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Abstract – In this thesis, the dissociative single-ionization of molecular hydrogen is
investigated in a kinematically complete experiment by employing extreme ultraviolet
attosecond pulse trains and infrared femtosecond laser pulses. Induced by the ab-
sorption of a single XUV photon, a pronounced energy-dependent asymmetry of the
relative emission direction of the photoelectron and the ion is observed. The asym-
metry pattern is explained in terms of an interference of two ionization pathways
involving a doubly-excited state. This interpretation is validated by a semi-classical
model which only takes the nuclear motion into account. Using this model and the
observed asymmetry, it is furthermore possible to disentangle the two dissociation
pathways which allows for the determination of the autoionization lifetime of the
contributing doubly-excited state as a function of the internuclear distance.

Moreover, using a pump–probe experiment the dissociation dynamics of molecular
hydrogen is investigated. A time-delay dependent momentum distribution of the
fragments is observed. With a combined quantum mechanical and semi-classical
approach the mechanism giving rise to the observed time-dependence is identified in
terms of an intuitive elevator mechanism.

Zusammenfassung – In dieser Arbeit wird die dissoziative Einfachionisation von
molekularem Wasserstoff unter dem Einsatz von Attosekundenpulszügen und infrarot
Laserpulsen in einem kinematisch vollständigen Experiment untersucht. Ausgelöst
durch die Absorption eines einzelnen XUV Photons wird eine stark ausgeprägte,
energieabhängige Asymmetrie in der relativen Propagationsrichtung der gemesse-
nen Photoelektronen und der Ionen beobachtet. Das Verhalten der Asymmetrie
kann durch die Interferenz zweier Ionisationskanäle, unter denen sich ein doppelt an-
geregter Zustand befindet, erklärt werden. Diese Interpretation wird durch ein semi-
klassisches Model, welches nur dir Kernbewegung berücksichtigt, verifiziert. Unter
der Verwendung des Models und der gemessenen Asymmetrie, ist es möglich die
zwei dissoziativen Ionisationskanäle zu trennen. Dies ermöglicht die Bestimmung der
Autoionisationszeit des involvierten doppelt angeregten Zustands als Funktion des
Kernabstands.

Des Weiteren wird die Dissoziationsdynamik von molekularem Wasserstoff in einem
zeitauflösendem Pump–Probe Experiment untersucht. Eine zeitabhängige Impuls-
verteilung der Fragmente wird beobachtet. Durch die Kombination von quanten-
mechanischen Rechnungen und einem semi-klassischen Model kann ein intuitiver
Fahrstuhlmechanismus identifiziert werden, welcher die Zeitabhängigkeit der Frag-
mentimpulse verursacht.
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1 Introduction

With his pioneering work of observing molecular motion [1–6], Ahmed Zewail es-
tablished femtochemistry as a new field of science. The focus of femtochemistry is
to observe, understand and ultimately control the atomic motion in chemical reac-
tions as the reagents pass through transition states. Considering the small length
scale of chemical reactions (typically a few Ångström, i.e. 10−10 m) and the large
velocity of the involved atoms leads to reaction times in the femtosecond regime.
Since the particles move in the combined potential of electrons and nuclei, the elec-
trons are far more than just spectators in chemical reactions. The dynamics of these
processes is a consequence of the complex interplay between the electrons and the
nuclei. Since molecules are inherently multi-particle systems, various phenomena
such as electron-electron correlations (which can lead e.g. to the decay of transition
states) and couplings between the electronic and nuclear dynamics form an essential
aspect of femtochemistry.

In the interaction of ionizing radiation with matter, electron-electron correlation
plays an important role as it allows, among other processes, the preparation of su-
perexcited states. Superexcited states have an potential energy above the first ioniza-
tion threshold and are therefore embedded in the single-ionization continuum. Acting
as intermediate states they play an important role in single-photon and multiphoton
absorption, electron impact ionization and diverse scattering processes. Already in
1962 Robert Platzman investigated and predicted the importance of superexcited
states in the interaction of high-energetic, ionizing radiation with matter [7–9]. They
tremendously enlarge photoionization cross-sections and are therefore an important
aspect of dissociative photoionization.

Molecular hydrogen, with its apparent simplicity, has always been a popular target
for the investigation of photochemical reactions. Having only two electrons, H2 is
the ideal candidate to study the effects of electron correlations which are, unlike
in helium, influenced by the nuclear motion. Another advantage is that for some
cases a theoretical description of hydrogen molecules is still possible by means of
modern approaches, even fully quantum mechanically. This allows for precise tests
of theoretical predictions by comparing with experimental results.

In early measurements on the photo-induced dissociative ionization of hydrogen
molecules conducted by Browning and Fryar in 1973 [10], an increase of the produc-
tion ratio of H+/H+

2 was observed at photon energies of 26 eV [11]. This increase
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was ascribed to the presence of doubly-excited states1 [11]. Only three years later
Strathdee and Browning [12] reported on signatures of doubly-excited states in the
observed proton kinetic energy distribution. It comes as no surprise that later, by
employing synchrotrons as a high-quality light source, great progress was made in
the spectroscopy and in dynamical investigations of superexcited states [9]. Many
investigations were conducted that shed light on the mechanisms involving doubly-
exited states in the creation of H+ and H+

2 by the absorption of a single high-energetic
photons, e.g. Refs. [13–18].

Doubly-excited states decay through two competing processes: (I) dissociation
into neutral (atomic) states and (II) autoionization due to electron-electron inter-
action [19]. The autoionization of doubly-excited states in H2 occurs very fast and
is therefore on the order of the molecule’s dissociation time (some femtoseconds).
Since with the presence of autoionizing doubly-excited states, resonant and non-
resonant dissociative ionization channels are available strong interference effects can
occur. With the availability of detection systems which are capable of detecting pho-
toelectrons and the dissociating protons in coincidence, vector correlation methods
were introduced to the field. With these methods, it was possible to observe so-called
molecular frame photoelectron angular distributions (MFPADs) where for each event
the momentum vectors are rotated such that the proton momentum vectors point in
the same direction. The results showed a strongly asymmetric distribution of the pho-
toelectrons, which are a result of the above mentioned interference, see e.g. [20, 21].
So far the reported investigations on the asymmetric MFPADs did not discuss the full
dependence of the asymmetry on the photoelectron momenta, the proton momenta
and the photon energy.

For this reason, in this work a doubly-differential energy-correlated study of these
processes has been performed by employing a reaction microscope which gives the
complete kinematic information of the charged particles. Using the reaction micro-
scope, we are able to determine the energy of the absorbed photons by measuring the
energies of the reaction fragments and by exploiting energy conservation. Instead of
a synchrotron, we use laser-driven high-order harmonic generation (see e.g. [22]) as
a source for high-energy photons. The obtained results are interpreted in terms of
an intuitive energetically fully differential semi-classical model (which was developed
as part of this thesis) and are supported by fully quantum-mechanical calculations
performed by the group of Fernando Mart́ın (for methodology see e.g. [23]). Further,
the measured asymmetry is used for the first time to disentangle the non-resonant
dissociative ionization channel from the resonant channel. After having disentangled
the reaction channels, it is possible to determine the lifetime of the energetically
lowest doubly-excited state of Σ+

u symmetry2 as a function of the internuclear sepa-

1The doubly-excited states in H2 are all superexcited states, i.e. they all are embedded within the
first ionization continuum.

2This state has a very high population cross-section is therefore of utmost importance in high-
energetic photoionization.
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ration. This novel approach makes the lifetime accessible over a very large range of
internuclear separations, previously inaccessible by experiments. The result is in very
good agreement with theoretical predictions as well as with previous experiments for
the applicable internuclear distances.

The second part of this thesis focuses on the understanding and controlling aspect
of femtochemistry. Control over the nuclear motion in chemical reactions is often
exerted by lasers acting on the molecule’s electrons by influencing the molecule’s
electronic states. It is therefore clear that the advent of laser systems delivering
ultra-short pulses in the femtosecond regime and extreme peak intensities triggered
enormous scientific advances by enabling pump–probe measurements.

The decrease in pulse durations of optical lasers to only a few optical cycles allowed
to observe the vibrational motion and fragmentation dynamics of even molecular
hydrogen (see e.g. [24–32]), the lightest and fastest molecule. The ultrafast dynamics
for such light systems occurs on very short time scales (a few femtoseconds).

In many experiments infrared (IR) laser pulses were used in the pump and probe
step. Recently the investigation scheme was extended by Kelkensberg et al. [31] when
they used attosecond pulse trains (APTs) in an innovative experiment as a pump
pulse and an IR pulse to subsequently probe in order to observe the molecular motion
of vibrational wave packets in H2. Since the APTs have photons with energies well
within the extreme ultraviolet (XUV) regime, a single photon is sufficient to ionize
molecular hydrogen and launch vibrational wave packets in the binding potential
of H+

2 . In many cases this is an advantage, since the molecular potential is hardly
distorted by the low intensities of today’s attosecond pulse trains, which allows to
launch molecular wave packets in the natural environment of the molecular hydrogen
ion. Another advantage arises by the low intensity as it allows the XUV excitation
to be described within perturbation theory.

In addition to the ability to observe the molecular motion of even the fastest sys-
tem, modern experiments are able to influence photochemical reactions in a desired
way. For instance, using advanced pulse shaping techniques, it has been demonstrated
that light pulses can be used to steer photochemical reactions [33–36]. Having pho-
ton energies of ≈ 1 eV IR lasers are exceptionally well suited to couple and therefore
modify different molecular potential energy surfaces. With this technique it is also
possible to obtain control over reactions as it has been demonstrated in previous
approaches (see e.g. [37–39]).

In this work, we combine the advantages of XUV wave packet preparation and the
capabilities of the IR pulse to couple molecular states via an XUV-IR experiment.
In contrast to previously conducted experiments concerning the nuclear wave-packet
dynamics the focus of this work is put on the IR induced dissociation process. A time-
delay dependent momentum of the fragments is observed which is analyzed using a
Fourier technique. By employing quantum calculations (which have been conducted
as an integral part of this work) as well as a semi-classical model (also developed
as part of this work) – which treats the potential energy curves within the Floquet
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picture – a fundamental mechanism is identified which leads to the time dependence
of the reaction fragments.

This thesis is organized as follows: Chapter 2 begins with the description of molec-
ular hydrogen in laser fields. Tunnel ionization, multiphoton ionization and single-
photon ionization are discussed as different single-ionization mechanisms. After that
a short introduction to molecular symmetry is given and the dipole selection rules
are introduced. Subsequently in Chapter 3, the experimental setup is presented. An
overview is given by splitting the setup in three modules, (I) the laser system, (II) the
high-order harmonic generation chamber and (III) the reaction microscope. Then, in
Chapter 4 the experimental results of the single XUV photon induced electron local-
ization are presented. It starts by conveying additional theoretical concepts essential
for the interpretation of the measured results in terms of a semi-classical model.
Thereafter, an overview over the for this thesis relevant ionization channels in molec-
ular hydrogen is presented. Then, the chapter concludes by presenting the measured
electron asymmetry and its interpretation as well as the derivation of the lifetime of
the energetically lowest doubly-excited Q1

1Σ+
u state. Chapter 5 presents the results

of the XUV-pump IR-probe experiment. First, the necessary theoretical concepts
for solving the time-dependent Schrödinger equation are given which are important
for the understanding of quantum calculations conducted in this work. Then, the
Floquet picture is introduced, which is an essential part of the semi-classical model
used for the interpretation of the data. The chapter concludes by presenting the
measured results in comparison to the performed simulations. Finally, Chapter 6
gives a summary of this thesis and an outlook on future investigations.

Note: Throughout this work atomic units are used if not stated otherwise.
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Exposing molecular hydrogen to laser fields leads to a great number of effects, among
them the ionization of the molecule. Therefore theoretical descriptions strongly rely
on different approximations to describe the ionization process accurately. When the
field strength of the laser’s electromagnetic field is much weaker than the molecular1

field it is possible to treat the influence of the laser within the framework of the
time-dependent perturbation theory. The appearing perturbation series gives rise
to the process interpretation in terms of (multi-) photon transitions, where integer
multiples of the fundamental field energies (frequencies) E = ω are absorbed by the
atomic or molecular system. This perturbation treatment is no longer possible if the
laser field strength becomes of the order of the molecular electric field, where the
potential is deformed by the laser so far that a tunneling of an electron out of the
molecular potential becomes possible (tunnel ionization). An approach to the theo-
retical description of this case was presented by M. V. Ammosov, N. B. Delone and
V. P. Krainov [40] by introducing their today well known ADK-theory (for reference
see e.g. Ref. [41]). In 2002 a group around C. D. Lin [42] further extended the ADK-
formalism to molecules (molecular ADK or MO-ADK). The range of applicability of
these two theoretical approaches (multiphoton ionization and tunnel ionization) can
be described using the Keldysh parameter [43] which depends on the laser intensity
and the wavelength.

Therefore, for optical lasers which have photon energies (≈ 1 eV) much smaller than
the ionization potential Ip, two possible ionization mechanisms exist: the multiphoton
ionization and the tunnel ionization. An alternative approach to photoionization is
the increasing of the photon energy to the order of the ionization potential, as it can
be done in synchrotrons and free electron lasers (FEL) or by exploiting the high-
order harmonic generation (as it is the case in this work). With these techniques,
single-photon ionization becomes available which is possible for weak fields and can
be described by first-order perturbation theory.

Since ionization is a fundamental aspect of this thesis Sec. 2.1, gives a brief sum-
mary of the different single-ionization processes applied to molecules: (I) tunnel ion-
ization, (II) multiphoton ionization, and (III) single-photon ionization. Subsequently,
Sec. 2.2 gives a short introduction to molecular symmetry and molecular selection
rules which will play a key role in the determination of wave functions in Chap. 4.

1Most of the arguments presented in this chapter also apply to atoms.
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2.1 Single-Ionization Processes

In the following we discuss laser induced processes leading to a singly ionized molecule
or atom, i.e. a system from which one electron is removed. When single-photon
ionization is forbidden due to low photon energies, essentially two induced ionization
mechanisms exist: (I) tunnel ionization and (II) multiphoton ionization. In 1965 it
was shown by L. V. Keldysh that these two ionization regimes can be separated by
introducing the adiabaticity parameter

γ = ω0

√
2Ip
I
, (2.1)

where Ip is the molecules ionization potential, Eγ = ω0 the photon energy and I the
laser intensity. For γ � 1 the ionization has a character best described by tunneling
whereas for γ � 1 a multiphoton perturbation approach is best suited [44].

The Keldysh parameter is often expressed in terms of the ponderomotive potential

Up = I/4ω2
0, (2.2)

which is the kinetic energy of an electron in a periodic laser field averaged over one
cycle. With this definition Eq. (2.1) can be rewritten as

γ =

√
Ip

2Up
(2.3)

In reality, however, laser parameters often have to be chosen such that γ ≈ 1
for which a clear classification in terms of the Keldysh parameter is impossible [45].
Here, it has to be decided from case to case which approach seems to yield the most
promising results.

In this work high-order harmonics in the XUV regime with low intensity and high
photon energies are used and it turns out that in this case we have γ � 1, indicating
that we are in the regime where we could use perturbation theory to describe the
dipole transitions leading to ionization as multi-photon transitions. However, as a
single photon suffices to ionize molecular hydrogen, another process becomes the
predominant contributor to photo-ionization: (III) the single-photon ionization. All
experimental results presented in Chap. 4 and Chap. 5 are obtained using single-
photon ionization. Nevertheless, tunnel ionization and multi-photon ionization are
treated in the following sections as well in order to give a complete overview and also
because tunnel ionization plays an important role in the high-harmonics generation
process used to generate XUV attosecond pulse trains.
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2.1.1 Tunnel Ionization

The tunnel ionization regime (γ � 1) is reached when the laser intensity becomes
very large and the photon energy very small where the light field is described as a
classical field in the limit of infinitely many photons. The high field strength of the
laser strongly distorts the molecular potential which is illustrated in Fig. 2.1. The

z (arb. u.)

V
(z
)
(a
rb
.
u
.)

γ ≪ 1

Nuclei

Ip

Tunneling

z (arb. u.)

γ ≪ 1

Nucleus

∆Ei

Ĩp

Figure 2.1: Illustration of the tunnel ionization for the molecular (left) and atomic (right) case. The
strong laser field lowers the potential and an electron can tunnel out resulting in an ionization of
the molecule. When a (linear) molecule is aligned with the laser polarization axis (z-direction), the
larger extension of the electron orbitals results in a stronger lowering of the potential as compared
to the atomic case. Therefore, for aligned molecules an enhancement of the tunnel-ionization rate
is observed. Further, the tunnel ionization within an aligned molecule is equivalent to that within
an atom with lowered ionization potential Ĩp = Ip −∆Ei (see right figure).

field strength can become so strong that a bound electron can escape the binding
potential of the molecule by (horizontally) tunneling through the potential barrier.
In order to calculate the tunnel-ionization probability the MO-ADK theory [42, 46]
is applied. For a diatomic molecule the probability reads (as a function of the laser
field strength E)

w(E) = A(l,m)κ−
2Zeff
κ−1

(
2κ3

E

) 2Zeff
κ−|m|−1

e−
2κ3

3E (2.4)
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where A(l,m) is the orbital structure factor as a function of the quantum numbers l
and m, Zeff is the molecule’s effective nuclei charge2 and κ =

√
2Ip.

Figure 2.1 further compares the tunnel process for the molecular case (left) to
the atomic case (right) for equal ionization potentials Ip. We consider only the case
where the molecule is aligned with the laser polarization axis (z-axis). Due to the
larger extension of the electronic molecular orbitals, the laser induced distortion is
stronger for the molecular case which, in contrast to the atomic case, further lowers
the tunnel barrier resulting in a higher tunnel ionization rate for aligned molecules.
The molecular tunnel rate is equivalent to the one observed for atoms with a reduced
ionization potential Ĩp = Ip−∆Ei [see Fig. 2.1 (right)]. It should for completeness be
noted that if the electric field strength of the laser is further increased, the electron
can overcome the barrier without tunneling (see Fig. 2.2). This process is referred
to as over-the-barrier ionization [47].

z (arb. u.)

V
(z
)
(a
rb
.
u
.)

γ ≪ 1

Nuclei

Ip

Free Electron Motion

Figure 2.2: Over-the-barrier ionization. The electric field strength is so high that the electron can
simply leave the molecular potential horizontally, which leads to the ionization.

High-Order Harmonic Generation: Three-Step Model

In this work the tunnel ionization is not used to investigate physical processes in
molecular hydrogen. However, it is used in the creation of high-order harmonic
generation (HHG) in argon gas. Even though we will not attempt to give a deep
introduction to the topic at this point (for this please refer to Refs. [22, 47–56] and
to the dissertations [57–59] with respect to our experiment) we will briefly discuss

2Even though in a molecule the attractive force is not a Coulomb potential, a very good approxi-
mation is achieved by modeling it as Zeff/r as an effective Coulomb field.
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the three-step model introduced by Corkum and Kulander [52,60–62] which gives an
intuitive understanding of the generation process.

In the three-step model, a strong laser pulse distorts the atomic potential such
that an electron can tunnel out (see Fig. 2.3). The electron is accelerated away

Tunneling

Nucleus

Ip

Nucleus

Ip

Nucleus

Ip

Ekin

XUV

Laser FieldLaser FieldLaser Field

Laser Field Acceleration

Recombination

Time Time Time

Figure 2.3: Three-step model. In the first step, an atom is ionized in a strong laser field (tunnel
ionization). The freed electron is accelerated away from the atom by the laser field. Due to the
oscillation of the electric field the electron is eventually driven back toward the ion. In the third
step, the electron recombines with the ion. The kinetic energy gained in the laser field plus the
ionization potential is emitted in the form of high-order harmonics which consist of photons with
energies in the extreme ultraviolet range.

from the ion by the strong laser field. When the laser field changes the sign, the
electron is decelerated and eventually driven back toward the ion. In the last step,
the electron recombines with the ion emitting an XUV photon with the sum energy
of the ionization potential and the gained kinetic energy.

As this process occurs in every half-cycle of the laser pulse, the XUV photons are
irradiated in so-called attosecond pulse trains (APTs). From Fourier theory it is clear
that having a temporal spacing of T/2 (where T is the period of the intense driving
laser pulse) leads to photon energies of the APTs with an even integer multiple of
the fundamental photon energy (ωXUV = 2nω0 with n ∈ N).

The semi-classical interpretation has of course limits, as it cannot correctly pre-
dict amplitudes and phases of the photons in the HHG [59]. A quantum mechanical
treatment of the HHG overcoming these difficulties became available in 1994 when
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Lewenstein et al. [63] presented an analytical solution using the strong field approxi-
mation.

To conclude the section we briefly characterize the spectrum of the high-order
harmonics used for ionization and excitation. The photon energy extends over the
large range from 16 eV to 55 eV making it difficult to measure the spectrum with
a homogeneous approach with the available experimental means. To overcome this
problem the spectrum is measured using two different techniques, (I) photoelectron
spectra obtained using the reaction microscope with different noble gases as a target
and (II) using grating spectrometer with CCD camera, which is sensitive at photon
energy above ≈ 30 eV (because of the used transmission grating, photons of lower
energy are absorbed and cannot enter the detection system).

Figure 2.4 shows four different spectra, three obtained as photo electron spectra
using Argon, Neon, and Helium, and one spectrum using the grating spectrometer.
Combing the four obtained spectra the energy range from 20 eV to 55 eV can be

S
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Photoelectron Energy
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Photoelectron Energy

CCD Camera Spectrum

Photon Energy (eV)

Figure 2.4: Spectral structure of the high-order harmonics (HH). Since the spectrometer used to
measure the HH relies on a transmission grating, photons with energies below 30 eV are absorbed.
In order to make the harmonic structure visible below this point, different gases have been ionized
and the photoelectron kinetic energy was measured. Knowing the ionization potential and the
fundamental photon energy the spectra are calibrated. However, the here shown amplitudes do
not reflect the spectral amplitudes of the HH as the ionization cross-sections of the atoms are not
considered. Figure taken from [59].
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covered. It is, however, clear that the true amplitudes of the HH spectrum is not
recovered by this method, because (a) the atom dependent and energy dependent
photo-ionization cross sections of the three gases and (b) the sensitivity of the CCD
camera as well as the absorption in the diffraction grating are not taken into account.

The essential information obtained from these spectra for our experiment is that
we have a series of photon energies with approximately 3.4 eV spacing over the entire
observed spectral range.

2.1.2 Multiphoton Ionization

The second process to be discussed is the multiphoton ionization. It occurs for
(relatively) low field intensities3 and small photon energies compared to the ionization
potential Ip. Figure 2.5 shows an illustration of the multiphoton ionization. For
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Figure 2.5: Illustration of the multiphoton ionization. In order to overcome the ionization potential
many low energetic photons (red arrows) are absorbed. The ionization probability for this process
scales with the laser intensity as In, where n is the number of absorbed photons. The photoelectron
kinetic energy depends on the number of absorbed photons above the ionization potential Ip. The
higher the photoelectron kinetic energy the more photons have to be absorbed, which explains the
drop-off in yields for fast electrons.

this process many low energetic photons are absorbed to overcome the molecules
ionization potential. The transition is said to occur vertically [64]. When more
photons are absorbed than necessary to ionize the molecule, the access energy is
transfered into kinetic energy of the photoelectron. This is called above-threshold-

3The intensity is low compared to the tunnel ionization case.
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ionization (ATI). The higher the photoelectron energy the more photons are absorbed
in the process which reduces the process probability.

Multiphoton processes can be understood in terms of time-dependent perturbation
theory. For a perturbation Hamiltonian H1 the Schrödinger equation reads

i
d|Ψ, t〉
dt

= (H +H1)|Ψ, t〉, (2.5)

in which we consider the unperturbed problem (involving H) to be solved. By intro-
ducing the time evolution operators T and U , corresponding to unperturbed system
H and the perturbation H1 respectively, the time-dependence of the states can be
absorbed into the operators4, which is achieved by identifying |Ψ, t〉 = TU |Ψ〉 (|Ψ〉
is a time-independent ket now). Since Eq. (2.5 has to hold for all |Ψ〉, one can
reformulate it as an operator equation

i
dTU

dt
= i

dT

dt
U + iT

dU

dt
= H TU +H1 TU, (2.6)

in which

i
dT

dt
U = H TU ⇔ i

dT

dt
= H T (2.7)

can be identified as the unperturbed Schrödinger equation which is considered to be
known. Hence, with the unitarity of the time-evolution operators (T †T = 1 = U †U)
and after multiplication from the left with T † Eq. (2.6) simplifies to

i
dU

dt
= T †H1T U = HintU with Hint = T †H1T. (2.8)

This equation has the (formal) solution in form of the Neumann series

U = 1− i
t∫

t0

dt1Hint(t1)−
t∫

t0

dt1

t1∫
t0

dt2Hint(t1)Hint(t2) + . . . (2.9)

As the transitions from an initial state |Ψi〉 to a final state |Ψf〉 is described by the
transition amplitude

〈Ψf |UΨi〉 (2.10)

4The time-evolution operator is thoroughly discussed in Sec. 5.1.2 as it will continue to play an
important role throughout Chap. 5. Also the form of the operators will become important
in Chap. 5 as it will be used to solve the time-dependent Schrödinger equation numerically.
However, at this point it is only important to know that such operators exist.
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we obtain by inserting (completeness relation)∑∫
|Ψk〉〈Ψk| = 1 (2.11)

in between adjacent interaction Hamiltonians in Eq. (2.9)

〈Ψf |UΨi〉 = −i
t∫

t0

dt1〈Ψf |Hint(t1)|Ψi〉 −
∑∫ t∫

t0

dt1

t1∫
t0

dt2〈Ψf |Hint(t1)|Ψk〉〈Ψk|Hint(t2)|Ψi〉+ . . . (2.12)

In here, the first term is interpreted to be a one-photon process in which Hint induces
a direct transition from the initial to the final state. The next term describes a
two-photon process where the interaction Hamiltonian first drives a transition to
an intermediate state |Ψk〉 and subsequently to the final state. As Eq. (2.12) is an
infinite series, in principle it describes all orders of photon transitions.

In order to evaluate the laser intensity I dependence of the n-photon transition
probability w

(n)
i→f (t), we insert the interaction Hamiltonian for a monochromatic linear

polarized laser field in dipole approximation5

Hint = T †zEe−iωtT, (2.13)

into Eq. (2.12) . In Eq. (2.13), E ∝
√
I is the electric field and ω the field’s carrier

frequency (classically equivalent to the photon energy). By separating the different

5Inserting Hint = T †zEeiωtT would lead to the description of stimulated emission.
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orders of the series we find6

w
(1)
i→f (t) ∝

∣∣∣∣∣∣−i
t∫

t0

dt1〈Ψf |T †zEe−iωt1T |Ψi〉

∣∣∣∣∣∣
2

= E2

∣∣∣∣∣∣
t∫

t0

dt1〈Ψf |z|Ψi〉e−i(ω+Ei−Ef )t

∣∣∣∣∣∣
2

w
(2)
i→f (t) ∝

∣∣∣∣∣∣−
∑∫ t∫

t0

dt1

t1∫
t0

dt2〈Ψf |T †zEe−iωt1T |Ψk〉〈Ψk|T †zEe−iωt2T |Ψi〉

∣∣∣∣∣∣
2

= E4

∣∣∣∣∣∣−
∑∫ t∫

t0

dt1

t1∫
t0

dt2〈Ψf |z|Ψk〉〈Ψk|z|Ψi〉e−i(2ω+Ei−Ef )

∣∣∣∣∣∣
2

...

w
(n)
i→f (t) ∝ E2n

∣∣∣∣∑∫ · · ·∑∫ ∫
· · ·
∫
〈Ψf |z|Ψl〉 · · · 〈Ψk|z|Ψi〉e−i(nω+Ei−Ef )

∣∣∣∣2 (2.14)

This result clearly shows the intensity dependence of the n-photon process, which
can be written as

w
(1)
i→f (t) ∝ I1

w
(2)
i→f (t) ∝ I2

...

w
(n)
i→f (t) ∝ In (2.15)

The here presented perturbation theory considers resonant transition to isolated
states. Since for ionization the final states are embedded within a continuum, the
derivation has to be slightly altered and the probability of ionization into states lying
within an energy differential dE has to be obtained (see e.g. Ref. [65]).

2.1.3 Single-Photon Ionization

The laser pulses used in this thesis to ionize molecular hydrogen are created in the
so-called high-order harmonic generation process. In our experiment this leads to

6We use the fact that applying the time-evolution operator to an time-independent eigenstate
yields T |Ψn〉 = eiEnt|Ψn〉, which is the trivial time-dependence of a stationary state.
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extreme ultraviolet pulses with high energetic photons (compare the photoelectron
spectrum shown in Fig. 2.4) and very low pulse intensities (≈ 107 W/cm2). Hence,
the above described ionization described by the perturbation approach is possible
with only a single photon (see Fig. 2.6 for an illustration). The ionization amplitude
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Figure 2.6: Illustration of single-photon ionization of molecular hydrogen. The kinetic energy of
the photoelectron depends on the photon energy. The green line illustrates a distribution of the
electron kinetic energies for the two lowest photon energies of the high-order harmonics.

is therefore very well described by the first order term in the perturbation series
presented in Eq. (2.12). With this it is clear that the single-photon ionization is a
special case of multiphoton ionization.

Ionizing with a very weak electric field strength and a single photon with high
energy has additional advantages: (I) the laser field does not distort the molecular
potential significantly, (II) different final states are always coherently populated,
and (III) large photoelectron energies can be achieved with a high probability (this
mainly due to the presence of photons with large energy). These features make
single-photon ionization a very well suited tool for the investigation of atomic and
molecular systems.

2.2 Molecular Symmetry: An Introduction to
Molecular Selection Rules

Exploiting symmetries is an important concept and powerful tool of modern physics.
The idea of symmetry is introduced to molecular physics by the theory of point
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groups. Since group theory is a large field, only a brief introduction can be given in
this section (for a more complete presentation see e.g. Refs. [66–70]).

The most straight forward way is to classify the molecules by the symmetry opera-
tions that keep their geometry unchanged. To each symmetry operation a symmetry
element can be assigned which is a point, line or plane that further defines the
operation. A set of symmetry operations (identity, rotations, reflections, inversion
and improper rotations) defines a point group7 which in this context represents the
symmetry properties of a given molecule. Since we are concerned with molecular
hydrogen throughout this thesis it is instructive to use its respective point group
D∞h as a discussion example.

It is clear that the system energy is invariant under all symmetry operations, which
means that molecular Hamiltonian remains unchanged. This is generalized by stating
that all physical observables of the system also reflect this symmetry, among them
the probability density |Ψ|2.

In order to physically apply a symmetry operation a basis set has to be chosen,
which can be a set of Cartesian vectors as well as e.g. atomic wave functions. With
this basis set (as long it is not an uncountably infinite set) each symmetry operation
can be written in terms of a matrix. The complete set of matrices in the chosen basis
is called a representation of the point group. By applying similarity transformation
to the matrices representing the symmetry operations it is possible to simultaneously
bring them into block diagonal form in which no block is further reducible. Each
irreducible block is called an irreducible representation matrix. Since a block diago-
nal matrix can always be expressed as the direct sum of lower dimensional matrices,
each representation of the point group can be written as a direct sum of irreducible
representations (which for the group D∞h are called Σ+

g , Σ+
g , Σ+

u , Σ−u , Πg, Πu, ∆g,
∆u, . . . ). The number of irreducible representations of a point group is connected
to the number of symmetry elements which are both infinite for the case of lin-
ear molecules. The irreducible representations are not unique, however as similarity
transformations leave the character8 of a matrix unchanged it can be used to classify
the transformation of the irreducible representation under each symmetry. The char-
acters for each symmetry operation belonging to the irreducible representations of
the point group can be summarized in so-called character tables. A character table
for the case of the D∞h group is shown in Tab. 2.1, where each line describes one
irreducible representation. In group theory it is shown that each group necessarily
possesses a fully symmetric irreducible representation having a character of one for
each symmetry operation. In the case of the group D∞h it is denoted Σ+

g . Finally,
in a symmetric molecular system the wave functions (which can be rotational, vibra-
tional or electronic wave functions) solving Schrödinger’s equation have to transform

7The name point group is due to the fact that each symmetry operation of the point group has at
least one fixed point which remains unchanged under the operation.

8In group theory the character of a matrix denotes its trace char(A) = Tr(A) =
∑
i aii.
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Table 2.1: Character table for the D∞h point group. The symmetry operations are the identity
E, the rotation around the molecular axis Cϕ∞, reflection at planes including the molecular axis
σv, inversion i, improper rotations around the molecular axis Sϕ∞ and the 2-fold rotations C2.
The last column indicates some possible different basis sets spanning the corresponding irreducible
representations.

E 2Cϕ
∞ ∞σv i 2Sϕ∞ ∞C2

Σ+
g 1 1 1 1 1 1 z2, x2 + y2

Σ−g 1 1 −1 1 1 −1 z
Σ+
u 1 1 1 −1 −1 −1 Rz

Σ−u 1 1 −1 −1 −1 1
Πg 2 2 cos(ϕ) 0 2 −2 cos(ϕ) 0 (xz, yz), (Rx, Ry)
Πu 2 2 cos(ϕ) 0 −2 2 cos(ϕ) 0 (x, y)
∆g 2 2 cos(2ϕ) 0 2 2 cos(ϕ) 0 (xy, x2 − y2)
∆u 2 2 cos(2ϕ) 0 −2 −2 cos(ϕ) 0

under the symmetry transformations of the corresponding point group like one of its
irreducible representations and are thus labeled accordingly (in the case of D∞h with
the symbols Σ±g,u, Πg,u and so on).

2.2.1 Vanishing Integrals: A One-Dimensional Exercise

Group theory is a powerful tool in determining whether an integral is necessarily
vanishing or not. One can show that an integral is necessarily vanishing, if the inte-
grand does not contain a part that is invariant under all symmetry operations of the
system’s point group. In other words, this part has to transform under symmetry like
the fully symmetric irreducible representation. Vanishing integrals impose discrete
selection rules on quantized physical properties, which are among the key concepts of
quantum mechanics. These selection rules are nothing more than deciding whether
or not an integral of the form

Tfi = 〈Ψf |O|Ψi〉 (2.16)

vanishes due to symmetry. Here the Ψi and Ψf are, respectively, an arbitrarily chosen
initial and final state and O a quantum mechanical operator. As the integrand is
a product of three terms Ψ∗f OΨi, the above said is applied by requiring that the
amplitude Tfi is non-zero only if the tensor product of the irreducible representations,
corresponding to Ψf , Ψi and O, contains the fully symmetric representation.

The decision process, based on group theoretical arguments, can be explained
intuitively for a one dimensional example (here we follow the argument given in
Ref. [69]). From Fig. 2.7 we see that an antisymmetric function [i.e. f(−x) = −f(x)]
integrated over a symmetric range (−a to a) must vanish. For symmetric integrands
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Figure 2.7: (a) Illustration of an integral over a symmetric range with an antisymmetric integrand.
The integral necessarily vanishes. (b) Non-vanishing integral with symmetric integrand. (c) Van-
ishing integral with symmetric integrand.

this is not the case as is illustrated in Fig. 2.7 (b) with [g(−x) = g(x)]. However, it
cannot in general be said that an integral over a symmetric range (−a to a) with a
symmetric integrand yields non-zero values [compare Fig. 2.7 (b) and (c)]. In other
words, the integral shown in Fig. 2.7 (a) is necessarily zero, whereas the integral
shown in (c) only accidentally vanishes.

To translate this into the language of group theory we need to identify the point
group for this one-dimensional problem. Since the only possible symmetry operations
are obviously the identity E and mirroring the x-axis using the operation σh, we find
right away that the point group has to be Cs. The character table for this group
is given in Tab 2.2. Since Ef = f and σhf = −f we find that f transforms like

Table 2.2: Character table for the point group Cs.

E 2σh

A
′

1 1
A
′′

1 −1

the irreducible representation A
′′
, whereas g (and h similarly) fulfills Eg = g and

σhg = g and hence belongs to A
′

(same holds for h). This makes clear that if the
integrand does not behave like the group’s totally symmetric representation A

′
the

integral necessarily vanishes.

This still has to be extended to products in the integrand. For this we take a
look at Fig. 2.8 where two cases of function products are considered. In the first the
product of a symmetric and an antisymmetric function are shown, which is obviously
an antisymmetric function. The integral has to vanish. In the second, the result of
two antisymmetric functions is a symmetric function. The integral over a symmetric
range therefore yields in general only non-zero values.
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gu
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gu

fu

(f · g)g
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Figure 2.8: (a) The product of a symmetric and an antisymmetric function yields an anti symmetric
function. Hence the integral over a symmetric range necessarily vanishes. (b) The product of two
antisymmetric functions yields a symmetric function. The integral over a symmetric range only
accidentally yields zero.

Table 2.3: Determination of the irreducible representation of the product shown in Fig. 2.8 (a).

E 2σh

A
′

1 1
A
′′

1 −1

A
′ ⊗ A′′ = A

′′
1× 1 = 1 1×−1 = −1

This is formalized by considering the statement above that the tensor product of
the irreducible representations – corresponding to the product – needs to include the
fully symmetric representation. For the case shown in Fig. 2.8 (a) the representation
of the symmetric function is written as R(fg) = A

′
whereas for the antisymmetric

function this is expressed as R(gu) = A
′′
. To see which irreducible representation is

contained in the product of the two functions we have to determine the characters
of the symmetry operations of the Cs groups for this product. This is achieved by
column-wise multiplying the characters of Tab. 2.2 and subsequently expressing the
result as a “linear combination” of the irreducible representations A

′
and A

′′
. The

result is shown in Tab. 2.3. In this case it is not necessary to rewrite the result as
a direct sum of irreducible representations as it directly yields A

′ ⊗ A′′ = A
′′

from
which we directly know that an integral over a symmetric interval has to vanish.

Let us do the same for the case shown in Fig. 2.8 (b) where the integral is carried
out over the product of two antisymmetric functions. The product is written as
shown in Tab. 2.4, from which we find A

′′ ⊗A′′ = A
′
. Since the representation of the

integrand [(f ·g)g] is the fully symmetric representation, an integral over a symmetric
range does not necessarily vanish.
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Table 2.4: Illustration of how to determine the irreducible representation of the product shown in
Fig. 2.8 (b).

E 2σh

A
′′

1 −1
A
′′

1 −1

A
′′ ⊗ A′′ = A

′
1× 1 = 1 −1×−1 = 1

2.2.2 Excitation and Ionization: Molecular Selection Rules

(a) Resonant excitation channel to the lowest-
lying optically active doubly-excited state of the
neutral hydrogen molecule.

(b) Ionization channel to the ground state of the
molecular hydrogen ion.

Figure 2.9: Two different dipole allowed transitions. One is resonant and the other ionizes the
molecule by transferring one electron to the continuum.

After having discussed that integrals necessarily vanish if the integrand (which can
be a product) does not include the fully symmetric representation of the point group
under consideration, we now discuss molecular selection rules for the case of the group
D∞h to which all homonuclear diatomic molecules belong. For this Fig. 2.9 shows
two different dipole transition scenarios: (I) resonant transition to the lowest-lying
optically active doubly-excited state and (II) ionization to the ground state of the
molecular hydrogen ion.
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In the following we discuss under which conditions the transitions shown in Fig. 2.9
are dipole allowed. For this we only consider parallel transitions (i.e. the electric field
polarization is along the z-axis). We start with the resonant transition shown in (a)
for which the dipole transition reads

Tfi = −E〈Q1
1Σ+

u |z|X 1Σ+
g 〉, (2.17)

where E is the electric field amplitude. From the nomenclature of the states we
can directly take the irreducible representation which transforms like the states,
namely Σ+

g and Σ+
u , whereas the irreducible representation corresponding to the

dipole operator (which is linear in z) is taken from Tab. 2.1, where we find it to be Σ+
u .

Therefore the tensor product of the irreducible representations reads Σ+
u ⊗Σ+

u ⊗Σ+
g .

Like in the one-dimensional case we now have to multiply the characters of the three
representations for each symmetry operation. This is shown in Tab. 2.5 where the
result shows that the tensor product is the fully symmetric irreducible representation.
Therefore the dipole transition is symmetry allowed.

For the second case, the ionization shown in Fig. 2.9 (b), this is a little more
complicated, as the final state wave function consists of a part describing the bound
electron as well as a part describing the photoelectron. If we assume the total wave
function to be described by a product of the bound electron and the photoelectron,
we can write the dipole transition as

Tfi = −E〈X 2Σ+
g ; Ψe−|z|X 1Σ+

g 〉, (2.18)

where the bra 〈X 2Σ+
g ; Ψe− | = 〈X 2Σ+

g | ⊗ 〈Ψe−| describes the product state. As we
initially do not know the irreducible representation corresponding to the photoelec-
tron state, we have to start by computing the irreducible representation of the tensor
product of the remaining known states. The result is shown in Tab. 2.6. The result
of this tensor product has now to be multiplied with the (yet unknown) photoelec-
tron representation. Since the tensor product is not the fully symmetric irreducible
representation of D∞h, the photoelectron cannot transform like the fully symmet-

Table 2.5: Calculation of the irreducible representation of the tensor product Σ+
u ⊗ Σ+

u ⊗ Σ+
g .

E 2Cϕ
∞ ∞σv i 2Sϕ∞ ∞C2

Σ+
u 1 1 1 −1 −1 −1

Σ+
u 1 1 1 −1 −1 −1

Σ+
g 1 1 1 1 1 1

Σ+
u ⊗ Σ+

u ⊗ Σ+
g 13 13 13 (−1)2 × 1 (−1)2 × 1 (−1)2 × 1

= Σ+
g = 1 = 1 = 1 = 1 = 1 = 1
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Table 2.6: Calculation of the irreducible representation of the tensor product Σ+
g ⊗ Σ+

u ⊗ Σ+
g .

E 2Cϕ
∞ ∞σv i 2Sϕ∞ ∞C2

Σ+
g 1 1 1 1 1 1

Σ+
u 1 1 1 −1 −1 −1

Σ+
g 1 1 1 1 1 1

Σ+
g ⊗ Σ+

u ⊗ Σ+
g 13 13 13 −1× (1)2 −1× (1)2 −1× (1)2

= Σ+
u = 1 = 1 = 1 = −1 = −1 = −1

ric representation either. Considering the previously learned we take an educated
guess and test if the photoelectron wave function transforms like the irreducible rep-
resentation Σ+

u . We therefore have to evaluate the tensor product Σ+
u ⊗ Σ+

u which
indeed yields the totally symmetric representation Σ+

g as shown in Tab 2.7. With
this we know that the transition is dipole allowed only if the photoelectron state
transforms like the irreducible representation Σ+

u . The symmetry of the photoelec-
tron wave function manifests in the photoelectron angular distribution observed in
an ionization experiment. We later find that if the symmetry of the ionic molecular
hydrogen state changes, the photoelectron symmetry changes as well. This is a direct
consequence of the symmetry rules discussed above.

Table 2.7: Calculation of the irreducible representation of the tensor product Σ+
u ⊗ Σ+

u .

E 2Cϕ
∞ ∞σv i 2Sϕ∞ ∞C2

Σ+
u 1 1 1 −1 −1 −1

Σ+
u 1 1 1 −1 −1 −1

Σ+
u ⊗ Σ+

u 1× 1 1× 1 1× 1 = 1 −1×−1 −1×−1 −1×−1
= Σ+

g = 1 = 1 = 1 = 1 = 1 = 1
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In this thesis, light induced dissociative ionization of the hydrogen molecule is inves-
tigated. For this purpose we ionize H2 with extreme ultraviolet (XUV) attosecond
laser pulses with photon energies ranging from 16 eV to 40 eV. In addition, the exper-
imental setup allows a second ultra-short infrared (IR) laser pulse, with a sub-10 fs
pulse duration, to be used as probe pulse with a controllable time-delay τ . Therefore,
experiments using one and two-color laser fields can be conducted. The charged final
products of the H2-light interaction are detected by a reaction microscope [71,72]. In
a reaction microscope, the charged particles emerging from an ionizing reaction are
guided onto time- and position-sensitive detectors by means of weak homogeneous
electric and magnetic fields. In this manner the detection of charged particles within
a solid angle close to 4π is possible.

The purpose of this chapter is the introduction of the used experimental setup
allowing a more fundamental understanding of the experimental results presented
later. Figure 3.1 shows an overview of the complete experimental setup which consists
of five modular parts: (1) the femtosecond laser oscillator (yellow boxes in Fig. 3.1),
(2) the amplifier (green), (3) the hollow-core fiber system (orange), (4) the high-order
harmonics generation unit (blue), and (5) the reaction microscope (red).

To briefly describe the experimental setup, IR laser pulses are created in a Ti:sapphire
oscillator. These pulses are subsequently amplified using a chirped-pulse ring am-
plifier and are guided into a hollow-core fiber to broaden the spectral profile of the
pulse in order to allow further temporal compression. This temporal compression is
achieved using specially designed multilayer mirrors, so-called chirped-mirrors. The
laser system is described in Sec 3.1. Within the high-order harmonics generation
(HHG) chamber the laser beam is split into two parts, one carrying 70% of the IR-
laser intensity which is used for the generation of the attosecond pulse trains (APTs)
(via the process of HHG1) and another with 30% intensity to be used as a probe
pulse (see Sec. 3.2). The APTs and (optionally) the probe pulse are then collinearly
focused into a cold supersonic gas jet of H2 molecules in the center of the reaction
microscope, where the desired reactions with single molecules occur (see Sec. 3.3).

1In the following, the APT will also be referred to as high harmonics to accommodate for their
spectral profile.
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Figure 3.1: Schematic of the experimental setup. The different stages of the experiment are indi-
cated by differently colored background. The first stage, the creation of pulses in the femtosecond
oscillator is indicated in yellow. The pulse then enters the KM Labs Dragon ring amplifier (green).
After that the amplified pulse is focused into a hollow-core fiber (orange), where it is spectrally
broadened and subsequently temporally recompressed to approximately 10 fs, before entering the
higher-order harmonic generation chamber (blue). There, a large part of the pulse is used to create
attosecond pulse trains (APT) via HHG. The created pulses are focused into the reaction microscope
(red) to perform experiments. Adapted from [59].



3.1 The Laser System 25

3.1 The Laser System

Femtosecond Laser Oscillator

The Kerr-lens mode-locked Ti:sapphire oscillator MTS-I build by KMLabs provides
ultrashort laser pulses with a temporal duration of 18 fs and a repetition rate of
80 MHz. It is capable of operating with a central wavelength of 785 nm, a spectral
bandwidth (FWHM) of ≈ 60 nm, and an average output power of 650 mW corre-
sponding to a single-pulse energy of approximately 8 nJ. In order to provide energy
to the oscillator system, a Verdi V6 (Coherent Inc.) Nd:YVO4 (neodymium-doped
yttrium orthovanadate) frequency-doubled continuous-wave laser, emitting at a wave-
length of 532 nm, is used as a pump laser. Dispersion compensating prisms keep the
laser pulses temporally compressed in every round-trip in the cavity, which allows
high pulse intensities enabling the Kerr-lens mode-locking scheme, see e.g. [73–75].

Amplifier System

The pulse energy provided by the femtosecond oscillator is too small to drive the
HHG process efficiently. In order to increase the pulse intensity, a commercially
available Dragon ring-amplifier build by KMLabs is employed (see Fig. 3.2). The

Figure 3.2: Illustration of the Dragon (KM Labs) chirped-pulse multi-pass ring amplifier together
with the employed pump laser. The four different stages (see main text) of a CPA amplifier are
presented. Figure adapted from Ref. [59]

Dragon is based on the chirped-pulse amplification (CPA) scheme2 [77] and leads to
a gain of pulse energy of 5–6 orders of magnitude, which results in a pulse energy of
approximately 1 mJ. It is pumped by a frequency-doubled Q-switched Nd:YAG laser
(wavelength of 532 nm) provided by Lee Lasers Inc. with an average optical output
power of up to 120 W and a pulse duration of 100 ns, which delivers the required
energy for the amplification process3. The amplifier consists of four stages which are

2Chirped-pulse amplification was used in radar technology long before emerging in laser sys-
tems [76].

3In our laboratory the pump laser is usually operated at an average power of approximately 70 W
and 8 kHz repetition rate.
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in Fig. 3.2 labeled as follows: (I) stretcher, (II) pockels cell, (III) Ti:sapphire ring
amplifier, and (IV) compressor.

In stage (I), by using a grating the oscillator pulse is temporally stretched by nearly
5 orders of magnitude [58], which allows an amplification of the pulse without ex-
ceeding the damage threshold of the amplifier’s optical components (i.e. in particular
the Ti:sapphire crystal). However, the repetition rate of the oscillator is with 80 MHz
far too high to be efficiently amplified. For this reason, the repetition rate is reduced
in stage (II) (by a factor 104) to 8 kHz. This is achieved by employing a pockels cell
which turns the polarization for every 10 000th laser pulse such that this particular
pulse can pass a subsequent polarization filter. Then, the pulse enters the multi-
pass ring-amplifier [stage (III)] where it is focused together with the synchronized
Q-switched pump-laser pulse into the helium cooled Ti:sapphire crystal (exploiting
the Joule-Thomson expansion a temperature of approximately −200 ◦C is reached).
In the current mode of operation each laser pulse passes the amplification crystal
thirteen times. The number of amplification round-trips is chosen such that a maxi-
mal amplification is achieved. Before leaving the amplifier, the previously stretched
pulse is recompressed by a pair of gratings in stage (IV).

The resulting laser pulses have a pulse energy of approximately 1 mJ and a pulse
duration of 32 fs.4 After having drastically amplified the pulse energy, in order to
improve the efficiency of the HHG process as well as to increase the temporal resolu-
tion in pump–probe experiments a further reduction of the pulse duration is achieved
through the use of a hollow-core fiber setup.

Hollow-Core Fiber

The setup of the hollow-core fiber is shown in Fig. 3.3. In order to achieve temporally
shorter laser pulses the spectral bandwidth of the laser pulses has to be increased.
This is necessary as the bandwidth is connected to the duration of the laser pulse via
Fourier transform5 (where the spectral phase has to be considered). For this, a hollow-
core fiber system is employed in this work. The laser pulse is focused6 into a glass-
capillary7 with a hole diameter of 250µm filled with neon gas at a pressure of 3.5 bar.
Acting as a wave-guide the intensity within the hollow-fiber is very high throughout
the entire propagation length of approximately 1 m. The intensity dependence of the
index of refraction n(I) of the neon gas leads to self-phase modulation [78], which is
the most important bandwidth broadening effect acting in the hollow-core fiber8.

4In comparison to the duration of the oscillator pulses it comes to attention that the amplified
pulses are longer. This is to the so-called gain-narrowing effect in the amplifier.

5The broader the spectral profile of a pulse the shorter it is under optimal conditions.
6An anti-reflection coated plano-convex lens with a focal length of f = 1500 mm is used for focusing.
7The glass-capillary is often referred to as hollow-core fiber.
8Other non-linear processes such as self-steepening also occur within the fiber. A detailed discus-

sion, however, is beyond the scope of this work. For further information see e.g. Ref. [56].
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Figure 3.3: Illustration of the hollow-core fiber setup. The initial temporally long laser pulse (32 fs)
is focused with a plano-convex lens into the Neon filled glass-capillary in which by self-phase mod-
ulation the spectral profile of the pulse is broadened. In order to guarantee the pointing stability of
the initial laser and thus optimal focusing conditions into the fiber core a feedback beam stabilizer
is employed. After the hollow-core fiber the pulse is recompressed using a set of chirped mirrors.
Figure adapted from Ref. [59].

The results of this spectral broadening are shown in Fig. 3.4, where the spectral
profile of the laser pulses is shown for 0 bar of neon pressure in the hollow-fiber (blue
line) in comparison to the case where 3.6 bar were used (red line). The process of self-
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Figure 3.4: Pulse spectral profile after the hollow-core fiber for the case of 0 bar neon in the capillary
(blue line) as well as for 3.6 bar of neon. A tremendous broadening for increasing neon pressure is
observed.

phase modulation preserves the temporal envelope of the pulse, however, it introduces
new frequency components such that the carrier frequency temporally changes within
the envelope (chirp). With n(ω, I) = n0(ω) + n2(I) being the medium’s intensity
dependent index of refraction, this change of frequency as a function of time is given
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Figure 3.5: Illustration of the spectral broadening by self-phase modulation in the hollow-core fiber.
Subsequently, the pulse is recompressed by chirped mirrors.

by (see e.g. [78])

ω(t) =
dφ(t)

dt
= ω0 −

n2ωL

c

dI(t)

dt
. (3.1)

where L is the propagation length, ω0 the carrier frequency, and I(t) the temporal
profile of the laser pulse intensity. This means that after the self-phase modulation
the pulse is no longer temporally compressed. The pulses are recompressed by six
pairs of chirped mirrors [79], which feature multilayer reflective coatings specifically
designed such that the pulse is temporally recompressed to its minimal time duration.
With this approach it is possible to reduce the pulse durations from 32 fs to sub-10 fs.
Thus, the pulses consist only of a few cycles of the electric field [80, 81]. The above
described is illustrated in Fig. 3.5. The first column shows the pulse (1a) and its
corresponding spectral profile (1b) before entering the hollow-core fiber where it is
spectrally broadened (2b) but exhibits a strong change of the carrier frequency as a
function of the time (2a). In the last step the chirped mirror recompresses the pulse
and a pulse duration of much less than the initial length is achievable (3a). This
recompression leaves the spectral profile of the pulse unchanged. For more details to
the here used hollow-core fiber setup please refer to Ref. [59].

3.2 High-Order Harmonics Generation Chamber

In this section the high-order harmonics generation chamber [shown in Fig. 3.6 (a)]
is presented. The purpose of the high-order harmonics unit is the generation of XUV
pulses from the input IR pulses and the controlled overlay of the IR beam with the
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Figure 3.6: (a) High-order harmonics generation chamber. High-order harmonics are generated in
one arm of a large interferometer, which is used to combine the generated high harmonics (XUV)
with the fundamental IR beam at the output with a controllable delay between XUV and IR
pulses. One arm (IR path) can be shortened or elongated using a delay stage in order to impose a
variable time-delay onto the IR pulse propagating through it. In the other arm (XUV path) of the
interferometer the high-order harmonics are generated by focusing 70% of the fundamental IR-pulse
into an Argon filled tube (HHG target). Finally, the two arms are collinearly overlaid and focused
into the reaction microscope. The figure of the HHG chamber is a courtesy of Philipp Cörlin. (b)
Magnification of the target tube containing argon gas in which the laser is focused in order to create
high-order harmonics. Figure adapted from [59].

XUV beam with an adjustable delay between the XUV and the IR pulse. In order
to allow the overlay of the generated XUV beam with the initial IR beam, the high
harmonics unit is integrated into a Mach-Zehnder type interferometer.

A beam splitter at the input side of the interferometer splits the incoming IR beam
into two paths, which we denote the XUV path and the IR path in the following.
70% of the incoming IR laser intensity is directed toward the XUV path, 30% to
the IR path. To explain the function of the HHG chamber we describe the two
interferometer paths separately.

On the IR path the laser beam is first guided onto a retro-reflector which is mounted
on a motorized translation stage with a maximum range of motion of 1 500µm. The
translation stage is hence able to introduce a variable time delay of up to 10 000 fs.
Since the delay is controllable this arrangement allows pump–probe experiments with
a variable delay between the pump and probe pulse. After passing the delay stage the
IR beam diameter is increased from approximately 10 mm to 20 mm [see Fig. 3.6 (a)]
using a two-mirror telescope. A motorized iris aperture placed in the expanded beam
is used to control the IR pulse energy before it enters the focusing unit. The focusing
unit is integrated in a differentially pumped vacuum stage within the HHG unit,
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kept at a pressure of 10−6 mbar in normal operation. The purpose of the focusing
unit is overlaying the IR and the XUV beam and focusing both beams onto the
molecular target within the adjacent reaction microscope. In case of the IR path,
focusing is accomplished by an off-axis parabolic mirror with a focal length of about
600 mm (for infrared light) leading to a focal diameter in the reaction zone of about
30µm (FWHM). Together with the pulse-energy controlling iris aperture, IR-pulse
intensities of (0 − 1015) W/cm2 can be set. A 3 mm hole in the off-axis parabolic
mirror allows the XUV beam to enter from the rear side to overlay the pulses from
XUV and the IR paths9, as is illustrated in Fig. 3.6 (a).

After describing the IR path, we now address the XUV path. In this interferometer
arm the fundamental IR pulse10 is focused using a spherical mirror with a focal
length of 500 mm into the argon-filled HHG tube located within the HHG target
chamber [see Fig. 3.6 (a)]. The HHG target chamber is, like the focusing unit, a
differentially pumped stage exhibiting a pressure of 10−2 mbar under full target-gas
load. Isolating the gas target in its own differential pump-stage has the advantage
that the argon gas is efficiently pumped without contaminating the vacuum in the
main chamber. The HHG tube has a 200µm entry hole for the IR beam and a
150µm exit hole for the generated high-harmonic XUV light and the fundamental
IR light [see Fig. 3.6 (b)]. The high-field strength within the tube leads to the HHG
process (see e.g. [47–52, 54–56]). The high-order harmonics are emitted in the form
of attosecond pulse trains (APTs) with photon energies in the range 3.4 − 40 eV
(XUV photon energies). Subsequently, the XUV pulse and the IR pulse propagate
collinearly. In order to separate the XUV pulse from the fundamental light a thin
aluminum filter (thickness between 200µm and 400µm) is used which is opaque for
photon energies below 16 eV. IR light is completely absorbed and XUV light above
16 eV is only attenuated. Therefore we obtain a pure (no IR contamination) XUV
pulse.

Finally, we combine a concave mirror (5 000 mm curvature) and a cylindrical mirror
(60 mm curvature), which are reflecting the XUV pulse with an angle of incidence
of only 6◦ (gracing incidence) towards the hole in the XUV/IR beam combination
mirror [see Fig. 3.6 (a)]. This modified Kirkpatrick-Baez configuration [82] has a
focal length of 750 mm. The focused XUV pulse, containing 106 − 107 photons,
propagates through the hole of the off-axis parabolic beam combination mirror and
is spatially overlapped with the IR pulse from the IR path [see Fig. 3.6 (a)]. A
detailed description of the HHG setup used here is found in the diploma and PhD
theses of Helga Rietz [57, 83] who has mainly constructed and built the chamber
during her PhD work. Further descriptions can be found in Refs. [58, 59,84].

9It is not possible to use a second optical beam splitter to overlay the XUV and the IR beam as
the generated high-order harmonics would be absorbed by it.

1070% of the fundamental IR pulse is propagating in the XUV path of the interferometer and is
used to generate the high-order harmonics (XUV pulse).



3.3 Reaction Microscope 31

3.3 Reaction Microscope

A key element of the experiment is the reaction microscope (see Fig. 3.7) [71, 72]
which allows the detection of ions and electrons emitted by dissociative ionization
processes into a solid angle of 4π. Ions and electrons are detected in temporal coinci-
dence to establish their origin from the same ionization process. From the measured
data it is possible to obtain the complete three dimensional momenta of each ob-
served particle. This allows in many cases to separate different reaction channels
which is exploited in this work to isolate and investigate specific quantum dynamical
mechanisms. This technique has impressively demonstrated its capabilities in many
experiments resulting in numerous publications (for a review see [71]).

Ion MCP Detector

H2Gas Jet

Helmholtz Coils

Spectrometer Plates

Laser Pulse

Electron
MCP Detector

Figure 3.7: Illustration of the reaction microscope. A supersonic gas-jet is intersected in the center
of the spectrometer by a laser beam resulting in the ionization of preferably a single gas particle
per pulse. The created charged particles (ions and electrons) are guided onto position sensitive
detectors by homogeneous electric and magnetic fields (together indicated by gray arrows). Using
the time of flight and the detection position the full three dimensional momentum vectors of the
particles are calculated yielding highly differential observations of the ionization process. Figure is
a courtesy of Philipp Cörlin.
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3.3.1 Operation Principle

In the center of the reaction microscope a supersonic gas jet (see also Fig. 3.8) is
intersected at a right angle by the laser beam11. Within the intersection region

Gas-Jet Stage

10−4 mbar

10−7 mbar

10−10 mbar

10−9 mbar

Jet-Line
Chambers

Main
Chamber

Jet-Dump
Chamber

Supersonic
Gasjet

Figure 3.8: Jet stage in which the supersonic expansion takes place. With this setup jet temper-
atures on the order of 1 K are reached. Further, the typical pressures in our setup are indicated.
Figure adapted from [59].

atoms or molecules are ionized. The reaction microscope has two detectors, one
dedicated to the detection of ions and the other to the detection of electrons. A
homogeneous electric field12 (indicated by gray arrows in Fig. 3.7) caused by the 32
equidistantly spaced (7 mm) spectrometer plates (electrodes) is used to guide the
ions and electrons to their respective detectors. Due to the electron’s small mass,
typical ionization reactions yield high electron energies, which leads in the presence
of only an electric field to a small detection acceptance, as most electrons would
escape the spectrometer undetected. To circumvent this problem, Helmholtz coils are
implemented providing a homogeneous magnetic field of strength13 B = 7.88 G [59]
(also indicated by the gray arrows in Fig. 3.7) within the spectrometer plates. This
field forces the electrons on spiral trajectories leading to their confinement within the
spectrometer.

Therefore, the combination of an electric and a magnetic field guides the charged
fragments onto their respective detector. Shortly before the particles impinge on the
detectors, the homogeneous electric field of the spectrometer is terminated by a grid.
Since a high voltage is applied to the front of the detector, the charged particles are
strongly accelerated toward the detector. The detection is realized by employing (for
each detector) two charge-multiplying microchannel plates (MCP)14 [89] followed by

11Due to the supersonic expansion of the gas, very low temperatures are reached [85]. For further
details on supersonic gas expansion the interested reader is referred to Refs. [86–88].

12A study using TRICOMP to verify the homogeneity of the electric field was conducted in Ref. [58].
13The unit Gauss can be expressed in Tesla as follows: 1 G = 10−4 T.
14More precisely, a stack of MCPs in chevron configuration is employed.
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Figure 3.9: (a) MCP with subsequent pair of delay-line anode. From the two measured times
per anode the position on the detector can be deduced. Also the two propagation velocities of
the electron signal are indicated, one parallel to delay-line wire and one perpendicular to it. (b)
Illustration of the channels belonging to an MCP. (c) Illustration of how a charged fragment triggers
the electron multiplication in the MCP channel. In order to make these illustrations, figures from
Refs. [57, 91] were used and adapted.

a pair of delay-line anodes15 [90] [see Fig. 3.9 (a)]. When a charged particle hits the
MCP front secondary electrons are freed within the corresponding MCP channels.
Due to the potential difference of the MCP between the front and the back, the MCP
channels act like electron-multipliers and the secondary electrons are accelerated as
well and contribute to freeing electrons within the channels [see Fig. 3.9 (b) and (c)].
This leads to an electron avalanche (approximately 107−108 electrons for 2 kV [92]),
which manifests as an electron cloud at the back of the MCP that impinges on the
delay-line anodes [see Fig. 3.9 (a)] where a signal is induced in the copper delay lines.
Since the two delay-line anodes are crossed, it is possible to determine the position
on the detector where the electron cloud impinged on the MCP by measuring the
time the signal needs to reach the ends of the individual delay-lines (tx1 , tx2 , ty1 and
ty2) [91]

x = v⊥prop,x(t
x
1 − tx2) and y = v⊥prop,y(t

y
1 − ty2), (3.2)

where v⊥prop,i are the signal velocities perpendicular to the delay-line wires in x and y

direction (v⊥prop,i are functions of the signal velocity in a copper wire v
‖
prop,i and the

15In reality each delay-line anode consists of two wires (a signal wire and a reference wire). By
applying a positive voltage to the signal wire and a negative to the reference wire, the electron
cloud induces a signal mainly in the signal wire. The difference signal of both signals (signal
and reference) is much less noisy, as electronic interferences induced in both wires cancel each
other out. For simplicity, in the main text only one wire per anode is considered.
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delay-line wire winding), see Fig. 3.9 (a). Further, events have to fulfill

txsum = (tx1 + t0) + (tx2 + t0) = tx1 + tx2 + 2t0

and

tysum = (ty1 + t0) + (ty2 + t0) = ty1 + ty2 + 2t0 (3.3)

where t0 is the time of arrival of the charged particle on the MCP. As a signal to
determine t0 the voltage break-in between the electrodes of the microchannel plate
is used [labeled MCP signal in Fig. 3.9 (b)]. In Eq. (3.3) txsum and tysum are constants,
which can be used to determine whether or not an event is genuine or to reconstruct
a missing delay-wire signal. Further details on detection, signal acquisition and
processing can be found in Refs. [58, 92].

Having established the fundamental operating principle of the reaction microscope,
in the next section the calculation of the particles momenta from the measured time
of flight and the hit position on the detectors is presented.

3.3.2 Calculation of the Particle Momenta

Note: Throughout this section SI units are used to make the appearance of the ele-
mentary charge in equations more clear.

As mentioned above, the particle momenta are calculated using the measured time
of flight (TOF) as well as the detection position on the MCP which are exemplarily
shown for measured ions in Fig. 3.10. Since the electric and magnetic field is directed
along the spectrometer (pointing longitudinal toward the ion MCP which we define
as the positive z direction) it only has a field component parallel to z (see Fig. 3.8).
Therefore the problem exhibits a cylindrical symmetry which we exploit by using
cylindrical coordinates for the momentum calculation.

Therefore, the task of finding the initial momentum for the particles is split in two
parts16: (I) the calculation of the longitudinal momentum and (II) the calculation of
the transversal momentum. For a given spectrometer geometry and a given charge-
to-mass ration, the longitudinal momentum is only a function of the TOF, whereas
the transversal momentum also depends on the hit-position (x, y) of the charged
particle on the detector.

16In principle it is possible to distinguish between electrons and ions in the calculation of the
momenta. The reason for this is that, due to the ions large masses, approximations can be made
that simplify the momentum calculation in transversal direction. However, here we will treat
both species on equal footing.
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Figure 3.10: Left: Measured time-of-flight spectrum. Due to the mass differences the singly charged
ions H+, H+

2 and HD+ arrive at different times which makes it possible to sort the events and even
impose conditions for further processing. The broad distribution of the H+ peak is due to high
initial velocities gained when H2 is ionized and subsequently dissociates. Right: Impact position of
the ions on the MCP as a function of the x and the y coordinate. The pronounced peak slightly
below the center of the detector corresponds to events stemming from low energetic H+

2 ions out of
the supersonic jet. Due to their initial velocity along the negative y axis the ions impinge on the
detector below the center. The horizontal line is caused by ionized rest gas in the chamber. These
events are produced along the propagation (negative x) direction of the laser pulse.

Longitudinal Momentum

After ionization in the reaction volume, the charged particles (ions and electrons)
are uniformly accelerated toward the respective detector (longitudinal acceleration).
Therefore, obtaining the longitudinal momentum is a one-dimensional problem for
which we have to solve the equation

s = v‖TOF +
1

2
aTOF2 =

p‖
m

TOF +
1

2
aTOF2 (3.4)

with a being the acceleration and s being the acceleration length. Since the accelera-
tion in an electric field can be written by using the particle charge q and the particle
mass m as

a =
q

m

U

s
(3.5)

Eq. (3.4), after rearrangement, yields

p‖ = m
s

TOF
− 1

2
qU

TOF

s
(3.6)
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In combination Eq. (3.4) and Eq. (3.5) further make clear that the ratio m/q is pro-
portional to the square of the TOF when zero initial momentum is assumed. This
allows an identification of an ionic species if the charge to mass ratio is unique in a
given experiment as it is the case in this work [see Fig. 3.10 (left)]. The gray shaded
area in Fig. 3.10 (left) is the time-of-flight condition to select genuine events, i.e. in
the scope of this thesis H+.

Transversal Momentum

Due to the magnetic field applied to confine the electron’s motion to the spectrometer,
all charged particles are forced onto spiral trajectories to the detectors. Figure 3.11
depicts the trajectories of the charged particles. Since even H+ being the lightest
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Detector
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Figure 3.11: Illustration of the ion and electron trajectory in the spectrometer shown in the x-
z-plane. As the ion trajectory is hardly influenced by the magnetic field the derivation of the
momentum reconstruction is done for the electron (as it makes the effects more obvious) which can
readily be applied later on to the ions as well. The vector p⊥ indicates the initial momentum of the
charged particle after the ionization reaction, whereas rdet = (x, y)T indicates the position vector
observed on the MCP detector.

ion species has a mass of about 1836 times more than the electron mass, the spiral
motion (which is exaggerated for the ions in the illustration) can be neglected for any
ionic species. To make the effects of the magnetic field more obvious, we will derive
the transversal momentum reconstruction exemplary for the case of the electrons.
However, the obtained equations are applicable to ions as well.

After the ionization, the electron is emitted with a momentum |p⊥| under an angle
φ to the x-axis (blue arrow) and after spiraling toward the detector it is observed
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at the position rdet = (x, y)T = (|rdet|, φdet). Neglecting the propagation along the
z-direction transforms the spiral into a circle, where the time for the electron to
complete a full revolution is given by the cyclotron time Tc. The connection of the
cyclotron time to the magnetic field is described by

ωc =
2π

Tc
=
qBz

m
, (3.7)

where ωc is the cyclotron angular velocity. A value for Tc can be determined from
Fig. 3.12 – showing a plot of electron events as a function of the time-of-flight and
the radial position |rdet| – by looking at the spacing between radial position nodes
(|rdet| = 0). After each cyclotron time Tc the electron completes a revolution and

Figure 3.12: Electron events as a function of the time-of-flight and the radial detector position.
After each cyclotron period the electron arrives at the initial radial position |rdet| = 0. Therefore
from the time spacings of the observed nodes the cyclotron time Tc ≈ 45 ns can be deduced.

arrives at rdet = 0 which makes it possible to determine Tc from the plot shown in
Fig. 3.12. For the magnetic field used here (and the electrons charge-to-mass ratio)
Tc ≈ 45 ns is found.

By exploiting the fact that the electron’s spiral trajectory is determined by the
equilibrating of the magnetic and the centrifugal force we find

mv2
⊥

Rc

= qv⊥Bz ⇔ p⊥ = qRcBz. (3.8)

Solving Eq. (3.7) for Bz and inserting the result in Eq. (3.8) yields

p⊥ = Rcωcm (3.9)

As Rc is not directly observable Eq. (3.9) is merely a formal solution. From Fig. 3.12



38 3 Experimental Setup

it is clear that the angle α can be expressed as α = ωc TOF. With this, |Rc| can be
written as follows

|Rc| =
|rdet|

2| sin(α/2)| . (3.10)

Hence, this result together with Eq. (3.9) yields the absolute value of p⊥

|p⊥| =
ωcm|rdet|
2| sin(α/2)| . (3.11)

It only remains to find the azimuthal angle φ of the momentum vector p⊥ = (|p⊥|, φ)T

which can be expressed by (see Fig. 3.11)

φ = φdet ±
ωc TOF

2
mod 2π (3.12)

where the negative sign holds for the electrons and the positive sign for the ions.
Combining Eq. (3.11) and Eq. (3.12) yields the final result for the transversal mo-
mentum vector in polar representation

p⊥ =

(
ωcm|rdet|
2| sin(α/2)|

φdet ± ωc TOF
2

mod 2π

)
(3.13)



4 Single XUV-Photon Induced Electron
Localization Involving the Autoionization
of Doubly Excited States in H2

Some of the aspects discussed in this chapter have been published in the following
papers:

Electron Localization Involving Doubly Excited States in Broadband Ex-
treme Ultraviolet Ionization of H2

A. Fischer, A. Sperl, P. Cörlin, M. Schönwald, H. Rietz, A. Palacios, A. González-
Castrillo, F. Mart́ın, T. Pfeifer, J. Ullrich, A. Senftleben, and R. Moshammer
Phys. Rev. Lett. 110, 213002 (2013)

Measurement of the autoionization lifetime of the energetically lowest
doubly excited Q1

1Σ+
u state in H2 using electron ejection asymmetry

A. Fischer, A. Sperl, P. Cörlin, M. Schönwald, S. Meuren, J. Ullrich, T. Pfeifer,
R. Moshammer and A. Senftleben
J. Phys. B: At. Mol. Opt. Phys. 47, 021001 (2014)

Possessing only two electrons, molecular hydrogen is the simplest molecule exhibit-
ing electron correlation. It therefore serves as a valuable system to explore funda-
mental physical mechanisms, including the autoionization of doubly-excited states
(DES). These DES are energetically located well within the single-ionization contin-
uum and ionize due to electron-electron interaction. The interplay of the nuclear and
the electronic motion gives rise to ultra-fast phenomena, which are subject to recent
experimental and theoretical research, e.g. [21,93,94]. Several experiments on disso-
ciative photoionization demonstrated that the interference of molecular states with
different parities results in a localization of the remaining bound electron, for multi-
photon processes [95–100] as well as for single-photon transitions [20,21,101,102].

In order to investigate the localization presented in this work we consider corre-
lations between the photoelectron and proton momentum vector1 in the dissociative
ionization of H2. For this we determine the angle between the proton momentum

1In a reference frame that is later specified, the proton momentum vector points along the molecular
axis.
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α

pH pH+

e−

Figure 4.1: Illustration of dissociative photoionization of molecular hydrogen. When the angle
α < 90◦ the electron and proton are going into the same hemisphere, whereas α > 90◦ refers to the
opposite case. With this a molecular frame asymmetry can be defined.

vector pH+ and the electron ejection direction, as is illustrated in Fig. 4.1. With
this we (qualitatively) define an asymmetry2 of the dissociative ionization as a nor-
malized difference of the events where the electron and the proton are emitted in
the same hemisphere and the events where they go in opposite hemispheres. This
asymmetry is equivalent to a localization of the bound electron with regard to the
ejected photoelectron. Therefore, the words asymmetry and localization are often
used interchangeably throughout this chapter. A thorough discussion of the observed
asymmetry in dissociative single-photon ionization of H2 is presented in Sec. 4.3.

Further, in atoms the above discussed interference of two ionization processes man-
ifests in Fano line shapes [103]. These line shapes have been used to determine vari-
ous characteristics of the involved states, among them the autoionization lifetime of
doubly-excited states. Despite being a straight-forward method in atoms this is not
easily applicable to molecules, as the spectroscopic line-shapes disappear [104] due
to the nuclear motion on the potential energy surfaces. The situation becomes par-
ticularly interesting when the dissociation of the molecule is on the same timescale
as the autoionization lifetime as it is the case for molecular hydrogen. This leads to a
coupling of the nuclear and the electronic motion and manifests in a nuclear velocity
dependence of the (DES) autoionization amplitudes and lifetimes. Autoionization,
being a prototype phenomenon of electron correlation correlating the nuclear motion
to the electronic quantum dynamics, has been subject to numerous investigations,
e.g. [14, 105–111]. In Sec. 4.4, having established the source of the asymmetry in
Sec. 4.3, we then use the observed interference to disentangle the two reaction path-
ways contributing to the measured data. From this we are then able to derive the
internuclear distance dependent lifetime of the energetically lowest doubly excited
H2(1Σ+

u ) state, which is on the time-scale of only 1 fs.

Chapter Outline

In order to present the obtained data comprehensibly, this chapter is split in three
main sections. First (Sec. 4.1), theoretical concepts in form of the introduction of the
Wentzel-Kramers-Brillouin (WKB) approximation are conveyed. This approximation
will play an important role in the here performed simulation of the experimental data

2The asymmetry is be defined more precisely in Sec. 4.3.
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In Sec. 4.2 the different dissociative ionization channels of H2 are then presented and
discussed in detail. After that, in the third section (Sec. 4.3), an electron localization
stemming from the interference of two dissociative ionization pathways is described.
The origin of the asymmetry is explained in terms of an intuitive semi-classical model
accounting completely for the phases of the observed asymmetry oscillations. To
conclude, the observed asymmetry as well as the semi-classical model is used in
Sec. 4.4 to determine the lifetime of the energetically lowest doubly-excited Σ+

u state
in molecular hydrogen.
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4.1 Theoretical Concepts: The
Wentzel-Kramers-Brillouin Approximation

Note: In this section SI units are used. In contrast to atomic units, this avoids that
~ disappears from the equations, which is helpful to illustrate classical limits.

The WKB approximation, named after the physicists Gregor Wentzel, Hendrik An-
thony Kramers and Léon Brillouin who independently found and applied this ap-
proximation to quantum mechanics in 1926, is used to obtain analytical solutions of
Schrödinger’s equation3.

The approximation method can only be readily applied to the one-dimensional
case [113] where the time-dependent Schrödinger equation (TDSE) reads

i~
∂Ψ(x, t)

∂t
=

[
− ~2

2m
p2 + V (x)

]
Ψ(x, t). (4.1)

We later find that the solution given by the WKB approximation is only valid if the
potential V (x) is a slowly varying function of x. The exact meaning of “slowly” is
defined more accurately later on.

In the derivation of the WKB approximation presented in this section we follow
Ref. [114]. In order to solve Eq. (4.1) for the case of a spatially slowly varying
potential, (having the plane waves as a result of a constant potential in mind) it is
intuitive to make the ansatz

Ψ(x, t) =
√
ρ(x, t)e

i
~S(x,t), (4.2)

with ρ(x, t) = |Ψ(x, t)|2 being the probability density and S(x, t) a real phase func-
tion4. Inserting this ansatz into the TDSE [Eq. (4.1)] yields after dividing by eiS/~

3Starting with the Italian astronomer Francesco Carlini as early as 1817, many physicist and
mathematicians used the same or very similar approaches to solve various problems, among
them George Green (1837), Joseph Liouville (1837), John William Strutt 3rd Baron Rayleigh
(1912), Richard Gans (1915), and Harold Jeffreys. Due to Jeffreys’ contributions, the WKB
approximation is sometimes also referred to as the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ)
Approximation [112].

4This is only true for the classical allowed region, where E − V (x) > 0. However, it is not a
fundamental problem and is discussed in many textbooks covering the WKB approximation,
e.g. [114,115].
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and omitting the space and time dependencies of all functions

i~
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(c)

+
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 =− ~2

2m
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2
√
ρ

∂2ρ

∂x2
− 1

4
√
ρ3

(
∂ρ

∂x

)2

+
i

~√ρ
∂ρ

∂x

∂S

∂x︸ ︷︷ ︸
(a)

−
√
ρ

~2

(
∂S

∂x

)2

+
i

~
√
ρ
∂2S

∂x2︸ ︷︷ ︸
(b)


+ V (x)

√
ρ

(4.3)

Using the one-dimensional continuity equation (describing the conservation of prob-
ability and therefore the conservation of the wave functions norm)

∂j

∂x
+
∂ρ

∂t
= 0 (4.4)

where

j = − i~
2m

(
Ψ∗
∂Ψ

∂x
−Ψ

∂Ψ∗

∂x

)
=

ρ

m

∂S

∂x
(4.5)

is the probability current, we rearrange two of the appearing terms [(a) and (b) on
the right-hand-side of Eq. (4.3)]

− i~
2m
√
ρ

∂ρ

∂x

∂S

∂x
− i~

2m

√
ρ
∂2S

∂x2
= − i~

2
√
ρ

∂j

∂x
=

i~
2
√
ρ

∂ρ

∂t
(4.6)

which then cancel with the term (c) on the left-hand-side. Dividing Eq. (4.3) by the
term

√
ρ and using Eq. (4.6) we obtain the partial differential equation determining

the phase function S(x, t)

−∂S
∂t

= V (x)− ~2

4mρ

∂2ρ

∂x2
+

~2

8mρ2

(
∂ρ

∂x

)2

+
1

2m

(
∂S

∂x

)2

(4.7)

Together with the continuity equation [Eq. (4.4)] this result [Eq. (4.7)] is equivalent
to the time-dependent Schrödinger equation, as no approximation was applied so far.
By defining the “Quantum Potential” [116–120]

VQ(x) = V (x)− ~2

4mρ

∂2ρ

∂x2
+

~2

8mρ2

(
∂ρ

∂x

)2

(4.8)
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Eq. (4.7) further simplifies to

− ∂S

∂t
= VQ(x)− 1

2m

(
∂S

∂x

)2

. (4.9)

By formally taking the limit ~ → 0, which performs the transition from quantum
mechanics to the classical equations of motion, the terms including ~ in Eq. (4.7)
vanish. By further using (see Ref. [121] for definition of classical momentum within
Hamilton-Jakobi theory) p = ∂S/∂x we obtain the Hamilton-Jakobi equation, gov-
erning the classical motion5

H

(
x,
∂S

∂x
, t

)
+
∂S

∂t
= 0, (4.10)

with S being Hamilton’s principle function.

The idea of the WKB approximation is to neglect the terms including ~ of the
quantum potential, which is equivalent to reducing it to the classical potential. For
this reason, the solutions obtained using the WKB approximation are often referred
to as being semi-classical.

To obtain the WKB-solutions by solving

− ∂S

∂t
= V (x)− 1

2m

(
∂S

∂x

)2

(4.11)

we use the fact that stationary states of Schrödinger’s equation have the general form

Ψ(x, t) = φ(x)e−iEt/~. (4.12)

Comparing this to the wave equation used in our ansatz [Eq. (4.2)] the conditions

ρ = ρ(x) and S(x, t) = W (x)− Et, (4.13)

directly follow, where W (x) is the time independent part of S(x, t). Note that the
functions ρ(x) and W (x) are time independent. Inserting this into Eq. (4.11) we
obtain

E = − 1

2m

(
∂W

∂x

)2

+ V (x) (4.14)

and solving forW (x) we get the WKB-solution for the time-independent phase (where

5The theorem of Jakobi states that whenever Hamilton’s principle function is known, a complete
solution of the canonical equations of motion can be given.
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we restrict the values of x to the classical accessible region)

W (x) = ±
x∫ √

2m[E − V (x′)]dx′ = ±
x∫
p(x′)dx′ (4.15)

with p =
√

2m[E − V (x′)] being the particle’s momentum6.

It only remains to derive an expression for ρ(x) to quantify the WKB states, for
which we use the continuity equation again. Knowing that the probability density is
time independent [Eq. (4.13)] and, in accordance with the Hamilton-Jakobi formal-
ism, using p = ∂S/∂x =

√
2m[E − V (x′)] we write

∂ρ

∂t
+
∂j

∂x

∂ρ
∂t

=0
===⇒ ∂j

∂x
= 0

Eq. (4.5)
=====⇒
Eq. (4.15)

j =
ρ

m
p(x,E) = const. (in x) (4.16)

Therefore, the probability density is written as ρ = const/p(x,E), which accounts for the
fact, that classically the probability of finding a particle in a volume dx is inversely
proportional to the particle’s velocity. The WKB-states therefore read

Ψ(x, t) =
const√

2m[E − V (x)]
e±

i
~

x∫ √
2m[E−V (x′)]dx′e−iEt/~ (4.17)

Having established all this, we quantify the conditions on which the WKB approxi-
mation yields accurate results. From Eq. (4.17) it is clear that the solution becomes
invalid for V (x) approaching E (the classical turning points), as the norm of the
states diverges. Further, we have only derived the result for the classically accessible
region where E − V (x) > 0 is fulfilled. However, for the classically forbidden region
solutions very similar to the one given in Eq. (4.17) can be derived. It is far more
challenging to give solutions at the turning points and their vicinity, connecting the
classically allowed and the forbidden regions. This is achieved by linearizing the
potential around the turning points and solving the Schrödinger equation exactly
(connection formula, see e.g. [114,115]). Then, when all three solutions for the differ-
ent regions are known, the coefficients of the three solutions have to be chosen such
that the solutions continuously connect to each other, which is a lengthy derivation.
As in the framework of this thesis only the solutions in the classically allowed region
are of interest, we do not derive the full solution, but proceed with the one found in
Eq. (4.17).

Finalizing this section we quantify under what conditions the approximation of

6This is merely a definition, but the similarity of this expression to the classical momentum reflects
the connection to semi-classics. It also gives rise to the interpretation that a classical particle is
propagating in a potential.
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reducing the quantum potential to the classical one is valid. As the probability

ρ(x) = const/p(x,E) = const/
√

2m(E − V ) (4.18)

is inversely proportional to the momentum of the particle we use this to rearrange
the two quantum terms of Eq. (4.7)

~2

4mρ

∂2ρ

∂x2
∝ ~2p

4m

∂2

∂x2

1

p
=

~2V ′′(x)

8p2
+

3~2mV ′2

16p4
(4.19)

and
~2

8mρ2

(
∂ρ

∂x

)2

∝ ~2p2

8m

(
∂

∂x

1

p

)2

=
~2mV ′2

8p4
(4.20)

We therefore find that the WKB approximation holds well if the terms ~
√
mV ′/p2 and

~2V ′′/p2 become small. This is formally equivalent to taking the classical limit ~→ 0
of the quantum potential.

4.2 Identification of Reaction Channels

After having discussed the WKB approximation, the next three sections (including
this one) present the experimental results obtained by irradiating molecular hydrogen
with extreme ultraviolet (XUV) laser pulses. Because of the large variety of the
obtained results, this section focuses only on the identification of different reaction
channels. The knowledge of the different reaction channels is used in the next section
(Sec. 4.3), where an electron localization effect is observed and analyzed. In the third
section (Sec. 4.4), this electron localization is used in order to extract the lifetime of
the energetically lowest doubly-excited state of H2 with Σ+

u symmetry.

Throughout the chapter (not only this section) we consider the process of disso-
ciative photoionization

H2
XUV−−−→ H+

2 + e−
Dissociation−−−−−−→ H + H+ + e− (4.21)

which we isolate using conditions on the proton’s time-of-flight, see Fig. 3.10 (left). In
this an attosecond pulse train7 with energies of approximately 18 eV to 40 eV ionizes
the molecular hydrogen, which subsequently dissociates. Using a reaction microscope
only the charged fragments are detected, namely the proton and the electron. Due
to conservation of momentum it is possible to reconstruct the momentum and with

7The pulse duration of the attosecond pulse trains does not play a role for the single pulse exper-
iments presented here, as we consider only one-photon processes, which lead to the same result
no matter at what absolute time (within the pulse) they were started. Using reference measure-
ments, however, we have estimated the pulse train used throughout this chapter to feature a
pulse duration of τ ≈ 6 fs. The pulse length plays a role in the next chapter.
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this the kinetic energy of the undetected hydrogen atom. If the measured events are
plotted as a function of the kinetic energy release (KER) and the electron energy, we
obtain Fig. 4.2. In this, the KER

KER = Ekin(H+) + Ekin(H), (4.22)

is the sum kinetic energy of the measured proton and the undetected neutral hydro-
gen atom. Exploiting the full capabilities of the reaction microscope (especially the

Figure 4.2: Energy correlation diagram of the fragments of the reaction described by Eq. (4.21).
The count distribution is shown as a function of the kinetic energy release (KER) [the sum of the
measured proton and the hydrogen atom] and the electron energy.

accessibility of the full three-dimensional momenta of all fragments), we are further
able to select events, in which the molecular axis was oriented parallel to the laser
polarization axis8. With this, the irreducible representation of the dipole operator,
responsible for electronic transitions9, becomes solely Σ+

u (eliminating the opera-
tor’s Πu component). Imposing this condition and re-plotting Fig. 4.2 we obtain
Fig. 4.3. In addition, we have illustrated three areas (indicated by red, green and
black dashes) which correspond to overlapping regions in which a particular reaction
channel is contributing to the count distribution. We present the evidence and thor-
ough description of these channels in the following sections, but immediately name
them:

8In this section we refer to parallel orientation, if the angle θ between the molecular axis and the
polarization vector of the field is less than θ < arccos(0.8) ≈ 35◦, as the solid angle needs to
cover a finite range.

9Throughout this work the multipole expansion of the transition operator is truncated after the
dipole term, which is why these transitions are commonly referred to as dipole transitions.
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1. The ground-state dissociation (below the black dashes).

2. The dissociation via the H+
2 (A 2Σ+

u ) (first excited) electronic state (within green
dashed zone). This channel is in the following often referred to as direct ion-
ization.

3. Dissociation via a doubly-excited state with subsequent decay to the H+
2 (X 2Σ+

g )
ground state. This is referred to as the autoionization channel (see Fig. 4.8).

Especially the latter two play an important role in the interpretation of the measured
data, with regard to the observed electron localization.

Figure 4.3: Energy correlation diagram for parallel transitions. The dashed lines indicate regions
where different mechanisms predominantly contribute to the observed count distribution. At low
KER (below the dashed black line) the ground-state dissociation is the dominant channel. Within
the green dashed lines the direct dissociation via the first excited ionic state [H2(A 2Σ+

u )] is the
main contributing channel. Between the red lines the dissociation occurs via a doubly-excited state
of the neutral H2 before it decays to the ionic H2(X 2Σ+

g ), on which the dissociation is completed

(see Fig. 4.8).

However, before proceeding with the explanation of these reaction channels, we first
interpret the meaning of the (diagonal) line-like structures shown in Fig. 4.3. With
the assumption of single-photon transitions, events with the same photon energy Eγ
have to appear on diagonal lines. The lines are described by the relation

Eγ = KER + Ee + Elimit, (4.23)

where Ee is the electron energy and Elimit the dissociation limit, which is the po-
tential energy of the final system for an infinite internuclear distance (see Fig. 4.4).
With Elimit in Eq. (4.23) being a constant for a given reaction channel, the energy
conservation leads to the diagonal lines in Fig. 4.3.
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Figure 4.4: Potential energy curves corresponding to a selection of electronic states of the H2 and
H+

2 molecules. The energetically lowest black line represents the potential of the H2(X 2Σ+
g ) ground

state. The bold colored lines correspond to the ionic states (H+
2 ). Doubly-excited states are indicated

by thin lines labeled Q1 and Q2. They always come in “band-like” groups having their energy limit
at an ionic state of the H+

2 molecule. The dashed Q1 and Q2 states represent states of Σu symmetry,
while the solid ones represent Πu symmetry. Only the doubly-excited states which can be dipole
coupled to the H2 ground state are drawn. Further, the two lowest dissociation limits Elimit are
indicated at 18.1 eV and 28.3 eV.

Figure 4.4 shows that for H+
2 the two lowest values for Elimit, with regard to the

neutral H2 ground state, are E
(1)
limit = 18.1 eV and E

(2)
limit = 28.3 eV. The value 18.1 eV

represents the dissociation limit for the two ionic states H+
2 (X 2Σ+

g ) and H+
2 (A 2Σ+

u ),
which are the only two states that contribute significantly to our data. This is
verified by the fact that dissociating to a different dissociation limit would lead to
additional diagonal lines in the energy correlation map at E

(2)
limit − E

(1)
limit = 10.2 eV

less kinetic energy. These additional lines are not observed in the measured data.
Knowing that the high-order harmonics have an energy spacing of approximately
3.4 eV (the fundamental IR photon energy is 1.7 eV) and by setting Elimit = 18.1 eV,
the diagonals lines at KER+Ee ≈ 10.8 eV, 14.2 eV and 17.6 eV can be assigned to
the high-order harmonics HH17, HH19 and HH21, respectively.

Keeping in mind the above listed overview of possible reaction channels, we proceed
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to identify and explain these three reaction channels. In the following we investigate
the different processes in the order listed above by commencing with the ground-state
dissociation.

4.2.1 Ground-State Dissociation

The XUV pulses used to ionize the molecular hydrogen exhibit photon energies be-
tween Eγ = 16 eV and 40 eV. This is enough to ionize the H2 by promoting the
system from the neutral H2(X 1Σ+

g ) electronic ground state to the binding ionic
H+

2 (X 2Σ+
g ) state10. When an electronic transition is driven, the nuclear wave func-

tion, which throughout this work is assumed to be vertically promoted to the final
potential11, has to be expanded in the basis of vibrational eigenstates of the new
electronic potential (e.g. compare Franck-Condon principle in Refs. [122–125]). In
general this expansion not only consists of bound vibrational modes, but also of con-
tinuum states. In the case of a dipole transition from the binding H2(X 1Σ+

g ) state,
where only the vibrational ground-state is populated, to the potential of the ionic
H+

2 (X 2Σ+
g ) state, the 20 bound vibrational states of the ionic potential are populated

as well as the continuum states. Figure 4.5 shows the calculated12 Franck-Condon
factors for the bound states as well as for the continuum states below 3 eV. We
further find that the continuum states are only significantly populated up to approx-
imately 2 eV above dissociation threshold. Therefore, the dissociation of these states
leads to the observation of protons with a KER of less than 2 eV. This is consistent
with the experimentally obtained data presented in Fig. 4.3 (compare events below
black dashed line).

Previously conducted experiments, e.g. [10, 15], suggested that only 2% of the
molecules ionized to the H+

2 (X 2Σ+
g ) state dissociate. This finding is not only in

agreement with our experimental results, but also the calculated Franck-Condon
factors shown in Fig. 4.5 yield a value of slightly below 2%.

Considering Fig. 4.4, it is clear that the low KER region of Fig. 4.3 can only result
from processes involving the bound H+

2 (X 2Σ+
g ) state, as all other potential energy

curves only allow for a Franck-Condon overlap with vibrational states much higher
in the continuum, which would result in typical KERs greater than ≈ 5 eV.

It is in principle not possible to experimentally distinguish a direct ionization to
the H+

2 (X 2Σ+
g ) state from an excitation to a doubly-excited state (DES) which very

10The state symbols (for example: X 1Σ+
g ) belonging to the neural molecule can easily be dis-

tinguished from those belonging to the ion, by comparing the multiplicity of the states. A
multiplicity of two is only possible for the ion, whereas the neutral molecule can only feature
multiplicities of one or three. Throughout this work, the spin of the electron is never changed
and the ground state of the hydrogen molecule has a multiplicity of one, the neutral states must
reflect this.

11This is of course an assumption, but for the conditions considered in this work justified.
12The vibrational states, required to compute the Franck-Condon factors, were calculated using a

method described in [126].
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Figure 4.5: H2 ground state together with the two energetically lowest ionic states. The blue
lines indicate the total energy of the 20 bound vibrational states of the H+

2 (X 2Σ+
g ) potential.

Above them, marked in gray, are the (discrete) continuum states. The Franck-Condon factors are
plotted in green and labeled “FC”. The green dots indicate the Franck-Condon factors of the bound
states while the thin green line represents the probability density for the continuum states. Here,
positive potential energies translate directly to the resulting KER, as the corresponding states are
all continuum states. The state density is energy dependent and given by ρ = (mp/2π2~2)

√
E (mp is

the proton mass). The algorithm described in Ref. [126] was used to compute the eigenstates and
their corresponding eigenenergies.

quickly (before the nuclei gain much kinetic energy) autoionizes to the same final state
[H+

2 (X 2Σ+
g )]. All observables for these two processes are equal. This is, however,

only the case for sufficiently high photon energies above 26 eV, which allow to reach
the energetically lowest DES. At this point, the ionization cross-section increases
drastically due to the opening of a new ionization channel, see e.g. [19,127–129]. With
increasing photon energy more DES belonging to the Q1 band become accessible,
further increasing the cross section of the ionization process.
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4.2.2 Dissociation via the First Excited Ionic H+
2 (A 2Σ+

u ) State

After having identified and explained the ionic ground-state dissociation we con-
tinue with the second process, namely the ionization via the first excited ionic state.
At equilibrium internuclear distance, the minimal photon energy required to ionize
molecular hydrogen from the equilibrium internuclear distance of the neutral ground
state to the H+

2 (A 2Σ+
u ) state is Eγ ≈ 33 eV. This equivalently means that at this

photon energy the dipole transition becomes possible from the center of the Franck-
Condon region (see Fig. 4.4). Knowing that the observed events dissociate to the first
ionic dissociation limit at Elimit = 18.1 eV, we expect the dissociation to be observed
on diagonals in the energy correlation plot fulfilling Eγ = KER+Ee+Elimit ≈ 33 eV.
Taking a look at Fig. 4.3 reveals that within the red dashed lines this condition is
met for all events.

It is unlikely to obtain high photoelectron energies Ee through this channel. This is
best understood if one considers a fixed photon energy Eγ (for which we choose 35 eV
as a discussion example) and with this a unique diagonal line13 in the energy correla-
tion map (Fig. 4.3). With Fig. 4.6 we find that the larger the observed photoelectron
energy is the further to the right the ionization process has to occur. However, mov-
ing the transition to the right means that the transition quickly becomes unlikely, as
the ground state wave function (Fig. 4.6 green curve and filling) drastically falls off in
amplitude (Gaussian shape). Therefore, the observation of the dissociation via the
H+

2 (A 2Σ+
u ) state occurs predominantly together with small photoelectron energies

Ee. We further note that, in contrast to the ground-state dissociation, this channel
results in high kinetic energy release and, therefore, yields fast nuclear fragments.
With this knowledge, we assign the dissociative ionization via the H+

2 (A 2Σ+
u ) state

in Fig. 4.3 state to the region confined by the green dashed line, leaving only the
region within the red dashed line to be identified.

Before doing so, it is important to take a look at the photoelectron angular distri-
bution that is connected to the dissociative ionization of molecular hydrogen via the
above discussed channel. The reason for this is that the asymmetry defined in the
introduction of this chapter includes the photoelectron as well as the bound electron.

With this in mind, we proceed by investigating the photoelectron distribution
for this channel. Knowing that for photon energies Eγ = 35 eV the transition to
the H+

2 (A 2Σ+
u ) state is energetically allowed from the center of the Franck-Condon

region (where the probability amplitude of the channel to occur is thus maximal),
producing events Ee ≈ 0 and KER = Eγ − Elimit − Ee = 16.9 eV, we minimize the
influence of other channels by selecting events simultaneously fulfilling the conditions

Ee < 1 eV and KER = Eγ − Elimit − Ee = (16.9± 1) eV. (4.24)

13The line is unique only if one ionic dissociation limit is contributing to the dissociation, as it is
the case here.
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Figure 4.6: H2 ground state (black line) together with the nuclear ground-state wave function.
The two energetically lowest ionic states are depicted by the colored lines. The Franck-Condon
region (region of non-vanishing ground-state wave function) is marked with by vertical dotted lines.
The two arrows indicate photons with energy Ee = 35 eV. This figure illustrates that in order to
obtain high photoelectron energies the transition has to be driven far to the right of the Franck-
Condon region, which strongly suppresses the likelihood of such an event. Further, the resulting
photoelectron energy Ee and KER for the reaction are indicated.

By plotting the angle θ between the electron momentum vector and the laser polar-
ization axis for the chosen events, Fig. 4.7 is obtained. This distribution has strong
contributions from partial waves of gerade symmetry14, especially the first σ+

g partial
wave (s-wave). Deviations from a perfectly symmetric (spherical) distribution are
mainly caused by detection inefficiencies (electrons emitted initially away from the
electron detector are less likely to be detected) and contributions from competing
channels with different parity, such as the dissociation via the doubly-excited states
(subject of the next sub-subsection).

To conclude the discussion of this channel, we use group theoretical arguments
to deduce the symmetry representation of the photoelectron partial wave (which
is connected to the photoelectron angular distribution), which allows us to write

14For the case of a distribution governed by ungerade partial waves, one would expect to observe
at least one node of the distribution.
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Figure 4.7: Photoelectron angular distribution for the dissociation via the H+
2 (A 2Σ+

u ) channel.
The distance from the center is proportional to the count number. Note, near the poles (0◦ and
180◦) the bins are larger to account for a reduced solid angle in this region. A distribution with
strong contribution from gerade partial waves is observed. Also compare to Fig. 4.9 which shows
a distribution governed by an ungerade wave function, which (in contrast) clearly features a node.
Note: In a three dimensional space the angle between two vectors is uniquely defined only within 0
and π, therefore the distribution is mirrored at the polarization axis for illustrative reasons.

down a product wave function of the bound electron and the photoelectron15. The
point group of linear homonuclear molecules is D∞h. We have to consider the dipole
transition amplitude

cI = −E〈A 2Σ+
u ; ψe−|z|X 1Σ+

g 〉
with 〈A 2Σ+

u ; ψe−| = 〈A 2Σ+
u | ⊗ 〈ψe− | (4.25)

where |ψe−〉 is the photoelectron wave function, |A 2Σ+
u 〉 the wave function corre-

sponding to the bound electron of the H+
2 molecule, |X 1Σ+

g 〉 the wave function of
the neutral H2 and −Ez the dipole operator. For this we assumed that the final
wave function of the ionized system is described by a product wave function of the
bound electron and the photoelectron. We further know that in the point group
D∞h for parallel transitions the dipole operator’s irreducible representation is Σ+

u

and the representations of the initial and final state of the bound electron(s) are
Σ+
g and Σ+

u , respectively. The only unknown representation is the one correspond-
ing to the photoelectron, which we denote R(e−). If put together, we are able to
identify the symmetry representation of the photoelectron by evaluating the prod-
uct of irreducible representations (for which we demand that the totally symmetry

15Sec. 2.2 gives a short introduction to group theory and molecular symmetry. A more thorough
description of group theory is e.g. found in Refs [66–69].
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representation is included in order to be dipole allowed)

Σ+
u ⊗R(e−)︸ ︷︷ ︸
〈A 2Σ+

u ;ψe− |

⊗ Σ+
u︸︷︷︸
z

⊗ Σ+
g︸︷︷︸

|X 1Σ+
g 〉

!
= Σ+

g ⊕ . . . , (4.26)

where the labels below the braces indicate the basis which spans the above repre-
sentation. The transition is symmetry forbidden if the product of irreducible rep-
resentations cannot be written as a sum of irreducible representations including the
totally symmetric Σ+

g one (see e.g. [66, 69]). Using a multiplication table (to the
group D∞h) we find that the sum includes Σ+

g only if R(e−) is identified as the Σ+
g

irreducible representation. To make it clear whether we are talking about a bound-
or a photoelectron, we use in the following upper-case Greek letters to name states
of the bound electron(s) and lower-case letters for the photoelectron states16.

With this we conclude that the wave function of the final system (after ionization)
via the H+

2 (A 2Σ+
u ) state can be written as the product

|ΨI〉 = |A 2Σ+
u 〉|σ+

g 〉 = |A 2Σ+
u ; σ+

g 〉 (4.27)

This is an important result, which is later extensively needed in the derivation of the
observed asymmetry.

4.2.3 Dissociation Including Doubly-Excited States

The last of the previously mentioned processes (region between the red dashed lines
in Fig. 4.3) is the dissociation including doubly-excited states (DES), which are states
where both electrons are no longer in the energetically lowest molecular orbital. The
DES considered throughout this work are solely the ones labeled Q1 in Fig. 4.4. For
parallel dipole transitions only the DES with Σ+

u symmetry can be excited (selection
rules) while the Πu states are only accessible through perpendicular transitions (where
the molecular axis is oriented perpendicularly to the polarization axis). Because of
the very large cross-section at the photon energies considered in this work, the ener-
getically lowest doubly-excited H2(Q1

1Σ+
u (1)) state is the predominantly populated

DES [130], to which we also refer to as Q1 Σ+
u (1) in the following.

Due to the electron correlation, the DES, which are embedded in the single-
ionization continuum, of the hydrogen molecule are not stable and autoionize. The
timescale of the autoionization is comparable to the dissociation time, which plays
an important role in the later reported electron localization. A detailed investigation
of the lifetime τ of the Q1 Σ+

u (1) state is the subject of Sec. 4.4, where we find τ
to be between 0.4 fs and 1 fs depending on the internuclear separation R. Figure 4.8

16Note that the states e.g. |σ+
g 〉 and |Σ+

g 〉 belong to the same irreducible representation Σ+
g .
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Figure 4.8: Illustration of the autoionization process. First, the doubly-excited (dissociative) state
is resonantly populated by a single-photon transition. As a consequence the molecule starts to
dissociate and decays at some internuclear distance by ejecting an electron. The previously gained
kinetic energy is conserved in the transition, therefore when enough kinetic energy has been gained,
the molecule continues to dissociate along the ionic ground state (X 2Σ+

g ) accumulating a total

kinetic energy release of KER = D1 −D2.

illustrates the process behind the here investigated dissociative ionization channel.
After being excited, the molecule starts to dissociate along the potential energy curve
given by the state Q1 Σ+

u (1). When it decays at the internuclear separation Rdecay, an
electron with the difference energy Ee = VQ1(Rdecay)−VX 2Σ+

g
(Rdecay) is emitted. The

nuclei, which have at this point gained enough kinetic energy, continue to dissociate
along the potential of the ionic ground state.

The decay of the DES can happen at all internuclear separations, which means
that this channel produces all possible combinations of KER and Ee that fulfill con-
servation of energy

Eγ = KER + Ee + Elimit. (4.28)

The reason why this channel manifests in the appearance of the pronounced diagonal
lines in Fig. 4.3 is that the photon energy supplied by the attosecond pulse trains is
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Figure 4.9: Photoelectron angular distribution for the channel of dissociation including doubly-
excited states. A strong contribution from ungerade partial waves is observed, especially the lowest
order (p-wave). Again, the differences in detection efficiency of the electrons initially going toward
or away from the electron detector cause a slight left-right asymmetry. Also compare to Fig. 4.7
that shows a distribution governed by a gerade wave function. Again, the counts are mirrored at
the polarization axis.

shared between the nuclei and the photoelectrons.

The regions of the here and the above discussed processes overlap (see Fig. 4.3 red
dashed region and green dashed region), which means that the observables of the
processes in the overlap region do not permit an identification of the two channels,
allowing for an interference of the two reaction pathways.

However, before we continue to present the results of the measured asymmetry in
the next section, it remains to show that the electron wave function corresponding to
the observed electron events stemming from the here discussed channel is of opposite
parity as the one presented above. In contrast to the above shown photoelectron
distribution, we can choose a region in Fig. 4.3 where only this one pathway con-
tributes. Therefore, a much cleaner and more symmetric distribution is expected for
this channel. The result of the photoelectron distribution for events simultaneously
fulfilling the conditions

Ee > 3 eV and 4 eV < KER < 12 eV (4.29)

is shown in Fig. 4.9. The remaining photoelectron-distribution asymmetry (left to
right) observed here is caused by the detection efficiency of the reaction microscope
for electrons initially going toward or away from the electron detector (as previously
explained). It appears that the leading order of the electrons partial wave is a p-wave
and therefore of ungerade parity17.

17Recall that the parity of a spherical harmonic is (−1)l.
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Again, we conclude this section by applying group theory to find the final wave
function of the dissociation products. For this, we write the transition amplitude for
the here discussed channel, with |X 2Σ+

g 〉 being the electronic ground state of the H+
2

molecule, Q1
1Σ+

u (1) the DES, and |X 1Σ+
g 〉 the ground state of the neutral hydrogen

molecule,

cA = −
〈
X 2Σ+

g ; ψe−
∣∣ 1/|r1−r2||Q1

1Σ+
u (1)〉〈Q1

1Σ+
u |Ez|X 1Σ+

g 〉
with 〈X 2Σ+

g ; ψe−| = 〈X 2Σ+
g | ⊗ 〈ψe−| (4.30)

which consists of a product of two quantum mechanical amplitudes, one dipole tran-
sition to the DES and one electron-correlation induced autoionization [ induced by
the operator (|r1−r2|)−1] to the ionic state. Let us again translate this into a product
of irreducible representations

Σ+
g ⊗R(e−)︸ ︷︷ ︸
〈X 2Σ+

g ;ψe− |

⊗ Σ+
g︸︷︷︸

1/|r1−r2|

⊗ Σ+
u︸︷︷︸

|Q1
1Σ+

u 〉

⊗ Σ+
u︸︷︷︸

〈Q1
1Σ+

u (1)|

⊗ Σ+
u︸︷︷︸
Ez

⊗ Σ+
g︸︷︷︸

|X 1Σ+
g 〉

!
= Σ+

g ⊕ · · · (4.31)

which has to be equivalent to a sum of irreducible representations including the
totally symmetry representation Σ+

g in order to be symmetry allowed. Again, by
using the group’s character table (or alternatively its multiplication table) we find
that the amplitudes are only non-vanishing if R(e−) is identified as the Σ+

u irreducible
representation. The wave function of the photoelectron is therefore, in accordance
with the previously introduced nomenclature, written as |σ+

u 〉. Using this result, we
write the total wave function of the final state of this dissociative ionization channel
as the product

|ΨA〉 = |X 2Σ+
g 〉|σ+

u 〉 = |X 2Σ+
g ; σ+

u 〉 (4.32)

Comparing this result to Eq. (4.27) it is verified that the bound and the photoelectron
states of both reactions are of opposite parity, respectively.

4.2.4 Brief Section Summary

To give a brief summary of the section the important findings shall be reviewed.
The different dissociation channels contributing to the count distribution presented
in Fig. 4.3 have been identified and explained. Further a region where two different
channels, namely the dissociative ionization via the H+

2 (A 2Σ+
u ) state and the other

involving the doubly-excited Q1 state, leading to the same observables has been iden-
tified (overlap of green and red dashed area). By using group theoretical arguments,
the wave functions for the final states of these two pathways have been deduced.
Combining these results gives a total wave function that is valid within the region of
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overlap18

|Ψfin〉 = cI |A 2Σ+
u 〉|σ+

g 〉+ cA|X 2Σ+
g 〉|σ+

u 〉, (4.33)

where other channels can be neglected. In the following we simplify this expression
by writing

|Ψfin〉 = cI |Σu〉|σg〉+ cA|Σg〉|σu〉 (4.34)

Since the total wave function cannot be written as factors of the bound electron and
the photoelectron, it describes the entanglement of the two electrons. It further plays
an important role when we project it onto a basis set describing electron localiza-
tion. This allows the derivation of an expression which subsequently permits the
application of a semi-classical model in order to calculate the observed localization
effect.

4.3 Electron Localization Involving Doubly-Excited
States

After having established the dissociative ionization channels contributing to the mea-
sured count distribution shown in Fig. 4.3, we proceed by investigating vector corre-
lations between the observed fragments. We find, by comparing the electron momen-
tum vector to the proton momentum vector, that depending on Eγ, Ee and KER the
photoelectron and the proton are (after the dissociation) co- or counterpropagating.

It is important to note that the electron emission exerts a recoil onto the remaining
H+

2 ion. Therefore, depending on the relative emission direction, the nuclei have
different momentum in the laboratory frame, see Fig. 4.10. For the analysis, we

α

Molecular Axis

pMF
H

pLF
H+

pMF
H+

pLF
H

e−

Figure 4.10: Illustration of the angle used to define the asymmetry. The asymmetry parameter A
is defined as the angle between the proton momentum vector in the molecular frame (denoted MF)
and the electron momentum vector. The momentum vectors of the nuclei as observed the laboratory
frame (pLF

i ) are drawn in light blue. The vectors are not to scale as this is simply an illustration.

18It should ne noted that the wave function has to be antisymmetrized. However, as this leads to
the same results it is not written out in order to simplify the notation.
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therefore transform the nuclei momenta into a frame of reference where both nuclei
have the same absolute momentum, but in opposite directions. This molecular frame
of reference is in the following be the standard frame of reference, which is always used
if not stated otherwise19. Further, we define α to be the angle between the electron
momentum vector and the proton momentum vector in the molecular frame pMF

H+ .
With this, in order to quantitatively investigate the localization effect, the asymmetry
parameter A is defined in the molecular frame as follows (see e.g. [95–97,131])

A =
Nα<90◦ −Nα>90◦

Nα<90◦ +Nα>90◦
(4.35)

where Nα<90◦ and Nα>90◦ denote the number of electron/proton pairs with an angle
α < 90◦ and α > 90◦, respectively. This means that in the molecular frame the
electron is either co- or counterpropagating with the proton. Figure 4.10 illustrates
the definition given by Eq. (4.35). It should be noted that the asymmetry parameter
effectively describes a localization of the bound electron with regard to the emission
direction of the photoelectron (the proton is always on the opposite side of the bound
electron which is the reason why in this work the words localization and asymmetry
are often used interchangeably).

With this definition of the asymmetry parameter A at hand, the next section
presents the experimentally obtained results of the asymmetry.

4.3.1 Experimentally Observed Electron Localization

For the visualization of the measured data we make use of the energy correlation dia-
grams [see Figure 4.11 (top)]. Again, we observe the diagonal lines as a consequence
of the photon spectrum of the high-order harmonics. To be able to plot the data on a
linear color scale (instead of a logarithmic scale as in Fig. 4.3) the low KER region of
the plot is omitted. This leaves out the process of ground-state dissociation, which is
by far the dominant channel. Further, due to the low photon flux above Eγ = 37 eV
the plot is truncated at a total kinetic energy (KER +Ee) of the fragments of 19 eV
(recall that Eγ = KER + Ee + 18.1 eV).

Plotting the asymmetry parameter A [Eq. (4.35)] into the energy correlation di-
agram instead of the counts results in Fig. 4.11 (bottom). Because the asymme-
try parameter is defined by a ratio of the count difference to the total counts [see

19Be aware that the transformation is not applied to the electron momentum vector. The physical
reason for this is that we are interested in the angle of the electron momentum vector to a vector
along the molecular axis. The direction of the proton is important, as we later construct an
oriented molecular frame for which an axis alone does not suffice. This is due to the fact that
an angle would only be well defined for values between zero and π/2 and not for values between
zero and π as needed to describe co- and counterpropagation.
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Figure 4.11: Top: Energy correlation diagram for KER > 7 eV and KER + Ee < 19 eV. Bottom:
Measured asymmetry A for the same region as shown in the top figure. A pronounced oscillation
(mainly as a function of the electron energy) is visible. In the inset the electron angular distribution
with regard to the proton momentum vector pMF

H+ is shown for two cases: (i) red dots copropagation
and (ii) blue dots for counterpropagation. The corresponding regions of the selected events are the
two asymmetry stripes marked by a red and blue dot, respectively.

Eq. (4.35)], the diagonal lines as shown in Fig. 4.11 (top) are not visible. With the
above chosen definition of the asymmetry parameter A, we know that a positive value
(red) corresponds to the case where the electron and the proton are emitted in the
same direction and negative values describe counterpropagation. Prominent oscil-
lations between co- and counterpropagation are observed mainly as function of the
electron energy. The dependence on the KER is much weaker, though not completely
absent.

The inset in Fig. 4.11 (bottom) shows the angular distribution of the observed
photoelectrons for two individual (almost vertical) asymmetry stripes. The angular
distribution of the photoelectrons primarily emitted in the same direction as the pro-
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ton momentum vector are plotted in red and the opposite case in blue. The observed
photoelectron angular distributions (inset Fig. 4.11) strongly suggest a superposition
of the two photoelectron wave functions discussed earlier for the individual channels
(see Fig. 4.7 and Fig. 4.9). Depending on the relative phase of the s- and the p-wave
of the photoelectrons, a localized photoelectron wave function is formed. Remember,
that this localization is only observed in the molecular frame (i.e. it is defined by an
angle to the proton momentum vector).

The explanation for this surprising observation is the subject of the next section
(Sec. 4.3.2), in which a basis set of localized states is introduced. With this, it
becomes possible to derive an expression for the asymmetry which in turn is used to
perform simulations.

4.3.2 Origin of the Asymmetry

Before going into the thorough analysis of the origin of the asymmetry, a brief re-
minder of the previously presented is given. In Sec. 4.2 the different channels of the
reaction

H2
XUV−−−→ H+

2 + e−
Dissociation−−−−−−→ H + H+ + e−, (4.36)

were discussed. To illustrate the experimental results, the energy correlation dia-
gram was introduced (Fig. 4.3). It was further shown that three different channels
significantly contribute to the measured data. The asymmetry is observed only for
kinetic energy releases KER > 7 eV, which rules out the ground-state dissociation
to be contributing to the asymmetry signal. This leaves only the direct ionization
channel going to the H+

2 (A 2Σ+
u ) state and the channel involving the doubly-excited

states. By using arguments from group theory, the final wave functions of the two
dissociation pathways could be identified as

|ΨI〉 = cI |A 2Σ+
u 〉|σ+

g 〉 = cA|Σu〉|σg〉
|ΨA〉 = cA|X 2Σ+

g 〉|σ+
u 〉 = cI |Σg〉|σu〉, (4.37)

with |ΨA〉 corresponding to the channel involving the doubly-excited states which
subsequently autoionize (hence the subscript A) and |ΨI〉 to the channel of direct ion-
ization (subscript I), respectively. The knowledge that these two channels mainly20

contribute to the measured data shown in Fig. 4.11 further allows us to write the final
state wave function, which is also illustrated in Fig. 4.12, describing the observation
as

|Ψfin〉 = cI |Σu〉|σg〉+ cA|Σg〉|σu〉. (4.38)

As the wave function cannot be separated in a product of bound electron and

20This is of course an approximation which, however, holds very well for the photon energies
considered in this work.
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Ψfin =
⊗

+ cAcI
⊗|Σu〉 |σg〉 |Σg〉 |σu〉

Figure 4.12: Illustration of the final state wave function. It is a superposition of product wave
functions corresponding to the bound electron and the photoelectron. The total parity as well as
the parity of each channel contribution is ungerade.

photoelectron wave functions Eq. (4.12) describes an entangled state. With this
wave function and by exploiting the law of large numbers the count distribution
C(KER, Ee) shown in the energy correlation diagram gives an approximation of the
probability distribution21

lim
N→∞

C(KER, Ee)

N
= |〈Ψfin(KER, Ee)|Ψfin(KER, Ee)〉|2 = |cI(KER, Ee)|2 + |cA(KER, Ee)|2,

(4.39)
where the orthogonality of the bound electron wave functions 〈Σu|Σg〉 = 0 and the
partial waves of opposite parity 〈σu|σg〉 = 0 was used. The sum |cI |2 + |cA|2 is not
equal to one as Ψfin does not represent the probability for the complete state but
only for a specific pair of photoelectron energy Ee and KER22. For the normalization
condition Eq. (4.39) an integration over the possible photoelectron energies and KERs
has to be carried out ∞∫

0

∞∫
0

|〈Ψfin|Ψfin〉|2dEedKER = 1. (4.40)

Analogously, the measured asymmetry A (see Fig. 4.11) is connected to the final
state wave function [Eq. (4.38)]. To see the analogy, the asymmetry parameter
[Eq. (4.35)] is best written in terms of probabilities23

lim
N→∞

A = a =
nα<90◦ − nα>90◦

nα<90◦ + nα>90◦
, (4.41)

with N = Nα<90◦ +Nα>90◦ . In order to access these probabilities in the next section
we construct two operators (projectors) describing the measurement

P<90◦ and P>90◦ . (4.42)

21Recall that cI(KER, Ee) and cA(KER, Ee) can be interpreted as functions of the KER and the
electron energy Ee.

22Note that our main observable, the asymmetry parameter, as defined below, does not require the
wave function to be normalized.

23The probabilities are connected to the measured data by the law of large numbers.
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With these operators Eq. (4.41) becomes

a =
〈Ψfin|P<90◦|Ψfin〉 − 〈Ψfin|P>90◦ |Ψfin〉
〈Ψfin|P<90◦|Ψfin〉+ 〈Ψfin|P>90◦|Ψfin〉

(4.43)

This is still a formal solution, as we need further knowledge of the operators. To
achieve this, we have to construct a basis set in which we can represent the operators
to actually perform a computation. The next section “Basis Set of Localized States”
derives such an explicit form of the basis.

Basis Set of Localized States

The purpose of this section is to derive an explicit form of the operators

P<90◦ and P>90◦ . (4.44)

such that the formal solution of the asymmetry given by Eq. (4.43) can be evaluated.
As explained in the previous section, the asymmetry parameter “a” [Eq. (4.41)]
essentially compares the number of events where the proton and electron are emitted
in the same direction to the number of events in the counterpropagating case, which
corresponds to P<90◦ and P>90◦ , respectively.

Therefore we construct the projectors to describe the measurement as follows

P<90◦ = |n⇒〉〈n⇒|+ |n⇔〉〈n⇔|
P>90◦ = |n�〉〈n�|+ |n�〉〈n�|. (4.45)

In Eq. (4.45) the upper arrow indicates the propagation direction of the proton,
whereas the lower arrow corresponds to the propagation direction of the photoelec-
tron. Thus, we write

|n⇒〉 = |p→〉|e→〉, |n⇔〉 = |p←〉|e←〉,
|n�〉 = |p→〉|e←〉, |n�〉 = |p←〉|e→〉, (4.46)

where the |p〉 and |e〉 describe the proton and electron propagation along the laser
polarization, respectively. With this we are now able to make the final step by
expanding |p→〉, |p←〉, |e→〉, and |e←〉 in terms of molecular orbitals (Σg and Σu de-
scribing the bound electron) and free waves (σg and σu describing the photoelectron,
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|p→〉 = |Σg〉+ |Σu〉

|p←〉 = |Σg〉 − |Σu〉

|e→〉 = |σg〉+ |σu〉

|e←〉 = |σg〉 − |σu〉

Figure 4.13: Visualization of the basis set of localized bound-electron and photoelectron states.
The top panel shows the superposition for the bound electron. The localization of the proton is
indirectly described by the wave function of the bound electron, because the proton is always on
the opposite side of the localized electron. The bottom panel features the localization states of the
photoelectron. For this only the lowest partial waves l = 0 and l = 1 were considered, which is a
reasonable approximation for the photon energy range considered in this work.

for which we choose a basis of spherical harmonics24), respectively.

Using the molecular orbitals of the H+
2 molecule and the spherical harmonics,

we superimpose these wave functions such that a localization of the electron wave
functions occurs as is illustrated in Fig. 4.13. For the desired superpositions we find

|p→〉 = |Σg〉+ |Σu〉, |p←〉 = |Σg〉 − |Σu〉,
|e→〉 = |σg〉+ |σu〉, |e←〉 = |σg〉 − |σu〉. (4.47)

Inserting these definitions into Eq. (4.46) yields the final result for the basis set of
localized states which is used to diagonalize the operators given in Eq. (4.45)

|n⇒〉 =
(
|Σg〉+ |Σu〉

)(
|σg〉+ |σu〉

)
, |n⇔〉 =

(
|Σg〉 − |Σu〉

)(
|σg〉 − |σu〉

)
,

|n�〉 =
(
|Σg〉+ |Σu〉

)(
|σg〉 − |σu〉

)
, |n�〉 =

(
|Σg〉 − |Σu〉

)(
|σg〉+ |σu〉

)
.

(4.48)

24Throughout this work, the question of which partial waves build up the wave functions is not
important. It is only important that |σg〉 consists only of gerade and |σu〉 of ungerade partial
waves. The parity of the spherical harmonics are given by (−1)l. Therefore g corresponds to
even l’s and u to odd ones. However, the amplitude of the observed asymmetry is dependent on
the contributing partial waves.
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The complete set of basis states used to construct the diagonal projection operators
[Eq. (4.45)] applied to the entangled wave function [Eq. (4.38)] are illustrated in
Fig. 4.14.

|n⇒〉:
H

H+ ⊗
H

H+ ⊗

|n�〉:
H

H+ ⊗ ⊗
H

H+

|p→〉

|p→〉

|e→〉

|e←〉

|p←〉 |e←〉

|p←〉 |e→〉

|n⇔〉:

|n�〉:

Figure 4.14: Illustration of the basis set of localized states which are used to describe the projection
operators needed to compute the asymmetry [Eq. (4.43)].

Having established an appropriate basis set to derive an expression for the asym-
metry parameter, by inserting Eq. (4.38), Eq. (4.46) and Eq. (4.48) into Eq. (4.43),
we are in the position to derive a final expression for the asymmetry parameter. A
straight forward, but tedious calculation exploiting

〈Σn1|Σn2〉 = δn1,n2

and

〈σn1|σn2〉 = δn1,n2 with ni ∈ {g, u} (4.49)

directly leads to the asymmetry parameter as a function of cI and cA

a = − 2 Re[cIc
∗
A]

|cI |2 + |cA|2
(4.50)

where cI and cA are the developing coefficients of the final-state wave-function derived
above [see Eq. (4.38)].

This simple expression for the asymmetry is used in the following section for the
simulation of the asymmetry using an intuitive semi-classical model, based on the
WKB approximation. The WKB approximation allows to obtain numerical solutions
of Schrödinger’s equation which in turn allows to reproduce the observed asymmetry
oscillations to a high degree of accuracy. It turns out that the nuclear motion, which is
inherently determined by the shape of the different potential energy curves on which
the dissociative-ionization process occurs, causes the observed oscillatory behavior of
the electron localization.

Be aware that the dependence on the motion is the classical interpretation to the
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fact that in the WKB approximation the phases of the stationary states are given by

ϕ =

x∫ √
2m[E − V (x′)]dx′. (4.51)

In this equation the term p =
√

2m[E − V ] is interpreted as the classical momentum
of a particle, which then connects quantum mechanics to the classical picture. It
should further be noted that even though one can interpret this in terms of classical
mechanics the description remains to be quantum mechanical in which p is merely a
definition. Throughout this work we therefore refer to the description using the WKB
approximation as being semi-classical and ascribe the phase change of the quantum
mechanical states to the nuclear motion.

4.3.3 Semi-Classical Description

With the derivation of Eq. (4.50) an expression was obtained to describe the observed
asymmetry by means of only two complex amplitudes, namely the expansion coeffi-
cients of the final state wave function Ψfin [Eq. (4.38)]. It is an involved calculation
to theoretically obtain quantitative values for cI and cA, as it would have to include
the ionization, excitation and the autoionization (due to electron correlation) of hy-
drogen molecules. Therefore, in this work approximations are made which still allow
to investigate the oscillatory behavior of the observed asymmetry, but with which a
quantitative analysis of the oscillation’s amplitude is not possible.

In order to simulate the asymmetry, the complex amplitudes cI and cA are first
written in polar form as a modulus and a phase factor

cI = rIe
iχI and cA = rAe

iχA (4.52)

The moduli rI and rA, which are only accessible through a fully quantum mechanical
calculation, stand responsible for the amplitude of the asymmetry, which is not under
investigation at this point. For this reason, they are in the following be set to unity,
which simplifies Eq. (4.52) to

cI = eiχI and cA = eiχA (4.53)

The phases χk are split into two contributions χk = ϕk + ξk, where the ξk describe
the phases acquired in the electronic transitions between electronic states and in
the autoionization and the ϕk are the nuclear phases. This is illustrated in Fig. 4.15
where the electronic transitions are labeled by AO, BO and CO, while the phases caused
by to the nuclear motion are indicated by encircled numbers and the colored dashed
and dotted lines.

The ξk are obtainable through fully quantum mechanical computations as well as
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Figure 4.15: Relevant potential energy curves for the H2 and H+
2 states. The electronic transitions

involved in the dissociative ionization process are indicated by encircled letters, while the nuclear
dynamics, leading to the nuclear phases, is labeled by encircled numbers. The two dissociation
pathways, namely the autoionization and the direct ionization channel, are indicated by a red
dashed and a blue dotted line, respectively. Figure adapted from Ref. [132] using the potential
energy curves given by Ref. [21].

by comparing the behavior of different isotopes [104]. However, for the purpose of this
work it is sufficient that they are functions of the photon energy and kinetic energy
of the electron, which vary only slightly within the parameters used throughout this
work. This has been verified by fully quantum mechanical calculations carried out
by Alicia Palacios, Alberto González-Castrillo and Fernando Mart́ın (using a method
described in Ref. [23]) and later prove to be consistent with the experimental obser-
vations. Therefore, throughout the semi-classical approach they are approximated
by constants, which remain unspecified at this point.

Inserting Eq. (4.53) into Eq.(4.50) yields the following relation for the asymmetry
parameter

a = cos(∆ϕN + ∆ξE), (4.54)

where ∆ϕN = ϕI−ϕA describes the difference of phase of the nuclear wave functions
and ∆ξE = ξI − ξA the difference in the electronic transition phases. As the electronic
transition phases are here considered constant, the asymmetry oscillation is fully
ascribed (with the exception of a constant phase offset) to the phase corresponding
to the nuclear motion.
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In order to obtain the phases corresponding to the nuclear motion, we make use
of the WKB approximation described in Sec. 4.1. Further, as we are only interested
in the phases of the stationary vibrational states, Eq. (4.17) simplifies to25

Ψ(x, t) = ei
x∫ √

2m[E−V (x′)]dx′ = eiϕ (4.55)

With this, the following correspondence between the desired phase and the WKB-
solution is readily established

ϕ =

x∫ √
2m[E − V (x′)]dx′. (4.56)

Again, the fact that
√

2m[E − V (x′)] can be identified with a classical particle’s
momentum p is the reason why the approach presented is labeled as to be semi-
classical. To use Eq. (4.56) for the numerical computation of the phases we have
to find the dissociation pathways for each set of photon energy, KER and electron
energy Ee yielding the same observables (KER and Ee)

26. One such pair of dissoci-
ation pathways is depicted in Fig. 4.15 by the red dashed and the blue dotted line.
Once knowing the pairs of pathways we can calculate their corresponding phases by
evaluating the integral

ϕI,A =

∞∫
RtI,A

pI,A(R)dR, (4.57)

where Rt
I,A are the internuclear distances at which the XUV transition occurs and

pI,A the nuclear momenta along the different dissociation pathways. The initial
momentum after the XUV transition is assumed to be zero. Note that the pathway
corresponding to the autoionization channel includes a transition from one potential
energy curve to another, which means that two integrals along two different potential
energy curves have to be evaluated. The phases of the two pathways are then used
together with Eq. (4.54) to compute the asymmetry.

The results of the simulation shown in Fig. 4.16, where we have set the electronic
phase difference to ∆ξE = π, are in very good agreement with the experimental
observations (compare Fig. 4.16 middle and bottom). The value ∆ξE = π, as it is
not accessible through a simple model as presented here and therefore being left as
fit-parameter, is close to that obtained by averaging the phase difference resulting

25In this section, in contrast to the section in which the WKB approximation was derived, atomic
units are used again leading to the omission of ~.

26Finding unique dissociation pathways considering only the photon energy and the observed elec-
tron energy is only possible when the potential energy curve VΣu and the difference VQ1

(R) −
VΣg (R) – respectively corresponding to the electronic states H+

2 (A 2Σ+
u ), H2(Q1

1Σ+
u (1)), and

H+
2 (X 2Σ+

g ) – are both strictly monotone functions.
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Figure 4.16: Top: measured count distribution as a function of KER and electron energy. Middle
and bottom: comparison of the experimental obtained asymmetry to the one computed using the
semi-classical approach described in this section. Black contour lines of symmetric ejection (a = 0)
are overlaid onto the experimental data as well as on the theoretical results to enhance comparability.
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from the ab initio calculation in the Franck-Condon region and in the photon energy
range considered in this work.

For better comparability of the experimental data to the semi-classical calculation,
Fig. 4.16 features black-contour lines of calculated symmetric ejection (a = 0), which
are overlaid on the experimental asymmetry as well as on the theoretical results.
Except for the fading contrast of the asymmetry visible in the experimental data,
which is encoded on the moduli of the expansion coefficients of the final state wave
function (not being investigated here), the semi-classical approach using the WKB
approximation yields excellent agreement with the experimental observations.

4.3.4 Brief Section Summary

An electron localization effect in the single-photon induced dissociative ionization
of molecular hydrogen has been observed and explained in terms of two interfering
dissociation pathways which entangles the bound electron and the photoelectron.
Using a semi-classical model it has been possible to simulate the oscillation structure
with a high degree of accuracy yielding insight in the mechanism leading to the
molecular frame electron ejection asymmetry. This asymmetry can be interpreted as
a localization of the bound electron with respect the the ejected electron. Though
not presented in detail here, a fully quantum mechanical study has been carried out
by A. Palacios, A. González-Castrillo and F. Mart́ın (see Fig. 4.17), which confirms

Figure 4.17: Fully quantum mechanical model. The result is in excellent agreement with the ex-
perimental data, even featuring the fading contrast of the osculation’s amplitude. The black lines
show regions of symmetric electron-proton ejection obtained by the semi-classical simulation.
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the analysis presented above. The methodology of the full quantum calculation
is, among others, found in Ref. [23]. In addition to reproducing the period of the
oscillation, the fully quantum mechanical simulation has access to the moduli of the
expansion coefficients of the final state wave function, which enables the simulation
to compute the amplitudes of the asymmetry. The theoretical calculation features a
similar fading contrast of the asymmetry amplitude as observed in the experiment.

4.4 Measurement of the Lifetime of the Energetically
Lowest Doubly-Excited Q1 Σ+

u State in the
Hydrogen Molecule

In this section a method is introduced to retrieve the autoionization lifetime of the
energetically lowest doubly-excited state (DES) with Σ+

u symmetry in dependence of
the internuclear distance R. For this purpose, we device the measured asymmetry
presented above in combination with a semi-classical model. It is shown that the
two contributions, autoionization and direct ionization, to the measured total counts
can be separated, by exploiting the KER and electron-energy dependent asymmetry
signal. Based on a mapping of the electron kinetic energy to the corresponding inter-
nuclear separation R these separated signals are in turn used to derive the autoion-
ization lifetime of the DES that ranges from 400 as = 400 · 10−18 s to 1 fs depending
on the internuclear separation.

4.4.1 Experimental Data

The experimental data analyzed in this section is the same as presented in the previ-
ous section, where the interference of two dissociation pathways lead to a localization
effect of the electrons. However, due to reasons that become obvious later on in the
discussion, it is helpful to change the representation of the data set. Instead of the
energy correlation diagram presented above featuring the total counts as a function
of the KER and the electron energy, this section makes use of a diagram correlating
the electron energy to the XUV-photon energy, see Fig. 4.18 (a). In contrast to the
previously shown diagonal lines, the photon energy signature of the attosecond pulse
trains are now vertical lines.

As in the previous section we plot the asymmetry parameter instead of the counts
into the energy correlation diagram. Figure 4.18 shows an overview of the measured
data: (a) features the count distribution, (b) the asymmetry parameter, (c) shows a
section through the count distribution for a photon energy of Eγ = 35.7 eV and (d)
shows the corresponding asymmetry section for a photon energy of Eγ = 35.7 eV.

In the previous section it was demonstrated that the final state wave function,
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Figure 4.18: (a) Count distribution as a function of the photon energy Eγ and the photoelectron
energy Ee. (b) Electron ejection asymmetry as a function of Eγ and Ee. (c) Section through the
count distribution shown in (a) at a photon energy of Eγ = (35.7 ± 0.6) eV. (d) Corresponding
section through of the measured asymmetry data. The blue dashed line is the envelope of the
asymmetry amplitude obtained by Fourier analysis.
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leading to the count distribution shown in Fig. 4.18 (a), can be written as

|Ψfin〉 = cI |A 2Σ+
u 〉|σ+

g 〉+ cA|X 2Σ+
g 〉|σ+

u 〉, (4.58)

where the coefficients cI and cA stand for the two contributing dissociative ion-
ization channels: (I) the direct ionization to the H+

2 (A 2Σ+
u ) state and (II) the

dissociating and autoionizing pathway involving the energetically lowest doubly-
excited H2(Q1

1Σ+
u (1)) state, respectively (see Fig. 4.15). The latter is an appro-

ximation, as the doubly-excited Q1 states with Σ+
u symmetry exist as a series of

many states [11, 109]. However, for the energy range considered in this thesis, the
energetically lowest dipole-allowed27 DES is predominantly populated [19]. Aiding
the argument is the fact that the energetically higher DES decay more slowly [11],
further decreasing their importance in the contribution to the ionization process as
they mainly dissociate neutrally (and cannot be detected). For this reason, the above
made assumption that the energetically lowest DES of Σ+

u symmetry contributes most
significantly to the observed data is well justified.

4.4.2 Lifetime Extraction

In order to extract the lifetime of the energetically lowest doubly-excited Q1
1Σ+

u (1)
state we first have to separate the measured count distribution into the two con-
tributing channels. It is of course not possible to assign each observed event to a
channel, as both lead to the same final momenta and are thus individually indis-
tinguishable. However, it is possible to give a statistical distribution corresponding
to the two dissociative ionization channels. Once the count distribution NA stem-
ming from the autoionization is known (as a function of the photoelectron energy), a
semi-classical mapping of the photoelectron energy to an internuclear separation R
is performed. With the distribution given as a function of R it is then possible to ex-
tract the autoionization width Γ(R) = 1/τ(R) from it, which is inversely proportional
to the autoionization lifetime τ .

The following derivation is split into four sections. (I) The mathematical frame-
work to separate the count rates of the individual dissociation channels. (II) The
application to the experimental data and presentation of the resulting count distri-
butions connected with each channel. (III) The mathematical framework to use the
separated count distribution in order to obtain the autoionization lifetime. (IV) Fi-
nally, we show the experimental results for the R-dependent autoionization lifetime.

(I) Mathematical Framework to Separate the Interfering Dissociation Channels

Giving a brief overview, we first derive the relative probability |cA|2/|cI |2 of dissociating
along the two pathways (I) and (II) defined in the sub-section above. With this and

27Dipole selection rules dictate a resonant transition to a Σ+
u state for the case of parallel transitions.
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with the relation

N(Eγ, Ee) = |cA(Eγ, Ee)|2 + |cI(Eγ, Ee)|2 = NA +NI (4.59)

we are able to solve the equations for the two count distributions NA and NI

NA(Eγ, Ee) = |cA(Eγ, Ee)|2
NI(Eγ, Ee) = |cI(Eγ, Ee)|2. (4.60)

NA(Eγ, Ee) is very closely connected to the decay width Γ(R), because when the
doubly-excited state autoionizes an electron with an internuclear distance R depen-
dent energy is emitted. Here, this emission is used to map N(Eγ, Ee) onto NA(Eγ, R),
which is the autoionization rate as a function of the internuclear distance. In decay
processes the rate is always a measure of the decay probability, which we are therefore
able to determine.

We start from the asymmetry parameter A derived in Sec. 4.3

A = − 2<[cIc
∗
A]

|cI |2 + |cA|2
, (4.61)

which is used to first derive an expression for the relative population probability of
the two channels |cA|2/|cI |2. For this it is essential to further decompose the expansion
coefficients of the final state wave function (cI and cA). Recalling the KER and Ee
dependent transition amplitudes

cI = −〈2Σ+
u |〈ψe−|Ez|1Σ+

g 〉︸ ︷︷ ︸
IeiφI

(4.62)

and
cA =

〈
X 2Σ+

g

∣∣ 〈ψe−|1/|r1−r2||Q1
1Σ+

u 〉︸ ︷︷ ︸
Deiφ1

〈Q1
1Σ+

u | − Ez|X 1Σ+
g 〉︸ ︷︷ ︸

Eeiφ2

, (4.63)

in which cA is written as a product of two transition amplitudes, we write the de-
compositions of the amplitudes cI and cA, with φ1 + φ2 = φA, as

cI = I(Eγ, Ee)e
iφI

cA = E(Eγ)D(Eγ, Ee)e
iφA , (4.64)

where I, E and D are the moduli of the transition amplitudes for the excitation to
H2(Q1

1Σ+
u (1)) AO, the subsequent autoionization BO, and the direct ionization CO

(illustrated in Fig. 4.19). The phases φI and φA, as in the previous section, consist
of a part corresponding to the nuclear motion (labeled ¬ + ­ for φA and ® for φI)
as well as another part acquired during the electronic transitions. The magnitudes
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Figure 4.19: Relevant potential energy curves for the H2 and H+
2 states. The electronic transitions

involved in the dissociative ionization process are indicated by encircled letters, while the nuclear
dynamics, leading to the nuclear phases, is labeled by encircled numbers. The two dissociation
pathways, namely the autoionization and the direct ionization channel, are indicated by a red
dashed and a blue dotted line, respectively. Figure adapted from Ref. [132] using the data for the
potential energy curves given by Ref. [21].

I, E and D can therefore be connected to the individual transitions involved in the
processes

I = | − 〈A 2Σ+
u |〈ψe− |Ez|X 1Σ+

g 〉|
E = | − 〈Q1

1Σ+
u |Ez|X 1Σ+

g 〉|
D = |

〈
X 2Σ+

g

∣∣ 〈ψe−|1/|r1−r2||Q1
1Σ+

u 〉|. (4.65)

Inserting Eq. (4.64) into Eq. (4.61) yields for the asymmetry

A = − 2 EDI

(ED)2 + I2
<
[
ei∆ϕN+i∆ξE

]
, (4.66)

where ∆ϕN = ϕI−ϕA is the nuclear phase difference and ∆ξE = ξI−ξA the electronic
phase difference (this is the same definition as in Sec. 4.3). It was shown that the
best agreement to the experimental data was obtained, if the electronic transition
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phases were set to ∆ξE = π with which we simplify Eq. (4.66) to

A = Ã cos(∆ϕN), (4.67)

with

Ã =
2EDI

(ED)2 + I2
. (4.68)

In this equation, Ã represents the modulation amplitude of the asymmetry oscillation
and, hence, the oscillation envelope [see Fig. 4.18 (c) dashed blue line]. Rearrange-
ment of Eq. (4.68) leads to

(ED)2

I2
Ã+ Ã− 2

ED

I
= 0 (4.69)

which is a quadratic equation in ED/I =: α(Ee). Therefore, the solutions to it are
given by

α(Ee) =
1

Ã
±
√

1

Ã2
− 1 (4.70)

which, after being squared, describe the relative probability of dissociating via the
direct ionization channel and the autoionizing channel.

The second step in this derivation is to use this result together with Eq. (4.59) to
obtain separated count distributions for the two interfering reaction pathways. For
this we rewrite Eq. (4.59) using the definitions of cI and cA as

N(Eγ, Ee) = |cA(Eγ, Ee)|2 + |cI(Eγ, Ee)|2 = ED2 + I2 = NA +NI (4.71)

From the definition of α2 = (ED)2/I2 = NA/NI and Eq. (4.70) together with Eq. (4.71)
relations for the count distributions of the two channels directly follow

α2NI +NI = N =⇒ NI(Eγ, Ee) =
N(Eγ, Ee)

1 + α2(Eγ, Ee)

α−2NA +NA = N =⇒ NA(Eγ, Ee) =
N(Eγ, Ee)

1 + α−2(Eγ, Ee)
(4.72)

These describe the separated count rates NI and NA corresponding to the two disso-
ciative ionization channels. Because the total count rate N is known from experiment
[see Fig. 4.18 (a)] and α can be obtained by evaluation of the measured asymme-
try amplitude Ã [Eq. (4.70)], the two separated count distributions become directly
accessible.
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(II) Experimental Separation of Dissociation Channels

Before continuing in the derivation of an expression for the lifetime of the DES, it is
instructive to apply the results presented above to the experimental data. By this it
is possible to plot the count distribution of the two separated channels individually.
However, before doing so, some physical interpretations of the experimental data are
necessary.

We shall attempt to separate the count distributions NI and NA at a photon
energy of Eγ = 35.7 eV. The advantages arising from this choice are discussed in the
following. First, at this high photon-energy we obtain good count statistics over a
large range of photoelectron energies Ee. Choosing a fixed photon energy simplifies
the transition amplitude of the autoionizing channel to

cA = E(Eγ = const)D(Eγ = const, Ee)e
iφA = const′ ·D(Ee), (4.73)

as E becomes a constant. This has the direct consequence that NA becomes solely
dependent on the decay amplitude D which is intimately connected to the decay
width Γ of the DES. In addition, we know that at this energy both dissociative ion-
ization channels (as a reminder see Fig. 4.19) significantly contribute to the total
count rate, which causes a large asymmetry signal. However, as discussed above
the direct ionization channel predominantly produces low-energetic photoelectrons
(caused by the vanishing Franck-Condon overlap for transitions yielding high photo-
electron energies; review Fig. 4.6 and enclosing paragraphs for details), whereas the
autoionization channel in principle results in all photoelectron energies compatible
with energy conservation, see Eq. (4.28) and enclosing paragraph. With this, we
are able to assign the dominant peak shown in Fig. 4.18 (c) at low photoelectron
energies to the direct ionization channel and the flat shoulder in Fig. 4.18 (c) to the
autoionization channel. Knowing that due to the Gaussian shape of the ground state
vibrational wave function, the direct ionization channel needs to fall off very quickly
(vanishing Franck-Condon overlap) as a function of photoelectron energy, it is clear
that for some photoelectron energy the two continuous distributions have to intersect
with each other (it later turns out to be Ee ≈ 2 eV). The exact photoelectron energy
where both channels contribute equally (point of intersection) is not important for
the following discussion. Only the fact that such a photoelectron energy exists, which
is supported by literature [15, 19, 133]. Mathematically, this means that there exists
a Ee for which the following relation holds

NI = NA ⇔ (ED)2 = I2. (4.74)

Inserting Eq. (4.74) into Eq. (4.68), which describes the asymmetry envelope we find
for equal amplitudes Ã = 1 which means that the measured asymmetry amplitude
should oscillate in the region of Ee ≈ 2 eV between −1 and 1. Experimentally,
however, we find a much smaller amplitude [see Fig. 4.18 (d)] which we mainly ascribe
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Figure 4.20: Separation of the measured total count rate (black). The count rate corresponding to
the direct ionization channel (red) is rapidly decreasing with increasing photoelectron energy. The
autoionization pathway yields a rather flat distribution (blue) for all photoelectron energies. The
assumption that the two channels contribute equally at a photoelectron energy of approximately
2 eV is confirmed.

to false coincidences caused by the detection of uncorrelated electrons stemming
mainly from the non-dissociative ionization of H2.

Therefore, in order to use the above derived formalism, which led to Eqs. (4.72),
the obtained asymmetry signal has to be rescaled such that the measured value of
Ã equals one. Using the rescaled asymmetry signal and Eqs. (4.72), we show the
separated count distribution of the two dissociative ionization channels in Fig. 4.20.
As predicted, we find that the direct ionization quickly decreases for increasing pho-
toelectron energy, whereas the autoionization channel remains fairly constant over
the entire range of photoelectron energies.

As mentioned above, the shape of the count distribution NA is given by the decay
amplitude D. Thus, NA is intimately connected to the decay width Γ = 1/τ which
we intent to obtain in the following. It is common to seek an internuclear distance
R dependent lifetime of the DES, which means that we have to perform a mapping
from photoelectron Ee energy to R. In order to achieve this, we exploit the fact
that Ee is classically given by the separation of the potential energy curves of the
DES and the ionic ground state, given at the RA at which the autoionization occurs.
Therefore, for the mapping we use the relation

Ee(RA) = VQ1(RA)− VΣ+
g

(RA), (4.75)

which is a strictly decreasing monotone function. In this, VQ1(R) describes the po-
tential energy curve of the DES and VΣ+

g
(R) the potential energy curve of the ionic

ground state. Therefore, this allows to assign an unique R to each measured photo-
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electron energy Ee.

(III) Derivation of Lifetime of the Doubly-Excited State

Discussing points (I) and (II) it was found that the count distribution NA corre-
sponding to the autoionization channel is closely connected to the decay amplitude
D [see Eq. (4.64)] and with this to the decay width Γ = 1/τ. In (III) we intend to
derive the autoionization lifetime from NA(R). Unlike in atoms where a decay width
of an electronic state is a constant in time, in molecules the autoionization rate,
and hence the decay width Γ, strongly depends on the internuclear separation. As
a consequence of the dissociation, the time the system stays in each volume element
dR is a function of the nuclear velocity dt = dR/v, which further complicates the
extraction of the lifetime and even makes models to describe the velocity necessary.
It has been shown and intensively used in previous works, (e.g. [9,134,135]) that the
autoionization probability in molecular systems can be described by

NA(R)

N0

= H(R) exp

− R∫
R0

H(R′)dR′

 , (4.76)

with N0 being the total number of molecules being populated in the energetically
lowest doubly-excited H2(Q1

2Σ+
u (1)) state. In this equation, the decay width is

contained in the variable H which is defined by

H(R) =
Γ(R)

v(R)
(4.77)

where R0 = R(Emax
e ) in which Emax

e is the maximum measured photoelectron energy.
Further, v describes the semi-classical velocity of the nuclei given by

v(R) =

√
2[Eγ − VQ1(R)]

µ
, (4.78)

where µ = mp/2 is the reduced mass of the system (half the proton mass). Equa-
tion (4.76) is to be solved for H, essentially yielding the decay width. The result
reads28

H(R) =
Γ(R)

v(R)
=

NA(R)

N0 −
∫ R
R0
NA(R′)dR′

, (4.79)

28Solving Eq. (4.76) for H is tedious and lengthy, yielding little physical insight. For this reason,
only the result is given here.
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which after rearranging yields the final result

Γ(R) =
NA(R)v(R)

N0 −
∫ R
R0
NA(R′)dR′

(4.80)

The decay width derived here is dominated by the autoionization, as competing
processes, such as fluorescent de-excitation, occur on much slower timescales for
which they do not significantly contribute [9]. In addition, because the doubly-exited
H2(Q1

2Σ+
u (1)) state is so short-lived that almost all molecules autoionize before they

reach the point of neutral dissociation at Rd = 4.0 a.u.. Reference [128] recommends
for the percentage of neutrally dissociating molecules the value χd = 4%. With
this information, the up-to-this-point unknown value of N0 is readily calculated by
evaluating the integral

N0 =

∫ Rd
R0

NA(R′)dR′

1− χd
(4.81)

This result concludes the framework needed to evaluate the experimentally ob-
tained data in order to determine the lifetime of the doubly-excited H2(Q1

2Σ+
u (1))

state as shown in (IV).

(IV) Experimental Results for the Lifetime of the Doubly-Excited
H2(Q1

2Σ+
u (1)) State

The equations derived in (III) are now used to compute the lifetime of the doubly-
excited H2(Q1

2Σ+
u (1)) state. We have previously established the count distribution

NA (see Fig. 4.20) and have shown that this and the classical velocity are the only
input needed to compute the decay width by using Eq. (4.80). With this, the lifetime
is known via the relation τ(R) = 1/Γ(R). Plotting the experimental result we obtain
Fig. 4.21 where the measured data is indicated by black dots. The determined decay
width ranges from ≈ 0.4 eV to ≈ 1.5 eV which corresponds to a lifetimes of only
400 as to 1 fs. Thus, the autoionization takes place on a very fast timescale.

In order to provide an estimation for the error to the measurement it should be
noted that the obtained lifetime depends critically on the fraction of neutrally disso-
ciating molecules χd. As in literature these values vary drastically (up to χd = 8%)
we have chosen the values χ = 0% and χ = 8% to obtain the edges of the gray shaded
area in Fig. 4.21. This area is then identified as the error to the measurement. Ap-
parently, for large internuclear distances the error becomes very large. The reason
for this is easily explained by considering Eq. (4.80). With increasing R the number
of autoionized molecules

∫
NAdR

′ grows and rapidly approaches N0. Because the
difference appears as the denominator in Eq. (4.80), the denominator becomes very
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Figure 4.21: Lifetime of the doubly-excited H2(Q1
2Σ+

u (1)) state. The black dots represent the
here measured data, where the gray shaded area indicates the estimated error of the measurement.
It is in very good agreement with quantum mechanical calculations performed by I. Sánchez and
F. Mart́ın [11] (red line). It also compares very well with experiments previously conducted by
J. Geddes et al. [108] (blue dashes). In contrast to these experiments, here the lifetime for a much
larger range of internuclear distances could be obtained. Due to the mixing of the two dissociation
channels, it was prior to this measurement where the interference is considered, even in principle,
impossible to determine the lifetime of the DES for small R.

small. Therefore, relative errors tend to become large and the result less accurate.

In comparison, a very good agreement to the quantum mechanical calculation
performed by I. Sánchez and F. Mart́ın [11] (red line) is obtained. The agreement is
for small internuclear separations R better than for large R. This is likely due to the
larger error in this region as explained above.

Also, a very good agreement to the experiment previously conducted by J. Geddes,
F. K. Dunn, N. Kouchi, A. M. McDonald, and V. Srigengan [108] is achieved (blue
dashes). In this experiment, however, it was not possible for small R to obtain data
for the lifetime. This is due to the state mixing at low photoelectron energies which
cannot, without using the interference signal of the two states, be separated. For
this reason, the previously conducted experiments were restricted to photon energies
that cannot ionize directly via the H+

2 (A 2Σ+
u ) state. This means that photon energies

well below 33 eV had to be employed. This in turn further imposes limits onto the
experiment, because the excitation to the H2(Q1

2Σ+
u (1)) state can no longer be driven

for small R, where the energy separation of the neutral ground state and the DES
is larger than the photon energy supplied. This experiment allows for the first time
to access the regions of small and large R and, therefore, extract the lifetime of the
H+

2 (A 2Σ+
u ) state for a very large range of internuclear distances.
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Further, in previously conducted experimental evaluations [14, 108] it was neces-
sary to compare isotopes of the species in order to retrieve the autoionization time.
In contrast, this section presented a method where only one species is needed to
accomplish the same task.

4.4.3 Brief Section Summary

In this section it was shown that using the measured count distribution together with
the corresponding asymmetry it is possible to isolate the count distribution for differ-
ent dissociative ionization channels. The distribution connected to the autoionizing
pathway is closely related to the autoionization width Γ which is proportional to the
inverse of the autoionization lifetime. In order to retrieve the lifetime a semi-classical
model was employed to describe the nuclear velocity which is essentially needed.

The results of the measurement were compared to a previously conducted experi-
ment [108] and a very good agreement was found. Further, this experiment overcomes
fundamental limitations of previously conducted experiments, as e.g. photon energies
greater than ≈ 28 eV can be used in which in addition to the autoionizing channel
the direct ionization to the H+

2 (A 2Σ+
u ) state is populated. This was formerly im-

possible as the direct ionization could not be separated from the autoionization (no
asymmetry signal measured29). With higher photon-energies it is possible to observe
the autoionization lifetime for a larger range of internuclear distances.

In order to compare the results at internuclear distances previously inaccessible
by experiment, we related the observation to a theoretical study [11], for which very
good agreement was obtained.

29In oder to measure the asymmetry a kinematically complete experiment is required, as the molec-
ular frame has to be created for each individual event.
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Molecular wave-packet dynamics on laser-controlled transition states
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A. Senftleben, J. Ullrich, B. Feuerstein, T. Pfeifer, and R. Moshammer
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With the advances of femtosecond laser technology in the optical domain, al-
lowing the creation of ultra-short pulses, pump–probe experiments have become
a widespread scheme for imaging the ultra-fast quantum dynamics [5] of atomic
(e.g. [136]) and molecular systems (e.g [137]). The idea behind this kind of exper-
iments is to observe the ultra-fast dynamics of nuclear(e.g. [25, 29, 31, 138]) and/or
electronic (e.g. [139–141]) systems, by launching the motion with a pump-pulse and
after a time delay τ use a probe-pulse to query the systems current time-dependent
state. Fig. 5.1 shows an illustration of a possible pump–probe1 scheme for the case
of molecular hydrogen2. Focusing on the nuclear dynamics of molecules, a common
scheme is to launch a vibrational wave packet by photoionizing the molecule with
a short laser pulse and to probe the vibrational dynamics by applying a second,
time-delayed pulse leading to dissociation [142–147].

However, the long sought ultimate goal is not only to observe and image system
dynamics, but to control and manipulate chemical reactions by intense laser fields
which alter the process such that a specific final state is reached [148]. Among those
reactions, the photodissociation as an important representative is investigated here,
for which it is essential to understand the dissociation dynamics in detail. This
understanding can consequently be used to tailor laser pulses to favor a specific
outcome of the chemical reaction.

1In this work, the probe pulse is also referred to as coupling pulse as it couples two electronic
states of the molecular ion.

2It should be emphasized that alternative schemes exist, where the molecule is not dissociated via a
dissociative state. In example, it could instead further be ionized inducing a Coulomb-explosion.
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Figure 5.1: Illustration of the pump–probe principle for the case of molecular hydrogen. In a first
step, the pump-pulse (here an XUV pulse) vertically promotes the nuclear wave function to the
bound H+

2 (X 2Σ+
g ) electronic state. The wave packet propagates to larger internuclear distances

R, where it is transfered by a second laser pulse (here an IR-pulse) to the dissociating H+
2 (A 2Σ+

u )
state. The dissociation of the molecule allows the detection of protons. The green distribution on
the left side of the picture (labeled FC) depicts the Franck-Condon population of the 19 bound
vibrational states of the molecular hydrogen ion.

However, it remains challenging to use intramolecular state coupling for a targeted
manipulation of photochemical reactions. The challenge is mostly caused by the
complexity of molecular systems, arising due to the fact that in quantum-control
schemes not only many vibrational (and possibly rotational) states, but also elec-
tronic transitions are involved. To understand the fundamental mechanisms used to
control quantum mechanical systems, it is therefore important to simplify either the
entire system or the description of it.

To this end, we employ an analysis method to the case of H+
2 with which we can

reduce the number of contributing vibrational states to only two, which is the smallest
number of states that still exhibit a quantum-mechanical time-dependency (motion).
By employing laser-intensities chosen such that only two electronic states are coupled,
the system investigated here represents the simplest case imaginable in the field
of quantum-control. By comparing the obtained experimental data to quantum-
dynamical simulations (based on the time-dependent Schrödinger equation) and to
semi-classical simulations, we are able to identify one of the fundamental mechanisms
allowing the control of photochemical reactions on laser induced transition states.
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Outline

Throughout this chapter, the following process is considered:

H2(X 1Σ+
g )

XUV−−−→ H+
2 (X 2Σ+

g ) + e−
IR(τ)−−−→ H + H+ + e−. (5.1)

For this, an attosecond pulse train ionizes a hydrogen molecule. This ionization
triggers the nuclear dynamics in the H+

2 molecule, which is then dissociated using an
infrared pulse, coupling the wave function to a dissociative electronic state. For high
coupling laser intensities a regime is entered in which the action of the coupling laser
pulse can no longer be treated with a perturbation approach. For classical pump–
probe experiments this is unwanted, as the dynamics of the unperturbed system is at
the focus of the investigation. In contrast, laser-control schemes exploit this feature
and use the time-dependency of the PES to control the dynamics and kinematics of
photochemical processes. Even though the latter is of main interest for this work,
the words probe- and control-pulse are used synonymously, as they both essentially
describe the second laser pulse used for different purposes.

For the interpretation of the measured data extensive quantum mechanical compu-
tations to solve the time-dependent Schrödinger equation (TDSE) were carried out as
a part of this work. In addition, using a picture of laser-field dressed states (Floquet
picture) it is possible to describe the observations in a semi-classical model. In this
the field dressing of the electronic states is treated quantum mechanically, while the
nuclear motion is described by a classical motion in a time-dependent potential. The
underlying theory to perform such calculations is discussed in Sec. 5.1. Following
this the experimental results and their interpretation are presented in Sec. 5.2.

5.1 Theoretical Concepts

This section conveys the physical concepts needed to properly describe the process
involved in this two-pulse experiment. First, the origin of the time-dependent dy-
namics of the nuclei, caused by the superposition of multiple nuclear eigenstates,
is explained in Sec. 5.1.1. Thereafter, in Sec. 5.1.2, concepts for solving the time-
dependent Schrödinger equation (TDSE) are presented. We intend to rewrite the
Schrödinger equation in terms of the time-evolution operator which can be efficiently
solved with numerical tools. Subsequently, such a numerical method, the well-known
split step algorithm, for solving the TDSE is presented. Then, the introduction of
field-dressed potential energy surfaces (Floquet states) in Sec. 5.1.4 paves the way for
investigating the nuclear dissociation dynamics in a semi-classical way, which then
enables the interpretation of the measurement (as presented in Sec. 5.2) in a very
intuitive way.
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5.1.1 Time Evolution of Nuclear Wave Packets in the
Anharmonic H+

2 (X 2Σ+
g ) Potential

The ionization of molecular hydrogen by an XUV pulse is described via a dipole
transition to the H+

2 (X 2Σ+
g ) electronic ground state. The ionization leads to the

occupation of many vibrational states of the H+
2 molecule according to the Franck-

Condon overlap [122–125] of each of the nuclear eigenstates. The resulting wave
function can be written as the direct product (connecting the Hilbert spaces of the
nuclear part and the electronic part)

Ψtot
H+

2
(x,R, t) =

∑
n

φn(R, t)⊗ ψnR(r, t), (5.2)

where ψnR(r, t) describes the n-th electronic wave function3 and φn(R, t) the nuclear
wave packet in the respective electronic state. In this, the nuclear wave function after
ionization has to be written as a superposition of the vibrational eigenstates |v, t〉 of
the PES

φn(R, t) = 〈R|
∞∑
v=0

anv |vn, t〉 = 〈R|
∞∑
v=0

anv |vn〉e−iE
n
v t, (5.3)

where the coefficient anv is the population amplitude and exp(−iEn
v t) the time-

dependence.

Due to the anharmonicity of the PES corresponding to the H+
2 (X 2Σ+

g ) state, the
nuclear wave packet starts to spatially disperse. As the time progresses the different
phase accumulation leads to a dephasing of the spatial nuclear wave function. At a
later time the wave function rephases again. This process, often called wave packet
revival, is shown in Fig. 5.2.

In order to understand the revival structure, it is instructive to expand the eigenen-
ergy distribution of the wave packet in a Taylor series, as shown in e.g. [24,150]. For
this, it is assumed that many vibrational states centered around an expansion point
ve contribute and that the energy spacing of these eigenstates is small

|E(ve)− E(ve ± 1)|
E(ve)

� 1, (5.4)

which holds for high quantum numbers v. Therefore the eigenenergies of the states
|vi〉 can be treated as a continuum and

E(v) ≈ E(ve) +
dE(v)

dv

∣∣∣∣
ve

(v − ve) +
1

2

d2E(v)

dv2

∣∣∣∣
ve

(v − ve)
2 +O(v3) (5.5)

3Having applied the Born-Oppenheimer approximation [69,123,124,149], which allows the separa-
tion of the electronic problem from the nuclear motion, R becomes parameter for the electronic
wave function.
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Figure 5.2: Numerical solution of the TDSE describing the nuclear dynamics (for details see Sub-
sec. 5.1.2). The nuclear wave function is shown for thee different times. It is visible that initially
the wave packet is well localized in an almost Gaussian distribution. This is due to the fact that
the initial wave function is the vertically promoted ground state wave function of the neutral H2

molecule. At a later time (here 202 fs) the wave packet is dephased. After some more time a half-
revival (explanation below) occurs and the wave function is again well localized. The difference in
shape from the initial wave function (t = 0 fs) to the one at t = 272 fs appears partly because the
initial wave function includes contributions from continuum eigenstates which cause a dissociation
and, hence, a decrease of the bound wave function’s amplitude and also a shift of the center position
in R.

is obtained4. Using Eq. (5.5), the time development of each individual eigenstate is
written as

|v, t〉 = |v〉 · exp

{
−i
[
E(ve) +

dE(v)

dv

∣∣∣∣
ve

(v − ve) +
1

2

d2E(v)

dv2

∣∣∣∣
ve

(v − ve)
2 + · · ·

]
t

}
= |v〉 · exp

{
−i
[
E(ve) + E ′(ve)(v − ve) +

1

2
E ′′(ve)(v − ve)

2 + · · ·
]
t

}
(5.6)

By introducing the relations5

Tcl =
2π

|E ′(ve)|
and Trev =

2π

|E ′′(ve)| /2
, (5.7)

4Even though the “Big O notation” is used here, the equation only holds approximately since the
Taylor series, given the derivatives involved, is only applicable for continuous variables.

5For higher derivatives one can define more revival times such as the super-revival time Tsuper,
which is proportional to the inverse of the third derivative of the eigenenergy distribution.
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which describe the classical and the revival oscillation times (see e.g. [151–153])
respectively, Eq. (5.6) simplifies to

|v, t〉 = |v〉 · exp
{
−i
[
E(ve) + 2π(v − ve)/Tcl + 2π(v − ve)

2/Trev + · · ·
]
t
}
. (5.8)

From Eq. (5.8), knowing that v and ve are integer, it is clear that a localization of the
wave packet appears at times ti where many summands of the Taylor series become a
multiple of 2π (see Fig. 5.2). In other words, the more summands are phase matched,
the more localized the wave packet is.

The analytic Morse potential [154], which is used in the following, approximating
the bound potential energy curve of the molecular hydrogen ion is given by

VMorse(R) = De [exp(−2a(R−Re))− 2 exp(−a(R−Re))] , (5.9)

with Re being the equilibrium internuclear distance, a being a parameter that controls
the width of the potential and De being the depth of the potential. De is connected
to the dissociation energy D0 by

D0 = De −
ω0

2
, (5.10)

where ω0 = E(v = 0) is the vibrational ground state energy. It can be shown that
the exact energy eigenvalues are given by [124,154]

EMorse(v) = ω0 ·
[(

v +
1

2

)
− ω0

4De

(
v +

1

2

)2
]
, (5.11)

where ω0 = a
√

2De/µ (and µ is the reduced mass).

Inserting Eq. (5.11) into Eq. (5.7) yields for the classical oscillation time Tcl and
the revival time Trev

Tcl =
2π∣∣∣ω0

[
1− 2 ω0

4De

(
v + 1

2

)]∣∣∣ and Trev =
2π∣∣∣− ω2

0

4De

∣∣∣ (5.12)

Higher order revivals cannot appear in the Morse potential, as higher order derivatives
vanish. It should further be noted (a proof is given in e.g. Ref. [24]), that for t = 1

2
Trev

Table 5.1: Molecular constants for H+
2 .

De (a.u.) D0 (a.u.) ω0 (a.u.) a (a.u.) Re (a.u.) µ (a.u.)

1.0240 · 10−1 9.7424 · 10−2 9.9739 · 10−3 6.5222 · 10−1 1.9880 918.5762
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Figure 5.3: Quantum Simulation of the wave packet motion in the bound H+
2 (X 2Σ+

g ) state. The
probability density as a function of the internuclear distance R and the time is shown. The white
line shows the expectation value of R as a function of time. The quantum mechanical calculated
revivals, where the wave packet is well localized, compares fairly well to the ones obtained by using
Morse’s potential together with the here presented approximation.

a half-revival occurs, in which the even eigenfunctions |2v〉 are π out of phase with
the odd ones |2v + 1〉. For the half-revival the wave packet is again well localized,
but is approximately ω0Tcl/2 out of phase6. From Ref. [125] the following molecular
constants in atomic units can be derived (shown in Tab. 5.1).

To give a physical meaning to the above derived equations for the revival time T rev
we compare the results to a later explained quantum calculation. When inserting
the variables given in Tab. 5.1 into Eq. 5.12 we obtain Trev/2 = 312 fs. This result is
fairly close to the one obtained by the quantum simulation (see Fig. 5.3). In next
section (Sec. 5.1.2) the fundamentals needed to perform such a quantum calculation
are conveyed.

5.1.2 Solving the Time-Dependent Schrödinger Equation

The time-dependent Schrödinger equation (TDSE) [155–158] is a partial (parabolic)
differential equation, which governs the non-relativistic quantum world. Even though
it is of strikingly simple form

i
dΨ(r, t)

dt
= H(r, t)Ψ(r, t) (5.13)

6In reality this only holds if the ratio of Trev/Tcl is an integer. If this is not fulfilled it is still a good
approximation as long Tcl � Trev.
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solving this equation analytically is only possible for very few problems, e.g. the hy-
drogen atom and the molecular hydrogen ion (but only if using the Born-Oppenheimer
approximation). Therefore, approximations and numerical methods are often em-
ployed when confronted with Eq. (5.13).

The Schrödinger equation imposes a Cauchy type initial value problem, where a
wave function is known for a time t0 and the interest lies on its time-evolution, i.e.

|a, t0〉 Time Evolution−−−−−−−−→ |a, t0 → t〉, (5.14)

with a being a set of quantum numbers describing the system and |a, t0 → t〉 indicat-
ing the state |a, t0〉 after a time propagation to the time t, which is in the following
written in the simplified way |a, t〉. Solving this problem is formally achieved by
introducing the time-evolution operator U(t, t0), which later yields an outstanding
starting point for numerical approaches. With this, the time-evolution described by
Eq. (5.14) is written as

|a, t〉 = U(t, t0)|a, t0〉. (5.15)

Following the derivation given in Ref. [159], we start by presenting the fundamental
properties of this operator. First, since in non-relativistic quantum mechanics par-
ticles cannot be created nor be destroyed, it follows that the particle number must
be conserved and, hence, the probability density is conserved as well. Therefore, an
initially normalized state remains normalized at all times

〈a, t0|a, t0〉 = 1 = 〈a, t|a, t〉. (5.16)

This has important implications for the properties of U(t, t0), because by inserting
Eq. (5.15) into Eq. (5.16)

〈a, t0|U †(t, t0)U(t, t0)|a, t0〉 !
= 1⇒ U †(t, t0)U(t, t0) = 1 (5.17)

the unitarity of U(t, t0) follows. In order to be a physically reasonable operator for
time-evolution, the composition property

U(t2, t0) = U(t2, t1)U(t1, t0) (5.18)

has to be fulfilled, as we expect

|a, t2〉 = U(t2, t1)|a, t1〉 = U(t2, t1)U(t1, t0)|a, t0〉 (5.19)

to be correct. Of course, the time-evolution operator is linear, as it needs to act on
a superposition of states in the following manner

U(t, t0)(|a, t0〉+ |b, t0〉) = U(t, t0)|a, t0〉+ U(t, t0)|b, t0〉 = |a, t〉+ |b, t〉. (5.20)
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Lastly, as the time is a continuous parameter, we demand

lim
t→t0
|a, t〉 = lim

t→t0
U(t, t0)|a, t0〉 = |a, t0〉 ⇒ lim

t→t0
U(t, t0) = 1. (5.21)

Keeping these demands in mind, we now construct U as an infinitesimal operator

U(t0 + dt, t0) = 1− iOdt, (5.22)

where O is an hermitian operator (O = O†) to ensure the unitarity of U . It is easily
shown that this definition of U fulfills the above imposed requirements. In order to
obtain an equation to determine O, we exploit the composition property together
with the infinitesimal form of U [Eq. (5.22)] [159]

U(t+ dt, t0) = U(t+ dt, t)U(t, t0) = (1− iOdt)U(t, t0) (5.23)

and rearrange the resulting equation to

U(t+dt, t)−U(t, t0) = −iOdtU(t, t0)⇒ i
U(t+ dt, t)− U(t, t0)

dt
= OU(t, t0). (5.24)

We find that the left-hand side is equal to a time derivative. Therefore, by comparing
Eq. (5.24) to the Schrödinger equation

i
dU(t+ dt, t)

dt
|a, t0〉 = HU(t+ dt, t)|a, t0〉 ⇒ i

dU(t+ dt, t)

dt
= HU(t+ dt, t)

Eq. (5.24)
=====⇒ i

dU(t+ dt, t)

dt
= HU(t+ dt, t)

!⇔ i
dU(t+ dt, t)

dt
= OU(t+ dt, t) (5.25)

we see that we have constructed a time-evolution operator which obeys the Schrödinger
equation, if we identify O with the Hamilton operator H. Therefore, the time-
evolution operator (in infinitesimal form) is written as

U(t+ dt, t) = 1− iH(t)dt (5.26)

Using Eq. (5.26), we are now in the position to generate a finite time translation of the
state ket |a, t0〉 via the application of infinitely many infinitesimal time-translation
operators

U(t, t0)|a, t0〉 = lim
N→∞

U(t, t0 + N−1
N ∆t)U(t0 + N−1

N ∆t, t0 + N−2
N ∆t) · · ·U(t0 + 1

N∆t, t0)|a, t0〉

(5.27)

with ∆t being t − t0. This equation can be simplified by constructing an analytic
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finite time-evolution operator. However, two different cases have to be considered7:

� The Hamiltonian H is time independent ∂H
∂t

= 0

� The Hamiltonian H is time-dependent ∂H
∂t
6= 0

In the first case, it is evident that for all time steps in Eq. (5.27) the Hamiltonian
is unchanged. This allows, using Eq. (5.26), to rearrange the equation to form an
exponential function

U(t, t0) = lim
N→∞

(1− iH ∆t
N

)N = e−iH∆t = e−iH(t−t0). (5.28)

In the second case of a time-dependent Hamiltonian, this Ansatz obviously does not
work. The solution to this problem is usually given using the Neumann series which
is a perturbation expansion [160]. As the Neumann series is not needed in the scope
of this work, only the result is given for completeness

U(t, t0) = 1 +
∞∑
n=1

(−i)n
t∫

t0

dt1

t1∫
t0

dt2 · · ·
tn−1∫
t0

dtnH(t1)H(t2) · · ·H(tn). (5.29)

Instead of using the Neumann series, we introduce an approximation, which allows
to write the time evolution in a way that is numerically very convenient to solve.
For this, ∆t is chosen very small which makes it evident that the Hamiltonian does
not change significantly in this time span. In this time interval the time-evolution
operator is (approximately) described by

U(t0 + ∆t, t0) = lim
N→∞

U(t0 + ∆t, t0 + N−1
N

∆t) · · ·U(t0 + 1
N

∆t, t)

= lim
N→∞

(1− iH ∆t
N

)N = e−iH(t0)∆t = e−iH(t0)(t−t0), (5.30)

with H(t) = H(t0) ∀t ∈ (t0, t0 + ∆t). If we construct the time evolution piece-wise
on small intervals on which the Hamiltonian is constant, we obtain a full solution for
the time-evolution over a finite time interval

U(t, t0) = lim
∆t→0

U(t, t−∆t)U(t−∆t, t− 2∆t) · · ·U(t0 + ∆t, t0). (5.31)

7Actually three different cases have to be considered, because if the Hamiltonian is time-dependent,
then it becomes important whether H fulfills the commutator relation [H(t1), H(t0)] = 0 or
[H(t1), H(t0)] 6= 0. In the context of this work, however, [H(t1), H(t0)] 6= 0 holds, and the
solution given in Eq. (5.28) cannot be generalized. The case [H(t1), H(t0)] = 0, where a gener-
alization becomes possible, is discussed for example in Ref. [159].
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Using Eq. (5.30) we can rewrite this to obtain the final result in operator form

U(t, t0) = lim
∆t→0

e−iH(t−∆t)∆t · e−iH(t−2∆t)∆t · · · e−iH(t0)∆t (5.32)

or with application to an inital ket state |a, t0〉

|a, t〉 = U(t, t0)|a, t0〉 = lim
∆t→0

e−iH(t−∆t)∆t · e−iH(t−2∆t)∆t · · · e−iH(t0)∆t|a, t0〉 (5.33)

This equation lays the starting point for the numerical calculations on the time-
propagation of nuclear wave packets in H+

2 which have been performed as a part of
this thesis.

5.1.3 Numerical TDSE Solution: Split-Step Algorithm

In this work, a Split-Operator method [161, 162] is employed to solve Eq. (5.33).
The split-step algorithms appear in many different forms and orders of accuracy, see
e.g. [161–169]. The operation principle of the split-step algorithms is to decompose
Eq. (5.32) into a product of operators which are diagonal in coordinate (real) space
or in momentum space. Considering the time-dependent Hamiltonian in the length-
gauge8

H(x, t) =
p2

2m
+ V (x, t) = T + V (5.34)

it is evident that the operator V (x) is diagonal in real space and p2 is diagonal in
momentum space. Here, T describes the kinetic energy- and V the potential energy-
operator. Now, taking only one time step ∆t in Eq. (5.32) and inserting Eq. (5.34),
we obtain

U(t+ ∆t, t) = e−i[T+V (x,t)]∆t. (5.35)

The approximation of the split-step algorithm is to decompose this expression into a
product of exponentials (the number of factors varies with different implementations
of the algorithm), where each of the exponential operators is written in diagonal form
in either real- or momentum space. Here we choose the splitting as follows

Uap(t+ ∆t, t) = e−iT∆t/2 · e−iV (x,t)∆t · e−iT∆t/2 (5.36)

8In this work, only the length-gauge is considered. The reason for this is that we later introduce
a coupled channel calculation, in which two molecular electronic potentials are coupled via a
laser-induced dipole coupling which is very intuitively described in the length-gauge.
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This equation is of course an approximation (indicated by Uap), because the expo-
nentiated operators are only defined by their expansion series and by splitting the
operators in factors, which is why non-vanishing commutators appear in the expan-
sion series. To see that the approximation is correct to order O(∆t2), we compare
the corresponding expansion series of Eq. (5.35)

U(t+ ∆t, t) = 1− i(T + V )∆t− (T + V )2∆t2/2 +O(∆t3)

= 1− i(T + V )∆t− (T 2 + TV + V T + V 2)∆t2/2 +O(∆t3)

(5.37)

to the one of Eq. (5.36)

Uap(t+ ∆t, t) =
(
1− iT∆t/2− T 2∆t2/8

) (
1− iV∆t− iV 2∆t/2

) (
1− iT∆t/2− T 2∆t2/8

)
+O(∆t3)

= 1− i(T + V )∆t− (T 2 + TV + V T + V 2)∆t2/2 +O(∆t3) (5.38)

and find them to be equal.

With Eq. (5.36) we now have a good starting point for applying numerics. Again,
we want to propagate an initial state |a, t〉 in time to |a, t+ ∆t〉

φ(p′′′, t+ ∆t) =
∑

p,p′,p′′,x,x′

〈p′′′|e−iT∆t/2 · |p′′〉〈p′′|x′〉〈x′|e−iV (x,t)∆t · |x〉〈x|p′〉〈p′|e−iT∆t/2|p〉〈p|a, t+ ∆t〉

(5.39)

for which we included basis transformations such that the operators are all in diagonal
form9. Identifying the projectors

∑
p |p〉〈x| =: FT and

∑
x |x〉〈p| =: FT−1 as the

Fourier- and inverse Fourier-transform, connecting real and momentum space and
further indicating the basis of the potential energy and momentum operator by an
index (Tp and Vx), Eq. (5.39) simplifies to

φ(p, t+ ∆t) = e−iTp∆t/2 FT
{
e−iVx∆t FT−1

[
e−iTp∆t/2φ(p, t)

]}
. (5.40)

From this we derive the recipe of the split-step algorithm to evolve a momentum-
space wave function by one time-step ∆t:

1. take input wave function φ̃(p, t) and perform p half-step: φ̃(p)← φ̃(p, t)e−i
p2

2m

∆t

2

2. perform inverse Fourier transform of result to real space φ1(x)← FT−1
[
φ̃(p)

]
3. perform full-step in x: φ(x)← φ(x)e−iV∆t

4. perform Fourier transform back to momentum space: φ̃(p)← FT [φ(x)]

5. perform final p half-step: φ̃(p, t+ ∆t)← φ̃(p)e−i
p2

2m

∆t

2

A flowchart of the program that uses the above described algorithm is shown in
Fig. 5.4.

9Note: Here sums are rather than integrals, because in numerics the x and p spaces are discretized.
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φ← φe−i
p2

2µ
∆t
2

Perform p half-step:

Choose x- and p-grid

Specify φ(p, t = 0)

φ← φe−iV∆t

Perform x step:

φ(x) = FT[(φ(p)]

Fourier Transform φ(p) to φ(x)

φ(p) = FT−1[(φ(x)]

Fourier Transform φ(x) to φ(p)

φ← φe−i
p2

2µ
∆t
2

Perform p half-step:

Solution found!

n← n+ 1 ≤ N = FALSE

n
←
n

+
1
≤
N

=
T

R
U

E
Length-gauge favoured form

Figure 5.4: Flowchart of a program using the Split-Step algorithm. Here N propagation steps
with step size ∆t are carried out. First an initial wave function φ(p, t = 0) (in momentum space)
is specified on a user defined real space- and momentum-grid. After that the program enters a
loop. This loop consists of a half-step ∆t/2 in momentum space, an inverse Fast-Fourier-Transform
FT−1[p → x], a full-time propagation step in x-space, a FT[x → p] and finally a half-propagation
step in momentum space.
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Coupled Channels

We want to apply the above described numerical formalism to the case of many
electronic states in the presence of a laser field. For this, we recall the general
quantum mechanical wave function described in Eq. (5.2). Due to the fact that the
electronic wave functions are eigenfunctions of the field free Hamiltonian it is clear
that, without coupling among them, the summands are independently propagating
in time. For this reason the Schrödinger equation describing the nuclei for such a
sum can be written in the form

i
d

dt


φ1(R, t)

...
φn(R, t)

...

 =


− p2

2µ + V1 0 . . . 0

0
. . . 0

...
... 0 − p2

2µ + Vn 0

0 . . . 0
. . .



φ1(R, t)

...
φn(R, t)

...

 (5.41)

Without coupling induced by an external field, it is therefore possible to propagate
the φn(R, t) independently [these φn(R, t) are the same as in Eq. (5.2)].

The situation gets more involved when a laser field is present, as transitions be-
tween former eigenstates can now be driven. Allowing only dipole transitions, we
modify Eq. (5.41) with coupling elements (in length gauge) and obtain

i
d

dt


φ1(R, t)

φ2(R, t)

φ3(R, t)
...

 =


− p2

2µ + V1 −〈ψ1|r · E|ψ2〉 −〈ψ1|r · E|ψ3〉 . . .

−〈ψ2|r · E|ψ1〉 − p2

2µ + V2 −〈ψ2|r · E|ψ3〉
...

−〈ψ3|r · E|ψ1〉 −〈ψ3|r · E|ψ2〉 − p2

2µ + V3 . . .
... . . . . . .

. . .



φ1(R, t)

φ2(R, t)

φ3(R, t)
...


(5.42)

where the Dkl =: −〈ψk(R)|r · E|ψl(R)〉 are the dipole transition amplitudes. This
implies that the nuclear wave packets on different PES, each corresponding to re-
spective electronic states, start to mix according to their respective dipole transition
amplitude. In a more general form this can be written as

i
dΦ

dt
= (T + V +HInt︸ ︷︷ ︸

H

)Φ (5.43)

where T corresponds to the kinetic energy matrix, V to a matrix containing the
potential energy surfaces of the molecule, and HInt the (non-diagonal) interaction
Hamiltonian.

Equation (5.42) governs the nuclear motion in the presence of a laser-field (in
dipole approximation). However, the above described split-step algorithm relies on
the possibility to split the Hamiltonian H into operators that are diagonal in the
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electronic part (for which the basis functions are the electronic wave functions) as
well as in either real- or momentum space (where the basis is |x〉 and |p〉). This is
no longer true for the dipole-coupled H of Eq. (5.43) and we have to modify the
split-step algorithm one last time by introducing a digitalization step10

(T + V +HWW)Φ = TΦ +M †M(V +HInt)M
†︸ ︷︷ ︸

VInt

MΦ (5.44)

where VInt is the diagonalized interaction potential

VInt =


V 1

Int 0 . . . . . .

0 V 2
Int . . .

...
. . . 0 V 3

Int . . .
... . . . . . .

. . .

 . (5.45)

With Eq. (5.44) we conclude that a basis transformation of Φ has to be performed
(by applying M) before it can be applied to VInt. Subsequently, the result has to be
transformed back by applying M †. Therefore, the split-step algorithm scheme for the
coupled channels becomes:

1. take multicomponent input wave function φ̃n(p, t) and perform p half-step:

φ̃n(p)← φ̃n(p, t)e−i
p2

2m

∆t

2

2. perform inverse Fourier transform of result to real space φn(x)← FT−1
[
φ̃n(p)

]
3. diagonalize real space operator VInt and find the change of basis matrices M

and M †

4. apply the first change of basis matrix M to the nuclear wave function vector

5. perform full-step in x: φn(x)← φn(x)e−iV
n∆t, where the V n is the n-th eigenvalue

of the matrix VInt

6. apply the second (inverse) change of basis matrix M † to the nuclear wave func-
tion vector

7. perform Fourier transform back to momentum space: φ̃n(p)← FT [φn(x)]

8. perform final p half-step: φ̃n(p, t+ ∆t)← φ̃n(p)e−i
p2

2m

∆t

2

This algorithm is capable of propagating Eq. (5.42) in time for a system of electronic
states (channels) with and without coupling. We later use this scheme to calculate the
nuclear dynamics for a system of coupled channels in order to describe laser-induced
bond-softening in H+

2 .

For the experimental parameters used in this chapter, the IR-laser pulse couples
the electronic states H+

2 (X 2Σ+
g ) and H+

2 (A 2Σ+
u ). The TDSE can therefore be written

10Commonly U and U† are used to denote the transformation matrices, which could be confused
with the time-evolution operator. We therefore use M and M†.
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Figure 5.5: Comparison of R-dependent dipole coupling strength µd obtained by using ab initio
molecular orbitals to one where the orbitals have been determined exploiting the LCAO approxi-
mation considering only s-orbitals of atomic hydrogen.

i
d

dt

(
φ1(R, t)

φ2(R, t)

)
=

(
− p2

2µ + VΣg −〈X 2Σ+
g |r · E|A 2Σ+

u 〉
−〈A 2Σ+

u |r · E|X 2Σ+
g 〉 − p2

2µ + VΣu

)(
φ1(R, t)

φ2(R, t)

)
(5.46)

where φ1(R) and φ2(R) are the nuclear wave functions corresponding to the states
H+

2 (X 2Σ+
g ) and H+

2 (A 2Σ+
u ), respectively. Applying the above described split-step

approach, this system of coupled-channels can be solved numerically. However, for
this the integral

− 〈A 2Σ+
u (R)|r · E|X 2Σ+

g (R)〉 (5.47)

has to be evaluated. As we only consider molecules oriented parallel to the polariza-
tion axis, this can be written as

− E〈A 2Σ+
u (R)|z|X 2Σ+

g (R)〉 = −Eµd(R) (5.48)

where µd is the R-dependent dipole coupling strength. For the parameters considered
in this work, a linear combination of atomic s-orbitals (LCAO) to approximate the
H+

2 (X 2Σ+
g ) and H+

2 (A 2Σ+
u ) state already yields very good results. Figure 5.5 compares

the dipole coupling obtained by using LCAO (Linear Combination of Atomic Or-
bitals [123, 124]) molecular orbitals to one where ab initio molecular orbitals were
used.
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5.1.4 Field-Dressed Floquet-States

In order to interpret and simulate the later presented results, we use the so-called
Floquet picture. In this presentation, the PES are dressed by a time-periodic electric-
field oscillating with period T , modifying their potential energies [170, 171] and al-
lowing for the dissociation of molecules in such fields.

The Schrödinger equation for this situation reads

i
dΨ(x, t)

dt
= H(x, t)Ψ(x, t) with H(x, t+ T ) = H(x, t) (5.49)

Again, we seek numerical solutions for the field-dressed states [172–174] and, hence,
want to derive an equation suitable to perform efficient computations. Due to the
time-periodicity of the Hamiltonian, many results are similar to the ones found in
textbooks about solid state physics [175,176], where Bloch functions are the solutions
of the Schrödinger equation for space-periodic crystal structures. Here, we follow
a derivation (e.g. presented in [177, 178]) again making use of the time-evolution
operator developed in Sec. 5.1.2.

For a time periodic Hamiltonian, the time-evolution operator U gains another
property, which can be written

U(t+ T, t0 + T ) = U(t, t0). (5.50)

We further define an extended Hamilton operator

H(t) := H(t)− i∂t (5.51)

and prove that simultaneous eigenfunctions |Ψ(t)〉 of this extended Hamiltonian and
time-evolution operator U(t+T, t) exist. For this it is necessary that the commutator
[H(t), U(t+ T, t)] = 0 vanishes.

U(t+ T, t)H(t)|Ψ(t)〉 = U(t+ T, t)H(t)1|Ψ(t)〉
= U(t+ T, t)H(t)U †(t+ T, t)U(t+ T, t)|Ψ(t)〉
= H(t+ T )U(t+ T, t)|Ψ(t)〉 = H(t)U(t+ T, t)|Ψ(t)〉
⇒ [H(t), U(t+ T, t)] = 0 (5.52)

To solve Eq. (5.49) we first recall that due to the unitarity of U the eigenvalue
equation

U(t+ T, t)|Ψ(t)〉 = eiζ(T )|Ψ(t)〉 (5.53)

has to hold, where ζ(T ) is a real valued (yet to be determined) function of T . Using
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the composition property introduced earlier, Eq. (5.50) and Eq. (5.53)

eiζ(2T )|Ψ(t)〉 = U(t+ 2T, t)|Ψ(t)〉
= U(t+ 2T, t+ T )U(t+ T, t)|Ψ(t)〉
= U2(t+ T, t)|Ψ(t)〉
=

[
eiζ(T )

]2|Ψ(t)〉 (5.54)

is derived. With this, we conclude that ζ(T ) ∝ T is proportional to T and we
set ζ(T ) = −ET , where E is the Floquet exponent which is often called the quasi-
energy [170,179,180]. Therefore, the eigenstates of H and U obey the relation

U(t+ T, t)|Ψ(t)〉 = eiET |Ψ(t)〉 (5.55)

By splitting off the time dependent part from the simultaneous eigenstates, we write
(this is merely an ansatz)

|Ψ(t)〉 = e−iEt|φ(t)〉 (5.56)

where |φ(t)〉 is periodic in time, which we verify in the following.

U(t+ T, t)|φ(t)〉 = |φ(t+ T )〉 = eiE(t+T )|Ψ(t+ T )〉
= eiE(t+T )U(t+ T, t)|Ψ(t)〉
= eiE(t+T )e−iET |Ψ(t)〉 = |φ(t)〉 (5.57)

Application of the extended Hamiltonian H on Eq. (5.56) yields (starting with
Schrödinger’s equation H|Ψ〉 = 0)

0 = H(t)|Ψ(t)〉 = (H − i∂t)|Ψ(t)〉 = (H − i∂t)e−iEt|φ(t)〉
= He−iEt|φ(t)〉 − Ee−iEt|φ(t)〉 − e−iEti∂t|φ(t)〉
= e−iEt(H − i∂t)|φ(t)〉 − Ee−iEt|φ(t)〉
⇔ H|φ(t)〉 = E|φ(t)〉 (5.58)

which is the Floquet-type Schrödinger equation that must be fulfilled in order to be
compliant with the Schrödinger equation. The above obtained results are summarized
by Floquet’s theorem

Theorem 5.1.1 (Floquet’s Theorem: applied to Schrödinger’s equation) The solutions to

the time-dependent Schrödinger equation with time-periodic Hamiltonian H(t+ T ) = H(t)

are given by

|Ψ(t)〉 = e−iE(t−t0)|φ(t)〉 with |φ(t+ T )〉 = |φ(t)〉 (5.59)

where E is the (time-independent) Floquet exponent (or quasi-energy) and |φ(t)〉 the time-

periodic Floquet states. The Floquet states are solutions to the Floquet-type Schrödinger



5.1 Theoretical Concepts 103

equation

H|φ(t)〉 = E|φ(t)〉 (5.60)

where H = (H − i∂t) is the extended Hamiltonian.

It can easily be verified that multiplying a Floquet solution by eikωt, with k ∈ N0 and
ω = 2π/T , generates a new solution

|Ψ′(t)〉 = eikωt|Ψ〉
E′ = E + kω

(5.61)

belonging to the same infinite set of equivalent states, though with shifted quasi-
energies. It should be noted, that the different quasi-energies are unlike normal
energies, for which the absolute magnitude of the energy carries physical significance.
In contrast to that, the quasi-energies carry only a physical meaning in a range
modulo 2π. This is analogous to the reduction of quasi-energies to a Brillouin zone
in solid states physics.

Numerical Solution of the Floquet-states: The Floquet Matrix

We are now in the position to approach a numerical solution to the problem. For
this we derive the well-known Floquet matrix, which is then used to compute the
PES of Floquet states. Having established the periodicity of |φ(t)〉 [see Eq. (5.59)]
we Fourier expand it

|φ(t)〉 =

∞∑
n=−∞

e−inωt|Fn〉 (5.62)

with |Fn〉 being the Fourier coefficients11. Then the Fourier coefficients are expanded
in complete basis set {|k〉}12

|Fn〉 =
∑
k

cnk |k〉. (5.63)

Inserting this equation and Eq. (5.62) together with Eq. (5.56) into the Floquet-type
Schrödinger equation [Eq. (5.58)] yields∑

n,k

H(t)e−inωtcnk |k〉 =
∑
n,k

Ecnk |k〉e−inωt. (5.64)

11For simplicity, the summation ranges are dropped whenever it is clear from the context.
12Later this basis is chosen to be a small subset of the electronic wave functions of the molecular

hydrogen ion.
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Multiplying 〈lm| := 〈l|eimωt from the left and time-averaging yields

∑
n,k

1

T

T∫
0

dt〈lm|H(t)|nk〉 =
∑
n,k

1

T

T∫
0

dt〈lm|Ecnk |nk〉

∑
n,k

1

T

T∫
0

dt〈lm|H0 + V (t)− i∂t|nk〉 =
∑
n,k

Ecnkδmnδkl

∑
n,k

{
〈l|H0c

n
k |k〉δnm +

1

T

T∫
0

dt〈lm|V (t)|nk〉+ 〈l|nωδm,n|k〉
}

=Ecml (5.65)

If a monochromatic dressing-field V (t) = −E0r
2

[
eiωt + e−iωt

]
is assumed, this equation

can further be simplified to

∑
n,k

{
〈l|H0c

n
k |k〉δnm + 〈l|−E0r

2
[δm,n+1 + δm,n−1] |k〉+ 〈l|nωδm,n|k〉

}
= Ecml

(5.66)

where, as mentioned earlier, the basis {|k〉} is identified with the eigenfunctions of
the field-free Hamiltonian H0. In the case of the molecular hydrogen ion and for the
approximation of fixed nuclei the field-free Hamiltonian simplifies to the electronic
Hamiltonian of the system. Therefore the |k〉 are the electronic eigenstates of the
molecular ion. Truncating the basis to the two energetically lowest states, namely
the H+

2 (X 2Σ+
g ) and the H+

2 (A 2Σ+
u ) we can write the left-hand-side of Eq. (5.66) in

form of an infinite matrix, the Floquet matrix



...
...

...
...

. . . Vgu(R) 0 0 0 . . .

. . . Vu(R) + (n− 1)ω Vgu(R) 0 0 . . .

. . . Vgu(R) Vg(R) + nω Vgu(R) 0 . . .

. . . 0 Vgu(R) Vu(R) + (n+ 1)ω Vgu(R) . . .

. . . 0 0 Vgu(R) Vg(R) + (n+ 2)ω . . .

. . . 0 0 0 Vgu(R) . . .
...

...
...

...


(5.67)
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where Vgu = 〈2Σ+
g | − E0r

2 |2Σ+
u 〉, Vg(R) = 〈2Σ+

g |H0|2Σ+
g 〉 and Vu(R) = 〈2Σ+

g |H0|2Σ+
u 〉. To

obtain the field-dressed PES numerically, the matrix has to be truncated at a finite
size and be diagonalized.

Intensity and Angular Dependence of the Field-Dressed Floquet States

The above described Floquet matrix [Eq. (5.67)] can be interpreted as a set of in-
finitely many PES which are dressed by laser-photons. The field-dressing leads to
a shift in their quasi-energy by n photon energies ω, as shown in Fig. 5.6 (left). In

Figure 5.6: Floquet PES for two dipole coupled electronic states of the H+
2 ion, namely the states

H+
2 (X 2Σ+

g ) and H+
2 (A 2Σ+

u ) [compare Eq. (5.67)]. Left: Electric field intensity of 0 W/cm2 (van-
ishing field). Right: Electric field intensity of 5.1 · 1012 W/cm2. For larger intensities corresponding
to a stronger coupling of the H+

2 (X 2Σ+
g ) and H+

2 (A 2Σ+
u ) states, an avoided crossing is formed. At

the energy considered in this work only the 1ω avoided crossing opens (see e.g. [181,182] for higher
order avoided crossings).

the case of Floquet states, zero intensity forces a formal periodicity upon the prob-
lem, which is exploited in the Floquet formalism13. However, it is evident that the
solutions are only formal, since the individual curves belong to the same irreducible
representations (Σ+

g ), but do not repel each other as is expected for curves of the
same symmetry (this is known as the formation of avoided crossings). As soon as the
intensity of the dressing-laser no longer vanishes, the curves start to repel each other
and form the predicted avoided crossings (see Fig. 5.7 right). This repulsion is a
function of the laser intensity. The stronger the coupling field the further the curves
separate in their quasi-energy. It should be noted that for higher intensities more

13The case of zero intensity is comparable to the well-known case of an empty crystal in solid state
physics, which results in Bloch function solutions of the formally periodic Hamiltonian.
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Figure 5.7: Angular dependence of the field-dressed 1ω PES of the H+
2 molecule, where θ is the

angle between the molecular axis and the polarization vector (see inset) of the electric field. The
maximum intensity, corresponding to an angle of θ = 0, is 5.1 · 1012 W/cm2. For each intensity
(corresponding to an angle θ), the curves were obtained by diagonalization of a 100× 100 Floquet
matrix for all R.

and more crossings open (compare e.g. [181, 182]). For example, at approximately
5 · 1013 W/cm2 the 3ω crossing starts to open up. However, as 5.1 · 1012 W/cm2 is the
highest intensity used in this work, only the 1ω avoided crossing presented (Fig. 5.6
right) is considered.

In the case, where the different PES are coupled via a laser-induced dipole coupling,
the separation further depends on the orientation of the molecule with regard to the
polarization axis of the laser field (see inset of Fig. 5.7). This is caused by the dipole
selection-rules imposed on the transition, which only allows for parallel transitions
between the H+

2 (X 2Σ+
g ) and the H+

2 (A 2Σ+
u ) electronic state. Therefore, the dipole
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transition amplitude can be written as

−〈A 2Σ+
u |r · (E‖ + E⊥)|X 2Σ+

g 〉 = −〈A 2Σ+
u |r · E‖|X 2Σ+

g 〉 − 〈A 2Σ+
u |r · E⊥|X 2Σ+

g 〉
= −〈A 2Σ+

u |r · E‖|X 2Σ+
g 〉 = −〈A 2Σ+

u ||r||E| cos(θ)|X 2Σ+
g 〉

(5.68)

Figure 5.7 shows the dependency of the quasi-energy of a field-dressed PES as a
function of the angle θ between molecular axis and laser field.

Bond-Softening

In the unperturbed H+
2 (X 2Σ+

g ) molecular potential 19 bound vibrational states exist.
Using the above discussed Floquet mechanism, we find that in the presence of a
laser field the binding electronic potential becomes distorted (compare solid and
dotted line in Fig. 5.8). Formerly bound vibrational states now lie in the dissociation
continuum and start to dissociate. For the case depicted in Fig. 5.8, this is the case
for the vibrational states with quantum numbers larger then v = 4. However, the
states with v > 7 are favored, as they may directly pass the potential barrier and do
not have to tunnel through it. The energy of the fragments after dissociation (in a
cw-laser field) is given by14

Ekin = Ev + ω. (5.69)

It is evident that the formerly bound vibrational states with Ediss > 0 are now disso-
ciating, giving the reason to name this process bond-softening.

5.2 Nuclear wave-packet dynamics on laser induced
transition states

After presenting the theoretical background, the experimental data and its inter-
pretation is subject to this section. We find that in the laser induced dissociation
of molecular hydrogen ions, it is possible to manipulate the final momentum of the
proton by variation of the time-delay between the pump and the coupling laser.
This observation is investigated an is explained in terms of an intuitive semi-classical
mechanism. It is shown that the time dependence of the control-laser pulse leads to
an up/down motion of the field-dressed potential energy curves on which the nuclear
wave-packet propagates. With this it is possible to elevate the total energy of a state,
which in the final analysis leads to a change of the observed proton momentum.

14Recall that the energy of a bound vibrational state is negative by the here applied definition.
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Figure 5.8: First 15 vibrational states of the undisturbed H+
2 (X 2Σ+

g ) molecular potential. In the
presence of a laser-field the PES gets distorted and the upper vibrational states are above the poten-
tial barrier (blue solid line), causing the molecule to dissociate. The vibrational states with energies
lying in the range of the gap between the solid red- and solid blue curve are most efficiently dissoci-
ated (as shown by quantum simulations presented later). The vibrational states and eigenenergies
where computed using an algorithm described in [126].

5.2.1 Experimental Conditions

In this section, we shall briefly review the experimental conditions and physical reac-
tions used to obtain the data presented below. The key idea is that by irradiating a
gas jet consisting of molecular hydrogen with an attosecond pulse train (σXUV

FWHM ≈ 6 fs)
followed by a time-delayed IR laser pulse with σIR

FWHM = 8.6 fs. Like in the previous
chapter we are only interested in channels where a proton is created. If we plot the
so obtained data into an energy correlation diagram as done in the previous chapter,
we obtain Fig. 5.9. The reaction can be written as

H2(X 1Σ+
g )

XUV−−−→ H+
2 (X 2Σ+

g ) + e−
IR(τ)−−−→ H + H+ + e−. (5.70)

By comparing Fig. 5.9 to Fig. 4.3 we find that at low KER an additional band
of counts is observed. At the photon energies considered in this work, when the
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Figure 5.9: Energy correlation diagram. The observed H+ counts are plotted as a function of the
observed photoelectron energy and kinetic energy release of the nuclei (sum kinetic energy of proton
and neutral hydrogen atom). The same structures as in the previous chapter are observed with the
addition of a “band” (labeled IR-Sideband) appearing for low KER. It is precisely this region that
we are interested in throughout this chapter.

XUV pulse ionizes the molecular hydrogen the ion is formed in the two ionic states
H+

2 (X 2Σ+
g ) and H+

2 (A 2Σ+
u ). Only the first one is stable and when the delayed IR pulse

arrives it can couple the binding X 2Σ+
g to the H+

2 (A 2Σ+
u ) state (see Fig. 5.1). In this

process an additional IR photon with an energy of approximately 1.7 eV is absorbed,
which causes the appearance of events with a kinetic energy release KER ≈ 0.8 eV,
which manifest as an IR-sideband in the energy correlation diagram (see region la-
beled “IR-Sideband” in Fig. 5.9 ). The time-delay resolved investigation of this
energy band is subject to the following investigation.

5.2.2 Experimental Data

As mentioned in the chapter’s introduction, we use attosecond pulse trains to ionize
molecular hydrogen. With photon energies between 16 eV and 40 eV we are well able
to populate the binding H+

2 (X 2Σ+
g ) electronic state (see Fig. 5.10 left). Because the

ionization of the molecule by XUV photons occurs very quickly (on time-scales of the
nuclei: almost instantaneous) the nuclear wave function (describing the two protons)
is vertically promoted to the ionic potential while maintaining its spatial shape [see
Fig. 5.10 (left)]. As the molecular hydrogen in the target gas jet is vibrationally cold,
the initial wave function is the vibrational ground state wave function of the neutral
molecular hydrogen molecule. In the following we refer to the vertically promoted
wave packet as the “Franck-Condon wave packet”. According to the Franck-Condon
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Figure 5.10: Left: Potential energy curves for the neutral H2 ground state and the three energet-
ically lowest H+

2 ionic states. The region of significant Franck-Condon overlap is indicated by the
dotted lines. Curves are adapted from [183]. Right: Simulated time-dependency of the wave func-
tion density for the coordinate space (top) and for the momentum space (bottom). Because the
ionization by an XUV photon vertically promotes the ground state wave function to the ionic poten-
tial, the initial wave packet in the simulation is the ground state function of the neutral H2 molecule.
The fine dashed line is the expectation value of the internuclear Distance 〈R〉 = |〈Φ(R)|R|Φ(R)〉|2,
where Φ(R) is the nuclear wave function on the H+

2 (X 2Σ+
g ) potential. At times when the wave

packet is well localized, the time-dependence of 〈R〉 corresponds to the classical motion.

principle the nuclear wave function is projected onto the set of vibrational states
belonging to the potential of the binding electronic state (compare Franck-Condon
principle [122–125]). As the nuclear wave function is no longer a single eigenstate of
the potential but rather a superposition of many states, it becomes time-dependent.
A simulation, depicted in Fig. 5.10 (right), using the previously presented split-
step algorithm visualizes this time-dependency of the wave function density for the
coordinate space (top right) and for the momentum space15 (bottom right). It is
evident that the classical picture conveyed in Fig. 5.10 (left), where a localized wave

15Be aware that only the coordinate space wave function is normalized, as the momentum space
wave function is computed by an unnormalizing FFT algorithm.
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Figure 5.11: (a) Measured proton distribution C(p, τ) integrated over all detection angles θ as a
function of the pulse delay τ and the proton momentum. Clearly visible is the rapid beating with
a period of approximately 26 fs. The revivals of the wave packet discussed above are also clearly
visible (half-revival period Trev/2 ≈ 300 fs) (b) Fourier transform along the time delay direction of
the count distribution C(p, τ). The distinct beating of neighboring vibrational states leads to the
observed line structure. On the low frequency side, the vibrations induced by direct neighbors
∆v = 1 show the highest amplitude. Further right, at higher frequencies the beating induced by
∆v = 2 states is observed.

packet is moving in the potential is a over-simplified picture. The dephasing due
to the anharmonicity of the H+

2 (X 2Σ+
g ) described above leads to a smearing-out of

the wave-packet’s density16 ρ(R) = |Φ(R)|2, where Φ(R) denotes the nuclear wave
function in the potential of the binding H+

2 (X 2Σ+
g ) electronic state. Only close to

the revival times where the wave packet is well-localized it behaves like a classical
oscillator.

The above presented time-dependent wave function [see Fig. 5.10 (right)] is, how-
ever, only accessible if the molecule is at certain time “probed”. This means that the
H+

2 has to be dissociated by a second time-delayed laser pulse. This dissociation is
achieved either by further ionizing the H+

2 and, with this, inducing a Coulomb explo-

16The same argument holds for the wave function in momentum space.
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sion17 or by using the second laser pulse to resonantly couple the electronic ground
state to a dissociative state leading to bond-softening (see Sec. 5.1.4). This inten-
sity dependent bond-softening leads to a dissociation of the higher lying vibrational
states. Figure 5.11 (a) shows the result for such a measurement, where the detected
proton distribution C(p, τ) integrated over all detection angles θ as a function of time-
delay τ and proton momentum is depicted. Clearly visible is a fast oscillation with
a period of approximately 26 fs corresponding to the beating of directly neighboring
vibrational states (∆v = 1). The previously discussed de- and rephasing manifests as
a loss and regain of contrast in the measured proton yield. Applying a Fourier analy-
sis, it is possible to determine the frequency contributions to the observed signal. To
this end, we carry out a Fourier transform along the time-delay axis and obtain the
result presented in Fig. 5.11 (b). At the low frequency side of the spectrum with high-
est amplitude, we observe contributions from directly neighboring states (∆v = 1).
With increasing frequency, additional contributions from states with ∆v = 2 begin
to appear. Since the beating frequencies correspond to the energy separations of two
vibrational states, we are able to identify each line and ascribe a pair of vibrational
states to it [see labels above Fig. 5.11 (b)]. We find that the states v = 7 to v = 10

contribute the most to the observed signal. By comparing this finding to Fig. 5.8,
where the Floquet curves for a laser intensity of I = 5.1 · 1012 W/cm2 are shown, we
see that the observed states are the ones energetically located in the formed gap be-
tween the upper and lower Floquet state (in the next section Intensity Dependence and

Intensity Calibration, we learn that the peak intensity in the presented measurement
is indeed I = 5.1 · 1012 W/cm2).

Intensity Dependence and Intensity Calibration

In Sec. 5.1.4 we showed that the field-dressed Floquet states depend on the coupling
laser intensity. Hence, the observed nuclear wave-packet dynamics must also be
intensity dependent. The coupling is a function of the electric field component parallel
to the molecular axis [compare Eq. (5.68)], and we can exploit this feature by selecting
events where the molecular axis was oriented under an angle θ with regard to the
electric field polarization axis. With this, we are experimentally able to post-select
the effective field strength as a function of θ

Eeff
‖ = Epeak · cos(θ). (5.71)

The experimental peak intensity is a priori unknown and is determined by compar-
ing the experimentally obtained data, for parallel oriented molecules, to quantum
simulations using the split-step algorithm described in Sec. 5.1.3. The best results
are obtained for Ipeak = 5.1 · 1012 W/cm2, σIRFWHM = 8.6 fs and λ0 = 752 nm, which

17In the absence of electrons the two protons strongly repel one another and the former molecule
explodes.
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are the peak intensity, the pulse duration TFWHM, and the central wave length λ0

of the coupling laser, respectively. Having fixed these parameters, we compare the
experimental data for different effective field strengths to the corresponding quan-
tum calculations. Figure 5.12 shows the results of the comparison in the frequency
domain, which has the advantage of less time-independent background influencing
it over the time-domain. It should be noted that the parameters were fixed for the

Figure 5.12: Comparison between experimental data and quantum computation. Three different
intensities are shown, which are experimentally selected by choosing the angle θ between the molec-
ular axis and the polarization axis of the laser field. Clearly visible are the lines corresponding to
the beating of neighboring vibrational states (∆v = 1). We obtain very good agreement of the
experiment with the simulation for all three laser intensities.

highest intensity. The lower intensities were calculated from the maximal intensity
by using Eq. (5.71).

Excellent agreement between measurement and calculation is obtained for all inten-
sities. We observe, as expected from the discussion in Sec. 5.1.4, that for increasing
intensities the deeper bound vibrational states are freed. The decrease of momen-
tum with increasing oscillation frequency of the fragments can best be understood
if we consider Fig. 5.6 and Fig. 5.8, which show that for higher intensities the lower
lying vibrational states can overcome the potential barrier. However, as the dissoci-
ation limit does not change for higher intensities, the momentum of the dissociating
particles is smaller for more deeply bound states.
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It should be highlighted (an explanation is delivered later on) that a broadening
of the momentum spread of the individual Fourier lines with increasing intensities
is observed. Besides this, it appears that the Fourier lines corresponding to more
deeply bound vibrational states also experience a more pronounced broadening of
the momentum distribution. This aspect is a key point of the analysis presented in
the following sections.

5.2.3 The Fourier Phase: Footprints of Non-Energy Conserving
Molecular Dynamics on Field-Dressed Potentials

The above presented Fourier analysis of the wave-packet motion and the discussion
of revivals due to the de- and rephasing of a wave-packet in an anharmonic potential,
has been subject to many studies, e.g. [24–27,30,31,184]. In these studies, however,
only the absolute square of the Fourier amplitudes was investigated. Since the Fourier
transform yields a complex signal, the modulus represents only half the information
available. The other half is contained in the phase of the complex number, which
holds the dynamical information of the dissociation process. Figure 5.13 (a) shows the

Figure 5.13: (a) Fourier transform of C(p, τ) depicted in Fig. 5.11 (a). (b) Modulus of Fourier
amplitude (modulus of a complex number) and phase along the column indicated by the black box
in (a). The phase changes by approximately π as a function of the proton momentum.

absolute squared value of the Fourier amplitudes. When a single line’s modulus and
phase (here corresponding to the vibrational states v = (7, 8), indicated by the black
box) is drawn into a one-dimensional plot [see Fig. 5.13 (b)], a proton momentum
dependent phase is observed.
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In order to give an intuitive meaning to this phase it is instructive to apply a
windowed inverse Fourier transform, which transforms a single line of the spectrum
depicted in Fig. 5.13 (a) [such a pair is shown in Fig. 5.13 (b)] back to a time-domain
signal, shown in Fig. 5.14. The process of applying an inverse Fourier transform to
selected frequency parts of a spectrum is called wavelet analysis. The phase change

Figure 5.14: Wavelet analysis of a single Fourier line. The phase has been drawn into the time-
dependent spectrum to make the phase-time correspondence more obvious. The phase is depicted
as a maximum trace of the time-domain signal.

as a function of the proton momentum [see Fig. 5.13 (b)] is essentially equivalent to
a time-delay dependent proton momentum of the distribution (see Fig. 5.14). Know-
ing that in the unperturbed molecular potential the vibrational states have a sharply
defined energy, this time-delay dependent change in the observed momentum is a
first indication of a non-energy conserving process which has to take place in the
dissociation step. As a non-energy conserving process always requires for the time-
translation-symmetry of the Hamiltonian to be broken, we conclude that the cause
has to be the coupling laser initiating the dissociation by time-dependently field-
dressing the PES. Therefore, the phase has to be regarded as the first signature of
non-energy conserving molecular dynamics on field-dressed potential energy surfaces.
It should be noted that the time-domain signal (Fig. 5.14) extracted by the inverse
Fourier transformation now oscillates around zero instead of the average count num-
ber, due to the omission of the DC component. This arises from the inverse Fourier
transform only considering a single beating line while neglecting the non-oscillating
part of the signal (zero frequency part of the signal). This means that the obtained
spectrum represents only the oscillatory part of the true time-domain signal. Phys-
ically, an amplitude of −1 corresponds to the case of minimal dissociation and 1 to
the case of maximal dissociation.
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Having established the wavelet analysis as a mathematical tool to filter out a
time-domain signal with a specific oscillation period, we now have to give a physical
meaning to this time-domain oscillation (see Fig. 5.14). Because it is difficult to
establish the validity of the following statement we simply assert at this point (and
show later):

Assertion 5.2.1 The time-domain signal extracted using the wavelet analysis (a windowed

inverse Fourier transform of a single proton momentum dependent Fourier line) yields a

very good approximation to the oscillatory part of the signal that would have been obtained

in a measurement only involving exactly two isolated vibrational states.

In order to motivate the truth of this assertion we consider the Fourier transform
shown in Fig. 5.11 (b). We find that all significantly contributing Fourier lines can be
uniquely assigned to a pair of vibrational states with ∆v = {1, 2}. Further we know
that the wave function of two vibrational states vi and vj with ∆E = [E(vi)− E(vj)]

is strictly periodic with a period of T = 2π/∆E. This implies that the probing process
must also be periodic with T for this system. We know that any periodic function
with periodicity T can be expanded into a Fourier series

f(t) = f(t+ T ) =

∞∑
n=0

an cos

(
n

2π

T
t+ φn

)
=

∞∑
n=0

an cos (n∆E · t+ φn) . (5.72)

From this it is directly evident that if the asserted statement were not true, we
would expect Fourier components at higher frequencies of multiples n of ∆E =

n [E(vi)− E(vj)], as the wavelet analysis presented above only considers the funda-
mental frequency of the state beating [n = 1 in Eq. (5.72)]. These higher frequency
components are not significantly present in Fig. 5.11 (b).

To justify this argument further, the next section describes a simulation verifying
the discussion presented above. There, we also quantify what is meant by “[...] [the

wavelet analysis] yields a very good approximation [...]”. Only then, with the quantifica-
tion of the quality of the approximation, can the assertion made above be considered
a fact.

Using Wavelet Analysis to Extract the Signal of Isolated Vibrational States

This section quantifies the validity of the assertion 5.2.1. For this, two quantum
simulations are performed: (I) the initial wave packet that is propagated consists
of exactly two vibrational states (exemplary the states v = 8 and v = 9) shown in
Fig. 5.15 (a) and (II) the initial wave function is the complete wave packet (including
all vibrational states according to their Franck-Condon weight) as shown in Fig. 5.15
(b). Figure 5.15 shows the resulting time-delay spectra for both cases. We find
that case (I) is, as expected, strictly periodic with the beating frequency of the two
vibrational states, whereas case (II) features a much more complicated structure. In
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(a) Simulated time-delay spectrum for the two
isolated vibrational states v = (8, 9).

(b) Simulated time-delay spectrum for the com-
plete Franck-Condon wave packet.

Figure 5.15: Left: Time-delay spectrum for case (I), where only two isolated vibrational states are
initially populated. A perfectly periodic signal is obtained. Right: Time-delay spectrum for case
(II), where the complete Franck-Condon wave packet was propagated. Due to the many frequency
components involved in the problem, de- and rephasing of the wave packet is observed.

order to provide evidence for the assertion 5.2.1, we first extract the time-domain
signal of the vibrational state pair v = (8, 9) from the one shown in Fig. 5.15 (b).
We then Fourier transform, the spectrum in Fig. 5.15 (a) to demonstrate that the
beating of the two isolated vibrational states is described very well by the n = 1 term
of the Fourier series [Eq. (5.72)].

In order to perform the first step, we apply the above presented wavelet analysis to
the time-delay spectrum depicted in Fig. 5.15 (b). By selecting the line correspond-
ing to the n = 1 contribution of the states v = (8, 9) we retrieve the time-domain
signal of the two states. As mentioned above the wavelet analysis is not capable of
extracting the constant offset (a strictly positive oscillation always has a zero fre-
quency component), therefore, to be able to compare the extracted signal with the
two-state simulation, we subtract from the spectrum shown in Fig. 5.15 (a) line-
wise (lines of equal proton momentum) the average value (DC offset). Figure 5.16
shows the two results in comparison: left the average subtracted two-state simulation
and right the extracted signal from the time-domain signal. We find that the right
one [simulation case (II)] very accurately matches the left one [simulation case (I)],
which means that the wavelet analysis really extracts a valid approximation to the
time-delay dependent oscillatory spectrum of two isolated vibrational states.

To quantify the deviation from the true signal [Fig. 5.16 (a)] we now perform a
Fourier analysis of the two-state time-domain signal, shown in Fig. 5.17. As expected
[compare Eq. (5.72)] the spectrum consist of Fourier lines with frequencies being
integer multiples of the fundamental beating frequency ∆E of the two vibrational
states. Further we observe that the amplitude of the fundamental beating frequency
is by far the highest. Higher order contributions n = {2, . . . ,∞} only contribute a
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(a) TDSE with only two vibrational states. As
the wavelet analysis cannot reproduce the con-
stant signal offset, the signal was average sub-
tracted to make a comparison easier.

(b) TDSE of full Franck-Condon wave packet
with subsequently applied wavelet analysis of a
single Fourier mode.

Figure 5.16: Comparison of the simulated time-domain signals corresponding to (a) a nuclear wave
packet consisting of only two vibrational states and (b) filtered (wavelet analysis) time-domain
signal, to extract the contribution of two vibrational states to the complete time-domain signal.
Very good agreement is achieved which means that the wavelet analysis indeed reconstructs a
time-domain signal equivalent to one obtained if only two vibrational states were excited by the
pump-pulse.

Figure 5.17: Left: Time-domain signal of a TDSE simulation considering only the two vibra-
tional states v = (8, 9). A periodic function of the delay time is observed. The expected period
of T = 26.4 fs is well reproduced. Right: Fourier transform of the time-domain signal (zero fre-
quency contribution is not shown). As expected, integer multiples of the fundamental frequency
corresponding to ∆E = 0.156 eV/~ are observed. However, we also find that the fundamental fre-
quency has by far the strongest contribution and higher orders only contribute a few percent to the
total time-domain signal. From this we conclude that the time-domain signal caused by probing
two isolated vibrational states is very close to a sinusoidal signal (except for the constant offset).

few percent to the total time-domain signal. This observation ultimately justifies the
assertion 5.2.1, as it means that the wavelet analysis extracts the time-domain signal
of only two vibrational states with an error of only a few percent.
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To conclude, this means that using the above presented wavelet analysis we are able
to filter out the effect two isolated vibrational states have to the total measured signal.
It further allows, in contrast to previously presented works, to directly compare
experimental data to theory on a very fundamental level; the beating signature of
individual vibrational state pairs becomes experimentally accessible. In the next
sections, the advantages of the wavelet analysis to explore fundamental mechanisms
in laser-induced photodissociation is exploited.

5.2.4 Using the Wavelet Analysis to Investigate Laser-Control in
Photodissociation

In this section, we use the above discussed wavelet analysis to extract the signal
of isolated vibrational states in order to obtain detailed insight in the dissociation
process induced by the coupling laser (see the reaction described in Eq. 5.70). For
this, we first review the results obtained by the wavelet analysis shown in Fig. 5.14
and Fig. 5.16 (b). Physically, the featured time-periodic structure corresponds to the
dissociation signal that would be obtained if only two vibrational states were initially
populated by the pump-process. Because the wavelet analysis cannot account for
the constant offset of the dissociation signal as only one Fourier component is used
[which can be written as A cos(ωτ)]. This has the consequence that the oscillation
is symmetric around the zero and the minimal (negative) signal corresponds to the
least and the maximal (positive) signal to the largest dissociation. For each period
of the signal, a decrease of the measured momentum as a function of the time-delay
is observed which we will in the following refer to as a periodic momentum change
or periodic momentum decrease.

Since this periodic momentum change (decrease with increasing time-delay) is a
function of the coupling-laser’s time delay (see Fig. 5.14 and Figs. 5.16), changing
the delay exerts a control over the final proton velocity. The control aspect of the
fragments momentum is of high interest and hence so is a detailed understanding of
its underlying mechanisms.

However, the dissociation reaction involved in many of these control schemes is
very complex in nature, even for the case of H+

2 , as not only many vibrational states
contribute to the final momentum distribution, but in addition two electronic states
are involved in the photodissociation. Further, in the high intensity regime the non-
linearity of the processes renders the outcome very sensitive to the exact intensity
and pulse duration. In order to simplify the description of the system, we employ a
wavelet analysis to reduce the observed time-signal of quantum beating to that caused
by only two individual states. With this, we gain experimental and theoretical access
to one of the most elementary cases of molecular wave packet dynamics where the
molecular motion is described by the superposition of exactly two vibrational states.

Figure 5.18 shows the measured data in comparison to the theoretical calculation
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without the application of a wavelet analysis. Very good qualitative agreement is

Figure 5.18: Comparison of full time-delay spectra of the experiment (top) to the quantum simula-
tion (bottom). Very good qualitative agreement is achieved, but quantitatively comparison remains
difficult.

achieved, but a quantitative comparison remains difficult. This is partly due to
the time-independent background of the measured spectrum which is, among other
effects, caused by experimental inaccuracies as well as incoherence effects, e.g. the
finite excitation time in the pump step.

The application of the wavelet analysis allows for a more detailed comparison of
the experimental data with the simulations. The results for three different pairs of vi-
brational states, namely v = (6, 7), v = (7, 8) and v = (8, 9), are shown in Fig. 5.19 (left
column features the measurement and the right one the simulation). This comparison
shows that the coherent part of the wave packet dynamics is very well reproduced.
However, small deviations between the theory and the experiment persist and have
to be assigned to the fact that the experimental conditions are not perfectly known.
One of the main problems is that the coupling-laser pulse cannot be characterized
precisely and in the simulation a Gaussian pulse is assumed. These factors may
explain the difference between the experimental results and the calculated data.

Let us now come back to the time-dependence of the observed spectra. For all
three state pairs a periodic change of the momentum of the observed proton is found
with increasing time-delay. This means that by varying the time-delay of the control-
pulse, we can influence the final momentum of the dissociating proton for each pair
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Figure 5.19: Left column: Wavelet analysis for the vibrational state pairs v = (6, 7), v = (7, 8) and
v = (8, 9) of the experimental data. Right column: Same as left for the theoretical calculation.
Very good agreement of the quantum calculation to the measurement is obtained. With the wavelet
analysis a quantitative comparison of theory and experiment becomes possible. Because of the
inverse Fourier transform involved in the process omitting the DC component of the spectrum, the
time-domain signal oscillates between −1 and 1. The negative value −1 correspond to the case of
minimal dissociation and 1 to the maximal dissociation.

of vibrational states18.

Having established the time-delay dependence for multiple vibrational state pairs,
we now investigate the intensity dependence of the final proton momentum. For
this consideration we choose the vibrational state pair v = (8, 9) because it exhibits

18It should be noted, that the conducted experiment does not populate the vibrational state pairs
selectively, which is why a control of the kinematics of individual states cannot be achieved. Only
for time-delays where the complete wave packet rephases (revival) [see Fig. 5.18 (top)] does the
time-domain signal become clearly delay dependent. For this time-delay region a control over
the dissociation kinematics (final proton momentum) is possible. However, the aim here is not
to control the dissociation kinematics, but to understand the mechanisms allowing to influence
the reaction dynamics.
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a pronounced time-delay dependence for high intensities and in addition it is, in
contrast to more deeply bound vibrational states, dissociated even by weak coupling-
laser fields. Changing the laser-intensity is achieved by selecting different angles θ
between the molecular axis and the polarization axis of the electrical field. Again,

Figure 5.20: Left column: Measured proton signal corresponding to the vibrational state pair v =
(8, 9) as a function of the delay and momentum. For increasing intensity the proton momentum
spread broadens. Right column: Same as left, but for the quantum simulation. A broadening of
the observed momentum for increasing intensity is clearly visible. Therefore, with increasing laser
intensity the influence on the final proton momentum becomes larger.

the transition’s selection rules allow only the electric field component parallel to the
molecular axis to induce the electronic transition. Therefore, by changing the selected
angle θ (between the molecular axis and the polarization axis) the effective field
strength is changed. Here we have again chosen the same angles and, hence, the same
intensities, as previously in Sec. 5.2.2 Intensity Calibration, namely I = 5.1·1012 W/cm2,
I = 2.5 · 1012 W/cm2 and I = 4.5 · 1011 W/cm2. Figure 5.20 shows the results of the
intensity scan for the experimental data (left column) and for the calculation (right
column). We find that with decreasing intensity the time-delay dependent control
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over the final proton momentum becomes weaker and almost vanishes for the lowest
intensity. This is expected, as with a reduction of the laser intensity the time-
dependent part of the Hamiltonian decreases in amplitude. In terms of the dressed
PES this means that the avoided crossing opens less and thus the dissociation process
becomes less non-linear. Therefore, this decrease of intensity performs the transition
from a control-scheme to a traditional pump–probe scheme, in which a perturbation
of the wave function by the coupling laser is an unavoidable need.

Despite being able to compute and excellently predict the behavior of the exper-
iment through coupled-channel quantum calculations, we have so far not learned
much about the mechanism changing the proton’s final momenta. In order to ad-
dress this issue, we present a semi-classical model in the next section which allows for
an intuitive interpretation of the experimentally and theoretically obtained results.

5.2.5 Description of Control-Process by a Semi-Classical Model

In this section we introduce a semi-classical model which has the purpose of explaining
the observed time-delay dependence of the measured proton fragments [see Fig. 5.19]
in terms of a classical mechanism. It is clear that a classical particle in a potential is
in general no substitute for a quantum mechanical simulation, as it cannot account
for many observed effects. However, defining a suitable range of application such
that the features of an observation can be reproduced is often very instructive, as
it yields a physical interpretation of the process under investigation, which is the
purpose of the model presented.

The semi-classical description which is going to be used throughout this section,
regards the nuclei as classical particles on the field-dressed molecular PES. By solving
Newton’s equations the motion on the PES can be calculated.

In contrast to the classical description of the nuclear motion, the interaction of
the laser field with the molecular potential curves has to be described quantum
mechanically, as we have seen in Sec. 5.1.4. As a result, combining the classical
particle propagation with the quantum mechanical effects of field-dressing of PES
yields a semi-classical description.

One of the key features of a classical particle in the one-dimensional binding po-
tential of the H+

2 molecule is that the periodic trajectory is completely determined
by the initial position and velocity of the particle. Since in the absence of a laser
field the anharmonic potential is energy conservative (time independent), it is clear
that the classical oscillation period has to be a function of the total energy

E = p2/2m+ V (R) (5.73)

of the particle. As the semi-classical model shall describe the molecular motion
induced by two neighboring vibrational states, we choose a total energy for the par-
ticle corresponding to the average energy of the two neighboring (∆v = 1) vibrational
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states

E =
E(vi) + E(vi+1)

2
. (5.74)

This causes the classic particle to oscillate with a period very close to the quantum
mechanical oscillation period of a wave function consisting of these two vibrational
states

T =
2π

∆E
=

2π

E(vi+1)− E(vi)
. (5.75)

In reality, the energy of a classical particle causing an oscillation period of T = 2π/∆E

does not exactly correspond to the average energy of the two vibrational states, but
rather the energy E solving the following equation

T = 2

x2∫
x1

m√
2m[E − V (x)]

dx =
2π

E(v2)− E(v1)
(5.76)

with x1 and x2 being the turning points of the classical particle’s motion and, hence,
the two roots x1,2 of

V (x)− E = 0. (5.77)

Because
p =

√
2m[E − V (x)] (5.78)

is identified to be the classical momentum p of the particle, the left-hand-side of the
equation is nothing but the classical oscillation period, whereas the right-hand-side
corresponds to the quantum mechanical oscillation period. The numerical solution (a
derivation of an analytical expression is rather involved) for the case of the H+

2 (X 2Σ+
g )

potential yields an energy E very close to the average energy specified in Eq. (5.74)
which validates our choice.

Being able to extract the contribution of isolated pairs of vibrational states from
the data presented above via wavelet analysis and to reproduce the oscillation period
of these two states by means of a semi-classical model, allows to further extend this
simulation to the case where a coupling laser is present. For the laser intensities
considered in this work only the 1ω avoided crossing opens (see Fig. 5.6). Therefore
we propagate the classical particle on this time-dependent laser induced PES as
shown in Fig. 5.22 (blue (time-dependent) surface). If the crossing opens at a time
where the classical particle reaches the coupling region, the particle may overcome
the potential barrier and the molecule dissociates. Otherwise it remains bound and
continues to oscillate in the unperturbed H+

2 (X 2Σ+
g ) potential.

When the conditions are such that the molecule has dissociated, we can determine
the final momentum and plot this as dotted lines (as a function of the time-delay) into
Fig. 5.21. As in the experimental data and the quantum simulation, we again find
a time-delay dependence (a periodic decrease) of the resulting proton momenta. It
appears that the semi-classical model not only qualitatively reproduces these results,
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but also yields acceptable quantitative predictions. From this we conclude that the
mechanism responsible for influencing the proton momentum as a function of the
time-delay τ is also included in this simple description.

We are now in the position to use Fig. 5.22 to obtain an intuitive picture of the
mechanism leading to the periodic decrease of the proton momentum as a function of
the time-delay. Figure 5.22 illustrates the deformation of the potential induced by the
coupling laser as a function of time and presents three different possible dissociation
trajectories. By comparing the trajectories we see that for large time-delays (take a
look at the arrow labeled τ = 15 fs) the particle climbs the potential barrier while the
laser intensity increases. With increasing laser intensity, the height of the potential

Figure 5.21: Left column: Wavelet analysis for the vibrational state pairs v = (6, 7), v = (7, 8) and
v = (8, 9) of the experimental data. Right column: Same as left for the theoretical calculation.
In addition to Fig. 5.19 the results of the semi-classical model are shown as black dotted lines. A
very good quantitative agreement between the measurement, the quantum calculation and the semi-
classical model is achieved. The semi-classical model does not make a prediction for the vibrational
state pair v = (6, 7), because for the shown laser intensity of I = 5.1 · 1012 W/cm2 the molecule is
classically not dissociating.
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Figure 5.22: Illustration of the semi-classical model. The laser-induced potential energy curve on
which the classical particles propagate is shown as blue surface (spanned by the reaction coordinate
R and the time). For large laser intensities, the potential energy surface is lowered (as a function
of time). This time dependency is responsible for the change of the final proton momentum. This
is illustrated by three semi-classical trajectories (orange arrows), which are labeled to indicate the
corresponding time-delay of the coupling laser. In the background, the lower (blue) and upper (red)
laser induced potential energy curves are shown for the maximum electric field strength. In the
coupling region (curve crossing) the states become maximal distorted.

barrier starts to decrease and hence the particle loses energy. On the other side
of the potential, the particle again starts to accelerate, but the PES continues to
decrease further lowering the total energy of the particle. After the particle has
left the interaction region, the laser pulse intensity decreases, though, it no longer
influences the dynamics of the particle. Since the particle lost energy during the
dissociation, the final momentum is the lowest observed. The opposite case occurs
for smaller time delays (compare arrow labeled τ = 0 fs) when the particle traverses
the interaction region while the intensity of the pulse is already decreasing. In this
case, the barrier rises and the particle is elevated, gaining energy. Here, the final
momentum is the largest, which is in agreement with the conduced experiment.

This up and down motion of the PES in the vicinity of the coupling region, de-
pending on the laser intensity, can be viewed as an elevator. When the particle enters
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the elevator in its up-going phase, it gains energy. In contrast, when it enters the
elevator going down (increasing intensity) it loses energy.

Another way of viewing the gain/loss of energy is depicted in Fig. 5.23 where

Figure 5.23: Alternative illustration of the elevator mechanism. The classical particle is shown for
six time-positions (t1-t6). To show the elevator mechanism, the inset of the figure features the
change of the field-dressed potential energy curve as a function of time (and therefore position of
the particle). While the particle dissociates it is elevated by the potential energy curve and gains
potential energy which manifests in a raised final proton momentum. The case where the particle
losses energy is not illustrated (refer to Fig. 5.22).

the position of the classical particle is shown for six different times. The inset in
the figure illustrates the energy gain when the particle traverses the PES, while the
barrier height increases. The elevator mechanism occurs predominantly within the
region highlighted by the yellow circle in Fig. 5.23.

The semi-classical model presented above therefore allows the interpretation of the
observed dynamics in a very intuitive way, which we dub the “elevator” mechanism.
Here, the particle’s potential energy is dynamically changed while traversing the
coupling region. This change of potential energy ultimately manifests in a time-
delay dependent final state proton momentum.
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5.3 Brief Chapter Summary and Conclusion

In conclusion, by selecting the angles of the molecular axis with respect to the polar-
ization of the coupling laser field, it is possible to select the effective intensity of the
coupling laser. With this, the transition between the energy conserving dissociation
dynamics to the non-conservative regime can be followed. Further, by selecting indi-
vidual Fourier components, the vibrational dynamics of H+

2 induced by the excitation
of only two vibrational states has been observed. This allows the investigation of the
most simple laser-induced molecular dissociation dynamics of a nuclear wave packet
consisting of only two vibrational states. The TDSE calculation is, for all coupling
laser intensities, in excellent agreement with the experimental results. Using this
result and by employing a semi-classical model, it was possible to explain the dy-
namics involved in the dissociation process. It was shown that for strong fields the
nuclei’s kinetic energy is significantly changed during the dissociation process due
to a semi-classical “elevator” effect. As molecular hydrogen, given its small mass, is
the most quantum-dynamically behaving system, the accuracy of such an approach
for predicting the momentum distributions of the fragments also supports the valid-
ity of the semi-classical treatment of larger molecules, where a complete quantum
mechanical description fails due to the system’s complexity.



6 Summary and Outlook

As a part of this thesis experiments were carried out and confirmed by calculations in
which the interaction of laser light and hydrogen molecule’s was investigated. In order
to provide photon energies which are sufficiently high to ionize or even doubly excite
the H2, we employ the high-order harmonic generation process creating attosecond
pulse trains. The photon energies lie within the range from approximately 16 eV

to 40 eV (XUV radiation). Optionally, in order to be able to manipulate the ionic
system following the ionization, a second infrared laser can be temporally delayed and
overlaid with the XUV pulse. The time-delay is introduced by a piezo-driven delay
stage which is part of a Mach-Zehnder type interferometer. The charged products
of the dissociative ionization reactions were observed using a reaction microscope.
With its unique capabilities the reaction microscope is able to coincidentally detect
all charged particles created in a reaction with a solid angle close to 4π. Further,
for processes where only a single neutral fragment is created the conservation of
momentum additionally allows to reconstruct the corresponding momentum vector.
With this it is possible to investigate the dissociative single-ionization of molecular
hydrogen as it was done in this thesis.

The experiments conducted in this work can be split in two parts: (I) single-photon
induced dissociative ionization of H2 and (II) pump–probe investigations of the laser
induced dissociation of H+

2 molecules. The focus of the results presented in first
part lies on the doubly-differential observation of a localization effect of the bound
electron of the H+

2 ion with respect to the emitted photoelectron. The effect is well
explained using an intuitive semi-classical model and further confirmed by full quan-
tum calculations which have been carried out by the group of Fernando Mart́ın. The
asymmetry is then employed in a novel technique to disentangle reaction pathways
with which the lifetime of the energetically lowest doubly-excited Q1

1Σ+
u state can be

determined. These results are described in Chap. 4. In the second part XUV-pump
pulses are used to ionize molecular hydrogen in order to prepare nuclear wave packets
in the binding ground state of the H+

2 ion. By using a second time-delayed IR-probe
pulse the molecule is subsequently dissociated. A time-delay dependent momentum
for the created protons is observed. Applying a Fourier analysis technique we are
able to observe the dissociation dynamics for isolated pairs of vibrational states. By
employing quantum calculations as well as a semi-classical model, we can explain the
mechanism that leads to the time-delay dependence of the fragments momenta in an
intuitive way. The results are described in Chap. 5.



130 6 Summary and Outlook

Summary Part (I): Electron Localization Involving Doubly Excited States in
Broadband Extreme Ultraviolet Ionization

The absorption of a high energetic XUV photon by H2 leads to a manifold of different
reaction scenarios (see Sec. 4.2). The dominant process is with 98% the creation of a
stable molecular hydrogen ion. For photon energies above the threshold of 18.1 eV, in
the ionizing transition to the H+

2 (X 2Σ+
g ) electronic state about 2% of the vibrational

states occupied are continuum states, which lead to a dissociation of the molecule.
This process is referred to as ground-state dissociation yielding slow, and thus, low
energetic protons.

Energetically above the H+
2 (X 2Σ+

g ) electronic state many dissociative (repulsive)
ionic as well as doubly-excited states exist. Since the doubly-excited states are em-
bedded within the single-autoionization continuum they quickly autoionize due to
electron-electron interactions. Further, as the dissociation occurs on the same time-
scale as the autoionization, excitation to the doubly-excited states contributes signif-
icantly to the ionization cross-section as well as to the dissociative ionization cross-
section. The availability of a resonant and a non-resonant channel causes strong inter-
ference effects, which lead in the case of atoms to the famous Fano line shapes [103].
These line shapes contain important information such as lifetime of the excited states.
In contrast, for H2 due to the dissociative motion the Fano line shapes are not ob-
servable. However, the interference manifests as an observable electron localization
in the molecular frame for which a fully coincident and kinematically complete exper-
iment is required. In order to be able to construct the molecular frame an event-wise
transformation has to be applied to the measured momentum vectors which requires
a fully coincident and kinematically complete experiment.

The localization was measured doubly-differential in the electron kinetic energy as
well in the proton kinetic energy (see Sec. 4.3). Only with such an approach is it
possible to obtain a thorough understanding of the mechanisms responsible for the
localization. As an explanation to the observed asymmetry we find that the quantum
mechanical result of the two dissociation pathways can be described by means of an
entangled wave function describing the bound electron as well as the photoelectron
[see Eq. (4.34)]. By projecting the entangled wave function using an appropriately
chosen projector a simple expression describing the asymmetry is readily derived. In
order to give theoretical proof, in this thesis a differential1 semi-classical model is
used which exploits the WKB approximation. With this it is possible to explain the
origin of the observed asymmetry in terms of the nuclear motion on the molecular
potential energy curves. A very good agreement with the semi-classical calculations
as well with a fully quantum mechanical computation (group of Fernando Mart́ın) is
achieved.

In a second step, with a working semi-classical model at hand the determination

1The model is differential in terms of kinetic energy release of the nuclei as well as in the photo-
electron energy.



131

of the lifetime of the contributing doubly-excited state is possible (see Sec. 4.4). For
this we use the interference signal which is described by the asymmetry amplitude
to disentangle the contributions of the two channels. This allows the determination
of the autoionization lifetime of the energetically lowest doubly-excited Q1

1Σ+
u state

for an experimentally unprecedented large range of internuclear distances. A lifetime
as a function of the internuclear separation between 400 as and 1 fs is obtained.

Summary Part (II): XUV-Pump IR-Probe Investigation of Molecular
Wave-Packet Dynamics on Laser-Induced Transition States

As mentioned above, the dominating ionization channel induced by a single photon
is a transition to the H+

2 (X 2Σ+
g ) state which which is the electronic ground state of

the molecular hydrogen ion. The ion is prepared in a superposition of various vibra-
tionally excited states according to the Franck-Condon principle. As the excitation of
the vibrational states happens coherently, an initially localized wave packet is formed
which starts to evolve in time. The conceptual ideas behind the formation of wave-
packets are conveyed in Sec. 5.1.1. Using a second, time-delayed infrared laser pulse
the molecule is subsequently dissociated by coupling the H+

2 (X 2Σ+
g ) to the H+

2 (A 2Σ+
u )

state. With this it is possible to resolve the ultrafast vibrational dynamics of the
molecular hydrogen ion. In the measurement a delay range of 1200 fs was scanned,
which allows to analyze the wave-packet dynamics in terms of a frequency analysis
using the Fourier transformation with a very high resolution of 3.4 meV/~.

Employing a windowed inverse Fourier transform it is demonstrated that the ef-
fect of isolated pairs of vibrational states can be analyzed. This approach drastically
reduces the complexity of the investigated system. This allows to investigate the dis-
sociation dynamics of the molecule on an extremely fundamental level, namely the
nuclei’s propagation on the laser induced transition state. The experiential results
show a time-dependent momentum distribution of the measured protons. This is
caused by the strong action of the coupling laser field. In order to further analyze
the mechanism leading to the time-dependence, quantum calculations have been per-
formed as part of this work which are in excellent agreement with the experimental
data. In order to identify the acting mechanisms a semi-classical model which treats
the effects of the laser onto the potential curves in the Floquet picture was developed.
In this, the particles are propagated by solving Newton’s equations of motion where
the acting forces are given by the field-dressed (Floquet picture) potential energy
curves. It is surprising that this classical approach is capable of not only predict-
ing the momentum distributions of the protons qualitatively but also quantitatively.
With this model it is possible to identify the mechanism responsible for the delay
dependence of the proton’s momenta as a classical “elevator”. Essentially the “ele-
vator” is the time-dependent potential energy curve of the laser induced transition
state which changes as a function of the laser’s electric field envelope. This time
dependence of the potential energy curve increases or lowers the nuclei’s energy as



132 6 Summary and Outlook

they move on the potential curve. Thus the “elevator” is capable of increasing or
decreasing the fragments’ kinetic energy in their final state.

The validity of the above described semi-classical model for the lightest, and hence
the most quantum mechanical system, indicates a broad applicability in quantum
chemistry. It could for instance be used to predict and describe quantum control
processes in larger molecules, where a quantum mechanical treatment is not possible.
However, even shedding much light on the dissociation dynamics on a very funda-
mental level, so far we only have limited control over the reaction kinematics. This is
due to the fact, that the XUV excitation populates many vibrational states and not
just an isolated pair. It is therefore plausible that in future experiments employing
theoretically described laser-induced vibrational state redistribution methods [185]
will permit the preparation of wave packets of only two vibrational states. For such
a system, the mechanism described here would allow a well controllable scheme for
a targeted influencing of photochemical reactions.



A Atomic Units

Throughout this work atomic units are used (abbreviated as a.u.), as these simplify
numerical calculations performed for atomic systems and are therefore often used
in atomic physics. These atomic units are obtained by setting Planck’s reduced
constant ~ = h/2π, the electron mass me, the elementary charge e and Coulomb’s
constant ke = 1/4πε0 to unity (i.e. ~ = me = e = ke). Obviously, introducing this
definition has an impact on other constants as well, e.g. the speed of light becomes
c = 1/α ≈ 137 a.u. and the proton mass can be expressed as mp ≈ 1836 a.u.. Further,
with this definition it is often important to convert from SI- to atomic-units, therefore
a table showing conversion factors is given at this point (see Tab. A.1). Throughout

Table A.1: Conversion factors from atomic- to SI units, based on the data given in Ref. [186].

Dimension Value SI units Value in other common unit

Time 1 a.u. = 2.418884326502(12) · 10−17 s
Length 1 a.u. = 0.52917721092(17) · 10−10 m 1 a.u. = 0.52917721092(17) Å
Force 1 a.u. = 8.23872278(36) · 10−8 N 51.4220652(11) eV/Å

Energy 1 a.u. = 4.35974434(19) · 10−18 J 1 a.u. = 27.21138505(60) eV
Momentum 1 a.u. = 1.992851740(88) · 10−24 kg m/s

Velocity 1 a.u. = 2.18769126379(71) · 106 m/s

Angular Momentum 1 a.u. = 1.054571726(47) · 10−34 Js
Mass 1 a.u. = 9.10938291(40) · 10−31 kg

Electric Field 1 a.u. = 5.14220652(11) · 1011 Vm 51.4220652(11) V/Å

this work, for the intensity I of an electric field with peak field strength of E = 1 a.u.

the value I = 1/2ε0cE
2 = 3.51 · 1016 W/cm2 is used.

When taking a look at the Bohr model, it becomes evident that atomic units
are “custom made” to describe the atomic world. Considering an electron in the
electronic ground state of the hydrogen atom then it has an ionization energy of
1/2 a.u., the velocity of 1 a.u., the angular momentum of 1 a.u. and an orbit period of
2π a.u., where the orbit radius is 1 a.u..
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Experimentalphysik 3: Atome, Moleküle und Festkörper,
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Coulomb Explosion and Intense-Field Photodissociation of Ion-Beam H+

2 and D+
2 ,

PhD Thesis, Ludwig–Maximilians–Universität Müunchen, 2004.
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