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ABSTRACT

A new approach for estimating motion in microfluidic flows is presented. Is is based on an extension
of the brightness changes constraint equation (BCCE) to incorporate Taylor dispersion. This extended
BCCE is then used for accurately estimating fluid flows in a two dimensional Molecular Tagging Ve-
locimetry (2D-MTYV) framework. Reference measurements were conducted to validate the accuracy and
applicability of the novel technique. Due to the excellent agreement between measurement and ground
truth, the method was also applied to inhomogeneous flows in a mixing chamber.

1 INTRODUCTION

In recent years, the area of microfluics has expanded tremendously. Technological progress in
manufacturing microfluid components has lead to a spread of novel systems into diverse applications
[1, 2, 15, 22, 3]. In chemical and biochemical analytics as well as in medical diagnostics, these novel
devices can be used to speed up the analysis while only relying on minute probe volumes. This is due to
the huge surface to volume ratio achievable by micro channels. In the future, microfluidic applications
will increase in significance for chemical production processes. Here, boundary conditions can be
controlled much more accurately and set accordingly. This leads to better controllable and thus more
efficient reaction kinetics with less by-products.

This increase of interest in microfluidic devices directly leads to the need for diagnostic tools for the
visualization, analysis of flow structures, mixture formation and reaction behavior directly inside the
micro channels[18]. Here, non destructive image-driven methods are preferable for various reasons.

In the presented contribution, an optical flow based technique will be presented that allows estimating
the motion of micfofluidic flows visualized through molecular tagging with a special dye.
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2 EXPERIMENTAL SET-UP

The technique for measuring flow velocities of microfluidic flows presented in this contribution relies on
caged dyes as markers in the flow. The reader is referred to [16] for a detailed description of the set-up
and dyes used.

Basically, the microfluidic flows are measured in a specially prepared camber. Two glass plates are
separated by 2d = 250um. In order to visualize the fluid flow, markers or tags have to be affixed to the
flow. Obviously, the markers should not change the flow itself or introduce additional flow components.
A very elegant way of introducing these markers is through the use of dyes. The dyes do not change the
density of the fluid significantly as the dye molecules stick to the water molecules. Hence, no additional
flow components are introduced by buoyancy or electrostatic properties in the same way particles of
PIV applications would.

The set-up and visualization process leads to the following procedure: at time #y = O the intensity
structures are written with the XeF Laser into the fluid. The fluid inside the chamber is accessible
non-invasively only through the glass plates on top and bottom of the Poiseuille flow. The beam of the
laser writing the structured to the flow thus traverses through the whole depth of the fluid. A circular
dot in the mask written to the fluid will thus appear as a cylinder in the flow structure. In later times,
this 3D cylinder is sheared by the paraboloid velocity profile developed by the Poiseuille flow. The 2D
cut of this process is shown for three time steps t;-f3 in Figure la . These transformed 3D Structures
are projected onto the CCD chip of the imaging device. Great care is taken to align the camera
orthogonal to the glass plate. Through this projection, it appears as if the structure written to the fluid is
smeared in the direction of the fluid flow over time. This process is also known as Taylor dispersion [19].

3 TAYLOR DISPERSION
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X

Fig. 1 A sketch of the intensity profile of the dye for a Poiseuille flow at three times #-#3 is shown in
a together with the velocity profile v(y). The projection of these profiles onto one plate as seen by the
camera is showninb .
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A viscous fluid driven by a pressure gradient in between two stationary plates is also known as plane
Poiseuille flow in the case of purely laminar flows[12]. In the present application of microfluidic flows,
the Reynolds number Re is in well within the laminar limit. The velocity profile of a Poiseuille flow is
given by

=—y —a-b- ith a=—-—— 1

v(y) =5y —aby w e (D
where 2b is the separation of the stationary plates, u is the viscosity of the fluid and dP/dx is the
pressure gradient along the direction of the flow. The flow and the associated quantities are visualized

in the sketch of Figure 1 a .

The maximum velocity vy, of the flow is given at the center in between the two plates at x = b. This

velocity is thus given by
a

Vmax = v(b) = 3 b, 2)
The fluid inside the chamber is accessible non-invasively only through the glass plates on top and
bottom of the Poiseuille flow. Three dimensional intensity structures are thus projected onto these plates
and visualized. As pointed out in Section 2, a three dimensional structures can be written to the fluid
with a masked laser beam. The beam of the laser writing the structured to the flow traverses through the
whole depth of the fluid confined between the two plates. A circular dot in the mask will thus appear
as a cylinder in the flow structure. In later times, this 3D cylinder is sheared by the paraboloid velocity
profile given by Equation (1). The 2D cut of this process is shown for three time steps #1-#3 in Figure
la . Through this projection, it appears as though the structure written to the fluid is smeared in the
direction of the fluid flow over time.

The projection of the dye intensity onto the glass plates by the imaging process is then given by
integrating the intensities over the depth in between the plates. This results in

2. 2.
[:\/‘bZ_FM‘_\/‘bz_*__x' (3)
a-t a-t
This analytic function is visualized in the sketch in Figure 1b .
The maximum of the projected intensity is given by
2-c
Inax = 1l (4)
a-t
The location of this intensity maximum xp,x can be found to be
a
xmax:_i'bz't ()
and subsequently the velocity of the intensity maximum to
ox a
Vmax = % = _E 'b2~ (6)
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Fig. 2 Illustration of the brightness change constraint equation. A one dimensional grey value distribu-
tion is moved along the x-axis. In a constant brightness is assumed. During the translation from point
X0 to xo + Ox the grey value distribution stays the same over the period &¢. This can be formulated as
dg/dt = 0. In b the grey value distribution is changed according to a diffusion process. The BCCE
estimates the optical flow incorrectly.

By comparing this equation with the expression of the maximum velocity from the velocity profile
in Equation (2) it becomes apparent, that the velocity of the intensity maximum is equivalent to the
velocity halfway in between the two plates. This result is not surprising, as the intensity maximum of
the projection is collocated to the trailing edge of the written structures halfway in between the plates.
This can easily be seen in Figure 1.

This would open up the possibility of measuring vipax by tracking the intensity peak of the projected
intensity distribution. However, finding this peak to a subpixel accuracy can be quite challenging. Fitting
Equation (3) to the measured greyvalue distribution would implicitly assume that the velocity profile is
stationary and does not change in time. This is too strong a limitation, since we are interested in mea-
suring time-dependent flows. For this reason, a local gradient based technique for measuring velocities
from image sequences was chosen for this work. The algorithm and results shall be presented in the
following.

4 OPTICAL FLOW COMPUTATIONS

The technique of simultaneously estimating optical flow and change of image intensity is well known
in literature [14, 23, 10, 9]. Details of the technique employed in the context of this paper, including
the estimation of local convergence and divergence, have been explained previously [6]. Accuracy im-
provements were introduced in [5] and [7]. Therefore, only a brief overview of the technique shall be
presented here.

A very common assumption in optical flow computations is the brightness change constraint equation
(BCCE) [11]. It is assumed that the image brightness of a scene point remains constant in a spatio-
temporal neighborhood. That is the image intensity g at the location (x,y) at time # stays the same in a
time interval o¢ during which a translation by (dx,dy) took place. This brightness constancy model can

4
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be formulated as

g(x+0x,y+0y,t+0t) = g(x,y1). (7)
Developing this equation up to first order in a Taylor series expansion leads to
dg dx dgd o)
g(x+0x,y+ Ayt + 1) = g(x, 1) + >~ + 2 D + Ly + 0(f2). )

oxdr ' oydr | o

The well known brightness change constraint Equation (BCCE) [4, 11] is then derived by simplifying
Equation (8) and differentiating by ot, thus

dg s dgdv_ Oedy _

dt ~ ot oxdt ayE_g’Jr(fV)g:O' ©)

With the optical flow f = (dx/dt,dy/dt)" = (u,v)', the spatial gradient Vg and the partial time
derivative g, = dg/dt. This formulation of the BCCE states that the image brightness g(x,7) at the
location x = (x1,x2) " should change only due to motion, that is, the total derivative of its brightness has
to vanish, which is illustrated in Figure 2. [17] and [21] proved that this assumption holds provided that
no illumination changes are present and the surface of the object are Lambertian in nature.

Clearly this assumption does not hold in most scientific applications. Depending on the visualization
technique used, brightness changes may occur due to changes in densities. For example, due to isotropic
diffusion the images substance will decrease in brightness according to the diffusion process. Obviously
this brightness change is not connected to any motion, thus violating the assumption for deriving
Equation (9). This effect is illustrated in Figure 2. Here iso-brightness lines are not corresponding to
the movement any more. To accommodate this fact an extension to the used conservation law has to be
formulated. The use of a linear model with a multiplier and offset term has been suggested [13]. Here
we follow [10, 8, 6] in reformulating Equation (9) as a linear partial differential equation.

The brightness of a moving pattern is allowed to change according to an analytical function 4, that is

g(X) - h(gl(X),b), and g,(X) =h" (g(X)7b)7 (10)

where h(g(x),b) is a scalar invertible transformation with the g-dimensional parameter vector b =
(b1,...,b,)" and the identity element h(g(x),0) = g(x). The total derivative of Equation (10) is then
given by

g+ (fV)g = f(g'(x),b) (11)
with J
f(g'(x):b) = —-h(g'(x),b). (12)

For the special case of constant brightness (h(g'(x),b) = const = f(g’(x),b) =0) this equation
reduces to the BCCE from Equation (9).

With the formulation of the generalized brightness change constraint Equation (11) it is now possible
to estimate reliable optical flow in applications where the BCCE failed due to its limitations.
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S OPTICAL FLOW OF TAYLOR DISPERSION

The projected intensity structure is given by

-

This structure can be developed in a Taylor series around ¢ = 0. This results in

BT

Differentiating the first term of the expansion in time leads to

iea (VL)

Estimating the velocity of the intensity structures subject to Taylor dispersion can thus be computed
by solving the differential equation dI/dt = —(2t)~'I. The isotropic diffusion process, which is also
present in our application, this differential equation can be expanded to

2-(c+x)

" (13)

dl o dI dl 1
— =u—+v—+=—=DAl— —1I. 16
ar " Ty T 2 (16)
This type of equation can be solved straight forward with the local gradient based approach presented
in section 4. Rewriting this equation in vector notation leads to

dl 2 2 T
C=d o= (T L XX A (D 1w 1) =0 (17)

SR EEREEREER

a

Fig. 3 A typical pattern written into a very simple microfluidic flow for calibration purposes in a and a
little more interesting inhomogeneous flow in b .
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Fig. 4 Zoomed in view of the vector field around one of the dots written to the fluid is shown in a and
the mean vector field of the mixing chamber.

This equation can then be solved by the algorithm detailed in [6]. Basically, the ill posed problem
of Equation (17) is tackled by assuming that the parameter vector is the same in a local neighborhood.
Equation (17) is thus written for each pixel in said neighborhood weighted by a Gaussian. This overde-
termined system of equation can then be solved in a Total Least Squares (TLS) sense [20]. This boils
down to a singular value analysis.

6 RESULTS

Through a range of measurements the pattern written with the masked laser into the fluid was optimized
for the optical flow based algorithm presented in this contribution. Typical visualizations of two different
microfluidic flows are presented in Figure 3. The flow field is computed from these image sequences. A
zoomed in view of the flow field estimated at one of the point is shown in Figure 4a . The mean flow
field estimated for the flow geometry shown in Figure 3b is presented in Figure 4b .

In order to test the accuracy of the algorithm, precisely known, homogeneous fluid flows were set
up. Through knowledge of the fluid flow "‘ground truth"” was acquired. The comparison of ground truth
versus measured values is shown in Figure 5. The error bars in this plot result from five independent
measurements.

From the test of ground truth to measured values it become apparent that the novel technique of
measuring microfluidic flows exhibits excellent agreement. The ground truth values are within the error
bars for all measured flow velocities.

7 CONCLUSION

In this contribution, an optical flow based technique for measuring microfluidic flows based on
molecular tagging was presented. An extension to the brightness change constraint equation was
derived, that allows to accurately estimate motion in the presence of Taylor dispersion. The novel
algorithm was tested on ground truth sequences and showed excellent agreement. The algorithm was
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Fig. 5 Comparison of measured values compared to ground truth measurement. Error bars were com-
puted from independent measurements.

also applied to inhomogeneous fluid flows in the mixing chamber and proved its applicability for this
type of measurement.

The next step will be to compare measurement results of this technique to uPIV measurements con-

ducted in the same chamber. The technique will then be applied to more challenging flows in the mixing
chamber.
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