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Zusammenfassung

In der vorliegenden Arbeit untersuchen und entwickeln wir Methoden zur Lsung von Op-
timierungsproblemen mit partiellen Differentialgleichungsbeschrénkungen (PDEs) basierend
auf Strategien der Modell-Ordungs-Reduktion (MOR). Die Methoden kombinieren einen di-
rekten Losungsansatz mit der Modellreduktion durch die Proper orthogonal decomposition
(POD) und die Discrete empirical interpolation method (DEIM). Ordungsreduzierte Modelle
(ROMs) werden zur Approximation von hochdimensionalen dynamischen Systemen verwen-
det, welche aus einer Ortsdiskretisierung der partiellen Differentialgleichung resultieren. Bei
der Verwendung dieser Modelle in einem Optimierungsalgorithmus taucht héufig das Prob-
lem auf, dass der Gradient nicht addquat approximiert werden kann. Wir stellen Methoden
zur Verbesserung des ROMs fiir den Einsatz in der Optimierung vor, die auf der Verwendung
von Ableitungsinformationen im POD und DEIM Unterraum basieren.

In Abhéngigkeit der Optimierungsvariable unterscheiden wir zwischen zwei Arten von
Fehlern in Groflen die einmal mit Hilfe des hochdimensionalen Modells berechnet und ein-
mal mit Hilfe des ROM approximiert werden: Dem Rekonstruktionsfehler, welcher mit dem-
selben ¢ berechnet wird, welches auch zur Konstruktion des ROMs genutzt wird und dem
Vorhersagefehler, der Aussagen iiber Approximationen macht, die an einer Stelle ¢ ausgew-
ertet werden, wobei das ROM an einer Stelle § # ¢ aufgestellt wird. Die neuen Ergebnisse
fiir den Rekonstruktionsfehler umfassen Abschétzungen fiir die Lésungen der adjungierten
Gleichung und der Sensitivitatengleichungen sowie fiir den Gradienten der Zielfunktion. Mit
Hilfe dieser Abschatzungen erlautern wir, wie die POD und DEIM Basen mit entweder ad-
jungierter order Sensitivitatsinformation erweitert werden sollten. Die verbesserten ROMs
erlauben ein Steuern des Rekonstruktionsfehlers fiir die Zielfunktion als auch des Gradien-
ten bis zur Maschinengenauigkeit. Des Weiteren schlagen wir eine neue Abschétzung zur
POD Vorhersage der Zielfunktion des Optimierungsproblems vor, welche Aussagen in einer
Umgebung von ¢ macht mit welchem das ROM konstruiert wurde. Im Fall von POD und
DEIM Basen die mit Sensitivitaten erweitert wurden erhalten wir ein analoges Resultat
fiir Losungen der Zustandsgleichung. Die durch Ableitungen erweiterten ROMs werden
dann verwendet um adaptive Algorithmen zur Lésung von Optimalsteuerungs- und Pa-
rameterschatzproblemen zu entwickeln. Dies resultiert in enormen Laufzeitverbesserungen
flir die Optimierung, wobei gleichzeitig eine hohe Approximationsgiite der Losung des ur-
springlichen Problems gesichert wird. Fiir Parameterschéatzprobleme stellen wir einen neuen
a posteriori Fehlerschétzer vor, welcher Aussagen iiber die Qualitéit von suboptimalen Losun-
gen macht, die mit Hilfe des ROMs berechnet werden.

Ein weiterer wesentlicher Beitrag ist eine Diskussion zum Verhaltnis zwischen Diskretisie-
ren-Dann-Optimieren (DTO) und Optimieren-Dann-Diskretisieren (OTD) im Kontext von
auf MOR basierender Optimierung. Wir untersuchen Vorteile und Nachteile dieser beiden
Ansétze und diskutieren, inwiefern unsere Methoden Eigenschaften von beiden aufweisen.
Wir stellen zudem Beispiele reprasentativer Optimierungsprobleme vor, in welchen gewohn-
liche POD/DEIM ROMs ein inakzeptables Verhalten zeigen, die jedoch mit ableitungser-
weiterten ROMs erfolgreich gelost werden konnen. Des Weiteren wurden die entwickelten
Methoden implementiert, wobei auf eine effiziente Realisierung Wert gelegt wurde, welche
wichtig fiir die Untersuchung des Potentials von MOR ist. Wir demonstrieren das praktische
Verhalten der vorgeschlagenen Algorithmen und die Uberlegenheit von ableitungserweit-
erten ROMs im Vergleich zu konventionellen ROMs an Beispielen von zwei akademischen
und einer industrierelevanten Anwendung, welche verschiedene Herausforderungen an den
Modellreduktionsansatz in der Optimierung stellen.
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Abstract

In this thesis we analyze and develop methods based on model order reduction (MOR)
for the solution of optimization problems constrained by time-dependent partial differential
equations (PDEs). The methods combine a direct solution approach with model reduction
via proper orthogonal decomposition (POD) and the discrete empirical interpolation method
(DEIM). The reduced-order models (ROMs) are used to approximate the high-dimensional
dynamic systems originating from a spatial discretization of a PDE. However, when used
in an optimization algorithm, conventional POD/DEIM ROMs often lack the ability to give
adequate approximations of the gradient. We propose methods for a suitable enhancement
of the ROMs for the optimization purpose which are based on the inclusion of derivative
information in the POD and DEIM subspaces.

We distinguish two types of error between quantities evaluated with the high-dimensional
model and its ROM approximation in dependency on the optimization variable ¢: The
reconstruction error which is evaluated with the same ¢ which is used constructing the
ROM and the prediction error which assesses approximations at g with a ROM constructed
at ¢ # q. The novel reconstruction results we present include estimates for solutions of the
adjoint equation and the sensitivity equations as well as for the gradient of the objective
function. Based on the estimates we explain how the POD and DEIM bases should be
extended with either adjoint or sensitivity information. The enhanced ROMs allow control of
the reconstruction error for the objective and its gradient up to machine precision. Moreover,
we propose a POD prediction estimate for the objective of the optimization problem in a
neighborhood of ¢ where the ROM is constructed. In case of sensitivity-extended POD
and DEIM bases we give an analogous result for solutions of the states. The derivative-
extended ROMs are then used to develop adaptive algorithms for the solution of optimal
control and parameter estimation problems which results in great runtime improvements for
the optimization while ensuring high approximation quality of the solution of the original
problem. For the parameter estimation case a novel a posteriori error estimate is proposed
which assesses the quality of suboptimal solutions obtained with the ROM.

A further fundamental contribution is a discussion of discretize-then-optimize (DTO) vs.
optimize-then-discretize (OTD) approaches in the context of MOR for optimization. We
analyze advantages and disadvantages of both approaches and discuss to which extent our
methods exhibit properties of either strategy. We also give examples of representative op-
timization problems in which standard POD/DEIM ROMs show an inacceptable behavior
and can be successfully solved by derivative-extended ROMs. We have further implemented
the developed methods emphasizing an efficient realization which is important for the in-
vestigation of the MOR potential. We showcase the practical performance of the proposed
algorithms and the superiority of derivative-extended over conventional ROMs on two aca-
demic and one industry-relevant application which exhibit a variety of challenges for the
model reduction approach in optimization.
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Introduction

The combination of mathematical modeling, simulation, and optimization has become an
important procedure to tackle a variety of problems that arise in industry and academia.
Many effects and processes that we face, e.g., in fields such as chemical engineering, geo-
physics, and computational fluid dynamics, can be described and modeled with the help
of time-dependent partial differential equations (PDEs). After the modeling step, we are
confronted with the task of a numerical simulation of the effect or the process, meaning
that the governing PDESs need to be solved. This is often already a challenging task in itself
and reasonable discretizations of the equations may involve up to 10° variables. Given the
model and a simulation tool at hand, a variety of optimization tasks can be considered,
e.g., parameter estimation problems with the aim of the calibration of the model or the
optimal control of the underlying process. These are even more challenging problems as
their solution usually requires multiple simulations of the model and additional evaluations
of derivatives with respect to the optimization variables.

In this thesis we develop algorithms that significantly speed up the optimization procedure
and that are based on model order reduction (MOR) via proper orthogonal decomposition
(POD). The general idea is to approximate the large spatially discretized PDE models
by smaller ones that we can use in the optimization algorithm. Our contribution is to
enhance these so-called reduced-order models (ROMs) with derivative information for the
optimization purpose. The theoretical foundations are provided for, however not restricted
to, optimal control and parameter estimation problems that are constrained by semilinear
time-dependent PDEs. We have implemented the developed algorithms and apply the novel
methods to scientific and practical optimization problems.

POD model reduction is the subject of increasing attention in the PDE-constrained op-
timization community and is particularly popular when nonlinearities are involved in the
model (see the introduction to POD for optimization by Sachs and Volkwein [99]). The
“hidden beauty of the proper orthogonal decomposition”, as Aubry refers to it in [9], has
attracted researchers of many areas. In image processing POD has been extensively used to
extract the essential information from large amounts of data [44, 98]. Historically, important
contributions to the development of POD were made in the study of turbulence and coher-
ent structures in the context of fluid dynamics [18, 84, 107]. POD with the aim of model
reduction was used for the Burgers’ equation [74] and the Navier—Stokes equation [29]. Ap-
plications to a diversity of models in practice are also found, such as saturated groundwater
flows [122], lithium-ion batteries [80], airfoil design [27], and particulate processes which
play an important role in the chemical and pharmaceutical industries [85]. Fundamental
contributions to the use of POD for the optimization purpose were made in recent years.
Among these we mention the articles by Arian et al. [6], Hinze and Volkwein [62], Troltzsch
and Volkwein [112], and Kunisch and Volkwein [77]. In this thesis we follow the conceptual
POD model reduction approach in the latter works. We suggest extensions of this approach
by derivative-enhancement of the reduced-order models and discuss the importance of this
for optimization which we believe has not received sufficient attention in literature so far.

When speaking of optimization the mathematician has in mind the goal of reducing a
certain objective to a minimum possible value, such that a set of given constraints is satisfied.
In optimal control problems, on the one hand, the optimization variables are states that
must satisfy a dynamic model equation and, on the other hand, control variables from an
infinite-dimensional function space that need to satisfy certain restrictions. To solve the
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Introduction

problem, at some point a discretization must be carried out. Typically for both types of
optimization variables many discrete variables are introduced. However, it is foremost the
states and their corresponding constraints that are of large dimension. A common technique
is the method-of-lines approach, where the spatial discretization is carried out first, e.g.,
using finite element methods (FEMs) and then an integration in time is performed, e.g.,
with an implicit Euler method. In FEM methods the state solution is approximated via
basis functions with local support employing a Galerkin discretization to obtain a typically
large system of ordinary differential equations (ODEs). To this ODE we refer as the high-
fidelity (HiFi) problem or HiFi model as we assume that we can trust the high-dimensional
discretization to be adequately accurate for the infinite-dimensional problem. The idea
of POD is to construct tailored global basis functions that contain information about the
dynamic system at hand. Practical experience shows that this information can already be
captured by only a few basis functions (5 — 30) in many applications. The model reduction
procedure we employ can be summarized by two major steps. First, the POD basis is
constructed from so called snapshots [107] that are obtained by a solution of the high-fidelity
system. In a second step a projection of the large-scale system onto the POD subspace is
performed. This yields a small problem that we refer to as ROM or also surrogate model.

While the dimension of the surrogate model is small, the evaluation of the nonlinear
model components is still of the complexity of the HiFi discretization. This computational
drawback was overcome by the introduction of the discrete empirical interpolation method
(DEIM) [31]. With this enhancement the surrogate model becomes entirely independent of
the dimensionality of the full spatial discretization and its evaluation costs can be further
significantly reduced.

Regarding the optimization task itself, with the presence of dynamic constraints, sev-
eral theoretical and practical obstacles need to be overcome — in particular in the presence
of PDEs [61, 112]. We distinguish two main ways of tackling the problem, namely the
discretize-then-optimize (DTO) and optimize-then-discretize (OTD) strategies, which both
have advantages and disadvantages. With DTO we first discretize all infinite-dimensional
components and subsequently solve the finite-dimensional problem. In contrast, with OTD
the two steps are performed in reverse order. Often the latter is referred to as indirect
method while DTO approaches are called direct methods. 'Direct’ refers to the fact that
during the optimization one explicitly iterates on the control variables while 'indirect’ re-
flects that the control variables are eliminated from the optimization problem in an OTD
approach. However, there are blurred lines between the respective approaches and whether
the dichotomies OTD/DTO and direct/indirect should be used as synonyms is ambiguous
in the optimization community. Unambiguously, in this thesis we follow a direct approach
converting the infinite-dimensional problem into a nonlinear programming problem (NLP).
The established direct concepts are then extended by the idea of model reduction via POD
and we discuss POD regarding its use in DTO and OTD approaches. In particular we
show that our methods exhibit properties from both approaches, thus, making the clas-
sification of our method a matter of perspective. We favor the direct point of view as
relatively little knowledge is necessary to solve optimization problems with PDE constraints
which are of complicated nature theoretically as well as numerically. We believe that user
friendly interfaces are essential to make sophisticated numerical techniques widely accessible
to practitioners.

We work with a reduced approach to optimal control, i.e., we eliminate the state variables
from the optimal control problem by introduction of a solution operator. Our strategy is
to approximate the discretized solution operator via the surrogate model, which is typically
significantly cheaper to evaluate. To the reduced problem we apply derivative-based opti-
mization methods. Thus, to solve the optimization problem, not only the computation of the
objective function is necessary (which involves a simulation of the dynamic equations), but
also we need to compute derivatives of the objective with respect to the control variables.

Xiv



Here two main concepts can again be pointed out: The adjoint approach and the sensitivity
approach. The two differ mainly in their complexity of computing the full Jacobian J of a
function f : R™ — R™, which is given by O(n) in the sensitivity case and by O(m) in the
adjoint case. In this thesis we show how for both cases the reduced-order model must be
constructed to successfully use it in optimization. Current state-of-the-art POD reduced-
order models lack the ability to appropriately approximate the required derivatives. We
present examples where this leads to a failure of the model reduction approach. We explain,
how by a suitable inclusion of derivative information in the POD and DEIM models, this
drawback can be overcome.

Contributions of this thesis

The aim of this thesis is the investigation and the development of efficient methods which
significantly speed up the numerical solution of optimal control and parameter estima-
tion problems constrained by parabolic semilinear PDEs. The key aspects are the use of
derivative-extended POD reduced-order models in combination with direct optimization
methods. We provide numerical algorithms and the necessary theoretical foundations. The
importance of the derivative enhancement for POD/DEIM surrogate models, which serve
as replacements for the high-fidelity model in the optimization, is demonstrated by means
of particular examples. We have efficiently implemented the proposed methods and apply
them to academic and industry-relevant applications. Numerical results show that our POD
model-reduction approach yields savings in computation time of up to a factor of ten for
moderately sized dynamic problems while accurate solutions of the original problem are ob-
tained. We demonstrate also numerically that the algorithms based on derivative-extended
surrogate models yield great improvements compared to standard POD optimization algo-
rithms.

In applications of POD and DEIM for optimization, the surrogate models are usually con-
structed at a reference optimization variable configuration such that they well-approximate
solutions of the high-fidelity discretized state problem (or quantities depending on the so-
lutions) at this configuration. To this approximation error we refer as the reconstruction
error. However, POD ROMs often loose their ability to give good approximations if the
optimization variable differs from the reference configuration. To this approximation error
we refer as the prediction error. While the problem with POD prediction has been studied
and tackled before, e.g., in [6, 65, 77], a further problem of POD ROMs is their lack of the
ability to give good approximations of the derivatives already in the reconstruction sense.
We believe that this drawback has not received sufficient attention and propose methods to
overcome it.

On the algorithmic side the main achievement is a sophisticated construction of the sur-
rogate model for the optimization purpose. To this end, we propose an inclusion of either
adjoint or sensitivity information in the projection spaces which we call derivative-extended
proper orthogonal decomposition (DEPOD) and derivative-extended discrete empirical in-
terpolation method (DEDEIM). The use of sensitivity information in POD subspaces was
suggested by Noor [88] and Peterson [91]. They show numerically that derivative inclusion
may improve the POD prediction problem. The inclusion of sensitivity information in a
POD ROM for the sake of derivative approximations was suggested by Zimmermann [125]
and by the author of this thesis in [104]. When using adjoint information in POD ROMs,
improved numerical performance was observed by Diwoky and Volkwein [39] as well as by
Hinze and Volkwein [62]. An enhancement of the DEIM subspace with derivatives was not
reported.

In this thesis we provide a rigorous analysis of the effects of an inclusion of derivative
information in the POD and DEIM subspaces for the optimization. These results consist of
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Introduction

novel reconstruction error estimates for the the adjoint and the sensitivity equations as well
as for the gradient of the objective function of the optimization problem. The estimates
are given for the time-continuous and the time-discrete case. The reconstruction results are
an extension of the results for the state equations in [32] to the derivative equations in a
more general problem formulation. The estimates state that the reconstruction errors are
bounded by a constant multiplied by the sum over neglected eigenvalues belonging to trun-
cated POD basis functions. Based on these estimates the construction of the DEPOD and
DEDEIM subspaces is explained. Using DEPOD and DEDEIM we are able to numerically
compute approximations with a reconstruction error close to machine precision. In addition
we make sure that the derivative-extended surrogate models are enhanced such that they
allow accurate reconstruction results in the direct approach, where we base the derivative
computation on automatic differentiation (AD). Particular care must be taken in the DEIM
projection step where the situation is more subtle.

Moreover, we present a novel POD prediction estimate for the objective of a nonlinear
reduced optimal control problem, extending the results in [30] which are based on the
Taylor expansion. Given the estimate we can ensure an alike local behavior of the objective
when evaluated with the high-fidelity or the DEPOD/DEDEIM surrogate model around
a control configuration, where the surrogate is constructed. Due to the fact that adjoint
and sensitivity-extended POD bases have the same effect on the objective regarding POD
prediction, the adjoint case can be interpreted as goal oriented, as here less information
needs to be added to the POD subspace. In the sensitivity case we give an analogous result
for local POD prediction of the states which is important for parameter estimation problems.

In the context of parameter estimation we present an a posteriori error estimate for the
distance between a solution obtained with the high-fidelity model and with the surrogate
model. The estimate is based on the local contraction theorem of Bock [21]. To solutions
based on surrogate models we refer as suboptimal, as in general it is unclear how far they
deviate from the exact solution due to the lack of reliable a priori error estimation for POD.
The estimates are similar to the a posteriori error estimates for optimal control problems of
Tréltzsch and Volkwein in [112] and are here carried over to parameter estimation problems.

We then exploit our theoretical findings to construct algorithms that efficiently solve
optimal control and parameter estimation problems. These are based on adaptive algorithms
as in [1, 61] that were proposed to overcome the problem of suboptimal solutions. With the
use of DEPOD and DEDEIM bases these algorithms can be improved as the POD prediction
error for which we give a local bound is closely related to the problem of suboptimal solutions.
By controlling the reconstruction errors we can guarantee that with the suboptimal solution
we have also found a solution to the high-fidelity optimization problem.

A further fundamental contribution is a comprehensive study of POD regarding the di-
chotomy of DTO and OTD. Similar to [8] we distinguish the two conceptual approaches
approximate-then-optimize (ATO) and optimize-then-approximate (OTA) and discuss their
relation to DTO and OTD. A classification of the existing algorithms into one of the two
categories is possible. As for DTO and OTD, the two approaches have both advantages and
disadvantages. We point out that many of the beneficial properties of the two strategies
can be carried over to our proposed algorithms. Essentially this is achieved by combining a
Galerkin discretization in space, the principle of internal numerical differentiation (IND) [19]
for time integration and the use of DEPOD/DEDEIM subspaces for the model reduction
step.

In the numerical results we show reconstruction error examples to give the reader an idea
of the practical approximation properties we can expect from derivative-extended reduced-
order models. Note that the efficiency of the overall approach still relies on a fast decay
of the eigenvalues in the POD decomposition. Moreover, we present optimal control exam-
ples where a standard application of common POD techniques leads to a breakdown of the
method which can, however, be successfully solved with our methods. We apply the devel-
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oped optimization algorithms to two academic problems that contain nonlinear and space-
or time-dependent controls as well as a problem from chemical industry. With the results
we show the great potential of the approach and also point out limitations and propose
further ideas for how these could be overcome.

The results for a sensitivity-extended POD basis and the POD a posteriori error esti-
mate in parameter estimation are published by the present author in Schmidt et al. [104].
These are included for completeness and complemented, in particular, by the reconstruction
estimates and the extension to the DEIM projection.

We sum up the main contributions of this thesis:

e A POD reconstruction error estimate for adjoint and sensitivity equations and the
gradient of the reduced objective function

e A POD prediction estimate for the reduced objective (adjoint and sensitivity case)
and the states (sensitivity case)

e A suitable extension of the POD and DEIM subspaces with either adjoint or sensitivity
information

e Adaptive algorithms for the solution of optimal control and parameter estimation
problems using derivative-extended reduced-order models

e An a posteriori error estimate for POD suboptimal solutions of parameter estimation
problems

e A Discussion of POD model reduction approaches regarding the question of discretize-
then-optimize vs. optimize-then-discretize and the relation to our methods

e An efficient implementation of the proposed methods

e Application of our methods to problems with nonlinear and space- or time-dependent
controls and a industrial model problem

Thesis overview

The thesis is structured in three major parts. In Part 1 we formulate the optimization
problems together with the dynamic constraints and introduce the direct approach strategies
we employ for their solution. Part 2 contains the basic concepts for reduced-order modeling
based on POD and DEIM and the main theoretical and algorithmic results. In Part 3
we present practical results where the developed methods that have been implemented are
applied to two academic and one industry-relevant applications.

In Chapter 1 we introduce the optimal control and the parameter estimation problem
together with the class of semilinear parabolic PDEs that occur as constraints. We establish
the functional analytic framework in which we solve these problems, derive the reduced
problems, and state necessary optimality conditions. These conditions involve first-order
derivatives of the reduced objective with respect to the control variables. We present two
possibilities for their evaluation, namely the adjoint and sensitivity approach.

In Chapter 2 we dedicate ourselves to the numerical strategies that we use to discretize
and solve the infinite-dimensional problems. First, we explain the main differences between
the DTO and OTD strategies and briefly address the issue of naming conventions. The
conversion of the infinite-dimensional problem into a finite-dimensional one is done via the
method of lines. Thus, we follow a hierarchical procedure in the discretization process, first
employing a Galerkin discretization in space and then discuss the time discretization using
the implicit Euler method. We recall aspects of consistency and stability in the context of
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Introduction

PDEs which become relevant for the practical derivative computation. Then we revisit the
optimization problem from the semi-discrete perspective and discuss the relation between
infinite-dimensional equations for the derivatives and their semi-discrete counterparts. This
is important as large parts of the model reduction discussion are carried out on the semi-
discrete level. The fully discretized NLPs are solved with established Newton type methods,
namely sequential quadratic programming (SQP) for optimal control and the Gauss—Newton
method for parameter estimation problems. In addition Bock’s local contraction theorem
is recalled, which we need for the POD a posteriori estimate. The chapter is concluded
displaying the methods for derivative computation based on AD and IND and peculiarities
of IND in the adjoint case are discussed.

We start the model reduction part with a characterization of the POD basis and POD
optimality in Chapter 3. POD is discussed in the time-continuous and time-discrete setting
and we explain how the reduced-order model is obtained via either Galerkin discretization
or projection, both being equivalent in our context. Then we introduce the basic concepts
of DEIM, which is used to reduce the computational costs of the nonlinearity in the POD
surrogate model. In this chapter we define what we understand by POD reconstruction
and POD prediction and sum up existing POD reconstruction results. More specifically, we
recall the estimates of Kunisch and Volkwein [75, 76] in function space as the most general
case of POD reconstruction estimates. We then extend the estimates of Chaturantabut and
Sorensen [32] to a slightly more general scenario. These estimates are in the semi-discrete
setting and involve POD and DEIM projection. We present the estimate for time-continuous
POD which makes the results independent of particular time discretizations. For the case
of the implicit Euler scheme it is shown that the semi-discrete estimates carry over to the
fully discrete case. In addition we illustrate the practical behavior of POD on a convection-
diffusion-reaction PDE.

Chapter 4 is about the enhancement of the POD/DEIM reduced-order model with deriva-
tive information. For the adjoint and the sensitivity case, we shed light on the relation be-
tween models of the different hierarchical discretization and approximation levels. In each
case we consider the infinite-dimensional model in weak form, the semi-discrete model, the
POD projected model and the DEIM projected model. We then carry over the reconstruc-
tion results of Chapter 3 to the derivative equations, i.e., reconstruction results in the time-
continuous and the fully discrete POD setting. Based on the estimates we describe which
derivative information should be included in the POD and DEIM subspaces. Subsequently,
we give a reconstruction estimate for the gradient of the reduced optimal control problem
which states that the error can be controlled by the size of the POD and DEIM basis. At
the end of this chapter we present numerical results that confirm the theoretical findings
and provide the reader with an idea of the practical performance of DEPOD/DEDEIM
reduced-order models.

We then make use of the DEPOD/DEDEIM reduced-order models in the optimization
context in Chapter 5. First, we give the reader an overview on existing methods to com-
bine POD model reduction with optimization. Then POD prediction estimates for the
reduced objective of optimal control problems are presented and analogous results are given
for POD prediction of the state solutions in the sensitivity case. We present algorithms
to solve optimal control and parameter estimation problems and discuss their properties
and their relation to existing algorithms. For parameter estimation problems we present
an a posteriori error estimate based on the local contraction theorem by Bock [21]. The
application of POD model reduction regarding the different strategies DTO and OTD are
discussed subsequently. Therefore, we introduce the dichotomy ATO and OTA. We discuss
their meaning for optimization with POD and explain to which extent our methods combine
advantages of both strategies. We illustrate by means of two numerical examples where a
standard application of either one of the strategies can cause the POD approach to give
unsatisfactory results.

xviii



In the last part of this thesis we apply the developed algorithms to two problems from
academia and an industrial example. At first, we give an overview of the strategies employed
to implement the proposed algorithms and point out the importance of some design decisions
to our results. In either application we solve an optimal control and a parameter estimation
problem. We start with a model for 2D heat transport. Here, the optimal control problem is
particularly challenging due to the spatially distributed control and the large control variable
space we use. The second application is an extension of the Lotka-Volterra predator-prey
dynamics to a 2D PDE system for which we briefly discuss aspects of model reduction in
case of PDE systems. In the last application we work with a model from petrochemical
industry that describes a reactive flow in a tubular reactor. The challenges are the large
system size, complicated nonlinearities, and the increased effort for the time integration.
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1. Foundations

In the first chapter we introduce the general form of optimization problems. We describe
the optimal control problem and the parameter estimation problem, which we assume to be
constrained by a time-dependent PDE. The dynamic model is presented in an abstract form
and we comment on particular types of equation considered in this thesis. Moreover, we
lay out conceptual solution approaches for a derivative-based optimization and briefly recall
necessary optimality conditions in the infinite-dimensional setting. Most of the topics are
discussed in the context of optimal control problems. The parameter estimation problem
can formally be embedded into the optimal control setting.

Infinite-dim. Semi-discrete Reduced-order model

State variable y T T
Adjoint variable D z z
Sensitivity variable 7 w W
Control /parameter variable U q -

Table 1.1.: Notation for state, adjoint, sensitivity, and control/parameter vari-
ables on the different levels of model problem considerations. We distinguish
the infinite-dimensional and the semi-discrete case as well as the approximation
of the semi-discrete case with reduced-order models.

On notation

In this thesis we combine concepts of several communities, i.e., optimal control for PDEs and
ODEs, parameter estimation, model order reduction and numerical analysis. This makes a
consistent notation tricky. In Table 1.1 we summarize the most important variables that
we use to describe dynamic problems on different hierarchical levels of discretization and
approximation. We distinguish the infinite-dimensional and the semi-discrete case obtained
via spatial discretization. Via the model reduction approach, for each semi-discrete problem
we consider a surrogate model counterpart. Therefore, in case of, e.g., states we use T instead
of x. Note the notation for the continuous adjoint p which must not be confused with the
notation ¢ for variables in parameter estimation problems where the notation p is common.

The dynamic problems are stated on I x Q, with time domain [ := [0,7], final time
0 < T < oo, the spatial domain Q@ C R", n € {1,2,3}, and boundary T' := 9Q. The
spatial variable we denote by r € Q and the time variable is represented by t € I. We omit
the space and time arguments where it is possible to ease legibility. For differentiation we
use the common abbreviations, e.g., the derivative of the spatially continuous states with
respect to time is denoted by y; := %y while in the ODE context we use & := %x.

The common functional analytic notation is used. We consider the Lebesgue spaces
LP(D), where either D C I or D C €, and the Sobolev spaces H*(D) = W*2(D) where
k € N. The generalization to Lebesgue spaces of mappings from D to a Banach space Z
we denote by LP(D, Z) which is consistent with the previous notation by choosing Z = R.
Moreover, for a Hilbert space H we denote its scalar product by (-, -) ; and the corresponding
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norm by ||| ;. For the natural choice of H = L*(Q) we use (-, "), and [|-||o. Analogously
the Euclidean inner product is (-, -) with the norm ||-||.

1.1. Dynamic model structure

We now present the dynamic model problem and introduce the weak form which is of partic-
ular interest for the theoretical investigations and is the starting point for the discretization
of the problems. Conceptually, the model reduction techniques proposed in this thesis are
directly applicable to any time-dependent problem that is stated in the weak form and can
be solved by a method-of-lines approach using a Galerkin discretization in space.

We consider the common setting for optimal control problems with PDE constraints of
parabolic type as, e.g., described in [60, 111]. Let V, H be real separable Hilbert spaces
with V being dense in H and continuously embedded. We identify H with its dual H* and
consider the Gelfand triple

Ve H>H < V*

with the continuous injection < and V* being the dual of V. Further we denote by (-, )/,
the duality pairing between V* and V. When dealing with discretization and solutions of
the dynamic problems in a weak sense, we apply the inner product on H to approximate
duality pairings on V. We briefly comment on this topic in the following remark (for more
details see [46, 123]).

Remark 1.1. Let ¢ : V < H be the continuous injection of V into H. By definition its dual
t* 1 H* — V* is also continuous and injective. Thus, we have the identity

(@i*(h), V) ey = (hyi(v))y, veV, he H=H".

Due to the dense embedding of H* in V* and the injectivity of ¢*, for each v* € V* there is
an element h € H such that (v*,v),., . can be uniformly approximated by (h,i(v)), for
all v € V. The identification of v* and h is typically given from the formulation of v* by
virtue of the Riesz representation theorem.

The abstract evolution problem we consider can be written as

ye(t) = Aly(t),u(t)), y(0) = ys (L.1)

for almost all ¢ € I and an initial condition ys € H. The nonlinear differential operator
A:V x R— V* is supposed to be elliptic in the states. The optimization variables are in
general vector valued functions uw € Q, which are either controls or parameters depending
on the context. As most general case we consider the Hilbert space

QC L*(I,R), RCL*Q,R™).

We are also interested in the case of u € R™* which fits into the definition of the control
space via the assumption that u € Q is constant in I x €2. The space Q is equipped with the
norm ||-||o and the inner product (-, -) 5. Note that the initial condition for the states might
also depend on u, however, the extension to this case is straightforward and not explicitly
dealt with in the following.

We are interested in solutions of the general evolution problem (1.1) in a weak sense.
Conditions for existence and uniqueness as well as for the continuous dependence of y on
the data u,ys depends on the particular form of A(y(t),u(t)) (see Dautray [36], Wloka
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[123]). Throughout, we make the assumption that for every control u € Q there exists a
unique solution y of (1.1) in the space W(0,T), defined as

W(0,T):={y:yeL*I,V), y € L*(I,V*)}.

The space W(0,T) is continuously embedded in C(I, H), the space of continuous functions
from I to H ([36, Ch. XVIII, Theorem 1]). This gives meaning to the trace of y € W(0,T) in
H, ie., we can work with y(0),y(T) € H. This is of particular interest for transformations
in the weak sense, as well as for the error estimation results later in this thesis. In the
following we denote the solution space by Y := W (0, 7). With the norm

llly = ( ol + ||yt<t>||z*>dt) ’

and corresponding inner product, Y becomes a Hilbert space.
With the preliminaries the variational formulation of problem (1.1) sounds as follows: For
each u € Q and y, € H we seek a solution y € Y such that the weak form

% (y(t),v) g = (Aly(t),u(t)),v)y, @0O0)—ys,v)yp=0 YveV, (1.2)

is satisfied. The inner product (y(t),v), must be understood in the sense of Remark 1.1
and the initial condition y(0) = ys becomes meaningful due to the continuous embedding of
Y in C(I, H). In addition, the embedding allows us to write

(0,0 e = ((0) ).

The temporal dimension is not explicitly considered in a weak sense since we follow a
method-of-lines approach and deal with the semi-discrete problems from the ODE perspec-
tive.

We are concerned with the following showcase of semilinear problems. The operator
A(y(t),u(t)) is throughout assumed to be given in weak form. Therefore, we consider the
bilinear form

a:VxV =R, (1.3)

which contains the spatial differential operators. Thus, the problem formulation is given as

(Ay(t), u(®), v)ye o = aly(t), v) (1.4)
+(O(y(t), u(t)) + Bu(t) + f© (), 0),,.. ., YweEV. (L)

where © : V x R — V* is a sufficiently smooth nonlinear operator, B : R — V* is
a linear control operator, and an f9%% ¢ L2(I,V*). For controls affected by the linear
operator B we consider the general case of spatially and/or temporally distributed controls.
For control functions that enter nonlinearly in the equation we allow time-dependent or
constant control functions, i.e., u € L?(I,R™) or u € R™. We exclude the case of spatially
distibuted control functions in the nonlinearity as with this additional challenges arise when
the discrete empirical interpolation method (DEIM) projection step is later applied to the
nonlinear part. We comment on the difficulties in §3.2.1. While we exclude this case it can be
handled by the methods presented in this thesis if a proper orthogonal decomposition (POD)
projection only (without DEIM) is used to obtain the surrogate model.

Moreover, in the application part of this thesis we consider problems that contain systems
of PDEs. These are not explicitly dealt with in the theoretical discussions and peculiarities
are discussed in the particular application.
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Remark 1.2. We impose boundary conditions in a weak sense, hence, they are integrated
in the bilinear form and the data part f42*(¢). Thus, the problems are Cauchy problems.
The formulation as Cauchy problem allows a simple relation of the weak form in a space V'
and some subspace Vjy C V obtained via projection, which is of particular interest for model
order reduction.

Example 1.1. We consider the linear heat equation with Robin boundary conditions and
distributed control on the unit square Q = (0, 1)?

yp—Ay=u in I x €,
Oy + Pry = P on I x 012, (1.6)
y(0) = ys on .

Here 0,y denotes the outer normal vector and S, 82 € R. Embedding the problem in our
notation we assume V = H(Q), H = L?(Q), Q = R = L?*(2), and the control operator B
is the identity. Taking the integral over the spatial domain, multiplying by a test function
v € V, and applying an integration by parts we obtain the weak form (1.2). This yields a
linear differential operator given in a weak sense as

(Ay(E), u(t)), v)g = aly(t), v) + /

Q

u(t)v dr —|—/ a2ty dr,

o0

with the bilinear form
a(y(t),v) = —/ Vy(t)Vou dr — Bry(t)v dr.
Q o0

and data f48¢(t) = f3s.

1.2. Optimal control problems

We now introduce the guiding optimization problem which serves as basis for the discussions
throughout this thesis. It is formulated as optimal control problem in an abstract form

min J(y,u)
you

S S ), 0 = (A0, u(t), v (0CP)
WO0) —ys,v)y =0 YveV, wue€ Qquq,

with an objective J : Y x @ — R and control constraints Q,q; C Q such that Q.4 is convex,
closed, bounded and non-empty. The PDE constraint is given as defined in (1.1). We do not
include constraints on the states y since they would introduce additional difficulties, which
are not in the focus of this thesis.

The only formal requirement on the objective regarding the algorithmical aspects in this
thesis is that it is sufficiently smooth with respect to its arguments. However, for the sake
of simplicity we assume the objective to depend on states y(7') at the final time. This
avoids an additional term in the adjoint equation, which improves readability throughout
the theoretical discussion. Nevertheless, the extension to a more general case is straightfor-
ward. Some cases require to add an additional regularization term of Tychonoff type which
smoothens the solution of the problem. Thus, we arrive at an objective of the form

Ju) = T@) + 3 llu—lly .
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with a sufficiently smooth J : V — R and a regularization factor v > 0.

Existence and uniqueness of solutions to the abstract problem (OCP) is highly problem
dependent and, hence, discussed in dependence on the character of the objective, the dy-
namic constraint, and particular control constraints. For a more detailed survey on optimal
control problems with PDE constraints we refer the reader to Fursikov [45] or Troltzsch
[111]. In literature there are two different conceptual approaches to tackle the optimization
problem which are of importance to this thesis:

1. The reduced approach where the dynamic state in the objective is expressed in terms
of the control and, thus, is eliminated from the optimization problem

2. The non-reduced approach where state and control are handled explicitly in the opti-
mization problem

In this thesis we follow the reduced approach which is used in many optimization problems
where the dynamic problem is well-posed.

The formulation of the reduced optimal control problem is based on the existence of a
unique solution of the dynamic problem (1.1). Under the assumptions of unique solvability
of the dynamic problem, for all u € Q,4, we can define a solution operator given as the
mapping u — y(u). The mapping satisfies the weak formulation (1.2), i.e.,

(), 0) = (A0, 00, v ((0) vy =0 eV,

where y(t;u) € V denotes the evaluation in the codomain of the solution operator at time
tel

Replacing y by y(u) in the objective of (OCP) we obtain the reduced optimal control
problem

muin Jju) == J(y(u),u), st. u€ Qqq. (ROCP)

Doing so, we have eliminated the state from the optimization problem. In the sequel we
make the pragmatic assumption that solutions of both problems (OCP) and (ROCP) exist.
The same assumption we make for the corresponding problems later in this thesis which we
obtain from (OCP) and (ROCP) via discretization.

Example 1.2. In the recent literature on POD and optimal control, e.g. [61, 62, 112], the
theoretical investigations are often carried out for problems of linear-quadratic type, e.g., a
problem of the form

. 1 2 Y 2
min L y(T) ~vally + 2l

st S (y(t),v) — aly(),v) = (Bu(t),v) 4o

W(0)—ys,v)p =0 YoeV, ue€ Qquq.

with a bilinear form a : V x V — R which is assumed to be V-elliptic, continuous and
symmetric. Further, we have a linear control operator B : R — V* yo € H, and a
regularization factor v > 0. It is well known that for this problem there exists a solution
y € Y which satisfies

lylly < C (lullg +llysllz)

for some constant C' and given u € Q, ys € H. Thus, we have a solution operator that
is continuous, linear, and bounded. Defining the solution operator via the mapping u
y(t; u), the reduced problem has then the simple structure

) 1 2 vy 2
min o y(T5u) —yale + 5lluly st u€ Qaa,
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with a convex objective. Using standard arguments it can be shown that (1.7) has a unique
global solution (y*,u*).

1.3. Necessary optimality conditions

In this section we recall the necessary conditions for optimality and present approaches two
compute the required derivatives. The presentation is aligned with the textbook of Hinze et
al. [60]. Throughout we are interested in local solutions, which are to be distinguished from
a global solution that is more difficult to find. We speak of a local minimum u* of (ROCP)
when there is a neighborhood Qy C Q of u* such that

Jw) < j(u) Vue Q.

Further, we only give first order necessary conditions, as second order sufficient conditions
are not the focus of this thesis and we refer to [111] for details.

Definition 1.1 (Fréchet differentiability). Let U, Z be Banach spaces. An operator
A:U — Z is called Fréchet differentiable on Uy C U if for every ¢ € Uy there is a bounded
linear operator A’(¢) : U — Z such that

[A(¢ +h) — A(¢) — A'(9)hll4

[l =0 1Al

=0, heU

The linear operator A’(¢) is called the Fréchet derivative of A at ¢.

Typically, we will be interested in derivatives in a given direction é € Q, i.e., we consider
directional derivatives A’(¢)¢. Throughout we use the notation Ay for the derivative with
respect to its argument ¢. Whether we mean the Fréchet derivative or the derivative in R™
will be clear from the context. Having in mind the general optimization problem (OCP) we

sum up the assumptions that we require to state necessary optimality conditions.
Assumption 1.1.
1. Q,q is non-empty, convex, and closed.

2. The objective J(y,u) and the operator A(y(t),u(t)) are continuously Fréchet differ-
entiable.

3. The state equation (1.1) has a unique solution y = y(u) € Y, for each u € Qy,
Qad C Q6 C Q

4. The linear operator Ay (y(t;u),u(t)) has a bounded inverse Yu € Q;.

Proposition 1.2. Under Assumption 1.1, the solution operator y(u) corresponding to (1.2)
18 continuously differentiable with respect to u.

The statement is directly obtained applying the implicit function theorem and noting
that the above assumptions are naturally satisfied for the operator %. Let us now state the
conditions to hold in a solution of problem (ROCP).

Theorem 1.3 (Necessary optimality condition). Let Assumption 1.1 hold. If u* is
a local solution to the reduced optimal control problem (ROCP) it follows that u* € Quq
satisfies the variational inequality

<ju(u*),u - u*>Q*><Q >0 Vue€ Q. (1-8)



1.3. Necessary optimality conditions

Proof. Due to the reduced approach the assertion is a result of variational calculus. A
rigorous proof can be found, e.g., in [35]. q.e.d.

Inequality (1.8) is a first-order necessary condition for the reduced problem (ROCP). If
the objective is convex, then (1.8) is even a sufficient condition and u* is a global minimum
(see, e.g., Example 1.2). Otherwise, for a general nonlinear objective, the point u* is only a
local minimum.

Later in the optimization we need to provide the gradient Vj(u) of the reduced objective
during the optimization algorithm. After discretization, in particular we need to compute
derivatives in a set of directions a1, . .., Up,,,, where ng;, may be large and {a;};¢)" form a
basis of some finite dimensional subspace of Q.

In the following we write (j,(u*),u — u*) o instead of the duality pairing, assuming that
Ju(u*) is given as the Riesz representant. Depending on how the representant is computed,
more specific optimality conditions can be stated. Two approaches are distinguished, namely
the adjoint and the sensitivity approach. This distinction of approaches is made several
times throughout this thesis and we start the discussions with the adjoint approach, as it is
the standard in PDE-constrained optimal control problems. The sensitivity approach is of
particular interest for parameter estimation problems.

1.3.1. Adjoint approach

We now discuss different ways of representing the derivative of the reduced objective. The
discussion is of importance for the investigation of optimality of a solution as well as for the
numerical algorithms that are presented in Chapter 2.

An operator based derivation

We introduce the abstract operator e : Y x Q — Y™, defined as

4 A, u)). (1.9)

€(y7 U) = a

With this operator the state equation (1.1) can be written as

e(y,u) =0,

which allows a compact introduction of the adjoint and the sensitivity approach as well as
a clear comparison. With the formulation (1.9) and under Assumption 1.1 the derivative of
the solution operator y,(u) € Q* is given by the identity

€y (y(u)v u)yu(u) + eu(y(u)y U) =0, (110)

recalling that e, (y(u), u) is continuously invertible. In contrast to [60] we derive the adjoint
and the sensitivity equations in a Hilbert space setting. Thus, we use the corresponding
inner product instead of the duality pairing.

Exploiting the Hilbert space structure of Y, we consider the derivative of j(u) at some
point u € Q in a direction 4 € Q

= (Y (W Jy(y(u), u), @) g + (Ju(y(u),u), @)
where y (u) is the adjoint of the linear operator y, (u). We observe that the derivative j, (u)

is given by
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In the adjoint approach we exploit that we can efficiently compute the term y;; (u)J, (y(u), u)
in the derivative representation. Solving equation (1.10) for y, (u) and considering its adjoint
operator yields the equality

Y (W) Ty (y (), u) =~ (y(w), ) (e (y(w), w) "' Iy (y(w), u). (1.11)

=:p

From the last equation we can define the adjoint equation as

ey (y(u), u)p = —Jy (y(u), u) (1.12)

with the adjoint variable p € Y* =Y. Analogously to the state we can define a solution
operator p(u) which satisfies the adjoint equation. A new representation for (1.11) in terms
of the adjoint solution p(u) is then given as

Yulw) Iy (y(u), u) = e (y(u), u)p(w).

Using the adjoint variable we find an expression for the derivative of the reduced objective
as

Julu) = g (y(u), wp(u) + Ju(y(uw), v). (1.13)

We end up with the following steps to compute directional derivatives j, (u)a:
1. Solve the state equation (1.1)
2. Solve the adjoint equation (1.12)
3. Evaluate j,(u)@ using equation (1.13)

Note that for each direction % to be computed, we only have to evaluate once the solu-
tion operator y(u) and once the solution operator p(u), which makes the approach fairly
attractive for optimal control problems.

A Lagrangian based derivation

The adjoint equation is so far given in an abstract form and it is in general not clear how the
adjoint operators look like and which particular spaces to choose in the derivation process.
Hence, in practice one often takes a formal approach to derive a particular form of the adjoint
equation, using a Lagrangian based view and the standard inner product | 7 () g in the
derivation. Based on the weak form (1.2), we introduce the Lagrangian £L: Q@ xY xY — R
as

L(u,y,p) == J(y,u) — /1 (ye — A(y(@), w(t)), p) gr dt — (y(0) — ys,p(0)) 7 » (1.14)

where p is considered as Lagrange multiplier. Following the concepts of constrained op-
timization, one would have to use a separate Lagrange multiplier py for the initial value
‘constraint’. However, standard calculus gives p(0) = po.

Now the adjoint equation can be obtained by differentiation of the Lagrangian with respect
to the states, i.e., we determine p such that for all g € Y

O = ‘Cy(ua y7p)2’7

= Jy(y,w)y — /1 (G = Ay(y(t), u(t))y, )y dt — (5(0),p(0)) g

= Jy(y, w)y — /1 (G, —pe = AL (y(t), u(t))p) y dt — (G(T), p(T)) g -

10
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In analogy to the states for almost all ¢ € I we consider the adjoint equation in weak form
as

(=pe(t) = A (y(t), u(®))p(t),v) , =0, (p(T).0) = (Jy(y,u),v)y VoV,  (L15)

noting that we assume the objective to depend only on states at final time 7. With the
solution operator y(u) inserted in the Lagrangian (1.14) we find the identity

J(w) = L(u,y(u), p),

which holds for every p € Y. Hence, derivatives of the reduced objective in a direction
1 € Q are given as

Ju(u)it = Ly (u,y(w), p)yu(w)i + Lo (u,y(u), p)i.
With a p(u) that solves the adjoint equation (1.15) we have

Ju(w)i = Lo (u, y(u), p(u))i = Ju(y, u)i — /I (Auly(t), u(t)), p(u)) g dt.

‘We obtain the following result for the necessary optimality conditions in the adjoint approach
expressed via the Lagrangian.

Theorem 1.4. Let Assumption 1.1 hold. If (y*,u*) is a solution of (OCP) then there
exists a Lagrange multiplier p* € Y such that u* € Qu.q and the following optimality system
is satisfied

Ly(uw ',y ,p")p=0 VeV (state equation),
Ly(w,y*,p)p=0 VopeVY (adjoint equation), (1.16)
Lo, y*,p" ) u—u*) >0 VYue Quq (gradient equation).

Proof. The result is direct consequence of Theorem 1.3. q.e.d.

The Lagrangian perspective allows for a compact formulation of the optimality conditions
which are often the starting point for a numerical solution of the underlying problem. A
simultaneous solution of the structured system (1.16) is one way to solve (1.1), which one
would classify as non-reduced approach.

Example 1.3. The abstract adjoint operators can be illustrated by means of the following
example. We consider the optimal control problem (1.7) of Example 1.2. With our practical
approach via the Lagrangian we get

£(w.9) = 5 I9(T) — wallly + 3l
- / (e Pt — aly(t). p(£)) — (Bult), phyy )t — (5(0) — yar p(0)

Choosing H = L?(Q2), V = H*(Q) and assuming a(-,-) to represent the diffusion operator
according to Example 1.1, we get

Ly(u,y,p)¢ = (Y(T) — ya, d)q
- / ((61:P)q + (Y6, VD)o + (816, p)ag )t — (6(0), p(0))

With ¢ € Y we can carry out an integration by parts in time to arrive at the adjoint problem
in weak form

(=P, v)q = (VD, VU)o + (61D, 0) g0 Vv €V, p(T) =y(T) — ya.

11
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Due to the symmetry of the diffusion operator we find that a(y(t),v) = a(p(t),v)*, how-
ever, A(y(t),v) # A*(p(t),v) due to the different boundary conditions of state and adjoint
problem. Finally, the variational inequality sounds

(yu* +B*pu—u*)g >0 Vu € Qua, (1.17)

where, B* : V* — Q* & Q is the adjoint of the control operator, which, e.g., in case of B
being the identity mapping is also the identity.

1.3.2. Sensitivity approach

A second way to represent the directional derivative j,(u)@ is by the sensitivity approach,
which can be considered as a rather straightforward way to compute derivatives. As in the
operator based derivation of the adjoint we look at the directional derivative

Ju(w)i = Jy(y(u), w)yu(u)t + Ju(y(u), )i

with u,u € Q. Now, instead of introducing an adjoint variable one can also directly compute
the occurring sensitivity y,(u)t@ € Y for a given direction @. Differentiation of the abstract
state equation e(y,u) = 0 in (1.9) with respect to v in a direction @ yields the sensitivity
equation

ey(y(u), u)g + eu(y(u), u)u = 0, (1.18)

in the variable § = y, (u)@. With a solution g(u) € Y of (1.18) we get
Ju(w)i = Jy(y, wy(T) + Ju(y, u)a. (1.19)
We arrive at the following procedure to compute j, (u)@ via the sensitivity approach:
1. Solve the state equation (1.1)
2. Solve the sensitivity equation (1.18) for each direction @ € Q
3. Evaluate j,(u)@ using equation (1.19)

Note that in contrast to the adjoint approach, the sensitivity equation has to be solved for
each direction @ that is required. On the other hand, with y, (u)a given, the derivative of
any objective of interest J can be cheaply evaluated. This makes the sensitivity approach
appealing, when the number of variables n,, is rather small and there are multiple quanti-
ties of interest in the optimization. The issue will be revisited in §2.5.1 when discussing
automatic differentiation (AD).

We owe to give an explicit equation for the sensitivity variable y related to our reference
state problem in weak form (1.2). Differentiation with respect to @ yields the problem

4 (@), v) g = = (Ay(y(8), u(®)g(t), v} i = (Auly(t), u(t))a(t), v) g ,

dt (1.20)
(#(0).,0) =0 VoV,

in the variable §. Problem (1.20) is often also called the tangent equation. As in the adjoint
case the derivation of the weak form must be understood as formal. A precise justification
of the differentiation procedure can be found in, e.g., [15]. Note that the sensitivity equation
and the adjoint equation are linear in the sensitivity and adjoint variable respectively, which
we exploit in the numerical solution process in §2.5.2.

For completeness, in analogy to Theorem 1.4 we state the infinite-dimensional optimality
conditions resulting from the sensitivity approach, which follow immediately from formula

12



1.4. Parameter estimation

(1.19). Under Assumption 1.1, if (y*,u*) is a local solution of (OCP), then u* € Quq, y*
solves the state equation (1.2), and

<Jy(y*7U*)a g(T»H + <Ju(y*7u*)vu - U*>Q Z 0 Vu € Qada (121)

where § = y,(u — u*) solves (1.20) for each direction (u — u*) € Q.

1.4. Parameter estimation

In this section we introduce the parameter estimation problem and show in which way it
can be considered as a special case of optimal control problems. This embedding allows for
a simultaneous treatment of the two problems throughout most of this thesis. However, a
different optimization method is applied to solve the parameter estimation problem where a
distinction of the two problems is required. For parameter estimation problems we apply a
Gauss—Newton method which has beneficial numerical and statistical properties. From an
applications point of view the motivation of the two problems is entirely different.

Describing the parameter estimation problem in words, we aim to solve the following prob-
lem: Given a dynamic model, we try to find the model parameters, such that a considered
real world process that is supposed to be described by the model, is approximated suffi-
ciently well according to a criterion of choice. The data to compare to is typically obtained
from experiments, thus, contains measurement errors with a certain statistical variance.

More precisely, we seek to identify a vector of variables © € R™+, which in this context
we refer to as parameters, by solving the least-squares problem

n . ~ 2
1= (i — h(y(t:))
Y,u 2 Z ( Si

St ), = (AW, u(0), v (0) )y =0 Vo e V.

i=1

(1.22)

We introduce a measurement data vector np € R"meas where each measurement 7); is taken at
some specified time instances ;. Moreover, the objective comprises the standard deviation
¢; of a measurement error ¢; and the measurement function h : H — R, which we assume to
be Fréchet differentiable. For simplicity we assume h to be a scalar function, however, the
results can easily be extended to a vector valued h. We further require nmeas > n,, which is
necessary for the parameters to be identifiable.

For the sake of simplicity we consider the unconstrained problem and refer to [21] for
constrained parameter estimation problems. Let u""¢ be the 'true’ parameter vector deter-
mined by the laws of nature, then we assume the relations

75 = h(y(ti; u™°)) + &,
€; NN(Oa§?)7 t=1,..., Nmeas;

i.e., we assume the measurement errors to be normally distributed around 0 with standard
deviation ¢;. As for the optimal control case we use again a solution operator which is given
as the mapping v — y(u) and denote with y(t;u) € V' the evaluation of the codomain of
the solution operator at time ¢t € I. This yields the reduced parameter estimation problem

n ~ 2
. 1~ (i — h(y(ti;u) 1 2
- = = 1.2
u%@Q;( . L IFG)P, (1.23)
where we introduced the function F : R™« — R™meas  defined as
: — h(y(ts; .
Fo= W) g
Si
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1. Foundations

With this reformulation, problem (1.23) formally becomes a standard nonlinear least-squares
problem. Considering the measurement data as a given data vector and assuming the control
function space Q to be the space of constant functions from I to R™, we can set

jlu) == lni:a (ﬂz‘ - h(y(t]—;u)))é

2 I Si

The least-squares problem is, thus, embedded in the optimal control context.
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2. Numerical Strategies

The aim of the present chapter is to provide the necessary numerical methods to solve the
optimal control and the parameter estimation problem with a high-dimensional problem
discretization. In Part II we will complement these methods by applying model reduction
to the underlying dynamic systems and, thus, obtain a significant speed up of the solution
process.

Conceptually, we transform the considered optimization problems into a nonlinear pro-
gramming problem (NLP) and use derivative-based algorithms for its solution. We pursue a
method-of-lines approach, meaning that we first employ the spatial discretization to trans-
form the PDE into an ODE and then deal with the time discretization. In analogy to §1.3
we eliminate the discretized states from the formulation of the optimization task and con-
sider the reduced problem. A key aspect is the efficient and accurate computation of the
gradient of the discrete reduced objective. Therefore, we make use of techniques related to
automatic differentiation (AD) which we discuss at the end of the chapter. Moreover, we
re-consider the optimization problem from the semi-discrete perspective since big parts of
the model reduction in Part IT discussion are carried out in the semi-discrete setting.

In the literature several dichotomies can be found regarding numerical strategies for opti-
mal control problems. We already distinguished the reduced and the non-reduced approach
in §1.2, which is also of particular interest from the numerical perspective. A non-reduced
approach in this context can also be referred to as all-at-once approach. Its characteristic
element is that the underlying dynamic model problem and the optimization problem are
solved at the same time. Thus, during the iterations in the optimization the variables might
be infeasible and the underlying differential equations must be satisfied in the solution. The
reduced approach from the optimization perspective can also be called a sequential approach
since one first solves the dynamic system in each iteration and then optimizes the remaining
control variables which are contained in the null space of the non-reduced problem. As
before in the theoretical considerations we follow the reduced-approach.

A second dichotomy we already mentioned is the distinction of adjoint and sensitivity
approach for derivative generation. One finds the alternative naming reverse mode and
forward mode, typically used in the field of AD (see §2.5.1).

A further distinction that is important to our results, is whether we first discretize a
considered problem and then optimize it or vice versa. A comparison of the two strategies
regarding the use of POD is one of the major contributions of this thesis, therefore, we recall
the basic concepts as well as advantages and disadvantages of either strategy. Having both
strategies in mind the problem is first discretized in the methods proposed by us. This is
reflected in the title of this thesis by the keyword ’direct’ which is often used as synonym
for methods where one first takes care about discretization. We comment on the naming
conventions in Remark 2.1.

2.1. Discretize-then-optimize vs. optimize-then-discretize

One can distinguish two main strategies to tackle optimization problems. We refer to
these as discretize-then-optimize (DTO) and optimize-then-discretize (OTD). In the DTO
approach one first discretizes all infinite-dimensional parts of the problem formulation. For
the optimal control example problem (OCP) this means that we carry out a discretization
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2. Numerical Strategies

of the constraints e(y,u) = 0 in the abstract form as in §1.3.1 and replace the variables y
and u by finite dimensional approximations. Thus, we arrive at

min  J(y"",u"") st ey ) =0, u" € Qua. (2.1)

yhT uhT

We use a double index h7r to make clear that space and time are handled in separate
discretization steps. Problem (2.1) is now finite dimensional and has the form of a standard
NLP, which can be solved using a suitable optimization method (see §2.4). In contrast,
with the OTD approach one first derives infinite-dimensional optimality conditions and
subsequently applies a suitable discretization. Starting again from problem (OCP) and
assuming an adjoint approach, OTD means we derive the infinite-dimensional optimality
system (1.16) and then apply discrete strategies to solve the coupled system.

The two possible ways are illustrated in Figure 2.1. In general it is desirable for a method
to exhibit advantages of both strategies. If proper techniques are chosen both paths in the
diagram yield the same result or, in short, the diagram is commutative. In this thesis we aim
to establish this commutativity for our methods in the context of reduced-order modeling
for optimization.

Infinite-dimensional optimize Infinite-dimensional

L - > necessar
optimization problem Y

optimality conditions

discretize ¢ discretize ¢

. . o Discretized
Discretized optimize

... necessary
optimization problem EE——

optimality conditions

Figure 2.1.: Conceptual strategies to determine discretized necessary optimal-
ity conditions. We distinguish discretize-then-optimize (lower-left path) and
optimize-then-discretize (upper-right path). Commutativity of the diagram is
a desirable property.

A comprehensive study and comparison of these concepts is beyond the scope of this
thesis, and we refer to [60] for a reflection of DTO vs. OTD in the context of optimization
with PDE constraints. For ODEs one can find a discussion of the issue in [100].

There seems to be no general recipe on which approach should be chosen for a particu-
lar optimization problem. Following the OTD strategy we start from infinite-dimensional
conditions for optimality. This allows to choose suitable discretizations for the occurring
equations. That is, we can choose the spaces for the adjoint and the state variables prop-
erly, depending on the regularity requirements that a particular application exhibits. Also
an efficient refinement of the meshes for the state and adjoint discretization is indepen-
dently possible. This permits to determine highly accurate solutions and the possibility
of an efficient control of the discretization error. Moreover, tackling the problem on the
infinite-dimensional level allows for a deeper insight into the problem structure. On the
other hand, the requirement to have a thorough understanding of the problem might often
not be fulfilled for non-experts in practice. The derivation of the adjoint problem can be
challenging but is the key to obtain the infinite-dimensional optimality system. Regarding
convergence of an OTD type method, it is possible that the gradient computed from adjoint
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2.1. Discretize-then-optimize vs. optimize-then-discretize

information is no more consistent with the objective after discretization. This drawback
might slow down a derivative-based optimization algorithm or even cause a breakdown of
the algorithm. However, due to the possibility of an independent error control of states and
adjoints this problem can often be mitigated.

Using suitable methods for derivative computation the DTO strategy overcomes the latter
deficit of OTD, since here we can guarantee consistency of objective and gradient. Moreover,
in general we do not need to derive the adjoint problem as derivatives are computed on the
discrete level. If not handled thoroughly, a possible disadvantage of the DTO approach is
that the solution of the discretized optimization problem is not a good approximation of
a solution of the continuous problem. In this case the two displayed routes in Figure 2.1
yield different discrete optimality conditions. Though, as we desire consistency between
discrete and infinite-dimensional problems, in §2.2 and 2.5.2 we will employ techniques such
that commutativity of the diagram is guaranteed. For us this means that we follow a DTO
approach which can also be interpreted as an OTD approach. In Part II we will also carry
over the commutativity property to the case where POD model reduction is involved in the
discretization procedure.

In this thesis we do not keep the states explicitly in the optimization problem. Instead,
analogous to the continuous optimal control scenario in §1.3, we follow a reduced approach.
That is, we transform (2.1) into

min  j(u"") st U € Qua, (2.2)

whT

where j(u"") = J(y"" (u"7),u"7). The existence of the discrete solution operator y"” (u"7) is
inherited from the assumption for the infinite-dimensional case, given a suitable discretiza-
tion method is applied. In the following remark we comment on the difficulties regarding
the terminology of DTO and OTD and the synonymous use of the terms direct and indi-
rect approach. We make clear our understanding of the terms and point out the existing
ambiguities.

Remark 2.1. Often the notion direct method is used in equivalence to DTO while indirect
method is used synonymously with OTD. At the time of developing this thesis there is an
ambiguity regarding these classifications. The expression ’indirect method’ is historically
associated with the calculus of variations, Pontryagins’s maximum principle and the deriva-
tion of the adjoint problem, which is similar to the derivation of the optimality system as
described in §1.3.1. Here the control is typically eliminated from the optimization prob-
lem, hence, only affects the solution algorithms in an indirect way. A ’direct method’ is
historically characterized by the problem transformation to an NLP and with this a direct
iteration on the discretized optimal control variables (see, e.g., [117]). It is now ambiguous
whether a method that derives the optimality system making use of adjoint information,
but still iterates directly on the control variables in the optimization procedure, should
be considered as direct or indirect. On the other hand, when one makes use of adjoint
information on the discretized level this might also be considered as an indirect method
in the community. While the keyword ’direct’ in this thesis title unambiguously describes
the method developed in this thesis, we refer to DTO vs. OTD when comparing solution
methods using reduced-order models (instead of direct vs. indirect).

We choose a direct approach as we believe that for an employment of numerical opti-
mization in industrial practice, it is beneficial to facilitate the access to a method as far
as possible. With the techniques explained, relatively few knowledge on the optimization
algorithm is necessary to solve a wide class of practical relevant problems. We describe our
particular direct strategy in the next sections.
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2. Numerical Strategies

2.2. Problem discretization

The aim of this section is to lay out the techniques applied in order to obtain the reduced
NLP (2.2), in particular the discretization methods that stand behind the solution operator
y"" (u""). We employ a method of lines, that is, we do the spatial discretization first and
the integration in time subsequently. The semi-discrete problems (spatially discretized) are
of crucial importance to us as it is the starting point for many investigations of model
reduction presented in Chapter 3.

2.2.1. Space discretization

We start the discretization of problem (OCP) converting the infinite-dimensional spaces V'
and R into finite dimensional spaces V" and R". In general, it is essential that we apply
a suitable method that fits the requirement of a particular application. Finite Difference
Methods are easy to handle, thus, often used by practitioners. Other applications require
more sophisticated discretizations, e.g., for convection dominated problems Finite Volume
[82] or (Nodal) Discontinuous Galerkin Methods [58] are usually chosen. These discretization
methods as well as the frequently used finite element method (FEM) [24] use basis functions
with local support, which allow to compute solutions on complicated geometries. On the
other hand, on simple geometries one can exploit the superior convergence properties of
spectral methods [58] where global basis functions are used. With regard to the applicability
of POD model reduction techniques, it is beneficial that the method is or at least can be
interpreted as Galerkin method. The weak form (1.2) is the natural starting point for the
Galerkin discretization. We now describe briefly the basic steps that lead to the semi-discrete

problem.
We discretize the Hilbert space V choosing a finite dimensional conform subspace V* ¢ V
of dimension N and assume ¢1(r),...,¢n(r) to be a basis of V". Recall the most general

case of @ = L?(I, R) for the control function space where R = L?(2)"«. Hence, to obtain
the semi-discrete problem formulation we also need to discretize the space R. For the sake
of simplicity we assume during the discussion of the discretization that n, = 1 and choose
a subspace R" C V" to approximate R. Thus, we consider a semi-discrete approximation
u € L?(I, R") of u.

With these preliminaries the Galerkin method is described as follows. For each u” €
L?(I,R") and y, € H we seek a solution 3" (t) € V", t € I such that the system

d

G W00 = (AG O D) 0i)y s (O s 0) g =0, G=1 N (23)

is satisfied. Expanding the function y" in the space V" we get
N
y'(tr) =D m)ei(r), (tr)elxQ, (2.4)
i=1

where z : I — R is a vector valued time-dependent function. For control function approx-
imations u" € L%(I, R") we consider the expansion

W) =D at)el(r), (L) elxQ,
i=1

with ¢{(r), ..., % (r) being linear combinations of ¢1(r), ..., (r) and a basis of RM. We

use the notation ¢ for semi-discrete control variables, for which we have in general ¢ € Q"
with Q" := L2(I,R"a).
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An evaluation of (2.3) yields a system of ODEs of the form
Mi(t) = f(t,z(t),q(t)), z(0)=uz, tel, (2.5)

with the ODE state variable x(t) € RY, a constant, symmetric, and positive-definite mass
matrix M € R¥*N defined via

Mij = (pi, i)y, 1<i,j<N, (2.6)
and the control ¢ € Q". The right-hand side f and the initial value x4 are, thus, defined as

F(t2(t),a) = (A" (1), " (), 0) gy 7o = M {yer 9
with ¢ = (¢1,...,n)T. To problem (2.5) in the following we will also refer as initial
value problem (IVP). The dynamic system (2.5) has the general form of an ODE, however,
originating from a Galerkin discretization it exhibits certain structure. Namely, it can
essentially be separated into a linear and a nonlinear part. When we dedicate ourselves to
model reduction we assume the ODE system to be of the form

Mé(t) = Sa(t) + F(e(t). q(t) + C(q(t), 2(0) =a,, t€ I, (2.7)

which we refer to as the high-fidelity (HiFi) model. The naming indicates that we assume
the Galerkin discretization to be able to capture all of the essential dynamics of the model
equations. In the linear part we have the constant matrix S € RY x RY and in the nonlinear
part we have F': RV x R" — RY which results from the discretization of the nonlinearity
O(y,u) in the PDE problem formulation (1.4). The third term C(q) is an affine mapping
that contains the discretization of linear controls and additional constant terms arising from,
e.g., the discretization of the boundaries.

Remark 2.2. For the sake of simplicity we neglect the affine part C'(¢) for the discussions
in the semi-discrete setting. The model structure essential for this thesis is reflected by the
linear and the nonlinear part. In the presented methods for model reduction C(g) can be
handled analogous to the linear part .S.

So far we have not commented on the particular form of the space V" and the basis
©1,...,pn. Assuming FEM as particular Galerkin discretization, the dimension of V" can
be expected to be large for relevant applications. However, conceptionally the subspace
V' is arbitrary, a fact that we exploit for model reduction, where a small solution space is
constructed that is tailored for the particular application at hand. The following example
illustrates the discretization steps resulting in a HiFi model of the form (2.7).

Example 2.1. We consider again the linear heat equation of Example 1.1 and apply a
FEM discretization with linear basis functions. Let Q" be a triangulation of Q and assume
vi, 1 =1,...,nq, to be the vertices. Note that as we impose boundary conditions weakly
(see Remark 1.2) the number of degrees of freedom N after discretization is the same as ngq.
Let the basis functions ¢; be defined by the requirements that for all 1 <4, j < ng

©;(vi) = 8;; and ¢, is linear on each element in Q.

The Galerkin condition now reads as

d
&yhgajdr = a(yh,goj) —|—/ uhcpj dr +/ Ba; dr,
Q Q N

/Q<yh<o>—ys>sojdr:o, i—1N
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For simplicity we assume u" € R" = V. With the approximation " as in (2.4) and the
definition of the bilinear form in Example 1.1, the parts of the right-hand side of the HiFi
model are defined as

N

Sj,x(t) = Zl‘i(t) (—/ V(inij d’l‘ —/ 51(,01‘(,0]‘ d?‘) ;
i=1 Q o0
N

Cj(Q)ZZQi/ PiP; d?”+/3 Bawj dr, j=1,...,N,
i=1 9 Q

where C;(g) is the j-th component of the affine mapping C. As the considered heat equation
is linear, obviously, there is no contribution F'. We will comment on the particular structure
of F' when dealing with the Discrete Empirical Interpolation Method in §3.2. Note that
we carried out the discretization on the unit square making the evaluation of the integrals
simple. For more general domains one would consider a transformation of each element to a
reference element where the evaluations of the matrices are carried out (see [24] for details).

2.2.2. Time discretization

With our chosen approach, the last discretization step is the time integration of the semi-
discrete problem derived in the prior section. Again we start by discretizing the controls
q € Q" which are still given continuously in time. Then we discuss the time discretization
scheme. We restrict ourselves to lay out the main ideas of the implicit Euler scheme which
we use for the theoretical discussion of the discrete concepts. With the help of this scheme
we illustrate the techniques for derivative computation via internal numerical differentiation
in §2.5.2 and give error estimates in the model reduction context in Part II. Moreover, we
recall some stability and consistency results as we need to pay attention to these aspects
when computing derivatives.

To discretize ¢ € L*(I,R"), we start by dividing the time domain I into ng subintervals
using

O=tg < <ty =T.

On the time grid we replace the infinite-dimensional ¢(t) by a finite dimensional function
q" (t). To keep notation simple, we restrict ourselves to piecewise constant functions on the
above time grid in this thesis and define ¢7(t) as

g (t)=¢" forteti1,ti], i=1,... t,

with each vector §' € R™ characterizing the discretization on a subinterval. Finally we
unite all vectors ¢* in a single vector § € R™a™a,

Remark 2.3. Via the control discretization in time we explicitly introduce discontinuities
in the right-hand side f(t,x,q) of the ODE (2.5). In general, discontinuities may appear
already in the problem formulation, e.g., due to ¢ € L?(I,R") or due to discontinuous
data f92t(¢). For the discussion of the time integration, however, we make the assumption
that the right-hand side f is Lipschitz-continuous and differentiable with respect to x. The
general case with discontinuities can then be retrieved by considering a piecewise integra-
tion of the problem where on each subinterval the assumption on Lipschitz-continuity and
differentiability are satisfied.

Under the assumption on Lipschitz-continuity of f with respect to x, we obtain local
existence and uniqueness of solutions of (2.5) from the theorem of Picard-Lindelof. If a
solution z(¢) on the whole time domain I exists then we have x € C'(I,RY).
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For our numerical computations we use the software tool DAESOL-II by Jan Albersmeyer
[2] in which a BDF method is implemented and which is also capable of providing derivatives
of arbitrary order for dynamic systems. The method uses a variety of numerical strategies
such as adaptive step size, order control, and monitoring of the iteration matrix, to allow an
efficient integration of IVPs. We will discuss relevant issues on basis of the implicit Euler
scheme which is equivalent to a BDF scheme with order 1. A detailed description of the
tool DAESOL-IT and the implemented strategies can be found in [2, 14].

We consider the implicit Euler scheme with n, steps on the time domain 7. We choose the
step sizes adaptively and use the parameter 7 to denote the time discretization. Consider

a sequence of step sizes 7, > 0 that generate a time grid to,...,t,. such that ¢ty = 0,
tn =tn-1+7n, n=1,...,n,, and t,_ = T. The iterates 2" := x(t,_1) are determined as
zn+1 _ J?n
FIE(lJ%Fl) = Mi_f(tn7mn+1aQ):07 nzlv"'7n‘f'7 (28)
Tn

where the first iterate is given as x! = z(tg) = x,. The indexing for the states is started at
1 to be consistent with the model reduction notation. As f is assumed to be nonlinear, in
each step the nonlinear equations (2.8) must be solved. We apply a Newton-type method
(see §2.4) with a fixed maximum number of iterations, which is set to three in DAESOL-II.
Each iterate 2" *! is determined by j < 3 recursions of

LI+l gl MFIE(g;"“vj). (2.9)
n+1,1 _

For simplicity we assume that the first Newton iterate is x 2™. The iteration matrix
M is an approximation of the inverse of the Jacobian of F™®, that is

M~ (dFIE(J:”+1))_1 .

dl.n+1

The evaluation and decomposition of M is in general the most time consuming part of the
integration. Hence, the monitor strategy in DAESOL-II keeps the iteration matrix fixed for
several time steps and decides via a suitable error control when to rebuild M.

Consistency, stability, and stiffness

We now address the issues of consistency, stability, and stiffness of the implicit Euler scheme.
However, we restrain from going beyond a qualitative analysis. For a comprehensive study
see [38, 53]. The analysis of consistency is carried out by insertion of the true solution z(¢)
into the particular discretization scheme. We define the local truncation error of the implicit
Euler scheme as

z(t+71)—x(t)

o(t,7):=M
-

—ft+7,2(t+71),q9, tel,r>0.

A discretization scheme is called consistent of order p if for

o = t
a(r) max o(t,7)

we have lin}) g(t) =0 and a(r) = O(7P).
T—

Obviously, the implicit Euler scheme is of order p = 1.
For the analysis of stability of the integration scheme, first, we need to give a characteri-
zation of stability of the underlying ODE. For ODEs the question of stability is often traced
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back to the investigation of the eigenvalues of the Jacobian of the right-hand side. In this
way, an IVP is considered to be stable if

max Re(A) <0 with A= 90220

2.10
AEa(A) de (2.10)

where 0(A) denotes the spectrum of A. For a linear IVP the stability condition (2.10) can
easily be checked due to A being constant. For a nonlinear problem one way to characterize
stability, is to require the condition (2.10) to be satisfied in a fix point z7, i.e., where
f(t,zf,q) = 0. In general stability of a solution is characterized by the fact that small
perturbations in the initial data produce small errors in the solution.

With this, a discretization scheme is called stable if it carries over the stability property
from the IVP to the produced sequence 2, . .., 2" . The stability requirement for a mapping
En: g" — 2"t that describes an iteration step is given as

p(ﬁw@ﬂ><l, (2.11)

dxm

where p(-) denotes the spectral radius. We will show in the example below that the implicit
Euler scheme is stable.

A further relevant property of IVPs is stiffness, for which multiple characterizations exist
in the literature. A rigorous definition is still missing. A common characterization which is
useful for our considerations is given by the following condition. We call a stable IVP stiff
at time t € I, if

max Re(\) > min Re(\) with A= M

A€o (A) Ao (A) dx
Note that the stability assumption requires all RE(A) to be negative. In a consistent dis-
cretization scheme the step size must be chosen properly to guarantee (2.11), which becomes
a subtle issue for stiff problems.

Spoken qualitatively, consistency and stability of a scheme imply convergence of a discrete
solution sequence z', ..., 2"  to the continuous solution z(t) of (2.5). In case of the implicit
Euler scheme convergence can, hence, be achieved choosing the step size sufficiently small.
Let us consider an example to illustrate how the terms stability and stiffness relate to a
simple parabolic problem.

Example 2.2. We follow the discussion in [93] considering the 1D linear heat equation on
the domain Q = [0, 7] with homogeneous Dirichlet boundary

Yy — Ay =20 in I x,
y=0 on I x 09, (2.12)
y(0) = ys on

and apply a finite differences discretization on an equidistant grid with N + 2 grid points
and mesh size h. Denoting with x;(¢), ¢ = 0,..., N + 1 the values of the states at the grid
points we obtain a linear IVP of the form

z(t) = Sz(t), =x(0)=x,, (2.13)
where z = (z1,...,25)T and S € RV*¥ is the discrete Laplacian given as
-2 1
1 1

S=—
2

h 1

1 -2
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2.2. Problem discretization

The node values of z¢ and x 1 are set to zero to account for the boundary conditions.
The eigenvalues \;, and eigenvectors v¥ of S have an analytic expression (see also [93]), here
given as

Ae = 2h"%(cos(kh) — 1), oF =sin(ikh), 1<i,k,<N.
It can be now be seen that the finite difference discretization of (2.12) yields a stable IVP.
For the first eigenvalue we find

A1 = 2h"%(cos(h) — 1) = 2h™2 Z %h% = -1+ 0(h?)
i=1

and that the last eigenvalue is

2(N +1)2 Nm 4(N +1)2
AN = 2 (COS<N+1>1>R:W2.

Clearly, when choosing a finer grid, Ay — —oo. Thus, the IVP (2.13) becomes stiffer with
increasing N.

Using the eigenvectors v*

as new basis for (2.13), we can consider the transformed problem
Tp(t) = Mg (t), #(0)=2s, k=1,...,N. (2.14)

For A\ < 0 an explicit time-stepping method has to choose very small time step sizes 7, to
guarantee a stable integration of (2.14). Instead, implicit methods should be used. With

an implicit Euler scheme for all n = 1,...,n, we have
@t —an /=Nyt e T =30/ (1 - ),

thus, the stability condition (2.11) is satisfied for all 7 > 0 as A\; < 0.

In practice, however, we do not have the decomposition into modes as in (2.14) of the
original problem (2.13). Hence, instead of solving the implicit system analytically we apply
a Newton method. In analogy to (2.9) we obtain for (2.14)

3 . 3 . 1 } o . .
xZH’JH = xZH’J - (xZH’j — Iy - Tn)\k.’EZJrl’j) ,
]. — Tn)\k

where we use the approximation 1 — 7, A, of the Jacobian of the implicit system describing
the time step. According to (2.11) this recursion is stable if, for each k, we have

1—
’1 Tk | g, (2.15)

R

The condition is satisfied for all 7,, if the approximations 7, \* of 7,\; are good. For the
integration scheme this means that the time instance where the iteration matrix has been
built is close to the current time instance. Regarding the choice of the step size we can
further transform condition (2.15). Due to A; < 0 it is equivalent to

1— 7\ - 14 27,2
ST 9 A <2270 & 7, < ootk
]-_Tn)\k ‘/\k|

An adaptive integrator for stiff problems seeks to choose the step size as large as possible
while keeping the scheme stable. We can see that that the step size is limited. However,
T, can be chosen large given that only low-frequency modes Zj are non-zero at the current
state of the time evolution. This would be the case if 2™ can be written as

!
" = E Ty vk,

k=1
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and [ < N. In contrast when high-frequency modes with Ay < 0 are present, the step size
must be chosen small. The following is a common scenario: Assume high-frequency modes to
be present in the initial value x5. Due to the damping properties of the the Laplace operator,
an efficient integrator would choose rather small steps with many computations of M at the
beginning and then increase the step size and the reuse of the iteration matrix. We revisit
the issue when discussing derivative computation via internal numerical differentiation in
§2.5.2.

2.3. The optimization problem from the ODE perspective

We now look at optimal control problem from the semi-discrete perspective, i.e. after spatial
discretization. This ODE perspective is important as big parts of the model reduction
discussion are carried out in this setting. In addition we lay out the connection between the
infinite-dimensional derivative equations and their semi-discrete counterparts in the second
part of this section.

Inserting the semi-discrete versions y and u” as defined in §2.2.1 into the abstract prob-
lem (OCP), we can define J"(z, q) := J(y",u") with the ODE states x and spatially discrete
controls g. This results in an ODE-constrained optimal control problem

min Jh(:n,q)
w4 (2.16)
st Mi(t) = f(t,x(t),q(t), q€ iy

From the ODE perspective the solution approach in this thesis can be described as a di-
rect single shooting method to solve (2.16). 'Direct’ as we first discretize the control, which
stands in contrast to an indirect approach based on Pontryagin’s maximum principle. 'Single
shooting’ reflects the fact that we follow the reduced approach where all states are elimi-
nated from the optimization problem. Alternative direct approaches for ODE-constrained
optimal control problems include multiple shooting or collocation, where a moderate or a
large number of states, respectively, is handled explicitly in the discretized optimization
problem. For detailed reading on optimal control with ODE constraints we refer to [23, 48].

Assuming the existence of a solution operator z(q) to (2.7) for every ¢ € Q",, we can
state the semi-discrete reduced problem

min - j"(g) = J"(2(g):0) st ¢ € Q. (2.17)

Analogously to §1.3.1 and §1.3.2 we now seek to compute the derivative of the objective
j"(q) with respect to the control. While, technically we do this via techniques based on
automatic differentiation on the semi-discrete level (see §2.5), we need to have in mind our
goal of commutativity of the DTO and the OTD approaches. Thus, we need to ensure that
the discretely computed derivatives are consistent with their time-continuous counterparts.
In the following we present semi-discrete derivative equations obtained via the adjoint and
the sensitivity approach and discuss their relation to the equations derived in §1.3.

2.3.1. Relation of continuous and semi-discrete adjoints

Starting with the adjoint approach, the linear semi-discrete adjoint equation to problem
(2.16) is given as

=) =M ot 2(t),q(1),  2(T) = T (2, 9), (2.18)

with adjoint state variables z : I — RY and t € I. Note that J” is supposed to depend
on states z(T") only at final time, thus, the differentiation subscript = here stands for total
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2.3. The optimization problem from the ODE perspective

differentiation with respect to x(7T"). The derivation is similar to §1.3.1 and can be found,
e.g., in [25]. Given a solution z(t) of (2.18) one finds a time-continuous representation of a
directional derivative of the reduced objective in a direction § € Q" as

M@= / ()M fy(a(t), q(t))ddt + Pz, )q. (2.19)

We are now interested in the relation between the semi-discrete problem (2.18) and the
adjoint problem in weak form (1.15) discretized in space. More particularly, we aim to show
that differentiation and discretization commute on the spatial level and their solutions are
linearly related via the mass matrix.

It is well known that for pure Galerkin discretizations the DTO and OTD approaches
commute, provided that the state equation is given in weak form. Let us illustrate how this
can be seen for our method-of-lines approach. Consider the Galerkin approximation of the
adjoint variable p

ph(t,r) = iii(t)gpi(r) evh (2.20)
i=1
and u" as in §2.2.1. With ¢ = (¢1,...,pn)7, a Galerkin discretization of (1.15) yields
(=p} + A (" (@), u" (0)p", ), =0, (P"(D), ), = Ty (", u")e,
which is equivalent to
— MZ+ (As(y" (1), u" (1) 0, 0),, =0, MET) = Jy(y",u")p, (2.21)
The following proposition describes the relation between solutions of (2.21) and (2.18).

Proposition 2.1. Assume that o Galerkin discretization with the same subspace V" is
applied to (1.2) and (1.15), and that the same semi-discrete control space Q" is chosen.
Then for solutions z(t) to (2.18) and Z(t) to (2.21) we have the relation

Ft)=M"'2(t), tel (2.22)
Proof. With the approximation y"(¢) € V" as in (2.4), we can write (2.5) as
Mi = (A(y" (1), u" (1) ¢) - 2(0) = M~ (s, 0) g

We follow now the derivation process of the semi-discrete adjoint from the Galerkin per-
spective. To this end, consider the semi-discrete analogon to the Lagrangian (1.14)

Lhg,z, 2) = J(y",u) - /IzTa'c —2TMt <A(yh(t),uh(t)), go>H dt

- ZT(O) (‘T(O) - Mil <ysa ()0>H) )
where £ : Q" x HY(I,RN) x L2(I,RY) — R and 2 € L*(I,R") is the Lagrange multiplier.
Differentiating the Lagrangian with respect to z in a direction & € H'(I,R") we obtain
Ly(q.,2)2 = Jy(y" u")g" ~ /ZTSLU — (A (" (), u" ()7, 2T M o), dt — 2T (0)z(0),
I
where j" := Ly = 27p. Adjoining the spatial and temporal operators and setting
LM (q,z,2)T = 0 yields

0= z7J,(y", u")p — /Ii‘T (—73 — <g0,AZ(yh(t),uh(t))zTM71<p>H) dt — 7 (T)z(T).
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Requiring the last equation to hold for all # € H'(I,RY) yields an adjoint solution z €
CY(I,RY) that also solves

—Z= <AZ(yh(t), ul (1)) 2T M~ 1y, <p>H, 2(T) = Jy(yh,uh)tp. (2.23)
A comparison of variables between (2.23) and (2.21) concludes the proof. q.e.d.

Key to the proofis that in either derivation of the adjoint we computed the exact derivative
of the operator A(y(t), u(t)) and used the exact adjoint in (-,-) ;. The derivations differ only
in the trial and test functions being once in V and once in V". The commutation property in
general might get lost, e.g., when stabilization terms as streamline diffusion [34] are added.

Remark 2.4. In the DTO approach the discretization of the adjoint is automatically de-
termined by the choice of the discretization of the states. In contrast, via OTD one has the
freedom to choose a particular approximation space for the adjoint variable p.

2.3.2. Relation of continuous and semi-discrete sensitivities

We now draw our attention to the semi-discrete version of the sensitivity equations. Differ-
entiation of the ODE problem (2.5) with respect to the control ¢ in a direction § € L2(I,R"q)
yields

w(t) = falt, x(t), Qu(t) + fo(t, 2(t), 9)q,  w(0) =0. (2.24)

with w(t) := z4(t)§. In the ODE context (2.24) is typically called variational differential
equation (VDE). The derivative of the reduced semi-discrete objective in the direction § is
given as

Jo@a= J(@(T),qw(T) + Jg (x(T), q)d. (2.25)

It can be ecasily seen that the VDE is the discretization of the sensitivity equation (1.20)
when identical Galerkin subspaces V" are used. Thus, choosing V" as trial and test space
to obtain a solution §"(t) = y!(t)g of (1.20) with direction ¢ € Q", we have the relation

7"t =wt)Ty Vtel. (2.26)

2.4. Newton-type methods

In this section we recall concepts of Newton-type methods that can be used to solve the
optimization problem (OCP) once transformed into a finite dimensional Nonlinear Program-
ming Problem (NLP). In particular we present the sequential quadratic programming (SQP)
method and the Gauss—Newton method, which we use to solve optimal control and param-
eter estimation problems respectively. We restrict ourselves to basic ideas and refer the
reader to the comprehensive textbook on numerical optimization by Nocedal and Wright
[87]. In our practical implementation we use the software package SNOPT Version 7 [49]
for optimal control problems and a Gauss—Newton method implemented in Matlab® by
ourselves.
Let us consider the NLP (2.2) in the form

min j"7(q) st g€, (2.27)

with j"7(q) = j(u"™) and Q"7 being the discretized constraints. We use ¢ from now on also
for the fully discretized control vector. It will be clear from the context whether ¢ € Q" or
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q € Q"7 with Q"™ = R"s and n, the number of discretized control variables. For the sake of
simplicity we lay out the basic concepts only for the unconstrained case, as the handling of
constraints is not the focus of this thesis. In presence of equality and inequality constraints
standard techniques are applied in our numerical computations (see also the documentation
of SNOPT [49)]).

The first-order optimality conditions of an NLP can be expressed in the form

Fla):=Vj"(9) =0 (2.28)

where F : D C R" — R™ and ¢ € R™ is assumed to be a fully-discretized control vector.
As F is in general nonlinear we compute the solution iteratively via

Ag" = —M(¢")F(q"), 4" =q" + anAd”, (2.29)

where M(¢™) € R™*™ and «,, the step length, also called the damping parameter. We
refer to Newton-type methods for any method that can be expressed in the above form.

Depending on the choice of M we obtain specific methods. E.g., choosing M = J~1,
where J is the Jacobian of F, gives the classic Newton method. If M is an approximation
of the inverse of J one speaks of a Quasi-Newton method.

The question of global convergence arises, where the choice of the damping parameter oy
is of importance. Typically a trust-region or a line-search method is employed. The latter we
briefly address in the context of the Sequential Quadratic Programming method. Regarding
local convergence of Newton-type methods in §2.4.3 we recall the local contraction theorem
by Bock.

2.4.1. Sequential quadratic programming

SQP is a class of optimization algorithms where the NLP is replaced by a quadratic ap-
proximation at the current iterate. In each step a quadratic subproblem is solved to find
a new search direction and subsequently a globalization strategy is employed to find a new
iterate. Particular methods differ in how the latter two issues are tackled. For illustration
we consider the unconstrained problem

min  f(q) == j""(q) (2.30)

q
with the scalar objective f : R? — R. The quadratic programming (QP) problem in each
step then is given by

min - (Aq")THAq" + (VF(a")" A"
For the Hessian approximation H,, BFGS updating is applied in SNOPT for which super-
linear convergence can be expected under certain conditions. The new iterate is found via
the Newton-type iteration

"t =q¢" + a,A¢"  where Aq" = —H, 'V f(q").

Applying a line search strategy to determine ¢! one tries to find a sufficient decrease in

some merit function where for simplicity we consider
Hlan) == f(q" + anAg™™)  a, > 0.

With regard to the use of model reduction techniques, the following issues become relevant
to us. Given that H, is positive definite, which is guaranteed by the BFGS update, a
decrease in ¢(ay,) can only be assured if V f(g™) is a sufficiently good approximation of the
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gradient of f. While this is of importance to any type of NLP approximating the gradient
properly is a challenging task in the model reduction context. The issue is addressed in §4.4.
A further aspect is that due to the BFGS updating the method exhibits superlinear local
convergence properties. In practice, however, the SQP solver needs a few iterations to build
a good approximation of the Hessian. Thus, it is beneficial to keep the SQP optimization
procedure untouched as long as possible. In our model reduction approach a series of NLPs
is solved. Thus, the question of when to reconstruct the underlying NLP is important for
efficiency (see §5.2).

2.4.2. Gauss—Newton method

We employ a Gauss—Newton method to solve the (reduced) parameter estimation problem

(1.23), written in the form
1 2
min — ||F . 2.31
Join 5 17 (@)l (2.31)
Recall that for parameter estimation problems we assume also in the general PDE-constrained
case that u € R™». Here and in the remainder in the parameter estimation context we con-

sider o
i — h(y" (85 q), )
Fi(q) :== L (" (ti5 ) u>, i=1,..., Dmeas, (2.32)
Si
which is the semi-discretized analogon of F(u) as in §1.4. Notational confusion can, thus,
be excluded. To F(q) we also refer as the residual of the parameter estimation problem.

In analogy to the SQP method we consider a linearized problem

: 1 n n n : n dr q
win  LIF@) + I with 7 = O] (2.33)
Aq” 2 dq q"
Throughout, we require J to satisfy
rank(J(q)) =n, Vg e R"™ (2.34)

which implies that we have at least as many measurements as parameters, i.e., meas > Ngq-
Under the assumptions the solution of (2.33) is given by

Ag" = —TH (g F(g") = —(TT (¢ T () T (¢")F (g™, (2.35)

where the operator JT, often referred to as the Moore-Penrose pseudoinverse, is continuously
differentiable with respect to ¢ given F € C?(R"). As before the new ¢"*! is determined
via a Newton-type iteration.

We further see that

13 IF@I = 7@ F ().

Due to assumption (2.34), J7(¢")J(¢") in (2.35) is positive definite. Thus, when using
gobalization strategies for Gauss—Newton finding a descent direction requires a proper ap-
proximation of J7(¢q) and F(q). To obtain the Jacobian J it is necessary to compute the
sensitivities for all canonical directions e; € R, j =1,...,n, as

yg({’m Q)eju 517 e 7tnmcasv (236)

which can be obtained as solution of the VDE (2.24). Thus, later in the model reduction
approach we need to find good approximations not only of the gradient of the objective, but
also of the sensitivities of the states " with respect to the parameters at all measurement
time points ;.
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Note that one could also use an adjoint approach for the computation of 7, however, this
would require npeas adjoint directions to be propagated in the adjoint equation, which in
general is less efficient as we assume Nmeas > Ng-

Via the Jacobian J we can also analyze the statistical quality of an estimated parameter
vector. As the measurements are random variables, this is also true for each solution ¢* to
(1.23). Thus, we consider the variance-covariance matrix C in the solution ¢*, given by

Clq") = (T (@) I (@)

From the diagonal entries of C' one can compute linear approximations of the confidence
regions of the parameter estimates. The variance-covariance matrix becomes of particular
interest when solving experimental design problems, where one seeks to reduce the entries
of C(g*) by designing the experiment properly. We refer to [21, 72] for further information.

2.4.3. Local convergence of Newton-type methods

In §5.3.1 we present an a posteriori estimate for optimization solutions obtained with the
reduced-order model based on the local contraction theorem by Bock [21]. Therefore, we
recall a variant as in [93]. The proof is based on the Banach fixed-point theorem and can
be found in [21, 93].

Let F, M, and D be given as in the Newton-type iterations (2.29) and J be the Jacobian
of F. We denote by N the set of Newton pairs defined as

N:=A{(¢,q") e PxP| ¢ =q—M(g)F(9)}- (2.37)
and require the following two conditions on J and M (compare also [37]).

Definition 2.2 (w-condition). The Jacobian J and the matrix M satisfy the w-condition
on D if there exists w < oo such that for all £ € [0,1] and (q,q¢) € N

2
I

M)V (T (g +€&d" =) =T (@) (¢ =gl <wélld —q

Definition 2.3 (k-condition). M satisfies the x-condition on D if there exists k < 1 such
that for all (¢,q") € N

[(M(g"))(F(q) = T(@M(@)F (@)l < s llg" —qll-

Definition 2.4 (contraction ball). Let 0, := x + & ||Ag™|| where A¢™ = —M(q")F(q").
If 9 < 1, we define the contraction ball

1ad°]]

Dy:={qeR™||g—pol| < —}.
0 {q g polll_éo}

Theorem 2.5. (Local Contraction Theorem)
Let J and M satisfy the w- and k-conditions on D. Further, assume that there is an initial
quess ¢° € D such that we have

0o <1 and Dy C D.
Then the following holds:
(1) The iterates ¢"t1 = ¢ + Aq™ are well defined and q" € Dqy for all n.

*

(2) There exists ¢* € Dy such that lim, . q" = q*.
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(3) The a priori estimate ||¢"™" — ¢*|| < %5@ holds.
(4) The steps satisfy || Aq™ || < 6, |Ag™ .
(5) M(q")F(g) =0

Bock’s local contraction theorem describes the local convergence properties of Newton-
type methods. The w-condition is a measure for the nonlinearity of the problem, e.g., for
linear problems we have w = 0. The x-condition measures how well M approximates the
inverse of the Jacobian. This can be seen in the alternative formulation (provided M is
invertible)

MY M Hq) = T @) — )| <rklld —all-

With Gauss-Newton we have M(q) = J'(q) = (T (¢")T(¢"))"* T (¢") and F(q) rep-
resents the components of the least-squares objective as defined in (2.32). Due to condition
(2.34) we find

Bq=-T@)Fa) =0 & TIF@) = 35 1F@IF =0 (239

thus, the size of the increment Agq is a suitable stopping criterion for the Gauss—Newton
iterations in the unconstrained case. In contrast for general Newton-type methods the choice
of a stopping criterion is less clear. Thus, we use the stopping criterion of the employed
solver, providing it with the necessary objective, derivative, and constraint information (see
SNOPT manual [49] for details).

Moreover, for Gauss—Newton we find that the x-condition in a solution ¢* is equivalent
to

|(TT(q) — Tt (q*) F(q")]|
lg" — q~||

< K.

Requiring x < 1 is, hence, a restriction on the nonlinearity of the problem and on the
size of the parameter estimation residual F. These conditions can be interpreted in such
a way that the Gauss—Newton method tends to be attracted only by statistical relevant
minima (see [21]). In addition, it can be seen that for small residuals, J7J is a good
approximation of the Hessian of the parameter estimation objective (see, e.g., [87]) which
allows for fast convergence of the method. The latter two aspects motivate our choice to
use Gauss—Newton. Note that with Gauss—Newton in general the numerical effort for the
computation of the increment is larger than providing the gradient via an adjoint approach
as for optimal control problems.

2.5. Numerical Differentiation

In practice, we face the problem of computing a variety of derivatives that are necessary not
only for computing, e.g., the gradient of the NLP (2.2), but also for simulation of the states,
provided that a implicit time-stepping scheme is used. For an efficient use in optimization
we require a fast and accurate computation of derivatives. We do not want to provide the
derivatives in analytical form by hand, as this is error prone and barely tractable for relevant
real-world problems which may contain complicated nonlinear model functions. A common
technique to evaluate derivatives in a convenient way is finite differences where, however,
we introduce truncation errors which is often unacceptable for the accuracy demands in
optimization.

In our direct approach we need to compute derivatives on two different levels. On the
one hand, we have to provide derivatives of the right-hand sides f of the dynamic systems
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to the integrator. For this purpose we use AD which allows us to obtain derivatives that
are exact up to machine precision in an almost ’automatic’ way. The basic concepts are
presented in the first part of this section. On the other hand, due to the direct approach
we need to compute derivatives of the reduced objective in the NLP (2.2), meaning that we
need to differentiate the integration scheme used to solve the underlying dynamic system.
For the discretely computed derivatives, in addition, we have the goal (see §2.1) that they
are consistent with solutions of the adjoint and sensitivity equations which we introduced in
§2.3. We achieve this by following the principle of internal numerical differentiation (IND)
[19] which is closely related to AD and which we discuss in §2.5.2. In the last part of this
chapter we point out difficulties when applying IND that arise in particular with ordinary
differential equations (ODEs) stemming from PDE discretizations.

2.5.1. Automatic differentiation

The technique of automatic differentiation (AD), often also referred to as Algorithmic Differ-
entiation, is based on the fact that every mathematical function implemented as computer
code is a sequence of basic mathematical operations of which the exact derivatives are
known. Combining this with an efficient application of the chain rule, we obtain a variety
of techniques to obtain a desired directional derivative. The technique is appealing due to
the following properties:

e AD computes the numerically exact derivatives.

e Provided the code is given in a common programming language (C/C++, Fortran,
Matlab® ), there are tools available to compute the derivatives in a quasi automatic
way.

e Derivatives can be computed in an efficient way when structures are exploited.

For a comprehensive study of the topic we suggest the textbook by Griewank [51].

From an illustrative perspective, each mathematical program can be considered as a di-
rected graph with a set of input nodes, output nodes, and inner nodes that represent basic
elementary operations. In the AD context, input nodes represent the independent variables
and output nodes are called dependent variables. The situation is depicted in Figure 2.2.
Two basic ways to compute directional derivatives are distinguished. Traversing the func-

Figure 2.2.: Directed graph representation of mathematical a function. Inde-
pendent variables (left) are mapped to the dependent variables (right) via ele-
mentary mathematical operations.

tion graph in Fig. 2.2 from the left to the right, computing the function values together
with the derivatives at each node and applying the chain rule is called the forward mode
of AD. This is the analogon to the sensitivity approach for the computation of derivatives
for PDEs as in §1.3.2. In the so-called reverse mode of AD, the graph is first evaluated,
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remembering all intermediate values. Subsequently traversing from the right to the left,
evaluating derivatives, and applying the chain rule backwards, one obtains adjoint direc-
tional derivatives. Hence, the reverse mode is often also called the adjoint mode of AD,
which is related to the adjoint approach as described in §1.3.1.

Expressed in a formal way, we consider a function ® : R™ — R™ which maps the indepen-
dent variables a to the dependent variables b. Given a direction a € R"™, with the forward
mode we compute

- d®(a)
~ da
To compute the full Jacobian of ®, n directional derivatives need to be computed, thus, the
complexity of the forward mode is O(n). The reverse mode computes for a given adjoint
direction b € R™
al =7 d®(a)

da

Here the complexity to compute the full Jacobian is given as O(m). For a common opti-
mization problem we have m = 1, hence, the adjoint mode should be chosen. In contrast
when we are interested in directional derivatives of a given function with many outputs,
e.g., in parameter estimation problems, then the forward mode is the method of choice.

a €R™.

€ R"™.

2.5.2. Principle of internal numerical differentiation

In this section we present the concepts for an efficient differentiation of an integration scheme
that is used to solve the ODE (2.5) in §2.2.1. Differentiation of the scheme is necessary as it
is part of the evaluation of the reduced objective function j*7(g) in (2.27) and we require the
gradient V;j"7(q) for the optimization. After a full discretization of the problem, j*"(g) can
also be considered as a black-box function consisting of a sequence of basic mathematical
operations. Thus, one could apply techniques such as finite differences or AD to this function
as discussed above. We refer to this strategy as external numerical differentiation (END).
Besides the issue of low accuracy with finite differences, the problem of the END approach
is that the procedure to evaluate 5”7 (q) contains operations that are not differentiable, e.g.,
the choice of the step size during the time integration. This may lead the gradient V;""(q)
to be inconsistent with j"7(g). Moreover, we have the goal to be able to interpret our DTO
approach also as an OTD approach as discussed in §2.1.

To this end, in this thesis we follow the principle of internal numerical differentiation
(IND) which was first proposed by Bock [19]. With the IND principle, on the one hand,
we achieve the goal of commutativity of DTO and OTD on the semi-discrete level and, on
the other hand, due to its close relation to AD we can expect an efficient and accurate
computation of the necessary derivatives. Further reading on IND and its application to
BDF methods as well as the implementation in the software package DAESOL-II can be
found in [2, 3, 14].

As discussed in §2.2.2 we apply implicit time-stepping methods to solve the ODE problem
(2.5). We assume these methods to be adaptive, e.g., in the choice of the step size or the
number of evaluations of the iteration matrices necessary to solve the implicit systems in
each step. Conceptionally we apply the forward and reverse mode of AD to the sequence of
operations that are specified by the choice of the particular time discretization method. We
refer to this as either forward IND or adjoint IND respectively. The following two aspects
define what we understand as the principle of IND:

1. When differentiating the integration scheme, all adaptive components remain fixed.

2. The choice of the adaptive components should be oriented towards the stability re-
quirements of the state problem and the adjoint/sensitivity problems simultaneously.
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With this definition we are aligned with the characterization of IND as, e.g., in [93]. For a
successful and efficient application of IND one should consider three additional important
aspects of IND in a particular implementation. For a compact overview we also add these
aspects to the characterization of IND:

3. If matrix decompositions are used for the solutions of the linear subproblems, these
should be reused.

4. The time integration scheme should be chosen such that consistency of discrete and
continuous derivatives can be achieved.

5. Close to an optimal solution it may be necessary to fix the discretization scheme for
several iterations of the optimization.

We now discuss these topics, their relation, and their implications for the resulting deriva-
tives.

In aspect 1. we require the discretization scheme to remain frozen when differentiating the
time integration. This is crucial for an efficient derivative computation for dynamic systems
based on AD and is also discussed in [40]. Firstly, with this we overcome the problem of non-
differentiable operations in the scheme typically introduced by the controllers that determine
the adaptive components. Secondly, by freezing the scheme and assuming numerically exact
derivatives of the right-hand sides (e.g., via AD) we obtain the numerically exact derivative
of a fixed integration scheme. This was referred to by Bock as the analytical limit of IND [20].
Thirdly, for certain integration schemes (see aspect 4.) it can be shown that by following
aspect 1., the discretely computed derivatives are a solution to a consistent integration
scheme applied to the VDE (2.24) or the adjoint ODE (2.18) respectively. With forward
IND this is guaranteed if a linear time-stepping method is used [19]. The interpretation of
discrete IND adjoints as solutions of (2.18) via a consistent scheme is more complicated.
For Runge—Kutta methods consistency of IND adjoints was shown first by Bock in [21] and
later by [101, 118]. In [102] it is shown for linear multi-step methods that discrete adjoints
in general are inconsistent with the continuous adjoint solutions. In [16] BDF methods are
discussed and it is analyzed how this inconsistency can be overcome. It is shown that a
Hilbert space setting is not suitable to establish consistency between IND adjoints an their
continuous counterpart and, therefore, it is necessary to interpret the discrete adjoints in
a Banach space setting. We illustrate in Example 2.3 that the IND adjoint scheme of the
implicit Euler is again an implicit Euler scheme.

In aspect 2. we require that the discretization scheme allows a stable integration of the
adjoint ODE or VDE respectively. While for VDEs this could be achieved by controlling
also the error in the VDE variables during the integration (see [2]), for the computation of
the discrete adjoints the scheme is already fixed on the whole time horizon when starting the
reverse sweep. Hence, the stability of the adjoint scheme can only be influenced during the
forward integration. At the end of §2.5.3 we present heuristics to attenuate this problem.

Regarding computational efficiency of IND, the reuse of the matrix decompositions in the
integration scheme is recommended in the third aspect above. The Jacobians of the right-
hand side of the state problem and the adjoint or VDE problem respectively are identical.
As the computation of the Jacobian of the right-hand sides is often the most time consuming
part this can be a significant improvement in computation time.

Regarding the use of IND in an optimization algorithm the following becomes important.
As the time integration scheme is chosen adaptively, the considered NLP slightly alters
in each optimization iteration, as possibly a different scheme is used due to the changing
optimization variable. Thus, in aspect 5. we suggest to fix the scheme over multiple opti-
mization iterations which fixes the NLP and makes the IND derivatives exact up to machine
precision. This allows to obtain fast convergence and allows the optimization algorithm to
satisfy small termination tolerances.
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We sum up interpreting IND from two different viewpoints. As motivated, IND is an
application of AD to the integration scheme, where the dependence of the adaptively cho-
sen components with respect to the controls is neglected. Hence, an efficient and accurate
computation of the derivatives can be expected. Secondly, under the assumptions the dis-
crete derivatives are computed with a stable scheme and are consistent approximations of
the adjoint ODE or the VDE respectively (with a possible adaption of the space in which
solutions are considered).

Remark 2.5. Regarding our overall solution approach we can summarize the following. By
virtue of the identities (2.22) and (2.26) we can see that the semi-discrete adjoint and sen-
sitivity problems are consistent approximations of the infinite-dimensional problems. Thus,
spatial discretization and differentiation commute under the assumptions in this thesis. In
this section we have shown that by following the IND principle we obtain an analogous
result also for the time discretization step. Hence, the discrete derivatives computed for
the NLP (2.1) are also a consistent approximation of the infinite-dimensional optimality
conditions stated in §1.3. We can conclude that for the chosen solution approach, so far
discretize-then-optimize and optimize-then-discretize commute.

Example 2.3. Let us illustrate a few aspects of forward IND using an implicit Euler
method with variable step size and an evaluation of the Newton iteration matrix in each
time integration step. For simplicity assume that one Newton step is performed to determine
the solution 2™*! of the implicit Euler system, the initial guess for the Newton iteration
is the current state approximation z”, and M = I. Writing down the rule including all
dependencies, we arrive at

LL‘”+1((]) = LL‘”((]) + Mn(Q)Tn(Q)f(tnfh xn(q)v Q)
where Mn(Q) - (]I - Tn(q)fx(tnfla xn(q)v Q))71 .

One can easily see that the scheme is consistent for bounded f,. We are now interested in
the sensitivity of 2”t! with respect to ¢, thus, in AD notation we have now b = 2”*! and
a = q and we consider the Newton step as an elementary function. Clearly, the elements
T, and M, defining the scheme also depend on ¢. However, following aspect 1. of IND we
neglect this influence on the adaptive components and obtain the derivative

2yt (9)q = 2 (9)G + M7 (@) fu (b1, 2" (), @) ()G
+ MnTn(Q)fq(tn—h xn(q)7 Q)(j;
with a direction @ = ¢ € R™. Setting w™ = xf}(q)q this is obviously the same as applying the
chosen discretization scheme to the VDE (2.24). Moreover, we can see that the influence

of M,, on z"*! vanishes when a fix point is found in the Newton iteration. Hence, the
derivative becomes more accurate if the implicit system is solved with higher precision.

2.5.3. Adjoint IND and its application to semi-discrete PDEs

We now briefly investigate some peculiarities of adjoint IND. In particular we consider the
case of an implicit Euler method and discuss its application to systems stemming from PDE
discretizations.

We use again the implicit Euler scheme as in Example 2.3. Differentiation of

2" (™) = 2™ + Mt f (b1, 2", q)
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with respect to z™, multiplying with an adjoint direction z**!' € RY, and following the IND
principle, we get
(@) = @+ @) Muma fo(tn-1,2", )

= (@M, (M + 7 fo (a1, 2", ) (2.39)

— (i,n+1)TMn,
where we set (z")7 := (z7+1)T d-gn+1. The last equality holds as we assume M,, to be
built in every time step. Now consider the same discretization scheme applied to the adjoint
problem (2.18) integrated backwards in time

(ZnJrl)TMn’

where M, = (I — 7, fo (tn, "1, q)) ™" and 2" := z(t,_1) as for the states. Obviously, the
adjoint IND scheme (2.39) and the implicit Euler scheme applied to the adjoint equation
yield the same rule for the time stepping, differing only in the particular time instances
where the Jacobian of the right-hand side for the iteration matrix is evaluated. IL.e., for
adjoint IND M,, is evaluated at an earlier time instance t,,_; in comparison to ¢, for M.
Clearly, both are consistent schemes which can be traced back to the linear nature of the
adjoint problem.

We now review the stability issues in Example 2.2. With adjoint IND we encounter the
following situation. According to the discussion in Example 2.2 one would expect a variable
step size 7, to be rather large at the end of the time horizon and the last decomposition
point to lie back a few iterations. We assume this due to the high-frequency modes of the
system having been damped out due to the properties of the diffusion operator. When
interpreting adjoint IND as integration scheme of the adjoint problem this means that we
start with a large step size and a possibly bad approximation of the iteration matrix. Now
assume that we want to solve an optimization problem with objective

1, ifr>0.5,
0, otherwise,

‘](y7u) = \/Q(y - yQ)2dr7 yQ(T) = {
on the domain Q = (0,1). Assuming yo € V", the adjoint direction is then given as
2(T) = M(z(T) — zo(T)), thus, the first adjoint iterate 21 contains high-frequency
modes stemming from the discontinuity in yg. Hence, the situation may result in the
discrete IND scheme to be unstable. An analogous situation is discussed for forward IND
in [93].

In our numerical results we use the software tool DAESOL-II. We cope with the issue
of stability applying the following measures depending on the requirements of a particular
problem.

e Reducing the order of the BDF method to one, as the stability properties of the
method decrease with increasing order (BDF schemes are stable only for order < 6).

e Forcing the iteration matrix to be rebuild more often. In DAESOL-II we achieve
this by decreasing the error tolerance of the Newton method with which the implicit
systems are solved.

e Forcing the iteration matrix to be rebuild in each step of the integration.

e Fixing the step size to a sufficiently small value.
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2. Numerical Strategies

We apply these strategies based on our experience with the particular problem we consider
in the applications. For the numerical tests regarding error estimates for proper orthogonal
decomposition (POD) we use an implicit Euler method, which we enforce by reducing the
maximum order to one, using a sufficiently small maximum step size, and setting the relative
error tolerance of the integration to a large value.
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3. POD/DEIM Reduced Order Models

The expression model order reduction (MOR), also referred to as reduced-order modeling,
comprises a variety of methods to tackle the problem of large dimensions in discretized
dynamic problems. Essentially one is interested in simplifying a dynamic system such that
its evaluation costs are reduced, however, preserving the input-output behavior. From
a broad perspective, MOR techniques first appeared in the fields of system and control
theory with major developments in the 1980s. Among the important contributions we
find the articles [84] by Lumley and [107] by Sirovich, which are relevant to us as there
the proper orthogonal decomposition (POD) method for model reduction was introduced
as it is conceptionally used today for time-dependent PDEs. In subsequent years POD
MOR became also of interest to numerical mathematicians which resulted in a further fast
development in the field.

A division into three classes of MOR methods is done in [5]. The first class are singular
value decomposition (SVD) based methods which contain, e.g., POD and balanced trun-
cation methods [124]. They exhibit the property that the essential characteristics such as
stability of the original system are preserved. This comes comes at the cost of an increased
effort for the construction of the so-called reduced-order model (ROM). In contrast, Krylov
methods [10] typically do not exhibit these properties. However, due to their iterative nature
they are applicable to problems of larger size and their implementation is typically easier.
As a third class one finds methods where a combination of both techniques is applied. In
this thesis we are exclusively interested in model reduction based on POD.

Due to their importance in the MOR community, we also mention the family of reduced
basis methods [89] which overlap with the above three classes. These methods are applied
to parametrized systems, where one is interested in system responses for a variety of param-
eter configurations, the so-called snapshots. One characteristic of the reduced basis family
is that one distinguishes between an offline and an online phase. Through the distinction
into different phases these methods became of particular interest in the real-time context.
Applying POD techniques in a reduced-basis-method fashion is also referred to as interpo-
lation based POD. Typically, this is done for stationary problems. In an offline phase the
reference system is first solved for certain choices of parameter configurations and then POD
is applied to the obtained snapshots to construct a reduced basis. However, with regard to
efficiency in the optimization context we cannot afford the offline phase to be too extensive.
In this thesis we consider only instationary problems where one follows a different approach
to obtain the data for the decomposition. Here the dynamic system is solved once and
the state solution at certain time instances are used as snapshots. This is sometimes also
referred to as projection based POD.

Another dichotomy to be mentioned in the MOR context are linear and nonlinear prob-
lems. Methods suitable for linear problems are, e.g., balanced truncation or the class of
Krylov methods. To date the POD MOR techniques appear to be the state of the art for
nonlinear problems. An important contribution to the handling of the nonlinearity in POD
reduced-order models is the discrete empirical interpolation method (DEIM) [31]. With
DEIM the cost of the evaluation of the nonlinearity can be further reduced which typically
makes the overall simulation cost of the reduced-order model negligible in comparison to
the high-dimensional discretized dynamic system.

While different from their perspectives there is a unifying feature in MOR techniques.
Most methods can be interpreted as a projection technique, i.e., the truncation of the state
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3. POD/DEIM Reduced Order Models

solution in an appropriate basis. Thus, we can introduce MOR techniques in a general and
abstract way by considering a transformation 7€ RV XN applied to the states 2 such that
Z = Tz, where T € RY. We define

_ z wT 1
T = <x’> , T = {Tf} , T = [U Tg} ,
with zeRF, UWeRN** k<N,

hence, as WTU =1 we find that
n=uw?”

is an oblique projection along the kernel of W7 onto the k-dimensional subspace spanned
by the columns of U. Insertion into the ODE system (2.5) yields

2\ (WTfUZ + Toa',t)

(j;’) B (Tle(U§+T2x’,t)> ’
noting that this is still an exact expression. The reduction step consists in only considering
the first k& equations and omitting Tb2’. The MOR methods distinguish in the particular
choices of W and U and pursue the goal of minimizing the neglected parts. In this thesis
we consider the POD case with projection Il = UWT and W? = V"M, U = ¥. and the
case of DEIM, where the nonlinearity F' as defined in (2.7) is substituted by the projection
OF with WT = (PT®)"!PT and U = ®. In §3.1 and §3.2 we take a closer look on the
details for the computation of the matrices ¥, ® and P and in chapter 4 we present novel
techniques for the enhancement of these matrices for the purpose of optimal control and
parameter estimation.

To any ROM we present here, we also refer to as surrogate model, especially in the
optimization context where we seek to use it as prediction instead of some given reference
model. To the ’full-order’ reference model that is subject of the reduction step we refer as
high-fidelity or, short, HiFi model. Its particular form and how it is obtained by spatial
discretization of the PDE we presented in §2.2.1.

In [103] a broad collection of articles concerning the MOR topic can be found. An overview
is given in the textbook [5]. The use of model reduction techniques in the context of robust

optimal control is handled in [124]. Further online information can be found, e.g., within
the MoRePaS project®.

3.1. Proper orthogonal decomposition

Proper orthogonal decomposition for model reduction is nowadays often briefly summed
up as a popular method, showing competitive results in practical linear and nonlinear ap-
plications ”despite of a certain heuristic flavor”[112]. In the following sections we explain
basic concepts of POD, rediscover some of the heuristic flavor, and present results that give
a rigorous mathematical fundament to certain heuristics that have been applied in earlier
contributions.

The basic concept of POD was first introduced by Pearson [90]. It is also known under
the expressions Karhunen—-Loeve expansion or principal component analysis, depending on
the field where it is applied. Historically the most important fields of application are in fluid
dynamics [18, 50, 63, 84] and in image processing and pattern recognition [44, 98].

Conceptionally starting from a given set of data vectors, one tries to find a basis of
low dimension such that the data can be expressed in that basis while minimizing the
approximation error in a least-squares sense in an appropriate norm. To this basis we also

Thttp://www.morepas.org/
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refer as POD modes. The reduced-order model can then be obtained either by projection
onto the subspace, spanned by the optimal basis or by performing a Galerkin discretization
using the optimal basis as trial and test functions. Applied properly both yields the same
result. While the provenance of the data can be arbitrary, we are here interested in data that
is obtained via simulation of the full dynamic system. This points towards an important
property of POD in model reduction. I.e., by using information obtained from a solution
of the dynamic system to construct the basis, it is legitimate to assume that the surrogate
still reflects the essential physical properties of the system. This stands in contrast to
common Galerkin discretizations as, e.g., finite element methods (FEMs) where the basis
does not contain any a priori information of the physical behavior of the system. A further
characteristic of the POD approach is that the Galerkin trial and test functions are optimal
in a least-squares sense. Often only a small number of modes is necessary to capture the
energy of the system. The method also stands out for its ease of applicability to nonlinear
problems as only basic matrix operations are used. Even though the reduction step is
performed by an oblique projection onto a linear subspace, the resulting reduced-order
model is, however, still nonlinear.

Under the assumption that the POD subspace is sufficiently rich, the model reduction
approach can be highly efficient. However, here one aspect of the heuristic flavor comes
into play. While for many practical examples POD model reduction performs well, for other
applications the assumption is not satisfied and the lack of a priori error estimates in the
POD approach can destroy its efficiency. The problem is revisited in this thesis and we
present novel approaches to deal with it.

An overview to POD model reduction is found in [63], a detailed technical description of
the reduction steps is given in [74], and a recent comprehensive literature regarding POD
can be found in the lecture notes of Volkwein [116]. We first present the basic techniques for
computing a POD basis in a time-discrete and a time-continuous setting. Then we show in
more detail how the reduced-order models are obtained. In the last section of this chapter
we present theoretical bounds for surrogate models based on POD and DEIM on different
levels of discretization. These estimates describe how well a solution of a surrogate model
approximates the HiFi model solution and they are the basis for further investigations of
the derivative-enhancement in chapter 4.

3.1.1. Time-discrete POD

With the notation as in chapter §1, assume that we have m snapshots y’ := y(t;_1) € V at
time instances tg, ..., t,—1. We define

V= span{y’}™, and dimV =d,

with d < m, hence, V C V. Let V1, ..., g € V. We call ¥1, ..., a POD basis of order k if
for every k < d it is a solution of the optimization problem

2
m

k
L min ;v y' - ;(y ) 3.1)
- - H
s.t. (wnawl)H = 6nl> 1 < ’I’L,l < kv

with the weights

T=(t1—t)/2, vi=@t—t-2)/2 2<i<m-—1 Y= (tm-1—tn-2)/2. (3.2)
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Due to the orthonormality of the set {1;}%_;, an equivalent characterization of the POD
basis is given by the maximization problem

m k
max ZZ’%(Z/Z’QZ}])%{ s.t. (wnvwl)H = 6nl7 1 S n7l S k.
Y1y Pk ==
To a given POD basis t1,...,¢r € V we can also consider the POD subspace which is
defined by

VF = span{y;}F_, CV CV. (3.3)

Regarding the computation of a POD basis we define the linear operator R, : V — V C V.
as

m
R =Y %y d)uy’ Vo€V,
i=1
noting that R, is bounded, compact, symmetric and non-negative. Consider the eigenvalue

problem
Rm@d =Ap, ¢eV. (3.4)

From the Hilbert-Schmidt theorem we know that there exists an orthonormal set {t;}¢ ;
and a sequence of eigenvalues {\;}¢_; such that

R = N, A1 > - > Xg > 0.
Note that, thus, 1, ..., 4 is an orthonormal basis of V.

Theorem 3.1. Let {1;}L, be a solution to (3.4) and {\;}_, the corresponding eigenval-
ues. Then for every k < d the eigenfunctions 11, ...,¥, are a solution to the optimization
problem (3.1). The residual in the solution is given as

2
m

k d
> yi—Z(yi,wj)ij =3 A (3.5)

i=1 H i=k+1

To the residual we will also refer as POD projection error. The proof to Theorem 3.1 can
be found in [114].

We now draw our attention to time-discrete POD in the semi-discrete context which is
also the situation we typically face in a practical application. For convenience, we introduce
the abbreviation 7 := z(¢;_1) for the state solutions of (2.7) analogous to y/ € V. Consider
the POD snapshot matriz

S:= [zt ... \Ama™] € RN xm

where in analogy to the dimension of the space V we denote its column rank by d < N. We
now solve the POD optimization problem in finite dimension, i.e., we seek to find the POD
projection matriz ¥ € RV>*F obtained as solution of

. % : 2
wERN ;7 o — wOT M| st WTMU =1, (3.6)

where we use the norm ||-|| y belonging to the M-inner product (-, -) -, with the mass matrix
M as introduced in §2.2.1. The objective in (3.6) is right away obtained from (3.1) under
the assumption that y* € VP, i=1,...,m and ¢ € V", i=1,... k. The matrix

R,, :=SSTM, (3.7)
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is the spatially discretized equivalent to the operator R,,. A solution to problem (3.6) is,
hence, given by the eigenvectors of the problem

Rm¢ = /\¢7 ¢ € RN7 (38)

which is either obtained via Galerkin projection of (3.4) onto the space V" or as optimality
conditions to (3.6). With the square root M 1/2 of the symmetric and positive definite matrix
M, defined as M'/2M'/? = M, we set ¢ := M'/?¢, S := M'/2S and multiply (3.8) from
the left with M'/2 to get
SSTgp =2, ¢cRVN.
There are two common ways to solve the finite dimensional eigenvalue problem related to
the POD optimality (3.6).
Variant I: We apply a SVD on the matrix

S=AxBT

with orthonormal matrices A € R]\i”, B € R™*4 and a diagonal matrix ¥ = diag(o1,...,04)
containing the singular values of S. Defining Ay, := [A1,..., A k], the POD projection ma-
trix is given by

U= M4, e RN*E

and for the eigenvalues we have \; = 07, i = 1,...,d.
Variant II: We solve the m x m eigenvalue problem

STSp=8TMSp=\p, &RV,

The solution is given by the columns of the matrix B that appears in the SVD of S in
Variant I. Due to the properties of the SVD, we have

A=8Bx
thus, the projection matrix is given as

1 _ 1
U,=—MY28B=—8B, i=1,...,k.
. )\ )\Z ) z b )

3
The second variant of computing the projection matrix is often referred to as the method of
snapshots proposed by Sirovich [107]. Note that the naming is rather historical, as in either
variant the computation of snapshots precedes the decomposition. A discussion of snapshot
POD vs. classical POD is carried out in [59].

With fine discretizations of the underlying PDE we have N >> m, hence, solving for the
eigenvalues of ST'S in Variant II is numerically more efficient. Moreover, the computation of
M2 and M~1/2 requires additional effort, which is not needed in the method of snapshots.
In contrast, SVD has better stability properties, hence, the projection matrix can be com-
puted more accurately, which is of interest for the numerical investigation of approximation
errors. The relation between ¥ and the POD modes in a Galerkin space V" is described by

N
Y;(r) = Z‘I’ij%‘(T), j=1,...,k,
=1

and the residual of (3.6) is given by the eigenvalues of (3.8)

m d
S yillat - v M = Y (3.9)
i=1 i=k+1

Note that we have the relations

(Wi, hj) gy = (Wi, W) = (Wi, MW ) = 055, 1<14,j<k.
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Remark 3.1. For the POD subspace, after Galerkin discretization we have V¥ C V.
Moreover, V¥ = V" if d = N and we choose k = d. In this case using a POD basis reduces
to a basis transformation.

Remark 3.2. The choice of k is crucial for the performance of POD. We consider three
possibilities. Often the ratio between the modeled and the total energy is considered, given
by

k

Zi:l Ai
d

Zi:l Ai

where Eror, > 0 (compare [74]). For the investigations of the POD reconstruction error in
§3.3.5 and 4.5 we use a similar criterion. We choose k such that

d 3
< Z /\i> < ep,

i=k+1

>1—-Eror,

£(k) =

i.e., we want the square root of the projection error to be below a certain threshold ep. Thus,
the criterion ep is closely related to the error with which the snapshots are approximated in
their natural norm. In the optimization context it may be more efficient to only compute a
moderate number of eigenvalues of ST MS. Then, we rely on the mere value of the (k+1)-th
eigenvalue, i.e., we choose k such that

VA1 < Aror, with Apor > 0.

The actual values of the eigenvalues are highly problem dependent. An exponential
decay is observed, for example, in many problems in fluid dynamics and diffusion domi-
nated parabolic PDEs. Thus, with a fast decay, already for small k the projection error
Zf:k 41 A < 1 and only a small number k£ of POD modes is necessary to capture most of
the information given by the snapshots.

3.1.2. Time-continuous POD

So far we have not commented on the time weights 71, ...,7, in the definition of the POD
basis. Their choice can be motivated by introducing a continuous version of POD. Moreover,
by the introduction of the time-continuous setting we are independent of the concrete choice
of the snapshots and the discretization scheme that is used to solve the underlying ODE.
Assume that we have a continuous solution z(t) of the HiFi problem (2.7). A further
characterization of the POD basis is then given as solution of the optimization problem

. T 2 T _
pmin /IHx(t)—\II\IJ Mz(t)|| dt st UM =1 (3.10)

The problem (3.6) is obtained as discretization of (3.10) using the trapezoidal rule. The
relation between solutions to (3.10) and (3.6) is investigated in [76]. It is shown that the
first k& dominant eigenvectors of the matrix R = [; z(t)z(t)" Mdt are a solution to (3.10).
Note that R,, is obtained applying the trapezoidal rule to R. Let A\; > ... > Ay > 0 be

the eigenvalues of R, where for d = rank(R) < N, A\; =0, d < j < N. Analogous to the
time-discrete projection error we find that

/IHx(t)—\IJ\I/TMm(t)Hidt: >N (3.11)

i=k+1
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The eigenvalues of the discrete and the time-continuous version of POD obey the follow-
ing relation (see also [116]). Assuming a fixed and sufficiently small time step 7 between
snapshots, we have

d N
SN2 > N, and Ao A, 1< <k asT 0. (3.12)
i=k+1 i=k+1

Note that d depends on the size of the time step which corresponds to the number of
snapshots m.

3.1.3. POD Galerkin discretization

Assume now that the m snapshots z',...,2™ € RY are evaluations at time instances
to,---,tm—1 of a solution z(¢) of the HiFi problem (2.7). Neglecting the constant part as
discussed in Remark 2.2 the HiFi problem is given as

Mi(t) = Sa(t) + F(z(t),q(t)), z(0) =z, t € 1.

Via the POD method in §3.1.1 we compute the matrix ¥ and the POD basis 1; € Vh j=
1,..., k. There are now two ways to construct the reduced-order model, both leading to the
same result. Processing as described at the beginning of the chapter, we employ a projection
of the HiFi model by setting = ¥Z, where 7 is a vector-valued function from I to R¥, and
multiplying (2.7) from the left by U7 to obtain

2(t) = S2(t) + VT F(WE(t), q(t), #(0) = 0" MaP, (P-ROM)

with § := 0TSV, Alternatively we consider the POD Galerkin approximation

k

Rt ) =Y @(t)i(r), (1) €I x Q.

i=1

Insertion of y* in the weak form (1.2) and using the POD modes for the Galerkin discretiza-
tion in the space V* yields

d
&<yk(t)ij>}[:<A(yk(t)’uh(t))v¢j>H’ <yk(0)_y8a7/}j>Ha ]:17ak

An exact evaluation of the last equation results again in (P-ROM). We can see that the
procedure can also be interpreted as a projection of V" on the POD subspace V*. Note
that the mass matrix for the reduced-order model turns out to be the identity, which is due
to the orthonormality constraint in the POD optimality. Moreover, note that the model
still contains the same nonlinearity F', evaluated at all discrete state discretization points.
We dedicate ourselves to the reduction of the evaluation cost of the nonlinear part in the
next section.

Remark 3.3. In practical applications, sometimes the mass and stiffness matrices are not
available, e.g., when using a software package to solve the PDE without access to the internal
data structures. While then we cannot do the projection step, it is still possible to construct
(P-ROM) using the Galerkin discretization. Note that then we have to rely on quadrature
rules to evaluate the stiffness matrix which is an additional error source for approximations
via POD surrogate models.
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Remark 3.4. Due to the fact that we require the model to be given in weak form with
boundary conditions already included as in (1.2), we obtain a direct relation between HiFi
and reduced-order model via projection. This allows for highly accurate POD approxi-
mations under certain assumptions that will be investigated in §3.3. A similar discussion
related to this issue is found in [70], where the authors show an a priori stability guarantee
for POD surrogate models with weakly imposed boundary conditions.

3.2. Discrete empirical interpolation method

In this section we have the objective of reducing the computational cost for the evaluation
of the nonlinear term in the reduced-order model. We follow the ideas presented by Chatu-
rantabut and Sorensen [31], which are closely related to the empirical interpolation method
(EIM) proposed in [13]. While the latter is purely based on a greedy algorithm, in the DEIM
approach first a POD basis is computed and then a greedy algorithm is applied to select
the interpolation indices. Other approaches to reduce the complexity of the evaluation of
the nonlinearities are found, e.g., in [7, 33, 113].

3.2.1. DEIM projection
Consider again the POD reduced-order model (P-ROM)

= 8§ 7+ 9T F(UZ,q),
~— N ——
kxk kx N Nx1

of dimension k <« N. Obviously, the reduced linear part is cheap to evaluate, however, in
the nonlinear part we still have evaluation costs of complexity N of the HiFi model.

Let us consider the nonlinear part F' as a mapping of data to the vector f(t) € RV, t € I.
By projection of f(t) onto a subspace R’ = span{® ;,...,®,} C RY & € RV*¢ of dimension
{ < N we have its approximation as

f(t) = dc(t), c(t) € R (3.13)

To determine the corresponding coefficients c¢(t) from the overdetermined system f(¢) =
Dc(t), we define

Pi=leg, - ep,] € RVX

where e, is the p;-th column of the identity matrix I € RV*V. Hence, the matrix mul-
tiplication PT® corresponds to a selection of ¢ rows of ®. If PT® is nonsingular, we can
determine c¢(t) uniquely from the system

PTf(t) = PTdc(t),
to obtain c(t) = (PT®)~'PTf(t). Thus, a DEIM approximation f(t) is given as

f(t) ;= ®(PT®) "L PT(t) = Pf(t),
with P := ®(PT®)~1PT. Insertion of the approximation into the model (P-ROM) yields
the POD/DEIM reduced-order model

Z(t) = S2(t) + VTPF(UE(t), q(t)), #(0) = WT MaO. (PD-ROM)

As we can see, the complexity of the evaluation of the nonlinear part has been reduced
from N to £. The expression U7 ®(PT®)~! € R¥** can be computed when constructing the
surrogate model and only ¢ entries of the nonlinear vector F' need to be evaluated.

A particular DEIM projection PP is obtained by
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3.2. Discrete empirical interpolation method

1. Selecting the interpolation indices g1, ..., ¢ and the matrix P.
2. Choosing the DEIM projection matrix ®.

For the interpolation we employ the Greedy algorithm presented in [31], which we recall
in Algorithm 1. DEIM, in contrast to the empirical interpolation method, considers only
discrete evaluation points in the domain 2 and selects the indices inductively limiting the
error bound given in Lemma 3.2.

Algorithm 1 Greedy algorithm for DEIM

Require: ¢1,...,¢, € RY linearly independent
[0, 1] = max(abs(¢1))
2 @ =[], P=leg]
forn=2,...,¢ do
4: Solve (PT®)c = PT ¢, for ¢
r= ¢, — Pc
6: [p, pn] = max(abs(r))
2=(0 o P=[P o]
8: end for

return P

In Algorithm 1 we use a Matlab® oriented notation, i.e., abs returns the absolute values
for each vector element and max chooses the maximum value of a vector return the value
and the index of the vector element.

The projection matrix ¢ is computed by applying POD to the DEIM snapshot matrix

D:=[niF(at qto)) o mE (@™ q(tm-1))] (3.14)

which are the evaluations of the nonlinearities in the HiFi model at the snapshot locations
weighted with the time weights. For the sake of simplicity, in the following we omit the
time argument of the control ¢ € L?(I,R™) in the nonlinearity F' and assume the control
to be evaluated at the time instance corresponding to the snaphots. @ is obtained from D
analogous to §3.1, setting M = I. The relation between the DEIM projection and the POD
optimality is established in the next section.

Remark 3.5. The nonlinear part F(z(t),q) in general is of the form
F(x(t),q) = ByF(Byx(t),q), By € RN*™ By e RM*N,

where n; is the number of quadrature evaluation points and the Jacobian of the nonlinearity
Fwrt zisa diagonal matrix, i.e., each entry of the vector F e R™ depends on exactly
one entry of Byz and F is properly ordered. Then it is more efficient to construct the
(PD-ROM) as

Z(t) = S2(t) + VT BiPF (B, VE(t), q),

with P € R™/| the selection matrix P is chosen as in Algorithm 1 and instead of the matrix
D we use

D= [\/'HF(ngl,q), el \/%F(ngm,q)] .

3.2.2. Error estimates for DEIM

The following Lemma quantifies the error of the DEIM approximation .
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3. POD/DEIM Reduced Order Models

Lemma 3.2. Let f € RY and ® € RN*? be a matriz with orthonormal columns, f = Pf be
the DEIM approzimation with P = ®(PT®)"'PT, and P the result of Algorithm 1. Then
we have the estimate R

[F-t] < b fIt- 007 (3.15)
with Cp = || (PT@) 1.
Proof. We have

[

|Pf+ @Tf— f— &S|
= ||Pt+ P27 — f — dPT|
1P = Dwl

1 — L[} lwll

A

where we defined w = f — ®®7f. Moreover,
IP -1 = [P] = | &(PT®)" P7 |
< [T,

where for the first equation we use the results in [109] and exploit ||®|| = ||P|| = 1 for the
inequality. q.e.d.

Note that due to the orthogonal projection ®®T, ®PTf yields the best approximation of
f in the space spanned by the columns of ®. As a result of Lemma 3.2 in particular we have

f—Pf=(I—P)w, (3.16)

with w := f — ®®7f, which will be of use for the error estimates in §3.3. The estimate in
Lemma 3.2 motivates the choice to employ POD to compute the DEIM subspace R’. Using
the Euclidean norm in the POD optimality (3.6), the matrix & satisfies

@glgi}yxz ;% | F(z',q) — <I><I>TF(xi,q)’|2 s.t. T =1, (3.17)

which is the same as considering the snapshot matrix D for the POD method. Equivalently
to POD model reduction, choosing a sufficient number of snapshots and ¢ sufficiently large
we assume the space R’ to reflect the essential dynamic behavior of the nonlinear F' part of
the HiFi model. Analogously we have an estimate

Z%HF @ F (a2, q)] Z si, (3.18)

i=0+1

for the eigenvalues sy,...,s; of DDT with d = rank(D). Finally, we pose the continuous
POD optimality for the DEIM projection, which we use for the estimates in §3.3.3. The
projection matrix ® is supposed to satisfy

min /HF — 00T F(a(t),q)| dt st. BT =T (3.19)

PERN x¢

and the estimate for the projection error is

/[HF(W q) = POTF(x(t), q)|” dt = Z Si, (3.20)

i=0+1

with corresponding eigenvalues 51, ...,5y5 analogous to §3.1.1
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3.3. Error analysis

3.3. Error analysis

In the following we recall error estimates for POD/DEIM reduced-order models, which
we extend to a more general scenario for its application to semi-discrete PDEs. With
the estimates we assess the error between solutions of the full problems and the reduced-
order problems for various scenarios. The estimates are of a priori type as the bounds are
not affected by the surrogate solutions. However, by construction the estimates involve
information of solutions of the HiFi model.

We start explaining the types of error we are concerned with, namely reconstruction
and prediction errors. In [75, 76] general a priori error estimates in function space for
reconstruction errors of reduced-order models of type (P-ROM) are given for linear and
semi-linear parabolic PDEs. Their results are briefly recalled in §3.3.2. In §3.3.3 and §3.3.4
we give a priori estimates for the spatially discretized version as in [32], which also comprise
the error introduced by the DEIM projection as in (PD-ROM). We extend their results to
oblique POD projections with a weighted inner product norm.

3.3.1. Reconstruction vs. prediction

In this thesis we distinguish between two types of error that we are interested in when using
surrogate models. We refer to these as the reconstruction error and the prediction error.

Definition 3.3 (Reconstruction error). For ¢ € Q", let x(q) be the solution operator
satisfying the HiFi problem (2.7) and Z(g) the solution operator that satisfies the surrogate
model (PD-ROM). Assume £(g) to be an operator depending on ¢ via z(q) and £(g) to be
the same operator depending on g via UZ(g). The POD reconstruction error is then defined

as

@ -€@|

RE(©) = —re@

, (3.21)

where the surrogate model is constructed at §.

The norm is chosen according to the codomain of the operator &, e.g., we consider
(f; ||||§( dt)z for € being the identity and the absolute value for the quantity j"(z(g)). In
particular the reconstruction error is evaluated for the same control g € QZd for which the
reduced basis is constructed. In case of £ being the gradient it also depends on either adjoint
or sensitivity information. The reconstruction errors for £ is then evaluated analogously to
the states with the respective HiFi or surrogate approximation.

Definition 3.4 (Prediction error). With the definition of £(¢) as in the reconstruction
error, we define the POD prediction error between HiFi and surrogate model as

N CORR
© =@

where the surrogate model used to evaluate the approximation Z(q) is constructed at g.

. ¢.q€ Q" ¢#4q, (3.22)

Clearly, the prediction error is of major interest when solving optimal control problems,
where the control variable changes in each iteration of the optimization algorithm. We
discuss the prediction error and the use of surrogate models for optimization in more detail
in chapter 5.

The term ’reconstruction’ reflects that a first interest in POD model reduction is to ap-
proximate the already given HiFi information as good as possible with the surrogate model.
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3. POD/DEIM Reduced Order Models

Therefore, the investigation of the reconstruction error is an analysis of the consistency
between the HiFi model and its surrogate at a given control . In §3.3.3 we give a bound on
the reconstruction error with the operator £ being the identity. For the estimate we assume
exact solutions to the HiFi and the surrogate model equations. After discretization the
operators z(q) and Z(g) are no more exact solutions of their corresponding model equations.
Thus, to analyze the reconstruction error we need to take into account the error introduced
by the time integration scheme. For the estimates in §3.3.4 it is assumed that an equidis-
tant time grid and an implicit Euler method is applied to solve the semi-discrete problems.
Thus, we conserve the close relation between HiFi and surrogate model which allows highly
accurate reconstruction errors. Examples are given in §3.3.5. If an error controlled method
is used to integrate the HiFi and surrogate models independently, the reconstruction error
is affected by the approximation error of the time integration scheme.

3.3.2. Reconstruction errors in function space

We consider an implicit Euler scheme in the POD subspace V¥ to solve the semi-linear
PDE given in weak form as in (1.2). Therefore, we seek a sequence y¥f, . .. ,yETH € V¥ that
satisfies

k _ .k
w = (A(yE 1 " (t0)), V) s (3.23)

(¥ ) g = (ys, ) for all p € VF,

with a constant step size 7 := T/n, and n = 1,...,n,. The POD subspace V* is assumed
to be given according to (3.3). The snapshots to construct the POD basis are {y'}™ ;, where
y €Y is a solution to (1.2) with m = n, + 1 and the time grid ¢; = 7j, j =0,...,n,. For
the next estimate we assume the initial condition y, € V which allows solutions y to (1.2) in
C(I,V) and we require that the bilinear form defined in (1.3) is V-elliptic and continuous.

Theorem 3.5. Let y € C(I,V) be a unique solution to (1.2). Assume in addition y €
W2XI,H) :={¢p € L>(I,H) : ¢, ¢ € L*(I, H)}, and let {yF}'7, be a unique solution of
(3.23) with

k

; <

onax [|7]|,; < Cs

and a constant Cg > 0 independent of m. If the nonlinearity ©(y) of problem (1.2) is
Lipschitz-continuous in y and the step size T is sufficiently small, then the estimate

3wk -yl < (01 + Cym + 723> ST+ Cur? (3.24)
i=1 1=k+1

holds with constants C1,C5, Cs, and Cy independent of m and k.

Proof. The proof can be found in [75, Theorem 10]. q.e.d.

We give here a slightly altered form of the estimate in [75, Theorem 10]. In the original
version the estimate depends also on a term for the projection error of the initial value ys,.
As described there, it can be replaced by Com Z?:k 4+1Ai- We also put in the additional
term £ St +1 i to account for the fact that, in contrast to [75], we do not include the n,
additional difference quotient snapshots (y**! —4%)/7, i = 1,...,n,, in the snapshot matrix
(compare also [76, Theorem 4.7]). In numerical computations presented by the authors
these additional snapshots yielded significant improvements only for coarse time grids. In
[64] improved numerical results are reported when including finite difference quotients. Note
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that the difference quotients are contained in the space span{y",...,y""}, however, the
POD basis may differ whether they are included or not. In this thesis we abstain from this
inclusion. In our numerical results we never experienced the snapshot time grid to be a
limiting factor for the reconstruction error.

Similar estimates are given for the explicit Euler and Crank—Nicholson scheme in [75]. In
[76] the estimate is extended to general evolution problems and the restriction on using the
same time grid for the implicit Euler method and the snapshots is removed. The bound in
Theorem 3.5 and its extension in [76] are the most general reconstruction error estimates
available for a particular time integration method.

Remark 3.6. For the practical application of POD we can conclude the following guidelines
from Theorem 3.5. The reconstruction errors for POD surrogate models can assumed to be
small if

1. The number of POD basis functions is sufficiently large.
2. The step size of the time integration is sufficiently small.
3. The number of POD snapshots is sufficiently large.

In the following we analyze the difference between time-continuous solutions of the HiFi
and the surrogate model that also include the DEIM projection. Then we recall estimates
for time-discrete solutions obtained with the implicit Euler scheme (2.8).

3.3.3. Reconstruction errors for time-continuous POD

We recall error estimates for the (PD-ROM) as given by Chaturantabut and Sorensen in
[32], which correspond to the reconstruction error as defined in (3.21). In contrast to [32]
we state an extension to M-orthonormal projection matrices ¥ and assume the states and
adjoints as elements of Hilbert spaces with a corresponding weighted norm.

Let X and Z be Hilbert spaces. Assume X to be equipped with the norm ||-||, defined
for some x € X as ||$H§( = (z,x),,, which is inherited from the Galerkin discretization.
Moreover, we consider the norm ||-||, of Z defined as

217 = (2, 2) (3.25)

for some z € Z, noting that the inverse of M is again symmetric and positive definite.
Considering M as a mapping from X to Z the norms |-||, and ||-|| are closely related
according to

[Mz||, =[] x -

In §4.1.1 we assume solutions z of the semi-discrete adjoint problem (2.18) to be in the space
Z. Given the relation z = ¥Z of the POD projection, we also find

]l = 1]

Note that the 2-norm for the reduced states # is inherited from the L%-norm in the POD
subspace where the mass matrix is the identity. Further, we use the Lipschitz constant L
to estimate the nonlinearities, defined for some z,2’ € X and F : X x RNe — RY as

1F(z,q) = F(z",q)|| < Ly [z — 'l -

We use the 2-norm on the left as we do not make any assumptions on the codomain of the
nonlinearity. Using a particular norm would result in a POD optimality for the DEIM basis
in the corresponding norm.
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3. POD/DEIM Reduced Order Models

The matrix norms in the subsequent are assumed to be induced by the norm of the vector
space. E.g., for S : X — Z we have

b 152l

IGX || HX

151 =

Also we need the logarithmic norm, defined for a matrix A € RV*¥ together with a matrix
norm ||-|| as

o T+ RAlI-1
plA) i= fim ===

We use the alternative formulation [108] with a compatible scalar product (-,-) and

(Av,v)

w(A) = sup . 3.26
(4) S ) (3.26)
Moreover, we make the following basic assumptions on the matrices ¥ and ®.

U e RV*F with WT MU =1, thus, $¥T M is an oblique projection, (A3.26)

® e RV with ®7® =1, thus, ®®7 is an orthogonal projection.

If not indicated differently, in the reconstruction error bounds assumption (A3.26) is the
only requirement on the matrices ¥ and ® needed for the construction of the reduced-order
model (PD-ROM).

Theorem 3.6. For a fizr ¢ € Q" and t € I let z(t) and T(t) be the solutions of the HiFi
problem (2.7) and (PD-ROM) respectively. Let (A3.26) hold. If the nonlinearity F(x(t),q)

1s Lipschitz-continuous in x, then there is a constant C, < oo such that we have
/ () — R0 % dt < Cr(E, + &) (3.27)
with
g, = /I le(t) — T M) dt, &= /1 1P (x(t),q) — @B F(a(t), o) dt.

If the projection matrices ¥ and ® are computed according to (3.10) and (3.19), we have
the bound

N N
Er = E Ais & = E 5.
i=k+1 i=04+1

Proof. We extend the proof in [32, Theorem 4.2] to the case of a weighted norm |||, and
a projection with x = ¥Z and WMWY = I. Consider the transformed HiFi problem

(t) = SM'z(t) + F(M~&(t),q), #(0) = Muy, (3.28)
with & := Mz. We define the point wise error e(t) = Z(t) — M¥Z(t) and consider
e(t) = p(t) +0(t),

where p(t) := 2(t) - MW VT %(t) and O(t) := MU VT3 (t)— MPUZ(t). We now seek an estimate
for ||f(t)|| such that we can apply Gronwall’s lemma. For 8(t) = MWWUTE(t) — MUZ(t)
inserting (3.28) and (PD-ROM) and omitting the second argument in F, we obtain

0(t) = MUOT [AM~'(i(t) — MUZ) + F(z(t)) + PF(T(t))]
= MUUT [AM ™ (p(t) — 0(t)) + F(z(t)) — PF(TZ(1))].
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Defining 6(t) = UT6(t), noting that 6(t) = MU(t), we have
0(t) = T AM " (p(t) — 0(t)) + U7 F(a(t)) — UTPF(VE(1))
= 50(t) + G(1),

with G(t) :== WTSM~1p(t)+ VT F(z2(t)) — WTPF(VZ(t)). We can estimate the norm of G(t)
IG@)|| = |[¥"SM ' p(t) + ¥ F(z(t) — ¥TPF(2(t) + ¥TPF(2(t) — VTPF(Wz(t))]|
< | WTSM T p(t) || + [T (T = Pyw(t)|| + Ly [[ W7 P|| [|a(t) — $z(t)]|y ,

<cillp®lz +eallwt)|l +es o),
(3.29)

with the Lipschitz constant Ly < oo of F', ¢ := ||\IITS|| + Ly ||\I/T]P’H7 co = ||\IJT(]I—IP’)||
and c3 := Ly ||[$TP||. To estimate the DEIM projection we apply (3.16) on U7 F(x(t)) —
UTPF(z(t)) = (I — P)w(t), where

w(t) := F(x(t)) — @07 F(x(t)).

Furthermore, note |}M*1p(t)HX = |lp(®)|l, and ||z| x = ||Z]|,. With

1601 5 18] = 5 5 (1B = (310).810))

we get

16(t)]| 16(t)]|
— ”:(t)” o). 5a) L (3. a
”“’Et>”2< ) ()> [ <t>|\< ) ()>
- ”Ae(t)” 0(t). S6(t L law.au
|| g>||j<()’ )+ gy (00-0)
< u(®)0)] + 1G]
< allf(t)] + b(t),

-~

where a := p(S) + c3 and b(t) := c1 [|p(t)]; + c2[[w(t)]|. In the last two inequalities we
use the identity ||6(t)||,, = ||0(t)|| and the property of 1(S) in (3.26). Applying Gronwall’s
lemma we obtain

t
10z = 6@ < 10(0)] 7 €™ +/0 et(t=ds

¢ i ¢ 3
< ( / em—s)ds) (2 | @i+ ||w<t>||2ds) ,
0 0

using Cauchy-Schwarz and the second binomial formula. The initial value is 6(0) = 0 by
definition. Thus,

67 < ¢ (/1 & lp)llz + 3 IW(t)I2d8> :
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with ¢ = 2 [, e*(=9)ds, which gives

/I||9(t)|\2z < T¢ (/IC? lo®lz + ¢ W(f)2d8)-

Applying the last inequality to the total error [; [|2(t) — ®)|I% dt = I lle(®)]| dt yields
the error bound (3.31) with

Cp := max{1 + T¢c3, T3,

noting that [, [|p(t)|5 dt = [, ||=(t) — TOT Ma(t) q.e.d.

2
() dt
For (P-ROM) without DEIM projection the error estimate holds with & = 0.

Remark 3.7. Due to the application of Gronwall’s lemma we need the state trajectories to
be continuously differentiable which we obtain from the assumption of Lipschitz-continuity
on the nonlinearity. Thus, while the estimate is stated for a general ¢ € Q" = L?(I,R") it
must be chosen such that the Lipschitz condition is satisfied.

Remark 3.8. The reconstruction error definition RE () is related to estimate (3.27) when
using the norm ||zl 2, y) via

o) = Va0 s, = [ Nalt) = WROI . (3:30)

Thus, we will refer to the estimates also simply as reconstruction errors.

Remark 3.9. From the reconstruction error also a point-wise bound for a certain time
instance t can be deduced. E.g., for solutions y"(t) € V" at final time we find that

ly"(T) — y*(T)||3, = 0

by increasing k and ¢. This is inherited from the assumption that the state solution space
Y is continuously embedded in the space C(I, H).

3.3.4. Reconstruction errors for implicit Euler time-stepping

We now consider the implicit Euler scheme as defined in (2.8) with constant step size
7 :=T/n, and the time grid t; = j7, j = 0,...,n,. The initial value is z' = z(ty) = w5,
thus, the sequence yields m = n. + 1 snapshots. As for the time-continuous case, we extend
the results in [32] to oblique projections and a weighted norm.

Theorem 3.7. For a fit q € Q"7 let {z"}™ ; and {Z"}"_; be discrete solutions of the HiFi
problem (2.7) and (PD-ROM) obtained via the implicit Euler scheme (2.8). Let (A3.26)
hold. If the nonlinearity F(x,q) is Lipschitz-continuous in x and the step size T is chosen
sufficiently small, then there is a constant Cy < oo such that we have

> e — UEM[% < Ca(Es + &) (3.31)
n=1
with . .
Er = Z Hx” - \If\IJTMLZJnHi , &= Z HF(z",q) - fINI)TF(a:”,q)H2

n=1
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If the projection matrices ¥ and ® are computed as in (3.6) and (3.17), we have

d d
Er = g i &= E 54,
i=k+1 i=0+1

where d and d are the rank of the corresponding snapshot matrix.

Proof. We give a proof similar to [32, Theorem 4.2], however, exploiting the presence of a
linear part in the dynamic problems. Consider again the transformed HiFi model (3.28),
where & = Mz. With the & = MUZ we have

sn _ sn—1 an o _ mn—1 —~
T _SM%#"+F(a") and = S 4 WTPF (U,
T T

where we omit the ¢ argument in F. We define E,, := 2 — M V2" and consider
En = pn + anv

where p, := &* — MUUT3" and 6, := MUUTF" — MUZ". Analogously to the proof of
Theorem 3.6, we seek an expression for the evolution of 6,,. Therefore, we define 6,, = uTg,
from which follows 8,, = M W¥0,, and consider

~ ~

an _ gn—l _ \I/T:%n _ :%nfl B n — fnfl
T T T

= UTSM i + OTF(a™) — 82" — UTPF(U3")
= VT SM Y (p, 4 0,) + T F(a") — VT PF(UZ")
= 50, + G,

with G, := VT SM~tp, + T F(2") — WTPF(V2™). Asin (3.29) we can estimate the norm
of G,, via

|Gall < ||@TSMpy || + [ €7 (X = P)w, || + Ly || U7 P|| 2" — Mz,
< cllpnllz +e2llwal +c3(fnll 2,
with the Lipschitz constant Ly, w, := F(a") — @®TF(2"), ¢1 := [|[UTS|| + Ly || ¥TP|,

Cy 1= ||\IIT(]I — ]P’)H and c3 := Ly ||\IIT]P’|| Therefore, we have
<<§n,§n> o <§na§n1>>
105l 10l
_ <§ é\n - é\n—l >
6] T
16nll /5 & L s
= — 0,,50,)+ ———(0,,G,
1612 < > 10l < >

1(S) 1]l + | Gal
a)|nl| + bn,

HenH — Hanle
T

e

—_

AN

where a := p(S) 4 c3 and b, = ¢ ||pnll, + c2 [Wal. Recall |6,]l, = [|6n] and define
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¢ :=1/(1 — 7a), which gives ¢ > 0 for 7 sufficiently small. For 2 < n < m follows

n—1
100l 7 < C(10n-1ll7 + Tbn) < ¢t 011z + 7 Z ("n—it1
i=1

1
n 2
< (cz bf) :
i=2
defining ¢ := Zf:ll (2 and noting 6; = 0. Thus,

0l = 72¢ 37 < 3% (z 2l + 2 nwnﬁ) |

i=2 =2

Applying the last estimate to the total error Y -, ||En||2Z =>m. (HPnHQZ + HGnHQZ) we
obtain the error bound (3.31) with

Cp := max{1 + 2T7¢c3, 2T(c3},

noting that 37", |E,|l% = 327, [la™ — UZ"||% and

S loall =3 e - MwwTan |3
n=1 n=1

q.e.d.

Regarding the applicability of the estimate, one must note that here we assume the
implicit equations in each Euler step to hold exactly for ¢ € Q" and we make no assertions
on how to solve these. Thus, in practice one has to take care that the accuracy with which
the implicit equations are solved is sufficiently high and the control ¢ is sufficiently regular
such that the equations can be solved at all (compare Remark 3.7). It must be further noted
that the constant C, is a rough overestimate. In practice we observe often C, to be in an
order of magnitude close to 1 (compare §3.3.5).

The estimate (3.31) is in agreement with the more general result of §3.3.2; i.e., the de-
pendence of the error on the snapshots included, the step size 7, and the POD/DEIM
eigenvalues. However, note that in contrast to estimate (3.24) we lack the occurrence of the
factor 1/72 in (3.31). In Theorem 3.7 discrete solutions of the HiFi model are compared with
discrete solutions of the (PD-ROM) each obtained via an identical implicit Euler scheme.
In contrast, in Theorem 3.5 discrete solutions of the surrogate model are compared to con-
tinuous solutions of the HiFi model, hence, the truncation error 72 of the implicit Euler
method must be included.

Remark 3.10. By including appropriate time weights 71, ..., vm, estimate (3.31) is an
approximation of the continuous estimate (3.27). The estimate (3.31) then becomes

m

Dl = U < Col€n + &)
n=1
with

m

&= " — WU M, &= ||F(a",q) - 28T F(a", q)|
n=1 n=1

56



3.3. Error analysis

Remark 3.11. From estimate (3.31) also an error bound for the reconstruction error of a
single time instance ¢; of the implicit Euler scheme can be deduced, in analogy to Remark
3.9. Obviously, we have, e.g., at final time T

lz™ = WE™ % < Yl — WE|Y < ColEr + &)
n=1

3.3.5. Examples

We now give numerical examples to provide the reader without POD experience with an idea
of common practical approximation quality. The results reflect the theoretical reconstruction
results of this section and serve as a basis for further investigations when we dedicate
ourselves to derivative approximations. One must note that the reconstruction errors become
zero if the number of POD and DEIM basis functions is /N which is the dimension of the HiFi
model. In this case the model reduction step via POD (without DEIM) reduces to a basis
transformation. However, to efficiently apply POD we hope for the number of necessary
basis functions to be small. The software setting where the computations are carried out is
described in chapter 6.

We consider the following convection-diffusion-reaction example problem on the unit
square Q = (0,1)2, with time horizon I = [0,0.5], and mixed boundary conditions of Robin
and homogeneous Neumann type

Y = —aTVy 4+ DAy + O(y, uy, up) + us inlxQ,
Oy + By = B2 on I x1I', (3.32)
o,y=20 on I x Ty,
y(0) =0 on Q.

The boundary is defined by the constant velocity vector a € R? and

I ={red : a'n(r) <0} and Ty={r : a’n(r) >0},

where n(r) is the outer normal vector at r € 9Q. In the following we distinguish two
particular cases.

Case A: In a convection dominated setting with use
a=(02-1)T, D=002 B =p=10%

the nonlinearity _
O(y, u1,uz) = €25 — (cos(mus) + usy?),

where u1,us € R, and a spatially distributed control uz = ¢3¢ s(r) with shape function
¢s(r) given as
$s(r) := max(0, —0.25 + e~ 25((r1=025)*+(r2=0.25)%)) (3.33)

An illustration of the shape function ¢g is given in Figure 3.1.

Case B: In a diffusion dominated setting with use

a=(0.004,-0.02)", D=1, B =py=10%
O(y, ur, uz) = 0.01e"25Wm) _ 0.01(cos(muz) + uzy?),

and uz = q3¢s(r) as above.
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3. POD/DEIM Reduced Order Models

We choose different values in the two cases, such that for case B we can expect better
reconstruction properties in comparison to case A. The choices are based on practical expe-
rience with POD. Roughly spoken, we decrease the nonlinearity and stiffness as well as the
amount of energy contained in the system. Later we are also interested in adjoints and sen-
sitivities with respect to the controls. For the state reconstruction tests we set u; = us =1
and g3 = —1. Note that after discretization we have u; = ¢; and us = ¢o.

08
06
s 041

0.2

Figure 3.1.: Shape function ¢g defining us.

To discretize the problem in space we employed linear finite elements with N = 289 based
on the software deal-ii [11]. The time integration is carried out with DAESOL-II. For the
reconstruction tests we adapted the configurations such that we do an implicit Euler method
with fixed step size 7 = 1073, a decomposition of the Newton iteration matrix in each step,
and one Newton iteration per time step. This allows for small reconstruction errors close to
machine precision in case B. Note that the discretization parameters are tailored to show
effects of POD model reduction in a discrete setting, thus, temporal discretization quality
is chosen higher than spatial discretization accuracy.

The reduced-order models are constructed according to §3.1.3 and 3.2.1. The projection
matrices are determined via the optimality (3.6) for the POD projection and (3.17) for the
DEIM projection, however, we use an additional normalization of the snapshots. We divide
each POD snapshot by Y7, | v ||2!|| , and each DEIM snapshot by Y-, | v || F (!, )||. Nor-
malization issues are discussed in detail the next chapter. We apply Variant I to compute
the eigenvectors of the snapshot matrices. Thus, using SVD, which guarantees an accurate
POD basis approximation close to machine precision. Information is taken from all time
instances, thus, the snapshot matrices are S, D € R?89%501 Tn the following the reconstruc-
tion errors RE () are compared using the norm ||{|;2(; y) which corresponds to the square
root of the reconstruction error estimates in Theorem 3.7 (see also Remark 3.8). The error
is evaluated using a quadrature rule implied by the POD weights ~; as in (3.2).

Figure 3.2 shows the reconstruction results of the example problem (3.32) for the cases
A and B. We increased the number of POD basis functions used to build (P-ROM) and
computed the reconstruction error RE (z) for each instance. In addition the square root
over the sum of neglected eigenvalues is plotted, which for a purely state dependent POD
basis corresponds to the square root of the discrete POD projection error £, according to
(3.9).

We observe an exponential decay in the reconstruction and the projection error in both
cases. The fast decay of eigenvalues is typical and essential for a successful application of
POD. Furthermore, we see that the projection error and the reconstruction error are closely
related which is expected due to the reconstruction results of §3.3.4. This is a behavior
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3.3. Error analysis

Case A Case B
10° 10°
x X
Sl S
107 107 o,
a
XX X X X . ;
10-10 o 10-10 .
o 2 X X X
o
1071 S| s .
il O g-m
10 20 30 40 10 20 30 40
k k

Figure 3.2.: POD reconstruction errors RE(z) using the norm [z ;27 x and
the square root of the projection error &, corresponding to the neglected eigen-
values \;.

we observe for all tested examples. While for the general reconstruction result of §3.3.2
the constants Ci,...,Cy are independent of k, the constant C, in (3.31) is technically
not. However, the numerical results indicate that the value of C,, is also independent of the
number of POD basis functions. Moreover, we see that the decay of the reconstruction error
stops after a certain value of k. Recalling the main influence factors for POD reconstruction
in Remark 3.6, we observe that the POD projection error dictates the reconstruction error
for small POD bases and for larger bases the time discretization error becomes dominant.
The number of snapshots included is obviously not a factor as all available snapshots have
been used. We observed that the errors can be driven close to machine precision by choosing
7 sufficiently small, which is not explicitly shown here. Moreover, as expected the error decay
is faster in case B where also the time discretization error starts to dominate not before a
reconstruction error of about ~ 10712 in contrast to about 10~® in case A. Note that high
accuracies can be obtained as the reduced-order models are an exact (up to the precision of
) projection of the HiFi model.

Case A Case B
100 10°
~ RE(z) for k =
a% e e e X X KX x X =k RE(z) for k=14
|
-5 i -5 wrpee RE(z) for k=21
10 Kk ek ow xox o 10 . . (l\? o
+ D ke Rk ok op [ e icer1Si
o2 R T +
10710 a 10710 F O = e e PR s s s o
o ()
o
10—15 [ O B 10715 O:p-.o-o-f
0 10 20 30 40 50 60 0 10 20 30 40 50 60
l l
Figure 3.3.: Decay of the DEIM reconstruction errors for different instances of

1
POD reduced-order models for the norm ( [, ||.T||§( dt)?. In addition the the
DEIM projection error is plotted determined via the neglected eigenvalues s;.

In Figure 3.3 we display analogous reconstruction results of the DEIM approximation for
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3. POD/DEIM Reduced Order Models

both example cases and the same norm. In addition we distinguish different sizes of POD
reduced-order models that the DEIM approximation is applied to, i.e., for k = 12,24, 36. As
before we observe an exponential decay of eigenvalues and reconstruction errors. However,
with a certain size of £ the reconstruction cannot be improved further, even for relatively
large errors. Obviously, this is due to the fact that we achieved the best possible approx-
imation quality determined by the size of k (compare to the corresponding value of k in
Figure 3.2). From a practical point of view, it is desirable to choose ¢ such that the best
possible reconstruction error of a (P-ROM) can be achieved.

Remark 3.12. Note that we cannot expect to reduce the error exactly until the POD
reconstruction limit as the DEIM space is constructed from HiFi data and the nonlinear
evaluations are done with surrogate data. To remove this discrepancy one would have to
construct the DEIM space from data of a pure POD surrogate, i.e., using snapshots

F(W3',q),..., F(¥3™,q).

POD DEIM
0.5
4 e k=12
X 0.4 o v wedfee k=24
/;\ 3 % /3 v BETA k=36
] (] v
Zz =z v
X 0.3 v
é 2 QEJ vV *
= x = vV N % ¥
1 o 0.2 o x + 1
X * + + +
X x + + +
0.1 b=
0 20 40 60 80 100 0 20 40 60 80 100
k 14

Figure 3.4.: Runtimes for simulations of (P-ROM) (left) and (PD-ROM) for
different instances of POD reduced-oder models (right). Runtime for a HiFi
simulation is 2.5 seconds.

In Figure 3.4 we show runtimes for a single simulation of the reduced-order models
(P-ROM) (left) and (PD-ROM) (right) for case A. The software environment and technical
aspects are described in chapter 6. The simulation time for the HiFi model was approx-
imately 2.5 seconds. As one would expect, with increasing number of basis functions the
runtime increases. In case of POD the evaluation of the reduced-order model for k = 100
is almost as expensive as the HiFi model, even though a still significantly smaller system
is used. One must recall that the POD basis uses global modes, thus, dense linear algebra
and matrix multiplications must be used. Also the evaluation of the nonlinearities is still
as expensive as for the HiFi model. Hence, we can conclude that the efficiency of the POD
approach gets lost when the basis is not able to capture the essential information with a
moderate number of modes. With DEIM the runtimes can be further reduced. Also for
relatively large numbers of DEIM basis functions, provided that the POD basis is moderate,
the evaluations are cheap. This will be important as later when including adjoint derivatives
we need a lot more information in the DEIM subspace. Note that by applying DEIM, the
cost of the reduced-order model is completely independent of the size of the HiFi model.
Hence, the same runtimes are obtained even for HiFi models with much finer discretization.

60



4. Derivative-Extended Reduced-Order Models

In the direct approach we follow we want to use the POD/DEIM surrogate models (P-ROM)
and (PD-ROM) to solve the reduced optimal control problem (2.17) of the semi-discrete
setting, applying the concepts for derivative computation as explained in §2.5. To this end,
it is desirable to compute good POD/DEIM approximations of the reduced objective and
its gradient. While it is challenging to assure this for a fixed surrogate model and all ¢
(the problem of POD prediction), we should at least guarantee small approximation errors
locally, i.e., small reconstruction errors RE (jh(q)) and RE (th(q)) for a reference § where
the surrogate model is constructed.

The reconstruction properties of the objective are inherited from the reconstruction prop-
erties of the states. We can use the estimates in §3.3 to find error bounds for the objective,
depending on the setting we consider. As we assume the objective to depend on the state
at final time only we obtain from Theorem 3.6 and Remark 3.9 that

N N
RE (j"(q)) < Cy(&x + &) =Cy ( Z Ai + Z §i> ; (4.1)
=kt 1 =11

for some constant C; < co. The equation in (4.1) holds for POD and DEIM bases built
according to (3.10) and (3.19). For the discrete setting, using the implicit Euler scheme
(2.8) to solve HiFi and surrogate model, we obtain due to Theorem 3.7 and Remark 4.2
that

d d
RE (" (@) SCsEa+&)=Cs| D N+ > si, (4.2)
i=k+1 i=0+1

for some constant C; < oo.

However, the reconstruction properties for the adjoints and the sensitivity equations are
yet unclear and with this the reconstruction properties of the gradient. In this chapter we
shed light on the relations between the HiFi model, the reduced-order models (P-ROM) and
(PD-ROM), and their corresponding adjoint and sensitivity problems. The idea we follow
is to include additional derivative information in the snapshot matrix for POD projection
as well as for the DEIM projection. The forward case for pure (P-ROM) without DEIM
projection was presented in [104]. We extend the ideas to the adjoint case and to surrogate
models with DEIM projection. Note that we have in mind the overall goal to use the
adjoint approach to solve optimal control problems while with the sensitivity approach we
seek to solve parameter estimation problems, where the number of degrees of freedom for
the optimization variable is rather small to moderate.

4.1. Reconstruction error estimates

4.1.1. Adjoint equations

We extend the estimates in §3.3 to the adjoint problem of the HiFi model (2.7), which
contain, due to the nonlinearity, solutions of the state equation. Analogous to (2.18) the
HiFi adjoint is obtained as solution of

= () = 2T (OMTHS + Fo(z(t),0)),  27(T) = J; (2, 9). (4.3)
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4. Derivative-Extended Reduced-Order Models

An overview of the relations between the models and their adjoints is given in Figure 4.1. By
"discretize’ we mean the Galerkin discretization as in §2.2.1, by ’adjoining’ the derivation of
the adjoint, and by POD and DEIM projection we refer to the construction of the surrogate
models as explained in §3.1.3 and §3.2.1. Recalling Remark 2.4 the adjoint problems are
defined by the corresponding state problems. With the direct approach we seek to construct
the reduced problems (P-ROM) and (PD-ROM) such that their semi-discrete adjoint prob-
lems are POD/DEIM projections of the HiFi adjoint problem in the sense of POD/DEIM
model reduction as described in Chapter 3. Thus, the question arises what the projections
look like and how the subspaces must be constructed.

weak form HiFi P-ROM PD-ROM
states model

- discretization POD projection DEIM projection
adjoining
weak form HiFi P-ROM PD-ROM
adjoint adjoint ® adjoint adjoint
discretization + POD projection DEIM projection
transformation Z = M~z 777 777

Figure 4.1.: Overview of the relations between infinite-dimensional problems in
weak form, semi-discrete models, POD reduced-order models, and POD/DEIM
reduced-order models for states and adjoints.

We start by analyzing under which conditions the diagram in Figure 4.1 is commutative.
Commutativity of the left part (path 4@ = path @+®) was shown in §2.3, Proposition
2.1. Following the techniques for the derivation of the adjoint in the semi-discrete case as
in §2.3, the adjoint of (P-ROM) together with the objective J*(¥Z, q) is

.T ~
—2 (0 =50 (S+UTREED). ), HD)T = JE(VE,q). (4.4)

For now we do not make any assumptions on the subspaces that are used for the POD/DEIM
and consider only the formal projection step. Under the basic assumption (A3.26) on the
projection matrices, the following results are obtained immediately.

Lemma 4.1. If the relation z = MVYZ is used for the POD projection of the HiF'i adjoint
equation (4.3), then the paths @4@® and &+ yield the same result.

The adjoint problem of (PD-ROM) is analogously given as
—2 (1) =2T(0) (S + WTPR(VE(t), ) . AT = JE(VE,q). (4.5)
Lemma 4.2. If the DEIM projection is applied simultaneously on all k columns of Fz(VZ(t),
n (4.4), then the paths @®+@ and ©®+a00 yield the same result.

Commutativity of the diagram follows then directly from Lemmas 4.1 and 4.2. Note that
it is not a priorily clear how to do the DEIM projection. We will discuss this issue later in
§5.4. Now we present error estimates for solutions of the HiFi and the (PD-ROM) adjoint.
Recall the definition of the norm ||-||, = (-,-) -1 in (3.25).

Theorem 4.3. For a fir ¢ € Q" and t € I let 2(t) and 2(t) be the solutions of the state
(2.7) and adjoint problem (4.3) and Z(t) and Z(t) the solutions of (PD-ROM) and its adjoint
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problem (4.5) respectively. Let (A3.26) hold. Assume the matriz of directional derivatives
Fp(z(t),q)¥ and F(x(t),q) to be Lipschitz-continuous in x. If the solution z(t) is bounded
With Zmax = sup,cy ||2(t)|| 4, then there is a constant C, < oo such that we have

k
/|| — MUZ(t)| 5 dt < C., (5 + &+ &, +Zf:fz> (4.6)

=1

with & and & as in Theorem 3.6 and

E. ::/IHz(t) —M\I/\I’Tz(t)||22dt

&, ::/||Fx(x(t),q)\11,if@@TFx(x(t),q)\I!.i]th, i=1,..., k.
I

Note that [|-||, is the natural norm inherited from the Galerkin discretization of the con-
tinuous adjoint (1.15) in the space V" and the relation Z = M ~!z established in Proposition
2.1.

Proof. Similar to the proof in Theorem 3.6 we decompose the point wise error e(t) :=
z(t) — MPZ(t) into

e(t) = p(t) +0(t)
with p(t) = z(t) — MUUT2(t) and (t) := MUVT2(t) — MUZ(t). Again omitting the
control argument ¢ in F, we have

o(t) = MowT [STM*1 (p(t) + 0(t)) + Fy(x(t)T 2(t) — (PF(WE(1)))" W2(t)

where we used F,(VZ(t))V = F3(Vz(t)). Defining 6(t) := UT6(t) and multiplying the
expression for 0(t) from the left with U7, one obtains

~

b(t) = S0(t) + G(t)
with
G(t) = 0T [STM’lp(t) + Fy(a(t)TM ' 2(t) — (PF,(92(1))T W2(1)| .

Using (3.16) with F,(z(¢))V — PF,(z(t))¥ = (I — P)w,(t) and w,(t) = Fy(z(t))¥V —
®PTF, (x(t))¥, the norm of G(¢) is bounded by
1G] < [[¥7S"M 7 p(t) + [ (Fo(2(1) )" — (PF, (x(1))¥)"
+ (PF (x(1)®)" — (PF( ft) M)
+ (PFL (WE(t)0)" M~ (2(t) = MPZ(1)) |

(4.7)
< H‘I’TSTM p(t) + (PF(VZ(t)¥ ) 1( () +0(0))]|
+ |2t ([ =P)w. ()| + [|z" ()M P (Fu(2(1) ¥ — Fp(WE(1)) V)|
< Hp(t)||z +e2[[0()] 2 + cs llw= ()] + ca llz(t) — VZ(1) x
with constants ¢; = ||SYU|| + Fnaz P, ¢2 := Frnaz P, ¢35 = 2Zmaz |[T=P)||, ¢4 :=

Zmaz L |P||, where Frqp = supc; ||Fo(x(t)) || and Ly the Lipschitz constant defined as

[(Fe (2(6) = Fo (W2 () W)|| < Ly [Jo(t) — WZ(t)]| -
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4. Derivative-Extended Reduced-Order Models

Note HM‘l,zHX = ||z]|, and accordingly for p and 6. For the temporal evolution of 18] we
obtain as before

16)] < p(SNw) + 1G]
< al|f

@1 + b(t)

-~

using the logarithmic norm u(-) and a := p(S) + c2, b(t) == c1||p(t)|, + 3 ||w=(t)|| +
ca ||z (t) — VZ(t)|| . From here we continue as in the proof to Theorem 3.6, applying Gron-
wall’s lemma to the last inequality. q.e.d.

We now state the results for the adjoint problem solved with the implicit Euler scheme
(2.8). We use again the abbreviation 27 := z(¢;_1) as for the states.

Theorem 4.4. For a fir ¢ € Q" let {2}, and {2"}™_, be solutions of (2.7) and
(4.3) obtained via the implicit Euler scheme (2.8). Let {&"}™  and {Z"}™_, be solu-
tions of (PD-ROM) and (4.5) respectively. Let (A3.26) hold. Assume the matriz of di-
rectional derivatives Fp(x,q)V and F(x,q) to be Lipschitz-continuous in x. If zmee =
max{z',...,2™m} < oo and T is chosen sufficiently small, then there is a constant C, < oo

such that we have

m k
> e = M| < C. (590 +E&+E+ Ze}z> (4.8)

n=1 i=1

with €, and & as in Remark 3.10 and
E= > e — v M,
n=1

2
. i=1,...,k

& = Z Vo ||F=(a™, q)0.; — DT F, (2", q) U ;]
n=1

Proof. The proof is similar to Theorem 3.7 using a bound for G,, analogous to estimate
(4.7) in Theorem 4.3 and noting that z, are in reverse order due to backward integration
in time. q.e.d.

_ Clearly, both theorems also hold for the adjoint problem (4.4) of (P-ROM) with & =
& =&=¢&_ =0.

4.1.2. Sensitivity equations

In this section errors between solutions of the sensitivity equations and their surrogate
approximations are assessed. The VDE to the HiFi problem (2.7) in a direction ¢ is given
as

w(t) = (S + Fo(z(t), q)) w(t) + Fy(x(t),q)g,  w(0) = 0. (4.9)
The relation of the HiFi and surrogate models in a sensitivity based approach are shown

in Figure 4.2 in analogy to the adjoint case. The VDE of (P-ROM) according to §2.3 is
given as

(1) = (S + W Fa(E(),0)) B(t) + WTF,(VE(t), q)d, @(0)=0,  (410)
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4.1. Reconstruction error estimates

weak form HiFi

tat model P-ROM PD-ROM
states | @

®

differentiation discretization POD projection DEIM projection
w.r.t. q ﬁ@ @ @ @

® ©

discretization POD projection DEIM projection
777 77

Figure 4.2.: Overview of the relations between infinite-dimensional problems in
weak form, semi-discrete models, POD reduced-order models, and POD /DEIM
reduced-order models for states and sensitivity equation/VDE.

with the VDE state variable W = Z,§ € R¥ and a direction § € Q". The VDE of the
(PD-ROM) is

(t) = (§ +UTPE (UE(1), q)) @(t) + VTPE,(VE(t), )4, @(0) = 0. (4.11)

As before we consider only the formal projection step and require the projection matrices
U, ® to only satisfy (A3.26). Commutation of the left part is a result of §2.3.2. Commu-
tativity of the diagram is then a result of the following two Lemmata. Their proofs are
obtained via standard calculus.

Lemma 4.5. Applying a POD projection on (4.9) with the relation w = Vw, then the path
@+®) yields the same result as 5)+Q).

Lemma 4.6. Applying a DEIM projection on the sum Fz(VZ(t), q)w(t) + Fy(VZ(t), q)q in
(4.10), then the path @+ yields the same result as ®—+9.

We now give estimates for the error between solutions to (4.9) and (4.11). For fix ¢, G € Q"
in the following we use the abbreviation

F(z,w) := Fy(z,q)w + Fy(z,9)§, Yr,we X. (4.12)
Theorem 4.7. For fir q,G € Q" and t € I let z(t) and w(t) be the solutions of the state
(2.7) and VDE problem (4.9) and let Z(t) and W(t) be the solutions of the (PD-ROM) and its

VDE (4.11) respectively. Let (A3.26) hold. If F.(x(t),q)w(t), Fy(x(t),q)q, and F(x(t),q)
are Lipschitz-continuous in x, then there is a constant C,, < oo such that we have

/||w B dt < Co(Es + &+ Eu + Era) (4.13)

with & and & as in Theorem 3.6 and

£ ::/IHw(t) — U Muw(t)|, dt
Etu ;:/Hﬁ(x(t), (1)) — 907 F(a H

Note that ||| y is the natural norm for solutions of (4.9) inherited from the discretization
of the weak form of the sensitivity problem (1.20).
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4. Derivative-Extended Reduced-Order Models

Proof. The proof is analogous to Theorem 3.6, considering a transformed HiFi VDE
w(t) = (S + Fo(a(t),q) M~Ho(t) + Fy(z(t), 9)d,  w(0) =0,

with @ = Mw and seeking a bound for the error e(t) = p(t) + 0(t), where p(t) := w(t) —
MYUTw(t) and (t) := MUVTw(t) — MPw(t). The crucial step is to find an estimate for

|G(t)|| in the temporal evolution of A(t) = WT(t), given as
a(t) = 58() + G(1). (4.14)
With
G(t) = UTSM 1 pt) + VT F(x(t), w(t)) — VTPF(UZ(t), Ud(t))
a bound is given by
G| < ||wTsM—"p(t)| + H\I/TF(JJ(t),w(t)) — OTPR(VE(L), m(t))H (4.15)
where the second term is bounded by
H\I/Tﬁ(x(t), w(t)) — WTPE (V3 (L), w(t))H
< H\I/Tﬁ‘(x(t),w(t)) —OTPE(x(t), w(t))”
+ H‘IIT]P’F(x(t), (1)) — WTPE(WE(t H
+ H\I/T]P’F VE(H), w(t)) — \I/T]P’F(\Il:r,(t) (1)) H

< [[e* @ - W) +Lf [OTP|| fl(t) — O2(1)] x
+ Finaz [ V7P| () = MPB(#)]
with -
Wy (1) = Fy(2(t), w(t)) — @7 Fy(2(t), w(t)),
Fhar := maxer (HF$(\I/§(7§) q)M~ ) and Ly the Lipschitz constant defined as
|Fe (@), w(t) = Fu(a (), w(v)|| < Ly lla(t) — 03(0) |

which exists to the Lipschitz continuity of F,(z(¢), ¢)w(t) and F,(z(¢), ¢)d. Using (4.14) we
can proceed as in the proof of Theorem 3.6. q.e.d.

For the time-discrete case we use again the notation w’/ := w(t;_1), j =1,.

Theorem 4.8. For fir q,G € Q" let {x"}™_; and {w™}™_, be solutions of (2. 7) and (4.9)
obtained via the implicit Euler scheme (2 8). Let {33” Ly and {@W"}7L, be solutions of
(PD-ROM) and (4.11) respectively. Assume (A3.26) to hold If Fy(2', q)w', Fy(x', q)q, and
F(x',q), i=1,...,m, are Lipschitz-continuous in x, then there is a constant C,, < 0o such
that we have

D llw™ = B |5 < Cop(Ea + Es+ Eu + Enu) (4.16)
n=1

with £, and & as in Remark 3.10 and

Ew = Z’yn Hw” — \I/\IITM’LUnHi ,

Erw = zm:'yn F(z

n=1

. 2
w") — ®OTF (2", w™)

Proof. The proof is similar to Theorem 3.7 using a bound for G,, analogous to estimate
(4.15) in Theorem 4.7. q.e.d.
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4.2. Enhancement of the POD subspace

4.2. Enhancement of the POD subspace

In the literature on POD we find several approaches where the use of derivative information
for the enhancement of reduced-order models is suggested. Typically, the additional deriva-
tive information is used to improve the POD prediction properties of a surrogate model
and, thus, obtain better performance of POD surrogate models when varying the control
variables.

We find the first use of adjoint information in POD reduced-order models in [39]. The
authors observe an improved numerical performance solving optimal control problems, when
solutions of the adjoint states are included in the POD basis. In [62] adjoint information is
also added to the POD basis which leads to better results for error estimation of suboptimal
solutions of a linear-quadratic optimal control problem. Also in [112, Remark 4.10] a POD
optimality is considered where states and adjoints are included. In this thesis we follow a
similar idea for an inclusion of adjoint information in the POD basis. In addition, we suggest
a particular method of how to include the additional adjoint (and sensitivity) snapshots
using proper weighting. We extend the results to the DEIM projection and analyze the
properties of the extended bases which gives an explanation of the superior performance of
the enhanced surrogate model.

Sensitivity information for model reduction with reduced-basis methods was already used
in the 1980s [88, 91, 92] in the context of parametrized PDEs without time dependence.
Extensions to the POD methodology are found in [30, 122]. The authors follow an inter-
polation based POD approach. If only state information is used for the construction of
the basis, they refer to it as Lagrange approach. When a subspace that also contains the
derivatives with respect to parameters at different configurations is used, they refer to this
as Taylor or Hermite approach. It is shown in [30] that the inclusion of derivatives results
in a model which is more robust with respect to parameter changes and more efficient to
compute. We discuss the topic more thoroughly in §5.1. In [125] the inclusion of derivatives
is motivated by the importance of a ROM to be able to reflect also derivate information,
which is aligned with our superior motivation to construct derivative-extended ROMs.

In [57, 95] time-dependent systems are considered and the sensitivity of the POD modes
on parameter changes are investigated. The authors in [57] use these POD mode sensitivities
to improve POD prediction by either extrapolation or by including them in the POD basis.
The latter, however, might increase the order of the reduced basis significantly, that is by
k times the number of parameters which is rather undesirable and stands in contrast to
the extended POD optimality (4.26) of the sensitivity case. Their results are carried over
to fluid flows in [56]. In [121] the authors follow a similar approach including POD mode
sensitivity in the basis and truncating the enlarged basis using a Ritz approach.

Remark 4.1. In the case of time-dependent PDEs, typically already a lot of information of
the system is already obtained with one single time integration for a fixed control variable q.
Thus, an excessive offline phase, i.e., the computation of snapshots and possibly derivatives
for different control configurations is uncommon for dynamic problems. Moreover, in the
context of optimization the solution algorithm often converges in a moderate number of
steps. Hence, using snapshots of multiple parameter configurations to compute (P-ROM)
might destroy the efficiency of the model reduction approach for the optimization purpose.

In the following we present methods for the inclusion of adjoint and sensitivity information
in pure POD models without DEIM projection. The enhancement of the DEIM basis is
presented in §4.3. We start with the time-continuous case and then present the discrete
case.
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4. Derivative-Extended Reduced-Order Models

4.2.1. Adjoint case

We first consider (P-ROM) (without DEIM projection) together with its adjoint problem.
From Lemma 4.1, we know that the adjoint equation (4.4) is formally a POD projection of
the semi-discretized adjoint (2.21) with the relation M ~'z = ¥Z between reduced and HiFi
states. Due to M 'z = Z, we find that the POD approximation of the infinite-dimensional

adjoint variable p is
IAOEDY

=1

)

Z(t)wl € Vk7

N

which is a projection of p" as defined in (2.20) from the space V" onto V*. However, the

space V¥ is so far constructed from snapshots of the states only, hence, we cannot expect

p"* to reflect the dynamics of the adjoint p”. To overcome this problem we need to use an

extended POD subspace V* that contains the dynamics of the HiFi and the adjoint problem.
Recall the errors £, and £, of Theorem 4.3. For &, we have

.= [ 1ot - w0 = [ [0 - watarz)

In the continuous POD case the problem of finding a subspace V that minimizes £, and

&, at the same time corresponds to the extended POD optimization problem

Jmin, [l — a0+ [ ¢ o) - vzt

st.  UTMU =1,

(4.17)

with weights ¢, (* € R, for which we give particular choices only in the time-discrete case.
After suitable transformation, the POD projection error of the extended problem, and with
this the POD related errors &, and &, can be estimated analogous to (3.5) as

N
i=k+1

where A\f > A3 > .-+ > 0 are the eigenvalues of R = [, z(t)z(t)" Mdt + [, Z(t)zZ(t)" Mdt.

In the time-discrete setting we proceed as follows. We take snapshots for states and
adjoints at the same time instances to, ...,t, € I. Assume the snapshots x!,... 2™ of the
states and the adjoints z!,...,2™ to be obtained with the implicit Euler scheme (2.8). The
extended snapshot matrix S, € RV*2 then consists of the snapshot samples

(Ve v

with positive weights (;, (5, j =1,...,m. It is important to choose these weights carefully,
as different magnitudes in the derivatives and the nominal solutions can deteriorate the
quality of the POD basis. Considering the general POD projection error (3.5) it is clear
that the magnitude of the eigenvalues corresponds to the magnitude of the snapshots. Hence,
when choosing a certain k, modes belonging to smaller eigenvalues are thrown out and the
corresponding information is not captured. We propose to weight each snapshot by

" (4.19)

=1

i 0 .
G = ml = = — ! — i=1,...,m, (4.20)
(es + 2z v ll='llx) (s + 2 sy mIM—12 k)
where 71,...,7vm are the snapshot time weights as in (3.2), €, is a small constant, and

0 € (0, 1]. Thus, the snapshots are normalized dividing by an approximation of [, ||z(t)|| y dt,
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4.2. Enhancement of the POD subspace

while €5 prevents division by zero. With the additional adjoint snapshot factor 8 we have
the possibility to control the amount of adjoint information added and, thus, give the states
more importance in the basis. Clearly, we aim to include the additional information without
corrupting the projection error for the states for a standard POD basis. We assess the issue
in Remark 4.2.

Replacing the standard weights v; by (i,...,¢(n and ¢f,...,¢7, in the reconstruction
estimate of Theorem 4.4 we have

m m
E:=3 Gl — WU M| dt, €= ¢ ||F - wuT M|, dt.
i=1 i=1
Using the extended snapshot matrix S, for the computation of the basis corresponds to
solving the extended POD optimality problem

min & +& st UITMU =1 (4.21)
\PGRNX]C

We denote the extended subspace resulting from either (4.21) or (4.21) as V¥ C V. The
residual of (4.21) in the solution is

d
Eat &= > A, (4.22)
i=k+1

with A%,..., A3 being the eigenvalues of the matrix R, = S.S7 M and d = rank(S,).

Remark 4.2. By determining the number of basis functions for the extended snapshot
matrix S, according to a given tolerance criterion (see Remark (3.2)), the inclusion of
additional information in the basis does not come at the cost of losing approximation quality
of the states. I.e., using the ep criterion, obviously, we have

d
gz§8m+gz: Z )\f §€P~
i=k+1

Clearly, the number of necessary modes k will in general be larger, however, it is still an
optimal choice in the sense of (4.21).

Remark 4.3. In practice, the adjoint snapshots are computed using automatic differentia-
tion (AD) following the principle of internal numerical differentiation. The need to multiply
each adjoint snapshot 27 by M ~! comes quite natural from the PDE perspective. However,
it is less obvious from the AD perspective, where the interpretation of adjoint information
is unclear in general.

4.2.2. Sensitivity case

In the sensitivity case we enhance the subspace V¥ such that we obtain a bound for the
states and all VDE solutions for a given set of control variable directions. We consider a
POD reduced-order model without DEIM projection first. The Galerkin approximation of
a directional derivative of the states with respect to a § € Q" is given as

N
v ()= Y wi(t)p; €V
i=1
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4. Derivative-Extended Reduced-Order Models

Accordingly, with solutions @w(¢) of the VDE (4.10) to (P-ROM) and recalling Lemma 4.5,
the approximation of the directional derivative in V* is

k
yh(t)g =Y _ Wity € V*.
i=1
Obviously, the sensitivities are in the same space as the states. However, V* is constructed
from state information only, hence, we cannot expect y(’;d to be a good approximation of
yhg.

Assume that we have continuous solutions w'(t),...,w"(t) of (4.9) for a set of directions
Q1. -5 Gn, € Q". We want to construct an extended basis Vi that minimizes the errors &,
and &, in Theorem 4.7 for the state and all VDE solutions. Therefore, we denote the error
related to each solution w’(¢t) by

[ IO Ol =1
I

and consider the extended POD optimality

ng

in ¢, wi gJ b UTME =T, ,
pnin (& + ; CIgL s (4.23)
with weights ¢, ¢%1,..., (%" € R, for which we give particular choices in the time-discrete

setting. The POD projection error is
Ng N B
CErt > CUIEL =AY,
j=1 i=1

with the eigenvalues A of the operator R belonging to (4.23) analogous to (3.10).
For the discrete case we assume again that the snapshots are obtained from the implicit
Euler scheme (2.8) on the grid tg,...,t, € I. Let

w i=w!(tioy), i=1,....m, j=1,...,n4

be the VDE snapshots and !, ..., 2™ the state snapshots as for standard POD. We consider
the sensitivity-extended snapshot matrix S,, € RVX™+7a™ consisting of the snapshots

m

{ Qx’}il , { C;U’lwi’l}jil ey {\/(;U’n"wi’”q } (4.24)

i=1

The weights are chosen as follows

G = Vi Cw,j _ i
T m 1 27 % - m 1 29
(ﬁs + 2121 " ||33 HX) (es + 21:1 i ||w ’ ”X) (4~25)
1=1,....m, j=1,...,ng,
using the time weights 71,...,vm. As before we introduce a factor 6 € (0, 1] to control the

amount of derivative information in the basis and €; > 0 to prevent division by zero.
Proper orthogonal decomposition of the matrix S,, is equivalent to solving the extended
POD optimality problem in the discrete case, which is given as

min £+ Y & st VMU =T, (4.26)

VRN Xk
j=1
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4.3. Enhancement of the DEIM subspace
where

E:=3 Gl — v M5, &= wd — weT M|}
i=1

i=1

The dimension of the subspace Vu’f is again chosen according to Remark 3.2, thus, we
guarantee that adding additional snapshots does not come at the cost of a loss of dynamic
information of the state problem (see also Remark 4.2).

In the sensitivity case we might face the problem that the number of snapshots causes
the decomposition of the snapshot matrix to be slow. We deal with this issue later in the
applications part.

4.3. Enhancement of the DEIM subspace

An exploitation of derivative information in the context of DEIM approximations for reduced-
order modeling is not documented so far in literature. The authors in [41] present results
for parametric derivative approximations with EIM. It is shown that, provided the EIM ap-
proximation scheme is convergent, this also holds for parametric derivatives under certain
additional regularity assumptions. However, as DEIM only operates on the discrete level,
the relation to their results is beyond the focus of this thesis.

We proceed similar as for the POD subspace enhancement, first using additional informa-
tion to enrich the DEIM basis in the adjoint case and subsequently in the sensitivity case,
first dealing with the continuous and then with the time-discrete case respectively.

4.3.1. Adjoint case

We seek to enhance the DEIM subspace R’ such that we obtain small POD reconstruction
errors between solutions of the HiFi adjoint (4.3) and the adjoint (4.5) of (PD-ROM).
However, in the adjoint case we also need to have in mind the overall goal of minimizing
the reconstruction error of the objective and its gradient in the underlying optimization
problem. Thus, additional sensitivity information with respect to ¢ must be added that is
not related directly to the adjoint problem.

Assume first that an extended POD optimality problem is solved that includes & and &,
as given in Theorem 4.3 in analogy to the above sections. This would enable us to estimate
the two errors with the neglected eigenvalues of a corresponding operator R and with this
the reconstruction error for the adjoints. However, for a reconstruction error bound for the
gradient, inclusion of adjoint information is not enough. Therefore, we consider the POD
approximation jg(q)(j of a derivative of the reduced objective j* in a direction § based on
solutions Z of (PD-ROM). Analogous to (2.19) it is given as

Ma)i= / 5T (1) UTPF, (V2 (1), )q dt + J" (V7. q)q. (4.27)

As the DEIM projection also affects F,(UZ(t), ¢), we need to use a DEIM basis that also
includes sensitivity information with respect to ¢. For the error related to F,(¥Z(t), ¢) and
a set of directions ¢y, ..., G,, we introduce

. B 2 .
&, = /I||Fq(:c(t),q)qj—<I><1>TFq(x(t),q)qj|y dt, j=1,...,n, (4.28)
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4. Derivative-Extended Reduced-Order Models

Thus, with &, E_fiz of Theorem 4.3 and weights E, 5275‘1’1, .. .,5‘““1 € R we consider the
extended POD optimality for DEIM

k
. R 5i 2q,5 & . Ta
Gpin &+ Z;sz + ; (gL st TR =1, (4.29)
where in contrast to a standard POD optimality we need to approximate 1 + k + n, time-
dependent vectors. We specify the weights only in the time-discrete setting. Note that we
use only one weight (* for all £ as we know that the directions W.; are M-orthonormal.
With eigenvalues §%, ..., 5% of the operator R belonging to (4.29) the residual is given by

k g N
&+ Y &L+ (Ve = s (4.30)
i=1 j=1 n=~0+1

Proceeding analogously in the time-discrete case, we now need to approximate (1 + k +
ng) - m snapshot vectors. To build the (PD-ROM) efficiently, in practice the number of
snapshots needs to be decreased which we handle in chapter 6. For adjoint-extended DEIM
we consider the snapshot matrix D, that contains the vectors

{ @F(xi7Q)}:7 {\/Zme(xi,q)‘If}i,

vt (4.31)
{ C;I’qu(xi7Q)(jl} y e 7{ C;anFq(IZaQ)(jnq}
We choose the weights as

m

=1 i=1

& = Vi &= 0=
(€ + DS nlFEL DT ™ (e + 205w l1Fe(a!, ) Wal)?
ég,j _ Oq7i i—1
B O D R M CAN A D ’

As for the extended POD basis, we use a €5 > 0 and choose factors 0 < 6,6, < 1. Including
the above weights in the DEIM related time-discrete errors we get

.oom, j=1,...,n4

&= G| F! q) - 28T F(a',q)||",
1=1

gfzz = Zé:zz HFZ(:E27 Q)leZ - (D(bTFZ<xL7q)\IIZ’ ? ;
=1

gl = | Fyat )3 — 9T Fy(at, )5
=1

The extended POD optimality in the discrete setting is
k Ng
. i J Ty —
poin &+ i:E 1 &+ jil &y st. 'O =1 (4.32)

We denote the DEIM subspace spanned by a POD basis constructed from D, by Rﬁ. With
the eigenvalues s7,.. ., ss corresponding to the snapshot matrix D, and d = rank(D,) in a
solution of (4.32) the POD projection error is

k ng d
E+Y EL+Y &= > s (4.33)
i=1 j=1

n=~0+1
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4.3. Enhancement of the DEIM subspace

Remark 4.4. The inclusion of an error term gf]q in the extended POD optimality is only
necessary when there is a nonlinear dependence of F' on ¢ in a direction ¢;. E.g., for ¢; = e;
and g¢; entering linearly, F,(x(t),q)g; only differs from F(z(t),q) by a constant factor and
should already be well represented in the DEIM subspace.

Remark 4.5. In the presentation of the dynamic model problems we have pointed out that
with DEIM we face additional difficulties when the control is spatially distributed and enters
nonlinearly. According to our strategy to compute the extended DEIM basis, we need to
include as many snapshot sets as we have discretized control parameters ¢. In this situation
we cannot expect to obtain a small DEIM subspace. The problem is inherent, as in this
situation we seek to find a small subspace, but still preserve all properties of the possibly
large control discretization.

4.3.2. Sensitivity case

The last scenario of subspace enrichment in the sensitivity case for DEIM follows mostly
analogous. Assume that we seek a set of directional derivatives of the objective with direc-
tions i, ..., Gn,- The continuous extended POD optimality for the DEIM basis is then

L FE N fwi g T
pnin &+ ;g &, st oTe=1, (4.34)
with the scalar weights 5, fw’l, ceey 5'““1, the error & as in Theorem 3.6, and

& ::/IHﬁ‘(z(t),wj(t))f<I><I>TF'(x(t),wj(t))H2 dt,

where
Fa(t),w (1) = Fre(2(t), )’ (1) + Fy(x(2), )
and w'(t),...,w"(t) are solutions to (4.9) for a set of directions Gy, ...,G,, € Q". The
POD projection error in the solution of (4.34) is given as
CEet ) (I8, = st
j=1 i=t+1
where 5Y’,..., 5% are the eigenvalues of the corresponding operator.

In the time-discrete case we use a snapshot matrix D,, that consists of
{ QF(xl,q)} , { Clq’jF(:El?w”)} . J=1,...,nq. (4.35)
i=1 i=1
The weights are chosen as
&= Vi C’Zw,j _ Ouwi
= = = ,
(es + X mlF@EL ) ™ (€5 + 3y Ml F(at, wha))?

1=1,....m, j=1,...,ng

where 6,, € (0,1] and €5 > 0. The time-discrete POD optimality is

: j TP —
@g{l@g&ewf;aw st oTo =1, (4.36)
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where
2

)

= ZCWJHFZ‘ wh?) — dSTFI (2w J)’

We denote the DEIM subspace spanned by a POD basis constructed from D,, by Rﬁ). With

corresponding eigenvalues s¥’, ..., sd7£’ and d = rank(D,, ), for the POD projection error we
have
d
E+ Z 5] = Z
1=041

4.4. Reconstruction error estimates for the gradient

We now make use of the results in §4.2 and §4.3 to present reconstruction error estimates
for the gradient of the reduced objectives j"(q) and j""(q).

Definition 4.9 (DEPOD/DEDEIM). We refer to the approach of using the extended
POD optimalities (4.17), (4.21), (4.23), or (4.26) for the POD basis as derivative-extended
proper orthogonal decomposition (DEPOD). Using either (4.29), (4.32), (4.34), or (4.36) for
the DEIM basis, we refer to as derivative-extended discrete empirical interpolation method
(DEDEIM). We call the enriched subspaces V¥, V¥ DEPOD subspaces and the enriched
subspaces R’, RY, DEDEIM subspaces.

Whether we mean the adjoint or sensitivity case and the time-continuous or time-discrete
case will be mentioned explicitly or clear from the context. We start with the time-
continuous case and the derivative representation of the objective using adjoints.

Theorem 4.10. For a fiz ¢ € Q" assume the solutions x(t), z(t) of (2.7) and (4.3) and the
solutions Z(t),z(t) of (PD-ROM) and (4.5) to satisfy the reconstruction estimates (3.27)
and (4.6). Let ¢ € Q" and F,(x,q)q be Lipschitz-continuous in x. If the projection matrices
U and ® and corresponding eigenvalues N7, . .., 5\7\, and 57,...,5zn are computed according
to the extended POD optimalities (4.17) and (4.29), then there is a constant Cy, < oo such
that

N N
RE (jM(q)a) <Cr | D N+ > 5. (4.37)

i=k+1 j=l+1

Proof. By definition for the reconstruction error we have

with ¢g := [|5"(¢)ql| and the directional derivatives j"(¢)q and qu(q)q as in (2.19) and (4.27).
Exploiting that Jé‘ (z,q)q is independent of = gives

RE (j"(q)q4q) < / (|27 (#) M~ Fy(2(t), q)G — 27 () OTPE,(WZ(1), q)d|| dt/co

</ HzT@)M*qu(x(t),q)q—zT< PNBE (), 0]

+ |27 (M TIPE, (x(t), )G — 27 ()M T PE, (WE () ,q>q~y|

+ ||z" M TIPF,(VE(t), q)G — 2T ()\I/T]P’F (WZ(t),q)d| dt/co
<c1/HF Q)q — T Fy(2(t), q)q|| dt

+C2/Hx —UE(t)| dt+c3/”M )_\Ilg(t)nx dt

74



4.4. Reconstruction error estimates for the gradient

with constants ¢; := zmaz ||I — P|| /co, ¢2 := zZmaz ||P| Lf/co7 ey = supt(||IP’Fq(\I@(1f))H)/co7
the Lipschitz constant Ly of Fy(x(t),q)d, and zpae = sup,(||2(t H . For the first term

we applied (3.16). Using the reconstruction estimates (3.27) and (4.6), the definition of gf{]
n (4.28), and the mean value theorem, then there are constants C7,Cs, C5 < oo such that

/HF Q)G — T Fy(x(t),q)q|| dt < Ci&s,

/ l(t) — WA ()| di < O (£ +5),
k
/HM’lz(t) —Uz(t)||, dt < Cs (& +&+E. +Z£§Z> :
I =1

Due to the extended POD optimalities, the errors on the right are bounded according to
the projection error estimates (4.18) and (4.30). Thus, we can find a constant Cy, < oo
such that

‘”/I“Fq( £(t), q)F — DOTF,(x(t), q)d| dt

+ oo [ |la(t) — WE@)|| dt+ cg/IHM*lz(t)—\IlE(t)HX dt

k N N
e, (ga+gz@+5&+&z£@+éq&q) DTS o

=1 i=k+1 j=£+1
which concludes the proof. q.e.d.

Theorem 4.10 is a direct consequence of the Theorems 3.6 and 4.3 for the reconstruction
error of states and adjoints.

In the time-discrete setting the integral in the reduced objective must be approximated
by a quadrature rule. Considering the implicit Euler scheme (2.8) with n, steps and using

the trapezoidal weights 71, ..., as in (3.2) for the m = n, 4+ 1 snapshot locations, we get
T @ia= Y @) M T ", )d + Iy (2" 0)d (4.38)
n=1

We here assume fixed ¢,§ € Q"™ and require ¢,§ to be given such that the time-discrete
reconstruction estimates for states and adjoints hold and the implicit equations in each Euler
step are satisfied (compare also Remark 2.3). The reconstruction estimate for the gradient
follows analogous to the time-continuous case and we obtain

d d
RE(j7(9)d) <Cuz | D XN+ > 57, (4.39)
i=k+1 j=0+1

with a constant C'y, < co.
Directional derivatives of the reduced objective in the sensitivity case using (PD-ROM)
for its approximation are given as (compare (2.25))

Ji(@d= JHYE(T))D(T) + Iy (VE(T), 9)d.

Theorem 4.11. Let the set of directions qu,...,qGn, form a basis of QP . Assume that the
corresponding VDE solutions w'(t),...,w™(t) and @' (t),..., 0" (t) of (4.9) and (4.11)
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4. Derivative-Extended Reduced-Order Models

and solutions x(t) and T(t) of (2.7) and (PD-ROM) satisfy the reconstruction estimates
(4.13) and (3.27) at ¢ € Q" for all G;. If ¥, \V,...,\Y, and sY¥,...,s% are computed
according to the extended POD optimalities (4.23) and (4.34), then there is a constant
C e < 00 such that for all G € QP

N N
RE (ji(@)d) = Crw | D A+ Y 80| (4.40)
i=k+1 j=t+1
Proof. As the set of directions q,...,G,, form a basis we can decompose ¢ = Z:Zl CiQi-

Thus,
RE (j;(q)d) = RE (Zj?(q)ci(z)
=1

The assertion is now directly obtained applying the reconstruction estimates for the states
and VDE solutions to each term of the sum and using the continuous embedding of Y in
C(I,H). q.e.d.

Note that here we consider a finite-dimensional control variable space Q" already in the
time-continuous setting. In the time-discrete setting we have

x

MT(Q)g= JEEET)E™ + JH(TE™, ¢)q.

Analogously we find a constant C,, such that

d d
RE (i (@)q) = Couw | D A0+ > s¥ ], (4.41)
i=k+1 j=t+1

where ¢,§ € Q"". The estimate follows directly from Theorems 3.7 and 4.8 assuming that
the set of directions qi, ..., g, used to construct the sensitivity-extended basis form a basis
of QhT.

Remark 4.6. In the time-continuous case the reconstruction error RE (jf;(q)cj) for the
gradient is given for analytical expressions and, thus, is not affected by a particular dis-
cretization of the equations it depends on. Assume that (PD-ROM) with either adjoint
or sensitivity-extended DEPOD/DEDEIM subspaces is used and we want to compute the
POD approximation of the directional derivative 3(’}(q)(j If Eg (¢)qG is approximated suffi-
ciently well using any method for derivative computation, the bounds (4.37) and (4.40) still
hold up to the approximation error of the method used to generate the derivative. lL.e., in
practice we could use either finite differences, the sensitivity, or the adjoint approach to
compute jg(q)ij independent of the particular enhancement method. In either case given
a DEPOD/DEDEIM basis is used, we can expect good approximations of the HiFi deriva-
tives. Thus, by adding either sensitivity or adjoint information we make the ability to allow
derivative approximations of the reduced objective to an inherent property of the surrogate
model.

4.5. Numerical results
We conclude the chapter on derivative-extended reduced-order models presenting numerical

results that reflect the theoretical assertions and that illustrate the practical reconstruction
properties of DEPOD/DEDEIM reduced-order models. We recycle the example problem
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introduced in §3.3.5 for state reconstruction and the cases A and B. As objective function
we use

1 ifry>05

4.42
0 else. ( )

1
Iy, u) =5 y(T) - yoll$,, where yo(ri,rs) = {

The tests are carried out in analogy to §3.3.5, thus, the same discretization (N = 289, 7 =
10~3) is used and all available snapshots are used to compose the according snapshot matrix.
The additional weights 6, and 6,, for the extended bases are set to one. The derivatives in
the adjoint and in the forward case are computed following the discrete concepts for deriva-
tive computation as described in §2.5. Note that, hence, any of the discrete adjoints and
sensitivities in the following are not explicit discretizations of the time-continuous problem,
however, we have consistent approximations due to the use of internal numerical differenti-
ation (IND).
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Figure 4.3.: Reconstruction results for states and adjoints with DEPOD basis
using the norms ||| ;2; x) and |-[|;2(; z) and the projection error expressed

via the neglected eigenvalues corresponding to S..

Adjoint DEPOD reconstruction

In Figure 4.3 we show the POD reconstruction results for state and adjoint variables in
dependence of the number of DEPOD basis functions used to construct (P-ROM). The
reconstruction error is evaluated as in the tests for the states using the norms

1 1
2 2
el ot x = ( / ||x|§dt) and (2l pagr 7 = ( / ||z||%dt) -

As before in the case of pure state reconstruction we observe for both cases an exponentially
decreasing error that is closely connected to the decay of the neglected eigenvalues of the
enriched basis. The number of necessary basis functions for a certain accuracy is now larger
as more information needs to be contained in the POD subspace. However, in either case
the size of the surrogate model is still tractable (compare to Figure 3.4). Moreover, the
reconstruction errors of states and adjoints are of comparable size in this case caused by the
common dominating projection error and the normalization of the snapshots. In general,
however, the difference may be larger.
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Figure 4.4.: Reconstruction results for DEDEIM projection for different refer-
ence DEPOD models with & = 10,20, 30 (top) and corresponding projection
errors (bottom).

Adjoint DEPOD/DEDEIM reconstruction

In a next test we compare the reconstruction behavior of (PD-ROM) where DEPOD and
a DEDEIM basis are used for different numbers of k£ and ¢. The results are displayed in
Figure 4.4. In the upper half we compare reconstruction errors for states and adjoints for
both cases and in the bottom half the corresponding square root of the projection errors
are plotted. As before we carry out the test for different (P-ROM) reference models (k =
10, 20, 30). First we observe in analogy to Figure 3.3 that the errors decay exponentially and
after a certain threshold for ¢ the reconstruction cannot be improved further, as the POD
related part of the reconstruction error starts to dominate. Also states and adjoints behave
alike. In contrast to pure state reconstruction we now have different decay behaviors of the
DEIM projection errors as the information in the DEIM snapshot matrix RY depends on
the number of POD basis functions k. For large numbers of k we have more slowly decaying
eigenvalues and a higher accuracy demand on the DEIM projection error, resulting in a fast
growing number of DEIM basis functions that are necessary to achieve the best possible
reconstruction. Note that also derivative information with respect to the controls is included
in the DEIM basis (for POD approximations of the objective), which would not be needed for
the approximation of the adjoints. In comparison, for state reconstruction the projection
error already is close to machine precision with ¢ ~ 48 (case A) and ¢ ~ 36 (case B).
However, a satisfying reconstruction accuracy of, e.g., 10~% is obtained for k = 30, ¢ = 130
(case A) and k = 10, ¢ = 20 (case B) which would be good enough for many practical
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applications. Recalling the runtime results for a (PD-ROM) in Figure 3.4, the evaluation
costs in both cases are still much cheaper in comparison to a HiFi evaluation. Note also that
while the reconstruction results of cases A and B are significantly different, the decay of the
eigenvalues is of comparable magnitude. Thus, finding appropriate thresholds to determine
the number of POD and DEIM basis functions is highly problem dependent.
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Figure 4.5.: Reconstruction results for DEPOD projection for the sensitivity
case and the corresponding projection error for case A.

Sensitivity DEPOD reconstruction

In Figure 4.5 we display the results of reconstruction for states and sensitivities with respect
to the three controls g1, ¢2 and g3, restricting ourselves to case A. For the VDE solutions
w!, w? and w? the same norm as for the states above is used. Like for the adjoint case, states
and derivatives decay in a similar way. In the sensitivity case to obtain a reconstruction
accuracy of about 10™4, now approximately k = 30 basis functions are necessary instead of
k = 20 for adjoint DEPOD. This is to be expected as we need to add as many snapshot sets

as controls (here three).
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Figure 4.6.: Reconstruction results for DEDEIM projection with sensitivity-
extended basis and the corresponding projection error for case A.
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Sensitivity DEPOD/DEDEIM reconstruction

For the sensitivity case reconstruction errors for DEDEIM projection are also compared.
The results for states and the first VDE variable w! are given in Figure 4.4 (w? and w3
behave similarly and are not shown). The decay of the eigenvalues is now independent of
the number of POD basis functions used in the reference POD reduced-order model as for
the pure state reconstruction. Thus, relatively few DEIM basis functions are necessary, e.g.,
10~% is achieved with approximately ¢ = 30 (compare to ¢ a~ 120).

Comparison of different types of POD/DEIM basis

Further, we investigated the behavior of the projection error £, and the reconstruction error
RE(z) in dependency of the type of basis used (POD, DEPOD with adjoints, DEPOD with
sensitivities). The number of basis functions is chosen using a threshold ep (see also Remark
3.2), i.e., we choose k for the POD basis such that

Z N < €p

i=k+1

and analogously for A7, A¥ for DEPOD. We consider case A and display the results in
Figure 4.7. As we expect, the projection and reconstruction errors are almost the same
respectively for all three basis choices respectively. We observe that the reconstruction
errors for states in case of DEPOD with sensitivities are actually slightly smaller, which is
in accordance to Remark 4.2. The results show that the inclusion of derivative information
has no compromising effect on the POD reconstruction quality of the states.

x- POD basis x- POD basis
102 : % DEPOD adj. 102 & % DEPOD adj.
& © DEPOD sens. ® . | © DEPOD sens.
104 1074 LR
®, — ®
2 1076 e 3 107 LB
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Figure 4.7.: Projection and reconstruction errors of the states for different types
of POD basis in dependency of the criterion ep to choose the size of the basis.

Reconstruction results for reduced objective and gradient

Finally, we turn towards the optimization perspective and show results for the reconstruction
error of the reduced objective and its gradient, restricting ourselves to case A once again. In
Figure 4.8 we display the reconstruction results where we use the 2-norm for either quantity.
In the graphic we compare the decay of the reconstruction error for different POD bases
used to obtain (P-ROM). For the POD basis without derivatives and the adjoint DEPOD
basis an exponential decay up to a certain best possible accuracy is observed. For pure POD

80



4.5. Numerical results

the decay is fastest for the objective, however, we observe that the error in the gradient does
not get smaller than approximately 1072. Obviously, the POD ROM is not able to reflect
the derivative information properly. As one would expect the decay for both objective and
derivatives is smaller with an adjoint enhanced basis in comparison to the sensitivity case.
Here we observe the superior properties of the the adjoint-extended basis, as in this case
both enhancement strategies are used for reconstruction of the same quantity of interest.
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Figure 4.8.: Reconstruction results for the objective and the gradient with re-
spect to the three controls ¢q, g2 and g3 for case A.

In the last figure we show the reconstruction results for objective and gradient in de-
pendence of the number of DEIM basis functions used. We give again only the results for
case A and restrict ourselves to a POD reference basis with k = 20 as the other scenarios
behave alike. As before for the POD projection we have a fast decay for the objective if
no derivatives are used while the reconstruction error for the gradient does not get smaller
than, in this case, approximately 0.1. As for the state reconstruction the errors related to
the DEIM projection decay faster for a sensitivity-enhanced basis in comparison to the ad-
joint enhancement. For adjoint DEDEIM with roughly ¢ = 140 basis functions we are close
to the best possible accuracy determined by the POD surrogate model without derivative
enhancement. The actual limit cannot be achieved even for much larger ¢ due to the basis
built from HiFi information instead of information of (P-ROM) (see also Remark 3.12).
Moreover, note that while we choose different derivative enhancement strategies, in either
case the gradient is evaluated using adjoint IND. Due to its AD character the results are
identical to an evaluation of the gradient with the sensitivity approach and IND. Thus, we
can also confirm the assertion of Remark 4.6 numerically. Moreover, we observe an oscillat-
ing behavior for varying ¢ which we explain by the nonlinear affects, as the plots become
smoother when reducing the nonlinearity (not shown explicitly).

We conclude from the numerical results that we are able to construct (PD-ROM) using
DEPOD and DEDEIM subspaces without increasing the size of the necessary basis functions
too much to achieve a practically satisfying accuracy. In the adjoint case we observe that
less than 20 POD and less than 100 DEIM basis functions are enough to achieve an accuracy
of about 10~* for the reconstruction error of the gradient. In the sensitivity case this is
achieved for approximately 20 POD and about 30 DEIM basis functions. Comparing this
to the runtime results of §3.3.5, Figure 3.4, the values are clearly small enough to obtain
a significant reduction in the evaluation costs of the objective and the gradient. Moreover,
we have shown numerically that the inclusion of additional information does not harm the
standard reconstruction properties of POD/DEIM, besides the fact that the basis has to
be increased. We have shown that the size of the basis can be chosen adaptively such that
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Figure 4.9.: Reconstruction results for DEIM projection of the objective and
the gradient with respect to the three controls q1,¢o and g3 for case A and a
POD basis with k£ = 20.

for a certain criterion ep the reconstruction accuracy of a POD/DEIM surrogate without
derivatives can again be achieved with DEPOD/DEDEIM.
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In this section we present novel algorithms to solve optimal control and parameter estima-
tion problems. We exploit the results of the previous sections and analyze the distinguished
properties of the approaches. An aspect that is of paramount importance is the improve-
ment of POD prediction using DEPOD and DEDEIM subspaces (see Definition 4.9) for the
construction of the surrogate models, which we discuss in §5.1. In addition, we present an
a posteriori error estimate for parameter estimation problems, which can be used to evalu-
ate the distance between a suboptimal solution obtained via the surrogate model and the
solution of the high-fidelity (HiFi) optimization problem. The latter result is published by
the author of this thesis in [104] and it is included here for completeness.

In literature we find multiple employments of POD in optimization with the aim of reduc-
ing the computational costs. A general overview is given by Sachs [99]. POD in the context
of optimal control for particular applications is found in [8, 79, 106]. Below several articles
containing concepts for optimal control problems, typically of the general linear-quadratic
type, are briefly assessed and their relation to our work is discussed. There is also a variety
of applications of POD in the context of inverse problems [12, 47, 68, 120, 122]. While
the motivations in inverse and parameter estimation problems are similar, inverse problems
typically contain a distributed parameter space. Hence, they are often handled similarly to
optimal control problems using an adjoint approach for their solution. A parameter esti-
mation approach related to this thesis was taken in [80] where a Gauss—Newton method is
also employed to solve the least-squares problem. Other examples of applications of POD
to estimate scalar parameters are, e.g., [67, 97]. Application of DEIM is getting popular in
the MOR context, however, considering the recent appearance of this method, only little
experience is available in combination with optimization (see [26, 81]).

With POD applied to an optimization problem in a straightforward way, the authors often
observe an outstanding performance with the model reduction approach. If the HiFi model
is evaluated only once and the optimization process, based on one fixed surrogate model, is
able to find the solution of the original problem, tremendous runtime improvements can be
made. Under the assumption that the subspaces V* and R’ constructed from a particular
snapshot set are sufficiently rich for the optimization purpose, the approach is powerful.
This assumption is equivalent to the fact that we assume a good POD prediction of the
(P-ROM) or (PD-ROM) for relevant control configurations, as defined in §3.3.1. In practice
we often have a priori knowledge on the process which can be exploited in the POD approach
for optimization, e.g., [17].

However, the assumption on the subspaces is often not satisfied. Due to the lack of reliable
a priori estimation for POD, it is not clear how to enhance the space in general to satisfy the
assumption. Several strategies have been suggested to overcome these difficulties which are
directly related to the POD prediction problem. There are conceptionally two major ways to
tackle this problem. One strategy is to enhance the model such that good POD predictions
are possible for a certain region of control variable configurations. This might require a
large effort to construct an appropriate basis. Hence, the procedure is commonly separated
into an offline and an online phase. A second conceptual strategy is to recompute the HiFi
solutions and adapt the model over time, thus, breaking the clear separation between offline
and online phase. Typically, a suboptimal solution via the reduced-order model is computed
and then either the optimization step is repeated with the suboptimal solution as new initial
guess or other post processing steps are performed (see, e.g., [1, 61, 77, 115, 122]). If one
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is interested in a long-term use of the surrogate model with fast simulations in a certain
control domain of interest, the first strategy should obviously be used. Recalling Remark
4.1 in optimization we are, however, not willing to invest too much time in the construction
of the model. Our methods combine aspects of both approaches.

We already mentioned the beneficial effects of the inclusion of derivative information in
the reduced basis on the POD prediction problem at the beginning of §4.2. In §5.1 we give
an estimate for POD prediction of the reduced objective and of the states which is based
on the use of DEPOD and DEDEIM bases. The estimate makes assertions for the local
behavior of DEPOD/DEDEIM surrogates, i.e., the analysis is valid for perturbations in the
data of which the model is constructed from. To our knowledge the prediction estimate
is the only existing one so far for reduced-order models based on POD and DEIM. While
the issues are closely related, note that our prior motivation to include derivatives is to
enhance the reduced-order model with the ability to approximate not only state, but also
derivative information. In [65, 105] error estimates for POD prediction with standard POD
surrogate models are presented. Using an adjoint analysis, the authors are able to define
so called regions of validity around a given reference configuration, where the model is
constructed. To define these regions several solutions of the adjoint of the HiFi problem
are necessary, hence, one must decide whether the additional effort pays off in optimization.
Our results show that for a variety of applications, only few HiFi solutions are necessary to
solve the optimization problem. Other approaches to tackle the POD prediction problem
are described in [94] where POD is combined with a dynamic iteration procedure, in [4]
where interpolation techniques for POD subspaces are applied, and in [86] where concepts
of dual-weighted-residual error estimation are used to measure the difference in the objective,
evaluated with the HiFi and surrogate model.

Among the adaptive strategies we find [1], where after determining a suboptimal solution
the HiFi model is reevaluated and the state vectors are added to the snapshot matrix S and
(P-ROM) is rebuilt. A similar algorithm is used in [61]. The adaption strategy in [64] is to
use a few POD modes of the old basis when the basis is reconstructed at the suboptimal
solution. In any of the proposed algorithms the stopping criterion is to check whether a
suboptimal solution ﬂzn) obtained in iteration n has changed significantly in comparison to
ﬁz‘n_l), i.e., test if

ity — |, < TOL: (5.1)

A related article is [96], where an SQP algorithm is used to solve the optimization problem
in an all-at-once fashion, updating the POD basis in each SQP step. In [6, 42, 73] trust
region methods are presented which the authors denote by trust region POD (TR-POD)
and which we discuss more thoroughly below.

Recently a priori and a posteriori error estimates were presented for POD and linear-
quadratic optimal control problems. The estimates indicate how close a suboptimal control
solution is to the solution of the original problem. Hinze and Volkwein [62] derive a priori
estimates, but the POD basis is computed utilizing the optimal solution obtained via the
HiFi problem. This drawback is overcome by the a posteriori analysis in [112] by Troltzsch
and Volkwein. Their estimates are related to the a posteriori analysis we present in §5.3.1.

Several extensions to the topic can be found. In [81] a priori error estimates are presented
for the POD Galerkin schemes for nonlinear elliptic-parabolic systems. In [71] a posteriori
estimates similar to [112] are given where second-order information is used. The authors in
[69] apply the technique to bilinear elliptic optimal control problems solved by an inexact
SQP method, where the inexactness originates in the approximation by the (P-ROM). In
optimal control algorithms used in combination with the mentioned a posteriori estimates,
typically the number of POD basis functions is increased according to the estimate. We have
seen before that this strategy might destroy the efficiency of the reduced-order modeling
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approach. We investigate this in §5.4.1.

In [77] Kunisch and Volkwein tackle the POD prediction problem by optimality systems
POD. The reduced optimal control problem (analogous to (5.5)) is extended by additional
constraints, namely the original HiFi problem (2.7) and the condition for the construction
of the reduced problem (3.4). To regain efficiency an operator splitting is performed into
reduced-order and HiFi variables. The algorithm yields a correction of the suboptimal
solution proposed with (P-ROM) into the direction of the true HiFi solution. In [115]
the OS-POD idea is combined with the a posteriori error estimates in [112]. A related
goal-oriented approach to construct the POD basis was taken in [28] where the authors
consider a POD optimality similar to (3.1) that contains a quantity of interest and the
governing equations as constraints for a set of parameter configurations. However, the POD
basis is quite costly to compute, i.e., the HiFi problem must be solved for each parameter
configuration in each CG iteration which is used to solve the extended POD optimality
problem.

We start presenting the POD prediction estimate and then describe particular algorithms
to solve optimal control and parameter estimation problems. In §5.4 we discuss POD MOR
from the perspective of discretize-then-optimize vs. Optimize-then-Discretize, slightly al-
tering the naming convention there to adapt to the peculiarities.

5.1. POD prediction for derivative-extended reduced-order models

In this section we analyze the POD prediction properties of surrogate models with DE-
POD/DEDEIM basis. We show that we obtain local first-order accurate approximations
of the objective evaluated with the HiFi model given that the reduced-order models are
constructed as proposed in Chapter 4. The results can also be interpreted as a local ro-
bustification with respect to the data that the surrogate model is constructed from. To
our knowledge the estimates are the first of its kind for the POD prediction problem in the
time-dependent case.

We extend the discussion in [30], carried out for stationary problems in the context of
interpolation based POD. The result is summarized in the following theorem, where we
establish an estimate for the POD prediction error of j"(¢q) in a neighborhood of a given
control configuration ¢ for adjoint enriched surrogates in the time-continuous setting.

Theorem 5.1. For a reference control ¢ € Q" where (PD-ROM) is constructed let the
reconstruction estimate for the reduced objective (4.1) and its gradient (4.37) hold. Assume
Q" to be conver. Then there is a constant Cr, such that for every q € Q" the POD
prediction error of the objective can be estimated as

N N
PE (j"(q)) <Cr= | D X+ Y. 5 | llg—alor + Ol —allon)- (5.2)
i=k+1 j=t+1

Proof. Due to the convexity of Q" we can write down the Taylor approximations of the
objectives j"(q) and its POD approximation j"(q) for any g. Using h := ¢ — q and ¢ :=
1/ 1|7 (q)|| we obtain

o 4" (a) = 7"(@)]| = eo 1" (@ + k@ = T"@) = T @h + ORIE)

o 3@ = 7"@)|| + <o |35 @h = T2 @) ]| + OUIANG)

IN

N N
~ Nz =z 2
Oro | D A+ > 5 | Il +OIk]gn)-
i=k+1 Jj=0+1
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For the last inequality the reconstruction error (up to the normalizing constant) of the gradi-
ent is estimated according to Theorem 4.10. For the error in the objective the reconstruction
estimate (4.1) is used, noting that it still applies with the eigenvalues A;, 5; obtained from
the extended optimalities (see also Remark 4.2). q.e.d.

The time-discrete case for the adjoint approach can be carried out analogously with
eigenvalues A\, 5% instead of M2, s and g € QhT.

In the sensitivity case, we can even give a POD prediction estimate for the states. Again
we need to restrict the possibly infinite-dimensional space Q" to the finite dimensional space
QP already in the time-continuous setting. Note that in practice we consider the sensitiv-
ity case only for parameter estimation problems where the dimension of the optimization
variable space is assumed to be small. We assume now that there are Fréchet differentiable
solution operators ¢ — y"(q) and q — y*(q) with y"(q),%¥*(q¢) € C*(I,V") that can be
obtained by solutions of the HiFi (2.7) and surrogate model (PD-ROM) for a given control
q € Q" respectively.

Theorem 5.2. Let the set of directions qu, ..., qn, form a basis of QM . Assume that the
corresponding VDE solutions wl(t),...,w™(t) and w'(t),..., 0" (t) of (4.9) and (4.11)
and solutions x(t) and T(t) of (2.7) and (PD-ROM) satisfy the reconstruction estimates
(4.13) and (3.27) for all G; at ¢ € Q)™ C QM QR open. If U, ®, A\¥ ..., \¥, and
sy, ..., 8% are computed according to the extended POD optimalities (4.23) and (4.34),
then there is a constant C,, such that for every g € QR

N N
/}th(Q)—yk(q)HHdtSéy ST+ D> 5 | lla—allgn + O(lg — dlign-)- (5.3)
I i=k+1 j=t+1

Proof. Due to the differentiability of the solution operators y"(q) and y*(q) we can write
down their Taylor expansion as functions from Q7 to C*(I,V"). Using h = ¢ — ¢ we get

/I o™ (@) — ¥ ()|, dt

= [ @~ @+ vhtan —htan + 00lq — i),

H

Here y/(q)h and yF(g)h are the derivatives of the solution operators in the direction h.
These can be expressed by sensitivities obtained as solutions of the corresponding VDE
problems for given g. As the directions used to build the DEPOD/DEDEIM subspaces
form a basis of Q"", the direction h and with this the difference between y(}; (g)h and y(’; (@)h
can be decomposed such that

Tq

uh(@h —yi(@h = (yh(@) - vE (@) cidi,

=1

with coefficients ¢q,...,¢,, € R. Applying the reconstruction estimate in Theorem 4.7 to
the decomposition of the directional derivatives and the reconstruction estimate in Theorem
3.6 to the difference in the states, the assertion follows immediately. q.e.d.

The time-discrete case can be obtained analogously. Moreover, a POD prediction estimate
for the objective in (5.2) follows directly for sensitivity enhanced DEPOD/DEDEIM via the
reconstruction results of Chapter 4.

DEPOD/DEDEIM bases enhanced with sensitivity information contain more informa-
tion in comparison to an enhancement with adjoints, as we additionally obtain a POD
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prediction estimate for the states. The result is relevant for the solution of the parameter
estimation problem via Gauss—Newton, where we need to approximate the function F(q),
i.e., approximations of the states

Y (E5q), Y (s @)-

However, the advantage comes at the cost that we possibly need to solve many more HiFi
problems than we would have to in the adjoint case, where only one adjoint problem has to be
solved. With regard to the underlying optimization problem the adjoint DEPOD/DEDEIM
enhancement can be interpreted as a goal-oriented approach, as we only extend the model
to give good approximations for a quantity of interest (the objective in the optimal control
case) in a region around the reference configuration.

5.2. A DEPOD algorithm for optimal control

The aim of this section is to present an algorithmic framework for an efficient solution of
the optimal control problem (OCP), transformed into an NLP as described in Chapter 2.
I.e., we want to solve

min — j"(q) = J"(2(q),q), (5.4)

q€Ql]
where z(q) is determined such that it satisfies the HiFi model equation (2.7). We seek to
gain efficiency by considering the same problem, however, approximating z(¢q) using the
surrogate, i.e., solving

min  j"(q) = J(¥R(q),q), (5.5)

q€Qky
with Z(g) being a solution to (PD-ROM). We use an SQP algorithm, as described in §2.4.1,
to solve each instance of optimal control problem, i.e., the HiFi and (PD-ROM) for different
q where the model is constructed. Throughout we assume that there exists a solution ¢* of
(5.4) and solutions ¢* of (5.5) for each surrogate model instance. We use DEPOD/DEDEIM
with adjoint information. For the computation of the gradient of either (5.4) or (5.5), the
adjoint techniques for derivative computation are used as described in §2.3 and §2.5. We
take advantage of the superlinear convergence properties of the SQP method with BFGS
updating. Note, however, that with the proposed concepts any algorithm that is able to
solve (5.4) could be used (see also Remark 4.6).

We assume that the time discretization uses as many snapshots as necessary to capture
the essential dynamics and that a sufficiently accurate time integration scheme is employed.
Recalling the main influences for POD reconstruction in Remark 3.6, the occurring recon-
struction errors essentially depend on the POD/DEIM eigenvalues.

We present a DEPOD optimal control (DEPOD-OC) algorithm which is closely related
to the adaptive algorithms in [1, 61]. Two essential differences are the extended POD
and DEIM basis for the reduced-order model and the stopping criterion. For a particular
implementation of Algorithm 2 further specification of some steps is necessary which we
discuss now. The algorithm consists of two levels, the major iterations which account
for the problem of POD prediction, and the inner optimization loop where the reduced
optimal control problem is solved using the surrogate model. Conceptually, one can compare
this approach to an SQP-like method, where instead of a quadratic approximation of the
objective, an approximation based on the surrogate is used. On the one hand, according to
Theorem 5.1 we have first-order approximation quality for the surrogate approximation of
the objective up to a reconstruction accuracy, while for SQP with, e.g., exact Hessian we have
second order. On the other hand, estimate (5.2) is only an upper bound on the prediction
error. In fact, the approximation will usually be much better if the DEPOD/DEDEIM
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Algorithm 2 DEPOD-OC
Require: gy € R"
1: forn=0,1,... do

2: Compute S, and D, as in (4.19) and (4.31) at g
3 Build the surrogate model using S, and D,
4: Choose k and £ such that \/A; ; < Aror and \/% < $7T0L
5: if stopcrit(q,)) < TOL, then
6: T < qn)
7 Break
8: else
9: Solve (5.4) using the surrogate model to obtain ¢*
10: A(nt1) < T
11: end if
12: end for
return ¢*

subspaces allow approximations of higher order derivatives as well. When the subspaces
are sufficiently rich, then the POD surrogate may even provide good approximations in the
whole domain of interest Q"7. As described at the beginning of the chapter this is often the
case in practice.

In line 5 of the DEPOD-OC algorithm we use the stopping criterion stopcrit(q))
corresponding to the convergence criterion of the Newton-type method employed. It is
typically based on the optimality criterion (1.8), which itself depends on the gradient Vj"™
at g(n) in the unconstrained case. However, the stopping criterion used in a particular NLP
solver might not be available for the user. Hence, we suggest to use TOL,, as tolerance
for the Newton-type algorithm in the inner loop and check if it returns successfully in one
iteration. If we can guarantee a sufficiently good local approximation of the HiFi model via
the surrogate model, convergence of Algorithm 2 is equivalent to ¢* being a local optimum
of the original HiFi problem. This property stands in contrast to the common stopping
criterion (5.1) in POD algorithms for optimal control, as a priori there is no guarantee that
a small change in the control means that we are close to the solution. Note that in the
optimal control case we need an extra evaluation of the HiFi model to carry out the final
convergence check.

Given the choice of the stopping criterion, the local POD prediction quality of the reduced
objective at iterate q(y) is of paramount importance. Due to the POD prediction estimate
in Theorem 5.1 it becomes clear that we need to choose the tolerance criteria Aro;, and
sToyr in line 4 properly (compare also to Remark 3.2). Under the assumptions on the time
integration and the number of snapshots, we have first-order approximation quality if k£ and ¢
are large enough. The choices of Aroy, and sy, are problem dependent. For our numerical
computations we rely on experience to choose the tolerances. However, one could afford to
use an a posteriori control of the reconstruction error to choose k£ and ¢, as evaluation costs
of the surrogate model are often negligible in comparison to the overall costs. Note that the
algorithm may converge if Apor and sty are chosen poorly or a conventional POD basis
is used. We observe this later in the applications part. The reason is that if a suboptimal
solution ¢* is found and the POD/DEIM bases are rebuilt, the new surrogate model may
still have the same structure as the previous one and the inner loop will successfully return
in one step. However, as for general POD surrogates we have no a priori knowledge about
its local behavior we do not know if a good approximation of the HiFi solution was found.

In line 9 we apply an SQP algorithm. Due to the updating of the Hessian approximation
we follow the strategy to do as many iterations as necessary to obtain a solution satisfying
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the termination tolerance of the inner loop. Regarding global and local convergence of the
inner optimization, this can be efficiently handled by common NLP techniques. Due to
the derivative computation based on automatic differentiation, for any g € QZ; the gradient
V}}” (¢) is an accurate approximation of the gradient of ?”(q), independent of the particular
surrogate model used.

Regarding overall convergence of the DEPOD-OC algorithm several possible enhance-
ments can be found in literature. A possibility is the use of information from the previous
reduced basis similar to [1, 64] to prevent cycling. An alternative is the TR-POD, which
we discuss briefly here. In [6] TR-POD is presented together with a convergence result for
optimal control problems using POD reduced-order models. The authors use the assumption

|vi"™ (@) - i ()|
[

for some user-defined constants crg > 0. In general, this cannot be guaranteed for standard
reduced-order models. However, (5.6) is basically the reconstruction error RE (Vj"7(q))
for the gradient as defined in §3.3.1, only differing in the normalizing term where the sur-
rogate approximation is used instead. Thus, due to Theorem 4.10 it can be satisfied for
DEPOD/DEDEIM. Hence, the convergence result of TR-POD could immediately be car-
ried over to Algorithm 2 (for details see [6, 73]). However, due to our numerical experience
with DEPOD/DEDEIM we do not recommend to restrict the search region at first hand,
as the efficiency of the reduced-order modeling approach might be significantly reduced.

We briefly recall the a posteriori estimate in [112] and adapt it to our situation. To this
end, assume (2.17) to result from a linear-quadratic optimal control problem and let ¢* be
its optimal solution. If ¢* is a suboptimal solution obtained via (P-ROM) (without DEIM
projection), then one can show that

* ~ L~
la™ =gl =< 2 Il (5.7)

<cTtr (5.6)

for some perturbation Z € R™e that is computed via solutions of the HiFi model and its
adjoint at g*. Given that the snapshots form a basis of V" one has ¢ — 0 for k — N.
The authors in [112] use the estimate to solve a linear-quadratic optimal control problem,
evaluating the quality of a suboptimal solution and subsequently increasing the number of
POD basis functions if necessary.

In our approach, we do not follow this strategy for the following reasons: To evaluate the
estimate (5.7) a HiFi state plus adjoint solution is necessary. Our results suggest that, if
state and adjoint information is available at a suboptimal solution ¢*, the information should
be used or added to the POD basis. In [69] convergence to the full-order problem using
this strategy is shown. In case of rebuilding the basis completely, the convergence result
cannot be applied anymore as the problem changes in every major iteration. However, our
numerical results indicate that the DEPOD approach is in terms of efficiency superior to an
increase of the number of basis functions.

5.3. A DEPOD algorithm for parameter estimation

In this section we present a DEPOD parameter estimation (DEPOD-PE) algorithm to solve
the reduced parameter estimation problem (1.23) as described in §1.4. Again we compare
the problems with the states being once approximated by z(g) as in (2.31) and once by the
POD approximation ¥Z(q), i.e., solving

1 H’\ 2 i — h(y"(ti; q), u)

2
m;nf f(q)” . Filg) = . , 1=1,..., Nmeas- (5.8)
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In the surrogate models we use a DEPOD/DEDEIM basis with sensitivity information.
Again we assume a sufficiently accurate time integration and a sufficiently large number
of snapshots. The solution of (2.31) and each instance of (5.8) is based on the Gauss—
Newton method presented in §2.4.2. As above we assume that a solution of each problem
instance exists. Due to the need of computing the vector F(q) and the Jacobian [J(q) in the
Gauss—Newton algorithm, the sensitivity approach is more efficient under the assumption
ng < Ny,. Even though the concepts are independent of the number of parameters, for a
practical concern we think of a moderate number, e.g., ny < 20.

Algorithm 3 DEPOD-PE
Require: q(g)
forn=0,1,... do
2: Compute S,, and D,, as in (4.24) and (4.35) at q(,,)
Build surrogate model using S,, and D,,
4: Choose k and ¢ such that /A, | < Aror and \/% < $T0OL
?0) < q(n)
6: for:=0,1,... do
Compute Ag from (2.33) using the surrogate model

8: gt g + Aq
if ||Ag|| < TOLgn then
10 7" + ¢tV break
end if
12: end for
if |7* — qn)|| < TOL,, then
14: break
else
16: Ant1) < T
end if
18: end for
return ¢*

Algorithm 3 follows the basic structure of the DEPOD-OC Algorithm 2. We only com-
ment on the differences. In the parameter estimation case we treat the inner loop iterations
explicitly. For the sake of simplicity, here we do not consider any globalization techniques
(e.g., restrictive monotonicity test [22] or a line search) and assume that we are in the area
of local convergence of the Gauss—Newton method. Strategies for the particular implemen-
tation are discussed in chapter 6.

In contrast to the DEPOD-OC algorithm, the stopping criterion is based on the change
of the parameter values. In Theorem (5.4) we give an a posteriori estimate which states
that if Algorithm 3 terminates with the criterion as in line 13 then we have also found a
solution of the HiFi problem up to a certain tolerance and reconstruction error. A direct
check of the parameter change is desirable for parameter estimation problems, as the choice
of the tolerance TOL,, should in practice be motivated by the statistical properties of the
underlying problem, e.g., the variance of the parameter estimate. Moreover, using the
stopping criterion as in Algorithm 3 saves one additional computation of HiFi information.

5.3.1. An a posteriori error estimate

In this section we make use of the local convergence properties of the Gauss—Newton method
applied to parameter estimation problems (see also §2.4.3). Conceptually, we exploit the
fact that the Gauss—Newton method only needs first-order derivative information of the
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current step. This is different, e.g., from SQP and BFGS updating which makes use of
information of previous steps that enters the increments. The estimate is similar to the a
posteriori estimate (5.7) for linear-quadratic optimal control problems.

If the solution operator is evaluated with the HiFi model we refer to this as HiFi Gauss—
Newton, otherwise when the surrogate model is used we call it POD Gauss—Newton. The
following lemma establishes an estimate for the quality of a solution @* of POD Gauss—
Newton, given a DEPOD/DEDEIM basis constructed from sensitivity information is used.
For brevity we write

for ¢ € Q"". These are the increments computed with the HiFi and the surrogate model
at g respectively. Let QF be the contraction ball of POD Gauss—Newton as in the local
contraction theorem.

Lemma 5.3. For a given § at which the DEPOD/DEDFEIM basis is built, assume that the
conditions of Theorem 2.5 are satisfied for POD Gauss—Newton on Q" for Qo) =q- Letq*
be the limit point from Theorem 2.5 (2). Moreover, assume J1, 7' € C’l(Q 7). Then there
is a constant C(q) < oo independent of ¢* such that we have

N e 112
1Aq(@)] < &1+ (e2+ C(@) 7" — all + Ollg” — all”) (5.9)
where €1 and €9 are constants depending on the DEPOD reconstruction errors at q.

Proof. As 71, 7T € C*(Qh7) and Q17 is compact we have Hd%jT(@H < oo and H%j"((j)” <
oo. Furthermore, Ag(q*) = 0 holds in the solution of POD Gauss-Newton due to Theorem
2.5. A Taylor expansion of the Gauss Newton increments at ¢ (defining h := ¢* — ¢ and

omitting the argument g of F, Jt, F and jT) yields
1Aq(@)l = 1Aq(@) — A

i o ATE
< |- (jff+ d(‘zqf)h> + (JTF+ d(‘gqf)h>

= (717 - g1F) + <di}“ - djT]-") e+ (17 - 717) hH +O(|[n%)

+O(|nl)

- (j*ﬁ—JTf)Jr(dj (F- ]-'+]-‘)—‘ﬁf)th(ij—JU)hH-FO(Hh2)

(G )

IN

- =C(a)

4.7t
|5

(F - F) (I11%)

=€2

= e1+ (22 + C(@)) |All + O(I)
q.e.d.

The reconstruction properties of F, 7 and J ' follow directly from the state and sensitivity
reconstruction errors, given in Theorems 3.6 and 4.7, and Remark 3.9. Thus, with C¢,,C¢, <
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oo and the reconstruction errors €; and €5 are bounded according to

d d d d
g1 < Cq ZA;“—&-ZSEU , 2 <Oy, Z)\?‘f‘ZS? :

i=k+1 j=0+1 i=k+1 j=t+1

Assuming 1 and €2 to be negligible, the estimate (5.9) is dominated by the constant C(q)
which is an upper bound for the difference between the derivatives of the pseudoinverses,
computed with the HiFi and the surrogate model. We can assume in practice that C(g) < oo
for two reasons. On the one hand, the second-order derivatives diqj f(g) and d%j (q) are
bounded due to the k-conditions and we require x < 1 for convergence of Gauss—Newton.
On the other hand, the residual F can be assumed to be small if the data can be fitted well
through the model.

We now formulate the central theorem which yields an estimate on how far a suboptimal
solution deviates from the HiFi solution.

Theorem 5.4. For a given ¢ where the DEPOD/DEDEIM basis is built, assume that the
conditions oi the local contraction theorem hold on QM for HiF'i and POD Gauss—Newton
with q) € oh™ and 4oy = q- Let ¢* and @ be the corresponding limit points of Theorem
2.5 (2). Moreover, require J1, 7' € Cl(éé”). Then we have

7 -0l < g €1+ 2+ C@) T —a)+ 00T —al”)  (510)

where 0(q*) := x4+ $Aq(q*) < 1 and w and k as in (2.2) and (2.3) for the Hili, and €1, €2
and C(q) as in Lemma 5.3.

Proof. The theorem follows directly from Lemma 5.3 and the a priori estimate (3) in the
local contraction theorem, where we set n = [ = 0 and choose gy = ¢* for HiFi Gauss—
Newton. q.e.d.

From a practical point of view, Theorem 5.4 states that if Algorithm 3 terminates, then
lg* — ql] < TOL and with this the distance ||¢* — ¢*|| is small. Thus, we have found a
solution of the HiFi parameter estimation problem up to some given termination tolerance
and reconstruction errors.

Remark 5.1. Note that for negligible reconstruction errors estimate (5.10) is of first-order
due to the DEPOD/DEDEIM enrichment. The estimate does not hold for standard POD
ROMs as ¢ already contains sensitivity information. Similar to the discussion in the optimal
control case, estimate (5.10) is actually overly pessimistic and may in practice be much
smaller.

Reconsidering the question of overall convergence of Algorithm 3, it is clear that for every
first Gauss-Newton step after a DEPOD/DEDEIM basis is built (g)= g0y = 7), we have

1Aq(q) — AG(Q)]| = e,

where €1 depends on reconstruction errors. After the first iteration the difference between
the Gauss—Newton directions depends on how much the dynamics of the underlying PDE
system change. The a posteriori error estimate is not explicitly computed to test convergence
of the DEPOD-PE later in the numerical results as this would involve an estimation of
and w which is beyond the scope of this thesis.
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5.4. Approximate-then-optimize vs. optimize-then-approximate

In §2.1 we presented two conceptual approaches to solve optimization problems, i.e., the
discretize-then-optimize (DTO) and the optimize-then-discretize (OTD) approach. In this
section we discuss how optimization using reduced-order models relates to these approaches.
We distinguish between the following two conceptual strategies to solve optimization prob-
lems using POD/DEIM reduced-order models. The dichotomy can be understood as an
analogon to the DTO and OTD dichotomy.

1. approximate-then-optimize (ATO): First the dynamic model problem is approximated
via a surrogate model which is subsequently used in the optimization process.

2. optimize-then-approximate (OTA): First the necessary optimality conditions are de-
rived for the optimization problem. These are subsequently approximated by suitable
surrogate approximations.

In [8] a similar distinction is made using the expressions ’approximate-then-design’ and
"design-then-approximate’, however, as we deal with general optimization problems, the
naming is adapted. In the following we analyze the difficulties that can appear with either
of the strategies. While we suggest to consider the above dichotomy, actually, there are
many mixed forms found in literature. However, concerning the improvements we suggest,
a classification into one of the two categories can be made.

In the ATO strategy one starts to construct the POD reduced-order model following the
common techniques as described in §3 and in a subsequent step one deals with the optimiza-
tion problem independently (see [83, 110]). Often the POD subspace is sufficiently rich and
one obtains satisfying results from numerical computations. Typically in an ATO approach
one does not explicitly construct the model for the optimization purpose. The advantage is
that the models can be built via standard techniques and common optimization algorithms
can be applied, independently of the particular surrogate model. If the direct approach
and concepts of automatic differentiation are used, we always find an accurate descent di-
rection and, thus, the discretized optimization problem can be solved with standard NLP
techniques. However, as discussed before, the solutions obtained with this approach are
typically suboptimal due to the POD prediction problem.

The problem with the ATO approach is that in general we lack consistency with the
necessary optimality conditions of the HiFi problem in a suboptimal solution and, hence,
with the infinite-dimensional problem. This may lead to the following situation: Assume
the HiFi necessary optimality conditions to be satisfied at ¢* and the reduced basis to
be constructed in ¢* from state snapshots only. Then it is possible that the optimality
conditions of the surrogate model do not hold in this point. The reason is that by projecting
onto subspaces we actually change the problem. From a practical point of view, this may
cause that, even though constructing the surrogate and starting the optimization in the
‘true’ solution ¢*, the algorithm may converge towards a significantly different solution g*.

In contrast, with the OTA strategy one explicitly considers the optimality system and
then derives approximations of the occurring equations (see,e.g, [8, 66, 112]). In case of
the optimality system (1.16) in the adjoint approach, this means that there is a surrogate
approximation y* with subspaces V¥, R® for the states and a surrogate p* with subspaces
Vpk,Rﬁ for the adjoints, each computed via the POD optimality (3.1) and corresponding
snapshots. The advantage is that the POD approximations of states and adjoints are by
construction consistent with the original problem, thus, also the necessary optimality condi-
tions are satisfied. However, we face the dilemma that the gradient V;"7(q) approximated
by p* might not be a descent direction for the objective 577 (q) approximated by y*. While
in an OTD approach the inconsistency can be mitigated by suitable error control, the lack
of reliable prediction error estimates for POD makes this a challenging task.
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The inclusion of derivative information as suggested in Chapter 4 is a remedy to over-
come the problem of either of the conceptual approaches. In case of OTA, using a DE-
POD/DEDEIM basis yields first-order local approximation quality of the surrogate model
due to Theorem 5.1. Thus, with improved local POD prediction we can guarantee that at
least at the reference configuration we can find a descent direction for the objective j"7(q)
approximated with y*. In case of ATO, extending the POD and DEIM bases with deriva-
tive information yields a surrogate model that allows for small reconstruction errors of the
objective and the gradient. Hence, the surrogate optimization problem constructed in a so-
lution has the same local optimum as the HiFi optimization problem and the two problems
have consistent optimality conditions. Algorithms 2 and 3 arise from a direct optimization
perspective, thus, we classify our approach as ATO. We have also shown that our discrete
HiFi optimality conditions are consistent approximations of the infinite-dimensional problem
(see Remark 2.5). If we use DEPOD/DEDEIM bases for the construction of the surrogate
model, then our direct approach also yields consistent POD approximations of the infinite-
dimensional necessary optimality conditions. Hence, the ATO strategy we follow can also
be interpreted as an OTA approach where joint subspaces for states and adjoints are used.

In Theorem 4.3 we gave an error estimate which depends on the DEIM projections (‘:'fiz, 1=
1,...,k, where in contrast to a standard application of DEIM, instead of a single vector
F(xz(t),q) the k vectors F,(x(t),q)¥ ; must be approximated. However, one could find
an alternative DEIM projection for the adjoint equation of (P-ROM) (4.4). Recalling the
equation R

=2l (t) =27 ()S + 2T (1)U T F (V2 (1), ) ¥

one could also consider applying a projection matrix P to the nonlinear part such that
~ ~ T ~
3T =T ()8 + (\IITIP’F(t)) with  E(t) := F, (03(t), )T UE(L). (5.11)

In contrast to (PD-ROM), here the DEIM projection approximates the adjoint nonlinearity
F(t) € RN, which can be interpreted as an adjoint directional derivative of Fj(z(t), q) with
direction z(t)T ~ (UZ(¢))T. Obviously, in terms of DEIM projection efficiency, it is better to
consider only the dynamics of one instead of k vectors. Hence, (5.11) would be the natural
choice when proceeding in an OTA fashion, where the projection of the adjoint equation is

carried out separately. The problem is that
. T
(\IITIP’F(t)) + 2TV PR (U7, q),

where on the right-hand side we have the exact derivative of the nonlinear part of (PD-ROM)
which is used in the adjoint equation (4.5). Thus, while we would be able to establish a
reconstruction estimate also for (5.11), the approximated gradient would, however, not be
consistent with the objective. In contrast, it is guaranteed for (4.5).

5.4.1. Examples

In the following we investigate two dilemmas of conventional ATO and OTA approaches
on concrete optimal control examples and how the shortcomings can be overcome with
DEPOD/DEDEIM. Similar problems are detected also for parameter estimation problems.
An example is given in [104]. We vary the dynamic model problem (3.32) slightly, first
considering

yr = —a’Vy+ DAy 4+ O(y,u1) +uy in I x Q,
Oy + By = B2 onlxTy, d,y=0 on I xTy,
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)2, I =[0,0.5], and I'; and T’y as before in in §3.3.5. Here we use an initial

with Q = (0,1
(0) = 0.5, the values

condition y
a=(02,-1)T, D=0.1, B =p =103

the nonlinearity
O(y,u1) = esinvr) ury sin(27ry),

and a wug that is spatially distributed with the shape function ¢g(r) in (3.33) which is also
shown in Figure 3.1. To define the optimal control problem we use again the quadratic
objective as in (4.42). Bounds on the two controls are never active in our computations.
The discretization is analogous to the reconstruction tests, however, we now use N = 1089
degrees of freedom for the finite element method and 7 = 2.5 x 1073 for the implicit Euler
scheme.
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-32
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Figure 5.1.: Isolines of the objective j*™ evaluated with a POD ROM and DE-
POD ROM that are constructed in the solution point ¢*, and evaluated with
the HiFi model.

ATO perspective

We start the investigations from the ATO perspective. The optimal solution was computed
with the HiFi model discretization, solving the resulting NLP with SNOPT with a tolerance
close to machine precision. The reference optimal control is ¢* &~ (1.92, —26.81)7. We now
encounter the following situation: Assume that a surrogate optimization is carried out
starting with the known optimal HiFi solution ¢* as initial guess, which corresponds to an
inner optimization loop in Algorithm 2. A surrogate (P-ROM) constructed in ¢* without
DEIM projection is used and a fixed number of k = 15 POD basis functions is chosen such
that the reconstruction error at ¢* for the conventional POD surrogate without derivative
information is

RE (") =71x1077, RE(z)=24x107",

95



5. POD/DEIM Reduced-Order Models in Optimization

using the norm L?(I, X) for the ODE states z. All snapshots available are included in the
bases. We compare the behavior of the objective 3}” (¢) around the solution point with the
POD basis constructed with and without adjoint information. To this end, in Figure 5.1
we visualize the isolines of each of the problem instances. We observe that the objective,
if evaluated with a pure POD ROM, shows an entirely different behavior in comparison to
the HiFi objective. Thus, even though the best possible control configuration guess was
provided to the surrogate optimization, using it in an ATO fashion results in a significantly
different solution. On the other hand, when a DEPOD basis is used, HiFi and surrogate
model possess the same local optimum. Moreover, we see that the DEPOD ROM behaves
similarly to the HiFi model around the construction point ¢*, which underlines the superior
POD prediction properties of DEPOD.

0.
S "@"H?; -7 \\/\\?’II )
10-41 © | 507 (g%) = 3 (@) /13 ()]
* g DEPOD
-8 . ‘o
10 v = O IO e N - S U VA
10-12 M ok |57 (%) — 3 (@)1/115"7 (g7
1016 R U AR R |
0 20 40 60 80 100
k

Figure 5.2.: Distance of suboptimal solutions ¢* and ¢* for surrogate optimiza-
tion started in the numerically exact solution ¢* and corresponding difference
of the objective evaluated with the HiFi model.

A quantification of the difference between suboptimal solutions ¢* from the surrogate op-
timization and the numerically exact HiFi solution ¢* is shown in Figure 5.2. We performed
the following test: The surrogate models with POD and DEPOD basis are constructed with
an increasing number of basis functions in the HiFi solution ¢*. Then we solve the resulting
NLPs up to machine precision, which we can do due to accurate derivative computation.
We plot the difference

lg* — ¥l 1577 (a*) — 577 (@)
I TR

between HiFi and suboptimal solutions as well as the difference between objectives evaluated
using the HiFi model at the HiFi and suboptimal solution respectively. We observe that with
a standard POD ROM with k£ = 10 and a reasonable state reconstruction error (RE ( J ’”) ~
5 x 1075) one finds a suboptimal solution that differs from the reference solution by more
than 100%. The resulting objective even differs by a factor of 200 from the objective
value of the reference solution which shows that a conventional POD ROM may be highly
unrobust. As described in §5.2 a common way to deal with the issue is to increase the
number of POD basis functions. However, we can see that even by increasing the number
of basis functions to k& = 100, g* does not get closer to ¢* than approximately 3 x 1072, In
contrast, with DEPOD we obtain a difference of about 10~* already for k = 10. As in the
reconstruction tests we observe an exponential decay that reaches an asymptotic limit, in
this case determined by the accuracy of the time integration.
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XQ*
e |
POD/DEIM

HiFi

DEPOD/DEDEIM

Figure 5.3.: Isolines of objective at initial guess q(g) for a POD/DEIM ROM
(top), DEPOD/DEDEIM ROM (left), and the HiFi model (right) and the
respective gradients and suboptimal solutions.

OTA perspective

In a second example we turn towards an OTA perspective on POD. The same example
problem and discretization is used, however, we remove the spatially distributed control
and replace the function © by

O(y, u1,u2) = ury cos(mry) + ysin(uamra).

Consider the optimality system (1.16). The OTA strategy we employ is to construct
(PD-ROM) for the state variables y, which we subsequently use to evaluate the objec-
tive. The computation of the gradient V;"7 is done without a model reduction step, i.e.,
the adjoint equation and the gradient equation in (1.16) are evaluated from HiFi informa-
tion only. We then follow a reduced approach to solve the OCP, providing objective and
gradient to the SQP method implemented in SNOPT.

The reference solution is ¢* ~ (—0.36,—0.96) obtained with the HiFi model and an
optimality tolerance close to machine precision. Clearly, when starting in ¢*, the optimality
conditions are satisfied and the algorithm returns after the first convergence check. However,
we now analyze the situation when starting the optimization at an initial guess go = (1, —1).
We compare now different bases used in the reduced-order model to the case where the states
are evaluated from HiFi information. We compute the surrogates with a fixed number of
POD and DEIM basis functions, setting £ = 15 and ¢ = 40. Thus, the reconstruction errors
using state information only for the POD/DEIM bases are

RE (j") =11x107% RE(z)=86x10"".

In Figure 5.3 we show the isolines of the objective around the initial guess g for a
surrogate with POD/DEIM basis (top), with DEPOD/DEDEIM basis (left), and for the
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dynamic model evaluated with the HiFi model (right). As one can see, the suboptimal
solution ¢* in the scenario on the top is in opposite direction of the ’true’ solution ¢~
relative to the initial guess. As the exact gradient information is provided V;j"" points
towards ¢*, however, the actual steepest descent for the objective is V?”. Thus, as the
POD approximated gradient does not point in a direction where a decrease in the objective

can be achieved, i.e., R
(thT)TthT < 0,

the solver cannot advance from this point and the OTA strategy we use gets stuck in
this point. Obviously, this problem is inherent to the approach and not to the solver,
as any gradient-based method that uses a line search will face the same difficulties. In
contrast, with DEPOD/DEDEIM both gradient vectors point in the same direction up
to the reconstruction error, which is RE (Vj’”) ~ 10~*. Moreover, we see that in the
POD/DEIM case the objective behaves entirely different in comparison to the HiFi case
while with DEPOD/DEDEIM the isolines are alike and we find a suboptimal solution already
close to ¢*.

(sub)optimal solution

HiFi reference solution ¢* (—0.36,—0.96)
(PD-ROM) with k = 15, = 40 (1.46, —0.88)
(PD-ROM) with k = 15,¢ = 100 (2.74, —1.25)
(PD-ROM) with k = 15, ¢ = 200 (1.25, —0.63)

Table 5.1.: Comparison of HiFi solution of the optimization problem and sub-
optimal solutions obtained for different surrogate model instances dependent on
¢ with initial guess q(o) = (1, —1)”. The suboptimal solutions are still further
from ¢* than g with £ = 200

In Table 5.4.1 the optimal solution ¢* obtained with the HiFi model is compared with
suboptimal solutions when more information is added to the DEIM subspace. As we can
see, with ¢ = 200 basis functions the suboptimal ¢* is still even further from ¢* than the
initial guess g(p). Without the DEIM projection, the pure POD ROM is able to find a solu-
tion (—0.32,—0.90). Thus, in this example problem the large deviations in the suboptimal
solution and, thus, the complete failure of the model reduction approach are caused by the
DEIM projection step.

In either of the examples we are able to find a suboptimal solution via Algorithm 2 in less
than five major iterations, using a stopping tolerance of TOL, = 10~%. We demonstrate
the performance of the DEPOD-OC and DEPOD-PE algorithms in more detail in Part III.
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In the last part of this thesis we apply the developed algorithms to three applications, each
with its own particular challenges for the model reduction approach. The aim of this part is
to give an idea of how the derivative-extended proper orthogonal decomposition (DEPOD)
algorithms behave for practical applications and how big the computational savings are.

The results are compared regarding to their approximation quality and the runtime. There
is no state-of-the-art optimization algorithm for POD model reduction to test the developed
algorithms against. Thus, we compare the DEPOD-OC and DEPOD-PE algorithm as
presented in §5.2 and 5.3 against the same algorithms where standard POD and DEIM
bases are used. This is very similar to the adaptive algorithms suggested in [1, 61]. In
future implementations the ideas of DEPOD should, however, be combined with other POD
optimization strategies such as optimality systems POD [77] or trust-region POD [6, 42, 73].
To guarantee accurate solutions to the underlying infinite-dimensional problem, methods for
adaptive mesh refinement and error control on the HiFi discretization level must also be
included.

We start by discussing aspects of the implementation and explain how the software com-
ponents interact. A key aspect is the efficient implementation of the ODE right-hand side
and their differentiation for both the HiFi and the reduced-order model. Thus, we can
compare the runtimes such that they reflect the algorithmic superiority of POD without
blurring the results due to an inefficient implementation.

We then present three different applications. In the first 2D heat transport problem we
deal with a spatially distributed control function with high-dimensional control discretiza-
tion and solve a nonlinear parameter estimation problem with four parameters. In the
second application we consider a variation of the Lotka-Volterra predator-prey dynamics
which we extend to a system of 2D partial differential equations. In the optimal control
problem we deal with a time-dependent boundary control function and a nonlinear time-
dependent control. In the last application we use a model from industry that contains a
large system of 1D PDE equations. The challenges are the large system size, the compli-
cated nonlinear contributions, and the handling of transient and 'quasi steady-state’ phases
during the time integration.

To facilitate the distinction between optimal control problems and parameter estimation
problems, in the following we use the infinite-dimensional notation w for the variables in
the optimal control case and the discrete notation ¢ in the parameter estimation problems
where g € R™4.
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6. Implementation

We have implemented the optimal control Algorithm 2, the parameter estimation Algorithm
3, and the derivative-extended model reduction techniques described in Chapter 4. In the
following we briefly describe the most important features of the implementation and discuss
minor algorithmic aspects we have to deal with in practical computations.

DEPOD-PE
computation of algorithm DEPOD-OC
DEPOD/DEDEIM . | SNOPT
. G algorithm
basis
- MATLAB
(deal )| . [DAESOLT]. _(rarexane)
interface -
spatial integration derivatives of
discretization adjoints/sensitivities right-hand sides

Figure 6.1.: Overview on the structure and additional software components in
the implementation.

All results are obtained using a notebook computer with an Intel® Core™ i5-3317U
CPU with 1.70GHz and 4GB of RAM under Ubuntu 13.10. The model reduction tech-
niques and the optimization framework are implemented in Matlab® (8.1.0). The spatial
discretization is obtained via the software package deal-ii [11], a finite element library to
solve partial differential equations. The simulation and derivative computation of the HiFi
and the surrogate model is carried out using a mex interface to the Backward Differentiation
Formula (BDF) integrator DAESOL-II [2]. The derivatives of the right-hand sides of the
dynamic systems (HiFi and surrogate) required by DAESOL-II are computed using the
automatic differentiation (AD) source code transformation tool TAPENADE [55]. To solve
the nonlinear programming problem (NLP) resulting from the optimal control problem dis-
cretization we use the sequential quadratic programming (SQP) algorithm implemented in
the software package SNOPT [49]. An overview of the interacting software components is
given in Figure 6.1. We now discuss various aspects of the implementation one by one.

Implementation and integration of semi-discrete PDEs in DAESOL-II

The integrator tool DAESOL-II requires the user to provide the ODE right-hand and left-
hand side in C/C++. By default the required derivatives are then computed using ADOL-C
[119], an AD tool based on operator overloading in C/C++. As an efficient evaluation of
the right-hand sides and its derivatives is important to analyze the practical potential of
our model-reduction approach, we replace the evaluation of the right-hand side by calls to
Fortran routines. This allows the computation of adjoint and forward derivatives by source
code transformation via TAPENADE. Details are discussed below.

The implementation of the HiFi right-hand side is structured into a linear and a nonlinear
part according to (2.7). The components of the linear part S are evaluated using matrices
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and vectors computed with deal-ii before compiling the right-hand side code. The nonlinear
part is implemented in a separate subroutine, such that it can be used for both the HiFi and
the surrogate model. The POD/DEIM projection matrices and the reduced linear part are
evaluated in Matlab® and then provided to the surrogate right-hand side during runtime.

In the numerical tests we vary the following integrator options of DAESOL-II: The relative
tolerance TOL,¢ is used to control the integration accuracy. We restrict the order maxgrqer
of the BDF-method if necessary to improve stability of the integration. Note that BDF
schemes in practice are limited by the order 6 for stability reasons [54]. The value of
TOLNewton can be used to increase the accuracy with which the implicit systems in each
step are solved. Essentially the value forces the Jacobian of the right-hand side to be
evaluated more often (see also §2.5.3). When using an implicit Euler method in DAESOL-II
we choose a maximum step size Tmax and a large value for TOL,. such that the actual step
size 7 of each step is Tmax. Moreover, we set maXgyrqer = 1 and enforce the Jacobian matrix
to be rebuild in every integration step.

Time dependent controls and checkpointing techniques

For problems with time-dependent control variables we subdivide the time horizon [0, T
into subintervals [¢t;_1,t;], ¢ = 1,...,n4 as explained in §2.2.2. We compute the gradient of
the reduced objective in optimal control problems using the adjoint approach. To this end,
first the system is integrated in time on each subinterval in a forward sweep. Then we do a
reverse sweep which means going backward in time and computing the adjoint sensitivities
and the gradient with respect to the control variables that are active in the current time
interval.

For the application of the adjoint mode of AD we need to save all intermediate steps on
the so-called tape, a term introduced in [51] to denote the memory space where information
necessary for a reverse sweep is stored. This may result in excessive memory requirements,
thus, we follow a checkpointing strategy (see also [51]). This means, we only remember the
initial value conditions of the integration on each subinterval in the forward sweep. In the
backward sweep we then recompute all intermediate steps on the active interval and store
the required information on the tape. Thus, we avoid possible memory issues, however,
the checkpointing strategy comes at the cost that we need to evaluate the forward problem
twice (once in the forward and once in the backward sweep).

Source code transformation with TAPENADE

The derivatives required by DAESOL-II are provided by TAPENADE which uses source
code transformation. The respective right-hand side Fortran code is processed by TAPE-
NADE before compile time and Fortran routines for each type of derivative are created. The
advantage is that the code can then be optimized by the compiler which yields significant
runtime improvements.

In Table 6.1 the runtimes of a HiFi and a corresponding surrogate model for different
GNU Fortran compiler flag options are shown. As one would expect, the runtimes improve
with increasing compiler optimization. However, the savings are much larger in case of the
surrogate model. Moreover, we observe that the gap in runtime improvement between HiFi
and surrogate model becomes larger when increasing the number of POD modes. With
k = 30 and compile flag -g in the surrogate we have half the cost of the HiFi model. Using
compiler optimization it is possible to reduce the runtime by a factor > 10. We conclude
that in case of a moderately sized HiFi problem an efficient implementation of the right-hand
side is crucial to exploit the potential of the model reduction approach.
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Runtimes (in seconds)
Compiler flag -g -01 -03

HiFi model N = 1089 541 4.65 4.57
surrogate model k£ =23,/ =174 1.20 0.38 0.33
surrogate model k = 30,¢ =237 2.09 0.54 0.41

Table 6.1.: Comparison of simulation costs for the HiFi model vs. the surrogate
model in dependence of GNU Fortran compiler flag options.

Computation of right-hand side Jacobians using seed matrices

For the computation of the Jacobian of the right-hand side of the HiFi model we exploit
the sparsity structure of the PDE spatial discretization. Let f be the differential right-hand
side of the HiFi model. Then instead of evaluating each column of df/dx independently we
compute ngeeq directional derivatives

%Aseeda with  Ageed € Ranﬁeed
where we typically have ngeeq < N. The seed matrix Ageeq can be determined using graph
coloring algorithms. In the graph each node corresponds to a column of the Jacobian
matrix and nodes are connected if the corresponding columns have nonzero entries at the
same column entries. The full Jacobian can be reconstructed from the ngeeq directional
derivatives. For details see [51]. An efficient derivative compuation is important to obtain
meaningful runtime results when comparing HiFi optimization with surrogate optimization.

Reduction of snapshot sets

The runtimes for the decomposition of the snapshot matrices strongly depend on the number
of snapshots included. When computing the POD basis according to Variant II in §3.1.1,
the size of the eigenvalue problem is determined by the number of snapshots, thus, the
decomposition time starts to dominate the overall costs after a certain threshold. Thus, to
construct the derivative-extended reduced-order models we need to deal with the possibly
large number of snapshot sets. We experience the choice of the snapshot locations to have
no significant effects on our numerical results. Therefore, we apply a heuristic to reduce
the snapshot sets. If the snapshot choice becomes an issue one should consider methods
for optimal snapshot locations as proposed in [78] or exploit a priori knowledge about the
process.

Let t1,...,t, be given snapshot time instances and mge; the number of overall snapshot
sets to be included in the snapshot matrix. Then, if m - mge > 1000, we choose a number
of reduced snapshot locations m such that

Meet - T 2~ 1000.

With this choice we guarantee that the cost of the computation of the POD basis is negligible
in comparison to the overall algorithm (on our machine less than 2 seconds). The number
of m is determined by choosing an integer valued reduction factor myeq &~ (m - Mget) /900
which we use to select every myeq-th time instance of ¢1,...,t,,. Thus, we obtain a subset
of m time instances

{tﬂ'17"‘5t71'ﬁw,} c {tla"'atm}'
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The POD snapshot weights 4, ..., ¥, for the reduced number of snapshot locations are
given as

’?771 = (tﬂ'z_ t7"1)/2’ ;?ﬂ'i = (tﬂ'i+1_ tﬂ'i—l)/27 2<i<m-— 1, 5/77771 = (tﬂ’ﬁz_ tﬂ'ﬁlfl)/27

analogous to the common POD snapshot weights in (3.2). The number of snapshot sets is
not known a priori, as due to the dependency structure of the models some sets might contain
only zero values. These sets we discard before the actual snapshot location reduction.

Settings for the SQP method

To solve optimal control problems we use an SQP algorithm with BFGS updates imple-
mented in the software tool SNOPT Version 7 [49]. We access SNOPT via its Matlab®
interface. Only bound constraints are considered. The tolerances for "Major feasibility tol-
erance’, 'Major optimality tolerance’, and "Minor feasibility tolerance’ are set to one single
value TOLgnopt. All other specifications for SNOPT are set to the standard value. As
discussed in §5.2 we speak of convergence of the DEPOD-OC algorithm if the inner op-
timization loop returns successfully after the first iteration, which here means that when
SNOPT returns with a successful info flag after the first convergence check.

Settings for the Gauss—Newton method

We implemented the Gauss—Newton algorithm as described in §2.4.2 in Matlab®. The exam-
ples required additional globalization strategies to be employed. We enforce the parameters
to stay within certain lower and upper bounds to avoid an evaluation in infeasible regions.
This is done by halving the length of the suggested increment Ag until no more bounds are
violated. To guarantee global convergence a backtracking line search is used. We halve the
increment Aq until we find a reduction in the norm of the residual ||F(q)||. The line search
globalization is deactivated as soon as the increment is sufficiently small (||Aq|| > 0.5).
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7. 2D Heat Transport

In the first application of algorithms DEPOD-OC and DEPOD-PE we consider a convection-
diffusion-reaction problem which can be interpreted as 2D model for heat transport. For
example, the model could describe the temperature of a gas streaming through a tubular
reactor with additional heat generation due to chemical reactions influencing the temper-
ature. The reaction part consists of the nonlinear contribution part © which is affected
by the DEIM reduction. We consider two different optimization problems. In the optimal
control problem a linear spatially distributed control function must be determined such that
a specific temperature profile is achieved at final time. In the parameter estimation problem
we estimate the values of four parameters in the nonlinear contributions from artificially
generated measurement data.

7.1. Model description

Assuming radial symmetric behavior on the unit square 2 = (0,1)? and the time horizon
I =10,T) with T =1 the model equation is given as
y = —aTVy+DAy+0(y)+u inlxQ,
Oy + P11y = P21 onl xTIy,
Ovy + B12y = P22 onl XTIy,
0,y=0 onlxT3Uly, y(0) =320 on €,

(7.1)

and the boundaries are defined as
Fii={reQ =1}, Ty={reQ : r=1}
I3:={reQ :r=0}, Ty:={reQ :: r=0}
The boundary part I'y can be interpreted as reactor inflow, I's the outflow, v the reactor

wall, and T'4 the center of the reactor along the axis. The nonlinear part © which is affected
by the DEIM projection is given as

O(y) = 1.5/4(—K 1y + Koy + K3), with
Ky =5prexp(—1/y), Ko = (p3y/200 + ps cos(y/300))?, Ks = 0.6(ps — 1) sin(27ry)y.
The control function u € L?(Q) is linear and distributed on the whole domain . We choose
the values defining the spatial operators and the boundary conditions as
a=(0,-1)", D=01, B11=10° f21=10%r,,
P12 =10, P22 =10yr,, yr, =350, yr, = 310.

7.2. Optimal control results

To test the DEPOD-OC algorithm we optimize the final state distribution y(7") by finding
an optimal control function u. To this end, we consider the optimal control problem with
quadratic objective

. 1 0.02
min Jyw) =5 I ol + = lulh st (7). (7.2)

)

107



7. 2D Heat Transport

We distinguish two particular problem instances differing in the shape function yq for which
we consider

) yg)(r) := 300 + 60 cos (grl) .

(1)(7") . 360 ifr; <0.5
Yo 300 else.

Bounds on the controls are never active during the computations. The values of the four
parameters pq, ..., p4, to be estimated later in the parameter estimation problem are set to
one in the optimal control scenario.

We use linear finite elements for the spatial discretization with N = 1089 degrees of
freedom and a time step size 7 = 5 - 1072 for the implicit Euler method in DAESOL-II.
With these choices the approximation quality of the reconstruction error essentially depends
only on the number of POD basis functions.

The control function is discretized on the same grid as the states, i.e.,

N
u=>Y qp €V

The reference solutions u* of the optimal control problems we compute using the HiFi model
in SNOPT setting the tolerance to TOLgnopt = 1075, The optimization is started in either
case with u(r) = 1. The reference optimal control function in the solution of problem (7.2)
for the shape function yg) is displayed on the upper-left of Figure 7.2.

100 (=
Lo 0@ 00O
i IR x- DEPOD-OC (1)
= qotp oV Vv VeV % DEPOD-OC (2)
= ; o POD-OC (1)
S .
= 1072 %, o POD-OC (2)
| y R E SN ¢ POD-OC (1) fix
= 10 v POD-0C (2) fix
1074
0 2 4 6 8 10

Major iterations

Figure 7.1.: Distance between reference solutions and surrogate suboptimal so-
lutions i 1n each maj)or iteration of Algorithm 2. (1) and (2) refer to the objective
where yQ ) and yQ is used respectively. "POD-OC’ means the DEPOD-OC al-
gorithm with standard POD/DEIM bases. In 'POD-OC fix’ we select the same
k = 26 as for the last major iteration of DEPOD-OC.

In the first test we investigate the behavior of the major iterates of Algorithm 2 and
compare them to the same algorithm where a standard POD/DEIM basis is used in the sur-
rogate models instead of DEPOD/DEDEIM. The relative distances of suboptimal solutions
u* to the reference solutions u*, given as

[* — u*]lg

[urllg
in each major iteration are shown in Figure 7.1. Here 'DEPOD-OC (4)’ refers to the DEPOD-
OC algorithm applied to the problem instance where the shape function yg), i =1,21is

, (7.3)
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reference solution HiFi

150 150
1 . o 1 1 "
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Figure 7.2.: Solutions of the optimal control problem (7.2) for the shape func-
tion yg). The reference control computed with the HiFi model and TOLgnopt =
1079 is shown on the upper-left. The HiFi, the DEPOD, and the POD solutions

are computed with TOLgyopt = 5 x 1075,

used. The same applies to '"POD-OC (i)’ where the POD/DEIM basis is used instead in
the surrogate model. For DEPOD-OC and POD-OC the bases are constructed using the
tolerances Aror, = 107° and s7or, = 1074, i.e., we choose k and ¢ such that (compare to
Remark 3.2)

VA1 S Aror and  \/sgr1 < Stor- (7.4)

In 'POD-OC (i) fix’ we choose the same number of basis functions k£ = 26 as in the last
DEPOD-OC major iteration as a POD basis for a certain Apoy, is by construction smaller
than a DEPOD basis (compare Remark 4.2). In the last DEPOD surrogate model we have
£ = 230, thus, we use the full DEIM space for the fixed POD-OC algorithm as there are not
enough snapshots available.

The tolerance for SNOPT is set to TOLgnopt = 5 X 10~5. We observe that either of the
algorithms converge in less than 10 iterations. The POD-OC algorithms even converge after
only 5 and 4 major iterations, however, the error between the reference solution and the
suboptimal solutions at the final iteration are still > 10~!. The suboptimal solution of
POD-OC (1) is shown in the lower-right of Figure 7.2. With a POD basis only, we are
not able to determine the essential features of the reference solution u*. In contrast with
the DEPOD-OC algorithm the distance to u* is almost as small as 10~2 for either problem
instance. The suboptimal solution after the final iteration of DEPOD-OC (1) is shown in
the lower-left part of Figure 7.2. We can see that the essential features of the reference
control solution are reached. For comparison we show the solution obtained with the HiFi
problem for yg‘) and the same SNOPT tolerance T'OLgpopt = 5 x 107°. The HiFi solution
has a relative distance to u* of 6.6 x 10~* and is slightly smoother than the DEPOD-OC
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solution. However, we are nearly as good as the HiFi solution with DEPOD-OC for the
given tolerance where we have a distance of 1.3 x 1072 (compare also Table 7.1).

In the POD-OC algorithm with a fixed number of basis functions the POD and DEPOD
subspaces have the same dimension (no DEIM projection is carried out in POD-OC fix).
We observe that the additional snapshots (before in POD-OC we have k =~ 12 and ¢ ~ 13)
barely yield an improvement of the POD-OC results where the number of basis functions
is chosen adaptively. We also have compared the algorithms to the optimize-then-discretize
approach we used in §5.4.1. However, SNOPT returns with an error message after a few
iterations as the line search cannot find a descent in the objective. Thus, no reasonable
comparison is possible.

We also confirmed that the DEPOD-OC solutions at the final iteration are actually so-
lutions to the HiFi problems within the given tolerance by starting the HiFi optimization
in the solution of DEPOD-OC. This result can be expected as the DEPOD surrogates are
constructed such that the reconstruction error of the gradient in the norm ||-||, (RE (Vj) ~
4 x 107%) is below the accuracy requirements of the optimization (T OLgnopt = 5 x 107°).
It must be recalled that convergence of either of the algorithms is not necessarily equivalent
to having found a solution of the HiFi problem. As discussed in §5.2 we must take care that
the derivatives are approximated sufficiently well. The reconstruction errors with DEPOD
are about RE (z) ~ 107° and RE (z) ~ 107°.

1) (2

Objective with y, Objective with yg
HiFi DEPOD DEPOD HiFi DEPOD DEPOD

Aror/sToL - 107%10"* 107%107°% - 107%/107*  107%/107°
k/¢ in last iter. - 26/230 33/287 - 25/196 31/254
Major iterations - 9 7 - 5 4
Minor iterations 102 279 238 108 162 143
Minor iter. time 1358s 158s 182s 1431s 79s 92s
Total time 1358s 340s 342s 1431s 181s 183 s

Distance to uv*  6.6x 1074 1.3x 1073 14x1073 3.0x107% 1.7x10"2 1.2x 1073
Error in J 24x107% 5.0x107% 49x107* 29x10™* 1.1x1072 1.0x 103

Table 7.1.: Comparison of HiFi optimization (N = 1089) and the DEPOD-
OC algorithm for two different objectives and different choices of eigenvalue
criteria to choose k and ¢. The tolerance for SNOPT is chosen as TOLsnopT =
5 x 1075 and the initial guess is u(r) = 1.

In Table 7.1 we show the results of a comparison of DEPOD-OC and HiFi optimization
for the two optimal control problem instances and different choices of eigenvalue criteria.
The termination tolerance is again set to TOLgnopT = 5 x 107 and the results of each
optimization are compared regarding their relative distance to u* according to (7.3) and the
relative error in the objective. For the latter we compare the objective value of the HiFi
at the reference control with the objective value of the HiFi at the suboptimal solution of
the DEPOD-OC algorithm. The total number of evaluations of the HiFi model necessary
to construct the surrogate is the number of major iterations +1. The minor iterations
correspond to the overall number of iterations needed in SNOPT. Note that this number
does not necessarily correspond to the number of function evaluations which may be larger.

The results show that we reduced the overall runtime of the optimization by a factor 4
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in case of the objective with yg) and almost a factor of 10 for yg ). The loss of solution

quality is relatively small, in particular when the results are compared to the case where
standard POD and DEIM bases are used (see Figure 7.1). When comparing the behavior
of the DEPOD-OC algorithm with regard to different choices of eigenvalue criteria Apor,
and stoy, in either problem the number of major iterations can be reduced using a larger
basis. However, the overall costs stay roughly the same which is due to the fact that the
minor iterations become more expensive with larger DEPOD/DEDEIM bases. Moreover,
using a larger basis did not significantly improve the outcome of the DEPOD-OC algorithm.
However, the larger POD basis would allow the DEPOD-OC algorithm to satisfy a smaller
tolerance criterion TOLgnopr. The issue will be further investigated in the application
in chapter 8. As long as the necessary reconstruction accuracy for the surrogate model is
achieved, it is in general hard to tell a priori how to choose the size of the reduced basis in
order to obtain an optimal overall runtime performance.

The different shape functions yg) and yg) also had a significant impact on the behavior of
Algorithm 2. While the number of HiFi optimization iterations were roughly the same, the
surrogate optimization took more major and minor iterations in case of the discontinuous
shape functions yQ2 ) in comparison to the smooth shape function yg ),

7.3. Parameter estimation results

In the parameter estimation example we estimate the values of pq, ..., ps from measurement
data with normally distributed random noise, thus, the optimization variables are ¢; =
pj, j=1,...,4. The same model (7.1) as in the optimal control example is used, with the
differences

O(y) = 1.5(— K1y + Koy + K3), a=(0,-4)", D=04.

Space and time discretization are identical to the optimal control scenario. Let the four
parts Q1,...,84 of the domain €2 be defined as

Q:={reQ : rn<05A1,<05}, Qo:={re : r,>05Ary <05},
Qg S:{TGQ : 7‘1§0.5/\7’220.5}, Q4Z:{TEQ : 7’120.5/\7’220.5},

then we consider the 4 measurement functions

b (y(t)) = /Q y(dr,  haly(t)) = /Q y(t)dr,
hs(y(t)) = /Q yWdr,  haly(t) = /Q y(t)dr,

and a measurement error standard deviation of ¢ = 6, which is a relative error of about 2%.
In the numerical computations we approximate the integrals by the mean value of the node
values in the corresponding region. Thus, the approximation is no more grid independent
which has, however, no significant impact on the results as all computations are done on
the same equidistant grid. In the experiment we take measurements at 10 different time
instances ti....,t1o defined as

th=3 At;, n=1,...,10,  At; =T/10,

and increase the value of yr, at the inflow boundary successively from yr, = 300 on [to, ¢1]
to yr, = 440 on [tg, t19] with linearly interpolated values.
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7. 2D Heat Transport

We compute 2 sets of measurement data with the parameters set to 1 and add normally
distributed errors with standard deviation ¢ to the value of the measurement function. The
reference solutions q(*l), q&) € R* for each set of measurement data are computed with the
HiFi model and the Gauss—Newton algorithm and a termination tolerance of TOLgn close
to machine precision.

10° -
x- DEPOD-PE (1)
-tf 820 g 0 a0 DEPOD-PE (2
I 2 o POD-PE (1)
St ¥ : ' o POD-PE (2)
= R ¥ L | POD-PE (1) fix
107 PHE 25 S v POD-PE (2) fix
1074

o 1 2 3 4 5 6 7 8

Major iterations

Figure 7.3.: Distance to reference solution for each major iteration of the sur-
rogate optimization. The number in brackets refers to the measurement data
set used in the parameter estimation. 'POD-PE’ refers to the DEPOD-PE al-
gorithm with a standard POD/DEIM basis used. In "POD-PE fix’ we choose
the same number of basis functions as in DEPOD-OC.

As for the DEPOD-OC algorithm we investigate the behavior of the major iterates of
DEPOD-PE and compare them to the same algorithm where a standard POD/DEIM basis
is used which we denote by POD-PE. Again we choose a fixed number of basis functions
in '"POD-PE fix’ corresponding to the size of the bases in DEPOD-OC. The distances of
the suboptimal solutions in each major iteration to the reference solutions are shown in
Figure 7.3. We give here the absolute error as the parameters have an order of magnitude of
one. The number in brackets refers to the different measurement data sets used to estimate
q1,-..,qs. We set the Gauss—Newton tolerance to TOLgyn = 1076 and the major iteration
stopping tolerance of DEPOD-PE to TOL, = 107°2. The initial values of the parameters
are set to 0.6 in either case. The tolerances for the construction of the surrogate model
are Aror, = 2 x 107% and sror, = 2 x 1073. We can see from the plots that the DEPOD-
PE algorithm converges in only 3 major iterations for either measurement data set used.
The approximation quality of the parameters is well within the confidence region, which is
approximately given by the diagonal elements of the covariance matrix C'(¢). In the solution
qZ‘l) of the first measurement data set these are given as

diag(C(qfy))) =~ (0.48,0.47,0.20,0.07).

In contrast with the POD-PE algorithm there is no convergence at all. The algorithm
only stops as we limit the maximum number of major iterations to 8. The suboptimal
solutions obtained are not or just barely within the approximate confidence region. When
the same number of basis functions is used the results of standard POD can be significantly
improved in this case (fixed basis k = 18, ¢ = 36 and before in POD-OC k = 8, ¢ = 10).
However, with the measurement data set (2) it takes five major iterations to converge
and with (1) the algorithm does not converge at all. We also tested an Optimize-Then-
Discretize approach analogous to §5.4.1, providing the algorithm with the HiFi Jacobian
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7.3. Parameter estimation results

and a surrogate approximation of the residual F without derivative enhanced basis. The
results are very similar to the POD-PE iterates and are, thus, not explicitly shown. The
problem of incompatible gradient information here did not make the algorithm break down
as we do full Gauss—Newton steps close to the solution, thus, no more descent must be
guaranteed.

Further we see that the error in the suboptimal solutions of DEPOD-PE are the smallest
after the first iteration. One must note that many discrete decisions are involved in the
reduced-order model construction process and we cannot make any assertions on suboptimal
solutions far from the initial guess. However, this numerical artifact vanishes when the POD
approximation quality is increased (not explicitly shown here).

HiFi GN DEPOD-PE
AroL/sTor - 2.107%/2-1073107%/10~* 10=%/10=°> 1077/1076
k/¢ in last iter - 18/36 27/57 39/79 52/96
Major Iterations - 3 3 2 2
Minor Iterations 10 16 14 12 12
Minor Iter. Time 251s 19s 18s 18s 21s
Total Time 251s 64s 62s 528 558
Distance to ¢{, 23x107%  7.5x107? 6.8x107° 6.7x107% 7.3x1077
Residual error 23x10713 1.1 x10° 76x1079 14 x1071 7.1 x 10712

Table 7.2.: Comparison of HiFi Gauss-Newton (N = 1089) and the DEPOD-
PE algorithm for different choices of eigenvalue criteria to choose k£ and £. The
optimization tolerances are TOLgn = 1076 and TOL, = 10~°. Initial values
for the parameters are set to 0.6.

In Table 7.2 we show the runtime results of HiFi Gauss—Newton and the DEPOD-PE
algorithm for different values of Appr and sror to choose k and ¢. The computations
are carried out with the first measurement set with reference solution qz‘l . The overall
runtime can be improved by a factor of about four with either version of) the surrogate
model. Three major iterations are necessary in the first two surrogate optimizations and
two when the eigenvalue criteria are decreased. The distance to the reference solutions is
measured in the 2-norm and the residual error is the difference between the reference residual
0.5 F(¢*)||> and the HiFi residual evaluated with the corresponding solution. In contrast
to the optimal control problem the distance between the HiFi solution and the reference
solution ¢* is significantly smaller than with the DEPOD-PE algorithm. The reason is that
we defined a well-posed parameter estimation problem, i.e., the parameters can be identified
within relatively small confidence regions. This leads to fast convergence of the Gauss—
Newton method close to the solution. It only takes 10 Gauss—Newton iterations for the HiFi
optimization to converge and the reference solution (TOLgN close to machine precision) is
obtained with only three more iterations (compare to the discussion in §2.4.3). We can,
however, see that we obtain a suboptimal solution error close to the HiFi solution error by
decreasing Aror, and stor. The results show that we can expect a small reconstruction
error to yield a small optimization solution error when a DEPOD/DEDEIM basis is used.
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8. 2D Predator-Prey

In this chapter we apply the DEPOD optimization algorithms to the well-known Lotka—
Volterra equations which describe the population dynamics of predators and prey. We
extend the standard ODE model to a system of 2D partial differential equations. The
population count in this problem formulation can be influenced on certain parts of the
boundary of the domain and by an additional nonlinear grow rate term that we introduce.

The challenges in this example are the application of DEPOD/DEDEIM to systems of
partial differential equations and the optimal control of time-dependent controls one of which
enters nonlinearly. Moreover, we control the error via the strategies in DAESOL-II, thus,
the results of this chapter are time-grid independent. We start with a description of the
underlying model and then discuss the strategies that we employ to deal with PDE systems.
Finally, we present numerical results for a sample optimal control and parameter estimation
problem.

8.1. Model description

On the domain 2 = (0,1) x (0,2) we consider the differential states y; (prey) and ys
(predators) defined by the coupled system of partial differential equations

d

T = —a’'Vyi + DAy; + ©1(y1,92),

—y2 = DAys + O2(y1,92),
de (8.1)

0y Dy1 + Bray1 = P21 on I x Iy, 0,Dy; =0 on I xT3,
0, Dys + Br12y2 = P22 on I x 'y, 0,Dy2 =0 on I x1Is,
y1(0) =0.2 on , y2(0) =0.1 on Q.

The time horizon is I = [0, 7] with T' = 6 in the optimal control and T' = 12 in the parameter
estimation example. The nonlinearities contain the Lotka-Volterra dynamic with the growth
and death rate of predators and prey, given as

O©1(y1,y2) = y1(p1 — P2y2),
O2(y1,y2) = —y2(p3 — pay1 — K),
1

K= ————.
(k0y2)2 +0.1

We add an additional nonlinear grow rate term K for the predators which depends on k.

The boundary I' = 09 is subdivided according to Figure 8.1. We consider a boundary I'y

where the prey population is affected by a term y2'*, a boundary I's where the predator

population is affected by a term yFer, and I's = T'\(T'; UTs). The spatial operators and
boundary conditions in the optimal control case are defined via

a = (O7O)T? D= 027 Bl,l = 17 B2,1 = y?reyv

d
51,2 =1, fap2= yFm .
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8. 2D Predator-Prey

The values pq,...,ps in the nonlinear contributions are set to

pP1 = 3.07 P2 = 2.0, pP3 = 2.07 P4 = 2.8.

I'; North (Predators)

I'y
West (Prey)

T1

T2

Figure 8.1.: Domain €2 and grid of the predator-prey 2D PDE problem.

8.2. DEPOD/DEDEIM for PDE systems

In the predator-prey application we apply our proposed model reduction techniques to a
system of PDEs. Conceptually, POD can be applied to any ODE system via the projection
step described in §3.1.3. However, in practice we rely on the good prediction properties of
POD surrogate models which are particularly favorable when applied to parabolic problems.
Recall that the prediction estimates in §5.1 only make an assertion on the error close to the
control configuration where the basis is constructed, thus, with DEPOD we still need to rely
on good prediction properties further away from the reconstruction point for an efficient
application.

Therefore, we decompose the snapshot matrix for each of the components of a system
independently. Consider the semi-discrete system of PDEs of size n, = N - n. with n.
components

Mj:(t) = Sz(t) + F(x(t)),
z1(t) i (z(1))
z(t) = : o Fz(t) = : ; (8.2)
Tn, (1) Fp, (z(1))
z;(t) RN, F:R™ RN i=1,... n,,

where M, S € R"*"= are block diagonal matrices with blocks of size N x N. In a stan-
dard application of POD model reduction to (8.2) one would consider the snapshot matrix

S € R"*™ consisting of snapshots z!,...,2™ and use the mass matrix M to obtain the
projection matrix ¥. Instead we apply POD on sub-matrices S; € RN*™ § = 1,...,n,
where each S; consists of snapshots of the components z}, ..., 2. This results in a set of
projection matrices ¥y,..., ¥, from which we can build the overall projection matrix
¥, 0
=10 "~ 0
0 v,

With a POD approximation x = W7 we can then construct the surrogate model as described
in §3.1.3 with the only difference that ¥ and the resulting linear part S are now block
diagonal. This can immediately be carried over to derivative-extended snapshot matrices.
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8.3. Optimal control results

For the application of DEIM we need to be more cautious and take a closer look at
the structure of F. In case of a PDE system, F(z) results from the discretization of the
nonlinear part O(y1, ..., Yn.). Thus, each component F;(z) of F(z) in general may depend
on all of the components z;, i = 1,...,n.. As DEIM selects a number of indices among
the quadrature evaluation points, these must be the same for all components of the system.
Hence, we construct one single DEIM projection matrix ® for all system components from

the snapshots . o
T M o i

included in D. We can then determine the DEIM interpolation points via Algorithm 1 for
all components simultaneously. It is also possible to construct the matrices ®4,...,®,,
independently, however, then it is unclear how to guarantee common interpolation points
for all components.

To construct a DEDEIM basis we need to have a closer look at the term F5(0Z%) =
F,(9Z)¥ which appears in the adjoint of the POD/DEIM reduced-order model in equation
(4.5). According to our strategy to compute a single DEIM projection matrix ® this requires
the inclusion of the snapshots

/\j m /\] m
{dFl(\I/x)\I/} 7.”’{an0(‘1’$)\1/}
dz =1 dz =1

in the snapshot matrix D which would mean n. - m - k additional vectors. However, due to
the block diagonal structure of ¥ we find that

M\p: w\pl M\Pn , 1=1,...,n.
dz 0z O0%n, °

In practical applications the components F; are likely to depend only on a few of the state
components. Thus, many of the partial derivatives are zero and the corresponding vectors
should be removed from the matrix D before its decomposition. The case for control depen-
dent F in the adjoint case and the sensitivity-extended DEIM basis is obtained analogously.

8.3. Optimal control results

The goal of the optimal control problem is to influence the dynamic system such that the
population amount of prey on the whole spatial domain is close to one over the whole time
horizon. The optimization variables are the boundary control y2' =: u; and the factor
ko =: ug in the nonlinear grow factor K. Both are time dependent, thus, we consider the
control variable u € L?(I,R?) and the problem

0.0005
min J (5, ) /uyl e O

s.t. (8.1), 0<wui(t) <20, 0<wug(t)<b, tel.

lullg = ( / <u1>2dt>% + < / <uQ>2dt>% .

Over time the value of y{ired in the boundary conditions for the predator is varied according
to

We use the norm

0.1 for0<t<2,
gty ={21 for2<t<4, (8.3)
0.05 for4 <t<6.
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8. 2D Predator-Prey

We discretize in space with linear finite elements and N = 289, thus, the dimension
of the system is n, = 579. For the time integration we use the settings maxgger = 4
and TOLnewton = 1073 and we take advantage of the monitor strategy in DAESOL-II
to decide when to rebuild the iteration matrices. For the relative error TOL, we tested
different values in combination with different optimization tolerances. The discretization of
the control variable is done with piecewise constant controls on 60 equally sized subintervals.
The initial guesses are u1(t) = 1 and uz(t) = 1. The reference optimal control trajectories
uy and w3 are shown in Figure 8.2, which we obtained via the HiFi model, an SNOPT
tolerance of T'OLgnopt = 1079, and a relative time integration error of TOL, = 10-7.

Nonlinear control uo

Boundary control u;

4 8
3.5¢ Tt
3t 6F 0000,
O
2.5 5o & ,
o o3
5 2r S 4f <><> <><>
[ o3 &0
1.5F p o i 3t <><> 0 & <><><>
B 5 o000t o) | o o °
1 e 2 o 1S 13
0000000 <><><>(> <><> &
0.5¢ 0000 1f o @
0% ‘ ‘ ol — ‘
0 1 2 %’) 4 5 6 0 1 2 Z;) 4 5

Figure 8.2.: Optimal solution trajectories of control functions.

We carry out a HiFi optimization via SNOPT, the DEPOD-OC algorithm, and the
DEPOD-OC algorithm with standard POD/DEIM basis (POD-OC) to solve the optimal
control problem with the two settings in Table 8.3.

TOLrel TOLsnopt A TOL STOL
Settings (1) 4 x 107° 1074 5x 1072 2x 1072
Settings (2) 1 x 1076 1076 2x107% 1x1072

Table 8.1.: Settings for optimal control problem tests

The optimization results are shown in Figure 8.3. In the diagram with the dark gray
bar we display the distance between the solutions of the respective algorithm and the ref-
erence solution u* with respect to the norm |[|-|5. The light gray bar reflects the distance
l7(u*) — j(w*)|| between the objective value of the reference solution (j(u*) ~ 1.14) and the
HiFi objective value evaluated with the respective solution. We observe that the solutions
have roughly the same quality for Settings (1). The error is the smallest with the HiFi model
and DEPOD shows a slight improvement in the control solution in comparison to POD. In
contrast when the accuracy requirements are higher, POD-OC is unable to find a solution
with an error close to the HiFi problem. With Settings (2) the solution quality is even worse
than with Settings (1). With DEPOD-OC we are able to obtain a solution almost as good
as the HiFi solution. Note that we only slightly decreased the eigenvalue tolerances from
settings (1) to (2) which resulted in k = 22, ¢ = 81 in comparison to k = 19, ¢ = 68 (compare
Table 8.2). The approximation quality of the DEPOD ROM here is mainly improved due to
the reduced error in the time integration. Note also that in contrast to the previous appli-
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cation all solutions are computed on different time grids determined by the step size control
of DAESOL-II. In this sense the results presented in this chapter are time-grid independent.

]| Error of solutions
00 Error of objective value

Error

Figure 8.3.: Error of optimal control solutions in norm ||-|5 and objective er-
ror, i.e., the distance between the reference objective and the HiFi objective
evaluated with the respective solution, for Settings (1)/(2) and POD, DEPOD,
and HiFi optimization.

In Table 8.2 we compare runtimes of a HiFi optimization and the DEPOD-OC algorithm
for the two tolerance settings in Table (8.3). In the first setting the overall runtime is reduced
by a factor of approximately 8.5 and in the second by a factor of 7. The gain in runtime
is smaller for the higher accuracy demand even though the number of minor iterations is
doubled in the HiFi optimization while the number of minor iterations increases only by
about 40% for DEPOD-OC. One reason for this is that the cost of the surrogate evaluation
for the objective and the gradient grows faster when decreasing TOL,. than for the HiFi
model. Evaluation costs for Settings (1) are approximately 13.5 seconds (HiFi) and 0.5
seconds (surrogate) while for Settings (2) we have 22 seconds for the HiFi and 1.4 seconds
for the surrogate. On the one hand, this can be explained by the larger size of the POD
basis. On the other hand, in DAESOL-II we observe a faster increase of the number right-
hand side Jacobian rebuilds for the surrogate model than for the HiFi. We will further
discuss the issue of runtimes within DAESOL-II in the last application.

The number of DEPOD/DEDEIM basis functions are k = 18/¢ = 68 with Settings (1)
and k = 21/¢ = 81 with Settings (2). Recall that here actually a POD basis for each of the
components is computed, which takes 9 (10) basis functions for the first component and 9
(11) for the second one respectively.

8.4. Parameter estimation results

In the parameter estimation problem we estimate the Lotka—Volterra grow and death rate
factors pi,...,ps which we now refer to by the optimization variables ¢; = p;, j=1,...,4.
We again generate randomly perturbed measurement data as in the 2D heat transport
application to estimate the parameter values. For the parameter estimation problem the
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8. 2D Predator-Prey

Settings (1) Settings (2)
HiFi DEPOD HiFi DEPOD

Major iterations - 3 - 3
Minor iterations 52 99 98 138
Minor iteration time 1371s 77s 3962s  442s
Total time 1371s  160s 3962s 572s
k, ¢ in last iteration - 18 /68 - 21 /81

Table 8.2.: Runtime results for HiFi optimization (n, = 578, N = 289) and
DEPOD-OC for the two settings in Table (8.3).

term K in the nonlinear part © is set to zero and we choose

a = (07 _0.2)T, D = 027 61,1 = 027 52,1 =0.2- ygrey7
6172 = 17 ﬂ2’2 = y?red’

and the final time is now T'= 12. We consider two measurement functions h1, ho defined as
b (y (1)) = / y(B)dr, T = {reQ :m <05Am =2},
T,
ha(y(t)) = / y(t)dr, Tp,:={reQ : r1 >05Ar =2},
Th,

which means that we can count the amount of prey on two parts of the boundary I'; of
the domain. The measurement error standard deviation is set to ¢ = 0.1. As above, we
approximate the integrals by the mean value of the node values in the corresponding region
in the numerical computations. During the experiment we take 12 measurements at the
time instances 1,...,12 and the boundary value for the predators is again varied over time
according to (8.3) in the optimal control example. The parameter initial values are set to
q = (2,2,2,2)7. The space and time discretization is the same as for the optimal control
scenario, however, we again vary the integration tolerance using the settings as in Table 8.3.
We compute a reference solution ¢* ~ (2.92,1.80,2.07,2.90)7 with HiFi Gauss—Newton, an
integration tolerance of TOL., = 1 x 1077, and a termination tolerance of TOLgy close to
machine precision.

TOL,ey TOLegn  TOL, Aror sToL

Settings (1) 107 107%  5x107* 5x107% 5x 1072
Settings (2) 1076 107¢  5x107% 5x107* 5x1073

Table 8.3.: Settings for parameter estimation tests

We compare again the HiFi optimization with the DEPOD-PE algorithm and the same
algorithm where a standard POD/DEIM basis is used. Analogous to the optimal control case
in the diagram in Figure 8.4 we display the distance to the reference solutions in the 2-norm
(dark gray bars) and the residual error (light grey bar) which is the difference between the
least squares functional 0.5 - || F(¢*)||* of the reference solution and the HiFi least squares
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I8 Error of parameter estimate
00  Error of least-squares

Error

Figure 8.4.: Error of parameter estimates in 2-norm and residual errors, i.e.,
the distance between the reference residual 0.5 - || F(¢*)||* and the HiFi residual
evaluated with the estimate, for Settings (1)/(2) and POD, DEPOD, and HiFi
optimization.

functional evaluated with the corresponding solution. In both settings the DEPOD-PE
algorithm is able to find better approximations than the POD-PE. Also similar to the first
application in chapter 7 the parameters in the problem are identified well. Thus, we have
fast local convergence which allows the HiFi optimization to make great progress in the last
step before the termination criterion is satisfied while the surrogates are limited by their
approximation properties.

Settings (1) Settings (2)

HiFi DEPOD HiFi DEPOD
Major Iterations - 3 - 4
Minor Iterations 17 22 19 25
Minor Iter. Time 123s  26s 183s  41s
Total Time 123s  46s 183s 84s
k, ¢ in last iteration 22 /38 - 33 /59

Table 8.4.: Comparison of HiFi Gauss—Newton and the DEPOD-PE algorithm
for the predator-prey example and two different accuracy settings.

In Table 8.4 we show the runtime comparison between HiFi Gauss—Newton and the
DEPOD-PE algorithm for the two settings. Due to the fast local convergence the num-
ber of Gauss—Newton steps is again relatively small in either case. We obtain savings from
the DEPOD-PE algorithm which become smaller with increasing accuracy demands for the
same reasons as in the optimal control case.

We conclude the chapter noting that for the Lotka-Volterra problem we are able to gain
runtime savings from the DEPOD-OC and DEPOD-PE algorithms and a superior perfor-
mance of a derivative-extended basis in comparison to the standard POD basis. As the
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8. 2D Predator-Prey

number of required POD basis functions for each component is relatively small, the overall
POD system is still small and the reduced-order modeling approach efficient. In the next
section we deal with a much larger PDE systems which results in a significant increase of
the surrogate system size and with this the evaluation costs of the surrogate model.
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9. Heterogeneous Catalysis in Tubular Reactors

In the following application we consider a model for a reactive gas flow in a tubular reactor.
The model is of heterogeneous catalysis type, i.e., the components in the process are in
a different phase than the catalyst they react with. Here the flowing reactants are in gas
phase. For the reactions to take place they must diffuse into the pores of the catalyst which
is an amorphous porous metal oxide. The process is run in a continuously-fed fixed-bed
reactor, meaning it is packed with solid catalyst particles plus some additional solid inert
material and the gas is pumped in and out all the time. The process is relevant for the
petrochemical industry and is based on the oxidation of the main reactant in the presence
of air.

Heterogeneous catalysis models are widely used in chemical engineering and a general
introduction into this model class is found in [43]. The model was developed by our industrial
partners at the Scientific Computing Group of BASF SE and details of the model that we use
are confidential. Thus, we restrict ourselves to the description of the model structure and a
qualitative analysis of the results. Other applications in the field of heterogeneous catalysis
in tubular reactors are, e.g., the modeling of Diesel Oxidation Catalysts with the goal of
reduction of car exhaust (see, e.g., [52] where a detailed model description is provided).

The new challenges arising in this application are the large system size comprising 22
components, the complicated nonlinearity, and the handling of time integration where the
system frequently changes between a transient and a steady-state phase.

9.1. Model description

Component type Notation
Mole fractions in gas phase Y3
Temperature in gas phase Y3
Mole fractions in solid catalyst phase Y5
Temperature in solid catalyst phase Y
Temperature in solid inert yimert
Catalyst activity yact

Table 9.1.: Overview of state variables in the heterogeneous catalysis model. y
consists of six types of states and an overall of 22 state components.

Under the assumption that the gas velocity is constant along any cross section of the
tubular reactor ('plug flow’), we consider a one-dimensional spatial domain Q = (0, L)
where L = 2.81 meters is the reactor length. The behavior in the gas phase of the nine
reacting components y5*°, j = 1,...,9, and the temperature y5 is modeled by a system of
convection-diffusion-reaction equations. The same number of components appears again in

the catalyst phase, represented by the states y5** and y$?*. The remaining two components

J .
are the temperature in the non-reacting inert solid of the reactor fill y2*'* and the activity

of the catalyst y2°t.
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reactor wall catalyst fill

[ A
gas inflow —— T Yo NS W AN

C J

plug flow assumption

Figure 9.1.: Tubular reactor, gas flow, and catalyst fill.

We are interested in the long term behavior of the system on the time horizon I = [0, T]
with T = 6652800. The considered unit of ¢ is seconds, thus, the process is running for 77
days. The transport, the exchange between the gas and the solid phase, and the reactions
take place on a relatively small time scale. The decay of the catalyst and with this its
deactivation are relatively slow. The catalyst activation reduces to about 50% over the 77
days. Thus, the simulated system is in a ’quasi steady-state’ most of the time with only the
catalyst activity decreasing slowly over time. The governing equations are given as

gas gas 2 gas
Wi @ % DO ey o
dt pey Or  peg, Or? i W T
d gas a a gas D 82 gas
yT = - yT + — yT + G%?S(ya 'LL),
dt gqg Or gg Or?
6
dyj®

— at S
= 05" (v), j=1,...,9,

e (9.1)
dﬁgt _ G)%i“(y), dy:icrt _ 6171301rt(y)7 % — Ouy),
5yingas + Biyr = BaySsn on I x iy, auiyé;as 0 on I xTyy,
beg peg
&/%y'gras + Biyr = BoyF5, on I x Ty, y%y%—as =0 on I xToyu.

The initial value condition for the catalyst activity is set to y2¢* = 1. The diffusion constant
is D = 0.1, the impulse is p = 3900, and the flow velocity a ~ 3 is varying slightly with
temperature at the reactor inflow, thus, it is constant in space. Due to the long time horizon
of the model, initial value conditions for the other components have essentially no impact
and are set according to the value of the corresponding state at the inflow boundary. Inflow
boundary conditions are imposed weakly setting 51 = $2 = 100. Only the components in
the gas phase are directly affected by spatial operators. The other components are defined
by the corresponding terms © only, which is the part to be reduced by the DEIM projection.
It is in general assumed to be nonlinear, however, for a more convenient handling of the
large system we also included parts that are linear in the states. The contributions © to the
gas phase components only contain linear operations which are the exchange rates between
different phases. They are given as

koA ygas
ggas — DmBcat (YT cat _ gas) i=1,...,9,
J Peg et Yj Yj J
. 4U kp Acat
gas gas ca gas cat
= 77—~y - T n+——1\ -
T dsgpgcgas ( T wa. ) Egpgcgas ( T T )
khAinert gas inert
Yy - 9
€9PgClas 7 )
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9.1. Model description

The contributions © to the remaining components contain exchange rates between the
phases as well as the reaction kinetics and the decay rate of the catalyst.

@cat k Acat y'%'ag ygas _ yc_at
p5p53(1 _5g) y%“ J J

R'ycat7ycat7 j:]-v‘"agv
pepes(l —eg) i 7)

Pg,cat khAcat as
®cat _ _  Fgeat H R cat, cat g cat
T Heor(1 — £,)es g ! Y7+ Heoe (1 — €4)2s (yT — Y7 )
(—)%Ilert _ khAinert (y%’ y};}ert) 7

Ocatpcat(l - Eg)(l - 53)

E
@act = - kO €xp <Sca> Yeat -
Ryys

The reactions taking place in the process are shown in Figure 9.2. Each arrow corresponds
to a reaction with the reactants at the start and next to the arrow while the products are
placed at the arrowhead. The main product we are interested in is yg gained by reaction of
y1 and ys.

Ya Yo

Y1
n n
Ys Yo Yr

+Ya
Y lyl Y1

Y2 Y3 Y4

Figure 9.2.: Reactions considered in the heterogeneous catalysis model. Each
arrow corresponds to a reaction with the reactants at the start and next to the
arrow and the products at the arrowhead.

Over time the temperature Tyan = y5;, and the gas mole fractions y55, 7 = 1,...,7,
at the reactor inflow are varied following a given time profile. We consider a subdivision of
the time horizon into 38 equally sized subintervals, defined by the time instances 0 = tg <

- < tgg = T, and time profiles that are piecewise constant functions on each subinterval.
The time profiles for yf%, (u1), ¥55, (u2) and Tyan (u3) are shown in the top row of Figure
9.4. The state trajectories at final time T of the main product component yg, the catalyst
activity y*°*, and the temperature in gas phase y5°° are shown in Figure 9.3.

Scaling of the problem

A scaling of the system is necessary as the order of magnitude of the temperature states
is about 600 while the species are of an order of magnitude between 104 and 10~'. Let
A € R"™*"= he a diagonal scaling matrix in the semi-discrete setting with n, being the
dimension of the ODE model. By setting x = Az, the HiFi problem (2.7) can be transformed
into

MAZ(t) = SAZ(t) + F(AZ(t),q), #(0)= A"ty tel.

Integration of this problem yields snapshots ', ..., 7™ which have then entries of the same
order of magnitude for all components if A is chosen carefully. We use the approximation
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Component type Notation
Mass transfer coefficient km
Heat transfer coefficient kn,
Catalyst surface area Acat
Inert surface area Ainert
Impulse P
Gas phase volume fraction Eg
Catalyst fraction of solid material €s
Pore fraction of active catalysts €p
Heat transfer at reactor wall U
Tubular reactor diameter d
Gas density Py
Density of catalyst skeleton Peat
Density of gas in catalyst pores Pg,cat
Average heat capacity Cogas
Heat capacity of catalyst solid Ceat
Volume heat capacity in catalyst Hiot
Standard enthalpy of formation Hy
Pre-exponential factor for deactivation ko
Activation energy for deactivation E,
Ideal gas constant R,
Reaction balances for component j R;
Reactor wall and inflow temperature Twall

Table 9.2.: Entities in the (nonlinear) contributions ©.

Z = UZ of the transformed states in the POD projection and carry out the model reduction
steps analogously. Note that we now use the transformed mass matrix M := MA for the
decomposition and that with this we have orthonormality of the projection matrices ¥ with
respect to M.

9.2. Optimization goals

The goal of the optimal control problem is to maximize the overall amount of the gas
component yg which is the main product of the whole process. At the same time we want
to keep the deactivation of the catalyst activity as small as possible as this allows to continue
running the production process efficiently. To this end, we consider the objective

5 10 6
J(y,u) = —800/ ye™ (¢, L)dt+/ Yact (T, 7)dr + ——— i Z/ ui(t) — ug,;)?dt.
Q

The additional factor 800 is used to account for the larger importance of the product max-
imization goal and the smaller order of magnitude of y§*® in comparison to Yact. The
optimization variable is a time-dependent vector valued function v € L?(I,R?) consisting
of the time profiles of the wall temperature Tyan and the components y§5 and y5.. We
express this via time-dependent control functions which are piecewise constant on the 38
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Figure 9.3.: States at final time T (in quasi steady-state) of main product com-
ponent g, the catalyst activity y2°*, and the temperature in gas phase yg—a s,

time subintervals, i.e., we have

ur(t) = Twan(t), w2(t) =975 (1), us(t) = yii(0),
u1,2,3(t) constant on ¢ € [t;—1,t], i=1,...,38.

The time profiles before optimization that serve as initial values in the optimization are
shown in the top row of Figure 9.4. We include a regularization term in the objective with
constants

ug1 =380, wug2 =30, wuqgsz=280.

As bounds we use
ul® = 231.0, u}? = 594.1, ulf = 19.6, uy? = 48.1, uf = 280, uy® = 350.

In the parameter estimation problem we estimate nine parameters. Among these are
the pre-exponential factor ky and the activation energy F, of the catalyst deactivation.
The other seven parameters are not explicitly listed here. They are four pre-exponential
factors and three activation energy values which enter in the computation of the balances
R;, j=1,...,9.

During the experiment we measure the concentrations of the six components in the gas
phase at the reactor outlet and the temperature values in the gas phase at 33 equally
distributed locations along the reactor length. In particular we have

ha(y(t)) = o5 (t, L),  ha(y(t)) = v5™(t, L), hs(y(t)) = y5(t, L),
ha(y(t)) = y2=(t, L), hs(y(t) = s~ (t, L), he(y(t)) = y&=(t, L),
heri(y(t) = y5°(t, Li), 0=1L1<---<Lzgz=1L

with L; 11— L; equally sized. While the measurement function h(y) according to its definition
takes arguments from H, here we measure only at the boundary. Thus, we consider h : R —
R. The measurement errors are assumed to be normally distributed with 1% standard
deviation ¢ of the corresponding entity. Measurements are taken at the 38 time instances
ti=t;, i=1,...,38 for the t; as defined above. We use again self-generated measurement
data, i.e., we randomly perturb the measurement values with variance ¢ and mean zero.

Initial values are all set to 0.7.

9.3. Results

For the discretization we use linear finite elements in space with N = 65 degrees of freedom
for each component. The resulting ODE system has a size of n, = 22- N = 1430. The time
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Figure 9.4.: Given initial time profiles (top row) of control functions u; 2 3 and
optimized time profiles (bottom row).

integration is done with DAESOL-II. In this application we force DAESOL-II to rebuild the
right-hand side Jacobian in each time integration step. Thus, we ensure a stable integration
of states, adjoints, and sensitivities (see also the discussion in Example 2.2 and in §2.5.3).
The maximum order of DAESOL-II is set to maxgrger = 3.

The reference solution of the optimal control problem is computed with an integration tol-
erance of TOLye; = 1 x 10~7 and an SNOPT termination tolerance of TOLgnopt =5 x 1077,
The solution trajectories are shown in the bottom row of Figure 9.4. The second control
uo has little influence on the practical optimization goals and is mainly determined by the
regularization term. The optimization with the HiFi model and the DEPOD-OC algorithm
are carried out with

TOLet =1 x 1075 TOLgpops = 1075,

The reference solution for the parameter estimation problem is computed with TOL,e =
1x 1077 and TOLgn = 107°. It is given as

q* ~ (1.59, 0.64, 0.65, 0.73, 0.79, 0.89, 1.54, 0.73, 1.23)T.
The settings for the comparison between HiFi Gauss—Newton and DEPOD-PE are
TOLyes =1 x 1075, TOLgn = 1073, TOL, =102,

In Table 9.3 we show the results of the comparison between a HiFi optimization and an
optimization using DEPOD ROMs for the optimal control and the parameter estimation
problem. We are able to reduce the runtime by a factor of almost three in the optimal control
case and roughly a factor of two in the parameter estimation case. In case of DEPOD-OC
we obtain a solution accuracy of 1.1 x 10~! while with the HiFi model we have 2.5 x 1072,
However, the error between the reference objective and the HiFi objective evaluated with
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Optimal control Parameter estimation
HiFi DEPOD HiFi DEPOD
Aror/STorL - 2x1074/2x 1072 - 2x107%/2 x 1073
k/¢ in last iter. - 103/27 - 92/24
Major Iterations - 2 - 3
Minor Iterations 28 29 10 16
Minor Iter. Time 22772s 7362s 4600s 1448s
Total Time 22772s 8939s 4600s 2459s
Error of solution 2.5 x 1072 1.1 x 107} 34x107* 4.6 x 1072

Table 9.3.: Results of comparison between HiFi optimization and DEPOD al-
gorithms for the heterogeneous catalysis model.

the surrogate solution is smaller than 10~° which is well within the application’s practi-
cal accuracy requirement. In the parameter estimation case we have again the situation
of fast local convergence of the Gauss—Newton method. Thus, the HiFi solution is signifi-
cantly better than what we can expect from the termination tolerance TOL, = 1072 of the
DEPOD-PE algorithm for the same reasons as in the previous applications. Note that the
accuracy requirements in both optimization examples are chosen relatively low in compar-
ison to the other applications, however, from a practical point of view they are reasonable
for the application. With POD we had no convergence at all in the parameter estimation
case and we were still far from the solution after five major iterations in the optimal control
case where then the runtime already exceeded the HiFi optimization costs. However, in
this application the choice of the criteria A7or, and sror, and with this the number of basis
functions is highly critical. The criteria should be chosen differently for POD which makes
a reasonable comparison between POD and DEPOD impossible here.

In the computations only a relatively small number of basis functions per component is
necessary. We needed between three and nine DEPOD basis functions in both optimization
cases. This is essential for the model reduction approach to be efficient in this application
as a larger amount of basis functions would destroy the savings gained with the surrogate
optimization. Recall that we actually deal with a convection dominated problem, where
usually a larger number of basis functions is necessary (compare the examples in §3.3.5).
Moreover, we need to pass a transient phase in each of the 38 control intervals. However,
as the process is run in a quasi steady-state most of the time with only the deactivation
decreasing slowly the essential information of the dynamics can be captured by only a few
modes.

We observe a general increase of runtime in this application, e.g., an optimal control
objective and gradient computation takes about 750 seconds. The time integration of the
problem is challenging as we need to resolve the transient phase before we can do larger time
steps again in the quasi steady-state. Moreover, we compute the Jacobians of the right-hand
sides in each time step. The time spent in the minor iterations, where only the surrogate
model is used, has grown even faster than in the HiFi iterations. In the optimal control
case it takes roughly 200 seconds for an evaluation of the objective and the gradient. The
main reason for this is found in the way the right-hand side Jacobians are computed. As
explained in chapter 6 we use seed matrices to evaluate the Jacobian for the HiFi problem.
In the heterogeneous catalysis model 67 seed directions are necessary, which correspond to
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67 directional derivatives of the right-hand side. As the surrogate model in general is dense
we need as many directional derivatives as the system size k and in the examples we have
k ~ 100. We observe that almost 90% of the time for the surrogate evaluation is spent in
the Jacobian computation. In addition, in the heterogeneous catalysis model most of the
time of the evaluation of the right-hand side is used in the nonlinear part. With DEIM we
only reduce the number of nonlinear function evaluations by a factor of two, as we have
already a relatively small spatial discretization in the HiFi case (N = 65). Thus, we end up
with approximately the same effort for the Jacobian computation for HiFi and surrogate.
The evaluation costs for the surrogate could be further reduced using seed matrices in the
surrogate case as well. This would require the detection of a sparsity pattern from the
dependencies between the system components.

The results show that the model reduction approach can also be efficiently applied to a
large PDE system and we gain runtime savings with only minor loss of accuracy. With the
DEPOD basis we are able to capture the necessary information with few basis functions
per component. Moreover, we see that an efficient implementation of the model reduction
techniques is of great importance for this application. In case of PDE systems a further re-
duction of costs could be achieved by exploiting the system sparsity pattern in the derivative
computation.
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List of Acronyms

AD
ATO
BDF
DTO
DEIM
DEDEIM
DEPOD
END
FEM
IND
VP
MOR
NLP
ODE
OTA
OTD
PDE
POD
ROM
QP

sQP
SVD
VDE

Automatic differentiation
Approximate-then-optimize

Backward Differentiation Formula
Discretize-then-optimize

Discrete empirical interpolation method
Derivative-extended discrete empirical interpolation method
Derivative-extended proper orthogonal decomposition
External numerical differentiation
Finite element method

Internal numerical differentiation

Initial value problem

Model order reduction

Nonlinear programming problem
Ordinary differential equation
Optimize-then-approximate
Optimize-then-discretize

Partial differential equation

Proper orthogonal decomposition
Reduced-order model

Quadratic programming

Sequential quadratic programming
Singular value decomposition

Variational differential equation
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