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In dieser Arbeit wird die Entwicklung der grofiskaligen Struktur im Universum ab einer
Rotverschiebung von z ~ 1.1 bis heute untersucht. Als Datensatz dienen ~ 4000 Galax-
ien aus vier Feldern des Calar Alto Deep Imaging Surveys (CADIS). Diese Galaxien haben
Helligkeiten von I < 23™% und Rotverschiebungsfehler von o, < 0.02. Zur Bestimmung der
Amplitude der dreidimensionalen Korrelationsfunktion £(r) dient die Deprojektion zweidi-
mensionaler Korrelationsfunktionen. Am Las Campanas Redshift Survey (LCRS) wird die
VerlaBllichkeit der Deprojektion der Winkel- bzw. projizierten Korrelationsfunktion getestet.
Beide, Winkel- sowie projizierte Korrelationsfunktion, werden in verschiedenen Rotverschieb-
ungsintervallen berechnet und mit dem lokalen MeBwert aus dem LCRS verglichen. Um den
direkten Vergleich zwischen CADIS und LCRS zu ermoglichen, mufy der Einflufl der Rotver-
schiebungsungenauigkeit auf die projizierte Korrelationsfunktion berticksichtigt werden. Fir
die Entwicklung der Struktur wird der Ansatz &(reom,z) o (1 4+ z)? verwendet. Fiir die
Gesamtheit aller Galaxien ergibt sich ein Entwicklungsparameter g ~ —1.9, entsprechend der
Vorhersage durch lineare Storungstheorie. Eine formal gefundene Abhangigkeit vom kosmol-
ogischen Modell ist wohl auf die ungeniigende Zahl der beobachteten Felder zuriickzufiihren.
Das gemessene Anwachsen der Struktur ist jedoch eindeutig vom Hubbletyp abhéingig. Fir
frihe Galaxientypen ist die Struktur bereits bei z = 1 deutlich starker ausgepragt, so dafl
schon ein Anwachsen mit g ~ —1 ausreicht, um die heutige Amplitude der Korrelationsfunk-
tion zu erreichen.

The large scale structure of the universe since z ~ 1

In this thesis, the evolution of galaxy clustering from a redshift of z ~ 1 to the present epoch
is investigated. The data used for this analysis were ~ 4000 galaxies in four fields of the Calar
Alto Deep Imaging Survey (CADIS). The galaxies have luminosities brighter than I < 23?9
and redshifts with an error of o, = 0.017. The amplitude of the three-dimensional correlation
function is estimated by deprojecting two-dimensional correlation functions. The reliability
of the deprojection methods of the angular and projected correlation function is tested on
the Las Campanas Redshift Survey (LCRS). Both angular and projected correlation function
are calculated for different redshift bins, as local measurement the LCRS data is used. To
facilitate the direct comparison of the two surveys, the influence of the redshift errors on the
projected correlation function have to be taken into account. For evolution of the clustering
strength the ansatz &(7com,2) o (1 4+ 2)? is used. For the galaxies as a whole the evolution
parameter turns out to be ¢ = —1.9, according to the prediction of linear theory. A formal
dependency on the cosmology is presumably due to the small number of fields observed.
However, the measured clustering growth clearly depends on Hubble type. At z ~ 1 early
type galaxies are already much stronger clustered, an increase with ¢ ~ —1 is sufficient to
explain the present day amplitude of the correlation function.
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Chapter 1

Introduction

The universe is structured on all scales, from the molecular and crystal level to large clusters
and superclusters of galaxies. Luminous matter is condensed into stars and planets, the stars
are constituents of galaxies, which appear in a large variety of different types. Local galaxies
are highly clustered. They are organised into a network of sheets and filaments which sur-
round large underdense regions, usually referred to as voids. At the present epoch the universe
seems to satisfy the Cosmological Principle (homogeneity and isotropy of the universe) only
on the very largest scales.

Even before it became clear that the so-called nebulae were extragalactic objects, it was
noticed by Hubble (1934) that their number found in different fields on the sky varies in
a non-Poissonian way — they are obviously not homogeneously distributed. Shapley, who
believed in the Galactic origin of those nebulae, thought of the non-uniformity of their distri-
bution as a remnant of the formation history of the Milky Way (Shapley, 1933).

First systematic analyses of the distribution of galaxies and clusters did not occur before
galaxy catalogues with large numbers of objects were drawn up — the first analyses of the
clustering properties of galaxies were based on the Shane-Wirtanen, the Zwicky catalogue,
and the catalogue of Abell clusters, and the results are outlined in a number of fundamental
papers by Peebles (and co-workers) (Peebles, 1973; Hauser & Peebles, 1973; Peebles & Hauser,
1974; Peebles, 1974; Peebles & Groth, 1975; Peebles, 1975).

Only a few years later the CfA survey was completed (Davis et al., 1982; Davis & Peebles,
1983), and the analysis brought a distribution to light, which was amazingly inhomogeneous
— filaments, sheets, walls and large voids emerged, and it became clear that the local universe
is in fact far from homogeneous. Figure (1.1) shows a map of galaxies with B < 15.5™%9
in six contiguous 6° slices in the northern galactic cap (see Geller & Huchra, 1989). The
structure running all the way across between 8" and 17" in right ascension and ¢z = 5000 and
10000 km s~ ! is called the ”Great Wall”, perhaps the largest single structure yet detected in
any redshift survey.

How did the structure we see today form and develop? How could the universe evolve from
its smooth, homogeneous state immediately after the big bang' into the highly structured

LObservations of the cosmic microwave background show very little fluctuations.
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Figure 1.1: This initial map was really surprising, showing that the distribution of galaxies
in space was anything but random, with galaxies actually appearing to be distributed on
surfaces, almost bubble like, surrounding large empty regions, or "voids”. The elongated
structures along the line of sight are called Fingers of God (picture from Geller & Huchra
(1989)).

world we live in today? Still this question is one of the most challenging ones in the field
of cosmology. The opportunities for solving them them have emerged only recently with the
advent of deep extragalactic surveys, which provide sufficiently accurate redshift estimates
for a large numbers of galaxies.

Until now, there have been some attempts to explore this subject by observation, but only few
possibilities to study the clustering of galaxies at high redshifts in detail. Not only the shallow
depths of most surveys, but also missing redshift information or too small number statistics
have limited the possibilities of analysing the data with regard to structure formation.

In general, two different types of surveys have to be distinguished — large angle surveys, which
are limited to relatively bright apparent magnitudes, and pencil-beam surveys with small,
but very deep fields. Furthermore one can make a distinction between surveys which contain



only a small number of galaxies, but with very accurate redshift information (deduced from
spectroscopy), and surveys which provide huge catalogues of galaxies, but without or with
extremely insecure redshift information. The Calar Alto Deep Imaging Survey (CADIS),
see Meisenheimer et al. (in preparation), is a deep pencil-beam survey, the output of which
at present is a catalogue of ~ 6000 classified objects of up to I < 23™*. Around 4000
of these are galaxies with relatively secure redshift information inferred by means of multi-
color methods. This unique data base provides the possibility to investigate the evolution of
galaxy clustering from a redshift of z = 1.1 to the present epoch. This is the aim of this thesis.

In this context the question how to quantify structure arises — the eye is an expert in find-
ing structures, but if we want to describe the properties of a non-random distribution, we
have to use a mathematical expression, which includes some kind of measure for the strength
of the deviation from random. We also need this quantity to facilitate a comparison be-
tween the clustering properties at different redshifts, and the investigation of its development
into what we see today. Usually, structure is described in terms of n-point correlation func-
tions, the simplest of which is the two-point correlation function. In practice, computing the
three-dimensional real-space two-point correlation function requires very accurate distances.
Peculiar velocities as well as redshift errors distort the redshift-space relation, and, by making
the distribution more Poisson-like, increase the noise. Different methods have been developed
to overcome these problems. If no redshifts are available at all, it is possible to obtain informa-
tion about the three dimensional distribution of galaxies by deprojecting the two-dimensional
angular correlation function. If peculiar velocities are not negligible, or the data suffer from
large redshift errors, one can use the deprojection of the projected correlation function to
deduce the clustering strength of the three-dimensional distribution. Both methods are em-
ployed in this work.

Understanding the evolution of the large-scale structure of the universe is helpful for learning
something about the history and nature of the universe, and the formation and evolution of
galaxies. According to the standard theoretical paradigm, the structures observed today were
formed by the gravitational amplification of small perturbations in an initially Gaussian dark
matter density field. Those perturbations are believed to be remnants of the quantum fluctu-
ations in the vacuum, and have undergone a tremendous growth during the epoch of inflation.

On the large scale dark matter provides the dominant mass in galaxies and systems of galax-
ies. The mass-to-luminosity ratios of galaxies and clusters of galaxies and the application of
different variants of the Cosmic Virial Theorem on larger scales indicate that allmost all mass
in the universe is in some dark form. Primordial nucleosynthesis of the light elements pro-
vides a firm upper limit to the value of the baryonic density parameter of Qp < 3.6-1072h~2
(Longair, 1998). Thus, even adopting a value of h = 0.5, the upper limit to the baryonic
mass density would barely be sufficient to account for values of the overall density parameter
of the order Qg ~ 0.25 — 0.6, the values favoured by recent observations of the fluctuations of
the microwave background (Hu et al., 2001; Griffiths et al., 2001).

One can think of the dark matter in different forms, but regardless of what sort of strange,
yet unknown particles make up the contribution of non-baryonic dark matter, basically two
different scenarios for the evolution of the large-scale structure of the universe are possible.
In the hot dark matter (HDM) scenario (where "hot” means that the particles had relativistic
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velocities at the time of decoupeling) the largest scales form first, and smaller structures such
as galaxies and their contents form by fragmentation and instabilities (”top-down” model).
The HDM model produces too much structure on large scales, and can not account for the
observed two-point correlation function of the galaxies in the local universe. Another problem
with the HDM model is that galaxies can only form once the large-scale structures have col-
lapsed. Therefore it is inevitable that galaxies form rather late in the universe. This also is in
contradiction to many observations of the early universe, for example the existance of quasars
at z > 4, which can only be understood if structure formation was already well advanced at
z ~ 5 (Turner, 1991), or the extremely massive, red elliptical galaxies which are observed in
the centers of clusters of galaxies must have formed at redshifts z > 6 (Bruzual A. & Charlot,
1993).

The cold dark matter (CDM) scenario is much more efficient in creating power on small scales.
The cold dark matter particles decoupled early in the universe, after they had already become
non-relativistic. Small-scale densities were the first to collapse, and the resulting objects sub-
sequently merged under the influence of gravity to form larger structures such as clusters and
superclusters. One of the most attractive features of this "bottom-up” scenario is that the
observed form of the galaxy correlation function can be reproduced (Davis et al., 1985).

In this hierarchical formation picture the clustering of the dark matter, as measured by the
amplitude of the matter correlation function, increases monotonically with time (Hamilton
et al., 1991; Peacock & Dodds, 1994; Jain et al., 1995; Jenkins et al., 1998). The only observ-
able, however, is the clustering of galaxies, which possibly trace the underlying density field.

The evolution of the distribution of the dark matter in different world models can be inves-
tigated in large numerical N-body simulations. The development of large, powerful super-
computers has made simulations with ~ 17 - 10° particles feasible (Pearce et al., 1999), in
which the evolution of the dark matter density perturbations can be tracked from a redshift
of z = 50 to the present epoch. These numerical computer experiments confirm what is
predicted analytically by linear theory: In universes with low matter density structure forms
early and evolves little between a redshift of z = 1 and today, whereas in high-density models
structure forms much later, and a rapid growth of the clustering strength is observed between
z =1 and the present epoch.

The evolution of galaxy clustering in the different scenarios can be evaluated with semi-
analytic models of galaxy evolution, which take simplified models of starformation, cooling,
and feedback into account. The method of combining large N-body simulations with semi-
analytic models was introduced by Kauffmann et al. (1999b). The evolution of galaxy cluster-
ing to z = 0 was investigated in two following papers (Kauffmann et al. (1999a), and Diaferio
et al. (1999)).

Their results show that the measured clustering growth depends on the sample selection, and
the clustering evolution of the dark matter density field can not directly be inferred from the
clustering evolution of galaxies. The explanation for this fact can be given in the context
of biased galazy formation. One can imagine many reasons why galaxies should not trace
the underlying density field, and the generic term for this phenomenon is biasing, meaning
the preferential formation of galaxies in certain regions of space rather than others. Part of



the motivation behind the introduction of biasing was to improve the agreement between the
predictions of the CDM scenario and the observed distribution of galaxies.

In this picture galaxies formed within dense haloes of dark matter, where gas was able to
reach high enough overdensities to cool, condense and form stars. If we require the density
perturbation to exceed some critical value which allows structures to form, galaxy formation
would be biased towards the highest density perturbations over the mean background density.
Also, the astrophysics which play a pivotal role in the process of galaxy formation and evo-
lution might also change the relation of galaxy clustering and the clustering of the dark matter.

This thesis is structured as follows: The Calar Alto Deep Imaging Survey and the data
used for the analysis are described in Chapter 2. An introduction into the fundamental
principles of three- and two-dimensional correlation functions and the deprojection methods
which used of in this work is given in Chapter 3. In Chapter 4 we test the reliability of the
deprojection methods, using the Las Campanas Redshift Survey (Shectman et al., 1996). It is
shown that the projected correlation function also suffers from the influence of redshift errors,
although it was invented to overcome redshift-space distortions. Therefore we introduce some
improvements to the procedure, which facilitate a direct comparison of the CADIS data with
the Las Campanas Redshift Survey (which we use as a ”local sample”). In Chapter 5 we
investigate the evolution of the galaxy clustering from a redshift of z ~ 1.1 to today, using
the methods introduced in the previous Chapters. In Chapter 6 the results are summarized
and discussed. Further improvements are outlined and an outlook is given in Chapter 7.
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Chapter 2

CADIS — the Calar Alto Deep
Imaging Survey

The Calar Alto Deep Imaging Survey has been established in 1996 as the extragalactic key
project of the Max-Planck Institut fiir Astronomie. It combines a very deep emission line sur-
vey carried out with an imaging Fabry-Perot interferometer with a deep multicolour survey
using three broad-band optical to NIR filters and up to thirteen medium-band filters when
fully completed (see Figure (2.1)). The combination of different observing strategies facili-
tates not only the detection of emission line objects but also the derivation of photometric
spectra of all objects in the fields without performing time consuming slit spectroscopy.

CADIS provides the data base to address different aspects of extragalactic and even Galactic
astronomy:

e The search for primeval galaxies at high redshifts
e Evolution of the luminosity function of field galaxies at intermediate redshifts

e Luminosity function of emission line galaxies at intermediate redshifts, and the deduc-
tion of the starformation rate

e Number counts and the luminosity function of quasars at 0 < z < 6
e Number counts of EROs (Extremly Red Objects)

e Search for very late-type M dwarfs and brown dwarfs

e Galactic structure and the stellar luminosity function

e Clustering properties of field galaxies with strong emission lines between z ~ 0.24 and
z~1.2

e Evolution of the clustering of field galaxies between 0.2 < z < 1.1.

The last topic is subject of this thesis.

Details of the survey and its calibration will be given in Meisenheimer et al. (in preparation).
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Figure 2.1: Transmission curves of the CADIS filter set. The Fabry-Perot settings, the K’
filter at 2.2u, and the J filter at 1.1y are not indicated in this plot.

The seven CADIS fields measure ~ 1/30 O° each and are located at high Galactic latitude to
avoid dust absorption and reddening. In all fields the total flux on the IRAS 100 pm maps is
less than 2MJy/sr which corresponds to Ep_y < 0.07. Therefore we do not have to apply
any color corrections. As a second selection criterium the the fields should not contain any
star brighter than ~ 16™% in the CADIS R band. In fact the brightest star in the four fields
under consideration in this thesis has an R magnitude of 15.42™*9. Furthermore, the fields
are chosen such that there should be at least one field with an altitude of at least 45° above
the horizon of Calar Alto being observable each time throughout the year. Among the CADIS
fields three equatorial fields allow follow-up observations with the VLT.

All observations were performed on Calar Alto, Spain, in the optical wavelength region with
the focal reducers CAFOS (Calar Alto Faint Object Spectrograph) at the 2.2 m telescope and
MOSCA (Multi Object Spectrograph for Calar Alto) at the 3.5 m telescope. For the NIR
observations the Omega Prime camera was used.

In each filter, a set of 5 to 15 individual exposures was taken. The images of one set were then
bias subtracted, flatfielded and cosmic corrected, and then coadded to one deep sumframe.
This basic data reduction steps were done with the MIDAS software package in combination
with the data reduction and photometry package MPTAPHOT (by Meisenheimer & Réser).

2.1 Object detection

Depending on their spectrum objects are detected in different filters with different signal-to-
noise ratio. Therefore, object search is done on the sumframe of each filter using the source
extractor software SExtractor (Bertin & Arnouts, 1996). The filter-specific object lists are
then merged into a master list containing all objects exceeding a minimum S/N ratio on
any of the bands. For merging, all objects are considered identical which fall into a common
error circle of 1” radius, while the typical seeing is 1”5. The positions of all detections in the
different color bands are then averaged into a final position.
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Photometry is done using the program Fwvaluate, which has been developed by Meisenheimer
& Roser (see Meisenheimer & Roser (1986) and Roser & Meisenheimer (1991). Variations in
seeing between individual exposures are taken into account, in order to get accurate colors.
An optimum signal-to-noise ratio is achieved by integrating the photons over an aperture with
a Gaussian weight distribution. In each image the aperture is located at the same position on
the sky and its size and weight distribution is adapted to the seeing of the frame. Every image
gets a weight aperture that simulates a Gaussian smoothing to a common seeing before the
photon counting, in order to make sure that always the same fraction of an objects intrinsic
light distribution is probed. The fluxes of extended sources have to be corrected for aperture
losses. These corrections, which are dependent on the morphology of the galaxy, were derived
from photometry on simulated images where the true magnitudes are known. Because the
photometry is performed on individual frames rather than sumframes, realistic estimates of
the photometric errors can be derived straightforwardly.

The measured counts are translated into physical fluxes outside the terrestrial atmosphere
by using a set of ”tertiary” spectrophotometric standard stars which were established in the
CADIS fields, and which are calibrated with secondary standard stars (Oke, 1990; Walsh,
1995) in photometric nights.

From the physical fluxes magnitudes and color indices (an object’s brightness ratio in any two
filters, usually given in units of magnitudes) can be calculated. There are several definitions
for the zeropoint of the magnitude scale, an astronomical definition handed down from history
and an increasing number of physical definitions. We use a special magnitude scale, the CD
magnitude, defined as

CDmag = —2.5log Fpne + 20701, (2.1)

where Fjo is the flux in photons m~2s 'nm~!. The zero point is chosen such that at 550 nm

an object (observed through a quite narrow filter) will have the same magnitude in all distinct
magnitude systems which are commonly used.

The corresponding color indices are then defined by

thot,l

myp —Mmo = —2.5 IOg (22)

phot,2

2.2 Classification of the objects

The CADIS data base essentially consists of two different subsets. One is a sample of galaxies
with strong emission lines, which are detected on deep Fabry-Perot exposures. The other
subset is a sample of field galaxies, which have been detected on the broad- and narrow filter
frames, in the following multicolor galazies. Since in this work only the multicolor galaxies
are investigated, we will restrict ourselves to the discussion of the multicolor classification
scheme.
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2.2.1 Multicolor classification

With a typical seeing of 1”5 a morphological star-galaxy separation starts failing at R 2 21
where already many galaxies appear compact. Quasars have point-like appearance as well as
stars, and thus can not be distinguished. Therefore a classification scheme was developed,
which is based on template spectral energy distributions (SEDs) (Wolf et al., 2001¢,b). The
classification algorithm basically compares the observed colors of each object with a color
library of known objects. This color library is assembled from observed spectra by synthetic

photometry performed on an accurate representation of the instrumental characteristics used
by CADIS.

The stellar library is taken from Pickles (1998). The QSO spectral library is based on high
signal-to-noise template spectra (Francis et al., 1991), but also includes different continuum
slopes and line widths; the final QSO spectral library contains templates with redshifts up to
z < 6. The spectral library for galaxies is derived from the mean averaged spectra of Kinney
et al. (1996). From these, a grid of redshifted spectra was formed covering redshifts from
z =0 to z =2 in steps of dz = 0.01 and 100 different intrinsic SEDs, from old populations
to starbursts (SED = 1 corresponds to an EQ galaxy, whereas SED = 100 is a starburst
galaxy). Our final library of color indices (colors are obtained from synthetic photometry
performed on our CADIS filterset) contains entries for 131 star-, 45150 QSO-, and 20100
galaxy templates.

Using the minimum variance estimator (for details see Wolf et al. (2001c)), each object is
assigned a type (star — QSO — galaxy), a redshift (if it is not classified as star), and an SED.
The formal errors in this process depend on magnitude and type of the object. For the faintest
galaxies (I < 22) they are of the order of o, = 0.017, and ogpp = 2, respectively.

Note that we do not apply any morphological star/galaxy separation or use other criteria.
The classification is purely spectrophotometric.

The quality of the classification and redshift estimation was checked by spectroscopy of a
subsample of 162 arbitrarily chosen objects, which are representative for the object catalogue
as a whole. This subsample can further be divided into 103 bright (17 < R < 22) and 59
faint objects (R > 22, including 11 objects with R > 24). The bright sample contains only
two misclassifications, which translates into ~ 98% correct classifications. The mistakes are
Seyfert-1 galaxies (i.e. quasars) found by chance among the compact galaxies. The faint
sample contains ~ 25% misclassifications and 10% unclassified objects, with most of them
being galaxies. The others are one L star and one Seyfert-1 galaxy. This means that until
R < 22 the classification procedure works almost ideally for all classes, but at fainter levels
the abundant galaxies start contaminating the star class and the quasar class. More details
about the performance and reliability of the classification are given in Wolf et al. (2001b).

The quality of the multicolor redshift estimation is shown in Figure (2.2). For the 162 objects,
multicolor redshift is plotted against the spectroscopic redshift, the difference between both
(Az = Zmulticolor — Zspectroscopic) against the spectroscopic redshift, and Az against their R
magnitudes. Half of the galaxies are estimated within an error margin of £0.017, thus we
conclude that the redshift determination works properly until R < 24.
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Figure 2.2: The quality of the multicolor redshift estimation: left panel: multicolor redshift
versus spectroscopic redshift with the highest redshift galaxies residing at z =~ 1.2. center
panel: the error of the estimate (Az = Zmulticolor — Zspectroscopic) versus redshift; right panel:
Az versus the R magnitude.

We also compared the true redshift errors Az with the errors estimated by the multicolor
technique itself on the basis of photometric errors and the galaxy distribution in the color
space. The ratio Az/o, evaluates the error consistency of our redshift estimate. If the esti-
mated errors were representative of true errors, this ratio should have a Gaussian distribution
with an rms of 1.0. In fact, it turns out that for 30% of the galaxies this inconsistency is
larger than 30, while the remaining ~ 70% show a more or less Gaussian distribution with
an rms scatter of 1.2 (see Figure (2.3)). This result implies that for one third of the spectro-
scopic galaxy sample, the redshift estimation process considers itself too accurate, supposedly
a consequence of cosmic variance that changes the galaxy SF Ds and their estimated redshifts
while not changing the photometric errors.

1 ' ; ; T T - ; T ;
20 - 20 ~
z
10 -~ 10+ ~
0 ‘!_‘ v—‘_l'l—J—L ; r—rJI 0 _l i m; [‘—1'
-0.1 o 0.1 -10 0 10
Az Az/o,

Figure 2.3: Most galaxy redshifts are estimated with a Az error variance of ~ 0.04, but
~ 10% of the galaxies receive completely wrong redshift assignments with Az > 0.1 (left).
For 70% of the galaxies the true error distribution matches up with the one expected from the
multicolor errors, but 30% of the objects have true errors larger than the estimated 3o-errors
(right), which are mostly starburst galaxies. The reason for the increased scatter in general
is, that the observed SFEDs are not perfectly matched by the library SEDs.
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Table 2.1: The coordinates of the four fields investigated in this thesis, and the number of
galaxies per field, I <23 and 0.2 < z < 1.07.

CADIS field ‘ a2000 (52000 N(I S 23,02 S z S 107)
1h| 1h47m3353  2°19'55" 898
9h | 9M13M475  46°14'20" 916
16h | 16"24™m32%3  55°44/32" 971
23h | 23M15™m4689  11°27'00" 841

2.3 The data under consideration in this work

Four CADIS fields have been fully analysed so far (for coordinates see Table (2.1)). Although
the fields are rectangular, only objects within a circle of 400" radius around the field center
are included in the catalogue, to avoid spurious effects from the field edges, where object
detection and classification becomes increasingly difficult due to the influence of the instru-
mental properties (like distortion of the optics, decreasing illumination of the field).

In the selected area we identified 4540 galaxies with I < 23. Out of them 3626 are located in
the redshift range 0.2 < z < 1.07, where we have analysed their clustering properties. The
number of galaxies per field is given in Table (2.1)).
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Figure 2.4: Redshift distribution galaxies with I < 23 in the four CADIS fields. The
”smoothed” redshift distribution can be described by a Gaussian. The dotted lines indicate
the redshift range, in which the clustering properties of the galaxies are analysed.
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The redshift distribution (see Figure (2.4)) has a maximum at z ~ 0.6. The large scatter
from bin to bin, which is discernably more than what is expected from a Poisson statistics,
reflects the large scale structure of the galaxies. With four fields, the accumulation of galaxies
at certain redshifts does not cancel out completely.

From the classification algorithm, the redshift for all galaxies in the sample is known with an
accuracy of o, = +0.017. For the first time a sample this deep, with large number statistics
and redshift information is available. However, the redshift accuracy is not sufficiently high
enough to calculate the three-dimensional two-point correlation function directly. Neverthe-
less, as we will demonstrate later, we can use the redshifts for our analysis. First of all it
enables us to divide the catalogue into distinct redshift bins and we can analyse the cluster-
ing of the galaxies in each of them up to z =~ 1.1, and secondly, we are independent of the
inversion of the angular correlation function: we can use the projected correlation function,
which makes use of redshifts, and is less sensitive to redshift errors than the three-dimensional
calculation.

We can further divide our sample into different subsamples and investigate the clustering
properties of galaxies with different Hubble types (since the classification scheme provides
the SEDs of the galaxies), or different absolute restframe B magnitudes. We take only
galaxies with redshifts 0.2 < z < 1.07 into account for this analysis. In this range the number
statistics is large enough, and the redshift estimation secure enough. Figure (2.5) shows the
redshift versus B magnitude for galaxies with redshifts 0.2 < z < 1.07.
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Figure 2.5: Redshift versus absolute magnitude for the 3626 galaxies with Ig15 < 23, in the
redshift range under consideration in this work, for Qy =1, Q) = 0.
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Chapter 3

The statistical description of
structure

We have seen in Chapter 1 that galaxies are obviously not randomly distributed (see for
example Figure (1.1)). In fact, much of the obvious clumping, the holes and the stringy
structures are real features of the three-dimensional distribution of galaxies. To take away
the arbitrariness in deciding whether any structure is real or not, and to quantify the strength
of the clustering, one has to find a formalim, that describes the deviation from a uniform
distribution. The simplest statistic commonly used to gain insight into the structure of point
processes is the two-point correlation function. It describes the excess probability of finding
a second galaxy at a distance r from any galaxy selected at random over the probability
expected in a uniform, random distribution of galaxy locations. Thus the number of galaxies
dN found in the volume element dV at distance r is given in the form:

dN(r) = No[l +&(r)]dV (3.1)

where N is a suitably-defined average background number density of galaxies. The correlation
function, £(r), can also be written in terms of the number of pairs of galaxies separated by
distance r in the form

ANpgir = NZ[1 + £(r)]dV; dV; . (3.2)

It turned out that in the correlation function of galaxies does not appear any preferred scale.
The natural description for a behaviour like this is the parametrisation with a power law, as
first proposed by Totsuji & Kihara (1969):

£(r) = (1> o (3.3)

To

The correlation length rq is only a ”fit parameter”, without any physical meaning. It can nev-
ertheless be understood as a measure for the clustering strength, and is useful for comparing
correlation functions with each other. One can also think of ry as the length, at which the
clumping gets really significant — the probability of finding a galaxy separated by the distance
r = rg from another galaxy is twice as large as it would be if the distribution of galaxies was
random, see equation (3.1). Still one has to keep in mind that there is no deeper meaning
hidden in the value of ry, and the parametrisation with a single power law is nothing but a

15
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useful description, expressing the fact that there are no preferred scales.

The two-point correlation function is the Fourier transform of the power spectrum, which is
often referred to in the literature. The derivation of this relation is given in Appendix A.

3.1 How to measure the two-point correlation function

The simplest way to measure the deviation from a Poisson distribution is the following: one
counts the number of pairs of real galaxies in a histogram of logarithmic distance bins ((DD)
in the following). This histogram is normalised to the total number of pairs, n(n—1)/2, where
n is the number of galaxies in the sample under consideration. An artificial catalogue has
to be created, with randomly distributed data points, that exhibit the same area on the sky
as the real data, and suffers from the same selection effects as the real data. Thus it serves
as a catalogue window, representing the geometrical properties of the survey. In this random
catalogue, we count the pairs of galaxies in the same way as in the real data, this histogram
(in the following (RR)) is normalised to the total number of artificial galaxies n,(n, — 1).
Thus the most obvious estimator for the correlation function (the excess probability of
finding pairs of galaxies at distance r over a random sample) is:

Eesti = —1. (3.4)

One can also use (RD) (the distances between real and random data) instead of (RR) (Davis
& Peebles, 1983). This very simple estimator has the defect that its uncertainty on large
scales is limited by the uncertainty in the mean density. This is not the case for the estimator
proposed by Hamilton (1993):

(DD)(RR)
1. 3.5
Nevertheless, use of the sample mean for the normalisation biases the estimate of the correla-
tion function by missing out variances on scales comparable to the scale of the sample (Landy
& Szalay, 1993). The statistic proposed by Landy & Szalay (1993) allows missing large-scale
variance to be restored:
(DD) —2(RD) + (RR)

{os = (RE) - (3.6)

Therefore we decided to use this one in all the following investigations.

3.2 Real space correlations and redshift errors

The previous section is a bit deceptive in giving the impression that one ”simply has to count
distances”. But exactly at this point the first difficulties appear: the coordinate system we
are forced to use for the calculation of the distances is not homogeneous. The coordinates
we are able to measure are the angular positions on the sky, a and §, and the redshift z
of each galaxy. The angular positions can be measured with extremely high accuracy, and
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without time-consuming and difficult observation techniques. In contrast, the redshift, from
which we have to infer the distance along the line of sight, can only be deduced with high
precision from spectroscopic observations. But even if redshifts are known with very small
errors, this third spatial coordinate can not be regarded equal to the two others: peculiar
velocities add to the general Hubble flow, and the relation between measured redshift and
distance is distorted. Structures tend to appear elongated along the line of sight. A typical
example are the so-called "Fingers of God” (see Figure (1.1)), where the random motion in
compact clusters lead to a spread in the real distances when displayed in three-dimensional
galaxy maps.

Since it is extremely time-consuming to measure redshifts, most large galaxy catalogues con-
sist only of the angular positions on the sky. If redshifts have been deduced by applying
spectro-photometric (multicolor) methods, they have large errors, which has essentially the
same effect on the estimation of the three-dimensional correlation function as have peculiar
velocities.

The conclusion is that in reality the real space two-point correlation function can only be
calculated directly, if redshift information is available with very high precision, and if pecu-
liar velocities are negligible. If only angular coordinates are available, or the redshifts have
huge errors, one has to deal with the two-dimensional distribution of the galaxies on the
sky, measure the angular correlation function, and try to derive the parameters of the three-
dimensional correlation function from the deprojection.

If the errors in the redshift measurement are not excessively large, but still too large to fa-
cilitate a direct computation, one can use the projected correlation function to derive the
correlation length rg and the slope 7. Although it makes use of the redshift, it much less
sensitive to redshift error, which we will demonstrate in chapter (4).

In the following we will describe the two different approaches to derive the three-dimensional
correlation function by deprojection — of the angular correlation function, or the projected
correlation function.

3.2.1 The angular correlation function

The angular correlation function w(f), in analogy to equation (3.2) defined as
dP = N%(1 4 w(#))dQ,dQs, , (3.7)

is related to the three dimensional correlation function £(r) by Limber’s equation (Limber,
1954).

Limber’s equation is true for z < 1, but for deep samples, which cover a large range of
redshifts, the expansion of the universe, curvature effects, and the possible evolution of the
clustering have to be included. The redshift-dependent version of Limber’s equation has been
derived by Groth & Peebles (1977), and Phillipps et al. (1978). The general distribution of
redshifts (dN/dz) has to be known or calculated from the selection function, which assembles
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all selection effects due to observation and data reduction. The three-dimensional correlation
function is conventionally parameterised as
(r/mo) "

¢(r, 2) 1+ 2)3%e
ro(2) = ro(0)(142)~ 3+ (3.9)

(ro in proper distance), where the parameter e takes some kind of evolution of the clustering
properties with redshift into account. The evolution parameter ¢ becomes unimportant, if
one investigates the angular correlation function only in small z-bins (presumably there is no
evolution within a small redshift interval).

(3.8)

It should be noted that the correlation length ry(z) is here the correlation length (in physical
units), that would be measured by a local observer at the epoch in question. Thus the cor-
relation length will evolve (as (1 + z)~!), even if the clustering pattern is fixed in comoving
space. In the case of a clustering pattern fixed in comoving coordinates, clustering does not
grow with time, and € = —1.3 for v = 1.7. When gravitationally bound units keep a fixed
physical size, the clustering growth is the result of the increasingly diluted galaxy background
(it is effectively the voids that are growing), and € = 0. For a standard CDM cosmology, the
mass clustering should grow in the linear regime with ¢ = 0.7.

Then from Limber’s equation
w() = A0, (3.10)
with
Ay =CBr{ , (3.11)
where C' is a numerical factor:

C = ﬁw : (3.12)

I'(v/2)
and
B— /000 dA(z)lvét;)r z)~(3+€) <%>2dz- { Ooo % dz] -2 | (3.13)

Here d4 is the angular diameter distance and g¢(z) is the differential comoving distance el-
ement multiplied by the scale factor. dN/z is the smoothed redshift distribution, see for
example Figure (2.4)).

For Q, =0
_ ¢ qoz+ (g — 1)(=1+ T+ 2g2)
da = A 21+ 2) (3.14)
g(z) = <Hi0> [(1 Jrz)Q\/m]_1 (3.15)

Thus from equation (3.11) the correlation length 7 of the three-dimensional distribution can
be calculated. On the other hand, if the correlation length at z = 0 is known, the evolution
of the clustering with redshift can be deduced, namely the evolutionary parameter e (see
equation (3.9)).
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3.2.2 The projected correlation function

If peculiar velocities are not negligible, or the available redshifts have large errors, one can use
the projected correlation function w(r,) to derive the parameters of the real space correlation
function (Davis & Peebles, 1983). The projected distance r, between galaxies ¢ and j (the
distance perpendicular to the line of sight) can be interpreted as

rp = [da(i) + da(j)] tan(6i;/2) (3.16)

where d 4 is the angular diameter distance (equation (3.14)) and 6;; is the apparent separation
between galaxy i and galaxy j.

dm c

dz Hy(1+ 2)%/1+2qp2

is the increment in physical distance. For small angles r? = rf) + 72, see Figure (3.1).

(3.17)

Galaxv 1

Figure 3.1: Schematic drawing of the geometry.

The projected correlation function is defined as

w(rp) = 2/ 7" + 72 1/2] drm

= 2/ E(r r2) V2 dr (3.18)
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The inverse is the Abel integral

£(r) = -+ /TOO W (rp) (2 — 12) " V2dr, . (3.19)

s
If &(r) = (r/ro)~7, then equation (3.18) yields
w(ry) = Crgr;_V (3.20)

with the factor C from equation (3.12). Thus computing w(r,) provides a measurement of
the parameters of the three-dimensional correlation function, namely rg and +.

The evolutionary parameter € is not a very intuitive description of the evolution of the clus-
tering strength. Instead of using €, we can calculate the amplitude of the three-dimensional
correlation function at a comoving separation of re,, = 1h~'Mpc, and introduce a more
descriptive parameter q:

E(Teom = 1R~ Mpe) = &(1 + 2)? (3.21)
S com = T80.com(1+2)7 . (3.22)

"o ,com

For a clustering pattern that is expanding with the universe (fixed in comoving coordinates),
the clustering strength is simply a function of (1 4+ 2), and ¢ = 0. Thus ¢ gives directly the
deviation of the evolution from the global Hubble flow. Of course it can be related to e: With
equation (3.9) we can write

¢(r = 1h "Mpe, z) = £(r = 1h~"Mpc, 0)(1 + z)~ G+ | (3.23)

for r in proper coordinates. For é(r = 1h~'Mpc) = r{,

1 = 1ge(L 4 2)70+0 (3.24)
For Teom (rg — g (14 2)7)
’rg,com = ’rg,O,com(l + Z)7(3+€)(1 + Z)7
= geom(1+2) T (3.25)

Comparison with equation (3.21) yields

g=-3—€e+7. (3.26)
So for the canonical slope v = 1.8, ¢ = 0 corresponds to e = —1.2, ¢ = —1.2 corresponds to
e =0, and ¢ = —2 to € = 0.8 (linear growth).
Method of estimation

Following Davis & Peebles (1983) one can calculate the projected correlation function from
+om

w(ry) = / E(rpom) drr . (3.27)
—om

Since the three-dimensional two-point correlation function has the form of a power law, it
converges rapidly to zero with increasing pair separation. Therefore the integration limits do
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not have to be oo, they only have to be large enough to include all correlated pairs. Since
the observable in the first place is the redshift z instead of the physical separation, we make
a coordinate transform (Le Fevre et al., 1996):

+0z c
w(Tp) :[§z E(Tp’ﬂ)Ho(l-l-Z)Zmdz’ (328)

for Qx = 0.

The way to estimate w(r,) in practice is to count the projected distances between pairs of
galaxies that are separated in redshift space by not more than dz, in appropriate projected
distance bins ((DD(rp))|a.<s.). We use the estimator by Landy & Szalay (1993), which we
will call Ceg4i(rp) in the following, thus we have to do the same in a suitably generated random
data set, and find the cross-counts between real and random data:
DD(r d, <06z — 2(RD(r d, <6z + RR(r d. <8
Cesti('rp) — < ( P)>| S0z ( ( p)>| S0z < ( P)>| S0z . (329)
(RR(rp))|d. <s2

To derive w(rp), Cesti(rp) has to be multiplied with the "effective depth” Ar) in which galaxies
are taken into account, thus

w(rp) = Cesti(rp) - A7"||
+dz cdz

= Ceati” 5z Ho(1 + 2)%2/1+2qpz

(3.30)

for Q5 = 0.

The effective depth

In reality, one has to cope with a selection function of some kind or another, and not with
a top-hat function (of probability unity to find a galaxy within the borders of the survey
and zero otherwise). The importance of this was first noticed in this work: in the context of
the projected correlation function, a complication arises with the computation of the depth
Ar). At low redshifts, the effective depth is diminished by the geometry, since the physical
area in which galaxies can be found grows with redshift. In a magnitude limited sample the
number of galaxies per redshift bin decreases with increasing redshift (the fainter a galaxy,
the smaller its limiting distance to which it can be detected). The varying probability to find
pairs of galaxies separated by a redshift z within the survey has to be taken into account.
It can be included in the calculation by multiplying the integrand in equation (3.30) with
the probability to find pairs of galaxies separated by a distance dz. The selection function of
finding pairs of galaxies (opqir) can be expressed in terms of the squared redshift distribution
(dN/dz), normalised to unity at it’s maximum:

1 dN?
Opair = [EE] ) (3.31)
where N, is the normalisation constant. Then the integral (3.30) changes to
+0z c
Ar| = (3.32)

rdz .
sr Ho(1+ 2)2/T ¥ 2q02 P
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With this correction for the selection function, the ”depth” converges to a fixed value and does
not grow anymore, even if the integration limits cover more than the total depth of the survey.
For comparison with results of other authors it has to be kept in mind that in no previous
estimation of the projected correlation function (see for example Le Fevre et al. (1996) or Carl-
berg et al. (2000)) it was payed any attention to the influence of the survey selection function.

The choice of the integration limit ¢, in equation (3.27) and equation (3.30) is somewhat
arbitrary. To capture the bulk of the correlation signal, the integration limits should be sig-
nificantly larger than the correlation length rq and the length corresponding to the pairwise
velocity dispersion, and of course they have to be larger than the errors.

Very large values of §, might more completely integrate the correlation signal, but they do
so at the considerable cost of increased noise, for two reasons — first, the bigger the separa-
tion of two galaxies along the line of sight, the more meaningless the projected separation
perpendicular to the line of sight gets. Second, if a pair of galaxies is separated by a very
large physical distance along the line of sight, it is certainly not correlated at all, since the
correlation function decreases very fast with distance. Nevertheless it can display a very small
projected separation and will therefore be regarded as strongly correlated.

Robustness of the inversion

With equation (3.18), the inversion of the Abel integral, one should in principle be able to
derive the correlation length o of the real space distribution from the measurement of the
projected correlation function. Implicitly, this includes the assumption, that the correlation
function decreases monotonously (the slope of the power law stays constant), even for very
large distances. This is obviously not the case, see Peacock (1997). The power spectrum
(the Fourier transform of the correlation function), changes its slope at a wavenumber of
k ~ 0.1h Mpc~!.

In the range 0.01 < k& < 10, the real space power spectrum can be described with a break
between two power laws (Peacock, 1999):

E/ko)®
A2(g) = —Elko)® |
with

ke = 0.03nMpc™!

ky = 0.05AMpc~!

a = 0.8

B = 4.0

This break in the power law has at least two implications: The trivial one is, that the ampli-
tude of the correlation function (defined by &(ro) = 1, or w(ry,) = 1, respectively) one derives
by fitting the data with a single power law, depends on the range of distances that are ob-
served in the sample. This means that the range of projected distances has to be compatible
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with the range of the three dimensional distances.

The other implication is less trivial. If a survey is much deeper than the scale at which the
break in the power law occurs, equation 3.20 is no longer a valid solution for the inverse of the
Abel integral, because this solution implies £(r) = (r/rp) 7. The integral over a power law
with a break at ~ 60h~! Mpc yields a value for the correlation length rq that is slightly smaller
than the value expected from a single power law. In order to simplify the verification, we did
not Fourier-transform equation (3.33), but integrated the simple power law to r = 60h~! Mpc.
Beyond this point where the break occurs, it decreases very strongly, so the contribution to
the integral can be neglected. For ro = 5.0h~! Mpc, v = 1.8, we find for the amplitude of the
projected correlation function (for r, = 1h~! Mpc).

o &(r)
/rp -2

With equation (3.20), we recover rg = 5.0. But

/60 ¢(r)
N

and by applying equation (3.20), we find only r, = 4.88.

r dr = 62.57 (3.34)

r dr =60.15 , (3.35)

So the effect is of Order @ = 1072, and therefore negligible for our purposes, since the errors
of the measurements are larger in any case.

3.2.3 The special case of multicolor data

The redshifts of the galaxies in our catalogue have errors of size o, = +0.017 (see chapter
(2)), so it is clearly impossible to compute the three-dimensional correlation function directly.
However, the errors are still small enough to facilitate the analysis of the projected correla-
tion function, as we will show in the next chapter. Since the number of pairs of galaxies that
contribute to the histogram (D D) in the estimation of the projected correlation function is
much smaller than for the angular correlation function (for the projected correlation function
only galaxies separated by less than the integration limits in equation (3.28) are counted),
we can use the larger number statistics of the angular correlation function to corroborate the
results qualitatively. Therefore we calculate both angular and projected correlation function,
and compare the results.

Usually, a straight line is fitted to the logarithmic data points, where =y is the slope, and the
amplitude is the y axis intercept (of course in the case of the three-dimensional correlation
function £(r), the y axis intercept gives directly ry). We have to make a very careful choice in
the range where we fit the data: since the CADIS fields measure 11’ x 11’ each, the comoving
distance at the mean redshift (z) ~ 0.6 is only ~ 4.5h~' Mpc (for Qp = 0.2, Qx = 0). This is
even less than the canonical correlation length of 7o = 5h~! Mpc, and the major part of the
correlation signal in our data is on very small scales. Therefore, we restrict the range in which
the data are fitted to this region: for the projected correlation function —1.7 <logr, < —0.3,
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and for the angular correlation function to —0.9 < log# < 0.5 (# in arcminutes). To minimize
the errors of the measured amplitudes (which are clearly dominated by the uncertainty in
the fitted slope, if one interpolates far outside the measured data points), we do not fit the
amplitude at the y axis intercept, but at some point within the measurement, preferably
somewhere in the middle. Since we want to compare our measurements with the local one
(for which we use the Las Campanas Redshift Survey), we furthermore have to make sure
that we compare similar comoving scales in the two different surveys. Thus we restricted the
fit of the projected correlation function of the LCRS to —1.15 <logr, < 0.3, and the angular
correlation function to 0 < 6 < 1.5, to achieve a compromise between maximum overlap and
high signal-to-noise of the correlation signal of both surveys. We then fitted the amplitude
of the projected correlation function of CADIS at logr, = —0.5 (r, ~ 316h ! kpc), and for
the LCRS at logr, = —0.3 (r, ~ 500h~! kpc) — in comoving coordinates this corresponds for
CADIS ((2) = 0.6) to T com =~ 506h~" kpc, for the LCRS ((z) = 0.1) t0 7 com =~ 550h~! kpc.
In the case of the angular correlation function we fit the amplitude of w(f) for CADIS at
6 = 1" (at z = 0.6 this corresponds to 7, ~ 200h~' kpc), and for the LCRS at 6 = 0°1 (at
z = 0.1 this corresponds to r, ~ 400h ! kpc). From the values of the amplitudes, which are
all measured at comparable scales, we can now deduce the parameter of the three-dimensional
correlation function.



Chapter 4

The LCRS - local sample and test

The CADIS data provides the possibility to analyse the clustering of galaxies at relatively high
redshifts, but since it is our intention to investigate the evolution of galaxy clustering from z ~
1 to the present epoch and the CADIS data is only suited for the analysis down to a redshift of
0.2, we need a local sample to facilitate the connection to z = 0. A suitable catalogue, which
can serve as a local sample is the Las Campanas Redshift Survey, in the following LCRS. On
the other hand it is necessary to verify the validity of the deprojection methods described in
the previous chapter. Before proceeding to derive the two-point correlation function of the
multicolor galaxies in CADIS, one can use the LCRS to check all the above assumptions.

4.1 The data

The LCRS is described in detail by Shectman et al. (1996). The survey consists of ~ 26000
galaxies in six sky strips, three strips in the northern Galactic cap region and three in the
southern region, see Figure (4.1). Each strip runs approximately 80° across the sky in right
ascension and has a width in declination of ~ 1.5°. The mean strip declinations are —3°,
—6°, —12° in the northern sample and —39°, —42°, —45° in the southern sample.

Each strip was subdivided into 50 or so fields of square or nearly square dimensions. Galaxies
in each field were selected on the basis of Kron-Cousins R-band magnitudes; a subset of these
galaxies was chosen randomly for spectroscopic study using multiobject fiber spectrometers
of either 50 or 112 fibers. Apparent magnitude limits vary from field to field, with typical
isophotal limits of 16.0 < mpr < 17.3 and 15.0 < mp < 17.7 for the 50 fiber and 112 fiber
fields, respectively. Additional limits were imposed on the basis of the ”central surface bright-
ness” of the galaxies, corresponding approximately to the flux entering a fixed fiber aperture
of 3".5; the limiting central magnitude is in the range of m. = 18 — 19, depending on the
isophotal magnitude.

The survey has a median redshift of (z) ~ 0.1, and therefore can be regarded as ”local”; the
mean error in redshift is o, ~ 2.24 - 1074, that is 0., = 67.2km s~ 1.

Different aspects of large scale structure in the LCRS are treated in a variety of papers, e.g

Doroshkevich et al. (1996), Lin et al. (1996), Landy et al. (1996), Tucker et al. (1997), Colley
(1997), Shandarin & Yess (1998), Bharadwaj et al. (2000), Best (2000), and Miiller et al.
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(2000)).

Tucker et al. (1997) found a comoving correlation length of ro = 6.28 4 0.27h~! Mpc and
v = 1.52 £ 0.03, in the distance range 2.0 < r < 16.4h~! Mpc, whereas Jing et al. (1998)
found r¢ = 5.06 +0.12h~! Mpc and v = 1.862 4 0.0.034 for rp < 28h ! Mpc. The latter value
was estimated by means of the projected two-point correlation function.
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Figure 4.1: The Las Campanas Redshift Survey.
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Table 4.1: Geometries and number of galaxies for the different sectors of the LCRS which are
used in our study.

‘ Name H zy [° ‘ x9 /° ‘ Az [°] wn /[° ‘ ya /° ‘ Ay /° ‘ Nyai ‘
37-38 -38.829 | -38.337 | 0.492 8.091 57.711 | 49.620 | 539
35-41 -41.993 | -41.283 | 0.710 2.508 67.246 | 64.738 | 1055
190-3 -2.904 | -2.278 | 0.627 | 156.583 | 230.366 | 73.783 | 1479
193-11 || -11.947 | -11.358 | 0.589 | 156.228 | 220.015 | 63.787 | 1457

4.2 Consistency Checks — from 2d to 3d

To check whether the integral inversions (be it Limber’s equation or the Abel integral) work
properly with real data, we calculated the three dimensional correlation function for four dif-
ferent sectors of the survey, and alternatively for the same sectors the projected correlation
function and the angular correlation function. From those we derived the correlation length
ro and the exponent 4. The main aim of this exercise is to check the validity of deprojection
methods for the local sample.

Table (4.1) lists the geometries and the number of galaxies in the different parts of the LCRS
we were using, right ascension and declination are both given in degrees.

4.2.1 The three dimensional correlation function

For each sector a catalogue of randomly distributed galaxies is generated, within the corre-
sponding borders in right ascension and declination. Their redshift distribution (that follows
the mean redshift distribution of all galaxies in the whole survey, see also Figure (4.2)) can
well be approximated by a Maxwell function:

dN —0.0074\2
= 127-10% exp l—0.5 * <ﬂ>

z 0.063 (4.1)

We calculated the three dimensional correlation function for 0.04 < z < 0.16, using the esti-
mator of Landy & Szalay (1993) (equation (3.6)).

The distance d; ; between a pair of galaxies at redshifts z; and z; separated by an angle 6 can
be approximated by using Pythagoras’ law:

= 2
iy = 0a 02+ (P2, 2)

142

where D4 is the angular distance, D the comoving distance, which is projected to the phys-
ical distance at the mean redshift z = (z; + z;)/2 by dividing by (1 + z. For definitions and
derivations see appendix (B).
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Figure 4.2: The redshift distribution of all galaxies in the LCRS.

Figure (4.3) shows the run of {(r) for the above mentioned sectors of the LCRS, for Hy = 100,
Qo = 1.0, and Q5 = 0. Errors are calculated from Poisson statistics:

(1+¢(r)
where [DD] is the unnormalised histogram of the number of pairs of galaxies in logarithmic
distance bins. We found that the errors calculated in this way are comparable with the errors
using bootstrap resampling methods (Barrow et al., 1984). The individual errors of the data
points are sometimes slightly smaller and sometimes slightly larger than bootstrap errors, but
there is no systematic trend towards either case.

The correlation functions in the different sectors of the LCRS show a relatively large spread at
the large scale end, thus the interval where the correlation function was fitted, was restricted
to —1.0 < logr < 0.5, as indicated in figure (4.3). Furthermore we did not fit ry directly,
but the amplitude of £(r) at 7 = 0.5h~! Mpc (from which we then are able to calculate r),
because if one leaves the slope as a free parameter and determines the amplitude somewhere
at the margin, or even outside the measured range, the errors of the slope dominate the
errors of the amplitude, and the errors of the amplitude get unnecessarily large. The value
r = 0.5h~! Mpc is more or less in the middle of our fitted range of data points, so it is better
to determine the amplitude of £(r) at this point. Also, as outlined in Chapter 3, it allows the
direct comparison with the CADIS data.

Table (4.2) shows the results for the different sectors of the LCRS. In the first columns the
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Figure 4.3: The two-point correlation function () in the different parts of the LCRS. Differ-
ent colors refer to the different sectors; red: 193-11, green: 37-38, blue: 35-43, yellow: 190-3.
The dotted lines indicate the interval, in which the correlation function is fitted. The black
line is the mean fit.

amplitude of ¢(r) at r = 0.5h~! Mpc and the slope v is given, respectively, the last column
contains the value ry deduced from this.

The weighted mean ry in our calculations is 3.579 £ 0.092, the weighted mean of v =
1.295 £+ 0.016. The mean fit is also plotted in figure (4.3). This mean slope is much flat-
ter than the canonical slope of v = 1.8, and flatter than what has been found by other
authors (see above). The scatter between the values of £(r = 0.5/h~! Mpc) and rq in the
different sectors is quite large, the values are not equal within the errors.

Table 4.2: Results for r for the different field geometries, deduced from the amplitude of £(r)
at r = 0.5h~ 1 Mpc.

‘ Sector H &(r =0.5/h Mpc) ‘ ¥ H ro/h~* Mpc ‘
37-38 19.991 £ 0.290 1.224 £0.046 || 5.777 £0.536
35-41 15.577 +£0.183 1.285 +£0.034 || 4.236 +0.243
190-3 13.116 = 0.131 1.335 £0.029 || 3.438 +0.146
193-11 11.574 +0.131 1.290 £+ 0.028 || 3.337 & 0.140
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4.2.2 The angular correlation function

For comparing three- and two-dimensional correlations, we first computed the angular corre-
lation function (w(f)), and deduced the correlation length ry. Again we used the estimator
by Landy & Szalay (1993) for the estimation. For the random sample we used the same mock
catalogues as for the analysis of the three-dimensional correlation function. Figure (4.4) shows
w(#) for the different field geometries (see Table (4.1)).
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Figure 4.4: The angular two-point correlation function w(f) in the different parts of the
LCRS. Different colors refer to the different sectors (same as in Figure (4.3)). The dotted
lines indicate the interval, in which the angular correlation is fitted.

To make sure that we compare to some extend the same distance ranges (for the three-
dimensional correlation function the range was 0.14 < r < 2.24h~! Mpc), we restrict the
interval to be fitted fit to 0°0167 < # < 0°5. At the mean depth of the survey ({z) = 0.1), this
corresponds to 0.09 < r < 2.62h ! Mpc). In this range the signal-to-noise is high, and the
distance ranges overlap. The borders are also indicated in figure (4.4). We fit the amplitude
of w(f) at & = 0°1 (~ 400h ! kpc).

We can now use Limber’s equation to derive the connection of the amplitude of the angular
correlation function at § = 0°1 with the amplitude of the three-dimensional correlation func-
tion at r = 0.5~ Mpc. With £(r = 0.5h'Mpc) = (0.5/r9)? = 0.5 7], equation (3.10) and
equation (3.11) we find:

Ay -0.57 = CBE(r = 0.5h ' Mpc) (4.4)
0.57w(f = 0°1) = CBE&(r = 0.5 b~ 'Mpe) - 091177 (4.5)
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Table 4.3: Amplitudes of the angular correlation function at 8 = 021 in different parts of the
LCRS, and the amplitude of the three-dimensional correlation function at » = 0.5 A~ 'Mpc,
and the correlation length ry calculated from that.

| Sector | A,(6 =0°1) v | = &(r=0.5 h™"Mpc) | ro/h~" Mpc |
37-38 0.403 £ 0.057 1.726 + 0.334 61.982 £+ 0.701 5.462 + 1.527
35-41 0.393 £0.042 1.770 & 0.282 62.422 £ 0.583 5.167 + 1.293
190-3 0.373 £0.028 1.848 + 0.168 62.289 + 0.337 4.677 £ 0.951
193-11 | 0.218 £0.016 1.927 4 0.241 38.012 + 0.286 3.302 + 0.780

and

_ 0.57w(f = 0°1)
— 1 —
&(r=10.5h" Mpc) = OB P

In this calculation € was kept fixed at zero — the choice of the evolution parameter is not
really important in the case of the LCRS, because at the shallow depth of the survey, it does

not change the result in a significant way. We also chose zero because the effective evolution
between a redshift of 0.1 and zero is negligible anyway.

(4.6)

Table (4.3) shows the amplitudes of the angular correlation function at # = 0?1 in dif-
ferent parts of the LCRS, the amplitude of the three-dimensional correlation function at
r = 0.5 h~'Mpc), and the correlation length 7 calculated from that. Everything was com-
puted for 29 =1 and Q2 = 0.

The weighted mean is (£(r = 0.5 h~'Mpc)) = 50.868 £ 0.196, with (y) = 1.838 & 0.116. This
corresponds to a mean correlation length ro = 4.240 4+ 0.572. Although the amplitudes at
r = 0.5 h~'Mpc) are much larger than the ones deduced from the three-dimensional esti-
mation, the values of ry are equal within the errors. This is due to the steeper slope of the
angular correlation function, which compensates for the large amplitudes.

4.2.3 The projected correlation function

Before we give results for the projected correlation function (w(r,)), we have to make a
choice for the appropriate integration limits (see equation (3.28)). Therefore we calculated
the projected correlation function for increasing integration limits, and fitted the amplitude
at r, = 0.5 *Mpc) (the fit was done in the range —1.15 < logr, < 0.3). The result is shown
in figure (4.5), the colors denote the different sectors of the LCRS, as before. The black line
is the weighted mean of the four sectors, as in the case of the three-dimensional correlation
function, the field-to-field variation is relatively large.

The amplitude of the projected correlation function rises very steeply with increasing in-
tegration limits, reaches a maximum when peculiar velocities become unimportant and the
undistorted correlation signal is sampled, and then slowly declines, because the noise in-
creases. The maximum lies around +dcz &~ 3000kms !.
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Figure 4.5: The amplitude of the projected correlation function at r, = 0.5~ 'Mpc), versus
integration limits (£dcz), for the different parts of the LCRS. The colors denote the same
sectors as in figure (4.3). The black line is the weighted mean of the four sectors.

The projected correlation function is calculated by multiplying the estimator (.4, with the
effective depth Ar (see Chapter 3), w(rp) = Cesti - Ar. Cesti essentially relates the counted
projected distances to those which can be found in a random distribution, and Ar| is the
effective depth in which those pairs of galaxies can be counted. Figure (4.6) shows the de-
pendence of (s (fitted at 7, = 0.5hMpc) and Ar| on the integration limits. At small
integration limits, (es; is relatively high and then decreases fastly, because the same kind of
scaling relation applies as in the case of the angular correlation function (Peebles, 1980): the
correlation signal is diminished when the sample depth increases, because at a certain angle
one samples an increasing number of pairs of galaxies with large physical speparations, which
are more or less uncorrelated. Then the noise starts to dominate, and the amplitude decreases
further. For small integration limits the distance Ar) increases linearly with increasing lim-
its, which is not surprising, because at low redshifts and small redshift intervals, the redshift
distance relation can be approximated with the linear Hubble relation » = c¢z/H. But since
the selection function of the survey (in form of the redshift distribution) is taken into account
in the calculation of Ar, it converges to a constant value for dcz — oc.

Both effects together lead to the observed course of the amplitude of the projected correlation
function. The errors of the redshift determinations are very small and thus have no influence
on the amplitude, but peculiar velocities (the galaxies in a cluster have a velocity dispersion
of typically Av =~ 2500 km s~ ') do play a role and diminish the amplitude.
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Figure 4.6: Upper plot: the amplitude of (. (see equation (3.30)), at r, = 0.5h~*Mpc). The
colors denote the same sectors as in Figure (4.3), lower plot: the depth Ar in dependence of

the integration limits.
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Table 4.4: The amplitude of the three-dimensional correlation function at » = 0.5h~'Mpc,
deduced from the projected correlation function, and the correlation length ry which was
calculated from that.

| Sector | w(rp, = 0.5k 'Mpc) /b~ Mpc v | = &(r = 0.5 "Mpc) | ro/h ' Mpc |
37-38 95.931 £1.193 1.739 £ 0.150 49.224 +£0.732 4.699 £ 0.909
35-41 85.683 £ 0.877 1.788 £0.126 46.072 £ 0.549 4.259 £ 0.643
190-3 64.427 £+ 0.691 1.933 £ 0.087 39.078 £ 0.278 3.331 £+ 0.284
193-11 64.351 £ 0.633 1.789 £ 0.097 34.633 £ 0.422 3.627 £ 0.390

Table 4.5: Comparison of the values of £(r = 0.5h~!Mpc) derived in the three different ways.

| Sector || £&(r =0.5 A '"Mpc) [ £(r = 0.5 b "Mpc) from w(f) | £(r = 0.5 b~ 'Mpc) from w(ry) |

37-38 19.991 £ 0.290 61.982 £0.701 49.224 £0.732
35-41 15.577 £0.183 62.422 £ 0.583 46.072 £ 0.549
190-3 13.116 £ 0.131 62.289 £ 0.337 39.078 £ 0.278
193-11 11.574 +0.131 38.012 £ 0.286 34.633 £ 0.422

As we have shown, the amplitude of the projected correlation function reaches it’s maximum
when the integration limits have the same size as the velocity dispersion. To capture the bulk
of the correlation signal with a minimum of noise, the appropriate choice of the integration
limits is given by the onset of the maximum — thus we chose dcz = 3000 km s~ ' for the
calculation of the projected correlation function in the LCRS.

Using equation (3.20) and &(r = 0.5h *Mpc) = 0.5 777, we can now calculate the amplitude
of the three-dimensional correlation function at r, = 0.5h~'Mpc from the fitted amplitude of
the projected correlation function:

0.5 Tw(rp)

1—y
Crp

£(r = 0.5h""Mpc) = (4.7)

We also give the correlation length o which was calculated from the amplitude at r, =
0.5h~'Mpc). Table (4.4) shows the results.

The weighted mean is (£(r = 0.5 h~'Mpc)) = 39.802 + 0.205, with (y) = 1.837 & 0.054. This
corresponds to a correlation length of ro = 3.713 £ 0.218.

A comparison of all the values for £(r = 0.5 h~'Mpc), derived in the three different ways is
given in Table (4.5).

Those values differ significantly from each other, but if one takes into account the different
slopes, and calculates the correlation length 7o from the amplitude at » = 0.5 h~! Mpc (as
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summarised in Table (4.6)), the values of ry are the same within their errors. A flat slope can

compensate for a low amplitude, if one extrapolates to larger scales.

Table 4.6: Comparison of the correlation length ry, derived in the three different ways.

| Sector || o | ro from w(f) | ro from w(ry) |
37-38 5.777 £0.536 | 5.462 £ 1.527 | 4.699 + 0.909
35-41 4.236 +0.243 | 5.167 £1.293 | 4.259 + 0.643
190-3 4.236 +0.243 | 4.677 £0.951 | 3.331 + 0.284
193-11 || 3.337 +0.140 | 3.302 £0.780 | 3.627 + 0.390
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4.2.4 Influence of the redshift errors on the correlation function

Errors in the redshift measurement basically lead to increasing noise in the correlation signal.
If the clustering in redshift space is more and more washed out (the redshift distribution
becomes more and more Poisson-like), the amplitude decreases, especially at small scales.

To prove this assumption and to estimate the size of the effect, we assigned artificial errors
to the measured redshifts of the galaxies in the catalogue, picked randomly from a Gaussian
error distribution:

Z=z+ Az, (4.8)

where A, is randomly drawn from the distribution

\/% - exp l—0.5 <§—j>2] . (4.9)

With these artificial errors we computed &(r) and w(ry). As expected, the three-dimensional
real space correlation function £(r) suffers extremely from the increase of noise and the effect
of the smeard-out correlation signal along the line of sight. Figure (4.7) shows the correlation
function of the galaxies in field 37-38, one calculation with o, = 0.007, and one calculation
with o, = 0.017. In velocity space this corresponds to a full width at half maximum (FWHM)
of Acz =2v2In2-co, = 5000km s~! and Acz = 12000 km s~!, respectively. In both cases
the noise is too large (there are only three data points greater than zero) to recover the cor-
relation signal. Effectively the measurement breaks down completely even for o, = 0.007.

p(Az) =

To evaluate the effect of the redshift errors on the projected correlation function, we repeated
the calculation of w(r,) for increasing integration limits dcz, one time with an simulated
redshift error of Acz = 5000km s~', and a second time with Acz = 12000 km s~!, which
corresponds to the size of the CADIS redshift errors. Figure (4.8) shows the weighted mean
of the fitted amplitudes of the projected correlation function in the four sectors, fitted at
Tp = 0.5h~! Mpc, for increasing integration limits. The maximum of the curve is shifted
towards larger integration limits, for the calculation with Acz = 5000km s~!, it can be
located at around dcz = 6000km s~'. At this point, when the integration limits become
clearly larger than the error, one starts to sample the correlation signal. Nevertheless, the
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Figure 4.7: The influence of redshift errors on the real space two-point correlation function

£(r)

maximum is not only shifted, but also the amplitude is smaller than in the case without or
nearly without redshift errors. The noise, which makes the distribution more poisson-like,
diminishes the amplitude, although the projected correlation function reacts not as sensitive
to redshift errors as the three-dimensional correlation function. In the case of the calculation
for Av = 12000 km s~ ! (which corresponds to a depth that is almost as deep as the survey
itself), the maximum obviously lies in the range where the correlation signal decreases again
due to the scaling relation, as explained above.

The important result of this investigation is that:

e the integration limits have to be chosen at least as large as the full width at half
maximum of the redshift error distribution to sample the complete correlation signal,
and

e one has to take into account that the measured amplitude becomes smaller, if redshift
errors exceed the noise due to peculiar velocities.

If we want to calculate the projected correlation function for the CADIS data, the appropriate
choice of the integration limits is +dcz = 15000 km s~ .

In principle there are two possibilities to take the influence of the redshift errors on the pro-
jected correlation function into account. To facilitate the direct comparison of CADIS with
the LCRS, we simulate the influence of the redshift errors, and compare CADIS with the
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Figure 4.8: The influence of redshift errors on the projected two-point correlation function,
shown is the weighted mean of the four sectors. w(ry,) for increasing integration limits is
calculated for an artificial redshift error of o, = 0.007 (which corresponds to a FWHM of
Acz = 5000 km s~1), dotted line, and for o, = 0.017 (= 12000 km s~!, dashed line. The errors
of the fits are not plotted here to avoid confusion. The blue marks indicate the integration
limits which have to be chosen for the calculation of w(ry).

simulated LCRS data — which includes the same choice of the integration limits. For a com-
parison with results published by of other authors, we can correct the measured amplitudes of
the CADIS data for the effect: the maximum amplitude deduced from the unchanged LCRS
data is larger by a factor of ~ 1.4 than the maximum amplitude of the data with simulated
redshift errors of the size of the CADIS redshift errors. Multiplying our measured amplitudes
with 1.4 will yield values which can be compared with the literature.



38

CHAPTER 4. THE LCRS - LOCAL SAMPLE AND TEST



Chapter 5

The evolution of galaxy clustering

In this chapter we will investigate the evolution of the large scale clustering of field galaxies.
The data set on which this investigation was carried out, is the CADIS multicolor sample, as
described in Chapter 2. For the comparison with the clustering properties of galaxies in the
local universe we used the Las Campanas Redshift Survey. For the direct comparison with
CADIS, we introduce artificial redshift errors in the LCRS data (see Chapter 4).

With redshift errors of o, = 0.017, as is the accuracy of the redshift determination for the
faintest galaxies (I > 22), which was achieved using our special multicolor method (Wolf
et al., 2001c)), it is obviously not possible to derive the correlation length directly from the
three dimensional correlation function £(r) (see Chapter 4). However, it is possible to derive
it either from the angular correlation function w(#), or the projected correlation function

w(rp).

For each of the four CADIS fields under consideration we generate a catalogue of randomly
distributed galaxies, with the same properties as the real data - namely the same borders in
z and y coordinates, and with redshifts that follow a Gaussian distribution:

dN 5 z—0.6\?

the smoothed mean redshift distribution of the galaxies in the four fields in the redshift range
0 <z < 1.1 (see Figure (2.4)).

”Same properties” does not only mean the same field geometry and smoothed redshift distri-
bution, but also to simulate the influence of bright stars in the field — they can cover galaxies,
that therefore can not be accounted for in the calculation of the correlation function.

Bright stars (R < 15.5) are masked out, nine in the 16 h field, nine in the 23 h field, one in
the 1h field, and none in the 9h field. For each star the radius of the circles for the mask is
chosen such that the image profile has decreased to the flat minimum overall countlevel.

39
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5.1 The angular correlation function

Instead of simply calculating the angular correlation function for the whole sample, we can
make use of the redshift information available, and calculate w(#) in distinct redshift bins.
Then we can compare the amplitudes with model calculations for different evolution scenarios.

We computed the angular correlation function w(#) for each of the four CADIS fields sepa-
rately, and then calculated the weighted mean:

-1
<w(rp)> = > {wgrp)field] : |-Z - ! } (5.2)

fields [U (Tp)fieldJ [f’ields w(rp)ficld

[u;(rpm L owlpdon | wlrpdion u;(rpmh]

_ Tw(rp)in T (rp)gn Tw(rp)ign Tw(rp)agn
- bl
1 1 1 1
|:0'2 + 0'2 —"_ 0'2 + 0'2 :|
w(rp)ip w(rp)op w(rp)16h w(rp)agh
and with errors
1
O<uw(ry)> = - (5.3)
Zfields o2
w(rp) field
1

021 +U21 +U21 _I_Uzl
w(rp)ih w(rp)oh w(rp)16h w(rp)agh

Figure (5.1) shows the angular correlation function in four redshift intervals at 0.2 < z < 0.4,
04 <2<0.6,06 <z<0.8, and 0.8 < z < 1.0, between angular scales of 1”7 < 6 < 400".
The mean angular correlation of the LCRS is also shown for comparison.

The data was fitted in the range —0.9 < log# < 0.5 (€ in arcmin). The amplitude was fitted
at 6 = 1', Table (5.2) lists the values found in the different redshift bins. We also fitted the
amplitude at # = 1’, keeping the slope fixed at 1.964, the mean value of ~.

In Table (5.1) we list the physical separation which corresponds to # = 1’ at the central
redshifts of the four bins, for three different cosmologies (29 = 1, Qx =0, Qg = 0.2, Qp = 0,
and Qp = 0.3, 2y = 0.7, respectively).

Table 5.1: The physical separations in h~' Mpc which correspond to # = 1', in different
cosmologies.

<Z> QOZ 1, QAZO Q0=0.2, QAZO 9020.3, QA=07

0.3 0.165 0.175 0.187
0.5 0.213 0.235 0.256
0.7 0.239 0.273 0.300

0.9 0.252 0.298 0.327
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Figure 5.1: The mean angular correlation function of the CADIS multicolor galaxies. Different
colors refer to different redshift intervals: light blue: 0.2 < z < 0.4, blue: 0.4 < z < 0.6, green:
0.6 <z < 0.8, red: 0.8 <z < 1.8. For comparison, the mean angular correlation function of
the LCRS is also plotted (black). The straight lines are the best fits to the data points, fitted
in the range —0.9 < logf < 0.5.

Table 5.2: The amplitude of the CADIS correlation function at # = 1’, in different redshift
intervals.

| z interval | A, (1) ‘ 0% | A, (1) for v = 1.965 |
02<2z<04 | 0.116 £ 0.010 | 1.936 £ 0.361 0.114 £ 0.018
0.4 <z<0.6 | 0.084 £0.050 | 1.928 £ 0.285 0.083 + 0.011
0.6 <z<0.8] 0.042 £0.005 | 2.270 £ 0.509 0.058 £ 0.014
0.8 <z<1.0] 0.084 £0.007 | 1.717 £ 0.702 0.081 +0.019
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To examine how the clustering evolves with redshift, we use equation (3.13), from which we
can calculate the theoretically expected amplitudes at @ = 1’ in the four redshift bins for
different values of ¢, and compare the theoretical amplitudes with the measurement. For the
correlation length ryp at z = 0, we compute the comoving value from the angular correlation
function of the LCRS sample (at z = 0.1) — o = 4.664 4 0.629h " Mpc.

For the flat cosmology with non-zero cosmological constant (24 = 0.7) we have to use approx-
imations for the expressions for g(z) and d4. We compute equation (3.13), following Longair
(1998) and Cabanac et al. (2000):

1) = () . (5.4)

Ho) (1+ 2/ +2)° — Qo + 1
c 22 23 9
da= -] |2+ =1 +q0) + =3+ 6qg0 + 3¢5 — 3Q0)| , (5.5)
H, 2 6
where
Q
Qo = 70 —Qy . (5.6)

Equation (5.5) is a third-order approximation. Figure (5.2) shows the measured amplitudes
and the theoretical ”evolution tracks” for the three different cosmologies and for 0 < e < 5.

A formal x? estimation of the best fitting e yields e = 1.590+0.132 for Qp = 1, e = 1.10740.134
for Qy = 0.2, and € = 0.20940.133 for Qg = 0.3, 2p = 0.7. The three corresponding evolution-
ary tracks are also plotted in Figure (5.2). The results are consistent with linear clustering,
where the growth rate is highest for the closed high-density case, and relatively low in the
flat model with non-zero cosmological constant.

We will now compute the projected correlation function in different redshift intervals, exam-
ine the evolution of the clustering, and then compare the results.
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Figure 5.2: The fitted amplitudes of the angular correlation function in four redshift bins;
open circles are the amplitudes fitted for -y as a free parameter, filled circles are amplitudes
fitted with v = 1.965 fixed. The cross is the amplitude of the angular correlation function
of the LCRS. Expected evolution of the amplitudes (A, (6 = 1, 2)) for different values of e:
green curves are for {2y = 0.2, magenta curves are for 2y = 1, and blue curves are for a flat
model with non-zero cosmological constant (29 = 0.3, 2, = 0.7). In all cases the uppermost
curve is for ¢p = 0, each succeeding curve is for ¢, = n, n € N. The thick lines are the
supposed ”best-fits”.
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5.2 The projected correlation function

To investigate the evolution of the clustering of field galaxies between z = 0 and z = 1, we
use the inversion of the projected correlation function w(r,). This approach does make use
of the redshift information, although an integration is carried out along the line of sight.

Before proceeding any further, we have to make a choice for the integration limits in equa-
tion (3.27). In Chapter 4 it was shown how errors in the redshift measurement influence the
measurement of the projected correlation function. Therefore we have to take the integration
limits slightly larger than the size of the errors (o, = 0.017, which corresponds to a FWHM
of Acz = 12000km s~!). We calculated the projected correlation function for the galaxies
in the redshift range 0.4 < z < 0.8, for increasing integration limits, see Figure (5.3), and
fitted the amplitude at r, = 316" kpc with v as a free parameter, between ~ 20h~! kpc
and ~ 500h~!kpec. The solid line is the weighted mean of the different CADIS fields (other
lines).

The different fields behave quite differently, with the scatter getting larger with increasing
integration limits. To capture the bulk of the correlation signal with a minimum of noise,
we chose dcz = 15000 km s—! for the appropriate integration limits of the calculation of w(ry).

We divided the sample into three redshift bins, 0.2 < z < 0.5, 0.5 < z < 0.75, and 0.75 < z <
1.07, and computed w(ry) for each of these bins. For each distinct bin with mean redshift
Z, we have to take the selection function gyq; of finding pairs of galaxies into account, see
equation (3.32). Since the redshift distribution of a certain redshift bin does not know” what
lies outside, the normalisation can not be taken outside — e.g. at the maximum of the total
distribution — it has to be chosen for each single redshift bin. Instead of taking the squared
redshift distribution (normalised to unity at the mean redshift z in that bin), we multiply the
redshift distribution of the whole sample with its reflection (reflected at z = z), and normalise
this product to unity at z = Z:

Opair = €XP [—0.5 {zo_‘;;ﬁr] - €Xp [—0.5 [%r] . [exp [—0.5 [z()_3%6]2H - (5.7)
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Figure 5.3: Top: Projected correlation function of the galaxies between z = 0.4 and z = 0.8,
for integration limits dcz between 5000 and 30000. The dotted lines indicate the distance
range, in which the amplitudes are fitted. Below: fitted amplitudes at r, = 316h~! kpc — the
solid line is the weighted mean of the different CADIS fields (dotted line: 1h, short-dashed:
16 h, dot-dashed: 23 h, and long-dashed: 9 h).
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The projected correlation function for different world models

Up to this point we have computed w(r,) for a flat universe with no cosmological constant
(Q = 1., Q5 = 0). In the case of the LCRS, this was justified by the modest depth of the
fields. A non-zero cosmological constant would not change the results in a significant way.
For the CADIS data, where the redshift distribution extends well beyond z = 1, we have to
take different world models into account. We computed w(ry) for three different cases: The
flat universe with Q) = 0, an open model with Q5 = 0.2, and the model favoured by recent
observations of supernovae of type Ia (Perlmutter et al., 1999), with Qy = 0.3, and Q5 = 0.7.

Using the data from the LCRS, we can connect the CADIS measurements at intermediate red-
shifts to the ”local” universe. The LCRS extends to z ~ 0.16, with a median of Z = 0.1. Since
the redshifts of the LCRS data are spectroscopically determined, the errors are extremely
small (0., = 66.7km s~ !, and the results of the calculation of the projected correlation func-
tion can not directly be compared to the CADIS measurement. The influence of the errors on
the projected correlation function was tested in Chapter 4 — the amplitude decreases, even if
the integration limits are chosen such that the corresponding distance is larger than the errors.

To facilitate the direct comparison, we can incorporate artificial redshift errors (of the same
size as the errors of the CADIS sample, Acz = 12000km s ') to the LCRS sample (see
section (4.2.4)), and compare the resulting amplitudes of the projected correlation function.
Therefore we computed w(ry) for the three cosmologies under consideration, with integration
limits 6., = 15000 km s~ .

Figure (5.4) shows the projected correlation function for the flat standard model, an open
model, and for the flat model with non-zero cosmological constant. In all three cases the
"local” w(r,) (black) is the weighted mean of all sectors of the LCRS (see Chapter 4).

It is now of little use to estimate the correlation length rg from the measurement, since it is
in any case far outside the measured range of distances. The CADIS data was fitted in the
range —1.7 < logr, < —0.3, and the LCRS data in the range —1.15 < logr, < 0.3. The
amplitude was fitted at r, ~ 316! kpc for CADIS, and for r, ~ 500h~" kpc for the LCRS,
respectively, to make sure we compare the same comoving scales (~ 500h~" kpc). The best
fits are plotted in Figure (5.4) as well.
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Figure 5.4: Projected correlation function in three redshift bins, for the flat standard model
(top), an open model (middle), and for a flat universe with a non-zero cosmological constant
(below).
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5.2.1 Connection to the ”local universe”

Since the purpose of this evaluation is to compare the clustering strength at different cosmic
epochs, we can calculate the amplitude of the correlation function at » = 1A~! Mpc from
w(rp), instead of ro. With equation (3.20), and &(r) = (r/rp) ™7 we find:

&(r = 1Mpe) = 1] (5.8)
w(ry) = Crll,*Vrg = Crll,*Vf(r = 1Mpc) (5.9)

To facilitate a direct comparison of the possible changes, we compute the amplitude for a
comoving distance rcom = 1 Mpc (rd = (ro(1 + 2))7):

w(rp) (1 +2)7
Cr,l,_'y
w(rp)(1 +2)7
)

(1“(1/2 F[(’Yfl)/2]) Pl
I'(v/2) P

E("“com = 1MPC): (510)

(5.11)

The errors for the correlation length are calculated following Gaussian error propagation:

_ 2 - 5
AE(Teom = 1Mpc) = \} (35 (reom = 1Mpc) Aw(r,,)) N (8& (rom = 1Mpc) Av)

ow(rp) Oy
where
9¢(reom = 1Mpc) _ (1+2)"T [%] 5.12
Aw(r,) NG [% _ %] T;—v J (5.12)

O (reom = IMpc) _ w(ry)(z + 1T [3] [2(tnryIn(z +1)) =4O (3 = ) +4© (3)]
o S o

() the digamma function, is the logarithmic derivative of the gamma function.

The fitted amplitudes A at r, =~ 316h~" kpc for CADIS and at r,, ~ 500h~" kpc for the LCRS,
respectively, and the amplitude of the three-dimension correlation function at r.,, = 1 Mpc
derived from them, are listed in Table (5.3) (for v as a free parameter).

The differences between the values in different world models are small, however, &(reom =
1 Mpc) is at all redshifts smallest for a flat high-density cosmology, and largest in the flat
case with non-zero cosmological constant. The projected separation r, corresponding to the
same angle @ is larger for smaller values of Qp, and even larger if Q5 # 0 (see Table (5.1)).
This means that the physical distances are stretched (or compressed, respectively) corre-
sponding to the cosmology, and the projected correlation function is shifted along the rj-axis.
Since those differences are increasing with increasing redshift, the size of this "shift” depends
on redshift, and we expect to measure a slightly different evolution of the correlation function.
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Table 5.3: The amplitude of the projected correlation function in different redshift intervals, at
rp ~ 316k kpc for CADIS and at 7, = 500k~ kpc for the LCRS (first lines), respectively,
and &(reom = 1h~' Mpc), for different world models. Numbers in italic indicate that this
values are inferred from the LCRS.

‘ Model ‘ z interval H A ‘ ~ ‘ &(reom = 1 Mpc ‘
0.04< 7 < 0.16 32.05+0.796 | 1.876+£0.180 5.999+0.124
Qy=1.0 02<z<0.5 17.271+0.770 | 1.835 +£0.203 | 3.210 4+ 0.143
Qpr=0 0.5 <7z<0.75 9.160+0.822 | 1.895 + 0.295 | 2.414 +£0.234
0.75 <z < 1.07 3.881+0.831 | 2.026 £0.359 | 1.431 +0.318
0.04<z < 0.1 | 83.297+0.732 | 1.886+0.163 | 6.198+0.215
Qo =0.2 02<z<05 21.441+0.857 | 1.805 + 0.207 | 3.981 £+ 0.163
Qp=0 0.5<z<0.75 || 12.202+0.925 | 1.922 +0.289 | 3.226 +0.261
0.75 <z < 1.07 5.013+0.957 | 1.975 +£0.446 | 1.831 4+ 0.389
0.04< 7 < 0.16 || 33.678+0.786 | 1.882+0.183 6.148+0.33)
Qp=0.3 02<z<05 23.404+1.012 | 1.850 +0.221 | 4.348 +£0.188
Qr=071 05<2z<0.75 || 15.721£1.082 | 1.966 £+ 0.261 4.170 4+ 0.293
0.75 <z < 1.07 6.195+1.260 | 2.113 £0.485 | 2.311 +0.485

Quantification of the evolution

To quantify the evolution of the clustering strength, we can now estimate the parameter ¢
(see equation (3.21)) from the data. Figure (5.5) shows the logarithm of the amplitudes of
the real space correlation function at 1h~' Mpc, versus log(1+ z). Then ¢ is simply the slope
of the straight line fitted into the data.

For the closed model we find ¢ = —2.68 4+ 0.16, for the open model we find —1.92 + 0.17,
and for the model with non-zero cosmological constant ¢ = —1.23 + 0.20. ¢ gives directly
the deviation from the global Hubble flow (see Chapter 3): large negative g-values indicate
a rapid growth of the clustering strength between a redshift of z ~ 1 and today, ¢ = —2 is
expected for linear growth of structure, a value of ¢ & —1.3 means that at z ~ 1 there exists
already the same kind of structure as we see today, and the clustering growth is due to the
dilution of the galaxy background. Although the individual values of &(r¢om = 1 Mpc) are
rather consistent for the different cosmologies under consideration, the values of ¢ do not agree
within their errors. This formal dependency on the cosmology adopted for the calculation is
much larger than expected from the difference in physical scale (see Table (5.1)). We regard
this as an indication that the peculiarities in our pencil beams have not averaged out properly
yet. Presumably high statistics and more fields are required to reach a robust determination
of q. Note that the mean of the above values (¢ &~ —1.9) agrees well with the value derived
in COMBO 17 (see Chapter 6).
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Figure 5.5: The evolution of the clustering strength (at 1A~ Mpc) with redshift. The line is
the fit to the data points, the first data point is the weighted mean of the LCRS sectors, the
three other ones are CADIS data.
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Table 5.4: Comparison between the values of ¢(r = 1h~! Mpc) calculated by using the results
from the angular correlation function, with the values deduced from the projected correlation
function (amplitudes have been multiplied with 1.4 to correct for the influence of redshift

errors).

| Model | z interval | &(reom = 1™ Mpc) from w(6) | £(reom = 1h~" Mpc)from w(r,) |

Qp = 1 02< z <05 4.868 £ 0.223 4.494 + 0.200
Q) =0 05< z<0.75 2.956 +£0.143 3.379 +£0.328

0.75 <z < 1.07 1.914 £ 0.977 2.003 +0.445
Qp = 0.2 02< z <05 5.627 + 0.257 5.573 +0.228
Q) =0 05< z<0.75 3.738 £0.181 4.516 £ 0.365

0.75 <z < 1.07 2.616 +0.134 2.563 +0.545
Qo = 0.3 02< z <05 6.497 + 0.289 6.088 + 0.264
Q) =07 05< z<0.75 5.097 £ 0.241 5.838 £0.411

0.75 <z < 1.07 4.125 £ 0.206 3.235 +0.678

Comparison with w(6)

We can now compare this result with the result found from the examination of the angu-
lar correlation function. We found € = 1.590 4+ 0.132 for Qy = 1, e = 1.107 £ 0.134 for
Q =0.2, and € = 0.209 + 0.133 in the Qy = 0.3, Q4 = 0.7 case. With (y) = 1.964 + 0.195,
r0(2) = 70,2=0(142) " (€F3/7) (in this relation rq is in proper coordinates, as would be measured
by an observer in the epoch under consideration), and rg ,—o = 4.664 + 0.629h~! Mpc (de-
duced from the angular correlation function of the LCRS data), we can calculate the expected
values of &(7com = 1h~" Mpc), and compare them with the values deduced from the projected
correlation function. In the case of the projected correlation function we have to take the
influence of redshift errors into account. The measured amplitudes are decreased by a factor
of 1.4 (see Chapter 4), so we can correct for the influence of the redshift errors by multiplying
the measured amplitudes by 1.4, and then with equation (5.8) calculate &(rcom = 1h~" Mpc)
from the corrected amplitudes. Table (5.4) compares the values.

The amplitudes of &(reom) at 1h~! Mpc are equal within the errors. Thus we conclude, that
both methods lead to the same result.

5.2.2 The evolution of the correlation function for different Hubble types

Different local surveys found the red galaxies to be clustered much stronger than the blue
ones (Davis & Geller, 1976). Here we show that this is indeed the case, not only for z = 0,
and investigate the evolution of the clustering for different Hubble types.

The galaxy library used for the multicolor classification resembles regular grids in redshift and
SED, see Chapter 2, thus the Hubble type can also be estimated from the observations. This
enables us to investigate the evolution of the clustering of different populations of galaxies in
the field.
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Table 5.5: The amplitude of the CADIS correlation function at & = 1’ in different redshift
intervals, for galaxies with SED < 60, and SED > 60.

| zinterval || A,(SED < 60) | v | Aw(SED > 60) | v |
02<2z<04] 0519+0.088 [1.904+0.289 | 0.048+0.010 | 2.427 +0.929
04<2<06| 0.208+0.022 |1.727£0.541 || 0.065 +0.007 | 2.175 + 0.504
0.6 <2<08] 0.001+£0.014 |[2.222+£0.774 || 0.060 +0.011 | 1.974 +0.970
08<z<1.0] 0.159+0.035 |2.651+0.824 [ 0.073+0.009 | 2.061 + 1.110

We devided the sample into two SED bins, with SED < 60, and SED > 60, respectively.
For each SED bin we have to generate a sample of randomly distributed data points within
the same field geometry. The redshift distribution for the red galaxies (SED < 60) can be
modeled with a Gaussian with its maximum at z = 0.55, and width o = 0.3, the blue galaxies
with a modified Gaussian:

dN ) z—0.6\"
— =2.95-10 —0.5
dz blue b l ( 0.4 ) ] ’

(5.14)

see Figure (5.6).

We can now calculate both angular and projected correlation function, and analyse the results.

Angular correlation function

For the angular correlation function, we divided the two samples into the same redshift bins
as before, 0.2 < 2z <04, 04 <2z<0.6,0.6 <z<0.8, and 0.8 < z < 1.0, respectively. Figure
(5.7) shows the comparison between angular correlation function of the red galaxies and the
blue galaxies, and the fitted amplitudes at & = 1’ in the four redshift bins for the two SED
bins, for the range —0.9 < log# < 0.5. Table (5.5) lists the fitted amplitudes and exponents.

It is obvious that the early type galaxies are stronger clustered than the late type ones.
The calculation of the evolutionary parameter e from w(f#) depends strongly on the value of
ro(z = 0), which we do not know for the subsamples under consideration. We can not use
the LCRS for this, and there exists no suitable catalogue of local galaxies which consists of
exactly the same population mix as our subsamples. The values measured for rg at z = 0
certainly depend on the SED cut as well as the values at higher redshifts. To quantify the
evolution of the clustering strength, we also computed the projected correlation function,
with dcz = 15000 km s~ !, in the same redshift bins as we did in section (5.2).
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Figure 5.6: Redshift distribution of the galaxies in two redshift bins (SED < 60, upper figure,
and SED > 60, lower figure, respectively).
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Figure 5.7: Upper plot: The angular correlation function of CADIS galaxies with SED < 60
(red), and with SED > 60 (blue). The different symbols refer to the different redshift bins:
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0.8 < z < 1.0. Lower plot: amplitudes of the angular correlation function at § = 1’ in the
two SED bins. Blue: SED > 60, red: SED < 60, black: all galaxies.
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Table 5.6: The amplitude of the projected correlation function at r, = 316h~! kpc, in different

redshift intervals for two SED bins, for different world models.

Model z interval || A(SED < 60) | v | A(SED > 60) | v
Q= 1.0 02< 7 <05 ] 46.398 + 1.808 [ 1.906 + 0.239 || 7.310 + 1.476 | 2.140 + 0.462
Qr 05< 7z<0.75 || 24.229 + 1.539 | 2.149 £ 0.279 || 7.097 £ 1.742 | 2.053 = 0.650
0.75 < 7 < 1.07 || 9.904 + 3.524 | 2.527 + 1.355 || 7.398 £ 1.158 | 1.941 + 0.425
Q=02 02< 7 <05 | 50.085 + 1.791 | 1.998 + 0.204 || 8.147 + 1.587 | 2.120 + 0.504
Q=0 05< 7z<0.75 | 27.117 £ 1.601 | 2.012+0.337 || 5.502 £ 1.710 | 2.317 £ 0.703
0.75 < 7 < 1.07 || 14.241 + 3.336 | 2.585 + 1.247 || 6.280 + 1.286 | 1.302 £ 2.512
Q=03 02< 7 <05 ] 63.926 +2.100 | 1.998 + 0.231 || 6.128 + 2.092 | 2.474 + 0.602
Oy — 0.7 05< 7z<0.75 | 39.224 + 1.801 | 2.072 £ 0.216 || 11.910 £ 2.879 | 2.066 + 0.941
0.75 < 7 < 1.07 || 19.531 + 4.179 | 2.157 £ 1.196 || 9.785 + 1.833 | 1.996 + 0.565

Table 5.7: The amplitudes of the three-dimensional correlation function £(r) at a comoving
distance of r = 1 Mpc, for red (SED < 60) and blue (SED > 60) galaxies.

‘ Model ‘ z interval ‘ &(reom = 1 Mpe, SED < 60) ‘ &(reom = 1 Mpe, SED > 60) ‘

Qg = 1.0 02< z <05 8.598 + 0.367 1.301 4+ 0.305
QO =0 0.5< 7z<0.75 6.408 + 0.431 1.886 £+ 0.463

0.75 <z < 1.07 3.693 + 1.381 2.681 + 0.501
0y = 0.2 02< z <0.5 9.184 + 0.441 1.458 £ 0.336
Qy =0 0.5 < z<0.75 7.204 £ 0.427 1.425 £0.473

0.75 <z < 1.07 5.282 +1.410 1.301 £ 7.541
0y = 0.3 02< z <0.5 11.722 £0.574 0.973 £ 0.411
Qn = 0.7 0.5< 7z<0.75 10.717 £0.517 3.163 & 0.768

0.75 <z < 1.07 7.315 + 1.708 3.588 +£0.776

Projected correlation function

Figure (5.8) shows w(r,) for the different redshift bins, for a flat closed, hyperbolic open, and
a flat Q) = 0.7 model, respectively. Table (5.6) lists the amplitudes at r, = 316! kpc,
fitted between ~ 20h~! kpc and ~ 500h~! kpc, just as in section (5.2).
The corresponding amplitudes of the three-dimensional correlation function £(r) at a comov-

ing distance of 7.y = 1A~ Mpc are given in Table (5.7).

Figure (5.9) shows the amplitudes of the three-dimensional correlation function £(r) at a co-
moving distance of » = 1 Mpc, for red (SED < 60) and blue (SED > 60) galaxies, for the
different world models under consideration. For comparison the data points for the whole
sample are also plotted. The lines are the fits for the ¢g-parameter, the data point from the

LCRS is not included in the fits for the early type galaxies.
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Figure 5.8: The projected correlation function in three different redshift bins, upper figure:
flat closed model (29 = 1, Q5 = 0); middle: hyperbolic open model (2 = 0.2, 2y = 0), lower
figure: flat Q model (29 = 0.3, 25 = 0.7). Red is for early type, blue for late type galaxies.
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Figure 5.9: The evolution of the clustering strength (at 1 Mpc) with redshift, for early type
(SED < 60) and late type (SED > 60) galaxies. The data for the complete sample is plotted
for comparison. The first data point (the weighted mean of the LCRS sectors), is not included
in the fit for q.
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Table 5.8: The parameter g for early type (SED < 60) and late type (SED > 60) galaxies,
for the different world models under consideration. The evolution of the complete sample is
also shown for comparison. The data point from the LCRS is not included in the fit for early
and late type galaxies.

Cosmology ‘ q(SED < 60) Gall

Qp=1.0,02,=00| —1.71£0.39 —2.68+0.16
Q=029 =00| -1.37£0.36 —1.92+0.17
Qp=0.3,02, =07 —0.67£0.33 —1.23+£0.20

As could already be seen in the case of the angular correlation function, the early type galax-
ies are significantly stronger clustered than the late type ones, and their evolution is different
from the evolution of the whole sample. The evolution of the late type galaxies can not be
quantified, because the number of galaxies with SED > 60 is not enough to calculate the
amplitude of the three-dimensional correlation function with sufficiently high accuracy. The
clustering amplitude is very low in any case, but ¢ can not be determined. For the early type
galaxies, ¢ is found to be significantly smaller than the value for the whole sample. Table
(5.8) lists ¢ for the late type sample, and compares them to the values found for the complete
sample.

The clustering evolution of early type galaxies is obviously much slower than for the whole
sample, whose clustering behaviour is roughly consistent with linear clustering. This does
not inevitably imply that we have to deal with a population of galaxies which act as ”test-
particles”, that simply trace the expansion of the universe. A more plausible explanation for
this behaviour arises in the context of biased galaxy formation (Bardeen et al., 1986), where
the galaxies form at high redshift in the high-density peaks of the dark matter distribution,
and their clustering evolves different from the clustering of the dark matter, see Chapter 6.

5.2.3 The bright and the faint ones

If massive, bright galaxies form in the high density peaks of the dark matter distribution
(which are strongly clustered (Kaiser, 1984)), one expects the brighter galaxies to be more
strongly clustered than the fainter ones. We divided our sample at Mg = —18., which is
approximately the brightness of the Large Magellanic Cloud. With this magnitude cut, we
only have enough faint galaxies to calculate the correlation function at relatively low redshifts.
Therefore we restrict the analysis of the clustering properties of bright and faint galaxies to
the redshift range 0.3 < z < 0.6.

Since the absolute magnitude depends on the cosmology chosen for the computation of the
luminosity distance (see appendix (B)), the redshift distribution of (absolute) faint and bright
galaxies is slightly different for different world models. This is shown in Figure (5.10).

For all cosmologies and z < 1.1, the smoothed redshift distribution of the faint galaxies can
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Figure 5.10: Redshift distribution of faint (Mp > —18) and bright (Mp < —18) galaxies, for
the different cosmologies under consideration in this work.

be described with a modified Maxwellian:

dN

=m0 (24 2) exp l—0.5 (Uiﬂ , (5.15)

and for the bright galaxies with a modified Gaussian:

(ii—]: = nyp - exp [—0.5 <z — Z>4] . (5.16)

Oz

Table (5.9) gives z, 2, 7, and o, for for bright and faint galaxies, for the different cosmologies.

Table 5.9: Parameter for the description of the redshift distribution of faint and bright galaxies
in different world models.

| Model | 2 6. | 2 0. |
Q =10, =00] 02 029]0.72 0.32
0 =02,Q,=000.18 027| 0.7 0.32
0 =03, =07] 02 025] 0.7 0.32
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Table 5.10: Amplitudes of the angular correlation function at 6 = 1’, for bright (Mp < —18)
and faint Mp > —18 galaxies.

| Cosmology | Ay(Mp > —18) vy | A, (Mp < —18) v ‘
Qy=1.0,2,=0.0| 0.098+0.009 1971 +£0.393 | 0.125 4+ 0.008 1.617 £0.437
Q9 =0.2,2,=0.0| 0.096 +0.009 2.066 +0.426 0.128 £+ 0.007 1.723 + 0.332
Q9 =0.3, 2, =0.7| 0.085+0.008 1.948 £0.447 | 0.115 £ 0.006 1.744 + 0.342

Angular correlation function

Again we computed the angular correlation function to get a qualitative insight with better
number statistics, and the projected correlation function, to derive a quantitative description
of the clustering of bright and faint galaxies.

Figure (5.11) shows the angular correlation function of bright and faint galaxies between
0.3 < z < 0.6, in comparison with the angular correlation function of all galaxies, for the

three different cosmologies, respectively. Table (5.10) gives the amplitudes at 6 = 1'.

The amplitude of the bright galaxies is clearly higher than that of the faint ones.
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Figure 5.11: The angular correlation function of bright and faint galaxies between 0.3 < z <
0.6, in comparison with the angular correlation function of all galaxies, for the three different

cosmologies.
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Table 5.11: Amplitudes of the projected correlation function at r, ~ 316kpc, for bright
(Mp < —18) and faint Mp > —18 galaxies.

| Cosmology | A(Mp > —18) v | A(Mp < —18) 0% ‘
Q9 =1.0, 2, =0.0| 6.756 £0.907 2.086 +0.381 | 15.126 £ 1.068 1.913 £ 0.292

Qo =0.2,02,=0.0| 8.681+£0.939 2.136 £0.331 | 19.997 £1.193 1.772 +0.322
Qo =03, 2, =0.7 | 12444 £1.138 2.003 £0.367 | 22.237 +1.430 1.853 £ 0.321

Table 5.12: Amplitudes of the three-dimensional correlation function at 7., = 1h~! Mpc,
for bright (Mp < —18) and faint Mp > —18 galaxies.

‘ Cosmology ‘ £(reom = 1h~ 1 Mpc),(Mp > —18) ‘ £(reom = 1h~ 1 Mpc),(Mp < —18) ‘
Qp=1.0, 25, =0.0 1.414 £+ 0.207 3.213 £ 0.227
Qo =0.2, 2y = 0.0 1.802 £ 0.224 4.204 £+ 0.333
Qy=0.3, Q) =0.7 2.631 £+ 0.256 4.716 £ 0.315

Projected correlation function

We computed the projected correlation function for bright and faint galaxies with dcz =
15000 km s~! in the same redshift interval. For the calculation of the effective depth we used
the above mentioned redshift distribution, see equation (5.16), and (5.15), respectively, and
Table (5.9). The results for the different cosmologies under consideration in this thesis are
shown in Figure (5.12).

The amplitudes of the projected correlation function at r, ~ 316 kpc are given in Table (5.11),
Table (5.12) lists the corresponding amplitudes of the three-dimensional correlation function
at Teom = 1h~! Mpc, which have been deduced by means of equation (5.10).

We find that the amplitude of the three-dimensional correlation function of the bright galaxies
is larger by a factor of ~ 2 than the amplitude of correlation function of the faint galaxies.
Figure (5.13) shows the values of bright and the faint ones in comparison with the amplitudes
of the whole sample. Additionally plotted are the amplitudes of the early type and late type
galaxies, as in Figure (5.9).

The amplitude of the bright galaxies is a bit larger than the total amplitude at that redshift,
but not as large as the amplitude of the early type galaxies. The faint galaxies are much
lower clustered, their amplitude can be found in the same region as the amplitudes of the
late type galaxies. Obviously the difference in the clustering strength for subsamples of dif-
ferent Hubble types is larger than for subsample with different rest-frame B band luminosities.

This result corroborates the hypothesis that the differences in the evolution of clustering of
galaxies are not only determined by the locus of their formation (large, bright galaxies form in
the rare high density peaks and are thus more strongly clustered), but also on their evolution.
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The faint sample is more dominated by late type galaxies than the bright sample, the ratio
of late type (SED > 60) to early type (SED < 60) galaxies is = 1.7, whereas for the bright
sample it is & 1.3. This might be the reason why the amplitude of the faint sample has more
or less the same value than the starburst galaxies, and the amplitude of the bright sample,
which contains bright, younger galaxies as well as the older population, is only slightly higher
than the total amplitude.

If faint (late type) galaxies are less strongly clustered than the bright ones at all redshifts,
then if we would see the same population mix of galaxies also in the highest redshift bin,
the clustering evolution would be even steeper than we have measured. However, the faint
galaxies are not seen at higher redshifts (see Figure (5.10)), and the correlation function in
the highest redshift bin between z = 0.75 and 1.07 is completely dominated by the bright
population.

Also the comoving number density of starburst galaxies, which are always less clustered than
the rest, increases with increasing redshifts, and the space density of the highly clustered very
early type (E-Sa) galaxies decreases by a factor of ~ 1.6 from z = 0 to z = 1 (Fried et al.,
2001).

Therefore we expect the measured growth for a deeper sample (deeper than I < 23) to be
even stronger.
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Figure 5.12: The projected correlation function of bright and faint galaxies between 0.3 <
z < 0.6, for the three different cosmologies.
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Figure 5.13: The amplitudes of the correlation function at r¢,, = 1h~' Mpc of bright and
faint galaxies, in comparison with the whole sample, and the early and late type galaxies.
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5.2.4 The cross-correlation between the faint and the bright galaxies

We also computed the correlation between bright and faint galaxies, to check whether the
correlation signal on the very smallest scales is dominated by the distances between bright
primaries and their faint satellites. We calculated this cross-correlation in the same redshift
bin as we did for the correlation of bright and faint galaxies (0.3 < z < 0.6), by comparing
the distances between the galaxies in the two samples ((DD,)), with the distances between
two randomly distributed samples of galaxies ((RsRp)) which follow the smoothed redshift
distribution of bright and faint galaxies, respectively (see equation (5.15), and (5.16)). The
estimator for the correlation function between faint and bright galaxies is

s — D Db)
esti (Rbe>

1. (5.17)

The angular correlation between the bright and the faint sample is shown in Figure (5.14),
in comparison with the data of all galaxies, and the correlation found in the bright and the
faint sample, respectively. There are no evident features which might serve as a diagnostics
for the contribution of satellite galaxies to the faint galaxy sample.

Despite its smaller number statistics, the projected correlation function can give a more de-
tailed insight, because projected distances are only counted if the galaxies are separated by a
distance +0z, thus the contribution of randomly projected, intrinsically uncorrelated pairs is
suppressed.

For the calculation of the effective distance in w(r,), we took the the redshift distribution of
all galaxies, which represents the selection function for the whole sample.

Figure (5.15) shows the projected correlation function between the bright and the faint sam-
ple, in comparison with the correlation function of the whole sample, and the correlation
among themselves (as shown in the last section).

The projected correlation function of the bright and the faint galaxies contains some infor-
mation: it shows a bump at the small scale end, and this may be used as a diagnostic for
the contribution of satellite galaxies to the faint sample. If we could extend our analysis to
higher redshifts (which will be possible in future surveys), we could give an estimate of the
change of the percentage of satellite galaxies with redshift, and thus place constraints of the
merger rate (at least for minor mergers).

In contrast to the angular correlation function, the projected correlation function can be used
for the investigation of the evolution of the comoving number of satellite galaxies.
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Figure 5.14: The angular cross-correlation between the bright and the faint sample (green)
in the range 0.3 < z < 0.6, in comparison with the data of all galaxies (black), and the
correlation found in the bright (magenta) and the faint (light blue) sample, respectively.
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Figure 5.15: The projected correlation between the bright and the faint sample (green) in the
range 0.2 < z < 0.5, in comparison with the data of all galaxies (black), and the correlation
found in the bright (magenta) and the faint (lightblue) sample, respectively.
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5.3 Summary

We have carried out an analysis of the evolution of large scale clustering of field galaxies
between a redshift z ~ 1.1 and the present epoch, using multicolor data from the Calar
Alto Deep Imaging Survey CADIS. Since the redshift errors are too large to calculate the
three-dimensional correlation function directly, we used both angular and projected correla-
tion function to infer the amplitudes of £(r) at different redshifts.

To facilitate a direct comparison with the LCRS (as a ”local” sample), redshift errors of the
size of the CADIS errors had to be added to the LCRS, and the projected correlation function
had to be calculated with the modified redshifts.

We calculated the angular correlation function in four redshift intervals with Az = 0.2. From
comparison with model amplitudes calculated for different evolution scenarios, we deduced the
evolution parameter € for different world models (a flat, high-density model, an open model
with Q¢ = 0.2, and a flat model with non-zero cosmological constant (¢ = 0.3, Q5 = 0.7).
For the same cosmologies, we calculated the projected correlation function, in three redshift
bins centered at (z) = 0.35, (z) = 0.625, and (z) = 0.91. From the amplitude of the pro-
jected correlation function in the different redshift bins we calculated the amplitude of the
three-dimensional correlation function at a comoving separation of 7.0, = 1A~ Mpc, and in-
troduced a new parameter g, which describes the deviation of the clustering growth from the
global Hubble flow. ¢ can be estimated by fitting a straight line into the &(reom = 1h~! Mpc)
versus log(1+ z) plot, ¢ is then simply the slope. It can be related to e: ¢ = —(¢+3 —+). Both
methods, deprojection of the angular and the projected correlation function are equivalent
and lead essentially to the same results. The estimation of the new parameter ¢ is a bit more
straightforward, and its meaning is possibly more comprehensible.

Depending slightly on the cosmology adopted for the estimation, we find a more or less rapid
growth of the clustering strength between a redshift of z ~ 1.1 and today. For the closed
world model we find € = 1.590 4+ 0.132, ¢ = —2.68 £ 0.16. The values found in the open case
are € = 1.107 + 0.134, ¢ = —1.92 £+ 0.17, and for the flat model with non-zero cosmological
constant we found € = 0.209 4+ 0.133, ¢ = —1.23 £ 0.20. The cosmology should not play such
an important role between a redshift of z =1 and today (see Table (5.1)). Thus we conclude
that the apparent dependence on the world model is mainly due to low statistics, and with
only four fields of 1/300° each we can not make a definite quantitative statement about the
clustering strength. However, all values of € are positive, and ¢ =~ —1.9, which is consistent
with linear clustering.

We also calculated the angular and the projected correlation functions for late and early type
galaxies. The different subsamples of early and late type galaxies exhibit a different cluster-
ing evolution: The early type galaxies are much stronger clustered than the late type ones,
and the amplitude of their correlation function is also much bigger than the amplitude of
the complete sample. This is the case at all redshifts, but the difference is larger at higher
redshifts; the values seem to converge to a common rg. The evolution of the clustering of
the late type galaxies could not be quantified, because the errors of the deduced amplitudes
of the three-dimensional correlation function at 7,m = 1A~" Mpc are too large to enable a
reliable fit. The amplitude of the correlation function of early type galaxies changes much
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more slowly with redshift, we found ¢ = —1.714+0.39 for Q¢ = 1.0, 25 = 0.0, ¢ = —1.374+0.36
for 2o =0.2, 25 = 0.0, and ¢ = —0.67 + 0.33 for 2y = 0.3, 2 = 0.7.

Combining redshift information and SE D, it is possible to calculate rest-frame B band lumi-
nosity, so we could further investigate the different clustering properties of bright and faint
galaxies. With reasonable number statistics in the faint sample, this was only possible in the
redshift range 0.3 < z < 0.6. The clustering amplitude of the bright galaxies is larger than
for the whole sample, and much larger than the amplitude of the faint galaxies, but not as
strong as for the early type ones.



Chapter 6

Discussion and conclusions

In this chapter we will first compare our results with determinations of other authors from
both the observational and theoretical point of view and then end with our conclusions.

6.1 Comparison with other observations

In the literature there are essentially only two investigations of the evolution of galaxy clus-
tering, the results of which can be compared with this work: one analysis by Le Fevre et al.
(1996) which has been carried out in the framework of the Canada France Redshift Survey
(in the following CFRS), and one by Carlberg et al. (2000), done on the CNOC sample
(Canadian Network for Observational Cosmology). Furthermore we applied our methods to
the COMBO 17 survey (Wolf et al., 2001a), and compared the results.

6.1.1 The CFRS determination

Le Fevre et al. (1996) used the projected correlation function to investigate the spatial clus-
tering of 591 galaxies between 0.2 < z < 1.1, in five CFRS fields (for a description of the
survey see Lilly et al. (1995) and Schade et al. (1995), respectively) of approximately the same
size as our CADIS fields. The objects are primarily located in three parallel strips for each
of the five fields, within which almost 100% spectroscopic sampling was obtained, separated
by regions where few spectroscopic observations were carried out. The galaxies have spec-
troscopic redshift determinations, and I < 23™%. They computed the projected correlation
function in three redshift bins between 0.2 < z < 0.5, 0.5 < z < 0.75, and 0.75 < z < 1.0,
with integration limits of §, = +0.0075. For the connection to z = 0 they took values of
ro(z = 0) from Loveday et al. (1995) and Hudon & Lilly (1996).

Figure (6.1) shows the amplitude of the three dimensional correlation function at repm, =
1h~! Mpc, deduced from the projected correlation function, in comparison with our own
data. For the direct comparison we have to multiply our measured amplitudes of the pro-
jected correlation function by 1.4 to correct for the influence of large redshift errors (see
Chapter 4).

71
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Figure 6.1: The amplitudes of the three dimensional correlation function at r¢, = 1A~ Mpc,
deduced from the projected correlation function of the CFRS data (crosses), in comparison
with our own data (open symbols). The filled symbols are our data points corrected for the
influence of the redshift errors on the amplitude of the projected correlation function. The
dotted line is the fit of the CFRS data points including the value of ro(z = 0) from Loveday
et al. (1995), the dashed line is the fit using the corrected LCRS point instead.

With this correction, the CFRS data points are consistent with our own measurement, al-
though with large errors. Le Fevre et al. (1996) claim that if ro(z = 0) = 5~ Mpc, 0 < € < 2.
The fit of their data points, including the connection to z = 0, yields ¢ = —3.043 4+ 0.213
(22 € = 1.8). If the connection to z = 0 is disregarded, we find ¢ = —1.184 + 0.634. The fit
including our redshift error corrected LCRS point instead of the Loveday et al. (1995) point
yields ¢ = —2.298+0.238. This is even a bit less than our own measurement (¢ = —2.68+0.16),
but nevertheless equal within the errors. This exercise shows that the value of ¢ depends on
the connection to the present epoch. First of all, as we have seen, the measured amplitude
of the correlation function depends strongly on the Hubble type, so the adopted value of
ro = 5h~' Mpc might not fit to the population mix of the CFRS sample and thus simply
be too large. Second, Le Fevre et al. (1996) did not take the influence of the redshift errors
into account. Although they are relatively small, it is probably not admissible to directly
compare the measured amplitudes with a value which was inferred from a direct estimation
of the three-dimensional correlation function.

The conclusion is that their measurement is consistent with ours, but the evolution is not as
fast as they claim, because they did not treat the local measurement selfconsistently.
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6.1.2 The CNOC determination

The survey itself is described in detail in Yee et al. (1996). The analysis of the clustering evo-
lution (Carlberg et al., 2000) was carried out on a sample of 2300 bright galaxies (k-corrected
and evolution-compensated R luminosities Mfz’e brighter than —20™%9 (Hy = 100 km s~ 1)).
The redshift distribution extends to z = 0.65, and for comparison with z = 0, they selected
a comparable sample from the LCRS.

From the calculation of the projected correlation function in seven redshift bins and in the
LCRS sample, they deduced the evolution parameter €, and found a strong dependence on the
cosmology adopted for the computation: € = 0.80+0.22 for Qg =1, Q) =0, e = —0.17£0.18
for 29 =0.2, Q4 =0, and e = —0.81+0.19 for 2y = 0.2, Qx4 = 0.8. The trend seen here is the
same as in our case — strongest evolution for the high density model, slower evolution for the
low-density cosmology, and the least evolution for the flat model with non-zero cosmological
constant. In our analysis the differences in the value of € are not so strong, we always find a
positive value of €, in all three cosmologies.

From a comparison of their results for different cosmologies with different theoretical models
for clustering evolution (linear clustering: Peebles (1980) and Efstathiou et al. (1985), biasing
models: Mo & White (1996) and Jing (1998), N-body experiments: Colin et al. (1997) and
Kravtsov & Klypin (1999)) they conclude that the open and €y = 1 models are consistent with
linear growth, but the flat A model is marginally excluded. Biasing is marginally excluded in
both the open and the high density cosmology, the low-density flat model is acceptable under
all biasing models.

Between a redshift of z = 0.65 and today the cosmology adopted for the calculation is even
less important than in our case (see Chapter 5), and therefore we conclude that their statistics
was far too low to permit these detailed conclusions.

6.1.3 COMBO 17

All the methods developed in this thesis, especially the calculation of the projected correla-
tion function, are universally valid and not restricted to a certain survey geometry or redshift
accuracy. Larger, wide angle deep surveys have only recently become available, and one of
them is the COMBO 17 survey ' (Wolf et al., 2001a), in some respect the successor of
CADIS. All observations have been carried out on La Silla, Chile, with the WFT (Wild Field
Imager) at the ESO-2.2 m telescope. Each of the four fields has a size of 1/40°. 17 filters have
been observed, which facilitates a secure multicolor classification and redshift determination
(020.017) down to R = 24. The complete catalogue will include ~ 40000 galaxies with I < 23,
in 1 0°, with SED and morphological information.

We already took a first glance on the data available so far, namely on one field centered
at asgo0 = 3"32M25°%, Gogop = —27°48'50”. The catalogue includes 6602 galaxies between
0.2 < z < 1.07 and I < 23, with the same redshift accuracy as the CADIS galaxies. We
masked out bright stars, calculated the projected correlation function in the same redshift
intervals as for the CADIS data, and fitted the amplitudes in the same way as before.

LCOMBO = Classifying Objects by Medium-Band Observations in 17 filters



log w(r,) /Mpe

log w(ry) /Mpe

log w(r,) /Mpe

74

CHAPTER 6. DISCUSSION AND CONCLUSIONS

- — — T ————
F1 Qp=1, =0 ] al 00=0.2, 04=0 aL 00=0.3, 0,=0.7
[ 0.2<z<0.5 ] [ 0.2<z<0.5 L 0.2<2<0.5
E B o 2F B o 2F B
1 8 °C g
1 = [ 2 [
S S
4 ’EL L ’EL .
r 1 % 'r 1 %F 'C B
w w
1 2 r . s r
L | I I ] ol I T ] ol ]
T R 1 L I L } A L I I
-2 -1 o -2 -1 0 -2 -1
log rp /Mpe log T, /Mpc log T, /Mpc
r 0o=1, 04=0 ] sl 00=0.2, 04=0 ] sl 20=0.3, 14=0.7
0.5<z<0.75 ] r 0.5<z<0.75 r 0.5<z<0.75
L 1, af 1, e ]
1 8 "t g L
4 = L = L
4 ~ L ~ L
1 = [ <~ [
£ £
r 1 % 'r 1 % 'C ]
4 = L = L
camis 1 =2 [ capis K [ cabis
L coumo ] of conso ] of couso ]
L S T T N O AU B L L PR N [ AP R T L L PO O 1 AP |
-2 -1 o -2 -1 0 -2 -1 0
log 7. /Mpe log rp, /Mpe log rp, /Mpe
=1, 24=0 1 r 00=0.2, 0y=0 r I 00=0.3, 04=0.7
- 0.75<2<1.07 - 2 } 0.75<2<1.07 - 2 0.75<2<1.07 B
[ ] [ \ ] [ ]
\ = =
\ 1 2 F SO = 4
- \ T 4 A 1F =4 4 1F -
\| /] 1\ 2 1 02t ~ G 4
———|CADIS . 1 E [ ———|cADIS E [ CADIS \ ]
I 1 82 . ~ b
F COMBO — 0 COMBO — 0 COMBO —
C | | . 1 {T[ L | 0 I P S R }]: L | | . } I

-z

0

-1
log r, /Mpe

-z

-1
log rp, /Mpe

Figure 6.2: The projected correlation function of the COMBO data (dotted lines) in compar-
ison with CADIS (solid lines). Upper panel: 0.2 < z < 0.5, middle: 0.5 < z < 0.75, lower
panel: 0.75 < z < 1.07.
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A comparison of the projected correlation function of the COMBO 17 and the CADIS data is
shown in Figure (6.2). For each cosmology and each redshift interval the projected correlation
function is shown separately.

From the projected correlation function we calculated the amplitude of the three-dimensional
correlation function at reom = 1h™! Mpc. The comparison with the CADIS data is shown in
Figure (6.3).

As one can see, the results are only in few cases fully consistent with the CADIS determina-
tions. For Qy =1, Q) = 0 and Q¢ = 0.2, Qp = 0, the values for (z) = 0.91 are equal within
their errors, for the open cosmology the data at (z) = 0.625 are almost identical. The am-
plitudes at the lowest redshift are different in all cases. It seems as if field-to-field variations
still play a role, even if the number of galaxies per field is large.

From the fit of the data we find ¢ = —1.87 £0.13 for Qg =1, 2y =0, ¢ = —1.94 £ 0.12 for
Qo =0.2, Q7 =0, and ¢ = —1.54 +0.20 for ¢ = 0.3, Qy = 0.7.

In the case of the closed model the parameter is significantly less negative than the one deduced
from the CADIS data (gqcaprs = —2.68 £0.16), whereas in the open case the value is almost
exactly the same as for CADIS (qcaprs = —1.92 +£0.17). In the flat model with non-zero
cosmological constant, the values are equal within the errors (qcaprs = —1.23 £0.20). The
differences between the cosmologies are not as significant as in the analysis of the CADIS data.

This result corroborates our claim that field-to-field variations and low statistic can feign an
apparent dependency on the cosmology adopted for the calculation. We expect that for more
fields and more galaxies g will settle to a robust value of ~ 2 with the expected spread of
about 20% due to the difference in angular distance in the different cosmological models.
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Figure 6.3: The amplitude of the three-dimensional correlation function at 7¢y, = 1 h~' Mpc.
Filled points are CADIS data, open circles are COMBO data. The dotted line is the fit for
the COMBO data.



6.2. COMPARISON WITH THERORY 77

6.2 Comparison with therory

The evolution of the matter correlation function &, with redshift has been studied extensively
using both N-body simulations (Jenkins et al., 1998) and analytic models (Hamilton et al.,
1991; Peacock & Dodds, 1994; Jain et al., 1995). Those analyses show, how an initial density
field evolves in different cosmologies. The evolution of the galaxy clustering, however, need not
necessarily follow that of the collisionless component of the mass density field. Galaxies have
been subject to external phenomena such as tidal interactions, satellite accretion, merger, etc.,
as well as to internal phenomena such as galactic winds and supernovae. How galaxies form
and evolve in the underlying mass field can partly be investigated by combining large high-
resolution N-body simulations with semi-analytic models of galaxy formation (Kauffmann
et al., 1999b,a; Somerville et al., 2001).

6.2.1 Evolution of dark matter in different cosmologies

Since the pioneering work of Davis et al. (1985) larger and larger N-body experiments have
been carried out in order to investigate the evolution of the dark matter. The development
of powerful supercomputers and sophisticated numerical methods has made extremely high-
resolution simulations possible. The best ones available at the moment are the ones carried
out by the Virgo consortium (Pearce et al., 1999). The evolution of structure was analysed
for four different cosmologies in a simulation with 17 - 108 particles, running from z = 50 to
z = 0. The world models include a flat high density model with Q¢ = 1, Q4 = 0 (SCDM)),
an open model with Q5 = 0.3, 25 = 0 (OCDM), a flat low-density model with non-zero cos-
mological constant (ACDM, Q = 0.3, Q5 = 0.7). Note that the parameters of these models
are almost identical to those we have used for analysing the correlation functions in our data.
Additionally a flat Q9 = 1 7CDM model has been simulated, in which a massive neutrino (the
T neutrino) was present during the very early evolution of the universe and came to dominate
the energy density for a short period. It then decayed into lighter neutrinos which are still
relativistic, thus delaying the epoch of matter-radiation equality — it is obvious that structure
starts to form later in this model. Figure (6.4) shows three ”snapshots” of the universe in the
four models, at z =3, z =1 and z = 0. The boxsize is 239.5 h~' Mpc. For the ACDM and
the OCDM Hy = 70km s~!/Mpc and Hy = 50km s~!/Mpc for the SCDM and the TCDM
models. The normalisation of the primordial power spectrum was chosen such that at z = 0
the models match the observed abundance of galaxy clusters.

In the two low-density models structure forms early, whereas in the 7TCDM cosmology and
above all in the SCDM model, structure forms much later. At the earliest epoch shown in
Figure (6.4), z = 3, the SCDM model is very smooth, with only little fine structure. The
7CDM model has some embryonic large-scale structure but is even more featureless than the
SCDM on the finest scales. By contrast, structure in the low-density models, particularly the
OCDM is already well developed by z = 3.
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Figure 6.4: The evolution of dark matter in four different cosmologies.
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The large-scale differences among the models are also apparent at z = 1. There is substan-
tially more evolution for high-density than for low-density models. OCDM has the most
developed large-scale structure at z = 1, while ACDM is intermediate between this and the
two high-density models.

At z = 0, the general appearance of all the models is similar because, by construction, the
phases of the initial fluctuations are the same. But non of the models is able to exactly re-
produce the observed two-point correlation function as measured in the APM survey (Baugh,
1996). Thus, for any of these models to provide an acceptable representation of the present
reality, the distribution of galaxies would need to be biased relative to the mass in a non-
trivial, scale-dependent fashion.

This analysis does not only make clear that the dark matter density field is clustered in a
different way than the galaxies, but also that structure developes very differently in different
cosmologies. Colin et al. (1997) give values for the evolution parameter e for dark matter
haloes followed in an N-body simulation of ~ 2 million particles, between z = 1.3 and z = 0.
In their simulation, ¢ = 1.5 for Qy = 1, 24 = 0 (corresponding to the evolution parameter
qg=—-27ify=18); e =-03, ¢g=-0.9 for Qg = 0.2, Qy = 0; ¢ = —0.6, ¢ = —0.6 for
Qo =0.2, 2y, =0.8.

The degree to which those results constrain the mean density of the universe depends on how
well the evolution of galaxy clustering is traced by the evolution of the mass density field or
the halo population, respectively. Since we have seen in our analysis that galaxies do not trace
matter, we can not conclude that our result, a more or less rapid growth of the structure, is a
hint at a high-density universe. More detailed studies of the clustering evolution of galaxies
of different Hubble types, and the comparison with semi-analytic models of galaxy evolution
are required before we can understand biasing, and before structure evolution can result in
statements about the mass density of the universe.

6.2.2 Biased galaxy formation

The evolution of the clustering of dark matter is a monotonous process, which depends on
cosmological quantities such as 2, 24, and the initial power spectrum, which determine how
collapsed structures — dark matter haloes — form and evolve. In those hierarchical cosmologies
the evolution of galazy clustering depends also on the physical processes — cooling, star for-
mation, radiative and hydrodynamic feedback — which drive the formation of galaxies within
these merging haloes. The relation of the clustering of the dark matter and of the galaxies is
described by the biasing parameter b, which can be different for different types of galaxies.

Kaiser (1984) showed that, inherent in the notion of the power-spectrum of the perturbations
(for the interrelation between correlation function and power-spectrum see appendix (A)) is
the fact that the perturbations have a Gaussian distribution of amplitudes about the root
mean squared value A with variance A2, so that the probability of encountering a density
contrast A at some point in space is proportional to exp(—A2/A). Galaxies form in the rare,
highest density peaks of the dark matter distribution, when gas cools, and condenses to form
stars. If we require the density perturbation to exceed some value A,;; in order that struc-
tures form, galaxy formation would be biased to the highest peaks over the mean background
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density.

Consider a large-scale (very much greater than galaxy-scale), positive density enhancement
in a given region of space, and that superimposed on this density enhancement are numerous
bumps and wiggles of galaxy scale (see Figure (6.5)). The very first galaxies to collapse will
be those at the very highest peaks in the density field. These objects correspond to the small-
scale bumps and wiggles that reside along the highest "ridge” of the density enhancement.
Therefore, one might expect that the earliest galaxy-sized objects to form would do so in a
strongly clustered state 2 (Brainerd & Villumsen, 1994). An observation which fits into this
picture is the strong clustering of Lyman break galaxies at a redshift of z ~ 3 (Steidel et al.,
1998; Giavalisco et al., 1998). The Lyman break galaxies are believed to be the predecessors
of today’s very massive elliptical galaxies.

Galaxy formation Galaxy formation

.

oMy e M
SRS

Mean dengity

Figure 6.5: The first galaxies form in the bumps and wiggles superimposed on rare, large
density enhancements and are therefore highly clustered.

As time goes by, smaller and smaller peaks that are farther and farther out in the wings
of the large-scale density enhancement will collapse to form galaxies, resulting in a galaxy
distribution that is less clustered than the distribution of the first generation of galaxies.

2The reason why the highest mountains in the world are in the Himalayas is because they are superim-
posed on the large-scale plateau, or long wavelength perturbation, caused by the plate supporting the Indian
subcontinent crashing into the Asian plate.
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6.2.3 Semi-analytic models of biased galaxy formation

A new technique for following the formation and evolution of galazies in cosmological N-body
simulations was introduced by Kauffmann et al. (1999b). Dissipationless simulation are used
to track the formation and merging of dark matter haloes as a function of redshift. Simple
prescriptions, taken directly from semi-analytic models of galaxy formation, are adopted for
gas cooling, star formation, supernova feedback and the merging of galaxies within the haloes.

In this kind of simulations, the dependence of the measured evolution of the correlation func-
tion on sample selection can be investigated. Kauffmann et al. (1999a) showed, that a ’'dip’ in
the amplitude of the correlation function between z = 1 and z = 0 can be a diagnostic for the
process of galaxy formation. Such a dip occurs in low-density models, because structure forms
early, and galaxies of ~ L, are unbiased tracers of the dark matter over this redshift range;
their clustering amplitude then evolves similar to that of the dark matter. At higher red-
shifts, bright galaxies are strongly biased, and the amplitude increases again. In high-density
models structure forms late, and bias evolves much more rapidly. As a result, the clustering
amplitude of L, galaxies remains constant from z = 1 to z = 0 (the 'dip’ occurs earlier). The
strength of this effect is sensitive to sample selection. The dip becomes weaker for galaxies
with lower star formation rates, redder colors, higher luminosities and earlier morphological
types, for which the comoving clustering strength does not change at all.

The simulation shows, that for a given cosmology, the clustering amplitude predicted for a
sample of galaxies depends on the masses of the dark matter haloes they inhabit. The evolu-
tion of clustering depends on how the mass distribution of these haloes changes with redshift,
and on the variation of the abundance of galaxies in the sample.

A sample of galaxies with a fixed star formation rate is expected to show a stronger dip (and
connected with this, a steeper rise of the amplitude of the correlation function with redshift)
than a sample of galaxies that tracked haloes of the same mass at all redshifts: galaxies with
fixed star formation rate are found in smaller haloes at high redshift than at the present time,
and also the abundance of starforming galaxies is expected to increase more strongly with
redshift, because there are many more small haloes than large ones. Early type galaxies are
found primarily in massive haloes at all redshifts. These galaxies do not exhibit any dip in
clustering, and their abundance decreases strongly with redhsift, because massive haloes are
rare objects at early times.

The results of this computer experiment fit very well to our own findings — a relatively strong
growth of the clustering strength between z = 1 and today found for all the galaxies included
in the CADIS sample, while the galaxies with early type SED (i.e. low star formation rate)
show a much slower increase of the amplitude of the correlation function.

6.3 Conclusion

In this work, we have seen that older galaxies show a much slower evolution of their cluster-
ing than younger or even starburst galaxies. Light does not simply trace matter: the simple
assumption of a direct correlation between galaxies and the dark matter distribution fails to
explain why galaxies of different Hubble types show a different evolution of their clustering
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with redshift. The rate of clustering growth one measures is dependent on sample selection.

A possible explanation can be found in the context of biased galazy formation. The first
galaxies are born in a highly clustered state, because they form in the bumps and wiggles
which are superimposed on the very large-scale density enhancements.

In the most simple model of bias evolution of early type galaxies, the galazy conservation
scenario (Fry, 1996; Tegmark & Peebles, 1998), the galaxy population is conserved over cos-
mic time (i.e. no new elliptical forms and no one disappears). This scenario implies the
assumption that all the early type galaxies (mainly ellipticals) were formed at high redshift
and simply follow the growth of the perturbations without the additional non-linear effects
such as virial collapse and merging. In this case the positive evolution of the bias which
increases with redshift is more than compensated by the decline of linear growth, and the
amplitude of the correlation function is expected to rise towards z = 0.

Obviously this model is an oversimplification. Galaxy formation is not supposed to be a
burst-like event, but a continuous process with a spread in redshift from 2z 2 3 to z =~ 1.
It is already well established that disk galaxies evolve to the present day: Late type disk
galaxies have present-day star formation rates comparable to those at earlier cosmic times,
early type disks have formed most stars at earlier times (Kennicutt et al., 1994). Galaxies
may disappear from one sample and show up in another, when the stars age and the SED
changes. Fried et al. (2001) found the evolution of the B band luminosity function of the
CADIS galaxies to be clearly differential, the normalisation ®* of the early type E-Sa galaxy
luminosity function and the integrated comoving space density decreases with increasing red-
shift. The normalisation for the Sa-Sc galaxy luminosity function increases with redshift as
well as the space density. The luminosity function of the starburst galaxies steepens towards
the faint end, and their comoving space density increases with redshift. The density evolution
of the early and the late type galaxy population apparent in our data is suggestive of merging.

If we assume a substantial evolution of the individual galaxies (including merging) between a
redshift the growth of the clustering strength well be slower: The next generations of galaxies
form later in the wings of the large-scale enhancements, and are therefore less and less clus-
tered. While the universe expands, the galaxies evolve, age, and eventually merge to form
larger, brighter galaxies and ellipticals, and generally add to the population of earlier type
galaxies, while new galaxies form at later times in less and less clustered environments.

The oldest galaxies have formed in a much more clustered state than their successors, and at
lower redshifts, the population of old galaxies consists of galaxies of different ages, which have
added to the ”old galaxy popultion” at different times, and in more and more lower clustered
states. Elliptical galaxies might not only form by monolithic collapse and passive evolution,
but also by merging (Toomre & Toomre, 1972; Naab et al., 1999). Merging amplifies the
effect, because first of all galaxies are formed, which ”suddenly” add to the old population.
Second, a merger event reduces not only the number of galaxies, but also the number of
small pair separations in a sample, which reduces the probability of finding pairs of galaxies
at small distances — and thus supresses the amplitude correlation function. Although the
clustering strength of the underlying dark matter density field increases with redshift, the
biasing decreases. The net effect is a very slowly rising clustering amplitude.
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In our case, we see some amount of evolution in the early type sample (0 < SED < 60), but
this sample also includes galaxies of later types than Sa (SED = 30). The comoving number
density of certainly more weakly clustered Sa to Sc galaxies increases towards higher redshifts
(Fried et al., 2001), so in our highest redshift bin the clustering signal is probably dominated
by a more weakly clustered population of galaxies. If we could calculate the correlation func-
tion for a sample excluding galaxies of earlier type than Sa, we would expect the evolution
parameter g to be even closer to zero than for our present ”early type” sample which includes
galaxies with 0 < SED < 60.

The overall evolution is an increase of structure between a redshift of z ~ 1.1 and the present
epoch, which might be even stronger than we have measured, since at the highest redshifts
we miss the faint, less clustered galaxies.

Our results can be explained if we assume that
e the first galaxies form in a highly clustered state,
e their successors form in an increasingly lower clustered environment,

e the epoch of galaxy formation is not a burst-like event but is spread over a large range
of redshifts, and

e there is a substantial amount of galaxy evolution (including merging) between a redshift
of z =1 and today.
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Chapter 7

Outlook

We have seen that two-point correlation functions are not only suited to simply describe the
presence or absence of structure in a distribution of galaxies, but also provide a powerful
tool to investigate the formation and evolution of galaxies within the underlying dark matter
density field. Not all galaxies trace mass (i.e. older galaxies are much more strongly clustered
than young, starforming galaxies). The exploration of the processes which lead to the different
evolution of the clustering of galaxies of different Hubble types can help us to understand the
interaction between the pure structure growth of the dissipationless dark matter component
and the development of the baryonic matter into stars and galaxies. In principle the evolution
of the correlation function can also place constraints on the cosmological parameters which
determine the geometry and dynamics of our universe, but more observations are needed to
disentangle dark matter clustering growth and the evolution of the bias.

7.1 The merger rate at intermediate redshifts

An interesting question in the context of galaxy evolution is the evolution of the merger
rate with redshift. In a hierarchical clustering scenario, merging plays an important role,
for example for the mass function (and therefore the luminosity function of galaxies), or the
formation of massive ellipticals. It also can be a possible explanation for the slow evolution of
the clustering of early type galaxies, which can better be explained by biasing models which
take merging into account, than by galaxy conservation models (Daddi et al., 2001). However,
it is very difficult to deduce the merger rate directly — not each close pair (~ 5 to 20kpc) is
in the process of merging, if their peculiar velocities are large (Av > 500 km s~!) they move
on hyperbolic orbits and will not merge. Also there is an ambiguity in the relation between
redshift space and real space — a redshift difference of Av = 500 km s~' can correspond either
to two galaxies at a small physical separation with a large infall velocity, or to two galaxies at
a separation of ~ 5h~! Mpc, with no peculiar velocity. Thus not only their spatial separation
must be known, but also their peculiar velocities. Although it is therefore not possible to de-
duce the merger rate from a correlation function, we can nevertheless at least try to estimate
the close pair fraction of galaxies at different redshifts by means of correlation functions. This
quantity is an upper limit of the merger rate. The present day close pair fraction for galaxies
with —21 < Mp < —18 has been estimated by Patton et al. (2000) to be N, = 0.0226 +0.0052
at z = 0.015. This implies that ~ 2.3% of the galaxies have companions within a projected

85



86 CHAPTER 7. OUTLOOK

physical separation of 5h~! < rp < 20h~ ' kpc and Av = 500km s~'. In hierarchical galaxy
evolution scenarios, the merger rate of field galaxies is expected to increase with increasing
redshift, and probably also with fainter luminosities.

The signature of very close pairs is expected to be a bumb at the very small scale end, as we
have seen in the case of the cross-correlation function between bright and faint galaxies (see
Chapter 5). We already have carried out some simulations to quantify this effect. We took
the CADIS data, and added a certain percentage of artificial neighbours to randomly chosen
galaxies. Those neighbours are located in a spherical shell with radius r + dr = 15 4+ 5kpc
around the catalogue galaxy. We calculated both angular and projected correlation function
in two different redshift bins (0.2 < 2z < 0.5 and 0.5 < z < 0.75), for 1%, 10%, and 30% close
pairs, respectively. Figure (7.1) and (7.2) show the results for Qo =1, Q4 = 0.

In all figures the black line is the fit for the unchanged data, fitted as usually in the range
0.88 < log# < 2.28 for the angular, and —1.7 < logr, < —0.3 for the projected correlation
function. Depending on the percentage of close pairs introduced into the catalogue, there is
a more or less pronounced bump at the small-scale end of both angular and projected correla-
tion function. This bump with respect to the fit is even visible in the unchanged data, which
indicates that a certain amount of close pairs is in fact present and leads to a change of the
correlation function for small pair separations.

The height of this bump could be used as an estimate of the close pair fraction at different
redshifts. From a first comparison with the modified data we can conclude that the close pair
fraction is certainly smaller than 10%, and the bump can more easily be found in the redshift
bin 0.2 < z < 0.5 than for the higher redshift interval (0.5 < z < 0.75), where we are hardly
able to resolve pairs with a separation of < 20kpc on groundbased data.

We need to follow up this possibility and find a quantification for the effect.
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Figure 7.1: The influence of close pairs on the angular correlation function.
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7.2 The emission line galaxies in CADIS

In this work only one part of the whole data base of CADIS was analysed, namely the mul-
ticolor galaxy sample. But CADIS assembles essentially two different survey strategies, the
multicolor survey, and an emission-line survey using an imaging Fabry-Perot interferometer,
to probe emission line galaxies down to a limiting line flux of ~ 3-1072° W m~2. These galax-
ies, which have been detected and classified by their emission lines, have redshifts with an
accuracy of 120km s~! — good enough to calculate the three-dimensional correlation function
directly. The special observing technique samples galaxies in distinct narrow redshift bins,
which allows for the investigation of the evolution of the clustering properties of emission line
galaxies between a redshift of z ~ 1.4 and z ~ 0.24. Galaxies which show strong emission lines
are galaxies which form, or have recently formed stars. Therefore they make up a valuable
sample for comparing the different clustering properties of early type (quiet) and actively
star forming galaxies. We expect their clustering amplitude to be very low, and, following
Kauffmann et al. (1999a), to be strongly evolving with redshift.

However, since their number is small (N = 1000 for the full CADIS), it is impossible to carry
out this analysis before the full CADIS emission line survey has been completed.

7.3 COMBO 17

This amazing data base (see Chapter 6) can be used for various investigations, using either
the projected or the angular correlation function. First of all the higher statistic allows for a
more detailed analysis of the evolution of the clustering, a repetition of the analysis carried
out on the CADIS data will not only corroborate the results, but might also show a possible
dependency of the growth rate on redshift (a change of the parameter ¢ with redshift). Tt also
should be possible to investigate, whether the slope 7 of the correlation function changes with
redshift, or is different for different Hubble types. The clustering evolution of different Hubble
types itself can also be investigated in smaller SED bins, and the difference of the ampli-
tudes of the correlation function of bright and faint galaxies can be followed to larger redshifts.

With a deeper survey like COMBO 17, we can furthermore calculate the projected cross-
correlation function between bright and faint galaxies for higher redshifts as we did before
(see section (5.2.4)). As we have seen, the signature of satellite galaxies as well is a bump at
the small-scale end, so this analysis will help place constraints on the merger rate. If a quan-
tification of the close pair fraction can be found, with the COMBO 17 data it is probably also
possible to investigate the dependency of the merger rate, or close pair fraction, respectively,
on the Hubble type, or the absolute rest-frame B-band luminosity.

The investigation of the clustering properties of various subsamples from the COMBO 17
survey can be carried out rather easily with the methods and algorithms developed in this
thesis. As soon as the classification and redshift determination for more fields is completed,
this analysis will immediately yield results with a unique accuracy and significance.
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Appendix A

The relation between £(r) and the
power spectrum of the density
fluctuations

The correlation function is directly related to the density contrast A(z) = do/p. With
0 = oo[1 + A(x)], equation (3.2) can be written as

dNpeir (r) = o(x)dVio(x + r)dVs . (A.1)
Therefore
ANpair () = g3[1 + AGOJ1 + Al +1)JdV; dV - (A.2)

The average value of A is zero by definition and therefore the two-point correlation function
is just
dNpair (r) = 05[1 + (A(x)A(x +1))]dVi dV5 (A.3)

This shows explicitly the relation between the density contrast on different scales » and the
two-point correlation function:

§(r) = (Ax)A(x +1)) (A.4)

We can now relate the spectrum of the fluctuations (in terms of the spatial Fourier transforms
of A(r)) to the two-point correlation function, which is, by definition, spherically symmetric
about each point.

First we define the Fourier transform pair for A(r)

A@r) = (2‘;)3 / Are ™ P (A.5)

1 :
A = V/A(r)e_lk‘"d?’x.

With use of Parseval’s theorem to relate the integrals of the squares of A(r) and its Fourier
transform Ay, one gets

%/AQ(r)d% - #/mkﬁd% . (A.6)

91



92APPENDIX A. THE RELATION BETWEEN &(R) AND THE POWER SPECTRUM OF THE DENSITY

The quantity on the left-hand side of equation (A.6) is the mean square amplitude of the
fluctuations per unit volume, and |Ay|? is the power spectrum of the fluctuations, P(k).
Therefore we can write

(A7)

AyPd3k = z

Since the two-point correlation function is spherically symmetric, the element of k-space can
be written d*k = 4wk?dk and so

1% 1
(A?) = F/|Ak|2k2dk = 2—2/P(/<:)k2dk (A.8)
s ™

With equation (A.4) we can relate (A?) to the two-point correlation function. A(x) can be
written as a Fourier series:

= Z Ake_ikx . (Ag)
k

A(x) is a real function and therefore we can find |A(r)|? by writing |A(r)|> = |A(r)A*(r),
where A*(r) is the complex conjugate of A(r). Taking the average value of the product of
A(x) and A(x +r) in the same way, one finds

= (303 ApAemilkok)xgmikiry (A.10)

k k

All cross terms vanish except those for which k = k’. Therefore

&(r) = Z | Ay [2eikT (A.11)

Conversion into a Fourier integral gives

£(r) = #/|Ak|26ikrd3k- (A.12)

£(r) is a real function, so we can take only the real part of e %", and because of the spherical
symmetry of the two-point correlation function, we integrate over an isotropic distribution of

angles 6. Thus we obtain

v sin kr sm kr
= — [ |Ag)? Kk = /P k2dk A.13
€)= 55 [ IAPE s (A.13)
The function sin kr/kr acts as a window function, which allows only wavenumbers & < r~!
to contribute to the amplitude of the fluctuations on the scale r. Fluctuations with larger
wavenumbers, corresponding to smaller scales, average out to zero on the scale 7.



Appendix B

Cosmological Distances

The calculation of the three-dimensional correlation function raises the question how to com-
pute the distances between two galaxies with different redshifts z; and z;, which are separated
by an angle 6. The only measurement one has for the radial distances of the galaxies is the
redshift, so we have to find a way to estimate the distances from the redshifts. This is not
straightforward, and so the most important points are listed here.

The starting point and basis for all further calculations is the General Theory of Relativity
developed by A. Einstein, together with the Cosmological Principle. The Cosmological
Principle states that the Universe is spacially homogenious and isotropic. This assumption
results in a simlification of Einsteins field equations which reduce to the pair of independent
equations:

R2(t) — SWGQ(g)RQ(t) + AR;(t) — ke : (B].)
and
R(t)  4nGo(t) A
m = —T + § . (B.2)

G is the gravitational constant, o(¢) the matter density (throughout this work negligible pres-
sure is assumed), A the cosmological constant and the sign of &k determines the curvature of
the three-dimensional space. R is the scale factor, which has the dimension of a length, ¢
is the speed of light, and t the cosmic time as measured by a fundamental observer. The
concept of fundamental observers can be introduced according to Weyl’s postulate, which
says that the worldlines of all points in the universe do not intersect, except at one point at
the very beginning — the big bang. Once this postulate is adopted, it becomes possible to
assign a notional observer to each worldline — those are the fundamental observers. The time
measured by the fundamental observer with a standard clock is called cosmic time. There is
a very simple way to synchronize all the clocks: all the fundamental observers set their clocks
to one distinct time in that very moment when the temperature of the microwave background
drops to a certain value.

The only isotropic curved spaces are those in which the curvature is constant throughout the
whole space, and can take positive, zero or negative values.
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The general form of the line element in a homogeniously expanding, isotropic curved space,
which satisfies the field equations, is described by the Robertson- Walker-Metric, in the fol-
lowing RWM:

do?

ds®? = 2dt? — R*(t) | ———
s“=c R4(t) 1= ko?)

+ 02d6? + o2 sin? 0dp?| (B.3)
where s is the four-dimensional distance, @ and ¢ are angular coordinates, and o is the
dimensionless radial coordinate. ¢ is also called comoving coordinate, because it can be
understood as a kind of label fixed to a certain galaxy, which never changes it’s value. The
varying scale factor R(t) is taking account of the expansion. With

R
H = =
R,
81Go
@ = 32
A
P = g

H being the Hubble parameter, €2 the density parameter, and €25 the normalised cosmological
constant, we can calculate

ke = RPH*(Q+Qp — 1), (B.4)
so that
k =sign(Q+ Q) —1) . (B.5)

Since R > 0 we can write
—_— C 1 .
N H /| + Qp — 1] ’

this is the radius of curvature of the three-dimensional space at time ¢. For & = 0 it is con-
venient to define the scale factor R to be ¢/H.

R (B.6)

As can be seen from equation (B.1), and (B.3), the constant k& determines the geometry of
the universe.

e If the curvature parameter k = —1, then the space is negatively curved (the sum of the
angles of a triangle is less than 180°)

e For k£ = 0 the universe is flat (the sum of the angles of a triangle equals 180°)

e If the curvature parameter £ = +1, then the space is positively curved (the sum of the
angles of a triangle is more than 180°)

For the special case of Q5 = 0, k determines not only the curvature, but also the dynamical
properties of the universe:

e [f the curvature parameter £k = —1 and Q4 = 0, the universe is open, and the expansion
will contiue forever.
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e For £k = 0 and Q) = 0 the universe is neither open nor closed, coming to a halt only
only as t — oo.

e If the curvature parameter £ = +1 and Qj = 0, then the expansion will someday halt
and reverse itself

With the cosmological constant present, the dynamic properties and the geometric properties
are independent.

In the following the index 0 will be used to denote the present value of a given quantity, fixed
at the time t( of observation. The explicit dependence on ¢ will be dropped for brevity. Taking
matter conservation into account and using the present day values, we have oR3 = g Ry, and
SO

: QoRy | QaR?
R*=H}R? (M A (40— 1)) . (B.7)
R R;
With
Ry
=1 B.8
= (B3)
we get from equation (B.7)
dz .
dz = ERdt = —Hy(1 + 2)4/Q(2)dt , (B.9)
where
Q(z) = (1 +2)> — (W + 2 —1)(1+2)% — Q4 . (B.10)

The coordinate distance o of the RWM can be represented as

sinhy : fork=-1
oc=F(x) = x : fork=0 (B.11)
siny : fork=+1

with
c 22 dz

X:HORO a2 VQ(2)

In a static Euclidean space, one can define a variety of distances according to the method of
measurement, which are all equivalent. In an expanding universe with non-zero curvature one
can define the same set of distances in a way such that they look as Euclidean as possible,
and they all can be related to each other.

(B.12)

The dimensionless comoving coordinate can be transformed into a distance by multiplying o
with the present day scale factor R:

D = ROO' . (B13)
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This distance has the meaning of the proper distance that an object has today. The proper
distance at some other time can be obtained by deviding equation (B.13) by (2 + 1), where z
is the redshift at the corresponding time. For the special case of Q) = 0, an analytic formula
for this distance could be derived (Mattig, 1958):

2¢ 1 1
D=——=[Qz—-(2-9 14+ Qoz—1)| —— B.14
o (02— 2= (VIF Rz = 1)] (B.14)
The angular diameter distance is a distance defined such that the relation between proper
length d of an object and its angular projection on the sky (#) looks as Euclidian as possible:

d=Dy-0, (B.15)
Ryo

Dy = . B.16

A (1+2) ( )

In the same way one can define a luminosity distance:

9 L

D7 = nF (B.17)
where L is the luminosity of the source, and F is the flux measured by the observer. Let a
source of light be located at the origin of a comoving coordinate system. The source emmits
photons that arrive at a spherical surface around the origin, which (at the present time) has
the area 47rD%, so the radiant flux will be diminish as 1/ D%. Two effects, in addition to the
inverse square law, act to reduce the value of the radiant flux measured at this sphere. The
energy of each photon is reduced by a factor of 14 z. Also, cosmological time dilation affects
the average time intervalls between photons emitted by the source. This means that the rate
at which the photons arrive at the sphere is less than the rate at which they leave the source
by another factor of 1 4+ z. Combining these effects, the flux at the sphere’s surface is

L

F = B.18
A (Roo)2(1 + 2)2 ( )

so for the luminosity distance one finds
Dy = Ryo(1+2) . (B.19)

For the comparison of the correlation function at different times in the evolution of the large
scale structure we need to know the physical distances between the galaxies in the epoch under
consideration. This is a major problem, because the physical distance between two galaxies
at two different redshifts z; and z; is not properly defined - since two different redshifts mean
two different epochs, it is only possible to give a physical distance of the two objects at the
present epoch.

For the angular distance the reciprocity theorem applies:

Dij = piji

—_— . B.20
A 1+Z]‘ ( )

The symmetry properties of the angular distance are discussed in detail in Kayser et al. (1997).
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A good approximation for Az = z; — z; < 1 is to first calculate the distance the two galaxies
have today, and then project it to the epoch under consideration, by deviding by (1 + 2),
where Z = (2; + z;)/2. For small radial intervals where curvature is negligible, we can also
make a further simplification: instead of integrating the line element of the RWM with d¢ # 0
and df # 0, we use the law of Pythagoras, as if it were static, Euclidean space. Thus

— 2
dij = \/(DA(B)'9)2+<(1D_E_ZZ:_)> , (B.21)

— J(ROUO’Z .0)2 + <—R00Zi’zj>2
z z

The subscripts in ¢ indicate that in the case of D4 the integration in yx (see equation(B.12))
is carried out from 0 to z, for D it is carried out from z; to z;.
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