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Zusammenfassung

Theoretische Behandlung diverser Frequenzverschiebungen in

Penningfallen mittels klassischer Störungstheorie

Die ideale Penningfalle besteht aus einem homogenen Magnetfeld und einem elektrosta-
tischen Quadrupolpotential. Aus klassischer Sicht hängen die drei charakteristischen Eigen-
frequenzen eines in dieser Anordnung gespeicherten Teilchens nicht von seinen Bewegungs-
amplituden ab. Diese dreifache Harmonizität der Eigenbewegungen wird jedoch von höheren
Beiträgen zummagnetischen Feld und elektrischen Potential sowie letztlich der speziellen Relati-
vitätstheorie außer Kraft gesetzt. Für genaue Messungen ist es unabdingbar, den systematischen
Einfluss dieser Abweichungen auf die Bewegungsfrequenzen zu verstehen.
In dieser Arbeit wird mit klassischer Störungstheorie eine Vielzahl von Frequenzverschie-

bungen aus der Bewegungsgleichung des Teilchens hergeleitet. Ausgehend von einer Parame-
trisierung zylindersymmetrischer Feldfehler in Zylinderkoordinaten wird gezeigt, wie sich die
zugehörige Frequenzverschiebung konsistent in erster Ordnung berechnen lässt. Statt über einen
quantenmechanischen Operatorformalismus wird die relativistische Frequenzverschiebung mit-
tels der relativistischen Bewegungsgleichung behandelt. Weitere betrachtete Frequenzverschie-
bungen betreffen den Einfluss eines leicht elliptischen Quadrupolpotentials, dieWechselwirkung
des Ions mit seinen Bildladungen, die es in den Fallenelektroden influenziert, und eine schwache
Modulation des Quadrupolpotentials. Die so gewonnenen Frequenzverschiebungen werden in
eine Verschiebung im speziellen Betriebsmodus des THe-Trap-Experiments mit stabilisierter
Axialfrequenz umgerechnet.
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Abstract

Theoretical treatment of miscellaneous frequency-shifts in Penning traps

with classical perturbation theory

The ideal Penning trap consists of a homogeneous magnetic field and an electrostatic
quadrupole potential. In this configuration, the three characteristic eigenfrequencies of a trapped
particle do not depend on its motional amplitudes from a classical point of view. However,
this three-fold harmonicity of the eigenmotions is compromised by higher-order terms in
the magnetic field and electric potential, and ultimately by special relativity. Understanding
the systematic effect of these deviations on the motional frequencies is crucial for accurate
measurements.
This thesis calculates numerous frequency-shifts in the framework of classical perturbation

theory working with equations of motion for the particle’s trajectory. Starting from a general
parametrization of cylindrically-symmetric electric and magnetic imperfections in cylindrical
coordinates, it is shown how to calculate the corresponding first-order frequency-shift con-
sistently. Relativistic frequency-shifts are handled perturbatively in the relativistic equations
of motion rather than via a quantum-mechanical operator formalism. Other frequency-shifts
considered include the effect of a slightly elliptic quadrupole potential, the interaction of an ion
with its image charges induced in the trap electrodes, and a small modulation of the quadrupole
potential. The frequency-shifts derived are translated into shifts under the operation mode of
locked axial-frequency used by the THe-Trap experiment.
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1. Introduction

The Penning trap—a term [28] coined by 1989 Nobel prize winner Hans Georg Dehmelt [31],
who also pioneered the device, honoring FransMichel Penning’s use of an axial magnetic field in
order to increase the path length of electrons in a glow discharge tube [119] that would become
a vacuum gauge [120]—is more than an apparatus for storing charged particles. Owing to the
storage by entirely static fields, the ion dynamics in a Penning trap are much more conducive to
a theoretical treatment than in the oscillatory electric field of the Paul trap—a radio-frequency
trap named after 1989 Nobel prize winner1 Wolfgang Paul [117]. The spatial dependence of
the ideal electric field in both traps is the same, each component being proportional to the
corresponding coordinate, with the proportionality constants linked by the laws of electrostatics.
The Penning trap features a homogeneous magnetic field in addition.

In the ideal Penning trap, the three characteristic frequencies of a stored particle are simple
analytic functions of its charge and mass, and of two key parameters of the trap—the strength
of the magnetic and the electric field. Because the frequencies do not depend on the particle’s
motional amplitudes, measurements of frequencies are likely to be reproducible, yielding precise
results even when the initial conditions are not reproduced exactly before the next measurement.
However, there is more to a measurement than just precision. In order to extract, say, the mass
of an ion from a measurement of its eigenfrequencies, the relationship between this fundamental
parameter of the ion and the eigenfrequencies has to be understood in detail, which is more
complicated in a real Penning trap, of course. Nevertheless, the influence of imperfections is
mostly knownwell from theory, which can often be checked in the experiment, and corrections—
either measured or calculated—are applied. It is this strong connection between theory and
experiment that allows for accurate measurements, making Penning traps such a versatile
tool [10] for precision mass spectrometry [9, 50, 107].
Mass is not the only quantity that may be extracted from a measurement of the eigenfre-

quencies. By deliberately introducing an inhomogeneous magnetic field, the spin state of the
stored particle may be detected via the axial frequency [30]. This method of continuous Stern–
Gerlach effect has been demonstrated on free electrons [67, 160] and positrons [143, 161], elec-
trons bound in hydrogenlike [71, 153] or lithiumlike [169] ionic systems, protons [36, 104, 105]
and antiprotons [37], resulting in measurements of the corresponding (dimensionless) magnetic
moments given by the д-factors.

Even though this use of an inhomogeneous magnetic field represents a purposeful departure
from the ideal Penning trap, it has undesired consequences, to wit, the eigenfrequencies depend
on the motional amplitudes. Such anharmonic frequency-shifts—whether an inadvertent, but
unavoidable and somewhat necessary side-effect, spurious because of residual imperfections
1The year is not a misprint. Dehmelt and Paul shared half of the 1989 Nobel prize in physics “for the development
of the ion trap technique.” The other half was awarded to Norman Foster Ramsey [129] “for the invention of the
separated oscillatory fields method and its use in the hydrogen maser and other atomic clocks.”

11



1. Introduction

not to be compensated for, or useful for indirectly determining one eigenfrequency while
continuously measuring a different one [103]—are a major topic of this thesis. These amplitude-
dependent frequency-shifts are associated with higher-order terms in the electric and magnetic
fields, which also call for a coherent description based on physical constraints, and the thesis
takes a closer look at imperfections with cylindrical symmetry. Moreover, special relativity leads
to anharmonic frequency-shifts, thereby imposing a fundamental limitation on the harmonic
nature of the ideal Penning trap.

Other deviations from the ideal Penning trap lead to frequency-shifts that do not depend on
the amplitudes of the particle, or harmonic shifts. These are typically caused by modifications
of the trapping fields that keep the equations of motion linear in the particle’s coordinates and
velocities. Examples include a break of the cylindrical symmetry in the electric field and its
misalignment with respect to the magnetic field. The former is dealt with in this thesis. This
thesis also considers the interaction of an ion with the image charges it induces in the trap
electrodes and a modulation of the electric field.
Both types of shift—anharmonic and harmonic—have to be accounted for before making a

substantiated claim about accuracy. Perturbation theory turns out to be the adequate theoretical
tool of choice because the equations of motion can no longer be solved exactly for most
imperfections. This thesis uses a formalism based on the classical trajectory of the particle
and its equations of motions in order to extract frequency-shifts. First-order corrections to
the zeroth-order trajectory are considered when frequency-shifts of second order are to be
calculated, either because there is no first-order frequency-shift or in order to check its scope
when computationally feasible without excessive complication.

This thesis was carried out at the Max Planck Institute for Nuclear Physics in Heidelberg
(MPIK, with the letter K from the German “Kernphysik” for nuclear physics). The somewhat
unpredictable evolution of an experiment had it that the primary goal emerged to be the theo-
retical description and understanding of systematic effects at THe-Trap. The results, however,
pertain to Penning traps in general.

THe-Trap is the successor to the University of Washington Penning-trap mass spectrometer
(UW-PTMS) [125, 165]. The experiment was relocated to Heidelberg in 2008 and renamed THe-
Trap, short for tritium–helium trap, after briefly being referred to as the MPIK/UW-PTMS [35].
During commissioning, first mass-ratio measurements were performed [34, 148, 149].
As its name implies, the ultimate goal of THe-Trap is to measure the mass ratio of tritium

(3H) and helium-3 (3He), in order to determine the Q-value of the beta-decay that links both
isotopes. By pushing Penning-trap mass spectrometry to its limits, the uncertainty of the
currently accepted value [108] might be reduced by almost two orders of magnitude. At an
uncertainty down to a few tens of millielectronvolts, an independent measurement of the
Q-value provides an important systematic check [114] for KATRIN, the Karlsruhe Tritium
Neutrino Experiment [40], an upscaled version of its precursor in Mainz [88]. The aim is to
extract—or put a model-independent upper limit on—the mass of the electron antineutrino from
the kinematics of the beta-decay by measuring the spectrum of the most energetic electrons.
Near this endpoint for the electrons, the neutrino carries away least kinetic energy. Its rest mass
may therefore account for a significant amount of the total decay energy that is not available
for the electrons.

12



From challenging experiments and elusive particles, let us return to something more tangible.
The thesis is structured as follows:

• Chapter 2 provides the necessary background on Penning traps, with Section 2.1 dis-
cussing the ideal one as a starting point for perturbation theory. Having the real Penning
trap in mind, Section 2.2 parametrizes cylindrically-symmetric imperfections of the elec-
trostatic potential and magnetic field.

• Chapter 3 introduces the classical formulation of perturbation theory which will be used
to calculate frequency-shifts. The one-dimensional anharmonic oscillator of Section 3.2
serves as a first example, before the formalism is extended to the three-dimensional
Penning trap in Section 3.4. There is Section 3.3 on second-order frequency-shifts in
between.

• Chapter 4 calculates anharmonic frequency-shifts with the first-order method of Sec-
tion 3.4, and it comprises the major share of my publications [83, 84] as a first author.
Section 4.1 deals with the frequency-shifts caused by cylindrically-symmetric imperfec-
tions of the electrostatic potential and magnetic field. Section 4.2 treats effects of special
relativity. Section 4.3 includes the impact of locking the axial frequency.

• Chapter 5 deals with additional frequency-shifts—namely, by image charges in Section 5.1
and by the modulation of the trapping potential in Section 5.2. These frequency-shifts do
not depend on the amplitudes of the particle.

• The summary and outlook in Chapter 6 is followed by an appendix, Chapters A–F, mostly
with additional information on the mathematical background.

13





2. Penning-trap theory

This chapter introduces the Penning trap and highlights its intriguing properties for precision
measurements: simple analytic relations between a few key parameters of the trap, the mass
and charge of the stored particle, and its eigenfrequencies in the trap. Even more favorably, the
three eigenfrequencies do not depend on the particle’s amplitudes in the ideal Penning trap,
which Section 2.1 describes. The results of this section will provide the starting point for the
perturbative treatment of effects in real Penning traps, such as the cylindrically-symmetric
imperfections parametrized in Section 2.2.

2.1. The ideal Penning trap

The ideal Penning trap consists of a homogeneous magnetic field

B⃗0 = B0e⃗z (2.1)

that defines the z-axis and an electrostatic quadrupole potential

Φ2 =
V0C2
2d2

(
z2 −

x2 + y2

2

)
=
V0C2
2d2

(
z2 −

ρ2

2

)
. (2.2)

The prefactor will be explained shortly, whereas most of the physics is encoded in the spatial
dependence. Because of the potential’s azimuthal symmetry, it is convenient to introduce the
cylindrical coordinate

ρ =
√
x2 + y2 , (2.3)

which describes the distance from the z-axis. The spatial dependence of the quadrupole poten-
tialΦ2 is such that it fulfills the Laplace equation △Φ2 = 0 with the Laplace operator

△ =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
, (2.4)

as any electrostatic potential in the absence of charges has to. Thus, the spatial dependence
is courtesy of the laws of electrostatics. Cylindrically-symmetric contributions beyond the
quadrupole potential of the ideal Penning trap will be discussed in Section 2.2.1.
As Φ2 results from a homogenous linear differential equation, its prefactor is a matter of

convention, rather than a necessity dictated by the fundamental laws of nature. Of course,Φ2
should have the unit of voltage. The particular choice here—with three parameters for a single
degree of freedom—is understood best by considering how a quadrupole potential is generated
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2. Penning-trap theory

ze

ρr

b

b

b

V0

~B0

endcap

endcap

ringring b

Figure 2.1.: Sectional drawing of finite hyperboloidal electrodes, formed upon rotation around
the z-axis, whose direction is indicated by the magnetic field B⃗0. Apart from trunca-
tion, other imperfections, such as holes for the injection of particles, are not shown.
The shape of the electric potential inside the trap is determined by the inward-facing
surfaces of the electrodes. The electrodes’ bulk may therefore have a different shape
for practical reasons, such as minimizing the distortion of the magnetic field. The
inward-facing part of the ring electrode is a one-sheeted surface; the inward-facing
part of the endcaps form a hyperboloid of two sheets. Each of the two sheets is one
electrode. The distance from the geometric center of the trap to the ring and the
endcaps is ρr and ze, respectively. The geometric center is also the origin of the
coordinate system. The voltage V0 is applied between the endcaps, which are both
at the same potential, and the ring.

in an experiment. Given that the equipotential surfaces ofΦ2 are hyperboloids of revolution, it
is only natural to approximate the quadrupole potential with hyperboloidal electrodes [122],
in order to provide adequate boundary conditions, with the electrodes forming the outermost
of the desired equipotential surfaces. Figure 2.1 shows a sketch of such a hyperboloidal trap,
where V0 is the voltage applied between the endcaps and the ring electrode.

The geometric parameter d , also called the characteristic trap dimension, depends on the
minimum distances of the endcaps and the ring from the center of the trap, given by ze and
ρr, respectively. The link is established by considering the boundary conditions imposed by
the inward-facing surfaces of the electrodes. These surfaces set the boundary conditions that
determine the potential for a charged particle inside the trap.
The equipotential surface of the endcap is given by the implicit equation

z2 −
ρ2

2 = z2e . (2.5)
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2.1. The ideal Penning trap

The inward-facing surface of the ring electrode is described by

z2 −
ρ2

2 = −
ρ2r
2 . (2.6)

Given that the electrodes are equipotential surfaces, their potential is

Φ2(endcap) = V0C2
2d2

[
z2 −

ρ2

2

]

endcap
=
V0C2
2d2 z

2
e , (2.7)

Φ2(ring) = V0C2
2d2

[
z2 −

ρ2

2

]

ring
= −

V0C2
2d2

ρ2r
2 . (2.8)

We have plugged in Equations (2.5) and (2.6) for the two points lying on the endcap and the
ring, respectively. Thus, the potential difference between any point on the endcap and a second
point on the ring is

Φ2(endcap) −Φ2(ring) = V0C2
2d2

(
z2e +

ρ2r
2

)
=
V0C2
2d2 2d2 = V0C2 . (2.9)

We have chosen the characteristic dimension of the trap as

d =

√
1
2

(
z2e +

ρ2r
2

)
, (2.10)

and we will justify this choice shortly based on the particular value ofC2 it produces for perfectly
hyperboloidal electrodes that extend to infinity. As the potential difference should have the
unit of voltage already carried by V0, C2 must be a dimensionless parameter. For C2 = 1, the
particular choice of the characteristic trap dimension d means that the potential difference
between the endcaps and the ring electrode is exactly equal to the voltage V0 applied between
these electrodes.

At this point, it becomes obvious that a pure quadrupole potential is hard to produce, evenwith
hyperboloidal electrodes. Manufacturing tolerances aside, the electrodes have to be truncated
at some point, as they cannot possibly extend to infinity. For the particular choice of d in
Equation (2.10), a value of C2 different from unity indicates that the quadrupole potentialΦ2
alone does not describe the boundary conditions on the electrodes correctly. Hence, other
contributions must exist, and they will be present all across the trap, not just on the electrodes
where they set the boundary conditions right. A constant contributionΦ0 will certainly not
get the job done, but the difficulties with the boundary conditions explain why we have not
yet introduced an offset potential that would shift the electrodes to the right absolute potential
with respect to ground. Adding

Φ0 = Vendcap −
V0C2
2d2 z

2
e = Vring +

V0C2
2d2

ρ2r
2 (2.11)

to Equations (2.7) and (2.8) shifts the endcap and the ring to the potential Vendcap and Vring,
respectively. However, the relationship

V0 = Vendcap −Vring , (2.12)
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2. Penning-trap theory

which the electric connections and the voltage-source in Figure 2.1 imply, is reproduced only for
C2 = 1. As a constant potential does not give rise to a force on a charged particle, the absolute
value of the potential in the trap with respect to the outside world is only of interest when
injecting or ejecting particles. Unlike other non-quadrupole components, the constant term is
of no interest for the motion of a stored particle, and we will ignore it in the following.
Fortunately, the analytic form of the potential in the whole trap all the way out to the

electrodes does not need to be known for the accurate description of a charged particle’s eigen-
motions in the Penning trap. An accurate description of the potential near the (electrostatic)
center of the trap, where the charged particle oscillates, suffices.
The dimensionless quadrupole-strength parameter C2 has been introduced to allow for the

description of the quadrupole component generated by various trap geometries, for instance
cylindrical traps with flat-plate [51] or open [53] endcaps. Furthermore, cubic cells [27] feature a
dominant quadrupole component [90], and the quadratic dependence with cylindrical symmetry
also appears in elongated cells, if two faces are squares [76, 144]. Multitudes of trap geometries
have been used [63]. The quadrupole potential is also the basis of planar Penning traps [59,
147, 166].

As hyperboloidal traps haveC2 ≈ 1, their overall quadrupole component is sometimes defined
as 1 +C ′2, with C ′2 = 0 describing the ideal case [47]. For maximum flexibility and the confusion
caused whenC2 ≈ 1 does not hold [54],C2 will not be omitted from the general formulas in this
thesis.

2.1.1. Equations of motion

In electromagnetic fields, a particle of charge q with velocity 3⃗ is subject to the Lorentz force

F⃗L = q
(
E⃗ + 3⃗ × B⃗

)
. (2.13)

The electric field E⃗ = −∇⃗Φ is calculated by taking the negative gradient of the electrostatic
potential. For the quadrupole potential (2.2), the electric field in the ideal Penning trap is

E⃗2 = −∇⃗Φ2 =
V0C2
2d2

*..
,

x
y
−2z

+//
-

. (2.14)

Combined with the uniform magnetic field (2.1) and Newton’s second law

F⃗ =ma⃗ =m ˙⃗3 , (2.15)

wherem is the particle’s rest mass and a⃗ the acceleration, the classical equations of motion in
the Penning trap become

*..
,

ẍ
ÿ
z̈

+//
-
=
qB0
m

*..
,

ẏ
−ẋ
0

+//
-
+
qV0C2
2md2

*..
,

x
y
−2z

+//
-

. (2.16)

Section 4.2 discusses the effect of special relativity, which is often sloppily depicted as relativistic
mass-increase. However, matters are more complicated than simply inserting the relativistic
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2.1. The ideal Penning trap

mass. In this thesis, the massm always designates the particle’s rest mass, which is a constant
for the particular particle, of course.1
Returning to the classical equations of motion (2.16), the axial motion is a one-dimensional

harmonic oscillator with the axial frequency

ωz =

√
qV0C2
md2

. (2.17)

Axial confinement requires qV0C2 > 0. In other words, the particle must sit in a potential well
along the axial direction.
If there were no electrostatic potential, the particle would orbit around the magnetic field

lines with the free-space cyclotron-frequency

ωc =
qB0
m

, (2.18)

while drifting freely in the axial direction. In the light of typical experiments in persistent-mode
superconducting magnets, we will assume that there is always a magnetic field, B0 , 0, while
the electrostatic quadrupole potential is adjusted at will via the applied voltage V0. First and
foremost, the magnetic field is a—if not the—characteristic feature of the Penning trap, the use
of static fields being another.

Mathematically, the radial equations of motion, the first two components of Equation (2.16),
decouple without magnetic field, and the individual solutions are those of a harmonic oscillator—
an inverted one for qV0C2 > 0 when there is axial confinement. In this case, the radial force is
repulsive and essentially leads to exponential growth, which is not the right solution for storing
a particle. Thus, the electric and the magnetic field have to cooperate for confinement in three
dimensions. In the presence of both fields, the radial equations of motion are conveniently
solved by introducing the complex variable [24]

u = x + iy . (2.19)

Multiplying the second component of the equations of motion (2.16) with the imaginary unit i
and then summing it with the first component yields the one-dimensional differential equation

ü = −iωc u̇ +
ω2
z

2 u (2.20)

for the complex variable u. Trying a solution of the kind

u = u0e−iωt (2.21)

with a constant u0 and the frequency ω, which still has to be determined, results in the charac-
teristic equation

ω2 − ωcω +
ω2
z

2 = 0 . (2.22)

1Even though the treatment of relativistic effects in Section 4.2 is perturbative—as almost always in this thesis for
effects beyond the ideal Penning trap—there is no expansion in the mass, which eliminates the need for the
subscript 0 in the rest mass.
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2. Penning-trap theory

It is solved by the two frequencies

ω± =
1
2

(
ωc ±

ωc
|ωc |

√
ω2
c − 2ω2

z

)
. (2.23)

These are the frequencies of the two radial modes. Radial confinement requires that these
frequencies be real and distinct. When they are equal, ω+ = ω− = ωc/2 for ω2

c = 2ω2
z , the

ansatz (2.21) produces only one fundamental solution for the second-order differential equa-
tion (2.20). The second fundamental solution is of the kindu ∝ t exp (−iωct/2), and the amplitude
of its oscillation grows with time. Thus, the argument inside the square root must be strictly
positive for radial confinement: ω2

c > 2ω2
z .

The condition qV0C2 > 0, necessary for creating the potential well for axial confinement,
implies that in turn the charged particle sees a slope in the radial direction. If there were no
magnetic field, the particle would be lost by rolling down the potential hill. The condition
ω2
c > 2ω2

z for radial confinement tells us that the same would also happen for too low a magnetic
field. In order to overcome the outward drag by the radial electric field, the magnetic field must
be greater than

B0 >

√
2m
q

V0C2
d2

. (2.24)

From Equation (2.23), the three following relations can be derived between (I) the free-space
cyclotron-frequency and the radial frequencies, (II) the axial frequency squared and the radial
frequencies, and (III) the frequencies summed in quadrature:

ωc = ω+ + ω− , (2.25)
ω2
z = 2ω+ω− , (2.26)

ω2
c = ω2

+ + ω
2
z + ω

2
− . (2.27)

The first and the third relation are of practical importance in real Penning traps because they re-
late the measurable frequencies in the trap to the free-space cyclotron-frequency—the frequency
with which the particle would orbit in a purely magnetic field without axial confinement by an
electrostatic potential. Since carefully-designed superconducting magnets [163] with additional
stabilization systems produce magnetic fields of extraordinary intrinsic temporal stability on
the order of a few parts in 1012 per hour, they are the gold standard for relating a motional
frequency of a particle to its charge and mass via Equation (2.18). The temporal stability of the
magnetic field then enables meaningful comparisons of free-space cyclotron-frequency ratios
for different species, which are trapped and measured sequentially.

Equation (2.25), sometimes called the sideband-cyclotron identity, is the basis of the time-of-
flight ion cyclotron-resonance method [62, 87] and the phase-imaging ion cyclotron-resonance
technique [43]. Penning traps at radioactive-beam facilities (“online traps”) preferably use
these methods on short-lived nuclides (with half-lives down to 10ms [145]) produced at the
facility.
Equation (2.27), baptized the Brown–Gabrielse invariance theorem by the second of its

eponyms [50], requires a measurement of all three eigenfrequencies in the trap to deduce the
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2.1. The ideal Penning trap

free-space cyclotron-frequency ωc. However, this extra effort compared with Equation (2.25) is
rewarded by the exact cancellation [19] of two imperfections in the invariance theorem: a tilt
angle (“misalignment”) between the z-axis of the electrostatic quadrupole potentialΦ2 and the
magnetic field B⃗0, and quadratic deviations from cylindrical symmetry in the quadrupole poten-
tial (“ellipticity,” see Section 3.4.4). Since these imperfections are independent, the cancellation
in the quadratic sum applies individually, too.

Having discussed relations between the three eigenfrequencies and the free-space cyclotron-
frequency, we return to the shape of the radial eigenmotions. Since Equation (2.20) for the
complex variable u is linear, the general solution is given by the superposition of fundamental
solutions, Equation (2.21) with the two frequencies (2.23), as

u(t) = ρ̂+e−i(ω+t+φ+) + ρ̂−e−i(ω−t+φ−) , (2.28)

where the amplitudes ρ̂k and phases φk with k = (+,−) are real numbers chosen to satisfy the
initial conditions. The substitution (2.19) is undone with the help of Euler’s formula

e−i(ωt+φ ) = cos(ωt + φ) − i sin(ωt + φ) . (2.29)

Identifying the real part of the solution (2.28) as x(t) and the imaginary part as y(t) yields the
trajectory of a charged particle in an ideal Penning trap:

x(t) = ρ̂+ cos(ω+t + φ+) + ρ̂− cos(ω−t + φ−) , (2.30)
y(t) = −ρ̂+ sin(ω+t + φ+) − ρ̂− sin(ω−t + φ−) , (2.31)
z(t) = ẑ cos(ωzt + φz ) . (2.32)

We have also included the general solution of the one-dimensional harmonic oscillator for the
axial mode with amplitude ẑ and initial phase φz . This solution is not correct in the case of
ωz = 0—that is, no quadrupole potential—in which it should read z(t) = z(0) + ż(0)t . The initial
axial position and velocity are given by z(0) and ż(0), respectively. In this case, there is no
magnetron motion,2 and its amplitude should be set to zero (ρ̂− = 0), in order to remove this
motion from Equations (2.30) and (2.31). The degeneracyω+ = ω− = ωc/2 at the limit of stability
is not covered by such a simple replacement. The other cases without confinement even in the
presence of the magnetic field, qC2V0 < 0 and ω2

c < 2ω2
z , are described correctly by the use of an

imaginary axial phase and frequency (2.17), and complex radial frequencies (2.23), respectively,3
although there are more convenient ways to express the solutions for the trajectory with
exponential functions. Since this chapter is about the Penning trap, we will focus on the
periodic motion brought about by three constant eigenfrequencies that are all real and different
from zero.
2Unlike for the axial motion, the vanishing magnetron frequencyω− = 0 does not mean that there is a new solution
of a different functional form. For ω2

z = 0, Equation (2.20) reduces to a first-order differential equation, which has
only one fundamental solution—the circular motion at the free-space cyclotron-frequency ωc. A fundamental
solution with a different functional form shows up for ω+ = ω−, however.

3The two cases are mutually exclusive because ω2
c > 0 regardless, which means that ω2

z < 0 for qC2V0 < 0
automatically ensures ω2

c > 0 > 2ω2
z . From the physical point of view, there is no radial instability when the

electric field (2.14) contributes to the radial restoring force. However, unlimited radial stability comes at the
expense of escape in the axial direction.
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2. Penning-trap theory

The amplitudes in Equations (2.30)–(2.32) are typically taken as non-negative quantities—zero
would be fine in the classical case—with a possible sign absorbed in the choice of the initial
phase.4 Because the time-dependence for the three eigenmodes has a similar structure, we
introduce the abbreviation

χk = ωkt + φk (2.33)

for the total phase of all three modes, where k = (+,−, z).
Figure 2.2 illustrates the eigenmotions in a Penning trap. Each of the two radial modes

alone is circular. When they are combined, the faster motions represents an epicycle, whose
center travels on the deferent described by the slower circular motion. For a classification of the
orbits, see Reference [68]. Despite the reference to the Ptolemaic system of astronomy here, the
epicycle may be larger than the deferent. The radii or amplitudes of the two circular motions
are unrelated, and the two radial modes are distinguished based on their frequencies, rather
than their amplitudes.

The radial frequencies are chosen such that |ω+ | ≥ |ω− |, with ω+ = ω− representing the limit
of radial stability. The frequency with the larger absolute value is referred to as the modified
or reduced cyclotron-frequency because |ω+ | < |ωc | and ω+ → ωc in the limit of V0 → 0, that
is, vanishing electrostatic potential. Since the frequencies of the ion of interest stored in the
trap typically obey the hierarchy |ωc | & |ω+ | ≫ ωz ≫ |ω− |, its modified cyclotron-motion is
dominated by the magnetic field. Note that the weaker version of the hierarchy with ≥-signs
rather than≫-signs is not generally true, because |ω+ | < ωz for ωz > 2/3|ωc |, see Figure 3.1.
The radial frequency with the lower absolute value is called the magnetron frequency ω−.

The magnetron motion reflects a slow E⃗ × B⃗ drift around the center of the trap. Consequently,
it vanishes in the limit of no electric field: ω− → 0 as V0 → 0. A Taylor expansion in the limit
of ωz ≪ |ωc | shows that the magnetron frequency is independent of the particle’s charge and
mass to first order:

ω− =
ωc
2

(
1 − 1
|ωc |

√
ω2
c − 2ω2

z

)
=
ωc
2

*.
,
1 − |ωc |

|ωc |

√
1 − 2ω

2
z

ω2
c

+/
-

(2.34a)

≈
ωc
2

(
1 −

(
1 −

ω2
z

ω2
c
+ · · ·

))
≈

ω2
z

2ωc
=

V0C2
2B0d2

. (2.34b)

In the last step, we have used the Equations (2.17) and (2.18) for the axial frequency ωz and the
free-space cyclotron-frequency ωc, respectively. When the magnetron frequency is proportional
to the voltage V0, the sideband identity (2.25) states that the reduced cyclotron-frequency also
depends linearly on the voltage V0. The sum of the radial frequencies in the ideal Penning trap
is equal to the free-space cyclotron-frequency ωc, which does not depend on the electrostatic
potential.
In contrast to the standard definition of the radial frequencies

ω ′± =
1
2

(
ωc ±

√
ω2
c − 2ω2

z

)
(2.35)

4To avoid negative amplitudes, send φk → φk + jπ, where j is an odd integer (which may be negative). Conven-
tionally, the phase is chosen such that its range spans an interval of 2π , either 0 ≤ φk ≤ 2π or −π ≤ φk ≤ π.
Never mind the overlap at the limits.
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2.1. The ideal Penning trap

ρ̂−

ρ̂+

ẑ

x y
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Figure 2.2.: Eigenmotions of a charged particle in a Penning trap. The three individual
eigenmotions—magnetron, cyclotron, and axial—are shown in green, red, and blue,
respectively. The corresponding amplitudes are ρ̂−, ρ̂+, and ẑ. The black line shows a
superposition of all the three eigenmotions. The brown line is a projection of the mo-
tion into the xy-plane (slightly offset for clarity), with the dotted green circle indicat-
ing the magnetron orbit. The frequency-ratio is chosen as ω+ : ωz : ω− = 50 : 10 : 1,
satisfying Equation (2.26). The frequencies being integer multiples of one another
leads to closed orbits. Such a commensurability condition will have to be ruled
out later on when dealing with imperfections of the trap because such a relation
between the eigenfrequencies may cause instabilities. This figure has been used
multiple times. The original version is from my diploma thesis [81].
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2. Penning-trap theory

in the literature, Equation (2.23) contains essentially the sign of the free-space cyclotron-
frequency ωc as an additional prefactor in front of the square root. This prefactor makes no
difference when ωc is positive, and it flips the sign when ωc is negative.

Figure 2.3 illustrates the problem of the standard definition for negative ωc. When the sign of
the free-space cyclotron-frequency changes, not only do the radial frequencies change their
sign, which would be fine to indicate that the sense of rotation has changed, they also swap
their meaning:

ω ′±(−ωc) = 1
2

(
−ωc ±

√
ω2
c − 2ω2

z

)
= −

1
2

(
ωc ∓

√
ω2
c − 2ω2

z

)
= −ω ′∓(ωc) . (2.36)

In this case, the subscript no longer identifies the two radial modes reliably, and the amplitudes ρ̂±
would be falsely associated with the other mode. From a mathematical point of view, the
two radial modes possess an identical structure, and at least the pair of frequencies ω± and
amplitudes ρ̂± is interchangeable. From the experimental point of view, the two radial modes
must be distinguished. Technically, the link between frequencies and amplitudes established
by the same subscript must be preserved. The problem of swapping the meaning is solved by
the additional prefactor. Only the change of sign, reflecting the change in the sense of rotation,
remains for the definition (2.23) chosen in this thesis:

ω±(−ωc) = 1
2

(
−ωc ±

−ωc
|ωc |

√
ω2
c − 2ω2

z

)
= −

1
2

(
ωc ±

ωc
|ωc |

√
ω2
c − 2ω2

z

)
= −ω±(ωc) . (2.37)

At this point, it may not be immediately obvious why the sign of ωc or ω± might be of any
relevance. When the frequency is measured as the number of oscillations per time, the result is
positive (or at least non-negative). After all, the reported quantities are frequencies ν = |ω |/(2π),
not angular frequencies ω. So far, we have always referred to the angular frequencies ω as
frequencies without distinguishing them from the actual frequencies ν , and we will continue to
do so. The symbols ω and ν should make the difference sufficiently clear.

The axial frequency ωz was chosen positive by convention in Equation (2.17) without giving
the sign any thought, because it does not represent an additional degree of freedom in the
one-dimensional harmonic oscillator. A change of sign in ωz is equivalent to changing the sign
of the initial phase φz in the trajectory (2.32).
For the two-dimensional radial modes, the sign of ω± encodes the sense of rotation in a

natural way not covered by alternative choices of the amplitudes ρ̂± and initial phases φ±.
This is also true for the cyclotron-motion with frequency ωc in free space. Since we will work
with the particle’s trajectory later on—and not just the eigenfrequencies—in order to calculate
frequency-shifts, not having to distinguish two cases in x(t) or y(t) depending on the sign of
ωc is very convenient.5 However, the sense of rotation does not seem to have any important

5If the radial frequencies ω± were defined to be positive, the sense of rotation could be incorporated by multiplying
either x(t) in Equation (2.30) or y(t) in Equation (2.31) with the sign of qB0. Although carrying along this
additional factor is more cumbersome than allowing for a sign of the radial frequencies ω± and the free-space
cyclotron-frequency ωc, this alternative is more general than assuming a particular sense of rotation. Such
an assumption requires fixing the direction of the magnetic field as pointing along either the positive or the
negative z-axis, and a restriction to either positive or negative charge.
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2.1. The ideal Penning trap
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Figure 2.3.: The two radial frequencies are calculated from the standard definition (2.35) as a
function of the free-space cyclotron-frequency ωc. The orange line, representing ωc,
serves as a guide to the eye. It should be approached by the reduced cyclotron-
frequency ω+ for |ωc | large compared with the axial frequency ωz . The red branch
has the plus sign in front of the square root; the green branch has the minus sign.
For ω2

c < 2ω2
z , the real part is shown in blue. Note that the red branch is always

above the green one, and hence ω ′+ > ω ′−. For ωc < −
√
2ωz , this property means

that |ω ′+ | < |ω ′− |. Thus, the frequency on the red branch describes the magnetron
frequency, while the green branch shows the modified cyclotron motion. This
misassignment is cured by the definition (2.23). By including the sign of ωc as a
factor in front of the square root, the branches are flipped for negative ωc. The plus
sign is then always associated with the reduced cyclotron-frequency; the minus
sign then belongs unambiguously to the magnetron frequency, regardless of the
sign of ωc.
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2. Penning-trap theory

physical meaning. For instance, the sign of B0 and henceωc changes, when the z-axis is flipped.6
This degree of freedom in the choice of the coordinate system cannot possible have experimental
consequences, and the sign of B0 for the particular coordinate system is never reported. Of
course, the sign of ωc also changes when the magnetic field is reversed, but this operation is
more complex than playing with a definition, and it corresponds to an actual change in the
experiment. The sign of ωc changes for a particle of opposite charge, too. More precisely, the
sign of ωc reflects the sign of the product qB0 in Equation (2.18). The same holds true for the
radial frequencies ω± as defined by Equation (2.23) and the standard definition (2.35), if negative
free-space cyclotron-frequencies ωc are allowed.
Since the sense of rotation for a particle with a given sign of charge is determined by the

strong magnetic field of the ideal Penning trap, it is not changed by small imperfections. What
would be lost if the associated frequency-shifts were calculated with the free-space cyclotron-
frequency ωc and hence the radial frequencies ω± defined to be positive? For cylindrically-
symmetric imperfections and the quasi-periodic motion in the Penning trap, it is hard to imagine
that the sense of rotation as such could be important. However, the additional forces created by
magnetic imperfections depend on the particle’s velocity and, for the frequency-shifts caused, it
matters whether they add to or subtract from the main forces in the ideal Penning trap. Thus,
the direction of the additional magnetic field B⃗η with respect to the original magnetic field B⃗0
has to be respected in the calculation. As described in Section 2.2.2, the relative orientation
is given by the sign of the parameter Bη with respect to B0. Concerning the calculation of
frequency-shifts, the main danger of defining the free-space cyclotron-frequency ωc to be
positive is to forget the sign of B0, when taking absolute values.7 We shall see in Section 4.1.3
that the first-order frequency-shifts caused by cylindrically-symmetric imperfections all depend
on Bη/B0 as a global prefactor.
Devoting so much attention to the sign of the parameter Bη with respect to B0 is largely

academic. When the imperfection is caused by the magnetic susceptibility of the materials placed
in the originally homogenous magnetic field, the orientation of the imperfections typically
reverses when the homogenous magnetic field is flipped [20]. Consequently, the sign of Bη/B0
is determined by the properties of the setup. However, we want to keep the final expressions
for the frequency-shifts flexible, with as little assumptions or restrictions as possible. In short,
the definition of the radial frequencies (2.23) ensures that the signs of the charge q and the
magnetic field B0 are handled correctly.
The particular sense of rotation in a magnetic field has an experimentally-observable con-

sequence for the effect of the radial modes on the axial motion. It is such that the magnetic
moment associated with the radial modes is always antiparallel to the magnetic field. We will
prove that statement before exploring its experimental consequences.
In general, the orbital magnetic moment of a pointlike particle is defined as

µ⃗ =
q

2 r⃗ × 3⃗ =
q

2
*..
,

x
y
z

+//
-
×

*..
,

ẋ
ẏ
ż

+//
-
=
q

2
*..
,

yż − zẏ
zẋ − xż
xẏ − yẋ

+//
-

. (2.38)

6Flipping the z-axis also requires one of the other axes be flipped for the coordinate system to stay right-handed.
7Technically, the sign of the charge q is not important because it relates to all the (electromagnetic) forces, not just
the one generated by the magnetic field of the ideal Penning trap.
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2.1. The ideal Penning trap

With the coordinates (2.30)–(2.32) and their time-derivatives for the velocities, the components
of the magnetic moment of a particle in an ideal Penning trap become

µx (t) = q

2
{
ωz ẑ sin(χz )�ρ̂+ sin(χ+) + ρ̂− sin(χ−)�

+ ẑ cos(χz )�ω+ρ̂+ cos(χ+) + ω−ρ̂− cos(χ−)�
}

,
(2.39a)

µy (t) = q

2
{
ωz ẑ sin(χz )�ρ̂+ cos(χ+) + ρ̂− cos(χ−)�

− ẑ cos(χz )�ω+ρ̂+ sin(χ+) + ω−ρ̂− sin(χ−)�
}

,
(2.39b)

µz (t) = −q2
{
ω+ρ̂

2
+ + ω−ρ̂

2
− + (ω+ + ω−)ρ̂+ρ̂− cos[(ω+ − ω−)t + φ+ − φ+]

}
. (2.39c)

The radial components contain products of oscillatory terms at the axial frequencyωz and either
of the two radial frequencies ω±. Since ωz , |ω± | apart from two exceptions,8 there are no
constant terms—see Equations (C.10)–(C.12) in the appendix for trigonometric product-to-sum
identities. With the constant terms in the axial component, and the time-averaged orbital
magnetic moment of the particle becomes

⟨µ⃗⟩0 = −
q

2
�
ω+ρ̂

2
+ + ω−ρ̂

2
−

�
e⃗z , (2.40)

where e⃗z is a unit vector in the z-direction, the only component with a nonzero entry.9 The
angle brackets with the subscript 0 represent picking the constant component. We will introduce
more of this notation in Section 3.1.
With our particular definition (2.23), the radial frequencies ω± have the same sign as the

product qB0 in the free-space cyclotron-frequency ωc. Consequently, the prefactor of the unit
vector e⃗z in Equation (2.40) has the sign of B0, which means that this magnetic moment is
always antiparallel to the magnetic field. It is time to highlight one experimentally observed
consequence of this alignment.
The energy of a magnetic moment µ⃗ in a magnetic field B⃗ is given by Emag = −µ⃗ · B⃗. For a

constant magnetic moment that is always antiparallel to the magnetic field—that is, µ⃗ ·B⃗ < 0—the
energy is non-negative and it decreases with decreasing absolute magnetic field strength ���B⃗

���.
Thus, the magnetic moment of the radial modes makes the ion a low-field seeker, provided this
motional (or orbital rather than intrinsic) magnetic moment is a conserved quantity, rather
than a function of the magnetic field itself. Indeed, the magnetic moment associated with the
modified cyclotron-motion is an adiabatic invariant [23, 112]. Of course, an additional axial
force caused by the radial modes will come into play only in a spatially-dependent magnetic

8The two exceptions are ωz = ω− = 0 and ωz = |ω+ | = 2/3|ωc |. In the first case, the axial motion has a different
functional form than described by Equation (2.32), because, above all, there is no axial confinement. The second
case is easily avoided by changing the trap voltageV0, and it is unlikely because of the typical hierarchy |ω+ | ≫ ωz
for the ion-of-interest.

9For the special case of ωz = |ω+ | = 2/3|ωc |, the two radial components are ⟨µx ⟩0 = 1/3qωcρ̂+ẑ cos(φz −ωc/|ωc |φ+)
and



µy

�
0 =

1/3q |ωc |ρ̂+ẑ sin(φz −ωc/|ωc |φ+). We will dismiss these particular relations between eigenfrequencies
as accidental, in the sense that they are not fundamental or natural in any way for the ideal Penning trap, in
contrast to Equations (2.25)—(2.27), for instance.
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2. Penning-trap theory

field, not in the uniform magnetic field of the ideal Penning trap.10 We will briefly return to the
concept of modeling the interaction of the radial modes with the axial mode via their magnetic
moment when Section 4.1.3 comes to axial frequency-shifts caused by magnetic imperfections.
Experimentally, the additional force in the direction of lower magnetic fields is exploited by the
time of flight ion cyclotron-resonance method [62] by measuring the ions’ time-of-flight from
the trap to a detector well outside the magnet. Because this ejection sends the ions through
a region of decreasing magnetic field, their time of flight is altered by their orbital magnetic
moment (2.40), which depends mainly on their cyclotron radius. In turn, radio-frequency
fields allow to manipulate the cyclotron radius of the stored particles [94], thereby probing the
resonance frequencies. Avowedly, the method would still work if the sense of rotation were
the other way around, in which case the ions with the largest cyclotron radius would have the
longest time-of-flight, because they would be slowed down most in the magnetic gradient.

2.1.2. Energies of the eigenmodes

The energy of a charged particle stored in a Penning trap follows directly from the trajectory
without any analogies aboutmagnetic moments. Because of the quadratic form of the quadrupole
potential (2.2), the radial displacement squared has to be calculated. Adding Equations (2.30)
and (2.31) in quadrature yields

ρ2 = x2 + y2 = ρ̂2+ + ρ̂
2
− + 2ρ̂+ρ̂− cos(χb) with χb = χ+ − χ− . (2.41)

The time-dependence is not shown explicitly. It is hidden in the total phase χb from Equa-
tion (2.33) The radial displacement squared oscillates back and forth between the minimum
value ρ2min = (ρ̂+ − ρ̂−)2 and the maximum value ρ2max = (ρ̂+ + ρ̂−)2 at the frequency

ωb = ω+ − ω− . (2.42)

With the quadrupole potential (2.2) and the axial frequency (2.17), the potential energy is
expressed as

Epot = qΦ2 = q
V0C2
2d2

(
z2 −

ρ2

2

)
(2.43)

=
1
2mω2

z

{
ẑ2 [cos(χz )]2 − ρ̂2+ + ρ̂

2
− + 2ρ̂+ρ̂− cos(χb)

2

}
, (2.44)

barring an offset by a constant potentialΦ0.
The velocity components are calculated by taking the time-derivatives of the trajectory (2.30)-

(2.32). To obtain the kinetic energy, the velocity components are summed in quadrature. The
contribution of the radial modes is

ẋ2 + ẏ2 = (ω+ρ̂+)2 + (ω+ρ̂−)2 + 2ω+ω−ρ̂+ρ̂− cos(χb) . (2.45)
10Because of the scalar product in the energy Emag, we could have ignored the radial components of the magnetic

moment right away, the magnetic field of the ideal Penning trap having no entries there. However, Section 2.2.2
shows that an axial magnetic field with a spatial dependence always goes hand in hand with a radial magnetic
field. This is the more interesting case for a magnetic moment, unless its the size or orientation—projection in
the quantum-mechanical sense–can be changed, of course.
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2.1. The ideal Penning trap

With the help of Equation (2.26), the product of radial frequencies is expressed as 2ω+ω− = ω2
z

for the next step. Taking into account the axial oscillation, the kinetic energy becomes

Ekin =
1
2m3

2 =
1
2m

�
ẋ2 + ẏ2 + ż2

�
(2.46)

=
1
2m

�
ω2
z ẑ

2 [sin(χz )]2 + (ω+ρ̂+)2 + (ω+ρ̂−)2 + ω2
z ρ̂+ρ̂− cos(χb)

	
. (2.47)

Because the axial mode is an undamped one-dimensional harmonic oscillator, the perpetual
conversion of kinetic energy into potential energy and vice versa is clearly expected. For the
radial modes, there is a constant contribution from each of the modes and an oscillatory term at
the difference frequency ωb. The oscillatory term vanishes in case one of the radial modes has
zero amplitude. In this case, the particle goes around the trap center on a purely circular orbit
with constant radial displacement and velocity.

In any case, the total energy of the particle

Etot = Epot + Ekin =
1
2mω+(ω+ − ω−)ρ̂2+ + 1

2mω2
z ẑ

2 −
1
2mω−(ω+ − ω−)ρ̂2− (2.48)

is conserved. Since there are no more cross-terms of the kind ρ̂+ρ̂−, the individual contributions
are readily attributed to the three eigenmodes as

E+ =
1
2mω+(ω+ − ω−)ρ̂2+ ≈ 1

2mω2
+ρ̂

2
+ , (2.49)

E− = −
1
2mω−(ω+ − ω−)ρ̂2− ≈ −12mω+ω−ρ̂

2
− = −

1
4mω2

z ρ̂
2
− , (2.50)

Ez =
1
2mω2

z ẑ
2 . (2.51)

The approximations use |ω+ | ≫ |ω− |. Additionally, the product of the radial frequencies
is expressed as 2ω+ω− = ω2

z with Equation (2.26). The energy of the modified cyclotron-
mode is dominated by kinetic energy, whereas the magnetron mode is dominated by potential
energy. Because the quadrupole potential Φ2 is repulsive in the radial direction, the energy
of the magnetron mode decreases with magnetron radius ρ̂−. Hence, the magnetron mode is
metastable. Upon dissipating energy, the amplitude of the magnetron mode increases.
In the quantum-mechanical case, the total energy of a spinless particle in a Penning trap

Etot = ~|ω+ |
(
n+ +

1
2

)
+ ~ωz

(
nz +

1
2

)
− ~|ω− |

(
n− +

1
2

)
(2.52)

is given by the sum of three independent harmonic oscillators [60, 146]. Here, ~ is the reduced
Planck constant, and the nk = 0, 1, 2, 3, . . . are the quantum numbers of the harmonic oscillator
associated with each of the three modes. Like in the classical case, the energy of the magnetron
mode is negative, because the magnetron mode actually represents an inverted harmonic
oscillator. The zero-point energy 1/2~|ωk | each oscillator has for nk = 0 means that the classical
amplitudes of the modes cannot vanish.
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2. Penning-trap theory

2.2. Cylindrically-symmetric deviations

This section discusses physical constraints on electromagnetic fields in free space, with the
interior of the Penning trap in mind. These will be applied in Sections 2.2.1 and 2.2.2 to derive
the permissible spatial dependence of electrostatic potentials and static magnetic fields with
cylindrical symmetry, respectively. Sections 3.4.4 and 5.1 touch on effects beyond cylindrical
symmetry, and Chapter A in the appendix gives a more general parametrization.
Already when discussing the potential of the ideal Penning trap in Section 2.1, it became

obvious that contributions beyond the quadrupole potential are practically unavoidable. Since
the electrostatic potential is produced with electrodes of cylindrical symmetry, its imperfections
are expected to have the same symmetry. Moreover, the particle averages over some deviations
from cylindrical symmetry, while it orbits around the center of the trap in the strong magnetic
field. Recently, a peculiar segmentation of a cell used for Fourier-transform ion cyclotron-
resonance (FT-ICR) has been proposed [11] and demonstrated [111] to produce an effective
quadrupole potential upon averaging the actual electrostatic potential along the modified
cyclotron-motion, thereby harmonizing the cell dynamically. Because of this motional averaging,
many imperfections may be described as effectively cylindrically-symmetric. This is of particular
importance for the magnetic field [107, 150], whose symmetry axis does not have to run through
the electrostatic center of the trap, provided cylindrical symmetry is present at all. The magnetic
field is typically created by currents in solenoidal coils, but the trap may not sit on their central
axis. If the higher-order terms arise from the magnetic susceptibility of cylindrically-symmetric
electrodes placed in an originally uniformmagnetic field, the symmetry carries over, but, outside
of the electrodes, rotational symmetry is typically a discrete one at best. The same breaking of
the continuous symmetry pertains to segmented electrodes, which affects the electric potential,
too.
Nevertheless, many dominant imperfections are expected to possess (effective) cylindrical-

symmetry, which warrants a general description of such terms in the electric potential and
the magnetic field. From the experimental point of view, the peculiar spatial dependence as
such is of little importance. It is simply necessary to calculate the associated frequency-shifts
(Section 4.1), which affect the most relevant observables—the eigenfrequencies. Since the fields
of a Penning trap suspend a charged particle in free space, the fields at the position of the
particle are governed by Maxwell’s equations in vacuum.11 In differential form, they read

∇⃗ × E⃗ = −
˙⃗
B , ∇⃗ · B⃗ = 0 , (2.53)

∇⃗ · E⃗ =
ϱ

ε0
, ∇⃗ × B⃗ = µ0 j⃗ + µ0ε0

˙⃗
E . (2.54)

The first line contains the homogeneous equations, which do not have any source terms. The
inhomogeneous equations in the second line contain the charge density ϱ and the current
density j⃗ as sources. The vacuum permittivity is given by ε0; the vacuum permeability is given
by µ0.

11Here, free space refers to vacuum in contrast to matter. This should not be confused with the use in the free-space
cyclotron-frequency, which refers to the absence of an electric field, possibly because of the absence of trap
electrodes.

30



2.2. Cylindrically-symmetric deviations

The fields B⃗ and E⃗ may also be expressed in terms of the vector potential A⃗ and the scalar
potentialΦ as

B⃗ = ∇⃗ × A⃗ , E⃗ = −∇⃗Φ −
∂A⃗

∂t
. (2.55)

With these definitions, the homogeneous Maxwell equations (2.53) are automatically satisfied
because ∇⃗ × ∇⃗Φ = 0 and ∇⃗ · (∇⃗ × A⃗) = 0 for a scalar function Φ and a vector function A⃗ in
general, assuming differentiability.

In most cases, describing the fields of the Penning trap sufficiently well does not require the
most general expression, and a number of simplifications is typically applied. Here, the static
fields used for storing the particles in the Penning trap are of primary importance, since they
are always present. Everything else is optional. Of course, there must be at least one charged
particle in the trap for experiments, and, in addition to the charge, there is a current associated
with this oscillating particle. Fortunately, these effects may be dealt with separately, because
Maxwell’s equations are linear, and the superposition principle holds. The equations may
therefore be solved separately for fields of different origin. Furthermore, the coupling between
electric and magnetic fields brought about by the time-derivatives in Equations (2.53) and (2.54)
vanishes for static fields. In this case, the electric and magnetic fields are unrelated, and we
will deal with them individually. Even for time-dependent fields, such as the fields caused
by the oscillating particle, or oscillatory fields employed to excite or couple its eigenmotions,
the problem is treated as static one, when the frequencies are low enough. The solution from
the static case is used, with the fields then taking their instantaneous value for the particular
conditions at that very instant. When the time-derivatives and wave effects, such as propagation
delay or reflection, are negligible, oscillatory fields are not conceptually different from static
ones.
So far, the discussion applies to electric and magnetic fields in free space in general. For

possible solutions of Maxwell’s equations in a Penning trap, we will now restrict ourselves to
fields with cylindrical symmetry. In this way, we will learn about the general structure of the
solutions for this particular kind of symmetry without invoking the exact boundary conditions,
which differ from trap to trap. The fundamental solutions, however, are the same. Only their
contributions to the specific overall solution differ.

2.2.1. Electrostatic

Combining the inhomogeneous Maxwell equation (2.54) for the electric field E⃗ with the scalar
potentialΦ defined by Equation (2.55) yields the Poisson equation

∇⃗ · E⃗ = ∇⃗ · (−∇⃗Φ) = −△Φ = ϱ

ε0
, (2.56)

where △ = ∇⃗ · ∇⃗ is the Laplace operator, given for Cartesian coordinates in Equation (2.4).
Even though the charge-density ϱ inside a Penning trap is given by the oscillating ion, we
have neglected the time-derivative of the vector potential A⃗. The dominant component of the
magnetic field is the static one. Interaction between ions is typically modeled by Coulomb
interaction or space-charge via electric rather than magnetic forces.
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2. Penning-trap theory

While the limitation to a single ion eliminates ion–ion interaction and space-charge effects, the
single charge still interacts with the image charges it induces in the trap electrodes. For particles
heavier than electrons, the image charges mainly modify the electrostatic potential seen by the
particle, which results in a frequency-shift that can be treated as a small perturbation [127, 152,
162]. Section 5.1 takes a closer look. Although the distribution of image charges for a particle
displaced from the z-axis breaks cylindrical symmetry, the resulting potential at the particle’s
position is cylindrically-symmetric, provided the electrodes have that symmetry. However, the
link between the dependence on ρ and z we will establish in this section does not have to be
valid, because the ion samples the potential it generates via the image charges only at its own
position, and not in terms of a general coordinate elsewhere [157]. Because the potential of the
image charges is small compared with the potential generated by applying different voltages
on the trap electrodes, it is usually sufficient to include only the lowest-order terms, which are
quadratic in z and ρ at the position of the ion, as a modification to the quadrupole potential in
the ideal trap. In this case, the frequency-shift to the three eigenfrequencies does not depend
on the particle’s amplitudes.12

From here on, we will focus on the external potential used for trapping the particle. Since the
image-charge interaction is expected to be attractive when approaching the trap electrodes, axial
confinement could not be guaranteed otherwise, no matter how slow the particle. Moreover,
the image-charge shifts are avoidable experimentally, because they are strongly suppressed for
larger traps.

In the empty trap with ϱ = 0, the Poisson equation (2.56) simplifies to the Laplace equation

△Φ = 0 . (2.57)

In the literature, cylindrically-symmetric solutions that do not diverge at the origin [170] are
typically expressed as

Φη(r ,θ ) = Cη
V0
2dη r

ηPη
�
cos(θ )� (2.58)

in spherical coordinates,13 where Pη is a Legendre polynomial and η = 0, 1, 2, 3, . . . a non-
negative integer. An explicit form of the Legendre polynomials Pη is not needed in this section
and is therefore relegated to Equation (A.14) in the appendix. For curiosity, Table A.1 there
shows the first few Pη . Making the substitution rη → r−(η+1) also results in a valid solution
to the Laplace equation (see Section A.1 in the appendix). However, the singularity for r = 0
would be associated with a point charge at the origin, and free charges are ruled out by selecting
the charge-density ϱ = 0 inside the empty trap.

12If the potential of the image charges does not obey the form of the quadrupole potential (2.2), the shifted
eigenfrequencies violate the invariance theorem (2.27), even though an entirely quadratic potential in ρ and
z does not give rise to anharmonic frequency-shifts [25]. For such an electrostatic potential, which does not
couple the axial and the radial modes, the cyclotron-sideband identity (2.25) remains valid, because the shifts to
the radial modes are equal in magnitude, but opposite in sign.

13In some publications, for instance [3, 12, 99, 170], the distance from the z-axis is called r , whereas the distance
from the origin is called ρ (if used at all). In this case, the meaning of r and ρ is opposite to the definition used
here. See Equation (2.61) and Figure 2.4.
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2.2. Cylindrically-symmetric deviations

Other solutions with singularities exist, the natural logarithm ln(ρ) of the radial coordi-
nate (2.3) being among the most simple functional dependencies.14 Clearly, ln(ρ) diverges
for ρ = 0, that is, on the z-axis,15 Such a potential might be generated by a charged wire
running along this axis,16 and such an arrangement may also be used to trap ions [26, 121].
The concept has also been used for increasing the path length of electrons in electrostatic
ion gauges [106] and vacuum pumps [39] (“orbitron”). The Kingdon trap [58, 85, 86] and the
orbitrap [73, 100]—both of which operate without a magnetic field—come with a central wire
and an inner electrode, respectively, around which the ions orbit. Since the Penning trap has
no electrodes in its trapping volume, mathematical solutions with singularities do not have to
be elaborated here, and we return to the standard solution in the literature.

BecauseΦη of Equation (2.58) satisfies a homogenous linear differential equation, the spatial
dependence expressed by rηPη(cos(θ )) is the crucial part. Consequently, other prefactors have
been used.17 Here, the prefactor is chosen to match the definition (2.2) of the quadrupole
potentialΦ2 for η = 2. In the context of the experiment, V0 is understood as an applied voltage.
The dimensionless parameter Cη describes the strength of the contribution. The characteristic
trap dimension d , defined in Equation (2.10), removes the dimension of (length)η carried by rη ,
such that the overall expression has the unit of voltage.

As the individualΦη are fundamental solutions of the Laplace equation, the overall potential
is given by a suitable superposition, with the Cη adjusted to match the shape of the potential.
In the case of the Penning trap, the overall potential is found by solving the Laplace equation
for the Dirichlet boundary conditions imposed by the electrodes. Without any dependence
on the azimuth angle ϕ, the Φη are indeed cylindrically symmetric, but they do not use the
natural coordinate system of the trap. The discussion of a particle’s motion in Section 2.1.1 has
distinguished between the axial mode and the two radial modes, and the potential was described
best with cylindrical coordinates. Therefore, we would like to find the coefficient aη(k) in

rηPη
�
cos(θ )� ≡

⌊η/2⌋∑
k=0

aη(k) zη−2k ρ2k . (2.59)

The upper limit of the sum is given by the floor function18

⌊η
2

⌋
=




η
2 if η is even,
η−1
2 if η is odd.

(2.60)

14Rather than using the Laplace operator (2.4) in Cartesian coordinates on the radial coordinate expressed via
Equation (2.3), the statement about ln(ρ) solving the Laplace equation is confirmed more conveniently with the
Laplace operator (2.63) in cylindrical coordinates.

15Other solutions with a singularity on the z-axis are obtained by replacing the Legendre polynomial Pη by the
Legendre function of the second kind, Qη , see Section A.1 in the appendix.

16Inside the wire, the potential has a different form, and the singularity has no practical consequence.
17Most notably, the potential associated with odd η is often normalized to ze, the distance from the trap center

to the endcap (see Figure 2.1), because the limiting values approached for large ρ2r /(2z2e) become independent
of ρr/ze [48, 51, 53]. Moreover, the odd coefficients Cη are called cη or Bη in earlier papers, the latter choice
conflicting with the coefficients of higher orders in the magnetic field to be introduced in Section 2.2.2.

18Here, the floor function is defined only for integers, which is most convenient for our purpose. In general, the
floor function ⌊x⌋ gives the largest integer not greater than x .
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Figure 2.4.: Coordinate system used in this thesis. The distance from the z-axis is given by ρ; the
distance from the origin by r . In radians rather than degrees, the azimuth angle ϕ
runs from 0 to 2π; the zenith angle θ from 0 (pointing along the positive-z axis) to
π (pointing along the negative z-axis).

Using the explicit expression (A.12b) for the Legendre polynomials, it is easy to verify that
the right-hand side of Equation (2.59) must have this particular form (see Section A.2 in the
appendix). Section B.1 in the appendix verifies the polynomial form independently via Bessel
functions—a nonpolynomial solution to the Laplace equation. Here, we will simply motivate
the choice and prove that it works.
Overall, the right-hand side has the dimension of (length)η , just like the left-hand side, and

the limits for the summation variable k are chosen such that there are no negative exponents,
neither for ρ nor for z, because the solution must not possess a singularity, neither at the origin
nor on on the z-axis.19 There are only even powers of ρ, because neither spherical coordinate

r =
√
ρ2 + z2 , (2.61)

cos(θ ) = z

r
=

z√
ρ2 + z2

(2.62)

depends on the sign of ρ. Figure 2.4 illustrates the link between the coordinate systems, and it
clarifies the use of r and ρ.
It looks like the straightforward way to determine the coefficient aη(k) is to express the

spherical coordinates on the left-hand side of Equation (2.59) as a function of the cylindrical
coordinates, knowing an explicit expression for the Legendre polynomial. However, Section A.2

19From the physical point of view, a singularity is associated with the presence of a pointlike charge, which we
have ruled out by assuming zero charge-density inside the trap. Moreover, several pointlike charges of different
sign would be necessary to create a potential that falls off more strongly than the usual 1/r dependence of the
Coulomb potential.
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2.2. Cylindrically-symmetric deviations

in the appendix shows that this ansatz seems to require an elaborate knowledge of mathematical
identities. Consequently, we will follow a second route that requires almost no knowledge
about Legendre polynomials.
Only very rarely are general expressions for the cylindrically-symmetric potential in cylin-

drical coordinates shown in the literature [99]. References [3, 99] both express rηPη(cos(θ )) as
a function Hη(ρ, z), but Reference [3] gives explicit expressions for the first few η only. When it
comes to finding a general expression in mathematical handbooks, it does not help that these
special functions come with different names: solid harmonics [99, 187] or (zonal) spherical
harmonics [3, 189]. Even with this name known, the coefficient aη(k) in Equation (2.59) is hard
to look up, and there seems to be little inspiration from other fields (of physics), despite the
multitude of applications with electric and magnetic fields.

The general solution (2.58) for the potentialΦη for a boundary value problem with azimuthal
symmetry seems to be inspired by the classical textbook [79]. A second textbook solution
with cylindrical symmetry involves a product of (modified) Bessel functions with the radial
coordinate ρ as the argument and (complex) exponential functions of the axial coordinate z.
This factorization into functions of ρ and z is particularly helpful for the analytic calculation
of the potential in a cylindrical trap—most appropriately a can-shaped trap with a cylindrical
ring electrode and flat-plate endcaps [5, 13]—because on the electrodes, where the boundary
conditions hold, one of the two coordinates is a constant, rather than a function of the other coor-
dinate. In order to evaluate the multipole components of the potential, the solution is expanded
about the center of the trap in a polynomial of ρ and z. Analytically, the coefficients Cη may be
extracted by equating the solution on the z-axis alone [51, 53]. In this way, the dependence on
ρ of the polynomial solution (2.59) to the Laplace equation is not deduced independently by a
series expansion of the (modified) Bessel function in its argument ρ, even though this would
avoid a conversion of coordinates. Instead, the dependence on ρ is borrowed from a known
polynomial solution to the Laplace equation, which typically involves a Legendre polynomial.
Section B.1 in the appendix shows that there is no need to reintroduce the dependence on ρ by
hand because it carries over naturally to the polynomial solution with little mathematical effort.

As the Penning-trap literature almost exclusively relies on the standard parametrization (2.58)
in spherical coordinates, converting to cylindrical coordinates manually for every η considered,
the general conversion is worth being presented here.20 We shall see that the major step is more
about looking for a solution of the Laplace equation in cylindrical coordinates right from the
start than an actual conversion based on the explicit form of the Legendre polynomial.21
The approach starts by applying the Laplace operator [180] in cylindrical coordinates

△ =
1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2
∂2

∂ϕ2 +
∂2

∂z2
(2.63)

20Of course, it speaks to the quality of a (quadrupole) trap that its potential is described by just a few low-order
terms, thereby rendering the general conversion (2.59) to cylindrical coordinates unimportant from a practical
point of view.

21The idea is similar to the description of the electrostatic potential in Reference [135], where the different coefficients
in the expansion of a potential in terms of polynomials in ρ and z are calculated from an analytic expression of
that very potential. However, no direct link between the expansion coefficients is given. Reference [134] does
that, without establishing the link to Legendre polynomials though.
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2. Penning-trap theory

to the right-hand side of Equation (2.59). We now consider the two terms that will have to cancel
after applying the Laplace operator, for the right-hand side to be a solution of the Laplace
equation, just like the left-hand side already is, thanks to the special properties of the Legendre
polynomial. For a given value k of the summation variable, we pick the component with k + 1
for the radial part of the Laplace operator and obtain

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

) [
aη(k + 1)zη−2k−2ρ2k+2

]
= (2k + 2)2 aη(k + 1) zη−2k−2ρ2k . (2.64)

For the axial part of the Laplace operator, picking the component with k yields

∂2

∂z2

[
aη(k)zη−2kρ2k

]
= (η − 2k)(η − 2k − 1)aη(k) zη−2k−2ρ2k . (2.65)

In both cases, the exponents of z and ρ are the same. Thus, the prefactors have to vanish upon
summation, which results in the recursive relationship

aη(k + 1) = − (η − 2k) (η − 2k − 1)22 (k + 1)2 aη(k) . (2.66)

We try to guess an explicit expression after applying the recursion multiple times:

aη(4) = −(η − 6) (η − 7)22 42 aη(3) = −(η − 6) (η − 7)22 42
−(η − 4) (η − 5)

22 32 aη(2) (2.67a)

=
−(η − 6) (η − 7)

22 42
−(η − 4) (η − 5)

22 32
−(η − 2) (η − 3)

22 22 aη(1) (2.67b)

=
−(η − 6) (η − 7)

22 42
−(η − 4) (η − 5)

22 32
−(η − 2) (η − 3)

22 22
−η (η − 1)

22 12 aη(0) (2.67c)

=
(−1)4
22·4

η(η − 1)(η − 2)(η − 3)(η − 4)(η − 5)(η − 6)(η − 7)
(4 · 3 · 2 · 1)2 aη(0) . (2.67d)

In the last step, we have rearranged the factors to underline the general structure. Spotting the
pattern leads to the explicit expression

aη(k) = (−1)k
22k

η(η − 1) · · · (η − 2k − 2)(η − 2k − 1)
(k!)2 aη(0) (2.68a)

=
(−1)k
22k

η!
(η − 2k)!(k!)2 aη(0) . (2.68b)

In the last step, we have expanded the fraction with a factor of (η − 2k)!, where the factorial of
a non-negative integer n is as usual given by the product

n! = n(n − 1)(n − 2) · · · 3 · 2 · 1 with 0! = 1 . (2.69)

This expansion is fine because the upper limit k ≤ ⌊η/2⌋ of the sum (2.59) means that η − 2k ≥ 0.
The explicit expression (2.68b) agrees with Equation (3.20) in Reference [134].

The recursive relationship (2.66) does not determine the absolute value of the coefficient aη(k).
The value has to adjusted to match some special value of the Legendre polynomial, the property
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2.2. Cylindrically-symmetric deviations

Pη(1) = 1, for example. In spherical coordinates, 1 = cos(0) describes a point on the positive
z-axis, where ρ = 0 and hence r = z according to Equation (2.61). Consequently, the only
contribution on the right-hand side of Equation (2.59) comes from k = 0, and the equation for
the remaining coefficient reads

rηPη(1) = rη · 1 = zη · 1 = aη(0)zη . (2.70)

Thus, aη(0) = 1, and the explicit expression (2.68b) for the coefficient simplifies to

aη(k) = (−1)k
22k

η!
(η − 2k)! (k!)2 . (2.71)

As a cross-check, the recursive relation (2.66) is satisfied because

−
(η − 2k) (η − 2k − 1)

22 (k + 1)2 aη(k) = − (η − 2k) (η − 2k − 1)22 (k + 1)2
(−1)k
22k

η!
(η − 2k)! (k!)2 (2.72a)

=
(−1)k+1
22(k+1)

η!
[η − 2(k + 1)]! [(k + 1)!]2 = aη(k + 1) . (2.72b)

At this point, we have found the general expression

Φη(ρ, z) = Cη
V0
2dη

⌊η/2⌋∑
k=0

aη(k) zη−2k ρ2k (2.73)

for cylindrically-symmetric solutions of the Laplace equation (2.57) that do not diverge at
the origin, and we have done so naturally in cylindrical coordinates without invoking special
functions. The result agrees with Equation (C.7) in Reference [99], which was derived from a
general expression for the Legendre polynomial. Table 2.1 shows the spatial dependence of
Equation (2.73) for the first few η.
As mentioned before to justify the ansatz (2.59), there are only even powers of ρ, but, as

the distance from the z-axis, ρ is typically taken to be a positive quantity anyway. With
this convention, the cylindrical symmetry is reflected by the absence of the azimuth angle ϕ.
The fundamental solutions Φη are even functions with respect to z when η is even, that is,
Φη(ρ,−z) = Φη(ρ, z). They are odd functions when η is odd, that is, Φη(ρ,−z) = −Φη(ρ, z).
Therefore, the terms with η odd are typically associated with a voltage applied asymmetrically
between the endcaps. Since the trap shown in Figure 2.1 has perfect reflection symmetry
about the xy-plane, the coefficients Cη with η odd would vanish in the configuration shown.
Fortunately, the prefactor of the sum may be changed at will, withΦη staying a solution of the
Laplace equation as long as the spatial dependence is not altered.
We have yet to derive the electric field E⃗η associated with the electrostatic potentialΦη by

taking the negative gradient according to Equation (2.55). This will be done at the beginning of
Section 4.1.2 when the electric field has to be plugged into an actual equation of motion. Tradi-
tionally, the Penning trap is characterized by its magnetic field and its electrostatic potential,
rather than its electric field. The electrostatic potential parametrizes the same information in a
more compact way because it is a scalar quantity.
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2. Penning-trap theory

2.2.2. Magnetostatic

Unlike the electrostatic potential, the magnetic field is not calculated as easily from first princi-

ples because its boundary conditions aremore intricate. Whereas the electrodes are equipotential

surfaces for the electric potential and hence free of (static) electric fields, thereby shielding the

ion from the outside electrically, they are penetrated by the magnetic field. Since the coils that

generate the magnetic field sit outside of the trap volume, the magnetic penetration is indis-

pensable from the experimental point of view, but for a theoretical description, the Maxwell

equations in matter with interface conditions would have to be consulted. Even if the geometry

of the trap and its magnetic properties are known, an exact solution is difficult, because the

geometry of the coils in the magnet is often kept secret by the manufacturer. The coils would

therefore have to be modeled (or reverse engineered) based on a measurement of the magnetic

field without the trap in place. In many cases, considering the distortion of the measured field

by the trap apparatus is enough to estimate the influence on the trapped ion. Without going into

details about boundary and interface conditions, it is possible to derive some general properties

of the magnetic field inside the trap, simply from the fact the Maxwell’s equations have to be

satisfied there, too.

Inside the trap, Maxwell’s equations in free space hold. Most notably, there are no coils

carrying current. Neglecting the current by the oscillating ion, there is no current density

inside the trap, that is, �j = 0. The fields caused by the ion aside, the problem is a static one,

and all the time-derivatives in Equations (2.53) and (2.54) vanish. With these simplifications,

the inhomogeneous Maxwell equation for the magnetic field reads �∇ × �B = 0. Naturally, the
magnetic field has no sources: �∇ · �B = 0 . These two equations are the same as for the electric
field �E in the static case with no charge density ϱ. Instead of deriving the magnetic field from a

vector potential according to Equation (2.55), it is more convenient to use a scalar potentialΨ
linked via �B = −�∇Ψ . Like for the electrostatic case withΦ in Equation (2.57), the scalar potential

Ψ fulfills the Laplace equation �Ψ = 0. Basically, the whole treatment carries over. Because
the magnetic field is more familiar than the scalar magnetic potential, we will derive the former

from the latter as soon as possible, even though the expression for the magnetic field is more

space-consuming than for the scalar potential.

Cylindrically-symmetric fundamental solutions for the potentialΨη without a singularity at

the origin or on the whole z-axis—with no free currents inside the trap, the magnetic field is
finite there—are written as

Ψη(r ,θ ) = − Bη

η + 1
rη+1Pη+1

�
cos(θ )� (2.74)

= − Bη

η + 1

⌊
η+1
2

⌋∑
k=0

aη+1(k) zη+1−2k ρ2k =Ψη(ρ, z) (2.75)

in analogy to the electrostatic potentialΦη in Equation (2.58) with spherical coordinates. Again,

η = 0, 1, 2, . . . is a non-negative integer, and Pη is a Legendre polynomial. The transformation
to cylindrical coordinates is the same as in Equation (2.59), with the coefficient aη+1(k) defined
by Equation (2.71). The strength of a contribution is described by the parameter Bη , and
the superposition principle holds for theΨη . The choice of η + 1 will become obvious when
considering the exact form of the axial magnetic field that results from the potentialΨη .
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2.2. Cylindrically-symmetric deviations

The additional axial and magnetic field associated with the scalar potentialΨη are calculated

by taking the negative gradient:

�Bη(ρ, z) = −∂Ψη(ρ, z)
∂z

�ez −
∂Ψη(ρ, z)
∂ρ

�eρ (2.76)

= B(z)
η (ρ, z)�ez + B(ρ)

η (ρ, z)�eρ . (2.77)

Here, �ez and �eρ are the unit vectors in the axial and radial direction, respectively.
The axial magnetic field takes the form

B(z)
η (ρ, z) = −∂Ψη(ρ, z)

∂z
= Bη

�η/2�∑
k=0

aη(k) zη−2k ρ2k , (2.78)

which has the same spatial dependence as the electrostatic potentialΦη (see Equation (2.73) for

the general expression and Table 2.80 for first few η), because

η − 2k + 1
η + 1

aη+1(k) = (−1)k
22k

η!

(η − 2k)!(k!)2 = aη(k) (2.79)

according to Equation (2.71). In the literature, the axial magnetic field is therefore often expressed

with Legendre polynomials in spherical coordinates (see Equation (2.82)). This explains the

peculiar use ofη+1 when defining the potentialΨη in Equation (2.75). Note that we have lowered

the upper limit of the summation from �(η + 1)/2� in Equation (2.75) to �η/2� in Equation (2.78).
The factor η − 2k + 1, which results from taking the derivative with respect to z, ensures that
there is no contribution at the original upper limit, even for η odd. If η is even, then �(η + 1)/2�
= �η/2� anyway, see the definition (2.60) of the floor function for integer arguments. At this
point, it is better not to be sloppy about the limits because aη(k) from Equation (2.71) is not

defined for k > �η/2�, since the argument of (η − 2k)! would become negative.
Because the axial magnetic field B(z)

η (ρ, z) has the same spatial dependence as the electrostatic
potentialΦη , the symmetry carries over. Concerning the radial displacement, there are only

even and no odd powers of ρ. The axial magnetic field is an even function of z for η even, and
an odd function for η odd.
The radial magnetic field is

B
(ρ)
η (ρ, z) = −∂Ψη(ρ, z)

∂ρ
= Bη

⌊
η+1
2

⌋∑
k=1

ãη(k) zη−2k+1 ρ2k−1 (2.80)

with the coefficient

ãη(k) = (−1)k k
22k−1

η!

(η − 2k + 1)! (k!)2 . (2.81)

Note that the lower limit of the sum starts at k = 1 rather than at k = 0 for the scalar potentialΨη .

Since the term inΨη for k = 0 does not depend on ρ, it is removed by taking the derivative.
This is reflected in the factor of k that ãη(k) contains. Because ãη(0) = 0, not increasing the
lower limit by one would not be critical here.
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2. Penning-trap theory

The radial magnetic field B
(ρ)
η is an even function of z for η odd, and antisymmetric with

respect to z for η even. It comes with odd powers of ρ exclusively. This means that it vanishes
on the z-axis, where ρ = 0. It has to, because there is no direction to point to radially from
the z-axis without violating cylindrical symmetry. Table 2.1 shows the spatial dependence of
Equation (2.80) for the first few η.

Due to convention, the parameter Bη is not dimensionless for lack of a natural normalization
length-scale. Instead, Bη bears the unit of magnetic field strength divided by (length)η , and it
should not be confused with the actual magnitude ���B⃗η

��� of the magnetic field B⃗η , which becomes
a function of coordinates for η , 0. Apart from the homogeneous contribution, where B0 and���B⃗0

��� differ by a sign at most, the spatial dependence of higher-order terms will have to be taken
into account for the calculation of frequency-shifts. The magnitude alone is not enough, and it
does not need to be designated. Consequently, the thesis uses Bη exclusively for the strength
parameter of the contribution B⃗η .
When normalizing the coefficient Bη with the help of B0 and some characteristic length d̃

taken to the η-th power in order to arrive at a dimensionless coefficient similar to theCη for the
electrostatic potential, keep in mind that there is an extra factor of two in the denominators of
Equations (2.58) and (2.73).
In the literature, cylindrically-symmetric components of the magnetic field are typically

written in spherical coordinates as

B⃗η(r ,θ ) = Bηr
η

[
Pη

�
cos(θ )� e⃗z − 1

η + 1Pη1
�
cos(θ )� e⃗ρ

]
(2.82)

with the associated Legendre polynomial

Pη1
�
cos(θ )� = sin(θ ) dPη

�
cos(θ )�

d cos(θ ) . (2.83)

This definition of the associated Legendre polynomial is from Reference [20], and it is important
because of different sign conventions (see Condon–Shortley phase [177]). Care should
therefore be taken when evaluating Equation (2.82) for the radial field with a computer algebra
system or tabulated functions. Deviating from the original layout of Reference [20], we have
written the associated Legendre polynomial with two subscripts rather than the subscript η
and the superscript 1 in order to distinguish the different sign conventions [172]. The general
relation is Pηm = (−1)mPmη , wherem is an integer with 0 ≤ m ≤ η, not to be confused with the
rest mass of the particle. Table A.2 in the appendix shows explicit expressions of P1

η for the first
few η.

Here, the sign is not a global parameter that may be adjusted at will and eventually absorbed in
a different definition of Bη , because the two components of the magnetic field in Equation (2.82)
are affected differently. Since they are physically related by ∇⃗ · B⃗η = 0, the sign of the radial
magnetic field must not be changed independently from the axial magnetic field. The explicit
expressions (2.78) and (2.80) for the two components of the magnetic field are unambiguous
because they do not rely on special functions. Moreover, they express cylindrically-symmetric
terms of the magnetic field naturally in cylindrical coordinates for all η.
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2.2. Cylindrically-symmetric deviations

Nevertheless, Equation (A.36a) from the appendix offers a general expression of the product

rηPmη (cos(θ )) in cylindrical coordinates. Using the expression form = 1 on the radial magnetic
field in Equation (2.82), where the minus is removed by the different sign convention for the

associated Legendre polynomial, yields

rηPmη (cos(θ ))
η + 1

=
(−1)
2

(η + 1)!
η + 1

⌊
η−1
2

⌋∑
k=0

(−1)k
22k

zη−1−2kρ1+2k

k! (k + 1)! (η − 1 − 2k)! (2.84a)

= η!

⌊
η−1
2

⌋∑
k=0

(−1)k+1(k + 1)
22k+1

zη−1−2kρ1+2k

[(k + 1)!]2 (η − 1 − 2k)! (2.84b)

=

⌊
η+1
2

⌋∑
k=1

(−1)kk
22k−1

zη−2k+1ρ2k−1

(k!)2 (η − 2k + 1)! . (2.84c)

In the last step, we have shifted the summation variable according to k → k − 1, which

transformed the upper limit as 1+ �(η − 1)/2� = �(η + 1)/2�. The result is identical to the spatial
component of the radial magnetic field (2.80).

Other general expressions are hard to find in the literature, most notably those with cylin-

drical coordinates. Reference [6] from the field of atoms traps gives tabulated expressions for

cylindrically-symmetric magnetic fields in cylindrical coordinates, which may be compared

with Table 2.1. Apart from what seem to be a few misprints, there is agreement.22

Reference [99], which offers a parametrization of the cylindrically-symmetric electrostatic

potential in cylindrical coordinates, also gives such a parametrization for magnetic fields with

the same symmetry for η even. However, some derivatives still need to be evaluated before a
direct comparison with Equations (2.78) and (2.80) is possible. After all, the expressions agree.

Since Hamiltonian perturbation theory is used to calculate the frequency-shifts caused by the

imperfections there, the vector potential �A rather than the magnetic field �B is the relevant

quantity. In this thesis, we will tackle the problem with classical equations of motion, which

naturally require the use of fields, both electric and magnetic, instead of potentials, in order to

calculate forces.

22Interestingly, the conversion of rηPη (cos(θ )) to cylindrical coordinates is shown twice—once in Table I for the
scalar magnetic potential and once in Table II for the axial magnetic field—without mentioning the identical

nature of the expressions. Upon closer inspection the prefactors of the term z2ρ4 differ: 45/8 for L = 6 in Table I,
45/56 for n = 6 in Table II. Table 2.1 sides with the former result. Other discrepancies [with the suggestion from
this thesis shown in square brackets] include the exponent of ρ2 [ρ3] and the term −33z6 [−3z5ρ] in the radial
magnetic field for n = 3 and n = 6, respectively, as well as the numerical prefactors 1675 [1575] and −67 [−63] in
the scalar magnetic potential for L = 0.
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2. Penning-trap theory

Table 2.1.: The second column shows the spatial dependence of cylindrically-symmetric, poly-
nomial solutions to the Laplace equation. These show up in the electrostatic poten-
tial (2.73), the scalar magnetic potential (2.75) and the axial magnetic field (2.78). The
coefficient aη(k) is defined in Equation (2.71). All these solutions come with even
powers of ρ only. The solutions are symmetric (antisymmetric) with respect to z
when η is even (odd). The third column shows the spatial dependence of the radial
magnetic field (2.80) with cylindrical symmetry. The coefficient ãη(k) is defined in
Equation (2.81). Apart from the exception for η = 0, these solutions come with odd
powers of ρ only, and they are symmetric (antisymmetric) with respect to z when
η is odd (even). The divergence of a vector field with the corresponding entries
from the second and the third column taken as the axial and the radial component,
respectively, vanishes for each η.

η

⌊η/2⌋∑
k=0

aη(k) zη−2kρ2k
⌊(η+1)/2⌋∑

k=1
ãη(k) zη−2k+1ρ2k−1

0 1 0

1 z − 1
2ρ

2 z2 − 1
2ρ

2 −zρ

3 z3 − 3
2zρ

2 − 3
2z

2ρ + 3
8ρ

3

4 z4 − 3z2ρ2 + 3
8ρ

4 −2z3ρ + 3
2zρ

3

5 z5 − 5z3ρ2 + 15
8 zρ

4 − 5
2z

4ρ + 15
4 z

2ρ3 − 5
16ρ

5

6 z6 − 15
2 z

4ρ2 + 45
8 z

2ρ4 − 5
16ρ

6 −3z5ρ + 15
2 z

3ρ3 − 15
8 zρ

5

7 z7 − 21
2 z

5ρ2 + 105
8 z3ρ4 − 35

16zρ
6 − 7

2z
6ρ + 105

8 z4ρ3 − 105
16 z

2ρ5 + 35
128ρ

7

8 z8 − 14z6ρ2 + 105
4 z4ρ4 − 35

4 z
2ρ6 + 35

128ρ
8 −4z7ρ + 21z5ρ3 − 35

2 z
3ρ5 + 35

16zρ
7
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3. Perturbation theory

This chapter1 introduces the theoretical tool to calculate frequency-shifts caused by imper-
fections of the Penning trap.2 Since a general analytic solution for many effects beyond the
ideal Penning trap is somewhere between impracticable and impossible [72, 95], the theoretical
treatment has to rely on approximative methods. Perturbation theory is one such method, and
it has been employed multiple times on issues regarding real Penning traps. The situation for
frequency-shifts caused by cylindrically-symmetric imperfections of the electric and magnetic
field is summarized at the beginning of Section 4.1; the past treatment of relativistic effects is
reviewed in Section 4.2. In general, the focus has always been on the frequency-shifts associated
with the imperfections, because frequencies are the major observables in a Penning trap, and
this thesis is no exception. However, modeling a particle stored in a Penning trap is not all about
frequencies. In order to describe the electronic signal by the image charges the orbiting particle
induces on the electrodes, knowing the effect of imperfections on the particle’s trajectory would
be worthwhile, though difficult [93]. The trajectory also plays a key role upon excitation or
coupling of the eigenmodes. Nevertheless, static frequency-shifts as in the case of constant
motional amplitudes are important in their own right.
Perturbation theory builds the solution bottom up iteratively, starting from the ideal case,

which still has an exact solution. Additions beyond this foundation are then treated as small
imperfections, which slightly alter and add to the original solution. For the validity of the
perturbative approach, it helps that the real Penning traps used for precision measurements
of motional frequencies are typically very good approximations of the ideal one. Even if the
Penning trap is just used as a storage device, possibly for cooling and preparing a pure sample
of ions, a reproducible manipulation of the ion motion does not tolerate too large a deviation
from the ideal case. Meticulous care is taken designing, manufacturing and assembling the trap
electrodes, in order to produce as harmonic a potential as possible. Additionally, correction
electrodes [158] allow to tune contributions beyond the quadrupole potential. The homogeneity
of the magnetic field is optimized by shimming [133], and correction coils [1, 159]. In many
cases, alignment of the trap with respect to the magnetic field is possible.
Concerning our implementation of perturbation theory, we will try to work with as little

theoretical background as necessary, in order to demystify the calculation. The solution should
follow smoothly from simple assumptions, rather than from a sophisticated, but arcane theo-
1The chapter is partly based on my earlier report [82] on cylindrically-symmetric imperfections of the electric
and magnetic field. A much-compressed version focusing on the actual method that is subsequently applied to
calculate first-order frequency-shifts in Chapter 4 is found in the paper [84]. Section 3.3 about second order is,
well, a first (at least for me).

2 For lack of a less cumbersome and more appropriate expression, and in the spirit of perturbation theory, we will
sloppily refer to everything that is not present in the nonrelativistic treatment of the ideal Penning trap with its
uniform magnetic field B⃗0 and the quadrupole potentialΦ2 as an imperfection, even though these imperfections
may be an integral part of the detection system by design [30, 103].
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3. Perturbation theory

retical framework. This pragmatic approach should make the calculation easy to comprehend,
even though the framework has to be established first. With no pre-built framework to invoke,
the basics make for a lengthy chapter. The imperfections will be treated classically based on
trajectories rather than quantum-mechanical states, as was the ideal Penning trap in Section 2.1.
This result will provide the starting point. The rest of the treatment calls for perturbation theory,
which we will motivate in the following.

Suppose there is a hard problem with no obvious solution in a closed form.3 Generally
speaking, a perturbative solution takes the following steps4:

1. Find or introduce a small parameter ϵ in the hard problem, such that the problem reduces
to an exactly solvable—and hopefully solved—one for ϵ = 0.

2. Try to solve the problem with a power series

f (ϵ) = k0 + ϵk1 + ϵ2k2 + . . . (3.1)

in the perturbation parameter ϵ . The ki are coefficients or functions that need to be
determined from the fact that f (ϵ) must solve the problem in each order individually.

3. Sum the series (3.1).

The last step is optional, and it requires several orders to be known. If all the terms were known,
the summation might not be trivial, and the radius of convergence must be checked. In the case
of the Penning trap, calculating the first nonvanishing term is typically sufficient for a valuable
estimate at the experimental level of precision. Thus, the first two steps need to be applied to
the imperfections in the Penning trap, hoping to read off a frequency-shift in the process.
Before we proceed, a clarification about orders is, well, in order, because we use the term

both for perturbation theory and the imperfections. In perturbation theory, the order of a term
counts the power of the perturbation parameter ϵ in the prefactor. Hence, going from left to
right on the right-hand side of the expansion (3.1), the three terms are of zeroth, first and second
order, respectively. The dots indicate that terms of at least third order are not shown. When we
speak of a first-order frequency-shift, we mean that the perturbation parameter is present once
in the expression.
For the imperfections, order often refers to the index η in the components of the magnetic

field B⃗η and the electrostatic potentialΦη , without giving actual numbers for the order. For in-
stance,Φ6—represented by the parameterC6—is considered an imperfection of higher order than
Φ4, because the effect of the former is typically less important.5 Accordingly for the magnetic
3Of course, we are free to try perturbation theory on exactly solvable problems as a benchmark.
4These “axioms” of perturbation theory are inspired by a three-day lecture series given by Carl M. Bender in
October 2010. He is a proponent of multiple-scale perturbation theory (MSPT), a theory so general that he calls
it the mother of all perturbation theories, because all the incarnations can be derived from it. Not surprisingly,
MSPT [4] handles the secular term encountered in Section 3.2.1, but we will not use its general form here, because
we opt for a dedicated formalism geared towards first-order frequency-shifts more than anything.

5In that sense, order may also refer to how strongly the frequency-shift depends on the particle’s amplitude or
energy, typically counting the exponent of the latter. However, the actual magnitude of the frequency-shift
depends on more than just the scaling with amplitude, which is also only revealed towards the end of the
calculation. Check the discussion at the beginning of Section 3.3.3 how the introduction of an order parameter
as an addition to the perturbation parameter might help.
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3.1. Powers of cosine

field, the component B⃗2—represented by its strength parameter B2—is deemed an imperfection
of lower order than B⃗4, because the effect of the former is typically more pronounced. Terms
beyond the ideal Penning trap are generally referred to as higher order with respect to its
uniform magnetic field B⃗0 and its quadrupole potentialΦ2.
This chapter relates the power series (3.1) for the trajectory to the frequency-shift in the

Penning trap, and it is organized as follows: In Section 3.2, we introduce the one-dimensional
anharmonic oscillator as a test bench for the perturbative approach. For the oscillatory problem,
a single power series in Section 3.2.1 will spell trouble. Section 3.2.2 offers amathematical remedy,
which Section 3.4 puts on more physical grounds. Section 3.4.2 generalizes this implementation
of first-order perturbation theory to the radial modes in the Penning trap.
Perturbation theory uses the oscillatory solutions (2.30)–(2.32) from the ideal Penning trap

as the zeroth-order input. These solutions contain trigonometric functions. From the functional
dependence of the higher-order electrostatic potential (2.73) as well as the magnetic field (2.78)
and (2.80), powers of trigonometric functions arise. The next section will therefore first provide
the mathematical tools to handle these powers adequately in the perturbative calculation.

3.1. Powers of cosine

Expressing powers of cosine as a sum of oscillatory terms at different individual frequencies—
possibly including a constant term at zero frequency—starts by writing cosine as a sum of
exponential functions according to 2 cos(χ ) = eiχ + e−iχ based on Euler’s formula. Powers of
cosine then follow as a sum of single-frequency terms from the right-hand side, rearranged after
binomial expansion to produce simple trigonometric functions. Section C.1 in the appendix
shows the details of the calculation.
For even powers of cosine, the result (C.3e) with ωt as the argument6 is

[cos(ωt)]2n = 1
22n



(
2n
n

)
+ 2

n∑
j=1

(
2n

n − j

)
cos(2jωt)


(3.2)

with the binomial coefficient defined as(
n

k

)
=




n!
k! (n − k)! if 0 ≤ k ≤ n,

0 otherwise.
(3.3)

Here, n and k are non-negative integers, for which the factorial is defined in Equation (2.69).
We will frequently use the identity (

n

k

)
=

(
n

n − k

)
. (3.4)

6For the sake of space and clarity, we use ωt rather than ωt + φ as the argument of the trigonometric function in
this section, because a constant phase φ does not change the amplitudes or the frequencies of the individual
terms. Including the additional phase φ is straightforward by making the above substitution, something we will
do when returning to the oscillatory motion of the particle.
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3. Perturbation theory

So far, the limits of the sum over j in Equation (3.2) ensure that the binomial coefficient is
always given by its explicit expression (3.3) with factorials. However, this will no longer be the
case in Chapter 4. Particularly when evaluating the general expressions for frequency-shifts,
it is important to note that some binomial coefficients vanish. This is the case when n or k
are negative, and when k > n. We will mention these special cases in due time when they
occur, and we will still take care that the arguments n and k are integers in any case. Not using
the explicit expression (3.3) with its two cases for the binomial coefficient will allow for more
compact formulas, since the two cases do not have to be addressed individually—at least not
until evaluating the general expressions. Fortunately, computer algebra systems often come
with built-in functions for the binomial coefficient that are in line with the definition (3.3).

For odd powers of cosine, Equation (C.6e) from the appendix, with ωt as the argument here,
reads

[cos(ωt)]2n+1 = 1
22n

n∑
j=0

(
2n + 1
n − j

)
cos

�(2j + 1)ωt�
. (3.5)

At this point, we perform a general frequency-analysis, in order to identify the fundamental
differences between even and odd powers of cosine. Because the calculation of frequency-shifts
essentially requires the identification of terms at particular frequencies, these properties will be
very helpful for understanding where such terms may potentially originate from.
Even powers of cos(ωt) come with a constant term and oscillatory terms at even higher

harmonics of the fundamental frequency ω. There is no term at the fundamental frequency.
According to Equation (3.2), [cos(ωt)]2n has frequency-components at 0, 2ω, 4ω, . . . , 2(n −
1)ω, 2nω.
Odd powers of cos(ωt) do not come with a constant term. Instead, there is a term at the

fundamental frequency ω, and there are higher harmonics at its odd multiples. According to
Equation (3.5), [cos(ωt)]2n+1 oscillates at the frequencies ω, 3ω, . . . , (2n − 1)ω, (2n + 1)ω.

Fortunately, we do not have to consider all the frequency-components to calculate first-order
frequency-shifts. As it turns out, the two most important components are the constant one
(because it does not change the frequency of other terms in the product) and the one at the
fundamental frequency ω (because such a term may be proportional to the original solution).
In order to facilitate the handling of terms at a particular frequency, we introduce the piece

of notation ⟨·⟩ω . It retrieves the term at the frequency ω from the argument in angle brackets.
From Equation (3.2), we have


[cos(ωt)]2n�
0 =

1
22n

(
2n
n

)
=

(2n)!
22n(n!)2 (3.6)

for the constant component and from Equation (3.5)


[cos(ωt)]2n+1�
ω =

(
2n + 1
n

)
cos(ωt)
22n =

(2n + 2)! cos(ωt)
22n+1 [(n + 1)!]2 (3.7)

for the oscillatory term at the fundamental frequency ω. In addition to the amplitude, the
whole oscillatory term is recovered, too. This includes a possible phase φ to go along with the
argument ωt .
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3.2. The one-dimensional anharmonic oscillator

By approximating the factorials in Equations (3.6) and (3.7) for largenwith Stirling’s formula

n! ≈
√
2πn nne−n , (3.8)

the asymptotic behavior7 is identified as


[cos(ωt)]2n�
0 ≃

1
√
πn

,

[cos(ωt)]2n+1�

ω ≃
2 cos(ωt)√
π(n + 1) . (3.9)

With the dependence on the inverse of the square root, these contributions fall off rather weakly
with n, and this scaling alone does not explain why higher-order imperfections are of lesser
importance. The suppression has to be mediated by a different mechanism, and we will examine
the functional dependence of the higher-order imperfections. We have not yet considered the
(constant) amplitude of the trigonometric functions, which has to be taken to the same power,
too, and will then remain as a prefactor of the selected frequency-component, without being
subject to any selection itself.

3.2. The one-dimensional anharmonic oscillator

In this section, we formulate the problem to which we apply perturbation theory based on the
steps outlined before, as a first test case. As the axial equation of motion (2.16) for a charged
particle in an ideal Penning trap describes the one-dimensional harmonic oscillator, it is natural
to consider this equation with an anharmonic term. Such a term would arise for instance from
the cylindrically-symmetric imperfections of the electrostatic potential discussed in Section 2.2.
The additional electrostatic potential on the z-axis

Φη = Cη
V0
2dη z

η (3.10)

is obtained from Equation (2.73) by setting the radial displacement ρ = 0, which corresponds to
a particle in a Penning trap with vanishing amplitudes of the radial motions. In the classical
case, this is possible, and the treatment is indeed classical here. At this point, we are still
trying to model the problem with the extension to the Penning trap in mind, for which the
one-dimensional case is already useful. The influence of the radial modes will be discussed in
Section 4.1.2.
As a reminder, η is a non-negative integer. For η even, the potentialΦη is symmetric with

respect to z, that is,Φη(−z) = Φη(z). For η odd, the potentialΦη is antisymmetric with respect
to z, that is,Φη(−z) = −Φη(z). Depending on the parity of η, we will refer to the potentialΦη or
its dimensionless coefficient Cη as odd or even for briefness. Of course, the statement relates
to the index η and its role in the exponent of the potential, rather than the actual value of the
potentialΦη or the coefficient Cη , which are most likely no integers anyway.
From the electrostatic potential (3.10), the axial electric field follows as

E(z)η = −
∂

∂z
Φη = −ηCη

V0
2dη z

η−1 , (3.11)

7The approximation is quite good, even for small n.
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3. Perturbation theory

and its symmetry with respect to z is opposite8 to the potentialΦη . Including the contribution
from the harmonic oscillator with η = 2, the equation of motion reads

z̈ =
q

m
E(z) =

q

m

(
E(z)2 + E

(z)
η

)
= −

qC2V0
md2

(
z +

Cη

C2

η

2dη−2z
η−1

)
. (3.12)

So far, we have included only one additional term. Of course, we could sum over η. However,
we shall see that the first-order frequency-shifts caused by terms with different η add linearly.
This is why we will work with only one higher-order term to yield the first-order frequency-
shift for η in general. Before we get to the perturbative calculation, two remarks concerning
nonperturbative treatments are in order.
First, the term associated with C1 is not a source of anharmonicity, because it is eliminated

from the equations of motion by shifting the z-coordinate as

z = z ′ −
C1
C2

d

2 . (3.13)

In the z ′-coordinate, the equation of motion (3.12) looks like the ordinary harmonic oscillator.
In other words, the C1-term shifts the equilibrium position without affecting the frequency.
A linear potential alone, such as Φ1 ∝ z, has no influence on the effective curvature of the
potential, and hence leaves the frequency unchanged. For the remainder of this chapter, we
shall assume that the origin of the z-coordinate, where z = 0, coincides with the equilibrium
position, where C1 = 0.

Second, there is an analytic expression for the period of oscillation T in this one-dimensional
case. The conservation of energy for the particle’s total energy Etot reads

Etot = Ekin + Epot =
1
2mż2 + q

∑
η=0

Φη(z) . (3.14)

The first term on the right-hand side is the kinetic energy; the second one the potential energy.
Because the analytic expression will turn out to be nonlinear, we have included a sum over all
Φη in the potential energy. Solving for the velocity yields

ż =
dz
dt = ±

√
2(Etot − Epot)

m
. (3.15)

The sign in front of the square root is due to the fact that the direction of the particle is lost
when calculating its kinetic energy Ekin, because of the quadratic dependence on the velocity ż.
Consequently, the direction of the velocity—a vector quantity—cannot be recovered from the
kinetic energy—a scalar quantity. The insensitivity to directions also explains why this approach
possibly fails when more than one spatial dimension is involved. Thus, it will be of no help for
the three-dimensional case of the Penning trap. Here, we will pick the correct sign depending
on whether the particle goes in the direction of the positive or negative z-axis.

8To avoid confusion while actually talking about the same η, convention disfavors speaking of even or odd electric
fields, and we will refrain from doing so.
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3.2. The one-dimensional anharmonic oscillator

Integrating the inverse of the velocity ż over the coordinate z from one classical turning point
to the other one gives in the period of oscillation

T

2 =
z+∫

z−

√
m

2[Etot − Epot(z)] dz . (3.16)

At the classical turning points z±, the particle is at rest (Ekin = 0), and hence their coordinates
are found by solving9the equation Etot = Epot(z±). For the choice z− < z+, the velocity is
positive when traveling from z− to z+, and the plus sign in Equation (3.15) was chosen.
Since there is the analytic expression (3.16) for the period of oscillation T , the benefit of

perturbation theory in the one-dimensional case might be in doubt. However, the analytic
expression (3.16) may require some approximations of its own to be useful, because analytic
antiderivatives for the integral may not exist for all potentials Φη , and the situation is even
worse for a sum ofΦη . Even if they existed, there may be no explicit expression for the classical
turning points z±. Numerical integration is likely to be delicate, owing to the singularity of the
integrand for z±, where the velocity vanishes and its inverse diverges. The situation in these
critical areas is furthermore complicated by the use of numerical values for z±. Moreover, the
dependence of the frequency on parameters such as Cη and the particle’s total energy is harder
to extract from a numerical calculation than from an analytic approximation. Of course, such
an approximation may be obtained from Equation (3.16), but approximations in integrals are
tricky, and a second step is required for the limits z±. Here, perturbation theory shows its merits
by building the solution from bottom up order by order natively, rather than top down with
adequate expansions of the most general result to be introduced afterwards, if the general result
is too complicated and unpractical.

With the unperturbed axial frequency ωz from Equation (2.17), the equation of motion (3.12)
becomes

z̈ + ω2
zz = −ϵκηz

η−1 , where κη =
ηω2

z

2C2dη−2
. (3.17)

We have chosen ϵ = Cη as the perturbation parameter. By speaking of the unperturbed axial
frequency, we have implicitly made the assumption that qV0C2 > 0, which was necessary for
axial confinement in the ideal Penning trap. Since the additional potentialΦη is considered
a small perturbation, it does create enough of a potential well in the region dominated by
Φ2 to store the particle, even for qV0Cη > 0 and η even. Do not think Mexican-hat potential
here. For typical parameters, the calculated minimum would lie outside the trap volume, which
makes it pointless, because the potential there is very different from the situation described
here. Conversely, the potential well created byΦ2 is deep enough to prevent the particle from
reaching the slope created byΦη for qV0Cη < 0 and η even. For η odd, there is always a slope
on one side, no matter the sign of qV0Cη , which precludes particle storage in such a potential
alone. The statement about the confinement byΦ2 holds nonetheless.

9 The turning points are not symmetric with respect to the origin (|z− | , |z+ |), if terms with odd η are involved. In
this asymmetric case, the amplitude of the particle is hard to define, and the particle is better described by its
total energy.
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3. Perturbation theory

The exact choice of the perturbation parameter is uncritical. Its main purpose is to indicate the
order of a term in the perturbative expansion. In the end, the whole prefactor of the additional
term matters for the frequency-shift. For a perturbative ansatz to have some credibility, we
demand that the acceleration10 created by the (gradient of the) additional potentialΦη is always
much smaller than the acceleration resulting from the harmonic potentialΦ2. Expressed as a
formula, the requirement is |ϵκηzη−1 | ≪ |ω2

zz | for all z. Having excluded11 the case of η = 1, the
condition is easier to satisfy for small z. If it is satisfied at the classical turning points, where z
is maximum, the condition will be satisfied everywhere on the particle’s trajectory, apart from
at z = 0, where both accelerations vanish. Therefore, the special case at the origin is of no
concern from the physical point of view. We can avoid this peculiarity mathematically and be
somewhat more consistent for all z, by demanding that the ratio of accelerations be small:

�����
ϵκηz

η−1

ω2
zz

�����
=

�����
ϵη

2C2

zη−2

dη−2

�����
≪ 1 . (3.18)

With the prerequisites for perturbation theory laid out, we will try to determine frequency-
shifts from a simple power series ansatz in the perturbation parameter ϵ .

3.2.1. Simplistic series solution

Inspired by the generic power series (3.1), we attempt to satisfy Equation (3.17) for the one-
dimensional anharmonic oscillator order by order with the power series ansatz

z(t) = z0(t) + ϵz1(t) + ϵ2z2(t) + . . . , (3.19)

where the zi (t) are unknown functions that need to be determined. Plugging the ansatz z(t)
into Equation (3.17) yields

z̈0(t) + ω2
zz0(t) + ϵ

�
z̈1(t) + ω2

zz1(t)
�
+ . . . = −ϵκη[z0(t)]η−1 + . . . (3.20)

up to first order in the perturbation parameter ϵ . The dots indicate that terms of at least second
order have been neglected. Since the additional contribution on the right-hand side is of first
order right away and

[z(t)]η−1 = [z0(t)]η−1 + ϵ(η − 1)[z0(t)]η−2 z1(t) + . . . , (3.21)

only the zeroth-order solution z0(t) gives a first-order contribution in the equation of motion.
All other terms from the binomial expansion (3.21) are of higher order.

We will now solve the equations of motion (3.20) for the series solution order by order. For
the zeroth order, the differential equation

z̈0(t) + ω2
zz0(t) = 0 (3.22)

10Since there is only a factor of massm between force and acceleration in the classical case, the same statement
applies to forces, too. We will use the two terms interchangeably.

11It looks like there might be a singularity at the origin for η = 0, but κ0 = 0. As expected, there is no force from the
constant potentialΦ0.
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3.2. The one-dimensional anharmonic oscillator

is satisfied by

z0(t) = ẑ0 cos(ωzt + φz ) . (3.23)

The amplitude ẑ0 and the phase φz are determined by the initial conditions.
For the first order solution z1(t), the differential equation reads

z̈1(t) + ω2
zz1(t) = −κη[z0(t)]η−1 , (3.24)

with the zeroth-order solution z0(t) as an inhomogeneous term. Other than that, z1(t) has the
same homogeneous solutions as z0(t), because the homogeneous differential equation is the
harmonic oscillator with frequency ωz again.
At this point, we need to illustrate a problem that arises when the right-hand side of, for

instance, Equation (3.24) drives this harmonic oscillator on resonance. To this end, we choose η
to be even and write η = 2n. The same problem would also occur for odd η, albeit in second
order (see Section 3.3). Since the problem is a conceptual one that necessitates an addition to
the simplistic series ansatz, we would like to uncover the limitations as quickly as possible—in
first order, that is.

As Equations (3.2) and (3.5) show, taking the cosine in z0(t) to the power of η − 1, results in a
sum of oscillatory terms (for η > 2, which is the case for all anharmonic terms, η = 2 being the
harmonic one), and a constant term if η is odd. For η = 2n, the exponent η − 1 is odd, and the
right-hand side of Equation (3.24) contains an oscillatory term at the fundamental frequency ωz ,
as well as oscillatory terms at its odd multiples. The term at the fundamental frequency ωz
drives the left-hand side on resonance; the higher harmonics are nonresonant drives.
For the sinusoidally driven harmonic oscillator

z̈1 + ω
2
zz1 = âd cos(ωdt + φd) , (3.25)

the response differs, depending on whether the frequency ωd is equal to the fundamental
frequency ωz or not. Here, âd is the amplitude of acceleration by the drive and φd is a phase.
In the nonresonant case (subscript “nr”)—that is, ωd , ωz—the general solution is

z1,nr(t) =

z1(0) + âd cos(φd)

ω2
d − ω

2
z


cos(ωzt) +



ż1(0)
ωz
−
ωd
ωz

âd sin(φd)
ω2
d − ω

2
z


sin(ωzt)

−
âd

ω2
d − ω

2
z
cos(ωdt + φd) ,

(3.26)

where the first line describes the homogeneous solution—an oscillation at the fundamental
frequency ωz—and the second line is the inhomogeneous solution—an oscillation at the fre-
quency ωd of the drive. The initial amplitude and velocity at time t = 0 are given by z1(0) and
ż1(0), respectively. Unless for very specific initial conditions, a nonresonant drive also triggers
some response at the fundamental frequency ωz . If there is damping, this undriven compo-
nent fades. Without damping, it is here to stay. In the nonresonant case, the solution z1,nr(t)
stays bounded; the amplitudes of the individual terms do not change with time. The only
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3. Perturbation theory

time-dependence is in the arguments of the trigonometric functions, which are periodic taken
on their own.12
For a resonant drive (subscript “res”)—that is, ωd = ωz—the general solution is

z1,res(t) = z1(0) cos(ωzt) +
[
ż1(0)
ωz
−
âd sin(φd)

2ω2
z

]
sin(ωzt) + âdt

2ωz
sin(ωzt + φd) . (3.27)

The first two oscillatory terms are the homogeneous solution, which sets the initial conditions
right. The last term on the right-hand side is the inhomogeneous solution, and its amplitude
grows with time.13 Such a term is called secular. See Chapter D in the appendix for two
definitions of secularity. For our purpose of dealing with oscillatory problems, Poincaré’s
notion is sufficient. A secular term means that time is on the loose, having left the friendly
confines of the trigonometric function. However, unlimited growth does not seem to be the
right solution—certainly not for this problem, and maybe neither for others. Although z1(t) is
suppressed by a factor of the perturbation parameter ϵ in the series solution (3.19), the secular
term will dominate for large times. This growth violates the conservation of energy in the static
potential, where we expect a periodic solution, as the particle goes back and forth between the
classical turning points. If damping were present, the dissipation of energy could be explained.
However, the equation of motion (3.17) of the one-dimensional anharmonic oscillator does not
include damping at all, which means that even negative damping is not an option. Moreover,
there is no external drive, which could excite the particle. Consequently, the secular term is
unphysical. In fact, it is related to the perturbative method, rather than being a fundamental
problem from the physical perspective. Poincaré’s definition of secularity also comments on its
origin (see Chapter D in the appendix), and his explanation has to do with the frequency-shift
in the oscillatory system.

Looking back at the zeroth-order solution z0(t) in Equation (3.23), we nownote that it oscillates
at the unperturbed frequency ωz . Since we expect z0(t) to be the major contribution in the
series solution for the trajectory z(t) in Equation (3.19), we should have questioned the ansatz,
even before the secular term occurred. The first order alone cannot set right the shortcoming of
having fixed the frequency to the unperturbed value, and it diverges. Reference [4] recovers the
first-order frequency-shift from the most secular terms in all orders. However, going through
all orders to set the first order right is not particularly appealing, and it partly goes against the
bottom-up approach of perturbation theory. Fortunately, there are alternatives, which prevent
the secular term from arising, directly when the corresponding resonant term appears.

3.2.2. A Lindstedt–Poincaré method

To remove the unphysical effect of resonant coupling between different orders of the perturbative
expansion, multiple time-scales or strained variables of time are often introduced. Inspired by

12Strictly speaking, the overall solution does not have to be periodic, because the fraction of ωd and ωz is not
necessarily a rational number. However, we may still consider the solution to be quasi-periodic.

13To emphasize that ωd = ωz , we have written ωz rather than ωd in the argument of the trigonometric function,
even though the combination of ωz and φd may look like a misprint. The phase φd of the external drive, however,
is unrelated to the initial phase of the axial motion.
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3.2. The one-dimensional anharmonic oscillator

Reference [8], we expand the fundamental frequency (squared)14 as

Ω2
z = ω2

z + ϵω
2
1 + ϵ

2ω2
2 + . . . . (3.28)

The coefficients ω2
i are determined from the fact that we cannot have secularity. They will thus

absorb resonant terms in the different orders to prevent a secular term from arising. We have
written ω2

i rather than ωi for the coefficients in the expansion, in order to indicate that they
represent a change of the frequency squared. The use of the square is not meant to exclude
negative values for the ω2

i . The perturbed fundamental frequency is given by Ωz . For ϵ = 0, it is
equal to the unperturbed frequency ωz of the harmonic oscillator.
After substituting the ansatz (3.28) for the unperturbed fundamental frequency squared ω2

z ,
the original equation of motion (3.17) reads

z̈ + (Ω2
z − ϵω

2
1 − ϵ

2ω2
2 − . . . )z = −ϵκηzη−1 . (3.29)

The factor κη also contains ω2
z . Whether the expansion (3.28) is necessary there essentially

depends on whether the unperturbed frequency ωz is known. If it is, we are free to work with
it, since ω2

z is more convenient than its series representation with Ω2
z and the ω2

i . In fact, if ωz
is known, we would most probably like to express the actual frequency Ωz of the anharmonic
oscillator as a function of the particle’s amplitude, and Ωz is unknown. However, if ωz is to
be inferred from the perturbed frequency Ωz , which has been determined for instance from a
measurement, expressing the frequency-shift in terms of the known quantity Ωz is favorable.
Substituting the expansion (3.28) for ω2

z in κη then eliminates the unknown frequency ωz from
the determination of the ω2

i . This statement is true either way. We solve for the unknown
quantity as a function of known ones, and we do not want the unknown frequency to be hidden
deep in the problem—eventually in the ω2

i , that is.
Plugging in the power series (3.19) for z(t) into the equation of motion (3.29) yields

z̈0 +Ω
2
zz0 + ϵ

�
z̈1 +Ω

2
zz1 − ω

2
1z0

�
+ . . . = −ϵκηz

η−1
0 − . . . (3.30)

up to first order in the perturbation parameter ϵ . The dots indicate that terms of second order
and higher are not shown. For clarity, the time-dependence of the zi (t) has been suppressed.
The zeroth-order solution

z0(t) = ẑ0 cos(Ωzt + φz ) (3.31)

is almost identical to Equation (3.23), but there is one very important difference. The oscillation
is at the perturbed frequency Ωz , rather than the unperturbed one. Thus, the frequency-shift to
all orders shows up in the zeroth-order trajectory z0(t).
The differential equation for the first-order trajectory

z̈1 +Ω
2
zz1 − ω

2
1z0 = −κηz

η−1
0 (3.32)

contains one additional term compared with Equation (3.24). We will choose ω2
1 such that

the resonant term from the right-hand side is canceled, which prevents a secular term in the
14Since the term Lindstedt–Poincaré method encompasses various expansions of the frequency or the time, we

have not used the definite article in the title of this section.
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3. Perturbation theory

inhomogeneous solution for z1(t). From Equations (3.2) and (3.5), and Section 3.2.1, we know
that a term at the fundamental frequency Ωz is present in zη−10 only if the exponent η − 1 is odd.
Thus, η must be even, and we write η = 2n. The cancellation of the resonant drive-term requires

ω2
1z0 = κ2n



z2n−10

�
Ωz
=

nω2
z

C2d2n−2
(2n)! ẑ2n−10
22n−1(n!)2 cos(Ωzt + φz ) = ω2

z

C2

n (2n)!
22n−1(n!)2

ẑ2n−20
d2n−2

z0 , (3.33)

and hence ω2
1 is fixed. The oscillatory term at Ωz is given by Equation (3.7); the parameter κ2n

is defined in Equation (3.17), where η = 2n. In the last step, we have used one factor of ẑ0 to
write the oscillatory term as proportional to z0(t) from Equation (3.31). The overall phase was
right to do so, and ω2

1 turns out to be time-independent, just like we would wish for a quantity
that describes a static frequency-shift. With static we mean that the frequency is constant, as
long as no changes are made to the system. In the anharmonic oscillator (3.17) treated so far, all
the parameters were constant.

With the knowledge of ω2
1 from Equation (3.33), the first-order frequency-shift follows from

the series expansion (3.28) of the frequency squared. Since we expect the frequency-shift to be
small, we expand the square root for |ϵω2

1/ω
2
z | ≪ 1 and obtain

Ωz ≈ ωz +
ϵ

2
ω2
1

ωz
+ . . . = ωz + ωz

C2n
C2

n (2n)!
22n(n!)2

ẑ2n−20
d2n−2

+ . . . . (3.34)

In the last step, we have undone the substitution ϵ = C2n . The dots indicate terms of second
order and higher. As implied by the name anharmonic oscillator, the frequency-shift depends
on the amplitude of the particle. The sign is as expected. For C2n/C2 > 0, the additional
potential (3.10) hardens the original quadratic potential, and the additional restoring force leads
to a faster oscillation with increased frequency. The opposite happens for C2n/C2 < 0, where
the softening of the potential and the reduced restoring force slow down the oscillation and
decrease the frequency.15
The perturbative approach is backed by the fact that the relative frequency-shift is small,

provided the additional force by the anharmonic term is small. In this sense, there are no
surprises, which would enhance the effect of the anharmonic term, such as resonances. In fact,
the relative frequency-shift is smaller than the maximum ratio of the additional force and the
harmonic restoring force, mentioned in Equation (3.18) as a prerequisite for the application of
perturbation theory. From a physical point of view, it is understandable why the additional
force has a smaller impact on the frequency than the harmonic restoring force: only a part of
the former is actually resonant with the original motion fueled by the latter.16 We will return to
this aspect in Section 3.4.
In order to justify the above statements mathematically for all n, we have to show that

(2n)!
22n (n!)2 < 1, which is the additional factor in the relative frequency-shift (3.34) compared with

15Storing the particle in the quadratic potential required qV0C2 > 0. Therefore,C2 may have both sign (even though
the effective voltage V0 is often defined such that C2 turns out positive), and the sign of C2n with respect to
C2 matters for the interplay between the two potentials concerning hardening and softening, and hence the
frequency-shift.

16Indeed, if the additional force were harmonic (η = 2 and n = 1), the relative frequency-shift would exactly reflect
the relative strength (3.18), up to a factor of 1/2 resulting from the suppression of small changes by the square
root, when going from the force-gradient to the frequency of the harmonic oscillator.
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3.3. Second-order effects

the ratio of forces (3.18). To this end, we consider the binomial expansion

22n = (1 + 1)2n =
2n∑
k=0

(
2n
k

)
1k12n−k =

2n∑
k=0

(
2n
k

)
. (3.35)

According to their explicit definition (3.3), binomial coefficients are non-negative, which means
that a sum of them is not less than the largest binomial coefficient present. As the binomial
coefficients in the sum above are all nonzero (for n ≥ 1), each of them has to be smaller than
the sum as a whole. Therefore, we conclude

22n >
(
2n
k

)
for all k, and in particular 22n >

(
2n
n

)
=

(2n)!
(n!)2 for k = 2n . (3.36)

The second inequality for the factorials had to be proven.17
Upon closer inspection of the ratio of forces (3.18) and the relative first-order frequency-

shift (3.34), there is the difference between the maximum displacement of the particle and the
amplitude ẑ0 of the zeroth-order trajectory (3.31). As the power series (3.19) for the trajectory
shows, the difference is at least of first order in the perturbation parameter. As long as there are
no secular terms in higher orders, the difference is fine to ignore in the first-order frequency-
shift, just like higher-order contributions to the trajectory. This also explains why we have been
sloppy about initial conditions without negative consequences so far, leaving the amplitude ẑ0
and the initial phase φz in the zeroth-order solution (3.31) as free parameters.

3.3. Second-order effects

This section outlines the calculation of frequency-shifts beyond first order as an extended
demonstration of the Lindstedt–Poincaré method from the previous section. It will become
clear why higher orders in the frequency-shift require much more computational effort, and
they are only considered in detail, when they are really of experimental relevance. A gen-
eral treatment, such as for first-order frequency-shifts in Chapter 4, is therefore hardly ever
attempted.
This section is meant to be self-contained. When skipping it, in order to continue with

Section 3.4 right away, understanding the calculation of first-order frequency-shifts should
be possible, because this section has nothing new to say about them. Since the perturbative
formalism is such that any given order does not require results from higher orders, the calculation
may be stopped at any order, at least from the mathematical point of view. Meanwhile, it remains
to be checked how well the experiment is described. It is our firm belief that higher orders in
perturbation theory play a lesser role in reality—at best no role at all at the experimental level
of precision.
17This factor is also present in the constant contribution (3.6) of [cos(ωt)]2n . Since |cos(ωt)| ≤ 1, and the oscillatory

terms cos(2jωt) with 1 ≤ j ≤ n from the decomposition (3.2) do not shift the baseline, the constant contribution
cannot be larger than unity. Equality would hold only in the absence of oscillations, that is, for ω = 0. In
Equation (3.9), we have used Stirling’s formula (3.8) to identify the asymptotic behavior of the factor for large n
as a decay with the inverse of the square root, thereby already confirming the second inequality (3.36) for large
enough n. Here, we needed it to be valid for all n.
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By considering second order, thereby highlighting higher-order features, this section demon-
strates what our single-minded obsession with first-order frequency-shifts misses out on. More-
over, second order is not only required to constrain the validity of the first-order result (3.34),
but also to produce the first nonvanishing term for the frequency-shift caused by a potentialΦη
with η odd.18 Consequently, we will at least provide some guidelines for going beyond first
order here.
In the light of frequency-shifts, the title of this section promises a little too much. Just like

we stopped the first-order calculation right after discovering the associated frequency-shift, we
will do the same here, without specifying the second-order trajectory z2(t). However, getting to
the second-order frequency-shift means that we will actually have to complete the first-order
calculation by finding the corresponding trajectory z1(t).
First, we will check what is required to determine the second-order frequency-shift. Using

Equation (3.21), the differential equation for the second-order term z2(t) in the power series (3.19)
for the trajectory becomes

z̈2 +Ω
2
zz2 − ω

2
1z1 − ω

2
2z0 = −κη(η − 1)zη−20 z1 . (3.37)

Like for the first order z1 in Equation (3.32), the differential equation describes a harmonic
oscillator for z2 with the natural frequency Ωz and some inhomogeneous terms given by
solutions from lower orders. In analogy toω2

1 in the first order, the parameterω2
2 from the power

series (3.28) for the perturbed frequencyΩz (squared) will be chosen to eliminate resonant terms
at the natural frequency Ωz , because these would otherwise cause z2(t) to pick up secular term
and grow with time.
Before calculating the second-order frequency-shift parameter ω2

2 , the first-order trajec-
tory z1(t) has to be determined from Equation (3.32), taking into account the initial conditions.
Although these do not affect the frequency-shift for the periodic motion in the potential, certain
choices are more convenient for the calculation. We select z(0) = ẑ and ż(0) = 0 for the position
and the velocity at time t = 0, respectively. In other words, the particle starts at rest from one
classical turning-point.19 The zeroth-order solution (3.31) for the trajectory then simplifies to

z0(t) = ẑ cos(Ωzt) , (3.38)

where we have suppressed any subscript about the order in the amplitude to indicate that ẑ is
a global property of the power series (3.19). Since z(0) = z0(0) = ẑ, the initial positions of all
other orders vanish: zi (0) = 0 for all i > 0. No order of the power series (3.19) has any initial
velocity: ż(0) = żi (0) = 0.

In the zeroth-order solution, the global starting position ẑ clearly is an amplitude. However,
it is not necessarily equal to the maximum displacement of the particle in a potential with an
18Of course, this could be considered checking the scope of zero as the first approximation.
19Using the conservation of energy in this potential, Equation (3.14) yields the velocity for any position of the

particle. Conversely, it assigns (at least implicitly) two classical turning-points ẑ± to any combination of initial
position z(0) and velocity ż(0). If the potential is not symmetric with respect to the reflection z → −z, the absolute
values of the two classical turning-points differ: |ẑ− | , |ẑ+ |. It would be interesting to confirm that the power
series (3.28) indeed gives the same frequency for both starting positions. However, since the frequency-shifts
associated with odd terms in the potential are at least of second order, the calculation of higher orders would be
required to account for the difference between ẑ− and ẑ+.
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3.3. Second-order effects

antisymmetric contribution. Moreover, we shall see that ẑ is not equal to the amplitude of
the particle motion at the fundamental frequency. Nevertheless, we will also refer to ẑ as an
amplitude for the sake of simplicity, which is fine to zeroth order.

3.3.1. Antisymmetric anharmonic potential add-on

When we demonstrated the problem of secularity as an unhandled consequence of resonant
terms for the simplistic series solution in Section 3.2.1, we chose η = 2n even, in order to
encounter the problem in first order. Although the potential associated with odd η does not
produce any resonant terms in first order, we claimed the same problem would occur in the
next order—second order, that is. We will now confirm the claim. Writing η = 2n + 1, the
differential equation (3.32) for the first-order trajectory z1(t) has the inhomogeneous term z2n0
on the right-hand side. Taking the cosine in the zeroth-order solution (3.38) to the power of 2n
results in a constant term and oscillatory terms at even higher-harmonics of the fundamental
frequency Ωz according to Equation (3.2). Since there is no resonant term at the fundamental
frequency Ωz itself, there is no first-order frequency-shift (ω2

1 = 0), and the solution for the
first-order trajectory

z1(t) = −κ2n+1 ẑ
2n

22nΩ2
z




(
2n
n

)
[1 − cos(Ωzt)] − 2

n∑
j=1

(
2n

n − j

)
cos(2jΩzt) − cos(Ωzt)

(2j)2 − 1



(3.39)

is constructed from superpositions of Equation (3.26), which even has the constant term covered
with the choice ωd = 0. Note the replacement ωz → Ωz . Apart from higher harmonics, there
are oscillatory terms at the fundamental frequency, which means that the amplitude ẑ of the
zeroth-order solution (3.38) is not equal to the amplitude of this frequency-component in the
series solution (3.19) for the trajectory z(t).

With the first-order solution completed, we turn the differential equation (3.37) for the second
order. For a second-order frequency-shift to exist, there must be resonant terms from the
inhomogeneous contributions. With no first-order frequency-shift (ω2

1 = 0), the resonant terms
to be absorbed by the second-order frequency-shift parameter ω2

2 must originate from the
right-hand side. In the notation from Section 3.1 with angle brackets for selecting terms at a
particular frequency given as a subscript, the resonant terms at the fundamental frequency Ωz
of the harmonic oscillator for z2 are written as

ω2
2z0(t) = κ2n+1 2n



z1 z

2n−1
0

�
Ωz

. (3.40)

Both terms in angle brackets are explicitly time-dependent—a dependence we have suppressed
for conciseness here, hoping that z0(t) (on the left-hand side) and z0 (on the right-hand side) are
not mistaken for two different quantities. The second-order frequency-shift does not depend on
the second-order trajectory z2, just like the first-order frequency-shift did not depend on the
first-order trajectory z1. As stated before, we will not determine z2, settling for the second-order
frequency-shift.
We will examine the frequency spectrum of the two time-dependent terms involved in

Equation (3.40), in order to understand how resonant terms come about via mixing. The basic
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3. Perturbation theory

message of Equation (C.10) for the multiplication of two cosines is that, when two oscillatory
terms are multiplied, the resulting two oscillatory terms are at the sum and the difference
frequency. The first-order solution z1(t) from Equation (3.39) contains oscillatory terms at the
frequencies 0Ωz , 1Ωz , 2Ωz , 4Ωz , . . . , (2n−2)Ωz , 2nΩz . The term at the fundamental frequencyΩz ,
which bucks the trend of even multiples, is from the homogeneous solution, and it implements
the initial conditions. The other terms result from the anharmonic force along the zeroth-
order trajectory of the particle. According to Equation (3.5), z2n−10 oscillates at the fundamental
frequencyΩz and its odd higher-harmonics with a total frequency spectrum of 1Ωz , 3Ωz , . . . (2n−
3)Ωz , (2n − 1)Ωz . There are three sources of terms at the fundamental frequency Ωz in the
product z1z2n−10 :

1. Preserve the resonant term in z2n−10 by multiplying it with the constant term in z1.

2. Multiply the oscillating terms at the frequency 2Ωz , 4Ωz , . . . , (2n − 4)Ωz , (2n − 2)Ωz in z1
with the oscillatory term at the same spot on the list 3Ωz , 5Ωz , . . . (2n − 3)Ωz , (2n − 1)Ωz
from z2n−10 . The resonant terms are at the difference frequency Ωz = (3 − 2)Ωz =

(5 − 4)Ωz = · · · = ((2n − 1) − (2n − 2))Ωz of the first, the second, . . . , the last two terms.

3. Multiply the oscillating terms at the frequency 2Ωz , 4Ωz , . . . , (2n − 2)Ωz , 2nΩz in z1 with
the oscillatory term at the same spot on the list 1Ωz , 3Ωz , . . . (2n − 3)Ωz , (2n − 1)Ωz
from z2n−10 . The resonant terms are again at the difference frequency Ωz = (2 − 1)Ωz =

(4 − 3)Ωz = · · · = (2n − (2n − 1))Ωz of the first, the second, . . . , the last two terms.
Mixing reduces the amplitude by a factor of 2. For two cosines, the resulting term at the
difference frequency is a cosine with no additional phase, see Equation (C.10) in the appendix.
With z0(t) from Equation (3.38), and z1(t) from Equation (3.39), the resonant term in Equa-

tion (3.40) becomes

ω2
2z0(t) = −

κ22n+1 2n
24n−2Ω2

z
ẑ4n−2 z0(t)



(
2n
n

) (
2n − 1
n − 1

)

−

n−1∑
j=1

1
(2j)2 − 1

(
2n

n − j

) (
2n − 1

n − 1 − j

)
−

n∑
j=1

1
(2j)2 − 1

(
2n

n − j

) (
2n − 1
n − j

)
.

(3.41)

There is a total factor of ẑ4n−1 on the right-hand side—a factor of ẑ2n from z1(t), a factor of ẑ2n−1
from z2n−10 . One of these factors has been combined with cos(Ωzt) to form the zeroth-order
solution z0(t) according to Equation (3.38). The three terms in square brackets correspond to
the three prescription outlined above. The first binomial coefficient in each term results from
z1, the second one from z2n−10 . For the third term, the summation variable in the equivalent of
Equation (3.5) for the exponent 2n − 1 (rather than 2n + 1) was shifted according to j → j − 1 as
in

[cos(Ωzt)]2n−1 = 1
22n−2

n−1∑
j=0

(
2n − 1

n − 1 − j

)
cos[(2j + 1)Ωzt] (3.42a)

=
1

22n−2
n∑
j=1

(
2n − 1
n − j

)
cos[(2j − 1)Ωzt] . (3.42b)
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3.3. Second-order effects

For the same value of the summation variable j, the oscillatory terms in Equation (3.42b) then
match the ones in z1(t) from Equation (3.39) for the production of resonant terms via the third
mechanism. For the second term in square brackets in Equation (3.41), the summation in
Equation (3.42a) (without a change of the summation variable) starts at j = 1, because the first
odd higher-harmonic is cos(3Ωzt) in the second production mechanism for resonant terms.
The first product of binomial coefficients in Equation (3.41) is simplified with the identity(

2n − 1
n − 1

)
=

(2n − 1)!
(n − 1)!n! =

n

2n
(2n)!
(n!)2 =

1
2

(
2n
n

)
. (3.43)

Two other binomial are summed as(
2n − 1

n − 1 − j

)
+

(
2n − 1
n − j

)
=

(
2n

n − j

)
. (3.44)

Equation (4.46c) proves this identity when the binomial coefficients are given by the explicit
expression (3.3) with factorials. Because the identity also holdswhen the first binomial coefficient
vanishes for j = n, we raise the upper limit of the first sum in Equation (3.41) from n − 1→ n,
in order to have equal limits for both sums.
With the parameter κη defined in Equation (3.17) and the two identities above, the second-

order frequency-shift parameter becomes

ω2
2 = −

1
C2
2

ω4
z

Ω2
z

n(2n + 1)2
24n




[(
2n
n

)]2
−

n∑
j=1

[(
2n

n − j

)]2 2
(2j)2 − 1




ẑ4n−2

d4n−2
. (3.45)

As a special case of Equation (3.75), which provided a spark (well after “completing” this section),
the term is curly brackets is simplified as

[(
2n
n

)]2
−

n∑
j=1

[(
2n

n − j

)]2 2
(2j)2 − 1 =

1
(2n + 1)2

(4n + 1)!
[(2n)!]2 . (3.46)

Up to second order, the perturbed frequency expressed by the power series (3.28) is given by

Ωz =

√
ω2
z + ϵ2ω

2
2 + . . . ≈ ωz +

ϵ2

2
ω2
2

ωz
+ . . . = ωz + ∆ωz + . . . , (3.47)

where we have expanded the square root for |ϵ2ω2
2 | ≪ ω2

z . The first-order term ϵω2
1 in the series

is absent, because there is no first-order frequency-shift for the imperfections of the electrostatic
potential without reflection symmetry about the z-axis. After undoing the substitution ϵ = C2n+1
for the perturbation parameter, the second-order frequency-shift for an additional potentialΦ2n+1
from Equation (3.10) is given by

∆ωz

ωz
= −

C2
2n+1
C2
2

n

24n+1
(4n + 1)!
[(2n)!]2

ẑ4n−2

d4n−2
. (3.48)

To second order in the frequency-shift, we have ignored the difference between the perturbed
frequency Ωz and the unperturbed frequency ωz in ω2

2 from Equation (3.45). As Equation (3.47)
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3. Perturbation theory

shows, the difference between these two frequencies is at least of second order in the perturbation
parameter ϵ , and hence of no relevance in the ratio ω2

z/Ω
2
z from ω2

2 . Parametrized by ϵ2ω2
2 , the

frequency-shift shown here is at least of second-order by design, because ω2
2 does not contain

any term that is inversely proportional to (some power of) the perturbation parameter ϵ . The
perturbation parameter ϵ in the power series (3.28) for Ω2

z in the denominator of ω2
2 will not

exactly cancel with ϵ2 in ϵ2ω2
2 . Instead, there will be a modified power series, of which we

have picked the second-order contribution to the frequency-shift, by making the substitution
Ω2
z → ω2

z , before using ω2
2 of Equation (3.45) in Equation (3.48)

With the choice ηodd = 2n + 1 for the odd coefficients, the exponent of the particle’s starting
position ẑ is 4n−2 = 2ηodd−4. Compared with the exponent ηeven−2 in the first-order frequency
shift (3.34) by an even coefficient Cηeven , the two exponents are the same for ηeven = 2ηodd − 2.
With the exception of C3, the first nonvanishing term in the frequency-shifts associated with
ηodd scales more strongly with ẑ than for the neighboring ηeven. This is a consequence of second
versus first order.

Table 3.1 shows explicit expressions for the second-order frequency-shift (3.48) by the first
few perturbation parameters Cη with odd η. It is always negative. We do not expect the sign
of Cη to matter, because the associated potential (3.10) is always hardening on one side of
the z-axis, leading to an additional restoring force, and softening on the other, weakening the
restoring force there. The sign merely determines on which side of the z-axis hardening or
softening occurs.20 Since the particle spends more time in the softened region due to the reduced
restoring force, and it also travels further out there, before reaching the classical turning point,
the reduced frequency appears logical. Keep in mind the convex nature of the function 1/3 (for
3 > 0), where 3 stands for velocity, like ż does in Equation (3.16). Speeding up by an amount ∆3
reduces the infinitesimal journey time less than slowing down by the same amount increases it.
Hence, the net effect of the antisymmetric potential with softening on one side and hardening
on the other is to increase the period of the oscillation, which is equivalent to a reduction of the
frequency.

Reference [59] gives the frequency-shift up to ẑ7, and the applicable results shown forC2
3 and

C2
5 agree. The agreement is comforting, since Reference [59] expands the perturbed frequency

rather than its square.

3.3.2. Symmetric anharmonic potential add-on

In this paragraph, we calculate the second-order frequency-shift for an additional potentialΦη
with η even. Unlike an antisymmetric potential with η odd, such a symmetric potential already
gives rise to a first-order frequency-shift (3.33). Hence, second-order perturbation theory is
not necessary to calculate the first nonvanishing term in the expansion (3.28) of the perturbed
frequency (squared). However, the second-order result gives an impression of how accurate

20The question of sign is more complex than it may seem at first. In higher orders, there are terms with odd powers
of Cη , which are of course sensitive to the sign [59]. For an antisymmetric potential associated with odd η, the
overall oscillation does not seem to change when the sign of Cη is flipped, and the existence of such a term
seems strange. However, the initial conditions strike. Because the particle starts at an initial displacement ẑ, its
total energy depends on the sign of Cη . Indeed, these seemingly questionable terms are also sensitive to the sign
of ẑ. Table 3.3 shows such second-order cross-terms, too.
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3.3. Second-order effects

Table 3.1.: Second-order frequency-shift (3.48) caused by a potential Φη with odd η. The pa-
rameter ηeven shows which coefficient Cηeven would result in a first-order frequency-
shift (3.34) with the same power of ẑ.

η 3 5 7 9 11

∆ωz

ωz
−
15
16

C2
3

C2
2

ẑ2

d2
−
315
128

C2
5

C2
2

ẑ6

d6
−
9009
2048

C2
7

C2
2

ẑ10

d10
−
109 395
16 384

C2
9

C2
2

ẑ14

d14
−
4 849 845
524 288

C2
11
C2
2

ẑ18

d18

ηeven 4 8 12 16 20

the first-order approximation is for a given perturbation. This benchmark goes beyond the
finding at the end of Section 3.2.2 that small anharmonic forces (3.18) result in an even smaller
first-order frequency-shift, and it is quantitative. Of course, knowing the second-order result
still requires confidence that there are no surprises in third order or higher.21 As long as the
energy is conserved in the potential, wild excursions are not expected, and the experiment tests
the theoretical predictions.
The result (3.38) for the zeroth-order trajectory z0(t) is identical to the case of odd η in

Section 3.3.1. We write η = 2n and solve the differential equation (3.29) for the first-order trajec-
tory z1(t) by decomposing z2n−10 into single oscillatory terms with the help of Equation (3.42a),
a descendant of Equation (3.5). So far, we have stopped the calculation in Section 3.2.2 after
absorbing the resonant term cos(Ωzt) as

ω2
1 =

(
2n − 1
n − 1

)
κ2nẑ

2n−2

22n−2 (3.49)

in the expansion of the perturbed frequency (3.28). Apart from having fixed the amplitude ẑ0 of
the zeroth-order trajectory as ẑ, the result is the same as in Equation (3.33). We will retain the
binomial coefficient here, because it will be contracted with similar terms more easily.

Having prevented secular terms from arising with the particular choice of ω2
1 , we turn to the

nonresonant terms in z2n−10 . With the help of Equations (3.26) (replacing ωz → Ωz ) and (3.42a),
the first-order trajectory for the initial conditions z1(t) = 0 and ż1(t) = 0 becomes

z1(t) = κ2nẑ
2n−1

22nΩ2
z

n−1∑
j=1

(
2n − 1

n − 1 − j

)
cos[(2j + 1)Ωzt] − cos(Ωzt)

j(j + 1) , (3.50)

where we have written

(2j + 1)2 − 1 = 4j(j + 1) (3.51)

in the denominator. Like for z1(t) from Equation (3.39) for an odd anharmonic potential, there
are terms at the perturbed fundamental frequency Ωz . The higher harmonics, or sidebands, are
at its odd rather than even multiples here, however; and there is no constant term.
21Paraphrasing the justification of perturbation theory in the words of Carl M. Bender: Mathematicians are

pathological people, always looking for a pathological example to fool you. Nature is kind.
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3. Perturbation theory

With the entire first-order solution for both the frequency-shift and the trajectory known, we
turn to the differential equation (3.37) for second order. For the second-order frequency-shift,
we have to absorb resonant terms at the perturbed frequency Ωz in the parameter ω2

2 , which is
written as

ω2
2z0 = κ2n(2n − 1)



z1 z

2n−2
0

�
Ωz
− ω2

1


z1

�
Ωz

(3.52)

in our notation. The first-order solution z1(t) from Equation (3.50) has oscillatory terms at
1Ωz , 3Ωz , . . . , (2n − 1)Ωz . According to Equations (3.2) and (3.38), z2n−20 comes with a constant
term and even higher harmonics of the fundamental frequency Ωz . Its frequency spectrum is
0Ωz , 2Ωz , . . . , (2n − 2)Ωz . Thus, there are the following possibilities to produce resonant terms:

1. The second term on the right-hand side of Equation (3.52) naturally possesses a resonant
contribution—the oscillatory term at Ωz in z1(t).

2. In the first term on the right-hand side of Equation (3.52), the oscillatory term at Ωz in
z1(t) is preserved by multiplying it with the constant contribution from z2n−20 .

3. Multiplying the oscillatory term at Ωz in z1(t) with the term at frequency 2Ωz in z2n−20
results in an oscillatory term at frequency Ωz .

4. Multiplying the oscillatory term from z1 at frequency 3Ωz , 5Ωz , . . . , (2n − 1)Ωz with the
corresponding term on the list 2Ωz , 4Ωz , . . . , (2n− 2)Ωz from z2n−20 results in the resonant
term Ωz = (3 − 2)Ωz = (5 − 4)Ωz = · · · = ((2n − 1) − (2n − 2))Ωz .

5. Multiplying the oscillatory term from z1 at frequency 3Ωz , 5Ωz , . . . , (2n − 3)Ωz with the
corresponding term on the list 4Ωz , 6Ωz , . . . , (2n− 2)Ωz from z2n−20 results in the resonant
term Ωz = (4 − 3)Ωz = (6 − 5)Ωz = · · · = ((2n − 2) − (2n − 3))Ωz .

With ω2
1 from Equation (3.49) and z1(t) from Equation (3.50), the first mechanism on the list is

written as

ω2
1



z1

�
Ωz
= −z0(t) κ

2
2nẑ

4n−4

24n−2Ω2
z

(
2n − 1
n − 1

) n−1∑
j=1

(
2n − 1

n − j − 1

)
1

j(j + 1) , (3.53)

where we have absorbed a factor of ẑ and the oscillatory term cos(Ωzt) in the zeroth-order solu-
tion z0(t) from Equation (3.38). This particular step will be repeated for all other contributions,
too.
The four remaining mechanisms for the production of resonant terms are summarized as

follows:



z1 z

2n−2
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�
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= z0(t) κ2nẑ

4n−4

24n−2Ω2
z



−

[(
2n − 2
n − 1

)
+

(
2n − 2
n − 2

)] n−1∑
j=1

(
2n − 1

n − j − 1

)
1

j(j + 1)

+
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j=1

(
2n − 2

n − j − 1

) (
2n − 1

n − j − 1

)
1

j(j + 1) +
n−2∑
j=1

(
2n − 2

n − j − 2

) (
2n − 1

n − j − 1

)
1

j(j + 1)



. (3.54)
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The origin of the individual terms becomes more obvious after writing Equation (3.2) for the
even powers of cosine more appropriately for z2n−20 as

[cos(Ωzt)]2n−2 = 1
22n−2



(
2n − 2
n − 1

)
+ 2

n−1∑
j=1

(
2n − 2

n − 1 − j

)
cos(2jΩzt)


(3.55a)

=
1

22n−2



(
2n − 2
n − 1

)
+ 2

n−2∑
j=0

(
2n − 2

n − 2 − j

)
cos[2(j + 1)Ωzt]


. (3.55b)

In the last step, we have shifted the summation variable as j → j+1, because the fifth mechanism
on the list starts with cos(4Ωzt), which is then produced for j = 1, just like the corresponding
term cos(3Ωzt) in z1(t).

In Equation (3.54), the common binomial coefficient and the denominator j(j + 1) result from
z1(t). The other binomial coefficients are from z2n−20 , and the factor of 2 that is still present in
front of the sum in Equations (3.55a) and (3.55b) is lost by mixing according to Equation (C.10)
from the appendix. The four different binomial coefficients in Equation (3.54) belong to the
production mechanisms 2–5 on the list. Similar to Equation (3.44), some binomial coefficients
are summed as(

2n − 2
n − 1

)
+

(
2n − 2
n − 2

)
=

(
2n − 1
n − 1

)
and

(
2n − 2

n − j − 1

)
+

(
2n − 2

n − j − 2

)
=

(
2n − 1

n − 1 − j

)
. (3.56)

The particular definition (3.3) of the binomial coefficients allows to increase the upper limit of
the last sum in Equation (3.54) from n − 2 to n − 1, such that it becomes the same as for the
other two sums. Equation (3.54) is then summarized as



z1 z
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24n−2Ω2
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−

(
2n − 1
n − 1
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. (3.57)

With the definition (3.17) of κ2n and the result from Equation (3.53), the second-order frequency-
shift parameter ω2

2 is extracted from Equation (3.52) as

ω2
2 =

ω4
z

Ω2
z

n2(2n − 1)
24n−2C2

2

ẑ4n−4

d4n−4
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−
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(3.58a)

=
ω4
z

Ω2
z

n2(2n − 1)
24n−2C2

2

ẑ4n−4

d4n−4

n−1∑
j=1

1
j(j + 1)

(
2n − 1
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) [(
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)
− 2

(
2n − 2
n
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. (3.58b)

In the last step, we have used
[
1 − 1

2n − 1

] (
2n − 1
n − 1

)
= 2

(
2n − 2
n

)
, (3.59)

where the fraction results from the absence of the factor 2n−1 in Equation (3.53). Other than that,
the two terms on the right-hand side of Equation (3.52) share the same prefactor. The difference
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between the perturbed frequency Ωz and the unperturbed frequency ωz in the prefactor results
in additional terms of higher order. These will be ignored here for the frequency-shift up
to second order, because ω2

2 with the zeroth-order substitution Ωz → ωz alone results in a
contribution of second order in the frequency-shift already.

Before turning to the actual second-order frequency-shift, we take a close look at the sign of
the coefficient ω2

2 , which is determined by the sum over the two binomial coefficients in square
brackets in Equation (3.58b). We shall show that all contributions are negative. Since the second
of the binomial coefficients in question does not depend on the summation variable j, we try
to estimate the sign by comparing the negative part with the positive contribution from the
largest of the first binomial coefficients. To this end, we need to figure out for which value of
j the first binomial coefficient reaches its maximum. If even the largest positive term cannot
compensate for the negative contribution, which is independent of j, the terms in the sum do
not have to be inspected individually, in order to know that the sum will turn out negative.
Generally, two subsequent binomial coefficients are related recursively via(

n

k

)
=

n!
k! (n − k)! =

n!
(k − 1)! (n − k + 1)!

n − k + 1
k

=

(
n

k − 1

) [n + 1
k
− 1

]
, (3.60)

which means that the binomial coefficient does not decrease, while the term in square brackets
is at least unity. This condition requires k ≤ (n + 1)/2, and hence a maximum22 is reached
for k = ⌊(n + 1)/2⌋, with the floor function defined in Equation (2.60). For the first binomial
coefficient in square brackets in Equation (3.58b), this condition k = n = n − j − 1 for the
maximum is not to be fulfilled. For the values of j permitted by the range of the summation, the
local maximum is reached for j = 1. The corresponding binomial coefficient is related to the
second one in square brackets via(

2n − 1
n − 2

)
=

(2n − 1)!
(n − 2)! (n + 1)! =

(2n − 2)!
(n − 2)!n!

2n − 1
n + 1 =

(
2n − 2
n

) [
2 − 3

n + 1

]

︸        ︷︷        ︸
<2

. (3.61)

Since the term in square brackets here is always smaller than 2, the terms of the sum over j in
Equation (3.58b) are all negative, and so is ω2

2 .
With ω2

1 and ω2
2 from Equations (3.49) and (3.58b), respectively, the first two amplitude-

dependent terms in the expansion (3.28) of the perturbed frequency (squared) have now been
calculated. To obtain a power series for the frequency rather than its square, we expand the
square root for |ϵ | ≪ 1 as

√
1 + ϵ ≈ 1 + ϵ

2 −
ϵ2

8 + . . . (3.62)

up to second order this time. The perturbed frequency is then given by

Ωz =

√
ω2
z + ϵω

2
1 + ϵ

2ω2
2 + . . . ≈ ωz

[
1 + ϵ

ω2
1

2ω2
z
+ ϵ2

(
ω2
2

2ω2
z
−

ω4
1

8ω4
z

)
+ . . .

]
, (3.63)

22For n odd, the maximum is not unique. Identity (3.4) shows that the same value is also obtained for k = (n − 1)/2.
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3.3. Second-order effects

Table 3.2.: Explicit expressions for frequency-shift up to second order according to Equa-
tion (3.63) with the parametrizationΩz = ωz (1+ϵk1+ϵ2k2+ . . . ) and the perturbation
parameter ϵ = Cη .

η 4 6 8 10 12

ϵk1
3
4
C4
C2

ẑ2

d2
15
16

C6
C2

ẑ4

d4
35
32

C8
C2

ẑ6

d6
315
216

C10
C2

ẑ8

d8
693
512

C12
C2

ẑ10

d10

ϵ2k2 −
21
64

C2
4

C2
2

ẑ4

d4
−
645
1024

C2
6

C2
2

ẑ8

d8
−
8365
8192

C2
8

C2
2

ẑ12

d12
−
391 365
262 144

C2
10
C2
2

ẑ16

d16
−
4 274 655
2 097 152

C2
12
C2
2

ẑ20

d20

where the first-order contribution ϵω2
1 in the frequency squared results in an additional second-

order contribution for the frequency as such because of the nonlinear transformation by the
square root. Unlike ω2

2 in Equation (3.58b), ω2
1 from Equation (3.49) does not contain the

perturbed frequency Ωz , which has spared as from making the substitution Ωz → ωz to first
order in the frequency-shift. The absence ofΩz inω2

1 also means that there are no hidden higher-
order terms in it, and we are in particular not forgetting a secret second-order contribution
from ω2

1 here.
Plugging the explicit expression for ω2

1 and ω2
2 into Equation (3.63) would lead to a lengthy

expression, probably without any notable insights. Nevertheless, one general statement is
possible without evaluating the expression explicitly. Since ω2

2 < 0 (and ω4
1 = (ω2

1)2 > 0, with
ω2
1 > 0 for Equation (3.49), anyway), the second-order contribution to the frequency-shift is

always negative, regardless of the sign of the perturbation parameter Cη . Unlike for the case of
the antisymmetric anharmonic potential associated with η odd, there is no intuitive physical
explanation here.
Table 3.2 evaluates the expression for the first few even η. Since Reference [59] shows

frequency-shifts up to ẑ7, the comparison of second-order terms is limited toC2
4 , for which there

is agreement.

3.3.3. Cross-terms

In this paragraph, we consider how two anharmonic imperfections of the potential produce an
additional frequency-shift in concert. For judging the validity of the first-order approximation,
these cross-terms are as important as the previous second-order results for one imperfection
alone, because the electrostatic potential of Penning traps is typically characterized by multiple
anharmonic coefficientsCη . In this case, there may be an additional frequency-shift proportional
toCηaCηb with weaker dependence on the axial amplitude—a smaller exponent of ẑ, that is—than
the second-order result proportional to C2

ηa or C2
ηb for one anharmonic term alone. Moreover,

the subsequent calculation gives a good impression of the rich phenomena (and difficulties) in
perturbation theory beyond first order, where multiple effects would still add linearly. In higher
orders, the effects compound more intricately.

Unfortunately, our approach is not designed to go beyond first order with multiple imperfec-
tions, but we have gained enough experience in the course of this chapter to understand the
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3. Perturbation theory

second-order frequency-shift by cross-terms without reformulating the whole ansatz. Because
we have been so instructive about perturbation theory by introducing the strength parame-
ter Cη as the perturbation parameter ϵ , we have given up the possibility to distinguish between
different imperfections. The proper way would be to introduce ϵ in the series expansions (3.19)
and (3.28), as well as the equation of motion (3.17) as an order parameter, while retaining the
coefficient Cη in the prefactor κη of the anharmonic term. As its name suggests, the order
parameter keeps track of the order during the calculation, and it is set to unity at the end,
thereby disappearing from the final result. The strength of the perturbation is then described
by the actual perturbation parameter Cη . However, we will not introduce an order parameter
here just for this section, appealing to the reader’s recognition of patterns instead, in order to
understand where cross-terms in the frequency-shift originate from. The key insights are as
follows:

• The additional anharmonic forces add linearly, and the show up on the right-hand side of
the differential equations for the zi in the expansion (3.19) of the trajectory.

• The functional structure of the zeroth-order solution (3.38) does not depend on the
imperfections.23 Therefore, the same function for z0 shows up in the inhomogeneous
term of the differential equations for higher-order zi .

• The differential equation (3.32) for the first-order trajectory z1 is linear in z1. Therefore,
each imperfectionCηa andCηb independently creates its own first-order solution z1,a and
z1,b , respectively.

• The differential equation (3.37) for the second-order trajectory z2 is linear in z2 and z1.
Consequently, the effect of two first-order solutions z1,a and z1,b adds linearly.

Thus, a second-order frequency-shift by cross-terms CηaCηb arises from the resonant terms in

ω2
2,abz0 = κηa (ηa − 1)

〈
z1,b z

ηa−2
0

〉
Ωz
+ κηb (ηb − 1)

〈
z1,a z

ηb−2
0

〉
Ωz

− ω2
1,a



z1,b

�
Ωz
− ω2

1,b


z1,a

�
Ωz

.
(3.64)

Essentially, the first-order trajectory z1,a of the imperfection Cηa creates an additional force
in the potential of the other imperfection Cηb , and vice versa. From the series expansion of
the frequency, there is also the combination of the frequency-shift coefficient ω2

1,a from Cηa
with the resonant terms of the first-order trajectory z1,b of the other imperfection Cηb , and vice
versa. In order to accommodate these cross-term, the expansion (3.28) of the frequency squared
then has to be amended as

Ω2
z = ω2

z + ϵaω
2
1,a + ϵbω

2
1,b + ϵ

2
aω

2
2,a + ϵ

2
bω

2
2,b + ϵaϵbω

2
2,ab + . . . , (3.65)

where ϵa = Cηa and accordingly for ηb . The dots indicate that terms beyond second order have
been neglected. The term ω2

2,ab is the actual cross-term; the terms with single indices a and b
are also present for one imperfection alone. This situation is recreated by setting either ϵa or

23Of course, the frequency Ωz does, which is the main point of emphasis here.
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3.3. Second-order effects

ϵb to zero. With more than two imperfections, we would have to sum over the index a for the
effect of the Cηa alone, and the combinations of a and b for the cross-terms CηaCηb . We omit
the sums here and pick any combination at will, resting assured that the second-order effects
add linearly, provided we keep track of the cross-terms.
By using the series expansion (3.62) of the square root on Equation (3.65), the perturbed

frequency Ωz is expressed as

Ωz ≈ ωz (1 +wa +wb +wab + . . . ) , (3.66)

with the two abbreviations

wa = ϵa
ω2
1,a

2ω2
z
+ ϵ2a *

,

ω2
2,a

2ω2
z
−
ω4
1,a

8ω4
z

+
-

and wab = ϵaϵb *
,

ω2
2,ab

2ω2
z
−
ω2
1,aω

2
1,b

4ω4
z

+
-

(3.67)

for the relative frequency-shift.24 The ω2
1 and ω2

2 have already been calculated for their use in
wa . For even ηa = 2na or ηb = 2nb , they are given by Equations (3.49) and (3.58b), respectively
(with the proper replacement of n → na or n → nb ). For odd ηa = 2na + 1, Equation (3.45)
shows ω2

2,a . Since ω2
1,a = 0 for odd coefficients, the product ω2

1,aω
2
1,b in the cross-term wab

contributes only for two even coefficients. We will now calculate the unknown ω2
2,ab for the

three different combinations of parities the two parameters ηa and ηb may have: even–odd,
odd–odd and even–even.25

Even–odd

We choose even ηa = 2na and odd ηb = 2nb+1. There is no first-order frequency-shift associated
with odd coefficients: ω2

1,b = 0. The other contributions to Equation (3.64) in search of resonant
terms need more scrutiny, because the first two represent a combination that we have not
encountered so far—a first-order trajectory resulting from an antisymmetric potentialΦ2nb+1
with the zeroth-order solution z0 taken to the even power 2na − 2 and vice versa. We will first
examine the other combination, z1,az2nb−10 —the first-order trajectory z1,a resulting from the
symmetric potentialΦ2na multiplied with the zeroth-order solution z0 taken to the odd power
2nb − 1. With z0 from Equation (3.38) and the odd powers of cosine shown in Equation (3.42a),
it becomes clear that z2nb−10 features the frequencies 1Ωz , 3Ωz , . . . , (2nb − 1)Ωz . In other words,
there is a term at the fundamental frequency, as well as its odd higher harmonics. The first-order
trajectory z1,a from Equation (3.50) (with the substitution n → na) for a symmetric potential
features very similar frequencies: 1Ωz , 3Ωz , . . . , (2na − 1)Ωz . Only the upper limit may be
different. According to Equation (C.10) from the appendix, there is no chance to produce
a resonant term at the frequency Ωz by mixing, because both the sum and the difference
frequencies in this case are even multiples of the fundamental frequency (or zero), and we

24The different factor in the last denominator of Equation (3.67) is not a misprint. When calculating the frequency
squared from Ωz in the expansion (3.66), there are two possibilities to produce the term ω2

1,aω
2
1,b with the

productwawb , whereas there is only one chance to obtain ω4
1,a fromw2

a .
25We count even–odd as one possibility, because the cross-termwab is symmetric in the two parameters. It does

not matter which of the two is even and which one is odd.

67



3. Perturbation theory

conclude 〈
z1,a z

2nb−1
0

〉
Ωz
= 0 . (3.68)

The other cross-term of trajectories in Equation (3.64) is more involved. The first-order
trajectory z1,b from Equation (3.39) (with the replacement n → nb ) for an antisymmetric poten-
tial has the frequency spectrum 0Ωz ,Ωz , 2Ωz , 4Ωz , . . . , 2nbΩz . According to Equation (3.55a),
the frequency spectrum of z2na−20 is 0Ωz , 2Ωz , . . . , (2na − 2)Ωz . There are two mechanisms for
producing resonant terms at the fundamental frequency Ωz here:

1. Preserve the resonant term in z1,b by multiplying it with the constant term in z2na−20 .

2. Create a resonant term according to Equation (C.10) by multiplying cos(Ωzt) in z1,b with
cos(2Ωzt) from z2na−20 .

Other than that, the sum and difference frequencies of multiplying two terms at even harmonics
of the fundamental frequency will stay even harmonics (or zero). The two relevant mechanisms
listed above result in〈
z1,b z

2na−2
0

〉
Ωz
= −

κ2nb+1 ẑ
2nb

22nbΩ2
z

ẑ2na−3

22na−2 z0

·





−

(
2nb
nb

)
+ 2

nb∑
j=1

(
2nb

nb − j

)
1

(2j)2 − 1




(
2na − 2
na − 1

)
+

(
2na − 2
na − 2

)




(3.69a)

=
κ2nb+1 ẑ

2(na+nb )−3

22(na+nb )−2Ω2
z

z0

(
2na − 1
na − 1

) 

(
2nb
nb

)
− 2

nb∑
j=1

(
2nb

nb − j

)
1

(2j)2 − 1


. (3.69b)

As usual, we have absorbed the oscillatory term cos(Ωzt) and one factor of the amplitude ẑ in
the zeroth-order solution z0 from Equation (3.38). In the last step, the two binomial coefficients
are added with the help of Equation (3.56).
The remaining term in Equation (3.64) is



z1,b

�
Ωz
= −

κ2nb+1 ẑ
2nb−1

22nbΩ2
z

z0


−

(
2nb
nb

)
+ 2

nb∑
j=1

(
2nb

nb − j

)
1

(2j)2 − 1


, (3.70)

which needs to be combined with the first-order coefficient ω2
1,a from Equation (3.49) (with the

replacement n → na). Fortunately, the two terms contributing to Equation (3.64) have a very
similar structure then, and even the sum is executed by hand with the identity(

2nb
nb

)
− 2

nb∑
j=1

(
2nb

nb − j

)
1

(2j)2 − 1 =
22nb

2nb + 1
. (3.71)

Because proving the identity is probably beyond the scope of this chapter (and I have no proof
in mind), we accept it as an unsolicited gift,26 which Wolfram Mathematica® 9 confirms on a
general basis with the command FullSimplify.
26The conjecture (3.71) was inspired by observing that the numerical prefactor of the explicit terms in Table 3.3

does not depend on nb . Thus, a cancellation of the nb from the term in square brackets in Equations (3.69b) and
(3.70) with the nb from κ2nb+1/22nb was expected.
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3.3. Second-order effects

Overall, the second-order coefficient for cross-terms in the expansion of the frequency
(squared) then becomes

ω2
2,ab =

κ2naκ2nb+1

22na−2Ω2
z

2na − 2
2nb + 1

(
2na − 1
na − 1

)
ẑ2(na+nb )−3 = 1

C2
2

ω4
z

Ω2
z

na(na − 1)
22na−1

(2na)!
(na !)2

ẑ2(na+nb )−3

d2(na+nb )−3
.

(3.72)

The last step uses the definition (3.17) of the prefactor κη , and Equation (3.43) for the binomial
coefficient. The relative-frequency shift (3.66) due to the even–odd cross-terms is given by

wab = C2naC2nb+1
ω2
2,ab

2ω2
z
=
C2naC2nb+1

C2
2

na(na − 1)
22na

(2na)!
(na !)2

ẑ2(na+nb )−3

d2(na+nb )−3
. (3.73)

To second order in the frequency-shift, we have ignored the difference between the perturbed
frequency Ωz and the harmonic frequency ωz , by sending Ωz → ωz . The prefactor ofwa,b does
not depend on nb ; the exponent of ẑ/d does.
The exponent for the second-order frequency-shift (3.48) by C2nb+1 is 4nb − 2. Thus, the

exponent of ẑ in this second-order cross-term is smaller than in the second-order term by
the odd coefficient itself for 2na < 2nb + 1, or equivalently ηa < ηb . For the second-order
frequency-shift (3.63) of the even coefficient C2na , the exponent of ẑ is 4na − 4. The condition
for a lower exponent of the cross-term than for the second-order term itself is exactly opposite:
2na > 2na + 1, or equivalently ηa > ηb . In either case, there will be a second-order term by one
coefficient with a lower exponent and one with a higher exponent of ẑ than the second-order
cross-term.
Table 3.3 evaluates the relative frequency-shift (3.73) first few even–odd cross-terms. There

is agreement with Reference [59], which shows the same for the six combinations C4C3, C4C5,
C4C7, C6C3, C6C5 and C8C3, which are all the even–odd cross-terms with a dependence of at
most ẑ7.

Odd–odd

We choose odd ηa = 2na +1 and odd ηb = 2nb +1. Because there is no first-order frequency-shift
(ω2

1,a = ω2
1,b = 0) for odd terms, only the products of coordinates in Equation (3.64) remain.

We will infer a lot from the calculation for one odd contribution to the overall potential in
Section 3.3.1, and we will work with analogies as much a possible. In fact, the only difference
between z1,a and z1,b is the adequate replacement n → na or n → nb , respectively, in Equa-
tion (3.39). Similarly, the switch from z2na−10 to z2nb−10 is made by selecting the adequate n in
Equation (3.42a). Therefore, resonant terms are produced in close analogy with Equation (3.41).
We simply have to recall where which term is from: the first binomial coefficient of each product
is from z1; the second one from z2n−10 . Taking into account the two different solutions with na
and nb , the corresponding expression (barring the prefactor κ2na+12na , and the term with the
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3. Perturbation theory

Table 3.3.: Relative frequency-shiftwa,b from Equation (3.73) for even–odd cross-terms in the
expansion (3.66) of the frequency. For a given even coefficient C2n , the numerical
prefactor does not depend on the index of the odd coefficients; the exponent of z/d
does.

C3 C5 C7 C9

C4
3
4
C3C4

C2
2

ẑ3

d3
3
4
C5C4

C2
2

ẑ5

d5
3
4
C7C4

C2
2

ẑ7

d7
3
4
C9C4

C2
2

ẑ9

d9

C6
15
8
C3C6

C2
2

ẑ5

d5
15
8
C5C6

C2
2

ẑ7

d7
15
8
C7C6

C2
2

ẑ9

d9
15
8
C9C6

C2
2

ẑ11

d11

C8
105
32

C3C8

C2
2

ẑ7

d7
105
32

C5C6

C2
2

ẑ9

d9
105
32

C7C8

C2
2

ẑ11

d11
105
32

C9C8

C2
2

ẑ13

d13

C10
315
64

C3C10

C2
2

ẑ9

d9
315
64

C5C10

C2
2

ẑ11

d11
315
64

C7C10

C2
2

ẑ13

d13
315
64

C9C10

C2
2

ẑ15

d15

indices a and b swapped) becomes

〈
z1,a z

2nb−1
0

〉
Ωz
= −

κ2na+1 ẑ
2na

22naΩ2
z

ẑ2nb−2

22nb−2 z0



(
2na
na

) (
2nb − 1
nb − 1

)

−

nmin∑
j=1

1
(2j)2 − 1

(
2na

na − j

) [(
2nb − 1

nb − 1 − j

)
+

(
2nb − 1
nb − j

)] 


(3.74a)

= −
κ2na+1 ẑ

2(na+nb )−2

22(na+nb )−1Ω2
z

z0



(
2na
na

) (
2nb
nb

)
− 2

nmin∑
j=1

(
2na

na − j

) (
2nb

nb − j

)
(2j)2 − 1



. (3.74b)

The oscillatory term cos(Ωzt) and one factor of ẑ are absorbed in the zeroth-order solution z0
from Equation (3.38). The last step simplifies the binomials with the help of Equations (3.43)
and (3.44). Although the summation over j should stop at the minimum of na and nb , no harm
is done by exceeding this upper limit, because the explicit definition (3.3) nulls the unwanted
terms.27 Fortunately for the use of analogies, the lower limit is the same in both cases.

The term in angle brackets with the binomial coefficients is simplified by executing the sum
with a more general version of Equation (3.46) as

(
2na
na

) (
2nb
nb

)
− 2

nmin∑
j=1

(
2na

na − j

) (
2nb

nb − j

)
(2j)2 − 1 =

1
(2na + 1)(2nb + 1)

[2(na + nb ) + 1]!
[(na + nb )!]2 . (3.75)

27That is also why have not bothered about using two different limits for the sum over j, which we still did in
Equation (3.41).
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We have no proof to offer here.28 As a test with the command FullSimplify in Wolfram
Mathematica® 10 shows, an advanced knowledge of generalized hypergeometric functions
might help. The conjecture (3.75) has been tested numerically for combinations of na and nb
well beyond experimental relevance.

With the prefactor κ2na2na and the term with a and b swapped, the coefficient ω2
2,ab in

Equation (3.64) becomes

ω2
2,ab = −2(na + nb )

κ2na+1 κ2nb+1

22(na+nb )−1Ω2
z
ẑ2(na+nb )−2 1

(2na + 1)(2nb + 1)
[2(na + nb ) + 1]!
[(na + nb )!]2 (3.76a)

= −
ω4
z

Ω2
z

1
C2
2

na + nb
[(na + nb )!]2

[2(na + nb ) + 1]!
22(na+nb )

ẑ2(na+nb )−2

d2(na+nb )−2
. (3.76b)

The last step plugs in the κη from Equation (3.17). As expected for the cross-term caused by
two odd η, the final expression is symmetric in na and nb . For na = nb the corresponding
expression (3.45) for the second-order effect of one odd coefficientC2n+1 is not quite reproduced.
Because of the double counting in Equation (3.64) forna = nb , the result (3.76b) has an additional
factor of 2.
With ω2

2,ab from Equation (3.76b), the relative frequency-shift (3.66) by the odd–odd cross-
term follows from Equation (3.67) with ϵa = C2na+1 (and accordingly for ϵb ) as

wab = −
C2na+1C2nb+1

C2
2

na + nb
[(na + nb )!]2

[2(na + nb ) + 1]!
22(na+nb )+1

ẑ2(na+nb )−2

d2(na+nb )−2
, (3.77)

where the replacementΩz → ωz inω2
2,ab is fine to second order in the frequency-shift. The result

is always negative, and it depends on the sum of na and nb , rather than are more complicated
combination of the two. Thus, the cross-term is actually a function of the single variable na +nb .
Table 3.4 evaluates the first few terms. There is agreement with the two odd–odd terms C3C5
and C3C7 shown in Reference [59].
The exponent of ẑ for the second-order frequency-shift (3.48) by C2na+1 is 4na − 2 (and

accordingly for nb ), which is also the result for na = nb in Equation (3.77). Consequently, the
second-order cross-term has a smaller exponent than the second-order term for C2na+1 for
nb < na , or equivalently ηb < ηa . Without even coefficients, the second-order frequency-shift
with the lowest exponent of ẑ results from the odd Cη with the smallest η rather than the
cross-term.

Even–even

We choose ηa = 2na and ηb = 2nb both even. Similar to the odd–odd terms, we will feast on
analogies with the second-order calculation for one even term C2n in Section 3.3.2, in order
to identify resonant terms in Equation (3.64). The four original mechanisms for producing
28I thank the On-Line Encyclopedia of Integer Sequences® (https://oeis.org) for helping me spot a pattern, after

having the hunch (from the explicit expressions partly shown in Table 3.4) that the frequency-shift (3.77)
depends only on the sum of na and nb . Their sequence A002457 (formerly M4198 N1752), with the explicit
representation (2n+1)!/(n!)2, is produced by the left-hand side of Equation (3.75) multiplied with (2na+1)(2nb+1),
while keeping n = na + nb constant.
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Table 3.4.: Relative frequency-shift wa,b from Equation (3.77) for odd–odd cross-terms of in
the expansion (3.66) of the frequency. Since the result is symmetric in the two odd
coefficients, it is printed only once, and hence the empty entries. Moreover, the
expressions are identical for two odd coefficients Cη whose indices sum to the same
value. Refer to Table 3.1 and Equation (3.48) for the second-order shift byC2

2n+1 alone.
The cross (×) indicates that Equation (3.76b) is not applicable (without an additional
factor of 1/2).

C5 C7 C9 C11

C3 −
105
32

C3C5

C2
2

ẑ4

d4
−
315
64

C3C7

C2
2

ẑ6

d6
−
3465
512

C3C9

C2
2

ẑ8

d8
−
9009
1024

C3C11

C2
2

ẑ10

d10

C5 × −
3465
512

C5C7

C2
2

ẑ8

d8
−
9009
1024

C5C9

C2
2

ẑ10

d10
−
45 045
4096

C5C11

C2
2

ẑ12

d12

C7 × −
45 045
4096

C7C9

C2
2

ẑ12

d12
−
109 395
8192

C7C11

C2
2

ẑ14

d14

C9 × −
2 078 505
131 072

C9C11

C2
2

ẑ16

d16

resonant terms resulted in Equation (3.54), where the first binomial in each product is from
z2n−20 , while the second one stems from z1. Here, the n is not the same. In z1,a , the replacement
is n → na in Equation (3.50); in z2nb−20 (with z0 from Equation (3.38)), the replacement is n → nb
in Equation (3.55a). The extended version of Equation (3.54) then takes the form

〈
z1,a z

2nb−2
0

〉
Ωz
= z0

κ2na ẑ
2na−1

22na Ω2
z

ẑ2nb−3

22nb−2




−

[(
2nb − 2
nb − 1

)
+

(
2nb − 2
nb − 2

)] na−1∑
j=1

(
2na − 1

na − j − 1

)
j(j + 1)

+

nmin−1∑
j=1

[(
2nb − 2

nb − j − 1

)
+

(
2nb − 2

nb − j − 2

)]
(
2na − 1

na − j − 1

)
j(j + 1)




(3.78a)

= z0
κ2na ẑ

2(na+nb )−4

22(na+nb )−2Ω2
z

na−1∑
j=1

(
2na − 1

na − j − 1

)
j(j + 1)

[(
2nb − 1

nb − j − 1

)
−

(
2nb − 1
nb − 1

)]
. (3.78b)

The zeroth-order solution z0 contains a factor of ẑ and the oscillatory term cos(Ωzt). With
the help of Equation (3.56), the binomial coefficients are summed in the last step. Because
the explicit definition (3.3) of the binomial coefficient produces vanishing terms when the
summation variable j exceeds the nominal upper limit, we extend it at will.29 This allows
29In fact, we have not bothered about the two different upper limits of the sums in Equation (3.54) anymore.
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3.3. Second-order effects

us to use the upper limit na − 1 for both sums in Equation (3.78a), with the second sum not
contributing once j has reached (or exceeded) the minimum of na and nb .

With ω2
1,b from Equation (3.49), where n → nb , and z1,a from Equation (3.50), where n → na ,

the equivalent of Equation (3.53) becomes

ω2
1,b



z1,a

�
Ωz
= −

(
2nb − 1
nb − 1

)
κ2nb ẑ

2nb−2

22nb−2 z0
κ2na ẑ

2na−2

22naΩ2
z

na−1∑
j=1

� 2na−1
na−1−j

�

j(j + 1) . (3.79)

Similar two Equation (3.58b), Equations (3.78b) and (3.79) are summed (with the prefactors
mandated by Equation (3.64)) as

κ2nb (2nb − 1)
〈
z1,a z

2nb−2
0

〉
Ωz
+ ω2

1,b


z1,a

�
Ωz
=

z0
κ2naκ2nb (2nb − 1)
22(na+nb )−2Ω2

z
ẑ2(na+nb )−4

na−1∑
j=1

(
2na − 1

na − j − 1

)
j(j + 1)

[(
2nb − 1

nb − j − 1

)
− 2

(
2nb − 2
nb

)]
(3.80)

with the help of Equation (3.59). The resulting expression is not symmetric in na and nb , and
we define the abbreviation

s(na ,nb ) = (2nb − 1)
na−1∑
j=1

1
j(j + 1)

(
2na − 1

na − j − 1

) [(
2nb − 1

nb − j − 1

)
− 2

(
2nb − 2
nb

)]
(3.81)

for the asymmetric part. To complete the right-hand side of Equation (3.64), Equation (3.80) has
to be added with na and nb swapped. With the abbreviation (3.81) and the definition (3.17) of
the κη , the parameter ω2

2,ab is given by

ω2
2,ab =

ω4
z

Ω2
z

1
C2
2

nanb

22(na+nb )−2
ẑ2(na+nb )−4

d2(na+nb )−4
[s(na ,nb ) + s(nb ,na)] . (3.82)

For the second-order frequency-shift, the replacement Ωz → ωz is fine. Because there is a
first-order frequency-shift associated with each even coefficientC2n , the relative frequency-shift

wab = C2naC2nb
*
,

ω2
2,ab

2ω2
z
−
ω2
1,aω

2
1,b

4ω4
z

+
-

(3.83)

in the expansion (3.66) also contains twoω2
1 from Equation (3.49) (with the adequate replacement

n → na and n → nb ). Like for the odd–odd cross-term, the expression is not quite correct for
na = nb because of the double counting in Equation (3.64). Consequently, there is an additional
factor of 2 compared with Equation (3.63) for the second-order frequency-shift by one even
coefficient C2n . However, the exponent of ẑ is correctly reproduced for na = nb . Consequently,
the exponent of ẑ in the second-order cross-term is lower than in the second-order term forC2na
itself for ηb < ηa , or equivalently ηb < ηa . The dominant second-order frequency-shift—apart
fromC2

2na for the smallest na—may well be the cross-terms with thisC2na , rather than the actual
second-order contributions of the individual C2nb themselves.
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3. Perturbation theory

Table 3.5.: Relative frequency-shiftwa,b from Equation (3.83) for even–even cross-terms in the
expansion (3.66) of the frequency. Since the frequency-shift is symmetric in the
coefficients, results from the upper corner of the table are not repeated in the lower
corner. The cross (×) indicates that Equation (3.83) (without a factor of 1/2) does not
apply to terms of the kind C2

2n . Refer to Table 3.2 and Equation (3.63) instead.

C6 C8 C10 C12

C4 −
57
64

C4C6

C2
2

ẑ6

d6
−
561
512

C4C8

C2
2

ẑ8

d8
−
1311
1024

C4C10

C2
2

ẑ10

d10
−
5937
4096

C4C12

C2
2

ẑ12

d12

C6 × −
1629
1024

C6C8

C2
2

ẑ10

d10
−
7755
4096

C6C10

C2
2

ẑ12

d12
−
17 805
8192

C6C12

C2
2

ẑ14

d14

C8 × −
20 145
8192

C8C10

C2
2

ẑ14

d14
−
373 305
131 072

C8C12

C2
2

ẑ16

d16

C10 × −
912 345
262 144

C10C12

C2
2

ẑ18

d18

For fear of wasting a lot of space while finding little to simplify in the meantime, we do
not plug in the full expressions here. Table 3.5 evaluates the relative frequency-shift (3.83) for
the first few terms. Reference [59] offers an expression for the frequency-shift by C4C6, and
it agrees. In short, no discrepancy has been found. However, Reference [59] does not give a
general expression for the frequency-shift of first and second order, while showing many more
terms of higher order explicitly.

3.4. First-order perturbative method

The Lindstedt–Poincarémethod presented in Section 3.2.2 relies on expressing the fundamen-
tal frequency as a power series. The method works nicely, when then fundamental frequency
of the unperturbed system is easily spotted, which was the case for the one-dimensional anhar-
monic oscillator. For the radial modes in the Penning trap, however, neither of the corresponding
frequencies ω± from Equation (2.23) shows up directly in the equations of motion (2.16). There-
fore, an expansion of a single frequency will not suffice, and a more sophisticated approach
is required. It might consist in expanding the effective free-space cyclotron-frequency ωc and
the effective axial frequency ωz , which are both present in the equations of motion (2.16) and
the expression (2.23) for the radial frequencies ω±. Section 5.2.2 gives an example. Fortunately,
there is a simpler formalism, if we are willing to settle for first-order frequency-shifts. The
formalism draws heavily from References [128, 155], and the concept of searching for resonant
terms is very similar, although the notation is somewhat different. We will demonstrate the
approach for the axial mode first, because we have a result to compare with.
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3.4. First-order perturbative method

3.4.1. The one-dimensional anharmonic oscillator revisited

For the Lindstedt–Poincaré method of Section 3.2.2, the first-order frequency-shift was deter-
mined by the zeroth-order solution alone, because the acceleration caused by the additional term
was of first order right from the start. Therefore, the first-order correction to the trajectory z(t)
did not have to be calculated, and we are free to drop its series expansion (3.19). The first-order
frequency-shift followed from absorbing a resonant term, which resulted entirely from the
zeroth-order solution being inserted into the additional term, as a frequency-shift. Therefore,
we will use the solution

z̃(t) = ẑ cos(ω̃zt + φ̃z ) (3.84)

from the unperturbed case with a little twist. The tilde on ω̃z indicates that the frequency has
yet to be determined. In the perturbed case, it is not fixed by Equation (2.17).

From the physical perspective, the resonant term is interpreted as follows: while the particle
travels along the trajectory, the additional term gives rise to new forces, most of which are
nonresonant, and only lead to small oscillations at their nonresonant frequency. Since these
forces are essentially generated by the motion of the particle—they would not be present if the
particle were at rest30—the particle’s response is like a motional sideband. The particle also
experiences resonant forces that look like the main force, which gave rise to the original motion.
If these resonant forces are always in phase with the main force, they do not act like a resonant
drive. Instead, they add coherently to the main force. When discussing the sinusoidally driven
harmonic oscillator (3.25), the phase φd of the drive was not related to the phase of the motion.
Since the phase of the motion with respect to the drive changes upon excitation, the drive term
could not be absorbed as a frequency-shift. Instead, the resonant drive resulted in a secular
term, which caused Equation (3.27) to diverge with time. For the motional drives generated
by the anharmonic terms, the situation is different, because the force is produced from the
motion itself. Therefore, the frequency and the phase-relationship are fixed—something not
accomplished with an external drive. Of course, Equation (3.27) suggests that a phase relative
to the drive is imprinted on the ion by exciting it long enough on resonance. However, the
anharmonic terms generate resonant terms with a phase relative to the motion, and not the
other way around, as the external drive would do.
In short, the resonant drive terms that are always in phase with the original (zeroth-order)

trajectory z̃(t) are absorbed by the dimensionless parameter εz in the effective equation of
motion31

¨̃z(t) + ω2
z (1 + εz ) z̃(t) = 0 . (3.85)

The nonresonant terms are ignored because the do not cause a first-order frequency-shift. If
they were not present, ω̃z = ωz

√
1 + εz would be the exact frequency. For |εz | ≪ 1, as in the

30To be more precise, we should say that the particle would not be subject to additional forces, if it sat at the
(unstable) equilibrium position of the electrostatic potential, which entails staying at rest in the Penning trap.

31 Originally, when only cylindrically-symmetric imperfections were considered [82, 84], the parameter εz was
called γz , in order to avoid confusion with the perturbation parameter ϵ . When the calculation was extended to
relativistic effects, the Lorentz factor γ posed the bigger threat. A similar parameter in Equation (3.105) was
renamed accordingly.
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3. Perturbation theory

case of small anharmonic perturbations, the relative first-order frequency shift is given by

∆ωz

ωz
=
εz
2 (3.86)

after expanding the square root. Generally speaking, we define the frequency-shift as the
difference between the perturbed frequency ω̃i and the unperturbed frequency ωi :

∆ωi = ω̃i − ωi . (3.87)

When we use this formalism that is specially geared towards first-order frequency-shifts, we
will not explicitly stress that ∆ωi is good to first order only.

With the technicalities laid out, we apply the formalism to the anharmonic oscillator (3.17).
Resonant terms to be absorbed in the effective axial equation of motion (3.85) are expressed as

εz z̃(t) = ϵκη

ω2
z

〈�
z̃(t)�η−1〉

ω̃z
(3.88)

in our notation. Like in several sections before, Equations (3.2) and (3.5) show that an oscillatory
term at the perturbed axial frequency ω̃z is present only if the exponentη−1 is odd. Consequently,
η has to be even, and we write η = 2n. With the help of Equation (3.7), the resonant contribution
is found as 〈�

z̃(t)�2n−1〉
ω̃z
=
ẑ2n−1

22n−1
(2n)!
(n!)2 cos(ω̃zt + φ̃z ) = ẑ2n−2

22n−1
(2n)!
(n!)2 z̃(t) . (3.89)

In the last step, one factor of ẑ is used to write the result as proportional to z̃(t), such that
it fits into the effective equation of motion (3.85) for the first-order frequency-shift. With
κ2n from Equation (3.17) and the substitution ϵ = C2n , the result is related to the first-order
frequency-shift

∆ωz

ωz
=
C2n
C2

n

22n
(2n)!
(n!)2

ẑ2n−2

d2n−2
(3.90)

with the help of Equation (3.86). This expression agrees with the result (3.34) from the Lindst-
edt–Poincaré method.

Quantum-mechanical analogy

The treatment of terms that are in phase with the zeroth-order solution as a frequency-shift
is similar to the calculation of the first-order energy-shift in quantum-mechanical perturba-
tion theory. Suppose there is no closed-form solution of the Schrödinger equation for the
Hamiltonian Ĥ = Ĥ0 + ϵĤp, where Ĥp describes the time-independent perturbation, while
the eigenvalue problem Ĥ0 |Ψ0⟩ = E0 |Ψ0⟩ for the unperturbed operator Ĥ0 has an analytic
solution. The dimensionless perturbation32 parameter ϵ has already been introduced in the

32We could also consider it an order parameter, which will be set to unity at the end of the calculation. However,
we want to stress the similarity with our formalism of classical perturbation theory here.
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3.4. First-order perturbative method

Hamiltonian Ĥ to do the bookkeeping of the individual orders in the perturbative expansion of
the state33

|Ψ⟩ = |Ψ0⟩ + ϵ |Ψ1⟩ + ϵ2 |Ψ2⟩ + . . . (3.91)

and its corresponding energy

E = E0 + ϵE1 + ϵ
2E2 + . . . . (3.92)

Setting ϵ = 0 recovers the unperturbed case. For convenience, quantum-numbers are not shown;
the subscripts refer to the order of the expansion. Such an expansion is possible for all the
eigenstates. Of course, the wave functionsΨi and the coefficients Ei will differ for different
quantum-numbers.
Since the Schrödinger equation has to be solved for eigenvalues and eigenstates, it is only

natural to expand both quantities in the perturbation parameter right away. When the original
state is affected by a perturbation, so is the corresponding energy. The expansions are not
independent, because the energy E is related to the state by the Hamiltonian Ĥ . Equation (3.92)
results by applying ⟨Ψ |Ĥ from the left to Equation (3.91). On the right-hand side, the expansion
of ⟨Ψ | in the perturbation parameter ϵ is to be used.34 Despite this relation, the additional
expansion (3.92) for the energy E as an actual observable is convenient.
The situation was not quite so obvious in the classical case of the anharmonic oscillator,

and the need for two powers series expansion did not became clear at first sight. Because the
frequency-shift was supposed to be contained in the trajectory, Section 3.2.1 featured only
the power series (3.19) for the trajectory—the classical equivalent of expanding the quantum-
mechanical eigenstate (3.91). This ansatz was soon found to be too restrictive to account for
frequency-shifts. The Lindstedt–Poincaré method of Section 3.2.2 added the expansion (3.28)
of the fundamental frequency—the equivalent of expanding the energy (3.92) here. Section 3.4.1
simplified the formalism by restricting it to the first-order frequency-shift.

Quantum-mechanical perturbation theory has a similar prescription for the first-order energy-
shift. Assuming that the energy E0 is a nondegenerate eigenvalue35 of the unperturbed Hamil-
tonian Ĥ0, the first-order coefficient E1 in the series expansion (3.92) of the energy is

E1 =
〈
Ψ0

���Ĥp
���Ψ0

〉
(3.93)

in the usual bra–ket notation for the inner product. Like the first-order frequency-shift in the
classical case, the quantum-mechanical first-order energy-shift ϵE1 is determined entirely by
the zeroth-order solution (and the perturbation, of course).36 Here, these are the eigenstate |Ψ0⟩
33Unlike in the classical case, there are no initial conditions the pure state |Ψ⟩ has to satisfy, provided the ion is not

in a superposition of states. However, the interpretation of the absolute value of the wave function squared |Ψ |2
as a probability density demands the normalization ⟨Ψ |Ψ⟩ = 1, because the total probability of the particle being
in this state has to be unity.

34The perturbation parameter ϵ has to be a real number. With ϵ complex, the Hamiltonian Ĥ would not be Hermitian,
even if Ĥ0 and Ĥp were.

35If several unperturbed eigenstates had the same energy, the first-order energy-shift E1 would have to be calculated
for superpositions of these degenerate states.

36In second order, the situation is no longer that simple. Calculating E2 requires the whole orthogonal set of
eigenstates and their eigenvalues for the unperturbed Hamiltonian Ĥ0.
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and the Hamiltonian Ĥp. In the classical case, the corresponding quantities are the zeroth-order
trajectory and the acceleration by the additional term in the equation of motion. Speaking in
orders of perturbation theory, the perturbation Ĥp may alter the energy of the state |Ψ⟩ even
before it affects the wave function of the state as such. In the classical case, the additional
acceleration may shift the frequency before it adds new terms to the trajectory. The cautionary
“may” in both statements signals that not every perturbation causes a first-order energy-shift or
frequency-shift, respectively. However, a first-order change of the state or the trajectory is not
optional. If there is none, there is typically no need for perturbation theory.

Here, Equation (3.93) projects the perturbation Ĥp onto the original state |Ψ0⟩. What remains
from the projection—the component that is not orthogonal to the original state—results in the
first-order energy-shift. The orthogonal components first manifest themselves in |Ψ1⟩, as a
correction to the unperturbed state |Ψ0⟩, which eventually results in higher-order energy-shifts.
Similarly, the first-order frequency-shift is determined by the component of the acceleration
that is in phase (and in resonance) with the original motion. In that sense, the nonresonant
contributions are orthogonal when averaged over one period of the original motion. They add
small oscillations to the trajectory without causing a first-order frequency-shift. Although the
functional form of the trajectory contains the frequencies of the motion, there is no general
recipe like Equation (3.93) to extract the frequency-shift. Instead, the additional acceleration
has to be translated into a frequency-shift based on the equation of motion.

3.4.2. Generalization to the radial modes

The implementation of first-order perturbation theory for the first-order frequency-shift to
the radial modes is very similar to the formalism from Section 3.4.1 for the axial mode. In fact,
it was developed with the radial modes in mind. We tested it on the simpler axial mode first,
which is one-dimensional and has only one characteristic frequency, in order to gain some
familiarity, before turning to the more complex radial modes here.
As the zeroth-order solution for the particle’s coordinates, we will use

x̃(t) = ρ̂+ cos(ω̃+t + φ̃+) + ρ̂− cos(ω̃−t + φ̃−) , (3.94)
ỹ(t) = −ρ̂+ sin(ω̃+t + φ̃+) − ρ̂− sin(ω̃−t + φ̃−) , (3.95)
z̃(t) = ẑ cos(ω̃zt + φ̃z ) . (3.96)

To first order in the frequency-shift, the amplitudes ρ̂± and ẑ of the zeroth-order solutions may
be thought of as the amplitudes of the eigenmotions. The zeroth-order solutions, indicated
with a tilde, almost look like the solutions (2.30)–(2.32) from the ideal Penning trap, where
the frequencies ωz and ω± were given by Equations (2.17) and (2.23), respectively. However,
the tilde on top of the frequencies indicates that they need to be determined. To this end,
resonant terms at the radial frequencies have to be identified. Before we get to the details, we
will introduce some more pieces of notation.
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The zeroth-order velocity follows from the time-derivative of the coordinate as

˙̃x(t) = −ω̃+ρ̂+ sin(ω̃+t + φ̃+) − ω̃−ρ̂− sin(ω̃−t + φ̃−) , (3.97)
˙̃y(t) = −ω̃+ρ̂+ cos(ω̃+t + φ̃+) − ω̃−ρ̂− cos(ω̃−t + φ̃−) , (3.98)
˙̃z(t) = −ω̃z ẑ sin(ω̃zt + φ̃z ) . (3.99)

Because resonant terms occur at both radial frequencies, the abbreviations

x̃± = ⟨x̃⟩ω̃± = ρ̂± cos(ω̃±t + φ̃±) , (3.100)
ỹ± = ⟨ỹ⟩ω̃± = −ρ̂± sin(ω̃±t + φ̃±) (3.101)

for the coordinates of the two radial eigenmotions are convenient. The same holds for the
associated velocities

˙̃x± =
〈 ˙̃x〉

ω̃±
= −ω̃±ρ̂± sin(ω̃±t + φ̃±) , (3.102)

˙̃y± =
〈 ˙̃y〉

ω̃±
= −ω̃±ρ̂± cos(ω̃±t + φ̃±) . (3.103)

The zeroth-order solutions x̃ , ỹ and z̃, as well as the corresponding velocities ˙̃x , ˙̃y and ˙̃z are
time-dependent—with and without the plus–minus sign in the subscript—although we will
often suppress the time-dependence for the sake of space and the visual obstruction by the
extra brackets. The amplitudes ρ̂± and ẑ are constant.

Since the structure of the argument inside the trigonometric functions is very similar for all
three eigenmodes, the short-hand notation

χ̃i = ω̃it + φ̃i (3.104)

similar to Equation (2.33) saves space.
After inserting the zeroth-order coordinates and velocities into the equation of motion beyond

the ideal Penning trap, all the terms that are proportional to a component of the zeroth-order
solutions are to be collected in the effective radial equations of motion37( ¨̃x±

¨̃y±

)
= ωc(1 + β±)

( ˙̃y±
− ˙̃x±

)
+
ω2
z (1 + ε±)

2

(
x̃±
ỹ±

)
. (3.105)

The change in frequency is expressed by the dimensionless parameters β± and ε±. The subscript
indicates that they may be different for the two radial modes.38
Nonresonant terms are ignored by the effective equation of motion (3.105), because they

do not give rise to a first-order frequency-shift. If they were absent, the complete equation
of motion would have been solved by the zeroth-order ansatz, and the radial frequencies ω̃±
37 The parameter ε± was originally called γ± for cylindrically-symmetric imperfections [82, 84]. It was renamed,

when the relativistic Lorentz factor γ came into play. A similar parameter in Equation (3.85) was also renamed.
Since the parameter β± stayed, we will not use β = 3/c for the velocity 3 normalized to the speed of light c .

38Even though it also parametrizes frequency-shifts caused by higher orders in the magnetic field, the parameter β±
is not to be confused with the βη used in some publication as the dimensionless equivalent of the Bη , which
characterize components of the magnetic field.
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would be calculated exactly by making the replacements ωc → ωc(1 + β±) and ω2
z → ω2

z (1 + ε±)
in Equation (2.23). Note that the parameter β± describes a relative change of the effective
free-space cyclotron-frequency, whereas the parameter ε± describes a change of the effective
axial frequency squared. Typically, neither ωc(1 + β±) nor ωz

√
1 + ε± represent actual motional

frequencies in the problem. According to Equation (3.85), the actual axial frequency is given by
ωz
√
1 + εz .

To warrant a perturbative treatment, we expect the anharmonic frequency-shifts to be small.
For |β± | ≪ 1 and |ε± | ≪ 1, a Taylor expansion of Equation (2.23) about the unperturbed
frequencies ωc and ω2

z yields the first-order frequency-shift.39 Before taking the corresponding
derivatives of Equation (2.23), we use this equation to establish the link

ω+ − ω− =
ωc
|ωc |

√
ω2
c − 2ω2

z (3.106)

between the difference of the radial frequencies and the term with the square root. The pref-
actor ωc/|ωc |, which gives the sign of the free-space cyclotron-frequency ωc, is of no concern
for the derivatives, because it is constant where the radial frequencies are real, that is, for
|ωc | ≥

√
2ωz . At ωc = 0, where the prefactor is discontinuous, the storage of a particle is not

possible, and this point is of no practical interest.
The derivative of the radial frequenciesω± from Equation (2.23) with respect to the free-space

cyclotron-frequency ωc is

∂ω±
∂ωc
=

1
2

*
,
1 ± ωc
|ωc |

ωc√
ω2
c − 2ω2

z

+
-
=

1
2
ω+ − ω− ± (ω+ + ω−)

ω+ − ω−
=
±ω±

ω+ − ω−
. (3.107)

The second step uses the sideband identity (2.25) and the property ωc/|ωc | = |ωc |/ωc for
the prefactor of the square root in Equation (3.106). Similarly, the derivative of the radial
frequencies ω± with respect to the axial frequency squared ω2

z becomes

∂ω±

∂ω2
z
= ±

1
2
ωc
|ωc |

−1√
ω2
c − 2ω2

z

=
∓1

2(ω+ − ω−) . (3.108)

Figure 3.1 shows the dependence of the radial frequencies on ωc and ω2
z , and it visualizes some

properties of the derivatives.
Finally, the first-order frequency-shift associated with the parameters β± and ε± is given by

ω̃± = ω± +
∂ω±
∂ωc

ωcβ± +
∂ω±

∂ω2
z
ω2
zε± + . . . (3.109a)

= ω± ±
ω±ωc

ω+ − ω−
β± ∓

ω+ω−
ω+ − ω−

ε±︸                             ︷︷                             ︸
∆ω±

+ . . . . (3.109b)

In the last step, the axial frequency squared is written as a product of the radial frequencies
according to Equation (2.26), in order to express shifts to the radial frequencies as a function
39Since the radial frequenciesω± are a function ofω2

z , and the parameter ε± in the effective equations ofmotion (3.105)
describes a change of the effective ω2

z , it is easier to work with the axial frequency squared here.
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3.4. First-order perturbative method

of these frequencies. The singularity for ω+ = ω− reminds us that we have to be careful at the
limit of stability.
As usual, the upper symbol has to be used for the shift ∆ω+ to the reduced cyclotron-

frequency ω+ (indicated with a plus in the index), whereas the lower symbol has to used for the
shift ∆ω− to the magnetron frequency ω− (indicated with a minus in the index). However, one
of the two expression suffices. The other one is then generated with the substitution ± → ∓ in
the indices alone, while the denominator takes the role of swapping the plus–minus signs in
front of the fractions. We will use this technical symmetry later on for checking basic properties
of the frequency-shifts.

Although it may look like in the effective equations of motion (3.105) that the parameter β± is
associated with frequency-shifts caused by the magnetic field, while the parameter ε± contains
frequency-shifts caused by the electrostatic potential, the parameters are interchangeable. There
are no strictly β±-like or ε±-like shifts. Since the zeroth-order coordinates and velocities may
be interchanged as ˙̃x± = ω̃±ỹ± and ˙̃y± = −ω̃±x̃± according to Equations (3.100)–(3.103), a term
associated with β± in the effective equations of motion (3.105) is rewritten as

ωcβ±

( ˙̃y±
− ˙̃x±

)
= −ωcβ±ω̃±

(
x̃±
ỹ±

)
(3.110)

to take the form of a term associated with the parameter ε±, given by

ε± = −
2ωcω̃±

ω2
z

β± = −
ωcω̃±
ω+ω−

β± . (3.111)

We have used Equation (2.26) to remove the axial frequency, which is present in the effective
equations of motion (3.105), but absent in Equation (3.109b) for the frequency-shift. To first
order in this frequency-shift, the difference between ω̃± andω± in the prefactor is safely ignored,
because the frequency-shift (3.109b) is already of first-order due to the presence of β± and ε±.
Consequently, the replacement ω̃± → ω± is fine in the condition (3.111), and two parameters β±
and ε± with this relation give the same first-order frequency shift. For the actual calculation, it
is thus a matter of taste whether the resonant terms are written as proportional to velocities
and absorbed in β±, or written as proportional to coordinates and absorbed in ε±. Typically, the
origin of an additional term and its prefactors will favor one alternative.

3.4.3. Spurious motional resonances

The major part of calculating first-order frequency-shifts is to insert the zeroth-order solutions
from the ideal Penning trap (with the perturbed eigenfrequencies left to be determined) into
the additional contributions beyond the ideal configuration. The resulting powers of oscillatory
terms are decomposed such that the frequency of the individual terms is readily analyzed. So
far, we have classified them as nonresonant and resonant terms. The former are ignored in the
effective equations of motion (3.85) and (3.105), because they do not give rise to a first-order
frequency-shift, whereas the resonant terms do. In order to incorporate these as a first-order
frequency-shift in the effective equations ofmotion, the resonant terms have to be proportional to
some component of the zeroth-order trajectory or velocity. For the one-dimensional anharmonic

81



3. Perturbation theory

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

√
2

ωc

ωz

ωi

ωz

ωz

ωz

ω−
ωz

ω+

ωz

ωc

ωz

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5

ω
2
z

ω
2
c

ωi

ωc

ωz

|ωc |

ω−
ωc

ω+

ωc

ωc

ωc

Figure 3.1.: Dependence of the radial frequencies ω± from Equation (2.23) on the free-space
cyclotron-frequency ωc (left) and the axial frequency squared ω2

z (right). For space,
negative radial frequencies (as a consequence of ωc < 0) are not shown. The left
graph (apart from ωz/ωz ) would be obtained by point reflection at the origin, see
Figure 2.3. The right graph would not change because of its normalization, which
cancels the overall sign. The frequencies are normalized to ωz (left) and ωc (right).
In both cases, there is a vertical derivative at the limit of stability—the singularity in
Equations (3.107) and (3.108) for ω+ = ω−. The reduced cyclotron-frequency grows
more strongly with ωc than the free-space cyclotron-frequency itself, and hence the
corresponding derivative (3.107) is larger than unity. The dependence of the radial
frequencies ω± on ω2

z is equal in magnitude but opposite in sign. Consequently,
the derivatives (3.108) sum to zero, as expected from the sideband identity (2.25),
because, as its name suggest, the free-space cyclotron-frequency does not depend
on the electrostatic potential.

82



3.4. First-order perturbative method

oscillator considered in Section 3.2, this was always the case—almost miraculously, to the extent
that it may seem natural for resonant terms come with the right phase no matter what. We
shall see that the preservation of the original phase is related to the conservation of energy.
For the one-dimensional anharmonic oscillator, conservation of energy implies that the

amplitude of the motion remains constant. In the Penning trap, the exchange of energy between
the three eigenmodes is conceivable, while the total energy is still conserved in the absence of
damping. Additionally, the electrostatic quadrupole potential (2.2)—the dominant electrostatic
potential even in the non-ideal Penning trap—falls off quadratically in the radial direction,
which results in a negative potential energy of the radial modes. As the total energy (2.49) of
the modified cyclotron mode is dominated by the kinetic energy, no energy is released when the
radius of this mode increases, and the reduced potential energy even further below the saddle
point remains inaccessible. For the magnetron mode, however, the negative potential energy
outweighs the kinetic energy, and the particle would happily roll down the hill in the radial
direction, if the excess energy could be transferred into a different mode.
Since the three modes and the shape of the quadrupole potential in the Penning trap allow

for time-dependent phenomena beyond the oscillations with constant amplitudes at the eigen-
frequencies, we will investigate how higher-order terms may couple different eigenmodes. This
kind of coupling goes beyond the anharmonic effect that the frequency of one mode depends
on the amplitudes of other modes. In that sense, the frequencies rather than the modes as a
whole are coupled. The coupling meant here influences the amplitudes. Its discussion in this
section is not mathematically rigorous, because we will not be able to offer a treatment of
motionally-induced coupling via higher-order terms and the associated anharmonic frequency-
shifts. We will have to stick with the standard mode of operation with constant amplitudes, in
which the excitation or coupling of eigenmodes is accomplished by time-dependent fields. In
this mode, frequency-shifts are calculated for constant amplitudes—before and after, but not
during excitation or coupling.40 Nevertheless, we need to understand when higher-order terms
possibly result in more than just static frequency-shifts, in order to rule out these conditions.
Typically, choosing a particular working point of the Penning trap to realize the stable normal
mode of operation is not problematic.
Suppose a term like cos(ω̃t) in the zeroth-order solution had incurred a phase-shift φ along

its way through the equation of motion, whereas the frequency has not changed. The resulting
term cos(ω̃t + φ) is not proportional to the zeroth-order solution cos(ω̃t) (unless for φ = 0
or φ = π), and the method from Sections 3.4 and 3.4.2 fails to absorb the resonant term as a
first-order frequency-shift. With the trigonometric identity

cos(ω̃t + φ) = cos(ω̃t) cos(φ) − sin(ω̃t) sin(φ) , (3.112)

at least part of cos(ω̃t +φ), namely the first term on the right-hand side, has the correct form to
be dealt with in the usual way as a frequency-shift. However, the second term on the right-hand
side is still unaccounted for, and we need to understand what its consequences are. To this end,

40Damping is typically so slow that the time-dependence of the anharmonic frequency-shift directly reflects the
time-dependence of the amplitudes (raised to the appropriate power).
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3. Perturbation theory

we consider the work41

dW = −F dz = −Fż dt (3.113)

performed by a force F in the z-direction when moving along the way dz.
Basically, the additional terms in the equation of motion describe accelerations or forces.

Thus, the second-term on the right-hand side of Equation (3.112) corresponds to a force F ∝
sin(ω̃t), when the zeroth-order trajectory put into the problem was z̃ ∝ cos(ω̃t). As we are
mainly interested in the time-dependence, we will drop the prefactors and the signs, when
it comes to proportionality. With the zeroth-order velocity ˙̃z ∝ sin(ω̃t), the work becomes
dW ∝ [sin(ω̃t)]2dt . Clearly, the work performed by this additional force does not vanish
when integrated over one cycle of the main oscillation, and hence the energy of the particle
changes. Consequently, the amplitude of the zeroth-order trajectory becomes a dynamical
quantity.42 For the force F ∝ cos(ω̃t), which was incorporated as a frequency-shift, the work
dW ∝ cos(ω̃t) sin(ω̃t)dt = 1/2 sin(2ω̃t)dt averages to zero over one cycle (even a half-cycle)—in
the same way as it does for the harmonic oscillator with its restoring force being proportional
to the displacement. As we have seen in Section 3.2.1, the secular term in Equation (3.27) with
its unbounded increase of the amplitude was an artifact of too simplistic a series solution. The
resonant terms that are in phase with the original motion shift the frequency rather than blowing
up amplitudes. The last statement is not to imply that a term that changes the amplitude has no
influence on the frequency. When the frequency depends on the amplitude, the influence is
obvious. However, even for the harmonic oscillator (setting ϵ = 0 in Equation (3.17), for instance),
adding a damping term 2γ ż on the left-hand side, shifts the frequency ωz → (ω2

z − γ
2)1/2, in

addition to the exponential decay e−γ t of the amplitude.
A force proportional to the velocity is the prototypical example of a phase-changing term.

Since the work dW then depends quadratically on the velocity, the energy of the system always
changes in the same direction. However, damping will not be considered here. Resonant terms
with a phase different from the components of the zeroth-order solution would have to result
from mixing terms at the different eigenfrequencies, see Section C.2 in the appendix. The
resulting terms would then have to be resonant at the eigenfrequency of the eigenmode whose
equation of motion is considered. Of course, we could calculate the whole frequency spectrum
for the specific imperfections rather than just searching for naturally-resonant terms, in order
to prohibit artificial resonance conditions.43 Unfortunately, we would not see the full spectrum
of spurious resonance conditions because of our self-imposed restriction to first-order terms.
Higher orders in perturbation theory add to the frequency spectrum and offer new possibilities
for mixing. Thus, no general rule for avoiding spurious coupling between the modes is to be
expected from our implementation of first-order perturbation theory.

41The sign is chosen such that dW describes the change in potential energy, if the force originates from a potential.
For nonconservative or external forces, the other sign should be chosen, in order to describe the change of
energy in the system. Fortunately, the global sign is of no relevance for the argument here, which is all about
zero or nonzero net work performed by a force.

42We have assumed this change to be so slow over one cycle that this additional time-dependence does not have to
be considered for the integration of dW . The reasoning is hand-waving at best anyhow.

43The report [82] does so for cylindrically-symmetric magnetic and electrostatic imperfections, hoping to identify
all the conditions for spurious resonances. It was only afterwards that I realized how the sentence should go on.
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3.4. First-order perturbative method

A Fourier expansion of the electrostatic potential predicts instabilities when the commensu-
rability condition

j+ω̃+ + j−ω̃− + jzω̃z = 0 , where |j+ | + |j− | + |jz | ≤ η , (3.114)

is fulfilled [89]. The ji are integers—positive, negative or zero—and the parameter η is the same
as in the electrostatic potentialΦη from Equation (2.73). Instabilities [142, 195] in Penning traps
have been observed on trapped ions [75] and electrons [115] as a rapid loss of particles. Even
if a spurious resonance condition is fulfilled, it is hard to judge from the equations whether
the particle will be lost altogether or whether there will be periodic beating between several
modes. In the anharmonic Penning trap, a change of the amplitudes also results in a frequency-
shift, which means that the resonance condition may no longer be satisfied. However, with no
damping present, even near-resonant excitation is likely to have a major impact, too. From the
experimental point of view, we may take the stance: motional instability—hard to predict, but
you know it when you see it. For meaningful ion work with the trap living up to its name by
serving as a storage device, an operating point far away from the instabilities has to be chosen
anyway. Pathological cases would have to be dealt with separately.
Our quest for first-order frequency-shift will thus focus on naturally-resonant terms. With

naturally resonant we mean that no assumptions about the frequencies are necessary for the
term to have the frequency of an eigenmode. These are also the terms that have the right phase
to be written as proportional to a component of the zeroth-order solution.

3.4.4. Conflicting-sign would-be resonant terms in two dimensions

This section deals with an additional effect of the two-dimensional radial modes: terms that do
not quite fit into the pattern for a first-order frequency-shift, even though they oscillate naturally
at the frequency of an eigenmode. Such a term may fit into the first component and the second
component of the effective equations of motion (3.105) individually, but globally it may not be
described by the same parameter β± or ε±. Such a term is related to a break of the cylindrical
symmetry and does not give rise to a first-order frequency-shift. It is tempting to dismiss the
effect as of higher order, and thus small. However, certain imperfections produce a harmonic
frequency-shift, which will not disappear in the limit of vanishing motional amplitudes, of
course. A misalignment of the electrostatic potential with respect to the magnetic field is one
example [14, 15]. Since harmonic shifts are hard to determine experimentally, unless they
depend on an easily adjustable parameter, a theoretical model is particularly valuable. We will
discuss the less cumbersome example of an elliptic electrostatic potential in the following.44
Suppose the potential45

Φ2,ϵ = ϵ
C2V0
2d2

�
x2 − y2

�
= ϵ

m

q

ω2
z

2
�
x2 − y2

�
(3.115)

44The difficulty of treating misalignment for arbitrary angles is also evidenced by the need for a recursive solution
in order to obtain the perturbed frequencies from implicit relations [99]. For the problem we will discuss
perturbatively here, an exact algebraic solution exists [92].

45In case you are enamored with spherical coordinates and associated Legendre polynomials Pmη , the spatial
dependence is x2 − y2 = 1

3r
2P22 (cos(θ )) cos(2ϕ), see Chapter A in the appendix. Clearly, cylindrical symmetry is

violated here.
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is added to the electrostatic quadrupole potential (2.2) of the ideal trap. Most of the prefactors
carry over from there; the axial frequency ωz is from Equation (2.17). As a new feature,
the strength of the additional termΦ2,ϵ is given by the dimensionless ellipticity parameter ϵ
(“ellipticity”). The ellipticity is not associated with a particular ellipse.

For 0 < |ϵ | < 1 and a given z, the equipotential lines of the overall potential, Φ2 + Φ2,ϵ ,
are ellipses in the radial plane, rather than circles.46 For |ϵ | > 1, the equipotential lines are
hyperbolas, which leads to a hyperbolic magnetron orbit and precludes47 trapping [92].
Including the acceleration by the additional electric field

E⃗2,ϵ = −∇⃗Φ2,ϵ = ϵ
ω2
z

2
*..
,

−x
y
0

+//
-

, (3.116)

the radial equations of motion (2.16) of the ideal Penning trap become(
ẍ
ÿ

)
= ωc

(
ẏ
−ẋ

)
+
ω2
z

2

(
x
y

)
+ ϵ

ω2
z

2

(
−x
y

)
(3.117)

for the ideal elliptical Penning-trap. The axial mode is not affected because the electric field
E⃗2,ϵ has a zero z-component.
We will attempt a perturbative solution for |ϵ | ≪ 1 here. Working with the zeroth-order

solutions x̃ and ỹ from Equations (3.94) and (3.95), respectively, would lead to the conflicting
choice ε± = −ϵ for the first component and ε± = ϵ for the second component in the effective
equations of motion (3.105). The additional term, which violates cylindrical symmetry, does
not give rise to a first-order force that is resonant with the original radial modes. For the first
nonvanishing term in the frequency-shift we will have to go to second order with the ansatz

x±(t) = ρ̂±
�
1 + k1,±ϵ + k2,±ϵ2 + . . .

�
cos[(ω± + ω2,±ϵ

2 + . . . )t + φ±] (3.118)
y±(t) = −ρ̂± �

1 − k1,±ϵ + k2,±ϵ2 + . . .
�
sin[(ω± + ω2,±ϵ

2 + . . . )t + φ±] . (3.119)

The dots indicate that terms higher than second-order are not shown explicitly. The coeffi-
cients k1,± and k2,± for the relative change of the amplitude and ω2,± for the frequency-shift48
need to be determined by satisfying the equations of motion (3.117) order by order. The ansatz
is not the most general one; it capitalizes on the general structure of the problem for some
simplifications:

1. The problem is still linear. Therefore, mixing between the two eigenmodes will not occur,
and they may be treated separately. However, we have made provisions—indicated by
the ±-sign in the index of the coefficients—for different changes to the amplitudes and
frequencies of the two radial modes.

46The equipotential lines of the additional potentialΦ2,ϵ alone are hyperbolas. That is why we refrain from calling
it an elliptic potential, even though it carries the ellipticity parameter ϵ .

47See Reference [126]—never mind the misplaced factor of 1/2 in Equation (1)—for the motion in the limit of |ϵ | ≫ 1,
that is, in the potentialΦ2,ϵ without the quadrupole componentΦ2.

48Since we are expanding the frequency rather than its square as in Equation (3.28), the frequency-shift parameter
is called ω2,± rather than ω2

2,± accordingly.
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2. For ϵ > 0, there is an additional restoring force in the x-direction and an additional
repulsive force in the y-direction. When ϵ changes sign, the roles of x and y reverse, but
the magnitude of the effect remains the same. Consequently, the frequency should not
depend on the sign of ϵ , and a term ω1,±ϵ is absent from the expansion of the frequency
inside the trigonometric functions.

3. When the roles of x and y reverse upon flipping the sign of ϵ , the amplitudes should
exchange their roles, too. That is why the coefficient k1,±, which is multiplied with the
sign-sensitive ϵ , comes with different signs in Equations (3.118) and (3.119), while the
coefficient k2,±, which is multiplied with the sign-invariant ϵ2, comes with the same sign.

Having justified the ansatz from Equations (3.118) and (3.119), we plug it into the equations
of motion (3.117). Defining σ = +1 for the first component and σ = −1 for the second one, the
constraints from both components are shown in one equation:

− σ
�
ω± + ω2,±ϵ

2 + . . .
�2 �

1 + σk1,±ϵ + k2,±ϵ2 + . . .
�

= −σωc
�
ω± + ω2,±ϵ

2 + . . .
� �
1 − σk1,±ϵ + k2,±ϵ2 + . . .

�

+ σ
ω2
z

2
�
1 + σk1,±ϵ + k2,±ϵ2 + . . .

� (1 − σϵ) , (3.120)

where we have already removed the common factors of ρ̂± and the trigonometric functions.
The power series expansion of the frequency is present because of the time-derivatives in the
velocity and the acceleration. After expanding the square of the series as

�
ω± + ω2,±ϵ

2 + . . .
�2
≈ ω2

± + 2ω±ω2,±ϵ
2 + . . . , (3.121)

correct to second order, we are ready to look at the orders individually.
Zeroth-order essentially yields the characteristic equation (2.22) of the radial frequencies

in the ideal trap and is satisfied by design.49 Regardless of σ , the terms of first-order in the
ellipticity parameter ϵ impose the condition

−k1,±ω
2
± = k1,±ωcω± + k1,±

ω2
z

2 −
ω2
z

2 (3.122)

on the coefficient k1,±. This condition simplifies to

ω2
z

2 = k1,±
(
ω2
± + ωcω± +

ω2
z

2

)
= k1,±

(
ω2
± − ωcω± +

ω2
z

2︸               ︷︷               ︸
0

+2ωcω±

)
= 2k1,±ωcω± (3.123)

with the definition (2.22) of the radial frequencies. Via Equation (2.26) for the axial frequency
squared, the coefficient becomes

k1,± =
ω2
z

4ωcω±
=

ω∓
2ωc

. (3.124)

49That is good news. If the zeroth-order problem were not easy to solve, there would be no point in choosing
this particular form of the perturbative expansion. Fortunately, we have not been challenged concerning
the choice—or even introduction—of a small perturbation parameter, which has always suggested itself quite
naturally.
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Expanding the exact solutions (59)–(63) of Reference [92], which are too bulky to reprint here,
about ϵ = 0 yields the same first-order correction.50
The shape of the magnetron mode is affected more strongly than the shape of the modified

cyclotron-motion. Given that the former motion is similar to an E⃗ × B⃗ drift, whereas the latter
motion is dominated by the magnetic field, it comes as no surprise that the influence of the
electrostatic field is more pronounced in the magnetron mode. This tendency also impairs
motional averaging of imperfections by the magnetron motion [160]. As discussed in Section 2.2,
averaging imperfections along a circular path leads to effective cylindrical symmetry, which
justified the corresponding parametrization. Violating cylindrical symmetry for an imperfection
of the lowest order already, the slow magnetron mode is the gateway for the effects of other
imperfections.
As usual with Penning traps, we are more interested in the frequency-shift than in the

actual shape of the trajectory, and we will have to go to second order to extract the relevant
coefficient ω2,±. It is related to the other coefficients by

−σ

(
2ω±ω2,± + ω

2
±k2,±

)
= −σ

(
ωcω±k2,± + ωcω2,± −

ω2
z

2 k2,± +
ω2
z

2 k1,±

)
. (3.125)

Like in first-order, there is only one condition, regardless of σ , which sounds like bad news,
because the coefficient k2,± is unknown, too. Before questioning and overhauling the ansatz, a
recurrent theme in this thesis saves us: the second-order frequency-shift does not depend on the
second-order change to the trajectory. The statement also holds for first order, of course. In its
incarnation here, this fundamental principle has it that the prefactors of the coefficient k2,± fulfill
the characteristic equation (2.22) of the radial frequencies. Withk2,± gone,51 the condition (3.125)
for the second-order frequency-shift parameter ω2,± reads

ω2,± (2ω± − ωc) = ±ω2,± (ω+ − ω−) = ω2
z

2 k1,± . (3.126)

With the first-order coefficient k1,± from Equation (3.124), the result becomes

ω2,± = ±
ω2
z

2(ω+ − ω−)
ω−
2ωc
= ±

ω+ω−ω∓
2(ω+ − ω−)(ω+ + ω−) = ±

ω±
2

ω2
∓

ω2
+ − ω

2
−

, (3.127)

while using Equations (2.25) and (2.26) along the way.
Finally, the second-order frequency-shift due to the additional potential (3.115) is given by

∆ω± = ω2,±ϵ
2 = ±

ω±
2

ω2
∓

ω2
+ − ω

2
−

ϵ2 . (3.128)

50With respect to the quadrupole potential (2.2) of the ideal Penning trap, we have defined the additional poten-
tial (3.115) with the same sign as in Reference [92]. In References [12, 19, 50] for instance,Φ2,ϵ comes with a
global minus, probably to match the negative sign of x2 + y2 in the quadrupole potentialΦ2. The results should
be identical after flipping the sign of ϵ , but one has to pay attention to the convention.

51Not being able to determine the coefficient here does not imply k2,± = 0. Expanding the exact solutions (59)–(63)
of Reference [92] shows that such a term should be present. Of course, only the calculation of more terms would
show whether the perturbative expansion here converges to the exact solution, even as |ϵ | → 1.
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The magnitude of the modified cyclotron-frequency increases; the absolute value of the mag-
netron frequency decreases. Like for the trajectory, the magnetron mode is also affected more
strongly concerning its frequency, both in the relative and the absolute sense. The explanation
carries over.

The result (3.128) agrees with the perturbative treatment in Reference [72], which leaves the
actual method unspecified. In the limit of |ω− | ≪ |ω+ |, which Reference [19] also used when
calculating the shifts via the characteristic equation for the three frequencies in a Penning
trap perturbed by misalignment and ellipticity, there is agreement, too. The exact expression
—Equations (25) and (26) of Reference [92] (with angular frequencies defined to be positive)—
rewritten here as52

ω±(ϵ) =
√

1
2

�
ω2
+ + ω

2
−

�
±
1
2

√�
ω2
+ − ω

2
−

�2
+ 4ϵ2ω+ω− , (3.129)

using Equations (2.25)–(2.27), produces the same second-order53 term (in ϵ) when expanded
about ϵ = 0.
When determining the free-space cyclotron-frequency via the sideband-cyclotron iden-

tity (2.25) from a measurement of both radial frequencies, the calculated frequency is shifted
from the true value ωc by

∆ωc = ∆ω+ + ∆ω− = −
ω+ω−
ωc

ϵ2

2 ≈ −ω−
ϵ2

2 . (3.130)

The last step is valid for ω+ ≈ ωc, or equivalently |ω− | ≪ |ω+ |, which is the case in typical
experiments. In this limit, the result of Reference [50] is reproduced. In any case, the shift due
to an elliptic potential does not vanish in the sideband-cyclotron identity (2.25).
Through the invariance theorem (2.27), the second-order shift vanishes:

(ω+ + ∆ω+)2 − ω2
+ + (ω− + ∆ω−)2 − ω2

− ≈ 2ω+∆ω+ + 2ω−∆ω− + . . . = 0 + . . . . (3.131)

The dots indicate the absence of terms higher than second order. This cancellation is more
general and should occur in all orders because the invariance theorem holds54 for all values of ϵ
for which trapping is possible [19, 92].
Given these general results, the use of perturbation theory in this context—other than for a

pedagogical benchmark—may be second-guessed, asking whether it is not second best. However,
the nonperturbative inclusion of ellipticity via the exact result [92] necessitatesmore complicated
zeroth-order solutions of the Penning trap as the starting point for the perturbative treatment
of other imperfections. Therefore, we wanted to check whether ellipticity lends itself to a

52These radial frequencies are also obtained by solving the characteristic equation (13) of Reference [46] in the
absence of damping. Comparing their radial equations of motion (4)–(5) with our Equation (3.117) shows that
our ellipticity parameter ϵ fits their notation with the replacements 2w2

x → ω2
z (1 − ϵ) and 2w2

y → ω2
z (1 + ϵ).

53As we argued when justifying our ansatz, the frequency does not depend on the sign of ϵ . Concerning the
frequency, but not the trajectory, an expansion in ϵ2, with ϵ2 counting as the first order, is practicable.

54For ellipticity alone, this is obvious from the exact expression (3.129) for the radial frequencies in an elliptical trap.
Summed in quadrature, the remaining square roots cancel because of their different signs—their argument being
the same. The unperturbed radial frequencies squared remain.
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perturbative treatment—for |ϵ | ≪ 1, of course. It does, and, more importantly, it does so in
conjunction with the imperfections which this thesis considers in detail. To zeroth order in the
amplitude, the ansatz of Equations (3.118) and (3.119) is still identical to Equations (3.94) and
(3.95), which were inspired by solution in the ideal Penning trap.

With the new ansatz, cross-terms of ϵ with the perturbation parameter of other imperfections
will arise, while the pure terms remain. These cross-terms are of higher order, and, for most of
the imperfections considered in this thesis, they will depend on the particle’s amplitudes. Like
for other anharmonic frequency-shifts, their effect—if not small enough already—is removed
by extrapolating the measured frequencies to zero motional amplitudes, while the harmonic
shift by the ellipticity remains. If the ellipticity were large, the trap would most likely exhibit
higher-order imperfections beyond cylindrical symmetry, which would require a dedicated
treatment55 anyway [92, 123]. Therefore, we will proceed with the original ansatz, retaining
only the harmonic frequency-shift by ellipticity as its major consequence.

Of the two low-order imperfections ellipticity and misalignment of the electrostatic potential
with respect to the magnetic field, ellipticity is probably much harder to tune in an experi-
ment, and hence deserved a closer look. Whereas appliances for in-situ alignment are often
installed, traps typically do not feature dedicated electrodes for tuning ellipticity, even though
the parameter ϵ may incidentally be adjusted via segmented electrodes [16]. However, their
original purpose—manipulating the ion’s motion or picking up its signal—is different, and a
reduction in |ϵ | may entail anharmonic terms in exchange. From the experimental side, the
tuning of ellipticity is paid little attention to, other than striving to eliminate it by manufac-
turing traps with perfect cylindrical symmetry. Either one inevitably has to live with a certain
amount of ellipticity as in the case of the time-of-flight ion cyclotron-resonance method, or its
effect—and the effect of misalignment—cancels in the invariance theorem (2.27) when all three
eigenfrequencies are measured.

55The same point must be made about misalignment, insofar as the electrostatic potential and the magnetic field do
share the same principle axes.
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In this chapter, the perturbative method outlined in Chapter 3 is used to calculate the first-order
frequency-shifts caused by cylindrically-symmetric imperfections (Section 4.1) and relativistic
effects (Section 4.2). This succession reflects the chronological order of the original calculation.
These two sections are largely based on the two papers [84] and [83], respectively, of which
I am the first author.1 There is also my earlier report [82] on the frequency-shifts caused by
cylindrically-symmetric imperfections, which still uses a different notation. The notation has
been improved over the course of some revisions. Apart from renaming a parameter γ in
the paper [84] to ε in Section 4.1 to avoid confusion with the relativistic Lorentz factor in
Section 4.2 (see footnotes 31 and 37 in Chapter 3), the notation should be consistent with the
papers. At times, the description is more detailed here in an attempt to be more pedagogical.
Owing to the synergy of presenting the calculation in a single chapter rather than as two
separate papers, some of the basics from Section 4.1 will not be repeated in Section 4.2. A
comparison shows that, while the method is the same, the equations of motion are so different
that cylindrically-symmetric imperfections and relativistic effects are not processed in one fell
swoop. In other words, it is not possible to design a cylindrically-symmetric potential such that
the equations of motion look like the relativistic ones. This being said, it is impossible to reduce
the relativistic equations of motion to the classical ones by adding a cylindrically-symmetric
potential. We shall also see that the relativistic frequency-shifts cannot be entirely compensated
for with the shifts caused by cylindrically-symmetric imperfections. As even the structure of
the frequency-shifts is quite different, two separate sections (and papers) are justified.

In Section 4.3, the results are then used to calculate the shifts for a specific mode of operation,
predominantly used by THe-Trap and its precursor, the UW-PTMS. The content of this section
has not been published because of its limited scope. Moreover, the results are readily obtained
without a new concept from the more general expressions of the prior sections.

The calculation is classical rather than quantum-mechanical because I was more intimidated
by a quantum-mechanical calculation than by the authoritative statement concerning frequency-
shifts from the classic review paper [20] on Penning traps:

“This is a purely classical result, but, as we have just seen, its derivation is easy using
quantum mechanics. Indeed, the frequency shifts could, of course, be computed in
an entirely classical fashion, but they are most easily derived from the classical limit
of the more familiar energy shift formula, which is the path that we are following.”

Apart from being less general, a classical treatment is not conceptually inferior to a quantum-
mechanical one, as long as quantization remains unobservable. Since any quantum theory
should in general reproduce the classical limit, knowing this limit from a classical calculation

1The corresponding preprints 1305.4861 and 1310.4463 are on arXiv.
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4. Calculating first-order frequency-shifts

is essential for comparison. Moreover, an exact solution that goes beyond the ideal Penning
trap is impossible in either case, and all methods rely on perturbative techniques in order to
incorporate the effects of cylindrically-symmetric imperfections and special relativity.
From a practical perspective, giving the classical limit even after a quantum-mechanical

calculation [12, 20] underlines its usefulness, as many experiments are described well classically.
In this case, amplitudes and frequencies are more appropriate than quantum numbers and
energy levels. Because of the particular interest in the electron’s magnetic moment [160], the
theoretical description started from a quantum-mechanical perspective, in order to include spin.
Additionally, the quantization of the electron’s energy becomes important because the emission
of synchrotron radiation cools the modified cyclotron-motion into its quantum-mechanical
ground state. The electron will stay in this state provided thermal excitation by black-body
photons is suppressed. To reach a sufficiently low ambient temperature, a dilution refrigerator
is required [118].
For particles heavier than electrons, radiative cooling is inefficient [20]. Thus, the ground-

state is only accessible with laser cooling [192], and merely reaching the quantum-mechanical
regime with this method is hard enough. Even if the ion itself has a suitable cooling transition,
its energy levels will most likely be subject to large Zeeman shifts in the magnetic field of
the Penning trap. Furthermore, the metastability of the magnetron mode poses an additional
challenge [77]. Despite the ground-state predicted to be in reach [193], laser cooling has not
been universally applied in Penning traps. Instead, most Penning-trap experiments for mass
measurements or the determination of д-factors in heavy systems rely on more universal cooling
methods [78]. Online traps use buffer-gas cooling [137] for ions of low charge. The effective
resistance of the LC tank circuit for nondestructive detection via image currents acts like a
thermal bath, thereby cooling the motion in resonance resistively [32]. Additionally, sideband
coupling [29] mediated by a radio-frequency pulse is used to transfer energy from an uncooled
mode into a cooled one, from which the energy can be removed. However, all these methods
typically leave the particle in the classical domain, technical improvements such as electronic
feedback [65] notwithstanding. Moreover, detecting the particle and measuring its frequencies is
not always possible in the thermal limit. Moving closer to the quantum-mechanical domain with
the help of advanced cooling methods would tremendously reduce systematic limitations arising
from anharmonic effects [151]. Because the anharmonic frequency-shifts given in this chapter
depend at least quadratically on the motional amplitudes, any reduction of the amplitudes
is rewarded disproportionately in the frequency-shifts. At the current level of precision, the
anharmonic shifts would probably become irrelevant in the quantum-mechanical domain, which
fits nicely because the classical calculation does not account for quantization.
For resistively-cooled protons, quantum jumps in the modified cyclotron-motion have re-

cently been on the verge of observation as a shift to the axial frequency in a huge magnetic
inhomogeneity. These ill-controlled jumps driven by noise are a spurious side-effect of the
extreme magnetic inhomogeneity, in which actually the frequency-shift caused by a spin flip
is to be observed [36, 104]. These fluctuations need to be suppressed in order to achieve the
experiment’s goal [105].
Unless for these very special circumstances, quantum jumps in the frequencies related to

changes of the motional quantum numbers are not seen when the experiment otherwise looks
classical. In most cases of large quantum numbers, a classical treatment still yields a relevant
result.
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Since this chapter is entirely theoretical, we are free to make assumptions at our own will,
as long as the mathematical treatment is sound. Of course, we must stay in touch with the
experimental reality for the results to have any significance. It is for the reader to decide how
well the assumptions are satisfied in a particular experiment, but it is for us to spell out the
assumptions explicitly. As far as I can say, they are quite generic and no different from previous
treatments of first-order frequency-shifts.

For the calculation, we assume a pointlike particle devoid of internal degrees of freedom that
could couple to electric and magnetic fields. Clearly, this restriction excludes spin and dipole
moments. Since strictly speaking among stable charged particles only electrons are pointlike,
the requirement should be relaxed in order to encompass the usual ions found in Penning
traps. For a particle to be considered pointlike here, the extent of the charge distribution
must be small compared with the typical scales on which the fields change in a Penning trap,
thereby ensuring that the whole charge distribution experiences the same field strength. For
atomic ions and small molecules, these length-scales are vastly different, and it helps that the
main component of the magnetic field is homogeneous. Although the electric field in the ideal
Penning trap is spatially-dependent, its maximum gradient is limited, because eventually the
radial modes become unstable. At first sight, it seems like the fields of the Penning trap have
little dynamics to add to the charge distribution, because the harmonicity in the ideal case
ensures that the charges orbit with identical frequencies regardless of their relative position,
as long the interaction in the charge distribution can be neglected. However, the fields of the
Penning trap may rearrange the charge distribution as the charges interact with each other.
That is why polarizability may play the role of an effective mass [156]. The effect is small
enough to be treated perturbatively.
We will describe the “pointlike” particle entirely by its charge q and its rest mass m. We

consider only motional degrees of freedom, which are translational, not rotational for a pointlike
particle. Despite the massm, we may safely neglect gravity for a charged particle, even more
so since the Penning trap consists of more than just stray fields. Additionally, the mass of a
trappable particle is limited by the stability condition (2.24). As we assume the particle oscillates
with constant amplitudes, damping or external excitations are ignored. The restriction to a
single particle rules out ion–ion interactions.

4.1. Shifts caused by cylindrically-symmetric imperfections

Given the prevalence of cylindrically-symmetric imperfections in Penning traps, at least the
frequency-shifts caused by the lowest-order imperfections have been calculated multiple times,
as they are of particular experimental relevance. Since the axial mode is often used for detecting
the trapped particle, shifts to the axial frequency by electrostatic imperfections were considered
in the design of traps [47, 158]. The axial line-broadening caused by fluctuations of the motional
amplitudes in combination with anharmonic terms presented a major obstacle to the detection.
With this limitation removed by tunable electrostatic anharmonicity courtesy of correction
electrodes, shifts to the radial frequencies were not dealt with on a general basis. Many results
of these day appeared as abstracts in the Bulletins of the American Physical Society, which
are hard to procure nowadays. However, the limited space means that there was probably not
enough room for an extensive calculation.
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At least, it seems safe to say that there was no general publication dedicated to frequency-
shifts until the review article [20] offered a first comprehensive list for all three eigenmodes in
the Penning trap (and the Larmor frequency for the precession of the spin). Concerning the
paucity of references given, there was not too much prior work to rely on, and the expressions
seem to come out of nowhere. The energy-shift caused by the lowest-order electrostatic and
magnetic imperfections, C4 and B2, respectively, were calculated with a quantum-mechanical
formalism and expressed as a function of the particle’s quantum numbers. For the classical limit
of large quantum numbers, this energy-shift was translated into a frequency-shift, expressed as
a function of the particle’s energy. In this step, the approximation |ω+ | ≫ |ω− | was used.2 The
resulting expressions in the form of matrices are used in many theses and articles, for instance
Reference [168].

Reference [44] derived the frequency-shifts from the quantum-mechanical energy-shift [20]
without making any assumptions about the frequencies. Again, the result was expressed as a
function of the particle’s energies. Evaluating formulas using energies instead of amplitudes
requires some extra care, because the magnetron energy (2.50) is negative. Working with
equations of motions, as will be done in this chapter, naturally yields frequency-shifts as a
function of amplitudes.3

Reference [12] used the quantum-mechanical techniques [20] to calculate the frequency-shifts
caused by the electrostatic imperfections C4 and C6, and gave the result in the classical limit as
a function of amplitudes. Moreover, the effect of the magnetic imperfection B2 on the sideband
cyclotron-frequency (2.25) was calculated.

Without showing any details, Reference [57] used classical techniques to calculate the shifts
caused by (the equivalent of) C4 and B2 to the frequencies of the radial modes and the side-
band cyclotron-frequency. As often, amplitude-dependent terms multiplied with the mag-
netron frequency ω− were neglected against a corresponding term multiplied with the reduced
cyclotron-frequency ω+ in the frequency-shifts, provided the latter term exists.
Reference [22] gives the shifts caused by C4, C6, C8 as well as B2 and B4 to the sideband

cyclotron-frequency without making any assumptions about the hierarchy of the radial fre-
quencies. The calculation is not shown.
In the aforementioned papers, the frequency-shifts are embedded in a larger context, and

the focus is more on their impact than on their origin. Thus, details of the calculation are not
mentioned, and the results are hard to verify without the intermediate steps. References [89, 90]
outline the application of Hamiltonian perturbation theory, based on classical canonical action
and angle variables, to Penning traps. Among other results, the shift caused by (the equivalent
of) C4 and C6 is given for all three eigenfrequencies. The former is expressed in terms of
amplitudes; the latter still uses canonical action variables, a result acknowledged to have “rather
2This is not to imply that the shift ∆ω− to the magnetron frequency is neglected against the shift ∆ω+ to the
reduced cyclotron-frequency, but it relates to approximations in the shifts themselves, where ω− is neglected
against ω+, provided the corresponding term exists.

3We shall see that the frequency-shifts depend on even powers of the amplitudes. Consequently, a sign is not an
issue, unless the amplitudes are mistakenly considered complex quantities. As a reminder, the particle’s initial
phases are encoded as φi inside the trigonometric functions, and the frequency-shifts do not depend on this
component of the initial conditions. If they did, chaos is likely to ensue, and the usefulness of a Penning trap for
precision measurements (characterized by repeatability and reproducibility) would be severely compromised. Of
course, corrections to obtain accurate measurements would be equally hard to apply.
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4.1. Shifts caused by cylindrically-symmetric imperfections

abstract appearance” [89]. The result for the frequency-shift caused by the very particular
inhomogeneous magnetic field is hard to generalize. Rather than treating higher orders in the
magnetic field independently, its total distortion is assumed to originate from the permeability
of the electrodes placed in an otherwise homogeneous magnetic field. Although this model
may describe the overall inhomogeneity sufficiently well in the absence of other magnetic
material nearby, provided the magnetic field originally has no higher-order terms itself, the
resulting magnetic field is calculated analytically only for one special set of electrodes. The
spatial dependence of the magnetic distortions caused by other trap geometries may be very
different, and the same holds true for the resulting frequency-shift. Moreover, apart from a
change of the uniform contribution, only a B2-like term in the particular magnetic field (or
magnetic vector potential, to be more precise) is finally considered, and B2 is determined by the
choice of the geometry and the magnetic permeability of the electrodes. Of course, this quantity
in the prefactor may be adjusted to match any given B2, but higher-order terms beyond B2 have
yet to be included. For maximum flexibility and an increased scope, the frequency-shift should
be calculated for a more general parametrization of the magnetic field.
Imperfections of the magnetic field have also been considered in Fourier-transform ion

cyclotron-resonance (FT-ICR) mass-spectrometry [96, 102, 138]. Employing the Hamiltonian
formalism [89, 90], Reference [102] calculated the frequency-shift caused by (the equivalent of)
B2 and B4 to all the eigenfrequencies. The final result contains the approximation ω+ −ω− ≈ ωc.
When calculated in the context of FT-ICR, frequency-shifts caused by imperfections of the
electric field [69, 101] may involve more than cylindrically-symmetric imperfections, because
this symmetry is not present in cubic trapping cells. In some cases, the theoretical framework
in the FT-ICR community is different from the one for Penning traps with single particles. For
instance, the early papers [69, 138] use a Schrödinger wave-packet approach, and clouds of
ions are considered.
Because individual expressions for frequency-shifts are scattered throughout various pub-

lications without any general result or one comprehensive reference, it is not surprising for
Reference [155] to state:

“Because the two-ion technique requires exploring a larger fraction of the trap,
we need to know the frequency shifts associated with higher order terms in the
expansions of the fields. In previous theses, only expressions for frequency shifts
up to B2 and C4 were presented. These shifts also do not exist in the literature.”

In the light of References [12, 89, 102], the last sentence must be argued with. At least, the
results for higher-order terms in the literature do not seem to be highly visible. Following the
shortage of such expressions, References [128, 155] calculate the frequency-shifts caused by the
electrostatic imperfections C4, C6 and C8, as well as the magnetic imperfections B2 and B4, the
latter using the approximation |ω+ | ≫ |ω− |. In many experiments including theirs, these are
even more than the most relevant terms, and that is why the calculation stopped there. Using
two slightly different approaches, their results agree, thereby adding credibility.

If the results are to be trusted, why are they to be reproduced with a similar method? Maybe,
the approximation |ω+ | ≫ |ω− | could be dropped as it is not justified for all trappable ion. There
seems to be no immediate interest though.
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What could possibly be gained from calculating the frequency-shifts caused by imperfections
of higher order still? It is probably not out of pure curiosity without any motivation from the
experimental side that C10 and B6 would be looked at, because as things stand, the specific
calculation would yield an even longer expression than forC8 and B4. With the actual prefactors
of the amplitude-dependent terms looking more or less random, the calculation looms as
a dull exercise in number crunching. It was not with any specific cylindrically-symmetric
imperfection in mind that I looked at the problem of calculating the associated frequency-shifts
again. Reproducing a known result step by step may be learning experience, but whom do you
trust in case of a discrepancy? It does not help that most of the results follow from an undisclosed
calculation. Why have the shifts caused by the lowest-order cylindrically imperfections been
calculated multiple times when these imperfections are essentially the same because their spatial
dependence is constrained by nature? Of course, a consistent parametrization of imperfections is
desirable for easier comparisons, but one reliable result should do. The problem of discrepancies
in the literature is more frequent than expressed by the statement from Reference [128]:

“The expressions for the effect of C4, C6, and B2 have been given in previous ICR
theses . . . but they are not always consistent with each other. The fact is that in the
past nobody in this lab ever worried about the effect of any term beyond C4 and
B2 quantitatively and there has never been a need for getting the right expression
within a factor of two (and the correct sign).”

In terms of replications by means of citations (not necessarily experimental consequences),
the most prominent case afflicts the shift caused by (the equivalent of) B2 to the sideband
cyclotron-frequency. In Reference [12], which is cited in most publications on the time-of-flight
ion cyclotron-resonance method, a global factor of 1/2 is missing compared to other sources.4
Moreover, there is a sign error in the shift caused by C4 to the sideband cyclotron-frequency,
which may me recognized more easily because of the individual results for the shift ∆ω± to
both radial frequencies alone.5
I do not intend to bash the seminal paper [12] or start a crusade lobbying for or against any

particular result; I merely find it surprising that the discrepancies have not caught anybody’s
attention despite the multitude of papers on the subject. Instead, doubtful results keep being
reprinted [136] or even strangely reshuffled6 [18] as if for a lack of alternatives. This might
suggest that the exact result is either irrelevant or far from trivial. I believe that the problem
runs deeper than the usual propensity to cite what others have cited.
Unless the calculation is made explicit, its result is hard to verify. Even though everyone

should be given the chance to understand the frequency-shifts when they are important, the
results are not open to the public, partly because the calculation is never shown in a hands-on

4As most other sources use the approximation |ω+ | ≫ |ω− |, their result may not look as exact.
5The shift ∆ωz caused by theC6 to the axial frequency has a functional dependence on the radial modes that is very
different from other results, with a partial cancellation for equal radial amplitudes and without a cross-term ρ̂2+ρ̂

2
−.

However, Reference [12] is hardly quoted for this particular result.
6The frequency-shift [12] caused by the magnetic imperfection B2 to the sideband cyclotron-frequency ωc depends
more strongly on the amplitude squared of the magnetron motion than on the amplitude squared of the modified
cyclotron-motion by a factor of ω+/ω−. In Reference [18], the situation is approximately opposite, and the
dependence has the same sign.
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manner, and partly because of the sophisticated mathematical methods involved. Particularly in
the latter case, the final expressions look like a time-honored result, inherited from the ancestors
and passed on for generations. Of course, there is no need to verify what has been proven
correct. Truth does not age, but in science it comes with an explanation. Scientific results should
not be a matter of trust or faith, the controversies being reserved for their interpretation.
The perturbative approach [128, 155] based on classical equations of motion is understood

intuitively on physical grounds, but even then there seems to be something so cumbersome about
the calculation that the results look arcane. Talking about the n as inCn and Bn , Reference [128]
states:

“The algebra becomes quickly overwhelming for n > 6 and so Mathematica was
used to generate all the expressions below.”

Because of this perception, the calculation had not realized its full potential, stopping at C8 and
B4. Sections 4.1.2 and 4.1.3 show how to calculate the first-order frequency-shifts associated with
Cη and Bη consistently. In this way, generating expressions are created from which the explicit
expressions for a specific η follow. Rather than calculating and showing the frequency-shifts
for different η individually, the generating expressions shown in the following sections have all
η covered. For explicit expression regarding the lowest-order imperfections, see Chapter E in
the appendix.
Such general expressions for the frequency-shifts caused by cylindrically-symmetric imper-

fections require a general parametrization of these very imperfections in cylindrical coordinates.
The typical parametrization with Legendre polynomials and spherical coordinates in the lit-
erature, not just for Penning or Paul traps, but also for atom traps [6], has at least reduced
the appeal of a general treatment. It may have looked like there is no general expression for
the coefficients (2.71) and (2.81) that describe the imperfections as a polynomial in cylindrical
coordinates. As the exact value of these coefficients does not have to be known beforehand
to identify the resonant terms that drive the frequency-shifts, a general treatment would still
be useful, even though evaluating the generating expressions would then involve inserting
specific values of the coefficients from a different source. Here, Section 2.2 with its general
expressions for the coefficients aη(k) and ãη(k) comes to the rescue, and its importance should
not be overlooked.
As a little known fact even in the Penning-trap community, a general treatment has been

attempted before without resulting in a peer-reviewed publication so far. Reference [99] uses a
Hamiltonian formalism to calculate the first-order frequency-shifts caused by all cylindrically-
symmetric imperfections of the electric and magnetic field. These equally general results would
make for a great comparison with the expressions presented in the following section. In fact,
the first version of this calculation had been finished when I discovered the result [99], while
looking for a benchmark beyond C8 and B4. Unfortunately, the general expressions for the
frequency-shifts caused bymagnetic imperfections do not depend on the perturbation parameter,
the equivalent of Bη in our case. However, the explicit expressions shown have a different
prefactor which depends on the perturbation parameter. What might therefore look like a minor
misprint of the prefactor in the general expression, is in fact much harder to mend.

The general expressions for the frequency-shifts [99] have not been reprinted in the literature,
and they have not been commented on. A recent review article [107] on the most precise mass
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measurements in Penning traps still cites Reference [128] as the source for the expressions
for frequency-shifts up to C8 and B4. Of course, the absence of evidence for a different general
treatment is not the same as evidence for its absence.7 However, there is no point in having a
general treatment that goes unnoticed, and a possible cross-check with other general expressions
would not take away from this section, which does not have to be the first of its kind to be
useful.

4.1.1. Powers of radial displacement squared

Before getting to the actual calculation of the first-order frequency-shifts caused by static electric
and magnetic imperfections in Sections 4.1.2 and 4.1.3, respectively, it is helpful to derive two
identities for particular frequency-components contained in powers of the radial displacement
squared. For cylindrically-symmetric imperfections, powers of the radial ion displacement play
a crucial role, as they are ubiquitous in the electrostatic potential (2.73), as well as in the axial
magnetic field (2.78) and the radial magnetic field (2.80). The identities derived here are not
necessary to spot the pattern behind the terms that cause a first-order frequency-shift, but they
make the final result much more compact and easy to evaluate. That is why the calculation is
shown in this section in detail.
Summing the ansatz from Equations (3.94) and (3.95) for the zeroth-order trajectory in the

radial place in quadrature yields

ρ̃2 = ρ̂2+ + ρ̂
2
− + 2ρ̂+ρ̂− cos(χ̃b) with χ̃b = χ̃+ − χ̃− . (4.1)

The result is virtually the same as Equation (2.41) for the ideal Penning trap, apart from not
having the difference frequency

ω̃b = ω̃+ − ω̃− (4.2)

fixed as in Equation (2.42). The tilde on top of the frequency indicates a possible deviation from
the radial frequencies (2.23) in the ideal trap.
During the calculation, it will become clear that only even powers of radial displacement

need to be dealt with. In other words, the calculation comes down to analyzing frequency-
components of powers of the radial displacement squared. This is quite fortunate since the
square root in radial displacement ρ̃ alone would greatly complicate a frequency analysis.
The radial displacement squared ρ̃2 comes with a constant component and an oscillatory

component at the frequency ω̃b. Therefore, the frequency-spectrum of ρ̃2n possesses components
at 0ω̃b, 1ω̃b, 2ω̃b, 3ω̃b, . . . ,nω̃b, with a constant component, the fundamental frequency ω̃b, and
its even and odd harmonics. The individual contributions are analyzed best after converting
powers of cosine into a sum of cosines.

7I am indebted to Robin Golser for using this pun in one of his talks. It could also come from Nassim Nicholas
Taleb’s book “The Black Swan: The Impact of the Highly Improbable.”
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Taking Equation (4.1) to the power of n results in

ρ̃2n =
�
ρ̂2+ + ρ̂

2
− + 2ρ̂+ρ̂− cos(χ̃b)

�n (4.3a)

=
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2
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�
2 cos(χ̃b)�j (4.3c)

after applying binomial expansion twice. The truly resonant terms, which drive the first-order
frequency-shifts, are generated by two specific frequency-components of ρ̃2n : the constant (or
time-independent) contribution and the oscillatory component at the difference frequency ω̃b
of the two radial modes. Both components are calculated starting from Equation (4.3c).

Constant contribution

Because Equations (3.2) and (3.5) show that only even powers of cosine come with a constant
term, the summation variable in Equation (4.3c) is transformed according to j → 2j. The
constant contribution by powers of cosine is given by Equation (3.6), which yields



ρ̃2n
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n

2j

) (
n − 2j
k

)
ρ̂2(j+k )+ ρ̂2(n−j−k )− . (4.4)

The upper limit is given by the floor function as defined in Equation (2.60). Equation (4.4)
describes a polynomial of the radial amplitudes ρ̂±. In order to find the coefficient of a term
like ρ̂2p+ ρ̂

2(n−p)
− , the summation variables should be transformed such that there is one sum over

constant p = j + k . This sum over p would then create all the terms of the polynomial, whereas
the other sum would determine the coefficients. Figure 4.1 illustrates a suitable transformation
given by

⌊n2 ⌋∑
j=0

n−2j∑
k=0

fn(j,k) =
n∑
p=0

n
2 −|

n
2 −p |∑

q=0
fn(j = q,k = p − q) (4.5)

in formal terms. Here, fn(j,k) is a generic function of the two summation variables j and k ,
whose transformation to p and q is indicated in the argument on the right-hand side. The
transformation of the limits is equally important. Even though j = q, it is not straightforward
since the order of the summation is changed with j aka q moving from the outer to the inner
sum. Applying the full transformation (4.5) to Equation (4.4) results in



ρ̃2n

�
0 =

n∑
p=0

n
2 −|

n
2 −p |∑

q=0

(
2q
q

) (
n

2q

) (
n − 2q
p − q

)
ρ̂
2p
+ ρ̂

2(n−p)
− . (4.6)
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Figure 4.1.: Transformation of the summation variables and limits according to Equation (4.5)
for n = 7. The green squares are combinations of (j,k) and (p,q) that are part of
the summation; the red triangles are not, because they lie outside the range of the
summation. Since all summation variables are non-negative, only the first quadrant
of the coordinate system is shown. The thick brown line in jk-parameter space
indicates the upper summation limit kmax = n−2j . The thin blue lines connect points
of constant j +k = p. Because these lines do not intersect and are not perpendicular
to the j-axis, a point on this line is uniquely identified by j and p. Following the
deliberate choice p = j + k , the other transformation of summation variables is now
fixed, as j retains its meaning and its limits. To minimize confusion, j is renamed q in
what is then to become the pq-parameter space. The constraints 0 ≤ k ≤ n − 2j for
k read j ≤ p and j ≤ n − p after making the substitution k = p − j. After switching
from j to q, the constraints are combined to give the upper limit q ≤ n/2 − |n/2 − p |
indicated by the thick orange line here. The dotted orange lines are continuations
of q = p and q = n − p outside the range of the summation.
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Transforming the triple product of binomials as(
2q
q

) (
n

2q

) (
n − 2q
p − q

)
=

(2q)!
(q!)2

n!
(2q)!(n − 2q)!

(n − 2q)!
(p − q)!(n − p − q)! (4.7a)

=
n!

p!(n − p)!
p!

q!(p − q)!
(n − p)!

q!(n − p − q)! (4.7b)

=

(
n

p

) (
p

q

) (
n − p

q

)
(4.7c)

removes the summation variable q from one binomial coefficient,8 reducing the sums to



ρ̃2n

�
0 =

n∑
p=0

(
n

p

) n
2 −|

n
2 −p |∑

q=0

(
p

q

) (
n − p

q

)
ρ̂
2p
+ ρ̂

2(n−p)
− . (4.8)

As intended by the original substitution p = j + k , the sum over p creates the polynomial, and
the sum over q determines the coefficient of the term ρ̂

2p
+ ρ̂

2(n−p)
− . Even more pleasantly, the sum

over q is executed by hand9 with the help of Vandermonde’s identity [178]

r∑
q=0

(
n1
q

) (
n2

r − q

)
=

(
n1 + n2

r

)
, (4.9)

where the variables r , n1 and n2 are integers in this context.
Without giving a rigorous proof here, Vandermonde’s identity is also understood from a

combinatorics perspective. The first binomial coefficient on the left-hand side describes the
number of possibilities to select q elements out of a total of n1 elements, when the order of the
selection does not matter. Likewise, the second binomial coefficient on the left-hand side gives
the number of possibilities to pick r − q elements out of n2. Summing over the possibilities to
select q elements with 0 ≤ q ≤ r out of n1 and the remaining r − q elements with r ≥ r − q ≥ 0
out of n2 is equivalent to choosing r elements from a total pool of n1 + n2.
Before applying Vandermonde’s identity (4.9) to the sum over q, the two cases

n

2 −
����
n

2 − p
���� =




p for p ≤ n
2 ,

n − p for p ≥ n
2

(4.10)

8Because of the switch from binomial coefficients to the explicit expression (3.3) and back, some attention has
to be paid to whether the range of the explicit definition is preserved. For the first triple product of binomial
coefficients, these conditions are n ≥ 2q ≥ 0, p ≥ q and n − 2q ≥ p − q or, equivalently, n ≥ p + q. If these
conditions are not fulfilled, the first triple product is given by zero rather than the explicit expression (4.7a).
For the second triple product (4.7c), the conditions for using the explicit expression (4.7b) are 0 ≤ q ≤ p ≤ n
and n ≥ p + q. When combined, these two conditions also result in n ≥ p + q ≥ q + q ≥ 2q. Consequently, the
identity (4.7c) holds for binomial coefficients, not just for the explicit expression with factorials. In retrospect, the
constraints also justify expanding with (n − p)!, which we have defined in Equation (2.69) only for non-negative
integer arguments.

9I am indebted to Martin Höcker for simplifying this sum with Mathematica first. It was after seeing the sum
being executed with a computer algebra system that I started searching for a suitable identity to justify the
Mathematica result.
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in the upper limit have to be distinguished. The first case yields
p∑

q=0

(
p

q

) (
n − p

q

)
=

p∑
q=0

(
p

p − q

) (
n − p

q

)
=

(
p + n − p

p

)
=

(
n

p

)
(4.11)

with r = p, n1 = n − p, n2 = p and the identity (3.4) for binomial coefficients. In the second case,
identifying r = n − p, n1 = p and n2 = n − p gives

n−p∑
q=0

(
p

q

) (
n − p

q

)
=

n−p∑
q=0

(
p

q

) (
n − p

n − p − q

)
=

(
p + n − p

n − p

)
=

(
n

n − p

)
=

(
n

p

)
. (4.12)

The result does not depend on the two case (4.10) for the upper limit of the sum. With the sum
over q executed by means of Equations (4.11) and (4.12), Equation (4.8) becomes



ρ̃2n

�
0 =

n∑
p=0

[(
n

p

)]2
ρ̂
2p
+ ρ̂

2(n−p)
− =

n∑
p=0

[(
n

n − p

)]2
ρ̂
2(n−p)
+ ρ̂

2p
− =

n∑
p=0

[(
n

p

)]2
ρ̂
2p
− ρ̂

2(n−p)
+ . (4.13)

In the last steps, we have transformed the summation variable as p → n − p, and we have used
the identity (3.4) for binomial coefficients, in order to show that the final result is symmetric
with respect to the amplitudes ρ̂±. This symmetry is expected because the radial displacement
squared ρ̃2 in Equation (4.1) is itself symmetric with respect to ρ̂±. Preserving the symmetry
merely serves as a small check of the result.
The symmetry with respect to the amplitudes ρ̂± allows to write the constant contribution

from powers of the radial displacement squared as



ρ̃2n

�
0 =

n∑
p=0

[(
n

p

)]2
ρ̂
2p
± ρ̂

2(n−p)
∓ . (4.14)

We shall see that this result is particularly useful for expressing frequency-shifts to both radial
frequencies in a single formula.

Oscillatory component

As for the constant contribution, the starting point is Equation (4.3c). This time, Equations (3.2)
and (3.5) show that a component at the fundamental frequency ω̃b is present only for odd
powers of cosine. Therefore, the summation variable is transformed according to j → 2j + 1.
The contribution at the fundamental frequency is given by Equation (3.7). The oscillatory term
at the fundamental frequency becomes



ρ̃2n

�
ω̃b
= 2 ρ̂+

ρ̂−
cos(χ̃b)

⌊n−12 ⌋∑
j=0

n−2j−1∑
k=0

cn(j,k) ρ̂2(j+k )+ ρ̂2(n−j−k )− (4.15)

with the coefficient

cn(j,k) =
(

n

2j + 1

) (
n − 2j − 1

k

) (
2j + 1

j

)
. (4.16)
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4.1. Shifts caused by cylindrically-symmetric imperfections

As for the constant contribution, Equation (4.15) describes a polynomial of the amplitudes ρ̂±.
The prefactor ρ̂+/ρ̂− has been factored out in order to make the terms inside the sums look
like ρ̂2p+ ρ̂

2(n−p)
− , with a similar transformation of summation variables as for the constant contri-

bution yielding their coefficients. However, the transformation (4.5) cannot be applied directly
at this point, because the upper limits are different here. They will have to be shifted up in order
to match the original transformation used for the constant component. For the sum over k ,
there is no problem to go from n − 2j − 1 to n − 2j since the second binomial coefficient in
Equation (4.16) vanishes for k > n− 2j − 1 anyway. For the moving the upper limit of sum over j
from ⌊(n − 1)/2⌋ to ⌊n/2⌋, two cases have to be considered. If n is odd, then ⌊(n − 1)/2⌋ = ⌊n/2⌋,
and there is no problem. If n is even, then the first binomial coefficient in Equation (4.16)
vanishes for jmax = ⌊n/2⌋ = n/2 because 2jmax + 1 = n + 1 > n. Consequently, the upper limits
in Equation (4.15) may rightfully be extended to be compatible with those mandated by the
transformation (4.5), which results in



ρ̃2n

�
ω̃b
= 2 ρ̂+

ρ̂−
cos(χ̃b)

⌊n2 ⌋∑
j=0

n−2j∑
k=0

cn(j,k) ρ̂2(j+k )+ ρ̂2(n−j−k )− (4.17a)

= 2 ρ̂+
ρ̂−

cos(χ̃b)
n∑
p=0

n
2 −|

n
2 −p |∑

q=0
cn(q,p − q) ρ̂2p+ ρ̂

2(n−p)
− . (4.17b)

In terms of the new summation variables, the coefficient (4.16) becomes10

cn(q,p − q) =
(

n

2q + 1

) (
n − 2q − 1

p − q

) (
2q + 1
q

)
(4.18a)

=
n!

(2q + 1)!(n − 2q − 1)!
(n − 2q − 1)!

(p − q)!(n − p − q − 1)!
(2q + 1)!
q!(q + 1)! (4.18b)

=
n!

p!(n − p)!
p!

q!(p − q)!
(n − p)!

(n − p − q − 1)!(q + 1)! (4.18c)

=

(
n

p

) (
p

q

) (
n − p

q + 1

)
. (4.18d)

Like for the constant contribution, the summation variable q has been removed from one of the
three binomial coefficients, and the remaining sum over q in



ρ̃2n

�
ω̃b
= 2 ρ̂+

ρ̂−
cos(χ̃b)

n∑
p=0

(
n

p

) n
2 −|

n
2 −p |∑

q=0

(
p

q

) (
n − p

q + 1

)
ρ̂
2p
+ ρ̂

2(n−p)
− (4.19)

10Once again, we check the conditions for using the explicit expressions (4.18b) with factorial for the triple product
of binomial coefficients (4.18a). These conditions are n ≥ 2q+1, p ≥ q ≥ 0, and n−2q−1 ≥ p−q or, equivalently,
n ≥ p +q + 1. Otherwise, the first triple product is defined to give zero. For the second triple product of binomial
coefficients (4.18d), the use of the explicit expression (4.18c) requires n ≥ p ≥ q ≥ 0 and n − p ≥ q + 1. These
conditions can be combined as n ≥ p +q + 1 ≥ p + 1 ≥ p and n ≥ p +q + 1 ≥ q +q + 1 ≥ 2q + 1 in order to show
that they are equivalent to those imposed by the first triple product. Hence, the overall identity (4.18d) is valid
for the whole range of input values covered by the definition of the binomial coefficient (3.3). Expanding with
(n − p)! was fine because n ≥ p.
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determines the coefficients of the terms ρ̂2p+ ρ̂
2(n−p)
− in the polynomial. Vandermonde’s iden-

tity (4.9) is still the key to execute the sum over q, with the two cases (4.10) for the upper limit
as before.
For the first case, we find

p∑
q=0

(
p

q

) (
n − p

q + 1

)
=

p∑
q=0

(
p

p − q

) (
n − p

q + 1

)
=

p∑
q=0

(
p

p + 1 − (q + 1)
) (
n − p

q + 1

)
(4.20a)

=

p+1∑
q′=1

(
p

p + 1 − q′

) (
n − p

q′

)
=

p+1∑
q′=0

(
p

p + 1 − q′

) (
n − p

q′

)
(4.20b)

=

(
p + n − p

p + 1

)
=

(
n

p + 1

)
. (4.20c)

We have used the identity (3.4) for binomial coefficients in the first step. After transforming the
summation variable as q + 1 → q′, the lower limit was shifted from 1 to 0, in order to match
Equation (4.9) with r = p + 1. This shift is fine because the first binomial coefficient vanishes
for q′ = 0.
For the second case, the final result is identical:

n−p∑
q=0

(
p

q

) (
n − p

q + 1

)
=

n−p−1∑
q=0

(
p

q

) (
n − p

q + 1

)
=

n−p−1∑
q=0

(
p

q

) (
n − p

n − p − 1 − q

)
(4.21a)

=

(
p + n − p

n − p − 1

)
=

(
n

n − p − 1

)
=

(
n

p + 1

)
. (4.21b)

Apart from using the identity (3.4) twice, we have shifted the upper limit of the sum to take the
form on Vandermonde’s identity (4.9) with r = n − p − 1. No contribution is forgotten by this
step because the second binomial coefficient vanishes for q = n − p. With Equations (4.20c) and
(4.21b) for the sum over q, Equation (4.19) becomes



ρ̃2n

�
ω̃b
=

2ρ̂+
ρ̂−

cos(χ̃b)
n∑
p=0

(
n

p

) (
n

p + 1

)
ρ̂
2p
+ ρ̂

2(n−p)
− . (4.22)

Sending the summation variable p → n − 1 − p in the amplitude-dependent part

n−1∑
p=0

(
n

p

) (
n

p + 1

)
ρ̂
2p+1
+ ρ̂

2(n−p)−1
− =

n−1∑
p=0

(
n

n − 1 − p

) (
n

n − p

)
ρ̂
2(n−p)−1
+ ρ̂

2p+1
− (4.23a)

=

n−1∑
p=0

(
n

p + 1

) (
n

p

)
ρ̂
2p+1
− ρ̂

2(n−p)−1
+ (4.23b)

shows that the result is indeed symmetric with respect to the amplitudes ρ̂±. Again, the
symmetry serves as a check because it is expected from the same symmetry of the radial
displacement squared (4.1). We have also used the identity (3.4) for binomial coefficients. The
upper limit of the sum over p in Equation (4.22) could be lowered from n to n − 1 because the
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4.1. Shifts caused by cylindrically-symmetric imperfections

second binomial coefficient vanishes for p = n. However, we will find it comfortable to have the
same limits as for the constant contribution (4.14), and we will therefore include a vanishing
contribution here.

Taking into account the symmetry with respect to the amplitudes ρ̂±, the oscillatory term at
the fundamental frequency ω̃b is written as



ρ̃2n

�
ω̃b
=

2ρ̂±
ρ̂∓

cos(χ̃b)
n∑
p=0

(
n

p

) (
n

p + 1

)
ρ̂
2p
± ρ̂

2(n−p)
∓ . (4.24)

We have factored out ρ̂±/ρ̂∓ because this term will cancel nicely when calculating the first-order
frequency-shifts. The remaining amplitude-dependent parts in the sum have the same structure
as for the constant contribution (4.14).

4.1.2. Electrostatic imperfections

The permissible spatial dependence of cylindrically-symmetric electrostatic imperfections was
discussed in Section 2.2. As the perturbative formalism here uses classical equations of motion
instead of operators, the electric field rather than the potential is required. For a given poten-
tialΦη from Equation (2.73), the corresponding electric field is calculated by taking the negative
gradient as

E⃗η(ρ, z) = −∂Φη(ρ, z)
∂z

e⃗z −
∂Φη(ρ, z)
∂ρ

e⃗ρ (4.25)

= E(z)η (ρ, z) e⃗z + E(ρ)η (ρ, z) e⃗ρ (4.26)

with the axial component

E(z)η = −Cη
V0
2dη

⌊η/2⌋∑
k=0

aη(k) (η − 2k) zη−2k−1ρ2k (4.27)

and the radial component

E
(ρ)
η = −Cη

V0
dη

⌊η/2⌋∑
k=1

aη(k) k zη−2kρ2k−1 . (4.28)

As the radial electric field has no contribution for k = 0, we have raised the lower limit of the
sum from 0 to 1 straight away.
Clearly, the axial electric field comes with even powers of radial displacement ρ only. For

the radial axial field, the odd exponent associated with ρ is misleading. Since the equations of
motion use Cartesian coordinates, the radial unit vector is expressed as

e⃗ρ =
1
ρ

(
x
y

)
(4.29)
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partly in these coordinates, and the two radial electric field components become

*
,
E(x )η

E
(y)
η

+
-
=

E
(ρ)
η

ρ

(
x
y

)
= −Cη

V0
dη

⌊η/2⌋∑
k=1

aη(k) k zη−2k ρ2k−2
(
x
y

)
. (4.30)

At this point, it is obvious that there are only even powers of radial displacement, and the
identities from Section 4.1.1 for powers of radial displacement squared apply.

With the additional electric field, the equations of motion (2.16) from the ideal Penning trap
pick up an additional term, and they read

*..
,

ẍ
ÿ
z̈

+//
-
= ωc

*..
,

ẏ
−ẋ
0

+//
-
+
qV0C2
2md2

*..
,

x
y
−2z

+//
-
+

q

m

*..
,

E(x )η

E
(y)
η

E(z)η

+//
-

. (4.31)

The additional term does not contain velocities; it is only a function of coordinates. Since
the velocity-dependent term will not be affected, we have already written its prefactor as the
free-space cyclotron-frequency ωc from Equation (2.18).

We will now search for resonant terms that change the axial and the radial frequencies sepa-
rately, because the first-order frequency-shifts result entirely from the zeroth-order trajectories.
Conceptually, the frequency-shift to the one-dimensional axial mode is the easiest to calculate,
and it provides a good starting point before turning to the more intricate shifts to the radial
modes.

Shifts to the axial mode

After plugging the additional axial electric field (4.27) into Equation (4.31), the axial equation of
motion reads

z̈ + ω2
zz +

Cη

C2

ω2
z

2dη−2
⌊η/2⌋∑
k=0

aη(k) (η − 2k) zη−2k−1ρ2k = 0 . (4.32)

The unperturbed axial frequency ωz in the ideal Penning trap is given by Equation (2.17). To
determine the first-order frequency-shifts, we will now plug in the zeroth-order trajectories z̃
from Equation (3.96) and ρ̃2 from Equation (4.1) into the axial equation of motion (4.32), while
searching for terms that are proportional to the original ansatz z̃. These terms will be absorbed in
the effective equation of motion (3.85) and translated into a first-order frequency-shift according
to Equation (3.86). Clearly, we expect naturally-resonant terms at the axial frequency to result
from the axial motion at that very frequency. Powers of the radial displacement squared possess
the constant component (4.14), which means that a potentially resonant term resulting from
z̃η−2k−1 is preserved when multiplied with this constant contribution from ρ̃2k . Additionally, ρ̃2k
contains oscillatory terms at the frequencies 1ω̃b, 2ω̃b, 3ω̃b, . . . ,kω̃b. However, this difference
frequency ω̃b = ω̃+−ω̃− from Equation (4.2) is generally not an integer of the axial frequency ω̃z .
Therefore, mixing this frequency and its higher harmonics with the axial frequency and its
higher harmonics will not result in resonant terms at the axial frequency unless for a very
specific choice of the three eigenfrequencies in the trap. Such a fine-tuning will be excluded
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4.1. Shifts caused by cylindrically-symmetric imperfections

here, and we stick with the naturally-resonant terms, which arise, well naturally, with any
specific assumptions about the three eigenfrequencies.
In our notation, the naturally-resonant terms are expressed as〈

z̃η−2k−1ρ̃2k
〉
ω̃z
=

〈
z̃η−2k−1

〉
ω̃z

〈
ρ̃2k

〉
0

. (4.33)

For the sake of space and clarity, the time-dependence of the zeroth-order solutions is not
shown, but the oscillatory terms remain crucial for the analysis of the frequency-components.
Equations (3.2) and (3.5) show that only odd powers of z̃ come with an oscillatory term at
the fundamental axial frequency ω̃z . Therefore, η must be even, which is incorporated by
writing η = 2n, where n = 2, 3, 4, . . .. The additional resonant terms, caused by the anharmonic
electrostatic potential, then take the form

εz z̃ =
C2n
C2

1
d2n−2

n−1∑
k=0

a2n(k) (n − k)
〈
z̃2n−2k−1

〉
ω̃z

〈
ρ̃2k

〉
0

(4.34)

in the effective equation of motion (3.85). The upper limit of the sum has been lowered to n − 1,
because the factor n − k vanishes at the previous upper limit k = n. The terms in angle brackets
are evaluated with Equations (3.7) and (4.14); the coefficient an(k) is defined in Equation (2.71).
The parameter εz that describes the strength of the additional resonant terms then becomes

εz =
C2n
C2

(2n)!
22n−1d2n−2

n−1∑
k=0

(−1)k (n − k)
[k!(n − k)!]2

k∑
p=0

[(
k

p

)]2
ρ̂
2p
± ρ̂

2(k−p)
∓ ẑ2(n−k−1) . (4.35)

It is related to the first-order frequency-shift

∆ωz

ωz
=
εz
2 =

C2n
C2

(2n)!
22n

n−1∑
k=0

k∑
p=0

(−1)k (n − k) ρ̂2p± ρ̂
2(k−p)
∓ ẑ2(n−k−1)

[(n − k)!p! (k − p)!]2 d2n−2 (4.36)

via Equation (3.86). Because the limits of the sum over p are such that no cases in the defini-
tion (3.3) of the binomial coefficient have to be distinguished, we have switched to the explicit
expression with factorials. Even though there is only a single frequency-shift to be expressed
here, we show the two alternatives offered by Equation (4.14) for the choice of the amplitudes ρ̂±,
in order to underline that the frequency-shift is symmetric with respect to the amplitudes of
radial modes. Moreover, the two alternatives will show their benefit later in Section 4.3.1, when
calculating frequency-shifts in axial lock. Even with a particular choice of either alternative
here, the symmetry with respect to the amplitudes of radial modes is confirmed by sending
p → k − p in Equation (4.36). It means that the first-order axial frequency-shift caused by
electrostatic imperfections does not change when the amplitudes of the two radial modes are
swapped. Essentially, this is due to the coupling being mediated nonresonantly through powers
of the average radial displacement squared. This degeneracy of the axial frequency-shift with
respect to the radial modes is lifted as soon as velocities play a role.

If the amplitudes of both radial modes vanish ρ̂+ = ρ̂− = 0, the only contributions to the shift
come from p = 0 and k = 0. As a small cross-check, the result (3.90) for the one-dimensional
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4. Calculating first-order frequency-shifts

case is reproduced. As a more comprehensive benchmark, the frequency-shift (4.36) agrees with
Equation (3.57) from Reference [99] assuming c2 = 1 in their notation.11

The linear gradient C1 Even though the resonant terms that drive the first-order frequency-
shift of the axial mode have been identified and treated completely, one particular nonresonant
term deserves a special mention. The contribution by C1 is a constant one, whereas the effect
of all other odd terms on the fundamental mode essentially averages to zero in first order. As
in the one-dimensional case of Section 3.2, C1 alone is not a source of anharmonicity, and it
could be dealt with exactly, if there were no higher-order terms, even when the radial modes
are included. As the corresponding potential Φ1 ∝ z without any dependence on the radial
coordinate ρ, the radial modes are not affected directly. SinceΦ1 does not change the curvature
of the potential along the axial direction, the axial frequency is no affected either. In the
otherwise ideal Penning trap, only the center of the oscillations will be shifted, which does not
matter in a uniform magnetic field. In reality, the particle will experience a different magnetic
field strength, which will change the radial frequencies (2.23) via the change of the free-space
cyclotron-frequency (2.18), even before considering anharmonic terms. Therefore, the effect of
C1 must be examined more carefully than the impact of other odd terms. However, C1 typically
does not come separately from other odd terms, because Penning traps do not resemble plate
capacitors (for which the C1 alone would describe the electric potential entirely). From first
principles such as the geometry of the trap, it is hard to argue that C1 must be much larger
than other odd coefficients, whereas the dominance of C2 over other even coefficients could be
ensured by the hyperboloidal shape of the electrodes. Moreover, a general comparison of even
and odd terms is difficult because the latter are created by applying an additional offset voltage
on top of the usual trap voltage V0. Hence, there is no general estimate for their influence.
The first strategy is to treat C1 perturbatively by working with the modified zeroth-order

solution

z̃ ′(t) = z̃(t) − C1
2C2

d , (4.37)

which includes the shift of the equilibrium position in the absence of anharmonic terms.12
Although calculating powers of z̃ ′(t) becomes more tedious, the first-order result is unchanged.
There is no direct effect of C1 because the additional term has to propagate through the spatial

11Owing to their definition (3.38) of the electrostatic potential without the global prefactor of 1/2 present in Equa-
tion (2.58) here, the perturbation parameters cη in Reference [99] do not have the same value as theCη here, when
they describe an identical imperfection. In this case, their relation is cη = 2(η−2)/2Cη , which means that at least
the parameter for the quadrupole contribution has the same value for both definitions: c2 = C2. The characteristic
trap dimension d from Equation (2.10) here is related to dr from Reference [99] as dr =

√
2d (with the subscript

added because the characteristic trap dimension uses the same symbol in both cases). The effect of the different
definitions cancels in the expression for the frequency-shift because of the prefactor cη/d

η−2
r = Cη/d

η−2. In fact,
the prefactors cη/d

η
r and Cη/(2dη ) of the electrostatic potential represent only a single degree of freedom, and

the aforementioned two relations for the perturbation parameters and the characteristic trap dimension ensure
that this one factor is equal, if the same potential is described.

12The sign is different from a similar operation performed in Equation (3.13), because here a given solution is shifted
to oscillate around the new equilibrium position, whereas the coordinate system was shifted in Equation (3.13).
In both cases, the new equilibrium position is the same.
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4.1. Shifts caused by cylindrically-symmetric imperfections

dependence of the other imperfections before showing up as a frequency-shift. Being associated
with a product of other imperfections means that the frequency-shift caused by C1 is at least of
second order. In fact, it is caused in combination with an imperfection, not by C1 alone. The
other imperfections associated with an odd coefficient give rise to a second-order frequency-
shift alone, which does not exclude combinations, of course. In the case of C1, the second-order
effects may partly lead to frequency-shifts independent of the motional amplitudes. When it
comes to the design of Penning traps, the frequency-shift by C1C3 to the axial mode is often
mentioned as a means to measure the product of the two coefficients, which are of the same
order of magnitude [48, 51, 53]. For such harmonic shifts caused by the electrostatic potential,
the mechanism is similar to the aforementioned one for the particle being moved to a different
position in the magnetic field. At the new equilibrium position, the higher-order terms in the
electrostatic potential also contribute to its local curvature, thereby changing the effective C2.
While a global change of C2 in the ideal Penning trap shifts the eigenfrequencies individually,
Equations (2.25) and (2.27) for the free-space cyclotron-frequency ωc remain valid. Therefore,
the major experimental concern is that the equilibrium position shifts over the course of a
measurement. If it is always the same, a different approach to C1 may be more convenient.
The second strategy is to develop the electric potential and the magnetic field around the

new equilibrium position, where there is no localC1 because of the saddle point in the potential.
The perturbative treatment then proceeds as before. Only the values of the parameters Cη
and Bη need to be adjusted accordingly. In particular, breaking the reflection symmetry of the
Penning trap about the xy-plane results in perturbation parameters with odd coefficients, and
their associated frequency-shifts require second-order perturbation theory for a quantitative
statement as before.

Shifts to the radial modes

Inserting the two radial components (4.30) of the additional electric field into Equation (4.31)
yields the radial equations of motion

(
ẍ
ÿ

)
= ωc

(
ẏ
−ẋ

)
+
ω2
z

2

(
x
y

) 
1 −

Cη

C2

2
dη−2

⌊η/2⌋∑
k=1

aη(k) k zη−2kρ2k−2


, (4.38)

with the unperturbed axial frequency ωz defined in Equation (2.17). The strategy is the same as
for the axial mode: plug in the zeroth-order solutions from Equations (3.94)–(3.96) and search for
additional terms that are proportional to components of these solutions. These resonant terms
as given by Equations (3.100) and (3.101) for the two radial modes are collected in the effective
equations of motion (3.105) and translated into the first-order frequency-shift according to
Equation (3.109b). At this point, it is obvious that additional resonant terms will originate from
the second term in square brackets in Equation (4.38). However, we must not simply average
over the term, considering only its constant contribution, because of resonant mixing of ρ̃2k−2
with x̃ and ỹ, which contain oscillatory terms at two frequencies, namely ω̃±. Powers of the
radial displacement squared contain, among others, an oscillatory component at the difference
frequency ω̃b of the radial modes, and there is a fixed phase relationship with respect to the
two radial modes. This means that mixing can produce resonant terms. Formally, the laws of
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4. Calculating first-order frequency-shifts

multiplying two trigonometric functions (see Equations (C.10) and (C.11) in the appendix)



cos(χ̃+ − χ̃−) cos(χ̃∓)�ω̃± =

1
2 cos(χ̃±) , (4.39)



cos(χ̃+ − χ̃−) sin(χ̃∓)�ω̃± =

1
2 sin(χ̃±) (4.40)

show that multiplying an oscillatory term at one radial frequency with a term at the difference
frequency ω̃b results in a resonant term at the frequency of the other radial mode. The second
term at the frequency |ω̃± − 2ω̃∓ | is dismissed as nonresonant. While there is the relation (4.2)
between ω̃b and the radial frequencies ω̃±, the axial frequency ω̃z is generally not an integer of the
radial frequencies. Therefore, mixing oscillatory terms at the axial frequency ω̃z and its multiples
with oscillatory terms at the radial frequencies ω̃± as well as the difference frequency ω̃b and
its multiples will generally result in nonresonant terms. The resonances in the radial modes
themselves are preserved by multiplying these naturally-resonant terms with the constant
contribution from the axial mode. In our notation, this is written as〈

z̃η−2k ρ̃2k−2x̃
〉
ω̃±
=

〈
z̃η−2k

〉
0

〈
ρ̃2k−2x̃

〉
ω̃±

(4.41)

with x̃ as an example, which is no restriction. Equation (4.40) shows that the same mechanism
also works for ỹ in the same way Equation (4.39) applies to x̃ . Therefore, we will show the
calculation only for one of the two radial coordinates. The additional resonant terms are
described by the same parameter, ε± in this case, for both radial coordinates, because cylindrical
symmetry does not allow a favored radial direction.

According to Equations (3.2) and (3.5), only even powers of z̃ come with a constant contribu-
tion. Consequently, η in the exponent η − 2k has to be even, which is ensured by the choice
η = 2n. The additional naturally-resonant terms caused by the anharmonic electric field are
then included as

ε±x̃± = −
C2n
C2

2
d2n−2

n∑
k=1

a2n(k) k
〈
z̃2(n−k )

〉
0

〈
ρ̃2k−2x̃

〉
ω̃±

(4.42)

in the effective equations of motion (3.105). The coefficient an(k) is defined in Equation (2.71);
the constant contribution from the axial mode is calculated with Equation (3.6). Given the two
mechanisms for creating resonant terms at the radial frequencies, the second term in angle
brackets needs a closer inspection. Formally, the two mechanisms read〈

ρ̃2k−2x̃
〉
ω̃±
=

〈
ρ̃2k−2

〉
0
x̃± +

〈〈
ρ̃2k−2

〉
ω̃b

x̃∓

〉
ω̃±

. (4.43)

The abbreviation x̃± is defined in Equation (3.100). Firstly, the zeroth-order solution x̃ already
contains the two resonant terms x̃±, and these terms are preserved by multiplying them with the
constant contribution in ρ̃2k−2. Secondly, multiplying an oscillatory term at the frequency ω̃b
with a term at the radial frequency ω̃∓ results in a resonant term at the other radial frequency ω̃±.

With these two mechanisms for producing resonant terms, there is no double counting; no
original term is used twice for the same purpose. Since x̃± is multiplied with clearly distinct
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4.1. Shifts caused by cylindrically-symmetric imperfections

components of ρ̃ , the same term can rightfully influence the frequency ω̃± directly, and the
frequency ω̃∓ indirectly via the interplay of the two radial modes. The second possibility
vanishes if the other radial mode has zero amplitude, as ρ̃2 is constant in this case, with the
oscillatory term being absent.
In any case, the constant component of ρ̃2k−2 is given by Equation (4.14) and the first term

on the right-hand side of Equation (4.43) becomes

〈
ρ̃2k−2

〉
0
x̃± = x̃±

k−1∑
p=0

[(
k − 1
p

)]2
ρ̂
2p
± ρ̂

2(k−1−p)
∓ . (4.44)

The oscillatory component of ρ̃2k−2 at the frequency ω̃b is given by Equation (4.24). With these
two results, the second term on the right-hand side of Equation (4.43) becomes

〈〈
ρ̃2k−2

〉
ω̃b

x̃∓

〉
ω̃±
=



cos(χ̃b) cos(χ̃∓)�ω̃± ρ̂∓

2ρ̂±
ρ̂∓

k−1∑
p=0

(
k − 1
p

) (
k − 1
p + 1

)
ρ̂
2p
± ρ̂

2(k−1−p)
∓ (4.45a)

= x̃±

k−1∑
p=0

(
k − 1
p

) (
k − 1
p + 1

)
ρ̂
2p
± ρ̂

2(k−1−p)
∓ . (4.45b)

The second step uses Equation (4.39) for the product of trigonometric functions. The choice
of radial amplitudes ρ̂± is such that the prefactor ρ̂±/ρ̂∓ cancels the amplitude ρ̂∓ from x̃∓ and
creates the amplitude ρ̂± necessary to write the final result as proportional to x̃±. As discussed
before, the same mechanism also works for ỹ± from Equation (3.101) with the help of the
trigonometric identity (4.40). Basically, the substitution cos(χ̃∓)→ − sin(χ̃∓) is made as x̃± is
replaced by ỹ±.

The two terms in Equations (4.44) and (4.45b) share a common binomial coefficient. The two
different binomial coefficients are added using the identity(

k − 1
p

)
+

(
k − 1
p + 1

)
=

(k − 1)!
p!(k − 1 − p)! +

(k − 1)!
(p + 1)!(k − p − 2)! (4.46a)

=
(k − 1)!

(p + 1)!(k − p − 1)! [(p + 1) + (k − p − 1)] (4.46b)

=
k!

(p + 1)!(k − p − 1)! =
(

k

p + 1

)
. (4.46c)

Using the explicit expression with factorials for the second binomial coefficient is not fine
for p = k − 1, a case encountered at the upper limit of the sum over p in Equation (4.45b).
Fortunately, Equation (4.46c) still holds in this case as(

k − 1
k − 1

)
+

(
k − 1
k

)
=

(
k − 1
k − 1

)
+ 0 = 1 =

(
k

k

)
(4.47)

according to the definition (3.3) of the binomial coefficient. As p > k − 1 always gives zero in
Equations (4.46a) and (4.46c), this identity for binomial coefficients holds for p ≥ 0 in general.
Here, it is sufficient to hold in the range of the summation from 0 to k − 1.
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Finally, adding Equations (4.44) and (4.45b) yields

〈
ρ̃2k−2x̃

〉
ω̃±
= x̃±

k−1∑
p=0

(
k − 1
p

) (
k

p + 1

)
ρ̂
2p
± ρ̂

2(k−1−p)
∓ (4.48)

for the resonant term in Equation (4.43). With this result, the parameter ε± in Equation (4.42) is
expressed as

ε± = −
C2n
C2

(2n)!
22n−1

1
d2n−2

n∑
k=1

(−1)kk
[k!(n − k)!]2

k−1∑
p=0

(
k − 1
p

) (
k

p + 1

)
ρ̂
2p
± ρ̂

2(k−1−p)
∓ ẑ2(n−k ) . (4.49)

The first-order frequency-shift then results from Equation (3.109b) as

∆ω± =
±ω+ω−
ω+ − ω−

C2n
C2

(2n)!
22n−1

1
d2n−2

n∑
k=1

k−1∑
p=0

(−1)k (p + 1) ρ̂2p± ρ̂
2(k−1−p)
∓ ẑ2(n−k )

[(n − k)! (k − p − 1)! (p + 1)!]2 . (4.50)

Because the limits of the sum over p allow to express the binomial coefficients explicitly in a
consistent manner with factorials, we have done so by writing(

k − 1
p

) (
k

p + 1

)
=

(k − 1)!
p! (k − 1 − p)!

k!
(p + 1)! (k − p − 1)! (4.51a)

=
p + 1
k

(k!)2
[(k − p − 1)! (p + 1)!]2 , (4.51b)

thereby facilitating the comparison with Equation (3.56) in Reference [99], even though the
expression do not yet have the identical form. After a few transformations not shown here,
including Equation (2.26) and a shift of the summation variable p → p − 1, there is agreement.
By sending the summation variable p → k − 1 − p in Equation (4.50), the exponents of the

radial amplitudes ρ̂± are swapped. The overall result

∆ω± =
±ω+ω−
ω+ − ω−

C2n
C2

(2n)!
22n−1

1
d2n−2

n∑
k=1

k−1∑
p=0

(−1)k (k − p) ρ̂2p∓ ρ̂
2(k−1−p)
± ẑ2(n−k )

[(n − k)!p! (k − p)!]2 (4.52)

is different from the one obtained by simply substituting ρ̂± → ρ̂∓. It becomes clear that, unlike
for the axial frequency-shift (4.36), the first-order frequency-shift to the radial frequencies ω̃±
is not symmetric with respect to the amplitudes ρ̂± of the radial modes. Technically, this is
a consequence of the mechanism for creating resonant terms described by Equation (4.45a).
While the oscillatory components (4.24) at the fundamental frequency ω̃b of powers of radial
displacement squared is still symmetric with respect to the amplitudes ρ̂±, multiplying it with
x̃∓ in order to create a resonant terms proportional to x̃± invokes the amplitudes ρ̂± in an
asymmetric way.

Although there is no symmetry for the frequency-shift to one radial mode when the two radial
amplitudes are swapped, Equations (4.50) and (4.52) show that there is a simple connection
between the shifts to the two different radial modes before and after swapping. In fact, the shift
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4.1. Shifts caused by cylindrically-symmetric imperfections

to the reduced cyclotron-frequency before swapping the amplitudes differs from the shift to the
magnetron frequency after the swapping operation only by a sign. The absolute value is the
same. As a formula, this statement reads

∆ω+(ρ̂set, ρ̂cool, ẑ) = −∆ω−(ρ̂cool, ρ̂set, ẑ) . (4.53)

The arguments in brackets are the amplitudes ρ̂+, ρ̂−, ẑ of the reduced cyclotron mode, the
magnetron mode, and the axial mode in this particular order. The peculiar subscripts will be
motivated in the next paragraph. Here, they merely serve to differentiate the variables ρ̂±
from specific values because using ρ̂± after swapping the values of the two radial amplitudes is
confusing.

The cyclotron sideband The cyclotron sideband is defined in Equation (2.25) as the sum of
the two radial frequencies. Consequently, the shift to the cyclotron-sideband frequency is given
by

∆ωc = ∆ω+ + ∆ω− . (4.54)

Adding Equation (4.50) for ∆ω+ and Equation (4.52) for ∆ω− yields

∆ωc =
ω+ω−

ω+ − ω−

C2n
C2

(2n)!
22n−1

1
d2n−2

n∑
k=1

(−1)k ẑ2(n−k )
[(n − k)!]2

k−1∑
p=0

ρ̂
2p
+ ρ̂

2(k−1−p)
−

[p! (k − p − 1)!]2
[

1
p + 1 −

1
k − p

]
.

(4.55)

Sending the summation variable p → k − 1 − p swaps the exponent of the radial amplitudes.
Again, the result

∆ωc = −
ω+ω−

ω+ − ω−

C2n
C2

(2n)!
22n−1

1
d2n−2

n∑
k=1

(−1)k ẑ2(n−k )
[(n − k)!]2

k−1∑
p=0

ρ̂
2p
− ρ̂

2(k−1−p)
+

[p! (k − p − 1)!]2
[

1
p + 1 −

1
k − p

]

(4.56)

is not the same obtained by simply substituting ρ̂± → ρ̂∓, but, this time, the only difference is a
sign. Thus, the shift to the sideband cyclotron-frequency is antisymmetric with respect to the
radial amplitudes. In particular, the shift vanishes for equal radial amplitudes. In the explicit
expressions for the first few C2n in References [18, 99], the root (ρ̂2+ − ρ̂2−) of the polynomial
for the frequency-shift is factored out, and the practical importance of the antisymmetry is
discussed in Reference [12]. The asymmetry is also seen in Reference [22]. Thanks to the general
treatment here, the antisymmetry is now understood as a general feature of the first-order
frequency-shift caused by cylindrically-symmetric electrostatic imperfections. Going back to
Equation (4.53), the antisymmetry of the shift to the sideband cyclotron-frequency with respect
to the radial amplitudes should come as no surprise. Swapping the radial amplitudes in the
shifts to the two frequencies that make up the sideband leads to

∆ωc(ρ̂set, ρ̂cool, ẑ) = ∆ω+(ρ̂set, ρ̂cool, ẑ) + ∆ω−(ρ̂set, ρ̂cool, ẑ) (4.57a)
= −∆ω−(ρ̂cool, ρ̂set, ẑ) − ∆ω+(ρ̂cool, ρ̂set, ẑ) = −∆ωc(ρ̂cool, ρ̂set, ẑ) . (4.57b)
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4. Calculating first-order frequency-shifts

The interest in, or obsession with, swapping the amplitudes of the radial modes is well motivated
by the experimental techniques exploiting the sideband identity (2.25). The time-of-flight ion
cyclotron-resonance technique [62] scans the conversion of an initial magnetron amplitude
into the amplitude of the modified cyclotron-motion. For a quadrupole coupling scheme, be it
single pulse [87] or Ramsey [91], the parameters are typically chosen such that the conversion
is complete if the frequency of the coupling pulse coincides with the sideband frequency of the
trapped ion.
As an upgrade of the traditional method, the two radial frequencies have recently been

measured sequentially [42] by means of a phase-sensitive method [43] which images the ion’s
radial position in the trap at the moment of ejection. The two individually measured radial
frequencies are then added to determine the free-space cyclotron-frequency ωc via the sideband
identity (2.25). For measuring the radial frequency ω̃±, the corresponding radial mode is excited
to the amplitude ρ̂± = ρ̂set, and the phase is then allowed to evolve freely for some time. During
this evolution time, the amplitude of the other radial mode remains ρ̂∓ = ρ̂cool. If the relevant
amplitudes are equal for both measurements, the identity (4.53) holds, and the anharmonic shifts
caused by cylindrically-symmetric electrostatic imperfections cancel in the sideband identity

ωc = ω+(ρ̂set, ρ̂cool, ẑ) + ω−(ρ̂cool, ρ̂set, ẑ) . (4.58)

Of course, the sequential measurement offers no protection against harmonic frequency-shifts,
for instance caused by voltage drifts or fluctuations of the magnetic field. The anharmonic
shifts also depend on the harmonic frequencies in the ideal trap, but both the anharmonic shifts
and the harmonic shifts caused by fluctuations are expected to be small. Therefore, controlling
the amplitudes is probably the major challenge in maintaining the perfect cancellation of
anharmonic shifts in Equation (4.58). Depending on the scheme for biasing the trap electrodes,
the effective Cη may be a function of voltages and hence be effected by voltage drifts, too.
However, the anharmonic frequency-shifts depend most strongly, at least quadratically, on the
amplitudes.

4.1.3. Magnetostatic imperfections

Conceptually, the calculation of the first-order frequency-shifts caused by static cylindrically-
symmetric magnetic imperfections is very similar to the calculation for electrostatic imper-
fections in Section 4.1.2. In fact, the mechanisms for producing naturally-resonant terms are
the same, but, technically, deriving the expressions for the frequency-shifts is slightly more
complicated. Because the Lorentz force (2.13) created by a magnetic field depends on the
velocity of the charged particle, plugging in the zeroth-order velocity components (3.97)–(3.99)
results in additional factors of ω̃i for each eigenmode. This complication is not present for
electrostatic imperfections, where the additional terms contain coordinates, but not velocities.
Nevertheless, the calculation in this section is not just about velocities. The zeroth-order trajec-
tories (3.94)–(3.96) will be equally important, because the additional magnetic field is a function
of coordinates, too.
With the additional magnetic field B⃗η from Equation (2.77), the original equations of mo-
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tion (2.16) in the ideal Penning trap become
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The unperturbed axial frequency ωz is given by Equation (2.17). In order to move closer to the

form of the effective radial equations of motion (3.105), we have written the charge-to-mass ratio

as q/m = ωc/B0, in agreement with the definition (2.17) of the free-space cyclotron-frequencyωc.

By writing the radial unit vector with Cartesian coordinates as in Equation (4.29), the radial

magnetic field B
(ρ)
η from Equation (2.80) is related to its two Cartesian components as
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. (4.60)

Like for the radial electric field (4.30), there are only even powers of radial displacement.

Consequently, the identities from Section 4.1.1 for powers of radial displacement squared apply.

As with electrostatic imperfections, we will deal with the axial and the radial modes separately.

Shifts to the axial mode

With the radial magnetic field (4.60), the axial equation of motion is read off from the third

component of Equation (4.59) as

z̈ + ω2
zz − ωc

Bη

B0

����
⌊
η+1
2

⌋∑
k=1

ãη(k) zη−2k+1ρ2k−2���	 (ẋy − ẏx) = 0 . (4.61)

As usual, we will now plug in the zeroth-order trajectories (3.94)–(3.96) and velocities (3.97)–

(3.99), looking for terms that are proportional to these zeroth-order solutions. For the second

term in brackets, the cross-product of coordinates and velocities, we define and evaluate the

abbreviation

ξ̃ (t) = ˙̃x(t)ỹ(t) − ˙̃y(t)x̃(t) (4.62)

= ρ̂2
+ω̃+ + ρ̂2−ω̃− + ρ̂+ρ̂−(ω̃+ + ω̃−) cos(χ̃+ − χ̃−) . (4.63)

It has a constant term and an oscillatory term at the difference frequency ω̃b = ω̃+ − ω̃− of

the radial modes. Originating from the radial modes, there is no term related to the axial

frequency ω̃z . As for electrostatic imperfections, naturally-resonant terms at the axial frequency

arise from the axial motion, and these terms need to be preserved by multiplying them only

with the constant contribution from the radial modes. As a formula, this mechanism reads〈
z̃η−2k+1ρ̃2k−2ξ̃

〉
ω̃z
=

〈
z̃η−2k+1

〉
ω̃z

〈
ρ̃2k−2ξ̃

〉
0

. (4.64)

According to Equations (3.2) and (3.5), only odd powers of z̃ possess an oscillatory term at the

axial frequency ω̃z . Thus, η has to be even for the exponent η − 2k + 1 to be odd, and we ensure
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4. Calculating first-order frequency-shifts

this property by writing η = 2n. The additional resonant terms in the effective axial equation of
motion (3.85) are then given by

εz z̃ = −
ωc

ω2
z

B2n
B0

n∑
k=1

ã2n(k)
〈
z̃2(n−k )+1

〉
ω̃z

〈
ρ̃2(k−1)ξ̃

〉
0

. (4.65)

The factor of ω2
z in the denominator was introduced because the anharmonic term in Equa-

tion (4.61) does not contain the axial frequency, whereas Equation (3.85) does in ω2
zεz z̃. The

coefficient ã2n(k) is defined in Equation (2.81); the contribution by the axial motion is deter-
mined from Equation (3.7). It is the second term in angle brackets that needs a closer look. Both
ρ̃2(k−1) and ξ̃ have a constant component. For k > 1, they both have an oscillatory term at the
frequency ω̃b, and these oscillatory terms may produce a constant component by mixing, too.
Formally, the mechanism for producing constant terms is written as〈

ρ̃2(k−1)ξ̃
〉
0
=

〈
ρ̃2(k−1)

〉
0

〈
ξ̃
〉
0
+

〈〈
ρ̃2(k−1)

〉
ω̃b

〈
ξ̃
〉
ω̃b

〉
0

. (4.66)

The first-term on the right-hand side becomes

〈
ρ̃2(k−1)

〉
0

〈
ξ̃
〉
0
= ω̃+ρ̂

2
+




k−1∑
p=0

[(
k − 1
p

)]2
ρ̂
2p
+ ρ̂

2(k−1−p)
−



+ ω̃−ρ̂

2
−




k−1∑
p=0

[(
k − 1
p

)]2
ρ̂
2p
− ρ̂

2(k−1−p)
+




(4.67)

with Equations (4.14) and (4.63). The choice of the radial amplitudes ρ̂± in Equation (4.14) is
such that both terms on the right-hand side of Equation (4.67) have an identical structure with
respect to the substitution ± → ∓, which would convert one term into the other.
With Equations (4.24) and (4.63), and the trigonometric identity

[cos(χ̃b)]2 = 1
2 [1 + cos(2χ̃b)] (4.68)

as a special case of Equation (3.2) or Equation (3.6) for n = 0, the second term on the right-hand
side of Equation (4.66) becomes

〈〈
ρ̃2(k−1)

〉
ω̃b

〈
ξ̃
〉
ω̃b

〉
0
= ω̃+ρ̂

2
+




k−1∑
p=0

(
k − 1
p

) (
k − 1
p + 1

)
ρ̂
2p
+ ρ̂

2(k−1−p)
−




+ ω̃−ρ̂
2
−




k−1∑
p=0

(
k − 1
p

) (
k − 1
p + 1

)
ρ̂
2p
− ρ̂

2(k−1−p)
+




. (4.69)

Again, the choice of radial amplitudes ρ̂± in Equation (4.24) is such that the two resulting terms
on the right-hand side of Equation (4.69) have an identical structure upon the substitution ± →
∓. For this particular choice, the prefactor ρ̂±/ρ̂∓ from Equation (4.24) cancels a factor of
ρ̂∓ in Equation (4.63). Hence, the prefactors of the sums in Equation (4.69) are ω̃±ρ̂

2
±, like
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4.1. Shifts caused by cylindrically-symmetric imperfections

in Equation (4.67). Aided by the similar form of the sums, adding these two equations is
straightforward and yields

〈
ρ̃2(k−1)ξ̃

〉
0
= ω̃+ρ̂

2
+




k−1∑
p=0

(
k − 1
p

) (
k

p + 1

)
ρ̂
2p
+ ρ̂

2(k−1−p)
−




+ ω̃−ρ̂
2
−




k−1∑
p=0

(
k − 1
p

) (
k

p + 1

)
ρ̂
2p
− ρ̂

2(k−1−p)
+




. (4.70)

The common binomial coefficient in Equations (4.67) and (4.69) remains. The other two binomial
coefficients were combined using the identity (4.46c).
So far, the particular choice of the radial amplitudes ρ̂± has enabled an easy summation of

the terms with the common prefactor ω̃±ρ̂2±. At this point, the two sums on the right-hand side
of Equation (4.70) should be combined to give a polynomial with terms that will turn out to be
of the kind ρ̂

2p
+ ρ̂

2(k−p)
− . To this end, the summation variable is transformed as p → p − 1 in the

first term

ω̃+ρ̂
2
+

k−1∑
p=0

(
k − 1
p

) (
k

p + 1

)
ρ̂
2p
+ ρ̂

2(k−1−p)
− = ω̃+

k∑
p=0

(
k − 1
p − 1

) (
k

p

)
ρ̂
2p
+ ρ̂

2(k−p)
− (4.71)

and as p → k − p − 1 in the second term

ω̃−ρ̂
2
−

k−1∑
p=0

(
k − 1
p

) (
k

p + 1

)
ρ̂
2p
− ρ̂

2(k−1−p)
+ = ω̃−

k∑
p=0

(
k − 1
p

) (
k

p

)
ρ̂
2p
+ ρ̂

2(k−p)
− . (4.72)

Apart from using the identity (3.4) for the binomial coefficients in Equation (4.72), we have
included vanishing contributions at the lower and upper limits of the summation in Equa-
tions (4.71) and (4.72), respectively. In this way, the limits of the summation are equal, and both
sums are combined easily, finally completing Equation (4.66) for the constant contribution from
the radial modes as

〈
ρ̃2(k−1)ξ̃

〉
0
=

k∑
p=0

(
k

p

) [
ω̃+

(
k − 1
p − 1

)
+ ω̃−

(
k − 1
p

)]
ρ̂
2p
+ ρ̂

2(k−p)
− . (4.73)

Finally, the parameter εz in Equation (4.65) is given by

εz = −
B2n
B0

ωc

ω2
z

(2n)!
22n−1

n∑
k=1

(−1)k k
[k!(n − k)!]2

ẑ2(n−k )

n − k + 1

k∑
p=0

(
k

p

) [
ω̃+

(
k − 1
p − 1

)
+ ω̃−

(
k − 1
p

)]
ρ̂
2p
+ ρ̂

2(k−p)
−

(4.74)

and it is related to the first-order frequency-shift by Equation (3.86), which would still contain
perturbed frequencies (namely ω̃±) and ideal ones (notably ωz and ωc) at this point. However,
we are allowed to make the switch ω̃± → ω± without incurring an error of first order in the
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4. Calculating first-order frequency-shifts

frequency-shift. Since the presence of the perturbation parameter B2n signals that εz is at least
of first order right away, only the zeroth-order contribution in the perturbed frequencies ω̃±
will contribute to the first-order frequency-shift. What is the zeroth-order part of the perturbed
frequency ω̃i? Well, that is the unperturbed frequency ωi .
More practically, the argument concerning the replacement also works in the opposite

direction. For the calculation of first-order frequency-shifts, the frequencies ωi the ion would
have in the ideal trap are allowed to be replaced by the perturbed frequencies ω̃i . Whereas
the latter are measured in the experiment, the former may not be known right away. If they
were known precisely enough, for instance from design considerations (and a superior mass
model or a different mass-measurement technique), there would be no point in measuring
them. Experiments work the other way around, inferring physical quantities from the measured
frequencies, possibly with a little help from corrections. The ideal frequencies are typically not
known until these corrections are applied.

Probably because the starting point of the theoretical treatment is the ideal Penning trap, with
imperfections being considered an addition rather than a nuisance to be removed by correcting
for its effect, it is common to show the frequency-shifts in terms of the unperturbed frequencies.
In this tradition, the first-order axial frequency-shift caused by a static cylindrically-symmetric
magnetic imperfection becomes

∆ωz

ωz
= −

B2n
B0

ω+ + ω−
ω+ω−

(2n)!
22n+1

n∑
k=1

(−1)k k
[k!(n − k)!]2

ẑ2(n−k )

n − k + 1

·

k∑
p=0

(
k

p

) [
ω+

(
k − 1
p − 1

)
+ ω−

(
k − 1
p

)]
ρ̂
2p
+ ρ̂

2(k−p)
− ,

(4.75)

where we have used Equations (2.25) and (2.26) in order to express all the frequencies on the
right-hand side in terms of the radial frequencies ω±. Unlike for the frequency-shifts caused
by electrostatic imperfections, we will not use the explicit expression (3.3) for the binomial
coefficients because two cases would have to be treated separately, for instance by splitting
the sum over p. The binomial coefficient associated with the reduced cyclotron-frequency ω+
vanishes for p = 0, and the binomial coefficient associated with the magnetron frequency ω−
vanishes for p = k . Using the binomial coefficients rather than an explicit expression with
factorials has these exceptions covered conveniently with a single sum.

Because the binomial coefficient withω+ vanishes forp = 0, the dependence on the amplitudes
would not be approximated correctly, if the binomial coefficient withω− were dropped altogether
in general. Of course, it is tempting to neglect the termwithω− against the onewithω+ (provided
the second one exists), because a typical experiment often has |ω+ | ≫ |ω− |. However, the relative
scaling of the two binomial coefficients works against this property for large k and small p.
Since for 1 ≤ p ≤ k − 1, the ratio of the binomial coefficients inside the square brackets in
Equation (4.75) is given by(

k − 1
p

)
(
k − 1
p − 1

) =
(k − 1)!

p! (k − 1 − p)!
(k − 1)!

(p − 1)! (k − p)!
=
k − p

p
=
k

p
− 1 , (4.76)
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the largest boost for a given k is achieved for the smallest p, the maximum boost factor being
k − 1 in the case of p = 1. Thus, a general approximation, for large n in particular, is impossible.
We will stick with the full expression (4.75), leaving possible approximations in a specific case
to the reader’s discretion.
Sending the summation variable p → k − p in Equation (4.75) swaps the exponents of the

radial amplitudes ρ̂± and ρ̂∓, but the obtained frequency-shift

∆ωz

ωz
= −

B2n
B0

ω+ + ω−
ω+ω−

(2n)!
22n+1

n∑
k=1

(−1)k k
[k!(n − k)!]2

ẑ2(n−k )

n − k + 1

·

k∑
p=0

(
k

p

) [
ω+

(
k − 1
p

)
+ ω−

(
k − 1
p − 1

)]
ρ̂
2p
− ρ̂

2(k−p)
+ ,

(4.77)

is not reproduced by simply substituting ρ̂± → ρ̂∓. Thus, unlike the axial frequency-shift (4.36)
caused by cylindrically-symmetric electrostatic imperfections, this frequency-shift is not sym-
metric with respect to the radial modes. Given that velocities matter for the forces created
by magnetic imperfections, this lack of symmetry comes as no surprise, because amplitudes
typically enter with an additional factor of frequency for the corresponding mode. Mathemat-
ically, Equation (4.75) transforms into Equation (4.77) and vice versa upon the substitutions
ρ̂± → ρ̂∓ and ω± → ω∓, because these two quantities entirely characterize the effect of the
radial modes on the axial frequency-shift. When the frequencies are swapped, the amplitudes
change their meaning as well. Confirming this experimentally useless symmetry serves as a
minor cross-check of the frequency-shift.

The more comprehensive test would be Equation (3.73) in Reference [99]. Unfortunately, the
general expression for frequency-shift does not depend on the perturbation parameter b2n , the
equivalent of B2n , and it does not have the unit of frequency. Moreover, the expressionW1

(2n,k )

does not seem to be defined, the closest matches beingW1
(2n),W (2n,k )

± or S (2n,k ).
In our case, Equations (4.75) and (4.77) are summarized as

∆ωz

ωz
= −

B2n
B0

ω+ + ω−
ω+ω−

(2n)!
22n+1

n∑
k=1

(−1)k k
[k!(n − k)!]2

ẑ2(n−k )

n − k + 1

·

k∑
p=0

(
k

p

) [
ω±

(
k − 1
p − 1

)
+ ω∓

(
k − 1
p

)]
ρ̂
2p
± ρ̂

2(k−p)
∓ .

(4.78)

Even though there is no obvious application for the two choices of subscripts here, this expression
will be beneficial for calculating the shifts under lock in Section 4.3.1.

Some of the specific shifts to the axial frequency in this section have also been estimated
from the axial magnetic field alone without considering the equations of motion in the radial
magnetic field [96]. In this framework, the effect of the radial modes on the axial frequency
is modeled as the interaction of their magnetic moment with the imperfections of the axial
magnetic field, which works well for B2 [150]. However, this method is hard to generalize. In
the case of B2, the method profits from the quadratic dependence on z of the additional axial
field. The energy of a magnetic moment in this field then gives rise to an axial force that is
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proportional to z, like the axial force caused by the electrostatic quadrupole potential of the
ideal Penning trap. Thus, there are no anharmonic terms with respect to the axial amplitude,
which is no longer the case for higher-order terms in the magnetic field. Chapter F in the
appendix takes a critical look at the model. Fortunately, the concept of a magnetic moment is
not required when the axial equation of motion with the radial magnetic field is considered. It
is this field, not the axial one, that couples the radial modes to the axial motion. Of course, the
axial and the radial magnetic fields are related because, together, they have to fulfillMaxwell’s
equation. Mathematically, this connection is expressed by the fact that both fields are derived
from the same scalar potential (2.75).
Coming back to the anharmonic frequency-shift as a function of the axial amplitude ẑ, it is

worth noting that the sum over k in Equation (4.78) starts at 1 rather than 0. For k = p = 0,
there is no dependence on the radial amplitudes ρ̂± and ρ̂∓. In all other cases, either p or k − p
is different from zero, and at least one of the two radial amplitudes remains. This means that
the axial amplitude ẑ always shows up in a product with at least one radial amplitude (both to
some power of at least 2). Thus, the axial amplitude ẑ never reaches the maximum exponent 2n
the two radial amplitudes have, when they show up on their own. In other words, there is no
solo ẑ2n term, and the frequency-shift vanishes if the amplitudes of the radial modes are zero. A
look at the spatial dependence of radial magnetic field (2.80) or Equation (4.60) explains why
the axial amplitude ẑ must enter as a product with the amplitude of a radial mode. As the radial
magnetic field vanishes on the z-axis, an excursion in the radial direction is required in order to
sample the effects of this field.

Shifts to the radial modes

The radial equations of motion are the first two components of Equation (4.59). They contain
the axial magnetic field B(z)

η from Equation (2.78) and the two components of the radial magnetic
field from Equation (4.60). The axial magnetic field is combined with a velocity component in
the radial plane; the radial magnetic field is multiplied with the axial velocity. Both combinations
will be examined for resonant terms at the radial frequencies separately. We have seen before
that naturally-resonant terms at the radial frequencies originate from the radial modes. Because
mixing such a resonant term with an oscillatory component at the axial frequency and its higher
harmonics generally leads to nonresonant terms, a constant contribution from the axial mode is
required to preserve the terms at the radial frequencies.
For the terms associated with the radial magnetic field (4.60), the dependence on the axial

coordinate and velocity takes the form

żzη−2k+1 =
1

η − 2k + 2
d
dt z

η−2k+2 . (4.79)

We have introduced the time-derivative in order to facilitate the frequency-analysis, after
plugging in the zeroth-order trajectory (3.96). With z̃ oscillating at the axial frequency ω̃z ,
taking z̃η−2k+2 leads to higher harmonics, and to a constant term, if the exponent η − 2k + 2
is even, as shown by Equations (3.2) and (3.5). In any case, the constant, or time-independent,
term is removed by the time-derivative, whereas the frequencies of the individual oscillatory
terms are left unchanged. Therefore, ˙̃zz̃η−2k+1 does not possess a constant contribution, which
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4.1. Shifts caused by cylindrically-symmetric imperfections

excludes the radial magnetic field as a source of naturally-resonant terms, because oscillatory
terms at the radial frequencies cannot be preserved. This leaves the additional axial magnetic
field (2.78) as the remaining source of first-order frequency-shifts, and the radial equations of
motion simplify to (

ẍ
ÿ

)
= ωc

(
ẏ
−ẋ

) 
1 +

Bη

B0

⌊η/2⌋∑
k=0

aη(k) zη−2kρ2k

+
ω2
z

2

(
x
y

)
(4.80)

for the search of naturally-resonant terms. As before, we will now plug in the zeroth-order
trajectories (3.94)–(3.96), and velocities (3.97) and (3.98), while looking for terms proportional to
the components ˙̃x± and ˙̃y±, defined in Equation (3.102) and (3.103). The mechanism for creating
and preserving oscillatory terms at the radial frequencies is formally expressed as〈

z̃η−2k ρ̃2k ˙̃y
〉
ω̃±
=

〈
z̃η−2k

〉
0

〈
ρ̃2k ˙̃y

〉
ω̃±

. (4.81)

The naturally-resonant terms are preserved by multiplying them with the constant contribution
from the axial mode. For z̃η−2k to have such a constant contribution, Equations (3.2) and (3.5)
require the exponent η − 2k be even. The obvious choice to guarantee this parity is η = 2n. The
additional terms in the effective equations of motion (3.105) are then given by

β± ˙̃y± =
B2n
B0

n∑
k=0

a2n(k)
〈
z̃2(n−k )

〉
0

〈
ρ̃2k ˙̃y

〉
ω̃±

. (4.82)

The coefficient a2n(k) is defined in Equation (2.71); the constant contribution by the axial mode
is given by Equation (3.6). In analogy to Equation (4.43) for the radial frequency-shifts caused
by electrostatic imperfections, the dual mechanism for producing resonant terms at the radial
frequencies is written as 〈

ρ̃2k ˙̃y
〉
ω̃±
=

〈
ρ̃2k

〉
0
˙̃y± +

〈〈
ρ̃2k

〉
ω̃b

˙̃y∓
〉
ω̃±

. (4.83)

Firstly, a resonant term at the frequency ω̃± is preserved by multiplying it with the constant
contribution in ρ̃2k . Secondly, mixing a resonant term at the frequency ω̃∓ with a term at the
frequency ω̃b = ω̃+ − ω̃− results in a resonant term at the other radial frequency ω̃±. The first
term in Equation (4.83) is directly evaluated with Equation (4.14) for the constant component of
ρ̃2k . The second term requires Equation (4.24) for the oscillatory component of ρ̃2k , and the
trigonometric identity (4.39) to give

〈〈
ρ̃2k

〉
ω̃b

˙̃y∓
〉
ω̃±
= −



cos(χ̃b) cos(χ̃∓)�ω̃± ω̃∓ρ̂∓
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ρ̂∓

k∑
p=0

(
k

p

) (
k

p + 1

)
ρ̂
2p
± ρ̂

2(k−p)
∓ (4.84a)

= ˙̃y±
ω̃∓
ω̃±

k∑
p=0

(
k

p

) (
n

p + 1

)
ρ̂
2p
± ρ̂

2(k−p)
∓ . (4.84b)

Like in the corresponding Equation (4.45a) for electrostatic imperfections, the prefactor ρ̂±/ρ̂∓
from Equation (4.24) is used to express the final result, which initially starts out with ˙̃y∓, as
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proportional to the velocity ˙̃y± of the other radial mode. Because of the velocities involved here,
the additional factor of ω̃∓/ω̃± originates from the amplitudes of ˙̃y± = −ω̃±ρ̂± cos(χ̃±). Thanks
to the trigonometric identity (4.40), the mechanism carries over to ˙̃x± = −ω̃±ρ̂± sin(χ̃±) and
hence applies to the second component in the equations of motion (4.80), too.
With these results for the two terms on the right-hand side of Equation (4.83), the resonant

terms at the radial frequencies are

〈
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〉
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2(k−p)
∓ . (4.85)

The parameter β± in Equation (4.82) is then identified as
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and related to the first-order frequency-shift
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with the help of Equation (3.109b). As for the axial frequency-shift (4.75) before, we have made
the switch ω̃± → ω± from the perturbed frequencies to the frequencies in the ideal Penning
trap. The frequency-shift remains correct to first order.

By sending the summation variable p → k − p, the exponents of the radial amplitudes ρ̂± are
swapped. Rewritten in this way, it becomes obvious that the frequency-shift

∆ω± = ±
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± (4.88)

is not symmetric with respect to the radial amplitudes, because the result is not obtained from
Equation (4.87) by simply substituting ρ̂± → ρ̂∓. The same was noted for the radial frequency-
shift (4.52) caused by electrostatic imperfections, and the technical explanation carries over
from there. Here, Equation (4.84a) shows that creating the resonant term ˙̃y± at the frequency ω̃±
by mixing ˙̃y∓ at ω̃∓ with an oscillatory component at ω̃b does away with the symmetry that
is still present for the oscillatory component (4.24) at ω̃b in powers of the radial displacement
squared. Moreover, velocities matter for the additional forces created by magnetic imperfections,
and the velocities associated with the individual modes depend on the respective frequencies in
addition to the amplitudes. Therefore, a symmetry with respect to the amplitude of the radial
modes alone would be dubious.

Of course, there is the technical symmetry of swapping the meaning of the modes, expressed
by the substitution ρ̂± → ρ̂∓ and ω± → ω∓. This symmetry is expressed by the two alternatives
in Equations (4.87) and (4.88). It can be exploited when evaluating the general formula for
specific shifts. Suppose the shift to the reduced cyclotron-frequency has been coded as a
function ∆ω+(ω+, ρ̂+,ω−, ρ̂−, ẑ), with the five variables having their obvious meanings. The first
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two terms in brackets describe the modified cyclotron-mode, the following two the magnetron
mode, and the last one is the placeholder for the axial amplitude. Then, the shift to the magnetron
frequency for these conditions is calculated by evaluating ∆ω+(ω−, ρ̂−,ω+, ρ̂+, ẑ). In other words,
the values for the frequencies and amplitudes of the radial modes are plugged in at the opposite
spot for the other radial mode, which yields the shift to the other radial frequency. This
behavior is essentially the equivalent of Equation (4.53) for the shifts caused by electrostatic
imperfections to the radial frequencies. Equation (4.53) has an extra minus, because swapping
the frequencies was not considered back then with the frequencies showing up as a global
prefactor. In Equations (4.50) and (4.87), the term ω+ − ω− in the denominator inverts the
sign upon swapping the frequencies such that the ± sign for the shifts ∆ω± to the two radial
frequencies is correctly reproduced from the single function ∆ω+(ω+, ρ̂+,ω−, ρ̂−, ẑ). For these
considerations and exploitations of symmetries, it is of course crucial not to approximate the
denominator with ω+ or ωc, which provides one good reason for dropping the approximation
|ω+ | ≫ |ω− |.
When comparing with Equation (3.74) from Reference [99] as a general test case, we face

the same problem as for the shift caused by magnetic imperfections to the axial frequency: the
general expression does not depend on the perturbation parameter and it fails dimensional
analysis.
Because the binomial coefficients nicely handle the exceptions for p = k and p = 0 in

Equations (4.87) and (4.88), respectively, we will not switch to the explicit expressions (3.3).
Partly because of these exceptions, we will not attempt any approximations despite the typical
relation |ω+ | ≫ |ω− | between the radial frequencies. Additionally, the scaling of the two
binomial coefficients that are multiplied with the radial frequenciesω± andω∓ in Equations (4.87)
works against this relation for large k , which implies large n. According to Equation (4.76),
the most extreme ratios occur either for small or large p. The details about which of the two
binomial coefficients dominates in which of two cases are of little interest here. Having ruled
out an approximation valid for all n, we stick with the most general expression here, just like
for the axial frequency-shift (4.78) caused by magnetic imperfections.

The cyclotron sideband According to the sideband identity (2.25), the shift to the cyclotron-
sideband frequency is given by the sum of the individual shifts to the radial modes. Thus, adding
Equation (4.87) for ∆ω+ and Equation (4.88) for ∆ω− leads to

∆ωc =
B2n
B0

ωc
ω+ − ω−

(2n)!
22n

n∑
k=0

(−1)k ẑ2(n−k )
[k!(n − k)!]2

k∑
p=0

(
k

p

)

·

{
ω+

[(
k

p

)
−

(
k

p − 1

)]
+ ω−

[(
k

p + 1

)
−

(
k

p

)]}
ρ̂
2p
+ ρ̂

2(k−p)
− .

(4.89)
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Alternately, adding Equation (4.87) for ∆ω− and Equation (4.88) for ∆ω+ leads to

∆ωc = −
B2n
B0

ωc
ω+ − ω−

(2n)!
22n

n∑
k=0

(−1)k ẑ2(n−k )
[k!(n − k)!]2

k∑
p=0

(
k

p

)

·

{
ω−

[(
k

p

)
−

(
k

p − 1

)]
+ ω+

[(
k

p + 1

)
−

(
k

p

)]}
ρ̂
2p
− ρ̂

2(k−p)
+ ,

(4.90)

which is also obtained by sending the summation variable p → k−p in Equation (4.89). Together,
the Equations (4.89) and (4.90) show that the frequency-shift is symmetric under the combined
substitution ω± → ω∓ and ρ̂± → ρ̂∓ for radial frequencies and amplitudes. In this case, the
additional minus is compensated for by the denominator ω+ −ω−. Mathematically speaking, the
variables are simply placeholders. They do not know which physical mode they are associated
with here because the sideband frequency treats shifts to both radial modes equally.

Although the symmetry provides no general test, it is tremendously helpful for spotting
dubious specific results. In our notation, Equation (3.79) from Reference [99] for the shift ∆ωc
caused by B4 contains a term like ρ̂4− + ρ̂4+, which will not switch sign when swapping the radial
amplitudes. Thus, it will not undo the change of sign in the denominator ω+ − ω−, and we
wonder about a misprint. A term like ρ̂4− − ρ̂4+ preserves the symmetry. Similarly, the same shift
in Reference [22] contains a term like ω+ρ̂4+ + ω−ρ̂4−, which faces the same problem.

4.2. Relativistic effects

This section applies the classical perturbative method outlined in Chapter 3 to the relativistic
frequency-shifts caused by the motional degrees of freedom in the ideal Penning trap. Although
the particular first-order formalism in Section 3.4.2 was originally conceived with cylindrically-
symmetric imperfections in mind, it extends to imperfections that do not break cylindrical
symmetry. Since special relativity does not introduce a preferred direction, the cylindrical
symmetry of the ideal Penning trap is preserved, and this configuration, always considered in
the nonrelativistic classical limit so far, is the starting point for the perturbative treatment.

Speaking of the classical limit is ambiguous when considering the effects of special relativity
and quantum mechanics together, and a clarification is in order here. In the nonrelativistic
limit, the velocity of the particle is much smaller than the speed of light c , which means the
particle’s motion is described sufficiently well by the classical Newtonian equations of motion.
As there is no threshold for the onset of relativistic effects, an entirely classical regime does not
exist. It is merely characterized by the fact that relativistic effects are too small to be observed.
When trying to move further into the classical domain by reducing the particle’s velocity, or
equivalently its motional amplitudes in the Penning trap, quantization would eventually set in.
For the quantum-mechanical calculation, the classical limit means that the quantum numbers
are high enough such that quantization remains unobservable. Instead, the classical notion
of a trajectory holds, and the eigenmotions in the Penning trap are characterized by their
amplitudes rather than their quantum numbers. The eigenfrequencies are important in both
cases.

In contrast to the cylindrically-symmetric imperfections, themotivation behind the calculation
of relativistic frequency-shifts is not immediately obvious, neither from a mathematical nor
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4.2. Relativistic effects

from a physical perspective. The relativistic shifts have been calculated before [20, 61, 99, 132],
and as there is only one set of first-order frequency-shifts here, a more general result is not to be
expected. Quite on the contrary, the result will even be less general, because a classical method
fails to account for spin and quantization. Furthermore, the discussion in the previous paragraph
raises the question whether the classical limits for relativistic and quantum-mechanical effects
overlap. Indeed, most of the aforementioned references give the energy-shift of the particle as a
function of its quantum numbers rather than a frequency-shift as a function of the particle’s
total energy or amplitudes. Of course, spin is quantized, but for the motional degrees of freedom,
possible reservations against the classical limit are never made explicit. If the particle were
already highly relativistic when quantization begins to fade, a perturbative treatment based on
classical trajectories rather than operators and eigenstates would have little predictive power.
In this case, quantization would have to be included when a perturbative treatment is justified,
and once it could be neglected, the perturbative approach would become doubtful. Fortunately,
this is not the case.

The importance of relativistic frequency-shifts in Penning traps is due to the precision with
which frequencies can be measured rather than the extreme energy of the trapped particle. A
small relativistic shift to the reduced cyclotron-frequency had to be accounted for in determining
the mass of the antiproton [55]. Even when quantum numbers are high enough for a description
with classical trajectories, the particle is barely relativistic, and a perturbative treatment is
justified. In this classical limit of the quantum-mechanical result, Reference [20] expresses the
relativistic energy-shift, given as a function of the quantum numbers, as a relativistic frequency-
shift in terms of the particle’s energy with the approximation |ω+ | ≫ |ω− |. Like for the shifts
caused by C4 and B2, the quantum-mechanical result [20] is the starting point for expressing
the relativistic shifts in the classical limit without this approximation [44] (see Section 4.2.4).
Since a non-quantized result itself is useful for many experiments on light or highly-charged
ions [7, 17, 151] and there seems to be only one major source, a check via a different method
is worthwhile. In the best case, it would serve as an independent confirmation of the classical
limit.
Unlike the perturbation parameters Cη and Bη associated with the cylindrically-symmetric

imperfections, the relativistic perturbation cannot be tuned, and the resulting frequency-shift is
determined by the eigenfrequencies and the motional amplitudes alone. On the one hand, even
the ideal classical Penning trap will possess some degree of anharmonicity. On the other hand,
relativistic shifts allow for a measurement of motional amplitudes—most notably the amplitude
of the modified cyclotron motion [107, 130]—in the absence of other imperfections. Here, the
speed of light c as the perturbation parameter is set by nature, whereas it has be determined
separately for other imperfections. This determination from a measurement alone is difficult
because, even with only a single eigenmode involved, the measurable frequency-shift depends
on a product the perturbation parameter and powers of the amplitude.

So far, the treatment of relativistic frequency-shifts has mainly relied on quantum-mechanical
operator methods. When the treatment included equations of motion, the focus was more on
the excitation of the modified cyclotron-mode than on the frequency-shifts when the motional
amplitudes are static. In References [52, 80], a damping term due to the emission of synchrotron
radiation is considered for the modified cyclotron-motion of an electron in combination with
an external drive. Reference [64] from the field of FT-ICR deals with the resonant excitation of
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4. Calculating first-order frequency-shifts

the modified cyclotron-motion despite relativistic mass-increase. In both cases, only one of the
three eigenmodes in a Penning trap is considered. The effect of relativistic shifts on the mass
determination in an FT-ICR spectrometer is mentioned in Reference [154] without going into
detail about the frequency-shifts involved. In short, I have not been able to find in the literature
a general calculation of all the relativistic frequency-shifts associated with the motional degrees
of freedom in the manner presented in this section.
In order to employ classical perturbation theory based on the trajectories of the nonrela-

tivistic case as the zeroth-order solution, the relativistic equations of motion will have to be
approximated in Section 4.2.1 by a power series of some perturbation parameter. Quite naturally,
the speed of light c takes this role. After calculating to first order the relativistic frequency-shifts
to the axial mode and the radial modes in Sections 4.2.2 and 4.2.3, respectively, Section 4.2.5
contemplates on the more familiar and intuitive picture of relativistic mass-increase.

4.2.1. Relativistic equations of motion

In close connection to the experiment, we will consider the particle in the laboratory frame,
where the electromagnetic fields of the ideal Penning trap are known right away without any
Lorentz transformations. This is the case in the rest frame of the Penning trap, not of the
particle. With this choice, the time-derivatives shown in the following (including the implicit
ones hidden in velocities) are with respect to time in the lab, not to the particle’s proper time.
Not only are the electromagnetic fields known in the lab frame, they are also time-independent,
which eliminates the complications of retardation.13 Furthermore, we will ignore radiation
damping, for instance by the emission of synchrotron radiation, which is a good assumption for
particles heavier than electrons [20].
In this framework, the relativistic equation of motion for a pointlike spinless particle of

charge q in electromagnetic fields is given by

˙⃗p = d
dt p⃗ =

d
dt (γm3⃗) = γ̇m3⃗ + γm

˙⃗3 = q(E⃗ + 3⃗ × B⃗) , (4.91)

where p⃗ is the particle’s relativistic momentum. In addition to the rest massm and the velocity 3⃗,
both known from the classical momentum, it comes with the Lorentz factor

γ =
1√

1 − 32/c2
, (4.92)

where c is the speed of light. We will use 3 = |3⃗ | and p = |p⃗ | as an abbreviation for the length of
the corresponding vectors. The right-hand side of Equation (4.91) is the Lorentz force (2.13).
In addition to the time-derivative ˙⃗3 of the velocity 3⃗, which gives the acceleration known from
Newton’s third law (2.15), the left-hand side contains a time-derivative of the Lorentz factor.
It is conveniently related to the right-hand side of the equation of motion (4.91) by calculating

13This is no longer true for the fields caused by the image charges the particle induces in the trap electrodes. However,
this effect may be treated as an additional perturbation. Moreover, for typical trap sizes and frequencies, the
instantaneous component dominates unless for electrons [21, 67]. In any case, the shift discussed in this section
is the more fundamental one, since it does not depend on the cavity that forms the Penning trap.
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the time-derivative of the particle’s total energy E = γmc2. With relativistic energy–momentum
relation, the result is

γ̇ =
1

mc2
d
dt E =

1
mc2

d
dt

[√
(mc2)2 + (pc)2

]
=

˙⃗p · p⃗
γm2c2

(4.93)

in terms of a scalar product of the particle’s momentum p⃗ and its time-derivative ˙⃗p. The latter
is given by the right-hand side of Equation (4.91). Taking into account that the force by the
magnetic field is always perpendicular to the particle’s momentum, or equivalently 3⃗ · (⃗3× B⃗) = 0,
only the electric field contributes to the change of the Lorentz factor, and hence to a change of
the particle’s total energy. The magnetic field changes the direction of the particle’s momentum,
but not its magnitude. In the electromagnetic fields, the derivative of the Lorentz factor
becomes

γ̇ =
q

γmc2
E⃗ · 3⃗ (4.94)

and the relativistic equation of motion (4.91) is rewritten as

˙⃗3 = q

γm

(
E⃗ + 3⃗ × B⃗

)
−

q

γmc2
3⃗

(
E⃗ · 3⃗

)
. (4.95)

The classical Newtonian equation of motion is recovered in the limit of c → ∞, and conse-
quently γ → 1. Clearly, c−2 would make for a good perturbation parameter, but at this point,
the Lorentz factor is a still a function of c−2, rather than a power series in c−2. For small
velocities 3 ≪ c , the remedy is to expand the inverse Lorentz factor as

1
γ
=

√
1 − 3

2

c2
≈ 1 − 3

2

2c2 − · · · . (4.96)

For an ion in a Penning trap, the first-order approximation will typically do. With the expan-
sion (4.96), the exact relativistic equations of motion (4.95) is then approximated to first-order
as

˙⃗3 = q

m

(
1 − 3

2

2c2

) (
E⃗ + 3⃗ × B⃗

)
−

q

mc2
3⃗

(
E⃗ · 3⃗

)
. (4.97)

Because the last term is a relativistic correction, it came with a factor of c−2 from the beginning.
Therefore, only the zeroth-order contribution of the inverse Lorentz factor has to be considered.
With the presence of c−2, its first-order correction gives rise to a term of second order—that is,
c−4—which we have neglected here.

So far, the treatment was general and did not assume any particular shape of the electromag-
netic fields. At this point, we will plug in the electric and magnetic fields of the ideal Penning
trap: E⃗2 from Equation (2.14) and B⃗0 from Equation (2.1). The first-order relativistic equations
of motion then take the form
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ż

+//
-
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with the velocity squared

3
2 = ẋ2 + ẏ2 + ż2 (4.99)

given by the quadratic sum of the components of the velocity vector 3⃗. The axial frequency ωz
and the free-space cyclotron-frequency ωc from the nonrelativistic case are defined in Equa-
tions (2.17) and (2.18), respectively. The dependence on the velocity squared results from the
expansion of the Lorentz factor; the last term on the right-hand side of the equations of
motion (4.98) essentially results from its time-derivative.

Frequently used identities

For the calculation of the frequency-shifts caused by cylindrically-symmetric imperfections of
the magnetic and electric fields in Section 4.1, powers of radial displacement squared played a
crucial role. As the equations of motion (4.98) show, the velocity squared takes over this role for
the relativistic frequency-shifts considered here. Therefore, we will derive some identities to
be used universally throughout the calculation. Fortunately, arbitrary powers as for the radial
displacement squared do not have to be considered here.
In analogy to Equation (2.45), the radial contribution to the zeroth-order velocity squared is

given by

˙̃x2 + ˙̃y2 = (ω̃+ρ̂+)2 + (ω̃−ρ̂−)2 + 2ω̃+ω̃−ρ̂+ρ̂− cos(χ̃b) with χ̃b = χ̃+ − χ̃− , (4.100)

where the unperturbed frequencies ωi have been replaced by the perturbed or relativistic14
ones ω̃i . There is the constant component〈 ˙̃x2 + ˙̃y2

〉
0
= (ω̃+ρ̂+)2 + (ω̃−ρ̂−)2 (4.101)

and the oscillatory component〈 ˙̃x2 + ˙̃y2
〉
ω̃b
= 2ω̃+ω̃−ρ̂+ρ̂− cos(ω̃bt + φ̃b) (4.102)

at the difference frequency ω̃b = ω̃+ − ω̃−. As a reminder of the abbreviation χ̃i defined
in Equation (3.104) for the total phase, we have shown the explicit time-dependence for the
argument of the trigonometric function here. We have also used the notation ⟨·⟩ω to retrieve
the oscillatory term at the frequency ω from the term in angle brackets.
The last term in the equations of motion (4.98) contains products of the three coordinates

with their corresponding velocity components. As a special case of Equation (4.79), these terms
are expressed as

ẋx =
1
2
d
dt x

2 (4.103)

14Since, unlike the cylindrically-symmetric imperfections, relativistic effects cannot be eliminated, referring to them
as perturbations in the true sense of the word might not be doing them true justice. Perhaps, the classical limit
should instead be denounced as an effective theory that is far less general. However, the relativistic terms are
perturbations in the sense of perturbation theory, and we will therefore use perturbed and relativistic frequencies
interchangeably.
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with a time-derivative, where x is used as an example here. Of course, the same expression
also holds for y and z. For analyzing the frequency spectrum of these terms after plugging
in the zeroth-order trajectory (3.94)–(3.96) and velocity (3.97)–(3.99), the same argument as
before applies. Any constant (or time-independent) term in, say, x̃2 is removed by taking the
time-derivative, whereas the frequency of the oscillatory terms is not affected. The oscillatory
terms will have to be calculated; the constant contribution does not exist:〈 ˙̃xx̃〉

0
=

〈 ˙̃yỹ〉
0
=

〈 ˙̃zz̃〉
0
= 0 . (4.104)

The overall contribution

˙̃xx̃ + ˙̃yỹ = −ρ̂+ρ̂− (ω̃+ − ω̃−) sin(χ̃+ − χ̃−) (4.105)

from the radial modes oscillates at the difference frequency ω̃b. As predicted by Equation (4.104),
there is no constant term in the sum, because there is none in the two individual terms.

4.2.2. Shifts to the axial mode

The axial equation of motion

z̈ + ω2
z

[
z

(
1 − 3

2

2c2

)
+
ż(ẋx + ẏy − 2żz)

2c2

]
= 0 (4.106)

is the third component of Equation (4.98). As usual, we will now insert the zeroth-order
trajectories (3.94)–(3.96) and velocities (3.97)–(3.99), looking for terms that fit into the effective
axial equation of motion (3.85). For the axial mode, these are terms proportional to z̃. The
identities derived at the end of the last subsection will provide some shortcuts.

Naturally-resonant terms at the axial frequency ω̃z originate from the axial motion itself, while
including the frequencies of the radial modes by means of mixing typically leads to nonresonant
contributions. In order to preserve terms at the axial frequency, a constant contribution is
required from the radial modes, whenever they are involved here. For the last term inside
the square brackets in the axial equation of motion (4.106), the mechanism for generating
naturally-resonant terms at the axial frequency ω̃z is formally expressed as〈 ˙̃z ( ˙̃xx̃ + ˙̃yỹ − 2 ˙̃zz̃

)〉
ω̃z
=

〈 ˙̃z〉
ω̃z

〈 ˙̃xx̃ + ˙̃yỹ
〉
0
− 2

〈
z̃ ˙̃z2

〉
ω̃z

. (4.107)

As Equation (4.105) shows that there is no constant contribution from the radial modes, only
the last term remains. Its time-dependence is of the form

cos(χ̃z )[sin(χ̃z )]2 = cos(χ̃z ) − [cos(χ̃z )]3 = cos(χ̃z ) − cos(3χ̃z )
4 , (4.108)

where we have used Equation (3.5) in order to express cosine cubed as a sum of oscillatory
terms. The component at the fundamental axial frequency ω̃z is〈

z̃ ˙̃z2
〉
ω̃z
=

1
4ω̃

2
z ẑ

3 cos(ω̃zt + φ̃z ) = 1
4 (ω̃z ẑ)2 z̃ . (4.109)
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We have absorbed one factor of ẑ in the zeroth-order solution z̃ from Equation (3.96). Overall,
Equation (4.107) evaluates to〈 ˙̃z ( ˙̃xx̃ + ˙̃yỹ − 2 ˙̃zz̃

)〉
ω̃z
= −2

〈
z̃ ˙̃z2

〉
ω̃z
= −

1
2 (ω̃z ẑ)2 z̃ . (4.110)

Next, we examine the term 32z in axial equation of motion (4.106). Naturally-resonant terms
at the axial frequency ω̃z are produced in the same way as before. Formally, this mechanism
reads 〈

z̃
( ˙̃x2 + ˙̃y2 + ˙̃z2

)〉
ω̃z
=

〈 ˙̃x2 + ˙̃y2
〉
0

〈
z̃
〉
ω̃z
+

〈
z̃ ˙̃z2

〉
ω̃z

(4.111a)

=
�(ω̃+ρ̂+)2 + (ω̃−ρ̂−)2�

z̃ +
(ω̃z ẑ)2

4 z̃ . (4.111b)

The final step uses the constant contribution (4.101) from the radial modes, and Equation (4.109)
for the contribution by the axial mode.
Collecting the resonant terms from Equations (4.110) and (4.111b) leads to the effective

equation of motion

¨̃z + ω2
z z̃


1 −

(ω̃+ρ̂+)2 + (ω̃−ρ̂−)2 + (ω̃z ẑ)2
4

2c2 −

(ω̃z ẑ)2
2
2c2


= 0 , (4.112)

from which the parameter

εz = −
1
2c2

[
(ω̃+ρ̂+)2 + (ω̃−ρ̂−)2 + 3

4 (ω̃z ẑ)2
]

(4.113)

in Equation (3.85) is read off. With the help of Equation (3.86), the parameter εz is related to the
first-order frequency-shift

∆ωz

ωz
=
εz
2 = −

1
4c2

[
(ω+ρ̂+)2 + (ω−ρ̂−)2 + 3

4 (ωz ẑ)2
]

. (4.114)

Here, we have switched from the relativistic frequencies ω̃i to the frequencies ωi in the classical
limit.15 As the difference between the two is at least of first order in the perturbation parame-
ter c−2, this switch affects the frequency-shift only in the next order. Because of the perturbation
parameter c−2 as a prefactor, the frequency-shift as such is of at least of first order right from
the start, regardless of the frequencies its expression contains. This argument was the same
in Section 4.1.3 when switching from perturbed frequencies in Equation (4.74) to unperturbed
frequencies in Equation (4.75) for the axial frequency-shifts caused by magnetic imperfections.
The same switch is also made from Equation (4.86) to Equation (4.87) for the shifts to the radial
modes.
Since the relativistic effect of the radial modes on the axial frequency is mediated nonreso-

nantly via the first-order approximation of the Lorentz factor, the functional dependence of
Equation (4.114) on both radial modes is the same. Essentially, the velocity of each radial mode
matters. Section 4.2.5 will revisit this behavior in terms of relativistic mass-increase.
15In Reference [83], this switch is made a little early without announcing it. In Equations (44) and (45), which

correspond to Equations (4.111b) and (4.112), respectively, the tilde on top of the axial frequency is missing.
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4.2.3. Shifts to the radial modes

The radial equations of motions are the first two components of Equation (4.98). Three terms
need to be considered as a source of additional resonant terms when inserting the zeroth-
order trajectory (3.94)–(3.96) and velocity (3.97)–(3.99). Naturally-resonant terms at the radial
frequencies ω̃± result from the radial modes themselves. Including oscillatory components at
the axial frequency ω̃z and its higher harmonics typically leads to nonresonant terms. Terms at
the radial frequencies ω̃± are preserved by multiplying them only with the constant contribution
from the axial mode.
We will begin the search for naturally-resonant terms by examining the product of velocity

squared and radial coordinates, that is, 32x and 32y. Picking x̃ as the example, the naturally-
resonant terms at the radial frequencies ω̃± are given by〈( ˙̃x2 + ˙̃y2 + ˙̃z2

)
x̃
〉
ω̃±
=

〈( ˙̃x2 + ˙̃y2
)
x̃
〉
ω̃±
+

〈 ˙̃z2〉
0

〈
x̃
〉
ω̃±

. (4.115)

With the trigonometric identity

[sin(χ̃z )]2 = 1 − [cos(χ̃z )]2 = 1
2 [1 − cos(2χ̃z )] , (4.116)

which is a variant of Equation (4.68), and ultimately Equation (3.2), the constant contribution
from the axial mode becomes〈 ˙̃z2〉

0
= (ω̃z ẑ)2 
[sin(χ̃z )]2�

0 =
1
2 (ω̃z ẑ)2 . (4.117)

Thus, the second term on the right-hand side of Equation (4.115) is〈 ˙̃z2〉
0

〈
x̃
〉
ω̃±
=

1
2 (ω̃z ẑ)2x̃± , (4.118)

where we have used the abbreviation (3.100) for the resonant term x̃± from the radial mode.
This result remains valid with the substitutions x̃ → ỹ and x̃± → ỹ±, and it is applicable to the
3̃2ỹ term in the second component of the radial equations of motion.
Evaluating the first term on the right-hand side of Equation (4.115) is trickier, because x̃

comes with two oscillatory terms—one at each radial frequency ω̃±. Of course, these terms
are resonant, and they give a resonant contribution because the radial part (4.100) of the
velocity squared comes with a constant term. However, it also comes with an oscillatory
component at the difference frequency ω̃b of the radial modes. These two contributions are
given by Equations (4.101) and (4.102), respectively. As Equation (4.39) demonstrates, mixing
an oscillatory term at ω̃b with a term at the radial frequency ω̃∓ results in an oscillatory term at
the other radial frequency ω̃±. Both mechanism combine, yielding the resonant terms〈( ˙̃x2 + ˙̃y2

)
x̃
〉
ω̃±
=

〈 ˙̃x2 + ˙̃y2
〉
0

〈
x̃
〉
ω̃±
+

〈〈 ˙̃x2 + ˙̃y2
〉
ω̃b

x̃∓

〉
ω̃±

(4.119a)

=
�(ω̃+ρ̂+)2 + (ω̃−ρ̂−)2�

x̃± + ω̃+ω̃−ρ̂+ρ̂− ρ̂∓ cos(χ̃±) (4.119b)
=

�(ω̃+ρ̂+)2 + (ω̃−ρ̂−)2 + ω̃+ω̃−ρ̂2∓
�
x̃± . (4.119c)
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In the last step, a factor of ρ̂± is used to provide the amplitude of x̃± = ρ̂± cos(χ̃±). With the re-
placement cos(χ̃±)→ − sin(χ̃±) and the trigonometric identity (4.40), the above transformations
also hold for ỹ and ỹ± = −ρ̂± sin(χ̃±) in〈( ˙̃x2 + ˙̃y2

)
ỹ
〉
ω̃±
=

�(ω̃+ρ̂+)2 + (ω̃−ρ̂−)2 + ω̃+ω̃−ρ̂2∓
�
ỹ± . (4.120)

Second, we tackle the 32 ˙̃y and 32 ˙̃x terms in the radial equations of motion. Because the zeroth-
order velocities contain the same frequencies as the corresponding zeroth-order trajectories, the
treatment is essentially the same as for the 3̃2x̃ term in Equation (4.115). The only complication
is that the zeroth-order velocities come with an additional factor of frequency that is not present
in the coordinates. Naturally-resonant terms at the radial frequencies ω̃± are written as〈( ˙̃x2 + ˙̃y2 + ˙̃z2

) ˙̃y
〉
ω̃±
=

〈( ˙̃x2 + ˙̃y2
) ˙̃y

〉
ω̃±
+

〈 ˙̃z2〉
0

〈 ˙̃y〉
ω̃±

. (4.121)

With the help of Equation (4.117) and the short-hand notation (3.103) for the resonant contribu-
tion ˙̃y± from the zeroth-order solution ˙̃y, the second term on the right-hand side becomes〈 ˙̃z2〉

0

〈 ˙̃y〉
ω̃±
=

1
2 (ω̃z ẑ)2 ˙̃y± . (4.122)

This result also applies with the substitutions ˙̃y → ˙̃x and ˙̃y± → ˙̃x±. In complete analogy to
Equation (4.119a), the first term on the right-hand side of Equation (4.121) is written as〈( ˙̃x2 + ˙̃y2

) ˙̃y
〉
ω̃±
=

〈 ˙̃x2 + ˙̃y2
〉
0

〈 ˙̃y〉
ω̃±
+

〈〈 ˙̃x2 + ˙̃y2
〉
ω̃b

˙̃y∓
〉
ω̃±

(4.123a)

=
�(ω̃+ρ̂+)2 + (ω̃−ρ̂−)2� ˙̃y± − ω̃+ω̃−ρ̂+ρ̂− ω̃∓ρ̂∓ cos(χ̃±) (4.123b)
=

�(ω̃+ρ̂+)2 + (ω̃−ρ̂−)2� ˙̃y± + (ω̃∓ρ̂∓)2 ˙̃y± (4.123c)
=

�(ω̃±ρ̂±)2 + 2(ω̃∓ρ̂∓)2� ˙̃y± . (4.123d)

In the second step, we have used a factor of −ω̃±ρ̂+ as the amplitude of the zeroth-order
velocity ˙̃y± = −ω̃±ρ̂+ cos(χ̃±). With the substitution cos(χ̃±)→ sin(χ̃±) and the trigonometric
identity (4.40) in lieu of Equation (4.39), the transformations work accordingly for ˙̃x and ˙̃x± =
−ω̃±ρ̂± sin(χ̃±) with the result〈( ˙̃x2 + ˙̃y2

) ˙̃x
〉
ω̃±
=

�(ω̃±ρ̂±)2 + 2(ω̃∓ρ̂∓)2� ˙̃x± . (4.124)

Third, we deal with the term that contains a product of velocity and coordinate. In the first
component of the radial equations of motion, naturally-resonant terms at the radial frequen-
cies ω̃± are written as〈( ˙̃xx̃ + ˙̃yỹ − 2 ˙̃zz̃

) ˙̃x
〉
ω̃±
=

〈( ˙̃xx̃ + ˙̃yỹ
) ˙̃x

〉
ω̃±
− 2

〈 ˙̃zz̃〉
0

〈 ˙̃x〉
ω̃±

. (4.125)

According to Equation (4.104), there is no constant contribution from the axial mode, and
only the first term on the right-hand side remains. The term in round brackets is shown
in Equation (4.105), and it oscillates at the difference frequency ω̃b of the radial modes. As
there is no constant term, resonant contributions at the radial frequencies ω̃± are only created
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from the component ˙̃x∓ at the other radial frequency ω̃∓. With the trigonometric identity (see
Equation (C.12) in the appendix)



sin(χ̃+ − χ̃−) sin(χ̃∓)�ω̃± = ∓

1
2 cos(χ̃±) , (4.126)

the resonant terms become〈( ˙̃xx̃ + ˙̃yỹ
) ˙̃x

〉
ω̃±
=

〈( ˙̃xx̃ + ˙̃yỹ
) ˙̃x∓

〉
ω̃±

(4.127a)

=
〈[−ρ̂+ρ̂−(ω̃+ − ω̃−) sin(χ̃+ − χ̃−)] [−ω̃∓ρ̂∓ sin(χ̃∓)]

〉
ω̃±

(4.127b)

= ∓
1
2 ρ̂+ρ̂−ρ̂∓ ω̃∓(ω̃+ − ω̃−) cos(χ̃±) (4.127c)

= ∓
1
2 ρ̂

2
∓ ω̃∓(ω̃+ − ω̃−) x̃± . (4.127d)

For ˙̃y instead of ˙̃x , as is the case in the second component of the radial equations of motion, the
relevant trigonometric identity (see Equation (C.11) in the appendix) is



sin(χ̃+ − χ̃−) cos(χ̃∓)�ω̃± = ±

1
2 sin(χ̃±) , (4.128)

and the result is〈( ˙̃xx̃ + ˙̃yỹ
) ˙̃y

〉
ω̃±
=

〈( ˙̃xx̃ + ˙̃yỹ
) ˙̃y∓

〉
ω̃±

(4.129a)

=
〈[−ρ̂+ρ̂−(ω̃+ − ω̃−) sin(χ̃+ − χ̃−)] [−ω̃∓ρ̂∓ cos(χ̃∓)]

〉
ω̃±

(4.129b)

= ±
1
2 ρ̂+ρ̂−ρ̂∓ ω̃∓(ω̃+ − ω̃−) sin(χ̃±) (4.129c)

= ∓
1
2 ρ̂

2
∓ ω̃∓(ω̃+ − ω̃−) ỹ± . (4.129d)

In each of the last steps, we have absorbed a factor of ρ̂± and −ρ̂± as the amplitudes of x̃± and
ỹ±, respectively. In the beginning, the last term in the equations of motion (4.98) did not look
like any of the other terms to be fit into the effective equations of motion (3.105). Therefore, its
connection to a frequency-shift in the framework of cylindrical symmetry may have appeared
doubtful. As it turns out here at the end of the calculation, the resonant contribution from the
term fits nicely into the effective equations of motion. This compliance could have been guessed
beforehand. The relativistic effects considered here do not break the cylindrical symmetry of
the ideal Penning trap, because the Lorentz factor γ as the only addition is isotropic, and
hence does not favor a velocity component.
With all the resonant contributions, the effective equations of motion (3.105) take the form( ¨̃x±
¨̃y±

)
=


1 −

(ω̃+ρ̂+)2 + (ω̃−ρ̂−)2 + ω̃+ω̃−ρ̂2∓ + 1
2 (ω̃z ẑ)2

2c2 −
∓ρ̂2∓ ω̃∓(ω̃+ − ω̃−)

2c2


ω2
z

2

(
x̃±
ỹ±

)

+


1 −

(ω̃±ρ̂±)2 + 2(ω̃∓ρ̂∓)2 + 1
2 (ω̃z ẑ)2

2c2

ωc

( ˙̃y±
− ˙̃x±

)
.

(4.130)
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The first line contains the contributions from Equations (4.118), (4.119c) and (4.120) in the first
fraction, and Equations (4.127d), and (4.129d) in the second one. The second line comprises
Equations (4.122), (4.123d) and (4.124). Using ∓ω̃∓(ω̃+ − ω̃−) = ω̃2

∓ − ω̃+ω̃−, the parameters in
the effective equations of motion (3.105) are read off as

β± = ε± = −
1
2c2

[
(ω̃±ρ̂±)2 + 2(ω̃∓ρ̂∓)2 + 1

2 (ω̃z ẑ)2
]

. (4.131)

Because the two parameters β± and ε± are equal, the numerators in Equation (3.109b) for the
first-order frequency-shift are simply added with the help of

±ω±ωc ∓ ω+ω− = ±ω±(ω+ + ω−) ∓ ω+ω− = ±ω2
± , (4.132)

and the expression (3.109b) for the frequency-shift simplifies to

∆ω± = ±
ω2
±

ω+ − ω−
β± = ±

ω2
±

ω+ − ω−
ε± . (4.133)

Specifically, the relativistic frequency-shift to the radial modes is given by

∆ω±
ω±
= ∓

ω±
ω+ − ω−

(ω±ρ̂±)2 + 2(ω∓ρ̂∓)2 + 1
2 (ωz ẑ)2

2c2 . (4.134)

Like for the relativistic shift to the axial frequency at the end of Section 4.2.2, we have replaced
the relativistic frequencies ω̃i in the parameters β± and ε± by the frequencies ωi in the classical
limit. This replacement is good to zeroth-order in the frequencies, but fine to first order in the
frequency-shift.
Ignoring the factor of 2 between the dependence on the amplitudes of the radial modes, the

absolute shift to the reduced cyclotron-frequency is approximately a factor of ω2
+/ω

2
− larger

than the shift to the magnetron frequency. Consequently, the shift to the sideband cyclotron-
frequency (2.25), obtained by adding the shifts to the two radial modes, is largely dominated
by ∆ω+:

∆ωc = −
(ω2
+ − 2ω2

−)(ω+ρ̂+)2 + (2ω2
+ − ω

2
−)(ω−ρ̂−)2 + (ω2

+ − ω
2
−)(ωz ẑ)2

(ω+ − ω−) 2c2 (4.135a)

= −

[
ωc −

ω2
−

ω+ − ω−

] (ω+ρ̂+)2
2c2 −

[
2ωc +

ω2
−

ω+ − ω−

] (ω−ρ̂−)2
2c2 − ωc

(ωz ẑ)2
4c2 . (4.135b)

The last step uses the third binomial formula on ω2
+ −ω

2
− = (ω+ +ω−)(ω+ −ω−) = ωc(ω+ −ω−).

The technical symmetry between the shifts to the two radial frequencies is present once again.
Thus, knowing the functional dependence of the relativistic shift ∆ω+(ω+, ρ̂+,ω−, ρ̂−,ωz , ẑ)
to the modified cyclotron-frequency, the relativistic shift ∆ω− to the magnetron frequency is
calculated from the same function as ∆ω+(ω−, ρ̂−,ω+, ρ̂+,ωz , ẑ) . This evaluation based on the
change of the arguments corresponds to the combined substitution ω± → ω∓ and ρ̂± → ρ̂∓ for
the radial frequencies and amplitudes. The relativistic shift ∆ωc to the sideband frequency is
invariant under this substitution.
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4.2.4. Comparison with other results

For easier comparison with results from the literature, it is useful to express the relativistic
frequency-shifts (4.114) and (4.134) as a function of the energies (2.49)–(2.51) associated with
the three eigenmotions instead of their amplitudes. The relativistic frequency-shifts then take
the form16

∆ω+
ω+
=
−1
mc2

[
ω2
+ E+

(ω+ − ω−)2 +
ω+ Ez

2(ω+ − ω−) −
ω2
z E−

(ω+ − ω−)2
]

, (4.136)

∆ωz

ωz
=
−1
mc2

[
ω+ E+

2(ω+ − ω−) +
3
8Ez −

ω2
z E−

4ω+(ω+ − ω−)
]

, (4.137)

∆ω−
ω−
=

1
mc2

[
ω2
z E+

(ω+ − ω−)2 +
ω− Ez

2(ω+ − ω−) −
ω2
− E−

(ω+ − ω−)2
]

. (4.138)

With the approximation ω+ −ω− ≈ ω+ for |ω+ | ≫ |ω− |, the result agrees with the classical limit
given in Reference [20], after applying the identity (2.26) multiple times. The same reference
also shows the quantum mechanical result in terms of quantum numbers, a result picked up
and expressed as a function of the energies Ei in Reference [44] without any assumptions
about the frequencies. Apart from the frequency-shifts caused by spin and the zero-point
shift caused by the fact that even the quantum-mechanical ground-state of each eigenmode
has nonzero energy—both being effects which our entirely classical treatment simply cannot
reproduce—there is agreement.

4.2.5. Estimates based on relativistic mass-increase

Because of the additional time-derivative of the Lorentz factor, the relativistic equations of
motion (4.91) do not result from the classical ones by simply making the replacementm → γm
for the mass. Nevertheless, the concept of relativistic mass-increase at slow speeds [49] is widely
used to introduce the most important relativistic frequency-shifts, for which it turns out to
work nicely. This section explores why this model is tempting in the context of the Penning
trap, and compares its estimates with the first-order result.

Without an electric field, the time-derivative (4.94) of the Lorentz factor γ vanishes, and the
relativistic equations of motion (4.91) look like the classical equations of motion for particle
of mass γm. Consequently, the motion in an entirely magnetic field supports the notion of
relativistic mass-increase as the major relativistic effect. In fact, it is the only one in this setting.
In a homogeneous magnetic field, the expression

ω̃c =
qB0
γm

(4.139)

for the relativistic free-space cyclotron-frequency ω̃c is exact. No approximations are required
to calculate the frequency-shift with respect to the classical case. However, the relativistic
frequency-shift is typically derived by starting from the classical case without discussing the

16Now, the substitution for making the switch ∆ω± → ∆ω∓ is ω± → ω∓ and E± → −E∓.

135



4. Calculating first-order frequency-shifts

relativistic solution. This approachwill be extended to the three eigenfrequencies in the Penning
trap. For small velocities, the relativistic mass of the particle is expanded as

γm =
m√

1 − 32/c2
≈m

(
1 + 3

2

2c2 + · · ·
)

, (4.140)

which results in the velocity-dependent mass-increase

∆m

m
=
32

2c2 . (4.141)

Next, the mass-dependence of classical free-space cyclotron-frequency (2.18)

dωc
dm = −

ωc
m

(4.142)

is related to the relativistic frequency-shift by plugging in the velocity-dependence (4.141) of
the mass as

∆ωc
ωc
= −

∆m

m
= −
32

2c2 = −
(ωcρ̂c)2
2c2 . (4.143)

The velocity squared is the one of a circular motion at the free-space cyclotron-frequency ωc
with cyclotron-radius ρ̂c. As usual, we do not distinguish between the relativistic frequencies ω̃
and the classical ones ω to first-order in the frequency-shift. Of course, the particle is free to
drift along the magnetic field-lines with constant velocity, but we do not show this contribution
to 32 here, because it would eventually lead to a loss of the particle. It is for this reason
that the Penning trap employs an electric field for axial confinement. In turn, the situation
becomes more complicated to the extent that an analytic solution of the relativistic equations
of motion (4.95) is impossible, because the time-derivative (4.94) of the Lorentz factor does not
vanish. Instead, the time-dependent Lorentz factor turns the relativistic equations of motions
into nonlinear ones. Nevertheless, the prediction (4.143) for the relativistic free-space cyclotron-
frequency ωc is assumed to be valid for the shift to the modified cyclotron-frequency ω+.
When the trap is operated in the usual regime |ωc | & |ω+ | ≫ ωz ≫ |ω− |, the magnetic field
is expected to dominate the modified cyclotron-mode, while the other, slower, modes give
negligible contributions to the total velocity, assuming similar amplitudes. If, furthermore, the
amplitudes of the other modes can be neglected, the main motion in the Penning trap is still a
circular one.

The simple model of mass-increase will be applied more rigorously in the following. Generally,
the radial frequencies ω± defined in Equation (2.23) depend on mass as

dω±
dm =

∂ω±
∂ωc

∂ωc
∂m
+
∂ω±

∂ω2
z

∂ω2
z

∂m
(4.144a)

=
±ω+

ω+ − ω−

−ωc
m
∓

1
2(ω+ − ω−)

−ω2
z

m
= −

1
m

±ω±ωc ∓ ω+ω−
ω+ − ω−

(4.144b)

= ∓
1
m

ω2
±

ω+ − ω−
. (4.144c)

136



4.2. Relativistic effects

The derivatives of the radial frequencies with respect to the free-space cyclotron-frequency ωc
and the axial frequency squared use Equations (3.107) and (3.108). The derivatives of the fre-
quencies with respect to mass are calculated from Equations (2.18) (or directly Equation (4.142))
and Equation (2.17), respectively. In both cases, it is more convenient to use the axial frequency
squared as a variable, because the radial frequencies ω± are a function of ω2

z , and taking ω2
z

eliminates the square root in the functional dependence of ωz on massm. In the second-to-
last step, the axial frequency squared is expressed as a product of the radial frequencies via
Equation (2.26). In the last step, the numerator is summed with the help of Equation (4.132).

With Equation (4.141), the mass-dependence (4.141) of the radial frequencies is linked to the
estimate

∆ω±
ω±
= ∓

ω±
ω+ − ω−

∆m

m
= ∓

ω±
ω+ − ω−

32

2c2 (4.145)

for the relativistic frequency-shift. In an ideal Penning trap, the kinetic energy (2.47) is not
constant, unless the trapped particle has no axial amplitude, and only one of its two radial
modes has nonzero amplitude. Thus, the velocity squared is generally a function of time. For the
estimate of the relativistic frequency-shift by means of relativistic mass-increase, we consider
the constant (or time-averaged) component



3̃
2�

0 = (ω̃+ρ̂+)2 + (ω̃−ρ̂−)2 + 1
2 (ω̃z ẑ)2 , (4.146)

taken from Equations (4.101) and (4.117). To first order in the frequency-shift, the relativistic
frequencies ω̃ may be replaced by the frequenciesω from the classical case. Since we do not want
to show an incorrect formula for the relativistic frequency-shifts, we will not plug this result
into Equation (4.145) explicitly. As it turns out, the simple model of relativistic mass-increase
fails to account for the factor of 2 in the dependence of the radial frequencyω± on the amplitude
squared ρ̂2∓ of the other radial motion. Apart from missing this factor, the exact first-order
result (4.134) is reproduced, and the order of magnitude is certainly correct.
According to Equation (2.17), the dependence on the axial frequency on mass evaluates to

dωz

dm = −
ωz

2m . (4.147)

With Equation (4.141), this result is related to the estimate

∆ωz

ωz
= −

∆m

2m = −
32

4c2 (4.148)

for the relativistic frequency-shift. Again, we refrain from showing the full expression after
plugging in Equation (4.146) for the estimate of velocity squared because the exact first-order
result (4.114) is not completely reproduced. This time, the simple model of relativistic mass-
increase underestimates the dependence on axial amplitude squared by a factor of 3/2, but it
does not miss out on the right order of magnitude. Moreover, the dependence of the relativistic
frequency-shift on the radial modes is reproduced correctly.

Table 4.1 summarizes the successes and the pitfalls of the simple model based on relativistic
mass-increase. Because of the hierarchy |ω+ | ≫ ωz ≫ |ω− | for the eigenfrequencies, relativistic
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Table 4.1.: Comparison of the simple estimate based on relativistic mass-increase with the exact
first-order calculation for the dependence of the relativistic frequency-shift ∆ωi on
the amplitudes of the three eigenmotions. The checkmark (X) indicates agreement;
the cross (×) indicates a discrepancy. Even in case of a discrepancy, the order of
magnitude is correct.

ρ̂+ ẑ ρ̂−
∆ω+ X X ×

∆ωz X × X
∆ω− × X X

shifts to and by the modified cyclotron-mode are typically the most important ones, assuming
similar amplitudes. Apart from the least important shift to the magnetron mode, the simple
model agrees with the complete first-order result for these. Because of this coincidence or
authors’ awareness, the discrepancies have not played an important role. The discrepancy for
the dependence of the axial frequency on the amplitude of the axial motion is probably the
first one that could be of experimental relevance. However, corrections for this relativistic
frequency-shift seem to have been applied correctly, mainly because of the availability of the
earlier results based on operator methods. The only paper that I am aware of for incorrectly
using the simple model of relativistic mass-increase in this case is a theoretical one [110] without
any direct interpretation of experimental data.
It is worth noting that even if we hypothetically sought to eliminate the relativistic effects

beyond mass-increase from the equations of motion by ignoring the time-derivative of the
Lorentz factor, the first-order result would not agree with the simple model presented in this
section. If the time-derivative of the Lorentz factor were dropped from the axial equation of
motion (4.106), the simple model of mass-increase would still not get the dependence of the
relativistic shift ∆ωz on the axial amplitude right. In this case, the last term in square brackets in
Equation (4.112) would be missing and the factor of 3/4 in the frequency-shift (4.114) would read
1/4 rather than 1/2 as predicted by the estimate of velocity (4.146). The discrepancy arises from the
fact that the relativistic mass is dynamical, rather than constant. When searching for resonant
terms that drive the first-order frequency-shift, terms like 32z need to be analyzed as a whole,
not just as individual factors. Although these mechanism of resonant mixing are even more
pronounced for the radial modes, we will not go into detail of what the first-order frequency-
shift would look like if the term ∓ρ̂2∓ ω̃∓(ω̃+ − ω̃−), which results from the time-derivative of
the Lorentz factor, were missing in the effective radial equations of motion (4.130). At a first
glance, the contributions that look like (time-averaged) mass-increase remain unchanged, while
the dependence of the shift ∆ω± on the amplitude ρ̂∓ of the other radial motion would still
disagree with the estimate from the model of mass-increase. In reality, the time-derivative of the
Lorentz factor is here to stay as a relativistic effect. The goal of this academic discussion was
to highlight the importance of correctly averaging the forces on the particle for the calculation
of first-order frequency-shifts.
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4.3. Shifts in axial lock

This section examines anharmonic frequency-shifts to the radial modes when the axial frequency
is held constant. This mode of operation is referred to as axial (frequency) lock, and the axial
frequency ω̃z is called locked, in contrast to the free-running mode. Assuming a perfect locked
loop, the effective axial equation of motion (3.85) shows thatω2

z (1+εz ) has to be kept constant for
the axial frequency ω̃z to stay constant. Although the effective radial equations of motion (3.105)
also containωz , this quantity is not equal to the actual axial frequency in the perturbed Penning
trap. The radial frequencies ω̃± depend on the effective curvature of the electrostatic potential
in the radial direction, just like the axial frequency ω̃z depends on the effective curvature of the
electrostatic potential in the axial direction. Only in the case of the ideal Penning trap are these
two curvatures related in a simple manner. If this relation is preserved by the imperfections,
the frequency-shifts cancel in the invariance theorem [25]. The parameters ε± in the effective
radial equations of motion (3.105) show that the effective curvature in the radial directions
may differ for the two radial modes. If they are the same—that is, ε+ = ε−—the first-order
frequency-shifts (3.109b) cancels in the sideband-identity (2.25).17

From the mathematical point of view, the actual axial frequency in lock is readily included in
the effective curvature of the radial electrostatic potential by means of

ω2
z (1 + ε±) =

ω2
z (1 + εz )(1 + ε±)

(1 + εz ) =
ω̌2
z (1 + ε±)
(1 + εz ) (4.149a)

≈ ω̌2
z (1 + ε±)(1 − εz + · · · ) (4.149b)

≈ ω̌2
z (1 + ε± − εz + · · · ) . (4.149c)

In the first step, we have expanded with 1 + εz to write the actual axial frequency in lock as

ω̌z = ωz
√
1 + εz . (4.150)

From this point on, we will indicate frequencies in lock with the inverted hat as ω̌i . Under lock,
the axial frequency-shift vanishes: ∆ω̌z = 0, in contrast to the free-running mode. We have then
approximated the denominator for |εz | ≪ 1. The cross-term ε±εz has been neglected because
it is of higher order. If either ε± or εz were correct up to, say, second order, the second-order
contribution of the cross-term ε±εz would have to be retained, in order to stay correct to second
order. However, all the frequency-shifts considered in this chapter are of first order only.
Substituting Equation (4.149c) into the effective radial equations of motion (3.105) in free-

running mode results in the effective radial equations of motion( ¨̃x±
¨̃y±

)
= ωc(1 + β±)

( ˙̃y±
− ˙̃x±

)
+
ω̌2
z (1 + ε± − εz )

2

(
x̃±
ỹ±

)
(4.151)

under lock. The two differences are the substitution ω2
z → ω̌2

z , and the addition of the pa-
rameter −εz . The shift to the radial frequencies ω± under lock is now calculated according to

17This is not the case for β+ = β− ≡ β . Rather, the associated two shifts would combine to increase the sideband
cyclotron-frequency by ωcβ to the value of the effective cyclotron-frequency ωc(1 + β).
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4. Calculating first-order frequency-shifts

Equation (3.105) for the free-running mode18 with the result

∆ω̌± = ±
ω±ωc

ω+ − ω−
β± ∓

ω+ω−
ω+ − ω−

(ε± − εz ) (4.152a)

= ∆ω± ±
ω+ω−

ω+ − ω−
εz (4.152b)

= ∆ω± ±
2ω+ω−
ω+ − ω−

∆ωz

ωz
. (4.152c)

The last step relates the parameter εz to the axial frequency-shift in free-running mode via
Equation (3.86). This is the same result as in Reference [44]. Without any specific expression
for the frequency-shifts, Equation (4.152c) shows that the shift to the sideband cyclotron-
frequency (2.25) is the same under lock as in free-running mode:

∆ω̌c = ∆ω̌+ + ∆ω̌− = ∆ω+ + ∆ω− = ∆ωc . (4.153)

Next, we consider shifts to the frequency determined via the invariance theorem (2.27). In
the ideal case and for some imperfections covered by the invariance theorem, such as an elliptic
quadrupole potential and a misalignment of this potential with respect to the magnetic field,
summing the three eigenfrequencies in the trap in quadrature yields the free-space cyclotron-
frequency (2.18) squared. However, the cancellation in the quadratic sum does not work for
arbitrary frequency-shifts. Consequently, the frequency determined by plugging the shifted
frequencies, which have not been corrected for that very shift, into the invariance theorem will
in general differ from the ideal free-space cyclotron-frequency ωc given by Equation (2.18).

The free-space cyclotron-frequencyωc depends differentially on the three eigenfrequenciesωi
in the trap as

∂ωc
∂ωi
=
∂

∂ωi

√
ω2
+ + ω

2
z + ω

2
− =

ωi√
ω2
+ + ω

2
z + ω

2
−

=
ωi

ωc
, (4.154)

when it is determined via the invariance theorem. Thus, shifts ∆ωi to these frequencies result
in the shift

ωc∆ωc = ω+∆ω+ + ωz∆ωz + ω−∆ω− (4.155)

to the calculated free-space cyclotron-frequency.19 Since estimating the shift ∆ωc with only the
first derivative neglects cross-terms and powers in the shifts ∆ωi , we are free to switch between
the perturbed frequencies, ω̃i and ω̌i , and the unperturbed ones in this approximation. Taking
the difference between these frequencies into account would lead to powers in the shifts ∆ωi ,
too. When higher-order derivatives are not considered, dropping these terms of higher order is
the honest thing to do.
18Because the effective radial equation of motion (4.151) under lock contain the locked axial frequency ω̌z rather than

the axial frequency ωz in the ideal trap, a little care has to be taken. The original calculation uses Equation (2.26),
ω2
z = 2ω+ω−, whereas now ω̌2

z = ω2
z (1 + εz ) according to Equation (4.150). However, the difference is of higher

order and will hence be neglected here.
19We are talking about shifts in the sense of applying corrections. Propagating the uncertainties of these shifts is a

different matter.
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4.3. Shifts in axial lock

For shifts ∆ω̌i under lock, which ideally means ∆ω̃z = 0 as the axial frequency is held constant,
the shift to the calculated free-space cyclotron-frequency becomes

ωc∆ω̌c = ω+∆ω̌+ + ω−∆ω̌− (4.156a)

= ω+

(
∆ω+ +

ωz

ω+ − ω−
∆ωz

)
+ ω−

(
∆ω− −

ωz

ω+ − ω−
∆ωz

)
(4.156b)

= ω+∆ω+ + ωz∆ωz + ω−∆ω− . (4.156c)

The second step uses Equation (4.152c) in conjunction with Equation (2.26), ω2
z = 2ω+ω−. The

final result is the same as in Equation (4.155) without lock.
When it comes to the invariance theorem (2.27), applying the shifts to the radial frequencies

under lock without correcting the locked axial frequency is equivalent to applying the shifts for
free-running mode to all three eigenfrequencies. While locking the axial frequency seems like a
clever alternative to measuring it, there is no guarantee that the frequency to which the particle
locks is the unperturbed axial frequency the particle would have in the ideal trap. Consequently,
corrections of the axial frequency have to be implemented in the invariance theorem, even
under lock. This fact is expressed very clearly by Equation (4.156c), whereas these corrections
in Equation (4.156a) are hidden in the shifts ∆ω̌± to the radial frequencies under lock.

At this point, we turn from the general relations for shifts to the specific frequency-shifts from
Sections 4.1 and 4.2 for cylindrically-symmetric imperfections and relativistic effects, respec-
tively, in order to calculate the corresponding shifts in lock in the following two subsections.

4.3.1. Cylindrically-symmetric imperfections

As in this whole chapter, the results will be kept general when possible. Explicit expressions for
the frequency-shifts caused by the lowest-order imperfections are shown in Chapter E of the
appendix.

Electrostatic imperfections

The exponent of the amplitude ρ̂± is not the same in the axial frequency-shift (4.36) as in the
shift (4.50) to the radial frequencies. Consequently, combining these shifts directly according to
Equation (4.152c) for the shift in lock would yield an unnecessarily complicated expression. By
transforming the summation variable in Equation (4.36) as k → k − 1, the axial frequency-shift
is rewritten as

∆ωz

ωz
= −

C2n
C2

(2n)!
22n

n∑
k=1

k−1∑
p=0

(−1)k (n + 1 − k) ρ̂2p± ρ̂
2(k−1−p)
∓ ẑ2(n−k )

[(n + 1 − k)!p! (k − 1 − p)!]2 d2n−2 (4.157)

with the same exponents for the amplitudes as in the shift (4.50) to the radial frequencies.
Moreover, the sums now have the same limits. Overall, the frequency-shifts are in the right
shape to plug them into Equation (4.152c), where the two expressions on the right-hand side
turn out to be almost equal up to factors of

p + 1
[(n − k)! (p + 1)!]2 −

n − k + 1
[(n + 1 − k)!p!]2 =

1
[(n − k)!p!]2

[
1

p + 1 −
1

n + 1 − k

]
. (4.158)
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4. Calculating first-order frequency-shifts

The first term is from the radial modes; the second one from the axial mode. The signs shown
here reflect the situation for the modified cyclotron-frequency ω̌+ under axial lock. For the shift
to the magnetron frequency ω−, there is a global minus sign.
Considering all the common factors not shown in Equation (4.158), the shift to the radial

frequencies in lock becomes

∆ω̌± = ±
ω+ω−

ω+ − ω−

C2n
C2

(2n)!
22n−1

1
d2n−2

n∑
k=1

(−1)k ẑ2(n−k )
[(n − k)!]2

·

k−1∑
p=0

ρ̂
2p
± ρ̂

2(k−1−p)
∓

[p! (k − p − 1)!]2
(

1
p + 1 −

1
n + 1 − k

)
.

(4.159)

It vanishes for p = n − k , which means that there are no terms with ẑ and ρ̂± having the same
exponent. Moreover, the term ρ̂2(n−1)∓ with the strongest possible dependence on the amplitude
of the other radial mode is gone, because reaching this exponent requires k = n and p = 0,
which satisfies p = n − k .

Inserting the condition k = n − p for a vanishing contribution into the limits 0 ≤ p ≤ k − 1
for the summation variable p yields the condition 0 ≤ 2p ≤ n − 1 for all possible values of p that
lead to a vanishing contribution. Overall, the shift (4.159) to the radial frequencies under axial
lock contains 1+ ⌊(n− 1)/2⌋ = ⌊(n+ 1)/2⌋ fewer terms with distinct dependencies on amplitudes
than the corresponding shift (4.50) in free-running mode.

Static magnetic imperfections

For magnetostatic imperfections, the expressions for the shift (4.78) to the axial mode and
for the shift (4.87) to the radial modes have the right form to combine them according to
Equation (4.152c) for the frequency-shift in lock without any transformation of summation
variables. Although the lower limits of the summation over k are not the same yet, they are
matched readily, because both binomial coefficients inside the square brackets in Equation (4.78)
vanish at the new lower limit k = 0, where there is no additional contribution to be considered.
The frequency-shift in lock then becomes

∆ω̌± = ±
B2n
B0

ω+ + ω−
ω+ − ω−

(2n)!
22n

n∑
k=0

(−1)k ẑ2(n−k )
[k!(n − k)!]2

·

k∑
p=0

(
k

p

) {
ω±

[(
k

p

)
−

k

n − k + 1

(
k − 1
p − 1

)]

+ ω∓

[(
k

p + 1

)
−

k

n − k + 1

(
k − 1
p

)]}
ρ̂
2p
± ρ̂

2(k−p)
∓ .

(4.160)

Like for the magnetic shifts in free-running mode, we will not use the explicit expression (3.3)
for the binomial coefficients, because of the special cases for p = 0, p = k , and k = 0. These
vanishing contributions are included in the binomial coefficients without having to split the
sums. Anyway, the binomial coefficients do not subtract nicely and possible cancellations are

142



4.3. Shifts in axial lock

much harder to spot. Moreover, two cancellations are required for a particular dependence
on amplitudes to vanish. Thus, we will not attempt a general survey here, going with a
specific example instead. For the lowest-order term B2, the shift ∆ω̌± does not depend on the
amplitude ρ̂∓ of the other radial motion.

4.3.2. Relativistic effects

For the frequency-shifts in lock, Equation (4.152c) combines the frequency-shifts in free-running
mode: Equation (4.114) for the axial frequency and Equation (4.134) for the radial frequencies.
The resulting shift

∆ω̌+ = −
1
2c2

ω2
+

ω+ − ω−

{
(ω+ρ̂+)2

[
1 + ω−

ω+

]
+ 2(ω−ρ̂−)2

[
1 + ω−

2ω+

]

+
(ωz ẑ)2

2

[
1 + 3ω−

2ω+

]} (4.161)

to the reduced cyclotron-frequency is largely dominated by the shift to that frequency in
free-running mode. Conversely, the shift

∆ω̌− =
1
2c2

ω+ω−
ω+ − ω−

{
(ω−ρ̂−)2

[
1 + ω−

ω+

]
+ (ω+ρ̂+)2

[
1 + 2ω−

ω+

]

+
3(ωz ẑ)2

4

[
1 + 2ω−

3ω+

]} (4.162)

to the magnetron frequency is dominated by the shift to the axial frequency that lock will undo.
In typical experiments, the factors of ω−/ω+ may safely be neglected.
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5. Calculating other frequency-shifts

This chapter deals with two sources of frequency-shifts that did not fit into the context of
Chapter 4, either because no truly perturbative method is required as is the case in Section 5.1
on the frequency-shift caused by image charges, or because second-order perturbation theory is
required. In this regard, Section 5.2 on a modulation of the trapping potential extends Section 3.3
on second-order effects to the treatment of a time-dependent perturbation. The general methods
of Chapter 3, in particular Section 3.4, come in handy for Section 5.1, too.

5.1. Image-charge frequency-shift

Section 2.2.1 on the electrostatic potential in a Penning trap mentioned the self-interaction of an
ion via the charges its electric field induces in the electrodes. This interaction is a consequence
of the electrodes being equipotential surfaces. Because the ion creates a nonzero potential there,
which depends inversely on the distance from the ion, there has to be an additional potential with
a nontrivial spatial dependence. This potential compensates for the ion’s Coulomb potential on
the electrodes, and it is present everywhere, in particular at the ion’s position. For the overall
electric field, the electrode being an equipotential surface means that the field lines have to be
perpendicular to it, or else the remaining parallel component would move charges along the
surface, until a new equilibrium is reached.
For particular geometries, the boundary conditions on the electrodes are satisfied by the

strategic placement of fictitious charges, and the electric potential and field are calculated
from this configuration. A point charge in front of an infinite conducting plate is the textbook
example. The fictitious charge which ensures that the plate remains an equipotential surface is
the mirror image of the original charge—opposite in sign and opposite the plate. That is why
the method for solving this boundary-value problem is called method of image charges.
As is customary in Penning-trap physics, we will sloppily refer to the charge distribution

on the electrodes as image charges, even though no pointlike charges can be singled out there.
Mathematically, one would be hard-pressed to compensate for the ion’s finite potential on the
electrodes by placing pointlike charges, whose potential diverges at their location, right on the
electrodes.
Due to the ion’s motion in the Penning trap, the image charges are not static. Section 4.2.1

mentioned the complication of retardation for the modified cyclotron-mode of electrons [21, 67]
when deriving relativistic equations of motion. The classical formalism of instantaneous fields
suffices for ions because the wavelengths associated with their eigenfrequencies are much
larger than the dimension of the trap. When neglecting the insignificant magnetic field created
by the orbiting ion and by the oscillating image-charges, the time-derivatives inMaxwell’s
equations (2.53) and (2.54) play no role, and the problem looks like the electrostatic one again.
The ion’s position acts as a parameter whose time-dependence comes into play only after having
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5. Calculating other frequency-shifts

solved the electrostatic problem for the image-charge field and potential as a function of that
parameter without considering the ion’s motion yet. The ion’s trajectory is then determined
from the equation of motion that includes the force by the image charges.
The method of images has been employed multiple times to estimate the additional electric

field due to image charges in a Penning trap with the goal of translating this field into frequency-
shifts [162, 191, 194]. We will skip the first part of determining the image-charge field for a
particular trap geometry, calculating the frequency-shifts for the generic lowest-order form this
field may have. Honoring the particularity of THe-Trap, we devote special attention to the shifts
under lock. In doing so, we extend the work of Reference [162] beyond an image-charge field of
spherical symmetry. Reference [124] gives corresponding formulas with going into detail about
their derivation. Shifts in free-running mode with the major focus on the modification of the
invariance theorem (2.27) are discussed by References [127, 152].
For an ion of charge q = ne , with n elementary charges e , that is,1 the field of the image

charges at the position of this very ion is given by

E⃗ic = n(E ′xxe⃗x + E ′yye⃗y + E ′zze⃗z ) (5.1)

to lowest order. This field is linear in the position of the ion—not the general coordinates—and
the E ′i describe the field’s gradient for one (positive) elementary charge e in the trap.2
When considering the image-charge potential, keeping track of two different sets of coordi-

nates is crucial. This potential depends on the position of the ion, but it is defined everywhere.
The electric field at any position is calculated by taking the negative gradient with respect to
the general coordinates, while the position of the ion is treated as a parameter. The electric field
at the position of the ion then follows by evaluating the resulting expression at the position of
the ion [127]. This operation is not equal to plugging in the position of the ion into the general
coordinate of the potential and then taking the negative gradient with respect to the position
of the ion. Even though a factor of 1/2 cures the shortcoming of the second method [157], the
difference between the image-charge potential as a function of general coordinates with the
position of the ion as a parameter and the same potential evaluated at the position of the ion has
profound consequences. While the former fulfills the Laplace equation (2.57) (with the Laplace
operator working on the general coordinates), the latter typically does not (with respect to
the position of the ion—the only variable that is left). Thus, the constraint E ′x + E ′y + E ′z = 0
for an electric field which is derived from a potential that is quadratic in the coordinates and
satisfies the Laplace equation is lifted. Other, less fundamental relations are established by the
symmetry of the trap.
A constant term in the image-charge field (5.1) is ruled out by the symmetry under point

reflection about the center of the trap. If cylindrical symmetry is present, as we shall assume
1For N ions of the same species, assumed to occupy the same spot, the formulas in this section should hold with
the replacement n → Nn, as long as the ion–ion interaction is neglected.

2We are running short of symbols to distinguish the notation, the ordinary E
(i)
η being used for the electric field.

The calligraphic E denotes the energy of the particle (Section 2.1.2). The two variants ϵ and ε of the Greek
letter epsilon are used as the perturbation parameter (3.1) and as a relative change of effective electric field
(Equations (3.85) and (3.105)), respectively, both being related to frequency-shifts. Unfortunately, the capital
epsilon looks like a Latin E, and for the ease of copying the formulas by hand we do not want to switch to the
Fraktur or blackboard letters, E or E, LATEX has to offer from its math alphabets. Since the E ′i describe a field
gradient, the prime serves as a reminder of the derivative.
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5.1. Image-charge frequency-shift

here for the moment before getting to the most general case, the gradients in the radial directions
are described by the same parameter E ′ρ ≡ E ′x = E ′y .
In the case of spherical symmetry, all three gradients are the same: E ′r ≡ E ′ρ = E ′z . Even

though the trap is not spherical, this case makes for an interesting model because of the analytic
solution [162]

E ′r =
1

4πε0
e

a3
(5.2)

for the gradient3 in a sphere of radius a. Analytic expressions for some other geometries
exist [157]. Unfortunately, traps with hyperboloidal electrodes are not among them, and
determining the gradients relies on a semi-analytic approach [127] or simulations [140].
As a general statement, we expect the particle to be attracted by the opposite-sign charges

on the electrodes (fractions of elementary charge actually), which is reflected by positive or
zero gradients E ′ρ and E ′z . The gradient for one direction is zero when there is translational
invariance in this direction, for instance E ′z = 0 in an infinite cylinder stretching along the
z-axis, or E ′ρ = 0 for an infinite plate perpendicular to the z-axis.

Like for the imperfections of the electric andmagnetic field, wewill calculate the image-charge
frequency-shifts in general terms, assuming that the relevant coefficients—the gradients E ′ρ and
E ′z in the case of cylindrical symmetry—can be procured from other sources. Turning things
around, the gradients might of course be determined from a measurement of the image-charge
frequency-shift. However, we shall see that such a measurement is virtually impossible with one
single ion because, for one species in a given trap, there are no suitable parameters to sample.
Unlike the imperfections of the electric and magnetic trapping fields, which can be varied and
whose frequency-shift depends on the amplitude of the particle, the image-charge effect is much
harder to tune. In short, it is hard to extrapolate to zero image-charge frequency-shift for a
single ion.

Axial mode

The additional axial acceleration z̈ic = (q/m)nE ′zz by the image-charge field (5.1) is incorporated
into the axial equation of motion (3.85) with the parameter

εz = −n
q

m

E ′z
ω2
z

(5.3)

and translated into the relative frequency-shift

∆ωz

ωz
= −n

q

m

E ′z
2ω2

z
(5.4)

via Equation (3.86) for |εz | ≪ 1. Since the axial image-charge field (5.1) has the same spatial
dependence as the axial electric field (2.14) in the ideal Penning trap, both being proportional
to z, perturbation theory is actually unnecessary, and the axial frequency squared is read off
directly from the equations of motion as

ω̃2
z = ω2

z (1 + εz ) (5.5)
3References [162] and [127] use Gaussian units, rather than SI units. We have included the vacuum permittivity ε0
together with a factor of 4π here.
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5. Calculating other frequency-shifts

without searching for resonant terms.4 The axial frequency-shift due to image charges is a
harmonic one, which means that it does not depend on the motional amplitudes of the particle,
at least for the lowest-order image-charge field considered here.
For E ′z > 0 as expected for typical geometries, we have εz < 0, and the axial frequency-shift

is negative.5 Thus, the actual axial frequency is smaller than it would be if the image charges
were magically turned off.

Radial modes

For the radial modes, the additional acceleration(
ẍic
ÿic

)
= n

q

m
E ′ρ

(
x
y

)
(5.6)

by the image charges fits into the radial equations of motion (3.105) with the parameter

ερ = ε± = n
q

m

2E ′ρ
ω2
z

. (5.7)

Like in the axial case, the spatial dependence of the cylindrically-symmetric radial image-charge
field (5.1) is the same as for the electric field (2.14) in the ideal Penning trap. However, the
prefactors of the additional axial and radial acceleration are unrelated because there is no
fundamental link between the gradients E ′z and E ′ρ , their ratio depending on the geometry of the
trap electrodes. With the radial image-charge field easily incorporated into the equations of mo-
tion (3.105) without an explicit search for resonant terms,6 the modified radial frequencies (2.23)
become

ω̃± =
1
2

[
ωc ±

ωc
|ωc |

√
ω2
c − 2ω2

z (1 + ερ )
]

. (5.8)

For |ερ | ≪ 1, Equation (3.109b) gives the image-charge frequency-shift as

∆ω± = ∓
q

m

nE ′ρ

ω+ − ω−
= ∓

nE ′ρ

B0

ω+ + ω−
ω+ − ω−

≈ ∓
nE ′ρ

B0

(
1 + 2ω−

ω+

)
≈ ∓

nE ′ρ

B0
. (5.9)

We have used the definition (2.18) of the free-space cyclotron-frequency ωc and the cyclotron-
sideband identity (2.25), before approximating the frequency-shift in the limit of ω−/ω+ ≪ 1.
When dropping the factor altogether, the image-charge frequency-shift is (approximately)
independent of the mass of the particle, depending only on its charge and two parameters of the
trap. This dependence also explains why the shift to radial frequencies is almost impossible to
measure with a single ion, in which case the only parameter to be varied would be magnetic field.
However, the radial frequencies ω± as such, and not just their shift, depend on the magnetic
4We have made the reference to the effective axial equation of motion (3.86) though, because we did not want to
reprint a slightly modified version here, with just the tilde removed from z̃ and ¨̃z.

5For a negative charge, both q = ne and n are negative. Thus, the product nq in Equation (5.3) is unchanged.
6As for the axial mode, we could have modified the original equations of motion (2.16) in the ideal Penning trap
with x and y rather than the zeroth-order trajectories x̃ and ỹ, but the effective equations of motion (3.105)
already contain the parameter ε±, to which we have assigned the meaning of ερ .
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5.1. Image-charge frequency-shift

field, too. Even if the magnetic field were readily adjusted, which is difficult for superconducting
magnets in persistent mode, the change due the principal dependence (2.23) on the magnetic
field would overshadow the change in the image-charge frequency-shift.

For a radial gradient E ′ρ > 0, which describes an attraction by the image-charge distribution
on the electrodes, the absolute value of the reduced cyclotron-frequencyω+ decreases, while the
absolute value of magnetron frequency ω− increases.7 This behavior is expected for a stronger
radial electric field. Since the image-charge shift (5.9) is caused by a rescaling of the radial
electric field, which is equivalent to a change of the trapping voltageV0 when there is cylindrical
symmetry, the shift vanishes upon summing both radial frequencies in the cyclotron-sideband
identity (2.25).

Modified invariance theorem

As discussed in the introduction to this section, the electric field (5.1) of the image charges does
not have to originate from a potential that fulfills the Laplace equation (2.57) with respect to
the coordinates of the ion. Therefore, the overall effect of the image-charge field is not described
by a change of the effective trapping voltage V0 in the quadrupole potential (2.2) of the ideal
trap, unless the gradients satisfy E ′z = −2E ′ρ . As a consequence, the invariance theorem (2.27) is
violated, when the image-charge frequency-shift has to be taken into account.
Summing the full expressions for the shifted axial frequency (5.5) and the shifted radial

frequencies (5.8) in quadrature yields

ω̃2
c = ω̃2

+ + ω̃
2
− + ω̃

2
z (5.10a)

= +
1
4

[
ω2
c + 2ωc

√
ω2
c − 2ω2

z (1 + ερ ) + ω2
c − 2ω2

z (1 + ερ )
]

+
1
4

[
ω2
c − 2ωc

√
ω2
c − 2ω2

z (1 + ερ ) + ω2
c − 2ω2

z (1 + ερ )
]

+ ω2
z (1 + εz )

(5.10b)

= ω2
c − ω

2
z (ερ − εz ) = ω2

c − n
q

m
(2E ′ρ + E ′z ) . (5.10c)

In the last step, we have used Equations (5.3) and (5.7) for εz and ερ , respectively. The shifted free-
space cyclotron-frequency ω̃c is not an actual frequency in the trap, and in general it is not equal8
to the true free-space cyclotron-frequency, with which the ion would orbit around the magnetic
field lines if there were no trap. The frequency ω̃c merely results from stubbornly applying the
invariance theorem (2.27) beyond its scope. Consequently, the frequency determined in this
way is shifted from the coveted one by

∆ωc = ω̃c − ωc =
ω̃2
c − ω

2
c

ω̃c + ωc
≈ −

n
q
m (2E ′ρ + E ′z )

2ωc
= −n

2E ′ρ + E ′z
2B0

. (5.11)

There is an approximate sign in between because we have used ω̃c ≈ ωc in the denominator
after expanding with the sum of these two frequencies. For 2E ′ρ + E ′z > 0, which we expect
7This statement is true regardless of the signs of n and B0, because these two also determine the sign of the
free-space cyclotron-frequency ωc and hence the sign of the radial frequencies ω±. Thus the shift ∆ω+ has the
opposite sign of ω+, whereas ∆ω− has the same sign as ω−.

8As predicted, equality holds for E ′z = −2E ′ρ , when the effect of the image-charge field mimics a change of the
trapping voltage V0.
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to be the usual case for the attraction by the image charges on the electrodes, the determined
frequency ω̃c has a smaller absolute value9 than the “true” free-space cyclotron-frequency ωc.
Defining ∆ωe as the shift per elementary charge, the correction (5.11) is written as

ωc = ω̃c + n∆ωe with ∆ωe =
2E ′ρ + E ′z

2B0
. (5.12)

The shift ∆ωe per elementary charge depends on the magnetic field B0 and the two gradients E ′ρ
and E ′z of the image-charge field (5.1), which are a function of the trap’s geometry. The result is
independent of ion’s mass. Moreover, there a no parameters, which are easy to vary for one
ion in a specific trap, which precludes a measurement of the shift without changing the ion
content of the trap, that is, varying the number of ions or the species. On the other hand, the
simple dependence on such a low number of parameters with very little temporal variation is a
blessing, provided the theoretical prediction is trustworthy.

Axial lock

Here we apply the methods of Section 4.3 for frequency-shifts to the radial modes when the
axial mode is held constant (“locked”) to the image-charge frequency-shifts. According to
Equation (4.150), the lock keeps ω̌2

z = ω2
z (1 + εz ) constant, where the inverted hat on the

frequencies ω̌i indicates lock mode, in contrast to the perturbed frequencies ω̃+ with a tilde in
free-running mode.
Expressing the radial frequencies (5.8) as a function of the locked axial frequency ω̌z rather

than the unperturbed axial frequency ωz yields

ω̌± =
1
2

*.
,
ωc ±

ωc
|ωc |

√
ω2
c − 2ω̌2

z
1 + ερ
1 + εz

+/
-

(5.13)

for the radial frequencies under lock. Making the corresponding substitutions in Equation (5.10b)
is now straightforward, and the shift in the quadrature relation, the invariance theorem (2.27),
becomes

ω̌2
c − ω

2
c = ω̌2

+ + ω̌
2
− + ω̌

2
z − ω

2
c (5.14a)

= −ω̌2
z
1 + ερ
1 + εz

+ ω̌2
z = −ω

2
z (1 + ερ ) + ω2

z (1 + εz ) (5.14b)

= −ω2
z (ερ − εz ) = −n

q

m
(2E ′ρ + E ′z ) . (5.14c)

As before, we have used Equations (5.3) and (5.7) for εz and ερ , respectively, in the last step. The
result is the same as in Equation (5.10c) for free-running mode, and hence Equations (5.11) and
(5.12) also hold under lock with the replacement ω̃c → ω̌c. Of course, the conclusions apply, too.

The agreement is in line with Equations (4.155) and (4.156c), and we could have relied on
their statement. However, for the cylindrically-symmetric image-charge field (5.1), the shift
to the frequency determined via the invariance theorem is calculated here without having to
9The statement about n and B0 determining the sign of ωc applies here again. Thus, the shift has the opposite sign
of ωc (and ω̃c).
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5.1. Image-charge frequency-shift

express the shifts ∆ωi to the individual frequencies, which involves first-order approximations.
Moreover, no additional approximations, such as the differential dependence (4.154) of the free-
space cyclotron-frequency ωc, had to be used with the approach including the full quadrature
relation here.10
The shift to the radial frequencies under lock is calculated by plugging Equations (5.3) and

(5.9) into Equation (4.152b), or Equations (5.3) and (5.7) into Equation (4.152a). Both alternatives
use Equation (2.26), ω2

z = 2ω+ω−, and they neglect the difference between the perturbed
and unperturbed frequencies in the prefactor. Using the same steps as in Equation (5.9)—the
definition (2.18) of the free-space cyclotron-frequency ωc, the cyclotron-sideband identity (2.25)
and the approximation ω−/ω+ ≪ 1—yields

∆ω̌± = ∓
n

2
q

m

2E ′ρ + E ′z
ω+ − ω−

= ∓n
2E ′ρ + E ′z

2B0

ω+ + ω−
ω+ − ω−

(5.15a)

≈ ∓n
2E ′ρ + E ′z

2B0

(
1 + 2ω−

ω+

)
≈ ∓n

2E ′ρ + E ′z
2B0

. (5.15b)

Thus, the shift to the radial frequencies under lock has about the same magnitude as the
shift (5.11) to the free-space cyclotron-frequency determined via the invariance theorem (in
either operating mode of the trap, with our without lock). Taking the signs into account, we
have ∆ω̌± ≈ ±∆ωc. In addition to the approximate equality, the common sign for ∆ω̌+ and ∆ωc
reflects that, under lock, the image-charge frequency-shift via the invariance theorem (2.27) is
dominated by the shift to the modified cyclotron-frequency.
This relation also explains why References [162] and [127] compare so favorably, almost

fortuitously, without a closer inspection of the operating mode in which their results were
obtained. The former measures the image-charge frequency-shift to the radial modes under
lock; the latter estimates the image-charge frequency-shift to the free-space cyclotron-frequency
determined via the invariance theorem for that particular trap in order to test the theoretical
method developed in the paper.

Beyond cylindrical symmetry

So far, we have treated the problem of frequency-shifts by image charges as a cylindrically-
symmetric one. Fortunately, the generalization to a more complex situation with two different
radial gradients of the image-charge field, E ′x , E ′y , is straightforward by defining

E ′ρ =
1
2

(
E ′y + E

′
x

)
and E ′ϵ =

1
2

(
E ′y − E

′
x

)
. (5.16)

The first gradient, E ′ρ , has the same meaning as before. In this more general setting, it describes
a kind of effective or average cylindrical symmetry. The second gradient, E ′ρ , describes a kind
of ellipticity in the sense of Section 3.4.4. By rewriting the additional radial field (5.1) by the

10The full quadrature relation would be inconvenient in Section 4.3 because in general the square root for the
perturbed radial frequencies (5.8) contains ω2

c (1 + β±)2 − 2ω2
z (1 + ε±). When the parameters β± and ε± from the

effective equation of motion (3.105) differ for the two radial modes, the square roots in Equation (5.10b) would
not subtract to zero, thereby necessitating an approximation to deduce a practical statement.
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image charges as

*
,
E(x )ic
E
(y)
ic

+
-
= n

(
E ′xx
E ′yy

)
= nE ′ρ

(
x
y

)
+ nE ′ϵ

(
−x
y

)
(5.17)

and by comparing the result with Equation (3.116), we identify the ellipticity parameter

ϵ = n
q

m

2
ω2
z
E ′ϵ = n

q

m

E ′ϵ
ω+ω−

. (5.18)

In the last step, we have used Equation (2.26) for the axial frequency squared in the ideal
Penning trap. Actually, we should redefine the frequencies via Equations (5.5) and (5.8), thereby
accounting for the cylindrically-symmetric contribution by the image charges. However, we
will ignore the small image-charge shift in the frequencies that show up in prefactors because
the shift is treated as a perturbation rather than a major modification of the ideal Penning trap.
The magnitude of the image-charge frequency-shift is essentially given by the gradients E ′i of
the image-charge field. Corrections to the prefactor are viewed as of higher order, and we are
more interested in shifts than absolute frequencies.

In principle, Equation (3.129) allows to calculate the radial frequencies exactly in the presence
of ellipticity, but again care must be taken how to incorporate the cylindrically-symmetric
contribution of the image-charge field in the radial frequencies. This is not trivial because the
axial and the radial field may be affected differently from what the constraint of a common
quadrupole potential (2.2) would permit. As a typical consequence, the uncorrelated change
invalidates the relation (2.26) and the invariance theorem (2.27), both of which were used to
rewrite Equations (25) and (26) of Reference [92] as Equation (3.129). The replacement ω2

z →

ω2
z (1 + ερ ) in all the terms related to the radial motions that do not contain the ellipticity

parameter ϵ should correctly adapt the original version. Thus, the replacement excludes the
term ϵ2ω4

z . This recipe is equivalent to the general replacement ω2
z → ω2

z (1 + ερ ) and the
redefinition ϵ → ϵ/(1 + ερ ) of the ellipticity parameter. The characteristic equation (13) of
Reference [46] for the radial frequencies provides a suitable alternative because the axial
frequency is not used as a symbol in the radial equations of motion, which minimizes confusion.

However, it may not be necessary to recalculate the perturbed eigenfrequencies individually
because the effect of ellipticity is removed by the invariance theorem. Thus, Equations (5.10c),
(5.11), (5.12) and (5.14c) all remain valid [152] with the replacement 2E ′ρ → E ′x + E

′
y , which is

the use of E ′ρ from Equation (5.16). In that sense, the average cylindrical symmetry counts,
and the dominant shifts (5.9) and (5.15b) to the radial frequencies in free-running mode and
lock, respectively, result from the same averaging procedure for the two radial gradients of the
image-charge field. The shift by the elliptic component is subdominant in trap geometries with
near cylindrical symmetry. Equation (3.128) and (5.18) produce the second-order estimate

∆ω±(ϵ) = ±ω±2
ω2
∓

ω2
+ − ω

2
−

(
nqE ′ϵ

mω+ω−

)2
=
±1
2ω±

1
ω2
+ − ω

2
−

(
nqE ′ϵ
m

)2
=
±1
2ω±

ωc
ω+ − ω−

(
n
E ′ϵ
B0

)2
(5.19)

for the shift due to the elliptic image-charge gradient E ′ϵ from Equation (5.16). We have in-
troduced the free-space cyclotron-frequency (2.18) in the last step and used the sideband
identity (2.25).
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5.1. Image-charge frequency-shift

Assuming that the image-charge field has a cylindrical component—that is, E ′ρ , 0—the
second-order elliptic shift becomes

∆ω±(ϵ) = ± 1
2ω±

ω+ + ω−
ω+ − ω−

(
ω+ − ω−
ω+ + ω−

E ′ϵ
E ′ρ

)2 (
nE ′ρ

B0

ω+ + ω−
ω+ − ω−

)2
= ±

ω+ − ω−
ω+ + ω−

(
E ′ϵ
E ′ρ

)2 (∆ω±)2
2ω±

(5.20)

when related to the image-charge shift (5.9) due to average cylindrical symmetry. Apart from
expanding in order to introduce the dominant shift, we have used the sideband identity (2.25)
for the free-space cyclotron-frequency ωc.
Because the image-charge shift to the radial modes is equal in magnitude for cylindrical

symmetry (|∆ω+ | = |∆ω− |), the magnetron frequency is affected more strongly here by the
particular breaking of that symmetry. However, there are two suppression factors, which would
probably render the shift irrelevant taken on their own: ∆ω±/ω±, the ratio of the dominant
image-charge shift and the radial frequency, whichmay just be large enough for this relative shift
to be relevant, and (E ′ϵ/E ′ρ )2, a measure of the departure from cylindrical symmetry. Because
the axial mode is not effected by ellipticity, there is no additional shift under axial lock.

Impact on cyclotron-frequency ratio

Finally, we discuss the impact of the image-charge shift on a ratio of cyclotron-frequencies.
Supposeωc(i) represent the true free-space cyclotron-frequencies, with the ion species indicated
in brackets. Furthermore, suppose the frequency ω̃c(i) has been determined via the invariance
theorem (2.27) after a measurement of the three eigenfrequencies in the trap, which were
corrected for all systematic effects apart from image-charge frequency-shifts. With these
accounted for by Equation (5.12), where the ions carry ni elementary charges e , the true ratio R
is expressed a function of the measured (and partially corrected) ratio R̃ as

R =
ωc(2)
ωc(1) =

ω̃c(2) + n2∆ωe

ω̃c(1) + n1∆ωe
=
ω̃c(2)
ω̃c(1)

1 + n2∆ωe
ω̃c(2)

1 + n1∆ωe
ω̃c(1)

(5.21a)

≈ R̃

(
1 + n2∆ωe

ω̃c(2) −
n1∆ωe

ω̃c(1) + . . .
)
≈ R̃

(
1 + ∆ωe

eB0
(m2 −m1) + . . .

)
. (5.21b)

In the approximation of the denominator for |n1∆ωe | ≪ |ωc(1)|, we have neglected higher-order
terms and cross-terms. Moreover, we have then used Equation (2.18) for the unperturbed free-
space cyclotron-frequency to approximate the perturbed frequencies ω̃c(i) in the denominators,
additionally neglecting a temporal change of the magnetic field strength B0 between the two
measurements.

While the individual correction (5.12) to the free-space cyclotron-frequency calculated via the
invariance theorem11 depends on the charge of the ion, the image-charge correction to the ratio
depends on the mass difference between the two species. The correction vanishes for ions of
the same mass, which means that there is essentially no correction for different charge states of
ions that belong to the same atomic species, because only missing electrons (and their binding
energies) constitute the mass difference. This suppression of image-charge shifts is important
11The shift (5.9) to the radial frequencies cancels in the sideband identity (2.25), but the invariance theorem has

other advantages that back its use.
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to keep in mind when doing consistency checks in this way, in which case the image-charge
shift remains hidden, until it shows up as a systematic between ions of different mass [164]. On
the bright side, a measurement of cyclotron-frequency ratios on mass doublets, such as 3H and
3He, is virtually unaffected.

5.2. Modulation of the trap potential

This section calculates the frequency-shift caused by a modulation of the trapping potential.
Such a modulation creates sidebands, on which the ion motion can be driven. As a practical
benefit, the frequency of this external drive on the sideband differs from the frequency of the
detection system, which is tuned to an eigenfrequency of the particle. In this way, the ion signal
picked up by the detection system is not swamped by spurious radio-frequency feedthrough
of the drive [190], thereby enabling simultaneous excitation and detection of the ion as one
continuous operation.
Essentially, we will make the replacement

V0 → Ṽ0(t) = V0 +V∼ cos(ω∼t + φ∼) = V0 [1 + ϵ cos(χ∼)] (5.22)

for the voltage in the equations of motion (2.16) of the ideal Penning trap, ignoring all the
terms beyond the quadrupole potential. Here, we have introduced the abbreviation (2.33) for the
argument of the trigonometric function with the frequency ω∼ > 0 and an initial phase φ∼. The
amplitude of the voltage modulation is given by V∼. The perturbation parameter ϵ = V∼/V0, a
kind of strength of the modulation, suggests itself. For a perturbative treatment, we will demand
|ϵ | ≪ 1 without any specific assumption for the modulation frequency ω∼. In the course of the
calculation, we will exclude specific values, either because they counteract the original purpose
of modulating the trapping voltage, or because the lead to parametric excitation.
We will ignore the effect of the axial drive on the sideband, even though it represents an

additional nonresonant modulation for the radial modes. However, it is not described by a
global modulation of the trapping voltage V0 because the excitation is only applied to specific
electrodes. See References [90, 116] for some ideas on how to calculate the frequency-shift by
the additional drive.

The oscillatory voltage Ṽ0(t) brings to mind the Paul trap, a storage device without magnetic
field. Adding the magnetic field of the Penning trap can be thought of as creating a combined
trap. In fact, magnetic fields have been superimposed on Paul traps since their inception,
for instance to increase the electron-impact ionization rate by extending the path lengths
of electrons [45] or to resolve magnetic sublevels of the stored ions [98, 139]. However, the
magnetic field was only a small perturbation for the ions, their storage being accomplished with
the radio-frequency field. For our purpose of precision mass spectrometry, we are interested in
the Penning-side of the combined trap, with the modulation representing a minor perturbation,
whereas radial storage is ensured by the magnetic field. Even though the combined trap has been
treated quantum-mechanically [66] and classically [97], frequency-shifts are hard to extract
from these results because the focus was on the stability of the device, and the effect of the
radio-frequency field is modeled as an effective potential. This pseudopotential approximation
requires that the modulation frequency ω∼ be much larger than the motional frequencies of
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5.2. Modulation of the trap potential

the ion in the static fields. This restriction pertains to many publications on combined traps,
even when the Penning-trap side in the limit of V∼ → 0 is considered [2, 33], and analytic
expressions for the frequencies are given [72, 74, 109]. We are explicitly interested in the case
of ω∼ ≪ ωz , that is, a modulation frequency much smaller than the axial frequency, and we
will show in this section that the Lindstedt–Poincaré method from Section 3.2.2 also works
for this particular time-dependent perturbation.

5.2.1. Axial mode

With the replacement (5.22) for the trapping voltage V0, the axial equation of motion (2.16) in
the ideal Penning trap becomes

z̈ + ω2
zz [1 + ϵ cos(χ∼)] = 0 , (5.23)

which is an equation of Mathieu type. Rather than relying on the mathematical groundwork
(see Chapter 28 in References [38, 113], for instance), we attempt a perturbative solution for
|ϵ | ≪ 1, using the series expansion (3.19) for the trajectory and the series expansion (3.28)
for the frequency squared. As usual, both are power series in the perturbation parameter ϵ .
Plugging them into the axial equation of motion (5.23) yields

z̈0 + ϵz̈1 + ϵ
2z̈2 + . . .

+
�
Ω2
z − ϵω

2
1 − ϵ

2ω2
2 − . . .

� �
z0 + ϵz1 + ϵ

2z2 + . . .
� �
1 + ϵ cos(χ∼)� = 0 . (5.24)

For space, the time-dependence of the zi is not indicated explicitly. The dots indicate that
individual terms of third order and higher have been ignored. Of course, executing the multi-
plication with the terms shown will also result in terms beyond second order, but the terms
shown are necessary to get the second order right. As we shall see, the first nonvanishing term
in the frequency-shift is of second order, and we will not go any further.
The zeroth-order equation of motion is simply the harmonic oscillator with a characteristic

frequency Ωz . The zeroth-order solution z0(t) = ẑ0 cos(Ωzt + φz ) from Equation (3.31) carries
over. The amplitude ẑ0 and the initial phase φz are determined by the initial conditions for z(t).
Since the second-order frequency-shift does not depend on them, we will not specify them here.
Collecting all the term of order ϵ in the axial equation of motion (5.24), the differential

equation for the first-order trajectory z1(t) becomes

z̈1 +Ω
2
zz1 = ω2

1z0 −Ω
2
zz0 cos(χ∼) (5.25a)

= ω2
1z0 −Ω

2
z
ẑ0
2

�
cos(χ ′z + χ∼) + cos(χ ′z − χ∼)� . (5.25b)

In the last step, we have plugged in the specific form (3.31) of the zeroth-order solution z0(t),
and we have used the trigonometric product-to-sum identity (C.10) from the appendix. Note
the difference between the time-dependent solution z0 and its constant amplitude ẑ0. The
abbreviation (2.33) for the total phase of the cosine in z0(t) is written with a prime here, in order
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to indicate that the total phase χ ′z = Ωzt + φz depends on the perturbed frequency Ωz , rather
than the unperturbed one.12
The cosine terms in the differential equation (5.25b) for the first-order trajectory z1(t) are

nonresonant—that is, with a drive-frequency different from the axial frequency Ωz—for ω∼ , 0
and ω∼ , 2Ωz . The former case is easy to handle because the trapping potential Ṽ0 loses its
time-dependence. The frequency-shift then results from a change of the static potential via
Equation (3.86). No perturbative approach is required. The case of ω∼ = 2Ωz corresponds to
parametric excitation and is much harder to deal with. When the ion is supposed to be driven
on its sideband, this case has to be avoided, and we will ignore it.
With two nonresonant drive-terms, the particular solution follows from Equation (3.26) as

z1,p = −Ω
2
z
ẑ0
2

[
cos(χ ′z − χ∼)

Ω2
z − (Ωz − ω∼)2

+
cos(χ ′z + χ∼)

Ω2
z − (Ωz + ω∼)2

]
(5.26a)

= −Ω2
z
ẑ0
2ω∼

[
cos(χ ′z − χ∼)
2Ωz − ω∼

−
cos(χ ′z + χ∼)
2Ωz + ω∼

]
. (5.26b)

In the last step, we have simplified the denominators. Of course, z1(t) also contains a homoge-
neous solution—oscillatory terms at the perturbed axial frequency Ωz—chosen to match the
initial conditions, which we have not specified. Fortunately, we shall see that the resonant
terms that drive a second-order frequency-shift do not depend on the homogeneous solution of
z1(t). Speaking of resonant terms, or the lack thereof in first-order, we set the frequency-shift
parameter ω2

1 = 0, indicating that there is no first-order frequency-shift.13
Terms of order ϵ2 in the equation of motion (5.24) are

z̈2 +Ω
2
zz2 = ω2

1z1 + ω
2
1z0 cos(χ∼) + ω2

2z0 −Ω
2
zz1 cos(χ∼) . (5.27)

This differential equation for the second-order trajectory z2(t) is simplified in the particular
case of ω2

1 = 0. With the notation ⟨·⟩ω , which retrieves the term at the frequency ω from the
argument in angle brackets (see Section 3.1), naturally-resonant terms at the fundamental axial
frequency Ωz are written has

⟨z1 cos(χ∼)⟩Ωz
=



z1,p cos(χ∼)�Ωz

= −Ω2
z
ẑ0
2ω∼

1
2

[
1

2Ωz − ω∼
−

1
2Ωz + ω∼

]
cos(χ ′z ) (5.28a)

= −
Ω2
z

2
z0

(2Ωz )2 − ω2
∼

. (5.28b)

We have used the trigonometric product-to-sum identity (C.10) from the appendix, dismissing
oscillatory terms at the frequencies 2Ωz−ω∼ andω∼ as nonresonant. Therefore, the caseΩz = ω∼
requires special attention mathematically. However, it is of little experimental relevance because
the whole point of the modulating the trapping potential is to avoid operating a frequency-
generator close to the axial frequency of the particle.
12In this thesis, the tilde on top of frequencies has mainly been used to include first-order shifts. The capital Omega

has been reserved for frequencies with effects of higher order. However, we do not want to use a capital Xi for
the total phase here because it looks like a Latin X.

13Such a term would indicate a phase-dependence of the frequency-shift because adjusting the phase as φ∼ → φ∼+π
emulates a sign-flip of the perturbation parameter ϵ .
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In the step leading to Equation (5.28b), we have written z0 = ẑ0 cos(χ∼) for the zeroth-order
trajectory of the particle. Indeed, the naturally-resonant terms are proportional to z0, and they
are removed by choosing

ω2
2 = −

Ω4
z

2
1

(2Ωz )2 − ω2
∼

= −
Ω2
z

8
4Ω2

z

4Ω2
z − ω2

∼

= −
Ω2
z

8

(
1 −

ω2
∼

4Ω2
z

)−1
(5.29)

for the second-order frequency-shift parameter. The series expansion (3.28) of the axial fre-
quency squared is then turned into an expression for the perturbed axial frequency with the
expansion (3.47) for the square root. To second order in the frequency-shift, we are allowed
to substitute Ωz → ωz in ω2

2 of Equation (5.29), and the relative frequency-shift due to the
modulation becomes

∆ωz

ωz
=

ω2
2

2ω2
z
ϵ2 = −

ϵ2

16


1 −

(
ω∼
2Ωz

)2

−1

= −
ϵ2

16
(2ωz )2

(2ωz )2 − ω2
∼

= −
ϵ2

16
4ω2

z

4ω2
z − ω2

∼

≈ −
ϵ2

16 . (5.30)

The last approximation is valid for ω∼ ≪ ωz , and it reproduces the result from Reference [20].
The full expression agrees14 with Reference [90].

In the limit of ω∼ ≪ ωz , it is tempting to include the time-dependent trapping voltage (5.22)
in the axial frequency (2.17) by defining the instantaneous axial frequency

ωz (t) = ωz

√
1 + ϵ cos(χ∼) ≈ ωz

[
1 + ϵ

2 cos(χ∼) −
ϵ2

8 [cos(χ∼)]2 + . . .
]

. (5.31)

In the last step, we have used the Taylor expansion (3.62) of the square root. For slow changes
of the trapping voltage during one oscillation period of the particle, it seems natural to average
the instantaneous frequency over time, provided the change is still fast enough to go unresolved
in the experiment:

⟨ωz (t)⟩0 =
[
1 + ϵ

2 ⟨cos(χ∼)⟩0 −
ϵ2

8

[cos(χ∼)]2�

0 + . . .

]
= ωz

[
1 − ϵ2

16 + . . .
]

. (5.32)

The constant components result from Equations (3.6) and (3.7). The shift to this average axial
frequency agrees with the perturbative result (5.30) in the limit of ω∼ ≪ ωz .

5.2.2. Radial modes

Instead of the two-dimensional radial equations of motion (2.16), we will generalize the one-
dimensional equation of motion (2.20) for the complex variable u = x + iy from Equation (2.19).
With the replacement (5.22) for the trapping voltage, the equation reads

ü + iωcu̇ −
ω2
z

2 u [1 + ϵ cos(χ∼)] = 0 . (5.33)

14Reference [116] deals with a similar problem, and the last part of its Equation (39) agrees with the full result here.
However, the intermediate expression does not seem to have the right unit of frequency. A factor of ω3

z in the
denominator, rather than ωz , would cure the discrepancy.
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Because it is still linear in u, we do not expect any mixing between the two radial modes, except
for very particular choices of the modulation frequency ω∼. Therefore, we will use the two
separate series expansions

u±(t) = u0,± + ϵu1,± + ϵ2u2,± + . . . (5.34)

for the trajectory of each radial eigenmode. Of course, the ansatz is still inspired by the series
expansion (3.19) for the one-dimensional case with only one eigenmode.
Unlike for the axial mode—a harmonic oscillator in the unperturbed case—the eigenfre-

quencies of the radial modes are not spotted directly even in the unperturbed equation of
motion (2.20). Since the modulation does not affect the magnetic field, which is contained in
the free-space cyclotron-frequency ωc here, the series expansion for the frequency is limited to
the term characterized by the axial frequency in the ideal Penning trap.15 In analogy to the
series expansion (3.28) for the axial frequency, we use

Ω2
z,± = ω2

z + ϵω
2
1,± + ϵ

2ω2
2,± + . . . , (5.35)

where the ±-signs indicate that the frequency-shift may be different for the two radial modes.
With the two expansions (5.34) and (5.35) for the trajectory and frequencies, respectively, the

equation of motion (5.33) becomes

ü0,± + ϵü1,± + ϵ
2ü2,± + . . . + iωc

�
u̇0,± + ϵu̇1,± + ϵ

2u̇2,± + . . .
�

Ω2
z,±

2
�
u0,± + ϵu1,± + ϵ

2u2,± + . . .
� �
1 + ϵ cos(χ∼)� = 0 . (5.36)

The dots indicate that terms which are at least of third order themselves are not shown. By the
design of the perturbative ansatz, the differential equation for the zeroth-order trajectory u0
is equivalent to Equation (2.20) for the ideal Penning trap with the substitutions u → u0 and
ωz → Ωz,±. Thus, the ansatz

u0,± = û0,±e−i(Ω±t+φ±) = û0,±e−iχ
′
± , (5.37)

very similar to Equation (2.21), yields the corresponding characteristic equation (2.22) for the
perturbed radial frequencies with the solutions

Ω± =
1
2

[
ωc ±

ωc
|ωc |

√
ω2
c − 2Ω2

z,±

]
. (5.38)

In contrast to the radial frequencies (2.23) in the ideal Penning trap, the argument in the square
root might differ for the two radial modes due to the presence of Ω2

z,± rather than ω2
z . Thus,

the cyclotron sideband-identity (2.25) does not have to be valid, and Equation (2.26) would
be modified, too. When Ωz,± is not equal to the actual axial frequency Ωz , the invariance
theorem (2.27) does not hold either.
15Keep in mind that ωz in this context of the radial modes is no longer related to the actual axial oscillation

frequency Ωz in the perturbed Penning trap. The symbol (2.17) is just a convenient way to summarize all the
factors.
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5.2. Modulation of the trap potential

The terms of order ϵ from the equation of motion (5.36) are given by

ü1,± + iωcu̇1,± −
Ω2
z,±

2 = −
ω2
1,±
2 u0,± +

Ω2
z,±

2 u0,± cos(χ∼) (5.39a)

= −
ω2
1,±
2 u0,± +

Ω2
z,±

4 û0,±
[
e−i(χ ′±−χ∼) + e−i(χ ′±+χ∼)]

, (5.39b)

where we have plugged in the specific form (5.37) of the zeroth-order solution in the last step.
For the analysis of frequency-components, it is convenient to express the cosine as exponential
functions with imaginary arguments via Equation (C.1) from the appendix.
Before we examine the two resulting drive-terms in detail, we take a step back for some

preparatory work by considering the simplified differential equation

ü1,± + iωcu̇1,± −
Ω2
z,±

2 u1,± = âde−i(ωdt+φd) (5.40)

with a generic drive-term at the frequency ωd. This drive-term on the right-hand side is
characterized by the amplitude âd of the acceleration, its frequency ωd, and a phase φd. For a
nonresonant drive, the usual ansatz u1 ∝ exp[−i(ωdt + φd)] leads to the particular solution

u1p,± =
−âde−i(ωdt+φd)

ω2
d − ωcωd +

Ω2
z,±
2

. (5.41)

For ωd = Ω±, that is, a resonant drive, the denominator vanishes because it is the characteristic
equation for the radial frequencies. In the case of the drive-terms in Equation (5.39b) for the first-
order trajectory u1, the resonant-drive condition is excluded by demanding that ω∼ , |Ω+ −Ω− |.
Otherwise, there is parametric excitation of the radial modes [131, 141].
Generally, the two nonresonant drive-frequencies in Equation (5.39b) are ωσ± = Ω± + σ±ω∼,

where σ± = ±1. We have introduced the extra parameter σ± in order to distinguish the additional
choice of sign for the sideband from the two radial frequencies Ω±, which are also identified by
their sign. As a consequence of modulating the trapping potential, each radial motion develops
an upper sideband and a lower sideband in first order. The parameter σ± is an additional degree
of freedom, chosen independently of the sign that identifies the radial frequencies.
By plugging in the frequencies ωσ± for ωd in Equation (5.41) and using the superposition

principle on the linear differential equation (5.39b) for the first-order trajectory u1, its particular
solution takes the form

u1p,± = −
Ω2
z,±

4 û0,±



e−i(χ ′±−χ∼)
ω2
σ− − ωcωσ− +

1
2Ω

2
z,±
+

e−i(χ ′±+χ∼)
ω2
σ+ − ωcωσ+ +

1
2Ω

2
z,±


(5.42)

= −
Ω2
z,±

4ω∼
û0,±



e−i(χ ′±−χ∼)
ω∼ − (2Ω± − ωc) +

e−i(χ ′±+χ∼)
ω∼ + (2Ω± − ωc)


. (5.43)
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The last step simplifies the denominators as

ω2
σ± − ωcωσ± +

Ω2
z,±

2 = (Ω± + σ±ω∼)2 − ωc (Ω± + σ±ω∼) +
Ω2
z,±

2 (5.44a)

= Ω2
± − ωcΩ± +

Ω2
z,±

2︸                  ︷︷                  ︸
=0

+2σ±Ω±ω∼ + ω2
∼ − σ±ωcω∼ (5.44b)

= ω∼ [ω∼ + σ± (2Ω± − ωc)] , (5.44c)

where the underbraced terms vanish because they represent the characteristic equation for
the perturbed radial frequencies. Like for the axial mode, we shall see that the homogeneous
solution for the first-order trajectory u1(t), which consists of oscillatory terms at the radial
frequencies Ω±, does not give rise to naturally-resonant terms. Thus, we do not have to bother
about initial conditions. Because there are no naturally-resonant terms in first order, we choose
ω2
1,± = 0 for the first-order frequency-shift parameter. Again, there is no first-order frequency-

shift due to the modulation.
The second-order terms in the equation of motion (5.36) for u2,± are

ü2,± + iωcu̇2,± −
Ω2
z,±

2 = −
ω2
1,±
2

�
u1,± + u0,± cos(χ∼)� −

ω2
2,±
2 u0,± +

Ω2
z,±

2 u1,± cos(χ∼) , (5.45)

of which only two terms remain on the right-hand side because ω2
1,± = 0. With the particular

solution (5.43) for the first-order trajectory, the naturally-resonant terms at the frequencies Ω±
of the radial eigenmodes evaluate to



u1,± cos(χ∼)�Ω± =

1
2



u1,±

�
eiχ∼ + e−iχ∼

��
Ω±
=

1
2
〈
u1p,±

�
eiχ∼ + e−iχ∼

�〉
Ω±

(5.46a)

= −
Ω2
z,±

8ω∼
û0,±e−iχ

′
±

[
1

ω∼ − (2Ω± − ωc) +
1

ω∼ + (2Ω± − ωc)
]

(5.46b)

= −
Ω2
z,±

4
u0,±

ω2
∼ − (2Ω± − ωc)2

. (5.46c)

Since these naturally-resonant terms are proportional to the zeroth-order trajectory u0,± from
Equation (5.37), they are removed by the choice

ω2
2,± = −

Ω4
z,±

4
1

ω2
∼ − (2Ω± − ωc)2

≈
ω4
z

4
1

(2ω± − ωc)2 − ω2
∼

=
ω4
z

4
1

(ω+ − ω−)2 − ω2
∼

(5.47)

for the second-order frequency-shift parameter. To second-order in the frequency-shift, the
perturbed frequencies may be replaced with the frequencies in the ideal Penning trap here,
becauseω2

2,± enters in a product with ϵ2, which is of second order itself. In the last step, we have
used the cyclotron-sideband identity (2.25) to write 2ω± −ωc = 2ω± − (ω+ +ω−) = ±(ω+ −ω−).
In fact, we might now drop the ±-sign in the subscript of ω2

2,± because the parameter is the
same for both radial modes, but we will keep it in order to distinguish the parameters from the
ones in Section 5.2.1 on the axial mode.
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5.2. Modulation of the trap potential

With ω2
1,± = 0, the series expansion (5.35) for the fictitious frequency squared in a configura-

tion with no magnetic field becomes

Ω2
z,± = ω2

z + ω
2
2,±ϵ

2 + . . . = ω2
z

*
,
1 +

ω2
2,±

ω2
z
ϵ2 + . . . +

-
(5.48)

to second order. This expansion describes the effective change of the electric potential, and it
could be translated into the actual perturbed radial frequencies via Equation (5.38). For small
frequency-shifts, it is convenient to express the effect in terms of the parameter

ε± =
ω2
2,±

ω2
z
ϵ2 (5.49)

from the effective radial equations of motion (3.105). For |ε± | ≪ 1, Equation (3.109b) yields the
frequency-shift

∆ω± = ∓
ω2
z

2(ω+ − ω−)ε± = ∓
ω4
z

ω+ − ω−

1
(ω+ − ω−)2 − ω2

∼

ϵ2

8 ≈ ∓
ω4
z

(ω+ − ω−)3
ϵ2

8 , (5.50)

where we have used Equation (2.26), ω2
z = 2ω+ω−, on the original product of radial frequencies.

The last approximation is valid for ω∼ ≪ |Ω+ −Ω− |. Since the shift to the radial modes is equal
in magnitude, but opposite in sign, it vanishes in the cyclotron-sideband identity (2.25).
The second-order frequency-shift (5.50) agrees with Reference [90], and it clearly disagrees

with the statement from Reference [116] that “the Paul trap shift is not accompanied by changes
in the cyclotron or magnetron frequencies.” The classic review paper [20] on Penning traps
discusses the effect of the modulation on the axial mode without elaborating on the radial
modes. However, this omission is not justified with a statement that would rule out an effect
entirely.
Like for the shift to the axial frequency, we define the instantaneous radial frequencies

ω±(t) = 1
2

[
ωc ±

ωc
|ωc |

√
ω2
c − 2ω2

z [1 + ϵ cos(χ∼)]
]

(5.51a)

≈ ω± ∓
ωc
|ωc |

ω2
z

2
√
ω2
c − 2ω2

z

ϵ cos(χ∼) ∓ ωc
|ωc |

ω4
z

4
(√

ω2
c − 2ω2

z

)3ϵ2 [cos(χ∼)]2 + . . . . (5.51b)

The second step uses the Taylor expansion
√
b − aϵ ≈

√
b −

a

2
√
b
ϵ −

a

8
√
b
3ϵ

2 − . . . (5.52)

for the square root, where b = ω2
c − 2ω2

z and a = 2ω2
z . In the limit of ω∼ ≪ |ω± |, we may expect

a decent estimate by averaging the instantaneous radial frequencies:

⟨ω±(t)⟩0 = ω± ∓
ωc
|ωc |

ω4
z

8
(√

ω2
c − 2ω2

z

)3ϵ2 = ω± ∓
ω4
z

8 (ω+ − ω−)3
ϵ2 . (5.53)
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5. Calculating other frequency-shifts

The constant components of the cosines are from Equations (3.6) and (3.7), and we have used
Equation (3.106) for the square root. The result is the same as the perturbative expression (5.50)
in the limit of ω∼ ≪ |ω+ − ω− |. Because |ω+ | ≫ |ω− | in typical experiments, this limit is less
restrictive than the condition ω∼ ≪ |ω± |, which we assumed for averaging the instantaneous
radial frequencies. Since |ω− | < |ω+ | for a trapped particle, the last condition boils down
to ω∼ ≪ |ω− |. It is surprising that the concept of averaging the instantaneous magnetron-
frequency produces a valid estimate even beyond the limit of slow changes. However, unlike
for the axial mode, the modulation affects only part of the force that gives rise to the magnetron
mode.
Due to the constant neglect of the shift (5.50) to the radial frequencies in the literature, we

compare its magnitude with the corresponding shift (5.30) to the axial mode:

∆ω± ≈ ±
2ω3

z

(ω+ − ω−)3
−ωzϵ

2

16 ≈ ±
2ω3

z

(ω+ − ω−)3
∆ωz . (5.54)

Because we have neglected the modulation frequency ω∼, we use the approximate sign. For
the typical hierarchy |ω− | ≪ ωz ≪ |ω+ |, there is quite a strong suppression, even considering
that shifts to the individual eigenfrequencies are scaled with the respective eigenfrequency
when calculating the free-space cyclotron-frequency via the invariance theorem (2.27), as
Equation (4.155) shows. Accordingly, the relative shift is given by

∆ωc
ωc
=
ω+∆ω+ + ωz∆ωz + ω−∆ω−

ω2
c

. (5.55)

This expression also holds for the frequency-shifts under lock, see Equation (4.156a). The
shifts (5.30) and (5.50) due to the modulation generally do not cancel.
Assuming the major contribution of the modulation to enter through the axial mode due

the suppression factor of about (ωz/ω+)3 in Equation (5.54), the relative shift to the frequency
determined via the invariance theorem is approximated as

∆ωc
ωc
≈ −

ω2
z

ω2
c

ϵ2

16 = −
qC2V0
md2

q2B2
0

m2

V 2
∼

16V 2
0
= −

m

qV0

C2

d2B2
0

V 2
∼

16 (5.56a)

= −
md2

qC2V0

C2
2

d4B2
0

V 2
∼

16 = −
(

C2V∼
4ωzd2B0

)2
. (5.56b)

We have used the unperturbed axial frequency (2.17), the free-space cyclotron-frequency (2.18),
and the definition (5.22) of the perturbation parameter ϵ . Since two different ion species
are typically locked to the same axial frequency, the relative shift due to the modulation is
approximately the same for them, provided the amplitudeV∼ of the modulation is not changed.16
Among the other parameters, the magnetic field is probably subject to the largest temporal
variations. Because a constant relative shift to the free-space cyclotron-frequency cancels in the
frequency ratio, see Equation (5.21a), corrections do not have to be applied to the two species
individually.
16An adjustment of V0 is typically required to end up with the same axial frequency for both species.

162



5.2. Modulation of the trap potential

For completeness, we mention the shift to the radial modes under axial lock. Using Equa-
tion (4.152c) with Equation (2.26), 2ω+ω− = ω2

z , to combine the shifts (5.30) and (5.50) to the
axial mode and radial modes, respectively, yields

∆ω̌± ≈ ∓
ω2
z

ω+ − ω−

ϵ2

16

[
1 +

2ω2
z

(ω+ − ω−)2
]

. (5.57)

In line with typical experiments, we have neglected the modulation frequency ω∼ against ωz
and |ω+ − ω− |. The modulation-shift to the radial modes under axial lock is dominated by the
shift to the axial mode.

5.2.3. Pseudopotential for high modulation-frequency

The perturbative approach did not require the modulation frequency ω∼ to be small compared
with the motional frequencies of the ion in the static trap. Turning to a modulation frequency
much higher than all the eigenfrequencies in the static trap yields an analytic expression for
the slow motional frequencies, thereby allowing a cross-check of the perturbative result for the
frequency-shifts.
In this regime, the effect of a rapidly oscillating electric field E⃗(t) = E⃗∼ cos(ω∼t + φ∼) on the

slower eigenmotions is described by the static pseudopotential17 [56]

Φ̄∼ =
q

m

1
4ω2
∼

���E⃗∼
���
2

. (5.58)

The fast component of the motion at the frequency of the modulation (“micromotion”) is
supposed to be sufficiently small compared with the slow motion in the time-averaged fields
(“macromotion” or “secular motion”). With the oscillatory voltage from Equation (5.22), the
amplitude of the oscillatory field is given by E⃗∼ = ϵE⃗2, where E⃗2 is the electrostatic field (2.14)
that results from the quadrupole potentialΦ2 of the ideal Penning trap. As before in this section,
we have neglected the effect of modulating higher-order potentials. With these choices, the
pseudopotential becomes

Φ̄∼ =
m

q

ω4
z

ω2
∼

ϵ2

16
�
x2 + y2 + 4z2

�
. (5.59)

Clearly, it violates the Laplace equation (2.57), which is one of the reasons for calling it a
pseudopotential. More interestingly, the pseudopotential creates a potential well in all three
directions, thereby allowing confinement in three dimensions.18
The electric field by the pseudopotential Φ̄∼ results from taking the negative gradient. The

additional acceleration

*..
,

¨̄x∼
¨̄y∼
¨̄z∼

+//
-
= −

q

m
∇⃗Φ̄∼ = −

ω4
z

ω2
∼

ϵ2

8
*..
,

x
y
4z

+//
-

(5.60)

17We have slightly modified the notation of Reference [56], because we want the pseudopotential Φ̄∼ to have the
unit of voltage in order to be in line with the electrostatic potentialsΦη in this thesis.

18Do not worry about the sign of the charge q. There is another factor of q in the potential energy Epot = qΦ̄∼,
which has a global minimum at the origin then. Because the pseudopotential depends on the magnitude (squared)
of the electric field, any field-free point constitutes a global minimum of the potential energy energy.
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5. Calculating other frequency-shifts

has to be included in the equations of motion (2.16) of the ideal Penning trap. The spatial
dependence is very similar to the acceleration by the image charges in Section 5.1, and the
treatment carries over. In fact, the assumption of |ϵ | ≪ 1 for a perturbative treatment is no
longer necessary with this pseudopotential. We could give exact expressions for the radial
frequencies, like References [74, 109] do for the radial modes.19 We will content ourselves with
the limit of |ϵ | ≪ 1 here because we want to check our perturbative results from Sections 5.2.1
and 5.2.2.
The additional axial acceleration (5.60) is incorporated by choosing the parameter

εz =
ω2
z

ω2
∼

ϵ2

2 (5.61)

in the axial equation of motion (3.85). According to Equation (3.86), the corresponding frequency-
shift is

∆ωz

ωz
=
εz
2 =

ω2
z

ω2
∼

ϵ2

4 , (5.62)

which agrees with the perturbative result (5.30) in the limit of ω2
∼ ≫ 4ω4

z .
The additional radial acceleration (5.60) is included in the radial equations of motion (3.105)

with the choice

ε± = −
ω2
z

ω2
∼

ϵ2

4 . (5.63)

Equation (3.109b) translates this parameter into the frequency-shift

∆ω± = ∓
ω2
z

2(ω+ − ω−)ε± = ±
ω4
z

ω+ − ω−

1
ω2
∼

ϵ2

8 , (5.64)

where we have used Equation (2.26), 2ω+ω− = ω2
z . This result agrees with the frequency-

shift (5.50) from the perturbative treatment in the limit of (ω+ − ω−)2 ≪ ω2
∼.

The sign of the frequency-shifts (5.62) and (5.64) for high-frequency modulation is opposite
to the case of a low modulation frequency ω∼. In the regime here, the well-shape of the
pseudopotential explains the sign intuitively. The axial frequency increases because of an
additional restoring force in the axial direction. In the radial direction, the field from the
pseudopotential counteracts the outward radial field of the ideal Penning trap, thereby bringing
the modified cyclotron-frequency closer to the free-space cyclotron-frequency. Conversely, the
magnetron motion is slowed down due to the reduced net electric field.

19Because References [74, 109] consider linear combined traps, applying the oscillatory voltage only to the central
part of the trap, there is no modulation in the axial component.
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This thesis has used a classical formalism of perturbation theory in order to calculate miscella-
neous frequency-shifts in Penning traps. The approach speaks the language of an experimen-
talist, working with equations of motions, amplitudes and frequencies, which are related more
closely to actual observables than canonical action and angle variables. The results are readily
adapted to numerous experimental scenarios. Moreover, the thesis has demonstrated that there
is no need for quantum-mechanical perturbation theory when the experiment is well within
the classical limit.
For first-order frequency-shifts, the perturbative formalism comes down to identifying the

terms that are in phase with the zeroth-order motion of the particle. Consequently, analyzing
the frequency spectrum of products and powers of oscillatory terms has been a vital ingredient.
For cylindrically-symmetric imperfections of the electric and magnetic field, it has been shown
in Section 4.1 that there is a general pattern behind those naturally-resonant terms. Identifying
this pattern has allowed to calculate the first-order frequency-shifts caused by these imper-
fections consistently in an all-encompassing manner, rather than individually for a particular
imperfection of this type as was customary in the literature. The general treatment has yielded
generating expressions for the associated frequency-shifts, which foster the link between the
separate formulas in the literature and allow for more comprehensive statements concerning
cancellations, for instance. Compared with the equally general treatment [99] via Hamiltonian
perturbation theory, the use of binomial coefficients in the generating expressions for the shifts
due to magnetic imperfections has proven to handle some special cases more conveniently,
thereby yielding more compact expressions. For cylindrically-symmetric electrostatic imperfec-
tions, agreement with Reference [99] was found. The disagreement for cylindrically-symmetric
magnetic imperfections was not to be resolved because the frequency-shifts given there lack
more than just the perturbation parameter in their prefactor. Nevertheless, it is encouraging
that a general treatment is possible, and this thesis provides a cross-check for future calculations
with other methods.

The consistent treatment of cylindrically-symmetric imperfections was enabled by their
parametrization in cylindrical coordinates in Section 2.2. Near the center of the empty trap,
both the electric and the magnetic field result from scalar potentials that fulfill the Laplace
equation. Even though cylindrical coordinates are the natural choice for imperfections of
that symmetry, general expressions for polynomial solutions of the Laplace equation are
rare in the literature, which typically relies on a solution with a Legendre polynomial in
spherical coordinates. However, analyzing the multipole components of the trapping fields
described by these polynomial solutions is a prerequisite for perturbation theory, which takes
the homogeneous magnetic field and the electrostatic quadrupole potential as its starting point.
When no recipe for the conversion of coordinates in these solutions is given, the general
parametrization in cylindrical coordinates remains elusive, detracting from the possibility of
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treating the frequency-shifts consistently. This thesis has shown how to derive polynomial
solutions from a power series ansatz. Knowledge about Legendre polynomials was only
required to match the prefactor of the solutions with those in the literature. Moreover, the result
serves as an encouraging example that simple first principles can prevail against highbrow
mathematics with its special functions. Due to the ubiquity of the Laplace equation in physics,
the approach has been extended to solutions with discrete rotational symmetry featuring
associated Legendre polynomials in Section A.3 in the appendix. In fact, parametrizing the
radial magnetic field without an associated Legendre polynomial has greatly reduced the appeal
of modeling the impact of the radial modes on the axial mode via their magnetic moment. With
a polynomial parametrization in cylindrical coordinates, the radial magnetic field is no longer
more complicated than the axial magnetic field from a mathematical point of view, and it is
ready for use in the equations of motion.

Along the same lines of making results more comprehensible with less theoretical background,
relativistic frequency-shifts have been derived perturbatively in Section 4.2 from the relativistic
equations of motion rather than via a quantum-mechanical operator formalism, the standard
treatment in the literature. The results agree in the limit of high quantum-numbers when
quantization becomes unobservable and the particle is still only mildly relativistic. Prior
treatments based on equations of motion have often relied on the auxiliary concept of relativistic
mass-increase, which gives decent estimates in all cases, yet does not always reproduce the
exact result. Like the treatment with operators, the perturbative result here is exact to first
order.

Despite the focus on first-order frequency-shifts, the method of classical perturbation theory
is neither limited to this order, nor to anharmonic frequency-shifts. Second-order effects have
been considered for the one-dimensional anharmonic oscillator, again by spotting the pattern for
generating naturally-resonant terms. No equally general result has been found in the literature.
However, there is agreement with the specific expressions of Reference [59]. Because the
corrections to the trajectory had to be calculated, it became clear that perturbation theory grows
more tedious order by order for a single imperfection, not to mention the cross-terms different
imperfections produce in concert. With the one-dimensional case already being so complicated,
a general treatment of the Penning trap seems unfeasible, or at least very arduous, because
solving the equations of motion is increasingly difficult in three dimensions. However, higher
orders are interesting in order to estimate theoretical uncertainties and to determine the scope
of the perturbative treatment. Moreover, the imperfections that are antisymmetric with respect
to the axial coordinate (“odd terms”) give rise to a frequency-shift only in second order. Rather
than attempting an all-embracing treatment, it seems more reasonable to pick the imperfections
that really matter in a particular experiment. The same point must be made for imperfections
without cylindrical symmetry.

While odd imperfections of the electrostatic field were dismissed as being small thanks to the
reflection symmetry when the trap is operated with symmetric voltages, the argument does not
hold for the external magnetic field. Unlike the electrostatic potential, which has no net gradient
at the particle’s equilibrium position—a saddle point in the potential—such a gradient in the
magnetic field cannot be ruled out. Therefore, it is worthwhile to use the classical formalism of
perturbation theory in second order on this term specifically.
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Not all known sources of frequency-shifts in a Penning trap could be reconsidered, and
no new shifts were discovered. The absence of such unpleasant surprises underlines how
advanced (or narrow-minded) the theoretical description of the Penning trap is. Apart from
misalignment, which cancels in the invariance theorem, the interaction of the trapped particle
with the detection system was ignored entirely. Even in a harmonic oscillator, there is a
frequency-shift due to damping. The anharmonic oscillator adds a dependence on the particle’s
motional amplitudes, which were assumed to be constant throughout the thesis. Obviously, this
is no longer the case when damping is present. Fortunately, the effect of damping in the axial
mode is balanced by the axial drive at THe-Trap, and the basic assumptions of this thesis are not
too far-fetched to render them unrealistic and the results irrelevant. Even without the damping
brought about by the resistance of the detection system, the complex impedance, which becomes
an issue when the resonant circuit is detuned from the particle’s eigenfrequency, leads to static
frequency-shifts. Prior treatments show that these static shifts are handled without advanced
methods. When damping is slow, the formulas for the anharmonic shifts given here carry over
by plugging in the particle’s instantaneous amplitudes.

Second-order harmonic effects include the treatment of a slightly elliptic quadrupole potential
and a small modulation of the ideal quadrupole potential. As a benchmark of the method, results
from the literature were reproduced in both cases. The latter case is particularly interesting
because it demonstrates that the classical perturbation method also handles periodic perturba-
tions, albeit nonresonant ones, which do not turn the amplitudes into time-dependent quantities.
Excitations of the particle remain a different story.
The thesis has stressed that all the frequency-shifts calculated for standard Penning traps

have to be adapted to the specific operation mode with locked axial-frequency at THe-Trap. The
prescription for doing so has been given, thereby contributing to the understanding of axial lock
and the experiment in general. The largest theoretical leap for the ongoing measurements at
THe-Trap would be an improved model of the locked loop. So far, the driven ion is treated as a
voltage-controlled oscillator with the detection system generating an error signal that indicates
deviations from drive frequency [196]. While the error signal beyond the linear approximation
has been included in simulations [70], the effect of anharmonicity on the axial mode beyond
the frequency-shift has been ignored, even when the axial mode is not a harmonic oscillator
with respect to its amplitude. With enhanced theoretical understanding, the feedback signal by
the locked loop might serve as a much better diagnostic tool, possibly allowing to disentangle
voltage and amplifier noise from loop-induced oscillations and actual ion dynamics, potentially
triggered by anharmonic pulling or hysteresis.
As the locked loop is a much more dynamic feedback system, the time-dependence of the

particle’s amplitudes and frequencies upon continuous excitation will have to be considered
for a complete description. Even without lock, this is far more challenging than deriving static
frequency-shifts. For the axial mode, both damping and the axial drive have to be included.
Additionally, the excitation drive for the radial modes is typically swept in frequency. A line-
shape model beyond simple heuristics that allows to extract the initial radial frequency from a
fit to the measured response of the locked loop would be the ultimate achievement in terms
of theory. Despite the daunting task, the thesis shows that it is worth taking a fresh look at
problems that were considered either solved or too disjointed to solve in a general manner.
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A. Legendre polynomials

This chapter revisits the standard parametrization of solutions to the Laplace equation in the
Penning-trap literature. To begin with, Section A.1 shows how the Legendre polynomials—
solutions to the Legendre equation as their name suggests—turn into solutions to the Laplace
equation in spherical coordinates. The remaining chapter then deals with the conversion of this
solution to cylindrical coordinates.

Section A.2 attempts to answer the question why the conversion in Section 2.2.1 did not use a
general explicit form of the Legendre polynomial Pη with its argument cos(θ ) and the factor rη
expressed in cylindrical coordinates. Instead, the coefficients of the polynomial in cylindrical
coordinates were derived from a recursive relationship that resulted from demanding that the
polynomial in ρ and z be a solution of the Laplace equation. We will examine the difficulties of
a direct conversion here.
Section A.3 expands the methods of Sections 2.2.1 and A.2—a power series solution of the

Laplace equation and the direct conversion, respectively—to associated Legendre polynomi-
als Pmη . This more general results also serves as a cross-check of the prior result form = 0.
In fact, Section A.2 may be skipped, since its specific result is covered by Section A.3.2. Even
though the methods are almost identical, they are introduced best on a simpler case, however.
The same also holds for the specific conversion in Section 2.2.1, which is a special case of
Section A.3.1.

A.1. Legendre polynomials and the Laplace equation

For two integers η andm with 0 ≤ m ≤ η, the associated Legendre differential equation [171]

d
dζ

[�
1 − ζ 2

� df
dζ

]
+

[
η(η + 1) − m2

1 − ζ 2

]
f = 0 (A.1)

is solved by the function f (ζ ) = Pmη (ζ ), where Pmη is an associated Legendre polynomial.1 For
m > η, the associated Legendre polynomials are the trivial solution Pmη (ζ ) = 0. Form = 0,
Equation (A.1) becomes the Legendre differential equation, and P0

η ≡ Pη are the Legendre
polynomials. We will turn to closed-form expressions for the P0

η later. In this section, they are
not yet necessary, and Equation (A.1) is the relevant properties.

1Because of its link to the quantum number for orbital angular momentum when it comes to spherical harmon-
ics [186], the parameter η is often called l in the literature. We will stick with our notation here. Despite our
commitment for consistency, we stick with (the magnetic quantum number)m—the symbol used for the rest
mass of the particle, too. Fortunately, the two do not appear in the same context.
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A. Legendre polynomials

In order to the unveil the link between the associated Legendre polynomials and the Laplace
equation (2.57), we consider the Laplace operator [180]

△ =
1
r 2
∂

∂r

(
r 2
∂

∂r

)
+

1
r 2 sin(θ )

∂

∂θ

(
sin(θ ) ∂

∂θ

)
+

1
[r sin(θ )]2

∂2

∂2ϕ2 (A.2)

in spherical coordinates. The azimuth angle is denoted by ϕ, both in spherical and cylindrical
coordinates (see Figure 2.4). Since we have mainly dealt with cylindrically-symmetric solutions
to the Laplace equation so far, the angle ϕ has received little attention. We like to recall its
presence in order to keep the solution more general here.
When switching from the polar angle θ to cos(θ ) as the variable with

1
∂θ
=
∂ cos(θ )
∂θ

1
∂ cos(θ ) = − sin(θ )

1
∂ cos(θ ) , (A.3)

the Laplace operator takes the form

△ =
1
r 2
∂

∂r

(
r 2
∂

∂r

)
+

1
r 2

∂

∂ cos(θ )
[
[sin(θ )]2 ∂

∂ cos(θ )
]
+

1
[r sin(θ )]2

∂2

∂ϕ2 . (A.4)

Since cos(θ ) is the variable now, the sine functions will have to be expressed in terms of the
new variable as

[sin(θ )]2 = 1 − [cos(θ )]2 . (A.5)

Borrowing from the literature, the ansatz for a solution to the Laplace equation (2.57) takes
the form

Φ̃m
η (r ,θ ,ϕ) = rηPmη (cos(θ )) [

cmη cos(mϕ) + smη sin(mϕ)] , (A.6)

where cmη and smη are two arbitrary factors. The tilde on top of Φ̃m
η serves as a reminder that

we consider generic solutions to the Laplace equation, which may not have the unit of an
electrostatic potentialΦ. After all, the Laplace equation is a homogeneous one, and we are free
to choose a global prefactor, or cmη and smη accordingly, for the ansatz (A.6) to have the right
dimension of the physical quantity that fulfills the Laplace equation.
We will now apply the Laplace operator (A.4) on the ansatz (A.6), abbreviating the new

polar-angle variable as ζ = cos(θ ). For clarity, we will show only the components that are
affected by the operator. The components that act like a constant factor with respect to a
particular part of the Laplace operator will not be shown.
The derivatives with respect to the distance r yield

1
r 2
∂

∂r

(
r 2
∂

∂r

)
rη = η(η + 1)rη−2 . (A.7)

The derivatives with respect to the azimuth angle ϕ give

rη

r 2 (1 − ζ 2)
∂2

∂ϕ2

[
cmη cos(mϕ) + smη sin(mϕ)] = −m

2rη−2

(1 − ζ 2)
[
cmη cos(mϕ) + smη sin(mϕ)] . (A.8)
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The associated Legendre polynomial Pmη is only affected by the derivative with respect to ζ .
Rather than executing the derivatives in

1

r 2

∂

∂ζ

[�
1 − ζ 2

� ∂
∂ζ

]
rηPmη (ζ ) = rη−2 ∂

∂ζ

[�
1 − ζ 2

� ∂Pmη
∂ζ

]
(A.9)

further, we combine the three results (A.7)–(A.9) to summarize the effect of the Laplace

operator (A.4) on the ansatz (A.6) as

� Φ̃m
η (r ,θ ,ϕ) = rη−2

[
cmη cos(mϕ) + smη sin(mϕ)]

·
{
∂

∂ζ

[�
1 − ζ 2

� ∂Pmη
∂ζ

]
+

[
η(η + 1) − m2

1 − ζ 2

]
Pmη

}
= 0 .

(A.10)

Indeed, Φ̃m
η solves the Laplace equation because the associated Legendre polynomial Pmη

fulfills the associated Legendre equation (A.1). Thus, we have constructed a solution to the

Laplace equation from a solution to the associated Legendre equation. The latter equation is

also solved by the associated Legendre function of the second kind [179], Qm
η (ζ ). Therefore, a

solution to the Laplace equation could be constructed according to Equation (A.6) with the

replacement Pmη → Qm
η . However, the Qm

η (ζ ) diverge logarithmically for ζ = ±1, which would

mean that there is a singularity on the z-axis, since ζ = cos(θ ). Such a singularity does not occur

in an empty trap because it is related to a line of charge or current. Therefore, the additional

solution is of little interest in the physical context here.

From solutions of the associated Legendre equation (A.1), another solution with a different

dependence on r may be constructed. Applying the differential operator with respect to r in the

Laplace operator (A.4) on

1

r 2

∂

∂r

(
r 2 ∂

∂r

)
r−(η+1) = η(η + 1)r−(η+3) (A.11)

reduces the exponent by 2, just like the factors of r−2 in front of the other differential operators

do. Since the prefactor here is the same as in Equation (A.7), the ansatz (A.6) stays a solution of

the Laplace equation upon the substitution rη → r−(η+1). Because of the negative exponent of

r , such a solution diverges at the origin. From the physical point of view, the singularity might

be related to a point-charge at the origin, which does not play a role for the potential inside an

empty trap.

A.2. Direct conversion to cylindrical coordinates

In Section 2.2.1, the textbook solution (2.58) of the Laplace equation with cylindrical symmetry

was converted from spherical coordinates to cylindrical coordinates (compare Equation (2.73)):

rηPη(cos(θ )) =
� η2 �∑
k=0

(−1)k
22k

η!

(η − 2k)! (k!)2 z
η−2kρ2k (A.12a)

=

� η2 �∑
k=0

(−1)k
22k

(
η

k

) (
η − k

k

)
zη−2kρ2k . (A.12b)
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After expanding with (η −k)!, the coefficient aη(k) from Equation (2.71) has been rewritten here

as a product of two binomial coefficients in the last step. As a reminder, the floor function for the

upper limit of the sum is defined in Equation (2.60), and the binomial coefficient is introduced

in (3.3).

Given that a general explicit expression of the Legendre polynomials for all η exists, the ap-

proach of determining a solution to the Laplace equation in cylindrical coordinates from scratch

does not appear straightforward. Therefore, the straightforward conversion of coordinates is

attempted here. From Rodrigues’ formula

Pη(ζ ) = 1

2ηη!

dη

dζ η

[�
ζ 2 − 1

�η ]
, (A.13)

the general explicit expression of the Legendre polynomials [181] follows as

Pη(ζ ) = 1

2η

� η2 �∑
j=0

(−1)j
(
η

j

) (
2η − 2j

η

)
ζ η−2j . (A.14)

Table A.1 shows the first few Legendre polynomials.

In rηPη(ζ ) with the argument ζ = cos(θ ), there will be terms of the kind

rη[cos(θ )]η−2j = r 2j [r cos(θ )]η−2j = r 2jzη−2j , (A.15)

where we have absorbed the cosine terms in the axial coordinate z = r cos(θ ). The remaining

spherical coordinate r is transformed into cylindrical coordinates with the help of binomial

expansion:

r 2j = (r 2)j = (ρ2 + z2)j =
j∑

k=0

(
j

k

)
ρ2kz2(j−k ) . (A.16)

Combining Equations (A.15) and (A.16) yields

rn[cos(θ )]η−2j = zη−2jr 2j = zη−2k
j∑

k=0

(
j

k

)
ρ2kz2(j−k) =

j∑
k=0

(
j

k

)
zη−2kρ2k (A.17)

as the intermediate result to be merged with the general expression of the Legendre polyno-

mial (A.14). The solution of the Laplace equation is then expressed in cylindrical coordinates

as

rηPη(cos(θ )) =
�n2 �∑
j=0

j∑
k=0

(−1)j
2η

(
j

k

) (
η

j

) (
2η − 2j

η

)
zη−2kρ2k . (A.18)

At this point, it has almost assumed the form of Equation (2.59), but the summation over j
would have to be executed before the summation over k in order to extract the coefficient an(k),
which has yet to take its final form. Here, the upper limit of the sum over k still depends on j,
making the coefficient an(k) hard to evaluate.
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Table A.1.: The first few Legendre polynomials. When η is even (odd), there are only even
(odd) powers of the argument ζ . The coefficients are such that Pη(1) = 1 for all η.

η Pη(ζ )
0 1

1 ζ

2 1
2

�
3ζ 2 − 1

�

3 1
2

�
5ζ 3 − 3ζ

�

4 1
8

�
35ζ 4 − 30ζ 2 + 3

�

5 1
8

�
63ζ 5 − 70ζ 3 + 15ζ

�

6 1
16

�
231ζ 6 − 315ζ 4 + 105ζ 2 − 5

�

7 1
16

�
429ζ 7 − 693ζ 5 + 315ζ 3 − 35ζ

�

8 1
128

�
6435ζ 8 − 12 012ζ 6 + 6930ζ 4 − 1260ζ 2 + 35

�

9 1
128

�
12 155ζ 9 − 25 740ζ 7 + 18 018ζ 5 − 4620ζ 3 + 315ζ

�

10 1
256

�
46 189ζ 10 − 109 395ζ 8 + 90 090ζ 6 − 30 030ζ 4 + 3465ζ 2 − 63

�

1

2

3

4

5

1 2 3 4 5
j

k
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jmax k = j

Figure A.1.: Illustrating the transformation of the summation limits summarized by Equa-
tion (A.19) in jk-parameter space. The green squares are part of the summation; the
red triangles are not. The orange line is the boundary k = j; the blue line indicates
the maximum value of j , with jmax = 4 in the example shown. Summing over k from
0 to j—that is, along vertical lines—and then over j from 0 to jmax (along horizontal
lines) is equivalent to summing over j from k to jmax—that is, along horizontal
lines—and then over k from 0 to kmax = jmax (along vertical lines).

173



A. Legendre polynomials

Figure A.1 shows how to change the order of summation with a suitable transformation of

the limits, while the summation variables as such remain untouched. Expressed with a generic

function f (j,k) of the two summation variables, the recipe is

jmax∑
j=0

j∑
k=0

f (j,k) =
jmax∑
k=0

jmax∑
j=k

f (j,k) . (A.19)

The limits of the summation over k on the right-hand side no longer depend on the current

value of j, and hence this sum can be executed last, after having summed over j. Applied to

Equation (A.18), the result is

rηPη(cos(θ )) =
� η2 �∑
k=0

� η2 �∑
j=k

(−1)j
2η

(
j

k

) (
η

j

) (
2η − 2j

η

)
zn−2kρ2k (A.20a)

=

� η2 �∑
k=0

� η2 �−k∑
j=0

(−1)j+k
2η

(
j + k

k

) (
η

j + k

) (
2η − 2k − 2j

η

)
zn−2kρ2k . (A.20b)

In the last step, we have shifted the summation variable according to j → j + k such that the

sum over j starts at 0. The product of binomial coefficients is rearranged as(
j + k

k

) (
η

j + k

)
=

(j + k)!
j!k!

η!

(j + k)! (η − k − j)! =
η!

k! (η − k)!
(η − k)!

(η − k − j)! j! =
(
η

k

) (
η − k

j

)
(A.21)

to give one binomial coefficient independent of j. Sorting the terms in Equation (A.20b) based

on the summation variables then gives

rηPη(cos(θ )) = 1

2η

� η2 �∑
k=0

(
η

k

)
(−1)k

� η2 �−k∑
j=0

(−1)j
(
η − k

j

) (
2η − 2k − 2j

η

)
zη−2kρ2k . (A.22)

Unfortunately, it is not obvious how to execute the sum over j . At least, we know that the final

result should look like Equation (A.12b), and we may conjecture that

� η2 �−k∑
j=0

(−1)j
(
η − k

j

) (
2η − 2k − 2j

η

)
= 2η−2k

(
η − k

k

)
(A.23)

is an identity.2 It has to be if the calculation up to this point is correct. A rigorous proof

using the properties of binomial coefficients would probably require advanced knowledge

of hypergeometric functions. In any case, the straightforward conversion from spherical to

cylindrical coordinates using the general explicit expression of the Legendre polynomial is not

intuitive when it comes to determining the explicit form of the coefficient aη(k). Without prior

knowledge of the final result, Equation (A.23) would certainly not occur very easily by staring

madly at its left-hand side.3

2For k = 0, the left hand-side of Equation (A.23) closely resembles the general expression (A.14) of the Legendre

polynomial (missing only the prefactor 2−η and the argument ζ η−2j ), and Equation (A.23) then reflects the

property Pη (1) = 1.
3When evaluating the left-hand side numerically for the first few η as a function of k , sequence A133156 in the
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A.3. Associated Legendre polynomials

This section generalizes Sections 2.2.1 and A.2 to associated Legendre polynomials.

A.3.1. Indirect conversion to cylindrical coordinates

Section A.1 showed that the ansatz (A.6)—rηPmη ((cos(θ )) times the trigonometric function

cos(mϕ) or sin(mϕ)—solves the Laplace equation (2.57). Similar to the case of m = 0 in

Equation (2.59), we will now convert the more general ansatz (A.6) from spherical to cylindrical

coordinates. This conversion affects r and cos(θ ); the azimuth angle ϕ remains unchanged.

Based on the pattern of a few explicit conversions, we expect the polynomial in z and ρ to have

the form

Φ̃m
η (ρ,ϕ, z) =

� η−m2 �∑
k=0

amη (k) zη−m−2kρm+2k [
cmη cos(mϕ) + smη sin(mϕ)] , (A.24)

where amη (k) is the coefficient that needs to be determined. Based on the general explicit

expression (A.43) for the associated Legendre polynomial Pmη , we will confirm this functional

shape more rigorously in Section A.3.2.

Following the approach of Section 2.2.1, we apply the Laplace operator (2.63) in cylindrical

coordinates to the ansatz (A.24). The equivalents of Equations (2.64) and (2.65) now become

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

) [
amη (k + 1)zη−m−2k−2ρm+2k+2] = (m + 2k + 2)2amη (k + 1)zη−m−2k−2ρm+2k (A.25)

and

∂2

∂z2

[
amη (k) zη−m−2kρm+2k ] = (η −m − 2k)(η −m − 2k − 1)amη (k) zη−m−2k−2ρm+2k , (A.26)

respectively. For space, we have suppressed the dependence on the azimuth angle ϕ because this

part is unaffected by these two components of the Laplace operator. Although the coefficients

amη (k + 1) and amη (k) are not affected either, they are shown in order to emphasize which terms

of the polynomial in z and ρ will have to cancel for the ansatz (A.24) to solve the Laplace

equation.

In addition to Equations (A.25) and (A.26), there is the contribution

1

ρ2
∂2

∂ϕ2

[
amη (k + 1) zη−m−2k−2ρm+2k+2 cos(mϕ)] = −m2amη (k + 1) zη−m−2k−2ρm+2k cos(mϕ)

(A.27)

from the dependence on the azimuth angle ϕ. For space, we have shown only one of the two

trigonometric functions. Similar to Equation (A.8), the result also holds with the substitution

On-Line Encyclopedia of Integer Sequences® (https://oeis.org) shows that the right-hand side gives the absolute

value of the coefficient belonging to the term xη−2k in the Chebyshev polynomial Uη (x) of the second kind.

This connection might serve as a hint for a different proof.
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cos(mϕ)→ sin(mϕ). Because of the double derivative, the trigonometric function is preserved.
Cosines do not turn into sines or vice versa. Taking into account that cos(mϕ) and sin(mϕ) are
linearly independent, no cancellations between these terms occur. Instead, the two products with
these trigonometric functions must solve the Laplace equation separately. This independence
is also reflected by the fact that there is no specific link between the two prefactors cmη and smη
in Equations (A.6) and (A.24).
Combining Equations (A.25)—(A.27) for the full effect of the Laplace operator (2.63) on the

terms that will have to cancel afterwards, we find
�(m + 2k + 2)2 −m2�

amη (k + 1) + (η −m − 2k)(η −m − 2k − 1)amη (k) = 0 (A.28)

for the prefactor of the term zη−m−2k−2ρm+2k . This prefactor has to vanish individually for all k
in the polynomial for Equation (A.24) to solve the Laplace equation. With the simplification

(m + 2k + 2)2 −m2 =m2 + 2m(2k + 2) + (2k + 2)2 −m2 = 4(k + 1)(m + k + 1) , (A.29)

we establish the recursive relation

amη (k + 1) = −
(η −m − 2k)(η −m − 2k − 1)

4(k + 1)(m + k + 1) amη (k) (A.30)

between the adjacent coefficients amη (k + 1) and amη (k). As a cross-check, we recover Equa-
tion (2.66) form = 0. In analogy to Equation (2.67d), we will try to spot a pattern by repeating
the recursion multiple times:

amη (3) =
−(η −m − 4)(η −m − 5)

4 · 3(m + 3) amη (2) (A.31a)

=
−(η −m − 4)(η −m − 5)

4 · 3(m + 3)
−(η −m − 2)(η −m − 3)

4 · 2(m + 2) amη (1) (A.31b)

=
−(η −m − 4)(η −m − 5)

4 · 3(m + 3)
−(η −m − 2)(η −m − 3)

4 · 2(m + 2)
−(η −m)(η −m − 1)

4 · 1(m + 1) amη (0) (A.31c)

=
(−1)3
43

(η −m)(η −m − 1)(η −m − 2)(η −m − 3)(η −m − 4)(η −m − 5)
(3 · 2 · 1) · (m + 3)(m + 2)(m + 1) amη (0) .

(A.31d)

In the last step, we have regrouped some terms to emphasize the pattern. The general expression
becomes

amη (k) = (−1)k
22k

(η −m)(η −m − 1) · · · (η −m − 2k + 1)
k! (m + k)(m + k − 1) · · · (m + 1) amη (0) (A.32a)

=
(−1)k
22kk!

(η −m)!
(η −m − 2k)!

m!
(m + k)!a

m
η (0) , (A.32b)

where we have expanded withm! and (η −m − 2k)! in the last step. Sincem is a non-negative
integer, there is no problem with the first expansion. The second expansion is also fine, because
η −m − 2k is non-negative within the limits of the sum in Equation (A.24). In fact, η −m − 2k is
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the exponent of z, and we do not consider solutions with singularities here, which means that

the exponent must not be negative.

As a cross-check, we recover Equation (2.68b) from Equation (A.32b) form = 0. Determining

amη (0) is not a easy as in the case ofm = 0, when we used the property Pη(1) = 1 for all η in

Equation (2.70) in order to conclude that aη(0) = 1. Assuming for the moment that amη (0) = 1 and

dividing Equation (A.6) by Equation (A.24) leads to the sequence A001498—coefficients of Bessel

polynomials [175]—in the On-Line Encyclopedia of Integer Sequences® (https://oeis.org). We

have ignored the sign of the ratio, which depends on the convention concerning the Condon–

Shortley phase [177] of the associated Legendre polynomial. Including this factor of (−1)m
here, the coefficient amη (0) is determined4 as

amη (0) = (−1)m
2m

(η +m)!
m!(η −m)! , (A.33)

and Equation (A.32b) for the explicit expression of the coefficient becomes

amη (k) = (−1)m+k
2m+2k

(η +m)!
k!(m + k)!(η −m − 2k)! . (A.34)

This coefficient completes the ansatz (A.24). As a cross-check, Equation (2.71) is reproduced for

m = 0. Additionally, using the recursion (A.30) with the explicit form of the coefficient amη (k)
from Equation (A.34) as

amη (k + 1) = − (η −m − 2k)(η −m − 2k − 1)
4(k + 1)(m + k + 1)

(−1)m+k
2m+2k

(η +m)!
k!(m + k)!(η −m − 2k)! (A.35a)

=
(−1)m+k+1
2m+2k+2

(η +m)!
(k + 1)!(m + k + 1)!(η −m − 2k − 2)! (A.35b)

yields the explicit expression for amη (k + 1).
Finally, upon comparing Equations (A.6) and (A.24), the more general version of Equa-

tion (2.59) for the conversion from spherical to cylindrical coordinates is

rηPmη (cos(θ )) = (−1)m (η +m)!
2m

� η−m2 �∑
k=0

(−1)k
22k

zη−m−2kρm+2k

k!(m + k)!(η −m − 2k)! (A.36a)

=
(−1)m
2m

(η +m)!
η!

� η−m2 �∑
k=0

(−1)k
22k

(
η

k

) (
η − k

m + k

)
zη−m−2kρm+2k . (A.36b)

If the Condon–Shortley phase [172] is not included in the associated Legendre polyno-

mial Pmη , the factor of (−1)m is to be omitted. For m = 0, Equations (A.36a) and (A.36b)

reproduce Equations (A.12a) and (A.12b), respectively, for the conversion to cylindrical coordi-

nates with a Legendre polynomial. To solve the Laplace equation (2.57) in the case ofm � 0,

Equation (A.36b) still has to multiplied with cos(mϕ) or sin(mϕ), which does not affect the

4Section A.3.3 confirms this conjecture rigorously.
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A. Legendre polynomials

conversion. Continuing to Cartesian coordinates via x = ρ cos(ϕ) and y = ρ sin(ϕ) is facilitated
by the multiple-angle formulas [182]

cos(mϕ) =
⌊m2 ⌋∑
j=0

(−1)j
(
m

2j

)
[sin(ϕ)]2j [cos(ϕ)]m−2j , (A.37)

sin(mϕ) =
⌊m−12 ⌋∑
j=0

(−1)j
(

m

2j + 1

)
[sin(ϕ)]2j+1 [cos(ϕ)]m−2j−1 , (A.38)

and ρ2 = x2 + y2.

A.3.2. Direct conversion to cylindrical coordinates

In this section, we attempt the direct conversion of the ansatz (A.6) with an associated Legendre
polynomial Pmη from spherical to cylindrical coordinates. This direct approach is conceptually
identical to the conversion with the Legendre polynomial Pη in Section A.2, which should be
reproduced form = 0.
This time, the starting point is the general expression

Pmη (ζ ) = (−1)m �
1 − ζ 2

�m/2 dm
dζm Pη(ζ ) (A.39)

for the associated Legendre polynomial [172]. The factor of (−1)m is the Condon–Shortley
phase, which we have included here, because the computer algebra system Wolfram Mathe-
matica® and the numerical computing environment Matlab, which are commonly used at
the institute, use this definition.5 The general explicit expression (A.14) for the Legendre
polynomial Pη(ζ ) makes it clear that terms of the kind

dm
dζm ζ η−2j = (η − 2j)(η − 2j − 1) · · · (η − 2j −m + 1)ζ η−2j−m (A.40)

will appear in the associated Legendre polynomial Pmη (ζ ). Since η − 2j is a non-negative
integer within the limits of the sum in Equation (A.14), the multiple derivatives yield zero after
η − 2j + 1 operations, when zero appears as a prefactor. Thus, Equation (A.40) is simplified by
distinguishing two cases:

dm
dζm ζ η−2j =




0 form > η − 2j ,
(η−2j)!

(η−2j−m)!ζ
η−2j−m form ≤ η − 2j .

(A.41)

In the second case, Equation (A.40) has been expanded with (n − 2j −m)!, which is well-defined
in this case. Since j is a non-negative integer, the derivative and hence the associated Legendre
polynomial vanish form > η, which motivates the restriction 0 ≤ m ≤ η imposed in Section A.1.

5This choice differs from Equation (2.83), taken from Reference [20], where we have tried to underline the difference
by writing with two subscripts Pηm = (−1)mPmη as Reference [172] suggests.
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Table A.2.: The first few associated Legendre polynomials P1
η(ζ ). When η is even (odd), the

function is antisymmetric (symmetric) with respect to the argument ζ . Form > η,
the associated Legendre polynomial Pmη vanishes, which is the case for η = 0 here.

η P1
η(ζ )

0 0

1 −√1 − ζ 2

2 −3ζ√1 − ζ 2

3 − 3
2

√
1 − ζ 2

�
5ζ 2 − 1

�
4 − 5

2

√
1 − ζ 2

�
7ζ 3 − 3ζ

�
5 − 15

8

√
1 − ζ 2

�
21ζ 4 − 14ζ 2 + 1

�
6 − 21

8

√
1 − ζ 2

�
33ζ 5 − 30ζ 3 + 5ζ

�
7 − 7

16

√
1 − ζ 2

�
429ζ 6 − 495ζ 4 + 135ζ 2 − 5

�
8 − 9

16

√
1 − ζ 2

�
715ζ 7 − 1001ζ 5 + 385ζ 3 − 35ζ

�
9 − 45

128

√
1 − ζ 2

�
2431ζ 8 − 4004ζ 6 + 2002ζ 4 − 308ζ 2 + 7

�
10 − 55

128

√
1 − ζ 2

�
4199ζ 9 − 7956ζ 7 + 4914ζ 5 − 1092ζ 3 + 63ζ

�
Combining the binomial coefficients in the general explicit expression (A.14) for the Legendre

polynomial Pη with the additional factors that result from the multiple derivatives yields(
η

j

) (
2n − 2j

η

) (η − 2j)!
(η − 2j −m)! =

η!

j!(η − j)!
(2η − 2j)!
η!(η − 2j)!

(η − 2j)!
(η − 2j −m)! =

(2η − 2j)!
j!(η − j)!(η − 2j −m)! .

(A.42)

Since the only contributions by the derivatives (A.40) are for 2j ≤ η −m, the upper limit of the

sum over j is reduced from �η/2� to �(η −m)/2�. Overall, we have

Pmη (ζ ) = (−1)m
2η

�
1 − ζ 2

�m/2
� η−m2 �∑
j=0

(−1)j (2η − 2j)!
j! (η − j)! (η − 2j −m)!ζ

η−m−2j (A.43)

for the general explicit expression of the associated Legendre polynomial. Table A.2 shows the

first few P1
η , because these functions were mentioned by Equation (2.82) in the context of the

standard parametrization of the radial magnetic field in the literature.

With the argument ζ = cos(θ ), the term in front of the sum is rewritten as�
1 − (cos(θ ))2�m/2

=
�(sin(θ ))2�m/2

= |sin(θ )|m . (A.44)

Moreover, in the range of 0 ≤ θ ≤ π, with θ being a spherical coordinate here, sin(θ ) does
not take negative values—that is, sin(θ ) ≥ 0—and the absolute value can be dropped. Thus,
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the associated Legendre polynomial contains products of [sin(θ )]m[cos(θ )]η−m−2j , which have

to be arranged as ρ = r sin(θ ) and z = r cos(θ ) for the conversion to cylindrical coordinates.

Ignoring the sum over j for the moment, such terms in rηPη(cos(θ )) take the form
rη[sin(θ )]m[cos(θ )]η−m−2j = rη−m[r sin(θ )]m[cos(θ )]η−m−2j = ρm[r cos(θ )]η−m−2jr 2j (A.45a)

= ρmzη−m−2jr 2j = ρmzη−m−2j
j∑

k=0

(
j

k

)
ρ2kz2(j−k) (A.45b)

=

j∑
k=0

j!

k!(j − k)!z
η−m−2kρm+2k . (A.45c)

In the second-to-last step, we have used Equation (A.16) to express the factor r 2j , for which
there was no corresponding trigonometric function, as a polynomial in z and ρ by means of

binomial expansion. Combining Equation (A.45c) with the prefactors and the sum in the general

explicit expression (A.43) of the associated Legendre polynomial Pmη (cos(θ )) yields

rηPmη (cos(θ )) = (−1)m
2η

� η−m2 �∑
j=0

j∑
k=0

(−1)j (2η − 2j)!
(η − j)! (η − 2j −m)!

zη−m−2kρm+2k

k!(j − k)! . (A.46)

Like in Equation (A.18) with the Legendre polynomial Pη , the two sums do not yet have the

right shape to identify the coefficient amη (k) in the way it is defined in Equation (A.24). We

would like to be left with a sum over k , because this sum creates all the different exponents

of the polynomial in z and ρ, while the sum over j should determine the coefficient amη (k). To
this end, we apply the transformation of summation variables described by Equation (A.19) and

shown in Figure A.1. Since the summation variables as such are not transformed, the major

difference here is that the maximum value of j is �(η −m)/2� rather than �η/2�. In close analogy

to (A.20a) we have

rηPmη (cos(θ )) = (−1)m
2η

� η−m2 �∑
k=0

� η−m2 �∑
j=k

(−1)j (2η − 2j)!
(η − j)!(η − 2j −m)!

zη−m−2kρm+2k

k!(j − k)! (A.47a)

=
(−1)m
2η

� η−m2 �∑
k=0

� η−m2 �−k∑
j=0

(−1)k+j
k!j!

(2η − 2j − 2k)! zη−m−2kρm+2k
(η − j − k)!(η − 2j − 2k −m)! . (A.47b)

In the last step, we sent the summation variable j → j +k , in order to shift the lower limit of the

sum over j to 0. By expanding with (η +m)! and (η − k)!, the latter being well-defined because

k ≤ �(η −m)/2� also means k ≤ η, the factorials are rewritten as

1

(η − j − k)!j!
(2η − 2j − 2k)!

(η − 2j − 2k −m)! =
(η − k)!

(η − j − k)!j!
(η +m)!
(η − k)!

(2η − 2j − 2k)!
(η − 2j − 2k −m)!(η +m)! (A.48a)

=
(η +m)!
(η − k)!

(
η − k

j

) (
2η − 2k − 2k

η + k

)
(A.48b)
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with two binomial coefficients. A third binomial coefficient may be created with the factor of k!
in the denominator on the right-hand side of Equation (A.47b) and by expanding with η!. After
rearranging the two sums as

rηPmη (cos(θ )) = (−1)m
2η

(η +m)!
η!

� η−m2 �∑
k=0

(−1)k
(
η

k

)
zη−m−2kρm+2k

·
� η−m2 �−k∑

j=0

(−1)j
(
η − k

j

) (
2η − 2k − 2j

η +m

)
,

(A.49)

the coefficient amη (k) from Equation (A.24) is clearly identified. Comparing with its explicit

form (A.34) or Equation (A.36b) for the conversion to cylindrical coordinates, the sum over j
must give

� η−m2 �−k∑
j=0

(−1)j
(
η − k

j

) (
2η − 2k − 2j

η +m

)
= 2η−m−2k

(
η − k

m + k

)
. (A.50)

Since η −m − 2k = (η − k) − (m + k), the right-hand side is described entirely by the two

variables η − k and m + k , which complicates the search for its mathematical provenance.

As a cross-check, settingm = 0 reproduces Equation (A.23), which resulted from the direct

conversion of rηPη(cos(θ )) to cylindrical coordinates. As with Equation (A.23), the more general

identity (A.50) would be hard to spot without the direct comparison of Equations (A.36b) and

(A.49). Therefore, the indirect conversion in Section A.3.1 helps tremendously.

Specific comparison

Reference [92] offers a partial check of the conversion (A.36a) to cylindrical coordinates and the

explicit expression (A.43) for the associated Legendre polynomial, because it shows a general

expression for

p2n,2m(r ,θ ) =
r 2(n+m)P2n

2(n+m)(cos(θ ))
ρ2(n+m)
r P2n

2(n+m)(0)
(A.51)

in its Equation (76), where n and m are two non-negative integers. We have adjusted the

expression, Equation (75), to our notation here, using r for the distance from the origin, rather

than as the cylindrical radial coordinate called ρ in this thesis. The normalization factor ρr,
called r0 in Reference [92], is the distance from the origin to the ring electrode, see Figure 2.1.

From the explicit expression (A.43) for the associated Legendre polynomial, it is clear that the

only contribution in Pmη (0) originates from the constant term ζ 0, which means that 2j = η −m
is the only relevant value of the summation variable j . This also means that η −m must be even,

which is the case in Equation (A.51). After the particular replacementsm → 2n and η → 2(n+m)
in Pmη , the specific value of the associated Legendre polynomial in the denominator becomes

P2m
2(n+m)(0) =

(−1)m
22(n+m)

[2(2n +m)]!
m! (2n +m)! . (A.52)
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Applying the conversion (A.36a) to cylindrical coordinates (with j instead of k as the summa-
tion variable) on the numerator of Equation (A.51) yields

r 2(n+m)P2n
2(n+m)(cos(θ )) = (−1)2n [2(2n +m)]!

22n
m∑
j=0

(−1)j
22j

z2m−2jρ2n+2j

j! (2n + j)! (2m − 2j)! (A.53)

=
[2(2n +m)]!

22n ρ2n
m∑
j=0

(−1)m−j
22(m−j)

z2jρ2(m−j)

(m − j)! (2n +m − j)! (2j)! . (A.54)

Since n is an integer, 2n is even, and hence (−1)2n = 1. In the last step, we have also shifted the
summation variable according to j →m − j, in order to end up with the same exponents of z
and ρ as Reference [92].
With Equations (A.52) and (A.54), Equation (A.51) is rewritten as

p2n,2m(ρ, z) =m! (2n +m)! ρ2n

ρ2(n+m)
r

m∑
j=0

(−1)j22j z2jρ2(m−j)

(m − j)! (2n +m − j)! (2j)! (A.55)

=
ρ2n

ρ2(n+m)
r

m∑
j=0

(−2)j m! (2n +m)!
(2j)! (m − j)! (2n +m − j)!ρ

2(m−j) �
2z2

�j . (A.56)

After some rearrangements in the last step, the expression closely resembles Equation (77)
in Reference [92]. The corresponding coefficient cn,m, j from Equation (78) contains a double
factorial, which for integers is defined as

(2j)!! = 2j · (2j − 2) · (2j − 4) · · · 6 · 4 · 2 for even arguments and (A.57a)
(2j − 1)!! = (2j − 1) · (2j − 3) · (2j − 5) · · · 5 · 3 · 1 for odd arguments. (A.57b)

In this definition, the arguments are chosen such that their parity is obvious for an integer j.
With the two identities j! = 2−j (2j)!! and (2j)!! (2j − 1)!! = (2j)!, the relevant coefficient cn,m, j is
transformed according to

cn,m, j =
(−1)j

(2j − 1)!!
(
m

j

) (2n +m)!
(2n +m − j)! =

(−1)j
(2j − 1)!!

m!
j! (m − j)!

(2n +m)!
(2n +m − j)! (A.58a)

= (−2)j m! (2n +m)!
(2j)! (m − j)! (2n +m − j)! , (A.58b)

and it agrees with the coefficient inside the sum of Equation (A.56). Thus, the partial cross-check
is fully successful.

A.3.3. Alternative route to matching the solutions

When converting rηPη(cos(θ )) from spherical to cylindrical coordinates in Section A.3.1, a
specific value of the associated Legendre polynomial Pmη (cos(θ )) has to be known, in order to
determine the global prefactor, which the recursive relation (A.30) does not fix. At that point,
no explicit form or special value of Pmη (cos(θ )) was used, owing to a lack of availability. Instead,
the value of the coefficient amη (0) was conjectured by observing a trend in the ratio of the two
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solutions (A.6) and (A.24) to the Laplace equation. The two solutions had the same spatial
dependence by design, but they differed by the factor (A.33) with a nontrivial dependence on η
andm form , 0, in which case the factor was known to be unity, see Equation (2.70). Now, the
direct conversion in Section A.3.2 provides the tools to determine amη (0) rigorously.
Equation (A.47b) shows that there is only one value of j, namely j = 0, that contributes for

the maximum value of k , which is

kmax =
⌊η −m

2

⌋
=




η−m
2 for η −m even,

η−m−1
2 for η −m odd.

(A.59)

Thus, the sum over j reduces to a single term, which yields the coefficient

amη (kmax) = (−1)m+kmax

2η
(2η − 2kmax)!

kmax! (η − kmax)! (η −m − kmax)! (A.60)

of the polynomial (A.24) in z and ρ. Solving the recursive relation (A.32b) for amη (0) links the
coefficient amη (kmax) to the desired one according to

amη (0) = (−1)k22kk! (η −m − 2k)!(η −m)!
(m + k)!

m! amη (k) (A.61a)

=
(−1)m
2η−2kmax

(2η − 2kmax)!
m! (η −m)!

(m + kmax)!
(η − kmax)! . (A.61b)

The first line is a general one; in the second step, we have plugged in the specific coefficient (A.60),
additionally using (−1)2kmax = 1 for the integer kmax. If η −m is even, thenm + kmax = η − kmax,
and Equation (A.61b) simplifies to

amη (0) = (−1)m
2m

(η +m)!
m! (η −m)! . (A.62)

If η −m is odd, the last fraction in Equation (A.61b) requires a little more scrutiny. However,
the final result

amη (0) = (−1)m
2m+1

(η +m + 1)!
m! (η −m)!

( η+m−1
2

)
!( η+m+1

2

)
!
=

(−1)m
2m+1

(η +m + 1)!
m! (η −m)!

2
η +m + 1 (A.63a)

=
(−1)m
2m

(η +m)!
m! (η −m)! (A.63b)

is the same as in the first case. Consequently, Equations (A.62) and (A.63b) confirm the conjecture
of Equation (A.33).
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from Bessel functions

Chapter A discusses the standard solution of the Laplace equation in spherical coordinates, and
it converts the solution, which involves a Legendre polynomial, into cylindrical coordinates.
In this way, a polynomial solution in the radial coordinate ρ and the axial coordinate z is
obtained. In the context of cylindrical traps, Section 2.2.1 mentions Bessel functions as a way
of expressing the electrostatic potential in cylindrical coordinates right away, thereby avoiding
the conversion of coordinates. This chapter shows that the polynomial solutions of the Laplace
equation are readily deduced from these general expressions with Bessel functions. In fact, this
derivation is the most direct way if one is equipped with a textbook solution of the Laplace
equation and a handbook of mathematical functions.1

B.1. Solutions with cylindrical symmetry

In cylindrical coordinates, cylindrically-symmetric solutions to the Laplace equation (2.57),
which do not diverge on the whole z-axis, are given by

Φ̃s
κ (ρ, z) = I0(κρ) cos(κz) and Φ̃a

κ (ρ, z) = I0(κρ) sin(κz) , (B.1)

where I0 is a modified Bessel function of the first kind. The modified Bessel function of
the second kind, Y0, also produces solutions, but the function is excluded here because of its
singularity [185] at ρ = 0. The tilde indicates that general solutions to the Laplace equation
rather electrostatic potentials with the correct unit are considered here. Since the Laplace
equation is a homogeneous linear differential equation, we are free to include prefactors and
add individual solutions. The overall solution is a sum over different values of the parameter κ,
a real number with the dimension of inverse length, which is constrained by the boundary
conditions on the electrodes [13], typically by setting the potential to zero at some distance ±ze,
where the endcaps are. However, the exact value of κ is of no importance here. The superscripts
“s” and “a” distinguish between solutions that are symmetric and antisymmetric, respectively,
with respect to the axial coordinate z.

1I wonder why this occurred to me only shortly before the deadline and after completing Section 2.2.1 and Chapter A.
However, this chapter does not supersede these previous derivations, which prove how far one may get based
on elementary math skills without an elaborate knowledge of special functions. Moreover, we had to match the
prefactor of the polynomial solutions, in order to complete the conversion of the standard parametrization with
Legendre polynomials from spherical to cylindrical coordinates. This chapter will not provide an easier answer
for this global prefactor, because it depends on the properties of the Legendre polynomials, whose relations to
Bessel functions we will not discuss here.
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Wewill now expand the solutions (B.1) about the origin, that is, ρ = 0 and z = 0. The modified
Bessel function of the first kind is given by [184]

I0(κρ) =
∞∑
k=0

(κρ)2k
22k (k!)2 ; (B.2)

the series expansions of the trigonometric functions are

cos(κz) =
∞∑
k=0

(−1)k (κz)
2k

(2k)! and sin(κz) =
∞∑
k=0

(−1)k (κz)
2k+1

(2k + 1)! . (B.3)

The form of these expansion as infinite series makes it clear why the solutions (B.1) are non-
polynomial. Using the Cauchy product

*
,

∞∑
k=0

αk+
-

*
,

∞∑
k=0

βk+
-
=

∞∑
j=0

j∑
k=0

αkβj−k , (B.4)

which shown here for two generic sequences, whose elements are αk and βk , we obtain

Φ̃s
κ =

∞∑
j=0

κ2j
j∑

k=0

(−1)j−kρ2kz2j−2k
22k (k!)2 (2j − 2k)! and Φ̃a

κ =

∞∑
j=0

κ2j+1
j∑

k=0

(−1)j−kρ2kz2j−2k+1
22k (k!)2 (2j − 2k + 1)! (B.5)

for the solutions (B.1) to the Laplace equation. For space, we have suppressed the variables ρ
and z in the argument of Φ̃κ Since the Laplace equation has to be fulfilled for arbitrary values
of the parameter κ, the sums over k have to be solutions on their own for all values of the other
summation variable j. Therefore, all the prefactors that depend on j only play no role for the
polynomial solutions to the Laplace equation, and we will ignore the terms κ2k and (−1)j . Of
course, we must not drop 2j in the exponent of the variable z.
Apart from the upper limit j, the sums over k in Equation (B.5) depend on 2j and 2j + 1.

The former is always even; the latter is always odd. Thus, we can rewrite the sums over k
in terms of a single integer parameter η, where η = 2j in the first case and η = 2j + 1 in
the second. In the first case, the upper limit of the sum over k is η/2; in the second case, it
is (η − 1)/2. Since η/2 = ⌊η/2⌋ for η even and (η − 1)/2 = ⌊η/2⌋ for η odd according to the
definition (2.60) of the floor function for integer arguments, both cases for the upper limit are
handled by the choice ⌊η/2⌋. Because 2k is even for an integer k , we rewrite the sign-changing
factor as (−1)−k = 1 · (−1)−k = (−1)2k (−1)−k = (−1)k .
Finally, the sums over k , which are polynomial solutions to the Laplace equation—their

upper limit being finite—take the form

△

⌊η/2⌋∑
k=0

(−1)kρ2kzη−2k
22k (k!)2(η − 2k)! = 0 , (B.6)

where we have explicitly shown the impact of applying the Laplace operator (2.63), in order to
emphasize that the sum is a harmonic function. Up to a global factor of η!, the sum is identical
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to the polynomial solution (2.73) with its coefficient (2.71). Here, including a factor of η! ensures
that the coefficient of zη is unity, which matches a property of the solution (2.59) with Legendre
polynomials, see Equation (2.70).
In addition to the solutions (B.1), the functions

Ψ̃ s
κ (ρ, z) = J0(κρ) cosh(κz) and Ψ̃a

κ (ρ, z) = J0(κρ) sinh(κz) (B.7)

also solve the Laplace equation. In fact, the two solutions (B.1) and (B.7) are linked by the
three relations J0(iκρ) = I0(κρ), cosh(iκz) = cos(κz) and sinh(iκz) = i sin(κz) for imaginary
arguments. Because the Bessel function of the first kind, J0, has zeros, the parametrization
here is useful for a cylindrical trap with a grounded ring electrode and the endcaps at some
potential [5]. With the source-free and finite potential of an empty trap in mind, the solutions
with the Bessel function of the second kind, K0, are not shown because of the singularity [174]
for ρ = 0.
With the nonsingular solutions (B.7), the same polynomial solutions as before—possibly up

to a global prefactor—follow with the series expansions

J0(κρ) =
∞∑
k=0

(−1)k (κρ)2k
22k (k!)2 (B.8)

for the Bessel function of the first kind [173], and the hyperbolic functions

cosh(κz) =
∞∑
k=0

(κz)2k
(2k)! and sinh(κz) =

∞∑
k=0

(κz)2k+1
(2k + 1)! . (B.9)

Since the polynomial solutions are supposed to represent fundamental solutions of the Laplace
equation, thereby constituting a set of basis functions, they have to be unique, barring their
prefactor.2 The only difference concerns how the fundamental solutions are combined in order
to reproduce specific boundary conditions. In the series (B.5), the sum over j composes special
functions from the fundamental polynomial solutions.

B.2. Solutions beyond cylindrical symmetry

The cylindrically-symmetric solutions (B.1) to the Laplace equation are special cases of the
general solutions

Φ̃s
κm(ρ,ϕ, z) = Im(κρ) cos(κz)f (ϕ) and Φ̃a

κm(ρ,ϕ, z) = Im(κρ) sin(κz)f (ϕ) (B.10)

in cylindrical coordinates form = 0. Here, there is the additional function

f (ϕ) = cκm cos(mϕ) + sκm sin(mϕ) (B.11)

2Since the basis functions are classified uniquely based on their degree, we brush aside a different set of ba-
sis functions, composed by superimposing the polynomial solutions of different degrees, as an unnecessary
complication.
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of the angle variable ϕ, where cκm and sκm are two coefficients. We have suppressed the super-

scripts “s” and “a” for convenience, even though the coefficients may be chosen independently

for solutions that are symmetric and antisymmetric, respectively, in the axial coordinate z.
The structure of f (ϕ) is the same as in the ansatz (A.6) with associated Legendre polynomi-

als. Since the angle variable ϕ points to the same spot after a full turn of 2π, the periodicity
f (ϕ + 2π) = f (ϕ) require thatm be an integer. Without loss of generality, we takem to be

non-negative.3

For a comparison with the associated Legendre polynomials of Section A.3, we are interested

in the dependence of the solution (B.10) on the radial displacement ρ and the axial coordinate z.
With the series expansion [184], valid for non-negative integersm,

Im(κρ) =
∞∑
k=0

(κρ)2k+m
22k+m k! (m + k)! (B.12)

for the modified Bessel function of the first kind, the series (B.3) for the trigonometric functions,

and the Cauchy product (B.4), the components without a dependence on the azimuth angle ϕ
in the solutions (B.10) to the Laplace equation are written as the infinite series

Im(κρ) cos(κz) =
∞∑
j=0

κ2j+m

2m

j∑
k=0

(−1)j−kρ2k+mz2j−2k
22k k! (m + k)! (2j − 2k)! , (B.13)

Im(κρ) sin(κz) =
∞∑
j=0

κ2j+m+1

2m

j∑
k=0

(−1)j−kρ2k+mz2j−2k+1
22k k! (m + k)! (2j − 2k + 1)! . (B.14)

The polynomial component of the solution is now read off with the same reasoning as in

Section B.1. Since the result after applying the Laplace operator has to be independent of

the parameter κ, the sums over k have to be individual solutions when multiplied with f (ϕ)
from Equation (B.11). The sums over k in Equations (B.13) and (B.14) depend on 2j and 2j + 1,
respectively, apart from their upper limit j and the factor of (−1)j . The latter is safely ignored

as a prefactor; the upper limit requires some attention. Because 2j, which is always even, and

2j + 1, which is always odd, eventually run through all non-negative integers, we condense the

two possibilities in one parameter n. With the definition (2.60) of the floor function for integer

arguments, the upper limit is summarized as �n/2� for both cases, and the sums over k take the

common form

�n/2�∑
k=0

(−1)kρ2k+mzn−2k
22kk! (m + k)! (n − 2k)! =

� η−m2 �∑
k=0

(−1)kρ2k+mzη−m−2k
22kk! (m + k)! (η −m − 2k)! . (B.15)

In the last step, we have defined n = η − m, where 0 ≤ m ≤ η, in order to close in on

Equation (A.36b), which gives the polynomial in ρ and z by converting rηPmη (cos(θ )) with the

3The sign ofm does not matter in the even function cos(mϕ), and the change of sign in the odd function sin(mϕ) is
absorbed in the prefactor sκm . Moreover, the modified Bessel functions of the first kind, Im , do not depend on

the sign ofm because the modified Bessel differential equation does not [183]. The second fundamental solution

to this second-order differential equation is not hidden in the sign ofm; it manifests itself in the modified Bessel

functions of the second kind, Ym .
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B.2. Solutions beyond cylindrical symmetry

associated Legendre polynomial Pmη from spherical to cylindrical coordinates. Up to a global
factor, which does not matter for the solution to a homogeneous linear differential equation,
the result is identical.

The solution (B.7) without singularities is extended beyond cylindrical symmetry by including
the azimuth angle ϕ via the function f (ϕ) from Equation (B.11) as

Ψ̃ s
κm(ρ,ϕ, z) = Jm(κρ) cosh(κz)f (ϕ) and Ψ̃a

κm(ρ,ϕ, z) = Jm(κρ) sinh(κz)f (ϕ) . (B.16)

With the expansion for the Bessel function of the first kind [173]

Jm(κρ) =
∞∑
k=0

(−1)k (κρ)2k+m
22k+m k! (m + k)! (B.17)

and the hyperbolic functions (B.9), the Cauchy product (B.4) yields the polynomial (B.15) in ρ
and z again. Because they solve a homogeneous linear differential equation, the fundamental
polynomial solutions, of which all solutions to the Laplace equation are composed, are defined
up to a prefactor only.
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C. Trigonometric identities

C.1. Powers of cosine

A crucial part of the calculation is to expand the powers of a trigonometric function into a
sum of simple trigonometric functions in order to decompose the original function into its
individual frequency components. The two relevant identities are introduced without proof as
Equations (3.2) and (3.5) in Section 3.1. Although they can be found in the literature under the
name of trigonometric power(-reduction) formulas [188], we will derive them here. Because
they are an integral part of the thesis, we want to demonstrate that there is nothing arcane
about them.
The essential step of deriving a general formula for powers of cosine is to recall that the

cosine function can be expressed by exponential functions as

cos(χ ) = 1
2

�
eiχ + e−iχ

�
. (C.1)

Therefore, calculating the powers of cosine can be reduced to calculating the powers of expo-
nential functions.

Even powers

We use binomial expansion to establish that

[cos(χ )]2n =
[1
2

�
eiχ + e−iχ

�]2n
(C.2a)

=
1
22n

2n∑
k=0

(
2n
k

) �
eiχ

�k �
e−iχ

�2n−k (C.2b)

=
1
22n

2n∑
k=0

(
2n
k

) �
eiχ

�k �
eiχ

�−2n+k (C.2c)

=
1
22n

2n∑
k=0

(
2n
k

) �
eiχ

�2(k−n) (C.2d)

=
1
22n

n∑
j=−n

(
2n
j + n

) �
e2iχ

�j . (C.2e)

We substituted j = k − n in the final step. The binomial coefficient is defined in Equation (3.3).
By decomposing the whole sum into individual sums for j < 0, j = 0, j > 0 and by letting j → −j
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C. Trigonometric identities

in the first sum, we obtain

[cos(χ )]2n = 1
22n

n∑
j=−n

(
2n
j + n

) �
e2iχ

�j (C.3a)

=
1
22n




−1∑
j=−n

(
2n
j + n

) �
e2iχ

�j
+

(
2n
n

)
+

n∑
j=1

(
2n
j + n

) �
e2iχ

�j 


(C.3b)

=
1
22n




n∑
j=1

(
2n

n − j

) �
e2iχ

�−j
+

(
2n
n

)
+

n∑
j=1

(
2n
j + n

) �
e2iχ

�j 


(C.3c)

=
1
22n




(
2n
n

)
+

n∑
j=1

(
2n

n − j

) �
e2ij χ + e−2ij χ

�


(C.3d)

=
1
22n




(
2n
n

)
+ 2

n∑
j=1

(
2n

n − j

)
cos(2jχ )




. (C.3e)

We made use of the identity (3.4)(
2n

n − j

)
=

(
2n

2n − (n − j)
)
=

(
2n

n + j

)
(C.4)

for binomial coefficients.

Odd powers

The starting point is the same as for even powers:

[cos(χ )]2n+1 =
[1
2

�
eiχ + e−iχ

�]2n+1
(C.5a)

=
1

22n+1
2n∑
k=0

(
2n + 1
k

) �
eiχ

�k �
e−iχ

�2n+1−k (C.5b)

=
1

22n+1
2n∑
k=0

(
2n + 1
k

) �
eiχ

�k �
eiχ

�−2n−1+k (C.5c)

=
1

22n+1
2n∑
k=0

(
2n + 1
k

) �
eiχ

�2(k−n)−1 (C.5d)

=
1

22n+1



n∑
k=0

(
2n + 1
k

) �
eiχ

�2(k−n)−1
+

2n+1∑
k=n+1

(
2n + 1
k

) �
eiχ

�2(k−n)−1


. (C.5e)

192



C.2. Multiplication or mixing

Having decomposed the sum, we now substitute j = k − n in the first part, and j = k − n − 1 in
the second:

[cos(χ )]2n+1 = 1
22n+1




n∑
k=0

(
2n + 1
k

) �
eiχ

�2(k−n)−1
+

2n+1∑
k=n+1

(
2n + 1
k

) �
eiχ

�2(k−n)−1


(C.6a)

=
1

22n+1



0∑
j=−n

(
2n + 1
j + n

) �
eiχ

�2j−1
+

n∑
j=0

(
2n + 1
j + n + 1

) �
eiχ

�2j+1


(C.6b)

=
1

22n+1



n∑
j=0

(
2n + 1
n − j

) �
eiχ

�−(2j+1)
+

n∑
j=0

(
2n + 1
j + n + 1

) �
eiχ

�2j+1


(C.6c)

=
1

22n+1
n∑
j=0

(
2n + 1
n − j

) [
e−i(2j+1)χ + ei(2j+1)χ

]
(C.6d)

=
1
22n

n∑
j=0

(
2n + 1
n − j

)
cos

�(2j + 1)χ �
(C.6e)

We substituted j → −j in the first sum and used the identity (3.4)(
2n + 1
n − j

)
=

(
2n

2n + 1 − (n − j)
)
=

(
2n + 1

n + j + 1

)
(C.7)

for binomial coefficients.

C.2. Multiplication or mixing

The angle-sum and angle-difference identities

cos(α ± β) = cos(α) cos(β) ∓ sin(α) sin(β) , (C.8)
sin(α ± β) = sin(α) cos(β) ± sin(β) cos(α) (C.9)

are linked with the product-to-sum identities

cos(α) cos(β) = cos(α − β) + cos(α + β)
2 , (C.10)

sin(α) cos(β) = sin(α − β) + sin(α + β)
2 , (C.11)

sin(α) sin(β) = cos(α − β) − cos(α + β)
2 . (C.12)

The latter are frequently used in the thesis to identify resonant terms when two oscillatory
terms are multiplied, see the general prescriptions of Equations (4.39), (4.40), (4.126), and (4.128),
for example.
The identity (C.10) may also be used to verify Equations (C.3e) and (C.6e) for the frequency

components in powers of cosine without expressing cosine via exponential functions as in
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C. Trigonometric identities

Equation (C.1). Even though the new approach looks like a combinatorial one instead, it closely
resembles the rearrangements after binomial expansion in Section C.1. In fact, the combinatorial
meaning of binomial coefficients will play a key role.
Written as multiple products, there are 2n factors of cos(χ ) in [cos(χ )]2n . According to

Equation (C.10), every multiplication with cos(χ ) results in two terms: The prefactor of χ in the
argument of the trigonometric function either increases or decreases by one. We will refer to the
former as mixing up and to the latter as mixing down. In this sense, we write the multiplication
of the constant term as cos(0) cos(χ ) = 1/2[cos(χ )+ cos(−χ )]. Apart from possibly changing the
prefactor of χ , every multiplication reduces the amplitude of the resulting terms by a factor
of two, and hence the overall prefactor 22n in the denominator of Equation (C.3e). Since every
multiplication with cos(χ ) changes the parity of the prefactor of χ in the resulting terms, there
will be not change after the even amount of 2n multiplications. Consequently, the prefactor 2j
of χ in Equation (C.3e) is always even. There are no odd multiples of χ on the right-hand side.
We will now examine the terms with even multiples of χ , including the zero dependence on χ ,
also known as the constant term.
How many possibilities are there to produce a constant term via the 2n multiplications

in [cos(χ )]2n? We have to mix up as many times as down—that is, n times. There are
�2n
n

�

combinations. Remember to interpret the binomial coefficient
�n
k

�
as “n choose k”—the number

of possibilities to select k elements out of n, disregarding the order of the draw. Here, we select
when to mix up (or down) in the 2n multiplications.1

How many possibilities are there to produce a term cos(2jχ )? We have to mix up n + j times
and down n − j times, for which there are

� 2n
n+j

�
=

� 2n
n−j

�
possibilities. Since cosine is an even

function—that is, cos(χ ) = cos(−χ )—the term cos(−2jχ ) contributes the same oscillatory term,
too. It is produced by mixing up n − j times and down n + j times, which essentially doubles the
possibilities of obtaining cos(2jχ ), where j is positive. Alternately, we could allow for negative j .
In any case, we have reproduced the prefactor of cos(2jχ ) in Equation (C.3e).

The same combinatorial strategy also works for the odd powers of cosine with 2n + 1 factors
of cos(χ ) in [cos(χ )]2n+1. Because each multiplication with cos(χ ) changes the parity of the
prefactor of χ , there are no even multiplies of χ for the odd amount of 2n + 1 multiplications.
Therefore, all multiples of the argument χ are odd. A term cos[(2j + 1)χ ] is produced by mixing
up n + 1 + j times and mixing down n − j times. There are

� 2n+1
n+1+j

�
=

�2n+1
n−j

�
possibilities to do so.

For the total number, the terms cos[−(2j + 1)χ ], which result from mixing up n − j times and
down n + j + 1 times, have to be counted, too. Overall, there are twice as many possibilities. The
additional factor of 2 combines with the 22n+1 in the denominator from the 2n+1 multiplications
to form the correct prefactor in Equation (C.6e), and the binomial coefficient fits, too.

1Since we mix either up or down with no other alternative, opting against one operation is equivalent to choosing
the other. This is the meaning of Equation (3.4) in the combinatorial sense.
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D. Definition of secularity

In this chapter, we review proper definitions of secularity. The equation numbers are assigned
in this chapter; they are not from the original references. In contrast, the emphasis in italics is
not mine; it is from the original references.
The following quote is from Reference [4]:

“In general, secular terms always appear whenever the inhomogeneous term is itself
a solution of the associated homogeneous constant-coefficient differential equation.
A secular term always grows more rapidly than the corresponding solution of the
homogeneous equation by at least a factor of t .”

Note that this definition does not necessarily imply that secular terms diverge for t → ∞ as the
following example from Reference [4] illustrates.

“The solution to the differential equation

ÿ − y = e−t (D.1)

has a secular term because e−t satisfies the associated homogeneous equation. The
general solution is

y(t) = Ae−t + Bet − 1
2te
−t . (D.2)

The particular solution − 1
2te
−t is secular relative to the homogeneous solutionAe−t ;

we must regard the term − 1
2te
−t as secular even though it is negligible compared

with the homogeneous solution Bet .”

With respect to nearly periodic problems, Henri Poincaré offers a less mathematical but
more pictorial definition in the introduction of his 1892 book1 “Les méthodes nouvelles de la
mécanique céleste.”

« Ces méthodes, qui consistent à développer les coordonnées des astres suivant
les puissances des masses, ont en effet un caractère commun qui s’oppose à leur
emploi pour le calcul des éphémérides à longue échéance. Les séries obtenues
contiennent des termes dits séculaires, où le temps sort des signes sinus et cosinus,
et il en résulte que leur convergence pourrait devenir douteuse si l’on donnait à ce
temps t une grande valeur.

1https://archive.org/details/lesmthodesnouv001poin
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D. Definition of secularity

La présence de ces termes séculaires ne tient pas à la nature du problème, mais
seulement à la méthode employée. Il est facile de se rendre compte, en effet, que si
la véritable expression d’une coordonnée contient un terme en

sin(αmt) , (D.3)

α étant une constante etm l’une des masses, on trouvera, quand on voudra déve-
lopper suivant les puissances dem, des termes séculaires

αmt −
α3m3t3

6 + · · · (D.4)

et la présence de ces termes donnerait une idée très fausse de la véritable forme de
la fonction étudiée. »

I offer my own loose translation (not taken from an English version of the book, which I failed
to procure).

These methods of developing the coordinates of the celestial bodies as powers of
the masses have a common feature which precludes their use for the calculation of
ephemerides on long time-scales. The series obtained contain so-called secular terms,
where the time leaves the sine and cosine symbols. As a result the convergence of
the series becomes doubtful if the time t is given a large value.
The presence of these secular terms is not related to the nature of the problem,

but only to the method used. It is actually easy to note that if the real expression
for a coordinate contains a term like

sin(αmt) , (D.5)

α being a constant andm one of the masses, one will find secular terms

αmt −
α3m3t3

6 + · · · (D.6)

when developing in powers of the masses. The presence of these terms would give
a very wrong idea of the true shape of the function studied.

The introduction is also interesting from a physical point of view. Poincaré considers the
comparison of observations and calculations as a test of Newton’s law of gravitation.

« Le but final de la Mécanique céleste est de résoudre cette grande question de
savoir si la loi de Newton explique à elle seule tous les phénomènes astronomiques ;
le seul moyen d’y parvenir est de faire des observations aussi précises que possible
et de les comparer ensuite aux résultats du calcul. Ce calcul ne peut être qu’ap-
proximatif et il ne servirait à rien, d’ailleurs, de calculer plus de décimales que les
observations n’en peuvent faire connaître. Il est donc inutile de demander au calcul
plus de précision qu’aux observations ; mais on de doit pas non plus lui deman-
der moins. Aussi l’approximation dont nous pouvons nous contenter aujourd’hui
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sera-t-elle insuffisante dans quelques siècles. Et, en effet, en admettant même, ce
qui est très improbable, que les instruments de mesure ne se perfectionnent plus,
l’accumulation seule des observations pendant plusieurs siècles nous fera connaître
avec plus de précision les coefficients des diverses inégalités. »

Here is my loose translation:

The final goal of celestial mechanics is to resolve that great question whether
Newton’s law alone explains all astronomical phenomena; the only way to do so
is to make observations as precise as possible, and then compare them with the
results of the calculation. This calculation can only be approximate, and calculating
more digits than the observations can yield would therefore amount to nothing.
It would hence be useless to demand more precision from the calculation than
from the observations, but one must not demand less. Also, the approximation we
can content ourselves with today will perhaps be insufficient in some centuries.
Even conceding that measurement instruments might not improve, which is very
unlikely, the mere accumulation of observations for several centuries will make
known to us the coefficients of various inequalities with more precision.

Indeed, one of the astronomical problems of Poincaré’s time—the perihelion precession of
Mercury—is solved by general relativity rather than by a hypothetical planet (“Vulcan”) that
obeys Newton’s law of gravity [41].

197





E. Explicit expressions for frequency-shifts

This chapter lists explicit first-order frequency-shifts for cylindrically-symmetric imperfec-
tions, thereby facilitating a comparison with the extensive compilation [128]. Table E.1 shows
which general expressions are evaluated. Even though they are shown separately here to
minimize clutter, the first-order frequency-shifts for multiple imperfections add linearly (to
first-order). The axial (angular) frequency ωz in the ideal trap is given by Equation (2.17); the
unperturbed radial frequencies ω± are defined in Equation (2.23). In the ideal trap, the sideband
cyclotron-frequency (2.25) is equal to the free-space cyclotron-frequency ωc of Equation (2.18).
Equation (3.87) establishes the convention for the sign of a shift ∆ωi to these frequencies.
In cylindrical coordinates, the electrostatic potentialΦ2n is parametrized according to Equa-

tion (2.73), with the quadrupole potentialΦ2 of Equation (2.2) in the ideal trap. The axial and
radial magnetic field are given by Equations (2.78) and (2.80), respectively. The magnetic field B⃗0
of Equation (2.1) in the ideal trap follows for η = 0.

Table E.1.: Links to the general expression for the first-order frequency-shifts by electrostatic
imperfections (represented by C2n) and magnetostatic imperfections (represented
by B2n). Shifts to the radial frequencies under axial lock, as opposed to the normal
free-running mode, are indicated by the inverted hat as in ∆ω̌±. These shifts are
related via Equation (4.152c). The shift to the sideband cyclotron-frequency is given
only once as ∆ωc, because it is the same in both modes of operation.

C2n B2n
∆ωz Equation (4.36) Equation (4.75)
∆ω± Equation (4.50) Equation (4.87)
∆ω̌± Equation (4.159) Equation (4.160)
∆ωc Equation (4.55) Equation (4.89)

E.1. Electrostatic imperfections

C4

Φ4 = C4
V0
2d4

(
z4 − 3z2ρ2 + 3

8ρ
4
)

(E.1)
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∆ωz

ωz
=
C4
C2

3
4d2

�
ẑ2 − 2ρ̂2+ − 2ρ̂2−

�
(E.2)

∆ω± = ∓
C4
C2

3
2d2

ω+ω−
ω+ − ω−

�
2ẑ2 − ρ̂2± − 2ρ̂2∓

�
(E.3)

∆ω̌± = ∓
C4
C2

3
2d2

ω+ω−
ω+ − ω−

�
ẑ2 + ρ̂2±

�
(E.4)

∆ωc = −
C4
C2

3
2d2

ω+ω−
ω+ − ω−

�
ρ̂2+ − ρ̂

2
−

�
(E.5)

C6

Φ6 = C6
V0
2d6

(
z6 −

15
2 z4ρ2 +

45
8 z2ρ4 −

5
16ρ

6
)

(E.6)

∆ωz

ωz
=
C6
C2

15
16d4

�
ẑ4 + 3ρ̂4+ + 3ρ̂4− − 6ρ̂2+ẑ2 − 6ρ̂2−ẑ2 + 12ρ̂2+ρ̂2−

�
(E.7)

∆ω± = ∓
C6
C2

15
8d4

ω+ω−
ω+ − ω−

�
3ẑ4 + ρ̂4± + 3ρ̂4∓ − 6ρ̂2±ẑ2 − 12ρ̂2∓ẑ2 + 6ρ̂2+ρ̂2−

�
(E.8)

∆ω̌± = ∓
C6
C2

15
4d4

ω+ω−
ω+ − ω−

�
ẑ4 − ρ̂4± − 3ẑ2ρ̂2∓ − 3ρ̂2+ρ̂2−

�
(E.9)

∆ωc =
C6
C2

15
4d4

ω+ω−
ω+ − ω−

�
ρ̂2+ − ρ̂

2
−

� �
−3ẑ2 + ρ̂2+ + ρ̂2−

�
(E.10)

C8

Φ8 = C8
V0
2d8

(
z8 − 14z6ρ2 + 105

4 z4ρ4 −
35
4 z2ρ6 +

35
128ρ

8
)

(E.11)

∆ωz

ωz
=
C8
C2

35
32d6

�
ẑ6 − 4ρ̂6+ − 4ρ̂6− + 18ρ̂4+ẑ2 + 18ρ̂4−ẑ2

− 36ρ̂4+ρ̂2− − 36ρ̂2+ρ̂4− + 72ρ̂2+ρ̂2−ẑ2 − 12ρ̂2+ẑ4 − 12ρ̂2−ẑ4
� (E.12)

∆ω± = ∓
C8
C2

35
16d6

ω+ω−
ω+ − ω−

�
4ẑ6 − ρ̂6± − 4ρ̂6∓ + 12ρ̂4±ẑ2 + 36ρ̂4∓ẑ2

− 12ρ̂4±ρ̂2∓ − 18ρ̂2±ρ̂4∓ − 18ρ̂2±ẑ4 − 36ρ̂2∓ẑ4 + 72ρ̂2+ρ̂2−ẑ2
� (E.13)

∆ω̌± = ∓
C8
C2

105
16d6

ω+ω−
ω+ − ω−

�
ẑ6 + ρ̂6± + 8ρ̂4±ρ̂2∓ + 6ρ̂4∓ρ̂2± − 2ρ̂4±ẑ2 + 6ρ̂4∓ẑ2 − 2ρ̂2±ẑ4 − 8ρ̂2∓ẑ4

�

(E.14)

∆ωc = −
C8
C2

105
16d6

ω+ω−
ω+ − ω−

�
ρ̂2+ − ρ̂

2
−

� �
6ẑ4 + ρ̂4+ + ρ̂4− − 8ρ̂2+ẑ2 − 8ρ̂2−ẑ2 + 3ρ̂2+ρ̂2−

�
(E.15)

E.2. Magnetostatic imperfections

B2

B⃗2 = B2

[(
z2 −

1
2ρ

2
)
e⃗z + (−zρ) e⃗ρ

]
(E.16)
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E.2. Magnetostatic imperfections

∆ωz

ωz
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4B0

ω+ + ω−
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�
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+ω+
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(E.17)
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−

(
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ẑ2 − ρ̂2−

ω+
ω+ − ω−

+ ρ̂2+
ω−

ω+ − ω−

]
(E.21)

B4

B⃗4 = B4

[(
z4 − 3z2ρ2 + 3

8ρ
4
)
e⃗z +

(
−2z3ρ + 3

2zρ
3
)
e⃗ρ

]
(E.22)

∆ωz

ωz
=

3B4
8B0

ω+ + ω−
ω+ω−

�
ω−

�
−ρ̂4− + ρ̂

2
−ẑ
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+ẑ

2 − 2ρ̂2+ρ̂2−
��

(E.23)

∆ω+
ω+
=

3B4
8B0

ω+ + ω−
ω+ − ω−

[
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F. Magnetic moment: impact on axial mode

This chapter reviews the model of describing the effect of the radial modes on the axial motion
in a nonuniform magnetic field via their average magnetic moment. We mentioned the model
in Section 4.1.3 in the context of axial frequency-shifts caused by magnetic imperfections. Here,
we will discuss one successful and very simple case, which has probably promoted the model
because it is so intuitive. However, we have to warn of its general limitations.
The key ingredient of the model is the averaged orbital magnetic moment of the ion in the

Penning trap. Starting from the energy Emag = −µ⃗ · B⃗ of a magnetic moment µ⃗ in a magnetic
field B⃗, the average magnetic energy of the orbiting ion in the trap is defined as

Emag = −
〈
µ⃗
〉
0
· B⃗ = −

〈
µz

〉
0
· B(z) . (F.1)

The radial components (2.39a) and (2.39b) of the orbital magnetic moment generally do not
possess a constant component; the axial component (2.39c) does and it is given by Equation (2.40).
Note that this time-averaging is not equal to selecting the constant component of the energy:

Emag ,
〈
Emag

〉
0
= −

〈
µ⃗ · B⃗

〉
0

. (F.2)

In the latter case, correlations between the magnetic moment of the ion and the magnetic field
the ion sees along its trajectory would be taken into account. Of course, the magnetic field in
Equation (F.1) has to be evaluated the ion’s position, whose time-dependence has been neglected
so far. Instead, the ion’s coordinates have been treated as general coordinates, even though the
solutions (2.30)–(2.32) for trajectory in the ideal Penning trap have been used to calculate the
average magnetic moment.

Part of the reason for treating the magnetic field independent of the ion’s motion is probably
related to the fact that the magnetic moment of the modified cyclotron-motion is an adiabatic
invariant [23, 112]. Moreover, ignoring the implicit time-dependence of the magnetic field
due to the ion’s motion is fine for the ideal Penning trap with its constant magnetic field.
Additionally, the radial components of the magnetic moment do not matter because there is
no radial magnetic field. However, it remains to be seen whether the additional forces by
higher-order terms in the magnetic field are reproduced correctly.
Because the ion seeks to minimize its total energy, the magnetic energy (F.1) leads to an

additional force

F (z)µ = −
∂Emag

∂z
= ⟨µz⟩0

∂B(z)

∂z
(F.3)

in the axial direction. With the additional acceleration z̈µ = F (z)µ /m, the axial equation of
motion (2.16) becomes

z̈ + ω2
zz −

⟨µz⟩0
m

∂B(z)

∂z
= 0 . (F.4)
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F. Magnetic moment: impact on axial mode

For a magnetic field with cylindrical symmetry, the axial magnetic field is given by a sum over
B(z)
η from Equation (2.78). Assuming that each of these terms is small, they are treated separately

to first order in perturbation theory. There is no contribution for η = 0 because this component
of the magnet field has no spatial dependence and hence the derivative vanishes. Thus, we
did not miss out on an effect in the ideal Penning trap. In fact, the model of describing the
impact of the radial modes on the axial mode via their magnetic moment should somehow
follow from the force (2.13) in the equations of motion, since we deal with a pointlike particle
without internal degrees of freedom.

Before attempting a general comparison of Equation (F.4) with the exact axial equation of
motion (4.61), we pick the famous example of η = 2, which leads to the equation of motion

z̈ + ω2
zz −

⟨µz⟩0
m

2B2z = 0 (F.5)

for a harmonic oscillator. See Table 2.1 or Equation (E.16) for the explicit form of B(z)
2 . With the

average magnetic moment (2.40) and the free-space cyclotron-frequency (2.18), the frequency-
changing term becomes

−
⟨µz⟩0
m

2B2 = B2
q

m

�
ω+ρ̂

2
+ + ω−ρ̂

2
−

�
=

B2
B0

ωc
�
ω+ρ̂

2
+ + ω−ρ̂

2
−

�
. (F.6)

Because the oscillator is still harmonic, the new frequency is simply read off as

ωz

√
1 + B2

B0

ωc

ω2
z

�
ω+ρ̂

2
+ + ω−ρ̂

2
−

�
≈ ωz

[
1 + B2

2B0

ωc

ω2
z

�
ω+ρ̂

2
+ + ω−ρ̂

2
−

�
+ . . .

]
, (F.7)

where we have approximated the square root as usual for a small change of ωz . After applying
Equation (2.26) in order express the axial frequency squared as a product of the radial frequencies,
the axial frequency-shift is given by

∆ωz

ωz
=

B2
4B0

ω+ + ω−
ω+ω−

�
ω+ρ̂

2
+ + ω−ρ̂

2
−

�
, (F.8)

and the result agrees with Equation (E.17), which was derived via first-order perturbation
theory.
There is a second case rather basic case. For η = 1, the additional term in the axial equation

of motion (F.4) is constant, see Table 2.1. This term −B1 ⟨µz⟩0 /m shifts the axial equilibrium
position by B1 ⟨µz⟩0 /(mω2

z ) without giving rise to an axial frequency-shift of first order, see
Section 3.2. However, the radial frequencies will change because the ion now orbits in a
different magnetic field, the magnetic gradient B1 ensuring that the magnetic field is no longer
homogeneous. Because the change of the magnetic field seen by the ion is proportional to
B1 like the shift of the equilibrium position, this frequency-shift is of second order overall.
Therefore, we have no exact perturbative result here1 to compare with the estimate via the
magnetic moment [167].

1Elsewhere, there is Reference [123].
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In the other cases, the axial equation of motion (F.4) describes an anharmonic oscillator, and

the axial frequency-shift will most likely have to be determined with perturbation theory again.

Rather than doing so, we will examine whether agreement with the first-order result (4.75) is to

be expected.

With the free-space cyclotron-frequency (2.18) and the radial magnetic field (2.80), the axial

equation of motion (4.61) is indeed written as

z̈ + ω2
zz +

2μz
m

B
(ρ)
η

ρ
= 0 (F.9)

in terms2 of the magnetic moment (2.38). However, the magnetic moment μz is still a time-

dependent quantity here. No averaging has taken place.

A comparison of the axial equations of motion (F.4) and (F.9) requires a link between the

radial magnetic field and the derivative of the axial magnetic field with respect to the axial

coordinate. Such a link is for instance established via the divergence [176]

�∇ · �B = 1

ρ

∂

∂ρ

(
ρB(ρ)) + 1

ρ

B(ϕ)

∂ϕ
+
∂B(z)

∂z
(F.10)

of the vector field

�B = B(ρ)
�eρ + B

(ϕ)
�eϕ + B

(z)
�ez (F.11)

in cylindrical coordinates. The �ei are the unit vectors in this coordinate system, and the B(i)
describe the components of the vector field.

The divergence of a magnetic field vanishes (�∇ · �B = 0), because there are no sources. Since

we deal with a magnetic field of cylindrical symmetry, B(ϕ) = 0. Overall we have

∂B(z)

∂z
= − 1

ρ

∂

∂ρ

(
ρB(ρ)) = −∂B(ρ)

∂ρ
− B(ρ)

ρ
(F.12)

for the relation between the axial and the radial component. This relation does not transfer

Equation (F.4) into (F.9), even when the difference between the average magnetic moment 〈μz〉0
and the time-dependent magnetic moment μz is ignored. Apart from a factor of 2, there is the

derivative of the radial magnetic field (2.80). If it were equal to the second term on the right-hand

side of Equation (F.12), most of the discrepancy would be resolved. However, comparing

∂B
(ρ)
η

∂ρ
= Bη

⌊
η+1
2

⌋∑
k=1

(2k − 1)ãη(k) zη−2k+1 ρ2k−2 (F.13)

and

B
(ρ)
η

ρ
= Bη

⌊
η+1
2

⌋∑
k=1

ãη(k) zη−2k+1 ρ2k−2 (F.14)

2There is no such equivalent for the radial equations of motion (4.59) because B
(z)
η /z � B

(y)
η /y and B

(z)
η /z � B

(x )
η /x ,

compare Equations (2.78) and (4.60). Thus, there is no common magnetic field to factor out that would leave

behind the product of velocities and coordinates of magnetic moment (2.38).
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F. Magnetic moment: impact on axial mode

shows that only the terms for k = 1 are equal. These are the terms without a dependence on ρ
in Equations (F.13) and (F.14), the exponent of ρ being 0. Given the polynomial form of the
radial magnetic field (2.80), we should have guessed so because the two operations

∂

∂ρ
ρn = nρn−1 and ρn

ρ
= ρn−1 (F.15)

are equal only for n = 1, if ρ is not assigned the special value of 0 afterwards.3 Consequently,
the relations we had hoped for to reconcile the axial equations of motion (F.4) and (F.9) hold
generally only for vanishing radial displacement:

∂B
(ρ)
η

∂ρ

������ρ=0
=

B
(ρ)
η

ρ

������ρ=0
and

∂B(z)
η

∂z

������ρ=0
= −2

B
(ρ)
η

ρ

������ρ=0
. (F.16)

The cases of η = 1 and η = 2 are an exception4 because B(ρ)
η ∝ ρ, see Table 2.1.

B
(ρ)
η /ρ not depending on ρ helps average the axial component (2.39c) of the magnetic moment

in Equation (F.9) to ⟨µz⟩0, despite the presence of oscillatory terms in the magnetic field due
to the ion’s motion. The oscillatory component5 of the magnetic moment µz at the difference
frequency ω+ − ω− is irrelevant then, because there is no component it could mix with in order
to produce naturally-resonant terms at the frequencies of the radial modes. Unfortunately,
demanding ρ = 0 in the other cases leaves us with a conceptual problem: there is no magnetic
moment of the radial modes if their amplitudes are zero. Concerning the lack of an axial
first-order frequency-shift (4.78) for vanishing radial displacement, we noted that there is
no cylindrically-symmetric radial magnetic field on the z-axial for reasons of that symmetry.
Equation (F.4) would probably get the frequency-shift by the term without dependence on ρ
right. It should be the same as the frequency-shift caused by the term term without dependence
on ρ in Equation (F.9). However, all other result obtained from the model of magnetic moment
via Equation (F.4) would be dubious.6
Unless for the special cases in which the model is known to work for a good reason, it is

more prudent to rely on the actual axial equation of motion (4.61) or (F.9), just like Section 4.1.3
does. Thanks to Equation (2.80), the radial magnetic field is ready for use.7

3The division by ρ requires the particular value of 0 not be assigned beforehand. Of course, the derivative must
always use ρ as a general variable.

4There is also the trivial case of η = 0 with constant B(z)0 = B0 and vanishing B(ρ)0 = 0.
5We ignore the difference from the perturbed frequencies ω̃± here because we do not actually plan to implement
perturbation theory here. The statement holds with the replacement ω± → ω̃±.

6The approach of neglecting all other terms might be justifiable if the axial amplitude is much larger than the
amplitudes of the radial modes because the term with the smallest exponent of ρ has the largest exponent of z.

7I believe that the mathematical trouble of the standard representation (2.82) with an associated Legendre polyno-
mial is largely responsible for the fact that the radial component of the magnetic field is almost never written
down explicitly, not even for the first few η. The model of Equation (F.4) with the magnetic moment is so
appealing because it uses the axial magnetic field, which has the same spatial dependence as the electrostatic
potential, compare Equations (2.73) and (2.78). To be fair, part of the model originates from the semiclassical
description of an intrinsic magnetic moment carried by the stored particle, for which the axial magnetic field
provides the quantization axis for the projection.
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