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Introdution

Researh on walking robots - `walking' here being used as a general term for walking,

running and rawling - is today one of the most important areas of researh in robotis.

Two objetives fuel these e�orts: The development of new or improved walking robots and

the pure insight gained into the loomotion itself that in return an be used to optimize

biologial gait.

The advantage of walking mahines over wheeled robots is that walking is learly more ex-

ible and ompatible with most types of surfaes, inluding very rough surfaes, stairs et.

Also, legged mahines an more freely hoose footholds and move over obstales. There

is hene a high number of existing appliations, e.g. robots for the exploration of planets

or military demining missions in rough terrains and industrial walking robots used for

maintenane in nulear power plants or �re-�ghting in skysrapers. Currently, two main

diretions of researh are pursued: One aims at inreasing speed and allowing fewer legs

on relatively smooth surfaes, the other aims at reating ompletely autonomous robots

apable to move on very rough terrain. Our researh follows the �rst path onentrating

on fast dynamial walking robots with one or two legs.

The pure insight derived from researh into walking robots helps us understand the human

gait, its mehanisms, its ontrol and its stability. Optimality studies of human motion

an result in improved performanes in various sports, and parameter studies will lead to

onlusions for pathologial gait whih has mehanial and not neurologial auses.

Dynamial walking robots an either be losed-loop or open-loop ontrolled. While losed-

loop ontrol learly is the most exible solution allowing the highest number of applia-

tions some signi�ant drawbaks exist: It requires sophistiated and expensive sensory

systems and feedbak-ontrollers. The omputation of appropriate reations is time rit-

ial and often a limitation for making motion faster, hene requiring high omputation

apaities on-board. This all translates into the neessity of high budgets and deep teh-

nial knowledge.

An open-loop ontrol strategy does not use ative reation to respond to perturbations but

entirely relies on the mehanial system's natural kinematis and dynamis to stabilize

the trajetory. Atuator histories are a priori determined, presribed and not hanged by

any feedbak interferene. Its outstanding advantages are low ost and speed of ontrol.

And even for motions on rough terrain where losed-loop ontrol is a neessity, robust

open-loop stable trajetories an provide a basis on top of whih losed-loop ontrol is
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applied.

Not muh researh has been done in the �eld of open-loop ontrolled robots so far. Typ-

ially an intuitive approah has been taken: only simple models have been studied, and

the stabilization task has been broken down into a number of basi operations.

In this thesis we take a fundamentally di�erent approah. For the �rst time the problem

of open-loop stabilization is addressed by means of optimization methods. By leaving the

intuitive path and fousing on mathematial analysis we are able to treat robot models

of inreased omplexity. The goal of our work is

� to provide eÆient optimization proedures for the determination of open-loop stable

robot parameters and periodi trajetories and

� by �nding previously unknown open-loop stable robots to demonstrate the exibility

of the onept of open-loop ontrol.

The researh of this interdisiplinary thesis is thus learly motivated by the appliational

aspet.

Besides open-loop ontrolled atuated walking robots whih are our main interest, we

also treat the speial ase of purely mehanial passive-dynami walkers that, in addition

to laking feedbak ontrol, have no ative soures of energy. Desribing the motion of

both types of robots leads to omplex periodi multi-phase problems with disontinuities

aused by ground and joint ontats. Atuated and passive-dynami systems lead to

non-autonomous and autonomous di�erential equations, respetively.

A number of signi�ant ontributions have been made during our researh and will be

desribed in this thesis.

New open-loop stable robot on�gurations have been disovered all of whih exhibit re-

markable features. Among others we present simulations of

� the �rst human-like atuated open-loop stable robot

� the �rst open-loop stable atuated one-legged hopping robot with point foot

� the �rst 3D passive-dynami walker.

The last robot stems from a ooperation with Coleman [18℄ from Cornell university who

assembled a similar real robot and did the modeling, but was not able to �nd stable

solutions. The other two robots have no real ounterparts. The entity of these robots

not only serves to illustrate the range of possible open-loop stable mehanisms but it

also unovers previously unknown fats about multibody systems and reveals open-loop

features of human gait. A uni�ed approah to gait modeling is introdued. Various

animation sequenes have been produed for all robots and di�erent types of motion

based on the visualization tool JAFV (Winkler [102℄). We will show a few sequenes in

this thesis.
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A numerial method for the optimization of open-loop stability of periodi systems will be

presented. This is the �rst time stability optimization is ombined with the simultaneous

solution of a periodi optimal ontrol problem. Stability is de�ned in terms of the spetral

radius of the monodromy matrix whih is non-di�erentiable and may be non-Lipshitz at

points of multiple maximum eigenvalue and involves the omputation of sensitivities hene

representing a diÆult non-standard optimization riterion. We introdue a two-level

optimization approah splitting the problems of periodi gait generation and stabilization

of the system. For the development of these stability optimization methods we ould build

upon the extensive knowledge and methods for the solution of optimal ontrol problems

available in the researh group of Bok & Shl�oder at IWR, University of Heidelberg

(ompare Bok & Plitt [11℄, Leineweber [48℄, [47℄). We have hosen a modular objet-

oriented approah for implementation sine it allowed us to evaluate di�erent possible

methods for the non-standard task of stability optimization. A diret searh method,

whih is a modi�ation of the Nelder-Mead polytope algorithm, has shown to be a very

good hoie. Apparently new equations for the derivatives of the monodromy matrix in

the presene of disontinuities (representing seond order derivatives of the dynamis) and

for the derivatives of singular values are given in this thesis. A numerial riterion for the

haraterization of nonlinear stability properties will be introdued.

We give general reommendations on the use of alternative objetive funtions for stability

optimization based on extensive theoretial and numerial studies. We have evaluated the

use of matrix norms instead of the spetral radius sine they represent its upper bounds.

Instead of the monodromy matrix a power thereof an be used. These alternative opti-

mization riteria have the advantage of leading to problems easier to solve than eigenvalue

optimization.

This thesis is organized in nine hapters and one appendix. Due to the interdisiplinary

setting of this work, hapters have been written with di�erent fous on robotis, numerial

mathematis, and software engineering.

Chapter 1 serves to motivate the idea of open-loop ontrol as the entral topi of this thesis.

Its advantages are illustrated against the bakground of onventional ontrol onepts.

Passive-dynami walking mahines are introdued as a speial form of open-loop stable

robots. Stability properties of di�erent lasses of mehanial systems are realled. We

outline our two-level optimization approah to the question of �nding open-loop stable

robot on�gurations.

Chapter 2 is dediated to modeling periodi gaits in robotis and biology. In the �rst

part of the hapter we introdue the general form of periodi multiphase gait models. We

give reasons for a presription of the order of phases. In the seond part we desribe the

modeling proess starting from a physial robot model, hoosing an appropriate set of

oordinates and setting up the equations of motion.

Chapters 3 - 6 desribe mathematial bakground and numerial methods required for

the stability optimization of periodi gaits.
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In hapter 3 we address the problem of periodi gait generation whih is the task to

be solved in the inner loop. We reall terminology from the �eld of dynamial systems

and basi theory about existene and uniqueness of solutions of periodi boundary value

problems. We give the full formulation of a standard multi-phase optimal ontrol problem

with disontinuities. The numerial solution of periodi optimal ontrol problems by a

strutured diret multiple shooting approah is desribed.

In hapter 4 we present the mathematial stability riterion to be used in the outer loop

to de�ne the stability of the inner loop solution. We reall Lyapunov's �rst method for

di�erential equations with periodi right hand side being an extension of Floquet theory to

nonlinear systems. We show that Lyapunov's �rst method may be generalized to periodi

multi-phase problems with disontinuities.

In hapter 5 we disuss the various diÆulties of using stability in terms of the spetral

radius of the monodromy matrix as optimization riterion. Possible alternatives are dis-

ussed replaing the spetral radius or the monodromy matrix (or both). We list the

di�erent optimization riteria to be evaluated and ompared in this thesis.

Chapter 6 is dediated to numerial methods for stability optimization. We start with

a brief review of literature in the �eld of non-smooth optimization and eigenvalue opti-

mization. We desribe the diret searh method, a variant of the Nelder-Mead polytope

algorithm, that we have used for stability optimization of all our robot examples. New

formulas for the omputations of derivatives of singular values are given. We desribe the

omputation of the monodromy matrix in the presene of disontinuities and the nees-

sary projetions for monodromy matries of autonomous systems. Previously unpublished

formulas for seond-order derivatives of disontinuous di�erential equations with respet

to initial values and parameters are derived. Finally we present a numerial proedure

for the determination of nonlinear stability margins.

Chapters 7 - 9 are dediated to three spei� open-loop stable walking robots and are

probably the most interesting for readers who are espeially interested in the mehanial

and robotis aspet of this thesis. In hapter 7, we present the one-legged atuated

hopping robot. The human-like atuated biped walker is presented in hapter 8. The

passive-dynami Tinkertoy robot is subjet of hapter 9. We give the full desription of

all robot models and extensive results of stability optimization using di�erent optimization

riteria.

The �nal hapter ontains a summary of the key results and methods produed in this

thesis and a disussion of possible extensions and further researh.

Software engineering aspets of our work are presented in the appendix.



Chapter 1

Open-loop Stable Walking Robots

In the sienti� ommunity the term 'walking robots' denotes any mahine moving on

legs. Preisely though, 'walking' is a dynami form of loomotion where at any instant

at least one leg is in ontat with the ground. It must therefore be distinguished from

'rawling' whih desribes a quasi-stati motion without the need to balane, and from

'running' whih in ontrast to walking also involves ight phases. In this thesis we will

analyze both walking and running robots.

The �rst anestors of today's walking robots were designed { and some of them also

manufatured { in the 19th entury. They had the form of modi�ed wheels with feet

attahed or of legged vehiles (see Thring [89℄) or were inspired by human or animal-like

forms (e.g. horses) and powered either by steam or mehanially by an operator. The

reent developments in walking mahines as we know them today started in the 1960s

in Japan where muh of the progress sine then has been made. Other important steps

of robotis development took plae in the United States and in Russia. Europe joined

the e�orts only quite reently 15 years ago. Today there is a variety of walking robots

throughout the world. A very extensive and up-to-date survey of state-of the-art walking

robots as well as of their history an be found in the Walking Mahine Catalogue of Berns

[7℄.

Our main interest in this hapter and throughout this thesis is the stability of walking

robots. We fous on the stability properties of di�erent robot types and the e�orts

neessary to ontrol their motion. The primary purpose of this hapter is to motivate the

idea of open-loop ontrolled walking.

Setion 1.1 serves to illustrate the two major stability onepts used in ontemporary

robotis, stati stability on one hand, and dynami stabilization relying on ative feed-

bak interferene or losed-loop ontrol on the other hand. In setion 1.2 the fundamen-

tally di�erent approah of open-loop ontrol is introdued, being the entral topi in this

thesis. A speial lass of open-loop ontrolled mehanisms without atuation, the passive-

dynami walking mahines, is presented in setion 1.3. Setion 1.4 gives an overview of

stability impliations of general properties of mehanial systems. In setion 1.5 we show
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Legged Locomotion
in Biomechanics and Robotics

Statically Stable Dynamically Stable

Closed-Loop Stable
(Actively Stabilized by
 Feedback Controllers)

Open-Loop Stable
(Self-Stabilizing)

Passive Actuated

Figure 1.1: Di�erent stability onepts for loomotion

how we approah the problem of �nding open-loop stable robot models and on�gurations

by means of optimization.

1.1 Common Stability Conepts for Walking Robots

Figure 1.1 illustrates di�erent onepts of stability and stabilization for loomotion. In

this setion we review the two standard approahes most ommon among existing robots:

statially stable walking, and dynamially stable losed-loop ontrolled walking. The

treatment of the two highlighted onepts in �gure 1.1, open-loop ontrolled atuated and

passive walking, whih are the fous of this thesis, is deferred to the next two setions.

1.1.1 Statially Stable Walking

Statially stable walking is also referred to as rawling aording to the above de�nition.

Natural loomotion of many insets falls into this ategory (when not ying).

Animals and robots moving in a statially stable fashion do not need to atively balane.

Their enter of mass (.o.m.) whih is also referred to as zero moment point in robotis

always lies within the polygon of support of their stane legs. This neessitates a 3-point

ground ontat at any instant, generally realized by three feet on the ground. Therefore

statially stable walking robots theoretially need at least four legs, but as four legs with

only one lifted at a time leads to an awkward gait, in pratie they typially have six legs

or more. Figure 1.2 shows the typial statially stable tripod gait of a six-legged robot:

fore and hind leg of one side together with the middle leg of the other side are lifted,
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c.o.m.

c.o.m.

v v

stance foot

lifted foot

Step 1 Step 2

Figure 1.2: Typial tripod gait of statially stable six-legged robots

alternating sides from step to step.

A triky way to overome the minimum-number-of-legs requirement sometimes applied is

to use less, e.g. two, but very large feet suh that a single foot spans an area of support

large enough to provide stati stability (�gure 1.3).

Another requirement for a gait being statially stable is low speed. If the momentum was

too high, the .o.m. might be driven out of the polygon of support and the robot would

risk to tip over.

Most walking robots built in the nineties fall into the ategory of statially stable robots.

Figure 1.3: Statially stable two-legged robots with large feet
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Figure 1.4: Statially stable robots with eight legs (a) Dante { Carnegie Mellon University)

and six legs (b) Katharina { Universit�at Magdeburg, ) Lauron { FZI Karlsruhe, d) RobugIIs {

University of Portsmouth). All Pitures taken from the Walking Mahine Catalogue of Berns [7℄

They have been built for a number of speial appliations: planetary exploration, main-

tenane jobs in hazardous areas, demining, forestry et. (ompare e.g. the proeedings

[104℄ and [105℄). They have beome inreasingly sophistiated, use omplex sensors and

ontrol systems like neural networks to navigate and state-of the art motors, but from a

stability point of view they basially rely on the simple onept of stati stability. Muh

of the reent progress has been inspired by the observation of legged loomotion in nature,

e.g. of insets. The goal is to develop ompletely autonomous walking mahines.

Related to those statially stable walking mahines are limbing robots whih are addi-

tionally equipped with some sort of sution ups on their feet that enable them to limb

up vertial walls. They are used e.g. in skysrapers for �re-�ghting and window leaning.

Some examples of statially stable walking and limbing robots in use today are given in

�gure 1.4.
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1.1.2 Dynamially Stable Walking with Closed-loop Control

Systems that do not have enough legs or move too fast to satisfy the above stati stability

requirements an only walk in a dynamially stable or dynamially stabilized fashion.

They are faing the problem of balane in every step. A dynamially moving stable

system must not fall down, but it must be allowed to tip for short intervals if adequate

support is provided afterwards. Loomotion of humans and most mammals belongs to

this type of walking.

The de�nition of dynami stability is sometimes blurred in the walking mahines ommu-

nity, and one has to be areful not to be mislead by the di�erent de�nitions of dynami

stability. E.g. Kar�nik et al. [43℄ de�ne dynami stability as the ability of the system

to stop within one step. Vukobratovi et al. [97℄ introdue the de�nition of pratial

stability of dynami systems that is based on three sets of allowed states for initial, end

and intermediate on�gurations.

We de�ne dynami stability aording to the small-perturbations-de�nition that is most

ommon: a motion of a walking robot is dynamially stable if it persists even in the

presene of small perturbations. We will disuss later what small means in this ontext..

For a robot with losed-loop ontrol this is possible if the ontrollers take appropriate

measures to eliminate the e�et of external perturbations and bring the robot bak to its

original trajetory. The formal mathematial de�nitions expressing this physial property

will be revised in hapter 4. Sometimes not all variables are relevant for the stability of a

gait in the sense that perturbations in some diretions do not have to be eliminated (e.g.

perturbations in the diretion of travel for walking on level ground).

One of the �rst to study dynamially stable walking was Raibert from MIT. The MIT Leg

Lab has produed an amazing olletion of dynamial walking and running robots over

the years (see its homepage [45℄). They move at di�erent speeds and in di�erent gaits,

some of them are able to get over obstales or to limb stairways, and they all rely on a

ommon set of balane and ontrol priniples.

Of ourse there are dynamially walking robots and animals with more than two legs.

Every possible form of gait of horses, ats or dogs has phases with less than three feet on

the ground, even the slow pae of a horse. But in this setion we will onentrate on some

examples of dynamially stable one- and two-legged mahines for omparison with robots

treated later in this thesis. Please note that the overview is by no means omplete.

Hopping is the only possible form of motion for one-legged robots, and it is equivalent to

running aording to the de�nitions at the beginning of this hapter.

One of the �rst robots built to explore the problem of balane was the hopping monopod

of Raibert & Sutherland [75℄ whih moves like a kangaroo or pogo stik. It onsists of a

toroidal body and a leg whih are onneted by a hinge powered by a torque. The leg

bounes on an adjustable spring. Following the basi idea of breaking the ontrol task

down into three independent parts of height, balane and attitude ontrol the motion is

ontrolled by three independent servo-ontrol loops. This robot is related to the open-
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Figure 1.5: Dynamially stable robots with one and two legs (a) OLIE { Vrije Universiteit

Brussel, b) Troody { MIT, ) Wabian { Waseda University, d) P2 { Honda Motor Co., e) Spring

Flamingo { MIT, all pitures taken from the Walking Mahine Catalogue of Berns [7℄)
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loop hopping robot studied in this thesis. Raibert also built a 3D extension of this 2D

mahine and proposed related multi-legged versions. Another one-legged hopping robot

is OLIE of de Man et al. [23℄ (�gure1.5a) that has an artiulated instead of a springy

leg. Its motion is restrained to a 2D ylindrial surfae by a boom and relies on sensors

measuring hip position and orientation of all limbs and deteting ground ontat.

The �rst bipedal robots have been built in Japan in the sixties, where researhers at

Waseda university built a series of robots. The �rst of those were stati walkers performing

very slow gaits (2 min./step!). Their later models were signi�antly improved as far as

walking speed and dynamial balaning abilities are onerned. The number of degrees

of freedom and the omplexity of the ontrol system have been inreased over the years.

The most reent model is WABIAN (see �gure 1.5). All Waseda robots rely on playing

bak pre-reorded trajetories for trunk, legs and arm motions.

Probably the most ambitious and ostly bipedal robot projet in the world is the Honda

Humanoid Robot Projet (see their internet page [17℄). The goal is to develop an in-

telligent mobile servie robot for general purpose home use. The �rst prototype P1 was

ready after 10 years of development and is said to have onsumed 300 person years and 1

million Dollar worth of parts. The urrent models are P2 (see �gure 1.5d) and its lighter

suessor P3.

A number of bipedal walking mahines were built at the MIT Leg Lab [45℄. The goal

was to develop devies that walk fast and eÆiently, are reliable and have large margins

of stability. Reent examples are Spring Flamingo of Pratt [74℄ (see �gure 1.5e), walking

in the sagittal plane, Troody, a three-dimensional bipedal dinosaur robot with a tail to

provide balaning support (�gure 1.5b), and the more human-like 3D biped M2. Building

and ontrolling these robots was only possible through enormous tehnial experiene

olleted during the work on their predeessors.

Although losed-loop ontrol learly is the most exible solution we want to point out

some important draw-baks that should not be forgotten:

� losed-loop ontrol typially requires sophistiated and expensive sensory systems

and feedbak-ontrollers, neessitates a high budget and appropriate tehnial knowl-

edge,

� omputation of appropriate reations is time-ritial and is often a limitation for

making some motion faster,

� enough omputational power has to be provided on-board or the robot has to be

restrained to walking on a wire-lae.

In the next two setions we will explain ontrol priniples that may be helpful to overome

some of the diÆulties assoiated with losed-loop ontrol.
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1.2 The Idea of Open-loop Controlled Walking

Fundamentally di�erent to the disussed onept of ative stabilization using feedbak-

ontrol we now fous on the idea of open-loop ontrol or self-stabilization.

Open-loop stable ontrol strategies do not use ative reation to respond to perturbations

but rely instead on the system's geometry and the kinematis and dynamis of motion to

stabilize the trajetory. In ontrast to losed-loop ontrol there is no need for sensors nor

for any on-line omputations.

The atuator histories are a priori determined, presribed for a motion and not hanged

by any feedbak interferene. If an open-loop stable system is slightly perturbed, it will

reover without any modi�ation of the input. It always has to stay synhronized with

the exiting frequeny that rigorously ditates the phase.

For example open-loop ontrolled human walking is haraterized by the use of just the

skeleton and the musles but neither brain nor senses.

Open-loop stable walking is only possible for adequately seleted robot on�gurations

and trajetories. It is the goal of this thesis to determine robot models, parameters and

atuations that lead to self-stabilizing motions. As open-loop ontrol requires presribing

a motion it only makes sense to look at regular, i.e. stritly periodi gaits. Handling of

unforeseen events, like the neessity to limb over large obstales or to hoose irregular

footholds, is of ourse not possible by pure open-loop ontrol.

Open-loop ontrol has the following advantages:

� For seleted systems and operations open-loop ontrol is a heap and fast ontrol

possibility.

� It an be used as a basis on top of whih losed-loop ontrol is applied. Systems with

improved open-loop performane are more robust, less sensitive to sensor readings

and require less feedbak e�ort.

� Understanding open-loop ontrol may help understanding learning ontrol.

Pratt has shown in his thesis [74℄ about the aforementioned Spring Flamingo that ex-

ploiting natural dynamis or self-stabilizing properties does redue the losed-loop ontrol

e�ort.

A number of self-stabilizing e�ets for mehanial systems are known:

� A stati tinkertoy is roking about and onverging towards its stable upright position

beause of its low enter of mass (lower than enter of foot urvature ar). The same

simple trik also a�ets the dynami stability of systems with urved feet, although

the dependene is not that straightforward.

� Withdrawing energy from the system an also serve to damp out perturbations.
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� A rolling disk or oin is stable due to preision (Greenwood [35℄). The same e�et

stabilizes the motion of biyles. Spin plays an important role for stabilization. It

is, however, no possible solution for robots walking in the onventional sense, i.e.

swinging legs bak and forth.

� One famous basi mehanial example is the upright inverted pendulum (a simple

pendulum as well as an n-pendulum) that an be open-loop stable if exited by a

harmoni osillation in longitudinal diretion (see e.g. Otterbein [67℄).

� Hubbard [41℄ shows that a skate-board is stabilized due to oupling between the

rider's rolling angle and the skate-boards steering angle.

� If the neutral point of an airplane lies behind its enter of mass, aerodynami utter

osillations will naturally be damped out (e.g. Dinkler [26℄).

Shaal & Atkeson [81℄ have studied open-loop ontrolled robot juggling. They investi-

gated di�erent juggling tasks and found stable solutions for some and improved unstable

solutions (that were better starting points for losed-loop ontrollers) for others. Some of

those juggling systems allowed intuitive solutions, suh as omplete absorption of energy

after eah yle or simple geometry variations.

Open-loop ontrol of walking robots is still an open �eld of researh. With this thesis a

number of break-throughs were ahieved in the following topis:

1. Automation of searh for open-loop stable robot on�gurations and solutions:

In our work we leave the intuitive approah favored by the authors ited below and

fous on mathematial analysis. While some numerial reipes for analyzing the

stability of given walking motions were known in the walking robot ommunity, we

felt that there learly was a lak of fast and reliable numerial methods for the

generation of new open-loop stable gaits for models of inreased omplexity. The

goal of our researh was therefore to develop suh methods to be applied to very

general robot models.

2. Determination of fundamentally new open-loop ontrolled robot models:

Questions of general interest are if open-loop ontrolled walking is possible in 3D, or

if humanlike walking an be self-stabilizing. Typially these models are too omplex

to allow an intuitive approah and thus learly require a numerial approah.

3. Improve stability for already existing open-loop stable robots:

The methods developed in 1. an be used to �nd sets of parameters or motions very

di�erent from those already known that lead to signi�antly improved stability.

There are only very few open-loop ontrolled physial robots today. Important for our

work was the 2D one-legged self-stabilizing hopping robot of Ringrose [76℄, [77℄, as it ini-

tiated our interest in open-loop ontrolled walking and served as a good starting example

for the development of our numerial methods (see Mombaur et al. [65℄). It onsists of
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a single springy leg with a urved foot and no upper body and is apable of open-loop

stable in-plae hopping motions. Ringrose also has studied two- and four-legged robots

whih are just assemblies of several of the above legs. The stability of those robots is to

some extent due to a quite large foot radius allowing a trivial stabilization of the system.

The investigations are intuitively veri�ed by a separation of the stabilization task into

height, pith and phase stabilization.

An extension of this robot appeared very reently: Wei et al. [99℄ built a 3D miniature

hopping robot, using the same type of leg as the robots of Ringrose but having an addi-

tional balane mass with ontrollable o�set. This robot also uses a large foot radius for

stabilization.

Other open-loop ontrolled robots have been developed as extensions of some passive-

dynami walkers that will be presented in the following setion. MGeer applied with

di�erent suess external and internal torques and toe-o� impulses to his 2D bipedal

straight-legged passive walker [50℄, [54℄.

1.3 Passive-dynami Walking { The Purely Mehan-

ial Approah

Although passive walking robots historially preeded open-loop ontrolled atuated ma-

hines we have hosen the inverse order for presentation as from our point of view passive-

dynami walking is a speial ase of open-loop ontrolled walking.

In addition to laking feedbak ontrol that all open-loop ontrolled systems are hara-

terized by, passive-dynami walkers also lak all ative soures of energy. They are purely

mehanial devies walking down slightly inlined slopes that have no atuators but are

aelerated by gravity alone. To resume the analogy to human walking: passive-dynami

walking is like a human being only using his skeleton - and neither brain and senses nor

musles. As indiated by the word 'dynami', only systems that are not moving in a

statially stable fashion belong to this ategory.

Finding passive-dynami walkers is a onsiderably simpler task than �nding open-loop

stable atuated robots: if subjet to a perturbation, passive systems have the possibility

to take a di�erent amount of time for some operation, and there is no external exiting

frequeny to whih the systems have to synhronize. This possibility of time-shifts an

not be underestimated in its positive inuene on the existene of stable periodi motion.

Passive-dynami walking robots belong to the oldest walking mahines. The Ruina Lab

of Cornell University lists on its internet page [79℄ a number of old patents for passive

walkers dating bak as far as 1888. There are also quite a few older and more reent

passive-dynami walking toys (see �gure 1.6).

Researh about passive-dynami walking has mainly been motivated by the fat that

ertain phases of human gait exhibit a very low musular ativity and are therefore nearly
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Figure 1.6: Passive-dynami toy walkers: penguin (1938) and elephant (1998)

passive. It was assumed that mehanial parameters of the human body have a greater

inuene on human gait than reognized before.

Mohon and MMahon [60℄, [61℄ were the �rst to analyze a passive-dynami walking

model. They showed by omparison with experimental measurements that a kneed walker

on�ned to motions in the sagittal plane with properly hosen parameters an mimi

human gait.

The pioneering work in the �eld of passive-dynami walking mahines was done by

MGeer. He studied a series of two-dimensional gravity-powered models of inreasing

omplexity, starting with a rimless wheel, bridging the gap to walking with the syn-

theti wheel, and �nally fousing on sti�-legged and kneed walking devies (MGeer [52℄,

[53℄, [54℄). He reognized the stane leg that is rotating like an inverted pendulum as

the key element in passive walking. He also investigated passive-dynami running of a

2D sti�-legged walker the legs of whih were equipped with torsional and longitudinal

springs (MGeer [51℄). MGeer determined periodi gaits for his sometimes simpli�ed

and linearized models using numerial methods and performed linear stability analysis.

As mentioned above he also investigated extensions of his passive walkers to atuated

open-loop ontrolled walkers. He applied simple feedbak ontrollers in the ases where

no stable solutions ould be found. He also built physial models of the bipedal walking

robots whih he on�ned to planar motions by adding a third leg next to the others and

letting the two outer legs at like a pair of simultaneous ruthes. MGeer started to work

on a three-dimensional sti�-legged walker but was not able to �nd stable gaits (MGeer

[53℄).

The artile of Thomson & Raibert [88℄ is also sometimes ited in the ontext of passive-

dynami walking mahines. They studied a one-legged hopping robot whih is passive

in the sense that it has no atuators but, as the authors point out themselves, it is not

stable, so it does not belong to the lass of robots disussed here.

Ruina and his o-workers extended the work of MGeer in various diretions. They

studied extensively stability as well as haos of 2D straight-legged walking with point

feet. Besides they imitated MGeer's two-dimensional kneed walker in theory and pratie
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Figure 1.7: Passive-dynami walking robots of the Ruina Lab [79℄

(�gure 1.7a) and extended his analysis with speial fous on eÆeny, speed and stability

and onsidering the limit ase of near zero slopes (Garia et al. [31℄). Coleman has

investigated a series of wheels and walking models following the example of MGeer but

with a lear fous on three-dimensional motion and the ultimate goal to �nd stable walking

of a 3D model (Coleman [18℄). His searh was rowned with the disovery of a simple

and fasinating three-dimensional physial toy robot that was obviously apable of stable

tinkering gait (�gure 1.7b, Coleman & Ruina [20℄, Coleman [18℄). However, all theoretial

omputations for models related to the physial toy resulted in unstable solutions (see

the two previous referenes and Garia [30℄). Only reently and for the �rst time, in a

ollaboration of the author of this thesis with Coleman, Ruina and Garia it was possible

to demonstrate stable 3D walking of a theoretial rigid body model (see Coleman et al.

[19℄). Further results are given in Mombaur et al. [63℄ and in hapter 9 of this thesis.

Adolfsson et al. [1℄ also laim to have found three-dimensional passive-dynami walking

with knees in simulation, but the feet of their model have line ontat in lateral diretion

whih prevents it from falling sideways.

The ontribution of this thesis in the area of passive-dynami walking is that our numerial

methods developed for general atuated walking devies an equally well be applied to

the non-atuated type as speial ase with all atuations equal to zero. This will be

demonstrated on the example of the 3D tinkertoy.

1.4 Stability Properties of Di�erent Types of Me-

hanial Systems

There are some general qualities of mehanial systems that inuene the stability of

motion. In this setion we will desribe the most important ones. In later hapters, when

treating spei� robot models, we will indiate how they are lassi�ed aording to this

sheme.
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We must �rst introdue some de�nitions (see e.g. Greenwood [35℄) neessary for the

haraterization of systems.

A system is alled onservative if its total energy, i.e. the sum of potential and kineti

energy is onstant. Conservative systems are haraterized by work-less onstraints and

onservative or non-dissipative fores (like e.g. spring fores). In priniple, all mehanial

proesses in a onservative system an be reversed. In analogy, a system is alled non-

onservative, if its total energy dereases in time. Energy is lost due to non-onservative

or dissipative fores or e�ets like damping, frition or inelasti ollisions.

A system is alled holonomi if there are no onstraints at all or if all its onstraints are

holonomi, i.e. depend only on position variables or generalized oordinates. Holonomi

onstraints ould in theory be used to solve for the independent generalized oordinates.

Non-holonomi systems also have non-holonomi onstraints whih need to be expressed

in terms of di�erentials of the generalized oordinates and possibly time. These equations

are not integrable suh that they annot be used to eliminate oordinates. Non-holonomi

systems always require more oordinates for their desription than there are degrees of

freedom. Probably the most famous example of a non-holonomi system is a disk rolling

on a plane.

Walking robots often are haraterized by pieewise holonomi, but overall non-holonomi

motions. E.g. a biped walker with point feet is holonomi if just the period of one step is

onsidered, and the number of equations neessary to desribe the motion during the step

is equal to the number of degrees of freedom. After heelstrike and swithing of stane and

swing leg, the robot is transferred to a region whih is not any more aessible by this set

of oordinates. So the intermittent ontat has introdued a disrete non-holonomy into

the system.

Many simple mehanial systems, e.g. the undamped pendulum, are Hamiltonian, i.e.

onservative and holonomi. It follows from Liouville's theorem (see e.g. Bronstein et al.

[13℄) that Hamiltonian systems annot be asymptotially stable. Any hange of energy

introdued by a small perturbation persists, it is neither ampli�ed nor damped. If the

system is onservative but non-holonomi it an very well be asymptotially stable. The

same is true for onservative, pieewise holonomi but overall non-holonomi systems as

Ruina [78℄ has reently demonstrated by an example. It is well known that dissipation an

help to promote stability. However, only introduing damping is of ourse not suÆient to

make an arbitrary system stable. But we an summarize that all non-onservative systems

- may they be holonomi, pieewise holonomi or non-holonomi - an be asymptotially

stable. Coleman [18℄ gives a more detailed overview on this subjet.
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Outer Optimization Loop

Inner Optimization Loop
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Figure 1.8: Finding open-loop stable robots by means of a two-level optimization proedure

1.5 Finding Open-loop Stable Robots by Means of

Optimization

The goal of this thesis is to determine robot models, parameters and, for the ative ase,

atuations that lead to open-loop stable motions. We approah this problem by means of

optimization. The development of eÆient numerial optimization methods to be applied

to arbitrary models is a ore omponent of this thesis.

We have hosen to use a two-level optimization approah that splits the two problems of

improving open-loop stability and generating periodi gaits. Figure 1.8 shows a sketh

of this two-level optimization proedure. In the outer loop a stability optimization is

performed with the model parameters left free for variation. In the inner loop the model

parameters are �xed to the values given by the outer loop. A periodi optimal ontrol

problem is solved for whih ontrols, initial values of trajetory and periodi yle time

are free variables.

Please note that it is ruial to solve in the inner loop a periodi optimal ontrol problem

and not just some periodi boundary value problem. As we will see in hapter 3 the

solution of nonlinear periodi boundary value problems is not unique - neither for passive

nor for atuated systems. Ignoring this fat might lead to misinformation of the outer

loop by the inner loop and thus to failure of the outer loop optimization algorithm. It is

important to use in the inner loop some appropriate optimization riterion that helps to

inrease stability.

At �rst sight it seems ompelling to solve the two problems of periodi gait generation and

stability optimization simultaneously in a one-level optimization proedure. Theoretially

this should result in inreased stability as more variables are optimized with respet to
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this overall goal. But the ost of that is the need to solve a onsiderably more diÆult

optimization problem. And, in ontrast to the two-level optimization problem, the iterates

before onvergene do not represent valid periodi gaits sine the onstraints are only

satis�ed in the optimum.

The two-level stability optimization proedure delivered exellent solutions for all walking

robot problems investigated in our researh. However the author an not rule out the

possibility that there exist other types of dynamial systems for whih there is no natural

split of variables as depited in �gure 1.8 and for whih two-level approah does not provide

satisfying solutions; hene the one-level approah should be used. We have performed

preliminary studies for this one-level proedure and will ome bak to this issue at di�erent

points in this thesis showing possible impliations and solution methods.

To summarize, for the two-level optimization proedure desribed above, the following

subtasks needed to be solved:

� hoose physial robot models to be studied

� set up a orret desription for periodi gaits of those models

� �nd a periodi solution for a given set of parameters that satis�es some appropriate

optimization riterion on the basis of eÆient and reliable numerial methods

� de�ne stability riterion and formulate adequate objetive funtion f

stab

� develop numerial methods for the optimization of stability by variation of param-

eters and �nd solutions for models seleted above

� analyze results.

How we have solved these tasks will be presented in the following hapters.





Chapter 2

Modeling Periodi Robot Gaits

The dynamial properties of humans, animals and robots an be represented by sets of

highly nonlinear di�erential and algebrai equations. In the ase of walking motions addi-

tional diÆulties arise due to non-smoothness and multiple phases. The non-smoothness

is aused by intermittent ground ontats and by limbs reahing the joint limits whih

impliitly depend on the on�guration variables of the system and usually result in dis-

ontinuities of the veloity variables. Very often, gaits involve di�erent phases of motion

whih have varying degrees of freedom (DOF) and are haraterized by di�erent sets of

equations. In the ase of running motions, e.g., one has to distinguish between alter-

nating ight phases and one-leg-ontat phases. Additionally, the nonlinear dynamis

have to satisfy periodiity onstraints on all or a subset of the position and veloity vari-

ables. By models of periodi gaits we understand the entity of all dynami equations

of the multibody-system and of phase hange onditions and ollision rules, periodiity

onstraints and all other onstraints haraterizing a spei� gait.

Following the robot types introdued in the previous hapter, our models inlude passive

gaits (resulting in autonomous di�erential equations) and atuated gaits (non-autonomous

equations depending expliitely on time). As inputs for the atuated systems we typially

hose joint torques or fores whih are a natural hoie for robots. To fully apture

the open-loop properties of human gaits, models of the musular ativity would have to

be inluded in the dynami equations. This �eld has been investigated in the author's

diploma thesis (Metzger [57℄). As stability is the main fous of this thesis and spei�

musular properties do not seem to be a key fator for this we have hosen to stik with

basis atuators. Nevertheless, the biped models treated here an be regarded as good

desriptions of the main gait features for both robots and humans.

In this hapter we present our general approah to model gaits in biology and robotis.

When formulating the models we pursue two prinipal goals. On one hand, the models

have to lead to a realisti-looking natural motion, i.e. they should neither be too edgy

nor too springy. On the other hand, they should be suited to at in ombination with

numerial simulation and optimization methods.
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In setion 2.1 we introdue the general form of periodi multi-phase gait models. In

setion 2.2 we explain how to generate model equations starting from a physial model

in two or three dimensions. In order not to tear apart things that belong together, gait

models for the spei� open-loop stable walking robots treated in this thesis are deferred

to hapters 7, 8, and 9 also ontaining the stability optimization results for the respetive

models. We have implemented all robot models with the omponents desribed in this

hapter in the framework of an objet-oriented modeling library as desribed in setion

2.3.

2.1 Desription of Periodi Gaits with Multiple Phases

Gaits should be formulated as multi-phase problems. Modeling gaits by a single set of

equations that desribe e.g. ground ontats by ontinuous fores growing exponentially

lose to the ground would lead to very sti� equations and therefore to small integrator

step sizes and long omputation times and should thus be avoided (see Simon [84℄). A

global gait model would always be either too sti� for integration or too smooth to be a

good desription of reality. A model hange should therefore be performed when a foot

reahes ground level. The same is true for hard joint ontats, like a kneestrike in walking

motions. These model hanges lead to what we all a multi-phase problem.

In this setion the general form of gait models with multiple phases is presented. We start

with the equations of motion for eah phase and phase transition onditions in setion

2.1.1 and periodiity onstraints in setion 2.1.2. Di�erent approahes to the formulation

of ontats are evaluated in setion 2.1.3. In setion 2.1.4 we �nally argue why the order

of phases should be imposed for a multi-phase problem.

2.1.1 Equations of Motion for a Phase

In a multi-phase problem every phase is desribed by a separate set of equations of motion,

the form of whih is introdued in this setion.

We start with the well known standard form of Newton's law

M � a = f (2.1)

with mass matrix M , aelerations a, and right hand side fore vetor f . Showing the

dependenies of the terms in equation (2.1) we get

M(q(t); v(t); p) � a = f(q(t); v(t); u(t); p) (2.2)

where t denotes the physial time, q and v the position and veloity oordinates orre-

sponding to a, p the model parameters, and u the atuations (or, in mathematial terms,

ontrol or input funtions { whih are not to be onfused with feedbak ontrols!). In the

passive or autonomous ase, f does not depend on u(t).
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Note that the state of a mehanial system, being a seond order system by nature, is not

ompletely de�ned by position variables alone. Corresponding veloities also need to be

indiated, suh that we an always write the vetor of state variables x as x

T

= (q; v)

T

.

With that, equation (2.2) an be rewritten as expliit �rst-order system of ordinary dif-

ferential equations (ODE) in x:

_q(t) = v(t) (2.3)

_v(t) = a(t) =M

�1

(q(t); v(t); p) � f(q(t); v(t); u(t); p): (2.4)

All the above equations are only valid if q represents a set of independent oordinates for

the robot.

In the more general ase, one might use redundant oordinates for the desription and

simulation of omplex gait models. This results in a form of multibody system equations

di�erent from (2.2), the so-alled desriptor form:

M(q(t); v(t); p) � a = f(q(t); v(t); u(t); p)�G

T

(q(t); p)� (2.5)

g

pos

(q(t); p) = 0 (2.6)

with the Lagrange multipliers �, the onstraint equations g

pos

, and their partial derivatives

G =

�g

pos

�q

. System (2.5)/(2.6) is a di�erential algebrai equation (DAE) of index 3.

Di�erentiating the onstraints (2.6) twie with respet to time leads to the index 1 system

_q(t) = v(t) (2.7)

_v(t) = a(t) (2.8)

�

M(q(t); v(t); p) G

T

(q(t); p)

G(q(t); p) 0

�

�

�

a

�

�

=

�

f(q(t); v(t); u(t); p)

(q(t); v(t); p)

�

(2.9)

with the di�erential variables q and v, the algebrai variables a and �, and the abbreviation

(q(t); v(t); p) = �v

T

d G(q(t); p)

d q

v: (2.10)

Assuming that the mass matrix M is positive de�nite on the null spae of G and that

G has full rank, the left hand side matrix in equation (2.9) is regular and the system

an be uniquely solved for the aelerations a in eah step. These are fed into the right

hand side of equation (2.8) suh that the system (2.7)/(2.8) an be treated like an ODE.

Additionally, the invariants on position and veloity level

g

pos

= g(q(t); p) = 0 (2.11)

g

vel

= G(q(t); p) � _q(t) = 0: (2.12)

have to be satis�ed.

The individual phases are separated by impliitely de�ned swithing points at whih a

swithing funtion is zero:

s

i

(t; q(t); v(t); u(t); p) = 0 (2.13)

At those points, disontinuities of the veloities �v(t; q; v; u; p) and/or the right hand side

�

RHS

(t; q; v; u; p) (i. e. disontinuities in the aelerations) an our.
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2.1.2 Periodiity Constraints

For periodi gaits, all veloities and most position variables { exept possibly for those

desribing the diretion of travel { are periodi with yle time T :

q

(red)

(T ) = q

(red)

(0) (2.14)

v(T ) = v(0): (2.15)

In the ase of bipedal gaits, it often makes sense to onsider only one step, and not

a full yle onsisting of two steps. Formulation of periodiity onstraints on one step

(inluding a reetion of legs) leads to perfetly symmetri results where every left step

equals to every right step and eliminates e. g. limping gaits. But if unsymmetri gaits

are of pratial interest for a spei� problem, the full yle has to be onsidered.

2.1.3 Models for Ground and Joint Contats

Gaits are haraterized by alternating ground ontats of the feet. The interation of robot

and ground has to be desribed in the model. There are two fundamentally di�erent ways

to model ground ontats, either based on fores or based on onstraints:

� Modeling the ground reation fores in vertial and horizontal diretions:

e.g. desribing the fritional fores by a visous or Coulomb frition model and

the normal fores by linear or nonlinear spring-damper elements. This desribes an

elasti or elasto-plasti impat taking a �nite amount of time. The DOFs of the

system remain unhanged. In this ase, touhdown auses only disontinuities in

the right hand side and the aelerations, but none in the veloities.

� Modeling the onstraints aused by a rigid and fritional ground:

i. e. �xing the foot ontat point veloity to zero immediately after impat. This

results in disontinuities of all system veloity variables. Constraint based model

hanges usually modify the number of DOFs of the system.

Thorough testing of both types of ontat models have shown that the onstraint-based

modeling approah is to be preferred as it leads to more natural motions.

If a joint is exed or extended to its limits, similar onsiderations apply.

If a onstraint-based ontat model is used, veloity hanges aused by this inelasti im-

pat will have to be omputed. Equations desribing onservation of momentum over the

ollision are used for this purpose. For ground ontat, we work on two basi assumptions:

� Lift-o� is impulse-free, i.e. there are no disontinuities in the veloity. This is

applied to a lift-o� of the swing leg in a walking motion as well as to the lift-o� of

the whole robot during a running or hopping motion.
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� Touhdown is generally assoiated with an impulse and therefore veloity disonti-

nuities might our depending on the ollision model hosen (see above).

Similar assumptions hold for start and end points of joint ontats.

2.1.4 Presribing the Order of Phases

We have seen above that onstraint-based ontat models are desirable sine they are

most aurate from a physial point of view. But to be able to use suh methods, the

order of phases of the motion has to be a priori presribed.

Leaving the phase order free to be determined by ontinuous optimization methods would

restrit us to smooth phase transitions for numerial reasons: Only with transition be-

tween any two sueeding model phases being twie ontinuously di�erentiable and the

number of DOFs being the same for all phases we would be able to ompute meaningful

derivatives of the integration end values with respet to initial values. In general, this

approah does not lead to very natural walking motions.

Our numerial method allows us to impose only the order of phases but to leave all

individual phase times free.

One alternative approah is to formulate the problem with free phase sequene as mixed-

integer optimization problem. But for walking mehanisms with few legs not many pos-

sible meaningful orders to hoose from exist: For a biped, we an basially distinguish

between walking and running, and even for a quadruped there are only a very few pos-

sibilities, namely pae, trot, and di�erent sorts of gallop. It is therefore possible to solve

the mixed-integer problem by enumeration and perform individual optimization runs for

eah possible order of phases.

2.2 Deriving the Equations of Motion

After we have seen the general forms of equations of motion in the last setion, we will

explain here how to set up equations (2.3) - (2.3) or (2.7) - (2.9) for given physial robot

models. It is not the intent of the author to provide a omplete overview of all possible

methods to generate equations of motion - these an be taken from mehanis textbooks

like Greenwood [35℄ and Hauger et al [38℄, or university manusripts like Eppler [27℄. In

this setion we only explain the solution approahes we have hosen to take, both for the

seletion of oordinates and the establishment of the equations of motion. The reasons for

the spei� hoies are given. We generally derive the equations of motion and ollision

rules for our robots using symboli mathematis pakages like Maple

R

.
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2.2.1 Coordinate Choies

For simulation and optimization, physially meaningful oordinates should be hosen as

this simpli�es the generation of initial values for simulation and of initial trajetories for

the optimization. It also allows for a more omfortable interpretation of results. From an

engineering point of view, intuitive oordinate hoies for walking robots are orientation

angles of bodies (e. g. Euler angles) or position vetors of predominant points, e. g. the

hip. We have seen before that phases of motion usually have di�erent numbers of DOF.We

nevertheless like to hoose the same set of oordinates for all phases. In general we hoose

minimal oordinates for the phase(s) with most DOFs, that are redundant oordinates

for the other phase(s), suh that we obtain ODE and DAE desriptions, respetively.

One peuliarity of walking motions for whih at every instant at least one foot is in

ontat with the ground is that a set of oordinates adequate to desribe one step and

thus ompletely speify the periodi motion does not allow to diretly aess the full

on�guration spae of a multi-step walk. This is due to the pieewise holonomi, but

overall non-holonomi nature of walking motions. For running and hopping motions that

inlude phases without ground ontat, this e�et does not our.

When deriving the equations of motion several other auxiliary oordinates naturally our

whih do not belong to the hosen set of oordinates for simulation and optimization

but whih are needed to express the system's dynamis. Examples for suh oordinates

are position and orientation variables of the individual bodies, or derivatives of these.

As those oordinates depend on the hosen method for the generation of equations, the

orresponding impliations will be explained when we disuss spei� methods in the next

setions and when presenting our robot models later on. These auxiliary oordinates an

be symbolially eliminated during the model setup proess in order to obtain analyti

expressions in the optimization oordinates for all entries of the equations of motion. For

omplex systems this leads to extremely involved expressions �lling many lines of ode to

express one single mass matrix or right hand side entry. For most of our models, we have

therefore hosen to keep the additional equations and oordinates and numerially solve

in every integration step the resulting larger system using a regular or a sparse solver.

This gives us, among other quantities, the aelerations orresponding to positions and

veloities in our set of optimization variables.

This hybrid oordinate hoie has the following advantages:

� redued error proneness as no symboli operations are neessary,

� inreased exibility for model hanges, e. g. joint modi�ations or the addition of

bodies

� inreased ability to monitor the auxiliary variables, whih often are physially in-

teresting quantities.
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Figure 2.1: Generating the free body diagram for a simple multibody system

2.2.2 Deriving Two-dimensional Equations of Motion by Free

Body Diagrams

We have used free body diagrams to set up two-dimensional equations. It is a very intuitive

method if applied to planar motion and is based on a synthesis of information gathered

from all bodies. For a detailed desription, see e. g. Dinkler [25℄. As demonstrated in �gure

2.1, all joints and onnetions between the individual bodies of a multibody system are

removed and replaed by equivalent onstraint fores and/or torques. External ontats

e.g. between body and ground are also haraterized by onstraint fores.

For eah isolated body (index i) with mass m

i

and moment of inertia �

i;z

Newton's laws

of motion in translational and rotational diretions an easily be written down in the

form:

m

i

�r

i;x

= F

i;x

(2.16)

m

i

�r

i;y

= F

i;y

(2.17)

�

i;z

�r

i;�

= M

i;z

(2.18)

F

i

and M

i

are the sums of all external and onstraint fores/torques ating on body i.

For a two-dimensional system with n bodies we obtain 3n dynamial equations. Addi-

tionally, kinemati equations desribing the relation between position variables r

x

; r

y

and

orientation variables r

�

(and their �rst and seond derivatives) of neighboring bodies i

and j introdued by the joints and ontats have to be established:

k

i;j

(r

i;x

; r

i;y

; r

i;�

; _r

i;x

; _r

i;y

; _r

i;�

; �r

i;x

; �r

i;y

; �r

i;�

; r

j;x

; r

j;y

; r

j;�

; _r

j;x

; _r

j;y

; _r

j;�

; �r

j;x

; �r

j;y

; �r

j;�

; ) = 0

(2.19)
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The number of kinemati equations is at least 3n � n

d

(with n

d

being the number of

DOFs), possibly more if additional auxiliary oordinates are used. The resulting system

of all dynami and kinemati equations is linear in the seond derivatives of the position

and orientation oordinates of eah body and in the onstraint fores. Those are the

model setup oordinates we have disussed in the previous setion.

We prefer this syntheti method to the analyti approah of using Lagrange's equations,

whih is another very popular method in mehanis, ompare e. g. Greenwood [35℄.

Lagrange's equations of the seond kind for a set of n

d

independent generalized oordinates

q

i

an be written as

d

dt

�

�L

� _q

i

�

�

�L

�q

i

= Q

i

i = 1; 2; :::; n

d

(2.20)

where L is the Lagrangian funtion

L = T � V: (2.21)

V and T are the total potential and kineti energy of the system, andQ

i

are the generalized

fores in the diretion of q

i

not derivable from a potential funtion (e.g. fritional fores,

non-holonomi onstraint fores et.).

For redundant generalized oordinates q

i

(dimension n

r

), Lagrange's equations of the �rst

kind have to be applied:

d

dt

�

�L

� _q

i

�

�

�L

�q

i

= Q

i

�G

i

(q)

T

� i = 1; 2; :::; n

r

(2.22)

with the additional onstraint fore term on the right hand side.

Why do we not use Lagrange's equations? In both ases, Lagrange's equations fore us

to use the same set of oordinates for optimization and for the model setup. T and V

always need to be expressed in terms of the generalized oordinates whih again leads us

to the involved equations we wanted to avoid!

2.2.3 Deriving Three-dimensional Equations of Motion by An-

gular Momentum Balanes

For three-dimensional systems we have hosen the - in this ase - more intuitive approah

to derive equations based on overall balanes of translational and rotational momentum.

In three dimensional spae, the method of free body diagrams reahes its limits of appli-

ation as it beomes onsiderably harder to orretly desribe the diretions of onstraint

fores and aelerations.

For three-dimensional systems it seems more intuitive to derive the equations of motion

based on overall balanes of translational and rotational momentum

F = m�r

C

=

n

X

i

m

i

�r

i

(2.23)

M =

_

H: (2.24)
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Figure 2.2: Derivation of total angular momentum of a multibody system a) about origin b)

about an arbitrary (moving) point

F and M are the sums of all external fores and torques, the index C denotes the enter

of mass of the whole system, m is the total mass, and H is the total angular momentum.

The referene point for H is either the enter of mass or a �xed point. We will see later

how equation (2.24) needs to be modi�ed for general referene points. Using the enter

of mass as referene point has the advantage that translational and rotational motion an

be treated independently. On the other hand, the enter of mass of a multibody system

is no physial point �xed to any of the bodies but an imaginary point onstantly moving

relative to all of them. Frequently, ertain points in the multibody system are inertially

�xed and the overall motion an be onsidered as a rotation about this �xed point.

In the following, we will onentrate on deriving the rotational equations about general

referene points that are not neessarily the enter of mass or a �xed point.

The total angular momentum of a multibody system about the origin (see �gure 2.2a) is

found by summing the angular momenta of the individual bodies.

H =

n

X

i=1

(r

i

�m

i

_r

i

) +

n

X

i=1

(�

i

!

i

) (2.25)

where m

i

are the masses, �

i

the moments of inertia, r

i

the enter of mass positions, and

!

i

the angular veloities of the n bodies. r

i

and !

i

are desribed in global oordinates.

The moments of inertia �

i

are desribed in body �xed oordinates. Due to the rotational

motion of the bodies their derivatives in the inertially �xed oordinate system are not

zero.

With this, the derivative of the total angular momentum beomes

_

H =

n

X

i=1

(r

i

�m

i

�r

i

) +

n

X

i=1

(�

i

_!

i

+ !

i

� �

i

!

i

) (2.26)

as

_r

i

�m

i

_r

i

= 0: (2.27)
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Thus, we obtain for the overall rotational equation about the origin:

n

X

i=1

(r

i

�m

i

�r

i

) +

n

X

i=1

(�

i

_!

i

+ !

i

��

i

!

i

) =M (2.28)

In the more general ase, we hoose a referene point P loated on an additional body

of mass 0 (�gure 2.2b). P may perform arbitrary translational motions (and rotational

motions, whih however do not play a role as the body is massless). The total angular

momentum of the system about P is

H =

n

X

i=1

(r

P;i

�m

i

_r

P;i

) +

n

X

i=1

(�

i

!

i

): (2.29)

For a general referene point, equation (2.24) needs to be modi�ed:

M

P

� r

P;C

�m�r

P

=

_

H

P

: (2.30)

The additional term �r

P;C

�m�r

P

an be interpreted as moment about P produed by the

inertia fore m�r

P

that results from the translational motion of the referene frame. The

term is zero for any referene point that is inertially �xed or moving at onstant speed.

The rotational equation about a general aelerated referene point P beomes

n

X

i=1

(r

P;i

�m

i

�r

P;i

) +

n

X

i=1

(�

i

_!

i

+ !

i

� �

i

!

i

) + r

P;C

�m�r

P

=M: (2.31)

With

r

P;C

�m�r

P

=

n

X

i=1

r

P;i

�m

i

�r

P

; (2.32)

we an also write

n

X

i=1

(r

P;i

�m

i

�r

i

) +

n

X

i=1

(�

i

_!

i

+ !

i

��

i

!

i

) =M: (2.33)

It goes without saying that these equations an also be applied to parts of the multibody

system. Following the priniple of free body diagrams, possible onstraint fores and

torques aused by the rest of the system have in this ase to be taken into aount

beause they beome 'external' from this point of view.

2.3 Numerial Implementation of Gait Models

We have implemented all our robot models in the framework of an objet oriented model

library in C++. Every model lass enapsulates all information about a model inluding

basi model data like dimensions and all features previously de�ned in this hapter. This

implementation has the advantage of ensuring uniform interfaes to all mehanial models.

No model modi�ations are neessary for use with other software, e.g. integrators. The

following listing haraterizes the Model data type:



2.3. Numerial Implementation of Gait Models 31

lass Model{

proteted:

int itsNoOfStates;

int itsNoOfControls;

int itsNoOfParams;

int itsNoOfModels;

int itsModelNo;

int itsNoOfSwithes;

double itsTime;

Vetor<double> ItsX;

Vetor<double> ItsU;

Vetor<double> ItsP;

publi:

Model();

Model(Model& OtherModel);

virtual ~Model();

void update(double time, Vetor<double>& X, Vetor<double>& U,

Vetor<double>& P, int modelNo = 1);

virtual void alRHS(Vetor<double>& XDot) = 0;

virtual void alJump(int swithNo, Vetor<double>& XAfterJump) = 0;

virtual double alSwithingFuntion(int swithNo) = 0;

virtual double onfirmSwith(int swithNo) = 0;

virtual void alSwithingDerivs(int swithNo, Vetor<double>& DswDx,

Vetor<double>& DswDu, Vetor<double>& DswDp, double& dswDt) = 0;

int getNoOfStates();

int getNoOfControls();

int getNoOfParams();

int getNoOfSwithes();

virtual void print(int printLevel);

virtual void print(int printLevel, ofstream& fout);

};

The equations of motion of the robot are internally established based e.g. on free body

diagrams and Newton's laws or onservation of momentum balanes. As desribed in

setion 2.2.1, typially larger sets of oordinates than those for simulation and optimiza-

tion are used for this purpose. These systems of equations are internally solved, and only

optimization oordinates are visible to the outside. The right hand side for the equations

of motion is exported on request. Swithing funtion values and jump disontinuities at

swithing points, that result from ompliated momentum balanes are also internally

omputed on demand.





Chapter 3

Mathematial Methods for the

Generation of Optimal Periodi

Gaits

The task of gait generation determines, for a given mehanial model and a given set of

model parameters, the initial values for the position and the veloity variables, the yle

time, and { for atuated systems { the atuator inputs suh that the periodiity onditions

and other restritions are ful�lled. The task also inludes a detetion of non-feasibility

for a given on�guration.

The question for optimal periodi gaits an arise in di�erent irumstanes.

In this thesis, we are espeially interested in the searh for periodi gaits as subtask in

the inner loop of the two-level optimization proedure, as outlined at the end of hapter

1. An optimization riterion has to be added in this ase to make the solution of this

subproblem unique and to support the objetives of the outer loop.

But optimal periodi gaits are also of importane as stand-alone problems. Forward

simulation of gait models without any information about suitable atuator histories is

very unlikely to result in physially meaningful trajetories. Optimization methods an

help to determine atuator inputs reating periodi gaits. And frequently the question

for an optimal motion, like the fastest, slowest, most energy eÆient et. gait arises.

The one-level stability optimization problem mentioned in hapter 1 does of ourse also

ask for the generation of an optimal periodi gait, but it does not fall into the range of

problems treated in this hapter. Both of the above problems of optimal gait generation

{ stand-alone and inner loop task { are omplex, but standard optimal ontrol problems.

Their objetive funtions are of standard separable Mayer or Lagrange type. We will see in

hapter 5 that the objetive funtion haraterizing stability does learly not belong into

this ategory suh that the methods desribed in this hapter are only partly appliable.

While there is no tool available to solve suh a non-standard optimal ontrol problem,
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software for the solution of standard optimal ontrol problems already exists today, in

partiular the powerful ode MUSCOD, that has been developed in the researh group of

Bok & Shl�oder by Leineweber [48℄, [47℄ on the basis of the original ode of Bok & Plitt

[11℄ for sti� hemial systems of ODE or index 1. MUSCOD relies on fast and eÆient

integrator libraries that are also apable to ompute derivatives of the trajetories, like

ODEOPT that has been inorporated into the optimal ontrol ode by its author Winkler

[102℄. In this study, we use a variant of MUSCOD for the generation of optimal periodi

gaits. It was oupled with the gait model library desribed in the previous hapter.

The purpose of this hapter is to introdue theoretial bakground, problem formulation

and solution methods for optimal periodi gaits in the sense of standard periodi optimal

ontrol problems.

As di�erential equations and dynamial systems are losely related �elds of researh,

in setion 3.1 we take the dynamial systems point of view and reall some important

terminology from that area. In setion 3.2 we introdue some theory about existene and

uniqueness of solutions of (periodi) boundary value problems. From this we onlude in

setion 3.3 that the formulation of gait problems should always lead to optimal ontrol

problems and not only to boundary value problems. We give the full formulation of a

standard multi-phase optimal ontrol problem with disontinuities. Setion 3.4 is �nally

dediated to the numerial solution of periodi optimal ontrol problems by the diret

multiple shooting approah.

3.1 The Dynamial Systems Point of View

A system, the behavior of whih is desribed by di�erential equations | like a walking

robot { is also alled a (ontinuous-time) dynamial system. In this setion we introdue

some basi terminology ommon in the �eld of dynamial systems beause it is often used

in the ontext of walking robots and sometimes di�ers from the terminology ustomary in

the �eld of optimization and simulation. As referenes for this setion we have used the

books of Kuznetsov [44℄ and Baker & Gollub [5℄ and the relevant hapter in Bronstein et

al.[13℄.

The state spae X of all dynami variables of the system is equivalently alled phase spae.

The evolution operator of a dynamial system desribes the deterministi proess of evo-

lution in time t. It is the map �

t

that transforms an initial state x

0

2 X into some state

x

t

2 X at time t: x

t

= �

t

x

0

. In the ontinuous-time ase, the family �

t

t2I

T

of evolution

operators is alled a ow.

An equilibrium or �xed point x

0

is a point in state spae that is mapped onto itself by the

evolution operator for arbitrary times t:

�

t

x

0

= x

0

for all t 2 I

T

: (3.1)

From this follows that a system put into equilibrium state remains there forever.
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Figure 3.1: De�nition of Poinar�e setions for a) non-autonomous and b) autonomous di�eren-

tial equations

Orbits of a ontinuous-time system with a ontinuous evolution operator are urves in the

state spae X parameterized by the time t and oriented by its diretion of inrease. Orbit

is therefore a synonym for trajetory.

A periodi orbit or yle L

0

is an orbit for whih eah point x

0

2 L

0

satis�es

�

t+T

x

0

= �

t

x

0

with some T > 0; for all t 2 I

T

: (3.2)

The minimal T with this property is alled the period of the yle L

0

. In the ontinuous-

time ase, a yle L

0

is represented by a losed urve. If a yle is isolated, i.e. there are

no other yles in its neighborhood, it is alled a limit yle.

Phase portraits are diagrams ontaining a visualization of possible orbits in phase spae.

In pratie it is of ourse impossible to show all orbits, so only several key orbits are

depited.

A very helpful tool for the study of periodi dynamial systems are Poinar�e setions

whih an be de�ned as 'snapshots' of the system's motion taken at regular intervals T

in time (typially the yle time). In the ase of autonomous systems it is ustomary to

de�ne the Poinar�e setion as (n� 1)-dimensional manifold in n-dimensional phase spae

that is orthogonal to the orbit. The results are the same if applied to a T -periodi orbit

but a distintion beomes obvious for a (non-periodi) perturbation of this orbit for whih

the time between two intersetions with this manifold is not equal to T . Poinar�e setions

for non-autonomous and autonomous systems are shown in �gure 3.1.

The map that transforms a state on one Poinar�e setion to a orresponding state on

the next setion is alled the Poinar�e map assoiated with the T -periodi yle L

0

.

The omputation of Poinar�e maps and their Jaobians for both autonomous and non-

autonomous systems will be a ore omponent of our stability optimization proedure to

be desribed in later hapters.
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3.2 Existene and Uniqueness of Solutions of Bound-

ary Value Problems

Gait models as desribed in hapter 2 result in periodi multi-phase boundary value

problems with disontinuities { so far without any optimization riterion. In this setion,

we will briey review some important fats about existene and uniqueness of solutions

of boundary value problems. In ontrast to initial value problems for whih existene

and uniqueness an generally be guaranteed under mild assumptions of ontinuity and

Lipshitz ontinuity, for boundary value problems non-uniqueness or non-existene an

our even for very simple ases. The material of this setion is treated more extensively

in Walter [98℄, Werner & Arndt [100℄, and Asher et al. [4℄.

The basi form of a boundary value problem for �rst order systems of order n is

_x = f(t; x(t)); t 2 [a; b℄ (3.3)

r(x(a); x(b)) = 0 (3.4)

In ontrast to initial value problems, boundary onditions are spei�ed at two di�erent

points a and b. The formulation of a boundary value problem with boundary onditions

of type (3.4) is obviously only possible for a �rst order system with at least two di�erential

equations.

In the ase of a periodi boundary value problem, boundary onditions (3.4) take the

form

r(x(a); x(b)) = x(b)� x(a) = 0: (3.5)

In analogy to the lassial two-point boundary value problem (3.3)/ (3.4) we an also

de�ne a multi-point boundary value problem with boundary onditions spei�ed at p

di�erent points

r(x(t

1

); x(t

2

); :::; x(t

p

)) = 0: (3.6)

A boundary value problem is alled linear if its di�erential equations as well as its bound-

ary onditions are linear. The following theorem is taken from Werner & Arndt [100℄.

Theorem 3.1 The linear boundary value problem

_x(t) + A(t)x(t) =  (3.7)

Mx(a) +Nx(b) = d (3.8)

has a unique solution for arbitrary ; d if for a fundamental matrix X(t) of the homogenous

system _x(t) + A(t)x(t) = 0 we have:

� :=MX(a) +NX(b) (3.9)

is non-singular. If it is singular, the homogenous boundary value problem (with  = d = 0)

has a number of non-trivial solutions.
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For boundary value problems involving nonlinear di�erential equations there is no way

to determine existene nor uniqueness of solutions for the general ase. Boundary value

problems are 'problems in the large', and existene of solutions of di�erential equations

an often only loally be guaranteed.

In many ases of pratial interest, however, there is a number of possible solutions. Some

useful theoretial results for the general ase an be derived expressing boundary value

problem (3.3)/ (3.4) in terms of an assoiated initial value problem

_y = f(t; y(t)); t > a (3.10)

y(a) = s (3.11)

where s is an n-dimensional parameter vetor. Assuming Lipshitz ontinuity, there is a

unique solution y(t; s) of the initial value problem. x(t) = y(t; s) for eah s that solves

the boundary value problem if s is hosen suh that

g(s) = r(s; x(b; s)) = 0 (3.12)

This is a system of n nonlinear equations for n unknowns s

i

that may have one solution,

many or none at all. See Asher et al. [4℄ for the following theorem:

Theorem 3.2 If f(t; x(t)) is ontinuous for t 2 [a; b℄ and arbitrary x and satis�es a

uniform Lipshitz ondition, then the nonlinear boundary value problem (3.3)/ (3.4) has

as many solutions as there are distint roots in equation (3.12).

It remains to draw onlusions for the problem of gait generation. A typial straightfor-

ward boundary value problem arising in this ontext of non-atuated systems would be to

determine a periodi solution for a given set of model parameters and free initial values

of states and yle time. This an be written as an extension of (3.3)/(3.5):

_x = f(t; x(t; p); p); p 2 R

k

; t 2 [a; p

k+1

℄ (3.13)

0 = x(a; p)� x(p

k+1

; p) (3.14)

Suh a system may have a unique solution, multiple solutions or no solution at all. Very

often, the system has additional possibilities of variation, like ontrols, and also additional

restritions, like onstraints on states, parameters and ontrols. The former even inreases

the hanes of non-uniqueness, the latter those of non-solvability. But loally non-unique

solutions may lead to a failure of the numerial method.

We may therefore onlude that formulating a gait problem as simple boundary value

problem may be the soure of numerial problems and should thus be avoided. Measures

to make the solution unique and for a detetion of non-solvability have to be taken.
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3.3 Formulation of Periodi Gaits as Multi-phase Op-

timal Control Problem with Disontinuities

A solution to the non-uniqueness problems resulting from a boundary value problem

formulation outlined in the last setion is to add some appropriate optimization riterion.

This leads to the formulation of a multi-phase optimal ontrol problem

min

x;u;T

Z

T

0

�(x(t); u(t); p) dt + �(T; x(T ); p) (3.15)

s. t. _x(t) = f

j

(t; x(t); u(t); p) for t 2 [�

j�1

; �

j

℄;

j = 1; :::; n

ph

; �

0

= 0; �

n

ph

= T (3.16)

x(�

+

j

) = h(x(�

�

j

)) for j = 1; :::; n

ph

(3.17)

g

j

(t; x(t); u(t); p) � 0 for t 2 [�

j�1

; �

j

℄ (3.18)

r

eq

(x(0); ::; x(T ); p) = 0 (3.19)

r

ineq

(x(0); ::; x(T ); p) � 0: (3.20)

Equations (3.16) { (3.20) alone would represent a multi-point boundary value problem

with additional nonlinear inequality onstraints.

The state variables x ombine the position and veloity variables q and v of the mehanial

system. p are the model parameters, and u the ontrol variables or atuations. This

formulation overs atuated as well as passive systems; for the latter the dimension of

u simply is zero. In the ontext of the two-level stability optimization proedure the

model parameters p are �xed in this subproblem and are only varied in the outer stability

optimization loop (see setion 1.5). For a stand-alone problem of periodi gait generation

it ould make sense to also allow for a model parameter variation in this optimal ontrol

ontext, and equation (3.15) would have to be aordingly modi�ed.

For simpliity, we have represented here only the ase of ODE models. If the motion is

haraterized by DAEs, equations (3.16) have to be replaed by the orresponding formu-

lation of type (2.5)/(2.6). The full yle [0; T ℄ is divided into phase intervals [�

j

; �

j+1

℄ with

possibly di�erent dynamial models (3.16) and di�erent ontinuous inequality onstraints

on states and ontrols (3.18).

State and right hand side disontinuities are only allowed between phases. Swithing fun-

tion handling is not performed during integration. Instead, phase swithing at impliitly

de�ned times is monitored by a time transformation (see setion 3.4.3) and reformulation

of the swithing onditions as interior point onstraints of type (3.19) (see Bok [9℄).

In the sense of the above optimal ontrol problem formulation, periodiity onditions are

oupled pointwise equality onstraints of type (3.19). Box onstraints and more omplex

ontinuous onstraints (suh as foot learane) on states and ontrols are inluded in

equation (3.18).
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Note that the optimal ontrol problem formulation in equation (3.15) allows for objetive

funtions of Lagrange type as well as of Mayer type involving trajetory end values. Those

two types are equivalent from a mathematial point of view and an be transformed into

eah other.

For the optimization of walking motion there are several lassial objetive funtions of

interest.

Energy onsumption is an important issue although there are di�erent opinions on how

to measure energy. It an be either judged in terms of mehanial energy as integral of

a fore along a path or, as is more ommon in robotis, in terms of atuator torques u

(squared to eliminate diretion)

Z

T

0

jjujj

2

2

dt (3.21)

whih depend on the eletrial energy onsumed by the motors. For human walking, a

measure of musular energy onsumption would have to be established.

The improvement of performane of walking, running and hopping motions in the sense

of speed, height and width is often sought for, and this also leads to objetive funtions

of form (3.15).

For the stability optimization subtask of generating a periodi gait in the inner loop we

need to hoose an objetive funtion that assists the outer loop stabilization goal rather

than working against it. Experiene shows that e.g. a maximization of speed would tend

to make gaits more unstable instead of more stable. In this sense the following objetive

funtions have proven to be suitable:

� minimization of 'energy input' in terms of torques squared (for atuated robots only)

� minimization of yle time

� minimization of some harateristi speed.

3.4 Numerial Solution of Periodi Mehanial Multi-

phase Optimal Control Problems with Disonti-

nuities

There are some fundamentally di�erent ways to solve periodi optimal ontrol problems.

The approah due to Colonius [21℄ is very ommon, e.g. in hemial engineering, where

for many systems a steady state solution, orresponding to a stati ontrol is known. The

basi question then is if it is possible to determine a non-trivial T -periodi ontrol whih

further improves the steady state value of the objetive funtion. It is answered on the

basis of a so-alled �-Test (also see Hartel [37℄ for a numerial implementation). However,
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this approah is not a possible one for the generation of optimal periodi gaits sine there

are no related steady state solutions in the general ase. We are not aware of any ase

where a onstant non-zero ontrol produes a solution to the problem. And for onstant

zero ontrols, i.e. performing a transition from atuated to passive walking (if possible at

all) { some properties of the system, like the slope angle, would have to be modi�ed. The

steady state on at ground with no ontrols related to walking motions equals standing

still. This being of fundamentally di�erent nature would not help to �nd a solution for

walking.

Among the di�erent possible methods that diretly takle the non-steady periodi optimal

ontrol problem we have hosen a diret method based on multiple shooting as it is

implemented in MUSCOD (see Leineweber [47℄).

In this setion we desribe the individual steps in the solution proess: ontrol disretiza-

tion, treatment of dynamis, solution of the underlying nonlinear programming problem.

We also highlight speial aspets of the problem like the optimization of phase times, a

possible shift of periodi orbits, and the use of index 3 models in optimal ontrol.

3.4.1 Disretization of Optimal Control Problems

Problem (3.15) - (3.20) represents an in�nite-dimensional optimization problem. This

setion desribes how it is transformed into a �nite-dimensional optimization problem by

disretization of the ontrol funtions as well as the system's dynamis and presents the

resulting disretized system.

Control Disretization

The lassial, so alled indiret, approah to optimal ontrol problems is based on Pon-

tryagin's maximum priniple and optimality onditions for the in�nite problem itself (see

e.g. F�ollinger [29℄). Controls are eliminated by expressing them as funtions of state

variables and adjoint variables. In theory, the indiret approah has the advantage that

solutions with ontrol funtions in very general spaes an be haraterized but in pratie

it is very hard to solve the resulting equations even for quite simple ases.

For omplex pratial problems, generally the diret approah that is based on a disretiza-

tion of ontrol funtions, is favored. Instead of in�nite dimensional ontrol funtions u(t)

as in the indiret approah, parameterizable ontrol funtions are used. Control histories

of the n

u

physial ontrols are thus desribed by a �nite number of ontrol parameters

q

ij

. One of the speial features introdued by Bok & Plitt [11℄ is to use ontrol fun-

tions that have only loal support, like pieewise onstant or linear funtions on a ontrol

grid [t

0

; t

1

; :::; t

m

℄ with m intervals. This has the advantage of leading to a strutured

optimization problem.
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Figure 3.2: Multiple Shooting state disretization

State Disretization

The goal of state disretization is to separate the two tasks of integrating the system's

dynamis and solving the optimization problem. For optimal ontrol problems basially

the same disretization methods are appliable as for the underlying multi-point boundary

value problem.

Resulting from the fat that there is a lose theoretial relationship between boundary

value problems and initial value problems (see setion 3.2) some numerial methods for

boundary value problems trae bak their solution to that of initial value problems (Asher

et al. [4℄, Shwarz [82℄).

The simplest method of this type is the single shooting method. It treats the full integra-

tion interval of the boundary value problem at one. The initial values of the integration

are iteratively varied until the boundary onditions of the original boundary value prob-

lem are satis�ed. A weakness of single shooting is that it is hard or even impossible to

�nd a solution if the initial value problem solution is very sensitive to variations of the

initial values.

As the impat of suh a high sensitivity is redued on smaller integration intervals, we

are naturally led to the idea of multiple shooting. It splits the long integration interval

[0; T ℄ into many smaller ones and introdues the values of the n

x

state variables x at all

those grid points as new variables s

ij

. With this approah the original boundary value

problem is transformed into a set of initial value problems. Corresponding ontinuity

onditions between integration intervals are added. As proposed by Bok & Plitt [11℄,

it is advantageous for the struture of the resulting problem to hoose the same grid for

multiple shooting as for ontrol disretization or a subset thereof.

The multiple-shooting approah is espeially suited for the generation of periodi gaits

for a number of reasons. It allows to impose the desired phase order and swithing

struture, as the model for eah multiple shooting interval an be presribed di�erently.

The knowledge that one usually has about the trajetory an be used as initial guesses for
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the initial values of the states at the multiple shooting points. Gait models often exhibit

the above desribed sensitivity to initial value variations, and therefore multiple shooting

inreases signi�antly the hanes of �nding a solution of the initial value problem and of

obtaining suÆiently aurate derivatives.

Disretized Optimal Control Problem

Two more steps need to be taken in the disretization proess. First, as the durations

of all phases are to be determined by the optimization, they need to be introdued as

optimization variables. The neessary transformations are desribed in setion 3.4.3.

Seond, for all disontinuous physial phase transitions additional arti�ial phases of

duration zero are introdued. These phases formally onsist of a single multiple shooting

interval.

The disretized optimal ontrol problem beomes

min

y

~

�(y; p) (3.22)

s. t. ~r

on

= x(t

i+1

; s

i

; q

i

; p; h)� s

i+1

= 0 for i = 0; :::; m� 1 (3.23)

~r

eq;i

(y; p) = 0 for i = 0; :::; m (3.24)

~r

ineq;i

(y; p) � 0 for i = 0; :::; m (3.25)

with the variable vetor y

T

= (s

0

; q

0

; s

1

; q

1

; :::::; s

m

; h)

T

ontaining the disretized state

and ontrol vetors s

i

and q

i

at all multiple shooting points/intervals and the vetor of

phase times h. With dimensions n

x

and n

u

of the physial state and ontrol vetors, n

ph

phases, and m multiple shooting/ontrol intervals, the vetor y has the dimension

n

y

= n

ph

+ n

x

� (m+ 1) + n

u

�m � k

u

; k

u

= 1; 2; ::

(where the fator k

u

depends on the hosen ontrol disretization).

In MUSCOD, onstraints an be imposed on all multiple shooting points. Equation (3.24)

represents equation (3.19), equation (3.25) ombines equations (3.20) and a disretization

of (3.18) of the original problem. (3.23) desribes the ontinuity onditions between

integration intervals.

3.4.2 Treatment of the System's Dynamis

Please note that the dynamial model is not part of the optimal ontrol problem any more

after disretization. Integration has been separated from optimization: the optimization

only needs the �nal values x(t

i+1

; s

i

; q

i

; p) of the integration on eah interval and the

orresponding derivatives alulated by a logially external integrator.

As integration and orresponding sensitivity generation represent a large part of the om-

putational e�ort neessary to solve the optimal ontrol problem, the use of eÆient inte-

grators is ruial. Inorporated into MUSCOD are ODE-integrators of Runge-Kutta type
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T = 2 π

a b

x(t) = sin t,   x(a) = x(b)  x

t

z

t

T = 2 π

a b

∆ t

z(t) = x(t + ∆ t) = sin(t + ∆ t),   x(a) = x(b)  

Figure 3.3: Illustration of the shift problem

and ODESIM/ODEOPT of Winkler [102℄ and the index-1 DAE integrator DAESOL

(Bauer et al. [6℄). For sensitivity generation, they all rely on the priniple of IND (inter-

nal numerial di�erentiation, see Bok [10℄) whih uses the same disretization shemes

for integration and derivative generation and exhibits high numerial stability.

3.4.3 Optimization of Phase Times

As stated above, we want the durations of all phases h = (h

1

; :::; h

n

p

h

)

T

to be free variables

of the optimization problem. For this, derivatives with respet to phase times have to

be determined during integration. In the ontext of IND this should not be done using

straightforward integration in physial time:

x(t

e;i

) = x(t

s;i

) +

Z

t

e;i

t

s;i

f(t; x(t))dt: (3.26)

By means of a time transformation to the unity interval t 2 [t

s;i

; t

e;i

℄! � 2 [0; 1℄

x(t

e;i

) = x(t

s;i

) + (t

e;i

� t

s;i

) �

Z

1

0

f(t

s;i

+ (t

e;i

� t

s;i

)�; x(t

s;i

+ (t

e;i

� t

s;i

)�))d� (3.27)

with t

s;i

=

P

i�1

j=1

h

j

, t

e;i

=

P

i

j=1

h

j

the derivatives with respet to h

i

an be omputed

like derivatives with respet to model parameters.

3.4.4 Handling of the Shift Problem

A lassial diÆulty ourring in the ontext of periodi optimal ontrol problems or

boundary value problems is the shift problem. Figure 3.3 illustrates this problem for the

simple example of the sin-funtion. It arises if none of the variables at the boundary

is �xed to a spei� value and only pure periodiity onstraints are imposed. Then it

follows that if x(t) is a solution of the boundary value problem, any other shifted funtion

z(t) = x(t +�t) for arbitrary �t is also a solution of the boundary value problem .



44 Chapter 3. Mathematial Methods for the Generation of Optimal Periodi Gaits

The introdution of phases whih have a priori a �xed order represents a regularization

of this shift problem. As start and end point of our yli trajetories are always assoi-

ated with phase boundaries desribed by equality onstraints, those points are uniquely

determined on the trajetory, and the shift problem is automatially eliminated.

3.4.5 Solution of Underlying NLP

The disretized problem (3.22) - (3.25) is a nonlinear programming problem (NLP) of

large dimension.

Objetive funtions of Mayer and Lagrange type (3.15) are separable, i.e. they an be

written as a sum of funtions eah valid on a single multiple shooting interval only

~

�(s; q; p) =

m

X

i=0

~

�(s

i

; q

i

; p): (3.28)

The disretized variables q

i

and s

i

have thus only loally restrited inuene on the ob-

jetive funtion. The same is true for the onstraints exept for a linear oupling in the

ontinuity and periodiity onditions.

In MUSCOD, the NLP is eÆiently solved by a tailored sequential quadrati program-

ming (SQP) method that exploits the problem struture resulting from this loal sphere

of inuene of variables. SQP is an iterative method in whih the NLP is loally approx-

imated by quadrati optimization problems (QP). The solution z

k

of the QP at the SQP

iterate y

k

presents the new diretion of searh for the optimum in the SQP:

y

k+1

= y

k

+ �z

k

(3.29)

The QP to be solved is

min

z

k

2


r

~

�(y

k

)

T

z

k

+

1

2

z

T

k

B

k

(y

k

)z

k

(3.30)

s. t. h(y

k

) +rh(y

k

)

T

z

k

= 0 (3.31)

~r

eq

(y

k

) +r~r

eq

(y

k

)

T

z

k

= 0 (3.32)

~r

ineq

(y

k

) +r~r

ineq

(y

k

)

T

z

k

� 0 (3.33)

where B

k

is an approximation of the Hessian of the Lagrangian funtion. In a trust region

approah 
 is hosen suh that the quadrati approximation is valid in the region. The

SQP step length � is determined by a line searh. For a basi desription of SQP methods,

see the optimization textbooks Gill et al. [32℄ and Flether [28℄. Speial partially redued

SQP methods have been developed by Leineweber [48℄. In the diret multiple shooting

ontext desribed in this setion the QP has a sparse struture. Instead of diretly solving

this QP it is favorable to �rst ondense the problem eliminating the additional variables

introdued by the multiple shooting method, s

1

; :::s

m

and then solve the resulting dense

QP by a standard solver.
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3.4.6 Treatment of Mehanial DAEs

As disussed in setion 2.1.1, it is often favorable to formulate mehanial problems as

index 3 DAEs instead of ODEs. For our gait models we use this formulation at least for

ertain phases of the motion. We desribe them in the equivalent di�erentiated index 1

form (2.7) - (2.12) with position and veloity invariants. Those invariants have be taken

into aount in two di�erent ways:

1. As onstraints for the optimization problem: Initial values of integration must lie on

the manifold desribed by the onstraints. This is ensured by adding the respetive

onstraints to the set of multipoint onstraints at the initial multiple shooting point

of the respetive phase.

2. As onstraints for the integration: To avoid a drift away from this manifold the same

onstraints would have to be projeted onto when integrating the index 1 system

instead of the index 3 system. Due to the very short integration intervals in the

multiple shooting ontext drift has so far never appeared to be a problem for our

models, and therefore we have not deemed it neessary to use any projetion.

In a parallel researh projet in the group of Bok & Shl�oder, Stossmeister [87℄ pursues a

ombination of MUSCOD with the integrator libraries MBSSIM and MBSOPT (v. Shw-

erin & Winkler [95℄, v. Shwerin [93℄) apable to handle index 3 systems by redution to

index 1 and projetion onto invariants. As soon as this tool is available, possible e�ets

of this alternative treatment of the drift problem on our models and results an be tested.





Chapter 4

Charaterizing the Stability of

Periodi Gaits

In hapter 3 we have desribed numerial methods for the generation of optimal periodi

gaits to be used in the inner loop of our two-level optimization proedure. Having found

a periodi solution, its stability must be determined as part of the omputations in the

outer loop. The present hapter is dediated to appropriate riteria haraterizing the

stability of a periodi orbit.

Stability of a solution desribes the fat that neighboring solutions approah or at least

stay lose to that solution. Deviations of the physial system's motion from the original

prealulated trajetory may our for a number of reasons. Model parameters an usu-

ally only be determined with a ertain tolerane. The system's motion is often subjet to

perturbations aused by the external world. And even the most detailed mathematial

model is always some abstration of the real system. So for the open-loop ontrolled phys-

ial system to be able to automatially reover from this deviated state, the mathematial

solution has to be robust against perturbations of the initial values and the parameters.

We start the hapter with mathematial de�nitions of stability that are needed to explain

the theoretial bakground. We reall the stability theory for linear systems with onstant

oeÆients in setion 4.2 and with periodi oeÆients { the so-alled Floquet theory {

in setion 4.3. They form the basis for further investigations of nonlinear systems. The

theory that we need for our systems is the stability theory for nonlinear periodi systems,

whih is a speial ase of Lyapunov's �rst method. It is introdued in setion 4.4. In 4.5,

we generalize Lyapunov's �rst method to our ase of periodi systems with disontinuities.

Although the method has been applied to gaits before by some authors (e.g. MGeer

[52℄, Coleman [18℄, Cheng & Lin [15℄, Hurmuzlu [42℄) { varying in the way the relevant

quantities are omputed { to our knowledge this formal generalization has not been made

before. We �nish this hapter by briey realling the famous seond method of Lyapunov

and explaining why it is not useful in our investigations. Good referenes for the �rst four

setions of this hapter are Cronin [22℄, Walter [98℄, Meirovith [56℄, and Hsu & Meyer

[40℄. For setion 4.6, see La Salle & Lefshetz [80℄ and Cronin [22℄.
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4.1 Mathematial De�nitions of Stability

In this setion we give some essential de�nitions of stability that will be used later in this

hapter. The de�nitions are based on the work of the Russian mathematiian A. M. Lya-

punov.

A solution x

0

(t) of an n-dimensional system of non-autonomous di�erential equations

_x(t) = f(t; x(t)) (4.1)

� is stable (in the sense of Lyapunov), if for eah � > 0 there is a Æ > 0 suh that all

solutions x

1

(t) with jx

1

(t

0

)� x

0

(t

0

)j < Æ satisfy jx

1

(t)� x

0

(t)j < � for all t > t

0

,

� is asymptotially stable (in the sense of Lyapunov), if it is stable and additionally

lim

t!1

jx

1

(t)� x

0

(t)j = 0;

� is unstable if it is not stable.

Let us reall that for mehanial systems the vetor x onsists of all position and all

veloity variables.

A very useful notion for autonomous systems

_x(t) = f(x(t)) (4.2)

espeially with losed trajetories is that of orbital stability whih only onsiders the tra-

jetories as entities and not a spei� referene point traveling in time along the trajetory.

Let X

0

be the orbit of solution x

0

(t) and de�ne d(X

0

; y) as the minimum Eulidean

distane of a point y from the orbit X

0

. Then the solution x

0

(t) of an autonomous system

� is orbitally stable if for eah � > 0 there is a Æ > 0 suh that all solutions x

1

(t) with

d(X

0

; x

1

(t

0

)) < Æ satisfy d(X

0

; x

1

(t)) < � for all t > t

0

, and

� is orbitally asymptotially stable if it is orbitally stable and additionally

lim

t!1

d(X

0

; x

1

(t)) = 0:

Orbital stability is a onsiderably weaker ondition than stability as points of orrespond-

ing values of time t an be far apart, i .e. perturbations along the orbit do not have to

be eliminated.
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4.2 Stability of Solutions of Linear Systems with Con-

stant CoeÆients

As is well known to most engineers and mathematiians, stability of a linear system with

onstant oeÆients an be determined by the eigenvalues of its oeÆient matrix. The

following theorem an be found e.g. in Walter [98℄.

Theorem 4.1 Solution x � 0 of

_x(t) = Ax(t) with A onst.

� is stable, if Re(�

i

) � 0) for all eigenvalues �

i

of A with Re(�

i

) = 0 belonging to a

non-defetive eigenvalue

� is asymptotially stable, if Re(�

i

) < 0) for all eigenvalues �

i

of A

� is unstable, if it is not stable.

Remark:

For general linear systems

_x(t) = A(t)x(t) + f(t) (4.3)

where A(t) and f(t) are ontinuous, it holds that if there exists one solution x(t; t

0

; x

0

)

of (4.3) whih is (asymptotially) stable then every solution of (4.3) is (asymptotially)

stable. Stability properties of the trivial solution of the linear system an therefore be

generalized to arbitrary solutions of the same system.

4.3 Stability of Solutions of Linear Systems with Pe-

riodi CoeÆients { The Floquet Theory

For time-varying oeÆient matries A(t) it is obviously not possible to derive overall

stability properties from the eigenvalues of A as they also hange in time.

The theory founded by the Frenh mathematiian Gaston Floquet gives an approah for

homogenous linear systems with T -periodi oeÆients

_x(t) = A(t)x(t) with A(t+ T ) = A(t): (4.4)

The stability of the trivial solution x � 0 is studied.

It an be shown that if x(t) is a solution, it follows that z(t) = x(t+ T ) also is a solution

{ whih does not imply an equivalene of x(t) and z(t). In other words: if X(t) is a

fundamental matrix of (4.4) with X(0) = I, then Z(t) = X(t+T ) is another fundamental

matrix and there exists a onstant nonsingular matrix C suh that

X(t+ T ) = X(t)C with C = X(T ): (4.5)
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The matrix C whih is sometimes referred to as monodromy matrix plays an important

role in Floquet theory. It is equivalent with the Jaobian of the Poinar�e map introdued

in setion 3.1. The eigenvalues �

i

of C are alled harateristi multipliers or Floquet

multipliers of A. The monodromy matrix C is not unique but depends on the partiular

hoie of the fundamental matrix X(t). However, the eigenvalues assoiated with the

monodromy matrix are uniquely determined by the system/oeÆient matrix A(t) as the

monodromy matries orresponding to di�erent fundamental matries are similar.

Every fundamental matrix X(t) of (4.4) has a Floquet representation

X(t) = Q(t)e

Bt

; (4.6)

where Q(t) is T -periodi and B is onstant and satis�es

C = X(T ) = e

BT

: (4.7)

For every eigenvalue �

i

of C there is a orresponding eigenvalue �

i

of B with idential

algebrai multipliity and

�

i

= e

T�

i

(4.8)

�

i

are alled harateristi exponents or Floquet exponents of A. From the de�nition of B

follows that the real parts of �

i

are uniquely determined, the imaginary parts are de�ned

up to an integral multiple of 2�=T .

Transformation (4.6) allows to derive stability statements for systems with periodi oef-

�ients from systems with onstant oeÆients.

Theorem 4.2 Solution x � 0 of

_x = A(t)x with A(t + T ) = A(t)

� is stable, if all harateristi multipliers j�

i

j � 1 (or all harateristi exponents

Re(�

i

) � 0) with j�

i

j = 1 (Re(�

i

) = 0) belonging to a non-defetive eigenvalue,

� is asymptotially stable, if all multipliers j�

i

j < 1 (or all exponents Re(�

i

) < 0), and

� is unstable, if at least one multiplier j�

i

j > 1 (or Re(�

i

) > 0).

The theorem an be found in Walter [98℄.

T -periodi solutions of those systems with T -periodi oeÆients exist, if the transfer

matrix C has one eigenvalue � = 1. If no harateristi multiplier equals one, then

equation (4.4) has no nontrivial solution of period T .

4.4 Stability of Periodi Solutions of Nonlinear Sys-

tems { Lyapunov's First Method

Lyapunov's �rst method is a stability theory for nonlinear systems that is based on ap-

proximations by the orresponding linear systems.



4.4. Stability of Periodi Solutions of Nonlinear Systems { Lyapunov's First Method 51

Here we only treat T -periodi nonlinear systems

_x = f(t; x) with f(t+ T; �) = f(t; �) (4.9)

where f 2 C

2

. We also onsider the speial ase of an autonomous equation

_x = f(x) (4.10)

whih is trivially T -periodi.

Periodi solutions of (4.9) and (4.10) do not neessarily have to exist. Assuming that

there exists a periodi solution x

p

(t+ T ) = x

p

(t) = x

p

(t; t

0

; x

0;p

), then any other solution

x

1

an be expressed as

x

1

(t) = x

p

(t) + �x (4.11)

Sine x

1

is a solution of (4.9)

_x

p

+

_

�x = f(t; x

p

+�x) (4.12)

holds and it follows that

_

�x = f(t; x

p

+�x)� f(t; x

p

): (4.13)

By means of a Taylor series expansion this an be written as

_

�x =

�f

�x

(t; x

p

)�x+ h(t;�x) (4.14)

with

�f

�x

(t; x

p

) =

�

�f

i

�x

j

(t; x

p

)

�

(4.15)

Equation (4.14) is the variational system of (4.9) relative to solution x(t). The linear

equation

_

�x =

�f

�x

(t; x

p

)�x (4.16)

is alled the linear variational system (Cronin [22℄). Note that T -periodiity of f auses

T -periodiity of the derivative matrix

h

�f

i

�x

j

i

but not neessarily of the solution �x.

The theory of stability for solutions of nonlinear di�erential equations is based on the

study of the trivial solution of this linear variational system. For this we need the results

of Floquet's theory desribed in the previous setion.

If �x � 0 is a stable solution of the linear variational system then solution x

p

of (4.9) is

alled in�nitesimally stable. The question is now if in�nitesimal stability implies stabil-

ity. For periodi and onstant matries

h

�f

i

�x

j

i

onjetures about asymptoti stability and

instability an be made. For this we need the monodromy matrix C whih in the ase of

nonlinear systems is de�ned by

C(t; t+ T ) =

�

�x(t + T )

�x(t)

�

: (4.17)

For the following two theorems, see Hsu & Meyer [40℄.
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Theorem 4.3 (Stability of periodi solutions of non-autonomous systems) For a

non-autonomous system _x(t) = f(t; x(t)) with f(t; �) = f(t+T; �) the variational equation

about a periodi solution x

p

(t) = x

p

(t+ T ); T 6= 0 is given by

_

�x =

�f

�x

(t; x

p

)�x + h(t;�x):

It is assumed that

lim

jj�xjj!0

jjh(t;�x)jj

jj�xjj

= 0:

Then the periodi solution x

p

(t) is asymptotially stable if j�

i

j < 1 for all eigenvalues �

i

of the monodromy matrix C(t; t+ T ).

If at least one eigenvalue j�

i

j > 1, the system is unstable. If one eigenvalue is exatly

one, the system is said to exhibit ritial behavior. No onlusions about stability an be

drawn from the linear study: depending on higher order terms the system an be either

stable or unstable.

Note that periodi solutions of nonlinear systems are not generally assoiated with eigen-

values of one as in the linear ase beause the solution of the linear variational system

does not neessarily have to be periodi as noted above.

This is di�erent in the autonomous ase as an be shown by substituting a periodi

solution into (4.10) and di�erentiating with respet to time

d

dt

�

dx

p

dt

�

=

d

dt

f(x

p

) =

df

p

dx

(x

p

)

dx

p

dt

(4.18)

Comparison with (4.16) shows that

dx

p

dt

is a solution of the linear variational system. As

this solution is periodi, the monodromy matrix C(t; t+T ) of the autonomous system has

at least one eigenvalue of one. So theorem 4.3 an not be applied to autonomous systems.

All we an ask for in this ase is orbital stability.

Theorem 4.4 (Stability of periodi solutions of autonomous systems) For an au-

tonomous system _x = f(x) the variational equation about a periodi solution x

p

(t) =

x

p

(t + T ); T 6= 0 is given by

_

�x =

�f

�x

(x

p

)�x+ h(t;�x):

It is assumed that

lim

jj�xjj!0

jjh(�x)jj

jj�xjj

= 0:

Then the periodi solution x

p

(t) is stable and orbitally asymptotially stable if j�

i

j < 1 for

all eigenvalues �

i

of the monodromy matrix C(t; t+T ) exept for one eigenvalue j�

k

j = 1.
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Note that in both ases, for autonomous as well as for non-autonomous systems, stability

in terms of the eigenvalues of the monodromy matrix is not a�eted by the hoie of the

starting point of the periodi sample. Monodromy matries for the intervals [t

0

; t

0

+ T ℄

and [t

1

; t

1

+ T ℄ are di�erent for t

0

6= t

1

but their eigenvalues are the same, sine they are

related by a similarity transformation

C(t

0

; t

0

+ T ) = WC(t

1

; t

1

+ T )W

�1

(4.19)

4.5 Generalization of Lyapunov's First Method to

Disontinuous Periodi Systems

For C

2

-ontinuous problems, Lyapunov's �rst method allows one to draw onlusions

about asymptoti stability, or instability, respetively, of the solution of the nonlinear

equations. However, our systems are nonlinear multi-phase problems with disontinuities,

and do not satisfy the requirements of the standard results in stability theory.

The purpose of this setion is to show that one an nevertheless onlude asymptoti

stability of the gait solution of the nonlinear equations from the asymptoti stability of

the linear map. More spei�ally, we want to prove the following theorem:

Theorem 4.5 We study a non-autonomous T -periodi system with multiple phases, that

is pieewise C

2

-ontinuous but has disontinuities J

j

between phases

_x(t) = f

j

(t; x(t)) for [t

j�1

; t

j

℄ with j = 1; :::; n

ph

and t

0

= 0; t

n

ph

= T

and f

j

(t; �) = f

j

(t+ T; �); f

j

2 C

2

(4.20)

s

j

(t

j

; x(t

j

)) = 0 (4.21)

x(t

+

j

) = x(t

�

j

) + J

j

(t

j

; x(t

�

j

)) (4.22)

and a T -periodi solution x

p

(t) = x

p

(t+ T ). It is assumed that

� the solution x

p

at any instant

~

t is twie ontinuously di�erentiable with respet

to initial values

� the divergene from the base solution aused by a perturbation jj�xjj is or-

retly desribed by a linearization up to �rst order, i.e. with an error that is

quadrati in jj�xjj.

Then a monodromy matrix C(t; t + T ) an be de�ned and the periodi solution x

p

is

asymptotially stable if j�

i

j < 1 for all eigenvalues of C(t; t+ T ).

Proof:

We start by showing that the assumptions of the theorem are valid in the ase of the gait

models studied in this thesis. Overall disontinuous but pieewise ontinuous funtions

an under ertain onditions exhibit suÆient di�erentiability properties with respet to

initial values. In analogy to theorem 3.1 of Bok[8℄ that has been formulated for boundary

value problems it an be shown for initial value problems with disontinuous right hand
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side, that a solution F is k times ontinously di�erentiable with respet to initial values

if

� the right hand side f has a �nite number of swithing points t

s

whih are

isolated, i.e. roots of di�erent swithing funtions do not oinide, and well

de�ned, i.e. the derivative _s(t

�

s

) exists at all those points and satis�es

_s(t

�

s

) > 0 if s(t

s

� �) < 0 (4.23)

_s(t

�

s

) < 0 if s(t

s

� �) > 0: (4.24)

In other words, the roots t

s

of the swithing points have to be simple roots

and do not degenerate in the presene of perturbations.

� F is k times pieewise ontinuously di�erentiable w.r.t. the initial values of

the respetive piee, i.e. the right hand sides f

j

are k � 1 time pieewise

ontinuously di�erentiable w. r. t. initial values

� swithing funtions and right hand sides must be extendable beyond swithing

points

� all swithing funtions and jump funtions are k times pieewise ontinuously

di�erentiable.

The theorem requires the solutions to be twie ontinuously di�erentiable with respet to

initial values. All our gait models satisfy the above stated onditions for at least k = 2.

Denoting the solution of the initial value problem (4.20) with x(0) = y at t = T as

F (y; T ) =: F (y), the seond assumption is stated as

jjF (x+�x)� F (x)� F

x

(x)�xjj � bjj�xjj

2

: (4.25)

F

x

is the derivative of F with respet to initial values, and b is a onstant. The left hand

side of relation (4.25) an be transformed, using the Jaobian F

x

jjF (x+�x)� F (x)� F

x

(x)�xjj

= jj

Z

1

0

F

x

(x+ ��x)�x d��

Z

1

0

F

x

(x)�x d� jj

= jj

Z

1

0

(F

x

(x+ ��x)� F

x

(x))�x d� jj

=

Z

1

0

jj (F

x

(x+ ��x)� F

x

(x))�xjj d�: (4.26)

Aording to the mean value theorem, we have for eah omponent of a ontinuously

di�erentiable Jaobian F

x

{ twie ontinuously di�erentiable F {

F

x;ij

(x + ��x)� F

x;ij

(x)

jj� ��xjj

=

dF

x;ij

d�

(x+ �

ij

��x) for some � 2 [0; 1℄: (4.27)

The right hand side is bounded by some onstant !

i;j

with a maximum value over all

omponents of the Jaobian

!

i;j

� !: (4.28)
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Therefore,

jj (F

x

(x + ��x)� F

x

(x)) jj

�jj�xjj

� ~! <1 (4.29)

or

jj (F

x

(x+ ��x)� F

x

(x)) jj jj�xjj � ~! �jj�xjj

2

: (4.30)

With this, we an estimate

(4:26) �

Z

1

0

jj (F

x

(x + ��x)� F

x

(x)) jj jj�xjjd�

�

Z

1

0

~!�jj�xjj

2

d�

=

1

2

~!jj�xjj

2

: (4.31)

Choosing the onstant b =

~!

2

, this ompletes the proof of statement (4.25).

The monodromy matrix C(t; t + T ) is equal to the Jaobian F

x

(x

p

) = F (x

p

; T ) of a

periodi solution x

p

). It is omputed by a matrix multipliation from the transfer matries

C(t

j�1

; t

j

) of the individual phases j and 'update matries' desribing the derivatives

�x

+

j

�x

�

j

= I +

�J

j

�x

�

j

=: U(t

j

) (4.32)

at a disontinuous point. See setion 6.4 for details about the omputation of monodromy

matries. Formulas for the omputation of derivatives of the monodromy matrix, the

existene of whih has been shown above, are given in setion 6.6. Matries U(t

j

) are

regular if phases j � 1 and j of the gait have the same degrees of freedom, and singular

otherwise. Monodromy matries C(t

j�1

; t

j

) of all phases are regular.

From (4.25) we an onlude that

jjF (x

p

+�x)� F (x

p

)jj � jjC(t; t+ T )�xjj+ bjj�xjj

2

(4.33)

� jjC(t; t+ T )jj jj�xjj+ bjj�xjj

2

: (4.34)

If j�

i

j < 1 for all eigenvalues of C, then the norm jj�jj an be hosen suh that C(t; t+T ) �

� < 1 (ompare theorem 5.2). Perturbations therefore deay in this norm, and the periodi

solution is asymptotially stable.

It remains to be shown for the ase of pieewise ontinuous but overall disontinuous

solutions that the eigenvalues of the monodromy matrix C(t; t + T ) do not depend on

the starting time t of the period. This is equivalent with showing that for general square

matries A;B 2 R

n�n

�

i

(AB) = �

i

(BA) i = 1; :::; n: (4.35)

For regular matries this follows from similarity transformations. The proof for general

square matries is given in Wilkinson [101℄. It even an be shown for nonsquare matries

A 2 R

n�m

and B 2 R

m�n

that AB and BA have the same eigenvalues exept that the
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produt whih is of higher order has jn � mj additional zero eigenvalues. From this we

an onlude that the eigenvalues remain unhanged even if the phases are desribed by

di�erent numbers of equations.

4.6 Some Words about Lyapunov's Seond Method

More famous than the above desribed �rst method of Lyapunov is his seond or diret

method whih is of great use in analytial dynamis. We briey introdue this method

as it simply an not be omitted in a hapter disussing the stability of motion and then

explain why we an not use this method for our intentions.

It is assumed that x � 0 is a solution of the nonlinear di�erential equation (4.9), i. e.

0 = f(t; 0) (4.36)

In ontrast to the method desribed in the previous setions, Lyapunov's seond method

does not rely on a study of the linear parts of the equation.

Instead, the method demands the onstrution of a so alled Lyapunov funtion.

The idea behind that is that, aording to Lagrange's theorem, the potential energy of

a physial system is minimal at a stable equilibrium point and maximal at an unstable

equilibrium. The Lyapunov funtion V (t; x) represents a generalization of the potential

energy funtion.

It has the domain D

v

= f(t; x)jt > t

1

; jxj < Ag and must exhibit the following properties:

� ontinuous �rst partial derivatives with respet to t and x

i

: V (t; x) 2 C

1

(D)

� V (t; 0) = 0 for t > t

1

� positive de�niteness: V (t; x) > 0 for x 6= 0

� negative de�niteness of derivative:

_

V (t; x) � 0.

The derivative

_

V (t; x) whih is the derivative of V (t; x) along the solution x(t) is de�ned

as

_

V (t; x(t)) =

n

X

i=1

�V

�x

i

_x

i

+

�V

�t

(4.37)

Aording to the seond method, the existene of suh a Lyapunov funtion proves the

stability of the trivial solution of the system. In detail, we an distinguish:

�

_

V (x) � 0 in D ! stability (in the sense of Lyapunov),
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�

_

V (x) < 0 in D ! asymptoti stability,

�

_

V (x) � ��V and V (x) � bjxj

�

in D with (�; �; b > 0) ! exponential stability.

The diÆulty of the appliation of this method to a physial system onsists in the

onstrution of an appropriate Lyapunov funtion. Suh funtions have only been found

for ertain lasses of systems, e.g. the total energy is a Lyapunov funtion for Hamiltonian

systems. There are no general rules for the onstrution of Lyapunov funtions suh that

the proess an not be automated. It is therefore not suited for the use in an optimization

environment whih has to be applied to very di�erent systems of diÆult disontinuous

type.





Chapter 5

Stability as Non-standard

Optimization Criterion

The stability riterion based on the maximum eigenvalue of a monodromy matrix has been

disussed extensively in the previous hapter. In this hapter now, it is outlined that using

this riterion as objetive funtion learly leads to a non-standard optimization problem.

Setion 5.1 desribes the various diÆulties of stability optimization in terms of eigenvalue

optimization of the monodromy matrix formulated as two-level or one-level optimization

problem. In setion 5.2 we disuss possible alternatives for the maximum eigenvalue

funtion to be used in stability optimization. The study of powers of the monodromy

matrix instead of the matrix itself is disussed in setion 5.3. In setion 5.4 we �nally

summarize the stability optimization riteria that we are using in our omputations.

Basi knowledge about eigenvalue problems is assumed in this hapter. Good referenes

for eigenvalue theory are the lassial textbook of Wilkinson [101℄, and, for the more

numerial point of view, the books of Trefethen & Bau [92℄ and of Demmel [24℄. Sine

the monodromy matrix is a real non-symmetri matrix, our onsiderations fous on that

ase, sometimes pointing out di�erenes to the simpler ase of a symmetri matrix.

5.1 DiÆulties of Stability Optimization in Terms of

Eigenvalue Optimization

As we have seen in the previous hapter, all real and omplex eigenvalues of the mon-

odromy matrix have to lie inside the unit irle for the system to be stable. This goal

an be ahieved by minimizing the largest eigenvalue by magnitude j�

max

j (whih is also

alled the spetral radius �) of the monodromy matrix C

min

x

j�

max

(C(x))j = min

x

j�(C(x))j (5.1)



60 Chapter 5. Stability as Non-standard Optimization Criterion

hoping that the minimum will have a spetral radius smaller than one. x is the vetor of all

free optimization variables to be spei�ed later. This objetive funtion is a onatenation

of two funtions �(C)ÆC(x): �rst, the matrix C is determined as a funtion of x, seondly,

the spetral � radius of the matrixC is determined. The �rst part of this objetive funtion

smooth but generally non-onvex, whereas the seond part is onvex but generally non-

smooth.

Stability optimization in terms of minimizing the spetral radius is a diÆult optimization

problem for several reasons. To struture our onsiderations, we split those diÆulties

into three di�erent groups to be treated independently in the following subsetions:

� diÆulties due to the minimization of the spetral radius of arbitrary matries, i.e.

the dependeny of � on C,

� diÆulties aused by the nature of the matrix itself, i.e. the dependeny of C on x,

� diÆulties aused by aspets of the optimization problem other than this objetive

funtion like onstraints imposed by the dynamis.

5.1.1 Minimizing the Maximum Eigenvalue of a Non-symmetri

Matrix

Eigenvalues of a matrix are the roots of its harateristi polynomial. For matrix dimen-

sions n larger than four no analyti solution is possible, so every eigenvalue solver must be

iterative. Typially, eigenvalue solvers for non-symmetri matrix need O(n

3

) operations

(see Trefethen & Bau [92℄). This indiates that funtions involving eigenvalues are not

omputationally heap, but as we will see later, the really expensive part in our ase lies

in the omputation of the matrix C itself.

Eigenvalues are ontinuous funtions of the matrix entries but they are non-di�erentiable

at points where they oalese. Two or more equal eigenvalues may not be the natural

ase for a physial system, but minimizing the maximum eigenvalue tends to make all

eigenvalues equal (at least as far as it is allowed by the onstraints).

Before we look at those points of multiple eigenvalue in more detail we need to introdue

some important fats about the relationship between non-symmetri matries and their

eigenvalues.

Assuming that we have a simple eigenvalue � of a non-symmetri matrix C, a perturbation

of C by ÆC leads to a perturbation of the eigenvalue by Æ�:

Æ� =

v

T

l

ÆCv

r

v

T

l

v

r

+O(jjÆCjj

2

) (5.2)

or, for the absolute value

jÆ�j �

jjÆCjj

jv

T

l

v

r

j

+O(jjÆCjj

2

) (5.3)
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where v

r

and v

l

are the right and left normalized eigenvetors assoiated with the eigen-

value �.

Proof: Subtrating

Cv

r

= �v

r

from the equation for the perturbed eigenvalue

(C + ÆC)(v

r

+ Æv

r

) = (�+ Æ�)(v

r

+ Æv

r

);

ignoring seond order terms and multiplying the result by v

T

l

from the left, leads to:

v

T

l

(C Æv

r

+ ÆC v

r

) = v

T

l

(Æ� v

r

+ � Æv

r

):

As v

T

l

C = v

T

l

�, this is redued to

v

T

l

ÆC v

r

= v

T

l

Æ� v

r

and hene

Æ� =

v

T

l

ÆC v

r

v

T

l

v

r

:

The ondition number ond of the eigenvalue is

ond(�) = jv

T

l

v

r

j

�1

; (5.4)

whih is the seans of the angle between left and right eigenvetor.

The derivative of a simple eigenvalue with respet to the matrix entries is omputed in

analogy to equation (5.2)

d�

dC

=

�

d�

d

ij

�

=

v

l

v

T

r

v

T

l

v

r

(5.5)

Remark:

Note that for a symmetri matrix where left and right eigenvetors are equal v := v

l

= v

r

with jvj = 1, things would be muh simpler. An eigenvalue perturbation is omputed by

Æ� =

v

T

ÆCv

v

T

v

+O(jjÆCjj

2

) = v

T

ÆCv +O(jjÆCjj

2

) (5.6)

and

jÆ�j � jjÆCjj+O(jjÆCjj

2

); (5.7)

and the ondition number of eigenvalues of symmetri matries is always one. The deriva-

tive of simple eigenvalues with respet to matrix entries in this ase beomes

d�

dC

= vv

T

: (5.8)

Now we an resume the study of the points with multiple maximum eigenvalue (by mag-

nitude) with multipliity m for whih three di�erent types exist. We list the properties

of all types and their onsequenes for possible numerial algorithms.
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Figure 5.1: Three di�erent types of multiple maximum eigenvalue modulus at x=0 for one-

dimensional dependeny: a) distint eigenvalues, but same magnitude, b) non-defetive multiple

eigenvalue ) defetive multiple eigenvalue

a) Eigenvalues are distint, but have the same magnitude:

In this ase all individual eigenvalues are di�erentiable, and the derivatives an be

omputed aording to formula (5.5). This is also true for the two eigenvalues of a

onjugate omplex ouple. The spetral radius is simply the pointwise maximum of

several di�erentiable funtions. Figure 5.1a shows an example of this type:

A

a

=

�

1 + x 1

0 �1 + x

�

Treatment with standard min-max tehniques is possible (see e.g. Gill et al. [32℄).

The original problem

min

x

�

max

f

i

(f

1

(x); :::::; f

m

(x))

�

(5.9)

is reformulated by introduing a new variable y

min

x;y

y (5.10)

s:t: f

i

(x) � y i = 1; :::; n: (5.11)

If several f

i

attain the maximum then simply more than one of the inequality on-

straints beome ative. This resulting problem an be solved by standard methods

for onstrained nonlinear optimization problems.

b) Maximum eigenvalue is multiple, but non-defetive:

Geometri and algebrai multipliity of the eigenvalue are the same, and the orre-

sponding eigenvetor spae has full dimension. However, the individual eigenvetors

that span the spae are not uniquely de�ned. The matrix is still diagonalizable (as-

suming, of ourse, that there is no other set of multiple eigenvalues ausing trouble).

As an example for this type, matrix

A

b

=

0

�

5� x 0 0

0 5 + 0:3x 1

0 0 2

1

A
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is shown in �gure 5.1b. The individual eigenvalues are non-di�erentiable at the

points of multiple eigenvalue due to the non-uniqueness of eigenvetors, but they

have a �nite ondition number and are Lipshitz ontinuous.

As the eigenvalues are always well-onditioned and di�erentiable in the neighbor-

hood of the points of multiple eigenvalue, and as this point only forms a singularity

in an otherwise ontinuously di�erentiable manifold, the derivative at this point an

be 'reonstruted' by applying a small perturbation to the matrix and omputing

the derivative at this perturbed point.

) Maximum eigenvalue is multiple and defetive:

Algebrai multipliity m of maximum eigenvalue exeeds its geometri multipliity

m

g

, suh that the eigenvetor spae does not have full dimension. The matrix is

non-diagonalizable, and the respetive Jordan form would havem

g

bloks ontaining

the defetive multiple eigenvalues. An example for this type,

A



=

�

x 1

�x x

�

is shown in �gure 5.1. This type only exists for non-symmetri matries, as sym-

metri ones are always diagonalizable.

The right and left eigenvetors of a Jordan blok of dimension m are e

1

and e

m

and thus perpendiular, suh that the ondition number is always in�nite at those

points (ompare equation (5.4)). In�nite ondition number does not mean that

multiple eigenvalues annot be omputed with any auray at all. Instead, one an

expet to orretly ompute 1=m of the mahine preision digits for an eigenvalue

with multipliity m and a matrix given with mahine preision (Demmel [24℄). But

in�nite ondition number or perpendiular left and right eigenvetors also ause the

derivative of the eigenvalues to be in�nite (equation (5.5), i.e. the eigenvalues are

not even Lipshitz at the points of multiple eigenvalue. Typially some bifuration

ours at this point; for the example shown in �gure 5.1 two distint real eigenvalues

for x < 0 'join' to a onjugate omplex ouple for x > 0.

The eigenvalues are also ill-onditioned in the neighborhood as the eigenvetors

ontinuously approah perpendiularity.

Due to the properties stated above any gradient based algorithm would enounter

diÆulties not only in the singular points themselves but also in their neighborhood.

We have to expet that it would not be possible to ompute meaningful derivatives

in a region about these points.

Figure 5.2 visualizes the spetral radius manifold for a simple 2-dimensional matrix de-

pending on two variables. It shows several loal minima all lying at points with multiple

eigenvalue, most of them of type ). This gives a little hint about the diÆulties that an

arise for matries whih are not that simple any more.

In setion 6.1.2 we will give an overview of existing algorithms in the literature for simple

ases of eigenvalue optimization for analyti matries.



64 Chapter 5. Stability as Non-standard Optimization Criterion

Figure 5.2: Absolute value of maximum eigenvalue of matrix ((x

1

; x

0

); (2x

1

; 1))

5.1.2 Computation of the Monodromy Matrix

The monodromy matrix of a periodi trajetory is obviously not a simple analyti funtion

of the variables x. It ontains the derivatives of the trajetory end values with respet to

initial values. This makes the objetive funtion less aurate than an analyti funtion

and omputationally very expensive sine for every funtion evaluation a omplete periodi

trajetory plus the derivatives have to be omputed. Additionally, sine the objetive

funtion already ontains �rst order derivatives of the trajetory in terms of the matrix C,

its gradients would even need seond derivatives in terms of

dC

dx

0

and

dC

dp

. Those gradients

are even more expensive to ompute, and it should be kept in mind that they do not

neessarily satisfy the auray demands of some algorithms. The monodromy matrix

typially is a non-onvex 'funtion' of the independent variables.

5.1.3 Constraints of Stability Optimization

Stability optimization represents not only an eigenvalue optimization problem with a

matrix diÆult to ompute as demonstrated in the two previous setions. Di�erential

equations, periodiity and swithing funtions et. also enter as onstraints to eigenvalue

optimization.

Two-level Formulation

When treated as two-level optimization problem as we do in this thesis, the outer loop

stability optimization is formulated as an unonstrained problem. But every funtion

evaluation in the outer loop inludes a determination of a periodi gait for the given set

of parameters by the methods desribed in hapter 3. This auses funtion evaluations

of the outer loop to be very expensive and potential gradient omputations to be rather

diÆult.
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The full problem formulation in this ase ontains a non-standard parameter optimization

problem in the outer loop and a standard optimal ontrol problem in the inner loop:

min

p

j�

max

(C

x

)j (5.12)

with C

x

being the monodromy matrix of the solution of

min

x;u;T

Z

T

0

�(x(t); u(t); p) dt + �(T; x(T ); p) (5.13)

s. t. _x(t) = f

j

(t; x(t); u(t); p) for t 2 [�

j�1

; �

j

℄;

j = 1; :::; n

ph

; �

0

= 0; �

n

ph

= T (5.14)

g

j

(t; x(t); u(t); p) � 0 for t 2 [�

j�1

; �

j

℄ (5.15)

x(�

+

j

) = h(x(�

�

j

)) for j = 1; :::; n

ph

(5.16)

r

eq

(x(0); ::; x(T ); p) = 0 (5.17)

r

ineq

(x(0); ::; x(T ); p) � 0: (5.18)

Its solution requires methods for non-standard, non-di�erentiable parameter optimization.

One-level Formulation

In a one-level formulation the system's dynamis as well as all other onstraints imposed

for periodi gait generation beome onstraints of stability optimization to be satis�ed

simultaneously. This leads to the formulation of a non-standard optimal ontrol problem:

min

x;u;p;T

j�

max

(C

x

)j (5.19)

s. t. _x(t) = f

j

(t; x(t); u(t); p) for t 2 [�

j�1

; �

j

℄;

j = 1; :::; n

ph

; �

0

= 0; �

n

ph

= T (5.20)

x(�

+

j

) = h(x(�

�

j

)) for j = 1; :::; n

ph

(5.21)

g

j

(t; x(t); u(t); p) � 0 for t 2 [�

j�1

; �

j

℄ (5.22)

r

eq

(x(0); ::; x(T ); p) = 0 (5.23)

r

ineq

(x(0); ::; x(T ); p) � 0: (5.24)

In ontrast to the problems treated in hapter 3, its objetive funtion is not of Mayer or

Lagrange type and annot be transformed into one of those. There is no way to express

the spetral radius of the overall monodromy matrix as a sum of funtions depending only

on loal variables of the respetive multiple shooting interval. This problem asks therefore

for speial solution methods for non-standard optimal ontrol problems that an not rely

on the same assumptions of struture as the methods desribed in hapter 3.
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5.2 Alternative Objetive Funtions for Stability Op-

timization

The purpose of this setion is to study alternatives that ould help to make stability opti-

mization a problem easier to solve. The approahes presented here all aim at replaing the

minimization of the maximum eigenvalue modulus by some other optimization riterion

to avoid the diÆulties detailed in setion 5.1.1.

5.2.1 Shortomings of Obvious Ideas

We briey desribe some simple but misleading approahes that have been proposed

to avoid the diÆulties of eigenvalue optimization and give reasons why they are not

appliable.

The �rst idea is to treat min-max eigenvalue problems by standard min-max problem

reformulation into a nonlinear optimization problem. But let us reall from setion 5.1.1,

that exept for points of multiple maximum eigenvalue of type a) the individual eigenval-

ues beome non-di�erentiable at those points. The typial ill-onditioning in the region of

a point of type ) and in�nite derivatives also may not be handled by standard nonlinear

programming methods. Another problem is that the di�erent eigenvalues of a matrix an-

not be labeled in the sense that orresponding eigenvalues at di�erent iterates annot be

uniquely identi�ed. So it would be impossible to always assoiate one onstraint with 'the

same' eigenvalue, and a swithing of eigenvalues between onstraints might take plae.

The same problems (loal non-di�erentiability, ill-onditioning and swithing of eigenval-

ues) would be enountered if instead of using an objetive funtion based on the maximum

eigenvalue one hose to impose onstraints on all eigenvalues

j�

i

j < 1� Æ i = 1; :::; n (5.25)

with some Æ > 0, e.g. Æ = 0:1.

Another idea is to use an auxiliary objetive funtion that takes all eigenvalues into

aount and punishes eigenvalues outside the unit irle, e.g.:

min f =

X

i

f

i

(�

i

) with f

i

(�

i

) = artan(10(j�

i

j � 1)) (5.26)

Again, this does not solve most of the problems listed in setion like non-di�erentiability

and ill-onditioning.

5.2.2 Equivalene of Norms & the Theorem of Hirsh

In order to overome these mathematial diÆulties a far better idea is to look for some

well-behaving funtion that does not diretly depend on the eigenvalues but is known to
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be an upper bound to the spetral radius. Thus one ould expet to redue the maximum

eigenvalue by minimizing this funtion. The so alled indued matrix norms (see e.g.

Stoer [85℄ or Trefethen & Bau [92℄) have the property of being an upper bound to the

spetral radius as detailed below.

Indued matrix norms are always derived from orresponding vetor norms. They desribe

the e�et of a matrix C 2 C

n

1

�n

2

as an operator between domain spae of dimension n

2

and range spae of dimension n

1

. We will onentrate on real, square matries C 2

R

n�n

. The indued matrix norm jjCjj is de�ned as the largest fator by whih a vetor is

\multiplied" by the matrix C:

jjCjj = max

x6=0

jjCxjj

jjxjj

: (5.27)

In this sense the maximum norm of a matrix C with entries 

ij

beomes the maximum

row sum:

jjCjj

1

= max

x6=0

jjCxjj

1

jjxjj

1

= max

x6=0

max

i

j

P

n

j=1



ij

x

j

j

max

j

jx

j

j

= max

i

n

X

j=1

j

ij

j; (5.28)

the 1-norm is the maximum olumn sum:

jjCjj

1

= max

x6=0

jjCxjj

1

jjxjj

1

= max

x6=0

P

n

i=1

(

P

n

j=1



ij

x

j

)

P

n

j=1

jx

j

j

= max

j

n

X

i=1

j

ij

j; (5.29)

and the Eulidean norm equals to the largest singular value of C

jjCjj

2

= max

x6=0

jjCxjj

2

jjxjj

2

= max

x6=0

p

x

T

C

T

Cx

p

x

T

x

=

p

�

max

(C

T

C)

= �

max

(C): (5.30)

Based on these de�nitions of indued matrix norms we now an state the following theo-

rems (Stoer & Bulirsh [86℄):

Theorem 5.1 (Theorem of Hirsh)

All eigenvalues � of any given matrix C satisfy:

j�j � jjCjj (5.31)

In other words: any indued norm of the matrix C is an upper bound to the spetral

radius

j�j � jjCjj: (5.32)

Theorem 5.2

1. For eah matrix C and eah � there is a vetor norm jj � jj and a orresponding matrix

norm for whih

jjCjj � �(C) + �: (5.33)
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2. If the maximum eigenvalue � with j�j = � is non-defetive, then there even is an

indued matrix norm for whih

jjCjj = �(C): (5.34)

Hene the spetral radius of a matrix being the in�mum of all indued matrix norms

is equivalent to or at least very lose to some indued matrix norm, but in general this

spei� norm is neither physially nor mathematially relevant.

As it will be disussed in the following setions all three indued matrix norms presented

above (1-, 2-, and 1-norm) are better behaving funtions than the spetral radius.

Let us reall an important property of norms in R

n

: in �nite-dimensional vetor spae,

all norms are equivalent in the sense that if jj � jj

q

1

and jj � jj

q

2

are two norms on the same

spae, then there exist positive onstants 

1

and 

2

suh that for all x in that spae



1

jjxjj

q

1

� jjxjj

q

2

� 

2

jjxjj

q

1

: (5.35)

From that and the above theorems it follows that the maximum eigenvalue and some

indued matrix norm are onneted by some �nite fator, but of ourse the norm an be

larger than one even though the maximum eigenvalue modulus is smaller than one.

Studying a physially meaningful matrix norm instead of the maximum eigenvalue also

makes sense from a physial point of view. Aording to theory, a spetral radius smaller

than one is enough to guarantee stability. But stritly speaking, it only says that pertur-

bations are eliminated for t!1, and they an very well be ampli�ed in the meantime.

As asymptoti stability implies stability, perturbations are bounded but in some ases the

bound an be quite large. On the other hand, if one of the above matrix norms is smaller

than one, there would be a ontration of perturbations in terms of the hosen norm over

eah yle.

To sum up the ideas of this setion: two di�erent goals an be pursued by minimizing

some 'physial' indued matrix norm:

� Redue this norm below one to have a ontration of perturbations in terms of this

norm. One should be aware that this is a very strit riterion and that it will be

hard to reah this goal for many physial systems. In setion 5.3 we will disuss a

way to soften this riterion.

� Redue this norm not neessarily as far as one, but use this upper bound only to

provoke an overall derease of the maximum eigenvalue. Reduing an upper bound

does of ourse not mean that in every step the spetral radius itself will also be

dereased { the ontrary an be the ase. One should arefully observe the value

of the spetral radius in every iterate beause it might attain its best value (of all

iterates) before onvergene to the minimum of the hosen norm is ahieved.

Remark:

In ontrast to eigenvalues, general indued matrix norms do depend on the starting point
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of the periodi sample, i. e. they are not the same for di�erent intervals [t

0

; t

0

+ T ℄ and

[t

1

; t

1

+ T ℄ with t

0

6= t

1

.

5.2.3 Singular Value Optimization

As we have seen above (equation (5.30)) the maximum singular value of a matrix is equal

to its Eulidean norm and therefore an upper bound to the spetral radius.

By de�nition, the singular values �

i

of a real matrixC are the eigenvalues of the symmetri,

positive semi-de�nite matrix H

�

i

(C) =

p

�

i

(C

T

C) =

p

�

i

(H); (5.36)

i.e. they are always real and positive. In the mapping of the unit sphere into a hyperellipse

by means of the matrix C the singular values of C desribe the lengths of the semi-axes

(Trefethen & Bau [92℄).

So hoosing the maximum singular value instead of the maximum eigenvalue as optimiza-

tion riterion for stability optimization

min�

max

(C(x)) (5.37)

has the following onsequenes:

� the objetive funtion is still non-di�erentiable at points with multiple maximum

eigenvalue, but

� non-di�erentiabilities have beome less numerous and far less serious. Being eigen-

values of of a symmetri matrix, singular values are always well onditioned and

Lipshitz. As all singular values are positive, no absolute values have to be taken.

In ontrast to eigenvalue optimization we are now only faing points of type b), i.e.

the non-di�erentiability is limited to isolated points.

To summarize, singular value optimization is a onsiderably easier problem than eigen-

value optimization. Among all matrix norms, the Eulidean norm has the advantage of

being the most meaningful from an engineering point of view.

5.2.4 Optimization of 1-norm or 1-norm

The indued 1-norm and1-norm of a matrix are its maximum olumn sum and maximum

row sum, respetively (equations (5.29) and (5.28)). The use of one of these two norms as

objetive funtion for stability optimization has the advantage to allow a transformation

into a standard nonlinear programming problem. We will show here the transformation

for the example of the 1-norm, the proeeding for the 1-norm is analogous.
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The original unonstrained non-di�erentiable min-max optimization problem

min jjCjj

1

= min

�

max

j=1;:::;n

jj

j

jj

1

�

= min

 

max

j=1;:::;n

 

n

X

i=1

j

ij

j

!!

(5.38)

(where 

j

is the j-th olumn vetor) an be reformulated as as di�erentiable onstrained

optimization problem

min z (5.39)

s:t:� y

ij

� 

ij

� y

ij

8i = 1; :::; n; j = 1; :::; n (5.40)

z �

X

i

y

ij

8j = 1; :::; n (5.41)

using the auxiliary variables z and y

ij

with i = 1; :::; n; j = 1; :::; n.

The transformation was performed at the ost of n

2

+ 1 additional variables and 2n

2

+ n

additional equations. The resulting problem (5.39) - (5.41) is a quite large but simple and

strutured standard nonlinear programming problem.

The advantage of using one of these two norms in stability optimization is that standard

nonlinear programming methods an be used for the solution. Due to the sparsity of the

problem it would however be favorable to develop faster speial purpose algorithms that

exploit the struture.

5.3 Study of Matrix Powers

While in the previous setion we have only looked at possible replaements for the spetral

radius, we here want to question the use of the monodromy matrix C itself. As it turns

out, sometimes it might be favorable to look at powers of C instead.

In the previous setion we have disussed that demanding a ontration of the 1-, 2-,

or 1-norm over one yle is a very strit riterion. A softening of this demand an be

ahieved by only asking for a ontration of the norm over a number p of yles with

p > 1.

For p ! 1 there is equivalene between a ontration { or even disappearane, to be

exat { of the norm of C

p

and the spetral radius of C being smaller than one, as stated

in the following theorem:

Theorem 5.3

For an arbitrary matrix C 2 R

n�n

and a norm jj � jj holds:

lim

p!1

jjC

p

jj = 0, �(C) < 1 (5.42)

Note that the same statement an be made for omplex matries.



5.3. Study of Matrix Powers 71

Proof:

Diretion (() an be proven diretly. Aording to theorem 5.2, there is a norm jj � jj

�

with small � suh that

jjCjj

�

= �(C) + � =: � < 1:

Sine for any indued matrix norm jjABjj � jjAjj jjBjj,

jjC

p

jj

�

� jjCjj

p

�

= �

p

:

Due to the equivalene of norms (5.35) follows for any other norm jj � jj

jjC

p

jj � 

1

jjC

p

jj

�

= 

1

�

p

whih tends to zero for p!1.

For the other diretion ()) we need to take two steps. In a �rst step we show that

lim

p!1

jjC

p

jj = 0) lim

p!1

(�(C

p

)) = 0

whih follows diretly from the theorem of Hirsh: the spetral radius of C

p

is zero if its

upper bound in terms of some indued matrix norm is zero.

In a seond step we show the following equivalene (although showing ()) would be

suÆient for the proof):

lim

p!1

(�(C

p

)) = 0, �(C) < 1:

Every square matrix C has a Shur fatorization:

C = Q � T �Q

T

where Q is orthogonal (i.e. Q

T

Q = I) and T is upper triangular. The eigenvalues of

C always appear as diagonal elements d

i

of T beause C and T are similar and the

eigenvalues of triangular matries are the diagonal elements:

DetjT � �Ij = 0) �

n

i=0

(d

i

� �) = 0

for all � of T and C respetively and therefore

d

i

= �

i

i = 1; :::; n

With equation (5.3) follows

C

p

= (Q � T �Q

T

)

p

= Q � T �Q

T

�Q � T �Q

T

� ::: �Q � T �Q

T

= Q � T

p

�Q

T

T

p

is again upper-triangular and has diagonal elements { and therefore eigenvalues {

d

p

i

= �

p

i

. Due to the similarity with T

p

, C

p

also has eigenvalues �

p

i

, i.e.

�(C

p

) = �

p

(C) (5.43)
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(Note that in the speial ase of diagonalizable { i.e. non-defetive { matries, the same

property follows more easily:

C

p

= (X�X

�1

)

p

= X � �

p

�X

�1

:)

Sine

lim

p!1

(�

p

(C)) = 0, �(C) < 1:

this ompletes the seond part of the proof.

Note however, that indued matrix norms do not exhibit a property similar to (5.43)

onerning their powers:

jjCjj

p

6= jjC

p

jj (5.44)

suh that spei�ally for the maximum singular value

�

max

(C

p

) 6= �

p

max

(C): (5.45)

This results from the fat that singular values or indued matrix norms in general are not

derived from a similarity transformation suh as eigenvalues, and therefore transformation

matries are not eliminated when taking the power of a matrix.

In hapters 7 { 9 we show several plots of matrix norms as funtions of matrix powers

on�rming this statement.

One has to be aware, that if the spetral radius of the monodromy matrix is larger than

one, the spetral radius and indued matrix norms for inreasing powers of the matrix

will be highly divergent.

To sum up, studying powers of a matrix an be a good alternative to studying the matrix

itself. From the theoretial point of view it does not make a di�erene whih spei� norm

(inluding the spetral radius) is hosen as optimization riterion as long as the matrix

power is high enough. What is a good hoie for the power p in a pratial ase needs to

be heuristially determined.

5.4 Summary: Objetive Funtions for Stability Op-

timization

We �nally summarize possible objetive funtions for stability optimization that will be

evaluated and ompared in this study:

� the original eigenvalue riterion:

f

1

= j�

max

(C)j = �(C) (5.46)
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� indued matrix norms of the monodromy matrix:

f

2a

= �

max

(C) = jjCjj

2

(5.47)

f

2b

= jjCjj

1

(5.48)

� indued matrix norms of a power of the monodromy matrix:

f

3a

= �

max

(C

p

) = jjC

p

jj

2

(5.49)

f

3b

= jjC

p

jj

1

(5.50)

The advantages of one hoie of norm over the other as well as a good hoie of the matrix

power will also be investigated.





Chapter 6

Numerial Methods for Stability

Optimization

This hapter ontains a olletion of useful methods for stability optimization problems as

formulated in setion 5.1.3. Sine not all these methods were neessary to �nd solutions for

the appliation of robot stabilization, some (like the derivatives of singular values) have

so far only been implemented as library modules. The evaluation of di�erent possible

methods for stability optimization was possible in the framework of an objet-oriented

optimization library that we developed during the researh for this thesis (see appendix).

We briey review literature about general non-smooth optimization and eigenvalue opti-

mization in setion 6.1. Setion 6.2 desribes the spei� diret searh method, a variant

of the Nelder-Mead polytope algorithm, that we have implemented and used for stability

optimization of all our robot examples. In setion 6.3 we give apparently new formulas for

the omputations of derivatives of simple and multiple singular values. Setion 6.4 realls

the omputation of the monodromy matrix in the presene of disontinuities. The nees-

sary projetions for monodromy matries of autonomous systems are desribed in setion

6.5. In setion 6.6 we present, for the �rst time, formulas for the derivatives of mon-

odromy matries for disontinuous dynami equations with respet to initial values and

parameters. They represent seond order derivatives of the di�erential equations. Setion

6.7 �nally ontains a numerial proedure for the determination of nonlinear stability

margins.

6.1 Review of Literature

6.1.1 Non-di�erentiable Optimization

All smooth optimization methods are diretly or indiretly based on a Taylor series ap-

proximation of the objetive funtion and require at least ontinuous di�erentiability of
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x

f(x)

f(x) = |x|

δ f = [-1, 1]

Figure 6.1: Subgradients at x = 0 for the example funtion jxj

this funtion. In the ase of a non-di�erentiable objetive funtions like the analyzed

ase of eigenvalue optimization or non-di�erentiabilities introdued by the method, like a

non-smooth penalty funtion, smooth optimization methods an not be applied in gen-

eral. We summarize in this setion some important theoretial bakground information

about non-di�erentiable optimization. More details an be found in Clarke [16℄ or in the

respetive hapters in Gro�mann & Terno [36℄ and Flether [28℄.

In the ase of non-di�erentiable funtions, substitutes for the derivative are required. For

onvex funtions, the subdi�erential is de�ned as

�f

s

(x) = fs 2 R

n

: f(y) � f(x) + s

T

(y � x) 8 y 2 R

n

g (6.1)

If f attains only �nite values, �f

s

is a nonempty, ompat onvex set. The elements of �f

s

are alled the subgradients. Figure 6.1 shows the subdi�erential for the example funtion

jxj.

The generalized gradient of Clarke [16℄ is de�ned for a more general lass of funtions.

Here only Lipshitz ontinuity of f is required. Then the generalized diretional derivative

of f , evaluated in the diretion d is given by

d f(x; d) = lim

y!x; h!0+

sup

1

h

(f(y + dh)� f(y)) : (6.2)

The generalized gradient is de�ned as

�f(x) = f� 2 R

n

: df(x; d) � d � � 8 d 2 R

n

g: (6.3)

The �rst order neessary optimality ondition for for non-smooth optimization problems

is

0 2 �f(x

�

) (6.4)
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whih is a generalization of rf(x

�

) = 0 for smooth optimization problems.

For general non-smooth optimization problems speial optimization tehniques are re-

quired. The gradient-based algorithms an be divided into three basi types:

� Subgradient methods:

They form the equivalent of the steepest desent method for smooth nonlinear op-

timization. The iterates are omputed as

x

k+1

= x

k

+ �

k

d

k

(6.5)

with

d

k

=

�s

k

jjs

k

jj

for some s

k

2 �f(x

k

); (6.6)

It is not advisable to determine the steplength �

k

by a line searh, as ases of

onvergene towards a non-optimal point an simply be onstruted (Flether [28℄).

Instead, a priori �xed steplengths �

k

satisfying the onditions

1

X

k=0

�

k

= 1 (6.7)

1

X

k=0

�

2

k

< 1 (6.8)

should be used. In this ase, (very slow) onvergene an be guaranteed, but there

is of ourse no assured improvement in every step.

� Bundle methods:

The idea of bundle methods is similar to that of onjugate gradient methods for

nonlinear optimization. The diretion of searh is determined by bundled subgra-

dient or generalized gradient information of the urrent iterate and previous ones.

In the simplest form of the algorithm, the initial bundle is set to s

(0)

2 �f(x

(0)

, and

subgradients s

(k)

2 �f(x

(k)

are added in suessive iterations. A reset of the bundle

is performed from time to time. For some hoies of the bundle onvergene of the

algorithm an be proven.

� Parameterized embedding in smooth problems:

The non-smooth objetive funtion is substituted by a parameterized smooth ob-

jetive funtion that degenerates to the original non-smooth funtion in the limit

ase � ! 0. In analogy to penalty funtion tehniques, a whole family of auxiliary

problems with di�erent parameter values � is generated and solved. Appropriate

ontrol of the parameter � is required.

Non-smooth optimization literature (e.g. Flether [28℄) very often fouses on the speial

ase of omposite non-smooth optimization problems

f(x) = h((x)) (6.9)
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where h() is onvex, but non-smooth and (x) is a vetor of smooth funtions. For this

ase, more methods, like e.g. a non-smooth extension of the SQP method have been

developed. However, min-max eigenvalue optimization does not belong to this type of

problems.

Sine the maximum eigenvalue of a non-symmetri matrix is neither di�erentiable nor

Lipshitz (see setion 5.1.1), both the theory of subgradients and Clarke's theory of gen-

eralized gradients are not appliable in this ase.

A very interesting alternative for general non-smooth problems are diret searh methods

whih, in ontrast to the methods disussed above, do not require any gradient-like infor-

mation. Sine we have hosen to use an algorithm of this type for stability optimization,

these methods are treated more extensively in setion 6.2.

6.1.2 Existing Methods for Simpler Cases of Eigenvalue Opti-

mization

The purpose of this setion is to refer to some important literature in the �eld of eigenvalue

optimization. Most artiles we have found onentrate on the ase of symmetri aÆne

matrix funtions A(x) whih has the advantage of leading to onvex objetive funtions

j�

max

(x)j The de�nition of a subdi�erential is possible in this ase.

There is a series of publiations by Overton. A quadratially onvergent algorithm for

symmetri aÆne matries was proposed in Overton [68℄ and extended to large sale ma-

tries in Overton [69℄. Shapiro & Fan [83℄ and Overton & Womersley [71℄ give the orre-

sponding seond order onvergene analysis. Goh & Teo [33℄ have attempted a solution

of eigenvalue optimization problems by min-max reformulation of eigenvalue optimization

and appliation of standard algorithms, but other soures (see e.g. Panier [72℄) give ex-

amples for a failure of this approah. Eigenvalue optimization problems for symmetri

matries an be transformed into semide�nite programming problems whih have reently

reeived a lot of attention. There is extensive literature on this subjet (see e.g. Alizadeh

et al. [2℄ for primal-dual interior point methods and Helmberg & Rendl [39℄ for spetral

bundle methods).

The only publiation about eigenvalue optimization for non-symmetri matries that we

are aware of is Overton & Womersley [70℄. For aÆne matrix funtions they derive �rst

order optimality onditions and formulas for the diretion of desent in the ase of non-

defetive multiple eigenvalues. The defetive ase is only briey disussed. The results of

this paper do not apply to ases with nonlinear matrix funtions or appliations involving

onstraints.

We an summarize that to our knowledge the spei� form of eigenvalue optimization

problem that we are faing in our study is not addressed in eigenvalue optimization

literature.
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6.2 A Diret Searh Method for Eigenvalue Opti-

mization

Diret searh methods are optimization methods that solely use funtion information

and do neither ompute nor expliitely approximate derivatives. While derivative-based

methods are extremely eÆient for many types of problems they reah their limitations if

objetive funtion are non-smooth by nature or their values an only inaurately be de-

termined, or when sensitivity information is not available or at least not reliable. Standard

optimization literature (Gill et al. [32℄) reommends diret searh methods as methods

of hoie for non-di�erentiable optimization.

For the solution of the two-level stability optimization problem a diret searh method

has proven to be a good hoie. We use a modi�ation of the diret searh method of

Nelder & Mead, also known as polytope algorithm. We have used this algorithm not

only for eigenvalue optimization but also for minimization of the other riteria listed in

setion 5.4 sine we did not want to blur the omparison of di�erent objetive funtions

by algorithmi inuene.

In setion 6.2.1 the original algorithm (Nelder & Mead [66℄, Gill et al. [32℄) is pre-

sented. Setion 6.2.2 desribes the modi�ations we have introdued in order to make

the algorithm suitable for stability optimization. We onlude with a short disussion

of onvergene properties of the Nelder-Mead algorithm and related methods in setion

6.2.3. Sine we apply the algorithm for parameter optimization, we all the vetor of

independent variables p throughout this setion.

6.2.1 Original Polytope Algorithm

The Nelder-Mead algorithm dating from 1965 is among the most famous optimization

methods ever reated and is still popular today. Nelder & Mead all the algorithm a

simplex method sine it is based on a sequene of (n+1)-vertex simplies for optimization

n-dimensional spae p 2 R

n

{ however, the method is not to be onfused with the even

older and more famous simplex method for linear programming by Dantzig. This simplex

{ or polytope { retains information about funtion values at n + 1 distint points and

thus obtains some sort of oarse grid sensitivity information. Always replaing its worst

point and adapting its shape to the topology the polytope wanders through the spae of

optimization variables towards a minimum.

The individual steps of one algorithm iteration are the following (also ompare �gure 6.2):

1. At the beginning of every iteration k, the funtion values f(p

i

) of all n+ 1 verties

are determined, and the verties are ordered and labeled p

1

; :::p

n+1

suh that

f(p

1

) � f(p

2

) � ::: � f(p

n+1

) (6.10)

Vertex p

1

therefore represents the best point of the funtion known so far. In
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p
1
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2

p   = p
3

p
r
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e

p
c,i

w

p
c,o

Figure 6.2: Basi onept of polytope algorithm

pratie, only the best, worst and seond-worst points have to be isolated, but the

above fully ordered form is nier for presentation.

2. The entroid of all verties but the worst is omputed

 =

n

X

i=1

p

i

(6.11)

The worst vertex p

w

= p

n+1

is reeted on this entroid

p

r

= + �(� p

n+1

) (6.12)

with a reetion oeÆient �, (0 < � < 1) . If the funtion value at this reeted

point f(p

r

) is

f(p

1

) � f(p

r

) < f(p

n

); (6.13)

i.e. neither the new best nor worst point, point p

r

replaes p

n+1

and the iteration

step terminates.

3. If

f(p

r

) < f(p

1

); (6.14)

the reetion has produed a new minimum and it might be worthwhile trying to

go further in this promising diretion. This motivates the expansion step

p

e

= + (p

r

� ) = p

r

+ (1� ) (6.15)

with expansion oeÆient , ( > 1). If f(p

e

) < f(p

r

), the expanded point is

aepted as new simplex point, otherwise p

r

is aepted. The iteration step is

terminated.
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4. If on the ontrary, after reetion

f(p

r

) > f(p

n

); (6.16)

i.e. the reeted point is still the worst point, a ontration of the polytope is

performed. Of the two points p

r

or p

n+1

the one with the better funtion value is

hosen as target for the ontration whih is aordingly alled outer ontration

p

;o

= + �(p

r

� ) = �p

r

+ (1� �) (6.17)

or inner ontration

p

;i

=  + �(p

n+1

� ) = �p

n+1

+ (1� �) (6.18)

with ontration oeÆient �, (� < 1). If f(p



) < f(p

a

) with p

a

= min(p

r

; p

n+1

),

the ontrated point is aepted as new simplex point and the step terminates.

5. For a failed ontration the full polytope is shrunk towards the best point, i.e. the

points p

2

; :::; p

n+1

are replaed by

x

0

i

= 0:5(p

i

+ p

1

) (6.19)

and a new iteration step starts.

The reetion, expansion and ontration oeÆients are heuristially hosen; a frequent

hoie is � = � = 0:5;  = 2.

The iteration terminates when the di�erene of funtion values of all simplex points in

terms of a 'standard error' falls below a hosen tolerane

v

u

u

t

n+1

X

i=1

(f(p

i

)� f()) < tol

t

: (6.20)

In order to inlude onstraints on the volume to be searhed, the authors propose to

use a modi�ed objetive funtion like the logarithm of the original funtion in order to

exlude negative values of variables. Linear equality onstraints an of ourse be handled

by expliit elimination of variables and redution of the simplex dimension.

6.2.2 Overview of Neessary Modi�ations for Stability Opti-

mization

For a better performane in the ontext of stability optimization we have applied a number

of modi�ations to the original algorithm.
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Multiple Expansions

Instead of a single expansion like in the original algorithm we allow multiple expansions

if the �rst expansion was suessful. In every step the expansion oeÆient  in equation

(6.15) is augmented (e.g. doubled) until there is no further improvement of the objetive

funtion. The maximum number of expansions an be spei�ed by the user (default

value = 5). In our examples onsiderable redutions of the objetive funtion have been

ahieved by these multiple expansion steps.

Modi�ed Contrations

We modi�ed the ontration proedure suh that the reeted point (outer ontration)

or the original worst point (inner ontration) is ontrated towards the best point instead

of the entroid. In equations (6.17) and (6.18)  is replaed by p

1

.

Modi�ed Shrinking

Sine we have observed that frequent polytope shrinking leads to premature onvergene

we instead allow multiple polytope ontrations before shrinking the polytope. The max-

imum number of ontrations an be modi�ed by the user (default value = 5).

Initial Polytope Saling

Di�erent orders of magnitude of the optimization variables are onsidered in the hoie

of the original polytope by an appropriate saling of the polytope side lengths. Starting

from one initial point p

1

provided by the user, the other n polytope points are reated by

saled steps in one variable diretion eah:

p

j

= p

1

+ l

0

� s

j�1

� e

j�1

; j = 2; :::; n+ 1 (6.21)

where l

o

denotes the unity side length, s

i

the saling fator, and e

i

the i-th unity vetor

in R

n

. Saling fators as well as unity side length an be spei�ed by the user.

Handling of Box Constraints

Box onstraints to the parameter spae are not handled by a modi�ation of the objetive

funtion but by a modi�ation of the algorithm itself.

The onstraints have to be onsidered during reetion, expansion, and initialization steps.

Figure 6.3 illustrates a modi�ed reetion step in the presene of box onstraints. If a

reeted point turns out to be outside the bounds it is set bak onto the bounds by the

algorithm. The same is done during polytope initialization. If the initial polytope risks to
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Figure 6.3: Handling of box onstraints with modi�ed polytope algorithm

degenerate due to multiple resets the user will be prompted to modify the initial polytope.

Diretions of variable spae in whih a reset had to be performed are exluded from the

expansion steps. This leads to a diretion of expansion di�erent from the diretion of

reetion. The neessity for a reset is heked after eah expansion step.

Due to the onvex nature of box onstraints no modi�ations have to be made to on-

tration and shrinking proedures and to the omputation of the entroid.

Termination Criterion

If the polytope algorithm is applied to eigenvalue optimization, ill-onditioning of the

objetive funtion may our. This is espeially true for the optimum were typially

the maximum eigenvalue is multiple. It is therefore sometimes favorable to inrease the

termination tolerane in the presene of large eigenvalue ondition numbers.

Restart Proedure

For a problem with multiple minima like stability optimization we wanted to redue the

danger of onverging to some loal minimum if there is another one of better funtion

value nearby. After onvergene we therefore perform a restart by generating a new

initial polytope keeping the optimum as one point of the new polytope. A minimum is

only aepted if onvergene to the same point has appeared twie. For our omputations

this restart proedure typially auses a onsiderably improved objetive funtion value

at �nal onvergene relative to the �rst onvergene point.
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6.2.3 Disussion of Convergene Properties

Algorithms of the Nelder-Mead simplex type have proven to be very robust for many ap-

pliations although not many theoretial results have been obtained so far. Until reently

there was no theoretial analysis expliitely treating the original algorithm but only vari-

ants. There are two reent publiations studying onvergene in low dimension. Lagarias

et al.[46℄ gave a proof of onvergene of the polytope algorithm for one-dimensional and

ertain two-dimensional funtions. MKinnon [55℄, however, demonstrated onvergene

to non-stationary points for another lass of two-dimensional funtions. No proofs have

been presented so far for funtions of higher dimensions. There are reports about the

polytope degenerating in high dimensions ausing the algorithm to fail.

There is a lass of diret searh methods, alled pattern searh algorithms, for whih

more theoretial results are available. Instead of replaing only the worst point like the

polytope algorithm, pattern searh algorithms replae all but the best point. Torzon [91℄,

[90℄ proved that pattern searh algorithms onverge to a stationary point when applied

to smooth funtions. But sine the smoothness ondition is not satis�ed by eigenvalue

optimization problems and sine n funtion evaluations are required for one step of the

pattern searh methods, we have favored our variant of the Nelder-Mead algorithm over

pattern searh.

We are aware that onvergene of the algorithm annot be proven but have been motivated

by the fat that it onverges to the optimum for a number of standard NLP test problems.

6.3 Numerial Methods for Singular Value Optimiza-

tion

As we have outlined in the previous hapter, singular value optimization represents an

interesting alternative to eigenvalue optimization in the intention to inrease a system's

stability.

Numerial libraries like LAPACK (see Anderson et al. [3℄) ontain very eÆient routines

for the omputation of singular values suh that there is no need for development of new

methods. In this setion we onentrate on formulas for the derivatives of the maximum

singular value with respet to an independent optimization variable x

k

on whih the

matrix C impliitly depends:

d�

max

dx

k

=

d�

max

dC

Æ

dC

dx

k

=

�

d�

max

dC

;

dC

dx

k

�

: (6.22)

x

k

is not to be onfused with the vetor of state variables x used in previous hapters. h�i

denotes the Frobenius produt or inner matrix produt

hA;Bi =

n

X

i=1

n

X

j=1

a

ij

b

ij

: (6.23)
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We distinguish the ases of simple and multiple maximum singular value.

6.3.1 Computation of Derivatives if Singular Value is Simple

We assume that singular values have sorted order after omputation by the library routine

and that the maximum value is simple:

�

max

= �

1

> �

2

� ::::: � �

n

: (6.24)

In this ase the maximum singular value is ontinuously di�erentiable. The omputation

of the derivative does not pose a big problem but we will see that there is nevertheless

some room for improvement.

Let us reall from literature (e.g. Trefethen & Bau [92℄) that there are two di�erent ways

to ompute the singular values of a matrix C.

The �rst variant is to use the formal de�nition

�

i

(C) = �

i

(

p

C

T

C); C 2 R

n�n

(6.25)

where B = C

T

C is the ovariane matrix of C. It has the disadvantage of a worse ondition

than the original matrix as the errors are squared. Furthermore it is numerially unstable.

An alternative omputation of singular values is based on a symmetri auxiliary matrix

H of double dimension:

H =

�

0 C

T

C 0

�

; H 2 R

2n�2n

: (6.26)

The ondition number of H is the same as for the original matrix C. H has got 2n

eigenvalues whih ome in pairs of opposite sign. The singular values of C are equal to

the positive eigenvalues (or the absolute values of the eigenvalues ) of H;

�

i

(H)

+=�

= � �

i

(C) (6.27)

The orresponding 2n eigenvetors v

+=�

ev

i

of H are related to the left and right singular

vetors u

i

and v

i

of C by

v

+=�

ev

i

=

1

p

2

�

v

i

�u

i

�

: (6.28)

It is this seond variant that we are going to use for the omputation of derivatives

although we will try to avoid the omputation of matries of dimension larger then n.

Using formula (5.8) for the derivatives of eigenvalues of symmetri matries presented in

the previous hapter and relation (6.28) for the eigenvetors of H, we an onlude for

the derivatives of singular values:

d�

1

(C)

dx

k

=

d�

+

1

(H)

dx

k
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=

�

d�

+

1

dH

;

dH

dx

k

�

=

*

1

2

�

v

1

u

1

��

v

1

u

1

�

T

;

 

0

dC

dx

k

T

dC
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k
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!+
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1
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�
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1
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1
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1
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u

1
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�
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0

dC

dx

k

T

dC

dx

k

0

!+

=

1

2

��

v

1

u

T

1

;

dC

dx

k

T

�

+

�

u

1

v

T

1

;

dC

dx

k

��

d�

1

(C)

dx

k

=

�

u

1

v

T

1

;

dC

dx

k

�

(6.29)

We have thus established a formula for the derivative of a (simple) singular value with

respet to an independent variable x

k

that only requires omputation and multipliation

of two square matries of dimension n but does not have the ill-onditioning drawbak of

equation (6.25). We will ome bak to the seond part of equation (6.29),

dC

dx

k

, in setion

6.6.

6.3.2 Computation of Derivatives if Singular Value is Multiple

The ase of a maximum singular value of multipliity m

�

max

= �

1

= �

2

= ::: = �

m

> �

m+1

� ::::: � �

n

(6.30)

is more ompliated. As we have disussed in setion 5.2.3, the individual singular values

are non-di�erentiable but well-onditioned at the points of multiple maximum singular

value. Two tasks have to be handled:

� detetion of a loal minimum

� omputation of a diretion of desent.

Both an be solved based on the idea, that the derivatives of the individual singular

values at this non-de�ned point an be approximated by the orresponding derivatives at

a slightly perturbed point.

d�

i

(C(x))

dx

k

�

d�

i

(C(x + x

0

)

dx

k

(6.31)

We apply a perturbation to the matrix C that splits the multiple singular value into

m distint ones, i.e. we apply a di�erent perturbations in the diretion of eah of the

multiple singular values . From the singular value deomposition of matrix C

C = U�V

T

(6.32)
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we reate the perturbed matrix

C

pert

= U(� + �

0

)V

T

= C + U�

0

V

T

(6.33)

with the diagonal matrix of perturbations

�

0

=

0

B

B

B

B

B

B

B

B

B

B

�

m� 1 0 � � � 0

m� 2 0 � � � 0

::: 0 � � � 0

1 0 � � � 0

0 0 � � � 0

0 � � � 0 0 � � � 0

� � � � � � � � �

0 � � � 0 0 � � � 0

1

C

C

C

C

C

C

C

C

C

C

A

� � (6.34)

where � is some onstant, e.g. � = 10

�6

For this perturbed matrix whih has a simple maximum singular value the derivative an

be omputed as desribed in the last setion.

In order to detet a possible loal minimum at points of multiple maximum singular value,

we have to verify if the subgradient �f = 0 is element of the subdi�erential at this point.

In pratie, this results in the need to hek if for all diretions k of the optimization

spae there are two gradients of individual singular values whih are of opposite signs (or

one that is zero):

d�

i

(C(x))

dx

k

�

d�

j

(C(x))

dx

k

� 0: (6.35)

6.4 Computation of Monodromy Matries for Dis-

ontinuous Di�erential Equations

In this setion, we disuss the numerial omputation of the monodromy matrix assoiated

with a solution of the inner loop disontinuous periodi optimal ontrol problem. Let us

reall that the monodromy matrix is equivalent with the Jaobian of the Poinar�e map

of the periodi solution

C

x

=

dx(T )

dx(0)

= C

q;v

(6.36)

with x being again the vetor of state variables x

T

= (q

T

; v

T

).

For the optimal ontrol problem solution, we have already omputed the sensitivities of

integration end values with respet to initial values on eah multiple shooting interval

C

x

(t

i�1

; t

i

) and an simply reuse them at this point. For ontinuous model equations and

state variables the monodromy matrix over the whole period would be produed by a

hain rule multipliation of the individual sensitivity matries:

C

x

(0; T ) = C

x

(t

0

; t

m

) = C

x

(t

m�1

; t

m

) � ::: � C

x

(t

1

; t

2

) � C

x

(t

0

; t

1

): (6.37)
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Figure 6.4: Impliitly de�ned disontinuity of state variables at t

s

or

C

q;v

(0; T ) = C

q;v

(t

m�1

; t

m

) � ::: � C

q;v

(t

1

; t

2

) � C

q;v

(t

0

; t

1

): (6.38)

As our dynami models ontain disontinuities of state variables and/or the right hand

side depending impliitly on q; v, and t, any perturbation will ause the disontinuities to

our sooner or later than for the original solution. In this ase, the sensitivity information

has to be updated at the disrete point of time t

s

of the disontinuity (Bok [10℄, von

Shwerin et al. [96℄).

We inlude here a full derivation of the update formula sine it illustrates the priniples

that we will also need in setion 6.6 for omputing the derivatives of the monodromy

matrix. The disontinuity is situated at t

s

in the interval [t

j

; t

j+1

℄ (ompare �gure 6.4).

The swithing funtion is given as

s(t

s

; x; p) = s(t

s

; q; v; p) (6.39)

with partial derivatives s

t

and s

x

= s

q;v

. Disontinuities are desribed in terms of right

hand side hanges f(t

+

s

)� f(t

�

s

) and of state variable jump funtions

J(t

s

; x; p) = J(t

s

; q; v; p) =

�

q

+

(t

s

)� q

�

(t

s

)

v

+

(t

s

)� v

�

(t

s

)

�

(6.40)

with partial derivatives J

t

and J

x

= J

q;v

.

We look for the derivative

dx(t

j+1

)

dx(t

j

)

(6.41)

where the dependenies of x(t

j+1

) and x(t

+

s

) are preisely stated as

x(t

j+1

; t

s

(x

j

; p); x(t

+

s

); p) (6.42)

and

x(t

+

s

) = x(t

�

s

) + J(t

s

; x(t

�

s

); p)

= x(t

�

s

(x

j

; p); x

j

; p) + J(t

�

s

(x

j

; p); x(t

�

s

(x

j

; p); x

j

; p); p): (6.43)
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This leads to

dx(t

j+1

)

dx(t

j

)

=

�x(t

j+1

)

�t

s

| {z }

=:A

dt
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=:B

+
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�x(t

+

s

)

dx(t

+

s

)

dx

j

| {z }

=:C

(6.44)

where the three terms A, B, and C remain to be determined.

A follows from standard Analysis

�x(t

j

+1)

�t

+

s

= �

�x

j+1

�x(t

+

s

)

� _x(t

+

s

): (6.45)

B an be omputed using the impliit funtion theorem

s(t

s

(x

j

; p); x(t

s

(x

j

; p); x

j

; p); p) = 0) (6.46)
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C follows from strit derivation of (6.43):

C =

dx(t

+

s

)

dx

j
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where again we need to substitute term B.

We thus �nally obtain
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We an onlude that state-dependent disontinuities require the inlusion of an update

term U

x

in the hain rule multipliation of equation (6.37) for the omputation of the

monodromy matrix with

U

x

=

�

f(t

+

s

)� f(t

�

s

)� J

x

f(t

�

s

)� J

t

�

�

s

T

x
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x

(6.52)

or, using position and veloity variables
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: (6.53)



90 Chapter 6. Numerial Methods for Stability Optimization

6.5 Projetion of MonodromyMatrix for Autonomous

Systems

Aording to theorem 4.4, the monodromy matrix of autonomous systems has always one

eigenvalue equal to one. It does not make sense to optimize the maximum eigenvalue

of this original matrix or some upper bound to this eigenvalue as for the ase where all

other eigenvalues are smaller than one, one would senselessly be pushing on this invariant

eigenvalue of one.

Instead, a projetion needs to be performed in order to eliminate the diretion of this

eigenvalue from the monodromy matrix before optimization. Realling setion 3.1 about

dynamial systems, this is equivalent with studying the Jaobian of a Poinar�e map that

is not produed by regular time strobes (�gure 3.1a) but by the intersetion with some

(n� 1)-dimensional manifold in state spae (�gure 3.1b).

A projetion matrix has to be hosen suh that the eigenvalue of one is eliminated but

all other eigenvalues of the matrix are onserved. This requirement is ful�lled by the

rank(n-1) orthogonal projetor

P

?q

1

= I � q

1

q

T

1

(6.54)

with q

1

being the normalized right eigenvetor assoiated with � = 1. Note that for an

orthogonal projetor we have P = P

T

, but not P

T

P = I as an orthogonal projetor is

not equivalent to an orthogonal matrix.

In order to obtain the projeted matrix we need to projet both rows and olumns onto

this subspae:

C

proj

= P

?q

1

� CP

?q

1

: (6.55)

In the ase where a power of the matrix instead of the matrix itself is studied (ompare

setion 5.3), the projetion is performed after multipliation:

C

p

proj

= P

?q

1

� C

p

P

?q

1

(6.56)

Note that the monodromy matrix C of an autonomous system and its p-th power C

p

both

have an eigenvalue of one with the same assoiated eigenvetors. They therefore result in

the same projetion matrix P

?q

1

.

The derivative of a projeted matrix with respet to the k-th omponent of the state

variable vetor x is omputed as:

dC

proj

dx

k

=

d

dx

k

(P

?q

1

� C � P

?q

1

)

= P

?q

1

�

dC

dx

k

� P

?q

1

: (6.57)
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6.6 Computation of First Order Derivatives of the

Monodromy Matrix

For a derivative-based method for stability optimization, one would also require derivatives

of the monodromy matrix with respet to initial values and parameters. They represent

seond order derivatives of the trajetories. In this setion we derive formulas for the

derivatives of the monodromy matrix in a multi-interval ontext suh as multiple shooting

assuming that the derivatives on the individual intervals have been determined. We

distinguish the ases of ontinuous and disontinuous di�erential equations. We are not

aware of any referene having stated these formulas before. As the full derivatives of

the monodromy matrix represent three-dimensional tensors, we prefer to give instead an

expression for the k-th omponent whih is a matrix.

6.6.1 Continuous Dynamis

First we onentrate on the simpler ase with no disontinuities in the dynamial equa-

tions. It is however not as straightforward as for �rst order derivatives sine for seond

order derivatives there is no simple hain rule dependeny similar to equation (6.37).

Piture two onseutive intervals [t

j

; t

j+1

℄ and [t

j+1

; t

j+2

℄ for whih the dependenies of

the respetive integration end values are fully desribed by

x(t

j+1

) = x(t

j+1

; t

j

; x

j

; p) (6.58)

x(t

j+2

) = x(t

j+2

; t

j+1

; x(t

j+1

; t

j

; x

j

; p); p): (6.59)

We will give equations for the derivatives of the monodromy matrix C

x

with respet to

initial values x

j

and parameters p. Throughout this setion we will use the abbreviation

x

i

= x(t

i

).

The �rst and seond derivatives of the integration end values with respet to initial values

and parameters on the two intervals are assumed to be known:

C

x

(t

j

; t

j+1

) =

dx

j+1

dx

j

C

p

(t

j

; t

j+1

) =

dx

j+1

dp

D

x

(t

j

; t

j+1

) =

d

2

x

j+1

dx

2

j

D

p

(t

j

; t

j+1

) =

d

2

x

j+1

dx

j

dp

C

x

(t

j+1

; t

j+2

) =

dx

j+2

dx

j+1

C

p

(t

j+1

; t

j+2

) =

dx

j+2

dp

D

x

(t

j+1

; t

j+2

) =

d

2

x

j+2

dx

2

j+1

D

p

(t

j+1

; t

j+2

) =

d

2

x

j+2

dx

j+1

dp

:

By D

x;k

and D

p;k

we denote the k-th matrix omponents of the derivatives D

x

and D

P

and by C

x;k

and C

p;k

the k-th row vetor of some matrix C

x

or C

p

respetively.
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Derivative with Respet to Initial Values

We look for the k-th derivative of the overall monodromy matrix C

x

(t

j

; t

j+2

) with respet

to initial values:

D

x;k

(t

j

; t

j+2

) =

d

dx

j;k

C

x

(t

j

; t

j+2

) =

d

dx

j;k

(C

x

(t

j+1

; t

j+2

) � C

x

(t

j

; t

j+1

))

=

d

dx

j;k

(C

x

(t

j+1

; t

j+2

)) � C

x

(t

j

; t

j+1

)

+ C

x

(t

j+1

; t

j+2

) �

d

dx

j;k

(C

x

(t

j

; t

j+1

)) : (6.60)

With the notation C = fA � bg for the produt of a three-dimensional tensor A with a

vetor b resulting in a matrix C we an write:

D

x;k

(t

j

; t

j+2

) = fD

x

(t

j+1

; t

j+2

) � C

x;k

(t

j

; t

j+1

)g � C

x

(t

j

; t

j+1

) +C

x

(t

j+1

; t

j+2

) �D

x;k

(t

j

; t

j+1

):

(6.61)

For three intervals [t

j

; t

j+1

℄, [t

j+1

; t

j+2

℄, [t

j+2

; t

j+3

℄ we would equivalently obtain

D

x;k

(t

j

; t

j+3

) = fD

x

(t

j+2

; t

j+3

) � (C

x

(t

j+1

; t

j+2

) � C

x;k

(t

j

; t

j+1

))g

� C

x

(t

j+1

; t

j+2

) � C

x

(t

j

; t

j+1

)

+ C

x

(t

j+2

; t

j+3

) � fD

x

(t

j+1

; t

j+2

) � C

x;k

(t

j

; t

j+1

)g � C

x

(t

j

; t

j+1

)

+ C

x

(t

j+2

; t

j+3

) � C

x

(t

j+1

; t

j+2

) �D

x;k

(t

j

; t

j+1

): (6.62)

Derivative with Respet to Parameters

The k-th omponent of the derivative of the two-interval monodromy matrix with respet

to parameters is

D

p;k

(t

j

; t

j+2

) =

d

dp

k

C

x

(t

j

; t

j+2

) =

d

dp

k

(C

x

(t

j+1

; t

j+2

) � C

x

(t

j

; t

j+1

))

=

d

dp

k

(C

x

(t

j+1

; t

j+2

)) � C

x

(t

j

; t

j+1

) + C

x

(t

j+1

; t

j+2

) �

d

dp

k

(C

x

(t

j

; t

j+1

))

= (D

p;k

(t

j+1

; t

j+2

) + fD

x

(t

j+1

; t

j+2

) � C

p;k

(t

j

; t

j+1

)g) � C

x

(t

j

; t

j+1

)

+ C

x

(t

j+1

; t

j+2

) �D

p;k

(t

j

; t

j+1

): (6.63)

6.6.2 Disontinuous Dynamis

Now we fous on the more omplex ase of state-dependent disontinuities in the mon-

odromy matrix. We use the same terminology as in setion 6.4 and �gure 6.4.



6.6. Computation of First Order Derivatives of the Monodromy Matrix 93

Derivative with Respet to Initial Values

Using equation (6.51) and the notation x

i

= x(t

i

) we an state for the k-th omponent of

the derivative

d

dx

k

(t

j

)

(C

x

(t

j

; t

j+1

)) =

d

dx

j;k

�

dx

j+1

dx

j

�

=

d

dx

j;k

�

C

x

(t

+

s

; t

j+1

)

�

| {z }

=:D

�U

x

� C

x

(t

j

; t

�

s

)

+C

x

(t

+

s

; t

j+1

) �

d

dx

j;k

(U

x

)

| {z }

=:E

�C

x

(t

j

; t

�

s

)

+C

x

(t

+

s

; t

j+1

) � U

x

�

d

dx

j;k

�

C

x

(t

j

; t

�

s

)

�

| {z }

=:F

:(6.64)

We an now independently derive expressions for terms D, E , and F . With

C

x

(t

+

s

; t

j+1

) = C

x

(t

j+1

; t

+

s

(x

j

; p); x(t

+

s

); p) (6.65)

and the dependeny of x(t

+

s

) de�ned by equation (6.43) we obtain for D

D =

d

dx

j;k

�

C

x

(t

+

s

; t

j+1

)

�

=

�

�t

s

�

C

x

(t

+

s

; t

j+1

)

�

�

dt

s

dx

j;k

+

�

�

�x

+

s

�

C

x

(t

+

s

; t

j+1

)

�

�

dx

+

s

dx

j;k

�

: (6.66)

Using equations (6.49) and (6.50) and

�

�t

s

�

C

x

(t

+

s

; t

j+1

)

�

=

�

�

2

x

j+1

�x

s

+

2

� _x(t

+

s

)

�

=

�

D

x

(t

+

s

; t

j+1

) � _x(t

+

s

)

	

(6.67)

we have

D =

�

D

x

(t

+

s

; t

j+1

) � _x(t

+

s

)

	

�

�s

x

(t

�

s

)

T

_s(t

�

s

)

� C

x;k

(t

j

; t

�

s

) +

n

D

x

(t
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s

; t

j+1

) �

�

�

_x(t

�

s

) + J

t

+ J

x

_x(t

�

s

)

�

�

�s

x

(t

�

s

)

T

_s(t

�

s

)

+ (I + J

x

)

�

� C

x;k

(t

j

; t

�

s

)

o

: (6.68)

For the omputation of term E

E =

�

df(t

+

s

)

dx

j;k

�

df(t

�

s

)

dx

j;k

�

dJ

x

dx

j;k

f(t

�

s

)� J

x

df(t

�

s

)

dx

j;k

�

dJ

t

dx

j;k

�

s

T

x

_s

+

�

f(t

+

s

)� f(t

�

s

)� J

x

f(t

�

s

)� J

t

�

(

ds

x

dx

j;k

)

T

� _s� s

T

x

�

d _s

dx

j;k

_s

2

+

dJ

x

dx

j;k

(6.69)
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we need the derivatives of f(t

�

s

), f(t

+

s

), J

x

, J

t

, s

x

, s

t

, and _s with respet to x

j;k

:

df(t

�

s

)

dx

j;k

=

d _x(t

�

s

)

dx

j;k

=

�

f

t

(t

�

s

) + f

x

(t

�

s

) � _x(t

�

s

)

�

�

dt

s

dx

j;k

+ f

x

(t

�

s

) � C

x;k

(t

j

; t

�

s

) (6.70)

df(t

+

s

)

dx

j;k

= f

t

(t

+

s

)

dt

s

dx

j;k

+ f

x
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+

s

)

dx
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s

dx
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=

�

f
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) + f

x
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s

) �

�

_x(t

�

s

) + J
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�

s

)

��

�

dt
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+ f
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) � (I + J

x
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(t
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�

s

) (6.71)

dJ

x

dx

j;k

=

�

J
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�

J

xx
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�

�

dt
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dx
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+ J
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) (6.72)
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�
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) (6.73)
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) (6.74)
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) (6.75)
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(6.76)

and thus obtain
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� s

T

x

�

��

s

tt

+ s

T

tx

� f(t

�

s

)

�

�

dt

s

dx

j;k

+ s

T

tx

� C

x;k

(t

j

; t

�

s

) +

��

s

xt

+ s

xx

� f(t

�

s

)

�

�

dt

s

dx

j;k

+ s

xx

� C

x;k

(t

j

; t

�

s

)

�

T

� f(t

�

s

)

+s

T

x

�

��

f

t

(t

�

s

) + f

x

(t

�

s

) � f(t

�

s

)

�

�

dt

s

dx

j;k

+ f

x

(t

�

s

) � C

x;k

(t

j

; t

�

s

)

���

+

�

J

xt

+

�

J

xx

� f(t

�

s

)

	

�

�

dt

s

dx

j;k

+

�

J

xx

� C

x;k

(t

j

; t

�

s

)

	

: (6.77)

F is simply

F = D

x;k

(t

j

; t

�

s

): (6.78)

Overall, this leads to the following expression for the seond derivative of the dynamis

with respet to initial values in the presene of disontinuities:
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�
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) � f(t

�

s

)

�

�

dt

s

dx

j;k

+f

x

(t

�

s

) � C

x;k

(t

j

; t

�

s

)�

��

J

xt

+

�

J

xx

� f(t

�
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�
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�

�
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+

�
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�
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�
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�

�
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�
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�
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�
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�
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�

s

)

�

T

� f(t

�

s

)

+s

T

x

�

��

f

t

(t

�

s

) + f

x

(t

�

s
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+
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�
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�
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s
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+

�
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+ C

x

(t

+

s

; t

j+1

) � U

x

�D

x;k

(t

j

; t

+

s

): (6.79)

This formula has not been implemented yet. In view of its omplexity it is very ques-

tionable if this approah will be relevant for the solution of pratial problems or if e.g.

external �nite di�erene shemes should be favored for seond order derivatives. The

same is true for the derivative with respet to parameters (6.97) derived in the following

setion.

Derivative with Respet to Parameters

The derivative of the monodromy matrix with respet to parameters is derivable by a

similar proedure. Its k-th omponent is

d

dp

k

(C

x

(t

j

; t

j+1

)) =

d

dp

k

�

dx

j+1

dx

j

�

=

d

dp

k

�

C

x

(t

+

s

; t

j+1

)

�

| {z }

=:G

�U

x

� C

x

(t

j

; t

�

s

)

+C

x

(t

+

s

; t

j+1

) �

d

dp

k

(U

x

)

| {z }

=:H

�C

x

(t

j

; t

�

s

)

+C

x

(t

+

s

; t

j+1

) � U

x

�

d

dp

k

�

C

x

(t

j

; t

�

s

)

�

| {z }

=:I

(6.80)

with the unknown terms G, H, and I.

The �rst term, G, is

G =

�

�t

s

�

C

x

(t

+

s

; t

j+1

)

�

�

dt

s

dp

k

+

�

�

�x

+

s

�

C

x

(t

+

s

; t

j+1

)

�

�

dx

+

s

dp

k

�

+

�

�p

k

�

C

x

(t

+

s

; t

j+1

)

�

: (6.81)

Thus, we must �rst ompute

dt

s

dp

k

and

dx

+

s

dp

k

.

In analogy to (6.47) { (6.49) we an derive

ds

dp

= s

t

(t

�

s

)

dt

s

dp

+ s

x

(t

�

s

) _x(t

�

s

)

dt

s

dp

+ s

x

(t

�

s

) �

dx(t

�

s

)

dx

j

+ s

p

(t

�

s

) = 0 (6.82)

�

s

t

(t

�

s

) + s

x

(t

�

s

) _x(t

�

s

)

�

| {z }

=: _s(t

�

s

)
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s

dp

+ s

x

(t

�

s

) � C

p

(t

j

; t

�

s

) + s

p

(t

�

s

) = 0 (6.83)

dt

s

dp

=

�1

_s(t

�

s

)

�

�

s

x

(t

�

s

) � C

p

(t

j

; t

�

s

) + s

p

(t

�

s

)

�

: (6.84)

Using equation (6.50), we have

dx

+

s

dp

k

= _x(t

�

s

)

dt

s

dp

k

+

�x(t

�

s

)

�p

k

+ J

t

dt

s

dp

k

+ J

x

�

_x(t

�

s

)

dt

s

dp

k

+

�x(t

�

s

)

�p

k

�

+ J

p;k
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=

�

_x(t

�

s

) + J

t

+ J

x

_x(t

�

s

)

�

�

�1

_s(t

�

s

)

�

�

s

x

(t

�

s

) � C

p;k

(t

j

; t

�

s

) + s

p;k

(t

�

s

)

�

+ (I + J

x

) � C

p;k

(t

j

; t

�

s

) + J

p;k

: (6.85)

With this we �nd

G =

�

D

x

(t

+

s

; t

j+1

) � _x(t

+

s

)

	

�

�1

_s(t

�

s

)

�

�

s

x

(t

�

s

) � C

p

(t

j

; t

�

s

) + s

p

(t

�

s

)

�

+

n

D

x;k

(t
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s

; t
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) �

�

�
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�

s

) + J

t

+ J

x
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s

)

�

�
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_s(t

�

s

)

�

�

s

x

(t

�

s

) � C

p;k

(t

j

; t

�

s

) + s

p;k

(t

�

s

)

�
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x

) � C

p;k

(t

j

; t

�

s

) + J

p;k

�o

+D

p:k

(t

+

s

; t

j+1

) (6.86)

For the seond term, H

H =

�

df(t

+

s

)

dp

k

�

df(t

�

s

)

dp

k

�

dJ

x

dp

k
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�

s

)� J

x
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�

s
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k

�
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t
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k

�

s

T
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+
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s
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�
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)
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x
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d _s
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k
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(6.87)

we need the derivatives of f(t

�

s

), f(t

+

s

), J

x

, J

t

, s

x

, s

t

, and _s with respet to p

k

:
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=
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=
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) (6.88)
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)
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+
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�
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�
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�
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�
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�
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=
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�
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�
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�
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�
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+
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��
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�
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(6.95)

The third term is again the most simple one:

I = D

p;k

(t

j

; t

�

s

): (6.96)

Colleting all this, we obtain for the derivative of the monodromy matrix with respet to

parameters in the presene of disontinuities:

d
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)) =
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6.7 Numerial Determination of Stability Margins

Having found a stable solution by stability optimization based on linear theory it is inter-

esting to ask how well this result aptures the stability behavior of the nonlinear system.

What is the range of perturbations that an be applied to the above stable solution?

There is no theory answering this question but we introdue a numerial riterion.

We study whih set of perturbations of initial values as well as of model parameters an

be oped with by the robot model and its presribed ontrol pattern by applying some

perturbation and simulating the resulting behavior of the system. The full nonlinear

dynamis of the robot are integrated heking if it reovers and persists in its gait or if it

stumbles. Two seletions have to be made:

� Type of perturbations:

a) Perturbing the initial values of state variables answers the question how small

the 'small perturbations' have to be that linear theory is talking about. We gen-

erally apply one-dimensional perturbations to the initial values of all positions

and veloities. But for those positions desribing an initial phase-separating

manifold, like a heelstrike manifold, it is often ustomary to apply oupled

perturbations that are onsistent with this manifold.

b) Even though linear stability theory does not talk about sensitivity with respet

to parameters it is interesting to know in what range of parameters gait is pos-

sible under the inuene of the presribed ontrols. We perturb one parameter

value at a time keeping the others �xed.

� Integration Interval:

The hoie of the integration interval is quite arbitrary. It has to be long enough

to allow unreoverable perturbations to show their e�et and not too long sine

numerial instabilities would predominate. We have hosen an integration interval

of ten physial steps of the robot. Although this hoie diretly inuenes the exat

result it does not not hange the order of magnitude of the stability margins.

For this purpose, an integrator apable to handle swithing funtions has to be used, e.g.

the powerful library ODESIM (see Winkler [102℄, von Shwerin & Winkler [94℄).



Chapter 7

Open-loop Stable One-legged

Hopping Robot

The �rst robot we present in this thesis is a one-legged hopper moving in the vertial

plane. The remarkable feature of this robot in ontrast to many of its real world relatives

(see setion 1.1.2) is that despite its ight phase, it neither needs sensors nor sophistiated

ontrollers for stabilization. With its single leg, a small foot and a relatively high enter

of mass, it has no statially stable standing position.

The robot onsists of a toroidal trunk and a telesopi leg oupled by an atuated hinge.

The two parts of the leg are onneted by an atuated spring-damper element. The foot

is �xed to the lower leg without artiulation. We have studied irular as well as point

shaped feet. The robot an perform stable two-dimensional hopping motions inluding a

non-sliding or rolling ontat phase and a ight phase without any feedbak ontrollers.

Figure 7.2 shows an animation of one yle of motion of the hopping robot.

The equivalent "real" robot mathing this model has not been built yet. Our model is

an extension of the hopping robot of Ringrose [77℄ presented in setion 1.2 to whih we

have added the trunk with orresponding atuation that makes a periodi forward motion

possible. We also have studied the 'hopping in plae' motions of the original Ringrose

robot and refer to Mombaur et al. [65℄ for results. This simpler robot is not disussed in

this thesis.

We use the example of the hopping robot to study the inuene of di�erent stability

optimization riteria like the spetral radius and matrix norms. This is the �rst time

solutions for a one-legged hopping robot with point foot are presented. For the model

version with irular feet we were able to further improve the stable solution given in

Mombaur et al. [63℄.

Following the lassi�ation of setion 1.4, the hopping robot is holonomi, but non-

onservative due to damper fores and inelasti impats. The latter property may promote

stability of the system.
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Figure 7.1: Parameters and on�guration variables of the hopping robot

7.1 Robot Model

A sketh of the model and its parameters is given in �gure 7.1. Parameters are trunk

mass and inertia m

b

and �

b

, leg mass and inertia m

l

and �

l

, distane between enters

of mass of trunk and leg d, leg rest length l

0

, foot radius r, torsional spring and damper

onstants k

tors

and b

tors

, rest loation of torsional spring ��, and translational spring and

damper onstants k and b. The foot is assumed to be massless. The point foot version is

just a speial ase of the irular foot with r = 0.

During the ight phase, the robot has four degrees of freedom. As state variables we

hoose the uniform set of oordinates

q = (x

b

; y

b

; �

b

; �

l

)

T

;

and the orresponding veloities, where x

b

and y

b

are two-dimensional position oordinates

of the trunk enter of mass, and �

b

and �

l

are the orientations of trunk and leg.

The oordinates of the leg enter of mass x

l

and y

l

an be eliminated using the distane

parameter d by

x

l

= x

b

+ d sin�

l

(7.1)

y

l

= y

b

� d os�

l

: (7.2)

The leg length l is �xed to l

0

+ u

0

during the major part of the ight phase (as the foot

is massless) and depends on the other oordinates during the ontat phase as follows:

l =

y

b

� r

os�

l

+ r (7.3)
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Figure 7.2: Periodi motion of one-legged hopping robot animated with JAFV (Winkler [102℄,

Winkler & Huber [103℄)
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sin�
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os
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�

l
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l

: (7.4)

The robot has two atuators:

1. u

0

{ series elasti atuator (SEA) in the prismati joint :

as desribed by Pratt et al. [73℄, this is an atuated spring-damper element with

spring onstant k and damping onstant b (see �gure 7.1). The ontrol u

0

� 0 a-

tively hanges the spring's length whih has the same e�et as hanging the spring's

rest length in the opposite diretion:

�l =

�

y

b

� r

os�

l

+ r � u

0

�

� l

0

=

�

y

b

� r

os�

l

+ r

�

� (l

0

+ u

0

) (7.5)

The ontrol u

0

is only e�etive during the ontat phase - due to the massless foot

it an be brought bak to zero position during ight without any e�et. u

0

is 0 at

touhdown and has to be > 0 at lifto� to ompensate for the energy loss in the

damper. Instantaneous ompressions and general ontrol histories an be modeled.

2. u

1

{ torque ontrol between trunk and leg (in parallel with a spring-damper-element

k

tors

, b

tors

, see �gure 7.1).

The one-legged hopping robot is the only robot treated in this thesis for whih it is

reasonable to give the equations of motion in expliit form. They have been derived using

free-body diagrams with all auxiliary oordinates being eliminated.

The equations of motion during the ight phase are desribed by the following set of

ODEs:
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(7.6)

where m is the total mass m = m

b

+m

l

and u

1

is the torque between trunk and leg.

During ontat phase we have a superposition of the rolling motion due to the irular

foot and the leg length variation inuened by the SEA spring-damper fores. This leads

to a redution from four to three DOFs during ontat phase. The oupling is desribed

by the additional kinemati onstraint in veloity spae

_x

b

+ (y

b

+ (y

b

� r) tan

2

�

l

)

_

�

l

+ tan�

l

_y

b

= 0: (7.7)
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A orresponding equation for the di�erenes in position spae an be formulated.

The equations of motion for the ontat phase beome
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with spring and damper fores F

k

and F

d

F

k

= k (

y

b

� r

os�

l

+ r � l

0

� u

0

) (7.9)

F

d

= b (

_y
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os �

l

+ (y

b

� r)

tan�
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l

_

�

l

) (7.10)

with u

0

being the SEA ontrol. The system of equations (7.8) is a DAE of index 1 derived

from an index 3 system by index redution.

Phase hange from ontat phase to ight phase (lifto�) takes plae, when the spring

length is equal to the (modi�ed) rest length:

s

liftoff

= l

0

+ u

0

�

y

b

� r

os�

l

� r = 0 (7.11)

and, at the same time, the trunk has a positive vertial speed:



liftoff

= _y

b

> 0: (7.12)

Touhdown phase hange ours when the height of the prospetive ontat point is equal

to zero

s

touhdown

= y

b

� (l

0

� r) os�

l

� r = 0: (7.13)

The vertial speed of the ontat point at touhdown must be negative:



touhdown

= _y

b

+ (l

0

� r) sin�

l

_

�

l

< 0: (7.14)

There may be a disontinuity in the veloities at touhdown beause frition is assumed

to be large enough to instantaneously set the veloity of the ontat point equal to zero.

There are no jumps in the positions. The four veloities after the touhdown-disontinuity

are determined by the following four onditions:
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� superposition of rolling motion and spring-damper ation:
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� onservation of angular momentum of trunk about ontat point:

H
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= �

b

_

�

b

= onst: (7.16)

� onservation of angular momentum of full robot about prospetive ontat point
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(7.18)
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(7.19)

� onservation of translational momentum in diretion of leg (onsidering spring-

damper-fore)

m( _x

b

sin�

l

� _y

b

os �

l

)� F

kd

= onst: (7.20)

There is no disontinuity at lifto�.

The variable x

b

desribes the forward motion of the robot and is non-periodi. All other

state variables have to satisfy periodiity onstraints
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where the period T is to be determined by the optimization.

7.2 Results of Stability Optimization

We present di�erent stable solutions for one-legged hopping robots with irular and

point foot. For both versions model parameters and trajetories with exellent stability

properties were found. From a variety of ases omputed we present the most important

ones in this setion.
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We have applied the spetral radius as well as matrix norms for one and multiple steps

as stability optimization riteria in the outer loop. A projetion of the full monodromy

matrix to the subspae of periodi variables had to be performed before. Ten out of twelve

model parameters have been varied whereas leg length l

0

and torus mass m

b

have been

kept �xed for saling reasons. Physially reasonable bounds have been imposed on all

parameters. Spei�ally stati instability of the system was thus maintained.

The objetive funtion of Lagrange type applied in the inner loop was a sum of (weighted)

ontrols squared. We have used a pieewise onstant ontrol disretization for both atu-

ators. Control and multiple shooting grids eah onsist of 15 intervals per phase. State

and ontrol variables as well as phase times have to satisfy box onstraints. Continuity

of ontrols at dynami disontinuity points has been guaranteed by equality onstraints.

Besides the periodiity onstraints and swithing funtions desribed in setion 7.1, we

have imposed box onstraints on all ontrols and states, a lower bound on the trunk for-

ward speed at all points, and bounds on the leg inlination angle at touhdown and lifto�

instants.

7.2.1 Point Foot

This is the �rst publiation of results for a one-legged hopping robot with point foot that

does not need feedbak ontrollers but relies on open-loop stabilization instead.

Result of Eigenvalue Optimization

Using eigenvalue optimization we were able to bring the spetral radius down as far as

0.1292 for a one-legged hopping robot with point foot.

The model parameters of this solution are (in ISO units) m

b

= 2:0, �

b

= 0:3503, m

l

=

0:5033, �

l

= 0:2391, d = 0:3663, l

0

= 0:5, r = 0, k

tors

= 25:902, ��

l

= 0:2, b

tors

= 3:457,

k = 589:1, and b = 61:79.

The initial values of the orresponding trajetory are

x

b

(0) = 0

y

b

(0) = 0:490

�

b

(0) = �0:1447

�

l

(0) = 0:20

_x

b

(0) = 0:3326

_y

b

(0) = 0:0011

_

�

b

(0) = �2:8399

_

�

l

(0) = �0:6524

Figure 7.3 shows the ontrol and state variable histories for this most stable solution.

Bounds on all variables are represented as lines. The di�erent phases { 1. ontat phase,

2. ight phase, 3. touhdown transition phase of duration zero with veloity disontinuities

{ an be diserned in �gure 7.3. Obviously all ontrol variables and all state variables

exept x

b

are periodi. If x

b

(0) is �xed to zero, x

b

(T ) gives the step length of one hopping
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yle, in this ase 0:536m. The yle time of this solution is T = 0:471s with phase times

T

ontat

= 0:305s and T

flight

= 0:166s.

Due to the non-periodiity of x

b

, only seven out of eight eigenvalues are relevant for

stability. This last eigenvalue, whih is always one beause of the system's indi�erene

towards the initial value x

b

(0), is eliminated by projetion. The seven relevant eigenvalues

are

�

1;2

= (0:1088;�0:0696)

�

3;4

= (�0:0888;�0:0913)

�

5

= �0:0722

�

6;7

= 0

and by magnitude

j�

1;2

j = 0:1292

j�

3;4

j = 0:1274

j�

5

j = 0:072172

j�

6;7

j = 0:

The two eigenvalues of zero magnitude are aused by the redution from four to three

DOFs during ontat phase and the resulting oupling of perturbations in veloity as well

as position spae.

For this redued monodromy matrix we have the following matrix norms

�

max

= 12:1911

jjCjj

1

= 16:7044

jjCjj

1

= 23:1978:

Perturbations therefore don't ontrat in any of these norms over one step. But as a

study of matrix powers shows (�gure 7.4), they all do ontrat over yles of four and

more steps.

With the spetral radius being far below one we have proven stability aording to linear

theory. But its size does not say anything about the size of perturbations from whih

the system an reover. We determine these stability margins aording to the proedure

desribed in setion 6.7. The robot an reover from substantial perturbations of its initial

values under the invariant inuene of its periodi atuations:

�

b

+ 133% -63%

y

b

�

l

�

�3%

+57%

+0:6%

�17%

_x

b

+39% -90%

_y

b

+5000% -100%

_

�

b

+23% -42%

_

�

l

+27% -46%



7.2. Results of Stability Optimization 109

Figure 7.3: State and ontrol variable trajetories of most stable solution for Hopper with point

foot
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Figure 7.4: Spetral radius versus matrix norms for di�erent matrix powers

For the non-periodi variable x

b

of ourse arbitrary initial values an be hosen. As

indiated by the brae, y

b

and �

l

are perturbed together suh that the initial values

remain onsistent with the touhdown manifold. Figure 7.5 illustrates the di�erenes

between the original periodi trajetory and one for whih the initial value of _x

b

has been

perturbed by �90%. Obviously the robot stays synhronized with its exiting frequeny.

The perturbed trajetory is haraterized by shorter steplengths, i.e. it stays behind the

base solution in the non-periodi variable x

b

.

The robot also persists in its hopping motion under the following perturbations of model

parameter values:

�

b

+5% -1%

m

l

+5% -20%

�

l

+4% -23%

d +11% -37&

k

tors

+3% -9%

�� +96% -45%

b

tors

+1% -5%

k +1% -0.4%

b +0.5% -2%

Result of Singular Value Optimization

We were interested in �nding out

� if a solution with maximum singular value smaller than one existed for the one-

legged hopping robot



7.2. Results of Stability Optimization 111

0

1

2

3

4

5

0 1 2 3 4 5

x
_

b

t

base solution
perturbed solution

0

0.5

1

1.5

0 1 2 3 4 5

x
_

b
_

d
o

t

t

0.5

0.55

0.6

0 1 2 3 4 5

y
_

b

t

-1

0

1

0 1 2 3 4 5

y
_

b
_

d
o

t

t

0

0.5

1

0 1 2 3 4 5

p
h

i_
b

t

-8

-4

0

4

0 1 2 3 4 5

p
h

i_
b

_
d

o
t

t

-0.4

-0.2

0

0.2

0 1 2 3 4 5

p
h

i_
l

t

-2

0

2

4

6

0 1 2 3 4 5

p
h

i_
l_

d
o

t

t

Figure 7.5: Most stable periodi solution for point foot hopper with and without perturbation

(in _x

b

) in all position (left) and veloity (right) variables



112 Chapter 7. Open-loop Stable One-legged Hopping Robot

� if singular value optimization ould help to �nd stable solutions probably even better

than the above solution.

The answer to both questions is no. Singular value optimization of the monodromy matrix

produed a solution haraterized by a maximum singular value of

�

max

(C) = 3:511;

smaller than for the previous solution, but by far larger than one. The maximum eigen-

value of the resulting matrix is, by magnitude

j�

max

(C)j = 1:383;

and the system is therefore unstable. Figure 7.6 illustrates the development of the spetral

radius during singular value optimization. While the maximum singular value is dereased,

the spetral radius even deteriorates during optimization.
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Figure 7.6: Development of spetral radius during optimization of maximum singular value of

monodromy matrix

The model parameters of this solution are m

b

= 2:0, �

b

= 0:995, m

l

= 0:9618, �

l

= 0:3,

d = 0:1752, l

0

= 0:5, r = 0, k

tors

= 17:84, ��

l

= 0:2, b

tors

= 5:649, k = 287:09, and

b = 39:74. It has the initial values

x

T

0

= (�0:0386; 0:490;�0:1447; 0:2; 0:2;�0:0835;�1:083;�0:359)

and a period of T = 0:504s with phase durations T

ontat

= 0:326s and T

flight

= 0:178s.

We onlude that the maximum singular value of the monodromy matrix is not a favorable

optimization riterion for the present ase.

Result of Singular Value Optimization of Matrix Power

In setion 5.3 we have disussed the use of a norm of a power of the matrix instead of

the matrix itself as stability optimization riterion. Here we have hosen to apply the

singular value of the fourth matrix power.
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It serves the purpose muh better than the singular value of the matrix itself. The

optimization resulted in a singular value of

�

max

(C

4

) = 0:0756

and maximum eigenvalues of

j�

max

(C

4

)j = 0:00116 and

j�

max

(C)j = 0:1848:

The solution is therefore stable. Figure 7.7 shows the ourse of eigenvalues of the mon-

odromy matrix and its fourth power during singular value optimization. The present
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Figure 7.7: Development of spetral radius during optimization of maximum singular value of

fourth matrix power

optimization riterion is obviously suessful in dereasing the spetral radius. It even

produes an absolute value not very far above the one obtained by eigenvalue optimization.

The solution under disussion is haraterized by model parameters m

b

= 2:0, �

b

=

0:3510, m

l

= 0:5031, �

l

= 0:2395, d = 0:3666, l

0

= 0:5, r = 0, k

tors

= 25:90, ��

l

= 0:2,

b

tors

= 3:456, k = 588:86, and b = 60:847, initial values

x

T

0

= (�0:0385; 0:490;�0:1447; 0:2005; 0:3299;�0:00048;�2:849;�0:6463)

and a period of T = 0:4718s with phase times T

ontat

= 0:3056s and T

flight

= 0:1662s.

7.2.2 Cirular Foot

Open-loop ontrolled hopping robots with irular foot were disovered before but they

generally rely on a large foot radius for stabilization (Ringrose [77℄, Wei et al. [99℄). We

enfore a enter of mass position above the enters of foot urvature (l

0

�d > r) and thus

stati instability of the robot during optimization.

Stable results for a hopping robot with a small irular foot have been published in

Mombaur et al. [63℄. The solutions presented here are haraterized by even better

maximum eigenvalues.
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Result of Eigenvalue Optimization

In order to guarantee a learly irular foot shape, we have restrited our searh to

r > 0:1m. The most stable solution found under this ondition has a spetral radius of

0.2872.

It is quite similar to the result of eigenvalue optimization for a robot with point foot.

The model parameter values of the solution are m

b

= 2:0, �

b

= 0:2385, m

l

= 0:5078,

�

l

= 0:2468, d = 0:3, l

0

= 0:5, r = 0:1021, k

tors

= 25:492, ��

l

= �0:1259, b

tors

= 2:443,

k = 555:30, and b = 58:178.

Also the ontrol variable histories and trajetories as shown in �gure 7.8 are only slightly

di�erent from the point foot solution The orresponding yle time is T = 0:478s with

T

ontat

= 0:301s and T

flight

= 0:177s and the initial values

x

T

0

= (�0:0385; 0:4921;�0:1447; 0:2; 0:6370; 0:0547;�1:307;�1:597)

It is traveling faster in x

b

-diretion and has a larger step length of 0:6032m.

The related monodromy matrix has the following eigenvalues:

�

1;2

= (�0:0224;�0:2761)

�

3

= 0:2872

�

4

= 0:2710

�

5

= �0:0276

�

6;7

= 0

j�

1;2

j = 0:2770

j�

3

j = 0:2872

j�

4

j = 0:2710

j�

5

j = 0:0276

j�

6;7

j = 0:

Again, the matrix norms desribing the propagation of perturbations over one step are

all larger than one,

�

max

= 17:869

jjCjj

1

= 24:466

jjCjj

1

= 27:063:

but if plotted as funtions of the matrix power, the norms are ontrative for exponents

greater or equal to �ve (�gure 7.9).

The region of stability in whih the robot an reover and maintain a gait without falling

down is desribed by the stability margins

�

b

+135% -245%

y

b

�

l

�

�0:48%

+14%

+0:75%

�25%

_x

b

+21% -11%

_y

b

+130% -99%

_

�

b

+92% -57%

_

�

l

+15% -14%.
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Figure 7.8: State and ontrol variable histories of most stable solution for Hopper with irular

foot
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Figure 7.9: Spetral radius versus matrix norms for di�erent matrix powers

In �gure 7.10 we ompare the trajetory starting from a perturbed value of �

b

(+135%)

with the orresponding unperturbed solution.

The following table �nally lists the maximum possible perturbations of model parameters:

�

b

+0.3% -1%

m

l

+4% -1%

�

l

+2% -1%

d +12% -2%

r +14% -0.3%

k

tors

+1% -0.3%

�� +280% -160%

b

tors

+1% -0.3%

k +0.2% -0.8%

b +3% -1%

Result of 1-norm Optimization

Again we aimed at �nding a solution with a ontrating norm of the monodromy matrix,

this time using the in�nity norm as optimization riterion. But the e�et is the same as

enountered for singular value optimization of the point foot model: The minimum value

found is

jjCjj

1

= 3:744;

signi�antly smaller than for the previous solution, but not smaller than one as desired.

The orresponding maximum eigenvalue has a magnitude of

j�

max

(C)j = 1:627 > 1
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tion (in �

b

) in all position (left) and veloity (right) variables
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The solution is thus unstable and not of pratial relevane. As depited in �gure 7.11,

the spetral radius is growing, while the in�nty norm dereases.

10

20

30

0 500 1000 1500

function evaluations

infinity norm of C
spectral radius of C

5

10

15

1500 1600 1700 1800 1900

function evaluations

infinity norm of C
spectral radius of C

Figure 7.11: Development of eigenvalue during optimization of in�nity norm of monodromy

matrix

The solution is haraterized by parameter values of m

b

= 2:0, �

b

= 0:2404, m

l

= 1:495,

�

l

= 0:2880, d = 0:1390, l

0

= 0:5, r = 0:1270, k

tors

= 25:39, ��

l

= 0:0418, b

tors

= 2:819,

k = 453:79, and b = 64:67, a trajetory starting at

x

T

0

= (�0:0385; 0:4926;�0:1447; 0:2; 0:2545;�0:0469;�2:832;�0:6436)

and phase times T

ontat

= 0:3451s and T

flight

= 0:1869s, leading to a period of T = 0:532s.

Result of 1-norm Optimization of Matrix Power

Using the in�nity norm of a power of the monodromy matrix instead (here the fourth

power), we found a stable solution. The optimal value is

jC

4

j

1

= 0:3306;

i.e. measured in the 1-norm, perturbations deay to about a third of their original size

over a yle of four steps.

The orresponding maximum eigenvalues are

j�

max

(C

4

)j = 0:0161 and

j�

max

(C)j = 0:3560

haraterizing a stable solution. This on�rms the observation made in setion 7.2.2,

that the norm of a matrix power should be preferred as optimization riterion over a

norm of the monodromy matrix itself. The solution has similar properties as the result

of eigenvalue optimization and only a slightly larger spetral radius.
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The model parameters of this solution are m

b

= 2:0, �

b

= 0:2463, m

l

= 0:5177, �

l

=

0:2405, d = 0:3, l

0

= 0:5, r = 0:1022, k

tors

= 25:498, ��

l

= �0:0913, b

tors

= 2:387,

k = 560:61, and b = 58:437. Its trajetory has the initial values

x

T

0

= (�0:0385; 0:4909;�0:1447; 0:2146; 0:6276; 0:0617;�1:4423;�1:574)

and a yle time of T = 0:481s with phase times T

ontat

= 0:3038s and T

flight

= 0:1772s.

7.3 Summary

We summarize the most important results of this hapter.

� New open-loop stable trajetories for one-legged hopping robots with point feet and

irular feet have been presented. To our knowledge this is the �rst report about

a one-legged point foot robot that is stable without feedbak ontrollers. Hopping

robots with irular feet did exist before, but we redued the foot radius thus not

allowing for trivial stabilizing e�ets.

� We stress the fat that a irular foot is not neessary for open-loop stability of

one-legged hopping robots.

� All our robots intentionally have no statially stable standing on�gurations as also

for the version with irular feet the enters of mass lie above the enters of foot

urvature (l

0

� d > r).

� The solutions presented exhibit exellent linear and nonlinear stability properties.

They are not only haraterized by very small spetral radii of their monodromy

matries but they also an sustain substantial perturbations of the initial values and

model parameters.

� No solution has been found for whih an indued matrix norm of the monodromy

matrix over one step is smaller than one. But we report several solutions for whih

perturbations do ontrat in the 1-, 2-, or 1-norm over a yle of several steps.

� From the previous two items we an onlude that the existene of a ontrative

norm of the monodromy matrix is not a neessary ondition for exellent stability

of a solution in the nonlinear sense.

� The usage of a norm of the monodromy matrix as optimization riterion had no

favorable inuene on the eigenvalues in the ases tested: the spetral radius very

often deteriorated during the ourse of optimization and was larger than one at the

onvergene point.

� Using the norm of a power of the monodromy matrix proved to be a muh better

hoie. Both the 1-norm and the maximum singular value of a power served to

bring the eigenvalue down below one and led to a solution that was very lose to

the solution found with eigenvalue optimization.





Chapter 8

Open-loop Stable Human-like

Atuated Walking Robot

In this hapter we study a two-legged kneed walking robot with point feet. The robot

an be onsidered as a simpli�ed model of human walking in the saggital plane. It is

powered by periodi torque atuations at hip and knee that are not hanged by feedbak

interferene. Nevertheless the robot is apable of naturally reovering from perturbations.

We believe that our robot is the �rst demonstration of a human-like atuated open-loop

stable gait.

The robot onsists of four bodies { two symmetri legs with a thigh and a shank eah. We

have not added a trunk as already this simpler mehanism exhibits a remarkably human-

like gait (see the animation sequene 8.2). The ompletion of the model by a trunk is an

easy task but would not provide any further insights with respet to the objetive of this

thesis whih is to �nd open-loop stable robots.

Inelasti ground ollisions ause the system to be non-onservative. The motion is piee-

wise holonomi but overall non-holonomi. Aording to setion 1.4 both properties an

help to inrease stability of the robot.

In this thesis we extend the results reently published in Mombaur et al. [64℄. We study

the e�ets of di�erent objetive funtions for stability optimization and give further stable

solutions.

There is an equivalent passive-dynami version of this robot whih has no atuators but

walks on an inlined slope instead. It is similar to the passive dynami walkers of MGeer

and the Ruina lab presented in setion 1.3 exept that it doesn't have irular feet. We

have studied this passive robot earlier and published the results in Mombaur et al. [62℄.

They are used here for omparison with the results of the atuated robot.
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Figure 8.1: Parameters and on�guration variables of passive (a) and ative (b) kneed walker

8.1 Robot Model

For the sake of ompleteness, we derive the model equations for both the atuated and the

passive walking robot. Figure 8.1 illustrates model parameters and geometri variables

for both versions. Seven parameters are used for the atuated model: masses m

i

, lengths

l

T

, and enter of mass loations 

i

, w

i

of thigh and shank (i = T; S, w

T

= 0). For the

passive version, the slope angle � is an additional parameter. The moments of inertia of

thigh and shank an be omputed from these quantities:

�

i

=

1

6

m

i

(l

2

i

+ 2

2

i

� 2l

i



i

): (8.1)

We assume that ground ontat ours without sliding and and that there is no double-

support phase, i. e. the seond leg instantaneously leaves the ground after heelstrike.

This is a very ommon assumption for the simulation of walking motions (ompare e.g.

Channon et al. [14℄, MGeer [52℄).

We model one step - and not a full physial yle onsisting of two steps - beause we

are only interested in symmetri gaits. The observed yle starts and ends right after

heelstrike. The stane leg is assumed to be straight all the time, whereas the swing leg

is bent in the �rst phase and straight in the seond phase after kneestrike, suh that

the robot has three or two degrees of freedom, respetively. For both phases, we use the

uniform set of optimization oordinates q = (�

1

; �

2

; �

3

)

T

(angles of swing leg thigh and

shank and of total stane leg { as �

4

� �

3

) and the orresponding rates _q = (

_

�

1

;

_

�

2

;

_

�

3

)

T

for all phases. They are minimal oordinates for the �rst motion phase and redundant

oordinates for the seond phase. Note again that due to the overall non-holonomy of the

gait, this set of oordinates would not be suÆient to desribe a multi-step motion.

The equations of motion have been derived using free-body-diagrams (setion 2.2.2). In
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Figure 8.2: Motion of bipedal walking robot
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this ontext, the position variables of all enters of mass r

i

and of the hip r

H

as well as

�

4

have been used as auxiliary oordinates. Size and omplexity of the system forbids to

expliitely solve the system for the optimization oordinates. Instead the following set of

23/24 equations is solved numerially in eah step:

a) Newton's laws of motion in translational and rotational diretion for individual

bodies:

m

T

�r

x;1

= F

2x

� F

1x

+m

T

g sin� (8.2)

m

T

�r

y;1

= F

2y

� F

1y

�m

T

g os� (8.3)

�

T

�

�

1

= (F

1x



T

+ F

2x

(l

T

� 

T

)) os�

1

+(F

1y



T

+ F

2y

(l

T

� 

T

)) sin�

1

+ u

1

� u

0

(8.4)
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S
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S
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with u

2

� 0. F

jx

and F

jy

, (j = 1; 2; 3) are onstraint fores at hip joint, swing leg

knee and stane leg knee and B

x

and B

y

ground reation fores. For the passive

version, u

0

� u

1

� 0. For the atuated version, � = 0, and u

1

� 0 during the seond

phase.

b) Kinemati equations:
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The last equation is only valid during the seond phase.

Kneestrike and heelstrike are modeled as perfetly inelasti impats whih result in ve-

loity disontinuities and energy dissipation.

Kneestrike ours when the relative angle between thigh and shank is zero:

s

kneestrike

(x) = �

1

� �

2

= 0: (8.26)

Additionally, the rate of the shank needs to be larger than that of the thigh in order to

ause impat:
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(x) =

_

�

1

�

_

�

2

> 0: (8.27)

With the assumption that exiting torques for the atuated robot version are ontinuous

at kneestrike, veloity jumps for both model versions are uniquely determined by the

onditions

� onservation of angular momentum of swing leg about hip point H

H
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�M
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=
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X
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�

r
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�m _r
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+�
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�

i

�

= onst: (8.28)

� onservation of angular momentum of robot about stane point S

H
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=

4

X

i=1

�

r
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�m _r

i

+�
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�

i

�

= onst: (8.29)
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� equal angular veloities of thigh and shank of swing leg after the impat:

_

�

1

=

_

�

2

: (8.30)

For non-ontinuous torques, the hip torque di�erene would have to be inluded in the

�rst balane.

Heelstrike takes plae when the height of the swing leg heel approahes zero:

s
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(x; p) = (l
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+ l

S

) os�

3

� l

T
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� l

S

os�

2

: (8.31)

The vertial veloity of the heel at this point has to be negative
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The heelstrike transition phase also inludes a shifting of legs. The swing leg beomes the

stane leg and vie versa. whih auses the hange of indies in the equations below.

At heelstrike, the assumptions of no impulse on the former stane leg when leaving the

ground but only on the former swing leg when hitting the ground (see setion 2.1.3) and

of ontinuous torques lead to the following set of onditions: Conservation of angular

momentum
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� and of former stane shaft about knee
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must be guaranteed. Again, for non-ontinuous torques, values before and after ollision

would have to be taken into aount for the last two balane equations.
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The inlusion of the leg shift in the transition phase allows us to apply periodiity on-

straints to all positions and veloities after one step of time T (to be determined):
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8.2 Results of Stability Optimization

In this setion we present our key optimization results for the kneed walking robot. Several

performane riteria have been evaluated: the spetral radius of the monodromy matrix

as well as indued norms of this matrix and its powers. All seven model parameters are

varied in the outer stability optimization loop. We also have studied the size of stable

regions in the neighborhood of the solutions found. We ompare the results of nonlinear

stability analysis with the orresponding passive solutions.

In the inner loop optimal ontrol problem we have again minimized a sum of weighted

torques squared. They have been disretized as pieewise onstant funtions on a grid

with ten intervals per phase. The same grid was used for multiple shooting. Knee exion

during the �rst phase, learane of the swing foot during the full step and a minimum leg

inlination at the initial point have been enfored by inequality onstraints at the respe-

tive multiple shooting nodes. Box onstraints have been imposed on state and ontrol

variables and phase times. Periodiity and swithing onditions have been formulated as

oupled and deoupled equality onstraints.

Result of eigenvalue optimization

The most stable solution for the atuated kneed walking robot found by eigenvalue opti-

mization has a spetral radius of 0.5667. The solution was reently reported in Mombaur

et al. [64℄. We give further details in this setion.

Figure 8.3a shows the trajetory desribing one step with its two phases of motion. Dis-

ontinuities our kneestrike and heelstrike in the middle and at the end respetively.

Sine the �nal disontinuity also inludes a leg shift, not only the veloities but also the

position variables are disontinuous.

The orresponding atuator torques are shown in �gure 8.3b. Note the ontinuity of

ontrols at the disontinuies of the state variables.

The initial values of this most stable periodi trajetory are
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Figure 8.3: Trajetories and ontrol variable histories of most stable solution for atuated kneed

walker
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) = 0:3

_

�
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0

) = 0:8385

_

�

2

(t

0

) = �4:5056

_

�

3

(t

0

) = �1:5686:

and its period is T = 0:7832s with phase times T

1

= 0:4905s and T

2

= 0:2926s.

The solution was obtained for a robot on�guration with parameters values l

T

= 0:2627,

l

S

= 0:1685, m

T

= 1:2759, m

S

= 0:6575, w

S

= 0:0402, 

T

= 0:0111, and 

S

= 0:2259.

The robot has no variable desribing the diretion of travel but its step length an be

omputed from angular on�gurations and leg segments length: �

step

= 0:127m.

Stability omputations resulted in the eigenvalues

�

1;2

= (0:3091;�0:475)

�

3

= �0:4271

�

4

= �0:0210

�

5;6

= 0:0

j�

1;2

j = 0:5667

j�

3

j = 0:4271

j�

4

j = 0:0210

j�

5;6

j = 0:0:

The maximum eigenvalue is a onjugate omplex ouple, and its absolute value is smaller

than one. The two eigenvalues of zero ome from the fat that the degrees of freedom of

the robot are redued from three to two after kneestrike (i.e. from six to four independent

diretions in state spae). This leads to a oupling of perturbations during this seond

phase whih is represented by a rank redution by two of the monodromy matrix, and

thus by two zero eigenvalues.

Even though the spetral radius is smaller than one, the indued matrix norms of this

solution are huge { (ompared e.g. to the norms omputed for the hopping robot in the

previous hapter):

�

max

= 711:556

jjCjj

1

= 824:279

jjCjj

1

= 1067:08:

As shown in �gure 8.4 they derease with inreasing matrix powers. For a yle of 13

steps and more, the 1-, 2-, and 1-norms are smaller than one.

Performing one-dimensional perturbations of eah veloity variable and oupled pertur-

bations of the positions whih are onsistent with the heelstrike manifold produes the

following ranges:
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This range of attrating initial onditions ould most likely be substantially inreased by

hanging from point feet to e.g. irular feet. Further inrease would probably result from

making the foot a separate body and inluding a presribed periodi torque at the ankle.

The maximum model parameter perturbations from whih the system an still reover

are:

l

T

+0.03% -0.01%

l

S

+0.03% -0.1%

m

T

+0.08% -0.02%

m

S

+0.01% -0.05%

w

S

+0.04% -0.1%



T

+0.2% -0.8%



S

+0.4% -0.1%.

They are quite small but an be onsidered as being above the manufaturing tolerane.

We suspet that there is a orrelation between the small stability margins and the large

matrix norms doumented above. Additionally there are nonlinear e�ets produing in-

stability, like premature phase hanges aused e.g. by foot suÆng in the middle of the

step, that are aptured neither in the eigenvalues nor in the norms. Compare �gure 8.5 for

swithing funtions and note the loal minimum with small funtion value of the heelstrike

funtion.
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Figure 8.5: Swithing funtions for kneestrike (left) and heelstrike (right)
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) in the neighborhood of most stable solution

The question we have answered so far is for whih range of perturbed initial states and

parameters the robot reovers under the inuene of the original atuation and returns

to his standard gait.

Another way to look at the question of stable areas is to hek for whih parameter values

in the neighborhood of the solution other solutions of the periodi optimal ontrol problem

exist and are still stable. Those solutions have generally di�erent atuator patterns and

initial values. As it is impossible to visualize a seven-dimensional parameter spae we

present two-dimensional uts varying only two parameters. We show a variation of masses

of thigh and shank in �gure 8.6, and of the respetive lengths in �gure 8.7, eah time

keeping the other �ve �xed. Every point in these plots represents an individual solution

of the optimal ontrol problem with joint torques minimized.
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Comparison with equivalant passive-dynami walker

We ompare this most stable result for the atuated walking robot with the solution for

the orresponding passive robot presented in Mombaur et al [62℄.

Its monodromy matrix has a spetral radius of omparable size:

j�

max

j = 0:6144;

but its nonlinear stability properties are muh better.

It an sustain muh more substantial perturbations of the initial values of veloities and

positions than the atuated robot:

_

�

1

+ 315% - 100%

_

�

2

+ 48% - 42%

_

�

3

+ 9% - 3%

�

1

�

2

�

3

9

=

;

+ 4% - 5%

Figure 8.8 shows the motion of the robot when applying the largest possible perturbation

to �

1

(+ 315%) in omparison with the unperturbed motion. The self-stabilizing reation

of the system inludes a very pronouned time shift. At the end the perturbed solution

preedes the referene solution by about half a yle. This reation would be impossible

for an atuated robot. Additionally, the perturbations provoke a slow osillation about

the base trajetory.
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passive-dynami robot (taken from Mombaur et al. [62℄)
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The indued matrix norms of the projeted monodromy matrix are

�

max

= 4:902

jjCjj

1

= 6:172

jjCjj

1

= 8:099;

muh smaller than for the atuated solution.

For a omplete desription of this solution, we also give parameter values l

T

= 0:4017,

l

S

= 0:394, m

T

= 2:276, m

S

= 0:6965, w

S

= 0:00752, 

T

= 0:1382, 

S

= 0:2547, and

� = 0:096, initial point

x

T

0

= (�0:3577;�0:3577; 0:3577; 0:2428;�2:7596;�1:3477)

and a period of T = 0:7084s with phase times T

1

= 0:4317s and T

2

= 0:2767s.

Result of singular value optimization

We have again studied the e�et of singular value optimization of the monodromy matrix

on both the maximum singular value and the maximum eigenvalue.

The result obtained from these omputations is

�

max

(C) = 67:758

This is a signi�ant redution ompared to the previous result but still a large fator of

ampli�ation for perturbations over this step.

The orresponding maximum eigenvalue is

j�

max

(C)j = 7:6325:

The solution therefore is highly unstable even judged by linear theory. Figure 8.9 illus-

trates the development of the spetral radius during singular value optimization with an

initial deterioration and a slight improvement at the end.

The solution is haraterized by the set of model parameters l

T

= 0:40, l

S

= 0:40, m

T

=

0:5048, m

S

= 0:8963, w

S

= 0:0966, 

T

= 0:5972, and 

S

= 0:010 and the initial values

x

T

0

= (�0:3;�0:3; 0:3;�0:3778;�4:0958;�1:596):

The period of a step is T = 0:5814s with T

1

= 0:3314s and T

2

= 0:25s for the individual

phases.

Result of Singular Value Optimization of Matrix Power

For the example of the hopping robot disussed previously, stable solutions were found

by minimizing a norm of a power of the monodromy matrix. For the atuated kneed
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Figure 8.9: Development of spetral radius during optimization of maximum singular value of

monodromy matrix

walking robot we were again suessful with the same approah but had to use higher

matrix powers than before.

Choosing the maximum singular value of the eighth matrix power we found an optimum

of

�

max

(C

8

) = 2:179;

and a orresponding spetral radius of

�

max

(C) = 0:906:

The development of the maximum eigenvalue during optimization of the maximum singu-

lar value of the eighth matrix power is shown in �gure 8.11. The solution is not related to

the solution found with eigenvalue optimization as it is positioned in a very distint region

in parameter spae: l

T

= 0:1538, l

S

= 0:3966, m

T

= 0:6785, m

S

= 1:841, w

S

= 0:0602,



T

= 0:1629, and 

S

= 0:0326. The periodi trajetory has initial values of

x

T

0

= (�0:3466;�0:3466; 0:3466; 1:7952;�3:2271;�1:4128)

and phase times of T

1

= 0:4234s and T

2

= 0:25s. leading to an overall yle time of

T = 0:6734s. Figures 8.10 gives state and ontrol variable histories assoiated with this

solution.

Like for the most stable solution we visualize the regions of stable solutions in the neigh-

borhood if two out of seven parameters are varied. A variation of segments lengths l

T

and

l

S

is shown in �gure 8.12 and of segment masses m

T

and m

S

in �gure 8.13 respetively.

The values of norms over a yle of one step are

�

max

(C) = 247:47

jjCjj

1

= 312:68

jjCjj

1

= 361:68;



136 Chapter 8. Open-loop Stable Human-like Atuated Walking Robot

Figure 8.10: Trajetories and ontrols for atuated kneed walker - result of singular value

optimization of C

8
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still very large.

Note the behavior of norms as funtions of matrix powers of this solution shown in �g-

ure 8.14. The optimization riterion auses perturbations to have the least signi�ant

ampli�ation over multiples of eight steps.

8.3 Summary

The key results reported in this hapter are:

� We have presented stable solutions for an open-loop ontrolled biped robot with

knees walking on at ground in a human-like fashion atuated by torques at hip

and knees. To our knowledge this is the �rst robot of this kind.

� Judged by linear theory the best solution found is very stable with a maximum

eigenvalue safely below one. Its stability margins desribing possible perturbations

of initial values and parameters are not very large. The regions of stable periodi

solutions in 2-dimensional parameter spae are more extended and have band shape.

� Comparison with an equivalent passive biped walker shows that the passive system

has onsiderably larger stability margins even though its monodromy matrix has

roughly the same spetral radius. During reovery from perturbations the passive

system enounters an enormous shift along its trajetory. We have seen however

in the previous hapter that small stability margins are not a standard feature of

atuated open-loop ontrolled robots.

� With respet to matrix norm optimization the observations reported in the previous

hapter ould be on�rmed:

1. There are again no solutions for whih perturbations deay over one yle

measured in the 1-, 2, or 1-norm.

2. Optimization of a norm of the monodromy matrix itself results in an unstable

solution.

3. Optimization of a norm of a higher matrix power delivers stable solutions.

There is no general rule for the hoie of the matrix exponent. In this ase a

higher power than previously had to be used.

� While asking for a norm smaller than one is too strit and not neessary, the norm

also should not be too large. We have observed a orrelation between small stability

margins and extremely large matrix norms (> 100), although we are aware that this

is not the only reason for destabilization. There are also nonlinear e�ets, like e.g.

disontinuous hanges of the swithing struture.





Chapter 9

Three-dimensional Passive-dynami

Walking Robot { The Tinkertoy

The Tinkertoy robot is a passive three-dimensional walker with two straight legs that

moves on an inlined slope without any atuator help. To our knowledge it is the �rst

three-dimensional dynamially stable robot that has no statially stable standing position.

The physial robot has been built by Coleman [18℄ experimenting with the Tinkertoy

R

onstrution set. Before our ooperation started, the stable behavior of the real robot

ould not be veri�ed theoretially; all simulations of the model had been unstable (Cole-

man& Ruina [20℄). At this point it was not lear if a statially unstable rigid body model

ould be passively stable in three dimensions or if the dynami stability of the real robot

was due to properties not aptured in the mathematial model, e. g. the link elasti-

ity. The goal of our omputations was not exatly mimi the quantities of the physial

robot, but to answer this more general question and �nd stable on�gurations more or

less related to the real robot.

The mathematial model has been established by Coleman using the MATLAB

R

software

pakage. Corretions and modi�ations have been done in joint work. Kinemati relations

for the motion of robots with di�erent foot forms have been established on the basis

of Goyal [34℄. For use with our optimization software we have transferred the model

equations to C++ and inluded it in our model library.

In this thesis, we give results for three di�erent model versions with disk feet, toroidal

feet and point feet, where the third is a speial ase of the �rst as well as the seond

with radii equal to zero. This is the �rst publiation of stable solutions for the point feet

and toroidal feet versions whereas the disk foot results are an improvement of the stable

solutions published in Mombaur et al. [63℄ and Coleman and al. [19℄.

Aording to the lassi�ation of setion 1.4 the Tinkertoy robot is non-onservative due

to ground ollision and non-holonomi (disk and toroidal feet) or pieewise holonomi but

overall non-holonomi (point feet). Both aspets an ontribute to the existene of stable

solutions.
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9.1 Robot Model

The Tinkertoy robot onsists of two legs, i.e. a pair of symmetri rigid bodies, onneted

by a hinge. Always only one foot is in rolling, non-sliding ontat with the ground. The

foot swithing is assumed to be instantaneous and ollisional suh that there is no double

support phase. Figure 9.1 ontains an animation of the Tinkertoy with disk shaped feet.

The robot model with its parameters and on�guration variables is further spei�ed in

�gure 9.2. We model only one step and not a full yle onsisting of two steps. This

proedure eliminates unsymmetri gaits as well as oblique diretions of desent. The

heelstrike ollision also inludes the leg shift from left to right and vie versa to make the

appliation of periodiity onstraints after one step possible.

The system has got four DOFs. For the desription, we use the following angle oordinates

q

T

= (�;  ; �

st

; �

sw

)

T

(9.1)

where, speaking in aeronautial terms, � is the robot's heading angle,  is its rolling

angle, �

st

the pith angle of the stane leg, and �

sw

the relative pith orientation of the

swing leg. With the orresponding rates this results in an eight-dimensional state spae.

The inertia matrix of a rigid body in three dimensions has to satisfy the two properties:

� all eigenvalues are positive

� eigenvalues satisfy the triangle inequality �

i

+ �

j

> �

k

, i 6= j 6= k.

To guarantee a ful�llment of these properties during variation of the inertia matrix, Cole-

man and Ruina have developed a re-parameterization (see Coleman [18℄). The prinipal

moments of inertia an be rewritten using the parameters d

1

, d

2

, d

3

(desribing the dy-

namially equivalent arrangement of six masses m

d

=

m

6

in the distanes d

i

from the

enter):

I

1

= (d

2

2

+ d

2

3

) (9.2)

I

2

= (d

2

1

+ d

2

3

) (9.3)

I

3

= (d

2

1

+ d

2

2

): (9.4)

A general inertia matrix is generated from the prinipal axis inertia by rotations hara-

terized by three additional parameters, the angles �, �, .

The 14/15 model parameters of the tinkertoy robot are the six inertia parameters d

1

, d

2

,

d

3

, �, �, , the leg mass m, the slope angle �, the total leg length l, the leg enter of

mass loation d

x

, d

y

, d

z

in loal leg oordinates the hip spaing w, the foot radius r

1

, and

for toroidal feet additionally a seond (perpendiular) foot radius r

2

. Please note that

all parameters are dimensionless: all lengths are measured relative to the total leg length

and all inertia matrix entries are relative to ml

2

(and the d

i

therefore relative to

p

ml),

and the gravity onstant is set to 1.

The equations of motion of the Tinkertoy robot are too omplex to be given in expliit

form. The four seond order equations of motion are derived by angular momentum

balanes of
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Figure 9.1: Stable periodi gait of Tinkertoy robot with disk feet
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Drawn by: Jonathan Leung

α

α

x
y

z

Z

l

θ
st

θ
sw

ψ

stance leg

(leg 1)

swing leg

(leg 2)

m, I
2

w

Y

X
φ

r
1

r
2

G
1

C

D

G
2 m, I

1

H

g
n
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� the whole robot about ontat point C of stane leg

2

X

i=1

r

C;i

�m

i

a

i

+

2

X

i=1

(�

i

_!

i

+ !

i

��

i

� !

i

) =

2

X

i=1

r

C;i

�m

i

g (9.5)

where r

C;i

= r

i

� r

C

is the position of the enter of mass of body i relative to

the ontat point C, a

i

= �r

i

is the absolute aeleration of body i, !

i

its absolute

angular veloity, �

i

its inertia matrix in loal oordinates, and m

i

its mass (with

all masses being equal: m

1

= m

2

= m).

� the swing leg about the hip joint hinge axis n

hip

(index 1 denotes the stane leg and

2 the swing leg):

n

hip

� (r

hip;2

�m

2

a

2

+�

2

_!

2

+ !

2

� �

2

� !

2

) = n

hip

� (r

hip;2

�m

2

g) : (9.6)

Ground ollision of the swing foot ours when its lowest point reahes zero altitude. As

both feet have the same rotational symmetri shape and the legs rotate in parallel planes

this is for all possible foot shapes equivalent with the postulation that the enters (in

terms of r

1

) of both feet are at the same level:

s(x; p) = (l � r

1

)(os(�

st

+ �

sw

) + os �

st

) os � w sin = 0: (9.7)

As an additional ondition, the vertial veloity of the lowest swing foot point (or alter-

natively the derivative of the above equation) has to be negative:

(x; p) = (l � r

1

)(os(�

st

+ �

sw

) + os �

st

)(� sin 

_

 ) + l(� sin(�

st

+ �

sw

)(

_

�

st

+

_

�

sw

)�

sin �

st

_

�

st

) os + w os 

_

 < 0 (9.8)

At ollision, position variables are of ourse ontinuous in physial spae, but veloities

undergo disontinuities. Veloities after heelstrike (and after foot swithing) are omputed

with the following relations:

� onservation of angular momentum of the whole system about the new ontat point

D:

2

X

i=1

(r

D;i

�m

i

v

i

+�

i

!

i

) = onst: (9.9)

where r

D;i

= r

i

� r

D

and v

i

is the absolute veloity of body i.

� onservation of angular momentum of the new swing leg sw+ (index 1 before and

index 2 after ollision) about the hinge axis:

n

hip

� (r

hip;sw+

�m

sw+

v

sw+

+�

sw+

!

sw+

) = onst: (9.10)

During the whole swing phase, foot learane of the swing foot is enfored by:

l(os(�

sw

+ �

st

) + os �

st

) os � w sin > 0: (9.11)
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We demand periodiity of all eight state variables over one step, inluding the leg shift:
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with free yle time T .

9.2 Results of Stability Optimization

We present stable solutions for Tinkertoy robots with disk feet, toroidal feet and point feet.

In all three ases we used the spetral radius as objetive funtion in the outer stability

optimization loop. Box onstraints have been imposed on the parameters in order to keep

them within reasonable ranges and to avoid non-physial results, like negative dimensions.

In the inner loop periodi optimal ontrol problem { with zero ontrols { we have mini-

mized the duration of steps for all solutions presented here. We have used ten multiple

shooting intervals for the swing phase. The foot learane ondition has been imposed on

all interior points. State variables must satisfy box onstraints. To guarantee a minimum

steplength and avoid the degenerate ase of zero step length a ondition on �

st

(0) has

been formulated.

9.2.1 Disk Feet

As a start, results for the model version with disk feet will be presented and explained. For

this model we have already published stable solutions in Mombaur et al. [63℄ and Coleman

and al. [19℄. During the researh for this thesis we were able to further improve the results

by means of the two-level optimization proedure and perform a detailed analysis of the

solutions.

Result of eigenvalue optimization

The most stable solution in terms of eigenvalues for the Tinkertoy robot with disk feet is

haraterized by a monodromy matrix with spetral radius 0.7579, safely below one. It

represents the overall optimum of eigenvalue optimization.

The resulting robot on�guration has the model parameters d

1

= 0:1442, d

2

= 0:393,

d

3

= 0:2925, � = �0:0138, � = �0:2688,  = �8:2519E � 03, m = 1:0, � = 0:0757,
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d

x

= 0:0029, d

y

= 0:7903, d

z

= 0:4064, l = 1:0, w = 0:3234, and r

1

= 0:032, all without

dimension. Note that the robot is statially unstable sine d

z

> r

1

. The resulting radius

of the disk foot in the optimum is surprisingly small.

The initial values of this most stable solution are

�(0) = 0:0969

 (0) = �0:0132

�

st

(0) = �0:196

�

sw

(0) = 3:510

_

�(0) = �0:0863

_

 (0) = �0:0275

_

�

st

(0) = 0:410

_

�

sw

(0) = �0:327

Figure 9.3 shows the orresponding trajetory for all eight state variables. It pitures

one full step of the robot onsisting of the swing phase and the �nal disontinuity at

heelstrike. The heelstrike transition phase also inludes a leg shift whih explains why the

plots show disontinuities not only of the veloities but also of the position variables. All

eight state variables satisfy periodiity onditions. The duration of one step is T = 1:358.

In �gure 9.4 we show swing foot learane over one step whih is the swithing funtion

for heelstrike detetion.

The eight eigenvalues of the Jaobian of the Poinar�e map assoiated with this solution

are

�

1

= 1:0

�

2;3

= (�0:0076;�0:7575)

�

4;5

= (�0:6962;�0:2996)

�

6;7

= (�0:7048;�0:27658)

�

8

= �0:3112

and in terms of absolute values

j�

1

j = 1:0

j�

2;3

j = 0:7575

j�

4;5

j = 0:7579

j�

6;7

j = 0:7571

j�

8

j = 0:3112

The eigenvalue of one is aused by the passivity of the Tinkertoy and, as we have explained

in setion 4.4, is not relevant for stability. j�

4;5

j represents the spetral radius of the

monodromy matrix. The fat that six out of seven parameters are equal within the

tolerane of onvergene is an indiation that the optimization has produed not only a

loal minimum but also a point that is very good from a global point of view.

The indued matrix norms of the projeted matrix are

�

max

(C) = 4:284
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Figure 9.3: Most stable trajetory of Tinkertoy with disk feet
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Figure 9.4: Swing foot learane during one step

jjCjj

1

= 6:260

jjCjj

1

= 7:892

Measured in these norms perturbations do therefore not ontrat but are loally ampli�ed

in this partiular step. Figure illustrates the size of matrix norms for inreasing matrix

powers, i.e. for multiple steps. For this spei� solution a ontration of perturbations

only ours over a yle of 18 steps or more than 22 steps.

The study of stability margins has however proven again that a ontration of norms

over one step is not neessary for stable behavior of the disontinuous system. We were

able to apply one-dimensional perturbations of onsiderable size to the initial values of

all position and veloity variables, from whih the system would still reover:

� +39% -43%

 +56% -56%

�

st

+5% -4%

�

sw

+0.6% -1%

_

� +8% -6%

_

 +19% -14%

_

�

st

+2% -2%

_

�

sw

+5% -5%

The reason for failure if larger perturbations are applied is typially foot suÆng in the

middle of the step (ompare foot learane funtion in �gure 9.4).

Figure 9.6 illustrates the deay of the osillation introdued by a perturbation of +39%

applied to the initial value of � over a longer interval. In �gure 9.7 we ompare the

trajetories of this perturbed solution to the orresponding base solution over a period of

a little bit more than ten steps. The system reovers from this perturbation while only

performing a small orbital shift.
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bation of �
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The parameter values ould likewise be perturbed within large ranges:

d

1

+40% -240%

d

2

+64% -264%

d

3

+12% +14%

� +2300% -2600%

� +1300% -1500%

 +1 �1

� +17% -30%

d

x

+130% -140%

d

y

+8% -8%

d

z

+7% -5%

w +12% -7%

r

1

+72% -75%

Another stable solution

We present a seond stable solution with a spetral radius of 0.809, slightly larger than for

solution 1. It has been found as intermediate onvergene point of eigenvalue optimization

before a restart of the polytope algorithm.

This solution is interesting for di�erent reasons:

� it shows that stable solutions exist in di�erent regions of parameter spae,

� although the eigenvalue indiates weaker stability, its stability margins are larger

than for solution 1,

� for some purposes it might be useful to have a stable robot with a more pronouned

disk foot.

The model parameters of this robot are d

1

= 0:0074, d

2

= 0:8805, d

3

= 0:021, � = 0:0456,

� = �0:301,  = 0:0049, m = 1:0, � = 0:077, d

x

= �4:7e � 5, d

y

= 0:7024, d

z

= 0:1856,

l = 1:0, w = 0:3579, and r

1

= 0:1185. The most signi�ant di�erenes to the �rst solution

lie in the mass distribution, the foot radius and the vertial . o. m. position.

The initial value of the orresponding trajetory whih looks very similar to the previous

one are

�(0) = 0:1044

 (0) = �0:0102

�

st

(0) = �0:1729

�

sw

(0) = 3:462

_

�(0) = �0:1233

_

 (0) = �0:0218

_

�

st

(0) = 0:4727

_

�

sw

(0) = �0:3746

The yle time is T = 1:130s.
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Figure 9.8: Matrix norms and spetral radius for di�erent matrix powers of monodromy matrix

over di�erent numbers of steps

It is haraterized by the eigenvalues

�

1

= 1:0

�

2;3

= (0:2432;�0:6403)

�

4;5

= (�0:7724;�0:2395)

�

6;7

= (�0:7657;�0:2614)

�

8

= �0:2752

j�

1

j = 1:0

j�

2;3

j = 0:685

j�

4;5

j = 0:8087

j�

6;7

j = 0:8091

j�

8

j = 0:2752:

Again the 1-, 2-, and 1-norm are not ontrative for this one-step yle

�

max

(C) = 3:705

jjCjj

1

= 5:682

jjCjj

1

= 5:986:

The maximum singular value is ontrative for a yle of more than 22 steps (see �gure

9.8).

The stability margins of this solution are larger for the previous one in most omponents

of the state variable vetor:

� +100% -102%

 +136% -95%

�

st

+15% -14%

�

sw

+1% -1%

_

� +9% -9%

_

 +32% -32%

_

�

st

+6% -5%

_

�

sw

+7% -9%
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This solution also allows for larger perturbations of the parameter values under whih the

robot an still reover:

d

1

+2000% -2000%

d

2

+27% -19%

d

3

+230% -430%

� +11% -9%

� +3% -0.5%

 +1 �1

� +29% -62%

d

x

+ 10000% - 10000%

d

y

+10% -23%

d

z

+27% -36%

w +22% -8%

r

1

+26% -30%

9.2.2 Toroidal Feet

The model version with toroidal feet is the most general of the three as it inludes the other

two as speial ases. A model with feet of non-degenerate toroidal shape also onstitutes

the best approximation of the real Tinkertoy robot. We did not aim at imitating the

quantitities of the real robot in our omputations but rather at �nding the solution with

the best stability properties.

Result of eigenvalue optimization

Eigenvalue optimization for the Tinkertoy with toroidal feet produed an optimal value

of 0.7571. Treating the most general ase, it is lower than the disk feet solution, as one

ould expet. But obviously there is not a big di�erene whih an be explained by the

parameter values at the solution: d

1

= 0:0483, d

2

= 0:420, d

3

= 0:3191, � = 0:0545,

� = �0:3072,  = �0:0097, m = 1:0, � = 0:075, d

x

= 0:0027, d

y

= 0:7949, d

z

= 0:4396,

l = 1:0, w = 0:3339, r

1

= 0:01827 r

2

= 0:0053. The foot radii are surprisingly small,

espeially the seond one. The optimal toroidal foot is thus lose to a tiny disk - and not

too far from a point foot.

The �xed point of this periodi solution is

x

T

0

= (0:093;�0:0124;�0:1962; 3:511;�0:0835;�0:0291; 0:402;�0:3295)

and its yle time T = 1:3536s.

The full set of eigenvalues of Jaobian of the Poinar�e map is
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�

1

= 1:0

�

2;3

= (0:0161;�0:7569)

�

4;5

= (�0:6991;�0:291)

�

6;7

= (�0:7044;�0:2777)

�

8

= �0:308

j�

1

= 1:0

j�

2;3

j = 0:7571

j�

4;5

j = 0:7572

j�

6;7

j = 0:7572

j�

8

j = 0:308:

The indued matrix norms of the projeted map are

�

max

= 4:324

jjCjj

1

= 6:342

jjCjj

1

= 7:835;

being even slightly larger than those of the most stable solution for a disk foot walker.

Applying one-dimensional perturbations to the initial values of eah state variable we

determined the following stability margins:

� +55% -66%

 +65% -62%

�

st

+5% -4%

�

sw

+0.5% -1%

_

� +9% -6%

_

 +18% -14%

_

�

st

+2% -2%

_

�

sw

+6% -5%.

Figure 9.9 illustrates the reation of a robot to a perturbation of the initial value of

_

�

(9%). Note the signi�ant orbital shift and the large osillations about the base trajetory

in some omponents of the state variable vetor.

Model parameters ould also be perturbed by large perentages:
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Figure 9.9: Stable periodi solution for Tinkertoy with toroidal feet with and without pertur-

bation of

_

�
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d

1

+220% -420%

d

2

+62% -262%

d

3

+10% -12%

� +490% -540%

� +120% -310%

 +1 �1

� 18% -30%

d

x

+130% -170%

d

y

7% -7%

d

z

8% -5%

w +12% -7%

r +130% -100%

r

2

+700% -100%.

Results of norm optimization

In the two previous hapters the e�ets of norms as optimization riterion on the spetral

radius have been disussed extensively. Computations for the Tinkertoy on�rm the

results presented before and we will therefore skip the disussion.

Here we want to fous on the question if at least for this passive system solutions with

ontrating norms of the monodromy matrix an be found. We have studied the question

for this most general ase of the Tinkertoy with toroidal feet. The answer is again negative.

Singular value optimization resulted in an optimum of

�

max

(C) = 2:854:

Minimizing the 1-norm of the monodromy matrix lead to a �nal value of

jjCjj

1

= 4:354:

Of ourse this is not a general rule for passive systems, but a spei� result for the

Tinkertoy. We an only onlude that asking for a 1-, 2-, or 1-norm below one seems to

be a demand diÆult to satisfy.

9.2.3 Point Feet

The existene of stable solutions for a walker with point feet is probably the most aston-

ishing result reported in this hapter. It is a speial ase of the latter two with r

1

= r

2

= 0.

Result of eigenvalue optimization

The most stable solution for the Tinkertoy robot with disk feet has a monodromy matrix

with spetral radius 0.7958. The eight eigenvalues are
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�

1

= 1:0

�

2;3

= (0:068; 0:7929)

�

4;5

= (�0:7357; 0:3023)

�

6;7

= (�0:7582; 0:2419)

�

8

= �0:1974

j�

1

= 1:0

j�

2;3

j = 0:7958

j�

4;5

j = 0:7954

j�

6;7

j = 0:7959

j�

8

j = 0:1974:

Again, six out of eight eigenvalue are equal in magnitude.

The model parameters of this solution are d

1

= 0:0252, d

2

= 0:3879, d

3

= 0:2858, � =

�0:009, � = �0:2323,  = �0:0294, m = 1:0, � = 0:0757, d

x

= 0:0024, d

y

= 0:7901,

d

z

= 0:4323, l = 1:0, w = 0:3165.

The orresponding trajetory has initial values of

x

T

0

= (0:0876;�0:0114;�0:1731; 3:465;�0:0885;�0:0256; 0:3952;�0:3248)

and a yle time of T = 1:2314s:

Again the matrix norms over one step of the robot are all larger than one:

�

max

= 4:066

jjCjj

1

= 6:136

jjCjj

1

= 7:290:

The region of stability in whih the robot an reover from perturbations is desribed by

the stability margins

� +58% -70%

 +71% -53%

�

st

+6% -5%

�

sw

+0.5% -0.9%

_

� +8% -6%

_

 +20% -15%

_

�

st

+2% -2%

_

�

sw

+5% -5%.

Figure 7.5 illustrates the di�erenes between the original periodi trajetory and one with

a perturbed initial value of  (�53%).

The robot also persists in its gait under the following perturbations of model parameter

values:
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Figure 9.10: Most stable periodi solution for Tinkertoy with point feet with and without

perturbation of  
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d

1

+440% -640%

d

2

+80% -280%

d

3

+10% -10%

� +3200% -3100%

� +1500% -1700%

 +1 �1

� +13% -36%

d

x

+130% -120%

d

y

+9% -9%

d

z

+8% -6%

w +13% -6%.

9.3 Summary

The most important results of our omputations for the Tinkertoy robot are:

� For the �rst time, stable solutions for passive-dynami three-dimensional sti�-legged

walking devies with point feet and toroidal feet have been presented.

� New improved solutions for the model version with disk feet have been found.

� All the solutions presented here are dynamially stable trajetories although the

respetive robots have no statially stable standing positions. In all ases the enters

of mass lie above the enters of foot urvature: z > r

1

and z > r

2

.

� In all three ases the stable solutions were not only haraterized by small eigenval-

ues but also by large stability margins. We ould again on�rm that the existene

of a ontrative matrix norm is not neessary for exellent stability properties.

� Even for this passive system there is no solution with an indued matrix norm

smaller than one. For the solutions found by eigenvalue optimization, 1-, 2-, or

1-norm ontrat over a yle of more than roughly twenty steps.

� Although we are aware that this is not a general rule for analyti matries we have

observed that for all the monodromy matries of all robot models that we have

studied during the researh for this thesis, the maximum singular value was smaller

than the 1- and1-norms and therefore loser to the spetral radius. This might be

pure hane, but we assume that it is aused by the underlying dynamis.



Conlusions and Outlook

Summary & Conlusions

With this thesis, ahievements have been made on both the engineering aspet of open-

loop stable walking and running robots and the researh about numerial methods ne-

essary to �nd these solutions. The fous, however, has been set on the engineering side

of the work and we therefore start with the desription of these results that seem to be

new in this �eld of researh. We then proeed to demonstrate the ahievements made on

the numerial side of the work.

Walking Robots

Our main ontributions lie in the �eld of theoretial walking robot researh. Using opti-

mization methods we were able to demonstrate the exibility of the onept of open-loop

ontrol. It is appliable to a by far broader lass of walking robots than was generally

oneived before.

New Open-loop Stable Robot Models

During the ourse of our researh we have disovered various robot on�gurations apable

of stable motion without feedbak:

� Atuated 2D human-like walking robot:

This seems to be the �rst atuated open-loop stable robot mimiking human gait.

It has knees and point feet and is powered by hip and knee torques. Only passive-

dynami systems of similar on�guration have been known before.

� Atuated 2D one-legged hopping robot:

Open-loop stable trajetories for hopping robots with point feet and irular feet

have been found. Both versions have no statially stable standing on�guration.

Unlike previously assumed a irular foot is not neessary for open-loop stable hop-

ping.
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� Passive-dynami 3D walking robot:

For the �rst time, stable solutions for a 3D passive-dynami three-dimensional sti�-

legged walking robot with hip spaing and feet of point, disk, or toroidal shape

have been omputed. The solutions for all three versions orrespond to statially

unstable robot on�gurations. Stable behavior of a related physial robot had been

observed before.

All stable solutions presented exhibit exellent linear stability properties sine the maxi-

mum eigenvalues of their monodromy matries are muh smaller than one by magnitude.

Nonlinear stability studies of the solutions in terms of allowable perturbations of initial

values and model parameters have been performed. For two of our robots, the one-legged

atuated hopping robot and the passive-dynami walker, signi�ant stability margins were

omputed. It is important to note that large stability margins an be ahieved not only

for passive but also for atuated systems. For the third robot, the atuated kneed walker,

the stability margins are relatively small. A omparison with the orresponding passive

walker studied in a previous publiation shows that a lak of external periodi exitation

failitates the stabilization task onsiderably.

Modeling Periodi Gaits

Guidelines for the formulation of gaits as multi-phase periodi optimal ontrol problems

have been given inluding reommendations for the oordinate hoie of the mehanial

models. The order of motion phases should be presribed. In order to obtain realisti

motions, ground and joint impats should be modeled with veloity disontinuities.

Understanding Human Walking

The kneed atuated walking robot an be onsidered as an abstrat model of human gait.

The 3D passive-dynami robot also aptures some features of human gait. The open-loop

stability of these two models leads to the onjeture that humans might also be apable

of stable walk without any sophistiated feedbak.

Stability Optimization for General Dynamial Systems

Besides the immediate impats on the appliational side, ontributions of more general

mathematial interest have been made.

Stability Optimization Proedure

We have developed a two-level optimization proedure for the improvement of open-loop

stability. To our knowledge this is the �rst suessful attempt to optimize the stability of



Conlusion 163

the solution of a periodi optimal ontrol problem although many pratial problems of

this type exist. The method has two omponents:

� Outer loop stability optimization:

Model design parameters are hosen as optimization variables. The monodromy

matrix of the inner loop optimal ontrol problem solution is omputed and stability

is measured terms of its spetral radius or an alternative objetive funtion (see

below). A diret searh method is used for solution.

� Inner loop periodi optimal ontrol problem:

Controls, initial values and phase times are determined as solution to the periodi

optimal ontrol problem with some appropriate auxiliary objetive funtion. Model

parameters are �xed to the values given by the outer loop. The problem is solved

by a diret method based on multiple shooting.

The appliability of this two-level proedure is not restrited to walking robots. If im-

plemented along the shemes of our model library, any periodi dynamial system (with

disontinuities and multiple phases) ould be optimized by this approah. A natural

split of variables into design and ontrol variables leading to the two-level formulation is

required.

Apparantly new formulas for derivatives of singular values with respet to matrix entries

and for derivatives of monodromy matries for disontinuous dynamis with respet to

initial values and parameters have been derived.

Objetive Funtions for Stability Optimization

We have performed theoretial and numerial studies about the e�ets of several possible

objetive funtions desribing stability. The standard maximum eigenvalue riterion has

produed the most stable results. The diÆulties assoiated with this objetive funtion

have been disussed extensively. Depending on the algorithm hosen, alternative objetive

funtions might be desirable.

For our systems we haven't found any solution for whih the 1-, 2-, or 1-norm of the

monodromy matrix ontrat over the yle of one step. Typially, ontration of per-

turbations ours after several steps. Hene, the existene of a ontrative norm of the

monodromy matrix is not a neessary ondition for exellent stability of a solution in

the nonlinear sense. On the other hand, extremely large matrix norms seem to be one

ontributing fator { besides nonlinear e�ets { to small stability margins.

Using a norm of the monodromy matrix as optimization riterion did not produe stable

solutions. With the optimal norms always being larger than one, the eigenvalues an and

in our ase did remain outside the unit irle. We even observed a deterioration of the

spetral radius during the ourse of optimization. If for a spei� appliation ontration

of a norm over one yle an be ahieved this will of ourse also lead to stable solutions in
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terms of the maximum eigenvalue. However we do not know, how to determine in advane

if this is the ase for some appliation.

Using the norm of a power of the monodromy matrix proved to be a muh better hoie.

It helped to bring the eigenvalue into the stable region and delivered a solution that was

very lose to the solution found with eigenvalue optimization. There is no general rule

for the hoie of the matrix exponent.

We have found one surprising result whih is not supported by standard matrix theory but

might be aused by the underlying dynamis: the monodromy matries of all robot models

that we studied during our researh had a maximum singular value that was smaller than

the 1- and 1-norms and therefore loser to the spetral radius. The maximum singular

value might thus be preferred over some other norm as objetive funtion.

Outlook

Based on the �ndings of our work desribed above we would like to note the following

diretions of researh as partiularly promising:

� Biomehanial Appliations:

Sine human-like abstrat robot models an be open-loop stable, a thorough study

of the stability properties of human gait seems to be an interesting topi. A urrent

�eld of researh is the neuro-stimulation of paraplegi patients. Sine those patients

have only partial feedbak at their disposal the onepts of open-loop ontrol might

be helpful in this ase.

� Manufaturing of designed robots:

Exept for a variant of the 3D passive-dynami walker none of the robots has been

built yet. Manufaturing one of the open-loop ontrolled atuated robots would be

interesting in order to demonstrate self-stabilizing properties in real-life experiments.

One advantage of open-loop ontrol is its simpliity of implementation sine no

sophistiated feedbak ontrol system is required.

� Implementation of one-level approah & appliation:

The split of optimization variables that is required for the two-level approah and

was straightforward for mehanial systems is not always possible for hemial pro-

esses. In the framework of SFB 359 the one-level approah to stability optimization

also formulated in this theses will be implemented. Preliminary studies performed

in this thesis on the hoie of objetive funtions and on derivatives an be used for

this purpose.

� Combination with NMPC:

Open-loop stable systems are able to reover independently from the e�ets of small

perturbations. In order to be able to also ope with more signi�ant perturbations
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an open-loop stable system ould be equipped with additional nonlinear model pre-

ditive ontrol (NMPC). The reent advanes in this �eld make extremely short

response times possible.

� Optimization of robot gaits with respet to standard riteria:

There is a number of optimality questions that are of interest for the walking robot

ommunity, but have not yet been addressed, e.g. what is the fastest possible

walking motion, and when does a mehanism start to run? With the gait models

reated in this thesis and the solution methods for the inner-loop optimal ontrol

problems, answering these questions is a simple and straightforward task. They

have not been addressed in this thesis sine they are not related to its entral topi

of stability.





Appendix A

Software Design and Implementation

The purpose of this appendix is to give some insight into the implementation of the

numerial methods. It is not meant to give a omplete overview of the developed software.

At the beginning of our work it was not lear whih types of algorithms we would �nally

use. We therefore had to hoose an approah that allowed a large amount of exibility

and supported an exhange of omponents. Hene we have deided to use an objet-

oriented implementation in C++. See the lassial book of Booh [12℄ for an introdution

to objet-oriented programming and e.g. Liberty [49℄ or Meyers [58℄, [59℄ for information

on the C++ programming language.

A.1 Basi Software Components

A number of basi software omponents have been reated:

� a mathematial base library ontaining di�erent types of vetor, matrix and tensor

lasses and standard operations

� an extension of the mathematial library for the omputation of eigenvalues and

singular values

� an optimization library with di�erent types of funtions, gradients et., optimization

problems, and optimization routines (see setion A.1.1)

� extensions for eigenvalue and singular value optimization

� a model library allowing for the implementation of disontinuous multi-phase models

� interfaes to ODE-integrators

� integrator-model interfae lasses.
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Figure A.1: Class hierarhy of optimization omponents and problem types (some of whih are

abstrat data types)
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Figure A.2: Class hierarhy of optimization odes and interfaes

A.1.1 The Optimization Library

The optimization library onsists of two parts. The �rst part ontains optimization om-

ponents like variables, funtions, gradients, and Hessian matries. Its hierarhy is shown

in �gure A.1. Arrows denote inheritane. Some of these lasses inherit from base lasses in

the mathematial library, like Variables from Vetor. The seond part of the optimization

library ontains the optimization routines and interfaes (see �gure A.2). All optimization

routines are derived from the same base lass and have the same interfaes. Optimiza-

tion problems and solvers an be ombined in a plug-and play manner where senseless

ombinations (like an NLP ombined with and LP-solver) lead to an error message.

A.2 Two-level Stability Optimization Proedure

Figure A.3 illustrates the two-level stability optimization proedure that is a ore ompo-

nent of this thesis. We show here the example of eigenvalue optimization for the Tinkertoy

robot. The �gure shows the hierarhy of lasses as well as the integration of external om-

ponents like MUSCOD-II for the solution of the inner-loop optimal ontrol problem or

LAPACK routine DGEEV for the omputation of eigenvalues.

For the de�nition of a new stability optimization problem the following items have to be

spei�ed by the user:

� in main driver �le stabOpt++.pp:

{ model lass, e.g. Tinkertoy(1);

{ name of inner loop optimal ontrol problem, e.g. tinkertoy1
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Function

NormOfMuscodSolution

MaxEVOfMuscodSolution

Polytope1

Optsolver

DataFileHandler

Model

Tinkertoy

ConstrNLP

OptimizationProblem

Variables

NLP

Constraints
Mixin

DenseMatrixEVnonsym

2

n3

tinkertoy1.c

tinkertoy1.cpp

tinkertoy1.dat

MUSCOD-II

Data file

Description 

of periodic OCPcalls

calls

calls

calls

programmed in C

Two-level stability optimization procedure
(for Tinkertoy robot, using eigenvalue criterion)

LAPACK
 DGEEV

calls

dependencies on classes of mathematical base lib are omitted

writes

programmed in f77

Figure A.3: Two-level stability optimization proedure

{ stability optimization riterion, e.g. maximum eigenvalue

{ onstrained or unonstrained optimization problem

� in orresponding initialization �le stabOpt++.ini:

{ model parameters to be modi�ed

{ polytope unity length and saling

� in optimal ontrol problem soure �le, e.g. tinkertoy1. & tinkertoy1.pp:

{ inner loop objetive funtion

{ oupled and deoupled multipoint onstraints

� in problem data �le, e.g. tinkertoy1.dat:

{ start values for parameters, state variables at multiple shooting points, ontrols

and phase times

{ orresponding bounds

{ number of multiple shooting intervals, ontrol disretization types, phase types,

swithing struture

� implement new model lass if not yet available in library.
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The following listing gives the di�erent objetive funtions for stability optimization:

maximum eigenvalue, maximum singular value, 1-norm. They are all derived from the

same base lass NormOfMusodSolution:

lass NormOfMusodSolution : publi Funtion{

proteted:

Model *p_TheModel;

har *p_problemName;

DataFileHandler *p_MusodData;

ifstream MusodResultFile;

Vetor<int> OptParams;

int noOfPhases;

int stateDim;

int paramDim;

int ontrolDim;

Vetor<double> States;

Vetor<double> Params;

Vetor<double> Controls;

Vetor<double> XdotPlus;

Vetor<double> XdotMinus;

Vetor<double> dSWdX;

Vetor<double> dSWdP;

Vetor<double> dSWdU;

double dSWdT;

double swDot;

Vetor<double> PhaseTimes;

DenseMatrix<double> *p_phaseTransferMatrix;

DenseMatrixEVnonsym<double> JaPoinareMapEV;

DenseMatrixEVnonsym<double> ProjetedJaPoinareMapEV;

DenseMatrix<double> LoalMatrix;

int updateIniFlag;

void alJaPoinareMap();

void alProjetedJaMap();

void writeLogFile();

publi:

NormOfMusodSolution(Model *p_Model, har *p_pbName,

DataFileHandler *p_DataFile, har *p_resFileName,

Vetor<int>& WhihParams);

virtual ~NormOfMusodSolution();

void setIniUpdate();

virtual double alulate(Variables& X) = 0;

};

lass MaxEVOfMusodSolution : publi NormOfMusodSolution{

proteted:

double maxEV;
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void writeLogFile();

publi:

MaxEVOfMusodSolution(Model *p_Model, har *p_pbName,

DataFileHandler *p_DataFile, har *p_resFileName,

Vetor<int>& WhihParams);

virtual ~MaxEVOfMusodSolution();

virtual double alulate(Variables& X);

};

lass MaxSVOfMusodSolution : publi NormOfMusodSolution{

proteted:

double maxSV;

int matrixPower;

DenseMatrixSV<double> PoinareMapSV;

DenseMatrixSV<double> ProjetedPoinareMapSV;

void writeLogFile();

publi:

MaxSVOfMusodSolution(Model *p_Model, har *p_pbName,

DataFileHandler *p_DataFile, har *p_resFileName,

Vetor<int>& WhihParams, int power = 1);

virtual ~MaxSVOfMusodSolution();

virtual double alulate(Variables& X);

};

lass InfNormOfMusodSolution : publi NormOfMusodSolution{

proteted:

double infNorm;

int matrixPower;

void writeLogFile();

publi:

InfNormOfMusodSolution(Model *p_Model, har *p_pbName,

DataFileHandler *p_DataFile, har *p_resFileName,

Vetor<int>& WhihParams, int power = 1);

virtual ~InfNormOfMusodSolution();

virtual double alulate(Variables& X);

};

A.3 Determination of Stability Margins

In order to determine stability margins of a stable periodi solution the following steps

are neessary:
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� in main driver �le sim++.pp:

{ speify model

{ indiate path of �le ontaining optimization results with trajetory information

{ give optimization data �le (disretization data is needed for interpretation of

previous �le)

� in initialization �le sim++.ini:

{ set integration start (default t

s

= 0) and end times

{ (selet integrator output mode { step or ontinuous)

{ modify respetive perturbation fators of initial values or parameters

� start integration and hek results.





Bibliography

[1℄ J. Adolfsson, H. Dankowiz, and A. Nordmark. 3-D stable gait in passive bipedal

mehanisms. In Biology and Tehnology of Walking, pages 253 { 259. Euromeh

Colloquium 375, Munih, 1998.

[2℄ F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primal-dual interior point

methods for semide�nite programming: Convergene rates, stability, and numerial

results. SIAM Journal on Optimization, 8(3):746 { 768, 1998.

[3℄ E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. MKenney, S. Ostruhov, and D. Sorensen. Lapak Users'

Guide. SIAM, 1995.

[4℄ U. M. Asher, R. M. M. Mattheij, and R. D. Russel. Numerial Solution of Boundary

Value Problems for Ordinary Di�erential Equations. Prentie Hall, 1998.

[5℄ G. L. Baker and J. P. Gollub. Chaoti Dynamis. Cambridge University Press,

Cambridge, UK, 1990.

[6℄ I. Bauer, H. G. Bok, and J. P. Shl�oder. DAESOL { a BDF-ode for the numerial

solution of di�erential equations. Tehnial report, IWR, University of Heidelberg,

SFB 359, 1999.

[7℄ K. Berns. Walking mahines atalogue. http://www.fzi.de/ipt/WMC/walking-

mahines-katalog/walking-mahines-katalog.html, 2000.

[8℄ H. G. Bok. Zur numerishen Behandlung zustandsbeshr�ankter Steuerungsprob-

leme mit Mehrzielmethode und Homotopieverfahren. Zeitshrift f�ur Angewandte

Mathematik und Mehanik (ZAMM), 57:T266 { T268, 1977.

[9℄ H. G. Bok. Numerishe Berehnung zustandsbeshr�ankter optimaler Steuerungen

mit der Mehrzielmethode. Tehnial report, Carl-Cranz-Gesellshaft, 1978.

[10℄ H. G. Bok. Randwertproblemmethoden zur Parameteridenti�zierung in Systemen

nihtlinearer Di�erentialgleihungen. PhD thesis, Universit�at Bonn, 1985.

[11℄ H. G. Bok and K.-J. Plitt. A multiple shooting algorithm for diret solution of

optimal ontrol problems. In Proeedings of the 9th IFACWorld Congress, Budapest,

pages 242{247. International Federation of Automati Control, 1984.



176 Bibliography

[12℄ G. Booh. Objektorientierte Analyse und Design. Addison Wesley, 1994.

[13℄ I. Bronstein, K. Semendjajew, G. Musiol, and H. M�uhlig. Tashenbuh der Mathe-

matik. Verlag Harri Deutsh, Thun and Frankfurt am Main, 1997.

[14℄ P. H. Channon, S. H. Hopkins, and D. T. Pham. Derivation of optimal walking

motions for a bipedal walking robot. Robotia, 10:165 { 172, 1992.

[15℄ M.-Y. Cheng and C.-S. Lin. Measurement of robustness for biped loomotion using

a linearized Poinar'e map. Robotia, 14:253 { 259, 1996.

[16℄ F. H. Clarke. Optimization and Nonsmooth Analysis. Number 5 in Classis in

Applied Mathematis. SIAM, 1990.

[17℄ Honda Motor Co. Humanoid robot. http://world.honda.om/robot, 2001.

[18℄ M. J. Coleman. A stability study of a three-dimensional passive-dynami model of

human gait. PhD thesis, Cornell University, February 1998.

[19℄ M. J. Coleman, M. Garia, K. D. Mombaur, and A. Ruina. Predition of stable

walking for a toy that annot stand. Physial Review E, to appear 2001.

[20℄ M. J. Coleman and A. Ruina. An unontrolled walking toy that annot stand still.

Physial Review Letters, 80(16):3658 { 3661, April 1998.

[21℄ F. Colonius. Optimal Periodi Control. Springer, 1980.

[22℄ J. Cronin. Di�erential Equations { Introdution and Qualitative Theory. Marel

Dekker, 1994.

[23℄ H. de Man, D. Lefeber, and J. Vermeulen. Design and ontrol of a one-legged robot

hopping in irregular terrain. In Biology and Tehnology of Walking, pages 173{180.

Euromeh Colloquium 375, Munih, 1998.

[24℄ J. W. Demmel. Applied Numerial Algebra. SIAM, 1997.

[25℄ D. Dinkler. Dynamik I und II. Vorlesungsmanuskripte, ISD, Universt�at Stuttgart,

1992.

[26℄ D. Dinkler. Aeroelastik. Vorlesungsmanuskript, ISD, Universt�at Stuttgart, 1993.

[27℄ R. Eppler. Tehnishe Mehanik II. Manuskript zur Vorlesung, IAM, Universt�at

Stuttgart, 1989.

[28℄ R. Flether. Pratial Methods of Optimization. Wiley, 1987.

[29℄ O. F�ollinger. Regelungstehnik. H�uthig, 1990.

[30℄ M. Garia. Stability, Saling, and Chaos in Passive-Dynami Gait Models. PhD

thesis, Cornell University, January 1999.



Bibliography 177

[31℄ M. Garia, A. Chatterjee, and A. Ruina. Speed, eÆieny, and stability of small-

slope 2-D passive dynami walking. In Proeedings of IEEE International Confer-

ene on Robotis and Automation, Leuven, Belgium, 1998.

[32℄ P. E. Gill, W. Murray, and M. H. Wright. Pratial Optimization. Aademi Press,

1981.

[33℄ C. J. Goh and K. L. Teo. On minmax eigenvalue problems via onstrained opti-

mization. Journal of Optimization Theory and Appliations, 57(1):59 { 68, 1988.

[34℄ S. Goyal. Seond order kinemati onstraint between two bodies rolling, twisting,

and slipping against eah other while maintaining point ontat. Tehnial Report

TR 89-1043, Department of Computer Siene, Cornell University, 1989.

[35℄ D. T. Greenwood. Priniples of Dynamis. Prentie-Hall, 1988.

[36℄ Ch. Gro�mann and J. Terno. Numerik der Optimierung. Teubner, Stuttgart, 1993.

[37℄ M. Hartel. Numerishe Berehnung periodisher Strategien zur optimalen Proze�-

steuerung. PhD thesis, Universit�at Heidelberg, 1996.

[38℄ W. Hauger, W. Shnell, and D. Gross. Tehnishe Mehanik, Band 3 { Kinetik.

Springer, 1995.

[39℄ C. Helmberg and F. Rendl. A spetral bundle method for semi-de�nite program-

ming. SIAM Journal on Optimization, to appear. ZIB Preprint, SC-97-37.

[40℄ J. C. Hsu and A. U. Meyer. Modern Control Priniples and Appliations. MGraw-

Hill, 1968.

[41℄ M. Hubbard. Lateral dynamis and stability of the skateboard. Transations of the

ASME, 46:931 { 936, 1979.

[42℄ Y. Hurmuzlu. Dynamis of bipedal gait: Part II { Stability analysis of a planar

�ve-link biped. Journal of Applied Mehanis, 60:337 { 343, june 1993.

[43℄ T. Kar�nik, A. Kralj, and T. Bajd. Cruth supported loomotion as a quadrupedal

gait pattern. In Biology and Tehnology of Walking, pages 74 { 81. Euromeh

Colloquium 375, Munih, 1998.

[44℄ Y. A. Kuznetsov. Elements of Applied Bifuration Theory. Springer, 1998.

[45℄ MIT Leg Lab. Leg lab robots. http://www.ai.mit.edu/projets/leglab/robots/robots-

main.html, 2001.

[46℄ J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright. Convergene prop-

erties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on

Optimization, 9(1):112 { 147, 1998.



178 Bibliography

[47℄ D. B. Leineweber. Analyse und Restrukturierung eines Verfahrens zur direkten

L�osung von Optimal-Steuerungsproblemen (The Theory of MUSCOD in a Nutshell).

Tehnial report, IWR PPreprint, 1996.

[48℄ D. B. Leineweber. EÆient Redued SQP Methods for the Optimization of Chemial

Proesses Desribed by Large Sparse DAE Models, volume 3 of Fortshrittsberihte.

VDI, 1999.

[49℄ J. Liberty. Teah Yourself C++ in 21 Days. Sams Publishing, 1998.

[50℄ T. MGeer. Stability and ontrol of two-dimensional biped walking. Tehnial

Report CSS-IS TR 88-01, Simon Fraser University, 1988.

[51℄ T. MGeer. Passive bipedal running. Proeedings of the Royal Soiety of London,

B 240:107 { 134, 1990.

[52℄ T. MGeer. Passive dynami walking. International Journal of Robotis Researh,

9:62{82, 1990.

[53℄ T. MGeer. Passive dynami biped atalogue. In R. Chatila and G. Hirzinger,

editors, Proeedings of the 2nd International Symposium of Experimental Robotis,

Toulouse. Springer-Verlag, New York, 1991.

[54℄ T. MGeer. Priniples of walking and running. In Advanes in Comparative and

Environmental Physiology. Springer-Verlag, Berlin, 1992.

[55℄ K. I. M. MKinnon. Convergene of the nelder-mead simplex method to a nonsta-

tionary point. SIAM Journal on Optimization, 9(1):148 { 158, 1998.

[56℄ L. Meirovith. Methods of Analytial Dynamis. MGraw-Hill, 1970.

[57℄ K. D. Metzger. Einsatz eines dynamishen Optimierungsverfahrens zur Muskelkraft-

berehnung menshliher Bewegungen. Master's thesis, Institut A f�ur Mehanik,

Universit�at Stuttgart, 1995.

[58℄ S. Meyers. E�etive C++. Addison-Wesley, 1998.

[59℄ S. Meyers. More E�etive C++. Addison-Wesley, 1998.

[60℄ S. Mohon and T. S. MMahon. Ballisti walking. Biomehanis, 13:49 { 57, 1980.

[61℄ S. Mohon and T. S. MMahon. Ballisti walking: An improved model. Mathemat-

ial Biosienes, 52:241 { 260, 1980.

[62℄ K. D. Mombaur, H. G. Bok, and R. W. Longman. Stable, unstable, and haoti

motions of bipedal walking robots without feedbak. In F. L. Chernousko and

A. L. Fradkov, editors, Proeedings of 2nd International Conferene on Control of

Osillations and Chaos, St. Petersburg, volume 2, pages 282 { 285, 2000.



Bibliography 179

[63℄ K. D. Mombaur, H. G. Bok, and J. P. Shl�oder. Numerial generation and sta-

bilization of periodi gaits. Tehnial Report 2000-39, IWR Preprint, Universit�at

Heidelberg, 2000.

[64℄ K. D. Mombaur, H. G. Bok, J. P. Shl�oder, and R. W. Longman. Human-like

atuated walking that is asymptotially stable without feedbak. In Proeedings of

IEEE International Conferene on Robotis and Automation, 2001.

[65℄ K. D. Mombaur, H. G. Bok, J. P. Shl�oder, M. J. Winkler, and R. W. Longman.

Open-loop stable ontrol of running robots - a numerial method for studying sta-

bility in the ontext of optimal ontrol problems. In Proeedings of Clawar '98,

Brussels, pages 89 { 94, 1998.

[66℄ J. A. Nelder and R. Mead. A simplex method for funtion minimization. Computer

Journal, 7:308 { 313, 1965.

[67℄ S. Otterbein. Stabilisierung des n-Pendels und der Indishe Seiltrik. Arhive for

Rational Mehanis and Analysis, 78(4):381 { 393, 1982.

[68℄ M. L. Overton. On minimizing the maximum eigenvalue of a symmetri matrix.

SIAM Journal on Matrix Analysis and Appliations, 9:256 { 268, 1988.

[69℄ M. L. Overton. Large-sale optimization of eigenvalues. SIAM Journal on Opti-

mization, 2(1):88{120, 1992.

[70℄ M. L. Overton and R. S. Womersley. On minimzing the spetral radius of a nonsym-

metri matrix funtion: Optimality onditions and duality theory. SIAM Journal

on Matrix Analysis and Appliations, 9(4):473 { 498, 1988.

[71℄ M. L. Overton and R. S. Womersley. Optimality onditions and duality theory for

minimizing sums of the largest eigenvalues of symmetri matries. Mathematial

Programming, 62:321 { 357, 1993.

[72℄ E. R. Panier. On the need for speial purpose algorithms for minimax eigenvalue

problems. Journal of Optimization Theory and Appliations, 72(2):279 { 287, 1989.

[73℄ G. A. Pratt and M. M. Williamson. Series Elasti Atuators. In Proeedings of

IROS, Pittsburgh, 1995.

[74℄ J. E. Pratt. Exploiting Inherent Robustness and Natural Dynamis in the Control of

Bipedal Walking Robots. PhD thesis, Massahusetts Institute of Tehnology, 2000.

[75℄ M. H. Raibert and I. E. Sutherland. Mahines that walk. Sienti� Amerian,

248(1):32 { 41, Jan. 1983.

[76℄ R. P. Ringrose. Self-stabilizing running. Tehnial report, Massahusetts Institute

of Tehnology.



180 Bibliography

[77℄ R. P. Ringrose. Self-Stabilizing Running. PhD thesis, Massahusetts Institute of

Tehnology, 1997.

[78℄ A. Ruina. Non-holonomi stability aspets of pieewise-holonomi systems. Reports

on Mathematial Physis, 1998.

[79℄ A. Ruina. Human Power, Biomehanis and Robotis Lab, Cornell University.

www.tam.ornell.edu/ ruina/hplab, 2001.

[80℄ J. La Salle and S. Lefshetz. Stability by Liapunov's Diret Method. Aademi Press,

1961.

[81℄ S. Shaal and C. G. Atkeson. Open loop stable ontrol strategies for robot juggling.

In IEEE International Conferene on Robotis and Automation, pages 913 { 918,

1993.

[82℄ H. R. Shwarz. Numerishe Mathematik. Teubner, 1997.

[83℄ A. Shapiro and M. K. H. Fan. On eigenvalue optimization. SIAM Journal on

Optimization, 5(3):552 { 569, 1995.

[84℄ J. Simon. Modellierung von Kontaktereignissen bei der Simulation von

Laufvorg�angen. Master's thesis, Universit�at Heidelberg, 1998.

[85℄ J. Stoer. Numerishe Mathematik 1. Springer, 1994.

[86℄ J. Stoer and R. Bulirsh. Numerishe Mathematik 2. Springer, 1990.

[87℄ T. Sto�meister. PhD thesis, Universt�at Heidelberg, to appear 2001.

[88℄ C. M. Thompson and M. H. Raibert. Passive dynami running. In V. Hayward

and O. Khatib, editors, Proeedings of International Symposium of Experimental

Robotis, pages 74 { 83. Springer-Verlag, New York, 1989.

[89℄ M. W. Thring. Robots and Telehirs. Ellis Horwood, 1983.

[90℄ V. Torzon. Multi-Diretional Searh: A Diret Searh Algorithm for Parallel Ma-

hines. PhD thesis, Rie University, Houston, Texas, May 1989.

[91℄ V. Torzon. On the onvergene properties of pattern searh algorithms. SIAM

Journal on Optimization, 7(1):1 { 25, 1997.

[92℄ L. N. Trefethen and D. Bau III. Numerial Linear Algebra. SIAM, 1997.

[93℄ R. v. Shwerin. Numerial Methods, Algorithms and Software for Higher Index

Nonlinear Di�erential-Algebrai Equations in Multibody System Simulation. PhD

thesis, Universit�at Heidelberg, 1997.

[94℄ R. v. Shwerin and M. J. Winkler. Anleitung f�ur das ODE-Integratorpaket

ODESIM, Version 0.97a. Tehnial report, IWR, 1994.



Bibliography 181

[95℄ R. v. Shwerin and M. J. Winkler. A guide to the integrator library MBSSIM,

version 1.00. Tehnial Report 94 - 75, IWR Preprint, 1994.

[96℄ R. v. Shwerin, M. J. Winkler, and V. H. Shulz. Parameter estimation in dison-

tinuous desriptor models. In D. Bestle and W. Shiehlen, editors, IUTAM Sym-

posium on Optimization of Mehanial Systems, pages 269{276. Kluwer Aademi

Publishers, 1996.

[97℄ M. Vukobratovi, B. Borova, D. Surla, and D. Stoki. Sienti� Fundamentals

of Robotis 7: Biped Loomotion - Dynamis, Stability, Control and Appliations.

Springer, 1990.

[98℄ W. Walter. Gew�ohnlihe Di�erentialgleihungen. Springer, 1996.

[99℄ T. E. Wei, G. M. Nelson, R. D. Quinn, H. Verma, and S. L.

Garverik. Design of a 5-m monopod hopping robot. In Proeed-

ings of IEEE International Conferene on Robotis and Automation, 2000.

http://www.uggart.wru.edu/ira2000/ira2000.html.

[100℄ H. Werner and H. Arndt. Gew�ohnlihe Di�erentialgleihungen. Springer, 1986.

[101℄ J. H. Wilkinson. The Algebrai Eigenvalue Problem. Clarendon Press, Oxford, 1965.

[102℄ M. Winkler. Numerishe Werkzeuge zur Simulation, Visualisierung und Opti-

mierung unstetiger dynamisher Systeme. PhD thesis, Universt�at Heidelberg, 2000.

[103℄ M. J. Winkler and J. Huber. JAFV { An OpenGL visualization testbed for dynami

models. Tehnial report, IWR Preprint, 1999.

[104℄ Proeedings of Clawar 98, First International Conferene on Walking and Climbing

Robots, Brussels, 1998.

[105℄ Proeedings of ICAR 97, 8th International Conferene on Advaned Robotis, Work-

shop II : New Approahes in Dynami Walking and Climbing Mahines, Monterey,

1997.


