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1 Introduction

This introduction presents that part of the critical points theory, which interacts
with our research and the position of this work on the genealogical graph of this
theory. We use the term graph, instead of the more familiar tree, to emphasize the
relevance of the graph theory in our work.

In 1934 during their research in the calculus of variation, Lusternik and Sch-
nirelmann [16] introduced a new numerical topological invariant (the Lusternik-
Schnirelmann category), showing that it carried important information about both
the existence of critical points and the cardinality of the critical set. In the six-
ties the Lusternik-Schnirelmann theory of critical points was extended to Hilbert
manifold by Schwartz [27] and to Banach manifolds by Palais [23]. The motivation
for considering critical point theory in the context of infinite dimensional manifolds
comes from the immediate applicability of results to proving existence theorems in
the calculus of variations. Then, in 1968, Takens [33] considered finite dimensional
manifolds with boundary and functions which are constant regular and maximal
on boundary. This article will play a central role in our work. A different direc-
tion of research was stimulated by the survey of I.M. James [13] from 1978. His
comprehensive review put definitively the accent on the Lusternik-Schnirelmann ca-
tegory giving to homotopy theorists the invitation to introduce and develop many
variations of the Lusternik-Schnirelmann category. These invariants became an out-
standing research subject and later, in 1995, another survey was necessary for the
updating (James, [14]). This development distracts the attention from the original
problem. Here we present it in a simplified way leaving out details: let M be a
smooth compact manifold and f : M → R a smooth function. By crit(f) we denote
the number of critical points of f , i.e. the cardinality of the critical set Kf of f .

Assume f has a finite number of critical points. Than the first numerical question
about the crit(f) concerns its magnitude. An estimation of crit(f) is given by the
famous Lusternik-Schnirelmann theorem:

cat(M) ≤ crit(f),

where cat(M) is the L-S category. But is the L-S category cat(M) of M the minimum
of the set

{crit(f) | f ∈ C∞(M)}?
In order to find manifolds with this property Takens introduced in 1968 the

notion of F. category. For closed manifolds, the F. category F (M) of M is exactly
the minimum of {crit(f) | f ∈ C∞(M)}. Instead of F (M) we prefer the notation
crit(M) as in [5] and we call it simply the “crit”. Information about this notion are
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scarce and the list of open problems very long. The aim of this thesis is to analyze
the general properties of crit and to compute it for some particular manifolds.

The paper of Takens was an isolated effort to characterize crit(M) until 1998
when Cornea “destroyed” the tree structure of the numerical critical point theory
(see the figure) introducing a cycle in the graph. He associated to a manifold with
boundary W (with fairly general properties) an invariant of L-S category type, the
cone-length Cl(W ) of W. Then using methods of surgery he constructed a function
on W constant regular and maximal on ∂W with at most Cl(W )+1 critical points.

Similar problems for functions with non-degenerate critical points could be solved
using the Morse theory (see Milnor [18] or Hajduk [10]). In this case the manifold
has the homotopy type of a CW-complex with precisely one cell for each critical
point. This is a better result, but the assumption of non-degeneracy is inconvenient
since we are interested in the function rather than in the manifold. Inspired by
Takens paper [33] and the Morse theory in the Smale setting [19], [30], [31] we
return to the original question about the minimal number of critical points for a
smooth function on a manifold and we analyze the crit for products of manifolds.
For the Lusternik-Schnirelmann category cat we know that

cat(N ×Q) ≤ cat(N) + cat(Q)− 1

for any connected manifolds N and Q. In this thesis we mainly analyze whether the
previous inequality remains true for the crit. Using concepts from the graph theory
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we can give some positive answers. For instance if Sn is the n-dimensional sphere
and the dimension of M is at most 7 than

crit(M × Sn) ≤ crit(M) + 1.

In chapter 2 we introduce a generalization of the category in the sense of Lus-
ternik-Schnirelmann. This new concept unifies many different notions: the L-S
category, the strong category, the ball category, etc. Exploiting the advantages
of the axiomatic definition of the generalized Lusternik-Schnirelmann category we
prove that the ball category bcat (recall cat(M) ≤ bcat(M)) is a lower bound for
the number of the critical points of a function. This result is used in the chapter 4
to compute the crit of some closed manifolds. In chapter 3 the fusing lemma gives
sufficient conditions whether we get from a triad function with two critical points a
triad function with at most one critical points. The analogue of fusing lemma for
non-degenerate critical points is the cancellation lemma (see [24]). Using the fusing
lemma we prove a first proposition about the crit for the product of some class of
manifolds. To extend this result, in chapter 5 we define and characterize different
graphs attached to a function with a minimal number of points (a function f with
crit(f) = crit(M)). Then we can apply (in chapter 7) the extending fusing lemma
(from chapter 6) in order to obtain upper bounds of crit for the product of a bigger
class of manifolds.

Chapter 7

Chapter 4 Chapter 5 Chapter 6

Chapter 2 Chapter 3

? ?

?
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2 The Lusternik-Schnirelmann theorem for the

ball category

In this chapter we try to find a category which is a better lower bound for the
number of critical points of a function than the Lusternik-Schnirelmann category.
The Lusternik-Schnirelmann category cat(X) of a space X is the smallest number
k such that there is a closed covering {X1, . . . , Xk} of X for which each Xi is
contractible in X. The motivation for introducing this concept was the fact that it
gives a lower bound for the number of critical points of a function. More precisely, in
their study of the “calculus of variations in the large” Lusternik and Schnirelmann
[16] proved the following:

Theorem 1. If M is a closed smooth manifold and f is a smooth function on M
then the number of critical points of f is at least cat(M).

This is the result we want to extend. The previous generalizations followed two
main directions:

(a) the manifold M gets a more general structure. Schwartz [27] generalized the
Lusternik-Schnirelmann theorem to Hilbert manifolds, Palais [23] extended it
to Finsler manifolds and more recently Szulkin [32] considered C1 manifolds.

(b) the class of differentiability of the function f (and implicitly of M) get larger
and larger. Palais [23] already considered C2− functions (C1 functions whose
derivative are locally Lipschitz), then the theory evolved very fast via the
Clark’s subdifferential and finally Corvellec, Degiovanni and Morzocchi [6],
[7] considered even metric spaces in order to prove a theorem of Lusternik-
Schnirelmann type for the “critical” points of a continuous function.

Our direction of research is different: we are looking for another (better than
cat) lower bound for the number of critical points of f denoted by crit(f). We prove
for a closed smooth manifold M of dimension n ≥ 1 and a smooth function f on M
that the ball category bcat(M) of M (and implicitly the strong category scat(M)
because scat(M) ≤ bcat(M)) is a lower bound for crit(f).

The ball category bcat(M) and the strong category scat(M) of M have a similar
definition as the Lusternik-Schnierelmann category cat(M) of M : it is the smallest
integer k such that M can be covered with k open n-balls (or equivalently, with k
open subsets homeomorphic to Rn) respectively with open subsets of M which are
contractible in themselves. Results about the ball category may be found in Singhof
[29] or Montejano [21], details about the strong category from a new perspective in
Clapp and Puppe [4].
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C. Gavrila 2 The Lusternik-Schnirelmann theorem for the ball category

To get a better lower bound of the critf we introduce an abstract notion, the
generalized category of a topological space X. The generalized category λcatIX of
the space X must satisfy the property of non-triviality, monotonicity, sub-additivity
and invariance under the space of mappings

I ⊆ DefId(X) = {ϕ ∈ C(X × [0, 1], X) | ϕ0 = Id}.

The space of mappings I in the definition of λcatIX is different from a problem
to the other and must be adapted to the properties of the space X (smoothness,
non-compactness, etc) in order to obtain the category which gives the best infor-
mation about the number of critical points for functions defined on X. For smooth
manifolds, I can be chosen the space of diffeotopies, denoted Diff.

We sacrifice the generality and restrict our research to M a closed finite dimen-
sional smooth manifold and to smooth function on M. The others possible extensions
(for Finsler manifolds, manifolds with boundary, continuous functions, etc.) would
take the volume of another thesis. Therefore unless otherwise stated, in this chapter
a manifold M is assumed to be smooth and to have finite dimension. The main
theorem about the number of critical points will have the following aspect:

Theorem 2. Let M be a closed manifold and f : M → R be a smooth function.
Then the function f has at least bcat(M) critical points.

1. The generalized category
To prove the Lusternik-Schnierelmann theorem for the ball category we introduce

a general notion of category.

Definition 2.1. Let X be a topological space and I ⊆ DefId(X). A non-negative
integer valued function λcatIX defined on the power set of X is called a generalized
category relative to I if it satisfies the following conditions:

(1I.) (Non-triviality) λcatIX(A) = 0 iff A = ∅.
(2I.) (Monotonicity) if A ⊆ B ⊆ X then λcatIX(A) ≤ λcatIX(B).

(3I.) (Sub-additivity) for each A,B ⊆ X holds the inequality

λcatIX(A ∪B) ≤ λcatIX(A) + λcatIX(B).

(4I.) (Invariance under deformations) if ϕ ∈ I and A ⊆ X then

λcatIX(A) ≤ λcatIX(ϕ1(A)).

The generalized categories we use are mostly well known, but there are also some
new ones.
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Example 2.2. 1. Let A ⊆ X. The Lusternik-Schnirelmann category catX(A) of A
in X is the smallest integer k such that A can be covered by k closed subsets of X
each of which is contractible in X. Evidently cat(X) = catX(X).

If I ⊆ DefId(X) then the Lusternik-Schnirelmann category is a generalized
category relative to I. The first three condition of the definition of the generalized
category are trivialy satisfied. The last one (4I) is easy to verify but we nevertheless
prove it because it always appears in the literature for A closed and ϕ a deformation
of A in X. Let ϕ1(A) ⊆ B1 ∪ . . . ∪ Bk, each Bi closed and contractible in X. If
Ai = ϕ−1

1 (Bi) then Ai is closed in X and A ⊆ A1 ∪ . . . ∪ Ak. Since ϕt | Ai is
a deformation of Ai into Bi and Bi is contractible in X, Ai is contractible in X.
Therefore catX(A) ≤ catX(ϕ1(A)) = k.

Remark 2.3. If X is an ANR (for the definition of an ANR see Dold [8]) then the
previous definition of the Lusternik- Schnirelmann category is equivalent to the one
with open coverings instead of closed coverings. Both are generalized categories
relative to I; even the definition of Lusternik-Schnirelmann category with arbitrary
coverings instead of closed coverings generates a generalized Lusternik-Schnirelmann
category relative to I.

2. If I ⊆ Iso(X) the space of isotopies of X then the strong category scat with
the usual definition is a generalized category relative to I.

3. If I ⊆ Iso(X) then the covering dimension dimX defined for subsets of X is
a generalized category relative to I.

4. If I ⊆ DefId(X) and J ⊆ Iso(X) and p is a positive integer than p · cat and
p · scat are generalized category relative to I respectively relative to J .

The great advantage of the generalized category is that it gives a unitary handling
for the different definitions of categories. For instance we do not need to differentiate
between the definition for a categories with open coverings and with closed coverings.

2. Generalized categories for closed manifolds
Let M be a closed manifold. According to the differential structure of a manifold,

the natural candidate for I is the subspace Diff(M) of Iso(M), consisting of the dif-
feotopies of M. A diffeotopy ϕ of M is smooth path in the group of diffeomorphisms
Diff(M), starting at the identity, i.e. a smooth application

ϕ : M × [0, 1] → M,

ϕ(x, t) = ϕt(x)

such that
{

ϕt ∈ Diff(M) for each t ∈ [0, 1]
ϕ0 = idM .

Then a generalized category λcatDiff
M relative to Diff(M) satisfies the properties

(1Diff(M)), (2Diff(M)), (3Diff(M)) and
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(4Diff(M).) (Invariance under diffeotopies) if ϕ is a diffeotopy and A ⊆ M then

λcatDiff
M (A) ≤ λcatDiff

M (ϕ1(A)).

Let f : M → R be a smooth function on M . We want to find a lower bound for
the number of critical point of f denoted by crit(f).

For each c ∈ R let

Mc = f≤c = {x ∈ M | f(x) ≤ c}

and for each positive integer m ≤ λcatDiff
M (M) define

cm(f) = inf{c ∈ R |λcatDiff
M (Mc) ≥ m}.

A part of the values cm are critical values of f . To show this fact we need
some results known in the literature as the non-critical interval theorem and the
deformation lemma. The results are adapted from Palais [23] for our aim in the
following:

Lemma 2.4. Let M be a closed manifold, f : M → R a smooth function and c ∈ R.
(1) If c is a regular value of f then for some ε > 0 there is a diffeotopy ϕ of M

with ϕ1(Mc+ε) ⊆ Mc−ε.
(2) If c is a isolated critical value of f then for any neighborhood U of the set

of critical points of f in the level c there is ε > 0 and a diffeotopy ϕ of M with
ϕ1(Mc+ε \ U) ⊆ Mc−ε.

Proof. Palais proved in [23] for f a C2− function on a complete C2 Finsler
manifold without boundary the existence of a isotopy with the qualities required by
part (1) respectively by part (2) of the lemma. Now, f is a smooth function on M
a closed smooth manifold and therefore we get a smooth (instead of a C1−) pseudo-
gradient vector field on M. This is the fundamental argument for the existence of the
diffeotopy ϕ and the proof of this lemma may repeat verbatim the proof of Palais.♣

The function f , defined on the compact manifold M , possesses a minimal value
denoted by min f . The next theorem give us the first information about the critical
values of f.

Theorem 3. For each

m = λcatDiff
M (f−1(min f)), . . . , λcatDiff

M (M),

the value cm(f) is a critical value of f .

Proof. Suppose that cm(f) = c is not a critical value of f . By the first part of
the lemma 2.4 for some ε > 0 there is a diffeotopy ϕt of M with ϕ1(Mc+ε) ⊆ Mc−ε.
Now applying first the monotonicity and then the invariance under the diffeotopy
property from the definition of the generalized category we obtain:

12
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λcatDiff
M (Mc−ε) ≥ λcatDiff

M (ϕ1(Mc+ε)) ≥ λcatDiff
M (Mc+ε) ≥ m.

But by definition cm(f) = c ≤ c− ε, contradiction. ♣
The next theorem will show that the equality in the following sequence

cλcatDiff
M (f−1(min f))(f) ≤ . . . ≤ cm(f) ≤ cm+1(f) ≤ . . . ≤ cλcatDiff

M (M)(f)

will be sometimes (depending on the generalized category that we use) compensated
by having more critical points at that level. To count their multiplicity we introduce
for any generalized category λcatDiff

M its multiplicity counter, a positive integer or
infinity valued function nλcatDiff

M
: N→ N ∪ {∞}. For each k ∈ N we define:

nλcatDiff
M

(k) = sup {l ∈ N | inf
card(P )<l

sup
U
{k−λcatDiff

M (U) | U neighb. of P ⊂ M} > 0}.

The multiplicity counter is well defined: for each positive integer k we have
nλcatDiff

M
(k) ≥ 1. Indeed

1 ∈ {l ∈ N | inf
card(P )<l

sup
U
{k − λcatDiff

M (U) | U neighborhood of P ⊂ M} > 0}

because the only set P ⊂ X of cardinality card(P ) < 1 is the empty set ∅ which
is in the same time a neighborhood of itself hence by the property (1Diff(M)) of

λcatDiff
M we have k − λcatDiff

M (P ) = k > 0. It is relatively easy to determine the
multiplicity counter for the categories of the example 2.2 . If λcat is the “scaled”
Lusternik-Schnirelmann category p · cat or the “scaled” strong category p · scat then
nλcat(k) = 1 for k ≤ p and nλcat(k) = ∞ else. For the topological dimension dimM

we have:

ndimM
(k) =

{
1 if k ≤ n
∞ else.

Using the multiplicity counter we can prove a theorem about the multiplicity of
critical points situated in the same level.

Theorem 4. Let m, k be positive integers such that

λcatDiff
M (f−1(min f)) ≤ m + 1 ≤ m + k ≤ λcatDiff

M (M).

If
cm+1(f) = cm+2(f) = . . . = cm+k(f) = c

then

(a) for each neighborhood U of the critical set Kc the generalized category λcatDiff
M

satisfies the inequality: λcatDiff
M (U) ≥ k.

(b) at the level c there are at least nλcatDiff
M

(k) critical points.

13
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(c) for k ≥ 2, if there is an open (or closed) ball
◦
B ⊆ M such that λcatDiff

M (
◦
B) = 1

then the level c contains an infinite number of critical points.

Proof. (a) By the second part of the lemma 2.4 there is ε > 0 and a diffeotopy ϕ
of M such that ϕ1(Mc+ε \U) ⊆ Mc−ε. Applying first the invariance under diffeotopy
of λcatDiff

M and afterwards its monotonicity property we obtain:

λcatDiff
M (Mc+ε \ U) ≤ λcatDiff

M (ϕ1(Mc−ε \ U)) ≤ λcatDiff
M (Mc−ε) ≤ m.

Last inequality holds because c − ε < c = cm+1(f) = inf{a ∈ R|λcatDiff
M (Ma) ≥

m + 1}. Similar arguments imply

m+k ≤ λcatDiff
M (Mc+ε) ≤ λcatDiff

M ((Mc+ε\U)∪U) ≤ λcatDiff
M ((Mc+ε\U)+λcatDiff

M (U).

Comparing the two previous inequalities it is obvious that λcatDiff
M (U) ≥ k.

(b) By the theorem 3 the value c is a critical value of f hence 1 ≤ card(Kc).
We suppose that Kc contains less than nλcatDiff

M
(k) critical points: 1 ≤ card(Kc) <

nλcatDiff
M

(k). On the other hand by the definition of the multiplicity counter nλcatDiff
M

for each 1 ≤ l ≤ nλcatDiff
M

(k):

inf
card(P )<l

sup
U
{k − λcatDiff

M (U) | U neighborhood of P ⊂ M} > 0.

In particular for l = card(Kc) + 1 we get a neighborhood U of Kc such that k −
λcatDiff

M (U) > 0 contradicting the first part of the theorem.
(c) Suppose |Kc| < ∞. There is some positive integer l such that Kc =

{x1, . . . , xl}. A well known theorem (see Hirsch [11]) states the existence of a dif-

feotopy ϕ : M × I → M such that ϕ1(xi) ∈
◦
B for each i ∈ 1, l. Let U = ϕ−1

1 (
◦
B) be

a neighborhood of Kc. By the property of invariance under diffeotopies of λcatDiff
M ,

λcatDiff
M (U) ≤ λcatDiff

M (ϕ1(U)) = λcatDiff
M (

◦
B) = 1

but from part (a) of this theorem λcatDiff
M (U) ≥ k ≥ 2. This contradiction confirms

the fact that the number of critical points at the level c is infinite. ♣
The second part of the proposition suggests the property that a generalized

category must satisfy such that either

1. all the critical values cm(f) are distinct for λcatDiff
M (f−1(min f)) ≤ m ≤

λcatDiff
M (M),

or

2. f has infinity many critical points.

Definition 2.5. A generalized category λcatIX relative to I is called a generalized
Lusternik-Schnirelmann category if it satisfies the following property:

(5I .) for each point x ∈ X there is a neighborhood Ux of x such that

λcatIX(Ux) ≤ 1.

14
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Remark 2.6. For generalized categories relative to Diff the condition (5Diff(M)) is

fulfilled iff there exists an open set U with λcatDiff
M (U) ≤ 1 or iff there is an open

ball
◦
B with λcatDiff

M (
◦
B) = 1. This remark is primary a consequence of the invariance

under diffeotopies of λcatDiff
M .

From the last two theorems we obtain that the lower bound for crit(f) is given
by any generalized Lusternik-Schnirelmann category λcatDiff

M relative to Diff(M):

Theorem 5. (Lusternik-Schnirelmann theorem for a generalized L-S category) Let
M be a closed manifold and f : M → R be a smooth function. For each generalized
Lusternik-Schnirelmann category λcatDiff

M relative to Diff the function f has at least
λcatDiff

M (M) critical levels.

In particular, the ball category is a generalized Lusternik-Schnirelmann category
so we obtain from the previous theorem the theorem 2 as corollary.

Proof. We assume that the number crit(f) of critical points of the function f is
finite, otherwise the problem is trivial. The set f−1(min f) consists only in critical

points, so f−1(min f) is finite. By the remark 2.6 there is an open ball
◦
B such

that λcatDiff
M (

◦
B) = 1. Therefore it follows as in proof of the part (c) of the previous

theorem that λcatDiff
M (f−1(min f)) ≤ λcatDiff

M (
◦
B) = 1. On the other hand f−1(min f)

is not empty hence λcatDiff
M (f−1(min f)) = 1.

The crit(f) is finite, hence by the part (c) of theorem 4 all the critical levels
cm(f) are distinct for each m,

1 = λcatDiff
M

(
f−1(min f)

) ≤ m ≤ λcatDiff
M (M).

Therefore the function f has λcatDiff
M (M) distinct critical levels and crit(f) ≥

λcatDiff
M (M). ♣

For an alternative proof of the theorem 5 we can use the part (b) of the theorem
4 and the following remark:

Remark 2.7. For each generalized Lusternik-Schnirelmann category λcatDiff
M relative

to Diff the multiplicity counter satisfies the inequality nλcatDiff
M

(k) ≥ k. Let P =

{x1, x2, ..., xl|l ∈ N} be a subset P ⊂ M with card(P ) < k. By the property
(5Diff(M)) of the generalized Lusternik-Schnirelmann category λcatDiff

M there are Ui

neighborhoods of xi such that λcatDiff
M (Ui) = 1. Let U = ∪l

i=1Ui. Since λcatDiff
M is

sub-additive

λcatDiff
M (U) = λcatDiff

M (
l⋃

i=1

Ui) ≤
l∑

i=1

λcatDiff
M (Ui) < k

hence
inf

card(P )<k
sup

U
{k − λcatDiff

M (U) | U neighborhood of P} > 0

and by definition of the multiplicity counter nλcatDiff
M

(k) ≥ k.
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3. The best generalized Lusternik-Schnirelmann category λcatDiff
M

Let I1, I2 ⊆ DefId(X). Then the set of generalized categories on the topological
space X is partially ordered by the natural ordering:

λ1catI1
X ≤ λ2catI2

X

iff for each A ⊆ X
λ1catI1

X (A) ≤ λ2catI2
X (A).

For the closed manifolds the partial ordering restricted to generalized Lusternik-
Schnirelmann categories relative to Diff has a maximum. To characterize this max-
imum we introduce o new notion:

Definition 2.8. The disc category dcatX(A) of A in M is the smallest integer k such
that A can be covered by k closed submanifolds of M , each of them diffeomorphic
to the closed unit disc of dimension dim(M).

The disc category is a generalized Lusternik-Schnirelmann category and also the
best one:

Proposition 2.9. Let M be a closed manifold. Then the disc category dcat is the
maximal element of the partial ordered set

{λcatDiff
X : P(M) → Z+| λcatDiff

M is a gen. L− S cat. rel. to Diff(M)},

denoted by CatDiff(M).

Proof. Consider A ⊆ X and λcatDiff
M a generalized Lusternik-Schnirelmann ca-

tegory relative to Diff(M). Let {A1, A2, . . . , AdcatM (A)} be a minimal covering of A
with closed discs. By the remark 2.6 concerning the property (5Diff(M)) of the gener-

alized Lusternik-Schnirelmann category there exists an open ball
◦
B ⊂ M such that

λcatDiff
M (

◦
B) = 1. Let D ⊂

◦
B be a closed disc. Then by the monotonicity and non-

triaviality of the generalized Lusternik-Schnirelmann category λcatDiff
M (D) = 1. For

each k ∈ 1, dcatM(A) there is a diffeotopy ϕk : M × I → M such that ϕk
1(Ak) = D.

By the invariance under diffeotopy:

λcatDiff
M (Ak) ≤ λcatDiff

M (ϕk
1(Ak)) = λcatDiff

M (D) = 1.

Then

λcatDiff
M (A) ≤ λcatDiff

M




dcatM (A)⋃

k=1

Ak


 ≤

dcatM (A)∑

k=1

λcatDiff
M (Ak) = dcatM(A).

Hence the partial ordered set CatDiff(M) has as maximum the disc category dcat.♣
At the end of this chapter we can give an answer to the question why our

Lusternik-Schnirelmann theorem is better than the classical one. A priori we know
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that cat(M) ≤ bcat(M), but in the literature there are no examples of manifolds M
with cat(M) < bcat(M) (for a class of manifolds for which the equality holds see
Singhof [29]). Nevertheless the Lusternik-Schnirelmann theorem for the ball cate-
gory combined with our results about the upper bound for crit allows us to compute
in the following chapters the crit for a fairly general class of manifolds. Without the
Lusternik-Schnirelmann theorem for the ball category these computations would be
valid only accepting that Ganea’s conjecture (i.e. cat(M × Sn) = cat(M) + 1) is
true.

Another application of the Lusternik-Schnirelmann theorem for the ball category
concerns the number of open (or closed) balls which cover a closed manifold M of
dimension n. By Takens [34] crit(f) ≤ n + 1, hence using the theorem 2 we obtain
the results by Luft [15], Osborne and Stern [22]: the manifold M can by covered by
n + 1 open balls. This result can be radically improved in many situations using
results about crit from this thesis instead of Takens’ result.

For further generalizations of the theorem 5 we suggest to look for a space I ⊂
Diff(M) such that for some generalized category λcatIM the multiplicity counter
nλcatIM

equals the identity IdN.
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3 The fusing lemma

We start with an example which describes the topic of this chapter. Let T be a
torus in R3, standing on the x, y plane. The height function z, denoted by h, is
a Morse function with four critical points: one minimum, one maximum and two
saddle points. On the other hand, as described in [16], there is a function h̃ on the
torus with only three critical points: one minimum, one maximum and one monkey-
saddle point. This means that two critical points (the saddle points) of h can be
replaced by one critical point (the monkey-saddle point) of h̃. We say that the two
saddle points fuse into the monkey-saddle point.

This phenomenon is the central concern of this chapter. We describe it in a
general setting, at the moment only informally. Let (W ; V0, V1) be a triad and f :
W → R a smooth triad function with crit(f) critical points. The question is whether
it is possible to find a triad function f̃ : W → R with less that crit(f) critical points
such that f̃ equals f on a neighborhood of ∂W. If f̃ exists we say that the critical
points of f fuse. The main result of this chapter, the fusing lemma, establishes
sufficient conditions for the fusing of two critical points. Later, we consider a smooth
function on a closed manifold, we restrict it to convenient triads and we fuse critical
points in the triads. After that, we glue the triads and the new triad functions
together obtaining a function on the initial manifold with less critical points.

In this chapter and in the remainder of the thesis everything will be considered
from the smooth, equivalently C∞, point of view; manifolds, submanifolds, triads,
and functions will be C∞. All the manifolds are connected, unless otherwise stated.
We are interested in functions with minimal number of critical points therefore we
will consider exclusively functions with isolated critical points. Such functions on
closed manifolds have a finite number of critical points.

The first definition introduces a concept analogous to the Morse triad function.

Definition 3.1. A triad function on a smooth manifold triad (W ; V0, V1) is a
smooth function f : W → [a, b] such that:

1. f−1(a) = V0 and f−1(b) = V1.

2. all the critical points of f are interior (i.e. lie in W \ ∂W ).

In order to prove the fusing lemma, it is useful to list some elements of the critical
point theory.

Definition 3.2. Let M be a smooth Riemannian manifold without boundary and
let f : M → R be differentiable at p ∈ M . Then Xp ∈ Tp(M) is called a pseudo-
gradient vector for f at p if

18



C. Gavrila 3 The fusing lemma

1. ‖ Xp ‖≤ 2 ‖ dfp ‖ .

2. 〈dfp, Xp〉 ≥ ‖ dfp ‖2.

If f is smooth at each point of S ⊆ M and X is a smooth vector field on S then X
is called a smooth pseudo-gradient vector field for f on S if for each p ∈ S, Xp is a
pseudo-gradient vector for f at p.

In this chapter we work (like in [19], [23]) with the general notion of pseudo-
gradient vector field, but starting with chapter 5 we consider only negative gradient
vector fields, in order to make the presentation simpler.

For triad functions we need pseudo-gradient vector fields that are transversal to
the boundary. To construct such vector fields is easy. Let f : W → [0, 1] be a triad
function on the triad (W,V0, V1). We are looking for a pseudo-gradient vector field
X on W such that for any x ∈ ∂W the vector Xx (at x) is transversal (not tangent)
to ∂W , adopting in this way the setting of the classical paper by Smale [31]. Let

Ŵ be the manifold obtained by gluing the triads (V0× [−1, 0]; V0×{−1}, V0×{0})
and (V1 × [1, 2]; V1 × {1}, V1 × {2}) to W along the boundaries V0 × {0} ≈ V0 and

V1 × {1} ≈ V1 respectively. Let f̂ be a triad function on Ŵ such that f̂ |W = f and

let X̂ be a pseudo-gradient vector field of f̂ |cW\∂cW . The pseudo-gradient vector field

X that we need for f is the restriction of X̂ on W . Consider the dynamical system

(∗)
{

φ̇(x, t) = −X̂(φ(x, t))
φ(x, t) = x

defined on Ŵ \ ∂Ŵ . The maximal solution of this dynamical system we denote by

α̂ and we call it the (maximal) local flow associated to −X̂. For each x ∈ W let
[tx, Tx] be the maximal interval such that f(α̂(x, tx)) ∈ [0, 1] and f(α̂(x, Tx)) ∈ [0, 1].
If α̂([tx, Tx]) contains no critical points then:

1. Tx < +∞.

2. f(α̂(x, Tx)) = 0.

The properties of tx are similar to the properties of Tx. Let α be the restriction
of α̂x to the closed interval [tx, Tx] := Jx for each x ∈ W. If x ∈ ∂W then 0 ∈
Bd(Jx) = Jx \ Int(Jx). The maps αx : Jx → W and sometimes the sets αx(Jx) are
called trajectories or flow lines of the vector field X. When x is fixed, α(x, t) will
be written as α(t).

The next construction is characteristic for deformation theorems and represents
an improvement of the classical Palais-Smale result. We use the following notation:

f R a = {x ∈ M | f(x) R a},

where R ∈ {≤,≥, =, <, >}. When there is no risk of confusion we use the simplified
notation fa instead of f≤a.
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C. Gavrila 3 The fusing lemma

Theorem 6 (Deformation lemma). Let f : W → [0, 1] be a smooth function
with only isolated critical points on the compact triad (W ; V0, V1) and [a, b] ⊂ [0, 1]
with Kf ∩ f−1(a, b] = ∅.

Then there exists a strong deformation retraction of f≤b onto f≤a.

Proof. The proof is standard and very simple. Let U = f≤b \ f≤a and fix x ∈ U .
Since f has no critical points in U and since the critical points of f on f−1(a) are
isolated the flow orbit α(x, t) converges towards a point πa(x) ∈ f−1(a) as t → T a

x

(here T a
x is defined with respect to [a, b]). This defines the retraction. It is well

known and easy to see that the induced map πa : f≤b → f≤a is continuous. ♣
The previous retraction we call the projection along the trajectories πa : f≤b →

f≤a :

πa(x) =

{
α(x, T a

x ) if x ∈ f≤b \ f≤a

x if x ∈ f≤a.

For any critical point x ∈ Kf , we define the set of the trajectories going to x or
coming out from x :

Kx = {y ∈ W |x ∈ cl α(y, (ty, Ty))}.
An equivalent expression of Kx is the following:

Kx = {y ∈ W |ω∗(y) = x or ω(y) = x}.
The study of the topological properties of Kx is very important for fusing of critical
points.

Lemma 3.3. Let (W ; V0, V1) be a compact triad and f : W → [0, 1] a triad function
with exactly two critical points x0 and x1 and no connecting trajectories between the
critical points (Kx0 ∩Kx1 = ∅). Then K̄x0 ∩ K̄x1 = ∅ and Kx0, Kx1 are closed.

Proof. Since the case c0 = f(x0) = f(x1) = c1 is a simple consequence of the
continuous dependence on the initial value of the ODE solutions, we assume that
c0 < c1.

Assertion 1. x0 6∈ K̄x1 and x1 6∈ K̄x0.
Let U be an open neighborhood of x0 such that x1 6∈ U and U ⊆ f−1(0, c)

where c = f(x0)+f(x1)
2

. If x0 ∈ K̄x1 there exists a sequence yn ∈ Kx1 ∩ U such that
yn → x0. From the deformation lemma we get the continuous projections along
the trajectories π0

u : f≥c0 ∩ U → f=c0 and π0
d : f≤c0 ∩ U → f=c0 , where the first

projection is in the positive sense and the second in the negative one. Because for
both projections limn→∞ π(yn) = π(limn→∞(yn)) = π(x0) we can assume without
loss of generality that yn ∈ f=c0 , yn ∈ Kx1 . Any point yn is on a trajectory coming
from x1 and let zn ∈ f=c be the intersection point of that trajectory with f=c. The
set f=c is compact therefore zn → z ∈ f=c, or a subsequence of zn. Computing
α(z, tz) = π1

d(z) = limn→∞ zn = limn→∞ α(zn, tzn) = x1 and α(z, Tz) = π0
u(z) =

limn→∞ zn = limn→∞ α(zn, tzn) = limn→∞ = x0. This contradicts the assumption
that there are no connecting trajectories between x0 and x1.
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Remark 3.4. Is 1. true for Finsler manifolds and Palais-Smale functions ?

Assertion 2. K̄x0 ∩Kx1 = ∅ and Kx0 ∩ K̄x1 = ∅.
Suppose K̄x0 ∩ Kx1 6= ∅. Then there is y ∈ Kx1 and a sequence yn ∈ Kx0 such

that yn → y. The followings three cases occur:

2a. f(x0) > f(y).

2b. f(xo) < f(y).

2c. f(x0) = f(y).

2a. The projection π0
d(x) = α(x, tx) of W \ f>c0 onto f=c0 along the trajectories

is continuous, where, remember, tx is the arriving time in the negative sense. By
projection of the sequence yn on f=c0 ,

x0 = lim
n→∞

π(yn) = π( lim
n→∞

yn) = α( lim
n→∞

yn, lim
n→∞

tyn) = α(y, ty) ∈ Kx1 .

This is absurd because there are not connecting trajectories between the critical
points.
2b. After projection of the sequence yn on f=c1 from up or down we can assume
without loss of generality that yn ∈ f=c1 . Now y ∈ Kx1∩f=c1 = {x1} hence yn → x1,
i.e. x1 ∈ K̄x0 , a fact which contradicts (2a).
2c. This case presents three subcases:

1. there is a subsequence ynk
such that f(ynk

) < f(y).

2. there is a subsequence ynk
such that f(ynk

) > f(y).

3. there is a subsequence ynk
such that f(ynk

) = f(y).

The subcase 2c.1 and 2c.2 are similar to case 2a and 2b respectively, and 2c.3 is
trivial.

Assertion 3. The sets Kx0, Kx1 are closed and disjoint.
Let y ∈ K̄x0 ∩ K̄x1 . There are y0

n ∈ Kx0 , y1
n ∈ Kx1 such that y0

n → y resp.
y1

n → y. Depending on the value of f(y) relative to f(x0) and f(x1) it is possible to
project one of the sequences on f=c0 or f=c1 . For instance, if f(x0) > f(y) then the
right projection is π0

d(x) = α(x, tx) of W \ f>c0 onto f=c0 . Then y ∈ Kx0 , because
α(y, ty) = π(y) = π(limn→∞ y0

n) = limn→∞ π(y0
n) = limn→∞ α(y0

n, ty0
n
) = x0. Hence

y ∈ K̄x0 ∩Kx1 = ∅ therefore by 2., we have K̄x0 ∩ K̄x1 = ∅.
To show that Kx0 and Kx1 are closed, it is sufficient, under the hypothesis

K̄x0 ∩ K̄x1 = ∅, to prove that Kx0 ∪ Kx1 is closed. Suppose Kx0 ∪ Kx1 is not
closed. Then there is a sequence yn ∈ Kx0 ∪ Kx1 and y 6∈ Kx0 ∪ Kx1 such that
limn→∞ yn = y. We can admit y, yn ∈ f=c0 or y, yn ∈ f=c1 , because depending on
the position of y, yn in f≤c0 or f>c1 we can project them onto f=c0 resp. f=c1 , the
hypothesis data remaining unaltered. The projection π0

u of (f=c1 \ {x1}) \ f<c0 onto
f=c0 is by the deformation lemma continuous, so π0

u(y) = limn→∞ π0
u(y) = x0, hence

y ∈ Kx0 , contradiction. In conclusion Kx0 and Kx1 are disjoint closed sets ♣.
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Before proving the fusing lemma we answer a question that a careful reader
will surely ask: why do we use a pseudo-gradient vector field instead of the more
natural gradient vector field? We give here only two answers: first, the theory that
we develop could work on Finsler manifolds. An analysis of this case is possible
only if we use pseudo-gradient vector fields. Second, the sufficient condition of
the fusing lemma (Kx0 ∩ Kx1 = ∅) could be fulfilled by a pseudo-gradient vector
field but not necessarily by the gradient vector field, so the area of applicability of
the fusing lemma increases if we work with pseudo-gradient vector fields. Maybe
the second argument is vulnerable: the existence of a pseudo-gradient vector field
without connecting orbits could imply the existence of a Riemannian metric such
that the associated gradient vector field has no connecting orbits.

For the fusing lemma we need a definition which is related to the cancellation of
non-degenerate critical points.

Definition 3.5. Let f be a triad function on (W ; V0, V1) with the critical set Kf =
{x1, . . . , xcrit(f)}. We say that the critical points x1, . . . , xk, k ≥ 2 fuse if there is a

triad function f̃ : W → R such that

1. Kf̃ = (Kf \ {x1, . . . , xk}) ∪K with card(K) ≤ 1.

2. f̃ = f in a neighborhood of ∂W.

In the fusing lemma we want to fuse a pair of critical points. The sufficient
condition is given in terms of (pseudo-)gradient dynamics.

Lemma 3.6 (Fusing lemma). Let (W ; V0, V1) be a compact connected triad and
f : W → [0, 1] a triad function with exactly two critical points x0 and x1. Suppose
there are no connecting trajectories of the pseudo-gradient vector field X between
the critical points (i.e. Kx0 ∩ Kx1 = ∅). Then x0 and x1 fuse and, in particular,
crit(W ) ≤ 1.

Proof. Assume like in the previous lemma that c0 ≤ c1. We divide the proof of
the fusing lemma into three parts. The first part is only a technical lemma which
we include here for the completeness of the proof.

Assertion 1. There is a smooth function F : [0, 1] × [0, 1] → [0, 1] with the
properties:

(1F ) For any x and y, ∂F
∂x

(x, y) > 0.

(2F ) For any x near 0 or 1 and any y, F (x, y) = x.

(3F ) F (c0, 0) = F (c1, 1) = c1.

Before starting the proof of this assertion we make a remark on the property (3F )
of the function F : instead of the value c1 for F (c0, 0) = F (c1, 1) we can consider
any c ∈ (0, 1) and the result remains true.
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Let ε be a positive real such that ε ≤ 1
4
min{c0, 1 − c1}. We consider a smooth

bump function ϕ1 : R→ R+ such that the support supp (ϕ1) ⊆ [ε, c0 − ε]. Let λ1 =
c1−c0R
R ϕ1(t)dt

and let h1 : [0, c0] → R+ be a function given by h1(s) =
∫ s

0
(1 + λ1ϕ1(t)) dt,

for each s ∈ [0, c0]. Note that

(1h1) h1 equals the identity in a neighborhood of 0 and c0 in [0, c0], respectively.

(2h1)
∂h1

∂s
(s) > 0, for each s ∈ [0, c0].

Now, we consider a smooth bump function ϕ2 : R → R+ such that the support
supp (ϕ2) ⊆ [c0 + ε, 1− ε] and supp (1−ϕ2) ⊆ [c0 + 1−c1

2
, 1− 1−c1

2
]. Let λ2 = c1−c0R

R ϕ2(t)dt

and let h2 : [c0, 1] → R+ be a function given by h2(s) = c1 +
∫ s

0
(1 + λ2ϕ2(t)) dt, for

each s ∈ [c0, 1]. Note that

(1h2) h2 equals the identity in a neighborhood of c0 and c1 in [c0, 1], respectively.

(2h2)
∂h2

∂s
(s) > 0, for each s ∈ [c0, 1].

Let h : [0, 1] → R+ be the function given by

h(s) =

{
h1(s) if s ∈ [0, c0],
h2(s) if s ∈ (c0, 1].

The function h is smooth and h(c0) = c1. Using the function h we can get the
function F : [0, 1]× [0, 1] → [0, 1] by the rule:

F (x, y) = (1− y)h(x) + y Id(x).

The function F has all the properties required by the assertion 1.
Assertion 2. There is a smooth triad function f̃ on W such that Kf = Kf̃ ,

f agrees with f near V0 ∪ V1 and f̃(x0) = f̃(x1).
Let p : W \(Kx0∪Kx1) → V0 be the projection of W \(Kx0∪Kx1) on the manifold

V0 along the trajectories of the vector field X. The function p is smooth (cf. the
deformation lemma). By 3.3.3 the sets Kx0 and Kx1 are closed and disjoint, hence
there exists U0 and U1 closed neighborhoods of Kx0 ∩ V0 and Kx1 ∩ V0 respectively,
such that U0 ∪ U1 = ∅. The Theorem of Tietze (the C∞ form) and the fact that
the sets U0, U1 are Gδ sets are the simplest arguments for the existence of a smooth
function q : V0 → [0, 1] such that q−1(0) = U0 and q−1(1) = U1.

Let µ : W → [0, 1] be the extension to W of the composed function q ◦ p such
that µ is zero on Kx0 and one on Kx1 . Evidently µ is zero on Kx0 , one on Kx1 and
µ is constant on each trajectory of X. Furthermore the function µ is smooth. First
we show that µ is continuous.

Consider y ∈ W \ (Kx0 ∪Kx1) and (yn)n∈N a sequence in W such that yn → y,
for n → ∞. The set W \ (Kx0 ∪Kx1) is open therefore yn ∈ W \ (Kx0 ∪Kx1), for
n big enough. By continuity of p on W \ (Kx0 ∪Kx1), p(yn) → p(y) and hence by
continuity of q we get µ(yn) = q ◦ p(yn) → q ◦ p(y) = µ(y), for n →∞.
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Consider, now, y ∈ Kx0 (for y ∈ Kx1 the reasoning is similar) and (yn)n∈N ∈
W \Kx0 a sequence in W such that yn → y, for n →∞. Without loss of generality,
assume that yn 6∈ Kx1 (Kx1 is closed and disjoint of Kx0) and that y, yn ∈ f≤c1 for
each n ∈ N. Then by the compactness of V0 we can assume that p(yn) → z ∈ V0. Let
π0

d be the projection of W \f>c0 onto f=c0 and π0
u be the projection of f≤c1\{x1} onto

f=c0 . By continuity of π0
d and π0

u (see deformation lemma) we have π0
d(p(yn)) → π0

d(z)
and π0

u(yn) → π0
u(y) = x0. But p(yn) and yn are on the same trajectory, therefore

(π0
d(p(yn)))n∈N = (π0

u(yn))n∈N. Their limits are equal: π0
d(z) = x0. Hence z is an

element of Kx0 and by definition of q we obtain q(z) = 0. Straightforward µ(yn) =
q ◦ p(yn) → q(z) = 0 = µ(y), for n →∞.

Consider, as the last case to be analyzed, y, yn ∈ Kx0 , for each n ∈ N. Then
continuity of µ at y is trivial because 0 = µ(yn) → 0 = µ(y), for n →∞.

For the smoothness of µ is sufficient to remark that p as composition of two
smooth functions is smooth on W \ (Kx0 ∪ Kx1) which is a open neighborhood of
µ−1(V0 \ p((U0 ∪ U1) \ (K0 ∪ K1))). The smoothness of µ near K0 ∪ K1 is clear
because µ equals zero in the neighborhood µ−1(U0) of K0 and equals one in the
neighborhood µ−1(U1) of K1. The new triad function f̃ : W → [0, 1] is defined by
f̃(z) = F (f(z), µ(z)), where F : [0, 1]× [0, 1] → [0, 1] is the function constructed in
the assertion 1.

The property (1F ) does not allow the existence of other critical points of f̃ than
x0 and x1, hence Kf = Kf̃ . By the property (2F ) the function f̃ agrees with f near

V0 ∪ V1. Furthermore the critical points x0 and x1 are in the same level of f̃ :

f̃(x0) = F (f(x0), µ(x0)) = F (c0, 0) = c1 = F (c1, 1) = F (f(x1), µ(x1)) = f̃(x1).

Assertion 3. The critical points x0 and x1 fuse , i.e. there is a function
g : W → [0, 1] such that g agrees with f near V0 ∪ V1 and g has only one critical
point.

The connectedness of W implies the existence of a path γ : [0, 1] → W from x0 to
x1. Let X̃ be a pseudo-gradient vector field of f̃ . We project γ([0, 1]) first downward
and then upward on f̃=c1 , along the trajectories of the pseudo-gradient vector field
X̃. In this way we get a path γ′ : [0, 1] → W from x0 to x1 situated in the critical
level c1. Under this hypothesis, by Takens [33] it is possible to modify the function f̃
in a neighborhood of the path γ′ such that the new function g has only one critical
point. Here ends the proof of the assertion 3 and implicitly the proof of the fusing
lemma. ♣
Remark 3.7. The core of the assertion 3 constitutes the smoothing lemma for a
continuous function on Rn which is everywhere smooth, but at 0. This lemma has
been used by Takens [33] for the construction of g.

Remark 3.8. It is possible to change the order of the proof by projecting first some
path γ (from x0 to x1) near to x0 onto f=c0 and near x1 onto f=c1 . These projections
deliver more information about the structure of the critical levels, for instance that
the critical levels are locally connected.
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The following result is a cheap extension of the fusing lemma and therefore it
deserves no extra name:

Lemma 3.9 (Fusing lemma). Let (W ; V0, V1) be a compact connected triad and
f : W → [0, 1] a triad function with the critical set Kf = A0 ∪ A1 such that all
the points of A0 are in the same critical level c0 and all the points of A1 are in the
same critical level c1. If for each x0 ∈ A0 and x1 ∈ A1 we have Kx0 ∩Kx1 = ∅ then
crit(W ) ≤ 1.

Proof. In fact the previous proof may be repeated verbatim. ♣
Corollary 3.10. Let f : W → [a, b] be a triad function on the connected manifold
W such that f(Kf ) = c ∈ (a, b). Then f=c is path-connected.

Proof. It follows from the proof of assertion 3 of fusing lemma. ♣
Before starting another application of the fusing lemma we prove an easy exten-

sion of the proposition (2.9) by Takens from [33]. We need the following:

Definition 3.11. Two critical points of f , x0 and x1 are f-equivalent, x0 ∼f x1 iff
f(x0) = f(x1) = c and there is a path from x0 to x1 contained in f=c. The critical
points x0 and x1 are equivalent in f=c iff x0 and x1 are in the same path-connected
component of f=c. We write x0 ∼c x1. Both ∼f and ∼c are equivalence relations.

For the next proposition we recall that in this work all the considered functions
have only isolated critical point. For details of the proof see the original paper by
Takens [33].

Proposition 3.12. Let f : W → [0, 1] be a triad function with exactly one critical
level c ∈ (0, 1). Then there is a triad function f̃ : W → [0, 1] with the properties:

1. f̃ = f on a neighborhood on ∂W.

2. crit(f̃) ≤ card(Kf/∼c).

Proof. Let K = (Kf/∼c). For each K ∈ K by the definition of the equivalence
relation ∼c there is a path γK : [0, 1] → f=c which goes through all the critical
points of K (we recall that we analyze only functions with isolated critical points).
We choose γK such that it is a piecewise smooth embedding. For each K ′, K ′′ ∈ K,
we have γK′([0, 1]) ∩ γK′′([0, 1]) = ∅, hence there is a family of disjoint open sets
{UK}K∈K with the property that UK is a neighborhood of γK([0, 1]) and ŪK ∩∂W =
∅, for each K ∈ K. Next we choose a map Θ : W → W with the properties:

1Θ. Θ ◦ γK([0, 1]) is the point γK(0) for each K ∈ K.

2Θ. Θ|W\∪K∈KγK([0,1]) is a diffeomorphism onto W \ ∪K∈K{γK(0)}.
3Θ. Θ is the identity outside of ∪K∈KUK .
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The continuous function g : W → [0, 1] given by

g(x) =

{
limy→x f ◦Θ−1|W\∪K∈K{γK(0)}(y) if x ∈ ∪K∈K{γK(0)}
f ◦Θ−1(x) else,

is C∞ on W \∪K∈K{γK(0)} and has no critical points in W \∪K∈K{γK(0)}. Further-
more g = f on a neighborhood of ∂W. Applying successively for each K ∈ K the
smoothing lemma by Takens [33] to g at the point {γK(0)} for C = ŪK we obtain a
triad function f̃ . The critical set Kf̃ of the function f̃ is included in ∪K∈K{γK(0)}.
Hence

crit(Kf̃ ) ≤ card(K) = card(Kf/∼c).

The function f̃ coincides with g in a neighborhood of ∂W and therefore it coincides
with f in a neighborhood of ∂W.♣
Corollary 3.13 (Takens). Let f : M → R be a function on a closed manifold M
with k path-connected critical levels. Then crit(M) ≤ k.

Proof. We apply the previous proposition for each critical level. After fus-
ing, each critical level has at most one critical point, altogether at most k critical
points. ♣
Definition 3.14. Let M be a manifold and f : M → R a smooth function. We say
that f is a minimal function if crit(f) = crit(M).

Until now we have referred to a pseudo-gradient vector field in order to get the
greatest generality of the fusing lemma. To avoid any complication for the appli-
cations we use the negative pseudo-gradient vector field (in some fixed Riemannian
structure) of the function under discussion. Then the obstruction for the fusing of
two critical points in the setting of the fusing lemma is the existence of a trajectory
of the negative gradient vector field of f between the two critical points.

Let c, d ∈ (a, b) and let ϕ : [a, b] → [a, b] be a diffeomorphism of [a, b] such that ϕ
equals the identity on a neighborhood of ∂([a, b]) and ϕ(c) = d. Consider f : W →
[a, b] a triad function on (W ; V0, V1). By the expression we translate the level c to
the level d we emphasize the existence of the triad function f t = ϕ ◦ f : W → [a, b]
and its properties:

1. Kf t = Kf .

2. f t = f on a neighborhood of ∂W = V0 ∪ V1.

3. f t(f=c) = d.

Now we are prepared to obtain the first result concerning the number of critical
points for products. This theorem is at the same time the first step of the induction
for proving a more general result.
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Theorem 7. Let M be a closed manifold having a minimal function with exactly one
local minimum or with exactly one local maximum and let Sn be the n dimensional
sphere. Then

crit(M × Sn) ≤ crit(M) + 1.

Proof. We first prove the proposition for the case that the minimal function f has
only one local minimum. The case with only one local maximum is analogue. Let
Kf = {x1, x2, . . . , xcritM} be the critical set of f and x1 the unique local minimum.
By a small modification of f it is possible to get a smooth function with only one
critical point on each critical level, hence we can suppose that the critical values are
in the following order: f(x1) < f(x2) < . . . < f(xcrit(M)). Moreover we can suppose

that f(xi) = i for each i ∈ 1, crit(M). Let f0 := f and we prove by induction on
k ∈ N, the existence of a smooth function fk : M → R with the properties:

1k. Kfk
= Kf .

2k. fk(xl) = fk−1(xl) for each l 6= k and l ∈ 1, crit(M).

2’k. fk(xk+1) ∈ N and xk+1, . . . , xcrit(M) are not local minimizers of fk.

3k. for each 1 < p ≤ k the critical point xp has a predecessor, i.e. there is a critical
point xq with 1 ≤ q < p such that fk(xp) = fk(xq)+1 and there is a trajectory
of the negative gradient vector field of fk going from xp to xq.

The critical set Kf has a poset structure: xi < xj iff there is a x ∈ M such that
ω∗(x) = xj and ω(x) = xi.

Let k = 1. Then f1 = f0; there is nothing to prove.
Let 1 ≤ k < crit(M) and assume the existence of fk : M → R with the required

properties. We denote by Fk+1 the set of function g : M → R with the properties:

1g. Kg = Kf .

2g. g(xl) = fk(xl) for each l 6= k + 1, l ∈ 1, crit(M).

2’g. g(xk+1) ∈ N and xk+1, . . . , xcrit(M) are not local minimizers.

3g. for each 1 < p ≤ k the critical point xp has a predecessor relative to g, i.e.
there is a critical point xq with 1 ≤ q < p such that g(xp) = g(xq) + 1 and
there is a trajectory of the negative gradient vector field of g going from xp to
xq.

The function fk : M → R satisfies the above properties hence Fk+1 6= ∅. Let

k = min {g(xk+1)|g ∈ Fk+1}

and let gk ∈ Fk+1 such that gk(xk+1) = k.
Let q ∈ 1, k be the largest integer with the property that xq < xk+1 and for any

critical point xq′ < xk+1 follows gk(xq′) ≤ gk(xq). The existence of q is assured by
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the second part of the property 2’g. We state that xq is a predecessor of xk+1 relative
to the function gk. Suppose the contrary: gk(xk+1) − gk(xq) = ck+1 − cq > 1. First
we enumerate the properties of gk that follow from the definition:

1. gk is a minimal function on M.

2. gk(Kgk
) ⊆ Z.

3. gk(xl) ≤ f0(xl) for each l ∈ 1, k.

4. gk(xl) = f0(xl) for each l ∈ k + 2, crit(M).

For each c ≤ k let Wc be the connected component of xk+1 in g
≤ck+1+

1
2
=k+ 1

2
k \ g<c

k .
Let

c̄ = sup{c ≤ k | gk|Wc has at least two critical distinct levels}

with other words gk(Wc ∩Kgk
) \ {k} 6= ∅. The choice of xq implies cq = gk(xq) ≤ c̄;

the properties 2 and 2’ imply c̄ ∈ Z and c̄ ≤ ck+1− 1. But we can prove more about
c̄: c̄ = ck+1 − 1.

Suppose the contrary: c̄ < ck+1 − 1. The triad function gk|W
c̄+1

2

has by the

definition of c̄ only one critical level. In this level there is only one critical point
xk+1 of gk|W

c̄+1
2

, otherwise we can reduce by the fusing lemma the numbers of critical

points of gk|W
c̄+1

2

, contradicting the minimality of gk(xk+1). In Wc̄+ 1
2

we translate

the (critical) level ck+1 to the level c̄ + 1. Let gt
k : Wc̄+ 1

2
→

[
c̄ + 1

2
, ck+1 + 1

2

]
be the

function which realize this translation. Then the function g̃k : M → R given by

g̃k(x) =

{
gt

k(x) if x ∈ Wc̄+ 1
2

gk(x) else

is an element of Fk+1 with g̃k(xk+1) = c̄ + 1 < ck+1 = k. This fact contradicts the
definition of k, hence c̄ = ck+1 − 1. Up to now we know that cq ≤ c̄ = ck+1 − 1.

Then cq < c̄ because we have supposed that gk(xk+1) − gk(xq) = ck+1 − cq > 1.
Here we would need the following version of the fusing lemma:

Lemma 3.15. Let (W ; V0, V1) be a compact connected triad and f : W → R a triad
function with only two critical levels c0 and c1. If there is a critical points x0 ∈ f=c0

such that Kx0 ∩Kx1 = ∅ for each x1 ∈ f=c1 then crit(W ) ≤ crit(f)− 1.

We prove this lemma in the context of the proposition. By the definition of c̄ the

function gk|W
c̄− 1

2

has at least two critical levels. But gk(Wc̄− 1
2
) ⊆

[
c̄− 1

2
, ck+1 + 1

2

]
=[

c̄− 1
2
, c̄ + 3

2

]
and gk(Kgk

) ⊆ Z hence gk|W
c̄− 1

2

has exactly two critical levels: c̄ and

c̄ + 1 = ck+1. Let WNW = (Wc̄− 1
2
\Wc̄+ 1

2
) ∩ g

≥c̄+ 1
2

k .
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We want to prove that (a) Wc̄+ 1
2

contains exactly one critical point xk+1 and

that (b) there is a path in
(
Wc̄− 1

2
\ int(WNW )

)∩ g
≤ck+1

k from xk+1 to a critical point

x′c̄ of gk with gk(x
′
c̄) = c̄.

(a) If Wc̄+ 1
2

contains more than one critical point, by the fusing lemma applied

to the function gk|W
c̄+1

2

, having exactly one critical level ck+1, we can reduce the

number of critical points, contradicting the minimality of gk.
(b) We know that Wc̄− 1

2
is by definition a path connected manifold and gk|W

c̄− 1
2

has exactly two critical levels: c̄ and c̄ + 1 = ck+1. Let x′ ∈ Kgk
∩Wc̄− 1

2
∩ g=c̄

k . Then

there is a path γ from γ(0) = x′ to γ(1) = xk+1 in Wc̄− 1
2
. Assume that γ([0, 1]) ⊆

Wc̄− 1
2
∩ (

g
≤ck+1

k \ g<c̄
k

)
, otherwise we project γ([0, 1]) ∩ C

(
Wc̄− 1

2
∩ (

g
≤ck+1

k \ g<c̄
k

))

along the trajectories of −∇gk on g
=ck+1

k and g=c̄
k , getting a path with the required

properties. Let x′c̄ = γ(t0) where

0 ≤ t0 = sup{t ∈ [0, 1]| γ(t) ∈ Kgk
∩Wc̄− 1

2
∩ g=c̄

k }.

Without loss of generality we assume t0 = 0. Then γ([0, 1])∩Kgk
∩Wc̄− 1

2
∩g=c̄

k = ∅. If

we prove that γ([0, 1])∩Kgk
∩WNW ∩g

=ck+1

k = ∅, then we can project γ([0, 1])∩WNW

along the trajectories on the bottom boundary WNW ∩ g
c̄+ 1

2
k of WNW . In this way

we get a path γ̂ : [0, 1] → Wc̄− 1
2
\ int(WNW ) ∩ g

≤ck+1

k and we would prove (b). It

remains to prove that γ([0, 1]) ∩Kgk
∩WNW ∩ g

=ck+1

k = ∅. We assume the contrary:

there is x′k+1 ∈ Kgk
∩WNW ∩ g

=ck+1

k and t1 ∈ (0, 1) such that γ(t1) = x′k+1. Then
γ([t1, 1]) ∩ Wc̄− 1

2
∩ g=c̄

k 6= ∅, otherwise there is 0 < ε < 1 such that the connected

component Wc̄+ε of xk+1 contains two distinct critical points xk+1 and x′k+1 in the
unique critical level of gk|Wc̄+ε , contradicting by the fusing lemma the minimality
of gk. Moreover γ([t1, 1]) ∩ Kgk

∩ Wc̄− 1
2
∩ g=c̄

k 6= ∅ else we can move γ|[t1,1] along
the trajectories into Wc̄+ε, so we arrive at the same contradiction like above. But
γ([t1, 1])∩Kgk

∩Wc̄− 1
2
∩ g=c̄

k 6= ∅ contradicts the assumptions on γ, hence γ([0, 1])∩
Kgk

∩WNW ∩ g
=ck+1

k = ∅.
Now we return to the main proof. The function gk|WNW

has at most one critical
level ck+1 because gk(WNW ) = [ck+1− 1

2
, ck+1 + 1

2
]. We translate the level ck+1 to the

level ck+1 + 3
8
. If gt

k : WNW →
[
ck+1 − 1

2
, ck+1 + 1

2

]
is the function that realizes this

translation then let g̃ : Wc̄− 1
2
→

[
ck+1 − 1

2
, ck+1 + 1

2

]
be the function given by:

g̃(x) =

{
gt

k(x) if x ∈ WNW

gk(x) else.

Let W xk+1 be the connected component of xk+1 in Wc̄− 1
2
∩ g̃≤ck+1+

1
4 . Then

A) by a) xk+1 ∈ W xk+1 and it is the unique critical point of g̃|W xk+1 in the level ck+1;

B) by b) there is a path γ in
(
Wc̄− 1

2
\ int(WNW )

) ∩ g
≤ck+1

k from xk+1 to a critical
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point x′c̄ of gk from the level c̄. By the fact that g̃ = gk on Wc̄− 1
2
\ int(WNW ) it

follows that γ is contained in W xk+1 and implicitly x′c̄ ∈ W xk+1 . This means that
g̃|W xk+1 has at least one critical point in the level c̄;
C) by the choice of xq it follows K

gk
xk+1 ∩ K

gk

x′ = ∅ for each x′ ∈ Kgk
∩ W xk+1 ∩

g=c̄
k = Kg̃ ∩ W xk+1 ∩ g̃=c̄. But g̃ agrees with gk on a neighborhood of K

gk
xk+1 hence

K g̃
xk+1

∩K g̃
x = ∅, for each x′ ∈ Kg̃ ∩W xk+1 ∩ g̃=c̄.

Using A), B) and C) we can by the fusing lemma reduce the number of critical
points of g̃|W xk+1 , contradicting the minimality of gk. Hence c̄ = cq and therefore we
get fk+1 = gk, ending the induction.

Next we get a function on M×Sn with at most crit(M)+1 critical levels, having
critical points that are in the same path-connected component of a critical level. The
critical points in the same path connected component of the same critical level fuse
by the fusing lemma. For ease of the notation we put f = fcrit(M). Let g : Sn → R
be the height function on the sphere such that for the south pole xS and north pole
xN , g(xS) = 0 and g(xN) = 1 respectively. The function F : M × Sn → R given
by F (x, y) = f(x) + g(y) has the critical set KF = {(x, y)|x ∈ Kf and y ∈ Kg}.
Let xp be a critical point and xq one of its predecessors. Then there is a trajectory
of −∇f going from xp to xq. Reparametrizing it we get a path α : [0, 1] → M
such that α(0) = xq and α(1) = xp. Let β : [0, 1] → Sn be a reparametrized
trajectory from xN to xS of the negative gradient vector field of g. It is easy to
reparametrize the path β such that f(α(t)) + g(β(1− t)) = f(xq) + 1 = f(xp) =: k.
This means that the critical points (xq, xN) and (xp, xS) of F are connected by the
path t 7→ (α(t), β(1 − t)) ∈ M × Sn, which lies in the critical level F=k for any
t ∈ [0, 1]. In other words (xq, xN) ∼k (xp, xS). Applying the proposition 3.12 in the

triad (F≤k+ 1
2 \F<k− 1

2 ; F=k− 1
2 , F=k+ 1

2 ) to Fk = F |
F≤k+1

2 \F <k− 1
2

we obtain a new triad

function F̃k : F≤k+ 1
2 \ F<k− 1

2 → [k − 1
2
, k + 1

2
] with at least one critical point less

than Fk; suppose that the critical point of Fk that become regular for F̃k is (xp, xS).
In conclusion we substitute here two critical critical points, (xp, xS) and (xq, xN) by
one critical point (xq, xN), where xq is a predecessor of xp.

It only remains to count the number of cancellable critical points. As we have
constructed the function f above, for any 2 ≤ q ≤ crit(M), the critical point
xp ∈ Kf has a predecessor, therefore the number of cancellable critical points is at
least crit(M)− 1.

Computing:

crit(M × Sn) ≤ 2crit(M)− (crit(M)− 1) = crit(M) + 1.

This means that the function F̃ that we obtain from the triad functions F̃k’s has at
most crit(M) + 1 critical points.

For the case of a minimal function with one local maximum we apply the previous
construction to −f.♣

The last remark of this chapter concerns the minimal functions from the previous
theorem:
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Remark 3.16. If M has a minimal function with two or more local minima or has
a minimal function with two or more local maxima then bcat(M) < crit(M). The
proposition 5.25 is a generalization of this remark and the reader is referred to it for
the proof.
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4 Applications of the fusing lemma and examples

Definition 4.1. Let (W ; V0, V1) be a triad. We define the crit of W as:

crit(W ) = inf {crit(f) | f : W → R a triad function }.

In the remainder we focus only on compact manifolds hence for us crit(W ) < +∞.
One of the most important triads in the differential topology is the h-cobordism.
The triad (W ; V0, V1) is an h-cobordism if W is connected and both V0 and V1 are
deformation retracts of W. Using the fusing lemma we give an estimation of the crit
for h-cobordisms.

Proposition 4.2. Let (W ; V0, V1) be a nontrivial h-cobordism of dimension n ≥ 6.
Then 1 ≤ crit(W ) ≤ 2.

Remark 4.3. For n ≥ 6 the group

Π := π1(W ) ∼= π1(V0) ∼= π1(V1)

is not trivial, otherwise the h-cobordism theorem asserts that W is necessarily trivial:
W ≈ V0 × [0, 1].

Proof. The first inequality is immediate: if crit(W ) = 0 then there is a triad
function with no critical points. By the non-critical interval theorem (see for instance
Theorem 3.4 of [19]) the cobordism (W ; V0, V1) is trivial W ≈ V0 × [0, 1].

For the second inequality, let τ(W,V0) be the Whitehead torsion of the pair
(W,V0). First we construct a h-cobordism (W ′; V0, V

′
1) with the property that

τ(W ′, V0) = τ(W,V0) and then a triad function for it with only two critical points.
By the existence theorem of Stallings (see Rourke and Sanderson [24]) it is possible
to construct a h-cobordism of any given torsion in such a way that (W ′; V0, V

′
1) is

obtained from V0 × [0, 1] by attaching handles of index 2 and 3. This construction
corresponds to a Morse triad function f : W ′ → [0, 1] with only non-degenerate crit-
ical points of index 2 and 3, respectively. With the classical techniques developed
by Morse (see Milnor [19]) it is possible to bring all the critical points of index 2
in the level 1/4 and the critical points of index 3 in the level 3/4. The manifold
V0 is a deformation retract of the connected manifold W , and both V0 and V ′

1 are
deformation retracts of the manifold W ′ hence

π0(V0) ∼= π0(V
′
1)
∼= π0(W

′) = 0.

The manifold V0 being connected, all the hypothesis of the fusing lemma for the triad
(f≤1/2; V0, f

=1/2) are satisfied, so we can fuse the critical points of index 2 into one
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critical point. Then crit(f≤1/2) ≤ 1. The same procedure for the critical points of
index 3 in the triad (f≥1/2, f=1/2, V ′

1) implies crit(f≥1/2) ≤ 1, hence crit(W ′) ≤ 2.
Now we turn to the initial h-cobordism (W ; V0, V1). By the uniqueness theorem

of h-cobordism W ′ is diffeomorphic to W under a diffeomorphism which preserves
V0, because their triads have the same torsion:

τ(W,V0) = τ(W ′, V0).

But the crit is invariant under diffeomorphism, hence crit(W ) = crit(W ′) ≤ 2. ♣
Remark 4.4. The above theorem proven, it follows by the s-cobordism theorem that
for each h-cobordism (W ; V0, V1) with n ≥ 6 the crit(W ) ≥ 1 iff τ(W,V0) 6= 0.

Recall that by Lusternik-Schnirelmann theorem for a triad (W ; V0, V1) it holds:

max {cat((W,V0)), cat((W,V1))} ≤ crit(W ).

We continue the study of the crit for triads giving an example where the previous
inequality is strict. This consists in an h-cobordism (W ; V0, V1) with the upper
boundary V1 diffeomorphic to the lower boundary V0, with cat(W,V0) = cat(W,V1) =
0 nevertheless it does not admit a triad function with no critical points.

Corollary 4.5. There exists a h-cobordism (W ; V0, V1) such that V0 is diffeomorphic
to V1 and crit(W ) ≥ 1.

Proof. Let V0 be a closed manifold of even dimension n ≥ 6 such that the
Whitehead group of π1(V0) is finite commutative and not trivial (for concrete ex-
amples see Milnor [20]). For some element 0 6= τ ∈ Wh(π1(V0)) of the Whitehead
group we get like in the previous proposition a h-cobordism (W ′; V0, V

′
1) such that

τ(W,V0) = τ0. Then we can construct the double (W ; V0, V1) of the h-cobordism
(W ′; V0, V

′
1) obtained by pasting together two copies of W ′ along the boundary V ′

1 .
Obviously (W ; V0, V1) is an h-cobordism, where V0 and V1 are two copies of the same
manifold, hence they are diffeomorphic. The torsion τ(W,V0) is equal to

τ(W,V0) + (−1)nτ(W,V0) = τ(W,V0) + τ(W,V0)

and by commutativity of Wh(π1(V0)) is equal to 2τ(W,V0) 6= 0. By the remark
after the proposition 4.2 the non-triviality of the torsion τ(W,V0) implies that
crit(W ) ≥ 1. ♣

A practical application of the theorem 7 is the computation of the crit for some
product of manifolds.

Proposition 4.6. Let N = Sp1 × . . . × Spn be a product of n ≥ 1 spheres. Then
crit(N) = n + 1.

Proof. The proof is by induction on n. For n = 1 the result is obviously true.
Suppose it is true for n−1 and let N = Sp1× . . .×Spn . We know that cat(Sp1× . . .×
Spn−1) = n. The induction hypothesis implies that cat(Sp1× . . .×Spn−1) = crit(Sp1×
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. . . × Spn−1). Then by the remark 3.16 each minimal function on Sp1 × . . . × Spn−1

has exactly one local minimum, hence we can apply the crit inequality:

crit(Sp1 × . . .× Spn) ≤ crit(Sp1 × . . .× Spn−1) + 1 = n + 1.

On the other side by the Lusternik-Schnirelmann theorem

n + 1 = cat(Sp1 × . . .× Spn) ≤ crit(Sp1 × . . .× Spn)

hence crit(Sp1 × . . .× Spn) = n + 1.♣
Example 4.7. Two famous products of manifolds are L(7, 1) × S4 and L(7, 2) × S4

(the symbol L(r, s) represents the lens space of dimension 3 of type (r, s), where
the Poincaré group is cyclic of order r). Milnor [17] proved that L(7, 1) × S4 and
L(7, 2)× S4 are h-cobordant but not diffeomorphic, hence crit(L(7, 1)× S4) is not a
priori equal to crit(L(7, 2)× S4). Let p = 1 or p = 2.

To get a lower bound for crit(L(7, p) × S4) we use the Lusternik-Schnirelmann
theorem:

cat(L(7, p)× S4) ≤ crit(L(7, p)× S4).

The Lusternik-Schnirelmann category of L(7, p) is computed, for instance, by Fadell
[9] and is maximal:

cat(L(7, p)) = dim(L(7, p)) + 1 = 4.

Moreover, cat(L(7, p)) verifies the inequality dim(L(7, p)) ≤ 2cat(L(7, p))−5, there-
fore we can here apply an improvement from [25] of the Singhof’s theorem [29] about
the Ganea conjecture. By this result

cat(L(7, p)× S4) = cat(L(7, p)) + 1 = 5

hence crit(L(7, p)× S4) ≥ 5.
To get an upper bound for crit(L(7, p)× S4) we use the crit inequality. We can

apply the proposition 7 since cat(L(7, p)) = crit(L(7, p)) implies by the remark 3.16
that each minimal function on L(7, p) has only one local minimum. Then

crit(L(7, p)× S4) ≤ crit(L(7, p)) + 1 = cat(L(7, p)) + 1 = 5.

The lower and the upper bound that we find for crit(L(7, p)×S4) are equal, in other
words

crit(L(7, 1)× S4) = crit(L(7, 2)× S4) = 5.♣
Remark 4.8. The results by Takens [33] can not be applied for this example, because
L(7, p)× S4 is not simply connected either for p = 1 or for p = 2.

We generalize the above example for all closed manifolds M with cat(M) =
crit(M). The results of Singhof [29] or Rudyak [25] are in this case useless because
we have no information about the dimension of M. In particular the manifolds of
small category and big dimension do not verify the hypothesis of the quoted results.
Instead of these we use our result, the generalized Lusternik-Schnirelmann theorem
for the ball category.
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Proposition 4.9. Let Mm be a closed manifold such that cat(M) = crit(M). If n
is a positive integer and Sn is the sphere of dimension n, then

crit(M × Sn) = crit(M) + 1.

Proof. Recall that cat(M)+1 ≤ bcat(M ×Sn) for each closed manifold M (from
Montejano [21]). Indeed, let bcat(M × Sn) = r. Then there is a cover {B1, . . . , Br}
of M × Sn, where Bi is a (m + n)-ball for each i ∈ 1, r. We can assume that B1 is so
small that B1 ∩ (M ×{a}) = ∅ for some a ∈ Sn. Otherwise we replace {B1, . . . , Br}
by {h(B1), . . . , h(Br)}, where h : M ×Sn → M ×Sn is a homeomorphism such that
h(B1) ∩ (M × {a}) = ∅. Then {B2 ∩ (M × {a}), . . . , Br ∩ (M × {a})} is a covering
of M × {a} by contractible sets. Hence

cat(M) + 1 = cat(M × {a}) + 1 ≤ bcat(M × Sn).

After this intermezzo we pass to the main proof. By the generalized Lusternik-
Schnirelmann theorem for the ball category, that we proved in the chapter 2:

bcat(M × Sn) ≤ crit(M × Sn)

therefore

crit(M) + 1 = cat(M) + 1 ≤ bcat(M × Sn) ≤ crit(M × Sn).

Since cat(M) = crit(M) we can apply the inequality from proposition 7 for the
crit:

crit(M × Sn) ≤ crit(M) + 1.

Combining the two inequalities, we obtain crit(M × Sn) = crit(M) + 1. ♣
In this context let (W ; V0, V1) be a triad such that W and V0 are connected man-

ifolds. If this triad admits a triad function with only one critical point, a natural
question is whether the Conley Index of this unique critical point and the connect-
edness of the lower boundary V0 delivers us information about the connectedness of
the upper boundary V1.

In the next examples we construct two triads (W ; V0, V1) and (W ′; V ′
0 , V

′
1) with

the following properties:

1. V0 and V ′
0 are connected,

2. W admits a minimal triad function with only one critical point x1,2 and W ′

admits a minimal triad function with only one critical point x′1,2 such that
CH(x1,2) ∼= CH(x′1,2).

Unfortunately V1 is connected but V ′
1 not.

Example 4.10. Let T be the 2-dimensional torus, T ≈ S1 × S1. Consider D1 and D2

two closed discs disjoint embedded into T. The manifold W \ (Int (D1) ∪ Int (D2))
has the boundary consisting of two disjoint manifolds V0 and V1, both diffeomorphic
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to the 1-dimensional sphere S1. There are different ways to construct on (W ; V0, V1)
a triad function with only one critical point:

a) With a monkey-saddle point on I × I taking into account the equivalence
relation which generates the torus thorough the factorization of I × I.

b) By constructing a nice filling of the triad (W ; V0, V1). Then by Takens [33] it
is possible to construct a corresponding triad function with only one critical point.

c) Using the fusing lemma for a convenient Morse function on the torus.
Here we present the third method: let f : T → [0, 3] be the height function on
the torus (see Milnor [18]) and x1, x2 be its critical points of index 1 such that
1 = f(x1) < f(x2) = 2. The dimension of the unstable and stable manifold for x1

and x2 permit us by tranversality arguments to perturb f slightly to a triad function
f̃ : W → [0, 3] with the properties:

a) Kf̃ = Kf .

b) f̃ = f in a neighborhood of ∂W.

c) there is no connecting trajectory between x1 and x2, relative to −∇f̃ .

Then by c) the triad function f̃ satisfies the hypothesis of the fusing lemma. Using
it, we get a triad function on (W ; V0, V1) with only one critical point x1,2. The
Conley-Index CH(x1,2) of the point x1,2 is isomorphic to H∗(W,V0). Hence

CHi(x1,2) ∼= Hi(W,V0) ∼=
{
Z⊕ Z if i = 1
0 else,

because W is the result of attaching two handles of index 1 to V0, therefore W/V0 is
homotopy equivalent to a wedge of spheres S1 ∨S1. In this example V1 is connected.

Example 4.11. Let S2 be an orientable surface of genus 2 obtained as the topological
sum of two tori T1 and T2. The surface S2 has two humps in the superior part and
two humps in the inferior part. By a diffeomorphism we can transform the two-
humped parts into dromedary humps. Then the height function on this surface is a
Morse function f ′ : S2 → [0, 3] with exactly 6 critical points: 1 minimum in the level
zero, 2 critical points of index one in the level one, 2 critical points of index one in
the level two and 1 maximum in the level three. The manifold W ′ = f ′−1([1/2, 3/2])
has the boundary consisting of two disjoint manifolds V ′

0 = f ′−1(1/2) ≈ S1 and
V ′

1 = f ′−1(3/2) ≈ S1tS1tS1. The triad function f ′|W ′ has 2 critical points of index
one in the critical level 1. By the fusing lemma (by proposition 3.13, too, because
the critical level is connected) it is possible to fuse the two critical points to one
point x′1,2. The Conley index of x′1,2 is isomorphic to H∗(W ′, V ′

0) hence:

CHi(x
′
1,2)

∼= Hi(W
′, V ′

0)
∼=

{
Z⊕ Z if i = 1
0 else.
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The last isomorphism is a consequence of the fact that W ′ is the result of the
attaching of two handles, both of index one to V ′

0 , therefore W ′/V ′
0 is homotopic

equivalent to a wedge of spheres S1 ∨S1. In this example the upper boundary of the
triad V ′

1 is not connected.

The area of applicability of the fusing lemma is larger that the area of applica-
bility of the proposition 3.13 by Takens. The following example of a 2-dimensional
manifold confirms this claim.

Example 4.12. Let (W ′; V ′
0 , V

′
1) be the triad from previous example and let f ′ : W ′ →

[1/2, 3/2] be the correspondent triad function. The function f ′ has two critical points
x1 and x2, both of index one and both situated in the critical level 1. In this case it is
possible to apply the proposition by Takens, because the critical level is connected,
but a small perturbation can change this favorable situation in such a way that the
critical points lie in two different levels. Nevertheless, the fusing lemma preserves its
applicability in this new situation, too. Let ε > 0 such that B(x1, ε) ∪B(x2, ε) = ∅
and B̄(x2, ε) ⊆ f ′−1(1/2, 3/2). Consider a bump function φ : W → [0, 1] such that
φ = 1 on a neighborhood U of x2 and φ = 0 outside B(x2, ε). We can find λ > 0 with
the property that for each λ ∈ (−λ0, λ0)\{0} the triad function fλ = f ′+λφ has the
values in [1/2, 3/2], fλ(x1) 6= fλ(x2) and Kfλ

= Kf ′ . For details see the lemma 2.8 of
Milnor [19]. For any λ ∈ (−λ0, λ0) \ {0} the function fλ is a triad function with two
critical points x1 and x2 situated in different critical levels, hence the proposition by
Takens is not applicable. But all the conditions of the fusing lemma are satisfied.
First W is connected and second there are no connecting trajectories between x1 and
x2: in a neighborhood of Kx1 we have fλ = f ′, therefore the correspondent gradient
vector fields are equal in this neighborhood. If follows that the set consisting of
trajectories going from or to x1 relative to the gradient vector field of fλ coincide
with the set consisting of trajectories going from or to x1 relative to the gradient
vector field of f ′, hence Kfλ

1 ∩Kfλ
2 = ∅.

Applying the fusing lemma we get for each λ ∈ (−λ0, λ0) \ {0} a triad function
f̃λ : W → [0, 2] with exactly one critical point.

Another application of the fusing lemma is the interesting from our point of
view part of the Proposition 2.9 by Takens [33] which states that the crit of a closed
manifold is at most the dimension of the manifold plus one. To prove this fact
Takens asserts: “By Smale every compact connected manifold Mn with ∂Mn = ∅
resp. ∂Mn 6= ∅, admits a function g with (n+1) resp. (n) connected critical levels.”
Without references I was not able to find this result in the published work of Smale.
On the other hand it is more plausible that the presupposed function g has at most
(n + 1) resp. at most (n) connected critical levels. These are the reasons why we
present here a proof of proposition by Takens without using the result by Smale,
but the fusing lemma.

Proposition 4.13. Let M be a closed manifold. Then

crit(M) ≤ dim(M) + 1.
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Proof. First we consider the case dim(M) = n ≥ 3. As an old theorem of the
Morse theory asserts (see Milnor [19]), there exists a nice Morse function f : M → R
on M. The function f has by definition two important properties:

1. all the critical points of index i are in the level i, for each i ∈ 0, n

2. f has exactly one local minimum and exactly one local maximum.

Then f=1/2 is diffeomorphic to the sphere Sn−1 and the same for f=n−1/2. The
manifold M splits with the help of the nice Morse function f in triads. For each
i ∈ 0, n, let (Wi; Vi, Vi+1) be the triad such that:

Wi = f−1
([

i− 1

2
, i +

1

2

])
, Vi = f=i− 1

2 and Vi+1 = f=i+ 1
2 .

All the boundaries Vi are connected for i ∈ 0, n; first we show this fact by induction
for 0 ≤ i ≤ [n

2
]+1. The boundaries V0 = ∅ and V1 ≈ Sn−1 are connected. Assume Vi

is connected for i ≤ [n
2
]. The long exact sequence in homology for the pair (Wi, Vi+1),

→ H1(Wi, Vi+1) → H0(Vi+1) → H0(Wi) → H0(Wi, Vi+1) → 0

is by Poincaré Duality (see Browder [2] for the properties of the Poincaré triads)
and the five lemma isomorphic to

→ Hn−1(Wi, Vi) → Hn(Vi) → Hn(Wi) → Hn(Wi, Vi) → 0.

The manifold Wi is obtained from Vi by attaching handles of index i. The manifold Vi

is connected and the attached handles, too, hence Wi is connected and H0(Wi) = Z.
Because i ≤ [n

2
] and n ≥ 3 we attach to Vi neither handles of index n − 1 nor of

index n in order to obtain Wi, therefore Hn−1(Wi, Vi) = 0 and Hn(Wi, Vi) = 0,
respectively. From the exact sequence it follows H0(Vi+1) ∼= H0(Wi) = Z, therefore
Vi+1 is connected for each 0 ≤ i ≤ [n

2
] + 1. To prove that Vi+1 is connected for

[n
2
] + 1 ≤ i ≤ n it suffices to apply the same reasoning to the function n− f.
For each i ∈ 0, n the connected manifold Wi satisfies the hypothesis of the fusing

lemma hence it admits a triad function fi : Wi →
[
i− 1

2
, i + 1

2

]
such that:

1. fi is equal to f |Wi
in a neighborhood of ∂Wi = Vi ∪ Vi+1,

2. fi has at most one critical point.

Now we get the required function f̃ : M → R defined by f̃(x) = fi(x) for each
x ∈ Wi; it is smooth and has at most dim(M) + 1 critical points.

The case n = 1 is immediate and the case n = 2 is consequence of the fact that
V1 ≈ V2 ≈ S1, hence connected. ♣

Using an argument from the proof of the fusing lemma (a path from x1 to x2,
two critical points in the same critical level, can be deformed to a path in the critical
level) we get a stronger result than the result attributed by Takens to Smale:
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Proposition 4.14. Every nice Morse function on a closed connected manifold Mn

has all its critical levels connected. In particular, there is a Morse function on Mn

with at most (n + 1) critical levels, all connected.

Proof. Let f : M → R be a nice Morse function. For i = 0 and i = n the critical
levels f=i are obviously connected. For i ∈ 1, n− 1 let (Wi; Vi, Vi+1) be the triad
defined in the previous proposition. Let x1 and x2 be two points in the critical level
f=i. By the connectedness of Wi (proof of proposition 4.13) there is a path in Wi

from x1 to x2. Then we deform this path to a path in f=i from x1 to x2, like in the
assertion 3 of fusing lemma. Hence the critical level f=i is connected and so all the
critical levels of f are connected.♣

We are now going to introduce the concept of a Morse decomposition of an
invariant set S in a flow on the manifold M , using the paper by Salamon [26]. In
the concrete case that we analyze in this chapter S is the set of critical points Kf

of some smooth function f : M → R with the connecting trajectories relative to the
flow generated by the negative gradient vector field of f.

Consider M a manifold and Φ : M ×R→ M a flow on M. A set S ⊂ M is said
to the invariant if Φ(S,R) = S. The ω-limit sets of a set Y ⊂ M are given by

ω(Y ) = ∩t>0cl(Φ(Y, [t,∞))),

ω∗(Y ) = ∩t>0cl(Φ(Y, (−∞,−t])).

Now we have all the data for the definition of a Morse decomposition.

Definition 4.15 (Morse decomposition). Let S ⊂ M be a compact, invari-
ant set. Then a finite collection {M(π)|π ∈ P} of compact invariant, pairwise
disjoint sets in S is said to be a Morse decomposition if there exists a bijection
Π : {1, 2, . . . , n} → P (an ordering) such that for every γ ∈ S \ ∪π∈P M(π) there
exists indices i, j ∈ {1, . . . , n} such that i < j and

ω(γ) ⊂ M(Π(i)), ω∗(γ) ⊂ M(Π(j)).

Every ordering of P with this property is said to be admissible. The sets M(π) are
called Morse sets.

A finite collection {M(π)|π ∈ P} of S can have more than one admissible or-
dering on P. If S is a compact, invariant set in M and {M(π)|π ∈ P} a Morse
decomposition of S, then we define a minimal partial order on P . For π′, π′′ ∈ P we
have

π′ < π′′

if π′ 6= π′′ and π′ comes before π′′ in every admissible ordering of P. This defines a
partial order on P. Clearly, any ordering of P is admissible if and only if it extends
the minimal partial order on P. A subset I ⊂ P is said to be an interval if

π′, π′′ ∈ I, π ∈ P, π′ < π < π′′ ⇒ π ∈ I.
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Now we present a particular situation which is important for the process of
fusing critical points. Let f : M → R be a smooth function on a closed manifold
M. Assume that f has only a finite number of critical points: Kf = {xπ|π ∈ P}.
Consider −∇f the negative gradient vector field on M and Φf the associated (global)
flow. The invariant set S = Kf ∪ {connecting trajectories} = M is compact. A
Morse decomposition of M is easy to get: first we order the critical values. We
choose an ordering Π such that

f(xΠ(i)) < f(xΠ(j)) ⇒ i < j for i, j ∈ {1, . . . , n}.

So we obtain a finite collection {xΠ(i)|i ∈ 1, crit(f)} of compact invariants sets in S
with an ordering Π. We denote the minimal partial order associated to this Morse
decomposition by (Kf , <−∇f

).

Definition 4.16. The partial order (Kf , <−∇f
) is called the partial order associated

to −∇f .

Now we have all the notions we need for the following:

Proposition 4.17. Let f : M → R be a minimal function on a simply connected
closed manifold M having exactly one local minimum and exactly one local maxi-
mum. Then (Kf , <−∇f

) is a totally ordered Morse decomposition.

Proof. Let {x1, x2, . . . , xn} be the critical set Kf of f. Consider c ∈ f(M)\f(K)
a regular value. We compute the zero homology group of f=c in order to show
that this set is connected. By the deformation lemma it exists ε > 0 such that
f≤c+ε ∩ f≥c−ε is diffeomorphic to f=c× [0, 1]. The reduced Mayer-Vietoris sequence
of (f≥c−ε, f≤c+ε) has the following form in its inferior part:

→ H̃1(f
≥c−ε ∪ f≤c+ε) → H̃0(f

≥c−ε ∩ f≤c+ε) → H̃0(f
≥c−ε)⊕ H̃0(f

≤c+ε) →
→ H̃0(f

≥c−ε ∪ f≤c+ε) → 0.

By the hypothesis the reduced homology group H̃1(f
≥c−ε∪f≤c+ε) = H̃1(M) = 0 and

H̃0(f
≥c−ε∪f≤c+ε) = 0. The set f≥c−ε is connected, because every point of f≥c−ε can

be linked by trajectories with the unique maximum, similarly f≤c+ε is connected.
Hence H̃0(f

≥c−ε) = 0 and H̃0(f
≤c+ε) = 0. From the exact sequence it follows that

H̃0(f
≥c−ε ∩ f≤c+ε) = 0 and from the diffeomorphism f≤c+ε ∩ f≥c−ε ≈ f=c × [0, 1] it

follows H̃0(f
=c) = 0, therefore f=c is connected.

Now we prove that f has n distinct critical levels. Suppose the existence of
i 6= j ∈ 1, n such that f(xi) = f(xj). Without loss of generality we can suppose
that f−1

(
f(xi)

)∩Kf = {xi, xj}. Else we can modify f to another minimal function

f̃ such that f̃ contains only two critical points xi and xj in the level f̃(xi) and f̃
has exactly one local minimum and exactly one local maximum. Let ε > 0 such
that f≤f(xi)+ε \ f<f(xi)−ε ∩ Kf = {xi, xj}. Then the manifold f≤f(xi)+ε \ f<f(xi)−ε

is connected because f=f(xi)+ε is connected. By the fusing lemma xi and xj fuse
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in the connected triad (f≤f(xi)+ε \ f<f(xi)−ε; f=f(xi)−ε, f=f(xi)+ε), contradicting the
minimality of f. Therefore all the critical points of f lie in different critical levels.

In the last part of this proof we show that (Kf , <−∇f
) is totally ordered. Let

f(xi) and f(xj) be two consecutive critical values of f. Suppose f(xi) > f(xj).
Then for some ε > 0 the triad (f f(xi)+ε \ f<f(xj)−ε; f=f(xj)−ε, f=f(xi)+ε) is connected
and contains only two critical points: xi and xj. There is a connecting trajectory
from xi to xj, else the critical points xi and xj fuse, contradicting the minimality
of f . The existence of the trajectory implies i > j. Concluding, the ordering of the
critical values of f induce an ordering of Kf and implicitly the Morse decomposition

{xi | i ∈ 1, crit(f)} is totally ordered. ♣
Now we give another application of the fusing lemma.

Proposition 4.18. Let M be a closed connected manifold. There exists a smooth
function f0 : M → R with at most dim(M) + 1 critical points such (Kf0 , <−∇f0

) is
totally ordered.

Proof. Let A ⊂ N be the set of positive integers k with the property that M
admits a smooth function f : M → [0, k] with k + 1 critical points x0, x1, . . . , xk,
such that f(xi) = i and the corresponding triads (Wi; Vi, Vi+1) are all connected,
for each i ∈ 0, k. A function with these properties is called unofficially no-name
function.

The set A is not empty because by the proof of the proposition 4.13, for k =
dim(M) there is a no-name function on M. Let k0 be the smallest element of A and
f0 : M → R a no-name function with k0 + 1 critical points. Then (Kf0 , <−∇f0

) is
totally ordered. Otherwise we get a no-name function g on M with k0 critical points
in the following way: let i be a natural integer such that xi 6<−∇f0

xi+1. By the
properties of the no-name functions the manifold Wi ∪Wi+1 is connected. Further-
more, there is no trajectory between xi and xi+1 because f0(xi) = i, f0(xi+1) = i+1
and xi 6<−∇f0

xi+1. Therefore we can apply the fusing lemma for f0 |Wi∪Wi+1
. Hence

there is a function f0,i : Wi ∪Wi+1 → [i− 1/2, i + 3/2] with the properties:

1. f0,i is equal to f0 in a neighborhood of ∂(Wi ∪Wi+1) = Vi ∪ Vi+2.

2. f0,i has exactly one critical point, situated in the level i + 1.

Let φ : [i− 1/2, i + 3/2] → [i− 1/2, i + 1/2] a smooth function such that

1φ. φ = id close to i− 1/2 and φ = id− 1 close to i + 3/2.

2φ. φ(i + 1) = i.

3φ. φ′ > 0.

Now define the function g : M → R by

g(x) =





f0(x) if x ∈ f≤i−1/2

φ(f0,i(x)) if x ∈ Wi ∪Wi+1

f0(x)− 1 if x ∈ f≥i+3/2.
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The smooth function g is a no-name function with k0 critical points, contradiction.♣
Using the function f0 from the previous proposition and repeating verbatim the

last part of the proof of theorem 7 we can give an estimation for the crit of some
special product manifolds:

Proposition 4.19. Let M be a closed manifold of dimension m and let Sn be the
n dimensional sphere. Then crit(M × Sn) ≤ m + 2.
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5 The graphs of a nice minimal function

This chapter is the direct consequence of the chapter about the fusing lemma, where
we have proven the crit inequality for manifolds having a minimal function with only
one local minimum or only one local maximum. In this chapter we analyze the graph
structure of the set

S = Kf ∪ {connecting trajectories}.
Let f : M → R be a smooth function on a closed manifold M with crit(M)

critical points i.e. a minimal function. The G-graph of f denoted by ~G(f) =

(V (G(f)), ~E(G(f))) is an oriented graph obtained in the following manner:

V (G(f)) = Kf

and

~E(G(f)) = {−→xy | x, y ∈ V (G(f)) and there is z ∈ M such that

ω∗(z) = x and ω(z) = y}
where ω, ω∗ are defined relative to the negative gradient vector field −∇f of f , in
some fixed Riemannian structure. If we write G(f) then we mean the graph that

we obtain from ~G(f) if we forget the orientation of the edges. Obviously we have
the following characterization:

• x is a local minimum of f iff x is a sink vertex of ~G(f)

• x is a local maximum of f iff x is a source vertex of ~G(f).

Definition 5.1. We denote by m(f) the number of local minima of f and by
Min(f) the set of local minima of f.

In this chapter we analyze the case m(f) ≥ 2 because the case m(f) = 1 is the
subject of chapter 3.

Proposition 5.2. The G-graph of f is connected, if M is connected.

Proof. Suppose the existence of G1, G2 not empty sub-graphs of G = G(f) such
that G1∪G2 = G and G1∩G2 = ∅. Let M1 = {x ∈ M |ω(x) ∈ V (G1)} and M2 = {x ∈
M |ω(x) ∈ V (G2)}. Then ∅ 6= V (G1) ⊆ M1, ∅ 6= V (G2) ⊆ M2 and M1 ∪M2 = M ,
M1 ∩ M2 = ∅. On the other hand there is no trajectory from V (G1) to V (G2) or
from V (G2) to V (G1), therefore M1 = {x ∈ M |ω(x) ∈ V (G1) and ω∗(x) ∈ V (G1)}
and M2 = {x ∈ M |ω(x) ∈ V (G2) and ω∗(x) ∈ V (G2)}. It follows that M1 and M2

are closed, contradiction with the connectedness of M. ♣
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Definition 5.3. Let f : M → R be a smooth function on M. If the critical points
xq, xp ∈ Kf satisfy both conditions:

a) −−→xpxq ∈ ~E(G(f));

b) f(xp) = f(xq) + 1,

we say that xq is a predecessor of xp (relative to f).

We borrow a name from Morse theory to identify the functions with the following
property:

Definition 5.4. Let f : M → R be a function on M such that for each critical
point x ∈ Kf one of the following statements is true:

a) x is a local minimum of f and f(x) = 0.

b) x has a predecessor.

Then f is called a nice function.

The existence of a nice minimal function on each closed manifold is the subject
of the next paragraph. Here we make some preparations for this purpose looking for
a minimal function fM on M having a Morse decomposition which is convenient for
the next steps. This function fM we obtain in a classical way by local modification of
f (see pag. 17 of [19]) such that Kf = KfM

and all the critical points lie in different
levels. Furthermore, after composing with a diffeomorphism we can assume that

fM(KfM
) ⊆ Z ∩ [1, crit(M)].

Let {x1, . . . , xm(f)} be a ordering of Min(fM) such that

i > j implies fM(xi) > fM(xj) for i, j ∈ 1,m(f)

and let {xm(f)+1, . . . , xcrit(M)} be a ordering of KfM
\Min(fM) such that

i > j implies fM(xi) > fM(xj) for i, j ∈ m(f) + 1, crit(M).

Then {x1, x2, . . . , xcrit(M)} is a Morse decomposition of M , because the existence
of z ∈ M such that

ω∗(z) = xi and ω(z) = xj

implies i > j. We prove previous assertion: ω∗(z) = xi and ω(z) = xj implies
fM(xi) > fM(xj) and xi is not a local minimum. If xj is a local minimum then
i > m(f) ≥ j, else i, j > m(f) and the definition of the ordering for KfM

\Min(fM)
implies again i > j. We prefer this Morse decomposition because all the local minima
here are ordered from 1 to m(f).

The G-graph of fM has the property that

−−→xixj ∈ ~E(G(fM)) implies i > j.
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The F-graphs

Our goal is to construct a sequence of functions fk : M → R for 1 ≤ k ≤ crit(M)

such that ~G(fk) = ~G(fM) and for each 1 ≤ p ≤ k, one of the two following statements
is fulfilled:

a) xp is a local minimum and fk(xp) = 0.

b) there is a natural 1 ≤ q ≤ p such that −−→xpxq ∈ ~E(G(fk)) and fk(xp) = fk(xq) + 1.

Proof. We prove by induction the existence of a function fk with the above
properties and the supplementary condition:

fk(xi) < fM(xi) for i ≤ k

fk(xi) = fM(xi) for i > k.

Let ϕ1 : [1, crit(M)] → [0, crit(M)] be a diffeomorphism such that ϕ1 agrees

with the identity on
[

3
2
, crit(M)

]
. Let f1 = ϕ1◦fM where fM is the function defined

above. Then f1 satisfies all the required properties. Let Kf1 = {x1, . . . , xcrit(M)} be
the critical set of f1 with the ordering given by the Morse decomposition described
above. With this ordering x1 is the global minimum of f1 and f1(x1) = 0.

Now we modify f1 to a minimal function whose local minima are all in the zero
level. Let x2 be a local minimum of f1 (here we analyze only the case m(f) ≥ 2,
the case m(f) = 1 is the subject of chapter 3). There is an ε > 0 such that the
connected component W1 of x2 in f c2+ε

1 (e.g. ε = 1
2
) contains only one critical point:

x2. By gluing the manifold ∂W1× I along the boundaries ∂W1×{0} and ∂W1×{1}
between f≥c2+ε

1 and f≤c2+ε
1 respectively, we get a manifold M ′ diffeomorphic to M.

On this manifold we get a new function f2 in a natural way:

f2(x) =





(c2 + ε)− p2(x)f1(x2) if x ∈ ∂W1 × I
f1(x)− f1(x2) if x ∈ W1

f1(x) else

where p2 : ∂W1×I → I is the projection of ∂W1×I on the second component I. The
function f2 is minimal, G(f2) = G(f1) = G(fM) and supplementary the points x1

and x2 are in the zero level. By repeating this construction for all the local minima
xi of f , 2 ≤ i ≤ m(f) we get a minimal function fm(f) with all the local minima in
the level zero. The position of all the other critical points remains unchanged, thus
they satisfy the inequalities imposed by the chosen Morse decomposition for fM :

0 = fm(f)(x1) = . . . = fm(f)(xm(f)) < fm(f)(xm(f)+1) < . . . < fm(f)(xcrit(M)).

Assume the existence of fk for some k ≥ m(f). Since
−→
G (fk) =

−→
G (fM) the

critical point xk+1 is not a local minimum. Let q be the smallest integer 1 ≤ q ≤ k
such that
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−−−−→xk+1xq ∈ ~E(fk) and

for each 1 ≤ q′ ≤ k such that −−−−→xk+1xq′ ∈ ~E(G(fk)) it follows fk(xq′) ≤ fk(xq).

Let Wk+1 be the connected component of xk+1 in f
≤ck+1+

1
2

k \ f
<cq+ 1

2
k . We claim that

the critical point xk+1 is the unique critical point contained in Wk+1. We’ll prove
this by contradiction. A very detailed proof can be find in the proof of theorem 7
and mainly consists in lemma 3.15. Here we only sketch it: let xi with i 6= k + 1 be
a critical point situated in the highest critical level ci of fk|Wk+1

. Then ci = fk(xi) <
fk(xk+1) = ck+1 by the supplementary conditions imposed on fk. Without loss of
generality we can assume that xi and xk+1 are in the same connected component

Wi of f
≤ck+1+

1
2

k \ f
<ci− 1

2
k , else we can translate in the connected component of xi in

f
≤ck+1+

7
8

k \f
<ci− 1

2
k the level ci into the level ck+1 + 3

4
. We check that all the conditions

of the fussing lemma 3.9 are fulfilled by fk|Wi
: Wi is connected and fk|Wi

has exactly
two critical levels ck+1 and ci. The level ck+1 contains only one critical point xk+1.
The definition of q and ci < ck+1 do not allow the existence of a trajectory going
from xk+1 to any critical point in the level ci. Thus by the fusing lemma 3.9 we can
reduce the number of critical points of fk in this triad at least by one. This fact
contradicts the minimality of fk hence xk+1 is the unique critical point in Wk+1.

Let ϕk+1 : [fk(xq) − 1
2
, fk(xk+1) + 1

2
] → [fk(xq) − 1

2
, fk(xk+1) + 1

2
] be a diffeo-

morphism such that ϕk+1 agrees with the identity on a neighborhood of ∂([fk(xq)−
1
2
, fk(xk+1) + 1

2
]) and ϕk+1(fk(xk+1)) = ϕk+1(fk(xq)) + 1. The existence of ϕk+1 is

assured by the inequality fk(xk+1) − fk(xq) ≥ 1. The triad function ϕk+1 ◦ fk|Wk+1

agrees with fk|Wk+1
in a neighborhood of ∂Wk+1, hence the function fk+1 : M → R

given by:

fk+1(x) =

{
ϕk+1 ◦ fk|Wk+1

if x ∈ Wk+1

fk(x) else,

is smooth. We have fk+1(xk+1) = fk+1(xq) + 1 and the modification of fk to fk+1

does not change the structure of the G-graph: ~G(fk+1) = ~G(fk). The supplementary
condition is satisfied because

fk+1(xk+1) = fk(xq) + 1
q≤k
< fM(xq) + 1 ≤ fM(xk+1)

and for any i 6= k + 1
fk+1(xi) = fk(xi).

Therefore fk+1 satisfies all the required properties. ♣
The function fcrit(M) has the property that each of its critical points is a local

minimum in the zero level or it has a predecessor, hence fcrit(M) is a nice minimal
function. So we have proven:

Proposition 5.5. Every closed manifold possesses a nice minimal function.
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Now we define the first type of sub-graph of a G-graph that we need for our
study:

Definition 5.6. Let g : M → R be a nice function. An oriented sub-graph ~F ⊆
~G(g) is a F-graph of g iff

V (F ) = Kg

and for each x ∈ Kg \Min(g)

{y | −→xy ∈ ~E(F )} ⊆ {y | y a predecessor of x}

and
card

({y | −→xy ∈ ~E(F )}) = 1.

In other words any F-graph ~F of g has the same vertex set as ~G(g) and each

vertex x ∈ V (F ) which is not a sink point of ~G(g) is incident with exactly one edge

of ~F beginning at x. Moreover the ending vertex of this edge must be a predecessor
of x relative to g. About the existence of F-graphs we can prove:

Proposition 5.7. Each nice minimal function on a closed manifold has an F-graph.

Proof. Let g : M → R be a nice minimal function and let V (~G(g)) = {x1, . . . ,

xcrit(M)}. Then we define the oriented graph ~F (g) with the vertices:

V (~F (g)) = Kg

and the edges:−−→xixj ∈ E(~F (g)) iff −−→xixj ∈ E(~G(g)) and j is the smallest integer such that xj is

a predecessor of xi relative to g. Obviously ~F is an F-graph of g.♣
Proposition 5.8. Each F-graph ~F of a nice minimal function g : M → R is an
oriented forest with m(g) trees.

Proof. Without loss of generality we take an ordering on V (~G(g)) such that xi

is a sink point for each i ∈ 1,m(g). Let F (xi) be the connected component of xi in
~F for each 1 ≤ i ≤ m(g).

Suppose that F (xi) ∩ F (xj) 6= ∅ for some 1 ≤ i 6= j ≤ m(g). Then there is a

path P in ~F from xi to xj. The path inherits an orientation from ~F . Then xi and

xj are sink points of ~P , therefore there is a path x′ixx′j ⊆ ~P such that

−→
xx′i ∈ E(~P ) ⊆ ~F and

−→
xx′j ∈ E(~P ).

This means that x is incident with two distinct edges of ~F starting at x, contradiction
with the definition of F-graph. Hence

F (xi) ∩ F (xj) = ∅ for each 1 ≤ i 6= j ≤ m(g).
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On the other hand each x ∈ V (~F ) \Min(g) is the initial vertex of a path having as
terminal vertex a sink point. We can construct such a path in the following way: x
is not a sink point then by the definition of F-graph there is an unique xp1 such that
−−→xxp1 ∈ E(~F ). If xp1 is a sink point we get a path xxp1 with the required properties,
otherwise we continue in the same way until we arrive to a sink point xpi

. Then

x ∈ F (xpi
). Furthermore F = ∪m(g)

i=1 F (xi) so ~F consists of m(g) connected graphs.
All this graphs are trees by the definition of F-graph.♣

With these notions we re-formulate the main result of chapter 3:

Proposition 5.9. Let M be a closed manifold. If an F-graph of a nice minimal
function on M is a tree then

crit(M × Sn) ≤ crit(M) + 1

for each positive integer n.

The MP-graphs

Let g be a nice minimal function on M and let ~F be an F-graph of g.

Definition 5.10. An oriented tree
−−→
MP such that

~F ⊆ −−→
MP ⊆ ~G(g)

is called a MP-graph of g containing the F-graph ~F .

We are looking for an MP-graph
−−→
MP of g containing ~F . With graph-theoretical

arguments we prove the general result:

Proposition 5.11. Let G be a connected graph and F ⊆ G be a forest such that
V (F ) = V (G). Then there is a tree MP ⊆ G such that F ⊆ MP ⊆ G.

Proof. Let F ′ be a forest having the minimal number n ∈ N of disjoint trees
T1, T2, . . . , Tn such that

F ⊆ F ′ = T1 ∪ T2 ∪ . . . ∪ Tn ⊆ G.

Obviously n is at most equal to the number of trees of F. If n 6= 1 then there is a
vertex y ∈ V (G)− V (T1) = V (F ′) − V (T1) = ∪n

i=2V (Ti) that is adjacent in G to a
vertex z ∈ V (T1), otherwise G is not connected. Let 2 ≤ i ≤ n such that y ∈ Ti.
Then T ′

1 = T1 ∪ Ti ∪ yz is a tree and the forest T ′
1 ∪ (∪j∈{2,... ,n}\{i}Tj) has at most

n− 1 trees, contradicting the minimality of n.♣
The name of the MP-graphs comes from the geometrical-intuitive version of the

previous proposition. If x1 ∈ T1 and x2 ∈ T2 are two local minima of g then they
“produce” by a minimax theorem a critical point x12 of mountain pass type, and the
edges −−−→x12x1 ∈ ~G(g), −−−→x12x2 ∈ ~G(g). One of these edges we must add, in the previous

proof, to ~F in order to get a forest with at most n− 1 trees.

Using the previous proposition we get a MP-graph
−−→
MP of g containing ~F . The

MP-graph
−−→
MP inherits the orientation from ~G. So we have proven:
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Corollary 5.12. For each F-graph ~F of g there is a MP-graph of g containing ~F .

With the convention that max ∅ = 0 we give the following:

Definition 5.13. Let ~G be an oriented graph and x ∈ V (~G). The height of x is the
nonnegative integer

h(x) = max{i− 1 | ∃ a path y1 y2 . . . yi such that

yi = x and −−−→ykyk−1 ∈ ~G for each 2 ≤ k ≤ i}.

The length of an edge
−→
xx′ ∈ ~G is the integer

l(
−→
xx′) = h(x)− h(x′).

A path has distinct vertices hence h(x) ≤ |~G| − 1, for each x ∈ V (~G). On the
other hand a sink point has height zero, therefore

0 ≤ h(x) ≤ | ~G| − 1 for each x ∈ V (~G).

Remark 5.14. For each edge
−→
xx′ ∈ ~G we have l(

−→
xx′) ≥ 1.

Proof. Let i− 1 be the height of x′. There is a path y1y2 . . . yi such that yi = x′

and −−−→ykyk−1 ∈ ~G for each 2 ≤ k ≤ i. Then y1y2 . . . yiyi+1 is a path such that yi = x′,
yi+1 = x and −−−→ykyk−1 ∈ ~G for each 2 ≤ k ≤ i + 1, hence h(x) ≥ i = h(x′) + 1.♣
Proposition 5.15. Let g be a nice minimal function on M and ~G(g) its G-graph.

If x ∈ V (~G(g)) then the height h(x) = g(x).

Proof. First we prove that g(x) ≤ h(x). Let ~F be a F-graph of the nice minimal

function g. The vertex x of ~G is at the same time a vertex of some tree in the forest
~F . Hence there is a path y1 y2 . . . yi = x in that tree such that −−−→ykyk−1 ∈ ~F for each
2 ≤ k ≤ i and y1 is a sink point. The path is determined by ~F uniquely because
each vertex which is not a sink point is incident with an unique edge in ~F beginning
with itself. We have the relations:

g(yk) = g(yk−1) + 1 and g(y1) = 0

for 2 ≤ k ≤ i. It follows g(x) ≤ h(x).
Now we prove that g(x) ≥ h(x). Let y1 y2 . . . yi = x be a path with i = h(x) + 1

such that −−−→ykyk−1 ∈ ~G(g) for each 2 ≤ k ≤ i. Then y1 is a minimum. Since g is a nice
minimal function g(y1) = 0 and g(yk) − g(yk−1) ≥ 1. Summing all the inequalities
for 2 ≤ k ≤ i we obtain g(x)− g(y1) ≥ i− 1 hence g(x) ≥ h(x).♣

The J-graphs

From now on we use the simplified notation for a graph, e.g. instead of (V (G), E(G))
we use G. For other notions about graphs see the appendix or the book by Bol-
lobas [1].
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We recapitulate what we have done until now: we have started with a nice
minimal function g. To this nice minimal function we have associated an oriented
graph ~G(g), the G-graph of g, uniquely determined by g. Then we have proven the

existence of an F-graph, an oriented sub-graph of ~G(g) consisting of m(g) trees. The
nice minimal function g can have more that one F-graph, therefore we have proven

that each F-graph ~F of g is contained in a spanning tree
−−→
MP of the G-graph ~G(g),

spanning tree that we have called a MP-graph of g containing ~F . But the tree
−−→
MP is

not good enough for our purpose because not each edge of
−−→
MP necessarily satisfies

the following condition:

Definition 5.16. 1 Let J and H be sub-graphs of the oriented graph ~G. We say

that the edge
−→
zz′ ∈ ~J is J-fragmentable in H iff there is a path P from z to z′ in

H − zz′ such that for each
−→
uu′ ∈ ~P :

Ja)
−→
uu′ ∈ ~J and h(u)− h(u′) = h(z)− h(z′).

or

Jb) h(u)− h(u′) ≤ h(z)− h(z′)− 1.

If H = G we say that zz′ is J-fragmentable omitting “in G”. A graph J having all
its edges not J-fragmentable is an unfragmentable graph.

For a nice minimal function g : M → R and its G-graph ~G(g) the conditions Ja)
and Jb) get by the proposition 5.15 the following form:

Ja)
−→
uu′ ∈ ~J and g(u)− g(u′) = g(z)− g(z′).

or

Jb) g(u)− g(u′) ≤ g(z)− g(z′)− 1.

Example 5.17. Let J ⊆ G(g) be a tree. Then each edge of length one of J is not
J-fragmentable.

Proof. Let
−→
zz′ be an edge in ~J of length one. Suppose

−→
zz′ is fragmentable. Then

there is a path P ⊆ G(g)− zz′ such that for any
−→
uu′ ∈ P :

Ja)
−→
uu′ ∈ ~J and g(u)− g(u′) = 1

or

Jb) g(u)− g(u′) ≤ 0.

But by the example 5.14 the graph G(g) has no edges of length zero, hence the
assertion Jb) does not occur. In this situation P ⊆ J. Furthermore P ∪zz′ is a cycle
in J. But J is a tree, contradiction.♣

1We use the vector sign only when the orientation is requested.
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Remark 5.18. With the notation of definition 5.16, if
−→
zz′ ∈ ~J is J-fragmentable in

H ⊆ G(g) then each
−→
uu′ ∈ ~P with g(u)− g(u′) = g(z)− g(z′) is J-fragmentable in

H.

Definition 5.19. A MP-graph ~J of g containing ~F having only J-unfragmentable
edges is called a J-graph of g containing ~F .

Our intention is to prove the existence of a J-graph of g for each F-graph ~F . For
this aim we prove by induction on i :

Proposition 5.20. For each 1 ≤ j ≤ m(g) there is a tree Jj ⊆ G(g) such that

1. F ⊆ Jj ⊆ G(g).

2. The number of Jj-fragmentable edges of Jj in ~G(g) is at most m(g)− j.

For j = m(g) we obtain Jm(g) an unfragmentable tree spanning G(g).

Proof. Let
−−→
MP be an MP-graph of g containing ~F . Then J1 = MP is a tree and

F ⊆ J1. The number of its edges of length greater than 1 is at most m(g)−1. All the
other edges are by the example 5.17 not J1-fragmentable, therefore the condition 2
of the proposition is fulfilled, too.

Let 1 ≤ j ≤ m(g)− 1 be a positive integer and Jj be a tree such that F ⊆ Jj ⊆
G(g). At the moment we do not need all the induction hypothesis, but only part 1.

Let
−→
zz′ be a Jj-fragmentable edge (of Jj in G(g)). By definition there is a path P

in ~G(g)−−→zz′ from z to z′ and for each
−→
uu′ ∈ ~P :

Ja) uu′ ∈ Jj and g(u)− g(u′) = g(z)− g(z′)

or

Jb) g(u)− g(u′) ≤ g(z)− g(z′)− 1.

The length of
−→
zz′ ∈ ~Jj is at least 2 (see example 5.17) and the length of the edges

of F is one hence if g(u)− g(u′) = g(z)− g(z′) then uu′ /∈ F. The condition Ja) get
a new form:

Ja’) uu′ ∈ Jj − F and g(u)− g(u′) = g(z)− g(z′)

Let J ′j and J ′′j be the two connected components of Jj− zz′ such that z ∈ J ′j and
z′ ∈ J ′′j . The path P does not contain the edge zz′ hence the graph (P ∪ Jj)− zz′ =
P ∪ J ′j ∪ J ′′j . Furthermore it is connected. Let V (P ) = {z1 = z, z2, . . . , zk = z′} be
the vertex set of P and I ′ resp. I ′′ be the set of indices i such that zi ∈ J ′j resp.
zi ∈ J ′′j . Obviously 1 ∈ I ′ and k ∈ I ′′. Let i′ be the largest element of I ′ and let i′′

be the smallest element of I ′′ greater then i′. Then zi′zi′′ 6= zz′. The edge zi′zi′′ is
not an element of Jj else Jj contains a circuit made by zz′, elements of J ′′j , zi′′zi′
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and elements of J ′j, contradicting the fact that Jj is a tree. But zi′zi′′ ∈ P hence it
must satisfies at least the condition (b):

g(zi′)− g(zi′′) ≤ g(z)− g(z′)− 1.

Let L = J ′j ∪ J ′′j ∪ zi′zi′′ . The edge zi′zi′′ is a bridge for L hence L has no circuit, i.e.
is a tree. Furthermore F ⊆ J ′j ∪ J ′′j ⊆ L ⊆ G(g). If zi′zi′′ ∈ L is not L-fragmentable
then we put Jj+1 = L, else we repeat the above reasoning for L. After each such
process the length of the new edge is at least one unit smaller than the length of the
anterior fragmentable edge, therefore after at most g(z)− g(z′)− 1 times we obtain
an unfragmentable edge.

Now we assume that Jj satisfies the second condition of the induction hypothesis
and has at most m(g)− j Jj-fragmentable edges. The new graph Jj+1 is a tree and
F ⊆ Jj+1. It remains to count the number of Jj+1-unfragmentable edges. The new
edge is by construction Jj+1-unfragmentable. We prove that the Jj-unfragmentable

edges of Jj are Jj+1-unfragmentable. Let
−→
vv′ ∈ ~Jj be a Jj-unfragmentable edge. If−→

vv′ is Jj+1-fragmentable there is a path Pj+1 from v to v′ in G(g) − vv′. The path

must contain the edge ~Jj+1 − ~Jj =
−−→
ww′ and

g(v)− g(v′) = g(w)− g(w′)

else
−→
vv′ is Jj-fragmentable edge. By the remark 5.18

−−→
ww′ is Jj+1-fragmentable,

contradiction. The number of Jj+1-fragmentable edges for Jj+1 is at most m(g) −
j− 1, because we replace a fragmentable edge by an edge which is not fragmentable
and all the unfragmentable edges remain unfragmentable.♣

The tree ~Jm(g) ⊆ ~G(g) is a J-graph of g containing F. Its orientation is inherited

from ~G(g). So we have proven:

Corollary 5.21. For each F-graph ~F of g there is a J-graph of g containing ~F .

Definition 5.22. Let ~J be an oriented graph. We say that ~J satisfies the (“ ⊆ ”)

condition if for
−→
zz′ ∈ ~J and

−→
uu′ ∈ ~J the property

(
h(u′), h(u)

) ∩ (
h(z′), h(z)

) 6= ∅
implies

h(u)− h(u′) = 1 or h(z)− h(z′) = 1 or
(h(u) = h(z) and h(u′) = h(z′)).

We end this paragraph with the following:

Example 5.23. Each graph with all the edges of length one satisfies the condition
(“ ⊆ ”). A graph that does not satisfy the condition (“ ⊆ ”) is the graph ~J =

(V (J), ~E(J)), where
V (J) = {1, 2, 3, 4}

~E(J) = {−→21,
−→
32,

−→
31,

−→
43,

−→
42}.
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Remark 5.24. The previous example is very simple but the graph ~J is not a tree
hence it cannot be the J-graph of a nice minimal function. The graph ~J ′ =
(V (J ′), ~E(J ′)) where

V (J ′) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
~E(J ′) = {−→41,

−→
74,

−→
52,

−→
85,

−→
63,

−→
96,

−→
109,

−→
81,

−→
105}

is a tree that does not satisfy the condition (“ ⊆ ”).

If a J-graph of a nice minimal function on M satisfies the condition (“ ⊆ ”) then
we can prove the crit inequality:

crit(M × Sn) ≤ crit(M) + 1,

for each positive integer n. The proof of this inequality is the topic of the chapter 7.

Completing chapter 3

This last paragraph is the natural continuation of the topic described in chapter 3.
In chapter 3 we missed the notions from this chapter, especially the graph theoretical
language.

Proposition 5.25. If a closed manifold M has a nice minimal function f : M → R
such that a J-graph ~J of f is not an interval than for any generalized Lusternik-
Schnirelmann category λcat relative to Diff(M) we get the strictly inequality
λcat(M) < crit(M).

Proof. Recall that ~J is a tree. If ~J is not an interval then there are two distinct

vertices x′, x′′ ∈ ~J having a common predecessor x (i.e.
−→
x′x ∈ ~J,

−→
x′′x ∈ ~J) or there

is a vertex x having two predecessors x′, x′′ ∈ ~J (i.e.
−→
xx′ ∈ ~J,

−→
xx′′ ∈ ~J). Then

h(x′) = h(x′′) and implicitly f(x′) = f(x′′) = c. This means that the function f
has at the level c at least two critical points. Hence f has at most crit(M) − 1
distinct critical levels. But the Lusternik-Schnirelmann theorem for the generalized
L-S category λcat (cf. theorem 5) implies the existence of λcat(M) distinct critical
levels for f (f has a finite number of critical points as all the functions what we
consider in this thesis). Therefore λcat(M) ≤ crit(M)− 1.♣

In the theorem 7 we have seen that the rules of cancelling critical points change
into rules for cancelling vertices of trees. That is the reason why the proof of the
following theorem deals with trees instead of critical points.

Theorem 8. Let M be a closed manifold like in the theorem 7 and N = Sp1 × . . .×
Spn−1 be a product of n− 1 ≥ 1 spheres. Then

crit(M ×N) ≤ crit(M) + n− 1.
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Proof. Let f : M → R be a nice minimal function on M with exactly one local
minimum and let ~Ff be an F-graph of f. Then by proposition 5.8 ~Ff is a tree. Let

V (~Ff ) = {x1, x2, . . . , xm} where m = crit(M) and let x1 be the unique sink point

of ~Ff .
Let g : N → R be a nice minimal function on N . Then cat(N) = crit(N) implies

by proposition 5.25 that each J-graph of g is an interval. Therefore each F-graph
of g is an interval, too. We denote by ~Fg an F-graph of g (all the F-graphs of g are

isomorphic). Let V (~Fg) = {y1, y2, . . . , yn} where yn is the unique sink point of ~Fg.
Now we pass to a graph theoretical problem. On the set

K∞ = {x1, x2, . . . , xm} × {y1, y2, . . . , yn, yn+1, . . . } ⊇ V (~Ff )× V (~Fg)

we define the equivalence relation: (x′, yp) ∼ (x′′, yq) iff one of the followings asser-
tions are true:

1. p = q and x′ = x′′.

2. p < q and there is a path xr0xr1 . . . xrq−p in ~Ff such that xr0 = x′, xrq−p = x′′

and −−−−→xri−1
xri

∈ ~Ff for each i ∈ 1, q − p.

3. p > q and there is a path xr0xr1 . . . xrp−q in ~Ff such that xr0 = x′′, xrp−q = x′

and −−−−→xri−1
xri

∈ ~Ff for each i ∈ 1, p− q.

We want to prove by induction on n that card(Kn/∼) = m + n − 1, where

Kn = {x1, x2, . . . , xm} × {y1, y2, . . . , yn} = V (~Ff )× V (~Fg).
For n = 1 the equality is trivial. Recall that for n = 2 we have shown that

card(K2/∼) ≤ m + 1 in the proof of theorem 7. Suppose card(Kn/∼) = m + n− 1.
Let z ∈ Kn+1 \ Kn. Then z has the form (xp, yn+1) where p ∈ 1,m. If 2 ≤ p ≤ m

then xp has an predecessor xq in ~Ff . Hence the points (xp, yn+1) and (xq, yn) ∈ Kn

are equivalent therefore in the same equivalence class. The point (x1, yn+1) is the
unique point of Kn+1 \ Kn which is not equivalent to a point of Kn and therefore
the unique point not in a class of Kn/∼. We have:

card(Kn+1/∼) = card(Kn/∼) + 1 = m + n.

We return to the topological aspect of the proof. Let F : M × N → R be the
function given by F (x, y) = f(x)+g(y) for each x ∈ M , y ∈ N. The critical set of F
is KF = Kf×Kg = Kn. By corollary 3.13 there is a function on M×N with at most
card(KF /∼F

) critical points. On the other hand ∼⊆∼F , because (x′, yp) ∼ (x′′, yq)
implies the existence of a path in the level F ((x′, yp)) = F ((x′′, yq)) from (x′, yp) to
(x′′, yq). Hence

card(KF /∼F
) ≤ card(KF /∼) = m + n− 1.

Therefore crit(M ×N) ≤ m + n− 1.♣
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6 Extended fusing lemma

Let f : W → R be a triad function with the critical set Kf . As usual we assume
that Kf is finite. In a previous chapter we have defined the set of trajectories going
to or from the critical point x as

Kx = {y ∈ W |ω∗(y) = x or ω(y) = x}.

Here we define for a set of critical points A ⊆ Kf the set of the trajectories going
to or from A as

KA = ∪x∈AKx.

On the critical set we introduce an equivalence relation:

Definition 6.1. Two critical points of f , x1 and x2 are f-equivalent, x1 ∼f x2 iff
f(x1) = f(x2) = c and there is a path from x1 to x2 contained in f=c.

Let A ⊆ Kf be a set of critical points containing x1 and x2. We say that x1

and x2 are f-equivalent relative to A iff f(x1) = f(x2) = c and there is a path
γx1x2 : [0, 1] → W from x1 to x2 contained in f=c such that γx1x2([0, 1])∩KKf

⊆ KA.
In this chapter when we write A/ ∼f or ∼f |A we refer to ∼f relative to A.

Remark 6.2. By Takens (corollary 3.13) a triad function f : W → R can be modified
to a function f̃ : W → R with at most card(Kf/ ∼f ) critical points.

The following proposition is the natural extension of the fusing lemma for triad
functions with more than two critical points. Indeed for l = 2, A0 = {x0}, A1 = {x1}
and A3 = ∅ the proposition consists in a weaker form of the fusing lemma. This
particular case of the following proposition is not exactly the fusing lemma because
here we have an additional condition imposed on the path γ: γ([0, 1]) ∩ KKf

=
{x0, x1}. In the fusing lemma we do not have this condition, the existence of γ being
sufficient to prove the lemma. This is the reason why the proof of the fusing lemma
is more complicated than the proof of the following proposition:

Proposition 6.3 (Extended fusing lemma). Let f : W → [0, 1] be a triad func-
tion and {A0, A1, . . . , Al+1} be a partition of the critical set Kf . Suppose that for
the negative gradient vector field on W , the set of trajectories going to or from Ai

is disjoint from the set of trajectories going to or from Aj, for each distinct i and j,
i, j = 0, . . . , l + 1 (i.e. KAi

∩KAj
= ∅ for each i 6= j, i, j = 0, . . . , l + 1).

If there exists a path γ : [0, 1] → W and xh ∈ Ah for h = 0, . . . , l such that
γ([0, 1]) ∩KKf

= {xh | h = 0, . . . , l}, then there is a triad function f̃ : W → [0, 1]
with the following properties:
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C. Gavrila 6 Extended fusing lemma

a) Kf̃ = Kf .

b) f̃ = f in a neighborhood of ∂W.

c) card(A0 ∪ . . . ∪ Al/ ∼f̃ ) ≤
∑l

h=0 card(Ah/ ∼f )− l and

card(Al+1/ ∼f̃ ) ≤ card(Al+1/ ∼f ).

Proof. We divide the proof in three assertions.

Assertion 1. Suppose that f(Kf ) ⊆
[

7
16

, 9
16

]
. Then the extended fusing lemma

is true for l = 1. We prove in addition that: ∼f |A2 ⊆∼f̃ |A2 .

Proof. We construct the function f̃ similarly to the construction of f̃ in the
assertion 2 of the fusing lemma.

Let K0 = KA0 and K1 = KA1∪A2 . For K0 and K1 we construct the function
µ : W → [0, 1] like in the assertion 2 of the fusing lemma. The function F :
[0, 1]× [0, 1] → [0, 1] we define here is only a bit different from its correspondent in
the fusing lemma.

So, let F : [0, 1]× [0, 1] → [0, 1] be a smooth function such that:

aF) ∂F
∂x

(x, y) > 0 for each x and y in [0, 1].

bF) Fy is equal to the identity on
[
0, 1

16

]
∪

[
15
16

, 1
]

for each y ∈ [0, 1].

cF) F0(f(x0)) = F1(f(x1)) and F ′
0(x) = 1 for each x ∈

[
1
4
, 3

4

]
.

dF) F1 equals the identity on [0, 1].

The construction of F can be derived from assertion 1 of the fusing lemma. Now
define a new function f̃ : W → [0, 1] by f̃(z) = F (f(z), µ(z)) for each z ∈ W. The
smooth function f̃ has the following properties:

af̃) f̃ has the same critical set as f , Kf̃ = Kf .

bf̃) f̃ = f in a neighborhood of ∂W.

cf̃) f̃(x0) = f̃(x1) and f̃ equals f plus a constant in the intersection of some

neighborhood of K0 with W ′, where W ′ = f−1
([

1
4
, 3

4

])
.

df̃) f̃ agrees with f in a neighborhood of K1.

Each of the above properties of f̃ corresponds to the condition on F denoted
by the same letter a, b, c or d. We insist only on cf̃), all the other properties being
obvious. By definition, the function µ is zero on a neighborhood U0 of K0. At the
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same time F ′
0 = 1 on

[
1
4
, 3

4

]
therefore there is d ∈ R such that F0(x) = x + d for

each x ∈
[

1
4
, 3

4

]
. Hence

f̃(z) = f(z) + d for each z ∈ U0 with f(z) ∈
[1

4
,
3

4

]
.

The last two properties cf̃) and df̃) are very important and they make the

significant difference between this proposition and the fusing lemma. Here K f̃
Ai
∩

W ′ = Kf
Ai
∩W ′ for i = 0, 1, 2. For i = 1 and i = 2, we have even K f̃

Ai
= Kf

Ai
.

Let γ : [0, 1] → W be the path from x0 to x1 with γ([0, 1]) ∩ KKf
= {x0, x1}.

Assume γ([0, 1]) ⊆
[

7
16

, 9
16

]
, else we project it from up and from down on the levels

f= 9
16 and f= 7

16 respectively, getting a path in
[

7
16

, 9
16

]
which does not intersect KKf

,

with the exception of x0 and x1. The property cf̃) and property df̃) imply that
γ([0, 1])∩KKf̃

= {x0, x1}. This property is necessary in order to project γ([0, 1]) on

the level a = f̃(x0) = f̃(x1) such that x0 ∼f̃ x1 relative to A0 ∪ A1. We can project
the path γ directly on the the level a along the flow lines or stepwise using iteration
of the projections from one critical level to the next one. We give the details of the
projection with iterations. The projection follows in two steps: first we project the
part of γ which is above the level a on f̃=a and then the part of γ which is under
the level a on f̃=a. Let {c1, c2, . . . , cs+1} be the set of critical values of f̃ above a
such that

c1 ≥ c2 ≥ · · · ≥ cs ≥ cs+1 = a.

The first deformation lemma asserts the existence of a strong deformation retraction
π1 of W onto f̃≤c1 . Then π1(γ) ⊆ f̃≤c1 . For the next step of this iterative projection
we need a stronger deformation lemma [3] :

Lemma 6.4 (Second deformation lemma). Let f : W → [0, 1] be a triad func-
tion with only isolated critical points. Suppose that Kf ∩ (a, b) = ∅. Then f≤a is a
strong deformation retract of f≤b \Kb.

According to the second deformation lemma there is a strong deformation re-
traction π2 from f̃≤c1 \ Kc1 onto f̃≤c2 hence π2 ◦ π1(γ) ⊆ f̃≤c2 . Repeating this
process for all the critical levels above a we get a iteration of γ such that γ′ =
πs+1 ◦πs ◦ · · · ◦π1(γ) ⊆ f̃≤a. If we do stepwise the analogous projection of γ′ on each
critical level below the level a we get a path γ′′ contained in the level f̃=a.

In order to prove that f̃ satisfies the condition c) of the proposition for l = 1
it remains to show that: x ∼f y relative to Ai implies x ∼f̃ y relative to Ai for

each i ∈ 0, 2. Let i be fixed and x ∼f y relative to Ai. Then by the definition of the
equivalence relation ∼f there exists a path γxy : [0, 1] → W in the critical level of x
and y such that γxy([0, 1])∩KKf

⊆ KAi
. Without loss of generality we assume that

f̃ ◦ γxy([0, 1]) ⊆
[

7
16

, 9
16

]
. Then by the property cf̃) if i = 0 or by the property df̃)
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if i = 1 or i = 2 we have:

γxy([0, 1]) ∩K f̃
Kf̃

= γxy([0, 1]) ∩K f̃
Kf̃
∩W ′ = γxy([0, 1]) ∩Kf

Kf
∩W ′.

By the definition of x ∼f y relative to Ai we get

γxy([0, 1]) ∩Kf
Kf
∩W ′ ⊆ Kf

Ai
∩W ′.

From the previous relation it follows γxy([0, 1]) ∩ K f̃
Kf̃
⊆ Kf

Ai
∩W ′. Then for each

z ∈ γxy([0, 1]) ∩ KKf̃
we have z ∈ KAi

and therefore µ(z) = µ(x) = µ(y). But

z ∈ γxy([0, 1]) hence f(z) = f(x) = f(y). Therefore F (f(z), µ(z)) = F (f(x), µ(x)) =
F (f(y), µ(y)) i.e. f̃(z) = f̃(x) = f̃(y) := c̃. This means that the path γxy intersects
KKf̃

in the level f̃=c̃. Using the second deformation lemma we can project continu-

ously the path γxy on f̃=c̃. We get a path γ̃xy : [0, 1] → W from x to y contained in

f̃=c̃ such that γ̃xy([0, 1]) ∩KKf̃
= γxy([0, 1]) ∩KKf̃

⊆ K f̃
Ai

. This means that x ∼f̃ y
relative to Ai.

In conclusion, we have x0 ∼f̃ x1 relative to A0 ∪ A1, and x ∼f y relative to Ai

implies x ∼f̃ y relative to Ai for each i ∈ 0, 2. Therefore:

card(A0 ∪ A1/ ∼f̃ ) ≤ card(A0/ ∼f̃ ) + card(A1/ ∼f̃ )− 1 ≤
≤ card(A0/ ∼f ) + card(A1/ ∼f )− 1,

and ∼f |A2 ⊆∼f̃ |A2 .
Here we must make a remark which is useful for the others assertions:

Remark 6.5. If there is a critical subset A ⊆ Kf such that γxy([0, 1]) ∩KKf
⊆ KA

then by definition x ∼f y relative to A. If in addition KA ∩ KKf\A = ∅ from the
proof of assertion 1 it follows that x ∼f̃ y relative to A.

Assertion 2. The proposition is true for l = 1. In addition ∼f |A2⊆∼f̃ |A2 .
Proof. We want to apply the result of the previous assertion, therefore we need

a function as in assertion 1. Let f be a triad function as in the proposition. Then
there is 0 < ε < 1/4 such that f(Kf ) ⊆ [2ε, 1 − 2ε]. Let δ be a real number such
that 2ε < δ < 1/2.

Then there is a function fδ : W → [0, 1] such that:

1δ) Kfδ
= Kf .

2δ) f = fδ on a neighborhood of ∂W.

3δ) x ∼f y relative to Ai implies x ∼fδ
y relative to Ai, for each i ∈ 0, 2.

4δ) fδ(Kfδ
) ⊆ [δ, 1− δ].

In order to construct fδ we need a smooth function φ : [0, 1] → [0, 1] with the
properties:
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1φ) φ is a diffeomorphism.

2φ) φ = id on [0, ε] ∪ [1− ε, 1].

3φ) φ′ equals a constant on the set [2ε, 1− 2ε].

4φ) φ([2ε, 1− 2ε]) ⊆ [δ, 1− δ].

It is easy to check that the function fδ = φ ◦ f has the desired properties 1δ),
2δ), 3δ) and 4δ).

For δ = 7
16

the function fδ satisfies the condition of the assertion 1 hence there

is a function f̃δ : W → [0, 1] such that:

card(A0 ∪ A1/ ∼f̃δ
) ≤ card(A0/ ∼fδ

) + card(A1/ ∼fδ
)− 1.(6.1)

By the property 3δ) we have:

∼f |Ai
⊆∼fδ

|Ai
for each i ∈ 0, 2,(6.2)

hence the inequality 6.1 get the form that we required:

card(A0 ∪ A1/ ∼f̃δ
) ≤ card(A0/ ∼f ) + card(A1/ ∼f )− 1.

The supplementary statement is proved, too, because by the assertion 1 for fδ we
have ∼fδ

|A2⊆∼f̃δ
|A2 and by 6.2 we have ∼f |A2 ⊆∼fδ

|A2 hence ∼f |A2 ⊆∼f̃δ
|A2 .

Assertion 3. The proposition is true for each l ≥ 1.
Proof. From the path γ we can easily obtain, eventually after a reordering

of {A0, . . . , Al}, for each h ∈ 1, l a path γh : [0, 1] → W such that γh([0, 1]) ∩
KKf

= {zh, z
′
h} with zh ∈ A0 ∪ . . . ∪ Ah−1 and z′h ∈ Ah. By the assertion 2 the

proposition is true for l = 1. We apply this particular case to the partition {A0 ∪
. . . ∪ Ah−1, Ah, Ah+1 ∪ . . . ∪ Al+1} and the path γh for h ∈ 1, l and we obtain the
function fh : [0, 1] → R such that

card(A0 ∪ . . . ∪ Ah/ ∼fh
) ≤ card(A0 ∪ . . . ∪ Ah−1/ ∼fh−1

) +

+ card(Ah/ ∼fh−1
)− 1,

where we use the notation f0 := f. When we pass from f0 to fh we do not alter the
properties of γh that we need in order to apply the assertion 2. By the supplementary
statement of the assertion 2 it follows:

∼fh−1
|Ah+1∪...∪Al+1

⊆∼fh
|Ah+1∪...∪Al+1

(6.3)

for each h ∈ 1, l.
Summing the previous inequalities for h ∈ 1, l we obtain:

card(A0 ∪ . . . ∪ Al/ ∼fl
) ≤

l∑

h=1

card(Ah/ ∼fh−1
) + card(A0/ ∼f0)− l.
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Let h be an integer between 1 and l + 1. Then for each 1 ≤ k < h the inclusion 6.3
implies

∼ fk−1 |Ak+1∪...∪Al+1
⊆∼ fk |Ak+1∪...∪Al+1

.

Using the remark 6.5 after the assertion 1 we obtain ∼fk−1
|Ah
⊆∼fk

|Ah
for each

1 ≤ k < h. Hence
∼f0| Ah ⊆∼f1| Ah ⊆ . . . ⊆∼fh−1

| Ah

and
card(Ah/ ∼fh−1

) ≤ card(Ah/ ∼fh−2
) ≤ . . . ≤ card(Ah/ ∼f0).

In conclusion:

card(A0 ∪ . . . ∪ Al/ ∼fl
) ≤

l∑

h=0

card(Ah/ ∼f0)− l.

Furthermore card(Al+1/ ∼fl
) ≤ card(Al+1/ ∼f0). Hence the function f̃ = fl satisfies

all the requirements of the proposition. ♣
Corollary 6.6. Under the hypothesis of proposition 6.3 there is a triad function
f̃ : W → [0, 1] with the following properties:

a) Kf̃ = Kf .

b) f̃ = f in a neighborhood of ∂W.

c) crit(f̃) ≤ ∑l+1
h=0 card(Ah/ ∼f )− l.

Proof. It follows from the remark 6.2 using the inequalities obtained in previous
proposition.♣
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7 The crit inequality for (“ ⊆ ”) condition

We start this chapter with the following:

Lemma 7.1. Let {Ki}i∈I be a partition of a finite set K and {Bj}j∈J be a family
of subsets of K with the properties:

Sa) ∪j∈JBj ⊆ K.

Sb) for each j ∈ J there is i ∈ I such that Bj ⊆ Ki.

Sc) if there is {j1, . . . , jk} ∈ Jk with k ≥ 2, jl 6= jm for each 1 ≤ l 6= m ≤ k such
that

Bj1 ∩Bj2 6= ∅, Bj2 ∩Bj3 6= ∅, . . . , Bjk
∩Bj1 6= ∅

then card(Bj1 ∩ . . . ∩Bjk
) = 1. With these assumptions:

∑
i∈I

(
card(Ki)− 1

) ≥
∑
j∈J

(
card(Bj)− 1

)
.

Proof. First we prove the lemma by induction on n = card(J)− card(I), under
the same hypothesis but

Sa’) ∪j∈JBj = K.

instead of Sa). Let π : J → I be a map such that Bj ⊆ Kπ(j) for each j ∈ J. The
existence of the map π follows from Sb) and π is surjective because of Sa’).

Let n = 0. Then the mapping π is bijective and Bj = Kπ(j) for each j ∈ J. The
inequality is trivially satisfied. Now we treat the case n+1 ≥ 1. If for each j1, j2 ∈ J
with j1 6= j2 we have Bj1∩Bj2 = ∅ then {Bj}j∈J is a partition of K (exactly {Ki}i∈I)
and the inequality is trivially satisfied.

If there is some j1, j2 ∈ J with j1 6= j2 and Bj1 ∩ Bj2 6= ∅ then by the property
Sc) for {j1, j2} the cardinality card(Bj1 ∩Bj2) = 1. Thus:
∑
j∈J

(
card(Bj)− 1

)
=

∑

j∈J\{j1,j2}

(
card(Bj)− 1

)
+ card(Bj1)− 1 + card(Bj2)− 1 =

=
∑

j∈J\{j1,j2}

(
card(Bj)− 1

)
+ card(Bj1) + card(Bj2)− card(Bj1 ∩Bj2)− 1 =

=
∑

j∈J\{j1,j2}

(
card(Bj)− 1

)
+ card(Bj1 ∪Bj2)− 1 =

=
∑

j∈(J\{j1,j2})∪{j1,2}=J ′

(
card(B′

j)− 1
)
.

where
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B′
j = Bj for j 6= j1 and j 6= j2

and

B′
j = Bj1 ∪Bj2 for j = j1,2.

Obviously {B′
j}j∈J ′ satisfies the conditions Sa’), Sb) and Sc). Hence, by the induc-

tion hypothesis:

∑

j∈(J\{j1,j2})∪{j1,2}=J ′

(
card(B′

j)− 1
) ≤

∑
i∈I

(
card(Ki)− 1

)

hence we obtain the desired result:

∑
i∈I

(
card(Ki)− 1

) ≥
∑
j∈J

(
card(Bj)− 1

)
.

Now we return to the original hypothesis and we apply the previous result to {K ′
i}i∈I′

a partition of a finite set K ′ and {B′
j}j∈J , where K ′ = K ∩ (∪j∈JBj), and i ∈ I ′ iff

K ′
i = Ki ∩ (∪j∈JBj) 6= ∅. Then

∑
i∈I

(
card(Ki)− 1

) ≥
∑

i∈I′

(
card(K ′

i)− 1
) ≥

∑
j∈J

(
card(Bj)− 1

)
.

and so we have proven the lemma under the general hypothesis. ♣
Let f be a nice minimal function on M with crit(M) critical points. Suppose that

a J-graph of f satisfies the condition (“ ⊆ ”). We want to construct a function on
M×Sn with at most crit(M)+1 critical points. How can we make this construction?

Let g : Sn → R be the height function on Sn such that for yS the south pole,
g(yS) = 0 and for yN the north pole, g(yN) = 1. Let F0 : M × Sn → R be the
function given by F0(x, y) = f(x) + g(y), for each x ∈ M, y ∈ Sn. Now we want to
compute how many critical points fuse and how many critical points will be left out
after fusing.

We use this J-graph of the function f in order to get some critical points of F0

which could be fused by the fusing lemma or by the extended fusing lemma. The
function F0 has 2crit(M) critical points because KF0 = Kf ×Kg.

To make the ideas clear we prove the crit inequality first for a particular case.

Definition 7.2. We say that an oriented J-graph ~J satisfies the strong (“ ⊆ ”)
condition if:

h(z)− h(z′) = 1 for each
−→
zz′ ∈ ~J .

This is obviously a strong form of (“ ⊆ ”) condition.

Example 7.3. Let ~J be an oriented graph such that V ( ~J) = {1, 2, 3, 4, 5, 6, 7, 8} and

E( ~J) = {−→61,
−→
62,

−→
63,

−→
73,

−→
74,

−→
75}. Then ~J satisfies the strong (“ ⊆ ”) condition.
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Proposition 7.4. If there is a J-graph ~J(f) of f which satisfies the strong (“ ⊆ ”)
condition then

crit(M × Sn) ≤ crit(M) + 1.

Proof. The function F0 has 2crit(M) critical points. We use here the J-graph
~J(f) of f in order to find critical points of F0 which can be fused by the corollary
3.13 in the following form adapted for our aim:

Proposition 7.5. Let f : N → R be a smooth function on the closed manifold N.
Then there is a function f̃ : N → R with at most

card{< x >| x ∈ Kf}

critical points where < x > represents the equivalence class of x relative to the
relation ∼f .

For the function F0 we cannot identify the equivalence classes of the equivalence
relation ∼F0 , but we can find sufficiently many critical points situated in the same
equivalence class such that the maximal number of equivalence classes of ∼F0 is at
most crit(M) + 1. We split the proof in two parts.

Part 1. Let x be a vertex of ~J(f) which is not a local minimum and let

{x1, . . . , xl} := {x′ ∈ V |−→xx′ ∈ ~J(f)}.

Now we prove that the set {(x, yS), (x1, yN), . . . , (xl, yN)} of critical points of F0, is
contained in the same equivalence class of ∼F0 .

Let 1 ≤ k ≤ l. By the strong (“ ⊆ ”) condition on f we have f(x) = f(xk) + 1,
hence (x, yS) and (xk, yN) lie both in the same level F0(x, yS) = f(x) = f(xk) + 1.
Furthermore there is a path from (x, yS) to (xk, yN) situated in the level F0(x, yS).

We describe the construction of this path in detail. The edge −→xxk is in ~J(f) ⊆ ~G(f)
hence there is a reparametrized trajectory α : [0, 1] → M from x to xk. Let β :
[0, 1] → Sn be the reparametrized path describing a trajectory on the sphere from
yN to yS relative to the negative gradient vector field of the height function on the
n-dimensional sphere. After an eventual reparametrization of β the path γ : [0, 1] →
M×Sn defined by γ(t) = (α(t), β(1−t)) for each t ∈ [0, 1], remains all the time in the
level F (x, yS). Then (x, yS) ∼F0 (xk, yN) because γ(0) = (x, ys), γ(1) = (xk, yN) and
F0(γ([0, 1])) ⊆ F0((x, yS)). Therefore {(x, yS), (x1, yN), . . . , (xl, yN)} ⊆< (x, yS) > .

Part 2. We want to apply the lemma 7.1 in order to get an estimate of card{<
z >| z ∈ KF0}.
For this aim we need the following :

Definition 7.6. A vertex x ∈ ~G is called a MP-point if there are x′ 6= x′′ ∈ V (G)

such that
−→
xx′ ∈ ~E(G) and

−→
xx′′ ∈ ~E(G) (x′, x′′ need not be predecessors of x). The

set of all MP-points of ~G is denoted by MP (~G).
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and we need some notations: let I = {< z >| z ∈ KF0} and let Ki = i for each i ∈ I.
Then K = ∪i∈IKi = KF0 . Our intention is to prove that card(I) ≤ crit(M) + 1.
Let

J1 = {(x, yS) | x is a MP-point of J(f)}
J2 = {(x, yS) | x is neither a MP-point of J(f) nor in Min(f)}.

For j = (x, yS) ∈ J1 ∪ J2 we define:

Bj = {j} ∪ {(x′, yN) | −→xx′ ∈ ~J(f)}.

Let J3 = KF0 \ ∪j∈J1∪J2Bj, J = J1 ∪ J2 ∪ J3 and for j ∈ J3 we define Bj = {j}. We
check if {Bj}j∈J satisfies the condition of the lemma 7.1 relative to {Ki}i∈I :

Sa) obvious.

Sb) from part 1. it follows Bj ⊆< j > .

To prove Sc) we make first the following remark: if for some j ∈ J the set Bj

contains a point of the form (x, yS) then j = (x, yS) and j is the unique point of the
form (·, yS) in Bj. Let (j1, . . . , jk) ∈ Jk with k ≤ 2, jl 6= jm for each 1 ≤ l 6= m ≤ k
such that

Bj1 ∩Bj2 6= ∅, Bj2 ∩Bj3 6= ∅, . . . , Bjk
∩Bj1 6= ∅

and suppose card(Bj1 ∩ . . . ∩ Bjk
) > 1. According to the previous remark Bj1 ∩

. . .∩Bjk
contains only points of the form (·, yS). Let j1 = (x1, yS), j2 = (x2, yS) and

(x′1, yN), (x′2, yN) ∈ Bj1 ∩ . . . ∩ Bjk
such that x′1 6= x′2. All the vertices x1, x2, x

′
1, x

′
2

are distinct from each other: by hypothesis x1 6= x2 and x′1 6= x′2; by the definition
of Bj1 we have x1 6= x′1 and x2 6= x′2; analogously x2 6= x′1, x2 6= x′2. From the
assumption (x′1, yN), (x′2, yN) ∈ Bj1 ∩ . . . ∩Bjk

it follows :

(x′1, yN), j1, (x
′
2, yN) ∈ Bj1

(x′2, yN), j2, (x
′
1, yN) ∈ Bj2 ,

thus
−−→
x1x

′
1 ∈ ~J(f),

−−→
x1x

′
2 ∈ ~J(f), respectively

−−→
x2x

′
2 ∈ ~J(f) and

−−→
x2x

′
1 ∈ ~J(f). With the

vertices x′1, x1, x
′
2, x2, x1 and the edges

−−→
x′1x1,

−−→
x1x

′
2,
−−→
x′2x2,

−−→
x2x

′
1 we get a cycle in J(f).

This contradicts the fact J(f) is a tree, hence x′1 = x′2 and card(Bj1 ∩ . . .∩Bjk
) ≤ 1.

In a similar manner it is possible to prove that card(Bj1 ∩ . . . ∩Bjk
) ≥ 1.

Applying the lemma 7.1 we obtain:

∑
i∈I

(
card(Ki)− 1

) ≥
∑
j∈J

(
card(Bj)− 1

)
=

=
∑
j∈J1

(
card(Bj)− 1

)
+

∑
j∈J2

(
card(Bj)− 1

)
+

∑
j∈J3

(
card(Bj)− 1

)
.
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If j ∈ J1 then card(Bj)− 1 = card{x′ ∈ Kf |
−→
xx′ ∈ ~J(f)}.

If j ∈ J2 then card(Bj)− 1 = 1 because j has only one predecessor.
If j ∈ J3 then card(Bj)− 1 = 0.

Summing we obtain
∑
i∈I

(
card(Ki)− 1

) ≥
∑
j∈J1

card{x′ ∈ Kf |
−→
xx′ ∈ ~J(f)}(7.1)

+
(
crit(M)−m(f)− card(MP (J(f)))

)
.(7.2)

But by the proposition 8.4 from appendix
∑
j∈J1

card{x′ ∈ Kf |
−→
xx′ ∈ ~J(f)} − card(MP (J(f))) ≥ m(f)− 1.(7.3)

Concluding from 7.1 and 7.3:
∑
i∈I

(
card(Ki)− 1

) ≥ crit(M)− 1.

On the other hand
∑
i∈I

(
card(Ki)− 1

)
=

∑
i∈I

card(Ki)− card(I) =

= card(K)− card(I) = 2crit(M)− card(I).

Hence card(I) ≤ crit(M) + 1 and the proposition 7.5 implies the existence of a
function on M × Sn with crit(M) + 1 critical points. ♣

Up to now we have considered a nice minimal function which satisfies the strong
(“ ⊆ ”) condition. We consider now a nice minimal function satisfying only the
(“ ⊆ ”) condition. In the former case the critical points of F0 that fuse are in the
same equivalence class of ∼F0 from the beginning. In the latter we must modify F0 to
a function F such that the candidates for the fusing will lie in the same equivalence
class of the relation ∼F . The modification of F0 is based on the extended fusing
lemma.

We can pass to the main result of this chapter:

Proposition 7.7. Let M be a closed manifold and f : M → R a nice minimal
function. If there is a J-graph ~J(f) of f satisfying the (“ ⊆ ”) condition then

crit(M × Sn) ≤ crit(M) + 1.

Before starting proving the proposition we recall the following:

Definition 7.8. We say that ~J(f) satisfies the (“ ⊆ ”) condition if for
−→
zz′ ∈ ~J(f)

and
−→
uu′ ∈ ~J(f) the property

(
f(u′), f(u)

) ∩ (
f(z′), f(z)

) 6= ∅
implies
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f(u)− f(u′) = 1 or f(z)− f(z′) = 1 or
(f(u) = f(z) and f(u′) = f(z′)).

Proof. The proof has five parts. Let ~F (f) be an F-graph of f contained in ~J(f).
1. An estimate for KF0/ ∼F0 . Let F0 : M → R be the function obtained from f

and g as before.
Let J1 and J2 be as in the proof of proposition 7.4. For j = (x, yS) ∈ J1 ∪ J2 we

define
B′

j = {j} ∪ {(x′, yN) | −→xx′ ∈ ~F (f)}.
Then x′ is by definition of an F-graph a predecessor of x.

Let J3 = KF0 \ ∪j∈J1∪J2B
′
j and for j ∈ J3 we define B′

j = {j}. We analyze the
sets B′

j for j ∈ J1 ∪ J2. The points j and (x′, yN) are equivalent: j ∼F0 (x′, yN)

because x′ is the predecessor of pr1(j) = x in the G-graph ~G(f) of f. Then there is
i ∈ I such that B′

j ⊆ Ki. Furthermore, according to the definition of an F-graph,
card(B′

j) = 2 for each j ∈ J1 ∪ J2. The set B′
j for j ∈ J3 consists of only one point

hence card(B′
j) = 1. Let J = J1 ∪ J2 ∪ J3.

Concluding {B′
j}j∈J is a sub-partition of KF0/ ∼F0 , therefore

card(KF0/ ∼F0) ≤ card(J).(7.4)

Computing card(J) we obtain:

card(J) = card(KF0)− card(J1)− card(J2) =

= 2crit(M)− card MP (J(f))− (
crit(M)− cardMP (J(f))−m(f)

)
=

= crit(M) + m(f).

From (7.4) and the previous equality we can obtain after fusing a function with at
most card(KF0/ ∼F0) ≤ crit(M) + m(f) critical points. To get the other m(f)− 1
critical points which must be canceled we use the extended fusing lemma, being
careful not to destroy the equivalence relation between the critical points that we
already counted as points that fuse.

We group the points that we already counted together with a symmetric relation
E0 defined on KF0 . Let (x1, y1), (x2, y2) ∈ V (~G(F0)). Then (x1, y1)E0(x2, y2) iff

−−→x1x2 ∈ ~F (f), y1 = yS and y2 = yN

or−−→x2x1 ∈ ~F (f), y1 = yN and y2 = yS.

Note that (x1, y1)E0(x2, y2) iff there is j ∈ J1 ∪ J2 such that the points (x1, y1) and
(x2, y2) are in B′

j. This means that we have just counted the points (x1, y1) and
(x2, y2) as points that can fuse. When we modify the function F0 to F in order to
get other points that fuse we do it in such a way that

(x1, y1)E0(x2, y2) implies (x1, y1) ∼F (x2, y2).
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2. A partition of KF0 .
In order to apply the extended fusing lemma we need a partition of the critical

set KF0 . One way to get it is using the equivalence classes of an equivalence relation.
For this reason we define a relation as follows:

Definition 7.9. Let ~G(g) be the G-graph of some function g. Let E be a symmetric

relation on V (~G(g)) and let u, v ∈ V (~G(g)).

Then uRv iff there is a sequence of vertices z1, . . . , zk ∈ V (~G(g)) such that

u = z1Rz2R . . . Rzk = v

where R ∈ {=, <,>, E}. Recall v < u iff −→uv ∈ ~G(g) and u < v iff −→vu ∈ ~G(g). When
there is the risk of confusion we use the notation <g .

It is easy to check that R is an equivalence relation on V (~G(g)).

Let {−−→xpx
′
p | p ∈ 1,m(f)− 1} = E

(
~J(f)− ~F (f)

)
be the set of all edges of ~J(f)− ~F (f).

Every element of this set is an edge of the J-graph ~J therefore J-unfragmentable in
~G(f). Without loss of generality we can assume that:

f(x1) ≤ f(x2) ≤ . . . ≤ f(xm(f)−1).

Now we split the manifold M × Sn in triads. There is ε > 0 such that

KF0 ∩ F−1
0

([
F0(x

′
p, yN)− ε, F0(xp, yS) + ε

])
=

= KF0 ∩ F−1
0

([
F0(x

′
p, yN), F0(xp, yS)

])
,

for each p ∈ 1,m(f)− 1. We introduce the notation:

Wp = F−1
0

([
F0(x

′
p, yN)− ε

2
, F0(xp, yS) +

ε

2

])
.

For each p ∈ 1,m(f)− 1 let l(p) be the largest integer such that

f(xp) = f(xp+1) = · · · = f(xl(p)).

3. The case L1). We analyze first the case L1) when p = l(p) for each p ∈
1,m(f)− 1. In the triad Wp we can apply the extended fusing lemma to the function
F0 |Wp . For this aim we define a partition of KF0 ∩Wp, based on the equivalence
relation Rp = R0 |KF0

∩Wp , where R0 is the relation obtained for R ∈ {=, <, >, E0}.
Let

Ap
1 = {(x, y) | (x, y)Rp(xp, yS)},

Ap
2 = {(x, y) | (x, y)Rp(x

′
p, yN)},

Ap
3 = KF0 ∩Wp \ (Ap

1 ∪ Ap
2).

In order to apply the extended fusing lemma we must verify that:
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1) {Ap
1, A

p
2, A

p
3} is a partition of KF0 ∩Wp,

2) the set of trajectories going to or from Ap
i and the set of trajectories going to

or from Ap
j are disjoint for each i 6= j ∈ {1, 2, 3} and

3) there is a path γp : [0, 1] → Wp from (xp, yS) ∈ Ap
1 to (x′p, yN) ∈ Ap

2, which
does not intersect any trajectory going to or from a critical point in Wp.

We prove first the assertions:
1) and 2). Obviously Ap

1 ∩ Ap
3 = Ap

2 ∩ Ap
3 = ∅. On the other hand we have the

implication: the existence of a trajectory between some u ∈ Ap
1 and some v ∈ Ap

2

implies u < v or u > v, implies uRpv. Hence Ap
1 = Ap

2 and (x′p, yN) ∈ Ap
1, implicitly

(xp, yS)Rp(x
′
p, yN). Then by the definition of R0 there is a sequence of vertices

z1, . . . , zk ∈ KF0 ∩Wp such that

(xp, yS) = z1Rz2R . . . Rzk = (x′p, yN)

where R ∈ {=, <,>, E0}. Then there is a sequence pr1(z1), . . . , pr2(zk) ∈ Kf with
the properties:

(Ra) pr1(zi) ∈ f−1[f(x′p), f(xp)] for each 1 ≤ i ≤ k.

(Rb) xp = pr1(z1)Rfpr1(z2)Rf . . . Rfpr2(zk) = x′p where Rf ∈ {=, <f , >f}.
(Rc) | f(pr1(zi))− f(pr1(zi−1)) |≤ f(xp)− f(x′p)− 1 for each 2 ≤ i ≤ k.

From (Rb) it follows that there is a path P in V (~G(f)) from xp to x′p passing through

the vertices xp = pr1(z1), . . . , pr1(zk) = x′p. Therefore
−−→
xpx

′
p ∈ ~J(f) is by the property

(Rc) J-fragmentable in ~G(f) (by (Ra) even in ~G
(
f |[f(x′p),f(xp)]

)
). Contradiction

with the hypothesis that ~J(f) as J-graph of f has all its edges J-unfragmentable, so
Ap

1 ∩ Ap
2 = ∅ and there is no trajectory between some u ∈ Ap

1 and some v ∈ Ap
2.

We make two remarks serving as hints for proving the assertions (Ra), (Rb),
(Rc):
R1) If z ∈ KF0 ∩Wp then F0(z) = f(pr1(z)) + κ, where κ = 0 or 1, and

f(x′p) + 1 = F0(x
′
p, yN) ≤ F0(z) ≤ F0(xp, yS) = f(xp).

R2) The second remark is the following:

Proposition 7.10. Let ~G(F0) be the G-graph of F0 = f+g and let z, z′ ∈ V (~G(F0)).

Then z′ < z in ~G(F0) iff

(pr1(z
′) < pr1(z) in ~G(f) and pr2(z

′) ≤ pr2(z) in ~G(g))

or

(pr1(z
′) ≤ pr1(z) in ~G(f) and pr2(z

′) < pr2(z) in ~G(g)).
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3) We continue with the third condition for the extended fusing lemma, the

existence of the path γp. We know that
−−→
xpx

′
p ∈

−→
J (f), hence there is a trajectory

from xp to x′p relative to the negative gradient vector field of f. Let α : [0, 1] → M
be the reparametrized path that describe the the trajectory from xp to x′p such that
f(α(t)) = (1 − t)f(xp) + tf(x′p) for each t ∈ [0, 1]. Let β : [0, 1] → Sn be the path
describing the trajectory from yN to yS such that g(β(t)) = 1− t for each t ∈ [0, 1].
Then the mapping γp given by γp(t) = (α(t), β(1 − t)) for each t ∈ [0, 1] is a path
from (xp, yS) to (x′p, yN) in [f(x′p) + 1, f(xp)] ⊂ Wp with the required properties.

Now applying the extended fusing lemma we get a function Fp : Wp → R such
that:

EFLp a) KFp = KF0 ∩Wp.

EFLp b) Fp = F0 in a neighborhood of ∂Wp.

EFLp c)

card(KFp/ ∼Fp) = card(Ap
1 ∪ Ap

2 ∪ Ap
3/ ∼Fp)

≤ card(Ap
1/ ∼F0) + card(Ap

2/ ∼F0) + card(Ap
3/ ∼F0)− 1.

With the triad functions Fp we construct a new function F : M×Sn → R as follows:

F (x) =

{
Fp(x) if x ∈ Wp

F0(x) if x ∈ cl
(
M × Sn \ ∪m(f)−1

p=1 Wp

)
:= W

The function F is well defined because (“ ⊆ ”) implies Wp ∩ Wp′ = ∅ for each
p 6= p′ ∈ {1, . . . , m(f) − 1}. The function F is smooth from (EFLb) and has the
same critical set as F0, KF = KF0 from (EFLa). We have

card(KF / ∼F ) =

m(f)−1∑
p=1

card(KFp/ ∼Fp) + card(KF0 ∩W/ ∼F0).(7.5)

Furthermore:

card(Ap
1/ ∼F0) + card(Ap

2/ ∼F0) + card(Ap
3/ ∼F0) ≤

≤ card(Ap
1/R0∩ ∼F0) + card(Ap

2/R0∩ ∼F0) + card(Ap
3/R0∩ ∼F0)

because R0∩ ∼F0⊆∼F0 . Since Ap
1, Ap

2 and Ap
3 are sets of equivalence classes of R0:

card(Ap
1/R0∩ ∼F0) + card(Ap

2/R0∩ ∼F0) + card(Ap
3/R0∩ ∼F0) =

= card(Ap
1 ∪ Ap

2 ∪ Ap
3/R0∩ ∼F0) = card(KFp/R0∩ ∼F0).

From (EFLp c)) and the previous relations we get:

card(KFp/ ∼Fp) ≤ card(Ap
1/ ∼F0) + card(Ap

2/ ∼F0) + card(Ap
3/ ∼F0)− 1 ≤
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≤ card(KFp/R0∩ ∼F0)− 1.

On the other hand:

card(KF0 ∩W/ ∼F0) = card(KF0 ∩W/ ∼F0) ≤
≤ card(KF0 ∩W/R0∩ ∼F0).

We know that KF0/R0∩ ∼F0⊆ KF0/ ∼F0⊆ {KFp}p∈1,m(f)−1 hence

m(f)−1∑
p=1

card(KFp/R0∩ ∼F0) + card(KF0 ∩W/R0∩ ∼F0) =(7.6)

= card
( ∪m(f)−1

p=1 Kp ∪ (KF0 ∩W )/R0∩ ∼F0

)
= card(KF0/R0∩ ∼F0).(7.7)

From 7.5 using the inequalities obtained above we get:

card(KF / ∼F ) ≤ card(KF0/R0∩ ∼F0)− (m(f)− 1).

Since KF0/R0∩ ∼F0 is a sub-partition of {B′
j}j∈J we have

card(KF0/R0∩ ∼F0) ≤
∑
j∈J

card(B′
j) = crit(M) + m(f)

the case L1) is proved.
4. The case L2).
We consider now the case L2): there is some p ∈ 1,m(f)− 1 such that p < l(p).

Then the (“ ⊆ ”) condition implies that f(x′p) = f(x′p+1) = · · · = f(x′l(p)) and

Wp = Wp+1 = . . . = Wl(p). Note that Wp = Wp′ or Wp ∩Wp′ = ∅ for each p 6= p′ ∈
{1, . . . , m(f) − 1}. Let E0 be the symmetrical relation defined at the beginning of
the proof and let Rp = R0∩Wp. For each k ∈ p, l(p)− 1 let Rk+1 be the equivalence
relation on Kf0 for R ∈ {=, <, >, Ek+1} where Ek+1 is recursively defined as:

Ek+1 = Ek ∪ {
(
(xk, yS), (x′k, yN)

)
,
(
(x′k, yN), (xk, yS)

)}

and Ep = E0.

For each k ∈ p, l(p) we prove by induction the existence of a function Fk : Wp →
R such that:

EFLk a) ~G(Fk) = ~G(F0).

EFLk b) Fk = F0 in a neighborhood of ∂Wp.

EFLk c) (xk, yS) ∼Fk
(x′k, yN) and

card(KF0 ∩Wp/Rk+1∩ ∼Fk
) ≤ card(KF0 ∩Wp/Rk∩ ∼Fk−1

)− 1.
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For k = p we are in the situation described in L1) and we apply the extended
fusing lemma to the partition {Ap

1, A
p
2, A

p
3}. So we obtain the function Fp and the

inequalities:

card(KF0 ∩Wp/ ∼Fp) ≤ card(Ap
1/ ∼F0) + card(Ap

2/ ∼F0) + card(Ap
3/ ∼F0)− 1.

From KF0 ∩Wp/Rp ⊆ {Ap
1, A

p
2, A

p
3} the previous inequalities get the form:

card(KF0 ∩Wp/Rp+1∩ ∼Fp) ≤ card(KF0 ∩Wp/Rp∩ ∼F0)− 1.

Since F0 = Fp−1 on Wp, we obtain the inequality of (EFLp c).
For k ≤ l(p)−1 we assume the existence of Fk and we apply the extended fusing

lemma to the partition {Ak+1
1 , Ak+1

2 , Ak+1
3 }, where:

Ak+1
1 = {(x, y) | (x, y)Rk+1(xk+1, yS)},

Ak+1
2 = {(x, y) | (x, y)Rk+1(x

′
k+1, yN)},

Ak+1
3 = KF0 ∩Wp \ (Ak+1

1 ∪ Ak+1
2 ).

We must verify the conditions of the extended fusing lemma again. Since the proof
resembles the corresponding proof in L1) we only show that Ak+1

1 ∩Ak+1
2 = ∅. Assume

Ak+1
1 = Ak+1

2 . Therefore (x′k+1, yN) ∈ Ak+1
1 and implicitly (x, yS)Rk+1(x

′, yN). Then
by the definition of Rk+1 there is a sequence of vertices z1, . . . , zk′ ∈ KF0 ∩Wp such
that

(xk+1, yS) = z1Rz2R . . . Rzk′ = (x′k+1, yN)

where R ∈ {=, <, >,Ek+1}. Then there is a sequence pr1(z1), . . . , pr2(zk′) ∈ Kf

with the properties:

(Ra) pr1(zi) ∈ f−1[f(x′k+1), f(xk+1)] for each 1 ≤ i ≤ k′.

(Rb) xk+1 = pr1(z1)Rfpr1(z2)Rf . . . Rfpr2(zk) = x′k+1 where Rf ∈ {=, <f , >f}.
(Rc) for each 2 ≤ i ≤ k′

either pr1(zi)pr1(zi−1) ∈ J(f) and | f(pr1(zi))− f(pr1(zi−1)) |= f(xk+1)− f(x′k+1)

or | f(pr1(zi))− f(pr1(zi−1)) |≤ f(xk+1)− f(x′k+1)− 1.

From (Rb) it follows that there is a path P in V (~G(f)) from xk+1 to x′k+1 passing

through the vertices xk+1 = pr1(z1), . . . , pr1(zk′) = x′k+1. Therefore
−−−−−→
xk+1x

′
k+1 ∈ ~J(f)

is by the property (Rc) J-fragmentable in ~G(f) (and by the property (Ra) even

in ~G
(
f |[f(x′k+1),f(xk+1)]

)
). This contradicts the hypothesis of this proposition, so

Ak+1
1 ∩ Ak+1

2 = ∅. After we have verified all the conditions of the extended fusing
lemma we obtain a function Fk+1 : Wp → R. The graph of Fk+1 is identical to the
graph of Fk because Fk+1 equals Fk plus a constant in some neighborhood of each
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trajectory going to or from a critical point in Wp. Furthermore a reasoning like that
we use for k = p leads us to the inequality:

card(KF0 ∩Wp/Rk+1∩ ∼Fk
) ≤ card(KF0 ∩Wp/Rk∩ ∼Fk−1

)− 1.

Summing the inequalities (EFLk c) for k ∈ p, l(p) we get:

card(KF0 ∩Wp/Rl(p)+1∩ ∼Fl(p)
) ≤ card(KF0 ∩Wp/Rp∩ ∼F0)− (l(p)− p + 1) =

= card(KF0 ∩Wp/R0∩ ∼F0)− (l(p)− p + 1).

With the triad functions Fp we construct a new function F : M × Sn → R as
follows:

F (x) =

{
Fl(p)(x) if x ∈ Wp

F0(x) if x ∈ cl
(
M × Sn \ ∪m(f)−1

p=1 Wl(p)

)
:= W

As in the case L1) we have card(KF / ∼F ) ≤ crit(M) + 1.♣
An application of the two last propositions is the following:

Theorem 9. Let M be a closed manifold of dimension ≤ 7. Then

crit(M × Sn) ≤ crit(M) + 1.

Proof. For a closed manifold M of dimension n we know that crit(M) ≤ n + 1.
Therefore a nice minimal function f has less than n + 1 critical points. If f has at
most 2 local minima then each J-graph of f satisfies the (“ ⊆ ”) condition and by
the proposition 7.7 the crit inequality holds. If f has at most 2 local maxima then
we apply the above argument to −f.

For n ≤ 4 the function f has either at most 2 minima or at most 2 maxima,
therefore the crit inequality holds.

For n = 5 the function f has at most 6 critical points. If the f has both 3
local minima and 3 local maxima and no other critical points then f is a Morse
function. Computing the homology of M using the Morse function f (see Milnor
[20] or Schwarz [28] for details) we get H0(M ;Z) = Z⊕ Z⊕ Z. But M is connected
so f has either at most 2 local minima or at most 2 local maxima. Then we have
the same situation as for n ≤ 4.

For n = 6 we analyze the case of f with 3 minima and 3 maxima. In this situation
each edge of ~G(f) has the length at most 2, because f has at most 3 critical levels.
We prove that the (“ ⊆ ”) condition is fulfilled.

Let ~J be a J-graph of f. If for some
−→
uu′ ∈ ~J and

−→
vv′ ∈ ~J we have f(u)−f(u′) ≥ 2

and f(v)− f(v′) ≥ 2 then f(u)− f(u′) = 2 and f(v)− f(v′) = 2, because each edge
has the length at most 2. Furthermore f(u) ≤ 2, f(v) ≤ 2 hence f(u) = f(v) = 2

and f(u′) = f(v′) = 0. For this reason the graph ~J satisfies the (“ ⊆ ”) condition
and by the proposition 7.7 the crit inequality is verified, too.
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For n = 7 if card
(
Min(f) ∪ Max(f)

) ≤ 5 or f has only 3 critical levels
then we use the same arguments as in the case n ≤ 4 resp. n = 6. It remain
to analyze the case of f with 3 minima, 3 maxima and 4 critical levels. We
prove that in this case f has an J-graph with all the edges of length at most 2.
Let V (~G(f)) = {1, 2, 3, 4, 5, 6, 7, 8}. Without loss of generality suppose Min(f) =

{1, 2, 3}, Max(f) = {6, 7, 8} and 3 < 4 < 5 < 6. Let ~F be an F-graph of f and Ti

the tree of ~F containing i, for each i ∈ 1, 3. It is not possible that all the trajectories
from 7 go to 1 or to 2 or to 3, hence there is a trajectory that goes from 7 to 4 or
to 5. Then 7 is an vertex of T3. The same is valid for 8, hence 8 is an element of
T3. It is not possible that all the trajectories going to 1 are coming from 6 or 7 or 8
hence there is a trajectory going to 1 from 4 or from 5. Let e1 be the edge in ~G(f)
corresponding to this trajectory. The length of e1 is at most 2. The same is valid
for 2, hence there is an edge e2 containing 2 of length at most 2. The last assertions
which begin with ”it is not possible” are all similar hence we prove only the last of
them. The local minima 1 and 2 induce an mountain-pass point. The mountain pass
point is not a local maximum. Suppose the contrary let xM be this local maximum.
Then there is some ε > 0 such that the neighborhood U = f>f(xM )−ε of xM is not
empty and contains only one critical point, xM . The dimension of M is 7, hence
f<f(xM ) ∩ U = U \ {xM} is path connected. This fact contradicts a result of Hofer
[12], that characterizes the points of mountain-pass type. Therefore xM is not a
local maximum.

We continue the main line of the proof: with T3 and the two edges e1 and e2

we get a tree T = F ∪ e1 ∪ e2 that contains ~F . If e1 is T-fragmentable in G(f) then
there is an edge e′1 of length 1 going to 1. We get a new tree T ′ = F ∪ e′1 ∪ e2 and e′1
is not T’-fragmentable. If e2 is T’-fragmentable then there is a edge e′2 of length 1
going to 2. The tree T ′′ = F ∪ e′1 ∪ e′2 is an J-graph of f. Concluding, in each of the

above situation if the J-graph has a edge
−→
xx′ of length 2 then h(x′) = 0. Therefore

the J-graph satisfies the condition (“ ⊆ ”) and then the crit inequality is verified. ♣
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8 Appendix: notions and results from the graph

theory

The purpose of this appendix is to familiarize the reader with the basic concepts of
graph theory. The majority of these concepts we take from the book of Bollobás [1].
Inevitably the appendix contains a large number of definitions. We should add at
this stage that the terminology of graph theory is far from being standard, though
that used in this appendix is well accepted.

l. Definitions
A graph G is an ordered pair of disjoint sets (V,E) such that E is a subset of

the set of unordered pairs of V. Unless it is explicitly stated otherwise, we consider
only finite graphs, that is V and E are always finite. The set V is the set of vertices
and E is the set of edges. If G is a graph then V = V (G) is the vertex set of G
and E = E(G) is the edge set. An edge {x, y} is said to join the vertices x and
y and is denoted by xy. Thus xy and yx mean exactly the same edge, the vertices
x and y are the end-vertices of this edge. If xy ∈ E(G) then x and y are adjacent
or neighboring vertices of G and the vertices x and y are incident with the edge
xy. Two edges are adjacent if they have exactly one common end-vertex. As the
terminology suggests, we do not usually think of a graph as an ordered pair, but
as a collection of vertices some of which are joined by edges. It is then a natural
step to draw a picture of the graph. In fact, sometimes the easiest way to describe
a graph is to draw it, the graph G = ({1, 2, 3, 4, 5, 6}, {12, 14, 16, 25, 34, 36, 45, 56})
is immediately comprehended if we draw it.

We say that G′ = (V ′, E ′) is a sub-graph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E.
In this case we write G′ ⊆ G. If G′ contains all edges of G that join two vertices in
V ′ then G′ is said to be the sub-graph induced or spanned by V ′ and is denoted by
G[V ′]. A sub-graph G′ of G is an induced sub-graph if G′ = G[V (G′)].

We shall often construct new graphs from old ones by deleting or adding some
vertices and edges. If W ⊆ V (G) then G −W = G[V \W ] is the sub-graph of G
obtained by detecting the vertices in W and all edges incident with them. Similarly
if E ′ ⊆ E(G) then G−E ′ = (V (G), E(G)\E ′). If W = {w} and E ′ = {xy} then this
notation is simplified to G − w and G − xy. Similarly, if x and y are non-adjacent
vertices of G then G + xy is obtained from G by joining x to y. If x is a vertex of a
graph G then instead of x ∈ V (G) we usually write x ∈ G. The order of G is the
number of vertices, it is denoted by |G|. For the number of elements (cardinality) of
a set is used the following notation: card(X) denotes the number of elements of the
set X. Thus |G| = card(V (G)). The size of G is the number of edges; it is denoted
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by e(G).
Two graphs are isomorphic if there is a correspondence between their vertex sets

that preserves adjacency. Thus G = (V,E) is isomorphic to G′ = (V ′, E ′) if there is a
bijection φ : V → V ′ such that xy ∈ E iff φ(x)φ(y) ∈ E ′. Clearly isomorphic graphs
have the same order and size. Usually we do not distinguish between isomorphic
graphs, unless we consider graphs with a distinguished or labeled set of vertices (for
example, sub-graphs of a given graph). In accordance with this convention, if G and
H are isomorphic graphs then we write either G ∼= H or simply G = H.

The set of vertices adjacent to a vertex x ∈ G is denoted by Γ(x). The degree of
x is d(x) = |Γ(x)|. If we want to emphasize that the underlying graph is G then we
write ΓG(x) and dG(x).

A path is a graph P of the form

V (P ) = {xo, x1, . . . , xl}, E(P ) = {x0x1, x1x2, . . . , xl−1xl}.

This path P is usually denoted by x0x1 . . . xl. The vertices x0 and xl are the end-
vertices of P and l = e(P ) is the length of P. We say that P is a path from x0 to
xl or an x0-xl path. Of course, P is also a path from xl to x0 or an xl-x0 path.
Sometimes we wish to emphasize that P is considered to go from x0 to xl and then
we call x0 the initial and xl the terminal vertex of P. A path with initial vertex x is
an x-path. The term independent will be used in connection with vertices, edges and
paths of a graph. A set of vertices (edges) is independent if no elements of it are
adjacent; a set of paths is independent if for any two paths each vertex belonging to
both paths is an end-vertex of both. Thus P1, P2, . . . , Pk are independent x-y paths
iff V (Pi)∩V (Pj) = {x, y} whenever i 6= j. Also, W ⊆ V (G) consists of independent
vertices if G[W ] is an empty graph, i.e. a graph having no edges.

Most paths we consider are sub-graphs of a given graph G. A walk W in G
is an alternating sequence of vertices and edges, say x0, α1, x2, α2, . . . , αl, xl where
αi = xi−1xi, 1 ≤ i ≤ l. In accordance with the terminology above, W is an x0-xl

walk and is denoted by x0x1 . . . xl; the length of W is l. This walk W is called a
trail if all its edges are distinct. Note that a path is a walk with distinct vertices.
A trail whose end-vertices coincide (a closed trail) is called a circuit. If a walk
W = x0x1 . . . xl is such that l ≥ 3, x0 = xl, and the vertices xi, 0 < i < l, are
distinct from each other and x0 then W is said to be a cycle. For simplicity this
cycle is denoted by x1x2 . . . xl. Note that the notation differs from that of a path since
x1xl is also an edge of this cycle. Furthermore, x1x2 . . . xl, xlxl−1 . . . x1, x2x3 . . . xlx1,
xixi−1 . . . x1xlxl−1 . . . xi+1, all denote the same cycle.

Given vertices x, y, their distance d(x, y) is the minimal length of an x-y path.
If there is no x-y path then d(x, y) = ∞.

A graph is connected if for every pair {x, y} of distinct vertices there is a path
from x to y. Note that a connected graph of order at least 2 cannot contain an
isolated vertex. A maximal connected sub-graph is a component of the graph. A
cut-vertex is a vertex whose deletion increases the number of components. Similarly
an edge is a bridge if its deletion increases the number of components. Thus an
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edge of a connected graph is a bridge if its deletion disconnects the graph. A graph
without any cycles is a forest or an acyclic graph; a tree is a connected forest. The
relation of a tree to a forest sounds logically from the semantics point of view if we
note that a forest is a disjoint union of trees; in other words, a forest is a graph
whose every component is a tree.

We shall write G ∪ H = (V (G) ∪ V (H), E(G) ∪ E(H)) and kG for the union
of k disjoint copies of G. We obtain the join G + H from G ∪ H by adding all
edges between G and H. There are several notions closely related to that of a graph.
By definition a graph does not contain a loop, an “edge” joining a vertex to itself;
neither does it contain multiple edges, that is several “edges” joining the same two
vertices. In a multigraph both multiple edges and multiple loops are allowed; a loop
is a special edge. In our thesis we never use multigraphs because the G-graphs that we
get from pseudo-gradient vector fields are always graphs.

If the edges are ordered pairs of vertices then we get the notions of a directed
graph. An ordered pair (a, b) is said to be an edge directed from a to b or an edge

beginning at a and ending at b, and is denoted by
−→
ab . The notions defined for graphs

are easily carried over to directed graphs, mutatis mutandis.
An oriented graph is a directed graph obtained by orienting the edges, that is by

giving the edge ab a direction
−→
ab or

−→
ba. Thus an oriented graph is a directed graph

in which at most one of
−→
ab and

−→
ba occurs. A source vertex a is a vertex incident

with no edge ending at a and a sink vertex b is a vertex incident with no edge
beginning at b. If a vertex a is incident with at least two distinct edges beginning at
a then it is called an MP-vertex. An interval graph is an oriented connected graph
with exactly one sink point and exactly one source point. Thus an interval graph is
a tree.

2. Results
With the concepts defined so far we can enumerate some results about graphs.

Though these results are hardly more than simple observations.

Proposition 8.1. A graph is a forest iff for every pair {x, y} of distinct vertices it
contains at most one x-y path.

Proposition 8.2. The followings assertions are equivalent for a graph G:

a. G is a tree.

b. G is a minimal connected graph, that is G is connected and if xy ∈ E(G) then
G − xy is disconnected. In other words, G is connected and every edge is a
bridge.

Corollary 8.3. Every connected graph contains a spanning tree, that is a tree con-
taining every vertex of a graph.

We need the following result to count the critical points that fuse in the product
manifold:
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Proposition 8.4. Let ~T be an oriented tree with m sink vertices. Then

card{x′ ∈ V (~T ) | −→xx′ ∈ ~T and x is a MP-vertex of ~T}−

−card{x ∈ V (~T ) | x is a MP-vertex of ~T} ≥ m− 1.

The previous proposition is very natural if we split it in two lemmas and we
think in terms of homotopy theory. For this reason we regard ~T as a 1-dimensional
simplicial space. If S is the set of sink vertices of ~T then we denote by T/S the
factor space obtained from T by identifying all the sink vertices to one point. The
1-dimensional simplicial space T/S is the subject (and implicitly the oriented factor

graph ~T/S) of the followings lemmas:

Lemma 8.5. The fundamental group of T/S is

π1(T/S) =
⊕

card(S)−1

Z.

Lemma 8.6. If there is a nonnegative integer k such that π1(T/S) = ⊕k Z then

card{x′ ∈ V (~T ) | −→xx′ ∈ ~T and x is a MP-vertex of ~T}−

−card{x ∈ V (~T ) | x is a MP-vertex of ~T} ≥ k − 1.

The two lemmas lead straight to proposition 8.4.
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variationnels. Paris: Hermann 1934

[17] Milnor, J.: Two complexes which are homeomorphic but combinatorially dis-
tinct. Ann. Math. (2) 74, 575–590 (1961)

[18] Milnor, J.: Morse Theory. No. 51 in Ann. of Math. Studies, Princeton: Prince-
ton Univ. Press 1963

[19] Milnor, J.: Lectures on the h-Cobordism Theorem. Mathematical Notes,
Princeton: Princeton University Press 1965

[20] Milnor, J.: Whitehead torsion. Bull. Am. Math. Soc. 72, 358–426 (1966)

[21] Montejano, L.: Lusternik-Schnirelmann category: A geometric approach. In:
Geometric and algebraic topology, vol. 18 of Banach Cent. Publ., pp. 117–129,
Warsaw: Banach Cent. (1986)

[22] Osborne, R. and Stern, J.: Covering manifolds with cells. Pac. J. Math. 30,
201–207 (1969)

[23] Palais, R.: Lusternik-Schnirelman theory on Banach manifolds. Topology 5,
115–132 (1966)

[24] Rourke C.P., S.B.: Introduction to piecewise-linear topology. Ergebnisse der
Mathematik und ihrer Grenzgebiete, Berlin Heidelberg New York: Springer
1972

[25] Rudyak, Y.: On the Ganea conjecture for manifolds. Proc. Am. Math. Soc.
125, 2511–2512 (1997)

[26] Salamon, D.: Connected simple systems and the Conley index of isolated in-
variant sets. Trans. Amer. Math. Soc. 291, 1–41 (1985)

[27] Schwartz, J.: Generalizing the Lusternik-Schnirelman theory of critical points.
Comm. Pure Appl. Math. 17, 307–315 (1964)

[28] Schwarz, M.: Morse Homology, vol. 111 of Progr. Math. Basel Boston Berlin:
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