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Zusammenfassung

Räumliche Punktprozesse sind ein bewährtes statistisches Analysewerkzeug,

welches in zahlreichen Wissenschaftsbereichen – wie beispielweise der Ökologie,

der Epidemiologie oder der Werkstoffkunde – zum Einsatz kommt. Intensive

Forschung wird vor allem dahingehend betrieben, mit Hilfe von Punktprozessen

systematische Veränderungen in räumlichen Strukturen zu beschreiben sowie

innovative Methoden der Parameterschätzung zu entwickeln. Das Anwendungs-

spektrum räumlicher Punktprozessmodelle ist insbesondere in der Bildanalyse

groß. Typische Beispiele sind Aufnahmen von Baumbeständen in der Fernerkun-

dung, von Zellen in der Biologie oder von Verbundkonstruktionen in den Mate-

rialwissenschaften. Auf Grund ihrer Praxisrelevanz und vielfältigen Einsetzbar-

keit erscheint vor allem die Modellklasse der lokal-skalierten Punktprozesse

geeignet zur Beschreibung räumlicher Objektanordnungen. Eine unbekannte

Normalisierungskonstante in der Likelihood erschwert allerdings die statistische

Inferenz und verlangt nach ausgeklügelten Simulations- und Schätzstrategien.

In dieser Arbeit wird ein bayesianischer Ansatz zur Modellierung lokal-skalierter

Punktprozesse eingeführt und anschließend unter anderem dazu verwendet, Mais-

Genotypen anhand der Gefäßstrukturen in den Halmen zu klassifizieren. Es

liegen hierfür Querschnittsaufnahmen der Halme vor. Weitere räumliche Punkt-

prozessmodelle sind speziell für die bild-basierte Beschreibung der Ausrichtung

texturierter Oberflächen im dreidimensionalen Raum vorgesehen, welche all-

gemein unter den Begriff Shape-from-Texture-Analyse fällt. In den Bereichen

Mustererkennung und Bildverarbeitung sind das Verstehen von Textur sowie

die Erkennung und Quantifizierung von Geometrien zwei wichtige Problemstel-

lungen. Häufig geht es darum, die Fotografie einer bestimmten Szene zunächst

auf die lokalen geometrischen Bildstrukturen hin zu untersuchen und darauf

basierend die Szenenausrichtung im Dreidimensionalen zu erschließen. Somit

lassen sich u.a. Kameraeinstellungen rekonstruieren. Die in dieser Arbeit vorge-

stellten statistischen Methoden zur Shape-from-Texture-Analyse umfassen lokal-

skalierte Punktprozessverfahren sowie den Entwurf eines bayesianischen markier-

ten Punktprozessmodells.





Abstract

Spatial point processes provide a statistical framework for modeling random

arrangements of objects, which is of relevance in a variety of scientific disci-

plines, including ecology, spatial epidemiology and material science. Describing

systematic spatial variations within this framework and developing methods for

estimating parameters from empirical data constitute an active area of research.

Image analysis, in particular, provides a range of scenarios to which point pro-

cess models are applicable. Typical examples are images of trees in remote

sensing, cells in biology, or composite structures in material science. Due to

its real-world orientation and versatility, the class of the recently developed lo-

cally scaled point processes appears particularly suitable for the modeling of

spatial object patterns. An unknown normalizing constant in the likelihood,

however, makes inference complicated and requires elaborate techniques. This

work presents an efficient Bayesian inference concept for locally scaled point

processes. The suggested optimization procedure is applied to images of cross-

sections through the stems of maize plants, where the goal is to accurately

describe and classify different genotypes based on the spatial arrangement of

their vascular bundles. A further spatial point process framework is specifically

provided for the estimation of shape from texture. Texture learning and the

estimation of surface orientation are two important tasks in pattern analysis

and computer vision. Given the image of a scene in three-dimensional space,

a frequent goal is to derive global geometrical knowledge, e.g. information on

camera positioning and angle, from the local textural characteristics in the im-

age. The statistical framework proposed comprises locally scaled point process

strategies as well as the draft of a Bayesian marked point process model for

inferring shape from texture.
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rarinsdottir and Christoph Schnörr who have helped me during my PhD stud-

ies with their expertise, scientific know-how, patience, and warm and friendly

nature. My deep appreciation also goes to Alex Lenkoski, Donald Richards,

Tilmann Gneiting and David Legland for their valuable feedback and our fruit-

ful discussions.

I owe an important debt to my friends & (ex-)colleagues in Heidelberg. Thanks

for the great time I have/had with you, Andreas, Andreea, Annette, Arati,

Barbara, Bernhard, Bernhard, Bogdan, Boris, Christoph, Dominic, Ecatarina,

Elena, Evelyn, Fabian, Fabian (I will miss our library sessions), Florian, Frank,

Gabriel, Jasmin, Johannes, Johannes, Jörg, Karsten, Katharina, Kira, Markus,

Martin, Mercedes, Michael, Michael, Mattia, Niko, Paul, Robert, Stefania,

Tabea, Tobias, Vera,...!

Despite the distance, I have always benefited from the lively scientific and non-

scientific conversations with Elisabeth, Birgit, Mirjam and the rest of my former

“gang” from Munich, and I am very proud of having such faithful friends.

Last but not least, I want to thank MaPa, Chrissi, Roni and Jakob for their

never-ending mental support and encouragement.





Contents

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions and Organization . . . . . . . . . . . . . . . . . . 10

2 Preliminaries on Spatial Point Processes 13

2.1 Point Process Theory . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Markov/Gibbs Processes . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Sampling Techniques . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . 35

3 Preliminaries on Image Analysis 45

3.1 Camera Projection . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Detection of Local Symmetry Elements . . . . . . . . . . . . . . 54

4 Locally Scaled Spatial Point Processes 61

4.1 Locally Scaled Point Process Models . . . . . . . . . . . . . . . 62

4.2 Proper Scaling Functions . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Bayesian Inference Framework . . . . . . . . . . . . . . . . . . . 67

4.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Analysis of Biological Image Data 77

5.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Step-wise Scaling Constraints . . . . . . . . . . . . . . . . . . . 79

5.3 Two-Stage Inference Procedure . . . . . . . . . . . . . . . . . . 83

5.4 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . 90

6 Shape from Texture using Locally Scaled Point Processes 95

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Intuitive Preliminary Framework . . . . . . . . . . . . . . . . . 100

6.3 Estimation of the Latent Point Process . . . . . . . . . . . . . . 105

6.4 Model Construction and Inference . . . . . . . . . . . . . . . . . 110

6.5 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

iii



iv Contents

7 Analysis of Textured 3D Scenes using Marked Point Processes 121

7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 Geometric Feature Extraction . . . . . . . . . . . . . . . . . . . 122

7.3 Shape from Texture via Marked Point Processes . . . . . . . . . 128

7.4 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Discussion 143

Bibliography 149

Subject Index 157

Notation Index 163



List of Algorithms

2.1 Gibbs sampler for a fixed number of variables . . . . . . . . . . . 29

2.2 Metropolis-Hastings sampler . . . . . . . . . . . . . . . . . . . . 30

2.3 Sampling from a homogeneous Poisson process. . . . . . . . . . . 31

2.4 Sampling from an inhomogeneous Poisson process. . . . . . . . . 32

2.5 Sampling from a fix-n Gibbs process . . . . . . . . . . . . . . . . 33

2.6 Birth-death-move-M-H algorithm . . . . . . . . . . . . . . . . . . 43

2.7 Exchange algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Sketch: Dominated coupling from the past . . . . . . . . . . . . . 72

6.1 Inferring a point process realization and its parameters from a

probability map . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.2 Neighborhood-based point process estimation . . . . . . . . . . . 108

6.3 Point process estimation and Voronoi tessellation . . . . . . . . . 109

7.1 Estimating the posterior distribution of a marked point process . 135

v





List of Figures

1.1 Cellular structures in maize stems of a certain genotype . . . . . 2

1.2 Examples of textured 3D scenes . . . . . . . . . . . . . . . . . . 3

2.1 Simulation of a forest area . . . . . . . . . . . . . . . . . . . . . 18

2.2 Samples from point processes with different structural properties 19

2.3 Simulations from different Strauss type models . . . . . . . . . . 25

3.1 Process of image formation . . . . . . . . . . . . . . . . . . . . . 46

3.2 Perspective projections of a 3D scene point . . . . . . . . . . . . 51

3.3 Original image of a brick wall . . . . . . . . . . . . . . . . . . . 57

3.4 Brick wall image after median filtering . . . . . . . . . . . . . . 58

3.5 Brick wall image after median and DoG filtering . . . . . . . . . 58

3.6 Distance transformation of a brick wall image after median and

DoG filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Simulations from locally scaled Strauss models . . . . . . . . . . 66

4.2 Exponential scaling effects of varying strength . . . . . . . . . . 67

4.3 Simulations from an exponentially scaled Strauss model . . . . . 74

4.4 Full conditionals of the model parameters . . . . . . . . . . . . . 75

4.5 Optimization of the pseudo log-likelihood subject to the nuisance

parameter R and the previously estimated scaling effects . . . . 75

5.1 Cellular structures in cross-sections through maize stems . . . . 77

5.2 Cross-sections through representative stems before and after a

circular normalization . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Step scaling effects in a point pattern in W = D1(0) . . . . . . . 81

5.4 Determination of the inner stem radius (genotype I) . . . . . . . 82

5.5 Determination of the inner stem radius (genotype II) . . . . . . 83

5.6 Full conditional posteriors with gray bars marking the priors . . 86

5.7 Results from PIT calibration diagnostics . . . . . . . . . . . . . 87

5.8 Full conditionals describing p(θ|x) . . . . . . . . . . . . . . . . 89

5.9 Full conditionals describing p(θ|x(1)) and p(θ|x(1),x(2)) . . . . . 92

6.1 Sequence of operations proposed for inferring shape from texture 97

6.2 3D camera model . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Mappings of regular homogeneous point patterns in 3D space

onto a 2D plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4 Exponentially scaled distances from the point (0, 0)> . . . . . . 102

6.5 Learning a point process realization from a brick image . . . . . 104

vii



viii List of Figures

6.6 Model validation I . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 Model validation II and estimation of δ . . . . . . . . . . . . . . 106

6.8 Voronoi tessellation framework . . . . . . . . . . . . . . . . . . . 110

6.9 Examples of point distances under perspective scaling . . . . . . 112

6.10 Simulated Poisson point patterns with 3D shape determined by

the outer normal δ . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.11 Point process estimation in scenes with different amounts of non-

convex texture elements . . . . . . . . . . . . . . . . . . . . . . 115

6.12 Estimation of shape from texture. . . . . . . . . . . . . . . . . . 117

6.13 Estimation of the unit normal δ with respect k1 . . . . . . . . . 118

6.14 Log-likelihood ratios with respect to k1 . . . . . . . . . . . . . . 118

7.1 Finite library of geometric marks . . . . . . . . . . . . . . . . . 123

7.2 Images of interest . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3 Euclidean similarity transformations of a dictionary atom . . . . 130

7.4 Euclidean similarity transformations of a square . . . . . . . . . 131

7.5 Modeling of a latent marked point process . . . . . . . . . . . . 136

7.6 Estimates of the full conditionals of the geometric parameters . 137

7.7 Pixel-wise MAP estimates of the geometric parameters . . . . . 138

7.8 Convergence of the algorithm and overall model performance . . 139

7.9 Estimation of a marked point process realization . . . . . . . . . 140

7.10 Empirical distributions of the geometric posterior estimates . . . 141



List of Tables

5.1 Results from the first stage of the analysis . . . . . . . . . . . . 91

5.2 Results from the second stage of the analysis . . . . . . . . . . . 91

6.1 True angles and composite likelihood estimates . . . . . . . . . . 114

6.2 Composite likelihood estimates of the surface normals . . . . . . 116

6.3 Estimates of the perspective scaling parameters . . . . . . . . . 119

ix





1 Introduction

God used beautiful mathematics in creating the world.

– Paul A. M. Dirac (August 8th, 1902 – October 20th, 1984)

This dissertation is interdisciplinarily oriented in that it applies mathematical

principles and spatial statistics to demanding real-world problems related to

biology and computer science. To be precise, it introduces newly developed in-

ference strategies for spatial point processes on the one hand, and couples spatial

statistics with the geometric analysis of image data on the other hand. There-

fore, a detailed treatment of both statistical theory and the relevant principles

on imaging geometry will be provided. Our work is intended to be accessible by

a readership particularly interested in spatial statistics and/or computer vision.

In the following section, we briefly summarize our research objectives and thus

give an overview of the essential items of this thesis.

1.1 Overview

Many classes of spatial point processes have been developed in the past decades,

among which the class of locally scaled point processes introduced by Hahn

et al. (2003) appears particularly appealing in terms of further advancements

and practical applications. This new type of inhomogeneous point process stems

from a local adjustment of a homogeneous template process, such that regions of

dissimilar packing density differ only by a scale factor. As a consequence, local

geometries are kept constant. Locally scaled point processes prove to be promis-

ing for various fields of study, including biology, demography and astronomy.

Due to their complexity and numerical intractability, however, the development

of efficient inference strategies requires sophistication, which motivates our first

research question
[
Didden et al. (2015)

]
.

How to Implement a Bayesian Hierarchical Inference Framework for

Locally Scaled Point Processes?

Although work on simulation-based inference techniques and, in particular, on

the development of flexible Markov chain Monte Carlo (MCMC) methods is

one of the major research topics in the spatial statistics community, modeling

concepts for locally scaled point processes are rare. In Chapter 4, we there-

fore introduce a Bayesian alternative to the frequentist composite likelihood

approach presented by Prokešová et al. (2006). Owing to the coupling of inho-

mogeneity and interaction constraints, the likelihood of a locally scaled point

1
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process is usually not available in complete form, which makes the posterior

distribution of the model parameters doubly intractable. This problem cannot

be tackled via common MCMC algorithms, such as standard Gibbs sampling

or Metropolis-Hastings routines. We propose an appropriate implementation of

the exchange algorithm by Murray et al. (2012), which includes perfect sampling

from the unnormalized likelihood performed via dominated coupling from the

past
[
Berthelsen and Møller (2003)

]
.

A properly scaled point process model relies on a scaling function which is

identifiable and allows for the exact computation of locally scaled distances.

Depending on the point pattern, the definition of a proper scaling function

poses minor or major difficulties. From our collaborators David Legland1 and

Marie-Françoise Devaux2, we are given images of cross-sections through maize

stems (see Fig. 1.1), where the spatial arrangement of the vascular bundles

can be seen as a realization of an inhomogeneous point process. Our second

research question therefore concerns the modeling of the bundle distribution

under suitably specified scaling assumptions
[
Didden et al. (2015)

]
.

How to Classify Genotypes of Maize Plants through a Locally

Scaled Point Process Approach?

Figure 1.1: Cellular structures in maize stems of a certain genotype.

Two series of maize data from two different genotypes are at our disposal. With

the objective of detecting differences and similarities in the spatial distribution

of the vascular bundles, we first project the bundle coordinates to circular discs

in order to transform the original stem contours into simpler geometric shapes

that can be handled easier. Since it appears that the bundle intensity is denser

in the outer than in the inner parts of the stems, we develop a proper and

intuitively comprehensible step scaling function. Via a two-stage procedure,

we first model the homogeneous bundle distribution in the inner parts of the

stems in a Bayesian manner and then enter the posterior information obtained

on the unknown parameters as prior knowledge into the second modeling stage.

1INRA & AgroParisTech, UMR 782 Food Process Engineering and Microbiology, Thiverval-

Grignon; INRA & AgroParisTech, UMR 1318 Institut Jean-Pierre Bourgin, Versailles
2INRA, UR 1268 Biopolymers, Interactions and Assemblies, Nantes
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The second stage comprises the analysis of the full datasets, i.e. the locations

of the vascular bundles in the inner and outer stem sections. It is performed

via our newly developed Bayesian inference technique (see Chapter 4), under

inhomogeneity constraints induces through the proposed step scaling function.

The whole biological project is presented in Chapter 5 of this thesis.

An entirely different type of image data forms the basis for our third research

project dealing with the question of how to estimate geometric attributes, such

as camera positioning and angle, from the two-dimensional (2D) image of a

textured three-dimensional (3D) scene
[
Didden et al. (2013)

]
.

How to Use Locally Scaled Point Processes for the Estimation of

Shape from Texture?

We work with images of textured scenes, where the texture elements are near-

regular in shape (see Fig. 1.2). Chapter 6 and Chapter 7 are concerned with

Figure 1.2: Images of textured 3D scenes.

the introduction of two suitable concepts for inferring 3D geometries from such

images. The objective of the first concept is to learn 3D shape from the inho-

mogeneous spatial distribution of the texture elements in the 2D image plane

(see Chapter 6). For this purpose, texture is regarded as a realization of a

locally scaled point process where each point is associated with exactly one

texture element. We propose two alternative approaches, a Gibbs model with

hardcore interaction constraints and a Strauss model. In both cases, appropri-

ately specified scaling assumptions based on spherical coordinates allow us to

reconstruct the orientation of the camera towards the 3D space. The respective

optimization algorithms are of simple structure. However, they require some

image preprocessing facilitating the learning of a point process realization from

the given image. We apply smoothing and distance transformation mechanisms

to translate the image into a probability map. From the probability map, we

can read how likely each single pixel corresponds to the symmetry center of a

texture element and thus to a point of the latent point process.

Our second modeling concept does not require any image preprocessing. It is

based on the idea to infer 3D shape from the local 2D deformations of the texture

elements in the image plane (see Chapter 7). We propose a Bayesian marked
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point process framework, where the marks correspond to geometric transforma-

tions of distinctive patches of texture learned from a training image without 3D

effect. Assuming that the spatial pixel value distribution follows a mixture of

Gaussians, we define appropriate priors for the latent point process, the mark at-

tributes and the remaining unknown parameters contained in the Gaussian like-

lihood, and implement a reversible jump birth-death-move Metropolis-Hastings

algorithm. Although our hierarchical inference framework performs promising

with regard to the identification and estimation of local 2D geometries, we have

not yet established a connection between this location-dependent knowledge and

a global 3D geometric description for the entire scene.

Summing up, this dissertation comprises three principal research topics linked

through their methodological similarities, while somewhat differing in their ob-

jective targets. Our first research question is of a theoretical nature, whereas the

two other problems have an application-oriented and interdisciplinary charac-

ter. The proposed modeling concepts are therefore inspired by related literature

from different scientific disciplines, particularly from spatial statistics and image

analysis. Section 1.2 presents a selection of research articles and books, while

further helpful references will be provided throughout this thesis.

1.2 Related Work

First focusing on the statistical aspects of our work, we present a selection of

related research publications in which the relevant statistical methodology is

discussed, statistical optimization techniques are provided, and approaches to

data problems similar to our case studies are suggested. We then move on to

literature on image analysis and discuss projects dealing with the question of

how to learn 3D shape from a 2D image with depth effect. Finally, an overview

is given on marked point process approaches to the extraction of geometrical

features from images.

Spatial Point Processes

Profound mathematical basic knowledge on point processes in metric spaces of

arbitrary dimension can be gathered from the books by Daley and Vere-Jones

(2003, 2007). For a less formal an more compact introduction to spatial point

processes, we recommend the contributions available in Baddeley et al. (2006)

as well as in Illian et al. (2008). The collected edition published by Gelfand et al.

(2010) is concerned with various fields of spatial statistics. A broad overview of

spatial statistics methodology can also be gathered from Baddeley and Turner

(2005) who have collected and implemented several relevant algorithms and

made these routines available in the R-package ‘spatstat’. For a detailed
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in-depth introduction to simulation and inference techniques for spatial point

processes, we refer to Møller and Waagepetersen (2003).

The majority of the statistical approaches introduced or discussed in our work

are based on the locally scaled point processes developed by Hahn et al. (2003).

Technical explanations concerning the modeling of this new class of spatial point

processes are provided by Prokešová et al. (2006). A locally scaled point process

corresponds to an inhomogeneous Markov process
[
Kendall (1990)

]
where the

variation in the point packing density is driven by a location-dependent scale

factor. Other previously established approaches to the inclusion of heterogeneity

into a Markov model are, for instance, presented by Ogata and Tanemura (1986)

and Baddeley et al. (2000). A modeling class which is similar to the locally scaled

point processes by Hahn et al. is the class of the transformation inhomogeneous

point processes introduced by Jensen and Nielsen (2001)
[
see also Nielsen and

Jensen (2004)
]
. In contrast to Jensen and Nielsen, Hahn et al. consider isotropic

neighborhoods for evaluating interaction. The location-dependent scaling due

to Hahn et al. implicates that local geometry is not affected by inhomogeneity,

which makes densely packed areas look like scaled versions of regions covered

with fewer points. This specific property is of practical relevance in view of

various real-world data problems. Shimatani and Kubota (2004) and Eckel

et al. (2009), for example, discuss the necessity to model tree populations or

root networks under the consideration of location-dependent variations in the

soil conditions. Despite their real-world orientation, previous work on locally

scaled point processes still leaves plenty of room for methodological and technical

development. We use this rather uninvestigated point process class as a primary

statistical tool and ingredient for our interdisciplinary research study.

In general, point patterns with a constant intensity and without repulsion

or clustering effects are mathematically easier to handle than heterogeneous

patterns with interacting points. Based on the test principles presented by

Dwass (1957), a set of Monte Carlo approaches has been made available for

determining whether a homogeneous or inhomogeneous point process contains

repulsive, attractive, or independent points
[
see e.g. Ripley (1977), Besag and

Diggle (1977), Besag and Clifford (1989)
]
. The most common Monte Carlo tests

rely either on second-order summary statistics, including the widely used K-,

L-, and g-functions
[
see e.g. Ripley (1976), Baddeley et al. (2000)

]
and the di-

rectional K-functions
[
see Stoyan and Stoyan (2000), Brix and Moller (2001)

]
,

or on distance-based summary statistics, including the F-, G-, and J-functions

introduced by Van Lieshout and Baddeley (1996) and discussed by Bedford

and Van den Berg (1997). To assess whether a point process model captures

spatial variations and dependency structures to a satisfactory extent, residu-

als my be calculated and examined
[
Baddeley et al. (2005)

]
. Thorarinsdottir

(2013) recommends calibration diagnostics based on the probability integral
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transform (PIT)
[
Dawid (1984)

]
for model validation and selection purposes[

see also Diebold et al. (1998), Gneiting et al. (2007)
]
.

Due to a numerically inaccessible normalizing constant, the likelihood of inter-

action point processes is usually not available in complete form. Optimization

procedures therefore require special diligence. The most common frequentist

inference approaches are based on approximations of the likelihood. The com-

posite likelihood
[
Lindsay (1988)

]
, for instance, is derivable from the first-order

intensity function of the point process, whereas the pseudo likelihood
[
Besag

(1977)
]

also accounts for second-order structures. Several follow-up methods

are based on the pseudo likelihood principle
[
see e.g. Huang and Ogata (1999,

2002)
]
, while effort has also been made on the development of alternative mod-

eling strategies, such as approximate maximum likelihood techniques
[
see e.g.

Ogata and Tanemura (1981, 1984)
]
, or Monte Carlo likelihood simulation

[
Geyer

(1999)
]
. The latter belongs to the class of the Markov chain Monte Carlo

(MCMC) concepts
[
Meyn and Tweedie (2009)

]
, among which the Gibbs and

the Metropolis-Hasting (M-H) samplers
[
Casella and George (1992), Metropo-

lis et al. (1953), Hastings (1970)
]

are the most common tools. If the set of

the unknown parameters is not of fixed dimension, enhanced M-H algorithms

accounting for reversible jumps between different parameter spaces need to be

considered
[
see e.g. Green (1995)

]
. This is often the case when marked point

processes are being modeled. Another MCMC routine is provided in the work by

Murray et al. (2008) who introduce a Gaussian process density sampler as a tool

for non-parametric Bayesian inference
[
see also Adams et al. (2009)

]
, whereas

Walker (2011) suggests a Bayesian procedure relying on a latent-variable-based

approximation of the integral that formally determines the normalizing constant.

There is some gap in the statistical literature in view of inference strategies for

locally scaled interaction point processes. Rajala and Penttinen (2012) propose

a Markovian modeling framework for hardcore Gibbs processes. A pseudo likeli-

hood approach to the analysis of exponentially scaled point patterns of Strauss

type
[
Strauss (1975)

]
is discussed in the work by Prokešová et al. (2006), and

Bognar (2005) presents an M-H framework where the intractable acceptance ra-

tio is estimated via importance sampling. This latter method, however, suffers

from computational inefficiency. We present an alternative Bayesian inference

method to estimate the posterior distributions of the model parameters, despite

the unknown normalizing constant in the likelihood and the resulting double-

intractability of the posterior model.

To deal with double-intractable distributions, Møller et al. (2006) and Mur-

ray et al. (2012) have developed M-H algorithms with an additional auxiliary

variable scheme that makes the unknown normalizing constant in the likelihood

cancel out. We decide for the exchange principle by Murray et al., since it is

slightly more straightforward than the single-auxiliary variable method proposed
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by Møller et al.. To collect the auxiliary samples, we make use of the prefect

simulation framework for spatial point processes introduced by Berthelsen and

Møller (2003)
[
see also Berthelsen and Møller (2002)

]
which proves to be appli-

cable under the consideration of a location-dependent scaling. Further perfect

simulation concepts for interaction point processes are explained by Kendall

(1998), Kendall and Møller (2000), and Fernández et al. (2002). We prefer ex-

act sampling procedures to approximate samplers
[
Liang et al. (2007), Jin and

Liang (2012)
]
, such as the double-M-H sampler by Liang (2010), even though

these MCMC techniques are normally favorable in terms of computer runtime.

As already stated in Section 1.1, we apply our newly established Bayesian in-

ference framework to images of cross-sections through the stems of maize plants,

in order to analyze genotype-specific characteristics in the packing density of the

vascular bundles. The data have been preprocessed and made available by David

Legland3 and Marie-Françoise Devaux4. Our collaborators have previously been

working on the maize images and successfully developed a normalization mech-

anism as well as a bundle intensity estimator allowing for direct visual compar-

isons between different stems
[
Legland et al. (2014)

]
. This framework, however,

analyzes the packing density of the vascular bundles in a very general manner

and neither accounts for repulsions between the bundles nor provides a concrete

statistical model describing the inhomogeneity in their spatial arrangement.

Shape-from-Texture

Besides the biological image data, images of textured 3D scenes attract our re-

search attention. To be precise, the learning of 3D shape from the 2D textural

information contained in the images is a key topic of our interdisciplinary re-

search work. Therefore, mathematical basic knowledge on camera projection

is indispensable, including backgrounds on projective geometry as well as on

camera modeling and calibration. For an overview on computer graphics and

classical geometries, we refer to the standard works by Hughes et al. (2014)

and Ramı́rez Galarza and Seade (2007). Hartley and Zisserman (2000) and

Faugeras and Luong (2001) lay particular stress on multiple view set-ups and

interrelations between camera projections. For a brief and concise mathematical

introduction to optical flow, we recommend the article contributed by Becker

et al. (2014). Being familiar with digital image processing
[
see e.g. Jähne (1989),

Mather and Koch (2010)
]

and computational symmetry
[
Liu et al. (2009)

]
is a

further advantage with regard to the image preparation and texture identifica-

tion methods used in this work.

Tuceryan and Jain (1998) review and discuss texture analysis in several re-

spects, particularly focusing on mechanisms to detect textural features in real-

3INRA & AgroParisTech, UMR 782 Food Process Engineering and Microbiology, Thiverval-

Grignon; INRA & AgroParisTech, UMR 1318 Institut Jean-Pierre Bourgin, Versailles
4INRA, UR 1268 Biopolymers, Interactions and Assemblies, Nantes
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world scenes projected onto image planes. Stevens (1980) explains how sur-

face orientation affects the appearance of texture in images basically in that

the texture elements feature foreshortening effects, geometric deformations, and

variations in their packing density. The author uses the slant
[
see also Gibson

(1950)
]

and the tilt to measure surface orientation, where the slant is defined

as the angle between a normal to the surface and a normal to the image plane,

and the tilt corresponds to the angle between the projection of the surface nor-

mal onto the image plane and a predetermined coordinate axis in the image.

Gibson (1950) discusses, from a psychological as well as from a mathematical

standpoint, to which extent natural 2D images provide immediate perceptual

knowledge on the 3D shapes of objects and surfaces.

Several statistical strategies have been established for inferring the orienta-

tion of the camera towards a textured 3D scene from one single image. Most of

these modeling techniques, however, require strict symmetry assumptions or a

very regular arrangement of the texture elements. Blostein and Ahuja (1989),

for instance, only deal with uniformly distributed texture elements of circu-

lar shape. Under the assumption of an almost undistorted camera projection,

Witkin (1981) proposes to learn surface orientation from the edge locations and

directions observed in the image. Aloimonos (1988), and Warren and Mamas-

sian (2010) additionally consider perspective projection. The inference concept

by Blake and Marinos (1990) is applicable to images of 3D planes containing

isotropically oriented line elements. On the backgrounds of Witkin’s statisti-

cal approach and Kanatani’s texture moments
[
Kanatani (1989)

]
, the authors

estimate surface orientation along with a spatial error distribution which is im-

portant for integrating shape information, and furthermore present a tool for

testing hypotheses about intrinsic texture attributes.

Focusing on curved surfaces and assuming strict homogeneity, Malik and

Rosenholtz (1997) take affine transformation of adjacent image patches as a

basis to locally describe and quantify texture distortion. Building on the work

by Malik and Rosenholtz, Clerc and Mallat (2002) propose a framework for

modeling 3D orientation under less restrictive homogeneity constraints that,

however, are hard to verify in practice. A critical overview on the strong and

practically unsuitable assumptions prior work has been based on is provided in

the research article by Loh and Hartley (2005). The authors introduce a method-

ological framework for dealing with inhomogeneous, non-stationary, anisotropic

and perspective texture. This framework is closely related to the inference

procedure suggested by Forsyth (2006). Both methods rely on estimating defor-

mations of individual texture elements, while strongly relaxing restrictions on

the global textural appearance.

In contrast to the above-referenced research on the learning of shape from

texture, we regard the image of a textured plane in 3D space as a realization of
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a latent point process where each point represent one texture element. This al-

lows us to quantify perspective foreshortening and inhomogeneity of the texture

through the location-dependent scaling properties of the point process, provided

that the texture elements are near-regular and close to convex in shape.

Image Analysis via Marked Point Processes

Another way to look at texture by means of point processes is to regard the

texture elements as latent marked points. In the literature, several such marked

point process approaches are discussed, including their applications to real-world

data samples. The modeling framework by Descombes and Zerubia (2008), for

example, allows for the identification of rectangular buildings in remotely sensed

images of densely populated areas, whereas Tournaire et al. (1965) propose an

inference technique specifically designed to model the dashed lines of road mark-

ings. While both approaches have a very limited scope of application, Lacoste

et al. (2005) introduce a marked point process concept for analyzing more gen-

eral types of line networks on aerial photographs, such as hydrographic networks.

Sun et al. (2007) provide a helpful two-stage inference framework to search for

vascular trees on angiograms. An ecological data example of particular im-

portance for animal scientists is discussed in the research work by Descamps

et al. (2008). To count individual flamingos in remotely sensed images of their

colonies, the authors propose a suitable Gibbs model and a simulated annealing

procedure
[
Brooks and Morgan (1995), Van Laarhoven and Aarts (1987), Sala-

mon et al. (2002)
]

with fast birth-death dynamics. Another ecological problem

concerns forestry and has statistically been approached by Perrin et al. (2005)

who introduce a simulated annealing strategy similar to the optimization algo-

rithm by Descamps et al.. This strategy is specifically applicable to the estima-

tion of tree populations from aerial photographs of the tree crowns.

The research works on marked point processes referenced so far are focused

on one specific type of object and therefore not very flexibly employable. A

more general type of model has been developed by Ge and Collins (2010). Ar-

guing that different human shapes can be seen as geometric transformations

of each other, the authors introduce a Bayesian marked point process tool for

identifying and counting individuals in noisy scenes. The inference procedure

discussed by Lafarge et al. (2010) is even more universal. Lafarge et al. use

a sophisticated Gibbs model to match objects from a library of elementary ge-

ometric shapes with the given image, and implement a jump diffusion process

for optimization. This approach is particularly appealing in that it is capable

of detecting structures of interest in the image, delivering a representation of

texture by simpler geometric shapes, or estimating crowd densities. Due to

these advantages, Section 7.2 is devoted to a more detailed description of the

inference framework by Lafarge et al.. We work on a technically similar marked
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point approach which is intended to allow for the learning of 3D shape from the

local 2D deformations of texture patches on the image plane.

Summing up, we first conclude that, even though locally scaled point processes

appear to be highly suitable for modeling real-world phenomena, the range of

the existing inference techniques is limited. Second, we realize that most of

the available methods for estimating shape from texture are based on strict

assumptions on the geometrical form or the arrangement of the texture elements

and thus only applicable to a very specific type of texture. Our third and

last remark concerns the geometric description of images of textured scenes

via marked point processes. Although a considerable amount of marked point

processes carefully designed for specific data problems has been made available

in the past decades, there is, to our knowledge, no general modeling framework

to locally describe geometric texture deformations in a 2D image with depth

effect and to simultaneously infer knowledge on geometries in the original 3D

scene. These gaps in the literature have motivated our research questions. In the

next section, we present the organization of our work, with particular emphasis

on our own contributions.

1.3 Contributions and Organization

As stated above, this thesis establishes a connection between spatial point pro-

cess theory and selected problems related to image analysis. Consequently,

methodological and technical tools from both scientific disciplines need to be un-

derstood, appropriately implemented, and coupled with each other. To clearly

distinguish between the presentation of the relevant existing concepts and the

introduction of our newly developed modeling strategies and approaches, we

briefly summarize the contents of each chapter in what follows.

The next two chapters impart very basic knowledge on spatial point processes

and statistical inference techniques (see Chapter 2), as well as on camera pro-

jection and image analysis (see Chapter 3). Chapter 2 starts with a theoretical

introduction of spatial point processes in Section 2.1, where several fundamental

definitions are given and the relevant notational conventions are explained. The

most common class of point processes, the class of the Poisson processes , is

discussed in Section 2.2. Provided that the spatial Markov property is fulfilled,

patterns of interacting points are usually termed Markov or Gibbs processes (see

Section 2.3). The last sections of Chapter 2 are concerned with the presentation

of well-established inference concepts for spatial point processes. Section 2.4

points out the principle of Markov chain Monte Carlo (MCMC) simulation be-

fore it describes some concrete MCMC methods to sample from spatial point

process distributions. Mainly referring to the models introduced in Section 2.2

– 2.3, Section 2.5 gives an overview of widely used frequentist and Bayesian
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approaches to parameter estimation. Throughout Chapter 2, we distinguish be-

tween homogeneous and inhomogeneous point processes, involving marked point

processes. Extensive and detailed in-depth information is provided to ensure the

traceability of the strategies and algorithms presented later in Chapter 4 – 7.

Having discussed all statistical basics that are relevant for a better under-

standing of our work and contributions, Chapter 3 introduces some fundamental

concepts related to camera projections and the detection of symmetric structures

and near-regular objects in images. These concepts form an important method-

ological basis for Chapter 6 – 7. Section 3.1 presents a commonly used camera

model based on which the meaning of the terms assignment field and two-view

geometry is explained and graphically demonstrated. Thereby, the interrela-

tion between a homogeneous and an inhomogeneous coordinate representation

is pointed out. Detached from Section 3.1, Section 3.2 deals with the question

of how to identify symmetry elements in the image of a textured scene. Based

on the necessary mathematical background, it describes a typical sequence of

smoothing and distance transformation steps which turn the given image into a

probability map facilitating the detection of local symmetry centers.

Chapter 4 can be seen as the key chapter of this thesis. In Section 4.1, the

concept of inhomogeneous spatial point processes by location-dependent scaling

is explained, and subsequently, in Section 4.2, the meaning and construction of

a proper scaling function is discussed. In Section 4.3, we introduce our newly es-

tablished Bayesian inference framework for the analysis of locally scaled Strauss

processes
[
see also Didden et al. (2015)

]
. The performance of the proposed opti-

mization algorithm is evaluated and discussed in Section 4.4 where we simulate

and analyze point patterns under exponential scaling assumptions. We compare

our results to the results generated by an alternative frequentist optimization

algorithm.

Afterwards, we apply our Bayesian inference method to the classification of

maize plants by genotype
[
Didden et al. (2015)

]
, which we perform based on

the locations of the vascular bundles in cross-sectional images of the stems (see

Chapter 5). Besides the preprocessing carried out by our collaborators, David

Legland5 and Marie-Françoise Devaux6, we first project the point data, i.e. the

bundle coordinates, to circular discs of fixed radii (see Section 5.1). Based

on the resulting coherent and simplified representation of the spatial bundle

distribution, we have developed a new proper scaling function, the step scaling

function discussed in Section 5.2. The particular properties of this function

suggest the implementation of two-stage inference framework as proposed in

Section 5.3. Our final results are discussed in Section 5.4 where similarities and

differences between the genotypes are worked out, a general evaluation of our

5INRA & AgroParisTech, UMR 782 Food Process Engineering and Microbiology, Thiverval-

Grignon; INRA & AgroParisTech, UMR 1318 Institut Jean-Pierre Bourgin, Versailles
6INRA, UR 1268 Biopolymers, Interactions and Assemblies, Nantes
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two-stage procedure is given, and possible further advancements are mentioned.

We provide another newly and specifically designed scaling function in Chap-

ter 6 that deals with the estimation of shape from texture. At this point, spatial

statistics becomes connected to image analysis in a narrow sense, which we

discuss in detail in Section 6.1. Section 6.2 presents a first straightforward and

rather intuitive Gibbs modeling approach to the estimation of shape form texture

under exponential scaling constraints, linked to spherical coordinates. To sim-

plify this preliminary concept by immediately employing spherical coordinates

as perspective scaling parameters, we have developed an alternative inference

procedure
[
Didden et al. (2013)

]
, where the symmetry centers in the image are

estimated and replaced by points in a first step (see Section 6.3), and the re-

sulting pattern is modeled as a realization of a locally scaled Strauss process

afterwards (see Section 6.4). In Section 6.5, the suggested inference framework is

critically examined and evaluated by means of several case studies. We conclude

Chapter 6 with an outlook on potential for future advancement (see Section 6.6).

Chapter 7 is also concerned with the development of a statistical shape-from-

texture approach. In contrast to before, however, we here focus on marked point

processes. Referring to related work, Section 7.1 surveys how marked point

processes have emerged as a versatile tool for the geometric analysis of textured

scenes. Since, from a technical and methodological point of view, our research is

strongly related to the modeling framework by Lafarge et al. (2010), we shortly

summarize the authors’ work in Section 7.2. In Section 7.3, we present our own

inference strategy which is still in progress, but already comprises a marked

point process tool for estimating local 2D geometric deformations in the image

of a textured 3D scene. Having analyzed both a manually constructed and a real-

world image of a brick wall, the outcomes delivered by this newly propose tool

are summarized and graphically illustrated in Section 7.4. We discuss possible

further steps in Section 7.5, particularly focusing on the learning of global 3D

geometries from the local 2D information contained in the marked points and

their spatial distribution in the image.

Chapter 8 concludes this work with a summary of the proposed methods,

our research results, advantages and open problems, and an outlook on possible

advancements.



2 Preliminaries on Spatial Point

Processes

Spatial point processes provide a statistical framework for modeling random

arrangements of objects, which is of relevance in a variety of scientific disci-

plines including ecology, spatial epidemiology and material science. Describing

systematic spatial variations within this framework and developing methods for

estimating parameters from empirical data constitute an active area of research.

Typically, the locations or centers of objects in a two- or three-dimensional ob-

servation space are being modeled, and additional object attributes are induced

through marks, if available. Since point process theory and methodology is a

very lively field of research with a broad range of possible applications, newly

emerging questions become more and more demanding. Depending on the ob-

servation space as well as on the types and interrelations of the objects of inter-

est, different inference strategies prove useful. The more indications for spatial

inhomogeneity or object interactions a point pattern shows, the more complex

suitable point process models are and the more sophistication inference requires.

We concentrate on simple spatial point processes in R2, where each point is as-

sumed to represent the location of exactly one object. That is, no two points

have identical coordinates.

The books by Daley and Vere-Jones (2003, 2007) as well as Part IV of the

comprehensive handbook of spatial statistics by Gelfand et al. (2010) provide

a broad range of theoretical as well as technical details on point processes. A

more data-oriented introduction to the modeling of spatial point patterns can

be gathered from Illian et al. (2008). Over the past years, great importance has

been attached to the development of efficient optimization techniques consti-

tuting a comprehensive inference framework. A compact overview of different

classes of spatial point processes and appropriate simulation routines is given in

the standard work by Møller and Waagepetersen (2003).

In this chapter, an introduction to spatial point process theory is presented,

along with the modeling and inference schemes that are relevant for our research

studies. We deal with fundamental definitions related to spatial point processes

and their mathematical properties in Section 2.1. Section 2.2 is devoted to

the class of Poisson point processes, addressing both modeling approaches to

point patterns showing a homogeneous packing density and patterns containing

heterogeneously distributed points. Since Poisson models do not capture poten-

tial point interactions, Section 2.3 goes over to Markovian point processes also

referred to as Gibbs processes. We particularly focus on pairwise interaction

models and, amongst these, on Strauss models as well as on Gibbs models with

13
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a fixed number of points. These approaches account for interaction in the form

of pairwise point repulsions. The more complex a point process model is the

more sophisticated sampling routines are required and the more elaborate tools

for parameter estimation have to be considered. In the concluding Sections 2.4

– 2.5, we therefore introduce a selection of appropriate inference schemes.

2.1 Point Process Theory

As mentioned above, spatial point processes are of relevance in many scientific

disciplines. In ecology, for instance, researchers might be interested in the spa-

tial distribution of soil bacteria populations
[
Nunan et al. (2003)

]
, whereas in

geographical sciences, the occurrences of sand dunes in a desert or earthquakes

in a certain danger area might be among the relevant topics
[
Eberhard et al.

(2012), Møller and Sørensen (1994)
]
. A medical question addresses the mod-

eling of patterns of nerve fibers in the human skin tissue
[
Waller (2005)

]
. In

zoology, the predominant locations of the territories of rare animal species might

attract the researchers’ attention
[
Edelman (2012), Klaver et al. (2012)

]
, and

the spatial modeling of road accidents is a crucial task in traffic engineering[
Yamada and Thill (2004)

]
.

In this thesis, we consider two types of datasets: A framework for modeling the

spatial distribution of the vascular bundles in maize plants is discussed in Chap-

ter 4. The database consists of several cross-sections through maize stems and,

in particular, through the enclosed vascular bundles that we replace by points.

Our second database contains photographs of textured three-dimensional scenes

(see Chapters 6 – 7). The key idea here is to assign a point to each texture ele-

ment, and to draw conclusions on camera positioning and angle from the spatial

distribution of the resulting point process realization.

The definitions in the following refer to spatial point processes in R2. However,

they can easily be adapted to spaces Rd of arbitrary dimension d ∈ N = {1, 2, ...}.
Following Møller and Waagepetersen (2003), we characterize a spatial point pro-

cess X as a random countable subset of a two-dimensional observation window

W ⊆ R2. For the sake of convenience and practical relevance, most of our def-

initions refer to bounded windows B ⊆ W . Moreover, we assume that each

realization x ⊆ W of X is simple and corresponds to a locally finite point con-

figuration. This means that no two points have exactly the same coordinates,

as previously indicated, and that the number of points N(XB) with realizations

n(xB) is finite on each bounded subset B ⊆ W . X thus takes values in the

space

OX = {x ⊆ W : n(xB) <∞, ∀ B ⊆ W} . (2.1)

The subsequent definitions of a point process are aligned to the definitions in

Gelfand et al. (2010, ch. 16), Daley and Vere-Jones (2003, 2007, ch. 3, ch. 15).
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Definition 2.1 A point process on a complete, separable metric space W with

Borel σ-algebra B is a projection X from a probability space (Ω,A,P) to OX .

Moreover, the number of points N(XB) in any bounded subset B ⊆ W is a

finite random variable.

In other words, X is a random variable taking values denoted by x on the

measurable space (OX , σO), where σO is the smallest σ-algebra providing for

the measurability of the mapping x 7→ n(xB), for all B ⊆ W and xB ⊆ B.

The induced probability measure P in Def. 2.1 relates to the distribution of the

point process and hence constitutes its statistical properties.

Definition 2.2 A point process X due to Def. 2.1 is called strongly stationary

if the underlying probability measure P is translation invariant, which means

that P is robust to the shifting of X by any finite vector h. If, in addition,

any unitary rotational transition of the point process X keeps the probability

measure P unaffected, X is referred to as strongly isotropic.

Assuming that we are given a point process with a proper density f(·) subject

to the Lebesgue integral measure
[
Tao (2011, ch. 1)

]
, we can interpret Def. 2.2

following the lecture notes by Schmid and Feilke (2012). The first part of Def. 2.2

implies that, for all x = (x1, x2)> ∈ x and any h = (h1, h2)> ∈ R2,

x 7→ z =

(
x1

x2

)
+

(
h1

h2

)
=⇒ f(x) = f(z)

holds for any realization x of a strongly stationary point process X. Due the

second statement of Def. 2.2, X is strongly isotropic if

x 7→ z =

(
cos ρ − sin ρ

sin ρ cos ρ

)(
x1

x2

)
+

(
h1

h2

)
=⇒ f(x) = f(z) ,

for any angle of rotation ρ ∈ [0, 2π)
[
see also Hughes et al. (2014, ch. 5)

]
.

Though less compactly presentable for d > 2, the interpretations of Def. 2.2

similarly apply to any d-dimensional space Rd, d ∈ N.

Instead of perfectly determining a point process by means of its distributional

properties, it is possible to incompletely characterize it through its intensity.

Therefore, we take the bounded subsets Bu ⊆ W and Bv ⊆ W as given. We

assume that u and v are locations in Bu and Bv, surrounded by circular discs du

and dv with two dimensional (Lebesgue) volume measures ν2(du) and ν2(dv).

Based on this notation, the so-called (first-order) intensity function evaluated

at u equates to

β(u) = lim
ν2(du)→0

E(N(du))

ν2(du)
, (2.2)

whereas its second-order equivalent applied to the pair {u, v} is of the form

β2

(
{u, v}

)
= lim

ν2(du)→ 0

ν2(dv)→ 0

E (N(du) N(dv))

ν2(du) ν2(dv)
. (2.3)
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It is easy to show that β(·) and β2(·) fully determine the first two moments,

i.e. the expectation E(·) and the covariance C(·, ·), of the distribution of the

random variable N(X):

E (N(X)) = µ(W ) =

∫
W

β(u)du

E (N(XBu) N(XBv)) =

∫
Bu

∫
Bv

β2

(
{u, v}

)
du dv − µ

(
{Bu ∩Bv}

)
C (N(XBu), N(XBv)) = E

(
N(XBu) N(XBv)

)
− µ(Bu) µ(Bv)

The probability of observing one point in an infinitesimally small region du

surrounding any location u ∈ Bu can be approximated through

β(u) ν2(du) ≈ E(N(du)) ≈ P (“1 point in du”) .

It is obvious that, for receiving a statistically valid probability P (...) ≯ 1, this

approximation must be based on du → 0 to ensure that E(N(du)) ≤ 1. Both

intensity functions (cf. Eq. (2.2) and Eq. (2.3)) form the basis of a weakened

version of Def. 2.2.

Definition 2.3 A point process X due to Def. 2.1 is called (weakly) stationary

if its intensity functions are translation invariant. If the intensity functions are

furthermore robust to rotations, X is called (weakly) isotropic.

The interpretation of Def. 2.3 is similar to that of Def 2.2, as weak stationarity

implies that

β(u) = β(u+ h) = β = const and β2

(
{u, v}

)
= β2

(
{u+ h, v + h}

)
,

for any finite displacement vector h. Moreover, the second-order intensity of a

weakly isotropic point process only depends on the Euclidean distances between

pairs of points, and not on the exact point coordinates. That is,

β2

(
{u, v}

)
= β2

(
‖u−v‖

)
,

where ‖u− v‖ =
√∑d

i=1(ui − vi)2 denotes the Euclidean distance between u ∈
Rd and v ∈ Rd, d ∈ N. As we concentrate on two-dimensional spaces W ⊆ R2,

‖u− v‖ =
√

(u1 − v1)2 + (u2 − v2)2 goes into the second-order intensity term

under the assumption of weak isotropy. Strong stationarity and strong isotropy

always imply weak stationarity and weak isotropy, but not vice versa. Cressie

(1993) surveys several types of point processes clearly distinguishing between

their isotropic and their non-isotropic versions.

In this paragraph, we give a short introduction to the theory of marked point

processes as surveyed in Daley and Vere-Jones (2003, ch. 16). A point process
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is termed marked if each point X ∈X comes along with a well-defined random

characteristic mX ∈M . Formally, we write

Y =
{

(X,mX) : X ∈X, mX ∈M
}
,

where Y stands for the marked point process on the domain

OY =
{
y = {(x,mx) : x ∈ x,mx ∈M} ⊆ (W×M) : n(xB) <∞, ∀B ⊆ W

}
.

(2.4)

Apart from the additional consideration of an individual attribute mx accompa-

nying each x ∈ x, the domain of a marked point process is of the same structure

as the domain of a pure point process (cf. Eq. (2.1)). It basically conforms to the

set of all possible realizations of a finite point process X, though, supplemen-

tally to Eq. (2.1), it also accounts for all possible mark attributions. Stating

that the point process has do be finite in W ⊆ R2 is equivalent to postulat-

ing that, with probability 1, it contains a finite number of points
[
Daley and

Vere-Jones (2003, ch. 5)
]
.

In general, the statistical properties of a pure point process X do not change

if it is turned into a marked point process Y . Particularly, stationarity and

isotropy characteristics due to Def. 2.2 and Def. 2.3 remain unaffected. Addi-

tionally to describing a marked point process Y in terms of the underlying

ground process X, important attributes of the marking process should not

be left unnoted. Following Daley and Vere-Jones (2003, ch. 16), we outline

two statements concerning dependence-structures between marks and (marked)

points.

Definition 2.4 A marked point process Y = {(X,mX) : X ∈X, mX ∈M} in

the product space A := (W×M), W ⊆ R2, is said to have independent marks if,

conditional on the basic process X, the marks are mutually independent random

variables. That is, for any realization x = {x1, ..., xn} with mark assignments

{mx1 , ...,mxn}, each mark mxi only depends on xi, for all i ∈ {1, ..., n}.

Definition 2.5 A marked point process Y = {(X,mX) : X ∈ X, mX ∈ M}
in the product space A := (R2 ×M) is said to have unpredictable marks if the

mark distribution at any point contained in X does not depend on the other

point locations and their markings. That is, for every realization y of Y , the

mark distribution in any component xi of the corresponding ground process x

does not depend on the remaining marked points y−{i} =
{
y \ {yi}

}
.

The simplest model for marks is the independent marks model where the

marks are independent and identically distributed (i.i.d.) random variables not

depending on the locations of the points. If the marks do not depend on the

point coordinates, but correlate with each other, a random field model is typi-

cally considered. Random field models are also known as geostatistical marking .
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More general models take correlations between the spatial point distribution

and the marking into account. In this work, however, we only consider cases

where the marks are assumed to be independent and unpredictable.

It is obvious that marked point processes are of high practical relevance.

Assuming, for instance, that X describes the locations of the trees in a forest,

Y might contain information on the stem diameters. If Y comprises further

details, such as the type, age or or height of the trees, we are concerned with a

multi-marked point process . Fig. 2.1 illustrates a simple example.

(a) Point process realization (b) Marked points (c) Multi-marked points

Figure 2.1: Simulation of a forest area. (a) corresponds to a realization of a non-

marked point process showing the locations of the trees, and (b) addi-

tionally depicts the relative stem diameters. (c) provides information on

the locations, stem diameters, and types of the trees.

Summing up in terms of notation, X stands for a non-marked point process

and x for one of its realizations, and X denotes a single point and x one of

its realizations. In the marked case, Y symbolizes the random process, y the

realization, and Y as well as y a single point (realization). N(·) stands for the

number of points contained in X or Y , whereas n(·) counts the actual number

of points in x or y. While W ⊆ R2 denotes an arbitrary observation window,

B is always bounded.

We differentiate between three types of point patterns with regard to their

structural appearances: In an entirely random pattern, points can be located

arbitrarily close to each other. The coordinates of one point are thus indepen-

dent of the coordinates of all the other points. A point configuration is regular

if the average distance from a point to its nearest neighbor is higher than un-

der the assumption of total randomness. Otherwise, if this distance is shorter

than for independently located points, the observed pattern is termed aggre-

gated . Fig. 2.2 shows a random (a), a regular (b) and an aggregated (c) point

arrangement.

It is possible to check a homogeneous or inhomogeneous point process for

clustering or repulsion effects by means of suitably implemented test statistics[
see e.g. Ripley (1977), Besag and Diggle (1977), Besag and Clifford (1989)

]
.
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(a) Random pattern (b) Regular pattern (c) Aggregated pattern

Figure 2.2: Samples from point processes featuring different structural properties.

In each window, the expected number of points is equal to 50.

Common test statistics are either based on inter-point distances, such as the F-,

G- or J-functions discussed by Van Lieshout and Baddeley (1996) and Bedford

and Van den Berg (1997), or on second-order measures, such as the class of

the K-, L-, and g-functions
[
see e.g. Ripley (1976), Baddeley et al. (2000)

]
.

Furthermore, directional K-functions have been developed to investigate possible

anisotropy
[
Stoyan and Stoyan (2000), Brix and Moller (2001)

]
.

In the following sections, we discuss some common ways to determine and

characterize the distribution of a point process. These distributional principles

are needed for clarifying the technical details of our research work in the later

chapters. While our main focus will be on Markovian point processes (see

Section 2.3), we start with a general description of their superordinate class,

the class of Poisson point processes.

2.2 Poisson Processes

A spatial Poisson point process X on a subset W ⊂ R2 can be described as

a random arrangement of points, in which the location of each single point

does not depend on the coordinates of the other points (cf. Fig. 2.2 (a)). The

definition of a Poisson point process and its characteristics can thus be derived

from the properties of a binomial point process
[
see also Gelfand et al. (2010,

ch. 17), Illian et al. (2008, ch. 2), and Møller and Waagepetersen (2003, ch. 3)].

Definition 2.6 A binomial point process X ∼ binomial(W,n, f) in a set W ⊂
R2 is a random arrangement of n ∈ N = {1, 2, ...} i.i.d. points, where the point

intensity depends on the underlying density function f on W .

Definition 2.7 A binomial point process X ∼ binomial(W,n = 1, f) is

termed Bernoulli process in W subject to f .
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Definition 2.8 A Poisson point process X ∼ Poisson(W,β) in a set W ⊂ R2

with underlying intensity β has the following properties:

(a) For any B ⊆ W , the number of points in B follows a Poisson distribution

with mean µ(B), i.e. N(XB) ∼ Pois(µ(B)), under the constraint that

µ(B) <∞. Assuming that B is bounded, µ(B) = E (N(XB)) .

(b) For any n ∈ N and B ⊆ W , given that N(XB) = n and 0 < µ(B) < ∞,

XB ∼ binomial(B, n, f) with density f(x) = β(x)
µ(B)

, ∀ x ∈XB.

(c) For any I disjoint subsets Bi ⊂ W , N(XB1), ..., N(XBI ) are independent

random variables.

Definition 2.9 The Poisson process with constant intensity β = 1, is called

the standard or unit rate Poisson process.

We first assume that the points are uniformly distributed in W . The respective

point process is then called a homogeneous binomial and a homogeneous Poisson

point process, respectively. It is stationary and isotropic due to Def. 2.2. Under

homogeneity conditions, Def. 2.6 simplifies in the sense that f(x) = 1
|B| , x ∈ x,

is the uniform density in B ⊆ W . Moreover, β becomes a constant factor and

the relation µ(B) = β |B| goes into Def. 2.8. It follows from Def. 2.8 (a) that

the number of points, N(XB), is Poisson distributed,

P (N(XB) = n) =
(β |B|)n

n!
exp{−β |B|} ,

with P (N(XB) = 0) = exp{−β |B|}. The term void probability is widely-used

for P (· = 0) in the statistical literature.

Under homogeneity assumptions, the relation between a binomial and a Pois-

son process, as described in Def. 2.8 (a), results in f(x) = β
µ(B)

= 1
|B| , x ∈

x. Similarly, the intensity parameter of the Poisson process can be deduced

from the expected number of points of the binomial process by computing

β = E(N(XB))
|B| , provided that B is bounded implying that E (N(XB)) = µ(B).

If the packing density of the point pattern is not constant, but driven by an

intensity function β : W → [0,∞), the process corresponds to an inhomogeneous

Poisson process . For modeling purposes, β(·) needs to be locally integrable,

meaning that
∫
B β(x)dx < ∞ for all bounded subsets B ⊆ W . The equation

µ(B) =
∫
B β(x)dx has to be solved to quantify the intensity measure µ(B) in

Def. 2.8. Since µ
(
{x}

)
= 0 for all x ∈ XB, we call µ(·) diffuse. Following

Def. 2.8 (a), the number of points in an inhomogeneous pattern is Poisson

distributed with density

P (N(XB) = n) =

(∫
B β(x)dx

)n
n!

exp

{
−
∫
B

β(x)dx

}
.
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This thesis is focused on parametric intensity functions, meaning that β(·)
is determined by a set of parameters θ. We thus henceforth use the notation

βθ(·). To assess θ with respect to a given dataset x = {x1, ..., xn} on W ⊂ R2,

we apply the likelihood

f(x|θ) = exp

{
−
∫
W

βθ(x)dx

} ∏
x∈x

βθ(x) . (2.5)

Likelihood-based parameter estimation is discussed in more detail in Section 2.5.

Formally, the likelihood is equivalent to the discrete or continuous density of the

data. By using the term likelihood, however, the fact is stressed that the exact

values of θ are not known and modeled subject to the observed data x, although

f(x|θ) itself suggests conditionality on θ. In Daley and Vere-Jones (2003, ch. 7),

the principle and motivation of the likelihood representation of a point process

with proper density f(·) is step-wisely developed and explained based on all

relevant theoretical fundamentals.

In case of analyzing a homogeneous point pattern, Eq. (2.5) reduces to

f(x|θ) = exp {−β |W |} βn , (2.6)

which facilitates inference considerably.

As stated in the previous section, a point dataset does not necessarily contain

spatial point coordinates only. Frequently, additional parameters in the form

of marks provide more detailed information on the objects the points are rep-

resenting. We define the marked version Y = {(X,mX) : X ∈ X, mX ∈ M}
of a Poisson process on the state space (W × M) according to Møller and

Waagepetersen (2003, ch. 3).

Definition 2.10 Let X ∼ Poisson(W,β) be a Poisson process with locally

integrable intensity function β, and let M be a given mark space. If, conditional

on X, the marks {mX : X ∈X} are mutually independent (cf. Def. 2.4), Y is

called a marked Poisson process. Furthermore, in the case that all marks have

the same distributional properties, their distribution is called mark distribution.

Assuming that a proper density pM is derivable from the distribution of the

marks, i.e.
∑

m∈M pM(m) = 1 or
∫
M pM(m) dm = 1, pM(·) is termed the

discrete or continuous mark density associated with the Poisson process X.

Following Daley and Vere-Jones (2003, ch. 7), an independent marks model (cf.

Def. 2.4 and discussion) of Poisson type is defined as

f(y|θ) = exp

{
−
∫
W

βθ(x)dx

} ∏
(x,mx)∈y

[
βθ(x) pM(mx)

]
, (2.7)

provided that pM(·) is proper according to Def. 2.10.
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Poisson models per se do not account for potential point dependencies, which

means that the conditional distribution of one point Xi ∈X given the remaining

pattern X−{i} does not depend on the point locations in the remaining pattern.

For a Poisson model with a parametric density following Eq. (2.5), it therefore

holds that

f(Xi|X−{i},θ) = f(Xi|θ) .

In many practical applications, however, the assumption of independent point

coordinates proves too simplistic and unrealistic. Nevertheless, by using Poisson

models as templates, while imposing additional properly formulated interaction

conditions, we derive models that allow to deal with point interactions. The

following section gives an overview of the well-established Markovian interaction

point processes.

2.3 Markov/Gibbs Processes

The most common and statistically relevant overall class of interaction point

processes is the class of Markov point processes also known as Gibbs processes[
Møller and Waagepetersen (2003, ch. 6)

]
. We call a point process a Markov

process if its distribution is affected by the Markov property . This means that,

considering a point process in W ⊆ R2, the conditional distribution of any

single point given all the other point locations only depends on the locations

in the immediate surrounding of the point. In other words, the probability

of assigning the position xi to Xi, while knowing the remaining coordinates

x−{i} of X−{i}, depends on the point positions in the close proximity of xi
only. The circumference of the “close proximity” needs to be ascertained based

on a thoroughly chosen symmetric and reflexive neighborhood relation that we

symbolize by ∼i. Then, the spatial Markov property formally implies that

P (Xi=xi|X1=x1,..., Xi−1=xi−1, Xi+1=xi+1,..., Xn=xn) = P (Xi=xi|X∼i=x∼i).
(2.8)

If the point process considered has a proper density f with respect to the

Lebesgue integral measure
[
Tao (2011, ch. 1)

]
, it furthermore holds that

f(Xi|X−{i}) = f(Xi|X∼i) .

The Markov property can similarly be interpreted with regard to point pro-

cesses in any d-dimensional subspace of Rd, where d ∈ N. Temporal point

processes in R, for instance, are Markovian if the conditional distribution of

the occurrence time of the next event only depends on the occurrence time(s)

of the immediately preceding event(s) (see also Section 2.4). More precise and

technically sophisticated explanations of the meaning of the Markov property
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in the context of point process modeling are provided by Kendall (1990) and

Daley and Vere-Jones (2007, ch. 10).

Coming back to the modeling of spatial patterns in R2, we limit our discussion

to the most typical class of Markov point process models composed of a point

process density with respect to the unit rate Poisson process and additional

constraints involving interaction. We confine ourselves to isotropic pairwise

interaction point processes the densities of which depend on Euclidean point

distances, but not on exact point coordinates (see also Def. 2.3 and its interpre-

tation). Among that subclass, in turn, our main focus is on Strauss processes

as well as on Gibbs processes with a known number n of points. For the sake

of simplicity, we call the latter fix-n Gibbs processes . Both Strauss and fix-n

Gibbs models capture interactions in the form of pairwise point repulsions. A

comprehensive methodological background as well as supplementary technical

details can be gathered from Møller and Waagepetersen (2003, ch. 6).

In general terms, the likelihood of a pairwise interaction point process in R2

is specified by its intensity and interaction functions, φ1(·) and φ2(·), and takes

the form

f(x|θ) = Z(θ)−1
∏
u∈x

φ1(u)

6=∏
{u,v}⊆x

φ2

(
{u, v}

)
, (2.9)

where θ denotes the set of unknown parameters and {u, v} any pair of dissimilar

points
[
Møller and Waagepetersen (2003)

]
. To ensure that the likelihood cor-

responds to a proper density, i.e.
∫

R2 f(x|θ) dx = 1, the normalizing constant

Z(·)−1 needs to be defined as

Z(θ) =

∫
R2

f (∗)(x|θ) dx , with f (∗)(x|θ) = Z(θ) f(x|θ) . (2.10)

Since this integral is often not solvable, many point processes suffer from a

likelihood not available in complete form.

A proper interaction function is nonnegative and furthermore guarantees that

f(·|θ) is integrable with respect to the unit rate Poisson process (cf. Def. 2.9).

If and only if φ2(·) ≤ 1 holds for all pairs of points, a repulsive point configu-

ration is modeled (cf. Fig. 2.2 (b)). The point process is furthermore locally

stable if
∫
W φ1(u)du < ∞. A Poisson process can be regarded as the limiting

case of a repulsive point process, where φ2

(
{u, v}

)
= 1 for all pairs of points,

and where the Likelihood is available in complete form (cf. Eq. (2.5)). An

incomplete likelihood makes inference difficult and requires the implementation

of approximate methods. This is why we devote Section 2.4 and Section 2.5

to the introduction of well-established approaches to simulation and parameter

estimation in numerically challenging point process frameworks.

Assuming that φ2

(
{u, v}

)
> 1, we are concerned with an attractive density

measure modeling aggregated patterns (cf. Fig. 2.2 (c)). Most attractive models
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are poorly defined and suffer from a lack of accessibility
[
Kelly and Ripley

(1976)
]
. Therefore as well as due to the fact that our own research deals with

repulsive patterns only, we will not go into any more detail at this point.

Given a homogeneous point pattern with pairwise repulsion effects, Eq. (2.9)

simplifies to

f(x|θ) = Z(θ)−1 βn(x)
∏

{u,v}⊆x

φ2

(
{u, v}

)
,

that is, φ1(u) turns into a constant factor φ1 = β > 0, for all u ∈ x =

{x1, ..., xn}. Based on the assumption of homogeneity, we characterize the well-

known class of homogeneous Strauss processes first introduced by Strauss (1975).

In a Strauss process model, interactions between pairs of points are included

through their Euclidean distances, which means that φ2

(
{u, v}

)
= φ2(‖u− v‖).

More concretely, the term of interaction takes the form

φ2(r) = γ11[r≤R] , (2.11)

where 0 ≤ γ ≤ 1 and R ≥ 0. We call γ the weight of interaction and R the

interaction radius or range. Furthermore, we assume that 00 = 1. In terms of

inference, Strauss models come along with a likelihood according to

f(x|θ) = Z(θ)−1 βn(x) γsR(x) , (2.12)

where sR(x) =

6=∑
{u,v}⊆x

11
[
‖u− v‖ ≤ R

]
,

and Z(·)−1 is usually intractable. In this formal representation, θ = {β, γ, R}.
Turning our attention to the borders of the domain of γ, both limiting cases

have a noteworthy meaning: γ = 1 corresponds to a homogeneous Poisson

model (cf. Eq. (2.2)), whereas a Strauss model with γ = 0 is called a hardcore

model . The designation “hardcore” is self-explanatory, since the expression on

the right-hand side of Eq. (2.12) is equal to 0 if γ = 0 and at least one pairwise

point distance is shorter than R.

We see that γ and R describe the regularity of a point pattern. The question

comes up why we abstract away from higher interaction weights, i.e. γ > 1,

although they are expected to capture potential clustering effects. The problem

consists, in line with our discussion above, in the non-integrability of the right-

hand side of Eq. (2.12). We therefore make reference to Kelly and Ripley (1976)

once again.

We move on to Gibbs processes containing a known number of points. As

clarified previously, we call these processes fix-n Gibbs processes for convenience.

Since n is deterministic, the first product on the right-hand side of the generic

likelihood in Eq. (2.9) results in a constant factor commonly equated with an
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(a) Poisson (γ = 1)

−→

(b) Strauss (γ = 0.5)

−→

(c) Hardcore (γ = 0)

Figure 2.3: Simulations in W = [0, 1] × [0, 1] from different Strauss type models

with intensity β = 100 and interaction range R = 0.05. The point pro-

cess realizations in (b) – (c) have been generated via perfect simulation,

through progressive thinning of the template Poisson process in (a) (cf.

Section 2.4).

expression of the form exp{−α}. The interaction condition is set to

6=∏
{u,v}∈x

φ2

(
{u, v}

)
=

6=∏
{u,v}∈x

exp{−ϕ(‖u− v‖)} ,

where ϕ(·) is a suitably designed function evaluating interaction. On the whole,

the likelihood of a fix-n Gibbs process is presentable as

f(x|θ) = Z(θ)−1 exp

−α−
6=∑

{u,v}∈x

ϕ(‖u− v‖)

 = Z(θ)−1 exp{−U(x|θ)} .

(2.13)

U(·) is termed the total Gibbs energy , and Z(·)−1 follows Eq. (2.10). If, for

all pairs {u, v}, ϕ(‖u − v‖) = 0, the fix-n Gibbs process reduces to a simple

binomial process (cf. Def. 2.6), whereas ϕ(‖u− v‖) = γ11[‖u−v‖>R] complies with

a Strauss process density due to Eq. (2.12).

In conformity with the previous paragraphs, we supplement our description of

interaction point processes by addressing their marked versions. The likelihood

of a marked pairwise interaction point process Y = {(X,mX) : X ∈X , mX ∈
M} is given by

f(y|θ) = Z(θ)−1
∏

(u,mu)∈y

φ1

(
(u,mu)

) 6=∏
{(u,mu),(v,mv)}⊆y

φ2

({
(u,mu), (v,mv)

})
,

(2.14)

for any realization y of Y . Again, φ1(·) and φ2(·) have to be positive and

integrable. All unknown parameters describing the point locations and the

marks go into θ in this formulation. A common type of marked interaction

point process is the so-called Strauss type disc process , in which the marks
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correspond to disc radii. These disc radii might, for example, quantify the sizes

of the root networks in a forest, whereas the points themselves indicate the

actual tree locations (cf. Fig. 2.1 (a) – (c)). The trees cannot stand arbitrarily

close to each other. In a Strauss type disc process,

φ1((u,mu)) = β , and φ2

(
{(u,mu), (v,mv)}

)
= γ11[‖u−v‖≤mu+mv ] .

As for the non-marked case, we require that β > 0, 0 ≤ γ ≤ 1, and 00 = 1.

So far, we have only discussed homogeneous Markov processes. It is self-

evident, however, that there are also inhomogeneous versions of general pairwise

interaction point processes. Especially, the consideration of local scaling effects

has intensely been studied over the past years. While object configurations

showing spatially varying packing densities and interaction behaviors appear in

most fields of statistical application, analyzing them is quite challenging. Apart

from the fact that the normalizing constant of a Gibbs model is usually in-

tractable rendering exact inference impossible (cf. Eq. (2.10) and discussion),

additional scaling constraints complicate matters, mainly for identifiability rea-

sons. We therefore devote the separate Chapter 4 to the introduction of locally

scaled spatial point processes and, in particular, to the proposition of a suitable

and efficient Bayesian inference framework.

As just stated, most Gibbs models suffer from a lack of completeness in the

sense that their normalizing constants are not available in closed form. For the

same reason, it is often not easy to model inhomogeneous Poisson processes.

Only homogeneous binomial and homogeneous Poisson point process distribu-

tions ensure the applicability of exact inference procedures without fail. In

Section 2.4, we give an introduction to the Markov chain Monte Carlo simula-

tion framework which has become a crucial foundation for solving complicated

modeling problems. Based on this background, we discuss convenient sampling

principles related to the point process models described so far. Section 2.5 finally

surveys how to perform parameter estimation under these modeling conditions,

addressing both frequentist and Bayesian concepts of inference.

2.4 Sampling Techniques

Our discussion on suitable sampling techniques for different types of spatial

point processes is mainly based on the books by Gelfand et al. (2010, ch. 12

& 19) and Møller and Waagepetersen (2003, ch. 7 & 11). In the following, we

begin with a general description of what is meant by Markov chain Monte Carlo

simulation.
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Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms are iterative stochastic simu-

lation techniques that yield an approximate solution when exact or straightfor-

ward solvers are not available. Building on the early seminal works by Metropo-

lis et al. (1953) and Hastings (1970), a huge range of MCMC(-related) methods

has been developed during the past decades. Particularly in computer-based

sciences as well as in Bayesian statistics, MCMC approaches are among the

gold standards.

One fundamental MCMC principle traces back to the substitutability of un-

solvable integrals by empirical means, that is, by Monte Carlo integration
[
see

e.g. Gelfand et al. (2010, ch. 12)
]
. We assume that we are given a random

variable X with a density f(·) from which we can simulate realizations denoted

by x. For any suitable function g(·) with unknown mean E(·), it holds that

E (g(x)) =

∫
W

g(x) f(x) dx ≈ 1

T

T∑
t=1

g(x(t)) ,

provided that enough drawings {x(1), ...,x(T )} from f(·) are available and W

is the known domain of X. In case of independent sampling, the central limit

theorem
[
Cam (1986)

]
yielding

1√
T

T∑
t=1

g(x(t))
T→∞∼ N

(√
T E

(
g(x)

)
, V

(
g(x)

))
,

where V (·) can be replaced by the empirical variance, furthermore holds under

quite general assumptions.

The second motivation for the development of MCMC methodology results

from the problem that exact sampling from an incomplete density f(·) is usually

not possible. Monte Carlo sampling , however, allows to implicitly draw real-

izations from f(·). As discussed in Gelfand et al. (2010, ch. 12), Monte Carlo

sampling builds on the key idea to develop a Markov chain. This chain is con-

structed such that its stationary distribution accords to the target model, and all

its elements take values in the target domain. It is important that the Markov

chain is sufficiently long . As soon as it is in its equilibrium regime, all previous

stages, i.e. the entire burn-in phase, become eliminated, and samples from the

remaining chain are regarded as drawings from the intractable target model f(·).
In order to avoid autocorrelation, not all states of the remaining chain should be

taken into account. Autocorrelation effects are dependence structures between

successively generated samples
[
see also Gelfand et al. (2010, ch. 1)

]
.

The chain of states obtained from an MCMC simulation conforms to a suc-

cession of outcomes with the Markov property as its characteristic feature. In

contrast to the spatial Markov property discussed in Section 2.3 and formally
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defined by means of Eq. (2.8), we are now concerned with its discrete temporal

version. This means that element (t + 1) of a Markovian sequence so far con-

sisting of the states X(0) = x(0) → X(1) = x(1) → ... → X(t) = x(t), where

X(0) = x(0) is a suitably chosen baseline, only depends on the last realization

X(t) = x(t). Technically,

P (X(t+1)=x(t+1)|X(t)=x(t), ...,X(0)=x(0)) = P (X(t+1)=x(t+1)|X(t)=x(t))

or

f(x(t+1)|x(t), ...,x(0)) = f(x(t+1)|x(t)) . (2.15)

The whole Markov process is therefore uniquely determined by its transition

distributions.

We let f(·|·) denote a discrete or continuous density which models transitions

between any two consecutive states x and x′. Under weak regularity assump-

tions, the whole simulation process converges towards its stationary and unique

target distribution f(·). Therefore, it is important and essential that the detailed

balance condition

f(x) f(x′|x) = f(x′) f(x|x′) (2.16)

is fulfilled
[
see also Møller and Waagepetersen (2003, ch. 7 & 11)

]
. For more

information, we recommend the standard work by Meyn and Tweedie (2009)

which provides a broad and sound theoretical knowledge on the properties and

the construction of Markovian chains.

The Gibbs sampler is one of the two very elementary MCMC tools. Given a

random variable X consisting of n components, i.e. X = {X1, ..., Xn}, it itera-

tively generates samples x = {x1, ..., xn} from the full conditionals f(xi|x−{i}),
where x−{i} = {x1, ..., xi−1, xi+1, ..., xn}. Consequently, Gibbs sampling avoids

the necessity to immediately assess the incomplete density f(x), provided that

all full conditionals are numerically accessible. In Alg. 2.1, the stages of a Gibbs

simulation are formally outlined for a set of n unknown variables and a suffi-

ciently large number T of iterations. A more detailed description of the Gibbs

sampler can be gathered from Casella and George (1992).

The question comes up how to proceed if it is not possible to immediately

draw realizations from the full conditionals. In such situations, algorithms of

the type Metropolis-Hastings (M-H), tracing back to the works by Metropolis

et al. (1953) and Hastings (1970), often prove expedient. M-H sampling is not

the most efficient simulation strategy and there is a lot of research going on, try-

ing to develop more innovative methods. However, M-H and Gibbs algorithms

are probably the most wide-spread and well-known techniques. To implement a

standard M-H routine, appropriate transition density (or probability) distribu-

tions q(x(t+1)|x(t)) need to be specified in advance. It must be possible to draw

exact samples on the target domain from these distributions. Although the
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Algorithm 2.1: Gibbs sampler for a fixed number of variables.

Data: Number of variables n, burn-in threshold T0

Result: Samples x(T0), ...,x(T )

Initialize x(0) =
{
x

(0)
1 , ..., x(0)

n

}
;

for t ∈ {0, ..., T − 1} do

for i ∈ {1, ..., n} do

draw x
(t+1)
i ∼ f(xi|x(t)

−{i});

end

set x(t+1) =
{
x

(t+1)
1 , ..., x(t+1)

n

}
;

end

Return x(T0), ...,x(T );

true transition densities f(·|·) appear numerically intractable or not available in

complete form, they are related to the user-defined functions q(·|·) through

f(x(t+1)|x(t)) = q(x(t+1)|x(t)) Pacc(x
(t+1)|x(t)) ,

where Pacc(·|·) stands for the probability to accept the transition proposed based

on q(·|·). The detailed balance condition in Eq. (2.16) can thus be restated as

follows:

f(x) q(x′|x) Pacc(x
′|x) = f(x′) q(x|x′) Pacc(x|x′)

=⇒ Pacc(x
′|x)

Pacc(x|x′)
=

f(x′)

f(x)

q(x|x′)
q(x′|x)

This representation provides for the conclusion that

Pacc(x
′|x) = min

{
1, RMH :=

f(x′)

f(x)

q(x|x′)
q(x′|x)

}
. (2.17)

The calculation and evaluation of RMH, known as Hastings ratio, is the central

part of the M-H algorithm step-wisely sketched in Alg. 2.2. In spite of the

intractability of f(·), the calculation of RMH does not pose any problems, as it

makes the unknown normalizing constants cancel out. More precisely,

RMH =
f(x′)

f(x)

q(x|x′)
q(x′|x)

=
Z−1 f (∗)(x′)

Z−1 f (∗)(x)

q(x|x′)
q(x′|x)

=
f (∗)(x′)

f (∗)(x)

q(x|x′)
q(x′|x)

,

where f (∗)(·) is the known kernel of f(·) and Z−1 the inaccessible normalizer

(see also Eq. 2.10). In general, the suggested transition distribution q(·|·) should

not be too restrictive, that is, too much input in terms of vague speculations
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Algorithm 2.2: Metropolis-Hastings sampler.

Data: Burn-in threshold T0, selected method

Result: Samples x(T0), ...,x(T )

Initialize x(0) =
{
x

(0)
1 , ..., x(0)

n

}
;

for t ∈ {0, ..., T − 1} do

if method==“individual” then

for i ∈ {1, ..., n} do

draw x′i ∼ qi(xi|x(t)) and set x′ =
{
x

(t)
−{i} ∪ {x′i}

}
;

calculate RMH = f(x′)
f(x)

qi(x
(t)
i |x

′)

qi(x′i|x(t))
;

draw Rt ∼ U [0, 1];

set x(t) =

{
x′ , if RMH > Rt

x(t) , else
;

end

set x(t+1) =
{
x

(t+1)
1 , ..., x(t+1)

n

}
;

end

else

draw x′ ∼ q(x|x(t));

calculate RMH = f(x′)
f(x(t))

q(x(t)|x′)
q(x′|x(t))

;

draw Rt ∼ U [0, 1];

set x(t+1) =

{
x′ , if RMH > Rt

x(t) , else
;

end

end

Return x(T0), ...,x(T );

should be avoided. Flat (truncated) Gaussian or uniform distributions often

prove suitable and convenient.

Regarding Alg. 2.2, if qi(x
′
i|x(t)) = qi(x

′
i|x

(t)
i ) = qi(x

(t)
i |x′i) for all i, the algo-

rithm is turned into a Metropolis algorithm
[
Metropolis et al. (1953)

]
. Moreover,

it is obvious that qi(x
′
i|x(t)) = f(x′i|x(t)) reduces the MH-routine to a Gibbs

sampler as illustrated in Alg. 2.1.

The following section is devoted to a detailed description of how MCMC

methodology can be applied to simulate from different spatial point process
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models. In addition to the technical explanations provided, we give some tips

concerning the implementation of the proposed algorithms. Here, the open

source software R serves as a basis1. We introduce relevant commands from

the basic R-toolbox2 as well as from the ‘spatstat’-package by Baddeley and

Turner (2005).

Sampling from a Spatial Point Process Distribution

We revert to the notation introduced in Section 2.1 and let x = {x1, ..., xn}
denote the state of a point process X in a two-dimensional data space W ⊆ R2.

For a start, we consider a homogeneous Poisson process X in a bounded set

B ⊆ W with known intensity parameter β. From X, we sample a realization x

via a two-stage procedure as described in Illian et al. (2008, ch. 2). We first draw

the total number of points, n(x) = n, from a Poisson distribution with intensity

parameter β|B|. Thereafter, we randomly distribute the points over B by su-

perposing n independent samples from a Bernoulli process. Alg. 2.3 presents the

suggested sequence of operations in brief. Using R, the functions rpois() and

runif() allow for its step-wise implementation, whereas the rpoispp() pro-

vided in the R-package ‘spatstat’
[
Baddeley and Turner (2005)

]
immediately

returns a point process realization.

Algorithm 2.3: Sampling from a homogeneous Poisson process.

Data: Intensity parameter β, observation window B

Result: Point process realization x = {x1, ..., xn}

Draw n ∼ Pois (β |B|);

for i ∈ {1, ..., n} do

draw xi ∼ binomial
(
B, n = 1, f = 1

|B|

)
;

end

Under heterogeneity assumptions, sampling from X becomes more demand-

ing. Location-dependent thinning according to Illian et al. (2008, ch. 3), how-

ever, is an intuitive and feasible method to simulate from an inhomogeneous

Poisson process with intensity function β(·). The key idea is to take a real-

ization from a densely packed homogeneous Poisson process as a basis, and to

successively delete each point with a specific probability defined through β(·).
Normally, the homogeneous template realization x∗ = {x∗1, ..., x∗n∗} is sampled

from a Poisson process with intensity parameter β(∗) ≥ supB
{
β(·)

}
, and the

probability of deleting a point x∗i from x∗ in the thinning phase is defined as

1http://www.r-project.org/
2https://stat.ethz.ch/R-manual/R-devel/library/base/
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P (x∗i /∈ x) = d(x∗i ) = 1 − β(x∗i )

β(∗) , where x is a realization from the inhomo-

geneous target process and i ∈ {1, ..., n∗}. Alg. 2.4 illustrates this sampling

procedure in a nutshell. The R-function rpoispp() mentioned previously is not

only applicable to homogeneous, but also to inhomogeneous point process mod-

els. Via thinning, it automatically generates a point process realization with

locally varying packing density if the given intensity is not a constant, but a

function. Therefor, β(∗) has to be determined by the user.

Algorithm 2.4: Sampling from an inhomogeneous Poisson process.

Data: Intensity function β(·), observation window B

Result: Point process realization x = {x1, ..., xn}

Specify β(∗) ≥ sup
B

{
β(·)

}
;

Draw x∗ = {x∗1, ..., x∗n∗} ∼ Poisson(B, β(∗)) due to Alg. 2.3;

Set x = x∗;

for i ∈ {1, ..., n∗} do

with probability d(x∗) = 1− β(x∗i )

β(∗) , set x =
{
x \ {x∗i }

}
= x−{i};

end

Not only with regard to the Poisson case, but also in applications to more

sophisticated point process models, thinning proves expedient. Section 4.3 deal-

ing with the class of locally scaled spatial point processes, for instance, shows

that the concept of thinning-based inference can be adjusted to inhomogeneous

patterns with repulsive points.

The skeletal structure of a sampling routine for homogeneous interaction point

processes with a density following Eq. (2.9) basically depends on whether the

total number of points in B is fixed or not
[
see also Møller and Waagepetersen

(2003, ch. 7)
]
. Considering Gibbs processes with a known number of points,

which we summarize under the term fix-n Gibbs processes (cf. Section 2.3),

a starting state x(0) has to be generated first, e.g. by placing n points on a

regular grid. Thereafter, a randomly selected point x
(0)
i ∈ x(0), i ∈ {1, ..., n},

is replaced by a new one x
(1)
i drawn from the conditional point process density

f(·|x(0)
−{i}), and x(0) is turned into x(1) =

{
x

(0)
−{i} ∪ {x

(1)
i }
}

. This procedure is

repeated again and again. After sufficiently many iterations, the states of the

point process can be regarded as realizations from the target fix-n Gibbs model.

Alg. 2.5 summarizes the proposed sampling stages.

Although the algorithm appears simple at first view, its actual implementa-

tion requires some more lines of code if the conditional density f(x|x(t)
−{i}) is not

tractable or difficult to access. Unless given a limiting case in the form of a

homogeneous Poisson or a hardcore process, only approximate samplers, such
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Algorithm 2.5: Sampling from a fix-n Gibbs process, e.g. from a hard-

core process with interaction radius R.

Data: Number of variables n, burn-in threshold T0, interaction radius R

Result: Samples x(T0), ...,x(T )

// General algorithm:

Initialize x(0) = {x(0)
1 , ..., x(0)

n };

for t ∈ {1, ..., T − 1} do

draw i ∼ U [1, n];

replace x
(t)
i ∈ x(t) by x

(t+1)
i ∼ f(x|x(t)

−{i});

set x(t+1) =
{
x

(t)
−{i} ∪

{
x

(t+1)
i

}}
;

end

Return x(T0), ...,x(T );

// Algorithm for hardcore processes:

Initialize x(0) = {x(0)
1 , ..., x(0)

n };

for t ∈ {1, ..., T − 1} do

draw i ∼ U [1, n] ;

draw u ∼ binomial
(
B, n = 1, f = 1

|B|

)
;

set x
(t+1)
i =

u , if min
v∈x−{i}

{‖u− v‖} > R

x
(t)
i , else

;

end

Return x(T0), ...,x(T );

as samplers of the type Metropolis Hastings, provide for a reasonable solution.

In an M-H framework for point process models, the point replacement stage is

normally called a move step and the entire simulation procedure a move-M-H

algorithm
[
Møller and Waagepetersen (2003, ch. 7)

]
. As outlined by means of

Alg. 2.2, the proposed substitution is not necessarily accepted.

To explain the sequence of operations of an M-H move procedure in the con-

text of sampling from a spatial point process, we merge Alg. 2.2 with Alg. 2.5.

First, we replace f(·|x(t)
−{i}) in Alg. 2.5 by predetermined transition densities

qi(·|x(t)) from which we can draw proposals x′i ∼ qi(xi|x(t)), such that x′ ={
x

(t)
−{i} ∪ {x′i}

}
for i ∈ {1, ..., n} and t ∈ {1, ..., T}. Following Alg. 2.2, we
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implement move ratios of the form

Rm =
f(x′)

f(x(t))

qi(x
(t)
i |x′)

qi(x′i|x(t))
, (2.18)

which we accept or reject with probability min{1, Rm} and 1 − min{1, Rm},
respectively. Alg. 2.6 concisely presents the embedding of move steps in an M-H

framework.

Again referring to Møller and Waagepetersen (2003, ch. 7), we continue with

the introduction of a sampling scheme for Gibbs processes with an unknown

number of points. As no information on the exact size of the pattern is available,

any point configuration – and therefore even an empty point set – may serve

as starting pattern x(0). Instead of solely conducting move steps in the form

of iterative point replacements, we furthermore consider “pure” point additions

and deletions, called births and deaths. It is possible to completely leave the

move steps out, but this usually reduces speed of convergence considerably. In

M-H terminology, the described approaches are referred to as birth-death-move-

or birth-death-M-H algorithms . Preliminarily to the implementation of a birth-

death routine, the probability pb(x) of proposing to add a new point to the

current state x of the Markovian chain needs to be specified. A point deletion

is therefore suggested with probability 1 − pb(x). For transition purposes, we

need to take numerically tractable birth and death kernels, qb(·|x) and qd(·|x),

as a basis.

Having decided for a birth proposal by means of pb(·), we first draw a new

point location x′b ∼ qb(x|x) and set x′ =
{
x∪{x′b}

}
. We evaluate the transition

probability qb(x
′
b|x) as well as the reversal probability qd(x

′
b|x′) of deleting x′b

from x′. Building on these measures, the birth ratio results in

Rb =
f(x′)

f(x)

qd(x
′
b|x′)

qb(x′b|x)

1− pb(x′)
pb(x)

. (2.19)

A death proposal, in contrast, starts with the random selection of an existing

point x′d ∈ x subject to qd(x|x). The new candidate state of the point process

becomes x′ = {x \ {x′d}}. Just as in the context of a birth proposal, we evaluate

all functions that are relevant for the suggested modification as well as for its

reversal, and thus end up with a death ratio of the form

Rd =
f(x′)

f(x)

qb(x
′
d|x′)

qd(x′d|x)

pb(x
′)

1− pb(x)
. (2.20)

Concerning the inclusion of move steps in an M-H simulation, we make ref-

erence to Eq. (2.18) and the accompanying explanations. We adopt the birth,

death, or move transition proposed in the t-th iteration of the algorithm if

RMH > Rt ∼ U [0, 1]. In this case, the new state of the chain becomes x(t+1) = x′,

whereas otherwise, the old state is retained, i.e. x(t+1) = x(t). A step-by-step
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illustration of an M-H algorithm with birth, death and move steps is provided

in Alg. 2.6.

The R-function rmh() contained in the ‘spatstat’-package allows for sim-

ulations from numerous common point process distributions with densities ac-

cording to Eq. (2.9)
[
Baddeley and Turner (2005)

]
. The command works for

both processes with a fixed and and processes with a random number of points.

The default method is an M-H sampling routine that automatically adapts to

the attributes of the model specified by the user.

Apart from the M-H framework, a toolbox of alternative sampling approaches

summarized under the term perfect simulation techniques has been developed

and made available in the past decades
[
see e.g. Berthelsen and Møller (2002)

]
.

It comprehends, amongst others, the research studies by Kendall (1998), Kendall

and Møller (2000), and Fernández et al. (2002). Perfect simulation methodology

is applicable under local stability assumptions and proves beneficial particularly

in applications to interaction point processes. In Chapter 4 of this thesis, we

describe dominated coupling from the past (CFTP) in terms of its technical

principles (see Section 4.3). Per default, dominated CFTP is carried out when

simulations from a Strauss model are initiated via the function call rStrauss()

from the ‘spatstat’-package.

2.5 Parameter Estimation

We continue with an outline of the most common approaches to parameter

estimation in a spatial point process framework. First, we devote our attention

to frequentist inference principles, that is, to parameter estimation based on the

maximization of the log-likelihood or a feasible alternative construct with similar

properties
[
see also Møller and Waagepetersen (2003, ch. 7), Gelfand et al. (2010,

ch. 19)
]
. Afterwards, we survey the respective Bayesian inference schemes

[
see

also Møller and Waagepetersen (2003, ch. 9), Gelfand et al. (2010, ch. 19)
]
.

Parameter estimation based on the Bayes theorem requires information on the

joint posterior which, as discussed in detail below, is defined as the conditional

distribution of the parameters given the data.

Frequentist Inference Framework

This section covers frequentist inference techniques for spatial point processes

and is mainly based on the definitions provided by Møller and Waagepetersen

(2003, ch. 7), and Gelfand et al. (2010, ch. 19). The contents are structured

according to Section 2.2 – 2.3, starting with the treatment of homogeneous

and inhomogeneous Poisson processes and passing on to pairwise interaction

point processes. In conformance with above, we consider a bounded observation
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window B ⊆ W , where W ⊆ R2. We let X denote a point process in B and

n(x) = n the number of points contained in the realization x.

As the likelihood of a homogeneous Poisson process is presentable in exact

form, and as it only depends on the unknown intensity parameter β, maximum

likelihood (ML) estimation is possible without any difficulty. Complying with

the well-known standard ML process sequence
[
Aldrich (1997)

]
, we differentiate

the log-likelihood with respect to β, equate the resulting score function with zero

and solve the system for β. This yields the ML estimator

β̂ML =
n

|B|
,

which is equivalent to the expected number of points per unit of the observation

window B (see also Def. 2.8 and its interpretation).

Concerning Poisson processes with an inhomogeneous intensity (cf. Eq. (2.5)),

there is no unique way to present the ML estimator. The variety of potential

intensity functions with different parameterizations, mathematically expressed

by βθ(·), requires individual treatments of the integral
∫
B βθ(u)du as well as

individually adapted optimization techniques.

An explicit ML formulation is also not available if the given point process

shows pairwise point repulsions. In such case, direct ML inference fails be-

cause of the inaccessible normalizing constant in the data model. A well-proven

approach to this problem has been introduced by Besag (1977). Bringing the

conditional intensity of the point process into focus, Besag proposes a pseudo

likelihood framework. The conditional intensity βθ
(
xn+1|{x1, ..., xn}

)
, also re-

ferred to as Papangelou (conditional) intensity
[
Papangelou (1974)

]
, can infor-

mally be perceived as the probability that a point pattern with known point

coordinates {x1, ..., xn} also contains a point located in xn+1. It holds that

βθ
(
xn+1|{x1, ..., xn}

)
=

f
(
{x1, ..., xn+1}|θ

)
f
(
{x1, ..., xn}|θ

) (2.21)

=
Z(θ)−1 f (∗)({x1, ..., xn+1}|θ

)
Z(θ)−1 f (∗)

(
{x1, ..., xn}|θ

) , xn+1 /∈ {x1, ..., xn} .

As the the normalizing constant Z(·)−1 cancels out and only the tractable ker-

nels f (∗)(·) remain, the conditional intensity is calculable in a straightforward

and exact manner.

Briefly returning to models not accounting for point interactions, it is evi-

dent that βθ(xn+1|{x1, ..., xn}) = βθ(xn+1). Under independence assumptions,

the Papangelou conditional intensity thus equates to the first-order intensity

introduced by means of Eq. (2.2).
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For pairwise interaction models following Eq. (2.9), the conditional intensity

results in

β(xn+1|{x1, ..., xn}) = φ1(xn+1)
n∏
i=1

φ2

(
{xi, xn+1}

)
.

We recall that φ1(·) is a function measuring intensity, whereas interaction effects

are imposed through φ2(·).
From the introduction of the Papangelou conditional intensity, we revert to

its application in pseudo likelihood inference and assume a point process real-

ization x = {x1, ..., xn} on B ⊆ W . The conditional intensity imposed by the

parametric model considered is denoted by βθ(xi|x−{i}), for i ∈ {1, ..., n}. Based

on this notation, the pseudo likelihood due to Besag (1977) takes the form

LP (θ) = exp

{
−
∫
B

βθ(u|x) du

} n∏
i=1

βθ(xi|x−{i}) . (2.22)

The exponential term corresponds to the normalizing constant. It ensures that

the pseudo likelihood is presentable in closed form and hence identifiable. We

obtain a function comprehending the same structural components as a Poisson

model according to Eq. (2.5). If the integral in the exponent is not solvable

in an exact manner, we replace it by a feasible approximate operator, e.g. a

Riemann sum
[
Daley and Vere-Jones (2003)

]
.

Gibbs modeling approaches, as recalled above, with intensity and interaction

conditions factorized in line with Eq. (2.9) have a pseudo likelihood conforming

to

LP (θ) = exp

{
−
∫
B

φ1(u|θ)
n∏
i=1

φ2

(
{u, xi}|θ

)
du

}
n∏
i=1

φ1(xi|θ)
∏
i 6=j

φ2

(
{xi, xi}|θ).

For a Strauss model (cf. Eq. (2.11)), in particular, we obtain

LP (θ) = exp

{
−β

∫
B

γ
∑n
i=1 11[‖xi−u‖≤R] du

}
βn γ

∑
i 6=j 11[‖xi−xj‖≤R] .

The build-up of the pseudo likelihood is strongly related to that of the compos-

ite likelihood by Lindsay (1988). In contrast to the pseudo likelihood, however,

the composite likelihood is a first-order-moment-based construct and thus not

appropriate for modeling interaction. It is determined through the first-order

intensity defined in Section 2.1 (cf. Eq. (2.2)) and can be denoted as

LC(θ) = exp

{
−
∫
B

βθ(u) du

} n∏
i=1

βθ(xi) . (2.23)

We see that the composite likelihood looks identical to the density of an inho-

mogeneous Poisson process with intensity βθ(·) (cf. Eq. (2.5)). Moreover, it is
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obvious that, under the assumption of independent points, the pseudo likelihood

takes exactly the form of the composite likelihood. For a more detailed math-

ematical derivation of the composite likelihood principle, we refer to Lindsay

(1988) and Gelfand et al. (2010, ch. 19).

To sum up, the pseudo likelihood is a widely-used tool for modeling Gibbs

point processes. Given the intensity of a point process where the points do

not interact, a composite likelihood approach is usually taken as a basis. In

a Poisson framework, the exact likelihood available in complete form is the

foundation for frequentist inference. Based on an appropriate implementation

of the likelihood, that is, based on a tractable representation of the data model as

a function of the unknown parameters, the ML estimator can be determined as

the mode of the likelihood. Bayesian approaches, in contrast, allow to explore

the posterior (distribution) of the parameters. This means that, instead of

immediately assessing the optimal parameter values subject to a closed-form

variant of the likelihood, the focus is rather on the distributional properties of

the parameters. These properties are deducible from the data model merged

with all available prior information.

Bayesian Inference Framework

In this section, we first give a short reminder of the Bayes rule and its application

to statistical inference. Our theoretical introduction is mainly based on the

book by Bernardo and Smith (2009). Following Waller (2005), we afterwards

discuss the implementation of Bayesian inference schemes for homogeneous and

inhomogeneous Poisson processes. Finally, we survey how inference relying on

an M-H routine with auxiliary variables allows us to analyze point processes

under the restrictive assumption of an incomplete likelihood, e.g. owing to the

incorporation of important interaction constraints
[
see also Møller et al. (2006),

Murray et al. (2012)
]
.

Referring to Bernardo and Smith (2009, ch. 2), we recall that Bayesian infer-

ence is motivated by the Bayes theorem stating that

p(θ|x) =
f(x,θ)

C(x)
=

f(x|θ) p(θ)

C(x)

∝ f(x|θ) × p(θ) . (2.24)

In words, the posterior of the parameters θ given the data x is, up to a nor-

malizing constant C(·)−1, equal to the product of the likelihood f(·|θ) and some

distributional information on θ included in the prior p(·). To ensure that p(·|x)

is a proper density, C(·) must conform to

C(x) =


∑
θ∈Θ

f(x|θ) p(θ) , p(·) discrete ,∫
Θ f(x|θ) p(θ) dθ , p(·) continuous ,

(2.25)
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which is often not exactly calculable in the continuous case. The choice of

the prior consequently influences the form and compactness of the posterior.

Previous knowledge of θ may be imposed through a conjugate prior , which

makes p(·|x) take the same form as p(·). Conjugate priors are mathematically

convenient, though not always the best way to convey prior information. A

necessary but not sufficient prerequisite for p(·) representing a conjugate prior is

that both p(·) and the likelihood f(·|θ) conform to exponential families , whereas

it is essential that p(·) and the posterior p(·|x) belong to the same exponential

family
[
see also Bernardo and Smith (2009, ch. 4 – 5)

]
. In other words, the key

characteristic of a conjugate prior is that its multiplication with the likelihood

results in a posterior kernel of identical structure as the prior kernel, and that

the domain of θ is the same subject to both the given prior and the estimated

posterior model. Considering a homogeneous Poisson process density according

to Eq. (2.2), for instance, the choice of a Gamma prior for θ = β brings about

a Gamma posterior for β|x.

To obviate biases resulting from an over-specification, the prior should be kept

sufficiently flat. Often, non-informative priors prove most suitable
[
Bernardo

and Smith (2009, ch. 5)
]
. A non-informative prior, such as e.g. a uniform den-

sity, yields a posterior which is proportional to the data distribution and hence

conforms to p(θ|x) = f(x|θ) × const. When deciding for a non-informative

prior, it is important that the posterior is still well-defined. That is, p(·) must

be chosen such that the integral or sum determining C(·) in Eq. (2.24) converges.

This ensures that the discrete or continuous posterior density p(·|x) is proper

in that it sums or integrates to 1. Moreover, the posterior is only precisely

definable if the data model is available in complete form.

Problems come up if, irrespective of the choice of the prior, the posterior

is not accessible in a straightforward manner. A common reason is that the

data distributional assumptions are not in line with any exponential family. If

the structure of the posterior is not directly derivable from the product of the

prior and the data distribution, MCMC simulation techniques may be used.

This means that, depending on whether a Gibbs or an M-H framework proves

appropriate, parameter samples are indirectly drawn from p(·|x) based on either

the full conditionals (cf. Alg. 2.1) or feasible transition conditions (cf. Alg. 2.2).

A chain of states θ(0) → θ(1) → ... → θ(T ) is thus computed. As soon as it is

in its equilibrium regime, the statistical properties of p(·|x) can be characterized

through the parameter samples.

MCMC-based parameter estimation requires further explanation if the data

model has an incomplete density, such as e.g. a common Gibbs process density

(cf. Eq. (2.9)). This confronts us with the problem of double intractability , since

p(θ|x) =
f(x|θ) p(θ)

C(x)
= C(x)−1 × Z(θ)−1f (∗)(x|θ) × p(θ) (2.26)
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contains two unknown normalizing terms, C(·)−1 and Z(·)−1. We denote the

tractable kernel of the data distribution by f (∗)(·|θ) (cf. Eq. (2.10)). In a stan-

dard M-H framework according to Alg. 2.2, the M-H ratio yields the elimination

of C(·)−1. To get rid of Z(·)−1, too, advanced M-H methodology is needed. Aim-

ing at maintaining the structure of the M-H algorithm, Møller et al. (2006) pro-

pose the addition of a cleverly devised auxiliary variable scheme. Murray et al.

(2012) introduce the so-called exchange algorithm which is strongly related to

the approach by Møller et al. in terms of its motivation and conception.

The key idea behind the exchange procedure developed by Murray et al. is to

extend the M-H ratio by a statistically valid quotient that makes Z(·)− cancel

out. For a more detailed description, we let θ = {θ1, ..., θJ} denote the set

of model parameters and p(·) their joint prior. We assume a point process

realization x with density f(·|θ) on W ⊆ R2 and predefine transition kernels

q(·|θ) and qj(·|θj), for j ∈ {1, ..., J}. From these kernels, proposals θ′ and,

respectively, θ′j must be drawable. Unlike in Alg. 2.2, the exchange principle

requires the simulation of an additional set of data, w ∼ f(w|θ′), within each

inner loop of the algorithm. Defining f(w|θ′) such that its normalizing constant

is equal to the inaccessible normalizing constant in f(x|θ′), the common M-H

ratio in Alg. 2.2 can be extended to

ReMH =
Z(θ′)−1f (∗)(x|θ′) p(θ′)

Z(θ)−1f (∗)(x|θ) p(θ)

qj(θj|θ′,x)

qj(θ′j|θ,x)

Z(θ)−1f (∗)(w|θ)

Z(θ′)−1f (∗)(w|θ′)

=
f (∗)(x|θ′) p(θ′)

f (∗)(x|θ) p(θ)

qj(θj|θ′,x)

qj(θ′j|θ,x)

f (∗)(w|θ)

f (∗)(w|θ′)
, (2.27)

where, again, f (∗)(·|·) symbolizes tractable density kernels. A rearrangement of

the quotient allows for plausible explanatory statements referring to the auxil-

iary variable scheme. f(w|θ)
f(x|θ)

indicates, whether and how strongly θ prefers w

to x under the data model considered, whereas f(x|θ′)
f(w|θ′) similarly compares the

strength of the statistical link between x and θ′ to that between w and θ′.

Alg. 2.7 shows the step sequence of the exchange algorithm by Murray et al.

(2012). If not realizable in a direct manner, we suggest to conduct the auxil-

iary sampling step via one of the simulation techniques explained in Section 4.3[
see also Berthelsen and Møller (2003), Liang (2010)

]
. The exchange principle

provides a crucial basis for our research. In Chapter 4, we show that a sophis-

ticated implementation of the exchange algorithm enables Bayesian inference

in a Strauss process framework with location-dependent scaling attributes (see

Section 4.1 – 4.3).

In general, diverse posteriori estimators are derivable from a posterior distri-

bution. Apart from the classical measures – including posterior mean, variance,

modus and median –, posterior moments of higher order, posterior quantiles

and many further distributional characteristics of interest may be determined.



2.5 Parameter Estimation 41

Remark: Including Marks

To conclude this section, we briefly discuss how to estimate the parameters of

a marked point process. Referring to the book by Møller and Waagepetersen

(2003), we sketch the necessary adjustments of both the frequentist and the

Bayesian algorithms explained above. We use the notation introduced in Sec-

tion 2.1, where we define a marked point process as Y = {(X,mX) : X ∈
X, mX ∈ M} and denote a realization of Y by y. The domain of a marked

point process thus conforms to the domain of a pure point process (cf. Eq. (2.1))

under additional consideration of all possible mark assignments subject to the

given mark space M (cf. Eq. (2.4)). Without loss of generality, the following

explanations apply to any type of point process model presentable by a tractable

or incomplete density f(y|θ) with respect to the unit rate Poisson process. The

marked point process is assumed to act on the product space A = (W ×M).

Furthermore, an appropriately specified discrete or continuous density pM(·)
describes the marginal mark distribution on M .

For the purpose of frequentist inference, we implement a pseudo likelihood

approach as previously introduced by means of the properties of the Papangelou

conditional intensity (cf. Eq. (2.21) – Eq. (2.22)). Accounting for marks does

not yield any structural changes of the common form of the pseudo likelihood

which can here be written as

LP (θ) =
∏

(x,mx)∈y

βθ
(
(x,mx)|

{
y \ {(x,mx)}

})
(2.28)

×


exp

{
−
∫
W

∑
mu∈M

βθ
(
(u,mu)|y

)
11
[
(u,mu) ∈ A

]
pM(mu) du

}
, M discrete,

exp
{
−
∫
W

∫
M βθ

(
(u,mu)|y

)
11
[
(u,mu) ∈ A

]
pM(mu) dmu du

}
, else.

More details can be found in Møller and Waagepetersen (2003, ch. 9). In accor-

dance with the unmarked case, conditionality becomes meaningless if interaction

is not modeled. The form of the pseudo likelihood is then equivalent to that of

the composite likelihood (cf. Eq. (2.23)) which, as discussed above, corresponds

to the density of an inhomogeneous Poisson process (cf. Eq. (2.7)).

For estimating the parameters of a marked point process based on the Bayesian

inference principle, we again revert to the methods proposed in the context of

analyzing non-marked point processes. A discrete or continuous density measure

pM(·) on M needs to be predetermined, which is here regarded as the mark prior.

The mark attributes parameterized with m go into θ as additional parameters,

and accordingly, pM(·) merges with the prior of the remaining parameters, i.e.

p(θ) = pM(m) × p
(
{θ \m}

)
. Applying an (exchange) M-H algorithm to the

posterior of a marked point process,

f(θ|y) ∝ f(y|θ) p(θ) ,
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the M-H ratio takes the form

R(e)MH =
f(y|θ′) p(θ′)
f(y|θ) p(θ)

q(θ|θ′,y)

q(θ′|θ,y)

(
× f(w|θ)

f(w|θ′)

)
, (2.29)

provided that q(·|·) is a tractable positive and proper transition density. In

an exchange framework, w denotes a marked auxiliary variable sampled from

f(w|θ′) which contains the same normalizing constant as f(y|θ′). Just as in the

case of non-marked points, it is usually not possible to generate w in a direct

manner. Therefore, we once again make reference to the simulation techniques

proposed by Berthelsen and Møller (2003), and Liang (2010), as well as to the

related discussions in Section 4.3 of this thesis. For a more detailed description

of Eq. (2.29), we refer to Alg. 2.2, Alg. 2.7, and the according explanatory

statements in Section 2.4.

We have provided an introductory compendium of definitions and methods

related to spatial point processes, which is important for a profound understand-

ing of our research foci. In the later chapters, reference will made to the tables

and equations presented in this section, whenever needed or appropriate. Not

all essential theoretical and technical basics have yet been addressed, however.

Advanced state-of-the-art methodology of particular relevance for our work will

be discussed throughout the respective chapters.
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Algorithm 2.6: Birth-death-move-M-H algorithm: Sampling from an

interaction point process.

Data: Burn-in threshold T0

Result: Point process realizations x(T0), ...,x(T )

Initialize x(0) = {x(0)
1 , ..., x(0)

n };

for t ∈ {1, ..., T − 1} do

with probability pb(x
(t)), pd(x

(t)), and 1− pb(x(t))− pd(x(t)),

propose a birth, a death, or a move;

if proposal==“birth” then

draw x′b ∼ qb(x|x(t));

set x′ =
{
x(t) ∪ {x′b}

}
;

set n′ = n(t) + 1;

calculate RMH = Rb = f(x′)
f(x(t))

qd(x′b|x
′)

qb(x
′
b|x(t))

pd(x′)
pb(x(t))

;

end

else

if proposal==“death” then

draw x′d ∼ qd(x|x(t));

set x′ =
{
x(t) \ {x′d}

}
;

set n′ = n(t) − 1;

calculate RMH = Rd = f(x′)
f(x(t))

qb(x
′
d|x
′)

qd(x′d|x(t))

pb(x
′)

pd(x(t))
;

end

else

draw i ∼ U [1, n(t)];

draw x′i ∼ qi(xi|x(t));

set x′ =
{
x

(t)
−{i} ∪ {x′i}

}
;

set n′ = n(t);

calculate RMH = Rm = f(x′)
f(x)

qi(x
(t)
i |x

′)

qi(x′i|x(t))
;

end

end

draw Rt ∼ U [0, 1];

set
{
x(t+1), n(t+1)

}
=

{{
x′, n′

}
, if RMH > Rt{

x(t), n(t)
}
, else

;

end

Return x(T0), ...,x(T ) as drawings from f(x);
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Algorithm 2.7: Exchange algorithm.

Data: Burn-in threshold T0, method

Result: Samples θ(T0), ...,θ(T )

Initialize θ(0) = {θ(0)
1 , ..., θ

(0)
J };

for t ∈ {0, ..., T − 1} do

if method==“individual” then

for j ∈ {1, ..., J} do

draw θ′j ∼ qj(θj|θ(t),x);

set θ′ =
{
θ

(t)
−{j} ∪

{
θ′j
}}

;

draw w ∼ f(w|θ′);

calculate ReMH = f (∗)(x|θ′) p(θ′)
f (∗)(x|θ) p(θ)

qj(θj |θ′,x)

qj(θ′j |θ,x)
f (∗)(w|θ)

f (∗)(w|θ′) ;

draw Rt ∼ U [0, 1] and set θ(t) =

{
θ′ , if ReMH > Rt

θ(t) , else
;

end

set θ(t+1) = θ(t);

end

else

draw θ′ ∼ q(θ|θ(t),x);

draw w ∼ f(w|θ′);

calculate ReMH = f (∗)(x|θ′) p(θ′)
f (∗)(x|θ) p(θ)

q(θ|θ′,x)
q(θ′|θ,x)

f (∗)(w|θ)

f (∗)(w|θ′) ;

draw Rt ∼ U [0, 1];

set θ(t+1) =

{
θ′ , if ReMH > Rt

θ(t) , else
;

end

end

Return θ(T0), ...,θ(T ) as drawings from p(θ|x);
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Chapter 6 of this thesis elaborates a point process model that enables the geo-

metric analysis of images of textured scenes with regard to the orientation of the

camera. Suitable image preprocessing measures as well as the relations between

a three-dimensional (3D) original scene and its two-dimensional (2D) camera

projection(s) are the basic prerequisites for the successful implementation and

interpretation of our approach. The following sections provide the conceptual

and technical preliminaries that are of relevance for developing a method to

estimate shape from texture.

Section 3.1 introduces terminological as well as methodological details related

to the internal parameters and the Euclidean motion of a perspective camera

with respect to a static 3D scene. First, the meaning and the properties of a

homogeneous coordinate representation are addressed and the general set-up of

a pinhole camera model is illustrated. In what follows, the relations between

camera projections from different points of view are discussed. A major task of

the image analysis stage concerns the detection of texture elements under weak

assumptions. Section 3.2 gives a short account of image processing techniques

that are relevant in this connection.

3.1 Camera Projection

Since time immemorial, humans have been engaged with research on geometry

and its relations to dimensionality in daily life. The permanently ongoing effort

to make the meaning of space mathematically accessible is remarkable. This

effort has not only been addressed to describing spaces of a certain dimension,

but also to establishing links between geometries in spaces of different dimen-

sions. An obvious example is the projection of objects from a 3D observation

space to a 2D image plane using a camera.

In the following, we provide some basic facts that enable the understanding of

the interrelations of projections of a fixed scene recorded from different camera

positions. We start with some fundamental definitions related to coordinate

representations as well as coordinate transformations within and between 2D

and 3D spaces. Moreover, we describe the relevant parameters of the stan-

dard pinhole camera model. Following the exposition by Becker et al. (2014),

we afterwards outline what is meant by two-view geometry and introduce the

term assignment field . For further information, we recommend the standard

works by Hartley and Zisserman (2000, Part II), Faugeras and Luong (2001),

Ramı́rez Galarza and Seade (2007), and Hughes et al. (2014).

45
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Basics

Assuming that we are given a 3D scene projected onto a 2D plane W ⊂ R2, such

that both a 3D scene point X ∈ R3 and the according 2D coordinates x ∈ R2

are connected to the camera through a straight line defined through λ~x = λx,

where λ ∈ R and ~x symbolizes the vector pointing from the origin towards x (see

Fig. 3.1 (a)). To begin with, we assume that the camera is located at the origin

of the underlying 3D coordinate system the axes of which we denote by Xa1, Xa2,

and Xa3. The camera center is often also called the center of projection or the

optical center. In accordance with Fig. 3.1 (a) and the respective illustrations in

Hartley and Zisserman (2000, ch. 6), X3 is chosen to become the principal axis

of the projection meaning that it is directed perpendicular to the image plane

W . It meets W in the principal point p0.

camera

X

Xa3

Xa2

Xa1

(a) Illustration I

camera

Xa2

Xa3

X

(b) Illustration II

Figure 3.1: Process of image formation. (a) shows the camera ray λ~x = λx that

connects the camera with the 3D scene point X and maps X to the 2D

coordinates x ∈ W . Xa3 serves as principal axis intersecting with W in

the principal point p0 which corresponds to the origin of the 2D image

coordinate system chosen here. (b) presents the projection of the image

point x subject to a pinhole camera model with focal length f .

Any point on λx, including the image point x and excluding the origin itself,

is determined to correspond to the point x̃ of the so-called projective plane P2

which contains all lines in R3 that go through the origin. Consequently, x̃ stands

for an equivalence class comprising all 3D points on the camera ray λx, where
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λ ∈ R\{0}. In technical terminology, x̃ ∈ P2 denotes the homogeneous coordinate

representation of λx. For obvious reasons, homogeneous coordinate systems are

note influenced by scale factors, or, more formally,

x̃ ' x̃′ ⇔ x̃ = λx̃′, λ 6= 0 ,

where “'” symbolizes equivalence. We see that the numerically valid affine

domain {x̃ ∈ P2 : x̃3 6= 0} of the projective plane P2 corresponds to the set of

all lines in 3D through the origin, as stated above.

Hartley and Zisserman (2000, ch. 6) propose camera models of differing com-

plexity. Nevertheless, we limit our focus to the basic pinhole camera. The

(positive) distance between the camera center and the image plane W with

respect to the principal axis Xa3 is termed the focal length and symbolized

by f . Assuming that the camera is located at the origin of the 3D scene

coordinate system, and provided that the principal point p0 accords to the

origin of the 2D image coordinate system, X = (X1,X2,X3)> is mapped to

x̃ = (x̃1, x̃2, x̃3)> = (fX1/X3, fX2/X3, f)>. Irrespective of the third coordi-

nate, projections from scene to image points are thus of the form

(x̃1, x̃2, x̃3)> 7→
(
f
X1

X3

, f
X2

X3

)>
. (3.1)

If the image plane W is located at f = X3 = 1, for instance, the link between the

homogeneous and the inhomogeneous coordinate representations of the points

in W corresponds to

x =

(
x1

x2

)
=

1

x̃3

(
x̃1

x̃2

)
. (3.2)

A visual interpretation of the pinhole camera model can be gathered from

Fig. 3.1 (a), where a camera working in a mathematically ideal and correct

way is considered.

In the exact same manner as for linearizing transformations of a subset of

R2, it is convenient to define a homogeneous coordinate notation of X ∈ R3, i.e.

X̃ = (X̃1, X̃2, X̃3, X̃4)> ∈ P3. The equivalent of Eq. (3.2) then corresponds to

X =

X1

X2

X3

 =
1

X̃4

X̃1

X̃2

X̃3

 . (3.3)

Based on this notation and the analogous statement in Eq. (3.2), we relate ho-

mogeneous coordinates x̃ in the projective plane P2 to homogeneous coordinates

X̃ ∈ P3 via

x̃ =

 1 0 0 0

0 1 0 0

0 0 1 0

 X̃ = (I33, 03) X̃ = P X̃ . (3.4)
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For evident reasons, we call P the projection matrix of the mapping.

For taking internal camera-specific parameters into account, a camera cal-

ibration matrix K ∈ R3×3 with entries approximating the attributes of the

camera configuration has to be embedded in the model. Such a matrix extends

P = (I33, 03) to P = K (I33, 03) yielding

x̃ = P X̃ = K (I33, 03) X̃ . (3.5)

Inversely,

x̃c = K−1x̃ (3.6)

is termed the according calibrated
/

normalized coordinate representation, which

results in an affine transformation of the image plane. The camera model con-

sidered determines the degrees of freedom in K. Given a pinhole camera model

following Fig. 3.1 (a), K is of the simple form

K =

 f 0 0

0 f 0

0 0 1

 ,

including the focal length f as its only parameter. If, unlike in Fig. 3.1 (a),

the origin of the 2D image coordinate system is shifted by (s1, s2)> from the

principal point p0, this translation goes into the projection through

K =

 f 0 s1

0 f s2

0 0 1

 ,

yielding 
X1

X2

X3

1

 7→ K(I33, 03) =

 fX1 + s1

fX2 + s2

X3

 . (3.7)

More general camera models due to Hartley and Zisserman (2000) are charac-

terized by a more complex internal structure and further degrees of freedom.

Such models might contain an additional skewness parameter, for instance.

So far, we have limited our focus to the camera-specific effects on the mapping

of a 3D space to a 2D image plane. As the modeling of camera motions through

external parameters has not yet been addressed, we devote the subsequent para-

graphs to the definition and implementation of so-called rigid transformations.

We base our explanations on Ramı́rez Galarza and Seade (2007, ch. 1), and use

both inhomogeneous as well as homogeneous coordinate notations of the image

and the scene points. Building on that first overview, we later embed rigid

transformations in the context of modeling camera projections from different

points of view.
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Rigid transformations are isometric affine mappings preserving single points,

straight lines, and planes. Parallel lines, for instance, remain parallel and dis-

tances unchanged. In general, rigid transformations comprehend translations,

rotations and reflections, while rigid transformations without reflections are re-

ferred to as proper rigid transformations or roto-translations . Proper rigid trans-

formations ensure that entire objects are kept unmodified in shape and size. For

explicit graphical illustrations, we refer to Hughes et al. (2014, ch. 5). Applied

to spaces Rd, d ∈ {2, 3, ...}, rigid transformations are also known as Euclidean

transformations . The following explanations are related to the set of proper

Euclidean rigid transformations, also known as the special Euclidean group and

abbreviated by SE(d).

For describing a proper rigid transformation, we employ a proper rotation

matrix Λ of dimension (d×d) as well as a finite translation vector h of length d.

Λ has to be an element of the special orthogonal group of dimension d, SO(d),

which corresponds to the set of all proper rotation matrices. A rotation matrix

is proper if it is orthogonal, i.e. Λ>Λ = Idd, where Idd is the (d×d)identity/unit

matrix with 1’s on its diagonal and 0’s everywhere else. Another necessary

condition for the properness of Λ refers to its determinant, det(Λ), that has to

equal +1. If det(Λ) = −1, the rotation is improper meaning that it includes a

reflection.

A proper rigid transformation {h,Λ} ∈ SE(d) of a point X ∈ Rd with homo-

geneous coordinates X̃ ∈ Pd yields mappings X 7→ X ′ and X̃ 7→ X̃ ′, where

X ′ = ΛX + h and X̃ ′ =

(
Λ h

0>d 1

)
X̃ (3.8)

in homogeneous and inhomogeneous coordinates, respectively. In Eq. (3.8), 0d is

a vector of length d consisting of 0’s only. The respective inverse transformation

X ′ 7→ X and X̃ ′ 7→ X̃ via {−Λ>h,Λ>} ∈ SE(d) amounts to

X = Λ>(X ′ − h) and X̃ =

(
Λ> −Λ>h

0>d 1

)
X̃ ′ . (3.9)

Proper rotational matrices in R2 have one degree of freedom, which can be

parametrized e.g. by

Λ =

(
cos ρ − sin ρ

sin ρ cos ρ

)
. (3.10)

That is, Λ ∈ R2×2 yields a rotation by an angle ρ with respect to the origin[
Hughes et al. (2014, ch. 5)

]
. In three-dimensional spaces, a rotation by Λ ∈ R3×3

has up to three degrees of freedom. Single axis rotations by angles ρ• require

the implementation of rotational matrices Λ• corresponding to

Λ1 =

 1 0 0

0 cos ρ1 − sin ρ1

0 sin ρ1 cos ρ1

 , Λ2 =

 cos ρ2 0 − sin ρ2

0 1 0

sin ρ2 0 cos ρ2

 ,
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and Λ3 =

 cos ρ3 − sin ρ3 0

sin ρ3 cos ρ3 0

0 0 1

 . (3.11)

Therein, the subscripts 1, 2, and 3 indicate whether a rotation around the first,

second or third axis is carried out. Any combination of the formal definitions

in Eq. (3.11) via matrix multiplication, e.g. Λ12 = Λ1Λ2 or Λ123 = Λ1Λ2Λ3,

results in a proper rotation in R3
[
Hughes et al. (2014, ch. 5)

]
.

Given the definition of a pinhole camera with internal calibration matrix K

(cf. Eq. (3.7)) and being familiar with proper rigid transformations by external

motion parameters {h,Λ} ∈ SE(3) (cf. Eq. (3.8) – Eq. (3.9)), we can model

the mathematical relationship between camera projections from different points

of view. For describing the required theoretical fundamentals, we refer to the

definitions in Becker et al. (2014), Faugeras and Luong (2001, ch. 5), and Hartley

and Zisserman (2000, ch. 9).

Two-View Geometry

We assume that two cameras are oriented towards a 3D scene according to

Fig. 3.2 (a). The positioning of the first camera follows the canonical mathe-

matical form in Eq. (3.4). Focusing on a point x in an image plane W taken by

this camera, the respective camera ray intersects with the unknown scene point

X . It projects in the image W ′ taken by the second camera to the line l′ called

epipolar line. Somewhere on l′, the equivalent x′ of x is located. Translating

this initial statement into a homogeneous coordinate environment, the epipolar

line l̃′ ∈ P2 associated with l′ ∈ R2 can be defined through x̃′ ∈ P2 associated

with x′ ∈ R2 by solving the linear constraint

〈x̃′, l̃′〉 =
3∑
i=1

x̃′il̃
′
i = 0 . (3.12)

Eq. (3.12) is not limited to epipolar geometry only. In a given projection space,

it is universally applicable to determine a line based on the homogeneous coor-

dinates of one of the points on this line.

Concerning the positions and configurations of the two cameras, we assume

an internal calibration matrix K for the first one. The second camera is assumed

to be located in a distance h from the first one, rotated by Λ, and provided with

the internal calibration matrix K ′. Its projection matrix P ′ thus conforms to

P ′ = K ′Λ>(I3×3,−h) .

Fixing the image point x ∈ W taken by the first camera and regarding its

homogeneous coordinates x̃ ∈ P2, the projection of the original space point X
to the second image point x̃′ ∈ W ′ with x̃′ ∈ P2 lies on the epipolar line l′. For
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X

camera’camera

(a) Illustration I

E
X

camera camera’
{h,Λ} ∈ SE(3)

(b) Illustration II

Figure 3.2: Perspective projections of a 3D scene point X to coordinates x and x′

in the 2D camera planes W and W ′. (a) refers to the positioning of two

different cameras with respect to X . It illustrates the relations between

the two mappings by virtue of the epipolar lines l and l′ and the epipoles

e and e′. (b) refers to the movement of one single camera. It visualizes

the so-called 3D epiploar plane E relating X (and any other scene point

on E) to the two image planes W and W ′ recorded before and after the

re-positioning of the camera by {h,Λ} ∈ SE(3). E intersects with W

and W ′ in the epipolar lines l and l′ containing the point projections x

and x′ as well as the foci of expansion xe and x′e.

the homogeneous form l̃′ of l′, it holds that

l̃′ = Fx̃ , (3.13)

where F = K ′−>Λ>[h]×K
−1 with [h]× =

 0 −h3 h2

h3 0 −h1

−h2 h1 0


is known as the fundamental matrix linking both image planes to each other.

Inversely,

l̃ = F>x̃′ . (3.14)

Looking at Fig. 3.2 (a) once again, we shortly characterize the projections

of camera center, i.e. the mappings of e on l and e′ on l′. The respective

homogeneous coordinates ẽ and ẽ′ can be computed via

ẽ = K h and ẽ′ = K ′Λ>h .
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Therefore, Eq. (3.13) – Eq. (3.14) yield

F ẽ = 0 and F>ẽ′ = 0 .

We denote e and e′ as the epipoles related to x̃ and x̃′. As a result of Eq. (3.12)

and Eq. (3.13), it follows that

〈x̃′, F x̃〉 = 0 . (3.15)

Eq. (3.15) is the core equation connecting any two views of an unidentified scene

point X with each other. In order to work with normalized coordinates, this

relation has to be modified properly. More precisely, referring to the definition

of F in Eq. (3.13), the adjusted scalar product takes the form

〈x̃′c, F x̃c〉 = 〈K ′−1x̃′, K ′>FK(K−1x̃)〉 = 〈K ′−1x̃′, Λ>[h]×(K−1x̃)〉 . (3.16)

We see that, using calibrated coordinates, the required adjustment of the fun-

damental matrix F results in a matrix of the compact form E : = K ′>FK =

Λ>[h], called essential matrix . E is parameterized with {h,Λ} ∈ SE(3), as

the calibration parameters contained in K and K ′ are assumed to be known.

Essential matrices hence correspond to smooth manifolds in R3×3.

In the following section, we explain how the motion of a camera can be mod-

eled. That is, instead of considering two different cameras directed towards a

3D scene (i.e. K ′ 6= K), we notionally change the position as well as the angle

of one single camera, and model the interrelations between the resulting scene

projections. Alternatively, we could think of two cameras with exactly identical

internal configuration parameters (i.e. K ′ = K). The structural arrangement of

our definitions and explanations complies with the respective section in Becker

et al. (2014), and Hartley and Zisserman (2000, ch. 6).

Assignment Fields

We henceforth take the calibration matrix K of the camera used as given and

entirely known, which is why we can easily act on the basis of normalized coor-

dinates. To simplify our notation, we leave out the upper index c employed in

Eq. (3.6) for symbolizing the calibration. As all camera-specific parameters are

fixed and normalized coordinates are hence used, we set K = I.

In line with the previous section, we let x denote the mapping of a 3D scene

point X to a 2D image plane W . The camera used is moved from its original

position by h and rotated by Λ = (Λ1,Λ2,Λ3), where Λi corresponds to the i-th

column of Λ. This displacement yields the projection of X to the point x′ in

the new observation window W ′ (see Fig. 3.2 (a)).

We describe the linking between x and x′ through the linear equation

x′ = x + a(x) , (3.17)
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and call a(·) the underlying assignment vector . Referring to Eq. (3.2) and

Eq. (3.9), it takes the form

a(x) =
1

〈Λ3,X − h〉

(
〈Λ1, X − h〉
〈Λ2, X − h〉

)
− 1

X3

(
X1

X2

)
. (3.18)

In case of initiating a pure translation (i.e. Λ = I33), Eq. (3.18) simplifies to

a(x) =
1

X3 − h3

(
X1 − h1

X2 − h2

)
− 1

X3

(
X1

X2

)

h̄:= 1
X3
h

=
1

h̄3 − 1

[(
h̄1

h̄2

)
− h̄3

(
x1

x2

)]
. (3.19)

The point xe rendering a(xe) = 0 is known as the focus of expansion. It conforms

to

xe =
1

h̄3 − 1

(
h̄1

h̄2

)
and equals the epipole x = e discussed previously, that yields F ẽ = 0 '
Λ>[h]×h = 0 for homogeneous coordinates ẽ (cf. Eq. (3.1)).

Having dealt with relating the projections x and x′ of a point X in an arbitrary

3D scene to each other, we go over to focusing on the special case where the

recorded scene is a 3D plane. For this purpose, we first give a reminder of the

general definition of planes in a three-dimensional environment. Similarly to

vector representations in 2D spaces, the dot product 〈δ,X〉 =
∑3

i=1 δiXi goes

into the equation of the plane. For the purpose of identifiability and by reason of

convention, we postulate that δ is a unit normal, i.e. ‖δ‖ = 1. We furthermore

need to account for the distance d between the plane and the origin. The entire

plane equation finally takes the form

〈δ,X〉 − d = 0 or 〈δ̃, X̃ 〉 = 0, (3.20)

where the second version is the homogeneous coordinate equivalent to the first

one, implying that δ̃ = (δ1, δ2, δ3,−d)>.

As just stated, we notionally let a camera take two images of one and same

scene, but from different positions and angles. We associate the projection ma-

trix P = (I33, 0) with the first situation, whereas P ′ = Λ>(I33,−h) relates to the

second camera setting. For a moment, we only concentrate on the first setting.

Given the homogeneous coordinate representation x̃ ∈ P2 of the image point

x ∈ R2 associated with the unknown scene point X ∈ R3 with homogeneous

coordinates X̃ ∈ P3, we can localize the scene point by solving the equation〈
δ̃,

(
λx̃

1

)〉
= 〈δ̃, X̃ (λ)〉 = λ〈δ, x̃〉 − d = 0. (3.21)
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In words, knowing that X lies on the plane being projected (cf. Eq. (3.20)), we

can determine its homogeneous coordinates by intersecting the plane with the

ray X̃ (λ), where λ ∈ R. We obtain

λ =
d

〈δ, x̃〉
and X̃ =

(
d
〈δ,x̃〉 x̃

1

)
'
(

x̃
〈δ,x̃〉
d

)
. (3.22)

Having determined X̃ , it is straightforward to compute its mapping onto the

second image plane which results from shifting and rotating the camera by

{h,Λ} ∈ SE(3) (cf. Fig. 3.2). The image point x̃′ derived from the camera

displacement is accessible via

x̃′ = P ′X̃ (λ) = Λ>
(
x̃− 〈δ, x̃〉

d
h

)
= Λ>

(
I33 −

h

d
δ>
)
x̃ . (3.23)

In the literature, Λ>(I33−h
d
δ>) := H is known as a homography of the projective

plane P2, induced by a camera moving relative to a 3D plane.

3.2 Detection of Local Symmetry Elements

This section has to be regarded independently of the previous one, since it is

concerned with quite a different problem. It deals with the question of how

to identify symmetry elements in the image of a partly or fully textured scene.

In the following, we introduce a common strategy that allows us to transform

images into probability maps, such that each pixel value becomes replaced by its

probability of representing a local symmetry center. Beforehand, we provide the

necessary mathematical backgrounds as described in the book by Jähne (1989,

ch. 5).

Partial Derivatives and Some Related Operators

To turn texture into an arrangement of clearly separated symmetry elements,

contrasts between potential symmetry centers and boundary regions need to

be detected and accentuated. This is often performed by computing or ap-

proximating partial derivatives of the given image function. General theoretical

background knowledge on partial derivatives and related mathematical topics is

thus necessary for a better understanding of such image (pre-)processing proce-

dures.

We start with the introduction of some notational conventions. First, we

explain what is meant by a monomial . A monomial xυ with respect to the

multi-index

υ = (υ1, . . . , υn) ∈ Nn
0

is defined as

xυ = xυ1
1 · xυ2

2 · · ·xυnn , (3.24)
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where x ∈ Rn. It hence conforms to a product of powers of variables, where

the exponents are arbitrary non-negative integers. Given x = {x1, ..., xn}, we

denote the partial derivative with respect to the i-th component by

Di =
∂

∂xi
. (3.25)

Higher order partial derivatives with respect to the entire variable set or vector

x take the form

Dυ = Dυ1
1 · · · Dυnn =

∂|υ|

∂xυ1
1 · · · ∂xυnn

, with |υ| =
n∑
i=1

υi , (3.26)

where ∂υi

∂x
υi
i

denotes the partial differentiation of order υi with respect to xi.

We now consider a function f(·), f : x 7→ f(x) ∈ R, which is differentiable

with respect to all elements of x. The vector of its component-wise derivatives,

∇f(x) =
(
D1f(x), . . . ,Dnf(x)

)>
, (3.27)

is termed the gradient of f(·). The matrix of the according second order deriva-

tives, the so-called Hessian matrix , conforms to

∇2f(x) =
(
DiDjf(x)

)
i,j
, (3.28)

with i ∈ {1, ..., n} and j ∈ {1, ..., n} labeling the rows and columns of ∇2f(·).
From the gradient of f(·), the Laplacian is deducible. It is defined as

∆f(x) = div
(
∇f(x)

)
=

n∑
i=1

D2
i f(x) . (3.29)

The operator div(·) in Eq. (3.29) measures the divergence of a differentiable

vector function g(·), g : x 7→ g(x) ∈ Rn, and takes the form

div
(
g(x)

)
=

n∑
i=1

Digi(x) ,

Regarding images as functions that map each pixel coordinate to a pixel value,

the definitions introduced above can be used for purposes of image processing,

synthesis and analysis. In the following, we explain how partial derivatives of

image functions can be approximated with the help of suitable smoothers. For

more details, see Mather and Koch (2010, ch. 7).

Estimating Partial Derivatives of Image Functions

To reduce image noise, a smoothing kernel ξ(·) is usually taken as a basis. In

general, a properly designed smoothing kernel is an infinitely and continuously
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differentiable function on Rn with compact support
[
Tao (2011, ch. 1)

]
, con-

structed such that its integral over Rn equates to one. More formally,

ξ(x) ∈ C∞0 (Rn) and∫
Rn

ξ(w)dw = 1 .

Defining

ξε(x) :=
1

εn
ξ
(x
ε

)
, (3.30)

a function f(·) can be smoothened through ξε(·) via a convolution

fε(x) := ξε ∗ f(x) :=

∫
Rn
ξε(x− y)f(y)dy , (3.31)

where fε(·) denotes the mollified version of f(·). Smoothing formulas according

to Eq. (3.31) have some valuable mathematical properties.

Theorem 1
[
Ziemer (1989)

]
Suppose ξ(·) is a smoothing kernel and let fε(·)

be given by Eq. (3.31).

(i) If f ∈ L1
loc(R

n), then for every ε > 0, fε(·) ∈ C∞(Rn) and Dυfε =

Dυ(ξε ∗ f) = (Dυξε) ∗ f for each multi-index υ.

(ii) If f(·) ∈ Lp(Rn), 1 ≤ p < ∞, then for all x ∈ Rn, fε(·) ∈ Lp(Rn),

‖fε(x)‖Lp ≤ ‖f(x)‖Lp, and lim
ε→0
‖fε(x)− f(x)‖Lp = 0.

C∞(Rn) contains all infinitely and continuously differentiable functions on Rn,

whereas L1
loc(R

n) and Lp(Rn) denote the Lebesgue spaces of the locally integrable

and, respectively, the p-th power integrable functions on Rn
[
see also Tao (2011,

ch. 1)
]
. An Lp(·) function space comprises all measurable functions with a finite

Lp norm. Symbolized by ‖ · ‖Lp , the Lp norm on Rn is defined as

‖f‖Lp :=
( ∫

Rn

|f(x)|pdx
) 1
p
.

Despite having unbounded support, derivative-of-Gaussian (DoG) filters cor-

respond to the most common class of separable (partial) derivative filters
[
see

also Canny (1986), Mather and Koch (2010, ch. 7)
]
. As the name implies, DoGs

are based on Gaussian kernels and thus of the form

ξσ(x) =
1

(2πσ2)
n
2

exp

{
− 1

2σ2
‖x‖2

}
. (3.32)
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Sketch: Edge Detection via DoG filters

We assume that we are given an image of a textured scene such as the brick

wall in Fig. 3.3. The image matrix denoted by Z is presentable as a function

Z(·) assigning one pixel value zw ∈ R to each image coordinate w = (w1, w2)T ∈
W ⊆ R2, i.e. Z : w 7→ Z(w) = zw. For identifiability reasons, we normalize

the range of Z(·) to the [0,1]-interval.

Figure 3.3: Original image of a brick wall.

The following two to three transformation stages can be executed to turn an

image into a probability map via DoG filtering.

(0.) Depending on the pixel value distribution in the image plane, it may be

convenient to start with some preliminary image adjustment. Median fil-

ters , for example, are frequently used to even out outliers. They replace

each measured pixel value by the median of all pixel values in its imme-

diate surrounding and thus yield a mapping w 7→ med(z∼w) where “∼w”

symbolizes the neighborhood of w.

Fig. 3.4 results from the application of a median filter to Fig. 3.3. Here,

each local neighborhood has been delimited by a circular disc of radius

r = 2 pixels.

1. The actual smoothing is performed by estimating the partial derivatives

of the original or preprocessed image function. As indicated above, it

is convenient to use smoothing kernels such as the Gaussian kernel in

Eq. (3.32). Referring to Eq. (3.27) – Eq. (3.29) as well as to Eq. (3.31)

and item (i) of the subsequent theorem, an appropriately implemented

Gaussian derivative filter yields a mapping

w 7→

√( ∂Z
∂w1

)2

+
( ∂Z
∂w2

)2

=
√
D2

1Z(w) +D2
2Z(w) ,

where

DiZ(w) ≈ (Diξσ)∗Z(w) = − 1

2πσ2

∑
y∼w

zy(wi−yi) exp

{
− 1

2σ2
‖w − y‖2

}
.
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Figure 3.4: Brick wall image (cf. Fig. 3.3) after median filtering. The range of the

local neighborhoods has been determined by a circular disc of radius

r = 2 pixels.

In this formal representation, “y ∼ w” indicates that y is a neighbor of w.

A DoG filtering routine turns Fig. 3.4 into Fig. 3.5. Again, the radii of

the neighborhoods have been set to r = 2 pixels. The standard deviation

σ has been defined as σ =
√

r−1
4

= 1 .

Figure 3.5: Brick wall image (cf. Fig. 3.3) after median and DoG filtering. The

range of the local neighborhoods has been determined by a circular disc

of radius r = 2 pixels, and the standard deviation in the Gaussian kernels

equates to σ =
√

r−1
4

= 1.

2. To learn a probability map from a smoothened image, suitable distance

transformations need to be carried out. It makes sense to first distinguish

between fore- and background pixels, where the foreground pixels repre-

sent the inner parts and the background pixels the boundary regions of

the local symmetry elements contained in the image. This differentiation

can be performed based on a carefully determined threshold value tz which

turns the smoothened image into a binary map. Afterwards, the shortest

path between each single image location and the background pixels can be

computed. A normalization of the resulting distances to values between
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0 and 1 allows to directly interpret them as probability measures. Each

probability measure thus indicates how likely it is that the corresponding

image coordinate is the center of a symmetry element and not part of the

boundary domain.

Fig. 3.6 shows a probability map resulting from a distance transformation

of Fig. 3.5, where tz = 0.02.

Figure 3.6: Distance transformation of a brick wall image (cf. Fig. 3.3) after median

and DoG filtering. The radius of the local neighborhoods has been

set to r = 2 pixels, the standard deviation in the Gaussian kernels to

σ =
√

r−1
4

= 1, and the binarization threshold to tz = 0.02.

The step sequence in 0. – 2. can flexibly be extended, elaborated, reversed or

replaced by other smoothing and distance transforming techniques. Distances

between local histograms, for instance, are frequently used to detect similar fea-

tures and edges in a given image, or to compare two images with each other . In

the pattern recognition community, the earth-mover’s distance
[
Pele and Wer-

man (2009)
]

is among the most common tools for comparing color histograms.

In Chapter 6, we regard texture as a realization of a latent locally scaled point

process, meaning that each texture element is associated with one point. For

the point-texture assignment and hence for the estimation of the latent point

process, we take preprocessed images such as the probability map in Fig. 3.6 as

a basis.

Before establishing a connection between image analysis and spatial statistics,

we provide a general introduction to the theory of locally scaled point processes.





4 Locally Scaled Spatial Point

Processes

Chapter 2 is concerned with a comprehensive presentation of the most widely

recognized classes of spatial point process models. It differentiates between pro-

cesses with a homogeneous point intensity and processes with heterogeneously

distributed points. Furthermore, patterns with independently distributed points

are distinguished from patterns showing point interactions in the form of pair-

wise repulsions or clustering effects. What is missing in the introductory chap-

ter, however, is the conjunction of inhomogeneity assumptions with interaction

constraints. Research in this particular statistical field appears challenging, but

indispensable due to its practical relevance.

Hahn et al. (2003) provide a point process approach allowing to model so-

called locally scaled spatial point patterns . In contrast to formerly developed

procedures inducing heterogeneity into a Markov model – such as the algorithms

discussed by Ogata and Tanemura (1986), Baddeley et al. (2000), or Jensen and

Nielsen (2001) –, locally scaled point process models due to Hahn et al. ensure

that the variation in interaction is adapted to the variation in intensity. That is,

local geometry remains unaffected by inhomogeneity, which makes regions with

a high point intensity look like scaled versions of regions where the points are less

densely packed. Locally scaled point processes, in fact, correspond to Markov

processes that appear homogeneous up to a scale factor. A larger scale factor

results in a lower point intensity and stricter interaction constraints, whereas

the opposite effect occurs when the scale factor takes smaller values.

It is not astonishing that the development of modeling approaches to locally

scaled spatial point patterns is of high relevance in terms of real-word appli-

cations. Thinking of forestry, for instance, the number of trees per unit area

inter alia depends on the sizes of the trees and their root networks, and vice

versa
[
see e.g. Shimatani and Kubota (2004), Eckel et al. (2009)

]
. Therefore,

arbitrarily big trees cannot stand arbitrarily close to each other. Imagining a

“regular forest” viewed from a bird’s-eye perspective, regions with broader tree

silhouettes look like zoom-ins of regions where the trees are narrower.

In what follows, we first give a definition of inhomogeneous point processes

by location-dependent scaling, particularly focusing on processes of Strauss type

(see Section 4.1). The characteristics of a proper scaling function are discussed

in Section 4.2. Building on these definitions, we motivate and introduce an

efficient Bayesian inference framework for locally scaled spatial point processes

in Section 4.3. As this framework is based on the enhancement of the Metropolis-

Hastings (M-H) algorithm by an auxiliary variable scheme according to Alg. 2.7

61
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(see Section 2.5), we devote Section 4.3 to the proposition of two appropriate

techniques for generating the necessary auxiliary samples. Finally, Section 4.4 is

concerned with a simulation study validating the performance of our approach.

We also discuss the advantages of the Bayesian modeling framework, point out

potential room for development and improvement, and sketch an alternative

frequentist approach proposed by Prokešová et al. (2006).

4.1 Locally Scaled Point Process Models

As mentioned above, a locally scaled spatial point process is a point process with

a varying point intensity and a conformably changing degree of point interac-

tion. The location-dependent scaling properties thus make the process locally

behave like the scaled version of a homogeneous template process. In terms of

implementation, location-dependent scaling impacts on a homogeneous point

process are obtained from a local scaling of all volume measures contained in

its density. Therefore, the Markov property (cf. Eq. (2.8)) remains unaffected,

and, locally confined, the Papangelou conditional intensity (cf. Eq. (2.21)) is

proportional to that of the homogeneous template pattern
[
see also Hahn et al.

(2003)
]
. The following definitions and descriptions are excerpted from the work

of Hahn et al. (2003) as well as from the related discussions in Prokešová et al.

(2006).

A prerequisite for a profound understanding of the motivation and the tech-

nical principles of locally scaled point processes consists in the familiarity with

the concept of scale invariance. We assume a given a measure κ(·) on Rd with σ-

algebra B. For any set B ∈ B associated with a scale factor c, a transformation

of κ(B) subject to c yields

κc(B) = κ(c−1B) .

In this connection, a scale invariant function h(·|κ) with κ =
(
κ(1)(·), κ(2)(·), ...

)>
can be characterized as follows.

Definition 4.1 A real-valued measurable function h(X|κ) on the sample space

Ω is called scale invariant if, for all realizations x of the random variable X,

h(cx|κc) = h(x|κ) ,

where κc =
(
κ(1)
c (·), κ(2)

c (·), ...
)>

and c > 0.

The homogeneous point processes introduced in Section 2.2 – 2.3 have densities

proportional to a scale invariant function h(·|κ). In this context, κ is defined

as the set of the d∗-dimensional volume measures ν = (ν0, ..., νd)> in Rd, also

known as Hausdorff volume measures of dimension d∗
[
see also Hausdorff (1918),

Berger (2009, ch. 9)
]
.
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In line with the notation and definitions from Section 2, we consider a finite

point process X on a set W ⊂ R2. Note that, just as above, extensions to

higher dimensions are possible though not discussed here
[
Hahn et al. (2003)

]
.

We assume an inhomogeneous point configuration which we model by a location-

dependent scaling function c : R2 7→ R+. Thus, c(·) does not necessarily take

constant values inW . It has to be carefully selected or designed (see Section 4.2),

such that it is possible to act on the d∗-dimensional volume measures νd
∗

in R2,

d∗ ∈ {0, 1, 2}. We consider locally scaled d∗-dimensional volumes of the form

νd
∗

c (W ) =

∫
W

c(y)−d
∗
νd
∗
(dy) (4.1)

for all Borel sets W ⊆ R2 and d∗ ∈ {1, 2}. Here, ν1(·) is the distance measure

associated with the Euclidean norm, while ν2(·) is a rescaling of the usual two-

dimensional Lebesgue measure. The third volume measure, ν0(·) = n(·), is the

counting measure and thus unaffected by the scaling function c(·). To ensure

that νd
∗
c (W ) < ∞ holds for νd

∗
(W ) < ∞, we require that c(·) has finite upper

and lower bounds.

As commented on in view of Def. 4.1, homogeneous point process densities are

equivalent to scale invariant functions h(·|ν), up to some normalizing constant.

We assume a homogeneous point process X in W ⊆ R2 and a density fX(·)
with respect to the unit rate Poisson process (cf. Def. 2.9). For each realization

x ⊂ W , we can evaluate

fX(x) ∝ h(x,ν) . (4.2)

Definition 4.2 A locally scaled point process Xc in W (c) ⊆ R2 with homoge-

neous template model fX(·) due to Eq. (4.2) has a density

f
(c)
Xc

(x) ∝ h(x|νc)

relative to a Poisson process with the scaled volume measure ν2
c (·) as its inten-

sity. To guarantee numerical accessibility, h(.|νc) must be integrable subject

to the Poisson process with intensity ν2
c (·), and c : R2 7→ R+ must be (Borel-)

measurable.

A common assumption is that W (c) = W , allowing the conclusion that the

density of the locally scaled point process Xc with respect to the unit rate

Poisson process conforms to

fXc(x) = exp
{
−
∫
W

[c(y)−2 − 1] ν2(dy)
} ∏

x∈x
c(x)−2 f

(c)
Xc

(x)

∝
∏
x∈x

c(x)−2 f
(c)
Xc

(x) . (4.3)

Considering a parametric setting where η denotes the vector of parameters

contained in the scaling function, i.e. c(·) = cη(·), and θ comprises all model
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parameters, we can rewrite Eq. (4.3) as

f(x|θ) := fXcη
(x|θ) = Z(θ)−1

∏
x∈x

cη(x)−2 f (c)(x|θ) , (4.4)

where f (c)(x|θ) := f
(c)
Xcη

(x|θ) and Z(·)−1 is the normalizing constant formally

defined according to Eq. (2.10) .

In this chapter, we concentrate on locally scaled Strauss models . The locally

scaled version of a homogeneous Strauss process density on W ⊆ R2
[
Strauss

(1975)
]

is of the form

f (c)(x|θ) = Z(θ)−1 βn(x) γsc,R(x) ,

where

sc,R(x) =

6=∑
{u,v}⊆x

11[ν1
c

(
[u, v]

)
≤ R] (4.5)

counts the number of distinct point pairs in x no further than R apart, based on

the scaled distance measure v1
c (·). Thus, ν1

c

(
[u, v]

)
represents the scaled length

of the line segment [u, v] between u and v. We see that, in terms of notation, a

locally scaled Strauss model differs from a homogeneous Strauss model according

to Eq. (2.11) only in the additional scaling constraints imposed through c(·) and

η. Relative to the unit rate Poisson process and hence following Eq. (4.4), a

Strauss model with local scaling attributes takes the form

f(x|θ) = Z(θ)−1
[∏
x∈x

cη(x)−2
]
βn(x)γsc,R(x) . (4.6)

As discussed in Section 2.3, the generic Strauss model has three parameters,

an intensity parameter β > 0, an interaction parameter 0 ≤ γ ≤ 1, and an

interaction radius R ≥ 0
[
Strauss (1975), Kelly and Ripley (1976)

]
. The inter-

action parameter γ controls the amount of repulsion in the model, which ranges

from γ = 1 indicating no repulsion and hence resulting in a completely random

Poisson pattern, to a hardcore model for γ = 0. As a quick reminder, a visual

interpretation of the effect of γ can be gathered from Fig. 2.3.

In the following section, we first describe how a proper scaling function is con-

structed. Thereafter, we discuss the statistical characteristics of the exponential

scaling function in more detail.

4.2 Proper Scaling Functions

As before, we act on a two-dimensional observation plane W ⊆ R2 in which we

assume a locally scaled point process X ⊂ W , with realizations denoted by x.

We focus on parametric scaling effects imposed through a scaling function cη(·).
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In general, determining cη(·) such that it is proper, and hence statistically and

numerically valid, is not trivial. According to Hahn et al. (2003) and Prokešová

et al. (2006), two important conditions must be satisfied.

On the one hand, cη(·) has to be presentable in a well-defined complete form.

We follow Prokešová et al. and suggest, for identifiability, a normalization

fulfilling ∫
W

cη(y)−2 ν2(dy) = ν2(W ) . (4.7)

On the other hand, all scaled volume measures going into the model considered

must be computable. A Strauss model due to Eq. (4.5), for instance, requires

the calculation of scaled pairwise point distances. This means that, referring to

Eq. (4.1),

v1
c

(
[u, v]

)
=

∫
[u,v]

c−1
η (y) ν1(dy)

needs to be available in closed form for all pairs {u, v} ∈ x. Applying the coarea

formula
[
Krantz and Parks (2008, ch. 5)

]
, an alternative representation of ν1

c (·)
which often proves easier to handle amounts to

ν1
c ([u, v]) = ν1

(
[u, v]

) ∫ 1

0

c−1
η (u+ t(v − u)) dt . (4.8)

A particularly appealing class of scaling functions is the class of the exponen-

tial scaling functions ,

cη(u) = α(η) exp{η>g(u)} , (4.9)

for some g : R2 → R2, where α(·) is a normalizing factor. Prokešová et al.

(2006) consider the special case where g(·) is the identity function, i.e. g(u) = u.

Fig. 4.1 illustrates the effect of γ in an exponentially scaled Strauss model (cf.

Eq. (4.6)) where cη(u) ∝ exp{(η1 0) u} and η1 > 0, which yields a decreasing

point intensity along the horizontal axis. The locally scaled distances are here

given by

ν1
c

(
[u, v]

)
= ν1

(
[u, v]

) cη(u)−1 − cη(v)−1

η>(v − u)
,

for u 6= v, which can easily be calculated.

It follows from Eq. (4.7) that the normalizing constant α(·) depends on the

observation window W . In a rectangular window W = [wl, wr] × [wb, wt] with

left, right, top and bottom margins, wl, wr, wb and wt,

α(η) =
1√
|W |

(exp{−2η1wl}−exp{−2η1wr}
2η1

)1
2
(exp{−2η2wb}−exp{−2η2wt}

2η2

)1
2
,

(4.10)

where |W | = (wt − wb)(wr − wl), η ≥ 0, and 0
0

:= 1. For W = [0, 1] × [0, 1],

in particular, Eq. (4.9) simplifies to such an extent that the entire scaling term
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(a) Poisson (γ = 1)

−→

(b) Strauss (γ = 0.5)

−→

(c) Hardcore (γ = 0)

Figure 4.1: Simulations in W = [0, 1] × [0, 1] from locally scaled Strauss models

with intensity β = 100, interaction range R = 0.05, different interaction

weights γ, and an exponential scaling effect η1 = 1 (η2 = 0) according

to Eq. (4.11). The point process realizations in (b) – (c) have been gen-

erated via dominated coupling from the past (see Section 4.3), yielding

a progressive thinning of the template Poisson process in (a).

cη(·) takes the compact form

cη(u) =
(1− exp{−2η1}

2η1

) 1
2
(1− exp{−2η2}

2η2

) 1
2

exp{η>u} . (4.11)

Assuming that η• > 0 with • standing for either element in {1, 2}, the re-

spective exponential scaling effect is a denser point pattern close to the origin

with increasing sparsity as the distance from the origin towards the direction

represented by • increases. The opposite effect is observable if η• < 0. If η• = 0,

the point pattern is not scaled along •, which is why the respective fraction in

Eq. (4.9) is set to 1. Fig. 4.2 exemplifies the impact of different exponential

scaling constraints on the point pattern itself as well as on the pairwise point

distances.

We introduce two further proper specifications of cη(·) in the course of this

work, one that imposes step-wise scaling constraints on a circular observation

window (see Section 5.2), and another one that geometrically describes camera

projections and thus induces a scaling of perspective (see Section 6.4). The next

section is concerned with the proposition of a Bayesian inference concept for

locally scaled spatial point processes. It is mainly based on the exchangeability

M-H framework by Murray et al. (2012) and hence requires the implementation

of a well-considered algorithm that generates auxiliary point data in an efficient

and precise manner. A corresponding journal article will be submitted soon[
Didden et al. (2015)

]
.
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(i) η> = (0, 0) (ii) η> = (0.5, 0.5) (iii) η> = (0.5, −1) (iv) η> = (−1, 1)

(a) Exponentially scaled distances from the point coordinates (0.5, 0.5)>.

(i) η> = (0, 0) (ii) η> = (0.5, 0.5) (iii) η> = (0.5, −1) (iv) η> = (−1, 1)

(b) Point process realizations corresponding to (a).

Figure 4.2: Exponential scaling effects of varying strength in W = [0, 1]× [0, 1]. (a)

exemplifies exponentially scaled distances under four different specifica-

tions of η, whereby increasing darkness indicates decreasing distance.

(b) shows four corresponding point process realizations sampled from

a Strauss model with parameters β = 100, γ = 0.5, R = 0.05. The

sampling has been performed via dominated coupling from the past (see

Section 4.3).

4.3 Bayesian Inference Framework

As discussed in Section 2.3 and Section 2.5, interaction point process models suf-

fer from the numerical intractability of their normalizing constant, which makes

efficient and precise parameter estimation a challenging task. In the literature,

several inference techniques are provided to handle the problem of an incomplete

data model. The pseudo likelihood approach by Besag (1974), which we explain

in Section 2.5 of this thesis (cf. Eq. (2.22)), is one of the most widely-used

and common examples
[
see also Besag et al. (1982)

]
. It is the groundwork of

diverse subsequent research studies
[
see e.g. Huang and Ogata (1999, 2002) and

references therein
]
. A comprehensive toolbox with further frequentist solutions

has been developed in the past decades. It provides several well-established

inference strategies, such as approximate maximum likelihood and Monte Carlo

likelihood techniques
[
see Ogata and Tanemura (1981, 1984), Geyer (1999)

]
.

Walker (2011) proposes a latent variable procedure to overcome the necessity



68 Locally Scaled Spatial Point Processes

to solve the integral that determines the normalizing constant. The so-called

Gaussian process density sampler introduced by Murray et al. (2008) allows for

Bayesian density estimation in a non-parametric manner
[
see also Adams et al.

(2009)
]
. Focusing on point processes with location dependent scaling charac-

teristics and an incomplete density according to Eq. (4.4), suitable frequentist

inference concepts can be obtained from Ogata and Tanemura (1986), Nielsen

and Jensen (2004), and Prokešová et al. (2006).

Estimators resulting from the maximization of a tractable adjustment of the

likelihood, however, are not necessarily unbiased, which is one of the major moti-

vations behind our proposition of an alternative Bayesian framework. Moreover,

only few Bayesian approaches have been established so far, e.g. a computation-

ally intensive Markov chain Monte Carlo (MCMC) routine based on importance

sampling
[
Bognar (2005)

]
, or a Markov approximation for hardcore Gibbs mod-

els
[
Rajala and Penttinen (2012)

]
.

We go back to the locally scaled Strauss model on W ⊂ R2 introduced by

means of Eq. (4.6). Given a suitable prior p(θ) for θ = {β, γ, R,η} ∈ Θ, the

joint posterior under this model conforms to

p(θ|x) = C(x)−1 × Z(θ)−1
[∏
x∈x

cη(x)−2
]
βn(x)γsc,R(x) × p(θ) ,

where

sc,R(x) =

6=∑
{u,v}⊆x

11[ν1
c

(
[u, v]

)
≤ R] ,

and both C(x) =
∫

Θ f(x|θ) p(θ) dθ and Z(θ) =
∫
W f(x|θ) dx are not available

in closed form (cf. Eq. (2.10) and Eq. (2.25)). Consequently, p(·|x) is doubly

intractable (cf. Eq. (2.26)). To deal with this issue, we follow our sketch of

the exchange algorithm by Murray et al. (2012) in Alg. 2.7. Unless the context

otherwise requires, we start from the simplifying assumption that the parameters

are uncorrelated in the prior, meaning that

p(θ) =
∏
θ∈θ

pθ(θ) .

For each parameter θ ∈ θ, we define an appropriate transition density qθ(·|θ)
from which we can directly draw proposals θ′. We denote the modified set of

parameters by θ′ =
{{
θ \{θ}

}
∪{θ′}

}
. More precisely, we e.g. simulate θ′ = β′

from qβ(·|β) and write θ′ = {β′, γ, R,η} . Along with each parameter proposal,

an auxiliary point process realization w is drawn from f(x|θ′). The M-H ratio

with auxiliary variable extension due to Eq. (2.27) therefore takes the general

form

ReMH =
C(x)−1—— Z(θ′)−1—— f ?(x|θ′) pθ(θ

′)

C(x)−1—— Z(θ)−1—— f ?(x|θ) pθ(θ)

qθ(θ|θ′)
qθ(θ′|θ)

Z(θ)−1—— f ?(w|θ)

Z(θ′)−1—— f ?(w|θ′)
,
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for θ ∈ {β, γ, R,η}. Reverting to the exemplary case where θ = β, we obtain

ReMH =

[ ∏
x∈x

cη(x)−2
]
β′n(x)γsc,R(x)pβ(β′)[ ∏

x∈x
cη(x)−2

]
βn(x)γsc,R(x)pβ(β)

qβ(β|β′)
qβ(β′|β)

[ ∏
w∈w

cη(w)−2
]
βn(w)γsc,R(w)[ ∏

w∈w
cη(w)−2

]
β′n(w)γsc,R(w)

=
β′n(x) pβ(β′)

βn(x) pβ(β)

qβ(β|β′)
qβ(β′|β)

βn(w)

β′n(w)
.

The determination of the prior and transition densities usually appears as

a minor matter. Nevertheless, clever decisions reduce computing time and in-

crease efficiency. Therefore, it is important to act on distributional conditions

that are easily tractable, not too restrictive and compatible with the domain of

the parameters. Generating the auxiliary variables w, in contrast, proves to be

a major challenge. For this reason, we devote the following section to the dis-

cussion of a suitable perfect as well as an alternative MCMC-based simulation

technique.

As mentioned in the introductory sections, we first and foremost use an ap-

propriate implementation of the dominated coupling from the past (CFTP) al-

gorithm by Berthelsen and Møller (2002, 2003) for drawing realizations from

interaction point process distributions with or without local scaling attributes.

Depending on the strength of the intensity, interaction and scaling effects, this

perfect simulation routine might require a high computational effort and thus be

very time-consuming. Therefore, we also discuss an alternative MCMC method,

the approximate double M-H sampler by Liang (2010). As the name indicates,

this sampling technique introduces additional inaccuracy into the entire ex-

changeability framework, which has to be regarded critically.

Dominated Coupling from the Past (CFTP)

Based on a conjunction of path sampling and perfect simulation, CFTP yields

exact drawings from pairwise interaction point processes. Berthelsen and Møller

(2002, 2003) introduce this method in different versions. To simulate from a

locally scaled Strauss model, we choose a dominated CFTP sampler that is

based on the construction of three types of auxiliary processes relative to the

unit rate Poisson process, a starting backward birth-death process as well as an

upper and a lower forward process. Because of the complex and complicated

nature of the proposed path sampling procedure, the subsequent paragraphs

first describe its step sequence in a very general manner and then provide a

more precise sketch of the algorithm. For the sake of completeness, the key

stages are once again summarized in Alg. 4.1.

The starting backward process serves as a template without interaction penalty.

Depending on the target model, its states are either homogeneous or inhomo-

geneous point process realizations. In the latter case, it is important that the
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heterogeneity is imposed through a location-dependent scaling factor or a func-

tion ensuring local stability. The upper and lower forward processes step-wisely

impose interaction restrictions on the independent point locations resulting from

the backward birth-death process. As soon as both limiting processes converge,

they merge together and return realizations from the target interaction model.

For a more detailed formal description of the dominated CFTP framework

with upper and lower limiting processes, we denote the backward states of the

homogeneous or inhomogeneous Poisson template by D(t), t = 0, ...,−T and

the target interaction process by X. The sequences of the upper and lower

processes are denoted by U (t) and L(t), where t ∈ {−T, ..., 0}. As explained

above, D(t) is developed based on a birth-death step sequence. The courses of

U (t) and L(t) reversely depend on the point in- and decreases in D(t) as well as

on the specification of the interaction constraints in X. When both sequences

coincide and merge to one single chain, every state of this chain can be regarded

as a simulation from X, as already stated.

For a locally scaled Strauss model on W ⊂ R2 with parameter set θ =

{β, γ, R,η}, intensity β(·) := β cη(·)−2 and density f(·|θ) due to Eq. (4.6),

we implement the described dominated CFTP routine as follows:

0. We preliminarily generate an inhomogeneous point process realization D(0)

by location-dependent thinning of a homogeneous template with intensity

β(∗) = supW{β(·)} (see also Section 2.4 and references therein). D(0) con-

sists of n(D(0)) points.

1. Based on D(0) and the scaling function considered, we generate a birth-

death chain of Poisson point process realizations D(t), t ∈ {1, ...,−T},
backwards in time. Therefor, we first compute the expected point intensity

with respect to the observation window W , µ(W ) = β |W |, and then

execute the subsequent commands:

For t ∈ {−1, ...,−T} and based on the initial point configuration D(0),

(1) with probability µ(W )

µ(W )+n(D(t+1))
, generate a new point x

(t)
b ∼ β(x)

and set

D(t) =
{
D(t+1) ∪

{
x

(t)
b

}}
,

otherwise, delete a randomly selected point x
(t+1)
d from D(t+1),

such that

D(t) =
{
D(t+1) \

{
x

(t+1)
d

}}
.

(2) draw a mark mt+1 ∼ U [0, 1] .
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2. The upper and lower processes U (·) and L(·) are first started at j = 0, then

at j = −1, etc. The last possible starting time is j = −T . Developed

in forward direction, sequences of the form U (j) = {U (j)
j , ..., U

(j)
0 } and

L(j) = {L(j)
j , ..., L

(j)
0 } are thus constructed. The starting states are defined

as U
(j)
j = D(j) and L

(j)
j = ∅, whereas the succeeding stages are derived

from the birth-death template D(·) as sketched in the following:

For t = {j + 1, ..., 0},

(1) if D(t) =
{
D(t−1) \

{
x

(t)
b

}}
,

U
(j)
t =

{
U

(j)
t−1 \

{
x

(t)
b

}}
and L

(j)
t =

{
L

(j)
t−1 \

{
x

(t)
b

}}
,

otherwise, if D(t) =
{
D(t−1) ∪

{
x

(t)
d

}}
,

U
(j)
t =


{
U

(j)
t−1 ∪

{
x

(t)
d

}}
, if mt ≤

∏
x∈L(j)

t−1

γsc,R
(
{x,x(t)

d }
)
,

U
(j)
t−1 , else.

L
(j)
t =


{
L

(j)
t−1 ∪

{
x

(t)
d

}}
, if mt ≤

∏
x∈U(t)

t−1

γsc,R
(
{x,x(t)

d }
)
,

L
(j)
t−1 , else.[

note that sc,R
(
{x, x(t)

d }
)

is defined according to Eq. (4.5)
]

(2) if U
(j)
t = L

(j)
t , stop! Regard x := L

(j)
t as a realization from X.

Concerning indexing and, in particular, the determination of the earliest time

stamp −T , Berthelsen and Møller (2003) propose to proceed as follows:

(i) Tmin : =

{
inf{−t :

{
D(t)∩D(0)

}
6= ∅,

{
D(t−1)∩D(0)

}
= ∅}, if D(0)6= ∅ ,

0, else.

(ii) jk = −2−kTmin , k ∈ {0, 1, 2, ...}

(iii) T = inf{−jk : U
(jk)
0 = L

(jk)
0 } ⇒ U

(−T )
0 = L

(−T )
0 = x ∼ f(X|θ) .

Based on this notational convention, Alg. 4.1 illustrates the structural design of

the dominated CFTP algorithm in its general form.

Given a point pattern with a high packing density and strong interaction

or pronounced scaling effects, dominated CFTP requires a lot of CPU time.

Thanks to intensive research on alternative MCMC methods, however, approx-

imate techniques have been elaborated that are almost as precise as exact sam-

pling, but reduce time costs considerably and hence save CPU power.
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Algorithm 4.1: Sketch: Dominated coupling from the past. For more

details, see the comments above and the notational definitions in (i)–(iii).

Data: Intensity function β(·)
Result: Point process realization x

Generate D(0) ∼ β(·);

Set k = 0;

repeat

set k = k + 1;

develop backwards D(jk−1−1), ..., D(jk);

for t ∈ {jk, ..., jk−1} do

if
{
D(t) \D(t−1)

}
6= ∅ then

draw mt ∼ U [0, 1];

end

end

develop forwards (U
(jk)
jk

, L
(jk)
jk

), ..., (U
(jk)
0 , L

(jk)
0 );

until U
(jk)
0 = L

(jk)
0 ;

Set −T := jk;

Return x := U
(−T )
0 as a drawing from f(x|θ);

Approximate Double M-H Sampler

Just to name a few examples of MCMC-based simulation under incomplete

modeling assumptions, Liang et al. (2007), for instance, propose a so-called

stochastic approximation Monte Carlo algorithm, whereas Jin and Liang (2012)

suggest to embed this concept into a Bayesian framework. The double M-H ap-

proach by Liang (2010) connects the exchangeability principle to an approximate

auxiliary sampling process that is based on sequences of suitably determined

M-H transition kernels. Owing to the fact that we have already introduced an

implementation of the exchange algorithm by Murray et al. (2012) to analyze re-

pulsive point configurations, the double M-H sampler also building on the work

by Murray et al. suggests itself as an alternative approximate method. The ad-

ditional loss of accuracy, however, needs to be treated with caution. It mainly

depends on the number of iterations of the double M-H sampler. Theoretically,

infinitely many MCMC steps have to be conducted to guarantee convergence.

A reduction in the number of iterations makes the optimization process less pre-

cise, even if it returns a Markov chain that appears reasonable and sufficiently
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long. In general, every additional MCMC routine incorporated into an existing

MCMC framework yields a decrease in precision and has to be judged carefully.

As we have provided a detailed description of the exchange algorithm in

Section 2.5, we begin our sketch of the double M-H sampler where the prob-

lem of constructing and evaluating the auxiliary variable scheme comes up

(see Alg. 2.7). That is, we explain how to generate a sample of point data,

w ∼ f(·|θ′), via the construction of a Markovian chain of states w(0) →
w(1) → ... → w(K) := w. Based on appropriately predefined transition

densities qθ′(w
(k)|w(k−1)), k ∈ {1, ..., K}, a series of conventional M-H steps

yields

f
(K)

θ′
(w|w(0)) = f

(K)

θ′
(w(K)|w(0))

= qθ′(w
(1)|w(0))× ...× qθ′(w(K)|w(K−1)) = f(w|θ′). (4.12)

It is convenient to use uniform densities or flat truncated Gaussians as tran-

sitions densities. We propose to let the initial state w(0) = {w(0)
1 , ..., w

(0)
K } be

similar to the observed point pattern or to the auxiliary data set associated with

the latest parameter proposal accepted subject to Alg. 2.7. Since w(0) consists

of K elements, it determines the parameter K in Eq. (4.12).

For each point w
(k−1)
k , we first set w

(k)
k0

:= w
(k−1)
k and then successively propose

L random moves w
(k)
kl
|w(k)

kl−1
∼ q(w

(k)
kl
|w(k)

kl−1
), l ∈ {1, ..., L}, within the given

observation window. In short, conditional on θ′, L × K M-H move steps

transform w(0) into w(K) = w via the intermediate stages

w(k) =

{{{
w(k−1) \{w(k−1)

k }
}
∪ {w(k)

k }
}

:

w
(k)
k = w

(k)
kL
← w

(k)
kL−1
← ...← w

(k)
k0

= w
(k−1)
k

}
.

The next section presents and discusses results from an analysis of simulated

point patterns via a CFTP-based execution of the exchange algorithm. Our

goal is to evaluate the overall performance of the proposed Bayesian inference

framework before applying it to real databases. For comparison, we additionally

analyze the synthetic data via a pseudo likelihood approach.

4.4 Simulation Study

We generate five independent point patterns with exponential scaling charac-

teristics due to Eq. (4.9) from a locally scaled Strauss model as introduced by

means of Eq. (4.6) (see Fig. 4.3). The true parameter configuration considered

is {β, γ, r, η1, η2} = {100, 0.30, 0.05, 1.5, 0.75}.
Assuming that all parameters are unknown and starting with different initial

estimates, we compute several Markovian chains using the exchange algorithm
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Figure 4.3: Samples from an exponentially scaled Strauss model. The observation

windows are of size W = [0, 1] × [0, 1], and the true model parameters

{β, γ,R, η1, η2} have been set to {100, 0.3, 0.05, 1.5, 0.75}.

(cf. Alg. 2.7) with auxiliary variable schemes constructed via dominated CFTP

(cf. Alg. 4.1). As priors, we employ uniform densities on the intervals gray

shaded in Fig. 4.4. The parameter proposals in the M-H step are grouped such

that each subset, {β, γ}, {R}, and {η1, η2}, is being updated at a time. Every

chain is of length 100.000. Regarding the first 50.000 states as burn-in samples

and eliminating or reducing autocorrelation effects by accounting for every 100th

realization only, we generate histograms visualizing the estimates of the full

conditional posteriors p̂(θ|θ−{θ}), for θ ∈
{
{β, γ}, {R}, {η1, η2}

}
(see Fig. 4.4).

Owing to the big lengths of the Markovian state sequences, differences in the

shapes of the histograms are not visible when comparing results from different

chains.

In consideration of the fact that we analyze a sample of size five only, it is not

surprising that the modes and medians of some of the estimated full conditional

posteriors eventually differ from the true effects. The small sample size makes

unintentional random trends in the patterns notably affect the estimation of the

posterior densities. Fig. 4.4 (i) provides clear evidence that the observed repul-

sion effect in the simulated data tends to be stronger than the true underlying

value of γ.

Having shown that the CFTP-based exchange algorithm yields the expected

results, we implement a frequentist inference strategy for comparison. We apply

the two-stage optimizer by Prokešová et al. (2006, Ch. 4) to the exponentially

scaled point process realizations illustrated in Fig. 4.3. Following Prokešová

et al., we first assess the values of the scaling parameters η via convenient

likelihood maximization
[
Aldrich (1997)

]
. This is possible, since the exponential

scaling function is available in normalized form and therefore identifiable (cf.

Eq. (4.9) – Eq. (4.11)). Conditioned on the resultant estimates η̂, a pseudo

likelihood routine according to Eq. (2.22) is implemented for estimating the

intensity parameter β and the weight of interaction γ
[
see also Besag (1974)

]
.

The interaction radius R serves as a nuisance parameter which we optimize with

respect to a fine grid of values on the interval ]0, 0.1].

From the first stage of the frequentist point process analysis, we obtain η̂ =

{1.46, 0.75} as ML estimates of the scaling parameters. Conditioned on these
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(i) p̂({β, γ}|x,θ−{β,γ}) (ii) p̂(R|x,θ−{R})

(iii) p̂({η1, η2}|x,θ−{η1,η2})

Figure 4.4: Full conditionals of the parameter subsets {β, γ}, {R}, and {η1, η2}. The

dashed vertical lines mark the true values, and the horizontal gray bars

the uniform parameter priors. The curves result from adjusting the full

conditionals by a kernel density estimator
[
Silverman (1986, ch. 3 – 4)

]
.

(i) l̂P ({β, γ}|{R, η̂}) (ii) β̂|{R, η̂} (iii) γ̂|{R, η̂}

Figure 4.5: Optimization of the pseudo log-likelihood subject to the nuisance pa-

rameter R and the previously estimated scaling effects η̂ = {1.46, 0.75}.
The dash lines mark the true underlying value of R.
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values, we calculate the maximum of the pseudo log-likelihood,

l̂P ({β, γ}|{R, η̂}) := max
{β,γ}

{
log
(
LP ({β, γ}|{R, η̂})

)}
,

subject to every element of the grid considered for R, and plot the respective

outcomes against R (see Fig. 4.5 (i)). Additionally, we graphically illustrate the

ML estimates β̂ and γ̂ with respect to R (Fig. 4.5(ii) – (iii)),

{β̂, γ̂}|{R, η̂} := argmax
{β,γ}

{
log
(
LP ({β, γ}|{R, η̂})

)}
The pseudo likelihood reaches its highest value under the parameter configura-

tion θML = {β̂, γ̂, R̂, η̂1, η̂2} = {99, 0.42, 0.0501, 1.46, 0.75}, whereas the esti-

mated posterior resulting from our Bayesian approach takes its maximum under

{98, 0.43, 0.0502, 1.49, 0.73} and its mean under {98, 0.44, 0.0491, 1.47, 0.72}.
Summing up, we can state that, apart from a consistent data-driven overes-

timation of γ, both the frequentist approach by Prokešová et al. and our alter-

native Bayesian framework yield parameter estimates close to the true settings.

There are only slight differences in the maximizers of the pseudo likelihood and

the estimated posterior.

Since the CFTP-based exchange algorithm delivers the expected results, we

now apply our Bayesian inference framework to real-world datasets where the

ground truth is not known. We analyze cross-sections through maize stems in

terms of their vascular bundle arrangement. The overall goal is a classification

between two maize genotypes.



5 Analysis of Biological Image

Data

Crop plants do not only serve as an important feeding stuff, but also as an essen-

tial basis for the generation of bio-ethanol and the development of organic pro-

duction. After a series of mechanical and biological processes, raw material from

the stems and leaves is turned into energy and fuel, respectively. Efficiency gains

are achievable through an intelligent use and valorization of the agro-resources.

Therefore, a well-founded understanding of the cellular plant structures is cru-

cial and essential. We thank David Legland1 and Marie-Françoise Devaux2 for

making data from different maize genotypes available to us.

Here, we examine cross-sections through two genotypes of maize stems in or-

der to detect similarities and divergences in the spatial distributions of their

vascular bundles (see Fig. 5.1). The positions of the bundles and their packing

density have a strong impact on the water conductivity in the plants. Partic-

ularly for farmers and agricultural scientists, a sound answer to the question

whether distinct maize genotypes differ in their water conductivity is of great

importance and interest. Our work is similar to the research project by Legland

et al. (2014). The authors propose a general framework for describing the cellu-

lar structures in the maize stems. It comprises preprocessing steps identifying

the stem contours and the positions of the vascular bundles, a data normal-

ization method, and the description of the bundle density and its variation by

means of intensity maps.

Figure 5.1: Cellular structures in cross-sections through maize stems, where each

small white patch represents one vascular bundle.

We explain below how the spatial arrangement of the vascular bundles in a

maize stem can be modeled via a Bayesian locally scaled point process approach

1INRA & AgroParisTech, UMR 782 Food Process Engineering and Microbiology, Thiverval-

Grignon; INRA & AgroParisTech, UMR 1318 Institut Jean-Pierre Bourgin, Versailles
2INRA, UR 1268 Biopolymers, Interactions and Assemblies, Nantes
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(cf. Section 4.1 – 4.3). To begin with, we normalize the given data appropriately

(see Section 5.1) and introduce a feasible new scaling function (see Section 5.2).

For the purpose of efficiency, we then propose a two-stage inference procedure

(see Section 5.3). We visualize and discuss our results in Section 5.4 which con-

cludes with a comprehensive and critical look at our Bayesian modeling frame-

work. A journal article on Bayesian inference in locally scaled point processes,

including the maize data problem, is in preparation
[
Didden et al. (2015)

]

5.1 Data Preparation

As mentioned above, we concentrate on sets of maize data from two different

genotypes, genotype I and genotype II. Our objective is to check whether the lo-

cally scaled Strauss model defined in Eq. (4.6) proves to be capable of detecting

differences in the relative amount, the locations and the pairwise interactions of

the vascular bundles. Per genotype, we are given three representative data real-

izations, that is, information from cross-sections through three different maize

stems.

Thanks to the image preprocessing effort made by Legland et al. (2014), two

data files describing each cross-section are at our disposal. One file contains

the actual locations of the vascular bundles in the form of a point pattern

x(0) = {x(0)
1 , ..., x(0)

n } and the other file a fine grid of 200 to 300 boundary points

manually determined and here denoted by b(0) = {b(0)
1 , ..., b(0)

nb
} (see Fig. 5.2 (a)

– (b) (i)). The data are arranged such that bc = (0, 0)> is the center of gravity.

We project the point coordinates, that is, the positions of the vascular bundles,

into circular observation windows DRI
(0) and DRII

(0) of radii RI = 1 and

RII = 0.69, respectively (see Fig. 5.2 (a) – (b) (ii)). The proportion between

the radii reflects the proportion between the average diameters of the stems of

both genotypes. Concerning the transformation process, we initially normalize

each boundary point b
(0)
i , i ∈ {1, ..., nb}, by its distance from bc which we denote

by di. Thereafter, each inner point coordinate x
(0)
j , j ∈ {1, ..., n}, is scaled

by dividing the distance to its related boundary coordinate b
(0)
i by di. We

call an outer point b
(0)
i the related boundary of x

(0)
j if the acute angle between

x
(0)
j , bc and b

(0)
i is smaller than the acute angle between x

(0)
j , bc and any other

outer point. This turns b(0) into b and x(0) into x, where b and x denote the

normalized data. As already stated, both the original and the normalized point

patterns are exemplified in Fig. 5.2.

At first view, we notice differences in the sizes of the stems. Moreover, we

see that the number of the vascular bundles correlates positively with the stem

diameters. The question comes up whether, irrespective of those absolute mea-

sures, the genotypes are classifiable subject to the relative spatial arrangements

of their vascular bundles.
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(i) Original point data (ii) Normalized point data

(a) GENOTYPE I

(i) Original point data (ii) Normalized point data

(b) GENOTYPE II

Figure 5.2: Cross-sections through representative maize stems before (i) and after

(ii) a circular normalization. The gray points [l] serve as auxiliary bound-

ary points, and the black points [r] show the observed (i) and normalized

(ii) bundle locations.

Looking at Fig. 5.1 – 5.2 once again, it becomes obvious that the packing

density of the vascular bundles is higher in the outer than in the inner parts

of the stems. A closer inspection of the bundle arrangement allows for the

assumption that within both the inner and the outer stem sections, the bundles

are homogeneously distributed. For this reason, we have established a specific

step scaling function which we introduce and explain in the next section (see

in particular Eq. (5.1)). In accordance with our normalized maize data, it is

defined on a circular two-dimensional observation plane.

5.2 Step-wise Scaling Constraints

We denote the circular observation window containing the point process data x

by W = DR(bc) ⊂ R2, where R stands for the disc radius and bc, again, for the

center of gravity. Without loss of generality, we start from the assumption that

W = DR(0) = {u ∈ R2 : ‖u‖ ≤ R} ,
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where ‖ · ‖ denotes the Euclidean norm. The step scaling function is defined as

cη(u) = α(η)
(

11
[
‖u‖ ≤ η1

]
+ η

− 1
2

2 11
[
η1 ≤ ‖u‖ ≤ R

])
, (5.1)

with normalizing constant

α(η) =
1

R2

(
η2

1 + η2(R2 − η2
1)
) 1

2 . (5.2)

Considering point data normalized to the unit disc W = D1(0), Eq. (5.1) –

Eq. (5.2) simplify to

cη(u) =
(
η2

1 + η2(1− η2
1)
) 1

2

(
11
[
‖u‖ ≤ η1

]
+ η

− 1
2

2 11
[
η1 ≤ ‖u‖ ≤ 1

])
. (5.3)

Here, the step scaling function acts on two levels spatially delimited by η1 and

R, the disc Dη1(0) for some 0 < η1 < R and the set
{
DR(0) \ Dη1(0)

}
which

we abbreviate by DR\η1(0). For the sake of a better overview, all our expla-

nations are based on just two levels. Accounting for additional stages proves

straightforward, though much more cumbersome. The second scaling parame-

ter, η2 ≥ 0, controls the difference in the scaling between the two levels consid-

ered. Fig. 5.3 (a) shows a step-wisely scaled point pattern simulated from an

inhomogeneous Strauss model.

To scale the distances between pairs of points {u, v} in a pattern with two

gradation levels, three cases must be taken into account. Both u and v may

be located in the inner disc Dη1(0), or both points may lie in the outer circular

surrounding DR\η1(0), or, otherwise, one point may be contained in the inner

and the other one in the outer region. If both points are located in the outer

surface area, the scaling of their distance depends on whether their connecting

line [u, v] crosses the inner disc or not. Incorporating the auxiliary measure

∆ := ν1([u, v])−1‖u‖‖v‖ and applying principles of triangular geometry
[
Berger

(2009, ch. 10)
]
, point distances step-wisely scaled by means of Eq. (4.8) fulfill

ν1
c ([u, v])

ν1([u, v])
=


α(η)−1, {u, v} ∈ Dη1

(0),
√
η2 α(η)−1, {u, v} ∈

{
W \Dη1

(0)
}
, ∆ ≥ η1,

τ ∗α(η)−1 + (1− τ ∗)√η2 α(η)−1, {u, v} ∈ DR\η1
(0), ∆ < η1,

τ ∗∗α(η)−1 + (1− τ ∗∗)√η2 α(η)−1, u ∈ Dη1
(0), v ∈ DR\η1

(0).
(5.4)

Here, τ ∗ = ν1
(
[u, v]

)−1
(τ1 + τ2 − 1) and τ ∗∗ = ν1

(
[u, v]

)−1
τ1, with τ1 and τ2

solving the equations

τ−1
1 (τ 2

1 + ‖v‖2 − η2
1) = ν1([u, v])−1(ν1

(
[u, v]

)2
+ ‖v‖2 − ‖u‖2) ,

τ−1
2 (τ 2

2 + ‖u‖2 − η2
1) = ν1([u, v])−1(ν1

(
[u, v]

)2
+ ‖u‖2 − ‖v‖2) ,

such that τ ∗, τ ∗∗ ∈ [0, 1]. That is, τ1 and τ2 are given by the values
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τ1 =
‖u−v‖2+‖v‖2−‖u‖2 ±

√
(‖u−v‖+‖v‖−‖u‖)2−4‖u− v‖2(‖v‖2−η2

1)

2‖u−v‖
,

and

τ2 =
‖u−v‖2+‖u‖2−‖v‖2 ±

√
(‖u−v‖+‖u‖−‖v‖)2−4‖u−v‖2(‖u‖2−η2

1)

2‖u−v‖
.

A visual demonstration of a step-wise scaling effect is provided in Fig. 5.3

(a) Step scaled distances from the point coordinates (0, 0)>, (0.3, 0.3)>,

and (0.6, 0.6)>
(b) Realization

Figure 5.3: Step scaling effects in a point pattern on W = D1(0). (a) exemplifies

step-wisely scaled distances from three different points in W , where η1 =

0.75 (dotted circles) and η2 = 7. Increasing darkness indicates decreasing

distance. (b) shows a point process realizations sampled from a Strauss

model with parameters β = 100, γ = 0.5, R = 0.05, and scaling effects

as in (a). The sampling has been performed via dominated coupling

from the past (see Section 4.3).

With regard to the maize data, it seems possible to assess the value of η1 in a

grid-based and model-free manner. For this, we define a set of η1-proposals by

multiplying the disc radii RI (genotype I) and RII (genotype II) by a sequence

of 20 values ranging from 0.8 to 1.0. In each respectively resulting inner disc, we

first calculate the pairwise point distances and then search for their minimum

among each of the genotypes. The left plot in Fig. 5.4 (i) shows that the mini-

mum pairwise point distance increases notably if η1

RI
= η1 is decreased from 0.98

to 0.97, from 0.95 to 0.94, from 0.93 to 0.92, and from 0.85 to 0.84. Regarding

genotype II, we observe the most striking changes where η1

RII
= η1

0.69
is diminished

from 0.95 to 0.94 and from 0.90 to 0.89 (see Fig. 5.5 (i)). Since the number

of points in Dη1:=0.97RI (0) and in Dη1:=0.94RII (0) is close to the total amount of

points in DRI (0) and DRII (0), we consider these settings inappropriate. We

confirm our decision by means of Fig. 5.4 – 5.5 (ii) which show the decomposi-

tion of representative point patterns with respect to the potential specifications

of η1 worked out in (i). Looking at Fig. 5.4 (ii), a cut-off at 0.84 RI also appears

unsuitable. We consequently consider η1 := 0.92 or η1 := 0.94 for genotype I,

and take η1 := 0.89 · 0.69 = 0.6141 as a basis for the analysis of genotype II.
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(i) Point distance analysis

(ii) Visual evaluation of η1

(a) GENOTYPE I

Figure 5.4: Determination of the inner stem radius η1 as a percentage of the total

radius RI = 1. Potential specifications of η1 established based on the

minimum pairwise point distance in Dη1
(0) are illustrated in (i) which

also shows the according percentage of the distances in DRI
(0) that are

smaller than the minimum distance in Dη1
(0). In (ii), the potential

inner radii (black) are plotted on top of a representative normalized

point pattern (gray).

We regard the proposed specifications of η1 as fixed and continue with the

analysis of the remaining model parameters θ−{η1} = {β, γ, R, η2}. Aiming at

analyzing the preprocessed maize data in a Bayesian manner using the exchange-

ability method provided in Section 4.3, we incorporate the step scaling function

from Eq. (5.1) in a Strauss model due to Eq. (4.6). The step-wise scaling at-

tributes motivate us to develop a two-stage algorithm which, indeed, proves

efficient and time-saving. In the following section, the two inference stages are

described in detail, and all relevant intermediate results are graphically and

verbally presented.
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(i) Point distance analysis

(ii) Visual evaluation of η1

(b) GENOTYPE II

Figure 5.5: Determination of the inner stem radius η1 as a percentage of the total

radiusRII = 0.69. Potential specifications of η1 established based on the

minimum pairwise point distance in Dη1
(0) are illustrated in (i) which

also shows the according percentage of the distances in DRII
(0) that

are smaller than the minimum distance in Dη1
(0). In (ii), the potential

inner radii (black) are plotted on top of a representative normalized

point pattern (gray).

5.3 Two-Stage Inference Procedure

An inhomogeneous Strauss model with a step-wisely scaled point density con-

tains five unknown parameters, the intensity parameter β, the weight of inter-

action γ, the interaction radius R, the radius η1 of the inner disc and the scaling

factor η2 (cf. Eq. (5.1) – Eq. (5.3) and Fig. 5.3). We recall that Fig. 5.2 shows

the original and the normalized locations of the vascular bundles in two maize

stems. As the points representing the bundles obviously repulse each other,

their arrangement suggests that γ is close to 0. Moreover, as discussed above,

their packing density looks substantially lower in the inner than in the outer

stem sections, which makes us expect that η2 � 1. Referring to our discussion

in Section 4.3, we assume that the pronounced interaction and scaling effects
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in the point data cause long CPU run-times if we implement an exchange al-

gorithm (cf. Alg. 2.7) with an auxiliary variable scheme exactly generated via

dominated CFTP (cf. Alg. 4.1).

We propose a two-stage inference procedure, the structure and implementa-

tion of which is based on the intuitive meaning of the step scaling function as

well as on its formal statistical definition. We denote the inner points with co-

ordinates in Dη1(0) by x(1) :=
{
x ∈ x : ‖x‖ < η1

}
and the remaining points

located in DR\η1(0) by x(2) :=
{
x ∈ x : η1 ≤ ‖x‖ < R

}
, where R stands for

the normalized stem radius, as introduced earlier. This notation allows us to

decompose the joint posterior of θ = {β, γ, R,η} (cf. Eq. (2.24)) into

p(θ|x) = p(θ|x(1),x(2)) =
f(x(1)|θ) p(θ) f(x(2)|x(1),θ)

C(x(1),x(2))

∝ p(θ|x(1)) × f(x(2)|x(1),θ) , (5.5)

where

f(x(1)|θ) = Z(1)(θ)−1
∏

x∈x(1)

cη(x)−2 βn(x(1)) γsc,R(x(1))

= Z(1)(θ)−1 α(η)−2n(x(1)) βn(x(1)) γsc,R(x(1))

= Z(1)(θ)−1 β∗ n(x(1)) γsR∗ (x(1)) (5.6)

with

sR∗(x
(1)) :=

6=∑
{u,v}⊆x(1)

11[ν1([u, v]) ≤ R∗]

=

6=∑
{u,v}⊆x(1)

11[α(η)−1ν1([u, v]) ≤ R] = sc,R(x(1)) ,

and

f(x(2)|x(1),θ) = Z(2)(θ)−1
∏

x∈x(2)

cη(x)−2 βn(x(2)) γsc,R(x(2)|x(1)) (5.7)

with sc,R(x(2)|x(1)) :=
∑

u∈x(2),

v∈{x(1)∪x(2)}

11[ν1
c ([u, v]) ≤ R] .

Z(1)(·)−1 and Z(2)(·)−1 denote the normalizing constants with respect to Dη1(0)

and DR\η1(0) (cf. Eq. (2.10)). If we look at x(1) and x(2) separately, each sub-

pattern appears homogeneous, as already noted in Section 5.1. However, both

partitions depend on each other due to the pairwise point distances between

them.

Due to the factorization in Eq. (5.5), we first analyze x(1) to obtain posterior

information on the three unknown parameters in Eq. (5.6), {β, γ, R}. After-

wards, we add x(2) as supplementary data and update the estimates of the
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posterior distributions accordingly. This requires the consideration of η2 as a

fourth unknown parameter, since it appears as a scaling factor in Eq. (5.7).

Although the set of parameters associated with x(1) is hence a subset of the

parameters describing x(2) conditional on what has been learned from x(1), a

sequential analysis of the two datasets is statistically valid if the prior of η2 does

not depend on the priors of the remaining parameters. Here, we use uniform

prior densities on suitable intervals, as specified later.

First Stage: Assessing p(θ|x(1))

To estimate

p(θ|x(1)) ∝ f(x(1)|θ)× p(θ) ,

we let p(θ) be the product of p(β), p(γ), and p(R) which we define as indepen-

dent uniform densities on the intervals [50, 250], [0, 1], and [0.02, 0.08]. Since

the vascular bundles appear to be uniformly distributed in the inner parts of

the stems and we hence assume x(1) to be homogeneous, the scale factor η2 is

not being analyzed in the first stage of the inference procedure.

Concerning the technical issues, we implement the exchange algorithm by

Murray et al. (2012), as sketched in Alg. 2.7. In each cycle, the parameters are

updated one after the other. To collect the auxiliary variables needed for the

calculation of the exchange ratio, we follow our outline of the dominated CFTP

procedure by Berthelsen and Møller (2002, 2003), summarized in Alg. 4.1. Since

x(1) can be modeled under homogeneity assumptions (cf. Eq. (5.6)), dominated

CFTP works much faster here than in an immediate application to the entire

location-dependently scaled configuration x = {x(1) ∪ x(2)}. A side advantage

is that the function rStrauss() from the R-package ‘spatstat’ can be used,

which provides a CFTP routine for simulating from homogeneous Strauss mod-

els
[
Baddeley and Turner (2005)

]
. The results, however, refer to transformed

versions of the actual parameters and hence need to be retransformed for con-

sistency purposes (cf. Eq. (5.6)).

We determine that β′|β ∼ N300
0 (β, 2.5), γ′|γ ∼ N1

0 (γ, 0.025), and R′|R ∼
N0.15

0 (R, 0.00125), meaning that truncated Gaussian densities serve as M-H

transition kernels qθ(θ
′|θ) for θ ∈ θ−{η} (cf. Alg. 2.2). Almost every chain

of parameter states clearly converges after less than 100.000 iterations. After

250.000 iterations, we stop our simulations, exclude the first 125.000 outcomes

as burn-in results, and extract posterior information from every 100th triple

θ̂ = {β̂, γ̂, R̂} of MCMC states. Fig. 5.6 illustrates the estimates of the full

conditional posteriors.

Since we observe little variability in p̂(R|x(1), β, γ, η1 = 0.94) (genotype I) and

p̂(R|x(1), β, γ, η1 = 0.61) (genotype II), it appears convenient and computation-

ally efficient to decide for η1 = 0.94 (genotype I) and to condition our further

analysis on the maximum a posteriori (MAP) estimates of R, R̂MAP = 0.0422
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(i) p̂(β|x(1), γ, R, η1 = .92) (ii) p̂(γ|x(1), β, R, η1 = .92) (iii) p̂(R|x(1), β, γ, η1 = .92)

(i) p̂(β|x(1), γ, R, η1 = .94) (ii) p̂(γ|x(1), β, R, η1 = .94) (iii) p̂(R|x(1), β, γ, η1 = .94)

(a) GENOTYPE I

(i) p̂(β|x(1), γ, R, η1 = .61) (ii) p̂(γ|x(1), β, R, η1 = .61) (iii) p̂(R|x(1), β, γ, η1 = .61)

(b) GENOTYPE II

Figure 5.6: Full conditional posteriors describing p(θ|x(1)), and gray bars marking

the parameter priors. The curves result from a kernel density adjustment[
Silverman (1986, ch. 3 – 4)

]
.

(genotype I) and R̂MAP = 0.0557 (genotype II). The MAP estimates correspond

to the modes of the posterior distributions and hence to the parameter combi-

nation that maximizes the joint posterior. From the decision to fix R, we expect

shorter burn-in phases of the Markovian chains approaching p(θ|x(1),x(2)).

To avoid a rash conclusion, however, we first compare the competing models

by using the probability integral transform (PIT) recently proposed by Tho-

rarinsdottir (2013). PIT calibration diagnostics are based on rank statistics
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which allow to detect structural differences between the observed data and ref-

erence point patterns simulated from the estimated posterior models. In a first

step, we subdivide the circular observation window into 64 disjoint cells of equal

size and generate 1000 reference point patterns. In a cell-wise fashion, we calcu-

late the rank of the number of observed points among the number of reference

points and normalize the outcome to an [0, 1]-interval. The closer the result-

ing rank distribution is to standard uniformity the better the model fits the

given data. Fig. 5.7 shows that both the histogram where η1 = 0.92 and the

(a) η1 = 0.92 (b) η1 = 0.94

Figure 5.7: Results from PIT calibration diagnostics visualized through normalized

rank distributions.

histogram where η1 = 0.94 are biased towards higher ranks. For η1 = 0.92,

we furthermore observe a clear underrepresentation of the lower ranks, which

reinforces our preference for η1 = 0.94.

Second Stage: Assessing p(θ|x(1),x(2))

In the second Bayesian inference stage, we estimate p(θ|x(1),x(2)). For this pur-

pose, we set p(θ|x(1)) = p̂(θ−{η2}|x(1)) × p(η2) in Eq. 5.5, where p̂(θ−{η2}|x(1))

conforms to the posterior estimated before and p(η2) is defined as a uniform

prior on [2, 10]. Based on the knowledge gained from the first stage of the anal-

ysis, we assume that θ−{η2}|x(1),x(2) takes values on the discrete domain of the

MCMC states {β̂, γ̂}|x(1) computed previously. It furthermore depends on R

and η1, both serving as constants.

Iteratively, we upgrade the full conditionals p({β, γ}|x(1),x(2),θ−{β,γ}) and

p(η2|x(1),x(2),θ−{η2}) via the exchangeability framework in Alg. 2.7, with exact

and approximate auxiliary sampling steps. We let p̂(θ−{η2}|x(1)) determine the

discrete prior and transition density of {β, γ}. The auxiliary variable scheme

incorporated into the M-H ratio for evaluating new {β, γ} proposals is generated

via the dominated CFTP routine in Alg. 4.1
[
Berthelsen and Møller (2003)

]
.
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For modeling the transitions of the scaling effects, we assume that η′2|η2 ∼
N10

2 (η2, 0.25). To shorten the computer runtime, we draw the auxiliary real-

izations in an approximate manner, following Liang (2010). As pointed out

in Section 4.3, Liang proposes to sample from distributions not presentable in

complete form via sufficiently long MCMC chains. Here, we let the auxiliary

variable associated with the latest parameter proposal accepted serve initial

state w(0). We assume that it consists of K points, i.e. w(0) = {w(0)
1 , ..., w

(0)
K }.

To determine f(w|θ) = f (K)(w(K)|w(0)) by means of Eq. (4.12), we first define

w
(k)
k0

:= w
(k−1)
k , for k ∈ {1, ..., K}, and then successively propose and evaluate

10 random moves

w
(k)
kl
|w(k)

kl−1
∼ q(w

(k)
kl
|w(k)

kl−1
) := N(w

(k)
kl−1

, 0.125) , l ∈ {1, ..., 10} ,

within the circular observation windows DRI (0) and DRII (0), respectively. Uni-

form densities on DRI (0) and DRII (0) are considered as marginal priors for the

point locations. Conditional on θ′ = {β, γ, R, η1, η
′
2}, 10 ×K M-H move steps

thus transform w(0) into w(K) = w via the intermediate stages

w(k) =

{{{
w(k−1) \{w(k−1)

k }
}
∪ {w(k)

k }
}

:

w
(k)
k = w

(k)
k10
← w

(k)
k9
← ...w

(k)
k1
← w

(k)
k0

= w
(k−1)
k

}
.

Liang (2010) argues that suggesting one move per point is sufficient from a

theoretical standpoint, and confirms this statement by means of several data

examples. We nonetheless prefer to increase the number of shift proposals to

10. In a simulation study as well as based on a subset of the maize data, we have

demonstrated that no striking differences between the embedding of dominated

CFTP in the exchange algorithm and the use of transition kernels according

to Liang can be recognized in view of the estimated posteriors. The respective

results are not shown in this work.

Having fixed η1 in a mainly data-driven manner and R based on the negli-

gible variations in p̂(R|x(1),θ−{R}), the second and final stage of our approach

returns exact and approximate drawings from p({β, γ}|x(1),x(2),θ−{β,γ}) and

p(η2|θ−{η2}). These samples describe the joint target distribution p̂(θ|x(1),x(2)).

Fig. 5.8 illustrates the estimates of the full conditional posteriors.

Our two-stage approach proves to be very efficient in its application to the

genotype-I samples. In the second stage, the Markovian chain reaches its equilib-

rium state after less than 5000 iterations. In total, we execute 25.000 iterations

and regard the first 7.500 iterations as burn-in phase. To avoid autocorrelation

effects, we use every 50th chain state for the description of the point process

posterior. 350 estimated parameter configurations therefore determine p̂(θ|x).

Genotype II requires about ten times as many iterations of the exchangeabil-

ity process as genotype I. We thus compute a sequence of 250.000 parameter
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realizations, remove the first 125.000 outcomes and base our further analysis

on 350 parameter states sampled in regular intervals from the remaining 75.000

outcomes.

(i) p̂(β|x,θ−{β,γ}) (ii) p̂(γ|x,θ−{β,γ}) (iii) p̂(η2|x,θ−{η2})

(a) GENOTYPE I

(i) p̂(β|x,θ−{β,γ}) (ii) p̂(γ|x,θ−{β,γ}) (iii) p̂(η2|x,θ−{η2})

(b) GENOTYPE II

Figure 5.8: Full conditionals describing p(θ|x). The curves result from a kernel

density adjustment
[
Silverman (1986, ch. 3 – 4)

]
.

Fig. 5.8 visualizes the full conditional posterior distributions of the collected

chain states. Conditional on the complete type-I datasets, the Markovian chain

states of β tend towards higher and the states of γ towards smaller values than

conditional on the type-II data, as already concluded from Fig. 5.8 (i) – (ii).

However, for genotype I, the estimated intensity effect appears to be higher

than before, while the estimated weight of interaction takes smaller values. Re-

garding genotype II, the estimated interaction penalty has also become stricter,

though here, the intensity effect has been adjusted downwards. This leads to the

conclusion that the packing density of the inner type-II bundles is higher when

estimated based on the inner point data only than when estimated conditional

on all point locations. There is, in other words, an evident discrepancy between

the prior knowledge on the vascular bundle distribution obtained from the first

stage of the analysis and the distributional properties of the vascular bundles



90 Analysis of Biological Image Data

in the whole stems, which reduces speed of convergence in the second inference

stage.

For both data series, the scaling effect η2 between the bundle arrangement

in the inner and in the outer stem segments has precisely been assessed in that

there is little variation in its estimates, and the corresponding density curves

show one clear maximum peak (see Fig. 5.8 (iii)). However, η2 appears to be

substantially higher in the type-II stems than in the plants of genotype I.

The following section is devoted to a comprehensive evaluation of our final

results, a critical look at the proposed Bayesian inference scheme, and an outlook

on possible further developments.

5.4 Conclusion and Outlook

We have analyzed two series of cross-sections through maize stems differing in

their genotypes. Apart from the obvious fact that the stems representing geno-

type I are wider than those representing genotype II, no structural differences

between the two series have been observable at first view. Apart from the orig-

inal cross-sectional image data, we have been given a point process realization

where each point represents one vascular bundle. To analyze these point pro-

cess data, we have developed a locally scaled Strauss model (cf. Eq. (4.6)) with

a properly defined step scaling function (cf. Eq. (5.1) – Eq. (5.3)). Inference

has been based on the exchangeability framework presented in Section 4.3 (cf.

Alg. 4.1). The proposed model comprises five unknown parameters, an intensity

parameter β, two interaction parameters γ and R, and two scaling parameters

η1 and η2.

In a preprocessing stage, we have projected the point data to circular discs

of fixed radii reflecting the proportion between the stem diameters of the two

genotypes (cf. Fig.5.2). The scaling parameter η1 marking the boundary be-

tween the denser packed outer stem regions and the inner parts of the stems has

been assessed in a deterministic manner (cf. Fig. 5.4 – 5.5), whereas suitable

priors have been chosen for the remaining parameters.

Looking at both parts of the stems separately, each sub-pattern appears ho-

mogeneous and seems to follow an unscaled Strauss process distribution. We

have argued that, regarding genotype I, the inner 94% of the stem area is less

densely packed with vascular bundles than the outer 6%, whereas with regard

to genotype II, a proportion of 89% versus 11% seems reasonable. The inner

stem radius η1 has accordingly been specified. Therefore, our first conclusion is

that the two genotypes differ in the relative width of their sparsely packed inner

stem regions.

We have discussed the statistical appropriateness of a two-stage approach

where the first step corresponds to the estimation of the posterior distribution
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of β, γ and R with respect to the inner stem regions, and the second step yields

a description of the posterior of all parameters, conditional on the complete

dataset as well as on the results from the previous step.

GENOTYPE I (η1 := 0.94) GENOTYPE II (η1 := 0.61)

Mode Mean Variance Mode Mean Variance

β 152.93 152.81 4.32e+01 148.24 147.92 7.17e+01 β

γ 0.0575 0.0616 2.58e-04 0.093 0.1007 6.68e-04 γ

R 0.0422 0.0422 1.20e-08 0.0557 0.0556 1.17e-07 r

Table 5.1: Results from the first stage of the analysis.

We first summarize the outcomes from the first inference stage in Tab. 5.1. As

discussed in the preceding section, the bundle intensity parameterized through

β proves to be higher in the plants of genotype I than in the type-II plants (cf.

Fig. 5.8 (i)). At the same time, the interactions between the vascular bundles

tend to be stronger in the stems of type I than in those of type II. The very

small values of γ, particularly in view of genotype I, indicate that the modeled

point patterns are similar to realizations of a hardcore Strauss process. Since

there is almost no variation in the estimates of the interaction radii R (cf. Fig.

5.6 (iii)), we have embedded their MAP estimates R̂MAP = 0.0422 (genotype I)

and R̂MAP = 0.0557 (genotype II) as constants in the second part of the analysis.

GENOTYPE I GENOTYPE II

(R := 0.0422, η1 := 0.94) (R := 0.0557, η1 := 0.61)

Mode Mean Variance Mode Mean Variance

β 154.50 155.19 8.48e+01 127.75 129.84 2.12e+01 β

γ 0.0433 0.0447 1.12e-04 0.0608 0.0694 1.14e-04 γ

η2 4.6747 4.9004 1.90e-01 7.4752 7.4644 4.15e-01 η2

Table 5.2: Results from the second stage of the analysis.

Tab. 5.2 sums up what we have obtained from the second Bayesian modeling

stage. Regarding the final results for the full data sets, the density curves

estimated for β and γ have slightly to moderately been shifted. The modes

and the means of γ have been adjusted downwards, but only for genotype I,

we accordingly observe an increase in the estimates of β. For genotype II, the

MAP estimate and the posteriori mean of β take considerably smaller values

than in Tab. 5.1. This means that a smaller point intensity is now penalized by

stronger interaction constraints. The discrepancy between the packing density

estimated based on the reduced homogeneous and the packing density assessed

for complete inhomogeneous type-II data explains the comparatively low speed
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of convergence of Alg. 4.1. In general, the packing density in the inner stem

segments is substantially lower than the packing density in the outer parts of

the stems. It turns out that the scale factor η2 associated with the bundle

arrangement in the type-II maize plants is remarkably higher than the scaling

effect associated with genotype I (see Fig. 5.8 (iii)).

A graphical summary of all results from our two-stage Bayesian modeling

approach is given in Fig. 5.9. which does not only allow for direct compar-

isons between the two genotypes, but also provides a compact overview of the

outcomes from the first and the second part of the analysis.

(i) p̂(β|.) (ii) p̂(γ|.) (iii) p̂(R|.)

(iv) η̂1 (v) p̂(η2|.)

Figure 5.9: Full conditionals describing p(θ|x(1)) and p(θ|x(1),x(2)). The black

(genotype I) and gray (genotype II) curves result from a kernel density

adjustment
[
Silverman (1986, ch. 3 – 4)

]
. The adjusted density curves

from both the first and the second part of the analysis are illustrated,

which allows for immediate comparisons. The dashed lines correspond

to the curves in Fig. 5.6 and the solid lines to the curves in Fig. 5.8.

We generally conclude that the spatial bundle arrangement in cross-sections

through maize stems can accurately be described by an inhomogeneous Strauss

process distribution (cf. Eq. (4.6)) where the inhomogeneity is modeled through

a step scaling function according to Eq. (5.1) – Eq. (5.3). The two-stage infer-

ence scheme suggested in Section 5.3 enables us to classify two genotypes of
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maize plants by the packing density and the mutual dependencies of their vas-

cular bundles. The two genotypes differ most strikingly in the estimates of the

interaction radius R and the scaling factor η2. There is only minor variation

in the Markovian chain states of these two parameters. Although the density

curves approximating the estimated full conditionals of β and γ overlap to some

extent, the corresponding modes and means clearly differ from each other.

Not only in its application to the cross-sectional maize data, our implementa-

tion of the exchange algorithm by Murray et al. (2012) proves flexible, efficient

and promising. It may be used as a tool for Bayesian point process analysis

whenever the spatial point arrangement is assumed to follow location-dependent

scaling and interaction constraints that can be modeled by a proper scaling

function. The determination of a numerically feasible and identifiable scaling

function, however, is not trivial at all. Hahn et al. (2003) and Prokešová et al.

(2006) propose an exponential scaling function which is discussed in Chapter 4

of this thesis. We have developed two further scaling functions, the step scaling

function discussed and used above and a scaling function that allows to deduce

information on the camera orientation towards a textured three-dimensional

scene from a given two-dimensional image. The latter is introduced in Sec-

tion 6.4 of the following chapter.





6 Shape from Texture using

Locally Scaled Point Processes

Given a three-dimensional (3D) scene projected onto a two-dimensional (2D)

plane, geometric properties such as camera positioning and angle are normally

hard to comprehend and difficult to reproduce, particularly, if only one single

image is available. In case that objects of identical or similar 3D shape appear

in different parts of the image, local 2D characteristics of their arrangement,

surfaces and sizes may facilitate a global geometric description of the scene. It is

evident that prior information on the original 3D shapes of the objects provides

a major advantage. In this chapter, we introduce a locally scaled point process

framework for estimating shape from texture
[
see also Didden et al. (2013)

]
.

Given one 2D image of a textured 3D scene, we turn the texture arrangement

into a point process realization from which we infer scaling parameters describing

the orientation of the camera towards the scene.

Referring to related projects, Section 6.1 introduces and motivates the re-

search question. We propose a first intuitive point process approach in Sec-

tion 6.2. Our actual inference scheme comprising two modeling stages is de-

scribed in Section 6.3 – 6.4, where Section 6.3 is concerned with the question of

how to learn a point process realization from an image preprocessed according

to Section 3.2, and Section 6.4 presents a locally scaled point process model to

immediately estimate the camera angle. For evaluation purposes, several data

examples are discussed in Section 6.5. We conclude Chapter 6 with a brief

discussion and an outlook on potential further developments (see Section 6.6).

6.1 Motivation

Natural images contain a variety of perceptual information enabling the viewer

to infer the 3D shapes of objects and surfaces
[
Tuceryan and Jain (1998)

]
.

Stevens (1980) observes that surface geometry mainly has three effects on the

appearance of texture in images: foreshortening and scaling of texture elements,

and a change in their density. In his seminal work, Gibson (1950) proposes the

slant , the angle between a normal to the surface and a normal to the image

plane, as a measure for surface orientation. Stevens amends this by introducing

the tilt , the angle between the projection of the surface normal onto the image

plane and a fixed coordinate axis in the plane. In our work, we directly infer the

surface normal from a single image taken under standard perspective projection.

Statistical procedures for estimating surface orientation often make strong

95
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assumptions on the regularity of texture. Witkin (1981) assumes observed edge

directions provide the necessary information, while Blostein and Ahuja (1989)

focus on circular texture elements with uniform intensity. Blake and Marinos

(1990) consider the bias of the orientation of line elements isotropically ori-

ented on a plane in 3D space, along with a computational approach related to

Kanatani’s texture moments
[
Kanatani (1989)

]
. The bias is here defined as the

error induced by the orientation of the plane under orthographic projection. An

orthographic projection, also known as orthogonal projection, is the mapping of

a 3D object onto a plane in 2D space such that all projection rays are orthogonal

to the projection plane.

Malik and Rosenholtz (1997) locally estimate texture distortion in terms of

an affine transformation of adjacent image patches. The strong homogeneity

assumption underlying this approach has been relaxed by Clerc and Mallat

(2002), to a condition that is difficult to verify in practice. Forsyth (2006)

eliminates assumptions on the non-local structure of textures, e.g. on perfect

homogeneity, altogether and aims to estimate shape from the deformation of

individual texture elements. Loh and Hartley (2005) criticize prior work due

to the restrictive constraints related to homogeneity, isotropy, stationarity or

orthographic projection, and claim to devise a shape-from-texture approach

in the most general form. Their work, however, also relies on estimating the

deformation of single texture elements, similar to Forsyth (2006).

We propose a general framework for inferring shape from near-regular texture

by applying the locally scaled point process model of Hahn et al. (2003). Texture

is termed near-regular if all texture elements are of identical or similar shape

and spatially arranged in a clear and consistent manner. According to Liu et al.

(2009, ch. 4), near-regularity can be regarded as strongly related to approximate

symmetry.

Our approach briefly sketched in Fig. 6.1 enables the simultaneous repre-

sentation of local variability and global regularity in the spatial arrangement of

texture elements which are thought of as a marked point process. We preprocess

the image [1.] to obtain a probability map [2.] representing an unnormalized

intensity estimate for the underlying point process. Subsequently, we infer the

point locations [3.] and learn the parameters of a locally scaled point process

model [4.] to obtain a compact description of the 3D image attributes [5.].

As our main goal is not the detection of individual texture elements but

the extraction of 3D information, we omit the exact modeling of each single

texture element. Thus, our sole assumption regarding texture element shape is

approximate convexity which offers considerable flexibility.

We start from the definition of a plane Π in 3D as

Π = {X ∈ R3 : 〈δ,X〉+ d = 0} , (6.1)

with ‖δ‖ = 1, which corresponds to a rewriting of Eq. (3.20). That is, d denotes
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1. Original image

2. Probability map 3. Point assignment 4. Point process realization

5. 3D orientation

Figure 6.1: Sketch of the sequence of operations proposed for inferring shape from

texture via a locally scaled point process.

the distance between Π and the origin. We assume the unknown unit normal

δ to be oriented from Π towards the camera, forming obtuse angles 〈δ,X〉 < 0

with projection rays λ ~X = λX , λ ∈ R+. Following the notational principles

introduced in Chapter 3, we let X = (X1,X2,X3)> stand for the world and

x = (x1, x2)> for the image coordinates. The image domain is denoted by

W ⊂ R2, and we assume the image to be scaled to have fixed area, ν2(W ) = a,

where ν2(·) is the 2D volume measure explained in Section 4.1.

We consider the basic pinhole camera
[
Hartley and Zisserman (2000, ch. 6)

]
,

and among the internal parameters, we only look at the focal length f > 0

which depends on the field of view. Fig. 6.2 illustrates our camera model. We

also refer to Fig. 3.1. Following Eq. 3.1, we identify image points and rays of

the projective plane P2 through the homogeneous coordinates

x̃ = (x1, x2,−f)> . (6.2)
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Figure 6.2: 3D camera model relative to the coordinate axes Xa1, Xa2, and Xa3. The

camera with focal length f is oriented towards the negative X3-halfspace.

The scaled visible image domain is W = [−a
2
, a

2
] × [− 1

2
, 1

2
]. Given the

field of view in terms of an angle ρc, we have f = a/2

tan(ρc/2)
.

An image point x̃ given by Eq. (6.2) meets Π in λx̃ with

λ = − d

〈δ, x̃〉
, λ > 0 . (6.3)

It follows that a point X in Π is related to the image point x̃ through

X = X (x1, x2) = − d

〈δ, x̃〉
x̃ . (6.4)

A homogeneous texture covering Π induces an inhomogeneous texture on the

2D image plane W , with density given by the surface element

∂X =
∥∥∥∂X
∂x1

× ∂X
∂x2

∥∥∥ ν2(dx)

= − d2 f

〈δ, x̃〉3
ν2(dx) . (6.5)

Taking, for instance, the fronto-parallel plane defined through δ = (0, 0, 1)>

results by Eq. (6.2) merely in the constant scale factor (d/f)2, that is, in the

homogeneous density (d/f)2 ν2(dx). However, for arbitrary orientation δ, this

factor depends on x = (x1, x2)>. Eq. (6.5) then quantifies perspective foreshort-

ening and inhomogeneity of the texture, respectively, as illustrated in Fig. 6.3.

Therefore, Eq. (6.5) mathematically represents the visually apparent texture

gradient .

In addition to the preliminary background on camera projection provided in

Section 3.1, Eq. (6.1) – Eq. (6.5) and Fig. 6.1 – 6.2 introduce the notational and

technical principles our shape-from-texture modeling framework is based on.

In the following sections, we approach the problem of how to transform a

probability map generated based on DoG filtering and distance transforming



6.1 Motivation 99

(a) δ = ( 1√
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Figure 6.3: Mappings of regular homogeneous point patterns in 3D space onto a

2D plane W = [− 1
2
, 1

2
] × [− 1

2
, 1

2
]. The simulations are based on the

parameters d = 20 and ρc = 54◦ (f = 0.98).

techniques (cf. Section 3.2) into an estimate of its underlying latent point process

from which we extract geometric information on the orientation of the camera

towards the 3D scene. As possible solutions, we provide two modeling concepts

differing in their complexity, step sequences and emphases (see Section 6.2 and

Section 6.3 – 6.4).

The first algorithm is based on a Gibbs modeling approach comprehending

one first-order term and two terms of interaction (see Section 6.2). We initially

assume that the texture arrangement, and thus the latent Gibbs process, follows

exponential scaling constraints. The probability map is treated as a covariate.

A straightforward grid-based optimization routine returns both a point process

realization and the estimates of the unknown model parameters. Afterwards,

the exponential scaling parameters are related to a spherical coordinate repre-

sentation determining the orientation of the camera towards the 3D scene.

Our second inference concept provides a more flexible and sophisticated ap-

proach to the estimation of shape from texture
[
see also Didden et al. (2013)

]
.

It starts with two alternative algorithms to detect the latent points in a model-

free manner (see Section 6.3). To analyze the resulting pattern, an inhomoge-

neous Strauss process density is taked as a basis, where the inhomogeneity is

directly induced by a scaling of perspective through spherical coordinates (see

Section 6.4). We here estimate the scaling parameters via a maximum composite

likelihood routine.

The second approach can be seen as an advancement of the first procedure in

that it immediately estimates spherical coordinates describing the direction of

the textured 3D plane relative to the camera. However, it does not include the

estimation of exponential scaling parameters and requires the implementation

of separate algorithms for the point assignment (cf. Section 6.3) and for for the
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estimation of the model parameters (cf. Section 6.4). Which method to apply

therefore depends on the overall goal of the analysis.

6.2 Intuitive Preliminary Framework

As outlined above, we regard texture as a realization of a latent spatial point

process where each point represents the symmetry center of exactly one near-

regular texture element. Due to our principal notation, we let X denote the

point process, x = {x1, . . . , xn} one of its realizations and W ⊂ R2 the observa-

tion window. For clarity of exposition, we assume W to be bounded and scaled

such that W = [0, a]× [0, 1].

We consider a finite Gibbs model with an unknown number of points and a

set of parameters θ, as defined in Eq. (2.13). Including the previously computed

probability map Z as a covariate in the model equation (cf. Section 3.2), the

Gibbs density takes the form

f(x|θ, Z) = Z(θ, Z)−1 exp
{
− U(x|θ, Z)

}
. (6.6)

U(·|θ, Z) corresponds to the total Gibbs energy associated with the point pat-

tern x. As discussed in Section 2.3, the normalizing constant of a Gibbs model,

here represented by Z(·)−1, is usually intractable (cf. Eq. (2.10)) and hence

requires the set-up of either Monte Carlo sampling or approximate inference al-

gorithms
[
see e.g. Møller and Waagepetersen (2003, ch. 7 – 9 )

]
. Such methods

tend to be difficult to implement in practice.

In our setting, the process x is a latent variable, that is, both x and the

parameter vector θ in Eq. (6.6) are unknown. The goal of the analysis is to

obtain the most likely pattern under the probability map Z, such that the

points are at least a distance R > 0 apart and with no two points inside the

same texture element. Mathematically expressed, we therefore define U(·|θ, Z)

as

U(x|θ, Z) := −
∑
u∈x

φ1(u|Z)︸ ︷︷ ︸
:=Z(u)

+

6=∑
{u,v}⊆x

φ2

(
{u, v}|Z,m1

)
+

6=∑
{u,v}⊆x

φ3

(
{u, v}|θ

)
.

(6.7)

Here, Z(u) denotes the value of the probability map Z at location u ∈ W , and

φ2(·|Z,m1) and φ3(·|θ) are non-negative functions that model the interactions

between all pairs of distinct points, {u, v} ⊂ W .

The interaction function φ2(·|Z,m1) assigns zero density to point patterns

with two points inside the same texture element. As stressed in Section 6.1,

we assume that all elements are approximately convex in shape. We define two

points u ∈ x and v ∈ x to lie inside the same texture element if the probability
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map takes solely high values on the entire line [u, v] between the two points.

That is,

φ2

(
{u, v}|Z,m1

)
=

 0, if min
w∈[u,v]

Z(w) ≥ min{Z(u),Z(v)}
m1

,

∞, otherwise,
(6.8)

for some positive constant m1 > 1 which is assumed fixed. The second interac-

tion function φ3(·|θ) ensures that a hardcore rule is not violated with

φ3

(
{u, v}|θ

)
=

{
0, if ν1

c

(
[u, v]

)
≤ R ,

∞, otherwise .
(6.9)

In conformity with the previous chapters, R > 0 denotes the interaction radius

or range, and ν1
c (·) measures the locally scaled (Euclidean) distance between

any two points in x.

In Section 4.1 – 4.2, we have described by means of Eq. (4.1) and Eq. (4.8)

how to determine an inhomogeneous distance function according to Hahn et al.

(2003) and Prokešová et al. (2006). We recall that the authors propose to induce

inhomogeneity through a normalized exponential scaling function cη(·) which

is formally presented in Eq. (4.9), along with some theoretical and technical

explanations. Here, we assume that each point u ∈ x associated with a texture

element is exponentially scaled through

cη(u) = α(η) exp(η>u) ,

where α(·) is the normalizing constant and η = (η1, η2)> ∈ R2, according to

our previous definitions. The Gibbs model in Eq. (6.6) thus has a total of three

unknown parameters θ = {R, η1, η2}. Concerning the form of α(·), we refer to

Eq. (4.10) in Section 4.2. Since we consider an observation window of dimension

W = [0, a]× [0, 1], it follows that

α(η) =
1√
a

(1− exp{−2aη1}
2η1

) 1
2
(exp{1− exp{−2η2}

2η2

) 1
2
,

for η ≥ 0 and 0
0

:= 1. As also discussed in Section 4.2, the resulting scaled

pairwise distances are of the form

ν1
c

(
[u, v]

)
= ν1

(
[u, v]

) cη(u)−1 − cη(v)−1

η>(v − u)
,

for any subset of points, {u, v} ⊂ W . Exponential scaling effects of different

strength and orientation are visualized in Fig. 6.4 as well as earlier in Fig. 4.2.

In our setting, both the point process x and the parameters θ = {R, η1, η2}
are unknown. To simultaneously infer the most likely point pattern x̂ and the

associated parameters θ̂ for a given probability map Z, we apply the approxi-

mate grid-based optimization loop in Alg. 6.1. The thresholds m1 (cf. Eq. (6.8))
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(a) η = (−1, 0)> (b) η = (−1,−1)>

Figure 6.4: Examples of distances from the point (0, 0)> in an observation window

W = [− 1
2
, 1

2
] × [− 1

2
, 1

2
] under exponential scaling assumptions due to

Eq. (4.9). Darker shades of gray indicate smaller distances.

and m2 have to be set by hand, as discussed below. The same holds for the

search grids.

Alg. 6.1 returns a valid pair {x̂, θ̂} in the sense that f(x̂|θ̂, Z) > 0, while it is

not guaranteed that it finds the global optimum. In particular, different results

may be obtained due to the user-defined search grids and threshold values.

Therefore, we execute the algorithm under several initial conditions and choose

the pair {x̂, θ̂} for which the total energy U in Eq. (6.7) is minimized. Since

Alg. 6.1 has been developed under the consideration of a high packing density

of the point pattern, the estimate R̂ for the interaction parameter is expected

to be close to the minimum inter-points distance of the configuration x̂. This

assumes that the texture elements are fairly densely packed in the plane.

To explain the next stage of the proposed modeling procedure, we refer to the

introductory definitions given at the end of Section 6.1. Eq. (6.5) shows how

to relate the density of an inhomogeneous texture on a 2D image plane to the

homogeneous texture covering the original 3D plane Π. This density, defined

through the surface element

∂X = − d2 f

〈δ, x̃〉3
ν2(dx) ,

can be connected to the inhomogeneous intensity cη(·)−2 determined by the

exponential scaling function in Eq. (4.9). For this, we first extend ∂X itself

to a proper scaling function (cf. Section 4.2). Referring to the area-preserving

method suggested by Prokešová et al. (2006, see also Eq. (4.7)), we yield the

normalization constant α(·) by solving

|W | = a =

∫
W

α(δ, d, f)−2 ∂X ,
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Algorithm 6.1: Optimization algorithm to infer a point process realiza-

tion and its parameters from a probability map.

Data: Image matrix Z(·), observation window W , threshold values m1

and m2

Result: Point process estimate x̂, parameter estimates R̂ and η̂

Initialize R̂ = R̂(0), such that R̂(0) is small;

Initialize η̂ = η̂(0) = (η̂
(0)
1 , η̂

(0)
2 )>, such that η̂

(0)
1 + η̂

(0)
2 is high;

Initialize x̂ = ∅ and set Z∗ = Z;

while max
w∈W

{
Z∗(w)

}
> m2 do

update x̂ =
{
x̂ ∪ {x}

}
, where x = argmax

w∈W

{
Z∗(w)

}
;

for w ∈ W do

if ν1
c ([w, x] ≤ R̂) then

set Z∗(w) = 0;

end

end

if ∃ {u, v} ⊆ x̂ : φ2({u, v}|Z,m1) =∞ then

if η̂1 = η̂2 = 0 then

increase R̂;

reset η̂ = η̂(0);

end

else

decrease η̂;

end

reset x̂ = ∅ and Z∗ = Z;

end

end

which results in

α(δ, d, f)−2 =
(aδ1−2fδ3−δ2)(aδ1−2fδ3+δ2)(aδ1+2fδ3−δ2)(aδ1+2fδ3+δ2)

16d2f 2δ3

.

(6.10)

As a byproduct, the unknown plane parameter d cancels. This parameter sets

the absolute scale and cannot be inferred from a single image. Thus, given the

focal length f , it remains to estimate the orientation δ. To this end, we choose
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spherical coordinates

δ = δ(ρ1, ρ2) = (sin ρ1 cos ρ2, sin ρ1 sin ρ2, cos ρ1)>, ρ1 ∈ [0, π∗], ρ2 ∈ [0, 2π] ,

(6.11)

with restriction of the range of ρ1 through π∗ due to the last condition in

Eq. (6.1). We numerically solve the problem

(ρ̂1, ρ̂2)> = min
0≤ρ1≤π∗
0≤ρ2≤2π

S(ρ1, ρ2) , (6.12)

where S(ρ1, ρ2) =
∑
x∗∈x∗

(
1

cη̂(x∗)2
− d2 f

α
(
δ(ρ1, ρ2), d, f

)2 ∣∣〈δ(ρ1, ρ2), x̃∗〉
∣∣3
)2

.

Here, x∗ ⊂ W denotes a set of regularly sampled reference points on the visible

image domain W , which in turn determines by Eq. (6.2) the set x̃∗ of homoge-

neous coordinates x̃∗ = (x∗1, x
∗
2,−f)>.

We apply our entire framework to a (960 × 1280)-image of a brick wall.

Fig. 6.5 (a) – (b) shows the selected scene and the associated probability map

computed as discussed in Section 3.2. Based on Alg. 6.1, we determine the un-

derlying latent point process and illustrate one of its realizations in Fig. 6.5 (c).

We assume that R ≥ 0.05 and that η ∈
(
[0, 2], [0, 2]

)>. Our search starts on

a rough grid which is iteratively refined. To decrease η due to the instructions

in Alg. 6.1, we gradually decrease η1 + η2. The constants m1 and m2 are both

set to 4. Results appear to be marginally impacted by alternative choices of

the initial settings. Therefore, we execute our algorithm 25 times and select the

output with the smallest energy due to Eq. (6.7).

(a) Original image (b) Probability map (c) Point assignment

Figure 6.5: Learning a point process realization from the image of a brick wall by

means of Section 3.2 and Alg. 6.1. The 2D brick arrangement appears

to be exponentially scaled in both x- and y-direction. The according

parameter estimates are R̂ = 0.088 and η̂ = (0.80, 0.09)>.

Based on the estimate η̂ and Eq. (6.10) – Eq. (6.12), we illustrate the process

of determining the orientation δ̂ for the brick wall scenario shown in Fig. 6.5 (a).

The only assumption made is a standard wide-angle value, ρc = 54◦, determining

the field of view (cf. Fig. 6.2, caption). Fig. 6.6 shows that the parametrization
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of our exponential scaling function fits quite well to the geometric counterpart

emerging from Eq. (6.5). Fig. 6.7, finally, indicates that the optimization prob-

lem in Eq. (6.12) is remarkably well-behaved despite non-convexity. We refer to

the figure captions for further details and discussion.

(a) cη̂(x)−2 (b)
d2 f

α
(
δ(ρ1,ρ2),d,f

)2 ∣∣〈δ(ρ1,ρ2),x̃〉
∣∣3 (c)

(
(a)− (b)

)2

Figure 6.6: Model validation I: First term (a), second term (b), and the squared

residual (c) under the sum of the nonlinear least-squares problem in

Eq. (6.12) as functions of x ∈ W , evaluated for the numerically deter-

mined minimizer (ρ̂1, ρ̂2)>. The maximal residual value of 0.1 indicates

reasonable accuracy.

The question comes up whether we can directly incorporate geometric scaling

constraints into a point process modeling framework, without taking the inter-

mediate step of estimating the parameters of an exponential scaling function. In

what follows, we propose to infer shape from texture via a locally scaled Strauss

model, where the inhomogeneity is imposed through a specifically developed

perspective scaling function . This inference framework, introduced by Didden

et al. (2013), requires the latent points to be localized in the image plane be-

forehand. Therefore, the following section is devoted to the introduction of two

algorithmic strategies to learn a point pattern from a probability map computed

according to Section 3.2.

6.3 Estimation of the Latent Point Process

In contrast to the shape-from-texture approach introduced above, we now esti-

mate the latent point process realization in a model-free manner. Again, we first

apply an image preprocessing strategy according to what has been sketched in

Section 3.2, so that we obtain a probability map Z = {Z(w) : w ∈ W (0) , 0 ≤
Z(w) ≤ 1}. Z(·) represents the spatial arrangement of the texture elements on

the original image plane which we here denote by W (0), and which is assumed

to be rectangular. Recalling that the value of the probability map in w ∈ W (0),

Z(w), indicates how likely it is that w = (w1, w2)> is the symmetry center of



106 Shape from Texture using Locally Scaled Point Processes

(a) S(ρ1, ρ2) (b) δ̂ = δ(ρ̂1, ρ̂2)

Figure 6.7: Model validation II and estimation of δ: (a) Level lines of the objective

S(ρ1, ρ2) (cf. Eq. (6.12)) within a relevant region of the parameter space.

The white region for values of ρ1 approaching π/2 (i.e. cos ρ1 → 0)

corresponds to large values of S. The plot reveals the non-convexity of

the objective S, but also the existence of a single minimizer (ρ̂1, ρ̂2) with

a large basin of attraction. There is a second minimizer (not shown)

corresponding to the sign reversal −δ̂ = −δ(ρ̂1, ρ̂2) that can be ignored

due to the last condition in Eq. (6.1). (b) The orientation δ̂ = δ(ρ̂1, ρ̂2)

finally inferred from the brick image shown in Fig. 6.5.

a texture element, we access the latent point process based on the information

in Z by searching for local maxima in Z. For this purpose, we provide two

different approaches, one that identifies the maxima in a rather locally focused

manner and another one that acts on the entire observation window.

The first procedure starts from the assumption of an unknown number of sym-

metry elements. Based on appropriately specified threshold values, it searches

locally for maxima in Z and then ensures that the maxima are delimited from

each other by boundary segments. The second approach requires the number of

points associated with the symmetry centers to be fixed in advance. Globally

oriented, it uses a weighted distance measure to localize one point after the other

in Z, and to estimate a Voronoi tessellation from the resulting point pattern.

Neighborhood-Based Point Detection

As stated right above, the algorithm introduced in this section starts with a local

search for maxima in Z. We therefore setWu := [u1−k1, u1+k1]×[u2−k1, u2+k1]

for all u ∈ W (0) and some k1 > 0, and compute

Φ :=
{
u ∈ W (0) : Wu ⊂ W (0), Z(u) = max

w∈Wu

{Z(w)}
}
. (6.13)
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We then define a neighborhood relation “∼” on Φ which says that u ∼ v if

min
w∈[u,v]

{
Z(w)

}
≥ k2 max

{
Z(u), Z(v)

}
, for {u, v} ⊆ Φ , (6.14)

where [u, v] denotes the line from u to v, and k2 is a constant with 0 < k2 < 1.

Φ can be rewritten as a union of n0 disjoint neighborhood components, Φ =⋃n0

i=1 Ci, such that each u ∈ Ci is a point with at least one neighboring point in{
Ci \{u}

}
. Under the assumption that the texture elements are close to convex

sets, two points u and v in Φ are neighbors if and only if they likely fall within

the same texture element. Hence, we estimate a realization of the latent point

process X0 in the observation window W (0) as

x̂0 :=
{
x1, . . . , xn0 : Z(xi) = max

u∈Ci
{Z(u)}

}
. (6.15)

To avoid boundary effects, we afterwards eliminate all elements of x̂0 that are

not located in W := [wl0 + k1, wr0 − k1] × [wb0 + k1, wt0 − k1], where wl0 , wr0 ,

wb0 and wt0 denote the left, right, bottom and top margins of W (0). We obtain

x̂ =
{
x : x ∈ {x̂0 ∩W}

}
. (6.16)

The entire step sequence proposed is summarized in Alg. 6.2, and Section 6.5

provides some illustrative examples (see e.g. Fig. 6.12 (ii)).

The next section introduces another similar algorithm (cf. Alg. 6.3) which

does not require any threshold values, but a predefined number of points.

Point Detection using Voronoi Tessellations

As before, we assume a probability map Z in an observation window W ⊂ R2,

and again, we let Z describe the image of a textured 3D scene in that Z(w) is the

probability of w ∈ W representing the symmetry center of a texture element.

Regarding the set of all symmetry centers as a realization x = {x1, ..., xn}
of a latent point process, where n is assumed to be known, we propose an

optimization procedure that estimates x and immediately transforms W into a

Voronoi tessellation comprising n Voronoi cells .

In general terms, conditional on a point pattern x = {x1, ..., xn} ⊂ W ,

a Voronoi tessellation on W corresponds to a partition of W into n cells,

{W1, ...,Wn}, such that

Wi :=
{
w ∈ W : ‖w − xi‖ ≤ ‖w − xj‖ , ∀j 6= i , xi ∈ x , xj ∈ x

}
. (6.17)

It follows that W =
{⋃n

i=1Wi

}
and that all cells are of convex shape. The

tessellation can be seen as a mapping w 7→ V (w), where V (w) ∈ {1, ..., n} is

the set of the cell labels. If V (w) = i, then xi ∈ x is the closest point to w,

and both xi and w lie in Wi. For more information on spatial tessellations and

Voronoi diagrams, see Okabe et al. (2009).
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Algorithm 6.2: Neighborhood-based point process estimation.

Data: Probability map Z(·), observation windows W (0) and W ⊆ W (0),

threshold values k1 and k2 (goes into “∼”)

Result: Point process estimate x̂

Set Wu := [u1 − k1, u1 + k1]× [u2 − k1, u2 + k1] , ∀u ∈ W (0);

Compute Φ :=
{
u ∈ W (0) : Wu ⊂ W (0), Z(u) = max

w∈Wu

{Z(w)}
}

;

Initialize n0 = 0;

Set i = 1;

while
{
u ⊆ Φ : n(u) > 1, ui ∼ uj, ∀i 6= j

}
6= ∅ do

take one Ci := {u ∈ u : u ⊆ Φ, n(u) > 1, uj ∼ uk, ∀j 6= k} from Φ;

set Φ =
{

Φ \ Ci
}

;

set n0 = n0 + 1;

set i = i+ 1;

end

Compute x̂0 :=
{
x1, . . . , xn0 : Z(xi) = max

u∈Ci
Z(u)

}
;

Return x̂ :=
{
x : x ∈ {x̂0 ∩W}

}
;

Alg. 6.3 alternates between the detection of new points in W and the re-

finement of the estimated Voronoi tessellation. Conditional on the pixel value

distribution in Z, it iteratively searches for the shortest weighted distance be-

tween each image coordinate and the set of already identified points. The pixel

associated with the longest minimum distance becomes a new member of the

point process estimate x̂, provided that less than n points have so far been

selected.

We propose to employ an asymmetrically weighted distance measure of the

form

δx
(
u,w|Z

)
:= ‖u− w‖ Z(w)

(
1− min

v∈[u,w]

{
Z(v)

})
, (6.18)

where u ∈ x and w ∈ {W \ x}. We recall that, due to our principal notation,

[u,w] is defined as the line segment connecting u with v. Since only Z(w) goes

into δx
(
u,w|Z

)
, but not Z(u), Eq. (6.18) measures pairwise distances in an

asymmetric manner.

The weighting factors in Eq. (6.18) depend on Z(w) as well as on the minimum

value Z(·) takes on [u,w]. As a consequence, the Voronoi tessellation obtained

conditional on the points in x̂ is driven by three measures, by the Euclidean
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Algorithm 6.3: Point process estimation and Voronoi tessellation.

Data: Probability map Z(·), observation window W , number of cells n

Result: Point process estimate x̂, Voronoi tessellation V̂ (·)

Set V (1)(w) = 1, ∀w ∈ W ;

Find x1 = argmaxw∈W{Z(w)} and set x(1) = {x1};

Set i = 2;

while i ≤ n do

find xi := argmax
w∈{W\x(i−1)}

{
min

u∈x(i−1)

{
δx
(
u,w|Z

) }}
;

set x(i) =
{
x(i−1) ∪ {xi}

}
;

set V (i) = V (i−1);

foreach w ∈ W do

if ‖w − xi‖ < ‖w − xV (i)(w)‖ then

V (i)(w) = i;

end

end

end

Return x̂ = x(n);

Return V̂ (·) = V (n)(·);

distances between all pairs of points which should be as high as possible, by

the probability values in x̂ which should also be as high as possible, and by

minw∈[xi,xj ]{Z(w)} which should be as small as possible for i 6= j, to ensure that

different Voronoi cells represent different symmetry elements.

Depending on the spatial gray value distribution in Z, a fine-tuning of the fac-

tors determining the distance measure δx(·|Z) in Eq. (6.18) may appear suitable.

For instance, we can use

δx
(
u, v|Z

)
:= ‖u− v‖ Z(v)l1

(
1− min

w∈[u,v]

{
Z(w)l2

})
,

where l1 > 0 and l2 ≥ 0.

Fig. 6.8 illustrates results obtained from an application of our Voronoi tessel-

lation method to a real-word data example. Since we currently exclusively deal

with images where the texture elements are clearly arranged and easy to count,

we have not yet established a mechanism that automatically fixes n.

Due to the fact that two different distance measures are considered for the

estimation of the latent point process and for the determination of the Voronoi



110 Shape from Texture using Locally Scaled Point Processes

(a) Probability map and es-

timated point process

(b) Smallest distances from

the estimated points

(c) Voronoi tessellation

Figure 6.8: Voronoi tessellation framework. (a) shows the given probability map

and an estimate of the associated latent point process, and (b) illustrates

the pixel-wise distance to the closest estimated point. Regarding each

point as the center of a Voronoi cell, the resulting Voronoi tessellation

is visualized in (c); darker cells indicate an earlier date of selection.

Boundary effects are not eliminated.

cells, Alg. 6.3 still leaves room for improvement. Furthermore, the question

arises how to tackle boundary effects. If the estimation of the latent point

process is of main interest, we suggest to first compute x̂ based on Alg. 6.3 and

to subsequently eliminate those components of x̂ that are part of the outermost

border of W . Edge effects in the Voronoi tessellation are more difficult to handle.

Within the scope of this project, we ignore these effects and refer to Kenkel et al.

(1989) for more detailed discussions.

Having localized the latent point pattern associated with the image of a tex-

tured plane in 3D space, the modeling framework presented in Section 6.4 de-

livers parameter estimates describing the orientation of the camera towards the

scene.

6.4 Model Construction and Inference

We recall that in Section 2.1, we have described a point process as a random

counting measure N(·), where N(B) is the number of events in a Borel subset B

of the relevant state space, in our context the image domainW . Due to Eq. (2.2),

the intensity measure of the point process is given by β(B) = E
(
N(B)

)
, and

the associated intensity function is

β(x) = lim
ν2(dx)→0

(
EN(dx)

)
ν2(dx)

.

For a homogeneous point process, it holds that β(x) = β for some β > 0, while

for an inhomogeneous point process where the inhomogeneity stems from local

scaling constraints according to Hahn et al. (2003), we obtain

β(x) = βcη(x)−2 .



6.4 Model Construction and Inference 111

As explained by means of Eq. (4.6) – Eq. (4.8), a spatial scaling function cη :

R2 → R+ acts as a local deformation in that it locally affects distances and

areas. Due to Prokešová et al. (2006) and Section 4.2, it is statistically proper

if it is identifiable, e.g. by virtue of the normalization in Eq. (4.7), and if it

ensures that the scaled pairwise point distances can be computed in an exact

manner, e.g. based on Eq. (4.8).

Referring to Eq. (6.5), the surface element ∂X = d2 f
〈δ,x̃〉3 ν

2(dx) describes the

density of a heterogeneous texture on a 2D image plane emerging from the

camera projection of a homogeneously textured plane in 3D space. We have

shown that ∂X can be extended to an identifiable scaling function via the area-

preserving normalization proposed by Prokešová et al. (cf. Eq. (6.10)). For

W = [wl, wr]× [wb, wt], we obtain

cδ(x) =
α(δ, d, f)

√∣∣〈δ, x̃〉∣∣3
d
√
f

, (6.19)

with

α(δ, d, f) = d

√
f

2

(
− (wl + wr)δ1 − (wb + wt)δ2 + fδ3

) 1
2

× (wlδ1 + wbδ2 − fδ3)−
1
2

× (wlδ1 + wtδ2 − fδ3)−
1
2 (6.20)

× (wrδ1 + wbδ2 − fδ3)−
1
2

× (wrδ1 + wtδ2 − fδ3)−
1
2 ,

and x̃ = (x1, x2,−f)> according to Eq. (6.2). As discussed earlier, a convenient

side effect of this formal definition is the canceling of the unknown plane pa-

rameter d. We call cδ(·) a perspective scaling function. In conformity with our

previous shape-from-texture approach, we have spherical coordinates

δ = δ(η1, η2) = (sin η1 cos η2, sin η1 sin η2, cos η1)> , (6.21)

with η1 ∈ [0, π∗] and η2 ∈ [0, 2π]. The upper limit π∗ restricting the range of the

scaling parameter η1 ensures that 〈δ, x̃〉 < 0 and therefore depends on the focal

length f as well as on the size and location of the observation window W . Apart

from a change in the notation, i.e. ρ1 7→ η1 and ρ2 7→ η2, this parameterization

corresponds exactly to the parameterization used in Section 6.2 (cf. Eq. (6.11)).

We intentionally replace ρ1 and ρ2 by η1 and η2 to put emphasis on the concept

of immediately incorporating angles as scaling effects η into the point process

model.

Under perspective scaling assumptions, the inhomogeneous intensity β(·) be-

comes

β(x) = β
d2 f

α
(
δ(η1, η2), d, f

)2 ∣∣〈δ(η1, η2), x̃〉
∣∣3 . (6.22)
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The perspective scaling function is computationally tractable and, as under the

exponential scaling constraints discussed in Section 4.2, the accordingly scaled

distance function is available in closed form,

ν1
c ([u, v]) = ν1([u, v])

1

α(δ, d, f
) ∣∣∣∣∣ 2d

√
f

〈δ, ũ− ṽ〉

(
1

〈δ,−ũ〉 1
2

− 1

〈δ, ṽ〉 1
2

)∣∣∣∣∣ ,
provided that 〈δ, ũ〉 < 0 and 〈δ, ṽ〉 < 0 is fulfilled for all pairs of distinct points,

{u, v} ⊂ W . This compact representation can easily be obtained by applying

the coarea formula from Eq. (4.8)
[
see also Krantz and Parks (2008, ch. 5)

]
.

Visual examples of scaled distances are given in Fig. 6.9. When compared

to Fig. 6.4, Fig. 6.9 clarifies that the perspective scaling constraints result in

similar distance transformations as the exponential scaling, while also providing

a coherent description of the perspective foreshortening.

(a) η = (45◦, 0◦)> (b) η = (30◦, 45◦)>

Figure 6.9: Examples of distances from the point (0, 0)> in W = [−1/2, 1/2] ×
[−1/2, 1/2] under a scaling of perspective due to Eq. (6.22). The in-

ternal parameters correspond to the settings in Fig. 6.3. Darker shades

of gray indicate smaller distances.

For a given image, we assume that the focal length f is known. It remains

to estimate the parameters β, η1 and η2 of the intensity function in Eq. (6.22)

based on the estimated point pattern x̂ (cf. Eq. (6.16)). The desired 3D image

information, the slant and the tilt of the surface, may then be characterized by

the scaling parameter estimates η̂1 and η̂2. We propose to perform the parameter

estimation by maximizing the composite likelihood given by Eq. (2.23)
[
Lindsay

(1988)
]
, which takes the form

LC(θ) = LC
(
β,η

)
= exp

{
− βν2(W )

}
βn
∏
x∈x̂

cη(x)−2 . (6.23)

The maximum composite likelihood estimate for β is β̂ = n
ν2(W )

. For the re-

maining two parameters which are the parameters of interest in our setting, we
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maximize

log
(
LC(η|β̂)

)
= n log

( n

ν2(W )
− 1
)

+
∑
x∈x̂

log
(
cη(x)−2

)
. (6.24)

Eq. (6.24) is equivalent to the profile composite log-likelihood, i.e. the logarithm

of the right-hand side of Eq. (6.23) with β replaced by its estimate β̂. The pro-

file (composite/pseudo) log-likelihood is defined as the logarithm of the (com-

posite/pseudo) likelihood of a subset of parameters θ(2) ⊂ θ, conditional on the

maximum likelihood estimates θ̂
(1)

of the remaining parameters θ(1) =
{
θ\θ(2)

}[
see also Murphy and Van der Vaart (2000)

]
. If x̂ is a realization of a Poisson

process, the estimates of β, η1 and η2 are identical with the maximum likelihood

estimates (cf. Section 2.5).

In applications to synthetic as well as real-world image data, we examine

the performance of the composite likelihood approach under perspective scaling

assumptions. We prefer this framework to the preliminarily introduced strategy

from Section 6.2, since it saves us the additional estimation of interaction and

exponential scaling parameters and the implementation of a computationally

more expensive grid-based algorithm. Concerning the generation of the point

process realizations, both Alg. 6.2 and Alg. 6.3 return almost identical results

(compare e.g. Fig. 6.8 (a) and Fig. 6.12 (b, middle)). Here, we use Alg. 6.2

without any objective reason. The most striking outcomes are described and

discussed in the following section.

6.5 Case Studies

First, we present the results of a simulation study. We analyze sets of 3D point

coordinates that have been sampled from either a perfectly regular pattern or

a homogeneous Poisson process and subsequently been projected onto the 2D

plane W = [−1/2, 1/2] × [−1/2, 1/2] (see Fig. 6.3 and Fig. 6.10). We estimate

the scaling parameters associated with the synthetic patterns by maximizing

the composite log-likelihood in Eq. (6.24). The true parameter values and the

corresponding estimates are given in Tab. 6.1. While the estimation procedure

is able to reconstruct the true values with a reasonable accuracy, the results are

slightly better for the regular than for the random patterns. These outcomes are

representative for several further such examples not shown here. We conclude

that our inference framework allows us to identify the scaling parameters of

the perspective scaling function irrespective of the second-order structure of the

point process. That is, for quantifying the scaling effects, a model not accounting

for interaction is sufficient even if the points are repulsive as in Fig. 6.3.

In what follows, we evaluate and discuss the point detection procedure pro-

posed in Eq. (6.13) – Eq. (6.16) prior to the estimation of the actual scaling
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(a) δ = ( 1√
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Figure 6.10: Simulated Poisson point patterns with 3D shape determined by the

outer normal in the subfigure captions. The internal parameters cor-

respond to the settings in Fig. 6.3.

Pattern type (η1, η2)> (η̂1, η̂2)>

Regular (45◦, 0◦)> (45.5◦, 0.0◦)>

Poisson (45◦, 0◦)> (46.2◦, 0.7◦)>

Regular (30◦, 45◦)> (29.9◦, 45.7◦)>

Poisson (30◦, 45◦)> (26.2◦, 45.5◦)>

Table 6.1: True angles and composite likelihood estimates of the surface normals of

the simulated point patterns in Fig. 6.3 and Fig. 6.10. Regular pattern

type refers to the images in Fig. 6.3 and Poisson type to the images in

Fig. 6.10.

parameters. To gain an impression of how concavity in the shapes of the tex-

ture elements biases the estimation of the point process and the model param-

eters, we generate images of size 1800 × 1800 pixels with varying proportions

and arrangements of non-convex shapes (see Fig. 6.11). The true scaling ef-

fects are η1 = 20◦ and η2 = 25◦, and the overall packing density is the same

in each image. Given the image in Fig. 6.11 (a) containing convex shapes only,

all texture elements are correctly detected if the threshold k1 determining the

width and height of the local neighborhoods takes a value between 65 and 75

pixels. For the scenes in Fig. 6.11 (b) – (e) which are partly covered by concave

shapes, k1 = 65 seems more appropriate than k1 = 75. Since all images are

binary, they may directly be interpreted as probability maps, and the threshold

k2 in Eq. (6.14) hence becomes irrelevant. To avoid boundary effects, we do not

consider the outer 75 pixels as potential point locations.

Fig. 6.11 shows the textured scenes and the estimated point process realiza-

tions for k1 = 65. The scaling parameters estimated from the point process
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(a)

(b) (c)

(d) (e)

Figure 6.11: Point process estimation in scenes with different amounts of non-convex

texture elements. The point detection via Alg. 6.2 is based on k1 = 65,

the focal length corresponds to f = 1.17 (ρc = 54◦), and the true angles

are η1 = 20◦ and η2 = 25◦.

realizations in Fig. 6.11 are illustrated in Tab. 6.2. We see that a grouping of

the non-convex shapes increases the point detection and modeling inaccuracy

in comparison to a random distribution of the non-convex among the convex

texture elements.

For the analysis of real natural scenes, we apply our methodological framework

to the set of tiling and brick images shown in Fig. 6.12. The given images are

of size 1280 × 960 pixels, but during the preprocessing, they are downsized to

1166× 846 pixels in order to eliminate boundary effects in the point detection.

To be precise, we cut off bounding boxes of width 115 pixels from the original

scenes, since we consider for the estimation of the latent point process X that

k1 ∈ {35, 45, ..., 105, 115}. For each value on this grid, we generate a point

process realization x̂ and subsequently estimate its scaling parameters, i.e. the

angles η1 and η2 determining the unit normal vector δ of the original plane in

3D space.
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# points (η̂1, η̂2)> concave shapes [%] arrangement

(a) 84 (20.32◦, 23.66◦)> 0 —

(b) 86 (19.21◦, 31.00◦)> 20 random

(c) 85 (13.66◦, 20.89◦)> 33 random

(d) 86 (16.34◦, 39.20◦)> 33 one cluster

(e) 79 (14.31◦, 38.36◦)> 33 four clusters

Table 6.2: Composite likelihood estimates of the surface normals of the simulated

point patterns in Fig. 6.11. Random means that the concave elements

are randomly distributed among the convex elements, whereas in a clus-

tered arrangement, the concave shapes appear in groups. The number of

texture elements in the visible image planes is equal to 89, and the true

scaling parameters are η1 = 20◦ and η2 = 25◦.

The point detection is very robust in the selection of the threshold value

k2. Threshold values from 0.15 to 0.5 have limited effects on the results which

are somewhat more sensitive to changes in the neighborhood size k1. For the

tiling images, neighborhood dimensions from 55× 55 to 95× 95 pixels result in

similar point patterns and hence in similar scaling parameter estimates, while

for the bricks image, slightly smaller neighborhoods seem to be needed. The

estimated components of δ are graphically evaluated by means of Fig. 6.13. For

the first tiling image in (a) and especially for the brick scene in (c), we obtain a

considerable k1-dependent variation in the estimates of δ, particularly in δ̂1 and

δ̂2. Regarding the analysis of the second tiling scene in (b), the specification of

k1 has a lower impact.

We afterwards test our modeling assumptions by means of log-likelihood ra-

tios. That is, for each value specified for k1 and the resulting parameter esti-

mates β̂ and η̂, we sample 100.000 point process realizations from the respective

locally scaled Poisson model, e.g. by following the step sequence in Alg. 2.4.

We then calculate the ratios between the log-likelihood computed for the point-

texture assignment and the log-likelihoods of the simulated point data. This is

statistically valid, since the composite likelihood of a Strauss process formally

corresponds to the density of an inhomogeneous Poisson process (cf. Eq. 2.23

and discussions).

Fig. 6.14 (i) shows that most of the obtained results are smaller than one. Al-

though the observation window has already been downsized in the preprocessing

stage, an additional reduction of its width makes the ratios take values close to

one (see Fig. 6.14 (ii)). We therefore conclude that the boundary regions of

the given images are still susceptible to inconsistencies in the point assignment,

which may be due effects of light and shadow on the gray-value distributions.

...
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(a) Tiling A

(b) Tiling B

(c) Bricks

Figure 6.12: Estimation of shape from texture: Original natural scene (left), a re-

alization of the latent point process plotted on top of the associated

probability map (middle), and the estimated 3D surface orientation

towards the camera (right). The point detection via Alg. 6.2 is based

on k1 = 75 in (a) – (b) and k1 = 55 in (c), and the field of view is

assumed to be driven by a standard wide angle setting, i.e. ρc = 54◦.

Based on the number of correctly detected points which we here count manu-

ally, we decide for neighborhoods of size 75× 75 pixels for the tiling scenes and

55 × 55 pixels for the bricks scene, with a threshold of k2 = 0.25 in all cases.

The probability maps and the resulting point patterns are shown in the middle

column of Fig. 6.12.
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(a) Tiling A (b) Tiling B (c) Bricks

Figure 6.13: Estimation of the unit normal δ with respect to different values of the

neighborhood size k1.

(a) Tiling A (b) Tiling B (c) Bricks

(i) |W | = 1066× 846 (pixels)

(a) Tiling A (b) Tiling B (c) Bricks

(ii) |W | = 846× 846 (pixels)

Figure 6.14: Log-likelihood ratios with respect to different values of k1. The numera-

tor is defined as the log-likelihood of the estimated point configuration,

whereas the denominator contains the log-likelihood of a simulated ref-

erence point process. In total, 100.000 reference patterns are considered

per value of k1.
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For deriving information on camera positioning and angle from the esti-

mated point configurations, we project the points onto observation windows

W := [−0.69, 0.69] × [−0.50, 0.50]. We further assume that the field of

view corresponds to a standard wide angle setting of ρc = 54◦ and hence take

f = 0.69
tan(ρc/2)

= 1.35 as a basis, the same settings as in the simulation examples

above. The resulting scaling parameter estimates are listed in Table 6.3, and

the 3D orientation of the camera towards the textures is illustrated in the right

column of Fig. 6.12.

Texture (η̂1, η̂2)>

(a) Tiling A (22.1◦, 94.7◦)>

(b) Tiling B (12.2◦, 66.7◦)>

(c) Bricks (36.0◦, 44.1◦)>

Table 6.3: Estimated perspective scaling effects for the natural scenes in Fig. 6.12.

6.6 Outlook

Building on the recently developed locally scaled point processes
[
Hahn et al.

(2003)
]
, Chapter 6 introduces a framework for inferring 3D information from the

2D image of a textured scene. The modeling concepts discussed in Section 6.2 –

6.4 are quite flexible regarding assumptions on the texture composition in that

they only require the texture elements to be close to convex in shape. Useful

information related to suface orientation can thus successfully be extracted from

a suitable probability map representation of the image. The pragmatic inference

procedures allow to quickly determine a realization of the latent point process

and to assess its scaling effects in a logically consistent manner.

The newly suggested scaling function in Eq. (6.19) – Eq. (6.20) quantifies

perspective foreshortening and the resulting inhomogeneity of the texture. It is

statistically proper in the sense that it is well-defined and that it allows for an

exact calculation of locally scaled distance and volume measures.

The separation of image preprocessing on the one hand, and point detection

and parameter estimation on the other hand offers great flexibility. We believe

that the locally scaled point process framework can be applied in more general

settings to analyze point patterns in images, for instance, as a new additional

inference step in the texture detection algorithms discussed by Lafarge et al.

(2010). Due to the low computational budget of our approaches, it also seems

feasible to combine them with image segmentation where 3D information is

needed for several segments within an image, each of which may be covered

with a different type of texture.
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There are further considerable avenues for development. One area for future

advancement is to build a large hierarchical framework on our current inference

steps, so that the image preprocessing, the point detection, and the parameter

estimation are joined in an iterative fashion. Besides increasing compactness,

such a coupling of the preprocessing and estimation stages may enhance process

reliability. A fully Bayesian inference procedure along the lines of the Gibbs

modeling strategy by Rajala and Penttinen (2012) appears to be a reasonable

alternative to our frequentist approach. Finally, an extension of our framework

to estimating smooth non-planar surfaces is conceivable, based on locally esti-

mating the orientation of tangent planes. We sum up that plenty of room is left

for embellishing our current inference concept.

Point process models have previously been used in image analysis applica-

tions where the goal is the detection of texture elements
[
see e.g. Lafarge et al.

(2010)
]
. The respective approaches usually apply a marked point process frame-

work, with marks describing the texture elements. Such set-ups rely on a good

geometric description of individual texture elements, limiting the class of feasi-

ble textures. The next chapter deals with marked point process approaches to

the analysis of textured 3D scenes. In particular, we provide a sketch of how a

Bayesian marked point process model may be applied to estimate shape from

texture (see Section 7.3).



7 Analysis of Textured 3D Scenes

using Marked Point Processes

Texture learning and texture synthesis, the process of algorithmically construct-

ing a large digital image from a smaller image sample, are two important tasks

in computer vision. An integrated part of these procedures is the learning and

modeling of three dimensional (3D) geometric attributes associated with a two

dimensional (2D) textured image with depth effect. We apply a spatial statistics

approach to this problem and develop a Bayesian marked point process model

to extract structural and geometric attributes from such images. For this, we

regard a textured scene as a realization of a marked point process, where the

marks correspond to distinctive patches of texture appropriately scaled and ro-

tated. Based on adequate data and prior distributional assumptions, posterior

realizations of the marked point process are drawn by using a Gibbs sampler

with an incorporated birth-death-move Metropolis Hastings (M-H) step. Our

model set-up is particularly suitable for applications to 3D scenes with near-

regular textures, such as brick walls (cf. Fig. 7.9).

This chapter starts with the discussion of related projects, particularly stress-

ing the marked point process concept by Lafarge et al. (2010), which is presented

in detail in Section 7.2. Orienting our research towards that methodological

framework, we have developed a general strategy of how to estimate shape from

texture via a marked point process approach. We introduce this framework in

Section 7.3, discuss some first results in Section 7.4, and give an outlook on

possible follow-ups in Section 7.5.

7.1 Motivation

In the past decades, marked point process models have frequently been used

to analyze images of textured scenes. Descombes and Zerubia (2008), for in-

stance, have developed a marked point process approach that allows to extract

and describe the outline of rectangular buildings in dense urban areas. A simi-

lar framework has been suggested by Tournaire et al. (1965) for modeling road

markings with a special focus on the dashed lines. Lacoste et al. (2005) model

a more general class of line networks in remotely sensed images via a marked

point process approach. This class includes, among other things, hydrographic

networks. Medical data samples have been analyzed by Sun et al. (2007). The

authors propose a two-steps modeling scheme which automatically detects vas-

cular trees on angiograms. To detect and count pink flamingos, the so-called

121
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Phoenicoptera Rosea, in aerial photographs of their colonies, Descamps et al.

(2008) employ a multiple birth-death process. A similar problem has been tack-

led by Perrin et al. (2005) who propose a method for estimating the packing

density of trees based on aerial images of the tree crowns.

For the purpose of analyzing crowds of people, Ge and Collins (2010) present

a Bayesian marked point process model that allows to count individuals in noisy

scenes. The authors regard the human shapes as similar in that they are describ-

able as geometric transformations of each other. In contrast to Ge and Collins

(2010), Lafarge et al. (2010) present a marked point process approach that is not

only capable of counting geometric objects, but also allows to extract structures

of interest from the given scene or to replace texture by a spatial arrangement of

geometric template objects. Lafarge et al. take a codebook of areal and linear

descriptors, including line objects, rectangular shapes and circles, as a basis to

geometrically describe the textured 3D scene. Via a sophisticated Gibbs mod-

eling approach, the authors localize these descriptors in the given image, which

allows them to count objects of similar structure, to extract line networks and

buildings from aerial photographs, or to represent texture elements by simpler

geometric shapes. The following section is concerned with a detailed sketch of

the modeling approach by Lafarge et al..

7.2 Geometric Feature Extraction

As stated above, Lafarge et al. (2010) present a flexible and widely applicable

marked point process approach that tackles different questions associated with

the geometric analysis of textured scenes. This general framework often proves

to be less precise than other more specific techniques, such as those referred to

in Section 7.1. Its versatileness, however, turns out to be a great advantage.

In what follows, we sketch the marked point process procedure proposed by

Lafarge et al. (2010). We first explain the authors’ definition of a mark, then

continue with the description of their Gibbs modeling framework, and briefly

discuss the proposed optimization approach in the end of this section.

Marks

We recall that in Chapter 2, we have denoted a spatial marked point process in

a product space A = (W ×M) as

Y =
{

(X,mX) : X ∈X, mX ∈M
}
,

where X is the unmarked point process in W ⊂ R2, and each element X ∈ X
is assigned with a mark mX from the mark space M .

For modeling textured scenes in an efficient and flexible manner, Lafarge et al.

suggest a marked point process approach, where the marks are taken from a
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mark library containing the seven geometric structures shown in Fig. 7.1. The

corresponding parameter domains are given in the figure caption. Consequently,

the entire mark space M can be decomposed into a union of seven subsets,

M =
7⋃
q=1

Mq , (7.1)

which vary in the type and number of their parameters. Point processes with

such a decomposable mark domain are commonly termed multi-marked (see also

Fig. 2.1 (c) in Section 2). The geometrical features in Fig. 7.1 can be assigned

to two classes, the class of the linear descriptors comprising the line objects

in (a), and the class of the areal descriptors represented by the circular and

rectangular shapes in (b) – (c).

(a) Line objects (b) Rectangular shapes (c) Circle

Figure 7.1: Finite library of geometric marks. With regard to the linear structures in

(a), definition domains of the form [θmin, θmax]× [0, π] are used for lines

and line segments, whereas [θmin, θmax] × [0, 2π] is considered for line

ends. Concerning the shapes in (b), rectangles and bands are defined on

[θmin
1 , θmax

1 ]× [θmin
2 , θmax

2 ]× [0, π], while the parameter domain of a band

end conforms to [θmin
1 , θmax

1 ] × [θmin
2 , θmax

2 ] × [0, 2π]. For circles (c), the

parameter range is given by [θmin
r , θmax

r ].

Lafarge et al. characterize the texture elements by compositions of overlap-

ping or directly adjacent shapes taken from the mark library as well as by their

positioning in the image. As mentioned above, the object positions are seen as

realization x of an unmarked point process X. In what follows, we explain the

Gibbs point process framework developed by the authors for modeling such a

multi-marked setting.

Model

Lafarge et al. (2010) propose a Gibbs model due to Eq. (2.14) for the reason that

it allows to approach object dependencies in a flexible manner. Consequently,
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important interaction structures can be accounted for, while the less relevant

ones may be eliminated based on appropriately formulated restrictions. We

recall that the Gibbs modeling framework proposed in Section 6.4 has been

motivated by exactly the same technical and practical considerations.

In their work, Lafarge et al. proceed from the assumption that the number

of objects is unknown, which means that the marked point process associated

with the object configuration in the image consists of a random number of

components. Similarly to the decomposition of the mark space M into the

subspaces Mq where q ∈ {1, .., 7} (cf. Eq. (7.1)), the authors subdivide the

domain of the marked point process Y (cf. Eq. (2.4)),

OY =
{
y = {(x,mx) : x ∈ x, mx ∈M} ⊆ A : n(xB) <∞, ∀ B ⊆ W

}
,

into a union of sub-domains O
(k)
Y , k ∈ N. Each sub-domain supports a fixed

amount of geometric objects, that is, a fixed number of linear, rectangular and

circular shapes (cf. Fig. 7.1). The probability distribution on the entire domain

OY is therefore transformed into a mixture of the distributions on O
(k)
Y , each

assigned with a Gibbs density of the form

f (k)(y) ∝ exp
{
− U (k)(y)

}
= exp

{
− U (k)

C (y)− U (k)
R (y)

}
, (7.2)

where y is a marked point process realization and θ the set of model param-

eters. U (k)(·) is the total Gibbs energy as explained in Section 2.3 by means

of Eq. (2.13). It is defined by Lafarge et al. as the sum of a so-called data

coherence term and a regularization constraint.

The data coherence term sums up the local energy measures associated with

the marked points in y. We thus have

U
(k)
C (y) =

∑
y∈y

u
(k)
C (y|θ) .

To ensure that u
(k)
C (·|θ) is appropriately specified, that is, to ensure that it re-

flects the coherence between y and the given image data in a satisfying manner,

several conditions need to be fulfilled. First, the area of the selected object

type must be accounted for, so that neither areal shapes are preferred to linear

descriptors, nor vice versa. The second requirement is the selection of attractive

features, which means that attractive features must be assigned with a negative

local energy. Finally, as a prerequisite for using diffusion dynamics in the respec-

tive optimization stage, Lafarge et al. point out the necessity of a differentiable

data coherence term. They suggest to apply

u
(k)
C (y|θ) =


√

σ2
in(y)+σ2

out(y)+ε

S
(
µin(y)−µout(y)

)2 − θattr , if µin(y) ≷ µout(y) ,

∞ , else ,
(7.3)
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where µin(·) and σin(·) denote the mean pixel intensity and the standard de-

viation inside the geometric object, and µout(·) and σout(·) measure the mean

intensity and standard deviation among the surrounding pixels. The authors

suggest to set the width of the outer border to two pixels. S corresponds to

the total area covered by the object and its surrounding environment. The re-

lational operator appearing in the first case of Eq. (7.3) serves a control tool.

If the user decides for µin > µout, bright objects are preferred to dark shapes,

whereas µin < µout results in the opposite effect. Neutrality is achieved by

setting µin(y) 6= µout(y). The infinitesimally small positive auxiliary variable

ε guarantees differentiability, and the threshold θattr representing an unknown

model parameter supports the selection of attractive features and controls the

sensitiveness of the data fitting process.

Besides the locally evaluated data coherence term U
(k)
C (·), Lafarge et al. in-

clude a regularization constraint in their Gibbs modeling approach (cf. Eq. (7.2)).

This constraint imposed through U
(k)
R (·) accounts for prior assumptions on the

layout of the geometrical features in the image. It penalizes overlaps and there-

fore controls the extent of interaction between marked points. An appropriate

implementation of U
(k)
R (·) reduces object dependencies to the essential ones and

thus provides a general model of the non-overlapping geometric shapes. To

achieve such a target, meaningful connections between the detected geometrical

features need to be established. The authors propose a regularization term of

the form

U
(k)
R (y) =

u6=v∑
{yu,yv}⊆y

[
exp

{
ζpen ϕ

(
{yu, yv}

) }
− 1
]
, (7.4)

where yu = (u,mu) and yv = (v,mv) denote any two distinct marked points,

and ϕ
(
{yu, yv}

)
∈ [0, 1] measures their relative area of intersection. This area

is then penalized by the weight ζpen. Lafarge et al. suggest to set ζpen to a high

value, e.g. ζpen = 100, such that large overlaps become heavily weighted. Minor

overlaps, in contrast, have a negligible impact on the penalization of the total

Gibbs energy in Eq. (7.2).

If the interaction constraint in Eq. (7.4) turns out to be too general in an

application to a given image, Lafarge et al. consider two possible extensions

of U
(k)
R (·), both allowing to handle object overlaps in a more precise manner.

The first extension adjusts the penalization of the overlap of neighboring objects.

Instead of subtracting 1 from the exponential term in Eq. (7.4), a new parameter

ζattr is introduced. It balances between object attraction and repulsion. We thus

have

U
(k)
R (y) =

u6=v∑
{yu,yv}⊆y

[
exp

{
ζpen ϕ

(
{yu, yv}

) }
− ζattr

]
. (7.5)

By setting ζattr = exp{0.1 ζpen}, connected objects with a relative area of inter-

section of up to 10% are preferred to object configurations where the relative
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overlap is greater than 10%.

Apart from a regularization of interaction in terms of object overlaps, certain

application examples require a control tool that penalizes the difference in ori-

entation between adjacent objects. To achieve the desired mutual alignment,

Lafarge et al. suggest the implementation of

U
(k)
R (y) =

u6=v∑
{yu,yv}⊆y

[
exp

{
ζpen ϕ

(
{yu, yv}

) }
− 1
]

+ ζal

u6=v∑
{yu,yv}⊆y

Al
(
{yu, yv}

)
,

(7.6)

where 0 ≤ Al
(
{yu, yv}

)
≤ 1 evaluates the mutual alignment of the marked

points yu and yv. By setting Al
(
{yu, yv}

)
to a fix value in [0, 1], the proportion

of the selected rotation-invariant objects can be influenced by the user. The

balance between the alignment and the actual interaction criterion is adjustable

through the parameter ζal.

If necessary, both Eq. (7.5) and Eq. (7.6) can be applied simultaneously. A

simple combination of both terms yields

U
(k)
R (y) =

u6=v∑
{yu,yv}⊆y

[
exp

{
ζpen ϕ

(
{yu, yv}

) }
−ζattr

]
+ ζal

u6=v∑
{yu,yv}⊆y

Al
(
{yu, yv}

)
,

which still corresponds to a numerically feasible extension of Eq. (7.4).

The Gibbs modeling approach developed by Lafarge et al. to extract geo-

metrical features from images of textured 3D scenes comprises several random

parameters represented by θ. First, the total amount of marked points is as-

sumed to be unknown. The proportion between the different linear and areal

descriptors taken from the mark library is treated as a random variable, too,

and each single feature is characterized by a set of unknown mark parameters as

given in the caption of Fig. 7.1. Finally, the attraction threshold θattr appearing

in the data coherence term is contained in θ. Such a complex set-up and, in

particular, the object-dependent number of mark parameters requires a well-

elaborate inference framework which allows to jointly select multiple objects

and guarantees fast a computer runtime.

Inference

We recall that we have cited the articles by Descamps et al. (2008), Lacoste et al.

(2005), Descombes and Zerubia (2008), Perrin et al. (2005), Sun et al. (2007),

and Tournaire et al. (1965) in Section 7.1. In all these works, the implementation

of jump diffusion processes
[
Grenander and Miller (1994)

]
has proven to be a

suitable inference strategy. Jump diffusion processes couple Markov chain Monte

Carlo (MCMC) sampling with appropriately specified and evaluated Langevin

equations. A variety of image analysis problems can thus be tackled.
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Lafarge et al. (2010) also include a jump diffusion routine in their Gibbs mod-

eling framework. The authors implement an algorithm that alternates between

jumps from O
(k)
y to O

(k′)
y′ where k, k′ ∈ {1, 2, ...}, and a parameter fine-tuning

process. The jump steps are conducted via a birth-death-move Metropolis-

Hastings routine
[
Geyer and Møller (1994)

]
which is similar to the M-H-sampler

in Alg. 2.6. We recall that a detailed theoretical description of the M-H sampling

concept is provided in Section 2.4.

Given the current state y of the marked point process, a transition to the

state y′ here implicates the addition of a new geometric object from the mark

library, the removal of an existing mark, or the replacement of one object by

another differently shaped object. Due to the basic principle of M-H simulation

(cf. Eq. (2.17)), the acceptance probability of the change considered conforms

to

Pacc(y
′|y) = min

{
1,

q(y|y′)
q(y′|y)

exp

{
U (k′)(y′)− U (k)(y)

T

}}
,

where the so-called relaxation temperature T can be seen as a tool that regulates

the entire optimization process. T decreases in the number of computing steps

of the jump diffusion algorithm. The smaller it gets the more importance is

attached to the diffusions compared to the jumps. Lafarge et al. determine T

based on simulated annealing , according to the definitions by Van Laarhoven

and Aarts (1987) and Salamon et al. (2002). Given a complex function with

many unknowns, simulated annealing returns an approximate solution that is

close to the global optimum. Therefore, sufficiently many time stages, i.e. com-

putational steps, need to be passed through. Independently of the initial state,

the outcome with the smallest possible energy is reached after the predetermined

amount of time. For more information on the meaning and determination of T

in the context of jump diffusion processes, we make reference to Grenander and

Miller (1994) and Lafarge et al. (2010).

It remains to shortly describe what is meant by Langevin equations/diffusions

and diffusion dynamics/equations/processes, respectively. Langevin equations,

named after their inventor Paul Langevin, conform to stochastic differential

equations that characterize the time evolution of a certain subset of variables

in a given function. In the strict sense, Langevin diffusions are driven by

Brownian motions
[
Langevin (1908)

]
. However, in the past century, the term

Langevin/diffusion dynamics/equations/processes has been broadened consid-

erably. Its meaning and implementation in the context of jump diffusion opti-

mization has comprehensively been explained by Geman and Hwang (1986).

Lafarge et al. combine their birth-death-move sampler with diffusion equa-

tions to significantly accelerate convergence. That is, between each two M-H

steps, a stochastic diffusion routine is applied to Eq. 7.2, whereby the current

state y of the multi-marked point process serves as the initial configuration.
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The diffusion process then acts on the continuous subspace y is living on.

We currently work on the development of a marked point process approach

to the estimation of shape from texture, similarly to the procedures introduced

in Chapter 6. This alternative concept is related to the work by Lafarge et al.

(2010) in that it detects template objects from a mark library in the image

and allows to describe their local 2D geometric properties. Our future target is

to learn global 3D geometries, such as camera positioning and angle, from the

arrangement and attributes of the local features.

7.3 Shape from Texture via Marked Point

Processes

Our model synthesizes approved computer vision methodology with recent de-

velopments in point process research. For a better understanding of the mod-

eling concept, we particularly refer to the preliminaries provided in Chapter

2 – 3.1 of this thesis as well as to Foley et al. (1997, ch. 5) and Møller and

Waagepetersen (2003, ch. 6 – 7). Given an image of a textured 3D scene, our

overall goal is to estimate the global geometric attributes of the scene via an ap-

propriately implemented Bayesian hierarchical inference mechanism. In contrast

to the methods described in Chapter 6, this mechanism does not require any

image preprocessing. Before explaining its technical details, we briefly outline

its fundamental conception in an informal and intuitive manner.

We regard the texture arrangement in the given image as a realization of

an inhomogeneous marked point process with independent and unpredictable

marks (see Def. 2.4 – 2.5). A small set of representative texture elements taken

from a training image without depth effect serves as object library. Although

our objective is not the reconstruction of the image of interest, we act on the

assumption that it can fully be recomposed by the sparse selection of charac-

teristic features contained in the library. However, since there is an unspecified

but obvious dept effect in the image of interest, a geometric adjustment of the

features is necessary for localizing them on the image plane. Our proposed

procedure is thus similar to a puzzling process, where every puzzle piece may

be chosen several times, each time requiring an individual Euclidean similarity

transformation. The closer the pieces are located to the vanishing point, for

instance, the more strongly they need to be scaled down. At the same time,

their packing density increases. Our aim is to infer shape from texture based on

the gradual change in the packing density as well as in the sizes and orientation

of the geometric objects, i.e. the “puzzle pieces”. We may then also be able to

determine the continuation of the scene beyond the image borders.

Fig. 7.2 shows a training image (a), a randomly constructed test image con-

sisting of two geometrically transformed parts of the training image (b), and a
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suitable real-world test scenario (c). In Section 7.4, we discuss first results from

the analysis of the images in (b) and (c). As library of template objects, a set

of geometrical features from the planar test scenario in (a) is being used. The

(a) Planar training image (b) Manually transformed

and split image

(c) Real photograph

Figure 7.2: Images of brick walls considered for dictionary learning and model eval-

uation purposes.

next sections are devoted to a detailed description of our marked point process

model and the presentation of a suitable inference concept.

Marks

In the context of this research project, marks correspond to Euclidean similarity

transformations of representative patches of texture with no 3D structure, as

explained above. We therefore first define a suitable library consisting of rectan-

gular image sections cut out from a training scenario which shows the relevant

texture, but no depth, warping or rotational effect.

The library may be constructed in an automatic way, e.g. through an appro-

priate implementation of the K-SVD approach by Aharon et al. (2006). Cou-

pling convenient singular value decomposition
[
Eckart and Young (1936)

]
with a

generalized k-means clustering algorithm
[
Hartigan and Wong (1979)

]
, K-SVD

is capable of extracting the most informative features from a large image matrix.

At present, we prefer to randomly select representative sections from the

training image. In compliance with the work of Aharon et al. (2006), we call

these sections atoms and the library a dictionary. To facilitate the marking

process, we normalize the pixel values in each atom, such that they have zero

mean. We define marks as Euclidean similarity transformations of dictionary

atoms. The entire mark space M thus contains the labels of the atoms and the

domains of the geometric parameters η, i.e. the scaling parameters η1 and η2 as

well as the rotation parameter ηρ. Concerning the scaling effects, η1 shrinks or

stretches a dictionary atom in horizontal and η2 in vertical direction. Rotations

are always carried out with respect to the center of the atom. To keep the set

of the geometric parameters as small as possible, we do not consider shifts at
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this point. Shifts are indirectly involved in the modeling, as move steps of the

M-H inference framework proposed further below. Fig. 7.3 illustrates results

from the scaling and rotation of a small rectangular cut-out of Fig. 7.2 (c).

(a) Original (b) Scaled (c) Rotated (d) Scaled & rotated

Figure 7.3: Euclidean similarity transformations (b) – (c) of a dictionary atom (a)

cut out from a training image without depth effect (cf. Fig. 7.2 (a)).

We denote the dictionary by a = {a1, ..., aK}. Assuming that the k-th un-

transformed dictionary atom ak takes values a(w(0)|k) on w(0) ∈ W (0), where

w(0) = (w
(0)
1 , w

(0)
2 )>, a scaling of the atom yields(

w1

w2

)
=

(
η1 0

0 η2

)(
w

(0)
1

w
(0)
2

)
.

That is, through the effects of η1 and η2, each pixel value a(·|k) on w(0) ∈ W (0)

is mapped to a new location w ∈ W where w = (w1, w2)>. The orientation of

the dictionary atom can be influenced by a coordinate mapping of the form(
w1

w2

)
=

(
cos ηρ − sin ηρ
sin ηρ cos ηρ

)(
w

(0)
1

w
(0)
2

)
,

which corresponds to Eq. 3.10 in Section 3.1. The degree of rotation is therefore

determined by ηρ. For a simultaneous change of both the surface area and the

orientation of the dictionary atom, we implement(
w1

w2

)
=

(
η1 cos ηρ −η2 sin ηρ
η1 sin ηρ η2 cos ηρ

)(
w

(0)
1

w
(0)
2

)
. (7.7)

We write a(w(0)|k) = a(w|k,η). Fig. 7.4 gives an example of how a concrete set

of parameter values affects the geometric properties of a quadratic object. For

more technical details and additional information, see Foley et al. (1997, ch. 5).

Before marking an image location with a scaled and rotated dictionary atom,

a color matching between the mark and the respective image section should be

carried out. Recalling that the pixel values in each dictionary atom have zero

mean, this can easily be performed by adding the mean pixel intensity in the

image section to the pixel values of the mark. In case that marks partly cover
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(a) Original (b) Scaled (c) Rotated (d) Scaled & rotated

Figure 7.4: Euclidean similarity transformations of a square using η1 = 0.8 and

η2 = 0.5 in (b) and (d), and ηρ = 2
3
π in (c) and (d).

each other, we suggest an averaging at the respective locations which we label

by (∗). Assuming that J marks overlap in w and assuming that these J marks

are independent and unpredictable due to Def. 2.4 – 2.5, we propose to compute

a(∗)(w|k(∗),η(∗)) =
1

J

J∑
j=1

a(w|k(j),η(j)) (7.8)

and σ2 (∗)
a (w|k(∗),η(∗)) =

1

J2

J∑
j=1

σ2
a(w|k(j),η(j)) .

In doing so, a(w|k(j),η(j)) corresponds to the pixel value of the k(j)-th geo-

metrically transformed and color-adjusted dictionary atom at location w. Its

variance is denoted by σ2
a(w|k(j),η(j)). For the sake of simplicity, we replace

σ2
a(·|k(j),η(j)) by a constant variance σ2

a whenever appropriate. The second line

of Eq. (7.8) then becomes

σ2 (∗)
a (w|k(∗),η(∗)) =

1

J
σ2
a . (7.9)

Having explained how marks are defined and obtained in the context of this

research project, the following section is concerned with the introduction of our

actual modeling framework.

Model

As briefly outlined in the beginning of Section 7.3, our objective is the im-

plementation of a Bayesian hierarchical inference mechanism that allows us to

extract geometric knowledge from the image of a textured 3D scene. Therefore,

several distributional definitions need to be established. On the one hand, a

model describing the pixel value distribution in the given image has to be de-

termined. On the other hand, meaningful prior assumptions have to be made

on the spatial distribution of the marked points and on the marks themselves.

Hyper priors may additionally be specified.
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Our hierarchical point process model is assumed to act on a rectangular grid

of pixels defining the observation window W . We denote the given image matrix

by Z(·) and the pixel value in w ∈ W by Z(w) = zw. This project is confined

to the analysis of gray-scale images, which means that Z(·) takes values on

a continuous interval. Therefore, a Gaussian model appears to be suitable for

describing the image data. The parameters of the model, i.e. mean and variance,

are assumed to depend on the current state y of the marked point process

which we define as y =
{

(x,mx) : x ∈ x, mx ∈ M
}

, in conformity with

our previous notation (see also Eq. (2.4)). Depending on whether w ∈ W is

currently covered by multiple objects, exactly one object, or no object at all, it

lies in in the subset W (∗)
a , in

{
Wa\W (∗)

a

}
, or in Wā, where ā indicates the absence

of a coverage and
{
Wā ∪Wa

}
= W . In accordance with this decomposition as

well as with Eq. (7.8) – Eq. (7.9), we define the expected pixel value in w

as a(∗)(w|x, k(∗)
w ,η

(∗)
kw

), a(w|x, kw,ηkw), or µā, and the respective variance as

σ2 (∗)
a (w|x, k(∗)

w ,η
(∗)
kw

), σ2
a, or σ2

ā. As before, x denotes a realization of the non-

marked point process X and kw the label(s) of the dictionary atom(s) covering

w. In summary, the mean and variance measures depend on the current state

of the point process x marked by dictionary atoms that have been taken from

a = {a1, ..., aK} and geometrically transformed through individual scaling and

rotation parameters η = {η1, η2, ηρ}.
The partition of the observation window into non-covered “background sec-

tions” and “foreground sections” covered by at least one geometrically trans-

formed dictionary atom implicates that the Gaussian data model can be decom-

posed into

f(Z|y)︸ ︷︷ ︸∏
w∈W

f(zw|x,kw,ηkw
)

∝
(

1

σ2
ā

) |Wā|
2

exp

{
−
∑
w∈Wā

(zw − µā)2

2σ2
ā

}

×
∏

w∈
{
Wa\W (∗)

a

}
(

1

σ2
a

) 1
2

exp

{
−
(
zw−a(w|x, kw,ηkw)

)2

2σ2
a

}

(7.10)

×
∏

w∈W (∗)
a

(
1

σ
2 (∗)
a (w|x, k(∗)

w ,η
(∗)
kw

)

) 1
2

exp

{
−
(
zw−a(∗)(w|x, k(∗)

w ,η
(∗)
kw

)
)2

2σ
2 (∗)
a (w|x, k(∗),η(∗))

}
,

given the current state of the marked point process, y. Here, |Wā| equates to

the number of pixels in Wā. We recall that proposals of how to compute the

mean and variance terms are given in Eq. (7.8) – Eq. (7.9).

Since the Gaussian likelihood in Eq. (7.10) depends, inter alia, on the current

estimate x of the latent point process X, our Bayesian modeling framework re-

quires an appropriately specified point process prior. As discussed in Section 2.1,



7.3 Shape from Texture via Marked Point Processes 133

this thesis deals with simple point processes, meaning that we do not consider

situations in which two or more than two points may be assigned to exactly

the same location. Here, we furthermore assume a random number of points

that are independently and homogeneously distributed on the discrete grid of

coordinates determining W . We decide for a homogeneous Poisson process prior

according to Def. 2.8 and Eq. (2.5), and thus have

f(x|β) = exp{−β|W |} βn(x)

for a given realization x of the latent point process X. The intensity parameter

β serves as a hyper parameter. Depending on the existing knowledge, it may

either be fixed or assigned with a suitable hyper prior p(β).

Concerning the drawing of the dictionary atoms from a = {a1, ..., aK}, we a

priori assume that

k(i) ∼ U{1, 2, ..., K} , ∀i ∈ {1, ..., n(x)} ,

which means that each atom is selected with probability 1
K

. Similarly, we pro-

pose to take non- or little-informative priors as a basis for the scaling and ro-

tation parameters η1, η2 and ηρ. Here, we use uniform probability distributions

on discrete intervals.

Finally, adequate priors need to be specified for the mean and variance pa-

rameters in Eq. (7.10). While the expected values in Wa are determined by

the pixel value distribution inside the selected and geometrically transformed

dictionary atoms and hence by the current realizations of x, k and η, we sample

µā from a specific parameter prior. The same holds for the unknown variances

σ2
a and σ2

ā. For computational reasons, we suggest a normal-inverse-χ2 or a

normal-inverse-Γ model as described by O’Hagan et al. (2004, ch. 11) and thus

have e.g.

(µā, σ
2
ā) ∼ N− inv−χ2

(
µ0ā , κ0ā , α0ā , ϑ0ā

)
, σ2

ā ∼ inv−χ2
(
α0ā , ϑ0ā

)
,

µā|σ2
a ∼ N

(
µ0ā ,

σ2
ā

κ0ā

)
,

and σ2
a ∼ inv−χ2(α0a , ϑ0a) .

It is convenient to specify a Gaussian prior for the mean parameter and inverse-Γ

or inverse-χ2 priors for the variance parameters, since these densities correspond

to conjugate densities of the Gaussian data model. Such a set-up has the ad-

vantage that the posteriors take the same well-defined forms as the priors, as

explained in Section 2.5. Given σ2
a, σ2 (∗)

a

(
· |x, k(∗)

· ,η
(∗)
k·

)
can be calculated due

to Eq. (7.9).

From our prior and data distributional assumptions, we derive a posterior

density of the form

p(y|Z) =
f(Z|y) p(y)

C(Z)
, (7.11)
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where

p(y) = p(x,θ) = f(x|β) p(β) p(σ2
ā) p(µā|σ2

ā) p(σ
2
a)

n(x)∏
i=1

p(η(i))p
(
k(i)
)
,

(7.12)

according to Eq. (2.24). C(·)−1 is the normalizing constant of the posterior

model. Since it is numerically intractable, Eq. (7.11) is not available in complete

form and hence only accessible via a simulation framework (cf. Eq. 2.25). In

the following, we propose a birth-death-move M-H inference scheme which is

similar to the step sequence in Alg. 2.2 and the sampler suggested by Lafarge

et al. (2010) (cf. Section 7.2).

Inference

To estimate realizations y of the latent marked point process Y given the data

matrix Z, we iteratively match dictionary atoms with the data by placing geo-

metrically transformed versions of them in W , or by modifying or deleting exist-

ing ones. As mentioned right above, a birth-death-move M-H sampler appears

appropriate for this purpose. We first decompose the joint posterior p(y|Z)

from Eq. (7.11) into the conditional posteriors

(A) p
(
x,θ−{µā, σ

2
ā, σ

2
a}|Z, µā, σ2

ā, σ
2
a

)
and

(B) p
(
σ2
a|Z, x, θ−{µā, σ

2
ā, σ

2
a}
)
, p

(
σ2
ā|Z, x, θ−{µā, σ

2
ā, σ

2
a}
)
,

p
(
µā|Z, x, θ−{µā, σ

2
a}
)
.

To sample from the full conditional marked point process posterior in (A), we

use an M-H sampler conforming to Alg. 2.2
[
see also Møller and Waagepetersen

(2003, ch. 7)
]
. This reversible jump framework comprises birth steps where the

addition of a new marked point is proposed, death steps where one randomly

selected marked point may be removed, and move steps that allow to modify

a marked point. We suggest three types of modifications, the replacement of

the dictionary atom while retaining its geometric parameters, the change of

the geometric mark parameters while retaining the label of the atom, and the

shifting of the marked point. As usual, we suggest to take uniform or truncated

Gaussian densities as a basis for the transition proposals.

After each birth, death or move step, a new sample of mean and variance pa-

rameters has to be drawn from the updated full conditional posteriors. Choosing

a normal-inverse-χ2 prior model for the mean and the variances, the posteriors

in (B) correspond to Gaussian and inverse-χ2 densities with posterior param-

eters conforming to weighted averages of the prior parameters and statistics

from the data. A Gibbs sampling routine similar to Alg. 2.1 with reversible

jump M-H steps according to Alg. 2.6 allows to iteratively simulate from the
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Algorithm 7.1: Bayesian inference scheme to estimate the posterior of

a latent marked point process under the assumption of a Gaussian data

model. |Wā| and |Wa| denote the current number of pixels in Wā and Wa,

Z̄Wā and Z̄Wa are the respective mean pixel intensities, and S(ZWā) and

S(ZWa) the empirical standard deviations.

Data: Image matrix Z, prior parameters {α0ā , ϑ0ā , µ0ā , κ0ā , α0a , ϑ0a},
dictionary a = {a1, ..., aK}, prior intervals {ηmin

1 , ..., ηmax
1 },

{ηmin
2 , ..., ηmax

2 }, {ηmin
ρ , ..., ηmax

ρ }, burn-in threshold T0

Result: Point process realizations x(T0), ...,x(T ),

Resulssstmark parameters θ−{µā,σ
2
ā,σ

2
a}(T0)

, ...,θ−{µā,σ
2
ā,σ

2
a}(T )

,

Resultsssmean and variance parameters {µā, σ2
ā, σ

2
a}(T0), ..., {µā, σ2

ā, σ
2
a}(T )

Set t = 1;

while t ≤ T do

determine x(t) and θ−{µā,σ
2
ā,σ

2
a}(t) according to Alg. 2.2;

compute µpā =
(

κ0ā

κ0ā+|Wā|

)
µ0ā +

(
|Wā|

κ0ā+|Wā|

)
Z̄Wā ;

compute κpā = κ0ā + |Wā|;

compute αpā = α0ā + |Wā|;

αpāϑpā = α0āβ0ā + (|Wā| − 1)S(ZWā)
2 +

κ0ā

κ0ā+|Wā|(Z̄Wā − µ0ā)
2;

compute αpa = α0a + |Wa|;

αpaϑpa = α0aβ0a + (|Wa| − 1)S(ZWa)
2 + κ0a

κ0a+|Wa|(Z̄Wa − µ0a)
2;

draw σ2
a ∼ invχ2(αpa , ϑpa);

draw σ2
ā ∼ invχ2(αpā , ϑpā);

draw µā|σ2
ā ∼ N

(
µpā ,

σ2
pā

κpā

)
;

set {µā, σ2
ā, σ

2
a}(t) = {µā, σ2

ā, σ
2
a};

end

Return x(T0), ...,x(T );

Return θ−{µā,σ
2
ā,σ

2
a}(T0)

, ...,θ−{µā,σ
2
ā,σ

2
a}(T )

;

Return {µā, σ2
ā, σ

2
a}(T0), ..., {µā, σ2

ā, σ
2
a}(T );

whole posterior model. Alg. 7.1 illustrates an appropriate implementation of

this inference concept. To evaluate the practical application of our Bayesian

modeling approach, we take the manually constructed split image in Fig. 6.5 (b)

and the real-world scenario in Fig. 6.5 (c) as a basis.
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7.4 Case Studies

First, we use Alg. 7.1 for the analysis of the split brick image in Fig. 6.5 (b)

which comprises two similarity transformations of the planar training scene in

Fig. 6.5 (a). The geometrically modified scenes are arranged one below the other.

While the upper image section labeled by I results from a geometric transforma-

tion through the parameter combination ηI = {η1, η2, ηρ}I = {0.8, 0.6,−0.2π},
the lower part corresponds to a transformation through ηII = {0.7, 0.7, 0.3π}.

We take a section from the training scene as a basis for the dictionary learning

process. From this section containing 300 × 300 pixels, we cut out two rectan-

gular patches of size 75 × 75 pixels which we define as our dictionary atoms

(see Fig. 7.5 (a)). A priori, we assume that each atom becomes selected with

a probability of 50%. Concerning the priors of the geometric parameters, we

take discrete uniform densities on sufficiently fine grids as a basis. We a priori

expect that 0.5 ≤ η1 ≤ 1.0, 0.5 ≤ η2 ≤ 1.0 and −1
2
π ≤ ηρ ≤ 1

2
π, and base the

transition proposals on the same uniform distributional conditions.

Starting with an empty set of marked points, we execute 200.000 iterations

of Alg 7.1, i.e. T = 200.000. We eliminate the first 125.000 results as burn-

in states and base our further analysis on every 750th realization contained in

the remaining chain, in order to avoid autocorrelation effects. The extracted

samples describe the posterior distribution of the latent marked point process

given the visible image data.

(a) Dictionary atoms (b) Split brick image (c) One marked point process

realization

Figure 7.5: Modeling of a latent marked point process. (a) shows two quadratic

patches cut out from a planar training section and used as dictionary

atoms, (b) corresponds to the manually constructed scenario of interest,

and (c) visualizes one realization of the marked point process.

Fig. 7.5 (c) visualizes one representative estimate of the marked point process.

We see that this sample from the posterior looks very similar to the original

scene in Fig. 7.5 (b). On closer inspection, however, the long edges of the

bricks are better fitted than the short edges. We thus suspect that here, our

algorithm estimates the scaling effect in horizontal direction, η1, more precisely

than the scaling effect in vertical direction, η2. Fig. 7.6 confirms this assumption.
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Furthermore, we observe a high level of accuracy and little variation in the

estimates of ηρ.

(i) p̂(η1|x,θ−{η}) (ii) p̂(η2|x,θ−{η}) (iii) p̂(ηρ|x,θ−{η})
(a) Section I (upper part)

(i) p̂(η1|x,θ−{η}) (ii) p̂(η2|x,θ−{η}) (iii) p̂(ηρ|x,θ−{η})
(b) Section II (lower part)

Figure 7.6: Estimates of the full conditional posteriors of the geometric parameters,

subdivided into results with respect to the upper (a) and results with

respect to the lower (b) section of Fig. 7.5.

While frequentist modeling approaches yield maximum-likelihood (ML) esti-

mates, posterior results from a Bayesian inference procedure allow for the com-

putation of the maximum a posteriori (MAP) estimates, as already explained

in Section 4.4 and Section 5.3. MAP estimates are equal to the modes of the

posterior. Since our prior and transition distributional assumptions ensure that

the realizations of η take values on discrete bounded intervals, it is sufficient

to search for the most frequent parameter combination among the states of the

Markovian chain. This search is carried out pixel-wisely, which means that,

for each w ∈ W covered by a dictionary atom in at least 80% of all marked

point process realizations, we identify the most frequently accepted set of atom-

transforming parameters η̂MAP. The results for all three geometric parameters

are shown in Fig. 7.7.

We see that, apart from some gaps in the boundary region between the up-

per and lower image section, almost every pixel is steadily covered by marks.
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(i) η̂1MAP
(ii) η̂2MAP

(iii) η̂ρMAP

Figure 7.7: Pixel-wise MAP estimates of the geometric parameters η = {η1, η2, ηρ}.
White patches indicate that in less than 80% of the marked point process

realizations, the respective coordinates are covered by a geometrically

transformed dictionary atom.

According to the conclusions drawn from Fig. 7.10, the pixel-wise visualization

of the MAP estimates points out that the true rotation effects in the upper and

the lower image sections are almost perfectly reproduced. The MAP estimates

of the scaling parameters in horizontal direction suffer from slight variations,

whereas the estimation of the scaling effects along the vertical axis turns out to

be grossly inaccurate. As stated above, this means that the long brick edges are

better identified than the small edges.

To examine the speed of convergence of Alg. 7.1, Fig. 7.8 illustrates the in-

crease in the amount of points (a), the gradient of the log-likelihood given the

parameter estimates (b), and the improvement in the goodness-of-fit (c). The

goodness-of-fit is measured through the mean squared error (MSE), that is,

through the sum of the squared differences between the true pixel values and

the pixel intensity under the current state of the marked point process.

Fig. 7.8 (b) confirms that our Bayesian hierarchical modeling framework per-

forms well in an application to Fig. 7.5 (b). The increase in the log-likelihood

given the current estimate of the point and mark process is considerable and

reaches its equilibrium state after about 100.000 iterations. The same holds for

the decrease in the MSE measuring the similarity between the given image and

the pixel value distributions stemming from the marked point process realiza-

tions. Regarding the development of the point intensity in Fig. 7.8 (a), however,
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(a) Number of points (b) Log-likelihood (c) Mean squared error

Figure 7.8: Convergence of the algorithm and overall model performance. The hor-

izontal dashed line in (b) illustrates the value of the log-likelihood cal-

culated under the assumption of an empty set of marked points.

an equilibrium has not been reached. We therefore suspect that our algorithm

tends to identify redundant points. By including strict interaction constraints,

this problem may be controlled or tackled.

Having shown that Alg. 7.1 allows to detect local geometries in a manu-

ally transformed brick image, we now analyze a non-manipulated scenario of

size 1050 × 1000 pixels, where the geometric ground truth is unknown (see

Fig. 7.9 (b)). For logical reasons, we regard the previously used dictionary as

to restrictive. Instead of keeping it unchanged, we thus enhance its size, while

reducing the dimension of the single atoms. Fig. 7.9 (a) shows seven small

rectangular patches cut out from the training section and defined to serve as

dictionary atoms.

We make the same prior and transition distributional assumptions as before.

In contrast to above, however, we now expect that each of the three geometric

parameters takes values between 0.3 and 1.0. Since we are not interested in

perfectly reconstructing the original image, but in determining its local scale

and rotation parameters, we subdivide it into 12 partitions of size 350 × 250

pixels. Parallel programming therefore yields a gain in computer efficiency and

time.

We apply Alg. 7.1 to the 12 sections and set the total number of iterations per

section to 200.000. Again, the first 125.000 outcomes are regarded as burn-in

states, and every 750th element of the remaining chain is taken as a basis for

describing the posterior of the marked point process. Fig. 7.9 (c) exemplifies

one randomly selected realization of the latent marked point process. The closer

a brick is located to the camera, the bigger it appears in the 2D image. Since

the proposed algorithm turns out to recognize large objects better than objects

of small size, some of the 12 sections are densely packed with marked points,

whereas others contain considerable gaps.

We hypothesize that the estimated rotation effects are the same in each part
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(a) Dictionary generation

(b) Original image (c) One marked point process realization

Figure 7.9: Estimation of a marked point process realization. (a) shows seven

quadratic patches cut out from a planar training section and used as

dictionary atoms, (b) corresponds to the image of interest, and (c) visu-

alizes one realization of the marked point process. For reasons of clarity,

the estimated points themselves are not highlighted.

of the image, but expect clear differences in the full conditional posteriors of the

scaling parameters. To investigate these assumptions, we inspect two parts of

the point process realization in Fig. 7.9 (c) more closely, which we labeled by I

and II. Since the distance from the camera to part I of the original 3D plane has

obviously been larger than its distance to part II, the bricks in section I of the

given 2D image are smaller than the bricks in section II. The question comes up

whether Alg. 7.1 allows us to clearly quantify this difference.

Fig. 7.10 visualizes the full conditional posteriors of the parameter set η,

separately computed based on the spatial pixel value distribution in image

section I and in image section II. As expected, the full conditional posteri-

ors of the rotation parameters are of almost identical shape, whereas the his-

tograms illustrating the posteriors of the scaling effects are quite dissimilar.

Although there is much variability in the estimation of η1 and, in particular,

of η2, a difference in the modes and means is clearly visible. It turns out that
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(i) p̂(η1|x,θ−{η}) (ii) p̂(η2|x,θ−{η}) (iii) p̂(ηρ|x,θ−{η})
(a) Section I

(i) p̂(η1|x,θ−{η}) (ii) p̂(η2|x,θ−{η}) (iii) p̂(ηρ|x,θ−{η})
(b) Section II

Figure 7.10: Empirical distributions of the geometric posterior estimates for both

parts of the split image.

η̂IMAP
= {0.46, 0.44, 0.53} is the most frequently accepted parameter combination

in I, while η̂IIMAP
= {0.66, 0.63, 0.53} is the MAP estimate for section II.

7.5 Outlook

We have started to develop a Bayesian marked point process model that assesses

3D geometries in 2D images of textured surfaces. For the sake of simplicity, we

have used images with pixel values measurable on a continuous gray-level scale.

As data distribution, a Gaussian likelihood has thus proven to be appropriate

(cf. Eq. (7.10)). A priori, we have assumed that the latent point process follows

a homogeneous spatial Poisson process distribution (cf. Eq. (2.6)).

Each mark has been specified by two groups of parameters, the label of the

marking object and its geometric properties. Marking objects have been de-

fined as distinctive patches of texture without depth effect, stored as atoms in

a dictionary. As potential geometric deformations of these objects, we have

considered Euclidean similarity transformations, i.e. shrinking, stretching and
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rotations (cf. Eq. (7.7)). Shifts have not been accounted for at this points. All

model parameters have been assigned with conjugate or uniform priors.

In terms of inference, we have developed Alg. 7.1 which matches appropri-

ately scaled and rotated dictionary atoms with the given image. The reversible

jump MCMC algorithm alternates between simple Gibbs sampling stages (cf.

Alg. 2.1) and a birth-death-move M-H routine (cf. Alg. 2.6). From the poste-

rior distributional properties of the model parameters, we have drawn conclusion

about the local geometries in the image. Our further target is to describe the

orientation of the camera towards the 3D space based on the marked point

process realizations, especially focusing on the estimated local 2D geometries.

Images of brick walls with both known and unknown geometric characteristics

have been used to evaluate the entire modeling framework (cf. Fig. 6.5).

Our Bayesian marked point process approach delivers promising results in

that it detects and describes local 2D geometries in images of textured 3D

scenes. However, there is still room for improvement and further refinement.

On the one hand, our modeling routine tends to strongly overestimate the num-

ber of latent points, which makes it difficult to deduce 3D information from the

spatial point distribution. This problem may be approached by the inclusion

of interaction constraints (cf. Section 2.3). On the other hand, an inhomoge-

neous point process prior with exponential or perspective scaling attributes as

suggested in Section 6.4 may be more appropriate than a homogeneous prior

model, though the increase in the model complexity should be evaluated criti-

cally. If we decide to include location-dependent scaling constraints in our point

process prior, similar constraints should also be embedded in the priors of the

geometric parameters.

Summing up, we assume that an enhancement of our Bayesian hierarchical

point process model by appropriately specified interaction and scaling functions

may yield a more accurate geometric description of the local image features. In

the optimal case, it even allows to directly infer shape from texture.
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In this concluding section, a summary of our research projects and results is

given. We discuss the overall performance of the modeling approaches newly

introduced in Chapter 4 – 7, point out their advantages and disadvantages, and

reveal potential for future advancement and improvement. Thereby, special em-

phasis is given to evaluating the effort made to couple spatial statistics with

image analysis.

Our first contribution is a Bayesian inference framework for analyzing inho-

mogeneous spatial point processes, where the heterogeneity stems from a scaling

function that locally adjusts the arrangement and relative amount of the points

(see Chapter 4). Intensity and interaction become equally scaled in the sense

that, in different regions of the observation window, the point packing density

varies only by a scale factor
[
Hahn et al. (2003)

]
. In general, locally scaled point

process models are not presentable in a complete form, as a normalizing con-

stant is missing in the likelihood. A posterior model for the unknown intensity,

interaction and scaling parameters thus implies two unknown terms, the nor-

malizing constant of the likelihood which depends on the unknown parameters

and that of posterior itself which depends on the data. Concentrating on locally

scaled Strauss models, an exchangeability framework according to Murray et al.

(2012) proves to be suitable for dealing with the double-intractability. Since it

requires the implementation of an auxiliary variable scheme where the auxiliary

variables correspond to samples from the likelihood, methods for drawing real-

izations from an incomplete point process density need to be considered. We

recommend to generate perfect simulations via dominated coupling from the

past (CFTP)
[
Berthelsen and Møller (2003)

]
.

In an application to simulated point patterns, it turns out that our Bayesian

inference framework is capable of accurately reflecting the ground truth. The

maximum a posterior estimates are similar to the maximum likelihood estimates

resulting from an application of the pseudo likelihood approach suggested by

Prokešová et al. (2006).

As every Markov chain Monte Carlo routine, the exchange algorithm only

returns sound results if a sufficiently high number of iterations has been executed

and the chain has for certain reached its equilibrium state. The incorporated

CFTP sampler requiring the implementation of multiple birth-death processes

may be computationally expensive. If the point intensity in a given pattern is

high and the scaling and interaction effects are strong, that is, if the pattern

is close to regular and densely packed with points, CPU run-times tend to be

excessively long. In such cases, approximate MCMC-based samplers may be

143
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more appropriate then a CFTP algorithm, despite the loss in accuracy.

Subsequent to the theoretically oriented Chapter 4, we demonstrate by means

of selected research studies how expedient and relevant locally scaled point pro-

cesses turn out to be in applied sciences (see Chapter 5 – 7).

In Chapter 5, we use our newly proposed CFTP-based exchangeability frame-

work to approach an agricultural research problem. We analyze two series of

cross-sections through the stems of maize plants. Each series corresponds to

one genotype. Regarding the spatial distribution of the vascular bundles in

the stems as a realization of an inhomogeneous point process, our objective is

the detection of genotype-specific characteristics in the packing densities. In

other words, we are interested in the derivation of classification rules from the

arrangement of the vascular bundles in the stems.

With the aid of adequate preprocessing mechanisms, the bundles are replaced

by points and projected onto circular observation windows that reflect the pro-

portion between the stem diameters. The diameters measured for the type-II

plants are on average 0.69 times the radii obtained for the type-I plants. Fur-

thermore, it becomes immediately apparent that the cross-sectional area of the

maize stems can be partitioned into two sections, an outer section where the

bundles are very densely packed and an inner section where their density is

considerably lower. Assuming homogeneity inside both sections, a demarcation

line between them can be determined in a model-free manner.

We have developed a step scaling function which is proper in that it is well-

defined and numerically tractable with regard to the calculation of the relevant

locally scaled volume and distance measures. Under minor formal adjustments,

it may also be applied to rectangular data spaces and point processes with more

than two gradations in the density. For efficiency purposes, we propose a two-

stage inference procedure to preliminarily examine the inner stem areas via a

Bayesian homogeneous Strauss model and to consider the gained posterior in-

formation as prior distributional knowledge for the modeling of the complete

datasets. The full databases are analyzed by means of the exchange algorithm,

where the auxiliary variables are partly generated via perfect simulation and

partly via an approximate MCMC sampler
[
Liang (2010)

]
. In terms of conver-

gence, it turns out that our two-phases framework is more suitable for modeling

the type-I than for describing the type-II data. This is also reflected in the fact

that, with regard to genotype II, the outcomes obtained from the first stage of

the analysis differ considerably from the final results.

Our most striking conclusion concerns the estimated scaling factor quantifying

the difference in the packing density between the inner and the outer stem areas,

which is considerably larger for genotype II than for genotype I. The overall

bundle intensity tends to be higher in the plants of type I than in the plants of
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type II. Concerning the interaction parameters, a concise conclusion cannot be

drawn. It seems that the interaction range between the type-I vascular bundles

is smaller than the interaction range in the type-II stems, whereas the type-II

data appear to feature a less strict weighting of interaction.

Summing up, our newly developed Bayesian inference framework has enabled

us to classify two genotypes of maize plants in terms of their vascular bundle ar-

rangement. Nevertheless, it needs to be stressed that only three cross-sectional

images have been used per genotype. In order to draw reliable and trustworthy

conclusions, the sample size needs to be substantially increased. Moreover, it

remains to interpret the results from an agricultural point of view and to extend

the analysis to more than two genotypes.

Our most seminal contributions in terms of interdisciplinary research are dis-

cussed in Chapter 6 and Chapter 7, where we couple image processing and scene

analysis with statistical methods. Assuming that we are given one single im-

age of a textured surface in three-dimensional (3D) space, our goal is a global

geometric description of the 3D scene, especially in view of camera orientation.

Chapter 6 is inspired by the idea to associate texture with a hidden homo-

geneous point process and each texture element with exactly one latent point.

Projected onto a two-dimensional (2D) image plane, the arrangement of the

texture elements appears inhomogeneous due to the angle of the camera. For

this reason, we have established a multi-stage inference framework by means

of which an inhomogeneous point process realization can be learned from the

image of a textured plane in 3D space, and geometrically be analyzed in terms

of camera orientation, under appropriately determined location-dependent scal-

ing assumptions. To facilitate the estimation of the point process realization,

we turn the original image into a probability map. The higher the probability

value of a certain pixel is, the more likely it represents the symmetry center of

a texture element.

Our first approach focuses on the development of a Gibbs model, where the

Gibbs energy includes hardcore interaction and exponential scaling constraints.

A greedy algorithm simultaneously identifies points and estimates the interac-

tion radius as well as the exponential scaling parameters of the model. After-

wards, the exponential scaling function is replaced by another well-defined func-

tion quantifying perspective foreshortening. Through least squares fitting, the

estimated exponential scaling effects are substituted by spherical coordinates

describing the orientation of the camera towards the textured plane. Having

successfully demonstrated that this substitution yields negligibly small residu-

als, we have worked on the development of a locally-scaled point process model

where the inhomogeneity is directly described through a perspective scaling

function.
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It can easily be shown that the newly suggested perspective scaling function

is proper in that it is not only identifiable, but also applicable to locally scale

pairwise point distances. Therefore, we can immediately incorporate it into

a Strauss modeling framework. Concerning the estimation of the latent point

process, we now propose to learn a point pattern from the given probability

map prior to the analysis of the parameters and in a model-free manner. For

this purpose, we provide two algorithms of a similar nature. Both algorithms

yield a reasonably accurate point-texture assignment, provided that the texture

elements are close to convex in shape. Despite the second-order structure of the

Strauss process, we estimate its scaling and intensity parameters based on the

composite likelihood principle.

Synthetic as well as real-world image data are taken as a basis for the eval-

uation of the proposed modeling routine which proves to be efficient and accu-

rate. We show that, given a scene with convexly and concavely shaped texture

elements, a violation of the convexity condition causes minor biases in the es-

timation of the camera orientation if only few non-convex shapes are evenly

distributed among densely packed convex texture elements.

Although the separation of image preprocessing on the one hand, and point

identification and parameter estimation on the other hand yields a flexible multi-

stage approach, a merging of the individual steps into a large hierarchical overall

framework may enhance process compactness and reliability. Another further

research objective may consist in the development of a similar fully Bayesian

inference concept for estimating shape from texture. Depending on the selected

type of data model, this concept may include a CFTP-based exchange algorithm

for estimating the posterior distributions of the unknown parameters.

So far, we have exclusively dealt with images of textured planes in 3D space,

but not with images of arbitrary uneven surfaces. Room for advancement is

thus left in view of an extension and generalization of our current framework. A

possible starting point may be the consideration of smooth non-planar surfaces.

There is also potential for further development in terms of image segmentation if

the scene projected onto the image plane is composed of differently textured sub-

regions. Since the proposed inference stages are computationally inexpensive,

upgrading them to a reasonable and manageable extent should be unproblem-

atic in terms of CPU runtime.

While the point process framework introduced in Chapter 6 immediately

learns a point process realization from the image of a textured scene and then

infers 3D geometric knowledge from just the local scaling properties of the re-

sulting point pattern, the alternative modeling strategy presented in Chapter 7

is intended to estimate shape from texture based on the local 2D geometric de-

formations of the texture elements after their projection onto the image plane.
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Therefore, a marked point process framework is proposed, where the marks cor-

responds to Euclidean similarity transformations of representative patches of

texture learned from a reference image without depth effect. We believe that

knowledge on camera positioning and angle can be derived from the spatial dis-

tribution of these patches in the image of interest as well as from their local 2D

geometries. As a byproduct, systematic as well as random irregularities in the

texturing of the 3D scene are expected to be detectable.

So far, we randomly select representative template patches from the training

image and store them as atoms in a dictionary. We us a Bayesian hierarchical

marked point process model to deduce posterior information from a weighted

mixture of the data distribution and appropriately specified parameter priors.

As data distribution, that is, as model for the spatial pixel value distribution

in the image, we consider a mixture of Gaussians, whereas barely informative

conjugate or non-informative priors are specified for the unknown model pa-

rameters. A Gibbs sampling framework with an embedded reversible jump

birth-death-move Metropolis-Hastings (M-H) routine is proposed for estimating

the parameter posteriors.

This project has not yet been completed. Having developed a Bayesian in-

ference scheme that successfully estimates the local 2D deformations of texture

after a projection onto an image plane, it remains to learn 3D information from

the estimated local geometries, such as parameters describing the orientation of

the camera towards the textured scene. A modification of the current inference

framework by imposing location-dependent scaling constraints seems appropri-

ate in this context.

Despite its incompleteness, the Bayesian marked point process method has

two advantages over the locally scaled point process toolbox presented in Chap-

ter 6. On the one hand, it does not require any image preprocessing, and on

the other hand, the texture elements may be of any shape from a theoretical

viewpoint. From a practical viewpoint, though, it is questionable how sensitive

the approach is to irregularities in the contour and coloring of the texture ele-

ments. We believe that the sensitiveness particularly depends on the quality of

the dictionary learning process. A general mechanism automatically determin-

ing the dictionary size and atoms would be helpful in any case.

Summing up in brief, we have shown that locally scaled point processes are a

comprehensive and flexibly applicable modeling class for spatial point patterns.

Although an unknown constant in the likelihood makes inference complicated,

elaborate procedures, such as our newly developed CFTP-based exchange al-

gorithm, have been made available to overcome this problem. This interdis-

ciplinary work has successfully established a connection between point process

theory and challenging problems related to the analysis of images. In the context
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of a biological research study, we have successfully demonstrated that a suitably

specified locally scaled Strauss model is capable of detecting genotype-specific

characteristics in the distribution of the vascular bundles in maize plants. A

further toolbox of point process procedures has specifically been established

for the estimation of shape from texture. It thus couples spatial statistics with

computer vision and pattern analysis. We believe that the range of open and un-

solved problems approachable by efficient and elaborate point process methods

is endless, and that it is worth making effort to formulate appropriate research

questions.

The measure of greatness in a scientific idea is the extent to which

it stimulates thought and opens up new lines of research.

– Paul A. M. Dirac (August 8th, 1902 – October 20th, 1984)
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Boston.

Lacoste, C., X. Descombes, and J. Zerubia (2005). Point Processes

for Unsupervised Line Network Extraction in Remote Sensing. IEEE

Trans. Patt. Anal. Mach. Intell. 27 (10), 1568–1579.

Lafarge, F., G. Gimel’Farb, and X. Descombes (2010). Geometric Feature Ex-

traction by a Multi-Marked Point Process. IEEE Trans. Patt. Anal. Mach. In-

tell. 32 (9), 1597–1609.

Langevin, P. (1908). Sur la Théorie du Movement Brownian.
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Notation Index

A product space

B bounded set

B• bounded set containing •
C, C() normalizing constant

C(•, ?) covariance of • and ?

Ci i-th neighborhood component

D?(•) disc of the radius ? with center point •
D?\??(•) ring-shaped surface with outer and inner radii ? and ??,

and center point •
D(•), L(•), U (•) state • of an auxiliary process

E(•) expectation of •
E essential matrix

H homography

F fundamental matrix

Idd d-dimensional identity/unit matrix

K, K ′ camera matrices

LC() composite likelihood

LP () pseudo likelihood

M mark space

M• subset of the mark space M

N(•) random number of points in •
P , P ′ projection matrices

P (•) probability of the event •
P (•|?) conditional probability of • given ?

Pacc(•|?) probability of accepting a transition from ? to •
R parameter describing the interaction radius/range

RMH Hastings ratio

ReMH Hastings ratio extended by an auxiliary variable scheme

Rb, Rd, Rm birth ratio, death ratio, move ratio

Rt t-th drawing from a uniform density on [0, 1]

S(•, ?) sum of squared residuals

S() empirical standard deviation

T relaxation temperature

Tmin threshold

U(), U (•)() total Gibbs energy

U
(•)
C () data coherence term

U
(•)
R () regularization term

U(•|?) total Gibbs energy of • given ?

V (•), V ()(•) Voronoi cell of •
W 2D observation window or image plane

W , W ′ image (plane) before and after projection
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Wa subset of W covered by geometrically transformed dic-

tionary atoms

W (∗)
a subset of W covered by more than one geometrically

transformed dictionary atom

Wā subset of W not covered by any geometrically trans-

formed dictionary atom

W (0) original observation window or image plane

Xa1, Xa2, Xa3 axes of a 3D coordinate system

X̃ homogeneous coordinates of a 3D scene point

X scene point in Rd, d ≥ 3
~X vector pointing from the origin to X or X̃
X random point

X random variable, e.g. a random point process

X−{i} =
{
X \ {Xi}

}
X without its i-th component Xi

X∼i all components of X located in the neighborhood of Xi

XB random point process in B

X(0) initial point process (with potential boundary effects)

Y random marked point

Y random marked point process

Z original image or probability map

Z∗ auxiliary image

Z(•) value of Z at location •
Z̄• mean pixel intensity in the subset •
Z, Z() normalizing constant

a() assignment vector

a image border or area

a dictionary containing K atoms {a1, ..., aK}
a(•|?) pixel value of a marking dictionary atom in • given ?

a(∗)(•|?) average value of marking dictionary atoms in • given ?

bc center of gravity

b(0) original pattern of boundary points {b(0)
1 , b

(0)
2 , ...}

b normalized pattern of boundary points {b1, b2, ...}
c scale factor

c(), c•() scaling function (parameterized through •)
d() probability of deleting a point in a thinning framework

d, d• distance from the origin or from the center of gravity

d, d∗ dimensions

du, dv circular discs surrounding u and v

e, e′ epipoles

f discrete or continuous density

f(•) marginal density of •
f(•|?) density of •, given ?

f (c)() locally scaled density

f•(), f
(c)
• () (scaled) density with respect to •
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f (∗)() unnormalized density

g() function

h(•|?) scale invariant function

h shift/translation vector

k1, k2 fixed parameters

k(i) label of the i-th selected dictionary atom

k(∗), k
(∗)
• mixture of atom labels (in •)

kw label of the dictionary atom covering w

l, l′ epipolar lines

l1, l2 fixed parameters

lP () pseudo log-likelihood

m, m• mark

m mark attributes

m• marking of •
m1, m2 fixed parameters

n counting measure

n′ proposed number of points

n(•) observed number of points in •
nb number of boundary points

p(), p•() parameter prior (for •)
p(•|?) parameter posterior of • given ?

p0 principal point of a 2D image plane

pb(), pd() probability to propose a birth/death step

pM discrete or continuous mark density

pM() mark (prior) density

q(•|?), q•(·|?) transition density (for •), conditional on ?

qb(•|?), qd(•|?) density of a birth/death transition conditional on ?

r measured distance

s•() interaction function conditional on •
s•(?| ? ?) interaction function conditional on • and ??

(s1, s2)T vector shifting the origin of a 2D coordinate system

t, t() auxiliary measure

tz binarization threshold

u
(•)
C (•|?) coherence of • with the data, given ?

u, v, w points or image locations

wl, wr, wb, wt left, right, bottom and top margins of W

wl0 , wr0 , wb0 , wt0 left, right, bottom and top margins of W (0)

w(0) original image location

w image location

xa1, xa2 axes of a 2D coordinate system

xe focus of expansion

x, z single point realizations

~x vector pointing from the origin to x or x̃

x̃, x̃′ homogeneous coordinate representations of x and x′

x∗, x̃∗ single template or reference point
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xV ()(•) point contained in the same Voronoi cell as •
x̃c calibrated/normalized coordinate representation of x̃

x, x(•) realization of a random variable/point process

x−{i} =
{
x \ {xi}

}
x without its i-th component xi

x∼i all components of x located in the neighborhood of xi
x(0) initial point process realization

xB point process realization in B

x∗B realization of a homogeneous template process in B

x′, x′b, x
′
d, x

()
b , x

()
d , x′i proposals

y, yu, yv single marked point realization

x∗ reference point pattern

y realization of a marked point process

y−{i} =
{
y \ {yi}

}
y without its i-th component yi

z• pixel or probability value in •
z∼• pixel or probability values in the neighborhood of •
z realization of a random variable

Al() function measuring the alignment of objects

binomial() binomial point process distribution

const constant term or value

det() determinant

i.i.d “independent and identically distributed”

invχ2() inverse-χ2 distribution

med() median

N() Gaussian/normal distribution

N?
• () truncated Gaussian/normal distribution

Pois() Poisson distribution

Poisson() Poisson point process distribution

U [...] uniform density distribution on a continuous interval

U{...} uniform probability distribution on a discrete interval

div() divergence

A σ-algebra

B Borel σ-algebra

C∞, C∞() space of the continuously and infinitely differentiable

functions

C∞0 , C∞0 () space of the continuously and infinitely differentiable

functions with compact support

∆ auxiliary measure

Di partial derivative operator: differentiation w.r.t. the

i-th component of a vector

Dυi partial derivative operator: derivative of order υi
E epipolar 3D plane

Θ parameter space

Λ, Λ• rotation matrix
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Λi i-th column of the rotation matrix Λ

L1
loc, L1

loc() Lebesgue space of the locally integrable functions

Lp, Lp() Lebesgue space of the p-th power integrable functions

Π plane in 3D space

OX domain of the point process X

OY domain of the marked point process Y

O
(•)
Y subspace of the domain OY

Φ process of local maxima

P probability measure

R, R• radius of a circular data space

S joint area of an object and its immediate surrounding

Ω sample space

(OX , σO) measurable space

(Ω,A,P) probability space

(W ×M) product space of the point and the mark space, M&W

(R2 ×M) product space of the point and the mark space, R2&M

α parameter

α0a
, α0ā

, αpa , αpā prior/posterior parameters in Wa and Wā

α() normalizing constant

β intensity parameter

β(∗) template intensity parameter

β() (first-order) intensity function

β2() second-order intensity function

β•() intensity function w.r.t. •
β(•|?) conditional intensity of • given ?

γ parameter describing the weighting of interaction

δ unit vector, i.e. ‖δ‖ = 1

δ̃ adjustment of δ under homogeneous coordinates

δx(•, ?|Z) weighted difference between • ∈ x and ?, given Z

ε infinitesimally small value

ε smoothing parameter

ζal weight of the mutual alignment of marked points

ζattr variable balancing between attraction and repulsion

ζpen variable penalizing object overlaps

η1, η2 scaling of the horizontal/vertical range

ηρ degree of rotation

η, η• vector of geometrical parameters

ηmin
• , ηmax

• limits of the range of η•
η(i) geometric parameters of the i-th selected dictionary

atom

ηkw parameters of the dictionary atom k that covers w

η(∗), η
(∗)
• mixture of realizations of η (in •)

θ one parameter



168 Notation Index

θj j-th parameter

ϑ0a
, ϑ0ā

, ϑpa , ϑpā prior(0)/posterior(p) parameters in Wa and Wā

θmin
• , θmax

• limits of the range of θ•
θattr unknown attraction threshold

θ set of all parameters

θ−{•} θ without •
θ′, θ′, θ′j parameter proposal(s)

κ set of measures κ(1), κ(2),...

κc set of scaled measures κ(1)
c , κ(2)

c ,...

κ0ā
, κpā prior(0)/posterior(p) parameters in Wā

λ line-determining factor

µ() mean

µin, µout mean pixel intensity inside/outside an object

µā mean in Wā

µ0ā
, µpā prior(0)/posterior(p) mean in Wā

νd(•) d-dimensional volume (Lebesgue, Hausdorff) measure

on •
νdc (•) scaled d-dimensional volume (Lebesgue, Hausdorff)

measure on •
ν, νc set of (scaled) volume measures

ξ, ξ• smoothing kernels (parameterized through •)
ξ(), ξ•() smoothing kernels (parameterized through •)
π∗ threshold restricting the range of angles

ρ, ρ• angle of rotation

σ2 variance parameter

σ• smallest σ-algebra subject to •
σ2

in, σ2
out variance of the pixel intensity inside/outside an object

σa, σā standard deviation in Wa and Wā

σ2
a(•|?) pixel variance in • given ? if • is covered by one dictio-

nary atom

σ2 (∗)
a (•|?) pixel variance in • given ? if • is covered by several

dictionary atoms

τ ∗, τ ∗∗, τ1, τ2 intermediate variables

τ 2 variance parameter, variability measure

υ multi-index (υ1, υ2, ...)

φ1() first-order interaction function

φ2(), φ3() second-order interaction functions

ϕ() interaction function

θ̂ML, β̂ML, γ̂ML,... maximum likelihood estimates

θ̂MAP, β̂MAP, γ̂MAP,... maximum a posteriori estimates

β∗, R∗ linear transformations of β and R

2D, 3D “two-dimensional”, “three-dimensional”

∅ empty set
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11[...] indicator function: 11[...] = 1, if “...” is TRUE; adas

asdfa afdas asdffdsdf11[...] = 0, otherwise

N set of the natural numbers (positive integers)

Pd d-dimensional projective plane

Rd d-dimensional space of the real numbers

R\{0} real numbers without zero

R•×? matrix space of the real numbers

SE(•) special Euclidean group of dimension •
SO(•) special orthogonal group of dimension •

(...)> (coordinate) vector

{...} set

[•, ?] line segment between • and ?

{• ∪ ?} union of • and ?

{• ∩ ?} intersection of • and ?

{• \ ?} elimination of ? from •

∗ convolution operator

∧ estimate

∼ general neighborhood relation

∼• proximity relation evaluated at •
? ∼ • all neighbors ? of •
∝ proportionality relation

≈ similarity relation

' equivalence relation

| | area measure

‖ ‖ Euclidean distance or norm

‖ ‖Lp Lp norm

〈 〉 dot/scalar/inner product

7→ mapping

∂, ∂• (partial) derivative operators

∂X surface element

∇ gradient operator

∇2 symbol for a Hessian matrix

∆ symbol for a Laplacian matrix
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00 := 1

0
0

:= 1

Dυ := Dυ1
1 Dυ2

2 ... = ∂|υ|

∂x
υ1
1 ···∂x

υn
n
, |υ| =

n∑
i=1

υi

h̄• := 1
X• h

[h]× :=

 0 −h3 h2

h3 0 −h1

−h2 h1 0




