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Zusammenfassung

Das Closed-System-Equilibration-Modell (CE-Modell) zur Beschreibung der Konzentra-
tionen von im Grundwasser gelösten Edelgasen hat sich in den vergangenen Jahren
als erfolgreich erwiesen, gute Fitergebnisse für gemessene Konzentrationen zu liefern
und physikalisch sinnvolle Parameterabschätzungen für eine Vielzahl von Studien zu
erzielen. In manchen Fällen liefert es jedoch unrealistisch hohe Werte für die Parame-
ter Temperatur (T) und „Excess Air“ (A) in Kombination mit hohen Temperaturfehlern.
In dieser Arbeit werden der Ursprung dieses Problems sowie mögliche Lösungsansätze
untersucht. Es wird aufgezeigt, dass erhöhte Argon- in Kombination mit erniedrigten
Xenon-Konzentrationen das beobachtete Verhalten erzeugen können und wie mittels
Monte-Carlo-Simulationen dennoch realistische Ergebnisse gewonnen werden können.

Für die praktische Anwendung dieser neuartigenMethode werden Schritt-für-Schritt-
Anweisungen gegeben, die aufzeigenwann dieseMonte-Carlo-Simulationen notwendig
sind und wie sie ausgeführt werden sollten.

Mittels dieser neugewonnenen Erkenntnisse werden zehn publizierte Studien erneut
untersucht. Die Ergebnisse der meisten Studien konnten bestätigt werden, bei einigen
traten jedoch Abweichungen zu den ursprünglichen Aussagen auf.

Abschließend wird die Software PANGA vorgestellt, die im Rahmen dieser Arbeit ent-
wickelt wurde. Sie erlaubt es die beschriebenen Auswertemethoden auf einfache Art
und Weise auf gemessene Edelgas-Datensätze anzuwenden.

Abstract

The closed-system equilibration (CE) model for the description of dissolved noble gas
concentrations in groundwater proved to be able to provide good fits to measured con-
centrations as well as physically reasonable parameter estimates in a variety of studies.
Sometimes, however, the CEmodel yields unrealistically high values of the temperature
(T) and “excess air” (A) parameters in combination with high temperature uncertainties.
In this thesis the origin of these problems is analyzed as well as possible solutions. It is
shown that increased argon concentrations in combination with decreased xenon can
cause the observed problems and it is demonstrated how Monte Carlo simulations may
be employed to still acquire realistic results.

Step-by-step instructions are given for the practical application of this new type of
method, indicating when to use Monte Carlo simulations and showing how to carry
them out.

Taking into account these new insights, a re-evaluation of ten studies from the litera-
ture is carried out. The results of most studies were confirmed. For some cases, however,
deviations from the original statements were found.

The thesis concludes with a description of the software PANGA, which was developed
to allow for an easy-to-use application of the described evaluation methods to measured
noble gas data sets.
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1. Introduction

The analysis of noble gases has become an important tool in groundwater hydrology.
Their chemical inertness and their well-known sources and sinks make them useful
tracers (Burnard 2013). Noble gases in groundwater have twomajor fields of application.
The first field is age dating of water, which can be done applying different methods.
Young groundwaters up to an age of about 50 yr may be dated using the decay of 3H
and the subsequent accumulation of 3He (3H/3Hemethod; see, e.g., Schlosser et al. 1988;
Solomon and Cook 2000). This method can also be combined with other tracers like 85Kr
(Corcho Alvarado et al. 2007). Older groundwaters can, for instance, be dated using
the radioisotopes 39Ar (Corcho Alvarado et al. 2007; Ritterbusch et al. 2014) and 81Kr
(Sturchio et al. 2004; Buizert et al. 2014). The focus of this thesis is put on the second
major field of application in groundwater, which is noble gas thermometry (Stute and
Schlosser 1993; Aeschbach-Hertig and Solomon 2013).

Noble gases get into the groundwater via exchange with the atmosphere as long as
the water is in contact with it. The entrapment of air bubbles in the soil matrix during
infiltration, however, leads to increased noble gas concentrations when compared to
air-equilibrated water. This additional component is known as “excess air” (Heaton and
Vogel 1981). Its size depends on the hydrostatic pressure and therefore on the amount
of water table fluctuations (Ingram et al. 2007). The amount of excess air in itself may
contain interesting climate information (Aeschbach-Hertig et al. 2002b).

As the accurate description of the excess air component is important to be able to
infer paleo temperatures, a number of different models have been developed (Kipfer et
al. 2002; Aeschbach-Hertig and Solomon 2013). An inverse method for the estimation
of model parameters was developed by two groups independently (Aeschbach-Hertig
et al. 1999; Ballentine and Hall 1999). In this method, parameter values are determined
by the minimization of the error-weighted deviations between observed noble gas con-
centrations and the concentrations derived from the models.

When the inverse method was developed, only the unfractionated air (UA), partial
re-equilibration (PR) and partial de-gassing (PD) models were available. The closed-
system equilibration (CE) model was introduced shortly after by Aeschbach-Hertig et
al. (2000). The CE model proved to be quite successful in describing noble gas concen-
trations in groundwater and became widely used in different studies (e.g. Beyerle et al.
2003; Kreuzer et al. 2009; Blaser et al. 2010). Despite its success, the CE model also has
its drawbacks. Aeschbach-Hertig et al. (2002b), for instance, noted that fitting the CE
model to one specific sample (MD6.2) out of a set of 23 wells led to unrealistically large
values of the parameter 𝐴, which describes the concentration of entrapped air, in com-
bination with rather high estimates of the noble gas temperature and large temperature
uncertainties.
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1. Introduction

In the last decade, additional models have been presented in the literature, most no-
tably the oxygen-depletion (OD, Hall et al. 2005) and gas diffusion relaxation (GR, Sun
et al. 2008) models. Furthermore, the reliability and numeric stability of the different
models were critically examined (Sun et al. 2010).

In this thesis, the above-mentioned problematic CE model cases are closer examined.
Chapter 3 analyzes their origin and shows how these problems can be dealt with. Based
on these insights, chapter 4 gives detailed step-by-step instructions on how to evaluate
groundwater noble gas data sets using the CE model, also for special cases. In chapter 5
these methods are used to re-evaluate ten data sets from the literature. In chapter 6 the
software PANGA is introduced, whichwas developed as a successor toNOBLE by Peeters
et al. (2003) and provides a set of tools for the easy implementation of the advanced
evaluation methods from chapters 3 and 4.
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2. Theory

2.1. Noble gases in groundwater

Noble gases in groundwater are of three major sources:

Atmospheric noble gases Water exchanges gases with the free atmosphere before in-
filtration into the ground where it continues to exchange gases with the soil air in
the unsaturated and the quasi-saturated zones. The atmospheric noble gases can
be divided into two groups: the equilibrium component, which describes the gas
concentrations in water in atmospheric equilibrium, and the so-called “excess air”
component, which is an additional component caused by water table fluctuations
in the quasi-saturated zone.

Terrigenic noble gases These are noble gases originating from different reservoirs of
the Earth like, e.g., the mantle. He, the most mobile noble gas, can ascend from
deeper layers, up into the groundwater.

Radiogenic noble gases This group includes all noble gases generated by radioactive
decay: 3He, which is the product of the decay of tritium, 4He, which is emitted in
α-decays of minerals containing elements like uranium or thorium. Occasionally,
radiogenic 40Ar may be found in groundwaters and, very rarely, radiogenic 21Ne.

The amount of atmospheric noble gases present in a sample depends, among other
things, on the temperature which was prevalent at the time of infiltration of the water.
Thus, the atmospheric component can be used to determine paleotemperatures. He is
strongly affected by noble gases of terrigenic or radiogenic origin, making it difficult to
quantify the atmospheric component. Ne, Ar, Kr and Xe, however, rarely show anything
but gases of atmospheric origin, rendering them ideal candidates for the determination
of noble gas temperatures.

2.1.1. Equilibrium component

Gas solubility in water is described by Henry’s law

𝑐gas𝑖 = 𝐻𝑖(𝑇, 𝑆) ⋅ 𝑐water
𝑖 , (2.1)

where 𝑐gas𝑖 and 𝑐water
𝑖 are the concentrations of gas 𝑖 in the gas and in the water phase.

Both the amount of gas 𝑖 and the amount of the solvent can be expressed in volumet-
ric, gravimetric or molar units. Two important combinations of units are mol/l and
cm STP/g. Volumetric units not expressed in terms of STP, i.e., standard temperature
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Figure 2.1.: Noble gas composition in groundwater. Adapted from Kipfer et al. (2002).

and pressure, like for instance the l in mol/l, have the disadvantage of being dependent
on surrounding conditions like temperature, pressure and salinity of the water. 𝐻𝑖(𝑇, 𝑆)
is the Henry constant, whose unit depends on the choice of units for the concentrations.
If the concentrations of both the gas and the water phase are given in the same units,
the Henry constant is dimensionless, but its value still depends on the choice of units.
The Henry constant depends on the temperature 𝑇 and the salinity 𝑆.

Henry’s law may also be written in terms of the partial pressure 𝑝𝑖 of the gas 𝑖 above
the water phase:

𝑝𝑖 = 𝐻𝑖(𝑇, 𝑆) ⋅ 𝑐water
𝑖 . (2.2)

The solubilities of noble gases were determined experimentally by a number of re-
search groups (Weiss 1970, 1971; Weiss and Kyser 1978; Benson and Krause 1976; Clever
1979a,b, 1980; Smith and Kennedy 1983). The different noble gas solubilities were com-
pared to gas concentrations measured in air-equilibrated water by Beyerle et al. (2000)
and Aeschbach-Hertig et al. (1999). In this work, solubilities by Weiss are used for
He, Ne, Ar and Kr, whereas solubilities by Clever are used for Xe, in accordance with
Aeschbach-Hertig et al. (1999). Their dependence on temperature and salinity is de-
picted in Fig. 2.2. 3He concentrations are calculated from the total He amount using the
empirical equations for the 3He/4He ratio 𝑅𝑒𝑞 determined by Benson and Krause (1980).
For a summary of the equations, refer to appendix A.

2.1.2. Excess air component

Compared to air-equilibrated water, groundwater shows an increased amount of dis-
solved noble gases. This gas surplus is called “excess air” and it originates from the
dissolution of air bubbles which are entrapped in the groundwater or the soil matrix
during infiltration. Ne concentrations exceeding the atmospheric equilibriumwere first
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Figure 2.2.: Temperature and salinity dependencies of the equilibrium concentrations
of noble gases in water. The temperature dependencies were calculated for
pure water, i.e., 𝑆 = 0. For the salinity plot, a temperature of 15℃ was
assumed.

found by Andrews and Lee (1979) in a sandstone aquifer in England. The term “excess
air” appeared for the first time in the study of Heaton and Vogel (1981). In this section,
the most important excess air models will be introduced. Amore detailed overviewmay
be found in Aeschbach-Hertig and Solomon (2013).

The concentrations in the following equations are not expressed in molar units even
though they lead to more elegant equations. Instead, cm STP/g is used for concentra-
tions in water, because this is the unit which will be used in most practical cases and
that is also expected by the software PANGA. Unlike mol/l, it also does not depend on
surrounding conditions. The conversion frommol/l to cm STP/g and vice versa is given
by

𝑐𝑖[cm STP/g] = 𝑐𝑖[mol/l] ⋅
𝑉,𝑖

𝜌(𝑇, 𝑆, 𝑃) (2.3)

with 𝑉,𝑖, the molar volume of the gas 𝑖, and the water density 𝜌 (cf. equation A.11).
In the model equations, 𝐴 denotes the amount of excess air per water mass in units

of cm STP/g. 𝑧𝑖 stands for the volume fraction of the specific noble gas in dry air.

Unfractionated excess air (UA) model

The unfractionated excess air model is the simplest excess air model. It assumes com-
plete dissolution of entrapped gas bubbles and was first used by Andrews and Lee (1979).
At that time, the parameters have not yet been determined with the inverse method
(which will be introduced in section 2.2), but by optimizing the agreement between
the equilibration temperatures indicated by the different noble gases. The UA model
remained the standard model for the description of excess air for over a decade. Its
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Figure 2.3.: Schematic overview of the most important excess air models. Adapted from
Aeschbach-Hertig and Solomon (2013).

8



2.1. Noble gases in groundwater

name is derived from the fact that its excess air component has atmospheric composi-
tion, i.e., it is unfractionated. According to the UA model, the total dissolved noble gas
concentrations may be described by the equation

𝑐𝑖 = 𝑐

𝑖 + 𝐴𝑧𝑖. (2.4)

Partial re-equilibration (PR) model

After it became increasingly clear that excess air tends to contain a relatively higher
amount of the heavier noble gases than atmospheric air, i.e., that the UA model often
cannot provide an adequate description, Stute et al. (1995) formulated the PR model.
It assumes that the water re-equilibrates again partially after the dissolution of the air
bubbles. It can be expressed by

𝑐𝑖 = 𝑐

𝑖 + 𝐴𝑧𝑖 ⋅ exp

⎡
⎢⎢⎢⎢⎣−𝐹 ⋅ 

𝐷𝑖
𝐷


𝛽⎤⎥⎥⎥⎥⎦ (2.5)

with the dimensionless excess air loss due to re-equilibration 𝐹 and the dimension-
less gas transfer parameter 𝛽. The 𝐷𝑖 are the diffusion coefficients of the noble gases in
water. In PANGA, they are calculated following Jähne et al. (1987). Details are given in
appendix A.3.

Partial degassing (PD) model

The PD model describes gas loss due to diffusion-controlled degassing into a noble-gas-
free gas phase. It is mathematically similar to the PR model but the diffusive gas loss
affects both the equilibrium and the excess air components (Lippmann et al. 2003):

𝑐𝑖 = 𝑐

𝑖 + 𝐴𝑧𝑖 ⋅ exp

⎡
⎢⎢⎢⎢⎣−𝐹 ⋅ 

𝐷𝑖
𝐷


𝛽⎤⎥⎥⎥⎥⎦ (2.6)

Like in the PR model, the𝐷𝑖 denote the diffusion coefficients of the noble gases in water.
The concept of gas loss relative to solubility equilibrium was already used by Zartman
et al. (1961).

Closed-system equilibration (CE) model

According to the closed-system equilibration model developed by Aeschbach-Hertig et
al. (2000), excess air originates from gas bubbles, which are entrapped in the soil matrix
and reach a new equilibrium with the water under higher hydrostatic pressure, after
the water has been shut off from the atmosphere. The noble gas concentrations may be
expressed through

𝑐𝑖 = 𝑐

𝑖 + (1 − 𝐹) ⋅ 𝐴𝑧𝑖

1 + 𝐹𝐴𝑧𝑖/𝑐

𝑖

. (2.7)

Here, the parameter𝐴 has a different meaning than in the other models: It describes the
initial amount of entrapped air per unit mass of water and is measured in cm STP/g.

9



2. Theory

𝐹 is the dimensionless fractionation factor, which describes the reduction of the gas
volume by partial dissolution and compression. Note that the parameter 𝐴 becomes a
dimensionless ratio of two volumes if all concentrations are expressed in molar units,
as used in the most recent representations of the CE model given by Aeschbach-Hertig
et al. (2008) and Aeschbach-Hertig and Solomon (2013). The two representations can be
converted into each other using the following formula:

𝐴[cm STP/g] = 𝐴[−]
𝜌(𝑇, 𝑆, 𝑃)[g/cm]

⋅ 𝑃 − 𝑒𝑤(𝑇)𝑃
⋅ 𝑇𝑇 . (2.8)

𝑇 = 273.15K and 𝑃 = 1 atm are the standard temperature and pressure, 𝑇 and 𝑃 are
the temperature and pressure governing atmospheric equilibrium, 𝑒𝑤 is the saturation
vapor pressure (cf. equation A.8) and 𝜌 the density of water (cf. equation A.11).

The CE model became widely applied for the description of dissolved noble gases in
groundwater due to its success in providing good fits to measured noble gas data and
its ability to provide realistic estimates of physically meaningful parameters (cf. chapter
5). In addition to its normal behavior, it includes simpler models as limit cases and is
also able to describe degassing (Aeschbach-Hertig et al. 2008).

Oxygen depletion (OD) model

The OD model was first introduced by Hall et al. (2005). It is based on the fact that
oxygen is depleted in the soil due to biologic activity (Stute and Schlosser 1993). If the
consumed gas is replaced by another gas with, for instance, a higher solubility, its partial
pressure might be less than that of oxygen. In this case the partial pressures of the other
gases, including the noble gases, would be increased. This effect can be described by

𝑐𝑖 = 𝑐

𝑖 ⋅ 𝑃 + 𝐴𝑧𝑖 (2.9)

with the dimensionless overpressure factor 𝑃. Freundt et al. (2013) confirmed the
existence of the oxygen depletion effect in a study documenting the evolution of soil air
composition over a period of 17 months. They found out that the sum of O2 and CO2
concentrations varies strongly and amounts to a fraction of 16.5 to 24.5% of the soil air.
The highest observed Ar concentrations could cause an underestimation of the NGT by
1.5℃. They concluded, however, that due to the annual variation, the effect is not large
enough to cause overpressure factors like, e.g., 𝑃𝑂𝐷 = 1.14 as required by Castro et al.
(2007). Hall et al. (2012) observed in a study over a period of one year that the noble gas
data for early spring and mid to late summer was consistent with the typical values of
𝑃𝑂𝐷 ≈ 1.1 found by Hall et al. (2005).

Gas diffusion relaxation (GR) model

The OD model was further developed to the GR model by Sun et al. (2008). The GR
model assumes that the partial pressures of the gases are increased by different amounts
because of different diffusivities. In its mathematical representation a similar term as

10



2.2. Inverse modeling

for the PR model is added:

𝑐𝑖 = 𝑐

𝑖 ⋅ 𝑃 + 𝐴𝑧𝑖 ⋅ exp −𝐹 ⋅ 𝐷

𝛽
𝑖  (2.10)

Here, however, the𝐷𝑖 are the diffusitvities of gases in air, as compared to gases in water
in the PR model. In PANGA they are calculated according to Benítez (1948).

2.2. Inverse modeling

2.2.1. Definitions

The following section contains a summary of basic definitions used throughout the rest
of this chapter. The definitions are compiled from Bard (1974) and Barlow (1989). For
the symbols in the upcoming equations, the following conventions are used: scalars are
denoted by lowercase letters, vectors by lowercase letters in boldface and matrices by
uppercase letters in boldface. Random variables are written in Greek letters whereas
realizations of these variables are denoted by Latin letters.

Probability density function Theprobability density function 𝑓𝜉(𝑥) of a random vari-
able 𝜉 is defined by:

Probability (realization 𝑥 lies between 𝑎 and 𝑏) = 
𝑏

𝑎
𝑓𝜉(𝑥)d𝑥 (2.11)

This can be generalized to the joint probability density function of multiple random
variables 𝝃 = (𝜉, … , 𝜉𝑘):

Probability (set of realizations 𝒙 lies in the domain𝑊 ⊆ Ω) = 
𝑊
𝑓𝝃 (𝒙)d𝒙 (2.12)

Ω is the sample space, which is the set of all possible values of 𝝃 .

Expectation value The expectation value of a function 𝑔(𝒙) is given by:

⟨𝑔(𝒙)⟩ = 

𝑔(𝒙)𝑓𝝃 (𝒙)d𝒙 (2.13)

The expectation value of one of the random variables is called 𝜇𝑥𝑖 :

𝜇𝑥𝑖 = ⟨𝑥𝑖⟩ = 

𝑥𝑖𝑓𝝃 (𝒙)d𝒙 (2.14)

Variance Its variance 𝜎𝑥𝑖 , the square root of which is called standard deviation 𝜎𝑥𝑖 , is
defined by:

𝜎𝑥𝑖 = var(𝑥𝑖) = ⟨(𝑥𝑖 − 𝜇𝑥𝑖)⟩ = ⟨𝑥

𝑖 ⟩ − 𝜇𝑥𝑖 (2.15)

Covariance The covariance between two variables is given by:

cov(𝑥𝑖, 𝑥𝑗) = ⟨(𝑥𝑖 − 𝜇𝑥𝑖)(𝑥𝑗 − 𝜇𝑥𝑗)⟩ = ⟨𝑥𝑖𝑥𝑗⟩ − 𝜇𝑥𝑖𝜇𝑥𝑗 (2.16)
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2. Theory

Covariance matrix The covariances can be summarized in the covariance matrix 𝑽 ,
where

𝑽𝑖𝑗 = cov(𝑥𝑖, 𝑥𝑗). (2.17)

Note that the diagonal elements of 𝑽 are again the variances.

Correlation matrix The correlation matrix with elements lying between −1 and +1 is
given by

𝑷𝑖𝑗 =
cov(𝑥𝑖, 𝑥𝑗)
𝜎𝑥𝑖𝜎𝑥𝑗

. (2.18)

Its diagonal elements are 1. The off-diagonal elements of the correlation matrix
are called the correlation coefficients.

Data vector The data vector 𝒄 = (𝑐, … , 𝑐𝑛) is the vector of all values measured in a
specific physical experiment. Here, they are the measured noble gas concentra-
tions in groundwater. The 𝒄 are realizations of the underlying random variables
𝜸.

Parameter vector The parameter vector 𝒑 = (𝑝, … , 𝑝𝑚) is the vector of parameters
that govern a given physical system. Here, it consists of the parameters temper-
ature, salinity, pressure and the different excess air model parameters. The true
value �̂� of the parameter vector (if it exists) is generally unknown. The goal of the
inverse method is to find estimates 𝑝∗𝑖 for the parameters 𝑝𝑖.

Sampling distribution A procedure to find a single best estimate 𝒑∗, a so-called point
estimate, for the parameter vector 𝒑 given the data vector 𝒄 is called a point es-
timation method. An example for such a procedure is the maximum likelihood
method, which will be explained in this chapter. The 𝒑∗ depend on the 𝒄, which
are different realizations of the random variables 𝜸. The 𝒑∗ therefore also follow
a random distribution. This distribution is called the sampling distribution. It can
give valuable information about the reliability of the estimates. If, for instance, a
parameter is ill-determined, i.e., its estimated value is affected strongly by small
variations in the data, the sampling distribution will show that the parameter has
a large variance.

2.2.2. Parameter estimation

In order to obtain estimates of the parameters that govern a given physical system, a
certain procedure—an estimation method—needs to be applied to the measured data. In
this section, the maximum likelihoodmethod will be used to derive an equation for least
squares fitting, following Barlow (1989).
𝑓𝜸|𝒑(𝒄) is the joint probability density function of the measured noble gas concentra-

tions 𝒄, which are realizations of the random variables 𝜸. The possible values of the
concentrations depend on the parameters of the system, which is indicated by the 𝒑 in

12



2.2. Inverse modeling

the subscript. The joint probability density function can also be considered as a function
of 𝒑:

𝐿𝒄(𝒑) ≡ 𝑓𝜸|𝒑(𝒄). (2.19)

𝐿𝒄(𝒑) is called the likelihood function. In contrast to a “real” probability density function,
which is generally unknown, because the true values of the underlying parameters are
unknown, the likelihood function is itself a random variable, because it depends on the
realizations 𝒄 of the random variables 𝜸.

In the maximum likelihood method, the likelihood function is maximized with re-
spect to the parameters 𝒑, i.e., we look for the set of parameters 𝒑∗, that has the highest
probability of creating a set of data values like the ones measured.

For the following considerations, we assume themeasured noble gas concentrations 𝑐𝑖
to be drawn from a Gaussian probability distribution. This can be justified if we imagine
that the total error of a measurement is the sum of many small, independent errors with
arbitrary probability distributions. The central limit theorem states that the probability
distribution of the sum of 𝑘 independent random variables approximates a Gaussian
distribution for large values of 𝑘 (a proof can, e.g., be found in Barlow 1989). Therefore,
the measured concentrations can be assumed to follow Gaussian distributions.

Under this assumption, the probability density function for the concentration of a
single gas may be written as

𝑓𝜸𝒊 |𝒑(𝑐𝑖) =
1

√2𝜋𝜎
𝑐𝑖

⋅ exp

⎡
⎢⎢⎢⎢⎢⎢⎣−
𝑐𝑖 − 𝑐𝑖 (𝒑)



2𝜎𝑐𝑖

⎤
⎥⎥⎥⎥⎥⎥⎦ . (2.20)

with the standard deviation 𝜎𝑐𝑖 and the vector of model parameters 𝒑. 𝑐𝑖 (𝒑) is the
modeled concentration of gas 𝑖 and the presumed center of the distribution of 𝛾𝑖. The
likelihood function now becomes:

𝐿𝒄(𝒑) = 𝑓𝜸|𝒑(𝒄) =
𝑛

𝑖=

𝑓𝛾𝑖 |𝒑(𝑐𝑖). (2.21)

In order to find the set of model parameters 𝒑∗ maximizing 𝐿𝒄(𝒑), we use the logarithm
on both sides of (2.21) and get:

ln 𝐿𝒄(𝒑) = −
1
2

𝑛

𝑖=

𝑐𝑖 − 𝑐𝑖 (𝒑)

𝜎𝑐𝑖



−
𝑛

𝑖=
ln√2𝜋𝜎

𝑐𝑖 . (2.22)

As the last term does not depend on 𝒑, ln 𝐿𝒄(𝒑), and therefore also 𝐿𝒄(𝒑), becomes maxi-
mal when

𝜒 =
𝑛

𝑖=

𝑐𝑖 − 𝑐𝑖 (𝒑)

𝜎𝑐𝑖



=
𝑛

𝑖=

𝑟𝑖 (𝒑)
𝜎𝑐𝑖

(2.23)

is minimal. This is the quantity being minimized in the inverse modeling process in or-
der to find the unknownmodel parameters. The 𝑟𝑖, as defined on the right side, are called
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2. Theory

residuals. Their derivatives with respect to the model parameters 𝑝𝑗 are the elements of
the Jacobian matrix 𝑱 :

𝑱𝑖𝑗(𝒑) =
𝜕𝑟𝑖(𝒑)
𝜕𝑝𝑗

(2.24)

2.2.3. Least squares fitting

The process of minimizing 𝜒 as defined in (2.23) is known as least squares fitting. The
following sections give a short overview of the different methods that can be applied in
order to find the minimal value of 𝜒, in particular the gradient methods and the Gauss-
Newton algorithm and how the advantages of both can be combined in the Levenberg-
Marquardt algorithm. For a more detailed description of these algorithms refer to Mar-
quardt (1963) or Nocedal and Wright (2006).

Gradient methods

The gradient methods are a group of methods where the solution, i.e., the set of param-
eters 𝒑 leading to minimal 𝜒, is found by stepping into the direction of the negative
gradient of 𝜒:

𝒑𝑘+ = 𝒑𝑘 − 𝜆 ⋅ 𝛁𝜒(𝒑𝑘) (2.25)

with a certain 𝜆 specifying the step size. The main problem with these methods is that
they converge only very slowly in many cases.

The Gauss-Newton algorithm

In the Newton method 𝜒 is approximated locally around the current estimate 𝒑𝑘 by a
quadratic function by expanding 𝛁𝜒(𝒑) in a Taylor series:

𝛁𝜒(𝒑) ≈ 𝛁𝜒(𝒑𝑘) + 𝑯(𝜒(𝒑𝑘)) ⋅ (𝒑 − 𝒑𝑘). (2.26)

𝑯 is the Hessian matrix of 𝜒(𝒑). The position of the (supposed) minimum of this ap-
proximation, where the gradient is zero, is then taken as the next estimate:

𝒑𝑘+ = 𝒑𝑘 − 𝑯−(𝜒(𝒑𝑘)) ⋅ 𝛁𝜒(𝒑𝑘). (2.27)

With the covariance matrix of the measured noble gas concentrations

𝑽𝑐 =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝜎𝑐 0
⋱

0 𝜎𝑐𝑛

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

14



2.2. Inverse modeling

the gradient and Hessian of 𝜒(𝒑) may be written as follows:

𝛁𝜒(𝒑) = 2
𝑛

𝑖=
𝜎−𝑐𝑖 𝑟𝑖(𝑝)𝛁𝑟𝑖(𝑝) = 2𝑱(𝒑)𝑽 −

𝑐 𝒓(𝒑) (2.28)

𝑯(𝜒(𝒑𝑘)) = 2
𝑛

𝑖=
𝜎−𝑐𝑖 𝛁𝑟𝑖(𝑝)𝛁𝑟𝑖(𝑝) + 2

𝑛

𝑖=
𝜎−𝑐𝑖 𝑟𝑖(𝑝)𝛁𝑟𝑖(𝑝)

= 2 𝑱(𝒑)𝑽 −
𝑐 𝑱(𝒑) + 2

𝑛

𝑖=
𝜎−𝑐𝑖 𝑟𝑖(𝑝)𝛁𝑟𝑖(𝑝) (2.29)

For the Gauss-Newton algorithm the second term in (2.29), which is small compared to
the first term in many cases, is neglected. So the algorithm is given by

𝒑𝑘+ = 𝒑𝑘 − 𝑱𝑽 −
𝑐 𝑱

−
𝑱𝑽 −

𝑐 𝒓(𝒑𝑘). (2.30)

This algorithm converges very fast locally but it may not converge at all if the initial
parameter guess is not good enough.

The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm combines the advantages of both of these algo-
rithms while avoiding their problems. New estimates are calculated according to

𝒑𝑘+ = 𝒑𝑘 − 𝑱𝑽 −
𝑐 𝑱 + 𝜆𝑰

−
𝑱𝑽 −

𝑐 𝒓(𝒑𝑘), (2.31)

with a factor 𝜆 which basically blends between the two aforementioned algorithms. It
is adjusted at each iteration. If the new 𝜒 is smaller than the old one, 𝜆 is decreased
for the next step by a factor 𝜈 > 0. If it is greater, however, the new 𝒑 estimate is not
accepted, 𝜆 is increased by a factor 𝜈 and another estimate is calculated. This means that
the gradient descent component is given more weight if (2.31) did not lead to a better
estimate. Conversely, the Gauss-Newton component is strengthened if the new 𝜒 is
smaller than the last one, which leads to bigger steps for the next iteration.

The identity matrix in (2.31) is sometimes replaced with the diagonal of the Hessian
𝑱𝑽 −

𝑐 𝑱 as suggested by Seber andWild (2003). This makes the algorithm approximately
invariant under rescaling of the 𝑝𝑖.

Some of the more modern implementations of the Levenberg-Marquardt algorithm
use a full trust-region approach to update 𝜆. The open source library MINPACK, which
is used by PANGA, implements the suggestions of Moré (1978).

2.2.4. Uncertainties of the parameter estimates

An important feature of the sampling distribution is its covariance matrix 𝑽𝑝, which
gives information about the uncertainties of the parameters. Based on a single sample
and without Monte Carlo simulations, only a rough approximation of the covariance
matrix may be determined. For the calculation of the covariance matrix the expectation
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values of the sampling distribution are needed. The estimates 𝒑∗ from the least squares
fit are used as an approximation of the expectation value. The covariance matrix then
becomes

𝑽𝑝 ≈ ⟨(𝒑 − 𝒑∗)(𝒑 − 𝒑∗)⟩. (2.32)

An expression for 𝑽𝑝 shall now be derived, roughly following Bard (1974).
The estimate 𝒑∗ is the unconstrained minimum of 𝜒(𝒑). Because 𝜒 also depends on

the measured noble gas concentrations 𝒄, it will be denoted by 𝜒(𝒑, 𝒄) in the following.
At the minimum, we have

𝛁𝒑𝜒(𝒑∗, 𝒄) = 0. (2.33)

Now suppose we vary 𝒄 by 𝛿𝒄. The minimum will then shift from 𝒑∗ to 𝒑∗ + 𝛿𝒑:

𝛁𝒑𝜒(𝒑∗ + 𝛿𝒑, 𝒄 + 𝛿𝒄) = 0. (2.34)

This can be expanded into a Taylor series, keeping only the zeroth and first order terms:

𝛁𝒑𝜒(𝒑∗, 𝒄)
=

+ 𝛁𝒑𝜒(𝒑∗, 𝒄) ⋅ 𝛿𝒑 + 𝛁𝒄𝛁𝒑𝜒(𝒑∗, 𝒄) ⋅ 𝛿𝒄 ≈ 0. (2.35)

Solved for 𝛿𝒑 and with 𝑯 ∗ = 𝛁𝒑𝜒(𝒑∗, 𝒄) we get

𝛿𝒑 = −𝑯 ∗− ⋅ 𝛁𝒄𝛁𝒑𝜒(𝒑∗, 𝒄) ⋅ 𝛿𝒄. (2.36)

With 𝛁𝒄𝛁𝒑𝜒(𝒑∗, 𝒄) = 𝛁𝒑𝛁𝒄𝜒(𝒑∗, 𝒄) and 𝛁𝒄𝜒(𝒑∗, 𝒄) = 2𝒓(𝒑∗, 𝒄)𝑽 −
𝑐 , the term in parenthe-

ses may be rewritten:
𝛁𝒄𝛁𝒑𝜒(𝒑∗, 𝒄) = 2𝑱(𝒑∗, 𝒄)𝑽 −

𝑐 . (2.37)

Using this result and 𝑯 ∗ ≈ 2𝑱(𝒑∗, 𝒄)𝑽 −
𝑐 𝑱(𝒑∗, 𝒄) (cf. equation 2.29), equation 2.36 may be

rewritten (leaving out the dependencies for brevity):

𝛿𝒑 = − 𝑱𝑽 −
𝑐 𝑱

−
⋅ 𝑱𝑽 −

𝑐 ⋅ 𝛿𝒄. (2.38)

This can now be used to find an expression for 𝑽𝑝:

𝑽𝑝 ≈ ⟨(𝒑 − 𝒑∗)(𝒑 − 𝒑∗)⟩

≈ ⟨𝑱𝑽 −
𝑐 𝑱

−
⋅ 𝑱𝑽 −

𝑐 ⋅ 𝛿𝒄 ⋅ 𝛿𝒄 ⋅ 𝑽 −
𝑐 𝑱 ⋅ 𝑱𝑽 −

𝑐 𝑱
−

⟩. (2.39)

As the Jacobians are all evaluated at 𝒑∗, they may be taken out of the expectation value:

𝑽𝑝 ≈ 𝑱𝑽 −
𝑐 𝑱

−
⋅ 𝑱𝑽 −

𝑐 ⋅ ⟨𝛿𝒄 ⋅ 𝛿𝒄⟩ ⋅ 𝑽 −
𝑐 𝑱 ⋅ 𝑱𝑽 −

𝑐 𝑱
−

(2.40)

Because ⟨𝛿𝒄 ⋅ 𝛿𝒄⟩ is the covariance matrix 𝑽𝑐 of the measurement data (if the measured
noble gas concentrations 𝒄 are used as an approximation of their expectation values),
(2.40) can be reduced to:

𝑽𝑝 ≈ 𝑱𝑽 −
𝑐 𝑱

−
(2.41)
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2.2.5. Goodness of fit

The sum of the squares of 𝑛 independent, standard Gaussian distributed random vari-
ables, like 𝜒 as defined in (2.23), are distributed according to the 𝜒 distribution

𝑃𝑛(𝜒) =
2−𝑛/
Γ(𝑛/2)𝜒

𝑛−𝑒−𝜒/ (2.42)

with the standard gamma function Γ(𝑥). The proof for this statement may, e.g., be found
in Barlow (1989). The 𝜒 probability is defined by the integral

Prob𝑛(𝜒∗) = 
∞

𝜒∗
𝑃𝑛(𝜒′)d𝜒′. (2.43)

It represents the probability to measure a data set with 𝜒 ⩾ 𝜒∗ under the assump-
tion that the used model function precisely describes the physical processes underlying
the observed system. If the 𝜒 probability is high, it means, that the model function
describes the data well. If it is too small, the function is not a good representation of
the underlying effects. If the probability is close to 100% and 𝜒 therefore very low, it
can also be a clue that something may be wrong, because normal statistical fluctuations
should lead to a higher 𝜒. One reason for this could be overestimated measurement
errors. Conversely, high 𝜒 values may also be caused by underestimated errors.

In the situation described in this thesis, the functions’ 𝑚 parameters are determined
by minimizing 𝜒. This means, however, that 𝜒 will be smaller than expected. The
distribution is no longer described by 𝑃𝑛(𝜒) but rather by 𝑃𝑘(𝜒) with the degrees of
freedom 𝑘 = 𝑛 − 𝑚.

2.2.6. Error propagation

In this section an equation shall be derived, for the general case of error propagation
of correlated variables. The derivation roughly follows Brandt (2013). Let 𝑦𝑖(𝒙) with
𝑖 = 1,… ,𝑚 be a set of m functions depending on 𝑛 random variables 𝒙 = (𝑥, … , 𝑥𝑛).
These functions can be expanded in a Taylor series around 𝝁𝒙 = ⟨𝒙⟩:

𝑦𝑖(𝒙) ≈ 𝑦𝑖(𝝁𝒙) +
𝑛

𝑘=


𝜕𝑦𝑖(𝒙)
𝜕𝑥𝑘


𝝁
(𝑥𝑘 − 𝜇𝑥𝑘) (2.44)

In matrix notation this may be written as (with 𝒂 = 𝒚(𝝁𝒙)):

𝒚(𝒙) ≈ 𝑱𝒙 + 𝒂 (2.45)

This representation can now be used to calculate the covariance matrix (leaving out the
𝒙 dependencies for brevity):

𝑽𝑦 = ⟨(𝒚 − ⟨𝒚⟩)(𝒚 − ⟨𝒚⟩)⟩
≈ ⟨(𝑱𝒙 + 𝒂 − 𝑱⟨𝒙⟩ − 𝒂)(𝑱𝒙 + 𝒂 − 𝑱⟨𝒙⟩ − 𝒂)⟩
= ⟨𝑱(𝒙 − 𝝁𝒙)(𝒙 − 𝝁𝒙)𝑱⟩
= 𝑱⟨(𝒙 − 𝝁𝒙)(𝒙 − 𝝁𝒙)⟩𝑱

𝑽𝑦 ≈ 𝑱𝑽𝑥𝑱 (2.46)
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This is the law of error propagation in its general form. It is needed if dependent quan-
tities are to be derived from the parameter estimates 𝒑∗ resulting from the 𝜒 fit.

2.2.7. Monte Carlo simulations

In sections 2.2.2, 2.2.3 and 2.2.4, methods were given to obtain information about the
sampling distribution of the model parameters 𝒑. Because several assumptions and ap-
proximations were used to derive (2.41), the covariance matrices it produces are some-
times incorrect, though, in many cases, they are good approximations of the “true” co-
variance matrices. Likewise, the maximum likelihood estimate, resulting from the min-
imization of 𝜒 (equation 2.23), often is a good approximation of the expectation value
of the model parameter vector 𝒑, but may also show significant deviations.

The results can be improved if the experiment is carried out repeatedly, yielding a set
of random samples of the sample distribution. This set of samples may then be used for
a statistical analysis. Creating sufficiently large sets of samples, however, is not feasible
in most cases, as the accompanying expenses and efforts would not be acceptable.

A solution to this problem can be Monte Carlo (MC) simulations. For the Monte
Carlo method, repeated measurements are simulated, creating a large set of samples,
which can then be used to study the sample distribution. The procedure consists of the
following steps (Bard 1974):

1. The individual noble gas concentrations are assigned a normal distribution with
a mean value equal to the original concentration and a standard deviation equal
to the presumed measurement error.

2. Sets of simulated measurement data are created by randomly drawing data from
the noble gases’ presumed probability distributions. The random numbers are
created using a pseudorandom number generator. PANGA creates its pseudoran-
dom numbers using a Mersenne Twister 19937, seeded with the system time of
the computer (Matsumoto and Nishimura 1998).

3. The least squares method, as described above, is applied to every sample of the
simulated data set, yielding distributions of each estimated value.

4. The resulting distributions are subjected to a statistical evaluation, giving esti-
mates for the mean of the sampling distribution and its covariance matrix:

𝒑∗ = 1
𝑘

𝑘

𝑖=
𝒑∗𝑖 (2.47)

𝑽 ∗
𝑝 =

1
𝑘 − 1

𝑘

𝑖=
(𝒑∗𝑖 − 𝒑∗𝑖 )(𝒑∗𝑖 − 𝒑∗𝑖 ), (2.48)

with the number of Monte Carlo realizations 𝑘 and the estimate from the i-th
experiment 𝒑∗𝑖 .
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3. Properties of the closed-system
equilibration model

The results in the following chapter have already been published in Jung et al. (2013).
Large parts of the upcoming text are almost identical to parts of the article.

3.1. Samples

In this chapter, four pairs of groundwater samples are used to illustrate typical fitting
behaviors of the CE model and to test new approaches to improve the data evaluation.
The samples were selected to show pairs of a “normal” and a “bad” sample for different
study areas with various environmental conditions. In particular, the selected study
areas cover mean annual air temperatures (and thus expected NGTs) in the range of
about 10 to 28℃. Two pairs were taken from published noble gas temperature records,
the other two from recent studies performed in the noble gas laboratory at Heidelberg
University. The pairs were selected to represent as similar recharge conditions as possi-
ble, thus very similar results for the derived parameters of the two samples are expected,
at least for the equilibration temperature. In two cases the pairs are duplicate samples
from one well, thus strictly identical parameters can be expected.

The coolest recharge conditions investigated here are represented by two samples
from rather shallow wells from Ireland. The samples MAS_21 and MAS_24 originate
from an agricultural site near the city of Wexford in southeastern Ireland. The mean
annual air temperature in the area is about 10℃. The recharge altitude is estimated to
be 61m above sea level (asl) for MAS_21 and 40m for MAS_24 according to the land
elevation at the wells.

A pair of samples with slightly warmer expected temperatures was taken from the
study of Aeschbach-Hertig et al. (2002b). The samples MD6.2 and MD9.1 were collected
in 1995 from wells in the outcrop and recharge area of the Aquia aquifer in southern
Maryland, USA. These samples represent modern groundwater based on C, H and
He data. The recharge altitude in this coastal region is about 50masl and the mean
annual air temperature is 12.8℃.

A pair of duplicate samples representing rather warm recharge conditions was taken
from the study of Castro et al. (2007). The samples TX46.2 and TX46.3 are two out
of three replicates from a well just downstream of the recharge area of the Carrizo
Aquifer in Texas. According to the evaluation of Castro et al. (2007), the He model age
of groundwater at this well is 960 yr and the NGT estimates derived by the UA model
for the two samples are 17.9℃ and 17.4℃, respectively. These NGTs are lower than the
mean annual air temperature of 20.6℃ in the area and even much lower than current
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ground temperatures which were estimated to be 24.5℃. On average 4.7℃higher NGTs
were obtained by applying the OD model with an overpressure factor of 1.14 to the
record from Texas, reconciling modern NGTs and ground temperatures. The recharge
altitude for the Carrizo Aquifer is 200masl.

Another pair of duplicate samples representing evenwarmer recharge conditions was
taken from a recent study in India. The samples IND32_1 and IND32_3 were both taken
from the same well in a sedimentary aquifer system in the North Cambay Basin, North-
west India (Wieser 2011). Based on C data, thewater was estimated to be (1.7 ± 0.5) kyr
old. The mean annual air temperature in this region (city of Ahmedabad) is 27.5℃, the
recharge altitude is about 130masl.

Table 3.1.: Concentrations of dissolved noble gases for the samples used to analyze the
CE model behavior

Sample Ne Ar Kr Xe
[− cm STP/g] [− cm STP/g] [− cm STP/g] [− cm STP/g]

MAS_24 . ± . . ± . . ± . . ± .
MAS_21 . ± . . ± . . ± . . ± .
MD9.1 . ± . . ± . . ± . . ± .
MD6.2 . ± . . ± . . ± . . ± .
TX46.3 . ± . . ± . . ± . . ± .
TX46.2 . ± . . ± . . ± . . ± .
IND32_3 . ± . . ± . . ± . . ± .
IND32_1 . ± . . ± . . ± . . ± .

Table 3.2.: Prescribed pressures, fitting results and Monte Carlo statistics
Fitting results Monte Carlo statistics

Sample 𝑃 [atm] 𝜒 𝑇 [℃] 𝐴 [cm STP/g] 𝐹 𝑇 [℃] 𝐴 [cm STP/g]

MAS_24 . . . ± . . ± . . ± . . ± . . ± .
MAS_21 . . . ± . . ± . . ± . . ± . . ± .
MD9.1 . . . ± . . ± . . ± . . ± . . ± .
MD6.2 . . . ± . . ± . . ± . . ± . . ± .
TX46.3 . . . ± . . ± . . ± . . ± . . ± .
TX46.2 . . . ± . . ± . . ± . . ± . . ± .
IND32_3 . . . ± . . ± . . ± . . ± . . ± .
IND32_1 . . . ± . . ± . . ± . . ± . . ± .

The samples’ noble gas concentrations are summarized in Table 3.1. The prescribed
pressures based on the estimated recharge altitudes as used for the fit are listed in Table
3.2 together with the fit results. The samples MAS_24, MD9.1, TX46.3 and IND32_3 are
of the usual well-behaved type: the CE model provides good fits to these data sets with
reasonable parameter values and low uncertainties. In contrast, the samples MAS_21,
MD6.2, TX46.2 and IND32_1 show the typical problems which sometimes can occur
when applying the CE model: the temperatures derived from these samples are all
higher than for the corresponding normal samples and temperature uncertainties are
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large. The values and uncertainties of the 𝐴 parameter are also much higher than for
the normal samples.

It is interesting to check the high estimates of 𝐴 typical for problematic samples for
their physical plausibility. On the basis of field data of Fayer and Hillel (1986) on the vol-
ume fraction of entrapped air, 𝐴 may be expected to range from 0.02 to 0.18 cm STP/g.
However, the higher values of 𝐴 most likely include entrapped air that is mobile and
may escape over time. Presumably only the immobile entrapped air is relevant for the
formation of excess air, and according to the perhaps most reliable data from laboratory
experiments, the fraction of the pore space that contains persistently trapped immobile
air is likely smaller than 5% (Faybishenko 1995). Thus a realistic expectation is that the
parameter 𝐴 should be smaller than 0.05 cm STP/g. Such values of 𝐴 have indeed been
observed in a variety of study areas (Aeschbach-Hertig et al. 2002a, 2000).

The problematic samples all have values of𝐴 higher than 0.1 cm STP/g, clearly above
the realistically expected range. At least the highest 𝐴 values of 0.2 to 0.3 cm STP/g
are definitely unrealistic, as they imply that about 20% or more of the pore space was
initially occupied by entrapped air. It is hardly possible that such large amounts of air
could be trapped. The experience of our group with applying the CE model to many
data sets suggests that 𝐴 values above 0.1 cm STP/g lead to large uncertainties of both
𝐴 and 𝑇 and are characteristic of the type of problematic fits that are investigated here.

3.2. Analysis of the χ² space

One possible problem of parameter estimation for non-linear models is that multiple
minima of the 𝜒 surface in the parameter space may occur, making the solution found
by the fitting routine non-unique. Such non-uniqueness might lead to numerical insta-
bility and a dependence of the solution from the initial values of the parameters used at
the start of the search for the minimum. These aspects were studied for the CE model
by von Oehsen (2008), who found that for synthetic samples a second local minimum
exists in the 𝜒 surface in the three-dimensional parameter space (𝑇 , 𝐴, 𝐹), which is
characterized by too high values of 𝐴 and 𝑇 . The fit results then depend on the choice
of initial values for the fit parameters, as too high initial values for 𝐴 and 𝑇 lead to the
fitter finding the “wrong” minimum.

In order to further investigate the phenomenon of multiple local minima in the 𝜒
surface and its possible connection to the poor fitting behavior observed for some sam-
ples, 2D plots of 𝜒 were produced, i.e., projections of the 𝜒 surface onto the subspace
spanned by two fit parameters. Fig. 3.1a shows 𝜒 for the sample MD9.1 as a function
of 𝐴 and 𝑇 , as an example of such a plot for a normal sample. One can see two local
minima, one at realistic parameter values (𝐴 = 0.033 cm STP/g, 𝑇 = 13.35℃), which is
the solution found by the fit, and another one at unrealistically high values for 𝐴 and 𝑇 .
In fact, if the fitting routine is forced into finding this second minimum by appropriately
high initial parameter values, for many samples such as MD9.1, it yields extremely high
values of 𝐴, many orders of magnitude above the physical range.

This pattern with two local minima is observed for all well-fitting samples. Even
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Figure 3.1.: 𝜒 as a function of 𝐴 and 𝑇 for a well-behaved (a) and a problematic (b) sam-
ple. The parameter 𝐹 was fitted for minimal 𝜒. The MD9.1 sample shows
the characteristic pattern of two local minima, one at realistic parameter val-
ues, the other one at unrealistically high values. For MD6.2 one can only see
a single minimum at high but not impossible values.
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though the second minimum at high values of 𝐴 and 𝑇 can in some cases be the global
minimum (i.e., have a lower 𝜒 value than the first minimum), it is not found by the fit
routine if low initial values for 𝐴 and 𝑇 are used, except for a few rare cases which are
easily identifiable. Hence, the existence of two minima does not seem to lead to numer-
ical instability or to otherwise be a problem for the interpretation of most samples.

In fact, the problematic samples, where the fits converge to solutions with large 𝐴,
all show a single minimum only and their 𝜒 surface looks like that of sample MD6.2
shown in Fig. 3.1b. Since there is only one minimum, the fit result cannot depend on
the initial parameter values in these cases, thus the problematic behavior can neither
be explained by bad parameter initials nor by an instability due to multiple minima and
thus a non-unique solution. It rather seems that problems arise when the two well-
separated minima of normal samples, one of them clearly being physically unrealistic,
merge into one broad minimum, which now occurs at values of the parameter 𝐴 that
are high but not completely impossible. Such solutions cannot simply be ruled out and
may indeed be correct within the large parameter uncertainties that typically occur, but
they are practically useless due to the large uncertainties. They are probably also biased
towards too high values of 𝐴 and 𝑇 .

Note that for both well-behaved and problematic samples, the region of low 𝜒 values
in the plot of 𝐴 versus 𝑇 (Fig. 3.1) has the shape of an elongated, curved valley, which
turns upwards (toward high values of 𝐴) at higher temperatures. The finding that this
valley becomes almost vertically aligned for large 𝐴 can be explained by the fact that
the CE model equation becomes independent of 𝐴 for high values of 𝐴 (von Oehsen
2008):

lim
𝐴→∞

(1 − 𝐹)𝐴𝑧𝑖
1 + 𝐹𝐴𝑧𝑖/𝑐


𝑖
= 1 − 𝐹

𝐹 𝑐𝑖 = 1
𝐹 𝑐


𝑖 − 𝑐𝑖

⇒ 𝑐𝑖 = 1
𝐹 𝑐


𝑖

(3.1)

Thus, in the limit of large 𝐴, the CE model describes a uniform increase of all noble gas
concentrations by the factor 1/𝐹, which is the same as the effect of a pressure increase
(Aeschbach-Hertig et al. 2002a, 2000). In this limit, the CE model is equivalent to a pure
OD model (only excess pressure, no excess air), with 1/𝐹 instead of the OD pressure
factor. However, the CE model contains an additional but in this case useless parameter,
as the model equations become completely independent of 𝐴. It is therefore clear that
the parameter 𝐴 cannot be determined by the model inversion in the limit of large 𝐴.

The second minima of normal samples occur at very large values of 𝐴, falling into
the limit where 𝐴 is indeterminable. In contrast, the problematic samples have single
minima at 𝐴 values that are above the realistic range (𝐴 > 0.1 cm STP/g), but still
small enough to have a certain influence on the modeled concentrations. In this range,
the parameters 𝑇 and 𝐴 exhibit a high degree of correlation (the correlation coefficient
can reach values of about 0.999 or even higher), which explains the large parameter
uncertainties. In particular, the parameter𝐴 is approaching the limit of its identifiability.
Thus, similar to the case of a model with free pressure parameter, the occurrence of high
parameter correlation is part of the explanation of the problems with the CE model.
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However, in contrast to a model with unknown pressure, these high correlations only
occur for certain samples, which yield solutions in the critical range of 𝐴 values.

3.3. Monte Carlo analysis

The analysis of the 𝜒 surface in the parameter space shows characteristic differences be-
tween normal and problematic samples, but it does not lead to a solution of the problem
in terms of local minima that should be avoided. As a next step to study the behavior of
the fits, and in particular the reliability of the parameter error estimates, Monte Carlo
analyses were performed for the test samples. Fig. 3.2 shows one- and two-dimensional
histograms of the parameters 𝐴 and 𝑇 , where a 1D histogram is equivalent to the pro-
jection of the 2D histogram onto the respective axis. For the preparation of these plots,
as well as the other Monte Carlo plots in this chapter, one million random data sets
were created and evaluated as described in section 2.2.7. For the creation of the 1D
histograms, the domain of the parameter values was divided into 500 bins. For the 2D
histograms the two-dimensional parameter value domain was divided into 500⋅500 bins.
Most of the normal samples shown in the left column of Fig. 3.2 more or less exhibit the
expected behavior, where the solutions for the Monte Carlo realizations of a sample are
approximately normally distributed around the solution for the original sample. For the
two cooler samples MAS_24 and MD9.1, the standard deviations of the 1D histograms
for 𝐴 and 𝑇 correspond closely to the parameter errors from the covariance matrix es-
timated in the fit procedure (cf. Table 3.2).

The two warmer samples, TX46.3 and IND32_3 already show some deviations, with
a significant fraction of the Monte Carlo realizations leading to solutions with unrealis-
tically large 𝐴 and increased 𝑇 . These “bad” realizations do not occur for MAS_24 and
are very rare for MD9.1. For TX46.3 and IND32_3, however, they are more frequent
and start to form a second cluster at high 𝐴 and 𝑇 in the 2D histograms. In the 1D
histograms, long tails or even weak secondary peaks at high parameter values become
visible (under magnification). As a result, the standard deviations of these 1D distri-
butions from the Monte Carlo analysis are larger than the parameter errors estimated
from the fit.

For comparison the same Monte Carlo analysis was applied to a large number of well-
fitting samples not shown here. Many histograms showed either a single cluster only
or, like MD9.1, just a few results scattered in the area of high𝐴 (𝐴 > 0.1 cm STP/g). But
several samples also had a second cluster in this area. Most of the time it was, however,
not as pronounced as the clusters of the poorly-fitting samples.

The 1D histograms for the parameter 𝐴 also show a different anomaly for part of the
normal samples, namely a distinct peak at low values of 𝐴, superimposed on the gen-
eral distribution. This anomaly is also visible in the 2D histogram for sample MAS_24.
While all realizations of this sample converge at low and realistic values of 𝐴, a small
but significant fraction yields a fixed, very low value of 𝐴, leading to a peak at the
lower end of the 𝐴-distribution in the 1D histogram. A similar, even more pronounced
peak is visible for sample TX46.3. It corresponds to a significant fraction of the Monte
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Figure 3.2.: Histograms of the Monte Carlo results of the analyzed samples (continued
on the following page).
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Figure 3.2 (cont.): Histograms of the Monte Carlo results of the analyzed samples, show-
ing the number of realizations yielding specific values of the param-
eters 𝐴 and 𝑇 . The blue lines represent the original samples’ fit re-
sults. The left column shows the well-behaved samples. For these,
most Monte Carlo realizations concentrate around the fit results. The
problematic samples, however, which are shown in the right column,
exhibit a split-up into two clusters.
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Carlo realizations yielding fits with low 𝐴 (< 0.01 cm STP/g, sometimes even below
0.001 cm STP/g) and 𝐹 equal or very close to zero. These solutions with 𝐹 = 0 corre-
spond to unfractionated atmospheric composition of the excess air, or the UA model in
the terminology of Kipfer et al. (2002). They reflect the fact that the CE model contains
the simpler UA model as a limiting case (with 𝐹 = 0) and obviously this limit provides
the best solution for a significant part of the Monte Carlo realizations of such samples.

Solutions of the CE model with 𝐹 = 0 occur quite frequently, mainly for well-fitting
samples. An extreme example is IND32_3, where the “good” cluster at low 𝐴, including
the fit for the sample itself, consists almost exclusively of solutions with 𝐹 = 0 and
only the realizations in the “bad” cluster at high 𝐴 represent true (but problematic) CE
model solutions. The separation of Monte Carlo realizations as well as single fits to
real samples into a group corresponding to the UA model (with 𝐹 = 0) and a group
of true CE cases (with 𝐹 > 0) has usually not been perceived as a problem, as the UA
type solutions are well constrained, but it certainly deserves further analysis. It occurs,
however, separately from the phenomenon of solutions with large 𝐴 and does not seem
to be related to that problem, which is the main focus of this investigation.

The phenomenon of solutions with large 𝐴 is illustrated by the problematic samples
in the right column of Fig. 3.2. All of them show a similar behavior, with their Monte
Carlo realizations forming two more or less distinct clusters, one of them concentrating
in the area of the fit result (at high𝐴), the other one at parameter values which are much
more realistic. As discussed above, such a pair of clusters also occurs for some normal
samples (especially IND32_3), but for the problematic samples the clusters with large
𝐴 are much more pronounced and also contain the original samples’ fit results. The
1D histograms for the problematic samples typically show a two-peak structure both in
𝐴 and 𝑇 , corresponding to the two clusters. For example, for IND32_1, the “bad” clus-
ter dominates in a similar way as the “good” cluster does for IND32_3. A result of the
clearly non-normal distributions of the parameters in such cases is that the standard de-
viations in these histograms, i.e., the parameter error estimates derived from the Monte
Carlo procedure, do not agree with the parameter errors from the covariance matrix
estimate obtained from the fitting algorithm (cf. Table 3.2). Although the distributions
derived from theMonte Carlo analysis are rather wide for the problematic samples, their
standard deviations are significantly smaller (up to a factor of almost 20 for IND32_1)
than the original parameter error estimates. For most samples the mean values are also
slightly shifted compared to the fit results. This result shows that the usually very large
parameter errors for problematic fits (see Table 3.2) are not reliable. The Monte Carlo
analysis provides better error estimates, but more importantly it reveals a systematic
behavior of the solutions that deserves further investigation.

In order to find an explanation for the clustering of Monte Carlo realizations in the
space of the 𝐴 and 𝑇 parameters, an analysis was carried out to determine which noble
gas concentrations led to parameter values inwhich cluster. Themean concentrations of
both clusters were calculated for eight different samples (both well- and poorly-fitting)
and compared to each other. The comparison showed that the clusters with the unre-
alistic values all have increased Ar (+0.2 to +1.8%) and decreased Xe (−1.4 to −11.0%)
concentrations. The Ne concentrations were only slightly decreased (−0.1 to −0.3%),
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whereas Kr concentrations were both increased and decreased (−1.2 to +1.0%). It is
very interesting to note that Sun et al. (2010) described the same kind of deviations
(measured Ar higher and Xe lower than modeled) as a characteristic misfit pattern of
the UA model. The CE model appears to be able to fit samples with comparatively high
Ar and low Xe better, but in the extreme, such deviations are leading to the occurrence
of fits with large 𝐴. Since large values of 𝐴 in the CE model correspond to a pressure
effect, this finding also seems consistent with the effect described by Castro et al. (2007)
and Sun et al. (2010), that the characteristic UA model misfit (high Ar, low Xe) was
decreased in the OD model with increasing pressure parameter.

3.4. Synthetic samples

In order to simulate and possibly reproduce the behavior of the problematic samples,
the Monte Carlo analysis was applied to synthetic samples. 27 samples were created for
the following parameter values: 𝐴 = 0.01, 0.05, 0.1 cm STP/g; 𝐹 = 0.3, 0.5, 0.7; 𝑇 = 10,
20, 30℃; 𝑃 = 1 atm; 𝑆 = 0. Note that this choice of parameter values in particular spans
the range from low to rather critically high values of 𝐴. The uncertainties of the Ne, Ar,
Kr and Xe concentrations were chosen to be 0.5%, 0.5%, 1% and 3% respectively for the
Monte Carlo simulations, according to typical values for current noble gas analyses in
our laboratory at Heidelberg University. It should be mentioned that the Xe uncertainty
is relatively large and some of the following results may differ if a smaller Xe uncertainty
was assumed.

The left column of Fig. 3.3 shows histograms of three representative synthetic samples,
going from low values of all parameters (Fig. 3.3a) to higher values (Fig. 3.3b and c). The
first example shows a well constrained range of variability in𝐴 and 𝑇 , superimposed by
a group of Monte Carlo realizations exhibiting the clustering at 𝐹 = 0 and very low 𝐴.
Apart from this group, the Monte Carlo solutions are normally distributed around the
original parameter values (which are correctly retrieved by fitting the original synthetic
samples in all cases). It is noteworthy, however, that the solutions with 𝐹 = 0 (UAmodel)
yield too low estimates of 𝐴 and 𝑇 . This may have been expected for the parameter 𝐴,
which has a different physical meaning in the case of the UA model (finally dissolved
air rather than initially entrapped air), but it is a potential problem with regard to the
estimation of 𝑇 . It implies that care should be taken in combining solutions with 𝐹 = 0
with true CE model solutions in real data sets.

More important for the main theme of this investigation is the behavior of the Monte
Carlo realizations for synthetic samples with higher values of 𝐴, 𝐹 and 𝑇 , as shown in
Fig. 3.3b and c. Here, similar to the finding for most of the well-behaved real samples,
a significant number of Monte Carlo realizations provides solutions in the problematic
area with high values of 𝐴. Correspondingly, the 1D histograms for 𝐴 and 𝑇 deviate
from normal distributions with a tail or even aweakly expressed second peak on the side
of high values of 𝐴 and 𝑇 . As a result, the mean estimated temperature from the Monte
Carlo analysis deviates from the true temperature of the original synthetic samples,
with a bias towards higher 𝑇 . This bias is very low for the sample shown in Fig. 3.3a

28



3.4. Synthetic samples

𝐴 = 0.01 cm STP/g, 𝐹 = 0.3, 𝑇 = 10℃
unmodified















𝑇
[℃

]

 . . . .

𝐴 [cm STP/g]












𝐴 = 0.01 cm STP/g, 𝐹 = 0.3, 𝑇 = 10℃
modified










𝑇
[℃

]
 . . . . .

𝐴 [cm STP/g]













(a) Low excess air, fractionation and temperature.
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(b) High excess air and fractionation, low temperature.

Figure 3.3.: Histograms of theMonte Carlo analyses of the synthetic samples (continued
on the following page).
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(c) High excess air, fractionation and temperature.

Figure 3.3 (cont.): Histograms of theMonte Carlo analyses of the synthetic samples. The
left column shows unmodified samples, the right column shows the
effect of increasing Ar concentrations by 0.5% and decreasing Xe con-
centrations by 1.5%. The blue lines represent the samples’ fit results
without Monte Carlo simulations. For sample a, one can see that the
Monte Carlo results are normally distributed around the fit result for
both the unmodified and the modified sample (except for a few cases
with low 𝐴 and 𝐹 = 0). If 𝐴 and 𝐹 are increased (sample b), a few
Monte Carlo realizations appear in the problematic domain. With
the modifications applied they even form a small distinct peak. The
fit result, however, still does not completely move into the problem-
atic area. If the temperature is increased, too (sample c), the second
cluster becomes more dominating and, in the modified case, also con-
tains the fit result.
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(mean 𝑇 = 10.03℃ instead of exactly 10℃). It becomes noticeable for the synthetic
samples shown in Fig. 3.3b (mean 𝑇 = 10.43℃ instead of 10℃) and Fig. 3.3c (mean
𝑇 = 20.52℃ instead of 20℃). This analysis confirms the bias of the CE model as a
temperature estimator as described by Sun et al. (2010), although their bias is more than
twice as high than in this analysis, which is likely due to the fact that different errors
were assumed for the noble gas concentrations. It also confirms the expectation that the
bias comes from the tendency of the CE model to produce solutions with unrealistically
high 𝐴 and correspondingly overestimated 𝑇 for some specific patterns of noble gas
concentrations.

As deduced from the analysis of problematic real samples, the solutions with high 𝐴
occur for high concentrations of Ar combined with low concentrations of Xe. In order
to study the effect of such systematic deviations, each synthetic sample was also ana-
lyzed with Ar increased by 0.5% and Xe decreased by 1.5% (see Table 3.3). The right
column of Fig. 3.3 shows histograms of the three representative synthetic samples dis-
cussed above after applying these modifications. Samples with low values of 𝐴, 𝐹 and
𝑇 , like in Fig. 3.3a, do not show important changes in their behavior as a result of the
applied modification, except for a slight shift of the mean parameter values. The preva-
lence of solutions with 𝐹 = 0 was reduced in the example shown here, but this has little
effect on the mean values and errors of the parameters deduced from the Monte Carlo
procedure. For higher values of 𝐴, 𝐹 and 𝑇 , like in Fig. 3.3b and c, where even the un-
modified synthetic samples have Monte Carlo realizations in the problematic area, the
modified samples tend to produce a second cluster at high 𝐴. In the modified sample
shown in Fig. 3.3b one can already see a second cluster forming, but the fit result is still
acceptable, although the parameter errors already increase considerably. If the temper-
ature is increased to 20℃ as in Fig. 3.3c, the second cluster becomes more pronounced
and now also contains the fit result, which shows the same large 𝐴 and 𝑇 uncertainties
as the problematic physical samples.

Fig. 3.4 shows how the histograms change if the noble gas concentrations aremodified
step by step for the example of the synthetic sample of Fig. 3.3c. One can see the “wrong”
maximum gradually grow whereas the “true” maximum becomes smaller. This result
shows that the applied systematic concentration changes (increased Ar and decreased
Xe) do not just gradually shift the results of the CE model fits, but lead to a transition
from a “normal” behavior with well defined maxima of 𝐴 and 𝑇 close to the values used
to produce the original synthetic samples towards a “problematic” behavior with two
separate maxima, one of them occurring at unrealistically large𝐴 andmuch higher than
original 𝑇 .

It is very interesting to note, however, that the clusters and corresponding peaks with
low values of 𝐴 and 𝑇 still fall close to the original parameter values, even after the
modification of the concentrations of the synthetic samples. It appears as though this
lower cluster retains the information from the original synthetic sample. This finding
is intriguing in view of the behavior of the problematic physical samples. There, too, a
lower cluster with potentially meaningful values of 𝐴 and 𝑇 occurs (Fig. 3.2), and the
question arises if these “realistic” clusters may represent the “true” parameter values for
these samples.
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3. Properties of the closed-system equilibration model

Table 3.3.: Fit results of a number of synthetic samples after increasing Ar by 0.5% and
decreasing Xe by 1.5%

Parameters used to create sample Fit results after modification

𝐴 𝐹 𝑇 𝜒 𝐴 𝐹 𝑇 𝑇
[cm STP/g] [℃] [cm STP/g] [℃] [℃]

. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
. .  . . ± . . ± . . ± . .
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Figure 3.4.: Effects of incremental modifications to the noble gas concentrations for the

last synthetic sample of Figure 3.3. The plots show histograms of the Monte
Carlo results for the parameters 𝐴 and 𝑇 . The vertical lines represent the
samples’ fit results. One can see that a second peak emerges as the noble
gas concentrations are altered step by step.

33



3. Properties of the closed-system equilibration model

𝐴 = 0.05 cm STP/g, 𝐹 = 0.7, 𝑇 = 20℃
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Figure 3.5.: Illustration of the proposed approach for handling poorly-fitting samples
for the modified synthetic sample of Figs. 3.3c and 3.4. The Monte Carlo
realizations are separated into two clusters, one with realistic and one with
unrealistic parameter values. The statistical analysis is then reduced to the
realistic cluster (shaded in gray here). The 1D histograms show both the orig-
inal distribution (black) as well as the distribution of the remaining Monte
Carlo realization (red).
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3.5. Application to poorly-fitting samples

In order to find out if it is permissible to restrict the analysis to the Monte Carlo real-
izations leading to fit results in the more realistic cluster, mean value and standard devi-
ation of these subsets were determined for several synthetic samples. Fig. 3.5 illustrates
this process for the modified sample shown in Fig. 3.3c. Based on the 2D histogram ob-
tained from the Monte Carlo analysis, a separation of the realizations into two groups
corresponding to the two clusters is performed. The separation line is drawn at the
saddle point between the two maxima, orthogonally to their connection line. Only the
realizations corresponding to the realistic cluster are retained for a statistical analysis
of mean values and standard deviations of the parameters. The results obtained in this
way agreed very well with the parameter values used to generate the synthetic samples,
i.e., the deviations were less than the standard deviation, often even less than 0.2℃.

3.5. Application to poorly-fitting samples

The analysis of synthetic CE model samples shows that systematic modifications of the
concentrations (+0.5% for Ar and −1.5% for Xe) can lead to the observed fitting prob-
lems. These deviations are less than typical measurement uncertainties of the noble gas
laboratory in Heidelberg, which means that a few per cent of the measured samples will
show these problems simply for statistical reasons. Furthermore, the problems occurred
more often for higher values of the parameters 𝐴, 𝐹 and 𝑇 , meaning that samples taken
in regions with warmer climate are more likely to be affected. The analyses of the mod-
ified synthetic samples suggest that the problematic samples can still be evaluated—if
they show two separate clusters of parameters—by limiting the statistical analysis to
the cluster with the more realistic values.

Table 3.4.: Results obtained by restricting the evaluation to the cluster of Monte Carlo
realizations with realistic values for 𝐴 and 𝑇

Sample 𝑇 [℃] 𝐴 [cm STP/g] 𝐹

MAS_21 . ± . . ± . . ± .
MD6.2 . ± . . ± . . ± .
TX46.2 . ± . . ± . . ± .
IND32_1 . ± . . ± . . ± .

Table 3.4 shows the results of this method when applied to the poorly-fitting samples
MAS_21, MD6.2, TX46.2, and IND32_1. The results seem to be realistic and compare
very well to the results of the corresponding normal samples MAS_24, MD9.1, TX46.3,
and IND32_3, respectively (see Table 3.2). This result supports the conclusion from the
analysis of synthetic samples, that it seems to be reasonable to restrict the analysis of
problematic fits with the CE model to the subset of Monte Carlo realizations that lie in
the range of realistic values of 𝐴. In order to investigate the potential of this approach,
it was applied to a larger number of problematic samples than discussed here. In gen-
eral, this yielded promising results. However, there were also some samples where this
method did not work, because these samples did not show the characteristic splitting

35



3. Properties of the closed-system equilibration model

behavior. Their Monte Carlo results did not show two clusters but were all concentrated
in areas of physically unrealistic parameter values and the samples could thus not be
evaluated in the way proposed here.
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4. Recommended sample evaluation
process

The evaluation of groundwater noble gas data by inverse modeling tools requires a cer-
tain expertise to judge the obtained results and choose a reasonable evaluation strategy.
As Sun et al. (2010) have demonstrated in detail, there are systematic offsets between
the noble gas temperatures estimated with different excess air models, but the tempera-
ture variation within a data set is robust with regard to the model choice. It is therefore
strongly recommended to evaluate a given data set with only one model for all samples.
As the new software PANGA, which will be introduced in chapter 6, adds additional
ways to treat individual samples, even more care should be taken to obtain a consis-
tent and appropriate evaluation of any given data set. It is therefore recommended to
start with simple, traditional evaluation methods and only use the advanced models
and features such as Monte Carlo simulations and ensemble fitting when clearly indi-
cated. The following sections contain the description of a recommended step-by-step
evaluation approach for groundwater samples, with a particular emphasis on the appli-
cation of the CE model, which probably has been the most frequently used model in the
past. This evaluation approach also takes into account the special cases, which appear
regularly, like the one discussed in detail in chapter 3 or UA limit cases.

4.1. Step 1: UA model fits

In the beginning, fitting the UA model, which is the most simple and also numerically
most stable excess air model, can give helpful information about the samples. For
example, very small or very large values of the parameter 𝐴 may indicate unusual
excess air conditions (possibly due to equilibration or air contamination during sam-
pling), whereas negative 𝐴 values indicate that the samples were probably affected by
degassing. The 𝜒 values obtained by the UAmodel also provide some orientation. Gen-
erally low 𝜒 values with corresponding probabilities larger than 1% may even super-
sede the need for further evaluations, but this is rarely the case. Somewhat higher 𝜒
values call for more complex models accounting for excess air fractionation with an ad-
ditional parameter, which in general can improve on the UA-model fits. Very high 𝜒
values from the UA model, however, may indicate some problem with the data that no
model will be able to explain.
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4. Recommended sample evaluation process

4.2. Step 2: CE model fits

As a next step, fitting the CE model is suggested, which can describe both excess air and
degassing and contains other models as limiting cases (Aeschbach-Hertig et al. 2008). In-
formation from fitting the UA model in the first step should be taken into account for
the selection of initial fit parameters. Initial values of 𝐴 = 0.01 cm STP/g and 𝐹 = 0.5
usually worked very well for samples with excess air, whereas 𝐹 = 3 seems to be a good
choice for degassed samples, in order to find the minimum with 𝐹 > 1 corresponding
to degassing. The temperature initial values should be close to the expected paleotem-
peratures or somewhat lower to prevent the fitter from falling into a second local 𝜒
minimum at higher temperatures and unrealistically high 𝐴 values which is present in
most samples as described in section 3.2. For many samples, standard CE model fitting
works very well and provides sound parameter and uncertainty estimates as well as
reasonable 𝜒 values. As a guidance, we consider the following range of CE model pa-
rameters and uncertainties as reasonable: 𝐴 < 0.05 cm STP/g, 0.1 ≤ 𝐹 < 1 andΔ𝑇 < 2∘𝐶.
The 𝜒 fit probability (cf. equation 2.43) should be greater than 1%.

In order to find out whether or not Monte Carlo fits would significantly improve the
parameter estimates and their uncertainty in case of such samples with “well-behaved”
CEmodel fits, around 250 samples from five different datasets were analyzed. A compar-
ison of fit results with estimates in the standard CE model range with their respective
Monte Carlo counterparts showed good agreement of the temperature parameter in al-
most all cases. In two cases the mean Monte Carlo temperature was about 0.7 to 0.8℃
lower than the fit temperature. In five cases it was about 0.4℃ lower. For three other
cases the temperature estimates agreedwell, but theMonte Carlo temperature error was
about 0.4℃ lower. So, for most well-behaved samples, Monte Carlo analysis does not
improve parameter estimation and may be omitted. In such cases, the analysis may be
terminated at this point, unless there are reasons such as suspected temperature biases
or oxygen depletion that motivate the exploration of further models.

4.3. Step 3: Monte Carlos fits

It is recommended to carry out Monte Carlo fits if the CE model fit results do not meet
the criteria given above. Among these samples, two special patterns are quite common:
The first case, which has been discussed in detail in chapter 3, is characterized by too
high temperature estimates in conjunction with large temperature uncertainties. In the
second case, which corresponds to a UA limit case and is discussed in more detail below,
the results exhibit highly negative 𝐹 values (typically between −1000 and −5000) com-
bined with low 𝐴 values (less than 10− cm STP/g) or, in rare cases, with interchanged
signs, i.e., high positive 𝐹 together with small negative 𝐴. If the fit was carried out in
constrained mode, this case is characterized by 𝐹 = 0. It is identical to the special case
which already appeared in chapter 3. In both cases, Monte Carlo analyses and their
appropriate evaluation, as demonstrated later in this section, can help to obtain better
results.
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4.4. Examples of common Monte Carlo cases

Table 4.1.: Noble gas concentrations of the samples illustrating the different Monte
Carlo cases and the pressures and salinities used for their fits.

Sample Ne Ar Kr Xe 𝑃 𝑆
[− cm STP/g] [− cm STP/g] [− cm STP/g] [− cm STP/g] [atm] [g/kg]

BE_8 . ± . . ± . . ± . . ± . . .
IND_25_3 . ± . . ± . . ± . . ± . . .
IND_19_2 . ± . . ± . . ± . . ± . . .
TX48.2 . ± . . ± . . ± . . ± . . .
CN_16_2 . ± . . ± . . ± . . ± . . .

It is recommended to begin with unconstrained fits to avoid any problems in the
boundary area which could be caused by the constraints. Only if the results indicate it,
the fits should be repeated in constrained mode.

4.4. Examples of common Monte Carlo cases

In the following sections a list of the most common patterns appearing in the evalua-
tion process will be given together with recommendations on how to handle them. To
illustrate the different cases the following set of samples will be used: BE_8 (just called
8 in the article) was taken from the Belgium dataset by Blaser et al. (2010), which will
be reviewed in section 5.10. TX48.2 is a sample from the Texas data set by Castro et al.
(2007) which was already used in chapter 3. IND_25_3, IND_19_2 are two samples from
a sedimentary aquifer system in the North Cambay Basin in Northwest India (Wieser
2011). The last sample, CN_16_2, is from a well in the Beijing area and part of a recent
study in the North China Plain (Schneider 2014).

Table 4.2.: Results of the initial UA model fit
Sample 𝜒 Probability 𝐴

[%] [− cm STP/g]

BE_8 . . .
IND_25_3 .  .
IND_19_2 . . ⋅ − .
TX48.2 . . .
CN_16_2 . . ⋅ − −.

Table 4.2 shows the results of an initial UA model fit. The 𝐴 estimates indicate that all
samples but CN_16_2 have excess air. CN_16_2, however, has negative 𝐴, meaning that
degassing has probably occurred. For the samples IND_25_3, IND_19_2 and CN_16_2,
the fit probabilities are very low. The 𝜒 probability of BE_8 is almost acceptable. TX48.2
is one of the rare cases where the probability is very good, so that further fitting might
not be necessary. Nevertheless, all samples will be further analyzed here, to show their
different behaviors with respect to CE model Monte Carlo fitting. As they have excess
air, all samples but the last one should be fitted with an initial 𝐹 smaller than 1. The
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Figure 4.1.: Normal case: Monte Carlo analysis is not necessary.

remaining sample, CN_16_2, should have an initial 𝐹 greater than 1. The CE model fit
can now be used to distinguish between the different cases.

4.4.1. Normal case

BE_8 (Fig. 4.1) shows the standard case: All parameter estimates and uncertainties look
realistic and are in the above-mentioned range. Monte Carlo analysis is usually not
necessary in this case and will probably only show small deviations (cf. Table 4.3).

4.4.2. High A in combination with large temperature uncertainties

The two samples from India, IND_25_3 and IND_19_2, both show high values of 𝐴 in
combination with large temperature uncertainties. This case is usually accompanied
by too high temperature estimates, which may, however, still be in the realistic range.

Table 4.3.: Comparison of noble gas temperatures obtained from the CE model fit and
from Monte Carlo analysis

Sample 𝑇 [℃] 𝑇 [℃]

BE_8 . ± . . ± .
IND_25_3 . ± . . ± .
IND_19_2 . ± . —
TX48.2 . ± . . ± .
CN_16_2 . ± . . ± .
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(a) Most common subcase. NGT can be determined by restricting
the analysis to the sector shaded in gray.
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(b) Rare subcase. NGT cannot be determined, because almost all
Monte Carlo results are concentrated in the area of unrealistic
values.

Figure 4.2.: High 𝐴 in combination with large temperature uncertainties

41



4. Recommended sample evaluation process

These types of samples need to be analyzed using Monte Carlo fits. Their histograms
normally show a split-up of the 𝐴 and 𝑇 parameters into two peaks, or, in the two-
dimensional 𝐴-𝑇 histogram, the formation of two more or less separate clusters, one
of which is at unrealistic parameter values, in particular high values of 𝐴, and contains
the original fit result. The other cluster shows more realistic 𝐴 values and, as described
in more detail in chapter 3, corresponds to the “true” parameter values. Therefore, the
evaluation needs to be restricted to the realistic cluster, whereas the Monte Carlo re-
alizations in the unrealistic cluster are dropped. In Fig. 4.2a, this process is illustrated
for the sample IND_25_3. However, in rare cases like IND_19_2, which is shown in Fig.
4.2b, this approach is not feasible because all or almost all Monte Carlo results lie in the
cluster at unrealistic values. For these samples it is impossible to retrieve the correct
results as the realistic cluster is not visible.

4.4.3. UA limit case

The CE model includes two different UA model limit cases. The first one is 𝐹 = 0, in
which case the CE model equation simplifies to 𝑐𝑖 + 𝐴𝑧𝑖, which is the UA model. The
other case is less obvious and appears in the limit of |𝐹| ≫ 1:

𝑐𝑖 = 𝑐

𝑖 + (1 − 𝐹) ⋅ 𝐴𝑧𝑖

1+ 𝐹𝐴𝑧𝑖
𝑐𝑖

|𝐹|≫≈ 𝑐𝑖 + −𝐹𝐴𝑧𝑖
1+ 𝐹𝐴𝑧𝑖

𝑐𝑖

. (4.1)

If, additionally, |𝐹𝐴𝑧𝑖/𝑐

𝑖 | ≪ 1, which generally is the case for |𝐹𝐴| ≪ 0.01 cm STP/g,

this can further be simplified to

𝑐𝑖 ≈ 𝑐

𝑖 − 𝐹𝐴𝑧𝑖. (4.2)

This is identical to the UA model with 𝐴 replaced by −𝐹𝐴.
If unconstrained fits are used, the latter case is the one appearing most of the time.

However, because the approximation in equation 4.2 is not justified in all cases, the re-
sults correspond to some sort of mathematical mixing of the UA and CE models, which
does not need to have any physical meaning. It is therefore advisable to use constrained
fits for these types of samples and thereby prevent the fit from falling into the cases with
highly positive or highly negative 𝐹. Fig. 4.3 shows Monte Carlo results of the sample
TX48.2 which is an example for the UA limit case. Monte Carlo statistics typically re-
produce the fit temperature very well but lead to lower temperature uncertainties and
should therefore be carried out whenever this limit case occurs. Even though this is an
UA model limit case, the UA model should not be used for the statistics, as not all CE
model Monte Carlo results fall into this limit case and therefore contribute to a higher
temperature error (which is still lower than the CE model fit error).

4.4.4. Combination of high A and UA limit cases

The UA limit case sometimes appears together with the case of high 𝐴, i.e., the direct
fit of the sample shows either behavior but the Monte Carlo histograms show clusters
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Figure 4.3.: UA limit case: a large portion of the Monte Carlo realizations is in the UA
limit case with 𝐹 = 0. This plot shows a zoomed-in view of the results of a
constrained fit. A few Monte Carlo realizations lie in the area of higher 𝐴
and 𝑇 values, similar to sample BE_8 in Fig. 4.1.
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Figure 4.4.: Degassed case
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at high 𝐴 as well as in the UA limit case. For this type of sample the analysis should be
restricted to the normal and the UA limit case clusters, dropping the cluster at high 𝐴
values. A pair of examples for this case was analyzed in section 3.3: the two replicate
samples IND32_3 and IND32_1 in Fig. 3.2.

4.5. Degassed samples

Degassed samples exhibit 𝐹 values larger than 1 and the corresponding CE model solu-
tions are obtained by using an initial value of 𝐹 > 1. Besides this, they show the same
special Monte Carlo patterns as samples with excess air: in addition to the normal case
they can have high 𝐴 values, be in the UA limit case (here normally with large, positive
𝐹) or show a combination of both. This means that the same evaluation methods as for
samples with excess air may be tried. These cases were, however, not analyzed in this
work. It is therefore recommended to use the more conservative approach of using all
Monte Carlo realizations for the statistical analysis.

In addition, in the case of degassed samples the PD model based on diffusion-con-
trolled degassing should also be tried. The experience of our group shows that often
the CE model degassing case is able to provide better fits to degassed samples. In some
cases, however, the PDmodel can describe the measured noble gas concentrations more
accurately.
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5. Review of literature data

The following sections contain a review of important groundwater noble gas data sets
from the literature. All data sets were re-evaluated using the methods laid out in chap-
ter 4.

Samples whose 𝜒 values have a probability of less than 1% (i.e., 𝜒 ⩾ 6.64 for one
degree of freedom, which is the normal CEmodel case) were excluded from the analysis,
because their results are considered to be too bad a fit. For samples evaluated using
Monte Carlo simulations, 𝜒 was determined from the mean of the distribution of 𝜒 =
√𝜒, because this distribution normally has a symmetric shape, in contrast to the 𝜒
distribution, which is typically skewed to the right.

The most important statements in the evaluated studies relate to temperature differ-
ences betweenHolocene samples and samples from the last glacial period, especially the
Last Glacial Maximum (LGM). In order to calculate temperature differences, a method
has to be chosen to determine mean temperatures for a specific time period. For this re-
evaluation, the samples of one time period were averaged with the weighted arithmetic
mean, which is the maximum likelihood estimator of the mean value of multiple Gaus-
sian probability distributions sharing the same mean. The weighted arithmetic mean
and its variance are calculated according to (Bard 1974):

�̄� =
∑𝑛
𝑖= 𝑇𝑖 ⋅ 𝜎

−
𝑇𝑖

∑𝑛
𝑖= 𝜎

−
𝑇𝑖

(5.1)

var(�̄�) = 1
∑𝑛
𝑖= 𝜎

−
𝑇𝑖

. (5.2)

For this calculation the measurement errors of the individual samples need to be
adapted, as they only include the statistical uncertainty of the sampling and measuring
processes. The “real” paleotemperatures of the samples (as opposed to the measured
ones) are, however, also distributed in some way around the mean temperature of the
relevant time period. To estimate this temperature variability, the distribution of NGTs
in the data sets Stute 1995 Brazil, Aeschbach-Hertig 2002 Maryland and Kreuzer 2009
China was analyzed and compared to their measurement errors with an (unweighted)
least-squares fit minimizing 𝑆 = ∑𝑖(𝜎


𝑇𝑖 +𝑉𝑇 −𝑉𝑡𝑜𝑡,𝑖)

. The index 𝑖 traverses the samples
of all three data sets in the specific time period. 𝜎𝑇𝑖 denotes the temperature error of a
specific sample; 𝑉𝑡𝑜𝑡,𝑖 is the variance of the samples from the data set to which sample 𝑖
belongs. 𝑉𝑇 is the variance of the searched-for temperature variability. The associated
standard deviation, i.e., the square root of the variance, was estimated to be about 0.8℃
for both the Holocene and the late Pleistocene. To account for the temperature vari-
ability, this value was added in square to the measurement error before plugging it into
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5. Review of literature data

equation (5.1). If multiple samples from one well were present, they were combined by
calculating their weighted average before the 0.8℃ temperature variability was added.

For all plots in this chapter, the following conventions are used: data points that were
accepted in the re-evaluation, based on their 𝜒, are shown in black or fully saturated
colors. Samples not accepted in the re-evaluation are drawn in gray or pale colors. If a
sample was not accepted in the original evaluation, it is marked with an open symbol.
Samples that were originally included are depicted with closed symbols. Samples ex-
cluded from both analyses are sometimes omitted from the plots. The different symbols
indicate the way the samples were evaluated: circles mean that the results were deter-
mined from a normal fit. A triangle with its tip pointing upwards means that Monte
Carlo simulations with constrained fits were applied, while a triangle with its tip facing
downwards means that the sample was evaluated using Monte Carlo simulations with
unconstrained fits.

The fit results of this re-evaluation are all summarized in appendix C.

5.1. Stute 1995 Brazil
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Figure 5.1.: Stute 1995 Brazil: comparison of original and re-evaluated NGTs

This set of 21 samples from the Maranhão Basin in the Piaui Province, northeastern
Brazil, was published by Stute et al. (1995). It was used to introduce the PRmodel, as the
UA model did not result in good agreement among the temperatures derived from the
different noble gases. In this study, the model parameters have not been determined
using the least-squares method, yet. Instead, they were estimated by minimizing the
standard deviations of the temperatures derived from the individual noble gases after
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5.1. Stute 1995 Brazil

correction for PR-fractionated excess air. The re-evaluation was carried out using a pres-
sure calculated from a recharge altitude of 450m and a salinity of zero. An evaluation
with the CE model resulted in consistently lower than original noble gas temperatures
(Fig. 5.1). For most samples, the deviation lies between 0.5℃ and 2.0℃. The estimated
temperature for sample 17, however, is about 4.5℃ lower.
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Figure 5.2.: Stute 1995 Brazil: comparison of original NGTs and the NGTs determined
from a second re-evaluation with the PR model.

Fig. 5.2 shows the results of a PR 𝜒 fit compared to the original results. With a few
exceptions, which show about 1 to 2℃ lower temperatures, the original results were
reproduced quite well. The deviations were probably caused by the different estimation
method.

Sample H10 was excluded from the analysis because its 𝜒 value was considered too
high. For sample 4, no Ne concentrations were given. Therefore the fit had zero degrees
of freedom and its results could not be tested with a 𝜒 test. Because of this, the sample
was excluded from the analysis as well. Sample 17, even though it is in the warm cluster,
was not considered for the Holocene LGM temperature difference, because it probably
originated from a warm period before the LGM.

The re-evaluation yielded a mean temperature of the Holocene of (28.6 ± 0.3)℃. The
mean glacial temperature was found to be (23.0 ± 0.4)℃. Combined, these results give
a temperature difference of (5.6 ± 0.5)℃ between Holocene and LGM, which is in very
good agreement with the original result of (5.6 ± 0.6)℃.

Fig. 5.3 shows a comparison of the re-evaluated results with the re-evaluation of
Aeschbach-Hertig et al. (2000), which was used to introduce the CE model. The results
of both re-evaluations agree very well with the exception that the NGTs by Aeschbach-
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Figure 5.3.: Stute 1995 Brazil: comparison of the re-evaluated NGTs with the re-evalua-
tion carried out by Aeschbach-Hertig et al. (2000)

Hertig et al. (2000) are consistently higher by about 0.2℃. This is due to the fact that
they were using 400m as the presumed recharge elevation instead of the 450m used
here. Aeschbach-Hertig et al. (2000) found a temperature difference between Holocene
and LGM of (5.6 ± 0.4)℃, which is almost identical to the (5.6 ± 0.5)℃ found here.

5.2. Beyerle 1998 Switzerland

This data set from Switzerland was published by Beyerle et al. (1998). It consists of
eight samples taken from boreholes tapping the Glatt Valley aquifer. In the original
evaluation, the NGT was estimated with a least-squares fit of the UA model. The pre-
sumed recharge elevation was given as 540m. Salinity values for the original evaluation
were not given. For the re-evaluation they were assumed to be zero. The waters from
boreholes 2, 4 and 6 were mixtures of younger and older components which could be
separated using multiple tracers. For the re-evaluation, these three samples were used
after being corrected for the older component.

Fig. 5.4 shows the results of the re-evaluation compared to the original results. For the
samples 1, 2 and 6, the original results were reproduced quite well. The samples 0 and
4, however, show by 0.8 to 1.3℃ higher NGTs. The samples 3, 5 and 7 were originally
included but had to be rejected in the re-evaluation due to their high 𝜒 values.

Beyerle et al. (1998) concluded from their results that in the LGM the temperature
was about 5℃ lower than now. The re-evaluation gave a Holocene mean temperature
of (7.9 ± 0.6)℃. The two glacial samples had an average of (4.8 ± 0.6)℃, yielding a tem-
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Figure 5.4.: Beyerle 1998 Switzerland: comparison of original and re-evaluated NGTs
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Figure 5.5.: Weyhenmeyer 2000 Oman: comparison of original and re-evaluated NGTs

49
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perature difference of (3.0 ± 0.9)℃. This result, however, remains questionable because
the three (supposedly) coldest samples had to be rejected due to their bad fit and because
of the small number of samples in general.

5.3. Weyhenmeyer 2000 Oman

This data set contains eleven samples from Oman, southeastern Arabia, and was pub-
lished by Weyhenmeyer et al. (2000). The samples were taken from three aquifers in
the Al Khwad Fan catchment. Nine of them were evaluated using the CE model with
a pressure of 1 atm and a salinity of zero. The two remaining samples could not be
described with any existing model. Fig. 5.5 shows that the results of the re-evaluation
match the original ones very well. For the samples RGS-5F and RGS-2U, the errors could
be reduced using Monte Carlo simulations. DP-2 and 21/6, the samples ruled out in the
original evaluation, were excluded from the re-evaluation as well due to their high 𝜒
values.

In the re-evaluation, the three Holocene samples showed a mean temperature of
(33.7 ± 1.0)℃. The Pleistocene samples had a mean of (26.6 ± 0.8)℃. Combined, they
give a temperature rise of (7.1 ± 1.3)℃, which is slightly higher than the original value
of (6.5 ± 0.6)℃, but still agrees within the limits of uncertainty.

5.4. Aeschbach-Hertig 2002 Maryland
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Figure 5.6.: Aeschbach-Hertig 2002 Maryland: comparison of original and re-evaluated
NGTs
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5.5. Beyerle 2003 Niger

This data set recorded by Aeschbach-Hertig et al. (2002b) consists of 34 samples from
the Aquia aquifer in southern Maryland, USA. The original evaluation was carried out
using the CE model and inverse fitting. A recharge altitude of 50m was used for the
calculation of the pressure parameter; the salinity was assumed to be zero. As the sam-
ple MD6.2 yielded an unrealistically high 𝐴 value (0.288 cm STP/g), Aeschbach-Hertig
et al. (2002b) chose to fix 𝐴 in the center of realistic 𝐴 values (i.e., 𝐴 = 0.1 cm STP/g)
and then selected the temperature error in such a way that it spans the results one gets
when using the minimal or maximal 𝐴 values. This changed the NGT estimate from
(14.4 ± 2.6)℃ to (13.5 ± 1.1)℃. The same sample was evaluated in detail in sections 3.3
and 3.5, where it was used to analyze the behavior of the CE model. The sample’s re-
evaluated NGT was found to be (12.9 ± 0.4)℃. Fig. 5.6 shows that the results of the
re-evaluation are in very good agreement with the original ones, with the exception of
the aforementioned sample MD6.2.

The re-evaluation gave a mean Holocene temperature of (13.6 ± 0.5)℃ and mean tem-
perature of (4.6 ± 0.4)℃ for the LGM. This agrees very well with the original values of
(13.7 ± 0.3)℃ and (4.7 ± 0.5)℃ respectively. The Holocene LGM temperature difference
was found to be (9.0 ± 0.6)℃, exactly matching the original result.

5.5. Beyerle 2003 Niger

24
25
26
27
28
29
30
31
32
33
34
35

24 25 26 27 28 29 30 31 32 33 34 35

Re
-e
va

lu
at
ed

N
GT

[℃
]

Original NGT [℃]

Beyerle 2003 Niger

Figure 5.7.: Beyerle 2003 Niger: comparison of original and re-evaluated NGTs

This data set from southwestern Niger consists of 34 samples and was published by
Beyerle et al. (2003). The samples were taken from the Continental Terminal aquifer
system, which is divided into three layers. For the original evaluation, the CE model
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was used. The pressure for the re-evaluation was calculated from the recharge elevation,
which was estimated to be 250m using the map included in the article in combination
with Google Earth. The salinity was assumed to be zero. The samples were all well-
behaved, no Monte Carlo simulations were necessary. Fig. 5.7 shows that the original
results could be reproduced very well. Minor differences might have been caused by
slightly different pressure assumptions.

In the article, different groups of samples were analyzed: the modern samples from
the upper (CT3) aquifer, the samples from the recharge area of the middle aquifer (CT2),
which were about 6 kyr old, the CT2 samples between 10 and 14 kyr BP (the coldest sam-
ples) and all confined samples from the middle and lower aquifers. The re-evaluation
gave the following mean temperatures for these groups: (31.5 ± 0.3)℃ for the modern
CT3 samples, (30.1 ± 0.6)℃ for the CT2 samples in the recharge area, (26.1 ± 0.7)℃ for
the cold group of CT2 samples between 10 and 14 kyr BP and (27.3 ± 0.4)℃ for all con-
fined CT2 and CT1 samples. The cooling between modern samples and the 6 kyr old
ones was originally found to be about 2℃, the re-evaluation gave (1.4 ± 0.7)℃, which
agrees within the uncertainty. For the coldest samples, the temperature difference in-
creases to (5.4 ± 0.8)℃, which matches the original result of 5.5℃ very well. The tem-
perature difference between the modern CT3 samples and the confined samples of the
aquifers CT2 and CT1 was found to be (4.2 ± 0.5)℃, which is lower than the approxi-
mately 5℃ given in the paper.

5.6. Kulongoski 2004 Kalahari

These are samples from an inland sandstone aquifer at an altitude of around 1 km in the
Kalahari Desert in central Botswana. The data set was published by Kulongoski et al.
(2004) and consists of 12 samples. For the original evaluation, different excess air mod-
els (CE, PD and PR) were mixed: for every sample, the model was chosen, which led to
the best fit probability. This can, however, cause problems, because NGTs from different
models may be shifted and thus cannot be compared easily. The original approach is
therefore not recommended. As the paper does not include detailed information about
the recharge altitude, it was estimated to be about 1000m using Google Earth. The salin-
ity was assumed to be zero. Fig. 5.8 shows that the CE model samples were reproduced
very well. Both PR model samples, however, deviate significantly. All five PD model
samples needed to be excluded from the re-evaluation due to too high 𝜒. One of the
five samples (769) was excluded from the original study as well. The original usage of
the PDmodel for these five samples is a little surprising, as neither the UAmodel results
(which all show positive𝐴 values) nor the Ne concentrations indicate degassing. Trying
to fit the CE model in degassed mode (i.e., with an initial value of 𝐹 > 1), either led back
to the non-degassed case with 0 < 𝐹 < 1 or, if the fit did not manage to overcome the
threshold at 𝐹 = 1, gave extremely high values of 𝜒.

The three remaining Holocene samples gave a mean NGT of (22.5 ± 0.8)℃. The sam-
ples older than 24 kyr BP have an average temperature of (18.6 ± 0.6)℃. Combined, this
yields a temperature difference of (4.0 ± 1.0)℃, which is more than 1℃ lower than the
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Figure 5.8.: Kulongoski 2004 Kalahari: comparison of original and re-evaluated NGTs.
The colors indicate the excess air model used for the original evaluation.

original result of (5.2 ± 1.5)℃. Both results, however, still agree within their ranges of
uncertainty.

5.7. Ma 2004 Michigan

This data set was published by Ma et al. (2004). The region of study is southern Michi-
gan. The samples were taken from 13 wells in the Marshall aquifer and one well in the
Saginaw aquifer. Noble gas temperatures were originally determined following Ballen-
tine and Hall (1999), i.e., with the UA model and inverse fitting. The pressure for the
re-evaluation was calculated from the presumed recharge altitude of 300m, the salinity
was set to zero. For eight out of 19 samples, the re-evaluated 𝜒 values are too high
to fulfill the criterion of 𝑝 ⩾ 0.01. Therefore, they had to be omitted according to the
conditions used for this re-evaluation. 𝜒 for most of these samples is in the range of
11.8 to 16.0, corresponding to probabilities between 0.006 and 0.06%. Samples 10a and
10b, however, cannot be described at all, as they show extremely high 𝜒 values of 30
and 56 respectively. In the original evaluation, only the samples 10a and 10b had been
excluded. The problem of high 𝜒 values mainly affects the modern and LGM samples,
leaving only one sample in each group. The remaining sample in the Holocene group is
sample 8, which is more than 1℃ colder than samples 1, 6 and 7 (which have too high
𝜒). The temperature difference between this sample and the remaining LGM sample
is (3.2 ± 1.4)℃, which is significantly lower than the original difference of 5℃. This
result, however, remains questionable. In their article, Ma et al. (2004) discussed an
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Figure 5.9.: Ma 2004 Michigan: comparison of original and re-evaluated NGTs

abrupt warming event at around 12 kyr BP with a temperature increase of about 2.4℃.
The re-evaluation of the involved samples (12a,b and 15) yielded a significantly higher
value of (3.8 ± 1.4)℃. Ma et al. (2004) also mentioned a possible slight temperature in-
crease of about 0.7℃ at around 6 kyr BP (samples 2a,b and 4a,b). This increase could not
be confirmed, as the re-evaluation of this difference gave (0.1 ± 1.2)℃.

Overall, many samples in this study cannot be described very well using existingmod-
els. The NGTs of modern samples cannot reproduce the MAAT; they are significantly
lower. The OD model, which was developed by Hall et al. (2005) as a consequence of
the problems in this data set, does not perform any better with respect to paleotem-
peratures. It even yields slightly lower temperatures, because the least 𝜒 is found at
𝑃𝑂𝐷 = 0.98. If the possible range of 𝑃𝑂𝐷 values is constrained to the range from 1.00
to 1.26, the best match is found at 𝑃𝑂𝐷 = 1, reproducing the UA model results, which,
in turn, have also lower NGTs than the CE model results. Whichever excess air model
is used, the probability of the data set’s 𝜒 never exceeds 2.3 ⋅ 10− (excluding samples
10a and 10b).

5.8. Kreuzer 2009 China

Kreuzer et al. (2009) recorded a set of 41 samples from the North China Plain. The CE
model was used for the original evaluation. The recharge elevation was assumed to be
50m for wells with an elevation of less than 50m and assumed to be equal to the well
elevation for all wells higher than 50m. The salinity was set to zero. Fig. 5.10 shows that
the re-evaluation was able to reproduce very well the original results. Most samples
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Figure 5.10.: Kreuzer 2009 China: comparison of original and re-evaluated NGTs
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Figure 5.11.: Kulongoski 2009 California: comparison of original and re-evaluated NGTs.
The colors indicate the excess air model used for the original evaluation.
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were well-behaved and a Monte Carlo analysis was not necessary. For nine samples,
the temperature uncertainties could be reduced using Monte Carlo calculations. For
two samples, no reliable temperatures were determined, because of too high 𝜒 values.
As in the original study, the samples exhibiting exceptionally high NGTs, i.e., samples
15, 39, 45 and 46, were excluded from any temperature averaging.

For the modern samples, the re-evaluation yielded a temperature of (13.8 ± 0.3)℃. All
Holocene samples together gave a mean temperature of (13.4 ± 0.2)℃. The Pleistocene
samples had an average NGT of (9.7 ± 0.3)℃ and the coldest six samples, representing
the coldest sampled period, yielded (8.9 ± 0.4)℃.

The re-evaluated Holocene Pleistocene NGT difference is (3.7 ± 0.3)℃. This agrees
very well with the original difference of (3.8 ± 1.5)℃ but its estimated uncertainty is sig-
nificantly lower, which is probably due to too conservative error estimates for the mean
temperatures of the age groups in the original publication. A comparison of Holocene
samples to only the coldest Pleistocene samples yields (4.4 ± 0.4)℃, again agreeing well
with the original value of (4.6 ± 1.2)℃. As to the difference between the modern sam-
ples and the coldest Pleistocene ones, the re-evaluation gives (4.9 ± 0.4)℃. The original
result was (5.1 ± 1.1)℃.

5.9. Kulongoski 2009 California

This data set was published by Kulongoski et al. (2009) and consists of 18 samples from
the Mojave River Basin regional aquifer in the western Mojave Desert, California, USA.
The samples were taken from ten different wells. They were evaluated using a recharge
altitude of 1100m and a salinity of 0.03‰. As in their earlier study, Kulongoski et
al. (2009) evaluated the samples using different models. Unlike before, however, only
CE model results were used for the evaluation of mean temperatures and temperature
differences. If multiple CE-evaluated samples were available for a single well, only the
one with the best fit probability was used. In the re-evaluation, all samples including
replicate samples were used, except for sample 6b, which had a 𝜒 slightly above the
threshold.

For the 13 remaining groundwater samples older than 11.9 kyr, a mean tempera-
ture of (12.1 ± 0.4)℃ was found. The four Holocene samples had an average NGT of
(16.2 ± 0.6)℃. Combined, this yields a Holocene Pleistocene temperature difference of
(4.1 ± 0.8)℃, which matches the originally found (4.2 ± 1.1)℃ very well.

5.10. Blaser 2010 Belgium

This data set consists of 44 samples from the Ledo-Paniselian Aquifer in Belgium. It
was published by Blaser et al. (2010) and exhibits several degassed samples as well as
many of the special cases mentioned in section 4.3. The original evaluation was carried
out using the CE model; the recharge elevation was assumed to be 20m. The salinity
was set to the values measured on-site for the different wells. Fig. 5.12 shows that
for most samples, the re-evaluated results match the original ones quite well. For ten
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Figure 5.12.: Blaser 2010 Belgium: comparison of original and re-evaluated NGTs

samples, the re-evaluated noble gas temperature, after using Monte Carlo analysis, was
lower than the original one by 0.5℃ or more. The ten degassed samples, which were
also evaluated using Monte Carlo, show only small deviations of at most 0.2℃. It is
interesting to note that the two-dimensional 𝐴-𝑇 diagrams of these samples resemble
those of samples with excess air, mirrored around some point on the 𝑇 axis. They show
the same patterns, e.g., split-ups into two clusters, or only a single cluster at too high
values of 𝐴. Because these effects were not studied in detail for degassed samples, their
evaluation was carried out using the more conservative approach of keeping all Monte
Carlo realizations for the statistical analysis. As in the original study, five out of the
ten degassed samples did not provide acceptable fits, i.e., their 𝜒 test probability was
less than 1%. The re-evaluation also followed the original decision to exclude degassed
samples for the calculation of mean temperatures or temperature differences within the
record.

The re-evaluation gave the following results: the average temperature of the three
modern non-degassed samples is (9.8 ± 0.7)℃. This is almost 1℃ lower than the original
value of (10.7 ± 0.7)℃, because two of the three samples showed in Monte Carlo simu-
lations the case of split-up clusters with fit results that are significantly shifted towards
the unphysical cluster. For the coldest six samples, a mean temperature of (1.1 ± 0.5)℃
was found, which compares well to the original (1.2 ± 0.2)℃. The difference between
these two groups is (8.8 ± 0.8)℃, which is now a little smaller than the difference of
(9.0 ± 0.6)℃ in the Maryland study by Aeschbach-Hertig et al. (2002b). Originally, the
NGT difference was found to be a little larger with a value of (9.5 ± 0.7)℃.
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5.11. Comparison of excess air models

For the re-evaluation of all studies in this chapter, the CE model was used. In this
section, this choice will be supported by a comparison of the CE, OD and PR models for
all evaluated studies.

For the comparison, the three models were applied to all data sets without carrying
out any Monte Carlo simulations. For every model and data set, a total 𝜒 and a to-
tal number of degrees of freedom were determined either by adding up the numbers
from the individual fits (CE and PR models) or by using the results of the ensemble
fit (OD model). From these two values, the 𝜒 probability defined in (2.43) was calcu-
lated as a measure of goodness of fit. The CE and PR model fits were carried out in the
unconstrained mode, which normally does not give significantly different results from
the constrained mode. For the OD model, both modes were analyzed, because small
changes in 𝑃𝑂𝐷 may cause significant temperature shifts. Some of the studies contain
several problematic samples with very high values of 𝜒 for any model. These samples
contribute very strongly to their studies’ total 𝜒 and lead to extremely low 𝜒 proba-
bilities. In order to limit their effect, the most problematic samples were excluded from
this comparison. Samples with 𝜒𝐶𝐸 > 20 were regarded as belonging to this category.
Degassed samples were also not considered because neither the OD nor the PR model
is able to handle them.

Table 5.1 summarizes the results of this comparison. Judging from the 𝜒 probabilities,
the CEmodel gives the best results. In all but two studies it yields reasonably high values.
For three studies, the PR model gives higher probabilities. Two of those—Kulongoski
2004 Kalahari and Ma 2004 Michigan—are, however, not described very well by any
model. The OD model fails to give acceptable probabilities in all but two cases: in
Beyerle 1998 Switzerland, where it performs a little better than the CE model but worse
than the PR model, and in Kulongoski 2009 California.

The mean NGTs show that the CE and the PR model give similar temperatures in
many cases, with the PR temperatures being a little higher most of the time. The OD
model shows significantly higher temperatures for many studies, even up to about 10℃,
if the 𝑃𝑂𝐷 parameter is allowed to vary freely. In the unconstrained mode, 𝑃𝑂𝐷 leaves
the realistic range (1.00 to 1.26) in half of the cases. In Ma 2004 Michigan, the one study
where the CE and PR model NGTs of modern samples are much lower than the MAAT,
the OD model also fails to provide temperatures in the expected range.

All in all, the CE model provides the best results in most cases. Except for special
circumstances, it seems to be the best choice for the evaluation of noble gas data sets
from groundwater.
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Table 5.1.: Summary of the comparative analysis of the CE, OD and PR excess air models. The subscripts u and c refer to unconstrained
and constrained fits, respectively.

𝜒 probability [%] Mean NGT [℃]

Study CEu ODc ODu PRu CEu ODc ODu PRu

Stute 1995 Brazil . . ⋅ − . ⋅ − . ⋅ − . . . .
Beyerle 1998 Switzerland . . . . . . . .
Weyhenmeyer 2000 Oman . . ⋅ − . ⋅ − . ⋅ − . . . .
Aeschbach-Hertig 2002 Maryland . . ⋅ − . ⋅ − . ⋅ − . . . .
Beyerle 2003 Niger . . ⋅ − . ⋅ − . ⋅ − . . . .
Kulongoski 2004 Kalahari . ⋅ − . ⋅ − . ⋅ − . ⋅ − . . . .
Ma 2004 Michigan . ⋅ − . ⋅ − . ⋅ − . ⋅ − . . . .
Kreuzer 2009 China . . ⋅ − . ⋅ − . ⋅ − . . . .
Kulongoski 2009 California . . . . . . . .
Blaser 2010 Belgium . . ⋅ − . ⋅ − . . . . .
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Figure 6.1.: The software PANGA.

With existing software solutions it was tedious, if not impossible, to carry out some
of the evaluation methods detailed in chapters 3 and 4. The software PANGA1 was
developed in the context of this work with the goal of providing an easy-to-use tool for
the application of those advanced evaluation methods.

6.1. Features

In its most basic mode of operation, PANGA finds a set of sample parameters in such a
way that the modeled noble gas concentrations reproduce the measured sample concen-
trations in the best possible way (i.e., with minimal 𝜒, cf. chapter 2.2). This is done for
all samples in the data set independently of each other. If desired, the range of possible
values of the parameters may be constrained to only include physically plausible values.
Model parameters which are not supposed to be varied can be set to fixed values either

1Program for the Analysis of Noble GAs data
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6.2. Implementation

globally or independently for each sample. In the samemanner, initial parameter values
for the fitting algorithm may be specified either globally or individually. The user can
also exclude selected noble gases from the fit globally.

Alternatively, the software can also perform a so-called “ensemble fit”, i.e., it does not
treat the samples individually but combines all of them in a single fit. In this mode each
fit parameter can either be varied independently for each sample or it can be fitted to
the ensemble of samples, i.e., it has the same value for every sample.

In both modes the user can choose to additionally carry out a specific number of
Monte Carlo calculations which can be used to determine more accurate estimates for
the fit parameters and their errors and to check whether or not the fit shows any kind
of abnormal behavior. A few 100 000 up to several millions of Monte Carlo realizations
can be fitted in a few minutes, depending on computation power and on the properties
of the samples. All the values calculated for normal fits are also saved for every Monte
Carlo realization and one-dimensional histograms of their frequencies of occurrence
can be created for all of them. Additionally, any two parameters may be combined into
a two-dimensional histogram. Both kinds of histograms can be used to select a subset
of the Monte Carlo realizations which can then be applied as a mask to the Monte Carlo
results of the sample’s other parameters. This can be used, for example, to restrict the
analysis of the sample to one of multiple clusters as suggested in chapters 3 and 4.3 for
certain problematic cases. The program performs a basic statistical analysis, consisting
of mean value and standard deviation, for the remaining Monte Carlo realizations and
summarizes these statistical characteristics in a table.

The output of the fitting procedure consists of the following quantities for every sin-
gle fit: degrees of freedom of the fit; the final 𝜒 value together with the probability of
obtaining this or a higher value based on the 𝜒 distribution (cf. equation 2.43); the best
estimates of the fit parameters together with their uncertainties derived from the covari-
ance matrix (cf. equation 2.41); the off-diagonal elements of the covariance matrix in the
form of correlation coefficients, which need to be used for error propagation if further
quantities are derived from the fit parameters; the residuals of the fit; the equilibrium
components of the modeled concentrations; the final modeled concentrations.

Because 𝜒 may have multiple local minima it can sometimes be helpful to analyze
the structure of the 𝜒 surface in the parameter space in order to find irregularities or
to verify that the obtained minimum also is the global one. For these cases PANGA
provides the 𝜒 explorer mode, which shows contour plots of two-dimensional cross
sections of the 𝜒 surface. The user can freely choose the parameters on the plot’s axes
and can either fix the remaining parameters to a certain value or leave them to be fitted.
This feature allows for an interactive exploration of the 𝜒 surface, as the results are
calculated on-the-fly while the user pans or zooms the plot.

6.2. Implementation

PANGA is written completely in C++ and runs on Microsoft Windows, Linux and OS
X. For its calculations and user interface it makes use of several libraries: the Eigen
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template library (http://eigen.tuxfamily.org) is used for all algebraic computa-
tions. Eigen comes with a port of MINPACK, which is a reliable and robust implementa-
tion of the Levenberg-Marquardt algorithm. The user interface was implemented using
the Qt framework (http://qt-project.org); plots are created with the Qwt library
(http://qwt.sourceforge.net). The boost libraries (http://www.boost.org) are
used for many other aspects like multi-threading, serialization of data and compression.

6.3. PANGA output

The output of PANGA, which is calculated for normal fits as well as for each Monte
Carlo realization, consists of the following quantities:

Degrees of freedom Thedegrees of freedom of a fit, i.e., the number of measurements
used for the fit minus the number of fit parameters.

Chi Square The 𝜒 of the fit, as defined in (2.23).

Probability The probability of measuring this or a higher 𝜒 in repeated experiments,
as defined in (2.43).

Fit parameter estimates The best estimates for the fitted model parameters, found by
the Levenberg-Marquardt algorithm as described in chapter 2.2.3.

Fit parameter errors Approximations of the errors of the model parameter estimates,
as found by equation (2.41).

Convergence Information about the convergence of the fit. This may be one out of:
Converged The fit converged according to one of the convergence criteria.
Too many function calls Fitting was stopped, because 10 000 iterations were

reached without the fit being converged.
Improper Input Parameters No fit was be carried out because of a problem

with the input. This normally means that there were more fit parameters
than data points to fit to.

Error An unknown error occured.

Correlation coefficients The correlation coefficients of the fit, i.e., the off-diagonal
elements of the correlation matrix (2.18). Like the fit parameter errors they are
calculated from (2.41).

Residuals Residuals of the fit. They are given as relative deviations of the observed
noble gas concentrations from the modeled ones: (𝑐𝑖 − 𝑐𝑖 )/𝑐𝑖 .

Equilibrium concentrations The equilibrium components of the modeled concentra-
tions. Their errors are calculated from those of the fit parameters using the general
law of error propagation (2.46).
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Modeled concentrations Sum of the equilibrium and excess air components, which
is equal to the total modeled concentrations. Their errors are calculated from
those of the fit parameters using the general law of error propagation (2.46).

Measured concentrations These are the input concentrations of the samples. It also
includes the concentrations which were not fitted. In the case of Monte Carlo
simulations, these are the randomly altered input concentrations.

6.4. Errors of derived quantities

In order to estimate the errors of quantities derived from the PANGA output, equation
(2.46) needs to be applied. If expressed in terms of the correlation matrix 𝜬 , it reads

𝑽𝑦 = 𝑱𝜮𝜬𝜮𝑱 (6.1)

with 𝜮 being the matrix with the errors of the fit parameters on its diagonal and 0
otherwise. The correlation matrix can be put together from the correlation coefficients
PANGA gives out (its diagonal elements are 1).

6.5. Comparison with existing results

In order to verify the accuracy of the fits produced by PANGA, its output was compared
to the results generated byNOBLE by Peeters et al. (2003) using two published noble gas
data sets. The first one is the Belgium data set by Blaser et al. (2010) which was reviewed
in chapter 5.10. The second dataset was taken from the study of Castro et al. (2007) and
consists of 41 samples from the Carrizo Aquifer in Texas, USA. For the comparison, both
NOBLE and PANGA were run without constraints on the range of parameter values.

6.5.1. Ledo-Paniselian Aquifer, Belgium

All 44 samples from 39 wells reported in the study of Blaser et al. (2010) were fitted
with the CE model; 34 had excess air whereas degassing occurred in 10 of them. Here,
the samples are labeled with BE followed by the well number or name as used in the
original publication. The fitting was carried out with the following initial values for
the parameters: 𝑇 was set to 2℃, A to 0.01 cm STP/g. 𝐹 has to be chosen according to
the type of sample to prevent the fitter from falling into a wrong local minimum. For
the samples with excess air and with degassing the initial values 0.5 and 3 were used,
respectively.

Except for five special cases, which will be discussed later on, most results were very
close to those provided byNOBLE, i.e., the best parameter estimates showed typical devi-
ations of 0.002 to 0.017℃ for 𝑇 , 0.03 ⋅ 10− to 1.50 ⋅ 10− cm STP/g for 𝐴 and 0.02 ⋅ 10−
to 2.50 ⋅ 10− for 𝐹. The samples BE_7 and BE_9, however, showed significant devia-
tions of the 𝐹 parameter of almost 0.1. For sample BE_29, the 𝐹 deviation is 0.02. These
three samples have in common that their 𝐹 and 𝐴 parameters are ill-determined: their
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errors are between 5 and almost 150 times as high as their values. The deviations of es-
timated parameter errors are typically of the same order of magnitude as the deviations
of their parameter values. If the parameters are, however, not very well determined,
i.e., their uncertainties become about the same size as their values, the deviations of
the estimated errors can increase drastically. An overview of the fit results and their
deviations is given in Table D.1.

A detailed comparison of the results led to the conclusion that discrepancies in the
modeled Xe equilibrium concentrations of about 0.01% caused these deviations. Further
investigation showed that these discrepancies were due to NOBLE using an additional
factor for the conversion of molar units derived from Clever (1979b). Instead of the sim-
ple factor 𝑋𝑋𝑒, as recommended by Kipfer et al. (2002), NOBLE uses 𝑋𝑋𝑒/(1 − 𝑋𝑋𝑒), with
𝑋𝑋𝑒 being the mole fraction solubility of Xe, which is small compared to 1. For a better
comparison, the additional 1/(1−𝑋𝑋𝑒) factor was temporarily incorporated into PANGA
and the analysis was repeated. Now all the samples, except for the five aforementioned
special cases, were in very good agreement with NOBLE, i.e., the deviations of the pa-
rameters were, in the majority of the cases, smaller than 5 ⋅ 10−℃, 10− cm STP/g and
10− for the parameters 𝑇 , 𝐴 and 𝐹 respectively. Even in the more problematic cases
with high parameter uncertainties, the deviations of the parameter estimates did not
exceed 0.005℃, 4 ⋅ 10− cm STP/g and 7 ⋅ 10−. In the extreme cases with ill-determined
parameters like the ones mentioned above, the absolute deviations of the parameter er-
rors were still higher, but they were always lower than 0.7% of the estimated errors. The
fit results of the modified PANGA version and their deviations from the NOBLE results
are listed in Table D.2.

The five remaining samples are in the UA limit case described in section 4.4.3. Their
fit results are listed in Table D.3. The samples exhibit special values of the 𝐹 parameter,
i.e., they are highly negative (ranging from −1200 to −2200) or, in one case, highly pos-
itive (about 4200). The corresponding uncertainties of 𝐹 are very large and range from
10 to 10. The 𝐴 values are quite low and range from 3 ⋅ 10− to 10− cm STP/g with
uncertainties of 6 ⋅ 10− up to 3 ⋅ 10− cm STP/g. A comparison of these samples with
NOBLE shows good agreement for the 𝑇 parameter, with differences of 1.6 ⋅ 10−℃ at
most, but significant discrepancies otherwise: The results of NOBLE for the absolute
values of 𝐹 are much lower, roughly by an order of magnitude, whereas the values for
𝐴 are higher, again by about one order of magnitude. The temperature uncertainties
also deviate from each other by up to 47%. The product 𝐴 ⋅ 𝐹, however, is the same for
both fitters, with differences of less than 0.8%. These results can be understood if one
considers the limit case of the CE model given in equation (4.1). It shows that in the
case of |𝐹| ≫ 1 the modeled concentrations only depend on the product 𝐴 ⋅𝐹. Therefore,
one can expect that 𝐴 and 𝐹 individually can only be determined with a high degree
of uncertainty and that small numeric differences in the calculations can have a large
impact on the estimates of these two parameters. The 𝑇 parameter, however, is not
influenced by this effect and, for this reason, the temperature estimates do not show
any significant deviations. The differences in 𝑇 uncertainties may be understood if we
consider equation (2.41): the covariance matrix 𝑽𝑝, which is used to determine the tem-
perature error depends on the Jacobian 𝑱 . 𝑱 is evaluated at the estimates 𝒑∗, i.e., at the
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fit parameters 𝑇 , 𝐴 and 𝐹. As the two fitters find different values of 𝐴 and 𝐹, it is thus
to be expected that the temperature error is also different.

It is also interesting to consider the UA limit case given in equation 4.2, which holds if,
besides |𝐹| ≫ 1, the product |𝐹𝐴| is small compared to 0.01 cm STP/g. For the samples
just discussed, |𝐹𝐴| lies between 4 ⋅ 10− cm STP/g and 0.002 cm STP/g, i.e., the latter
approximation is not fully justified in all cases. Nevertheless, equation 4.2 shows that
large negative values of 𝐹 in combination with small positive values of 𝐴 can lead to
a reasonable description of the observed noble gas concentrations which approximates
the simple case of unfractionated excess air. The one case with a large positive 𝐹 and
small positive 𝐴 actually corresponds to a degassed sample that approximates a UA
model with a hypothetical negative excess air parameter.

6.5.2. Carrizo Aquifer in Texas, USA

The study of Castro et al. (2007) consists of 49 samples from 20 different wells, labeled
by TX followed by a well number and a number for the replicate analyses. Following
the treatment in the original paper, eight of the 49 samples were removed from the
analysis because of their 𝜒𝑈𝐴 values being too high. The remaining 41 samples were
fitted with the OD model in an ensemble fit, i.e., the parameters 𝐴 and 𝑇 were fitted
independently for each sample but only a single 𝑃𝑂𝐷 value was determined for the
whole dataset. The value obtained in this way is 𝑃𝑂𝐷 = 1.114 ± 0.020 at 𝜒𝑂𝐷 = 73.9.
Castro et al. (2007), however, calculated a minimal 𝜒𝑂𝐷 value of 113.0 at 𝑃𝑂𝐷 = 1.14. A
comparison of UA model results also showed significant deviations: here, a total 𝜒𝑈𝐴
of 109.2 was determined whereas Castro et al. (2007) found 𝜒𝑈𝐴 = 201.6. Furthermore,
the temperature estimates calculated with PANGA were systematically lower, roughly
by 0.1℃. The reasons for these differences remained somewhat unclear but are likely
due to the use of different evaluation algorithms incorporating for example different
solubility equations on the one hand and the use of slightly different input data on the
other hand. Differences in the input may include the assumed fixed values for pressure
and salinity, which we were unable to reproduce from the information given in the
article, and the uncertainties of the measured noble gas concentrations, which were
only specified as general percentages in the paper but might have been available in
more detail for the original analysis.

In order to test the reliability of PANGA’s fitting algorithm, a comparison was carried
out withNOBLE also for the Carizzo data set, again using the aforementioned additional
factor 1/(1 − 𝑋𝑋𝑒) so as to match NOBLE’s solubility equilibrium concentrations in the
best possible way. The UA model results are in very good agreement with each other:
none of the samples (including the eight samples with high 𝜒𝑈𝐴) showed relative devi-
ations in the model parameters or their uncertainties which exceeded 10 ppm. Because
NOBLE cannot natively fit the OD model, the best estimate of 𝑃𝑂𝐷 was determined by
running multiple UA fits with pressure 𝑃 = 𝑃∗ ⋅ 𝑃𝑂𝐷 for different values of 𝑃𝑂𝐷 (𝑃∗
is the pressure estimated from the recharge altitude). In this way a minimal 𝜒𝑂𝐷 of
73.8 was found at 𝑃𝑂𝐷 = 1.112. This compares well with the value obtained by the en-
semble fit of PANGA, which—with the Xe modifications in place—slightly increased to
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𝑃𝑂𝐷 = 1.115 ± 0.020 at 𝜒𝑂𝐷 = 73.9. The deviation between the two values corresponds
to 13% of the estimated error.
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The analyses in this thesis confirm that the CE model sometimes gives unrealistic so-
lutions when fitting noble gas data from groundwater. These solutions are character-
ized by unrealistically high values of 𝐴 (above 0.1 cm STP/g) and are accompanied by
comparatively high values of 𝑇 , with often very high errors obtained from the fitting
algorithm. These large uncertainties are related to a high parameter correlation in this
range of 𝐴 values, but not to the occurrence of multiple minima. Two local minima in
the χ² surface do occur for normal samples, but they are well separated and usually do
not cause problems. Monte Carlo analyses are very useful to study the behavior of CE
model fits and can provide more reliable estimates of the parameter uncertainties. They
show that the problematic behavior is usually restricted to a subset of the Monte Carlo
realizations, both in the cases of physical and synthetic samples.

It was shown that the problematic fitting behavior is related to and can be caused by
deviating noble gas concentrations, particularly by increased Ar in combinationwith de-
creased Xe. The synthetic samples show that deviations less than typical measurement
uncertainties are already sufficient to create these problems. Samples from warmer re-
gions or from regions where infiltration occurred with a high amount of entrapped air
seem to be especially sensitive to these kinds of deviations. Both synthetic and real
samples show two clusters in Monte Carlo analyses, one of them corresponding to un-
realistically high values of 𝐴 and overestimated 𝑇 , the other one apparently closely
reflecting the true parameter values.

A new method of data evaluation for groundwater noble gas samples was proposed,
which extends the usual CE model evaluation by a Monte Carlo analysis and then re-
stricts the statistical evaluation of the Monte Carlo results to the cluster with realistic,
low values of 𝐴 and 𝑇 . This method proved to be able to recover the original param-
eter values from modified synthetic samples. Its application to poorly-fitting physical
samples yielded realistic temperatures. It thus seems that the proposed restriction of
the Monte Carlo ensemble is permissible and that many problematic samples can be
evaluated using this approach.

A step-by-step procedure for the evaluation of noble gas data was given, which starts
with simple evaluation methods and uses advanced features like Monte Carlo simula-
tions as needed. An initial UAmodel fit is followed by a CEmodel fit. If the CEmodel fit
results exhibit unreasonable values like high values of the excess air parameter 𝐴, small
values of the fractionation parameter 𝐹 or large temperature uncertainties, Monte Carlo
simulations should be carried out. The Monte Carlo results can be divided in different
classes which need specific treatment.

A new, easy-to-use tool—PANGA—was developed for the analysis of noble gas sam-
ples using the before-mentioned step-by-step approach. It allows for a fast evaluation
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workflow for well-behaved samples as well as problematic cases which need special
treatment like statistical analysis over a subset of the Monte Carlo results. With its sup-
port for ensemble fits and more recent excess air models like the OD model, it can also
be used for most special cases that might occur. The correct functioning of PANGA’s
fitting routines was demonstrated by a comparison of its results with the software NO-
BLE, which is traditionally used by many groups. The comparison only showed some
deviations in special, unphysical cases of the CE model that are of little practical rele-
vance.

The refined evaluation methods were applied in a review of important groundwater
noble gas data sets from the literature. The temperature differences between Holocene
and late Pleistocene were re-evaluated with a consistent approach. For the majority of
studies, the original results could be verified with minor deviations. The results of some
of the studies, however, could not be confirmed. A comparative analysis of the CE, OD
and PR models showed that the CE model, though not without problems, can describe
most data sets well, whereas the OD and PR models can be used successfully only in a
minority of cases.
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The following chapter summarizes the recommended equations for the calculation of
equilibrium concentrations of noble gases in water. The recommendations follow Kipfer
et al. (2002). Temperatures in K will be denoted by 𝑇K, whereas temperatures in ℃ will
be denoted by 𝑇℃. These notations will only be used where the temperatures have to
be plugged in directly as numbers. In all other cases they will just be denoted by 𝑇 . The
equilibrium concentrations are in units of cm STP/g. The following equations are also
used by PANGA.

A.1. Solubility of He, Ne, Ar and Kr

The equilibrium concentrations of He, Ne, Ar and Kr can be calculated using the Weiss
solubilities (Weiss 1970, 1971; Weiss and Kyser 1978). According to Kipfer et al. (2002)
they are given by

𝑐𝑖 = exp

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑡𝑖 + 𝑡𝑖 ⋅ 𝑇K

+ 𝑡𝑖 ⋅ ln 
𝑇K
 + 𝑡

𝑖
 ⋅

𝑇K
 +

𝑆 ⋅ 𝑠𝑖 + 𝑠𝑖 ⋅
𝑇K
 + 𝑠

𝑖
 ⋅ 

𝑇K





⎞
⎟⎟⎟⎟⎟⎟⎠ ⋅

𝑃 − 𝑒𝑤(𝑇)
(1 − 𝑒𝑤(𝑇)) ⋅ 1000

. (A.1)

with the pressure 𝑃 in atm. The coefficients 𝑡𝑖𝑗 and 𝑠𝑖𝑗 depend on the noble gas and are
listed in table A.1. 𝑒𝑤 is the water vapor pressure in atm, which is given in equation
(A.8).

Table A.1.: Coefficients for the Weiss solubilities for the different noble gases. From
Kipfer et al. (2002).

He Ne Ar Kr

𝑡 −. −. −. −.
𝑡 . . . .
𝑡 . . . .
𝑡 −. −. −. −.
𝑠 −.  −.  −.  −. 
𝑠 .  .  .  −. 
𝑠 −.   −.   −.   .  

The 3He component of the total He concentration can be determined using an empir-
ical equation for the 3He/4He ratio 𝑅𝑒𝑞 (Benson and Krause 1980; Kipfer et al. 2002):

𝑅𝑒𝑞 = 𝑅𝑎/ exp 𝑟 +
𝑟
𝑇K

+ 𝑟
𝑇K
 ⋅ (1 + 𝑟 ⋅ 𝑆) (A.2)

𝑅𝑎 = 1.384 ⋅ 10− is the atmospheric 3He/4He ratio (Clarke et al. 1976).
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Table A.2.: Coefficients for the calculation of 𝑅𝑒𝑞. From Kipfer et al. (2002).
𝑟 𝑟 𝑟 𝑟

𝑅𝑒𝑞 −.   . −. . 

A.2. Solubility of Xe

The solubility of Xe was determined by Clever (1979b) in terms of the dimensionless
mole fraction solubility:

𝑋 = exp 𝑥 + 𝑥 ⋅
100
𝑇K

+ 𝑥 ⋅ ln 
𝑇K
100 (A.3)

Smith and Kennedy (1983) determined the salting coefficient of Xe

𝐾 = 𝑥 + 𝑥 ⋅
100
𝑇K

+ 𝑥 ⋅ ln 
𝑇K
100 . (A.4)

in units of l/mol. The coefficients 𝑥𝑖 are given in table A.3.
Combining these two properties, Aeschbach-Hertig et al. (1999) proposed an equation

for the calculation of equilibrium concentrations (here in the representation of Kipfer
et al. 2002):

𝑐 =
𝑋(𝑇)
𝑀

⋅ (𝑃 − 𝑒𝑤(𝑇)) ⋅ 𝑧𝑃
⋅ 𝜌(𝑇, 𝑆 = 0)𝜌(𝑇, 𝑆) ⋅ 𝑉 ⋅ exp (−𝐾(𝑇) ⋅ 𝑐) (A.5)

with the pressure 𝑃, the reference pressure 𝑃 = 1 atm, the molar mass of water𝑀 ≈
18.016 g/mol, the molar volume of Xe 𝑉 = 22 280.4 cm STP/g, the density of water
𝜌(𝑇, 𝑆), as given in (A.10), and the molar concentration of NaCl 𝑐. As, in general, we
are not dealing with pure NaCl solutions, the salinity S needs to be converted into an
equivalent NaCl concentration. According to Aeschbach-Hertig et al. (1999) this may
be achieved using

𝑐 = 𝑆 ⋅
𝜌(𝑇, 𝑆, 𝑃)
𝑀

(A.6)

with the molar mass of NaCl𝑀.

Table A.3.: Coefficients for the Clever solubility of Xe. From Kipfer et al. (2002).
𝑥 𝑥 𝑥 𝑥 𝑥 𝑥

Xe −. . . −. . .

A.3. Diffusion coefficient of noble gases in water

The diffusion coefficients of the noble gases He, Ne, Kr and Xe in water were measured
by Jähne et al. (1987) for different temperatures. They described the temperature depen-
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dency with the equation

𝐷𝑖 = 𝐴𝑖 ⋅ exp −
𝐸𝑖
𝑅𝑇  . (A.7)

with gas-dependent fit parameters 𝐸𝑖 and 𝐴𝑖, where 𝐸𝑖 is the activation energy of gas
𝑖 for diffusion in water. 𝑅 is the universal gas constant. The fit parameters are given
in Table A.4. As no Ar diffusion coefficients were determined by Jähne et al. (1987),
these coefficients were interpolated by Peeters et al. (2003) for a number of temperatures
assuming that 𝐷 is inversely proportional to the square root of the atomic mass. Fitting
(A.7) to these diffusion coefficients yields the values for Ar in Table A.4.

Table A.4.: Fit parameters for the calculation of the diffusion coefficients. Jähne et al.
(1987) determined the values for He, Ne, Kr and Xe by fitting to measured
diffusion coefficients. The Ar values were calculated from the interpolated
diffusion coefficients in Peeters et al. (2003).

Gas 𝐴 𝐸
[− cm/s] [kJ/mol]

He  .
Ne  .
Kr  .
Xe  .

Ar  .

A.4. Properties of water

According to Gill (1982), the saturation vapor pressure 𝑒𝑤(𝑇) of pure water over a plane
water surface is given by

𝑙𝑜𝑔(𝑒𝑤(𝑇)) =
0.7859 + 0.03477 ⋅ 𝑇℃
1 + 0.00412 ⋅ 𝑇℃

(A.8)

Gill (1982) also gives equations for the calculation of the density of water. Note, that
the pressure in the following equations is expected to be given in bar above the reference
pressure, i.e., 𝑃 = 0 is equivalent to a pressure of 1 atm.

For pure water, the density can be described by

𝜌(𝑇, 0, 0) = 999.842594 + 6.793952 ⋅ 10−𝑇℃ − 9.095290 ⋅ 10−𝑇℃ +
1.001685 ⋅ 10−𝑇℃ − 1.120083 ⋅ 10−𝑇℃ + 6.536332 ⋅ 10−𝑇℃. (A.9)

71



A. Properties of noble gases in water

The density of water with non-zero salinity at one standard atmosphere is given by

𝜌(𝑇, 𝑆, 0) = 𝜌(𝑇, 0, 0) +
𝑆 ⋅ (0.824493 − 4.0899 ⋅ 10−𝑇℃ + 7.6438 ⋅ 10−𝑇℃

− 8.2467 ⋅ 10−𝑇℃ + 5.3875 ⋅ 10−𝑇℃) +
𝑆/ ⋅ (−5.72466 ⋅ 10− + 1.0227 ⋅ 10−𝑇℃ − 1.6546 ⋅ 10−𝑇℃) +
𝑆 ⋅ 4.8314 ⋅ 10−. (A.10)

In the general case at pressure 𝑃, the density can be calculated according to

𝜌(𝑇, 𝑆, 𝑃) = 𝜌(𝑇, 𝑆, 0)
1 − 𝑃

𝐾(𝑇,𝑆,𝑃)
. (A.11)

with the secant bulk modulus 𝐾 . For pure water, 𝐾 is given by

𝐾(𝑇, 0, 0) = 19652.21 + 148.4206𝑇℃ − 2.327105𝑇℃ +
1.360477 ⋅ 10−𝑇℃ − 5.155288 ⋅ 10−𝑇℃. (A.12)

At one standard atmosphere with non-zero salinity, it becomes

𝐾(𝑇, 𝑆, 0) = 𝐾(𝑇, 0, 0) +
𝑆 ⋅ (54.6746 − 0.603459𝑇℃ + 1.09987 ⋅ 10−𝑇℃ − 6.1670 ⋅ 10−𝑇℃) +
𝑆/ ⋅ (7.944 ⋅ 10− + 1.6483 ⋅ 10−𝑇℃ − 5.3009 ⋅ 10−𝑇℃). (A.13)

At pressure 𝑃 with non-zero salinity, 𝐾 is given by

𝐾(𝑇, 𝑆, 𝑃) = 𝐾(𝑇, 𝑆, 0) +
𝑃 ⋅ (3.239908 + 1.43713 ⋅ 10−𝑇℃ + 1.16092 ⋅ 10−𝑇℃ − 5.77905 ⋅ 10−𝑇℃) +
𝑃𝑆 ⋅ (2.2838 ⋅ 10− − 1.0981 ⋅ 10−𝑇℃ − 1.6078 ⋅ 10−𝑇℃) +
𝑃𝑆/ ⋅ 1.91075 ⋅ 10− +
𝑃 ⋅ (8.50935 ⋅ 10− − 6.12293 ⋅ 10−𝑇℃ + 5.2787 ⋅ 10−𝑇℃) +
𝑃𝑆 ⋅ (−9.9348 ⋅ 10− + 2.0816 ⋅ 10−𝑇℃ + 9.1697 ⋅ 10−𝑇℃). (A.14)
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Figure B.1.: PANGA main window

This chapter contains the user manual for PANGA. A general overview of the software
may be found in chapter 6.

B.1. Loading data

Noble gas concentrations can be loaded from a file or imported from the clipboard using
the respective entries in the file menu or the shortcuts Ctrl+L / Ctrl+V. The file or
clipboard contents must meet the following specifications:

• The data need to be arranged in eleven columns: sample name, He, He error, Ne,
Ne error, Ar, Ar error, Kr, Kr error, Xe and Xe error.

• Noble gas concentrations and there errors need to be given in cm STP/g.
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• The columns need to be separated by either comma or tab.

• The decimal mark must be a dot. Other decimal mark system settings will be
ignored.

• If no concentrations are available for some gases, their fields may also be left
empty.

Lines not fulfilling the above conditions will be ignored. Just using copy and paste from
a spreadsheet program should generally work.

B.2. Setting up the fit

On the left side of the main window, the fit can be configured:

Gases to use Here, the individual noble gases can be added to or removed from the fit.
If a noble gas is selected here, but no concentrations are given, the gas will not be
fitted for that sample.

Model The excess air model to fit to the data.

Parameters to fit The model parameters to be fitted need to be selected here.

Parameter initials Here, the initial parameter guess for the fitter can be configured.
To set different initial values for each sample, check the checkbox on the right
side of the parameter.

Parameter values Fixed values for the model parameters not to be fitted. To set dif-
ferent parameter values for each sample, check the checkbox on the right side of
the parameter.

Constrained Fit If this checkbox is checked, the range of possible values for the fit
parameters will be constrained. The ranges can be configured by clicking the
Setup button.

Monte Carlos The number of Monte Carlo fits to be carried out for each sample.

The table on the bottom can be used to assign each sample individual values for cer-
tain model parameters or individual initial guesses for certain fit parameters. First, the
parameters need to be selected under parameter initials or parameter values. A column
will be added to the table for each selected parameter. By clicking on the head line cell
of a column, it is possible to set the parameter this column is used for. The values may
be filled in using copy and paste from, e.g., a spreadsheet software.

After the fit has been set up, one can choose between two different fitting modes and
the 𝜒 explorer:

Standard Fit Each sample is fitted separately.
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Ensemble Fit All samples are combined in a single fit. In this mode each fit parame-
ter can either be varied independently for each sample or it can be fitted to the
ensemble of samples, i.e., it has the same value for every sample.

χ² Explorer In this mode the 𝜒 surface of the fit can be analyzed interactively.

B.3. Evaluation of the fit results

Figure B.2.: Overview of the Monte Carlo results

When the fit has finished, a new window will pop up containing the fit results. The
Results tab contains the complete fit output for all samples, as listed in section 6.3.

For the CE model, PANGA gives hints as to when an additional Monte Carlo analysis
is recommended: If any result is outside of the normal range (as described in 4.2), the
respective value is shown in red and the whole sample is marked in yellow.

B.3.1. Monte Carlo analysis

TheMonte Carlo Plots tab contains an overview of theMonte Carlo histograms of the dif-
ferent samples. By default, the following plots are shown: two-dimensional histograms
of all possible pairs of fit parameters and one-dimensional plots of all fit parameters. The
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green crosses and vertical lines mark the position of the original fit results. The number
of histogram bins can be set globally using the slider on the bottom of the window.

The plot window

A double click on a plot will open the plot window. Here, the plot may be zoomed,
selections are made and masks are set.

The plot can be zoomed by drawing a rectangle around the desired area using the
left mouse button. With a right click you can zoom out again. When the shift button
is pressed, a selection is made instead. In a one-dimensional plot an interval of values
is selected. In a two-dimensional plot a polygon can be selected using several clicks of
the left mouse button. The polygon will be completed if the right mouse button is used.
The selected area will then be highlighted. Note, that the red-shaded region indicates
the areas that are not selected. With the buttons on the right side, the selection can be
modified as well as applied to the sample’s mask.

With the slider on the bottom, the bin number of the histogram can be changed indi-
vidually for this plot.

Using masks

A mask is used to switch on or off specific Monte Carlo realizations for the statistical
evaluation. Its use is illustrated in figure B.3. Masks are modified using selections in
the plot window: the selection needs to be done so that the Monte Carlo realizations
to be removed are in the red-shaded area. After a click on Mask with selection, only the
Monte Carlo realizations in the selected area (not shaded in red) will remain activated.
This process may be repeated to combine several selections in one mask. Note that a
mask always affects the whole sample, not only the plot in which it is created.

Monte Carlo results

On the right side of the plot window, the results of the statistical analysis are displayed.
For 1D plots this analysis consists ofmean value and standard deviation of the respective
parameter. 2D plots show mean values and standard deviations of both parameters as
well as their correlation coefficient. The statistical analysis is restricted to the Monte
Carlo realizations not disabled via the mask. The Monte Carlo results of all samples are
summarized in a table under the tab Monte Carlo Summary.

Add other plots or parameters

By default, PANGA shows plots and carries out a statistical analysis for all fit parameters.
Two-dimensional plots are created for all possible pairs of fit parameters. If needed,
additional plots can be created via Preferences → Choose Monte Carlo Plots. A window
will show up, which contains a list of all available parameters and the list of the currently
shown ones. Parameters can be added to right light list by dragging them from the left-
side and dropping them at the end of the list or between two existing entries. If the
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(a) No selection (b) First selection, not yet applied to themask

(c) First selection, applied to the mask (d) Second (inverted) selection, not yet ap-
plied to the mask

(e) Second selection applied to the mask (f) Mask inverted

Figure B.3.: Illustration of masks in PANGA. Note that this illustration does not repre-
sent a real evaluation. It is only meant to demonstrate the masking feature.
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parameter is dropped on an existing list entry, both entries will be combined for a two-
dimensional plot. Entries can be removed by dragging them from the right list and
dropping them on the left one.

B.3.2. Saving and loading results

The results of a fit, including Monte Carlo results, selections, masks, etc., can be saved
to a file using File → Save. There are two different file types available: binary files and
portable files. The binary files can be saved and loaded much faster than the portable
files. They are, however, not portable, which means that, e.g., a file saved in the 32-bit
Windows version cannot be read with the 64-bit Windows version. Also, the files saved
under another operating system cannot be opened. So if cross-architecture or cross-
platform compatibility is required, the slower portable format should be used. Saved
files can be opened with File → Open results.

The settings of fits from a saved file (and also of a new fit) can be seen under the
Fit Setup tab in the results window. If needed, they can be loaded back into the main
window by clicking Load into Main Window.

If the simple statistical evaluation carried out by PANGA is not sufficient, the Monte
Carlo results can be exported to a text file, from where they may be processed with
other software. The export can be done by choosing Export Monte Carlo Data from
the File window. The file will be in the csv format and will contain, for every Monte
Carlo realization, all of the columns shown under the Results tab. Only the Monte Carlo
realizations which are enabled by the sample’s mask will be exported.

B.4. The χ² explorer

The plot in the 𝜒 explorer shows 𝜒 as a function of two model parameters. The plot is
configured in the table on the right side of the window. It contains options for all the
parameters chosen to be fit parameters in the main window. The columns X and Y are
used to set the parameters which are currently displayed on the plot’s axes. Their min
and max values determine the range of the axes. The remaining parameters may either
be set to fixed values or included in the fit. This is determined by the fit? column. If
a model parameter is not fitted, a slider will appear, which can be used to set its value.
Alternatively, it can also be set in the table. Themin andmax values of these parameters
only determine the range of the their sliders.

If auto-update is selected, the plot will be updated whenever any setting is changed.
Otherwise, updates need to be triggered manually with the Update plot button.

By default, the scale of the 𝜒 colorbar is set to range from the minimal to the maximal
value visible in the plot. It may be readjusted with the Minimum and Maximum fields.
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Figure B.4.: Monte Carlo plots setup

Figure B.5.: The 𝜒 explorer
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The following tables summarize the fit results for the data sets in chapter 5. The re-
evaluation of all data sets was carried out using the CE model. The methods “MC u”
and “MC c” stand for unconstrained and constrained Monte Carlo fitting respectively.

Table C.1.: Stute 1995 Brazil

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

7a . . ± . PR . ± . . . . Fit . .
9a . . ± . PR . ± . . . . Fit . .
15a . . ± . PR . ± . . . . Fit . .
18a . . ± . PR . ± . . . . Fit . .
3a . . ± . PR . ± . . . . Fit . .
13a . . ± . PR . ± . . . . Fit . .
8a . . ± . PR . ± . . . . Fit . .
4c . . ± . PR . ± . . . . MC c . .
6a . . ± . PR . ± . . . . Fit . .
19a . . ± . PR . ± . . . . Fit . .
H10 . . ± . PR . ± . . . . Fit . .
2a . . ± . PR . ± . . . . Fit . .
H6b . . ± . PR . ± . . . . Fit . .
16a . . ± . PR . ± . . . . Fit . .
H7b . . ± . PR . ± . . . . Fit . .
1b . . ± . PR . ± . . . . Fit . .
14b . . ± . PR . ± . . . . Fit . .
23b . . ± . PR . ± . . . . Fit . .
11b . . ± . PR . ± . . . . Fit . .
17 . . ± . PR . ± . . . . Fit . .
12b . . ± . PR . ± . . . . Fit . .
a Used for the calculation of the mean Holocene temperature.
b Used for the calculation of the mean LGM temperature.
c No Ne concentrations were available for this sample.
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Table C.2.: Beyerle 1998 Switzerland

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

0a −. . ± . UA . ± . . . . Fit . .
1a −. . ± . UA . ± . . . . MC c . .
2c −. . ± . UA . ± . . . . MC c . .
2cbc −. . ± . UA . ± . . . . MC c . .
3 −. . ± . UA . ± . . . . MC c . .
4c −. . ± . UA . ± . . . . Fit . .
4cac −. . ± . UA . ± . . . . Fit . .
5 −. . ± . UA . ± . . . . MC c . .
6c −. . ± . UA . ± . . . . MC c . .
6cbc −. . ± . UA . ± . . . . MC c . .
7 −. . ± . UA . ± . . . . MC c . .
a Used for the calculation of the mean Holocene temperature.
b Used for the calculation of the mean LGM temperature.
c Samples with mixture. The samples with c in their names were corrected for the older component.

Table C.3.: Weyhenmeyer 2000 Oman

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

SLU-2Ba −. . ± . CE . ± . . . . Fit . .
RGS-5Fa −. . ± . CE . ± . . . . MC u . .
RGS-2Ua . . ± . CE . ± . . . . MC u . .
BZ-4 −. . ± . CE . ± . . . . Fit . .
JT-31 −. . ± . CE . ± . . . . Fit . .
21/7 . . ± . CE . ± . . . . Fit . .
RGS-2Lb . . ± . CE . ± . . . . Fit . .
KWD-3Lb . . ± . CE . ± . . . . Fit . .
KWD-1b . . ± . CE . ± . . . . Fit . .
DP-2c — — CE . ± . . . . Fit . .
21/6c — — CE . ± . . . . Fit . .
a Used for the calculation of the mean Holocene temperature.
b Used for the calculation of the mean Pleistocene temperature.
c No errors of the noble gas concentrations were available for these samples. They were reconstructed
for the re-evaluation from the mean values of the relative errors of the other samples in this study.
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Table C.4.: Aeschbach-Hertig 2002 Maryland

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

MD1.1 . . ± . CE . ± . . . . MC c . .
MD1.3 −. . ± . CE . ± . . . . MC c . .
MD2.1 . . ± . CE . ± . . . . Fit . .
MD2.2 −. . ± . CE . ± . . . . Fit . .
MD3.3 −. . ± . CE . ± . . . . Fit . .
MD3.4 . . ± . CE . ± . . . . Fit . .
MD4.1 −. . ± . CE . ± . . . . Fit . .
MD4.3 . . ± . CE . ± . . . . Fit . .
MD4.4 . . ± . CE . ± . . . . Fit . .
MD5.2a . . ± . CE . ± . . . . Fit . .
MD6.2a . . ± . CE . ± . . . . MC c . .
MD7.1 −. . ± . CE . ± . . . . MC c . .
MD7.2 . . ± . CE . ± . . . . MC c . .
MD8.2a . . ± . CE . ± . . . . Fit . .
MD9.1a −. . ± . CE . ± . . . . Fit . .
MD10.1 . . ± . CE . ± . . . . Fit . .
MD11.1c . . ± . CE . ± . . . . Fit . .
MD12.1 . . ± . CE . ± . . . . Fit . .
MD12.2 −. . ± . CE . ± . . . . Fit . .
MD13.1 . . ± . CE . ± . . . . Fit . .
MD13.2 . . ± . CE . ± . . . . MC c . .
MD14.1 −. . ± . CE . ± . . . . Fit . .
MD15.2b . . ± . CE . ± . . . . Fit . .
MD16.1 −. . ± . CE . ± . . . . Fit . .
MD17.2b . . ± . CE . ± . . . . Fit . .
MD18.1b . . ± . CE . ± . . . . Fit . .
MD18.2b −. . ± . CE . ± . . . . Fit . .
MD19.1c . . ± . CE . ± . . . . Fit . .
MD20.2 . . ± . CE . ± . . . . Fit . .
MD21.1 . . ± . CE . ± . . . . Fit . .
MD21.2 . . ± . CE . ± . . . . Fit . .
MD22.1b . . ± . CE . ± . . . . Fit . .
MD22.2b −. . ± . CE . ± . . . . Fit . .
MD23.1 . . ± . CE . ± . . . . MC c . .
a Used for the calculation of the mean Holocene temperature.
b Used for the calculation of the mean LGM temperature.
c The original fit results were used, because the two clusters in the Monte Carlo simulations were not
clearly separable.
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Table C.5.: Beyerle 2003 Niger

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

2 −. . ± . CE . ± . . . . Fit . .
5a −. . ± . CE . ± . . . . Fit . .
18a −. . ± . CE . ± . . . . Fit . .
19a . . ± . CE . ± . . . . Fit . .
20a . . ± . CE . ± . . . . Fit . .
21a −. . ± . CE . ± . . . . Fit . .
22a −. . ± . CE . ± . . . . Fit . .
24a −. . ± . CE . ± . . . . Fit . .
28a −. . ± . CE . ± . . . . Fit . .
30 −. . ± . CE . ± . . . . Fit . .
31a . . ± . CE . ± . . . . Fit . .
33a −. . ± . CE . ± . . . . Fit . .
34a . . ± . CE . ± . . . . Fit . .
37a −. . ± . CE . ± . . . . Fit . .
40a . . ± . CE . ± . . . . Fit . .
41a . . ± . CE . ± . . . . Fit . .
85 −. . ± . CE . ± . . . . Fit . .
80b −. . ± . CE . ± . . . . Fit . .
84b −. . ± . CE . ± . . . . Fit . .
82b −. . ± . CE . ± . . . . Fit . .
83b −. . ± . CE . ± . . . . Fit . .
1d −. . ± . CE . ± . . . . Fit . .
12d −. . ± . CE . ± . . . . Fit . .
4d −. . ± . CE . ± . . . . Fit . .
7cd −. . ± . CE . ± . . . . Fit . .
9cd −. . ± . CE . ± . . . . Fit . .
10cd −. . ± . CE . ± . . . . Fit . .
17d −. . ± . CE . ± . . . . Fit . .
27d −. . ± . CE . ± . . . . Fit . .
29d −. . ± . CE . ± . . . . Fit . .
35d −. . ± . CE . ± . . . . Fit . .
3d −. . ± . CE . ± . . . . Fit . .
8d −. . ± . CE . ± . . . . Fit . .
25d −. . ± . CE . ± . . . . Fit . .
a Belongs to the group of modern samples from the upper (CT3) aquifer.
b Belongs to the group of samples from the recharge area of the middle aquifer (CT2).
c Belongs to the group of CT2 samples between  and  kyr BP.
d Belongs to the group of all confined samples from the middle and lower aquifers.
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Table C.6.: Kulongoski 2004 Kalahari

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

4507a . . ± . CE . ± . . . . Fit . .
769b . . ± . PD . ± . . . . MC c . .
6742 −. . ± . PD . ± . . . . Fit . .
736a . . ± . PR . ± . . . . Fit . .
6767 −. . ± . PD . ± . . . . MC c . .
8866a . . ± . PR . ± . . . . Fit . .
953b −. . ± . CE . ± . . . . MC c . .
6586b . . ± . CE . ± . . . . MC c . .
6586_2b . . ± . CE . ± . . . . MC c . .
8863 −. . ± . PD . ± . . . . MC c . .
6462 −. . ± . PD . ± . . . . MC c . .
2869b −. . ± . CE . ± . . . . MC c . .
a Used for the calculation of the mean Holocene temperature.
b Used for the calculation of the mean temperature of samples older than  kyr BP.

Table C.7.: Ma 2004 Michigan

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

MI-1 . . ± . UA . ± . . . . MC c . .
MI-2a . . ± . UA . ± . . . . MC c . .
MI-2b . . ± . UA . ± . . . . MC c . .
MI-3 . . ± . UA . ± . . . . MC c . .
MI-4a −. . ± . UA . ± . . . . MC c . .
MI-4b −. . ± . UA . ± . . . . Fit . .
MI-6 . . ± . UA . ± . . . . MC c . .
MI-7 . . ± . UA . ± . . . . MC c . .
MI-8a −. . ± . UA . ± . . . . MC c . .
MI-9 −. . ± . UA . ± . . . . MC c . .
MI-10ac −. . ± . UA . ± . . . . MC c . .
MI-10b −. . ± . UA . ± . . . . MC c . .
MI-11 −. . ± . UA . ± . . . . Fit . .
MI-12a −. . ± . UA . ± . . . . Fit . .
MI-12b −. . ± . UA . ± . . . . Fit . .
MI-13 . . ± . UA . ± . . . . MC c . .
MI-14a −. . ± . UA . ± . . . . Fit . .
MI-14bb −. . ± . UA . ± . . . . Fit . .
MI-15 . . ± . UA . ± . . . . MC c . .
a Used for the calculation of the Holocene temperature.
b Used for the calculation of the LGM temperature.
c Only .% of the Monte Carlo realizations were in the realistic cluster.
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Table C.8.: Kreuzer 2009 China

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

1ab −. . ± . CE . ± . . . . MC c . .
2ab −. . ± . CE . ± . . . . MC c . .
3ab −. . ± . CE . ± . . . . Fit . .
4b −. . ± . CE . ± . . . . MC c . .
5ab −. . ± . CE . ± . . . . Fit . .
7ab −. . ± . CE . ± . . . . Fit . .
8ab −. . ± . CE . ± . . . . Fit . .
9cd −. . ± . CE . ± . . . . Fit . .
10b −. . ± . CE . ± . . . . MC c . .
11c −. . ± . CE . ± . . . . Fit . .
12cd −. . ± . CE . ± . . . . Fit . .
13 — — CE . ± . . . . MC c . .
14cd −. . ± . CE . ± . . . . MC c . .
15 −. . ± . CE . ± . . . . Fit . .
16cd −. . ± . CE . ± . . . . Fit . .
17cd −. . ± . CE . ± . . . . MC c . .
18c −. . ± . CE . ± . . . . Fit . .
19cd −. . ± . CE . ± . . . . MC c . .
20c −. . ± . CE . ± . . . . MC c . .
31ab −. . ± . CE . ± . . . . Fit . .
32ab −. . ± . CE . ± . . . . Fit . .
33ab −. . ± . CE . ± . . . . Fit . .
36b −. . ± . CE . ± . . . . Fit . .
37c −. . ± . CE . ± . . . . Fit . .
38c −. . ± . CE . ± . . . . Fit . .
39 −. . ± . CE . ± . . . . Fit . .
40ab −. . ± . CE . ± . . . . Fit . .
41b −. . ± . CE . ± . . . . Fit . .
43b −. . ± . CE . ± . . . . Fit . .
44ab −. . ± . CE . ± . . . . Fit . .
45 −. . ± . CE . ± . . . . Fit . .
46 −. . ± . CE . ± . . . . Fit . .
47b −. . ± . CE . ± . . . . Fit . .
48ab −. . ± . CE . ± . . . . Fit . .
49ab −. . ± . CE . ± . . . . Fit . .
50b −. . ± . CE . ± . . . . Fit . .
51e — — CE . ± . . − . MC u . .
52ab −. . ± . CE . ± . . . . MC u . .
53ab −. . ± . CE . ± . . . . Fit . .
56ab −. . ± . CE . ± . . . . Fit . .
57b −. . ± . CE . ± . . . . Fit . .
a Belongs to the group of modern samples.
b Belongs to the group of all Holocene samples.
c Belongs to the group of Pleistocene samples.
d Belongs to the group of the six coldest samples.
e Constrained fits could not describe this sample. .% of the MC realizations lie in the region of
𝐹 = −.
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Table C.9.: Kulongoski 2009 California

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

1b . . ± . CE . ± . . . . Fit . .
2ab . . ± . CE . ± . . . . Fit . .
2bb . . ± . PR . ± . . . . Fit . .
2cb . . ± . PR . ± . . . . Fit . .
3ab −. . ± . CE . ± . . . . MC c . .
3bb −. . ± . CE . ± . . . . MC c . .
3cb −. . ± . CE . ± . . . . Fit . .
4ab . . ± . CE . ± . . . . Fit . .
4bb . . ± . CE . ± . . . . Fit . .
5b −. . ± . CE . ± . . . . MC c . .
6ab −. . ± . CE . ± . . . . MC c . .
6b −. . ± . PD . ± . . . . MC c . .
7ab −. . ± . CE . ± . . . . MC c . .
7bb −. . ± . CE . ± . . . . Fit . .
8aa −. . ± . CE . ± . . . . MC c . .
8ba . . ± . PR . ± . . . . Fit . .
9a . . ± . CE . ± . . . . Fit . .
10a . . ± . CE . ± . . . . MC c . .
a Used for the calculation of the mean Holocene temperature.
b Used for the calculation of the mean temperature of the late Pleistocene.

Table C.10.: Blaser 2010 Belgium (continued on the following page)

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

TB532a . . ± . CE . ± . . . . MC u . .
MW901 . . ± . CE . ± . . . . Fit . .
VZELE . . ± . CE . ± . . . . MC c . .
GD034 . . ± . CE . ± . . . . Fit . .
GROEDEc . . ± . CE . ± . . . . MC c . .
1d . . ± . CE . ± . . . . Fit . .
2 −. . ± . CE . ± . . . . MC u . .
3 . . ± . CE . ± . . . . Fit . .
4d . . ± . CE . ± . . . . Fit . .
5c . . ± . CE . ± . . . . MC c . .
6b . . ± . CE . ± . . . . MC c . .
6newb . . ± . CE . ± . . . . Fit . .
7b . . ± . CE . ± . . . . Fit . .
7newb −. . ± . CE . ± . . . . MC c . .
8 −. . ± . CE . ± . . . . MC c . .
9b −. . ± . CE . ± . . . . MC c . .
9newb −. . ± . CE . ± . . . . MC c . .
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Table C.10 (cont.): Blaser 2010 Belgium

Original results Results of re-evaluation Input
parameters

Sample Δ NGT NGT Model NGT 𝐴 ⋅  𝐹 𝜒 Method 𝑃 𝑆
[℃] [℃] [℃] [cm STP/g] [atm] [g/kg]

10 . . ± . CE . ± . . . . MC c . .
11 . . ± . CE . ± . . . . MC c . .
12e −. . ± . CE . ± . . . . MC u . .
13 −. . ± . CE . ± . . . . MC u . .
14ad . . ± . CE . ± . . . . Fit . .
15f . . ± . CE . ± . . . . MC c . .
16a . . ± . CE . ± . . . . MC c . .
17f −. . ± . CE . ± . . . . MC c . .
18f −. . ± . CE . ± . . . . MC c . .
18newf −. . ± . CE . ± . . . . MC c . .
19 . . ± . CE . ± . . . . Fit . .
20 . . ± . CE . ± . . . . Fit . .
21 . . ± . CE . ± . . . . MC c . .
22g . . ± . CE . ± . . . . MC c . .
23 . . ± . CE . ± . . . . Fit . .
24d . . ± . CE . ± . . . . Fit . .
25g . . ± . CE . ± . . . . MC u . .
26 . . ± . CE . ± . . . . Fit . .
27f −. . ± . CE . ± . . . . MC c . .
27newf −. . ± . CE . ± . . . . MC c . .
28f −. . ± . CE . ± . . . . MC c . .
29 . . ± . CE . ± . . . . Fit . .
30 −. . ± . CE . ± . . . . MC c . .
31 . . ± . CE . ± . . . . MC c . .
32 −. . ± . CE . ± . . . . MC c . .
33f −. . ± . CE . ± . . . . MC c . .
34f . . ± . CE . ± . . . . MC c . .
a Belongs to the group of three modern non-degassed samples.
b Belongs to the group of the coldest six samples.
c Only few Monte Carlo realizations in the realistic cluster (< %).
d The clusters in the Monte Carlo results cannot be separated. The fit result were used as they still look
realistic.

e Degassed UA limit case. Around % of the results lie in the area of 𝐹 = . Most of the remaining
MC realizations have  < 𝐹 < . A few results are between both groups.

f Degassed samples. An initial parameter value of 𝐹 >  was used for fitting.
g The clusters in the Monte Carlo results cannot be separated very well. They had to be used, however,
because the fit results lie in the physically unrealistic cluster.
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D. Comparison of NOBLE and PANGA

Table D.1.: Comparison of NOBLE and PANGA (continued on the following page)
NOBLE PANGA Deviations

Sample 𝑇 𝐴 ⋅  𝐹 𝑇 𝐴 ⋅  𝐹 𝑇 𝜎𝑇 𝐴 ⋅  𝜎𝐴 ⋅  𝐹 𝜎𝐹
[℃] [cm STP/g] [℃] [cm STP/g] [℃] [cm STP/g]

TB532 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
MW901 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
VZELE . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
GD034 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
GROEDE . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
1 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
2 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
3 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
4 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
5 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
6 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
6new . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
7 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
8 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
9 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
10 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
11 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
13 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
14 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
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Table D.1 (cont.): Comparison of NOBLE and PANGA
NOBLE PANGA Deviations

Sample 𝑇 𝐴 ⋅  𝐹 𝑇 𝐴 ⋅  𝐹 𝑇 𝜎𝑇 𝐴 ⋅  𝜎𝐴 ⋅  𝐹 𝜎𝐹
[℃] [cm STP/g] [℃] [cm STP/g] [℃] [cm STP/g]

15 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
16 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
17 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
18 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
18new . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
19 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
20 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
21 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
22 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
23 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
24 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
25 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
26 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
27 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
27new . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
28 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
29 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
31 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
33 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
34 . ± . . ± . . ± . . ± . . ± . . ± . . . . . .  . 
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Table D.2.: Comparison of NOBLE and a modified version of PANGA, incorporating an additional 1/(1 − 𝑋) factor for the calculation
of Xe, as it is used in NOBLE (continued on the following page)

NOBLE PANGA Deviations

Sample 𝑇 𝐴 ⋅  𝐹 𝑇 𝐴 ⋅  𝐹 𝑇 𝜎𝑇 𝐴 ⋅  𝜎𝐴 ⋅  𝐹 𝜎𝐹
[℃] [cm STP/g] [℃] [cm STP/g] [℃] [cm STP/g]

TB532 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
MW901 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
VZELE . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
GD034 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
GROEDE . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
1 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
2 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
3 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
4 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
5 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
6 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
6new . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
7 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
8 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
9 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
10 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
11 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
13 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
14 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
15 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
16 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
17 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
18 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
18new . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
19 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
20 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
21 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .

90



Table D.2 (cont.): Comparison of NOBLE and a modified version of PANGA
NOBLE PANGA Deviations

Sample 𝑇 𝐴 ⋅  𝐹 𝑇 𝐴 ⋅  𝐹 𝑇 𝜎𝑇 𝐴 ⋅  𝜎𝐴 ⋅  𝐹 ⋅  𝜎𝐹 ⋅ 

[℃] [cm STP/g] [℃] [cm STP/g] [℃] [cm STP/g]

22 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
23 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
24 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
25 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
26 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
27 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
27new . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
28 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
29 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
31 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
33 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .
34 . ± . . ± . . ± . . ± . . ± . . ± . . . . . . .

Table D.3.: Comparison of NOBLE and PANGA for the UA limit case samples. The modified version of PANGA was used, which
incorporates an additional 1/(1 − 𝑋) factor for the calculation of Xe, as it is used in NOBLE.

NOBLE PANGA

Sample 𝑇 𝐴 ⋅  𝐹 𝑇 𝐴 ⋅  𝐹
[℃] [cm STP/g] [℃] [cm STP/g]

7new . ± . . ⋅ − ± . −. ± . ⋅  . ± . . ⋅ − ± . − ± . ⋅ 
9new . ± . . ⋅ − ± . −. ± . ⋅  . ± . . ⋅ − ± . − ± . ⋅ 
12 . ± . . ⋅ − ± . . ± . ⋅  . ± . . ⋅ − ± .  ± . ⋅ 
30 . ± . . ⋅ − ± . −. ± . ⋅  . ± . . ⋅ − ± . − ± . ⋅ 
32 . ± . . ⋅ − ± . −. ± . ⋅  . ± . . ⋅ − ± . − ± . ⋅ 
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