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Abstract 
Background: The pathogenesis of Alzheimer’s disease (AD) is characterized by neuronal 
injury, activation of microglia and astrocytes, deposition of amyloid-β and secondary vessel 
degeneration. In the polycystic kidney disease (PKD) rat model, we observed neuronal injury, 
microglial activation and vasoregression. We speculated that this neuroretinal degeneration 
shares important pathogenetic steps with AD. Therefore, we determined the activation of 
astrocytes and the accumulation of amyloid-β in PKD retinae. Methods: Immunohistochemistry 
of PKD retinae for vimentin, carboxymethyllysin, beta-Amyloid 1-42, High-Mobility-Group-
Protein B1 and amyloid protein precursor was performed. Results: Adjunct to astrocyte 
activation, accumulation of beta-Amyloid 1-42 and High-Mobility-Group-Protein B1 in 
astrocytes and around vessels of the superficial network was found in PKD retinae prior to 
the onset of vasoregression. Amyloid precursor protein was localized adjacent to the outer 
segment of photoreceptors in PKD and control rats. The parallel appearance of AD-related 
peptides indicates an alarmine based response to photoreceptor degeneration and secondary 
vasoregression. Conclusion: The model has broad overlap with AD and may be suitable to 
study beneficial pharmacological concepts. 

Introduction 

Alzheimer’s disease (AD) is characterized by chronic and progressive neurodegeneration 
and accumulation of neurotoxic amyloid-β and neuronal injury [1]. However, the neurovascular 
unit is also important in the pathogenesis of AD [2-3]. Activation of the immune system in AD 
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Cell Physiol Biochem 2012;30:1436-1443
DOI: 10.1159/000343331
Published online: November 22, 2012

© 2012 S. Karger AG, Basel
www.karger.com/cpb 1437

Busch/Wu/Feng/Gretz/Hoffmann/Hammes: Neurovascular Unit in PKD and AD

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

is reflected by enhanced microglial activation, upregulation of the complement system and 
an increased release of chemokines and cytokines [4]. As a marker for microglial activation, 
CD74, the invariant chain of MHC II, is upregulated in AD [5]. End stage AD leads to vascular 
dysfunction through degeneration of endothelial cells and pericytes, accumulation of 
amyloid-β in vessel walls and formation of acellular capillaries [6]. Zlokovic et al. classified 
four phases in AD’s pathogenesis at the blood brain barrier: 1. early phase with neuronal 
injury by neurotoxic amyloid-β, 2. early symptomatic phase characterized by activation of 
endothelial cell, pericytes, microglia and astrocytes, 3. late symptomatic phase shown by 
deposition of amyloid-β on vessel walls and degeneration of endothelial cells and pericytes 
and 4. end stage defined through collaps of the capillaries [3]. 

The transgenic polycystic kidney disease (PKD) rat is a model of ciliopathy [7]. The PKD 
rat displays retinal photoreceptor degeneration starting at one month of age in parallel to 
glial activation shown by upregulation of glial fibrillary acidic protein (GFAP). At the second 
month of age the numbers of endothelial cells and pericytes decrease and acellular capillaries 
start to form exponentially [8]. Gene analysis revealed upregulation of components of the 
innate immune system following neuronal injury but preceded vascular regression [9]. 

Thus, AD and the retinal phenotype of the PKD rat share neurodegeneration (by 
neurotoxic amyloid-β or genetically driven), activation of microglia, shown by upregulation 
of CD74, and finally vasoregression. Other factors affecting the pathogenesis of AD like 
activation of astrocytes and accumulation of amyloid-β by cleavage of amyloid protein 
precursor (APP) have not been determined in the PKD rat. 

The purpose of this study was to establish the PKD model as a retinal correspondent to 
AD. Immunohistochemistry of PKD retinae for vimentin, as a marker of astrocyte activation, 
and AD-related proteins carboxymethyllysin (CML), beta-Amyloid 1-42 and High-Mobility-
Group-Protein B1 (HMGB1) were performed. To further evaluate the origin of beta-Amyloid 
deposition, APP staining occurred.  

Materials and Methods 

Animals
Generation and genotyping of the PKD-2-247 (PKD) rats expressing a truncated human polycystic-2 

gene has been described previously [7]. The rats were held in a 12 hours light and dark cycle with free 
access to food and drinking water. In this study heter- and homozygote PKD rats were used. Spraque-Dawley 
(SD) rats were held as controls. At 1, 2 and 3 months the rats were anesthetized and sacrificed. The eyes 
were enucleated and immediately frozen at -80°C or fixed in 4% formalin.  

This study was admitted by the ethic committee Regierungspräsidium Karlsruhe, approval ID: 35-
9185.81/G-219/10. 

Immunohistochemistry of vimentin
The eyes of 2 months old PKD and SD rats were immediately frozen at -80°C. After embedding in 

tissue-tek the eyes were sectioned at -22°C to 6μm. They were dried at room temperature for 24h and 
then stored at -80°C until staining. After thawing for 30min at room temperature the tissue was fixed with 
-20°C acetone for 10min. Incubation with blocking solution containing 1% bovine serum albumin (BSA) 
in phosphate-buffered saline solution (PBS) for 30min prevented unspecific protein interaction. Primary 
antibody rabbit anti-rat vimentin (1:300; abcam, Cambridge, United Kingdom) was diluted in 1% BSA and 
0.5% triton x-100 in PBS and incubated at room temperature for 1h. Slices were washed three times with 
PBS. Incubation with the secondary antibody swine anti-rabbit labeled with FITC (1:300; Dako, Hamburg, 
Germany) diluted as described before followed for 1h. After washing,4’,6-diamidino-2-phenylindole (DAPI; 
Sigma, Munich, Germany) was used for nuclei staining. Final washing steps followed and slices were covered 
with 50% glycerol. Photographs were taken with an Olympus BX51 microscope (Olympus Opticals Europe, 
Hamburg, Germany). 
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Immunohistochemistry of amyloid precursor protein
Eyes of 3 months old PKD and SD rats were cut into sections and fixed as described before. They were 

blocked with 5% donkey serum in 1% BSA solution for 30min. Primary antibody rabbit anti-rat amyloid 
precursor protein (1:100; abcam, Cambridge, United Kingdom) was diluted in 1% BSA and incubated at 
room temperature for 1h. Slices were washed three times with PBS. Incubation with the secondary antibody 
donkey anti-rabbit DyLight 488 (1:100; Jackson ImmunsResearch, Pennsylvania, United States) diluted in 
PBS with 1% normal rat serum occurred for 30min. After washing, sections were covered with Vectashield 
mounting medium with DAPI (Vector laboratories, Burlingame, United States). Photographs were taken 
with a Leica DM4000B microscope (Leica, Wetzlar, Germany). 

Immunohistochemistry of paraffinsections 
The eyes of 1 and 3 months old PKD and SD rats were embedded into paraffin and cut to a thickness 

of 6μm. After dewaxing and rehydrating the sections were microwaved in citrate buffer for 20min. Sections 
were incubated with 0.5% triton x-100 for permeabilization. Unspecific protein interaction was avoided 
by incubation with 1% BSAfor 30min at room temperature. After blocking sections were incubated with 
their appropriate primary antibody diluted in PBS overnight at 4°C: mouse anti-rat carboxymethyllysin 
(CML-2F8, 1:5000; Novo Nordisk, Bagsvaerd, Denmark), rabbit anti-rat High-Mobility-Group-Protein B1 
(HMGB1, 1:1000; Millipore, Billerica, United States) or rabbit anti-rat beta-Amyloid 1-42 (1:100; abcam, 
Cambridge, United Kingdom). After washing three times in PBS, incubation with the secondary FITC-labeled 
antibody rabbit anti-mouse or swine anti-rabbit (1:20; Dako, Hamburg, Germany) diluted in PBS for 1h at 
room temperature followed. Sections were washed with PBS three times and mounted in 50% glycerol. A 
confocal microscope (Leica TCS SP2 Confocal Microscope; Leica, Wetzlar, Germany) was used to take the 
photographs.

Results 

Glial activation in PKD retinae
To investigate glial activation staining for vimentin, a mesenchymal intermediate 

filament which is upregulated during gliosis, occurred (Fig. 1). Vimentin expression in 2 
months Spraque-Dawley (SD) retinae was limited to the ganglion cell layer and the inner 
plexiform layer (Fig. 1 A, B). The morphology of these cells was characteristic for astrocytes. 
In PKD retinae of the same age immunolabeling was substantially stronger and labeled 
predominantly soma of astrocytes (Fig. 1, arrow) localized in the ganglion cell layer (Fig. 1 C, 
D). The staining of the filamentous bundles (Fig. 1, arrowhead) appeared stronger and more 
extended into the outer part of the retina than in SD rats. Thus, vimentin staining illustrated 
activation of astrocytes in the PKD rat.

Accumulation of AD-related proteins in PKD retinae 
Three different immunohistological stainings for the AD-related proteins CML, HMGB1 

and amyloid-β were used to investigate the possible overlap phenotypes between AD and 
PKD rat. We found a stronger expression of all proteins in PKD than in SD rats, predominantly 
located in the ganglion cell layer, the inner plexiform layer and surrounding vessels of the 
superficial network (Fig. 2). Carboxymethyllysin (CML), an advanced glycation end product 
which accumulates in neurons and glial cells during aging and in AD, was not detectable in 
SD retinae of either 1 or 3 months (Fig. 2 A, D) [10]. In PKD retinae CML-labeling was weakly 
positive in the ganglion cell layer and in cells surrounding vessels of the superficial network 
(Fig. 2 G arrow, J). 

High-mobility group protein 1 (HMGB1) is expressed by apoptotic neurons and 
upregulated in AD [11-12]. In SD retinae we found HMGB1-labeling of ganglion cells in an 
age-dependent manner (Fig. 2 E arrowhead). The expression in PKD retinae was confined 
to the inner retinal part. Their typical morphology of transversal filamentous bundles 
identified the cells as glia (Fig. 2 H star). HMGB1 was also found surrounding superficial 
vessels (Fig. 2 K arrow). 
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The staining for beta-Amyloid 1-42 (β A1-42), a protein which typically accumulates 
in AD, revealed the explicit difference between SD and PKD rats. SD retinae showed weak 
staining surrounding superficial (Fig. 2 C arrow) vessel and no expression of β A1-42. In 
PKD retinae immunolabeling was strongly positive at the inner retinal part and surrounding 
superficial vessels (Fig. 2 I, L). Therefore, the neurodegenerative PKD shares the accumulation 
of AD-related proteins with AD.  

APP expression in the outer segment is not altered in the PKD model 
Given that beta-Amyloid is one of the cleavage products of APP, staining for APP occurred 

to test if it is also altered in the PKD model (Fig. 3). The expression of APP in retinae of 3 
months SD (Fig. 3, A and B) and PKD (Fig. 3, C and D) rats was exclusively in outer segment 
of photoreceptors. There was no difference in expression of APP in SD and PKD retinae. The 
staining pattern is not characteristic for any cell type localized in this part of the retina, 
which suppose an extracellular localization of APP. 

Discussion 

This study reveals that the PKD model phenocopies important neurovascular patterns 
of AD in the retina, suggesting a uniform stress response in the neurovascular unit of brain 
and retina. 

Vimentin staining in 2 months old PKD rats indicated astrocyte activation [13]. This 
observation completes the previously shown GFAP upregulation as sign of glial activation 

Fig. 1. Expression of vimentin 
in vertical sections of 2 months 
SD (A-B) and PKD (C-D) retinae. 
200x (A, C) and 400x (B, D) 
original magnification. Vimentin 
is stained in green, cell nuclei 
are displayed by 4’,6-diamidino-
2-phenylindole (DAPI). An 
increase of vimentin expression 
in PKD retinae, predominantly 
in astrocyte’s soma (arrow) and 
filamentous bundles (arrowhead) 
is observable. GCL ganglion cell 
layer, IPL inner plexiforme layer, 
INL inner nuclear layer, ONL outer 
nuclear layer.
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in the PKD model [8]. Higher expression of vimentin is attributed to an increase of basic 
fibroblast growth factor (bFGF), which is fourfold elevated in 1 month old PKD rats, and is 
reported to be a stimulus for vimentin upregulation [8, 14].

Fig. 2. Expression of Alzheimer’s 
Disease related proteins in SD 
(A-F) and PKD (G-L) retinae at 1 
(A-C, G-I) and 3 (D-F, J-L) months. 
Carboxymethyllysin (CML), High-
mobility group protein 1 (HMGB1) 
and beta-Amyloid 1-42 (ßA1-42) 
are stained in green and reveal a 
stronger expression in PKD retinae. 
Arrows point at positive staining 
around vessels of the superficial 
network. Arrowhead faces towards 
ganglion cells. The star shows 
transversal filamentous bundles. 
GCL ganglion cell layer, INL inner 
nuclear layer.

Fig. 3. Expression of amyloid 
protein precursor (APP) in vertical 
sections of 3 months SD (A-B) and 
PKD (C-D) retinae. 200x (A, C) and 
400x (B, D) original magnification. 
APP is stained in green, cell nuclei 
are displayed by 4’,6-diamidino-
2-phenylindole (DAPI). APP is 
intraretinal exclusively expressed 
in the outer segment of the 
photoreceptor. There is no change 
in staining between SD and PKD 
rats. GCL ganglion cell layer, INL 
inner nuclear layer, ONL outer 
nuclear layer, OS outer segment.
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Parallel to astrocyte activation our experiments display upregulation of amyloid- β and 
HMGB1 in the ganglion cell layer (GCL), predominantly in a typical glial pattern and around 
vessels of the superficial vessel network. Amyloid- β colocalized with glutaminsyntheatase, 
a marker for Müller cells, indicating the expression of amyloid- β by Müller cells (data not 
shown). Similarly, beta-amyloid precursor protein is found in Müller cells of inherited retinal 
dystrophy which is a form of proliferative vitreoretinopathy [15-16]. HMGB1 is a damage-
associated molecular pattern which is amongst others expressed by degenerating neurons 
and functions as a inflammatory cytokine when released to the extracellular matrix [17]. 
HMGB1 is elevated in AD and it colocalizes with amyloid- β suggesting that it influences the 
homeostasis of amyloid- β [18]. Furthermore, HMGB1 can activate microglia through the 
receptor for advanced glycation end products which is upregulated in AD and macrophage 
antigen complex 1 [19-20]. In the PKD rat, HMGB1 staining is positive in the ganglion cell 
layer and around vessels of the superficial layer. 3 months old control SD rats also show 
slight staining for HMGB1 in a typical ganglion cell pattern. This could be an age-dependent 
effect. HMGB1 also colocalized with the Müller cell marker glutaminsynthetase (data not 
shown). 

In contrast to the strong positive staining of amyloid-β and HMGB1, CML showed an 
unanticipated moderate staining around superficial vessels. In AD the advanced glycation end 
product (AGE) CML is upregulated in neurons and cerebral vessels [21]. CML upregulation 
has been shown in other retinal diseases like diabetic retinopathy and age-related macular 
degeneration [22-24]. The contrasting results are attributable to the lack of hyperglycemia 
in the PKD model, which is required for formation of AGEs. 

Due to the fact that beta-Amyloid is a cleavage product of APP, a staining for APP was 
performed [25]. Interestingly APP was exclusively expressed in the area of the outer segment 
of photoreceptors and its expression was not altered in the PKD model. This suggests a 
change in secretase expression from α-secretase, producing the neuroprotective soluble 
peptide APPα, to β- and γ-secretase, producing the accumulating and potential neurotoxic 
beta-Amyloid [26]. 

Conclusion

The retinal neurodegenerative PKD model is a phenocopy of AD.  Both share the 
chronology of neurodegeneration, activation of astrocytes and microglia, accumulation of 
AD-related proteins and subsequent vasoregression. Thus, we assume this pathogenesis not 
to be specific for a single disease but rather a common stress response of the neurovascular 
unit and the innate immunie system. 

The PKD model has broad overlap with AD. It shares important pathogenic steps with 
AD like neuronal damage, glial activation, accumulation of beta-Amyloid and vasoregression.  
Therefore it may be suitable to study beneficial pharmacological concepts. 
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