
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Figure 63: Effect of macromolecular GAGs on the flow-induced rolling interaction of HepG2Iso with HA. 
HepG2Iso incubated with 50 µg/ml of macromolecular HA, CS, HS and KS (n = 4 with > 150/FOV). While 
most macromolecular GAGs led to an insignificant reduction of the fraction of interacting cells, only the 
reduction by HA was significant. The bar graph (B) shows the maximum fraction of rolling cells     ( )  
      measured. * indicates a significance of p < 0.05, ** indicates a significance of p < 0.01 in a two-sided 
Student´s t-test t. All error bars shown represent the SD. The fraction of interacting cells ranged from 
15-92 % for the untreated HepG2Iso cells, from 4-62 % for the HepG2 cells incubated with HA, from 15-72 % 
for the HepG2Iso cells incubated with CS, from 15-76 % for the HepG2Iso cells incubated with HS and from 
12-76 % for the HepG2Iso cells incubated with KS. 

The blocking capabilities of HA were further studied by pre-incubation with short chain 

length HA (sHA; 6-10 DS). Prior to measurements in the microfluidic shear force system it 

was tested whether the incubation with sHA was toxic for the cells. For this the cells were 

incubated with the sHA (6-10 DS) for 1 h under culture conditions before they were 

imaged by light microscopy. The treatment did not lead to any morphological changes in 

the cells as shown in Figure S8 (Appendix section 7.2.3). This compatibility with large 

amounts of sHA allowed the study of the effect of the same on the interaction of the cells 

with HA-coated surfaces under flow conditions. The results of a representative set of 

measurements are shown in Figure 63. While the treatment with 10 µg/mL sHA did not 

lead to a significant reduction of the fraction of interacting cells, larger concentrations 

did. Both the preincubation with either 30 µg/mL or 50 µg/mL sHA led to a significant 

reduction of the fraction of interacting cells compared to the respective lower 

concentration. These findings demonstrated a concentration dependent reduction of the 

fraction of interacting cells similar to the observed for the treatment with BU52. 

Comparable results were obtained in two further independent experimental series. 
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Figure 64: Dependency of the rolling interaction of the concentration of sHA (6-10 DS). The graph shows a 
representative data set for the sHA concentration dependent reduction of the interaction of HepG2Iso cells 
with HA (n = 2, ≥ 150 cell/FOV). Treatment with sHA concentrations ranging from 10 µg/mL to 50 µg/mL 
gradually decreased the maximum fraction of HepG2Iso cells rolling on the HA-surface. * indicates a 
significance of p < 0.05, ** indicates a significance of p < 0.01 in a two-sided Student´s t-test. All error bars 
shown in this figure represent the SD. The fraction of interacting cells ranged from 71-80 % for the 
untreated HepG2Iso cells, from 66-74 % for the HepG2 cells incubated with 10 µg/ml sHA, from 43-45 % for 
the HepG2Iso cells incubated with 30 µg/ml sHA and from 16-18 % for the HepG2Iso cells incubated with 
50 µg/ml sHA. 

4.1.4 EFFECT OF BLOCKING REAGENTS ON THE ROLLING VELOCITY 

Next to the amount of cells that interact with HA following a given treatment with a 

blocking reagent (BU52, sHA), the effect of the treatment on the rolling velocity was 

analysed using the analysing MatLab© based software quantumCAT designed by 

S. Maleschijski in our workgroup.  

The effect of different concentrations of BU52 and the corresponding isotype control IgG1 

on the rolling velocity of HepG2Iso cells is shown in Figure 65. A wall shear stress of 

approximately 1 dyn/cm² was applied during the measurements. From the BU52 

concentration series conducted with KG-1a cells (section 4.1.2, Figure 59) three 

concentrations were chosen that covered the whole range from only weak blocking 

(2 µg/mL) over medium blocking capability (4.5 µg/mL) to nearly complete blocking 

(9 µg/mL). In the box plot (Figure 65, top) each box gives the 1st (lower box margin), 2nd 

(middle line; median) and 3rd (upper box margin) quartile of the data. The diamond 

symbol () gives the mean rolling velocity and the whiskers represent the standard 

deviation. Further information about the values depicted in the box plot can be found in 

section 7.1.2.3. It can be seen that both the median and the mean rolling velocity were 
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hardly influenced by the treatment with IgG1. Treatment with BU52, however, led to an 

increased rolling velocity with increasing amounts of BU52. The median rolling velocity of 

the untreated HepG2Iso cells was approximately 23 µm/s. For cells treated with 2 µg/mL 

BU52 the median was roughly 32 µm/s and increased to approximately 43 µm/s for cells 

treated with 9 µg/mL BU52. This trend can also be seen in the histograms of the rolling 

velocity (Figure 65, bottom). Here, the black arrows indicate the progression of the most 

frequent rolling velocity. Although the comparably low number of data points for the 

treatment with 9 µg/mL BU52 (280, compared to ~ 11,000 for the untreated cells; 

interaction with HA was suppressed with BU52, making rolling cells rare) yielded a 

crooked histogram, the trend was still clear. While the most frequent rolling velocity was 

approximately 20 µm/s for the untreated cells and for all concentrations of IgG1, it 

increased from approximately 25 µm/s for cells treated with 2 µg/mL BU52 to roughly 

40 µm/s for cells treated with 9 µg/mL BU52. 

 

Figure 65: Rolling velocity analysis of HepG2Iso cells after treatment with BU52 at a shear rate of 
1 dyn/cm². Box plots (top) and histograms (bottom) depicting the rolling velocity distribution for HepG2Iso 
cells treated with BU52 and the isotype control IgG1. At least 7 traces with 280 data points (for 9 µg/ml 
BU52) to ~11,000 data points (untreated cells) were recorded for each type of treatment.  is the mean 
rolling velocity. The box plots give the 1st (lower box margin), 2nd (middle line; median) and 3rd (upper box 
margin) quartile of the data. The whiskers represent the standard deviation. 
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Analogous measurements of the dependency of rolling velocity of HepG2Iso cells on the 

blocking of the CD44 receptor with sHA (6-10 DS) were also conducted. Again the rolling 

velocity was measured with a wall shear stress of approximately 1 dyn/cm² applied. 

Figure 66 shows the rolling velocities measured in dependency of the concentration of 

sHA. Both from the box plots (Figure 66, top) it can be seen that the mean rolling velocity 

continuously increased with increasing amounts of sHA. The only exception to this trend 

was the treatment with 60 µg/mL sHA. Here, a stagnation of the mean rolling velocity was 

observed. The median rolling velocity followed the same trend as the mean velocity, but 

showed a slight decrease for the highest concentration. It increased from approximately 

10 µm/s for the untreated cells to roughly 30 µm/s for cells treated with 50 µg/mL sHA. 

The same observation could be made for the most frequent rolling velocity seen in the 

histograms (Figure 66, bottom). This, too, increased with the sHA concentration and 

stagnated for the last increase of concentration. 

 

Figure 66: Analysis of the rolling velocity of HepG2Iso on HA after treatment with sHA (6-10 DS). Box plots 
(top) and histograms (bottom) depicting the rolling velocity distribution for HepG2Iso cells treated with 
different concentrations of sHA (6-10 DS). At least 13 traces with 800 data points (for 60 µg/ml) to 25,000 
data points (untreated cells) were recorded for each sHA concentration.  is the mean rolling velocity. The 
box plots give the 1st (lower box margin), 2nd (middle line; median) and 3rd (upper box margin) quartile of 
the data. The whiskers represent the standard deviation. 
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4.1.5 DISCUSSION 

In this section the flow induced interaction of the suspension cell line KG-1a and that of 

the epithelial cell line HepG2Iso with HA was studied towards its CD44 dependence, while 

comparing these two fundamentally different cell types.  

For suspension cells the basic principal of such a flow-induced interaction is well known in 

literature. A good and probably the most prominent example is the selectin- and integrin-

mediated extravasation of lymphocytes at sites of inflammation which has been 

extensively studied.[63-64,273-275] In this context it was shown that fluid shear promotes the 

P-, E-, or L-selectin mediated rolling of lymphocytes on the endothelium.[116-117] Recently, 

the capability of CD44 to mediate such a flow-induced interaction was demonstrated for 

KG-1a in our workgroup.[10] For epithelial cells this has not been shown so far. 

As different modes of glycosylation of CD44 influence the binding to HA,[159,166-167] the 

expression of CD44 alone does not directly correlate with HA binding. As this is the case, 

the first focus was to determine whether CD44 solely mediated the observed interaction 

with HA and whether this was specific for HA. This was achieved by applying the analysis 

matrix shown in Table 6 to the two model cell lines KG-1a and HepG2Iso.  

Table 6: Matrix of tests demonstrating the relevance of CD44 for the rolling interaction on HA. If the 
criteria given in the left column was fulfilled the corresponding cell line is marked by . If it was not it is 
marked by . 

Criteria 
Leukaemic 

suspension cell line 
KG-1a 

Liver cancer 
epithelial cell line 

HepG2Iso 

Rolling on HA    

Rolling on CS   

Rolling while CD44- cell line does not   

Effective blocking by BU52   

Effective suppression by CD44pan siRNA n.a.  
 

For both cells lines the HA specificity could be demonstrated by comparing the interaction 

with HA to that with CS. While the two GAGs are structurally very similar the interaction 

was highly specific for HA. Furthermore, it could be shown that the interaction with HA 

could only be observed for CD44 positive cell lines, while CD44 negative cell lines lacked 

any form of interaction with the HA-coated surfaces under flow. These findings could 

clearly validate that the flow induced interaction observed on the HA-coated surfaces was 

not only dependent on CD44 but also specific for HA. The necessity of the HA binding 

domain for this interaction was investigated by treating the cells with the CD44 antibody 

BU52. A concentration dependent blocking of the interaction with the HA-coated surfaces 
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was observed. As BU52 specifically blocks the HA binding domain of the CD44 receptor 

this proved its necessity for the flow induced interaction with HA. The concentration 

series conducted in this context also served to establish a protocol for later experiments 

with primary human cells. This sort of material was not accessible in the quantities a cell 

line was and the concentration series allowed the identification of an antibody 

concentration at which blocking could completely and reproducibly be suppressed. This 

concentration was found to be 9 µg/mL. 

The similarity of the interaction of the two model cell lines, KG-1a and HepG2Iso, 

concerning the interaction with HA was remarkable. The interaction characteristics found 

for the two cell types were highly comparable and in good accordance to earlier 

findings.[10] A threshold shear stress of approximately 0.2 dyn/cm² could be identified 

above which the interaction was observed. In the case of the HepG2Iso cells this 

threshold could not always be observed or in some cases it was shifted to apparently 

lower shear stresses. This impression may be appointed to the adhesive nature of the 

HepG2iso cells, which made an initial flow pulse necessary, slightly altering the flow 

applied in the initial phase of the experiment. This was extensively discussed in 

section 3.8.3. Again in good correlation to the first observation of the CD44-HA 

interaction[10] the maximum fraction of interacting cells was reached at roughly 

(0.7-1) dyn/cm² for both cell types, before it gradually decreased. This comparison clearly 

demonstrated the independence of the CD44-HA interaction from the model cell type. 

This prompts the conclusion that the CD44-HA interaction may generally be independent 

from the type of cell, be it suspension or epithelial. As this was deemed sufficient other 

experiments concerning the characterisation of the CD44-HA interaction were conducted 

with only one cell type, HepG2Iso. 

To undergird the finding that CD44 must be present on the cell surface for an interaction 

to take place, the effect of its down regulation was studied. It could be shown that knock 

down of CD44 in general (CD44pan) resulted in a complete suppression of the flow-

induced interaction with HA. This was not the case for the down regulation of the two 

CD44variant isoforms CD44v3 and CD44v6. As all CD44 isoforms share the same HA 

binding domain each isoform would have the possibility to compensate for the loss of 

another isoform.[276]  

As nicely reviewed by B. Toole HA has different functions depending on its chain 

length.[277] Indeed, rolling of HepG2iso cells was induced on substrates coated with 

macromolecular HA. Incubation of HepG2Iso cells with macromolecular GAGs in solution 

led to no significant reduction of the fraction of interacting cells for the treatment with 

CS, HS and KS, while a significant reduction was observed for macromolecular HA. The 

blocking by HA was further analysed by treatment with sHA (6-10 DS). It could be shown 
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that this reagent could impair the process of flow-induced rolling on HA in a 

concentration dependent manner. Furthermore, it could be shown that while the number 

of rolling cells was reduced with an increasing concentration of sHA, the rolling velocity of 

the cells was increased. The reduction of rolling by sHA may be due to competitive 

binding of sHA to CD44.[162] For example, sHA treatment might have led to a displacement 

of macromolecular HA bound to CD44,[278] thereby preventing CD44 clustering which was 

required for the binding of HA.[279] The reduced CD44 clustering would then result in 

weaker binding of CD44 to the HA surface.[280] Also, macromolecular HA may be able to 

stabilise complexes between CD44 

and itself or other cell surface 

receptors that might be required 

for rolling.[281] The treatment with 

sHA might prevent these 

complexes, thereby inhibiting the 

rolling on HA.  

As for the rolling velocity, the 

density of accessible CD44 on the 

cell surface may have been 

reduced by the sHA. This in turn 

would have led to larger distances 

between the individual receptors 

and, therefore, to a longer ‘step’ a 

cell took with each detachment-

adhesion cycle. An interesting as-

pect of the effect of the treatment 

of HepG2Iso cells with sHA was 

that, while increasing amounts of 

sHA (6-10 DS) led to a reduction of 

the fraction of interacting cells and 

to an increase of the rolling 

velocity of the cells at a shear stress of approximately 1 dyn/cm², the shear stress at 

which the maximum fraction of interacting cells was reached (    ) did not noticeably 

change. Figure 67 gives a comparison between the mean rolling velocity and      for 

HepG2Iso cells treated with a given concentration of sHA (6-10 DS). This finding was 

remarkable, as it demonstrated that both the probability of binding to the HA surface 

from flow (maximum fraction of rolling cells) as well as the rolling velocity of the cells 

(representing the detachment-attachment rate of a cell to the surface) interacting with 

HA, were strongly dependent on the density of the receptor available on the cell surface. 

 

Figure 67: Comparison of the shear stress at which the 
maximum fraction of interacting cells is reached τmax and the 
rolling velocity at approximately 1 dyn/cm². The data for 
     originates from 3 independent experiments with 2 
repeats each. The rolling velocities were calculated from at 
least 13 traces per treatment with a total of 800 data points 
(for 60 µg/ml) to 25,000 data points (untreated cells).  is 
the mean     ,  is the mean rolling velocity. The box plots 
give the 1

st
 (lower box margin), 2

nd
 (middle line; median) and 

3
rd

 (upper box margin) quartile of the data. The whiskers 
represent the standard deviation. 
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In contrast to this, the     , which can be interpreted as the strength of the CD44-HA 

interaction, was independent of the number of receptor molecules available for 

interaction. It seems that as long as the interaction could take place, the strength with 

which CD44 bound to HA was the same.  

So far it is not fully understood why metastatic cancer cells only extravagate at organs like 

the lung or the liver. As these organs are perfused by small blood capillaries, two 

explanations why the cancer cells extravagate only at these sites present themselves. 

Firstly, cancer cells may aggregate in the blood stream. These cancer cell aggregates may 

get stuck in the small capillaries and then attach to the endothelium of these capillaries as 

an initial step for extravasation.[282] Secondly, rolling, as a first step to extravasation, of 

the cancer cells on the endothelium might be induced by specific shear stress thresholds. 

As the shear stress on the blood vessel walls increases with a reduction of the capillary 

diameter, the smaller capillaries of the organs may offer a sufficient shear stress to induce 

rolling of the metastatic cells. The CD44-HA interaction pattern discussed in this study 

offers such a shear stress induced rolling, thus presenting a possibility for the cells to 

extravagate from the blood stream under sufficient shear conditions with HA present. 

Summarising, the analysis of the role of CD44 in the rolling of leukaemic suspension cells 

and epithelial cancer cells on HA-coated surfaces revealed that CD44 was essential for this 

process. Blocking experiments using a CD44 antibody (BU52) and knock down 

experiments using panCD44 siRNA resulted in inhibition of the flow-induced rolling 

interaction, suggesting a decisive role of CD44 in the rolling process. Furthermore, sHA 

fragments with a size of 6-10 DS were able to prevent the rolling of HepG2iso cells on HA-

coated surfaces. Both BU52 and sHA led to an increase in rolling velocity with increasing 

concentration. The findings presented in this section gave deep insight into the 

interaction with HA mediated by CD44. 
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4.2 INTERACTION OF HAEMATOPOIETIC PROGENITOR 

CELLS AND LEUKAEMIC BLASTS WITH HYALURONIC 

ACID 

CD44 has been reported to be relevant both for the homing and engraftment of 

haematopoietic progenitor cells (HPC)[9] and of leukaemic stem cells[6-7] into the bone 

marrow (BM) and spleen of non-obese diabetic/severe combined immunodeficiency 

(NOD/SCID) mice. Furthermore, it could be shown that an activating monoclonal CD44 

antibody could reduce the leukaemic repopulation of human acute myeloid leukaemia 

(AML) cells transplanted in NOD/SCID mice.[6] The mechanism underlying this effect is not 

yet understood. Thus, after unravelling the nuances of the interaction with HA mediated 

by CD44 as presented in the previous section it was of great interest to further 

understand its role both for healthy haematopoietic cells and for leukaemic cells. 

4.2.1 INTERACTION OF HEALTHY HAEMATOPOIETIC PROGENITOR 

CELLS WITH HYALURONIC ACID 

The results of the characterisation of the interaction of CD34 positive HPC with hyaluronic 

acid (HA) under flow conditions are described in this section. The HPC were derived from 

three different sources: cord blood (CB), 

mobilised peripheral blood (mPB) and the 

BM directly. This selection allowed the 

comparison between different cell sources. 

The HPC were kindly provided by the group 

of Prof. Anthony D. Ho from the Universi-

tätsklinikum Heidelberg. 

First interaction experiments with freshly 

isolated HPC from CB on HA (Figure 68) 

yielded only negative results. Consistent 

with the findings of Legras et al., Figure 68 

demonstrates that incubation of HPC sam-

ples in cytokine-rich medium for 24 h prior 

to measurement of rolling on HA-coated 

surfaces was necessary.[283] As described in 

 

Figure 68: Effect of Stemline II pre-incubation of 
CD34

+
 HPC from CB. Only the cells incubated in 

Stemline II medium supplemented with TPO, G-
CSF, SCF and Flt-3L showed the flow-induced 
interaction with HA known from the model cell 
lines KG-1a and HepG2Iso. 
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section 3.6, the cells were incubated in StemlineTM II Haematopoietic Cell Expansion 

Medium supplemented with 100 ng/mL TPO, 100 ng/mL G-CSF, 100 ng/mL SCF, 

500 ng/mL Flt-3L, 2 mmol/L L-glutamine, 1,000 U/mL penicillin and 100 U/mL 

streptomycin (hereafter referred to as Stemline II medium) for 24 h prior to measurement 

in the microfluidic shear force setup. Flow cytometry measurements (examples shown in 

Figure 69 for CB, in Figure 70 for mPB and in Figure 71 for BM) showed that the 

incubation in Stemline II medium did not lead to a differentiation of the cells. The graphs 

not only show that nearly all cells remained CD34 positive after the 24 h in Stemline II 

medium, but also that most were CD44 positive. Further data concerning the fractions of 

cells remaining CD34 after incubation in Stemline II medium for 24 h and on the CD44 

expression are shown in Table S6 (Appendix section 7.2.4.1) 

 

 

Figure 69: Flow cytometry measurement of CB HPC after 24 h incubation in Stemline II. Based on their 
SSC- and FSC-properties the cell population was gated (R1 in A). These cells were then tested for their 
integrity by Pi-staining and dead cells were excluded (R2 in B). In the example depicted here from the live 
cells nearly all were CD34 (98.82 % in C) and CD44 (99.85 % in D) positive. From the CD34 positive cells also 
nearly all were CD44 positive (99.88 % in E). Other measurements yielded comparable results. 
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Figure 70: Flow cytometry measurement of mPB HPC after 24 h incubation in Stemline II. Based on their 
SSC- and FSC-properties the cell population was gated (R1; A). These were also tested for their integrity by 
Pi-staining and dead cells were excluded (R2; B). In the example depicted here from the live cells nearly all 
were CD34 (99.66 %; C) and CD44 (99.96 %; D) positive. From the CD34 positive cells also nearly all were 
CD44 positive (99.96 %; E). Other measurements yielded comparable results. 

 

 

Figure 71: Flow cytometry measurement of BM HPC after 24 h incubation in Stemline II. Based on their 
SSC- and FSC-properties the cell population was gated (R1; A). These were also tested for their integrity by 
Pi-staining and dead cells were excluded (R2; B). In the example depicted here from the live cells nearly all 
were CD34 (98.32 %; C) and CD44 (97.27 %; D) positive. From the CD34 positive cells also nearly all were 
CD44 positive (97.40 %; E). Other measurements yielded comparable results.  
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As shown in Figure 72 the interaction curves of KG-1a cells with HA were composed of 

two forms of interaction: rolling and immobile adherence (the supplementary Video S2 

shows rolling and immobile adherent cells in comparison; the description can be found in 

section 7.1.2.1, the video is provided on the supplementary CD). Next to the pre-

incubation, this discrimination between the two forms of interaction was the second 

aspect important for the analysis of the HPC interaction data. This discrimination was not 

made for the interaction of the cell lines with HA, as it was of no great importance to the 

analysis or the findings. In Figure 72 the discrimination is made for untreated KG-1a cells 

and for cells treated with 3 µg/mL and 9 µg/mL BU52. It can be seen that the fraction of 

rolling cells increased after a critical shear stress of approximately 0.2 dyn/cm² was 

reached. In contrast to this flow-induced behaviour of the rolling cells, the immobile 

adherent cells only marginally increased and then detached from the surface with 

increasing shear stress applied. This behaviour could be observed not only for the 

untreated KG-1a cells, but also for the cells incubated with BU52. 

 

Figure 72: Discrimination between immobile adherent and rolling cells. A comparison is shown between 
untreated KG-1a cells and KG-1a cells treated with 3 and 9 µg/mL BU52 (n ≥ 4 for each treatment with 
> 300 cells/FOV). All error bars represent the SD. For clarity, no error bars are shown for the discrimination 
curves (dotted and dashed lines).

[266]
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Following the establishment of the experimental protocol (antibody concentration: 

9 µg/mL, pre-incubation in cytokine-rich Stemline II medium, discrimination between 

rolling and immobile adherent cells), the interaction curves for HPC shown in Figure 73 

were measured. A critical shear stress of approximately 0.2 dyn/cm² was required to 

induce rolling in HPC derived from healthy donors, irrespective of the source, i.e. CB, mPB 

or BM. The maximum fraction of rolling cells was also observed in the same region as 

previously described for KG-1a for all types of HPC (approximately (0.7-1) dyn/cm²; 

Figure 73). While the maximum fraction of rolling cells was very similar between HPC 

from different sources, it was significantly lower (approximately (15-25) %) than that 

found for KG-1a (approximately 60 %, see section 4.1) Due to the limited number of HPC 

that could be isolated from the blood and bone marrow samples, BU52 and anti-IgG1 

blocking studies were not performed for all samples. Overall, the addition of 9 µg/mL 

BU52 suppressed the rolling and partially also the immobile adhesion, while the anti-IgG1 

isotype control did not affect the interaction between the HPC and HA. While the rolling 

interaction was comparable for all types of HPC measured, the immobile adhesion was 

not. Relatively higher percentages of immobile adherent cells were observed in BM HPC 

than in CB or mPB (< 5 % for CB and mPB HPC and ~ 10 % for BM HPC). Furthermore, BM 

HPC generally showed a lower tendency to interact with HA. Only 1 of 4 BM HPC samples 

showed a prominent flow-induced rolling at a comparable level as observed for the CB or 

mPB HPC samples. 

In contrast to the homogeneous interaction of the HPC with HA under shear stress, flow 

experiments with leukocytes from the PB of healthy donors showed no rolling on HA. The 

data is shown in Figure S9 (Appendix section 7.2.4.1).  
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Figure 73: Comparison of the interaction of HPC from different sources with HA. Interaction measured in 
untreated HPC from CB (n = 6 from 5 groups of donors; > 200 cells/FOV), mPB (n = 4 from 3 donors; 
> 250 cells/FOV) and BM (n = 1 from 1 donor; 221 cells/FOV) and in HPC treated with 9 µg/mL BU52 (CB: 
n = 2 from 2 groups of donors; > 260 cells/FOV; mPB: n = 3 from 3 donors; > 230 cells/FOV) or with 9 µg/mL 
anti-IgG1 control (mPB: n = 1; 234 cells/FOV). In all cases, the interaction curve is comprised of immobile 
adherent and rolling cells, similar to KG-1a. Error bars represent the SD. For clarity, no error bars are shown 
for the discrimination curves (dotted and dashed lines).

[266]
 

4.2.2 INTERACTION OF BLASTS FROM PATIENTS WITH ACUTE 

MYELOID LEUKAEMIA WITH HYALURONIC ACID 

The leukaemic cell material used in this study was kindly provided by the group of Prof. 

Anthony D. Ho from the Universitätsklinikum Heidelberg. The blasts from patients with 

freshly diagnosed AML were isolated from the raw cell material by FAC sorting and stored 

in liquid nitrogen until use. In this study the blasts from 11 individual patients (named 

AML 1-11) were used. If not mentioned otherwise the leukaemic blasts were isolated 

from the BM of the respective patient. Cells isolated from samples from the PB are 

marked appropriately. As shown in the exemplary overviews (Figure 74, Figure 75) the 

cells were sorted based on their side scatter (SCC) and CD45 characteristics (SSClow, 

CD45dim). The cells were then incubated in Stemline II medium for 24 h, as established for 

the HPC, to ensure equivalent treatment of all cell types allowing later comparison.  
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Figure 74: FAC sorting of the blasts from AML 1. Based on their SSC- and FSC-properties the cell population 
was gated (R1; A). These were also tested for their integrity by Pi-staining and dead cells were excluded (R2; 
B). From the live cells the blasts were selected by their SSC and CD45 characteristics (SSC

low
, CD45

dim
, C). The 

CD44 expression was measured for the live cells (99.82 %; D) and for the leukaemic blasts (99.99 %; E). 

 

 

Figure 75: FAC sorting of the blasts from AML 2. Based on their SSC- and FSC-properties the cell population 
was gated (R1; A). These were also tested for their integrity by Pi-staining and dead cells were excluded (R2; 
B). From the live cells the blasts were selected by their SSC and CD45 characteristics (SSC

low
, CD45

dim
, C). The 

CD44 expression was measured for the live cells (99.95 %; D) and for the leukaemic blasts (99.98 %; E). 
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Microfluidic shear force measurements revealed a remarkably variable behaviour in 

terms of rolling and immobile adhesion of leukemic blasts. This was surprising as the 

CD44 expression was high in all 11 samples (CD44pan expression of ≥ 95.7 %, Table S7 in 

the Appendix section 7.2.4.2). In contrast to HPC from healthy donors which all showed 

basically the same interaction pattern, the rolling interactions of leukaemic blasts could 

be divided into 3 patterns (Figure 76): (A) pronounced rolling interaction, with most of the 

rolling cells detaching from the surface prior to (5-10) dyn/cm²; (B) rolling interaction 

persistent beyond (5-10) dyn/cm²; and (C) no rolling observed at all. An overview of all 

samples is shown in the supplementary Figure S10 (Appendix section 7.2.4.2). In all cases, 

flow-induced rolling was observed only beyond a critical shear stress of approximately 

0.2 dyn/cm² and reached the maximum at approximately (0.7-1) dyn/cm², in analogy to 

healthy HPC and KG-1a cells. The amount of immobile adherent cells varied, however, 

greatly among the AML samples (from < 5 % to approximately 20 % of the initially visible 

cells   ). No direct relation between the two different interactions, i.e. rolling versus 

immobile adhesion, could be observed in the sample cohort. 

 

Figure 76: Adhesion patterns found for the interaction of leukaemic blasts with HA. The blasts 
(CD45

dim
SSC

low
) were isolated from 11 different frozen AML samples. Despite the heterogeneity of the 

samples, 3 subclasses were characterised. Pattern A: High numbers of rolling cells that detach prior to a 
shear stress of (5-10) dyn/cm². Pattern B: High numbers of rolling cells that remain adherent beyond a 
shear stress of (5-10) dyn/cm². The A and B adhesion patterns show varying numbers of immobile adherent 
cells. Pattern C: Very few rolling cells and high numbers of immobile adherent cells. Each experiment was 
conducted with > 160 cells/FOV. If error bars are given they represent the SD from two measurements. If 
none are shown the sample material was not sufficient for more than one measurement. For clarity, no 
error bars are shown for the discrimination curves (dotted and dashed lines).

[266]
 

Treatment with BU52 completely inhibited rolling in all samples, while suppression of the 

immobile adhesion to HA was at best achieved partially. In three cases, no effect was 

observed at all. Whether the immobile adhesion could be blocked by BU52 or not, was 

not related to the rolling pattern as shown in Figure 77. Here, an example for both an 

effective and en ineffective suppression of the immobile adhesion by BU52 is presented 

for each of the three rolling patterns found for the leukaemic blasts. For two samples of 
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leukaemic blasts isolated from the BM and in which the treatment with BU52 was 

ineffective concerning the suppression of the immobile adhesion, a comparison was 

made to the blasts isolated from the PB of the same patient (Figure 78 and Figure S11 in 

the Appendix section 7.2.4.2). Remarkably, although blocking of the immobile adhesion 

with BU52 was ineffective for the BM blasts an effective suppression was observed for 

the corresponding PB blasts. The rolling interaction in turn was completely suppressed in 

both cases. 

 

 

Figure 77: Effectiveness of BU52 on the suppression of interaction with HA. An exemplary comparison of 
samples for which treatment with BU52 was either effective or ineffective is shown in this graph. Each 
experiment was conducted with > 160 cells/FOV and error bars are the SD. For clarity, no error bars are 
shown for the discrimination curves (dotted and dashed lines).

[266]
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Figure 78: Comparison between leukemic blasts from BM and PB. No significant difference in the 
interaction curves for leukemic blasts was observed between PB and BM (A). Treatment with BU52 was 
highly effective in blasts from PB (B), while large numbers of blasts from the BM remained capable of 
adhering to HA (C). Each experiment was conducted with > 160 cells/FOV and error bars are the SD. For 
clarity, no error bars are shown for the discrimination curves (dotted and dashed lines).

[266]
 

The AML samples with immobile blast adhesion to HA of greater than 10 % upon BU52 

treatment were clinically associated with poor response to induction chemotherapy 

compared to the other patients in which the blast interaction to HA could be inhibited by 

BU52 (Table 7). In the group in which BU52 was ineffective, only one of five patients 

achieved complete remission (CR) after induction chemotherapy. Whereas in the group of 

six patients, in whom the adhesion of the leukemic cells to the HA-surface could be 

inhibited by BU52, three of them achieved CR. Furthermore, the overall survival for the 

latter group of patients (mean: 375.5 days, 95 % confidence interval: 265.5-485.5) was 

also significantly longer than that for the former group (mean: 100.6 days, 95 % 

confidence interval: 0-219.2), in which BU52 did not show any effect (log-rank test: 

p = 0.016, Figure 79). Further comparisons in terms of cytogenetic and molecular genetic 

risk factors did not show a significant difference between the two groups, but it was 

remarkable that all patients with favourable risk factors belonged to the group in which 

BU52 was effective (Table S8, Appendix section 7.2.4.2). 
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Figure 79: Kaplan-Meier curve showing the patients’ overall survival for the two subclasses of BU52 
blocking efficiency. It is evident that efficient blocking of the immobile adhesion to HA by BU52 was directly 
correlated to a longer overall survival.

[266]
 

 

Table 7: BU52 blocking efficiency for each blast sample and the associated patient’s outcome. The 
efficiency of the suppression of the immobile adhesion to HA by BU52 is shown. Light grey marks the 
samples for which efficient blocking could be observed. Dark grey marks the inefficient samples.

[266]
 

Sample 
No. 

BU52 blocking efficiency 
(remaining % of N0) State after induction chemo-

therapy 
Deceased 

< 10 % > 10 % 

1   Persistence No 

2   CR No 

3   Persistence Yes 

4   Persistence Yes 

5   Deceased during chemotherapy Yes 

6   Persistence Yes 

7   CR No 

8   CR No 

9   CR Yes 

10   No chemotherapy Yes 

11   Persistence No 
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4.2.3 DISCUSSION 

In this section the ability of CD44 to mediate rolling and immobile adhesion of HPC and 

leukaemic blasts to HA-coated surfaces under physiological shear stress conditions was 

analysed. Using a microfluidic shear force device, it was possible to precisely quantify the 

shear stress required to induce rolling and to overcome adhesion for HPC versus 

leukaemic cells on HA-coated surfaces. Whereas HPC from healthy donors behaved 

relative homogeneously on HA-coated surface, there was a much broader range of 

behavioural patterns concerning the rolling and immobile adhesion for leukaemic cells 

under identical conditions. The monoclonal CD44 antibody BU52 was able to completely 

abrogate the shear stress-induced rolling of HPC from healthy donors and leukaemic cells 

from patients with AML in contrast to the incomplete inhibition of the immobile adhesion 

exhibited by the leukaemic blasts. Another remarkable finding was that those patients, in 

whom the immobile adhesion of the leukaemic blasts was not affected by BU52, were 

associated with poor response to induction chemotherapy and an adverse long-term 

clinical outcome. 

It was shown that expression of CD44 was not the only prerequisite for an interaction 

with HA. Consistent with the findings of Legras et al., the necessity to pre-incubate HPC in 

cytokine-rich medium for 24 h prior to measurement of rolling on HA-coated surfaces was 

established.[283] In the case of healthy leukocytes even this incubation could not initiate 

the interaction, suggesting that the mechanism controlling the interaction of CD44 with 

HA was highly complex or may have become redundant in the highly differentiated cell 

types. 

Whereas all types of HPC analysed displayed a high expression of CD44pan, the 

expression of CD44variant isoforms was mostly low.[265-266] Two forms of interaction were 

of interest throughout the healthy HPC and the leukaemic blasts; the flow induced rolling 

interaction and the immobile adherence. If rolling was observed the shear stress at which 

the maximum interaction was observed was always in the range of approximately 

(0.7-1) dyn/cm². This corresponds well with the shear stress observed in post-capillary 

venules. In the latter venular system, the shear stress has been estimated to be in the 

range of (1-4) dyn/cm², which is consistent with the parameters reported for the selectin-

dependent leukocyte rolling.[116-117,284] Though the interaction of HPC with HA-coated 

surfaces was significantly weaker (a smaller maximum fraction of interacting cells) than 

that of KG-1a, the maximum fraction of cells undergoing the rolling interaction was 

comparable throughout all HPC samples from CB, mPB and BM. Furthermore, the 

threshold shear stress of approximately 0.2 dyn/cm², beyond which rolling was induced, 

was also observed throughout all cell types if rolling was observed at all. While KG-1a and 
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HPC isolated from the blood stream (CB, mPB) hardly showed immobile adherence to HA, 

a significant fraction of HPC from the BM exhibited this form of interaction. A possible 

explanation for this result could be the inactive, dormant state of the HPC derived from 

the BM niche, in contrast to cells that had been mobilised out of the niche into the 

peripheral blood. Wilson et al. demonstrated that dormant BM haematopoietic stem cells 

were activated to self-renewal upon exposure to stress to the BM, e.g. blood loss, 

infection, or G-SCF stimulation.[285] Accordingly, the activation status probably alters the 

adhesion mechanisms, either rolling or immobile adherence, of HPC to the marrow niche.  

In leukemic blasts the immobile adherence to HA was a remarkable finding. The fraction 

of immobile adherent cells varied greatly among the 11 leukemic blast samples and no 

correlation between the rolling patterns and the fraction of immobile adherent cells was 

found. Moreover, the CD44 antibody BU52 in some cases had little or no effect on this 

adhesion, whereas rolling of the leukemic blasts was completely abrogated by the same 

antibody. In addition, a correlation between an ineffective blocking of the immobile 

adherence and a poor long-term outcome of the respective patients could be 

demonstrated. This trend was independent of the risk stratification according to the 

cytogenetic and molecular genetic risk factors. Furthermore, the suppression of the 

immobile adhesion by BU52 was less effective for AML blasts isolated from the BM than it 

was for those isolated from the PB, although the fractions of rolling and adherent cells 

were nearly identical for the untreated cells. This again strengthened the notion that the 

immobile adhesion to HA could be associated with the vicinity to the BM niche. Saito et 

al. reported that leukemic stem cells in the stem cell niche were more chemotherapy 

resistant and that mobilisation enhanced the induction of apoptosis and elimination of 

these cells.[22] As the immobile adhesion is linked to the niche it may be involved in the 

retention of the leukaemic stem cells in the niche and could present a valid target for 

mobilisation of leukaemic stem cells in the future. 

Similar to the observations reported by Bendall et al.,[286] the expression of CD44variant 

isoforms in AML was more divergent than that found for the normal HPC from the 

marrow.[265-266] This might explain the more heterogeneous adhesion patterns and the 

BU52 blocking efficiency in AML. Assuming that the leukaemic blasts show a behaviour 

similar to that of the LSC it is possible that a special CD44variant isoforms, which BU52 is 

not able to neutralise, might be involved in the retention of leukemic cells in the BM 

niche, rendering them invulnerable to chemotherapy. In line with this, Jin et al. 

demonstrated that blocking of CD44 reduced leukemic repopulation of human AML 

transplanted in NOD/SCID mice.[6] This indicates that CD44 somehow contributes to the 

homing and engraftment of LSC. All in all the occurrence of the CD44 mediated rolling and 

immobile adhesion on HA was highly diverse. Similarly the heterogeneity of the 
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leukaemia initiating cells in AML might be highly diverse as well, such that an antibody 

against CD44pan might not be effective for different patients with differing over-

expressions of CD44variant isoforms. 
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4.3 CELL INTERACTION WITH LAYERS OF 

MESENCHYMAL STROMAL CELLS 

The study of the interaction of cells with HA artificially immobilised on a surface presents 

an ideal scenario for the characterisation of interactions specific for HA, as it was 

described in the previous sections. In vivo, however, a far broader spectrum of ligands 

and, therefore, of ligand-receptor interactions is possible. In the context of homing the 

most important cell-cell contacts are between the homing HSC, of course, and either the 

endothelial cells, forming the blood vessels, or the mesenchymal stromal cells (MSC), 

found abundantly in the BM niche.[57,71] To gain an impression of the relevance of the 

CD44-HA interaction, discussed so far in this work, in a more realistic environment, the 

interaction with surfaces covered with MSC was analysed. In this section the 

establishment of the procedure to conduct such analysis in the microfluidic shear force 

setup is described. Subsequently, first cell-cell interaction curves of the model cell line 

KG-1a and HPC with MSC are presented. 

4.3.1 EXPERIMENTAL DETAILS FOR THE ESTABLISHMENT OF MSC 

FEEDER LAYERS 

To analyse the interactions between suspension cells, as previously used in this work, and 

MSC under flow conditions it was necessary to prepare surfaces completely covered with 

convergent MSC, the so-called feeder layers. As the MSC were harvested from the BM, 

they were, like other primary cell materials, only available in relatively low quantities. It 

was, therefore, desirable to require as few MSC as possible to develop a feeder layer. For 

this reason the glass sample holder, on which the feeder layer was to grow, was not pre-

coated with MSC, but the MSC were rather directly injected into the fully assembled 

channel system and allowed to settle there. In principle the procedure was adapted from 

experiments concerning the detachment of fibroblast cells from different sample 

surfaces.[11-12] It was important for the cells to be fully adhered and in a healthy state, as 

impairment of the cells may lead to modified interaction behaviour by e.g. differing 

receptor expression. The most easily analysable parameters that are determined by the 

condition of the MSC were the morphology and shear stress required for detachment. 

Both were studied for MSC cultured in the microfluidic shear force system. Due to the 

limited amount of cell culture medium in the channel system the most critical factor 

influencing the condition of the MSC was the amount of nutrients available to the cells. 
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Figure 80 and the corresponding supplementary Video S4 (description found in the 

Appendix section 7.2.5, video provided on the supplementary CD) show the adhesion of 

MSC to a glass substrate in the microfluidic channel system. With the MSC density used 

for this experiment the best cell morphology was observed after approximately 5 h of 

incubation. Figure 81 A shows such well spread healthy cells. Longer incubation led to 

unhealthy, elongated cells (Figure 81 B).  

 

Figure 80: Incubation of MSC in an assembled microfluidic channel setup. The images show different time 
points of the incubation of MSC inside an assembled microfluidic channel setup. It can be seen that while 
the cells spread broadly initially the cells appear thin and elongated after longer period of incubation. 

 

Figure 81: Images of well spread MSC (A) and unhealthy, elongated MSC (B). 
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To determine whether cell-feeder layer interaction experiments could repeatedly be 

conducted without detaching the MSC and to evaluate the effect such experiments had 

on the MSC, the interaction with the model suspension cell line KG-1a was investigated. 

As seen in Figure 82 A the shear stress required to detach all KG-1a cells from the MSC 

was approximately one order of magnitude below that required to detach the MSC from 

the glass surface. This was the prerequisite for being able to use an MSC feeder layer for 

repeated measurement of the interaction with other cells, such as KG-1a cells, under 

flow. This meant that the MSC could be used far more efficiently, than if the feeder layer 

had been a single-use surface. As shown in Figure 82 B the interaction with the KG-1a 

cells had no noticeable effect on the shear stress required to detach the MSC from the 

glass substrate on which they were adhered. This, like the cell morphology, can be seen 

as a measure for the viability of the MSC. It required at least 1,000 dyn/cm² to detach 

50 % of the MSC independent of the number of interaction experiments conducted prior 

to their detachment. Exact numbers could not be determined in all measurements as the 

maximum flow rate applicable in the microfluidic system was not always sufficient to 

detach the MSC. That the viability of the MSC was directly correlated to the shear stress 

required to detach them could well be seen in channels with strongly elongated MSC, 

which could not even be brought into contact with other cells as they were so weakly 

adhered that they detached even during injection of the KG-1a cells. 

 

Figure 82: Demonstration of the strong adhesion of healthy MSC to glass. A) The adhesion strength of MSC 
on glass is compared to the interaction strength of KG-1a cells (n = 4, > 68 cells/FOV, reduced number of 
cells visible because video microscopy was conducted with 10x Ph1 objective to better determine between 
the different cells types) with the MSC. B) Shear stress required to detach MSC from glass (n = 2, 
> 130 cells/FOV). Prior interaction of KG-1a cells with the MSC had no effect on the shear stress required to 
detach the MSC. The error bars represent the SD. 
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4.3.2 INTERACTION OF SUSPENSION CELLS WITH MSC FEEDER 

LAYERS UNDER FLOW 

This section goes into more detail on the interaction of KG-1a cells with MSC, introduced 

in the last section, and presents how HPC from different sources behaved in this system. 

As shown in Figure 83 for the untreated cells an interaction curve similar to that of KG-1a 

cells with HA was measured. A nearly identical 

interaction curve was observed for KG-1a cells 

preincubated with 9 µg/mL BU52. As this 

concentration of BU52 was sufficient to fully 

suppress the interaction with HA, this 

observation indicated that the interaction with 

MSC was independent of CD44. Although 

altogether weaker the same interaction 

pattern and, by treating the cells with BU52, 

the same independence of CD44 was observed 

for HPC from both CB and mPB (Figure 84). In 

all cases the number of interacting cells 

increased directly after a flow was applied. 

The maximum fraction of interacting cells 

reached was approximately 100 % for KG-1a, 

60 % for CB HPC and 40 % for mPB HPC. After 

the maximum was reached the cells were 

continuously detached from the surface. In 

contrast to the flow induced interaction 

discussed in the previous sections (sections 

4.1 and 4.2) the interaction here was not of a 

rolling, but more of an immobile nature. As 

can be seen in the supplementary Video S5 (description found in the Appendix 

section 7.2.5, video provided on the supplementary CD) the practically ‘stuck’ to the 

surface from the flow, similar to the immobile interaction observed mostly for leukaemic 

blasts (section 4.2). However, such a distinctive increase of the fraction of immobile 

adherent cells was not observed on HA-coated surfaces.  

 

Figure 83: Interaction of KG-1a cells with MSC 
under flow conditions. The fraction of KG-1a 
cells interacting with the MSC increased until a 
maximum was reached at ~ 1 dyn/cm² (n = 4, 
> 68 cells/FOV, video microscopy with 10x Ph1 
objective to better determine between the 
different cells types). After this the cells 
detached from the MSC. Treatment of the 
KG-1a cells with 9 µg/mL BU52 did not lead to 
an abrogation of the interaction. The error bars 
represent the SD. 
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Figure 84: Interaction of HPC from CB (A) and mPB (B) with MSC under flow conditions. The HPC from 
both sources show nearly the same interaction with the MSC (n ≥ 1, > 53 cells/FOV, video microscopy with 
10x Ph1 objective to better determine between the different cells types). The error bars represent the SD. 

4.3.3 DISCUSSION 

In this section the possibility to culture MSC inside the microfluidic shear force setup was 

demonstrated and the interaction of other cells with the MSC was analysed under flow 

conditions. The aim was to prepare a closed layer of convergent MSC. It could be shown 

that, if the correct conditions were upheld, the culture of MSC inside a fully assembled 

channel system was possible and well spread, strongly adherent MSC could be cultured. 

Albeit no full confluence was reached, successful experiments concerning the interaction 

of other cells with the MSC could be undergone. By analysing the repeated interaction 

with KG-1a cells it could be demonstrated that the shear stress at which the KG-1a 

detachment and the MSC detachment occurred were sufficiently wide apart so that the 

MSC were not detached. Furthermore, this analysis showed that the shear stress required 

to detach the MSC did not change due such repeated interaction analysis. These findings 

demonstrated that the MSC cultured directly in the channel system presented a robust 

system for the analysis of the interaction of suspension cells with the MSC under flow 

conditions. Concerning the interaction of the KG-1a cells with the MSC it could be shown 

that dependent on the flow rate the cells accumulated on the MSC. The same behaviour 

was also observed for HPC from CB and mPB. For all three cell types tested accumulation 

commenced as soon as a flow was applied. The maximum fraction of interacting cells was 

observed in the range of approximately 1 dyn/cm². Beyond this shear the cells were 

detached from the surface by the flow. Pre-treatment of the cells with 9 µg/mL BU52 had 

no effect on the interaction of the cells with the MSC. This concentration of BU52 was 

sufficient to fully suppress the flow induced interaction with HA as shown in the 
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sections 4.1 and 4.2. However, the number of receptor-ligand interactions was limited in 

that setup, as only immobilised HA was available for interaction. When investigating the 

interaction with MSC a vast variety of interactions were possible.[27] Amongst others 

possible receptors mediating interaction between the cells and MSC were integrins and 

cadherins. These typically mediate a firm adhesion and are the first obvious candidates 

for mediating the firm interaction observed in the experiments. It is possible that the 

catch-bond mediated capture of the cells directly resulted in a firm adhesion, possibly 

mediated by the above mentioned receptors. Future experiments should surely address 

the questions which receptors mediate this ‘sticking’ of the cells and whether the CD44 

mediated flow induced rolling can be observed if the appropriate other receptors are 

blocked. 
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4.4 THE EFFECT OF SDF-1α AND PLERIXAFOR® ON 

CELL MOTILITY 

The flow induced rolling of cells, which can be mediated by CD44, as described in the 

previous sections, or by selectins, as discussed in section 2.3, is an important step in the 

extravasation of cells from the blood stream. This in turn is a crucial step in the process of 

HSC homing to the BM niche.[99-101] That the CD44-HA interaction is in fact relevant in this 

context has been described in literature.[9] As both HA[237] and CD44[130-132] are 

ubiquitously expressed in the mammalian cells a regulation of this interaction is required. 

It was shown for example that proinflammatory stimuli could upregulate the expression 

of HA on endothelial cells to induce CD44 mediated binding.[287] In the context of HSC 

homing another regulation is possible. The homing process is directed by a gradient of the 

cytokine stem-cell-derived factor-1 alpha (SDF-1α).[9,16,69-70] Fuchs et al. recently described 

a molecular link between SDF-1α and CD44 via the SDF-1α receptor CXCR4,[288] raising the 

question whether SDF-1α could regulate the CD44 mediated flow induced interaction 

with HA. The investigation of the possibility of this form of regulation is presented in this 

section. 

4.4.1 THE EFFECT OF SDF-1Α ON THE MIGRATION OF HPC 

It is well known that SDF-1α induces migration.[16-19,289] To determine whether, in the in 

vitro environment used in this work, the HPC reacted to SDF-1α as expected by migrating, 

transwell assays were applied. Plerixafor® (syn.: AMD3100; 1,1-[1,4-phenylene-bis(methy-

lene)]-bis-1,4,8,11-tetra-azacyclo-tetradecane) was used as a control reagent. In the 

clinical environment this is used to mobilise HSC from the BM niche.[93-95] While the 

mechanism of action is not yet understood in detail,[96-97] it has been shown to block the 

CXCR4 receptor,[98] and, therefore, functions as SDF-1α antagonist.  

For the analysis HPC derived from CB were seeded in the top compartment of a transwell 

setup and the migration through a membrane with a pore size of 3 µm was analysed by 

fixing the cells after 4 h and counting the number of cells that had migrated through the 

membrane into the lower compartment. First the effect of the isolated cytokine and of 

Plerixafor® was studied. As baseline-level, only HPC were added to the upper 

compartment and migration through the membrane into the lower compartment was 

measured (Figure 85 A). The migration rate was significantly increased upon addition of 

SDF-1  into the lower compartment (p < 0.01, 2-sided Student´s t-test). This migration 
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inducing effect of SDF-1  could be abrogated almost fully by the addition of Plerixafor® 

(p < 0.01, 2-sided Student´s t-test). This clearly demonstrated that the HPC used in this 

work were susceptible to SDF-1  and that Plerixafor® could successfully be applied to 

suppress this effect. 

As MSC secrete the chemokine SDF-1  and also express the corresponding receptor 

CXCR4 themselves[15] the migration towards these cells and, therefore, towards natural 

SDF-1 , was also analysed (Figure 85 B). For this MSC were seeded into the lower 

compartment of the transwell setup. Directly prior to the experiments the medium in 

which the MSC were cultured was removed and replaced by SDF-1  free medium. This 

ensured that the induction of migration was solely due to cytokines (presumably SDF-1 ) 

secreted by the MSC. The bar graph in Figure 85 B shows a clear while not significant 

increase of the migration rate when comparing the CB HPC control to those migrating 

towards the MSC. The migration rate could be further increased by addition of synthetic 

SDF-1  to the lower compartment. Again this effect could be nearly fully antagonised by 

the addition of Plerixafor® to the upper compartment. 

 

 

Figure 85: Transwell assay to determine the effect of SDF-1α and Plerixafor® on the migration of HPC. A) 
Effect of synthetic SDF-1α on the migration of CB HPC. The unspecific migration through the transwell 
membrane (HPC control) is compared to the addition of either 100 ng/mL SDF-1α alone or in combination 
with 500 ng/mL Plerixafor® to the lower compartment (n = 6).

[289]
 B) Effect of presence of MSC on the 

migration of CB HPC. The lower compartment was seeded with MSC and the effect of 100 ng/mL SDF-1α 
and/or 500 ng/mL Plerixafor® was studied (n = 4). The error bars represent the SD. 
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4.4.2 THE EFFECT OF SDF-1Α ON THE CD44-HA INTERACTION 

After validation of the effectiveness of both SDF-1  and of Plerixafor® in an in vitro 

environment as used in this work, the influence of both on the interaction of cells under 

flow was analysed. As presented in section 4.2.1 the HPC were preincubated in Stemline II 

medium for 24 h prior to microfluidic measurement. Prior to measurement the cells were 

pre-incubated with SDF-1α or a combination of SDF-1α and Plerixafor® for (20-30) min to 

determine whether either of the two has an effect on the flow-induced rolling interaction 

with HA. HPC from CB and mPB were used for this analysis. As shown in Figure 86 the HPC 

from both sources exhibited the flow-induced rolling on HA previously discussed. Rolling 

was observed beyond a critical shear stress of approximately 0.2 dyn/cm² and reached 

the maximum at approximately (0.7-1) dyn/cm². Also as previously described the fraction 

of immobile adherent cells was low. Interestingly, for all treatments no change in the 

rolling interaction or the immobile adherence could be observed. 

 

Figure 86: Effect of SDF-1α and Plerixafor® on the interaction of HPC with HA under flow. Interaction of 
HPC from CB (A; n = 1) and mPB (B; n = 2) with HA under flow. The cells were preincubated with SDF-1α or 
SDF-1α and Plerixafor® prior to measurement for varying lengths of time. The error bars represent the SD. 
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4.4.3 DISCUSSION 

This chapter focussed on determining the relevance of SDF-1α as regulating agent for the 

CD44 mediated flow induced interaction with HA. To determine the viability of the in vitro 

environment in which the experiments were conducted, the effect of both SDF-1α and 

Plerixafor® on the HPC used in this work was evaluated using a transwell migration assay. 

It could be shown that in accordance to the findings of Kim and Broxmeyer SDF-1α was a 

very potent trigger for HPC migration.[18] This effect was best observed upon addition of 

synthetic SDF-1α. A certain increase, however, was also observed for HPC seeded in a 

transwell with MSC grown in the lower compartment as only source of natural SDF-1α. Of 

course, in vivo there may be other systems involved as well inducing chemotaxis as MSC 

produce more chemokines than merely SDF-1α.[27] Both with and without MSC it could be 

shown that addition of Plerixafor® reduced the interaction to the levels of the respective 

control group. This clearly showed that the HPC were susceptible to SDF-1α and 

Plerixafor® in the in vitro environment used in this work and that both reagents were 

highly effective.  

Based on this validation of the effectiveness of SDF-1α and Plerixafor® the possible role of 

SDF-1α as regulatory agent for the CD44 mediated rolling interaction with HA was 

investigated. The CXCR4 antagonist Plerixafor® is a mobilisation reagent for HSC 

commonly used in the clinical environment.[93-95,98] Next to that of SDF-1α, the effect of 

this drug on the rolling on HA was also determined. The analysis was conducted with HPC 

originating from both CB and mPB. It could be shown that neither a pre-treatment with 

SDF-1α, Plerixafor® or a combination of both affected the interaction with a HA-coated 

surface under flow. This was the case both for the CD44 mediated flow induced rolling 

and for the immobile adhesion of the cells to HA. This new insight suggested that 

although some aspects of the function of the two receptors were linked[288] others, such 

as the CD44 mediated flow induced rolling on HA, were not. It should be noted that the 

absence of an effect of SDF-1α or Plerixafor® may be related to the pre-treatment of the 

cells in Stemline II medium (Table S5, Appendix section 7.2.1). Amongst others this 

medium contained the cytokine ‘granulocyte colony-stimulating factor’ (G-CSF), which is 

known for its stem cell mobilising abilities. In a clinical environment G-CSF is often used in 

combination with Plerixafor® as this is more effective than the standard procedure with 

G-CSF alone.[290-292] Possibly this cytokine negated the effect of SDF-1α or Plerixafor®. 

Another possibility is that the mechanistic determination between migration, where the 

molecular link between CD44 and CXCR4 was observed,[288] and the flow induced rolling is 

so sophisticated that the two forms of interaction are under certain circumstances strictly 

separated. Further experiments concerning this dependency would be desirable. 
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5 STABILITY AND BIOCOMPATIBILITY OF 

SURMOF 2 AS CANDIDATE FOR A DRUG RELEASE 

SYSTEM 

 

Figure 87: Overview over the work presented in this chapter. In the first section of this chapter the 
stability of Cu-/Zn-SURMOF 2 in different media is analysed. It was tested whether SURMOF 2 was generally 
applicable for cell culture and whether it could function as smart-release coating under the right conditions. 

As elaborated in the introduction to this work (section 1) there are two major pathways in 

the improvement of the therapy of acute myeloid leukaemia (AML). The first is the 

selective mobilisation of leukaemic stem cells (LSC) out of their niche. As this requires a 

detailed understanding of the interactions between the LSC and their niche and the CD44-

HA interaction was reported to be such an interaction,[6-7,9] this was characterised in this 

study. The second pathway is to improve the culture of haematopoietic stem cells (HSC) 

in vitro to make sufficient amounts of HSC for successful haematopoietic stem cell 

transplantation (HSCT) more easily accessible.[27-28] The HSCT are required to rescue the 

haematopoietic system after failure due to intensive chemotherapy.[24] Mimicking the in 

vivo conditions of a slow and continuous release of cytokines and growth factors to the 

HSC is a key step in doing so. Porous materials such as zeolites, porous metals or porous 

silicon are widely used in many applications involving the incorporation of small 

molecules, e.g. gas purification.[35-42,293-294] The pore size, the stability and of course the 

biocompatibility are three major aspects of a material that shall be used for drug delivery 
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in vivo. A relatively new class of porous materials, the metal-organic frameworks (MOF), 

are due to their building blocks, chemically and structurally highly flexible.[43-45] The 

synthesis of such frameworks on surfaces (surface-anchored MOF; SURMOF) is 

straightforward[191,201,204] and allows the coating of devices, such as stents, or cell culture 

dishes. A novel 2-D structured SURMOF, namely SURMOF 2, was recently developed in 

the group of Prof. Christof Wöll at the Karlsruhe Institute of Technology (IFG, KIT, 

Karlsruhe, Germany).[209,295] Figure 87 gives an overview over the work conducted with 

this type of SURMOF. The stability of SURMOF 2 in different media, the compatibility of 

the same with cell culture and its potential as a drug release system were studied in 

corporation with the group of Prof. Christof Wöll. 

5.1 STABILITY OF SURMOF 2 

In this study a copper ([Cu2(bdc)2]n; Cu-SURMOF 2; bdc = benzene-1,4-dicarboxylic acid) 

and a zinc ([Zn2(bdc)2]n; Zn-SURMOF 2) based derivative of SURMOF 2 were studied. Both 

were assembled from solutions of the precursors of the divalent cations (Cu2+ and Zn2+) 

and the linker molecule bdc. In contrast to most 3-D crystalline MOF structures this type 

of SURMOF exhibited a 2-D layer structure as shown in Figure 88.  

 

Figure 88: Schematic representation of the proposed structure of SURMOF 2. The structure of SURMOF 2 
[Zn2(bdc)2(H2O)2] and [Cu2(bdc)2(H2O)2] is proposed to be 2-D; A) front view and B) side view. Image taken 
from Arslan et al., 2011.

[209]
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In order to study the stability of Cu- and Zn-SURMOF 2 towards different media the re-

spective SURMOF 2 was incubated in MilliQ® water, artificial sea water (ASW, type: 

Instant Ocean®), phosphate buffers saline (PBS buffer), 1 mg/mL fibrinogen in PBS and 

the cell culture medium Dubelcco´s modified eagle medium (DMEM, relevant media for a 

range of biological applications) supplemented with 10 % FBS and 5 % L-Glutamine for 

1 h. After the incubation the SURMOF was carefully rinsed with MilliQ® water, dried in a 

nitrogen stream and analysed by XRD (by Hasan K. Arslan or Zhengbang Wang from the 

group of Prof. Christof Wöll, IFG, KIT, Karlsruhe, Germany), XPS (by Stella Bauer from our 

workgroup) and spectral ellipsometry. 

Figure 89 A shows the XRD data obtained after the incubation of the Zn-SURMOF 2 in the 

above mentioned media. It is clearly visible that the crystallinity of the Zn-SURMOF 2 was 

lost after the incubation for 1 h in every of the tested media. The instability of the 

Zn-SURMOF 2 could be underlined by XPS measurements (Figure 89 B, C) which showed 

an increase of the Zn 3p peak together with a decrease of the C 1s peak for both the 

incubation with MilliQ® water and ASW. The increase of the Zn 3p peak can be explained 

by the exposure of zinc by removal of the outer bdc layers. This is in line with the 

decrease of the C 1s peak which can only originate from a loss of the bdc linker. 

Incubation in the remaining media also led to a disassembly of the SURMOF 2 (data not 

shown as no peaks were visible). 

 

 

Figure 89: Spectroscopic analysis of the stability of Zn-SURMOF 2 in aqueous media. XRD spectra (A) of 
pristine Zn-SURMOF 2 and of the same after incubation in MilliQ® water, ASW, PBS buffer, PBS buffered 
fibrinogen solution and the cell culture medium DMEM (supplemented with 10 % FCS and 1 % L-Glutamine) 
for 1 h. All tested media led to a loss of crystallinity. The corresponding C 1s (B) and Zn 3p (C) XP spectra of 
the samples shown in A are also given. For clarity only the spectra for MilliQ® water and ASW are shown. 
Both the C 1s and Zn 3p spectra clearly show the disassembly of the Zn-SURMOF 2. 
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While the XRD data revealed the instability of Zn-SURMOF 2 in all media it also showed 

that immersion in MilliQ® water and ASW for times of up to 1 h had no detectable effect 

on the crystalline nature of the copper based SURMOF 2 (Cu-SURMOF 2). After incubation 

of the same with PBS buffer, PBS buffered fibrinogen solution and DMEM a loss of 

crystallinity was detectable (Figure 90 A), however.  

XPS was used to gain a more detailed insight into the chemical composition of the surface 

after immersion of the Cu-SURMOF 2s into the different media (Figure 90 B-E). No change 

of the Cu 2p signal could be observed for the samples incubated in MilliQ® water and 

ASW, while the sample incubated in PBS showed a slight increase of the Cu 2p signal. For 

the samples containing proteins (PBS buffered fibrinogen solution and DMEM 

supplemented with 10 % FCS and 5 % L-Glutamine) a complete disappearance of the 

Cu 2p signal was observed. Evaluation of the C 1s XPS signals in Figure 91 C, D allowed 

similar conclusions. In the case of the incubation in MilliQ® water and ASW no change in 

the signal intensity or shape could be observed which was in good agreement with the 

unchanged crystallinity found by XRD. Incubation in PBS led to a strong decrease of the 

C 1s signal. This was in accordance with the loss of crystallinity indicated by the XRD data. 

After immersion of the Cu-SURMOF 2 films into buffered solutions of fibrinogen or cell 

culture medium DMEM (supplemented with 10 % FCS and 5 % L-Glutamine), a 

pronounced change of the C 1s peak shape was observed. This indicated changes in the 

chemical composition of the organic components after immersion into the protein 

containing media as expected due to the deposition of proteins on the surface. Since at 

the same time the Cu-SURMOF 2 diffraction peak intensities decreased it could be 

concluded that the protein deposition was accompanied by dissolution of the SURMOF 2 

coating. The N 1s spectra recorded before and after immersion into the different aqueous 

solutions is shown in Figure 90 E. As it could be anticipated from the compositions of the 

different building units for the Cu-SURMOF 2, the pristine surfaces did not contain any 

nitrogen. After incubation in the protein rich (and thus nitrogen rich solutions) a distinct 

N 1s signal appeared. This underlined the conclusion from the C 1s spectra that 

macromolecules such as proteins adsorbed from solution. 
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Figure 90: Spectroscopic analysis of the stability of Cu-SURMOF 2 in aqueous media. XRD spectra (A) of 
Cu-SURMOF 2 before and after incubation in MilliQ® water, ASW, PBS buffer, PBS buffered fibrinogen 
solution and the cell culture medium DMEM (supplemented with 10 % FCS and 1 % L-Glutamine) for 1 h. 
Crystallinity was retained during the incubation in MilliQ® water and ASW. The Cu 2p spectra (B) and the 
C 1s spectra (C, D) show nearly no changes in MilliQ® water and ASW, while obvious changes are visible in 
the other media. Nitrogenous species were deposited on the surface from the proteinacous media as seen 
in the N 1s spectra (E).

[296]
 

Additionally, spectral ellipsometry was used to investigate the effect of the incubation in 

the different media on the film thickness. As shown in Figure 91 A Cu-SURMOF 2 was 

stable with regard to MilliQ® water and ASW for at least 1 h. This was in agreement with 

the XRD and XPS data. In case of the analysis of the film thickness after the PBS incubation 

problems fitting the ellipsometric data to the theoretical model were encountered. The 

mean square error (MSE) of the corresponding fit (numbers above the bar graph in 

Figure 91 A) was much larger for the PBS incubated surface (142) than for the other 

surfaces (less than 70). This finding could be explained by a very high roughness, for 

which the Cauchy layer model[214] was not adequate any more. A high degree of 

roughness was also consistent with the XRD data showing that the remaining overlayer 

was non-crystalline. As reference the film thickness of a HKUST-1 (Hong Kong University 

of Science & Technology-1) SURMOF after different times of incubation in MilliQ® water is 

shown in Figure 91 B. The rapid decrease of the film thickness stood in strong contrast to 

the high stability observed for Cu-SURMOF 2 after even 1 h. For incubation of the 

Cu-SURMOF 2 in fibrinogen solution and the protein rich medium DMEM an increase in 
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thickness would have been expectable due to absorption of a protein overlayer. Table 8 

shows the protein thicknesses typically obtained on the SAMs onto which the 

Cu-SURMOF 2 was deposited. Both, spectral ellipsometry and XPS show a similar increase 

in thickness by approximately 4 nm, which is in agreement with literature values for a 

single layer of proteins.[220,297] In contrast, incubation of the Cu-SURMOF 2 led to a rapid 

decrease of the thickness of the MOF overlayer (Figure 91 A). 

 

Figure 91: Ellipsometric measurements of SURMOF film thicknesses. A) Film thickness of the pristine 
Cu-SURMOF 2 before and after incubation in different media for 1 h. The size of the error bars corresponds 
to the average film thickness errors as provided by the WVASE32 program for each measurement. The MSE 
of each fit is shown above the graph. In case of PBS problems were encountered in the fitting process, see 
text. B) Time-dependent reduction of the HKUST-1 film thickness in MilliQ® water.

[296]
 

 

Table 8: Comparison of the fibrinogen film thickness on SAMs measured by ellipsometry and by XPS. 
Errors are the SD.

[296]
 

Surface Type 

Film Thickness 

Ellipsometry 

[Å] 

Film Thickness 

XPS 

[Å] 

Fibrinogen on MHDA 42.9 ± 0.6 39.2 

Fibrinogen on HDT 49.1 ± 1.7 45.6 
 

 

Figure 92 shows the overview XPS data comparing the elemental composition of the 

pristine Cu-SURMOF 2 and the Cu-SURMOF 2 after PBS and ASW incubation. For the PBS 

incubation one can see that both the O 1s and O KVV peaks increased and that P 2s and 

P 2p3/2 peaks appeared. The increase of oxygen and phosphorous was connected to the 

decrease of the C 1s peak and the increase of the Cu 2p3/2 peak (Figure 90 B-D), which 

pointed towards a substitution of the organic linker molecules, most likely by phosphate. 

This change in chemistry resulted in a loss of crystallinity as seen in the XRD measurement 

(Figure 90 A). Thus, it could be deduced that the incubation of the Cu-SURMOF 2 in PBS 
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led to a transformation of the crystalline metal-organic framework into an amorphous 

thin film comprised of Cu-SURMOF 2 components and phosphate from the buffer 

solution. In the case of incubation with ASW no new peaks were seen in the XPS data 

(Figure 92), revealing that none of the non-copper metal ions contained in the ASW were 

stored in the Cu-SURMOF 2 material (e.g. by ion incorporation or exchange). 

In order to explore whether and where proteins adhered on patterned Cu-SURMOF 2 

adlayers, patterned Cu-SURMOF 2 surfaces were exposed to green fluorescent protein 

(GFP)-labelled fibrinogen for 30 min and subsequently investigated by fluorescence 

microscopy. Although it was known from the spectroscopy data that the Cu-SURMOF 2 

was completely removed during this experiment, it was still interesting to investigate if 

protein affinity varied spatially, i.e. whether the adhesion of proteins was affected initially 

when the Cu-SURMOF 2 was still present. The corresponding fluorescence micrographs 

are shown in Figure 93 A. The fluorescence on top of the patterned areas was higher than 

on the HDT SAM, a material which was known to be very proteophilic.[220] The intensity 

was roughly 4 times larger on the MHDA structures compared to the HDT SAM. 

Interestingly, the largest fluorescence was observed directly at the borders between HDT 

SAM and the Cu-SURMOF 2 squares. 

 

 

Figure 92: XPS spectra of pristine Cu-SURMOF 2 and of Cu-SURMOF 2 incubated in PBS and ASW for 1 h. 
The overview spectra shows phosphate peaks in the SURMOF.

[296]
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Figure 93: Adhesion of GFP-labelled fibrinogen to structured Cu-SURMOF 2 surfaces. The fluorescence 
image (A) of a structured Cu-SURMOF 2 substrate incubated for 30 min with GFP-labelled fibrinogen, the 
intensity profile (B) of the fluorescence signal detected and the greyscale (C) along the red line depicted in A 
show the preference of the protein to adhere to the borders of the MHDA squares.

[296]
 

5.2 BIOCOMPATIBILITY AND CELL CULTURE 

APPLICATION 

The fact that Cu-SURMOF 2 was stable in water at least for a limited duration made it 

interesting for the application in life and environmental sciences. The dissolution of the 

Cu-SURMOF 2 in cell culture media as described above might be the basis for using such 

coatings as slow release matrix for drugs or soluble control factors for cell differentiation 

and growth. In this section the general compliance of Cu-SURMOF 2 substrates with cell 

culture is investigated. For this wild type rat embryonic fibroblasts (REF52WT), a well 

characterised model cell line from the connective tissue frequently used for cell adhesion 

studies [298] and mechanistic studies on the formation of focal contacts and integrin 

clustering,[299] were used. For this prototype cell, time-lapse cell adhesion analysis and 

microfluidic detachment experiments were conducted in vitro on different substrates. 

The optical micrograph images (Figure 94) obtained after 3 h of incubation show that the 

initial adhesion and spreading of REF52WT cells proceeded similarly on the homogeneous 

Cu-SURMOF 2 surfaces as it did on the MHDA SAM. This analysis was conducted in the cell 

culture medium DMEM in which REF52WT cells were typically cultured. As the stability 

studies presented in section 5.1 showed that the Cu-SURMOF 2 was dissolved upon 
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immersion in DMEM, it could be concluded that the Cu2+-ions liberated during this 

process into the solution did not harm the cells or delay their life cycle. Adhesion to both 

the patterned (Video S6, description found in the Appendix section 7.3.2, video provided 

on the supplementary CD) and the homogeneous Cu-SURMOF 2 took place immediately 

after the cells got in contact with the surface and spreading occurred on the same 

timescale as on the control substrate, the MHDA SAM. Proliferation of the cells took place 

after approximately 7 h on both surfaces, thus supporting the notion that the 

concentration of solvated Cu2+-ions did not harm the cells (Figure 95). XRD data recorded 

after the coating with fibroblast cells (data not shown) showed no Cu-SURMOF 2 

diffraction peaks, thus revealing that the dissolution of the SURMOF 2 into the cell culture 

medium was not substantially delayed by cell adhesion. 

 

Figure 94: Microscopic images taken after incubating Cu-/Zn-SURMOF 2 with REF52WT for 3 h. The border 
of the structured SURMOF 2 area is indicated by the red dotted line.

[296]
 

 

Figure 95: Microscopic images of a REF52WT cell proliferating on a homogeneous Cu-SURMOF 2 
substrate. Six steps (1-6) in the proliferation process are shown. The images show the fully spread cell (1), 
which detached from the surface (2-4), divided into two daughter cells (5), which both adhered to the 
surface (6). Proliferation was observed after ~ 7 h. This time span corresponded well with that found on the 
SAM reference. 
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Besides cell adhesion dynamics and analysis of proliferation the critical shear stress 

required to detach 50 % of the REF52WT cells from Cu-SURMOF 2 was quantified. This 

aimed at providing further evidence for the normal adhesion behaviour of the cells and 

for the full integrity of the cell-surface contact. MHDA and HDT SAMs were measured as 

control surfaces. The REF52WT cells were incubated in the microfluidic channel system 

for 5 h according to a well-established protocol.[11] Figure 96 shows the adhesion curves in 

A) and     values determined by microfluidic shear force measurement in B). The curves 

in Figure 96 A show the decrease in the fraction of adherent cells on a surface against the 

applied shear stress. It can be seen that the critical shear stress needed for removal of 

50 % of the cells    
 was nearly the same for the homogeneous Cu-SURMOF 2, the MHDA 

SAM and the structured Cu-SURMOF 2 (Figure 96 B). Only for the hydrophobic 

background, the HDT SAM, the adhesion strength was reduced. This was in agreement 

with the time-lapse microscopy images shown in Figure 94, in which the REF52WT cells 

hardly adhered to the HDT SAMs after 3 h, thus proving that the presence of the copper 

released from the dissolving Cu-SURMOF 2 did not affect the adhesion and allowed for a 

normal development of the fibroblasts. 

 

 

Figure 96: Microfluidic adhesion measurement of REF52WT cells on different sample surfaces. The 
measurements were conducted on the two reference SAMs, MHDA and HDT, as well as on homogeneous 
and structured Cu-SURMOF 2 samples. The mean detachment curves are shown in A, while B gives the 
corresponding mean     values. The MHDA SAM and both Cu-SURMOF 2 samples yield the same mean     
values while adhesion to the HDT SAM is significantly weaker. Each measurement was repeated at least 3 
times with > 60 cells/FOV. The error bars are the SD.

[296]
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5.3 APPLICATION AS SMART-RELEASE SURFACE 

As the stability of Cu-SURMOF 2 in ASW for at least 1 h could be demonstrated in 

section 5.1 this medium offered the possibility to test the applicability of Cu-SURMOF 2 as 

smart-release surface. However, ASW was not adequate for cell culture. For this reason a 

substitutive organism, the marine bacterium Cobetia marina (C. marina), was chosen. 

C. marina is a model bacterium used in many adhesion studies due to its relevance in 

marine biofouling. [300-302] The studies with the bacterium were conducted in cooperation 

with Maria Pilar Arpa Sancet from our workgroup. 

The stability of Cu-SURMOF 2 in ASW was again analysed by XPS and XRD. Figure S13 

(Appendix section 7.3.2) shows virtually the same XP spectra of the Cu 2p (A) and the C 1s 

(B) peak for the pristine surfaces and after an incubation for 2 h in MilliQ® water. After an 

equally long incubation in ASW, minor peak changes became visible. The Cu 2p peak 

slightly increased, while the C 1s peak showed a marginal reduction. This indicated a 

disassembly of the top layers of the SURMOF structure resulting in better spectroscopic 

accessibility of the Cu2+ building units and a loss of some bdc linkers. The XRD 

measurements proved that all samples retained their crystallinity (Figure S13 C, D, 

Appendix section 7.3.2). 

XPS analysis yields the elemental composition of the sample in dependency of the sample 

depth. Measurements of the SURMOF with bacteria present would have led to 

superimposed signals in which a differentiation between signals originating from the 

SURMOF and signals from the bacteria would have been near impossible. XRD in contrast 

only generates signals from regularly structured objects such as crystals. The overall 

amorphous structure of the bacteria did not contribute to the signal detected. Therefore, 

only XRD was applied for detecting changes in the SURMOF. It could be shown that 

incubation of Cu-SURMOF 2 with C. marina in ASW led to a significant reduction of the 

XRD signal intensity over the course of 2 h (Figure 97 A) hinting a disassembly of the 

Cu-SURMOF 2 initiated by the adhesion of the bacteria. On the basis of these 

observations the scenario depicted in Figure 97 B was proposed. After attaching to the 

SURMOF substrate (which was stable in ASW), the bacteria released biomolecules which 

diffused into the MOF and led to a structural rearrangement of the MOF material. This 

structural arrangement was likely to include an exchange of ions, which in turn led to a 

release of a small amount of Cu2+ ions that are toxic to microorganisms.[303]  
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Figure 97: Stability analysis of Cu-SURMOF 2 in the presence of the marine bacterium C. marina and a 
proposed mechanism for the active degradation of the same by the bacterium. XRD spectra (A) of 
Cu-SURMOF 2 before and after incubation with ASW as reference and a suspension of the bacterium 
C. marina in ASW. The inlayed graph shows the decrease of the intensity of the (001) peak during the 
incubation with C. marina. A possible mechanism for this loss of crystallinity is shown in (B). (a) Healthy 
bacteria on initial contact with the SURMOF. (b) Bacteria settled on the intact SURMOF begin secretion of 
EPS and other molecules. (c) Disassembly of the SURMOF and release of Cu

2+
 ions. (d) Adverse effect on 

bacteria leading to reduced viability and adhesion strength.
[304]

 

In the process of attaching to a surface the bacteria secrete extracellular polymeric 

substances (EPS) composed of macromolecules (mostly polysaccharides[305] such as alginic 

acid (AA)[306]). That such biomolecules can affect the metal-organic frameworks was 

demonstrated by incubation of test samples in a variety of solutions related to the 

bacterial physiology. These solutions were pure ASW as reference, a solution of 0.5 µg/mL 

AA in ASW, an EPS solution and the supernatant after the growth of bacteria in a glass vial 

for 2 h. Figure 98 A shows the XRD spectra obtained after the incubation of the 

Cu-SURMOF 2 substrates for 2 h in the test solutions. For both the AA solution and the 

EPS solution a dramatic decrease of the XRD peak intensities was observed. After 

immersion into the supernatant of a bacterial suspension, a complete loss of the 

crystalline order could be detected. Inductively coupled plasma optical emission 

spectrometry (ICP-OES) measurements of the test solutions after the incubation of 

Cu-SURMOF 2 samples in them, revealed significantly increased copper concentrations 

(Figure 98 B). The highest copper concentrations of approximately 2 mg/L were measured 

after 2 h exposure of the Cu-SURMOF 2 to the supernatant of a bacterial suspension and 

after incubation in suspensions of C. marina. These findings together with AFM 

measurements of the bacterial morphology (Figure S14 and Figure S15 in the Appendix 
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section 7.3.3) and the Cu-SURMOF 2 height after incubation with the bacteria (Figure S16 

in the Appendix section 7.3.3), SEM imaging of bacteria (Figure S17 in the Appendix 

section 7.3.3), viability assays (Figure S18 A in the Appendix section 7.3.3) and 

detachment experiments (Figure S18 B in the Appendix section 7.3.3) clearly underlined 

the hypothesis of the active degradation of the SURMOF by the bacteria. 

 

Figure 98: Stability analysis of Cu-SURMOF 2 in different media connected with the physiology of the 
bacteria C. marina and measurement of the corresponding copper release. A) XRD spectra of the SURMOF 
after the 2 h incubation. B) Copper concentration in the supernatant after the incubation as determined by 
ICP-OES.

[304]
 

5.4 DISCUSSION 

The development of viable methods for the in vitro culture of HSC to improve HSCT 

presents a second route to optimising the treatment of AML, next to selectively 

mobilising the LSC from their niche to make them more susceptible to chemotherapy. In 

the context of the latter approach the CD44-hyaluronic acid interaction was investigated 

and the results were presented in chapter 4. This chapter focussed on new matrix 

systems for the in vitro culture of HSC. One good approach when aiming at improving cell 

culture conditions, is to mimic the in vivo environment of the cells.[307-308] In the bone 

marrow niche, where the HSC dwell,[55-57] they undergo many different forms of 

interaction with their surroundings.[27] Some of these are the exhibition to soluble factors, 

such as cytokines or growth factors. In an in vitro approach such drugs should ideally be 

released continuously to the HSC as is the case in vivo. The material type predestined for 

use in such an application is a porous material. Of the various porous materials available 

the MOFs are by far the chemically and structurally most flexible. In this study the first 

fundamental investigations concerning the application of a novel 2-D surface-bound MOF, 

namely SURMOF 2, as drug release substrate in cell culture were undergone. Therefore, 
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the stability of the structure and the biocompatibility of the building blocks were 

analysed. First tests as smart-release substrate were also undergone in a marine 

environment. 

Stability analysis of Cu-SURMOF 2 demonstrated a pronounced stability with regard to the 

exposure to MilliQ water. After immersion times of 2 h, the integrity of the 

Cu-SURMOF 2 was completely maintained, as evidenced by ellipsometry, XPS and XRD. 

This result was somewhat surprising, as HKUST-1,[309] a SURMOF which was also based on 

copper dinuclear carboxylate paddlewheel-units, and the structurally nearly identical 

Zn-SURMOF 2 were unstable even in MilliQ water. Ellipsometric measurements showed 

that HKUST-1 was removed in less than 5 min. It could furthermore be demonstrated that 

while PBS buffer induced an amorphisation of the SURMOF, proteinacous media led to a 

complete disassembly of the same. 

The stability of Cu-SURMOF 2 in water opened the possibility to test the suitability of 

these MOF thin films for environmental and life science applications. The Cu-SURMOF 2 

substrates showed an overall compliance with eukaryotic cell culture (culture of REF52WT 

cells in DMEM), even though the dissolution of the Cu-SURMOF 2 substrates was 

accelerated in the cell culture media. No toxic or inhibitory effects on the proliferation or 

adhesion of fibroblast cells were observed on the Cu-SURMOF 2 coated substrates, 

despite the rapid release of Cu2+-ions. Therefore, the experiments represented an 

extreme case in which cells were exposed to the maximum copper concentration possible 

in this setup. A smart-release system, similar to that aimed for in cell culture, could 

already be realised with the Cu-SURMOF 2 substrates and bacteria, which thrived in ASW. 

It could be demonstrated that Cu-SURMOF 2 was, next to MilliQ water, also rather 

stable in this salt based medium for up to 2 h. Based on this stability it could be shown 

that incubation with the marine bacterium Cobetia marina led to a localised disassembly 

of the SURMOF. This disassembly, which presumably was induced by chemicals secreted 

by the bacteria, locally released the copper ions incorporated in the SURMOF matrix, 

which in turn led to most bacteria dying and detaching from the surface. 

Overall the major requirements for the application of a structure as drug release surface 

are the possibility to incorporate the drug (pores of the appropriate size), a mode of slow 

and continuous drug release (diffusion, disassembly of the framework) and if used in 

contact with biological material the biocompatibility of the structure and its building 

blocks. Considering these prerequisites the findings presented in this section 

demonstrated the high potential of Cu-SURMOF 2 for the future application in this field. 

The release of the incorporated drug, cytokine or growth factor by a slow disassembly of 

the framework could be the means of choice. For this the foundations were laid by the 

pronounced stability in water. Slight structural modifications of the organic linker 
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molecules should be sufficient to increase the stability so far that a slow release should be 

possible. The biocompatibility of the building units, most specifically the Cu2+ ions, was 

demonstrated by the unimpaired adhesion and proliferation of eukaryotic fibroblast cells 

to Cu-SURMOF 2 substrates. Finally, based on the stability of Cu-SURMOF 2 in marine 

conditions, experiments with marine bacteria could demonstrate the principal 

applicability of Cu-SURMOF 2 substrates as smart-release matrix. The mechanism of 

localised disassembly induced by the bacteria may possibly be transferred to cell culture, 

where the presence of the cells could trigger the release of the drug, cytokine or growth 

factor. The refinement of the framework structure and the application as drug release 

structure are currently successfully being pursued by the workgroup around Prof. Christof 

Wöll at the Karlsruhe Institute of Technology (IFG, KIT, Karlsruhe, Germany).[310] 

 

 



6 Summary and Outlook 

 

125 

 

6 SUMMARY AND OUTLOOK 

Acute myeloid leukaemia (AML) is the most common form of acute leukaemia in adults. 

Although most patients reach complete remission after initial chemotherapy the overall 

survival rate is as low as 30-40 % over 4 years. This is ascribed to leukaemic stem cells 

(LSC) which survive the chemotherapy in the bone marrow (BM) niche and later cause the 

relapse.[2-3] Therefore, two aspects of the treatment need to be improved. The first is the 

efficiency of the apoptosis induction in LSC by chemotherapeutic agents whilst ideally 

sparing the haematopoietic stem cells (HSC). The second is the efficiency of the 

haematopoietic stem cell transplantation, as this currently presents the only method of 

rescuing the haematopoietic system after failure due to intensive, potentially LSC-

eradicating chemotherapy. An overview over the analysis conducted in this work is shown 

in Figure 99. 

 

Figure 99: Overview over the aspects of the HSC/LSC-niche interaction studied in this work. The 
interaction of the cell surface receptor CD44 with HA under flow (I; section 4.1 and 4.2), the interaction of 
CD44

+
 cells with MSC under flow (II; section 4.3), the effect of the cytokine SDF-1α and the mobilisation 

reagent Plerixafor® (III; section 4.4) and the first analysis of the possibility to utilise a novel 2-D surface 
bound metal-organic framework structure as release matrix for future applications in cell culture (IV; 
section 5) were studied. Image inspired by Barrett et al., 2008.

[68]
 

The cell surface receptor CD44 has been reported to be involved in the retention of LSC in 

their niche[6-7] and in the homing and engraftment of healthy HPC to the bone marrow 

(BM) niche.[9] The exact step, though, where this involvement occurs is still unclear, as 

indicated in Figure 99 (I). It has been hypothesised that CD44, similar to selectins,[63-67] is 

involved in the primary adhesion of leukocytes under flow during extravasation.[119] As 
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the receptor is the same there is no apparent reason why this role should not be upheld 

in HSC or leukaemic cells. In fact C. Christophis et al. identified a flow induced interaction 

of CD44 positive leukaemic cells and haematopoietic progenitor cells (HPC) isolated from 

umbilical cord blood (CB) with hyaluronic acid (HA). The first step of this study was to fully 

characterise the interaction of this receptor with its major ligand HA. To do so a 

microfluidic shear force device, established in our group,[10,12] was utilised. With this the 

flow conditions found in vivo were mimicked and the interaction of two cell lines, namely 

the leukaemic suspension cell line (KG-1a) and the epithelial liver cancer cell line 

(HepG2Iso), was characterised and compared. It could be demonstrated that the flow-

induced rolling interaction observed on HA was specific for HA, could only be observed if 

CD44 was expressed by the cells and that it was dependent on the HA binding domain of 

CD44. This analysis matrix clearly proved that the flow-induced rolling interaction was 

mediated by the cell surface receptor CD44. Interestingly, the CD44 mediated rolling 

interaction observed on HA was independent of the cell type. For the leukaemic 

suspension cell line and the epithelial liver cancer cell line, but also for healthy HPC and to 

a certain extent leukaemic blasts, the characteristics of the flow-induced interaction were 

nearly identical. In all cases rolling was induced beyond a critical shear stress of 

approximately 0.2 dyn/cm², reaching the maximum fraction of rolling cells at roughly 

(0.7-1) dyn/cm². Beyond this region of shear stress the cells continuously detached from 

the surface. This was in good correlation with previous findings of C. Christophis et al. 

who first observed this flow induced rolling for KG-1a cells and HPC isolated from CB.[10] 

Analysis of the dependency on different CD44variant isoforms revealed that the rolling 

interaction could not be abrogated by suppression of either CD44v3 or CD44v6. The flow-

induced rolling interaction could, however, be suppressed by CD44pan knock down or by 

treatment either with the monoclonal CD44 antibody (clone BU52) or with short chain 

length HA. In the context of the treatment of HepG2Iso cells with the two latter 

mentioned blocking agents a concentration dependency was observed. This 

demonstrated a clear correlation between on the one hand the probability of the cells to 

bind to the HA-coated surface from flow and the rolling velocity and on the other hand 

the density of the receptor available for binding. In contrast to this stood the 

independence of the strength of the CD44-HA binding which was similar throughout all 

experiments. This could be demonstrated by the independency of the shear stress at 

which the maximum interaction was observed from the treatment with different 

concentrations of the blocking reagents. 

As hinted above the rolling interaction was independent of the cell type studied and, 

therefore, could not be identified as a possible therapeutic target distinguishing between 

the leukaemic and the healthy cells. It was, however, not the only interaction observed 
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with the HA-coated surfaces. All cell types expressed a, in most cases low, tendency to 

immobily adhere to the HA-coated surfaces. This tendency was less pronounced for the 

model cell lines and the HPC isolated from CB or mobilised peripheral blood (mPB) for 

which typically a fraction of less than 5 % of immobile adherent cells was observed. For 

HPC isolated from the BM and leukaemic blasts values up to 20 % were not uncommon. 

Even more striking was the effectiveness of the treatment with the CD44 antibody BU52. 

While the rolling interaction of all cell types studied in this work could be suppressed with 

sufficient amounts of BU52, the immobile adhesion could not. In some samples of 

leukaemic blasts (each being isolated from a different patient) treatment with the 

antibody had no or only a marginal effect on the fraction of immobile adherent cells. 

Interestingly, a comparison between blast samples from a single patient originating either 

from the BM or the peripheral blood (PB) revealed that the suppression of the immobile 

adhesion was more effective in the samples originating from the PB. This indicated that 

the resistance towards the antibody may have been correlated to a vicinity to the BM 

niche prior to isolation of the cells. Furthermore, a comparison between patient data for 

the blast samples in which the antibody was effective with those where it was not, 

uncovered a link between the BU52 resistance and a poor long-term therapeutic outcome 

of the respective patients. 

All cells, except for the HSC, the BM niche is comprised of can be derived from 

mesenchymal stromal cells (MSC).[13-14] For this reason and due to the fact that they play 

a significant role for maintaining the self-renewal potential of HSC and HPC, MSC are 

often used as model system for the BM niche.[57,71,73-75] In this work the analysis of the 

interaction of CD44 positive cells with HA-coated surfaces was expanded towards MSC 

feeder layers (Figure 99 (II)). Feeder layers were defined as surfaces completely covered 

with convergent MSC. For this a procedure where the MSC were seeded into and cultured 

in a fully assembled microfluidic channel was developed. Here, the morphology of the 

cells was correlated to the shear stress required to detach the cells and supposedly ideal 

culture conditions were identified. Preliminary experiments concerning the interaction of 

both the cell line KG-1a and HPC (from CB and mPB) were conducted. Rolling was hardly 

observable on the MSC. In contrast to this a high fraction of cells immobily attached to 

the MSC during the experiments. Furthermore, the interaction with MSC could not be 

suppressed by BU52 demonstrating that the overall interaction pattern was more 

complex in this system than the simple CD44-HA interaction observed on the HA-coated 

surfaces. For a more detailed understanding an antibody matrix suppressing a variety of 

receptors, e.g. integrins, selectins or cadherins would need to be applied, thus 

determining the receptors involved and the form of interaction they mediate with MSC. 
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Both CD44[130-132] and its ligand HA[237] are ubiquitously expressed in the mammalian cells. 

Therefore, regulation of the interaction between them is of great importance. One mode 

of regulation is controlling the expression of HA on endothelial cells. It was shown that 

proinflammatory stimuli could upregulate HA expression, thereby, inducing CD44 

mediated interaction with the endothelial cells.[287] HSC homing, where the CD44-HA 

interaction is thought to be relevant (Figure 99 (III),[9] is directed by a gradient of the 

cytokine stem-cell-derived factor-1 alpha (SDF-1α).[9,16,69-70] It is, therefore, possible that 

this cytokine may also be involved in the regulation of the CD44 activity. This notion was 

further supported by the identification of a molecular link between SDF-1α and CD44 via 

the SDF-1α receptor CXCR4.[288] As control reagent the CXCR4 antagonist[98] Plerixafor®, 

which is clinically used for the mobilisation of HSC out of the BM niche,[93-95] was used. As 

SDF-1α is known to induce migration,[16-19,289] the effect of both SDF-1  and Plerixafor® on 

the migration of HPC was evaluated in a transwell assay to determine the effectiveness of 

the reagents in the in vitro environment of the assays applied in this work. It could be 

shown that SDF-1α strongly induced migration and that the effect could successfully be 

suppressed by Plerixafor®, demonstrating the validity of the system. The effect of the two 

reagents on the interaction of HPC with HA under flow was evaluated by pre-treating HPC 

isolated from CB and mPB and subsequently evaluating the interaction in the microfluidic 

shear force device. It could be shown that neither SDF-1α nor Plerixafor® influenced the 

interaction with HA under flow in the system used in this work. These findings 

demonstrated a clear mechanistic separation of the migration form the interaction under 

flow, despite the molecular link[288] between the involved receptors. 

In the context of the evaluation of the interaction of HPC and leukaemic blasts with HA 

the identification of the immobile adhesion to HA, mainly exhibited by the leukaemic 

blasts, could be an important step towards the selective mobilisation of LSC. The fact that 

this immobile adhesion to HA was not only correlated to a vicinity to the niche, but also to 

an adverse therapeutic outcome suggested that it may have been involved in the 

retention of LSC in the BM niche. Under this hypothesis the questions why this interaction 

was stronger in leukaemic cells than in HPC and why it was found primarily in cells 

originating from the BM niche should urgently be addressed. Revealing the exact 

mechanism of this interaction and searching for drugs to selectively target this 

mechanism of LSC retention in the niche could lead to means of selectively mobilising LSC 

rendering them more susceptible to chemotherapy. This would make the use of lower 

dosages of chemotherapeutic drugs possible, thus reducing the need for stem cell 

transplantation after chemotherapy. Also the interaction with MSC should not be omitted 

as this cell type is found abundantly in the niche.[75] It is possible that while the role of the 

CD44 mediated interaction could not be demonstrated in this work, it may become 



6 Summary and Outlook 

 

129 

 

apparent when other interactions such as those mediated by integrins or cadherins are 

preempted. 

Next to analysing the interaction of HSC/LSC with their microenvironment in order to 

selectively target the LSC with mobilisation or chemotherapeutic reagents, a second 

approach is to find ways of improving the culture of HSC in vitro. A basis for this is finding 

suitable substrates that can be used to slowly and continuously release cytokines and 

growth factors into solution to mimic the in vivo environment. Today porous materials 

such as zeolites, porous metals or porous silicon are widely used in catalysis, in sensors or 

in filtering processes, e.g. gas or water purification.[35-42] An example is the application of 

porous stents loaded with drugs for the localised application of the same.[311] In the 

context of drug storage and delivery, however, the pore size (determining the size of the 

drug embedded in the structure), the stability of the material under the conditions of 

later use (e.g. in vivo use as a stent) and of course the biocompatibility of the material are 

of great importance. Here, a relatively new class of materials shines. The metal-organic 

frameworks (MOFs) are highly flexible in their structural and chemical properties due to 

framework being grown from a combination of metal precursors and organic linker 

molecules.[43-45] Furthermore, the growth of MOFs on functionalised surfaces, creating so-

called SURMOFs (surface-anchored MOFs), is easily possible.[191,201,204] This enables the 

coating of devices, such as stents, or cell culture dishes. A novel 2-D structured SURMOF, 

namely SURMOF 2, which was recently developed in the group of Prof. Christof Wöll at 

the Karlsruhe Institute of Technology (IFG, KIT, Karlsruhe, Germany)[209,295] presented a 

good basis for such work. In this work first tests concerning the stability of the basic 

SURMOF 2 ([M2(bdc)2]n; M = Cu, Zn) in different media and the biocompatibility of the 

building blocks were undergone (Figure 99 (IV)). Analysis by XPS, XRD and spectral 

ellipsometry could show that Zn-SURMOF 2 was instable in all media tested and that 

while Cu-SURMOF 2 was stable in MilliQ water and ASW it was rapidly disassembled in 

proteinacous solutions such as cell culture medium. Still, the effect of the building units of 

Cu-SURMOF 2 (Cu2+ ions and the bdc linker) on the adhesion and growth of fibroblasts 

(REF52WT) was analysed. Measurement of the shear stress required to detach the 

fibroblasts from a matrix of test surfaces as well as time-lapse observations of the 

proliferation rate and cell morphology revealed no impairment of proliferation or 

adhesion. Due to the demonstrated stability in ASW and the instability in cell culture 

conditions smart-release tests were conducted in a marine environment. Here, it could be 

demonstrated that incubation with the marine bacterium Cobetia marina led to a locally 

induced disassembly of the SURMOF. The copper ions released thereby were toxic for the 

bacteria resulting in bacterial death after adhesion. The biocompatibility and the ability to 

tune the system as smart-release matrix, indicate the principal applicability of 
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Cu-SURMOF 2 as drug delivering substrate in future cell culture applications. The further 

development of the stability of SURMOFs is thereby of great interest. Under the premise 

that the disassembly can be slowed down sufficiently and that the pores can be designed 

such that loading with e.g. cytokines or growth factors is possible, continuous release of 

these reagents to the cells should be achievable.  

Concluding, this work presents new insights in the interaction between CD44 and its 

major ligand hyaluronic acid and elaborates the importance of differences in this 

interaction for the treatment of acute myeloid leukaemia. Additionally, the principal 

applicability of a novel 2-D framework structure as drug release system was 

demonstrated. 
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7 APPENDIX 

7.1 SUPPORTING INFORMATION CONCERNING THE 

MICROFLUIDIC SHEAR FORCE MEASUREMENT 

This section gives further insight into the theory underlying the microfluidic shear force 

setup and presents alternative modes of measurement not presented in the main 

chapters, but relevant for the supplementary material. Finally, data supporting the 

observations and conclusions made in section 3.8.6 is presented. 

7.1.1 CALCULATION OF THE VARIABLES RELEVANT FOR THE 

MICROFLUIDIC SHEAR FORCE SYSTEM 

7.1.1.1 PRESSURE DROP IN THE MICROFLUIDIC CHANNEL SYSTEM 

With liquid flowing through a pipe as in any other system the laws of conservation of 

energy are upheld. This section elaborates the origin of the pressure loss between two 

points of a channel through which liquid flows. Finally, the implications for the 

microfluidic shear force measurements are also discussed. 

Equation (S1) shows the comparison of the liquid energy at two points (indexed as ‘1’ and 

‘2’). For a steady average velocity flow of incompressible fluids the total energy can be 

summarised as elevation energy, velocity energy and pressure energy.[312] The energy 

equation can then be expressed as 

     
 

 
  ̅ 

            
 

 
  ̅ 

             (S1) 

Here,    is the pressure of the fluid at the different points   = 1 and   = 2,       is the 

pressure loss between the two points,   is the density of the fluid,  ̅  is the average flow 

velocity,   is the acceleration of gravity and   is the elevation.    is the kinetic energy 

parameter, which corrects for the use of an average velocity in case the velocity profile is 

not uniform. Under the assumption of a uniform fully developed flow throughout the 

tubing, both    are the same and neglectable. Taking this into account the kinetic energy 

terms of the fluid flow  
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  ̅ 

  (S2) 

as well as the potential energy terms 

     (S3) 

are easily calculable, given that the variables such as  ̅ ,   or the elevation   are known. 

The remaining term describing the pressure loss       between the two points can be 

divided into two terms. The first is the ‘major loss’ term, which for a fully developed, 

steady state and incompressible flow can be described by Equation (S4), which is also 

known as the Darcy-Weisbach equation. The no-slip clause between a viscous fluid and a 

solid, states that the flow velocity of the fluid is zero relative to the boundary of the solid. 

Therefore, the wall shear stress results in an energy loss of the fluid making the surface 

roughness and flow profile (given by the Reynold´s number which is described in 

section 7.1.1.2) highly important factors for the amount of energy lost due to friction. The 

‘minor losses’ described by Equation (S5) arise from changes in velocity due to bends, 

fittings, valves, elevation etc.  

          
 

  
  ̅ 

  (S4) 

        ∑  
 

 
  ̅ 

  (S5) 

With    being the Darcy friction factor,   the diameter of the pipe, and    the loss 

coefficient. The Darcy friction factor    can be graphically derived from the Moody 

diagram or may be calculated using e.g. the Colebrook equation[313] or the Haaland 

equation.[314] For laminar flow    can be calculated from the Reynold´s number    

according to Equation (S6).[177,312] 

   
  

  
 (S6) 

It should be noted that all formulas calculating the friction factor are approximations 

based on extensive experimental data. Similarly, the dimensionless loss coefficient    is 

well documented for various pipe geometries and can be looked up in the appropriate 

tables. 

In the microfluidic shear force setup used in this work the pressure loss was a variable 

that needed to be considered. The pressure loss was mainly due to the energy loss mainly 

originating from frictional forces and velocity changes, both of which are velocity 

dependent. Therefore, increasing the flow velocity led to an increased pressure loss over 

the system. Reduction of the overall pressure in the system led to the formation of gas 
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bubbles in the system. This had could have various reasons. If the overall pressure in the 

system was reduced below the vapour pressure of the fluid (water based in all 

applications used in this work), this would have resulted in the formation of bubbles of 

aqueous vapour. It is also possible that the low pressure in the system led to the leakage 

of air into the system through e.g. fittings and valves or to the release of gas from the 

liquid. This would have made the calculation of the shear stress at the channel bottom 

impossible as the exact liquid flow would no longer have been known. To avoid this, an 

overpressure of approximately 0.6 bar was applied to the system in all measurements.  

7.1.1.2 DERIVATION OF THE REYNOLDS NUMBER IN THE MICROFLUIDIC CHANNEL 

SYSTEM 

The Reynold´s number    is a dimensionless number that helps characterise different 

flow profiles. Calculation of the Reynold´s number can be used to predict whether a flow 

will be laminar or turbulent. Typically flow with a Reynold´s number below 2300 is 

defined as laminar.[177] For the calculations of the wall shear stress inside the microfluidic 

channels system the establishment of a laminar flow is mandatory as only then a defined 

velocity gradient along the y-axis (orthogonal to the channel bottom/top) can be 

anticipated. This will be further discussed in section 7.1.1.3. 

For circular pipes the Reynold´s number   [177,312] is given as  

   
   

 
 (S7) 

With the viscosity   and the density   of the liquid, die diameter   and the flow speed  . 

For non-circular channels the diameter is substituted by the hydraulic radius    

   
 

 
 
                                

                         
 (S8) 

In order to substitute   in Equation (S7) one must calculate    for a circular tube: 

   
 (               )

 (               )
 
     

  
 
 

 
       (S9) 

Insertion of this into Equation (S7) results in 

   
     

 
 (S10) 

   can now be calculated for a rectangular cross sectional area of the width   and the 

height   as 
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 (S11) 

Knowing that      ⁄  the Reynold´s number may be calculated by  
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(S12) 

Under the premise that the width   of the channel by far exceeds the height   (with 

  ≈ 135 µm and   ≈ 1500 µm this is the case in the microfluidic channel system), 

Equation (S12) can be simplified to 

   
   

  
 (S13) 

For the most extreme conditions applied in the microfluidic shear force setup throughout 

this work (  = 81 mL/min maximum applicable flow,   = 0.72 x 10-3 kg m-1s-1 cell culture 

medium at 37 °C[187],   = 1kg/L,   = 135 µm) the Reynold’s number calculates to ~ 1670 

(or to ~ 830 if it is considered that   ≈ 40 mL/min is the maximum practically applicable 

flow rate). This is well below the threshold Reynold´s number of 2300 for laminar 

flow.[177] 

7.1.1.3 DERIVATION OF THE WALL SHEAR STRESS IN THE MICROFLUIDIC 

CHANNEL SYSTEM 

The calculation of the wall shear stress    was a central aspect of the work with the 

microfluidic shear force setup as it gave a value to easily compare between experiments. 

   does, in contrast to e.g. the flow rate, take variables such as the channel dimensions 

into account and, thereby, provided a mean of comparison independent of the variables 

specific for each assembly. 

Shah and London presented both the exact solution, involving Fourier series expansions, 

as well as a simple approximation of the velocity profile originally proposed by Purday.[186] 

Because this approximation is in excellent agreement with classical experimental results, 

and is much easier to compute, it was used to estimate the maximum velocity at the 

midplane of the microchannels, and the shear stress on the microchannel surface. 

The Purday approximation for rectangular channels (shown in Figure 32 in section 3.8.3 is 

repeated here for convenience), as used in the microfluidic shear force setup, gives the 

axial velocity as shown in Equation (S14).[186] 
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Figure 32: Parallel plate model for unidirectional flow. A parabolic flow profile between two immobile 
parallel plates is shown. The height is so much smaller than the width of the channel that the shear at the 
channel sides can be neglected. 
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 ,   ,      are the axial, mean and maximum velocities, respectively and  ,   are 

empirical parameters dependent on the aspect ratio   =  /  (height/width). For an 

aspect ratio α smaller than 1/3,   = 1.7 + 0.5 ∙  −1.4 and   = 2. In the channel system used 

in this work   ≈ 1/10. For all Newtonian fluids in laminar flow the shear stress   is 

proportional to the strain rate in the fluid with the viscosity   being the constant of 

proportionality. This correlation is shown in Equation (S16).[177] The laminarity of the flow 

in the microfluidic shear force setup was described both in section 3.8.3 and in more 

detail in the previous section. 
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The wall shear stress    is defines as 
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Differentiation of  (   ) (Equation (S14)) with respect to  , as part of Equation (S17), 

yields 

    (
   

 
)(
   

 
) (
  

 
) [  (

  

 
)
 

] (S18) 

With    =  /   with   being the flow rate, and calculating at the centre of the channel 

width (  = 0) 
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Bearing in mind that   = 2 in the setup used in this work this can further be simplified to 

   
   

   
(
   

 
) (S20) 

Note that Equation (S20) has the familiar form of the parallel plate approximation  

   
   

   
 (6) 

with the addition of the (   )  ⁄  term to account for side wall effects. This term is 

neglectable in cases were the width is much larger than the height of the channel system, 

as is the case in the microfluidic channel system applied in this work. This demonstrates 

that the parallel plate approximation of Equation (6) could be applied in this work. 

It should be mentioned that by insertion of Equation (S13) into Equation (6) the shear 

stress may also be estimated from the Reynold´s number as 

  
  

  
 (S21) 

As elaborated in section 3.8.3 the wall shear stress was increased stepwise during the 

commonly applied detachment assay. In principal the wall shear stress applied in each 

step could be calculated from the initially applied shear stress   , the growth coefficient 

  , by which the shear stress was increased in each step, and by the step number  . 

        
  (17) 

In this context Equation (6) was used to calculate the dimension dependent initial shear 

stress    of each experiment. 

   
   

   
          

  (S22) 

As different step durations were used in this work and in related studies using the same 

microfluidic setup with different channel dimensions[268-269] a substitution of    by a 

factor, independent of the step duration, was desirable. This was achieved by introducing 

the growth rate of the shear stress    allowing a more straightforward description of 

experiments with different step durations, but the same overall increase of the shear 

stress. To do so the exponent   was substituted by the duration    for which the 

experiment had been conducted (≙ how many steps had been taken). As the shear stress 

was increased stepwise it must be mentioned that    was a multiple of the duration of a 

step   . 
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        (S23) 

With this Equation (S22) could be rewritten as the universal equation for the calculation 

of the wall shear stress (Equation (18)) in each step as follows 

         
    
      (  

 
  )

    

    (  )
   (18) 

An example for the practicality of    can be given when comparing the two forms of the 

detachment assay, that were both used in this work. The first was a stepwise increase by 

approximately 26 % (   = 1.2589) every 5 s. The second was a stepwise increase by 

2.33 % (   = 1.0233) every 0.5 s. From these values it is not apparent that the overall 

increase was the same. For both cases    = 1.047. This common value nicely illustrates 

the common slope of both shear stress curves. 

7.1.2 MICROFLUIDIC DATA ACQUISITION AND ANALYSIS 

7.1.2.1 DATA ACQUISITION IN CELL-SURFACE INTERACTION EXPERIMENTS 

The main focus of the microfluidic cell-surface interaction experiments was the flow 

induced rolling interaction of CD44 positive cells with hyaluronic acid (HA). Video S1 

shows an exemplary HepG2Iso cell (a CD44 positive model cell line) rolling on a HA-coated 

substrate with a shear stress of approximately 1 dyn/cm² applied. The full video can be 

found on the CD provided with the printed edition of this thesis. Next to this rolling 

interaction an immobile adherent interaction of some cell 

types was also observed in the cell-surface interaction 

experiments. These two behaviours of the cells are shown 

in Video S2. Here, the interaction of KG-1a cells, another 

CD44 positive model cell line used in this work, with HA 

again with approximately 1 dyn/cm² applied is shown. The 

immobile adherent cells are marked in green, while rolling 

cells are labelled in red. The full video can be found on the 

CD provided with the printed edition of this thesis. 

As discussed in section 3.8.5 the number of cells in contact with the sample surface at a 

given time was normalised either to the number of cells initially visible in the field of view 

(FOV)    or by the mean maximum number of interacting cells. The procedure chosen 

depended on the type of cells analysed. All cell types (the model cell lines KG-1a, Jurkat 

and Kasumi-1, the HPC from cord blood, mobilised peripheral blood and the bone marrow 

as well as the leukaemic blasts) except for the HepG2Iso and HepG2 cells were 

normalised all normalised by   . Video S3 shows the correlation between the cells 

 

Video S1: HepG2Iso cell rolling 
on a HA surface. 
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counted in the FOV in the microfluidic channel and the interaction curve generated after 

normalisation. This is shown for the first analysis method (correction to   ) as this was 

the standard procedure in this work. This video is presented to help the reader visualise 

the procedure of analysing the videos recorded during measurement. The number of cells 

interacting with the sample surface was counted by hand in a 5 s interval. This number 

was then corrected appropriately and plotted as shown in the graph on the right in 

Video S3. For labelling the cells in the FOV a differentiation is made between rolling 

(marked in red) and immobile adherent cells (marked in green). The evaluation is, 

however, only shown for the overall interaction of the cells with the surface (the sum of 

all cells interacting with the surface at a given time is plotted) as this should only give an 

example. The full video can be found on the CD provided with the printed edition of this 

thesis.  

 

Video S2: Video demonstrating the difference between rolling and immobile adherent cells. Rolling cells 
are marked in green. The immobile adherent cells are marked in red.

[266]
 

 

Video S3: Video demonstrating the creation of a detachment curve by counting the cells interacting with 
a surface at a given time. The rolling cells (marked in red) and the immobile adherent cells (marked in 
green) are summed and divided by the number of cells initially visible in the FOV. Plotting this against the 
shear stress applied at the time of counting yields the detachment curve shown on the right.

[266]
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7.1.2.2 ACCUMULATION ASSAY 

The accumulation assay was a second method next to the detachment assay to compare 

the effects of different treatments on the interaction of cells with surfaces under shear 

flow. For this assay the cells were not injected into the channel system directly but were 

rather flushed through the channel during the entire assay. The channel was initially 

flooded with the cell suspension (typically 1∙106 cells/mL). A strong flow pulse of 

approximately 1,200 dyn/cm² was then applied. This not only ensured a sufficient amount 

of cells in the channel but also detached all cells interacting with the surface after 

injection. The flow was then reduced to approximately 7.8 µL/min (≈ 0.2 dyn/cm²) and 

kept constant. This flow rate was sufficient to trigger the flow induced interaction of the 

cells with the surface, while remaining slow enough to allow the initial contact with the 

surface from flow. Analysis of this form of experiment was straightforward as the number 

of cells interacting with the surface at a given time simply was counted and plotted 

against the time. 

 

Figure S1: Flow profile of an accumulation assay. A first high pulse detached all cells from the surface. The 
flow was then reduced and kept constant at approximately 7.8 mL/min. 

7.1.2.3 EVALUATION OF DATA WITH HISTOGRAMS AND BOX PLOTS 

Histograms and box plots present the most straightforward method of graphically 

depicting distributions of large numbers of data points, while giving clear information 

about the distribution of the data and allowing an easy determination of trends. The 

histogram (Figure S2) gives a nice visualisation of the distribution of the data points. Here, 

a bar is plotted for each interval. An interval is a region of data points.[315] It the specific 

case of the rolling velocities measured in this work it may for example be the range of 
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(5-10) µm/s. From the histogram the range of the most frequent value (e.g. rolling 

velocity) is easily deducible.  

Figure S2 presents a typical box plot. As shown in the figure the box plot in this example is 

comprised of three values (five are also typical). Mostly these represent the 1st (lower box 

margin), 2nd (middle line) and 3rd (upper box margin) quartile of the data.[315] The 1st 

quartile is also known as the 25th or the 25 % percentile. Equally, the 2nd quartile is the 

50th or the 50 % percentile and the 3rd quartile is the 75th or 75 % percentile. These are all 

specific forms of quantiles, commonly used in descriptive statistics. Quantiles are defined 

as values, which divide the distribution of a random variable into data subsets of equal 

size. Accordingly, a percentile represents a per cent of the data points and a quartile 

represents a quarter of the data points. Therefore, the 1st quartile is defined as the value 

below which 25 % of the values can be found. The 2nd quartile (50 % percentile) is more 

commonly known as the median of the values. As the median value is defined as the 

value which halves the data set, it is clear that this value corresponds to the 2nd quartile 

(50th percentile, 50 % percentile). The mean value  ̅ is the average value of all values and 

is given by  in the box plot. It can be calculated by 

 ̅  
∑    
 

 (S24) 

Where    is each value of the data set,    is the frequency of    and   is the sample 

size.[315] The whiskers represent the standard deviation    of the data, which is 

calculated as follows 

   √
∑(    ̅)  
   

 (S25) 

Where    is each value of the data set,  ̅ is the mean value,    is the frequency of    and   

is the sample size.[315] 
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Figure S2: Exemplary analysis of rolling velocity data with a histogram and a box plot. The histogram best 
shows the most frequent velocity. The boxplots gives statistical values such as the mean velocity, the 
median velocity or the 1

st
 and 3

rd
 quartile.  

7.1.3 OPTIMISATION AND PROOF OF APPLICABILITY OF THE 

MICROFLUIDIC SHEAR FORCE DEVICE 

Section 3.8.6 focussed on understanding the origin of the inaccuracy, concerning the 

measurement of the critical shear stress     required to detach 50 % of the objects of 

interest from a sample surface, recently observed by M.P. Arpa Sancet and M. Alles in our 

workgroup. This section provides data either undergirding the findings presented in that 

section or giving the full data set given there in short. 

7.1.3.1 INFLUENCE OF THE CHANNEL DIMENSIONS 

As M. Alles demonstrated an improvement of the intra-channel reproducibility by 

application of a 130 µm thick aluminium spacer in the 13 mm channels used by her, this 

was also investigated in this work. By analysing the detachment of carboxy-terminated 

polystyrene microspheres (diameter   ≈ 4.5 µm, hereafter referred to as particles) from 

HUDT SAMs, an independence of the initial channel dimensions (before an experiment 

was conducted) of the application of a spacer was demonstrated in section 3.8.6.1. It was, 

furthermore, shown that in an experimental series conducted in one channel (without 

reassembly between the measurements) a change of the     value was independent of 

the channel dimensions in the relaxed state (no experiment run, but with the 

overpressure applied). In the experimental series presented in section 3.8.6.1 the     

values decreased before reaching a plateau. Figure S3 presents the reverse trend. The     

values increased over the first three measurements and then reached a plateau. This was 

in no correlation to the channel dimensions in the relaxed state of the system, which 

remained the same throughout the experimental series. 
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Figure S3: τ50 values measured in succession in one single channel without application of a spacer. The     
value increased over the first three measurements before reaching a plateau. The channel dimensions were 
measured between the experimental runs, thereby only representing the dimensions if no flow was 
applied. The errors given for the channel dimensions are estimated measuring errors. 

7.1.3.2 EFFECT OF THE APPLICATION OF SPACERS ON THE REPRODUCIBILITY OF 

THE MEASUREMENT 

The influence of the application of a spacer on the inter-channel reproducibility was 

presented in section 3.8.6.2. Table S1 gives an overview over all mean     values and the 

corresponding errors determined in the cause of the investigation. The number of repeats 

conducted in each experimental run ranged from at least 5 to up to 16 repeats. The data 

was homogenised by only considering the first five repeats. From the data it can be seen 

that the mean percentage error and the SD of the same were reduced by application of a 

spacer. Without spacer the mean percentage error was 18.1 ± 12.0 %. This was reduced 

to 10.9± 3.9 % by use of a spacer, meaning that the use of a spacer increased the 

reproducibility in each series of measurements. 
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Table S1: Overview over the     values measured in one channel either with or without application of a 
spacer. Only the first 5 repeats of each experimental series were taken into account for the calculation of 
the mean     values and the corresponding errors. 

 1 Channel without spacer 1 Channel with spacer 

Exp. 
number 

Mean τ50 
[dyn/cm²] 

SD 
[dyn/cm²] 

Error 
[%] 

Mean τ50 
[dyn/cm²] 

SD 
[dyn/cm²] 

Error 
[%] 

1 75.4 12.0 15.9 14.9 1.8 12.1 

2 42.2 3.5 8.4 220.5 10.0 4.6 

3 18.9 2.0 10.8 37.5 3.5 9.3 

4 29.9 6.9 23.0 32.6 4.8 14.7 

5 9.7 0.7 7.0 24.3 1.1 4.4 

6 25.4 5.2 20.3 87.1 7.0 8.1 

7 30.3 6.4 21.2 27.6 2.9 10.6 

8 7.9 1.2 14.8 63.8 7.4 11.6 

9 13.2 1.2 9.1 103.9 17.9 17.3 

10    96.3 13.0 13.5 

11    50 6.8 13.6 

Mean 
error 
[%] 

18.1 ± 12.0 10.9 ± 3.9 

 

7.1.3.3 DEPENDENCY ON THE STEP DURATION AT A CONSTANT OVERALL 

INCREASE 

To evaluate the effect of different sampling procedures on the reproducibility of 

successive measurements two different sampling procedures were applied in the 

microfluidic shear force device. Both procedures followed the same overall increase with 

one procedure being sampled every    = 0.5 s (growth rate    = 1. 047) and one being 

sampled every 5 s (   = 1. 047). As shown in Figure S4 and in contrast to the example 

discussed in section 3.8.6.3 the fluctuations were slightly higher in the measurement 

series presented here. This may be due to the fact that this measurement was conducted 

without a spacer. However, the conclusion that the results obtained were independent of 

the sampling procedure can be drawn from this data set as well as the detachment curves 

on the one hand and the     values on the other hand clearly overlapped. This undergirds 

the findings presented in section 3.8.6.3. 
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Figure S4: Evaluation of the effect of the experimental procedure on the     values measured. The step 
duration    was varied while the growth rate    was constant. No spacer was used. The     values 
remained nearly constant throughout the measurement. The errors given for the channel dimensions are 
estimated measuring errors. 

7.1.3.4 DEPENDENCY ON THE MAXIMUM SHEAR STRESS APPLIED 

The effect of the maximum shear stress applied to the channel system was discussed in 

section 3.8.6.4. Here, it was demonstrated that while the application of a spacer 

improved the intra-channel fluctuation at low shear stresses, it had no effect if high shear 

stresses were applied. In this case the fluctuation was not only generally smaller, but it 

was also independent of the application of a spacer. As deviations of the channel 

dimensions were one possible explanation for the shifts of the     values, the progression 

of the     values in dependence of the channel dimensions and the maximum shear 

stress applied is shown here. Figure S5 and Figure S6 each present a successive series of 

measurements in a channel without and with application of a spacer, respectively. 

Figure S5 demonstrates that while the     values changed during the measurement, 

especially after the application of high shear stresses of approximately 1,000 dyn/cm², the 

channel dimensions did not. This behaviour was not typical for channels lacking a spacer 

under high shear stress, but it does nicely demonstrate the independency of the channel 

dimensions from the     values observed in this setup. The same conclusion can be drawn 

from Figure S6 that shows both stagnating channel dimensions and     values. These 

findings indicate that any errors observed during the measurements were not correlated 

with the channel dimensions in the relaxed state (over pressure applied, but no suction 

generated by the syringe pump). 
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Figure S5: Dependency of the     value measured on the maximum shear stress applied to the system 
without a spacer applied. The measurements were conducted in succession in one single channel. The 
channel dimensions were measured between the experimental runs, thereby only representing the 
dimensions if no flow was applied. The errors given for the channel dimensions are estimated measuring 
errors. 

 

Figure S6: Dependency of the     value measured on the maximum shear stress applied to the system 
with a spacer applied. The measurements were conducted in succession in one single channel. The channel 
dimensions were measured between the experimental runs, thereby only representing the dimensions if no 
flow was applied. The errors given for the channel dimensions are estimated measuring errors. 
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7.1.3.5 DEPENDENCY ON THE ATTRACTIVENESS OF THE SAMPLE SURFACE 

In section 3.8.6.5 the dependency of the errors of the measurement was correlated with 

the region of shear stress in which the objects of interest detached from the surface. For 

this the detachment of particles from DDT SAMs (highly attractive) was compared to that 

from HUDT SAMs (moderately attractive). While the main text provides the direct 

comparison of the data obtained during the measurements the full data is presented in 

Table S2. The mean     values and the corresponding errors (SD and percentage error, 

PE) obtained in all measurement series conducted on DDT or HUDT SAMs without a 

spacer are given. While the overall deviation was large in all experimental series, the 

mean PE was far larger of the measurements on DDT, the SAM which required higher 

shear rates to detach the particles from. This hinted that measurements at even lower 

shear stresses should provide an even higher accuracy. 

Table S2: Overview over the     values measured on HUDT and DDT without application of a spacer. 

 
Measurements on HUDT 

without spacer 
Measurements on DDT 

without spacer 

Exp. 
number 

Mean τ50 
[dyn/cm²] 

SD 
[dyn/cm²] 

PE 
[%] 

Mean τ50 
[dyn/cm²] 

SD 
[dyn/cm²] 

PE 
[%] 

1 29.4 8.1 27.6 333.2 107.6 32.3 

2 31.9 4.0 12.4 797.7 389.3 48.8 

3 13.6 0.1 0.9 1318.2 689.1 52.3 

4 15.2 0.8 5.4 1562.6 1317 84.3 

5 20.7 1.5 7.4 283.8 148.2 52.2 

6 81.4 6.7 8.2 318.3 122.4 38.4 

7 41.1 3.7 8.9 337.8 106.8 31.6 

8 20.1 0.3 1.5 708.2 565.1 79.8 

9 26.7 7.4 27.5 1733.4 1095.5 63.2 

10 49.8 11.6 23.3 574.2 26.8 4.7 

11 9.9 0.6 5.8 387.1 129.2 33.4 

12 28.2 4.8 17.0    

13 33.4 6.6 19.9    

14 7.1 0.9 12.0    

15 12.6 0.9 7.1    

16 9.9 0.6 5.8    

Mean PE 
[%] 

11.9 ± 8.4 42.1 ± 24.3 
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7.2 SUPPORTING INFORMATION CONCERNING THE 

ANALYSIS OF THE INTERACTION OF CD44 WITH 

HYALURONIC ACID 

This section provides background information concerning the investigation of the 

interaction of the cell surface receptor CD44 with its major ligand hyaluronic acid (HA) 

under shear flow conditions presented in section 4. 

7.2.1 OVERVIEW OVER THE CELL CULTURE MEDIA COMPOSITIONS 

USED IN THIS WORK 

As always when handling cells the culture conditions were of great importance. 

Therefore, this section presents the compositions of the cell culture media in which the 

different cell types used in this work were cultured.  

Table S3: Cell culture medium used for the model cell lines KG-1a, Jurkat and Kasumi-1. 

Component Concentration Company 

RPMI 1640 88 % Invitrogen 

FCS 10 % Invitrogen 

L-Glutamine 1 % PAA Laboratories GmbH 

Penicillin/Streptomycin 1 % PAA Laboratories GmbH 

 

Table S4: Cell culture medium used for REF52WT and HepG2Iso. 

Component Concentration Company 

DMEM 88 % Invitrogen 

FCS 10 % Invitrogen 

L-Glutamine 1 % PAA Laboratories GmbH 
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Table S5: Cell culture medium used for healthy human cells from the PB, for human HPC from CB, mPB 
and BM and for leukaemic blasts. 

Component Concentration Company 

StemlineTM II Haematopoietic 
Cell Expansion Medium 

95.4 % Sigma-Aldrich 

L-Glutamine (2 mmol/L) 1 % PAA Laboratories GmbH 

TPO (100 ng/mL) 1 % PAA Laboratories GmbH 

SCF (100 ng/mL) 1 % PAA Laboratories GmbH 

G-CSF (10 µg/mL) 0.1 % PAA Laboratories GmbH 

FLT3-L (500 ng/mL) 0.5 % R&D Systems 

Penicillin 1,000 U/mL 
Streptomycin 100 U/mL 

1 % PAA Laboratories GmbH 

 

7.2.2 EFFECT OF BU52 ON THE ACCUMULATION OF KG-1A CELLS ON 

HA 

The accumulation assay was used to further strengthen the finding, presented in 

section 4.1.2, that the HA binding domain of the cell surface receptor CD44 was required 

for the interaction of the CD44 positive cells studied in this work with HA-coated surfaces 

under flow. For this the effect of the treatment of KG-1a cells with different amounts of 

the CD44 antibody BU52 was analysed. Figure S7 A shows the accumulation curves 

acquired. It can be seen that the number of untreated cells interacting with the surface 

steadily increased until a plateau was reached after approximately 3 min. Increasing 

amounts of BU52 led to decreasing numbers of cells interacting with the surface. Full 

suppression was achieved with 9 µg/mL BU52. The CD44 negative cell line Kasumi-1 

served as negative reference for the experiment. The amount of BU52 required for a 

complete suppression of the interaction was is good accordance with that determined by 

measurement using the detachment assay as presented in section 4.1.2. Furthermore, the 

same concentration dependent reduction of the interaction potential with HA could be 

observed in these measurements.  
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Figure S7: KG1a accumulation on HA in dependence of the BU52 concentration. KG-1a cells were 
incubated with varying amounts of BU52 prior to investigation of the interaction with HA under shear flow. 
The accumulation curves (A) and the bar graphs depicting the maximum number of cells interacting with 
the surface (B) show the reduction of the interaction by BU52. The graph shows the results of one set of 
measurements (n = 3). This was repeated thrice with comparable results. The maximum number of cells 
interacting with the surface was highly sensitive to experimental variations making an averaging of the data 
difficult. In all cases increasing amounts of BU52 led to a reduction of the interaction. 

7.2.3 VIABILITY OF HEPG2ISO CELLS INCUBATED WITH SHA 

In the course of the study of the characteristics and dependencies of the CD44-HA 

interaction the effect of the treatment of the cells with glycosaminoglycans (GAGs) such 

as the otherwise surface-bound HA was analysed. For this HepG2Iso cells were incubated 

with soluble macromolecular and oligomer GAGs. As high concentrations of the oligomer 

HA (short chain length; sHA; length: 6-10 disaccharide units, DS) were used for this study 

the viability of the model cell line HepG2Iso in such concentrations of sHA was tested. The 

analysis was conducted by Katharina Fuchs (group of Dr. Véronique Orian-Rousseau at 

ITG, KIT, Karlsruhe, Germany). HepG2Iso cells were incubated with 50 µg/mL sHA 

(6-10 DS) for 1 h in cell culture conditions before imaging the cells by light microscopy. 

The cellular shape, the area of adhesion and the overall appearance of the cells was then 

compared to untreated cells to estimate whether the incubation had an impairing effect 

on the cells. As shown in Figure S8 the incubation had no negative effects on the 

HepG2Iso cells after 1 h. This time span was longer than the incubation time before 

microfluidic shear force measurements (30 min) plus the duration of the measurement 

(5 min per measurement with 2 measurements per incubated vial, resulting in 40 min in 

total) and, therefore, safely covered the necessary time span of exposure. 
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Figure S8: Treatment of HepG2Iso cells with sHA for 1 h. HepG2Iso cells were incubated with sHA (6-10 DS) 
for 1 h before they were imaged using a Canon Power Shot S620 digital camera connected to an Axiovert 
40c Zeiss microscope (10x objective). The cells showed no obvious change indicating no impairing effects 
resulting from the incubation. 

7.2.4 INTERACTION OF PRIMARY HUMAN HAEMATOPOIETIC AND 

LEUKAEMIC CELLS WITH HA 

This section provides supporting or more extending information concerning the 

interaction of healthy haematopoietic and leukaemic cells with HA. This shall undergird or 

elaborate the findings presented in section 4.2. 

7.2.4.1 INTERACTION OF HEALTHY BLOOD CELLS WITH HA 

As demonstrated for haematopoietic progenitor cells (HPC) isolated form umbilical cord 

blood (CB) a preincubation of the cells in StemlineTM II Haematopoietic Cell Expansion 

Medium supplemented with 100 ng/mL TPO, 100 ng/mL G-CSF, 100 ng/mL SCF, 

500 ng/mL Flt-3L, 2 mmol/L L-glutamine, 1,000 U/mL penicillin and 100 U/mL 

streptomycin for 24 h (hereafter referred to as Stemline II medium) was required to 

enable the rolling interaction of the cells with HA. Table S6 depicts the results of the flow 

cytometry measurements for some of the HPC samples from CB, mobilised peripheral 

blood (mPB) and the bone marrow (BM) used in this work as measured by Isabel 

Hoffmann from the group of Prof. Anthony D. Ho at the Universitätsklinikum Heidelberg. 

Not all samples were analysed as the material was available only in small quantities and 

was needed for the microfluidic measurements. However, Table S6 clearly shows that 

after the incubation in Stemline II medium all HPC maintained their stemcellness marked 
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by expression of the CD34 receptor. It was also shown that the cells expressed high levels 

of CD44pan. 

Table S6: Flow cytometry measurements of HPC after Stemline II incubation for 24 h. 

HPC source 

(sample number) 

CD34 positive 

cells 

[%] 

CD44pan positive 

cells 

[%] 

CB (1) 98.88 99.64 

CB (2) 99.39 99.94 

CB (3) 98.82 99.85 

mPB (1) 99.66 99.96 

BM (1) 98.20 97.27 
 

The interaction of the different HPC with HA under flow conditions was extensively 

discussed in the main text (section 4.2.1). Here, the interaction of blood cells isolated 

from the peripheral blood (PB) of healthy donors with HA is discussed. The data shown in 

Figure S9 represents one of two independent, but comparable sets of measurements. In 

each set of measurements the interaction of mononuclear cells (MNC; also known as 

peripheral blood mononuclear cells PBMC) with HA under flow was compared to that of 

granulocytes, monocytes and lymphocytes. Here, MNC present the totality of all cells 

isolated from the peripheral blood containing a round nucleus (rather than a lobed 

nucleus) with the granulocytes, monocytes and lymphocytes covering most of the other 

blood cells less the red blood cells. As shown in Figure S9 A there was hardly any 

interaction of the cells from the healthy PB observable with HA. Lymphocytes and 

monocytes did not roll or adhere to HA, despite expression of CD44. For MNC and 

granulocytes a certain amount of immobile adherent cells could be observed (B). In the 

case of the granulocytes firm adhesion to and spreading on the surface could be observed 

in the time-lapse videos obtained during measurement in the microfluidic channel 

system. This led to a strong, non-rolling adhesion to the surface. Pre-incubation of cells 

with cytokines in Stemline II medium did not increase the number of cells that interacted 

with HA. These findings demonstrated that rolling on HA-coated surfaces could not be 

observed for the highly differentiated cell types although all expressed CD44. 
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Figure S9: Interaction curves for healthy cells from the PB with HA. The interaction curves (A) show 
absence of interaction with HA for both monocytes and lymphocytes. MNC and granulocytes exhibit a weak 
interaction with HA that is only comprised of immobile adhesion (B). 

7.2.4.2 INTERACTION OF LEUKAEMIC BLASTS WITH HA 

The leukaemic blasts were isolated from frozen samples of patients freshly diagnosed 

with acute myeloid leukaemia (AML) by FAC sorting based on their SSC and CD45 

characteristics (SSClow, CD45dim). The CD44 expression was also measured to determine 

whether an investigation in the context of this work was expedient. The percentage of 

blasts gated from the isolated cell material and the fraction of those cells expressing CD44 

is shown in Table S7. If not mentioned specifically the blasts were isolated from the BM of 

the respective patient. At least 95.70 % of the blasts were CD44 positive. The data was 

obtained by the group of Prof. Anthony D. Ho at the Universitätsklinikum Heidelberg. 
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Table S7: Fraction of cells that were blasts isolated from the frozen patient material as sorted by FACS 
and the CD44 expression of the leukaemic blasts. 

Leukaemic Blast Sample 

Blasts gated from 

the cell material 

[%] 

CD44pan positive 

cells 

[%] 

AML 1 72.90 99.99 

AML 2 86.30 99.98 

AML 3 75.70 99.70 

AML 4 BM 89.50 99.90 

AML 4 PB 91.60 99.40 

AML 5 BM 36.40 99.20 

AML 5 PB 75.90 99.30 

AML 6 72.50 98.20 

AML 7 60.60 100.00 

AML 8 83.90 99.30 

AML 9 66.50 99.34 

AML 10 66.50 100.00 

AML 11 58.70 95.70 
 

The interaction of the leukaemic blasts with HA-coated surfaces was later measured in 

the microfluidic shear force setup. During data evaluation a discrimination was made 

between the cells undergoing the CD44 mediated flow induced rolling (extensively 

described and characterised in the main text in section 4.1) and those demonstrating an 

immobile adhesion to the surface. Furthermore, the effect of a CD44 antibody (clone 

BU52, hereafter referred to as BU52) on both forms of interaction was studied. A 

concentration of 9 µg/mL BU52 was used for these experiments as this concentration had 

previously (section 4.1.2 in the main text and Figure S7 in the Appendix section 7.2.2) 

been shown to fully suppress the interaction with HA. An overview of the interaction 

patterns obtained from the microfluidic measurements for the untreated blasts and for 

those treated with 9 µg/mL BU52 is shown in Figure S10. 



 

154 

 

 

Figure S10: Overview of all 11 AML blast samples measured. AML samples 1-5 represent interaction 
pattern A with flow-induced rolling and detachment of the interacting cells from the surface prior to 
~ 10 dyn/cm². AML samples 6-8 represent interaction pattern B with flow-induced rolling that persisted 
beyond ~ 10 dyn/cm². Both cases were accompanied by varying numbers of immobile adherent cells. AML 
samples 9-11 represent interaction pattern C with few rolling cells but large numbers of immobile adherent 
cells. 

[266]
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From the interaction curves or more specifically from the curves after treatment with 

BU52 it can be seen that while the antibody effectively suppressed the flow induced 

rolling of the cells in all cases the effect on the immobile adhesion was always so 

pronounced. The samples AML4 and AML5 both showed an ineffective blocking of the 

immobile adhesion by BU52. For these patients a comparison was made between both 

the overall interaction and the effectiveness of the BU52 treatment for blasts isolated 

either from the BM or from the PB. As shown in Figure S11 the interaction patterns of the 

untreated cells were nearly identical in both cases. The effect of the treatment with 

9 µg/mL BU52, however, differed. While the rolling interaction was fully supressed in all 

four samples the immobile adhesion was more effectively blocked in the samples isolated 

from the PB than in those isolated from the BM. 

 

Figure S11: Comparison of the interaction patterns from blasts from BM and PB in AML 4 (A) and AML 5 
(B).

[266]
 

A fraction of at least 10 % immobile adherent cells after treatment with BU52 was defined 

as ineffective blocking. Table S8 gives an overview over the patient characteristics, the 
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the blocking efficiency of the immobile adhesion to HA by BU52 and the outcome of the 

induction chemotherapy. While a correlation of the blocking efficiency with the risk group 
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chemotherapy. Whereas in the group of six patients, in whom the adhesion of the 

leukaemic cells to the HA-surface could be inhibited by BU52, three achieved CR. A 

Kaplan-Meier plot (Figure 79), visualising the correlation between the blocking efficiency 

and the overall survival of the respective patient, is shown in section 4.2.2 in the main 

text.  

Table S8: Patient characteristics, risk group stratification, efficiency of the blocking of the immobile 
adhesion to HA by BU52 and state after induction chemotherapy for all AML samples.

[266]
 

Sample 
No. 

Gender Age Abnormalities 

Risk Group BU52 efficiency State after 
induction 
chemo-
therapy 

Deceased 
ELN

[31

6]
 

Foran
[

317]
 

N*N0
-1

 >10 % <10 % 

1 male 52 
add(2)(q33), -7, 

del(7q22), 
del(7q36) 

high high < 5   Persistence No 

2 male 65 
-Y ,t(8;21) 

(q22;q22), c-Kit 
mutation 

high high ~ 5   CR No 

3 male 66 

del(4)(q21),t(5;
16)(q11.2;q11.2
),t(6;12)(q13;p1
1.2),del(7)(q22q

32),-17, -
18,del(20)(q11.
2),add(20)(q11.
2) amplification 

of MLL-Gene 
+11q23 

fav. int. ~ 5   Persistence Yes 

4 female 71 
amplification of 

MLL-Gene 
+11q23 

int. int. ~ 20   Persistence Yes 

5 female 56 none int. int. ~ 15   

Deceased 
during 

chemo-
therapy 

Yes 

6 male 67 -Y,+13 int. int. ~ 15   Persistence Yes 

7 male 56 NPM1 positive int. fav. ~ 5   CR No 

8 male 32 
t(8;21)(q22; 

q22) 
fav. fav. 5-10   CR No 

9 male 53 
FLT3-ITD 

positive ratio 
0,74 

int. high ~ 15   CR Yes 

10 male 87 +8 int. int. ~ 15   
No chemo-

therapy 
Yes 

11 male 63 del(12)(p13) int. int. < 5   Persistence No 
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7.2.5 VISUALISATION OF THE GROWTH OF MSC FEEDER LAYERS AND 

THE INTERACTION WITH KG-1A CELLS UNDER FLOW 

This section presents two videos connected to the work with feeder layers (surfaces 

completely covered with convergent 

cells) of mesenchymal stromal cells 

(MSC). Video S4 gives an impression of 

how MSC grew inside a fully assembled 

microfluidic channel system over the 

course of ~ 23 h. It can be seen that 

during the first hours the MSC spread 

in the typical flat manner of epithelial 

cells reaching ideal spreading after 

roughly 5 h. Later the cells elongated 

until they appeared string-like. The 

video can be found on the CD provided 

with the printed edition of this thesis. 

Video S5 shows the interaction of the 

cells of the model cell line KG-1a with a 

reasonably good example of an MSC 

feeder layer. The KG-1a cells were not 

allowed to settle on the surface prior 

to measurement to minimise the 

number of cells ‘sticking’ to the MSC 

before the experiment was started. 

The video clearly shows that the KG-1a 

cells did not roll across the MSC as 

they did across the HA-coated 

surfaces. The KG-1a cells instead 

‘stuck’ to the MSC. Detachment of the 

KG-1a cells then involved elongation of 

the cells before the force of the liquid 

detached the cells from the MSC. This 

too was an observation, which could 

not be made for KG-1a cells on HA. The 

video can be found on the CD provided 

with the printed edition of this thesis. 

 

 

Video S4: Supplementary video demonstrating the 
growth of MSC inside a microfluidic channel. From the 
cell morphology alone it can be seen that an overnight 
incubation inside the channel was too long. Ideal 
spreading of the cells was reached after roughly 5 h. 

 

 

Video S5: Interaction of KG-1a cells with MSC under 
flow conditions. 
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7.3 SUPPORTING INFORMATION CONCERNING THE 

ANALYSIS OF THE STABILITY AND 

BIOCOMPATIBILITY OF SURMOF 2 

This section provides supplementary information undergirding and expanding the studies 

presented in section 5 of the main text. 

7.3.1 CHARACTERISATION OF THE MHDA SAMS USED FOR THE 

GROWTH OF THE SURMOFS 

As mentioned in section 3.2.3 self-assembled monolayers (SAMs) of 16-Mercaptohexa-

decanoic acid (MHDA) were used as functional surfaces on which the surface anchored 

metal-organic frameworks (SURMOFs) were grown. If used for this purpose the SAMs 

were prepared either by Hasan K. Arslan or by Zhengbang Wang from the workgroup of 

Prof. Christof Wöll (IFG, KIT, Karlsruhe, Germany). The MHDA SAMs were characterised by 

infrared reflection adsorption spectroscopy (IRRAS) prior to use. 

IRRAS grounds on the absorption of certain wavelengths of light (typically infrared light, 

hence the name) by molecules if the energy of the wave corresponds to the energy of a 

molecular rotation or vibration. The IRRAS surface selection rule states that only those 

molecular vibrations are visible of which a component is orthogonal to the surface. Such 

dynamic dipoles will be enhanced by the electric field induced by polarisation of the 

metal surface on which the measurement takes place.[318-319] A typical spectrum for a 

MHDA SAM used in this work was kindly provided by Zhengbang Wang and is shown in 

Figure S12. The spectrum shows the symmetric and the asymmetric vibrations of CH2 

groups at 2850 cm-1 and 2919 cm-1, respectively. The C=O vibrations for monomeric 

carboxylic groups are observed at 1717 cm-1 and the C=O vibrations for acyclic dimeric 

carboxylic groups are observed at 1742 cm-1. These values correspond well with those 

found by Arnold et al.[253] giving good evidence for the quality of the SAMs used. 
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Figure S12: IRRA spectrum of an MHDA SAM. The spectrum shows the symmetric and asymmetric CH2 
vibrations as well as the stretching vibrations νC=O for monomeric and acyclic dimeric carboxylic groups. 

7.3.2 EXTENDED STABILITY ANALYSIS OF CU-SURMOF 2 IN 

DIFFERENT MEDIA AND CELL SUSPENSIONS 

The stability of Cu-SURMOF 2 in MilliQ® water, artificial sea water (ASW), phosphate 

buffered saline (PBS) with and without fibrinogen added and the cell culture medium 

DMEM (relevant media for the culture of wild type rat embryonic fibroblasts, REF52WT) 

supplemented with 10 % FCS and 5 % L-Glutamine over a period of 1 h was presented in 

section 5.1. In the following section (section 5.2) the compatibility to the culture of 

eukaryotic cells was studied using 

REF52WT cells. Although the in-

stability of the Cu-SURMOF 2 sam-

ples in PBS or the proteinacous 

media resulted in a release of the 

building units (benzene-1,4-dicarb-

oxylic acid, bdc and Cu2+ ions) to the 

solution no impairment of the ad-

hesion or proliferation of the cells 

was observed. Video S6 shows the 

unimpaired adhesion and prolifer-

ation of REF52WT cells on a struc-

tured Cu-SURMOF 2 substrate over 
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Video S6: Proliferation of REF52WT cells on a structured 
Cu-SURMOF 2. 
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the course of 22 h. The temperature in the incubator was set to 37 °C and 5 % CO2 was in 

the atmosphere. Under these ideal conditions the cells were monitored by time-lapse 

microscopy in the TE2000-U microscope described in section 3.8.1. It can be seen that the 

cells adhered to and spread on the structured surface. Proliferation of the cells could also 

be observed. The video can be found on the CD provided with the printed edition of this 

thesis. 

Testing of the SURMOF substrates towards their general applicability as smart-release 

substrates was one of the aims of this work. As a pronounced stability of Cu-SURMOF 2 

was observed in ASW the substrate was tested with the marine bacterium Cobetia 

marina, which thrives in ASW. C. marina is a model bacterium used in many adhesion 

studies due to its relevance in marine biofouling.[300-302] The studies with the bacterium 

were conducted in cooperation with Maria Pilar Arpa Sancet from our workgroup. As a 

length of incubation of C. marina on sample surfaces of 2 h was typical for adhesion 

experiments[268,302] the stability analysis was expanded to this time span. Figure S13 A-C 

shows XP and XRD spectra clearly demonstrating the stability of Cu-SURMOF 2 in MilliQ® 

water for up to 2 h. The XP spectra were recorded by Stella Bauer from our workgroup 

and the XRD spectra were recorded by Hasan K. Arslan or Zhengbang Wang from the 

group of Prof. Christof Wöll (IFG, KIT, Karlsruhe, Germany). As seen in the same spectra 

the stability in ASW was nearly as pronounced as that of MilliQ® water. Here only a 

disassembly of the outermost layer(s) could be observed making the copper slightly more 

accessible by spectroscopy, seen by the increase of the Cu 2p peak and the decrease of 

the C 1s. The retention of the crystallinity during the incubation in ASW as measured by 

XRD is shown in Figure S13 D. Figure S13 E demonstrates that incubation with C. marina 

led to a gradual loss of crystallinity over time. 



 

161 

 

 

Figure S13: Stability analysis of Cu-SURMOF 2 in different media for 2 h. X-ray photoelectron spectra of (A) 
the Cu 2p and (B) the C 1s core level of Cu-SURMOF 2 for pristine samples and after incubation for 2 h in 

MilliQ water and ASW. (C) X-ray diffraction data before and after immersion of the Cu-SURMOF 2. (D) XRD 
of Cu-SURMOF 2 after incubation in ASW and (E) XRD after exposure to C. marina in ASW for different 
times.

[304]
 

7.3.3 CU-SURMOF 2 AS SMART-RELEASE SURFACE IN CONTACT 

WITH C. MARINA 

This section presents the study of the effect the bacteria C. marina had on the 

Cu-SURMOF 2 substrates and vice versa. The main tools used for this analysis were atomic 

force microscopy (AFM), microfluidic shear force detachment assays measuring the shear 

stress required to detach C. marina from the sample surfaces and a viability assay. AFM 

images were recorded by Carlos Azucena from the group of Prof. Christof Wöll (IFG, KIT, 

Karlsruhe, Germany) and the bacteria samples were provided, measured and analysed by 

Maria Pilar Arpa Sancet from our workgroup. Before discussing the results the methods 

are briefly presented. 

Atomic force microscopy (AFM) After 2 h incubation on the sample surface, the bacteria 

were air dried overnight following published protocols [320-321]. Bacteria were imaged 

using an Asylum Research Atomic Force Microscope, MFP-3D BIO. The AFM was operated 

at 25°C in an isolated chamber in alternating current mode (AC mode). AFM cantilevers 

were purchased from Ultrasharptm MikroMasch. Three types of AFM-cantilevers were 
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used, an NSC-35 (resonance frequency 315 kHz; spring constant 14 N/m), an NSC-36 

(resonance frequency: 105 KHz; spring constant: 0.95 N/m) and an NSC-18 (resonance 

frequency: 75 kHz; spring constant: 3.5 N/m). 

Bacterial viability assay The widely used[322-323] live/dead® BacLightTM bacterial viability kit 

was used to determine the viability of the bacteria after 2 h incubation on Cu-SURMOF 2 

substrates (120 nm thickness) and MHDA SAM as non-toxic control. The assay was 

performed following the manufacturer´s protocol. Prior to staining, the surfaces were 

incubated in a bacterial suspension in ASW with an optical density OD600 = 0.1 for 2 hours. 

Subsequently, 3 µl of a 1:1 mixture of both stains (red- and green-fluorescent nucleic 

stain) was added per millilitre of bacterial solution and incubated at RT in the dark for 

15 min. The samples were removed from the solution and rinsed with MilliQ® water. All 

samples were analysed by florescence microscopy with an upright Nikon microscope 90i 

and suitable optical filters (BV-2A and Texas red HYQ, Nikon, Tokyo, Japan) using a 40x 

objective.  

Microfluidic bacterial detachment assay The adhesion strength of the bacterium Cobetia 

marina on SURMOF 2 was quantified using a custom built microfluidic shear force 

setup[11] which has previously been utilised for the study of bacterial adhesion on 

surfaces.[302] Four fully assembled channel systems (dimensions: 13 mm x 1 mm x 140 µm) 

were mounted on an inverted microscope (Nikon TE2000-U). Bacteria suspensions with 

an OD600 = 0.1 were injected into all four channels and incubated for 2 h in parallel as 

established in previous protocols.[302] After the incubation phase, medium from a 

reservoir was sucked through the channels by a computer controlled syringe pump 

generating a flow which was increased stepwise by 26 % every 5 s. The detachment was 

followed via video microscopy with a 40x Ph2 objective and the fraction of adherent 

bacteria was determined every 5 s. The removal from all four channels was done 

sequentially. The wall shear stress    created by the liquid flow was calculated as 

described in section 7.1.1.3. From the removal curves, the critical shear stress required to 

detach 50 % of the adherent bacteria (   ) was derived. Each measurement was repeated 

at least four times.  

The first step in the evaluation of the influence the bacteria and the Cu-SURMOF 2 had 

each other was to record AFM images to determine the morphology of the bacteria after 

incubation on Cu-SURMOF 2. A HDT SAM served as reference substrate to compare the 

morphology of healthy well adhered bacteria. Figure S14 A shows the bacteria on a HDT 

SAM. In comparison to this the bacteria incubated on the Cu SURMOF 2 (Figure S14 B) 

were wrinkled and deformed. It could be shown that the roughness of the bacteria on the 

Cu-SURMOF 2 was approximately 50 % higher than that of those on the HDT SAM 

(Figure S14 C). Similarly, the mean width of the bacteria on the Cu-SURMOF 2 was 
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approximately 25 % larger compared to that of those seeded on the HDT SAM 

(Figure S14 D). Figuratively speaking the bacteria could be described as more wrinkled 

and flatter when incubated on the Cu-SURMOF 2. 

 

Figure S14: Analysis of the bacterial width and height after incubation on a Cu-SURMOF 2 substrate. AFM 
images of the bacteria on (A) HDT SAM and (B) Cu-SURMOF 2. (C) Mean roughness and (D) mean width of 
the bacteria. Measurements were obtained on seven individual bacteria. Error bars are the standard 
errors.

[304]
 

The impression of a deformation of the bacteria upon incubation on a Cu-SURMOF 2 

surface was further supported by measurement of the height profiles as shown in 

Figure S15. Here, it can be seen again that the bacteria incubated on the Cu-SURMOF 2 

surface were flatter than those incubated 

on the HDT SAM reference. Analysis of an 

overview of a Cu-SURMOF 2 surface on 

which the bacteria had been cultured for 

2 h showed that the SURMOF layer was 

still present. Such an overview is shown in 

Figure S16 A. The Cu-SURMOF 2 sample 

used for this analysis had an initial thick-

ness of approximately 160 nm, the typical 

thickness of a Cu-SURMOF 2 consisting of 

20 layers. From the height profile shown 

in Figure S16 B it can be seen that this 

height was still measureable after 

incubation with the bacteria. A possibility 

to consider the observation of an intact 

SURMOF layer after incubation with the bacteria, while still explaining the deformation of 

the bacteria, is a localised disassembly of the SURMOF upon contact with the bacteria. 

 

Figure S15: Analysis of the bacterial morphology. 
AFM images of C. marina on a Cu-SURMOF 2 (A) and 
on an HDT SAM (B). Height profile (C) indicated by 
the blue dotted and red line in (A) and (B).
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Figure S17 presents the proposed mechanism for this localised disassembly. The overview 

is the same as shown in Figure 97 with SEM 

images of bacteria appropriate to the 

scenario depicted shown. In the process of 

attaching to a surface C. marina secrete 

extracellular polymeric substances (EPS) 

composed of macromolecules (mostly 

polysaccharides[305] such as alginic acid 

(AA)[306]) functioning as glue for the bacteria 

to the surface. This may then induce a 

localised disassembly of the Cu-SURMOF 2 

in the direct vicinity of the bacteria. The 

copper ions released by this disassembly are 

toxic for the bacteria and are the reason for 

the deformation of the same. 

 

 

Figure S17: Proposed mechanism for the release of copper from a Cu-SURMOF 2 substrate by C. marina. 
(A) Healthy bacteria in initial contact with the SURMOF. The SEM image shows a pristine Cu-SURMOF 2. (B) 
Bacteria settled on an intact SURMOF begin secretion of EPS and other molecules. The SEM image shows a 
unaffected bacterium on a HDT reference SAM. (C) Disassembly of the SURMOF and release of Cu2+ ions. 
The SEM image shows a bacterium on a Cu-SURMOF 2 surface after 2 h incubation on the substrate. The 
bacterium is clearly deformed. (D) Adverse effect on bacteria leading to reduced viability and adhesion 
strength. The SEM image shows a bacterium with adhesion weakened by the SURMOF 2 so that it detached 
during preparation for the SEM leaving behind a dark spot.
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Figure S16: AFM measurement of the SURMOF 2 
height after bacteria incubation. AFM image of a 
Cu-SURMOF 2 substrate incubated with C. marina 
for 2 h (A) and the height profile (B) along the red 
line shown in (A).
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To undergird the notion of a dying of the bacteria due to the copper ions released from 

the SURMOF, the viability of the bacteria on a MHDA SAM reference was compared to 

that on a Cu-SURMOF 2 substrate. Figure S18 A, B show the fluorescence microscopy 

images acquired after a 2 h incubation of the bacteria on these substrates. The images 

show a large number of damaged bacteria on the Cu-SURMOF 2 substrate. The ratio of 

damaged versus all bacteria was determined by evaluating the fluorescence signal in the 

microscopy images. A majority of the bacterial population was damaged on the 

Cu-SURMOF 2 (88 %). In contrast, the fraction of dead bacteria was only 0.9 % on the 

MHDA SAM. To further validate this finding microfluidic detachment assays were 

performed on Cu-SURMOF 2 (thickness ~ 120 nm and ~ 80 nm) and on HDT and MHDA 

SAMs as copper-free controls. Additionally, two types of surfaces with known low 

adhesion strength were included, polyethylene glycol (PEG)[302] and hyaluronic acid 

(HA).[244] Both surfaces were known for their protein and cell resistance, thus, providing 

suitable controls as typical inert surfaces. As shown in Figure S18 C, the shear stress 

needed to detach 50 % of the bacteria (   ) was significantly lower for both Cu-SURMOF 2 

coatings of differing thicknesses compared to the HDT and MHDA SAM controls. Even 

though the trend was similar within the error bars, it seems the 120 nm thick 

Cu-SURMOF 2 reduced adhesion more effectively than the 80 nm thick sample. The shear 

stress required to detach the bacteria was also in the range of the PEG and HA controls 

demonstrating the low interaction between the bacteria and the SURMOF. 
 

 

Figure S18: Viability and adhesion strength analysis of C. marina. Fluorescence microscopy images of 
adherent bacteria after BacLightTM bacterial viability staining on (A) MHDA SAM and (B) Cu-SURMOF 2 

(15 layers). (C) Critical shear stress (50) required to remove the bacteria from Cu-SURMOF 2 surfaces for 
different controls. Error bars indicate the standard error of the mean of six experiments in the case of 
Cu SURMOF 2 (10 layers) and HDT SAM, and four experiments for all other surfaces.
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7.5 ABBREVIATIONS 

AFM Atomic force microscope 

AML Acute myeloid leukaemia 

a.u. Arbitrary units 

BE Backscattered electrons 

BM Bone marrow 

BP Band Pass Filter 

CB (umbilical) Cord blood 

CD44 Cluster of differentiation 44 

CD44s Standard isoform of CD44 

CD44v Variant isoform of CD44 

DM Dichroic Mirror 

ECM Extra cellular matrix 

FACS Fluorescence activated cell sorting 

FSC Forward Scatter 

GAG Glycosaminoglycan 

HA Hyaluronic Acid 

HSCT Haematopoietic stem cell transplantation 

HPC Haematopoietic progenitor cell 

ICP OES Plasma optical emission spectrometry 

IRMOF isoreticular metal-organic framework 

LP Long Pass Filter 

LSC Leukemic Stem Cell 

MNC Mononuclear cell 

MOF Metal-organic framework 

mPB Mobilised peripheral blood 

MSC Mesenchymal stromal cell 
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NOD/SCID Non-obese diabetic/severe combined immunodeficiency 

PB Peripheral blood 

Ph Phase contrast 

Pi Propidium iodide 

SAM Self-assembled monolayer 

SD Standard deviation 

SE Secondary electron 

SEM Scanning electron microscope 

SSC Side Scatter 

SP Short Pass Filter 

SURMOF Surface anchored metal-organic framework 

XPS X-ray photoelectron spectroscopy 

XRD X-ray diffraction 
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7.6 CHEMICALS & REAGENTS 

Abbreviation Full name Details Company 

Alkanethiols 

DDT Dodecane-1-thiol HS-(CH2)11-CH3 
Prochimia, Sopot, 

Poland 

HDT 16-Hexadecanethiol HS-(CH2)15-CH3 
Sigma-Aldrich, 

Munich, Germany 

HUDT 11-mercapto-1-undecanthiol HS-(CH2)11-OH 
Prochimia, Sopot, 

Poland 

MHDA Mercaptohexadecanoic acid HS-(CH2)15-COOH 

Sigma-Aldrich, 

Munich, Germany 

Chemical Reagents 

AA 
Alginic acid sodium salt from 

brown algae 
Kat. No. 05550 

Sigma-Aldrich, 

Munich, Germany 

APTMS 
3-Aminopropyltrimethoxy-

silane 
H2N(CH2)3Si(OCH3)3 

Sigma-Aldrich, 

Munich, Germany 

bdc 

benzene-1,4-bicarboxylic 

acid; 

terephthalic acid 

Kat. No. 185361 
Sigma-Aldrich, 

Munich, Germany 

btc 
benzene-1,3,5-tricarboxylic 

acid 
Kat. No. 482749 

Sigma-Aldrich, 

Munich, Germany 

Cu(II)Ac2∙ 

2H2O 
Copper(II)acetate Cu(CH3COO)2∙2H2O 

Sigma-Aldrich, 

Munich, Germany 

EDC 

N-(3-dimethylaminopropyl) -

N′-ethylcarbodiimide 

hydrochloride 

C8H17N3 HCl 
Sigma-Aldrich, 

Munich, Germany 

HA 
Hyaluronic acid sodium salt 

from streptococcus equii 

Kat. No. 53747 

(M = 1,63∙106 Da) 

Sigma-Aldrich, 

Munich, Germany 

HS Heparan sulphate  
Sigma-Aldrich, 

Munich, Germany 

KS Keratan sulphate  
Sigma-Aldrich, 

Munich, Germany 

NHS N-Hydroxysuccinimide C4H5NO3 
Sigma-Aldrich, 

Munich, Germany 
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Abbreviation Full name Details Company 

Solvents 

AcOH Acetic acid 99.9 % C2H4O2 
Merck, Darmstadt, 

Germany 

EtOH Ethanol absolute 99.9 % C2H5OH 
Sigma-Aldrich, 

Munich, Germany 

i-Propanol 2-Propanol 99.9 % C3H7OH 
Sigma-Aldrich, 

Munich, Germany 

2% Extran 
30 % alkaline Extran, diluted 

with MilliQ® water 

Aqueous 

detergent 

Merck KGaA, 

Darmstadt ,Germany 

HEPES 
4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid 
C8H18N2O4S 

Sigma-Aldrich, 

Munich, Germany 

Milli-Q water 
Deionized water filtered by a 

MilliQ® plus filter system 
H2O 

Millipore, 

Schwalbach, Germany 

PBS 

Phosphate buffered saline pH 

7.4 (Tablets dissolved in MilliQ® 

water) 

Kat. No. 18912 
Invitrogen, Karlsruhe, 

Germany 

Proteins, Cell Culture Reagents and Antibodies 

 BacLightTM bacterial viability kit Kat. No. L7007 
Invitrogen, Karlsruhe, 

Germany 

BD Pharm 

Lyse 
Lysing buffer 

Kat. No. 

555899 

Becton Dickinson, 

Heidelberg, Germany 

BSA Bovine serum albumin Kat. No. A7030 
Sigma-Aldrich, 

Munich, Germany 

BU52 
Monoclonal anti-CD44 antibody, 

clone BU52, mouse anti human 

Kat. No. 

MCA2504 

AbD Serotec, 

Düsseldorf, Germany 

BU52-FITC 

Fluorescein isothiocyanate-

marked monoclonal anti-CD44 

antibody, clone BU52, mouse 

anti human 

Kat. No. 

MCA2504F 

AbD Serotec, 

Düsseldorf, Germany 

CD44pan 

siRNA 

5’-CTGAAATTAGGGCCCAATT-3’; 
5’-AATGGTGCATTTGGTGAAC-3’; 
5’-CAGAAACTCCAGACCAGTT-3’ 

Kat. No. 

SI00012775; 

SI03037419; 

SI03062661 

Qiagen, Hilden, 

Germany 

CD44v3 

siRNA 

5’-TGAAGATGAAAGAGACAGA-
3’; 5’-

AGGCATTGATGATGATGAA-3’ 

 
Qiagen, Hilden, 

Germany 
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Abbreviation Full name Details Company 

CD44v6 

siRNA 

5’-GGATATC GCCAAACACCCA-

3’;5’-

AGTAGTACAACGGAAGAAA-3’ 

 
Qiagen, Hilden, 

Germany 

Control 

siRNA 

5’-
UAAUGUAUUGGAACGCAUAUU-

3’; 5’-
AGGUAGUGUAAUCGCCUUGUU-

3’; 5’-
UGCGCUAGGCCUCGGUUGCUU-

3’ 

 
Eurofins MWG GmbH, 

Ebersberg, Germany 

DMEM 
Dulbecco’s Modified Eagle 

Medium, high glucose 
Kat. No. 10938 

Invitrogen, Karlsruhe, 

Germany 

FCS 
Fetal calf serum also fetal 

bovine serum 
Kat. No. 10270 

Invitrogen, Karlsruhe, 

Germany 

fibrinogen 
Fibrinogen from bovine plasma 

Type I-S, 65-85 % protein 
Kat. No. F8630 

Sigma-Aldrich, 

Munich, Germany 

Ficoll-

Hypaque 
Biocoll Separation Solution  

Biochrom, Berlin, 

Germany/Merck, 

Darmstadt, Germany 

Flt-3L 
Fms-like tyrosine kinase-3 

Ligand 

Kat. No. 308-

FK 

R&D Systems, 

Wiesbaden-

Nordenstadt, 

Germany 

G-CSF 
Granulocyte-Colony 

Stimulating Factor 

Kat. No. 17-

5483 

PAA Laboratories 

GmbH, Pasching, 

Austria 

Hoechst 

33342 

2′-(4-Ethoxyphenyl)-5-(4-

methyl-1-piperazinyl)-2,5′-bi-

1H-benzimidazole 

trihydrochloride 

Kat. No. B2261 
Sigma-Aldrich, 

Munich, Germany 

--- L-glutamine Kat. No. 25030 
Invitrogen, Karlsruhe, 

Germany 

Lipofectamin

 2000 
Transfection reagent Kat. No. 11668 

Life technologies, 

Carlsbad, California, 

USA 

LTBMC 
Long-Term Bone Marrow 

Culture 

self-mixed 

medium 

University of 

Heidelberg 

PenStrep Penicillin/streptomycin Kat. No. 15140 
Invitrogen, Karlsruhe, 

Germany 
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Abbreviation Full name Details Company 

PFA Paraformaldehyde HO(CH2O)nH 
Sigma-Aldrich, 

Munich, Germany 

Abbreviation Full name Details Company 

RPMI 
Roswell Park Memorial Institute 

Media 1640 
Kat. No. 31870 

Invitrogen, Karlsruhe, 

Germany 

SCF Stem cell factor  

PAA Laboratories 

GmbH, Pasching, 

Austria 

STAR 
Goat anti mouse IgG (h/l):FITC 

(multi species adsorbed) 

Kat. No. 

STAR117F 

AbD Serotec, 

Düsseldorf, Germany 

StemlineTM II 

medium 

StemlineTM II Haematopoietic 

Cell Expansion Medium 
Kat. No. S0192 

Sigma-Aldrich, 

Munich, Germany 

TPO Thrombopoetin  

PAA Laboratories 

GmbH, Pasching, 

Austria 

Trypsin/ 

EDTA 
0.05 % Trypsin–EDTA solution Kat. No. 25300 

Invitrogen, Karlsruhe, 

Germany 
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7.7 MATERIALS 

Name Description Company 

Au 99.99 % pure gold 
Chempur, Karlsruhe, 

Germany 

Nexterion® 
Ultra flat polished, clean room float 

glass 

Schott AG, Mainz, 

Germany 

COOH- PS-beads 
Carboxylate terminated polystyrene 

microspheres, 4.5 µm 

Polysciences, Eppelheim, 

Germany 

PDMS 
poly-dimethoxysiloxane, elastomer 

and curing agent Sylgard 184 Dow Corning, MI, USA 

EasyFlasks™ tissue culture flasks 25 cm2, 75 cm² 
Nunc, Langenselbold, 

Germany 

Pattex Powerkleber Repair Extreme 
Henkel, Düsseldorf, 

Germany 

Gas Metering Valve 
back regulated precision gas pressure 

valve 

Pressluft Götz, Mannheim, 

Germany 

Heating Cable 
Teflon covered and metal meshwork 

protected 3 mm wire 

Fritz-Schwarz GmbH, 

Schwabach, Germany 

Medium Reservoir 
screw cap, GL 45, 4 port and DURAN® -

pressure plus 
Schott, Mainz, Germany 

Luer Lock Adapter Upchurch LuerTight (P-836 & P-836) 
IDEX Health & Science LLC, 

Oak Harbor, USA 

Multifold Upchurch 7-Port (P-150) 
IDEX Health & Science LLC, 

Oak Harbor, USA 

Selection Valve Valco Cheminert C25-3186 
VICI AG, Schenkoon, 

Switzerland 

Silicon wafers for 

HA referencing 

Silicon wafer [100] p-doped with 

boron 
CrysTec, Germany 

Silicon wafers for 

MOF preparation 
Silicon wafer 

Wacker Chemie AG, 

Germany 

PFA tubing 1/16 ” OD, 0.04 ” ID 
VICI AG, Schenkoon, 

Switzerland 

Pump-Syringe 60 mL Luer Lock, silicon rubber stamp 
Becton Dickinson, 

Heidelberg, Germany 

T-connector 
2-way and 3-way Luer Lock 

connection 

Neolab, Heidelberg, 

Germany 

  



 

200 

 

7.8 FINANCIAL SUPPORT 

This work was supported by the Sander Stiftung (D10051281). 

 

  



 

201 

 

7.9 SUPPLEMENTARY CD 

This CD contains the supplementary video material as well as digital versions of the 

papers published connected to this work. 

 

  



 

202 

 

7.10 LIST OF PUBLICATIONS RELATED TO THIS WORK 

Conference Contributions 

M. Hanke, M. Alles, M. P. Arpa Sancet, C. Christophis, M. Grunze, A. Rosenhahn. 

Microfluidics in Biofouling and Life Sciences, Poster, Bunsenmeeting, Heidelberg, 

Germany, 2011 

M. Hanke, C. Christophis, I. Taubert, A.D. Ho, M. Grunze, A. Rosenhahn. Shear Stress 

induced Rolling of CD44 expressing Leukaemic Cells, Poster, Cellular Nanosciences, 

Heidelberg, Germany, 2011 

M. Hanke, C. Christophis, N. Baran, I. Taubert, P. Wuchter, A.D. Ho, A. Rosenhahn. 

Microfluidic Adhesion Assay Reveals Catch Bond Activated CD44-Hyaluron 

Interaction in Leukemic Cells, Poster, Microfluidics, EMBL Heidelberg, Germany, 

2012 

M. Hanke, C. Christophis, C. Leinweber, N. Baran, I. Taubert, P. Wuchter, A.D. Ho, A. 

Rosenhahn. Microfluidic Adhesion Assay Reveals Catch Bond Activated CD44-

Hyaluron Interaction in Leukemic Cells, Poster, Bunsentagung, Leipzig, Germany, 

2012 

M. Hanke, C. Christophis, I. Taubert, S. Maleschijski, N. Baran, P. Wuchter, A.D. Ho, A. 

Rosenhahn. Microfluidic Adhesion Assay Reveals Catch Bond Activated CD44-

Hyaluron Interaction in Leukemic Cells, Poster, American Vacuum Society, Tampa, 

Florida, USA, 2012 

M. Hanke, I. Hoffmann, C. Christophis, N. Baran, P. Wuchter, A.D. Ho, A. Rosenhahn. 

When Stem Cells Roll: A Microfluidic Analysis of the Catch Bond Mediated 

Interaction between CD44 and Hyaluronic Acid, Talk, Bunsentagung, Karlsruhe, 

Germany, 2013 

  



 

203 

 

Published articles 

The articles listed here can be found as digital version on the supplementary CD (page 

201). 

M. Hanke, H. K. Arslan, S. Bauer, O. Zybaylo, C. Christophis, H. Gliemann, A. Rosenhahn, C. 

Wöll, The Biocompatibility of Metal–Organic Framework Coatings: An Investigation 

on the Stability of SURMOFs with Regard to Water and Selected Cell Culture Media, 

Langmuir 2012, 28, 6877-6884. 

C. Christophis, E. Cavalcanti-Adam, M. Hanke, K. Kitamura, A. Gruverman, M. Grunze, P. 

Dowben, A. Rosenhahn, Adherent cells avoid polarization gradients on periodically 

poled LiTaO3 ferroelectrics, Biointerphases 2013, 8, 27. 

P. Wuchter, C. Leinweber, R. Saffrich, M. Hanke, V. Eckstein, A. Ho, M. Grunze, A. 

Rosenhahn, Plerixafor® induces the rapid and transient release of stromal cell-

derived factor-1 alpha from human mesenchymal stromal cells and influences the 

migration behavior of human haematopoietic progenitor cells, Cell and Tissue 

Research 2013, 1-12. 

M. Arpa Sancet†, M. Hanke†, Z. Wang, S. Bauer, C. Azucena, H. Arslan, M. Heinle, H. 

Gliemann, C. Woll, A. Rosenhahn, Surface anchored metal-organic frameworks as 

stimulus responsive antifouling coatings, Biointerphases 2013, 8, 29. 

M. Hanke, I. Hoffmann, C. Christophis, M. Schubert, V. T. Hoang, A. Zepeda-Moreno, N. 

Baran, V. Eckstein, P. Wuchter, A. Rosenhahn, A. D. Ho, Differences between 

healthy haematopoietic progenitors and leukemia cells with respect to CD44 

mediated rolling versus adherence behavior on hyaluronic acid coated surfaces, 

Biomaterials 2014, 35, 1411-1419. 

 

† indicates a shared first authorship 

 

Articles in preparation 

M. Hanke, K. Fuchs, S. Maleschlijski, J. Sleeman, V. Orian-Rousseau, A. Rosenhahn, CD44 

mediates the Flow Induced Rolling of HepG2 Epithelial Cancer Cells on Hyaluronan, 

in preparation 

  



 

204 

 

DANKSAGUNG 

Zumindest der praktische Teil der Arbeit ist erst einmal geschafft und nun ich möchte 

mich bei allen bedanken, die daran mitgewirkt haben. 

Besonders bedanken möchte ich mich bei Prof. Axel Rosenhahn für die Aufnahme in die 

Arbeitsgruppe und seine Unterstützung während der gesamten Promotion. Vielen Dank 

für die Möglichkeit an einem solch interessanten, interdisziplinären Projekt mitwirken zu 

dürfen. Danke außerdem für die Hilfestellungen, die Motivation und die Korrektur der 

Publikationen und natürlich auch dieser Arbeit. 

Bei Prof. Joachim P. Spatz danke ich mich herzlich für die Übernahme des 

Zweitgutachtens.  

Mein großer Dank gilt außerdem Prof. Anthony D. Ho und Dr. Patrick Wuchter für die 

freundliche Aufnahme in der Med. V des Universitätsklinikums Heidelberg und für die 

gute Zusammenarbeit im Rahmen unseres Projekts. Danke für die Hilfestellungen und 

Anregungen bezüglich der Zielgestaltung und die kompetente Unterstützung bei deren 

Erreichen. 

Auch Prof. Christof Wöll und Dr. Hartmut Gliemann danke ich ganz herzlich, nicht nur für 

die freundliche Aufnahme am Institut für funktionelle Grenzflächen am KIT, sondern auch 

für Möglichkeit bei einem so spannenden Projekt mitwirken zu dürfen. Danke für die 

interessanten und zielführenden Gespräche sowie die Unterstützung beim Schreiben der 

Publikationen. 

Besonders bedanken möchte ich mich auch bei Dr. Christof Christophis und bei Dr. Isabel 

Hoffmann, die mir als meine „Postdocs“ während der Arbeit mit Rat und Tat zur Seite 

standen. Danke euch beiden für die tolle Zusammenarbeit. Ich habe von euch viel gelernt 

und hatte dabei noch mehr Spaß! 

An dieser Stelle möchte ich mich bei all denjenigen Kooperationspartnern bedanken, die 

ich noch nicht genannt habe. Dankbar bin ich nicht nur für die vielfältigen Projekte an 

denen ich teilhaben durfte, sondern auch für die fachlich kompetente und freundliche 

Unterstützung die mir dabei von allen Seiten zuteilwurde. Ich bedanke mich ganz herzlich 

bei… 

…Dr. Véronique Orian-Rousseau, Dr. Katharina Fuchs (ITG, KIT), Prof. Jonathan Sleeman 

(Universität Heidelberg und ITG, KIT) für die Zusammenarbeit am HepG2Iso Projekt. 



 

205 

 

…Dr. Hasan K. Arslan, Zhengbang Wang, Marita Heinle, Dr. Carlos Azucena und Olexandra 

Zybaylo (IFG, KIT), sowie Dr. Maria Pilar Arpa Sancet (ehemals AK Rosenhahn) und Stella 

Bauer danke ich für die Zusammenarbeit am SURMOF 2 Projekt. 

…Dr. Elisabetta Ada Cavalcanti-Adam (Max-Planck-Institut für Intelligente Systeme, 

Stuttgart), Prof. Kenji Kitamura (National Institute for Materials Science, Japan), Dr. Alexei 

Gruverman, Prof. Peter A. Dowben (University of Nebraska-Lincoln, USA) und Prof. 

Michael Grunze (Angewandte Physikalische Chemie, Universität Heidelberg) für die 

Zusammenarbeit an den Lithiumtantalaten. 

…Dr. Christina Leinweber (ehemals AK Rosenhahn), Dr. Rainer Saffrich, Dr. Volker Eckstein 

(Universitätsklinikum Heidelberg) und Prof. Michael Grunze (Angewandte Physikalische 

Chemie, Universität Heidelberg für die Zusammenarbeit am Plerixafor/MSC Projekt. 

…Dr. Mario Schubert, Dr. Van T. Hoang, Natalia Baran, Volker Eckstein (Universitäts-

klinikum Heidelberg) und Dr. Abraham Zepeda-Moreno (Child and Youth Cancer Research 

Institute, Mexico) für die Zusammenarbeit am CD44-Hyaluronsäure Interaktionsprojekt. 

Prof. Joachim P. Spatz, Dr. Véronique Orian-Rousseau und Dr. Cornelia Lee-Thedieck 

danke ich ganz herzlich für die Großzügigkeit die Zellkultureinrichtungen mitbenutzen zu 

dürfen. 

Ein großes Dankeschön auch an Angela Lenze, Katrin Barth-Miesala und Karina Borowski 

für das Isolieren und das Sortieren der HPC, der leukämischen Blasten und der 

Leukozyten. Danke sowohl euch als auch Van und natürlich Isabel dafür, dass ich mich in 

meiner „zweiten Gruppe“ immer willkommen gefühlt habe und ich lernen durfte, dass 

man in einem Krankenhaus auch Spaß haben kann. 

Für das Korrekturlesen bedanke ich mich bei Maria, Stella, Isabel und Stojan. Danke dafür, 

dass ihr mir die Bäume gezeigt habt wenn ich sie vor lauter Wald nicht mehr sehen 

konnte. 

Stella bei dir möchte ich mich für die angenehme Zeit im Labor bedanken. Gerade bei den 

Zuckerslideaktionen hat man gemerkt: Zu zweit geht es nicht nur schneller es ist auch 

noch witziger! 

Stojan bei dir möchte ich mich für nicht nur für die vielen hilfreichen Diskussion und 

Hinweise, sondern vor allem auch für die Dönertouren, die Pausen und generell die gute 

Zeit bedanken. 

Isabel, dir danke ich nicht nur dafür, dass du mir diese Gruppe vorgeschlagen und mich 

während des Studiums und der Promotion tatkräftig unterstützt hast, sondern vor allem 

für die Freundschaft, die hoffentlich nicht abreißt wenn wir mit Arbeiten beschäftigt sind. 



 

206 

 

Bei der ganzen Gruppe möchte ich mich für die tolle Zeit bedanken. Ich danke euch für 

die Motivation und die Unterstützung, die Tipps und die Tricks, die Kaffeepausen und die 

Kuchen, das Grillfleisch und die Grillbananen, die Spaziergänge und die Dönertouren, den 

Klatsch und den Tratsch, schlicht für dreieinhalb tolle Jahre die ich nicht missen möchte. 

Ganz besonders danke ich meiner Familie. Danke, dass ihr immer an mich geglaubt und 

mich unterstützt habt. Ihr wart mir wirklich eine Stütze und eine große Hilfe auf dem Weg 

hierher! 

I thank my entire family for always believing in me. You were a real support and a big help 

on the journey to the PhD defence. 

Thank you, Grandi and Granddad, for being a real inspiration for me. 

Dir, Ilona, danke ich für die Geduld und die Unterstützung die du mir während des 

Studiums und der Promotion entgegengebracht hast. Danke auch dafür, dass du mir 

unsere süße, kleine Prinzessin (unser kleines, dickes Stinkerchen) Marlene geschenkt hast. 

Danke euch beiden, dass ihr mich immer wieder zum Lachen bringt! Ich liebe euch! 

 

 



12/2012 

Eidesstattliche Versicherung gemäß § 8 der Promotionsordnung 
der Naturwissenschaftlich-Mathematischen Gesamtfakultät 

der Universität Heidelberg 
 
 
 
 
1. Bei der eingereichten Dissertation zu dem Thema 
 
 
___________________________________________________________________ 
 
___________________________________________________________________ 
 
___________________________________________________________________ 
 
 
handelt es sich um meine eigenständig erbrachte Leistung. 
 
 
2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner 
unzulässigen Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß 
aus anderen Werken übernommene Inhalte als solche kenntlich gemacht. 
 
 
3. Die Arbeit oder Teile davon habe ich wie folgt/bislang nicht1) an einer Hochschule 
des In- oder Auslands als Bestandteil einer Prüfungs- oder Qualifikationsleistung vor- 
gelegt. 
 
Titel der Arbeit:_______________________________________________________ 
 
___________________________________________________________________ 
 
Hochschule und Jahr:__________________________________________________ 
 
Art der Prüfungs- oder Qualifikationsleistung:_______________________________ 
 
 
4. Die Richtigkeit der vorstehenden Erklärungen bestätige ich. 
 
 
5. Die Bedeutung der eidesstattlichen Versicherung und die strafrechtlichen Folgen einer 
unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir bekannt. 
 
Ich versichere an Eides statt, dass ich nach bestem Wissen die reine Wahrheit erklärt und 
nichts verschwiegen habe. 
 
 
 
 
_____________                                                                                 _________________ 
Ort und Datum                                                                                            Unterschrift 
 
1)

 Nicht Zutreffendes streichen. Bei Bejahung sind anzugeben: der Titel der andernorts vorgelegten 
Arbeit, die Hochschule, das Jahr der Vorlage und die Art der Prüfungs- oder Qualifikationsleistung. 

Max
Durchstreichen


	topmostSubform[0]: 
	Page1[0]: 
	_1[0]: How Stem Cells Roll: A Microfluidic Characterisation of the 
	_2[0]: CD44-Hyaluronic Acid  Interaction and its Role in Leukaemia
	_3[0]: 
	Titel_der_Arbeit_1[0]: 
	Titel_der_Arbeit_2[0]: 
	Hochschule_und_Jahr[0]: 
	Art_der_Prüfungs-oder_Qualifikationsleistung[0]: 
	Ort_und_Datum[0]: Wiesloch, 13.9.2014
	Unterschrift[0]: 




