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Introduction

Research on walking robots - ‘walking’ here being used as a general term for walking,
running and crawling - is today one of the most important areas of research in robotics.
Two objectives fuel these efforts: The development of new or improved walking robots and
the pure insight gained into the locomotion itself that in return can be used to optimize
biological gait.

The advantage of walking machines over wheeled robots is that walking is clearly more flex-
ible and compatible with most types of surfaces, including very rough surfaces, stairs etc.
Also, legged machines can more freely choose footholds and move over obstacles. There
is hence a high number of existing applications, e.g. robots for the exploration of planets
or military demining missions in rough terrains and industrial walking robots used for
maintenance in nuclear power plants or fire-fighting in skyscrapers. Currently, two main
directions of research are pursued: One aims at increasing speed and allowing fewer legs
on relatively smooth surfaces, the other aims at creating completely autonomous robots
capable to move on very rough terrain. Our research follows the first path concentrating
on fast dynamical walking robots with one or two legs.

The pure insight derived from research into walking robots helps us understand the human
gait, its mechanisms, its control and its stability. Optimality studies of human motion
can result in improved performances in various sports, and parameter studies will lead to
conclusions for pathological gait which has mechanical and not neurological causes.

Dynamical walking robots can either be closed-loop or open-loop controlled. While closed-
loop control clearly is the most flexible solution allowing the highest number of applica-
tions some significant drawbacks exist: It requires sophisticated and expensive sensory
systems and feedback-controllers. The computation of appropriate reactions is time crit-
ical and often a limitation for making motion faster, hence requiring high computation
capacities on-board. This all translates into the necessity of high budgets and deep tech-
nical knowledge.

An open-loop control strategy does not use active reaction to respond to perturbations but
entirely relies on the mechanical system’s natural kinematics and dynamics to stabilize
the trajectory. Actuator histories are a priori determined, prescribed and not changed by
any feedback interference. Its outstanding advantages are low cost and speed of control.
And even for motions on rough terrain where closed-loop control is a necessity, robust
open-loop stable trajectories can provide a basis on top of which closed-loop control is
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applied.

Not much research has been done in the field of open-loop controlled robots so far. Typ-
ically an intuitive approach has been taken: only simple models have been studied, and
the stabilization task has been broken down into a number of basic operations.

In this thesis we take a fundamentally different approach. For the first time the problem
of open-loop stabilization is addressed by means of optimization methods. By leaving the
intuitive path and focusing on mathematical analysis we are able to treat robot models
of increased complexity. The goal of our work is

e to provide efficient optimization procedures for the determination of open-loop stable
robot parameters and periodic trajectories and

e by finding previously unknown open-loop stable robots to demonstrate the flexibility
of the concept of open-loop control.

The research of this interdisciplinary thesis is thus clearly motivated by the applicational
aspect.

Besides open-loop controlled actuated walking robots which are our main interest, we
also treat the special case of purely mechanical passive-dynamic walkers that, in addition
to lacking feedback control, have no active sources of energy. Describing the motion of
both types of robots leads to complex periodic multi-phase problems with discontinuities
caused by ground and joint contacts. Actuated and passive-dynamic systems lead to
non-autonomous and autonomous differential equations, respectively.

A number of significant contributions have been made during our research and will be
described in this thesis.

New open-loop stable robot configurations have been discovered all of which exhibit re-
markable features. Among others we present simulations of

e the first human-like actuated open-loop stable robot
e the first open-loop stable actuated one-legged hopping robot with point foot

e the first 3D passive-dynamic walker.

The last robot stems from a cooperation with Coleman [18] from Cornell university who
assembled a similar real robot and did the modeling, but was not able to find stable
solutions. The other two robots have no real counterparts. The entity of these robots
not only serves to illustrate the range of possible open-loop stable mechanisms but it
also uncovers previously unknown facts about multibody systems and reveals open-loop
features of human gait. A unified approach to gait modeling is introduced. Various
animation sequences have been produced for all robots and different types of motion
based on the visualization tool JAFV (Winckler [102]). We will show a few sequences in
this thesis.
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A numerical method for the optimization of open-loop stability of periodic systems will be
presented. This is the first time stability optimization is combined with the simultaneous
solution of a periodic optimal control problem. Stability is defined in terms of the spectral
radius of the monodromy matrix which is non-differentiable and may be non-Lipschitz at
points of multiple maximum eigenvalue and involves the computation of sensitivities hence
representing a difficult non-standard optimization criterion. We introduce a two-level
optimization approach splitting the problems of periodic gait generation and stabilization
of the system. For the development of these stability optimization methods we could build
upon the extensive knowledge and methods for the solution of optimal control problems
available in the research group of Bock & Schléder at IWR, University of Heidelberg
(compare Bock & Plitt [11], Leineweber [48], [47]). We have chosen a modular object-
oriented approach for implementation since it allowed us to evaluate different possible
methods for the non-standard task of stability optimization. A direct search method,
which is a modification of the Nelder-Mead polytope algorithm, has shown to be a very
good choice. Apparently new equations for the derivatives of the monodromy matrix in
the presence of discontinuities (representing second order derivatives of the dynamics) and
for the derivatives of singular values are given in this thesis. A numerical criterion for the
characterization of nonlinear stability properties will be introduced.

We give general recommendations on the use of alternative objective functions for stability
optimization based on extensive theoretical and numerical studies. We have evaluated the
use of matrix norms instead of the spectral radius since they represent its upper bounds.
Instead of the monodromy matrix a power thereof can be used. These alternative opti-
mization criteria have the advantage of leading to problems easier to solve than eigenvalue
optimization.

This thesis is organized in nine chapters and one appendix. Due to the interdisciplinary
setting of this work, chapters have been written with different focus on robotics, numerical
mathematics, and software engineering.

Chapter 1 serves to motivate the idea of open-loop control as the central topic of this thesis.
Its advantages are illustrated against the background of conventional control concepts.
Passive-dynamic walking machines are introduced as a special form of open-loop stable
robots. Stability properties of different classes of mechanical systems are recalled. We
outline our two-level optimization approach to the question of finding open-loop stable
robot configurations.

Chapter 2 is dedicated to modeling periodic gaits in robotics and biology. In the first
part of the chapter we introduce the general form of periodic multiphase gait models. We
give reasons for a prescription of the order of phases. In the second part we describe the
modeling process starting from a physical robot model, choosing an appropriate set of
coordinates and setting up the equations of motion.

Chapters 3 - 6 describe mathematical background and numerical methods required for
the stability optimization of periodic gaits.
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In chapter 3 we address the problem of periodic gait generation which is the task to
be solved in the inner loop. We recall terminology from the field of dynamical systems
and basic theory about existence and uniqueness of solutions of periodic boundary value
problems. We give the full formulation of a standard multi-phase optimal control problem
with discontinuities. The numerical solution of periodic optimal control problems by a
structured direct multiple shooting approach is described.

In chapter 4 we present the mathematical stability criterion to be used in the outer loop
to define the stability of the inner loop solution. We recall Lyapunov’s first method for
differential equations with periodic right hand side being an extension of Floquet theory to
nonlinear systems. We show that Lyapunov’s first method may be generalized to periodic
multi-phase problems with discontinuities.

In chapter 5 we discuss the various difficulties of using stability in terms of the spectral
radius of the monodromy matrix as optimization criterion. Possible alternatives are dis-
cussed replacing the spectral radius or the monodromy matrix (or both). We list the
different optimization criteria to be evaluated and compared in this thesis.

Chapter 6 is dedicated to numerical methods for stability optimization. We start with
a brief review of literature in the field of non-smooth optimization and eigenvalue opti-
mization. We describe the direct search method, a variant of the Nelder-Mead polytope
algorithm, that we have used for stability optimization of all our robot examples. New
formulas for the computations of derivatives of singular values are given. We describe the
computation of the monodromy matrix in the presence of discontinuities and the neces-
sary projections for monodromy matrices of autonomous systems. Previously unpublished
formulas for second-order derivatives of discontinuous differential equations with respect
to initial values and parameters are derived. Finally we present a numerical procedure
for the determination of nonlinear stability margins.

Chapters 7 - 9 are dedicated to three specific open-loop stable walking robots and are
probably the most interesting for readers who are especially interested in the mechanical
and robotics aspect of this thesis. In chapter 7, we present the one-legged actuated
hopping robot. The human-like actuated biped walker is presented in chapter 8. The
passive-dynamic Tinkertoy robot is subject of chapter 9. We give the full description of
all robot models and extensive results of stability optimization using different optimization
criteria.

The final chapter contains a summary of the key results and methods produced in this
thesis and a discussion of possible extensions and further research.

Software engineering aspects of our work are presented in the appendix.




Chapter 1

Open-loop Stable Walking Robots

In the scientific community the term ’walking robots’ denotes any machine moving on
legs. Precisely though, ’walking’ is a dynamic form of locomotion where at any instant
at least one leg is in contact with the ground. It must therefore be distinguished from
‘crawling” which describes a quasi-static motion without the need to balance, and from
running’ which in contrast to walking also involves flight phases. In this thesis we will
analyze both walking and running robots.

The first ancestors of today’s walking robots were designed — and some of them also
manufactured — in the 19th century. They had the form of modified wheels with feet
attached or of legged vehicles (see Thring [89]) or were inspired by human or animal-like
forms (e.g. horses) and powered either by steam or mechanically by an operator. The
recent developments in walking machines as we know them today started in the 1960s
in Japan where much of the progress since then has been made. Other important steps
of robotics development took place in the United States and in Russia. Europe joined
the efforts only quite recently 15 years ago. Today there is a variety of walking robots
throughout the world. A very extensive and up-to-date survey of state-of the-art walking
robots as well as of their history can be found in the Walking Machine Catalogue of Berns
[7].

Our main interest in this chapter and throughout this thesis is the stability of walking
robots. We focus on the stability properties of different robot types and the efforts
necessary to control their motion. The primary purpose of this chapter is to motivate the
idea of open-loop controlled walking.

Section 1.1 serves to illustrate the two major stability concepts used in contemporary
robotics, static stability on one hand, and dynamic stabilization relying on active feed-
back interference or closed-loop control on the other hand. In section 1.2 the fundamen-
tally different approach of open-loop control is introduced, being the central topic in this
thesis. A special class of open-loop controlled mechanisms without actuation, the passive-
dynamic walking machines, is presented in section 1.3. Section 1.4 gives an overview of
stability implications of general properties of mechanical systems. In section 1.5 we show




6 Chapter 1. Open-loop Stable Walking Robots

Legged Locomotion
in Biomechanics and Robotics

/ ™~

Statically Stable Dynamically Stable
Closed-Loop Stable

(Actively Stabilized by
Feedback Controllers)

Figure 1.1: Different stability concepts for locomotion

how we approach the problem of finding open-loop stable robot models and configurations
by means of optimization.

1.1 Common Stability Concepts for Walking Robots

Figure 1.1 illustrates different concepts of stability and stabilization for locomotion. In
this section we review the two standard approaches most common among existing robots:
statically stable walking, and dynamically stable closed-loop controlled walking. The
treatment of the two highlighted concepts in figure 1.1, open-loop controlled actuated and
passive walking, which are the focus of this thesis, is deferred to the next two sections.

1.1.1 Statically Stable Walking

Statically stable walking is also referred to as crawling according to the above definition.
Natural locomotion of many insects falls into this category (when not flying).

Animals and robots moving in a statically stable fashion do not need to actively balance.
Their center of mass (c.0.m.) which is also referred to as zero moment point in robotics
always lies within the polygon of support of their stance legs. This necessitates a 3-point
ground contact at any instant, generally realized by three feet on the ground. Therefore
statically stable walking robots theoretically need at least four legs, but as four legs with
only one lifted at a time leads to an awkward gait, in practice they typically have six legs
or more. Figure 1.2 shows the typical statically stable tripod gait of a six-legged robot:
fore and hind leg of one side together with the middle leg of the other side are lifted,
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Step 1 Step 2
O O .
v v Q lifted foot
< <
. stance foot
O O

Figure 1.2: Typical tripod gait of statically stable six-legged robots

alternating sides from step to step.

A tricky way to overcome the minimum-number-of-legs requirement sometimes applied is
to use less, e.g. two, but very large feet such that a single foot spans an area of support
large enough to provide static stability (figure 1.3).

Another requirement for a gait being statically stable is low speed. If the momentum was
too high, the c.o.m. might be driven out of the polygon of support and the robot would
risk to tip over.

Most walking robots built in the nineties fall into the category of statically stable robots.

Figure 1.3: Statically stable two-legged robots with large feet
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Figure 1.4: Statically stable robots with eight legs (a) Dante — Carnegie Mellon University)
and six legs (b) Katharina — Universitidt Magdeburg, ¢) Lauron — FZI Karlsruhe, d) RobuglIs —
University of Portsmouth). All Pictures taken from the Walking Machine Catalogue of Berns [7]

They have been built for a number of special applications: planetary exploration, main-
tenance jobs in hazardous areas, demining, forestry etc. (compare e.g. the proceedings
[104] and [105]). They have become increasingly sophisticated, use complex sensors and
control systems like neural networks to navigate and state-of the art motors, but from a
stability point of view they basically rely on the simple concept of static stability. Much
of the recent progress has been inspired by the observation of legged locomotion in nature,
e.g. of insects. The goal is to develop completely autonomous walking machines.

Related to those statically stable walking machines are climbing robots which are addi-
tionally equipped with some sort of suction cups on their feet that enable them to climb
up vertical walls. They are used e.g. in skyscrapers for fire-fighting and window cleaning.

Some examples of statically stable walking and climbing robots in use today are given in
figure 1.4.
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1.1.2 Dynamically Stable Walking with Closed-loop Control

Systems that do not have enough legs or move too fast to satisfy the above static stability
requirements can only walk in a dynamically stable or dynamically stabilized fashion.
They are facing the problem of balance in every step. A dynamically moving stable
system must not fall down, but it must be allowed to tip for short intervals if adequate
support is provided afterwards. Locomotion of humans and most mammals belongs to
this type of walking.

The definition of dynamic stability is sometimes blurred in the walking machines commu-
nity, and one has to be careful not to be mislead by the different definitions of dynamic
stability. E.g. Karcnik et al. [43] define dynamic stability as the ability of the system
to stop within one step. Vukobratovic et al. [97] introduce the definition of practical
stability of dynamic systems that is based on three sets of allowed states for initial, end
and intermediate configurations.

We define dynamic stability according to the small-perturbations-definition that is most
common: a motion of a walking robot is dynamically stable if it persists even in the
presence of small perturbations. We will discuss later what small means in this context..
For a robot with closed-loop control this is possible if the controllers take appropriate
measures to eliminate the effect of external perturbations and bring the robot back to its
original trajectory. The formal mathematical definitions expressing this physical property
will be revised in chapter 4. Sometimes not all variables are relevant for the stability of a
gait in the sense that perturbations in some directions do not have to be eliminated (e.g.
perturbations in the direction of travel for walking on level ground).

One of the first to study dynamically stable walking was Raibert from MIT. The MIT Leg
Lab has produced an amazing collection of dynamical walking and running robots over
the years (see its homepage [45]). They move at different speeds and in different gaits,
some of them are able to get over obstacles or to climb stairways, and they all rely on a
common set of balance and control principles.

Of course there are dynamically walking robots and animals with more than two legs.
Every possible form of gait of horses, cats or dogs has phases with less than three feet on
the ground, even the slow pace of a horse. But in this section we will concentrate on some
examples of dynamically stable one- and two-legged machines for comparison with robots
treated later in this thesis. Please note that the overview is by no means complete.

Hopping is the only possible form of motion for one-legged robots, and it is equivalent to
running according to the definitions at the beginning of this chapter.

One of the first robots built to explore the problem of balance was the hopping monopod
of Raibert & Sutherland [75] which moves like a kangaroo or pogo stick. It consists of a
toroidal body and a leg which are connected by a hinge powered by a torque. The leg
bounces on an adjustable spring. Following the basic idea of breaking the control task
down into three independent parts of height, balance and attitude control the motion is
controlled by three independent servo-control loops. This robot is related to the open-
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Figure 1.5: Dynamically stable robots with one and two legs (a) OLIE — Vrije Universiteit
Brussel, b) Troody — MIT, ¢) Wabian — Waseda University, d) P2 — Honda Motor Co., e) Spring
Flamingo — MIT, all pictures taken from the Walking Machine Catalogue of Berns [7])
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loop hopping robot studied in this thesis. Raibert also built a 3D extension of this 2D
machine and proposed related multi-legged versions. Another one-legged hopping robot
is OLIE of de Man et al. [23] (figurel.5a) that has an articulated instead of a springy
leg. Its motion is restrained to a 2D cylindrical surface by a boom and relies on sensors
measuring hip position and orientation of all limbs and detecting ground contact.

The first bipedal robots have been built in Japan in the sixties, where researchers at
Waseda university built a series of robots. The first of those were static walkers performing
very slow gaits (2 min./step!). Their later models were significantly improved as far as
walking speed and dynamical balancing abilities are concerned. The number of degrees
of freedom and the complexity of the control system have been increased over the years.
The most recent model is WABIAN (see figure 1.5¢). All Waseda robots rely on playing
back pre-recorded trajectories for trunk, legs and arm motions.

Probably the most ambitious and costly bipedal robot project in the world is the Honda
Humanoid Robot Project (see their internet page [17]). The goal is to develop an in-
telligent mobile service robot for general purpose home use. The first prototype P1 was
ready after 10 years of development and is said to have consumed 300 person years and 1
million Dollar worth of parts. The current models are P2 (see figure 1.5d) and its lighter
successor P3.

A number of bipedal walking machines were built at the MIT Leg Lab [45]. The goal
was to develop devices that walk fast and efficiently, are reliable and have large margins
of stability. Recent examples are Spring Flamingo of Pratt [74] (see figure 1.5¢), walking
in the sagittal plane, Troody, a three-dimensional bipedal dinosaur robot with a tail to
provide balancing support (figure 1.5b), and the more human-like 3D biped M2. Building
and controlling these robots was only possible through enormous technical experience
collected during the work on their predecessors.

Although closed-loop control clearly is the most flexible solution we want to point out
some important draw-backs that should not be forgotten:

e closed-loop control typically requires sophisticated and expensive sensory systems
and feedback-controllers, necessitates a high budget and appropriate technical knowl-
edge,

e computation of appropriate reactions is time-critical and is often a limitation for
making some motion faster,

e cnough computational power has to be provided on-board or the robot has to be
restrained to walking on a wire-lace.

In the next two sections we will explain control principles that may be helpful to overcome
some of the difficulties associated with closed-loop control.
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1.2 The Idea of Open-loop Controlled Walking

Fundamentally different to the discussed concept of active stabilization using feedback-
control we now focus on the idea of open-loop control or self-stabilization.

Open-loop stable control strategies do not use active reaction to respond to perturbations
but rely instead on the system’s geometry and the kinematics and dynamics of motion to
stabilize the trajectory. In contrast to closed-loop control there is no need for sensors nor
for any on-line computations.

The actuator histories are a priori determined, prescribed for a motion and not changed
by any feedback interference. If an open-loop stable system is slightly perturbed, it will
recover without any modification of the input. It always has to stay synchronized with
the exciting frequency that rigorously dictates the phase.

For example open-loop controlled human walking is characterized by the use of just the
skeleton and the muscles but neither brain nor senses.

Open-loop stable walking is only possible for adequately selected robot configurations
and trajectories. It is the goal of this thesis to determine robot models, parameters and
actuations that lead to self-stabilizing motions. As open-loop control requires prescribing
a motion it only makes sense to look at regular, i.e. strictly periodic gaits. Handling of
unforeseen events, like the necessity to climb over large obstacles or to choose irregular
footholds, is of course not possible by pure open-loop control.

Open-loop control has the following advantages:
e For selected systems and operations open-loop control is a cheap and fast control
possibility.

e It can be used as a basis on top of which closed-loop control is applied. Systems with
improved open-loop performance are more robust, less sensitive to sensor readings
and require less feedback effort.

e Understanding open-loop control may help understanding learning control.

Pratt has shown in his thesis [74] about the aforementioned Spring Flamingo that ex-
ploiting natural dynamics or self-stabilizing properties does reduce the closed-loop control
effort.

A number of self-stabilizing effects for mechanical systems are known:

e A static tinkertoy is rocking about and converging towards its stable upright position
because of its low center of mass (lower than center of foot curvature arc). The same
simple trick also affects the dynamic stability of systems with curved feet, although
the dependence is not that straightforward.

e Withdrawing energy from the system can also serve to damp out perturbations.
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e A rolling disk or coin is stable due to precision (Greenwood [35]). The same effect
stabilizes the motion of bicycles. Spin plays an important role for stabilization. It
is, however, no possible solution for robots walking in the conventional sense, i.e.
swinging legs back and forth.

e One famous basic mechanical example is the upright inverted pendulum (a simple
pendulum as well as an n-pendulum) that can be open-loop stable if excited by a
harmonic oscillation in longitudinal direction (see e.g. Otterbein [67]).

e Hubbard [41] shows that a skate-board is stabilized due to coupling between the
rider’s rolling angle and the skate-boards steering angle.

e If the neutral point of an airplane lies behind its center of mass, aerodynamic flutter
oscillations will naturally be damped out (e.g. Dinkler [26]).

Schaal & Atkeson [81] have studied open-loop controlled robot juggling. They investi-
gated different juggling tasks and found stable solutions for some and improved unstable
solutions (that were better starting points for closed-loop controllers) for others. Some of
those juggling systems allowed intuitive solutions, such as complete absorption of energy
after each cycle or simple geometry variations.

Open-loop control of walking robots is still an open field of research. With this thesis a
number of break-throughs were achieved in the following topics:

1. Automation of search for open-loop stable robot configurations and solutions:

In our work we leave the intuitive approach favored by the authors cited below and
focus on mathematical analysis. While some numerical recipes for analyzing the
stability of given walking motions were known in the walking robot community, we
felt that there clearly was a lack of fast and reliable numerical methods for the
generation of new open-loop stable gaits for models of increased complexity. The
goal of our research was therefore to develop such methods to be applied to very
general robot models.

2. Determination of fundamentally new open-loop controlled robot models:
Questions of general interest are if open-loop controlled walking is possible in 3D, or
if humanlike walking can be self-stabilizing. Typically these models are too complex
to allow an intuitive approach and thus clearly require a numerical approach.

3. Improve stability for already existing open-loop stable robots:
The methods developed in 1. can be used to find sets of parameters or motions very
different from those already known that lead to significantly improved stability.

There are only very few open-loop controlled physical robots today. Important for our
work was the 2D one-legged self-stabilizing hopping robot of Ringrose [76], [77], as it ini-
tiated our interest in open-loop controlled walking and served as a good starting example
for the development of our numerical methods (see Mombaur et al. [65]). It consists of
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a single springy leg with a curved foot and no upper body and is capable of open-loop
stable in-place hopping motions. Ringrose also has studied two- and four-legged robots
which are just assemblies of several of the above legs. The stability of those robots is to
some extent due to a quite large foot radius allowing a trivial stabilization of the system.
The investigations are intuitively verified by a separation of the stabilization task into
height, pitch and phase stabilization.

An extension of this robot appeared very recently: Wei et al. [99] built a 3D miniature
hopping robot, using the same type of leg as the robots of Ringrose but having an addi-
tional balance mass with controllable offset. This robot also uses a large foot radius for
stabilization.

Other open-loop controlled robots have been developed as extensions of some passive-
dynamic walkers that will be presented in the following section. McGeer applied with
different success external and internal torques and toe-off impulses to his 2D bipedal
straight-legged passive walker [50], [54].

1.3 Passive-dynamic Walking — The Purely Mechan-
ical Approach

Although passive walking robots historically preceded open-loop controlled actuated ma-
chines we have chosen the inverse order for presentation as from our point of view passive-
dynamic walking is a special case of open-loop controlled walking.

In addition to lacking feedback control that all open-loop controlled systems are charac-
terized by, passive-dynamic walkers also lack all active sources of energy. They are purely
mechanical devices walking down slightly inclined slopes that have no actuators but are
accelerated by gravity alone. To resume the analogy to human walking: passive-dynamic
walking is like a human being only using his skeleton - and neither brain and senses nor
muscles. As indicated by the word 'dynamic’, only systems that are not moving in a
statically stable fashion belong to this category.

Finding passive-dynamic walkers is a considerably simpler task than finding open-loop
stable actuated robots: if subject to a perturbation, passive systems have the possibility
to take a different amount of time for some operation, and there is no external exciting
frequency to which the systems have to synchronize. This possibility of time-shifts can
not be underestimated in its positive influence on the existence of stable periodic motion.

Passive-dynamic walking robots belong to the oldest walking machines. The Ruina Lab
of Cornell University lists on its internet page [79] a number of old patents for passive
walkers dating back as far as 1888. There are also quite a few older and more recent
passive-dynamic walking toys (see figure 1.6).

Research about passive-dynamic walking has mainly been motivated by the fact that
certain phases of human gait exhibit a very low muscular activity and are therefore nearly
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Figure 1.6: Passive-dynamic toy walkers: penguin (1938) and elephant (1998)

passive. It was assumed that mechanical parameters of the human body have a greater
influence on human gait than recognized before.

Mochon and McMahon [60], [61] were the first to analyze a passive-dynamic walking
model. They showed by comparison with experimental measurements that a kneed walker
confined to motions in the sagittal plane with properly chosen parameters can mimic
human gait.

The pioneering work in the field of passive-dynamic walking machines was done by
McGeer. He studied a series of two-dimensional gravity-powered models of increasing
complexity, starting with a rimless wheel, bridging the gap to walking with the syn-
thetic wheel, and finally focusing on stiff-legged and kneed walking devices (McGeer [52],
(53], [54]). He recognized the stance leg that is rotating like an inverted pendulum as
the key element in passive walking. He also investigated passive-dynamic running of a
2D stiff-legged walker the legs of which were equipped with torsional and longitudinal
springs (McGeer [51]). McGeer determined periodic gaits for his sometimes simplified
and linearized models using numerical methods and performed linear stability analysis.
As mentioned above he also investigated extensions of his passive walkers to actuated
open-loop controlled walkers. He applied simple feedback controllers in the cases where
no stable solutions could be found. He also built physical models of the bipedal walking
robots which he confined to planar motions by adding a third leg next to the others and
letting the two outer legs act like a pair of simultaneous crutches. McGeer started to work
on a three-dimensional stiff-legged walker but was not able to find stable gaits (McGeer
[53]).

The article of Thomson & Raibert [88] is also sometimes cited in the context of passive-
dynamic walking machines. They studied a one-legged hopping robot which is passive
in the sense that it has no actuators but, as the authors point out themselves, it is not
stable, so it does not belong to the class of robots discussed here.

Ruina and his co-workers extended the work of McGeer in various directions. They
studied extensively stability as well as chaos of 2D straight-legged walking with point
feet. Besides they imitated McGeer’s two-dimensional kneed walker in theory and practice
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Figure 1.7: Passive-dynamic walking robots of the Ruina Lab [79]

(figure 1.7a) and extended his analysis with special focus on efficency, speed and stability
and considering the limit case of near zero slopes (Garcia et al. [31]). Coleman has
investigated a series of wheels and walking models following the example of McGeer but
with a clear focus on three-dimensional motion and the ultimate goal to find stable walking
of a 3D model (Coleman [18]). His search was crowned with the discovery of a simple
and fascinating three-dimensional physical toy robot that was obviously capable of stable
tinkering gait (figure 1.7b, Coleman & Ruina [20], Coleman [18]). However, all theoretical
computations for models related to the physical toy resulted in unstable solutions (see
the two previous references and Garcia [30]). Only recently and for the first time, in a
collaboration of the author of this thesis with Coleman, Ruina and Garcia it was possible
to demonstrate stable 3D walking of a theoretical rigid body model (see Coleman et al.
[19]). Further results are given in Mombaur et al. [63] and in chapter 9 of this thesis.

Adolfsson et al. [1] also claim to have found three-dimensional passive-dynamic walking
with knees in simulation, but the feet of their model have line contact in lateral direction
which prevents it from falling sideways.

The contribution of this thesis in the area of passive-dynamic walking is that our numerical
methods developed for general actuated walking devices can equally well be applied to
the non-actuated type as special case with all actuations equal to zero. This will be
demonstrated on the example of the 3D tinkertoy.

1.4 Stability Properties of Different Types of Me-
chanical Systems

There are some general qualities of mechanical systems that influence the stability of
motion. In this section we will describe the most important ones. In later chapters, when
treating specific robot models, we will indicate how they are classified according to this
scheme.
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We must first introduce some definitions (see e.g. Greenwood [35]) necessary for the
characterization of systems.

A system is called conservative if its total energy, i.e. the sum of potential and kinetic
energy is constant. Conservative systems are characterized by work-less constraints and
conservative or non-dissipative forces (like e.g. spring forces). In principle, all mechanical
processes in a conservative system can be reversed. In analogy, a system is called non-
conservative, if its total energy decreases in time. Energy is lost due to non-conservative
or dissipative forces or effects like damping, friction or inelastic collisions.

A system is called holonomic if there are no constraints at all or if all its constraints are
holonomic, i.e. depend only on position variables or generalized coordinates. Holonomic
constraints could in theory be used to solve for the independent generalized coordinates.

Non-holonomic systems also have non-holonomic constraints which need to be expressed
in terms of differentials of the generalized coordinates and possibly time. These equations
are not integrable such that they cannot be used to eliminate coordinates. Non-holonomic
systems always require more coordinates for their description than there are degrees of
freedom. Probably the most famous example of a non-holonomic system is a disk rolling
on a plane.

Walking robots often are characterized by piecewise holonomic, but overall non-holonomic
motions. E.g. a biped walker with point feet is holonomic if just the period of one step is
considered, and the number of equations necessary to describe the motion during the step
is equal to the number of degrees of freedom. After heelstrike and switching of stance and
swing leg, the robot is transferred to a region which is not any more accessible by this set
of coordinates. So the intermittent contact has introduced a discrete non-holonomy into
the system.

Many simple mechanical systems, e.g. the undamped pendulum, are Hamiltonian, i.e.
conservative and holonomic. It follows from Liouville’s theorem (see e.g. Bronstein et al.
[13]) that Hamiltonian systems cannot be asymptotically stable. Any change of energy
introduced by a small perturbation persists, it is neither amplified nor damped. If the
system is conservative but non-holonomic it can very well be asymptotically stable. The
same is true for conservative, piecewise holonomic but overall non-holonomic systems as
Ruina [78] has recently demonstrated by an example. It is well known that dissipation can
help to promote stability. However, only introducing damping is of course not sufficient to
make an arbitrary system stable. But we can summarize that all non-conservative systems
- may they be holonomic, piecewise holonomic or non-holonomic - can be asymptotically
stable. Coleman [18] gives a more detailed overview on this subject.
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Figure 1.8: Finding open-loop stable robots by means of a two-level optimization procedure

1.5 Finding Open-loop Stable Robots by Means of
Optimization

The goal of this thesis is to determine robot models, parameters and, for the active case,
actuations that lead to open-loop stable motions. We approach this problem by means of
optimization. The development of efficient numerical optimization methods to be applied
to arbitrary models is a core component of this thesis.

We have chosen to use a two-level optimization approach that splits the two problems of
improving open-loop stability and generating periodic gaits. Figure 1.8 shows a sketch
of this two-level optimization procedure. In the outer loop a stability optimization is
performed with the model parameters left free for variation. In the inner loop the model
parameters are fixed to the values given by the outer loop. A periodic optimal control
problem is solved for which controls, initial values of trajectory and periodic cycle time
are free variables.

Please note that it is crucial to solve in the inner loop a periodic optimal control problem
and not just some periodic boundary value problem. As we will see in chapter 3 the
solution of nonlinear periodic boundary value problems is not unique - neither for passive
nor for actuated systems. Ignoring this fact might lead to misinformation of the outer
loop by the inner loop and thus to failure of the outer loop optimization algorithm. It is
important to use in the inner loop some appropriate optimization criterion that helps to
increase stability.

At first sight it seems compelling to solve the two problems of periodic gait generation and
stability optimization simultaneously in a one-level optimization procedure. Theoretically
this should result in increased stability as more variables are optimized with respect to
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this overall goal. But the cost of that is the need to solve a considerably more difficult
optimization problem. And, in contrast to the two-level optimization problem, the iterates
before convergence do not represent valid periodic gaits since the constraints are only
satisfied in the optimum.

The two-level stability optimization procedure delivered excellent solutions for all walking
robot problems investigated in our research. However the author can not rule out the
possibility that there exist other types of dynamical systems for which there is no natural
split of variables as depicted in figure 1.8 and for which two-level approach does not provide
satisfying solutions; hence the one-level approach should be used. We have performed
preliminary studies for this one-level procedure and will come back to this issue at different
points in this thesis showing possible implications and solution methods.

To summarize, for the two-level optimization procedure described above, the following
subtasks needed to be solved:

e choose physical robot models to be studied
e set up a correct description for periodic gaits of those models

e find a periodic solution for a given set of parameters that satisfies some appropriate
optimization criterion on the basis of efficient and reliable numerical methods

e define stability criterion and formulate adequate objective function fqp

e develop numerical methods for the optimization of stability by variation of param-
eters and find solutions for models selected above

e analyze results.

How we have solved these tasks will be presented in the following chapters.







Chapter 2

Modeling Periodic Robot Gaits

The dynamical properties of humans, animals and robots can be represented by sets of
highly nonlinear differential and algebraic equations. In the case of walking motions addi-
tional difficulties arise due to non-smoothness and multiple phases. The non-smoothness
is caused by intermittent ground contacts and by limbs reaching the joint limits which
implicitly depend on the configuration variables of the system and usually result in dis-
continuities of the velocity variables. Very often, gaits involve different phases of motion
which have varying degrees of freedom (DOF) and are characterized by different sets of
equations. In the case of running motions, e.g., one has to distinguish between alter-
nating flight phases and one-leg-contact phases. Additionally, the nonlinear dynamics
have to satisfy periodicity constraints on all or a subset of the position and velocity vari-
ables. By models of periodic gaits we understand the entity of all dynamic equations
of the multibody-system and of phase change conditions and collision rules, periodicity
constraints and all other constraints characterizing a specific gait.

Following the robot types introduced in the previous chapter, our models include passive
gaits (resulting in autonomous differential equations) and actuated gaits (non-autonomous
equations depending explicitely on time). As inputs for the actuated systems we typically
chose joint torques or forces which are a natural choice for robots. To fully capture
the open-loop properties of human gaits, models of the muscular activity would have to
be included in the dynamic equations. This field has been investigated in the author’s
diploma thesis (Metzger [57]). As stability is the main focus of this thesis and specific
muscular properties do not seem to be a key factor for this we have chosen to stick with
basis actuators. Nevertheless, the biped models treated here can be regarded as good
descriptions of the main gait features for both robots and humans.

In this chapter we present our general approach to model gaits in biology and robotics.
When formulating the models we pursue two principal goals. On one hand, the models
have to lead to a realistic-looking natural motion, i.e. they should neither be too edgy
nor too springy. On the other hand, they should be suited to act in combination with
numerical simulation and optimization methods.
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In section 2.1 we introduce the general form of periodic multi-phase gait models. In
section 2.2 we explain how to generate model equations starting from a physical model
in two or three dimensions. In order not to tear apart things that belong together, gait
models for the specific open-loop stable walking robots treated in this thesis are deferred
to chapters 7, 8, and 9 also containing the stability optimization results for the respective
models. We have implemented all robot models with the components described in this
chapter in the framework of an object-oriented modeling library as described in section
2.3.

2.1 Description of Periodic Gaits with Multiple Phases

Gaits should be formulated as multi-phase problems. Modeling gaits by a single set of
equations that describe e.g. ground contacts by continuous forces growing exponentially
close to the ground would lead to very stiff equations and therefore to small integrator
step sizes and long computation times and should thus be avoided (see Simon [84]). A
global gait model would always be either too stiff for integration or too smooth to be a
good description of reality. A model change should therefore be performed when a foot
reaches ground level. The same is true for hard joint contacts, like a kneestrike in walking
motions. These model changes lead to what we call a multi-phase problem.

In this section the general form of gait models with multiple phases is presented. We start
with the equations of motion for each phase and phase transition conditions in section
2.1.1 and periodicity constraints in section 2.1.2. Different approaches to the formulation
of contacts are evaluated in section 2.1.3. In section 2.1.4 we finally argue why the order
of phases should be imposed for a multi-phase problem.

2.1.1 Equations of Motion for a Phase
In a multi-phase problem every phase is described by a separate set of equations of motion,
the form of which is introduced in this section.

We start with the well known standard form of Newton’s law
M-a=f (2.1)

with mass matrix M, accelerations a, and right hand side force vector f. Showing the
dependencies of the terms in equation (2.1) we get

M(q(t),v(t),p) -a = f(q(t),v(t),u(t),p) (2.2)

where ¢ denotes the physical time, ¢ and v the position and velocity coordinates corre-
sponding to a, p the model parameters, and u the actuations (or, in mathematical terms,
control or input functions — which are not to be confused with feedback controls!). In the
passive or autonomous case, f does not depend on u(t).
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Note that the state of a mechanical system, being a second order system by nature, is not
completely defined by position variables alone. Corresponding velocities also need to be
indicated, such that we can always write the vector of state variables z as 7 = (q,v).
With that, equation (2.2) can be rewritten as explicit first-order system of ordinary dif-
ferential equations (ODE) in x:

q(t) = w(t) (2.3)
o(t) = a(t) =M '(q(t),v(t),p) - fq(t),v(t), u(t),p). (2.4)

All the above equations are only valid if ¢ represents a set of independent coordinates for
the robot.

In the more general case, one might use redundant coordinates for the description and
simulation of complex gait models. This results in a form of multibody system equations
different from (2.2), the so-called descriptor form:

M(q(t),v(t),p)-a = flq(t),v(t),u(t),p) — G"(q(t), p)A (2.5)
Gpos(q(t),p) = 0 (2.6)

with the Lagrange multipliers A, the constraint equations gp,s, and their partial derivatives

G = 3%—1;"5. System (2.5)/(2.6) is a differential algebraic equation (DAE) of index 3.

Differentiating the constraints (2.6) twice with respect to time leads to the index 1 system
q(t) = w(t) (2.7)
o(t) = aflt) (2.8)

M(q(t),v(t),p) G (a(t),p) a fa(®), v(t), u(t), p)
(M ) () = (Metan” ) es

with the differential variables ¢ and v, the algebraic variables a and A, and the abbreviation

Ha),0(0),p) = —o” LELE) (.10

Assuming that the mass matrix M is positive definite on the null space of G and that
G has full rank, the left hand side matrix in equation (2.9) is regular and the system
can be uniquely solved for the accelerations a in each step. These are fed into the right
hand side of equation (2.8) such that the system (2.7)/(2.8) can be treated like an ODE.
Additionally, the invariants on position and velocity level

gpos = 9(a(t),p) =0 (2.11)
guet = Glq(t),p)-q(t) =0. (2.12)
have to be satisfied.

The individual phases are separated by implicitely defined switching points at which a
switching function is zero:

si(t,q(t),v(t), u(t),p) =0 (2.13)
At those points, discontinuities of the velocities Av(t, ¢, v, u, p) and/or the right hand side
Agrms(t,q,v,u,p) (i. e. discontinuities in the accelerations) can occur.
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2.1.2 Periodicity Constraints

For periodic gaits, all velocities and most position variables — except possibly for those
describing the direction of travel — are periodic with cycle time T

Q(red)(T) - Q(red)(o) (214)
v(T) = v(0). (2.15)

In the case of bipedal gaits, it often makes sense to consider only one step, and not
a full cycle consisting of two steps. Formulation of periodicity constraints on one step
(including a reflection of legs) leads to perfectly symmetric results where every left step
equals to every right step and eliminates e. g. limping gaits. But if unsymmetric gaits
are of practical interest for a specific problem, the full cycle has to be considered.

2.1.3 Models for Ground and Joint Contacts

Gaits are characterized by alternating ground contacts of the feet. The interaction of robot
and ground has to be described in the model. There are two fundamentally different ways
to model ground contacts, either based on forces or based on constraints:

e Modeling the ground reaction forces in vertical and horizontal directions:
e.g. describing the frictional forces by a viscous or Coulomb friction model and
the normal forces by linear or nonlinear spring-damper elements. This describes an
elastic or elasto-plastic impact taking a finite amount of time. The DOFs of the
system remain unchanged. In this case, touchdown causes only discontinuities in
the right hand side and the accelerations, but none in the velocities.

e Modeling the constraints caused by a rigid and frictional ground:
i. e. fixing the foot contact point velocity to zero immediately after impact. This
results in discontinuities of all system velocity variables. Constraint based model
changes usually modify the number of DOF's of the system.

Thorough testing of both types of contact models have shown that the constraint-based
modeling approach is to be preferred as it leads to more natural motions.

If a joint is flexed or extended to its limits, similar considerations apply.

If a constraint-based contact model is used, velocity changes caused by this inelastic im-
pact will have to be computed. Equations describing conservation of momentum over the
collision are used for this purpose. For ground contact, we work on two basic assumptions:

e Lift-off is impulse-free, i.e. there are no discontinuities in the velocity. This is
applied to a lift-off of the swing leg in a walking motion as well as to the lift-off of
the whole robot during a running or hopping motion.
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e Touchdown is generally associated with an impulse and therefore velocity disconti-
nuities might occur depending on the collision model chosen (see above).

Similar assumptions hold for start and end points of joint contacts.

2.1.4 Prescribing the Order of Phases

We have seen above that constraint-based contact models are desirable since they are
most accurate from a physical point of view. But to be able to use such methods, the
order of phases of the motion has to be a priori prescribed.

Leaving the phase order free to be determined by continuous optimization methods would
restrict us to smooth phase transitions for numerical reasons: Only with transition be-
tween any two succeeding model phases being twice continuously differentiable and the
number of DOF's being the same for all phases we would be able to compute meaningful
derivatives of the integration end values with respect to initial values. In general, this
approach does not lead to very natural walking motions.

Our numerical method allows us to impose only the order of phases but to leave all
individual phase times free.

One alternative approach is to formulate the problem with free phase sequence as mixed-
integer optimization problem. But for walking mechanisms with few legs not many pos-
sible meaningful orders to choose from exist: For a biped, we can basically distinguish
between walking and running, and even for a quadruped there are only a very few pos-
sibilities, namely pace, trot, and different sorts of gallop. It is therefore possible to solve
the mixed-integer problem by enumeration and perform individual optimization runs for
each possible order of phases.

2.2 Deriving the Equations of Motion

After we have seen the general forms of equations of motion in the last section, we will
explain here how to set up equations (2.3) - (2.3) or (2.7) - (2.9) for given physical robot
models. It is not the intent of the author to provide a complete overview of all possible
methods to generate equations of motion - these can be taken from mechanics textbooks
like Greenwood [35] and Hauger et al [38], or university manuscripts like Eppler [27]. In
this section we only explain the solution approaches we have chosen to take, both for the
selection of coordinates and the establishment of the equations of motion. The reasons for
the specific choices are given. We generally derive the equations of motion and collision
rules for our robots using symbolic mathematics packages like Maple® .
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2.2.1 Coordinate Choices

For simulation and optimization, physically meaningful coordinates should be chosen as
this simplifies the generation of initial values for simulation and of initial trajectories for
the optimization. It also allows for a more comfortable interpretation of results. From an
engineering point of view, intuitive coordinate choices for walking robots are orientation
angles of bodies (e. g. Euler angles) or position vectors of predominant points, e. g. the
hip. We have seen before that phases of motion usually have different numbers of DOF. We
nevertheless like to choose the same set of coordinates for all phases. In general we choose
minimal coordinates for the phase(s) with most DOFs, that are redundant coordinates
for the other phase(s), such that we obtain ODE and DAE descriptions, respectively.

One peculiarity of walking motions for which at every instant at least one foot is in
contact with the ground is that a set of coordinates adequate to describe one step and
thus completely specify the periodic motion does not allow to directly access the full
configuration space of a multi-step walk. This is due to the piecewise holonomic, but
overall non-holonomic nature of walking motions. For running and hopping motions that
include phases without ground contact, this effect does not occur.

When deriving the equations of motion several other auxiliary coordinates naturally occur
which do not belong to the chosen set of coordinates for simulation and optimization
but which are needed to express the system’s dynamics. Examples for such coordinates
are position and orientation variables of the individual bodies, or derivatives of these.
As those coordinates depend on the chosen method for the generation of equations, the
corresponding implications will be explained when we discuss specific methods in the next
sections and when presenting our robot models later on. These auxiliary coordinates can
be symbolically eliminated during the model setup process in order to obtain analytic
expressions in the optimization coordinates for all entries of the equations of motion. For
complex systems this leads to extremely involved expressions filling many lines of code to
express one single mass matrix or right hand side entry. For most of our models, we have
therefore chosen to keep the additional equations and coordinates and numerically solve
in every integration step the resulting larger system using a regular or a sparse solver.
This gives us, among other quantities, the accelerations corresponding to positions and
velocities in our set of optimization variables.

This hybrid coordinate choice has the following advantages:
e reduced error proneness as no symbolic operations are necessary,

e increased flexibility for model changes, e. g. joint modifications or the addition of
bodies

e increased ability to monitor the auxiliary variables, which often are physically in-
teresting quantities.
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Free bodies with

Multibody System equivalent constraint forces

Figure 2.1: Generating the free body diagram for a simple multibody system

2.2.2 Deriving Two-dimensional Equations of Motion by Free
Body Diagrams

We have used free body diagrams to set up two-dimensional equations. It is a very intuitive
method if applied to planar motion and is based on a synthesis of information gathered
from all bodies. For a detailed description, see e. g. Dinkler [25]. As demonstrated in figure
2.1, all joints and connections between the individual bodies of a multibody system are
removed and replaced by equivalent constraint forces and/or torques. External contacts
e.g. between body and ground are also characterized by constraint forces.

For each isolated body (index ¢) with mass m; and moment of inertia ©; , Newton’s laws
of motion in translational and rotational directions can easily be written down in the
form:

Oi.fig = M, (2.18)

F; and M; are the sums of all external and constraint forces/torques acting on body i.
For a two-dimensional system with n bodies we obtain 3n dynamical equations. Addi-
tionally, kinematic equations describing the relation between position variables r,,r, and
orientation variables ry (and their first and second derivatives) of neighboring bodies ¢
and j introduced by the joints and contacts have to be established:

ki (7i2s Tiys Tisgs Tiwy Tiys Tisgs Tiws Tiys Tisgy Tims Tiys Tis Thas Tiys Tigs Tims Ty Tj,¢’) =0
(2.19)
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The number of kinematic equations is at least 3n — ng (with ng being the number of
DOFSs), possibly more if additional auxiliary coordinates are used. The resulting system
of all dynamic and kinematic equations is linear in the second derivatives of the position
and orientation coordinates of each body and in the constraint forces. Those are the
model setup coordinates we have discussed in the previous section.

We prefer this synthetic method to the analytic approach of using Lagrange’s equations,
which is another very popular method in mechanics, compare e. g. Greenwood [35].
Lagrange’s equations of the second kind for a set of ny independent generalized coordinates
¢; can be written as

d (0L oL
— (=) - = =0, =1,2, ..., 2.20
F(5)-m-a n (2.20)
where L is the Lagrangian function
L=T-V. (2.21)

V and T are the total potential and kinetic energy of the system, and @); are the generalized
forces in the direction of ¢; not derivable from a potential function (e.g. frictional forces,
non-holonomic constraint forces etc.).

For redundant generalized coordinates ¢; (dimension n, ), Lagrange’s equations of the first
kind have to be applied:

d (0L oL
— (=) == =0, - G:(q)"\ =1,2, ... 2.22
2 (50) - —a-G =1z (222
with the additional constraint force term on the right hand side.

Why do we not use Lagrange’s equations? In both cases, Lagrange’s equations force us
to use the same set of coordinates for optimization and for the model setup. 7" and V'

always need to be expressed in terms of the generalized coordinates which again leads us
to the involved equations we wanted to avoid!

2.2.3 Deriving Three-dimensional Equations of Motion by An-
gular Momentum Balances

For three-dimensional systems we have chosen the - in this case - more intuitive approach
to derive equations based on overall balances of translational and rotational momentum.
In three dimensional space, the method of free body diagrams reaches its limits of appli-
cation as it becomes considerably harder to correctly describe the directions of constraint
forces and accelerations.

For three-dimensional systems it seems more intuitive to derive the equations of motion
based on overall balances of translational and rotational momentum

M = H. (2.24)




2.2. Deriving the Equations of Motion 29

Figure 2.2: Derivation of total angular momentum of a multibody system a) about origin b)
about an arbitrary (moving) point

F and M are the sums of all external forces and torques, the index C' denotes the center
of mass of the whole system, m is the total mass, and H is the total angular momentum.
The reference point for H is either the center of mass or a fixed point. We will see later
how equation (2.24) needs to be modified for general reference points. Using the center
of mass as reference point has the advantage that translational and rotational motion can
be treated independently. On the other hand, the center of mass of a multibody system
is no physical point fixed to any of the bodies but an imaginary point constantly moving
relative to all of them. Frequently, certain points in the multibody system are inertially
fixed and the overall motion can be considered as a rotation about this fixed point.

In the following, we will concentrate on deriving the rotational equations about general
reference points that are not necessarily the center of mass or a fixed point.

The total angular momentum of a multibody system about the origin (see figure 2.2a) is
found by summing the angular momenta of the individual bodies.

where m; are the masses, ©; the moments of inertia, r; the center of mass positions, and
w; the angular velocities of the n bodies. r; and w; are described in global coordinates.
The moments of inertia ©; are described in body fixed coordinates. Due to the rotational
motion of the bodies their derivatives in the inertially fixed coordinate system are not
ZEro.

With this, the derivative of the total angular momentum becomes

H= Z(Tz X m;iy) + Z(@Zu}Z + w; X O;w;) (2.26)
i=1 i=1
as
i X mgr; = 0. (2.27)
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Thus, we obtain for the overall rotational equation about the origin:

n

=1 1=1

In the more general case, we choose a reference point P located on an additional body
of mass 0 (figure 2.2b). P may perform arbitrary translational motions (and rotational
motions, which however do not play a role as the body is massless). The total angular
momentum of the system about P is

H = Z(Tp,i X mTp;) + Z(@zwz) (2.29)
i=1 i=1

For a general reference point, equation (2.24) needs to be modified:
Mp — rpc X mip = Hp. (230)

The additional term —rpc X mi'p can be interpreted as moment about P produced by the
inertia force m#p that results from the translational motion of the reference frame. The
term is zero for any reference point that is inertially fixed or moving at constant speed.

The rotational equation about a general accelerated reference point P becomes

n n
Z(Tp,i X mifp,i) + Z(@sz + w; X @sz) + rpc X mfp = M. (231)
=1 =1

With

n
rpc X mip = er’i X mi’l‘“.p, (232)
=1

we can also write

n n
=1 =1

It goes without saying that these equations can also be applied to parts of the multibody
system. Following the principle of free body diagrams, possible constraint forces and
torques caused by the rest of the system have in this case to be taken into account
because they become ’external’ from this point of view.

2.3 Numerical Implementation of Gait Models

We have implemented all our robot models in the framework of an object oriented model
library in C++. Every model class encapsulates all information about a model including
basic model data like dimensions and all features previously defined in this chapter. This
implementation has the advantage of ensuring uniform interfaces to all mechanical models.
No model modifications are necessary for use with other software, e.g. integrators. The
following listing characterizes the Model data type:
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class Model{

protected:

int itsNoOfStates;
int itsNoOfControls;
int itsNoOfParams;
int itsNoOfModels;
int itsModelNo;

int itsNoOfSwitches;
double itsTime;
Vector<double> ItsX;
Vector<double> ItsU;
Vector<double> ItsP;

public:

};

Model () ;

Model (Model& OtherModel) ;

virtual “Model();

void update(double time, Vector<double>& X, Vector<double>& U,
Vector<double>& P, int modelNo = 1);

virtual void calcRHS(Vector<double>& XDot) = 0O;

virtual void calcJump(int switchNo, Vector<double>& XAfterJump) = O0;

virtual double calcSwitchingFunction(int switchNo) = 0;

virtual double confirmSwitch(int switchNo) = 0O;

virtual void calcSwitchingDerivs(int switchNo, Vector<double>& DswDx,
Vector<double>& DswDu, Vector<double>& DswDp, double& dswDt) = 0;

int getNoOfStates();

int getNoOfControls();

int getNoOfParams() ;

int getNoOfSwitches();

virtual void print(int printLevel);

virtual void print(int printLevel, ofstream& fout);

The equations of motion of the robot are internally established based e.g. on free body
diagrams and Newton’s laws or conservation of momentum balances. As described in
section 2.2.1, typically larger sets of coordinates than those for simulation and optimiza-
tion are used for this purpose. These systems of equations are internally solved, and only
optimization coordinates are visible to the outside. The right hand side for the equations
of motion is exported on request. Switching function values and jump discontinuities at
switching points, that result from complicated momentum balances are also internally
computed on demand.







Chapter 3

Mathematical Methods for the
Generation of Optimal Periodic
Gaits

The task of gait generation determines, for a given mechanical model and a given set of
model parameters, the initial values for the position and the velocity variables, the cycle
time, and — for actuated systems — the actuator inputs such that the periodicity conditions
and other restrictions are fulfilled. The task also includes a detection of non-feasibility
for a given configuration.

The question for optimal periodic gaits can arise in different circumstances.

In this thesis, we are especially interested in the search for periodic gaits as subtask in
the inner loop of the two-level optimization procedure, as outlined at the end of chapter
1. An optimization criterion has to be added in this case to make the solution of this
subproblem unique and to support the objectives of the outer loop.

But optimal periodic gaits are also of importance as stand-alone problems. Forward
simulation of gait models without any information about suitable actuator histories is
very unlikely to result in physically meaningful trajectories. Optimization methods can
help to determine actuator inputs creating periodic gaits. And frequently the question
for an optimal motion, like the fastest, slowest, most energy efficient etc. gait arises.

The one-level stability optimization problem mentioned in chapter 1 does of course also
ask for the generation of an optimal periodic gait, but it does not fall into the range of
problems treated in this chapter. Both of the above problems of optimal gait generation
— stand-alone and inner loop task — are complex, but standard optimal control problems.
Their objective functions are of standard separable Mayer or Lagrange type. We will see in
chapter 5 that the objective function characterizing stability does clearly not belong into
this category such that the methods described in this chapter are only partly applicable.

While there is no tool available to solve such a non-standard optimal control problem,
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software for the solution of standard optimal control problems already exists today, in
particular the powerful code MUSCOD, that has been developed in the research group of
Bock & Schléder by Leineweber [48], [47] on the basis of the original code of Bock & Plitt
[11] for stiff chemical systems of ODE or index 1. MUSCOD relies on fast and efficient
integrator libraries that are also capable to compute derivatives of the trajectories, like
ODEOPT that has been incorporated into the optimal control code by its author Winckler
[102]. In this study, we use a variant of MUSCOD for the generation of optimal periodic
gaits. It was coupled with the gait model library described in the previous chapter.

The purpose of this chapter is to introduce theoretical background, problem formulation
and solution methods for optimal periodic gaits in the sense of standard periodic optimal
control problems.

As differential equations and dynamical systems are closely related fields of research,
in section 3.1 we take the dynamical systems point of view and recall some important
terminology from that area. In section 3.2 we introduce some theory about existence and
uniqueness of solutions of (periodic) boundary value problems. From this we conclude in
section 3.3 that the formulation of gait problems should always lead to optimal control
problems and not only to boundary value problems. We give the full formulation of a
standard multi-phase optimal control problem with discontinuities. Section 3.4 is finally
dedicated to the numerical solution of periodic optimal control problems by the direct
multiple shooting approach.

3.1 The Dynamical Systems Point of View

A system, the behavior of which is described by differential equations — like a walking
robot — is also called a (continuous-time) dynamical system. In this section we introduce
some basic terminology common in the field of dynamical systems because it is often used
in the context of walking robots and sometimes differs from the terminology customary in
the field of optimization and simulation. As references for this section we have used the
books of Kuznetsov [44] and Baker & Gollub [5] and the relevant chapter in Bronstein et
al.[13].

The state space X of all dynamic variables of the system is equivalently called phase space.

The evolution operator of a dynamical system describes the deterministic process of evo-
lution in time ¢. It is the map ¢! that transforms an initial state 75 € X into some state
x, € X at time t: 2, = ¢'zy. In the continuous-time case, the family qﬁttelT of evolution
operators is called a flow.

An equilibrium or fized point xy is a point in state space that is mapped onto itself by the
evolution operator for arbitrary times ¢:

¢tI0 =xq for all t € Ir. (31)

From this follows that a system put into equilibrium state remains there forever.
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a) Poincare sections for non-autonomous differential equation  b) Poincare section for autonomous differential equation

Xy 3D phase space

X2
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X

2 X3
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Figure 3.1: Definition of Poincaré sections for a) non-autonomous and b) autonomous differen-
tial equations

Orbits of a continuous-time system with a continuous evolution operator are curves in the
state space X parameterized by the time ¢ and oriented by its direction of increase. Orbit
is therefore a synonym for trajectory.

A periodic orbit or cycle Lo is an orbit for which each point zy € Lg satisfies
Ty = ¢'xy with some T > 0, for all ¢t € Ir. (3.2)

The minimal 7" with this property is called the period of the cycle Ly. In the continuous-
time case, a cycle L is represented by a closed curve. If a cycle is isolated, i.e. there are
no other cycles in its neighborhood, it is called a limit cycle.

Phase portraits are diagrams containing a visualization of possible orbits in phase space.
In practice it is of course impossible to show all orbits, so only several key orbits are
depicted.

A very helpful tool for the study of periodic dynamical systems are Poincaré sections
which can be defined as ’snapshots’ of the system’s motion taken at regular intervals T'
in time (typically the cycle time). In the case of autonomous systems it is customary to
define the Poincaré section as (n — 1)-dimensional manifold in n-dimensional phase space
that is orthogonal to the orbit. The results are the same if applied to a T-periodic orbit
but a distinction becomes obvious for a (non-periodic) perturbation of this orbit for which
the time between two intersections with this manifold is not equal to 7". Poincaré sections
for non-autonomous and autonomous systems are shown in figure 3.1.

The map that transforms a state on one Poincaré section to a corresponding state on
the next section is called the Poincaré map associated with the T-periodic cycle L.
The computation of Poincaré maps and their Jacobians for both autonomous and non-
autonomous systems will be a core component of our stability optimization procedure to
be described in later chapters.
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3.2 Existence and Uniqueness of Solutions of Bound-
ary Value Problems

Gait models as described in chapter 2 result in periodic multi-phase boundary value
problems with discontinuities — so far without any optimization criterion. In this section,
we will briefly review some important facts about existence and uniqueness of solutions
of boundary value problems. In contrast to initial value problems for which existence
and uniqueness can generally be guaranteed under mild assumptions of continuity and
Lipschitz continuity, for boundary value problems non-uniqueness or non-existence can

occur even for very simple cases. The material of this section is treated more extensively
in Walter [98], Werner & Arndt [100], and Ascher et al. [4].

The basic form of a boundary value problem for first order systems of order n is

i = f(t,z(t), tE€ la,b]
r(z(a),z(b)) = 0

3)
)

In contrast to initial value problems, boundary conditions are specified at two different
points a and b. The formulation of a boundary value problem with boundary conditions
of type (3.4) is obviously only possible for a first order system with at least two differential
equations.

(3.
(3.

In the case of a periodic boundary value problem, boundary conditions (3.4) take the
form

r(z(a), z(b)) = z(b) — z(a) = 0. (3.5)

In analogy to the classical two-point boundary value problem (3.3)/ (3.4) we can also
define a multi-point boundary value problem with boundary conditions specified at p
different points

r(z(t1), z(t2), ..., z(t,)) = 0. (3.6)

A boundary value problem is called linear if its differential equations as well as its bound-
ary conditions are linear. The following theorem is taken from Werner & Arndt [100].

Theorem 3.1 The linear boundary value problem

T(t) + Alt)z(t) = ¢
Mz(a) + Nx(b) = d

7)
8)

has a unique solution for arbitrary c, d if for a fundamental matriz X (t) of the homogenous
system x(t) + A(t)z(t) = 0 we have:

(3.
(3.

A = MX(a) + NX(b) (3.9)

is non-singular. If it is singular, the homogenous boundary value problem (withc=d =0)
has a number of non-trivial solutions.
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For boundary value problems involving nonlinear differential equations there is no way
to determine existence nor uniqueness of solutions for the general case. Boundary value
problems are 'problems in the large’, and existence of solutions of differential equations
can often only locally be guaranteed.

In many cases of practical interest, however, there is a number of possible solutions. Some
useful theoretical results for the general case can be derived expressing boundary value
problem (3.3)/ (3.4) in terms of an associated initial value problem

y = f(t,yt), t>a (3.10)
yla) = s (3.11)

where s is an n-dimensional parameter vector. Assuming Lipschitz continuity, there is a
unique solution y(t; s) of the initial value problem. z(t) = y(¢;s) for each s that solves
the boundary value problem if s is chosen such that

g(s) =r(s,z(b;s)) =0 (3.12)

This is a system of n nonlinear equations for n unknowns s; that may have one solution,
many or none at all. See Ascher et al. [4] for the following theorem:

Theorem 3.2 If f(t,x(t)) is continuous for t € [a,b] and arbitrary x and satisfies a
uniform Lipschitz condition, then the nonlinear boundary value problem (3.3)/ (3.4) has
as many solutions as there are distinct roots in equation (3.12).

It remains to draw conclusions for the problem of gait generation. A typical straightfor-
ward boundary value problem arising in this context of non-actuated systems would be to
determine a periodic solution for a given set of model parameters and free initial values
of states and cycle time. This can be written as an extension of (3.3)/(3.5):

i = f(t,x(t,p),p), pERF, teEa,pr] (3.13)
0 = IL’((J,,p) _x(pk+17p) (314)

Such a system may have a unique solution, multiple solutions or no solution at all. Very
often, the system has additional possibilities of variation, like controls, and also additional
restrictions, like constraints on states, parameters and controls. The former even increases
the chances of non-uniqueness, the latter those of non-solvability. But locally non-unique
solutions may lead to a failure of the numerical method.

We may therefore conclude that formulating a gait problem as simple boundary value
problem may be the source of numerical problems and should thus be avoided. Measures
to make the solution unique and for a detection of non-solvability have to be taken.
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3.3 Formulation of Periodic Gaits as Multi-phase Op-
timal Control Problem with Discontinuities

A solution to the non-uniqueness problems resulting from a boundary value problem
formulation outlined in the last section is to add some appropriate optimization criterion.

This leads to the formulation of a multi-phase optimal control problem

min [ ot u0.p) dt + BTa(T),p) (3.15
s. t. o(t) = fit,x(t),u(t),p) for te[rj_1,Tl,

j=1,npn, 0 =0,7,, =T (3.16)

w(rf) = h(a(ry)) for j=1,..np (3.17)

g9i(t,z(t),u(t),p) > 0  for te[r 1,7 (3.18)

req(2(0), .. x(T),p) = (3.19)

Pineq(2(0), ., 2(T),p) = 0 (3.20)

Equations (3.16) — (3.20) alone would represent a multi-point boundary value problem
with additional nonlinear inequality constraints.

The state variables & combine the position and velocity variables ¢ and v of the mechanical
system. p are the model parameters, and u the control variables or actuations. This
formulation covers actuated as well as passive systems; for the latter the dimension of
u simply is zero. In the context of the two-level stability optimization procedure the
model parameters p are fixed in this subproblem and are only varied in the outer stability
optimization loop (see section 1.5). For a stand-alone problem of periodic gait generation
it could make sense to also allow for a model parameter variation in this optimal control
context, and equation (3.15) would have to be accordingly modified.

For simplicity, we have represented here only the case of ODE models. If the motion is
characterized by DAEs, equations (3.16) have to be replaced by the corresponding formu-
lation of type (2.5)/(2.6). The full cycle [0, 7] is divided into phase intervals [7;, 7j+1] with
possibly different dynamical models (3.16) and different continuous inequality constraints
on states and controls (3.18).

State and right hand side discontinuities are only allowed between phases. Switching func-
tion handling is not performed during integration. Instead, phase switching at implicitly
defined times is monitored by a time transformation (see section 3.4.3) and reformulation
of the switching conditions as interior point constraints of type (3.19) (see Bock [9]).

In the sense of the above optimal control problem formulation, periodicity conditions are
coupled pointwise equality constraints of type (3.19). Box constraints and more complex
continuous constraints (such as foot clearance) on states and controls are included in
equation (3.18).
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Note that the optimal control problem formulation in equation (3.15) allows for objective
functions of Lagrange type as well as of Mayer type involving trajectory end values. Those
two types are equivalent from a mathematical point of view and can be transformed into
each other.

For the optimization of walking motion there are several classical objective functions of
interest.

Energy consumption is an important issue although there are different opinions on how
to measure energy. It can be either judged in terms of mechanical energy as integral of
a force along a path or, as is more common in robotics, in terms of actuator torques u
(squared to eliminate direction)

T
/0 o]t (3.21)

which depend on the electrical energy consumed by the motors. For human walking, a
measure of muscular energy consumption would have to be established.

The improvement of performance of walking, running and hopping motions in the sense
of speed, height and width is often sought for, and this also leads to objective functions
of form (3.15).

For the stability optimization subtask of generating a periodic gait in the inner loop we
need to choose an objective function that assists the outer loop stabilization goal rather
than working against it. Experience shows that e.g. a maximization of speed would tend
to make gaits more unstable instead of more stable. In this sense the following objective
functions have proven to be suitable:

e minimization of ’energy input’ in terms of torques squared (for actuated robots only)
e minimization of cycle time

e minimization of some characteristic speed.

3.4 Numerical Solution of Periodic Mechanical Multi-
phase Optimal Control Problems with Disconti-
nuities

There are some fundamentally different ways to solve periodic optimal control problems.

The approach due to Colonius [21] is very common, e.g. in chemical engineering, where
for many systems a steady state solution, corresponding to a static control is known. The
basic question then is if it is possible to determine a non-trivial T-periodic control which
further improves the steady state value of the objective function. It is answered on the
basis of a so-called I1-Test (also see Hartel [37] for a numerical implementation). However,
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this approach is not a possible one for the generation of optimal periodic gaits since there
are no related steady state solutions in the general case. We are not aware of any case
where a constant non-zero control produces a solution to the problem. And for constant
zero controls, i.e. performing a transition from actuated to passive walking (if possible at
all) — some properties of the system, like the slope angle, would have to be modified. The
steady state on flat ground with no controls related to walking motions equals standing
still. This being of fundamentally different nature would not help to find a solution for
walking.

Among the different possible methods that directly tackle the non-steady periodic optimal
control problem we have chosen a direct method based on multiple shooting as it is
implemented in MUSCOD (see Leineweber [47]).

In this section we describe the individual steps in the solution process: control discretiza-
tion, treatment of dynamics, solution of the underlying nonlinear programming problem.
We also highlight special aspects of the problem like the optimization of phase times, a
possible shift of periodic orbits, and the use of index 3 models in optimal control.

3.4.1 Discretization of Optimal Control Problems

Problem (3.15) - (3.20) represents an infinite-dimensional optimization problem. This
section describes how it is transformed into a finite-dimensional optimization problem by
discretization of the control functions as well as the system’s dynamics and presents the
resulting discretized system.

Control Discretization

The classical, so called indirect, approach to optimal control problems is based on Pon-
tryagin’s maximum principle and optimality conditions for the infinite problem itself (see
e.g. Follinger [29]). Controls are eliminated by expressing them as functions of state
variables and adjoint variables. In theory, the indirect approach has the advantage that
solutions with control functions in very general spaces can be characterized but in practice
it is very hard to solve the resulting equations even for quite simple cases.

For complex practical problems, generally the direct approach that is based on a discretiza-
tion of control functions, is favored. Instead of infinite dimensional control functions u(t)
as in the indirect approach, parameterizable control functions are used. Control histories
of the n, physical controls are thus described by a finite number of control parameters
¢;;- One of the special features introduced by Bock & Plitt [11] is to use control func-
tions that have only local support, like piecewise constant or linear functions on a control
grid [to,t1,...,tn] with m intervals. This has the advantage of leading to a structured
optimization problem.
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Figure 3.2: Multiple Shooting state discretization

State Discretization

The goal of state discretization is to separate the two tasks of integrating the system’s
dynamics and solving the optimization problem. For optimal control problems basically
the same discretization methods are applicable as for the underlying multi-point boundary
value problem.

Resulting from the fact that there is a close theoretical relationship between boundary
value problems and initial value problems (see section 3.2) some numerical methods for

boundary value problems trace back their solution to that of initial value problems (Ascher
et al. [4], Schwarz [82]).

The simplest method of this type is the single shooting method. It treats the full integra-
tion interval of the boundary value problem at once. The initial values of the integration
are iteratively varied until the boundary conditions of the original boundary value prob-
lem are satisfied. A weakness of single shooting is that it is hard or even impossible to
find a solution if the initial value problem solution is very sensitive to variations of the
initial values.

As the impact of such a high sensitivity is reduced on smaller integration intervals, we
are naturally led to the idea of multiple shooting. It splits the long integration interval
[0, 7] into many smaller ones and introduces the values of the n, state variables z at all
those grid points as new variables s;;. With this approach the original boundary value
problem is transformed into a set of initial value problems. Corresponding continuity
conditions between integration intervals are added. As proposed by Bock & Plitt [11],
it is advantageous for the structure of the resulting problem to choose the same grid for
multiple shooting as for control discretization or a subset thereof.

The multiple-shooting approach is especially suited for the generation of periodic gaits
for a number of reasons. It allows to impose the desired phase order and switching
structure, as the model for each multiple shooting interval can be prescribed differently.
The knowledge that one usually has about the trajectory can be used as initial guesses for
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the initial values of the states at the multiple shooting points. Gait models often exhibit
the above described sensitivity to initial value variations, and therefore multiple shooting
increases significantly the chances of finding a solution of the initial value problem and of
obtaining sufficiently accurate derivatives.

Discretized Optimal Control Problem

Two more steps need to be taken in the discretization process. First, as the durations
of all phases are to be determined by the optimization, they need to be introduced as
optimization variables. The necessary transformations are described in section 3.4.3.
Second, for all discontinuous physical phase transitions additional artificial phases of
duration zero are introduced. These phases formally consist of a single multiple shooting
interval.

The discretized optimal control problem becomes

min  ®(y,p) 3.22
y

3.23
3.24
3.25

S. to Teon = x(tiv1, Siy Gis Dy h) — Sip1 = fori=0,..m-—1

(3.22)

0 (3.23)

Teqi(y,p) = 0 fori=0,..,m (3.24)
0 (3.25)

’Fineq,i(yap) 2 for i = 07 ey M

with the variable vector y” = (so,qo, 51, ¢1, -, Sm, B)” containing the discretized state
and control vectors s; and ¢; at all multiple shooting points/intervals and the vector of
phase times h. With dimensions n, and n,, of the physical state and control vectors, n,y,
phases, and m multiple shooting/control intervals, the vector y has the dimension

Ny =N, + Ny - (M+1)+n,-m-ky, k,=1,2,..
(where the factor k, depends on the chosen control discretization).

In MUSCOD, constraints can be imposed on all multiple shooting points. Equation (3.24)
represents equation (3.19), equation (3.25) combines equations (3.20) and a discretization
of (3.18) of the original problem. (3.23) describes the continuity conditions between
integration intervals.

3.4.2 Treatment of the System’s Dynamics

Please note that the dynamical model is not part of the optimal control problem any more
after discretization. Integration has been separated from optimization: the optimization
only needs the final values x(¢;11, s;,¢;,p) of the integration on each interval and the
corresponding derivatives calculated by a logically external integrator.

As integration and corresponding sensitivity generation represent a large part of the com-
putational effort necessary to solve the optimal control problem, the use of efficient inte-
grators is crucial. Incorporated into MUSCOD are ODE-integrators of Runge-Kutta type
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X X(t) =sint, x(a) = x(b) z 4 zZ() =x(t+At)=sin(t+At), x(a)=x(b)
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Figure 3.3: Illustration of the shift problem

and ODESIM/ODEOPT of Winckler [102] and the index-1 DAE integrator DAESOL
(Bauer et al. [6]). For sensitivity generation, they all rely on the principle of IND (inter-
nal numerical differentiation, see Bock [10]) which uses the same discretization schemes
for integration and derivative generation and exhibits high numerical stability.

3.4.3 Optimization of Phase Times

As stated above, we want the durations of all phases h = (h, ..., hnph)T to be free variables
of the optimization problem. For this, derivatives with respect to phase times have to
be determined during integration. In the context of IND this should not be done using
straightforward integration in physical time:

slto) = () + [ ooty (3.26)

3

By means of a time transformation to the unity interval ¢ € [ts,;,t.,] — 7 € [0, 1]
1
x(te,i) = x(ts,i) + (te,i — ts,i) . / f(ts,i —+ (te,i — ts’i)T, ZL’(tS’i + (te,i — ts’i)T))dT (327)
0

with ¢,;, = Z;;ll hj, te; = 22:1 h; the derivatives with respect to h; can be computed

like derivatives with respect to model parameters.

3.4.4 Handling of the Shift Problem

A classical difficulty occurring in the context of periodic optimal control problems or
boundary value problems is the shift problem. Figure 3.3 illustrates this problem for the
simple example of the sin-function. It arises if none of the variables at the boundary
is fixed to a specific value and only pure periodicity constraints are imposed. Then it
follows that if z(¢) is a solution of the boundary value problem, any other shifted function
2(t) = x(t + At) for arbitrary At is also a solution of the boundary value problem .
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The introduction of phases which have a priori a fixed order represents a regularization
of this shift problem. As start and end point of our cyclic trajectories are always associ-
ated with phase boundaries described by equality constraints, those points are uniquely
determined on the trajectory, and the shift problem is automatically eliminated.

3.4.5 Solution of Underlying NLP

The discretized problem (3.22) - (3.25) is a nonlinear programming problem (NLP) of
large dimension.

Objective functions of Mayer and Lagrange type (3.15) are separable, i.e. they can be
written as a sum of functions each valid on a single multiple shooting interval only

(5,0,0) = > _ D(sirqip (3.28)
=0

The discretized variables ¢; and s; have thus only locally restricted influence on the ob-
jective function. The same is true for the constraints except for a linear coupling in the
continuity and periodicity conditions.

In MUSCOD, the NLP is efficiently solved by a tailored sequential quadratic program-
ming (SQP) method that exploits the problem structure resulting from this local sphere
of influence of variables. SQP is an iterative method in which the NLP is locally approx-
imated by quadratic optimization problems (QP). The solution z; of the QP at the SQP
iterate y; presents the new direction of search for the optimum in the SQP:

Yk+1 = Yk T Q2 (3.29)
The QP to be solved is

min Vo (y) "2k + %ZI::BI@ (ye) 2k (3.30)
s. t. h(yi) + Vh(y) 2z = 0 (3.31)
Feq(Ur) + Vieg(yn) 2 = 0 (3.32)

Fineq(Uk) + Vineg(yr) 2 > 0 (3.33)

where By is an approximation of the Hessian of the Lagrangian function. In a trust region
approach (2 is chosen such that the quadratic approximation is valid in the region. The
SQP step length « is determined by a line search. For a basic description of SQP methods,
see the optimization textbooks Gill et al. [32] and Fletcher [28]. Special partially reduced
SQP methods have been developed by Leineweber [48]. In the direct multiple shooting
context described in this section the QP has a sparse structure. Instead of directly solving
this QP it is favorable to first condense the problem eliminating the additional variables
introduced by the multiple shooting method, sy, ...s,, and then solve the resulting dense
QP by a standard solver.




3.4. Numerical Solution 45

3.4.6 Treatment of Mechanical DAEs

As discussed in section 2.1.1, it is often favorable to formulate mechanical problems as
index 3 DAEs instead of ODEs. For our gait models we use this formulation at least for
certain phases of the motion. We describe them in the equivalent differentiated index 1
form (2.7) - (2.12) with position and velocity invariants. Those invariants have be taken
into account in two different ways:

1. As constraints for the optimization problem: Initial values of integration must lie on
the manifold described by the constraints. This is ensured by adding the respective
constraints to the set of multipoint constraints at the initial multiple shooting point
of the respective phase.

2. As constraints for the integration: To avoid a drift away from this manifold the same
constraints would have to be projected onto when integrating the index 1 system
instead of the index 3 system. Due to the very short integration intervals in the
multiple shooting context drift has so far never appeared to be a problem for our
models, and therefore we have not deemed it necessary to use any projection.

In a parallel research project in the group of Bock & Schléder, Stossmeister [87] pursues a
combination of MUSCOD with the integrator libraries MBSSIM and MBSOPT (v. Schw-
erin & Winckler [95], v. Schwerin [93]) capable to handle index 3 systems by reduction to
index 1 and projection onto invariants. As soon as this tool is available, possible effects
of this alternative treatment of the drift problem on our models and results can be tested.







Chapter 4

Characterizing the Stability of
Periodic Gaits

In chapter 3 we have described numerical methods for the generation of optimal periodic
gaits to be used in the inner loop of our two-level optimization procedure. Having found
a periodic solution, its stability must be determined as part of the computations in the
outer loop. The present chapter is dedicated to appropriate criteria characterizing the
stability of a periodic orbit.

Stability of a solution describes the fact that neighboring solutions approach or at least
stay close to that solution. Deviations of the physical system’s motion from the original
precalculated trajectory may occur for a number of reasons. Model parameters can usu-
ally only be determined with a certain tolerance. The system’s motion is often subject to
perturbations caused by the external world. And even the most detailed mathematical
model is always some abstraction of the real system. So for the open-loop controlled phys-
ical system to be able to automatically recover from this deviated state, the mathematical
solution has to be robust against perturbations of the initial values and the parameters.

We start the chapter with mathematical definitions of stability that are needed to explain
the theoretical background. We recall the stability theory for linear systems with constant
coefficients in section 4.2 and with periodic coefficients — the so-called Floquet theory —
in section 4.3. They form the basis for further investigations of nonlinear systems. The
theory that we need for our systems is the stability theory for nonlinear periodic systems,
which is a special case of Lyapunov’s first method. It is introduced in section 4.4. In 4.5,
we generalize Lyapunov’s first method to our case of periodic systems with discontinuities.
Although the method has been applied to gaits before by some authors (e.g. McGeer
[52], Coleman [18], Cheng & Lin [15], Hurmuzlu [42]) - varying in the way the relevant
quantities are computed — to our knowledge this formal generalization has not been made
before. We finish this chapter by briefly recalling the famous second method of Lyapunov
and explaining why it is not useful in our investigations. Good references for the first four
sections of this chapter are Cronin [22], Walter [98], Meirovitch [56], and Hsu & Meyer
[40]. For section 4.6, see La Salle & Lefschetz [80] and Cronin [22].
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4.1 Mathematical Definitions of Stability

In this section we give some essential definitions of stability that will be used later in this
chapter. The definitions are based on the work of the Russian mathematician A. M. Lya-
punov.

A solution xy(t) of an n-dimensional system of non-autonomous differential equations
#(t) = £(t,2(1) (4.1)

e is stable (in the sense of Lyapunov), if for each € > 0 there is a § > 0 such that all
solutions x; (t) with |z, (o) — xo(to)| < 0 satisfy |z, (t) — zo(t)] < € for all £ > ¢,

e is asymptotically stable (in the sense of Lyapunov), if it is stable and additionally

lim |z (t) — zo(t)| = 0,
t—o00
e is unstable if it is not stable.

Let us recall that for mechanical systems the vector x consists of all position and all
velocity variables.

A very useful notion for autonomous systems

#(t) = f(z(t)) (4.2)
especially with closed trajectories is that of orbital stability which only considers the tra-

jectories as entities and not a specific reference point traveling in time along the trajectory.

Let X, be the orbit of solution z((t) and define d(Xy,y) as the minimum Euclidean
distance of a point y from the orbit X,. Then the solution z((t) of an autonomous system

e is orbitally stable if for each € > 0 there is a 6 > 0 such that all solutions z;(¢) with
d(Xo, z1(to)) < d satisfy d(Xo,z1(t)) < € for all t > t,, and

e is orbitally asymptotically stable if it is orbitally stable and additionally

t—o00

Orbital stability is a considerably weaker condition than stability as points of correspond-
ing values of time ¢ can be far apart, i .e. perturbations along the orbit do not have to
be eliminated.
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4.2 Stability of Solutions of Linear Systems with Con-
stant Coeflicients

As is well known to most engineers and mathematicians, stability of a linear system with
constant coefficients can be determined by the eigenvalues of its coefficient matrix. The
following theorem can be found e.g. in Walter [98].

Theorem 4.1 Solution © =0 of
&(t) = Az(t) with A const.
e is stable, if Re()\;) < 0) for all eigenvalues \; of A with Re()\;) = 0 belonging to a
non-defective eigenvalue
e is asymptotically stable, if Re()\;) < 0) for all eigenvalues \; of A
e is unstable, if it is not stable.

Remark:
For general linear systems

z(t) = A(t)x(t) + f(¢) (4.3

)
where A(t) and f(t) are continuous, it holds that if there exists one solution x(¢; %y, zo)
of (4.3) which is (asymptotically) stable then every solution of (4.3) is (asymptotically)
stable. Stability properties of the trivial solution of the linear system can therefore be
generalized to arbitrary solutions of the same system.

4.3 Stability of Solutions of Linear Systems with Pe-
riodic Coeflicients — The Floquet Theory

For time-varying coefficient matrices A(t) it is obviously not possible to derive overall
stability properties from the eigenvalues of A as they also change in time.

The theory founded by the French mathematician Gaston Floquet gives an approach for
homogenous linear systems with T-periodic coefficients

z(t) = A(t)x(t) with At +T) = A(t). (4.4)
The stability of the trivial solution z = 0 is studied.

It can be shown that if x(¢) is a solution, it follows that z(¢) = (¢ + T) also is a solution
— which does not imply an equivalence of z(¢) and z(¢). In other words: if X(¢) is a
fundamental matrix of (4.4) with X (0) = I, then Z(t) = X (¢t+T) is another fundamental

matrix and there exists a constant nonsingular matrix C' such that

X(t+T)=XHC  with C=X(T). (4.5)
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The matrix C' which is sometimes referred to as monodromy matrix plays an important
role in Floquet theory. It is equivalent with the Jacobian of the Poincaré map introduced
in section 3.1. The eigenvalues \; of C are called characteristic multipliers or Floquet
multipliers of A. The monodromy matrix C' is not unique but depends on the particular
choice of the fundamental matrix X (¢). However, the eigenvalues associated with the
monodromy matrix are uniquely determined by the system /coefficient matrix A(t) as the
monodromy matrices corresponding to different fundamental matrices are similar.

Every fundamental matrix X (¢) of (4.4) has a Floquet representation

X(1) = Q(1)e™, (46)
where Q(t) is T-periodic and B is constant and satisfies
C=X(T)=¢"". (4.7)

For every eigenvalue \; of C' there is a corresponding eigenvalue p; of B with identical
algebraic multiplicity and
N =€t (4.8)

; are called characteristic exponents or Floquet exponents of A. From the definition of B
follows that the real parts of u; are uniquely determined, the imaginary parts are defined
up to an integral multiple of 27 /7.

Transformation (4.6) allows to derive stability statements for systems with periodic coef-
ficients from systems with constant coefficients.

Theorem 4.2 Solution x =0 of
T=At)x with A{t+T)= A(t)
e is stable, if all characteristic multipliers |\;| < 1 (or all characteristic exponents
Re(u;) <0) with |\;| =1 (Re(p;) = 0) belonging to a non-defective eigenvalue,
e is asymptotically stable, if all multipliers |\;| < 1 (or all exponents Re(p;) < 0), and

e is unstable, if at least one multiplier |\;| > 1 (or Re(u;) > 0).

The theorem can be found in Walter [98].

T-periodic solutions of those systems with T-periodic coefficients exist, if the transfer
matrix C' has one eigenvalue A\ = 1. If no characteristic multiplier equals one, then
equation (4.4) has no nontrivial solution of period T.

4.4 Stability of Periodic Solutions of Nonlinear Sys-
tems — Lyapunov’s First Method

Lyapunov’s first method is a stability theory for nonlinear systems that is based on ap-
proximations by the corresponding linear systems.
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Here we only treat T-periodic nonlinear systems
T = f(t,x) with f(t+T, )= f(t,-) (4.9)
where f € C2. We also consider the special case of an autonomous equation
&= f(x) (4.10)
which is trivially T-periodic.

Periodic solutions of (4.9) and (4.10) do not necessarily have to exist. Assuming that
there exists a periodic solution x,(t + T') = z,(t) = x,(¢; to, 0,), then any other solution
x1 can be expressed as

z1(t) = x,(t) + Az (4.11)
Since z; is a solution of (4.9)
Z, + Az = f(t,z, + Az) (4.12)
holds and it follows that ‘
Az = f(t,x, + Az) — f(t,z,). (4.13)

By means of a Taylor series expansion this can be written as

-0
Ax = 8—f(t, z,) Az + h(t, Ax) (4.14)
T
with of of
L(t,xy) = |2 (t 4.15
Lt = | 2 )] (415
Equation (4.14) is the variational system of (4.9) relative to solution x(¢). The linear
equation
Az = 8—f(t xp) Az (4.16)
S or '
is called the linear variational system (Cronin [22]). Note that T-periodicity of f causes
ofi

T-periodicity of the derivative matrix but not necessarily of the solution Ax.

ox;

The theory of stability for solutions of nonlinear differential equations is based on the
study of the trivial solution of this linear variational system. For this we need the results
of Floquet’s theory described in the previous section.

If Az =0 is a stable solution of the linear variational system then solution x, of (4.9) is

called infinitesimally stable. The question is now if infinitesimal stability implies stabil-

ity. For periodic and constant matrices [%] conjectures about asymptotic stability and
J

instability can be made. For this we need the monodromy matrix C' which in the case of

nonlinear systems is defined by

Ct,t+T) = {M}

0z (t)
For the following two theorems, see Hsu & Meyer [40].

(4.17)




52 Chapter 4. Characterizing the Stability of Periodic Gaits

Theorem 4.3 (Stability of periodic solutions of non-autonomous systems) For a
non-autonomous system x(t) = f(t,z(t)) with f(t,-) = f(t+T,-) the variational equation
about a periodic solution z,(t) = x,(t +T),T # 0 is given by

Az = g(t, Tp) Az + h(t, Ax).
T

It is assumed that
It Ax)|

1m
llaz||—0  ||Az|

Then the periodic solution x,(t) is asymptotically stable if |N;| < 1 for all eigenvalues X;
of the monodromy matriz C(t,t +T).

If at least one eigenvalue |\;| > 1, the system is unstable. If one eigenvalue is exactly
one, the system is said to exhibit critical behavior. No conclusions about stability can be
drawn from the linear study: depending on higher order terms the system can be either
stable or unstable.

Note that periodic solutions of nonlinear systems are not generally associated with eigen-
values of one as in the linear case because the solution of the linear variational system
does not necessarily have to be periodic as noted above.

This is different in the autonomous case as can be shown by substituting a periodic
solution into (4.10) and differentiating with respect to time

d (dx, d df, dx,
RN _— - — = — _— 4.].
dt < dt ) gl ) = 5 () (4.18)

Comparison with (4.16) shows that ddif is a solution of the linear variational system. As
this solution is periodic, the monodromy matrix C'(t,¢+T') of the autonomous system has
at least one eigenvalue of one. So theorem 4.3 can not be applied to autonomous systems.
All we can ask for in this case is orbital stability.

Theorem 4.4 (Stability of periodic solutions of autonomous systems) For an au-
tonomous system & = f(x) the variational equation about a periodic solution x,(t) =
Tyt +T),T #0 is given by

. of
Az = %(:rp)Ax + h(t, Ax).

It is assumed that
[h(Az)|]

=0.
|az||—0  ||Az||

Then the periodic solution x,(t) is stable and orbitally asymptotically stable if |\;| < 1 for
all eigenvalues A; of the monodromy matriz C(t,t+T) except for one eigenvalue |\g| = 1.
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Note that in both cases, for autonomous as well as for non-autonomous systems, stability
in terms of the eigenvalues of the monodromy matrix is not affected by the choice of the
starting point of the periodic sample. Monodromy matrices for the intervals [to, ¢y + T
and [t1,t; + T are different for ¢ty # t; but their eigenvalues are the same, since they are
related by a similarity transformation

Clto,tg +T) = WC(ty, t; + T)W™! (4.19)

4.5 Generalization of Lyapunov’s First Method to
Discontinuous Periodic Systems

For C2-continuous problems, Lyapunov’s first method allows one to draw conclusions
about asymptotic stability, or instability, respectively, of the solution of the nonlinear
equations. However, our systems are nonlinear multi-phase problems with discontinuities,
and do not satisfy the requirements of the standard results in stability theory.

The purpose of this section is to show that one can nevertheless conclude asymptotic
stability of the gait solution of the nonlinear equations from the asymptotic stability of
the linear map. More specifically, we want to prove the following theorem:

Theorem 4.5 We study a non-autonomous T -periodic system with multiple phases, that
is piecewise C*-continuous but has discontinuities J; between phases

o(t) = fi(t,x(t)) for [t; 1,t;] with j=1,...,ny and ty =0,t, , =T
and  fi(t,)) = f;(t+T,-), fj € C? (4.2

si(tj, x(t;)) = 0 (4.21)
w(ty) = x(t;) + J;(t, z(ty)) (4.2

and a T-periodic solution x,(t) = z,(t +T). It is assumed that
o the solution x, at any instant t is twice continuously differentiable with respect
to initial values
e the divergence from the base solution caused by a perturbation ||Ax|| is cor-
rectly described by a linearization up to first order, i.e. with an error that is
quadratic in ||Azx||.
Then a monodromy matriz C(t,t + T) can be defined and the periodic solution x, is

asymptotically stable if |N;| < 1 for all eigenvalues of C'(t,t +T).

Proof:

We start by showing that the assumptions of the theorem are valid in the case of the gait
models studied in this thesis. Overall discontinuous but piecewise continuous functions
can under certain conditions exhibit sufficient differentiability properties with respect to
initial values. In analogy to theorem 3.1 of Bock[8] that has been formulated for boundary
value problems it can be shown for initial value problems with discontinuous right hand
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side, that a solution F'is k times continously differentiable with respect to initial values
if
e the right hand side f has a finite number of switching points ¢, which are
isolated, i.e. roots of different switching functions do not coincide, and well
defined, i.e. the derivative $(¢; ) exists at all those points and satisfies

St) >0 ifs(t,—e) <0 (4.23)
§(t5) <0 ifs(t, —€) > 0. (4.24)

In other words, the roots ¢, of the switching points have to be simple roots
and do not degenerate in the presence of perturbations.

e [ is k times piecewise continuously differentiable w.r.t. the initial values of
the respective piece, i.e. the right hand sides f; are k — 1 time piecewise
continuously differentiable w. r. t. initial values

e switching functions and right hand sides must be extendable beyond switching
points

e all switching functions and jump functions are k£ times piecewise continuously
differentiable.

The theorem requires the solutions to be twice continuously differentiable with respect to
initial values. All our gait models satisfy the above stated conditions for at least k = 2.

Denoting the solution of the initial value problem (4.20) with z(0) = y at ¢t = T as
F(y,T) =: F(y), the second assumption is stated as

|F(z + Az) — F(z) — Fy(z)Az|| < b||Az|[>. (4.25)

F, is the derivative of F' with respect to initial values, and b is a constant. The left hand
side of relation (4.25) can be transformed, using the Jacobian F,

||F(z + Ax) — F(x) — F,(z)Az]||

1 1
= | / F.(z + aAz)Az da — / F.(z)Az da ||
0 0

1

= | i (Fp(x + alAx) — Fp(x)) Az da ||

= || (Fy(z + aAx) — Fy(z)) Azx|| da. (4.26)

0

According to the mean value theorem, we have for each component of a continuously
differentiable Jacobian F), — twice continuously differentiable F' —
Foj(x + aAx) — Foji() _ dFey
[l - Azl do

(z + &jaAx) for some £ € [0,1]. (4.27)

The right hand side is bounded by some constant w;; with a maximum value over all
components of the Jacobian
(4.28)
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Therefore,
|(Fole+ade) = R@)I| _ 129
a||Az]|
or
| (Fe( + aAz) — Fy(2)) || ||Az|| < & of|Az]. (4.30)

With this, we can estimate
1
126) < [ |I(Fa(o+ade) = Fyfe)]|| | do
01
< / Ga|Az|Pda
0

1.
= Sallax|P, (4.31)

Choosing the constant b = £, this completes the proof of statement (4.25).

The monodromy matrix C(¢,t + T') is equal to the Jacobian F,(zr,) = F(x,,T) of a
periodic solution z,). It is computed by a matrix multiplication from the transfer matrices
C(tj_1,t;) of the individual phases j and 'update matrices’ describing the derivatives

o, =1+ oz, =: U(t) (4.32)
at a discontinuous point. See section 6.4 for details about the computation of monodromy
matrices. Formulas for the computation of derivatives of the monodromy matrix, the
existence of which has been shown above, are given in section 6.6. Matrices U(t;) are
regular if phases 7 — 1 and j of the gait have the same degrees of freedom, and singular
otherwise. Monodromy matrices C'(t;_1,t;) of all phases are regular.

From (4.25) we can conclude that

||F'(zp + Az) = F(a)]] 1C(t, ¢+ T)Az|| + bl|Az|f* (4.33)

<
< et t+ D) Azl + bl Az|f*. (4.34)

If |\;] < 1 for all eigenvalues of C, then the norm ||-|| can be chosen such that C'(¢,t+T) <
k < 1 (compare theorem 5.2). Perturbations therefore decay in this norm, and the periodic
solution is asymptotically stable.

It remains to be shown for the case of piecewise continuous but overall discontinuous
solutions that the eigenvalues of the monodromy matrix C(¢,¢ + T) do not depend on
the starting time ¢ of the period. This is equivalent with showing that for general square
matrices A, B € R"*"

Mi(AB) = X\(BA) i=1,..,n. (4.35)

For regular matrices this follows from similarity transformations. The proof for general
square matrices is given in Wilkinson [101]. It even can be shown for nonsquare matrices
A€ R and B € R™*" that AB and BA have the same eigenvalues except that the
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product which is of higher order has |n — m| additional zero eigenvalues. From this we
can conclude that the eigenvalues remain unchanged even if the phases are described by
different numbers of equations. a

4.6 Some Words about Lyapunov’s Second Method

More famous than the above described first method of Lyapunov is his second or direct
method which is of great use in analytical dynamics. We briefly introduce this method
as it simply can not be omitted in a chapter discussing the stability of motion and then
explain why we can not use this method for our intentions.

It is assumed that x = 0 is a solution of the nonlinear differential equation (4.9), i. e.
0= f(t,0) (4.36)

In contrast to the method described in the previous sections, Lyapunov’s second method

does not rely on a study of the linear parts of the equation.

Instead, the method demands the construction of a so called Lyapunov function.

The idea behind that is that, according to Lagrange’s theorem, the potential energy of
a physical system is minimal at a stable equilibrium point and maximal at an unstable
equilibrium. The Lyapunov function V (¢, z) represents a generalization of the potential
energy function.

It has the domain D, = {(¢,x)|t > t1, |x| < A} and must exhibit the following properties:

e continuous first partial derivatives with respect to ¢ and z; : V(¢,x) € C}(D)
e V(t,0)=0fort >t
e positive definiteness: V(¢,x2) > 0 for x # 0

e negative definiteness of derivative: V(¢,z) < 0.

The derivative V (f, ) which is the derivative of V (¢, ) along the solution z(t) is defined

as

: oV . 9V
V(tz(t) =) 5Bt (4.37)
i=1 "

According to the second method, the existence of such a Lyapunov function proves the
stability of the trivial solution of the system. In detail, we can distinguish:

e V(z) <0in D — stability (in the sense of Lyapunov),
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e V() <0in D — asymptotic stability,

e V(z) < —aV and V(z) > b|z|® in D with (o, 8,b > 0) — exponential stability.

The difficulty of the application of this method to a physical system consists in the
construction of an appropriate Lyapunov function. Such functions have only been found
for certain classes of systems, e.g. the total energy is a Lyapunov function for Hamiltonian
systems. There are no general rules for the construction of Lyapunov functions such that
the process can not be automated. It is therefore not suited for the use in an optimization
environment which has to be applied to very different systems of difficult discontinuous

type.







Chapter 5

Stability as Non-standard
Optimization Criterion

The stability criterion based on the maximum eigenvalue of a monodromy matrix has been
discussed extensively in the previous chapter. In this chapter now, it is outlined that using
this criterion as objective function clearly leads to a non-standard optimization problem.

Section 5.1 describes the various difficulties of stability optimization in terms of eigenvalue
optimization of the monodromy matrix formulated as two-level or one-level optimization
problem. In section 5.2 we discuss possible alternatives for the maximum eigenvalue
function to be used in stability optimization. The study of powers of the monodromy
matrix instead of the matrix itself is discussed in section 5.3. In section 5.4 we finally
summarize the stability optimization criteria that we are using in our computations.

Basic knowledge about eigenvalue problems is assumed in this chapter. Good references
for eigenvalue theory are the classical textbook of Wilkinson [101], and, for the more
numerical point of view, the books of Trefethen & Bau [92] and of Demmel [24]. Since
the monodromy matrix is a real non-symmetric matrix, our considerations focus on that
case, sometimes pointing out differences to the simpler case of a symmetric matrix.

5.1 Difficulties of Stability Optimization in Terms of
Eigenvalue Optimization

As we have seen in the previous chapter, all real and complex eigenvalues of the mon-
odromy matrix have to lie inside the unit circle for the system to be stable. This goal
can be achieved by minimizing the largest eigenvalue by magnitude |\,;4,| (which is also
called the spectral radius p) of the monodromy matrix C'

min [Ane, (C(2))] = min [p(C(2))] (5.1)




60 Chapter 5. Stability as Non-standard Optimization Criterion

hoping that the minimum will have a spectral radius smaller than one. z is the vector of all
free optimization variables to be specified later. This objective function is a concatenation
of two functions p(C')oC(x): first, the matrix C'is determined as a function of x, secondly,
the spectral p radius of the matrix C'is determined. The first part of this objective function
smooth but generally non-convex, whereas the second part is convex but generally non-
smooth.

Stability optimization in terms of minimizing the spectral radius is a difficult optimization
problem for several reasons. To structure our considerations, we split those difficulties
into three different groups to be treated independently in the following subsections:

e difficulties due to the minimization of the spectral radius of arbitrary matrices, i.e.
the dependency of p on C,

e difficulties caused by the nature of the matrix itself, i.e. the dependency of C' on z,

e difficulties caused by aspects of the optimization problem other than this objective
function like constraints imposed by the dynamics.

5.1.1 Minimizing the Maximum Eigenvalue of a Non-symmetric
Matrix

Eigenvalues of a matrix are the roots of its characteristic polynomial. For matrix dimen-
sions n larger than four no analytic solution is possible, so every eigenvalue solver must be
iterative. Typically, eigenvalue solvers for non-symmetric matrix need O(n?) operations
(see Trefethen & Bau [92]). This indicates that functions involving eigenvalues are not
computationally cheap, but as we will see later, the really expensive part in our case lies
in the computation of the matrix C itself.

Eigenvalues are continuous functions of the matrix entries but they are non-differentiable
at points where they coalesce. Two or more equal eigenvalues may not be the natural
case for a physical system, but minimizing the maximum eigenvalue tends to make all
eigenvalues equal (at least as far as it is allowed by the constraints).

Before we look at those points of multiple eigenvalue in more detail we need to introduce
some important facts about the relationship between non-symmetric matrices and their
eigenvalues.

Assuming that we have a simple eigenvalue A of a non-symmetric matrix C', a perturbation
of C' by 6C' leads to a perturbation of the eigenvalue by dA:

vI'6Cw,
oA = L—L+0(||sC]?) (5.2)
vl v,
or, for the absolute value
oC
a3 < L oqrsct (53)

v/ vr]
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where v, and v; are the right and left normalized eigenvectors associated with the eigen-
value .

Proof. Subtracting
Cv, = v,

from the equation for the perturbed eigenvalue
(C'+0C) (v, + 0v,) = (A + 0N (v, + v,.),
ignoring second order terms and multiplying the result by v/ from the left, leads to:
v (C dv, 4+ 6Cv,) = v (SA v, + Adv,).
As vf'C = vl this is reduced to

v 0C v, = v] dA v,

and hence .
or= Lo ic o
v Uy
ad
The condition number cond of the eigenvalue is
cond()\) = |vf v,| 7, (5.4)

which is the secans of the angle between left and right eigenvector.

The derivative of a simple eigenvalue with respect to the matrix entries is computed in
analogy to equation (5.2)

d\ d\ vl
= [ ] — o (5.5)

dCij ’UlTUr
Remark:
Note that for a symmetric matrix where left and right eigenvectors are equal v := v, = v,
with |v| = 1, things would be much simpler. An eigenvalue perturbation is computed by
Tsc
ox = 2020 o(16C1?) = oT6Cw + O(||6C1?) (5.6)

vTw

and
10X < J16C||+ O([[6C11?), (5.7)

and the condition number of eigenvalues of symmetric matrices is always one. The deriva-
tive of simple eigenvalues with respect to matrix entries in this case becomes

g
% = VU . (58)

Now we can resume the study of the points with multiple maximum eigenvalue (by mag-
nitude) with multiplicity m for which three different types exist. We list the properties
of all types and their consequences for possible numerical algorithms.
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Figure 5.1: Three different types of multiple maximum eigenvalue modulus at x=0 for one-
dimensional dependency: a) distinct eigenvalues, but same magnitude, b) non-defective multiple
eigenvalue c¢) defective multiple eigenvalue

a) Eigenvalues are distinct, but have the same magnitude:

In this case all individual eigenvalues are differentiable, and the derivatives can be
computed according to formula (5.5). This is also true for the two eigenvalues of a
conjugate complex couple. The spectral radius is simply the pointwise maximum of
several differentiable functions. Figure 5.1a shows an example of this type:

1+ 1
Aa_< 0 —1—1—:)5)

Treatment with standard min-max techniques is possible (see e.g. Gill et al. [32]).
The original problem

min (max( Fi(@), oo, fm(:z;))> (5.9)

i

is reformulated by introducing a new variable y

min  y (5.10)
z,Y
st.  fi(x)<y i=1,..,n. (5.11)

If several f; attain the maximum then simply more than one of the inequality con-
straints become active. This resulting problem can be solved by standard methods
for constrained nonlinear optimization problems.

Maximum eigenvalue is multiple, but non-defective:

Geometric and algebraic multiplicity of the eigenvalue are the same, and the corre-
sponding eigenvector space has full dimension. However, the individual eigenvectors
that span the space are not uniquely defined. The matrix is still diagonalizable (as-
suming, of course, that there is no other set of multiple eigenvalues causing trouble).
As an example for this type, matrix

d>—1x 0 0
Ay = 0 5+03z 1
0 0 2
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is shown in figure 5.1b. The individual eigenvalues are non-differentiable at the
points of multiple eigenvalue due to the non-uniqueness of eigenvectors, but they
have a finite condition number and are Lipschitz continuous.

As the eigenvalues are always well-conditioned and differentiable in the neighbor-
hood of the points of multiple eigenvalue, and as this point only forms a singularity
in an otherwise continuously differentiable manifold, the derivative at this point can
be 'reconstructed’ by applying a small perturbation to the matrix and computing
the derivative at this perturbed point.

¢) Maximum eigenvalue is multiple and defective:

Algebraic multiplicity m of maximum eigenvalue exceeds its geometric multiplicity
myg, such that the eigenvector space does not have full dimension. The matrix is
non-diagonalizable, and the respective Jordan form would have m, blocks containing
the defective multiple eigenvalues. An example for this type,

Acz<x 1)
-z

is shown in figure 5.1c. This type only exists for non-symmetric matrices, as sym-
metric ones are always diagonalizable.

The right and left eigenvectors of a Jordan block of dimension m are e; and ey,
and thus perpendicular, such that the condition number is always infinite at those
points (compare equation (5.4)). Infinite condition number does not mean that
multiple eigenvalues cannot be computed with any accuracy at all. Instead, one can
expect to correctly compute 1/m of the machine precision digits for an eigenvalue
with multiplicity m and a matrix given with machine precision (Demmel [24]). But
infinite condition number or perpendicular left and right eigenvectors also cause the
derivative of the eigenvalues to be infinite (equation (5.5), i.e. the eigenvalues are
not even Lipschitz at the points of multiple eigenvalue. Typically some bifurcation
occurs at this point; for the example shown in figure 5.1 two distinct real eigenvalues
for z < 0 ’join’ to a conjugate complex couple for x > 0.

The eigenvalues are also ill-conditioned in the neighborhood as the eigenvectors
continuously approach perpendicularity.

Due to the properties stated above any gradient based algorithm would encounter
difficulties not only in the singular points themselves but also in their neighborhood.
We have to expect that it would not be possible to compute meaningful derivatives
in a region about these points.

Figure 5.2 visualizes the spectral radius manifold for a simple 2-dimensional matrix de-
pending on two variables. It shows several local minima all lying at points with multiple
eigenvalue, most of them of type ¢). This gives a little hint about the difficulties that can
arise for matrices which are not that simple any more.

In section 6.1.2 we will give an overview of existing algorithms in the literature for simple
cases of eigenvalue optimization for analytic matrices.
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Figure 5.2: Absolute value of maximum eigenvalue of matrix ((z1, o), (221, 1))

5.1.2 Computation of the Monodromy Matrix

The monodromy matrix of a periodic trajectory is obviously not a simple analytic function
of the variables x. It contains the derivatives of the trajectory end values with respect to
initial values. This makes the objective function less accurate than an analytic function
and computationally very expensive since for every function evaluation a complete periodic
trajectory plus the derivatives have to be computed. Additionally, since the objective
function already contains first order derivatives of the trajectory in terms of the matrix C,
its gradients would even need second derivatives in terms of 5700 and %. Those gradients
are even more expensive to compute, and it should be kept in mind that they do not
necessarily satisfy the accuracy demands of some algorithms. The monodromy matrix
typically is a non-convex ’function’ of the independent variables.

5.1.3 Constraints of Stability Optimization

Stability optimization represents not only an eigenvalue optimization problem with a
matrix difficult to compute as demonstrated in the two previous sections. Differential
equations, periodicity and switching functions etc. also enter as constraints to eigenvalue
optimization.

Two-level Formulation

When treated as two-level optimization problem as we do in this thesis, the outer loop
stability optimization is formulated as an unconstrained problem. But every function
evaluation in the outer loop includes a determination of a periodic gait for the given set
of parameters by the methods described in chapter 3. This causes function evaluations

of the outer loop to be very expensive and potential gradient computations to be rather
difficult.
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The full problem formulation in this case contains a non-standard parameter optimization
problem in the outer loop and a standard optimal control problem in the inner loop:

min | Amaz (Cz)| (5.12)
p
with C, being the monodromy matrix of the solution of
T
miy [ o). u(t)p) de + H(Tn(T).p) (.13
U, 0
s. t. ©(t) = fi(t,x(t),u(t),p) for te[rj_1,T7jl,

Y
o

for te[rj_1,75]

(5.14)
(5.15)
= h(z(r;)) for j=1,... ny (5.16)
(5.17)
(5.18)

v
o

Teq(2(0), .., z(T),
Tineq(2(0), .., z(T)

Its solution requires methods for non-standard, non-differentiable parameter optimization.

One-level Formulation

In a one-level formulation the system’s dynamics as well as all other constraints imposed
for periodic gait generation become constraints of stability optimization to be satisfied
simultaneously. This leads to the formulation of a non-standard optimal control problem:

Jnin, | Arnaz (Cz)] (5.19)

s. t. ©(t) = fi(t,z(t),u(t),p) for te[rj_1,T7jl,
j=1 i npn, 10 =0,7,, =T (5.20)
w(rf) = h(a(ry)) for j=1,...np (5.21)
gi(t,z(t),u(t),p) > 0 for te[rj_1,75] (5.22)
Teq(7(0), .., x(T),p) = (5.23)
Tineq(7(0), .. x(T),p) > 0 (5.24)

In contrast to the problems treated in chapter 3, its objective function is not of Mayer or
Lagrange type and cannot be transformed into one of those. There is no way to express
the spectral radius of the overall monodromy matrix as a sum of functions depending only
on local variables of the respective multiple shooting interval. This problem asks therefore
for special solution methods for non-standard optimal control problems that can not rely
on the same assumptions of structure as the methods described in chapter 3.
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5.2 Alternative Objective Functions for Stability Op-
timization

The purpose of this section is to study alternatives that could help to make stability opti-
mization a problem easier to solve. The approaches presented here all aim at replacing the
minimization of the maximum eigenvalue modulus by some other optimization criterion
to avoid the difficulties detailed in section 5.1.1.

5.2.1 Shortcomings of Obvious Ideas

We briefly describe some simple but misleading approaches that have been proposed
to avoid the difficulties of eigenvalue optimization and give reasons why they are not
applicable.

The first idea is to treat min-max eigenvalue problems by standard min-max problem
reformulation into a nonlinear optimization problem. But let us recall from section 5.1.1,
that except for points of multiple maximum eigenvalue of type a) the individual eigenval-
ues become non-differentiable at those points. The typical ill-conditioning in the region of
a point of type c) and infinite derivatives also may not be handled by standard nonlinear
programming methods. Another problem is that the different eigenvalues of a matrix can-
not be labeled in the sense that corresponding eigenvalues at different iterates cannot be
uniquely identified. So it would be impossible to always associate one constraint with 'the
same’ eigenvalue, and a switching of eigenvalues between constraints might take place.

The same problems (local non-differentiability, ill-conditioning and switching of eigenval-
ues) would be encountered if instead of using an objective function based on the maximum
eigenvalue one chose to impose constraints on all eigenvalues

Nl <1-6 i=1,..n (5.25)
with some 0 > 0, e.g. § =0.1.

Another idea is to use an auxiliary objective function that takes all eigenvalues into
account and punishes eigenvalues outside the unit circle, e.g.:

min f = Z filh)  with  fi(\;) = arctan(10(|\;] — 1)) (5.26)

Again, this does not solve most of the problems listed in section like non-differentiability
and ill-conditioning.

5.2.2 Equivalence of Norms & the Theorem of Hirsch

In order to overcome these mathematical difficulties a far better idea is to look for some
well-behaving function that does not directly depend on the eigenvalues but is known to
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be an upper bound to the spectral radius. Thus one could expect to reduce the maximum
eigenvalue by minimizing this function. The so called induced matrix norms (see e.g.
Stoer [85] or Trefethen & Bau [92]) have the property of being an upper bound to the
spectral radius as detailed below.

Induced matrix norms are always derived from corresponding vector norms. They describe
the effect of a matrix C' € C"*™ as an operator between domain space of dimension n,
and range space of dimension n;. We will concentrate on real, square matrices C' €
R™ ™. The induced matrix norm ||C|| is defined as the largest factor by which a vector is
“multiplied” by the matrix C"

|Cx]]

=]

1O} = max (5.27)

In this sense the maximum norm of a matrix C' with entries ¢;; becomes the maximum
row sum:

C max; | S0 cixs n
||C||OO :maxw — max Z|Z-J_1-l] ]| :maXZ|CZ]|, (528)
770 ||2[o 270 max; || i

the 1-norm is the maximum column sum:

|Cz|]; > i (X052 i) -
_ Al 5.29
x max ;—1 il (5.29)

lzfly w20 30 [y

and the Euclidean norm equals to the largest singular value of C

[|Cz||2 VaTCTCx
=max ——— =

T#0 ||[1,’||2 N T#0 xTr
= Omaz(O). (5.30)

||C| |2 )‘maz (CTC)

Based on these definitions of induced matrix norms we now can state the following theo-
rems (Stoer & Bulirsch [86]):

Theorem 5.1 (Theorem of Hirsch)
All eigenvalues X of any given matriz C' satisfy:

A< |C]] (5.31)

In other words: any induced norm of the matrix C' is an upper bound to the spectral
radius
ol < 1IC]- (5.32)

Theorem 5.2
1. For each matriz C' and each € there is a vector norm || - || and a corresponding matriz

norm for which
(5.33)
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2. If the mazimum eigenvalue X with |\| = p is non-defective, then there even is an

induced matriz norm for which
1C]] = p(C). (5.34)

Hence the spectral radius of a matrix being the infimum of all induced matrix norms
is equivalent to or at least very close to some induced matrix norm, but in general this
specific norm is neither physically nor mathematically relevant.

As it will be discussed in the following sections all three induced matrix norms presented
above (1-, 2-, and co-norm) are better behaving functions than the spectral radius.

Let us recall an important property of norms in R”: in finite-dimensional vector space,
all norms are equivalent in the sense that if || - ||;, and || - ||, are two norms on the same
space, then there exist positive constants ¢; and ¢y such that for all x in that space

allzlly < llelle, < collellq,- (5.35)

From that and the above theorems it follows that the maximum eigenvalue and some
induced matrix norm are connected by some finite factor, but of course the norm can be
larger than one even though the maximum eigenvalue modulus is smaller than one.

Studying a physically meaningful matrix norm instead of the maximum eigenvalue also
makes sense from a physical point of view. According to theory, a spectral radius smaller
than one is enough to guarantee stability. But strictly speaking, it only says that pertur-
bations are eliminated for t — oo, and they can very well be amplified in the meantime.
As asymptotic stability implies stability, perturbations are bounded but in some cases the
bound can be quite large. On the other hand, if one of the above matrix norms is smaller
than one, there would be a contraction of perturbations in terms of the chosen norm over
each cycle.

To sum up the ideas of this section: two different goals can be pursued by minimizing
some 'physical’ induced matrix norm:

e Reduce this norm below one to have a contraction of perturbations in terms of this
norm. One should be aware that this is a very strict criterion and that it will be
hard to reach this goal for many physical systems. In section 5.3 we will discuss a
way to soften this criterion.

e Reduce this norm not necessarily as far as one, but use this upper bound only to
provoke an overall decrease of the maximum eigenvalue. Reducing an upper bound
does of course not mean that in every step the spectral radius itself will also be
decreased — the contrary can be the case. One should carefully observe the value
of the spectral radius in every iterate because it might attain its best value (of all
iterates) before convergence to the minimum of the chosen norm is achieved.

Remark:
In contrast to eigenvalues, general induced matrix norms do depend on the starting point
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of the periodic sample, i. e. they are not the same for different intervals [to, ¢ + 7] and
[tl, tl + T] with to 7£ tl-

5.2.3 Singular Value Optimization
As we have seen above (equation (5.30)) the maximum singular value of a matrix is equal
to its Euclidean norm and therefore an upper bound to the spectral radius.

By definition, the singular values o; of a real matrix C" are the eigenvalues of the symmetric,
positive semi-definite matrix H

0i(C) = VA(CTC) =V Ai(H), (5.36)

i.e. they are always real and positive. In the mapping of the unit sphere into a hyperellipse
by means of the matrix C' the singular values of C' describe the lengths of the semi-axes
(Trefethen & Bau [92]).

So choosing the maximum singular value instead of the maximum eigenvalue as optimiza-
tion criterion for stability optimization

min o4, (C()) (5.37)

has the following consequences:

e the objective function is still non-differentiable at points with multiple maximum
eigenvalue, but

e non-differentiabilities have become less numerous and far less serious. Being eigen-
values of of a symmetric matrix, singular values are always well conditioned and
Lipschitz. As all singular values are positive, no absolute values have to be taken.
In contrast to eigenvalue optimization we are now only facing points of type b), i.e.
the non-differentiability is limited to isolated points.

To summarize, singular value optimization is a considerably easier problem than eigen-
value optimization. Among all matrix norms, the Euclidean norm has the advantage of
being the most meaningful from an engineering point of view.

5.2.4 Optimization of 1-norm or oco-norm

The induced 1-norm and oo-norm of a matrix are its maximum column sum and maximum
row sum, respectively (equations (5.29) and (5.28)). The use of one of these two norms as
objective function for stability optimization has the advantage to allow a transformation
into a standard nonlinear programming problem. We will show here the transformation
for the example of the 1-norm, the proceeding for the co-norm is analogous.
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The original unconstrained non-differentiable min-max optimization problem

min ||C]; = min <32’ax’n ||cj||1> = min (Jgfix’n (; |c”|>> (5.38)

(where ¢; is the j-th column vector) can be reformulated as as differentiable constrained
optimization problem

min z (5.39)
s.t. — Yij S Cij S Yij Vi = 1, N, ] = 1, ey (540)
2>y Vi=1,..n (5.41)

using the auxiliary variables z and y;; with s =1,...,n;5 =1,...,n.

The transformation was performed at the cost of n? + 1 additional variables and 2n? +n
additional equations. The resulting problem (5.39) - (5.41) is a quite large but simple and
structured standard nonlinear programming problem.

The advantage of using one of these two norms in stability optimization is that standard
nonlinear programming methods can be used for the solution. Due to the sparsity of the
problem it would however be favorable to develop faster special purpose algorithms that
exploit the structure.

5.3 Study of Matrix Powers

While in the previous section we have only looked at possible replacements for the spectral
radius, we here want to question the use of the monodromy matrix C' itself. As it turns
out, sometimes it might be favorable to look at powers of C' instead.

In the previous section we have discussed that demanding a contraction of the 1-, 2-
or co-norm over one cycle is a very strict criterion. A softening of this demand can be
achieved by only asking for a contraction of the norm over a number p of cycles with
p>1.

For p — oo there is equivalence between a contraction — or even disappearance, to be
exact — of the norm of C? and the spectral radius of C' being smaller than one, as stated
in the following theorem:

Theorem 5.3
For an arbitrary matriz C € R and a norm || - || holds:

lim [|CP||=0<p(C) < 1 (5.42)
p—00

Note that the same statement can be made for complex matrices.
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Proof:

Direction (<) can be proven directly. According to theorem 5.2, there is a norm || -

with small € such that
|Clle =p(C) +e=1a < 1.

Since for any induced matrix norm ||AB|| < ||4]| ||B||,
1CP]le < [IC[E = o”.
Due to the equivalence of norms (5.35) follows for any other norm || ||
1CP]] < erf|CP]]e = er0”
which tends to zero for p — oo.
For the other direction (=) we need to take two steps. In a first step we show that

1 Pl — 1 P —
Jim [|C7]] =0 = Tim (p(C7)) =0

which follows directly from the theorem of Hirsch: the spectral radius of C? is zero if its

upper bound in terms of some induced matrix norm is zero.

In a second step we show the following equivalence (although showing (=) would be

sufficient for the proof):
lim (p(C?)) =0 < p(C) < 1.

p—o0

Every square matrix C' has a Schur factorization:

C=Q-T-Q"

where @ is orthogonal (i.e. Q7Q = I) and T is upper triangular. The eigenvalues of
C always appear as diagonal elements d; of T" because C' and T are similar and the

eigenvalues of triangular matrices are the diagonal elements:
Det|T — M| =0=1I]"_y(d; — A\) =0
for all A of T" and C' respectively and therefore
di=X)N 1=1,...,n
With equation (5.3) follows

Cr = (Q-T-Q"y
= Q- 7T-Q"-Q-T-Q"-....Q-T-Q"
Q-1 Q"

TP is again upper-triangular and has diagonal elements — and therefore eigenvalues —

d? = AP Due to the similarity with 7%, C? also has eigenvalues \?, i.e.

le

(5.43)
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(Note that in the special case of diagonalizable — i.e. non-defective — matrices, the same
property follows more easily:

CP = (XAX 'Y=X-A".X1)

Since
lim (pP(C)) =0 < p(C) < 1.
p—00
this completes the second part of the proof. a

Note however, that induced matrix norms do not exhibit a property similar to (5.43)
concerning their powers:

|C1[7 # 11C7] (5.44)

such that specifically for the maximum singular value

Omaz(CP) 7 0100 (O). (5.45)

This results from the fact that singular values or induced matrix norms in general are not
derived from a similarity transformation such as eigenvalues, and therefore transformation
matrices are not eliminated when taking the power of a matrix.

In chapters 7 — 9 we show several plots of matrix norms as functions of matrix powers
confirming this statement.

One has to be aware, that if the spectral radius of the monodromy matrix is larger than
one, the spectral radius and induced matrix norms for increasing powers of the matrix
will be highly divergent.

To sum up, studying powers of a matrix can be a good alternative to studying the matrix
itself. From the theoretical point of view it does not make a difference which specific norm
(including the spectral radius) is chosen as optimization criterion as long as the matrix
power is high enough. What is a good choice for the power p in a practical case needs to
be heuristically determined.

5.4 Summary: Objective Functions for Stability Op-
timization

We finally summarize possible objective functions for stability optimization that will be
evaluated and compared in this study:

e the original eigenvalue criterion:

fi = [Amaa(C)] = p(C) (5.46)
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e induced matrix norms of the monodromy matrix:

f2a = Jmax(o):||0||2 (547)
fa = ]C||s (5.48)

e induced matrix norms of a power of the monodromy matrix:

f3a — Umaz(cp):HCpHZ (549)
fa = [C"]|s (5.50)

The advantages of one choice of norm over the other as well as a good choice of the matrix
power will also be investigated.







Chapter 6

Numerical Methods for Stability
Optimization

This chapter contains a collection of useful methods for stability optimization problems as
formulated in section 5.1.3. Since not all these methods were necessary to find solutions for
the application of robot stabilization, some (like the derivatives of singular values) have
so far only been implemented as library modules. The evaluation of different possible
methods for stability optimization was possible in the framework of an object-oriented
optimization library that we developed during the research for this thesis (see appendix).

We briefly review literature about general non-smooth optimization and eigenvalue opti-
mization in section 6.1. Section 6.2 describes the specific direct search method, a variant
of the Nelder-Mead polytope algorithm, that we have implemented and used for stability
optimization of all our robot examples. In section 6.3 we give apparently new formulas for
the computations of derivatives of simple and multiple singular values. Section 6.4 recalls
the computation of the monodromy matrix in the presence of discontinuities. The neces-
sary projections for monodromy matrices of autonomous systems are described in section
6.5. In section 6.6 we present, for the first time, formulas for the derivatives of mon-
odromy matrices for discontinuous dynamic equations with respect to initial values and
parameters. They represent second order derivatives of the differential equations. Section
6.7 finally contains a numerical procedure for the determination of nonlinear stability
margins.

6.1 Review of Literature

6.1.1 Non-differentiable Optimization

All smooth optimization methods are directly or indirectly based on a Taylor series ap-
proximation of the objective function and require at least continuous differentiability of
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T step

Figure 6.1: Subgradients at z = 0 for the example function |z|

this function. In the case of a non-differentiable objective functions like the analyzed
case of eigenvalue optimization or non-differentiabilities introduced by the method, like a
non-smooth penalty function, smooth optimization methods can not be applied in gen-
eral. We summarize in this section some important theoretical background information
about non-differentiable optimization. More details can be found in Clarke [16] or in the
respective chapters in GroBmann & Terno [36] and Fletcher [28].

In the case of non-differentiable functions, substitutes for the derivative are required. For
convex functions, the subdifferential is defined as

0f,(z) = {s € R : f(y) > f(2) + 5" (y—2) Vy € R"} (6.1)
If f attains only finite values, 0 f; is a nonempty, compact convex set. The elements of Jf;

are called the subgradients. Figure 6.1 shows the subdifferential for the example function
|z

The generalized gradient of Clarke [16] is defined for a more general class of functions.
Here only Lipschitz continuity of f is required. Then the generalized directional derivative
of f, evaluated in the direction d is given by
) 1
dflz;d)= lim = sup-(f(y+dh) = f(y)). (6.2)

y—z, h—0+

The generalized gradient is defined as
Of(z) ={£ e R : df(x,d) > d- £V deR}. (6.3)

The first order necessary optimality condition for for non-smooth optimization problems
is

(6.4)
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which is a generalization of V f(z*) = 0 for smooth optimization problems.

For general non-smooth optimization problems special optimization techniques are re-
quired. The gradient-based algorithms can be divided into three basic types:

e Subgradient methods:
They form the equivalent of the steepest descent method for smooth nonlinear op-
timization. The iterates are computed as

" = b agd” (6.5)

with

Il
It is not advisable to determine the steplength oy by a line search, as cases of
convergence towards a non-optimal point can simply be constructed (Fletcher [28]).
Instead, a priori fixed steplengths a4, satisfying the conditions

Zak = 00 (6.7)

Zaz < 00 (6.8)
k=0

dy for some s, € Of (z"), (6.6)

should be used. In this case, (very slow) convergence can be guaranteed, but there
is of course no assured improvement in every step.

e Bundle methods:

The idea of bundle methods is similar to that of conjugate gradient methods for
nonlinear optimization. The direction of search is determined by bundled subgra-
dient or generalized gradient information of the current iterate and previous ones.
In the simplest form of the algorithm, the initial bundle is set to s € 9f(z(*), and
subgradients s*) € 9f(x® are added in successive iterations. A reset of the bundle
is performed from time to time. For some choices of the bundle convergence of the
algorithm can be proven.

e Parameterized embedding in smooth problems:
The non-smooth objective function is substituted by a parameterized smooth ob-
jective function that degenerates to the original non-smooth function in the limit
case € — 0. In analogy to penalty function techniques, a whole family of auxiliary
problems with different parameter values € is generated and solved. Appropriate
control of the parameter € is required.

Non-smooth optimization literature (e.g. Fletcher [28]) very often focuses on the special
case of composite non-smooth optimization problems

(6.9)
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where h(c) is convex, but non-smooth and ¢(x) is a vector of smooth functions. For this
case, more methods, like e.g. a non-smooth extension of the SQP method have been
developed. However, min-max eigenvalue optimization does not belong to this type of
problems.

Since the maximum eigenvalue of a non-symmetric matrix is neither differentiable nor
Lipschitz (see section 5.1.1), both the theory of subgradients and Clarke’s theory of gen-
eralized gradients are not applicable in this case.

A very interesting alternative for general non-smooth problems are direct search methods
which, in contrast to the methods discussed above, do not require any gradient-like infor-
mation. Since we have chosen to use an algorithm of this type for stability optimization,
these methods are treated more extensively in section 6.2.

6.1.2 Existing Methods for Simpler Cases of Eigenvalue Opti-
mization

The purpose of this section is to refer to some important literature in the field of eigenvalue
optimization. Most articles we have found concentrate on the case of symmetric affine
matrix functions A(x) which has the advantage of leading to convex objective functions
| Amaz (2)| The definition of a subdifferential is possible in this case.

There is a series of publications by Overton. A quadratically convergent algorithm for
symmetric affine matrices was proposed in Overton [68] and extended to large scale ma-
trices in Overton [69]. Shapiro & Fan [83] and Overton & Womersley [71] give the corre-
sponding second order convergence analysis. Goh & Teo [33] have attempted a solution
of eigenvalue optimization problems by min-max reformulation of eigenvalue optimization
and application of standard algorithms, but other sources (see e.g. Panier [72]) give ex-
amples for a failure of this approach. Eigenvalue optimization problems for symmetric
matrices can be transformed into semidefinite programming problems which have recently
received a lot of attention. There is extensive literature on this subject (see e.g. Alizadeh
et al. [2] for primal-dual interior point methods and Helmberg & Rendl [39] for spectral
bundle methods).

The only publication about eigenvalue optimization for non-symmetric matrices that we
are aware of is Overton & Womersley [70]. For affine matrix functions they derive first
order optimality conditions and formulas for the direction of descent in the case of non-
defective multiple eigenvalues. The defective case is only briefly discussed. The results of
this paper do not apply to cases with nonlinear matrix functions or applications involving
constraints.

We can summarize that to our knowledge the specific form of eigenvalue optimization
problem that we are facing in our study is not addressed in eigenvalue optimization
literature.
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6.2 A Direct Search Method for Eigenvalue Opti-
mization

Direct search methods are optimization methods that solely use function information
and do neither compute nor explicitely approximate derivatives. While derivative-based
methods are extremely efficient for many types of problems they reach their limitations if
objective function are non-smooth by nature or their values can only inaccurately be de-
termined, or when sensitivity information is not available or at least not reliable. Standard
optimization literature (Gill et al. [32]) recommends direct search methods as methods
of choice for non-differentiable optimization.

For the solution of the two-level stability optimization problem a direct search method
has proven to be a good choice. We use a modification of the direct search method of
Nelder & Mead, also known as polytope algorithm. We have used this algorithm not
only for eigenvalue optimization but also for minimization of the other criteria listed in
section 5.4 since we did not want to blur the comparison of different objective functions
by algorithmic influence.

In section 6.2.1 the original algorithm (Nelder & Mead [66], Gill et al. [32]) is pre-
sented. Section 6.2.2 describes the modifications we have introduced in order to make
the algorithm suitable for stability optimization. We conclude with a short discussion
of convergence properties of the Nelder-Mead algorithm and related methods in section
6.2.3. Since we apply the algorithm for parameter optimization, we call the vector of
independent variables p throughout this section.

6.2.1 Original Polytope Algorithm

The Nelder-Mead algorithm dating from 1965 is among the most famous optimization
methods ever created and is still popular today. Nelder & Mead call the algorithm a
simplex method since it is based on a sequence of (n+1)-vertex simplices for optimization
n-dimensional space p € R* — however, the method is not to be confused with the even
older and more famous simplex method for linear programming by Dantzig. This simplex
— or polytope — retains information about function values at n + 1 distinct points and
thus obtains some sort of coarse grid sensitivity information. Always replacing its worst
point and adapting its shape to the topology the polytope wanders through the space of
optimization variables towards a minimum.

The individual steps of one algorithm iteration are the following (also compare figure 6.2):

1. At the beginning of every iteration k, the function values f(p;) of all n+ 1 vertices
are determined, and the vertices are ordered and labeled py, ...p, 1 such that

fp1) < fp2) <o < f(Pnta) (6.10)

Vertex p; therefore represents the best point of the function known so far. In
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Figure 6.2: Basic concept of polytope algorithm

practice, only the best, worst and second-worst points have to be isolated, but the
above fully ordered form is nicer for presentation.

. The centroid of all vertices but the worst is computed

.= z”: P (6.11)
=1

The worst vertex p,, = p,1 is reflected on this centroid

pr=c+alc—ppi1) (6.12)

with a reflection coefficient «, (0 < a < 1) . If the function value at this reflected
point f(p;) is
fp1) < fpr) < flpw), (6.13)

i.e. neither the new best nor worst point, point p, replaces p,.; and the iteration
step terminates.

I

f(pr) < f(pl)a (614)

the reflection has produced a new minimum and it might be worthwhile trying to
go further in this promising direction. This motivates the expansion step

De = C+ 7(pr - C) =Ypr + (1 - ’7)0 (615)

with expansion coefficient v, (y > 1). If f(p.) < f(p,), the expanded point is
accepted as new simplex point, otherwise p, is accepted. The iteration step is
terminated.
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4. If on the contrary, after reflection

for) > f(pn), (6.16)

i.e. the reflected point is still the worst point, a contraction of the polytope is
performed. Of the two points p, or p,,; the one with the better function value is
chosen as target for the contraction which is accordingly called outer contraction

pc,o:c+6(pr_c) :Bpr+(1_6)c (617)
or inner contraction
Peji = €+ B(Pny1 — €) = Bppsr + (1 = B)c (6.18)

with contraction coefficient 3, (8 < 1). If f(p.) < f(pa) with p, = min(py, pni1),
the contracted point is accepted as new simplex point and the step terminates.

5. For a failed contraction the full polytope is shrunk towards the best point, i.e. the
points pa, ..., ppy1 are replaced by

i = 0.5(p; + p1) (6.19)

and a new iteration step starts.

The reflection, expansion and contraction coefficients are heuristically chosen; a frequent
choice is a = 3 =0.5,7 = 2.

The iteration terminates when the difference of function values of all simplex points in
terms of a 'standard error’ falls below a chosen tolerance

n+1

> (f(pi) — f(e)) < tol. (6.20)

=1

In order to include constraints on the volume to be searched, the authors propose to
use a modified objective function like the logarithm of the original function in order to
exclude negative values of variables. Linear equality constraints can of course be handled
by explicit elimination of variables and reduction of the simplex dimension.

6.2.2 Overview of Necessary Modifications for Stability Opti-
mization

For a better performance in the context of stability optimization we have applied a number
of modifications to the original algorithm.
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Multiple Expansions

Instead of a single expansion like in the original algorithm we allow multiple expansions
if the first expansion was successful. In every step the expansion coefficient v in equation
(6.15) is augmented (e.g. doubled) until there is no further improvement of the objective
function. The maximum number of expansions can be specified by the user (default
value = 5). In our examples considerable reductions of the objective function have been
achieved by these multiple expansion steps.

Modified Contractions

We modified the contraction procedure such that the reflected point (outer contraction)
or the original worst point (inner contraction) is contracted towards the best point instead
of the centroid. In equations (6.17) and (6.18) c is replaced by p;.

Modified Shrinking

Since we have observed that frequent polytope shrinking leads to premature convergence
we instead allow multiple polytope contractions before shrinking the polytope. The max-
imum number of contractions can be modified by the user (default value = 5).

Initial Polytope Scaling

Different orders of magnitude of the optimization variables are considered in the choice
of the original polytope by an appropriate scaling of the polytope side lengths. Starting
from one initial point p; provided by the user, the other n polytope points are created by
scaled steps in one variable direction each:

Dj :p1—|—lg'5]',1 “€5 1, j=2,...,n+1 (621)

where [, denotes the unity side length, s; the scaling factor, and e; the i-th unity vector
in R™. Scaling factors as well as unity side length can be specified by the user.

Handling of Box Constraints

Box constraints to the parameter space are not handled by a modification of the objective
function but by a modification of the algorithm itself.

The constraints have to be considered during reflection, expansion, and initialization steps.
Figure 6.3 illustrates a modified reflection step in the presence of box constraints. If a
reflected point turns out to be outside the bounds it is set back onto the bounds by the
algorithm. The same is done during polytope initialization. If the initial polytope risks to
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Figure 6.3: Handling of box constraints with modified polytope algorithm

degenerate due to multiple resets the user will be prompted to modify the initial polytope.
Directions of variable space in which a reset had to be performed are excluded from the
expansion steps. This leads to a direction of expansion different from the direction of
reflection. The necessity for a reset is checked after each expansion step.

Due to the convex nature of box constraints no modifications have to be made to con-
traction and shrinking procedures and to the computation of the centroid.

Termination Criterion

If the polytope algorithm is applied to eigenvalue optimization, ill-conditioning of the
objective function may occur. This is especially true for the optimum were typically
the maximum eigenvalue is multiple. It is therefore sometimes favorable to increase the
termination tolerance in the presence of large eigenvalue condition numbers.

Restart Procedure

For a problem with multiple minima like stability optimization we wanted to reduce the
danger of converging to some local minimum if there is another one of better function
value nearby. After convergence we therefore perform a restart by generating a new
initial polytope keeping the optimum as one point of the new polytope. A minimum is
only accepted if convergence to the same point has appeared twice. For our computations
this restart procedure typically causes a considerably improved objective function value
at final convergence relative to the first convergence point.




84 Chapter 6. Numerical Methods for Stability Optimization

6.2.3 Discussion of Convergence Properties

Algorithms of the Nelder-Mead simplex type have proven to be very robust for many ap-
plications although not many theoretical results have been obtained so far. Until recently
there was no theoretical analysis explicitely treating the original algorithm but only vari-
ants. There are two recent publications studying convergence in low dimension. Lagarias
et al.[46] gave a proof of convergence of the polytope algorithm for one-dimensional and
certain two-dimensional functions. McKinnon [55], however, demonstrated convergence
to non-stationary points for another class of two-dimensional functions. No proofs have
been presented so far for functions of higher dimensions. There are reports about the
polytope degenerating in high dimensions causing the algorithm to fail.

There is a class of direct search methods, called pattern search algorithms, for which
more theoretical results are available. Instead of replacing only the worst point like the
polytope algorithm, pattern search algorithms replace all but the best point. Torczon [91],
[90] proved that pattern search algorithms converge to a stationary point when applied
to smooth functions. But since the smoothness condition is not satisfied by eigenvalue
optimization problems and since n function evaluations are required for one step of the
pattern search methods, we have favored our variant of the Nelder-Mead algorithm over
pattern search.

We are aware that convergence of the algorithm cannot be proven but have been motivated
by the fact that it converges to the optimum for a number of standard NLP test problems.

6.3 Numerical Methods for Singular Value Optimiza-
tion

As we have outlined in the previous chapter, singular value optimization represents an
interesting alternative to eigenvalue optimization in the intention to increase a system’s
stability.

Numerical libraries like LAPACK (see Anderson et al. [3]) contain very efficient routines
for the computation of singular values such that there is no need for development of new
methods. In this section we concentrate on formulas for the derivatives of the maximum
singular value with respect to an independent optimization variable z; on which the
matrix C implicitly depends:

dOmaz _ AOmaz  dC <d0maz dC >

dre  dC dz, \ dC  dzy

(6.22)

x) is not to be confused with the vector of state variables - used in previous chapters. (-)
denotes the Frobenius product or inner matrix product

(6.23)
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We distinguish the cases of simple and multiple maximum singular value.

6.3.1 Computation of Derivatives if Singular Value is Simple

We assume that singular values have sorted order after computation by the library routine
and that the maximum value is simple:

Omaz = 01 > 09 > ... > op. (6.24)

In this case the maximum singular value is continuously differentiable. The computation
of the derivative does not pose a big problem but we will see that there is nevertheless
some room for improvement.

Let us recall from literature (e.g. Trefethen & Bau [92]) that there are two different ways
to compute the singular values of a matrix C'.

The first variant is to use the formal definition

o;(C) = N(VCTC), CeR™™ (6.25)
where B = CT(C is the covariance matrix of C'. It has the disadvantage of a worse condition
than the original matrix as the errors are squared. Furthermore it is numerically unstable.

An alternative computation of singular values is based on a symmetric auxiliary matrix
H of double dimension:

T
H:<g(g>,HeWW% (6.26)

The condition number of H is the same as for the original matrix C. H has got 2n
eigenvalues which come in pairs of opposite sign. The singular values of C' are equal to
the positive eigenvalues (or the absolute values of the eigenvalues ) of H;

N(H)~ =+ 64(0) (6.27)

The corresponding 2n eigenvectors vZ,{_ of H are related to the left and right singular

vectors u; and v; of C' by
1 V;
+/7 = — t
Vg, 7 < tu, ) : (6.28)

It is this second variant that we are going to use for the computation of derivatives
although we will try to avoid the computation of matrices of dimension larger then n.

Using formula (5.8) for the derivatives of eigenvalues of symmetric matrices presented in
the previous chapter and relation (6.28) for the eigenvectors of H, we can conclude for
the derivatives of singular values:

doy(C)  dXF(H)

dxk dxk
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dO’l(C) - T dC
i <ulvl o (6.29)

We have thus established a formula for the derivative of a (simple) singular value with
respect to an independent variable x; that only requires computation and multiplication
of two square matrices of dimension n but does not have the ill-conditioning drawback of
equation (6.25). We will come back to the second part of equation (6.29), %, in section
6.6.

6.3.2 Computation of Derivatives if Singular Value is Multiple

The case of a maximum singular value of multiplicity m
Omaz =01 = 09 = ... = O > Ot > eee > o, (6.30)

is more complicated. As we have discussed in section 5.2.3, the individual singular values
are non-differentiable but well-conditioned at the points of multiple maximum singular
value. Two tasks have to be handled:

e detection of a local minimum

e computation of a direction of descent.

Both can be solved based on the idea, that the derivatives of the individual singular
values at this non-defined point can be approximated by the corresponding derivatives at
a slightly perturbed point.

do,(C(x)) _ doi(C(x + ')
dxk - de’k

(6.31)

We apply a perturbation to the matrix C' that splits the multiple singular value into
m distinct ones, i.e. we apply a different perturbations in the direction of each of the
multiple singular values . From the singular value decomposition of matrix '

C=Uxv" (6.32)
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we create the perturbed matrix
Cpert = U+ W =C+UXVT (6.33)

with the diagonal matrix of perturbations

m—1 0 0
m— 2 0 0
0 0
S — Lo (6.34)
0 . 0 0 0
0 00 --- 0

where ¢ is some constant, e.g. ¢ = 10~°

For this perturbed matrix which has a simple maximum singular value the derivative can
be computed as described in the last section.

In order to detect a possible local minimum at points of multiple maximum singular value,
we have to verify if the subgradient 0f = 0 is element of the subdifferential at this point.
In practice, this results in the need to check if for all directions k of the optimization
space there are two gradients of individual singular values which are of opposite signs (or
one that is zero):

doi(C(x)) do;(C(x))

de’k de’k

<0. (6.35)

6.4 Computation of Monodromy Matrices for Dis-
continuous Differential Equations

In this section, we discuss the numerical computation of the monodromy matrix associated
with a solution of the inner loop discontinuous periodic optimal control problem. Let us
recall that the monodromy matrix is equivalent with the Jacobian of the Poincaré map

of the periodic solution
dx(T)
C, = =Cyy 6.36
dx(0) o~ (6.36)
T Ty,

with z being again the vector of state variables 7 = (¢”, v

For the optimal control problem solution, we have already computed the sensitivities of
integration end values with respect to initial values on each multiple shooting interval
Cy(t;_1,t;) and can simply reuse them at this point. For continuous model equations and
state variables the monodromy matrix over the whole period would be produced by a
chain rule multiplication of the individual sensitivity matrices:

C;E(O, T) - C;E(to, tm) — Cx(tmfl, tm) T Cx(tl,tQ) - C;E(to,tl). (637)
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Figure 6.4: Tmplicitly defined discontinuity of state variables at ¢

or

Cq,U(O, T) = Cq,v(tm—la tm) et Cq,v(tla tg) : Cq’v(tg, tl) (638)

As our dynamic models contain discontinuities of state variables and/or the right hand
side depending implicitly on ¢, v, and ¢, any perturbation will cause the discontinuities to
occur sooner or later than for the original solution. In this case, the sensitivity information
has to be updated at the discrete point of time ts of the discontinuity (Bock [10], von
Schwerin et al. [96]).

We include here a full derivation of the update formula since it illustrates the principles
that we will also need in section 6.6 for computing the derivatives of the monodromy
matrix. The discontinuity is situated at ¢, in the interval [t;, ;1] (compare figure 6.4).
The switching function is given as

s(ts,x,p) = s(ts, q,v,p) (6.39)

with partial derivatives s; and s, = s,,. Discontinuities are described in terms of right
hand side changes f(¢t}) — f(¢;) and of state variable jump functions

) = Taon) = (000 00 ) (6.40)

with partial derivatives J; and J, = J,,.

We look for the derivative

dx(tisi) (6.41)
where the dependencies of x(¢;,1) and z(t]) are precisely stated as
2(tj+15ts(75,p), 2(t]), p) (6.42)

and

(6.43)
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This leads to
da(tji1) _ Ox(tjs) dt Oz (tj+1) dz(ty)

= 6.44
dz(t)) oty  dx;  Ox(tf) dux; (6.44)
S—— ——
=A =B =:C
where the three terms A, B, and C remain to be determined.
A follows from standard Analysis
8$(tj—|—1) axjﬂ ot
- — -z (th). 6.45
ot oaiir) ) (6.45)
B can be computed using the implicit function theorem
S(ts(xj;p)ax(ts(xjap)axjap)ap) =0= (646)
ds . dtg L, dtg _dx(t])
— =5t )— + s (t t,)— +s.(t;)—= = 0 6.47
dxj St(s)dxj+5(s)x(s)dxj+5(s) dxj ( )
3 L dtg _ 0x(ty) _
(se(t7) + Si(ts ) (t; ))dej + 54(t; )8ij =0 (6.48)
=:5(ts)
dt, — st -
dz; 5(t7) o0x;
C follows from strict derivation of (6.43):
de(ty) ., dty 0x(ty) dt o dty  0x(t])
= = i(t i t
C dﬂ?j 33( s )de'J + ij + Jtd!L’j + J -T( s )dﬂfj + 833]‘
g o dts ox(t,)
= t Jy+ Jpx(t,)) - I+, - 2 6.50
(#(t) + o+ Jo(t,) - o+ (T ) - =5 (6.50)

where again we need to substitute term B.

We thus finally obtain

%Z)l) = %;;) : ((i‘(t?) —a(ty) — Jpa(ty) — Jp) - %’v Ty Jac) _ %

= Cu(tf tjp1) Uy - Cul(ty,t). (6.51)

We can conclude that state-dependent discontinuities require the inclusion of an update
term U, in the chain rule multiplication of equation (6.37) for the computation of the
monodromy matrix with

Uy = () = 1(65) = L0 = 7) -2 141, (6.52)

or, using position and velocity variables

Ugw = (f(8) = F(5) = o = Jqu F(£)) - é(si, s0) + 1+ Ty (6.53)
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6.5 Projection of Monodromy Matrix for Autonomous
Systems

According to theorem 4.4, the monodromy matrix of autonomous systems has always one
eigenvalue equal to one. It does not make sense to optimize the maximum eigenvalue
of this original matrix or some upper bound to this eigenvalue as for the case where all
other eigenvalues are smaller than one, one would senselessly be pushing on this invariant
eigenvalue of one.

Instead, a projection needs to be performed in order to eliminate the direction of this
eigenvalue from the monodromy matrix before optimization. Recalling section 3.1 about
dynamical systems, this is equivalent with studying the Jacobian of a Poincaré map that
is not produced by regular time strobes (figure 3.1a) but by the intersection with some
(n — 1)-dimensional manifold in state space (figure 3.1b).

A projection matrix has to be chosen such that the eigenvalue of one is eliminated but
all other eigenvalues of the matrix are conserved. This requirement is fulfilled by the
rank(n-1) orthogonal projector

Py =1~ aqql (6.54)

with ¢; being the normalized right eigenvector associated with A = 1. Note that for an
orthogonal projector we have P = PT but not PTP = I as an orthogonal projector is
not equivalent to an orthogonal matrix.

In order to obtain the projected matrix we need to project both rows and columns onto
this subspace:
Cproj = Pqu ' CPqu- (655)

In the case where a power of the matrix instead of the matrix itself is studied (compare
section 5.3), the projection is performed after multiplication:

Cf)’mj =P, -CPP, (6.56)
Note that the monodromy matrix C' of an autonomous system and its p-th power C? both
have an eigenvalue of one with the same associated eigenvectors. They therefore result in
the same projection matrix P, .

The derivative of a projected matrix with respect to the k-th component of the state
variable vector x is computed as:

dCproj d
e 2 (p .- P
dxk dxk( Lag J—111)
dC
= Pl Pl (6.57)
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6.6 Computation of First Order Derivatives of the
Monodromy Matrix

For a derivative-based method for stability optimization, one would also require derivatives
of the monodromy matrix with respect to initial values and parameters. They represent
second order derivatives of the trajectories. In this section we derive formulas for the
derivatives of the monodromy matrix in a multi-interval context such as multiple shooting
assuming that the derivatives on the individual intervals have been determined. We
distinguish the cases of continuous and discontinuous differential equations. We are not
aware of any reference having stated these formulas before. As the full derivatives of
the monodromy matrix represent three-dimensional tensors, we prefer to give instead an
expression for the k-th component which is a matrix.

6.6.1 Continuous Dynamics

First we concentrate on the simpler case with no discontinuities in the dynamical equa-
tions. It is however not as straightforward as for first order derivatives since for second
order derivatives there is no simple chain rule dependency similar to equation (6.37).

Picture two consecutive intervals [t;,¢;41] and [¢j41,%;42] for which the dependencies of
the respective integration end values are fully described by

r(tjv1) = z(lj15t), 25 p) (6.58)
T(tjv2) = x(ljroitjtn, @13ty 25, p), D). (6.59)

We will give equations for the derivatives of the monodromy matrix C), with respect to
initial values z; and parameters p. Throughout this section we will use the abbreviation

The first and second derivatives of the integration end values with respect to initial values
and parameters on the two intervals are assumed to be known:

Cou(tj,tjrn) = % Caltjri,tjve) = %
Cyp(tj tjy1) = d%;l Cptjsr,tjr2) = d%pﬂ
Dy(tj ti) = dig;l Dy(tjyi,tjpe) = 6512;2:2
j J
Dy(tj tjn) = C;zg; Dp(tj1,tjve) = %

By D, and D, we denote the k-th matrix components of the derivatives D, and Dp
and by C, and C), the k-th row vector of some matrix C, or C, respectively.
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Derivative with Respect to Initial Values

We look for the k-th derivative of the overall monodromy matrix C,(t;,¢;12) with respect
to initial values:

d d
Deg(tj,tjive) = ———Cultj, tjzo) = m(ox(tjﬂatﬂz)'Cx(tjatjﬂ))
7

= T (Co(tisr, tj2)) - Cultys i)

d
+ Coltji1, tjs2) - m(ox(tj,tjﬂ))- (6.60)
J

’

With the notation C' = {A - b} for the product of a three-dimensional tensor A with a
vector b resulting in a matrix C' we can write:

Dy k(tj, tjve) = {Du(tjirs tiva) - Cop(tistjsr) b - Culty, tiva) + Cultjyr, tive) - Dug(titjen).
(6.61)
For three intervals [t;,t;11], [tj41, tiv2], [tj12, tj+3] we would equivalently obtain

Dyi(tj, tjrs) = {Do(tjsetjvs) - (Caltjsr, tji2) - Caplty tiv1))}
- Co(tjen, tjr2) - Calty tji)
+ Coltjra tivs) - {Da(tjs, tisa) - Capltss tjan)} - Colly, ty4)
+ Coltjia, tivs) - Coltjsr, tiva) - Daop(ty, 1) (6.62)

Derivative with Respect to Parameters

The k-th component of the derivative of the two-interval monodromy matrix with respect
to parameters is

d
Dyi(ty, tjve) = dka o(t, tita) = dor
d d
= (Ca(tjzr tjze)) - Cultj, tjzn) + Cultjvr, tiye) - or (Caltj, tjt1))

d
= (Dpi(tjrn tjre) + {Duetjrr, tiv2) - Conlty tjn)}) - Culty, tin)
+ Gt J+1s J+2) ) Dp,k(tja tj-H)- (6.63)

(Coltjzr, tize) - Coltj tjyr))

6.6.2 Discontinuous Dynamics

Now we focus on the more complex case of state-dependent discontinuities in the mon-
odromy matrix. We use the same terminology as in section 6.4 and figure 6.4.
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Derivative with Respect to Initial Values

Using equation (6.51) and the notation z; = z(¢;) we can state for the k-th component of
the derivative

d d (dx; d .
dzy(t;) (Cx(tj, tj+1)) = < J+1> _ (Cx(t:_, tj+1)) U, - C:c(tj; t )
J

drjy \ drvj ) dujp

We can now independently derive expressions for terms D, £, and F. With

Calty tipr) = Cultivrs 1] (x5, p), 2(t]), p) (6.65)

and the dependency of z(¢1) defined by equation (6.43) we obtain for D

D = (1)
= a% (Coltf i) - diifk + {% (Calt! tjm)) - ;i: } (6.66)
Using equations (6.49) and (6.50) and
o (€t 100) = { G2 i) = (Dalel ) 560} (6o
we have
—sa(t,)"

D = {Du(tf tjs1) - (t7)} - - Colty, ) + {Dz(tfatjﬂ) '

5(t5)
S 1)) ot} (669

((:‘c(t;) + Jo + Ja(t))) -
For the computation of term &

. (df(tj)_df(ts)_ aJ,

d!L‘j’k dﬂ?]‘,k

+(F(E) = (&) - (6.69)
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we need the derivatives of f(t;), f(t), Ju, Jiy Sz St, and § with respect to x;:

V) ) ()4 1) 5(60) -2 4 1(5) - Colty £ (6.70)

dxj,]g dxj,k dxj,k
df(t;r) + dts + Cl!L‘;r
DN\ ) + (t
dl’j,k ft( 5 )dl']’k + f ( § )d'rj,k
i o dts
= (fitH) + fu(t5) - (@(t7) + T + Ja(t5))) - -
Tk
+ Lot) - (T4 Ta) - Coplty 1)) (6.71)
dJs . dt,
= x xx © t. . . " , . 2
dzp, (Jt+{=] x(s)}> d:z;k k(t5,15) (6.72)
dJ, _
- ' tj,t _
Az (J” +J ) dm Oty  t5) (6.73)
dsy
- r T zx ti, 1t 74
dﬂ?j’k (St+8 93 ) d$]k+8 C (J s) (67)
ds dt
dx‘tk = (Stt+8tx- ts ) -d:g-k—i-sz;”‘o k(i 17) (6.75)
o 4y
ds dsy dse \p .. di(t])
— . t L \s )
de‘j,k de‘j,k + (dxj,k) IL'( s ) T Sz dgjjk

o dt
= (Stt—i_sz‘;.x(tS)).dm-k_'_ tx ka( gy s)+
J

(500 + 520 57)) - 22

d-rgk

1 (A6 + £ot) - (t;))-df;fk+fx<t;>-c (t:1))  (6.76)

+ Spg C (tjvts ))Tf(ts_)

and thus obtain

£ - <(ft( 4 LD (FE) + T+ T (1)) -
+ fo(t) - (T + To) - Coplt, t5)

dt
dﬂ?j,k

(A2 4 R0 £0)) - G R - sl )
(et L 1D} ) - G4 e Cat,89)) - £167)

Lt Capltin 1))

X

1 ((#0) + 1at55) - (t;))-dd’;k

—<Jtt+J£;'f(ts_)>'dcflrt,sk‘i‘t]:z;'c (tyats)> %
Js
(£ TS - )%

(((Szt+sx$ fit ))'
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dt
— sf . ((stt + sz;, . f(t;)) g 4+ sz;, - Cuilty ty) +
Tj,k

dts
d:l?j’k

((sxt+sm-f(t;)) +sm-0x,k(tj,t5_)>T'f(t5_)

ol (07 + 20 £62)) - G+ £00) - Can,1)) )
+ <th + {Jxx : f(t;)}) ' dci.t,sk + {Jl‘l‘ ) Cx,k(tja ts_)} : (6'77)
F is simply
F = Doslty ty). (6.78)

Overall, this leads to the following expression for the second derivative of the dynamics
with respect to initial values in the presence of discontinuities:

_d
dak(t;)

{D,(tf tjr1)- fFED)} -

(Cu(tj tjp)) =
_Sx(ts_)T
5(t5)
_S:c(t;)T
5(t5)
+ Ot ) - (( (it + foltD) - (F(t) + T+ Tof(2S)))

Conltyy 1) + { Dl t:0)

dts
dxj,k
dt
d:l?j’k

(F(ty) + T+ Jof(t)) -

L) (T4 T) - Conltyst) = (i) + folt) - £(2))

1)+ Coltity) = (Tt (e SO} ) o Ty Cultot,)) - £12,)

. dxj
(R + 20 FUD) - 4 ule) - Coslty 1)

Jik
dt
dxj,k

T
S
)

_<Jtt + JZ; ' f(t;))

+(f(tj) = f) = L) - Jt)é_12

(I e

Ak

— s ((Stt + Spy - f(t;)) . dcfitjsk

(5ot + 500 10 - 2

- dxj
st (A + a0 - 58 -

dt
d:l?j’k

+ Sz; . nyk(tj,t;) +

T
+ Spg - Cx,k(tja ts_)) : f(ts_)
dt

dﬂ?j,k

+ {Jm ’ Cx,k(tjats_)} ) : Cz(tj’t:)

a087) - Canlt 1))

t (Lot L 1))
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+ Cp(tf tjs1) - Uy - Dyyo(t), ). (6.79)

This formula has not been implemented yet. In view of its complexity it is very ques-
tionable if this approach will be relevant for the solution of practical problems or if e.g.
external finite difference schemes should be favored for second order derivatives. The
same is true for the derivative with respect to parameters (6.97) derived in the following
section.

Derivative with Respect to Parameters

The derivative of the monodromy matrix with respect to parameters is derivable by a
similar procedure. Its k-th component is

d d (dx; d
— (Colty, b)) = — [ =) = — (Co(tS, tja1)) Uy - Colty, t,
o ettty = g () = (O 1) T Cult 1)
-G
+ d -
+Cz(ts 7tj+1) t (UI) 'Cf(tﬁts )
dpi
——
=H
d
+Cfc(t:vtj+1) Uy 75— (C’x(t]‘, ts_)) (6-80)
=T
with the unknown terms G, ‘H, and Z.
The first term, G, is
0 dt 0 dx 0
= — (C,(th,t; S Co(th,t; p— — (C,(th, t; . (6.81
6= - (Coltf ) 4+ {5 (€ t00) - S L+ 5 (Calef ) - (681)
Thus, we must first compute gts and ‘ff—j.
i P

In analogy to (6.47) — (6.49) we can derive

v dEs _
+ SCL‘(ts )x(ts )d_p + SCL‘(ts ) ’
() + 5u ) B s 1) - Gt +3yl0) = 0 (69)
—i(7)

dts _ —1
dp — 5(t;)

S

ds %

B
dp St( s ) dp

dx(ty)

S

dﬂ?j

+s,(t5) = 0 (6.82)

(5a(t7) - Gyt 17) + 5p(t7)) - (6.84)
Using equation (6.50), we have

dts — 0x(t])
+
dpy, Op

+
dz,

dty, — 0x(t])
+
dpy,

(t5)
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o o -1 _ _
= (‘r(ts)+']t+']l‘x(ts )) ﬁ (sl‘(ts) C (t]’ts)+sp,k(t5 ))
+ (I +Jp) Cprlty ty) + Jpk- (6.85)

With this we find

(Da(tF t0) - (65} -

+{D N0

-1
$(t3)
i) - ((E(E) + T+ Tilt,)) -

(Sfr(t )-C, (t]7ts)+5p(t;))
—1

8(t7)

For the second term, H

H

df (t7)
dpy,

df ()
dpy

dJ,

aJ;

(sa(ty) - Coulty ty

)+ spalty)

I+ 0a) - Cpalty 15) + ) |+ Dyalt130) (6.56)
af(tf) dfty) dde.,. L df(t)) th> sy
( dpk dpy, dpkx(tS) I dpy, dpr) 3
. . (G2)" -5 —sp g d],
() = (6) = Tuf () = ) =+ o2 (6387)
we need the derivatives of f(t]), f(t)), Ju, Jiy Se, Si, and § with respect to py:
di(ty) -\ dits
o = (P + £)860)) - 5
+ fa(ts) - Conltysty) + fon(ts) (6.88)
dt, dt, dt,
R+ 1) (0 T2+ Conlt ) + T
+h@@)$-H%AwJ)+%Q+ﬁAﬂ)
o Y dt
() + £ D) (560 + ot T (7)) ) -
 SolE) (T4 2) Coslti, 1) + Fon(£) (6.89)
L dt,
(Jou+ {Jew+(55)}) T+ (o Ot 1)} + i (6.90)
(Jtt + Jpy - i-(t;)) : ;Z; + J0 s Conltinty) + Jep (6.91)
(500 + 00 (8,)) - j;k - 50m - Oyt ) + 52 (6.92)
(stt+sz;,-$(t;)> 5; T Cyn(ti D) + Supm (6.93)
dsy dsxT_- - T_dx(t;)
e (dpk) B(ty) + sy o

(Stt+53;'it(t ; C (t],ts)—FStp,k‘i‘
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<(sxt+sm-x'(t;)) ;l;kJrsm-C (t],t5)+sxp,k)T-f(t§)
dt

L ((F005) + F 0300 ) 54 Fol17) - Gl 10) + 1015 ) (699

X
I

(an+ﬂﬁb@m>+ﬂ+%ma0) (52(E) - Cpalty 1) + 5p(8)

L6 (14 02) Coltis ) + Fou(£)

() + F030)) - (5 Conlt 1) + 59

FL7) - Cpulty, 17) + Fyalh)
(ot (oD} ) - (s Conl 1) + 59)
A+ {Juz - Cope(ti 1)} + Jopi ) @)
T (A7) + £ 00D} - 5 (s Con(11,85) + 500
) Coultyat) + Foslt)) = (ot TE0(6)) - 5+ (s~ Gl 1) 4 5,)
() F(1) — Taf )~ 1)

-(<<S$t+S$$'i‘(tS)>-%-(SI-C Kt ty) + Spg) + Suw - O, (t],ts)+sxp,k>T-é

5(t5)

T ST
+th'0p (]7 s)+']tpk

-1
—Sg'<(3tt+3£;‘i’(t;))'?'(Sfc'cp (97 s)+5pk)+5t:c'0p (97 s)+5tpk+
o dt T -
((Szt+szzx(t5 )) dpk C (tﬁts)_'_sfpyk) f(ts)
-1

57 (D) + £D)2)) - - (50 Gl 17) + 3)
1217) Conltin 1) + (1)) )+ (Tor - { a8} )

-1
—(ch (t]7ts)+spk)+{Jzz Cpk 7 s }"—prk (695)

S

The third term is again the most simple one:

T = Dy(t),ty). (6.96)

Collecting all this, we obtain for the derivative of the monodromy matrix with respect to
parameters in the presence of discontinuities:

d

dor (Caltystjsn)) =
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-(sx(t;)-C(], 5)+SI7( ))

~1

s(t5)
Cpalt )+ ) } 4 Dot 1120)) Ui Cultt,)

rCutef e (2 + 50 (30 + e+ 2(17))) -

w52 Corltin 1) + s5pi(1))

L) (T4 T2) Conltis ) + fya(t)

~(Alt) + £ )HE)) - S (50 ol 1)+ 50)

+ fx( s) C (t]7ts ) + fp,k(t;)

_((th+{Jm.x )}).___1.(% Co(t5,17) + 51)

+{J:c:c Cpk jr s }+prks>'f(ts_)
1 (At + 15138, -

T
A0 Conlty 1) + Fpa(15)) = (b T 5(60)) - = 50~ ol 1) + )

({Dateityon (60}

+ {Dm,k(t:atﬂl) ' ( (&(t) + T + T (t,)

(s2(ty) - Con(tnty) + spa(ty)

+(I+J,)-

(SI -Cor(tj ty) + sp,k)

T
I Cpalty ) 4 i) 2 (£69) = Fle) = 156~ ) 3
1

-(<<s$t+sm-:t(t5_)>-?-(sx Cokltirt7) + Spit) + Saa - C, (t],ts)—l—szp,k)T-é

-1
_Sf'((stt"‘sgc'f(t;))'?'(31:'0 (97 s)+5pk)+3tx'0 (97 s)+5tpk+
dt

((Szt‘FSm'x'(t;)) dpk—i_sm'c (twts)"'"*sxp,k)T'f(ts)
1

5T () + L8)0)) - - (0 Coaltis ) + 50)
+ fa(t)) - C, (t],ts)+fp(t;)>))+(Jzt+{JM-fb(t§)})'
_—.1'(590'0 (]v s)+8pk)+{']m Cpk i b }+J$Pk>'o(t]’t5)

S
+Cx(t:atj+1) Uy - Dpk( e s) (6-97)
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6.7 Numerical Determination of Stability Margins

Having found a stable solution by stability optimization based on linear theory it is inter-
esting to ask how well this result captures the stability behavior of the nonlinear system.
What is the range of perturbations that can be applied to the above stable solution?
There is no theory answering this question but we introduce a numerical criterion.

We study which set of perturbations of initial values as well as of model parameters can
be coped with by the robot model and its prescribed control pattern by applying some
perturbation and simulating the resulting behavior of the system. The full nonlinear
dynamics of the robot are integrated checking if it recovers and persists in its gait or if it
stumbles. T'wo selections have to be made:

e Type of perturbations:

a) Perturbing the initial values of state variables answers the question how small
the ’small perturbations’ have to be that linear theory is talking about. We gen-
erally apply one-dimensional perturbations to the initial values of all positions
and velocities. But for those positions describing an initial phase-separating
manifold, like a heelstrike manifold, it is often customary to apply coupled
perturbations that are consistent with this manifold.

b) Even though linear stability theory does not talk about sensitivity with respect
to parameters it is interesting to know in what range of parameters gait is pos-
sible under the influence of the prescribed controls. We perturb one parameter
value at a time keeping the others fixed.

e Integration Interval:
The choice of the integration interval is quite arbitrary. It has to be long enough
to allow unrecoverable perturbations to show their effect and not too long since
numerical instabilities would predominate. We have chosen an integration interval
of ten physical steps of the robot. Although this choice directly influences the exact
result it does not not change the order of magnitude of the stability margins.

For this purpose, an integrator capable to handle switching functions has to be used, e.g.
the powerful library ODESIM (see Winckler [102], von Schwerin & Winckler [94]).




Chapter 7

Open-loop Stable One-legged
Hopping Robot

The first robot we present in this thesis is a one-legged hopper moving in the vertical
plane. The remarkable feature of this robot in contrast to many of its real world relatives
(see section 1.1.2) is that despite its flight phase, it neither needs sensors nor sophisticated
controllers for stabilization. With its single leg, a small foot and a relatively high center
of mass, it has no statically stable standing position.

The robot consists of a toroidal trunk and a telescopic leg coupled by an actuated hinge.
The two parts of the leg are connected by an actuated spring-damper element. The foot
is fixed to the lower leg without articulation. We have studied circular as well as point
shaped feet. The robot can perform stable two-dimensional hopping motions including a
non-sliding or rolling contact phase and a flight phase without any feedback controllers.
Figure 7.2 shows an animation of one cycle of motion of the hopping robot.

The equivalent "real” robot matching this model has not been built yet. Our model is
an extension of the hopping robot of Ringrose [77] presented in section 1.2 to which we
have added the trunk with corresponding actuation that makes a periodic forward motion
possible. We also have studied the ’hopping in place’ motions of the original Ringrose
robot and refer to Mombaur et al. [65] for results. This simpler robot is not discussed in
this thesis.

We use the example of the hopping robot to study the influence of different stability
optimization criteria like the spectral radius and matrix norms. This is the first time
solutions for a one-legged hopping robot with point foot are presented. For the model
version with circular feet we were able to further improve the stable solution given in
Mombaur et al. [63].

Following the classification of section 1.4, the hopping robot is holonomic, but non-
conservative due to damper forces and inelastic impacts. The latter property may promote
stability of the system.
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Figure 7.1: Parameters and configuration variables of the hopping robot

7.1 Robot Model

A sketch of the model and its parameters is given in figure 7.1. Parameters are trunk
mass and inertia m; and Oy, leg mass and inertia m; and ©,, distance between centers
of mass of trunk and leg d, leg rest length [y, foot radius r, torsional spring and damper
constants k.- and by,,s, rest location of torsional spring A¢, and translational spring and
damper constants k£ and b. The foot is assumed to be massless. The point foot version is
just a special case of the circular foot with r = 0.

During the flight phase, the robot has four degrees of freedom. As state variables we
choose the uniform set of coordinates

q= (xba Yb, ¢b7 ¢Z)T7

and the corresponding velocities, where x;, and y;, are two-dimensional position coordinates
of the trunk center of mass, and ¢, and ¢; are the orientations of trunk and leg.

The coordinates of the leg center of mass x; and y; can be eliminated using the distance
parameter d by

r; = xp+dsing, (7.1)
v = yp—dcosg.

The leg length [ is fixed to ly + up during the major part of the flight phase (as the foot
is massless) and depends on the other coordinates during the contact phase as follows:

(7.3)
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Figure 7.2: Periodic motion of one-legged hopping robot animated with JAFV (Winckler [102],
Winckler & Huber [103])
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sin ¢l .

Yo
m¢l. (7.4)

| = —
— cos &, + (yp— 1)

The robot has two actuators:

1. ug — series elastic actuator (SEA) in the prismatic joint :
as described by Pratt et al. [73], this is an actuated spring-damper element with
spring constant k£ and damping constant b (see figure 7.1). The control ug > 0 ac-
tively changes the spring’s length which has the same effect as changing the spring’s
rest length in the opposite direction:

Al:(yb_r—i—r—u())—lgz(yb_T—H“)—(loJruU) (7.5)

COS @ oS ¢

The control ug is only effective during the contact phase - due to the massless foot
it can be brought back to zero position during flight without any effect. ug is 0 at
touchdown and has to be > 0 at liftoff to compensate for the energy loss in the
damper. Instantaneous compressions and general control histories can be modeled.

2. uy — torque control between trunk and leg (in parallel with a spring-damper-element
Ktors, biors, see figure 7.1).

The one-legged hopping robot is the only robot treated in this thesis for which it is
reasonable to give the equations of motion in explicit form. They have been derived using
free-body diagrams with all auxiliary coordinates being eliminated.

The equations of motion during the flight phase are described by the following set of
ODEs:

m 0 0 nudcos ¢, Ty
0 m 0 nydsin ¢, Us .
0 0 0y 0 ¢ |
—mbd COS ¢l —mbd sin d)l gl ¢l
myd sin g7

~mudcos 6} —mg
Uy — ktors (¢b - ¢l - A¢) - btors(¢b - ¢l) + mbgd sin ¢?l
—up + mbgd sin ¢l + ktors (d)b - d)l - Ad)) + btors (d)b - d)l)

(7.6)

where m is the total mass m = my + m; and u; is the torque between trunk and leg.

During contact phase we have a superposition of the rolling motion due to the circular
foot and the leg length variation influenced by the SEA spring-damper forces. This leads
to a reduction from four to three DOF's during contact phase. The coupling is described
by the additional kinematic constraint in velocity space

iy + (o + (yo — ) tan @ ) dy + tan ¢ g, = 0. (7.7)
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A corresponding equation for the differences in position space can be formulated.
The equations of motion for the contact phase become

m 0 0 myd cos ¢; 1 T

0 m 0 myd sin ¢, tan ¢, Ub

0 0 0, 0 0 o | =
—mydcos ¢, —mydsin ¢ 0, yp + (yp — 1) tan? ¢ b

1 tan @ 0w+ (yp —7)tan? ¢ 0 A

(Fi + Fa) sin ¢ + myd sin ¢,¢7
—(F + Fy) cos ¢y — myd cos ¢y — myg

Uy — ktors (d)b - ¢l - Ad)) - btors(¢b - ¢l) + mbgd sin ¢l (78)

—ui + mbgd sin ¢l + (Fk: + Fd)r S.in ¢l + ktors(¢b - ¢l - A¢) + btors (¢b - ¢Z)
—2-cos > g1y (9o + (yo — 1) tan ¢y,

with spring and damper forces Fj, and Fy

_ Yo tan ¢
Fi = b (st (=) o) (7.10)

with uy being the SEA control. The system of equations (7.8) is a DAE of index 1 derived
from an index 3 system by index reduction.

Phase change from contact phase to flight phase (liftoff) takes place, when the spring
length is equal to the (modified) rest length:

Y —1T
COS ¢y

Stiftoff = lo +up — r=20 (7.11)

and, at the same time, the trunk has a positive vertical speed:

Cliftorf = Up > 0. (7.12)

Touchdown phase change occurs when the height of the prospective contact point is equal
to zero

Stouchdown = Yb — (l0 - T) COS d)l —r=0. (713)

The vertical speed of the contact point at touchdown must be negative:

Ctouchdown = yb + (lo - ’I“) sin d)ld.)l <0. (714)

There may be a discontinuity in the velocities at touchdown because friction is assumed
to be large enough to instantaneously set the velocity of the contact point equal to zero.
There are no jumps in the positions. The four velocities after the touchdown-discontinuity
are determined by the following four conditions:
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e superposition of rolling motion and spring-damper action:
Feontact = T3 + (lo — 1) €08 dyy + 5y tan ¢y + (yp — 1)y tan” ¢ = 0 (7.15)
e conservation of angular momentum of trunk about contact point:
Hirunk hip = Ophy = consst. (7.16)
e conservation of angular momentum of full robot about prospective contact point

Hrobot,contact = @bq.sb - mb(yb - yc)j:b + mb(xb - xc)yb
+0,0 — my(yr — ye )@y + my(z; — z.)y = const.  (7.17)
with

xe = xp+ (lp— r)sin ¢y (7.18)
Ye = yp— (lo—1)cosg (7.19)

e conservation of translational momentum in direction of leg (considering spring-
damper-force)
m(&psin ¢ — G cos ¢;) — Frq = const. (7.20)

There is no discontinuity at liftoff.

The variable x;, describes the forward motion of the robot and is non-periodic. All other
state variables have to satisfy periodicity constraints

Yo Yo
Db Db
ol di
Ty | (T)=1] % | (0) (7.21)
Yo Yo
Dy Dy
ol di

where the period T is to be determined by the optimization.

7.2 Results of Stability Optimization

We present, different stable solutions for one-legged hopping robots with circular and
point foot. For both versions model parameters and trajectories with excellent stability
properties were found. From a variety of cases computed we present the most important
ones in this section.
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We have applied the spectral radius as well as matrix norms for one and multiple steps
as stability optimization criteria in the outer loop. A projection of the full monodromy
matrix to the subspace of periodic variables had to be performed before. Ten out of twelve
model parameters have been varied whereas leg length /[y and torus mass m; have been
kept fixed for scaling reasons. Physically reasonable bounds have been imposed on all
parameters. Specifically static instability of the system was thus maintained.

The objective function of Lagrange type applied in the inner loop was a sum of (weighted)
controls squared. We have used a piecewise constant control discretization for both actu-
ators. Control and multiple shooting grids each consist of 15 intervals per phase. State
and control variables as well as phase times have to satisfy box constraints. Continuity
of controls at dynamic discontinuity points has been guaranteed by equality constraints.
Besides the periodicity constraints and switching functions described in section 7.1, we
have imposed box constraints on all controls and states, a lower bound on the trunk for-
ward speed at all points, and bounds on the leg inclination angle at touchdown and liftoff
instants.

7.2.1 Point Foot

This is the first publication of results for a one-legged hopping robot with point foot that
does not need feedback controllers but relies on open-loop stabilization instead.

Result of Eigenvalue Optimization
Using eigenvalue optimization we were able to bring the spectral radius down as far as
0.1292 for a one-legged hopping robot with point foot.

The model parameters of this solution are (in ISO units) my, = 2.0, ©, = 0.3503, m; =
0.5033, ©; = 0.2391, d = 0.3663, lo = 0.5, r = 0, kiors = 25.902, Ay = 0.2, byyps = 3.457,
k =589.1, and b = 61.79.

The initial values of the corresponding trajectory are

z(0) = 0 iy(0) = 0.3326
yp(0) = 0.490 7(0) = 0.0011
dp(0) = —0.1447 dp(0) = —2.8399
$(0) = 0.20 $(0) = —0.6524

Figure 7.3 shows the control and state variable histories for this most stable solution.
Bounds on all variables are represented as lines. The different phases — 1. contact phase,
2. flight phase, 3. touchdown transition phase of duration zero with velocity discontinuities
— can be discerned in figure 7.3. Obviously all control variables and all state variables
except x, are periodic. If x,(0) is fixed to zero, z,(7T) gives the step length of one hopping
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cycle, in this case 0.536m. The cycle time of this solution is 7" = 0.471s with phase times
Teontact = 0.305s and Tign, = 0.166s.

Due to the non-periodicity of x;,, only seven out of eight eigenvalues are relevant for
stability. This last eigenvalue, which is always one because of the system’s indifference
towards the initial value 2;(0), is eliminated by projection. The seven relevant eigenvalues
are

A2 = (0.1088, 40.0696)
X34 = (—0.0888,+0.0913)

As = —0.0722
)\6,7 — 0
and by magnitude
| A1 2 0.1292
|[As4] = 0.1274
|As] = 0.072172
|)\6,7 - 0

The two eigenvalues of zero magnitude are caused by the reduction from four to three
DOFs during contact phase and the resulting coupling of perturbations in velocity as well
as position space.

For this reduced monodromy matrix we have the following matrix norms

Omae = 12.1911
IC|le = 16.7044
IIC|l; = 23.1978.

Perturbations therefore don’t contract in any of these norms over one step. But as a
study of matrix powers shows (figure 7.4), they all do contract over cycles of four and
more steps.

With the spectral radius being far below one we have proven stability according to linear
theory. But its size does not say anything about the size of perturbations from which
the system can recover. We determine these stability margins according to the procedure
described in section 6.7. The robot can recover from substantial perturbations of its initial
values under the invariant influence of its periodic actuations:

ép  +133%  -63%
n —3% +0.6%
o) +57% —17%
i +39%  -90%
gy 4+5000%  -100%
b +23% -42%
o, +27%  -46%
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Figure 7.3: State and control variable trajectories of most stable solution for Hopper with point
foot
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Figure 7.4: Spectral radius versus matrix norms for different matrix powers

For the non-periodic variable x;, of course arbitrary initial values can be chosen. As
indicated by the brace, 1y, and ¢; are perturbed together such that the initial values
remain consistent with the touchdown manifold. Figure 7.5 illustrates the differences
between the original periodic trajectory and one for which the initial value of i, has been
perturbed by —90%. Obviously the robot stays synchronized with its exciting frequency.
The perturbed trajectory is characterized by shorter steplengths, i.e. it stays behind the
base solution in the non-periodic variable x;.

The robot also persists in its hopping motion under the following perturbations of model
parameter values:

O +5% 1%
my +5% —20%
O, +4%  -23%
d +11% -37&
kiors — +3% -9%
A¢ +96% -45%
btors +1% -5%
k +1%  -0.4%
b +0.5% 2%

Result of Singular Value Optimization

We were interested in finding out

e if a solution with maximum singular value smaller than one existed for the one-
legged hopping robot
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e if singular value optimization could help to find stable solutions probably even better
than the above solution.

The answer to both questions is no. Singular value optimization of the monodromy matrix
produced a solution characterized by a maximum singular value of

Omaz(C) = 3.511,

smaller than for the previous solution, but by far larger than one. The maximum eigen-
value of the resulting matrix is, by magnitude

maa(C)| = 1.383,

and the system is therefore unstable. Figure 7.6 illustrates the development of the spectral
radius during singular value optimization. While the maximum singular value is decreased,
the spectral radius even deteriorates during optimization.

maximum singular value of C
spectral radius of C

maximum singular value
oo
T
fus
; i

8 o
6 ¢ e, \
4 61 RECT
WS
2 ettt | 4 il
0 : : : 2 : : : : : :
0 1000 2000 3000 4000 04 06 038 1 12 14 16 1.8
function evaluations eigenvalue modulus

Figure 7.6: Development of spectral radius during optimization of maximum singular value of
monodromy matrix

The model parameters of this solution are m;, = 2.0, ©, = 0.995, m; = 0.9618, ©; = 0.3,
d = 01752, lg = 0.5, r = 0, kiors = 17.84, Ay = 0.2, byrs = 5.649, k = 287.09, and
b = 39.74. It has the initial values

:L’E‘)F = (—0.0386,0.490, —0.1447,0.2,0.2, —0.0835, —1.083, —0.359)
and a period of T' = 0.504s with phase durations T,opieer = 0.3265 and T'pjigne = 0.178s.

We conclude that the maximum singular value of the monodromy matrix is not a favorable
optimization criterion for the present case.

Result of Singular Value Optimization of Matrix Power

In section 5.3 we have discussed the use of a norm of a power of the matrix instead of
the matrix itself as stability optimization criterion. Here we have chosen to apply the
singular value of the fourth matrix power.
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It serves the purpose much better than the singular value of the matrix itself. The
optimization resulted in a singular value of

Omaz(C*) = 0.0756
and maximum eigenvalues of

| Amaz(CH)] = 0.00116 and
Amaz(C)| = 0.1848.

The solution is therefore stable. Figure 7.7 shows the course of eigenvalues of the mon-
odromy matrix and its fourth power during singular value optimization. The present
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Figure 7.7: Development of spectral radius during optimization of maximum singular value of
fourth matrix power

optimization criterion is obviously successful in decreasing the spectral radius. It even
produces an absolute value not very far above the one obtained by eigenvalue optimization.

The solution under discussion is characterized by model parameters m, = 2.0, ©, =
0.3510, m; = 0.5031, ©;, = 0.2395, d = 0.3666, Iy = 0.5, r = 0, ks = 25.90, A¢; = 0.2,
biors = 3.456, k = 588.86, and b = 60.847, initial values

xOT = (—0.0385,0.490, —0.1447, 0.2005, 0.3299, —0.00048, —2.849, —0.6463)
and a period of T' = 0.4718s with phase times T;opqes = 0.3056s and Tryg, = 0.1662s.

7.2.2 Circular Foot

Open-loop controlled hopping robots with circular foot were discovered before but they
generally rely on a large foot radius for stabilization (Ringrose [77], Wei et al. [99]). We
enforce a center of mass position above the centers of foot curvature (ly —d > r) and thus
static instability of the robot during optimization.

Stable results for a hopping robot with a small circular foot have been published in
Mombaur et al. [63]. The solutions presented here are characterized by even better
maximum eigenvalues.
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Result of Eigenvalue Optimization

In order to guarantee a clearly circular foot shape, we have restricted our search to
r > 0.1m. The most stable solution found under this condition has a spectral radius of
0.2872.

It is quite similar to the result of eigenvalue optimization for a robot with point foot.
The model parameter values of the solution are m;, = 2.0, ©, = 0.2385, m; = 0.5078,
0; =0.2468, d = 0.3, [y = 0.5, 7 = 0.1021, kypps = 25.492, Ay = —0.1259, byyps = 2.443,
k = 555.30, and b = 58.178.

Also the control variable histories and trajectories as shown in figure 7.8 are only slightly
different from the point foot solution The corresponding cycle time is T" = 0.478s with
Teontact = 0.301s and T¥gne = 0.177s and the initial values

ry = (—0.0385,0.4921, —0.1447,0.2,0.6370, 0.0547, —1.307, —1.597)
It is traveling faster in xp-direction and has a larger step length of 0.6032m.

The related monodromy matrix has the following eigenvalues:

Ao = (—0.0224,40.2761) Aio| = 0.2770
As = 0.2872 As| = 0.2872
A = 02710 A = 0.2710
As = —0.0276 As| = 0.0276
Xer = 0 Ner| = 0.

Again, the matrix norms describing the propagation of perturbations over one step are
all larger than one,

Omaz = 17.869

1C]le = 24.466
IIC|l, = 27.063.

but if plotted as functions of the matrix power, the norms are contractive for exponents
greater or equal to five (figure 7.9).

The region of stability in which the robot can recover and maintain a gait without falling

down is described by the stability margins

by +135% -245%
yb} —0.48%  +0.75%

O 114% —925%
i 121% 1%
I +130% -99%
b +92% 57%

o1 +15% _14%.
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Figure 7.9: Spectral radius versus matrix norms for different matrix powers

In figure 7.10 we compare the trajectory starting from a perturbed value of ¢, (+135%)
with the corresponding unperturbed solution.

The following table finally lists the maximum possible perturbations of model parameters:

O, +0.3% -1%
my +4% -1%
O, +2% -1%
d +12% 2%
r +14%  -0.3%
kiors +1%  -0.3%
Ao +280% -160%
biors +1% -0.3%
k +0.2%  -0.8%
b +3% 1%

Result of co-norm Optimization

Again we aimed at finding a solution with a contracting norm of the monodromy matrix,
this time using the infinity norm as optimization criterion. But the effect is the same as
encountered for singular value optimization of the point foot model: The minimum value
found is

1C] oo = 3.744,

significantly smaller than for the previous solution, but not smaller than one as desired.
The corresponding maximum eigenvalue has a magnitude of

Dmar (C)] = 1.627 > 1
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The solution is thus unstable and not of practical relevance. As depicted in figure 7.11,
the spectral radius is growing, while the infinty norm decreases.
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Figure 7.11: Development of eigenvalue during optimization of infinity norm of monodromy
matrix

The solution is characterized by parameter values of m;, = 2.0, ©, = 0.2404, m; = 1.495,

0; = 0.2880, d = 0.1390, Iy = 0.5, r = 0.1270, kiprs = 25.39, A¢y = 0.0418, by, = 2.819,
k = 453.79, and b = 64.67, a trajectory starting at

T _
Ty =

(—0.0385, 0.4926, —0.1447, 0.2, 0.2545, —0.0469, —2.832, —0.6436)

and phase times Teonteer = 0.3451s and T'pjign = 0.1869s, leading to a period of T = 0.532s.
Result of co-norm Optimization of Matrix Power

Using the infinity norm of a power of the monodromy matrix instead (here the fourth
power), we found a stable solution. The optimal value is

|C*| s = 0.3306,

i.e. measured in the co-norm, perturbations decay to about a third of their original size
over a cycle of four steps.

The corresponding maximum eigenvalues are

| Amaz (CH)] 0.0161 and
Amaz(C)| = 0.3560

characterizing a stable solution. This confirms the observation made in section 7.2.2,
that the norm of a matrix power should be preferred as optimization criterion over a

norm of the monodromy matrix itself. The solution has similar properties as the result
of eigenvalue optimization and only a slightly larger spectral radius.
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The model parameters of this solution are m, = 2.0, ©, = 0.2463, m; = 0.5177, ©;, =
0.2405, d = 0.3, [y = 0.5, r = 0.1022, ks = 25.498, A¢; = —0.0913, bsprs = 2.387,
k = 560.61, and b = 58.437. Its trajectory has the initial values

rg = (—0.0385,0.4909, —0.1447,0.2146,0.6276,0.0617, —1.4423, —1.574)

and a cycle time of T' = 0.481s with phase times Ty,10ct = 0.3038s and T'fjigns = 0.1772s.

7.3 Summary

We summarize the most important results of this chapter.

New open-loop stable trajectories for one-legged hopping robots with point feet and
circular feet have been presented. To our knowledge this is the first report about
a one-legged point foot robot that is stable without feedback controllers. Hopping
robots with circular feet did exist before, but we reduced the foot radius thus not
allowing for trivial stabilizing effects.

We stress the fact that a circular foot is not necessary for open-loop stability of
one-legged hopping robots.

All our robots intentionally have no statically stable standing configurations as also
for the version with circular feet the centers of mass lie above the centers of foot
curvature (lp —d > r).

The solutions presented exhibit excellent linear and nonlinear stability properties.
They are not only characterized by very small spectral radii of their monodromy
matrices but they also can sustain substantial perturbations of the initial values and
model parameters.

No solution has been found for which an induced matrix norm of the monodromy
matrix over one step is smaller than one. But we report several solutions for which
perturbations do contract in the 1-, 2-, or oo-norm over a cycle of several steps.

From the previous two items we can conclude that the existence of a contractive
norm of the monodromy matrix is not a necessary condition for excellent stability
of a solution in the nonlinear sense.

The usage of a norm of the monodromy matrix as optimization criterion had no
favorable influence on the eigenvalues in the cases tested: the spectral radius very
often deteriorated during the course of optimization and was larger than one at the
convergence point.

Using the norm of a power of the monodromy matrix proved to be a much better
choice. Both the oo-norm and the maximum singular value of a power served to
bring the eigenvalue down below one and led to a solution that was very close to
the solution found with eigenvalue optimization.







Chapter 8

Open-loop Stable Human-like
Actuated Walking Robot

In this chapter we study a two-legged kneed walking robot with point feet. The robot
can be considered as a simplified model of human walking in the saggital plane. It is
powered by periodic torque actuations at hip and knee that are not changed by feedback
interference. Nevertheless the robot is capable of naturally recovering from perturbations.
We believe that our robot is the first demonstration of a human-like actuated open-loop
stable gait.

The robot consists of four bodies — two symmetric legs with a thigh and a shank each. We
have not added a trunk as already this simpler mechanism exhibits a remarkably human-
like gait (see the animation sequence 8.2). The completion of the model by a trunk is an
easy task but would not provide any further insights with respect to the objective of this
thesis which is to find open-loop stable robots.

Inelastic ground collisions cause the system to be non-conservative. The motion is piece-
wise holonomic but overall non-holonomic. According to section 1.4 both properties can
help to increase stability of the robot.

In this thesis we extend the results recently published in Mombaur et al. [64]. We study
the effects of different objective functions for stability optimization and give further stable
solutions.

There is an equivalent passive-dynamic version of this robot which has no actuators but
walks on an inclined slope instead. It is similar to the passive dynamic walkers of McGeer
and the Ruina lab presented in section 1.3 except that it doesn’t have circular feet. We
have studied this passive robot earlier and published the results in Mombaur et al. [62].
They are used here for comparison with the results of the actuated robot.
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Figure 8.1: Parameters and configuration variables of passive (a) and active (b) kneed walker

8.1 Robot Model

For the sake of completeness, we derive the model equations for both the actuated and the
passive walking robot. Figure 8.1 illustrates model parameters and geometric variables
for both versions. Seven parameters are used for the actuated model: masses m;, lengths
I7, and center of mass locations ¢;, w; of thigh and shank (i = T, S, wyr = 0). For the
passive version, the slope angle « is an additional parameter. The moments of inertia of
thigh and shank can be computed from these quantities:

1
0; = émi(l? +2¢7 — 2l;cy). (8.1)
We assume that ground contact occurs without sliding and and that there is no double-
support phase, i. e. the second leg instantaneously leaves the ground after heelstrike.
This is a very common assumption for the simulation of walking motions (compare e.g.
Channon et al. [14], McGeer [52]).

We model one step - and not a full physical cycle consisting of two steps - because we
are only interested in symmetric gaits. The observed cycle starts and ends right after
heelstrike. The stance leg is assumed to be straight all the time, whereas the swing leg
is bent in the first phase and straight in the second phase after kneestrike, such that
the robot has three or two degrees of freedom, respectively. For both phases, we use the
uniform set of optimization coordinates ¢ = (é1, @2, ¢3)7 (angles of swing leg thigh and
shank and of total stance leg — as ¢4, = ¢3) and the corresponding rates ¢ = (q31, ba, ¢3)T
for all phases. They are minimal coordinates for the first motion phase and redundant
coordinates for the second phase. Note again that due to the overall non-holonomy of the
gait, this set of coordinates would not be sufficient to describe a multi-step motion.

The equations of motion have been derived using free-body-diagrams (section 2.2.2). In
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Figure 8.2: Motion of bipedal walking robot
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this context, the position variables of all centers of mass r; and of the hip ry as well as
¢4 have been used as auxiliary coordinates. Size and complexity of the system forbids to
explicitely solve the system for the optimization coordinates. Instead the following set of
23/24 equations is solved numerically in each step:

a) Newton’s laws of motion in translational and rotational direction for individual

bodies:

mrTyga
mrry1

07y

mgTyg 2
mSTy’Q

2

mrry3
mrTy,3

013

mgTe 4
msTy.4

054

Fy, — Fip + mrgsina (8.2)
Fy, — F1y — mpgcos (8.3)
(Figer + Fou(lp — cr)) cos ¢y

+(Fiyer + Foy(lr — er)) sin gy + uy — g (8.4)
—Fy, + mggsin (8.5)
—F5, —mggcos o 8.6)

Fyy(cs cos g — wg sin ¢g) + Foy(cg sin ¢ + wg cos o) — uy  (8.7)

F3, + Fip + mrgsina (8.8)
F3, + Fiy — mpgcos a (8.9)
(—=Fizor + Fi(lr — cr)) cos ¢3

+(—=Fiyer + Fsy(Ip — er)) sin g3 + ug + uz (8.10)
—F3, + B, + mggsin« (8.11)
—F3, + B, —mggcos o (8.12)
Fi,(cs cos pg — wg sin ¢y) + F(cg sin g + wg cos ¢y)

+B,((Is — cg) cos g3 + wg sin ¢3) + By ((ls — cg) sin ¢3

—Wg COS (3) — Us (8.13)

with us = 0. Fj, and Fj,, (j = 1,2, 3) are constraint forces at hip joint, swing leg
knee and stance leg knee and B, and B, ground reaction forces. For the passive
version, uy = u; = 0. For the actuated version, a = 0, and u; = 0 during the second

phase.

b) Kinematic equations:

e

Ty

Pz, + cr(cos ¢1%;1 —sin ¢1¢%) (8.14)
Py + or(sin g1 + cos ¢167) (8.15)

To,H + lT(C?S ¢1¢31 - Si.ﬂ ¢1¢.5%) ) '
+cs(cos oy — gin Pah3) —.ws(sin Papy + COS Pop3) (8.16)
Py + lr(sin @y ¢y + cos ¢1¢7)




8.1. Robot Model 125

+C5(Sin oy + cOS Padh2) + wg(COS Padhy — sin Pod?) (8.17)
Frs = fFom+ cr(+cos b3bs — sin ¢3q5§) (8.18)
Fps = Fyu + or(+singsgs + cos ¢363) (8.19)

Tra = Tomg+ lT(C?S P33 — si_n 9392 ) _
+cs(cos pypy — §in Pah?) —‘wg(sin Pas + cOS Pup?) (8.20)
7‘;y,4 = 7‘;y,H + lT(sin ¢3¢3 -+ cos ¢3¢§)

+es(sin gachs + cos ) + ws(cos puds — sin ¢4} (8.21)
¢ = ¢ (8.22)
¢ = @3 (8.23)
Ps = P3 (8.24)
(¢2 = 1) (8.25)

The last equation is only valid during the second phase.
Kneestrike and heelstrike are modeled as perfectly inelastic impacts which result in ve-
locity discontinuities and energy dissipation.

Kneestrike occurs when the relative angle between thigh and shank is zero:

Skneestrike(x) — ¢1 - ¢2 =0. (826)

Additionally, the rate of the shank needs to be larger than that of the thigh in order to
cause impact:

Ckneestrike(x) — ¢‘1 - ¢2 > 0. (827)

With the assumption that exciting torques for the actuated robot version are continuous
at kneestrike, velocity jumps for both model versions are uniquely determined by the
conditions

e conservation of angular momentum of swing leg about hip point H

2
Hwing.m — Mpip = Z (TH,Z' X mr; + 9”@) = const. (8.28)

i=1

e conservation of angular momentum of robot about stance point S

4
Hrobot,S = Z (Tg’i X mrz + @z,z¢z) = const. (829)

=1
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e equal angular velocities of thigh and shank of swing leg after the impact:
b1 = ¢o. (8.30)
For non-continuous torques, the hip torque difference would have to be included in the

first balance.

Heelstrike takes place when the height of the swing leg heel approaches zero:

Sheelstrike(T, D) = (Ir + lg) cos ¢3 — Iy cos ¢y — g cos . (8.31)

The vertical velocity of the heel at this point has to be negative

Cheetstrite (T, D) = —(Ir + 1) sin ¢z + Ip sin 1y + Lg sin doghy < 0 (8.32)

The heelstrike transition phase also includes a shifting of legs. The swing leg becomes the
stance leg and vice versa. which causes the change of indices in the equations below.

At heelstrike, the assumptions of no impulse on the former stance leg when leaving the
ground but only on the former swing leg when hitting the ground (see section 2.1.3) and
of continuous torques lead to the following set of conditions: Conservation of angular
momentum

e of whole robot about new contact point D

4
H,yopot,p = Z (TD’i X mr; + @i,zq-ﬁi> = const. (8.33)

i=1
e of former stance leg about hip point H
4
(Hs_tance,hip :) Z (TH,Z' X mrz + @z,z¢z>

1=3

(Hstuing,hip :) Z (TH,i X mrz + @z,z¢z> (834)

=1

[\

e and of former stance shaft about knee

(H,,

stance—shaft,knee :) T4 X MTy + 64,Z¢4 =

(Hstuing—shaft,knee :) TH2 X mry + 64,z¢2 (835)

must be guaranteed. Again, for non-continuous torques, values before and after collision
would have to be taken into account for the last two balance equations.
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The inclusion of the leg shift in the transition phase allows us to apply periodicity con-
straints to all positions and velocities after one step of time T' (to be determined):

o1 b1
02 02
Plo= 7 o (8.36)
9 >
®3 b3

8.2 Results of Stability Optimization

In this section we present our key optimization results for the kneed walking robot. Several
performance criteria have been evaluated: the spectral radius of the monodromy matrix
as well as induced norms of this matrix and its powers. All seven model parameters are
varied in the outer stability optimization loop. We also have studied the size of stable
regions in the neighborhood of the solutions found. We compare the results of nonlinear
stability analysis with the corresponding passive solutions.

In the inner loop optimal control problem we have again minimized a sum of weighted
torques squared. They have been discretized as piecewise constant functions on a grid
with ten intervals per phase. The same grid was used for multiple shooting. Knee flexion
during the first phase, clearance of the swing foot during the full step and a minimum leg
inclination at the initial point have been enforced by inequality constraints at the respec-
tive multiple shooting nodes. Box constraints have been imposed on state and control
variables and phase times. Periodicity and switching conditions have been formulated as
coupled and decoupled equality constraints.

Result of eigenvalue optimization

The most stable solution for the actuated kneed walking robot found by eigenvalue opti-
mization has a spectral radius of 0.5667. The solution was recently reported in Mombaur
et al. [64]. We give further details in this section.

Figure 8.3a shows the trajectory describing one step with its two phases of motion. Dis-
continuities occur kneestrike and heelstrike in the middle and at the end respectively.
Since the final discontinuity also includes a leg shift, not only the velocities but also the
position variables are discontinuous.

The corresponding actuator torques are shown in figure 8.3b. Note the continuity of
controls at the discontinuies of the state variables.

The initial values of this most stable periodic trajectory are
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d1(t)) = —0.3 q:ﬁl(tg) = 0.8385
¢2(to) = —0.3 da(to) = —4.5056
¢3(to) = 0.3 ds(ty) = —1.5686.

and its period is T" = 0.7832s with phase times 77 = 0.4905s and 7T, = 0.2926s.

The solution was obtained for a robot configuration with parameters values I = 0.2627,
ls = 0.1685, my = 1.2759, mg = 0.6575, wg = 0.0402, ¢z = 0.0111, and cg = 0.2259.

The robot has no variable describing the direction of travel but its step length can be
computed from angular configurations and leg segments length: Ag., = 0.127m.

Stability computations resulted in the eigenvalues

Az = (0.3091,40.475) Ai2| = 0.5667
A = —0.4271 As| = 0.4271
A = —0.0210 A = 0.0210
Asg = 0.0 Ass| = 0.0.

The maximum eigenvalue is a conjugate complex couple, and its absolute value is smaller
than one. The two eigenvalues of zero come from the fact that the degrees of freedom of
the robot are reduced from three to two after kneestrike (i.e. from six to four independent
directions in state space). This leads to a coupling of perturbations during this second
phase which is represented by a rank reduction by two of the monodromy matrix, and
thus by two zero eigenvalues.

Even though the spectral radius is smaller than one, the induced matrix norms of this
solution are huge — (compared e.g. to the norms computed for the hopping robot in the
previous chapter):

Omaw = T11.556
IC|le = 824.279
IIC|l, = 1067.08.

As shown in figure 8.4 they decrease with increasing matrix powers. For a cycle of 13
steps and more, the 1-, 2-, and oco-norms are smaller than one.

Performing one-dimensional perturbations of each velocity variable and coupled pertur-
bations of the positions which are consistent with the heelstrike manifold produces the
following ranges:
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Figure 8.4: Spectral radius versus matrix norms for different matrix powers

b1
bo +0.04% -0.02%
?3
d +0.3%  -0.1%
¢ +2%  -0.4%

b +0.01% -0.02%.

This range of attracting initial conditions could most likely be substantially increased by
changing from point feet to e.g. circular feet. Further increase would probably result from
making the foot a separate body and including a prescribed periodic torque at the ankle.

The maximum model parameter perturbations from which the system can still recover
are:

lr  40.03% -0.01%
ls  +0.03% -0.1%
mr  +0.08% -0.02%
ms +0.01% -0.05%
ws +0.04% -0.1%
cr +0.2%  -0.8%
Cg +04% —01%

They are quite small but can be considered as being above the manufacturing tolerance.

We suspect that there is a correlation between the small stability margins and the large
matrix norms documented above. Additionally there are nonlinear effects producing in-
stability, like premature phase changes caused e.g. by foot scuffing in the middle of the
step, that are captured neither in the eigenvalues nor in the norms. Compare figure 8.5 for
switching functions and note the local minimum with small function value of the heelstrike

function.
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Figure 8.6: Region of stable periodic solutions in 2-dimensional parameter space (leg segment
lengths /7 and [g) in the neighborhood of most stable solution

The question we have answered so far is for which range of perturbed initial states and
parameters the robot recovers under the influence of the original actuation and returns
to his standard gait.

Another way to look at the question of stable areas is to check for which parameter values
in the neighborhood of the solution other solutions of the periodic optimal control problem
exist and are still stable. Those solutions have generally different actuator patterns and
initial values. As it is impossible to visualize a seven-dimensional parameter space we
present two-dimensional cuts varying only two parameters. We show a variation of masses
of thigh and shank in figure 8.6, and of the respective lengths in figure 8.7, each time
keeping the other five fixed. Every point in these plots represents an individual solution
of the optimal control problem with joint torques minimized.

N
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Comparison with equivalant passive-dynamic walker

We compare this most stable result for the actuated walking robot with the solution for
the corresponding passive robot presented in Mombaur et al [62].

Its monodromy matrix has a spectral radius of comparable size:
| Amaz| = 0.6144,

but its nonlinear stability properties are much better.

It can sustain much more substantial perturbations of the initial values of velocities and
positions than the actuated robot:

b +315% - 100%
bo + 48% - 42%
b3 +9%  -3%

P1

P2 +4% - 5%

P3

Figure 8.8 shows the motion of the robot when applying the largest possible perturbation
to ¢1 (+ 315%) in comparison with the unperturbed motion. The self-stabilizing reaction
of the system includes a very pronounced time shift. At the end the perturbed solution
precedes the reference solution by about half a cycle. This reaction would be impossible
for an actuated robot. Additionally, the perturbations provoke a slow oscillation about
the base trajectory.
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The induced matrix norms of the projected monodromy matrix are

Omaz = 4.902
1Ol = 6.172

much smaller than for the actuated solution.

For a complete description of this solution, we also give parameter values Iy = 0.4017,
lg = 0.394, mp = 2.276, mg = 0.6965, wg = 0.00752, ¢y = 0.1382, c¢g = 0.2547, and
a = 0.096, initial point

rl = (-0.3577,-0.3577,0.3577,0.2428, —2.7596, —1.3477)
and a period of T = 0.7084s with phase times 77 = 0.4317s and T, = 0.2767s.

Result of singular value optimization
We have again studied the effect of singular value optimization of the monodromy matrix
on both the maximum singular value and the maximum eigenvalue.

The result obtained from these computations is
Omaz(C) = 67.758

This is a significant reduction compared to the previous result but still a large factor of
amplification for perturbations over this step.

The corresponding maximum eigenvalue is
| Amaz (C)| = 7.6325.

The solution therefore is highly unstable even judged by linear theory. Figure 8.9 illus-
trates the development of the spectral radius during singular value optimization with an
initial deterioration and a slight improvement at the end.

The solution is characterized by the set of model parameters [ = 0.40, [g = 0.40, my =
0.5048, mg = 0.8963, wg = 0.0966, c¢r = 0.5972, and ¢g = 0.010 and the initial values

2T = (=0.3,-0.3,0.3, —0.3778, —4.0958, —1.596).

The period of a step is T' = 0.5814s with T} = 0.3314s and T, = 0.25s for the individual
phases.

Result of Singular Value Optimization of Matrix Power

For the example of the hopping robot discussed previously, stable solutions were found
by minimizing a norm of a power of the monodromy matrix. For the actuated kneed
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Figure 8.9: Development of spectral radius during optimization of maximum singular value of
monodromy matrix

walking robot we were again successful with the same approach but had to use higher
matrix powers than before.

Choosing the maximum singular value of the eighth matrix power we found an optimum
of
Omaz(C®) = 2.179,

and a corresponding spectral radius of
Amaz (C) = 0.906.

The development of the maximum eigenvalue during optimization of the maximum singu-
lar value of the eighth matrix power is shown in figure 8.11. The solution is not related to
the solution found with eigenvalue optimization as it is positioned in a very distinct region
in parameter space: I = 0.1538, s = 0.3966, my = 0.6785, mg = 1.841, wg = 0.0602,
cr = 0.1629, and c¢g = 0.0326. The periodic trajectory has initial values of

rg = (—0.3466, —0.3466, 0.3466, 1.7952, —3.2271, —1.4128)

and phase times of T} = 0.4234s and T, = 0.25s. leading to an overall cycle time of
T = 0.6734s. Figures 8.10 gives state and control variable histories associated with this
solution.

Like for the most stable solution we visualize the regions of stable solutions in the neigh-
borhood if two out of seven parameters are varied. A variation of segments lengths [ and
ls is shown in figure 8.12 and of segment masses mr and mg in figure 8.13 respectively.

The values of norms over a cycle of one step are

Omaz(C) = 24747
IC|le = 312.68
IIC|l, = 361.68,
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still very large.

Note the behavior of norms as functions of matrix powers of this solution shown in fig-
ure 8.14. The optimization criterion causes perturbations to have the least significant
amplification over multiples of eight steps.

8.3 Summary

The key results reported in this chapter are:

e We have presented stable solutions for an open-loop controlled biped robot with
knees walking on flat ground in a human-like fashion actuated by torques at hip
and knees. To our knowledge this is the first robot of this kind.

e Judged by linear theory the best solution found is very stable with a maximum
eigenvalue safely below one. Its stability margins describing possible perturbations
of initial values and parameters are not very large. The regions of stable periodic
solutions in 2-dimensional parameter space are more extended and have band shape.

e Comparison with an equivalent passive biped walker shows that the passive system
has considerably larger stability margins even though its monodromy matrix has
roughly the same spectral radius. During recovery from perturbations the passive
system encounters an enormous shift along its trajectory. We have seen however
in the previous chapter that small stability margins are not a standard feature of
actuated open-loop controlled robots.

e With respect to matrix norm optimization the observations reported in the previous
chapter could be confirmed:

1. There are again no solutions for which perturbations decay over one cycle
measured in the 1-, 2, or co-norm.

2. Optimization of a norm of the monodromy matrix itself results in an unstable
solution.

3. Optimization of a norm of a higher matrix power delivers stable solutions.
There is no general rule for the choice of the matrix exponent. In this case a
higher power than previously had to be used.

e While asking for a norm smaller than one is too strict and not necessary, the norm
also should not be too large. We have observed a correlation between small stability
margins and extremely large matrix norms (> 100), although we are aware that this
is not the only reason for destabilization. There are also nonlinear effects, like e.g.
discontinuous changes of the switching structure.







Chapter 9

Three-dimensional Passive-dynamic
Walking Robot — The Tinkertoy

The Tinkertoy robot is a passive three-dimensional walker with two straight legs that
moves on an inclined slope without any actuator help. To our knowledge it is the first
three-dimensional dynamically stable robot that has no statically stable standing position.

The physical robot has been built by Coleman [18] experimenting with the Tinkertoy®
construction set. Before our cooperation started, the stable behavior of the real robot
could not be verified theoretically; all simulations of the model had been unstable (Cole-
man& Ruina [20]). At this point it was not clear if a statically unstable rigid body model
could be passively stable in three dimensions or if the dynamic stability of the real robot
was due to properties not captured in the mathematical model, e. g. the link elastic-
ity. The goal of our computations was not exactly mimic the quantities of the physical
robot, but to answer this more general question and find stable configurations more or
less related to the real robot.

The mathematical model has been established by Coleman using the MATLAB® software
package. Corrections and modifications have been done in joint work. Kinematic relations
for the motion of robots with different foot forms have been established on the basis
of Goyal [34]. For use with our optimization software we have transferred the model
equations to C++ and included it in our model library.

In this thesis, we give results for three different model versions with disk feet, toroidal
feet and point feet, where the third is a special case of the first as well as the second
with radii equal to zero. This is the first publication of stable solutions for the point feet
and toroidal feet versions whereas the disk foot results are an improvement of the stable
solutions published in Mombaur et al. [63] and Coleman and al. [19].

According to the classification of section 1.4 the Tinkertoy robot is non-conservative due
to ground collision and non-holonomic (disk and toroidal feet) or piecewise holonomic but
overall non-holonomic (point feet). Both aspects can contribute to the existence of stable
solutions.
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9.1 Robot Model

The Tinkertoy robot consists of two legs, i.e. a pair of symmetric rigid bodies, connected
by a hinge. Always only one foot is in rolling, non-sliding contact with the ground. The
foot switching is assumed to be instantaneous and collisional such that there is no double
support phase. Figure 9.1 contains an animation of the Tinkertoy with disk shaped feet.
The robot model with its parameters and configuration variables is further specified in
figure 9.2. We model only one step and not a full cycle consisting of two steps. This
procedure eliminates unsymmetric gaits as well as oblique directions of descent. The
heelstrike collision also includes the leg shift from left to right and vice versa to make the
application of periodicity constraints after one step possible.

The system has got four DOFs. For the description, we use the following angle coordinates

qT = (¢7w795t;05w)T (91)

where, speaking in aeronautical terms, ¢ is the robot’s heading angle, v is its rolling

angle, #, the pitch angle of the stance leg, and 6y, the relative pitch orientation of the

swing leg. With the corresponding rates this results in an eight-dimensional state space.

The inertia matrix of a rigid body in three dimensions has to satisfy the two properties:
e all eigenvalues are positive

e cigenvalues satisfy the triangle inequality \; +X; > A\, @ # j # k.

To guarantee a fulfillment of these properties during variation of the inertia matrix, Cole-
man and Ruina have developed a re-parameterization (see Coleman [18]). The principal
moments of inertia can be rewritten using the parameters dy, ds, d3 (describing the dy-

namically equivalent arrangement of six masses my = % in the distances d; from the
center):
L = (d&+d) (9.2)
L = (di+dj) (9.3)
I = (d&+d3). (9.4)

A general inertia matrix is generated from the principal axis inertia by rotations charac-
terized by three additional parameters, the angles p, 3, 7.

The 14/15 model parameters of the tinkertoy robot are the six inertia parameters d;, d,
ds, p, 3, v, the leg mass m, the slope angle «a, the total leg length [, the leg center of
mass location d, d,, d, in local leg coordinates the hip spacing w, the foot radius r, and
for toroidal feet additionally a second (perpendicular) foot radius ry. Please note that
all parameters are dimensionless: all lengths are measured relative to the total leg length
and all inertia matrix entries are relative to m/?> (and the d; therefore relative to /ml),
and the gravity constant is set to 1.

The equations of motion of the Tinkertoy robot are too complex to be given in explicit
form. The four second order equations of motion are derived by angular momentum
balances of
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Figure 9.1: Stable periodic gait of Tinkertoy robot with disk feet
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e the whole robot about contact point C of stance leg

2 2 2
ZTC’Z' X m;a; + Z(G)Zwl “+ w; X 91 - wi) = ZTC’Z' X m;q (95)
i—=1

i—=1 i=1

where r¢; = r; — r¢ is the position of the center of mass of body ¢ relative to
the contact point C', a; = 7; is the absolute acceleration of body i, w; its absolute
angular velocity, ©; its inertia matrix in local coordinates, and m; its mass (with
all masses being equal: m; = my = m).

e the swing leg about the hip joint hinge axis n;, (index 1 denotes the stance leg and
2 the swing leg):

Nhip - (T}“'p’Q X MoQg + @2LZ)2 “+ Wy X @2 . LUQ) = Nhip * (Thip’Q X mgg) . (96)

Ground collision of the swing foot occurs when its lowest point reaches zero altitude. As
both feet have the same rotational symmetric shape and the legs rotate in parallel planes
this is for all possible foot shapes equivalent with the postulation that the centers (in
terms of r1) of both feet are at the same level:

s(x,p) = (I —r1)(cos(Os; + Osy) + cosbs) cosp —wsiny = 0. (9.7)

As an additional condition, the vertical velocity of the lowest swing foot point (or alter-
natively the derivative of the above equation) has to be negative:

c(z,p) = (I —r1)(cos(fs + Osy) + cosby)(— sin Wb) + I(—sin(fy + esw)(ést + ésw) -
sin GStést) cos ) + wcos hih < 0 (9.8)

At collision, position variables are of course continuous in physical space, but velocities
undergo discontinuities. Velocities after heelstrike (and after foot switching) are computed
with the following relations:

e conservation of angular momentum of the whole system about the new contact point
D:

2
Z(TD,z' X m;v; + O,w;) = const. (9.9)
i=1

where rp; = r; — rp and v; is the absolute velocity of body .

e conservation of angular momentum of the new swing leg sw+ (index 1 before and
index 2 after collision) about the hinge axis:

Nhip * (Thip,swt+ X MswtVswt + OswiWsw) = const. (9.10)

During the whole swing phase, foot clearance of the swing foot is enforced by:

[(cos(Bs + O4t) + cosby) cos ) — wsin ) > 0. (9.11)
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We demand periodicity of all eight state variables over one step, including the leg shift:

¢ ¢

(0 (0

05t ost
esw esw

b (T) = b (0) (9.12)
Y Y

05t ost
ésw ésw

with free cycle time T'.

9.2 Results of Stability Optimization

We present stable solutions for Tinkertoy robots with disk feet, toroidal feet and point feet.
In all three cases we used the spectral radius as objective function in the outer stability
optimization loop. Box constraints have been imposed on the parameters in order to keep
them within reasonable ranges and to avoid non-physical results, like negative dimensions.

In the inner loop periodic optimal control problem — with zero controls — we have mini-
mized the duration of steps for all solutions presented here. We have used ten multiple
shooting intervals for the swing phase. The foot clearance condition has been imposed on
all interior points. State variables must satisfy box constraints. To guarantee a minimum
steplength and avoid the degenerate case of zero step length a condition on 6(0) has
been formulated.

9.2.1 Disk Feet

As a start, results for the model version with disk feet will be presented and explained. For
this model we have already published stable solutions in Mombaur et al. [63] and Coleman
and al. [19]. During the research for this thesis we were able to further improve the results
by means of the two-level optimization procedure and perform a detailed analysis of the
solutions.

Result of eigenvalue optimization

The most stable solution in terms of eigenvalues for the Tinkertoy robot with disk feet is
characterized by a monodromy matrix with spectral radius 0.7579, safely below one. It
represents the overall optimum of eigenvalue optimization.

The resulting robot configuration has the model parameters d; = 0.1442, dy, = 0.393,
ds = 0.2925, p = —0.0138, § = —0.2688, v = —8.2519F — 03, m = 1.0, a = 0.0757,




9.2.  Results of Stability Optimization 147

d, = 0.0029, d, = 0.7903, d, = 0.4064, [ = 1.0, w = 0.3234, and r; = 0.032, all without
dimension. Note that the robot is statically unstable since d, > r;. The resulting radius
of the disk foot in the optimum is surprisingly small.

The initial values of this most stable solution are

$(0) = 0.0969 $(0) = —0.0863
»(0) = —0.0132 »(0) = —0.0275
0,(0) = —0.196 0,,(0) = 0.410

05 (0) 3.510 05 (0) —0.327

Figure 9.3 shows the corresponding trajectory for all eight state variables. It pictures
one full step of the robot consisting of the swing phase and the final discontinuity at
heelstrike. The heelstrike transition phase also includes a leg shift which explains why the
plots show discontinuities not only of the velocities but also of the position variables. All
eight state variables satisfy periodicity conditions. The duration of one step is T' = 1.358.
In figure 9.4 we show swing foot clearance over one step which is the switching function
for heelstrike detection.

The eight eigenvalues of the Jacobian of the Poincaré map associated with this solution
are

A o= 1.0
Aoz = (—0.0076,%0.7575)
As = (—0.6962,+0.2996)
Xe7 = (—0.7048,+0.27658)
As = —0.3112

and in terms of absolute values

M| = 1.0

Aos| = 0.7575
Ais| = 0.7579
ez = 0.7571
Xs| = 0.3112

The eigenvalue of one is caused by the passivity of the Tinkertoy and, as we have explained
in section 4.4, is not relevant for stability. |A\s5| represents the spectral radius of the
monodromy matrix. The fact that six out of seven parameters are equal within the
tolerance of convergence is an indication that the optimization has produced not only a
local minimum but also a point that is very good from a global point of view.

The induced matrix norms of the projected matrix are

Oman(C) = 4.284
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Figure 9.4: Swing foot clearance during one step

IC]le = 6.260
ol = 7.892

Measured in these norms perturbations do therefore not contract but are locally amplified
in this particular step. Figure illustrates the size of matrix norms for increasing matrix
powers, i.e. for multiple steps. For this specific solution a contraction of perturbations
only occurs over a cycle of 18 steps or more than 22 steps.

The study of stability margins has however proven again that a contraction of norms
over one step is not necessary for stable behavior of the discontinuous system. We were
able to apply one-dimensional perturbations of considerable size to the initial values of
all position and velocity variables, from which the system would still recover:

¢ +39% -43%
v +56%  -56%
0, +5% -4%
0., +0.6% -1%
b +8% 6%
v +19%  -14%
00 +2% 2%
0y +5%  -5%

The reason for failure if larger perturbations are applied is typically foot scuffing in the
middle of the step (compare foot clearance function in figure 9.4).

Figure 9.6 illustrates the decay of the oscillation introduced by a perturbation of +39%
applied to the initial value of ¢ over a longer interval. In figure 9.7 we compare the
trajectories of this perturbed solution to the corresponding base solution over a period of
a little bit more than ten steps. The system recovers from this perturbation while only
performing a small orbital shift.
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The parameter values could likewise be perturbed within large ranges:

d,  +40%  -240%
dy +64%  -264%
ds  +12% +14%

p +2300% -2600%
B +1300% -1500%
Y +00 —00
o +17% -30%
d, +130% -140%
dy +8% -8%
d, +7% -5%
w  +12% -7%
1 +72% -75%

Another stable solution

We present a second stable solution with a spectral radius of 0.809, slightly larger than for
solution 1. It has been found as intermediate convergence point of eigenvalue optimization
before a restart of the polytope algorithm.

This solution is interesting for different reasons:

e it shows that stable solutions exist in different regions of parameter space,

e although the eigenvalue indicates weaker stability, its stability margins are larger
than for solution 1,

e for some purposes it might be useful to have a stable robot with a more pronounced
disk foot.

The model parameters of this robot are d; = 0.0074, dy = 0.8805, d3 = 0.021, p = 0.0456,
B = —0.301, v = 0.0049, m = 1.0, o = 0.077, d, = —4.Te — 5, d,, = 0.7024, d, = 0.1856,
[ =1.0, w = 0.3579, and r; = 0.1185. The most significant differences to the first solution
lie in the mass distribution, the foot radius and the vertical c. 0. m. position.

The initial value of the corresponding trajectory which looks very similar to the previous
one are

$(0) = 0.1044 $(0) = —0.1233
»(0) = —0.0102 $(0) = —0.0218
0,(0) = —0.1729 0,:(0) = 0.4727
0s0(0) = 3.462 0,0(0) = —0.3746
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It is characterized by the eigenvalues

A 1.0 I\ 1.0

A3 (0.2432, 40.6403) [A23] = 0.685
Ais (—0.7724, +0.2395) |Ai5] = 0.8087
Xe.7 (—0.7657, 40.2614) Xes| = 0.8091
Ag —0.2752 Xs| = 0.2752.

Again the 1-, 2-, and oco-norm are not contractive for this one-step cycle

Omaz(C) = 3.705
0]l = 5.682
ol = 5.986.

The maximum singular value is contractive for a cycle of more than 22 steps (see figure

9.8).

The stability margins of this solution are larger for the previous one in most components

of the state variable vector:

6 +100% -102%
O +136%  -95%
0, +15% -14%
Oy +1% -1%
b +9%  -9%
b +32%  -32%
0, +6%  -5%
0 +7%  -9%
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This solution also allows for larger perturbations of the parameter values under which the
robot can still recover:

di  +2000% -2000%

do +27% -19%
dz  +230% -430%
p +11% -9%
o] +3% -0.5%
Y +00 —00
a +29% -62%
d, + 10000% - 10000%
d, +10% -23%
d, +27% -36%
w +22% -8%
1 +26% -30%

9.2.2 Toroidal Feet

The model version with toroidal feet is the most general of the three as it includes the other
two as special cases. A model with feet of non-degenerate toroidal shape also constitutes
the best approximation of the real Tinkertoy robot. We did not aim at imitating the
quantitities of the real robot in our computations but rather at finding the solution with
the best stability properties.

Result of eigenvalue optimization

Eigenvalue optimization for the Tinkertoy with toroidal feet produced an optimal value
of 0.7571. Treating the most general case, it is lower than the disk feet solution, as one
could expect. But obviously there is not a big difference which can be explained by the
parameter values at the solution: d; = 0.0483, dy = 0.420, d3 = 0.3191, p = 0.0545,
B = —0.3072, v = —0.0097, m = 1.0, o = 0.075, d, = 0.0027, d,, = 0.7949, d, = 0.4396,
[ = 1.0, w = 0.3339, r; = 0.01827 ry = 0.0053. The foot radii are surprisingly small,
especially the second one. The optimal toroidal foot is thus close to a tiny disk - and not
too far from a point foot.

The fixed point of this periodic solution is
rl = (0.093,-0.0124, —0.1962, 3.511, —0.0835, —0.0291, 0.402, —0.3295)

and its cycle time T" = 1.3536s.

The full set of eigenvalues of Jacobian of the Poincaré map is
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A= 1.0 A = 1.0

Aoz = (0.0161,%0.7569) Aos| = 0.7571
As = (—0.6991,+0.291) \is| = 0.7572
Ner = (—0.7044,+0.2777) Nes| = 0.7572
As = —0.308 As| = 0.308.

The induced matrix norms of the projected map are

Orue = 4.324
O]l = 6.342

being even slightly larger than those of the most stable solution for a disk foot walker.

Applying one-dimensional perturbations to the initial values of each state variable we
determined the following stability margins:

¢ +55% -66%
v +65% -62%
O  +5%  -4%
Osw  +0.5% -1%
o +9% 6%
v +18%  -14%

Qst +2% 2%
0. +6% -5%.

Figure 9.9 illustrates the reaction of a robot to a perturbation of the initial value of qb
(9%). Note the significant orbital shift and the large oscillations about the base trajectory
in some components of the state variable vector.

Model parameters could also be perturbed by large percentages:
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di  +220% -420%
dy +62% -262%
ds  +10% -12%

p +490% -540%
B +120% -310%
Y +00 —00
Q 18% -30%
d, +130% -170%
dy 7% -T%
d, 8% -5%
w  +12% -T%
r +130% -100%
ro  +700% -100%.

Results of norm optimization

In the two previous chapters the effects of norms as optimization criterion on the spectral
radius have been discussed extensively. Computations for the Tinkertoy confirm the
results presented before and we will therefore skip the discussion.

Here we want to focus on the question if at least for this passive system solutions with
contracting norms of the monodromy matrix can be found. We have studied the question
for this most general case of the Tinkertoy with toroidal feet. The answer is again negative.

Singular value optimization resulted in an optimum of
Omaz(C) = 2.854.
Minimizing the oo-norm of the monodromy matrix lead to a final value of
[|C|s0 = 4.354.
Of course this is not a general rule for passive systems, but a specific result for the

Tinkertoy. We can only conclude that asking for a 1-, 2-, or co-norm below one seems to
be a demand difficult to satisfy.

9.2.3 Point Feet

The existence of stable solutions for a walker with point feet is probably the most aston-
ishing result reported in this chapter. It is a special case of the latter two with r; = ry = 0.

Result of eigenvalue optimization

The most stable solution for the Tinkertoy robot with disk feet has a monodromy matrix
with spectral radius 0.7958. The eight eigenvalues are
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A= 1.0 A = 1.0

Aoz = (0.068,0.7929) Aos| = 0.7958
Ms = (—0.7357,0.3023) 5| = 0.7954
Xer = (—0.7582,0.2419) Xez| = 0.7959
s = —0.1974 X\s|] = 0.1974.

Again, six out of eight eigenvalue are equal in magnitude.

The model parameters of this solution are d; = 0.0252, dy = 0.3879, d3 = 0.2858, p =
—0.009, 8 = —0.2323, v = —0.0294, m = 1.0, « = 0.0757, d, = 0.0024, d, = 0.7901,
d, =0.4323, [ = 1.0, w = 0.3165.

The corresponding trajectory has initial values of
r = (0.0876, —0.0114, —0.1731, 3.465, —0.0885, —0.0256, 0.3952, —0.3248)

and a cycle time of T' = 1.2314s.

Again the matrix norms over one step of the robot are all larger than one:

Omaz = 4.066
IC]le = 6.136
IC|lL = 7.290.

The region of stability in which the robot can recover from perturbations is described by
the stability margins

¢ +58% -T0%
v +71%  -53%
0, +6%  -5%
0.0 +0.5% -0.9%
¢ +8% 6%
v +20%  -15%
0g  +2% 2%
0w +5%  -5%.

Figure 7.5 illustrates the differences between the original periodic trajectory and one with
a perturbed initial value of ¢ (—53%).

The robot also persists in its gait under the following perturbations of model parameter
values:
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di  +440%  -640%
dy  +80% -280%
dz  +10% -10%
p +3200% -3100%
B +1500% -1700%
Y +00 —00
Q +13% -36%
d, +130% -120%
d, +9% -9%
d, +8% -6%
w  +13% -6%.

9.3 Summary

The most important results of our computations for the Tinkertoy robot are:

e For the first time, stable solutions for passive-dynamic three-dimensional stiff-legged
walking devices with point feet and toroidal feet have been presented.

e New improved solutions for the model version with disk feet have been found.

e All the solutions presented here are dynamically stable trajectories although the
respective robots have no statically stable standing positions. In all cases the centers
of mass lie above the centers of foot curvature: z > r; and z > rs.

e In all three cases the stable solutions were not only characterized by small eigenval-
ues but also by large stability margins. We could again confirm that the existence
of a contractive matrix norm is not necessary for excellent stability properties.

e Even for this passive system there is no solution with an induced matrix norm
smaller than one. For the solutions found by eigenvalue optimization, 1-, 2-, or
oo-norm contract over a cycle of more than roughly twenty steps.

e Although we are aware that this is not a general rule for analytic matrices we have
observed that for all the monodromy matrices of all robot models that we have
studied during the research for this thesis, the maximum singular value was smaller
than the 1- and co-norms and therefore closer to the spectral radius. This might be
pure chance, but we assume that it is caused by the underlying dynamics.




Conclusions and Outlook

Summary & Conclusions

With this thesis, achievements have been made on both the engineering aspect of open-
loop stable walking and running robots and the research about numerical methods nec-
essary to find these solutions. The focus, however, has been set on the engineering side
of the work and we therefore start with the description of these results that seem to be
new in this field of research. We then proceed to demonstrate the achievements made on
the numerical side of the work.

Walking Robots

Our main contributions lie in the field of theoretical walking robot research. Using opti-
mization methods we were able to demonstrate the flexibility of the concept of open-loop
control. It is applicable to a by far broader class of walking robots than was generally
conceived before.

New Open-loop Stable Robot Models

During the course of our research we have discovered various robot configurations capable
of stable motion without feedback:

e Actuated 2D human-like walking robot:
This seems to be the first actuated open-loop stable robot mimicking human gait.
It has knees and point feet and is powered by hip and knee torques. Only passive-
dynamic systems of similar configuration have been known before.

e Actuated 2D one-legged hopping robot:
Open-loop stable trajectories for hopping robots with point feet and circular feet
have been found. Both versions have no statically stable standing configuration.
Unlike previously assumed a circular foot is not necessary for open-loop stable hop-

ping.
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e Passive-dynamic 3D walking robot:
For the first time, stable solutions for a 3D passive-dynamic three-dimensional stiff-
legged walking robot with hip spacing and feet of point, disk, or toroidal shape
have been computed. The solutions for all three versions correspond to statically
unstable robot configurations. Stable behavior of a related physical robot had been
observed before.

All stable solutions presented exhibit excellent linear stability properties since the maxi-
mum eigenvalues of their monodromy matrices are much smaller than one by magnitude.
Nonlinear stability studies of the solutions in terms of allowable perturbations of initial
values and model parameters have been performed. For two of our robots, the one-legged
actuated hopping robot and the passive-dynamic walker, significant stability margins were
computed. It is important to note that large stability margins can be achieved not only
for passive but also for actuated systems. For the third robot, the actuated kneed walker,
the stability margins are relatively small. A comparison with the corresponding passive
walker studied in a previous publication shows that a lack of external periodic excitation
facilitates the stabilization task considerably.

Modeling Periodic Gaits

Guidelines for the formulation of gaits as multi-phase periodic optimal control problems
have been given including recommendations for the coordinate choice of the mechanical
models. The order of motion phases should be prescribed. In order to obtain realistic
motions, ground and joint impacts should be modeled with velocity discontinuities.

Understanding Human Walking
The kneed actuated walking robot can be considered as an abstract model of human gait.
The 3D passive-dynamic robot also captures some features of human gait. The open-loop

stability of these two models leads to the conjecture that humans might also be capable
of stable walk without any sophisticated feedback.

Stability Optimization for General Dynamical Systems

Besides the immediate impacts on the applicational side, contributions of more general
mathematical interest have been made.

Stability Optimization Procedure

We have developed a two-level optimization procedure for the improvement of open-loop
stability. To our knowledge this is the first successful attempt to optimize the stability of
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the solution of a periodic optimal control problem although many practical problems of
this type exist. The method has two components:

e Outer loop stability optimization:
Model design parameters are chosen as optimization variables. The monodromy
matrix of the inner loop optimal control problem solution is computed and stability
is measured terms of its spectral radius or an alternative objective function (see
below). A direct search method is used for solution.

e Inner loop periodic optimal control problem:
Controls, initial values and phase times are determined as solution to the periodic
optimal control problem with some appropriate auxiliary objective function. Model
parameters are fixed to the values given by the outer loop. The problem is solved
by a direct method based on multiple shooting.

The applicability of this two-level procedure is not restricted to walking robots. If im-
plemented along the schemes of our model library, any periodic dynamical system (with
discontinuities and multiple phases) could be optimized by this approach. A natural
split of variables into design and control variables leading to the two-level formulation is
required.

Apparantly new formulas for derivatives of singular values with respect to matrix entries
and for derivatives of monodromy matrices for discontinuous dynamics with respect to
initial values and parameters have been derived.

Objective Functions for Stability Optimization

We have performed theoretical and numerical studies about the effects of several possible
objective functions describing stability. The standard maximum eigenvalue criterion has
produced the most stable results. The difficulties associated with this objective function
have been discussed extensively. Depending on the algorithm chosen, alternative objective
functions might be desirable.

For our systems we haven’t found any solution for which the 1-, 2-, or co-norm of the
monodromy matrix contract over the cycle of one step. Typically, contraction of per-
turbations occurs after several steps. Hence, the existence of a contractive norm of the
monodromy matrix is not a necessary condition for excellent stability of a solution in
the nonlinear sense. On the other hand, extremely large matrix norms seem to be one
contributing factor — besides nonlinear effects — to small stability margins.

Using a norm of the monodromy matrix as optimization criterion did not produce stable
solutions. With the optimal norms always being larger than one, the eigenvalues can and
in our case did remain outside the unit circle. We even observed a deterioration of the
spectral radius during the course of optimization. If for a specific application contraction
of a norm over one cycle can be achieved this will of course also lead to stable solutions in
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terms of the maximum eigenvalue. However we do not know, how to determine in advance
if this is the case for some application.

Using the norm of a power of the monodromy matrix proved to be a much better choice.
It helped to bring the eigenvalue into the stable region and delivered a solution that was
very close to the solution found with eigenvalue optimization. There is no general rule
for the choice of the matrix exponent.

We have found one surprising result which is not supported by standard matrix theory but
might be caused by the underlying dynamics: the monodromy matrices of all robot models
that we studied during our research had a maximum singular value that was smaller than
the 1- and oo-norms and therefore closer to the spectral radius. The maximum singular
value might thus be preferred over some other norm as objective function.

Outlook

Based on the findings of our work described above we would like to note the following
directions of research as particularly promising:

e Biomechanical Applications:
Since human-like abstract robot models can be open-loop stable, a thorough study
of the stability properties of human gait seems to be an interesting topic. A current
field of research is the neuro-stimulation of paraplegic patients. Since those patients
have only partial feedback at their disposal the concepts of open-loop control might
be helpful in this case.

e Manufacturing of designed robots:
Except for a variant of the 3D passive-dynamic walker none of the robots has been
built yet. Manufacturing one of the open-loop controlled actuated robots would be
interesting in order to demonstrate self-stabilizing properties in real-life experiments.
One advantage of open-loop control is its simplicity of implementation since no
sophisticated feedback control system is required.

e Implementation of one-level approach & application:
The split of optimization variables that is required for the two-level approach and
was straightforward for mechanical systems is not always possible for chemical pro-
cesses. In the framework of SFB 359 the one-level approach to stability optimization
also formulated in this theses will be implemented. Preliminary studies performed
in this thesis on the choice of objective functions and on derivatives can be used for
this purpose.

e Combination with NMPC:
Open-loop stable systems are able to recover independently from the effects of small
perturbations. In order to be able to also cope with more significant perturbations
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an open-loop stable system could be equipped with additional nonlinear model pre-
dictive control (NMPC). The recent advances in this field make extremely short
response times possible.

e Optimization of robot gaits with respect to standard criteria:

There is a number of optimality questions that are of interest for the walking robot
community, but have not yet been addressed, e.g. what is the fastest possible
walking motion, and when does a mechanism start to run? With the gait models
created in this thesis and the solution methods for the inner-loop optimal control
problems, answering these questions is a simple and straightforward task. They
have not been addressed in this thesis since they are not related to its central topic
of stability.







Appendix A

Software Design and Implementation

The purpose of this appendix is to give some insight into the implementation of the
numerical methods. It is not meant to give a complete overview of the developed software.
At the beginning of our work it was not clear which types of algorithms we would finally
use. We therefore had to choose an approach that allowed a large amount of flexibility
and supported an exchange of components. Hence we have decided to use an object-
oriented implementation in C++. See the classical book of Booch [12] for an introduction
to object-oriented programming and e.g. Liberty [49] or Meyers [58], [59] for information
on the C++ programming language.

A.1 Basic Software Components

A number of basic software components have been created:

e a mathematical base library containing different types of vector, matrix and tensor
classes and standard operations

e an extension of the mathematical library for the computation of eigenvalues and
singular values

e an optimization library with different types of functions, gradients etc., optimization
problems, and optimization routines (see section A.1.1)

e extensions for eigenvalue and singular value optimization
e a model library allowing for the implementation of discontinuous multi-phase models
e interfaces to ODE-integrators

e integrator-model interface classes.
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Figure A.1: Class hierarchy of optimization components and problem types (some of which are

abstract data types)
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Figure A.2: Class hierarchy of optimization codes and interfaces

A.1.1 The Optimization Library

The optimization library consists of two parts. The first part contains optimization com-
ponents like variables, functions, gradients, and Hessian matrices. Its hierarchy is shown
in figure A.1. Arrows denote inheritance. Some of these classes inherit from base classes in
the mathematical library, like Variables from Vector. The second part of the optimization
library contains the optimization routines and interfaces (see figure A.2). All optimization
routines are derived from the same base class and have the same interfaces. Optimiza-
tion problems and solvers can be combined in a plug-and play manner where senseless
combinations (like an NLP combined with and LP-solver) lead to an error message.

A.2 Two-level Stability Optimization Procedure

Figure A.3 illustrates the two-level stability optimization procedure that is a core compo-
nent of this thesis. We show here the example of eigenvalue optimization for the Tinkertoy
robot. The figure shows the hierarchy of classes as well as the integration of external com-
ponents like MUSCOD-II for the solution of the inner-loop optimal control problem or
LAPACK routine DGEEV for the computation of eigenvalues.

For the definition of a new stability optimization problem the following items have to be
specified by the user:

e in main driver file stabOpt++.cpp:

— model class, e.g. Tinkertoy(1);

— name of inner loop optimal control problem, e.g. tinkertoy!
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Two-level stability optimization procedure
(for Tinkertoy robot, using eigenvalue criterion)
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Figure A.3: Two-level stability optimization procedure

— stability optimization criterion, e.g. maximum eigenvalue

— constrained or unconstrained optimization problem
e in corresponding initialization file stabOpt++.in:

— model parameters to be modified

— polytope unity length and scaling
e in optimal control problem source file, e.g. tinkertoyl.c & tinkertoyl.cpp:

— inner loop objective function

— coupled and decoupled multipoint constraints
e in problem data file, e.g. tinkertoyl.dat:

— start values for parameters, state variables at multiple shooting points, controls
and phase times

— corresponding bounds

— number of multiple shooting intervals, control discretization types, phase types,

switching structure

e implement new model class if not yet available in library.

N
S
/)
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The following listing gives the different objective functions for stability optimization:
maximum eigenvalue, maximum singular value, oo-norm. They are all derived from the
same base class NormOfMuscodSolution:

class NormOfMuscodSolution : public Function{
protected:

Model *p_TheModel;

char *p_problemName;

DataFileHandler *p_MuscodData;

ifstream MuscodResultFile;

Vector<int> OptParams;

int noOfPhases;

int stateDim;

int paramDim;

int controlDim;

Vector<double> States;

Vector<double> Params;

Vector<double> Controls;

Vector<double> XdotPlus;

Vector<double> XdotMinus;

Vector<double> dSWdX;

Vector<double> dSWdP;

Vector<double> dSWdU;

double dSWdT;

double swDot;

Vector<double> PhaseTimes;
DenseMatrix<double> *p_phaseTransferMatrix;
DenseMatrixEVnonsym<double> JacPoincareMapEV;
DenseMatrixEVnonsym<double> ProjectedJacPoincareMapEV;
DenseMatrix<double> LocalMatrix;

int updatelniFlag;

void calcJacPoincareMap();

void calcProjectedJacMap();

void writeLogFile();

public:

NormOfMuscodSolution(Model *p_Model, char *p_pbName,
DataFileHandler *p_DataFile, char *p_resFileName,
Vector<int>& WhichParams) ;

virtual ~“NormOfMuscodSolution();

void setIniUpdate();

virtual double calculate(Variables& X) = 0;

};

class MaxEVOfMuscodSolution : public NormOfMuscodSolution{

protected:
double maxEV;
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void writeLogFile();

public:

MaxEVOfMuscodSolution(Model *p_Model, char *p_pbName,
DataFileHandler *p_DataFile, char *p_resFileName,
Vector<int>& WhichParams) ;

virtual “MaxEVOfMuscodSolution();

virtual double calculate(Variables& X);

s
class MaxSVOfMuscodSolution : public NormOfMuscodSolution{

protected:

double maxSV;

int matrixPower;

DenseMatrixSV<double> PoincareMapSV;
DenseMatrixSV<double> ProjectedPoincareMapSV;
void writeLogFile();

public:

MaxSV0fMuscodSolution (Model *p_Model, char *p_pbName,
DataFileHandler *p_DataFile, char *p_resFileName,
Vector<int>& WhichParams, int power = 1);

virtual ~MaxSV0fMuscodSolution();

virtual double calculate(Variables& X);

};

class InfNormOfMuscodSolution : public NormOfMuscodSolution{

protected:

double infNorm;

int matrixPower;
void writeLogFile();

public:

InfNormOfMuscodSolution(Model *p_Model, char *p_pbName,
DataFileHandler *p_DataFile, char *p_resFileName,
Vector<int>& WhichParams, int power = 1);

virtual ~InfNormOfMuscodSolution();

virtual double calculate(Variables& X);

};

A.3 Determination of Stability Margins

In order to determine stability margins of a stable periodic solution the following steps
are necessary:
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e in main driver file sim++.cpp:

— specify model

— indicate path of file containing optimization results with trajectory information

— give optimization data file (discretization data is needed for interpretation of
previous file)

e in initialization file sim+-+.ini:

— set integration start (default ¢, = 0) and end times
— (select integrator output mode — step or continuous)

— modify respective perturbation factors of initial values or parameters

e start integration and check results.
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