The Laurel Forest An Example for Biodiversity Hotspots threatened by Human Impact and Global Change

Dissertation

2014

Dissertation

submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto–Carola–University of Heidelberg, Germany for the degree of Doctor of Natural Sciences

> presented by **Dipl. biol. Anja Betzin** born in Kassel, Hessen, Germany Oral examination date:

The Laurel Forest An Example for Biodiversity Hotspots threatened by Human Impact and Global Change

Referees:

Prof. Dr. Marcus A. Koch

Prof. Dr. Claudia Erbar

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorgelegte Dissertation selbst verfasst und mich dabei keiner anderen als der von mir ausdrücklich bezeichneten Quellen und Hilfen bedient habe.

Außerdem erkläre ich hiermit, dass ich an keiner anderen Stelle ein Prüfungsverfahren beantragt bzw. die Dissertation in dieser oder anderer Form bereits anderweitig als Prüfungsarbeit verwendet oder einer anderen Fakultät als Dissertation vorgelegt habe.

Heidelberg, den 23.01.2014

Anja Betzin

Contents

••	Summary	9
1.	Abstract	10
2.	Zusammenfassung	11
II.	Introduction	12
3.	Canary Islands and the Laurel Forest	13
4.	Aims of this Study	20
5.	Model Species: Laurus novocanariensis and Ixanthus viscosus 5.1. Laurus	21 21 22
	5.2. Ixanunus	20
111	. Material and Methods	23 24
III 6.	Sampling	23 24 25
111 6. 7.	 J. Material and Methods Sampling Laboratory Procedure 7.1. DNA Extraction 7.2. AFLP Procedure 7.3. Scoring 7.4. High Resolution Melting 	23 24 25 27 27 27 29 30
111 6. 7. 8.	S.2. Hummus Material and Methods Sampling Laboratory Procedure 7.1. DNA Extraction 7.2. AFLP Procedure 7.2. AFLP Procedure 7.3. Scoring 7.4. High Resolution Melting 7.4. High Resolution Melting	23 24 25 27 27 27 27 30 30 32
111 6. 7. 8.	S.2. Transmission Material and Methods Sampling Laboratory Procedure 7.1. DNA Extraction 7.2. AFLP Procedure 7.3. Scoring 7.4. High Resolution Melting Data Analysis 8.1. AFLP and HRM Data Analysis 8.2. Hittmate	23 24 25 27 27 27 29 30 32 32
111 6. 7.	 J. Material and Methods Sampling Laboratory Procedure 7.1. DNA Extraction 7.2. AFLP Procedure 7.3. Scoring 7.4. High Resolution Melting 7.4. High Resolution Melting Data Analysis 8.1. AFLP and HRM Data Analysis 8.2. Hotspots — Diversity in Geographic Space 8.3. Ecology — Ecological and Bioclimatic Analysis 	23 24 25 27 27 27 29 30 32 32 34 36

Contents

IV. Results	38
 9. AFLP Analyses for Both Model Species 9.1. Population Structure and Geographic Patterns 	39 39
10. Laurus: High Resolution Melting (HRM) Analysis	46
11. Hotspot Analysis 11.1. Diversity on Population Level 11.2. Genetic Diversity on Individual Level	48 48 53
12. Ecological Analysis	55
V. Discussion	61
 13. Phylogeography and Biogeography 13.1. Intra-Island Population Structure on Tenerife	62 62
14 Where is Diversity Highest? Localisation of Genetic Hotspots	68
15 Ecology Analysis	71
16. Future Threats and Conservation Opportunities — Diversity and Land Use Changes	74
17. Outlook	76
Bibliography	77
VI. Appendices	92
18. Appendix A — List of Plant Material	93
19. Appendix B — Supplementary Material	107
20. Appendix C — Supplementary Material on CD	111
21. Acknowledgements	112

List of Figures

6.1. Sampling for both species 25 9.1. Genetic structure of Tenerife's Laurus novocanariensis populations 40 9.2. Genetic structure of Laurus on the Canary islands 41 9.3. Principal Coordinate Analysis (PCoA) of AFLP data 42 9.4. Genetic structure of Tenerife's Ixanthus viscosus populations 43 9.5. Neighbournet analysis of Ixanthus viscosus 44 10.1. HRM (High Resolution Melting) of Laurus 46 11.1. Population diversity 49 11.2. Pairwise F _{st} and number of pairwise differences 50 11.3. Maps of genetic hotspots 54 12.1. PCoA of Bioclim parameters 60 14.1. Geographic regions and Current Distribution of Laurel Forest 69 15.1. Current species distribution 71 19.1. Rotation diagram of Laurus principal coordinate analysis for bioclimatic parameters 107			
9.1. Genetic structure of Tenerife's Laurus novocanariensis populations409.2. Genetic structure of Laurus on the Canary islands419.3. Principal Coordinate Analysis (PCoA) of AFLP data429.4. Genetic structure of Tenerife's Launthus viscosus populations439.5. Neighbournet analysis of Launthus viscosus4410.1. HRM (High Resolution Melting) of Laurus4611.1. Population diversity4911.2. Pairwise F_{st} and number of pairwise differences5011.3. Maps of genetic hotspots5412.1. PCoA of Bioclim parameters6014.1. Geographic regions and Current Distribution of Laurel Forest6915.1. Current species distribution7119.1. Rotation diagram of Laurus principal coordinate analysis for bioclimatic parameters107	6.1.	Sampling for both species	
9.2. Genetic structure of Laurus on the Canary islands419.3. Principal Coordinate Analysis (PCoA) of AFLP data429.4. Genetic structure of Tenerife's Ixanthus viscosus populations439.5. Neighbournet analysis of Ixanthus viscosus4410.1. HRM (High Resolution Melting) of Laurus4611.1. Population diversity4911.2. Pairwise F_{st} and number of pairwise differences5011.3. Maps of genetic hotspots5412.1. PCoA of Bioclim parameters6014.1. Geographic regions and Current Distribution of Laurel Forest6915.1. Current species distribution7119.1. Rotation diagram of Laurus principal coordinate analysis for bioclimatic parameters107	9.1.	Genetic structure of Tenerife's Laurus novocanariensis populations 40	
9.3. Principal Coordinate Analysis (PCoA) of AFLP data	9.2.	Genetic structure of <i>Laurus</i> on the Canary islands	
9.4. Genetic structure of Tenerife's Ixanthus viscosus populations 43 9.5. Neighbournet analysis of Ixanthus viscosus 44 10.1. HRM (High Resolution Melting) of Laurus 46 11.1. Population diversity 49 11.2. Pairwise F _{st} and number of pairwise differences 50 11.3. Maps of genetic hotspots 50 11.4. PCoA of Bioclim parameters 60 14.1. Geographic regions and Current Distribution of Laurel Forest 69 15.1. Current species distribution 71 19.1. Rotation diagram of Laurus principal coordinate analysis for bioclimatic parameters 107	9.3.	Principal Coordinate Analysis (PCoA) of AFLP data	
9.5. Neighbournet analysis of Ixanthus viscosus 44 10.1. HRM (High Resolution Melting) of Laurus 46 11.1. Population diversity 49 11.2. Pairwise F _{st} and number of pairwise differences 50 11.3. Maps of genetic hotspots 50 12.1. PCoA of Bioclim parameters 60 14.1. Geographic regions and Current Distribution of Laurel Forest 69 15.1. Current species distribution 71 19.1. Rotation diagram of Laurus principal coordinate analysis for bioclimatic parameters 107	9.4.	Genetic structure of Tenerife's <i>Ixanthus viscosus</i> populations	
10.1. HRM (High Resolution Melting) of Laurus 46 11.1. Population diversity 49 11.2. Pairwise F _{st} and number of pairwise differences 50 11.3. Maps of genetic hotspots 54 12.1. PCoA of Bioclim parameters 60 14.1. Geographic regions and Current Distribution of Laurel Forest 69 15.1. Current species distribution 71 19.1. Rotation diagram of Laurus principal coordinate analysis for bioclimatic parameters 107	9.5.	Neighbournet analysis of <i>Ixanthus viscosus</i>	
11.1. Population diversity 49 11.2. Pairwise F _{st} and number of pairwise differences 50 11.3. Maps of genetic hotspots 54 12.1. PCoA of Bioclim parameters 60 14.1. Geographic regions and Current Distribution of Laurel Forest 69 15.1. Current species distribution 71 19.1. Rotation diagram of Laurus principal coordinate analysis for bioclimatic parameters 107	10.1	. HRM (High Resolution Melting) of <i>Laurus</i>	
11.2. Pairwise F _{st} and number of pairwise differences 50 11.3. Maps of genetic hotspots 54 12.1. PCoA of Bioclim parameters 60 14.1. Geographic regions and Current Distribution of Laurel Forest 69 15.1. Current species distribution 71 19.1. Rotation diagram of Laurus principal coordinate analysis for bioclimatic parameters 107	11.1	Population diversity	
11.3. Maps of genetic hotspots 54 12.1. PCoA of Bioclim parameters 60 14.1. Geographic regions and Current Distribution of Laurel Forest 69 15.1. Current species distribution 71 19.1. Rotation diagram of Laurus principal coordinate analysis for bioclimatic parameters 107	11.2	2. Pairwise F_{st} and number of pairwise differences	
 12.1. PCoA of Bioclim parameters	11.3	B. Maps of genetic hotspots	
 14.1. Geographic regions and Current Distribution of Laurel Forest	12.1	PCoA of Bioclim parameters	
 15.1. Current species distribution	14.1	. Geographic regions and Current Distribution of Laurel Forest	
19.1. Rotation diagram of <i>Laurus</i> principal coordinate analysis for bioclimatic parameters	15.1	Current species distribution	
parameters $\ldots \ldots \ldots$	19.1	. Rotation diagram of <i>Laurus</i> principal coordinate analysis for bioclimatic	
1		parameters	
19.2. Bioclimatic values frequencies	19.2	2. Bioclimatic values frequencies	

List of Tables

11.1. Analysis of Molecular Variance (AMOVA) of <i>Laurus</i> and <i>Ixanthus</i> based	
on population and georegion level	51
11.2. Population analysis of <i>Ixanthus</i>	51
11.3. Populations analysis of <i>Laurus</i>	52
12.1. Ecological Analysis — Main Vegetation	56
12.2. Ecological Analysis — Type Of Disturbance	56
12.3. Ecological Analysis — Potential Natural Vegetation	56
12.4. Bioclimatic values: Comparison of the descriptive statistics	58
18.1. Accession List of <i>Laurus</i>	93
18.2. Accession List of <i>Ixanthus</i>	03

Part I.

Summary

1. Abstract

The Canary Islands' laurel forest is a montane evergreen forest formation of an outstanding floristic and biogeographic value. It is endemic to several islands of the Macaronesian biogeographic region, confined to the humid areas limited by the influence of the trade wind clouds. In recent times this relict forest vegetation, which once covered large proportions of the Canary Islands, suffered from a massive range reduction and fragmentation due to human exploitation.

This thesis evaluates the phylogeography and population structure of the laurel forest on the basis of two characteristic plant taxa representative for the whole vegetation complex: The widespread and dominant canopy-building tree species *Laurus novocanariensis* and the more constrictive Canary Island endemic *Ixanthus viscosus*. Analyses exhibit low levels of differentiation on within- as well as between-island level. Especially for *Laurus* the exchange between populations from different islands, even over longer distances, is obvious. On island level the forest fragmentation has low impact on population divergence up to now.

Furthermore, we localised the genetic hotspots of both model species within the laurel forest distribution range on Tenerife. A small-scale grid square sampling strategy combined with approaches from population and landscape genetics enabled the development of detailed maps showing the centres of genetic diversity and thus revealing the connection between forest fragmentation and diversity loss.

Additionally, we analysed the ecological preferences of the two species, recognising not abiotic factors, but rather past forest degradation as having the most important impact on the current distribution range of the endemic *Ixanthus*.

Based on these findings we discuss the necessity and opportunities for conservation strategies of the Canary Islands' laurel forest in the future.

2. Zusammenfassung

Der kanarische Lorbeerwald ist eine montane, immergrüne Waldgesellschaft von außergewöhnlichem floristischen und biogeographischen Wert. Er ist endemisch auf einigen Inseln der biogeographischen Region Makaronesien, wo er in den humiden, unter Einfluss der Passatwolken stehenden Gebieten existiert. In jüngerer Zeit erlitt diese Reliktvegetation, die einst ausgedehnte Gebiete der Kanarischen Inseln bedeckte, bedingt durch menschliche Nutzung massive Gebietsverluste sowie -fragmentierung.

Die vorliegende Arbeit untersucht Phylogeographie und Populationsstrukturen des Lorbeerwaldes anhand zweier charakteristischer Pflanzenarten, die repräsentativ für den gesamten Vegetationskomplex stehen: der weitverbreiteten und vorherrschenden, kronendachbildenden Baumart *Laurus novocanariensis* (Kanaren-Lorbeer) und dem weniger weit verbreiteten Kanarenendemiten *Ixanthus viscosus* (Kanaren-Enzian). Die Analysen zeigen ein geringes Niveau der Populationsdifferenzierung sowohl innerhalb als auch zwischen den Inseln. Besonders für Lorbeer ist der Austausch zwischen den Inselpopulationen auch auf größeren Distanzen offenbar. Innerhalb der Inseln scheint die Fragmentierung des Waldes bisher einen geringen Einfluss auf die Populationsdifferenzierung zu haben.

Desweiteren lokalisierten wir die genetischen Hotspots beider Modellarten innerhalb des Lorbeerwaldgebietes auf Teneriffa. Eine kleinräumige, planquadratbasierte Sammelstrategie kombiniert mit populations- und landschaftsgenetischen Ansätzen ermöglichte die Entwicklung von detaillierten Karten, welche die Zentren der genetischen Vielfalt visualisieren. Diese verdeutlichen die Verbindung zwischen Waldfragmentierung und Diversitätsverlust.

Zusätzlich haben wir die ökologischen Präferenzen der Modellarten analysiert und herausgefunden, dass nicht abiotische Faktoren, sondern die zurückliegende Degradation des Waldes am bedeutendsten für das aktuelle Verbreitungsareal des Endemiten *Ixanthus* ist.

Basierend auf diesen Ergebnissen diskutieren wir abschließend die Notwendigkeit sowie die Möglichkeiten für den zukünftigen Schutz des kanarischen Lorbeerwaldes.

Part II.

Introduction

For many years the Canary Islands have been a Mecca-like destination for scientists of many disciplines, which was caused by the islands' uniqueness, remarkable richness in flora and fauna, easy accessibility and model-system likeness. Since Alexander von Humboldt visited Tenerife in 1799 and recorded first findings about geological and botanical geography, biologists, geologists and geographers discovered the islands for their studies.

Geologic History

The Canary Islands archipelago is composed of seven main islands, which are — from west to east — El Hierro, La Palma, La Gomera, Tenerife, Gran Canaria, Fuerteventura and Lanzarote. The archipelago is situated in the Atlantic ocean off the northwest African coast of Morocco.

Starting over 21 million years ago with the beginning of the oligocene, volcanic eruptions formed an archipelago of subaerial, oceanic islands. Generated most likely by a mantle plume or a hot spot (Coello, 1992), island ages and erosion states decline from east to west. Island ages are proposed from 20 (Fuerteventura) to one million (El Hierro) years (Holik, 1991). Tenerife itself was formed out of the three preliminary, older islands Teno (7.4 Mio), Anaga (5.8 Mio), and Roque del Conde (11.6 Mio) less than two million years ago (Ancochea, 1990), which is reflected in common phylogeographic patterns of different species (Juan et al., 2000).

Climate

The climate of the Canary Islands is mainly influenced by their oceanic location, the proximity to the African mainland, the trade winds and the ocean currents. While the eastern islands Lanzarote and Fuerteventura show a desert-like climate, the western islands are more influenced by a Mediterranean climate (Sperling et al. (2004), Wildpret

de la Torre (1997)). But due to their partly high elevations, microclimate is varying significantly, because the islands are a topographic barrier for the trade winds. Therefore, a clearly apparent altitudinal and exposure depending zonation is present (Sperling et al., 2004), resulting in several characteristic bioclimatic belts (del Arco et al., 2006). They harbour different vegetation types: saline coastal vegetation communities, arid scrublands in the lowlands, semiarid thermophilous woodlands, laurel forests, pine forests, summit scrublands and alpine habitats in the highest parts (Seidel (1978), Juan et al. (2000)). Tenerife, with its peak of Teide being 3718 m high, is the highest island of the archipelago and all vegetation belts are present (Sperling et al. (2004), Wildpret de la Torre (1997)).

This large variation of ecological conditions is essential for the high biodiversity on the islands, but also the long stable geoclimatic characteristics and the changes of the insular landscape contribute to the unique and diverse flora (Whittaker et al., 2008). This makes the Canaries as an island ecosystem within the highly diverse Mediterranean region a "hotspot within a hotspot" (Médail, 1999).

The Laurel Forest History and Ecology of an Unique Ecosystem

The laurel forest is a vegetation complex on the Canary Islands archipelago. It is often referred to as *laurisilva*, or, subsumed with the heath scrubs, as *monteverde* (Pott et al., 2003).

The laurel forest is an endemic, humid subtropical forest that is unique to several islands of the Macaronesian biogeographic region (Aboal et al. (2002), Emerson (2003)) with an outstanding floristic and biogeographic value (del Arco Aguilar et al., 2010). Those broadleaved, evergreen forests, also addressed as the biome of temperate rain forests, are distributed on the humid coastlines worldwide (Pott, 2006). The laurel forests of Europe are growing on the Canary Islands, on Madeira and on the Azores. On the Canaries, the forests are located in the cloud area on the northern windward slopes of the western islands Tenerife, Gran Canaria, El Hierro, La Palma and La Gomera between the lower mostly disappeared vegetation belt of the thermophile forests (Fernández-Palacios et al., 2008) and the upper belt of pine forests.

For the existence of the laurel forest the trade winds are of essential prominence (Kämmer, 1974). These are moisture laden winds from NE direction, which are forming an orographic cloud belt on the slopes exposed to the North between approximately 500 and 1500 meters above sea level (Guimarães and Olmeda, 2008). This more or less

constant impounding of clouds is named *mare de nubes*, a sea of clouds (Fernández-Palacios, 1992). Firstly, due to the cloud cover, mean annual temperatures are between 13 °C to 15 °C (19 °C), and evaporation and radiation are decreased (Guimarães and Olmeda (2008), Fernández-Palacios and Nicolás (1995)). Secondly, the clouds supply this area with rainfalls of about 1000 mm per year and a more or less constant amount of indirect or horizontal precipitation (fog drip) through fog (Fernández-Palacios and Nicolás, 1995), which adds a significant deal of water to the direct precipitation. Several studies concerning the amount of fog precipitation with partly contradicting results have been conducted (Prada et al. (2009), Regalado and Ritter (2010), Marzol Jaen (2002)), but it seems for sure that fog precipitation can exceed the vertical precipitation during the summer months (Still et al., 1999). Therefore, even in the dry summer season from June to August, the clouds sustain a semi-humid climate creating the necessary environmental conditions to conserve the supposed relict forest (Sperling et al., 2004) for which the dry summers of the Mediterranean climate are not suitable. More detailed bioclimatic belts were evaluated by del Arco et al. (2006).

Thus the trade wind clouds define the altitudinal range which represents a suitable habitat for the laurel forests.

The every reen sclerophyllous vegetation of the laurel forests is supposed to be of a relict character, because in the late Eocene it was spread in the whole Tethyan region, which is today Southern Europe and Northern Africa (Axelrod, 1975). This ancient vegetation is addressed as the Madrean-Tethyan flora. Laurus fossils and other laurel forest taxa from the Pliocene-Oligocene period were found in Central Europe as well as on the Black Sea coast (Rodríguez-Sánchez and Arroyo, 2008). Other fossils found on Madeira suggest that laurel forests had grown 20 million years ago on the Macaronesian islands (Guimarães and Olmeda (2008), Sziemer (2000)). With the beginning of the latest ice age and the development of the seasonal Mediterranean climate, the subtropical vegetation disappeared from the mainlands due to changing climate conditions: southern Europe became too cold and North Africa too dry ((Pott et al., 2003), Pott (2006), Wildpret de la Torre (1997)), but paleoclimatic data shows that the climate conditions on the Canary Islands have been more or less stable during the Quaternary glacial and interglacial periods (Rodríguez-Sánchez and Arroyo, 2008). Therefore, a number of taxa from the Madrean-Tethyan flora were able to survive there and in some areas of the mainlands, which makes the laurel forests as we know it today a pauperised version of the former Tertiary vegetation. Consequently, despite the somewhat misleading name "relict", today's laurel forests should not be seen as a Tertiary museum (Pott et al., 2003),

because species composition changed significantly over the time: they consist of relict taxa, which became extinct everywhere else, and modern taxa, which newly evolved in the Holocene (Bramwell (1976), Vargas (2007)). The vascular plant flora is more than 50 % endemic to the Canaries (680 taxa); also remarkable is the high proportion of endemic and endangered species native to the laurisilva (Reyes-Betancort et al. (2008), del Arco Aguilar et al. (2010)).

The species-rich tree layer in the laurel forest of Tenerife is made up by the four Lauraceae species Laurus novocanariensis, Persea indica, Apollonias barbujana and Ocotea foetens together with similar looking members of other families like Prunus lusitanica, Picconia excelsa, Ilex platyphylla and the more rare taxa Pleiomeris canariensis and Heberdenia excelsa. All those taxa have got similar laurel-shaped leaves which are characteristic for the temperate rain forests. Typical for the laurel forest are liana species and epiphytes (mosses, ferns) which grow on trunks and trees as well as a rich understory containing many endemic species (Wildpret de la Torre, 1997): It's the most diverse forest ecosystem on the Canary Islands (del Arco Aguilar et al., 2010).

On drier, colder and more exposed stands such as windswept crests and on poor soils, *Erica arborea* and *Myrica faya* are replacing the laurel forest species and form the species-poor formation of the Myrico fayae-Ericion arboreae, the heaths endemic to Macaronesia, which are also assigned to the monteverde. This community is also replacing the laurel forest on degraded stands as a succession formation (Pott et al. (2003), Guimarães and Olmeda (2008), Wildpret de la Torre (1997)).

Human Impact and Current State

The actual vegetation of the Canary Islands differs significantly from the potential natural vegetation (PNV) due to human intervention over thousands of years.

The transfiguration of the PNV started with the first inhabitants, the Guanches, a Berber ethnic that arrived on the Canary Islands approximately 2000–3000 years ago (de Nascimento et al. (2009), Parsons (1981)). Even as a pastoral society they started to change the vegetation not negligibly with their cattle and the need for firewood, as pollen analysis had shown (de Nascimento et al. (2009), Fernández-Palacios et al. (2011)). Another opinion is given by del Carmen Machado Yanes et al. (1997), accounting for limited overall impacts which could also be connected to climate changes. But undoubtedly the more important increase of the land use and rapid deforestation began with the conquest of the Castillians starting in 1402 and with the transition from a pastoral to an

agriculture society (Wildpret de la Torre, 1997). The wood from the laurel forest tree species was used for construction, firewood, coal, furniture and for poles on plantations. Additionally, the deep soils and the climate of the laurel forest areas were the perfect location for agriculture (Pott et al., 2003). Only 50 years ago, the main focus in economy shifted again, from agriculture to mass tourism, so that the land use magnified on the coastal regions, while half of all agriculture land (50,000 ha) began to lie fallow since 1986 (Günthert et al. (2012), Fernández-Palacios and Whittaker (2008)).

Today, most of the Canary Islands' vegetation is shaped by human activities, as it was shown by del Arco Aguilar et al. (2010) in a recent study: Only 26.7 % of the Canary Islands are covered with remnants of the PNV, while most parts of the islands are dominated by substitution communities and more rural or urban areas without significant vegetation. Well preserved laurel forest communities currently cover 10,181 ha on the Canary Islands, which are only 11.8 % of their potential distribution range (86,624 ha). Together, the *monteverde* covers 35.6 % of its potential area, with a higher proportion of the *fayal-brezal* substitution community: On Tenerife, 8,462 ha of substitutional *fayalbrezal* are present. Compared to the other vegetation complexes on Tenerife, the laurel forest has lost most of its former area, coming right behind the thermo-sclerophyllous woodlands (del Arco Aguilar et al., 2010).

The massive impact on the natural vegetation has lead to the situation that approximately one third of all endemic plant species are currently listed on the Red List of the Canary Islands (Reyes-Betancort et al., 2008).

Due to the fact that more agricultural used sites lie fallow, natural succession to secondary laurel forest becomes an important topic. *Erica arborea* and *Myrica faya*, the characteristic species from *fayal-brezal*, are considered as pioneer taxa, while *Laurus novocanariensis* is a non-pioneer, shade-tolerant species, regenerating by seedlings and suckers (Fernández-Palacios and Arévalo, 1998). The only long-term study from a larger disturbed area by Arévalo et al. (2008) comes to the conclusion that regeneration is very slow (much more than 20 years). But the state of mature laurel forest can be achieved again, if neighboured forest is intact to provide dispersion by birds and vegetative regrowth, which is one of the characteristic regeneration strategies in laurel forest species to maintain the species richness (Fernández-Palacios and Arévalo (1998), Arévalo et al. (2008)).

Conservation

As early as 1974, Voggenreiter (1974) recognised the necessity of conservation of the remnants of the native flora of Tenerife and described the massive transformation of natural vegetation in degraded areas or species-poorer secondary forest communities. To conserve the laurel forests existence is not just a matter of species and diversity protection, but people are benefiting directly from its existence: the forests, especially in steep places, are a protection against soil erosion and land slides. Secondly, on the Canary Islands water shortage is common, also because of increasing consumption, while the forest belts retard the run-off of rain water and add additional water from fog precipitation (Wildpret de la Torre, 1997).

Especially oceanic island ecosystems are more vulnerable, therefore they harbour a big proportion of endangered endemics (Caujapé-Castells et al., 2010), what is a future challenge for conservation science and island preservation.

Currently approximately 40 % of the Canary Islands, are under different levels of protection (Gobienero de Canarias, Reyes-Betancort et al. (2008)), this of course includes parts of the remaining laurel forest formations. For example, the laurel forests of La Gomera were protected since 1981 within the Garajonay National Park, on La Palma, laurel forests are included in the Biosphere Reserve of Los Tiles; both of them are declared by the UNESCO (Wildpret de la Torre, 1997). On Tenerife, there are the Anaga Rural Park (since 1987) with the most diverse laurel forests on the islands (Wildpret de la Torre, 1997) and the Teno Rural Park, both including continuous remnants of Tenerifes laurel forests, although Park Rural underlies a low level of protection (Reyes-Betancort et al., 2008).

As the best conserved laurel forest formations on the Canaries are considered Garajonay National Park (La Gomera), El Pijaral Reserve (Tenerife, Anaga) and Tiles Reserve (La Palma) (Guimarães and Olmeda, 2008). In autumn 2013, Anaga Rural Park entered the approbation period for becoming an UNESCO biosphere reserve in 2014 (Unknown, 2013).

According to Fernández-Palacios and Whittaker (2008), the about 20 % of former laurel forests, that remain today, are in a stable and save extent, but in a regrettable state of conservation (Fernández-Palacios et al., 2011), as the existing conservation network has suffered from political decisions in the last years despite the warnings from the scientific community (Fernández-Palacios and de Nascimento, 2011).

Studies regarding the geographical distribution of the total flora diversity on the Canary Islands are lacking until now. Nevertheless, geographic and diversity patterns of

endemic spermatophyte plant taxa were investigated exhaustively and area-wide (Reyes-Betancort et al. (2008), Caujapé-Castells et al. (2013)). Subject to studies concerning genetic diversity were mostly endemics (Silvertown (2004), Trusty et al. (2005), Fuertes-Aguilar et al. (2002)), but there are also analyses concerning phylogeographic patterns of wider-spread species, for example in *Picconia* (Ferreira et al., 2011) and *Erica* (Désamoré et al. (2011), Désamoré et al. (2012)). Overall, the genetic diversity of Canary Island species is higher than of mainland species due to great geological age and the gene flow from mainland areas Francisco-Ortega et al. (2000).

Studies concerning intra-island diversity in a small scale are missing, despite the fact that the protection of genetic diversity is today recognised as an important issue in conservation.

4. Aims of this Study

In the doctoral thesis at hand, a model-like characterisation of the laurel forest with a focus on Tenerife, using two model plants, is provided. We aimed to analyse the population structure of *Laurus novocanariensis* and *Ixanthus viscosus*, two characteristic species from the laurel forest of the Canary Islands, representing one canopy-building and dominant tree species, which can be seen as an indicator of former laurel forest vegetation communities, and an endemic perennial understory herb which seems to be restricted to the more intact respectively primary laurel forest stands.

The priority here is not only to analyse distinct, representative populations, but also to provide a fine-scale overall genetic landscape that covers the whole distribution area of those model plants, showing the connection between genetic diversity level and geography by using an area wide exhaustive sampling of the target species. Genetic hotspots and genetic pauperised areas were identified and could be set in context to regions, fragmentation intensity and existing areas under protection, as genetic diversity is considered important for conservation efforts as well as for succession of fallow lands.

Additionally, in search for environmental factors as another explanation for the distribution of present genetic diversity apart from population history and human influence, the ecological niches for both species were determined from their current distribution range using biologically meaningful climate parameters.

5. Model Species: *Laurus novocanariensis* and *Ixanthus viscosus*

Two model species from the laurel forest were chosen to analyse the diversity patterns in the laurel forest remnants of Tenerife: *Laurus novocanariensis* Rivas Mart., Lousâ, Fern.Prieto, E.Díaz, J.C.Costa & C.Aguiar and *Ixanthus viscosus* (Aiton) Griseb.

5.1. Laurus

Laurus novocanariensis is a broadleaved, evergreen tree from the family of the Lauraceae, and is distributed in the Mediterranean and in laurel forests of the Macaronesian biogeographic region. On the Canary islands, the laurel tree is known as "loro".

The Lauraceae are a large family of mainly woody species. Rohwer (1990) outlined it with approximately 50 genera and 2500 to 3000 species, which have their emphasis of distribution in the tropics and subtropics, with one exception of four species respectively genera of this family on the Canary Islands (*Laurus novocanariensis, Apollonias barbujana, Persea indica* and *Ocotea foetens*). Newer phylogeographic analysis are supporting an early split of a Gondwanean and Laurasian-South American group (Rohwer, 2000), but until now there is no overall-phylogenetic tree for the family due to the amount of species and the very low intrafamily genetic divergence (Rohwer (2000), Chanderbali et al. (2001)). Morphology and flower characters in the family are elusive and currently do not support the molecular identified lineages within the family (Rohwer (2000), Rohwer and Rudolph (2005), Chanderbali et al. (2001)), therefore, major rearrangements and a finer phylogeny are to be expected.

By today the taxonomic background of the genus *Laurus* is not clarified. Traditionally, two species of the genus had been distinguished: *Laurus nobilis* L. in south and western Europe and *Laurus azorica* (Seub.) Franco on the Azores, the Canary Islands and Morocco, but in 2001 Arroyo-García et al. (2001) asked for a taxonomic revision due to their findings in AFLP analysis, which showed closer relationships of samples from the Canaries and the Iberian Peninsular than from the Iberian Peninsular itself. Concurrent

5. Model Species: Laurus novocanariensis and Ixanthus viscosus

results were discussed by Rodríguez-Sánchez et al. (2009) who came with the call for only one species within the genus. Contrastingly, Rivas-Martínez et al. (2002) provide a newer concept of three species, which distinguishes *Laurus nobilis* in the Mediterranean, *Laurus azorica* on the Azores and *Laurus novocanariensis* Rivas Mart., Lousâ, Fern.Prieto, E.Díaz, J.C.Costa & C.Aguiar., which includes Madeiran, Canarian and Moroccanian populations. This study only deals with individuals from the Canary Islands (plus an subgroup from the Azores), therefore the taxonomic discordances are negligible for this and, in the following, the Canarian taxon is addressed as *Laurus novocanariensis*.

Overall genetic diversity is low within the genus (Rodríguez-Sánchez et al., 2009), but the diversification of extant *Laurus* took place in the eastern Mediterranean, followed by westward range expansion and subsequent diversification, combined with range contraction and break-ups during the Quaternary Ice Age. The colonisation of the Canary Islands could not be reconstructed until now due to the lacking of haplotype diversity (Rodríguez-Sánchez et al., 2009), but the climate on the Canary Islands as well as in some refugia in the Mediterranean is assumed to be suitable for *Laurus* all over the LGM (Rodríguez-Sánchez and Arroyo, 2008), which makes *Laurus* one of the Tertiary relict plant genera in Europe.

The species *Laurus novocanariensis* Rivas Mart., Lousâ, Fern.Prieto, E.Díaz, J.C.Costa & C.Aguiar is one of the most abundant and canopy-building tree species in the laurel forests (Rivas-Martínez et al. (1993)) of the Canary Islands. As a character species, its relatively broad ecological amplitude allows it to grow wherever the evergreen, broadleaved forests of the Canary islands are present, which is in elevations between about 500 and 1200 meters on areas influenced by the trade winds. Traditionally, the wood from laurel trees was used for poles for crops and firewood (Pott, 2006), the leaves were also used as spices and are still until today (Rivera and Obón, 1995), the fruit essential oil is used by the local population for several therapeutic treatments (Castilho et al., 2005).

Like many plant and animal species from the Canary Islands, *Laurus novocanariensis* is a well-studied taxon. For example, numerous studies deal with tree regeneration (Fernández-Palacios and Arévalo, 1998), sex ratio and pollination (Forfang and Olesen, 1998), seed bank analysis (Arévalo and Fernández-Palacios, 2000) and physiological traits (González-Rodríguez et al. (2001), Jimenez et al. (2000), Morales et al. (2002)). More recent studies are concerned with the laurel forest as an ecosystem and direct and indirect human impact (Nogué et al. (2013), Martín et al. (2012)). Former phylogeographic studies cover the whole Mediterranean area and show no resolution on Macaronesian level (Arroyo-García et al. (2001), Rodríguez-Sánchez et al. (2009)), therefore nothing is known about the population structure and distribution of genetic diversity within the

5. Model Species: Laurus novocanariensis and Ixanthus viscosus

Canary Islands until now.

5.2. Ixanthus

Contrastingly, there are only few studies about the second model species, *Ixanthus viscosus* (Aiton) Griseb. (Kanarenenzian).

Ixanthus is a monotypic Canary Island endemic, which is distributed on all western islands (Kunkel, 1993).

According to Schönfelder and Schönfelder (1997), *Ixanthus*, from locals addressed as *Reina del monte*, is a perennial, basal woody herb, which grows up to two meters in height. During its flowering time March to July, yellow, typical Gentianaceae flowers appear. The leaves are opposite and show three to five conspicuous parallel nerves. *Ixanthus* is an understory plant of the primary laurel forest, distributed as a character species in the communities of Ixantho-Laurion azoricae Oberdorfer ex Santos respectively Ixantho viscosae-Laurion novocanariensis Oberdorfer ex Santos in Rivas Martínez, Amaiz, Barreno & A. Crespo, where it is frequently distributed (Rivas-Martínez et al., 1993). Its emphasis is in the moistest and shadiest stands of laurel forest, which are supposed as the most undisturbed forest areas. The existence of scattered presence of this species is considered as proof for the formerly wide spread laurel forests on the Canary Islands (Stierstorfer, 2005).

Altogether, little is known about this species.

Apart from studies concerning ethnobiology, phytopharmacology and phytochemistry (Darias et al. (1989), Bravo and Herrera (1995), Ortega et al. (1988)), relationships were clarified in a phylogenetic study of Thiv et al. (1999). Based on nuclear *ITS* and chloroplast *matK* sequence data, the Mediterranean genus *Blackstonia* is considered a sister taxon. Chromosome counts suggest that *Ixanthus* (2n = 62) is a polyploid and dysploid of *Blackstonia* (2n = 20), (Thiv et al. (1999), Zeltner (1970)). A newer analysis of chromosome numbers shows 2n = 70 (Suda et al., 2005), which is of course not contrary to the former hypothesis.

Origin of the species is unclear by today, because an estimate from ITS divergence data suggests an age ranging from 6.6 to 47.1 million years, which was the time of the laurel forests in African Mainland and the Canary Islands after they emerged from the Atlantic ocean (Thiv et al., 1999). Newer estimates based on ITS and matK data (Kondraskov et al., in prep.) give an age for the crown group from 0.866 mya (0.298 to 1.5899 mya).

Part III.

Material and Methods

6. Sampling

For this study, we sampled two species from the Canary laurel forest: The widespread tree species *Laurus novocanariensis* and *Ixanthus viscosus*, a perennial herbaceous understory plant (for details see Introduction). The primary focus of this study lies on the island of Tenerife, thus the biggest amount of samples derived from there. The other Western Canary Islands and Sao Miguel (Azores) were only sampled exemplarily for comparison and not exhaustive.

Figure 6.1.: Sampling for both species

Laurus novocanariensis (left map) and Ixanthus viscosus (right map). The dots are indicating the sample locations, the green area shows the actual occurrence of monteverde (laurisilva and his substitution communities) as defined by del Arco et al. (2003). Digital elevation model by GrafCan (also used in the following figures).

Most of the plant material used in this study has been sampled during two field trips in January and March 2010 on Tenerife (Spain). Additional material has been collected by Arnoldo Santos-Guerra, Alfredo Reyes-Betancourt (both Instituto Canario de Investigaciones Agrarias, Jardín de Aclimatación de La Orotava) and Mike Thiv (Staatliches Naturkundemuseum Stuttgart) between 2010 and 2012 on several excursions on the Canary Islands La Palma, El Hierro, La Gomera and Gran Canaria as well as on the Azores (Sao Miguel). The complete accession list is provided with Appendix A.

6. Sampling

For the exhaustive sampling of the complete laurel forest area, a sampling raster of 350 meters has been created based on maps of the actual distribution of the laurel forest (del Arco et al., 2003). If present, samples from young leaves of both species were taken in each of these squares. Additionally, all other nearby areas were checked for the occurrence of the two species, to gain a covering sampling over the complete species distribution area.

Of the sampling locations, GPS coordinates were taken by using a digital map with an elevation model to determine height above sea level as exact as possible. Picked leaf material was stored in silica gel instantly in the field and dried quickly.

On Figure 6.1 the sampling locations are indicated by red *(Laurus)* and green *(Ixan-thus)* dots. Altogether, 690 samples of *Laurus* (648 on Tenerife, 38 on the other Canary Islands, 4 on Sao Miguel (Azores)) and 199 samples of *Ixanthus* (181 on Tenerife, 18 on the other western Canary Islands) were collected.

7.1. DNA Extraction

Total genomic DNA was obtained from silica material after the standard cTAB protocol from Doyle and Doyle (1987) with some modifications as described below.

Tissue was ground with an automatic swing mill (PeqLab Precellys 24 homogeniser, Bertin Technologies) by adding three glass beads to 2 ml tubes. The homogenised material was incubated for 30 minutes at 60 °C on a thermoblock (Eppendorf) with 800 µl cTAB extraction buffer (including 2 % (w/v) CTAB, 100 mM Tris-HCl, 1.4 M NaCl, 20 mM Na-EDTA, pH = 8.0 and freshly added 0.2 % beta-Mercaptoethanol). After adding 500 µl cold chloroform-isopropanol (1:24, v/v), the mixture was incubated for 15 minutes at 4 °C and then centrifuged at maximum speed for 5 minutes. The upper phase (500 µl to 600 µl) were mixed with 500 µl of cool isopropanol and precipitated at -20 °C for 15 minutes. After 10 minutes of centrifugation and dismissing of the isopropanol, the pellets were washed twice with 300 µl of 70 % ethanol. After drying, 50 µl of water and 2 U of RNase were added and RNA was digested for 1 hour at 37 °C on a thermomix.

Concentration of the extracted DNA was measured on a Nanodrop ND-1000 Spectrophotometer (Nanodrop Technologies) and all samples were diluted to a final DNA concentration of 100 ng/µl for the AFLP procedure.

7.2. AFLP Procedure

AFLP analysis procedure followed mainly the protocol after Vos et al. (1995) with some modifications as in Paule (2010) and Landau (2009).

7.2.1. Restriction and Ligation

Approximately 550 ng of genomic DNA for *Laurus* and 275 ng for *Ixanthus* (using an slightly improved protocol) were digested during the restriction and ligation reaction for 3 hours at 37 °C in a volume of 15 µl containing 1x T4 buffer, 1x ATP, 50 mM NaCl, 75 µg BSA, T4 ligase (1.5 U), MseI (1 U), EcoRI-HF (5 U) and 0.4 µM Eco-RI adapter and

 3.4μ M MseI adapter. Reaction was stopped by an inactivation step of 10 minutes at 65 °C and then holds at 10 °C. The product was diluted tenfold for the following PCR step.

7.2.2. Preselective PCR

For preselective PCR, 2.5 µl of diluted restriction ligation product were amplified in a 12.5 µl volume containing 1x PCR buffer II (Applied Biosystems), 0.25U AmpliTaq polymerase, 2 mM MgCl₂, 0.8 mM dNTPs, 0.2 µM Eco-RI-A primer with one selective base (5'-GACTGCGTACCAATTCA-A-3') and MseI-C-primer (5'-GATGAGTCCTGAGTAAC-C-3') each. PCR started with an initial denaturation step at 72 °C for 2 minutes, followed by 20 cycles of 94 °C for 20 seconds, 56 °C for 30 seconds, 72 °C for 120 seconds, a final elongation at 60 °C for 30 seconds and a hold at 10 °C on a PTC Peltier Thermal Cycler (MJ Research). The PCR products were checked on a 1.5 % agarose gel for good amplification. For the following PCR step, products were diluted tenfold.

7.2.3. Selective PCR

For the selective PCR, 2.5 µl of the diluted preselective PCR product were used in a reaction volume of 12.5 µl containing $1 \times$ GoldTaq buffer (Applied Biosystems), 0.5 U AmpliTaq Gold (Applied Biosystems), 2.5 mM MgCl₂, 0.8 mM dNTPs, 0.08 µM EcoRI primer and 0.2 µM MseI primer (Eco primer fluorescence labelled). The touchdown PCR programme consisted of 36 cycles: 94 °C for 15 minutes, 13 cycles (94 °C for 30 seconds, 65 °C for 60 seconds, where temperature drops from 72 °C to 56 °C in steps of -0.7 °C, 72 °C for 90 seconds), followed by 23 cycles (94 °C for 30 seconds, 56 °C for 60 seconds, and a final elongation (8 minutes at 72 °C). The PCR products were checked on a 1.5 % agarose gel for good amplification.

Previous to the analysis of all samples, 64 different primer combinations were tested for amount of polymorphisms, reproducibility and readability of the fingerprints for both species, to choose that ones with the best overall quality. Following primer combinations were chosen for genotyping.

• Laurus:

I FAM-EcoRI-ACA/MseI-CAC,

II HEX-EcoRI-ACC/MseI-CAG,

III FAM-EcoRI-ACA/MseI-CTA.

- Ixanthus:
 - I FAM-EcoRI-ACA/MseI-CAC,
 - II TET-EcoRI-ACG/MseI-CTG,
 - III TAMRA-EcoRI-AGC/MseI-CTG.

7.2.4. Genotyping

Slightly different approaches were chosen for the genotyping of the two species. For Laurus, 2 µl FAM-labelled, 2 µl TET-labelled and 6 µl HEX-labelled product were multiplexed and diluted with 50 µl highly pure water. 1 µl of the multiplex was used together with 0.2 µl ET-ROX size standard and 5.8 µl highly pure water for electrophoresis in a MegaBace 500/1000 DNA capillary sequencer (Amersham Biosciences) using the following run parameters: sample injection voltage: 3 KV, sample injection time: 90 seconds, run voltage: 9 KV, run time: 100 minutes, GT dye set 1. For *Ixanthus*, 1.5 µl of each selective PCR product were cleaned using a Nucleofast-PCR clean-up plate (Machery-Nagel) by two cycles of adding 100 µl of water and 20 minutes of centrifugation at 4500 g. For genotyping, 1.2 µl of the purified, multiplexed product were mixed with 0.05 µl of ET-ROX size standard and 5.15 µl of highly pure water. Samples were electrophoretically separated on a MegaBace 1000 (Amersham Biosciences) with sample injection voltage of 3 KV, sample injection time of 45 seconds, run voltage of 8 KV, run time of 120 minutes using GT dye set 2.

Control samples and replicates were routinely included to check for reproducibility and consistence of the AFLP fingerprints. On each plate, one negative control containing no DNA was included to check for contamination and moreover, one DNA control was placed twice to ensure the consistency within each run. Additionally, one sample was genotyped in every run to compare the consistency between the runs. To check the error rate, replicated samples (double extracted and PCR-processed) were genotyped following the method of Bonin et al. (2004).

7.3. Scoring

Raw data was visualised using GeneMarker 1.90 (SoftGenetics LLC, USA) and scored half-manually. The software-implemented automatic scoring has been used together

with a scoring panel, but all peaks were manually validated and adjusted in case of not recognised, but distinct peaks. Unclear peaks and thus with a large range in fluorescence intensity were excluded from analysis, as well as peaks under 60 bp and over 545 bp.

Scored data were exported and converted into a binary presence/absence matrix for further analysis.

7.4. High Resolution Melting

In addition to AFLP fingerprinting, we chose to scan for chloroplastic variation in Tenerifes *Laurus* population. For chloroplast marker genotyping, five chloroplast markers in *Laurus* were sequenced for six individuals and checked for SNPs.

Primers were chosen according to Shaw et al. (2005) and the following five markers were amplified and sequenced:

- rps16 rps16For 5'-ACT TCA GGA AAC AGC TAT GAC GTA GCG GGA ATC GAA CCC GCA TC-3' rps16Rev 5'-TGT TTT CCC AGT CAC GAC AAC ATC WAT TGC AAS GAT TCG ATA-3'
- matK/psbA matK8F 5'-ACT TCA GGA AAC AGC TAT GAC TCG ACT TTC TTG TGC TAG AAC TTT-3' psbA5'R 5'-TGT TTT CCC AGT CAC GAC AAC CAT CCA ATG TAA AGA CGG TTT-3'
- psbA/trnH psbAf 5'-ACT TCA GGA AAC AGC TAT GAC GTT ATG CAT GAA CGT AAT GCG C-3' trnH(GUG) 5'-TGT TTT CCC AGT CAC GAC CGC GCA TGG TCG ATT CAC AAT CC-3'
- trnS/5'trnL trnT ugu 2F 5'-TGT TTT CCC AGT CAC GAC CAA ATG CGA TGC TCT AAC CT-3'
 5'trnL uaaR TabB 5'-ACT TCA GGA AAC AGC TAT GAC TCT ACC GAT TTC GCC ATA TC-3'
- trnL/trnF IGS 5'-TGT AAA ACG AGC CAG TCG AAA TCG GTA GAC GCT ACG-3'
 5'-CAG GAA ACA GAT GAC CGA TTT TCA GTC CTC TGC TCT ACC-3'

The amplification was performed on a PTC Peltier Thermal Cycler (MJ Research) using the following conditions: 3 minutes at 95 °C, 35 times (30 seconds at 95 °C, 30 seconds at 54 °C to 64 °C (depending on primer pair) and 30 seconds at 72 °C), and 5 minutes final elongation at 72 °C. Prior to sequencing, PCR products were cleaned using the Wizard SV Gel & PCR Cleanup System (Promega) following the producers instructions.

For HRM, rps16 were chosen and genotyped for all individuals. Primers were designed following the suggestions of Corbett Research (2006): rps16for (5'-ATG ACT CAA ATC ATA GTC TAA TTG ATG ATT TTG TGG A-3'/rps16rev 5'-TTT CGA GCC GTA CGA GGA GAA-3'), these internal rps16 primers are flanking the region of interest. The amplified marker region covered 39 bp (97 bp with primers included) with the SNP at position 14 (51). Using the SensiMix HRM Kit (Bioline), in a total reaction volume of 12.5 µl, 1 µl DNA (100 ng/µl), SensiMix (1x), primer mix (25 µM) and 0.5 µl EvaGreen were mixed and amplified using a RotorGene6000 real time cycler (Corbett Research). For verification, six different individuals were sequenced after the first HRM experiment to check for the reliability of the melting curves. In the following experiments, these six samples were always used as standard samples for the comparison of the melting temperatures.

8.1. AFLP and HRM Data Analysis

8.1.1. Error Rate and General Analysis

The error rate of the AFLP fingerprints was obtained after the suggestions of Bonin et al. (2004). For calculating the error rate the number of mismatches was divided by the number of total comparisons out of replicated DNA samples. Untrustworthy markers were rejected and fragment sizes that also showed up in the no-DNA samples were deleted from the complete data set. Fingerprints with an obvious aberration were not used and the genotyping process was repeated.

General analysis (fragment numbers, fragment frequencies, private alleles) were made using the script AFLPdat (Ehrich, 2006), a series of functions written in R (R version 2.15.2, R Development Core Team (2006), www.r-project.org), and GeneAlEx 6.5.3b, an add-in for Microsoft Office Excel Peakall and Smouse (2012), Peakall and Smouse (2006).

8.1.2. Network Analysis

AFLP genotype phylogenies of both species were visualised in a neighbournet analysis as implemented in the software Splitstree 4.12.3 by Huson and Bryant (2006). For network construction, uncorrected p-values and equal-angle visualisation were used. For a better overview, geographic regions or structure population association were highlighted or only subsets of the complete data included.

8.1.3. Similarity Patterns

In order to analyse the similarity between individuals of both species, the software GenAlEx 6.5.3b was employed with calculating a principal coordinate analysis (PCoA) based on a distance matrix of pairwise distances. The first three axes were calculated using standardised covariances. Visualisation of the first two co-ordinate's scatterplot was performed using SPSS 19 (IBM, SPSS Statistics).

8.1.4. Population Structure

To have a closer look at the population structure, both datasets were analysed using the software STRUCTURE 2.3.3. Pritchard et al. (2000) with the function for dominant markers by Falush et al. (2007) and correlated allele frequencies Falush et al. (2003). For both species, the complete dataset was analysed. The Tenerife data was additionally analysed separately. Additionally, for *Laurus*, a sub-dataset containing 15 individuals from the different main Tenerife gene pools (according to analysis of the complete data) and all samples from other islands, to overcome biased results caused by imbalance of the sample density. AFLPdat Ehrich (2006) was used to obtain the input data file with a top-row of zeros to account for the recessive alleles, as required by Falush et al. (2007). As suggested by Pritchard et al. (2000), the admixture model with correlated allele frequencies was used, and compared with the results from the non-admixture model. Analyses were run ten times from K = 1 to K = 10 (K = 15 for *Laurus*) with a burn-in of 200k and 1000k repeats.

The R-script STRUCTURE-Sum 2.2 (Ehrich et al. (2007), update 2009) was employed with the analysis of the evaluation of the most likely K after the method of Evanno's deltaK (Evanno et al., 2005), additionally, similarity after Rosenberg et al. (2002) was incorporated. To compare the runs, CLUMPP version 1.1.2b (Jakobsson and Rosenberg, 2007) was used to match-up the clusters of replicate runs and to calculate the average of cluster distribution over all similar run results. To compare different models, the non-admixture model and independent alleles were tried, as well.

Barplots were visualised in SPSS 19 and plotted on maps using the geographic information system software ArcMap 9.3.1 (ESRI Inc.).

The distribution of the molecular variance within and between different populations was tested with a non-hierarchical AMOVA (Analysis of molecular variance) implemented in the program Arlequin 3.5.1.3 (Excoffier et al., 2005), (Excoffier and Lischer, 2010). AMOVA based on Euclidean pairwise square distances. Compared populations were chosen according to their geographic location.

Additionally, populations of approximately 20 individuals were defined artificially from the exhaustive sampling (see also the passage "genetic diversity on population level") to calculate pairwise F_{st} with Arlequin 3.5.1.3. Results were plotted with the R-script R-lequin (Rcmd function implemented in Arlequin Excoffier and Lischer (2010)).

8.1.5. Geographic Patterns

A Mantel test (Mantel, 1967) was carried out using the function in Alleles in Space (Miller, 2005) to find out about if there is isolation by distance (IBD) or a geographic structure in the genetic variation of AFLP genotypes in the two model species.

Barrier analysis were carried out using the software Barrier 2.2 (Manni and Guérard, 2004), (Manni et al., 2004) to find putative barriers for genetic exchange between geographic regions for both model species, as well as for the complete data as for subdata only. Standard Voronoi tessellation and Delauney triangulation was used as well as standard and manually adapted virtual points to describe the map borders.

8.1.6. HRM Data Analysis

Data analysis was made using the HRM function of the RotorGene6000 Series Software 1.7 according to the manual of Corbett Research (2006). Using the three standard samples each as examples for the the two genotypes found, genotypes of all individuals were auto-called using a threshold of 90 %. Dubious samples were manually validated using the difference plot function and retested in the case of poor data quality, all other samples were assigned to one of the two genotypes.

8.2. Hotspots — Diversity in Geographic Space

8.2.1. Genetic Diversity on Individual Level and Diversity Map

The fact that *Laurus* and more or less *Ixanthus*, too, are continuously distributed over the middle elevation slopes on Tenerife's north implies difficulties with the use of the established, population-based analyses approaches. With other words, different methods would be more exacting to analyse the dataset without the loss of detailed geographic information.

The present exhaustive sampling covers the complete distribution area of both species. Hence, analysis methods using not distant populations with many individuals but single individuals per sample location over a continuous geographic space could be applied. Miller (2005) uses the same approach in his software Alleles in Space (AIS) by doing a landscape shape interpolation to visualize spatial pattern of genetic diversity. In order to analyse the genetic differences between single individuals in our exhaustive sampling and not just in between "artificial" populations, the AIS software was used to calculate a Delauney triangulation based connectivity network between geographically neighboured individuals. Between all pairs of neighbours, AIS calculates the simple genetic distance as

the proportion of mismatches and plots them in between the associated sample locations using the formula

$$D_{ij} = \sum_{k=1}^{n} \frac{d_k}{n}$$

To avoid IBD effects, genetic distances between all not directly neighboured individuals caused by the U-shape of Tenerife's northern shore were deleted manually afterwards. With this, genetic distances between distant individuals were excluded from the analysis.

The genetic distances (in AIS referred as "surface heights") were used for plotting them on a geographic map similar to the methodical approach in the Genetic Landscape GIS Toolbox by Perry et al. (2010), which only deals with distinct populations. Therefore, distance values from AIS were plotted in ArcMap (ESRI Inc.) and interpolated across the topography using the inverse distance weight algorithm (implemented in the Spatial Analyst Tool). It determines cell values according to linear decreasing weight of the input point values. The resulting surface of diversity was grouped into ten classes of diversity for visualisation and clipped to a layer of the recent occurrence of the two species, which are based on our sampling area and the potential area of the laurel forest as mapped by del Arco et al. (2003) (available from GrafCan, Gobierno de Canarias, tiendavirtual.grafcan.es/index.jsf, downloaded in 12/2009. The same is valid for the digital elevation model used in the depicted maps as layer).

8.2.2. Genetic Diversity on Population Level

To perform classical population genetic analysis, populations were defined in both datasets due to sampling location. It was aimed to define populations of approximately the same sample size (about 20 individuals) in an area as small as possible and without putative barriers included. Shannon index and Nei's diversity were calculated for all populations using the software Popgene 1.32 (Yeh et al., 1997) and AFLPdat (Ehrich, 2006). Basic statistical analyses (e.g. private alleles, allele number, proportion of polymorphic alleles) were performed for all populations using GenAlEx (Peakall and Smouse, 2012), (Peakall and Smouse, 2006).

In order to test the reliability of the chosen population assignment, populations were shifted across the map and defined in a second way and calculations were compared.

8.3. Ecology — Ecological and Bioclimatic Analysis

8.3.1. Ecological Analysis

In order to understand if genetic variance and divergence is connected to ecological parameters, several approaches were used in search for connections between variance and diversity levels and population structure and environmental influences.

For each sample location the actual main vegetation type (Monteverde, Fayal-Brezal, pine forest, scrubland, plantation or urban area), the type of disturbance (natural vegetation, substitution community, plantations or urban area) and the potential natural vegetation (PNV; mainly Monteverde higrófilo, húmedo and seco, Fayal of high altitude and Monteverde-Pinar transition zone) and altitude were evaluated. The obtained data was used to search for similarities between AFLP variation plus actual and potential natural vegetation in PCoA (see section above).

8.3.2. Bioclimatic Analysis

Ecological parameters are defining species towards their distribution range, therefore we aimed to find out which parameters are limiting the suitable areas for both model species. To achieve this, the complete sampled areas of *Laurus* and *Ixanthus* were used for an "inverse ecological niche modelling" using the software DIVA-GIS 5.2 (Hijmans et al., 2005), a freeware tool for mapping and analysing spatial data and especially to do ecological niche modelling (ENM) by including the WORLDCLIM databases (Hijmans et al. (2005), downloadable from http://www.worldclim.org).

Traditionally, ENM means the modelling of a geographic distribution of a species by the ecological parameters of a part of their known range. Contrary we used the complete distribution area from Tenerife of both species to extract the range of the 19 bioclimatic values and elevation. Central questions were to find out

- about the potential distribution range
- if the two model species occupy different ecological niches as suggested by their actual distribution
- which bioclimatic values are influencing the (actual) distribution area most
- if there are Bioclim values that explain the genetic diversity

For this, the 19 Bioclim values (11 derived parameters connected to temperature, 8 derived parameters connected to precipitation) in 30 arc seconds grids (one square kilo-
8. Data Analysis

metre) and elevation from the GPS data were included in the Bioclim modelling function. For every sample location, data from the climate database was extracted and used for further analysis in SPSS. Every Bioclim value and altitude were analysed using basic descriptive statistics and their frequencies visualised and compared in histogram plots. Comparison of the ecological niches of the two species was supported with statistical test (t-Test and Wilcoxon-Mann-Whitney-U-test) in SPSS 19 (IBM Statistics).

For both species, a PCoA was conducted with those 20 values to get insight in the variables that are contributing most to the variation in the dataset and about the distribution of genetic diversity in connection with temperature and precipitation.

Part IV.

Results

Complete AFLP fingerprints consisting of three scored primer combinations and geocoordinates, were successfully achieved for 672 (635 from Tenerife) individuals of *Laurus* and 180 (164 from Tenerife) individuals of *Ixanthus*. The three primer combinations for *Laurus* resulted in 249 (FAMI: 135, HEX: 59, FAMII: 55) clearly scorable fragment sizes (in the following addressed as markers) in the range from 60 to 545 bp in total, of which 94.4 % were polymorphic. For *Ixanthus*, three primer combinations resulted in 121 (FAM: 54, TAMRA: 31, TET: 36) clearly scorable markers, of which 56.2 % were polymorphic.

The binary matrices are provided with Appendix C on CD.

Calculation of the error rate following the suggestions of Bonin et al. (2004) yielded in a good reliability and reproducibility of the fingerprints of 1.19 % for *Laurus* (45 observed differences in 3787 comparisons) and 0.83 % for *Ixanthus* (18 observed differences in 2165 comparisons), which is more than sufficient for good AFLP reproducibility according to Pompanon et al. (2005).

9.1. Population Structure and Geographic Patterns

For Tenerife datasets, the Bayesian clustering algorithm of STRUCTURE produced similar results for both correlated and uncorrelated allele frequencies, the same holds true for analysis of the all-islands *Laurus* data (Tenerife and other islands). Therefore, for all analysis, results of the correlated frequencies model (Pritchard et al., 2000) were chosen for the following depictions.

For Laurus, the most likely ΔK in the Tenerife analysis was K = 5 (Evanno et al. (2005), Rosenberg et al. (2002)) for those, also the similarity was highest (figure 9.1 c and b). Genetic clusters of Tenerife are describing an unclear gradient from west to east over the island (figure 9.1 e) and therefore a geographic influenced distribution of different gene pools (figure 9.1 d). The biggest cluster (shown in green) is distributed in and dominating the western part from the Teno mountains over Icod, Orotava to the La

Figure 9.1.: Genetic structure of Tenerife's Laurus novocanariensis populations Laurus population structure as detected by the STRUCTURE admixture algorithm for K = 5. Above, the output of StructureSum for evaluating the most likely K is show (a: logarithmic probability of K from 1 to 15, b: similarity after Rosenberg et al. (2002), c: mean ΔK after Evanno et al. (2005)). d: locations of clusters. e: Barplots are showing the proportion of population assignment of all samples from west to east.

Matanza area, the second biggest cluster (depicted in red) is distributed in the easternmost regions (La Laguna area and Anaga mountains). The smaller genetic clusters are covering the whole area, whereas the violet cluster is most present in Teno and Anaga and the blue gene pool is prevailing in the area of Esperanza. Few of the individuals are non-admixed, most are of mixed population origin.

Figure 9.2.: Genetic structure of *Laurus* on the Canary islands For Tenerife, exemplary individuals from the different clusters of figure 9.1 were taken. The most likely K = 6 (upper barplots) K = 3 (lower barplots) are depicted, arrows are indicating islands that share proportions of their population origin. Determination of K: see figure 9.1.

Mixed populations and gene flow between rather distant regions were also present in the clustering analysis of laurel populations on all Canary Islands. The highest ΔK value proved to be K = 3, but also K = 6 has got a high similarity and ΔK (figure 9.2 b–d). Therefore, both options are shown in fig. 9.2 a. The blue cluster of K = 3

Figure 9.3.: Principal Coordinate Analysis (PCoA) of AFLP data (a-c): Laurus, (d): Ixanthus. (a) Colouring according to geographic origin. Filled circles are indicating eastern (Anaga) and western (Teno) end of the island, open circles are originating from middle Tenerife. (b) The other islands are displayed with different coloured filled circles. (c) Colours according to the main proportion of STRUCTURE clusters. (d): like (a), for Ixanthus.

splits up in three clusters in K = 6 (yellow, violet and brown), the red cluster in K = 3 is corresponding to the red and the blue cluster in K = 6, and the green cluster of Tenerife is consisting of the same individuals in both analysis. On island level, some individuals are not admixed, but all populations show smaller proportions of different origin populations. This gives an idea of recent and ongoing gene flow even between distant islands, for example Gran Canaria and El Hierro (violet gene pool). Because of this, the admixture model was used despite the island locations; the non-admixture model was not capable to resolve the population structure in this case.

Neighbournet of Laurus shows very little differentiation and a star-like structure which

does not contribute to the resolving of the population structure. As the AFLP data suggests, there are lots of polymorphisms between the genotypes, but no clear clustering of genetic groups.

Figure 9.4.: Genetic structure of Tenerife's *Ixanthus viscosus* populations (a–c) Evaluation of the most likely K (see figure 9.1). (d) Barplots of STRUCTURE no-admixture algorithm for the most likely K = 2 are displayed. (e) Barplots are showing the proportion of population assignment of all samples from west to east.

First two axis of the principal co-ordinate analysis for Tenerifes *Laurus* AFLP genotypes are displaying 48 % of data variation (first axis 27.65 %, second axis 20.51 %, third axis 7 %, therefore not shown), for the complete data (Tenerife and other islands) the values are slightly smaller. The PCoA is reflecting the uniformity of the data similar to the neighbournet and does not show a grouping in clear distinct clusters, but grouping of the individuals is congruent to the clusters in the STRUCTURE analysis. In figure 9.3, PCoA is shown in different colourings corresponding either to the geographic region or

the island the samples derive from. Even samples from the other islands show no clear separation from the Tenerife samples, especially samples from La Palma are included in the Tenerife cluster.

Contrastingly, *Ixanthus* shows a very different pattern in distribution of population clusters. The most likely K value was assigned to K = 2 in both analysis of the Tenerife individuals and the individuals from all islands (figure 9.4, only Tenerife data shown) using the non-admixture model with K = 2.

In the admixture model, K = 3 was most likely with a very scarce part of the third population and slightly no admixture in the individuals, therefore the non-admixture model was chosen, also because the population assignment of the individuals was similar. There is no obvious geographic distribution in the genetic cluster assignment of the samples, both populations are distributed more or less randomly across the island. Admixture between the two gene pools seems to be lower than in *Laurus*, although the gene pools are in closest neighbourhood.

Figure 9.5.: Neighbournet analysis of *Ixanthus viscosus* Colours in the map match the colouring of the groups in the Splitstree neighbournet to display the geographic distribution.

Nevertheless, the neighbournet for *Ixanthus* differentiates five major groups instead of two, which were distributed in different geographic regions on Tenerife (see figure

9.5), although only few splits are separating the groups. Groups in the neighbournet are corresponding mostly to the STRUCTURE clusters and give therefore more detailed information about the geographic patterns in population structure.

PCoA shows 46.95 % of the variation in the first two axes (first axis 26.6 %, second axis 20.35 %) and although the complete distribution range was sampled, clustering is stronger than in *Laurus*.

10. Laurus: High Resolution Melting (HRM) Analysis

Genetic variation in *Laurus* and the whole family of Lauraceae is considered as very scarce (Chanderbali et al. (2001), Rohwer (2000)) due to its evolutionary history. According to the low plasticity level in chloroplast markers in *Laurus* as reported by Rodríguez-Sánchez et al. (2009), only one single SNP in all analysed chloroplast markers could be discovered: in rps16 (40S ribosomal protein) one A/C polymorphism was found (addressed as A and C chloroplast types).

Nevertheless, the High Resolution Melt could be performed for all samples. Melting temperature T_m was approximately 0.4 °C higher for individuals with the C chloroplast type as indicated by Venter et al. (2001). They could be identified clearly using the normalised plot (normalised fluorescence to temperature) and the difference plot (normalised fluorescence minus A or C melting curve) as described by Corbett Research (2006).

Figure 10.1.: HRM (High Resolution Melting) of LaurusMap detail of western Tenerife (Teno mountains). Blue spots are indicating individuals with cytosine at the rps16 SNP position, red spots are samples with adenine.

After the first melting experiment, reliability of the HRM could be successfully consolidated with the sequence information of six individuals. Finally, three out of 672 individuals with AFLP fingerprints showed the C chloroplast type, all others belonging to the type A. All these C type individuals are originating from a small region in the Teno mountain range (see figure 10.1).

Therefore, this supposedly recent mutation is limited in its range and has not spread across the island, yet.

11.1. Diversity on Population Level

The calculation of Shannon index and Nei's gene diversity for the two different population assignments of the Tenerife *Laurus* and *Ixanthus* resulted in the same regions with a higher diversity, previously the Anaga and the Teno mountain range. When comparing results for the different population assignments, absolute values as well as geographic location of the populations with highest and lowest diversity were correlating, therefore, in the following description pertains to only one assignment per species. Due to geographic location, not all populations are containing the same number of individuals. Populations with less than 10 individuals were not included into the analysis and tagged on the map (e. g. southern population).

Range of Shannon's gene diversity index of populations with more than ten individuals were 0.1371 to 0.2233 for *Laurus* and from 0.0742 to 0.1295 for *Ixanthus*. For Nei's diversity, lowest values were 0.0905 for *Laurus* and 0.0494 for *Ixanthus*, highest values were 0.1454 and 0.0863. All results (Shannon, Nei, number of individuals, proportion of polymorphic markers) are given with the tables 11.3 and 11.2. Comparability of the absolute numbers for the two species is not given due to the different number of scored fragments.

In figure 11.1, results for Shannon's index are depicted. For both species, values were classified (8 classes) and visualised using gradually colouring. For *Laurus*, populations of highest diversity are located in the Teno mountains and eastern Anaga, a low diversity is found in populations in Icod, Chanajiga, near Monte Esperanza and Guamasa (for names of geographic regions see map 14.1). For *Ixanthus*, the highest values of Shannon's index are found in western Anaga and in the Calderetas-Esperanza region, average high diversity in Teno mountains and eastern Anaga. The populations with the lowest diversity level are located in and around the Orotava valley.

Shannon index for populations about 20 individuals. Green depicts a low, red a high diversity. Populations with less than 12 individuals are marked by an asterisk, see also the following tables.

Figure 11.2.: Pairwise F_{st} and number of pairwise differences Values are displayed for *Laurus* (top) and *Ixanthus* (bottom). Populations are displayed from West to East, the other islands at the bottom of the figures.

Pairwise F_{st} were calculated for both species with Arlequin. Figure 11.2 shows the results in a clear form, while the table (on CD) contains detailed numbers. Additionally, numbers for pairwise differences within and between the populations are displayed. For populations with more than ten individuals, pairwise F_{st} values range between nearly zero (populations 31 and 29) and 0.156 (populations 15 and 23) for *Laurus* and 0.023 (populations 07 and 08) and 0.358 (populations 01 and 08) for *Ixanthus*. Statistics for all populations are shown in table 11.2 and 11.3. Analysis of molecular variance (AMOVA) finds most of the variation within the populations for both species: for *Laurus*, 91.28 % are within populations, for *Ixanthus* 77.7 %. Similar results are obtained for the geographic regions as source for variance (see table 11.1).

Source of variation	d.f.	Sum of squares	Variance components	Fixation index	Percentage of variation
A Laurus Georegions				0.05232	
Among Populations	11	638.317	0.84168		5.23
Within Populations	622	9483.452	15.24671		94.77
B Ixanthus Georegions				0.18574	
Among Populations	7	139.538	0.85254		18.57
Within Populations	156	583.023	3.73732		81.43
C Laurus Populations				0.08719	
Among Populations	38	1490.527	1.41875		8.72
Within Populations	633	9402.526	14.85391		91.28
D Ixanthus Populations				0.22298	
Among Populations	14	220.829	1.03489		22.3
Within Populations	165	595.021	3.60619		77.7

Table 11.1.: Analysis of Molecular Variance (AMOVA) of *Laurus* and *Ixanthus* based on population and georegion level

Table 11.2.: Population analysis of *Ixanthus*

Population ID	Number of Individuals	Number of Polymorphic Loci	Percentage of Polymorphic Loci	Nei Index	Shannon Index
01	17	27	22.31	0.065	0.1007
02	16	22	18.18	0.0586	0.0886
03	17	26	21.49	0.0779	0.116
04	21	27	22.31	0.0677	0.1041
05	16	27	22.31	0.0757	0.1139
06	15	32	26.45	0.0863	0.1295
07	18	27	22.31	0.077	0.1153
08	17	22	18.18	0.0607	0.0911
09	8	18	14.88	0.0494	0.0742
10	16	23	19.01	0.0623	0.0941
11	3	7	5.79	0.022	0.0326
Canaria	2	3	2.48	0.0103	0.015
Gomera	5	20	16.53	0.0747	0.1058
Hierro	3	6	4.96	0.018	0.027
Palma	6	9	7.44	0.0289	0.0422

Population ID	Number of Individuals	Number ofPercentagePolymorphicofLociPolymorphic		Nei Index	Shannon Index
		LOCI	Loci		
00	20	87	34.66	0.1010	0.1549
01	20	92	36.65	0.1146	0.1747
02	19	104	41.43	0.1233	0.1883
03	21	108	43.03	0.1235	0.1899
04	20	117	46.61	0.1356	0.2089
05	20	122	48.61	0.1375	0.2113
06	20	106	42.23	0.1114	0.1731
07	15	99	39.44	0.1223	0.1867
08	20	114	45.42	0.1285	0.199
09	20	112	44.62	0.1275	0.1962
10	20	92	36.65	0.1009	0.1564
11	12	71	28.29	0.0928	0.1398
12	21	104	41.43	0.1204	0.1855
13	20	96	38.25	0.1138	0.1733
14	19	99	39.44	0.1133	0.1751
15	20	90	35.86	0.1011	0.1553
16	19	98	39.04	0.1174	0.179
17	19	103	41.04	0.1182	0.1817
18	21	110	43.82	0.1221	0.1891
19	20	96	38.25	0.1082	0.1663
20	16	92	36.65	0.1096	0.1673
21	23	103	41.04	0.1173	0.1803
22	22	109	43.43	0.1358	0.2064
23	20	114	45.42	0.1267	0.1966
24	21	129	51.39	0.1426	0.2205
25	20	118	47.01	0.1410	0.2146
26	21	95	37.85	0.1094	0.1669
27	20	91	36.25	0.1112	0.1701
28	20	110	43.82	0.1197	0.1843
29	21	105	41.83	0.1146	0.1781
30	20	95	37.85	0.1084	0.1667
31	21	109	43.43	0.1180	0.183
32	2	22	8.76	0.0363	0.053
33	2	19	7.57	0.0314	0.0458
Palma	14	82	32.67	0.1020	0.1547
Gomera	6	41	16.33	0.0640	0.0938
Hierro	5	45	17.93	0.0659	0.0978
Canaria	12	97	38.65	0.1112	0.1721
Azores	3	43	17.13	0.0723	0.1045

Table 11.3.: Populations analysis of Laurus

11.2. Genetic Diversity on Individual Level

Values for genetic distances D_{ij} ranged from -0.090 to 0.0926 for *Laurus* -0.068 to 0.070 for *Ixanthus*.

Values were imported and plotted in ArcMap, and after deletion of distances that are not connecting direct neighbours, inverse distance weight algorithm were applied. Classified to ten classes shaded from green (low diversity) to red (high diversity), interpolated areas were visualised (figure 11.3). For *Laurus*, genetic distances are shown for the whole area of potential distribution of laurel forest vegetation as defined by del Arco et al. (2003), for *Ixanthus*, parts of the potential distribution were excluded from the analysis because of the absence of *Ixanthus* from widespread parts of this area. We chose this way because over larger distances with no samples of one species, IBD effects are overlaying the existing diversity and diversity should only be displayed for regions with the species abundant. In Mantel test, the correlation of genetic and geographical distances (r) was similar for both model species: r = 0.16 for *Laurus* and r = 0.18 for *Ixanthus*, therefore, there is a slight isolation by distance in both species detectable. But nevertheless, the distribution gaps for *Ixanthus* were much wider than for *Laurus* and have therefore more influence on the evaluation of diversity patterns in geographic space.

Both species show centres of diversity in their distribution ranges. Genetic hotspots for *Laurus* are located in Teno mountains, in the eastern Orotava valley, near Guamasa and in western and eastern Anaga mountains. Highest diversity classes for *Ixanthus* were found also in Teno mountains and the Orotava region, hotspots in the Anaga mountains are more in the western and middle regions. In Orotava valley, sample density is very low due to scarce occurrence of laurel forest vegetation, therefore isolation by distance effects could not be excluded for this area. Nevertheless, genetic distances between the eastern and the western slopes of the Orotava valley and the single sample in the valley that could be found are relatively high. Areas between the Chanajiga region and Teno as well as the area around Guamasa were excluded because of wide gaps in the species distribution.

Consequently, hotspots of genetic diversity are similar in both species apart from regions were *Ixanthus* is not distributed any longer. Results are comparable to calculations at population level especially in *Laurus*, whereas the smaller population sizes and bigger ranges of the population area seems to influence the results of population diversity in *Ixanthus* (appears to be smaller in Teno and higher in the Esperanza region than in the individual approach).

Figure 11.3.: Maps of genetic hotspots Inter-individual genetic distances D_{ij} plotted using inverse distance weight interpolation. Interpolated area refers to the potential laurel forest area (del Arco et al., 2003) and to current species distribution.

This paragraph shows the connection of the two species to the actual and potential distribution of vegetation on Tenerife. For all samples, data for current vegetation communities, the PNV and the degree of disturbance have been extracted from maps del Arco et al. (2003). The analysis aimed to find out about the differences in the distribution of the model species.

It is obvious that the emphasis of the distribution of the two model species is slightly different when looking at the background of the vegetation community the samples derive from. With the area-wide sampling of both species and the defined sample density, our collection should exemplary represent the occurrence of *Laurus* and *Ixanthus* within their current distribution range.

In the tables 12.1, 12.2 and 12.3, the origin of the accessions of both *Laurus* and *Ixanthus* is indicated using total sample numbers and percentage for the actual main vegetation, type of disturbance and for the PNV.

With a focus on the main vegetation from which the samples derived, the biggest proportion (44 %) of the *Laurus* samples come from Fayal-Brezal (*Ixanthus*: 47 %), 22 % from urban area (*Ixanthus*: none), contrastingly, only 16 % are sampled in the laurel forest communities (*Ixanthus*: 45 %). In comparison it becomes clear that most of the *Laurus* samples derived from areas with substitution forms of the primary forest (Fayal-Brezal), with a secondary focus on the urban affected areas. In contrast to this, *Ixanthus* secondarily grows in the remaining laurisilva vegetation, mostly in the high elevations and humid monteverde, while it is not present in the urban areas, were *Laurus* is common as well.

When classifying the sample area in natural vegetation versus substitution communities, these patterns become more clear: the prevailing amount of samples were collected in substitution communities for both species, but the proportion of samples from natural vegetation (here monteverde) is prevalent in *Ixanthus*, whereas *Laurus* is also present in urban areas and agricultural areas (plantations). In this areas, *Ixanthus* is not distributed at all.

Focusing on the potential natural vegetation, more than 90 % of Laurus and 82 % of Ix-

	L	aurus	Ixanthus	
Fayal-brezal	277	(43.7 %)	77	(47.0 %)
Monteverde (dry)	12	(1.9 %)	6	$(3.7 \ \%)$
Monteverde (high elevation)	39	$(6.2 \ \%)$	27	(16.5 %)
Monteverde (humid)	50	$(7.9 \ \%)$	39	(23.8 %)
Monteverde (wet)	2	$(0.3 \ \%)$	1	$(0.6 \ \%)$
Natural pine forest	13	(2.1 %)	0	$(0.0 \ \%)$
Plantations	64	(10.1 %)	13	$(7.9 \ \%)$
Scrubland	36	$(5.7 \ \%)$	1	$(0.6 \ \%)$
Urban area	141	(22.2 %)	0	$(0.0 \ \%)$

Table 12.1.: Ecological Analysis — Main Vegetation

Table 12.2.: Ecological Analysis — Type Of Disturbance

	L	aurus	Ixanthus	
Natural vegetation (Monteverde)	103	(16.2 %)	76	(46.3 %)
Natural vegetation (Pinar)	13	(2.1 %)	0	$(0.0 \ \%)$
Substitution communities	314	(49.5 %)	88	$(53.7 \ \%)$
Plantations	63	$(9.9 \ \%)$	0	$(0.0 \ \%)$
Urban area	141	(22.2 %)	0	$(0.0 \ \%)$

Table 12.3.: Ecological Analysis — Potential Natural Vegetation

	L	aurus	Ixanthus		
Fayal (high altitude)	2	(0.3 %)	0	(0.0 %)	
Brezal (crests)	44	(6.9 %)	28	$(17.1 \ \%)$	
Monteverde higrófilo	42	(6.6 %)	14	$(8.5 \ \%)$	
Monteverde húmedo	383	(60.4 %)	101	$(61.6\ \%)$	
Monteverde seco	120	(18.9 %)	15	$(9.1 \ \%)$	
Monteverde-Pinar	31	(4.9 %)	6	$(3.7 \ \%)$	
others	6	(0.9%)		$(0.0\ \%)$	
Pinar	6	$(0.9 \ \%)$	0	$(0.0 \ \%)$	

anthus derived from areas of the potential distribution of the different laurisilva community areas (Monteverde higrófilo, Monteverde húmedo, Monteverde seco and Monteverde-Pinar). The PNV Fayal-Brezal of the ridges harboured both species, but *Ixanthus* in a huger proportion. Other PNV areas are not important for the natural distribution of the two monteverde species (most likely artefacts of samples close to the border).

In PCoA with AFLP data, no obvious pattern gives a hint that genetic variance in the datasets and the origin of the samples vegetation units are connected, the same is true for altitude (data not shown).

Furthermore, we aimed to investigate the bioclimatic limits for species distribution and to find out about putative differences between *Laurus* and *Ixanthus* to explain the different geographical extent of the distribution ranges.

For all samples of both model species, the 19 bioclimatic data plus altitude could be extracted for 1 square kilometre grids. Table 12.4 compares the minimum, maximum and median value for all these values for both species. Detailed frequency plots are shown in figure 19.2 (in Appendix B). T-test and Mann-Whitney-U-test showed for approximately only half of the bioclim parameters a significant difference.

Overall, the range in all ecological parameters is broader in *Laurus* than in *Ixanthus*. For instance, laurel samples ranged in their altitude between 374 and 1455 meters (range 1081 m), *Ixanthus* is distributed between 577 and 1193 meter above sea level (range 616 m), also the ranges of isothermality (bio3) and of seasonality (bio4) are broader for *Laurus* than for *Ixanthus*. Contrastingly, values for annual mean temperature (bio1) and annual mean precipitation (bio12) are more or less equal. Ranges of *Ixanthus* are covering 79 % to 100 % of the ranges of *Laurus* for the bioclimatic parameters. Contrastingly, for altitude *Ixanthus* is only covering 57 % (616 meters) of the *Laurus* range (1081 meters).

In a PCoA with the bioclim values, the first two coordinates are explaining 95 % of the variability in the data. Due to the connectivity of the parameters, which derive from temperature and precipitation data, all bioclimatic parameters are contributing more or less equally to the resolution of the data (see figure 19.1 in Appendix B). All temperature connected values (bio1 to bio11) contributed to the loading of the first coordinate, precipitation connected parameters are contributing to the second coordinate or to both. Altitude is more correlated to temperature than to precipitation.

BIO		Range	Minimum Ma		Maximum		Median		Standard Deviation	
	L.n.	I.v.	L.n.	I.v.	L.n.	I.v.	L.n.	I.v.	L.n.	I.v.
bio1	7.1	6.3~(89~%)	11.9	12.6	19.0	18.9	15.4	15.7	1.3	1.4
bio2	0.6	0.4~(79~%)	6.9	6.9	7.5	7.4	7.1	7.1	0.1	0.1
bio3	8.1	6.9~(86~%)	39.0	40.1	47.1	47.1	44.1	44.7	1.9	2.0
bio4	140.6	$111.2\ (79\ \%)$	275.2	276.6	415.7	387.8	315.3	307.2	29.0	30.0
bio5	4.3	4.10~(95~%)	23.1	23.30	27.4	27.4	24.6	24.8	0.8	0.9
bio6	8.7	7.60~(87~%)	3.9	4.90	12.6	12.5	8.4	8.8	1.6	1.8
bio7	4.4	3.60~(82~%)	14.8	14.80	19.2	18.4	16.2	15.9	0.9	1.0
bio8	8.6	7.5~(87~%)	8.3	9.3	17.0	16.8	12.8	13.2	1.6	1.8
bio9	4.7	4.4~(95~%)	17.2	17.4	21.9	21.8	18.9	19.0	0.9	1.0
bio10	5.0	4.7~(93~%)	17.6	18.0	22.7	22.6	19.6	19.8	0.9	1.0
bio11	8.5	7.4 (87 %)	7.5	8.4	16.0	15.9	11.9	12.3	1.6	1.8
bio12	216	207~(96~%)	364	373	580	580	518	519	38	45
bio13	37	35~(95~%)	72	74	109	109	100	99	7	8
bio14	2	2~(100~%)	1	1	3	3	1.67	1.91	0.71	0.71
bio15	9.8	8.2~(83~%)	80.3	80.3	90.2	88.6	84.6	83.9	2.2	2.2
bio16	106	100~(94~%)	196	202	302	302	277.8	276.1	19.1	23.1
bio17	10	$10 \ (100 \ \%)$	6	6	16	16	10.9	11.6	2.5	2.7
bio18	12	$12 \ (100 \ \%)$	9	9	21	21	17.3	17.5	2.4	2.8
bio19	115	111~(97~%)	145	149	260	260	238.6	236.1	19.7	25.6
Altitude	e 1081	616~(57~%)	374	577	1455	1193	838	861	189	134

Table 12.4.: Bioclimatic values: Comparison of the descriptive statistics

L.n. = Laurus novocanariensis, I.v. = Ixanthus viscosus. Parameters: bio1 = Annual Mean Temperature, bio2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)), bio3 = Isothermality (bio2/bio7) (* 100), bio4 = Temperature Seasonality (standard deviation *100), bio5 = Max Temperature of Warmest Month, bio6 = Min Temperature of Coldest Month, bio7 = Temperature Annual Range (bio5-bio6), bio8 = Mean Temperature of Wettest Quarter, bio9 = Mean Temperature of Driest Quarter, bio10 = Mean Temperature of Warmest Quarter, bio11 = Mean Temperature of Coldest Quarter, bio12 = Annual Precipitation, bio13 = Precipitation of Wettest Month, bio14 = Precipitation of Driest Month, bio15 = Precipitation Seasonality (Coefficient of Variation), bio16 = Precipitation of Warmest Quarter, bio17 = Precipitation of Driest Quarter, bio18 = Precipitation of Warmest Quarter, bio19 = Precipitation of Coldest Quarter, bio18 = Precipitation of Warmest Quarter, bio19 = Precipitation of Driest Quarter, bio18 = Precipitation Seasonality (Coefficient of Variation), bio16 = Precipitation of Warmest Quarter, bio19 = Precipitation of Driest Quarter, bio18 = Precipitation of Warmest Quarter, bio19 = Precipitation of Coldest Quarter, Altitude = Meters above sea level. % values display the percentage of Ixanthus ranges within Laurus ranges.

59

Figure 12.1.: PCoA of Bioclim parameters

A: Comparison of both species, B: Altitude classes for *Laurus*, C: Geographic regions for *Laurus*, D: STRUCTURE clustering for *Ixanthus*, E: *Laurus* diversity classes, F: *Ixanthus* diversity classes.

Altitude classes were chosen as following: 1: 370 m to 499 m, 2: 500 m to 599 m, 3: 600 m to 699 m, 4: 700 m to 799 m, 5: 800 m to 899 m, 6: 900 m to 999 m, 7: 1000 m to 1099 m, 8: 1100 m to 1199 m, 9: 1200 m to 1500 m. Geographic regions are referring to figure 14.1. Diversity classes are referring to figure 11.3, the neighboured diversity class has been extracted from the surrounding area and associated with the sample.

Part V.

Discussion

The laurel forest may be restricted to a closely defined niche on the Canary Islands, but within this range it acts as a highly dynamic vegetation complex. Being included in the monteverde together with the heath scrubs, it displays its dynamics in time through changes in species composition since the Miocene as well as in space. In former times forest fires induced the changes on its distribution range and extent, while in later times the Canary population had a massive influence on the laurel forest, on its distribution range and extent. In future climate changes may be a major driver of laurel forest dynamics. As disturbances play a key role in shaping biodiversity (Banks et al., 2013), knowledge of diversity patterns is essential for understanding the dynamics of the laurel forest communities throughout time.

13.1. Intra-Island Population Structure on Tenerife

Ranging immediately right behind the Hawaiian archipelago, the flora and fauna of the Canary Islands is the second-best understood worldwide (Sanmartín et al., 2008) and phylogenies have been published for many species from the Canary Islands and Macaronesia. The studied species are mostly Canary Island endemics and groups that have radiated on the islands. Contrastingly, there are no detailed analyses on phylogeography of the more common, typical Canarian species, like for example the laurel forest tree species. Phylogeographic studies of the last few years for *Laurus* show less (Arroyo-García et al., 2001) or no resolution within the Canary Islands (Rodríguez-Sánchez et al., 2009) at all, and no population genetics or intra-Canary Islands studies are available for the endemic *Ixanthus*, although it is widely distributed on the western Canary Islands laurel forests and a laurel forest character species. Hence no data on microgeographic resolution is present for this taxa, and if there are detailed small scale analyses, they focus on endangered endemics with smaller distribution ranges, which are not representative for the laurel forest genetic structure.

With respect to the interest of the Canarian laurel forest as an endemic, endangered ecosystem, we want to discuss phylogeographic patterns of two comparatively widespread

laurel forest species on intra-island level to gain insight into potentially general diversity patterns helpful for conservation management.

For our two model species we found different, albeit related patterns in population structure for Tenerife: both display a differentiation in an eastern and a western gene pool. In *Ixanthus* two clusters are distributed across Tenerife with no geographic pattern, whereas the emphasis of the two gene pools is reflected the pattern in *Laurus*. *Ixanthus* shows a more mixed and unclear pattern in STRUCTURE results, exhibiting more details in Splitstree neighbournet analysis. From the range of both species, the more fragmented distribution area of *Ixanthus* suggests theoretically a more distinctive pattern due to decreased gene flow in isolated populations, but this is apparently not the case. What explains the similar patterns in both species?

When analysing Canarian species distribution and phylogenetics, a common pattern has been found for Tenerife, showing a divergence on different levels affiliated with the mountain ranges of Anaga and Teno (Juan et al., 2000), in animals as well as in plant taxa. Vicariant sister taxa in these areas are present in different animal species, for instance in lizards, skinks, beetles (genera of *Calanthus* and *Pimelia*), mites, spiders (Dyseridae, (Macías-Hernández et al., 2013)) and cockroaches (Juan et al., 2000). For example, the lizard *Gallotia gallotti* shows a similar mitochondrial haplotype pattern across the north of Tenerife like our two model species. The timing in the split of lizard lineages is consistent with the geological hypothesis, that Anaga linked to the rest of the island only less than one million years ago, maybe only 100.000 years bp (Thorpe et al., 1995). Of course, there are many examples in plants with similar phylogenetic patterns on Tenerife, for instance in Olea europaea quanchica on population level (García-Verdugo et al., 2010), Festuca species (Díaz-Pérez et al., 2012), the endemic Anagyris latifolia (González-Pérez et al., 2009), Bystropogon taxa (Trusty et al., 2005). Most authors mention the complex geological history of Tenerife with the three paleo-islands (Ancochea, 1990), of which two, the Anaga and the Teno, are important for the laurel forest phylogenetic history. Used markers in the mentioned studies were nucleotide and chloroplast sequences as well as RAPD, causing different levels of divergence between the sister lineages in the studied taxa. But in all these cases the pattern has been connected with the volcanic genesis of Tenerife (Juan et al., 2000), whereas the pattern sometimes is more complicated due to lineage divergence, secondary contact and several colonisation events of and between the islands, as found by Désamoré et al. (2011) for *Erica arborea*, the heath scrubs of the Fayal-Brezal.

Therefore, we might suggest similar reasons for the phylogeographic patterns. As the

ages of the species are important for this pattern, at least *Laurus* would be old enough to be influenced by the island's genesis one million years ago (Kondraskov et al., in prep.). In *Ixanthus* the picture is slightly different. Due to the finding of only two gene pools in STRUCTURE and the radial structure in neighbournet, it is more likely that *Ixanthus* is a young species (Talavera et al., 2013), which would be consistent with the findings of Kondraskov et al. (around 0.8 mya). Thus *Ixanthus* is not a Tertiary relict species, but possibly old enough to be influenced by the geologic history of Tenerife.

Nevertheless, it is remarkable that colonisation events this old seem to be present in AFLP markers until today despite all changes in forest structure (de Nascimento et al., 2009) and distribution area reduction due to agricultural land use changes. Commonly, AFLP is used for resolving population structures which are not recognisable in nuclear or chloroplast markers that evolve too slowly to reveal recent patterns in population divergence. Following this we have to consider different reasons for the putative paleo-island population structure.

A second reason that could lead to a genetic differentiation or a genetic gradient apart from colonisation might be a limited gene flow due to distance and genetic barriers such as gaps in the distribution area or mountain ranges and rivers. A correlation of genetic and geographic distances is present in both species. Although it is not a strong signal, it has to be considered while interpreting results of clustering and divergence analyses. In BARRIER analysis, we could not locate distinct barriers to gene flow. Most likely, the fragmentation of the laurel forests, which started to become more intense 600 years ago, is still too recent to leave its imprint on population differentiation until today, considering also the long generation time and seed dispersion strategy for at least the laurel tree.

We speculate that the belt-like potential and current distribution area of both species on Tenerife results in a genetic gradient from West to East through IBD over time, although the area has been a continuous one for long times. Recent fragmentation may result in a more distinctive population pattern in the future due to genetic erosion and increased barriers to gene flow as it is hinted in *Ixanthus* neighbournet analysis. But until today, general low pairwise F_{st} values between populations on Tenerife suggest an ongoing gene flow and no isolation even between distant regions in both model species, for *Laurus* more than for *Ixanthus*. This is also visible in PCoA, showing a continuous scattering of individuals with no isolated groups and no clear separation of gene pools, regions and even islands.

Ixanthus' pairwise F_{st} values are considerably higher than Laurus' and also a higher

percentage of molecular variance is located between the populations of *Ixanthus* (see AMOVA analysis, 11.1). This accounts for higher isolation and less gene flow between the populations due to higher fragmentation of the distribution area. In the large distribution gap between La Esperanza and Anaga West a higher divergence between the individuals could be detected.

Taken together, the prevailing lack of private AFLP fragments and of heterogeneity between geographic regions or populations, the radial neighbournets and non-separating populations in PCoA lead us to the assumption that the observed patterns are not relics from island emergence, but more recent events, like a quick radiation or range expansion with subsequent genetic differentiation due to IBD effects for both species.

13.2. *Laurus* Population Structure on the Western Canary Islands and Gene Flow on Tenerife and Between Islands

Of course, this study can neither provides answers to the question of island colonisation nor to the origin of gene pools, lacking the sampling of mainland populations of both species. But the inclusion of populations from the other Western Canary Islands for comparison with our main study area Tenerife provide many interesting and new glimpses in the inter-island structure especially of Canarian *Laurus novocanariensis*.

For *Laurus*, in Arroyo-García et al. (2001) a close connection to the Iberian Peninsular populations has been found, in Rodríguez-Sánchez et al. (2009). The Canary Islands shared one haplotype with Morocco and Madeira, pointing to a subsequent colonisation of the Iberian Peninsular from Macaronesia.

When incorporating the situation in the Lauraceae family, it has to be considered that the lack of diversity and heterogeneity in the species *Laurus novocanariensis* is connected with the uniformity at family level, as it was shown and discussed in the phylogenetic studies by Chanderbali et al. (2001) and Rohwer (Rohwer (2000), Rohwer and Rudolph (2005)). Also other groups, like Rodríguez-Sánchez et al. (2009) were not able to obtain chloroplast markers which could resolve the laurel phylogenetic history on the Canary Islands, while the Mediterranean lineages show at least a few polymorphisms, which is consensual with our findings in chloroplast sequences for HRM analysis. Therefore, the AFLP method is well suited for resolving minor population structures on Canary Island level.

As it is depicted in the inter-island STRUCTURE analysis, there are no gene pools that

are exclusively for one island. In other words, no island harbours its own subpopulation of laurel trees. Small proportions of the gene pools are present in admixt individuals and gene pools are shared between islands in both STRUCTURE scenarios. On island level the admixture of the gene pools is even more obvious. Additionally, the occurrence of individuals from a distant main gene pool can be observed in another region of Tenerife, incorporated in individuals from the local main gene pool. The mixing of gene pools from different regions is also visible in the PCoA analysis. In conclusion, gene flow between different regions within the island and between the islands does occur.

The Lauraceae, including *Laurus novocanariensis*, have fleshy and oil-rich fruits, which are eaten by different animals, especially in the tropical and subtropical forests, what might be an approach for understanding the distribution of *Laurus* gene pools between the Western Canary Islands. Moreover, *Laurus* is only one of 15 tree species from the Macaronesian laurel forest, which fruits are bird-propagated (Arévalo et al., 2007). Therefore, the pattern we observed in *Laurus* is likely not unique in the Macaronesian region, although the mechanisms of dispersal by birds on oceanic islands are poorly understood until now (Nogales et al., 2012). The ability to long distance dispersal is well known in the Lauraceae, as they occur on remote islands and even dispersion history of *Laurus* in the Mediterranean seems to be driven by dispersal over longer distances and back colonisation events (Fernández-Palacios and de Nascimento (2011), Arroyo-García et al. (2001), Rodríguez-Sánchez et al. (2009)).

For bird propagated tree species a moderate to high level of genetic diversity and a weak population structure across islands are typical, as Sosa et al. (2013) indicated for some Macaronesian *Ilex* species. The *Ilex* genus is endemic for the laurel forest with fruits foraged by birds, just like *Laurus*. The much higher F_{st} values in Sosa et al. (2013) for *Ilex* might occur due to the use of a different marker system (microsatellites). As it has been found by Gaudeul et al. (2004), genetic differentiation in AFLPs is higher than in microsatellites, differentiation between the islands is much more smaller in *Laurus* than in the *Ilex* species.

Forfang and Olesen (1998) reported that the pollination of *Laurus* is achieved by insects of the Hymenoptera (Halictinae), Diptera (*Tachina canariensis*) and, in much smaller proportions, by others (e.g. Lepidoptera and Coleoptera). As a consequence, pollen of *Laurus* is not transported as far as that of wind-pollinated tree species. However, bigger bird species as well as mammals feed on the seeds of *Laurus*. This is known for the endemic pigeons that inhabit the laurel forests of the Western Canary Islands, Bolle's Pigeon *Columba bollii* and the Laurel Pigeon, *Columba junoniae* (Hernández

and Martín (2003), Gonzalez et al. (2009)), the Common Raven (*Corvus corax*, Nogales et al. (1999)), and the Blackbird (*Turdus merula*, at least regarding the Mediterranean L. nobilis, Hampe (2003)). Even smaller birds seem to forage on L. nobilis seeds, but for *Laurus novocanariensis* the main dispersers may be the laurel forest pigeons like on Madeira (Oliveira et al., 2002), because the pigeons are seen as the original seed dispersers of the tertiary lauroid vegetation (Hampe, 2003). For other birds, like the Common Raven, the successful germination from faeces has not been observed (Nogales et al., 1999) yet. The same is true for predatory birds as secondary seed dispersers (Padilla et al., 2012). Other seed foraging animals are introduced rats (*Rattus rattus*, (Delgado García, 2000)).

However, many bird species that have settled down on oceanic islands, have split into separate lineages due to missing gene flow even between adjacent and near islands, for example the Blue Tits (*Parus teneriffae*-group) on the Canary Islands (Dietzen et al., 2008). For the larger, putative fruit dispersers of *Laurus* seeds, *C. bollii* and *C. junoniae*, no splitting into subspecies is known for the Canary Islands. Therefore, gene flow between the pigeon populations is most likely, and consequently seed transportation between the laurel forests of the different Canary Islands or between distant parts of one island does occur, for example between western and eastern parts of Tenerife. This seed dispersal over longer distances appears to happen regularly enough to maintain gene flow and the mixing of populations, but rarely enough to allow differentiation, a positive correlation between geographic distance and genetic distance and increased F_{st} values between different island populations.

For *Ixanthus* we could not resolve the inter-islands pattern at all, as two STRUC-TURE populations were the most likely scenario again (data not shown). Therefore, the population patterns we observed are not so old enough to develop distant lineages, or gene flow between the islands is still sufficient to maintain the gene flow between the populations. Due to the usage of fewer AFLP markers in *Ixanthus* compared to *Laurus* and to a lower degree of polymorphy, a higher amount of markers may be helpful to resolve more precise patterns in population structure, provided that there is more to see.

14. Where is Diversity Highest? Localisation of Genetic Hotspots

Genetic diversity is affecting all levels of biodiversity: the fitness of individuals and populations, population viability and the ability to adapt to changes in environment, the development of new species, community structures and the functionality of ecosystems (Banks et al., 2013). This is why genetic diversity is as important as species diversity to protect and should be considered in conservation management.

Genetic diversity is not distributed equally in space, hence it depends on past colonisation patterns and population dynamics. Banks et al. (2013) discussed disturbance as the major driver in shaping biodiversity and genetic diversity through direct and indirect effects, thus it is interesting to study the situation of genetic diversity in the highly fragmented and range-limited laurel forest of Tenerife, which has lost about 90 % of its original range due to logging (del Arco Aguilar et al., 2010). The reduced population size leads to less allelic richness and disturbance in general leads to changes in differentiation through altered genetic drift and migration patterns (Banks et al., 2013).

We chose two different approaches to develop a map of genetic diversity, based on populations respectively on individuals, and compared the final outcomes. The first one is the traditional approach, which has been used by population geneticists for nearly 80 years to investigate genetic variation in populations (Manel et al., 2003). The second one does not have the pre-assumption of distinct populations, which is common in the field of landscape genetics (Manel et al. (2003), Manel et al. (2007)). However, after ten years of landscape genetics, studies of plants are in general still under-represented in this field (Manel and Holderegger (2013), Holderegger et al. (2010)). Nevertheless, landscape genetic approaches are useful tools to discover hotspots in geographical space, for both populations and individuals, even for more than one species at the same time, as it was shown by Vandergast et al. (2008) in order to answer conservation issues.

In both our model species it is obvious that the patterns of genetic diversity are highly comparable, whether achieved with the population-based or the individual-based approach. This confirms that the approach based on individuals is well suited for our

14. Where is Diversity Highest? Localisation of Genetic Hotspots

fine-scale sampling and AFLP fingerprinting, the latter being widely used in this field. So we could take advantage of the full resolution this kind of sampling provides in contrast to a sampling of distinct populations.

Moreover, the hotspots of both species are overlaying each other in most cases, showing that the emphasis of genetic divergences are similar in two — for laurel forest means — quite different species with even different current distribution ranges.

For both species, hotspots in genetic diversity are located in the Teno mountain range in western Tenerife and in the Anaga mountain range in the East. Figure 14.1 shows that these are the less fragmented remnants of laurel forest on the island. In the centres and the steepest parts of these mountains there has been less agriculture, and the biggest patches of intact forest communities remained in these areas. Today, big parts of Anaga and Teno are protected by law. This may lead to the assumption that fragmentation

Figure 14.1.: Geographic regions and Current Distribution of Laurel Forest

Hatched: regions that have been defined for analysis and the location names used. Green: current distribution of monteverde vegetation (del Arco et al., 2003).

and logging have reduced the genetic diversity in the other parts of the island. That is true at least for *Ixanthus*, which has disappeared from most smaller laurel stands in the agricultural area. Where it is still present, the diversity is rather low.

Laurus has a centre of diversity in the region between Guamasa and Calderetas, an urban affected area with no laurel forest, but only scattered remnants of laurel trees in an agricultural or rural environment with wide distribution gaps and the lack of saplings. In population analysis, both regions separately display low diversity indices, which implicates the impact of IBD effects for this area. Besides that it is possible that trees from roadsides or in urban areas are not remnants from logging left for shade, but planted, although this is not common (Alfredo Reyes-Betancort, pers. comm.). Therefore this region should not be considered as a natural biodiversity hotspot.

Taken together, Teno and Anaga can be addressed as the genetic hotspots in Laurus

14. Where is Diversity Highest? Localisation of Genetic Hotspots

and in *Ixanthus*. These centres of diversity are consistent with the study of Reyes-Betancort et al. (2008) dealing with the Canary Islands endemics, who states that endemic species richness, range size rarity and phylogenetic diversity are all highest in Teno and Anaga region as well as Ladera de Güimar, caused by their big ranges in altitude and humidity. Although we could not provide numbers for the overall species diversity apart from endemics, these parts of Tenerife are likely to be hotspots in species richness as they are in genetic diversity. Parts of the mountains are currently under protection of the category of *Parque Rural*, which focuses on sustainable ecosystem use and landscape protection, but not on species and diversity protection (Reyes-Betancort et al., 2008). Some special, smaller sites within the *Parque Rural* are more strictly protected, but they do not include all endemic species and only a small proportion of the genetic diversity.

Nevertheless, the overlapping of genetic diversity and endemic richness is convenient to designate these areas for conservation in the future.

15. Ecology Analysis

In this section the ecology of the two model species is discussed, and whether observed differences are natural or are caused by human degradation of the laurel forest ecosystem.

Figure 15.1 shows the current distribution of *Laurus novocanariensis* and *Ixanthus viscosus*. As both are species from the laurel forest communities, the difference in the distribution can be caused by two reasons: the spatial more limited *Ixanthus* could have a smaller ecological amplitude or degradation could have led to the shrinking of the distribution areas.

Figure 15.1.: Current species distribution Distribution maps of *Laurus novocanariensis* (left map) and *Ixanthus viscosus* (right map) based on area-wide, grid square sampling.

To answer this question, we analysed the biological relevant abiotic climate factors (so-called bioclimate values) related to temperature, precipitation and elevation and compared the ranges, in which the species were found. In all cases, the *Ixanthus* ranges are situated within the ranges of *Laurus*, and half of the bioclim parameters differ statistically significantly. The biggest differences in range distribution were observed for elevation, upper and lower boundary of *Ixanthus* were lower respectively higher than in *Laurus*, but the median elevation was equal in both species. When interpreting these

15. Ecology Analysis

data, one has to be careful with biased statistic, as the current distribution ranges are of course not the same as the potential distribution ranges, most likely they were reduced in their upper and lower boundaries due to forest exploitation and destruction. As the bioclimatic limits of *Ixanthus* are always within *Laurus* limits and differences are in most cases below 20 % there is no indication of different ecological niches concerning temperature and precipitation in the two species. This is also visible on figure 19.2 A, also no connection between bioclimatic parameters and diversity classes could be found. The figures 19.2 B and 19.2 C show the correlation between altitude and geographic regions. These are differing in temperature and precipitation regimes, what could cause a biased correlation between gene pools and climate, because climate is differing in the geographic regions (figure 19.2 D).

We conclude from our data, that the range differences observed between *Ixanthus* and *Laurus* are not due to different limits in temperature and precipitation.

Because samples were taken in defined grid squares, which were the same for both species, it is possible to compare the distribution of the species quantitative (absolute sample numbers) as well as qualitative (sample origin). As 648 samples were taken for *Laurus* and 181 for *Ixanthus* on Tenerife, *Ixanthus* is present in around 28 % of the grid cells *Laurus* is occupying. In other words, because *Ixanthus* is a character species for the laurel forest, it is interesting to know why it has not been found in the complete laurel distribution range.

Ixanthus is only distributed in present-days monteverde. More or less half the samples were collected in laurel forest and half in fayal-brezal, but not in urban areas and in agricultural used areas, were Laurus is additionally distributed. Therefore, we could not agree with the statement of Stierstorfer (2005), that Ixanthus is mostly found in the moistest and shadiest places of the laurel forests. It might be the character species of the Ixantho viscosae-Laurion novocanariensis, but it is no indicator species for primary and undisturbed laurel forest, as it was our first impression. Moreover, Ixanthus is mostly missing in humid laurel forest (Ocotea communities) and in the shadiest places (pers. obs.). As the current distribution of Ixanthus is reduced compared to Laurus and it is missing in urban areas, its existence seems to be connected to advanced succession of fayal-brezal, as it is missing in the early, that means younger than 20 years, stages of succession (Fernández-Palacios and Arévalo (1998), Arévalo et al. (2008), Evers (2003)). But most studies concerning laurel forest regeneration are focused exclusively on tree species, therefore, precise data are not available. Due to our observations, it is only present in secondary forests when laurel saplings or trees are established, there-
15. Ecology Analysis

fore the species seems to depend on soil regeneration or more shady places (R. Pott, pers. comm.). Therefore, not the abiotic parameters are the most important for the existence of *Ixanthus*, but the biotic ones. Consequently, as regeneration in the degenerated monteverde areas proceeds, this endemic plant species is likely to extent its current distribution range again, as it might be for other endemics depending on the laurel forest.

16. Future Threats and Conservation Opportunities — Diversity and Land Use Changes

The main events that threaten the laurel forests of the Canary Islands in its continued existence are the shrinking of the natural habitat due to human activities and the changing of the climate, in the past as well as in the future.

Although climate change is crucial to this endemic and very restricted vegetation complex, climate models were not part of this study. But first approaches were made in the analyses by Still et al. (1999), Sperling et al. (2004) and Rodríguez-Sánchez and Arroyo (2008), showing the range dynamics of the laurel forest throughout time and giving forecasts for the consequences of the shifting in the trade wind cloud layer, that will of course affect the future potential distribution of the laurel forests, as their current distribution range is closely connected with the direct and horizontal precipitation from the trade wind clouds. This might be quite important, as montane cloud forests on islands are considered among the most sensitive ecosystems to climate change due to their steep microclimatic gradients (Loope and Giambelluca, 1998). But currently, detailed prognoses for Tenerife and the other Canary Islands are hard to achieve due to the resolution of climate data and the high relief differences, that make it hard to interpolate data from bigger grids to fine scale.

The direct human influence on the natural vegetation is at least as much important. The most drastic deforestation period is over since 1988, when the protection state was achieved for certain areas. In the last years, only illegal logging has lead to smaller losses of primary forests, as well as fires — natural or through arson, for example in the laurel forest areas of La Gomera in 2012 — but main human disturbances has been stopped since nearly 50 years (Arévalo et al., 2007). Parts of laurel forests remnants on Tenerife, were approximately 10 % of the former area is left today according to del Arco Aguilar et al. (2010), are under protection already, but as discussed by Fernández-Palacios and de Nascimento (2011), are the conservation issue and its enforcement always underlying

16. Future Threats and Conservation Opportunities — Diversity and Land Use Changes

political trends and vicissitude.

Over 50 years ago, the main focus of Tenerife's economics have started to shift from agriculture, which affected huge proportions of the laurel forest regions, to tourism, which is more abundant in the coastal regions. This caused many of the vegetable patches in higher elevations go fallow, leaving areas for the laurel forest to recolonise. These very dynamic processes are currently in the focus of geographic research (Günthert et al. (2012) and PhD thesis (2014)).

For the recolonisation of former laurel forest areas, diversity — on species as well as on genetic level — in the surrounding areas is important. The questions, which geographic potential is developing due to land use changes on Tenerife and how this is connected to genetic diversity in this regions, are subject of an interdisciplinary project, were we connect the fields of geography and biology very closely, gaining insights in the highly dynamic interface of spatial patterns and genetic diversity.

17. Outlook

For a better understanding of the population dynamics and future developments of the laurel forest's diversity and extent there are some more steps to be taken.

This work does not resolve the issue of colonisation history of the two analysed species on the Canary Islands. To answer this question for *Laurus* would be a great step in understanding the history of the laurel forest in Macaronesia. For *Ixanthus* it would clarify the population structure of a Canary Island endemic taxon, which is hardly understood up to now.

For the purposeful conservation coordination, it would be of great interest to compare overall species diversity with genetic diversity. This work is a first step in understanding genetic hotspots on species level for the vegetation of the laurel forest.

Furthermore, bringing together genetic diversity, species diversity, land use change and climatic influences to understand the dynamics of the laurel forest will be subject in the future for giving the best interdisciplinary scientific counsel for effective conservation planning of this unique ecosystem.

Aboal, J. R., M. S. Jiménez, D. Morales, and J. M. Hernández 2002. Net below canopy fluxes in Canarian laurel forest canopies. *Journal of Hydrology*, 264:201–212.

Ancochea, E.

1990. Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. J. Volcanol. Geotherm. Res., 44:231–249.

Arroyo-García, R., J. M. Martínez-Zapater, J. A. Fernández Prieto, and R. Álvarez Arbesú

2001. AFLP evaluation of genetic similarity among laurel populations (Laurus L.). *Euphytica*, 122:155–164.

Arévalo, J. and J. Fernández-Palacios 2000. Seed bank analysis of tree species in two stands of the Tenerife laurel forest (Canary Islands). Forest Ecology and Management, 130:177–185.

- Arévalo, J. R., J. D. Delgado, and J. M. Fernández-Palacios 2007. Variation in fleshy fruit fall composition in an island laurel forest of the Canary Islands. Acta Oecologica, 32(2):152–160.
- Arévalo, J. R., M. Dolores Peraza, C. Álvarez, A. Bermúdez, J. Domingo Delgado, A. Gallardo, and J. María Fernández-Palacios 2008. Laurel forest recovery during 20 years in an abandoned firebreak in Tenerife, Canary Islands. Acta Oecologica, 33:1–9.

Axelrod, D. I.

1975. Evolution and Biogeography of the Madrean-Tethyan Sklerophyllous Flora. Annals of the Missouri Botanical Garden, 62:280–334.

Banks, S. C., G. J. Cary, A. L. Smith, I. D. Davies, D. A. Driscoll, A. M. Gill, D. B.

Lindenmayer, and R. Peakall

2013. How does ecological disturbance influence genetic diversity? Trends in Ecology & Evolution, 28(11):670–679.

Bonin, A., E. Bellemain, P. B. Eidesen, F. Pompanon, C. Brochmann, and P. Taberlet 2004. How to track and assess genotyping errors in population genetics studies. *Molecular Ecology*, 13:3261–3273.

Bramwell, D.

- 1976. The Endemic Flora of the Canary Islands; Distribution, Relationships and Phytogeography. In *Biogeography and Ecology in the Canary Islands*, G. Kunkel, ed., volume 30 of *Monographiae Biologicae*, Pp. 207–240. Springer Netherlands.
- Bravo, L. and M. D. Herrera

1995. Effects of Ixanthus viscosus extracts on the central nervous system. *Planta Med*, 61:71–72.

- Castilho, P., M. do Céu Costa, A. Rodrigues, and A. Partidário 2005. Characterization of laurel fruit oil from Madeira Island, Portugal. *Journal of the American Oil Chemists' Society*, 82(12):863–868.
- Caujapé-Castells, J., I. Sabbagh, J. J. Castellano, R. Ramos, V. Henríquez, F. M. Quintana, D. A. Medina, J. Toledo, F. Ramírez, and J. F. Rodríguez 2013. Transformer-4 version 2.0.1, a free multi-platform software to quickly reformat genotype matrices of any marker type, and archive them in the Demiurge information system. *Mol Ecol Resour*, 13(3):484–493.
- Caujapé-Castells, J., A. Tye, D. J. Crawford, A. Santos-Guerra, A. Sakai, K. Beaver, W. Lobin, F. V. Florens, M. Moura, R. Jardim, I. Gómes, and C. Kueffer
 2010. Conservation of oceanic island floras: Present and future global challenges. Perspectives in Plant Ecology, Evolution and Systematics, 12:107–129.

Chanderbali, A. S., H. van der Werff, and S. S. Renner 2001. Phylogeny and Historical Biogeography of Lauraceae: Evidence from the Chloroplast and Nuclear Genomes. Annals of the Missouri Botanical Garden, 88:104–134.

Coello, J.

1992. Evolution of the eatsern volcanic ridge of the Canary Islands based on new K-Ar data. J. Volcanol. Geotherm. Res., 53:251–274.

Corbett Research

6:187-195.

2006. High Resolution Melt - Assay Design and Analysis: CorProtocol.

- Darias, V., L. Bravo, R. Rabanal, C. Sánchez Mateo, R. González Luis, and A. Hernández Pérez 1989. New contribution to the ethnopharmacological study of the Canary Islands. J Ethnopharmacol., 25:77–92.
- Díaz-Pérez, A. J., M. Sequeira, A. Santos-Guerra, and P. Catalán 2012. Divergence and biogeography of the recently evolved Macaronesian red Festuca (Gramineae) species inferred from coalescence-based analyses. *Molecular Ecology*, 21(7):1702–1726.
- de Nascimento, L., K. J. Willis, J. M. Fernández-Palacios, C. Criado, and R. J. Whittaker 2009. The long-term ecology of the lost forests of La Laguna, Tenerife (Canary Islands). Journal of Biogeography, 36:499–514.
- del Arco, M., P. L. Perez-de Paz, J. R. Acebes, J. M. Gonzalez-Mancebo, J. A. Reyes-Betancort, J. A. Bermejo, S. de Armas, and R. Gonzalez-Gonzalez 2006. Bioclimatology and climatophilous vegetation of Tenerife (Canary Islands). Annales Botanici Fennici, 43 (3):167–192.
- del Arco, M., W. Wildpret, P. P. de Paz, O. Rodríguez, J. Acebes, A. García, V. E. Martín, J. A. Reyes, M. Salas, M. Díaz, J. Bermejo, R. González, M. Cabrera, and S. García 2003. Cartografía 1:25.000 de la Vegetación Canaria. GRAFCAN S.A. Santa Cruz de Tenerife.
- del Arco Aguilar, M.-J., R. González-González, V. Garzón-Machado, and B. Pizarro-Hernández 2010. Actual and potential natural vegetation on the Canary Islands and its conservation status. *Biodiversity and Conservation*, 19:3089–3140.
- del Carmen Machado Yanes, M., M. del Carmen del Arco Aguilar, J.-L. Vernet, and J.-M. Ourcival
 1997. Man and vegetation in northern Tenerife (Canary Islands, Spain), during the prehispanic period based on charcoal analyses. *Vegetation History and Archaeobotany*,

Delgado García, J.

2000. Selection and treatment of fleshy fruits by the Ship Rat (Rattus rattus L.) in the Canarian laurel forest. *Mammalia*, 64:11–18.

- Dietzen, C., E. Garcia-del Rey, G. Delgado Castro, and M. Wink 2008. Phylogeography of the blue tit (Parus teneriffae-group) on the Canary Islands based on mitochondrial DNA sequence data and morphometrics. J. Ornithol, 149:1– 12.
- Doyle, J. J. and J. L. Doyle 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phy*tochemical Bulletin, 19:11–15.

Désamoré, A., B. Laenen, N. Devos, M. Popp, J. M. González-Mancebo, M. A. Carine, and A. Vanderpoorten 2011. Out of Africa: north-westwards Pleistocene expansions of the heather Erica arborea. *Journal of Biogeography*, 38:164–176.

Désamoré, A., B. Laenen, J. M. González-Mancebo, R. Jaén Molina, N. Bystriakova, E. Martinez-Klimova, M. A. Carine, and A. Vanderpoorten 2012. Inverted patterns of genetic diversity in continental and island populations of the heather Erica scoparia s.l. *Journal of Biogeography*, 39:574–584.

Ehrich, D.

2006. AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol. Ecol. Notes, 6:603–604.

Ehrich, D., M. Gaudeul, A. Assefa, M. A. Koch, K. Mummenhoff, S. Nemomissa, I. Consortium, and C. Brochmann 2007. Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. *Molecular Ecology*, 16:2542–2559.

Evanno, G., S. Regnaut, and J. Goudet

2005. Detecting the number of clusters of individuals using the software STRUC-TURE: a simulation study. *Molecular Ecology*, 14:2611–2620.

Emerson, B. C.

^{2003.} Genes, geology and biodiversity: faunal and floral diversity on the island of Gran Canaria. *Animal Biodiversity and Conservation*, 26:9–20.

Evers, M.

2003. Die Vegetationsstruktur auf unterschiedlich alten Lorbeerwaldregenerationsflächen im Norden der Kanareninsel Teneriffa. Master's thesis, Johannes-Gutenberg-Universität Mainz.

Excoffier, L., G. Laval, and S. Schneider

2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. *Evolutionary Bioinformatics Online*, 1:47–50.

Excoffier, L. and H. E. L. Lischer

2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. *Molecular Ecology Resources*, 10:564–567.

Falush, D., M. Stephens, and J. K. Pritchard 2003. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. *Genetics*, 164:1567–1587.

Falush, D., M. Stephens, and J. K. Pritchard 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. *Molecular Ecology Notes*, 7:574–578.

Fernández-Palacios, J. and L. de Nascimento 2011. Opinion: Political erosion dismantles the conservation network existing in the Canary Islands. *Frontiers of Biogeography*, 3:106–110.

Fernández-Palacios, J. M.

1992. Climatic responses of plant species on Tenerife, The Canary Islands. *Journal* of Vegetation Science, 3:595–603.

Fernández-Palacios, J. M. and J. R. Arévalo 1998. Regeneration strategies of tree species in the laurel forest of Tenerife (The Canary Islands). *Plant Ecology*, 137:21–29.

Fernández-Palacios, J. M., L. de Nascimento, R. Otto, J. D. Delgado, E. García-del Rey, J. R. Arévalo, and R. J. Whittaker

2011. A reconstruction of Palaeo-Macaronesia, with particular reference to the long-term biogeography of the Atlantic island laurel forests. *Journal of Biogeography*, 38:226–246.

Fernández-Palacios, J. M. and J. P. Nicolás

- 1995. Altitudinal pattern of vegetation variation on Tenerife. *Journal of Vegetation Science*, 6 (2):183–190.
- Fernández-Palacios, J. M., R. Otto, J. Domingo Delgado, J. R. Arévalo, A. Naranjo, F. González Atiles, C. Morici, and R. Barone 2008. Los Bosques Termófilos de Canarias. *Cabildo Insular de Tenerife. Santa Cruz de Tenerife*, Proyecto LIFE04/NAT/ES/000064 Excmo.:192.
- Fernández-Palacios, J. M. and R. J. Whittaker 2008. The Canaries: an important biogeographical meeting place. *Journal of Biogeog*raphy, 35:379–387.
- Ferreira, R., R. Piredda, F. Bagnoli, R. Bellarosa, M. Attimonelli, S. Fineschi, B. Schirone, and M. Simeone 2011. Phylogeography and conservation perspectives of an endangered macaronesian endemic: Picconia azorica (Tutin) Knobl. (Oleaceae). European Journal of Forest Research, 130:181–195.
- Forfang, A.-S. and J. M. Olesen 1998. Male-biased sex ratio and promiscuous pollination in the dioecious island tree-Laurus azorica (Lauraceae). *Plant Systematics and Evolution*, 212:143–157.
- Francisco-Ortega, J., A. Santos-Guerra, S.-C. Kim, and D. J. Crawford 2000. Plant genetic diversity in the Canary Islands: a conservation perspective. Am. J. Bot., 87:909–919.
- Fuertes-Aguilar, J., M. F. Ray, J. Francisco-Ortega, A. Santos-Guerra, and R. K. Jansen 2002. Molecular Evidence from Chloroplast and Nuclear Markers for Multiple Colonizations of Lavatera (Malvaceae) in the Canary Islands. Systematic Botany, 27:74–83.
- García-Verdugo, C., A. D. Forrest, M. F. Fay, and P. Vargas 2010. The relevance of gene flow in metapopulation dynamics of an oceanic island endemic, Olea europaea subsp. guanchica. *Evolution*, 64(12):3525–3536.
- Gaudeul, M., I. Till-Bottraud, F. Barjon, and S. Manel 2004. Genetic diversity and differentiation in Eryngium alpinum L. (Apiaceae): comparison of AFLP and microsatellite markers. *Heredity*, 92:508–518.
- Günthert, S., S. Naumann, and A. Siegmund 2012. Detection and assessment of land use dynamics on Tenerife (Canary Islands):

the agricultural development between 1986 and 2010. Proc. SPIE, Earth Resources and Environmental Remote Sensing/GIS Applications III, 3538:853804–853804–7.

- Gonzalez, J., G. Delgado Castro, E. Garcia-del Rey, C. Berger, and M. Wink 2009. Use of mitochondrial and nuclear genes to infer the origin of two endemic pigeons from the Canary Islands. J Ornithol, 150(2):357–367.
- González-Pérez, M., P. A. Sosa, and F. J. Batista 2009. Genetic variation and conservation of the endangered endemic Anagyris latifolia Brouss. ex Willd. (Leguminosae) from the Canary Islands. *Plant Systematics and Evolution*, 279:59–68.
- González-Rodríguez, A. M., D. Morales, and M. S. Jiménez 2001. Gas exchange characteristics of a Canarian laurel forest tree species (Laurus azorica) in relation to environmental conditions and leaf canopy position. *Tree Physiology*, 21:1039–1045.
- Guimarães, A. and C. Olmeda 2008. Management of Natura 2000 habitat. 9360 Macaronesian laurel forests (Laurus, Ocotea). European Commission.
- Hampe, A.
 - 2003. Frugivory in European Laurel: how extinct seed dispersers have been substituted: Capsule Extinction of ancient frugivores during the Quaternary has led to a depauperated seed disperser community for Laurus nobilis and a tight mutualism between the plant and the Blackbird Turdus merula. *Bird Study*, 50(3):280–284.
- Hernández, M. and A. Martín 2003. BWP update. In *The birds of western Palearctic*, volume 5, P. 215–228. Oxford University Press, Oxford.
- Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis 2005. Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology*, 25:1965–1978.

Holderegger, R., D. Buehler, F. Gugerli, and S. Manel 2010. Landscape genetics of plants. Trends in Plant Science, 15(12):675 – 683.

Holik, J.

1991. Effects of Canary hotspot volcanism on structure of oceanic crust off Morocco. J. Geophy. Res., 96:12039–12067.

Huson, D. and D. Bryant

2006. Application of Phylogenetic Networks in Evolutionary Studies. *Molecular Biology and Evolution*, 23:254–267.

Jakobsson, M. and N. A. Rosenberg

2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. *Bioinformatics*, 23:1801–1806.

- Jimenez, M. S., N. Nadezhdina, J. Cermak, and D. Morales 2000. Radial variation in sap flow in five laurel forest tree species in Tenerife, Canary Islands. *Tree Physiol*, 20:1149–1156.
- Juan, C., B. C. Emerson, P. Oromí, P., and G. M. Hewitt 2000. Colonization and diversification: towards a phylogeographic synthesis for the Canary Islands. *Trends in Ecology & Evolution*, 15:104–109.

Kämmer, F.

1974. Klima und Vegetation auf Tenerife, besonders im Hinblick auf den Nebelniederschlag. *Scripta Geobotanica*, 7:1–77.

Kunkel, G.

1993. Die Kanarischen Inseln und ihre Pflanzenwelt. Stuttgart: Fischer.

Landau, A.

2009. Geographic differentiation of central European Hypericum perforatum L. by the means of AFLP analysis (Diploma Thesis).

Loope, L. L. and T. W. Giambelluca

1998. Vulnerability of Island Tropical Montane Cloud Forests to Climate Change, with Special Reference to East Maui, Hawaii. *Climate Change*, 39(2-3):503–517.

- Macías-Hernández, N., L. Bidegaray-Batista, B. C. Emerson, P. Oromí, and M. Arnedo 2013. The Imprint of Geologic History on Within-Island Diversification of Woodlouse-Hunter Spiders (Araneae, Dysderidae) in the Canary Islands. *Journal of Heredity*, 104(3):341–356.
- Manel, S., F. Berthoud, E. Bellemain, M. Gaudeul, G. Luikart, J. Swenson, L. Waits, P. Taberlet, et al.

2007. A new individual-based spatial approach for identifying genetic discontinuities in natural populations. *Molecular Ecology*, 16:2031–2043.

Manel, S. and R. Holderegger

2013. Ten years of landscape genetics. Trends in Ecology & Evolution, 28(10):614-621.

Manel, S., M. Schwartz, G. Luikart, and P. Taberlet 2003. Landscape genetics: combining landscape ecology and population genetics. *Trends Ecol. Evol.*, 18:189–197.

Manni, F. and E. Guérard 2004. Barrier vs. 2.2. Manual of the user.

Manni, F., E. Guérard, and E. Heyer

2004. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by "Monmonier's algorithm". *Human Biology*, 76:173–190.

Mantel, N.

1967. The Detection of Disease Clustering and a Generalized Regression Approach. *Cancer Research*, 27:209–220.

Martín, J. L., J. Bethencourt, and E. Cuevas-Agulló

2012. Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. *Climate Change*, 114:343–355.

Marzol Jaen, M. V.

2002. Fog water collection in a rural park in the Canary Islands (Spain). *Atmospheric Research*, 64:239–250.

Médail, Frédéric; Quézel, P.

1999. Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. *Conservation biology*, 13.6:1510–1513.

Miller, M. P.

2005. Alleles In Space (AIS): Computer Software for the Joint Analysis of Interindividual Spatial and Genetic Information. *J Hered*, 96:722–724.

Morales, D., M. S. Jiménez, A. M. González-Rodríguez, and J. Cermák 2002. Laurel forests in Tenerife, Canary Islands: Xylem structure in stems and petioles of Laurus azorica trees. *Trees*, 16:529–537.

- Nogales, M., R. Heleno, A. Traveset, and P. Vargas 2012. Evidence for overlooked mechanisms of long-distance seed dispersal to and between oceanic islands. *New Phytologist*, 194(2):313–317.
- Nogales, M., E. C. Hernández, and F. Valdés 1999. Seed dispersal by common ravens Corvus corax among island habitats (Canarian Archipelago). *Ecoscience*, 6:56–61.
- Nogué, S., L. de Nascimento, J. M. Fernández-Palacios, R. J. Whittaker, and K. J. Willis 2013. The ancient forests of La Gomera, Canary Islands, and their sensitivity to environmental change. *Journal of Ecology*, 101:368–377.
- Oliveira, P., P. Marrero, and M. Nogales 2002. Diet Of The Endemic Madeira Laurel Pigeon And Fruit Resource Availability: A Study Using Microhistological Analyses. *The Condor*, 104:811–822.
- Ortega, E. P., R. E. López-García, R. M. Rabanal, and V. D. S. Valverde 1988. Two xanthones from Ixanthus viscosus. *Phytochemistry*, 27(6):1912 –1913.
- Padilla, D. P., A. Gonzáles-Castro, and M. Nogales 2012. Significance and extent of secondary seed dispersal by predatory birds on oceanic islands: the case of the Canary archipelago. *Journal of Ecology*, 100:416–427.

Parsons, J. J.

1981. Human Influences on the Pine and Laurel Forests of the Canary Islands. *Geo-graphical Review*, 71:253–271.

Paule, J.

2010. Evolutionary Patterns and Processes in the genus Potentilla L. (Rosaceae). PhD thesis, Universität Heidelberg.

Peakall, R. and P. Smouse

2006. GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research. *Mol. Ecol. Notes*, 6:288–295.

Peakall, R. and P. Smouse

2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research - an update. *Bioinformatics*, 28:2537–2539.

- Perry, W., R. Lugo, S. A. Hathaway, and A. G. Vandergast 2010. Genetic Landscapes GIS Toolbox: Tools to create genetic divergence and diversity landscapes in ArcGIS. U.S. Geological Survey.
- Pompanon, F., A. Bonin, E. Bellemain, and P. Taberlet 2005. Genotyping errors: causes, consequences and solutions. *Nat. Rev. Genet.*, 6:847–859.

Pott, R.

- 2006. Allgemeine Geobotanik Biogeosysteme und Biodiversität. Warmtemperate Feucht- und Lorbeerwälder. Springer Berlin Heidelberg.
- Pott, R., J. Hüppe, and W. Wildpret de la Torre 2003. Die Kanarischen Inseln. Natur- und Kulturlandschaften. Stuttgart: Ulmer.
- Prada, S., M. Menezes de Sequeira, C. Figueira, and M. O. da Silva 2009. Fog precipitation and rainfall interception in the natural forests of Madeira Island (Portugal). Agricultural and Forest Meteorology, 149:1179–1187.
- Pritchard, J. K., M. Stephens, and P. Donnelly 2000. Inference of Population Structure Using Multilocus Genotype Data. *Genetics*, 155:945–959.
- R Development Core Team 2006. A language and environment for statistical computing.

Regalado, C. M. and A. Ritter

2010. Comment on "Fog precipitation and rainfall interception in the natural forests of Madeira Island (Portugal)". Agricultural and Forest Meteorology, 150:133–134.

- Reyes-Betancort, J., A. Santos Guerra, I. Guma, C. Humphries, and M. Carine 2008. Diversity, rarity and the evolution and conservation of the Canary Islands endemic flora. *Anales Jardin Botanico de Madrid*, 65:25–45.
- Rivas-Martínez, S., T. Díaz, F. Fernández-González, J. Izco, J. Loidi, M. Lousã, and A. Penas

2002. Vascular plant communities of Spain and Portugal. Addenda to the Syntaxonomical checklist of 2001. *Itinera Geobotanica*, 1-2:5–922.

Rivas-Martínez, S., W. Wildpret, M. Arco, O. Rodríguez, P. Pérez De Paz, A. García Gallo, J. Acebes, T. Díaz, and F. Fernández González 1993. Las communidas vegetales de la Isla de Tenerife (Islas canarias). *Itinera Geobotanica*, 7:169–474.

Rivera, D. and C. Obón

1995. The ethnopharmacology of Madeira and Porto Santo Islands, a review. *Journal of Ethnopharmacology*, 46(2):73–93.

Rodríguez-Sánchez, F. and J. Arroyo

2008. Reconstructing the demise of Tethyan plants: climate-driven range dynamics of Laurus since the Pliocene. *Global Ecology and Biogeography*, 17 (6):685–695.

Rodríguez-Sánchez, F., B. Guzmán, A. Valido, P. Vargas, and J. Arroyo 2009. Late Neogene history of the laurel tree (Laurus L., Lauraceae) based on phylogeographical analyses of Mediterranean and Macaronesian populations. *Journal of Biogeography*, 36 (7):1270–1281.

Rohwer, J. G.

1990. Lauraceae. In The Families and genera of vascular plants, Band 2: Flowering Plants – Dicotyledons – Magnoliid, Hamamelid and Caryophyllid Families, K. K. et al., ed. Springer Verlag.

Rohwer, J. G.

2000. Toward a Phylogenetic Classification of the Lauraceae: Evidence from matK Sequences. *Systematic Botany*, 25:60–71.

Rohwer, J. G. and B. Rudolph

2005. Jumping Genera: The Phylogenetic Positions of Cassytha, Hypodaphnis, and Neocinnamomum (Lauraceae) Based on Different Analyses of trnK Intron Sequences. Annals of the Missouri Botanical Garden, 92:153–178.

Rosenberg, N. A., J. K. Pritchard, J. L. Weber, H. M. Cann, K. K. Kidd, L. A. Zhivotovsky, and M. W. Feldman 2002. Genetic Structure of Human Populations. *Science*, 298:2381–2385.

Sanmartín, I., P. van der Mark, and F. Ronquist

2008. Inferring dispersal: a Bayesian approach to phylogeny-based island biogeography, with special reference to the Canary Islands. *Journal of Biogeography*, 35(3):428– 449.

Schönfelder, P. and I. Schönfelder

1997. Die Kosmos-Kanarenflora : über 850 Arten der Kanarenflora und 48 tropische Ziergehölze. Stuttgart: Franckh-Kosmos.

Seidel, D.

1978. Vegetationszonen auf den Kanarischen Inseln - Halbwüste und Nebelwald in enger Nachbarschaft. *Biologie in unserer Zeit*, 8:161–167.

Shaw, J., E. B. Lickey, J. T. Beck, S. B. Farmer, W. Liu, J. Miller, K. C. Siripun, C. T. Winder, E. E. Schilling, and R. L. Small 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. *American Journal of Botany*, 92:142–166.

Silvertown, J.

2004. The ghost of competition past in the phylogeny of island endemic plants. *Journal of Ecology*, 92:168–173.

Sosa, P. A., E. A. González-González, M. A. González-Pérez, and P. L. Pérez de Paz 2013. Contrasting patterns of genetic differentiation in Macaronesian lineages of Ilex (Aquifoliaceae). *Botanical Journal of the Linnean Society*, 173(2):258–268.

Sperling, F. N., R. Washington, and R. J. Whittaker 2004. Future Climate Change of the Subtropical North Atlantic: Implications for the Cloud Forests of Tenerife. *Climatic Change*, 65:103–123.

Stierstorfer, C.

2005. The Vascular Plant Vegetation in the Forest Belt of El Hierro (Canary Islands). In *Dissertationes Botanicae*, volume 393. J. Cramer Gebrüder Borntraeger Verlagsbuchhandlung Berlin Stuttgart.

Still, C. J., P. N. Foster, and S. H. Schneider 1999. Simulating the effects of climate change on tropical montane cloud forests. *Nature*, 398:608–610.

Suda, J., T. Kyncl, and V. Jarolímová

2005. Genome size variation in Macaronesian angiosperms: forty percent of the Canarian endemic flora completed. *Plant Systematics and Evolution*, 252(3-4):215–238.

Sziemer, P. 2000. Madeira's Natural History in a Nutshell. Francisco Ribeiro & Filhos, Lda.

Talavera, M., L. Navarro-Sampedro, P. L. Ortiz, and M. Arista 2013. Phylogeography and seed dispersal in islands: the case of Rumex bucephalophorus subsp. canariensis (Polygonaceae). Annals of Botany, 111(2):249–260.

Thiv, M., L. Struwe, and J. W. Kadereit

1999. The phylogenetic relationships and evolution of the Canarian laurel forest endemic Ixanthus viscosus (Aiton) Griseb. (Gentianaceae): Evidence frommatK and ITS sequences, and floral morphology and anatomy. *Plant Systematics and Evolution*, 218:299–317.

- Thorpe, R. S., A. Malhotra, H. Black, J. C. Daltry, and W. Wuster 1995. Relating Geographic Pattern to Phylogenetic Process. *Philosophical Transac*tions of the Royal Society of London. Series B: Biological Sciences, 349:61–68.
- Trusty, J. L., R. G. Olmstead, A. Santos-Guerra, S. Sa-Fontinha, and J. Francisco-Ortega

2005. Molecular phylogenetics of the Macaronesian-endemic genus Bystropogon (Lamiaceae): palaeo-islands, ecological shifts and interisland colonizations. *Mol Ecol*, 14:1177–89.

Unknown

2013. Plan de Acción. Reserva de la Biosfera del Macizo de Anaga.

Vandergast, A. G., A. J. Bohonak, S. A. Hathaway, J. Boys, and R. N. Fisher 2008. Are hotspots of evolutionary potential adequately protected in southern California? *Biological Conservation*, 141(6):1648–1664.

Vargas, P.

- 2007. Are Macaronesian islands refugia of relict plant lineages? A molecular survey. In *Phylogeography of Southern European Refugia*, S. Weiss and N. Ferrand, eds., Pp. 297–314. Springer Netherlands.
- Venter, J. C., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, et al. 2001. The sequence of the human genome. *Science*, 291:1304–1351.

Voggenreiter, V.

1974. Geobotanische Untersuchungen an der natürlichen Vegetation der Kanareninsel Tenerife als Grundlage für den Naturschutz. In *Dissertationes Botanicae*, volume 26, Pp. 1–718. J. Cramer Gebrüder Borntraeger Verlagsbuchhandlung Berlin Stuttgart.

- Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, and M. Kuiper 1995. AFLP: A new technique for DNA fingerprinting. *Nucleic Acids Res.*, 23:4407– 4414.
- Whittaker, R. J., K. A. Triantis, and R. J. Ladle 2008. A general dynamic theory of oceanic island biogeography. *Journal of Biogeog*raphy, 35:977–994.

Wildpret de la Torre, W; Martín Osorio, V. 1997. Laurel Forest in the Canary Island: Biodiversity, Historical Use and Conservation. *Tropics*, 6:371–381.

Yeh, F. C., R. C. Yang, T. B. J. Boyle, Z. H. Ye, and J. X. Mao 1997. POPGENE, the user-friendly shareware for population genetic analysis.

Zeltner, L.

1970. Recherches de biosystématique sur les genres Blackstonia Huds. et Centaurium Hill. *Bull. Soc. Neuchâtel. Sci. Nat.*, 93:4–164.

Part VI.

Appendices

ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop. 1	Pop. 2
001L	N28°34.237	W16°09.602	475	05.01.2010	AB, MT	Т	Anaga-East	32	23
002L	N28°34.319	W16°09.660	531	05.01.2010	AB, MT	Т	Anaga-East	32	23
003L	N28°34.357	W16°09.725	567	05.01.2010	AB, MT	Т	Anaga-East	32	23
004L	N28°34.304	W16°09.425	529	05.01.2010	AB, MT	Т	Anaga-East	33	23
005L	N28°34.442	W16°09.345	562	05.01.2010	AB, MT	Т	Anaga-East	33	23
006L	N28°34.580	W16°09.227	637	05.01.2010	AB, MT	Т	Anaga-East		
007L	N28°34.535	W16°09.404	674	05.01.2010	AB, MT	Т	Anaga-East	33	23
008L	N28°34.475	W16°09.628	711	05.01.2010	AB, MT	Т	Anaga-East	33	23
009L	N28°34.406	W16°09.898	729	05.01.2010	AB, MT	Т	Anaga-East	32	23
010L	N28°34.313	W16°10.085	689	05.01.2010	AB, MT	Т	Anaga-East	32	23
011L	N28°34.307	W16°10.148	607	05.01.2010	AB, MT	Т	Anaga-East	32	23
012L	N28°34.205	W16°09.932	587	05.01.2010	AB, MT	Т	Anaga-East	32	23
013L	N28°34.173	W16°09.769	553	05.01.2010	AB, MT	Т	Anaga-East	32	23
014L	N28°33.993	W16°09.437	600	05.01.2010	AB, MT	Т	Anaga-East	32	23
015L	N28°33.787	W16°09.409	556	05.01.2010	AB, MT	Т	Anaga-East	32	23
016L	N28°33.714	W16°09.709	622	05.01.2010	AB, MT	Т	Anaga-East	32	22
017L	N28°33.588	W16°09.822	663	05.01.2010	AB, MT	Т	Anaga-East	31	22
018L	N28°33.434	W16°09.821	739	05.01.2010	AB, MT	Т	Anaga-East	31	22
019L	N28°33.387	W16°09.908	764	05.01.2010	AB, MT	Т	Anaga-East	31	22
020L	N28°33.367	W16°09.946	769	05.01.2010	AB, MT	Т	Anaga-East	31	22
021L	N28°33.481	W16°10.185	814	05.01.2010	AB, MT	Т	Anaga-East	31	22
022L	N28°33.429	W16°10.485	798	05.01.2010	AB, MT	Т	Anaga-East	31	25
023L	N28°33.391	W16°10.662	808	05.01.2010	AB, MT	Т	Anaga-East	31	25
024L	N28°33.303	W16°15.886	643	06.01.2010	AB, MT	Т	Anaga-West	27	30
025L	N28°32.971	W16°15.996	619	06.01.2010	AB, MT	Т	Anaga-West	27	30
026L	N28°32.904	W16°15.915	642	06.01.2010	AB, MT	Т	Anaga-West	27	30
027L	N28°32.805	W16°16.036	660	06.01.2010	AB, MT	Т	Anaga-West	27	30
028L	N28°32.650	W16°16.027	693	06.01.2010	AB, MT	т	Anaga-West	26	30
029L	N28°32.627	W16°16.202	723	06.01.2010	AB, MT	Т	Anaga-West	27	30
030L	N28°32.668	W16°16.407	716	06.01.2010	AB, MT	Т	Anaga-West	27	30
031L	N28°33.081	W16°16.616	633	06.01.2010	AB, MT	Т	Anaga-West	27	28
032L	N28°32.933	W16°16.648	650	06.01.2010	AB, MT	Т	Anaga-West	27	28
033L	N28°32.151	W16°18.745	825	06.01.2010	AB, MT	т	Anaga-West	22	31
034L	N28°32.215	$W16^{\circ}18.547$	789	06.01.2010	AB, MT	Т	Anaga-West	22	31
035L	N28°32.346	W16°18.607	769	06.01.2010	AB, MT	Т	Anaga-West	22	31
036L	N28°32.456	W16°18.744	735	06.01.2010	AB, MT	Т	Anaga-West	22	31
037L	N28°32.582	W16°18.767	636	06.01.2010	AB, MT	Т	Anaga-West	22	31
038L	N28°32.469	W16°18.885	771	06.01.2010	AB, MT	Т	Anaga-West	22	31
039L	N28°32.643	W16°19.274	755	06.01.2010	AB, MT	Т	Anaga-West	22	31
040L	N28°32.710	W16°19.261	723	06.01.2010	AB, MT	Т	Anaga-West	22	31
041L	N28°32.562	W16°19.361	743	06.01.2010	AB, MT	Т	Anaga-West	22	31
042L	N28°32.451	W16°19.233	751	06.01.2010	AB, MT	Т	Anaga-West	22	31
043L	N28°22.374	W16°30.817	754	07.01.2010	AB, MT	Т	Orotava	12	12
044L	N28°21.999	W16°31.342	873	07.01.2010	AB, MT	Т	Orotava	12	12
045L	N28°21.906	W16°31.849	818	07.01.2010	AB, MT	Т	Orotava	12	12
046L	N28°21.863	$W16^{\circ}32.179$	879	07.01.2010	AB, MT	Т	Orotava	12	12
047L	N28°21.681	$W16^{\circ}32.677$	922	07.01.2010	AB, MT	Т	Orotava	12	12
048L	N28°21.644	$W16^{\circ}33.258$	861	07.01.2010	AB, MT	Т	Orotava	12	12
049L	N28°21.647	$W16^{\circ}33.518$	816	07.01.2010	AB, MT	Т	Orotava	12	12
050L	N28°21.376	W16°33.569	931	07.01.2010	AB, MT	Т	Orotava	12	12
051L	N28°21.659	W16°34.078	766	07.01.2010	AB, MT	Т	Orotava	12	12
				Conti	nued on next pa	age			

Table 18.1.: Accession List of Laurus

Table 18.1 – continued from previous page										
ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop. 1	Pop. 2	
052L	N28°21.743	W16°34.338	717	07.01.2010	AB, MT	Т	Orotava	11	12	
053L	N28°21.995	W16°34.658	651	07.01.2010	AB, MT	Т	Orotava	11	12	
054L	N28°21.995	W16°34.658	652	07.01.2010	AB, MT	Т	Orotava	11	12	
055L	N28°32.121	W16°17.931	856	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	23	28	
056L	N28°32.186	W16°17.761	845	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	23	28	
057L	N28°32.170	W16°17.564	837	08.01.2010	AB, MT, ARB, AS	Т 	Anaga-West	23	29	
058L	N28°32.071	W16°17.514	830	08.01.2010	AB, MT, ARB, AS	Т 	Anaga-West	23	29	
059L	N28°32.015	W16°17.299	837	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	24	29	
060L	N28°32.158	W16°17.187	848	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	24	29	
061L	N28°32.084	W16°17.073	854	08.01.2010	AB, MT, ARB, AS	T	Anaga-West	24	29	
062L	N28°32.008	W16°16.916	848	08.01.2010	AB, MT, ARB, AS	T	Anaga-West	24	29	
063L	N28°32.858	W16°17.873	524	08.01.2010	AB, MT, ARB, AS	T	Anaga-West	23	28	
064L	N28°32.565	W16°17.726	548	08.01.2010	AB, MT, ARB, AS	T	Anaga-West	23	28	
065L	N28°32.459	W16°17.762	639	08.01.2010	AB, MT, ARB, AS	T	Anaga-West	23	28	
066L	N28°32.602	W16°17.954	688	08.01.2010	AB, MT, ARB, AS	T	Anaga-West	23	28	
067L	N28-32.438	W16°17.929	744	08.01.2010	AB, MI, ARB, AS	1	Anaga-west	23	28	
068L	N28°32.298	W16°18.015	780	08.01.2010	AB, MI, ARB, AS	I T	Anaga-West	23	28	
0091	N28'32.202	W10'18.030	100	08.01.2010	AD, MI, ADD, AS	т Т	Anaga-West	20	20	
070L	N28°32.078	W10°17.772 W16°17.670	908	08.01.2010	AD, MI, ADD, AS	т Т	Anaga-West	23	20	
0711	N20 31.077	W16º17.070	005	08.01.2010	AD, MT, ARD, AS	T	Anaga-West	23	29	
0721	N20.31.003	W10°17.492	905	08.01.2010	AD, MI, ADD, AS	т Т	Anaga-West	24	29	
0731	N28°32.239	W16º16 619	002 945	08.01.2010	AD, MI, ADD, AS	т Т	Anaga-West	24	30	
0741	N28 32.280	W16º16 700	840 810	08.01.2010	AD, MT, ARD, AS	T	Anaga-West	24	30	
0761	N28°32.275	W16º16 678	865	08.01.2010	AB, MT, ARB, AS	т	Anaga-West	24	29	
0771	N28°33 326	W16º16 712	633	08.01.2010	AB, MT, ARB, AS	T	Anaga-West	24	28	
078L	N28°32 841	W16º16 666	662	08.01.2010	AB MT ABB AS	т	Anaga-West	21	28	
0791.	N28º32.626	W16º16 842	802	08.01.2010	AB MT ABB AS	т	Anaga-West	27	28	
0801	N28°32 474	W16°16 588	840	08.01.2010	AB MT ABB AS	т	Anaga-West	27	30	
081L	N28°21 562	W16°46 125	545	09.01.2010	AB MT	т	Icod	7	3	
0821	N28°21 211	W16°46 947	657	09.01.2010	AB MT	т	Teno	6	2	
083L	N28°19.549	W16°48.456	1013	09.01.2010	AB. MT	T	Teno	5	4	
084L	N28°19.649	W16°48.716	1025	09.01.2010	AB. MT	Т	Teno	5	4	
085L	N28°19.666	W16°48.852	1007	09.01.2010	AB. MT	T	Teno	5	4	
086L	N28°19.539	W16°48.784	1002	09.01.2010	AB. MT	Т	Teno	5	4	
087L	N28°19.506	W16°48.964	974	09.01.2010	AB, MT	Т	Teno	3	6	
088L	N28°19.398	W16°48.858	1007	09.01.2010	AB. MT	Т	Teno	3	6	
089L	N28°19.352	W16°48.997	985	09.01.2010	AB. MT	Т	Teno	3	6	
090L	N28°19.397	W16°49.203	968	09.01.2010	AB, MT	Т	Teno	3	6	
091L	N28°19.251	W16°49.297	987	09.01.2010	AB, MT	Т	Teno	2	6	
092L	N28°19.384	W16°49.391	970	09.01.2010	AB, MT	Т	Teno	3	6	
093L	N28°19.591	W16°49.296	930	09.01.2010	AB, MT	Т	Teno	3	6	
094L	N28°19.736	W16°49.283	919	09.01.2010	AB, MT	Т	Teno	3	6	
095L	N28°19.782	W16°49.433	904	09.01.2010	AB, MT	Т	Teno	3	8	
096L	N28°19.840	W16°49.552	892	09.01.2010	AB, MT	Т	Teno	3	8	
097L	N28°19.814	W16°49.595	936	09.01.2010	AB, MT	Т	Teno	3	8	
098L	N28°19.951	W16°49.657	916	09.01.2010	AB, MT	Т	Teno	3	8	
099L	N28°20.088	W16°49.561	901	09.01.2010	AB, MT	Т	Teno	1	8	
100L	N28°20.131	W16°49.710	876	09.01.2010	AB, MT	Т	Teno	1	8	
101L	N28°19.954	W16°49.843	894	09.01.2010	AB, MT	Т	Teno	1	7	
102L	N28°20.152	W16°49.959	842	09.01.2010	AB, MT	Т	Teno	1	8	
103L	N28°20.433	W16°50.008	792	09.01.2010	AB, MT	Т	Teno	1	8	
104L	N28°20.413	W16°50.111	755	09.01.2010	AB, MT	Т	Teno	1	8	
105L	N28°20.271	W16°50.099	825	09.01.2010	AB, MT	Т	Teno	1	8	
106L	N28°20.100	W16°50.107	836	09.01.2010	AB, MT	Т	Teno	1	7	
107L	N28°20.107	W16°50.350	799	09.01.2010	AB, MT	Т	Teno	1	7	
108L	N28°19.835	W16°50.197	799	09.01.2010	AB, MT	Т	Teno	1	7	
109L	N28°19.913	$W16^{\circ}50.475$	757	09.01.2010	AB, MT	Т	Teno	1	7	
110L	N28°20.584	$W16^{\circ}51.438$	670	09.01.2010	AB, MT	Т	Teno Alto	0	9	
111L	N28°20.309	$W16^{\circ}51.596$	784	09.01.2010	AB, MT	Т	Teno Alto	0	9	
112L	N28°20.401	$W16^{\circ}51.637$	809	09.01.2010	AB, MT	Т	Teno Alto	0	9	
113L	N28°20.455	$W16^{\circ}51.768$	844	09.01.2010	AB, MT	Т	Teno Alto	0	9	
114L	N28°20.269	$W16^{\circ}51.798$	880	09.01.2010	AB, MT	Т	Teno Alto	0	9	
115L	N28°20.328	W16°52.308	825	09.01.2010	AB, MT	Т	Teno Alto	0	9	
116L	N28°20.495	W16°52.414	805	09.01.2010	AB, MT	Т	Teno Alto	0	9	
117L	N28°20.796	W16°52.852	760	09.01.2010	AB, MT	Т	Teno Alto	0	9	
				Conti	nued on next page					

	Table 18.1 – continued from previous page										
ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop. 1	Pop. 2		
118L	N28°20.808	W16°52.545	714	09.01.2010	AB, MT	Т	Teno Alto	0	9		
119L	N28°20.716	$W16^{\circ}52.540$	717	09.01.2010	AB, MT	Т	Teno Alto	0	9		
120L	N28°21.852	W16°43.905	458	10.01.2010	AB, MT	Т	Icod	7	1		
121L	N28°21.810	W16°44.193	486	10.01.2010	AB, MT	Т	Icod	7	1		
122L	N28°21.706	W16°44.000	518	10.01.2010	AB, MT	Т	Icod	7	1		
123L	N28°21.534	W16°43.931	548	10.01.2010	AB, MT	Т	Icod	7	1		
124L	N28°21.437	W16°43.953	595	10.01.2010	AB, MT	Т	Icod	8	1		
125L	N28°21.504	W16°43.484	570	10.01.2010	AB, MT	Т	Icod	8	1		
126L	N28°21.344	W16°43.118	516	10.01.2010	AB, MT	Т	Icod	8	1		
127L	N28°21.435	W16°43.374	552	10.01.2010	AB, MT	Т	Icod	8	1		
128L	N28°20.961	W16°42.131	638	10.01.2010	AB, MT	Т	Icod	9	0		
129L	N28°20.780	W16°42.013	715	10.01.2010	AB, MT	Т	Icod	9	0		
130L	N28°20.627	W16°41.906	763	10.01.2010	AB, MT	Т	Icod	9	0		
131L	N28°20.672	W16°42.197	751	10.01.2010	AB, MT	Т	Icod	9	0		
132L	N28°21.063	W16°43.420	757	10.01.2010	AB, MT	Т	Icod	8	1		
133L	N28°20.843	W16°43.310	794	10.01.2010	AB, MT	Т	Icod	8	0		
134L	N28°20.597	W16°43.068	832	10.01.2010	AB, MT	Т	Icod	9	0		
135L	N28°20.754	W16°43.142	807	10.01.2010	AB, MT	Т	Icod	9	0		
136L	N28°20.609	W16°43.217	856	10.01.2010	AB, MT	Т	Icod	8	0		
137L	N28°20.050	W16°43.136	1017	10.01.2010	AB, MT	Т	Icod	9	0		
138L	N28°20.275	W16°43.246	954	10.01.2010	AB, MT	Т	Icod	9	0		
139L	N28°20.460	W16°43.104	888	10.01.2010	AB, MT	Т	Icod	9	0		
140L	N28°20.400	W16°42.913	892	10.01.2010	AB, MT	Т	Icod	9	0		
141L	N28°20.606	W16°43.434	887	10.01.2010	AB, MT	Т	Icod	8	0		
142L	N28°20.837	W16°43.490	814	10.01.2010	AB, MT	Т	Icod	8	0		
143L	N28°20.714	W16°43.707	884	10.01.2010	AB, MT	Т	Icod	8	0		
144L	N28°20.585	W16°43.905	943	10.01.2010	AB, MT	Т	Icod	8	0		
145L	N28°20.383	W16°43.967	991	10.01.2010	AB, MT	Т	Icod	8	0		
146L	N28°20.287	W16°44.097	1021	10.01.2010	AB, MT	Т	Icod	8	0		
147L	N28°20.547	W16°43.655	943	10.01.2010	AB, MT	Т	Icod	8	0		
148L	N28°21.059	W16°43.770	807	10.01.2010	AB, MT	Т	Icod	8	1		
149L	N28°21.291	W16°43.740	699	10.01.2010	AB, MT	Т	Icod	8	1		
150L	N28°21.107	W16°44.145	774	10.01.2010	AB, MT	Т	Icod	8	1		
151L	N28°20.736	W16°44.072	912	10.01.2010	AB, MT	Т	Icod	8	0		
152L	N28°20.948	W16°44.104	841	10.01.2010	AB, MT	Т	Icod	8	1		
153L	N28°21.281	W16°44.086	699	10.01.2010	AB, MT	Т	Icod	8	1		
154L	N28°21.304	W16°44.380	698	10.01.2010	AB, MT	Т	Icod	7	1		
155L	N28°21.236	W16°44.575	731	10.01.2010	AB, MT	T	Icod	7	1		
156L	N28°21.128	W16°44.642	750	10.01.2010	AB, MT	Т	Icod	7	1		
157L	N28°21.115	W16°44.793	778	10.01.2010	AB, MT	Т	lcod	7	1		
158L	N28°20.912	W16°44.847	829	10.01.2010	AB, MT	Т	Icod	7	1		
159L	N28°20.855	W16°44.927	833	10.01.2010	AB, MT	Т	lcod	7	3		
160L	N28°20.790	W16°45.062	860	10.01.2010	AB, MT	Т	Icod	7	3		
161L	N28°20.660	W16°45.212	892	10.01.2010	AB, MT	Т	Icod	7	3		
162L	N28°20.529	W16°45.296	928	10.01.2010	AB, MT	Т	lcod	7	3		
163L	N28°20.154	W16°45.502	999	10.01.2010	AB, MT	T	Icod	7	3		
164L	N28°20.896	W16°45.294	818	10.01.2010	AB, MT	T.	Icod	7	3		
105L	N28°21.063	W16*45.253	767	10.01.2010	AB, MI	I	Icod	7	3		
100L	N28°21.047	W10°45.375	763	10.01.2010	AB, MI	I	Icod	7	3		
1071	N28°21.555	W10'45.440	085	10.01.2010	AD, MT	I T	TCOG	í C	3		
108L	N28°21.102	W10'40.980	702	10.01.2010	AD, MT	I T	Teno	0	2		
1701	N28°20.915	W10'47.405	109	10.01.2010	AD, MT	T	Тепо	4	2		
1711	N28 20.095	W10 47.518	820	10.01.2010	AD, MT	T	Teno	0	2		
1711	N28º20.581	W16947.220	856	10.01.2010	AD, MT	T	Teno	4	2		
1721	N28º20.340	W16947 288	895	10.01.2010	AD, MT	T	Teno	6	2		
1741	N28º20.410	W16947 595	000	10.01.2010	AD, MT	T	Teno	4	5		
1751	N28º10.060	W16947.419	1005	10.01.2010	AD, MT	T	Teno	-1	3		
1761	N28º10 752	W10 47.412 W16º47 41F	1005	10.01.2010	AB MT	1 T	Teno	D F	4 1		
1771	N28º10 790	W16%6 032	1083	10.01.2010	AB MT	т Т	Teno	G A	4 2		
1781	N28º10 817	W16%/6 521	1080	10.01.2010	AR MT	т Т	Teno	6	3 2		
1791.	N28º10 760	W16º46.647	1084	10.01.2010	AB MT	т Т	Teno	6	3		
1801	N28º10 024	W16º46 885	1035	10.01.2010	AB MT	Ť	Teno	6	3		
181L	N28°20 136	W16°46 802	977	10.01 2010	AB. MT	Ť	Teno	6	3		
182L	N28°20 400	W16°46 792	908	10.01 2010	AB. MT	Ť	Teno	6	3		
183L	N28°20.557	W16°46.979	872	10.01.2010	AB, MT	Ť	Teno	6	2		
				Conti	nued on next pa			~	-		
				2 - 1101	Po	0					

Table 18.1 – continued from previous page										
ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop. 1	Pop. 2	
184L	N28°20.696	W16°47.144	831	10.01.2010	AB, MT	Т	Teno	6	2	
185L	N28°31.664	W16°16.864	909	11.01.2010	AB, MT	Т	Anaga-West	24	29	
186L	N28°20.934	$W16^{\circ}47.127$	764	10.01.2010	AB, MT	Т	Teno	6	2	
187L	N28°31.854	W16°16.785	978	11.01.2010	AB, MT	Т	Anaga-West	24	29	
188L	N28°31.935	W16°15.768	979	11.01.2010	AB, MT	Т	Anaga-Centre	26	27	
189L	N28°31.875	$W16^{\circ}15.674$	952	11.01.2010	AB, MT	Т	Anaga-Centre	26	27	
190L	N28°31.734	W16°15.686	891	11.01.2010	AB, MT	Т	Anaga-Centre	26	27	
191L	N28°31.591	W16°15.785	812	11.01.2010	AB, MT	т	Anaga-Centre	26	27	
192L	N28°31.631	W16°15.910	715	11.01.2010	AB, MT	Т	Anaga-Centre	26	27	
193L	N28°31.537	W16°15.634	809	11.01.2010	AB, MT	Т	Anaga-Centre	26	27	
194L	N28°31.459	W16°15.662	861	11.01.2010	AB, MT	Т	Anaga-Centre	26	27	
195L	N28°31.323	W16°15.633	819	11.01.2010	AB, MT	Т	Anaga-Centre	26	27	
196L	N28°31.820	W16°15.663	880	11.01.2010	AB, MT	Т	Anaga-Centre	26	27	
197L	N28°32.015	W16°16.006	992	11.01.2010	AB, MT	Т	Anaga-Centre	26	27	
198L	N28°32.144	W16°16.197	1013	11.01.2010	AB, MT	Т	Anaga-West	26	27	
199L	N28°20.877	W16°26.756	827	12.01.2010	AB, MT, ARB, AS	Т	Guimar	34	32	
200L	N28°20.879	W16°26.790	848	12.01.2010	AB, MT, ARB, AS	Т	Guimar	34	32	
201L	N28°18.547	W16°27.148	912	12.01.2010	AB, MT, ARB, AS	Т	Guimar	35	33	
202L	N28°18.530	W16°27.150	911	12.01.2010	AB, MT, ARB, AS	Т	Guimar	35	33	
203L	N28°27.368	W16°22.995	999	12.01.2010	AB, MT, ARB, AS	Т	Calderetas	20	19	
204L	N28°27.212	W16°23.110	985	12.01.2010	AB, MT, ARB, AS	Т	Calderetas	19	19	
205L	N28°27.268	W16°23.234	966	12.01.2010	AB, MT, ARB, AS	Т	Calderetas	19	19	
206L	N28°27.384	W16°23.430	920	12.01.2010	AB, MT, ARB, AS	Т	Calderetas	19	19	
207L	N28°27.525	W16°23.607	914	12.01.2010	AB, MT, ARB, AS	Т	Calderetas	19	18	
208L	N28°27.213	W16°23.677	970	12.01.2010	AB, MT, ARB, AS	Т	Calderetas	19	18	
209L	N28°27.668	W16°23.470	870	12.01.2010	AB, MT, ARB, AS	Т	Calderetas	20	19	
210L	N28°28.126	W16°23.255	786	12.01.2010	AB, MT, ARB, AS	Т	Calderetas	20	19	
211L	N28°28.313	W16°22.101	755	12.01.2010	AB, MT, ARB, AS	Т	Calderetas	20	19	
212L	N28°32.623	W16°13.614	808	13.01.2010	AB, MT	Т	Anaga-Centre	29	24	
213L	N28°32.842	W16°13.646	768	13.01.2010	AB, MT	Т	Anaga-Centre	29	26	
214L	N28°32.990	W16°13.683	696	13.01.2010	AB, MT	Т	Anaga-Centre	29	26	
215L	N28°32.828	W16°13.850	747	13.01.2010	AB, MT	Т	Anaga-Centre	29	26	
216L	N28°32.699	W16°13.987	669	13.01.2010	AB, MT	Т	Anaga-Centre	29	26	
217L	N28°32.702	W16°13.847	659	13.01.2010	AB, MT	Т	Anaga-Centre	29	26	
218L	N28°33.032	W16°13.903	626	13.01.2010	AB, MT	Т	Anaga-Centre	29	26	
219L	N28°32.984	W16°14.057	588	13.01.2010	AB, MT	T	Anaga-Centre	29	26	
220L	N28°32.848	W16°14.104	559	13.01.2010	AB, MT	Т	Anaga-Centre	29	26	
221L	N28°32.835	W16°14.284	523	13.01.2010	AB, MT	T	Anaga-Centre	29	26	
222L	N28°32.205	W16°14.271	783	13.01.2010	AB, MT	T	Anaga-Centre	28	26	
223L	N28°32.292	W16°14.466	727	13.01.2010	AB, MT	T	Anaga-Centre	28	26	
224L	N28°32.330	W16°14.638	733	13.01.2010	AB, MT	T	Anaga-Centre	28	26	
225L	N28°32.126	W16°14.046	780	13.01.2010	AB, MT	T T	Anaga-Centre	28	26	
226L	N28°32.333	W16*13.154	826	13.01.2010	AB, MI	T	A	20	00	
227L	N28°33.954	W16°10.032	807	13.01.2010	AB, MT	T	Anaga-East	32	22	
228L	N28°34.023	W16°10.137	793	13.01.2010	AB, MT	T T	Anaga-East	32	22	
229L	N28°33.600	W16°10.246	811	13.01.2010	AB, MI	T	Anaga-East	31	22	
230L 221I	N20'33.749	W10°10.252	000	12.01.2010	AD, MI AD MT	T	Anaga-East	21	22	
201L 0201	N28'33.720	W16°10.000	023 780	13.01.2010	AD, MI AD MT	T T	Anaga-East	31	22	
202L 0221	N28°34.173 N28°22 720	W16°10.214 W16°10.266	242	12.01.2010	AD, MI AD MT	т Т	Anaga-East	32 21	22	
233L 224I	N28 33.739	W16º10.300	802	12 01 2010	AD, MT	т	Anaga-East	21	22	
234L 9251	N20'33.397	W10'10.405	093	13.01.2010	AD, MI AD MT	T T	Anaga-East	21	22	
230L 2261	N28°33.324	W16°10.331 W16°10 720	919 769	12.01.2010	AD, MI AD MT	т Т	Anaga-East	21	20	
230L 227I	N28 33.302	W16 10.729	560	14.01.2010	AD, MT	т	Guamaga-East	21	20	
2371	N28°20.825	W16°21.118 W16°21.271	536	14.01.2010	AB, MT	т	Guamasa	21	20	
2361	N28°29.823	W16 21.271 W16 21 601	470	14.01.2010	AD, MT	т	Guamasa	21	20	
239L 240L	N28°30 120	W16°21.091 W16°21.180	419	14.01.2010	AB, MT	т	Guamasa	21	20	
2401	N28º20 210	W16º20.082	405	14.01.2010	AD, MT	T	Guamasa	21	20	
241L 949L	N28030.219	W16020.903	-191 530	14.01.2010	AB MT	Ť	Guamasa	21	20	
242L 242L	N28º30 475	W16º20.943	510	14.01.2010	AB MT	Ť	Guamasa	21 91	20	
240L 944T	N28º30.941	W16920.073	621	14.01.2010	AB MT	т Т	Guamasa	21	20	
244L 245L	N28°30 146	W16°20.401	613	14.01.2010	AB MT	Ť	Guamasa	21	20	
246L	N28°30 539	W16º19 803	635	14 01 2010	AB MT	Ť	Guamasa	21	20	
247L	N28°30 309	W16°20 680	525	14.01 2010	AB. MT	Ť	Guamasa	21	20	
248L	N28°30 431	W16°19 989	700	14.01 2010	AB. MT	Ť	Guamasa	21	20	
249L	1.20 00.101		. 50	110112010	AB, MT	Ť	J GGALLOU	21	20	
				Conti	nued on next page	-				
				001101	Pogo					

D Pos. North Pos. Att. Coll. Date Collector Island Region Pop. 1 Pop. 2 Pop.		Table 18.1 – continued from previous page									
251L N28*32.143 W16*16.125 998 14.01.2010 AB, MT T Anaga-West 26 27 251L N28*32.437 W16*16.398 985 14.01.2010 AB, MT T Anaga-West 24 30 253L N28*32.103 W16*16.391 928 14.01.2010 AB, MT T Anaga-West 26 27 254L N28*32.103 W16*16.391 905 14.01.2010 AB, MT T Anaga-Centre 26 27 255L N28*32.030 W16*16.19 854 14.01.2010 AB, MT T Anaga-Centre 29 26 255L N28*32.055 W16*14.512 427 14.01.2010 AB, MT T Anaga-Centre 28 27 261L N28*32.055 W16*15.131 640 14.01.2010 AB, MT T Anaga-Centre 28 27 261L N28*32.050 W16*15.131 640 14.01.2010 AB, MT T Anaga-Centre 28 27 261L N28*32.050 W16*14.650 822 14.01.2010	ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop. 1	Pop. 2	
	250L	N28°32.104	W16°16.125	998	14.01.2010	AB, MT	Т	Anaga-West	26	27	
252LN28*32.010W16*16.39898514.01.2010AB, MTTAnaga-West2430253LN28*32.010W16*15.81488914.01.2010AB, MTTAnaga-Centre2627254LN28*32.010W16*15.81488914.01.2010AB, MTTAnaga-Centre2627255LN28*32.003W16*15.61985414.01.2010AB, MTTAnaga-Centre2926255LN28*33.055W16*14.35085414.01.2010AB, MTTAnaga-Centre2926255LN28*32.423W16*14.85154714.01.2010AB, MTTAnaga-Centre2827260LN28*32.186W16*15.13164014.01.2010AB, MTTAnaga-Centre2827261LN28*32.017W16*15.19077414.01.2010AB, MTTAnaga-Centre2827263LN28*31.900W16*14.43384214.01.2010AB, MTTAnaga-Centre2826264LN28*32.155W16*14.33384214.01.2010AB, MTTAnaga-Centre2826265LN28*32.412W16*13.40884214.01.2010AB, MTTAnaga-Centre2826265LN28*32.455W16*13.30884014.01.2010AB, MTTAnaga-Centre2826265LN28*32.454W16*13.60885214.01.2010AB, MTTAnaga-Centre <td>251L</td> <td>N28°32.437</td> <td>W16°16.252</td> <td>918</td> <td>14.01.2010</td> <td>AB, MT</td> <td>Т</td> <td>Anaga-West</td> <td>26</td> <td>30</td>	251L	N28°32.437	W16°16.252	918	14.01.2010	AB, MT	Т	Anaga-West	26	30	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	252L	N28°32.103	W16°16.398	985	14.01.2010	AB, MT	T	Anaga-West	24	30	
	253L	N28°32.261	W16°16.025	928	14.01.2010	AB, MT	T	Anaga-West	26	27	
255LN.28*32.03W16*16.19.195014.01.2010AB, MTTAnaga-Centre2730256LN.28*33.055W16*16.1985414.01.2010AB, MTTAnaga-Centre2926258LN.28*33.055W16*14.51242714.01.2010AB, MTTAnaga-Centre2827260LN.28*32.423W16*16.5154714.01.2010AB, MTTAnaga-Centre2827260LN.28*32.486W16*15.13164014.01.2010AB, MTTAnaga-Centre2827261LN.28*32.017W16*15.19077414.01.2010AB, MTTAnaga-Centre2827263LN.28*32.090W16*14.91479714.01.2010AB, MTTAnaga-Centre2826264LN.28*32.102W16*14.33384214.01.2010AB, MTTAnaga-Centre2826264LN.28*32.155W16*13.95684114.01.2010AB, MTTAnaga-Centre2826265LN.28*32.474W16*13.80384014.01.2010AB, MTTAnaga-Centre2826266LN.28*32.444W16*13.45686614.01.2010AB, MTTAnaga-Centre2826261LN.28*32.444W16*13.45686614.01.2010AB, MTTAnaga-Centre2826261LN.28*32.444W16*13.45686614.01.2010AB, MTTAna	254L	N28°32.100	W16°15.814	889	14.01.2010	AB, MT	Т	Anaga-Centre	26	27	
250LN28*32.003W16*15.61985414.01.2010AB, MTTAnaga-Centre2026257LN28*33.055W16*14.51242714.01.2010AB, MTTAnaga-Centre2926258LN28*32.423W16*14.51242714.01.2010AB, MTTAnaga-Centre2827261LN28*32.180W16*15.31564014.01.2010AB, MTTAnaga-Centre2827261LN28*32.005W16*15.37570714.01.2010AB, MTTAnaga-Centre2827264LN28*32.007W16*14.65082214.01.2010AB, MTTAnaga-Centre2826265LN28*32.102W16*14.65082214.01.2010AB, MTTAnaga-Centre2826266LN28*32.102W16*13.95684114.01.2010AB, MTTAnaga-Centre2826267LN28*32.474W16*13.69684114.01.2010AB, MTTAnaga-Centre2826268LN28*32.474W16*13.69285214.01.2010AB, MTTAnaga-Centre2826269LN28*32.445W16*13.68373214.01.2010AB, MTTAnaga-Centre2826270LN28*32.444W16*13.68373214.01.2010AB, MTTAnaga-Centre2824271LN28*32.468W16*11.36585214.01.2010AB, MTTAnaga-Centre </td <td>255L</td> <td>N28°32.487</td> <td>W16°16.391</td> <td>905</td> <td>14.01.2010</td> <td>AB, MT</td> <td>T</td> <td>Anaga-West</td> <td>27</td> <td>30</td>	255L	N28°32.487	W16°16.391	905	14.01.2010	AB, MT	T	Anaga-West	27	30	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	256L	N28°32.003	W16°15.619	854	14.01.2010	AB, MT	T.	Anaga-Centre	26	27	
3551N28 33.033W16 14.31242714.01.2010AB, M1TAnaga-Centre29202591N28 32.423W16 14.51554714.01.2010AB, MTTAnaga-Centre2827261LN28 32.095W16 15.37570714.01.2010AB, MTTAnaga-Centre2827261LN28 32.017W16 15.37570714.01.2010AB, MTTAnaga-Centre2827263LN28 32.102W16 14.61479714.01.2010AB, MTTAnaga-Centre2826264LN28 32.102W16 14.53084214.01.2010AB, MTTAnaga-Centre2826266LN28 32.272W16 13.35684014.01.2010AB, MTTAnaga-Centre2826266LN28 32.474W16 13.60384014.01.2010AB, MTTAnaga-Centre2826266LN28 32.474W16 13.60384014.01.2010AB, MTTAnaga-Centre2826267LN28 32.415W16 13.60285214.01.2010AB, MTTAnaga-Centre2826269LN28 32.415W16 13.45686614.01.2010AB, MTTAnaga-Centre2824271LN28 32.415W16 13.45686614.01.2010AB, MTTAnaga-Centre2924274LN28 32.618W16 12.1573314.01.2010AB, MTTAnaga-Centre <td>207L 2591</td> <td>N28-33.059</td> <td>W16°14.330</td> <td>380</td> <td>14.01.2010</td> <td>AB, MI AD MT</td> <td>I T</td> <td>Anaga-Centre</td> <td>29</td> <td>26</td>	207L 2591	N28-33.059	W16°14.330	380	14.01.2010	AB, MI AD MT	I T	Anaga-Centre	29	26	
2391 N28 52:423 W16 14.531 947 14.01.2010 AB, M1 1 Anaga-Centre 28 27 261L N28*32.186 W16*15.375 707 14.01.2010 AB, MT T Anaga-Centre 28 27 261L N28*32.095 W16*15.190 774 14.01.2010 AB, MT T Anaga-Centre 28 27 263L N28*32.090 W16*14.650 822 14.01.2010 AB, MT T Anaga-Centre 28 26 265L N28*32.155 W16*14.333 842 14.01.2010 AB, MT T Anaga-Centre 28 26 266L N28*32.172 W16*13.958 840 14.01.2010 AB, MT T Anaga-Centre 28 26 268L N28*32.474 W16*13.456 866 14.01.2010 AB, MT T Anaga-Centre 28 26 270L N28*32.48 W16*13.456 866 14.01.2010 AB, MT T Anaga-Centre 28 24 271L N28*32.488 W16*13.456 866 14.01.2010 <td>2001</td> <td>N28'33.033</td> <td>W10'14.312</td> <td>427</td> <td>14.01.2010</td> <td>AD, MI</td> <td>T</td> <td>Anaga-Centre</td> <td>29</td> <td>20</td>	2001	N28'33.033	W10'14.312	427	14.01.2010	AD, MI	T	Anaga-Centre	29	20	
261L N28'32.09 W16'15.137 70' 14.01.2010 AB, MT T Anaga-Centre 28 27 262L N28'32.09 W16'15.190 774 14.01.2010 AB, MT T Anaga-Centre 28 27 263L N28'31.990 W16'14.914 79' 14.01.2010 AB, MT T Anaga-Centre 28 27 264L N28'32.102 W16'14.660 822 14.01.2010 AB, MT T Anaga-Centre 28 26 265L N28'32.155 W16'13.395 841 14.01.2010 AB, MT T Anaga-Centre 28 26 266L N28'32.474 W16'13.803 840 14.01.2010 AB, MT T Anaga-Centre 28 26 268L N28'32.415 W16'13.63 840 14.01.2010 AB, MT T Anaga-Centre 28 26 269L N28'32.444 W16'13.155 855 14.01.2010 AB, MT T Anaga-Centre 28 24 271L N28'32.788 W16'12.946 733 14.01.2010	209L 260L	N28°32.423 N28°32.186	W10°14.851 W16°15 131	547 640	14.01.2010	AB, MT	T	Anaga-Centre	28	27	
262L N28'32.017 W16'15.159 77 14.01.2010 AB, MT T Anaga-Centre 28 27 263L N28'32.017 W16'14.914 797 14.01.2010 AB, MT T Anaga-Centre 28 27 264L N28'32.102 W16'14.650 822 14.01.2010 AB, MT T Anaga-Centre 28 26 266L N28'32.125 W16'14.333 842 14.01.2010 AB, MT T Anaga-Centre 28 26 266L N28'32.474 W16'13.956 841 14.01.2010 AB, MT T Anaga-Centre 28 26 268L N28'32.474 W16'13.692 852 14.01.2010 AB, MT T Anaga-Centre 28 26 270L N28'32.404 W16'13.683 732 14.01.2010 AB, MT T Anaga-Centre 28 24 271L N28'32.681 W16'13.083 732 14.01.2010 AB, MT T Anaga-Centre 29 24 274L N28'32.788 W16'12.175 733 14.01.2010 <td>200L 261L</td> <td>N28°32.100</td> <td>W16º15 375</td> <td>707</td> <td>14.01.2010</td> <td>AB MT</td> <td>T</td> <td>Anaga Centre</td> <td>28</td> <td>27</td>	200L 261L	N28°32.100	W16º15 375	707	14.01.2010	AB MT	T	Anaga Centre	28	27	
263L N28*31.90 W16*14.914 797 14.01.2010 AB, MT T Anaga-Centre 28 27 264L N28*32.102 W16*14.650 822 14.01.2010 AB, MT T Anaga-Centre 28 26 266L N28*32.275 W16*14.333 842 14.01.2010 AB, MT T Anaga-Centre 28 26 266L N28*32.272 W16*13.956 840 14.01.2010 AB, MT T Anaga-Centre 28 26 268L N28*32.474 W16*13.803 840 14.01.2010 AB, MT T Anaga-Centre 28 26 269L N28*32.474 W16*13.456 866 14.01.2010 AB, MT T Anaga-Centre 28 26 270L N28*32.404 W16*13.456 866 14.01.2010 AB, MT T Anaga-Centre 28 24 271L N28*32.681 W16*13.155 825 14.01.2010 AB, MT T Anaga-Centre 29 24 273L N28*32.681 W16*12.169 733 14.01.2010 <td>262L</td> <td>N28°32.035</td> <td>W16°15 190</td> <td>774</td> <td>14.01.2010</td> <td>AB, MT</td> <td>т</td> <td>Anaga-Centre</td> <td>28</td> <td>27</td>	262L	N28°32.035	W16°15 190	774	14.01.2010	AB, MT	т	Anaga-Centre	28	27	
264L N28'32.102 W16'14.650 822 14.01.2010 AB, MT T Anaga-Centre 28 26 265L N28'32.155 W16'14.650 822 14.01.2010 AB, MT T Anaga-Centre 28 26 266L N28'32.155 W16'13.956 841 14.01.2010 AB, MT T Anaga-Centre 28 26 266L N28'32.358 W16'13.958 840 14.01.2010 AB, MT T Anaga-Centre 28 26 268L N28'32.415 W16'13.692 852 14.01.2010 AB, MT T Anaga-Centre 28 26 269L N28'32.404 W16'13.456 866 14.01.2010 AB, MT T Anaga-Centre 28 24 271L N28'32.681 W16'13.083 732 14.01.2010 AB, MT T Anaga-Centre 29 24 271L N28'32.788 W16'12.1715 733 14.01.2010 AB, MT T Anaga-East 29 24 275L N28'33.041 W16'11.885 716 14.01.2010 <td>263L</td> <td>N28°31 990</td> <td>W16°14 914</td> <td>797</td> <td>14 01 2010</td> <td>AB MT</td> <td>T</td> <td>Anaga-Centre</td> <td>28</td> <td>27</td>	263L	N28°31 990	W16°14 914	797	14 01 2010	AB MT	T	Anaga-Centre	28	27	
265L N28°32.155 W16°14.333 842 14.01.2010 AB, MT T Anaga-Centre 28 26 266L N28°32.272 W16°13.956 841 14.01.2010 AB, MT T Anaga-Centre 28 26 267L N28°32.474 W16°13.803 840 14.01.2010 AB, MT T Anaga-Centre 28 26 268L N28°32.415 W16°13.692 852 14.01.2010 AB, MT T Anaga-Centre 28 26 269L N28°32.415 W16°13.456 866 14.01.2010 AB, MT T Anaga-Centre 28 24 271L N28°32.38 W16°13.053 732 14.01.2010 AB, MT T Anaga-Centre 29 24 271L N28°32.788 W16°12.046 733 14.01.2010 AB, MT T Anaga-Centre 29 24 273L N28°32.788 W16°12.466 710 14.01.2010 AB, MT T Anaga-East 29 24 276L N28°3.041 W16°11.885 716 14.01.2010	264L	N28°32.102	W16°14.650	822	14.01.2010	AB. MT	T	Anaga-Centre	28	26	
266LN28°32.272W16°13.95684114.01.2010AB, MTTAnaga-Centre2826267LN28°32.358W16°13.95884014.01.2010AB, MTTAnaga-Centre2826268LN28°32.474W16°13.80384014.01.2010AB, MTTAnaga-Centre2826269LN28°32.415W16°13.69285214.01.2010AB, MTTAnaga-Centre2826270LN28°32.404W16°13.45686614.01.2010AB, MTTAnaga-Centre2824271LN28°32.38W16°13.15582514.01.2010AB, MTTAnaga-Centre2924272LN28°32.78W16°12.71573314.01.2010AB, MTTAnaga-Centre2924274LN28°32.78W16°12.71573314.01.2010AB, MTTAnaga-East2924274LN28°32.738W16°12.10970514.01.2010AB, MTTAnaga-East2924276LN28°33.004W16°12.10970514.01.2010AB, MTTAnaga-East3025277LN28°33.101W16°11.48571614.01.2010AB, MTTAnaga-East3025280LN28°33.040W16°11.29576414.01.2010AB, MTTAnaga-East3025281LN28°3.319W16°10.82780814.01.2010AB, MTTAnaga-East30 <t< td=""><td>265L</td><td>N28°32.155</td><td>W16°14.333</td><td>842</td><td>14.01.2010</td><td>AB, MT</td><td>Т</td><td>Anaga-Centre</td><td>28</td><td>26</td></t<>	265L	N28°32.155	W16°14.333	842	14.01.2010	AB, MT	Т	Anaga-Centre	28	26	
267L N28°32.358 W16°13.958 840 14.01.2010 AB, MT T Anaga-Centre 28 26 268L N28°32.474 W16°13.803 840 14.01.2010 AB, MT T Anaga-Centre 28 26 269L N28°32.415 W16°13.692 852 14.01.2010 AB, MT T Anaga-Centre 28 26 270L N28°32.404 W16°13.456 866 14.01.2010 AB, MT T Anaga-Centre 28 24 271L N28°32.338 W16°13.083 732 14.01.2010 AB, MT T Anaga-Centre 29 24 273L N28°32.788 W16°12.715 733 14.01.2010 AB, MT T Anaga-East 29 24 274L N28°32.788 W16°12.466 710 14.01.2010 AB, MT T Anaga-East 29 24 276L N28°3.004 W16°11.885 716 14.01.2010 AB, MT T Anaga-East 30 25 277L N28°3.011 W16°11.686 711 14.01.2010	266L	N28°32.272	W16°13.956	841	14.01.2010	AB, MT	Т	Anaga-Centre	28	26	
268L N28°32.474 W16°13.803 840 14.01.2010 AB, MT T Anaga-Centre 28 26 269L N28°32.415 W16°13.692 852 14.01.2010 AB, MT T Anaga-Centre 28 26 270L N28°32.404 W16°13.456 866 14.01.2010 AB, MT T Anaga-Centre 28 24 271L N28°32.338 W16°13.155 825 14.01.2010 AB, MT T Anaga-Centre 29 24 272L N28°32.681 W16°12.946 733 14.01.2010 AB, MT T Anaga-Centre 29 24 274L N28°32.788 W16°12.715 733 14.01.2010 AB, MT T Anaga-East 29 24 275L N28°32.738 W16°12.486 710 14.01.2010 AB, MT T Anaga-East 30 25 277L N28°33.004 W16°11.885 716 14.01.2010 AB, MT T Anaga-East 30 25 279L N28°33.101 W16°11.486 711 14.01.2010	267L	N28°32.358	W16°13.958	840	14.01.2010	AB, MT	Т	Anaga-Centre	28	26	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	268L	N28°32.474	W16°13.803	840	14.01.2010	AB, MT	Т	Anaga-Centre	28	26	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	269L	N28°32.415	W16°13.692	852	14.01.2010	AB, MT	Т	Anaga-Centre	28	26	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270L	N28°32.404	W16°13.456	866	14.01.2010	AB, MT	Т	Anaga-Centre	28	24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	271L	N28°32.338	W16°13.155	825	14.01.2010	AB, MT	Т	Anaga-Centre	28	24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	272L	N28°32.681	W16°13.083	732	14.01.2010	AB, MT	т	Anaga-Centre	29	24	
274LN28°32.838W16°12.71573314.01.2010AB, MTTAnaga-East2924275LN28°32.738W16°12.48671014.01.2010AB, MTTAnaga-East2924276LN28°32.738W16°12.48671014.01.2010AB, MTTAnaga-East2924276LN28°33.004W16°12.10970514.01.2010AB, MTTAnaga-East3025277LN28°33.01W16°11.88571614.01.2010AB, MTTAnaga-East3025279LN28°33.101W16°11.47173614.01.2010AB, MTTAnaga-East3025280LN28°33.185W16°11.29576414.01.2010AB, MTTAnaga-East3025281LN28°33.040W16°11.3580214.01.2010AB, MTTAnaga-East3025282LN28°33.266W16°11.13580214.01.2010AB, MTTAnaga-East3025283LN28°33.26W16°11.13580214.01.2010AB, MTTAnaga-East3025284LN28°32.858W16°12.20157814.01.2010AB, MTTAnaga-East3025284LN28°32.858W16°12.20157814.01.2010AB, MTTAnaga-East3024285LN28°21.658W16°29.181115015.01.2010AB, MT, ARBTMonte Esperanza12	273L	N28°32.788	W16°12.946	733	14.01.2010	AB, MT	т	Anaga-Centre	29	24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	274L	N28°32.838	W16°12.715	733	14.01.2010	AB, MT	Т	Anaga-East	29	24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	275L	N28°32.738	W16°12.486	710	14.01.2010	AB, MT	Т	Anaga-East	29	24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	276L	N28°33.004	W16°12.109	705	14.01.2010	AB, MT	Т	Anaga-East	30	25	
278L N28°33.101 W16°11.686 711 14.01.2010 AB, MT T Anaga-East 30 25 279L N28°33.115 W16°11.471 736 14.01.2010 AB, MT T Anaga-East 30 25 280L N28°33.115 W16°11.295 764 14.01.2010 AB, MT T Anaga-East 30 25 281L N28°33.040 W16°10.975 777 14.01.2010 AB, MT T Anaga-East 30 25 282L N28°33.226 W16°11.135 802 14.01.2010 AB, MT T Anaga-East 30 25 283L N28°33.319 W16°10.827 808 14.01.2010 AB, MT T Anaga-East 30 25 284L N28°32.858 W16°12.201 578 14.01.2010 AB, MT T Anaga-East 30 24 285L N28°21.658 W16°29.340 1166 15.01.2010 AB, MT, ARB T Monte Esperanza 12 14 287L N28°24.307 W16°29.176 819 15.01.2010	277L	N28°33.041	W16°11.885	716	14.01.2010	AB, MT	Т	Anaga-East	30	25	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	278L	N28°33.101	W16°11.686	711	14.01.2010	AB, MT	Т	Anaga-East	30	25	
280L N28°32.989 W16°11.295 764 14.01.2010 AB, MT T Anaga-East 30 25 281L N28°33.040 W16°10.975 777 14.01.2010 AB, MT T Anaga-East 30 25 282L N28°33.040 W16°10.975 777 14.01.2010 AB, MT T Anaga-East 30 25 282L N28°33.226 W16°11.135 802 14.01.2010 AB, MT T Anaga-East 30 25 283L N28°33.319 W16°10.827 808 14.01.2010 AB, MT T Anaga-East 31 25 284L N28°32.858 W16°12.201 578 14.01.2010 AB, MT T Anaga-East 30 24 285L N28°21.658 W16°29.340 1166 15.01.2010 AB, MT, ARB T Monte Esperanza 12 14 286L N28°24.307 W16°29.174 819 15.01.2010 AB, MT, ARB T Monte Esperanza 14 <td>279L</td> <td>N28°33.115</td> <td>W16°11.471</td> <td>736</td> <td>14.01.2010</td> <td>AB, MT</td> <td>Т</td> <td>Anaga-East</td> <td>30</td> <td>25</td>	279L	N28°33.115	W16°11.471	736	14.01.2010	AB, MT	Т	Anaga-East	30	25	
281L N28°33.040 W16°10.975 777 14.01.2010 AB, MT T Anaga-East 30 25 282L N28°33.226 W16°11.135 802 14.01.2010 AB, MT T Anaga-East 30 25 283L N28°33.226 W16°10.827 808 14.01.2010 AB, MT T Anaga-East 31 25 284L N28°32.858 W16°12.201 578 14.01.2010 AB, MT T Anaga-East 30 24 285L N28°32.858 W16°12.201 578 14.01.2010 AB, MT T Anaga-East 30 24 285L N28°21.658 W16°29.340 1166 15.01.2010 AB, MT, ARB T Monte Esperanza 12 14 287L N28°21.658 W16°29.181 1150 15.01.2010 AB, MT, ARB T Monte Esperanza 12 14 287L N28°24.307 W16°29.174 819 15.01.2010 AB, MT, ARB T Monte Esperanza	280L	N28°32.989	W16°11.295	764	14.01.2010	AB, MT	Т	Anaga-East	30	25	
282L N28°33.226 W16°11.135 802 14.01.2010 AB, MT T Anaga-East 30 25 283L N28°33.319 W16°10.827 808 14.01.2010 AB, MT T Anaga-East 31 25 284L N28°32.858 W16°12.201 578 14.01.2010 AB, MT T Anaga-East 30 24 285L N28°32.858 W16°12.201 578 14.01.2010 AB, MT T Anaga-East 30 24 285L N28°21.658 W16°29.340 1166 15.01.2010 AB, MT, ARB T Monte Esperanza 12 14 286L N28°21.658 W16°29.181 1150 15.01.2010 AB, MT, ARB T Monte Esperanza 12 14 287L N28°24.307 W16°29.174 819 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13 288L N28°24.218 W16°29.174 867 15.01.2010 AB, MT, ARB T Monte Esperanza </td <td>281L</td> <td>N28°33.040</td> <td>W16°10.975</td> <td>777</td> <td>14.01.2010</td> <td>AB, MT</td> <td>Т</td> <td>Anaga-East</td> <td>30</td> <td>25</td>	281L	N28°33.040	W16°10.975	777	14.01.2010	AB, MT	Т	Anaga-East	30	25	
283L N28°33.319 W16°10.827 808 14.01.2010 AB, MT T Anaga-East 31 25 284L N28°32.858 W16°12.201 578 14.01.2010 AB, MT T Anaga-East 30 24 285L N28°21.769 W16°29.340 1166 15.01.2010 AB, MT, ARB T 7 4.000 24 286L N28°21.658 W16°29.181 1150 15.01.2010 AB, MT, ARB T Monte Esperanza 12 14 287L N28°24.307 W16°29.174 819 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13 288L N28°24.218 W16°29.174 867 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13	282L	N28°33.226	W16°11.135	802	14.01.2010	AB, MT	Т	Anaga-East	30	25	
284L N28°32.858 W16°12.201 578 14.01.2010 AB, MT T Anaga-East 30 24 285L N28°21.769 W16°29.340 1166 15.01.2010 AB, MT, ARB T 7	283L	N28°33.319	W16°10.827	808	14.01.2010	AB, MT	Т	Anaga-East	31	25	
285L N28°21.769 W16°29.340 1166 15.01.2010 AB, MT, ARB T 286L N28°21.658 W16°29.181 1150 15.01.2010 AB, MT, ARB T Monte Esperanza 12 14 287L N28°24.307 W16°29.176 819 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13 288L N28°24.218 W16°29.174 867 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13	284L	N28°32.858	W16°12.201	578	14.01.2010	AB, MT	Т	Anaga-East	30	24	
286L N28°21.658 W16°29.181 1150 15.01.2010 AB, MT, ARB T Monte Esperanza 12 14 287L N28°24.307 W16°29.176 819 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13 288L N28°24.218 W16°29.174 867 15.01.2010 AB MT ABB T Monte Esperanza 14 13	285L	N28°21.769	W16°29.340	1166	15.01.2010	AB, MT, ARB	Т				
287L N28°24.307 W16°29.176 819 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13 288L N28°24.218 W16°29.174 867 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13	286L	N28°21.658	W16°29.181	1150	15.01.2010	AB, MT, ARB	Т	Monte Esperanza	12	14	
288L N28°24.218 W16°29.174 867 15.01.2010 AB MT ABB T Monte Esperanze 14 13	287L	N28°24.307	W16°29.176	819	15.01.2010	AB, MT, ARB	Т	Monte Esperanza	14	13	
The second secon	288L	N28°24.218	W16°29.174	867	15.01.2010	AB, MT, ARB	Т	Monte Esperanza	14	13	
289L N28°24.142 W16°29.340 893 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13	289L	N28°24.142	W16°29.340	893	15.01.2010	AB, MT, ARB	Т	Monte Esperanza	14	13	
290L N28°23.935 W16°29.432 930 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13	290L	N28°23.935	W16°29.432	930	15.01.2010	AB, MT, ARB	Т	Monte Esperanza	14	13	
291L N28°23.996 W16°29.173 1034 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13	291L	N28°23.996	W16°29.173	1034	15.01.2010	AB, MT, ARB	T	Monte Esperanza	14	13	
292L N28°23.828 W16°29.276 1053 15.01.2010 AB, MT, ARB T Monte Esperanza 14 13	292L	N28°23.828	W16°29.276	1053	15.01.2010	AB, MT, ARB	T	Monte Esperanza	14	13	
293L N28°23.692 W16°29.348 1046 15.01.2010 AB, MT, ARB T Monte Esperanza 13 13	293L	N28°23.692	W16°29.348	1046	15.01.2010	AB, MT, ARB	Т	Monte Esperanza	13	13	
294L N28°23.634 W16°29.519 1047 15.01.2010 AB, MT, ARB T Monte Esperanza 13 13	294L	N28°23.634	W16°29.519	1047	15.01.2010	AB, MT, ARB	T	Monte Esperanza	13	13	
295L AB, MT, ARB T	295L	N00000 500	11/1 0000 100	1100	15 01 0010	AB, MT, ARB	T		10	10	
290L N28223.069 W10729.483 1102 15.01.2010 AB, M1, ARB 1 Monte Esperanza 13 13	296L 207I	N28°23.509	W16°29.483	1102	15.01.2010	AB, MI, ARB	I T	Monte Esperanza	13	13	
29/L N26 23.443 W10 29.091 1150 15.01.2010 AD, MT, ARD 1 Monte Esperanza 15 15	297L 2081	N28°23.443	W16*29.091	1110	15.01.2010	AD, MI, AND	T	Monte Esperanza	13	13	
2961 N26 25.040 W10 25.209 1119 15.01.2010 AB, M1, ARB 1 Monte Esperanza 15 15 2001 N26 27 80 W16 29 010 1008 15.01.2010 AB MT ABB T Monte Esperanza 14 13	298L 2001	N28°23.040 N28°23.780	W16°29.209	1008	15.01.2010	AB, MI, ARB	T	Monte Esperanza	13	13	
2391 N26 25.760 W10 25.219 1096 15.01.2010 AB, M1, ARD 1 MONTE Esperanza 14 15 3001 N26 26 45 W16 29.045 0160 15.01.2010 AB MT ABB T Monte Esperanza 14 13	299L 300L	N28°23.180	W16°29.219	1098	15.01.2010	AB, MT, ARB	T	Monte Esperanza	14	13	
3001 N28°24.014 W16°28.656 617 15.01.2010 AB, MT, ARB T Monte Esperanza 14 15	300L 301L	N28°24.014	W16°28.645	617	15.01.2010	AB, MT, ARB	T	Monte Esperanza	14	15	
301L N28°24.314 W10 25.045 017 15.01.2010 AB, M1, ARB T Monte Esperanza 15 15	3011	N28°24.914 N28°24 790	W16°28.533	697	15.01.2010	AB, MT, ARB	T	Monte Esperanza	15	15	
3021 N2804 71 W16208 78 842 1501 2010 AB, MT, ARD T Monte Esperanza 15 15	302L 303L	N28°24.730	W16°28.333	842	15.01.2010	AB MT ABB	т	Monte Esperanza	15	15	
3041 N28°24.67 W10°28.076 042 10.01.2010 AB, MT, ARD T Monte Esperanza 10 10	304L	N28°24.625	W16°28 425	794	15 01 2010	AB MT ABB	т	Monte Esperanza	15	15	
305L N28°19.525 W16°50.736 741 16.01.2010 AB MT T Teno 2 7	305L	N28°19 525	W16°50 736	741	16.01.2010	AB MT	T	Teno	2	7	
306L N28°19.313 W16°50.146 870 16.01.2010 AB MT T Teno 2 7	306L	N28°19.313	W16°50.146	870	16.01.2010	AB. MT	Т	Teno	2	7	
307L N28°19.395 W16°49.910 1003 16.01.2010 AB MT T Teno 2 6	307L	N28°19.395	W16°49.910	1003	16.01.2010	AB, MT	T	Teno	2	6	
308L N28°19.274 W16°49.758 1043 16.01.2010 AB MT T Teno 2 6	308L	N28°19.274	W16°49.758	1043	16.01.2010	AB, MT	T	Teno	2	6	
309L N28°19.181 W16°49.808 1057 16.01.2010 AB.MT T Teno 2 6	309L	N28°19.181	W16°49.808	1057	16.01.2010	AB, MT	T	Teno	2	6	
310L N28°19.133 W16°49.667 1095 16.01.2010 AB.MT T Teno 2 6	310L	N28°19.133	W16°49.667	1095	16.01.2010	AB, MT	Т	Teno	2	6	
311L N28°18.952 W16°49.720 1140 16.01.2010 AB, MT T Teno 2 6	311L	N28°18.952	W16°49.720	1140	16.01.2010	AB, MT	Т	Teno	2	6	
312L N28°18.957 W16°49.498 1178 16.01.2010 AB, MT T Teno 2 6	312L	N28°18.957	W16°49.498	1178	16.01.2010	AB, MT	Т	Teno	2	6	
313L N28°18.840 W16°49.607 1210 16.01.2010 AB, MT T Teno 2 6	313L	N28°18.840	W16°49.607	1210	16.01.2010	AB, MT	т	Teno	2	6	
314L N28°18.827 W16°49.438 1242 16.01.2010 AB, MT T Teno 2 6	314L	N28°18.827	W16°49.438	1242	16.01.2010	AB, MT	т	Teno	2	6	
315L N28°18.803 W16°49.189 1259 16.01.2010 AB, MT T Teno 3 4	315L	N28°18.803	W16°49.189	1259	16.01.2010	AB, MT	т	Teno	3	4	
Continued on next page					Conti	nued on next page					

	Table 18.1 – continued from previous page									
ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop. 1	Pop. 2	
316L	N28°18.864	W16°49.200	1238	16.01.2010	AB, MT	Т	Teno	3	4	
317L	N28°18.906	W16°49.312	1199	16.01.2010	AB, MT	Т	Teno	2	6	
318L	N28°19.058	W16°50.090	987	16.01.2010	AB, MT	T	Teno	2	7	
319L	N28°19.020	W16°50.148	988	16.01.2010	AB, MT	Т	Teno	2	7	
320L	N28°19.124	W16°50.250	925	16.01.2010	AB, MT	Т	Teno	2	7	
321L	N28°19.250	W16°50.386	818	16.01.2010	AB, MT	T	Teno	2	7	
322L	N28°19.424	W16°50.552	756	16.01.2010	AB, MT	T	Teno	2	7	
323L	N28°19.332	W16°50.859	804	16.01.2010	AB, MT	T	Teno	2	7	
324L	N28°19.482	W16°51.141	810	16.01.2010	AB, MT	T.	Teno	2	7	
325L	N28°19.352	W16°50.959	816	16.01.2010	AB, MT	T	Teno	2	7	
326L	N28-18.909	W16-48.241	1108	16.01.2010	AB, MI	I T	Teno	3	4	
327L 2201	N28-18.714	W16°48.848	1183	16.01.2010	AB, MI	1	Teno	3	4	
328L 2201	N2010.704	W10'49.055	1210	16.01.2010	AD, MT	T	Тепо	3	4	
329L 220I	N28°10.039	W16º47.872	1125	16.01.2010	AD, MT	T	Teno	5	4	
221I	N28°19.418	W10'47.875	1127	16.01.2010	AD, MI AD MT	I T	Teno	5	4	
2201	N28 19.580	W16947.164	1060	16.01.2010	AD, MT	T	Teno	5	-4	
3321	N28°20 161	W16º47.104	080	16.01.2010	AB, MT	T	Teno	6	3	
334L	N28°20.284	W16º47.257	939	16.01.2010	AB, MT	T	Teno	6	3	
335L	N28°20.204 N28°20.324	W16°47 545	900	16.01.2010	AB, MT	т	Teno	4	2	
336L	N28°20 128	W16°47.806	938	16.01.2010	AB MT	т	Teno	5	5	
337L	N28°19 724	W16º48 173	1003	16.01.2010	AB, MT	т	Teno	5	4	
338L	N28°19 951	W16°48.304	974	16.01.2010	AB, MT	T	Teno	5	4	
3391.	N28°20 165	W16º48 298	946	16.01.2010	AB MT	т	Teno	5	5	
340L	N28°20.245	W16°48.146	916	16.01.2010	AB. MT	Т	Teno	5	5	
341L	N28°20.071	W16°48.093	960	16.01.2010	AB. MT	Т	Teno	5	4	
342L	N28°20.436	W16°47.973	871	16.01.2010	AB. MT	Ť	Teno	4	5	
343L	N28°20.519	W16°47.785	842	16.01.2010	AB. MT	Т	Teno	4	5	
344L	N28°21.142	W16°34.430	879	17.01.2010	AB, MT	Т	Orotava	11	12	
345L	N28°21.176	W16°34.736	908	17.01.2010	AB, MT	Т	Orotava	11	12	
346L	N28°20.620	W16°35.140	1166	17.01.2010	AB, MT	Т	Chanajiga	11	10	
347L	N28°20.827	W16°35.222	1167	17.01.2010	AB, MT	т	Chanajiga	11	10	
348L	N28°21.244	W16°35.351	1147	17.01.2010	AB, MT	т	Chanajiga	11	10	
349L	N28°21.356	W16°35.445	1152	17.01.2010	AB, MT	Т	Chanajiga	11	10	
350L	N28°20.923	W16°35.306	1160	17.01.2010	AB, MT	Т	Chanajiga	11	10	
351L	N28°21.046	W16°35.373	1143	17.01.2010	AB, MT	Т	Chanajiga	11	10	
352L	N28°21.408	$W16^{\circ}35.584$	1171	17.01.2010	AB, MT	Т	Chanajiga	11	10	
353L	N28°21.533	W16°35.761	1184	17.01.2010	AB, MT	Т	Chanajiga	11	10	
354L	N28°21.588	W16°35.856	1195	17.01.2010	AB, MT	Т	Chanajiga	11	10	
355L	N28°21.582	W16°35.979	1217	17.01.2010	AB, MT	Т	Chanajiga	11	10	
356L	N28°20.880	$W16^{\circ}34.451$	1043	17.01.2010	AB, MT	Т	Orotava	11	12	
357L	N28°21.005	W16°34.683	982	17.01.2010	AB, MT	Т	Orotava	11	12	
358L	N28°21.096	W16°34.442	941	17.01.2010	AB, MT	Т	Orotava	11	12	
359L	N28°22.589	W16°35.743	543	17.01.2010	AB, MT	Т	Chanajiga	10	10	
360L	N28°22.880	W16°36.253	666	17.01.2010	AB, MT	Т	Chanajiga	10	10	
361L	N28°22.553	W16°36.325	770	17.01.2010	AB, MT	Т	Chanajiga	10	11	
362L	N28°22.515	W16°36.599	791	17.01.2010	AB, MT	Т	Chanajiga	10	11	
363L	N28°22.260	W16°36.818	842	17.01.2010	AB, MT	Т	Chanajiga	10	11	
364L	N28°21.697	W16°37.206	916	17.01.2010	AB, MT	Т	Chanajiga	10	11	
365L	N28°21.764	W16°37.413	885	17.01.2010	AB, MT	Т	Chanajiga	10	11	
366L	N28°21.718	W16°37.858	898	17.01.2010	AB, MT	Т	Chanajiga	10	11	
367L	N28°21.823	W16°38.327	843	17.01.2010	AB, MT	Т	Chanajiga	10	11	
368L	N28°21.833	W16°39.108	768	17.01.2010	AB, MT	Т	Chanajiga	10	11	
369L	N28°22.457	W16°38.649	526	17.01.2010	AB, MT	Т	Chanajiga	10	11	
370L	N28°22.648	W16°38.379	529	17.01.2010	AB, MT	Т	Chanajiga	10	11	
371L	N28°22.555	W16°37.544	627	17.01.2010	AB, MT	Т	Chanajiga	10	11	
372L	N28°22.321	W16°37.437	664	17.01.2010	AB, MT	Т				
373L	N28°22.497	W16°37.252	657	17.01.2010	AB, MT	Т	Chanajiga	10	11	
374L	N28°26.238	W16°27.322	547	19.01.2010	AB, MT	T	Calderetas	17	21	
375L	N28°26.174	W16°26.630	742	19.01.2010	AB, MT	T 	Calderetas	17	21	
376L	N28°25.737	W16°26.241	957	19.01.2010	AB, MT	Т	Calderetas	16	21	
377L	N28°25.876	W16°26.039	1006	19.01.2010	AB, MT	T	Calderetas	17	21	
378L	N28°26.125	W16°25.826	1021	19.01.2010	AB, MT	T	Calderetas	17	21	
379L	N28°26.204	W16°25.782	1027	19.01.2010	AB, MT	T	Calderetas	17	21	
380L	N28°26.016	W16°25.804	1029	19.01.2010	AB, MT	T	Calderetas	17	21	
381L	N28-25.768	vv 10-25.625	1112	19.01.2010	AB, MT	.1.	Calderetas	18	21	
				Conti	nued on next pa	age				

Table 18.1 – continued from previous page									
ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop. 1	Pop. 2
382L	N28°25.651	W16°25.749	1099	19.01.2010	AB, MT	Т	Calderetas	18	21
383L	N28°25.212	W16°26.265	1057	19.01.2010	AB, MT	Т	Monte Esperanza	16	21
384L	N28°24.987	W16°26.336	1095	19.01.2010	AB, MT	T	Monte Esperanza	16	21
385L	N28°24.965	W16°26.576	1067	19.01.2010	AB, MT	Т	Monte Esperanza	16	21
386L	N28°24.901	W16°26.678	1063	19.01.2010	AB, MT	Т	Monte Esperanza	16	17
387L	N28°24.604	W16°26.769	1032	19.01.2010	AB, MT	Т	Monte Esperanza	16	17
388L	N28°24.513	W16°26.818	1018	19.01.2010	AB, MT	Т	Monte Esperanza	16	17
389L	N28°24.809	W16°26.714	1054	19.01.2010	AB, MT	Т	Monte Esperanza	16	17
390L	N28°25.107	W16°26.921	913	19.01.2010	AB, MT	T	Monte Esperanza	16	17
391L	N28°25.385	W16°26.474	951	19.01.2010	AB, MT	T.	Monte Esperanza	16	21
392L	N28°25.805	W16°25.406	1122	19.01.2010	AB, MT	T	Calderetas	18	21
393L 2041	N28°25.950	W16°25.581	1083	19.01.2010	AB, MT	Т Т	Calderetas	18	21
394L 2051	N28°20.252	W10 25.180	1023	19.01.2010	AD, MT	T	Calderetas	10	10
393L 2061	N28°20.090	W10'25.274	071	19.01.2010	AD, MT	T	Calderetas	18	21
390L 207I	N28°20.337	W16 25.502 W16 25 274	971	19.01.2010	AD, MI AD MT	T	Calderetas	17	21
3081	N28°26 404	W16°25 384	970	19.01.2010	AB, MT	T	Calderetas	17	16
3001.	N28°26.690	W16°25.534 W16°25.577	878	19.01.2010	AB, MT	т	Calderetas	17	16
400L	N28°26 516	W16º25.577	020	19.01.2010	AB, MT	T	Calderetas	17	16
400L 401L	N28°26.023	W16°25.333	1084	19.01.2010	AB, MT	т	Calderetas	18	21
402L	N28°25 853	W16°25 123	1147	19.01.2010	AB MT	т	Calderetas	18	21
402L	N28°25 864	W16°24 833	1160	19.01.2010	AB MT	т	Calderetas	18	16
404L	N28°25 867	W16°24.686	1170	19.01.2010	AB MT	т	Calderetas	18	16
405L	N28°25 944	W16°24 479	1176	19.01.2010	AB MT	Ť	Calderetas	18	16
406L	N28°26.081	W16°24.019	1179	19.01.2010	AB. MT	Ť	Calderetas	18	18
407L	N28°25.986	W16°24.335	1188	19.01.2010	AB. MT	T	Calderetas	18	16
408L	N28°26.201	W16°24.257	1119	19.01.2010	AB. MT	Т	Calderetas	18	16
409L	N28°26.119	W16°24.543	1110	19.01.2010	AB. MT	т	Calderetas	18	16
410L	N28°26.055	W16°24.690	1110	19.01.2010	AB, MT	Т	Calderetas	18	16
411L	N28°26.082	W16°24.946	1104	19.01.2010	AB, MT	Т	Calderetas	18	16
412L	N28°26.477	W16°24.279	1070	19.01.2010	AB. MT	т	Calderetas	18	18
413L	N28°26.692	W16°24.327	1037	19.01.2010	AB, MT	Т	Calderetas	18	18
414L	N28°26.836	W16°24.271	1018	19.01.2010	AB, MT	Т	Calderetas	19	18
415L	N28°26.930	W16°24.104	1017	19.01.2010	AB, MT	Т	Calderetas	19	18
416L				19.01.2010	AB, MT	Т			
417L	N28°26.835	W16°23.857	1034	19.01.2010	AB, MT	Т	Calderetas	19	18
418L	N28°26.793	W16°23.698	1053	19.01.2010	AB, MT	Т	Calderetas	19	18
419L	N28°27.013	W16°24.007	1013	19.01.2010	AB, MT	Т	Calderetas	19	18
420L	N28°26.994	W16°23.869	1004	19.01.2010	AB, MT	Т	Calderetas	19	18
421L	N28°27.045	W16°23.723	998	19.01.2010	AB, MT	Т	Calderetas	19	18
422L	N28°27.035	W16°24.295	994	19.01.2010	AB, MT	Т	Calderetas	19	18
423L	N28°27.017	W16°24.515	974	19.01.2010	AB, MT	Т	Calderetas	19	18
424L	N28°26.887	W16°24.593	983	19.01.2010	AB, MT	Т	Calderetas	19	18
425L	N28°26.816	W16°24.715	964	19.01.2010	AB, MT	Т	Calderetas	19	18
426L	N28°26.664	W16°24.925	979	19.01.2010	AB, MT	Т	Calderetas	19	18
427L	N28°27.639	W16°25.749	688	19.01.2010	AB, MT	Т	Calderetas	17	16
428L	N28°27.373	W16°26.027	679	19.01.2010	AB, MT	Т	Calderetas	17	16
429L	N28°27.140	W16°26.297	629	19.01.2010	AB, MT	Т	Calderetas	17	16
430L	N28°27.221	W16°26.535	584	19.01.2010	AB, MT	Т	Calderetas	17	16
431L	N28°25.328	W16°27.837	534	20.01.2010	AB, MT	Т	Monte Esperanza	15	17
432L	N28°25.263	W16°28.033	536	20.01.2010	AB, MT	Т	Monte Esperanza	15	17
433L	N28°25.158	W16°28.087	609	20.01.2010	AB, MT	Т	Monte Esperanza	15	17
434L	N28°25.014	W16°28.011	681	20.01.2010	AB, MT	Т			
435L	N28°24.748	W16°28.082	796	20.01.2010	AB, MT	Т	Monte Esperanza	15	17
436L	N28°24.937	W16°28.071	708	20.01.2010	AB, MT	Т	Monte Esperanza	15	17
437L	N28°24.587	W16°28.009	885	20.01.2010	AB, MT	Т	Monte Esperanza	15	15
438L	N28°24.416	W16°27.995	980	20.01.2010	AB, MT	Т	Monte Esperanza	15	15
439L	N28°24.445	W16°28.118	929	20.01.2010	AB, MT	Т	Monte Esperanza	15	15
440L	N28°24.307	W16°28.047	1001	20.01.2010	AB, MT	Т	Monte Esperanza	15	15
441L	N28°24.239	W16°28.106	1002	20.01.2010	AB, MT	Т	Monte Esperanza	14	15
442L	N28°24.264	W16°28.249	995	20.01.2010	AB, MT	Т	Monte Esperanza	14	15
443L	N28-24.154	W16900 400	983	20.01.2010	AB, MT	.T.	Monte Esperanza	14	10
444L 448T	N28°24.151	W16998 799	993	20.01.2010	AB, MT	T	Monte Esperanza	14	13
443L	N28*24.130	W16900 700	1020	20.01.2010	AD, MT	1	Monte Esperanza	14	13
446L 4471	N28°23.938	W1628.768	1083	20.01.2010	AB, MT AB MT	T.	Monte Esperanza	14	13
44/L	1120-24.028	W10-28.520	1093	20.01.2010	AD, MI	1	monte Esperanza	14	13
				Conti	nueu on next pa	age			

D Pos. North Pos. Worth North Fos. Worth Los Collector Fall Term Monte Expension Al 1.5 4441 N223309 W10728.366 188 20.0.2010 AB, MT T Monte Expension 14 15 4491 N223309 W10728.107 1138 20.0.2010 AB, MT T Monte Expension 13 115 4551 N229-1244 W10727.007 663 20.0.2010 AB, MT T Monte Expension 15 15 4561 N229-1244 W10977.574 929 20.0.2010 AB, MT T Monte Expension 16 15 4561 N229-1273 W10977.533 911 20.0.2010 AB, MT T Monte Expension 16 17 4511 N229-127 W10977.61 049 20.0.2010 AB, MT T Monte Expension 16 17 4511 N229-127 W1097.613 1003 20.0.2010 AB, MT T	Table 18.1 – continued from previous page									
4486. N28223.788 W16728.411 108 20.01.2010 AB, MT T Monte Expersanze 14 15 4501. N28223.047 W16728.137 11.38 20.01.2010 AB, MT T Monte Expersanze 14 15 4501. N28223.047 W16728.137 11.38 20.01.2010 AB, MT T Monte Expersanze 15 15 4531. N28224.459 W16727.007 066 20.01.2010 AB, MT T Monte Expersanze 15 15 4545. N28224.536 W16727.688 935 20.01.2010 AB, MT T Monte Expersanze 15 15 4547. N28224.536 W16727.647 908 20.01.2010 AB, MT T Monte Expersanze 16 17 4641. N2824.5481 W16727.647 109 20.01.2010 AB, MT T Monte Expersanze 16 17 4641. N2824.5481 W16726.433 1176 20.01.2010 AB, MT T Monte Expersanze 16 17 4641. N2824.542 W16726.433 </td <td>ID</td> <td>Pos. North</td> <td>Pos. West</td> <td>Alt.</td> <td>Coll. Date</td> <td>Collector</td> <td>Island</td> <td>Region</td> <td>Pop. 1</td> <td>Pop. 2</td>	ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop. 1	Pop. 2
440. N22*23.966 W16*28.366 106* 20.01.2010 AB, MT T Monte Expersanza 14 15 451. N22*24.113 W16*28.012 103 20.01.2010 AB, MT T Monte Expersanza 15 15 451. N22*24.134 W16*28.012 103 20.01.2010 AB, MT T Monte Expersanza 15 15 451. N22*24.304 W16*27.714 92 20.01.2010 AB, MT T Monte Expersanza 15 15 452. N22*24.334 W16*27.327 98 20.01.2010 AB, MT T Monte Expersanza 15 15 455. N22*24.738 W16*27.437 98 20.01.2010 AB, MT T Monte Expersanza 16 17 455. N22*24.738 W16*27.727 94 20.01.2010 AB, MT T Monte Expersanza 16 17 456. N22*24.738 W16*27.727 94 20.01.2010 AB, MT T Monte Expersanza 16 17 451. N22*24.640 W16*27.721 940	448L	N28°23.788	W16°28.411	1080	20.01.2010	AB, MT	Т	Monte Esperanza	14	15
4600. N2822.007 W16'28.157 1.38 20.01.2010 AB, MT T Monte Expersanze 14 15 4511. N2824.24.03 W16'27.002 1003 20.01.2010 AB, MT T Monte Expersanze 15 15 4511. N2824.24.03 W16'27.002 1003 20.01.2010 AB, MT T Monte Expersanze 15 15 4551. N2824.24.04 W16'27.048 93 20.01.2010 AB, MT T Monte Expersanze 15 15 4561. N2824.24.06 W16'27.457 908 20.01.2010 AB, MT T Monte Expersanze 16 17 4501. N2824.4373 W16'27.274 946 20.01.2010 AB, MT T Monte Expersanze 16 17 4611. N2824.266 W16'27.021 1009 20.01.2010 AB, MT T Monte Expersanze 16 17 4611. N2824.266 W16'27.201 1070 20.01.2010 AB, MT T Monte Expersanze 16 17 4611. N2824.266 W16'27.201 </td <td>449L</td> <td>N28°23.996</td> <td>W16°28.366</td> <td>1086</td> <td>20.01.2010</td> <td>AB, MT</td> <td>Т</td> <td>Monte Esperanza</td> <td>14</td> <td>15</td>	449L	N28°23.996	W16°28.366	1086	20.01.2010	AB, MT	Т	Monte Esperanza	14	15
411. N2823.13 W1078.012 103 20.01.2010 AB, MT T Monte Expensas 13 15 4511. N223.40 W1072.007 908 20.01.2010 AB, MT T Monte Expensas 15 15 4512. N223.40 W1072.007 908 20.01.2010 AB, MT T Monte Expensas 15 15 4551. N223.40 W1077.207 908 20.01.2010 AB, MT T Monte Expensas 15 15 4551. N223.40 W1077.437 908 20.01.2010 AB, MT T Monte Expensas 16 17 4601. N223.478 W1077.439 908 20.01.2010 AB, MT T Monte Expensas 16 17 4601. N224.528 W1076.033 123 20.01.2010 AB, MT T Monte Expensas 16 17 4611. N224.548 W1076.033 113 20.01.2010 AB, MT T Monte Expensas 16 17 4612. N224.548 W1072.603 107 20.01.2010	450L	N28°23.967	W16°28.157	1138	20.01.2010	AB, MT	T	Monte Esperanza	14	15
4201 N C22-24.04 W (19-27, 20)2 10.33 20.01.2010 A.H. M.T T Month Experimize 15 15 4551 N22-24.566 W (19-27, 288) 935 20.01.2010 A.H. MTT T Month Experimize 15 15 4561 N22-24.566 W (19-27, 289) 911 20.01.2010 A.H. MTT T Month Experimize 15 15 4561 N22-24.366 W (19-27, 347) 908 20.01.2010 A.H. MTT T Month Experimanz 16 17 4501 N22-24.733 W (19-27, 302) 100 20.01.2010 A.H. MTT T Month Experimaze 16 17 4611 N22-24.661 W (19-27, 3721 100 20.01.2010 A.B. MTT T Month Experimize 16 17 4611 N22-24.661 W (19-20, 37) 1100 20.01.2010 A.B. MT T Month Experimize 16 17 4611 N22-24.631 W (19-22, 37) 117 20.01.2010 A.B. MT<	451L	N28°24.113	W16°28.012	1093	20.01.2010	AB, MT	Т	Monte Esperanza	14	15
13.11 N 225-21.439 W 16-27.007 998 20.01.2010 ALI, MIT T Monte Expersanza 15 15 45.01 N32-24.023 W 16-27.663 601 20.01.2010 ALI, MIT T Monte Expersanza 15 15 45.01 N32-24.023 W 16-27.663 601 20.01.2010 ALI, MIT T Monte Expersanza 16 17 45.01 N32-24.023 W 16-27.463 918 20.01.2010 ALI, MIT T Monte Expersanza 16 17 4601 N32-44.020 W 16-27.433 976 20.01.2010 ALI, MIT T Monte Expersanza 16 17 4611 N32-24.060 W 16-27.690 1109 20.01.2010 ALI, MIT T Monte Expersanza 16 17 4611 N32-24.060 W 16-26.091 1003 20.01.2010 ALI, MIT T Monte Expersanza 16 17 4611 N32-24.060 W 16-22.093 1003 20.01.2010 ALI, MIT <t< td=""><td>452L</td><td>N28°24.264</td><td>W16°27.902</td><td>1053</td><td>20.01.2010</td><td>AB, MT</td><td>Т</td><td>Monte Esperanza</td><td>15</td><td>15</td></t<>	452L	N28°24.264	W16°27.902	1053	20.01.2010	AB, MT	Т	Monte Esperanza	15	15
	453L	N28°24.459	W16°27.907	966	20.01.2010	AB, MT	Т	Monte Esperanza	15	15
	454L	N28°24.304	W16°27.714	929	20.01.2010	AB, MT	Т	Monte Esperanza	15	15
4360. N 282-24.23 W 1021.033 0.1 2001.2010 AB, MT T Monte Esperanza 10 13 4501. N 282-44.23 W 1027.244 966 20.01.2010 AB, MT T Monte Esperanza 16 17 4601. N 282-44.23 W 1027.214 966 20.01.2010 AB, MT T Monte Esperanza 16 17 4601. N 282-44.63 W 1027.021 1009 20.01.2010 AB, MT T Monte Esperanza 16 17 4621. N 282-44.64 W 1022.63 1109 20.01.2010 AB, MT T Monte Esperanza 16 17 4651. N 282-44.50 W 1022.430 1176 20.01.2010 AB, MT T Monte Esperanza 16 17 4661. N 282-47.09 W 1022.4265 1006 20.01.2010 AB, MT T C Alderetaa 19 19 4601. N 282-6.014 W 1022.2615 1001 20.01.2010 AB, MT T C	455L	N28°24.536	W16°27.688	935	20.01.2010	AB, MT	Т	Monte Esperanza	15	15
4571 X22524.36 W1022.437 908 2001.2010 A.B. M.T 1 Mobile Experimant 16 17 4661 N22524.562 W1027.160 96 2001.2010 A.B. M.T T Mobile Experimant 16 17 4601 N2254.562 W1027.160 96 2001.2010 A.B. M.T T Monte Experimant 16 17 4621 N2354.562 W1027.010 A.B. M.T T Monte Experimant 16 17 4621 N2354.562 W1027.020 20.01.2010 A.B. M.T T Monte Experimant 16 17 4641 N2354.422 W1026.425 1137 20.01.2010 A.B. M.T T Monte Experimant 16 17 4661 N2354.268 W1022.2181 98 20.01.2010 A.B. M.T T Calderetas 19 19 4711 N237.016 W1022.2181 98 20.01.2010 A.B. M.T T Calderetas 19 19 4711 N237.046 W1022.845 1092 20.01.2010 A.B. M.T T	456L	N28°24.523	W16°27.523	911	20.01.2010	AB, MT	T	Monte Esperanza	15	15
438. All 24.10 N 10 2.1.43 91.8 20.01.2010 A.B. MT T Monte Esperanaa 16 17 4001 N28*24.28 W19*27.23 94.9 20.1.2010 AB. MT T Monte Esperanaa 16 17 4001 N28*24.56 W19*27.80 100 20.0.1.2010 AB. MT T Monte Esperanaa 16 17 4641 N28*24.566 W19*26.501 1109 20.0.1.2010 AB. MT T Monte Esperanaa 16 17 4641 N28*24.502 W19*26.502 1109 20.0.1.2010 AB. MT T Monte Esperanaa 16 17 4651 N28*27.077 W19*2.269 101 20.0.1.2010 AB. MT T Calderetas 19 19 4701 N28*27.057 W19*2.269 104 20.0.1.2010 AB. MT T Calderetas 19 19 4712 N28*7.056 W19*2.301 89 20.0.1.2010 AB. MT T Calderetas	457L	N28°24.436	W16°27.437	908	20.01.2010	AB, MT	·1·	Monte Esperanza	15	15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	458L	N28°24.708	W16°27.453	918	20.01.2010	AB, MI	I	Monte Esperanza	16	17
John Number Schule John	459L 460I	N28°24.723	W16°27.274	946	20.01.2010	AB, MT	·T·	Monte Esperanza	16	17
1011 Ar.S. 84.06 W10 J. 102 2.0.1.2010 A.B. M.T T Nonte Esperanza 10 17 463L N28*24.464 W10*26.333 102 2.0.1.2010 A.B. M.T T Monte Esperanza 16 17 463L N28*24.464 W10*26.333 102 2.0.1.2010 A.B. M.T T Monte Esperanza 16 17 463L N28*74.203 W10*26.102 1349 2.0.1.2010 A.B. M.T T Monte Esperanza 16 17 464L N28*74.203 W10*22.281 988 2.0.1.2010 A.B. M.T T Caldrestas 19 19 470L N28*7.054 W10*22.457 1092 2.0.1.2010 A.B. M.T T Caldrestas 19 19 471L N28*77.054 W10*22.457 1047 2.0.1.2010 A.B. MT T Caldrestas 20 19 472L N28*77.654 W10*22.457 1047 2.0.1.2010 A.B. MT T Caldrestas 20	400L	N28°24.082	W16927.180	1000	20.01.2010	AD, MI	T	Monte Esperanza	16	17
addit Nass 24.000 N10 40.033 10.3 200.1.000 A.B. MT T Monte Expersana 16 17 464L NASS 24.481 W16/20.4579 1107 200.1.2010 A.B. MT T Monte Expersana 16 21 464L NASS 24.481 W16/20.430 117 200.1.2010 A.B. MT T Monte Expersana 16 17 466L NASS 24.090 W16/20.102 1349 200.1.2010 A.B. MT T Calderetas 20 19 468L NASS 26.914 W16/22.081 1002 200.1.2010 A.B. MT T Calderetas 19 19 470L NASS 27.064 W16/22.087 1092 200.1.2010 A.B. MT T Calderetas 19 19 471L NASS 27.052 W16/22.087 1092 200.1.2010 A.B. MT T Calderetas 19 19 474L NASS 27.692 W16/22.083 86 200.1.2010 A.B. MT T Calderetas	401L	N28°24.001	W16926.022	1009	20.01.2010	AD, MI	T	Monte Esperanza	16	17
Hole No. 5 = 10.1 Production All and the second	402L 463L	N28°24.300 N28°24.842	W16º26.550	11025	20.01.2010	AB, MT	T	Monte Esperanza	16	17
	464L	N28°24.842	W16º26.425	1157	20.01.2010	AB, MT	T	Monte Esperanza	16	21
466L N28*21.263 W16*26.102 134 200.12010 AB, MT T Munter Expensiona 16 17 467L N28*26.901 W16*21.281 988 20.01.2010 AB, MT T Caldereta 20 19 460L N28*26.901 W16*22.281 908 20.01.2010 AB, MT T Caldereta 19 19 460L N28*26.901 W16*22.2845 1002 20.01.2010 AB, MT T Caldereta 19 19 471L N28*27.654 W16*22.075 1072 20.01.2010 AB, MT T Caldereta 20 19 473L N28*77.662 W16*23.201 88.6 20.01.2010 AB, MT T Caldereta 20 19 477L N28*77.424 W16*22.48 871 20.01.2010 AB, MT T Caldereta 20 19 477L N28*77.424 W16*22.48 871 20.01.2010 AB, MT T Caldereta 20 19 <td>464L</td> <td>N28°24.011</td> <td>W16°26 430</td> <td>1176</td> <td>20.01.2010</td> <td>AB, MT</td> <td>т</td> <td>Monte Esperanza</td> <td>16</td> <td>17</td>	464L	N28°24.011	W16°26 430	1176	20.01.2010	AB, MT	т	Monte Esperanza	16	17
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	466L	N28°24.703	W16°26 102	1349	20.01.2010	AB, MT	т	Monte Esperanza	16	17
dest N22*26.991 W16*22.881 988 20.01.2010 AB, MT T Calderetas 19 469L N28*26.914 W16*22.689 1066 20.01.2010 AB, MT T Calderetas 19 471L N28*27.054 W16*22.677 1072 20.01.2010 AB, MT T Calderetas 19 471L N28*27.054 W16*23.053 886 20.01.2010 AB, MT T Calderetas 20 19 474L N28*27.562 W16*23.030 886 20.01.2010 AB, MT T Calderetas 20 19 477L N28*27.892 W16*23.030 886 20.01.2010 AB, MT T Calderetas 20 19 477L N28*27.892 W16*22.575 90.01.2010 AB, MT T Calderetas 20 19 478L N28*27.845 W16*25.578 80.01.2010 AB, MT T Calderetas 17 16 484L N28*27.668 W16*25.578	400L 467L	N28°27 077	W16°21 922	911	20.01.2010	AB, MT	т	Calderetas	20	19
460 N22*26.91 W16*22.68 106 20.01.2010 AB, MT T Caldretas 19 470 N28*27.054 W16*22.455 1072 20.01.2010 AB, MT T Caldretas 19 471L N28*27.054 W16*22.457 1072 20.01.2010 AB, MT T Caldretas 19 472L N28*27.054 W16*22.457 1077 20.01.2010 AB, MT T Caldretas 20 19 474L N28*27.652 W16*23.368 88.8 20.01.2010 AB, MT T Caldretas 20 19 476L N28*27.802 W16*22.488 71 20.01.2010 AB, MT T Caldretas 20 19 470L N28*27.444 W16*22.458 758 20.01.2010 AB, MT T Caldretas 19 18 481L N28*27.054 W16*25.783 75 20.01.2010 AB, MT T Caldretas 17 16 484L N28*26.688 <td>468L</td> <td>N28°26 991</td> <td>W16°22 281</td> <td>988</td> <td>20.01.2010</td> <td>AB MT</td> <td>т</td> <td>Calderetas</td> <td>20</td> <td>19</td>	468L	N28°26 991	W16°22 281	988	20.01.2010	AB MT	т	Calderetas	20	19
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	4691	N28°26 914	W16°22.201	1066	20.01.2010	AB MT	т	Calderetas	19	19
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	470L	N28°26 827	W16°22.845	1092	20.01.2010	AB MT	т	Calderetas	19	19
4721 N28°27.101 W16°22.957 1047 20.01.2010 AB, MT T Calderetas 19 19 473L N28°27.568 W16°23.201 88 20.01.2010 AB, MT T Calderetas 20 19 474L N28°27.448 W16°23.201 88 20.01.2010 AB, MT T Calderetas 20 19 476L N28°27.802 W16°22.532 766 20.01.2010 AB, MT T Calderetas 20 19 477L N28°27.808 W16°22.532 766 20.01.2010 AB, MT T Calderetas 20 19 478L N28°27.848 W16°22.538 855 20.01.2010 AB, MT T Calderetas 19 18 481L N28°27.846 W16°25.783 75 20.01.2010 AB, MT T Calderetas 17 16 482L N28°26.688 W16°25.783 75 20.01.2010 AB, MT T Calderetas 17 21 484L N28°26.688 W16°25.783 75 20.01.2010 AB, M	471L	N28°27 054	W16°22.775	1072	20.01.2010	AB MT	Ť	Calderetas	19	19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	472L	N28°27.101	W16°22.957	1047	20.01.2010	AB. MT	Ť	Calderetas	19	19
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	473L	N28°27.568	W16°23.363	898	20.01.2010	AB. MT	Т	Calderetas	20	19
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	474L	N28°27.652	W16°23.201	886	20.01.2010	AB, MT	Т	Calderetas	20	19
476L N28*28.320 W16*22.323 766 20.01.2010 AB, MT T Calderetas 20 19 477L N28*27.420 W16*22.488 871 20.01.2010 AB, MT T Calderetas 20 19 477L N28*27.816 W16*22.728 855 20.01.2010 AB, MT T Calderetas 19 480L N28*27.816 W16*22.728 855 20.01.2010 AB, MT T Calderetas 17 16 481L N28*27.054 W16*25.603 802 20.01.2010 AB, MT T Calderetas 17 16 482L N28*26.688 W16*25.637 775 20.01.2010 AB, MT T Calderetas 17 21 485L N28*26.668 W16*26.341 698 20.01.2010 AB, MT, ARB T Monte Esperanza 13 14 490L N28*23.460 W16*30.075 512 21.01.2010 AB, MT, ARB T Monte Esperanza 13 14 490L N28*23.430 W16*30.028 769 21.01.2010 <td< td=""><td>475L</td><td>N28°27.948</td><td>W16°23.169</td><td>814</td><td>20.01.2010</td><td>AB, MT</td><td>т</td><td>Calderetas</td><td>20</td><td>19</td></td<>	475L	N28°27.948	W16°23.169	814	20.01.2010	AB, MT	т	Calderetas	20	19
477L N28'27.802 W16'22.488 871 20.01.2010 AB, MT T Calderetas 20 19 478L N28'22.808 W16'22.225 910 20.01.2010 AB, MT T Calderetas 20 19 480L N28'27.816 W16'24.236 758 20.01.2010 AB, MT T Calderetas 17 16 481L N28'27.846 W16'25.603 802 20.01.2010 AB, MT T Calderetas 17 16 482L N28'27.644 W16'25.603 802 20.01.2010 AB, MT T Calderetas 17 21 484L N28'26.668 W16'25.078 775 20.01.2010 AB, MT T Calderetas 17 21 485L N28'25.664 W16'20.075 519 21.01.2010 AB, MT, ARB T Monte Esperanza 13 14 490L N28'23.430 W16'30.012 512 21.01.2010 AB, MT, ARB T Orotava 13 14 490L N28'23.430 W16'30.123 512 21.01.2010	476L	N28°28.320	W16°22.532	766	20.01.2010	AB, MT	Т	Calderetas	20	19
478LN38*27.424W16*22.05591020.01.2010AB, MTTCalderetas2019479LN28*28.080W16*22.72885520.01.2010AB, MTTCalderetas1918480LN28*27.516W16*25.34982620.01.2010AB, MTTCalderetas1716481LN28*27.054W16*25.78380220.01.2010AB, MTTCalderetas1716482LN28*27.054W16*25.78379520.01.2010AB, MTTCalderetas1721483LN28*26.688W16*26.38777520.01.2010AB, MTTCalderetas1721485LN28*26.668W16*26.34169820.01.2010AB, MTTCalderetas1721485LN28*23.660W16*26.34169820.01.2010AB, MT, ARBTMonte Esperanza1314485LN28*23.793W16*30.01647521.01.2010AB, MT, ARBTMonte Esperanza1314490LN28*23.403W16*30.01647521.01.2010AB, MT, ARBTOrotava121212493LN28*22.613W16*30.22876921.01.2010AB, MT, ARBTOrotava121212494LN28*22.614W16*30.22876921.01.2010AB, MT, ARBTOrotava121212494LN28*29.0622W16*32.0112.3621.01.2010AB	477L	N28°27.802	W16°22.488	871	20.01.2010	AB, MT	Т	Calderetas	20	19
479LN28*23.800W16*22.72885520.01.2010AB, MTTCalderetas2019480LN28*27.345W16*24.53675820.01.2010AB, MTTCalderetas1918481LN28*27.245W16*25.60380220.01.2010AB, MTTCalderetas1716482LN28*27.054W16*25.78379520.01.2010AB, MTTCalderetas1721483LN28*26.068W16*25.78377520.01.2010AB, MTTCalderetas1721485LN28*26.668W16*26.13874220.01.2010AB, MTTCalderetas1721485LN28*26.668W16*30.07551921.01.2010AB, MT, ARBTMonte Esperanza1314488LN28*23.825W16*30.00446721.01.2010AB, MT, ARBTMonte Esperanza1314490LN28*23.430W16*30.01251221.01.2010AB, MT, ARBTOrotava1212493LN28*23.737W16*30.22870921.01.2010AB, MT, ARBTOrotava1212493LN28*22.738W16*30.22870921.01.2010AB, MT, ARBTOrotava1212493LN28*22.061W16*32.0112.3610.10.2010AB, MT, ARBTOrotava1212493LN28*22.073W16*30.2870921.01.2010AB, MT, ARBTOrota	478L	N28°27.424	W16°22.055	910	20.01.2010	AB, MT	Т	Calderetas	20	19
480L N28*27.816 W16*24.536 758 20.01.2010 AB, MT T Calderetas 19 18 481L N28*27.054 W16*25.349 826 20.01.2010 AB, MT T Calderetas 17 16 482L N28*27.054 W16*25.783 795 20.01.2010 AB, MT T Calderetas 17 21 484L N28*26.783 W16*25.783 742 20.01.2010 AB, MT T Calderetas 17 21 485L N28*26.664 W16*26.138 742 20.01.2010 AB, MT, ARB T Monte Esperanza 13 14 485L N28*23.660 W16*30.075 519 21.01.2010 AB, MT, ARB T Monte Esperanza 13 14 490L N28*23.400 W16*30.123 512 21.01.2010 AB, MT, ARB T Orotava 12 12 12 491L N28*23.612 W16*29.065 782 21.01.2010 AB, MT, ARB T Orotava 12 12 12 14 492L N28*20.622	479L	N28°28.080	W16°22.728	855	20.01.2010	AB, MT	Т	Calderetas	20	19
481L N28*27.045 W16*25.043 862 2.0.0.1.2010 AB, MT T Calderetas 17 16 482L N28*26.016 W16*25.783 775 2.0.0.1.2010 AB, MT T Calderetas 17 16 484L N28*26.618 W16*25.783 775 2.0.0.1.2010 AB, MT T Calderetas 17 21 484L N28*26.684 W16*26.381 698 2.0.0.1.2010 AB, MT T Calderetas 17 21 486L N28*23.626 W16*30.075 519 2.1.0.1.2010 AB, MT, ARB T Monte Esperanza 13 14 488L N28*23.820 W16*30.016 475 2.1.0.1.2010 AB, MT, ARB T Orotava 13 14 490L N28*23.420 W16*30.0123 512 2.1.0.1.2010 AB, MT, ARB T Orotava 12 12 12 491L N28*23.421 W16*29.805 782 2.1.0.1.2010 AB, MT, ARB T Orotava 12 12 12 494L N28*29.462 W16	480L	N28°27.816	W16°24.536	758	20.01.2010	AB, MT	Т	Calderetas	19	18
4481L N28°26.916 W16°25.603 802 20.01.2010 AB, MT T Calderetas 17 16 483L N28°26.916 W16°25.783 795 20.01.2010 AB, MT T Calderetas 17 21 484L N28°26.688 W16°26.138 742 20.01.2010 AB, MT T Calderetas 17 21 486L N28°26.646 W16°30.075 519 21.01.2010 AB, MT, ARB T Monte Esperanza 13 14 481L N28°33.825 W16°30.004 467 21.01.2010 AB, MT, ARB T Monte Esperanza 13 14 489L N28°23.430 W16°30.123 512 21.01.2010 AB, MT, ARB T Orotava 12 12 490L N28°23.17 W16°30.285 762 21.01.2010 AB, MT, ARB T Orotava 12 12 12 492L N28°2.61 W16°32.071 1236 21.01.2010 AB, MT, ARB T Orotava 12 12 12 494L N28°2.064 W16°24.568 </td <td>481L</td> <td>N28°27.245</td> <td>W16°25.349</td> <td>826</td> <td>20.01.2010</td> <td>AB, MT</td> <td>Т</td> <td>Calderetas</td> <td>17</td> <td>16</td>	481L	N28°27.245	W16°25.349	826	20.01.2010	AB, MT	Т	Calderetas	17	16
483L N28°26.916 W16°25.783 795 20.01.2010 AB, MT T Calderetas 17 16 484L N28°26.683 W16°26.318 742 20.01.2010 AB, MT T Calderetas 17 21 485L N28°26.684 W16°26.318 674 20.01.2010 AB, MT T Calderetas 17 21 486L N28°23.664 W16°30.075 519 21.01.2010 AB, MT, ARB T Monte Esperanza 13 14 489L N28°23.793 W16°30.016 475 21.01.2010 AB, MT, ARB T Orotava 13 14 490L N28°23.733 W16°30.228 762 21.01.2010 AB, MT, ARB T Orotava 12 12 494L N28°22.661 W16°2.9.05 782 21.01.2010 AB, MT, ARB T Orotava 12 12 494L N28°22.662 W16°32.61 521 21.01.2010 AB, MT, ARB T Orotava 12 12 495L N28°29.175 W16°24.578 466 21.01.2010	482L	N28°27.054	W16°25.603	802	20.01.2010	AB, MT	Т			
484LN28°26.783W16°25.97877520.01.2010AB, MTTCalderetas1721485LN28°26.646W16°26.13874220.01.2010AB, MTTCalderetas1721486LN28°26.646W16°26.31874220.01.2010AB, MTTCalderetas1721487LN28°23.690W16°30.07551921.01.2010AB, MT, ARBTMonte Esperanza1314488LN28°23.739W16°30.01647521.01.2010AB, MT, ARBTMonte Esperanza1314490LN28°23.430W16°30.012351221.01.2010AB, MT, ARBTOrotava1314491LN28°23.217W16°30.22870921.01.2010AB, MT, ARBTOrotava1212493LN28°22.661W16°29.80578221.01.2010AB, MT, ARBTOrotava1212494LN28°20.62W16°20.80578221.01.2010AB, MT, ARBTOrotava1212494LN28°20.68W16°24.64152121.01.2010AB, MT, ARBTCalderetas2018496LN28°29.175W16°24.56849521.01.2010AB, MT, ARBTCalderetas2018496LN28°29.64W16°24.64152121.01.2010AB, MT, ARBTCalderetas2018496LN28°29.64W16°24.64152121.01.2010AB, MT, ARBT </td <td>483L</td> <td>N28°26.916</td> <td>W16°25.783</td> <td>795</td> <td>20.01.2010</td> <td>AB, MT</td> <td>Т</td> <td>Calderetas</td> <td>17</td> <td>16</td>	483L	N28°26.916	W16°25.783	795	20.01.2010	AB, MT	Т	Calderetas	17	16
485LN28°26.688W16°26.3874220.01.2010AB, MTTCalderetas1721486LN28°26.646W16°26.34169820.01.2010AB, MT, ARBTCalderetas1721487LN28°23.660W16°30.00446721.01.2010AB, MT, ARBTMonte Esperanza1314488LN28°23.793W16°30.01647521.01.2010AB, MT, ARBTMonte Esperanza1314490LN28°23.31W16°30.12351221.01.2010AB, MT, ARBTOrotava1314491LN28°23.217W16°29.96456721.01.2010AB, MT, ARBTOrotava1212494LN28°22.661W16°29.80578221.01.2010AB, MT, ARBTOrotava1212494LN28°20.622W16°32.701123621.01.2010AB, MT, ARBTOrotava1212495LN28°29.478W16°24.64152121.01.2010AB, MT, ARBTCalderetas2018496LN28°29.178W16°24.57846621.01.2010AB, MT, ARBTGuamasa2020500LN28°30.436W16°22.7774021.01.2010AB, MT, ARBTGuamasa2020501LN28°30.193W16°22.80356421.01.2010AB, MT, ARBTGuamasa2020501LN28°30.193W16°22.80356421.01.2010AB, MT, ARBT	484L	N28°26.783	$W16^{\circ}25.978$	775	20.01.2010	AB, MT	Т	Calderetas	17	21
486LN28*26.646W16*26.34169820.01.2010AB, MTTCalderetas1721487LN28*23.825W16*30.07551921.01.2010AB, MT, ARBTMonte Esperanza1314488LN28*23.825W16*30.00446721.01.2010AB, MT, ARBTMonte Esperanza1314490LN28*23.430W16*30.01647521.01.2010AB, MT, ARBTOrotava1314490LN28*23.217W16*29.96456721.01.2010AB, MT, ARBTOrotava1212491LN28*22.661W16*29.96578221.01.2010AB, MT, ARBTOrotava1212493LN28*22.673W16*32.701123621.01.2010AB, MT, ARBTOrotava1212494LN28*28.908W16*24.64452121.01.2010AB, MT, ARBTCalderetas2018496LN28*29.175W16*24.57846621.01.2010AB, MT, ARBTCalderetas2018497LN28*30.616W16*22.80356421.01.2010AB, MT, ARBTGuamasa2020500LN28*30.616W16*22.80356421.01.2010AB, MT, ARBTGuamasa2020501LN28*30.616W16*22.80356421.01.2010AB, MT, ARBTGuamasa2020501LN28*31.518W16*17.30172722.01.2010AB, MTT </td <td>485L</td> <td>N28°26.688</td> <td>W16°26.138</td> <td>742</td> <td>20.01.2010</td> <td>AB, MT</td> <td>Т</td> <td>Calderetas</td> <td>17</td> <td>21</td>	485L	N28°26.688	W16°26.138	742	20.01.2010	AB, MT	Т	Calderetas	17	21
487LN28*23.960W16*30.07551921.01.2010AB, MT, ARBTMonte Esperanza1314488LN28*23.825W16*30.01647521.01.2010AB, MT, ARBTMonte Esperanza1314489LN28*23.830W16*30.12351221.01.2010AB, MT, ARBTMonte Esperanza1314490LN28*23.430W16*30.12351221.01.2010AB, MT, ARBTOrotava1212491LN28*23.217W16*30.578221.01.2010AB, MT, ARBTOrotava1212493LN28*22.773W16*30.22870921.01.2010AB, MT, ARBTOrotava1212494LN28*20.622W16*32.701123621.01.2010AB, MT, ARBTOrotava121212495LN28*29.0622W16*24.64152121.01.2010AB, MT, ARBTCalderetas2018496LN28*29.175W16*24.64152121.01.2010AB, MT, ARBTCalderetas2018497LN28*30.616W16*23.47846621.01.2010AB, MT, ARBTGuamasa2020500LN28*30.161W16*22.97744021.01.2010AB, MT, ARBTGuamasa2020501LN28*30.164W16*22.97744021.01.2010AB, MT, ARBTGuamasa2020501LN28*30.164W16*21.73066121.01.2010 <t< td=""><td>486L</td><td>N28°26.646</td><td>W16°26.341</td><td>698</td><td>20.01.2010</td><td>AB, MT</td><td>Т</td><td>Calderetas</td><td>17</td><td>21</td></t<>	486L	N28°26.646	W16°26.341	698	20.01.2010	AB, MT	Т	Calderetas	17	21
488L N28°23.825 W16°30.004 467 21.01.2010 AB, MT, ARB T Monte Esperanza 13 14 489L N28°23.393 W16°30.016 475 21.01.2010 AB, MT, ARB T Monte Esperanza 13 14 490L N28°23.40 W16°30.123 512 21.01.2010 AB, MT, ARB T Orotava 13 14 491L N28°22.661 W16°30.28 762 21.01.2010 AB, MT, ARB T Orotava 12 12 493L N28°22.662 W16°32.701 1236 21.01.2010 AB, MT, ARB T Orotava 12 12 494L N28°20.622 W16°32.701 1236 21.01.2010 AB, MT, ARB T Calderetas 20 18 496L N28°29.175 W16°24.641 521 21.01.2010 AB, MT, ARB T Calderetas 20 18 497L N28°30.616 W16°2.420 379 21.01.2010 AB, MT, ARB T Guamasa 20 20 500L N28°30.436 W16°22.477 440	487L	N28°23.960	W16°30.075	519	21.01.2010	AB, MT, ARB	Т	Monte Esperanza	13	14
489L N28°23.793 W16°30.016 475 21.01.2010 AB, MT, ARB T Monte Esperanza 13 14 490L N28°23.430 W16°30.123 512 21.01.2010 AB, MT, ARB T Orotava 13 14 491L N28°23.217 W16°29.905 782 21.01.2010 AB, MT, ARB T Orotava 12 12 493L N28°22.773 W16°30.228 709 21.01.2010 AB, MT, ARB T Orotava 12 12 494L N28°22.773 W16°24.641 521 21.01.2010 AB, MT, ARB T Orotava 12 12 495L N28°29.175 W16°24.641 521 21.01.2010 AB, MT, ARB T Calderetas 20 18 496L N28°29.175 W16°24.578 466 21.01.2010 AB, MT, ARB T Guamasa 20 20 498L N28°30.436 W16°22.977 440 21.01.2010 AB, MT, ARB T Guamasa 20 20 501L N28°30.436 W16°22.544 613 2	488L	N28°23.825	W16°30.004	467	21.01.2010	AB, MT, ARB	Т	Monte Esperanza	13	14
490LN28°32.430W16°30.12351221.01.2010AB, MT, ARBTOrotava1314491LN28°23.217W16°29.96456721.01.2010AB, MT, ARBTOrotava1314492LN28°2.661W16°29.80578221.01.2010AB, MT, ARBTOrotava1212493LN28°22.673W16°30.22870921.01.2010AB, MT, ARBTOrotava1212494LN28°20.622W16°32.701123621.01.2010AB, MT, ARBTOrotava1212495LN28°28.908W16°24.56849521.01.2010AB, MT, ARBTCalderetas2018496LN28°29.478W16°24.57846621.01.2010AB, MT, ARBTCalderetas2018498LN28°30.616W16°23.42037921.01.2010AB, MT, ARBTGuamasa2020500LN28°30.436W16°22.54461321.01.2010AB, MT, ARBTGuamasa2020501LN28°31.267W16°17.3066122.01.2010AB, MTTAnaga-West2429504LN28°31.518W16°17.307222.01.2010AB, MTTAnaga-West2429505LN28°31.518W16°17.3076222.01.2010AB, MTTAnaga-West2328507LN28°31.518W16°17.3076222.01.2010AB, MTTAnaga-West	489L	N28°23.793	W16°30.016	475	21.01.2010	AB, MT, ARB	Т	Monte Esperanza	13	14
491L N28°23.217 W16°29.964 567 21.01.2010 AB, MT, ARB T Orotava 13 14 492L N28°22.661 W16°29.805 782 21.01.2010 AB, MT, ARB T Orotava 12 12 493L N28°22.773 W16°30.228 709 21.01.2010 AB, MT, ARB T Orotava 12 12 494L N28°22.662 W16°32.701 1236 21.01.2010 AB, MT, ARB T Orotava 12 12 495L N28°28.908 W16°24.641 521 21.01.2010 AB, MT, ARB T Calderetas 20 18 496L N28°29.175 W16°24.578 466 21.01.2010 AB, MT, ARB T Calderetas 20 18 498L N28°30.436 W16°22.803 564 21.01.2010 AB, MT, ARB T Guamasa 20 20 500L N28°30.193 W16°22.544 613 21.01.2010 AB, MT, ARB T Guamasa 20 20 501L N28°31.577 W16°17.301 727 22.01	490L	N28°23.430	W16°30.123	512	21.01.2010	AB, MT, ARB	Т	Orotava	13	14
492LN28°22.661W16°29.80578221.01.2010AB, MT, ARBTOrotava1212493LN28°22.773W16°30.22870921.01.2010AB, MT, ARBTOrotava1212494LN28°20.62W16°32.701123621.01.2010AB, MT, ARBTOrotava1212495LN28°28.908W16°24.64152121.01.2010AB, MT, ARBTCalderetas2018496LN28°29.478W16°24.57846621.01.2010AB, MT, ARBTCalderetas2018497LN28°30.436W16°23.42037921.01.2010AB, MT, ARBTGuamasa2020499LN28°30.436W16°22.97744021.01.2010AB, MT, ARBTGuamasa2020500LN28°30.193W16°22.80356421.01.2010AB, MT, ARBTGuamasa2020501LN28°31.577W16°17.73066122.01.2010AB, MT, ARBTGuamasa2020503LN28°31.517W16°17.30176222.01.2010AB, MTTAnaga-West2429504LN28°3.1614W16°17.02078822.01.2010AB, MTTAnaga-West2429505LN28°31.518W16°17.30076222.01.2010AB, MTTAnaga-West2328507LN28°31.513W16°17.30076222.01.2010AB, MTTAnaga-West <td>491L</td> <td>N28°23.217</td> <td>W16°29.964</td> <td>567</td> <td>21.01.2010</td> <td>AB, MT, ARB</td> <td>Т</td> <td>Orotava</td> <td>13</td> <td>14</td>	491L	N28°23.217	W16°29.964	567	21.01.2010	AB, MT, ARB	Т	Orotava	13	14
493L N28°22.773 W16°30.228 709 21.01.2010 AB, MT, ARB T Orotava 12 12 494L N28°20.622 W16°32.701 1236 21.01.2010 AB, MT, ARB T Orotava 12 12 495L N28°28.908 W16°24.641 521 21.01.2010 AB, MT, ARB T Calderetas 20 18 496L N28°29.478 W16°24.578 466 21.01.2010 AB, MT, ARB T Calderetas 20 18 498L N28°30.616 W16°24.578 466 21.01.2010 AB, MT, ARB T Guamasa 20 20 500L N28°30.436 W16°22.803 564 21.01.2010 AB, MT, ARB T Guamasa 20 20 501L N28°31.567 W16°22.544 613 21.01.2010 AB, MT, ARB T Guamasa 20 20 502L N28°31.67 W16°17.331 727 22.01.2010 AB, MT T Anaga-West 24 29 504L N28°31.614 W16°17.300 762 22.01.20	492L	N28°22.661	W16°29.805	782	21.01.2010	AB, MT, ARB	Т	Orotava	12	12
494LN28*20.622W16*32.701123621.01.2010AB, MT, ARBTOrotava1212495LN28*28.908W16*24.64152121.01.2010AB, MT, ARBTCalderetas2018496LN28*29.175W16*24.56849521.01.2010AB, MT, ARBTCalderetas2018497LN28*29.478W16*24.57846621.01.2010AB, MT, ARBTCalderetas2020498LN28*30.616W16*22.42037921.01.2010AB, MT, ARBTGuamasa2020500LN28*30.436W16*22.84356421.01.2010AB, MT, ARBTGuamasa2020501LN28*30.193W16*22.80356421.01.2010AB, MT, ARBTGuamasa2020502LN28*31.267W16*17.3066122.01.2010AB, MTTAnaga-West2429503LN28*31.577W16*17.33172722.01.2010AB, MTTAnaga-West2429504LN28*31.514W16*17.30076222.01.2010AB, MTTAnaga-West2328507LN28*31.53W16*17.30989922.01.2010AB, MTTAnaga-West2328507LN28*31.53W16*18.12388822.01.2010AB, MTTAnaga-West2331508LN28*32.153W16*18.12388822.01.2010AB, MTTAnaga-West <t< td=""><td>493L</td><td>N28°22.773</td><td>W16°30.228</td><td>709</td><td>21.01.2010</td><td>AB, MT, ARB</td><td>Т</td><td>Orotava</td><td>12</td><td>12</td></t<>	493L	N28°22.773	W16°30.228	709	21.01.2010	AB, MT, ARB	Т	Orotava	12	12
495LN28°28.908W16°24.64152121.01.2010AB, MT, ARBTCalderetas2018496LN28°29.175W16°24.56849521.01.2010AB, MT, ARBTCalderetas2018497LN28°29.478W16°24.57846621.01.2010AB, MT, ARBTCalderetas2018498LN28°30.616W16°23.42037921.01.2010AB, MT, ARBTGuamasa2020499LN28°30.436W16°22.97744021.01.2010AB, MT, ARBTGuamasa2020500LN28°30.193W16°22.80356421.01.2010AB, MT, ARBTGuamasa2020501LN28°31.67W16°17.30166122.01.2010AB, MTTAnaga-West2429503LN28°31.67W16°17.30172722.01.2010AB, MTTAnaga-West2429504LN28°31.614W16°17.30076222.01.2010AB, MTTAnaga-West2429505LN28°31.518W16°17.30989922.01.2010AB, MTTAnaga-West2429506LN28°32.107W16°18.27386822.01.2010AB, MTTAnaga-West2331507LN28°32.108W16°18.27386822.01.2010AB, MTTAnaga-West2331508LN28°32.107W16°18.32479922.01.2010AB, MTTAnaga-West	494L	N28°20.622	W16°32.701	1236	21.01.2010	AB, MT, ARB	Т	Orotava	12	12
496LN28°29.175W16°24.56849521.01.2010AB, MT, ARBTCalderetas2018497LN28°29.478W16°24.57846621.01.2010AB, MT, ARBTCalderetas2018498LN28°30.616W16°2.4.57744621.01.2010AB, MT, ARBTGuamasa2020500LN28°30.436W16°22.97744021.01.2010AB, MT, ARBTGuamasa2020500LN28°30.193W16°22.54461321.01.2010AB, MT, ARBTGuamasa2020501LN28°31.267W16°17.73066122.01.2010AB, MTTAnaga-West2429503LN28°31.614W16°17.30172722.01.2010AB, MTTAnaga-West2429505LN28°31.614W16°17.30076222.01.2010AB, MTTAnaga-West2429506LN28°31.518W16°17.30076222.01.2010AB, MTTAnaga-West2429506LN28°32.107W16°17.30989922.01.2010AB, MTTAnaga-West2328507LN28°31.53W16°18.27386822.01.2010AB, MTTAnaga-West2331508LN28°32.167W16°18.34083522.01.2010AB, MTTAnaga-West2331510LN28°32.067W16°18.12379922.01.2010AB, MTTAnaga-West23<	495L	N28°28.908	W16°24.641	521	21.01.2010	AB, MT, ARB	Т	Calderetas	20	18
497LN28°29.478W16°24.57846621.01.2010AB, MT, ARBTCalderetas2018498LN28°30.616W16°23.42037921.01.2010AB, MT, ARBTGuamasa2020499LN28°30.436W16°22.97744021.01.2010AB, MT, ARBTGuamasa2020500LN28°30.193W16°22.80356421.01.2010AB, MT, ARBTGuamasa2020501LN28°30.193W16°22.54461321.01.2010AB, MT, ARBTGuamasa2020502LN28°31.267W16°17.3066122.01.2010AB, MTTAnaga-West2429503LN28°31.614W16°17.02078822.01.2010AB, MTTAnaga-West2429506LN28°31.518W16°17.30076222.01.2010AB, MTTAnaga-West2429505LN28°31.53W16°17.91291022.01.2010AB, MTTAnaga-West2328507LN28°31.53W16°17.3089922.01.2010AB, MTTAnaga-West2331508LN28°32.153W16°18.61283822.01.2010AB, MTTAnaga-West2331509LN28°32.167W16°18.4083522.01.2010AB, MTTAnaga-West2331509LN28°32.167W16°18.4083522.01.2010AB, MTTAnaga-West233	496L	N28°29.175	W16°24.568	495	21.01.2010	AB, MT, ARB	Т	Calderetas	20	18
498LN28°30.616W16°23.42037921.01.2010AB, MT, ARBTGuamasa2020499LN28°30.436W16°22.97744021.01.2010AB, MT, ARBTGuamasa2020500LN28°30.133W16°22.80356421.01.2010AB, MT, ARBTGuamasa2020501LN28°29.584W16°22.54461321.01.2010AB, MT, ARBTGuamasa2020502LN28°31.267W16°17.73066122.01.2010AB, MTTAnaga-West2429503LN28°31.614W16°17.02078822.01.2010AB, MTTAnaga-West2429504LN28°31.614W16°17.02078822.01.2010AB, MTTAnaga-West2429505LN28°31.518W16°17.91291022.01.2010AB, MTTAnaga-West2328507LN28°31.53W16°17.91291022.01.2010AB, MTTAnaga-West2429508LN28°32.153W16°18.3089922.01.2010AB, MTTAnaga-West2331509LN28°32.167W16°18.4183522.01.2010AB, MTTAnaga-West2331509LN28°32.167W16°18.4183522.01.2010AB, MTTAnaga-West2331509LN28°32.167W16°18.12379922.01.2010AB, MTTAnaga-West2331 </td <td>497L</td> <td>N28°29.478</td> <td>W16°24.578</td> <td>466</td> <td>21.01.2010</td> <td>AB, MT, ARB</td> <td>Т</td> <td>Calderetas</td> <td>20</td> <td>18</td>	497L	N28°29.478	W16°24.578	466	21.01.2010	AB, MT, ARB	Т	Calderetas	20	18
499L N28°30.436 W16°22.977 440 21.01.2010 AB, MT, ARB T Guamasa 20 20 500L N28°30.193 W16°22.803 564 21.01.2010 AB, MT, ARB T Guamasa 20 20 501L N28°30.193 W16°22.803 564 21.01.2010 AB, MT, ARB T Guamasa 20 20 501L N28°29.584 W16°12.544 613 21.01.2010 AB, MT, ARB T Guamasa 20 20 502L N28°31.267 W16°17.331 727 22.01.2010 AB, MT T Anaga-West 24 29 504L N28°31.518 W16°17.020 788 22.01.2010 AB, MT T Anaga-West 24 29 505L N28°31.53 W16°17.912 910 22.01.2010 AB, MT T Anaga-West 23 28 507L N28°31.853 W16°17.309 899 22.01.2010 AB, MT T Anaga-West 23 23 31 508L N28°32.130 W16°18.273 868 22.	498L	N28°30.616	W16°23.420	379	21.01.2010	AB, MT, ARB	Т	Guamasa	20	20
500L N28°30.193 W16°22.803 564 21.01.2010 AB, MT, ARB T Guamasa 20 20 501L N28°29.584 W16°22.544 613 21.01.2010 AB, MT, ARB T Guamasa 20 20 502L N28°31.267 W16°17.30 661 22.01.2010 AB, MT T Anaga-West 24 29 503L N28°31.517 W16°17.301 727 22.01.2010 AB, MT T Anaga-West 24 29 504L N28°31.614 W16°17.020 788 22.01.2010 AB, MT T Anaga-West 24 29 505L N28°31.518 W16°17.300 762 22.01.2010 AB, MT T Anaga-West 23 28 507L N28°32.107 W16°17.309 899 22.01.2010 AB, MT T Anaga-West 23 23 28 507L N28°32.103 W16°18.273 868 22.01.2010 AB, MT T Anaga-West 23 31 508L N28°32.067 W16°18.340 835 22.01.2	499L	N28°30.436	W16°22.977	440	21.01.2010	AB, MT, ARB	T	Guamasa	20	20
501L N28°29.584 W16°22.544 613 21.01.2010 AB, MT, ARB T Guamasa 20 20 502L N28°31.267 W16°17.30 661 22.01.2010 AB, MT T Anaga-West 24 29 503L N28°31.577 W16°17.331 727 22.01.2010 AB, MT T Anaga-West 24 29 504L N28°31.614 W16°17.300 762 22.01.2010 AB, MT T Anaga-West 24 29 505L N28°31.518 W16°17.300 762 22.01.2010 AB, MT T Anaga-West 24 29 506L N28°32.107 W16°17.309 899 22.01.2010 AB, MT T Anaga-West 23 28 507L N28°31.853 W16°18.273 868 22.01.2010 AB, MT T Anaga-West 23 31 508L N28°32.100 W16°18.412 838 22.01.2010 AB, MT T Anaga-West 22 31 510L N28°32.067 W16°18.340 835 22.01.2010 A	500L	N28°30.193	W16°22.803	564	21.01.2010	AB, MT, ARB	T	Guamasa	20	20
502L N28°31.267 W16°17.730 661 22.01.2010 AB, MT T Anaga-West 24 29 503L N28°31.577 W16°17.331 727 22.01.2010 AB, MT T Anaga-West 24 29 504L N28°31.614 W16°17.020 788 22.01.2010 AB, MT T Anaga-West 24 29 505L N28°31.518 W16°17.020 782 22.01.2010 AB, MT T Anaga-West 24 29 506L N28°31.518 W16°17.300 762 22.01.2010 AB, MT T Anaga-West 24 29 506L N28°32.107 W16°17.309 899 22.01.2010 AB, MT T Anaga-West 23 28 507L N28°32.153 W16°18.273 868 22.01.2010 AB, MT T Anaga-West 23 31 508L N28°32.167 W16°18.434 835 22.01.2010 AB, MT T Anaga-West 23 31 510L N28°32.067 W16°18.123 799 22.01.2010 AB	501L	N28°29.584	W16°22.544	613	21.01.2010	AB, MT, ARB	T	Guamasa	20	20
503L N28°31.577 W16°17.331 727 22.01.2010 AB, MT T Anaga-West 24 29 504L N28°31.614 W16°17.020 788 22.01.2010 AB, MT T Anaga-West 24 29 505L N28°31.518 W16°17.020 762 22.01.2010 AB, MT T Anaga-West 24 29 506L N28°32.107 W16°17.912 910 22.01.2010 AB, MT T Anaga-West 23 28 507L N28°31.853 W16°17.309 899 22.01.2010 AB, MT T Anaga-West 24 29 508L N28°32.153 W16°18.273 868 22.01.2010 AB, MT T Anaga-West 23 31 509L N28°32.100 W16°18.612 838 22.01.2010 AB, MT T Anaga-West 23 31 510L N28°32.067 W16°18.123 799 22.01.2010 AB, MT T Anaga-West 23 23 31 511L N28°31.856 W16°18.005 785 22.01.2010	502L	N28°31.267	W16°17.730	661	22.01.2010	AB, MT	T	Anaga-West	24	29
504L N28°31.614 W16°17.020 788 22.01.2010 AB, MT T Anaga-West 24 29 505L N28°31.518 W16°17.020 762 22.01.2010 AB, MT T Anaga-West 24 29 506L N28°31.518 W16°17.300 762 22.01.2010 AB, MT T Anaga-West 23 28 507L N28°31.853 W16°17.309 899 22.01.2010 AB, MT T Anaga-West 24 29 508L N28°32.153 W16°18.273 868 22.01.2010 AB, MT T Anaga-West 23 31 509L N28°32.100 W16°18.612 838 22.01.2010 AB, MT T Anaga-West 22 31 510L N28°32.067 W16°18.340 835 22.01.2010 AB, MT T Anaga-West 23 23 31 511L N28°31.902 W16°18.123 799 22.01.2010 AB, MT T Anaga-West 23 29 512L N28°31.856 W16°18.005 785 22.01.2010	503L	N28°31.577	W16°17.331	727	22.01.2010	AB, MT	Т	Anaga-West	24	29
DOL N28*31.518 W16*17.300 762 22.01.2010 AB, MT T Anaga-West 24 29 506L N28*32.107 W16*17.912 910 22.01.2010 AB, MT T Anaga-West 23 28 507L N28*31.853 W16*17.309 899 22.01.2010 AB, MT T Anaga-West 24 29 508L N28*31.853 W16*17.309 899 22.01.2010 AB, MT T Anaga-West 24 29 508L N28*31.853 W16*18.123 868 22.01.2010 AB, MT T Anaga-West 23 31 509L N28*32.167 W16*18.612 838 22.01.2010 AB, MT T Anaga-West 23 31 510L N28*32.067 W16*18.123 799 22.01.2010 AB, MT T Anaga-West 23 29 512L N28*31.856 W16*18.005 785 22.01.2010 AB, MT T Anaga-West 23 29	504L	N28°31.614	W16°17.020	788	22.01.2010	AB, MT	Т	Anaga-West	24	29
book N28°32.107 W16°17.912 910 22.01.2010 AB, MT T Anaga-West 23 28 507L N28°31.853 W16°17.309 899 22.01.2010 AB, MT T Anaga-West 23 29 508L N28°32.153 W16°18.273 868 22.01.2010 AB, MT T Anaga-West 23 31 509L N28°32.110 W16°18.612 838 22.01.2010 AB, MT T Anaga-West 23 31 510L N28°32.067 W16°18.340 835 22.01.2010 AB, MT T Anaga-West 23 31 511L N28°31.902 W16°18.123 799 22.01.2010 AB, MT T Anaga-West 23 29 512L N28°31.856 W16°18.302 765 22.01.2010 AB, MT T Anaga-West 23 29 512L N28°31.896 W16°18.332 705 22.01.2010 AB, MT T Anaga-West 23 29 <td>505L</td> <td>N28°31.518</td> <td>W16°17.300</td> <td>762</td> <td>22.01.2010</td> <td>AB, MT</td> <td>Т</td> <td>Anaga-West</td> <td>24</td> <td>29</td>	505L	N28°31.518	W16°17.300	762	22.01.2010	AB, MT	Т	Anaga-West	24	29
b0/L N26*31.853 W16*17.309 899 22.01.2010 AB, MT T Anaga-West 24 29 508L N28*32.153 W16*18.273 868 22.01.2010 AB, MT T Anaga-West 23 31 509L N28*32.10 W16*18.612 838 22.01.2010 AB, MT T Anaga-West 22 31 510L N28*32.067 W16*18.340 835 22.01.2010 AB, MT T Anaga-West 23 31 511L N28*31.902 W16*18.123 799 22.01.2010 AB, MT T Anaga-West 23 29 512L N28*31.856 W16*18.305 785 22.01.2010 AB, MT T Anaga-West 23 29 513L N28*31.896 W16*18.332 705 22.01.2010 AB, MT T Anaga-West 23 29 513L N28*31.896 W16*18.332 Cost Continued on next page 23 29	506L	N28°32.107	W16°17.912	910	22.01.2010	AB, MT	T	Anaga-West	23	28
OUSL N28*32.153 W10*18.273 868 22.01.2010 AB, MT T Anaga-West 23 31 509L N28*32.110 W16*18.612 838 22.01.2010 AB, MT T Anaga-West 22 31 510L N28*32.067 W16*18.340 835 22.01.2010 AB, MT T Anaga-West 23 31 511L N28*31.902 W16*18.123 799 22.01.2010 AB, MT T Anaga-West 23 29 512L N28*31.856 W16*18.005 785 22.01.2010 AB, MT T Anaga-West 23 29 513L N28*31.896 W16*18.332 705 22.01.2010 AB, MT T Anaga-West 23 29	507L	N28°31.853	W16°17.309	899	22.01.2010	AB, MT	.1.	Anaga-West	24	29
JUSE IV26 52.110 W10°18.012 538 22.01.2010 AB, MT T Anaga-West 22 31 510L N28°32.067 W16°18.340 835 22.01.2010 AB, MT T Anaga-West 23 31 511L N28°31.902 W16°18.123 799 22.01.2010 AB, MT T Anaga-West 23 29 512L N28°31.856 W16°18.005 785 22.01.2010 AB, MT T Anaga-West 23 29 513L N28°31.896 W16°18.332 705 22.01.2010 AB, MT T Anaga-West 23 29	508L	N28°32.153	W16°18.273	868	22.01.2010	AB, MT	.T.	Anaga-West	23	31
510L N26 52.007 W10°18.340 835 22.01.2010 AB, MT T Anaga-West 23 31 511L N28°31.902 W16°18.123 799 22.01.2010 AB, MT T Anaga-West 23 29 512L N28°31.856 W16°18.005 785 22.01.2010 AB, MT T Anaga-West 23 29 513L N28°31.896 W16°18.332 705 22.01.2010 AB, MT T Anaga-West 23 29 513L N28°31.896 W16°18.332 705 22.01.2010 AB, MT T Anaga-West 23 29	509L	N28-32.110	W16910 240	838	22.01.2010	AB, MT	1 T	Anaga- West	22	31 21
511L N26 51.302 W10 16.123 799 22.01.2010 AB, M1 1 Anaga-west 23 29 512L N28°31.856 W16°18.005 785 22.01.2010 AB, MT T Anaga-West 23 29 513L N28°31.896 W16°18.332 705 22.01.2010 AB, MT T Anaga-West 23 29	510L	N28-32.067	W16919 192	835 700	22.01.2010	AB, MT	т Т	Anaga- West	23	31 20
512L N26 51.550 w10 16.005 res 22.01.2010 AB, M1 1 Anaga-west 23 29 513L N28°31.896 W16°18.332 705 22.01.2010 AB, MT T Anaga-West 23 29 Continued on next page	511L 510T	N20 31.902	W16919 005	199	22.01.2010	AD, MI	т Т	Anaga-west	23 22	29 20
Continued on not note	512L	N28031.800	W16º18 220	705	22.01.2010	AB MT	т Т	Anaga-West	40 22	29 20
	0101	1,20 01.030	WIG 10.002	100	Cont:	nued on next page	1	1111454- 11050	20	<i>23</i>

Table 18.1 – continued from previous page										
ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop. 1	Pop. 2	
514L	N28°31.802	W16°18.469	648	22.01.2010	AB, MT	Т	Anaga-West	22	31	
515L	N28°31.943	W16°18.161	806	22.01.2010	AB, MT	Т	Anaga-West	23	29	
516L	N28°31.850	W16°16.963	939	22.01.2010	AB, MT	Т	Anaga-West	24	29	
517L	N28°32.898	W16°12.424	680	22.01.2010	AB, MT	Т	Anaga-East	30	24	
518L	N28°32.512	W16°13.261	768	22.01.2010	AB, MT	T	Anaga-Centre	29	24	
519L	N28°32.592	W16°12.338	595	22.01.2010	AB, MT	T	Anaga-East	30	24	
520L	N28°32.775	W16°12.105	524	22.01.2010	AB, MT	Т	Anaga-East	30	24	
521L	N28°32.668	W16°12.005	500	22.01.2010	AB, MT	T	Anaga-East	30	25	
522L	N28°33.101	W16°12.304	557	22.01.2010	AB, MT	Т	Anaga-East	30	24	
523L	N28°33.217	W16°12.333	527	22.01.2010	AB, MT	Т	Anaga-East	30	24	
524L	N28°33.644	W16°09.969	746	22.01.2010	AB, MT	Т	Anaga-East	31	22	
525L	N28°33.337	W16°11.084	834	22.01.2010	AB, MT	Т	Anaga-East	30	25	
526L	N28°33.288	W16°11.194	801	22.01.2010	AB, MT	T	Anaga-East	30	25	
527L	N28°33.142	W16°11.416	784	22.01.2010	AB, MT	T	Anaga-East	30	25	
528L	N28°21.689	W16°30.037	1103	23.01.2010	AB, MT	T.	Orotava	12	12	
529L	N28-19.954	W16*48.037	985	23.01.2010	AB, MI	I	Teno	5	4	
530L 521I	N28°21.661	W16°47.866	563	23.01.2010	AB, MT	T	Teno	6	2	
531L 5201	N28°21.244	W16°48.035	508 705	23.01.2010	AB, MI	I T	Ieno Manta Fananana	4	12	
532L 5991	N28°24.391	W16°29.481	705	24.01.2010	AB, MI	I T	Monte Esperanza	14	13	
555L 5941	N20-23.132	W10'29.585	952	24.01.2010	AD, MT	T	Monte Esperanza	13	13	
534L 5951	N28'23.337	W1629.059	958	24.01.2010	AD, MT	T	Monte Esperanza	13	13	
535L 5261	N28°23.403	W16°29.034	901	24.01.2010	AD, MI AD MT	T	Monte Esperanza	13	14	
5271	N28°23.180	W16°20.260	078	24.01.2010	AD, MT	T	Monte Esperanza	12	14	
538L	N28°22.816	W16°20 244	978	24.01.2010	AB, MT	T	Monte Esperanza	13	14	
530L	N28°22.610	W16°20 172	080	24.01.2010	AB MT	T	Monte Esperanza	12	14	
540L	N28°22.034 N28°22.637	W16°29.322	903	24.01.2010	AB MT	т	Monte Esperanza	12	14	
541L	N28°22.007	W16°29.190	1137	24.01.2010	AB MT	т	Monte Esperanza	12	14	
542L	N28°22 986	W16°28 906	1455	24.01.2010	AB MT	т	Monte Esperanza	13	14	
543L	N28°23 112	W16°29.015	1371	24.01.2010	AB MT	Ť	Monte Esperanza	13	14	
544L	N28°23 216	W16°29 125	1296	24.01.2010	AB MT	Ť	Monte Esperanza	13	14	
545L	N28°23.408	W16°29.325	1199	24.01.2010	AB. MT	Ť	Monte Esperanza	13	14	
546L	N28°21.231	W16°35.232	1061	18.03.2010	AB	Т	Chanaiiga	11	10	
547L	1120 211201	1110 001202	1001	1010012010	AB	T	onanajiga		10	
548L	N28°34.660	W16°09.087	604	19.03.2010	AB	Т	Anaga-East	33	23	
549L	N28°34.670	W16°09.229	589	19.03.2010	AB	Т	Anaga-East	33	23	
550L	N28°34.787	W16°09.278	600	19.03.2010	AB	Т	Anaga-East	33	23	
551L	N28°34.395	W16°10.367	465	19.03.2010	AB	Т	Anaga-East	32	23	
552L	N28°21.590	W16°29.353	1161	21.03.2010	AB	Т	Monte Esperanza	12	14	
553L	N28°22.127	W16°29.092	1221	21.03.2010	AB	Т	Monte Esperanza	12	14	
554L	N28°32.488	W16°15.971	872	23.03.2010	AB	Т	Anaga-West	26	30	
555L	N28°32.763	W16°15.950	768	23.03.2010	AB	Т	Anaga-West	26	30	
556L	N28°32.884	W16°15.853	714	23.03.2010	AB	Т	Anaga-West	26	30	
557L	N28°33.206	W16°15.896	683	23.03.2010	AB	Т	Anaga-West	27	30	
558L	N28°33.094	W16°15.833	635	23.03.2010	AB	Т	Anaga-West	27	30	
559L	N28°32.951	W16°15.705	661	23.03.2010	AB	Т	Anaga-West	27	30	
560L	N28°32.708	W16°13.533	751	24.03.2010	AB	Т	Anaga-Centre	29	24	
561L	N28°32.824	W16°13.412	575	24.03.2010	AB	Т	Anaga-Centre	29	24	
562L	N28°32.985	W16°13.414	438	24.03.2010	AB	Т	Anaga-Centre	29	24	
563L	N28°19.635	W16°48.987	859	25.03.2010	AB	Т	Teno	3	6	
564L	N28°19.449	W16°49.484	1049	25.03.2010	AB	Т	Teno	3	6	
565L	N28°19.433	W16°49.591	1095	25.03.2010	AB	Т	Teno	3	6	
566L					AB	Т				
567L	N28°20.011	W16°49.403	740	25.03.2010	AB	Т	Teno	1	8	
568L	N28°20.253	W16°49.609	850	25.03.2010	AB	Т	Teno	1	8	
569L	N28°20.283	W16°49.421	793	25.03.2010	AB	Т	Teno	1	8	
570L	N28°21.208	W16°35.302	1139	26.03.2010	AB	Т	Chanajiga	11	10	
571L	N28°21.755	$W16^{\circ}35.924$	1161	26.03.2010	AB	т	Chanajiga	11	10	
572L	N28°21.863	$W16^{\circ}35.865$	1118	26.03.2010	AB	Т	Chanajiga	10	10	
573L	N28°21.994	W16°35.808	1101	26.03.2010	AB	т	Chanajiga	10	10	
574L	N28°22.107	W16°35.649	883	26.03.2010	AB	Т	Chanajiga	10	10	
575L	N28°22.032	W16°35.681	988	26.03.2010	AB	Т	Chanajiga	10	10	
576L	N28°21.955	$W16^{\circ}35.878$	1083	26.03.2010	AB	Т	Chanajiga	10	10	
577L	N28°33.610	W16°10.268	809	27.03.2010	AB	Т	Anaga-East	31	22	
578L	N28°33.608	W16°10.268	809	27.03.2010	AB	Т	Anaga-East	31	22	
579L	N28°33.481	W16°09.283	618	27.03.2010	AB	Т	Anaga-East	32	23	
				Conti	nued on next pa	ige				

	Table 18.1 – continued from previous page										
ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop. 1	Pop. 2		
580L	N28°33.548	W16°09.507	654	27.03.2010	AB	Т	Anaga-East	32	22		
581L	N28°33.776	W16°09.567	589	27.03.2010	AB	Т	Anaga-East	32	23		
582L	N28°32.328	W16°13.529	846	27.03.2010	AB	Т	Anaga-Centre	28	24		
583L	N28°32.227	W16°13.380	874	27.03.2010	AB	Т	Anaga-Centre	28	24		
584L	N28°32.272	W16°13.310	886	27.03.2010	AB	T	Anaga-Centre	28	24		
585L	N28°32.130	W16°18.925	827	27.03.2010	AB	Т	Anaga-West	22	31		
586L	N28°31.935	W16°19.209	800	27.03.2010	AB	Т	Anaga-West	22	31		
587L	N28°31.892	W16°19.319	782	27.03.2010	AB	T	Anaga-West	22	31		
588L	N28°31.909	W16°19.423	763	27.03.2010	AB	T _	Anaga-West	22	31		
589L	N28°31.973	W16°19.694	716	27.03.2010	AB	Т	Anaga-West	22	31		
590L	N28°32.047	W16°19.049	812	27.03.2010	AB	T	Anaga-West	22	31		
591L	N28°32.029	W16°18.868	812	27.03.2010	AB	T	Anaga-West	22	31		
592L	N28°32.427	W16°18.442	747	27.03.2010	AB	T	A 117 .	07	20		
593L	N28°33.638	W16°17.289	607	28.03.2010	AB	T	Anaga-West	27	28		
594L	N28°33.532	W16°17.257	580	28.03.2010	AB	T	Anaga-West	27	28		
595L	N28-33.425	W16°17.301	515	28.03.2010	AB	I T	Anaga-west	27	28		
596L	N28"33.384	W16°17.296	480	28.03.2010	AB	1 T	Anaga-west	21	28		
597L	N28°20.876	W16°47.524	705	28.03.2010	MG	1 T	Teno	4	2		
598L 500I	N28°20.743 N28°20.602	W16º47.743	795 816	28.03.2010	MG	1 T	Teno	4	2		
600I	N28°20.095	W10'47.855 W16947.291	1171	28.03.2010	MG	T	Teno	4	3		
COLL	N20'19.303	W10'47.321	008	28.03.2010	MG	T	Тепо	5 6	4		
6021	N28°20.135	W16º46.702	998	28.03.2010	MG	T	Teno	6	3		
602L	N28 20.389	W16º46.090	931	28.03.2010	MG	Т	Teno	6	3		
604L	N28°20.303	W16º47 148	803	28.03.2010	MG	Т	Teno	6	2		
605L	N28°21.028	W16º47.143	752	28.03.2010	MG	т	Teno	6	2		
606L	N28°20 370	W16º45 343	960	28.03.2010	MG	т	Icod	7	3		
607L	N28°21.060	W16º43 422	772	28.03.2010	MG	т	Icod	8	1		
608L	N28°20 588	W16°51 716	823	29.03.2010	AB	Т	Teno Alto	0	9		
609L	N28°20 804	W16°51 570	806	29.03.2010	AB	T	Teno Alto	Ő	9		
610L	N28°20 861	W16°51 456	810	29.03.2010	AB	T	Teno Alto	Ő	9		
611L	N28°20.946	W16°51.521	782	29.03.2010	AB	Т	Teno Alto	Ő	9		
612L	N28°20.979	W16°51.658	749	29.03.2010	AB	Т	Teno Alto	0	9		
613L	N28°21.154	W16°51.714	687	29.03.2010	AB	Т	Teno Alto	0	9		
614L	N28°20.871	W16°51.764	687	29.03.2010	AB	Т	Teno Alto	0	9		
615L	N28°20.705	W16°51.875	722	29.03.2010	AB	Т	Teno Alto	0	9		
616L	N28°20.320	W16°51.751	872	01.04.2010	AB	Т	Teno Alto	0	9		
617L	N28°20.232	W16°52.518	904	01.04.2010	AB	Т	Teno Alto	0	9		
618L	N28°33.352	W16°11.257	711	03.04.2010	AB	Т	Anaga-East	30	25		
619L	N28°33.542	W16°11.091	569	03.04.2010	AB	Т	Anaga-East	31	25		
620L	N28°32.865	W16°11.151	775	03.04.2010	AB	Т	Anaga-East	30	25		
621L	N28°32.898	W16°11.203	740	03.04.2010	AB	Т	Anaga-East	30	25		
622L	N28°20.475	W16°48.140	788	04.04.2010	AB	Т	Teno	4	5		
623L	N28°20.535	W16°48.371	753	04.04.2010	AB	Т	Teno	4	5		
624L	N28°20.757	W16°48.371	701	04.04.2010	AB	Т	Teno	4	5		
625L	N28°20.907	W16°48.407	653	04.04.2010	AB	Т	Teno	4	5		
626L	N28°20.947	W16°48.188	607	04.04.2010	AB	Т	Teno	4	5		
627L	N28°20.394	W16°48.307	821	04.04.2010	AB	Т	Teno	4	5		
628L	N28°20.738	W16°48.787	513	04.04.2010	AB	Т	Teno	4	5		
629L	N28°20.863	W16°48.776	481	04.04.2010	AB	Т	Teno	4	5		
630L	N28°19.823	W16°48.409	949	04.04.2010	AB	Т	Teno	5	4		
631L	N28°20.107	W16°48.418	837	04.04.2010	AB	Т	Teno	5	5		
632L	N28°20.221	W16°48.520	768	04.04.2010	AB	Т	Teno	5	5		
633L	N28°20.364	W16°48.607	697	04.04.2010	AB	Т	Teno	5	5		
634L	N28°20.529	W16°48.614	608	04.04.2010	AB	Т	Teno	4	5		
635L	N28°20.601	W16°48.751	551	04.04.2010	AB	Т	Teno	4	5		
636L	N28°10.404	W16°37.213	1700	29.03.2010	MT	Т					
637L	N28°33.267	W16°09.591	586	27.03.2010	MT	Т	Anaga-East	31	22		
638L	N28°33.349	W16°09.624	565	27.03.2010	MT	Т	Anaga-East	31	22		
639L	N28°33.448	W16°09.573	590	27.03.2010	MT	Т	Anaga-East	32	22		
640L	N28°33.559	W16°09.612	619	27.03.2010	MT	Т	Anaga-East	32	22		
641L	N28°21.077	W16°49.640	374	30.03.2010	MT	Т	Teno	1	8		
642L	N28°20.980	W16°49.666	418	30.03.2010	MT	Т	Teno	1	8		
643L	N28°20.889	W16°49.717	521	30.03.2010	MT	Т	Teno	1	8		
644L	N28°20.506	W16°49.814	590	30.03.2010	MT	T	Teno	1	8		
645L	N28°20.373	W16°49.839	638	30.03.2010	MT	Т	Teno	1	8		
				Conti	nued on next p	bage					

ID Pos. North Pos. West Alt. Coll. Date Collector Island Region Pop. 1 646L N28°20.161 W16°49.436 769 30.03.2010 MT T Teno 1 647L N28°20.403 W16°49.259 710 30.03.2010 MT T Teno 1	Pop. 2 8 8
646L N28°20.161 W16°49.436 769 30.03.2010 MT T Teno 1 647L N28°20.403 W16°49.259 710 30.03.2010 MT T Teno 1	8 8
647L N28°20.403 W16°49.259 710 30.03.2010 MT T Teno 1	8
648L 550 13.03.2010 AS T	
800L N27°58.000 W15°36.000 1000 16.01.2010 AS GC	39
801L N27°58.000 W15°36.000 400 16.01.2010 AS GC	39
802L N27°58.000 W15°36.000 1100 16.01.2010 AS GC	39
803L N27°58.000 W15°36.000 1105 16.01.2010 AS GC	39
804L N27°58.000 W15°36.000 595 16.01.2010 AS GC	39
805L N28°47.299 W17°51.629 23.01.2010 AS LP	35
806L N28°47.299 W17°51.629 23.01.2010 AS LP	35
807L N28°47.299 W17°51.629 500 24.01.2010 AS LP	35
808L N28°47.299 W17°51.629 555 24.01.2010 AS LP	35
809L N28°47.299 W17°51.629 500 24.01.2010 AS LP	35
810L N28°47.299 W17°51.629 24.01.2010 AS LP	35
811L N28°47.299 W17°51.629 1180 19.02.2010 AS LP	35
812L N28°47.299 W17°51.629 19.02.2010 AS LP	35
813L N28°43.190 W17°46.288 643 2012 MT, DB LP	35
814L N28°46.243 W17°46.327 389 2012 MT, DB LP	35
815L N28°38.556 W17°49.128 1103 2012 MT, DB LP	35
816L N28°49.277 W17°53.816 774 2012 MT, DB LP	35
817L N28°47.567 W17°48.084 646 2012 MT, DB LP	35
818L N28°05.216 W15°34.295 522 2012 MT, DB GC	39
819L N28°02.786 W15°35.277 885 2012 MT, DB GC	39
820L N28°04.297 W15°37.412 974 2012 MT, DB GC	39
821L N28°03.915 W15°36.576 934 2012 MT, DB GC	39
822L N28°05.801 W15°36.260 693 2012 MT, DB GC	39
823L N28°04.397 W15°32.774 680 2012 MT, DB GC	39
824L N28°01.872 W15°33.558 915 2012 MT, DB GC	39
825L N27°45.553 W17°58.929 1103 2012 MT, DB EH	37
826L N27°43.850 W18°01.522 1139 2012 MT, DB EH	37
827L N27°44.626 W18°06.563 859 2012 MT, DB EH	37
828L N27°43.989 W18°04.387 979 2012 MT, DB EH	37
829L N27°48.512 W17°55.648 787 2012 MT, DB EH	37
830L N28°09.383 W17°09.624 739 2012 MT, DB LG	36
831L N28°07.927 W17°11.303 865 2012 MT, DB LG	36
832L N28°07.507 W17°12.655 849 2012 MT, DB LG	36
833L N28°09.429 W17°14.735 1001 2012 MT, DB LG	36
834L N28°08.872 W17°17.147 1006 2012 MT, DB LG	36
835L N28°06.860 W17°12.747 1045 2012 MT, DB LG	36
836L N28°37.551 W17°48.528 874 2012 MT, DB LP	35
837L 2012 MT, DB GC	39
900L N37°44.653 W25°21.183 522 22.09.2010 AB, MT AZ	40
901L N37°48.764 W25°09.731 482 22.09.2010 AB, MT AZ	40
902L N37°46.158 W25°29.240 673 22.09.2010 AB, MT AZ	
903L N37°51.116 W25°46.588 474 28.09.2010 AB, MT AZ	40

Islands: T = Tenerife, EH = El Hierro, GC = Gran Canaria, LG = La Gomera, LP = La Palma, AZ = Azores. Collectors: AB = Anja Betzin, AS = Arnoldo Santos, ARB = Alfredo Reyes-Betancort, DB = Desiree Braun, MT = Mike Thiv, MG = Michaela Grein.

Columns $\mathbf{Pop.}\ 1$ and $\mathbf{Pop.}\ 2$ refer to the assignment in population-based diversity analysis.

Table 18.2.: Accession List of Ixanthus

ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop.
001I	N28°34.449	W16°09.814	708	05.01.2010	AB, MT	Т	Anaga-East	4
002I	N28°34.304	W16°10.147	606	05.01.2010	AB, MT	Т	Anaga-East	4
003I	N28°34.252	W16°10.023	629	05.01.2010	AB, MT	Т	Anaga-East	4
004I	N28°34.191	W16°09.824	577	05.01.2010	AB, MT	Т	Anaga-East	4
005I	N28°33.699	W16°09.696	626	05.01.2010	AB, MT	Т	Anaga-East	4
006I	N28°33.516	W16°09.788	703	05.01.2010	AB, MT	Т	Anaga-East	4
007I	N28°33.386	W16°09.908	766	05.01.2010	AB, MT	Т	Anaga-East	4
008I	N28°33.407	W16°10.513	804	05.01.2010	AB, MT	Т	Anaga-East	
				Continue	d on next page			

Table 18.2 – continued from previous page									
ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop.	
009I	N28°33.397	W16°10.656	790	05.01.2010	AB, MT	Т	Anaga-East	5	
010I	N28°32.806	W16°16.035	661	06.01.2010	AB, MT	Т	Anaga-West	7	
011I	N28°32.588	W16°16.039	706	06.01.2010	AB, MT	Т	Anaga-West	7	
012I	N28°32.628	W16°16.201	723	06.01.2010	AB, MT	Т	Anaga-West	7	
013I	N28°32.692	W16°16.419	714	06.01.2010	AB, MT	Т	Anaga-West		
014I	N28°32.350	W16°18.614	768	06.01.2010	AB, MT	Т	Anaga-West		
015I	N28°32.485	W16°18.739	713	06.01.2010	AB, MT	Т	Anaga-West	9	
016I	N28°32.498	W16°19.035	754	06.01.2010	AB, MT	Т	Anaga-West	9	
017I	N28°32.507	W16°19.169	736	06.01.2010	AB, MT	Т	Anaga-West	9	
018I	N28°21.928	W16°31.841	817	07.01.2010	AB, MT	Т	Valle de Orotava	1	
019I	N28°32.119	W16°17.929	855	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	9	
020I	N28°32.182	W16°17.756	846	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	9	
021I	N28°32.157	$W16^{\circ}17.594$	839	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	9	
022I	N28°32.027	W16°17.503	830	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	8	
023I	N28°32.167	W16°17.175	839	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	8	
024I	N28°32.087	W16°17.066	854	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	8	
025I	N28°32.001	W16°16.904	848	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	8	
026I	N28°32.046	$W16^{\circ}17.182$	841	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	8	
027I	N28°31.986	W16°17.307	843	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	8	
028I	N28°32.448	W16°17.805	643	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	9	
029I	N28°32.432	W16°17.926	752	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West		
030I	N28°32.303	W16°18.009	778	08.01.2010	AB, MT, ARB, AS	т	Anaga-West	9	
031I	N28°32.267	W16°18.014	787	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	9	
032I	N28°32.080	W16°17.773	907	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	9	
033I	N28°31.900	W16°17.673	901	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West		
034I	N28°32.358	W16°16.536	861	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	8	
035I	N28°32.261	W16°16.498	852	08.01.2010	AB, MT, ARB, AS	т	Anaga-West	8	
036I	N28°32.297	W16°16.635	844	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	8	
037I	N28°32.281	W16°16.789	816	08.01.2010	AB, MT, ARB, AS	т	Anaga-West	8	
0381	N28°32.082	W16°16.694	867	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	8	
039I	N28°32.570	W16°16.744	816	08.01.2010	AB, MT, ARB, AS	Т	Anaga-West	8	
040I	N28°19.743	W16°48.631	1035	09.01.2010	AB, MT	т	Teno	0	
041I	N28°19.601	W16°48.792	1005	09.01.2010	AB, MT	Т	Teno	0	
042I	N28°19.543	W16°48.785	1003	09.01.2010	AB, MT	Т	Teno	0	
043I	N28°19.560	W16°49.078	895	09.01.2010	AB, MT	Т	Teno	0	
044I	N28°19.417	W16°48.901	993	09.01.2010	AB, MT	Т	Teno	0	
045I	N28°19.350	W16°49.002	985	09.01.2010	AB, MT	Т	Teno	0	
046I	N28°19.390	W16°49.203	968	09.01.2010	AB, MT	т	Teno	0	
047I	N28°19.784	W16°49.430	904	09.01.2010	AB, MT	Т	Teno	0	
048I	N28°20.135	W16°49.591	891	09.01.2010	AB, MT	Т	Teno	0	
049I	N28°20.161	W16°49.789	873	09.01.2010	AB, MT	Т	Teno	0	
050I	N28°20.061	W16°49.839	861	09.01.2010	AB, MT	Т	Teno	0	
051I	N28°20.266	W16°50.105	827	09.01.2010	AB, MT	Т	Teno	0	
052I	N28°31.966	$W16^{\circ}15.820$	991	11.01.2010	AB, MT	Т	Anaga-Centre	7	
053I	N28°31.935	W16°15.717	977	11.01.2010	AB, MT	Т	Anaga-Centre	7	
054I	N28°31.745	W16°15.700	903	11.01.2010	AB, MT	Т	Anaga-Centre	7	
055I	N28°31.600	W16°15.791	800	11.01.2010	AB, MT	Т	Anaga-Centre	7	
056I	N28°31.636	$W16^{\circ}15.869$	734	11.01.2010	AB, MT	Т	Anaga-Centre	7	
057I	N28°31.866	$W16^{\circ}15.660$	923	11.01.2010	AB, MT	Т	Anaga-Centre	7	
058I	N28°18.410	W16°26.839	950	12.01.2010	AB, MT, ARB, AS	Т	South	10	
059I	N28°18.420	W16°26.909	944	12.01.2010	AB, MT, ARB, AS	Т	South	10	
060I	N28°18.485	$W16^{\circ}27.008$	944	12.01.2010	AB, MT, ARB, AS	Т	South	10	
061I				12.01.2010	AB, MT, ARB, AS	Т			
062I	N28°32.978	W16°13.700	710	13.01.2010	AB, MT	Т	Anaga-Centre	6	
063I	N28°32.838	W16°13.694	740	13.01.2010	AB, MT	Т	Anaga-Centre	6	
064I	N28°32.706	W16°13.989	668	13.01.2010	AB, MT	Т	Anaga-Centre	6	
065I	N28°32.701	W16°13.847	660	13.01.2010	AB, MT	Т	Anaga-Centre	6	
066I	N28°32.872	W16°13.912	712	13.01.2010	AB, MT	Т	Anaga-Centre		
067I	N28°32.944	$W16^{\circ}13.885$	640	13.01.2010	AB, MT	Т	Anaga-Centre	6	
068I	N28°32.195	$W16^{\circ}14.182$	800	13.01.2010	AB, MT	Т	Anaga-Centre	6	
069I	N28°32.252	$W16^{\circ}14.457$	729	13.01.2010	AB, MT	Т	Anaga-Centre	6	
070I	N28°32.330	W16°14.631	734	13.01.2010	AB, MT	Т	Anaga-Centre	6	
071I	N28°32.353	$W16^{\circ}13.154$	826	13.01.2010	AB, MT	Т	Anaga-Centre	6	
072I	N28°33.525	W16°10.234	822	13.01.2010	AB, MT	Т	Anaga-East	4	
073I	N28°33.608	W16°10.273	810	13.01.2010	AB, MT	Т	Anaga-East	4	
074I	N28°33.744	W16°10.250	805	13.01.2010	AB, MT	Т	Anaga-East	4	
Continued on next page									

Table 18.2 – continued from previous page										
ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop.		
075I	N28°33.733	$W16^{\circ}10.050$	822	13.01.2010	AB, MT	Т	Anaga-East	4		
076I	N28°33.920	W16°09.959	812	13.01.2010	AB, MT	Т	Anaga-East	4		
077I	N28°34.019	W16°10.141	793	13.01.2010	AB, MT	Т	Anaga-East	4		
0781	N28°34.184	W16°10.216	772	13.01.2010	AB, MT	Т	Anaga-East	4		
0791	N28°33.711	W16°10.364	845	13.01.2010	AB, MT	Т	Anaga-East	4		
0801	N28°33.596	W16°10.404	892	13.01.2010	AB, MT	Т	Anaga-East	4		
081I	N28°33.304	W16°10.720	769	13.01.2010	AB, MT	Т	Anaga-East	5		
0821	N28°32.233	W16°16.262	983	14.01.2010	AB, MT	Т	Anaga-West	8		
0831	N28°32.436	W16°16.256	917	14.01.2010	AB, MT	Т	Anaga-West	7		
084I	N28°32.486	W16°16.397	905	14.01.2010	AB, MT	Т	Anaga-West	7		
0851	N28°32.259	W16°16.028	927	14.01.2010	AB, MT	T _	Anaga-West	7		
0861	N28°32.091	W16°15.921	901	14.01.2010	AB, MT	T	Anaga-Centre	7		
0871	N28°31.980	W16°15.593	849	14.01.2010	AB, MT	T	Anaga-Centre	7		
0881	N28°32.017	W16°15.190	775	14.01.2010	AB, MT	T	Anaga-Centre	7		
0891	N28°31.992	W16°14.944	794	14.01.2010	AB, MT	T	Anaga-Centre	7		
0901	N28°32.105	W16°14.653	817	14.01.2010	AB, MT	T	Anaga-Centre	7		
0911	N28°32.142	W16°14.293	844	14.01.2010	AB, MT	T	Anaga-Centre	6		
0921	N28°32.216	W16°14.155	816	14.01.2010	AB, MT	T	Anaga-Centre	6		
0931	N28°32.441	W16°13.696	848	14.01.2010	AB, MT	T	Anaga-Centre	6		
0941	N28°32.400	W10°13.401	800	14.01.2010	AB, MI	I T	Anaga-Centre	0		
0951	N28-32.342	W16°13.185	830	14.01.2010	AB, MI	I T	Anaga-Centre	0		
0961	N28°32.785	W16°12.953	733	14.01.2010	AB, MI AD MT	I T	Anaga-Centre	Э Е		
0971	N20'32.733	W16°12.490	602	14.01.2010	AD, MI AD MT	T	Anaga-East	ວ ະ		
0981	N28°33.023	W16°12.209 W16°11.027	725	14.01.2010	AD, MI AD MT	T	Anaga-East	5 5		
1001	N28°22.000	W10 11.937	723	14.01.2010	AD, MT	T	Anaga-East	5		
1011	N28°32.099	W16º11.085	763	14.01.2010	AB, MT	T	Anaga-East	5		
1021	N28º33.046	W16º10.070	703	14.01.2010	AB MT	т	Anaga East	5		
1021	1120 33.040	W10 10.570		14.01.2010	AB MT	т	Anaga-East			
1041	N28º33 227	W16º11 136	801	14.01.2010	AB MT	т	Anaga-East	5		
1051	N28º33 316	W16°10 825	808	14.01.2010	AB MT	т	Anaga-East	5		
1061	N28°24 096	W16°29 394	902	15 01 2010	AB MT ABB	т	Monte de la Esperanza	3		
1071	N28°24.040	W16°29.131	1007	15.01.2010	AB. MT. ABB	Ť	Monte de la Esperanza	3		
1081	N28°23.983	W16°29.204	1036	15.01.2010	AB. MT. ABB	Ť	Monte de la Esperanza	3		
1091	N28°23.672	W16°29.498	1042	15.01.2010	AB. MT. ABB	Т	Monte de la Esperanza	3		
110I	N28°23.632	W16°29.551	1044	15.01.2010	AB, MT, ARB	Т	Monte de la Esperanza	3		
111I	N28°23.646	W16°29.446	1056	15.01.2010	AB. MT. ARB	т	Monte de la Esperanza	3		
112I	N28°23.839	W16°29.133	1083	15.01.2010	AB. MT. ARB	т	Monte de la Esperanza	3		
113I	N28°20.928	W16°35.303	1160	17.01.2010	AB, MT	Т	Llanos de Chanajiga	1		
114I	N28°21.106	W16°35.359	1138	17.01.2010	AB, MT	Т	Llanos de Chanajiga	1		
115I	N28°21.357	W16°35.414	1150	17.01.2010	AB, MT	т	Llanos de Chanajiga	1		
116I	N28°21.406	W16°35.565	1168	17.01.2010	AB, MT	т	Llanos de Chanajiga	1		
117I	N28°21.580	W16°35.853	1193	17.01.2010	AB, MT	Т	Llanos de Chanajiga	1		
118I	N28°21.208	W16°35.330	1167	17.01.2010	AB, MT	Т	Llanos de Chanajiga	1		
119I	N28°22.555	W16°36.324	770	17.01.2010	AB, MT	т	Llanos de Chanajiga	1		
120I	N28°26.125	W16°25.828	1021	19.01.2010	AB, MT	Т	Monte de la Esperanza	2		
121I	N28°26.207	W16°25.802	1020	19.01.2010	AB, MT	Т	Monte de la Esperanza	2		
122I	N28°25.949	$W16^{\circ}25.499$	1077	19.01.2010	AB, MT	Т	Monte de la Esperanza	2		
123I	N28°26.248	$W16^{\circ}25.417$	1004	19.01.2010	AB, MT	Т	Monte de la Esperanza	2		
124I	N28°26.334	$W16^{\circ}25.559$	974	19.01.2010	AB, MT	т	Monte de la Esperanza	2		
125I	N28°26.851	W16°23.926	1027	19.01.2010	AB, MT	т	Monte de la Esperanza	2		
126I	N28°26.794	W16°23.696	1053	19.01.2010	AB, MT	т	Monte de la Esperanza	2		
127I	N28°24.308	$W16^{\circ}28.042$	1001	20.01.2010	AB, MT	Т	Monte de la Esperanza	2		
128I	N28°24.237	$W16^{\circ}28.106$	1003	20.01.2010	AB, MT	Т	Monte de la Esperanza	2		
129I	N28°24.261	$W16^{\circ}28.252$	995	20.01.2010	AB, MT	Т	Monte de la Esperanza	2		
130I	N28°24.149	W16°28.289	985	20.01.2010	AB, MT	Т	Monte de la Esperanza	2		
131I	N28°24.155	W16°28.491	992	20.01.2010	AB, MT	Т	Monte de la Esperanza	3		
132I	N28°24.128	$W16^{\circ}28.741$	1026	20.01.2010	AB, MT	Т	Monte de la Esperanza	3		
133I	N28°23.952	$W16^{\circ}28.995$	1048	20.01.2010	AB, MT	Т	Monte de la Esperanza	3		
134I	N28°23.949	W16°28.787	1084	20.01.2010	AB, MT	Т	Monte de la Esperanza	3		
135I	N28°23.915	W16°28.467	1078	20.01.2010	AB, MT	Т	Monte de la Esperanza	3		
136I	N28°23.787	W16°28.411	1078	20.01.2010	AB, MT	T	Monte de la Esperanza	3		
137I	N28°24.106	W16°28.028	1097	20.01.2010	AB, MT	T	Monte de la Esperanza			
138I	N28°24.276	W16°27.927	1039	20.01.2010	AB, MT	T	Monte de la Esperanza	2		
139I	N28°24.386	W16°27.918	988	20.01.2010	AB, MT	Т	Monte de la Esperanza	2		
140I	N28°24.439	W16°27.786	951	20.01.2010	АВ, Μ΄Γ	Т	Monte de la Esperanza	2		
	Continued on next page									

Table 18.2 – continued from previous page								
ID	Pos. North	Pos. West	Alt.	Coll. Date	Collector	Island	Region	Pop.
141I	N28°24.285	W16°27.690	931	20.01.2010	AB, MT	Т	Monte de la Esperanza	
142I	N28°24.432	W16°27.425	908	20.01.2010	AB, MT	Т	Monte de la Esperanza	2
143I	N28°24.744	W16°27.415	926	20.01.2010	AB, MT	т	Monte de la Esperanza	2
144I	N28°24.742	W16°27.281	944	20.01.2010	AB, MT	Т	Monte de la Esperanza	2
145I					AB, MT	т	Monte de la Esperanza	
146I	N28°24.585	W16°27.185	975	20.01.2010	AB, MT	т	Monte de la Esperanza	2
147I	N28°31.524	W16°17.282	762	22.01.2010	AB, MT	Т	Anaga-West	8
148I	N28°31.537	W16°17.073	838	22.01.2010	AB, MT	Т	Anaga-West	8
149I	N28°31.638	W16°16.920	862	22.01.2010	AB, MT	Т	Anaga-West	8
150I	N28°32.110	W16°17.887	910	22.01.2010	AB, MT	Т	Anaga-West	9
151I	N28°32.117	W16°18.739	836	22.01.2010	AB, MT	Т	Anaga-West	9
152I	N28°31.857	W16°18.066	758	22.01.2010	AB, MT	Т	Anaga-West	9
153I	N28°31.868	W16°18.352	684	22.01.2010	AB, MT	Т	Anaga-West	9
154I	N28°31.955	W16°18.150	807	22.01.2010	AB, MT	Т	Anaga-West	
155I	N28°32.867	W16°12.193	589	22.01.2010	AB. MT	Т	Anaga-East	5
156I	N28°33.643	W16°09.967	746	22.01.2010	AB. MT	Т	Anaga-East	4
157I	N28°33.336	W16°11.086	832	22.01.2010	AB. MT	Т	Anaga-East	5
158I	N28°33.289	W16°11.192	801	22.01.2010	AB. MT	Т	Anaga-East	5
159I	N28°33.142	W16°11.416	784	22.01.2010	AB. MT	Т	Anaga-East	5
160I	N28°23.751	W16°29.583	952	24.01.2010	AB. MT	Т	Monte de la Esperanza	3
161I	N28°23 516	W16°29 613	959	24 01 2010	AB MT	T	Monte de la Esperanza	3
1621	N28°23 428	W16°29 627	961	24.01.2010	AB MT	T	Monte de la Esperanza	3
163I	N28°22 660	W16°29 148	988	24.01.2010	AB MT	T	Monte de la Esperanza	3
164I	N28°32 440	W16°15 979	899	23.03.2010	AB	T	Anaga-West	7
1651	N28°32 877	W16°15 855	714	23.03.2010	AB	T	Anaga-West	7
166I	N28°32 965	W16°15 925	716	23.03.2010	AB	T	Anaga-West	7
1671	N28°32 889	W16°15.808	671	23.03.2010	AB	Т	Anaga-West	7
1681	N28°32 586	W16º13 622	857	24.03.2010	AB	T	Anaga-Centre	6
1691	N28°32 706	W16°13 535	761	24.03.2010	AB	T	Anaga-Centre	6
1701	N28°32 802	W16º13 412	597	24.03.2010	AB	T	Anaga-Centre	6
1711	N28º19.661	W16º48 988	887	25.03.2010	AB	T	Teno	0
1721	N28°32 356	W16°13 415	873	27.03.2010	AB	Т	Anaga-Centre	
1731	N28°32 388	W16º18 682	767	27.03.2010	AB	T	Anaga-West	9
1741	N28°32 410	W16°18 472	755	27.03.2010	AB	T	Anaga-West	0
1751	N28°20 744	W16°47 735	793	28.03.2010	MG	T	Teno	0
1761	N28°20 639	W16°51 704	822	29.03.2010	AB	T	Teno	0
1771	N28°20 761	W16°51 701	765	29.03.2010	AB	T	Teno	0
1781	N28º33 525	W16°11 085	577	03 04 2010	AB	т	Anaga-East	5
1791	N28°33 351	W16°11.000	711	03.04.2010	AB	Т	Anaga-East	5
1801	N28°20 474	W16º48 141	786	04 04 2010	AB	T	Teno	0
1811	1120 20.414	W10 40.141	550	13 03 2010	AS	Т	Anaga-West	0
3001			500	24 01 2010	AS	LP	other islands	13
3011			555	24.01.2010	AS	LP	other islands	13
3021	N28°47 299	W17°51 629	1180	19.02.2010	AS	LP	other islands	13
3031	1120 111200		1100	19.02.2010	AS	LP	other islands	13
3041	N28º46 031	W17º46 686	473	2012	MT DB	LP	other islands	13
3051	N28º49 273	W17°53 824	766	2012	MT DB	LP	other islands	10
3061	N28°38 448	W17º49.070	1109	2012	MT DB	LP	other islands	13
3071	N28º47 438	W17º48 122	541	2012	MT DB	LP	other islands	10
3081	N27º45 416	W17º50 026	1034	2012	MT DB	EH	other islands	14
3001	N27º44.630	W18º06 570	858	2012	MT DB	FH	other islands	14
3101	N27º44.050	W18º05 196	920	2012	MT DB	FH	other islands	14
3111	N28º00 386	W17900 765	710	2012	MT DB	LC	other islands	19 19
3191	N28º07 029	W17º11 200	868	2012	MT DB	LG	other islands	12
3121 3191	N2807 509	W17º10 20F	000	2012	MT DP	LG	other islands	10
3141	N28º0º 74º	W17017 174	924 1059	2012	MT DP	IC	other islands	12
9141 9151	N28007 771	W17915 994	1010	2012	MT DP	LG	other islands	10
916I	N28001.111	W15020 862	1413	2012	MT DP	LG	other islands	11
917I	1120 04.394	vv 10 02.003	080	2012	MT DP	GC	other islands	11
51/1				2012	мт, DD	GU	other Islands	11

 $\label{eq:stands: T = Tenerife, EH = El Hierro, GC = Gran Canaria, LG = La Gomera, LP = La Palma, AZ = Azores.$

Columns $\mathbf{Pop.}\ \mathbf{1}$ and $\mathbf{Pop.}\ \mathbf{2}$ refer to the assignment in population-based diversity analysis.

19. Appendix B — Supplementary Material

Figure 19.1.: Rotation diagram of *Laurus* principal coordinate analysis for bioclimatic parameters

The diagram shows the factor loadings for the two main coordinates for temperature (red highlighted), precipitation (blue highlighted) depended parameters and altitude. Bioclim parameters 1 to 11 (temperature) are contributing to coordinate 1, Bioclim 12 to 19 (precipitation) prevailingly to coordinate 2 or both equally, as altitude, too.

19. Appendix B-Supplementary Material

Figure 19.2.: Bioclimatic values frequencies (continued)

Comparison of the frequencies for all 19 bioclimatic values (1–11: temperature-dependent values, 12–19: precipitation-dependent values) and elevation for all collected *Laurus* and *Ixanthus* accessions. For subsumed results see also table 12.4.

20. Appendix C — Supplementary Material on CD

Thesis.pdf

Accession lists.xlsx

AFLP binary matrices.xlsx

Pairwise Fst.txt

21. Acknowledgements

No PhD thesis is the work of one person alone, therefore I'd like to express my gratitude to all who were involved in this work.

First of all, I'd like to thank my supervisor Prof. Dr. Marcus Koch for giving me the opportunity to start and finish this thesis, and of course for scientific discussions, guidance and encouragement.

I greatly acknowledge funding of the project by a grant to M.A.K. within the research cluster "Global Change and Globalization" at Heidelberg University financed by resources from Initiative for Excellence I (German Research Foundation, DFG) and internal funding by COS Heidelberg.

Furthermore, I thank Dr. Mike Thiv from Staatliches Naturkundemuseum Stuttgart for accompanying me on the collection trips on Tenerife, Arnoldo Santos-Guerra and Jorge Alfredo Reyes-Betancort (both Instituto Canario de Investigaciones Agrarias, Jardín de Aclimatación de La Orotava) for giving useful advice, company and help during field work, which would have been much more complicated without the help of local experts. Additionally, I want to thank Manja Kramer for her State Exams Thesis on the *Ixanthus* topic, Sebastian Günthert for hours of help with GIS software, geographic discussions and fruitful cooperation during the terraces mapping trip, and also Markus Heidak for interdisciplinary research in cluster III *Element cycles and socioeconomic dynamics — Understanding global processes on a local scale (Canary Islands).*

I'd like to express my gratitude to all members of the Koch and Erbar lab for being wonderful colleges and for the good working atmosphere, I really enjoyed it to be there. Especially I'd like to mention Dr. Markus Kiefer for IT support, Florian Michling for being my AFLP companion, Fabian Bratzel for writing parallel to me and Liza Ding for sharing one office. Thanks to her and Christina Czajka for proofreading this thesis and for more.

And last but not least, I'd like to thank my family for always believing that I'm doing the right thing, and of course my husband Uwe — for everything.