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Introdu
tion

Resear
h on walking robots - `walking' here being used as a general term for walking,

running and 
rawling - is today one of the most important areas of resear
h in roboti
s.

Two obje
tives fuel these e�orts: The development of new or improved walking robots and

the pure insight gained into the lo
omotion itself that in return 
an be used to optimize

biologi
al gait.

The advantage of walking ma
hines over wheeled robots is that walking is 
learly more 
ex-

ible and 
ompatible with most types of surfa
es, in
luding very rough surfa
es, stairs et
.

Also, legged ma
hines 
an more freely 
hoose footholds and move over obsta
les. There

is hen
e a high number of existing appli
ations, e.g. robots for the exploration of planets

or military demining missions in rough terrains and industrial walking robots used for

maintenan
e in nu
lear power plants or �re-�ghting in skys
rapers. Currently, two main

dire
tions of resear
h are pursued: One aims at in
reasing speed and allowing fewer legs

on relatively smooth surfa
es, the other aims at 
reating 
ompletely autonomous robots


apable to move on very rough terrain. Our resear
h follows the �rst path 
on
entrating

on fast dynami
al walking robots with one or two legs.

The pure insight derived from resear
h into walking robots helps us understand the human

gait, its me
hanisms, its 
ontrol and its stability. Optimality studies of human motion


an result in improved performan
es in various sports, and parameter studies will lead to


on
lusions for pathologi
al gait whi
h has me
hani
al and not neurologi
al 
auses.

Dynami
al walking robots 
an either be 
losed-loop or open-loop 
ontrolled. While 
losed-

loop 
ontrol 
learly is the most 
exible solution allowing the highest number of appli
a-

tions some signi�
ant drawba
ks exist: It requires sophisti
ated and expensive sensory

systems and feedba
k-
ontrollers. The 
omputation of appropriate rea
tions is time 
rit-

i
al and often a limitation for making motion faster, hen
e requiring high 
omputation


apa
ities on-board. This all translates into the ne
essity of high budgets and deep te
h-

ni
al knowledge.

An open-loop 
ontrol strategy does not use a
tive rea
tion to respond to perturbations but

entirely relies on the me
hani
al system's natural kinemati
s and dynami
s to stabilize

the traje
tory. A
tuator histories are a priori determined, pres
ribed and not 
hanged by

any feedba
k interferen
e. Its outstanding advantages are low 
ost and speed of 
ontrol.

And even for motions on rough terrain where 
losed-loop 
ontrol is a ne
essity, robust

open-loop stable traje
tories 
an provide a basis on top of whi
h 
losed-loop 
ontrol is
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applied.

Not mu
h resear
h has been done in the �eld of open-loop 
ontrolled robots so far. Typ-

i
ally an intuitive approa
h has been taken: only simple models have been studied, and

the stabilization task has been broken down into a number of basi
 operations.

In this thesis we take a fundamentally di�erent approa
h. For the �rst time the problem

of open-loop stabilization is addressed by means of optimization methods. By leaving the

intuitive path and fo
using on mathemati
al analysis we are able to treat robot models

of in
reased 
omplexity. The goal of our work is

� to provide eÆ
ient optimization pro
edures for the determination of open-loop stable

robot parameters and periodi
 traje
tories and

� by �nding previously unknown open-loop stable robots to demonstrate the 
exibility

of the 
on
ept of open-loop 
ontrol.

The resear
h of this interdis
iplinary thesis is thus 
learly motivated by the appli
ational

aspe
t.

Besides open-loop 
ontrolled a
tuated walking robots whi
h are our main interest, we

also treat the spe
ial 
ase of purely me
hani
al passive-dynami
 walkers that, in addition

to la
king feedba
k 
ontrol, have no a
tive sour
es of energy. Des
ribing the motion of

both types of robots leads to 
omplex periodi
 multi-phase problems with dis
ontinuities


aused by ground and joint 
onta
ts. A
tuated and passive-dynami
 systems lead to

non-autonomous and autonomous di�erential equations, respe
tively.

A number of signi�
ant 
ontributions have been made during our resear
h and will be

des
ribed in this thesis.

New open-loop stable robot 
on�gurations have been dis
overed all of whi
h exhibit re-

markable features. Among others we present simulations of

� the �rst human-like a
tuated open-loop stable robot

� the �rst open-loop stable a
tuated one-legged hopping robot with point foot

� the �rst 3D passive-dynami
 walker.

The last robot stems from a 
ooperation with Coleman [18℄ from Cornell university who

assembled a similar real robot and did the modeling, but was not able to �nd stable

solutions. The other two robots have no real 
ounterparts. The entity of these robots

not only serves to illustrate the range of possible open-loop stable me
hanisms but it

also un
overs previously unknown fa
ts about multibody systems and reveals open-loop

features of human gait. A uni�ed approa
h to gait modeling is introdu
ed. Various

animation sequen
es have been produ
ed for all robots and di�erent types of motion

based on the visualization tool JAFV (Win
kler [102℄). We will show a few sequen
es in

this thesis.
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A numeri
al method for the optimization of open-loop stability of periodi
 systems will be

presented. This is the �rst time stability optimization is 
ombined with the simultaneous

solution of a periodi
 optimal 
ontrol problem. Stability is de�ned in terms of the spe
tral

radius of the monodromy matrix whi
h is non-di�erentiable and may be non-Lips
hitz at

points of multiple maximum eigenvalue and involves the 
omputation of sensitivities hen
e

representing a diÆ
ult non-standard optimization 
riterion. We introdu
e a two-level

optimization approa
h splitting the problems of periodi
 gait generation and stabilization

of the system. For the development of these stability optimization methods we 
ould build

upon the extensive knowledge and methods for the solution of optimal 
ontrol problems

available in the resear
h group of Bo
k & S
hl�oder at IWR, University of Heidelberg

(
ompare Bo
k & Plitt [11℄, Leineweber [48℄, [47℄). We have 
hosen a modular obje
t-

oriented approa
h for implementation sin
e it allowed us to evaluate di�erent possible

methods for the non-standard task of stability optimization. A dire
t sear
h method,

whi
h is a modi�
ation of the Nelder-Mead polytope algorithm, has shown to be a very

good 
hoi
e. Apparently new equations for the derivatives of the monodromy matrix in

the presen
e of dis
ontinuities (representing se
ond order derivatives of the dynami
s) and

for the derivatives of singular values are given in this thesis. A numeri
al 
riterion for the


hara
terization of nonlinear stability properties will be introdu
ed.

We give general re
ommendations on the use of alternative obje
tive fun
tions for stability

optimization based on extensive theoreti
al and numeri
al studies. We have evaluated the

use of matrix norms instead of the spe
tral radius sin
e they represent its upper bounds.

Instead of the monodromy matrix a power thereof 
an be used. These alternative opti-

mization 
riteria have the advantage of leading to problems easier to solve than eigenvalue

optimization.

This thesis is organized in nine 
hapters and one appendix. Due to the interdis
iplinary

setting of this work, 
hapters have been written with di�erent fo
us on roboti
s, numeri
al

mathemati
s, and software engineering.

Chapter 1 serves to motivate the idea of open-loop 
ontrol as the 
entral topi
 of this thesis.

Its advantages are illustrated against the ba
kground of 
onventional 
ontrol 
on
epts.

Passive-dynami
 walking ma
hines are introdu
ed as a spe
ial form of open-loop stable

robots. Stability properties of di�erent 
lasses of me
hani
al systems are re
alled. We

outline our two-level optimization approa
h to the question of �nding open-loop stable

robot 
on�gurations.

Chapter 2 is dedi
ated to modeling periodi
 gaits in roboti
s and biology. In the �rst

part of the 
hapter we introdu
e the general form of periodi
 multiphase gait models. We

give reasons for a pres
ription of the order of phases. In the se
ond part we des
ribe the

modeling pro
ess starting from a physi
al robot model, 
hoosing an appropriate set of


oordinates and setting up the equations of motion.

Chapters 3 - 6 des
ribe mathemati
al ba
kground and numeri
al methods required for

the stability optimization of periodi
 gaits.
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In 
hapter 3 we address the problem of periodi
 gait generation whi
h is the task to

be solved in the inner loop. We re
all terminology from the �eld of dynami
al systems

and basi
 theory about existen
e and uniqueness of solutions of periodi
 boundary value

problems. We give the full formulation of a standard multi-phase optimal 
ontrol problem

with dis
ontinuities. The numeri
al solution of periodi
 optimal 
ontrol problems by a

stru
tured dire
t multiple shooting approa
h is des
ribed.

In 
hapter 4 we present the mathemati
al stability 
riterion to be used in the outer loop

to de�ne the stability of the inner loop solution. We re
all Lyapunov's �rst method for

di�erential equations with periodi
 right hand side being an extension of Floquet theory to

nonlinear systems. We show that Lyapunov's �rst method may be generalized to periodi


multi-phase problems with dis
ontinuities.

In 
hapter 5 we dis
uss the various diÆ
ulties of using stability in terms of the spe
tral

radius of the monodromy matrix as optimization 
riterion. Possible alternatives are dis-


ussed repla
ing the spe
tral radius or the monodromy matrix (or both). We list the

di�erent optimization 
riteria to be evaluated and 
ompared in this thesis.

Chapter 6 is dedi
ated to numeri
al methods for stability optimization. We start with

a brief review of literature in the �eld of non-smooth optimization and eigenvalue opti-

mization. We des
ribe the dire
t sear
h method, a variant of the Nelder-Mead polytope

algorithm, that we have used for stability optimization of all our robot examples. New

formulas for the 
omputations of derivatives of singular values are given. We des
ribe the


omputation of the monodromy matrix in the presen
e of dis
ontinuities and the ne
es-

sary proje
tions for monodromy matri
es of autonomous systems. Previously unpublished

formulas for se
ond-order derivatives of dis
ontinuous di�erential equations with respe
t

to initial values and parameters are derived. Finally we present a numeri
al pro
edure

for the determination of nonlinear stability margins.

Chapters 7 - 9 are dedi
ated to three spe
i�
 open-loop stable walking robots and are

probably the most interesting for readers who are espe
ially interested in the me
hani
al

and roboti
s aspe
t of this thesis. In 
hapter 7, we present the one-legged a
tuated

hopping robot. The human-like a
tuated biped walker is presented in 
hapter 8. The

passive-dynami
 Tinkertoy robot is subje
t of 
hapter 9. We give the full des
ription of

all robot models and extensive results of stability optimization using di�erent optimization


riteria.

The �nal 
hapter 
ontains a summary of the key results and methods produ
ed in this

thesis and a dis
ussion of possible extensions and further resear
h.

Software engineering aspe
ts of our work are presented in the appendix.



Chapter 1

Open-loop Stable Walking Robots

In the s
ienti�
 
ommunity the term 'walking robots' denotes any ma
hine moving on

legs. Pre
isely though, 'walking' is a dynami
 form of lo
omotion where at any instant

at least one leg is in 
onta
t with the ground. It must therefore be distinguished from

'
rawling' whi
h des
ribes a quasi-stati
 motion without the need to balan
e, and from

'running' whi
h in 
ontrast to walking also involves 
ight phases. In this thesis we will

analyze both walking and running robots.

The �rst an
estors of today's walking robots were designed { and some of them also

manufa
tured { in the 19th 
entury. They had the form of modi�ed wheels with feet

atta
hed or of legged vehi
les (see Thring [89℄) or were inspired by human or animal-like

forms (e.g. horses) and powered either by steam or me
hani
ally by an operator. The

re
ent developments in walking ma
hines as we know them today started in the 1960s

in Japan where mu
h of the progress sin
e then has been made. Other important steps

of roboti
s development took pla
e in the United States and in Russia. Europe joined

the e�orts only quite re
ently 15 years ago. Today there is a variety of walking robots

throughout the world. A very extensive and up-to-date survey of state-of the-art walking

robots as well as of their history 
an be found in the Walking Ma
hine Catalogue of Berns

[7℄.

Our main interest in this 
hapter and throughout this thesis is the stability of walking

robots. We fo
us on the stability properties of di�erent robot types and the e�orts

ne
essary to 
ontrol their motion. The primary purpose of this 
hapter is to motivate the

idea of open-loop 
ontrolled walking.

Se
tion 1.1 serves to illustrate the two major stability 
on
epts used in 
ontemporary

roboti
s, stati
 stability on one hand, and dynami
 stabilization relying on a
tive feed-

ba
k interferen
e or 
losed-loop 
ontrol on the other hand. In se
tion 1.2 the fundamen-

tally di�erent approa
h of open-loop 
ontrol is introdu
ed, being the 
entral topi
 in this

thesis. A spe
ial 
lass of open-loop 
ontrolled me
hanisms without a
tuation, the passive-

dynami
 walking ma
hines, is presented in se
tion 1.3. Se
tion 1.4 gives an overview of

stability impli
ations of general properties of me
hani
al systems. In se
tion 1.5 we show
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Legged Locomotion
in Biomechanics and Robotics

Statically Stable Dynamically Stable

Closed-Loop Stable
(Actively Stabilized by
 Feedback Controllers)

Open-Loop Stable
(Self-Stabilizing)

Passive Actuated

Figure 1.1: Di�erent stability 
on
epts for lo
omotion

how we approa
h the problem of �nding open-loop stable robot models and 
on�gurations

by means of optimization.

1.1 Common Stability Con
epts for Walking Robots

Figure 1.1 illustrates di�erent 
on
epts of stability and stabilization for lo
omotion. In

this se
tion we review the two standard approa
hes most 
ommon among existing robots:

stati
ally stable walking, and dynami
ally stable 
losed-loop 
ontrolled walking. The

treatment of the two highlighted 
on
epts in �gure 1.1, open-loop 
ontrolled a
tuated and

passive walking, whi
h are the fo
us of this thesis, is deferred to the next two se
tions.

1.1.1 Stati
ally Stable Walking

Stati
ally stable walking is also referred to as 
rawling a

ording to the above de�nition.

Natural lo
omotion of many inse
ts falls into this 
ategory (when not 
ying).

Animals and robots moving in a stati
ally stable fashion do not need to a
tively balan
e.

Their 
enter of mass (
.o.m.) whi
h is also referred to as zero moment point in roboti
s

always lies within the polygon of support of their stan
e legs. This ne
essitates a 3-point

ground 
onta
t at any instant, generally realized by three feet on the ground. Therefore

stati
ally stable walking robots theoreti
ally need at least four legs, but as four legs with

only one lifted at a time leads to an awkward gait, in pra
ti
e they typi
ally have six legs

or more. Figure 1.2 shows the typi
al stati
ally stable tripod gait of a six-legged robot:

fore and hind leg of one side together with the middle leg of the other side are lifted,
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c.o.m.

c.o.m.

v v

stance foot

lifted foot

Step 1 Step 2

Figure 1.2: Typi
al tripod gait of stati
ally stable six-legged robots

alternating sides from step to step.

A tri
ky way to over
ome the minimum-number-of-legs requirement sometimes applied is

to use less, e.g. two, but very large feet su
h that a single foot spans an area of support

large enough to provide stati
 stability (�gure 1.3).

Another requirement for a gait being stati
ally stable is low speed. If the momentum was

too high, the 
.o.m. might be driven out of the polygon of support and the robot would

risk to tip over.

Most walking robots built in the nineties fall into the 
ategory of stati
ally stable robots.

Figure 1.3: Stati
ally stable two-legged robots with large feet
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Figure 1.4: Stati
ally stable robots with eight legs (a) Dante { Carnegie Mellon University)

and six legs (b) Katharina { Universit�at Magdeburg, 
) Lauron { FZI Karlsruhe, d) RobugIIs {

University of Portsmouth). All Pi
tures taken from the Walking Ma
hine Catalogue of Berns [7℄

They have been built for a number of spe
ial appli
ations: planetary exploration, main-

tenan
e jobs in hazardous areas, demining, forestry et
. (
ompare e.g. the pro
eedings

[104℄ and [105℄). They have be
ome in
reasingly sophisti
ated, use 
omplex sensors and


ontrol systems like neural networks to navigate and state-of the art motors, but from a

stability point of view they basi
ally rely on the simple 
on
ept of stati
 stability. Mu
h

of the re
ent progress has been inspired by the observation of legged lo
omotion in nature,

e.g. of inse
ts. The goal is to develop 
ompletely autonomous walking ma
hines.

Related to those stati
ally stable walking ma
hines are 
limbing robots whi
h are addi-

tionally equipped with some sort of su
tion 
ups on their feet that enable them to 
limb

up verti
al walls. They are used e.g. in skys
rapers for �re-�ghting and window 
leaning.

Some examples of stati
ally stable walking and 
limbing robots in use today are given in

�gure 1.4.
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1.1.2 Dynami
ally Stable Walking with Closed-loop Control

Systems that do not have enough legs or move too fast to satisfy the above stati
 stability

requirements 
an only walk in a dynami
ally stable or dynami
ally stabilized fashion.

They are fa
ing the problem of balan
e in every step. A dynami
ally moving stable

system must not fall down, but it must be allowed to tip for short intervals if adequate

support is provided afterwards. Lo
omotion of humans and most mammals belongs to

this type of walking.

The de�nition of dynami
 stability is sometimes blurred in the walking ma
hines 
ommu-

nity, and one has to be 
areful not to be mislead by the di�erent de�nitions of dynami


stability. E.g. Kar�
nik et al. [43℄ de�ne dynami
 stability as the ability of the system

to stop within one step. Vukobratovi
 et al. [97℄ introdu
e the de�nition of pra
ti
al

stability of dynami
 systems that is based on three sets of allowed states for initial, end

and intermediate 
on�gurations.

We de�ne dynami
 stability a

ording to the small-perturbations-de�nition that is most


ommon: a motion of a walking robot is dynami
ally stable if it persists even in the

presen
e of small perturbations. We will dis
uss later what small means in this 
ontext..

For a robot with 
losed-loop 
ontrol this is possible if the 
ontrollers take appropriate

measures to eliminate the e�e
t of external perturbations and bring the robot ba
k to its

original traje
tory. The formal mathemati
al de�nitions expressing this physi
al property

will be revised in 
hapter 4. Sometimes not all variables are relevant for the stability of a

gait in the sense that perturbations in some dire
tions do not have to be eliminated (e.g.

perturbations in the dire
tion of travel for walking on level ground).

One of the �rst to study dynami
ally stable walking was Raibert from MIT. The MIT Leg

Lab has produ
ed an amazing 
olle
tion of dynami
al walking and running robots over

the years (see its homepage [45℄). They move at di�erent speeds and in di�erent gaits,

some of them are able to get over obsta
les or to 
limb stairways, and they all rely on a


ommon set of balan
e and 
ontrol prin
iples.

Of 
ourse there are dynami
ally walking robots and animals with more than two legs.

Every possible form of gait of horses, 
ats or dogs has phases with less than three feet on

the ground, even the slow pa
e of a horse. But in this se
tion we will 
on
entrate on some

examples of dynami
ally stable one- and two-legged ma
hines for 
omparison with robots

treated later in this thesis. Please note that the overview is by no means 
omplete.

Hopping is the only possible form of motion for one-legged robots, and it is equivalent to

running a

ording to the de�nitions at the beginning of this 
hapter.

One of the �rst robots built to explore the problem of balan
e was the hopping monopod

of Raibert & Sutherland [75℄ whi
h moves like a kangaroo or pogo sti
k. It 
onsists of a

toroidal body and a leg whi
h are 
onne
ted by a hinge powered by a torque. The leg

boun
es on an adjustable spring. Following the basi
 idea of breaking the 
ontrol task

down into three independent parts of height, balan
e and attitude 
ontrol the motion is


ontrolled by three independent servo-
ontrol loops. This robot is related to the open-
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Figure 1.5: Dynami
ally stable robots with one and two legs (a) OLIE { Vrije Universiteit

Brussel, b) Troody { MIT, 
) Wabian { Waseda University, d) P2 { Honda Motor Co., e) Spring

Flamingo { MIT, all pi
tures taken from the Walking Ma
hine Catalogue of Berns [7℄)
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loop hopping robot studied in this thesis. Raibert also built a 3D extension of this 2D

ma
hine and proposed related multi-legged versions. Another one-legged hopping robot

is OLIE of de Man et al. [23℄ (�gure1.5a) that has an arti
ulated instead of a springy

leg. Its motion is restrained to a 2D 
ylindri
al surfa
e by a boom and relies on sensors

measuring hip position and orientation of all limbs and dete
ting ground 
onta
t.

The �rst bipedal robots have been built in Japan in the sixties, where resear
hers at

Waseda university built a series of robots. The �rst of those were stati
 walkers performing

very slow gaits (2 min./step!). Their later models were signi�
antly improved as far as

walking speed and dynami
al balan
ing abilities are 
on
erned. The number of degrees

of freedom and the 
omplexity of the 
ontrol system have been in
reased over the years.

The most re
ent model is WABIAN (see �gure 1.5
). All Waseda robots rely on playing

ba
k pre-re
orded traje
tories for trunk, legs and arm motions.

Probably the most ambitious and 
ostly bipedal robot proje
t in the world is the Honda

Humanoid Robot Proje
t (see their internet page [17℄). The goal is to develop an in-

telligent mobile servi
e robot for general purpose home use. The �rst prototype P1 was

ready after 10 years of development and is said to have 
onsumed 300 person years and 1

million Dollar worth of parts. The 
urrent models are P2 (see �gure 1.5d) and its lighter

su

essor P3.

A number of bipedal walking ma
hines were built at the MIT Leg Lab [45℄. The goal

was to develop devi
es that walk fast and eÆ
iently, are reliable and have large margins

of stability. Re
ent examples are Spring Flamingo of Pratt [74℄ (see �gure 1.5e), walking

in the sagittal plane, Troody, a three-dimensional bipedal dinosaur robot with a tail to

provide balan
ing support (�gure 1.5b), and the more human-like 3D biped M2. Building

and 
ontrolling these robots was only possible through enormous te
hni
al experien
e


olle
ted during the work on their prede
essors.

Although 
losed-loop 
ontrol 
learly is the most 
exible solution we want to point out

some important draw-ba
ks that should not be forgotten:

� 
losed-loop 
ontrol typi
ally requires sophisti
ated and expensive sensory systems

and feedba
k-
ontrollers, ne
essitates a high budget and appropriate te
hni
al knowl-

edge,

� 
omputation of appropriate rea
tions is time-
riti
al and is often a limitation for

making some motion faster,

� enough 
omputational power has to be provided on-board or the robot has to be

restrained to walking on a wire-la
e.

In the next two se
tions we will explain 
ontrol prin
iples that may be helpful to over
ome

some of the diÆ
ulties asso
iated with 
losed-loop 
ontrol.
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1.2 The Idea of Open-loop Controlled Walking

Fundamentally di�erent to the dis
ussed 
on
ept of a
tive stabilization using feedba
k-


ontrol we now fo
us on the idea of open-loop 
ontrol or self-stabilization.

Open-loop stable 
ontrol strategies do not use a
tive rea
tion to respond to perturbations

but rely instead on the system's geometry and the kinemati
s and dynami
s of motion to

stabilize the traje
tory. In 
ontrast to 
losed-loop 
ontrol there is no need for sensors nor

for any on-line 
omputations.

The a
tuator histories are a priori determined, pres
ribed for a motion and not 
hanged

by any feedba
k interferen
e. If an open-loop stable system is slightly perturbed, it will

re
over without any modi�
ation of the input. It always has to stay syn
hronized with

the ex
iting frequen
y that rigorously di
tates the phase.

For example open-loop 
ontrolled human walking is 
hara
terized by the use of just the

skeleton and the mus
les but neither brain nor senses.

Open-loop stable walking is only possible for adequately sele
ted robot 
on�gurations

and traje
tories. It is the goal of this thesis to determine robot models, parameters and

a
tuations that lead to self-stabilizing motions. As open-loop 
ontrol requires pres
ribing

a motion it only makes sense to look at regular, i.e. stri
tly periodi
 gaits. Handling of

unforeseen events, like the ne
essity to 
limb over large obsta
les or to 
hoose irregular

footholds, is of 
ourse not possible by pure open-loop 
ontrol.

Open-loop 
ontrol has the following advantages:

� For sele
ted systems and operations open-loop 
ontrol is a 
heap and fast 
ontrol

possibility.

� It 
an be used as a basis on top of whi
h 
losed-loop 
ontrol is applied. Systems with

improved open-loop performan
e are more robust, less sensitive to sensor readings

and require less feedba
k e�ort.

� Understanding open-loop 
ontrol may help understanding learning 
ontrol.

Pratt has shown in his thesis [74℄ about the aforementioned Spring Flamingo that ex-

ploiting natural dynami
s or self-stabilizing properties does redu
e the 
losed-loop 
ontrol

e�ort.

A number of self-stabilizing e�e
ts for me
hani
al systems are known:

� A stati
 tinkertoy is ro
king about and 
onverging towards its stable upright position

be
ause of its low 
enter of mass (lower than 
enter of foot 
urvature ar
). The same

simple tri
k also a�e
ts the dynami
 stability of systems with 
urved feet, although

the dependen
e is not that straightforward.

� Withdrawing energy from the system 
an also serve to damp out perturbations.
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� A rolling disk or 
oin is stable due to pre
ision (Greenwood [35℄). The same e�e
t

stabilizes the motion of bi
y
les. Spin plays an important role for stabilization. It

is, however, no possible solution for robots walking in the 
onventional sense, i.e.

swinging legs ba
k and forth.

� One famous basi
 me
hani
al example is the upright inverted pendulum (a simple

pendulum as well as an n-pendulum) that 
an be open-loop stable if ex
ited by a

harmoni
 os
illation in longitudinal dire
tion (see e.g. Otterbein [67℄).

� Hubbard [41℄ shows that a skate-board is stabilized due to 
oupling between the

rider's rolling angle and the skate-boards steering angle.

� If the neutral point of an airplane lies behind its 
enter of mass, aerodynami
 
utter

os
illations will naturally be damped out (e.g. Dinkler [26℄).

S
haal & Atkeson [81℄ have studied open-loop 
ontrolled robot juggling. They investi-

gated di�erent juggling tasks and found stable solutions for some and improved unstable

solutions (that were better starting points for 
losed-loop 
ontrollers) for others. Some of

those juggling systems allowed intuitive solutions, su
h as 
omplete absorption of energy

after ea
h 
y
le or simple geometry variations.

Open-loop 
ontrol of walking robots is still an open �eld of resear
h. With this thesis a

number of break-throughs were a
hieved in the following topi
s:

1. Automation of sear
h for open-loop stable robot 
on�gurations and solutions:

In our work we leave the intuitive approa
h favored by the authors 
ited below and

fo
us on mathemati
al analysis. While some numeri
al re
ipes for analyzing the

stability of given walking motions were known in the walking robot 
ommunity, we

felt that there 
learly was a la
k of fast and reliable numeri
al methods for the

generation of new open-loop stable gaits for models of in
reased 
omplexity. The

goal of our resear
h was therefore to develop su
h methods to be applied to very

general robot models.

2. Determination of fundamentally new open-loop 
ontrolled robot models:

Questions of general interest are if open-loop 
ontrolled walking is possible in 3D, or

if humanlike walking 
an be self-stabilizing. Typi
ally these models are too 
omplex

to allow an intuitive approa
h and thus 
learly require a numeri
al approa
h.

3. Improve stability for already existing open-loop stable robots:

The methods developed in 1. 
an be used to �nd sets of parameters or motions very

di�erent from those already known that lead to signi�
antly improved stability.

There are only very few open-loop 
ontrolled physi
al robots today. Important for our

work was the 2D one-legged self-stabilizing hopping robot of Ringrose [76℄, [77℄, as it ini-

tiated our interest in open-loop 
ontrolled walking and served as a good starting example

for the development of our numeri
al methods (see Mombaur et al. [65℄). It 
onsists of
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a single springy leg with a 
urved foot and no upper body and is 
apable of open-loop

stable in-pla
e hopping motions. Ringrose also has studied two- and four-legged robots

whi
h are just assemblies of several of the above legs. The stability of those robots is to

some extent due to a quite large foot radius allowing a trivial stabilization of the system.

The investigations are intuitively veri�ed by a separation of the stabilization task into

height, pit
h and phase stabilization.

An extension of this robot appeared very re
ently: Wei et al. [99℄ built a 3D miniature

hopping robot, using the same type of leg as the robots of Ringrose but having an addi-

tional balan
e mass with 
ontrollable o�set. This robot also uses a large foot radius for

stabilization.

Other open-loop 
ontrolled robots have been developed as extensions of some passive-

dynami
 walkers that will be presented in the following se
tion. M
Geer applied with

di�erent su

ess external and internal torques and toe-o� impulses to his 2D bipedal

straight-legged passive walker [50℄, [54℄.

1.3 Passive-dynami
 Walking { The Purely Me
han-

i
al Approa
h

Although passive walking robots histori
ally pre
eded open-loop 
ontrolled a
tuated ma-


hines we have 
hosen the inverse order for presentation as from our point of view passive-

dynami
 walking is a spe
ial 
ase of open-loop 
ontrolled walking.

In addition to la
king feedba
k 
ontrol that all open-loop 
ontrolled systems are 
hara
-

terized by, passive-dynami
 walkers also la
k all a
tive sour
es of energy. They are purely

me
hani
al devi
es walking down slightly in
lined slopes that have no a
tuators but are

a

elerated by gravity alone. To resume the analogy to human walking: passive-dynami


walking is like a human being only using his skeleton - and neither brain and senses nor

mus
les. As indi
ated by the word 'dynami
', only systems that are not moving in a

stati
ally stable fashion belong to this 
ategory.

Finding passive-dynami
 walkers is a 
onsiderably simpler task than �nding open-loop

stable a
tuated robots: if subje
t to a perturbation, passive systems have the possibility

to take a di�erent amount of time for some operation, and there is no external ex
iting

frequen
y to whi
h the systems have to syn
hronize. This possibility of time-shifts 
an

not be underestimated in its positive in
uen
e on the existen
e of stable periodi
 motion.

Passive-dynami
 walking robots belong to the oldest walking ma
hines. The Ruina Lab

of Cornell University lists on its internet page [79℄ a number of old patents for passive

walkers dating ba
k as far as 1888. There are also quite a few older and more re
ent

passive-dynami
 walking toys (see �gure 1.6).

Resear
h about passive-dynami
 walking has mainly been motivated by the fa
t that


ertain phases of human gait exhibit a very low mus
ular a
tivity and are therefore nearly
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Figure 1.6: Passive-dynami
 toy walkers: penguin (1938) and elephant (1998)

passive. It was assumed that me
hani
al parameters of the human body have a greater

in
uen
e on human gait than re
ognized before.

Mo
hon and M
Mahon [60℄, [61℄ were the �rst to analyze a passive-dynami
 walking

model. They showed by 
omparison with experimental measurements that a kneed walker


on�ned to motions in the sagittal plane with properly 
hosen parameters 
an mimi


human gait.

The pioneering work in the �eld of passive-dynami
 walking ma
hines was done by

M
Geer. He studied a series of two-dimensional gravity-powered models of in
reasing


omplexity, starting with a rimless wheel, bridging the gap to walking with the syn-

theti
 wheel, and �nally fo
using on sti�-legged and kneed walking devi
es (M
Geer [52℄,

[53℄, [54℄). He re
ognized the stan
e leg that is rotating like an inverted pendulum as

the key element in passive walking. He also investigated passive-dynami
 running of a

2D sti�-legged walker the legs of whi
h were equipped with torsional and longitudinal

springs (M
Geer [51℄). M
Geer determined periodi
 gaits for his sometimes simpli�ed

and linearized models using numeri
al methods and performed linear stability analysis.

As mentioned above he also investigated extensions of his passive walkers to a
tuated

open-loop 
ontrolled walkers. He applied simple feedba
k 
ontrollers in the 
ases where

no stable solutions 
ould be found. He also built physi
al models of the bipedal walking

robots whi
h he 
on�ned to planar motions by adding a third leg next to the others and

letting the two outer legs a
t like a pair of simultaneous 
rut
hes. M
Geer started to work

on a three-dimensional sti�-legged walker but was not able to �nd stable gaits (M
Geer

[53℄).

The arti
le of Thomson & Raibert [88℄ is also sometimes 
ited in the 
ontext of passive-

dynami
 walking ma
hines. They studied a one-legged hopping robot whi
h is passive

in the sense that it has no a
tuators but, as the authors point out themselves, it is not

stable, so it does not belong to the 
lass of robots dis
ussed here.

Ruina and his 
o-workers extended the work of M
Geer in various dire
tions. They

studied extensively stability as well as 
haos of 2D straight-legged walking with point

feet. Besides they imitated M
Geer's two-dimensional kneed walker in theory and pra
ti
e
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Figure 1.7: Passive-dynami
 walking robots of the Ruina Lab [79℄

(�gure 1.7a) and extended his analysis with spe
ial fo
us on eÆ
en
y, speed and stability

and 
onsidering the limit 
ase of near zero slopes (Gar
ia et al. [31℄). Coleman has

investigated a series of wheels and walking models following the example of M
Geer but

with a 
lear fo
us on three-dimensional motion and the ultimate goal to �nd stable walking

of a 3D model (Coleman [18℄). His sear
h was 
rowned with the dis
overy of a simple

and fas
inating three-dimensional physi
al toy robot that was obviously 
apable of stable

tinkering gait (�gure 1.7b, Coleman & Ruina [20℄, Coleman [18℄). However, all theoreti
al


omputations for models related to the physi
al toy resulted in unstable solutions (see

the two previous referen
es and Gar
ia [30℄). Only re
ently and for the �rst time, in a


ollaboration of the author of this thesis with Coleman, Ruina and Gar
ia it was possible

to demonstrate stable 3D walking of a theoreti
al rigid body model (see Coleman et al.

[19℄). Further results are given in Mombaur et al. [63℄ and in 
hapter 9 of this thesis.

Adolfsson et al. [1℄ also 
laim to have found three-dimensional passive-dynami
 walking

with knees in simulation, but the feet of their model have line 
onta
t in lateral dire
tion

whi
h prevents it from falling sideways.

The 
ontribution of this thesis in the area of passive-dynami
 walking is that our numeri
al

methods developed for general a
tuated walking devi
es 
an equally well be applied to

the non-a
tuated type as spe
ial 
ase with all a
tuations equal to zero. This will be

demonstrated on the example of the 3D tinkertoy.

1.4 Stability Properties of Di�erent Types of Me-


hani
al Systems

There are some general qualities of me
hani
al systems that in
uen
e the stability of

motion. In this se
tion we will des
ribe the most important ones. In later 
hapters, when

treating spe
i�
 robot models, we will indi
ate how they are 
lassi�ed a

ording to this

s
heme.
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We must �rst introdu
e some de�nitions (see e.g. Greenwood [35℄) ne
essary for the


hara
terization of systems.

A system is 
alled 
onservative if its total energy, i.e. the sum of potential and kineti


energy is 
onstant. Conservative systems are 
hara
terized by work-less 
onstraints and


onservative or non-dissipative for
es (like e.g. spring for
es). In prin
iple, all me
hani
al

pro
esses in a 
onservative system 
an be reversed. In analogy, a system is 
alled non-


onservative, if its total energy de
reases in time. Energy is lost due to non-
onservative

or dissipative for
es or e�e
ts like damping, fri
tion or inelasti
 
ollisions.

A system is 
alled holonomi
 if there are no 
onstraints at all or if all its 
onstraints are

holonomi
, i.e. depend only on position variables or generalized 
oordinates. Holonomi



onstraints 
ould in theory be used to solve for the independent generalized 
oordinates.

Non-holonomi
 systems also have non-holonomi
 
onstraints whi
h need to be expressed

in terms of di�erentials of the generalized 
oordinates and possibly time. These equations

are not integrable su
h that they 
annot be used to eliminate 
oordinates. Non-holonomi


systems always require more 
oordinates for their des
ription than there are degrees of

freedom. Probably the most famous example of a non-holonomi
 system is a disk rolling

on a plane.

Walking robots often are 
hara
terized by pie
ewise holonomi
, but overall non-holonomi


motions. E.g. a biped walker with point feet is holonomi
 if just the period of one step is


onsidered, and the number of equations ne
essary to des
ribe the motion during the step

is equal to the number of degrees of freedom. After heelstrike and swit
hing of stan
e and

swing leg, the robot is transferred to a region whi
h is not any more a

essible by this set

of 
oordinates. So the intermittent 
onta
t has introdu
ed a dis
rete non-holonomy into

the system.

Many simple me
hani
al systems, e.g. the undamped pendulum, are Hamiltonian, i.e.


onservative and holonomi
. It follows from Liouville's theorem (see e.g. Bronstein et al.

[13℄) that Hamiltonian systems 
annot be asymptoti
ally stable. Any 
hange of energy

introdu
ed by a small perturbation persists, it is neither ampli�ed nor damped. If the

system is 
onservative but non-holonomi
 it 
an very well be asymptoti
ally stable. The

same is true for 
onservative, pie
ewise holonomi
 but overall non-holonomi
 systems as

Ruina [78℄ has re
ently demonstrated by an example. It is well known that dissipation 
an

help to promote stability. However, only introdu
ing damping is of 
ourse not suÆ
ient to

make an arbitrary system stable. But we 
an summarize that all non-
onservative systems

- may they be holonomi
, pie
ewise holonomi
 or non-holonomi
 - 
an be asymptoti
ally

stable. Coleman [18℄ gives a more detailed overview on this subje
t.
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Outer Optimization Loop

Inner Optimization Loop

min  f stab

Solution of periodic 

optimal control problem

for given parameters

modify initial values, 
controls, cycle time

Stability optimization

    modify model parameters

Figure 1.8: Finding open-loop stable robots by means of a two-level optimization pro
edure

1.5 Finding Open-loop Stable Robots by Means of

Optimization

The goal of this thesis is to determine robot models, parameters and, for the a
tive 
ase,

a
tuations that lead to open-loop stable motions. We approa
h this problem by means of

optimization. The development of eÆ
ient numeri
al optimization methods to be applied

to arbitrary models is a 
ore 
omponent of this thesis.

We have 
hosen to use a two-level optimization approa
h that splits the two problems of

improving open-loop stability and generating periodi
 gaits. Figure 1.8 shows a sket
h

of this two-level optimization pro
edure. In the outer loop a stability optimization is

performed with the model parameters left free for variation. In the inner loop the model

parameters are �xed to the values given by the outer loop. A periodi
 optimal 
ontrol

problem is solved for whi
h 
ontrols, initial values of traje
tory and periodi
 
y
le time

are free variables.

Please note that it is 
ru
ial to solve in the inner loop a periodi
 optimal 
ontrol problem

and not just some periodi
 boundary value problem. As we will see in 
hapter 3 the

solution of nonlinear periodi
 boundary value problems is not unique - neither for passive

nor for a
tuated systems. Ignoring this fa
t might lead to misinformation of the outer

loop by the inner loop and thus to failure of the outer loop optimization algorithm. It is

important to use in the inner loop some appropriate optimization 
riterion that helps to

in
rease stability.

At �rst sight it seems 
ompelling to solve the two problems of periodi
 gait generation and

stability optimization simultaneously in a one-level optimization pro
edure. Theoreti
ally

this should result in in
reased stability as more variables are optimized with respe
t to
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this overall goal. But the 
ost of that is the need to solve a 
onsiderably more diÆ
ult

optimization problem. And, in 
ontrast to the two-level optimization problem, the iterates

before 
onvergen
e do not represent valid periodi
 gaits sin
e the 
onstraints are only

satis�ed in the optimum.

The two-level stability optimization pro
edure delivered ex
ellent solutions for all walking

robot problems investigated in our resear
h. However the author 
an not rule out the

possibility that there exist other types of dynami
al systems for whi
h there is no natural

split of variables as depi
ted in �gure 1.8 and for whi
h two-level approa
h does not provide

satisfying solutions; hen
e the one-level approa
h should be used. We have performed

preliminary studies for this one-level pro
edure and will 
ome ba
k to this issue at di�erent

points in this thesis showing possible impli
ations and solution methods.

To summarize, for the two-level optimization pro
edure des
ribed above, the following

subtasks needed to be solved:

� 
hoose physi
al robot models to be studied

� set up a 
orre
t des
ription for periodi
 gaits of those models

� �nd a periodi
 solution for a given set of parameters that satis�es some appropriate

optimization 
riterion on the basis of eÆ
ient and reliable numeri
al methods

� de�ne stability 
riterion and formulate adequate obje
tive fun
tion f

stab

� develop numeri
al methods for the optimization of stability by variation of param-

eters and �nd solutions for models sele
ted above

� analyze results.

How we have solved these tasks will be presented in the following 
hapters.





Chapter 2

Modeling Periodi
 Robot Gaits

The dynami
al properties of humans, animals and robots 
an be represented by sets of

highly nonlinear di�erential and algebrai
 equations. In the 
ase of walking motions addi-

tional diÆ
ulties arise due to non-smoothness and multiple phases. The non-smoothness

is 
aused by intermittent ground 
onta
ts and by limbs rea
hing the joint limits whi
h

impli
itly depend on the 
on�guration variables of the system and usually result in dis-


ontinuities of the velo
ity variables. Very often, gaits involve di�erent phases of motion

whi
h have varying degrees of freedom (DOF) and are 
hara
terized by di�erent sets of

equations. In the 
ase of running motions, e.g., one has to distinguish between alter-

nating 
ight phases and one-leg-
onta
t phases. Additionally, the nonlinear dynami
s

have to satisfy periodi
ity 
onstraints on all or a subset of the position and velo
ity vari-

ables. By models of periodi
 gaits we understand the entity of all dynami
 equations

of the multibody-system and of phase 
hange 
onditions and 
ollision rules, periodi
ity


onstraints and all other 
onstraints 
hara
terizing a spe
i�
 gait.

Following the robot types introdu
ed in the previous 
hapter, our models in
lude passive

gaits (resulting in autonomous di�erential equations) and a
tuated gaits (non-autonomous

equations depending expli
itely on time). As inputs for the a
tuated systems we typi
ally


hose joint torques or for
es whi
h are a natural 
hoi
e for robots. To fully 
apture

the open-loop properties of human gaits, models of the mus
ular a
tivity would have to

be in
luded in the dynami
 equations. This �eld has been investigated in the author's

diploma thesis (Metzger [57℄). As stability is the main fo
us of this thesis and spe
i�


mus
ular properties do not seem to be a key fa
tor for this we have 
hosen to sti
k with

basis a
tuators. Nevertheless, the biped models treated here 
an be regarded as good

des
riptions of the main gait features for both robots and humans.

In this 
hapter we present our general approa
h to model gaits in biology and roboti
s.

When formulating the models we pursue two prin
ipal goals. On one hand, the models

have to lead to a realisti
-looking natural motion, i.e. they should neither be too edgy

nor too springy. On the other hand, they should be suited to a
t in 
ombination with

numeri
al simulation and optimization methods.
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In se
tion 2.1 we introdu
e the general form of periodi
 multi-phase gait models. In

se
tion 2.2 we explain how to generate model equations starting from a physi
al model

in two or three dimensions. In order not to tear apart things that belong together, gait

models for the spe
i�
 open-loop stable walking robots treated in this thesis are deferred

to 
hapters 7, 8, and 9 also 
ontaining the stability optimization results for the respe
tive

models. We have implemented all robot models with the 
omponents des
ribed in this


hapter in the framework of an obje
t-oriented modeling library as des
ribed in se
tion

2.3.

2.1 Des
ription of Periodi
 Gaits with Multiple Phases

Gaits should be formulated as multi-phase problems. Modeling gaits by a single set of

equations that des
ribe e.g. ground 
onta
ts by 
ontinuous for
es growing exponentially


lose to the ground would lead to very sti� equations and therefore to small integrator

step sizes and long 
omputation times and should thus be avoided (see Simon [84℄). A

global gait model would always be either too sti� for integration or too smooth to be a

good des
ription of reality. A model 
hange should therefore be performed when a foot

rea
hes ground level. The same is true for hard joint 
onta
ts, like a kneestrike in walking

motions. These model 
hanges lead to what we 
all a multi-phase problem.

In this se
tion the general form of gait models with multiple phases is presented. We start

with the equations of motion for ea
h phase and phase transition 
onditions in se
tion

2.1.1 and periodi
ity 
onstraints in se
tion 2.1.2. Di�erent approa
hes to the formulation

of 
onta
ts are evaluated in se
tion 2.1.3. In se
tion 2.1.4 we �nally argue why the order

of phases should be imposed for a multi-phase problem.

2.1.1 Equations of Motion for a Phase

In a multi-phase problem every phase is des
ribed by a separate set of equations of motion,

the form of whi
h is introdu
ed in this se
tion.

We start with the well known standard form of Newton's law

M � a = f (2.1)

with mass matrix M , a

elerations a, and right hand side for
e ve
tor f . Showing the

dependen
ies of the terms in equation (2.1) we get

M(q(t); v(t); p) � a = f(q(t); v(t); u(t); p) (2.2)

where t denotes the physi
al time, q and v the position and velo
ity 
oordinates 
orre-

sponding to a, p the model parameters, and u the a
tuations (or, in mathemati
al terms,


ontrol or input fun
tions { whi
h are not to be 
onfused with feedba
k 
ontrols!). In the

passive or autonomous 
ase, f does not depend on u(t).



2.1. Des
ription of Periodi
 Gaits with Multiple Phases 23

Note that the state of a me
hani
al system, being a se
ond order system by nature, is not


ompletely de�ned by position variables alone. Corresponding velo
ities also need to be

indi
ated, su
h that we 
an always write the ve
tor of state variables x as x

T

= (q; v)

T

.

With that, equation (2.2) 
an be rewritten as expli
it �rst-order system of ordinary dif-

ferential equations (ODE) in x:

_q(t) = v(t) (2.3)

_v(t) = a(t) =M

�1

(q(t); v(t); p) � f(q(t); v(t); u(t); p): (2.4)

All the above equations are only valid if q represents a set of independent 
oordinates for

the robot.

In the more general 
ase, one might use redundant 
oordinates for the des
ription and

simulation of 
omplex gait models. This results in a form of multibody system equations

di�erent from (2.2), the so-
alled des
riptor form:

M(q(t); v(t); p) � a = f(q(t); v(t); u(t); p)�G

T

(q(t); p)� (2.5)

g

pos

(q(t); p) = 0 (2.6)

with the Lagrange multipliers �, the 
onstraint equations g

pos

, and their partial derivatives

G =

�g

pos

�q

. System (2.5)/(2.6) is a di�erential algebrai
 equation (DAE) of index 3.

Di�erentiating the 
onstraints (2.6) twi
e with respe
t to time leads to the index 1 system

_q(t) = v(t) (2.7)

_v(t) = a(t) (2.8)

�

M(q(t); v(t); p) G

T

(q(t); p)

G(q(t); p) 0

�

�

�

a

�

�

=

�

f(q(t); v(t); u(t); p)


(q(t); v(t); p)

�

(2.9)

with the di�erential variables q and v, the algebrai
 variables a and �, and the abbreviation


(q(t); v(t); p) = �v

T

d G(q(t); p)

d q

v: (2.10)

Assuming that the mass matrix M is positive de�nite on the null spa
e of G and that

G has full rank, the left hand side matrix in equation (2.9) is regular and the system


an be uniquely solved for the a

elerations a in ea
h step. These are fed into the right

hand side of equation (2.8) su
h that the system (2.7)/(2.8) 
an be treated like an ODE.

Additionally, the invariants on position and velo
ity level

g

pos

= g(q(t); p) = 0 (2.11)

g

vel

= G(q(t); p) � _q(t) = 0: (2.12)

have to be satis�ed.

The individual phases are separated by impli
itely de�ned swit
hing points at whi
h a

swit
hing fun
tion is zero:

s

i

(t; q(t); v(t); u(t); p) = 0 (2.13)

At those points, dis
ontinuities of the velo
ities �v(t; q; v; u; p) and/or the right hand side

�

RHS

(t; q; v; u; p) (i. e. dis
ontinuities in the a

elerations) 
an o

ur.
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2.1.2 Periodi
ity Constraints

For periodi
 gaits, all velo
ities and most position variables { ex
ept possibly for those

des
ribing the dire
tion of travel { are periodi
 with 
y
le time T :

q

(red)

(T ) = q

(red)

(0) (2.14)

v(T ) = v(0): (2.15)

In the 
ase of bipedal gaits, it often makes sense to 
onsider only one step, and not

a full 
y
le 
onsisting of two steps. Formulation of periodi
ity 
onstraints on one step

(in
luding a re
e
tion of legs) leads to perfe
tly symmetri
 results where every left step

equals to every right step and eliminates e. g. limping gaits. But if unsymmetri
 gaits

are of pra
ti
al interest for a spe
i�
 problem, the full 
y
le has to be 
onsidered.

2.1.3 Models for Ground and Joint Conta
ts

Gaits are 
hara
terized by alternating ground 
onta
ts of the feet. The intera
tion of robot

and ground has to be des
ribed in the model. There are two fundamentally di�erent ways

to model ground 
onta
ts, either based on for
es or based on 
onstraints:

� Modeling the ground rea
tion for
es in verti
al and horizontal dire
tions:

e.g. des
ribing the fri
tional for
es by a vis
ous or Coulomb fri
tion model and

the normal for
es by linear or nonlinear spring-damper elements. This des
ribes an

elasti
 or elasto-plasti
 impa
t taking a �nite amount of time. The DOFs of the

system remain un
hanged. In this 
ase, tou
hdown 
auses only dis
ontinuities in

the right hand side and the a

elerations, but none in the velo
ities.

� Modeling the 
onstraints 
aused by a rigid and fri
tional ground:

i. e. �xing the foot 
onta
t point velo
ity to zero immediately after impa
t. This

results in dis
ontinuities of all system velo
ity variables. Constraint based model


hanges usually modify the number of DOFs of the system.

Thorough testing of both types of 
onta
t models have shown that the 
onstraint-based

modeling approa
h is to be preferred as it leads to more natural motions.

If a joint is 
exed or extended to its limits, similar 
onsiderations apply.

If a 
onstraint-based 
onta
t model is used, velo
ity 
hanges 
aused by this inelasti
 im-

pa
t will have to be 
omputed. Equations des
ribing 
onservation of momentum over the


ollision are used for this purpose. For ground 
onta
t, we work on two basi
 assumptions:

� Lift-o� is impulse-free, i.e. there are no dis
ontinuities in the velo
ity. This is

applied to a lift-o� of the swing leg in a walking motion as well as to the lift-o� of

the whole robot during a running or hopping motion.
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� Tou
hdown is generally asso
iated with an impulse and therefore velo
ity dis
onti-

nuities might o

ur depending on the 
ollision model 
hosen (see above).

Similar assumptions hold for start and end points of joint 
onta
ts.

2.1.4 Pres
ribing the Order of Phases

We have seen above that 
onstraint-based 
onta
t models are desirable sin
e they are

most a

urate from a physi
al point of view. But to be able to use su
h methods, the

order of phases of the motion has to be a priori pres
ribed.

Leaving the phase order free to be determined by 
ontinuous optimization methods would

restri
t us to smooth phase transitions for numeri
al reasons: Only with transition be-

tween any two su

eeding model phases being twi
e 
ontinuously di�erentiable and the

number of DOFs being the same for all phases we would be able to 
ompute meaningful

derivatives of the integration end values with respe
t to initial values. In general, this

approa
h does not lead to very natural walking motions.

Our numeri
al method allows us to impose only the order of phases but to leave all

individual phase times free.

One alternative approa
h is to formulate the problem with free phase sequen
e as mixed-

integer optimization problem. But for walking me
hanisms with few legs not many pos-

sible meaningful orders to 
hoose from exist: For a biped, we 
an basi
ally distinguish

between walking and running, and even for a quadruped there are only a very few pos-

sibilities, namely pa
e, trot, and di�erent sorts of gallop. It is therefore possible to solve

the mixed-integer problem by enumeration and perform individual optimization runs for

ea
h possible order of phases.

2.2 Deriving the Equations of Motion

After we have seen the general forms of equations of motion in the last se
tion, we will

explain here how to set up equations (2.3) - (2.3) or (2.7) - (2.9) for given physi
al robot

models. It is not the intent of the author to provide a 
omplete overview of all possible

methods to generate equations of motion - these 
an be taken from me
hani
s textbooks

like Greenwood [35℄ and Hauger et al [38℄, or university manus
ripts like Eppler [27℄. In

this se
tion we only explain the solution approa
hes we have 
hosen to take, both for the

sele
tion of 
oordinates and the establishment of the equations of motion. The reasons for

the spe
i�
 
hoi
es are given. We generally derive the equations of motion and 
ollision

rules for our robots using symboli
 mathemati
s pa
kages like Maple


R

.



26 Chapter 2. Modeling Periodi
 Robot Gaits

2.2.1 Coordinate Choi
es

For simulation and optimization, physi
ally meaningful 
oordinates should be 
hosen as

this simpli�es the generation of initial values for simulation and of initial traje
tories for

the optimization. It also allows for a more 
omfortable interpretation of results. From an

engineering point of view, intuitive 
oordinate 
hoi
es for walking robots are orientation

angles of bodies (e. g. Euler angles) or position ve
tors of predominant points, e. g. the

hip. We have seen before that phases of motion usually have di�erent numbers of DOF.We

nevertheless like to 
hoose the same set of 
oordinates for all phases. In general we 
hoose

minimal 
oordinates for the phase(s) with most DOFs, that are redundant 
oordinates

for the other phase(s), su
h that we obtain ODE and DAE des
riptions, respe
tively.

One pe
uliarity of walking motions for whi
h at every instant at least one foot is in


onta
t with the ground is that a set of 
oordinates adequate to des
ribe one step and

thus 
ompletely spe
ify the periodi
 motion does not allow to dire
tly a

ess the full


on�guration spa
e of a multi-step walk. This is due to the pie
ewise holonomi
, but

overall non-holonomi
 nature of walking motions. For running and hopping motions that

in
lude phases without ground 
onta
t, this e�e
t does not o

ur.

When deriving the equations of motion several other auxiliary 
oordinates naturally o

ur

whi
h do not belong to the 
hosen set of 
oordinates for simulation and optimization

but whi
h are needed to express the system's dynami
s. Examples for su
h 
oordinates

are position and orientation variables of the individual bodies, or derivatives of these.

As those 
oordinates depend on the 
hosen method for the generation of equations, the


orresponding impli
ations will be explained when we dis
uss spe
i�
 methods in the next

se
tions and when presenting our robot models later on. These auxiliary 
oordinates 
an

be symboli
ally eliminated during the model setup pro
ess in order to obtain analyti


expressions in the optimization 
oordinates for all entries of the equations of motion. For


omplex systems this leads to extremely involved expressions �lling many lines of 
ode to

express one single mass matrix or right hand side entry. For most of our models, we have

therefore 
hosen to keep the additional equations and 
oordinates and numeri
ally solve

in every integration step the resulting larger system using a regular or a sparse solver.

This gives us, among other quantities, the a

elerations 
orresponding to positions and

velo
ities in our set of optimization variables.

This hybrid 
oordinate 
hoi
e has the following advantages:

� redu
ed error proneness as no symboli
 operations are ne
essary,

� in
reased 
exibility for model 
hanges, e. g. joint modi�
ations or the addition of

bodies

� in
reased ability to monitor the auxiliary variables, whi
h often are physi
ally in-

teresting quantities.
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Figure 2.1: Generating the free body diagram for a simple multibody system

2.2.2 Deriving Two-dimensional Equations of Motion by Free

Body Diagrams

We have used free body diagrams to set up two-dimensional equations. It is a very intuitive

method if applied to planar motion and is based on a synthesis of information gathered

from all bodies. For a detailed des
ription, see e. g. Dinkler [25℄. As demonstrated in �gure

2.1, all joints and 
onne
tions between the individual bodies of a multibody system are

removed and repla
ed by equivalent 
onstraint for
es and/or torques. External 
onta
ts

e.g. between body and ground are also 
hara
terized by 
onstraint for
es.

For ea
h isolated body (index i) with mass m

i

and moment of inertia �

i;z

Newton's laws

of motion in translational and rotational dire
tions 
an easily be written down in the

form:

m

i

�r

i;x

= F

i;x

(2.16)

m

i

�r

i;y

= F

i;y

(2.17)

�

i;z

�r

i;�

= M

i;z

(2.18)

F

i

and M

i

are the sums of all external and 
onstraint for
es/torques a
ting on body i.

For a two-dimensional system with n bodies we obtain 3n dynami
al equations. Addi-

tionally, kinemati
 equations des
ribing the relation between position variables r

x

; r

y

and

orientation variables r

�

(and their �rst and se
ond derivatives) of neighboring bodies i

and j introdu
ed by the joints and 
onta
ts have to be established:

k

i;j

(r

i;x

; r

i;y

; r

i;�

; _r

i;x

; _r

i;y

; _r

i;�

; �r

i;x

; �r

i;y

; �r

i;�

; r

j;x

; r

j;y

; r

j;�

; _r

j;x

; _r

j;y

; _r

j;�

; �r

j;x

; �r

j;y

; �r

j;�

; ) = 0

(2.19)
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The number of kinemati
 equations is at least 3n � n

d

(with n

d

being the number of

DOFs), possibly more if additional auxiliary 
oordinates are used. The resulting system

of all dynami
 and kinemati
 equations is linear in the se
ond derivatives of the position

and orientation 
oordinates of ea
h body and in the 
onstraint for
es. Those are the

model setup 
oordinates we have dis
ussed in the previous se
tion.

We prefer this syntheti
 method to the analyti
 approa
h of using Lagrange's equations,

whi
h is another very popular method in me
hani
s, 
ompare e. g. Greenwood [35℄.

Lagrange's equations of the se
ond kind for a set of n

d

independent generalized 
oordinates

q

i


an be written as

d

dt

�

�L

� _q

i

�

�

�L

�q

i

= Q

i

i = 1; 2; :::; n

d

(2.20)

where L is the Lagrangian fun
tion

L = T � V: (2.21)

V and T are the total potential and kineti
 energy of the system, andQ

i

are the generalized

for
es in the dire
tion of q

i

not derivable from a potential fun
tion (e.g. fri
tional for
es,

non-holonomi
 
onstraint for
es et
.).

For redundant generalized 
oordinates q

i

(dimension n

r

), Lagrange's equations of the �rst

kind have to be applied:

d

dt

�

�L

� _q

i

�

�

�L

�q

i

= Q

i

�G

i

(q)

T

� i = 1; 2; :::; n

r

(2.22)

with the additional 
onstraint for
e term on the right hand side.

Why do we not use Lagrange's equations? In both 
ases, Lagrange's equations for
e us

to use the same set of 
oordinates for optimization and for the model setup. T and V

always need to be expressed in terms of the generalized 
oordinates whi
h again leads us

to the involved equations we wanted to avoid!

2.2.3 Deriving Three-dimensional Equations of Motion by An-

gular Momentum Balan
es

For three-dimensional systems we have 
hosen the - in this 
ase - more intuitive approa
h

to derive equations based on overall balan
es of translational and rotational momentum.

In three dimensional spa
e, the method of free body diagrams rea
hes its limits of appli-


ation as it be
omes 
onsiderably harder to 
orre
tly des
ribe the dire
tions of 
onstraint

for
es and a

elerations.

For three-dimensional systems it seems more intuitive to derive the equations of motion

based on overall balan
es of translational and rotational momentum

F = m�r

C

=

n

X

i

m

i

�r

i

(2.23)

M =

_

H: (2.24)
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Figure 2.2: Derivation of total angular momentum of a multibody system a) about origin b)

about an arbitrary (moving) point

F and M are the sums of all external for
es and torques, the index C denotes the 
enter

of mass of the whole system, m is the total mass, and H is the total angular momentum.

The referen
e point for H is either the 
enter of mass or a �xed point. We will see later

how equation (2.24) needs to be modi�ed for general referen
e points. Using the 
enter

of mass as referen
e point has the advantage that translational and rotational motion 
an

be treated independently. On the other hand, the 
enter of mass of a multibody system

is no physi
al point �xed to any of the bodies but an imaginary point 
onstantly moving

relative to all of them. Frequently, 
ertain points in the multibody system are inertially

�xed and the overall motion 
an be 
onsidered as a rotation about this �xed point.

In the following, we will 
on
entrate on deriving the rotational equations about general

referen
e points that are not ne
essarily the 
enter of mass or a �xed point.

The total angular momentum of a multibody system about the origin (see �gure 2.2a) is

found by summing the angular momenta of the individual bodies.

H =

n

X

i=1

(r

i

�m

i

_r

i

) +

n

X

i=1

(�

i

!

i

) (2.25)

where m

i

are the masses, �

i

the moments of inertia, r

i

the 
enter of mass positions, and

!

i

the angular velo
ities of the n bodies. r

i

and !

i

are des
ribed in global 
oordinates.

The moments of inertia �

i

are des
ribed in body �xed 
oordinates. Due to the rotational

motion of the bodies their derivatives in the inertially �xed 
oordinate system are not

zero.

With this, the derivative of the total angular momentum be
omes

_

H =

n

X

i=1

(r

i

�m

i

�r

i

) +

n

X

i=1

(�

i

_!

i

+ !

i

� �

i

!

i

) (2.26)

as

_r

i

�m

i

_r

i

= 0: (2.27)
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Thus, we obtain for the overall rotational equation about the origin:

n

X

i=1

(r

i

�m

i

�r

i

) +

n

X

i=1

(�

i

_!

i

+ !

i

��

i

!

i

) =M (2.28)

In the more general 
ase, we 
hoose a referen
e point P lo
ated on an additional body

of mass 0 (�gure 2.2b). P may perform arbitrary translational motions (and rotational

motions, whi
h however do not play a role as the body is massless). The total angular

momentum of the system about P is

H =

n

X

i=1

(r

P;i

�m

i

_r

P;i

) +

n

X

i=1

(�

i

!

i

): (2.29)

For a general referen
e point, equation (2.24) needs to be modi�ed:

M

P

� r

P;C

�m�r

P

=

_

H

P

: (2.30)

The additional term �r

P;C

�m�r

P


an be interpreted as moment about P produ
ed by the

inertia for
e m�r

P

that results from the translational motion of the referen
e frame. The

term is zero for any referen
e point that is inertially �xed or moving at 
onstant speed.

The rotational equation about a general a

elerated referen
e point P be
omes

n

X

i=1

(r

P;i

�m

i

�r

P;i

) +

n

X

i=1

(�

i

_!

i

+ !

i

� �

i

!

i

) + r

P;C

�m�r

P

=M: (2.31)

With

r

P;C

�m�r

P

=

n

X

i=1

r

P;i

�m

i

�r

P

; (2.32)

we 
an also write

n

X

i=1

(r

P;i

�m

i

�r

i

) +

n

X

i=1

(�

i

_!

i

+ !

i

��

i

!

i

) =M: (2.33)

It goes without saying that these equations 
an also be applied to parts of the multibody

system. Following the prin
iple of free body diagrams, possible 
onstraint for
es and

torques 
aused by the rest of the system have in this 
ase to be taken into a

ount

be
ause they be
ome 'external' from this point of view.

2.3 Numeri
al Implementation of Gait Models

We have implemented all our robot models in the framework of an obje
t oriented model

library in C++. Every model 
lass en
apsulates all information about a model in
luding

basi
 model data like dimensions and all features previously de�ned in this 
hapter. This

implementation has the advantage of ensuring uniform interfa
es to all me
hani
al models.

No model modi�
ations are ne
essary for use with other software, e.g. integrators. The

following listing 
hara
terizes the Model data type:
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lass Model{

prote
ted:

int itsNoOfStates;

int itsNoOfControls;

int itsNoOfParams;

int itsNoOfModels;

int itsModelNo;

int itsNoOfSwit
hes;

double itsTime;

Ve
tor<double> ItsX;

Ve
tor<double> ItsU;

Ve
tor<double> ItsP;

publi
:

Model();

Model(Model& OtherModel);

virtual ~Model();

void update(double time, Ve
tor<double>& X, Ve
tor<double>& U,

Ve
tor<double>& P, int modelNo = 1);

virtual void 
al
RHS(Ve
tor<double>& XDot) = 0;

virtual void 
al
Jump(int swit
hNo, Ve
tor<double>& XAfterJump) = 0;

virtual double 
al
Swit
hingFun
tion(int swit
hNo) = 0;

virtual double 
onfirmSwit
h(int swit
hNo) = 0;

virtual void 
al
Swit
hingDerivs(int swit
hNo, Ve
tor<double>& DswDx,

Ve
tor<double>& DswDu, Ve
tor<double>& DswDp, double& dswDt) = 0;

int getNoOfStates();

int getNoOfControls();

int getNoOfParams();

int getNoOfSwit
hes();

virtual void print(int printLevel);

virtual void print(int printLevel, ofstream& fout);

};

The equations of motion of the robot are internally established based e.g. on free body

diagrams and Newton's laws or 
onservation of momentum balan
es. As des
ribed in

se
tion 2.2.1, typi
ally larger sets of 
oordinates than those for simulation and optimiza-

tion are used for this purpose. These systems of equations are internally solved, and only

optimization 
oordinates are visible to the outside. The right hand side for the equations

of motion is exported on request. Swit
hing fun
tion values and jump dis
ontinuities at

swit
hing points, that result from 
ompli
ated momentum balan
es are also internally


omputed on demand.





Chapter 3

Mathemati
al Methods for the

Generation of Optimal Periodi


Gaits

The task of gait generation determines, for a given me
hani
al model and a given set of

model parameters, the initial values for the position and the velo
ity variables, the 
y
le

time, and { for a
tuated systems { the a
tuator inputs su
h that the periodi
ity 
onditions

and other restri
tions are ful�lled. The task also in
ludes a dete
tion of non-feasibility

for a given 
on�guration.

The question for optimal periodi
 gaits 
an arise in di�erent 
ir
umstan
es.

In this thesis, we are espe
ially interested in the sear
h for periodi
 gaits as subtask in

the inner loop of the two-level optimization pro
edure, as outlined at the end of 
hapter

1. An optimization 
riterion has to be added in this 
ase to make the solution of this

subproblem unique and to support the obje
tives of the outer loop.

But optimal periodi
 gaits are also of importan
e as stand-alone problems. Forward

simulation of gait models without any information about suitable a
tuator histories is

very unlikely to result in physi
ally meaningful traje
tories. Optimization methods 
an

help to determine a
tuator inputs 
reating periodi
 gaits. And frequently the question

for an optimal motion, like the fastest, slowest, most energy eÆ
ient et
. gait arises.

The one-level stability optimization problem mentioned in 
hapter 1 does of 
ourse also

ask for the generation of an optimal periodi
 gait, but it does not fall into the range of

problems treated in this 
hapter. Both of the above problems of optimal gait generation

{ stand-alone and inner loop task { are 
omplex, but standard optimal 
ontrol problems.

Their obje
tive fun
tions are of standard separable Mayer or Lagrange type. We will see in


hapter 5 that the obje
tive fun
tion 
hara
terizing stability does 
learly not belong into

this 
ategory su
h that the methods des
ribed in this 
hapter are only partly appli
able.

While there is no tool available to solve su
h a non-standard optimal 
ontrol problem,
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software for the solution of standard optimal 
ontrol problems already exists today, in

parti
ular the powerful 
ode MUSCOD, that has been developed in the resear
h group of

Bo
k & S
hl�oder by Leineweber [48℄, [47℄ on the basis of the original 
ode of Bo
k & Plitt

[11℄ for sti� 
hemi
al systems of ODE or index 1. MUSCOD relies on fast and eÆ
ient

integrator libraries that are also 
apable to 
ompute derivatives of the traje
tories, like

ODEOPT that has been in
orporated into the optimal 
ontrol 
ode by its author Win
kler

[102℄. In this study, we use a variant of MUSCOD for the generation of optimal periodi


gaits. It was 
oupled with the gait model library des
ribed in the previous 
hapter.

The purpose of this 
hapter is to introdu
e theoreti
al ba
kground, problem formulation

and solution methods for optimal periodi
 gaits in the sense of standard periodi
 optimal


ontrol problems.

As di�erential equations and dynami
al systems are 
losely related �elds of resear
h,

in se
tion 3.1 we take the dynami
al systems point of view and re
all some important

terminology from that area. In se
tion 3.2 we introdu
e some theory about existen
e and

uniqueness of solutions of (periodi
) boundary value problems. From this we 
on
lude in

se
tion 3.3 that the formulation of gait problems should always lead to optimal 
ontrol

problems and not only to boundary value problems. We give the full formulation of a

standard multi-phase optimal 
ontrol problem with dis
ontinuities. Se
tion 3.4 is �nally

dedi
ated to the numeri
al solution of periodi
 optimal 
ontrol problems by the dire
t

multiple shooting approa
h.

3.1 The Dynami
al Systems Point of View

A system, the behavior of whi
h is des
ribed by di�erential equations | like a walking

robot { is also 
alled a (
ontinuous-time) dynami
al system. In this se
tion we introdu
e

some basi
 terminology 
ommon in the �eld of dynami
al systems be
ause it is often used

in the 
ontext of walking robots and sometimes di�ers from the terminology 
ustomary in

the �eld of optimization and simulation. As referen
es for this se
tion we have used the

books of Kuznetsov [44℄ and Baker & Gollub [5℄ and the relevant 
hapter in Bronstein et

al.[13℄.

The state spa
e X of all dynami
 variables of the system is equivalently 
alled phase spa
e.

The evolution operator of a dynami
al system des
ribes the deterministi
 pro
ess of evo-

lution in time t. It is the map �

t

that transforms an initial state x

0

2 X into some state

x

t

2 X at time t: x

t

= �

t

x

0

. In the 
ontinuous-time 
ase, the family �

t

t2I

T

of evolution

operators is 
alled a 
ow.

An equilibrium or �xed point x

0

is a point in state spa
e that is mapped onto itself by the

evolution operator for arbitrary times t:

�

t

x

0

= x

0

for all t 2 I

T

: (3.1)

From this follows that a system put into equilibrium state remains there forever.
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Figure 3.1: De�nition of Poin
ar�e se
tions for a) non-autonomous and b) autonomous di�eren-

tial equations

Orbits of a 
ontinuous-time system with a 
ontinuous evolution operator are 
urves in the

state spa
e X parameterized by the time t and oriented by its dire
tion of in
rease. Orbit

is therefore a synonym for traje
tory.

A periodi
 orbit or 
y
le L

0

is an orbit for whi
h ea
h point x

0

2 L

0

satis�es

�

t+T

x

0

= �

t

x

0

with some T > 0; for all t 2 I

T

: (3.2)

The minimal T with this property is 
alled the period of the 
y
le L

0

. In the 
ontinuous-

time 
ase, a 
y
le L

0

is represented by a 
losed 
urve. If a 
y
le is isolated, i.e. there are

no other 
y
les in its neighborhood, it is 
alled a limit 
y
le.

Phase portraits are diagrams 
ontaining a visualization of possible orbits in phase spa
e.

In pra
ti
e it is of 
ourse impossible to show all orbits, so only several key orbits are

depi
ted.

A very helpful tool for the study of periodi
 dynami
al systems are Poin
ar�e se
tions

whi
h 
an be de�ned as 'snapshots' of the system's motion taken at regular intervals T

in time (typi
ally the 
y
le time). In the 
ase of autonomous systems it is 
ustomary to

de�ne the Poin
ar�e se
tion as (n� 1)-dimensional manifold in n-dimensional phase spa
e

that is orthogonal to the orbit. The results are the same if applied to a T -periodi
 orbit

but a distin
tion be
omes obvious for a (non-periodi
) perturbation of this orbit for whi
h

the time between two interse
tions with this manifold is not equal to T . Poin
ar�e se
tions

for non-autonomous and autonomous systems are shown in �gure 3.1.

The map that transforms a state on one Poin
ar�e se
tion to a 
orresponding state on

the next se
tion is 
alled the Poin
ar�e map asso
iated with the T -periodi
 
y
le L

0

.

The 
omputation of Poin
ar�e maps and their Ja
obians for both autonomous and non-

autonomous systems will be a 
ore 
omponent of our stability optimization pro
edure to

be des
ribed in later 
hapters.
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3.2 Existen
e and Uniqueness of Solutions of Bound-

ary Value Problems

Gait models as des
ribed in 
hapter 2 result in periodi
 multi-phase boundary value

problems with dis
ontinuities { so far without any optimization 
riterion. In this se
tion,

we will brie
y review some important fa
ts about existen
e and uniqueness of solutions

of boundary value problems. In 
ontrast to initial value problems for whi
h existen
e

and uniqueness 
an generally be guaranteed under mild assumptions of 
ontinuity and

Lips
hitz 
ontinuity, for boundary value problems non-uniqueness or non-existen
e 
an

o

ur even for very simple 
ases. The material of this se
tion is treated more extensively

in Walter [98℄, Werner & Arndt [100℄, and As
her et al. [4℄.

The basi
 form of a boundary value problem for �rst order systems of order n is

_x = f(t; x(t)); t 2 [a; b℄ (3.3)

r(x(a); x(b)) = 0 (3.4)

In 
ontrast to initial value problems, boundary 
onditions are spe
i�ed at two di�erent

points a and b. The formulation of a boundary value problem with boundary 
onditions

of type (3.4) is obviously only possible for a �rst order system with at least two di�erential

equations.

In the 
ase of a periodi
 boundary value problem, boundary 
onditions (3.4) take the

form

r(x(a); x(b)) = x(b)� x(a) = 0: (3.5)

In analogy to the 
lassi
al two-point boundary value problem (3.3)/ (3.4) we 
an also

de�ne a multi-point boundary value problem with boundary 
onditions spe
i�ed at p

di�erent points

r(x(t

1

); x(t

2

); :::; x(t

p

)) = 0: (3.6)

A boundary value problem is 
alled linear if its di�erential equations as well as its bound-

ary 
onditions are linear. The following theorem is taken from Werner & Arndt [100℄.

Theorem 3.1 The linear boundary value problem

_x(t) + A(t)x(t) = 
 (3.7)

Mx(a) +Nx(b) = d (3.8)

has a unique solution for arbitrary 
; d if for a fundamental matrix X(t) of the homogenous

system _x(t) + A(t)x(t) = 0 we have:

� :=MX(a) +NX(b) (3.9)

is non-singular. If it is singular, the homogenous boundary value problem (with 
 = d = 0)

has a number of non-trivial solutions.
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For boundary value problems involving nonlinear di�erential equations there is no way

to determine existen
e nor uniqueness of solutions for the general 
ase. Boundary value

problems are 'problems in the large', and existen
e of solutions of di�erential equations


an often only lo
ally be guaranteed.

In many 
ases of pra
ti
al interest, however, there is a number of possible solutions. Some

useful theoreti
al results for the general 
ase 
an be derived expressing boundary value

problem (3.3)/ (3.4) in terms of an asso
iated initial value problem

_y = f(t; y(t)); t > a (3.10)

y(a) = s (3.11)

where s is an n-dimensional parameter ve
tor. Assuming Lips
hitz 
ontinuity, there is a

unique solution y(t; s) of the initial value problem. x(t) = y(t; s) for ea
h s that solves

the boundary value problem if s is 
hosen su
h that

g(s) = r(s; x(b; s)) = 0 (3.12)

This is a system of n nonlinear equations for n unknowns s

i

that may have one solution,

many or none at all. See As
her et al. [4℄ for the following theorem:

Theorem 3.2 If f(t; x(t)) is 
ontinuous for t 2 [a; b℄ and arbitrary x and satis�es a

uniform Lips
hitz 
ondition, then the nonlinear boundary value problem (3.3)/ (3.4) has

as many solutions as there are distin
t roots in equation (3.12).

It remains to draw 
on
lusions for the problem of gait generation. A typi
al straightfor-

ward boundary value problem arising in this 
ontext of non-a
tuated systems would be to

determine a periodi
 solution for a given set of model parameters and free initial values

of states and 
y
le time. This 
an be written as an extension of (3.3)/(3.5):

_x = f(t; x(t; p); p); p 2 R

k

; t 2 [a; p

k+1

℄ (3.13)

0 = x(a; p)� x(p

k+1

; p) (3.14)

Su
h a system may have a unique solution, multiple solutions or no solution at all. Very

often, the system has additional possibilities of variation, like 
ontrols, and also additional

restri
tions, like 
onstraints on states, parameters and 
ontrols. The former even in
reases

the 
han
es of non-uniqueness, the latter those of non-solvability. But lo
ally non-unique

solutions may lead to a failure of the numeri
al method.

We may therefore 
on
lude that formulating a gait problem as simple boundary value

problem may be the sour
e of numeri
al problems and should thus be avoided. Measures

to make the solution unique and for a dete
tion of non-solvability have to be taken.
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3.3 Formulation of Periodi
 Gaits as Multi-phase Op-

timal Control Problem with Dis
ontinuities

A solution to the non-uniqueness problems resulting from a boundary value problem

formulation outlined in the last se
tion is to add some appropriate optimization 
riterion.

This leads to the formulation of a multi-phase optimal 
ontrol problem

min

x;u;T

Z

T

0

�(x(t); u(t); p) dt + �(T; x(T ); p) (3.15)

s. t. _x(t) = f

j

(t; x(t); u(t); p) for t 2 [�

j�1

; �

j

℄;

j = 1; :::; n

ph

; �

0

= 0; �

n

ph

= T (3.16)

x(�

+

j

) = h(x(�

�

j

)) for j = 1; :::; n

ph

(3.17)

g

j

(t; x(t); u(t); p) � 0 for t 2 [�

j�1

; �

j

℄ (3.18)

r

eq

(x(0); ::; x(T ); p) = 0 (3.19)

r

ineq

(x(0); ::; x(T ); p) � 0: (3.20)

Equations (3.16) { (3.20) alone would represent a multi-point boundary value problem

with additional nonlinear inequality 
onstraints.

The state variables x 
ombine the position and velo
ity variables q and v of the me
hani
al

system. p are the model parameters, and u the 
ontrol variables or a
tuations. This

formulation 
overs a
tuated as well as passive systems; for the latter the dimension of

u simply is zero. In the 
ontext of the two-level stability optimization pro
edure the

model parameters p are �xed in this subproblem and are only varied in the outer stability

optimization loop (see se
tion 1.5). For a stand-alone problem of periodi
 gait generation

it 
ould make sense to also allow for a model parameter variation in this optimal 
ontrol


ontext, and equation (3.15) would have to be a

ordingly modi�ed.

For simpli
ity, we have represented here only the 
ase of ODE models. If the motion is


hara
terized by DAEs, equations (3.16) have to be repla
ed by the 
orresponding formu-

lation of type (2.5)/(2.6). The full 
y
le [0; T ℄ is divided into phase intervals [�

j

; �

j+1

℄ with

possibly di�erent dynami
al models (3.16) and di�erent 
ontinuous inequality 
onstraints

on states and 
ontrols (3.18).

State and right hand side dis
ontinuities are only allowed between phases. Swit
hing fun
-

tion handling is not performed during integration. Instead, phase swit
hing at impli
itly

de�ned times is monitored by a time transformation (see se
tion 3.4.3) and reformulation

of the swit
hing 
onditions as interior point 
onstraints of type (3.19) (see Bo
k [9℄).

In the sense of the above optimal 
ontrol problem formulation, periodi
ity 
onditions are


oupled pointwise equality 
onstraints of type (3.19). Box 
onstraints and more 
omplex


ontinuous 
onstraints (su
h as foot 
learan
e) on states and 
ontrols are in
luded in

equation (3.18).
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Note that the optimal 
ontrol problem formulation in equation (3.15) allows for obje
tive

fun
tions of Lagrange type as well as of Mayer type involving traje
tory end values. Those

two types are equivalent from a mathemati
al point of view and 
an be transformed into

ea
h other.

For the optimization of walking motion there are several 
lassi
al obje
tive fun
tions of

interest.

Energy 
onsumption is an important issue although there are di�erent opinions on how

to measure energy. It 
an be either judged in terms of me
hani
al energy as integral of

a for
e along a path or, as is more 
ommon in roboti
s, in terms of a
tuator torques u

(squared to eliminate dire
tion)

Z

T

0

jjujj

2

2

dt (3.21)

whi
h depend on the ele
tri
al energy 
onsumed by the motors. For human walking, a

measure of mus
ular energy 
onsumption would have to be established.

The improvement of performan
e of walking, running and hopping motions in the sense

of speed, height and width is often sought for, and this also leads to obje
tive fun
tions

of form (3.15).

For the stability optimization subtask of generating a periodi
 gait in the inner loop we

need to 
hoose an obje
tive fun
tion that assists the outer loop stabilization goal rather

than working against it. Experien
e shows that e.g. a maximization of speed would tend

to make gaits more unstable instead of more stable. In this sense the following obje
tive

fun
tions have proven to be suitable:

� minimization of 'energy input' in terms of torques squared (for a
tuated robots only)

� minimization of 
y
le time

� minimization of some 
hara
teristi
 speed.

3.4 Numeri
al Solution of Periodi
 Me
hani
al Multi-

phase Optimal Control Problems with Dis
onti-

nuities

There are some fundamentally di�erent ways to solve periodi
 optimal 
ontrol problems.

The approa
h due to Colonius [21℄ is very 
ommon, e.g. in 
hemi
al engineering, where

for many systems a steady state solution, 
orresponding to a stati
 
ontrol is known. The

basi
 question then is if it is possible to determine a non-trivial T -periodi
 
ontrol whi
h

further improves the steady state value of the obje
tive fun
tion. It is answered on the

basis of a so-
alled �-Test (also see Hartel [37℄ for a numeri
al implementation). However,
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this approa
h is not a possible one for the generation of optimal periodi
 gaits sin
e there

are no related steady state solutions in the general 
ase. We are not aware of any 
ase

where a 
onstant non-zero 
ontrol produ
es a solution to the problem. And for 
onstant

zero 
ontrols, i.e. performing a transition from a
tuated to passive walking (if possible at

all) { some properties of the system, like the slope angle, would have to be modi�ed. The

steady state on 
at ground with no 
ontrols related to walking motions equals standing

still. This being of fundamentally di�erent nature would not help to �nd a solution for

walking.

Among the di�erent possible methods that dire
tly ta
kle the non-steady periodi
 optimal


ontrol problem we have 
hosen a dire
t method based on multiple shooting as it is

implemented in MUSCOD (see Leineweber [47℄).

In this se
tion we des
ribe the individual steps in the solution pro
ess: 
ontrol dis
retiza-

tion, treatment of dynami
s, solution of the underlying nonlinear programming problem.

We also highlight spe
ial aspe
ts of the problem like the optimization of phase times, a

possible shift of periodi
 orbits, and the use of index 3 models in optimal 
ontrol.

3.4.1 Dis
retization of Optimal Control Problems

Problem (3.15) - (3.20) represents an in�nite-dimensional optimization problem. This

se
tion des
ribes how it is transformed into a �nite-dimensional optimization problem by

dis
retization of the 
ontrol fun
tions as well as the system's dynami
s and presents the

resulting dis
retized system.

Control Dis
retization

The 
lassi
al, so 
alled indire
t, approa
h to optimal 
ontrol problems is based on Pon-

tryagin's maximum prin
iple and optimality 
onditions for the in�nite problem itself (see

e.g. F�ollinger [29℄). Controls are eliminated by expressing them as fun
tions of state

variables and adjoint variables. In theory, the indire
t approa
h has the advantage that

solutions with 
ontrol fun
tions in very general spa
es 
an be 
hara
terized but in pra
ti
e

it is very hard to solve the resulting equations even for quite simple 
ases.

For 
omplex pra
ti
al problems, generally the dire
t approa
h that is based on a dis
retiza-

tion of 
ontrol fun
tions, is favored. Instead of in�nite dimensional 
ontrol fun
tions u(t)

as in the indire
t approa
h, parameterizable 
ontrol fun
tions are used. Control histories

of the n

u

physi
al 
ontrols are thus des
ribed by a �nite number of 
ontrol parameters

q

ij

. One of the spe
ial features introdu
ed by Bo
k & Plitt [11℄ is to use 
ontrol fun
-

tions that have only lo
al support, like pie
ewise 
onstant or linear fun
tions on a 
ontrol

grid [t

0

; t

1

; :::; t

m

℄ with m intervals. This has the advantage of leading to a stru
tured

optimization problem.
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Figure 3.2: Multiple Shooting state dis
retization

State Dis
retization

The goal of state dis
retization is to separate the two tasks of integrating the system's

dynami
s and solving the optimization problem. For optimal 
ontrol problems basi
ally

the same dis
retization methods are appli
able as for the underlying multi-point boundary

value problem.

Resulting from the fa
t that there is a 
lose theoreti
al relationship between boundary

value problems and initial value problems (see se
tion 3.2) some numeri
al methods for

boundary value problems tra
e ba
k their solution to that of initial value problems (As
her

et al. [4℄, S
hwarz [82℄).

The simplest method of this type is the single shooting method. It treats the full integra-

tion interval of the boundary value problem at on
e. The initial values of the integration

are iteratively varied until the boundary 
onditions of the original boundary value prob-

lem are satis�ed. A weakness of single shooting is that it is hard or even impossible to

�nd a solution if the initial value problem solution is very sensitive to variations of the

initial values.

As the impa
t of su
h a high sensitivity is redu
ed on smaller integration intervals, we

are naturally led to the idea of multiple shooting. It splits the long integration interval

[0; T ℄ into many smaller ones and introdu
es the values of the n

x

state variables x at all

those grid points as new variables s

ij

. With this approa
h the original boundary value

problem is transformed into a set of initial value problems. Corresponding 
ontinuity


onditions between integration intervals are added. As proposed by Bo
k & Plitt [11℄,

it is advantageous for the stru
ture of the resulting problem to 
hoose the same grid for

multiple shooting as for 
ontrol dis
retization or a subset thereof.

The multiple-shooting approa
h is espe
ially suited for the generation of periodi
 gaits

for a number of reasons. It allows to impose the desired phase order and swit
hing

stru
ture, as the model for ea
h multiple shooting interval 
an be pres
ribed di�erently.

The knowledge that one usually has about the traje
tory 
an be used as initial guesses for
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the initial values of the states at the multiple shooting points. Gait models often exhibit

the above des
ribed sensitivity to initial value variations, and therefore multiple shooting

in
reases signi�
antly the 
han
es of �nding a solution of the initial value problem and of

obtaining suÆ
iently a

urate derivatives.

Dis
retized Optimal Control Problem

Two more steps need to be taken in the dis
retization pro
ess. First, as the durations

of all phases are to be determined by the optimization, they need to be introdu
ed as

optimization variables. The ne
essary transformations are des
ribed in se
tion 3.4.3.

Se
ond, for all dis
ontinuous physi
al phase transitions additional arti�
ial phases of

duration zero are introdu
ed. These phases formally 
onsist of a single multiple shooting

interval.

The dis
retized optimal 
ontrol problem be
omes

min

y

~

�(y; p) (3.22)

s. t. ~r


on

= x(t

i+1

; s

i

; q

i

; p; h)� s

i+1

= 0 for i = 0; :::; m� 1 (3.23)

~r

eq;i

(y; p) = 0 for i = 0; :::; m (3.24)

~r

ineq;i

(y; p) � 0 for i = 0; :::; m (3.25)

with the variable ve
tor y

T

= (s

0

; q

0

; s

1

; q

1

; :::::; s

m

; h)

T


ontaining the dis
retized state

and 
ontrol ve
tors s

i

and q

i

at all multiple shooting points/intervals and the ve
tor of

phase times h. With dimensions n

x

and n

u

of the physi
al state and 
ontrol ve
tors, n

ph

phases, and m multiple shooting/
ontrol intervals, the ve
tor y has the dimension

n

y

= n

ph

+ n

x

� (m+ 1) + n

u

�m � k

u

; k

u

= 1; 2; ::

(where the fa
tor k

u

depends on the 
hosen 
ontrol dis
retization).

In MUSCOD, 
onstraints 
an be imposed on all multiple shooting points. Equation (3.24)

represents equation (3.19), equation (3.25) 
ombines equations (3.20) and a dis
retization

of (3.18) of the original problem. (3.23) des
ribes the 
ontinuity 
onditions between

integration intervals.

3.4.2 Treatment of the System's Dynami
s

Please note that the dynami
al model is not part of the optimal 
ontrol problem any more

after dis
retization. Integration has been separated from optimization: the optimization

only needs the �nal values x(t

i+1

; s

i

; q

i

; p) of the integration on ea
h interval and the


orresponding derivatives 
al
ulated by a logi
ally external integrator.

As integration and 
orresponding sensitivity generation represent a large part of the 
om-

putational e�ort ne
essary to solve the optimal 
ontrol problem, the use of eÆ
ient inte-

grators is 
ru
ial. In
orporated into MUSCOD are ODE-integrators of Runge-Kutta type
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Figure 3.3: Illustration of the shift problem

and ODESIM/ODEOPT of Win
kler [102℄ and the index-1 DAE integrator DAESOL

(Bauer et al. [6℄). For sensitivity generation, they all rely on the prin
iple of IND (inter-

nal numeri
al di�erentiation, see Bo
k [10℄) whi
h uses the same dis
retization s
hemes

for integration and derivative generation and exhibits high numeri
al stability.

3.4.3 Optimization of Phase Times

As stated above, we want the durations of all phases h = (h

1

; :::; h

n

p

h

)

T

to be free variables

of the optimization problem. For this, derivatives with respe
t to phase times have to

be determined during integration. In the 
ontext of IND this should not be done using

straightforward integration in physi
al time:

x(t

e;i

) = x(t

s;i

) +

Z

t

e;i

t

s;i

f(t; x(t))dt: (3.26)

By means of a time transformation to the unity interval t 2 [t

s;i

; t

e;i

℄! � 2 [0; 1℄

x(t

e;i

) = x(t

s;i

) + (t

e;i

� t

s;i

) �

Z

1

0

f(t

s;i

+ (t

e;i

� t

s;i

)�; x(t

s;i

+ (t

e;i

� t

s;i

)�))d� (3.27)

with t

s;i

=

P

i�1

j=1

h

j

, t

e;i

=

P

i

j=1

h

j

the derivatives with respe
t to h

i


an be 
omputed

like derivatives with respe
t to model parameters.

3.4.4 Handling of the Shift Problem

A 
lassi
al diÆ
ulty o

urring in the 
ontext of periodi
 optimal 
ontrol problems or

boundary value problems is the shift problem. Figure 3.3 illustrates this problem for the

simple example of the sin-fun
tion. It arises if none of the variables at the boundary

is �xed to a spe
i�
 value and only pure periodi
ity 
onstraints are imposed. Then it

follows that if x(t) is a solution of the boundary value problem, any other shifted fun
tion

z(t) = x(t +�t) for arbitrary �t is also a solution of the boundary value problem .
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The introdu
tion of phases whi
h have a priori a �xed order represents a regularization

of this shift problem. As start and end point of our 
y
li
 traje
tories are always asso
i-

ated with phase boundaries des
ribed by equality 
onstraints, those points are uniquely

determined on the traje
tory, and the shift problem is automati
ally eliminated.

3.4.5 Solution of Underlying NLP

The dis
retized problem (3.22) - (3.25) is a nonlinear programming problem (NLP) of

large dimension.

Obje
tive fun
tions of Mayer and Lagrange type (3.15) are separable, i.e. they 
an be

written as a sum of fun
tions ea
h valid on a single multiple shooting interval only

~

�(s; q; p) =

m

X

i=0

~

�(s

i

; q

i

; p): (3.28)

The dis
retized variables q

i

and s

i

have thus only lo
ally restri
ted in
uen
e on the ob-

je
tive fun
tion. The same is true for the 
onstraints ex
ept for a linear 
oupling in the


ontinuity and periodi
ity 
onditions.

In MUSCOD, the NLP is eÆ
iently solved by a tailored sequential quadrati
 program-

ming (SQP) method that exploits the problem stru
ture resulting from this lo
al sphere

of in
uen
e of variables. SQP is an iterative method in whi
h the NLP is lo
ally approx-

imated by quadrati
 optimization problems (QP). The solution z

k

of the QP at the SQP

iterate y

k

presents the new dire
tion of sear
h for the optimum in the SQP:

y

k+1

= y

k

+ �z

k

(3.29)

The QP to be solved is

min

z

k

2


r

~

�(y

k

)

T

z

k

+

1

2

z

T

k

B

k

(y

k

)z

k

(3.30)

s. t. h(y

k

) +rh(y

k

)

T

z

k

= 0 (3.31)

~r

eq

(y

k

) +r~r

eq

(y

k

)

T

z

k

= 0 (3.32)

~r

ineq

(y

k

) +r~r

ineq

(y

k

)

T

z

k

� 0 (3.33)

where B

k

is an approximation of the Hessian of the Lagrangian fun
tion. In a trust region

approa
h 
 is 
hosen su
h that the quadrati
 approximation is valid in the region. The

SQP step length � is determined by a line sear
h. For a basi
 des
ription of SQP methods,

see the optimization textbooks Gill et al. [32℄ and Flet
her [28℄. Spe
ial partially redu
ed

SQP methods have been developed by Leineweber [48℄. In the dire
t multiple shooting


ontext des
ribed in this se
tion the QP has a sparse stru
ture. Instead of dire
tly solving

this QP it is favorable to �rst 
ondense the problem eliminating the additional variables

introdu
ed by the multiple shooting method, s

1

; :::s

m

and then solve the resulting dense

QP by a standard solver.
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3.4.6 Treatment of Me
hani
al DAEs

As dis
ussed in se
tion 2.1.1, it is often favorable to formulate me
hani
al problems as

index 3 DAEs instead of ODEs. For our gait models we use this formulation at least for


ertain phases of the motion. We des
ribe them in the equivalent di�erentiated index 1

form (2.7) - (2.12) with position and velo
ity invariants. Those invariants have be taken

into a

ount in two di�erent ways:

1. As 
onstraints for the optimization problem: Initial values of integration must lie on

the manifold des
ribed by the 
onstraints. This is ensured by adding the respe
tive


onstraints to the set of multipoint 
onstraints at the initial multiple shooting point

of the respe
tive phase.

2. As 
onstraints for the integration: To avoid a drift away from this manifold the same


onstraints would have to be proje
ted onto when integrating the index 1 system

instead of the index 3 system. Due to the very short integration intervals in the

multiple shooting 
ontext drift has so far never appeared to be a problem for our

models, and therefore we have not deemed it ne
essary to use any proje
tion.

In a parallel resear
h proje
t in the group of Bo
k & S
hl�oder, Stossmeister [87℄ pursues a


ombination of MUSCOD with the integrator libraries MBSSIM and MBSOPT (v. S
hw-

erin & Win
kler [95℄, v. S
hwerin [93℄) 
apable to handle index 3 systems by redu
tion to

index 1 and proje
tion onto invariants. As soon as this tool is available, possible e�e
ts

of this alternative treatment of the drift problem on our models and results 
an be tested.





Chapter 4

Chara
terizing the Stability of

Periodi
 Gaits

In 
hapter 3 we have des
ribed numeri
al methods for the generation of optimal periodi


gaits to be used in the inner loop of our two-level optimization pro
edure. Having found

a periodi
 solution, its stability must be determined as part of the 
omputations in the

outer loop. The present 
hapter is dedi
ated to appropriate 
riteria 
hara
terizing the

stability of a periodi
 orbit.

Stability of a solution des
ribes the fa
t that neighboring solutions approa
h or at least

stay 
lose to that solution. Deviations of the physi
al system's motion from the original

pre
al
ulated traje
tory may o

ur for a number of reasons. Model parameters 
an usu-

ally only be determined with a 
ertain toleran
e. The system's motion is often subje
t to

perturbations 
aused by the external world. And even the most detailed mathemati
al

model is always some abstra
tion of the real system. So for the open-loop 
ontrolled phys-

i
al system to be able to automati
ally re
over from this deviated state, the mathemati
al

solution has to be robust against perturbations of the initial values and the parameters.

We start the 
hapter with mathemati
al de�nitions of stability that are needed to explain

the theoreti
al ba
kground. We re
all the stability theory for linear systems with 
onstant


oeÆ
ients in se
tion 4.2 and with periodi
 
oeÆ
ients { the so-
alled Floquet theory {

in se
tion 4.3. They form the basis for further investigations of nonlinear systems. The

theory that we need for our systems is the stability theory for nonlinear periodi
 systems,

whi
h is a spe
ial 
ase of Lyapunov's �rst method. It is introdu
ed in se
tion 4.4. In 4.5,

we generalize Lyapunov's �rst method to our 
ase of periodi
 systems with dis
ontinuities.

Although the method has been applied to gaits before by some authors (e.g. M
Geer

[52℄, Coleman [18℄, Cheng & Lin [15℄, Hurmuzlu [42℄) { varying in the way the relevant

quantities are 
omputed { to our knowledge this formal generalization has not been made

before. We �nish this 
hapter by brie
y re
alling the famous se
ond method of Lyapunov

and explaining why it is not useful in our investigations. Good referen
es for the �rst four

se
tions of this 
hapter are Cronin [22℄, Walter [98℄, Meirovit
h [56℄, and Hsu & Meyer

[40℄. For se
tion 4.6, see La Salle & Lefs
hetz [80℄ and Cronin [22℄.
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4.1 Mathemati
al De�nitions of Stability

In this se
tion we give some essential de�nitions of stability that will be used later in this


hapter. The de�nitions are based on the work of the Russian mathemati
ian A. M. Lya-

punov.

A solution x

0

(t) of an n-dimensional system of non-autonomous di�erential equations

_x(t) = f(t; x(t)) (4.1)

� is stable (in the sense of Lyapunov), if for ea
h � > 0 there is a Æ > 0 su
h that all

solutions x

1

(t) with jx

1

(t

0

)� x

0

(t

0

)j < Æ satisfy jx

1

(t)� x

0

(t)j < � for all t > t

0

,

� is asymptoti
ally stable (in the sense of Lyapunov), if it is stable and additionally

lim

t!1

jx

1

(t)� x

0

(t)j = 0;

� is unstable if it is not stable.

Let us re
all that for me
hani
al systems the ve
tor x 
onsists of all position and all

velo
ity variables.

A very useful notion for autonomous systems

_x(t) = f(x(t)) (4.2)

espe
ially with 
losed traje
tories is that of orbital stability whi
h only 
onsiders the tra-

je
tories as entities and not a spe
i�
 referen
e point traveling in time along the traje
tory.

Let X

0

be the orbit of solution x

0

(t) and de�ne d(X

0

; y) as the minimum Eu
lidean

distan
e of a point y from the orbit X

0

. Then the solution x

0

(t) of an autonomous system

� is orbitally stable if for ea
h � > 0 there is a Æ > 0 su
h that all solutions x

1

(t) with

d(X

0

; x

1

(t

0

)) < Æ satisfy d(X

0

; x

1

(t)) < � for all t > t

0

, and

� is orbitally asymptoti
ally stable if it is orbitally stable and additionally

lim

t!1

d(X

0

; x

1

(t)) = 0:

Orbital stability is a 
onsiderably weaker 
ondition than stability as points of 
orrespond-

ing values of time t 
an be far apart, i .e. perturbations along the orbit do not have to

be eliminated.
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4.2 Stability of Solutions of Linear Systems with Con-

stant CoeÆ
ients

As is well known to most engineers and mathemati
ians, stability of a linear system with


onstant 
oeÆ
ients 
an be determined by the eigenvalues of its 
oeÆ
ient matrix. The

following theorem 
an be found e.g. in Walter [98℄.

Theorem 4.1 Solution x � 0 of

_x(t) = Ax(t) with A 
onst.

� is stable, if Re(�

i

) � 0) for all eigenvalues �

i

of A with Re(�

i

) = 0 belonging to a

non-defe
tive eigenvalue

� is asymptoti
ally stable, if Re(�

i

) < 0) for all eigenvalues �

i

of A

� is unstable, if it is not stable.

Remark:

For general linear systems

_x(t) = A(t)x(t) + f(t) (4.3)

where A(t) and f(t) are 
ontinuous, it holds that if there exists one solution x(t; t

0

; x

0

)

of (4.3) whi
h is (asymptoti
ally) stable then every solution of (4.3) is (asymptoti
ally)

stable. Stability properties of the trivial solution of the linear system 
an therefore be

generalized to arbitrary solutions of the same system.

4.3 Stability of Solutions of Linear Systems with Pe-

riodi
 CoeÆ
ients { The Floquet Theory

For time-varying 
oeÆ
ient matri
es A(t) it is obviously not possible to derive overall

stability properties from the eigenvalues of A as they also 
hange in time.

The theory founded by the Fren
h mathemati
ian Gaston Floquet gives an approa
h for

homogenous linear systems with T -periodi
 
oeÆ
ients

_x(t) = A(t)x(t) with A(t+ T ) = A(t): (4.4)

The stability of the trivial solution x � 0 is studied.

It 
an be shown that if x(t) is a solution, it follows that z(t) = x(t+ T ) also is a solution

{ whi
h does not imply an equivalen
e of x(t) and z(t). In other words: if X(t) is a

fundamental matrix of (4.4) with X(0) = I, then Z(t) = X(t+T ) is another fundamental

matrix and there exists a 
onstant nonsingular matrix C su
h that

X(t+ T ) = X(t)C with C = X(T ): (4.5)
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The matrix C whi
h is sometimes referred to as monodromy matrix plays an important

role in Floquet theory. It is equivalent with the Ja
obian of the Poin
ar�e map introdu
ed

in se
tion 3.1. The eigenvalues �

i

of C are 
alled 
hara
teristi
 multipliers or Floquet

multipliers of A. The monodromy matrix C is not unique but depends on the parti
ular


hoi
e of the fundamental matrix X(t). However, the eigenvalues asso
iated with the

monodromy matrix are uniquely determined by the system/
oeÆ
ient matrix A(t) as the

monodromy matri
es 
orresponding to di�erent fundamental matri
es are similar.

Every fundamental matrix X(t) of (4.4) has a Floquet representation

X(t) = Q(t)e

Bt

; (4.6)

where Q(t) is T -periodi
 and B is 
onstant and satis�es

C = X(T ) = e

BT

: (4.7)

For every eigenvalue �

i

of C there is a 
orresponding eigenvalue �

i

of B with identi
al

algebrai
 multipli
ity and

�

i

= e

T�

i

(4.8)

�

i

are 
alled 
hara
teristi
 exponents or Floquet exponents of A. From the de�nition of B

follows that the real parts of �

i

are uniquely determined, the imaginary parts are de�ned

up to an integral multiple of 2�=T .

Transformation (4.6) allows to derive stability statements for systems with periodi
 
oef-

�
ients from systems with 
onstant 
oeÆ
ients.

Theorem 4.2 Solution x � 0 of

_x = A(t)x with A(t + T ) = A(t)

� is stable, if all 
hara
teristi
 multipliers j�

i

j � 1 (or all 
hara
teristi
 exponents

Re(�

i

) � 0) with j�

i

j = 1 (Re(�

i

) = 0) belonging to a non-defe
tive eigenvalue,

� is asymptoti
ally stable, if all multipliers j�

i

j < 1 (or all exponents Re(�

i

) < 0), and

� is unstable, if at least one multiplier j�

i

j > 1 (or Re(�

i

) > 0).

The theorem 
an be found in Walter [98℄.

T -periodi
 solutions of those systems with T -periodi
 
oeÆ
ients exist, if the transfer

matrix C has one eigenvalue � = 1. If no 
hara
teristi
 multiplier equals one, then

equation (4.4) has no nontrivial solution of period T .

4.4 Stability of Periodi
 Solutions of Nonlinear Sys-

tems { Lyapunov's First Method

Lyapunov's �rst method is a stability theory for nonlinear systems that is based on ap-

proximations by the 
orresponding linear systems.
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Here we only treat T -periodi
 nonlinear systems

_x = f(t; x) with f(t+ T; �) = f(t; �) (4.9)

where f 2 C

2

. We also 
onsider the spe
ial 
ase of an autonomous equation

_x = f(x) (4.10)

whi
h is trivially T -periodi
.

Periodi
 solutions of (4.9) and (4.10) do not ne
essarily have to exist. Assuming that

there exists a periodi
 solution x

p

(t+ T ) = x

p

(t) = x

p

(t; t

0

; x

0;p

), then any other solution

x

1


an be expressed as

x

1

(t) = x

p

(t) + �x (4.11)

Sin
e x

1

is a solution of (4.9)

_x

p

+

_

�x = f(t; x

p

+�x) (4.12)

holds and it follows that

_

�x = f(t; x

p

+�x)� f(t; x

p

): (4.13)

By means of a Taylor series expansion this 
an be written as

_

�x =

�f

�x

(t; x

p

)�x+ h(t;�x) (4.14)

with

�f

�x

(t; x

p

) =

�

�f

i

�x

j

(t; x

p

)

�

(4.15)

Equation (4.14) is the variational system of (4.9) relative to solution x(t). The linear

equation

_

�x =

�f

�x

(t; x

p

)�x (4.16)

is 
alled the linear variational system (Cronin [22℄). Note that T -periodi
ity of f 
auses

T -periodi
ity of the derivative matrix

h

�f

i

�x

j

i

but not ne
essarily of the solution �x.

The theory of stability for solutions of nonlinear di�erential equations is based on the

study of the trivial solution of this linear variational system. For this we need the results

of Floquet's theory des
ribed in the previous se
tion.

If �x � 0 is a stable solution of the linear variational system then solution x

p

of (4.9) is


alled in�nitesimally stable. The question is now if in�nitesimal stability implies stabil-

ity. For periodi
 and 
onstant matri
es

h

�f

i

�x

j

i


onje
tures about asymptoti
 stability and

instability 
an be made. For this we need the monodromy matrix C whi
h in the 
ase of

nonlinear systems is de�ned by

C(t; t+ T ) =

�

�x(t + T )

�x(t)

�

: (4.17)

For the following two theorems, see Hsu & Meyer [40℄.
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Theorem 4.3 (Stability of periodi
 solutions of non-autonomous systems) For a

non-autonomous system _x(t) = f(t; x(t)) with f(t; �) = f(t+T; �) the variational equation

about a periodi
 solution x

p

(t) = x

p

(t+ T ); T 6= 0 is given by

_

�x =

�f

�x

(t; x

p

)�x + h(t;�x):

It is assumed that

lim

jj�xjj!0

jjh(t;�x)jj

jj�xjj

= 0:

Then the periodi
 solution x

p

(t) is asymptoti
ally stable if j�

i

j < 1 for all eigenvalues �

i

of the monodromy matrix C(t; t+ T ).

If at least one eigenvalue j�

i

j > 1, the system is unstable. If one eigenvalue is exa
tly

one, the system is said to exhibit 
riti
al behavior. No 
on
lusions about stability 
an be

drawn from the linear study: depending on higher order terms the system 
an be either

stable or unstable.

Note that periodi
 solutions of nonlinear systems are not generally asso
iated with eigen-

values of one as in the linear 
ase be
ause the solution of the linear variational system

does not ne
essarily have to be periodi
 as noted above.

This is di�erent in the autonomous 
ase as 
an be shown by substituting a periodi


solution into (4.10) and di�erentiating with respe
t to time

d

dt

�

dx

p

dt

�

=

d

dt

f(x

p

) =

df

p

dx

(x

p

)

dx

p

dt

(4.18)

Comparison with (4.16) shows that

dx

p

dt

is a solution of the linear variational system. As

this solution is periodi
, the monodromy matrix C(t; t+T ) of the autonomous system has

at least one eigenvalue of one. So theorem 4.3 
an not be applied to autonomous systems.

All we 
an ask for in this 
ase is orbital stability.

Theorem 4.4 (Stability of periodi
 solutions of autonomous systems) For an au-

tonomous system _x = f(x) the variational equation about a periodi
 solution x

p

(t) =

x

p

(t + T ); T 6= 0 is given by

_

�x =

�f

�x

(x

p

)�x+ h(t;�x):

It is assumed that

lim

jj�xjj!0

jjh(�x)jj

jj�xjj

= 0:

Then the periodi
 solution x

p

(t) is stable and orbitally asymptoti
ally stable if j�

i

j < 1 for

all eigenvalues �

i

of the monodromy matrix C(t; t+T ) ex
ept for one eigenvalue j�

k

j = 1.
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Note that in both 
ases, for autonomous as well as for non-autonomous systems, stability

in terms of the eigenvalues of the monodromy matrix is not a�e
ted by the 
hoi
e of the

starting point of the periodi
 sample. Monodromy matri
es for the intervals [t

0

; t

0

+ T ℄

and [t

1

; t

1

+ T ℄ are di�erent for t

0

6= t

1

but their eigenvalues are the same, sin
e they are

related by a similarity transformation

C(t

0

; t

0

+ T ) = WC(t

1

; t

1

+ T )W

�1

(4.19)

4.5 Generalization of Lyapunov's First Method to

Dis
ontinuous Periodi
 Systems

For C

2

-
ontinuous problems, Lyapunov's �rst method allows one to draw 
on
lusions

about asymptoti
 stability, or instability, respe
tively, of the solution of the nonlinear

equations. However, our systems are nonlinear multi-phase problems with dis
ontinuities,

and do not satisfy the requirements of the standard results in stability theory.

The purpose of this se
tion is to show that one 
an nevertheless 
on
lude asymptoti


stability of the gait solution of the nonlinear equations from the asymptoti
 stability of

the linear map. More spe
i�
ally, we want to prove the following theorem:

Theorem 4.5 We study a non-autonomous T -periodi
 system with multiple phases, that

is pie
ewise C

2

-
ontinuous but has dis
ontinuities J

j

between phases

_x(t) = f

j

(t; x(t)) for [t

j�1

; t

j

℄ with j = 1; :::; n

ph

and t

0

= 0; t

n

ph

= T

and f

j

(t; �) = f

j

(t+ T; �); f

j

2 C

2

(4.20)

s

j

(t

j

; x(t

j

)) = 0 (4.21)

x(t

+

j

) = x(t

�

j

) + J

j

(t

j

; x(t

�

j

)) (4.22)

and a T -periodi
 solution x

p

(t) = x

p

(t+ T ). It is assumed that

� the solution x

p

at any instant

~

t is twi
e 
ontinuously di�erentiable with respe
t

to initial values

� the divergen
e from the base solution 
aused by a perturbation jj�xjj is 
or-

re
tly des
ribed by a linearization up to �rst order, i.e. with an error that is

quadrati
 in jj�xjj.

Then a monodromy matrix C(t; t + T ) 
an be de�ned and the periodi
 solution x

p

is

asymptoti
ally stable if j�

i

j < 1 for all eigenvalues of C(t; t+ T ).

Proof:

We start by showing that the assumptions of the theorem are valid in the 
ase of the gait

models studied in this thesis. Overall dis
ontinuous but pie
ewise 
ontinuous fun
tions


an under 
ertain 
onditions exhibit suÆ
ient di�erentiability properties with respe
t to

initial values. In analogy to theorem 3.1 of Bo
k[8℄ that has been formulated for boundary

value problems it 
an be shown for initial value problems with dis
ontinuous right hand
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side, that a solution F is k times 
ontinously di�erentiable with respe
t to initial values

if

� the right hand side f has a �nite number of swit
hing points t

s

whi
h are

isolated, i.e. roots of di�erent swit
hing fun
tions do not 
oin
ide, and well

de�ned, i.e. the derivative _s(t

�

s

) exists at all those points and satis�es

_s(t

�

s

) > 0 if s(t

s

� �) < 0 (4.23)

_s(t

�

s

) < 0 if s(t

s

� �) > 0: (4.24)

In other words, the roots t

s

of the swit
hing points have to be simple roots

and do not degenerate in the presen
e of perturbations.

� F is k times pie
ewise 
ontinuously di�erentiable w.r.t. the initial values of

the respe
tive pie
e, i.e. the right hand sides f

j

are k � 1 time pie
ewise


ontinuously di�erentiable w. r. t. initial values

� swit
hing fun
tions and right hand sides must be extendable beyond swit
hing

points

� all swit
hing fun
tions and jump fun
tions are k times pie
ewise 
ontinuously

di�erentiable.

The theorem requires the solutions to be twi
e 
ontinuously di�erentiable with respe
t to

initial values. All our gait models satisfy the above stated 
onditions for at least k = 2.

Denoting the solution of the initial value problem (4.20) with x(0) = y at t = T as

F (y; T ) =: F (y), the se
ond assumption is stated as

jjF (x+�x)� F (x)� F

x

(x)�xjj � bjj�xjj

2

: (4.25)

F

x

is the derivative of F with respe
t to initial values, and b is a 
onstant. The left hand

side of relation (4.25) 
an be transformed, using the Ja
obian F

x

jjF (x+�x)� F (x)� F

x

(x)�xjj

= jj

Z

1

0

F

x

(x+ ��x)�x d��

Z

1

0

F

x

(x)�x d� jj

= jj

Z

1

0

(F

x

(x+ ��x)� F

x

(x))�x d� jj

=

Z

1

0

jj (F

x

(x+ ��x)� F

x

(x))�xjj d�: (4.26)

A

ording to the mean value theorem, we have for ea
h 
omponent of a 
ontinuously

di�erentiable Ja
obian F

x

{ twi
e 
ontinuously di�erentiable F {

F

x;ij

(x + ��x)� F

x;ij

(x)

jj� ��xjj

=

dF

x;ij

d�

(x+ �

ij

��x) for some � 2 [0; 1℄: (4.27)

The right hand side is bounded by some 
onstant !

i;j

with a maximum value over all


omponents of the Ja
obian

!

i;j

� !: (4.28)
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Therefore,

jj (F

x

(x + ��x)� F

x

(x)) jj

�jj�xjj

� ~! <1 (4.29)

or

jj (F

x

(x+ ��x)� F

x

(x)) jj jj�xjj � ~! �jj�xjj

2

: (4.30)

With this, we 
an estimate

(4:26) �

Z

1

0

jj (F

x

(x + ��x)� F

x

(x)) jj jj�xjjd�

�

Z

1

0

~!�jj�xjj

2

d�

=

1

2

~!jj�xjj

2

: (4.31)

Choosing the 
onstant b =

~!

2

, this 
ompletes the proof of statement (4.25).

The monodromy matrix C(t; t + T ) is equal to the Ja
obian F

x

(x

p

) = F (x

p

; T ) of a

periodi
 solution x

p

). It is 
omputed by a matrix multipli
ation from the transfer matri
es

C(t

j�1

; t

j

) of the individual phases j and 'update matri
es' des
ribing the derivatives

�x

+

j

�x

�

j

= I +

�J

j

�x

�

j

=: U(t

j

) (4.32)

at a dis
ontinuous point. See se
tion 6.4 for details about the 
omputation of monodromy

matri
es. Formulas for the 
omputation of derivatives of the monodromy matrix, the

existen
e of whi
h has been shown above, are given in se
tion 6.6. Matri
es U(t

j

) are

regular if phases j � 1 and j of the gait have the same degrees of freedom, and singular

otherwise. Monodromy matri
es C(t

j�1

; t

j

) of all phases are regular.

From (4.25) we 
an 
on
lude that

jjF (x

p

+�x)� F (x

p

)jj � jjC(t; t+ T )�xjj+ bjj�xjj

2

(4.33)

� jjC(t; t+ T )jj jj�xjj+ bjj�xjj

2

: (4.34)

If j�

i

j < 1 for all eigenvalues of C, then the norm jj�jj 
an be 
hosen su
h that C(t; t+T ) �

� < 1 (
ompare theorem 5.2). Perturbations therefore de
ay in this norm, and the periodi


solution is asymptoti
ally stable.

It remains to be shown for the 
ase of pie
ewise 
ontinuous but overall dis
ontinuous

solutions that the eigenvalues of the monodromy matrix C(t; t + T ) do not depend on

the starting time t of the period. This is equivalent with showing that for general square

matri
es A;B 2 R

n�n

�

i

(AB) = �

i

(BA) i = 1; :::; n: (4.35)

For regular matri
es this follows from similarity transformations. The proof for general

square matri
es is given in Wilkinson [101℄. It even 
an be shown for nonsquare matri
es

A 2 R

n�m

and B 2 R

m�n

that AB and BA have the same eigenvalues ex
ept that the
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produ
t whi
h is of higher order has jn � mj additional zero eigenvalues. From this we


an 
on
lude that the eigenvalues remain un
hanged even if the phases are des
ribed by

di�erent numbers of equations.

4.6 Some Words about Lyapunov's Se
ond Method

More famous than the above des
ribed �rst method of Lyapunov is his se
ond or dire
t

method whi
h is of great use in analyti
al dynami
s. We brie
y introdu
e this method

as it simply 
an not be omitted in a 
hapter dis
ussing the stability of motion and then

explain why we 
an not use this method for our intentions.

It is assumed that x � 0 is a solution of the nonlinear di�erential equation (4.9), i. e.

0 = f(t; 0) (4.36)

In 
ontrast to the method des
ribed in the previous se
tions, Lyapunov's se
ond method

does not rely on a study of the linear parts of the equation.

Instead, the method demands the 
onstru
tion of a so 
alled Lyapunov fun
tion.

The idea behind that is that, a

ording to Lagrange's theorem, the potential energy of

a physi
al system is minimal at a stable equilibrium point and maximal at an unstable

equilibrium. The Lyapunov fun
tion V (t; x) represents a generalization of the potential

energy fun
tion.

It has the domain D

v

= f(t; x)jt > t

1

; jxj < Ag and must exhibit the following properties:

� 
ontinuous �rst partial derivatives with respe
t to t and x

i

: V (t; x) 2 C

1

(D)

� V (t; 0) = 0 for t > t

1

� positive de�niteness: V (t; x) > 0 for x 6= 0

� negative de�niteness of derivative:

_

V (t; x) � 0.

The derivative

_

V (t; x) whi
h is the derivative of V (t; x) along the solution x(t) is de�ned

as

_

V (t; x(t)) =

n

X

i=1

�V

�x

i

_x

i

+

�V

�t

(4.37)

A

ording to the se
ond method, the existen
e of su
h a Lyapunov fun
tion proves the

stability of the trivial solution of the system. In detail, we 
an distinguish:

�

_

V (x) � 0 in D ! stability (in the sense of Lyapunov),
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�

_

V (x) < 0 in D ! asymptoti
 stability,

�

_

V (x) � ��V and V (x) � bjxj

�

in D with (�; �; b > 0) ! exponential stability.

The diÆ
ulty of the appli
ation of this method to a physi
al system 
onsists in the


onstru
tion of an appropriate Lyapunov fun
tion. Su
h fun
tions have only been found

for 
ertain 
lasses of systems, e.g. the total energy is a Lyapunov fun
tion for Hamiltonian

systems. There are no general rules for the 
onstru
tion of Lyapunov fun
tions su
h that

the pro
ess 
an not be automated. It is therefore not suited for the use in an optimization

environment whi
h has to be applied to very di�erent systems of diÆ
ult dis
ontinuous

type.





Chapter 5

Stability as Non-standard

Optimization Criterion

The stability 
riterion based on the maximum eigenvalue of a monodromy matrix has been

dis
ussed extensively in the previous 
hapter. In this 
hapter now, it is outlined that using

this 
riterion as obje
tive fun
tion 
learly leads to a non-standard optimization problem.

Se
tion 5.1 des
ribes the various diÆ
ulties of stability optimization in terms of eigenvalue

optimization of the monodromy matrix formulated as two-level or one-level optimization

problem. In se
tion 5.2 we dis
uss possible alternatives for the maximum eigenvalue

fun
tion to be used in stability optimization. The study of powers of the monodromy

matrix instead of the matrix itself is dis
ussed in se
tion 5.3. In se
tion 5.4 we �nally

summarize the stability optimization 
riteria that we are using in our 
omputations.

Basi
 knowledge about eigenvalue problems is assumed in this 
hapter. Good referen
es

for eigenvalue theory are the 
lassi
al textbook of Wilkinson [101℄, and, for the more

numeri
al point of view, the books of Trefethen & Bau [92℄ and of Demmel [24℄. Sin
e

the monodromy matrix is a real non-symmetri
 matrix, our 
onsiderations fo
us on that


ase, sometimes pointing out di�eren
es to the simpler 
ase of a symmetri
 matrix.

5.1 DiÆ
ulties of Stability Optimization in Terms of

Eigenvalue Optimization

As we have seen in the previous 
hapter, all real and 
omplex eigenvalues of the mon-

odromy matrix have to lie inside the unit 
ir
le for the system to be stable. This goal


an be a
hieved by minimizing the largest eigenvalue by magnitude j�

max

j (whi
h is also


alled the spe
tral radius �) of the monodromy matrix C

min

x

j�

max

(C(x))j = min

x

j�(C(x))j (5.1)



60 Chapter 5. Stability as Non-standard Optimization Criterion

hoping that the minimum will have a spe
tral radius smaller than one. x is the ve
tor of all

free optimization variables to be spe
i�ed later. This obje
tive fun
tion is a 
on
atenation

of two fun
tions �(C)ÆC(x): �rst, the matrix C is determined as a fun
tion of x, se
ondly,

the spe
tral � radius of the matrixC is determined. The �rst part of this obje
tive fun
tion

smooth but generally non-
onvex, whereas the se
ond part is 
onvex but generally non-

smooth.

Stability optimization in terms of minimizing the spe
tral radius is a diÆ
ult optimization

problem for several reasons. To stru
ture our 
onsiderations, we split those diÆ
ulties

into three di�erent groups to be treated independently in the following subse
tions:

� diÆ
ulties due to the minimization of the spe
tral radius of arbitrary matri
es, i.e.

the dependen
y of � on C,

� diÆ
ulties 
aused by the nature of the matrix itself, i.e. the dependen
y of C on x,

� diÆ
ulties 
aused by aspe
ts of the optimization problem other than this obje
tive

fun
tion like 
onstraints imposed by the dynami
s.

5.1.1 Minimizing the Maximum Eigenvalue of a Non-symmetri


Matrix

Eigenvalues of a matrix are the roots of its 
hara
teristi
 polynomial. For matrix dimen-

sions n larger than four no analyti
 solution is possible, so every eigenvalue solver must be

iterative. Typi
ally, eigenvalue solvers for non-symmetri
 matrix need O(n

3

) operations

(see Trefethen & Bau [92℄). This indi
ates that fun
tions involving eigenvalues are not


omputationally 
heap, but as we will see later, the really expensive part in our 
ase lies

in the 
omputation of the matrix C itself.

Eigenvalues are 
ontinuous fun
tions of the matrix entries but they are non-di�erentiable

at points where they 
oales
e. Two or more equal eigenvalues may not be the natural


ase for a physi
al system, but minimizing the maximum eigenvalue tends to make all

eigenvalues equal (at least as far as it is allowed by the 
onstraints).

Before we look at those points of multiple eigenvalue in more detail we need to introdu
e

some important fa
ts about the relationship between non-symmetri
 matri
es and their

eigenvalues.

Assuming that we have a simple eigenvalue � of a non-symmetri
 matrix C, a perturbation

of C by ÆC leads to a perturbation of the eigenvalue by Æ�:

Æ� =

v

T

l

ÆCv

r

v

T

l

v

r

+O(jjÆCjj

2

) (5.2)

or, for the absolute value

jÆ�j �

jjÆCjj

jv

T

l

v

r

j

+O(jjÆCjj

2

) (5.3)
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where v

r

and v

l

are the right and left normalized eigenve
tors asso
iated with the eigen-

value �.

Proof: Subtra
ting

Cv

r

= �v

r

from the equation for the perturbed eigenvalue

(C + ÆC)(v

r

+ Æv

r

) = (�+ Æ�)(v

r

+ Æv

r

);

ignoring se
ond order terms and multiplying the result by v

T

l

from the left, leads to:

v

T

l

(C Æv

r

+ ÆC v

r

) = v

T

l

(Æ� v

r

+ � Æv

r

):

As v

T

l

C = v

T

l

�, this is redu
ed to

v

T

l

ÆC v

r

= v

T

l

Æ� v

r

and hen
e

Æ� =

v

T

l

ÆC v

r

v

T

l

v

r

:

The 
ondition number 
ond of the eigenvalue is


ond(�) = jv

T

l

v

r

j

�1

; (5.4)

whi
h is the se
ans of the angle between left and right eigenve
tor.

The derivative of a simple eigenvalue with respe
t to the matrix entries is 
omputed in

analogy to equation (5.2)

d�

dC

=

�

d�

d


ij

�

=

v

l

v

T

r

v

T

l

v

r

(5.5)

Remark:

Note that for a symmetri
 matrix where left and right eigenve
tors are equal v := v

l

= v

r

with jvj = 1, things would be mu
h simpler. An eigenvalue perturbation is 
omputed by

Æ� =

v

T

ÆCv

v

T

v

+O(jjÆCjj

2

) = v

T

ÆCv +O(jjÆCjj

2

) (5.6)

and

jÆ�j � jjÆCjj+O(jjÆCjj

2

); (5.7)

and the 
ondition number of eigenvalues of symmetri
 matri
es is always one. The deriva-

tive of simple eigenvalues with respe
t to matrix entries in this 
ase be
omes

d�

dC

= vv

T

: (5.8)

Now we 
an resume the study of the points with multiple maximum eigenvalue (by mag-

nitude) with multipli
ity m for whi
h three di�erent types exist. We list the properties

of all types and their 
onsequen
es for possible numeri
al algorithms.
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Figure 5.1: Three di�erent types of multiple maximum eigenvalue modulus at x=0 for one-

dimensional dependen
y: a) distin
t eigenvalues, but same magnitude, b) non-defe
tive multiple

eigenvalue 
) defe
tive multiple eigenvalue

a) Eigenvalues are distin
t, but have the same magnitude:

In this 
ase all individual eigenvalues are di�erentiable, and the derivatives 
an be


omputed a

ording to formula (5.5). This is also true for the two eigenvalues of a


onjugate 
omplex 
ouple. The spe
tral radius is simply the pointwise maximum of

several di�erentiable fun
tions. Figure 5.1a shows an example of this type:

A

a

=

�

1 + x 1

0 �1 + x

�

Treatment with standard min-max te
hniques is possible (see e.g. Gill et al. [32℄).

The original problem

min

x

�

max

f

i

(f

1

(x); :::::; f

m

(x))

�

(5.9)

is reformulated by introdu
ing a new variable y

min

x;y

y (5.10)

s:t: f

i

(x) � y i = 1; :::; n: (5.11)

If several f

i

attain the maximum then simply more than one of the inequality 
on-

straints be
ome a
tive. This resulting problem 
an be solved by standard methods

for 
onstrained nonlinear optimization problems.

b) Maximum eigenvalue is multiple, but non-defe
tive:

Geometri
 and algebrai
 multipli
ity of the eigenvalue are the same, and the 
orre-

sponding eigenve
tor spa
e has full dimension. However, the individual eigenve
tors

that span the spa
e are not uniquely de�ned. The matrix is still diagonalizable (as-

suming, of 
ourse, that there is no other set of multiple eigenvalues 
ausing trouble).

As an example for this type, matrix

A

b

=

0

�

5� x 0 0

0 5 + 0:3x 1

0 0 2

1

A



5.1. DiÆ
ulties of Stability Optimization in Terms of Eigenvalue Optimization 63

is shown in �gure 5.1b. The individual eigenvalues are non-di�erentiable at the

points of multiple eigenvalue due to the non-uniqueness of eigenve
tors, but they

have a �nite 
ondition number and are Lips
hitz 
ontinuous.

As the eigenvalues are always well-
onditioned and di�erentiable in the neighbor-

hood of the points of multiple eigenvalue, and as this point only forms a singularity

in an otherwise 
ontinuously di�erentiable manifold, the derivative at this point 
an

be 're
onstru
ted' by applying a small perturbation to the matrix and 
omputing

the derivative at this perturbed point.


) Maximum eigenvalue is multiple and defe
tive:

Algebrai
 multipli
ity m of maximum eigenvalue ex
eeds its geometri
 multipli
ity

m

g

, su
h that the eigenve
tor spa
e does not have full dimension. The matrix is

non-diagonalizable, and the respe
tive Jordan form would havem

g

blo
ks 
ontaining

the defe
tive multiple eigenvalues. An example for this type,

A




=

�

x 1

�x x

�

is shown in �gure 5.1
. This type only exists for non-symmetri
 matri
es, as sym-

metri
 ones are always diagonalizable.

The right and left eigenve
tors of a Jordan blo
k of dimension m are e

1

and e

m

and thus perpendi
ular, su
h that the 
ondition number is always in�nite at those

points (
ompare equation (5.4)). In�nite 
ondition number does not mean that

multiple eigenvalues 
annot be 
omputed with any a

ura
y at all. Instead, one 
an

expe
t to 
orre
tly 
ompute 1=m of the ma
hine pre
ision digits for an eigenvalue

with multipli
ity m and a matrix given with ma
hine pre
ision (Demmel [24℄). But

in�nite 
ondition number or perpendi
ular left and right eigenve
tors also 
ause the

derivative of the eigenvalues to be in�nite (equation (5.5), i.e. the eigenvalues are

not even Lips
hitz at the points of multiple eigenvalue. Typi
ally some bifur
ation

o

urs at this point; for the example shown in �gure 5.1 two distin
t real eigenvalues

for x < 0 'join' to a 
onjugate 
omplex 
ouple for x > 0.

The eigenvalues are also ill-
onditioned in the neighborhood as the eigenve
tors


ontinuously approa
h perpendi
ularity.

Due to the properties stated above any gradient based algorithm would en
ounter

diÆ
ulties not only in the singular points themselves but also in their neighborhood.

We have to expe
t that it would not be possible to 
ompute meaningful derivatives

in a region about these points.

Figure 5.2 visualizes the spe
tral radius manifold for a simple 2-dimensional matrix de-

pending on two variables. It shows several lo
al minima all lying at points with multiple

eigenvalue, most of them of type 
). This gives a little hint about the diÆ
ulties that 
an

arise for matri
es whi
h are not that simple any more.

In se
tion 6.1.2 we will give an overview of existing algorithms in the literature for simple


ases of eigenvalue optimization for analyti
 matri
es.
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Figure 5.2: Absolute value of maximum eigenvalue of matrix ((x

1

; x

0

); (2x

1

; 1))

5.1.2 Computation of the Monodromy Matrix

The monodromy matrix of a periodi
 traje
tory is obviously not a simple analyti
 fun
tion

of the variables x. It 
ontains the derivatives of the traje
tory end values with respe
t to

initial values. This makes the obje
tive fun
tion less a

urate than an analyti
 fun
tion

and 
omputationally very expensive sin
e for every fun
tion evaluation a 
omplete periodi


traje
tory plus the derivatives have to be 
omputed. Additionally, sin
e the obje
tive

fun
tion already 
ontains �rst order derivatives of the traje
tory in terms of the matrix C,

its gradients would even need se
ond derivatives in terms of

dC

dx

0

and

dC

dp

. Those gradients

are even more expensive to 
ompute, and it should be kept in mind that they do not

ne
essarily satisfy the a

ura
y demands of some algorithms. The monodromy matrix

typi
ally is a non-
onvex 'fun
tion' of the independent variables.

5.1.3 Constraints of Stability Optimization

Stability optimization represents not only an eigenvalue optimization problem with a

matrix diÆ
ult to 
ompute as demonstrated in the two previous se
tions. Di�erential

equations, periodi
ity and swit
hing fun
tions et
. also enter as 
onstraints to eigenvalue

optimization.

Two-level Formulation

When treated as two-level optimization problem as we do in this thesis, the outer loop

stability optimization is formulated as an un
onstrained problem. But every fun
tion

evaluation in the outer loop in
ludes a determination of a periodi
 gait for the given set

of parameters by the methods des
ribed in 
hapter 3. This 
auses fun
tion evaluations

of the outer loop to be very expensive and potential gradient 
omputations to be rather

diÆ
ult.
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The full problem formulation in this 
ase 
ontains a non-standard parameter optimization

problem in the outer loop and a standard optimal 
ontrol problem in the inner loop:

min

p

j�

max

(C

x

)j (5.12)

with C

x

being the monodromy matrix of the solution of

min

x;u;T

Z

T

0

�(x(t); u(t); p) dt + �(T; x(T ); p) (5.13)

s. t. _x(t) = f

j

(t; x(t); u(t); p) for t 2 [�

j�1

; �

j

℄;

j = 1; :::; n

ph

; �

0

= 0; �

n

ph

= T (5.14)

g

j

(t; x(t); u(t); p) � 0 for t 2 [�

j�1

; �

j

℄ (5.15)

x(�

+

j

) = h(x(�

�

j

)) for j = 1; :::; n

ph

(5.16)

r

eq

(x(0); ::; x(T ); p) = 0 (5.17)

r

ineq

(x(0); ::; x(T ); p) � 0: (5.18)

Its solution requires methods for non-standard, non-di�erentiable parameter optimization.

One-level Formulation

In a one-level formulation the system's dynami
s as well as all other 
onstraints imposed

for periodi
 gait generation be
ome 
onstraints of stability optimization to be satis�ed

simultaneously. This leads to the formulation of a non-standard optimal 
ontrol problem:

min

x;u;p;T

j�

max

(C

x

)j (5.19)

s. t. _x(t) = f

j

(t; x(t); u(t); p) for t 2 [�

j�1

; �

j

℄;

j = 1; :::; n

ph

; �

0

= 0; �

n

ph

= T (5.20)

x(�

+

j

) = h(x(�

�

j

)) for j = 1; :::; n

ph

(5.21)

g

j

(t; x(t); u(t); p) � 0 for t 2 [�

j�1

; �

j

℄ (5.22)

r

eq

(x(0); ::; x(T ); p) = 0 (5.23)

r

ineq

(x(0); ::; x(T ); p) � 0: (5.24)

In 
ontrast to the problems treated in 
hapter 3, its obje
tive fun
tion is not of Mayer or

Lagrange type and 
annot be transformed into one of those. There is no way to express

the spe
tral radius of the overall monodromy matrix as a sum of fun
tions depending only

on lo
al variables of the respe
tive multiple shooting interval. This problem asks therefore

for spe
ial solution methods for non-standard optimal 
ontrol problems that 
an not rely

on the same assumptions of stru
ture as the methods des
ribed in 
hapter 3.
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5.2 Alternative Obje
tive Fun
tions for Stability Op-

timization

The purpose of this se
tion is to study alternatives that 
ould help to make stability opti-

mization a problem easier to solve. The approa
hes presented here all aim at repla
ing the

minimization of the maximum eigenvalue modulus by some other optimization 
riterion

to avoid the diÆ
ulties detailed in se
tion 5.1.1.

5.2.1 Short
omings of Obvious Ideas

We brie
y des
ribe some simple but misleading approa
hes that have been proposed

to avoid the diÆ
ulties of eigenvalue optimization and give reasons why they are not

appli
able.

The �rst idea is to treat min-max eigenvalue problems by standard min-max problem

reformulation into a nonlinear optimization problem. But let us re
all from se
tion 5.1.1,

that ex
ept for points of multiple maximum eigenvalue of type a) the individual eigenval-

ues be
ome non-di�erentiable at those points. The typi
al ill-
onditioning in the region of

a point of type 
) and in�nite derivatives also may not be handled by standard nonlinear

programming methods. Another problem is that the di�erent eigenvalues of a matrix 
an-

not be labeled in the sense that 
orresponding eigenvalues at di�erent iterates 
annot be

uniquely identi�ed. So it would be impossible to always asso
iate one 
onstraint with 'the

same' eigenvalue, and a swit
hing of eigenvalues between 
onstraints might take pla
e.

The same problems (lo
al non-di�erentiability, ill-
onditioning and swit
hing of eigenval-

ues) would be en
ountered if instead of using an obje
tive fun
tion based on the maximum

eigenvalue one 
hose to impose 
onstraints on all eigenvalues

j�

i

j < 1� Æ i = 1; :::; n (5.25)

with some Æ > 0, e.g. Æ = 0:1.

Another idea is to use an auxiliary obje
tive fun
tion that takes all eigenvalues into

a

ount and punishes eigenvalues outside the unit 
ir
le, e.g.:

min f =

X

i

f

i

(�

i

) with f

i

(�

i

) = ar
tan(10(j�

i

j � 1)) (5.26)

Again, this does not solve most of the problems listed in se
tion like non-di�erentiability

and ill-
onditioning.

5.2.2 Equivalen
e of Norms & the Theorem of Hirs
h

In order to over
ome these mathemati
al diÆ
ulties a far better idea is to look for some

well-behaving fun
tion that does not dire
tly depend on the eigenvalues but is known to
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be an upper bound to the spe
tral radius. Thus one 
ould expe
t to redu
e the maximum

eigenvalue by minimizing this fun
tion. The so 
alled indu
ed matrix norms (see e.g.

Stoer [85℄ or Trefethen & Bau [92℄) have the property of being an upper bound to the

spe
tral radius as detailed below.

Indu
ed matrix norms are always derived from 
orresponding ve
tor norms. They des
ribe

the e�e
t of a matrix C 2 C

n

1

�n

2

as an operator between domain spa
e of dimension n

2

and range spa
e of dimension n

1

. We will 
on
entrate on real, square matri
es C 2

R

n�n

. The indu
ed matrix norm jjCjj is de�ned as the largest fa
tor by whi
h a ve
tor is

\multiplied" by the matrix C:

jjCjj = max

x6=0

jjCxjj

jjxjj

: (5.27)

In this sense the maximum norm of a matrix C with entries 


ij

be
omes the maximum

row sum:

jjCjj

1

= max

x6=0

jjCxjj

1

jjxjj

1

= max

x6=0

max

i

j

P

n

j=1




ij

x

j

j

max

j

jx

j

j

= max

i

n

X

j=1

j


ij

j; (5.28)

the 1-norm is the maximum 
olumn sum:

jjCjj

1

= max

x6=0

jjCxjj

1

jjxjj

1

= max

x6=0

P

n

i=1

(

P

n

j=1




ij

x

j

)

P

n

j=1

jx

j

j

= max

j

n

X

i=1

j


ij

j; (5.29)

and the Eu
lidean norm equals to the largest singular value of C

jjCjj

2

= max

x6=0

jjCxjj

2

jjxjj

2

= max

x6=0

p

x

T

C

T

Cx

p

x

T

x

=

p

�

max

(C

T

C)

= �

max

(C): (5.30)

Based on these de�nitions of indu
ed matrix norms we now 
an state the following theo-

rems (Stoer & Bulirs
h [86℄):

Theorem 5.1 (Theorem of Hirs
h)

All eigenvalues � of any given matrix C satisfy:

j�j � jjCjj (5.31)

In other words: any indu
ed norm of the matrix C is an upper bound to the spe
tral

radius

j�j � jjCjj: (5.32)

Theorem 5.2

1. For ea
h matrix C and ea
h � there is a ve
tor norm jj � jj and a 
orresponding matrix

norm for whi
h

jjCjj � �(C) + �: (5.33)
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2. If the maximum eigenvalue � with j�j = � is non-defe
tive, then there even is an

indu
ed matrix norm for whi
h

jjCjj = �(C): (5.34)

Hen
e the spe
tral radius of a matrix being the in�mum of all indu
ed matrix norms

is equivalent to or at least very 
lose to some indu
ed matrix norm, but in general this

spe
i�
 norm is neither physi
ally nor mathemati
ally relevant.

As it will be dis
ussed in the following se
tions all three indu
ed matrix norms presented

above (1-, 2-, and 1-norm) are better behaving fun
tions than the spe
tral radius.

Let us re
all an important property of norms in R

n

: in �nite-dimensional ve
tor spa
e,

all norms are equivalent in the sense that if jj � jj

q

1

and jj � jj

q

2

are two norms on the same

spa
e, then there exist positive 
onstants 


1

and 


2

su
h that for all x in that spa
e




1

jjxjj

q

1

� jjxjj

q

2

� 


2

jjxjj

q

1

: (5.35)

From that and the above theorems it follows that the maximum eigenvalue and some

indu
ed matrix norm are 
onne
ted by some �nite fa
tor, but of 
ourse the norm 
an be

larger than one even though the maximum eigenvalue modulus is smaller than one.

Studying a physi
ally meaningful matrix norm instead of the maximum eigenvalue also

makes sense from a physi
al point of view. A

ording to theory, a spe
tral radius smaller

than one is enough to guarantee stability. But stri
tly speaking, it only says that pertur-

bations are eliminated for t!1, and they 
an very well be ampli�ed in the meantime.

As asymptoti
 stability implies stability, perturbations are bounded but in some 
ases the

bound 
an be quite large. On the other hand, if one of the above matrix norms is smaller

than one, there would be a 
ontra
tion of perturbations in terms of the 
hosen norm over

ea
h 
y
le.

To sum up the ideas of this se
tion: two di�erent goals 
an be pursued by minimizing

some 'physi
al' indu
ed matrix norm:

� Redu
e this norm below one to have a 
ontra
tion of perturbations in terms of this

norm. One should be aware that this is a very stri
t 
riterion and that it will be

hard to rea
h this goal for many physi
al systems. In se
tion 5.3 we will dis
uss a

way to soften this 
riterion.

� Redu
e this norm not ne
essarily as far as one, but use this upper bound only to

provoke an overall de
rease of the maximum eigenvalue. Redu
ing an upper bound

does of 
ourse not mean that in every step the spe
tral radius itself will also be

de
reased { the 
ontrary 
an be the 
ase. One should 
arefully observe the value

of the spe
tral radius in every iterate be
ause it might attain its best value (of all

iterates) before 
onvergen
e to the minimum of the 
hosen norm is a
hieved.

Remark:

In 
ontrast to eigenvalues, general indu
ed matrix norms do depend on the starting point
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of the periodi
 sample, i. e. they are not the same for di�erent intervals [t

0

; t

0

+ T ℄ and

[t

1

; t

1

+ T ℄ with t

0

6= t

1

.

5.2.3 Singular Value Optimization

As we have seen above (equation (5.30)) the maximum singular value of a matrix is equal

to its Eu
lidean norm and therefore an upper bound to the spe
tral radius.

By de�nition, the singular values �

i

of a real matrixC are the eigenvalues of the symmetri
,

positive semi-de�nite matrix H

�

i

(C) =

p

�

i

(C

T

C) =

p

�

i

(H); (5.36)

i.e. they are always real and positive. In the mapping of the unit sphere into a hyperellipse

by means of the matrix C the singular values of C des
ribe the lengths of the semi-axes

(Trefethen & Bau [92℄).

So 
hoosing the maximum singular value instead of the maximum eigenvalue as optimiza-

tion 
riterion for stability optimization

min�

max

(C(x)) (5.37)

has the following 
onsequen
es:

� the obje
tive fun
tion is still non-di�erentiable at points with multiple maximum

eigenvalue, but

� non-di�erentiabilities have be
ome less numerous and far less serious. Being eigen-

values of of a symmetri
 matrix, singular values are always well 
onditioned and

Lips
hitz. As all singular values are positive, no absolute values have to be taken.

In 
ontrast to eigenvalue optimization we are now only fa
ing points of type b), i.e.

the non-di�erentiability is limited to isolated points.

To summarize, singular value optimization is a 
onsiderably easier problem than eigen-

value optimization. Among all matrix norms, the Eu
lidean norm has the advantage of

being the most meaningful from an engineering point of view.

5.2.4 Optimization of 1-norm or 1-norm

The indu
ed 1-norm and1-norm of a matrix are its maximum 
olumn sum and maximum

row sum, respe
tively (equations (5.29) and (5.28)). The use of one of these two norms as

obje
tive fun
tion for stability optimization has the advantage to allow a transformation

into a standard nonlinear programming problem. We will show here the transformation

for the example of the 1-norm, the pro
eeding for the 1-norm is analogous.
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The original un
onstrained non-di�erentiable min-max optimization problem

min jjCjj

1

= min

�

max

j=1;:::;n

jj


j

jj

1

�

= min

 

max

j=1;:::;n

 

n

X

i=1

j


ij

j

!!

(5.38)

(where 


j

is the j-th 
olumn ve
tor) 
an be reformulated as as di�erentiable 
onstrained

optimization problem

min z (5.39)

s:t:� y

ij

� 


ij

� y

ij

8i = 1; :::; n; j = 1; :::; n (5.40)

z �

X

i

y

ij

8j = 1; :::; n (5.41)

using the auxiliary variables z and y

ij

with i = 1; :::; n; j = 1; :::; n.

The transformation was performed at the 
ost of n

2

+ 1 additional variables and 2n

2

+ n

additional equations. The resulting problem (5.39) - (5.41) is a quite large but simple and

stru
tured standard nonlinear programming problem.

The advantage of using one of these two norms in stability optimization is that standard

nonlinear programming methods 
an be used for the solution. Due to the sparsity of the

problem it would however be favorable to develop faster spe
ial purpose algorithms that

exploit the stru
ture.

5.3 Study of Matrix Powers

While in the previous se
tion we have only looked at possible repla
ements for the spe
tral

radius, we here want to question the use of the monodromy matrix C itself. As it turns

out, sometimes it might be favorable to look at powers of C instead.

In the previous se
tion we have dis
ussed that demanding a 
ontra
tion of the 1-, 2-,

or 1-norm over one 
y
le is a very stri
t 
riterion. A softening of this demand 
an be

a
hieved by only asking for a 
ontra
tion of the norm over a number p of 
y
les with

p > 1.

For p ! 1 there is equivalen
e between a 
ontra
tion { or even disappearan
e, to be

exa
t { of the norm of C

p

and the spe
tral radius of C being smaller than one, as stated

in the following theorem:

Theorem 5.3

For an arbitrary matrix C 2 R

n�n

and a norm jj � jj holds:

lim

p!1

jjC

p

jj = 0, �(C) < 1 (5.42)

Note that the same statement 
an be made for 
omplex matri
es.



5.3. Study of Matrix Powers 71

Proof:

Dire
tion (() 
an be proven dire
tly. A

ording to theorem 5.2, there is a norm jj � jj

�

with small � su
h that

jjCjj

�

= �(C) + � =: � < 1:

Sin
e for any indu
ed matrix norm jjABjj � jjAjj jjBjj,

jjC

p

jj

�

� jjCjj

p

�

= �

p

:

Due to the equivalen
e of norms (5.35) follows for any other norm jj � jj

jjC

p

jj � 


1

jjC

p

jj

�

= 


1

�

p

whi
h tends to zero for p!1.

For the other dire
tion ()) we need to take two steps. In a �rst step we show that

lim

p!1

jjC

p

jj = 0) lim

p!1

(�(C

p

)) = 0

whi
h follows dire
tly from the theorem of Hirs
h: the spe
tral radius of C

p

is zero if its

upper bound in terms of some indu
ed matrix norm is zero.

In a se
ond step we show the following equivalen
e (although showing ()) would be

suÆ
ient for the proof):

lim

p!1

(�(C

p

)) = 0, �(C) < 1:

Every square matrix C has a S
hur fa
torization:

C = Q � T �Q

T

where Q is orthogonal (i.e. Q

T

Q = I) and T is upper triangular. The eigenvalues of

C always appear as diagonal elements d

i

of T be
ause C and T are similar and the

eigenvalues of triangular matri
es are the diagonal elements:

DetjT � �Ij = 0) �

n

i=0

(d

i

� �) = 0

for all � of T and C respe
tively and therefore

d

i

= �

i

i = 1; :::; n

With equation (5.3) follows

C

p

= (Q � T �Q

T

)

p

= Q � T �Q

T

�Q � T �Q

T

� ::: �Q � T �Q

T

= Q � T

p

�Q

T

T

p

is again upper-triangular and has diagonal elements { and therefore eigenvalues {

d

p

i

= �

p

i

. Due to the similarity with T

p

, C

p

also has eigenvalues �

p

i

, i.e.

�(C

p

) = �

p

(C) (5.43)
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(Note that in the spe
ial 
ase of diagonalizable { i.e. non-defe
tive { matri
es, the same

property follows more easily:

C

p

= (X�X

�1

)

p

= X � �

p

�X

�1

:)

Sin
e

lim

p!1

(�

p

(C)) = 0, �(C) < 1:

this 
ompletes the se
ond part of the proof.

Note however, that indu
ed matrix norms do not exhibit a property similar to (5.43)


on
erning their powers:

jjCjj

p

6= jjC

p

jj (5.44)

su
h that spe
i�
ally for the maximum singular value

�

max

(C

p

) 6= �

p

max

(C): (5.45)

This results from the fa
t that singular values or indu
ed matrix norms in general are not

derived from a similarity transformation su
h as eigenvalues, and therefore transformation

matri
es are not eliminated when taking the power of a matrix.

In 
hapters 7 { 9 we show several plots of matrix norms as fun
tions of matrix powers


on�rming this statement.

One has to be aware, that if the spe
tral radius of the monodromy matrix is larger than

one, the spe
tral radius and indu
ed matrix norms for in
reasing powers of the matrix

will be highly divergent.

To sum up, studying powers of a matrix 
an be a good alternative to studying the matrix

itself. From the theoreti
al point of view it does not make a di�eren
e whi
h spe
i�
 norm

(in
luding the spe
tral radius) is 
hosen as optimization 
riterion as long as the matrix

power is high enough. What is a good 
hoi
e for the power p in a pra
ti
al 
ase needs to

be heuristi
ally determined.

5.4 Summary: Obje
tive Fun
tions for Stability Op-

timization

We �nally summarize possible obje
tive fun
tions for stability optimization that will be

evaluated and 
ompared in this study:

� the original eigenvalue 
riterion:

f

1

= j�

max

(C)j = �(C) (5.46)
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� indu
ed matrix norms of the monodromy matrix:

f

2a

= �

max

(C) = jjCjj

2

(5.47)

f

2b

= jjCjj

1

(5.48)

� indu
ed matrix norms of a power of the monodromy matrix:

f

3a

= �

max

(C

p

) = jjC

p

jj

2

(5.49)

f

3b

= jjC

p

jj

1

(5.50)

The advantages of one 
hoi
e of norm over the other as well as a good 
hoi
e of the matrix

power will also be investigated.





Chapter 6

Numeri
al Methods for Stability

Optimization

This 
hapter 
ontains a 
olle
tion of useful methods for stability optimization problems as

formulated in se
tion 5.1.3. Sin
e not all these methods were ne
essary to �nd solutions for

the appli
ation of robot stabilization, some (like the derivatives of singular values) have

so far only been implemented as library modules. The evaluation of di�erent possible

methods for stability optimization was possible in the framework of an obje
t-oriented

optimization library that we developed during the resear
h for this thesis (see appendix).

We brie
y review literature about general non-smooth optimization and eigenvalue opti-

mization in se
tion 6.1. Se
tion 6.2 des
ribes the spe
i�
 dire
t sear
h method, a variant

of the Nelder-Mead polytope algorithm, that we have implemented and used for stability

optimization of all our robot examples. In se
tion 6.3 we give apparently new formulas for

the 
omputations of derivatives of simple and multiple singular values. Se
tion 6.4 re
alls

the 
omputation of the monodromy matrix in the presen
e of dis
ontinuities. The ne
es-

sary proje
tions for monodromy matri
es of autonomous systems are des
ribed in se
tion

6.5. In se
tion 6.6 we present, for the �rst time, formulas for the derivatives of mon-

odromy matri
es for dis
ontinuous dynami
 equations with respe
t to initial values and

parameters. They represent se
ond order derivatives of the di�erential equations. Se
tion

6.7 �nally 
ontains a numeri
al pro
edure for the determination of nonlinear stability

margins.

6.1 Review of Literature

6.1.1 Non-di�erentiable Optimization

All smooth optimization methods are dire
tly or indire
tly based on a Taylor series ap-

proximation of the obje
tive fun
tion and require at least 
ontinuous di�erentiability of
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x

f(x)

f(x) = |x|

δ f = [-1, 1]

Figure 6.1: Subgradients at x = 0 for the example fun
tion jxj

this fun
tion. In the 
ase of a non-di�erentiable obje
tive fun
tions like the analyzed


ase of eigenvalue optimization or non-di�erentiabilities introdu
ed by the method, like a

non-smooth penalty fun
tion, smooth optimization methods 
an not be applied in gen-

eral. We summarize in this se
tion some important theoreti
al ba
kground information

about non-di�erentiable optimization. More details 
an be found in Clarke [16℄ or in the

respe
tive 
hapters in Gro�mann & Terno [36℄ and Flet
her [28℄.

In the 
ase of non-di�erentiable fun
tions, substitutes for the derivative are required. For


onvex fun
tions, the subdi�erential is de�ned as

�f

s

(x) = fs 2 R

n

: f(y) � f(x) + s

T

(y � x) 8 y 2 R

n

g (6.1)

If f attains only �nite values, �f

s

is a nonempty, 
ompa
t 
onvex set. The elements of �f

s

are 
alled the subgradients. Figure 6.1 shows the subdi�erential for the example fun
tion

jxj.

The generalized gradient of Clarke [16℄ is de�ned for a more general 
lass of fun
tions.

Here only Lips
hitz 
ontinuity of f is required. Then the generalized dire
tional derivative

of f , evaluated in the dire
tion d is given by

d f(x; d) = lim

y!x; h!0+

sup

1

h

(f(y + dh)� f(y)) : (6.2)

The generalized gradient is de�ned as

�f(x) = f� 2 R

n

: df(x; d) � d � � 8 d 2 R

n

g: (6.3)

The �rst order ne
essary optimality 
ondition for for non-smooth optimization problems

is

0 2 �f(x

�

) (6.4)
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whi
h is a generalization of rf(x

�

) = 0 for smooth optimization problems.

For general non-smooth optimization problems spe
ial optimization te
hniques are re-

quired. The gradient-based algorithms 
an be divided into three basi
 types:

� Subgradient methods:

They form the equivalent of the steepest des
ent method for smooth nonlinear op-

timization. The iterates are 
omputed as

x

k+1

= x

k

+ �

k

d

k

(6.5)

with

d

k

=

�s

k

jjs

k

jj

for some s

k

2 �f(x

k

); (6.6)

It is not advisable to determine the steplength �

k

by a line sear
h, as 
ases of


onvergen
e towards a non-optimal point 
an simply be 
onstru
ted (Flet
her [28℄).

Instead, a priori �xed steplengths �

k

satisfying the 
onditions

1

X

k=0

�

k

= 1 (6.7)

1

X

k=0

�

2

k

< 1 (6.8)

should be used. In this 
ase, (very slow) 
onvergen
e 
an be guaranteed, but there

is of 
ourse no assured improvement in every step.

� Bundle methods:

The idea of bundle methods is similar to that of 
onjugate gradient methods for

nonlinear optimization. The dire
tion of sear
h is determined by bundled subgra-

dient or generalized gradient information of the 
urrent iterate and previous ones.

In the simplest form of the algorithm, the initial bundle is set to s

(0)

2 �f(x

(0)

, and

subgradients s

(k)

2 �f(x

(k)

are added in su

essive iterations. A reset of the bundle

is performed from time to time. For some 
hoi
es of the bundle 
onvergen
e of the

algorithm 
an be proven.

� Parameterized embedding in smooth problems:

The non-smooth obje
tive fun
tion is substituted by a parameterized smooth ob-

je
tive fun
tion that degenerates to the original non-smooth fun
tion in the limit


ase � ! 0. In analogy to penalty fun
tion te
hniques, a whole family of auxiliary

problems with di�erent parameter values � is generated and solved. Appropriate


ontrol of the parameter � is required.

Non-smooth optimization literature (e.g. Flet
her [28℄) very often fo
uses on the spe
ial


ase of 
omposite non-smooth optimization problems

f(x) = h(
(x)) (6.9)
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where h(
) is 
onvex, but non-smooth and 
(x) is a ve
tor of smooth fun
tions. For this


ase, more methods, like e.g. a non-smooth extension of the SQP method have been

developed. However, min-max eigenvalue optimization does not belong to this type of

problems.

Sin
e the maximum eigenvalue of a non-symmetri
 matrix is neither di�erentiable nor

Lips
hitz (see se
tion 5.1.1), both the theory of subgradients and Clarke's theory of gen-

eralized gradients are not appli
able in this 
ase.

A very interesting alternative for general non-smooth problems are dire
t sear
h methods

whi
h, in 
ontrast to the methods dis
ussed above, do not require any gradient-like infor-

mation. Sin
e we have 
hosen to use an algorithm of this type for stability optimization,

these methods are treated more extensively in se
tion 6.2.

6.1.2 Existing Methods for Simpler Cases of Eigenvalue Opti-

mization

The purpose of this se
tion is to refer to some important literature in the �eld of eigenvalue

optimization. Most arti
les we have found 
on
entrate on the 
ase of symmetri
 aÆne

matrix fun
tions A(x) whi
h has the advantage of leading to 
onvex obje
tive fun
tions

j�

max

(x)j The de�nition of a subdi�erential is possible in this 
ase.

There is a series of publi
ations by Overton. A quadrati
ally 
onvergent algorithm for

symmetri
 aÆne matri
es was proposed in Overton [68℄ and extended to large s
ale ma-

tri
es in Overton [69℄. Shapiro & Fan [83℄ and Overton & Womersley [71℄ give the 
orre-

sponding se
ond order 
onvergen
e analysis. Goh & Teo [33℄ have attempted a solution

of eigenvalue optimization problems by min-max reformulation of eigenvalue optimization

and appli
ation of standard algorithms, but other sour
es (see e.g. Panier [72℄) give ex-

amples for a failure of this approa
h. Eigenvalue optimization problems for symmetri


matri
es 
an be transformed into semide�nite programming problems whi
h have re
ently

re
eived a lot of attention. There is extensive literature on this subje
t (see e.g. Alizadeh

et al. [2℄ for primal-dual interior point methods and Helmberg & Rendl [39℄ for spe
tral

bundle methods).

The only publi
ation about eigenvalue optimization for non-symmetri
 matri
es that we

are aware of is Overton & Womersley [70℄. For aÆne matrix fun
tions they derive �rst

order optimality 
onditions and formulas for the dire
tion of des
ent in the 
ase of non-

defe
tive multiple eigenvalues. The defe
tive 
ase is only brie
y dis
ussed. The results of

this paper do not apply to 
ases with nonlinear matrix fun
tions or appli
ations involving


onstraints.

We 
an summarize that to our knowledge the spe
i�
 form of eigenvalue optimization

problem that we are fa
ing in our study is not addressed in eigenvalue optimization

literature.
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6.2 A Dire
t Sear
h Method for Eigenvalue Opti-

mization

Dire
t sear
h methods are optimization methods that solely use fun
tion information

and do neither 
ompute nor expli
itely approximate derivatives. While derivative-based

methods are extremely eÆ
ient for many types of problems they rea
h their limitations if

obje
tive fun
tion are non-smooth by nature or their values 
an only ina

urately be de-

termined, or when sensitivity information is not available or at least not reliable. Standard

optimization literature (Gill et al. [32℄) re
ommends dire
t sear
h methods as methods

of 
hoi
e for non-di�erentiable optimization.

For the solution of the two-level stability optimization problem a dire
t sear
h method

has proven to be a good 
hoi
e. We use a modi�
ation of the dire
t sear
h method of

Nelder & Mead, also known as polytope algorithm. We have used this algorithm not

only for eigenvalue optimization but also for minimization of the other 
riteria listed in

se
tion 5.4 sin
e we did not want to blur the 
omparison of di�erent obje
tive fun
tions

by algorithmi
 in
uen
e.

In se
tion 6.2.1 the original algorithm (Nelder & Mead [66℄, Gill et al. [32℄) is pre-

sented. Se
tion 6.2.2 des
ribes the modi�
ations we have introdu
ed in order to make

the algorithm suitable for stability optimization. We 
on
lude with a short dis
ussion

of 
onvergen
e properties of the Nelder-Mead algorithm and related methods in se
tion

6.2.3. Sin
e we apply the algorithm for parameter optimization, we 
all the ve
tor of

independent variables p throughout this se
tion.

6.2.1 Original Polytope Algorithm

The Nelder-Mead algorithm dating from 1965 is among the most famous optimization

methods ever 
reated and is still popular today. Nelder & Mead 
all the algorithm a

simplex method sin
e it is based on a sequen
e of (n+1)-vertex simpli
es for optimization

n-dimensional spa
e p 2 R

n

{ however, the method is not to be 
onfused with the even

older and more famous simplex method for linear programming by Dantzig. This simplex

{ or polytope { retains information about fun
tion values at n + 1 distin
t points and

thus obtains some sort of 
oarse grid sensitivity information. Always repla
ing its worst

point and adapting its shape to the topology the polytope wanders through the spa
e of

optimization variables towards a minimum.

The individual steps of one algorithm iteration are the following (also 
ompare �gure 6.2):

1. At the beginning of every iteration k, the fun
tion values f(p

i

) of all n+ 1 verti
es

are determined, and the verti
es are ordered and labeled p

1

; :::p

n+1

su
h that

f(p

1

) � f(p

2

) � ::: � f(p

n+1

) (6.10)

Vertex p

1

therefore represents the best point of the fun
tion known so far. In
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p
1

c

p
2

p   = p
3

p
r

p
e

p
c,i

w

p
c,o

Figure 6.2: Basi
 
on
ept of polytope algorithm

pra
ti
e, only the best, worst and se
ond-worst points have to be isolated, but the

above fully ordered form is ni
er for presentation.

2. The 
entroid of all verti
es but the worst is 
omputed


 =

n

X

i=1

p

i

(6.11)

The worst vertex p

w

= p

n+1

is re
e
ted on this 
entroid

p

r

= 
+ �(
� p

n+1

) (6.12)

with a re
e
tion 
oeÆ
ient �, (0 < � < 1) . If the fun
tion value at this re
e
ted

point f(p

r

) is

f(p

1

) � f(p

r

) < f(p

n

); (6.13)

i.e. neither the new best nor worst point, point p

r

repla
es p

n+1

and the iteration

step terminates.

3. If

f(p

r

) < f(p

1

); (6.14)

the re
e
tion has produ
ed a new minimum and it might be worthwhile trying to

go further in this promising dire
tion. This motivates the expansion step

p

e

= 
+ 
(p

r

� 
) = 
p

r

+ (1� 
)
 (6.15)

with expansion 
oeÆ
ient 
, (
 > 1). If f(p

e

) < f(p

r

), the expanded point is

a

epted as new simplex point, otherwise p

r

is a

epted. The iteration step is

terminated.
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4. If on the 
ontrary, after re
e
tion

f(p

r

) > f(p

n

); (6.16)

i.e. the re
e
ted point is still the worst point, a 
ontra
tion of the polytope is

performed. Of the two points p

r

or p

n+1

the one with the better fun
tion value is


hosen as target for the 
ontra
tion whi
h is a

ordingly 
alled outer 
ontra
tion

p


;o

= 
+ �(p

r

� 
) = �p

r

+ (1� �)
 (6.17)

or inner 
ontra
tion

p


;i

= 
 + �(p

n+1

� 
) = �p

n+1

+ (1� �)
 (6.18)

with 
ontra
tion 
oeÆ
ient �, (� < 1). If f(p




) < f(p

a

) with p

a

= min(p

r

; p

n+1

),

the 
ontra
ted point is a

epted as new simplex point and the step terminates.

5. For a failed 
ontra
tion the full polytope is shrunk towards the best point, i.e. the

points p

2

; :::; p

n+1

are repla
ed by

x

0

i

= 0:5(p

i

+ p

1

) (6.19)

and a new iteration step starts.

The re
e
tion, expansion and 
ontra
tion 
oeÆ
ients are heuristi
ally 
hosen; a frequent


hoi
e is � = � = 0:5; 
 = 2.

The iteration terminates when the di�eren
e of fun
tion values of all simplex points in

terms of a 'standard error' falls below a 
hosen toleran
e

v

u

u

t

n+1

X

i=1

(f(p

i

)� f(
)) < tol

t

: (6.20)

In order to in
lude 
onstraints on the volume to be sear
hed, the authors propose to

use a modi�ed obje
tive fun
tion like the logarithm of the original fun
tion in order to

ex
lude negative values of variables. Linear equality 
onstraints 
an of 
ourse be handled

by expli
it elimination of variables and redu
tion of the simplex dimension.

6.2.2 Overview of Ne
essary Modi�
ations for Stability Opti-

mization

For a better performan
e in the 
ontext of stability optimization we have applied a number

of modi�
ations to the original algorithm.



82 Chapter 6. Numeri
al Methods for Stability Optimization

Multiple Expansions

Instead of a single expansion like in the original algorithm we allow multiple expansions

if the �rst expansion was su

essful. In every step the expansion 
oeÆ
ient 
 in equation

(6.15) is augmented (e.g. doubled) until there is no further improvement of the obje
tive

fun
tion. The maximum number of expansions 
an be spe
i�ed by the user (default

value = 5). In our examples 
onsiderable redu
tions of the obje
tive fun
tion have been

a
hieved by these multiple expansion steps.

Modi�ed Contra
tions

We modi�ed the 
ontra
tion pro
edure su
h that the re
e
ted point (outer 
ontra
tion)

or the original worst point (inner 
ontra
tion) is 
ontra
ted towards the best point instead

of the 
entroid. In equations (6.17) and (6.18) 
 is repla
ed by p

1

.

Modi�ed Shrinking

Sin
e we have observed that frequent polytope shrinking leads to premature 
onvergen
e

we instead allow multiple polytope 
ontra
tions before shrinking the polytope. The max-

imum number of 
ontra
tions 
an be modi�ed by the user (default value = 5).

Initial Polytope S
aling

Di�erent orders of magnitude of the optimization variables are 
onsidered in the 
hoi
e

of the original polytope by an appropriate s
aling of the polytope side lengths. Starting

from one initial point p

1

provided by the user, the other n polytope points are 
reated by

s
aled steps in one variable dire
tion ea
h:

p

j

= p

1

+ l

0

� s

j�1

� e

j�1

; j = 2; :::; n+ 1 (6.21)

where l

o

denotes the unity side length, s

i

the s
aling fa
tor, and e

i

the i-th unity ve
tor

in R

n

. S
aling fa
tors as well as unity side length 
an be spe
i�ed by the user.

Handling of Box Constraints

Box 
onstraints to the parameter spa
e are not handled by a modi�
ation of the obje
tive

fun
tion but by a modi�
ation of the algorithm itself.

The 
onstraints have to be 
onsidered during re
e
tion, expansion, and initialization steps.

Figure 6.3 illustrates a modi�ed re
e
tion step in the presen
e of box 
onstraints. If a

re
e
ted point turns out to be outside the bounds it is set ba
k onto the bounds by the

algorithm. The same is done during polytope initialization. If the initial polytope risks to



6.2. A Dire
t Sear
h Method for Eigenvalue Optimization 83

p
I,max

p
I,min

p
II,min

p
II,max

p
1

p
3

p
2

p
r

p
r’

p
II

p
I

Figure 6.3: Handling of box 
onstraints with modi�ed polytope algorithm

degenerate due to multiple resets the user will be prompted to modify the initial polytope.

Dire
tions of variable spa
e in whi
h a reset had to be performed are ex
luded from the

expansion steps. This leads to a dire
tion of expansion di�erent from the dire
tion of

re
e
tion. The ne
essity for a reset is 
he
ked after ea
h expansion step.

Due to the 
onvex nature of box 
onstraints no modi�
ations have to be made to 
on-

tra
tion and shrinking pro
edures and to the 
omputation of the 
entroid.

Termination Criterion

If the polytope algorithm is applied to eigenvalue optimization, ill-
onditioning of the

obje
tive fun
tion may o

ur. This is espe
ially true for the optimum were typi
ally

the maximum eigenvalue is multiple. It is therefore sometimes favorable to in
rease the

termination toleran
e in the presen
e of large eigenvalue 
ondition numbers.

Restart Pro
edure

For a problem with multiple minima like stability optimization we wanted to redu
e the

danger of 
onverging to some lo
al minimum if there is another one of better fun
tion

value nearby. After 
onvergen
e we therefore perform a restart by generating a new

initial polytope keeping the optimum as one point of the new polytope. A minimum is

only a

epted if 
onvergen
e to the same point has appeared twi
e. For our 
omputations

this restart pro
edure typi
ally 
auses a 
onsiderably improved obje
tive fun
tion value

at �nal 
onvergen
e relative to the �rst 
onvergen
e point.
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6.2.3 Dis
ussion of Convergen
e Properties

Algorithms of the Nelder-Mead simplex type have proven to be very robust for many ap-

pli
ations although not many theoreti
al results have been obtained so far. Until re
ently

there was no theoreti
al analysis expli
itely treating the original algorithm but only vari-

ants. There are two re
ent publi
ations studying 
onvergen
e in low dimension. Lagarias

et al.[46℄ gave a proof of 
onvergen
e of the polytope algorithm for one-dimensional and


ertain two-dimensional fun
tions. M
Kinnon [55℄, however, demonstrated 
onvergen
e

to non-stationary points for another 
lass of two-dimensional fun
tions. No proofs have

been presented so far for fun
tions of higher dimensions. There are reports about the

polytope degenerating in high dimensions 
ausing the algorithm to fail.

There is a 
lass of dire
t sear
h methods, 
alled pattern sear
h algorithms, for whi
h

more theoreti
al results are available. Instead of repla
ing only the worst point like the

polytope algorithm, pattern sear
h algorithms repla
e all but the best point. Tor
zon [91℄,

[90℄ proved that pattern sear
h algorithms 
onverge to a stationary point when applied

to smooth fun
tions. But sin
e the smoothness 
ondition is not satis�ed by eigenvalue

optimization problems and sin
e n fun
tion evaluations are required for one step of the

pattern sear
h methods, we have favored our variant of the Nelder-Mead algorithm over

pattern sear
h.

We are aware that 
onvergen
e of the algorithm 
annot be proven but have been motivated

by the fa
t that it 
onverges to the optimum for a number of standard NLP test problems.

6.3 Numeri
al Methods for Singular Value Optimiza-

tion

As we have outlined in the previous 
hapter, singular value optimization represents an

interesting alternative to eigenvalue optimization in the intention to in
rease a system's

stability.

Numeri
al libraries like LAPACK (see Anderson et al. [3℄) 
ontain very eÆ
ient routines

for the 
omputation of singular values su
h that there is no need for development of new

methods. In this se
tion we 
on
entrate on formulas for the derivatives of the maximum

singular value with respe
t to an independent optimization variable x

k

on whi
h the

matrix C impli
itly depends:

d�

max

dx

k

=

d�

max

dC

Æ

dC

dx

k

=

�

d�

max

dC

;

dC

dx

k

�

: (6.22)

x

k

is not to be 
onfused with the ve
tor of state variables x used in previous 
hapters. h�i

denotes the Frobenius produ
t or inner matrix produ
t

hA;Bi =

n

X

i=1

n

X

j=1

a

ij

b

ij

: (6.23)
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We distinguish the 
ases of simple and multiple maximum singular value.

6.3.1 Computation of Derivatives if Singular Value is Simple

We assume that singular values have sorted order after 
omputation by the library routine

and that the maximum value is simple:

�

max

= �

1

> �

2

� ::::: � �

n

: (6.24)

In this 
ase the maximum singular value is 
ontinuously di�erentiable. The 
omputation

of the derivative does not pose a big problem but we will see that there is nevertheless

some room for improvement.

Let us re
all from literature (e.g. Trefethen & Bau [92℄) that there are two di�erent ways

to 
ompute the singular values of a matrix C.

The �rst variant is to use the formal de�nition

�

i

(C) = �

i

(

p

C

T

C); C 2 R

n�n

(6.25)

where B = C

T

C is the 
ovarian
e matrix of C. It has the disadvantage of a worse 
ondition

than the original matrix as the errors are squared. Furthermore it is numeri
ally unstable.

An alternative 
omputation of singular values is based on a symmetri
 auxiliary matrix

H of double dimension:

H =

�

0 C

T

C 0

�

; H 2 R

2n�2n

: (6.26)

The 
ondition number of H is the same as for the original matrix C. H has got 2n

eigenvalues whi
h 
ome in pairs of opposite sign. The singular values of C are equal to

the positive eigenvalues (or the absolute values of the eigenvalues ) of H;

�

i

(H)

+=�

= � �

i

(C) (6.27)

The 
orresponding 2n eigenve
tors v

+=�

ev

i

of H are related to the left and right singular

ve
tors u

i

and v

i

of C by

v

+=�

ev

i

=

1

p

2

�

v

i

�u

i

�

: (6.28)

It is this se
ond variant that we are going to use for the 
omputation of derivatives

although we will try to avoid the 
omputation of matri
es of dimension larger then n.

Using formula (5.8) for the derivatives of eigenvalues of symmetri
 matri
es presented in

the previous 
hapter and relation (6.28) for the eigenve
tors of H, we 
an 
on
lude for

the derivatives of singular values:

d�

1

(C)

dx

k

=

d�

+

1

(H)

dx

k
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=

�

d�

+

1

dH

;

dH

dx

k

�

=

*

1

2

�

v

1

u

1

��

v

1

u

1

�

T

;

 

0

dC

dx

k

T

dC

dx

k

0

!+

=

1

2

*

�

v

1

v

T

1

v

1

u

T

1

u

1

v

T

1

u

1

u

T

1

�

;

 

0

dC

dx

k

T

dC

dx

k

0

!+

=

1

2

��

v

1

u

T

1

;

dC

dx

k

T

�

+

�

u

1

v

T

1

;

dC

dx

k

��

d�

1

(C)

dx

k

=

�

u

1

v

T

1

;

dC

dx

k

�

(6.29)

We have thus established a formula for the derivative of a (simple) singular value with

respe
t to an independent variable x

k

that only requires 
omputation and multipli
ation

of two square matri
es of dimension n but does not have the ill-
onditioning drawba
k of

equation (6.25). We will 
ome ba
k to the se
ond part of equation (6.29),

dC

dx

k

, in se
tion

6.6.

6.3.2 Computation of Derivatives if Singular Value is Multiple

The 
ase of a maximum singular value of multipli
ity m

�

max

= �

1

= �

2

= ::: = �

m

> �

m+1

� ::::: � �

n

(6.30)

is more 
ompli
ated. As we have dis
ussed in se
tion 5.2.3, the individual singular values

are non-di�erentiable but well-
onditioned at the points of multiple maximum singular

value. Two tasks have to be handled:

� dete
tion of a lo
al minimum

� 
omputation of a dire
tion of des
ent.

Both 
an be solved based on the idea, that the derivatives of the individual singular

values at this non-de�ned point 
an be approximated by the 
orresponding derivatives at

a slightly perturbed point.

d�

i

(C(x))

dx

k

�

d�

i

(C(x + x

0

)

dx

k

(6.31)

We apply a perturbation to the matrix C that splits the multiple singular value into

m distin
t ones, i.e. we apply a di�erent perturbations in the dire
tion of ea
h of the

multiple singular values . From the singular value de
omposition of matrix C

C = U�V

T

(6.32)
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we 
reate the perturbed matrix

C

pert

= U(� + �

0

)V

T

= C + U�

0

V

T

(6.33)

with the diagonal matrix of perturbations

�

0

=

0

B

B

B

B

B

B

B

B

B

B

�

m� 1 0 � � � 0

m� 2 0 � � � 0

::: 0 � � � 0

1 0 � � � 0

0 0 � � � 0

0 � � � 0 0 � � � 0

� � � � � � � � �

0 � � � 0 0 � � � 0

1

C

C

C

C

C

C

C

C

C

C

A

� � (6.34)

where � is some 
onstant, e.g. � = 10

�6

For this perturbed matrix whi
h has a simple maximum singular value the derivative 
an

be 
omputed as des
ribed in the last se
tion.

In order to dete
t a possible lo
al minimum at points of multiple maximum singular value,

we have to verify if the subgradient �f = 0 is element of the subdi�erential at this point.

In pra
ti
e, this results in the need to 
he
k if for all dire
tions k of the optimization

spa
e there are two gradients of individual singular values whi
h are of opposite signs (or

one that is zero):

d�

i

(C(x))

dx

k

�

d�

j

(C(x))

dx

k

� 0: (6.35)

6.4 Computation of Monodromy Matri
es for Dis-


ontinuous Di�erential Equations

In this se
tion, we dis
uss the numeri
al 
omputation of the monodromy matrix asso
iated

with a solution of the inner loop dis
ontinuous periodi
 optimal 
ontrol problem. Let us

re
all that the monodromy matrix is equivalent with the Ja
obian of the Poin
ar�e map

of the periodi
 solution

C

x

=

dx(T )

dx(0)

= C

q;v

(6.36)

with x being again the ve
tor of state variables x

T

= (q

T

; v

T

).

For the optimal 
ontrol problem solution, we have already 
omputed the sensitivities of

integration end values with respe
t to initial values on ea
h multiple shooting interval

C

x

(t

i�1

; t

i

) and 
an simply reuse them at this point. For 
ontinuous model equations and

state variables the monodromy matrix over the whole period would be produ
ed by a


hain rule multipli
ation of the individual sensitivity matri
es:

C

x

(0; T ) = C

x

(t

0

; t

m

) = C

x

(t

m�1

; t

m

) � ::: � C

x

(t

1

; t

2

) � C

x

(t

0

; t

1

): (6.37)
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t
j

t
s

t
j+1

t

x

x(t  )

x(t  )

j

s

-

x(t  )
s

+

x(t    )
j+1

J(t  )
s

-

Figure 6.4: Impli
itly de�ned dis
ontinuity of state variables at t

s

or

C

q;v

(0; T ) = C

q;v

(t

m�1

; t

m

) � ::: � C

q;v

(t

1

; t

2

) � C

q;v

(t

0

; t

1

): (6.38)

As our dynami
 models 
ontain dis
ontinuities of state variables and/or the right hand

side depending impli
itly on q; v, and t, any perturbation will 
ause the dis
ontinuities to

o

ur sooner or later than for the original solution. In this 
ase, the sensitivity information

has to be updated at the dis
rete point of time t

s

of the dis
ontinuity (Bo
k [10℄, von

S
hwerin et al. [96℄).

We in
lude here a full derivation of the update formula sin
e it illustrates the prin
iples

that we will also need in se
tion 6.6 for 
omputing the derivatives of the monodromy

matrix. The dis
ontinuity is situated at t

s

in the interval [t

j

; t

j+1

℄ (
ompare �gure 6.4).

The swit
hing fun
tion is given as

s(t

s

; x; p) = s(t

s

; q; v; p) (6.39)

with partial derivatives s

t

and s

x

= s

q;v

. Dis
ontinuities are des
ribed in terms of right

hand side 
hanges f(t

+

s

)� f(t

�

s

) and of state variable jump fun
tions

J(t

s

; x; p) = J(t

s

; q; v; p) =

�

q

+

(t

s

)� q

�

(t

s

)

v

+

(t

s

)� v

�

(t

s

)

�

(6.40)

with partial derivatives J

t

and J

x

= J

q;v

.

We look for the derivative

dx(t

j+1

)

dx(t

j

)

(6.41)

where the dependen
ies of x(t

j+1

) and x(t

+

s

) are pre
isely stated as

x(t

j+1

; t

s

(x

j

; p); x(t

+

s

); p) (6.42)

and

x(t

+

s

) = x(t

�

s

) + J(t

s

; x(t

�

s

); p)

= x(t

�

s

(x

j

; p); x

j

; p) + J(t

�

s

(x

j

; p); x(t

�

s

(x

j

; p); x

j

; p); p): (6.43)
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This leads to

dx(t

j+1

)

dx(t

j

)

=

�x(t

j+1

)

�t

s

| {z }

=:A

dt

s

dx

j

|{z}

=:B

+

�x(t

j+1

)

�x(t

+

s

)

dx(t

+

s

)

dx

j

| {z }

=:C

(6.44)

where the three terms A, B, and C remain to be determined.

A follows from standard Analysis

�x(t

j

+1)

�t

+

s

= �

�x

j+1

�x(t

+

s

)

� _x(t

+

s

): (6.45)

B 
an be 
omputed using the impli
it fun
tion theorem

s(t

s

(x

j

; p); x(t

s

(x

j

; p); x

j

; p); p) = 0) (6.46)

ds

dx

j

= s

t

(t

�

s

)

dt

s

dx

j

+ s

x

(t

�

s

) _x(t

�

s

)

dt

s

dx

j

+ s

x

(t

�

s

)

dx(t

�

s

)

dx

j

= 0 (6.47)

�

s

t

(t

�

s

) + s

x

(t

�

s

) _x(t

�

s

)

�

| {z }

=: _s(t

�

s

)

dt

s

dx

j

+ s

x

(t

�

s

)

�x(t

�

s

)

�dx

j

= 0 (6.48)

B =

dt

s

dx

j

= �

�s

x

(t

�

s

)

T

_s(t

�

s

)

�

�x(t

�

s

)

�x

j

(6.49)

C follows from stri
t derivation of (6.43):

C =

dx(t

+

s

)

dx

j

= _x(t

�

s

)

dt

s

dx

j

+

�x(t

�

s

)

�x

j

+ J

t

dt

s

dx

j

+ J

x

�

_x(t

�

s

)

dt

s

dx

j

+

�x(t

�

s

)

�x

j

�

=

�

_x(t

�

s

) + J

t

+ J

x

_x(t

�

s

)

�

�

dt

s

dx

j

+ (I + J

x

) �

�x(t

�

s

)

�x

j

(6.50)

where again we need to substitute term B.

We thus �nally obtain

dx(t

j+1

)

dx(t

j

)

=

dx(t

j+1

)

dx(t

+

s

)

�

�

�

_x(t

+

s

)� _x(t

�

s

)� J

x

_x(t

�

s

)� J

t

�

�

s

T

x

_s

+ I + J

x

�

�

dx(t

�

s

)

dx(t

j

)

= C

x

(t

+

s

; t

j+1

) � U

x

� C

x

(t

j

; t

�

s

): (6.51)

We 
an 
on
lude that state-dependent dis
ontinuities require the in
lusion of an update

term U

x

in the 
hain rule multipli
ation of equation (6.37) for the 
omputation of the

monodromy matrix with

U

x

=

�

f(t

+

s

)� f(t

�

s

)� J

x

f(t

�

s

)� J

t

�

�

s

T

x

_s

+ I + J

x

(6.52)

or, using position and velo
ity variables

U

q;v

=

�

f(t

+

s

)� f(t

�

s

)� J

t

� J

q;v

f(t

�

s

)

�

�

1

_s

(s

T

q

; s

T

v

) + I + J

q;v

: (6.53)
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6.5 Proje
tion of MonodromyMatrix for Autonomous

Systems

A

ording to theorem 4.4, the monodromy matrix of autonomous systems has always one

eigenvalue equal to one. It does not make sense to optimize the maximum eigenvalue

of this original matrix or some upper bound to this eigenvalue as for the 
ase where all

other eigenvalues are smaller than one, one would senselessly be pushing on this invariant

eigenvalue of one.

Instead, a proje
tion needs to be performed in order to eliminate the dire
tion of this

eigenvalue from the monodromy matrix before optimization. Re
alling se
tion 3.1 about

dynami
al systems, this is equivalent with studying the Ja
obian of a Poin
ar�e map that

is not produ
ed by regular time strobes (�gure 3.1a) but by the interse
tion with some

(n� 1)-dimensional manifold in state spa
e (�gure 3.1b).

A proje
tion matrix has to be 
hosen su
h that the eigenvalue of one is eliminated but

all other eigenvalues of the matrix are 
onserved. This requirement is ful�lled by the

rank(n-1) orthogonal proje
tor

P

?q

1

= I � q

1

q

T

1

(6.54)

with q

1

being the normalized right eigenve
tor asso
iated with � = 1. Note that for an

orthogonal proje
tor we have P = P

T

, but not P

T

P = I as an orthogonal proje
tor is

not equivalent to an orthogonal matrix.

In order to obtain the proje
ted matrix we need to proje
t both rows and 
olumns onto

this subspa
e:

C

proj

= P

?q

1

� CP

?q

1

: (6.55)

In the 
ase where a power of the matrix instead of the matrix itself is studied (
ompare

se
tion 5.3), the proje
tion is performed after multipli
ation:

C

p

proj

= P

?q

1

� C

p

P

?q

1

(6.56)

Note that the monodromy matrix C of an autonomous system and its p-th power C

p

both

have an eigenvalue of one with the same asso
iated eigenve
tors. They therefore result in

the same proje
tion matrix P

?q

1

.

The derivative of a proje
ted matrix with respe
t to the k-th 
omponent of the state

variable ve
tor x is 
omputed as:

dC

proj

dx

k

=

d

dx

k

(P

?q

1

� C � P

?q

1

)

= P

?q

1

�

dC

dx

k

� P

?q

1

: (6.57)
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6.6 Computation of First Order Derivatives of the

Monodromy Matrix

For a derivative-based method for stability optimization, one would also require derivatives

of the monodromy matrix with respe
t to initial values and parameters. They represent

se
ond order derivatives of the traje
tories. In this se
tion we derive formulas for the

derivatives of the monodromy matrix in a multi-interval 
ontext su
h as multiple shooting

assuming that the derivatives on the individual intervals have been determined. We

distinguish the 
ases of 
ontinuous and dis
ontinuous di�erential equations. We are not

aware of any referen
e having stated these formulas before. As the full derivatives of

the monodromy matrix represent three-dimensional tensors, we prefer to give instead an

expression for the k-th 
omponent whi
h is a matrix.

6.6.1 Continuous Dynami
s

First we 
on
entrate on the simpler 
ase with no dis
ontinuities in the dynami
al equa-

tions. It is however not as straightforward as for �rst order derivatives sin
e for se
ond

order derivatives there is no simple 
hain rule dependen
y similar to equation (6.37).

Pi
ture two 
onse
utive intervals [t

j

; t

j+1

℄ and [t

j+1

; t

j+2

℄ for whi
h the dependen
ies of

the respe
tive integration end values are fully des
ribed by

x(t

j+1

) = x(t

j+1

; t

j

; x

j

; p) (6.58)

x(t

j+2

) = x(t

j+2

; t

j+1

; x(t

j+1

; t

j

; x

j

; p); p): (6.59)

We will give equations for the derivatives of the monodromy matrix C

x

with respe
t to

initial values x

j

and parameters p. Throughout this se
tion we will use the abbreviation

x

i

= x(t

i

).

The �rst and se
ond derivatives of the integration end values with respe
t to initial values

and parameters on the two intervals are assumed to be known:

C
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dx

j+2

dx

j+1

C

p

(t

j+1

; t

j+2

) =

dx

j+2

dp

D

x

(t

j+1

; t

j+2

) =

d

2

x

j+2

dx

2

j+1

D

p

(t

j+1

; t

j+2

) =

d

2

x

j+2

dx

j+1

dp

:

By D

x;k

and D

p;k

we denote the k-th matrix 
omponents of the derivatives D

x

and D

P

and by C

x;k

and C

p;k

the k-th row ve
tor of some matrix C

x

or C

p

respe
tively.
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Derivative with Respe
t to Initial Values

We look for the k-th derivative of the overall monodromy matrix C

x

(t

j

; t

j+2

) with respe
t

to initial values:

D

x;k

(t

j

; t

j+2

) =

d

dx

j;k

C

x

(t

j

; t

j+2

) =

d

dx

j;k

(C

x

(t

j+1

; t

j+2

) � C

x

(t

j

; t

j+1

))

=

d

dx

j;k

(C

x

(t

j+1

; t

j+2

)) � C

x

(t

j

; t

j+1

)

+ C

x

(t

j+1

; t

j+2

) �

d

dx

j;k

(C

x

(t

j

; t

j+1

)) : (6.60)

With the notation C = fA � bg for the produ
t of a three-dimensional tensor A with a

ve
tor b resulting in a matrix C we 
an write:

D

x;k

(t

j

; t

j+2

) = fD

x

(t

j+1

; t

j+2

) � C

x;k

(t

j

; t

j+1

)g � C

x

(t

j

; t

j+1

) +C

x

(t

j+1

; t

j+2

) �D

x;k

(t

j

; t

j+1

):

(6.61)

For three intervals [t

j

; t

j+1

℄, [t

j+1

; t

j+2

℄, [t

j+2

; t

j+3

℄ we would equivalently obtain

D

x;k

(t

j

; t

j+3

) = fD

x

(t

j+2

; t

j+3

) � (C

x

(t

j+1

; t

j+2

) � C

x;k

(t

j

; t

j+1

))g

� C

x

(t

j+1

; t

j+2

) � C

x

(t

j

; t

j+1

)

+ C

x

(t

j+2

; t

j+3

) � fD

x

(t

j+1

; t

j+2

) � C

x;k

(t

j

; t

j+1

)g � C

x

(t

j

; t

j+1

)

+ C

x

(t

j+2

; t

j+3

) � C

x

(t

j+1

; t

j+2

) �D

x;k

(t

j

; t

j+1

): (6.62)

Derivative with Respe
t to Parameters

The k-th 
omponent of the derivative of the two-interval monodromy matrix with respe
t

to parameters is

D

p;k

(t

j

; t

j+2

) =

d

dp

k

C

x

(t

j

; t

j+2

) =

d

dp

k

(C

x

(t

j+1

; t

j+2

) � C

x

(t

j

; t

j+1

))

=

d

dp

k

(C

x

(t

j+1

; t

j+2

)) � C

x

(t

j

; t

j+1

) + C

x

(t

j+1

; t

j+2

) �

d

dp

k

(C

x

(t

j

; t

j+1

))

= (D

p;k

(t

j+1

; t

j+2

) + fD

x

(t

j+1

; t

j+2

) � C

p;k

(t

j

; t

j+1

)g) � C

x

(t

j

; t

j+1

)

+ C

x

(t

j+1

; t

j+2

) �D

p;k

(t

j

; t

j+1

): (6.63)

6.6.2 Dis
ontinuous Dynami
s

Now we fo
us on the more 
omplex 
ase of state-dependent dis
ontinuities in the mon-

odromy matrix. We use the same terminology as in se
tion 6.4 and �gure 6.4.
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Derivative with Respe
t to Initial Values

Using equation (6.51) and the notation x

i

= x(t

i

) we 
an state for the k-th 
omponent of

the derivative

d

dx

k

(t

j

)

(C

x

(t

j

; t

j+1

)) =

d

dx

j;k

�

dx

j+1

dx

j

�

=

d

dx

j;k

�

C

x

(t

+

s

; t

j+1

)

�

| {z }

=:D

�U

x

� C

x

(t

j

; t

�

s

)

+C

x

(t

+

s

; t

j+1

) �

d

dx

j;k

(U

x

)

| {z }

=:E

�C

x

(t

j

; t

�

s

)

+C

x

(t

+

s

; t

j+1

) � U

x

�

d

dx

j;k

�

C

x

(t

j

; t

�

s

)

�

| {z }

=:F

:(6.64)

We 
an now independently derive expressions for terms D, E , and F . With

C

x

(t

+

s

; t

j+1

) = C

x

(t

j+1

; t

+

s

(x

j

; p); x(t

+

s

); p) (6.65)

and the dependen
y of x(t

+

s

) de�ned by equation (6.43) we obtain for D

D =

d

dx

j;k

�

C

x

(t

+

s

; t

j+1

)

�

=

�

�t

s

�

C

x

(t

+

s

; t

j+1

)

�

�

dt

s

dx

j;k

+

�

�

�x

+

s

�

C

x

(t

+

s

; t

j+1

)

�

�

dx

+

s

dx

j;k

�

: (6.66)

Using equations (6.49) and (6.50) and

�

�t

s

�

C

x

(t

+

s

; t

j+1

)

�

=

�

�

2

x

j+1

�x

s

+

2

� _x(t

+

s

)

�

=

�

D

x

(t

+

s

; t

j+1

) � _x(t

+

s

)

	

(6.67)

we have

D =

�

D

x

(t

+

s

; t

j+1

) � _x(t

+

s

)

	

�

�s

x

(t

�

s

)

T

_s(t

�

s

)

� C

x;k

(t

j

; t

�

s

) +

n

D

x

(t

+

s

; t

j+1

) �

�

�

_x(t

�

s

) + J

t

+ J

x

_x(t

�

s

)

�

�

�s

x

(t

�

s

)

T

_s(t

�

s

)

+ (I + J

x

)

�

� C

x;k

(t

j

; t

�

s

)

o

: (6.68)

For the 
omputation of term E

E =

�

df(t

+

s

)

dx

j;k

�

df(t

�

s

)

dx

j;k

�

dJ

x

dx

j;k

f(t

�

s

)� J

x

df(t

�

s

)

dx

j;k

�

dJ

t

dx

j;k

�

s

T

x

_s

+

�

f(t

+

s

)� f(t

�

s

)� J

x

f(t

�

s

)� J

t

�

(

ds

x

dx

j;k

)

T

� _s� s

T

x

�

d _s

dx

j;k

_s

2

+

dJ

x

dx

j;k

(6.69)
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we need the derivatives of f(t

�

s

), f(t

+

s

), J

x

, J

t

, s

x

, s

t

, and _s with respe
t to x

j;k

:

df(t

�

s

)

dx

j;k

=

d _x(t

�

s

)

dx

j;k

=

�

f

t

(t

�

s

) + f

x

(t

�

s

) � _x(t

�

s

)

�

�

dt

s

dx

j;k

+ f

x

(t

�

s

) � C

x;k

(t

j

; t

�

s

) (6.70)

df(t

+

s

)

dx

j;k

= f

t

(t

+

s

)

dt

s

dx

j;k

+ f

x

(t

+

s

)

dx

+

s

dx

j;k

=

�

f

t

(t

+

s

) + f

x

(t

+

s

) �

�

_x(t

�

s

) + J

t

+ J

x

_x(t

�

s

)

��

�

dt

s

dx

j;k

+ f

x

(t

+

s

) � (I + J

x

) � C

x;k

(t

j

; t

�

s

) (6.71)

dJ

x

dx

j;k

=

�

J

xt

+

�

J

xx

� _x(t

�

s

)

	

�

�

dt

s

dx

j;k

+ J

xx

� C

x;k

(t

j

; t

�

s

) (6.72)

dJ

t

dx

j;k

=

�

J

tt

+ J

T

tx

� _x(t

�

s

)

�

�

dt

s

dx

j;k

+ J

T

xt

� C

x;k

(t

j

; t

�

s

) (6.73)

ds

x

dx

j;k

=

�

s

xt

+ s

xx

� _x(t

�

s

)

�

�

dt

s

dx

j;k

+ s

xx

� C

x;k

(t

j

; t

�

s

) (6.74)

ds

t

dx

j;k

=

�

s

tt

+ s

T

tx

� _x(t

�

s

)

�

�

dt

s

dx

j;k

+ s

T

tx

� C

x;k

(t

j

; t

�

s

) (6.75)

d _s

dx

j;k

=

ds

t

dx

j;k

+ (

ds

x

dx

j;k

)

T

� _x(t

�

s

) + s

T

x

�

d _x(t

�

s

)

dx

j;k

=

�

s

tt

+ s

T

tx

� _x(t

�

s

)

�

�

dt

s

dx

j;k

+ s

T

tx

� C

x;k

(t

j

; t

�

s

) +

��

s

xt

+ s

xx

� _x(t

�

s

)

�

�

dt

s

dx

j;k

+ s

xx

� C

x;k

(t

j

; t

�

s

)

�

T

� f(t

�

s

)

+s

T

x

��

f

t

(t

�

s

) + f

x

(t

�

s

) � _x(t

�

s

)

�

�

dt

s

dx

j;k

+ f

x

(t

�

s

) � C

x;k

(t

j

; t

�

s

)

�

(6.76)

and thus obtain

E =

�

�

f

t

(t

+

s

) + f

x

(t

+

s

) �

�

f(t

�

s

) + J

t

+ J

x

f(t

�

s

)

��

�

dt

s

dx

j;k

+ f

x

(t

+

s

) � (I + J

x

) � C

x;k

(t

j
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�

s

)

�

�

f

t

(t

�

s

) + f
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�

s

) � f(t

�

s

)

�

�
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s
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�

s

) � C
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(t

j
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�

s

)

�

��

J
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+

�

J

xx
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�

s
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�

�
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s
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+ J
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� C
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(t
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�
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�
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�

s
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�J
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) � f(t

�
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�

�
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s
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) � C
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j

; t

�

s
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�

�

�

J

tt

+ J

T
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�

�

dt
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T
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j
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�

s

)

�

�

s

T

x

_s

+

�

f(t

+

s

)� f(t

�

s

)� J

x

f(t

�

s

)� J

t

�

1
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2

���

s

xt

+ s

xx

� f(t

�
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�

�
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s
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+ s
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(t

j
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�
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�

T
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� s

T

x

�

��

s

tt

+ s

T

tx

� f(t

�

s

)

�

�

dt

s

dx
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+ s

T
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�

s

) +
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�
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�
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+
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�
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+

�

J
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(t

j
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�

s

)

	

: (6.77)

F is simply

F = D

x;k

(t

j

; t

�

s

): (6.78)

Overall, this leads to the following expression for the se
ond derivative of the dynami
s

with respe
t to initial values in the presen
e of dis
ontinuities:

d

dx

k

(t

j

)
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x
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�

s

)

� C

x;k

(t

j

; t

�

s

) +

n

D

x

(t

+

s

; t

j+1

) �

�

�

f(t

�

s

) + J

t

+ J

x

f(t

�

s

)

�

�

�s

x

(t

�

s

)

T

_s(t

�

s

)

+ (I + J

x

)

�

� C

x;k

(t

j

; t

�

s

)

o

�

� U

x

� C

x

(t

j

; t

+

s

)

+ C

x

(t

+

s

; t

j+1

) �

��

�

f

t

(t

+

s

) + f

x

(t

+

s

) �

�

f(t

�

s

) + J

t

+ J

x

f(t

�

s

)

��

�

dt

s

dx

j;k

+ f

x

(t

+

s

) � (I + J

x

) � C

x;k

(t

j

; t

�

s

)�

�

f

t

(t

�

s

) + f

x

(t

�

s

) � f(t

�

s

)

�

�

dt

s

dx

j;k

+f

x

(t

�

s

) � C

x;k

(t

j

; t

�

s

)�

��

J

xt

+

�

J

xx

� f(t

�

s

)

	

�

�

dt

s

dx

j;k

+ J

xx

� C

x;k

(t

j

; t

�

s

)

�

� f(t

�

s

)

�J

x

��

f

t

(t

�

s

) + f

x

(t

�

s

) � f(t

�

s

)

�

�

dt

s

dx

j;k

+ f

x

(t

�

s

) � C

x;k

(t

j

; t

�

s

)

�

�

�

J

tt

+ J

T

tx

� f(t

�

s

)

�

�

dt

s

dx

j;k

+ J

T

xt

� C

x;k

(t

j

; t

�

s

)

�

�

s

T

x

_s

+

�

f(t

+

s

)� f(t

�

s

)� J

x

f(t

�

s

)� J

t

�

1

_s

2

���

s

xt

+ s

xx

� f(t

�

s

)

�

�

dt

s

dx

j;k

+ s

xx

� C

x;k

(t

j

; t

�

s

)

�

T

� _s

� s

T

x

�

��

s

tt

+ s

T

tx

� f(t

�

s

)

�

�

dt

s

dx

j;k

+ s

T

tx

� C

x;k

(t

j

; t

�

s

) +

��

s

xt

+ s

xx

� f(t

�

s

)

�

�

dt

s

dx

j;k

+ s

xx

� C

x;k

(t

j

; t

�

s

)

�

T

� f(t

�

s

)

+s

T

x

�

��

f

t

(t

�

s

) + f

x

(t

�

s

) � f(t

�

s

)

�

�

dt

s

dx

j;k

+ f

x

(t

�

s

) � C

x;k

(t

j

; t

�

s

)

���

+

�

J

xt

+

�

J

xx

� f(t

�
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+ C

x

(t

+

s

; t

j+1

) � U

x

�D

x;k

(t

j

; t

+

s

): (6.79)

This formula has not been implemented yet. In view of its 
omplexity it is very ques-

tionable if this approa
h will be relevant for the solution of pra
ti
al problems or if e.g.

external �nite di�eren
e s
hemes should be favored for se
ond order derivatives. The

same is true for the derivative with respe
t to parameters (6.97) derived in the following

se
tion.

Derivative with Respe
t to Parameters

The derivative of the monodromy matrix with respe
t to parameters is derivable by a

similar pro
edure. Its k-th 
omponent is

d

dp

k

(C

x

(t

j

; t

j+1

)) =

d

dp

k

�

dx

j+1

dx

j

�

=

d
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k

�

C

x

(t

+

s

; t
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)

�

| {z }

=:G

�U

x

� C

x

(t
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; t

�
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)

+C
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+
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; t
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) �

d
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k
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)

| {z }

=:H

�C

x

(t

j

; t

�

s

)

+C

x

(t

+

s

; t
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) � U

x

�

d

dp

k

�

C

x

(t

j

; t

�

s

)

�

| {z }

=:I

(6.80)

with the unknown terms G, H, and I.

The �rst term, G, is

G =

�

�t

s

�

C

x

(t

+

s

; t

j+1

)

�

�

dt

s

dp

k

+

�

�

�x

+

s

�

C

x

(t

+

s

; t

j+1

)

�

�

dx

+

s

dp

k

�

+

�

�p

k

�

C

x

(t

+

s

; t

j+1

)

�

: (6.81)

Thus, we must �rst 
ompute

dt

s

dp

k

and

dx

+

s

dp

k

.

In analogy to (6.47) { (6.49) we 
an derive

ds

dp

= s

t

(t

�

s

)

dt

s

dp

+ s

x

(t

�

s

) _x(t

�

s

)
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s
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+ s

x
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�

s

) �

dx(t

�

s

)
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j

+ s

p

(t

�

s

) = 0 (6.82)

�

s

t
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s

) + s

x
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s
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s

)

�
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+ s

x
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�

s
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p
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j

; t

�

s
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p
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�

s

) = 0 (6.83)
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s
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=
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�

s

)

�

�

s
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�

s

) � C

p

(t

j
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�

s
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p

(t

�

s

)

�

: (6.84)

Using equation (6.50), we have

dx

+

s
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k

= _x(t

�

s

)
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s
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k

+

�x(t

�

s

)

�p

k

+ J

t
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s
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k

+ J

x

�

_x(t

�

s

)

dt

s
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k

+

�x(t

�

s

)

�p

k

�

+ J

p;k
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=

�

_x(t
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s

) + J

t
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x
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s

)

�

�

�1
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)

�
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s

x
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�
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x
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�
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With this we �nd

G =

�

D

x
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+

s

; t
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+

s

)
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) + s
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For the se
ond term, H

H =

�
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+

s

)
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k

�
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�
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�
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�
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+
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we need the derivatives of f(t

�

s

), f(t

+

s

), J

x

, J

t

, s

x

, s

t

, and _s with respe
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=
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=
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�
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�
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�
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�
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�

s

) + J

t

+ J

x

_x(t

�
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(6.95)

The third term is again the most simple one:

I = D

p;k

(t

j

; t

�

s

): (6.96)

Colle
ting all this, we obtain for the derivative of the monodromy matrix with respe
t to

parameters in the presen
e of dis
ontinuities:
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6.7 Numeri
al Determination of Stability Margins

Having found a stable solution by stability optimization based on linear theory it is inter-

esting to ask how well this result 
aptures the stability behavior of the nonlinear system.

What is the range of perturbations that 
an be applied to the above stable solution?

There is no theory answering this question but we introdu
e a numeri
al 
riterion.

We study whi
h set of perturbations of initial values as well as of model parameters 
an

be 
oped with by the robot model and its pres
ribed 
ontrol pattern by applying some

perturbation and simulating the resulting behavior of the system. The full nonlinear

dynami
s of the robot are integrated 
he
king if it re
overs and persists in its gait or if it

stumbles. Two sele
tions have to be made:

� Type of perturbations:

a) Perturbing the initial values of state variables answers the question how small

the 'small perturbations' have to be that linear theory is talking about. We gen-

erally apply one-dimensional perturbations to the initial values of all positions

and velo
ities. But for those positions des
ribing an initial phase-separating

manifold, like a heelstrike manifold, it is often 
ustomary to apply 
oupled

perturbations that are 
onsistent with this manifold.

b) Even though linear stability theory does not talk about sensitivity with respe
t

to parameters it is interesting to know in what range of parameters gait is pos-

sible under the in
uen
e of the pres
ribed 
ontrols. We perturb one parameter

value at a time keeping the others �xed.

� Integration Interval:

The 
hoi
e of the integration interval is quite arbitrary. It has to be long enough

to allow unre
overable perturbations to show their e�e
t and not too long sin
e

numeri
al instabilities would predominate. We have 
hosen an integration interval

of ten physi
al steps of the robot. Although this 
hoi
e dire
tly in
uen
es the exa
t

result it does not not 
hange the order of magnitude of the stability margins.

For this purpose, an integrator 
apable to handle swit
hing fun
tions has to be used, e.g.

the powerful library ODESIM (see Win
kler [102℄, von S
hwerin & Win
kler [94℄).



Chapter 7

Open-loop Stable One-legged

Hopping Robot

The �rst robot we present in this thesis is a one-legged hopper moving in the verti
al

plane. The remarkable feature of this robot in 
ontrast to many of its real world relatives

(see se
tion 1.1.2) is that despite its 
ight phase, it neither needs sensors nor sophisti
ated


ontrollers for stabilization. With its single leg, a small foot and a relatively high 
enter

of mass, it has no stati
ally stable standing position.

The robot 
onsists of a toroidal trunk and a teles
opi
 leg 
oupled by an a
tuated hinge.

The two parts of the leg are 
onne
ted by an a
tuated spring-damper element. The foot

is �xed to the lower leg without arti
ulation. We have studied 
ir
ular as well as point

shaped feet. The robot 
an perform stable two-dimensional hopping motions in
luding a

non-sliding or rolling 
onta
t phase and a 
ight phase without any feedba
k 
ontrollers.

Figure 7.2 shows an animation of one 
y
le of motion of the hopping robot.

The equivalent "real" robot mat
hing this model has not been built yet. Our model is

an extension of the hopping robot of Ringrose [77℄ presented in se
tion 1.2 to whi
h we

have added the trunk with 
orresponding a
tuation that makes a periodi
 forward motion

possible. We also have studied the 'hopping in pla
e' motions of the original Ringrose

robot and refer to Mombaur et al. [65℄ for results. This simpler robot is not dis
ussed in

this thesis.

We use the example of the hopping robot to study the in
uen
e of di�erent stability

optimization 
riteria like the spe
tral radius and matrix norms. This is the �rst time

solutions for a one-legged hopping robot with point foot are presented. For the model

version with 
ir
ular feet we were able to further improve the stable solution given in

Mombaur et al. [63℄.

Following the 
lassi�
ation of se
tion 1.4, the hopping robot is holonomi
, but non-


onservative due to damper for
es and inelasti
 impa
ts. The latter property may promote

stability of the system.
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Figure 7.1: Parameters and 
on�guration variables of the hopping robot

7.1 Robot Model

A sket
h of the model and its parameters is given in �gure 7.1. Parameters are trunk

mass and inertia m

b

and �

b

, leg mass and inertia m

l

and �

l

, distan
e between 
enters

of mass of trunk and leg d, leg rest length l

0

, foot radius r, torsional spring and damper


onstants k

tors

and b

tors

, rest lo
ation of torsional spring ��, and translational spring and

damper 
onstants k and b. The foot is assumed to be massless. The point foot version is

just a spe
ial 
ase of the 
ir
ular foot with r = 0.

During the 
ight phase, the robot has four degrees of freedom. As state variables we


hoose the uniform set of 
oordinates

q = (x

b

; y

b

; �

b

; �

l

)

T

;

and the 
orresponding velo
ities, where x

b

and y

b

are two-dimensional position 
oordinates

of the trunk 
enter of mass, and �

b

and �

l

are the orientations of trunk and leg.

The 
oordinates of the leg 
enter of mass x

l

and y

l


an be eliminated using the distan
e

parameter d by

x

l

= x

b

+ d sin�

l

(7.1)

y

l

= y

b

� d 
os�

l

: (7.2)

The leg length l is �xed to l

0

+ u

0

during the major part of the 
ight phase (as the foot

is massless) and depends on the other 
oordinates during the 
onta
t phase as follows:

l =

y

b

� r


os�

l

+ r (7.3)
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Figure 7.2: Periodi
 motion of one-legged hopping robot animated with JAFV (Win
kler [102℄,

Win
kler & Huber [103℄)



104 Chapter 7. Open-loop Stable One-legged Hopping Robot

!

_

l =

_y

b


os�

l

+ (y

b

� r)

sin�

l


os

2

�

l

_

�

l

: (7.4)

The robot has two a
tuators:

1. u

0

{ series elasti
 a
tuator (SEA) in the prismati
 joint :

as des
ribed by Pratt et al. [73℄, this is an a
tuated spring-damper element with

spring 
onstant k and damping 
onstant b (see �gure 7.1). The 
ontrol u

0

� 0 a
-

tively 
hanges the spring's length whi
h has the same e�e
t as 
hanging the spring's

rest length in the opposite dire
tion:

�l =

�

y

b

� r


os�

l

+ r � u

0

�

� l

0

=

�

y

b

� r


os�

l

+ r

�

� (l

0

+ u

0

) (7.5)

The 
ontrol u

0

is only e�e
tive during the 
onta
t phase - due to the massless foot

it 
an be brought ba
k to zero position during 
ight without any e�e
t. u

0

is 0 at

tou
hdown and has to be > 0 at lifto� to 
ompensate for the energy loss in the

damper. Instantaneous 
ompressions and general 
ontrol histories 
an be modeled.

2. u

1

{ torque 
ontrol between trunk and leg (in parallel with a spring-damper-element

k

tors

, b

tors

, see �gure 7.1).

The one-legged hopping robot is the only robot treated in this thesis for whi
h it is

reasonable to give the equations of motion in expli
it form. They have been derived using

free-body diagrams with all auxiliary 
oordinates being eliminated.

The equations of motion during the 
ight phase are des
ribed by the following set of

ODEs:

0
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�
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os�
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0 0 �
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=
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� �

l
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(7.6)

where m is the total mass m = m

b

+m

l

and u

1

is the torque between trunk and leg.

During 
onta
t phase we have a superposition of the rolling motion due to the 
ir
ular

foot and the leg length variation in
uen
ed by the SEA spring-damper for
es. This leads

to a redu
tion from four to three DOFs during 
onta
t phase. The 
oupling is des
ribed

by the additional kinemati
 
onstraint in velo
ity spa
e

_x

b

+ (y

b

+ (y

b

� r) tan

2

�

l

)

_

�

l

+ tan�

l

_y

b

= 0: (7.7)
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A 
orresponding equation for the di�eren
es in position spa
e 
an be formulated.

The equations of motion for the 
onta
t phase be
ome
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�
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�
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with spring and damper for
es F

k

and F

d

F

k

= k (

y

b

� r


os�

l

+ r � l

0

� u

0

) (7.9)

F

d

= b (

_y

b


os �

l

+ (y

b

� r)

tan�

l


os�

l

_

�

l

) (7.10)

with u

0

being the SEA 
ontrol. The system of equations (7.8) is a DAE of index 1 derived

from an index 3 system by index redu
tion.

Phase 
hange from 
onta
t phase to 
ight phase (lifto�) takes pla
e, when the spring

length is equal to the (modi�ed) rest length:

s

liftoff

= l

0

+ u

0

�

y

b

� r


os�

l

� r = 0 (7.11)

and, at the same time, the trunk has a positive verti
al speed:




liftoff

= _y

b

> 0: (7.12)

Tou
hdown phase 
hange o

urs when the height of the prospe
tive 
onta
t point is equal

to zero

s

tou
hdown

= y

b

� (l

0

� r) 
os�

l

� r = 0: (7.13)

The verti
al speed of the 
onta
t point at tou
hdown must be negative:




tou
hdown

= _y

b

+ (l

0

� r) sin�

l

_

�

l

< 0: (7.14)

There may be a dis
ontinuity in the velo
ities at tou
hdown be
ause fri
tion is assumed

to be large enough to instantaneously set the velo
ity of the 
onta
t point equal to zero.

There are no jumps in the positions. The four velo
ities after the tou
hdown-dis
ontinuity

are determined by the following four 
onditions:
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� superposition of rolling motion and spring-damper a
tion:

_x


onta
t

= _x

b

+ (l

0

� r) 
os�

l

_

�
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+ _y

b

tan�
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+ (y
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l
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2

�

l

= 0 (7.15)

� 
onservation of angular momentum of trunk about 
onta
t point:

H

trunk;hip

= �

b

_

�

b

= 
onst: (7.16)

� 
onservation of angular momentum of full robot about prospe
tive 
onta
t point
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with

x




= x

b

+ (l

0

� r) sin�

l

(7.18)

y




= y

b

� (l

0

� r) 
os�

l

(7.19)

� 
onservation of translational momentum in dire
tion of leg (
onsidering spring-

damper-for
e)

m( _x

b

sin�

l

� _y

b


os �

l

)� F

kd

= 
onst: (7.20)

There is no dis
ontinuity at lifto�.

The variable x

b

des
ribes the forward motion of the robot and is non-periodi
. All other

state variables have to satisfy periodi
ity 
onstraints
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where the period T is to be determined by the optimization.

7.2 Results of Stability Optimization

We present di�erent stable solutions for one-legged hopping robots with 
ir
ular and

point foot. For both versions model parameters and traje
tories with ex
ellent stability

properties were found. From a variety of 
ases 
omputed we present the most important

ones in this se
tion.
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We have applied the spe
tral radius as well as matrix norms for one and multiple steps

as stability optimization 
riteria in the outer loop. A proje
tion of the full monodromy

matrix to the subspa
e of periodi
 variables had to be performed before. Ten out of twelve

model parameters have been varied whereas leg length l

0

and torus mass m

b

have been

kept �xed for s
aling reasons. Physi
ally reasonable bounds have been imposed on all

parameters. Spe
i�
ally stati
 instability of the system was thus maintained.

The obje
tive fun
tion of Lagrange type applied in the inner loop was a sum of (weighted)


ontrols squared. We have used a pie
ewise 
onstant 
ontrol dis
retization for both a
tu-

ators. Control and multiple shooting grids ea
h 
onsist of 15 intervals per phase. State

and 
ontrol variables as well as phase times have to satisfy box 
onstraints. Continuity

of 
ontrols at dynami
 dis
ontinuity points has been guaranteed by equality 
onstraints.

Besides the periodi
ity 
onstraints and swit
hing fun
tions des
ribed in se
tion 7.1, we

have imposed box 
onstraints on all 
ontrols and states, a lower bound on the trunk for-

ward speed at all points, and bounds on the leg in
lination angle at tou
hdown and lifto�

instants.

7.2.1 Point Foot

This is the �rst publi
ation of results for a one-legged hopping robot with point foot that

does not need feedba
k 
ontrollers but relies on open-loop stabilization instead.

Result of Eigenvalue Optimization

Using eigenvalue optimization we were able to bring the spe
tral radius down as far as

0.1292 for a one-legged hopping robot with point foot.

The model parameters of this solution are (in ISO units) m

b

= 2:0, �

b

= 0:3503, m

l

=

0:5033, �

l

= 0:2391, d = 0:3663, l

0

= 0:5, r = 0, k

tors

= 25:902, ��

l

= 0:2, b

tors

= 3:457,

k = 589:1, and b = 61:79.

The initial values of the 
orresponding traje
tory are

x

b

(0) = 0

y

b

(0) = 0:490

�

b

(0) = �0:1447

�

l

(0) = 0:20

_x

b

(0) = 0:3326

_y

b

(0) = 0:0011

_

�

b

(0) = �2:8399

_

�

l

(0) = �0:6524

Figure 7.3 shows the 
ontrol and state variable histories for this most stable solution.

Bounds on all variables are represented as lines. The di�erent phases { 1. 
onta
t phase,

2. 
ight phase, 3. tou
hdown transition phase of duration zero with velo
ity dis
ontinuities

{ 
an be dis
erned in �gure 7.3. Obviously all 
ontrol variables and all state variables

ex
ept x

b

are periodi
. If x

b

(0) is �xed to zero, x

b

(T ) gives the step length of one hopping
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y
le, in this 
ase 0:536m. The 
y
le time of this solution is T = 0:471s with phase times

T


onta
t

= 0:305s and T

flight

= 0:166s.

Due to the non-periodi
ity of x

b

, only seven out of eight eigenvalues are relevant for

stability. This last eigenvalue, whi
h is always one be
ause of the system's indi�eren
e

towards the initial value x

b

(0), is eliminated by proje
tion. The seven relevant eigenvalues

are

�

1;2

= (0:1088;�0:0696)

�

3;4

= (�0:0888;�0:0913)

�

5

= �0:0722

�

6;7

= 0

and by magnitude

j�

1;2

j = 0:1292

j�

3;4

j = 0:1274

j�

5

j = 0:072172

j�

6;7

j = 0:

The two eigenvalues of zero magnitude are 
aused by the redu
tion from four to three

DOFs during 
onta
t phase and the resulting 
oupling of perturbations in velo
ity as well

as position spa
e.

For this redu
ed monodromy matrix we have the following matrix norms

�

max

= 12:1911

jjCjj

1

= 16:7044

jjCjj

1

= 23:1978:

Perturbations therefore don't 
ontra
t in any of these norms over one step. But as a

study of matrix powers shows (�gure 7.4), they all do 
ontra
t over 
y
les of four and

more steps.

With the spe
tral radius being far below one we have proven stability a

ording to linear

theory. But its size does not say anything about the size of perturbations from whi
h

the system 
an re
over. We determine these stability margins a

ording to the pro
edure

des
ribed in se
tion 6.7. The robot 
an re
over from substantial perturbations of its initial

values under the invariant in
uen
e of its periodi
 a
tuations:

�

b

+ 133% -63%

y

b

�

l

�

�3%

+57%

+0:6%

�17%

_x

b

+39% -90%

_y

b

+5000% -100%

_

�

b

+23% -42%

_

�

l

+27% -46%
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Figure 7.3: State and 
ontrol variable traje
tories of most stable solution for Hopper with point

foot
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Figure 7.4: Spe
tral radius versus matrix norms for di�erent matrix powers

For the non-periodi
 variable x

b

of 
ourse arbitrary initial values 
an be 
hosen. As

indi
ated by the bra
e, y

b

and �

l

are perturbed together su
h that the initial values

remain 
onsistent with the tou
hdown manifold. Figure 7.5 illustrates the di�eren
es

between the original periodi
 traje
tory and one for whi
h the initial value of _x

b

has been

perturbed by �90%. Obviously the robot stays syn
hronized with its ex
iting frequen
y.

The perturbed traje
tory is 
hara
terized by shorter steplengths, i.e. it stays behind the

base solution in the non-periodi
 variable x

b

.

The robot also persists in its hopping motion under the following perturbations of model

parameter values:

�

b

+5% -1%

m

l

+5% -20%

�

l

+4% -23%

d +11% -37&

k

tors

+3% -9%

�� +96% -45%

b

tors

+1% -5%

k +1% -0.4%

b +0.5% -2%

Result of Singular Value Optimization

We were interested in �nding out

� if a solution with maximum singular value smaller than one existed for the one-

legged hopping robot
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) in all position (left) and velo
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� if singular value optimization 
ould help to �nd stable solutions probably even better

than the above solution.

The answer to both questions is no. Singular value optimization of the monodromy matrix

produ
ed a solution 
hara
terized by a maximum singular value of

�

max

(C) = 3:511;

smaller than for the previous solution, but by far larger than one. The maximum eigen-

value of the resulting matrix is, by magnitude

j�

max

(C)j = 1:383;

and the system is therefore unstable. Figure 7.6 illustrates the development of the spe
tral

radius during singular value optimization. While the maximum singular value is de
reased,

the spe
tral radius even deteriorates during optimization.
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Figure 7.6: Development of spe
tral radius during optimization of maximum singular value of

monodromy matrix

The model parameters of this solution are m

b

= 2:0, �

b

= 0:995, m

l

= 0:9618, �

l

= 0:3,

d = 0:1752, l

0

= 0:5, r = 0, k

tors

= 17:84, ��

l

= 0:2, b

tors

= 5:649, k = 287:09, and

b = 39:74. It has the initial values

x

T

0

= (�0:0386; 0:490;�0:1447; 0:2; 0:2;�0:0835;�1:083;�0:359)

and a period of T = 0:504s with phase durations T


onta
t

= 0:326s and T

flight

= 0:178s.

We 
on
lude that the maximum singular value of the monodromy matrix is not a favorable

optimization 
riterion for the present 
ase.

Result of Singular Value Optimization of Matrix Power

In se
tion 5.3 we have dis
ussed the use of a norm of a power of the matrix instead of

the matrix itself as stability optimization 
riterion. Here we have 
hosen to apply the

singular value of the fourth matrix power.
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It serves the purpose mu
h better than the singular value of the matrix itself. The

optimization resulted in a singular value of

�

max

(C

4

) = 0:0756

and maximum eigenvalues of

j�

max

(C

4

)j = 0:00116 and

j�

max

(C)j = 0:1848:

The solution is therefore stable. Figure 7.7 shows the 
ourse of eigenvalues of the mon-

odromy matrix and its fourth power during singular value optimization. The present
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Figure 7.7: Development of spe
tral radius during optimization of maximum singular value of

fourth matrix power

optimization 
riterion is obviously su

essful in de
reasing the spe
tral radius. It even

produ
es an absolute value not very far above the one obtained by eigenvalue optimization.

The solution under dis
ussion is 
hara
terized by model parameters m

b

= 2:0, �

b

=

0:3510, m

l

= 0:5031, �

l

= 0:2395, d = 0:3666, l

0

= 0:5, r = 0, k

tors

= 25:90, ��

l

= 0:2,

b

tors

= 3:456, k = 588:86, and b = 60:847, initial values

x

T

0

= (�0:0385; 0:490;�0:1447; 0:2005; 0:3299;�0:00048;�2:849;�0:6463)

and a period of T = 0:4718s with phase times T


onta
t

= 0:3056s and T

flight

= 0:1662s.

7.2.2 Cir
ular Foot

Open-loop 
ontrolled hopping robots with 
ir
ular foot were dis
overed before but they

generally rely on a large foot radius for stabilization (Ringrose [77℄, Wei et al. [99℄). We

enfor
e a 
enter of mass position above the 
enters of foot 
urvature (l

0

�d > r) and thus

stati
 instability of the robot during optimization.

Stable results for a hopping robot with a small 
ir
ular foot have been published in

Mombaur et al. [63℄. The solutions presented here are 
hara
terized by even better

maximum eigenvalues.



114 Chapter 7. Open-loop Stable One-legged Hopping Robot

Result of Eigenvalue Optimization

In order to guarantee a 
learly 
ir
ular foot shape, we have restri
ted our sear
h to

r > 0:1m. The most stable solution found under this 
ondition has a spe
tral radius of

0.2872.

It is quite similar to the result of eigenvalue optimization for a robot with point foot.

The model parameter values of the solution are m

b

= 2:0, �

b

= 0:2385, m

l

= 0:5078,

�

l

= 0:2468, d = 0:3, l

0

= 0:5, r = 0:1021, k

tors

= 25:492, ��

l

= �0:1259, b

tors

= 2:443,

k = 555:30, and b = 58:178.

Also the 
ontrol variable histories and traje
tories as shown in �gure 7.8 are only slightly

di�erent from the point foot solution The 
orresponding 
y
le time is T = 0:478s with

T


onta
t

= 0:301s and T

flight

= 0:177s and the initial values

x

T

0

= (�0:0385; 0:4921;�0:1447; 0:2; 0:6370; 0:0547;�1:307;�1:597)

It is traveling faster in x

b

-dire
tion and has a larger step length of 0:6032m.

The related monodromy matrix has the following eigenvalues:

�

1;2

= (�0:0224;�0:2761)

�

3

= 0:2872

�

4

= 0:2710

�

5

= �0:0276

�

6;7

= 0

j�

1;2

j = 0:2770

j�

3

j = 0:2872

j�

4

j = 0:2710

j�

5

j = 0:0276

j�

6;7

j = 0:

Again, the matrix norms des
ribing the propagation of perturbations over one step are

all larger than one,

�

max

= 17:869

jjCjj

1

= 24:466

jjCjj

1

= 27:063:

but if plotted as fun
tions of the matrix power, the norms are 
ontra
tive for exponents

greater or equal to �ve (�gure 7.9).

The region of stability in whi
h the robot 
an re
over and maintain a gait without falling

down is des
ribed by the stability margins

�

b

+135% -245%

y

b

�

l

�

�0:48%

+14%

+0:75%

�25%

_x

b

+21% -11%

_y

b

+130% -99%

_

�

b

+92% -57%

_

�

l

+15% -14%.
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Figure 7.8: State and 
ontrol variable histories of most stable solution for Hopper with 
ir
ular

foot
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Figure 7.9: Spe
tral radius versus matrix norms for di�erent matrix powers

In �gure 7.10 we 
ompare the traje
tory starting from a perturbed value of �

b

(+135%)

with the 
orresponding unperturbed solution.

The following table �nally lists the maximum possible perturbations of model parameters:

�

b

+0.3% -1%

m

l

+4% -1%

�

l

+2% -1%

d +12% -2%

r +14% -0.3%

k

tors

+1% -0.3%

�� +280% -160%

b

tors

+1% -0.3%

k +0.2% -0.8%

b +3% -1%

Result of 1-norm Optimization

Again we aimed at �nding a solution with a 
ontra
ting norm of the monodromy matrix,

this time using the in�nity norm as optimization 
riterion. But the e�e
t is the same as

en
ountered for singular value optimization of the point foot model: The minimum value

found is

jjCjj

1

= 3:744;

signi�
antly smaller than for the previous solution, but not smaller than one as desired.

The 
orresponding maximum eigenvalue has a magnitude of

j�

max

(C)j = 1:627 > 1
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Figure 7.10: Most stable periodi
 solution for 
ir
ular foot hopper with and without perturba-

tion (in �

b

) in all position (left) and velo
ity (right) variables
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The solution is thus unstable and not of pra
ti
al relevan
e. As depi
ted in �gure 7.11,

the spe
tral radius is growing, while the in�nty norm de
reases.
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Figure 7.11: Development of eigenvalue during optimization of in�nity norm of monodromy

matrix

The solution is 
hara
terized by parameter values of m

b

= 2:0, �

b

= 0:2404, m

l

= 1:495,

�

l

= 0:2880, d = 0:1390, l

0

= 0:5, r = 0:1270, k

tors

= 25:39, ��

l

= 0:0418, b

tors

= 2:819,

k = 453:79, and b = 64:67, a traje
tory starting at

x

T

0

= (�0:0385; 0:4926;�0:1447; 0:2; 0:2545;�0:0469;�2:832;�0:6436)

and phase times T


onta
t

= 0:3451s and T

flight

= 0:1869s, leading to a period of T = 0:532s.

Result of 1-norm Optimization of Matrix Power

Using the in�nity norm of a power of the monodromy matrix instead (here the fourth

power), we found a stable solution. The optimal value is

jC

4

j

1

= 0:3306;

i.e. measured in the 1-norm, perturbations de
ay to about a third of their original size

over a 
y
le of four steps.

The 
orresponding maximum eigenvalues are

j�

max

(C

4

)j = 0:0161 and

j�

max

(C)j = 0:3560


hara
terizing a stable solution. This 
on�rms the observation made in se
tion 7.2.2,

that the norm of a matrix power should be preferred as optimization 
riterion over a

norm of the monodromy matrix itself. The solution has similar properties as the result

of eigenvalue optimization and only a slightly larger spe
tral radius.
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The model parameters of this solution are m

b

= 2:0, �

b

= 0:2463, m

l

= 0:5177, �

l

=

0:2405, d = 0:3, l

0

= 0:5, r = 0:1022, k

tors

= 25:498, ��

l

= �0:0913, b

tors

= 2:387,

k = 560:61, and b = 58:437. Its traje
tory has the initial values

x

T

0

= (�0:0385; 0:4909;�0:1447; 0:2146; 0:6276; 0:0617;�1:4423;�1:574)

and a 
y
le time of T = 0:481s with phase times T


onta
t

= 0:3038s and T

flight

= 0:1772s.

7.3 Summary

We summarize the most important results of this 
hapter.

� New open-loop stable traje
tories for one-legged hopping robots with point feet and


ir
ular feet have been presented. To our knowledge this is the �rst report about

a one-legged point foot robot that is stable without feedba
k 
ontrollers. Hopping

robots with 
ir
ular feet did exist before, but we redu
ed the foot radius thus not

allowing for trivial stabilizing e�e
ts.

� We stress the fa
t that a 
ir
ular foot is not ne
essary for open-loop stability of

one-legged hopping robots.

� All our robots intentionally have no stati
ally stable standing 
on�gurations as also

for the version with 
ir
ular feet the 
enters of mass lie above the 
enters of foot


urvature (l

0

� d > r).

� The solutions presented exhibit ex
ellent linear and nonlinear stability properties.

They are not only 
hara
terized by very small spe
tral radii of their monodromy

matri
es but they also 
an sustain substantial perturbations of the initial values and

model parameters.

� No solution has been found for whi
h an indu
ed matrix norm of the monodromy

matrix over one step is smaller than one. But we report several solutions for whi
h

perturbations do 
ontra
t in the 1-, 2-, or 1-norm over a 
y
le of several steps.

� From the previous two items we 
an 
on
lude that the existen
e of a 
ontra
tive

norm of the monodromy matrix is not a ne
essary 
ondition for ex
ellent stability

of a solution in the nonlinear sense.

� The usage of a norm of the monodromy matrix as optimization 
riterion had no

favorable in
uen
e on the eigenvalues in the 
ases tested: the spe
tral radius very

often deteriorated during the 
ourse of optimization and was larger than one at the


onvergen
e point.

� Using the norm of a power of the monodromy matrix proved to be a mu
h better


hoi
e. Both the 1-norm and the maximum singular value of a power served to

bring the eigenvalue down below one and led to a solution that was very 
lose to

the solution found with eigenvalue optimization.





Chapter 8

Open-loop Stable Human-like

A
tuated Walking Robot

In this 
hapter we study a two-legged kneed walking robot with point feet. The robot


an be 
onsidered as a simpli�ed model of human walking in the saggital plane. It is

powered by periodi
 torque a
tuations at hip and knee that are not 
hanged by feedba
k

interferen
e. Nevertheless the robot is 
apable of naturally re
overing from perturbations.

We believe that our robot is the �rst demonstration of a human-like a
tuated open-loop

stable gait.

The robot 
onsists of four bodies { two symmetri
 legs with a thigh and a shank ea
h. We

have not added a trunk as already this simpler me
hanism exhibits a remarkably human-

like gait (see the animation sequen
e 8.2). The 
ompletion of the model by a trunk is an

easy task but would not provide any further insights with respe
t to the obje
tive of this

thesis whi
h is to �nd open-loop stable robots.

Inelasti
 ground 
ollisions 
ause the system to be non-
onservative. The motion is pie
e-

wise holonomi
 but overall non-holonomi
. A

ording to se
tion 1.4 both properties 
an

help to in
rease stability of the robot.

In this thesis we extend the results re
ently published in Mombaur et al. [64℄. We study

the e�e
ts of di�erent obje
tive fun
tions for stability optimization and give further stable

solutions.

There is an equivalent passive-dynami
 version of this robot whi
h has no a
tuators but

walks on an in
lined slope instead. It is similar to the passive dynami
 walkers of M
Geer

and the Ruina lab presented in se
tion 1.3 ex
ept that it doesn't have 
ir
ular feet. We

have studied this passive robot earlier and published the results in Mombaur et al. [62℄.

They are used here for 
omparison with the results of the a
tuated robot.
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Figure 8.1: Parameters and 
on�guration variables of passive (a) and a
tive (b) kneed walker

8.1 Robot Model

For the sake of 
ompleteness, we derive the model equations for both the a
tuated and the

passive walking robot. Figure 8.1 illustrates model parameters and geometri
 variables

for both versions. Seven parameters are used for the a
tuated model: masses m

i

, lengths

l

T

, and 
enter of mass lo
ations 


i

, w

i

of thigh and shank (i = T; S, w

T

= 0). For the

passive version, the slope angle � is an additional parameter. The moments of inertia of

thigh and shank 
an be 
omputed from these quantities:

�

i

=

1

6

m

i

(l

2

i

+ 2


2

i

� 2l

i




i

): (8.1)

We assume that ground 
onta
t o

urs without sliding and and that there is no double-

support phase, i. e. the se
ond leg instantaneously leaves the ground after heelstrike.

This is a very 
ommon assumption for the simulation of walking motions (
ompare e.g.

Channon et al. [14℄, M
Geer [52℄).

We model one step - and not a full physi
al 
y
le 
onsisting of two steps - be
ause we

are only interested in symmetri
 gaits. The observed 
y
le starts and ends right after

heelstrike. The stan
e leg is assumed to be straight all the time, whereas the swing leg

is bent in the �rst phase and straight in the se
ond phase after kneestrike, su
h that

the robot has three or two degrees of freedom, respe
tively. For both phases, we use the

uniform set of optimization 
oordinates q = (�

1

; �

2

; �

3

)

T

(angles of swing leg thigh and

shank and of total stan
e leg { as �

4

� �

3

) and the 
orresponding rates _q = (

_

�

1

;

_

�

2

;

_

�

3

)

T

for all phases. They are minimal 
oordinates for the �rst motion phase and redundant


oordinates for the se
ond phase. Note again that due to the overall non-holonomy of the

gait, this set of 
oordinates would not be suÆ
ient to des
ribe a multi-step motion.

The equations of motion have been derived using free-body-diagrams (se
tion 2.2.2). In
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Figure 8.2: Motion of bipedal walking robot
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this 
ontext, the position variables of all 
enters of mass r

i

and of the hip r

H

as well as

�

4

have been used as auxiliary 
oordinates. Size and 
omplexity of the system forbids to

expli
itely solve the system for the optimization 
oordinates. Instead the following set of

23/24 equations is solved numeri
ally in ea
h step:

a) Newton's laws of motion in translational and rotational dire
tion for individual

bodies:

m

T

�r

x;1

= F

2x

� F

1x
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with u

2

� 0. F

jx

and F

jy

, (j = 1; 2; 3) are 
onstraint for
es at hip joint, swing leg

knee and stan
e leg knee and B

x

and B

y

ground rea
tion for
es. For the passive

version, u

0

� u

1

� 0. For the a
tuated version, � = 0, and u

1

� 0 during the se
ond

phase.

b) Kinemati
 equations:

�r

x;1

= �r

x;H

+ 


T

(
os�

1

�

�

1

� sin�

1

_

�

2

1

) (8.14)

�r
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= �r
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T

(sin�

1

�

�
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os�
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_

�

2

1

) (8.15)
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(

�

�

2

�

�

�

1

) (8.25)

The last equation is only valid during the se
ond phase.

Kneestrike and heelstrike are modeled as perfe
tly inelasti
 impa
ts whi
h result in ve-

lo
ity dis
ontinuities and energy dissipation.

Kneestrike o

urs when the relative angle between thigh and shank is zero:

s

kneestrike

(x) = �

1

� �

2

= 0: (8.26)

Additionally, the rate of the shank needs to be larger than that of the thigh in order to


ause impa
t:




kneestrike

(x) =

_

�

1

�

_

�

2

> 0: (8.27)

With the assumption that ex
iting torques for the a
tuated robot version are 
ontinuous

at kneestrike, velo
ity jumps for both model versions are uniquely determined by the


onditions

� 
onservation of angular momentum of swing leg about hip point H

H

swing;H

�M

Hip

=

2

X

i=1

�

r

H;i

�m _r

i

+�

i;z

_

�

i

�

= 
onst: (8.28)

� 
onservation of angular momentum of robot about stan
e point S

H

robot;S

=

4

X

i=1

�

r

S;i

�m _r

i

+�

i;z

_

�

i

�

= 
onst: (8.29)
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� equal angular velo
ities of thigh and shank of swing leg after the impa
t:

_

�

1

=

_

�

2

: (8.30)

For non-
ontinuous torques, the hip torque di�eren
e would have to be in
luded in the

�rst balan
e.

Heelstrike takes pla
e when the height of the swing leg heel approa
hes zero:

s

heelstrike

(x; p) = (l

T

+ l

S

) 
os�

3

� l

T


os�

1

� l

S


os�

2

: (8.31)

The verti
al velo
ity of the heel at this point has to be negative




heelstrike

(x; p) = �(l

T
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) sin�
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_
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3
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2
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�

2

< 0 (8.32)

The heelstrike transition phase also in
ludes a shifting of legs. The swing leg be
omes the

stan
e leg and vi
e versa. whi
h 
auses the 
hange of indi
es in the equations below.

At heelstrike, the assumptions of no impulse on the former stan
e leg when leaving the

ground but only on the former swing leg when hitting the ground (see se
tion 2.1.3) and

of 
ontinuous torques lead to the following set of 
onditions: Conservation of angular

momentum

� of whole robot about new 
onta
t point D

H

robot;D

=

4

X

i=1

�

r

D;i

�m _r

i

+�

i;z

_

�

i

�

= 
onst: (8.33)
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e leg about hip point H
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� and of former stan
e shaft about knee
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must be guaranteed. Again, for non-
ontinuous torques, values before and after 
ollision

would have to be taken into a

ount for the last two balan
e equations.
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The in
lusion of the leg shift in the transition phase allows us to apply periodi
ity 
on-

straints to all positions and velo
ities after one step of time T (to be determined):
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(0) (8.36)

8.2 Results of Stability Optimization

In this se
tion we present our key optimization results for the kneed walking robot. Several

performan
e 
riteria have been evaluated: the spe
tral radius of the monodromy matrix

as well as indu
ed norms of this matrix and its powers. All seven model parameters are

varied in the outer stability optimization loop. We also have studied the size of stable

regions in the neighborhood of the solutions found. We 
ompare the results of nonlinear

stability analysis with the 
orresponding passive solutions.

In the inner loop optimal 
ontrol problem we have again minimized a sum of weighted

torques squared. They have been dis
retized as pie
ewise 
onstant fun
tions on a grid

with ten intervals per phase. The same grid was used for multiple shooting. Knee 
exion

during the �rst phase, 
learan
e of the swing foot during the full step and a minimum leg

in
lination at the initial point have been enfor
ed by inequality 
onstraints at the respe
-

tive multiple shooting nodes. Box 
onstraints have been imposed on state and 
ontrol

variables and phase times. Periodi
ity and swit
hing 
onditions have been formulated as


oupled and de
oupled equality 
onstraints.

Result of eigenvalue optimization

The most stable solution for the a
tuated kneed walking robot found by eigenvalue opti-

mization has a spe
tral radius of 0.5667. The solution was re
ently reported in Mombaur

et al. [64℄. We give further details in this se
tion.

Figure 8.3a shows the traje
tory des
ribing one step with its two phases of motion. Dis-


ontinuities o

ur kneestrike and heelstrike in the middle and at the end respe
tively.

Sin
e the �nal dis
ontinuity also in
ludes a leg shift, not only the velo
ities but also the

position variables are dis
ontinuous.

The 
orresponding a
tuator torques are shown in �gure 8.3b. Note the 
ontinuity of


ontrols at the dis
ontinuies of the state variables.

The initial values of this most stable periodi
 traje
tory are
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Figure 8.3: Traje
tories and 
ontrol variable histories of most stable solution for a
tuated kneed

walker
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�

1

(t

0

) = �0:3

�

2

(t

0

) = �0:3

�

3

(t

0

) = 0:3

_

�

1

(t

0

) = 0:8385

_

�

2

(t

0

) = �4:5056

_

�

3

(t

0

) = �1:5686:

and its period is T = 0:7832s with phase times T

1

= 0:4905s and T

2

= 0:2926s.

The solution was obtained for a robot 
on�guration with parameters values l

T

= 0:2627,

l

S

= 0:1685, m

T

= 1:2759, m

S

= 0:6575, w

S

= 0:0402, 


T

= 0:0111, and 


S

= 0:2259.

The robot has no variable des
ribing the dire
tion of travel but its step length 
an be


omputed from angular 
on�gurations and leg segments length: �

step

= 0:127m.

Stability 
omputations resulted in the eigenvalues

�

1;2

= (0:3091;�0:475)

�

3

= �0:4271

�

4

= �0:0210

�

5;6

= 0:0

j�

1;2

j = 0:5667

j�

3

j = 0:4271

j�

4

j = 0:0210

j�

5;6

j = 0:0:

The maximum eigenvalue is a 
onjugate 
omplex 
ouple, and its absolute value is smaller

than one. The two eigenvalues of zero 
ome from the fa
t that the degrees of freedom of

the robot are redu
ed from three to two after kneestrike (i.e. from six to four independent

dire
tions in state spa
e). This leads to a 
oupling of perturbations during this se
ond

phase whi
h is represented by a rank redu
tion by two of the monodromy matrix, and

thus by two zero eigenvalues.

Even though the spe
tral radius is smaller than one, the indu
ed matrix norms of this

solution are huge { (
ompared e.g. to the norms 
omputed for the hopping robot in the

previous 
hapter):

�

max

= 711:556

jjCjj

1

= 824:279

jjCjj

1

= 1067:08:

As shown in �gure 8.4 they de
rease with in
reasing matrix powers. For a 
y
le of 13

steps and more, the 1-, 2-, and 1-norms are smaller than one.

Performing one-dimensional perturbations of ea
h velo
ity variable and 
oupled pertur-

bations of the positions whi
h are 
onsistent with the heelstrike manifold produ
es the

following ranges:
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Figure 8.4: Spe
tral radius versus matrix norms for di�erent matrix powers
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_

�
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_

�

3

+0.01% -0.02%.

This range of attra
ting initial 
onditions 
ould most likely be substantially in
reased by


hanging from point feet to e.g. 
ir
ular feet. Further in
rease would probably result from

making the foot a separate body and in
luding a pres
ribed periodi
 torque at the ankle.

The maximum model parameter perturbations from whi
h the system 
an still re
over

are:

l

T

+0.03% -0.01%

l

S

+0.03% -0.1%

m

T

+0.08% -0.02%

m

S

+0.01% -0.05%

w

S

+0.04% -0.1%




T

+0.2% -0.8%




S

+0.4% -0.1%.

They are quite small but 
an be 
onsidered as being above the manufa
turing toleran
e.

We suspe
t that there is a 
orrelation between the small stability margins and the large

matrix norms do
umented above. Additionally there are nonlinear e�e
ts produ
ing in-

stability, like premature phase 
hanges 
aused e.g. by foot s
uÆng in the middle of the

step, that are 
aptured neither in the eigenvalues nor in the norms. Compare �gure 8.5 for

swit
hing fun
tions and note the lo
al minimum with small fun
tion value of the heelstrike

fun
tion.
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Figure 8.5: Swit
hing fun
tions for kneestrike (left) and heelstrike (right)
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Figure 8.6: Region of stable periodi
 solutions in 2-dimensional parameter spa
e (leg segment

lengths l

T

and l

S

) in the neighborhood of most stable solution

The question we have answered so far is for whi
h range of perturbed initial states and

parameters the robot re
overs under the in
uen
e of the original a
tuation and returns

to his standard gait.

Another way to look at the question of stable areas is to 
he
k for whi
h parameter values

in the neighborhood of the solution other solutions of the periodi
 optimal 
ontrol problem

exist and are still stable. Those solutions have generally di�erent a
tuator patterns and

initial values. As it is impossible to visualize a seven-dimensional parameter spa
e we

present two-dimensional 
uts varying only two parameters. We show a variation of masses

of thigh and shank in �gure 8.6, and of the respe
tive lengths in �gure 8.7, ea
h time

keeping the other �ve �xed. Every point in these plots represents an individual solution

of the optimal 
ontrol problem with joint torques minimized.
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e (leg segment

masses m

T

and m

S

) in the neighborhood of most stable solution

Comparison with equivalant passive-dynami
 walker

We 
ompare this most stable result for the a
tuated walking robot with the solution for

the 
orresponding passive robot presented in Mombaur et al [62℄.

Its monodromy matrix has a spe
tral radius of 
omparable size:

j�

max

j = 0:6144;

but its nonlinear stability properties are mu
h better.

It 
an sustain mu
h more substantial perturbations of the initial values of velo
ities and

positions than the a
tuated robot:

_

�

1

+ 315% - 100%

_

�

2

+ 48% - 42%

_

�

3

+ 9% - 3%

�

1

�

2

�

3

9

=

;

+ 4% - 5%

Figure 8.8 shows the motion of the robot when applying the largest possible perturbation

to �

1

(+ 315%) in 
omparison with the unperturbed motion. The self-stabilizing rea
tion

of the system in
ludes a very pronoun
ed time shift. At the end the perturbed solution

pre
edes the referen
e solution by about half a 
y
le. This rea
tion would be impossible

for an a
tuated robot. Additionally, the perturbations provoke a slow os
illation about

the base traje
tory.
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Figure 8.8: Orbital shift of perturbed traje
tory versus base traje
tory for 
orresponding

passive-dynami
 robot (taken from Mombaur et al. [62℄)
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The indu
ed matrix norms of the proje
ted monodromy matrix are

�

max

= 4:902

jjCjj

1

= 6:172

jjCjj

1

= 8:099;

mu
h smaller than for the a
tuated solution.

For a 
omplete des
ription of this solution, we also give parameter values l

T

= 0:4017,

l

S

= 0:394, m

T

= 2:276, m

S

= 0:6965, w

S

= 0:00752, 


T

= 0:1382, 


S

= 0:2547, and

� = 0:096, initial point

x

T

0

= (�0:3577;�0:3577; 0:3577; 0:2428;�2:7596;�1:3477)

and a period of T = 0:7084s with phase times T

1

= 0:4317s and T

2

= 0:2767s.

Result of singular value optimization

We have again studied the e�e
t of singular value optimization of the monodromy matrix

on both the maximum singular value and the maximum eigenvalue.

The result obtained from these 
omputations is

�

max

(C) = 67:758

This is a signi�
ant redu
tion 
ompared to the previous result but still a large fa
tor of

ampli�
ation for perturbations over this step.

The 
orresponding maximum eigenvalue is

j�

max

(C)j = 7:6325:

The solution therefore is highly unstable even judged by linear theory. Figure 8.9 illus-

trates the development of the spe
tral radius during singular value optimization with an

initial deterioration and a slight improvement at the end.

The solution is 
hara
terized by the set of model parameters l

T

= 0:40, l

S

= 0:40, m

T

=

0:5048, m

S

= 0:8963, w

S

= 0:0966, 


T

= 0:5972, and 


S

= 0:010 and the initial values

x

T

0

= (�0:3;�0:3; 0:3;�0:3778;�4:0958;�1:596):

The period of a step is T = 0:5814s with T

1

= 0:3314s and T

2

= 0:25s for the individual

phases.

Result of Singular Value Optimization of Matrix Power

For the example of the hopping robot dis
ussed previously, stable solutions were found

by minimizing a norm of a power of the monodromy matrix. For the a
tuated kneed
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Figure 8.9: Development of spe
tral radius during optimization of maximum singular value of

monodromy matrix

walking robot we were again su

essful with the same approa
h but had to use higher

matrix powers than before.

Choosing the maximum singular value of the eighth matrix power we found an optimum

of

�

max

(C

8

) = 2:179;

and a 
orresponding spe
tral radius of

�

max

(C) = 0:906:

The development of the maximum eigenvalue during optimization of the maximum singu-

lar value of the eighth matrix power is shown in �gure 8.11. The solution is not related to

the solution found with eigenvalue optimization as it is positioned in a very distin
t region

in parameter spa
e: l

T

= 0:1538, l

S

= 0:3966, m

T

= 0:6785, m

S

= 1:841, w

S

= 0:0602,




T

= 0:1629, and 


S

= 0:0326. The periodi
 traje
tory has initial values of

x

T

0

= (�0:3466;�0:3466; 0:3466; 1:7952;�3:2271;�1:4128)

and phase times of T

1

= 0:4234s and T

2

= 0:25s. leading to an overall 
y
le time of

T = 0:6734s. Figures 8.10 gives state and 
ontrol variable histories asso
iated with this

solution.

Like for the most stable solution we visualize the regions of stable solutions in the neigh-

borhood if two out of seven parameters are varied. A variation of segments lengths l

T

and

l

S

is shown in �gure 8.12 and of segment masses m

T

and m

S

in �gure 8.13 respe
tively.

The values of norms over a 
y
le of one step are

�

max

(C) = 247:47

jjCjj

1

= 312:68

jjCjj

1

= 361:68;
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Figure 8.10: Traje
tories and 
ontrols for a
tuated kneed walker - result of singular value

optimization of C

8
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Figure 8.11: Development of spe
tral radius during optimization of maximum singular value of

the eighth power of the monodromy matrix
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still very large.

Note the behavior of norms as fun
tions of matrix powers of this solution shown in �g-

ure 8.14. The optimization 
riterion 
auses perturbations to have the least signi�
ant

ampli�
ation over multiples of eight steps.

8.3 Summary

The key results reported in this 
hapter are:

� We have presented stable solutions for an open-loop 
ontrolled biped robot with

knees walking on 
at ground in a human-like fashion a
tuated by torques at hip

and knees. To our knowledge this is the �rst robot of this kind.

� Judged by linear theory the best solution found is very stable with a maximum

eigenvalue safely below one. Its stability margins des
ribing possible perturbations

of initial values and parameters are not very large. The regions of stable periodi


solutions in 2-dimensional parameter spa
e are more extended and have band shape.

� Comparison with an equivalent passive biped walker shows that the passive system

has 
onsiderably larger stability margins even though its monodromy matrix has

roughly the same spe
tral radius. During re
overy from perturbations the passive

system en
ounters an enormous shift along its traje
tory. We have seen however

in the previous 
hapter that small stability margins are not a standard feature of

a
tuated open-loop 
ontrolled robots.

� With respe
t to matrix norm optimization the observations reported in the previous


hapter 
ould be 
on�rmed:

1. There are again no solutions for whi
h perturbations de
ay over one 
y
le

measured in the 1-, 2, or 1-norm.

2. Optimization of a norm of the monodromy matrix itself results in an unstable

solution.

3. Optimization of a norm of a higher matrix power delivers stable solutions.

There is no general rule for the 
hoi
e of the matrix exponent. In this 
ase a

higher power than previously had to be used.

� While asking for a norm smaller than one is too stri
t and not ne
essary, the norm

also should not be too large. We have observed a 
orrelation between small stability

margins and extremely large matrix norms (> 100), although we are aware that this

is not the only reason for destabilization. There are also nonlinear e�e
ts, like e.g.

dis
ontinuous 
hanges of the swit
hing stru
ture.





Chapter 9

Three-dimensional Passive-dynami


Walking Robot { The Tinkertoy

The Tinkertoy robot is a passive three-dimensional walker with two straight legs that

moves on an in
lined slope without any a
tuator help. To our knowledge it is the �rst

three-dimensional dynami
ally stable robot that has no stati
ally stable standing position.

The physi
al robot has been built by Coleman [18℄ experimenting with the Tinkertoy


R


onstru
tion set. Before our 
ooperation started, the stable behavior of the real robot


ould not be veri�ed theoreti
ally; all simulations of the model had been unstable (Cole-

man& Ruina [20℄). At this point it was not 
lear if a stati
ally unstable rigid body model


ould be passively stable in three dimensions or if the dynami
 stability of the real robot

was due to properties not 
aptured in the mathemati
al model, e. g. the link elasti
-

ity. The goal of our 
omputations was not exa
tly mimi
 the quantities of the physi
al

robot, but to answer this more general question and �nd stable 
on�gurations more or

less related to the real robot.

The mathemati
al model has been established by Coleman using the MATLAB


R

software

pa
kage. Corre
tions and modi�
ations have been done in joint work. Kinemati
 relations

for the motion of robots with di�erent foot forms have been established on the basis

of Goyal [34℄. For use with our optimization software we have transferred the model

equations to C++ and in
luded it in our model library.

In this thesis, we give results for three di�erent model versions with disk feet, toroidal

feet and point feet, where the third is a spe
ial 
ase of the �rst as well as the se
ond

with radii equal to zero. This is the �rst publi
ation of stable solutions for the point feet

and toroidal feet versions whereas the disk foot results are an improvement of the stable

solutions published in Mombaur et al. [63℄ and Coleman and al. [19℄.

A

ording to the 
lassi�
ation of se
tion 1.4 the Tinkertoy robot is non-
onservative due

to ground 
ollision and non-holonomi
 (disk and toroidal feet) or pie
ewise holonomi
 but

overall non-holonomi
 (point feet). Both aspe
ts 
an 
ontribute to the existen
e of stable

solutions.
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9.1 Robot Model

The Tinkertoy robot 
onsists of two legs, i.e. a pair of symmetri
 rigid bodies, 
onne
ted

by a hinge. Always only one foot is in rolling, non-sliding 
onta
t with the ground. The

foot swit
hing is assumed to be instantaneous and 
ollisional su
h that there is no double

support phase. Figure 9.1 
ontains an animation of the Tinkertoy with disk shaped feet.

The robot model with its parameters and 
on�guration variables is further spe
i�ed in

�gure 9.2. We model only one step and not a full 
y
le 
onsisting of two steps. This

pro
edure eliminates unsymmetri
 gaits as well as oblique dire
tions of des
ent. The

heelstrike 
ollision also in
ludes the leg shift from left to right and vi
e versa to make the

appli
ation of periodi
ity 
onstraints after one step possible.

The system has got four DOFs. For the des
ription, we use the following angle 
oordinates

q

T

= (�;  ; �

st

; �

sw

)

T

(9.1)

where, speaking in aeronauti
al terms, � is the robot's heading angle,  is its rolling

angle, �

st

the pit
h angle of the stan
e leg, and �

sw

the relative pit
h orientation of the

swing leg. With the 
orresponding rates this results in an eight-dimensional state spa
e.

The inertia matrix of a rigid body in three dimensions has to satisfy the two properties:

� all eigenvalues are positive

� eigenvalues satisfy the triangle inequality �

i

+ �

j

> �

k

, i 6= j 6= k.

To guarantee a ful�llment of these properties during variation of the inertia matrix, Cole-

man and Ruina have developed a re-parameterization (see Coleman [18℄). The prin
ipal

moments of inertia 
an be rewritten using the parameters d

1

, d

2

, d

3

(des
ribing the dy-

nami
ally equivalent arrangement of six masses m

d

=

m

6

in the distan
es d

i

from the


enter):

I

1

= (d

2

2

+ d

2

3

) (9.2)

I

2

= (d

2

1

+ d

2

3

) (9.3)

I

3

= (d

2

1

+ d

2

2

): (9.4)

A general inertia matrix is generated from the prin
ipal axis inertia by rotations 
hara
-

terized by three additional parameters, the angles �, �, 
.

The 14/15 model parameters of the tinkertoy robot are the six inertia parameters d

1

, d

2

,

d

3

, �, �, 
, the leg mass m, the slope angle �, the total leg length l, the leg 
enter of

mass lo
ation d

x

, d

y

, d

z

in lo
al leg 
oordinates the hip spa
ing w, the foot radius r

1

, and

for toroidal feet additionally a se
ond (perpendi
ular) foot radius r

2

. Please note that

all parameters are dimensionless: all lengths are measured relative to the total leg length

and all inertia matrix entries are relative to ml

2

(and the d

i

therefore relative to

p

ml),

and the gravity 
onstant is set to 1.

The equations of motion of the Tinkertoy robot are too 
omplex to be given in expli
it

form. The four se
ond order equations of motion are derived by angular momentum

balan
es of
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Figure 9.1: Stable periodi
 gait of Tinkertoy robot with disk feet
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Drawn by: Jonathan Leung
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Figure 9.2: The real Tinkertoy robot and its model (drawings by Coleman and Leung)
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� the whole robot about 
onta
t point C of stan
e leg

2

X

i=1

r

C;i

�m

i

a

i

+

2

X

i=1

(�

i

_!

i

+ !

i

��

i

� !

i

) =

2

X

i=1

r

C;i

�m

i

g (9.5)

where r

C;i

= r

i

� r

C

is the position of the 
enter of mass of body i relative to

the 
onta
t point C, a

i

= �r

i

is the absolute a

eleration of body i, !

i

its absolute

angular velo
ity, �

i

its inertia matrix in lo
al 
oordinates, and m

i

its mass (with

all masses being equal: m

1

= m

2

= m).

� the swing leg about the hip joint hinge axis n

hip

(index 1 denotes the stan
e leg and

2 the swing leg):

n

hip

� (r

hip;2

�m

2

a

2

+�

2

_!

2

+ !

2

� �

2

� !

2

) = n

hip

� (r

hip;2

�m

2

g) : (9.6)

Ground 
ollision of the swing foot o

urs when its lowest point rea
hes zero altitude. As

both feet have the same rotational symmetri
 shape and the legs rotate in parallel planes

this is for all possible foot shapes equivalent with the postulation that the 
enters (in

terms of r

1

) of both feet are at the same level:

s(x; p) = (l � r

1

)(
os(�

st

+ �

sw

) + 
os �

st

) 
os � w sin = 0: (9.7)

As an additional 
ondition, the verti
al velo
ity of the lowest swing foot point (or alter-

natively the derivative of the above equation) has to be negative:


(x; p) = (l � r

1

)(
os(�

st

+ �

sw

) + 
os �

st

)(� sin 

_

 ) + l(� sin(�

st

+ �

sw

)(

_

�

st

+

_

�

sw

)�

sin �

st

_

�

st

) 
os + w 
os 

_

 < 0 (9.8)

At 
ollision, position variables are of 
ourse 
ontinuous in physi
al spa
e, but velo
ities

undergo dis
ontinuities. Velo
ities after heelstrike (and after foot swit
hing) are 
omputed

with the following relations:

� 
onservation of angular momentum of the whole system about the new 
onta
t point

D:

2

X

i=1

(r

D;i

�m

i

v

i

+�

i

!

i

) = 
onst: (9.9)

where r

D;i

= r

i

� r

D

and v

i

is the absolute velo
ity of body i.

� 
onservation of angular momentum of the new swing leg sw+ (index 1 before and

index 2 after 
ollision) about the hinge axis:

n

hip

� (r

hip;sw+

�m

sw+

v

sw+

+�

sw+

!

sw+

) = 
onst: (9.10)

During the whole swing phase, foot 
learan
e of the swing foot is enfor
ed by:

l(
os(�

sw

+ �

st

) + 
os �

st

) 
os � w sin > 0: (9.11)
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We demand periodi
ity of all eight state variables over one step, in
luding the leg shift:
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with free 
y
le time T .

9.2 Results of Stability Optimization

We present stable solutions for Tinkertoy robots with disk feet, toroidal feet and point feet.

In all three 
ases we used the spe
tral radius as obje
tive fun
tion in the outer stability

optimization loop. Box 
onstraints have been imposed on the parameters in order to keep

them within reasonable ranges and to avoid non-physi
al results, like negative dimensions.

In the inner loop periodi
 optimal 
ontrol problem { with zero 
ontrols { we have mini-

mized the duration of steps for all solutions presented here. We have used ten multiple

shooting intervals for the swing phase. The foot 
learan
e 
ondition has been imposed on

all interior points. State variables must satisfy box 
onstraints. To guarantee a minimum

steplength and avoid the degenerate 
ase of zero step length a 
ondition on �

st

(0) has

been formulated.

9.2.1 Disk Feet

As a start, results for the model version with disk feet will be presented and explained. For

this model we have already published stable solutions in Mombaur et al. [63℄ and Coleman

and al. [19℄. During the resear
h for this thesis we were able to further improve the results

by means of the two-level optimization pro
edure and perform a detailed analysis of the

solutions.

Result of eigenvalue optimization

The most stable solution in terms of eigenvalues for the Tinkertoy robot with disk feet is


hara
terized by a monodromy matrix with spe
tral radius 0.7579, safely below one. It

represents the overall optimum of eigenvalue optimization.

The resulting robot 
on�guration has the model parameters d

1

= 0:1442, d

2

= 0:393,

d

3

= 0:2925, � = �0:0138, � = �0:2688, 
 = �8:2519E � 03, m = 1:0, � = 0:0757,
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d

x

= 0:0029, d

y

= 0:7903, d

z

= 0:4064, l = 1:0, w = 0:3234, and r

1

= 0:032, all without

dimension. Note that the robot is stati
ally unstable sin
e d

z

> r

1

. The resulting radius

of the disk foot in the optimum is surprisingly small.

The initial values of this most stable solution are

�(0) = 0:0969

 (0) = �0:0132

�

st

(0) = �0:196

�

sw

(0) = 3:510

_

�(0) = �0:0863

_

 (0) = �0:0275

_

�

st

(0) = 0:410

_

�

sw

(0) = �0:327

Figure 9.3 shows the 
orresponding traje
tory for all eight state variables. It pi
tures

one full step of the robot 
onsisting of the swing phase and the �nal dis
ontinuity at

heelstrike. The heelstrike transition phase also in
ludes a leg shift whi
h explains why the

plots show dis
ontinuities not only of the velo
ities but also of the position variables. All

eight state variables satisfy periodi
ity 
onditions. The duration of one step is T = 1:358.

In �gure 9.4 we show swing foot 
learan
e over one step whi
h is the swit
hing fun
tion

for heelstrike dete
tion.

The eight eigenvalues of the Ja
obian of the Poin
ar�e map asso
iated with this solution

are

�

1

= 1:0

�

2;3

= (�0:0076;�0:7575)

�

4;5

= (�0:6962;�0:2996)

�

6;7

= (�0:7048;�0:27658)

�

8

= �0:3112

and in terms of absolute values

j�

1

j = 1:0

j�

2;3

j = 0:7575

j�

4;5

j = 0:7579

j�

6;7

j = 0:7571

j�

8

j = 0:3112

The eigenvalue of one is 
aused by the passivity of the Tinkertoy and, as we have explained

in se
tion 4.4, is not relevant for stability. j�

4;5

j represents the spe
tral radius of the

monodromy matrix. The fa
t that six out of seven parameters are equal within the

toleran
e of 
onvergen
e is an indi
ation that the optimization has produ
ed not only a

lo
al minimum but also a point that is very good from a global point of view.

The indu
ed matrix norms of the proje
ted matrix are

�

max

(C) = 4:284
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Figure 9.3: Most stable traje
tory of Tinkertoy with disk feet
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Figure 9.4: Swing foot 
learan
e during one step

jjCjj

1

= 6:260

jjCjj

1

= 7:892

Measured in these norms perturbations do therefore not 
ontra
t but are lo
ally ampli�ed

in this parti
ular step. Figure illustrates the size of matrix norms for in
reasing matrix

powers, i.e. for multiple steps. For this spe
i�
 solution a 
ontra
tion of perturbations

only o

urs over a 
y
le of 18 steps or more than 22 steps.

The study of stability margins has however proven again that a 
ontra
tion of norms

over one step is not ne
essary for stable behavior of the dis
ontinuous system. We were

able to apply one-dimensional perturbations of 
onsiderable size to the initial values of

all position and velo
ity variables, from whi
h the system would still re
over:

� +39% -43%

 +56% -56%

�

st

+5% -4%

�

sw

+0.6% -1%

_

� +8% -6%

_

 +19% -14%

_

�

st

+2% -2%

_

�

sw

+5% -5%

The reason for failure if larger perturbations are applied is typi
ally foot s
uÆng in the

middle of the step (
ompare foot 
learan
e fun
tion in �gure 9.4).

Figure 9.6 illustrates the de
ay of the os
illation introdu
ed by a perturbation of +39%

applied to the initial value of � over a longer interval. In �gure 9.7 we 
ompare the

traje
tories of this perturbed solution to the 
orresponding base solution over a period of

a little bit more than ten steps. The system re
overs from this perturbation while only

performing a small orbital shift.
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Figure 9.7: Most stable periodi
 solution of Tinkertoy with disk feet with and without pertur-

bation of �
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The parameter values 
ould likewise be perturbed within large ranges:

d

1

+40% -240%

d

2

+64% -264%

d

3

+12% +14%

� +2300% -2600%

� +1300% -1500%


 +1 �1

� +17% -30%

d

x

+130% -140%

d

y

+8% -8%

d

z

+7% -5%

w +12% -7%

r

1

+72% -75%

Another stable solution

We present a se
ond stable solution with a spe
tral radius of 0.809, slightly larger than for

solution 1. It has been found as intermediate 
onvergen
e point of eigenvalue optimization

before a restart of the polytope algorithm.

This solution is interesting for di�erent reasons:

� it shows that stable solutions exist in di�erent regions of parameter spa
e,

� although the eigenvalue indi
ates weaker stability, its stability margins are larger

than for solution 1,

� for some purposes it might be useful to have a stable robot with a more pronoun
ed

disk foot.

The model parameters of this robot are d

1

= 0:0074, d

2

= 0:8805, d

3

= 0:021, � = 0:0456,

� = �0:301, 
 = 0:0049, m = 1:0, � = 0:077, d

x

= �4:7e � 5, d

y

= 0:7024, d

z

= 0:1856,

l = 1:0, w = 0:3579, and r

1

= 0:1185. The most signi�
ant di�eren
es to the �rst solution

lie in the mass distribution, the foot radius and the verti
al 
. o. m. position.

The initial value of the 
orresponding traje
tory whi
h looks very similar to the previous

one are

�(0) = 0:1044

 (0) = �0:0102

�

st

(0) = �0:1729

�

sw

(0) = 3:462

_

�(0) = �0:1233

_

 (0) = �0:0218

_

�

st

(0) = 0:4727

_

�

sw

(0) = �0:3746

The 
y
le time is T = 1:130s.
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It is 
hara
terized by the eigenvalues

�

1

= 1:0

�

2;3

= (0:2432;�0:6403)

�

4;5

= (�0:7724;�0:2395)

�

6;7

= (�0:7657;�0:2614)

�

8

= �0:2752

j�

1

j = 1:0

j�

2;3

j = 0:685

j�

4;5

j = 0:8087

j�

6;7

j = 0:8091

j�

8

j = 0:2752:

Again the 1-, 2-, and 1-norm are not 
ontra
tive for this one-step 
y
le

�

max

(C) = 3:705

jjCjj

1

= 5:682

jjCjj

1

= 5:986:

The maximum singular value is 
ontra
tive for a 
y
le of more than 22 steps (see �gure

9.8).

The stability margins of this solution are larger for the previous one in most 
omponents

of the state variable ve
tor:

� +100% -102%

 +136% -95%

�

st

+15% -14%

�

sw

+1% -1%

_

� +9% -9%

_

 +32% -32%

_

�

st

+6% -5%

_

�

sw

+7% -9%
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This solution also allows for larger perturbations of the parameter values under whi
h the

robot 
an still re
over:

d

1

+2000% -2000%

d

2

+27% -19%

d

3

+230% -430%

� +11% -9%

� +3% -0.5%


 +1 �1

� +29% -62%

d

x

+ 10000% - 10000%

d

y

+10% -23%

d

z

+27% -36%

w +22% -8%

r

1

+26% -30%

9.2.2 Toroidal Feet

The model version with toroidal feet is the most general of the three as it in
ludes the other

two as spe
ial 
ases. A model with feet of non-degenerate toroidal shape also 
onstitutes

the best approximation of the real Tinkertoy robot. We did not aim at imitating the

quantitities of the real robot in our 
omputations but rather at �nding the solution with

the best stability properties.

Result of eigenvalue optimization

Eigenvalue optimization for the Tinkertoy with toroidal feet produ
ed an optimal value

of 0.7571. Treating the most general 
ase, it is lower than the disk feet solution, as one


ould expe
t. But obviously there is not a big di�eren
e whi
h 
an be explained by the

parameter values at the solution: d

1

= 0:0483, d

2

= 0:420, d

3

= 0:3191, � = 0:0545,

� = �0:3072, 
 = �0:0097, m = 1:0, � = 0:075, d

x

= 0:0027, d

y

= 0:7949, d

z

= 0:4396,

l = 1:0, w = 0:3339, r

1

= 0:01827 r

2

= 0:0053. The foot radii are surprisingly small,

espe
ially the se
ond one. The optimal toroidal foot is thus 
lose to a tiny disk - and not

too far from a point foot.

The �xed point of this periodi
 solution is

x

T

0

= (0:093;�0:0124;�0:1962; 3:511;�0:0835;�0:0291; 0:402;�0:3295)

and its 
y
le time T = 1:3536s.

The full set of eigenvalues of Ja
obian of the Poin
ar�e map is
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�

1

= 1:0

�

2;3

= (0:0161;�0:7569)

�

4;5

= (�0:6991;�0:291)

�

6;7

= (�0:7044;�0:2777)

�

8

= �0:308

j�

1

= 1:0

j�

2;3

j = 0:7571

j�

4;5

j = 0:7572

j�

6;7

j = 0:7572

j�

8

j = 0:308:

The indu
ed matrix norms of the proje
ted map are

�

max

= 4:324

jjCjj

1

= 6:342

jjCjj

1

= 7:835;

being even slightly larger than those of the most stable solution for a disk foot walker.

Applying one-dimensional perturbations to the initial values of ea
h state variable we

determined the following stability margins:

� +55% -66%

 +65% -62%

�

st

+5% -4%

�

sw

+0.5% -1%

_

� +9% -6%

_

 +18% -14%

_

�

st

+2% -2%

_

�

sw

+6% -5%.

Figure 9.9 illustrates the rea
tion of a robot to a perturbation of the initial value of

_

�

(9%). Note the signi�
ant orbital shift and the large os
illations about the base traje
tory

in some 
omponents of the state variable ve
tor.

Model parameters 
ould also be perturbed by large per
entages:



156 Chapter 9. Three-dimensional Passive-dynami
 Walking Robot { The Tinkertoy

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 2 4 6 8 10 12 14

p
h

i

t

base solution
perturbed solution

-0.2

-0.1

0

0 2 4 6 8 10 12 14

p
h

i_
d

o
t

t

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 2 4 6 8 10 12 14

p
s
i

t

-0.02

0

0.02

0.04

0.06

0 2 4 6 8 10 12 14

p
s
i_

d
o

t

t

-0.2

-0.1

0

0.1

0 2 4 6 8 10 12 14

th
e

ta
_

s
t

t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14

th
e

ta
_

s
t_

d
o

t

t

2.8

3

3.2

3.4

0 2 4 6 8 10 12 14

th
e

ta
_

s
w

t

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 2 4 6 8 10 12 14

th
e

ta
_

s
w

_
d

o
t

t

Figure 9.9: Stable periodi
 solution for Tinkertoy with toroidal feet with and without pertur-

bation of

_

�
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d

1

+220% -420%

d

2

+62% -262%

d

3

+10% -12%

� +490% -540%

� +120% -310%


 +1 �1

� 18% -30%

d

x

+130% -170%

d

y

7% -7%

d

z

8% -5%

w +12% -7%

r +130% -100%

r

2

+700% -100%.

Results of norm optimization

In the two previous 
hapters the e�e
ts of norms as optimization 
riterion on the spe
tral

radius have been dis
ussed extensively. Computations for the Tinkertoy 
on�rm the

results presented before and we will therefore skip the dis
ussion.

Here we want to fo
us on the question if at least for this passive system solutions with


ontra
ting norms of the monodromy matrix 
an be found. We have studied the question

for this most general 
ase of the Tinkertoy with toroidal feet. The answer is again negative.

Singular value optimization resulted in an optimum of

�

max

(C) = 2:854:

Minimizing the 1-norm of the monodromy matrix lead to a �nal value of

jjCjj

1

= 4:354:

Of 
ourse this is not a general rule for passive systems, but a spe
i�
 result for the

Tinkertoy. We 
an only 
on
lude that asking for a 1-, 2-, or 1-norm below one seems to

be a demand diÆ
ult to satisfy.

9.2.3 Point Feet

The existen
e of stable solutions for a walker with point feet is probably the most aston-

ishing result reported in this 
hapter. It is a spe
ial 
ase of the latter two with r

1

= r

2

= 0.

Result of eigenvalue optimization

The most stable solution for the Tinkertoy robot with disk feet has a monodromy matrix

with spe
tral radius 0.7958. The eight eigenvalues are
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�

1

= 1:0

�

2;3

= (0:068; 0:7929)

�

4;5

= (�0:7357; 0:3023)

�

6;7

= (�0:7582; 0:2419)

�

8

= �0:1974

j�

1

= 1:0

j�

2;3

j = 0:7958

j�

4;5

j = 0:7954

j�

6;7

j = 0:7959

j�

8

j = 0:1974:

Again, six out of eight eigenvalue are equal in magnitude.

The model parameters of this solution are d

1

= 0:0252, d

2

= 0:3879, d

3

= 0:2858, � =

�0:009, � = �0:2323, 
 = �0:0294, m = 1:0, � = 0:0757, d

x

= 0:0024, d

y

= 0:7901,

d

z

= 0:4323, l = 1:0, w = 0:3165.

The 
orresponding traje
tory has initial values of

x

T

0

= (0:0876;�0:0114;�0:1731; 3:465;�0:0885;�0:0256; 0:3952;�0:3248)

and a 
y
le time of T = 1:2314s:

Again the matrix norms over one step of the robot are all larger than one:

�

max

= 4:066

jjCjj

1

= 6:136

jjCjj

1

= 7:290:

The region of stability in whi
h the robot 
an re
over from perturbations is des
ribed by

the stability margins

� +58% -70%

 +71% -53%

�

st

+6% -5%

�

sw

+0.5% -0.9%

_

� +8% -6%

_

 +20% -15%

_

�

st

+2% -2%

_

�

sw

+5% -5%.

Figure 7.5 illustrates the di�eren
es between the original periodi
 traje
tory and one with

a perturbed initial value of  (�53%).

The robot also persists in its gait under the following perturbations of model parameter

values:
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Figure 9.10: Most stable periodi
 solution for Tinkertoy with point feet with and without

perturbation of  
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d

1

+440% -640%

d

2

+80% -280%

d

3

+10% -10%

� +3200% -3100%

� +1500% -1700%


 +1 �1

� +13% -36%

d

x

+130% -120%

d

y

+9% -9%

d

z

+8% -6%

w +13% -6%.

9.3 Summary

The most important results of our 
omputations for the Tinkertoy robot are:

� For the �rst time, stable solutions for passive-dynami
 three-dimensional sti�-legged

walking devi
es with point feet and toroidal feet have been presented.

� New improved solutions for the model version with disk feet have been found.

� All the solutions presented here are dynami
ally stable traje
tories although the

respe
tive robots have no stati
ally stable standing positions. In all 
ases the 
enters

of mass lie above the 
enters of foot 
urvature: z > r

1

and z > r

2

.

� In all three 
ases the stable solutions were not only 
hara
terized by small eigenval-

ues but also by large stability margins. We 
ould again 
on�rm that the existen
e

of a 
ontra
tive matrix norm is not ne
essary for ex
ellent stability properties.

� Even for this passive system there is no solution with an indu
ed matrix norm

smaller than one. For the solutions found by eigenvalue optimization, 1-, 2-, or

1-norm 
ontra
t over a 
y
le of more than roughly twenty steps.

� Although we are aware that this is not a general rule for analyti
 matri
es we have

observed that for all the monodromy matri
es of all robot models that we have

studied during the resear
h for this thesis, the maximum singular value was smaller

than the 1- and1-norms and therefore 
loser to the spe
tral radius. This might be

pure 
han
e, but we assume that it is 
aused by the underlying dynami
s.



Con
lusions and Outlook

Summary & Con
lusions

With this thesis, a
hievements have been made on both the engineering aspe
t of open-

loop stable walking and running robots and the resear
h about numeri
al methods ne
-

essary to �nd these solutions. The fo
us, however, has been set on the engineering side

of the work and we therefore start with the des
ription of these results that seem to be

new in this �eld of resear
h. We then pro
eed to demonstrate the a
hievements made on

the numeri
al side of the work.

Walking Robots

Our main 
ontributions lie in the �eld of theoreti
al walking robot resear
h. Using opti-

mization methods we were able to demonstrate the 
exibility of the 
on
ept of open-loop


ontrol. It is appli
able to a by far broader 
lass of walking robots than was generally


on
eived before.

New Open-loop Stable Robot Models

During the 
ourse of our resear
h we have dis
overed various robot 
on�gurations 
apable

of stable motion without feedba
k:

� A
tuated 2D human-like walking robot:

This seems to be the �rst a
tuated open-loop stable robot mimi
king human gait.

It has knees and point feet and is powered by hip and knee torques. Only passive-

dynami
 systems of similar 
on�guration have been known before.

� A
tuated 2D one-legged hopping robot:

Open-loop stable traje
tories for hopping robots with point feet and 
ir
ular feet

have been found. Both versions have no stati
ally stable standing 
on�guration.

Unlike previously assumed a 
ir
ular foot is not ne
essary for open-loop stable hop-

ping.
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� Passive-dynami
 3D walking robot:

For the �rst time, stable solutions for a 3D passive-dynami
 three-dimensional sti�-

legged walking robot with hip spa
ing and feet of point, disk, or toroidal shape

have been 
omputed. The solutions for all three versions 
orrespond to stati
ally

unstable robot 
on�gurations. Stable behavior of a related physi
al robot had been

observed before.

All stable solutions presented exhibit ex
ellent linear stability properties sin
e the maxi-

mum eigenvalues of their monodromy matri
es are mu
h smaller than one by magnitude.

Nonlinear stability studies of the solutions in terms of allowable perturbations of initial

values and model parameters have been performed. For two of our robots, the one-legged

a
tuated hopping robot and the passive-dynami
 walker, signi�
ant stability margins were


omputed. It is important to note that large stability margins 
an be a
hieved not only

for passive but also for a
tuated systems. For the third robot, the a
tuated kneed walker,

the stability margins are relatively small. A 
omparison with the 
orresponding passive

walker studied in a previous publi
ation shows that a la
k of external periodi
 ex
itation

fa
ilitates the stabilization task 
onsiderably.

Modeling Periodi
 Gaits

Guidelines for the formulation of gaits as multi-phase periodi
 optimal 
ontrol problems

have been given in
luding re
ommendations for the 
oordinate 
hoi
e of the me
hani
al

models. The order of motion phases should be pres
ribed. In order to obtain realisti


motions, ground and joint impa
ts should be modeled with velo
ity dis
ontinuities.

Understanding Human Walking

The kneed a
tuated walking robot 
an be 
onsidered as an abstra
t model of human gait.

The 3D passive-dynami
 robot also 
aptures some features of human gait. The open-loop

stability of these two models leads to the 
onje
ture that humans might also be 
apable

of stable walk without any sophisti
ated feedba
k.

Stability Optimization for General Dynami
al Systems

Besides the immediate impa
ts on the appli
ational side, 
ontributions of more general

mathemati
al interest have been made.

Stability Optimization Pro
edure

We have developed a two-level optimization pro
edure for the improvement of open-loop

stability. To our knowledge this is the �rst su

essful attempt to optimize the stability of
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the solution of a periodi
 optimal 
ontrol problem although many pra
ti
al problems of

this type exist. The method has two 
omponents:

� Outer loop stability optimization:

Model design parameters are 
hosen as optimization variables. The monodromy

matrix of the inner loop optimal 
ontrol problem solution is 
omputed and stability

is measured terms of its spe
tral radius or an alternative obje
tive fun
tion (see

below). A dire
t sear
h method is used for solution.

� Inner loop periodi
 optimal 
ontrol problem:

Controls, initial values and phase times are determined as solution to the periodi


optimal 
ontrol problem with some appropriate auxiliary obje
tive fun
tion. Model

parameters are �xed to the values given by the outer loop. The problem is solved

by a dire
t method based on multiple shooting.

The appli
ability of this two-level pro
edure is not restri
ted to walking robots. If im-

plemented along the s
hemes of our model library, any periodi
 dynami
al system (with

dis
ontinuities and multiple phases) 
ould be optimized by this approa
h. A natural

split of variables into design and 
ontrol variables leading to the two-level formulation is

required.

Apparantly new formulas for derivatives of singular values with respe
t to matrix entries

and for derivatives of monodromy matri
es for dis
ontinuous dynami
s with respe
t to

initial values and parameters have been derived.

Obje
tive Fun
tions for Stability Optimization

We have performed theoreti
al and numeri
al studies about the e�e
ts of several possible

obje
tive fun
tions des
ribing stability. The standard maximum eigenvalue 
riterion has

produ
ed the most stable results. The diÆ
ulties asso
iated with this obje
tive fun
tion

have been dis
ussed extensively. Depending on the algorithm 
hosen, alternative obje
tive

fun
tions might be desirable.

For our systems we haven't found any solution for whi
h the 1-, 2-, or 1-norm of the

monodromy matrix 
ontra
t over the 
y
le of one step. Typi
ally, 
ontra
tion of per-

turbations o

urs after several steps. Hen
e, the existen
e of a 
ontra
tive norm of the

monodromy matrix is not a ne
essary 
ondition for ex
ellent stability of a solution in

the nonlinear sense. On the other hand, extremely large matrix norms seem to be one


ontributing fa
tor { besides nonlinear e�e
ts { to small stability margins.

Using a norm of the monodromy matrix as optimization 
riterion did not produ
e stable

solutions. With the optimal norms always being larger than one, the eigenvalues 
an and

in our 
ase did remain outside the unit 
ir
le. We even observed a deterioration of the

spe
tral radius during the 
ourse of optimization. If for a spe
i�
 appli
ation 
ontra
tion

of a norm over one 
y
le 
an be a
hieved this will of 
ourse also lead to stable solutions in
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terms of the maximum eigenvalue. However we do not know, how to determine in advan
e

if this is the 
ase for some appli
ation.

Using the norm of a power of the monodromy matrix proved to be a mu
h better 
hoi
e.

It helped to bring the eigenvalue into the stable region and delivered a solution that was

very 
lose to the solution found with eigenvalue optimization. There is no general rule

for the 
hoi
e of the matrix exponent.

We have found one surprising result whi
h is not supported by standard matrix theory but

might be 
aused by the underlying dynami
s: the monodromy matri
es of all robot models

that we studied during our resear
h had a maximum singular value that was smaller than

the 1- and 1-norms and therefore 
loser to the spe
tral radius. The maximum singular

value might thus be preferred over some other norm as obje
tive fun
tion.

Outlook

Based on the �ndings of our work des
ribed above we would like to note the following

dire
tions of resear
h as parti
ularly promising:

� Biome
hani
al Appli
ations:

Sin
e human-like abstra
t robot models 
an be open-loop stable, a thorough study

of the stability properties of human gait seems to be an interesting topi
. A 
urrent

�eld of resear
h is the neuro-stimulation of paraplegi
 patients. Sin
e those patients

have only partial feedba
k at their disposal the 
on
epts of open-loop 
ontrol might

be helpful in this 
ase.

� Manufa
turing of designed robots:

Ex
ept for a variant of the 3D passive-dynami
 walker none of the robots has been

built yet. Manufa
turing one of the open-loop 
ontrolled a
tuated robots would be

interesting in order to demonstrate self-stabilizing properties in real-life experiments.

One advantage of open-loop 
ontrol is its simpli
ity of implementation sin
e no

sophisti
ated feedba
k 
ontrol system is required.

� Implementation of one-level approa
h & appli
ation:

The split of optimization variables that is required for the two-level approa
h and

was straightforward for me
hani
al systems is not always possible for 
hemi
al pro-


esses. In the framework of SFB 359 the one-level approa
h to stability optimization

also formulated in this theses will be implemented. Preliminary studies performed

in this thesis on the 
hoi
e of obje
tive fun
tions and on derivatives 
an be used for

this purpose.

� Combination with NMPC:

Open-loop stable systems are able to re
over independently from the e�e
ts of small

perturbations. In order to be able to also 
ope with more signi�
ant perturbations
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an open-loop stable system 
ould be equipped with additional nonlinear model pre-

di
tive 
ontrol (NMPC). The re
ent advan
es in this �eld make extremely short

response times possible.

� Optimization of robot gaits with respe
t to standard 
riteria:

There is a number of optimality questions that are of interest for the walking robot


ommunity, but have not yet been addressed, e.g. what is the fastest possible

walking motion, and when does a me
hanism start to run? With the gait models


reated in this thesis and the solution methods for the inner-loop optimal 
ontrol

problems, answering these questions is a simple and straightforward task. They

have not been addressed in this thesis sin
e they are not related to its 
entral topi


of stability.





Appendix A

Software Design and Implementation

The purpose of this appendix is to give some insight into the implementation of the

numeri
al methods. It is not meant to give a 
omplete overview of the developed software.

At the beginning of our work it was not 
lear whi
h types of algorithms we would �nally

use. We therefore had to 
hoose an approa
h that allowed a large amount of 
exibility

and supported an ex
hange of 
omponents. Hen
e we have de
ided to use an obje
t-

oriented implementation in C++. See the 
lassi
al book of Boo
h [12℄ for an introdu
tion

to obje
t-oriented programming and e.g. Liberty [49℄ or Meyers [58℄, [59℄ for information

on the C++ programming language.

A.1 Basi
 Software Components

A number of basi
 software 
omponents have been 
reated:

� a mathemati
al base library 
ontaining di�erent types of ve
tor, matrix and tensor


lasses and standard operations

� an extension of the mathemati
al library for the 
omputation of eigenvalues and

singular values

� an optimization library with di�erent types of fun
tions, gradients et
., optimization

problems, and optimization routines (see se
tion A.1.1)

� extensions for eigenvalue and singular value optimization

� a model library allowing for the implementation of dis
ontinuous multi-phase models

� interfa
es to ODE-integrators

� integrator-model interfa
e 
lasses.
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Figure A.1: Class hierar
hy of optimization 
omponents and problem types (some of whi
h are

abstra
t data types)



A.2. Two-level Stability Optimization Pro
edure 169

Figure A.2: Class hierar
hy of optimization 
odes and interfa
es

A.1.1 The Optimization Library

The optimization library 
onsists of two parts. The �rst part 
ontains optimization 
om-

ponents like variables, fun
tions, gradients, and Hessian matri
es. Its hierar
hy is shown

in �gure A.1. Arrows denote inheritan
e. Some of these 
lasses inherit from base 
lasses in

the mathemati
al library, like Variables from Ve
tor. The se
ond part of the optimization

library 
ontains the optimization routines and interfa
es (see �gure A.2). All optimization

routines are derived from the same base 
lass and have the same interfa
es. Optimiza-

tion problems and solvers 
an be 
ombined in a plug-and play manner where senseless


ombinations (like an NLP 
ombined with and LP-solver) lead to an error message.

A.2 Two-level Stability Optimization Pro
edure

Figure A.3 illustrates the two-level stability optimization pro
edure that is a 
ore 
ompo-

nent of this thesis. We show here the example of eigenvalue optimization for the Tinkertoy

robot. The �gure shows the hierar
hy of 
lasses as well as the integration of external 
om-

ponents like MUSCOD-II for the solution of the inner-loop optimal 
ontrol problem or

LAPACK routine DGEEV for the 
omputation of eigenvalues.

For the de�nition of a new stability optimization problem the following items have to be

spe
i�ed by the user:

� in main driver �le stabOpt++.
pp:

{ model 
lass, e.g. Tinkertoy(1);

{ name of inner loop optimal 
ontrol problem, e.g. tinkertoy1



170 Appendix A. Software Design and Implementation

Function

NormOfMuscodSolution

MaxEVOfMuscodSolution

Polytope1

Optsolver

DataFileHandler

Model

Tinkertoy

ConstrNLP

OptimizationProblem

Variables

NLP

Constraints
Mixin

DenseMatrixEVnonsym

2

n3

tinkertoy1.c

tinkertoy1.cpp

tinkertoy1.dat

MUSCOD-II

Data file

Description 

of periodic OCPcalls

calls

calls

calls

programmed in C

Two-level stability optimization procedure
(for Tinkertoy robot, using eigenvalue criterion)

LAPACK
 DGEEV

calls

dependencies on classes of mathematical base lib are omitted

writes

programmed in f77

Figure A.3: Two-level stability optimization pro
edure

{ stability optimization 
riterion, e.g. maximum eigenvalue

{ 
onstrained or un
onstrained optimization problem

� in 
orresponding initialization �le stabOpt++.ini:

{ model parameters to be modi�ed

{ polytope unity length and s
aling

� in optimal 
ontrol problem sour
e �le, e.g. tinkertoy1.
 & tinkertoy1.
pp:

{ inner loop obje
tive fun
tion

{ 
oupled and de
oupled multipoint 
onstraints

� in problem data �le, e.g. tinkertoy1.dat:

{ start values for parameters, state variables at multiple shooting points, 
ontrols

and phase times

{ 
orresponding bounds

{ number of multiple shooting intervals, 
ontrol dis
retization types, phase types,

swit
hing stru
ture

� implement new model 
lass if not yet available in library.
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The following listing gives the di�erent obje
tive fun
tions for stability optimization:

maximum eigenvalue, maximum singular value, 1-norm. They are all derived from the

same base 
lass NormOfMus
odSolution:


lass NormOfMus
odSolution : publi
 Fun
tion{

prote
ted:

Model *p_TheModel;


har *p_problemName;

DataFileHandler *p_Mus
odData;

ifstream Mus
odResultFile;

Ve
tor<int> OptParams;

int noOfPhases;

int stateDim;

int paramDim;

int 
ontrolDim;

Ve
tor<double> States;

Ve
tor<double> Params;

Ve
tor<double> Controls;

Ve
tor<double> XdotPlus;

Ve
tor<double> XdotMinus;

Ve
tor<double> dSWdX;

Ve
tor<double> dSWdP;

Ve
tor<double> dSWdU;

double dSWdT;

double swDot;

Ve
tor<double> PhaseTimes;

DenseMatrix<double> *p_phaseTransferMatrix;

DenseMatrixEVnonsym<double> Ja
Poin
areMapEV;

DenseMatrixEVnonsym<double> Proje
tedJa
Poin
areMapEV;

DenseMatrix<double> Lo
alMatrix;

int updateIniFlag;

void 
al
Ja
Poin
areMap();

void 
al
Proje
tedJa
Map();

void writeLogFile();

publi
:

NormOfMus
odSolution(Model *p_Model, 
har *p_pbName,

DataFileHandler *p_DataFile, 
har *p_resFileName,

Ve
tor<int>& Whi
hParams);

virtual ~NormOfMus
odSolution();

void setIniUpdate();

virtual double 
al
ulate(Variables& X) = 0;

};


lass MaxEVOfMus
odSolution : publi
 NormOfMus
odSolution{

prote
ted:

double maxEV;
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void writeLogFile();

publi
:

MaxEVOfMus
odSolution(Model *p_Model, 
har *p_pbName,

DataFileHandler *p_DataFile, 
har *p_resFileName,

Ve
tor<int>& Whi
hParams);

virtual ~MaxEVOfMus
odSolution();

virtual double 
al
ulate(Variables& X);

};


lass MaxSVOfMus
odSolution : publi
 NormOfMus
odSolution{

prote
ted:

double maxSV;

int matrixPower;

DenseMatrixSV<double> Poin
areMapSV;

DenseMatrixSV<double> Proje
tedPoin
areMapSV;

void writeLogFile();

publi
:

MaxSVOfMus
odSolution(Model *p_Model, 
har *p_pbName,

DataFileHandler *p_DataFile, 
har *p_resFileName,

Ve
tor<int>& Whi
hParams, int power = 1);

virtual ~MaxSVOfMus
odSolution();

virtual double 
al
ulate(Variables& X);

};


lass InfNormOfMus
odSolution : publi
 NormOfMus
odSolution{

prote
ted:

double infNorm;

int matrixPower;

void writeLogFile();

publi
:

InfNormOfMus
odSolution(Model *p_Model, 
har *p_pbName,

DataFileHandler *p_DataFile, 
har *p_resFileName,

Ve
tor<int>& Whi
hParams, int power = 1);

virtual ~InfNormOfMus
odSolution();

virtual double 
al
ulate(Variables& X);

};

A.3 Determination of Stability Margins

In order to determine stability margins of a stable periodi
 solution the following steps

are ne
essary:
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� in main driver �le sim++.
pp:

{ spe
ify model

{ indi
ate path of �le 
ontaining optimization results with traje
tory information

{ give optimization data �le (dis
retization data is needed for interpretation of

previous �le)

� in initialization �le sim++.ini:

{ set integration start (default t

s

= 0) and end times

{ (sele
t integrator output mode { step or 
ontinuous)

{ modify respe
tive perturbation fa
tors of initial values or parameters

� start integration and 
he
k results.
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