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1    SUMMARY 

Myeloid cell recruitment plays a pivotal role in innate immune response. It comprises a 

cascade of sequential cellular processes including slow rolling, activation and firm 

adhesion, and transendothelial cell migration. Apart from the well-known apoptotic 

function, CD95 serves as an inflammatory mediator by inducing production of cytokines 

and chemokines in a variety of cell types and triggering myeloid cell transmigration to 

inflammatory sites via Syk-PI3K-MMP9 signaling pathway. 

Utilizing an ex vivo autoperfused mouse flow chamber assay, we show here that CD95 

ligand (CD95L) induces neutrophil slow rolling. Engagement of CD95 with CD95 ligand 

in myeloid cells activates the signaling pathway of Syk-BTK-PLC-γ2, which is essential 

for selectin-induced integrin activation in neutrophil slow rolling. Furthermore, activation 

of Rap1, which serves as a direct mediator for integrin activation, by CD95 signaling in 

neutrophils suggests the involvement of integrin activation in CD95-induced slow rolling. 

In line with this hypothesis, integrin activation upon CD95L treatment was detected by 

performing active integrin reporter antibodies binding assay and soluble ICAM1 binding 

assay. In addition to activating integrin, CD95 recruits integrin and forms microclusters 

upon CD95L stimulation. Our results indicate that CD95 signaling activates integrin in 

mediating neutrophils slow rolling. 

We also found the involvement of endothelia cells and Ly6Chi monocytes - the classical 

inflammatory monocytes- in CD95-mediated innate response. Inducible deletion of 

CD95L in endothelial cells (CD95Lf/f;Ve-CadherinERT2/4cre) impaired neutrophil recruitment in a 

thioglycollate-induced peritonitis model. Unlike TNF-α, deletion of CD95 in endothelial 

cells (CD95f/f;Ve-CadherinERT2/4cre) had no impact on the expression levels of adhesion 

molecules and neutrophil recruitment. Moreover, CD95 selectively induced the 

mobilization and recruitment of inflammatory monocytes in a CCL2-dependent manner. 

In this study we show for the first time that CD95 signaling mediates neutrophil slow 

rolling via activation of integrin. Endothelial cells participate in this process by presenting 

CD95L. CD95 is also involved in the recruitment of inflammatory monocytes. Taken 

together with our previous findings, our studies identify a CD95 chemotactic axis 

pathway for innate immune cell recruitment. 
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1  Zusammenfassung 

Myeloide Zellrekrutierung spielt eine zentrale Rolle in der angeborenen Immunantwort. 

Sie besteht aus einer Kaskade von zellulären Prozessen, einschließlich langsamem 

Rollen, Aktivierung und feste Adhäsion und transendothelialer Zellmigration. Abgesehen 

von der bekannten apoptotischen Funktion dient CD95 als Entzündungsmediator durch 

Induktion der Produktion von Cytokinen und Chemokinen in einer Vielzahl von Zelltypen 

und Auslösung von myeloider Transmigration zu Entzündungsstellen durch einen Syk- 

PI3K-MMP9-Signalweg. 

Durch Verwendung eines ex vivo Autoperfusions-Flusskammer-Assays, zeigen wir hier, 

dass der CD95-Ligand (CD95L) langsames Rollen von Neutrophilen induziert. 

Engagement von CD95 mit dem CD95-Liganden in myeloiden Zellen aktiviert den Syk- 

BTK-PLC-γ2 Signalweg, der für Selektin-induzierte Aktivierung von Integrinen während 

des langsamen Rollens von  Neutrophilen essentiell ist. Aktivierung von Rap1, ein 

direkter Vermittler für Aktivierung von Integrin, durch CD95 -Signalgebung in 

Neutrophilen weist auf eine Beteiligung von Integrin-Aktivierung bei CD95-induziertem 

langsamen Rollen hin. Im Einklang mit dieser Hypothese wurde Integrin-Aktivierung 

nach CD95L Behandlung mittels aktivem Integrin Reporter Antikörper Bindungstest und 

löslichem ICAM1 Bindungstest festgestellt. Neben der Integrin-Aktivierung rekrutiert 

CD95 nach CD95L-Stimulation Integrin und bildet mit diesem Mikrocluster. Unsere 

Ergebnisse zeigen, dass der CD95 Signalweg Integrin aktiviert und so langsames Rollen 

in Neutrophilen vermittelt.  

Weiterhin fanden wir auch eine Beteiligung von Endothelzellen und Ly6Chi Monozyten- 

den klassischen inflammatorischen Monozyten in CD95-vermittelter nativer 

Immunreaktion. Induzierbare Deletion von CD95L in Endothelzellen (CD95Lf/f;Ve-

CadherinERT2/4cre) beeinträchtigt die Neutrophilenrekrutierung in einem Thioglycollat -

induzierten Peritonitis-Modell. Im Gegensatz zu TNF-α hat Deletion von CD95 in 

Endothelzellen (CD95f/f;Ve-CadherinERT2/4cre) keine Auswirkungen auf die Expression von 

Adhäsionsmolekülen und Neutrophilen- Rekrutierung. Darüber hinaus hat CD95 die 

Mobilisierung und Rekrutierung von inflammatorischen Monozyten in einer CCL2 - 

abhängigen Weise selektiv induziert. 
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In dieser Studie zeigen wir zum ersten Mal , dass CD95 -Signalisierung langsames 

Rollen von Neutrophilen über die Aktivierung von Integrin vermittelt. Endothelzellen sind 

an diesem Prozess durch die Präsentation von CD95L beteiligt. CD95 ist auch bei der 

Rekrutierung von inflammatorischen Monozyten beteiligt. Zusammen mit unseren 

früheren Befunden genommen, zeigt unsere Studien eine chemotaktische CD95 Achse 

für angeborene Immunzellrekrutierung. 
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2    INTRODUCTION 

2.1 The immune system 

2.1.1 An overview of the immune system 

The animal immune system is composed of cellular and humoral components with a 

high complexity that defends the host from infectious disease and injuries by identifying 

and eliminating pathogens and detrimental cells. In order to protect the host successfully, 

the primary task of the immune system is to identify self from non-self and recognize 

danger signals. The self-nonself distinction is employed to maintain the host’s integrity in 

different organisms. In unicellular organisms, it manifests as protective mechanisms 

such as the utilization of antimicrobial peptides and production of restriction enzymes to 

fight against competitors for nutrients or pathogens (Rodríguez et al., 2012). After the 

appearance of multicellular organisms, increasingly complex immune systems have 

evolved, with the innate immune system presents in most multicellular organisms and 

the adaptive immune system only in higher vertebrates. Innate immune system is 

comprised of mechanisms and specialized immune cells that defend the host from 

pathogens in a non-specific manner depending on gremline-encoded receptors. Due to 

the complexity of development and longer life time compared to lower organisms, higher 

vertebrates have a higher risk of encountering infections and therefore an adaptive 

immune system has evolved, which involves specialized lymphocytes recognizing a 

wide range of pathogens with specific receptors and developing immunological memory 

(Rodríguez et al., 2012; Murphy et al., 2012). 

2.1.2 The innate immune system 

The innate immune system is an evolutionary ancient system. It was developed before 

vertebrates and invertebrates diverged. Innate defense forms the first line to protect the 

host from infections by other organisms. It is important for most multicellular organisms 

and is such a fundamental function that vertebrates, invertebrates and plants share 

many similarities (Kimbrell and Beutler, 2001). The innate defense is considered 

relatively non-specific as it is mediated by a fixed set of germline-encoded receptors. 

The induction of the innate response is rapid, and usually occurs within minutes to hours 

after infection or injury (Murphy et al., 2012). Besides functionally being the first line of 
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defense against infections, the innate immune system is also involved in many other 

physiological processes, such as tissue remodeling in development and damage repair, 

transport of blood lipids, and the clearance of apoptotic cells (reviewed by Seong and 

Matzinger, 2004). 

The innate immune system is comprised of three lines of defenses to prevent an 

infection or eliminate it before the adaptive immune system needs to be activated. The 

first line comprises the physical and chemical barriers preventing the invasion of 

microorganisms into the interior of the body. These include the skin, the tight junctions 

between epithelial cells, the acidic environment of the stomach, and components of the 

mucus layers, such as antimicrobial enzymes and antimicrobial peptides, that inhibit 

growth or even kill pathogenic bacteria (Alberts et al., 2007; Murphy et al., 2012).  

The second line of defense of the innate immune system depends on cell-intrinsic 

responses to kill the invading pathogens. Most cells that have taken up a microorganism 

by pathogen-induced phagocytosis will immediately direct the fusion of the phagosome 

with a lysosome, after which the invading microorganism will be exposed to digestive 

enzymes. Another ancient intrinsic defense mechanism of host cells in defense against 

many viral infections is the ability to degrade double-stranded RNA, which is a common 

intermediate in viral replication (Alberts et al., 2007; Murphy et al., 2012). 

The spread of a pathogen is normally blocked by the third line of innate immune 

defenses, referred to as the complement system, which induces more effector cells and 

molecules of the innate immune system to migrate from the blood and into the tissue. 

The complement system consists of a number of plasma proteins that are generally 

synthesized by the liver, and normally circulating as inactive precursors. An encounter 

with pathogens or pathogen-bound antibody leads to the activation of complement, 

which in turn induces a cascade of reactions occurring on the surface of the pathogen 

and results in enhanced phagocytosis of antigens, chemotaxis of neutrophils and 

macrophages, lysis of pathogens by rupturing membranes, and agglutination of 

pathogens (Alberts et al., 2007; Murphy et al., 2012).  

After microorganisms cross an epithelial barrier and start to replicate in the tissue of the 

host, in most cases it is instantly recognized by resident phagocytic cells and then 
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induces the innate immune response. Macrophages are the major phagocytes resident 

in normal tissue. To initiate an immune response, the first essential step is the 

recognition of potentially harmful microorganisms. Depending on germline-encoded 

receptors, the innate immune system recognizes highly conserved structural 

components of microbes, often referred to as pathogen-associated molecular patterns 

(PAMPs). PAMPs are usually essential for the normal functions of microbes, such as 

lipopolysaccharide (LPS) and peptidoglycan, which are bacterial cell-wall components, 

flagellin of bacterial flagella and viral RNAs. The receptors involved in PAMPs 

recognition are collectively termed as pattern recognition receptors (PRRs) (Murphy et 

al., 2012).  

There are five classes of PRRs that have been identified: Toll-like receptors (TLRs), 

which detects multiple PAMPs such as LPS, flagellin, viral RNA and DNA with 

unmethylated CpG; NOD-like receptors (NLRs) detecting pathogen products in the 

cytoplasm; RIG-I-like receptors (RLRs) involving in antiviral responses; absence in 

melanoma 2 (AIM2)-like receptors detecting intracellular microbial DNA; and C-type 

lectin receptors (CLRs). PRRs also recognize non-infectious material derived from the 

host, which is released following tissue injury or cell death. These endogenous 

molecules are termed damage-associated molecular patterns (DAMPs) and have similar 

functions as PAMPs in activation of pro-inflammatory pathways (Chen and Nuñez, 2010). 

Following ligand recognition, the PRRs activate downstream signaling pathways, such 

as nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK) and type I 

interferon pathways, which trigger changes in gene expression and result in the 

production of inflammatory cytokines and chemokines in tissue resident macrophages 

and dendritic cells (Murphy et al., 2012).  

The cytokines released upon PRRs activation are interleukin 6 (IL-6), IL-12, IL-1β, and 

tumor necrosis factor-α (TNF-α), which are diverse in structure and have a variety of 

local and distant effects. IL-6 stimulates the production of new monocytes and 

granulocytes in the bone marrow. IL-12 activates natural killer cells (NK cells) and 

induces the differentiation of CD4 T cells into TH1 cells. IL-1β, and TNF-α both induces 

the activation of vascular endothelial cells, resulting in increased secretion of 

chemokines and presentation of adhesion molecules on the endothelial lumen to 
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facilitate the recruitment of leukocytes (This will be discussed in further detail in the 

section of 2.4).  

The chemoattractant cytokines released after PRRs activation in tissue resident 

phagocytic cells direct the chemotaxis of nearby responsive cells and are termed 

chemokines. Chemokines are classified into two distinct groups based on the position of 

cysteine residues in the N-terminus of the protein. CXC chemokine ligands, such as 

CXCL8, drive the recruitment of neutrophils from the blood stream to the inflamed tissue. 

In contrast, CC chemokine ligands trigger the migration of monocytes and lymphocytes. 

As an example, CCL2 attracts monocytes and induces their migration to the tissue to 

become tissue macrophages (Murphy et al., 2012). 

Upon the activation of cytokines in endothelial cells and chemokines in circulating 

leukocytes, one of the most important processes of innate immunity, the recruitment of 

activated phagocytes, is initiated. Leukocyte recruitment from blood stream to the 

inflamed tissue is orchestrated by a cascade of cellular events including slow rolling, 

adhesion strengthening, intraluminal crawling, paracellular and transcellular migration, 

and migration through the basement membrane (Ley et al. 2007). These events will be 

described in detail in the section of 2.2. 

2.1.3 The adaptive immune system 

In contrast to the innate immune system, the adaptive immune system is evolutionarily 

young as it appeared 500 million years ago in vertebrates with jaws (gnathostomes) 

(Cooper and Alder, 2006). The adaptive immune system mediates specific immune 

responses, such as the production of antibodies against a particular pathogen or its 

product. The adaptive immune response is developed during the lifetime of an individual 

as an adaptation to infection with that pathogen which results in an immunological 

memory, conferring lifelong protective immunity against the same pathogen. The cells 

for the adaptive immune system are T and B lymphocytes which are generated in the 

bone marrow and mature in the thymus or bone marrow respectively. T cells are 

intimately involved in cell-mediated immune response, whereas B cells play a large role 

in the humoral immune response by secretion of antibodies (Murphy et al., 2012).  
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Whereas innate immunity depends on gremline-encoded receptors to recognize 

common features of many pathogens, the adaptive immune system utilizes receptors 

encoded by rearranging gene segments to recognize a wide variety of antigens. 

Furthermore, each mature lymphocyte differs from the others in the specificity of its 

antigen receptor. Lymphocytes are continuously undergoing a process akin to natural 

selection and only those lymphocytes that encounter antigen which binds to their 

receptor specifically will be activated to proliferate and differentiate into effector cells. 

This process is termed clonal selection, which is the central principle of adaptive 

immunity (Murphy et al., 2012).  

T-cell receptors (TCRs) recognize antigen-derived peptides that are processed by 

antigen presenting cells (APCs) and presented in the major histocompatibility complex 

(MHC) on the surface of APCs. CD4 and CD8 are the co-receptors assisting TCRs in 

communicating with APCs. CD8+ T cells are cytotoxic T cells (Tc) recognizing antigen 

presented by MHC class I+ APCs and killing the target infected cells by releasing 

cytotoxins or apoptosis mediators. CD4+ T cells recognize antigens presented by MHC 

class II+ APCs and secrete cytokines to regulate the cell-mediated and humoral immune 

response (Murphy et al., 2012).  

B-cell receptors (BCRs) are composed of immobilized antibodies and CD79. In contrast 

to TCRs, BCRs recognize the naïve form of antigens. Upon activation by encountering 

an antigen, B cells differentiate into plasma cells, producing large amounts of antigen-

specific antibodies that contribute to the humoral immune response. Antibodies 

participate in host defense in three main ways: neutralization of bacterial toxins; 

opsonization, wherein pathogens coated with antibodies are recognized by FC receptors 

on phagocytes and then destroyed by phagocytosis; and complement activation 

mediated by antibodies binding to a pathogen (Murphy et al., 2012). 

After a naïve lymphocyte has been activated, it takes 4-5 days for the completion of 

clonal expansion and differentiation of lymphocytes to effector cells. So the first adaptive 

immune response only occurs several days after the infection has commenced. Most of 

the lymphocytes generated by clonal expansion will eventually die. Nonetheless, a 

significant number of activated antigen-specific B cells and T cells persist and form the 
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basis of immunological memory, ensuring a rapid and effective response on re-

encountering the same pathogen (Murphy et al., 2012). 

 

 

2.2 Leukocyte recruitment to the site of inflammation 

Leukocyte recruitment plays a pivotal role in inflammation, as all of the inflammatory 

processes involve or depend on leukocyte recruitment to the inflamed tissue. In 

response to injury or infection, locally presented stimulating factors, such as chemokines, 

cytokines and adhesion molecule, initiate the wave of neutrophil extravasation -in some 

cases also monocytes- through the vasculature into the inflamed tissue. The first wave 

of neutrophil recruitment is normally followed with the recruitment of monocyes and 

lymphocytes (Ley et al., 2007; Hajishengallis et al., 2013). 

Studies accumulated from the last two decades revealed that the cellular events of 

leukocyte recruitment are comprised of a cascade of three major steps in sequence: 

slow rolling, leukocyte activation and firm adhesion, and transendothelial cell migration 

(Figure 1). 

 

 

 

Figure 1. Cellular events of leukocytes recruitment cascade (adapted from Ley et al., 2007). 
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2.2.1 Slow rolling 

Upon stimulation by TNF-α, IL-1β, and IL-17 during inflammation, activated endothelial 

cells express P-selecin, E-selectin and other adhesion molecules such as ICAMs 

(intercellular adhesion molecules) and VCAMs (vascular cell-adhesion molecule) on 

their luminal surface. Binding of selectin to its ligand, such as P-selectin glycoprotein 

lighan-1 (PSGL-1), CD44 and E-selectin ligand-1 (ESL-1) on leukocytes triggers the 

tethering (or capture) of leukocytes to the endothelium and initiates the rolling on the 

vessels' luminal wall (Katayama et al., 2005; Ley et al., 2007).  

Selectin-mediated leukocyte rolling is dependent on shear stress: the rolling cells detach 

when blood flow is stopped. This phenomenon relies on the special ‘catch bond’ 

characteristics of selectins. The selectin-ligand bonds have rapid on and off rates and 

high mechanical strength to initiate tethering even through one or few bonds when 

certain shear stress is applied, permitting rolling in response to hydrodynamic drag 

(Finger et al., 1996; Marshall et al., 2003).  

The signaling mechanism for selectin-mediated rolling has only been discovered 

recently. Selectin signaling shows similarities to immunoreceptor or integrin outside-in 

signaling. E-selectin engagement with ligands of PSGL-1 and CD44 induces the 

activation of Src family kinases (SFKs) Hck, Fgr and Lyn (Yago et al., 2010). Activated 

SFKs phosphorylate and activate ITAM (immunoreceptor tyrosine-based activation 

motif)-bearing adaptor protein FcRγ (Fc receptor common γ signaling chain) and DAP12 

(NDAX activation protein of 12 kDa) (Zarbock et al., 2008). These activated adaptor 

proteins recruit and phosphorylate Syk (spleen tyrosine kinase), which in turn activates 

BTK (Bruton tyrosine kinase) (Mueller et al., 2010; Yago et al., 2010). BTK further 

activates the PI3K (phosphoinositide 3-kinase), PLC-γ2 (phospholipase C-γ2) and p38 

MAPK pathways, mediating slow rolling through integrin activation (Figure 2).  
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Integrins also play an important role in mediating slow rolling. The ligation of integrin α4 

to its ligand VCAM-1 and MAdCAM-1 (mucosal vascular addressin cell adhesion 

molecule 1) initiates reversible lymphocyte tethering and rolling under shear stress in the 

absence of selectin (Berlin et al., 1995). Relying on the interaction of low-avidity integrin 

αLβ2 (also known as LFA-1, Lymphocyte function-associated antigen 1) with ICAM-1 

(intercellular adhesion molecule 1), β2 integrin cooperates with selectin and reduces the 

rolling velocity (Sigal et al., 2000; Kadono et al., 2002; Chesnutt et al., 2006). Integrin-

mediated slow rolling depends on the integrin inside-out signaling, which will be 

discussed in further detail in later sections. 

2.2.2 Leukocyte firm adhesion and activation 

While rolling on the endothelium, leukocytes engage with chemokines and other 

cytokines presented by the endothelial cells, which triggers their chemotaxis and 

activation. Early studies have shown that chemokines induce rapid integrin-dependent 

lymphocyte arrest on vascular endothelium in in vitro models and physiological 

conditions (Campbell et al., 1998; Constantin et al., 2000). Chemokine receptors are G 

Figure 2. Selectin signaling in mediating rolling (revised from Mueller et al., 2010; Yago et 

al., 2010) 
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protein-coupled receptors (GPCRs) and bind specifically to the corresponding 

chemokines. Many chemokines also bind to glycosaminoglycans (GAGs) on endothelial 

cell surface for efficient leukocyte recruitment (Johnson et al., 2005). Chemokine 

receptor-triggered GPCR signaling leads to rapid integrin activation from the low affinity 

state to the high ligand-binding affinity state, allowing the arrest and firm adhesion of 

leukocytes. This signaling cascade is termed inside-out signaling and will be described 

in detail later. 

Activation of TCRs and BCRs also lead to activation of integrin in mediating lymphocyte 

firm adhesion through inside-out signaling (Katagiri et al., 2004; McLeod et al, 2004). 

Leukocytes start spreading and crawling on the vascular wall once they are arrested, 

which is driven by integrin activation-induced cytoskeletal rearrangement, and these 

events are termed outside-in signaling responses. Integrin outside-in signaling is 

involved in functional activation of leukocytes. In neutrophils, it is essential in regulating 

phagocytosis and generation of reactive oxygen species (ROS) via a membrane-

associated NADPH oxidase (reviewed by Schymeinsky et al., 2007). In T cells, it 

stabilizes the binding to APCs and induces the secretion of IL-2 and interferon-γ 

(Burbach et al., 2007). In platelets, on the other hand, it stabilizes the adhesion to 

extracellular matrices and results in the formation of thrombus (Kasirer-Friede et al., 

2007). 

2.2.3 Transendothelial cell migration 

Transmigration through the vessel wall is the final step for leukocyte recruitment to the 

inflamed tissue. In this process, extravasating leukocytes need to cross over three 

obstacles, which are endothelial cells, the endothelial-cell basement membrane, and 

pericytes (Ley et al., 2007). Emigrating leukocytes induce the formation of “cuplike” 

transmigratory structure on endothelial cells, which is comprised of ICAM1 and VCAM1-

highly enriched vertical microvilli-like projections that surround transmigrating leukocytes. 

These projections initiate the transmigration through the paracellular or transcellular 

pathway (Carman and Springer, 2004).  

Leukocytes' transmigration through the loose endothelial-cell junctions is termed 

paracellular transmigration. Ligation of ICAM1 and VCAM1 to integrin on transmigrating 
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leukocytes also induces intracellular signaling in endothelial cells. Upon ligation, ICAM1 

cytoplasmic domain induces the activation of RhoA (Ras homolog gene family, member 

A) GTPase, leading to actomyosin contraction and formation of stress fibers in 

endothelial cells. This in turn leads to endothelial cell contraction. In addition to the 

effects on cytoskeleton, RhoA also affects the integrity of adherent junctions and tight 

junctions between endothelial cells (Millán and Ridley, 2005).  

The transcellular route is utilized only by a minority of migrating cells (Carman and 

Springer, 2004). Leukocytes start transcellular migration by extending pseudopodia into 

endothelial cells. Induced by the cytoplasmic signaling of ICAM1 ligation, ICAM1 

translocates to caveolin and F-actin-rich membrane domains at the protrusion site on 

endothelial cells, and is then internalized and transcytosed to the basal plasma 

membrane through caveolae. These signaling events collectively lead to the formation of 

a channel through the endothelial cell where leukocyte can migrate through (Millán et al. 

2006). 

The last barriers hampering leukocytes transmigration are the endothelial basement 

membrane and pericytes. The endothelial basement membrane is composed of protein 

networks formed by laminins and collagen type IV that are connected by interactions 

with molecules such as nidogen-2 and the heparin sulphate proteoglycan perlecan 

(Hallmann et al., 2005). Gaps between pericytes, which have low expression level of 

matrix proteins, are the preferred sites for neutrophil migration due to low resistance 

(Sixt et al., 2001; Wang et al., 2006). This transmigration is facilitated by proteases such 

as metalloproteinases (MMPs) (ir-Kirk et al., 2003) and integrin α6β1, as it is the main 

leukocyte receptor for laminin and can be up-regulated by the ligation of 

PECAM1(Platelet endothelial cell adhesion molecule, also known as CD31) to 

neutrophils (Dangerfield et al., 2002). 
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2.3 Integrin activation 

Integrins are cell surface receptors composed of heterodimers of α and β subunit of type 

I transmembrane glycoproteins with short cytoplasmic tails. Common integrins 

expressed by leukocytes are αLβ2 (LFA-1), αMβ2 (Macrophage-1 antigen, Mac-1) and 

α4β1 (very late antigen 4, VLA-4). The ligands for integrin αLβ2 are ICAM1, ICAM2, ICAM 

3 and ICAM5, which are expressed mainly by endothelial cells. Integrin αMβ2 recognizes 

complement protein iC3b and cellular matrix proteins such as fibrinogen and heparin. 

Integrin α4β1 recognizes VCAM-1 and fibronectin (Luo et al., 2007; Abram and Lowell, 

2009). 

Through the bidirectional pathways referred to as inside-out and outside-in signaling, 

integrins play a central role in the cascade of leukocytes recruitment. The transmitted 

signals by activated integrin have broad effects, such as activating leukocytes, 

proliferation, survival and differentiation in many other cell types (Abram and Lowell, 

2009).  

2.3.1 Inside-out signaling  

Inside-out signaling is defined as the intracellular signaling that induces conformational 

changes of integrin leading to increased ligand binding affinity and clustering of integrin 

in the membrane, which together allow cell attachment. 

Integrin adopt three states of activation: a bent form of which the ligand binding site is 

blocked; an extended form with intermediate ligand binding capacity; and an open form 

with full avidity for ligand binding (Luo et al., 2007). These forms can be detected with 

antibodies specifically recognizing different integrin conformations (Evans et al., 2009). 

2.3.1.1 Extracellular signals for inside-out signaling  

As mentioned in the section of 2.1.2, binding of chemokines or cytokines to their 

receptors (GPCRs) or stimulation of TCR/BCR activates integrin and lead to leukocyte 

recruitment (Figure 3). Signaling through other receptors, such as CD14 on monocytes 

and CD40 on B cells, also trigger integrin activation-induced adhesion (Humphries and 

Humphries, 2007; Léveillé et al., 2007).  



INTRODUCTION 

15 
 

 

 

 

 

2.3.1.2 Intracellular signal transduction for inside-out signaling  

Stimulation of GPCRs leads to a rapid activation of PLC signaling, which results in 

elevated intracellular Ca2+ level and the production of diacylglycerol (DAG) and inositol-

1,4,5-trisphosphate (IP3). PLC-γ1 deficient Jurkat T cells showed a marked reduction of 

TCR-triggered adhesion to ICAM1 mediated by LFA-1 (Katagiri et al., 2004). Inhibition of 

PLC abolishes β2-mediated neutrophil arrest on inflamed endothelium (Pasvolsky et al., 

2007). Ca2+ and DAG activate guanine nucleotide exchange factors (GEFs), such as 

CalDAG-GEFI (calcium and DAG-regulated GEFI), which in turn allows the activation of 

small GTPase RAS-related protein (Rap) regulating the affinity of integrin under 

physiological conditions (Crittenden et al., 2004). As mentioned previously, E-seletin 

ligation induces integrin activation in mediating slow rolling through induction of PLC-γ2 

Figure 3. Integrin inside-out signaling (adapted from Abram and Lowell, 2009) 
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and p38MAPK. It has been shown recently that E- selectin induced integrin activation is 

also CalDAG-GEF1 and Rap1 dependent (Stadtmann et al., 2011) 

 2.3.1.3 The key role of Rap GTPase in integrin activation 

The Rap GTPases have been implicated as major regulators of the inside-out pathway 

in lymphocytes. Constitutively active mutants of Rap1 increase the affinity and avidity of 

LFA-1 on the lymphocyte membrane (Katagiri et al., 2000; Sebzda et al., 2002). 

Impaired activation of Rap1 is associated to the rare disorder of leukocyte adhesion 

deficiency III (LAD-III) in some patients (Kinashi et al., 2004). The leukocytes from these 

patients express normal levels of β1, β2 and β3 integrin, but show impaired inside-out 

signaling (McDowall et al., 2003; Alon et al., 2003;). Patients with LAD-III syndrome 

suffer from severe and often life-threatening infections due to inefficient leukocyte 

recruitment. This syndrome demonstrates the importance of Rap1 in regulating integrin 

activation.  

Besides GEFs, Rap1 can also be activated by protein kinase C (PKC), which is also 

responsive to Ca2+ and DAG. In platelets, rapid stimulation by chemokines activates 

Rap1 via CalDAG-GEF1, whereas sustained stimulation activates Rap1 via PKC (Cifuni 

et al., 2008). Protein kinase D1 (PKD1) has been demonstrated as the downstream 

signal for PKC induced-Rap1 activation. PKD1 recruits Rap1 to the membrane and 

forms a complex together with β1 integrin cytoplasmic domain (Medeiros et al., 2005). 

Another pathway for Rap1 activation is through the adaptor adhesion- and 

degranulation- promoting adaptor protein (ADAP) and its binding partner SRC-kinase-

associated protein of 55 kDa (SKAP55), which are recruited to Rap1 by Rap1-interacting 

adaptor molecule (RIAM) (Menasche et al., 2007). 

How do Rap GTPases change the conformation of integrin? Integrins have a fairly short 

cytoplasmic tail. The integrin α cytoplasmic tail contains a conserved GFFKR sequence, 

which is crucial for a salt bridge-mediated interaction with the β subunits (Annemieke et 

al., 1997). Deletion or mutation of the GFFKR sequence impairs the association of α and 

β subunits and leads to constitutive integrin activation both in vitro and in vivo (Luo et al., 

2007). It has been implicated that integrin activation is induced by phosphorylation and 

protein interaction with cytoplasmic tails of integrin α and β subunits, which induce the 
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conformational change in integrin subunits (Abram and Lowell, 2009). RIAM has been 

shown to recruit the big cytoskeleton protein talin to integrin β3-binding site (Watanabe 

et al., 2008). The direct binding of the FERM domain-containing talin-1 and kindling-3 

proteins to two different NXX(Y/F) motifs of the integrin β cytoplasmic domain leads to 

integrin conformational changes which then propagate across the plasma membrane 

(Luo et al., 2007; Shattil et al., 2010). However talin-1 and kindling-3 perform differently 

in activating integrin. It has been shown that talin-1 is required for inducing LFA-1 

extension, which relates to intermediate affinity and induced slow rolling, whereas both 

talin-1 and kindling-3 are required for inducing high-affinity open conformation which 

results in neutrophil firm adhesion and arrest (Lefort et al., 2012). 

2.3.2 Outside-in signaling  

The signaling triggered by ligand-induced clustering integrin in leukocytes is referred to 

as the outside-in signaling. As mentioned previously, integrin outside-in signaling has 

multiple cellular effects. In the process of leukocyte recruitment, two major functions of 

outside-in signaling are avidity regulation, which facilitates leukocytes adhesion, and 

cytoskeletal remodeling, which is involved in leukocytes crawling and transmigration 

(Abram and Lowell, 2009).  

Outside-in signaling regulates integrin avidity through controlling the state of integrin 

clusters. Binding of LFA-1 to ICAM1 in T cells induces the formation of integrin 

microclusters which strengthen adhesion (Kim et al., 2004). Inactive LFA-1 is randomly 

distributed in macrophages, but upon ligation with ICAM1 LFA-1, forms nanoclusters 

and then macroclusters (Cambi et al., 2006).  

It has been reported that Src family kinases and Syk kinase interact with the cytoplasmic 

domain of integrin β2 and β3 (Arias-Salgado et al., 2003). These enzymes become 

activated following integrin activation and often recruit more kinase molecules to the 

complex to initiate downstream signaling, such as Rho GTPase (Ivetic and Ridley, 2004; 

Kasirer-Friede et al., 2007). Rho GTPase family members, which include Rac, Rho, and 

Cdc42, are the primary effectors of outside-in signling, inducing the cytoskeletal 

rearrangements needed for firm adhesion, crawling and transmigration (Abram and 

Lowell, 2009; Shen et al., 2012). Among many of the Rho GTPase downstream effector 
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molecules, the Wiskott-Aldrich syndrome protein (WASp) plays a major role in integrin 

signaling in leukocytes. Deficiency of WAPs in both humans and mice leads to impaired 

leukocyte adhesion, poor spreading response, and reduced migration and lymphocyte 

activation (Notarangelo et al., 2008). 

 

 

2.4 Involvement of Endothelial cells in leukocyte recruitment 

Leukocyte recruitment is decisively dependent on signaling events of the interaction 

between activated tissue resident leukocytes/circulating leukocytes and endothelial cells. 

2.4.1 Contribution of activated endothelial cells to leukocytes recruitment 

Whereas leucocytes-endothelial interactions occur even without inflammation, such as 

during trafficking of T cells to secondary lymphoid organs and hematopoietic 

homeostasis, resting endothelial cells in other tissues do not interact with circulating 

leucocytes (Ley and Reutershan, 2006). This is because leukocyte-interactive proteins, 

such as P-selectin and chemokines, are sequestered in specialized secretory vesicles 

known as Weibel-Palade bodies in endothelial cells (Pober and Sessa, 2007). 

Transcription of other adhesion molecules, such as E-selectin, VCAM1 and ICAM1, are 

also suppressed due to the quiescent effect of basally produced nitric oxide (NO) in 

endothelial cells (De Caterina et al., 1995).  

The inflammatory response is initiated mostly by stimulation of tissue resident innate 

immune cells to PAMPs or DAMPs, and results in the secretion of pro-inflammatory 

cytokines, such as IL-1β, IL-6 and TNF-α, and many different chemokines. Secreted 

cytokines in turn induce the activation of endothelial cells in order to recruit more 

immune cells to the inflammation site. 

Endothelial-cell activation can be classified into type I and type II activation response, 

according to the reaction rate to inflammation and induced gene expression (Pober and 

Cotran, 1990). Type I activation can be rapidly induced, but sustains shortly for only 10-

12 minutes. It occurs by the binding of ligands to GPCRs on endothelial cells, such as 

histamine H1 receptor, resulting in downstream signals such as elevated Ca2+ and the 
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Rho pathway. Ca2+ elevation induces the exocytosis of Weibel-Palade bodies, which in 

turn brings P-selectin to the luminal surface of endothelial cells within minutes (Rondaij 

et al., 2006). Moreover, the rise of cytosolic Ca2+ also induces the formation of Ca2+-

calmodulin complex, which leads to the activation of myosin-light-chain kinase (MLCK). 

MLCK phosphorylates myosin light chain (MLC), and this phosphorylation is stabilized 

by Rho-dependent kinase-mediated inhibition of a phosphatase (Stevens et al., 2000). 

Phosphorylated MLC induces the contraction of actin filaments attaching to tight junction 

and adherence junction proteins, which in turn facilitates leukocyte transmigration by 

opening gaps between adjacent endothelial cells (Muller, 2003).  

Type II activation of endothelial cells is mediated by TNF-α and IL-1β derived from 

activated leukocytes. Compared to type I activation, it is more persistent and induces 

sustained inflammatory response (Pober and Sessa, 2007). Binding of TNF-α and IL-1β 

leads to new gene transcription through activation of transcription factors of NF- κB and 

activator protein 1 (AP1) in mediating inflammatory response. For example, neutrophils 

recruitment is driven by chemokines and adhesion molecules, such as CXCL8 and E-

selectin, that are synthesized and presented by endothelial cells via type II activation 

(Ley and Reutershan, 2006). Moreover, TNF-α and IL-1β open up gaps between 

adjacent cells and increase endothelial permeability to leukocytes via p38MAPK 

mediated microtubule rearrangement (Petrache et al., 2003 ). 

2.4.2 Endogenous modulation of leukocytes recruitment by endothelial cells 

Besides the effect of facilitating leukocytes recruitment by presenting adhesion 

molecules and chemokines, endothelial cells also secrete molecules which have 

inhibitory effects in modulating recruitment. One of it is Pentraxin 3(PTX-3). Several cells 

types release PTX-3 (in particular monocytes, dendritic cells, stromal cells and 

endothelial cells), in response to inflammatory signals such as TLRs engagement, TNF- 

α and IL-1β (Garlanda et al., 2005). It has been shown that PTX-3 inhibits neutrophil 

rolling by disrupting the interaction of P-selectin with its leukocyte ligand PSGL-1 via 

binding to P-selectin presented on endothelial cells (Deban et al., 2010).  

Another modulator is the developmental endothelial locus (Del)-1, which is expressed by 

endothelial cells and associates with the endothelial cell surface. Del-1 was shown to be 
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a new ligand for LFA-1, but in contrast to ICAM-1 it antagonizes LFA-1 dependent 

adhesion onto endothelial cells (Eskan et al., 2012).  

One more endothelial cell modulator is galectin-1. Galectin-1 shows an anti-

inflammatory activity that inhibits neutrophil recruitment via downregulating the 

expression of adhesion molecules, such as integrin αMβ2 (Cooper et al., 2008; Gil et al., 

2010). 

 

 

2.5 Monocytes in innate response 

In most cases, monocyte recruitment is the second wave of leukocyte recruitment in 

induced innate response. Monocyte recruitment plays an important role in clearance of 

viral, bacterial, fungal and protozol infections. It also contributes to the pathogenesis of 

inflammatory and degenerative diseases (Shi and Pamer, 2011).  

2.5.1 Monocyte subtypes  

Monocytes originate in vivo from hematopoietic stem cell-derived progenitors with 

myeloid-restricted differentiation potential. The top layers on the pyramid of monocytes 

differentiation include common myeloid progenitors (CMPs), granulocyte-macrophage 

precursors (GMPs), and macrophage/DC progenitors (MDPs) (Figure 4, Lawrence and 

Natoli, 2010). MDPs differentiate into monocytes and common dendritic cells (DCs) 

precursors (CDPs). Recently a new monocyte progenitor derived from MDPs, termed 

common monocyte progenitor (cMoP), has been identified to be present in bone marrow 

and spleen, where it generates major monocyte subsets (Hettinger et al., 2013). 

Monocytes give rise to tissue-resident macrophages and DCs after they penetrate into 

the inflamed tissue from blood. 
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In mice, monocytes are classified into two types according to the differences in 

expression of chemokine receptors and other surface markers. Monocytes express high 

levels of Ly6C and CC-chemokine receptor 2 (CCR2) but low levels of CX3C-chemokine 

receptor 1 (CX3CR1) are referred to as inflammatory or Ly6Chi monocytes. On the other 

hand, monocyte subtypes which express high level of CX3CR1 but low levels of Ly6C 

and CCR2 are referred to as Ly6Clow monocytes (Geissmann et al., 2003, 2010). 

Besides hematopoietic progenitors, Ly6Chi monocytes constitute obligatory steady-state 

precursors for blood resident Ly6Clow monocytes (Yona et al., 2012).  

Human monocytes are divided into three subtypes based on the surface expression 

levels of CD14 and CD16. CD14++CD16- monocytes are referred to as classical 

Figure 4. Monocytes development in mice. (Adapted from Lawrence and Natoli, 2010.) 
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monocytes, which are similar to the mouse Ly6Chi monocytes (Ziegler-Heitbrock, 2007). 

The CD16+ monocytes comprise two subtypes, the CD14+CD16++ and CD14++CD16+ 

monocytes. The CD14+CD16++ monocytes, known as non-classic monocytes, are similar 

to the mouse Ly6Clow monocytes according to function (Ingersoll et al., 2010).  

2.5.2 Distinct roles in mediating inflammation 

Ly6Chi monocytes 

Monocyte subtypes respond differently and have distinct functions in infection or injury-

induced inflammation. CC-chemokines CCL2 and CCL7 bind to CCR2, mediating Ly6Chi 

monocyte emigration from bone marrow to blood and recruitment from blood to 

inflammatory sites (Serbina and Pamer, 2006; Tsou et al., 2007; Shi et al., 2011). 

Similar to neutrophils, Ly6Chi monocytes utilize selectin and LFA-1 mediated mechanism 

for recruitment (Shi and Pamer, 2011). Ly6Chi monocytes are termed inflammatory 

monocytes as they produce TNF-α and IL-1 during infection or tissues damage (Auffray 

et al., 2009). Studies using either adoptive transfer of monocytes or latex bead-labeled 

monocytes demonstrated that at least a proportion of TNF-α-producing inflammatory 

DCs are originated from Ly6Chi monocytes (Geissmann et al., 2003; Serbina et al., 

2008). Especially during inflammation upon microbe infection, Ly6Chi monocytes are 

predominantly recruited to the infected sites and give rise to TNF- α and iNOS (inducible 

nitric oxide synthase)-producing (TIP) DCs for the clearance of microbes (reviewed by 

Shi and Pamer, 2011). Apart from differentiation into the DCs in infected tissues, 

recruited monocytes also mediate direct antimicrobial activity at these sites (Serbina et 

al., 2008). 

In addition to the roles in infectious inflammation, Ly6Chi monocytes are also involved in 

mediating sterile inflammation such as trauma, atherosclerosis and ischemia-reperfusion 

injury (as in cases of stroke and myocardial infarction) (Spahn and Kreisel, 2014). 

Inflammatory monocytes have been demonstrated to be recruited to the ischemic liver 

via CCR2 axis and mediate inflammation by generating ROS, TNF-α and IL-6 (Bamboat 

et al., 2010). In experimental atherosclerosis, Ly6Chi monocytes start differentiating into 

macrophages after adhering to activated endothelium and inducing the accumulation of 

macrophages, which is decisive in the development and exacerbation of atherosclerosis 
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(Swirski et al., 2007). Moreover, Ly6Chi monocytes also participate in the injury induced 

inflammation in the central nervous system. In a stroke model of intracerebral 

hemorrhage, Ly6Chi monocytes are recruited to the brain and produce TNF to contribute 

to acute neurological disability (Hammond et al., 2014). Following traumatic brain injury, 

a rapid increase in synthesis and release of CCL2 into the cerebrospinal fluid (CSF) by 

the choroid plexus epithelium has been observed (Szmydynger-Chodobska et al., 2012). 

Monocytes transmigrating through the blood-CSF barrier along the paracellular pathway 

have also been shown in this report. 

Ly6Clow monocytes 

Whereas Ly6Chi monocytes selectively traffic to the site of inflammation, Ly6Clow 

monocytes patrol blood vessels and enter non-inflamed tissues in steady-state 

conditions depending on integrin LFA-1 and CX3CR1 (Geissmann et al., 2003). This 

patrolling behavior is required for rapid tissue invasion at the site of infection, where the 

monocytes initiate an early immune response and differentate into macrophages 

(Auffray et al., 2007). Recent findings reveal that Ly6Clow monocytes behave as 

“housekeepers” of the vasculature, patrolling and scanning capillaries and scavenging 

cellular debris in a TLR7 dependent manner (Carlin et al., 2013). Their human functional 

homologs, CD14dimCD16+ monocytes (non-classical CD14+CD16+ monocytes, as 

introduced previously), also demonstrate similar functions (Cros et al., 2010). 

On the contrary, Ly6Clow monocytes perform anti-inflammatory roles. During spinal cord 

injury, infiltrating Ly6Clow monocytes are neural protective and contribute to recovery to 

the injury (Shechter et al., 2009; 2011). Ly6Clow monocytes are polarized and 

differentiate towards an “alternatively activated” or M2 anti-inflammatory macrophage 

phenotype in injured spinal cord (Kigerl et al., 2009), where they express IL-10 allowing 

an overall anti-inflammatory state. This limits lesion size and prevents activation of 

resident microglial cells (Shechter et al., 2009), and leads to secreteion of MMP-13, 

which enables dissolving of the glial scar to create a more permissive environment for 

axonal regeneration (Shechter et al., 2011). Interestingly, recruitment of Ly6Clow 

monocytes to the injured spinal cord is trafficked through a remote blood-CSF barrier, 

the brain-ventricular choroid plexus (Shechter et al., 2013). Moreover, during myocardial 

infarction, the acute inflammatory response in patients is accompanied with an early 
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peak of circulating inflammatory CD16- monocytes, which is followed by an increase in 

circulating CD16+ monocytes (Tsujioka et al., 2009). This kinetic of monocyte 

recruitment also appears in mouse models of myocardial infarction. Whereas the first 

wave of Ly6Chi monocytes facilitates the removal of dead cardiac myocytes, the later 

wave of Ly6Clow monocytes promotes the attenuation of inflammation and tissue repair 

(Nahrendorf et al., 2007).  

 

 

2.6 CD95 in inflammation 

Recent works of our lab revealed that CD95 (also called Fas or Apo-1) mediates 

recruitment of myeloid cells to the inflamed site in a mouse model of spinal cord injury 

via the activation of Syk-PI3K-MMP9 signaling pathway (Letellier et al., 2010).  

CD95 is well known as a death receptor mediating apoptosis in multiple cell types. Early 

monoclonal antibody screening studies led to the discovery of the apoptosis-inducing 

function of CD95. These studies showed that crosslinking of CD95 with a specific 

antibody triggered apoptosis in lymphocytes (Trauth et al., 1989; Yonehara et al., 1989).  

2.6.1 CD95 as an apoptosis mediator 

CD95 is a type I transmembrane receptor glycoprotein with a molecular mass of about 

45-52 kDa. It belongs to the TNF receptor superfamily, which lacks any catalytic activity 

(Nagata and Golstein, 1995; Ashkenazi and Dixit, 1998). CD95 is termed death receptor 

together with other TNF family members, including TNFR1, avian CAR1, death receptor 

3 (DR3), DR4, and DR5 (Ashkenazi and Dixit, 1998). The death receptors contain a 

homologous cytoplasmic sequence termed the “death domain” (DD), which binds to the 

DD in other proteins to form oligomers transducing a death signal (Weber and Vincenz, 

2001).  

Upon ligation with CD95 ligand (CD95L), CD95 molecules are brought together in a 

permissive environment dependent on factors such as lipid rafts and membrane 

constitution. The close proximity of CD95 DD leads to the stabilization of an open 

conformation of the intracellular tail, allowing interaction between CD95 molecules to 
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form a CD95-CD95 bridge. The CD95-CD95 bridge links a trimeric DD, which can recruit 

the DD bearing adaptor molecule Fas-Associated-Death-Domain (FADD, MORT-1) via 

homologous interactions and further stabilize the bridge (Scott et al., 2009). Then the 

death-effector-domain (DED) containing proteins, procaspse-8 and procaspse-10, are 

recruited to FADD by binding to its DED. These signal events lead to the formation of a 

death-inducing signaling complex (DISC) (Peter and Krammer, 2003; Strasser et al., 

2009; Hughes et al., 2009. Figure 5). 

  

 

 

Figure 5. Death receptor-induced apoptosis signaling pathways. (Adapted from Strasser et 

al., 2009) 
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Subsequently, recruited procaspase-8 molecules in the DISC are oligomerized and 

activated through self-cleavage, leading to apoptosis by activating down-stream 

caspases. CD95 induces apoptosis through both the type I and type II pathway. In type I 

cells, such as activated lymphocytes, CD95 stimulation recruits high amount of 

procaspase-8, resulting in direct cleavage and full activation of the effector caspase, 

caspase-3. However in type II cells, such as hepatocytes and pancreatic β-cells, 

caspase cascade amplifies through caspase-8-mediated activation of pro-apoptotic 

BCL-2 family member BID (BH3 interacting doamain death agonist), resulting in the 

translocation of truncated BID (tBID) to the mitochondria. Interaction of tBID with the 

BCL2 proteins BAX and BAD leads to the release of cytochrome c and apoptotic 

protease-activating factor-1 (APAF1) from the mitochondria. Then APAF1 binds to 

cytochrome c and procaspase-9 to form the apoptosome, triggering the cleavage of 

caspase-3 and subsequently inducing apoptosis (Krammer, 2000). 

CD95 mediates apoptosis in multiple cell types. In the immune system, it is involved in 

regulating lymphocyte maturation, repertoire selection and homeostasis (Krammer, 2000; 

Strasser et al., 2009). Mice carrying homozygous mutations in the genes encoding 

CD95 (Faslpr/lpr or Faslprcg/lprcg) or CD95L (FasLgld/gld) develop lymphadenopathy and SLE 

(systemic lupus erythematosu)-like autoimmune diseases (Watanabe-Fukunaga et al., 

1992; Takahashi et al., 1994). In patients with autoimmune lympho-proliferative 

syndrome (ALPS) type Ia, heterozygous inherited mutations of CD95 gene was 

observed (Fisher et al., 1995). These discoveries demonstrate the critical role of CD95 

in the immune system. In FADD dominant negative mice, T cell progenitor survival and 

differentiation into more mature pre-T cells are promoted through bypassing the 

selection by pre-TCR signaling (Newton et al., 2000). In mature T cells, CD95 triggers 

apoptosis of activated T lymphocytes. This process is termed activation-induced cell 

death (AICD) which plays an important role in down-regulating the immune response 

and the clearance of autoreactive T cells in the peripheral (Alderson et al., 1995; Green 

et al., 2003). Moreover, cytotoxic T cells or natural killer cells express membrane-bound 

CD95L to induce apoptosis of target cells such as virus-infected or damaged cells 

(Nagata and Golstein, 1995; Strasser et al., 2009). 
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2.6.2 CD95 as an inflammatory mediator  

In addition to the apoptotic functions, CD95 was believed to be an anti-inflammatory 

molecule as it mediates the immune privilege in eye, thyroid and testis; and it alleviates 

inflammation by inducing AICD of activated T cells (Bellgrau et al., 1995; Griffith et al., 

1995; Nagata, 1999). In line with this idea, the increased expression of CD95L in solid 

tumors was interpreted as a way for tumor cells to eliminate the tumor-infiltrating 

lymphocytes, as T cells are more sensitive to CD95-induced apoptosis, which in turn 

results in immune privilege for tumor cells (Green and Ferguson, 2001). Unexpectedly, 

the tumors overexpressed CD95L by transfection were rejected more easily after 

transplantation due to the high infiltration of neutrophils and other granulocytes (Arai et 

al., 1997; Seino et al., 1997). Instead of triggering apoptosis, CD95 ligation induces 

production of pro-inflammatory mediators, such as TNF-β, IL-8, IL-β, CCL2, CXCL1, 

CXCL3, high mobility group box 1 (HMGB1) and MMP-9, through the caspase-

dependent or independent activation of AP-1 or NF-κB pathways in a variety of cell 

types (Park et al., 2003; Farley et al., 2006; Altemeier et al., 2007; Dupont et al., 2007; 

Matsumoto et al., 2007; Wang et al., 2010; Lee et al., 2011). Interestingly, a recent 

report shows that cells sustaining CD95-induced apoptosis release multiple cytokines 

and chemokines, including IL-6, IL-8, CXCL1, CCL2 and GMCSF, through RIPK1-

dependent NF- κB activation to promote chemotaxis of phagocytes toward them. In this 

context, factors released by CD95 induction serve as “find-me” signals in the clearance 

of apoptotic cells (Cullen et al., 2013). Moreover, the downstream molecule of CD95, 

FADD is shown to be necessary in the production of type I (α/β) interferons upon dsRNA 

virus induced innate immune response, although the involvement of CD95 activation in 

this process still need to be elucidated (Balachandran et al., 2004). 

CD95 is also involved in the post-translational regulation of cytokines. IL-1β family 

cytokines require proteolysis to gain biological activity dependent on inflammasomes 

controlled caspase-1. It is shown that CD95 signaling in myeloid cells activates caspase-

8, leading to the maturation of IL-1β and IL-18 independently of inflammasomes or RIP3 

(Bossaller et al., 2012).  

In addition to mediating inflammation via inducing production and maturation of 

cytokines and chemokines, CD95 also acts directly on immune cells as a 
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chemoattractant. As shown in a previous in vitro study, soluble CD95L induced the 

transmigration of neutrophils in a transwell assay (Dupont et al., 2007). A more recent 

and interesting study shows that CD95L expression is triggered in peripheral myeloid 

cells upon injury. CD95L stimulation in myeloid cells activates PI3K and MMP-9 via 

recruitment and activation of Syk kinase, leading to the recruitment of myeloid cells to 

the injury site (Letellier et al., 2010). 

2.6.3 Other non-apoptotic functions of CD95  

Accumulating evidences demonstrate that CD95 also has important non-apoptotic 

functions, such as mediating cell survival, proliferation and migration, mostly through the 

activation of three major MAPKs, c-JUN N-terminal kinase (JNK), p38 and extracellular 

signal-regulated kinase (ERK), NF- κB and PI3K pathways (Wajant et al., 2003; Peter et 

al., 2007; Martin-Villalba et al., 2013). 

In an early study, it has been demonstrated that CD95 induces proliferation in the 

presence of TCR stimulation (Alderson et al., 1993). Surprisingly, T cell proliferation 

driven by co-stimulation of CD95 and TCR relies on caspase activation without induction 

of apoptosis (Kennedy et al., 1999). Among other effects, TCR stimulation leads to the 

up-regulation of CD95L (Nagata and Golstein, 1995). These evidence point out an 

autocrine loop formed by TCR-induced CD95L and CD95-triggered T cell proliferation. In 

line with this, FADD deficient or dominant-negative mice show impaired TCR-induced 

proliferation (Zhang et al., 1998; Newton et al., 1998). 

CD95 also plays as a proliferative role in liver regeneration after partial hepatectomy 

(Desbarats and Newell, 2000). It is believed that anti-apoptotic signaling pathways (AKT, 

STAT3 and NF-κB), which are important for liver regeneration, provide protection 

against CD95-mediated cell death and switch CD95-mediated signaling from apoptotic 

to non-apoptotic (Peter et al., 2007). Due to activation of NF-κB, CD95 is also reported 

to increase motility and invasiveness in tumor cells that resist CD95-induced apoptosis 

(Barnhart et al., 2004). The switch from inducing apoptosis to activation of NF-κB seems 

to rely on a threshold of CD95 signaling, as it has been demonstrated that heterozygous 

mutations in the CD95 DD lead to the inability of CD95 to induce apoptosis while still 

being able to efficiently activate NF-κB, ERK and P38 (Legembre et al., 2004). 
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In the neural system, CD95 activation induces neurite growth in vitro through the ERK 

pathway and the subsequent upregulation of neurite outgrowth mediator p35 (Desbarats 

et al., 2003). Instead of triggering apoptosis, CD95 engagement also activates ERK 

pathway in neural stem cells (Tamm et al., 2004). Moreover, CD95 activation in cultured 

neurons increases neurite branches in a caspase-independent and death domain-

dependent manner. In an in vivo scenario, Faslpr/lpr and FasLgld/gld mutants exhibit a 

reduced number of dendritic branches (Zuliani et al., 2006). 

CD95-induced apoptosis is regularly accompanied with CD95-mediated p38 and JNK 

activation (Wajant et al,. 2003). Activation of p38 and JNK seems to be dependent on 

the activity of caspase upon CD95 stimulation (Deak et al., 1998; Low et al., 1999). It 

has been shown that CD95-mediated JNK/ AP1 (activator protein-1) pathway is involved 

in pressure overload-induced cardiac hypertrophy, which is a result of adaptive growth of 

the heart in response to mechanical stress (Wollert et al., 2000; Badorff et al., 2002). 

This response and JNK activation was completely abrogated when cardiomyocytes from 

Faslpr/lpr mice were stimulated with CD95L (Badorff et al., 2002). Importantly, a recent 

work shows that CD95 has a growth-promoting role during tumorigenesis via the 

activation of JNK and JUN pathway. Loss of CD95 in mouse models of ovarian cancer 

and liver cancer reduces cancer incidence as well as tumor size (Chen et al., 2010). 

Moreover, PI3K activation is also important for CD95-mediated non-apoptotic functions. 

Upon central nervous system injury, CD95 signaling leads to increased neural stem cell 

survival and neuronal differentiation via activation of the Src/PI3K/AKT/mTOT pathway 

(Corsini et al., 2009). In glioblastoma, CD95L is highly expressed by tumor cells and 

cells within the surrounding brain parenchyma. Stimulation of CD95L on glioblastoma 

cells recruits the Src family member Yes and PI3K to CD95, which leads to tumor cell 

invasion via the glycogen synthase kinase 3-β (GSK-3 β) and subsequent expression of 

MMP (Kleber, 2008). In addition, as mentioned previously, CD95 mediates myeloid cell 

recruitment via the Syk/PI3K/MMP9 pathway (Letellier et al., 2010).  
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2.7 Aim of the study 

CD95 plays an important role in mediating myeloid cell recruitment to the inflammatory 

site (Letellier et al., 2010). In this study, we showed recruitment of Syk to CD95 upon 

CD95L stimulation and activation of the PI3K-MMP9 pathway which ultimately led to the 

migration of myeloid cells. As leukocyte recruitment is orchestrate by a cascade of 

sequential cellular processes including slow rolling, leukocyte activation and firm 

adhesion, and transendothelial cell migration, it remains unclear whether CD95 is also 

involved in regulating the early processes of rolling and firm adhesion. Neutrophils slow 

rolling is triggered by selectin signaling-induced integrin activation via the Syk-BTK-

PLCγ-2-Rap1GTP pathway (Mueller et al., 2010; Yago et al., 2010). As CD95 activates Syk, 

it is of interest to investigate whether CD95 can also activate the Syk-BTK-PLCγ-2-

Rap1GTP-integrin pathway in mediating myeloid cell slow rolling and adhesion. 

To test whether CD95 can induce the rolling signaling, we firstly examined the 

phosphorylation of Syk, BTK and PLCγ-2 upon CD95L treatment in naïve cells, Syk-/- 

cells and BTK antagonist-pretreated cells. Subsequently, the effects of soluble or 

immobilized CD95L on neutrophil rolling were tested in an autoperfused mouse flow 

chamber assay. In addition, CD95 signaling-triggered integrin activation was 

investigated by Rap1 activation assay, active integrin reporter antibodies binding assay 

and soluble ICAM1 binding assay. We also examined the association of CD95 with BTK 

or integrin αLβ2. As endothelial cells are involved in leukocyte recruitment, we evaluated 

the contribution of these cells to CD95-dependent recruitment of myeloid cells. CD95L or 

CD95 deletion in endothelial cells were induced in CD95Lf/f;Ve-CadherinERT2/4cre or CD95f/f;Ve-

CadherinERT2/4cre mice, and myeloid cell recruitment in these mice was determined in a 

peritonitis model. Furthermore, the roles of CD95 signaling in mobilization and 

recruitment of inflammatory monocytes were examined in vivo.  
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3    MATERIALS AND METHODS 

3.1 Materials  

3.1.1 Chemicals and Reagents 

Chemical / Reagent / Kit Source 

acrylamide solution Roth, Germany 

Active Rap1 Pull-Down and Detection Kit Thermo SCIENTIFIC, Germany 

Amerham Hyperfilm ECL GE Healthcare, Germany 

ammonium persulphate (APS) Merck, Germany 

BCA Protein Assay Pierce, Germany 

Bovine serum albumin (BSA) Sigma, Germany 

brome phenol blue Merck, Germany 

BTK inhibitor PCI-32765 (Ibrutinib) Biocat, Germany 

Casein sodium salt from bovine milk Sigma, Germany 

collagenase I Worthington Biochemical, USA 

Complete protease inhibitor Roche, Germany 

disodium hydrogen phosphate (Na2HPO4)  Sigma, Germany 

DAPI Sigma, Germany 

DMEM Invitrogen, Germany 

DNase I  Roche, Germany 

Endothelial cell growth stimulant  Biomedical Technologies, USA 

enhanced chemoluminescence substrate (ECL) Perkin Elmer, USA 

ethanol Sigma, Germany 

ethylene diamine tetraacetate (EDTA) Sigma, Germany 

fetal calf serum (FCS) Biochrom, Germany 

FASER Kit – APC Miltenyi Biotec, Germany 

Fluoromount-G SouthernBiotech, Germany 

glycerol Sigma, Germany 

glycine Sigma, Germany 

β-glycerophosphate Sigma, Germany 

Hank’s Balanced Salt Solution (HBSS) Invitrogen, Germany 

Heparin Sigma, Germany 

HEPES Invitrogen, Germany 

Histopaque 1119 Sigma, Germany 

Hybridoma-SFM Invitrogen, Germany 

hydrochloric acid (HCl) VWR, Germany 

Ketamine Pfizer, Germany 

L-Glutamine  Invitrogen, Germany 

Liberase TM Research Grade Roth, Germany 

magnesium chloride (MgCl2) Merck, Germany 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CC8QFjAC&url=http%3A%2F%2Fwww.stemcell.com%2Fen%2FProducts%2FAll-Products%2FDNase-I-Solution-1-mgmL.aspx&ei=Zz3FU9DuI82B7QaevYDgBQ&usg=AFQjCNHl-YYvE2gAM0JXqlQOXS55leQwFQ&bvm=bv.70810081,d.bGE
http://www.biochrom.de/en/products/sera/fbs-superior/
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methanol Sigma, Germany 

Nitrocellulose Membrane  Millipore, Germany 

Nonessential amino acid  Invitrogen, Germany 

Nonidet P-40 (NP-40) Fisher Scientific, Germany 

paraformaldehyde (PFA) AppliChem, Germany 

Penicillin/Streptomycin  Invitrogen, Germany 

Percoll GE Healthcare, Germany 

phosphatase substrate (1mM), Sigma, Germany 

p-nitrophenylphosphate Sigma, Germany 

potassium chloride (KCl)  Merck, Germany 

rat serum Jackson ImmunoResearch, USA  

RBC Lysis Buffer eBioscience, USA 

Recombinant Human E-Selectin R&D Systems, Germany 

Recombinant Moue E-Selectin R&D Systems, Germany 

Recombinant Mouse ICAM1 R&D Systems, Germany 

Recombinant Mouse TNF-alpha R&D Systems, Germany 

Rompum BAYER, Germany 

RPMI Invitrogen, Germany 

Saponin Sigma, Germany 

skim milk powder Roth, Germany 

sodium azide Sigma, Germany 

sodium chloride (NaCl) Sigma, Germany 

sodium dihydrogen phosphate (NaH2PO4) Sigma, Germany 

sodium dodecyl sulphate (SDS) Sigma, Germany 

sodium fluoride (NaF) Sigma, Germany 

sodium orthovanadate Sigma, Germany 

sodium pyrophosphate Sigma, Germany 

Sodium pyruvate  Invitrogen, Germany 

ß-Mercaptoethanol  Invitrogen, Germany 

Super Frost slides VWR, Germany 

TEMED Sigma, Germany 

TGX Gels 4-20%  Bio-Rad, Germany 

Thioglycollate Fluka, Germany 

tools for mouse surgery Fine Science Tools, Germany 

Tris base GERBU Biotechnik, Germany 

Tris HCl GERBU Biotechnik, Germany 

Trypsin Invitrogen, Germany 

Tween-20 Sigma, Germany 

 

 

 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCYQFjAC&url=http%3A%2F%2Fwww.biocompare.com%2FMolecular-Biology%2F20850-Nitrocellulose-Membrane-Rolls%2F&ei=HV7GU7HIOe_T7Aaf1oEg&usg=AFQjCNGkxyA2ZmhgDpyc8-lC4O7CQivEag&bvm=bv.71126742,d.bGE
http://www.jacksonimmuno.com/
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3.1.2 Buffers and Solutions  

3.1.2.1 FACS staining and immunocytochemistry staining 

   PBS (20x) 
  NaCl 160g/l  

 
Na2HPO4  23g/l  

 
NaH2PO4  4g/l  

 KCl 4g/l 

 

   FACS staining buffer 
  PBS 1x 

 FCS 5% 

 sodium azide 1g/l 

 

   FACS staining blocking buffer 
  PBS 1x 

 rat serum 5% 

 sodium azide 1g/l 

 

   Erythrocytes lysis buffer 
  RBC Lysis Buffer 1x 

 

   Peritoneal lavage buffer 
  PBS 1x 

 EDTA 25mM 

 

   3.1.2.2 Protein extraction 
  

   0.2% SDS buffer 
  SDS in water 0.20% 

 

   NP-40 Lysis buffer 
  Tris-HCl 20mM 

 KCl 10mM 

 EDTA 1mM 

 NP-40 0.1% 

 Glycerol 10% 

 Protease Inhibitor Cocktail  1x 

 sodium orthovanadate 1x 

 phosphatase inhibitor Cocktail 1x 
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3.1.2.3 Stock solutions for inhibitors (in ddH2O) 
 

Sodium orthovanadate (100x) 
  sodium orthovanadate 200nM 

 

   Protease Inhibitor Cocktail (50x) 
  

1 Protease Inhibitor Tablet in 1ml ddH2O 

 

   Phosphatase inhibitor Cocktail (10x) 

 NaF 100mM 

 NaN3 100mM 

 p-nitrophenylphosphate 100mM 

 sodium pyrophosphate 100mM 

 β-glycerophosphate 100mM 

 

   3.1.2.4 Western Blotting 
  

   PBS-Tween (0.1%) 
  PBS 1x 

 Tween-20 1ml/l 

 

   Sample Buffer 
  1M Tris-HCl (pH7.4)  125 ml/l 

 glycerol 200 ml/l 

 β-mercaptoethanol 100 ml/l 

 SDS 40 g/l 

 brome phenol blue 50 mg/l 

 

   Running Buffer 
  Tris Base 10 g/l 

 glycine 30.28 g/l 

SDS 150 g/l 

 

   Transfer Buffer 
  Tris Base 3 g/l 

 glycine 14.4 g/l 

 methanol 200ml/l 

 

   Lower Tris Buffer (4x) 
  Tris Base 181.7 g/l 

SDS 4 g/l 

 Concentrated HCl 135ml/l 
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Upper Tris Buffer (4x) 
  Tris Base 60.6 g/l 

 SDS 4 g/l 

 

   Running Gel (per 10ml) 
  

 
10% 12% 

dH2O 4.1ml 3.5ml 

Lower Tris Buffer 2.5ml 2.5ml 

30% Acrylamide 3.4ml 4ml 

TEMED 10µl 10µl 

10% APS 100µl 100µl 

   Stacking Gel (per 10ml) 
  

dH2O 6.35ml 

 upper Tris Buffer 2.5ml 

 30% Acrylamide 1.15ml 

 TEMED 10µl 

 10% APS 100µl 

 

   Stripping Buffer 
 

  Mild stripping 
  Glycine 1M (PH1.8) 

   Harsh stripping (50°C for up to 45 minutes) 

 10% SDS 20ml 

 Tris HCl (pH 6.8, 0.5 M) 12.5ml 

 ß-mercaptoethanol 0.8ml 

 
ddH2O 67.5ml 

  

3.1.2.5 Cell culture medium 

L929, WEHI3B, U937 cells 
 RPMI 1640 
 FCS 10% 

  KIM127 cell 
 Hybridoma-SFM 
 

  Macrophages 
 RPMI 1640 advanced Medium (+ non-essential amino-acids & sodium pyruvate)    

FCS  10% 
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ß-Mercaptoethanol (55mM) 0.1% 

Penicillin/Streptomycin                    1% 

L-Glutamine                                     1% 

L929 supernatant                             20% 

  Neutrophils 
 RPMI 1640 
 FCS 10% 

Penicillin/Streptomycin   1% 

WEHI3B conditioned medium     20% 

  Endothelial cells 
 DMEM 
 FCS 20% 

Penicillin/Streptomycin   1% 

L-glutamine                                        1% 

HEPES 25mM 

Heparin 100µg/ml   

Endothelial cell growth stimulant        100µg/ml    

Nonessential amino acid                    1% 

Sodium pyruvate                                1% 

 

3.1.2.6 Antibodies 

Primary antibodies 
 
Antibody 
 

Source 
 

Application   and 
Concentration 

anti-phospho-Syk Cell Signaling, USA WB, 1:1000 

anti-phospho-BTK Cell Signaling, USA WB, 1:1000 

anti-phospho-PLC-γ2 Cell Signaling, USA WB, 1:1000 

anti-Syk Cell Signaling, USA WB, 1:1000 

anti-BTK Cell Signaling, USA WB, 1:1000 

anti-BTK (D3H5) biotin  Cell Signaling, USA 
IP, 1:100 (5µg for 500µg 
lysate) 

anti-PLC-γ2 Cell Signaling, USA WB, 1:1000 

anti-CD95 (M20) Santa Cruz Biotechnology, USA WB, 1:1000 

anti-CD95 (Apo-1-1) Enzo Life Sciences, USA IF, 1:100 

anti-CD95 biotin (Jo2) BD Pharmingen, Germany FC, 1:100 

anti-CD95L biotin (MFL3) BD Pharmingen, Germany FC, 1:100 

anti-Rap1 Thermo SCIENTIFIC, Germany WB, 1:1000 

anti-human CD11a (integrin αL) biotin eBioscience, USA IF, 1:100 
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anti-mouse CD11a  (integrin αL) FITC eBioscience, USA FC, 1:100 

anti-mouse CD11a  (integrin αL) 
biotin eBioscience, USA 

IP, 1:100 (5µg for 500µg 
lysate) 

anti-mouse CD11a  (integrin αL)  Santa Cruz Biotechnology, USA WB, 1:1000 

anti-CD11b (integrin αM) APC BD Pharmingen, Germany FC, 1:100 

anti-CD45 APC-Cy7 BD Pharmingen, Germany FC, 1:100 

anti-Ly6G FITC BD Pharmingen, Germany FC, 1:100 

anti-CD18 (integrin β2)  biotin eBioscience, USA FC, 1:100 

anti-ICAM1 FTIC eBioscience, USA FC, 1:100 

anti-ICAM2 FITC eBioscience, USA FC, 1:100 

anti-E-selectin PE BD Pharmingen, Germany FC, 1:100 

anti-P-selectin PE BD Pharmingen, Germany FC, 1:100 

anti-CD31 FITC eBioscience, USA FC, 1:100 

anti-CD31  BD Pharmingen, Germany MACS, 1:100 

anti-Human CD11/CD18 (mab24) Hycult Biotechnology, USA FC, 1:100 

 

Secondary antibodies 

Antibody 
 

Source 
 

Application   and 
Concentration 

anti-rabbit IgG HRP-conjugated Jackson ImmunoResearch, USA WB, 1:5000 

Alexa Fluor® 647-Streptavidin  Jackson ImmunoResearch, USA IF, 1:300 

Alexa Fluor® 488 anti-rat IgG Invitrogen, Germany IF, 1:100 

Dynabeads® Sheep Anti-Rat IgG Invitrogen, Germany MACS, 25µl for 10
7
 cell 

Dynabeads® M-280 Streptavidin Invitrogen, Germany IP, 40µl for 500µg lysate 

Mouse Anti-Human IgG1 Fc-PE SouthernBiotech,USA IF, 1:100 

anti-mouse IgG PE eBioscience, USA FC, 1:100 

PE Cy7-Streptavidin eBioscience, USA FC, 1:300 

APC-Streptavidin eBioscience, USA FC, 1:300 

 

 

3.2 Methods 

3.2.1 Animal experiments 

3.2.1.1 Animals 

C57BL/6N mice were purchased from Charles River Laboratories. Syk+/- mice were 

from Martin Turner (The Babraham Institute) and bred as heterozygous. CD95 floxed 

mice (University of Cologne) were bred with LysM-cre (Jackson Laboratory) mice and 

http://www.jacksonimmuno.com/MERCHANT2/merchant.mv?Screen=PROD&Product_Code=016-600-084
http://www.jacksonimmuno.com/MERCHANT2/merchant.mv?Screen=PROD&Product_Code=016-600-084
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VeCadherinCreERT2/4 mice (Prof. Ralf H. Adams, University of Münster). CD95L floxed 

mice (a kind gift from Dr. Matthieu Lévi-Strauss) were bred with VeCadherinCreERT2/4 mice. 

All animal experiments were performed in accordance with institutional guidelines of the 

German Cancer Research Center and were approved by the Regierungspräsidium 

Karlsruhe (Project Number: G188/13), Germany. 

Mouse Line 
 

Description 
 

Respective 
Controls 

Experiments 
 

CD95f/f;LysMcre  

 
Deletion of CD95 in 
myeloid cells 

cre- mice 
 

Autoperfused 
mouse flow 
chamber assay 

Syk-/- 
 

Syk deletion in all 
cells 

Wild-type mice 
 

WB 
 

CD95Lf/f;Ve-CadherinCreERT2/4 

 
Inducible deletion of 
CD95L in endothelial 
cells 

cre- mice 
 

Thioglycollate-
induced 
peritonitis 

CD95f/f;Ve-CadherinCreERT2/4  

 
Inducible deletion of 
CD95 in endothelial 
cells 

cre- mice 
 

Thioglycollate-
induced 
peritonitis 

 

 

3.2.1.2 ERT2Cre-lox System 

ERT2Cre-lox system is used for inducible tissue specific deletion of target genes (Figure 

6, Kohan, 2008). In this system, the cre recombinase is fused to the ligand-binding 

domain of the estrogen receptor (LBD ER), and the expression of the fusion protein, 

CreERT2, is controlled by promoter of interest. In the absence of tamoxifen, CreERT2 is 

located in the cytoplasm. However in the presence of tamoxifen, CreER binds to 

tamoxifen and translocates to the nucleus, where it catalyzes recombination of the target 

DNA sequences flanked by loxP (lox) sites in the same orientation.  

Table 1. Mouse lines used in this study 
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3.2.1.3 Autoperfused Mouse Flow Chamber Assay 

3.2.1.3.1 Assembly of the flow chamber 

Assembly of the flow chamber was modified from previously reported study (Chesnutt et 

al. 2006). Flow chambers were constructed from rectangular glass capillary tubing with 

dimensions of 20µm X 200µm (VitroCom, Mountain Lakes, NJ). Each chamber was cut 

to 30mm with a glass cutting stone and then placed between two pieces of glass 

coverslip (Menzel-Gläser, Germany) parallel to the lateral direction. Before fixing the 

chamber and coverslips with two component resin, the gap between flow chamber and 

coverslips was filled with immersion oil (AppliChen GmbH) to improve light transmission 

under the microscope. The free ends of the chamber were connected with a 2cm or 5cm 

PE 50 tubing (ID 0.58 mm, OD 0.965 mm, Becton Dickinson, Sparks, MD) individually. 

The connection point was sealed and fixed with two component resin. After the 

solidification of the resin, the chamber system was rinsed with ethanol and distilled water. 

To coat the flow chamber, a solution with different combinations of 15µg/ml ICAM1, 

30µg/ml E-selectin and 10µg/ml CD95L in PBS was perfused through the chamber and 

the end parts of the flow chamber system were filled with distilled water to avoid the 

evaporation of the coating solution. Two hours after room temperature incubation, the 

flow chambers were rinsed with PBS following re-filling of 10% casein in PBS for one 

hour room temperature blocking. Chambers were washed with PBS and then rinsed with 

Figure 6 ERT2Cre-lox System (adapted from Kohan, 2008) 
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10U/ml heparin. The 2cm PE tubing part of the chamber system was connected with a 

150cm long, water-filled PE 50 tubing to control the shear stress in the flow chamber.  

3.2.1.3.2 Visualizing and recording of rolling cells with microscopy 

Male, 12 weeks old, wild-type (wt) mice or CD95f/f;LysMcre mice were used for 

autoperfused flow chamber assay. Mice were anesthetized by intraperitoneally (i.p.) 

injection of ketamine/rompum mixture (85 and 13 mg/kg) in saline and fixed on a paper 

board with sticky tape. The carotid artery was exposed and surgically sutured 

downstream. Afterwards the exposed artery was cannulated with a 7cm PE 10 tubing 

(ID 0.28 mm, OD 0.61 mm) which was pre-rinsed with heparin. The free end of the 

tubing was inserted into the 5cm PE 50 tubing part of the flower chamber system. The 

flow chamber was placed on top of the objective to visualize and video-record the rolling 

leukocytes (Figure 7, Olympus IX81 microscope). The water-filled PE 50 tubing was 

raised up to a height (stop point) at which the blood flow stopped in the flow chamber, 

then the tubing was put down for 30cm from the stop point. After 10 minutes of blood 

perfusion, one minute video (400 frames) each for three random fields of the flow 

chamber was recorded individually with Olympus scan^R software. Two flow chambers 

were used for measuring leukocytes rolling in each mouse and 3 to 4 mice were used for 

each group. 

 

 
Figure 7. Scheme of the Autoperfused Mouse Flow Chamber System 
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3.2.1.3.3 Calculating rolling velocity 

The rolling distance and the time of rolling cells were analyzed by ImageJ software, and 

the rolling velocity was calculated by dividing the rolling distance by the rolling time. 

Briefly, the rolling distance was assessed from the linear distance between the positions 

of each rolling cell in the start and end points of rolling. The time of rolling was assessed 

from the total number of frames of each rolling cell in the video. 

3.2.1.4 CD95L treatment 

To test the effect of soluble CD95L on leukocytes rolling in autoperfused mouse flow 

chamber assay, mice were intravenously (i.v.) injected with 10µg CD95L in 200µl PBS 

30 minutes before connecting to the flow chamber system. 

3.2.1.5 Thioglycollate-induced peritonitis 

3% of thioglycollate was prepared in PBS and autoclaved 4-5 days before injecting to 

the mice. 1ml thioglycollate was i.p. injected to male, 12 weeks old, cre negative or 

positive mice of CD95Lf/f;Ve-CadherinCreERT2/4, CD95f/f;Ve-CadherinCreERT2/4 mouse lines. It is 

reported that in the thioglycollate-induced peritonitis model, neutrophils recruitment 

peaks at 6 hours after injection whereas macrophage recruitment peaks at 72 hours 

(Matsukawa et al., 2005). At the indicated times, mice were sacrificed and peritoneal 

cells were collected by lavage with 10ml PBS containing 25mM EDTA. Total peritoneal 

cells were counted with a Neubauer hematocytometer, and the ratio of neutrophils to 

peritoneal cells was measured by flow cytometry. 

 

3.2.2 Cell culture and isolation 

3.2.2.1 Primary culture of macrophage from mouse bone marrow cells 

Bilateral humeral, femoral and tibial bones from mice were harvested and the soft 

tissues on the bone were removed with a scalpel. The bones were cut off at the joint part 

and bone marrows were flushed out using a HBSS filled syringe connected to a 27G 

needle. Bone marrow cells were triturated and RBCs were lysed with 1xRBC Lysis 

buffer. Afterwards cells were washed, filtered through a 40µm strainer and plated in 
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culture flask with macrophage culture medium. On the next day, cells in suspension 

were transferred for further culture in petri dishes. At day 4 fresh medium was added, 

and after day 6 the culture medium was changed every two days. Macrophages were 

confluent and ready for use after 10 days in vitro culture. Medium was replaced to 

advanced RPMI (without FCS) 10 hours before stimulation. 

3.2.2.2 Primary culture of Macrophage from mouse embryonic liver 

Syk deficiency (Syk-/-) is perinatal-lethal in mice (Turner et al., 1995). Syk-/- embryos 

show petechiae, whereas Syk+/- embryos are indistinguishable from the wt embryo. In 

order to get Syk-/- macrophages, liver tissue was harvested from E15 embryonic livers 

of wt and Syk-/- embryos (embryos with petechiae). And liver cells were triturated, 

cultured and passaged in macrophage culture medium. After 6 days of in vitro culture, 

fetal liver hematopoietic stem cells differentiated into Syk-/- macrophages. 

3.2.2.3 Isolation of neutrophils from mouse bone marrow cells by Percoll gradient 

Neutrophil isolation is based on density gradient separation techniques (Siemsen et al., 

2007). Firstly, Percoll gradients were prepared by layering 2 mL each of the 62, 55, and 

50% Percoll solutions successively on top of 3 mL of 81% Percoll solution in a 15-mL 

falcon. Bone marrow cells were collected as mentioned above. Bone marrow cells were 

resuspended in 3 mL of 45% Percoll solution and carefully laid on top of the gradient 

(Figure 8). Afterwards the gradients were centrifuged at 1600g for 30 min with no 

braking during acceleration and deceleration at 10°C. The supernatant above the 62% 

Percoll layer was removed using a plastic transfer pipette. The cell layer located 

between the 81 and 62% Percoll layer was collected. Collected cells were washed and 

resuspended with 3ml neutrophils buffer and then laid on top of 3 mL of Histopaque 

1119 in a falcon. The gradients were centrifuged at 1600g for 30 min at 10°C with no 

braking to remove contaminating red blood cells. The cell layer between the Histopaque 

and buffer layers was collected and washed with neutrophil buffer. Purity of neutrophils 

was assessed by FACS (fluorescence activated cell sorting) and reached >95%. 

Isolated neutrophils were cultured overnight with neutrophil differentiation medium to 

fully differentiate into mature neutrophils. Neutrophil differentiation medium contained 20% 

of WEHI-3B-conditioned medium which had been described to differentiate bone marrow 
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neutrophils (Lee et al., 1982; Garland et al., 1983). For production of WEHI-3B-

conditioned medium cells were cultivated at density of 0.5 million/ml. After 1.5 day, the 

supernatant was collected and sterile filtrated.   

 

 

3.2.2.4 Isolation and culture of endothelial cells from mouse lung 

Endothelial cell culture method was adapted from published protocol (Lim and 

Luscinskas, 2006). Mice were perfused with HBSS first and the lungs were dissected. 

Then the minced lung tissue was incubated with pre-warmed collagenase (10mg/ml), 

DNAse1 (1mg/ml) solution with gentle agitation for 45 minutes at 37°C. After digestion, 

tissue was triturated into single cell suspension with a 20-ml syringe connected to a 14-

G metal cannula (Fisher Scientific) and cell suspension was washed and resuspended 

with endothelial cells culture medium. Anti-CD31 coated beads were added to every 

millilitre of cells suspension. After 10 min incubation at room temperature, anti-CD31 

beads labelled endothelial cells were sorted with a magnetic separator. Positively 

selected cells were cultured with endothelial cells culture medium for 7-9 days. To 

improve the purity of cultured endothelial cells, primary cultured cells were detached with 

0.5% trypsin and magnetically sorted with anti-CD102 beads. Sorted cells were cultured 

and passaged at a split ratio of no more than 1:3. Cultured endothelial cells showed 

cobblestone-like morphology. The purity was assessed by flow cytometry and 

reached >90%. 

 

 

Figure 8. Scheme for Percoll gradient used in bone marrow neutrophils isolation 
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3.2.2.5 Dissociation of mouse liver cells for endothelial cell flow cytometry 

staining  

Mice 12 weeks of age were transcardially perfused with HBSS and liberase in DMEM 

(5mg/ml). Minced liver tissue was incubated with liberase (5mg/ml), DNase1 (1mg/ml) in 

DMEM for 30 minutes at 37°C. After digestion, the tissue was triturated into single cell 

suspension and filtered through a 60µm strainer. 

3.2.3 In vitro experiments 

3.2.3.1 Integrin reporter antibodies binding assay 

Integrin conformational change upon CD95L treatment was tested by staining with 

reporter antibodies recognizing specific epitopes of integrin at different statuses. To test 

the binding, U937 cells (10 million/ml) were premixed with anti-Human CD11/CD18 

(mab24) or anti -Human CD11/CD18 (KIM127) and perfused through the human E-

selectin coated flow chamber with a syringe pump (New Era Pump Systems, USA) at 

the flow rate of 3µl/min upon the stimulation with soluble CD95L (60ng/ml) or 

immobilized CD95L (10µg/ml for coating). The assembly and coating of the flow 

chamber was the same as described for the autoperfused mouse flow chamber assay. 

Cells flowed through the chamber were collected and fixed in 2% PFA. Then the fixed 

cells were stained with PE anti-mouse IgG and analyzed with flow cytometry.  

3.2.3.2 Soluble ICAM1 binding assay 

Soluble ICAM1 binding assay was performed as previously reported (Lefort et al., 2012). 

Bone marrow derived neutrophils were cultivated in RPMI (2% FCS) for 4 hours before 

stimulation. Cells were exposed to a CD95L coated or non-coated lipid membrane in the 

presence of ICAM1-FC (20µg/ml) and incubated at 37°C for 10 minutes. The lipid 

membrane was prepared as described (Kaindl et al., 2012). After incubation, cells were 

directly fixed with 2% PFA at 4 °C for 15 minutes, washed, and then stained with anti-

human IgG1 (FC specific). The binding of soluble ICAM1 was measured by FACS.  
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3.2.3.3 Immunocytochemical staining and quantitative analysis 

Immunocytochemical staining was performed to test the colocalization of CD95 and 

integrin upon CD95L treatment. U937 cells were prepared as in the integrin reporter 

antibodies binding assay. Fixed U937 cells were stained with anti-human CD95 (Apo-1-1) 

and biotinylated anti-human CD11a. Secondary antibodies used were anti-rat Alexa 488 

and streptavidin- Alexa 647. Stained cells were scanned with a Leica SP5 confocal 

microscope. About 30 to 40 randomly selected cells from each group were analyzed for 

the colocalization of CD95 and integrin with the JACoP imageJ plugin according to the 

instruction.  

3.2.3.4 Flow cytometry and cell type identification 

The antibodies used for flow cytometry were described in the materials part. Staining 

were performed on blood cells, Percoll isolated neutrophils, peritoneal cells and cells 

dissociated from liver tissue. 

Blood samples (100µl for each mouse) were collected from the retro orbital vein. 

Erythrocytes were lysed with RBC lysis buffer at room temperature for 10 minutes. For 

testing the cell surface level of CD95 in CD95f/f;LysMcre mice, blood cells were stained with 

DAPI (4',6-diamidino-2-phenylindole), anti-CD45 APC-Cy7,  anti-Ly6G FITC, anti-CD11b 

APC and anti-CD95 (Jo2, followed with secondary staining of PE Cy7-streptavidin). For 

testing the cell surface integrin level of neutrophils after CD95L i.v. injection, blood cells 

were stained with anti-CD45 APC-Cy7,  anti-Ly6G FITC, anti-CD11b APC and anti-

CD11a biotin / anti-CD18 biotin (followed with secondary staining of PE-Cy7-

streptavidin). The same antibodies were also used to test the cell surface integrin level 

of Percoll isolated neutrophils. 

Peritoneal cells collected from lavage were stained with DAPI, anti-CD45 APC-Cy7, anti-

Ly6G FITC, anti-CD11b APC to check the ratio of neutrophils. 

To test the CD95L/CD95 deletion in endothelial cells of CD95Lf/f;Ve-CadherinCreERT2/4 / 

CD95f/f;Ve-CadherinCreERT2/4 mouse lines, dissociated liver cells were stained with DAPI, anti-

CD31 FITC, anti-CD45 APC-Cy7 and anti-CD95L biotin (MFL3, followed by secondary 

http://rsbweb.nih.gov/ij/plugins/track/jacop.html
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staining of APC-streptavidin and APC-amplification staining with FASER-APC kit / anti-

CD95 biotin (followed by secondary staining of PE Cy7-streptavidin). 

To test the cell surface adhesion molecular level of endothelial cells from CD95Lf/f;Ve-

CadherinCreERT2/4 / CD95f/f;Ve-CadherinCreERT2/4 mouse lines, dissociated liver cells were stained 

with DAPI, anti-CD31 FITC, anti-CD45 APC-Cy7 and anti-ICAM1 FITC / anti-ICAM2 

FITC / anti-E-selectin PE / anti-P-selectin PE. 

Flow cytometry data were analyzed with Flowjo software. Neutrophils were identified 

according to the profile of Forward Scatter (FSC)/Sider Scatter (SSC), DAPI-negativity, 

and CD45, CD11b, Ly6G-positivity. Endothelial cells were identified according to the 

profile of FSC/SSC, DAPI, CD45-negativity, and CD31-positivity.  

3.2.3.5 ICAM1 surface level on endothelial cells after CD95L treatment 

The surface level of ICAM1 on endothelial cells after CD95L treatment was assessed by 

immunofluorecence staining. Primary cultured endothelial cells from mouse lungs were 

cultured in 96 wells plates. Cells were stimulated with 100ng/ml or 200ng/ml CD95L for 6 

or 24 hours. Cells stimulated with 120ng/ml TNF-α for 6 or 24 hours were used as a 

positive control. At the indicated time points, cells were fixed with 2% PFA and stained 

with FITC conjugated anti-mouse ICAM1. ICAM1 level was measure with a 

Fluorescence Microplate Reader (Bio Tek). 

3.2.3.6 Protein extraction and concentration determination  

Cells were washed with PBS containing phosphatase inhibitors, pelleted, and lysed with 

SDS lysed buffer containing phosphatase inhibitors, proteinase inhibitors and vanadate 

for 30 minutes on ice. The protein concentration was determined using BCA protein 

assay by comparing to standardized concentrations of bovine serum albumin (BSA). 

3.2.3.7 SDS-PAGE  

Equal amounts of protein from cell lysates (20-50µg) in sample buffer were separated by 

sodiumdodecylsulphate- polyacrylamide gel electrophoresis (SDS-PAGE) on 10-12% 

polyacrylamide gels. Polymerization of the gels was initiated by addition of N,N,N’,N’-

Tetramethylethylenediamine (TEMED) and ammonium persulphate (APS) solution. The 
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cast running gel was overlaid with isopropanol and allowed to polymerize for 30 minutes. 

Then, isopropanol was removed with filter paper and the stacking gel cast in the same 

way. Afterwards, protein samples were loaded and electrophoresis was performed at 

100V for 30 to 60 minutes. 

3.2.3.8 Western Blotting  

Proteins were transferred from polyacrylamide gels to nitrocellulose membranes by 

electroblotting. The gel and the membrane were placed between sheets of absorbent 

paper and immersed in transfer buffer in an electrophoresis tank. Blotting was performed 

at 60mA for 2 hours at 4°C. Following transfer, non-specific binding sites on the 

nitrocellulose membrane were blocked by incubation with 5% skim milk powder in PBS-

Tween for 1 hour. Then the membranes were incubated overnight at 4°C with primary 

antibodies diluted in PBS-Tween containing 5% skim milk powder. Primary antibodies 

used are as follows: anti-phospho-Syk, anti-phospho-BTK, anti-phospho-PLC-γ2, anti-

Syk, anti-BTK, anti-PLC-γ2, anti-CD95 (M20), anti-Rap1, anti-mouse CD11a 

(concentrations see table above). After thorough washing, antibody binding was 

detected via horseradish peroxidase (HRP)-conjugated secondary antibodies, with 

which the membranes were incubated for 1 hour at RT. The HRP signal was detected by 

incubation with ECL solution and subsequent exposure to Amerham Hyperfilm films.  

3.2.3.9 Blot Stripping 

For removal of antibody complexes from nitrocellulose membranes, they were subjected 

to three washes with 1M Glycine or harsh stripping buffer at 50°C for up to 45 minutes 

(listed in reagents part). After thorough washing with PBS-Tween and blocking, 

membranes were reprobed as described above.  

3.2.3.10 Immunoprecipitation 

CD95L treated or non-treated cells were washed with PBS containing phosphatase 

inhibitors, pelleted, and lysed on ice for 30 minutes with NP-40 Lysis buffer containing 

vanadate, inhibitors for phosphatase and proteinase (described in reagents part). 

Protein concentration of the lysate was determined as previously described. Lysates of 

500 µg protein were used as input and the desired protein were immunoprecipitated 
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overnight at 4°C with the respective antibodies or the corresponding isotype controls. 

Afterward, 40 µl Dynabeads® M-280 Streptavidin was added to each sample and 

incubated for 1 hour at 4°C with rotation. Beads were washed 5 times with 1ml of lysis 

buffer. The immunoprecipitates were released by cooking the beads with 40 µl of 2x 

laemmli buffer at 95°C for 5 minutes. Immunoprecipitated samples were 

electrophoresed and blotted as described above. 

3.2.3.11 Active Rap1 Pull-Down assay 

Active Rap1 Pull-Down assay was performed according to the manufacturer’s 

instructions. Cell lysates were prepared as described above. 100µl Glutathione Resin 

and 20μg of GST-RalGDS-RBD peptide were added to 500μg lysate. GTPγS and GDP 

incubated lysates were used as positive and negative control respectively. After one 

hour incubation with resin beads and peptide at 4°C, resin beads were washed 4 

times,followed by incubation in 40 µl of 2x laemmli buffer at 95°C for 5 minutes. 

Immunoprecipitated samples were electrophoresed and blotted for anti-Rap1 as 

described above. 

3.2.4 Statistical evaluation  

Statistical analysis of all data was performed with GraphPad Prism (Version 5.01). 

Differences between the groups were evaluated by one-way ANOVA, Bonferroni multiple 

comparison post hoc test or student's t test where appropriate. All data were presented 

as mean ± standard error of the mean (SEM). Statistical significance was determined by 

the p-value of the statistical test and deemed as significant *p < 0.05; strongly significant 

**p < 0.01 and highly significant *** p<0.001.  
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4    RESULTS 

4.1 CD95 activates rolling signaling 

4.1.1 Phosphorylation of BTK and PLC-γ2 upon CD95L engagement  

As described in the introduction, in rolling neutrophils E-selectin engagement triggers 

signaling cascades which cooperate with chemokine signals to facilitate neutrophil 

rolling and adhesion during inflammation (Zarbock et al., 2007). Upon engagement, E-

selectin activates members of the SFKs, ITAM bearing adaptors, Syk, BTK, PLC-γ2, 

P38 and PI3Kγ (Mueller et al., 2010; Yago et al., 2010). We have previously shown that 

CD95L triggers the recruitment of myeloid cells to inflammatory sites in a spinal cord 

injury model via SFK-Syk-PI3K pathway (Letellier et al., 2010). In this study we checked 

whether the described CD95-pathway additionally leads to activation of BTK and PLC-γ2. 

To this end, we stimulated mouse macrophages cultured from bone marrow cells with 

CD95L and Phorbol 12-myristate 13-acetate (PMA) as a positive control. PMA is a 

phorbol ester that is commonly used to activate certain types of protein kinase C (PKC) 

which induces the activation of stimulated cells. The phosphorylation of BTK and PLC-γ2 

is up-regulated after 5, 15 and 30 minutes of CD95L / PMA treatment (Figure 9).  

 

 

 

 

Figure 9. CD95 triggers phosphorylation of 

BTK and PLC-γ2 in bone marrow derived 

macrophages. Cultured Macrophages from 

mouse bone marrow  cells were treated with 

CD95L (40ng/ml). Lysates were prepared at the 

indicated time points and immunoblotted for the 

indicated proteins. 
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4.1.2 CD95L engagement induced phosphorylation of PLC-γ2 is partially 

dependent on Syk activation 

To assess the involvement of Syk in these signaling events we isolated macrophages 

from Syk knockout mice. Syk-/- macrophages can only be obtained from culture of 

embryonic liver cells due to perinatal-lethality (Turner et al., 1995). Macrophages were 

cultured from E15 embryonic livers of wt or Syk-/- embryos (embryos with petechiae). 

Upon CD95L treatment, the phosphorylation of PLC-γ2 was largely but not completely 

abolished by the lack of Syk (Figure 10 A and quantified analysis in Figure 10 B). 

However phosphorylation of BTK was still induced by CD95L treatment in Syk-/- cells as 

compared to wt cells (Figure 10 A and quantified analysis in Figure 10 C). These data 

indicate that CD95L-induced phosphorylation of PLC-γ2 is partially mediated via Syk.  

 

 

 

 

 

Figure 10. CD95L engagement induced phosphorylation of PLC-γ2 is partially 

dependent on Syk activation. (A) Cultured Macrophages from wt or Syk-/- embryonic liver 

cells were treated with CD95L (40ng/ml). Lysates were prepared at the indicated time points 

and immunoblotted for the indicated proteins. (B) Quantitative analysis of PLC-γ2 (B), and 

BTK (C) phosphorylation level in (A) from three independent experiments presented as mean 

± SEM (n=3). 
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4.1.3 CD95 associates with BTK to activate PLC-γ2 

BTK has been previously shown to bind to CD95 in B-cells via its kinase and Pleckstrin 

homology (PH) domain and thereby prevents the CD95-FADD interaction, which is 

essential for CD95 induced apoptosis signal (Vassilev et al., 1999). It is thus possible 

that in myeloid cells CD95 interacts directly with BTK and activates downstream signals, 

such as PLC-γ2, to induce myeloid cell recruitment. 

 

 

 

 

 

 

To test this hypothesis we pulled down BTK by immunoprecipitation from CD95L- or 

control treated macrophages. Western blot analysis confirmed binding of CD95 to BTK 

following stimulation with CD95L (Figure 11 A). In order to further elucidate the 

involvement of BTK in CD95L-induced PLC-γ2 phosphorylation, macrophages were 

Figure 11. BTK binds to CD95 to induced phosphorylation of PLC-γ2 in myeloid cells. 

(A) Bone marrow-derived macrophages were treated with CD95L (40ng/ml). Lysates were 

prepared at the indicated time and immunoprecipitated with anti-BTK followed by 

immunoblotting with CD95 and BTK antibody. (B) Bone marrow-derived macrophages were 

treated with DMSO or BTK inhibitor PCI-32765 one hour prior to CD95L treatment (40ng/ml). 

Lysates were prepared at the indicated time points and immunoblotted for the indicated 

proteins. Quantitative analysis of BTK- (C) and PLC-γ2-phosphorylation (D) from three 

independent experiments presented as mean ± SEM (n=3). 
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exposed to the BTK inhibitor PCI-32765 (Ibrutinib) 1 hour prior to CD95L stimulation. 

Phosphorylation of BTK was fully blocked by PCI-32765 (Figure 11B, quantified analysis 

in C). Inhibition of BTK abolished the basal and CD95L-induced phosphorylation of PLC-

γ2 (Figure 11 B, quantified analysis in D). 

 

 

4.2 CD95 triggers neutrophil slow rolling 

4.2.1 Autoperfused mouse flow chamber assay 

In order to test the effect of CD95 activation in leukocyte slow rolling, the applied model 

of mouse autoperfused flow chamber was used. This is a well characterized model for 

studying neutrophil rolling and adhesion (Chesnutt et al., 2006). It has the advantage 

over the under flow static adhesion assays of studying neutrophils in whole blood, and 

therefore it avoids isolation-induced activation of neutrophils (Forsyth et al., 1990; 

Glasser et al., 1990). It has been reported that E-selectin mediates slow leukocyte rolling 

(Jung and Ley, 1999). In autoperfused mouse flow chamber assay, the rolling speed in 

E-selectin+ICAM1 coated chamber is significantly slower than the speed in chamber 

coated with E-selectin alone (Chesnutt et al., 2006; Zarbock et al., 2007). Using the 

LysMcre-GFP reporter mice, 89±2% of the rolling cells in the flow chamber have been 

identified as neutrophils (Chesnutt et al., 2006). 

The flow chamber system was set up as described in the methods part. We first tested 

the neutrophil rolling in chambers coated with E-selectin or E-selectin+ICAM1. In E-

selectin coated flow chamber the rolling velocity was 1.97±0.16µm/s. And in the 

presence of ICAM1 coating, the rolling velocity significantly decreased to 1.41±0.10µm/s 

(Figure 12 B). The rolling velocity is comparable to that previously reported data (Mueller 

et al., 2010). The number of rolling cells was similar in differently coated chambers 

(Figure 12 C, E-selectin chamber: 200±17, E-selectin+ICAM1 chamber 178±19). No 

rolling cells were observed in chambers coated with CD95L alone (data not shown). 
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4.2.2 CD95L stimulation induces neutrophil slow rolling 

In order to find out the involvement of CD95 in mediating neutrophil slow rolling, we 

performed all the autoperfused mouse flow chamber assay by using chambers coated 

with E-selectin and ICAM1. The rolling velocity was significantly reduced from 1.41±0.10 

µm/s to 1.16±0.03 µm/s by intravenous tail (i.v.) injection of CD95L one hour prior to the 

assay compared to non-treated mice (Figure 13 A, C). CD95 activation has been 

reported to induce production of pro-inflammatory cytokines and chemokines in various 

cell types (Park et al., 2003; Altemeier et al., 2007). In order to exclude the possibility 

that CD95 mediates neutrophil slow rolling via inducing production of chemokines in 

other blood cells, mouse blood was perfused through the flow chambers coated with E-

selectin, ICAM1 and CD95L. The rolling velocity of neutrophils in CD95L coated 

chamber was significantly lower than the control group (1.41±0.10 µm/s vs. 1.07±0.03 

µm/s) (Figure 13 A, D). To further confirm that the observed effect was due to the action 

of CD95L on neutrophil’s CD95, we used CD95-deficient myeloid cells (CD95f/f;LysMcre). In 

Figure 12. Mouse autoperfused flow chamber assay. The common carotid of mice was 

cannulated with a catheter connected to a flow chamber. The wall shear stress in the flow 

chamber was adjusted to 5.9 dyn/cm2 by the water column connected to the downstream of the 

chamber system. (A) Time lapse showing the leukocytes rolling in flow chamber coated with E-

selectin+ICAM-1. Arrows indicate the rolling cells. Scale bar: 50µm. The average rolling velocity 

(B) and number of rolling neutrophils (C) on E-selectin or E-selectin+ICAM-1 coated chambers 

is presented as means ± SEM. n=3, student's t test, *p<0.05, ns: not significant. 
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CD95f/f;LysMcre mice, coating with CD95L did not affect  rolling (Figure 13 A, rolling velocity: 

1.46±0.08 µm/s). We also observed increased number of rolling cells following injection 

of CD95L or coating with CD95L as compared to the control group(Figure 13 B). This 

effect was likewise attenuated in CD95f/f;LysMcre mice (Figure 13 B). 

 

 

 

 

 

 

 

 

 

Figure 13.  CD95L stimulation induces neutrophil slow rolling. The common carotid of wt 

or CD95f/f;LysMCre+ mice was cannulated with a catheter connected to autoperfused flow 

chamber. The wall shear stress in the flow chamber was adjusted to 5.9 dyn/cm2. The average 

rolling velocity (A) and number of rolling neutrophils (B) on E-selectin and ICAM-1 coated 

chambers with or without immobilized CD95L or after i.v. injection of CD95L is presented as 

means ± SEM. Two flow chambers were used for each mouse and 3 random fields from along 

the flow chamber were video recorded to obtain quantitative data from rolling cells. n=3-4, one-

way ANOVA, Bonferroni multiple comparison post hoc test, *p<0.05, ***p<0.001. (C, D) 

Cumulative histogram shows velocity of rolling neutrophils in flow chamber coated with E-

selectin+ICAM1 or E-selectin+ICAM1 following addition of immobilized CD95L (C) or soluble 

CD95L (D).  
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4.2.3 CD95 activation or deficiency doesn't change integrin level 

Neutrophil slow rolling is mainly mediated by activation of Integrin αLβ2 (LFA1) (Chesnutt 

et al., 2006 and Zarbock et al., 2007). In order to test whether CD95 signaling influences 

cell surface expression level of integrin, expression of integrin αL, integrin αM and 

integrin β2 on neutrophils was assessed by flow cytometry in neutrophils isolated from 

vehicle- and CD95L- injected mice. Integrin levels were similar in neutrophils derived 

from control- and CD95L-injected mice (Figure 14 B, C and D).  

 

 

 

 

 

 

  

Figure 14. i.v. injection of CD95L does not influence neutrophil integrin levels. (A) Flow 

cytometry plot of blood neutrophils. Neutrophils were gated according to the profile of 

FSC/SSC, and CD45, CD11b, Ly6G positivity (B-D) Mice were i.v. injected with saline or 

CD95L (10μg). One hour later, blood samples were collected stained with antibodies of 

neutrophil markers and integrin subunits and analyzed by flow cytometry. Neutrophils 

expression levels of integrin αL (B), integrin αM (C) and integrin β2 (D) are presented as mean ± 

SEM. n=3, student's t test, ns: not significant. 
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We also checked the cell surface expression of integrin in neutrophils of CD95f/f;LysMcre 

mice. CD95-deficient neutrophils exhibited increased levels of integrin αM and similar 

levels of integrin αL and integrin β2 when compared to wt neutrophils (Figure 15 C,D and 

E). Altogether these results show the effect of CD95 on slow rolling is not due to the 

change in cell surface expression levels of integrins. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Deletion of CD95 in myeloid cells does not reduce neutrophil integrin levels. 

(A) Scheme of CD95 deletion in myeloid cells of CD95f/f;LysMcre mouse line. CD95f/f mice were 

crossed with LysMcre mice to get CD95 deletion in myeloid cells. (B) Blood samples of wt or 

CD95f/f;LysMcre mice were stained with antibodies of neutrophil markers and CD95. Cell surface 

level of CD95 in cre- and cre+ neutrophils was analyzed by flow cytometry and presented as 

mean ± SEM. n=3, student's t test, ***p<0.001. (C-E) Blood samples of wt or CD95f/f;LysMcre 

mice were stained with antibodies of neutrophil markers and integrin subunits, and analyzed 

by flow cytometry. Neutrophils expression levels of CD11a (C), CD18 (D) and CD11b (E) are 

presented as mean ± SEM (n=3, student's t test, *p<0.05, ns: not significant). 
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4.3 CD95 signaling activates integrin 

 

4.3.1 Rap1 activation upon CD95L stimulation  

The common final step for integrin activation is described as the Rap1a activation-

dependent binding of talin1 to cytoplasmic domain of β integrin, which in turn induces 

the open conformational changes in integrin (Tadokoro et al., 2003; Wegener et al., 

2007; Lefort et al., 2012). In order to find out whether CD95 signaling induces integrin 

activation, we first tested Rap1 activation upon CD95L stimulation in mouse bone 

marrow derived neutrophils by active Rap1 pull-down assay (Katagiri et al., 2004). In this 

assay, Rap1GTP was pulled down with GST-RalGDS-RBD peptide and assessed by 

western blot. For negative and positive controls, neutrophil lysates were treated with 

GDP and GTP to antagonistically bind Rap1 in the lysate before adding GST-RalGDS-

RBD peptide. Rap1GTP level in GTP treated lysate was higher than in GDP treated 

lysate (Figure 16 A). Following CD95L stimulation, we observed significant activation of 

Rap1 after 15 min treatment in neutrophils (Figure 16 B, C). 

 

 

 

 

 

 

 

 

 

Figure 16. CD95L induces Rap1 activation. (A) Lysates from bone marrow-derived murine 

neutrophils were treated with GDP or GTP before the GST-RalGDS-RBD peptide affinity-

precipitation. The immunoprecipitates were immunoblotted for Rap1. (B) Neutrophils were 

treated with CD95L (40ng/ml). Lysates were prepared at the indicated time points and affinity-

precipitated with GST-RalGDS-RBD peptide for Rap1-GTP. The immunoprecipitates were 

immunoblotted for Rap1. (C) Quantitative analysis of Rap1-GTP activation in (B) from three 

independent experiments presented as mean ± SEM. n=3, one-way ANOVA, Bonferroni 

multiple comparison post hoc test, **p<0.01. 
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4.3.2 CD95L induces integrin activation 

Different conformation status of LFA-1 can be recognized by integrin epitope specific 

antibodies. KIM127 recognizes an epitope of the β2 subunit of human LFA-1 when it is 

extended (Beglova et al., 2002), whereas mab24 binds to the epitope of I-like domain in 

the β2 subunit of LFA-1 at high-affinity state (Lu et al., 2001). To investigate CD95 

induced integrin conformational changes, U937 cells which had been pre-incubated with 

the reporter antibodies were perfused through the flow chamber. Binding of reporter 

antibodies upon stimulation of soluble or immobilized CD95L was analyzed by flow 

cytometry. A significant increase of KIM127 and mab24 binding was observed in cells 

stimulated with soluble CD95L cells, which indicate the extension and full activation of 

integrin upon CD95L treatment (Figure 17 B, C).  

 

 

 

 

 

 

 

 

Figure 17. CD95L induces integrin activation. (A) Scheme of the flow chamber system used 

for integrin reporter antibodies assay. U937 cells were loaded to a syringe in the presence of 

reporter antibodies. Cells were perfused through the selectin or selectin + CD95L coated 

chamber and fixed directly in 2%PFA for further analysis. (B-C) Upon the treatment of soluble 

or immobilized CD95L, the binding of KIM127 (B) or mAb24 (C) was analyzed by flow 

cytometry and presented as mean ± SEM. n=3, one-way ANOVA, Bonferroni multiple 

comparison post hoc test, *p<0.05. 
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The soluble ICAM1 binding assay is another commonly used test for detecting the high 

affinity state of LFA-1 (Salas et al., 2004; Lefort et al., 2012). To further address the 

CD95L stimulation induced integrin activation, bone marrow derived neutrophils were 

incubated with ICAM1-Fc and the binding of ICAM1 was assessed with flow cytometry. 

CD95L activated neutrophils showed significant binding of soluble ICAM1 compared to 

the non-treated cells (Figure 18). Altogether these data indicate that activation of CD95 

leads to activation of integrin. 

 

 

 

The cell surface levels of integrin αL, integrin αM and integrin β2 were not changed in 

mouse bone marrow derived neutrophils after CD95L treatment. (Figure 19). This shows 

that CD95L stimulation induced soluble ICAM1 binding is not due to the up-regulation of 

integrin levels in neutrophils. 

 

Figure 18. CD95 triggers the binding of solube ICAM1 in 

neutrophils. Mouse bone marrow derived neutrophils were 

stimulated with CD95L immobilized to lipid membranes for 10 

minutes in the presence of 20µg/ml ICAM1-FC. Binding of  

ICAM1-FC was assessed with flow cytometry and presented as 

mean ± SEM. n=3, student's t test, **p<0.01 
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4.4 CD95 associates with integrin 

4.4.1 Association of CD95 with integrin αL upon CD95L treatment. 

Compartmentalization of multi-molecular signaling complexes integrates extracellular 

signals and facilitates the activation of integrin (Bezman and Koretzky, 2007). CD44, one 

of the E-selectin ligand on neutrophil, has been shown to regulate CD95 via the 

formation of signaling complexes of CD44-erzin-actin-CD95 (Mielgo et al., 2006; Mielgo 

et al., 2007). It is possible that upon CD95L stimulation, CD95 assembles a signaling 

complex which associates with LFA-1 and coordinates with selectin signals to induce 

LFA-1 activation.  

Figure 19. CD95L treatment does not influence integrin level in neutrophils in vitro. (A) 

Flow cytometry plot of percoll isolated-neutrophils from bone marrow. Neutrophils were gated 

according to the profile of FSC/ SSC, and CD45, CD11b, Ly6G positivity. (B-D) Bone marrow-

derived neutrophils were treated with CD95L and fixed at the indicated time points. Fixed 

neutrophils were stained with antibodies to neutrophil markers and integrin subunits, then 

analyzed by flow cytometry. Neutrophils cell surface expression levels of integrin αL (B), integrin 

αM (C) and integrin β2 (D) are presented as mean ± SEM (n=3). 
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To test this hypothesis, immunoprecipitation of integrin αL from CD95L treated mouse 

macrophages lysate was performed and we observed a CD95L stimulation-dependent 

association of CD95 and integrin (Figure 20). 

 

 

 

4.4.2 Increased colocalization of CD95 and integrin upon CD95L stimulation 

The colocalization of CD95 and integrin αL was investigated by immunocytochemistry 

staining. We perfused control-, soluble or immobilized CD95L-treated U937 cells through 

an E-selectin coated flow chamber. Cells perfused through the chamber were fixed and 

immunostained for CD95 and integrin αL (Figure 21 A). Increased colocalization of CD95 

and Integrin αL was observed in immobilized or soluble CD95L-treated cells as 

compared to control-treated ones (Figure 21 B).  

Figure 20. Association of CD95 with integrin 

αL upon CD95L treatment. Bone marrow-

derived  macrophages were treated with CD95L 

(40ng /ml). Lysates were prepared at the 

indicated time and immunoprecipitated with anti-

CD11a antibody followed by immunoblotting with 

CD95 and CD11a antibody. 
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4.5 Endothelial cell-derived CD95L mediates neutrophil recruitment 

During inflammation, endothelial cells activated by inflammatory cytokines express 

adhesion molecules, such as selectin and ICAM, and synthesize chemokines and lipid 

chemoattractants on the luminal surface to facilitate the recruitment of leukocytes to 

Figure 21. CD95 colocalizes with integrin αL 

upon stimulation with CD95L. (A) U937 cells 

were perfused through human E-selectin coated 

flow chamber with the stimulation of immobilized 

CD95L (e-h) or soluble CD95L (i-l). Cells were 

fixed and stained with anti-CD11a (red) and anti-

CD95 (green) antibodies. d, h and l show the 

plot profile of fluorescence intensity in 

transparent white square of a-b, e-f and i-j. (B) 

Pearson’s coefficient analysis of CD95 and 

integrin colocalization in (A). Data presented as 

dot plot with median. Each dot represents a cell  

(n=33-36). one-way ANOVA, Bonferroni multiple comparison post hoc test, ***p<0.001. 
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inflamed tissue (Ley et al., 2007). As shown above, immobilized CD95L induces the 

activation of integrin and promotes the slow rolling of neutrophils in a flow chamber 

system. Hence, we hypothesize that in the in vivo scenario, activated endothelial cells 

might present CD95L to facilitate neutrophil recruitment. In order to test this hypothesis, 

we first checked whether CD95L stimulation could activate endothelial cells in terms of 

increasing the cell surface level of adhesion molecules, such as ICAM1. However, we 

didn't observe any effect of CD95 on regulating ICAM1 level in cultured mouse 

endothelial cells (Figure 22). 

 

 

 

To address our hypothesis in an in vivo model, Ve-CadherinERT2/4cre and CD95Lflox mice 

were crossed to allow inducible deletion of CD95L in endothelial cells (Figure 23 A). 

Neutrophil recruitment was tested with the thioglycollate induced peritonitis model after 

induction with tamoxifen in CD95Lf/f;Ve-CadherinERT2/4cre mice (Figure 23 B, C). The number 

of peritoneal neutrophils 6 hours after thioglycollate injection was significantly reduced in 

endothelial-CD95L deleted mice compared to control mice (Figure 23 D). However, in 

mice with CD95 deletion in endothelial cells (CD95f/f;Ve-CadherinCreERT2/4), we didn't observe 

any impairment of neutrophil recruitment (Figure 23 E).  

Figure 22. CD95L stimulation has no 

impact on cell surface ICAM1 level in 

endothelial cells. Mouse lung derived 

endothelial cells were cultured in 96 well 

plate and stimulated with TNF-α (100ng/ml) 

or CD95L (40ng/ml, 200ng/ml) for 6 or 24 

hours. Cells were immuostained with anti-

ICAM1 and measured with a microplate 

reader. Data are presented as mean ± 

SEM. n=3, one-way ANOVA, Bonferroni 

multiple comparison post hoc test, 

***p<0.001, ns: not significat. 
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Figure 23. Endothelial cell-derived CD95L is necessary for neutrophils recruitment in 

vivo. (A) Scheme of inducible deletion of CD95L in endothelial cells in CD95Lf/f;Ve-CadherinERT2/4cre 

mouse. (B) Injection schedule of tamoxifen and thioglycollate is depicted. Tamoxifen 

(200mg/kg) was intragastrically administered to CD95Lf/f;Ve-CadherinERT2/4cre mice for 5 consecutive 

days. At day 12 after the first tamoxifen injection, mice were i.p. injected with thioglycollate to 

induce peritonitis. 6h after thioglycollate injection, peritoneal lavage was performed and 

peritoneal cells were stained with neutrophil markers. (C) Flow cytometry plot of peritoneal 

neutrophils 6 hours after thioglycollate injection. Neutrophils were gated according to the 

profile of FSC/ SSC, DAPI negativity and CD45, CD11b, Ly6G positivity. (D) Peritoneal 

neutrophils influx 6 hours after injection of thioglycollate into wt or CD95Lf/f;Ve-CadherinERT2/4cre 

mouse (n=11-14). (E) Peritoneal neutrophils influx 6 hours after injection of thioglycollate into 

WT or CD95f/f;Ve-CadherinERT2/4cre mouse (n=16-17). Data presented as mean ± SEM, student's t 

test, *p<0.05. 
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The ablation of CD95L in endothelial cells of CD95Lf/f;Ve-CadherinERT2/4cre mice was 

confirmed by flow cytometry (Figure 24 A,B). To check the cell surface level of adhesion 

molecules in endothelial cells, mice livers were dissociated and immunostained for 

endothelial marker and anti-ICAM1/ICAM2/P-selectin/E-selectin.  

 

 

 

 

 

 

 

 

Figure 24. Inducible deletion of CD95L in endothelial cells does not influence cell surface 

level of ICAM and selectins. (A) Flow cytometry plot of liver endothelial cells. Dissociated liver 

cells from CD95Lf/f;Ve-CadherinERT2/4cre mice were stained with antibodies of endothelial cell markers 

and anti-CD95L/ICAM1/ICAM2/P-selectin/E-selectin. Endothelial cells were gated according to 

the profile of FSC/SSC, DAPI, CD45 negativity and CD31 positivity (B) Cell surface level of 

CD95L in endothelial cells of CD95Lf/f;Ve-CadherinERT2/4cre mice. Data presented as mean ± SEM, 

n=4, student's t test, *p<0.05. (C-F) Cell surface level of ICAM1 (C), ICAM2 (D), P-selectin (E) 

and E-selectin (F) in endothelial cells of naïve or thioglycollate injected CD95Lf/f;Ve-CadherinERT2/4cre 

mice. Data presented as dot plot with median, one-way ANOVA, Bonferroni multiple 

comparison post hoc test, ns: not significant. 
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The endothelial ICAM1 and ICAM2 levels were reduced in thioglycollate-injected mice 

compared with naïve mice (Figure 24 C, D). Whereas the P-selectin and E-selectin were 

significantly increased (Figure 24 E, F). We didn't observe a significant difference of 

ICAM1/ICAM2/P-selectin/E-selectin levels between CD95L-deleted and non-deleted 

endothelial cells (Figure 24 C-F). 

The ablation of CD95 in endothelial cells of CD95f/f;Ve-CadherinCreERT2/4 mice was also 

examined by flow cytometry (Figure 25 A). The levels of cell surface adhesion molecules 

ICAM1/E-selectin/P-selectin in CD95 deleted endothelial cells were similar to the CD95 

non-deleted cells (Figure 25 B, C, D). 

Thus CD95 and CD95L deletion in endothelia cells have no significant impact on the cell 

surface level of adhesion molecules of ICAM1, ICAM2, E-selectin and P-selectin. 

 

 

 

 

 

 

Figure 25. Inducible deletion of 
CD95 in endothelial cells does not 
influence cell surface level of 
ICAM1 and selectins. Dissociated 
liver cells from CD95f/f;Ve-CadherinCreERT2/4 
mice were stained with antibodies of 
endothelial cell marker and anti-
CD95/ICAM1//P-selectin/E-selectin. 
(A) Cell surface level of CD95 in 
endothelial cells of CD95f/f;Ve-

CadherinCreERT2/4 mice. Data presented as 
mean ± SEM (n=2-4). (B-D) Cell 
surface levels of ICAM1 (B), E-
selectin (C) and P-selectin (D) in 
endothelial cells of CD95f/f;Ve-

CadherinCreERT2/4 mice. Data presented as 
mean ± SEM, n=4, student's t test, 
**p<0.01. 
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4.6 CD95 induces Ly6Chi monocyte mobilization and recruitment 

4.6.1 CD95 activation increases Ly6Chi monocyte mobilization to blood   

As described in the introduction section, neutrophil recruitment is normally followed by 

the wave of monocyte recruitment during innate response. In order to clarify whether 

CD95 signaling mediates innate immune response via recruitment of monocytes as well, 

we first examined the mobilization of Ly6Chi monocytes from the monocytes reservoir to 

blood after CD95L treatment. As reported in our previous publication, in an acute 

inflammation model of spinal cord injury, cell surface levels of CD95L elevated 

dramatically in blood neutrophils and monocytes after injury (Letellier et al., 2010). 

Following up on this finding, we performed i.v. injection of CD95L (10µg) to naïve mice 

and checked the levels of Ly6Chi monocytes in blood by flow cytometry. Lineage makers 

(Lin marker: Ly6G, Nk1.1, CD3, CD19) were used to exclude neutrophils, natural killer 

cells (NK cells), T and B cells. Antibodies against CD115 (colony-stimulating factor 

receptor, M-CSFR, which is specifically expressed in cells of monocyte and macrophage 

lineage), CD11b, Ly6C and CD43 were used for distinguishing monocytes (Figure 26 A). 

At 6 hours after CD95L injection, the ratio of Ly6Chi monocytes among CD45+ cells in 

blood raised significantly compared to saline-injected mice. At 36 hours after CD95L 

injection, this ratio returned to the level of control mice (Figure 26 B). Ly6Clo monocyte 

levels were not significantly impaired after CD95L treatment, but only increased slightly 

12 hours after CD95L treatment (Figure 26 C). This data indicates that CD95 activation 

specifically elevates Ly6Chi monocyte mobilization to blood.  
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4.6.2 CD95 activation increases Ly6Chi monocyte recruitment to lymph nodes 

Once monocytes extravasate into the tissue, the differentiation towards macrophages or 

DCs starts. DCs are strong APCs which serve as a bridge to connect innate immunity 

and adaptive immunity during inflammation. In lymph nodes, DCs are mostly derived 

from monocytes (Randolph et al., 2008). It is interesting to know whether CD95-

mobilized monocytes are recruited to lymph nodes to become the precursors for DCs. In 

order to test this hypothesis, lymph nodes of mice were collected after CD95L treatment 

and lymph node cells were stained with monocytes markers (Figure 27 A). At 6 hours 

Figure 26. CD95 activation increases Ly6Chi monocyte mobilization to the blood.  (A) 

Flow cytometry plot of different population of blood monocytes. Monocytes were gated 

according to the profile of FSC/SSC, Lin marker negativity and CD45, CD115, CD11b, 

Ly6C/CD43 positivity. (B, C)  Mice were i.v. injected with saline or CD95L (10μg). Blood 

samples were collected at the indicated time points and stained with monocytes markers. The 

ratio of Ly6Chi (B) and Ly6Clo (C) monocytes were assessed with flow cytometry. Data are 

presented as mean ± SEM. n=3, one-way ANOVA, Bonferroni multiple comparison post hoc 

test, *p<0.05. 
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after CD95L i.v. injection, we observed increased ratio of Ly6Chi monocytes among 

CD45+ cells in the lymph nodes. After 36 hours injection, the ratio returned to the level 

of saline injected control mice, similar to the observation in the blood, although the trend 

was not statistically significant (Figure 27 B). Also consistent with the results from blood 

samples, Ly6Clo monocyte levels in the lymph nodes were not influenced after CD95L 

treatment (Figure 27 C). Taken together, CD95 activation mobilized Ly6Chi monocytes to 

blood and increased the recruitment of Ly6Chi monocytes to lymph nodes. 

 

 

 

 

 

 

Figure 27. CD95 activation increases Ly6Chi monocyte recruitment to lymph nodes.       

(A) Flow cytometry plot of different population of lymph node monocytes. Lymph node 

monocytes were gated according to the profile of FSC/SSC, Lin marker negativity and CD45, 

CD115, CD11b, Ly6C/CD43 positivity. (B,C)  Mice were i.v. injected with saline or CD95L 

(10μg). Lymph nodes were collected at the indicated time points, dissociated and stained with 

monocyte markers. The ratio of Ly6Chi (B) and Ly6Clo (C) monocytes were assessed by flow 

cytometry. Data are presented as mean ± SEM. n=3, one-way ANOVA, Bonferroni multiple 

comparison post hoc test, ns: not significant. 
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4.6.3 Ly6Chi monocytes express relatively high level of CD95 

To investigate how CD95 activation selectively mobilize and recruit Ly6Chi monocytes 

but not Ly6Clo monocytes, we checked the cell surface levels of CD95 in different 

monocyte population from blood and bone marrow by flow cytometry. The blood Ly6Chi 

monocytes showed significantly higher cell surface level of CD95 than Ly6Clo monocytes 

in blood and Ly6Chi monocytes in bone marrow. However, bone marrow Ly6Chi 

monocytes and Ly6Clo monocytes had relatively similar cell surface levels of CD95 

(Figure 28 A). Peritoneal macrophages showed significantly higher cell surface levels of 

CD95 than blood Ly6Chi monocytes (Figure 28 B). 

 

 

 

 

4.6.4 CD95L treatment induces Ly6Chi monocytes mobilization via direct activation 

of CD95  

The CD95L used in this study is a fusion protein of CD95L trimer connected with the T4-

Foldon motif from the fibritin of the bacteriophage T4 (CD95L-T4) and was purified from 

transfected HEK293T cells (Kleber et al., 2008; Apogenix GmbH). According to the 

report from Apogenix, the endotoxin level in the purified CD95L solution was <0.5 EU/ml. 

It is been reported that a low dose of Toll like receptor (TLR) ligand in the blood stream 

drives the CCR2-dependent emigration of monocytes from the bone marrow (Shi et al., 

2011). In order to exclude the possibility that CD95L treatment induced Ly6Chi 

monocytes mobilization is a result from the effect of endotoxin in CD95L solution, we 

Figure 28. Blood Ly6Chi monocytes express relative high level of CD95. Blood cells, bone 

marrow cells (A) and peritoneal cells (B) were stained with monocyte/macrophage markers and 

anti-CD95. CD95 levels on different monocyte populations and macrophages were assessed by 

flow cytometry. Data are presented as mean ± SEM. n=3, one-way ANOVA, Bonferroni multiple 

comparison post hoc test (A), student's t test (B), **p<0.01, ***p<0.001, ns: not significant. 
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neutralized CD95L in vitro with CD95 fusion protein (APG, Apogenix GmbH) prior to 

injection and then injected i.v. the mixed solution to mice to check the blood and lymph 

node monocyte levels. At 6 hours after the injection of the mixed solution, the ratio of 

Ly6Chi monocytes among CD45+ reduced significantly in the group of mice injected with 

CD95L:APG at molar ratio of 1:3 compared to the CD95L injected mice (FIgure 29 A). 

Unexpectedly, the ratio of Ly6Clo monocytes increased significantly after the treatment 

with APG (Figure 29 B). Morever, the results showed a trend for the effect of APG in 

blocking the CD95L-induced recruitment of Ly6Chi monocytes in lymph nodes, and also 

the ratio of Ly6Clo monocytes was increased in lymph nodes (Figure 29 C, D). 

 

 

 

 

 

A more direct evidence for the involvement of CD95 in driving Ly6Chi monocytes came 

out from the study by using CD95f/f;LysMcre mice. The naïve cre positive and negative mice 

Figure 29. CD95L stimulation drives Ly6Chi monocyte mobilization via activating CD95.  

CD95L (10µg/ml) was pre-incubated with APG at molar ratio of 1:3 or 1:10 on ice for 30 

minutes. After incubation, the mixed solution was i.v. injected to the mice. CD95L or APG i.v. 

injections were performed as control. The ratio of Ly6Chi/Ly6Clo monocytes in blood (A, B) and 

lymph node cells (C,D) were assessed by flow cytometry. Data are presented as dot plot with 

median or mean ± SEM. n=4, one-way ANOVA, Bonferroni multiple comparison post hoc test, 

*p<0.05, **p<0.01. 
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showed similar levels of blood Ly6Chi monocytes (Figure 30 A), which indicates that 

CD95 may not have effect on the turnover of blood Ly6Chi monocytes. However, at 6 

hour after CD95L i.v. injection, CD95L-induced Ly6Chi monocytes mobilization was 

significantly attenuated by the deletion of CD95 in myeloid cells (Figure 30 B).  

 

 

 

 

 

4.6.5 CD95L treatment increases the CCL2 level in plasma  

CCR2 is highly expressed in Ly6Chi monocytes (Geissmann et al, 2003) and is critical 

for the mobilization of Ly6Chi monocytes from bone marrow and recruitment to 

inflammatory sites (Tsou et al., 2007). CCL2 is the major ligand for CCR2 and is 

essential for monocyte recruitment in many inflammatory models (Lu et al., 1998). To 

clarify whether CCL2 is involved in CD95-induced Ly6Chi monocytes mobilization, 

mouse plasma CCL2 level was assessed by ELISA of blood samples collected 6 hours 

after CD95L i.v. injection. In CD95L injected mice, the plasma CCL2 level was 

significantly higher than the saline injected control mice (Figure 31). Pre-blocking of 

CD95L with APG at molar ratio of 1:10 reduced the plasma CCL2 level (Figure 31). 

 

Figure 30. Deletion of CD95 in myeloid cells attenuates CD95L stimulation-induced 

Ly6Chi monocyte mobilization. Ly6Chi monocyte levels in the blood of naïve CD95f/f;LysMcre 

mice (A) and CD95f/f;LysMcre mice 6 hours after CD95L i.v. injection (B). Data are presented as 

dot plot with median or mean ± SEM. n=8, student's t test *p<0.05, ns: not significant. 
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To further confirm the involvement of CCL2 in CD95 induced monocytes mobilization 

and recruitment, neutralization of CCL2 with anti-CCL2 antibody (100µg) was performed 

after CD95L i.v. injection to mice. However, we did not observe obvious significant 

reduction of Ly6Chi monocytes after neutralization of CCL2 in CD95L treated mice 

(Figure 32 A). Surprisingly, the level of Ly6Chi monocytes in lymph nodes was increased 

after neutralization of CCL2 (Figure 32 C). 

 

 

Figure 31. CD95L treatment increases 

the plasma CCL2 level. Mice were i.v. 

injected with saline, CD95L (10µg) or APG 

pre-blocked CD95L (CD95L:APG=1:10). At 

6 hours after the injection, blood samples 

were collected and the plasma CCL2 levels 

were measure by ELISA. Data are 

presented as dot plot with median, one-

way ANOVA, Bonferroni multiple 

comparison post hoc test, n=4, *p<0.05, 

ns= not significant.  
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4.6.6 Involvement of CD95 in the recruitment of Ly6Chi monocytes in a peritonitis 

model 

We employed a thioglycollate induced-peritonitis mouse model to investigate the 

involvement of CD95 in recruiting Ly6Chi monocytes during inflammation. Thioglycollate 

induced-peritonitis is a broadly used model to study the recruitment of monocytes. 

However little is known about the kinetics of Ly6Chi monocyte recruitment in this model. 

Therefore, we started by investigating the time point of peak recruitment of Ly6Chi 

monocytes. In naïve mice, 93% of the peritoneal cells were macrophages. At 2 hours 

after thioglycollate injection, most of the resident macrophages vanished. Afterwards, 

the peritoneal Ly6Chi monocytes increased steadily and reached the peak at 12 hours 

after thioglycollate injection. The differentiation of Ly6Chi monocytes to macrophage 

started from 6 hours after thioglycollate injection; and at 48 hours 83% of the peritoneal 

cells were differentiated macrophages (Figure 33 A, B). 

Figure 32. The effect of CCL2 neutralization in CD95L-induced monocyte mobilization and 

recruitment.  CCL2 neutralization was performed by injection of anti-CCL2 antibody (100µg) 10 

minutes after CD95L injection. Blood and lymph node samples were collected 6 hours after 

injection. The ratio of Ly6Chi / Ly6Clo monocytes in blood (A, B) and lymph node cells (C, D) 

were assessed by flow cytometry. Data are presented as dot plot with median. n=4-5, one-way 

ANOVA, Bonferroni multiple comparison post hoc test, ns: not significant. 
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We chose the time point of 12 hours after thioglycollate injection to test the involvement 

of CD95 in Ly6Chi monocyte recruitment. To neutralize endogenous CD95L, two doses 

of APG were i.v. injected to mice with a 6 hours interval after thioglycollate injection 

(Figure 34 A). APG neutralization significantly blocked the infiltration of total immune  

Figure 33. Kinetics of Ly6Chi monocytes recruitment in thioglycollate induced 

peritonitis. Mice were ip injected with thioglycollate for 2, 6, 12, 24, 30 and 48 hours. 

Peritoneal cells were stained with monocytes markers and examined by flow cytometry. (A) 

Flow cytometry plot of peritoneal cells after thioglycollate injection. Ly6Chi monocytes were 

gated according to the profile of FSC/SSC, Lin marker negativity and CD45, CD115, CD11b, 

Ly6C positivity. Macrophages were gated according to the higher CD11b and lower Ly6C level 

than Ly6Chi monocytes. (B) Absolute numbers of peritoneal Ly6Chi monocytes after 

thioglycollate injection. Total number of peritoneal cells was assessed by hemocytometer 

counting and Ly6Chi monocytes ratio was assessed by flow cytometry. Data are presented as 

mean ± SEM, n=3. 
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cells and Ly6Chi monocytes to the peritoneal cavity (Figure 34 B, C). Compared with 

saline injected control mice, blood Ly6Chi monocyte levels significantly decreased in 

mice injected with thioglycollate (Figure 34 D). This indicates that most of the blood 

Ly6Chi monocytes were recruited to the peritoneal cavity after thioglycollate injection and 

APG neutralization attenuated this recruitment and kept the blood Ly6Chi monocytes at 

the control level (Figure 34 D). However, neither thioglycollate injection nor APG 

neutralization impacted the blood Ly6Clo monocytes in a minor way which reflected that 

Figure 34. CD95L neutralization blocks Ly6Chi monocyte recruitment in thioglycollate 

induced peritonitis. (A) Scheme for thioglycollate and APG injeciton. Two doses of APG 

(50µg) were i.v. injected after thioglycollate injetion with 6 hours interval. Mice were sacrificed 

12 hours after thioglycollate injection and peritoneal cells were collected for testing the 

monocytes by flow cytometry. (B, C) The numbers of total peritoneal cells and Ly6Chi 

monocytes in saline or APG treated mice after thioglycollate injection. (D, E) The ratio of blood 

Ly6Chi/ Ly6Clo monocytes in naïve, saline or APG treated mice after thioglycollate injection. 

Data are presented as dot plot with median, student's t test or one-way ANOVA, Bonferroni 

multiple comparison post hoc test, n=5-6, *p<0.05. 
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Ly6Clo monocytes were not recruited in thioglycollate induced-peritonitis (Figure 34 E). 

Taken together, our data demonstrates that CD95 signaling also contributes to the 

innate response via selective recruitment of Ly6Chi monocytes during inflammation.  
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5    DISCUSSION 

5.1 CD95 as a driver for myeloid cell recruitment  

It has been two and a half decades since two research groups found that the 

monoclonal antibodies anti-APO-1 and anti-Fas induced apoptosis in human cell lines 

(Trauth et al., 1989; Yonehara et al., 1989). Over these years, the majority of studies on 

CD95-CD95L interactions have focused on apoptosis as the primary outcome. It is now 

well-known that engagement of CD95 with CD95L leads to the formation of a death-

inducing signaling complex which propagates apoptotic signal through active caspase-8 

to downstream type I or type II apoptosis pathways (Figure 5; Peter and Krammer, 2003; 

Strasser et al., 2009; Hughes et al., 2009). However, these studies on apoptotic function 

eclipsed the role of CD95 as an important mediator of other cellular processes. As 

described in section of 2.6.3, accumulating evidence reveal that CD95 also has 

important non-apoptotic functions, such as mediating cell survival, proliferation and 

migration.  

CD95 belongs to the TNF receptor superfamily. Most of the molecules in this 

superfamily are expressed by or can target cells of the immune system, and they have 

multiple functions ranging from promoting cellular differentiation, survival to the 

production of inflammatory cytokines and chemokines (Croft et al., 2012). In line with 

this, apart from apoptotic functions in the immune system, CD95 ligation induces 

production of pro-inflammatory mediators in a variety of cell types (described in section 

2.6.2). Cytokines and chemokines of TNF-α, IL-1β, IL-6, CXCL1 and CXCL8 activate 

endothelial cells or leukocytes which in turn lead to the recruitment of leukocytes to the 

inflammation site (Ley et al., 2007). CD95-induced leukocyte infiltration was firstly found 

in early studies which intended to see the apoptotic function of CD95 in CD95-negative 

tumor cells in vivo (Arai et al., 1997; Seino et al., 1997). In these studies, the 

transplantation of CD95L-transfected CD95-negative tumor cells was rejected by 

inflammatory response including neutrophils recruitment. Other studies using boyden 

chamber assay demonstrated that soluble CD95L (sCD95L) induced the transmigration 

of human neutrophils in vitro (Seino et al., 1998; Ottonello et al., 1999; Dupont et al., 

2007). In these publications, the activation of neutrophils was not observed upon 
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sCD95L treatment, and neutrophils from Faslpr/lpr mice showed no response to sCD95L. 

Although these findings are promising, it is still unclear whether CD95-induced 

neutrophil recruitment or migration is through direct activation of neutrophils or it is just 

the secondary effect of CD95-induced pro-inflammatory mediators. 

5.1.1 CD95 in mediating slow rolling  

Leukocyte recruitment is a cascade of sequential cellular processes including slow 

rolling, leukocyte activation and firm adhesion, and transendothelial cell migration 

(Figure 1; Ley et al., 2007). Rolling starts when leukocytes are tethered by the ligation of 

selectins on activated endothelial cells to their ligands on leukocytes, such as PSGL-1 

and CD44, in a shear stress-dependent manner. Subsequently, rolling leukocytes 

encounter signals from cytokines and chemokines which in turn induce slow rolling and 

adhesion via the inside-out and outside-in integrin signal pathways. 

Parallel plate flow chamber connected to a pump system has been used for many years 

to study leukocyte rolling adhesion, without many of the complicating factors present in 

vivo (Mclntire et al., 1987; Lawrence et al., 1991). The shortcomings for this system are 

leukocyte isolation-induced activation and the requirement of large amount of cells. A 

recently developed ex vivo model called-autoperfused mouse flow chamber assay has 

overcome these disadvantages (described in section 4.2.1).  

In the autoperfused flow chamber assay, sCD95L or immobilized CD95L induced slow 

rolling of neutrophils and increased the number of rolling cells (Figure 13). These effects 

were abolished in mice with CD95 deficiency in myeloid cells (CD95f/f;LysMCre). It indicates 

that CD95 induces slow rolling via direct effect on neutrophils but not via the induction of 

cytokines and chemokines as published previously.  

The upregulation of selectins and ICAMs in endothelial cells and selectin ligand and 

ICAM ligands in leukocytes plays important roles in rolling and adhesion (Pober and 

Sessa, 2007). Unlike the effect of TNF-α on endothelial cells, CD95L stimulation or 

CD95/CD95L depletion in endothelial cells have no impact on the expression level of 

adhesion molecules (Figure 22, 24, 25). A previous study has shown that crosslinking of 

CD95 with antibody or CD95L rapidly triggered downmodulation of L-selectin, CD44, 

LFAα and LFAβ in CD95 sensitive T cell blasts (Kabelitz et al., 1996). However, in our 
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study, upon CD95L treatment in vitro or in vivo, or CD95 deletion in myeloid cells, we did 

not observe any effects on cell surface expression levels of most integrins, the main 

mediators in rolling and adhesion,. We are only able to detect the upregulation of 

integrin αM in CD95 deleted neutrophils (Figure 14, 15, 19). Taken together, these 

results demonstrate that CD95 induces neutrophil slow rolling independent on the 

induction of pro-inflammatory mediators and upregulation of adhesion molecules.  

5.1.2 CD95 in mediating adhesion and transmigration 

Cellular events of adhesion and transmigration start when rolling cells are activated by 

signaling from chemokines. As described above, some studies reported that sCD95L 

induced the transmigration of human neutrophils in an in vitro boyden chamber assay 

(Seino et al., 1998; Ottonello et al., 1999; Dupont et al., 2007). Nonetheless, two other 

reports from the same researchers claimed that CD95 activation reduced neutrophil 

adhesion to endothelial cells via disturbing the translocation of PKCδ which was 

necessary for integrin β2-mediated adhesion (Greenstein et al., 2000; Hendey et al., 

2002). In these two studies, CD95 was activated by crosslinking with anti-CD95 

antibodies. The cross-linked CD95 with antibody had been shown to interact with Fc 

receptor and promote the apoptosis-inducing activity in target cells (Xu et al., 2003). 

Furthermore, the fact that CD95 agonistic antibodies were applied for half an hour in 

these two studies made them less convincing, since neutrophil adhesion happens within 

minutes in physiological conditions (Ley et al., 2007).  

Ending the controversy, previous work of our lab showed that CD95 induced 

macrophage adhesion on ICAM1 coated chambers in a static adhesion assay and 

triggered myeloid cell transmigration via activation of MMP9 in in vivo inflammatory 

models (Letellier et al., 2010). In order to draw a complete picture of CD95’s role in 

mediating myeloid cell recruitment, we performed in vivo studies using intravital 

microscopy (Data not shown, collaboration work with Dr. Alexander Zarbock, University 

of Münster, Germany). The cremaster muscles of mice were injected with IL-1β or TNF-

α to induce inflammation, and subsequently the parameters of rolling, adherent and 

transmigrating cells in the vessels were examined by intravital microscopy. We observed 

that stimulation of CD95L by i.v. injection showed trends of increased rolling flux fraction 

(percent rolling cells) and decreased rolling velocity. On the other hand, the rolling flux 
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fraction and the numbers of adherent and transmigrated cells were significantly 

decreased in CD95f/f;LysMcre bone marrow reconstituted mice compared to the wt controls. 

These findings are consistent with the published work of our lab. Taken together, our 

studies reveal that, during inflammation, CD95 participates in myeloid cell recruitment 

via mediation of slow rolling, adhesion and transmigration in a cell autonomous manner. 

 

 

5.2 Integrin activation, a novel function for CD95 in mediating myeloid cell 

recruitment 

Integrin activation plays a central role in regulating leukocyte rolling, adhesion and 

transmigration. In the rolling process, selectin engagement with their ligand on leukocyte 

triggers the activation of integrin via the SFKs-Syk-BTK-PLC-γ2-p38/PI3K pathway 

(Figure 2, section of 2.2.1). Subsequently, rolling cells encounter more stimuli which in 

turn fully activate integrin via the GPCRs-PLC-Ca2+/DAG-Rap1 pathway (Figure 3, 

section of 2.3.1.1). Dose CD95 also activate these pathways in mediating leukocyte 

recruitment? 

5.2.1 CD95 activates Syk 

Syk is a non-receptor tyrosine kinase that consists of two tandem SRC-homology 2 

(SH2) domains and a carboxy-terminal tyrosine kinase domain (Turner et al., 2000). Syk 

plays crucial roles in integrin signaling as deficiency of Syk kinase results in complete 

ablation of β1, β2, and β3 integrin signaling events in neutrophils and macrophages 

(Mocsai et al., 2002). And Syk is reported to be necessary for E-selectin-induced 

integrin-mediated rolling (Zarbock et al., 2007). Syk is activated downstream of Src 

kinase. Upon activation, SFKs phosphorylate ITAM-containing adaptor proteins. Binding 

of Syk’s SH2 domains to the phosphorylated ITAM domain of adaptor proteins induces 

kinase activation and re-localization of Syk to the downstream molecules (Turner et al., 

2000). Activated Syk directly interact with PLC-γ isoforms and PI3K (Mocsai et al., 2010). 

Does CD95 activate Syk also via SFKs? 
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The members of SFKs consist of c-Src, Lck, Fyn, Lyn, C-Yes, C-Fgr, Hck, Blk and Yrk. 

Hck, Fgr, and Lyn are the main Src-family kinases expressed in myeloid leukocytes 

(Lowell, 2004). Lyn-/- B cells exhibited a reduced susceptibility to CD95-mediated 

apoptosis (Wang et al., 1996). It has been reported that Fyn and Lck were activated 

upon CD95L stimulation in Jurkat cells (Schlottmann et al., 1996). This study showed 

that the recruitment of Lck to CD95 is dependent on the CD95 intracellular domain. In 

addition, recruitment of Fyn to CD95 was also described in activated T cells (Atkinson et 

al., 1996). They further identified the presence of a highly conserved tyrosine-containing 

YXXL motif located in the death domain of CD95 that is similar to the canonical ITAM 

motif. Later study showed this motif to be phosphorylated upon CD95 activation and 

served as a docking site for SH2-containing tyrosine phosphatase-1 (SHP-1), SHP-2 

and SH2-containing inositol phosphatase (SHIP) in neutrophils (Daigle et al., 2002). 

Importantly, a screen study using antibodies against SFKs identified that Lyn was the 

major SFK phosphorylated and recruited to CD95 upon CD95L stimulation in myeloid 

cells (Letellier et al., 2010). These findings convince us that SFKs activation is involved 

in CD95-induced rolling signal. 

5.2.2 CD95 activates BTK 

BTK is a member of Tec family kinases which belong to the second largest family of 

non-receptor tyrosine kinases. BTK has multidomains interacting with different 

molecules including PKC isoforms, Syk, Wiskott-Aldrich Syndrome Protein etc. This 

characteristic endows BTK with multiple functions (Vargas et al., 2009). Btk-deficiency is 

responsible for X-linked agammaglobulinemia (XLA) in humans and X-linked 

immunodeficiency (Xid) in mice which are associated with reduced integrin-mediated 

adhesion (Vargas et al., 2009). Other studies revealed a crucial role of BTK in 

neutrophils activation and recruitment upon stimulation of chemokines and selectins 

(Lachance et al., 2002; Yago et al., 2010; Mueller et al., 2010). 

Following signal initiation, activation of BTK is downstream of Src and Syk family 

kinases. This interaction brings PLC-γ2 in close vicinity to BTK, which results in its 

phosphorylation and activation in lymphoma cell lines (Hashimoto et al., 1999).  In the 

scenario of neutrophils rolling, E-selectin engagement leads to the activation of the 

ITAM-containing adaptor molecules DAP12 and FcRγ by Src-kinase Fgr (Zarbock et al., 
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2008), which results in the recruitment and phosphorylation of Syk. Syk in turn activates 

BTK (Yago et al., 2010; Mueller et al., 2010; Figure 2). Furthermore, follow-up work from 

Zarbock’s lab shows that Btk activates two parallel pathways in seletin-mediated rolling, 

one is PI3Kγ activation dependent and another one is PLC-γ2-CalDAG-GEFI-Rap1-

p38MAPK pathway (Stadtmann et al., 2011). 

Upon CD95L stimulation, we observed the up-regulated phosphorylation of Syk, BTK 

and PLC-γ2 in myeloid cells (Figure 9, 10). However, in Syk-/- macrophages, CD95L-

induced BTK activation was not impaired as compared to the wt cells. Also the 

phosphorylation level of PLC-γ2 was up-regulated, although basal levels were lower 

than the in wt cells (Figure 10). This result indicates Syk is not involved in CD95-induced 

BTK activation but partially involved in CD95-induced PLC-γ2 activation.  

Interestingly, in B cells BTK was found associated with CD95 via its kinase and 

pleckstrin homology (PH) domains and prevented the CD95-FADD interaction, which in 

turn blocked the apoptotic signal transduction (Vassilev et al., 1999). Notably, this 

association was enhanced further upon CD95 activation and could be abrogated with a 

BTK inhibitor (Vassilev et al., 1999). In line with this viewpoint, we observed a CD95L 

stimulation-dependent association of BTK with CD95 in macrophages (Figure 11A). 

Furthermore, treatment of BTK inhibitor totally abolished CD95-induced PLC-γ2 

activation (Figure 11B, D). These data suggest that CD95-induced PLC-γ2 activation is 

BTK-dependent and it depicts two pathways of CD95-induced PLC-γ2 activation, one is 

through CD95-Syk-BTK- PLC-γ2 and another is CD95-BTK- PLC-γ2. 

5.2.3 CD95 activates Rap1 and induces open conformational change of integrin 

Rap GTPases are the major regulators transducing signals of extracellular stimulation to 

activate integrin in the process of lymphocyte recruitment (described in section 2.3.1.3). 

It is been described that selectin signaling induces Rap1 activation via the PLC-γ2-

CalDAG-GEFI-Rap1 pathway (Stadtmann et al., 2011). In line with this, Rap1 activation 

upon CD95L stimulation was detected in neutrophils (Figure 16). In addition, integrin 

activation upon CD95L treatment was observed by performing active integrin reporter 

antibodies binding assay and soluble ICAM1 binding assay (Figure 17, 18). Our studies 
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reveal that integrin activation can be triggered by CD95-induced PLC-γ2 activation via 

Rap1 (Figure 35) 

 

 

 

 

 

5.2.4 CD95-induced integrin activation – the insights of CD95 coupling with 

selectin and integrin signals 

Soluble or coated CD95L induce neutrophil slow rolling in the autoperfused mouse flow 

chamber assay. However, as no rolling cells appeared in the flow chamber coated only 

with CD95L, it seems that the strength of CD95-CD95L engagement in not strong 

enough for tethering (capturing) leukocytes. This also indicates that CD95 signaling 

needs to cooperate with selectin signaling to initiate the slow rolling.  

Selectin ligands PSGL-1 and CD44 are enriched in lipid raft (Miner et al., 2008; Neame 

et al., 1995). The 3 SFKs of neutrophils, Fgr, Hck, Lyn, which are activated upon the 

engagement of selectin to its ligands (Yago et al., 2010), also associate with cholesterol-

dependent membrane rafts (Lowell et al., 2004). Interestingly, neutrophil slow rolling has 

Figure 35. The signal pathway for CD95-induced integrin activation Upon CD95L 

stimulation, Syk and BTK are recruited to the death domain of CD95, which in turn induce the 

activation of CD95-SyK-BTK-PLC-γ2 and CD95-BTK-PLC-γ2 pathways. Subsequently, 

activated PLC-γ2 leads to integrin activation via Rap1GTP. 
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been reported to be dependent on intact lipid rafts to signal slow rolling on E-selectin 

and P-selectin, as raft disruption blocked selectin-mediated activation of all 3 SFKs 

(Yago et al., 2010). The clustering of lipid rafts is regulated by the actin cytoskeleton 

(Chichili and Rodgers, 2007). Ezrin/radixin/moesin (ERM) proteins, which are the linkers 

between cytoskeleton to integral membrane proteins via their FERM domains, associate 

with PSGL-1 and CD44 through their cytoplasmic domains (Yonemura et al., 1998; 

Serrador et al., 2002). Moreover, ligation of PSGL-1 to selectin recruits Syk to an 

atypical ITAM on ERM proteins bound to the cytoplasmic domain of PSGL-1 (Urzainqui 

et al., 2002), and induces slow rolling via association of the conventional ITAM adaptors 

DAP12 and FcRγ (Yago et al., 2010). 

It has been reported that CD95 clustering upon engagement occurred concomitantly 

with reorganization of the actin cytoskeleton and aggregation of lipid rafts (Söderström et 

al., 2005). Accordingly, CD95 clustering in sphingolipid-rich membrane rafts is 

necessary for the induction of CD95 signals (Grassme et al., 2001). Importantly, it has 

been shown that CD95 is indirectly bound to actin via direct and specific binding to ezrin 

FERM domain (Lozupone et al., 2004), and that the organization of the microfilaments 

affects the outcome of CD95 stimulation (Parlato et al., 2000). Furthermore, CD44 has 

been reported to bind to CD95 and block the apoptotic signal transduction (Mielgo et al., 

2006), and the formation of CD44, ezrin signal complex modulate CD95 signal (Mielgo 

et al., 2007). These findings suggest that CD95 may associate with selectin ligands and 

form a signal complex with SFKs and cytoskeleton proteins in mediating leukocyte 

rolling. 

As in other signaling cascades, coupling kinases to the integrins, such as Src and Syk 

kinases, is believed to be triggered by physical clustering of the integrins and induces 

the outside-in pathway by phosphorylating each other (Abram and Lowell, 2009). It has 

been reported that Src and Syk kinases directly interact with the cytoplasmic domain of 

β2, and β3 (Arias-Salgado et al., 2003). Moreover, another study suggests that Syk 

coupling to integrins was mediated by ITAM containing adaptor proteins DAP12 and 

FcRγ (Mócsai et al., 2006). 

Similar to the canonical ITAM motif, the YXXL motif in CD95 serves as a docking site for 

SH2 containing proteins. This motif is involved in the CD95 -induced Lyn-Syk-mediated 
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signaling cascade in myeloid cell recruitment (Letellier et al., 2010). Interestingly, our 

studies demonstrate a CD95L stimulation-dependent association of CD95 with integrin 

αLβ2 in macrophages (Figure 20). This association is also confirmed by increased 

colocalization of CD95 and integrin upon CD95L stimulation in U937 cells, a human 

leukemic monocyte lymphoma cell line (Figure 21). These findings give us a strong hint 

that CD95-induced rolling and adhesion signaling involves the formation of a signaling 

complex containing selectin ligands, SFKs, integrins and cytoskeleton proteins. 

Nonetheless, it still remains interesting and important to find the protein components 

involved in this signaling complex for further study. These findings will give us a better 

understanding on the decision between CD95-induced apoptotic or non-apoptotic 

signaling.  

 

 

5.3 Decision of apoptosis or survival – from the view of CD95-induced integrin 

activation 

CD95 is a confusing but fascinating molecule as it can trigger either death or survival. 

CD95 has been viewed mainly as a death-inducing receptor (Peter et al., 2007). On the 

other hand, an increasing amount of publications reveal the non-apoptotic functions of 

CD95, such as inducing cell survival, proliferation and migration, which are mediated 

mostly through the activation of MAPKs, NF- κB and PI3K pathways (Wajant et al., 2003; 

Peter et al., 2007; Martin-Villalba et al., 2013). Our studies present a new non-apoptotic 

function of CD95, which is the induction of myeloid cell rolling and adhesion via the 

pathway of CD95-Syk/BTK- PLC-γ2-Rap1-integrin activation (Figure 35). 

BTK has dual-functions in regulating apoptosis (Uckun, 1998). It prevents the activation 

of anti-apoptotic transcription factor STAT3 and promotes oxidative stress-induced 

apoptosis in irradiated B-lineage cells (Uckun et al., 1996; Uckun et al., 2007). On the 

contrary, following the BCR activation, BTK regulates apoptosis in B cells via the 

induction of Bcl-XL, which belongs to the Bcl-2 family and prevents the release of 

cytochrome c in apoptosis induction, (Anderson et al., 1996). Moreover, an alternate 

form of BTK is found to be highly expressed in breast cancer cells and down regulation 
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or inhibition of this protein causes apoptosis, which shows BTK also serves as a survival 

signal in cancer cells (Eifert et al., 2013). Interestingly, the same researchers, who found 

BTK-induced B cell apoptosis, reported that BTK associates with CD95 in B cells via its 

kinase and PH domains and prevented the apoptotic signal transduction by blocking 

CD95-FADD interaction (Vassilev et al., 1999). As the functions of BTK in apoptosis are 

controversial, another group shows that BTK deficiency does not affect mouse 

macrophage apoptosis induced by DNA damage or CD95 engagement (Khare et al., 

2011). However, it has been shown that human Btk-deficient neutrophils produced more 

ROS after engagement of TLRs or TNFRs, which was associated with more apoptosis 

and could be reversed by transduction of recombinant Btk (Honda et al., 2012). These 

findings indicate that the role of BTK in apoptosis is dependent on either the cell types or 

signaling context in the cells. In our studies, CD95-induced BTK activation did not lead 

to any apoptosis outcome.  

Integrins play an important role in the survival of leukocytes (Abram and Lowell, 2009). 

Integrins-activated ERK and AKT induce the upregulation of IAPs (Inhibitors of 

Apoptosis), c-Flip and anti-apoptotic homologs of BCL-2 (e.g., Bcl-2, Bcl-XL, Mcl-1), and 

downregulation of pro-apoptotic homologs of BCL-2 (e.g. Bim, Bid, Bmf) (reviewed by 

Vachon, 2011). Integrin outside-in signaling-activated Src can phosphorylate pro-

caspase 8 to suppress its activation (Frisch, 2008). Focal adhesion kinase (FAK), 

another important kinase activated by outside-in signaling, binds to the death domain 

kinase receptor-interacting protein 1(RIP1) and prevents its recruitment of FADD to the 

DISC formation (Kurenova et al., al 2004). In line with this, the DISC formation was not 

detected in myeloid cells upon CD95L stimulation (unpublished data from our lab). This 

might be contributed by the survival signal of CD95 signaling-activated integrins (Figure 

35) and the binding of SFK to the death domain of CD95. In addition, integrin αLβ2 is 

associated with CD95 upon CD95L stimulation (Figure 20, 21). This association might 

lead to the formation of a signal complex containing selectin ligands, SFKs, integrins and 

cytoskeleton proteins, which block the FADD recruitment to CD95 and thus the 

formation of the DISC. 
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5.4 Other cells involved in CD95-mediated innate response 

5.4.1 Endothelial cells present CD95L in the recruitment of myeloid cells 

During inflammation, endothelial cells participate in leukocyte recruitment by presenting 

selectins and chemokines upon the stimulation of pro-inflammatory cytokines, which are 

released by activated tissue resident innate immune cells (described in section 2.4.1).  

Early studies show that CD95 engagement causes rapid, extensive and disseminated 

endothelial cells apoptosis throughout the body (Cardier et al., 1999; Janin et al., 2002). 

However, in these studies CD95 was activated by conjugating with agonistic CD95-

specific antibody, which was suggested to induce CD95-mediated apoptosis via co-

stimulation of FcγRIIB (Xu et al., 2003). In line with this, we did not detect any apoptotic 

effect of CD95L in in vitro cultured endothelial cells or endothelial cells in CD95L i.v. 

injected mice. 

Myeloid cells are the major source for CD95L during inflammation (Letellier et al., 2010). 

CD95L was also shown to be expressed by endothelial cells (Sata and Walsh, 1998). To 

find out whether endothelial cells present CD95L during inflammation, we performed the 

tamoxifen-induced deletion of CD95L in endothelial cells of CD95Lf/f;Ve-CadherinERT2/4cre
 

mouse line (Figure 23). And we observed an impaired neutrophil recruitment in mice 

with CD95L deletion in endothelial cells as compared to the wt control. It indicates that 

endothelial cells also contribute to the CD95-induced myeloid cell recruitment by 

presenting CD95L. Nonetheless, how CD95L expression is regulated in endothelial cells 

during myeloid cell recruitment deserves further investigation. 

Adhesion molecules expression can be triggered in endothelial cells upon the 

stimulation of TNF-α. However, unlike TNF-α, CD95L stimulation has no effect on the 

expression of adhesion molecules in in vitro cultured endothelial cells (Figure 22). In 

addition, deletion of CD95 in endothelial cells (CD95f/f;Ve-CadherinERT2/4cre) also has no impacts 

on the expression levels of adhesion molecules and neutrophil recruitment (Figure 23E, 

25).  

Interestingly, an early study showed that CD95L expression in endothelial cells was 

downregulated upon TNFα treatment (Sata and Walsh, 1998). And over expression of 

CD95L by adenovirus transfection in endothelial cells markedly attenuated TNFα-
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induced T cells and macrophages infiltration and adherent mononuclear cells underwent 

apoptosis (Sata and Walsh, 1998). Nevertheless, as they also observed, the infiltrated 

cells upon TNFα treatment might be killed by CD95-induced apoptosis since it has been 

suggested that the decision of CD95-induced death or survival signaling depends on the 

stimulation threshold (Lavrik et al., 2007). In line with this, tumor endothelial cells 

selectively and highly express CD95L, which serves as a barrier to prevent the 

infiltration of CD8 cells via induction of apoptosis in the establishment of immune 

tolerance (Motz et al., 2014). 

5.4.2 CD95 selectively drives inflammatory monocytes recruitment 

Monocytes comprise the second wave of immune cells recruitment during the innate 

immune response. Monocytes consist of different subtypes which have distinct functions 

and respond differently during inflammation (described in section 2.5). 

As other immune cells, CD95 in monocytes are well documented with apoptotic 

functions (Um et al., 1996; Kiener et al., 1997; Blomberg et al., 2009). The CD95 

signaling is also likely to play an in vivo role in governing monocyte/macrophage 

homeostasis. Compared with congenic control C57BL/6 mice, CD95-deficient mice 

(Faslpr) display increased numbers of circulating monocytes in the steady state and in a 

model of systemic inflammatory arthritis (Brown et al., 2004). Contrary to this, circulating 

monocytes are increased upon CD95 activation by i.v. injection of CD95L, especially for 

the subtype of Ly6Chi subtype (Figure 26). CD95L triggered Ly6Chi monocyte 

mobilization, with a peak at 6 hours after CD95L injection. At 36 hours after CD95L 

injection, it decreased and returned to control levels (Figure 26). The turnover time of 

Ly6Chi monocytes is reported very short by chasing the monocytes with BrdU labeling. 

In mice injected with MC21 antibody which ablated the blood Ly6Chi monocytes, the 

replenishment of Ly6Chi monocytes was observed 6 hours after MC21 treatment (Yona 

et al., 2012). So we believe that CD95L stimulation-mobilizated Ly6Chi monocytes are 

from the monocytes reservoir but not from newly generated monocytes in the bone 

marrow. We also observed the increased-recruitment of Ly6Chi monocytes in the lymph 

nodes upon CD95L injection. In consistent with our findings, another apoptosis-inducing 

ligand, the TNF-related apoptosis-inducing ligand (TRAIL) is also reported to induce 
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chemotactic migration of monocytes in vivo via a death receptor 4-mediated 

RhoGTPase pathway (Wei et al., 2010). 

The different response of Ly6Chi and Ly6Clo monocytes to CD95L stimulation might be 

related to their difference in CD95 expression (Figure 28). However, deletion of CD95 

only shows a minor effect on attenuating the CD95L-induced Ly6Chi monocyte 

mobilization (Figure 30). It also might be dependent on the cytokine response upon 

CD95L treatment, as increased plasma CCL2 level was detected (Figure 31).  

Nonetheless, the source of CCL2 after CD95L treatment remains unclear. Interestingly, 

it has been reported that bone marrow mesenchymal stem cells and their progeny, 

including CCL12-abundant reticular cells, rapidly expressed CCL2 in response to 

circulating TLR ligands and induced Ly6Chi monocyte mobilization to the bloodstream 

(Shi et al., 2011). More importantly, a recent investigation shows that CD95-induced 

apoptosis on target cells is associated with the production of cytokines and chemokines, 

such as IL-6, IL-8, CXCL1, CCL2 and GMCSF, which serve as “find-me” signals for the 

phagocytes in clearance of dead cells (Cullen et al., 2013).  

Taken together, out studies reveal a CD95-induced integrin activation pathway, the 

CD95-Syk/BTK-PLC-γ2-Rap1-integrin, that mediates myeloid cells rolling and adhesion. 

CD95L is presented by endothelial cells in the process. Moreover, CD95 selectively 

induces the mobilization and recruitment of inflammatory monocytes in a CCL2-

dependent manner. As a conclusion, our studies identify a pathway of CD95 

chemotactic axis for innate immune cell recruitment. 
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