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Zusammenfassung

Part 1

Zusammenfassung

Das maligne Melanom ist ein aggressiver Tumor, der schon im frühen Stadium Metastasen

bilden kann. Es wurden bereits miRNA Profile für verschiedenste Tumorentitäten, wie auch

für das maligne Melanom publiziert. Allerdings unterscheiden sich diese substantiell in ihren

Ergebnissen. Daher ist es vorteilhaft, direkt miRNA Netzwerke zu entschlüsseln, die eine

bedeutende Rolle in der Tumorprogression aufweisen und z.B. das Invasionsverhalten von

malignen Melanomzellen regulieren. In der vorgelegten Arbeit wurde die Melanomzelllinie

A375 mit einer Bibliothek bestehend aus 988 miRNAs transfiziert und deren Effekt auf das

Invasionsverhalten mit Hilfe eines Hochdurchsatz Boyden-Chamber Verfahrens untersucht.

Durch dieses funktionelle Screeningverfahren konnten miRNAs identifiziert werden, die

entweder die Invasionsfähigkeit von Melanomzellen verstärken und somit onkogen wirken,

oder als Tumorsuppressoren die Invasionsfähigkeit vermindern. Im nächsten Schritt wurde

die Expression ausgewählter miRNA Kandidaten in 20 Melanomzelllinien im Vergleich zu

normalen Melanozyten von 7 gesunden Spendern validiert. Im Invasionsversuch zeigte miR-

339-3p einen deutlichen Effekt als Tumorsuppressor, außerdem war es in Melanomzelllinien

signifikant niedriger exprimiert im Verlgeich zu normalen Melanozyten. Desweiteren zeigten

A375 Tumorzellen mit stabiler miR-339-3p Überexpression eine niedrigere Metastasenanzahl

im Lungenkolonisationsversuch in NSG Mäusen im Vergleich zur Leervektorkontrolle.

In anschließenden miRNA-Zielgenanalysen konnte das ”myeloid leukemia cell differenti-

ation protein” (MCL1) als neues Zielgen von miR-339-3p bioinformatisch identifiziert werden

und in mehreren unabhängig voneinander durchgeführten Experimenten konnte nachgew-

iesen werden, dass miR-339-3p tatsächlich MCL1 reguliert: Die Transfektion von miR-

339-3p führte zu einer Herabregulation von (i) MCL1 Protein und (ii) MCL1 spezifischer

mRNA; (iii) die Applikation von miR-339-3p AntagomiRs bewirkte eine verstärkte Invasion

von Melanomzelllinien; (iv) mit einem 3’UTR Bindungsassay konnte die direkte Interaktion

zwischen miR-339-3p und der 3’UTR von MCL1 nachgewiesen werden; (v) eine verminderte

MCL1 Expression durch MCL1 siRNA Transfektion zeigte außerdem eine vergleichsweise

reduzierte Invasionsfähigkeit der Melanomzellen wie sie nach Transfektion mit miR-339-3p

beobachtet wurde.

Die hier präsentierten Ergebnisse lassen vermuten, dass miR-339-3p als Tumorsuppressor

eine Rolle in der häufig beobachteten unterschiedlich starken Aggressivität verschiedener

Melanome spielen könnte. Der eingesetzte funktionelle Ansatz bietet eine gute Möglichkeit,
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Zusammenfassung

miRNAs und deren Zielproteine zu identifizieren, die eine wichtige Rolle in der Invasivität

des malignen Melanoms spielen und stellt somit eine Grundlage für die Entwicklung neuer

Therapieansätzen dar.
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Summary

Part 2

Summary

Melanoma is a fast progressing tumor which tends to metastasize at small size and early

time point. miRNA profiling has been performed for a variety of cancer types, but data differ

substantially between studies. Therefore, it is of main interest to unravel miRNA networks

which are involved in main aspects of melanoma progression, such as cell invasion. In order

to obtain candidate miRNAs relevant for the control of invasion, a high-throughput invasion

assay in a 96-well Boyden chamber format was performed for functional screening of a human

miRNA mimics library consisting of 988 miRNAs (miRBase Version 13.0).

The identified miRNAs could be categorized into miRNAs increasing the invasive capacity

of A375 melanoma cells (oncogenic miRNAs) or miRNAs decreasing the invasiveness, which

were predominantly downregulated in melanoma and could function as tumor suppressors.

miRNA expression analysis was performed to further validate these candidate miRNAs for

their physiological role in different melanoma cell lines. miR-339-3p was defined as one

promising candidate inhibiting invasion when transfected into different melanoma cell lines.

miR-339-3p was expressed to significantly lower extent in melanoma cell lines compared to

normal human epidermal melanocytes. Furthermore, A375 cells stably overexpressing miR-

339-3p showed decreased lung colonization in NSG mice in comparison to cells expressing

the empty vector control.

The myeloid leukemia cell differentiation protein (MCL1) was identified as a potential

target of miR-339-3p by target prediction analysis and could be confirmed experimentally:

miR-339-3p transfection resulted in downregulation of MCL1 (i) protein and (ii) mRNA

levels; (iii) miR-339-3p antagomiR treatment increased melanoma cell invasion; (iv) the

direct interaction of miR-339-3p and MCL1 3’UTR was shown in a 3’UTR binding assay; (v)

MCL1 downregulation by siRNA inhibited melanoma cell invasion to comparable extent as

mediated by miR-339-3p transfection.

These findings indicate that miR-339-3p can act as a tumor suppressor in melanoma and

the extent of its expression levels might contribute to the varying aggressiveness of different

melanomas. This presented approach may help to unravel possible therapeutic checkpoints

within the miRNA network of malignant melanoma cells to counteract tumor spread.
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HRAS v-Ha-ras Harvey rat sarcoma viral oncogene homolog

hRluc synthetic Renilla luciferase gene

HRP horseradish peroxidase

HSV-TK herpes simplex virus thymidine kinase

IEP immediate early promoter

IGFBP3 insulin-like growth factor binding protein 3

IGF2R insulin-like growth factor 2 receptor

IgG immunoglobulin

IL1B interleukin 1 beta

IL8 interleukin 8

IL11 interleukin 11

i.v. intravenously

KCNMA1 potassium large conductance calcium.activated channel, subfamily M, alpha

member 1

kDa kilo dalton

KRAS v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog

LB lysogeny broth

LEU2 leukemia associated gene 2

LMM lentigo maligna melanoma

LPH liposome polycation-hyaluronic acid

MAPK mitogen-activated protein kinase

MC1R G protein-coupled melanocortin receptor 1

MCL1 myeloid cell leukemia sequence 1

MDM2 murine double minute 2

MEK MAPK/ERK kinase

MET mesenchymal to epidermal transition

MeV Multiexperiment Viewer

Mib1 mindbomb homolog 1

MIF macrophage migration inhibitory factor
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min minute(s)

miRISC miRNA-induced silencing complex

miRNA microRNA

MT1X metallothionein 1

MITF microphthalmia-associated transcription factor

MLANA melan-A

MMP 7 matrix metalloproteinase 7

mo month(s)

MYC v-myc myelocytomatosis viral oncogene homolog (avian)

MYCN v-myc myelocytomatosis viral related oncogene, neuroblastoma derived

(avian)

MYOF myoferlin

NaCl sodium chloride

NCI National Cancer Institute

NFAT5 nuclear factor of activated T-cells 5

NHEM human normal epidermal melanocyte

NM nodular melanoma

NRAS neuroblastoma RAS viral /v-ras) oncogene homolog

NSCLC non-small cell lung cancer

NSG mice Non-obese diabetic scid gamma mice

nt nucleotides

ori origin

PAGE polyacrylamide gel electrophoresis

PAR-CLIP Photoactivatable-Ribonucleoside-Enhanced Crosslinking and

Immunoprecipitation

PARP Poly-(ADP-ribose) polymerase

PBS phosphate buffered saline

PCR polymerase chain reaction

PDCD1/4 programmed cell death 1/4

PEST domain rich in proline, gulamic acide, serine and threonine amino-acids

PI(3)K phoyphatidylinositol 3 kinase

PIP2 phoyphatidylinositol (4,5)-bisphosphate

PIP3 phoyphatidylinositol (3,4,5)-trisphosphate

PLC protein kinase C

PLZF promyelocytic leukemia zinc finger

PMEPA1 prostate androgen-induced protein A1
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pre-miRNA precursor miRNA

pri-miRNA primary miRNA

PTEN phosphatase and tensin homologe

qPCR real-time quantitative PCR

r Pearsons’s correlation coefficient

RAS rat sarcoma viral oncogene homolog

RB1 retinoblastoma 1

RefSeq Reference Sequence

RNA ribonucleic acid

RNAPII RNA polymerase II

RNU6B small nuclear RNA U6

RPMI Roswell Park Memorial Institute

rRNA ribosomal RNA

SCF stem cell factor

SCG5 secretogranin V

scFv single-chain antibody fragment

SD standard deviation

SDS sodium dodecyl sulfate

sec second(s)

SEMA6/5A semaphorin-6/5A

SERPINA3 serpin peptidase inhibitor, clade 3

SILV silver homolog (mouse)

siRNA small interfering RNA

SLIAC stable isotope labelling by amino acids in cell culture

SLC2A3 solute carrier family 2, member 3

snRNA small nuclear RNA

SPRR2D small proline-rich protein 2D

SSM superficial spreading melanoma

STC2 stanniocalcin 2

SV40 simian vacuolating virus 40

T-ALL T-cell acute lymphoblastic leukemia

TBS Tris-buffered saline

TBS-T TBS with 0.1% Tween-20

TGFBR2 transforming growth factor, beta receptor II

Tm melting temperature

TM transmembrane domain
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TNF tumor necrosis factor

TPM1 tropomyosin 1

TRIM2 tripartite motif containing 2

TRPM1 transient receptor potential cation channel, subfamily M, member 1

TSP1 thrombospondin-1

TYR tyrosinase

TYRP1 tyrosine-related protein 1

UCSC University of California Santa Cruz

UTR untranslated region

UV ultraviolet

VEGF vascular endothelial growth factor

WNT wingless-type MMTV (mouse mammary tumor virus) integration site family

WST water soluble tetrazolium

YB1 Y box binding protein 1

yr year(s)

ZEB1 zincfinger E-box binding homeobox 1
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Part 3

Introduction

3.1 Melanoma

Skin cancer represents the cancer type most commonly diagnosed in the United Stated of

America with a prevalence of two million new cases annually [1]. The most common forms

are nonmelanoma skin cancer types including basal cell carcinoma (BCC), angiosarcoma,

cutaneous B-cell lymphoma, cutaneous T-cell lymphoma, dermatofibrosarcoma protuberans,

merkel cell carcinoma, sebaceous gland carcinoma or squamous cell carcinoma (SCC) [1, 340].

Malignant melanoma is the least common type of skin cancer representing only 5% of all

skin cancer cases reported. Despite this fact malignant melanoma is considered the most

aggressive form of human skin cancer with a ten-year survival rate of about 24% for melanoma

patients without distant metastases [340]. Melanoma is responsible for about 80% of skin

cancer related deaths [340]. In europe malignant melanoma is the ninth most common cancer

type and accounts for around 3% of all cancer incidences. The highest incidence rates of

malignant melanoma are found in Australia and New Zealand due to high exposure to UV

radiation, which is the main cause of skin cancer [340].

Melanoma is a disease of epidermal melanocytic cells, so-called melanocytes. These

pigment-producing cells are widely distributed in the body e.g. in the gastrointestinal tract,

the inner ear and most commonly in the basal layer of the skin epidermis. Melanocytes are

responsible for the skin pigmentation by a process called melanogenesis. Melanin, a skin pig-

ment which absorbs UV-B light and therefore protects skin layers such as the hypodermis, is

produced during this process [4]. Low amounts of melanin production in rather fair-skinned

people and a high exposure to UV-B radiation are the main factors for skin cancer develop-

ment in countries such as Australia and New Zealand [340]. Skin cancer screenings have been

established world-wide as they have been shown to be a crucial step in the early detection of

melanoma incidences, that is to say before the disease progresses and metastasis formation

has begun [75].
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3.1.1 Melanoma progression and invasion

The transformation of melanocytes to melanoma requires a multistep accumulation of

genetic and molecular alterations [238, 360]. Melanocytes originate from melanoblasts which

migrate from the neural crest for example into the skin and subsequently localize in the

epidermis or the hair follicles [81]. The normal healthy skin is composed of the epider-

mis on the outside, the dermis and the hypodermis as the skins’ most inner layer [4, 81].

Melanocytes are smaller in size than keratinocytes and inhibit the melanosomes, melanin-

producing, membran-bound organelles, which can be observed by bright-field microscopy

[81]. At their final destination, for example in the epidermis, melanoblasts differentiate into

mature melanocytes and synthesize melanin that can be transferred to their neighbouring

keratinocytes [81]. Melanocytes can be found in different organs, such as the ears, the eyes,

mucosal membranes, the central nervous system and in the gastrointestinal tract [81, 112].

In the following the focus will be on skin cancer types and therefore explicitly on cutaneous

melanocytes.

The transformation of melanocytes to melanoma is called melanogenesis and depends on

various genetic factors of the host and on environmental influences [238]. It has been shown

that different subsets of genetic alterations, so-called driver mutations, are necessary and suf-

ficient to promote melanoma progression [145, 231]. In the normal healthy skin, melanocytes

are evenly distributed in the epidermis [74]. However, melanogenesis begins when an aber-

rant proliferation of melanocytes leads to benign or dysplastic nevi formation. There then

follows the radial growth phase when additional genetic and epigenetic mutations accumulate

and the melanoma exhibits the ability to grow intraepidermally as can be seen in Figure 1.

During the vertical growth phase melanoma cells can invade the dermis and form metastases.

In this last step of the progression model the melanoma cells are able to disseminate to other

locations of the skin or other organs through the vascular and lymphatic system. Despite

this commonly proposed model, clinical data suggest that melanoma progression does not

necessarily start with nevi formation or strictly follows the proposed model [68].

3.1.2 Melanoma classification

Melanoma can be classified into different types based on important characteristic features

of melanoma progression and staging such as tumor thickness, mitotic rate and ulceration.
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The mitotic rate is currently considered to be a novel important prognostic parameter of

melanoma staging [20, 21]. Melanoma can be categorized into four basic types: superficial

spreading melanoma, lentigo maligna, acral lentiginous melanoma and nodular melanoma

[111, 65, 21]. Superficial spreading melanoma accounts for about 70% of all melanoma inci-

dences especially among the younger population. This kind of melanoma is named due to

persistent growth along the top layer of the skin in the period before it starts penetrating

more deeply into the skin [112]. Starting with a benign mole the first indications are irregu-

lar discoloured flat or slightly raised patches that vary in colour. It is not restricted to any

specific body part but most commonly it appears on the legs or the upper back.

The in-situ melanoma, lentigo maligna, shows similar features, however it is mostly found

among the elderly, and on chronically sun-exposed or damaged skin on the face, neck, forearms

and ears [285]. Lentigo maligna is the least common and least aggressive type of cutaneous

melanoma with the highest incidence rates reported in Hawaii. The benign form of lentigo

maligna might grow slowly for three to fifteen years. If this type acquires the ability to

spread, it is thereupon called lentigo maligna melanoma [65].

The third superficially growing type of melanoma is called acral lentiginous melanoma and

it appears mainly under nails and on feet or on hands. The progression of acral lentiginous

melanoma is faster in comparison to lentigo maligna or superficially spreading melanoma and

it is more commonly found among African-Americans and Asians than among Caucasians

[21].

The most aggressive form of melanoma is called nodular melanoma and is found in ten to

fifteen percent of melanoma incidences. It predominantly has a vertical growth phase while it

significantly lacks the radial growth phase. Mostly during the time of diagnosis it is already

invasive and has formed metastases [112]. It can appear without the indication of a previous

lesion in a variety of colours, ranging from grey to blue, and white, brown to non-pigmented,

but mostly it is black [111, 65, 238].

3.1.3 Melanoma staging

The different progression states of melanoma are mainly characterized depending on the

thickness of the tumor and whether the tumor has already spread to lymph nodes or other

organs of the body. Staging indicates possible treatment options, the likelihood of melanoma

recurrence or if the tumor has already spread to adjacent lymph nodes and tissues [20, 21].

The Breslow scale indicates the thickness of melanoma occurrence whereas the Clark scale
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measures the local invasion [74]. Five different levels are described by the Clark scale, reaching

from melanoma in situ (level 1) where the melanoma cells are present only in the epidermis,

to level 5, where tumor cells have penetrated through the dermis into the subcutaneous fat

(Figure 1).

Figure 1: The Clark scale staging system for melanoma indicating its progression as it is categorized from
stage 0 to stage III. The different stages are determined due to the penetration of melanoma cells into the
skin. At stage 0 only the epidermis is affected, but with disease progression the cells invade the dermis,
eventually the subcutaneous tissue and start to metastasize through the lymph or blood system. Adopted
from the AJCC Cancer Staging Manual [74].
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The Breslow scale is calculated based on the depth of tumor growth and divides the tumor

occurence in five stages. In the Tis stage melanoma cells are only present in the uppermost

layer of the skin surface and less than one millimetre thick. With increasing thickness the

tumor is classified into T1 stage (> 1mm), T2 stage (1mm-2mm), T3 stage (>2mm) and

finally the T4 stage, when the tumor reaches a thickness of more than four millimetre. This

staging system is also the basis for the third type of classification for malignant tumors, the

TNM staging [21].

Pierre Denoix introduced the first staging system, so-called TNM classification of malig-

nant tumors, which is still the basis of current staging criterias [317]. Denoix’ system assesses

the size of the primary tumor (T), if regional lymph nodes are affected (N) and the occur-

rence of distant metastasis (M) [317, 74, 328]. The TNM classification does not only consider

tumor thickness but also its spreading to lymphnodes and distant organs. The TNM clas-

sification is the most common system for cancer prognosis published by the American Joint

Comitee on Cancer/Union for International Cancer Control (AJCC/UICC) [265, 74, 20]. As

mentioned above, this staging system describes the tumor thickness according to the Breslow

scale. Additionally, ulceration of tumors is indicated with small letters: un-ulcerated tumors

are indicated with “a” and ulcerated tumors with “b”. The risk of tumors to metastasize

is reported to be increased for ulcerated tumors [21]. Four stages describe the spreading of

melanoma cells to nearby lymph nodes or lymphatic ducts. If the tumor has not spread to

other parts of the body it is indicated by the M0 stage. In the M1 stage metastases in different

organs can already be detected. Lower case letters from a to c define the sizes of metastases

from (a) small which can only be seen under the microscope to (b) macrometastases and (c)

small satellite metastases close to the primary tumor or in the lymphatic system of the skin

[265, 20].

In the last ten years studies have emerged, which show that ulceration might not be the

most sensitive marker [21, 294]. Therefore, the mitotic rate was considered to assess the

presence or absence of mitoses during the vertical growth phase of the tumor in addition to

the amount of overall mitotic events [294].

Until today, all melanoma staging systems are solely focussing on the tumor itself and

do not consider the role of the tumor microenvironment in provoking or restricting tumor

progression [328]. Several parameters have to be included into the common staging criteria,

such as the presence and characterization of T cell subsets in the tumor, potential adaptive

immune resistance mechanisms of the tumor in combination with the local immune milieu

[329, 332]. Various immune cell subsets, e.g. regulatory T cells, have been reported to have

ambivalent prognostic importance in different tumor entities [98]. Furthermore, not only the

20



Introduction

host adaptive immune system has to be taken into account, also acquired tumor immune

resistance mechanisms as PD-L1 expression playing a role in tumor progression or rejection

[328, 17, 164, 329].

The availability of accurate staging criteria is crucial for patients in order to receive the

best available treatment in regard to long or short term cytotoxicities, the possibility of tumor

relapse and estimated life expectancy [294].

3.1.4 Important signaling pathways in melanoma

Only the combination of staging criteria with a fundamental understanding of melanoma

cell biology, malignant initiation and progression will enable new therapeutic approaches.

Therefore, crucial intracellular signaling pathways involved in melanoma development are

highly investigated at the moment.

3.1.4.1 The Ras/Raf/MEK/ERK pathway

The Ras/Raf/MEK/ERK signaling pathway with its respective receptor tyrosine kinases,

cytokines and heterotrimeric G-protein-coupled receptors is able to induce and translate cell

fate decisions after outside stimuli.

The activation of growth factor receptors lead to Ras activation and further downstream

signaling via Raf activation that in turn activates the MAPK/ERK kinase (MEK). MEK acti-

vates mitogen-activated protein kinase (MAPK, also known as extracellular-signal regulated

kinase (ERK)) which phosphorylates various targets intracellularly e.g. in the cytoplasm and

interacts with other pathways involved in cell death and survival. MAPK also translocates

into to the nucleus and regulates gene expression that promotes proliferation and cell survival

[305, 232].

This signaling cascade can be activated by growth factors, such as stem-cell factor (SCF)

or fibroblast growth factor (FGF) leading to a transient ERK activation and an intermediate

mitogenic effect on the cell (Figure 2) [314, 58, 64]. Thus, until now it is thought that only

the combination of several growth factors would increase donwnstream signaling and lead to

a sustained ERK activation. In around 90% of melanomas ERK is hyperactivated leading

to sustained melanoma cell proliferation [58]. The most common mutated component of this
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signaling pathway found in around 70% of melanomas is BRaf, for which over 30 different

mutations are currently known. The most common mutation, a substitution of glutamic

acid for valine at position 600 (V600E), is widely investigated for targeted therapy [46, 135].

BRaf is one of the three human Raf genes, the others being ARaf and CRaf. The V600E

mutation leads to constitutive active ERK signaling and stimulation of proliferation and

sustained survival of tumor cells. Several other genes were recently identified to function

downstream of V600E BRaf inducing several tumor growth and maintenance functions such

as neoangiogenesis by vascular endothelial growth factor (VEGF) secretion [321] and the

expression of transcription factors as MITF (microphthalmia-associated transcription factor),

cell cycle regulators as cyclin D1 and the matrix metalloproteinase-1 (MMP-1), enzymes

important for tumor maintenance and progression [151, 32].

Another mode of action for sustained ERK activation can be induced by autocrine stimuli

or gain-of function mutations in NRas. NRas represents one of the three Ras genes present

in humans and commonly mutated in up to 30% of melanomas. Oncogenic Ras are key

regulators of tumor maintenance and tumor initiation in p16 INK4a-deficient mice [2, 59].

The Ras/Raf/MEK/ERK signaling cascade inhibits key players and checkpoint molecules of

cell survival and proliferation indicating its importance in tumor progression.

3.1.4.2 The PTEN/PI(3)K/AKT pathway

Another important pathway in melanoma is the PTEN/PI(3)K/AKT pathway that reg-

ulates cell proliferation, survival and motility (Figure 2). Phosphatidylinositol 3 kinases

(PI(3)Ks) mediates phosphorylation of membrane lipids such as phosphoinositides, which

then function intracellularly as second messengers to induce various downstream effector

pathways [308]. Typically, growth factors bind to their receptor tyrosine kinases which

subsequently activate PI(3)K, leading to the conversion of plasma membrane lipid phos-

phatidylinositol (4, 5)-bisphosphate (PIP2) to phosphatidylinositol (3, 4, 5)-trisphosphate

(PIP3). In turn, PIP3 functions as second messenger by phosphorylating v-akt murine thy-

moma viral oncogene homolog (AKT), that induces numerous mitogenic processes including

survival gene transcription, inhibition of apoptosis, cell cycle progression, protein translation

and proliferation. Dephosphorylation of PIP3 by phosphatase and tensin homologue (PTEN)

terminates this signaling cascade [366, 64]. In 3% of metastatic melanomas PI(3)K mutations

can be detected, up to 20% of late-stage melanomas were found to lack PTEN function and

overexpression of PI(3)K effector protein kinase B (PKB or AKT) is present in around 60%
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of melanomas [366, 263, 320].

To inhibit melanoma cell proliferation and growth, inhibition of both signaling cascades

Ras/Raf/MAPK/ERK and PTEN/PI(3)K/AKT is required [314]. BRaf and PI(3)K are

acting downstream of Ras. Therefore BRaf and PTEN mutations often occur simultaneously

whereas NRas and BRaf mutations as well as NRas and PTEN mutations could be shown to

be mutually exclusive [356, 357, 366]. Overall Ras mutations are less common in melanoma

than BRaf mutations, reflecting a genetic or biological benefit for malignant progression of

melanomas with mutant BRaf over those with NRas mutations [357].

Figure 2: Important signaling pathways in melanoma. This scheme highlights the interaction and physiolog-
ical consequences of aberrant Ras/Raf/MEK/ERK and PTEN/PI(3)KAKT signaling in disease progression.
Both pathways are important regulators of cell proliferation and apoptosis. Adopted from Cully et al. 2006
[64].
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3.1.4.3 MITF signaling pathway

MITF is called the “master regulator” of melanocyte development and differentiation and

plays an important role in melanoma initiation and progression [238, 200]. It is a dimeric

transcription factor with a basic helix-loop-helix leucine zipper tertiary structure. Physi-

ologically, MITF regulates melanoblast survival and melanocyte lineage commitment. The

oncogenic properties of MITF is mediated due to its transcriptional regulation of melanogenic

proteins such as, the glycoprotein 100 (gp100) and melanoma-associated antigen recognized

by T cells-1 (MART-1) [105, 200]. MITF itself is transcriptionally regulated through several

pathways interacting with its promoter such as, the melanocortin and the β-catenin pathways

[238, 305].

MITF transcription can be mediated via cAMP responsive-element binding protein 1

(CREB1) activation after interaction of adenylate cyclase and alpha melanocyte stimulating

hormone (α-MSH) with the G protein-coupled melanocortin receptor 1 (MC1R). The tran-

scription factor CREB1 in turn activates MITF transcription by binding to its promoter.

Additionally, growth factors such as the tyrosine-protein kinase c-KIT and the hepatocyte

grwoth factor (HGF) can induce MAPK pathway activation resulting in MITF phosphoryla-

tion. MITF downstream targets are genes involved in cell survival (Bcl-2, MCL1), melanin

synthesis (TYR, TYRP1, DCT) or are markers for melanoma therapies (MLANA, SILV,

TRPM1). In the β-catenin pathway, Wingless-related integration site (WNT) proteins bind

to receptors of the frizzled family to inactivate the glycogen synthase kinase 3 beta (GSK3B)

which phosphorylates β-catenin to be degraded by the proteasome. Thus, WNT signaling

results in increased β-catenin levels, which may translocate into the nucleus to activate the

transcription of target genes including MITF, G1/S-specific cyclin-D1 (CCND1) and matrix

metalloproteinase 7 (MMP7)[161, 238].

MITF expression needs to be tightly controlled as different levels of expression regulate

distinct functions in melanocytic cells. Only intermediate levels of MITF seem to favour cell

proliferation. Cell cycle arrest and differentiation is induced by excessively high MITF levels

whereas extremely low levels predispose to cell cycle arrest and apoptosis [200]. The complex

regulation level of MITF seems to be controlled by ERK phosphorylation and subsequent

MITF degradation to counteract constitutive active MITF. Oncogenic BRaf fails to induce

melanoma cell proliferation in the presence of increased MITF expression, explaining its sig-

nificantly lower expression level of BRaf in melanoma cells compared to melanocytes [356].

Additionally, it was shown that MITF regulates anti-apoptotic protein Bcl-2 expression syn-

ergistically [228]. Cells lacking MITF were rescued from programmed cell death after Bcl-2
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overexpression [228]. This complex MITF regulation system highlights its importance in cell

physiology and its potency to drive malignant progression.

3.1.4.4 Senescence mechanisms

As described above, mutant BRaf influences melanoma proliferation, survival and metas-

tasis. Strategies inhibiting oncogenic BRaf resulted in remarkable clinical responses,however

also to rapid acquisition of resistance to BRaf inhibitors due to the activation of alterna-

tive downstream signaling cascades. In addition, melanoma cell resistance to cytotoxicity

is mainly attributed to unbalanced levels of anti-apoptotic proteins, e.g. Bcl-2 and MCL1.

This suggests that MCL1 overexpression may contribute to the resistance of melanoma cells

to various therapies targeting BRaf and MEK [388, 362].

Therefore strategies are currently being investigated to specifically target cell survival

pathways. The Bcl-2 protein family is mainly involved in mitochondrial mediated cell death

and survival [121]. It consists of pro-apoptotic family members, Bax, Bak and Noxa, and

anti-apoptotic members, Bcl-2, Bcl-xL, Bcl-w and MCL1. Bax and Bak are known to be

key mediators of apoptosis induction as cells fail to undergo induced programmed cell death

after their loss [355]. The ratio of pro- to anti-apoptotic members of this family mediates

the decision for cell death or survival [262, 355]. Activated death receptors or DNA damage

triggers the cell-intrinsic pathway of apoptosis. Several pro-apoptotic members of the Bcl-2

family are activated, for example Bax and Bak to induce mitochondrial cytochrome C release

and consequently caspase 3 dependent apoptosis. MCL1, Bcl-2 and Bcl-xL are able to bind

and dimerize with Bax or Bak to counteract this signaling cascade and sustain cell survival

[224, 121]. Thus, targeting therapies to counter-act acquired cell death resistance, as one of

the hallmarks of cancer [133], might lead to new possibilities in cancer therapy [133].

3.1.5 Melanoma treatment and therapy

Before melanoma progression reaches the metastatic state most melanomas can be cured

by surgical resection. Metastatic melanoma, however, needs to be treated with individualized

combination of surgery, chemotherapy, radiotherapy and targeted immunotherapy.

In chemotherapy several monotherapies are currently available, such as Dacarbazin (DTIC),
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alkalyting agents, hormonal agents, Tamoxifen, Paclitaxel and other plant derived agents [19].

Only Dacarbazin (DTIC) is an FDA-approved chemotherapeutic agent for treatment of ad-

vanced melanoma with a maximum response rate of 20% and a median response duration of

four to six month. Recently, combination chemotherapies have been investigated to increase

therapeutic effectiveness.

All different combinations, such as Cisplatin and DTIC alone, additionally with Vin-

desine, Vinblastine and Carmustine (BCNU) or Vinblastine, Bleomycin, Cisplatin together

with DTIC, Dibromodulcitol (DBD) are currently applied to investigate the best individual

combination for each melanoma patient [19].

At the moment, intensive studies are being carried out to elucidate checkpoint molecules

for melanoma progression and crucial signaling pathways to identify new possibilities for

targeted therapy. As indicated in Figure 3 a variety of molecules are already being targeted

by melanoma agents [258]. The main players of melanoma progression are being explored and

can be targeted by various therapeutics in the clinics, such as the receptor tyrosin kinases

(RTKs) by Imatinib, Ras by Lonafamib and BRaf targeted by Vemurafenib.

One of the first targeted therapies aimed at targeting receptor tyrosine activation of

MAPK, PI(3)K or Jak/STAT pathways (Figure 3). Imatinib, the first drug in clinical

phase II studies targeting c-KIT, BCR-ABL and the platelet derived growth factor receptor

(PDGFR)-α and -β, did not show any beneficial effect [339, 369]. This result can be ex-

plained due to missing patient preselection. Interestingly, c-KIT is mainly expressed in ma-

ture melanocytes and diminished or absent in metastatic melanoma [251]. In case of c-KIT

positive tumors, a mutation or amplification rate of 39% for mucosal, 36% for acral and 28%

for chronic melanoma was reported [66, 67]. In recent clinical studies, the effect of c-KIT sup-

pression was validated by Imatinib treatment in c-KIT mutant metastatic melanoma[44, 128].

Additional c-KIT inhibitors are currently under investigation including Dasatinib targeting

the c-KIT L576P mutation [363] and the second generation tyrosine kinase inhibitor, Nilo-

tinib (NCT01028222). These studies support the potency of c-KIT inhibition after careful

evaluation of its expression and mutation status in the respective patient.

As already mentioned before, Ras plays a distinct role in the activation of the Ras/Raf/

MEK/ERK and PTEN/PI(3)K/AKT pathways promoting melanoma survival and prolifer-

ation and is therefore an optimal target for cancer treatment [144]. Several studies tried

to inhibit Ras activation for example with farnesyltransferase inhibitors (Tipifarnib, Iona-

farnib) but no clinical response was observed for Tipifarnib [281, 102] (Figure 3). Despite

the fact that Ras inhibition alone did not negatively influence melanoma progression, iona-

farnib in combination with chemotherapy induced melanoma cell apoptosis or increased the

effects of second agents, such as apoptosis induction via receptor tyrosin kinase inhibitors
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[315, 242, 256]. Conclusively, Ras inhibition alone might not be a promising melanoma ther-

apeutic, nevertheless its combination with secondary agents might enhance the therapeutic

effect.

Figure 3: Therapeutic strategies in melanoma targeting several members of the the MAPK pathway (RTK,
Ras, BRAF, MEK1/2, ERK), the PI(3)K pathway (PI(3)K, AKT, PTEN) inducing apoptosis (Bcl-2) or
inhibiting aberrant DNA methylation (DNMT, HDAC). Adopted from Nikolaou et al. 2012 [258].

As more than half of all melanomas patients harbour mutation in BRaf, this protein is

an interesting targeting candidate. Two BRaf inhibitors will be mentioned in the next para-

graph. Sorafenib, which is an unspecific receptor tyrosine kinase inhibitor affecting not only

BRaf, but also PDGF receptor and c-KIT activity [168]. Monotherapies as well as combina-

tion therapies of Sorafenib with chemotherapy (DCIT, Temozolamide) failed to show clinical

benefits for metastatic melanoma patients [46]. Currently Vemurafenib and Dabrafenib are

highly investigated BRaf inhibitors which selectively target V600E mutated BRaf [94]. A first

phase I clinical study indicated a positive clinical response rate for Vemurafenib in metastatic

melanoma patients [94]. Also Dabrafenib indicated promising response rates with only mild

side effects in patients with V600E mutant BRaf. Additionally, studies have shown that

Dabrafenib impacts on distinct cancer types [166, 236, 135]. Several Baf inhibitors are cur-

rently under investigation in clinical trials [170, 93]. Despite the promising data on metastatic

melanoma patients responding upon BRaf inhibitor treatment alternative pathways were ac-
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tivated in most patients to circumvent BRaf inactivation, resulting in secondary resistance

and disease relapse [252].

Other important signaling molecules in the Ras/Raf/MEK/ERK signaling cascade is

MEK. Interestingly, the inhibiting effect of MEK inhibitors, such as the MEK1 MEK2 in-

hibitor AZD6244, was dependend on MCL1 activity [3, 134]. Therefore, further studies are

elucidating the cross talk between mechanisms for apoptosis induction and the signaling path-

ways downstream of MEK [60, 57]. Moreover, it was shown that combinatory treatments

such as of BRAF and MEK inhibitors could counteract secondary resistance [155].

Furthermore blocking anti-apoptotic molecules, e.g. Bcl-2, Bcl-xl and MCL1 with small

molecule inhibitors (e.g. Obatoclax) is reported to sensitize melanoma cells to Bcl-2 homology

domain 3 mimetic drug (ABT-737) and proteasome inhibitor Bortezomib treatment [258].

The combination of chemotherapy and targeting of anti-apoptotic proteins was investigated

by inhibiting Bcl-2 or Bcl-xL or the combination of both by Obatoclax [254]. Obatoclax

was shown to target MCL1 BAK interaction counteracting resistance development after Bcl-

2, proteasome inhibitor or chemotherapies [254, 383]. Reported in Oncogene this year [25],

constitutive expression of MCL1 in melanocytes and melanoma can be promoted by oncogenic

BRaf V600E. BRaf V600E mediated MCL1 promoter activation is dependent on STAT3

activity [25]. Furthemore, STAT3 is phosphorylated by BRaf V600E and therefore required

for MCL1 expression. Thus, MCL1 dependent chemoresistance and melanoma survival can

be disrupted by missing STAT3 activity.

Another therapeutic approach uses adjuvant therapies to treat melanoma patients with

for example interferon-α [239] and interleukin-2 [11]. Both cytokines are among previ-

ously approved therapeutics that are widely used in adjuvant immunotherapy for metastatic

melanoma. Thus, patients treated with one of these cytokines, are reported to experience

side effects such as flu-like syndrome or vitiligo and the response rates are low [33, 240, 327].

Additionally, the specific targeting of melanoma cells by the immune system is currently

under investigation and clinical studies indicate promising future therapeutic options. Differ-

ent strategies try to stimulate tumor-specific T cell response of the patient. Such stimulation

can be achieved by vaccination with tumor specific antigens (e.g. TYR, gp100 and MART-1)

or adoptive T cell transfer. Another approach aims to inhibit T cell checkpoint molecules,

such as the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) [122, 268], or programmed

cell death 1 (PD-1) or its ligand PD-L1 [29, 164, 337].

An increasing number of therapeutic options arise every year targeting for example mem-

bers of the PI(3)K pathway, tumor angiogenesis, modulating the immune system or trying to

counteract tumor suppressive pathways which are investigated in basic research and clinical

studies until now. In conclusion, therapeutic options for melanoma patients must be carefully
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selected and individualized for every melanoma case itself.

3.2 microRNAs

microRNAs (miRNAs) are small endogenous ribonucleic acid (RNA) molecules with a

length of around 22 nucleotides (nts). These small single stranded RNA molecules are able

to pair with messenger RNAs (mRNAs) of protein-coding genes and induce mRNA cleavage

or translational repression. Today, the major view is that this class of regulatory molecules

comprises between 0.5 to 1% of predicted genes in humans and controls various cellular

processes in development, differentiation and cell maintenance. The first miRNAs to be dis-

covered were lin-4 and let-7 and their role in larva development [359, 194]. At the discovery

it was surprising to realize that the lin-4 gene is not protein-coding but encodes for a small

RNA molecule. These small RNAs could interact with mRNAs due to their antisense comple-

mentarity and negatively regulate mRNA expression levels, such as lin-4 negatively regulates

LIN-14 protein expression [194, 359, 18]. Various roles of these short RNA molecules, termed

miRNAs, are currently reported not only in human cellular processes, but in leaf and flower

development in plants [12] and also in fat metabolism, cell proliferation and cell death in flies

[12, 8, 38]. Despite the fact that miRNA targets are mostly unknown, it is estimated that

there might exist hundreds of targets for a single miRNA, in total targeting around 30% of

all protein coding genes within the human genome [204, 203]. Thus, a strongly increasing

number of studies focus on miRNAs, demonstrating their capabilities to regulate complex

signaling networks, cellular processes and malignant progression [24, 203].

3.2.1 miRNA biogenesis

miRNAs are encoded either in intronic regions of protein-coding genes or located solely

as single genes. RNA polymerase II transcribes the first miRNA structure called the primary

miRNA (pri-miRNA) in the nucleus as depicted in Figure 4 [9]. Subsequently, this pri-miRNA

is processed into a approximately 70-nucleotide hairpin precursor (pre-miRNA) by a complex

consisting of a member of ribonuclease (RNase) III family, Drosha, and a double-stranded
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RNA binding protein, DGCR8. The pre-miRNA is then exported into the cytoplasm by Ex-

portin 5 in a Ran-GTP dependent manner and captured by the RNA binding protein TRBP

together with the RNase II enzyme Dicer. The so formed approximately 70 bp guide miRNA

(miRNA)/ passenger miRNA (miRNA*) duplex indcuces Argonaute 2 (AGO2) cleavage of

the 3’ arm of some pre-miRNAs before Dicer-mediated cleavage occurs. This intermediate

nicked hairpin precursor, called AGO2-cleaved precursor miRNA (ac-pre-miRNA), is only

found in mammals and requires a high degree of complementarity along the hairpin stem for

its functionality. As mostly only one strand (guide strand) of the so formed miRNA/miRNA*

duplex is preferentially loaded into the miRNA-induced silencing complex (RISC) to form the

miRISC complex, the other strand, the so-called passenger strand (miRNA*) is degraded.

In some cases both strands are functional and play a role in target regulation [222, 127].

The functional miRNA guides the miRISC complex to the complementary target mRNA,

leading to translational repression, mRNA deadenylation or degradation. Several miRNA

biogenesis pathways are known, which do not require this specific Drosha-DGCR8, or the

Dicer processing. As shown in Figure 4 some pre-miRNAs mainly processed from short

introns (mirtrons) take the alternative pathway due to splicing, debranching and further

resection by nucleases, therefore bypassing the Drosha-DGCR8 step. Also shRNAs, which

are produced by cleavage from endo- or exonucleases or by RNA polymerase III transcrip-

tion, may not have a stem to allow Drosha-DGCR8 processing and are therefore directly

incorporated into AGO proteins. Pri-miR-451 is another special case, as it does not require

Dicer-mediated cleavage. After Drosha-DCGR8 cleavage this pre-miRNA can directly form

a complex with AGO2. In turn AGO2 cleaves its 3’-arm but further processing occurs by an

yet unknown mechanism to generate mature miR-451 [9, 379].
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Figure 4: miRNA biogenesis: A comparison of the standard miRNA biogenesis pathway on the left and
the proposed alternative pathway on the right side. m7Gpp, 7-methylguanosine cap; RNA Pol II, RNA
polymerase II; AAAA, poly(A) tail; Loqs, Loquacious; TRBP, human immunodeviciency virus (HIV-1)
transactivating (TAR) response RNA-binding protein; 2’OH, hydroxyl group; HSC70, heat shock protein 70
kDa protein 8; HSP90, heat shock protein 90; AGO, argonautprotein; RISC; RNA-induced silencing complex;
ORF, open reading frame. Adpoted from Ameres et. al. 2013 [9].

3.2.2 miRNA target identification

The identification of miRNA targets is essential to understand the function of miRNAs.

miRNA target prediction has its limitations as most studies focus on only a small number of

targets ignoring the global impact on gene expression that one miRNA can have [304]. This

complex regulatory capacity is most likely controlled by the interaction of approximately

six nucleotides of the miRNA called the nucleotide seed sequence defined as nucleotides 2-7
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in the miRNA sequence with a complementary sequence at the 3’UTR of its target genes

[204, 120, 104, 101]. As already mentioned, every miRNA is able to regulate several hundreds

of target genes hence making in vitro analysis and in silico target predictions challenging.

Experimental investigation of miRNA target gene interaction is mainly based on reporter as-

says. The 3’UTR of putative target genes can be integrated into a reporter plasmid containing

a luciferase or GFP reporter gene. After combined transfection of the reporter construct and

the miRNA in vitro the interaction of both is translated into a decreased reporter signal [176].

Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) experiments can

indicate mRNA changes for genes under investigation due to miRNA overexpression. A

more global approach comprises microarray expression analysis to either identify deregulated

miRNA profiles associated with different malignancies or detect changes in gene expression af-

ter miRNA deregulation by introducing chemically modified complementary oligonucleotides

or gene knockdown [41, 137, 193, 185]. Another rather indirect method for miRNA target

identification is called stable isotype labeling with amino acids in cell culture (SILAC). With

this approach differences in protein expression levels on a proteome-wide scale can be assessed

[306, 17]. More recently a novel experimental approach has been reported for the identifica-

tion of miRNA targets in a more direct fashion. Immunoprecitpitation of RISC components

sequester mRNAs targeted by miRNAs within this complex. Subsequently, high-throughput

sequencing of the obtained mRNAs allows the identification of specific miRNA targets and

their putative miRNA binding sites [27, 72, 139]. High-throughput sequencing of RNA iso-

lated by crosslinking and immunoprecipitation (HITS-CLIP) [69, 206, 55] of AGO2 and two

more recent variants of this method, photoactivatable-ribunucleoside-enhanced crosslinking

and immunoprecipitation (PAR-CLIP) [130] of miRNA containing ribonucleoprotein com-

plexes (miRNPs) and the individual nucleotide resolution (iCLIP) [152] approach, are cur-

rently used to elucidate larger miRNA networks. These techniques enable the investigation

of miRNA-mRNA interactions and the identification of new binding events [56]. Despite

these promising in vitro tools for miRNA research the complexity of miRNA interactions is

still not fully understood.

Therefore, in silico prediction tools are of growing interest and several computational tar-

get prediction algorithms are currently available. Correlating mRNA and miRNA expression

and sequence data might highlight the global genome wide regulation mediated by miRNAs.

miRBase is one of the current available prediction platforms, which mediates the crosslinking

between sequencing databases provided by miRNA registry and target identification by gene

name [115, 116]. This online tool aims to integrate all online available sequencing information

to directly indicate the possibility of an individual miRNA to interact with the 3’UTR of

genes from all species available in the Ensembl database [95]. Target gene prediction with
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miRBase is based on the 5’ seed region complementarity, the thermodynamic stability and

the conservation between species is determined precisely. miRBase does not only provide

miRNA target identification but also integrates published miRNA sequence information and

annotations known so far. Recently the updated version miRBase21 was launched online

[115, 118, 117, 182, 181]. In addition another group at the Memorial Sloan-Kettering Cancer

Center (NewYork City, USA) established a target prediction algorithm, called miRanda that

is available online (www.miRNA.org) [80, 162, 163]. This miRNA target gene prediction

tool also scans currently available RNA sequences of miRNAs and DNA or RNA sequenc-

ing information, available for the species of interest, to determine minimum free energy and

rank possible interactions accordingly [30]. The mode of interactions is based on up-to date

knowledge of target miRNA interaction rules [31]. Both target prediction databases pro-

vide direct links to additional resources on miRNA target prediction available online such

as PicTar (http://pictar.mdc-berlin.de/ [183]), MicroCosm (http://www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/), TarBase [307, 345] and TargetScan. TargetScan was

developed from the Whitehead Institute for Biomedical Research (Camebridge, USA). At

the moment, TargetScan release 6.2 is available online. Their algorithm is able to predict

interaction of the seed region of individual miRNAs with a conserved 7mer or 8mer region

within biological targets [204, 100, 120]. Up to now TargetScan indicates miRNA target

interactions at the 3’UTRs, their orthologs and just recently started to indicate possible

interaction within open reading frames [120, 104].

Despite the wide range of available tools for in silico miRNA target prediction, most

targets remain unidentified. Prediction algorithms do need to improve in the future due to

increasing amounts of high-throughput data available to train computation-based systems

[7]. Novel prediction rules have to be established as miRNA seed interaction cannot account

for all miRNA dependent regulations observed so far. More recently several groups identified

possible miRNA interaction sites within the coding regions, open reading frames or the 5’UTR

of protein coding genes [204, 220]. Nevertheless, binding within the 3’UTR is still considered

as the most prominent mode of interaction between miRNAs and their target genes [17].

Identification of alternative binding sites will be critical to unravel the complete interaction

network of individual miRNAs. It is important to overcome the difficulties in miRNA target

prediction to elucidate miRNAs in their whole complexity for future prognostic markers and

therapeutic options for example in cancer.

33



Introduction

3.3 miRNA and cancer

The first report that connects miRNA and cancer implied frequent downregulation or

deletion of miR-15a and miR-16, shown in chronic lymphocytic leukemia (CLL) patients [41].

In melanoma the first direct link between dysregulation of miRNAs and disease progression

was shown by Bemis et al. [28], where they demonstrated that miR-137 expression correlated

with MITF expression [28]. Since then, increasing numbers of miRNA expression profiling

and functional studies on miRNAs in cancer are reported, demonstrating the importance of

miRNAs as key players in cancer development and progression.

3.3.1 miRNA as an oncogene

Deregulated miRNA expression profiles are key features of cancer cells in comparison to

healthy cells under physiological conditions. The classification of genes into oncogenes and

tumor suppressor genes also can be applied for miRNA networks. A previous study has shown

that miRNAs can act either as oncogenes or tumor suppressors depending on their targets and

downstream signaling pathways [82]. The term “oncogene addiction” was created to charac-

terize the potential of an individual oncogene to promote malignant progression regardless of

the complex process of cancer development [133]. Individual miRNAs are currently known to

have oncogenic properties in specific malignancies. To determine possible relations between

miRNA expression and malignant phenotype, expression profiles of several miRNAs were in-

vestigated by distinct groups. Differences were observed for miR-155 and miR-21 expression

between benign melanoytes, melanocytic lesions and metastatic melanoma. Overexpression

of both miRNAs correlated with increased malignancy in melanoma [276, 303, 119, 199].

Contradictory, Levati et al. reported [199] that miR-155 expression in vitro correlates with

reduced cell proliferation and enhanced apoptosis induction due to gene silencing of SKI, a

transcriptional co-regulator over expressed in melanoma [199]. The oncogenic potential of

miR-155 was further supported by the finding, that miR-155 transgenic mice develop lym-

phoblastic leukemia after blockage of the pre-B-cell to B-cell differentiation step [91]. Until

now the multifunctional role of miR-155 is intensively discussed as its differential expression

profiles seem to indicate a complex role in different maligancies. Despite cancer, it plays

a role during viral infections of DNA viruses, in hematopoietic lineage differentiation, in-

flammation, immunity and cardiovascular diseases [85]. Levati et al. [199] also reported a
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differential expression of miR-21 which was supported by another recent report showing that

decreased miR-21 levels induce apoptotic cell death in melanoma cells. This finding corre-

lated with a highly increased amount of miR-21 in primary melanoma compared to benign

nevi [299, 199].

One of the early identified oncogenic miRNAs, miR-182 located at chromosomal region

7q31-34, is predominantly amplified in melanoma cells [302]. Analysis of tissue microarrays

of benign melanocytic nevi, primary and metastatic melanomas showed a correlation be-

tween increased miR-182 expression and melanoma progression and malignancy. miR-182

was shown to influence melanoma cell invasion and metastasis formation in several recent

studies [211, 282, 302]. While Segura at al. showed that loss of miR-182 expression led

to apoptosis induction, Huynh et al. investigated the importance of miR-182 in facilita-

tion of anchorage-independent growth and increased lung metastasis formation in the murine

B16F10 melanoma mouse model [302, 154]. Due to its distinct role in invasion and metas-

tasis formation, several groups are currently investigating the mode of action of miR-182

in more detail. A wide range of putative targets of miR-182 are currently under investiga-

tion, e.g. FOXO3 (forkhead-box-protein O 3, FKHRL1), FOXO1 (FKHR), MITF, CDKN2C

(p181INK4C), CASP2 and FAS, but only MITF and FOXO3 could be identified as direct

targets so far [302]. In combination with miR-203, miR-182 was able to induce mesenchymal

to epithelial transition (MET) probably due to snail family zinc finger 2 (SNAI2) repres-

sion in prostate epithelial cells (EPT1 cells) [282, 211]. Recently, miR-182 expression in two

different melanoma cell lines was investigated due to epigenetic modulation after treatment

with demethylating agents by Liu et al. [211]. This group could identify a CpG island in

close proximity to the miR-182 locus as being selectively methylated in melanoma cells [211].

This epigenetic regulation indicates an auxiliary level of miR-182 regulation that has to be

considered in future therapeutic options.

miR-221 and miR-222 are overexpressed in a variety of different cancer types, as for

example pancreatic cancer [193] and glioblastoma [192]. In papillary thyroid carcinoma miR-

221/222 were reported to target c-KIT [137]. Furthermore, expression of c-KIT was found

to decrease with melanoma progression [241, 309]. In addition, Felicetti et al. [86] showed

that miR-221/222 expression reversely correlates with c-KIT expression in primary vertical

growth phase and metastatic melanomas. Based on these observations, the same group

reported that miR-221/222 inhibition by antagomir treatment interfered with tumor growth

and miR-221/222 overexpression in turn promoted tumor growth in vivo [86].

Another miRNA cluster whose members are reported to have oncogenic properties, is the

miR-17-92 cluster. Members of this cluster promote cell proliferation, apoptosis resistance,

the induction of tumor angiogenesis and are known to be overexpressed in hematopoietic
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malignancies and solid tumors [234, 136, 267, 346].

One of the so-called “melano-miRs”, miR-214 was identified due to its oncogenic pheno-

type after overexpression in melanoma cells [274]. The metastatic phenotype resulting from

miR-214 overexpression is regulated in a double manner [274, 275]. miR-214 controls sev-

eral members of an important pathway for melanoma progression and migration, namely the

AP-2 transcription factors (TFAP2) and the activated leukocyte cell adhesion molecule (AL-

CAM). On the one hand, miR-214 mediates downregulation of TFAP2 and on the other hand

controls ALCAM expression promoting melanoma progression [274, 275]. miR-214 regulates

ALCAM expression on two individual levels. On the post-transcriptional level miR-214 me-

diates ALCAM upregulation via targeting of miR-148b whereas transcriptionally ALCAM

is upregulated via TFAP2 downregulation. This signaling cascade is reported to influence

several prometastatic properties such as cell migration, invasion and extravasation [275, 186].

Recently, miR-9 was reported to influence tumor cell motility and metastasis formation.

It is overexpressed in breast cancer and differentially expressed in many other tumor entities

[141, 196, 210, 221, 354, 387]. Several requirements need to be full filled for successful

metastasis formation, such as sufficient angiogenesis induction, which is tightly controlled by

the JAK-STAT pathway. miR-9 overexpression was observed in tumor-associated endothelial

cells leading to enhanced cell migration and angiogenesis induction [387]. Furthermore, these

cells showed reduced levels of the putative miR-9 target, suppressor of cytokine signaling

5 (SOCS5). miR-9 downregulation could mimic JAK inhibitor treatment and reduced the

migrative potential in endothelial cells [387].

miR-9 overexpression in melanoma cells is reported to result in a decreased migrative

and proliferative phenotype in vitro and in vivo [380, 210]. In addition melanoma progres-

sion and metastasis seems to correlate with miR-9 downregulation. This observed increased

motility is induced on the one hand by miR-9 mediated cytoskeleton remodelling processes

as well as increased E-cadherin expression and on the other hand, by NF-κB downregulation

[210]. Further findings indicate miR-9 in combination with miR-9* and miR-92b as a marker

for primary brain tumor formation [250]. The combination of all three miRNAs allows one

to distinguish brain metastasis from primary brain tumors as they are found to be over-

expressed solely in primary brain tumors [250]. To conclude, the oncogenic role of miR-9

is controversially discussed until today as its function seems to be context and tumor type

specific.
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3.3.2 miRNA as a tumor suppressor

Until now numerous miRNAs are reported for their tumor suppressive role in different

cancer types. The let-7 miRNA family was one of the first miRNAs to be identified and

therefore heavily investigated in the last decades [194, 359]. Therefore it was not surprising

that this miRNA family was found to be one of 72 differentially expressed miRNAs in primary

melanomas, benign or melanocytic nevi [301]. During this miRNA expression screening they

identified members of the let-7 family to impact cell cycle regulation. This could then be

validated in vitro as for example let-7b was able to downregulate cyclin A, D1 and D3.

In addition, further studies directly linked let-7b and let-7a downregulation to malignant

transformation form nevi to primary melanoma as they were found to be significantly reduced

in melanoma. Until now the let-7 family has been reported to act as tumor suppressor by

targeting oncogenes such as Ras and c-Myc in different cancer types [344]. Therefore, loss of

this miRNA family favours tumor progression and malignant transformation [165, 246].

Focussing on changes in the miRNA expression pattern during melanoma progression

unravels the complexity of the miRNA network. miR-137 targeting MITF was the first

functional study of an individual miRNA with a key role in melanoma [28]. Soon miR-137

was identified as a potent tumor suppressor in a variety of cancers including brain tumors,

colorectal cancer, head and neck cancer, gastric cancer and melanoma [70, 190, 209, 313,

49]. Another study indicated shorter survival times for stage IV melanoma patients with

reduced miR-137 expression indicated by a correlation of miR-137 expression with melanoma

patients’ clinical outcome [218]. The at present identified targets of miR-137, c-Met, Y-box

protein 1 (YB1) [218], enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) and

MITF highlight the crucial role of miR-137 in melanoma development and progression [28].

Furthermore, miR-137 was demonstrated to inhibit migration, invasion and proliferation of

melanoma cells through multiple targets [218], emphasizing the tumor suppressive function

of miR-137 in melanoma. Yet, preclinical studies are still missing to clearly define miR-137

susceptibility as therapeutic agent in the treatment of melanoma.

The decreased copy number of miR-101 detectable during prostate cancer progression

suggested its potential tumor suppressive role [342]. Furthermore, miR-101 directly targets

EZH2 and therefore inhibit cell proliferation, invasion and tumor growth in glioblastoma [316],

non-small cell lung cancer (NSCLC) [385], gastric cancer [350] and melanoma [217]. Notably,

Luo et al. [217] showed that miR-101 inhibits melanoma cell invasion and proliferation and

could additionally identify MITF as a direct target of miR-101 in melanoma cells. Thus,

miR-101 and miR-137 share two common target genes namely, MITF and EZH2 [217].

Another miRNA family with a potent role in melanoma progression was discovered later,
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namely the miR-200 family. Its members - miR-200a, miR-200b, miR-200c and miR-141 -

are reported to be potent tumor suppressors in several types of cancer [78, 90, 311, 348, 373].

During melanomagenesis they are found to be significantly downregulated together with sev-

eral miRNAs not belonging to this family, miR-205, miR-203 and miR-211 [373]. Decreased

expression of miR-141 was detected in melanoma metastases in comparison to melanoma

nevi. Additionally, cells that underwent transforming growth factor (TGF) induced epider-

mal to mesenchymal transition (EMT) had strongly decreased amounts of miR-200a, miR-

200b, miR-200c, miR-141 and miR-429 [113]. As EMT favours the acquisition of a migratory

phenotype, cancer progression benefits from downregulation of the miR-200 family. These

studies underline the tumor suppressive role of this miRNA family, but it was shown that

members of this miRNA family can have controversial effects on tumor progression [78].

Particularly, miR-200c inhibited cell proliferation, migration and drug resistance due

to downregulation of BIM-1, a known regulator of stem cell self-renewal in breast cancer

stem cells [311]. On the contrary miR-200c induced EMT and targeted the zinc finger E-

box binding homeobox 1 (ZEB1) in various types of cancer [39, 113]. Overall, miR-200

family members differentially regulate melanoma cell plasticity and morphology in a context

dependent manner [78]. Several tumor suppressive miRNAs are reported to target similar

pathways or even the same genes, as for example ZEB1 and ZEB2 are targeted by miR-

200 family members and miR-101 in ovarian cancer [113, 114, 126]. The ZEB proteins are

interesting targets to investigate tumor suppressive miRNAs as they play a pivotal role in

EMT transition and cell migration.

Two different methods are frequently applied to identify miRNAs with distinct function

in malignant transformation. Most studies intensively focus on miRNA expression analysis,

identify respective target genes and subsequently use functional assays to confirm predicted

roles. Another approach is the identification of specific miRNAs based on their functional

effect on cancer cells. Therefore a number of functional screenings were performed using

sense and antisense miRNA libraries to investigate distinct miRNA induced effects on lung

[52], breast [269], colorectal [188] and pancreas cancer [157]. In this respect, Levy et al.

[201] performed a miRNA library screening to investigate the effect of miRNAs on melanoma

cell invasion. miR-211 was found to be able to inhibit melanoma cell invasion significantly

[201]. miR-211 is located intronically within the TRPM1 gene. Both, miR-211 as well as its

host gene, transient receptor potential cation channel subfamily M member 1 (TRPM1) were

found to be downregulated in metastatic melanoma, but only miR-211 overexpression could

reduce the migrative potential of highly invasive melanoma cells. Surprisingly, increased

TRPM1 expression did not exhibit the same effect on melanoma cells with low levels of

miR-211 and TRPM1. Epigenetic blockade of the TRPM1 locus during melanomagenesis is
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thought to favour tumor progression by additionally inhbiting the tumor supressor miR-211

[201, 226].

The miR-29 family was downregulated in leukemia [106] and several solid tumors in-

cluding breast cancer [156], cutaneous melanoma [255] and hepatocellular carcinoma [371].

miR-29 family members are potent inducers of apoptosis in hepatocellular cell lines as they

are downregulating MCL1 and Bcl-2 protein expression [371]. In melanoma miR-29c down-

regulation correlates with the methylation status during melanoma progression and favours

abberant hypermethylation [255]. This was confirmed by the identification of two miR-29c

target genes, the DNA (cytosine-5)-methyltransferases (DNMT) DNMT3A and DNMT3B

which are important mediators to epigenetically regulate gene expression. It could be shown

that miR-29c is significantly downregulated in advanced stage IV melanomas in comparison

to primary melanoma which correlated with increased DNMT3B expression [255].

Rarely both miRNA duplex strands can be loaded into the RISC complex, leading to

translational repression, mRNA deadenylation or degradation of target genes. This was

shown for miR-126 and its complement miR-126*. In all vertebrates both miRNAs are en-

coded by the intron of the EGF-like domain-containing protein 7 (EGFL7) gene, a regulator

of blood vessel formation [92, 352]. Comparing malignant tumor to non-malignant tissue,

miR-126 was significantly downregulated or lost in lung [323], gastric [89], cervix carcinoma

[352] and melanoma [88, 245]. In accordance, loss of its passenger strand miRNA, miR-126*,

was observed in various cancer cell lines of the colon [125] and prostate [248]. Loss of miR-

126/126* could be shown to induce melanoma progression, whereas restored expression of

miR-126/miR-126* decreased neoplastic behaviour in vivo and in vitro [88]. miR-126/126*

are potent tumor suppressor miRNAs as they inhibit cancer progression via various signaling

pathways that control tumor progression, migration, invasion and survival, including inflam-

matory processes and angiogenesis [233, 92, 87]. However, detailed mechanisms and possible

additional functions of miR-126/126* still have to be further investigated.

A highly investigated tumor suppressor in cancer research is p53. Interestingly, the expres-

sion of miR-34 family, miR-34a, miR-34b, miR-34c, was induced by p53 [326, 284]. Therefore,

it does not seem surprising, that decreased levels of miR-34 are reported in lung [169], prostate

[177, 53], pancreatic[160], gastric cancer [159] and melanoma[227]. Several target genes of

the miR-34 family are known e.g. two anti-apoptotic genes, the silent information regulator

1 (SITR1) and Bcl-2 [376, 177]. Furthermore, important cell proliferation and differentation

regulators, Notch and the stem cell marker CD44 [160, 159]. In p53 wild type melanoma the

miR-34 family not only inhibits cell survival but also seems to inhibit melanoma cell invasion

in vitro [378]. Overall, recent studies not only associate miR-34 expression with various non-
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malignant processes, namely ageing, neuronal development, stem cell differentiation but also

with decreased tumor growth and invasion in vivo [293, 261, 213, 140, 173, 174]. Members of

the miR-34 family are one of the first miRNAs reaching the clinics as replacement therapeutic

[14, 335].

3.3.3 miRNAs as biomarker

Prognostic and clinical biomarkers are widely investigated to clinically estimate tumor

burden, tumor type, therapy response of patients or patients survival time. Markers assessed

in melanoma patients are mainly important genes for tumor growth, enzymes for extracellu-

lar matrix degradation, angiogenic factors, molecules for cell Signaling , cell-cell interaction

and several immunomodulatory molecules [296, 279, 146, 341, 50]. Necessary properties for

molecules to be used as biomarkers are for example lineage specificity, tissue and fluid stabil-

ity, which can be fulfilled by miRNAs as well [304]. Their stability would allow retrospective

as well as longitudinal studies in patients to evaluate disease progression or even the onset

of melanoma. For different cancer types including melanoma, miRNA profiles in the blood

are already used to determine tumor burden [86, 96]. Furthermore, it was shown that histo-

logical differences of melanoma spreading, nodular or superficial spreading, can be assessed

by changes in the miRNA expression profile [278, 112]. One study assessed the serum levels

of miR-221 in melanoma in situ, stage I-IV patients, which were significantly increased in

comparison to the control group [86, 167]. Additionally, Kanemaru et al. linked changes

in miR-221 expression to disease burden, by analysing recurrent patients before and after

primary excision [167]. Despite the fact that histological differences between melanoma cases

were not considered, these results cannot be generalized but they hold promises for the prog-

nostic value of miRNAs. The detection of early stage melanoma by changes in the miRNA

expression profiles would be favorable to counteract tumor progression. In this respect, Lei-

dinger et al. [197] reported a set of 16 deregulated miRNAs in the blood of melanoma patients

in comparison to the healthy control group [197]. Nevertheless, the source of the measured

miRNA profile has to be carefully evaluated, as it can often not be clarified whether the

measured miRNA profiles reflect the situation of circulating tumor cells or the host’s im-

munresponse [280, 298].

miRNAs could be shown to be stable in tissue samples irrespective if they are formalin-

fixed paraffin embedded (FFPE) tissues or frozen [370, 207]. Therefore, retrospective studies

have the potential to assess miRNA expression profiles of frozen material or FFPE tissue sam-
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ples of primary melanomas [304]. Upon investigation of lymphnode samples of melanoma

patients or tumor tissues from stage I-IV patients, deregulated miRNA expression profiles of

either single miRNAs such as miR-29c [255], miR-193b [42] as well as of distinct sets of miR-

NAs (e.g. miR-150, miR-342-3p, miR-455-3p, miR-145, miR-155 and miR-497) correlated

with clinical outcome [303, 304]. Overall miRNAs can predict patients’ recurrence and clin-

ical outcome however the detection of dysregulated miRNA profiles has to be optimized to

assess accurately and reproducible miRNA expression levels as trustworthy risk biomarkers.

Recently a number of miRNAs were linked to suppressive effects on melanoma cell pro-

liferation in vitro. Poell et al. performed a cell viability screening on a genome-scale with

a lentiviral human miRNA expression library [277]. They showed that several miRNAs, in-

cluding miR-16, miR-497, miR-141, miR-184, miR- 96 and miR-203, showed long-term (> 1

month) suppressive effects on melanoma cell proliferation in vitro [277].

miRNA expression profiles in patients with malignancies cannot only indicate oncogenic

or tumor inhibitory miRNA candidates, they can also highlight treatment success or failure.

Additionally, changes in the miRNA expression profile of cancer patients during treatment

might indicate new therapeutic options. Recently, a study showed that targeted therapies as

for example with Temsirolimus and Bevacizumab induce changes in the miRNA expression

profile in melanoma tissues [349]. The combination treatment induced a significant upreg-

ulation of 12 miRNAs with reported tumor suppressive properties, therefore suggesting the

inhibition of oncogenic pathways by this combinatorial treatment and miRNAs as potential

indicators for successful therapy and patients’ prognosis [349].

3.3.4 miRNA therapy

The discovery of molecular pathways involved in melanoma development and progression

opened new opportunities for the development of targeted anti-melanoma therapies [111].

The number of clinical trials investigating miRNAs targeting a variety of regulatory proteins

including kinases (Ras, Raf, PI(3)K), anti-apoptotic proteins (Bcl2- MCL1) or integrins is

increasing constantly with partly encouraging results [26, 76, 79, 336, 375]. As increasing

evidence shows that miRNAs can have potent functions as oncomirs or tumor suppressors,

attention has been drawn to the development of miRNA based cancer therapies [15]. Unfortu-

nately, most of the mentioned studies have been conducted only in vitro. Therefore, for most

miRNAs with a potential oncogenic or tumor suppressive effect, their specific role in human

malignancies in vivo is still lacking [304]. Recently, two strategies (Figure 5) for miRNA-
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based anti-tumor therapy approaches are investigated. On the one hand the reintroduction

of tumor suppressive miRNAs into the cells, the so-called miRNA replacement therapy is ap-

plied, or on the other hand the inhibition of oncogenic miRNAs using antagomirs [15, 367].

Several delivery systems are used to specifically transport miRNAs to the cells of interest.

For systemic in vivo delivery these delivery systems need to be neutrally charged, of nanosize

(10-100nm) and target specific [300]. Additional obstacles are the potential immunogenicity

of naked, unmodified intravenously delivered miRNAs inducing cleavage by endonucelases

and innate immunity activation [253, 191, 158]. Therefore, different materials and formula-

tion methods are tested to shield miRNAs, for example lipid-based systems, nanoparticels,

PEG-conjugated copolymers or modified cyclodextrins in combination with monoclonal an-

tibodies as novel ligands [179, 300, 6]. Thus, possible interactions between these delivery

particles and various serum components have to be taken into account and thoroughly inves-

tigated [361, 6]. In view of the possible induction of immune and inflammatory responses or

oncogenic integration, viral delivery would be an alternative approach.

Figure 5: Two options for miRNA based therapeutics by either antimiR therapy or miRNA restoration ther-
apy. Both are dependent on successful miRNA delivery strategies as for example naked oligos, nanoparticles
viruses or within liposomes or polymers. Adopted from Segura et al. 2014 [304]

During several preclinical studies the feasibility of these approaches in the treatment of

cancer has been explored. In the first preliminary in vivo study, antagomirs against miR-

211/222 were tested and growth inhibition of xenografted melanomas in athymic nude mice

were observed [86]. A more recent study investigated a spleen-to-liver melanoma metastasis

mouse model after intraperitoneal injection of anti-miR-182 with modified oligonucleotides

and a phosphorothioate backbone. In this model Huynh et al. observed a decreased number

of liver metastasis in the treated compared to the control group [154]. They showed that
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miR-182 levels were decreased and previously known targets of miR-182 were upregulated

in the metastatic lesion of the anti-miR-182 treated mice. Furthermore, the feasibility of

anti-miRNA treatment in vivo as a new therapeutic tool was proven [154].

Another approach was developed by Chen et al. [51], where liposome-polycation-hyaluronic

acid nanoparticles tagged with a tumor-targeting single-chain antibody fragment (scFv) were

designed that specifically delivered miRNAs or siRNAs to the site of interest [51]. With this

system they could enhance the uptake of delivered small oligonucleotides into the tumor.

These nanoparticles used in the study were delivering a potent cocktail of siRNAs (against

c-Myc, MDM2 and VEGF) and miR-34a, resulting in inhibition of B16F10 lung metastasis

[51].

The first clinical trials to use small oligonucleotides mostly focused on single therapies.

More recently, combinations of miRNAs and siRNAs with already approved anticancer agents

such as Bcl-2 inhibitors (e.g. ABT-263) are investigated. Lam et al. [188] described a

synthetic lethal screening for 810 synthetic miRNAs in combination with ABT-263 in a

colorectal cancer cell line. They identified 19 miRNAs to overcome ABT-263 resistance in this

cell line by directly downregulating MCL1 [188]. This year another phase I clinical study will

finish with primary liver cancer patients to assess the safety of MRX34, a synthetic mimic of

miR-34, delivered in so far unpublished nanoparticles by liposomal injection [NCT01829971].

Previously, in pre-clinical studies the anti-tumor activity of miR-34a has been already shown

[138, 335]. Also the miR-29 family targets members of the same signaling pathway, mainly

MCL1 and Bcl-2 of the mitochondrial apoptosis pathway [371]. It has already been shown

that intratumoral injection of miR-29b inhibited myeloid leukemia development of tumor

xenografts [106].

Despite the promising results of miRNA replacement therapies or antagomir introduction,

potential off target effects of miRNAs always have to be tested by bioinformatical prediction

tools. Additionally, the development of miRNA-based therapies is still limited due to the high

amount of putative, not identified targets of a single miRNA, complicating precise predictions

for systemic miRNA delivery in vivo.
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3.4 Aim of this study

In melanoma research it is of outermost interest to unravel mechanisms of cancer progres-

sion and metastasis. Metastatic melanoma has been shown to advance extremely fast often

resulting in a poor patient prognosis. Melanoma cell dissemination, migration and invasion

into distant organs of the body are important steps during disease progression. Some impor-

tant checkpoints for melanoma progression are already known and clinically targeted, such

as members of Ras/Raf/MEK/ERK or apoptosis signaling cascades. Only recently the role

of miRNAs in malignant progression came into focus.

The aim of this study was to:

1. Identify miRNAs that influence melanoma cell invasion in a functional screening ap-

proach;

2. Validate these candidate miRNAs and investigate their role in melanoma cell invasion;

3. Identify and validate novel miRNA candidate target genes;

4. Access miRNA candidate effects on lung colonization in vivo.
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Part 4

Materials and Methods

4.1 Materials

4.1.1 General instrumentation

Table 2: General instrumentation

Equipment Manufacturer

ABI 7300 Real-time PCR System Applied Biosystems, Foster City, CA

Biofuge Fresco Centrifuge Heraeus, Hanau, Germany

Biological Safety Cabint Heraeus, Hanau, Germany

BioPhotometer Eppendorf, Hamburg, Germany

BioRad Mini-gel apparatus Bio-Rad, Richmond, CA

CO2 incubator Binder, Tuttlingen, Germany

CASY1 Cell counter Schaerfe System, Reutlingen, Germany

Innova 4230 Incubator Shaker New Brunswick Scientific, Edison, NJ

Leica DM1L Microscope Leica, Wetzlar, Germany

Microbiological Incubator Heraeus, Hanau, Germany

MP220 pH Meter Mettler Toledo, Columbus, OH

Multichannel Pipette Eppendorf, Hamburg, Germany

Multifuge x3 FR centrifuge Heraeus, Hanau, Germany

Pipetboy Brand, Wertheim, Germany

Pipette (P2, P10, P100, P200, P1000) Gilson, Bad Camberg, Germany

Power PAC 300 power supplier Bio-Rad, Richmond, Germany

Refrigerator Liebherr, Ochsenhausen, Germany

Sorvall RT7 Centrifuge Sorvall, Newton, CT

Thermomixer Eppendorf, Hamburg, Germany

Verti 96-Well Thermal Cycler Applied Biosystems, Froster City, CA

Fluoroskan Ascent Microplate Fluorometer Thermo Scientific, Dreieich, Germany

FACS Calibur Flow Cytometer Becton Dickinson, Heidelberg, Germany

FACS Canto Becton Dickinson, Heidelberg, Germany
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4.1.2 General consumables

Table 3: General consumables

Material Manufacturer

Falcon tubes 15ml, 50ml Greiner, Frickenhausen, Germany

Pipette filter tips (10, 20, 100, 200, 1000µl) Starlab, Milton Keynes, United Kingdom

Pipette tips (10, 20, 100, 200, 1000µl) Greiner, Frickenhausen, Germany

Combitips (2.5, 5ml) Eppendorf, Hamburg, Germany

Sterile serological pipettes (5, 10, 25ml) Greiner, Frickenhausen, Germany

Safe-Lock tubes (0.5, 1.5, 2ml) Eppendorf, Hamburg, Germany

Tissue culture flasks (25, 75, 150cm2) TPP, Trasadingen, Switzerland

Cell culture test plates, flat bottom (6, 12,

24 wells)

TPP, Trasadingen, Switzerland

Round bottom 96-well plates TPP, Trasadingen, Switzerland

96-well Transwell plate Corning Incorporated, Lowell, MA

96-well Reciever plate Corning Incorporated, Lowell, MA

PCR strip tube Greiner, Frickenhausen, Germany

MicroAmp Optical 96-well pate Applied Biosytems, Foster City, CA

MicroAmp Optical adhesive film Applied Biosytems, Foster City, CA

Petri Dishes Greiner, Frickenhausen, Germany

Cryotubes Greiner, Frickenhausen, Germany

Nitrocellulose membrane Whatmann, Dassel, Germany

Needles (18G, 27G) Becton Dickinson, Heidelberg, Germany

Inject-F, Syringes Braun, Melsungen, Germany

Liquid reservoirs Carl Roth GmbH, Karlsruhe, Germany

FACS tubes Becton Dickinson, Heidelberg, Germany

4.1.3 General chemicals and reagents

Table 4: General chemicals

Equipment Manufacturer

Trypsin/EDTA 10x PAA Laboratories GmbH, Pasching, Austria

Phosphate Buffered Saline (PBS) Biochrom AG, Berlin, Germany

Dimethyl sulfoxide (DMSO) Applichem, Darmstadt, Germany

Agarose Sigma, Saint Louis, MO

46



Materials and Methods

Tris Base Sigma, Saint Louis, MO

Ammonium Persulfate (APS) Sigma, Saint Louis, MO

Tetramethylethylendiamine (TMED) Bio-Rad, Saint Louis, MO

Sodium dodecyl sulfate (SDS) Sigma, Saint Louis, MO

Glycine GERBU Biotechnik, Gaiberg, Germany

Tween20 GERBU Biotechnik, Gaiberg, Germany

Non-fat milk powder Carl Roth GmbH, Karlsruhe, Germany

Bovine Serum Albumin (BSA) Sigma, Saint Louis, MO

Methanol Sigma, Saint Louis, MO

Ethanol Sigma, Saint Louis, MO

Ethidium Bromide Carl Roth GmbH, Karlsruhe, Germany

β-Mercaptoethanol Sigma, Saint Louis, MO

Paraformaldehyde Sigma, Saint Louis, MO

Tryptone Sigma, Saint Louis, MO

Yest extract GERBU Biotechnik, Gaiberg, Germany

Sodium Chloride (NaCl) Sigma, Saint Louis, MO

Agar Sigma, Saint Louis, MO

Crystal violet Sigma, Saint Louis, MO

Leukosept Greiner, Frickenhausen, Germany

Table 5: General reagents

Material Manufacturer

Gene Ruler 100bp DNA Ladder Fermantas, St. Leon-Rot, Germany

O´Gene Ruler 1kb DNA Ladder Fermantas, St. Leon-Rot, Germany

6x Orange Loading Dye Fermantas, St. Leon-Rot, Germany

Precision Plus Protein Standard Bio-Rad, Richmond, CA

Cell Lysis Buffer Cell Signaling Technology, Beverly, MA

Bio-Rad Protein Assay Reagent Bio-Rad, Richmond, CA

Restriction enzymes (DpnI,PvuI, KpnI,

NotI, XbaI)

Fermantas, St. Leon-Rot, Germany

FastAP Thermosensitive Alkaline

Phosphatase

ThermoFisher Scientific, Schwerte,

Germany

Trypsin/EDTA 10x PAA Laboratoires GmbH, Pasching, Austria

DharmaFect 1 Reagent Dharmacon, Lafayette, CO

BD Matrigel Basement Membrane Matrix BD Biosciences, Bedford, MA
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Cell Proliferation Reagent WST-1 Roche Applied Science, Mannheim,

Germany

CellTiter Glo Reagent Promega, Mannheim, Germany

BCIP/NBP Liquid Substrate System Sigma, Saint Louis, MO

4.1.4 Plasmids

Table 6: Plasmids

Plasmid Manufacturer

pLight Switch 3’UTR MCL1 Active Motif, La Hulpe, Belgium

pEZX-MR04 GeneCopoeia, Rockville, MD 20850 USA

4.1.5 Oligonucleotides

Table 7: Oligonucleotides

Name Manufacturer

DNA primers Eurofins, MWG GmbH, Ebersberg,

Germany

miRNA mimics library Sigma Aldrich, St. Louis, USA

siRNAs Sigma Aldrich, St. Louis, USA

miRCURY LNA inhibitor Exiqon, Vedbaek, Denmark

AllStars Hs cell death control siRNA Qiagen, Hilden, Germany

Table 8: DNA primers for sequencing

Name Sequence 5’-3’

pLS MCL1 3’UTR for GGGAAGTACATCAAGAGCTTCGT

pLS MCL1 3’UTR rev CCCCCTGAACCTGAAACATAAA

pLS mut #1 for TCCCTGAGAGAAGCGTAAGAC

pLS mut #1 rev CCTGGGATTGAGAGGTTGATG

pLS mut #2 for CTGAGAGAAGCGTAAGACAAA

pLS mut #2 rev TGGGATTGAGAGGTTGATGAATGG
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4.1.6 Kits

Table 9: Kits

Material Manufacturer

miRNeasy Mini kit Qiagen, Hilden, Germany

TaqMan miRNA Reverse Transcription Applied Biosystems, Foster City, CA

TaqMan miRNA Assays Applied Biosystems, Foster City, CA

TaqMan Gene Expression Assays Applied Biosystems, Foster City, CA

TaqMan Universal PCR Master Mixture Applied Biosystems, Foster City, CA

Transcriptor First Strand cDNA Synthesis Roche, Applied Science, Mannheim,

Germany

Rapid DNA ligation Roche, Applied Science, Mannheim,

Germany

Phusion High-Fidelity PCR Finnzymes, Espoo Finnland

QuickChange Lightning Site-Directed

Mutagenesis

Stratagene, La Jolla, CA

Luciferase Reporter Assay Systems Promega, Madison, WI

CellTiter Glo Luminescencent Cell Viability

Assay

Promega, Mannheim, Germany

Vybrant Apoptosis Assay Kit #4 Life technologies, CA, USA

QIAquick Gel extraction Kit Qiagen, Hilden, Germany

QIAGEN Plasmid Maxi Kit Qiagen, Hilden, Germany

DNA isolation kit Qiagen, Hilden, Germany

Effectene Transfection Reagent Kit Qiagen, Hilden, Germany

ECL Plus Western blotting Detection

System

GE Healthcare, Buckinghamshire

4.1.7 Antibodies

Table 10: Antibodies used for Western Blot analysis

Material Manufacturer

anti-MCL1 monoclonal (sc819) Santa Cruz Biotechnology, Heidelberg,

Germany

mouse anti-β-actin monoclonal (#691001) MP Biomedicals, Solon, OH
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4.1.8 Cell culture

Table 11: Cell culture medium and supplements

Material Manufacturer

RPMI 1640 PAA Laboratories, Pasching, Austria

αMinimum Essential Medium Eagle (MEM) Sigma, Saint Louis, MO

Fetal Calf Serum (FCS) PAA Laboratories, Pasching, Austria

Penicillin/Streptomycin (Pen/Strep) PAA Laboratories, Pasching, Austria

DMEM PAA Laboratories, Pasching, Austria

Lipopolysacharides (LPS) Sigma, Saint Louis, MO

Glutamine Gibco-Invitrogen, Karlsruhe, Germany

Table 12: Human cells

Cells Sources
NHEMs from adult skin PromoCell, Heidelberg, Germany

NHEMs from juvenile foreskin
Department of Surgery, University Hospital
Heidelberg, Germany

Table 13: Melanoma cell lines

Cell line Source Cell line type

A375 ATCC
human metastatic

melanoma cell [107]

MaMel-12
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-13
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-19
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-20
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-21
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-36
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells
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MaMel-37b
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-38
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-5
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-51
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-53
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-53a
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-57
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-61e
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-68
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-73a
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-79b
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

MaMel-86b
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

UKRV Mel-17
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

UKRV Mel-21
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

WM 115
Division of Preventive Oncology,

DKFZ, Heidelberg

human primary melanoma

cells

WM 266.4
Division of Preventive Oncology,

DKFZ, Heidelberg

human primary melanoma

cells

WM 13.41
Skin Cancer Unit, DKFZ,

Heidelberg
human melanoma cells

WM 98.1
Division of Preventive Oncology,

DKFZ, Heidelberg
human melanoma cells
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Table 14: Bacterial cells

Material Source

TOP10 E.coli competent cells Invitrogen, Carlsbad, CA

4.1.9 Software

Table 15: Software

Software Source

Microsoft Office 2010 Microsoft, Redmont, USA

GraphPad Prism 5 GraphPad Software, Inc., San Diego, USA

Cell Quest Becton Dickinson, Heidelberg, Germany

Leica Application Suite Leica, Wetzlar, Germany

Ascent Software Thermo Scientific, Dreieich, Germany

Adobe Illustrator Adobe, San José, CA, USA

FlowJo Becton Dickinson, Heidelberg, Germany
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4.2 Methods

4.2.1 Preparation of buffers and medium

Table 16: TBS-T

Component Amount

1 x TBS, with 0.1% (v/v) Tween 20

Table 17: 50 x Tris-acetate-EDTA (TAE) buffer, pH 8.0, 1L

Component Amount

Tris base 242 g

Acetic acid 57.1 ml

500mM EDTA solution 100 ml

H2O Adjust final volume to 1L

Table 18: 1 x PBS, pH 7.4, 1L

Component Amount

PBS Dulbecco w/o CA2+, Mg2+ 9.55 g

H2O Adjust final volume to 1L

Table 19: 10 x SDS-PAGE running buffer, IL

Component Amount

Tris base 30 g

10% SDS solution 100 ml

Glycin 144 g

H2O Adjust final volume to 1L

Table 20: 1x Tris-buffered saline (TBS), pH 7.6, 1L

Component Amount

Tris base 2.24 g

Acetic acid 57.1 ml

500mM EDTA solution 100 ml

H2O Adjust final volume to 1L
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Table 21: Transfer buffer, pH 8.5, 1L

Component Amount

Tris base 3 g

Glycin 17.5 g

Methanol 200 ml

H2O Adjust final volume to 1L

Table 22: Stripping buffer, pH 6.8, 100 ml

Component Amount

0.5M Tris-HCL (pH 6.8) 6.25 ml

10% (v/v) SDS solution 20 ml

β-Mercaptoethanol 700 µl

H2O Adjust final volume to 1L

Table 23: Cell freezing medium

Component Amount

FCS 90% (v/v)

DMSO 10% (v/v)

Table 24: LB medium, pH 7.5, 1L

Component Amount

Tryptone 10 g

Yeast extract 5 g

NaCl 10 g

H2O Adjust final volume to 1L

Table 25: FACS buffer

Component Amount

FCS 3% (v/v)

2% NaN3 5 ml

PBS Adjust final volume to 500 ml
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Table 26: MACS buffer

Component Amount

0.5M EDTA 4 ml

BSA 5 g

PBS Adjust final volume to 1L

Table 27: Cell culture medium

Component supplements

culture medium (RPMI 1640) 10% FCS superior

4.2.2 Cell culture

All malignant melanoma cell lines in this study were established from metastasis of pa-

tients with stage III or IV melanoma (Table 13) Biopsies were obtained from either a solid

metastatic lesions or a malignant effusion after a patient’s informed consent. A375 cell line

was purchased from ATCC. WM-266-4 and WM-155 primary melanoma cells were kindly

provided by Dr. Eva Frei, Division of Preventive Oncology, DKFZ German Cancer Research

Center. Melanoma cell lines were cultured in RPMI 1640 medium supplemented with 10%

FCS. Normal human epidermal melanocytes (NHEMs) were cultured in melanocyte growth

medium M2. All cell lines were maintained at 37°C in a humidified 5% CO2 incubator, ex-

cept the melanoma cell line WM-155, which was cultivated at 35°C in a humidified 5% CO2

incubator.

4.2.3 Generation of a stable cell line overexpressing miR-339-3p

The melanoma cell line A375 was seeded in the appropriate amount in a 6-well plate. After

24h a confluency of 70% was reached and the cells were transfected with the clone pEZX-

MR04 encoding for miR-339 and the green fluorescence protein (GFP) which allows to further

select for GFP positive cells (Figure 6). In addition that vector encodes a puromycin resis-

tance encoded, therefore successfully transfected cells would survive puromycin treatment.

After 24h transfected cells were selected by adding 0.2ng/ml puromycin. Cells which were

successfully transfected would show a GFP positive signal and would survive the applied

selection pressure by puromycin. After 5 days only positively transfected cells remain to be

expanded.
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Figure 6: miR-339 expression vector: pEZX-MR04

4.2.4 RNA isolation

Total RNAs including small RNAs from either untransfected or transfected cells were iso-

lated using miRNeasy Mini Kit according to the manufacturer’s protocol. The final RNA

concentration was determined by NanoDrop, according to the manufacturer´s protocol.

4.2.5 Reverse transcription and qPCR

For the quantification of a specific miRNA, reverse transcription and qPCR was performed

using TaqMan MicroRNA Reverse Transcription Kit and TaqMan miRNA assay (Applied

Biosystems, Foster City, CA) according to the manufacturer’s instructions.

In a first step 40ng of total RNA was reverse transcribed in a 15µl reaction using spe-

cific stem-loop primers for mature miRNAs. In a second step 2µl of cDNA was used for

the PCR amplification in 20µl reaction using the TaqMan Universal PCR Master Mixture

kit. For quantitation of mRNA expression 500ng of total RNA was reverse transcribed in a

20µl reaction using oligo (dT)18 as primer and subsequently reverse transcription and PCR

were carried out using Transcriptor First Strand cDNA Synthesis Kit and Taqman Gene

Expression Assays. For the Taqman Gene Expression Assay, the cDNA was diluted 1:5, of

what 2µl was used for a total volume of 20µl PCR reaction using the TaqMan Universal

PCR Master Mixture kit. qPCR was performed in duplicates or triplicates as indicated.

The thermal conditions are summarized in Table 28. Small nuclear RNA U6 (RNU6B) and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were used as endogenous control for

TaqMan miRNA assay and gene expression assay, respectively. Relative expression of the
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tested genes was calculated by ΔCt-method according to the manufacturer’s recommenda-

tion.

Table 28: Thermal conditions of reverse transcription and qPCR

miRNA reverse transcription

Temperature (°C) Time (min) Cycles
16 30 1
42 30 1
85 5 1
4 ∞ 1

Total RNA reverse transcription

Temperature (°C) Time (min) Cycles
65 10 1

immediately on ice 5 1
50 60 1
85 5 1
4 ∞ 1

qPCR

Temperature (°C) Time Cycles
95 10 min 1
95 15 sec 40
60 60 sec

4.2.6 Transfection of miRNA mimics, miRNA inhibitor or siRNAs

for functional assays

Appropriate amount of melanoma cells were seeded into 12-well, 24-well or 96-well plates

to achieve 40% - 60% confluence before transfection was performed the next day. 50nM

of miRNA mimics, miRNA inhbitor or siRNAs were transfected into melanoma cells using

DharmaFect 1 reagent according to the manufacturer’s protocol. Medium was changed 6h

or 24hr post transfection.

4.2.7 Site-directed mutagenesis

To introduce site-specific mutations into the pLS-plasmid containing the 3’UTR of MCL1

primers were designed with the program provided by Agilent Technologies (QuickChange
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Primer Design). Site-directed mutagenesis was then performed according to the manufac-

turers protocol using the Quick Change Site-Directed mutagenesis kit. After successful PCR

amplification of the mutated construct, it was transformed and amplified by Top10 bacteria

and subsequently sequenced.

4.2.8 Transformation and amplification of cloned plasmid

Amplification of the construct was achieved by transformation of Top10 bacteria and sub-

sequent growing of colonies on LB agar with ampicillin. Colonies were picked and used to

inoculated 3 ml of LB-medium containing 100 µg/ml ampicillin. Positive clones were further

expanded by using the Maxi-Prep Kit (Qiagen) accordingly to the manufacturers instruc-

tions. DNA concentration was determined by a BioPhotometer.

4.2.9 Luciferase reporter assay

Appropriate amount of cells were seeded into 96-well plates to achieve 40% - 60% confluency

before transfection the next day. 50nM miR-339-3p and 50ng/µl pLS-MCL1-3’UTR were

transfected into Melanoma cell lines using Effectene Transfection Reagent (Figure 7). 48hr

after transfection, medium was removed and 20µl/well of Passive Lysis Buffer was added to

lyse the cells followed by 15min incubation at room temperature. 100µl/well of Luciferase

Assay Reagent II was added to quantify Renilla lucifease activity. Renilla luciferase ratio

was calculated and further normalized to the negative control. Significance was tested by

Student’s t-test.
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Figure 7: pLS-MCL1 3’UTR vector map

4.2.10 Protein detection by Western Blot analysis

Cell lysates were generated using appropriated amounts of the Cell Lysis Buffer (Cell Sig-

naling) and incubated for 15min on ice followed by 25min centrifugation at 13,000rpm, 4°C.

Protein concentration was determined by Bio-Rad Protein Assay reagent on a BioPhotome-

ter. Cell lysates were stored at -20°C.

Heat denatured whole cell protein samples (15µg- 50µg) were mixed with 5 x loading dye

and separated on a 10% polyacrylamid gel, and electro-transferred onto nitrocellulose mem-

branes. Successful protein transfer was confirmed by Ponceau S staining of the nitrocellulose

membrane. Before blocking of the membrane with 5% of non-fat milk in TBS-T, Ponceau S

was washed away with TBS-T buffer. After blocking, the membranes were incubated with

the respective primary antibody diluted in 0.5% non-fat milk in TBS-T buffer and left ro-

tating at 4°C over night. Next, membranes were washed in intervals of 1 x 10min and 2 x

5min with TBS-T before incubated with the respective horseradish peroxidase conjugated

secondary antibody diluted in 0.5% non-fat milk in TBS-T for 1h at RT. Following another

interval of washing with TBS-T buffer, protein signals were detected using the enhanced

chemiluminescence (ECL) system by a charged-coupled device (CCD)-camera. Densitomet-

ric quantification of specific bands was performed using ImageJ software.
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4.2.11 Automated scratch assay

Melanoma cells were seeded into clear-bottom 96-well plates and transfected after 24h with

the respective miRNAs or siRNAs indicated. After 48h the melanoma cells formed a dense

monolayer, they were fluorescently stained with a live cell dye and the scratch was performed.

The media was removed and the cells were washed once with PBS. Then the scratch was

performed homogeneously and simultaneously in all 96-wells by a robot. Afterward the

melanoma cells were washed again, media was added and the 0h time point of migration was

imaged by fluorescence microscopy. After 24h a second fluorescence image was attained and

the average migration width was determined. Significance was tested by Student’s t-test.

4.2.12 96-well Boyden chamber assay

Invasion assay was performed using a Matrigel (50ng matrigel / well) coated 96-well transwell

plate. Briefly, 48hr post transfection cells were seeded into the upper insert with serum-free

medium and the lower chamber was filled with RPMI 1640 medium containing 10% FCS as

chemo-attractant. Cells were kept at 37°C in a humidified 5% CO2 incubator. After 24h or

6h for the whole library screen, the invaded cells were washed twice with PBS, detached from

the membrane b cell dissociation solution (CDS), fluorescently stained with calcein and mea-

sured with the Fluoroskan Ascent� Microplate Fluorometer according to the manufacturer’s

protocol.

4.2.13 96-well Boyden chamber assay: Screening

During the screening of miRNA effects on melanoma cell invasion the matrigel invasion

assay was performed in exactly the same fashion. 1x105 A375 cells per well were seeded

into a 96-well cell culture plate and transfected with the respective miRNAs after 24h. 48h

posttransfection the cells were detached and three times one third was transferred into three

inserts of a 96-well transwell plate resuspended in serum free media. The whole assay was

therefore performed in technical triplicates for the invasion assay. After 6h the invaded cells

were stained with calcein and the amount of invaded cells was determined with the Fluoroskan

Ascent� Microplate Fluorometer according to the manufacturer’s protocol. Significance was

tested by Dr. Tim Holland-Letz with a one way anova in the first step and a Dunnetts test

in the second step.
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4.2.14 Cell Viability Assay: CellTiter Glo

Cell viability was assessed using a luminescence CellTiter Glo (CTG) assay. 100µl CellTiter

Glo reagent was added to 100µl RPMI media with 10% FCS per well in a 96well plate.

The solutions were mixed for 2min on an orbital shaker and incubated for 10min in room

temperature (RT) to stabilize the luminescence signal. Due to the occurring cell lysis a

luminescence signal can be detected proportional to the ATP content present in each well.

Therefore, the ATP amount measured is directly proportional to the amount of lysed cells

in the well. The luminescence signal was measured with the Fluoroskan Ascent� Microplate

Fluorometer according to the manufacturer´s recommendation. Significance was tested with

Student’s t-test.

4.2.15 Apotosis assay

The apoptosis staining uses the features of YO-Pro. Apoptotic cells become permeable to

it but remain impermeable to propidium iodide (PI), a dead cell stain. Live cells are not

stained with YO-Pro, allowing them to be used in subsequent experiments. Melanoma cells

were seeded in the appropriate amount in 24-well plates. After 24h they reached around

70% confluency and were transfected with the specific miRNAs and AllStars Hs Cell Death

Control siRNA. 48h post transfection the cells were washed with PBS, detached and stained

for apoptotic and necrotic cells. One µl of YO-Pro and/or PI stock solution was added to

1ml of cell suspension and incubated for 30min. The YO-Pro and PI signals were detected

by FACS analysis.

4.2.16 Illumina gene expression profiling

For Illumina gene expression profiling two different melanoma cell lines, A375, MaMel-86b

were transfected in biological triplicates with miR-339-3p. The cells were harvested 48h

post transfection and RNA concentration was determined. In total six samples per cell line

were subjected to gene expression analysis. Three independent biological triplicates either

transfected with miR-339-3p or untreated were subjected to Illumina gene expression anal-

ysis. The assay itself and differential gene expression analysis was performed by the gene

expression Core Facility of the DKFZ. In brief, they could group the data accordingly to

the provided triplicates and differentially analyzed gene expression by comparing untreated

melanoma cells with miR-339-3p transfected melanoma cells by Chipster analysis. Addi-

tionally, follow up data analysis and heatmap generation was also performed with the Chip-
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ster software. To determine processes and signaling pathways differentially regulated after

miR-339-3p overexpression a DAVID (Database for annotation, visualization and integrated

discovery) enrichment analysis and subsequent MetaCore enrichment analysis in cooperation

with Dr. Agens Hotz-Wagenblatt was performed for genes two fold differentially regulated

both melanoma cell lines, A375, MaMel-86b. MetaCore enables the analysis of complex

microarray genexpression data as it is based on databases containing transcription factors,

receptors, ligands, kinases, drugs, and endogenous metabolites as well as other molecular

classes to directly analyze species-specific directional interactions between protein-protein,

protein-DNA and protein-RNA, drug targeting, and bioactive molecules and their effects on

signaling and metabolic pathways represented on maps and networks or ontologies for dis-

eases and processes with hierarchical or graphic output (MetaCore MetaCore Bioinformatics

software from Thomson Reuters,https://portal.genego.com/).

4.2.17 Lung metastasis assay in vivo

Three different A375 melanoma cell lines were investigated for their impact on lung colo-

nization in non-obese diabetic scid gamma (NSG) mice. NSG mice were injected i.v. with

1x106 or 5x105 A375 melanoma cells stably transfected with either the vector encoding for

pre-miR-339, the empty vector or the parental A375 cells. The cells were harvested, washed

three times in cold PBS and injected intravenously (i.v.) into ten mice per group. 14 days

later the mice were sacrificed and metastasis formation in the lungs was investigated. Despite

lung metastasis, hepatic colonization was observed. Therefore, metastasis in lungs and livers

of all mice were counted. Significance was tested by Student’s t-test.

4.2.18 Bioinformatic analysis

4.2.18.1 Statistical analysis of screening result

After the functional screening approach the effect of every single miRNA candidate displayed

by its mean fluorescence intensity normalized to the mock control was logarithmized and

analyzed for its significant effect on A375 cell invasion with the Dunnett’s test displayed in

Table S1. This statistical analysis was performed by Dr Tim Holland-Letz.
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Furthermore, z-scores of all miRNA candidates were calculated to standardize the screen-

ing result. The z-score represents the number of standard deviations a individual sample

value is different from the mean of the complete data set according to the following equation:

z = (x-µ)/σv

x represents the sample value (mean MFI)

µ represents the mean of the population

σv represents the standard deviation of the population

MFI values of every individual miRNA candidate were used to calculate the z-scores of

all miRNA candidates and are represented in Table S2.

4.2.18.2 miRNA target prediction analysis

Most promising miRNA candidates were subjected to target identification databases, Tar-

getScan and miRBase. Putative miRNA targets were subsequently subjected to the Database

for Annotation, Visualization and Integrated Discovery (DAVID) for enrichment analysis

[148, 149] and subsequent MetaCore (MetaCore by Thomson Reuters) analysis performed

by Dr. Agnes Hotz-Wagenblatt for targets of miR-339-3p and miR-576-5p. These effects

were classified into different signaling pathways mainly influenced by miRNA overexpression,

respectively.
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Part 5

Results

The aim of this thesis was to investigate the role of miRNAs in melanoma cell migration

and invasion. In this respect a functional screening approach had to be established which

can detect changes in melanoma cell migration or invasion as read-out.

5.1 The model system

To set up a functional screening approach a model cell line has to be selected, the most

suitable assay and test its screening feasibility with robust positive and negative controls.

Therefore, the first step was to investigate different properties of a panel of melanoma cell

lines. They were tested for their proliferative capacity and cell viability in a 96-well format

(Figure 8). Different cell lines with different cell numbers were seeded and the amount of

viable cells was measured 48h post seeding Figure 8A. The amount of viable cells positively

correlates with luminescence intensity. Most cell lines could be titrated, such as melanoma

cell line A375, MaMel-38, MaMel-12 and MaMel-17 with the strongest proliferative poten-

tial. Several melanoma cell lines showed intermediate proliferative capacity, e.g. MaMel-

20, MaMel-51, MaMel-57, MaMel-61 and MaMel-103b. Whereas, other cell lines, such as

MaMel-21, MaMel-73a, WM 98.1 and WM 13.41 showed a low proliferative potential. Over-

all, differences in the amount and cell viability for all melanoma cell lines tested could be

determined.

The melanoma cell line A375 is one of the most common melanoma cell lines used in

melanoma research and performed reliably in all assays. Thus, its properties are well-known

and widely investigated, which would be in favor for its usage in a functional screening

approach. The ability to form metastasis in vivo might be of further interest for follow-

up studies after the functional invasion assay. Therefore, an experimental tail vein assay for

lung metastasis formation in non-obese diabetic scid gamma (NSG) mice mice was performed.

1x106 cells were injected i.v. and metastasis in the lung could be observed 14 days later. 21

days post injection increasing numbers of metastases could be detected in the lungs as well as

in the liver of these mice (Figure 8C, a, b, d, e). Additionally, the lymph nodes of these mice
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were increased at day 21 post injection (Figure 8C, c). The lung metastasis formation was in

accordance with already published results by Carreno et al. [43]. This proves the metastatic

potential of the A375 cells that is important for a functional migration or invasion assay

screening and the cell line A375 was chosen as model cell line for the functional screening

approach.
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Figure 1: Characteristics of the A375 melanoma cell line. A: Different melanoma cell lines were seeded with different cell density and cell viability was deter-
mined 48h post seeding B: Growth curves of different melanoma cell lines. The R square coefficient statistically measures  how well the regression line approxi-
mates the real data points. C: The Automated cell migration assay. The average scratch width (ASW) was determined after fluorescnence staining of the living 
cells with a fluorescence microscope at the starting point (0h timepoint) and after 24h to attain the migration distance. Different miRNAs and siRNAs were tested 
to induce or reduce the migration speed of the A375 cell line. D: The metastatic potential of A375 cells in vivo was tested in NSG mice. 1x10^6 cells were injected 
i.v. and metastasis formation in lung and liver was investigated after 21 (a.b) or 14 days (d,e). 21 days post i.v. elevated lymph nodes could be detected (c). E: 
The A375 cell line was transfected with different siRNAs or miRNAs which are thought to reduce migration, siRNA against EGFR MMP9 and EZH2 or miR-137, 
miR-136 and miR-206 or increase migration, siRNA against CDKN1G2, miR-182, miR-211. 48h post transfection the cells formed a homogenous monoloayer, 
were scratched and a picture was taken of the 0h timepoint. 24h later another picture was taken to determine migration effect by measuring the average migra-
tion width. These distances are represented in the bar graph.after 24h to attain the migration distance. 

Figure 8: Characteristics of the melanoma cell line A375. A: Different melanoma cell lines were seeded with
different cell density and cell viability was determined 48h post seeding. B: The Automated cell migration
assay. The average scratch width (ASW) was determined after fluorescence staining of the living cells with a
fluorescence microscope at the starting point (0h time point) and after 24h to attain the migration distance.

C: The metastatic potential of A375 cells in vivo was tested in NSG mice. 1x106 cells were injected i.v. and
metastasis formation in lung and liver was investigated (a, b, d, e). 21 days post i.v . injection of the tumor
cells; additionally, elevated lymph nodes could be detected (c).
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In a next step we had to select a suitable migration assay. The assay of choice, was a high-

throughput automated wound-healing scratch assay, was previously established in the lab of

Prof. Dr. Stefan Wiemann [178, 382]. This assay allows one to determine changes in the

migrative potential of melanoma cells after transient miRNA overexpression via fluorescence

imaging.

For this reason, the model cell line A375 was seeded into a 96-well glass bottom plate.

After formation of a dense cell monolayer the cells were fluorescently stained and a robot

performed the scratch as displayed in Figure 8B (0h time point). Fluorescence images were

taken at 0h and 24h post scratching to determine the average migration width of A375 cells.

The scratch width was determined by an automated program [178,382] which identifies and

marks the boarder of fluorescently stained cell monolayers.

Overall, the cell line A375 showed all important characteristics to be suitable for a scratch

assay screening. It forms a homogenous cell monolayer, metastasizes in vivo and does migrate

in vitro. In addition, A375 cells showed an intermediate migration potential after 24h which

can still be increased or decreased during the screening. Consequently, the cell line A375 was

chosen as model cell line for the functional screening approach.

5.2 miRNA library screening in A375 melanoma cells

5.2.1 Assay establishment

A screening approach requires the establishment of stable positive and negative controls

to monitor and compare independent experiments. To control the whole screening procedure

positive controls for inhibiting or accelerating melanoma cell migration have to be estab-

lished. Different miRNAs and siRNAs were transfected 24h post seeding and 24h before the

automated scratch was performed. The 0h and 24h time points were recorded by fluorescence

microscopy and the average migration width was determined.

The siRNA against CSNK1G2 and all miRNAs, miR-182, miR-221 and miR-211 were

influencing A375 cell migration. It was possible to accelerate A375 cell migration via miR-182

overexpression during 24h of migration. miR-182 and miR-206 transfected cells showed the

strongest migrative potential compared to untransfected cells or cells transfected with miRNA

control 1 (ctrl1) (Figure 9A, B). miR-221 and miR-211 as well as siRNA against EGFR,
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CSNK1G2 and EZH2 did not show a significant difference to mock treated cells (Figure 9B).

All possible positive controls tested in this assay could not alter the migration of A375 cells

significantly during these 24h of migration. Therefore, no reliable assay control could be

established and consequently another assay was considered which allows to investigate not

only the migration but the more physiological invasion of melanoma cells.
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Figure 9: Migratory capacity of the cell line A375. A: The automated cell migration assay. The average
scratch width (ASW) was determined after fluorescence staining of the living cells at the starting point (0h
time point) and after 24h to attain the migration distance. B: The cell line A375 was transfected with
different siRNAs or miRNAs which are thought to reduce migration, siRNAs against EGFR, MMP9 and
EZH2 or miR-137, miR-136 and miR-206 or accelerate migration, siRNA against CDKN1G2 and miR-182
and miR-211. The mean ASWs of triplicates are represented in the bar graph after 24h of migration to
compare changes in the migration distance for every siRNA or miRNA treatment.
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The assay of choice was the 96-well Boyden chamber assay. In this assay viable melanoma

cells are seeded into the upper Boyden chamber inserts in serum free media, whereas media

with 10% in the lower chamber serves as a chemoattractant. After a certain amount of

invasion time the invaded cells are detached and fluorescently stained with calcein which

allows a direct fluorescence measurement of the invaded cells. The strength of the fluorescence

signal thus directly indicates the amount of invaded cells.

To establish the assay, in a first step different cell numbers (Figure 10A) of the A375 cells

were seeded into each of the 96-well Boyden chamber inserts and different invasion times

(Figure 10B) were used to determine the best combination. It was important that increased

as well as decreased cell number can still be detected later during the screening procedure.

5x104 cells per insert and an invasion time of 6h could be determined as the best combination

as indicated by the highlighted white bars (Figure 10A, B). As positive controls a panel of

six miRNAs and siRNAs was tested: miR-182, miR-101, miR-221, miR-211, siRNA against

MMP9 and siRNA against EZH2. A375 cells transfected with miR-182 showed a significant

increased invasive potential compared to mock or ctrl1 transfected cells (Figure 10C, purple).

Therefore, miR-182 was selected as positive control for increased invasive potential for the

functional screening assay. miR-101 could be validated as positive control for decreasing

invasive potential of A375 cells (Figure 10C, green). Both positive controls are highlighted

in color in Figure 10C. With a stable assay and a suitable cell line the next step was to

standardize the screening procedure to minimize variances between different experiments.

The standardized work-flow used during the whole screening procedure is presented in Figure

10D.

For the functional invasion screening A375 cells were transfected with the two validated

positive controls, miR-182, miR-101, two irrelevant controls ctrl1 and ctrl2 (miRNA control

2) as well as mock 24h post seeding. After additional 24h the medium was exchanged

and 48h post transfection the cells were detached and transferred into the matrigel coated

96-well Boyden chamber inserts. Six hours later the invaded cells were detached from the

membrane of the insert, fluorescently stained and the fluorescence intensity was measured.

This protocol was stringently followed during the whole screening procedure. Every miRNA

mimic of the library was tested in functional triplicates and all five controls (miR-182, miR-

101, ctrl1 miRNA, ctrl2 miRNA and mock) were present in biological replicates and functional

triplicates on every screening assay plate.
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Figure 10: Setting up a functional screening approach for melanoma cell invasion. A375 cells were investigated
for their invasive capacity. At different cell amounts after 6h of invasion (A) were seeded into the 96-well
Boyden chamber wells and the amount of invaded cells was determined by fluorescence staining of living cells
with calcein AM at different time points (B). C: Different miRNAs or siRNAs were investigated for their
effect on A375 cell invasion. Cells were seeded in a 96-well plate, transfected 24h post seeding and transferred
into the 96-well Boyden chamber assay plate 48h post transfection. After 6h of invasion the invaded cells were
fluorescently stained and measured. D: Workflow of the 96-well Boyden chamber assay screening procedure.
The selected cell number and time of invasion is represented in white bars (A, B), the selected controls are
represented in color (C: purple accelerating control, green inhibitory control). Comparisons significant at the
0.05 level are indicated by asterisks (*).
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5.2.2 microRNA library screening using the functional invasion

assay

The miRNA mimics library consists of 988 miRNA mimics which were directly used to

transfect A375 cells in a 96-well format. 5x104 A375 cells were seeded into each well of the

96-well plate and transfected with 50nM miRNA mimic of the library or with one of the

respective positive or negative controls. 24h later the medium was exchanged and after addi-

tional 24h the cells were detached and transferred into the 96-well Boyden chamber inserts.

Every transfection was split into three 96-well Boyden chamber inserts to attain functional

triplicates. After 6h of invasion through a matrigel coated membrane directed towards FCS

as chemoattractant the invaded cells were simultaneously detached, fluorescently stained and

the fluorescence intensity was measured to determine the amount of invaded cells (Figure

10D).

In Figure 11A the whole screening result is presented. Every bar represents the effect

of one miRNA mimic on A375 cell invasion in functional triplicates normalized to mock

control transfected cells on every individual assay plate. The higher the measured fluorescence

intensity the more cells invaded through the matrigel coated membrane. On the left hand

side of the waterfall plot miRNA mimics are represented which induced a high fluorescence

signal, therefore had an accelerating effect on A375 melanoma cell invasion. miRNA mimics

located on the right showed the opposing effect, an inhibiting effect on A375 cell invasion

(Figure 11A, Supplement Table S2). The effect of every single miRNA candidate displayed

by its mean fluorescence intensity normalized to the mock control was logarithmized and

analyzed for its significant effect on A375 cell invasion with the Dunnett’s test by Dr. Tim

Holland-Letz. The result is displayed in the supplement, Table S1, and summarized in

Figure 11B. 50% of miRNA candidates did not show a significant effect on A375 cell invasion

in this functional screening approach. 37% increased A375 cell invasion significantly and

13% significantly decreased the invasive capacity of this melanoma cell line. Subsequently,

only miRNA candidates which changed melanoma cell invasion significantly compared to the

irrelevant control miRNAs transfected melanoma cell invasion after statistical analysis were

further considered for investigation according to Table S1.
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Figure 11: Result of the functional invasion assay screening with the melanoma cell line A375. A: 988 miRNA
mimics were investigated for their effect on A375 cell invasion in technical triplicates. The invaded cells for
every miRNA treatment were fluorescently stained and are given as the mean fluorescence intensity +/- STD.
All individual plates were normalized to the mock control present on every 96-well Boyden chamber plate. B:
The miRNAs which showed an either significant accelerating effect on invasion (37%) or a significant inhibiting
effect on invasion (13%) were determined by the Dunetts test. C: The z-scores for all 988 miRNA mimics
were calculated to display the number of standard deviations a data point is from the mean. Comparisons
significant at the 0.05 level are indicated by asterisks (*).
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The represented z-score was calculated for every miRNA triplicate individually (Figure

11C). The z-score represents the distance in standard deviations of a sample from the mean.

In this case it represents the difference of the mean of one miRNA candidate to the mean +/-

standard deviation of the whole data set. Therefore, the stronger the effect of the miRNA

candidates the higher, for miRNAs with positive effect on A375 cell invasion, or lower, for

miRNA candidates with negative effect on A375 cell invasion, is the z-score (Figure 11C).

Several miRNAs included in our miRNA mimics library are known in literature to play a

role in melanoma or cancer cell invasion. Some miRNAs could be verified in our functional

screening and showed significant effects on A375 cell invasion according to their published

function (Figure 12A).

The z-score for 15 different miRNAs are displayed in Figure 12A. Among these 15 miRNAs

nine miRNAs are shown with reported function on cancer cell invasion. The two negative

control miRNAs, ath-miR-416 and cel-miR-243 are displayed in the center. Above miRNAs

with negative z-score and therefore, an inhibiting effect on A375 cell invasion are shown

and below the miRNAs with accelerating effect on A374 cell invasion during the functional

screening. The two miRNA candidates with the strongest effect during the screening assay are

displayed on both edges of the graph, miR-576-5p and miR-325. For representative reasons

also the two positive controls of the invasion screening approach are displayed (Figure 12A,

filled bars).

All miRNAs shown in Figure 12A are significant for their effect on A375 cell invasion

in comparison to the negative controls, supporting the aim of this project to identify new

miRNAs with potential effect on melanoma cell invasion. The 50 miRNA candidates with

the strongest effect to accelerate or inhibit A375 cell invasion are shown in Figure 12B and

C. All these miRNAs show a significant effect on A375 cell invasion and would be therefore

interesting candidates for further analysis.

The complete list of 988 miRNAs and their effect on A375 cell invasion can be found in

Table S2. In addition, all miRNA candidates with their significant effect on A375 cell invasion

analyzed by Dr. Tim Holland-Letz are listed in the Table S1. Overall, this result shows

that the 96-well Boyden chamber assay can be used in a functional screening approach to

investigate differences in the invasive potential of a distinct cell population. The assay could

be shown to be a reliable method to investigate the invasive behavior of different melanoma

cell lines, however the possible effects of specific miRNA candidates on cell viability have to

be taken into account.

72



Results

A

B

-2 -1 0 1 2 3 4 5 6 7

hsa-miR-576-5p

hsa-miR-21

hsa-miR-214

hsa-miR-182

hsa-miR-223

hsa-miR-9

hsa-miR-155

cel-miR-243

ath-miR-416

hsa-miR-194

hsa-miR-126*

hsa-miR-126

hsa-miR-101

hsa-miR-211

hsa-miR-325

z - score normalized invasion values  

0 1 2 3 4 5 6 7

hsa-miR-576-5p
hsa-miR-554

hsa-miR-483-5p
hsa-miR-559
hsa-miR-206
hsa-miR-19b

hsa-miR-2054
hsa-miR-578
hsa-miR-575
hsa-miR-202

hsa-miR-1200
hsa-miR-200b
hsa-miR-20b
hsa-miR-507
hsa-miR-595

hsa-miR-2052
hsa-miR-611

hsa-miR-205*
hsa-miR-518a-3p

hsa-miR-202*
hsa-miR-21

hsa-miR-518b
hsa-miR-498
hsa-miR-632
hsa-miR-661
hsa-miR-640

hsa-miR-2053
hsa-miR-548i

hsa-miR-200c*
hsa-miR-200c

hsa-miR-200a*
hsa-miR-154*
hsa-miR-222
hsa-miR-647
hsa-miR-874
hsa-miR-766

hsa-miR-548m
hsa-miR-21*
hsa-miR-210
hsa-miR-203

hsa-miR-501-5p
hsa-miR-548i

hsa-miR-19b-1*
hsa-miR-218
hsa-miR-599

hsa-miR-490-3p
hsa-miR-635

hsa-miR-513a-3p
hsa-miR-491-3p

hsa-miR-181a

C

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

hsa-miR-574-5p
hsa-miR-125b-1*
hsa-miR-126
hsa-miR-1277
hsa-miR-194*
hsa-miR-1912
hsa-miR-1270
hsa-miR-17*
hsa-miR-1908
hsa-miR-1255b
hsa-miR-199a-5p
hsa-miR-1254
hsa-miR-181c*
hsa-miR-1288
hsa-miR-654-3p
hsa-miR-1909*
hsa-miR-1290
hsa-miR-129-3p
hsa-miR-125a-5p
hsa-miR-92b*
hsa-miR-320c
hsa-miR-1276
hsa-miR-1283
hsa-miR-188-5p
hsa-miR-301b
hsa-miR-139-5p
hsa-miR-129*
hsa-miR-1302
hsa-miR-125a-3p
hsa-miR-127-3p
hsa-miR-196b*
hsa-miR-523
hsa-miR-660
hsa-miR-1248
hsa-miR-198
hsa-miR-192*
hsa-miR-659
hsa-miR-331-3p
hsa-miR-31*
hsa-miR-193b
hsa-miR-187*
hsa-miR-302d
hsa-miR-194
hsa-miR-211
hsa-miR-549
hsa-miR-342-3p
hsa-miR-624
hsa-miR-339-3p
hsa-miR-30c-1*
hsa-miR-325

z - score normalized invasion values  z - score normalized invasion values  

Figure 12: miRNA candidates with significant increase or decrease of A375 cell invasion. A: miRNAs already
published for their role in cancer cell invasion which could be confirmed in this functional screening assay.
B: The 50 strongest miRNA candidates which showed a significant accelerating effect on A375 cell invasion
C: The 50 strongest miRNA candidates which showed a significant inhibiting effect on A375 cell invasion.
The control miRNAs are displayed with filled bars in the respective colors, cel-miR-324 (ctrl1), ath-miR-416
(ctrl2) in black, miR-101 in green and miR-182 in purple. The miRNA candidates considered for further
investigation follow the same color scheme. Comparisons significant at the 0.05 level are indicated by asterisks
(* p<0.05, ** p<0.01).
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The validation and further candidate selection following the screening is presented in

Figure 13. The strongest miRNA candidates were investigated for their putative impact on

melanoma cell viability. Additionally, miRNA candidates were further investigated with an

independent invasion assay using several melanoma cell lines. In these assays, cell numbers

were determined before starting a 24h invasion phase. Subsequently, miRNA candidates

with a validated effect on melanoma cell invasion and no effect on melanoma cell viabil-

ity were bioinformatically characterized for their putative target genes. Furthermore, these

miRNA candidates were further characterized for their expression profile in normal human

melanocytes in comparison to several melanoma cell lines (Figure 16). This approach iden-

tifies the most promising miRNA candidates for additional functional assays.

Figure 13: Functional invasion assay screening work flow: The outline of the screening, the validation phase
with independent invasion assay and cell viability assays and the identification and follow-up of specific
miRNA candidates in functional assays.

5.3 Cell viability effects of specific miRNA candidates

While miRNA effects on cell viability may affect the outcome of the invasion assay, it was

not possible to test these simultaneously during the screening. Therefore, the 97 strongest

miRNA candidates were further investigated for their effects on A375 melanoma cell viability.

CellTiter Glo (CTG) assay was performed in a 96-well format for 48 miRNA candidates with

inhibiting effect on melanoma cell invasion and 49 miRNA candidates which were capable of

accelerating A375 cell invasion. To investigate any cell viability effects that could possibly
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influence the screening result the same time intervals were used. A375 cells were transfected

24h post seeding and consequently 48h post transfection the effect on cell viability was

measured (Figure 14).
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Figure 14: Cell viability assay for the 98 most effective miRNA candidates accelerating (A) or inhibiting
(B) A375 invasion. A375 cells were seeded into 96-well plates and transfected with the respective miRNA
mimics after 24h. 48h post transfection the number of viable cells in culture was determined based on the
quantification of the ATP present, as an indicator of metabolically active cells resulting in a luminescence
signal. The green and purple lines indicate a more than 20% decrease or increase on A375 cell viability,
respectively. Data are shown as mean +/- STD of biological triplicates.
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As it can be seen in Figure 14 some miRNA candidates affected A375 cell viability.

For example miR-1302, miR-127-3p, miR-187*, miR-194, miR-624, miR-30c-1* and miR-325

showed a more than 20% decreased A375 cell viability (green line). Within the miRNA

candidates accelerating the A375 invasive potential some slightly enhanced cell viability, as

for example miR-576-5p, miR-575 and miR-595-5p. This observed influence on cell viability

has to be considered for further investigation of the respective miRNA candidates. All these

candidates are within the strongest candidates to decrease or increase A375 cell invasion

during the functional screening. This indicates, that for some miRNA mimics, the observed

decrease or increase of A375 invaded cells might not be solely due to changes in the number

of invaded cells, but might also be influenced by effects on cell viability.

To further clarify miRNA effects on A375 cell viability altering the screening result,

the invasive potential observed during the screening procedure was normalized to detected

changes in cell viability for 98 miRNA candidates. miRNA candidates with inhibiting or

accelerating effect on A375 cell invasion which could only be explained due to changes in

cell viability would reach values around one, as it can be seen for ctrl1 transfected cells in

Figure 15. If the effects on A375 cell viability were stronger than the effects on cell invasion

the values would range below one for miRNA candidates accelerating A375 cell invasion and

above one for miRNA candidate inhibiting A375 cell invasion (Figure 15).

As it can be seen in Figure 15, miRNA candidates inhibiting melanoma cell invasion

reach normalized values between 0.2 and 0.7, whereas in the case of miRNA candidates

accelerating A375 cell invasion the values lie above 1.6. The overexpression of several miRNA

candidates with a potential inhibiting effect on A375 cell invasion show cell viability effects

after overexpression of the respective miRNA candidate, e.g. miR-301b, miR-1302 and miR-

127-3p affected A375 cell viability in this setting. However, this effect alone can not explain

the strong decrease of invasion that could be observed during the invasion assay screening

(Figure 15). Also the positive control miR-101 and additional candidate miRNAs, miR-1248,

miR-31*, miR-187* and miR-194 slightly affected A375 cell viability.

None of the miRNA candidates accelerating A375 cell invasion showed indications for a

strong effect on melanoma cell viability, that could solely explain the invasion assay screening

result (Figure 15B).
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Figure 15: Cell viability effects influence the observed cell invasion but do not explain the observed effects
on cell invasion. A, B: Cell invasion effects of 98 most promising miRNA candidates in relation to their
influence on A375 cell viability. A: miRNA candidates inhibiting or (B) accelerating melanoma cell invasion.
Data represent the mean of triplicates +/- STD. C: The of z-score of the invasion screen in relation to the
cell viability score is represented by the differential score for each miRNA candidate. D: Distribution of
effects for every single miRNA candidate. The assay positive controls, miR-101 and miR-182 are shown in
the respective color.
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In addition, the differential score was determined for all 98 miRNA candidates. The

differential score represents the z-score of every single miRNA candidate to its cell viability

score (Figure 15C) and the accumulated results are represented in two dot plots (Figure

15D). The lower the effect of the individual miRNA on A375 cell invasiveness, the closer

the values allocate around one. Two populations can be observed for miRNA candidates

inhibiting A375 cell invasion. One population of 24 miRNA candidates around the value 0.5

representing miRNA candidates which showed a strong inhibition effect on melanoma cell

invasion and only a slight effect on cell viability. The second population represents three

miRNA candidates, miR-301b, miR-1302 and miR-127-3p, which reach closer to one due to

slight effects on cell viability and their lesser, but still significant effect on A375 cell invasion

(Figure 15A). miRNA candidates accelerating melanoma cell invasion are represented by

one homogeneously distributed population (Figure 15B, D) distributed according to their

strength during the functional invasion assay screening.

For all miRNA candidates the effect on invasion observed during the screening could

not exclusively be explained by their influence on cell viability. Therefore, all 98 miRNA

candidates were considered for further investigation.
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5.4 miRNA candidate expression profiling

5.4.1 Expression of miRNA candidates in melanoma cell lines com-

pared to NHEMs

The possibility of introducing artificial effects always has to be considered in miRNA

overexpression experiments. Therefore, the endogenous expression of seven selected miRNA

candidates was validated in 16 different melanoma cell lines (MM) and seven normal human

melanocytes (NHEMs). These miRNA candidates represent candidates to either accelerate,

miR-576-5p, miR-559-5p and miR-483-5p or inhibit A375 cell invasion. As shown in Figure

16, significant different expression levels were observed between melanoma cell lines and

NHEM in case of miRNAs, miR-339-3p. miR-30c-1* and miR-193b. However, only a very

low expression level of miR-193b could be detected. miR-339-3p and miR-30c-1* displayed

significant higher expression in NHEMs compared to melanoma cell lines and showed a higher

overall expression in comparison to miR-193b.
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Figure 16: Profiling of seven miRNAs in 16 different human melanoma cell lines (MM) and 6 normal human
melanocytes (NHEM). A: Four miRNA candidates inhibiting A375 cell invasion B: Three miRNA candidates
to accelerate miRNA invasion during the functional invasion assay screening. Expression was normalized to
the internal control RNU6B. The horizontal line shows the average expression level in each group. Compar-
isons significant at the 0.05 level are indicated by an asterisk (*).
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For the miRNA candidates with accelerating effect on A375 cell invasion (Figure 16B) a

significant difference between melanoma cell lines and NHEMs could be observed for miR-

576-5p and miR-483-5p, but not for miR-559-5p. Both miRNA candidates are among the five

strongest accelerators of A375 cell invasion according to the screening result (Figure 12B).

5.4.2 Correlation of miRNA expression and invasive capacity of

different cell lines

In order to correlate the expression levels of candidate miRNAs and the invasive potential

of melanoma cell lines a set of experiments was performed. Initially, the invasive capacity of

22 cell lines was analyzed using the Boyden chamber assay. Cell lines differed substantially

in their invasive behavior in this assay ranging from very low, MaMel-79b, to extremely high,

MaMel-19, invasion levels (Figure 17).
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Figure 17: Analysis of the invasive capacity of 22 different melanoma cell lines. The Boyden chamber assay
was performed with all 22 cell lines in triplicates and the invaded cells were fluorescently stained and measured
after 24h invasion time. This panel of melanoma cell lines shows a wide range of different invasive potentials.
Data represents biological triplicates in mean +/- STD.
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Subsequently, fourteen cell lines with determined miRNA expression and known inva-

sive behavior were analyzed for the correlation of their invasive potential with endogenous

miRNA expression, respectively (Figure 18). A perfect correlation between both parame-

ters would indicate R square (R2) values close to one. When analyzing miRNA candidates

which inhibited invasion in the screening assay, both miR-339-3p and miR-30c-1* expression

levels showed a significant negative correlation to the invasive potential with R2 values of

0.60 and 0.47, respectively (Figure 18A). In contrast, miR-325 and miR-139b did not show

a significant correlation, though the trend was also negative.

Additionally, the same correlation was performed for three candidate miRNAs accelerat-

ing A375 cells invasion, miR-576-5p, miR-559-5p, miR-438-3p (Figure 18B) and a positive

correlation tendency for all miRNA candidates, but only miR-576-5p and miR-483-3p were

found to correlate significantly.
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Figure 18: Correlation of miRNA candidate expression to the invasive capacity of 14 different melanoma cell
lines. A: miRNA candidates with inhibiting effect on melanoma cell invasion; miR-325, miR-339-3p, miR-
30c-1* and miR-193b. B: miRNA candidates with accelerating effect on melanoma cell invasion; miR-576-5p,
miR-559-5p and miR-483-5p. R2 as coefficient of determination of how well the regression line approximates
the real data points. R2 equals one represents the perfect fit.
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After this first validation step two miRNAs were selected for further analysis, namely

miR-339-3p, inhibiting A375 cell invasion and miR-576-5p, accelerating A375 cell invasion.

Both were among the miRNA candidates with the strongest effects in the functional invasion

assay and showed only minor effects on cell viability. Additionally, they are significantly

differentially expressed in melanoma cells in comparison to NHEMs.

5.5 In silico miRNA target prediction and candidate

selection

miRNAs are known to interact, inhibit or degrade specific target molecules and thus

are regulating protein expression and influencing cell signaling pathways. To investigate

the specific regulation both selected miRNA candidates were subjected to miRNA target

identification databases which analyze putative miRNA binding sites within the 3’UTR of

mRNAs and indicate possible targets by Dr. Agens Hotz-Wagenblatt. A combination of

miRBase and TargetScan was chosen to identify targets of interest (Table 29).

The following gene enrichment analysis using the DAVID computational software cate-

gorized putative targets for both miRNA candidates into three groups, proteins influencing

melanoma cell apoptosis, proliferation and melanoma cell motility via the cytoskeleton. Some

targets are present in two categories indicating a combinatorial effect on cell motility and cell

proliferation or apoptosis. These target prediction programs only indicate putative targets

for specific miRNAs, therefore the actual interaction and exact binding sites of miR-339-3p

or miR-576-5p and their predicted targets had to be further validated in vitro.
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Physiological effect
Predicted targets for miR-339-3p

(miRBase/TargetScan)

Apoptosis

AKT1 substrate 1, CASP8 and FADD-like apoptosis regulator, DnaJ

homolog, GLI family zinc finger 3, TNF receptor-associated factor 3, alpha

1A voltage dependent calcium channel, Cardiotrophin-like cytokine factor 1,

Glutamate receptor , Homeodomain interacting protein kinase 2, Inositol

hexakisphosphate kinase 2, Insulin-like growth factor 1 receptor,

Lymphotoxin beta, Myeloid cell leukemia sequence 1 (MCL1), Nucelar

rezeptor subfamily 3, Nucleolar protein 3, Pim-2 oncogene, Protein kinase C,

Retinoid X receptor alpha, Telomerase reverse transcriptase, Tubulin beta

Proliferation

SRY (sex determining region Y), Aristaless related homeobox, Epithelial

membrane protein 2, Low density lipoprotein receptor-related protein

associated protein 1, Neurofibromin 2 (Merlin), Pim-2 oncogene, Retinoid X

receptor alpha, Scavenger receptor class B, Similar to mitogen-activated

protein kinase phosphatase x, Solute carrier family 11, Taxilin alpha

Motility

(Cytoskeleton)

CDC42 binding protein kinase alpha, DnaJ homolog, NCK adaptor protein

2, Rootletin, Cytohesin 2, Growth arrest-specific 7, Microtubule-associated

protein tau, Neurofibromin 2 (Merlin), NudE nuclear distribution gene E

homolog 1, Tubulin polymerization promoting protein, Tubulin beta

Physiological effect
Predicted targets for miR-576-5p

(miRBase/TargetScan)

Apoptosis

CASP8 and FADD-like apoptosis regulator, CD38 molecule Kruppel-like

factor 10, SH3-domain GRB2-like endophilin B1, TNF receptor associated

factor 6, Cullin 3 cyclin-dependent kinase 5 (p35), Cyclin dependent kinase

inhibitor 1A (p21,Cip1), Cystein-serine-rich nuclear protein 3, Forkhead box

O3, Glutamate receptor, Interleukin 2 receptor, Junction mediating and

regulatory protein p53 cofactor, Neurofibromin 1, Pleckstrin homology-like

domain family A member 1

Proliferation

CD38 Kruppel-like factor 10, CNCK adaptor protein 1, Rho GTPase

activating protein 5, Bone morphogenetic protein receptor type 1A,

Bradykinin receptor B2, Caveolin 1, Cullin 3, Cyclin-dependent kinase

inhibitor 1A, Epiregulin fatty acid binding protein 7, Fibroblast growth

factor 2, Gap junction protein alpha 1, Insulin-like growth factor 1,

Interleukin 2, Receptor interleukin 6, Neurofibromin 1, cKit

Motility

(Cytoskeleton)

NCK adaptor protein 1, TAR DNA binding protein VAMP

(vesicle-associated membrane protein)-associated protein B, Actin alpha,

Caldesmon 1, Coronin, Formin 1, Formin-like 3, Kinesin family member 1B,

Moesin, Myosin VA, Parvin, Phosphatase and actin regulator 2, Potassium

large conductance calcium-activated channel, Protein phosphatase 1

regulatory (inhibitor) subunit 9A, Protein tyrosine phosphatase,

Tropomodulin 2, Tropomyosin 3

Table 29: Target predictions for miR-339-3p and miR-576-5p based on two different prediction websites,
miRBase and TargetScan. This table only displays targets identified simultaneously by both algorithms.
Putative targets were grouped into three distinct physiological functions by DAVID analysis: apoptosis,
proliferation and effects on cell motility (cytoskeleton).
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5.6 Validation of the effects of miR-339-3p and miR-

576-5p on melanoma cell invasion

5.6.1 Independent melanoma cell invasion assay

An independent functional invasion assay was performed according to the work flow pre-

sented in Figure 10D with five different melanoma cell lines to validate the effect of miR-

339-3p and miR-576-5p on melanoma cell invasion. In comparison to the screening work-flow

the time of invasion was extended to 24h and exactly 5x104 cells were seeded per transwell

insert. For all five cell lines MaMel-61e, WM 266.4, MaMel-103b, MaMel-86b and A375

under investigation miR-339-3p showed an inhibiting effect on invasion (Figure 19). This

effect was more pronounced in cell lines with a rather strong invasive potential, such as WM

266.4, A375 and MaMel-103b, than in less invasive cell lines, e.g. MaMel-86b and MaMel-61e

(Figure 19). Thus, miR-339-3p could be confirmed for its inhibitory impact on melanoma

cell invasion.

miR-576-5p showed the strongest accelerating effect on A375 cell invasion during the

functional screening assay. This effect could be reproduced in three additional cell lines,

MaMel-103b, MaMel-86b and MaMel-61e (Figure 19). A more pronounced effect on inva-

sion acceleration was observed for the less invading cell lines, MaMe-61e and MaMel-86b in

comparison to WM 266.4, A375 and MaMel-103b (Figure 19) rather fast invading cell lines.

Consequently, both miRNA candidates could be confirmed for their effect on melanoma cell

invasion in an independent assay.
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Figure 19: Effects of two miRNA candidates on melanoma cell invasion was tested on five different melanoma
cell lines including A375, which was used for screening. miR-339-3p inhibited invasion significantly in all
five cell lines and miR-576-5p accelerated invasion significantly in four of five cell lines. Asterisks depict
significant differences to mock control (* p <0.05).
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5.6.2 miR-339-3p and miR-576-5p do not affect melanoma cell vi-

ability

A375, WM 266.4 and MaMel-86b cells were seeded and transfected 24h post with ctrl1

miRNA, miR-339-3p, miR-576-5p and miR-101. To determine the effects of these miRNAs

on melanoma cell viability a CellTiter Glo assay was performed 48h post transfection. The

mean luminescence intensity (MLI) refers to the amount of viable cells per well as the mean of

triplicates normalized to mock treated cells. As it can be observed in Figure 20, no significant

viability effects were detectable. Subsequent investigations were focused on miR-339-3p, to

identify and validate potential targets genes.
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Figure 20: Cell viability effects of miRNA candidates, miR-339-3p and miR-576-5p. Assay control (ctrl1),
mock transfection, miR-101 and the two miRNA candidates, miR-339-3p and miR-576-5p were analyzed
for their effects on cell viability in the melanoma cell lines, A375, WM 266.4 and MaMel-86b 48h post
transfection. Mean luminescence intensity as mean of biological triplicates is displayed after normalization
to the mock control treated cells.

5.6.3 miR-339-3p inhibition restores melanoma cell invasion

To clarify the direct role of miR-339-3p on cell invasion, endogenously present miR-339-

3p was inhibited by the respective antisense oligonucleotide (anti-miRNA). Subsequently,

altered cell invasion was assessed in a Boyden chamber invasion assay. The melanoma cell

lines MaMel-61e and MaMel-79b express high levels of miR-339-3p in comparison to A375

cells. Both showed a rather low invasive capacity in comparison to the cell lines A375 or

WM 266.4. Altered cell invasion capacity was assessed after miRNA or anti-miR-339-3p
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(anti-miRNA against miR-339-3p) transfection according to the protocol applied in Figure

19. As can be seen in Figure 21, anti-miRNA treatment was able to restore melanoma cell

invasion in comparison to either control treated cells (untransfected, mock, ctrl1), or miR-

339-3p transfected cells. This indicates a direct inhibiting effect of endogenous miR-339-3p

on melanoma cell invasion, that can be restored after anti-miR-339-3p treatment.
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Figure 21: Restoration of the invasive potential of melanoma cell lines by anti-miR-339-3p treatment. The
effect of the controls (mock, ctrl1, miR-101), miR-339-3p and the anti-miR-339-3p (anti-miR) on melanoma
cell invasion was tested in three different melanoma cell lines, MaMel-61e and MaMel-79b are slow invading
cell lines in comparison to A375 cells.
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5.7 miR-339-3p targets MCL1

5.7.1 The myeloid cell leukemia protein 1 (MCL1)

In a first step, several potential miR-339-3p targets were identified by a bioinformatics

approach using two independent prediction tools (Table 29), miRBase and TargetScan, re-

sulting in several putative targets influencing cell death, proliferation and melanoma cell

motility [116, 181, 183, 347]. Focusing on predicted targets with a know function in cancer

cell progression and metastasis, oncogenes or tumorsuppressor genes regulated by miR-339-3p

were of specific interest for further in vitro validation.

One putative target identified for miR-339-3p was the myeloid cell leukemia 1 (MCL1).

This oncogene is widely investigated for its role in apoptosis, cell survival and epithelial

mesenchymal transformation in several malignancies [16, 25, 62, 188, 237, 264, 289, 325]

but not for its role in invasion yet. Three splicing variants are known for MCL1, two short

variants the 32kDa MCL1 short (MCL-1S) and MCL1 extra short (MCL-1ES) with only

28kDa and one long version with 40kDa (MCL-1L) [16, 62, 171, 313]. Due to its Bcl-2

homology domains (BH) domains (BH1, BH2 and BH3) MCL1 is able to interact with a

variety of proteins to influence cell survival signaling cascades after various cell death stimuli

[5, 237]. MCL-1L exhibits three Bcl-2 domains, whereas onyl BH3 is present in MCL-1S

and MCL-1ES. The transmembrane domain (TM) enables the association of MCL-1L with

the plasma membrane, the mitochondrial membrane but it can also be found non-membrane

bound in the cytosol [5, 237, 325]. All three splicing variants exhibit the same 3’UTR (Figure

22) what would indicate a similar regulation of all splicing variants by selective miRNAs.
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Figure 22: The MCL1 protein. A: MCL1 protein domains. The transmembrane domain (TM) for interaction
with various membranes, three Bcl-2 homology domains (BH) domains (BH1, BH2 and BH3) mediating its
role in cell death and survival. B: Three different splicing variants of MCL1, MCL1 long (MCL-1L), MCL1
short (MCL-1S) and MCL1 extra short (MCL-1ES).

5.7.2 The effect of MCL1 knockdown on melanoma cell invasion

As MCL1 was predicted as a target of miR-339-3p the effect of MCL1 knockdown was

tested in order to prove, whether MCL1 knockdown can resemble the inhibitory effect of miR-

339-3p on melanoma cell invasion. Five different melanoma cell lines were tested for abrogated

invasive capacity after siRNA transfection targeting MCL1 (siRNA MCL1) in a Boyden

chamber assay. Figure 12 shows the impact of MCL1 knockdown by siRNA transfection, in

comparison to the positive control miR-101 and miR-339-3p 23 on melanoma cell invasion.

Melanoma cell lines transfected with miR-339-3p or siRNA against MCL1 showed sig-

nificant less invaded cells in comparison to mock control treated cells (Figure 23) in all five

melanoma cell lines tested. Thus, MCL1 knockdown by siRNA can mimic the inhibitory

effect of miR-339-3p on melanoma cell invasion.
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Figure 23: MCL1 knockdown inhibits melanoma cell invasion. The invasion assay was performed with the
control miRNA, miR-101, the miRNA candidate miR-339-3p and the siRNA against MCL1 (siRNA MCL1),
tested in five different cell lines, MaMel-61e, WM 266.4, MaMel-19, MaMel-86b and melanoma cell line A375.
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5.7.3 miR-339-3p downregulates MCL1 protein and mRNA ex-

pression

MCL1 protein expression was analyzed in a large cohort of melanoma cell lines by Western

Blot. While MCL1 could be detected in all cell lines, a substantial variation in protein levels

was observed. The model cell line A375 as well as WM 155, MaMel-103b, MaMel-19 and WM

266.4 showed a strong MCL1 protein expression. Cell lines with a lower level of MCL1 protein

expression are for example MaMel-79b, MaMel-20, MaMel-61e, MaMel-86 and MaMel-12

(Figure 24A). Additionally, MCL1 isoform expression varied significantly between different

melanoma cell lines. MCL-1S and MCL-1SE were almost not detectable in MaMel-61e and

MaMel-12, whereas A375 and MaMel-103 showed a rather high expression level of both short

MCL1 isoforms.

The effect of miR-339-3p on MCL1 protein expression as well as on mRNA level was

investigated next. As miR-101 was shown to target MCL1 in non-small-cell lung cancer

cells [219] it was used as a positive control. Three different cell lines were seeded in 24

well plates, mock transfected or transfected with the positive control miR-101 and with the

candidate miRNA miR-339-3p after 24h. After additional 48h or 72h the cells were harvested

and either lysed for Western Blot analysis or RNA was extracted for qPCR measurement of

MCL1 protein or mRNA expression, respectively.

As it can be seen in Figure 24B, both melanoma cell lines A375 and WM 266.4 showed

a decreased expression of MCL1 protein 48h post miR-101 and 48h and 72h post miR-339-

3p transfection. The siRNA against MCL1 also decreased the detectable amount of MCL1

protein and RNA in this experiment. Additionally, decreased amounts of MCL1 mRNA

24h and 48h post miR-339-3p transfection in comparison to ctrl1 miRNA transfection was

detected by qPCR. This decrease was stronger in the WM 266.4 cell line (Figure 24D) in

comparison to the cell line A375 (Figure 24D). The downregulation effect of protein as well as

mRNA was partly restored 72h post miR-339-3p transfection. Conclusively, MCL1 protein

and mRNA expression is affected by miR-339-3p overexpression in different melanoma cell

lines.
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Figure 24: miR-339-3p and MCL1 siRNA down-regulate MCL1 protein and mRNA expression. A: MCL1
protein expression levels in 14 different melanoma cell lines. MCL1splicing variants: long isoform MCL1
(L), short isoforms MCL1 (S) and MCL1 (ES). B: miR-339-3p abrogates MCL1 protein expression at 48h
post transfection in A375 and WM 266.4. C: Time course experiment of miR-339-3p effect on MCL1 mRNA
expression. miR-339-3p down regulates MCL1 RNA expression 24h, 48h and to a lesser extent 72h post
transfection in A375 and WM 266.4 cells. Relative expression of MCL1 mRNA to GAPDH mRNA was
calculated and normalized to the untreated control. Asterisks (*) indicate unspecific bands.
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5.7.4 MCL1 is a direct target of miR-339-3p

MCL1 coding region
MCL1 3‘UTR

site 2 site 1
1248 1968

MCL1 3‘UTR

3’   GCCG AGACAGCAGCUCCG CGAGU   5’ 

pLS 1 mut  

           5’  AGGCC   AUUUAU GAGGCUUGCUCU   3’

miR-339-3p

MCL1 3‘UTR

miR-339-3p

pLS 2 mut 

           5’    AGCUUCGUCGAGCG  CGUCCUCAA   3’

3’    CCGAGACAGC AGCUCCGCGAGU     5’ 

           5’    AGCUUCGUCGAGCGCGUCC--CAA   3’            5’  AGGCCA UUUAUGAGGCUUG--UCU   3’

Figure 25: Putative binding sites of miR-339-3p at the MCL1 3’UTR. The 3’UTR is identical for all three
splicing variants. The different plasmids were used to investigate these binding sites with the respective
mutations.

miR-339-3p interaction with the MCL1 3’UTR was predicted with RNAhybrid at several

different interaction sites [184, 286]. A renilla luciferase plasmid with the 3’UTR of MCL1

(pLS 3’UTR MCL1) was used to investigate two putative direct interaction sites of the

3’UTR of MCL1 and miR-339-3p. A375 and WM 266.4 cells were seeded in the appropriate

amounts in a glass bottom 96-well plate. The cells were transfected with the luciferase plasmid

in combination with the candidate miRNA miR-339-3p or the negative ctrl1 miRNA. The

interaction of miR-339-3p with the 3’UTR of MCL1 is indicated by a decreased luciferase

signal in comparison to the signal detected after ctrl1 miRNA and pLS 3’UTR MCL1 plasmid

transfection. To confirm the direct interaction the two putative binding sites in the 3’UTR of

MCL1 were mutated by site-directed mutagenesis, specifically the introduction of a a single

deletion within the predictive seed region of miR-339-3p (Figure 25) was intended. The

mutation of the first binding site (1968) did not affect the luciferase signal to great extent.

In contrary, mutating the second putative binding site (1248, pLS site 2 mut) resulted in an

almost complete restored luciferase signal intensity in two melanoma cell lines indicating a

direct interaction of miR-339-3p and the 3’UTR of MCL1 at this binding site (Figure 26). It

has to be added, that within both plasmids additional mutations can be observed across the

whole 3’UTR of MCL1. Despite the signal restoration after mutation of the second binding

site, effects of bystander mutations cannot be excluded and have to be further investigated.
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Figure 26: miR-339-3p targets MCL1 3’UTR. Two different melanoma cell lines were transfected with either
the luciferase plasmid containing the 3’UTR of MCL1 alone or in combination with the control miRNAs
(ctr1 and miR-101) or the candidate miR-339-3p. Interaction of miR-339-3p with the 3’UTR resulted in the
decrease of the detected luciferase signal in the cell lines A: A375 and B: WM 266.4. After site-directed
mutagenesis of two putative interaction sites, pLS site 1 mut, pLS site 2 mut, the luciferase signal could be
partly (site 1) or completely (site 2) restored.

5.7.5 miR-339-3p overexpression does not induce apoptosis

MCL1 is reported to play a role in cell death, proliferation and survival. Thus, the effect

of miR-339-3p overexpression and MCL1 knockdown on melanoma cell death induction was

elucidated. Therefore, an apoptosis and cell death assay was performed with two different

melanoma cell lines, A375 and MaMel-86b. Cells were seeded in the appropriate amount

in 24 well plates, mock transfected, transfected with ctrl1 miRNA, positive control for cell

death induction (cell death siRNA), miR-339-3p or with the siRNA targeting MCL1 mRNA.

48h post transfection cells were harvested and dead cells were detected via double positive

staining for PI and YO-Pro.
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All treatments are displayed in dot plots in Figure 27A for the cell line A375 and in

Figure 27C for the MaMel-86b cell line. YO-Pro positive cells are displayed on the x-axis

representing apoptotic cells, whereas the y-axis represents PI positive cells. Double positive

cells represent necrotic cells in a transition phase from the early apoptotic to dead cell phase.

Untreated melanoma cells as well as ctrl1 miRNA or mock transfected cells already showed

a small double positive dead cell population for both cell lines indicating a naturally occurring

baseline cell death induction. However the double positive population was strongly increased

48h after cell death siRNA transfection for the A375 as well as the MaMel-86b cell line

(Figure 27A, C). The whole cell population shifted and displayed a high ratio of necrotic

cells for the cell line A375, or apoptotic cells for MaMel-86b.

The effect of miR-339-3p on melanoma cell death induction was comparable to the effects

detected for cells treated with ctrl1 miRNA in both cell lines. In contrast, cells treated with

the siRNA against MCL1 showed an increased amount of double positive, necrotic cells in

comparison to miR-339-3p or ctrl1 miRNA treated cells. The effect of MCL1 knockdown

might represent a transition state between the slight baseline turnover rate and cell death

induction seen in crtl1 or mock transfected cells and strong apoptosis induction after the

treatment with cell death siRNA.

These results indicate no significant cell death induction after miR-339-3p overexpression

in two melanoma cell lines; however direct MCL1 knockdown by siRNA transfection could

be shown to increase cell death rate.
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Figure 27: Effect of miRNA candidate, miR-339-3p, on A375 and MaMel-86b apoptosis induction and cell
death. A375 (A, B) and MaMel-86b (C, D) cell lines were mock transfected or transfected with control
miRNA (ctrl1 miRNA), miR-339-3p or siRNA against MCL1. 48h post transfection cells were harvested and
stained with PI and YO-Pro to determine the percentage of apoptotic and necrotic cells. The respective
dot plots are shown for every treatment. The double positive population represents necrotic cells, whereas
apoptotic cells are represented by the single YO-Pro positive population. B, D: Representation of percentages
of live, apoptotic or necrotic cells for A375 (B) cells or MaMel-86b (D) cells treated with ctrl1, miR-339-3p,
siRNA against MCL1 or cell death siRNA.
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5.8 Identification of a specific gene expression pattern

in miR-339-3p overexpressing melanoma cells

We speculated that miR-339-3p overexpression might induce a distinct gene expression

pattern in melanoma cell lines characteristic for the observed phenotype. Therefore, we

analyzed the global gene expression pattern after transfection with miR-339-3p. Briefly,

A375 and MaMel-86b melanoma cells were seeded and either transfected after 24h with miR-

339-3p or kept untreated in biological triplicates. 48h post transfection cells were harvested

and whole RNA was extracted and subjected to Illumina Chip gene expression analysis.

Melanoma cells 48h post transfection of miR-339-3p were compared to untreated cells of the

same cell line. In addition changes and similarities between cell lines were investigated before

and after miR-339-3p overexpression.

Figure 28 shows heat maps of two different melanoma cell lines, A375 (Figure 28A, B)

and MaMel-86b (Figure 28C, D) untreated or transfected with miR-339-3p and analyzed for

differential gene expression in triplicates. The overall representations of genes significantly

differentially regulated by miR-339-3p are shown in Figures 28A and C. It can be seen

that there is a clear difference in the gene expression profile of melanoma cells untreated

or transfected with miR-339-3p for both cell lines. Figure 28B, D shows only differentially

expressed genes with an at least two fold difference in untreated to miR-339-3p transfected

melanoma cells. Interestingly, both cell lines show more two fold down- than upregulated

genes after miR-339-3p transfection (Figure 28 B, D).
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Figure 28: Gene expression analysis in A375 and MaMel-86b cells after miR-339-3p overexpression. A:
Representation of 5475 genes significantly differentially expressed in untreated or miR-339-3p transfected
(A) A375 or (C) MaMel-86b cells. Display of genes which show an at least two fold difference in mRNA
expression levels after miR-339-3p transfection in melanoma cell lines A375, 33 genes (B) or MaMel-86b, 46
genes (D). Red represents genes higher, green lower differentially expressed in the respective cells according
to scale.

Subsequently, two fold differentially expressed genes were further investigated by gene

enrichment analysis in MetaCore to investigate process networks influenced by significant

differentially regulated genes after miR-339-3p overexpression. In Table 30 the nine strongest

process networks, displaying signaling pathways mostly influenced by this specific gene set,

are presented for melanoma cell line A375 and MaMel-86b (Table 30). Despite developmental

processes, proliferation in the melanoma cell line MaMel-86b and inflammation in A375 cells,

as expected cell adhesion and the cytoskeleton are mainly affected in both melanoma cell

lines after miR-339-3p overexpression.
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A375
Process Networks

Inflammation (Amphoterin signaling)

Inflammation (Protein C signaling)

Cell adhesion

(Integrin-mediated cell matrix adhesion)

Cell adhesion

(Endothelium-leukocyte interactions)

Inflammation (anti-inflammatory response)

Inflammation (innate inflammatory response)

Inflammation (MIF signaling)

Reproduction

Cell adhesion (cell-matrix interactions)

MaMel-86b
Process Networks

Cell adhesion

(Integrin-mediated cell-matrix dhesion)

Developmental (Axonal guidance)

Development (Neurogenesis)

Cytoskeleton (Actin filaments)

Proliferation

Cytoskeleton (Rearrangement)

Inflammation

(Amphoterin signaling)

Inflammation (Neutrophil activation)

Chemotaxis

Table 30: Enrichment analysis with MetaCore to identify process networks influenced by genes at least
two fold differentially regulated in the cell lines A375 or MaMel-86b after miR-339-3p overexpression. MIF
(macrophage migration inhibitory factor)

Overall, more genes were found to be at least two fold downregulated in miR-339-3p

overexpressing melanoma cells, then upregulated (Figure 28B, D). Exemplary, ten of these

genes are displayed in Figure 29, e.g. IL1B (interleukin 1β), SERPINA3 (serpin peptidase

inhibitor, clade A) and OVOS2 (ovostatin 2) for A375 (Figure 29 A) and IGFBP3 (insulin-like

grwoth factor-binding protein 3), NCK2 (NCK adaptor protein 2) and TNFRSF19 (tumor

necrosis factor receptor superfamily, member 19) for MaMel-86b (Figure 29B). In addition,

molecules with an important role in melanoma cell maintenance and malignant progression,

such as MCL1, MITF and DCT (dopachrome tautomerase) are shown for their differential

expression. MITF was regulated to different extent in these two melanoma cell lines. In A375

cells MITF expression was not affected, whereas it was downregulated in MaMel-86b cells.

Unexpectedley, MCL1 was almost unchanged in MaMel-86b cells, but it was downregulated

to -0.64 log 2 fold change in A375 cells after miR-339-3p overexpression.

Furthermore, genes which were significantly regulated in these two melanoma cell lines

were compared in Figure 29C. 1624 genes were differentially regulated in both cell lines, thus

only 36 of these genes were previously indicated by in silico prediction analysis.
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Figure 29: Strongest differentially regulated genes represented in log 2 transformed fold changes of gene
expression of treated versus untreated A375 (A) and MaMel-86b (B) cells after miR-339-3p overexpression.
C: Comparison of genes significantly differentially regulated in A375 cells, MaMel-86b cells and to in silico
predicted genes (databases: TargetScan, miRBase).
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5.9 Altered lung metastasis formation of A375 cells

overexpressing miR-339 in vivo

So far, miR-339-3p was shown to inhibit melanoma cell invasion in vitro, but the effect

of miR-339-3p overexpression on melanoma cell invasion and metastasis in vivo still remains

elusive. Therefore, A375 cells were stably transfected with miR-339 hairpin pre-miRNA

(A375 miR-339) or the empty vector control (A375 empty) and an experimental lung metas-

tasis assay in non-obese diabetic scid gamma (NSG) mice was performed. Due to miRNA

processing, A375 cells stably transfected with miR-339 pre-miRNA might overexpress both

mature miRNA forms, namely miR-339-3p as well as miR-339-5p. Thus, expression of both

forms were analyzed in the stably transfected clones (Figure 30A). While both miRNA ma-

ture forms were overexpressed in the stable cell line, miR-339-3p was significantly higher

expressed (13 fold) then miR-339-5p (5 fold). Furthermore MCL1 mRNA expression was

decreased to 40% in A375 miR-339 cells in comparison to the cell line A375 empty (Figure

30A).

NSG mice were injected intravenously (i.v.) with A375 miR-339 cells, A375 empty cells

or the parental A375 cells with ten mice per group. 14 days post i.v. injection lung metas-

tasis formation was assessed (Figure 30B, C). Lung metastasis formation was lowest in mice

injected with the cell line A375 miR-339 in comparison to the A375 empty as well as the

parental cell line A375. Most lung metastases were observed in mice injected with the parental

cell line A375.
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Figure 30: Lung metastasis assay. A: miR-339-3p, miR-339-5p expression in the cell line A375 miR-339 in
comparison to the cell line A375 empty vector (A375 empty). B: Differences in MCL1 mRNA expression in
the cell lines A375 miR-339 and A375 empty. Lung metastasis assay in NSG mice 14 days post i.v. injection
of 5x105parental A375 cells, A375 empty cells or A375 miR-339 cells. Shown is one representative lung image
of each group (B) and the accumulated data (C) as mean +/- STD. Arrows indicate metastases.

Unexpectedly, liver metastasis formation was observed 14 days post i.v. injection when

stably transfected A375 cells were transplanted to NSG mice, but not when parental A375

cells were injected. Similar to the lung colonization, A375 miR-339 cells led to fewer metas-

tasis than A375 empty cells (Figure 31).
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Figure 31: Appearance of liver metastases. A: Liver metastasis in NSG mice 14 days post i.v. injection of
5x105parental A375 cells, A375 empty cells or A375 miR-339 cells. Shown are images of representative livers
(A) and the accumulated data (B) as mean +/- STD. Arrows indicate examples of metastases.

5.10 Summary of Results

In conclusion, a miRNA library screening to investigate changes in melanoma cell invasion

was performed and miRNA candidates for further analysis was be detected. These candidates

were validated in independent invasion assays and analyzed for their effect on melanoma cell

viability. Finally, miR-339-3p was selected as the candidate of interest and in silico prediction

analysis revealed oncogen MCL1 as one of its targets. Subsequently, MCL1 was confirmed

as miR-339-3p target in vitro by Western Blot and qPCR analysis. Furthermore, MCL1 was

downregulated melanoma cell invasion significantly, comparable to the effect seen before for

miR-339-3p. Additionally, inhibition of endogenous miR-339-3p could restore melanoma cell

invasion. A direct interaction of miR-339-3p with MCL1 was shown by 3’UTR binding assays.

MCL1 could be identified as a new target of miR-339-3p and overexpression of miR-339-3p

led to decreased invasion of melanoma cells in vitro.
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Part 6

Discussion

6.1 Functional miRNA library screening in A375 cells

Screening procedures are widely used to identify miRNAs with specific impact on cell

physiology or pathophysiology. Different approaches are used to detect and validate differen-

tially expressed miRNAs, such as genetic screens to identify changes in the miRNA or gene

expression pattern due to malignant growth on the one hand [34, 197, 298, 326], or func-

tional screens to specifically link miRNAs a distinct quantifiable phenotype [75, 150, 157,

188, 277, 301, 178, 382] on the other hand. Genetic screens reveal a global view on differen-

tially regulated genes or miRNA networks. Therefore, these approaches are mainly used to

identify differences in the miRNA expression profiles of healthy individuals in comparison to

patients for further clinical therapy and prognosis development. Until now, several miRNAs

could be identified accordingly, such as miR-19 with its promoting role in development of

T-cell acute lymphoblastic leukemia (T-ALL) in a Notch-dependent fashion [225]. Specific

blood miRNA expression signatures were shown to be deregulated in breast cancer patients

in comparison to healthy individuals, such as miR-125b and miR-200c [129]. Furthermore,

distinct miRNA profiles seem to be specific for different acral melanoma subtypes, e.g. miR-

214 and miR-142-3p [45]. The differential analysis of miRNA expression pattern in human

melanocytes in comparison to melanoma cell lines or melanoma patient samples allowed the

identification of possible biomarkers to recognize melanoma onset and progression [276]. Fur-

thermore, Philippidou et al. [276] showed the significance of analyzing patient samples as

they see minor correlations in miRNA expression profiles between established melanoma cell

lines and melanoma patient samples [276]. miR-155 and miR-146a for example were shown

to be upregulated in melanoma patient samples in comparison to melanoma cell lines [276].

miRNA profiling might not only play a role in biomarker identification to detect or prevent

malignancies but might also hold prognostic value to predict effectiveness of specific therapies

[303]. Overall, miRNA expression analysis has the potential to indicate a certain deregulated

miRNA pattern correlating with a certain malignancy or malignant progression. Despite the

global information content of miRNA profiling, the specific function of individual miRNAs

remains unknown.
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Contrarily a functional screening approach as presented in this work aims to identify

specific miRNAs, which alter distinct cellular properties. Several miRNAs have already

been identified by different functional screening approaches to play role in melanoma cell

physiology [150, 157, 188, 269, 271]. Sensitization to apoptosis induction of HCT-116 cells

after ABT-263 application was shown for a panel of 19 different miRNAs such as miR-153,

miR-892b, miR-582, miR-148b*, miR-876-3p, miR-101, miR-1233 and miR-935 [188]. 12

out of these 19 miRNAs were shown to target MCL1 expression in this cell line [188]. A

comparable method was published 2011 by Poell et al. using the melanoma cell line A375

[277]. They investigated the effect of a whole genome lentivral miRNA expression library

on melanoma cell viability. Two distinct miRNA clusters could be identified to negatively

affect A375 cell viability. They showed that members of the miR-15/16/497 family and the

miR-96/182 family were altering melanoma cell viability [277]. The effect they observed

for miR-182 is controversially discussed as it is also known for its oncogenic role to induce

melanoma cell invasion and metastasis in vivo [302, 154]. Several putative targets of miR-

182, such as MITF, are currently under investigation to highlight its distinct role during

melanoma progression and metastasis formation [211, 282, 302]. Overall, the role of miR-182

in melanoma metastases formation and tumor progression might be directly connected to

small changes in the MITF level, favoring melanoma cell invasion [211, 186, 302].

Contrariwise to the observations of Poell et al. miR-182 did not show significant effects on

A375 cell viability in the work presented here. As miR-182 could significantly increase A375

cell invasion capability, this miRNA was chosen as one of the positive controls throughout

the entire screening approach. The discrepancy might be due to different time frames and

transfection methods used in both functional screenings. The cell viability was assessed

six days post infection by Poell et al. [277], whereas the overall invasion assay screening

procedure and cell viability assays presented in this work were performed within three days.

Therefore, possible long term effects of miR-182 on cell viability would not affect the presented

functional invasion assay screening.

Targeting melanoma cell survival and proliferation is one promising approach to interro-

gate with melanoma aggressiveness, whereas abrogating melanoma metastasis and invasion

might be another promising strategy. To investigate the role of miRNAs in melanoma cell

invasion a functional screening approach had to be established to detect changes in melanoma

invasion as read-out. Therefore, different melanoma cell lines were investigated for their fea-

sibility and the melanoma cell line A375 was chosen for a functional screening approach. The

characteristics of A375 cells, their migrative and invasive potential were requirements for a

successful invasion assay screening and the subsequent validation procedure [54, 180, 107]. In

a wound healing assay A375 cells were able to show their migrative potential. Furthermore,
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A375 cells were able to induce lung and liver metastasis as well as swollen lymph nodes in

NSG mice. In accordance with the presented results, the A375 melanoma cell line is reported

to show metastatic potential in vivo and in vitro and its phenotype and genotype are already

extensively studied since its establishment by Giard et. al 1973 [180, 107, 54, 378].

First, the feasibility of a 96-well automated wound healing assay was investigated and

different possible positive controls were tested. miR-182 [302], miR-221 [103, 192], miR-136

[384] and siRNA targeting SFRP4 [77] are known to induce the invasive behavior of cancer

cells. The opposing effect was expected for miR-137 [28, 218], miR-211 [201], miR-206 [23],

siRNA against EZH2 [13, 229, 217] and against MMP9 [249, 147] as they are reported to

negatively influence melanoma cell invasion or progression. miR-182 as well as miR-137

were able to influence the migratory behavior of A375 cells to a minor extent. As no clear

indicative effect for all tested control miRNAs or siRNAs on A375 melanoma cell migration

could be detected, another functional screening approach focusing on melanoma cell invasion

was investigated. Invasion is a more complex process than cancer cell migration. tumor

cell invasion requires the disruption of a complex regulatory network including, the release

of cell-cell interactions, remodeling of the ECM and changes in the local microenvironment,

such as the surrounding tissue stroma [99, 381]. Investigating cancer cell invasion might

explain more complex signaling pathways interfering with cancer metastasis formation than

the identification of differences in cancer cell migration can yield.

The matigel-based Boyden chamber invasion assay, allows the identification of miRNAs

relevant to influence cancer cell invasion. In breast cancer, miR-373 and miR-520c could be

identified to induce a metastasis phenotype in vitro and in vivo as they were able to promote

breast cancer migration and invasion using a transwell migration assay [150]. Additionally,

the same system was used in a miRNA library screening approach using the cell line A375M

by the group of Levy et al [201].

Thus, a matrigel-based invasion assay was evaluated to investigate the invasive capacity

of A375 cells. In this assay the invaded cells were fluorescently stained to directly correlate

the amount of invaded cells with florescence intensity. The time-line of the procedure as

well as positive and negative controls were successfully validated beforehand. Two positive

controls were validated for their effect on A375 cell invasion, miR-182 which increased their

invasive potential and miR-101, which could be shown to inhibit A375 invasion, as previously

reported by Luo et al. 2013 [217]. In the the functional screening the effect of 988 different

miRNAs on A375 cell invasion was investigated.

The screening result is shown in a waterfall plot, representing the homogenous distribution

of miRNA candidates with accelerating effect on A375 cell invasion on the left side, miRNA

candidates which did not significantly affect A375 cell invasion in the center and miRNA
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candidates with inhibiting effect on invasion on the right side of the figure. In summary 50%

of all miRNAs tested in this functional screening did not show an effect on A375 cell invasion,

however 37% could increase the invasive capacity of the model cell line A375 and 13% were

able to inhibit A375 cell invasion.

Due to comparable screenings performed in the here presented work and the approach of

Levy et al. [201], it was of additional interest to confirm overlapping miRNA candidates. Levy

et al. could identify miR-211, miR-204 as inhibitors of melanoma cell invasion in a 24-well

Boyden chamber system [201]. In a second step they were able to validate the observed effect

in additional melanoma cell lines (WM1745, WM1716 and WM3314) and computationally

investigated the gene regulatory network influenced by miR-211 to identify nuclear factor of

activated T-cells 5 (NFAT5), insulin-like growth factor 2 receptor (IGF2R) and transforming

growth factor, beta receptor II (TGFBR2) as possible targets [201]. These results support

the relevance of the here presented functional screening as the same inhibitory effect of miR-

211 on A375 cell invasion could be reproduced, although no significant effect on melanoma

cell invasion could be detected for miR-204.

During the functional screening approach miRNAs could be identified which showed either

an inhibiting effect on A375 cell invasion or were able to accelerate melanoma cell invasion.

miRNAs already published for their inhibition or acceleration for invasion could be confirmed

in our assay, e.g. miR-21 [119, 212, 299], miR-214 [274], miR-223 [373], miR-9 [210, 221,

354] and miR-155 [199, 119, 85] are known to influence malignant progression or cancer

cell metastasis. miR-21 and miR-155 could be shown to be differentially expressed during

melanoma progression from benign melanocytes to metastatic melanoma [276, 119]. The

observed strong accelerating effect on A375 melanoma cell invasion mediated by miR-21

overexpression is in accordance to the published oncogenic role of this miRNA in melanoma

[119, 212, 299]. miR-214, mR-223, miR-9 and miR-155 showed a comparable strong increase

on A375 cell invasion. As mentioned above, especially miR-155 has a multifunctional role

ins several malignancies, including cancer, inflammatory processes and immunity [82, 85].

Thus, due to its inhibitory effect on apoptosis induction miR-155 expression is reported

to correlate with malignant progression and might yield cancer diagnostic and prognostic

potential [199, 186, 85, 82, 276]. As strongest accelerator of A375 cell invasion miR-576-5p

could be identified, which so far has not been investigated for its role in melanoma progression

or metastasis and therefore was considered an interesting candidate for further analysis.

Several miRNAs which showed an inhibiting effect on A375 cell invasion during the func-

tional screening are likewise reported for their tumor suppressive role. These are for example,

two already mentioned miRNAs miR-101[217] and miR-211 [201, 226], as well as additionally

miR-126/126* [88, 89, 92, 233] and miR-194 [245]. The tumor suppressive effect of miR-
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126/126* was investigated by several groups in different cancer types [88, 89, 92, 233], such

as melanoma [88], breast cancer [330] and gastric cancer[89]. In melanoma, loss of the guide

(miR-126) strand of this miRNA duplex is frequently reported in comparison to melanocytes

[245, 88]. Despite, the reported tumor suppressive function of miR-126, it was additionally

correlated to blood vessel stability and formation, thus promoting tumor progression [92].

Overall, miR-126 seems to interfere with cancer progression on several levels influencing can-

cer cell survival, adhesion, migration and invasion and its downregulation is investigated for

its suitability as prognostic biomarker for poor patient prognosis [287, 153, 73].

In contrast, detailed information about the physiological function of miR-194 is still lack-

ing, though it has been reported to be specifically expressed in hepatic epithelial cells with

an important role in liver cancer metastasis in vivo [235]. Furthermore, it was found to influ-

ence intestinal cell differentiation [142] and was shown to be downregulated during melanoma

progression [245].

The tumor suppressive or oncogenic effects of the mentioned miRNAs due to their inhibit-

ing or accelerating effect on melanoma cell invasion observed during the functional screening

approach could be shown to be in line with previous publications, supporting the significance

of the presented screening result.

Nevertheless, the observed effect on cell invasion might not be solely due to decreased or

increased cell invasive capacity, but due to changes in cell viability after miRNA transfection.

The strongest impact on inhibition of A375 melanoma cell invasion could be observed for

miR-325. miR-325 was recently reported to influence autophagy in cadiomyocytes in vivo

[35], suggesting that the observed inhibition effect on A375 cell invasion might be due to

autophagy induction mediated by miR-325 overexpression. To exclude effects on cell viability

an auxiliary cell viability assay was performed investigating 98 of the most promising miRNA

candidates identified by the functional invasion screening for their role in melanoma cell

viability.
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6.2 Putative influence on cell viability of miRNA can-

didates

miRNA overexpression can influence several different signaling pathways and therefore

lead to the induction of a variety of intracellular processes as for example cell proliferation,

cell differentiation, cell death or changes in cell motility. Therefore, it was of imminent

importance to evaluate the influence of the strongest miRNA candidates on melanoma cell

survival to exclude effects on cell viability which would abrogate the observed cell invasive

phenotype. The CellTiter Glo (CTG) luminescent cell viability assay was used to assess

changes in cancer cell viability. Mostly, cell viability differences were determined 48h post

treatment with the respective small molecule [377] or after transfection with distinct small

RNA molecules [372] to determine alterations due to this treatment. The A375 cell line

is frequently used to investigate changes in cell viability and proliferation in response to

melanoma therapeutics, such as Vemurafenib or Dabrafenib [374, 358]. Additionally, the

CTG assay was used to perform functional RNA interference screenings to discover genes

important for cell death or therapy resistance in the model cell line A375 [358]. Therefore, the

CTG assay was performed to exclude cell viability effects influencing the functional invasion

screening result. The time-line of the functional screening procedure was maintained to solely

assess changes in cell viability, that would affect the screening result directly.

Several miRNA candidates which showed an accelerating effect on melanoma cell inva-

sion, as for example miR-576-5p, miR-483-5p, miR-559-5p, miR-575 and miR-595 displayed

minor effects on A375 cell viability. For several of these miRNAs, e.g. miR-576-5p, miR-

559, miR-575 and miR-595, their exact physiological functions are currently unknown but

interesting expression data are reported. miR-595 was found to be upregulated in malignant

mesothelioma samples in comparison to healthy mesothelium by microarray analysis [124].

In hepatocellular carcinoma (HCC) the role of miR-595 is controversially discussed as it is

reported on the one hand to be deleted in hepatocellular carcinoma (HCC) patients [386].

Whereas, on the other hand, the group of Luedde et al. [216] could detect increased levels in

HCC patient samples indicating a more tumor promoting role of miR-595, in line with the

accelerating effect of miR-595 on melanoma cell invasion [216]. Another miRNA candidate,

miR-575, seems to be upregulated upon radiation in human colon carcinoma cells [312] or

human embryonic stem cells [318] and was found to be upregulated in human gastric pa-

tient samples in comparison to normal gastric tissue [380]. miR-576-5p was reported to be

mainly found in malignant brain tissue, as it could be shown to be overexpressed in carci-

nomas metastasizing to the brain and in the brain’s temporal lobe of the cerebral cortex in
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Alzheimer’s disease [205, 353]. miR-483-5p identified in adrenal cortical carcinomas (ACC)

and might be used as marker for this cancer type [272, 319]. Whereas, in glioma cells miR-

483-5p could be shown to inhibit cell proliferation [351]. For all above mentioned miRNAs,

miR-576-5p, miR-483-5p, miR-559-5p, miR-575 and miR-595, their specific role in cancer

cell proliferation or invasion remains elusive until now, thus they are reported to be either

overexpressed or solely expressed in distinct tumor types indicating their potential role for

malignant progression and cancer maintenance.

Overall, most miRNA candidates accelerating A375 cell invasion did not significantly

influence melanoma cell viability in this setting. This observation might be due to the short

time-line of the assay, used intentionally to minimize cell viability alterations as much as

possible during the initial screening procedure. Supporting this theory, only minor effects of

miR-101 on cell viability could be observed in this setting, despite the published inhibitory

effect of miR-101 on cell proliferation by Luo et al. 2013 [217].

The minority, 13% of all miRNA candidates regulating significantly A375 cell invasion was

found to exert an inhibiting effect. Several miRNA candidates, such as miR-1302, miR-127-

3p, miR-187*, miR-194 and miR-624 were able to decrease A375 cell viability. Additionally,

slight effects on A375 cell viability, could be observed for miR-325, miR-30c-1*, miR-339-3p,

miR-31* and miR-301b.

miR-127-3p was reported to be downregulated in osteosarcoma cell lines in comparison

to osteoblasts [71], indicating a putative tumor suppressive role which would correlate with

the effects on cell viability and invasion in the here presented work.

Effects of individual miRNAs observed in different cancer types might be diverse and

are not necessarily comparable [277, 154, 302]. miR-187* reported as a promising serum

biomarker for gastric cancer in combination with miR-372-5p and miR-378 [208] contradicting

the observed anti-cell invasive and viability effect of this miRNA candidate in melanoma

observed in this work. The role of miR-194 in malignant development is controversially

discussed, as it has already been reported be able to suppress liver cancer metastasis in vivo

[235], supporting the effect on cell viability that could be observed in this thesis. In contrary,

Sundaram et al. [324] report miR-194 to facilitate angiogenesis in a p53-dependent manner

supporting colon cancer progression [324]. No role of miR-30c-1* in tumor cell viability

or proliferation has been reported so far. Though, this miRNA candidate could be shown

to target HMBOX1 in natural killer (NK) cells and thereby enhance NK cell cytotoxicity

[108]. The anti-viability effect that was observed for miR-325 could be explained by its role

in programmed cell death, namely in autophagy [35], which might not only be induced in

cardiomyocytes as reported [35], but might also affect human melanoma cell viability due

to miR-325 overexpression. To further clarify the specific observed phenotype another assay
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must be used instead of the CTG assay as this assay measures only changes in cell viability

but does not further specify the mode of cell death induction. Overall, several of the most

promising miRNA candidates are not investigated for their role in melanoma and their effect

on tumor cell invasion and proliferation remains elusive until now.

In a next step, it was of importance to investigate, if the observed effect on cell invasion

was primarily or only partially due to abrogated cell viability. Therefore, the observed cell

viability effect in relation to the strength of cell invasion observed during the functional

screening for the 98 most promising miRNA candidates influencing A375 cell invasion was

taken into account. As it could be seen for all miRNA candidates under investigation the

observed effect on cell invasion during the functional screening could not be explained only

due to abrogated cell viability. Some miRNA candidates with a strong inhibiting effect

on A375 cell invasion additionally affected A375 cell viability, as for example miR-1302,

miR-127-3p, miR-187*, miR-194 and miR-624. The observed impact of these candidates on

melanoma cell invasion might be partly due to its negative effect on cell viability. However,

also for these candidates the screening result cannot be explained by minor influences on cell

viability, therefore indicating an additive role of these miRNAs on A375 cell proliferation

and invasion. Conclusively, the impact on cell viability observed for all miRNA candidates

under investigation does not explain the observed changes in cell invasion which indicates

their importance for further validation and analysis.

Several miRNAs under investigation for their role in cancer cell invasion are reported

in literature to concurrently influence proliferation in the respective cancer cells [217, 214,

243, 295]. Moriyama et al. [243] identified miR-21 as potent modulator of cell physiology

in pancreatic cancer cells influencing cancer cell invasion and proliferation [243]. This was

supported by the finding, that miR-21 seems to simultaneously affect cell invasion and prolif-

eration in ovarian carcinoma [214], non-small cell lung cancer (NSCLC) [123] and squamous

cell carcinoma [143]. More recently miR-210 could be identified in breast cancer as a potent

indicator for poor patient survival possibly mediated through induction of increased breast

cancer cell invasive and proliferative capacity that could be only shown in vitro so far [295].

These observations either indicate miRNAs to affect a distinct signaling pathway influ-

encing cell proliferation as well as invasion or emphasize a global impact on gene expression

by specific miRNAs influencing several signaling pathways simultaneously. Therefore, further

investigation of specific miRNA candidates was required to identify their physiological role,

putative targets and highlight their complex regulatory network.
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6.3 miRNA candidate expression profiling

miRNA expression profiling is reported to be able to indicate melanoma development

[42], melanoma progression [245] and is generally used to differentiate between different

cancer types [215, 40]. Distinct miRNA expression profiles are known to indicate melanoma

metastasis potential and malignant transformation [245] as it was shown for members of the

miR-200 family by several groups [276, 373, 113].

Since miRNA overexpression within a functional screening approach can lead to the iden-

tification of false positive miRNA candidates due to observed artificial, non-physiological

effects, it was of interest to investigate the endogenous expression of our miRNA candidates

in melanoma cell lines in comparison to melanoncytes.

The expression analysis of miR-325 in melanoma cell lines in comparison to NHEMs

showed no significant difference between the two groups. Additionally, miR-325 was almost

not detectable in either melanoma cell lines or NHEMs. Therefore, although miR-325 showed

the strongest inhibitory effect on A375 cell invasion and it additionally affected A375 cell

viability to more than 20%, it was not further investigated. Nonetheless, miR-325 might

still be an interesting candidate for cell viability and autophagy investigations as mentioned

above [35].

The role of miR-193b in melanoma cells is controversially discussed. Chen at al. [47]

reported miR-193b downregulation in metastatic melanoma in comparison to benign nevi

and its potent inhibitory effect on cell proliferation in vitro [47]. However contradictory, high

miR-193b expression in patient melanoma samples was reported to be indicative for poor

melanoma patient survival [42]. miR-193b showed a significant difference in expression in

NHEMs in comparison to melanoma cell lines, but in very low levels in both cell types.

miR-559-5p, one of the strongest miRNA candidates accelerating A375 cell invasion dur-

ing the functional screening, did not show a significant different expression in NHEMs in

comparison to melanoma cell lines and was only marginally detected by qPCR analysis in

both groups. All other miRNAs, miR-30c-1*, miR-339-3p, miR-576-5p, miR-483-5p showed a

significant different expression in NHEMs in comparison to melanoma cell lines and were en-

dogenously expressed in either the melanoma cell lines of the NHEMs. miR-576-5p and miR-

483-5p were significantly higher expressed in melanoma cell lines in comparison to NHEMs.

Additionally, both miRNAs were able to strongly increase A375 cell invasion during the func-

tional screening indicating their possible oncogenic potential in melanoma cell lines. Both

miRNAs are reported to be mainly found in brain metastases but a clear correlation with

their potential to accelerate metastasis remains elusive [205, 319]. Thus, a potential phys-
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iological relevance for both miRNAs in cancer progression and metastasis is indicated and

they were considered as interesting candidates for further analysis.

Additionally two miRNA candidates, miR-339-3p, miR-30c-1* with an inhibiting effect

on A375 cell invasion shown by the functional screening were significantly higher expressed in

NHEMs in comparison to melanoma cell lines. This observation indicates a putative tumor

suppressive role for both miRNAs in vitro. Neither miR-339-3p, nor miR-30c-1* are currently

reported to play a role in cancer metastasis or malignant progression.

To further support the importance of the identified miRNAs on melanoma cell invasion a

correlation analysis was performed. Correlation analyses are frequently performed to estimate

the relation of gene or miRNA expression to the observed phenotype under investigation. In

this respect, miR-10b expression was shown to correlate with glioma cell [322] and human

esophageal cancer cell invasion [334]. miRNA expression analyses are often performed to

assess miRNA expression profiles with a distinct physiological role in malignant progression.

This was shown, for three miRNAs, miR-125b, miR-199a, and miR-100, which could be cor-

related to gastric cancer progression and are within a set of 22 previously identified miRNAs

to be upregulated in gastric cancer [338]. Correlation analysis of miRNA expression and the

respective physiological phenotype of interest further elucidates and increase the significance

of the miRNA candidates under investigation.

Therefore, the invasive capacity of a penal of melanoma cell lines was determined and

correlated to miRNA candidate expression. Melanoma cell lines under investigation either

showed a high invasive potential, such as MaMel-19 or A375, an intermediate invasive poten-

tial, MaMel-86b or MaMel-68, or almost no invasive potential e.g. MaMel-79b. Nine miRNA

candidates with the strongest effect on A375 cell invasion were analyzed to estimate their

potential influence on melanoma invasion. Significant correlations were observed for miR-

339-3p, miR-30c-1* and miR-576-5p with a a correlation coefficient of 0.24 for miR-576-5p,

0.47 for miR-30c-1* and 0.59 for miR-339-3p. As miR-576-5p and miR-339-3p showed a sig-

nificant different expression in melanoma cell lines in comparison to NHEMs and were within

the strongest miRNA candidates influencing A375 cell invasion both miRNA candidates were

considered for further investigation.

Overall, the outlined work-flow, starting with a functional screening approach, followed

by cell viability analysis, miRNA expression and correlation analysis, which finally allowed

to expand the data set under investigation as additional melanoma cell lines were included,

was shown to be a powerful tool to analyze high-throughput data sets and select putative

miRNA candidates for further target gene analysis in silico, in vitro and in vivo. Despite

the strong effects of the presented miRNA candidates on melanoma cell invasion, supported
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by additional miRNA candidate expression analysis, this effect had to be validated and their

distinct role in cell physiology or pathophysiology had to be further clarified by identification

of potential target genes.

6.4 miRNA target identification

To further validate the effect of specific miRNA candidates, their putative target genes

had to be identified. As indicated before, a single miRNA can regulate more than hundreds

of different target genes leading to the observed phenotype, e.g. cell proliferation, invasion

or cell death [204, 120, 101]. Therefore, the identification of one target gene regulated by one

individual miRNA might correlated with the observed functional changes seen during the

screening procedure but might not indicate the overall complexity of miRNA induced gene

regulation. To understand miRNA networks and complexity of gene regulations by a single

miRNA the global impact on gene expression has to be considered [304].

Several miRNA target predictions tools are available at the moment for in silico pre-

diction analysis, which mainly try to correlate mRNA:miRNA expression and sequencing

data to predict possible regulations [184, 307, 345, 347, 286]. Two databases were com-

bined by Dr. Agnes Hotz-Wagenblatt to define possible target genes, miRBase and Tar-

getScan [117, 182, 204]. These two target prediction programs use different algorithms to

identify mRNA:miRNA binding possibility not only in the target genes 3’UTR. Moreover,

miRBase additionally indicates mRNA:miRNA interaction sites in the 5’UTR, whereas Tar-

getScan indicates binding sites within the open reading frame of putative target genes as well

[204, 116, 117, 181, 182]. Despite the wide range of possible prediction tools and constant

development of more precise algorithms based on high-throughput sequencing data many

putative target genes remain unidentified by in silico prediction analysis or can not be con-

firmed in vitro. Therefore, putative target genes identified by computational algorithms and

gene enrichment analysis indicate the direction for subsequent in vitro and in vivo validation

analysis, but do not substitute for it.

The two most interesting miRNA candidates, miR-339-3p and miR-576-5p, were further

considered for investigation and several proposed target genes for both miRNA candidates

were identified by target prediction analysis. Subsequently the putative target genes were

subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID)

[148, 149]. miRNA-339-3p and miR-576-5p were found to substantially influence genes which

regulate signaling pathways involved in cell viability, proliferation and cell motility, sup-
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porting their observed potency on melanoma cell invasion during the functional screening

approach. As shown before, miR-339-3p and miR-576-5p have a slight effect on melanoma

cell viability and a strong increasing, or decreasing impact on A375 cell invasion, respectively.

The in silico identification of putative target genes with a role in cell death, proliferation and

cell motility reflects the so far observed phenotype after miRNA candidate overexpression in

melanoma cells.

Several of the in silico identified putative target genes with a role in apoptosis are targeted

by miR-576-5p as for example cell cycle regulators, p35 and p21, or the co-factor of the

tumor suppressor p53. p53 requires the co-factor help to function in a tumor suppressive

and apoptosis inducible fashion [333]. Therefore, downregulation of the p53 cofactor might

indicate a favorable situation for tumor progression and metastasis formation mediated by

miR-576-5p overexpression.

Putative targets regulated by miR-576-5p seem to influence distinct biological pathways,

as miR-576-5p was predicted to interrogate with apoptosis induction as well as to target Cullin

3 and thereby abrogate cell proliferation. Interleukin 2 as well as Neurofibromin 1 are known

to play diverse roles in cell viability and maintenance [223, 198, 132, 11]. Caspase 8 (CASP8)

Fas-associated death domain protein (FADD)-like apoptosis regulator (cFLIP, CFLAR) is

another overlapping putative target gene, which is reported to have a divergent role in cell

death and proliferation [297, 270]. cFLIP molecules are able to determine cell survival or

cell death dependent on the activation of either pro-apoptotic or NF-κB-inducing signaling

pathways mediated due to different expression levels of the different cFLIP isoforms [270, 97].

Several cytoskeletal components as for example actin, moesin, myosin and tropomyosin 3

are possible targets for miR-576-5p indicating a complex regulation of cell motility and a

putative role for this miRNA candidate in cancer metastasis [84, 131, 195]. These putative

target genes of miR-576-5p influencing cell motility are of most interest in further analysis as

their regulation might directly translate into the observed phenotype during the functional

screening. However, putative targets reported to influence cell viability might also play an so

far unknown additional role in cell invasion or promote invasiveness by altering intracellular

stability towards a more favorable environment for malignant progression.

A similar distribution could be observed for miR-339-3p and its predicted potential target

genes. Several genes were indicated by in silico analysis, which regulate components of the

cytoskeleton, but controversially to miR-576-5p, mainly the tubulin and tubulin polymer-

ization seems to be affected by miR-339-3p overexpression. Actin and tublin-interactions

are reported to be important for cell morphology and motility, thus both filament systems
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have distinct roles intracellularily [292, 110]. The actin cytoskeleton is mainly responsible

for directed cell migration whereas microtubuli are important for bipolar spindle formation

and chromosomal segregation [292, 110]. However, the role of microtubuli in maintenance

of the polarized actin cytoskeleton could be proven in migrating fibroblasts [343] indicating

a combined role in cell physiology and functional motility [110]. The regulation of distinct

components of the cell cytoskeleton by miR-339-3p or miR-576-5p might translate into a more

or less invasive phenotype. Furthermore, both miRNAs affect expression of cytoskeleton re-

modeling proteins, namely non-catalytic region of tyrosine kinase (NCK) adaptor protein 2 is

targeted by miR-339-3p, whereas miR-576-5p downregulates NCK adaptor protein 1. NCK2

is known to support melanoma invasion in vitro and proliferation in vivo [187]. Furthermore,

NCK2 was found to be primarily upregulated in metastatic melanoma cell lines in comparison

to primary melanoma cell lines or melanocytes [187]. Contradictory, NCK2 up-regulation was

additionally correlated with down-regulation of specific cell adhesion molecules [187]. How-

ever, no significant difference could be seen for NCK1 expression in different melanoma cell

lines or melanocytes [187]. In carcinoma cell lines NCK1 influences actin remodeling required

for invapodia formation [266]. On the one hand NCK2 seems to play a more promoting role

in melanoma cell invasion that might be abrogated by miR-339-3p overexpression, supporting

its observed inhibiting impact on melanoma cell invasion. On the other hand miR-576-5p

might induce a complex actin skeleton rearrangement in melanoma cell lines by targeting

various actin remodeling proteins, namely NCK1, tropomyosin, tropomodulin, moesin and

actin accelerating melanoma cell invasion [83, 343, 195].

In addition to processes influencing cell motility miR-339-3p might also impact on cell

proliferation and survival. Several known mediators of cellular life and death decisions as for

example cFLIP, tumor necrosis factor (TNF) receptor-associated factor 3 and the oncogene

pim-2 are listed as putative targets [270, 297, 247, 202]. Furthermore, protein kinase C

(PKC) might be affected which plays an important role in signal transduction influencing a

variety of intracellular signaling pathways to induce cell proliferation and survival [259, 368].

Interestingly, another putative target of miR-339-3p, the myeloid cell leukemia sequence 1

(MCL1), a known oncogene in melanoma is already investigated for its potential for antisense

therapy in the clinics. MCL1 overexpression was reported to be indicative for a poor prognosis

in melanoma patients and might counteract therapies targeting BRaf and MEK. Therefore,

not only MCL1 downregulation, but targeting anti-apoptotic molecules in general is highly

investigated in clinics with small molecule inhibitors as for example Obatoclax [254]. The role

of MCL1 in cancer initiation and progression makes it an interesting candidate for further

analysis and validation in respect of miR-339-3p target analysis.

This variety of genes potentially regulated by a single miRNA already indicates the com-

116



Discussion

plexity and difficulties of miRNA target identification and the importance of individual eval-

uation and in vitro validation. Therefore, in a next step the observed invasion effects during

the functional screening were validated in an independent invasion assay as well as putative

targets for miR-339-3p were confirmed in vitro, respectively.

6.5 miR-339-3p and miR-576-5p affect melanoma cell

invasion

The functional screening and the additional cell viability assay was solely performed

in the melanoma cell line A375. To validate and highlight the physiological importance

the effect of the respective miRNA candidates in additional cell lines in vitro as well as in

vivo were of further importance. Five different melanoma cell lines with different invasive

potential could be shown to be influenced by miR-339-3p or miR-576-5p overexpression.

Without transfection of any miRNAs A375 and MaMel-103 showed a high, MaMel-86b an

rather intermediate and MaMel-61e a low invasive potential. WM 266.4 is a highly invasive

melanoma cell line derived from a skin metastasis of the same patient with the primary

tumor WM 155 [273, 291]. The accelerating or inhibitory effect on melanoma cell invasion

upon miRNA candidate overexpression could be validated for all five cell lines. Overall, the

invasive potential influenced was accelerated the most in less invasive cell lines, e.g. MaMel-

61e and MaMel-86b, whereas invasion inhibition was more pronounced in the high invasive

melanoma cell lines A375 and WM 266.4. These physiological differences might account for

the distinct context specific physiological effects in these melanoma cell lines.

While accelerated invasion could be observed in all melanoma cell lines after miR-576-

5p overexpression in the independent assay, it was not as strong as during the screening.

This might be due to two small changes within the protocol: an exact number of cells was

seeded into the Boyden chamber inserts and a prolonged invasion time of 24h was used for

this independent invasion assay. miR-339-3p, the miRNA candidate with inhibitory effect on

melanoma cell invasion could be shown to reduce invasive behaviour of all cell lines under

investigation. Its inhibitory effect could be shown to be strongest in the melanoma cell lines

WM 266.4, MaMel-103b and A375, the cell lines with a more potent invasive potential.

So far, miR-339-3p could be shown to be a potent inhibitor of melanoma cell invasion,

after miR-339-3p overexpression. To further support its significant role in melanoma cell in-

vasion, endogenous miR-339-3p was knocked down in three different cell lines, MaMel-61e and
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MaMel-79b, which showed a rather high endogenous miR-339-3p expression in comparison

to A375. In all three cell lines an increased invasion in the miR-339-3p inhibitor (anti-miR)

transfected cells could be observed in comparison to mock treated cells, thus confirming the

physiological relevance of miR-339-3p.

Overall miR-339-3p inhibited melanoma cell invasion significantly in five different melanoma

cell lines and transfection with antagomiR in cell lines with high endogeneous miR339-3p lev-

els accelerates cell invasion. Moreover miR-339-3p does not significantly influence melanoma

cell viability in the here presented experimental approach. To further highlight the impor-

tance of miR-339-3p on melanoma cell invasion, its target genes had to be identified and

verified in vitro and in vivo.

6.6 MCL1, a novel target of miR-339-3p

Several putative miR-339-3p targets were already mentioned above as a result of the in

silico database analysis. Due to its importance as oncogene MCL1, the myeloid cell leukemia

sequence 1, was further investigated for its role in melanoma cell invasion and as putative

miR-339-3p target gene in vitro. In an independent invasion assay MCL1 knockdown was

able to inhibit melanoma cell invasion in all five melanoma cell lines under investigation to

different extent. The inhibitory effect on melanoma cell invasion was comparable to the effect

of miR-339-3p overexpression in the respective cell line, suggesting an influence of MCL1 on

melanoma cell invasion.

Until now, MCL1 was reported to play an anti-apoptotic role in melanoma cell survival,

cell death induction, proliferation and EMT [230, 62, 189, 288]. Except cell survival and

apoptosis MCL1 is reported to influence several intracellular signaling pathways which play

a promoting role during cancer progression and invasion, as it is thought to additionally

interfere with anoikis induction inducing a favoring environment for cancer cell dissemination

[37, 364]. Anoikis, one specific program for cell death induction, is activated once a cell lost

contact to its surrounding cellular network, the extracellular matrix or does appear in an

unphysiological position in the body [175]. Therefore, anoikis resistance is known to be one

of the hallmarks of cancer as it enables migrating and invading cancer cells to avoid cell death

induction [175, 133]. MCL1 degradation in combination with increased Bim expression, a

pro-apoptotic member of the Bcl-2 family [260], is thought to be crucial for anoikis induction

and prevention of metastases formation in breast cancer cells [364]. Additionally MCL1 could

be shown to prevent BRaf mutated melanoma cells from anoikis induction, that was restored
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after MCL1 knockdown [37].

MCL1 is one anti-apoptotic member of the Bcl-2 family of proteins which is known to in-

duce pro-survival pathways intracellularily [331, 237, 325]. As Bcl-2 family members regulate

apoptosis and cell survival, an overall balanced level of pro- as well as anti-apoptotic mem-

bers of this family is required for a physiological situation within cells [237, 362, 388]. MCL1

expression is important for functional development and immunity as for example during em-

bryogenesis and lymphocyte development [289, 264]. Due to its anti-apoptotic role, MCL1

is widely investigated for clinical therapies to target cell survival pathways which interfere

with cancer cell progression and metastasis induction [25, 258, 362]. Several therapeutic

applications, which aim to inhibit oncogenic BRAF and MEK, seem to additionally require

MCL1 downregulation, as it seems to be crucial for melanoma cell resistance to cytotoxicity

[362, 388, 189].

MCL1 exists in three different splice variants, two short variants, MCL1 short (MCL-1S)

and MCL1 extra short (MCL-1ES) and one long version MCL1 long (MCL- 1L) [331, 171,

172, 310, 16]. All three splice variants exhibit the same 3’UTR (Figure 22), however possible

protein:protein interaction domains, e.g. two of three Bcl-2 homology domains (BH1 and

BH2) and the transmembrane domain (TM) that allows it localization to intracellular mem-

branes [5, 331] are solely present in MCL-1L. Additionally, MCL-1L and MCL-1S proteins

consist of one domain rich in proline, glutamic acide, serine and threonine amino-acids, called

a PEST sequence [5] that is missing in the MCL-1ES isoform. This sequence mediates protein

degradation and might therefore account for the short half life that is reported for MCL-1L

and MCL-1S isoforms, of only a few hours [331, 5, 63, 237]. All three splicing variants of

MCL1 inherit the same 3’UTR, indicating a simultaneous regulation of all isoforms by one

miRNA with a binding site within this 3’UTR [5]. The two short splicing variants of MCL1

are reported to have pro-apoptotic functions whereas MCL-1L is know for its pro-survival

effect in various cell types, including cancer cells [172, 171, 237]. Therefore a thight balance

of MCL1 isoform expression might be indicative for cell survival or cell death decisions. As

MCL1 expression could be linked to melanoma progression it was of no surprise to find the

pro-survival isoform, MCL-1L, upregulated in melanoma cell lines dependent on the BRaf

mutational status in comparison to primary human melanocytes [230]. As most reports do

not distinguish between the different MCL1 isoforms, the anti-apoptotic isoform, MCL-1L is

referred to as MCL1.

A high MCL1 expression could also be observed in most melanoma cell lines under inves-

tigation in this work. In more invasive melanoma cell lines, e.g. A375, WM 266.4, MaMel-

103b, MaMel-19 and MaMe-86b higher MCL1 protein levels in comparison to less invasive

cell lines as for example MaMel-79b or MaMel-61e. All cell lines express the pro-survival
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MCL-1L and show different protein expression levels of the short MCL-1S and MCL-1ES

isoforms. Melanoma cell lines WM 98.1, MaMel-79b and MaMel-103b seem to express high

endogenously both MCL1 short isoforms. Pro-survival MCL-1L was higher expressed in cell

lines with a more invasive phenotype, A375, MaMe-103b and WM 266.4, however some of

these cell lines, namely A375, MaMel-103b, also express the short MCL1 isoforms indicating

a thightly regualted balance of MCL1 in cell survival and apoptosis. 48h after miR-339-3p

overexpression all three isoforms present in the melanoma cell lines A375, WM 266.4 were

downregulated on protein and mRNA level. Furthermore, MCL1 mRNA levels were par-

tially restored 72h post transfection. This might result from the short half life of MCL1 and

the necessity to tightly balance its intracellular expression in respect of cell physiology, cell

survival and apoptosis [237, 331]. These results indicate a cooperation between miR-339-3p

overexpression and subsequent MCL1 downregulation, with direct targeting of MCL1 3’UTR

by miR-339-3p as the most likely regulatory mechanism. To further support this hypoth-

esis, miR-339-3p could be shown to downregulate MCL1 protein and mRNA expression in

different melanoma cell lines.

The influence of MCL1 downregulation by miRNAs is widely investigated due to its

potential in sensitizing malignant cells to apoptosis. This was shown by a functional screening

for cell death induction upon Bcl-2 inhibitor (ABT-263) treatment, where several miRNAs,

as for example miR-29b, miR-101, miR-153, and miR-193, were identified to induce apoptosis

after ABT-263 treatment in HCT-116 cells resistant to Bcl-2 family inhibitor treatment [188].

Several miRNAs are reported for their role in MCL1 regulation and modulation of cancer

cell death and survival [48, 109, 219, 244, 365, 198]. miR-139b overexpression could be shown

to sensitize melanoma cells to Bcl-2 inhibitor (ABT-737) to undergo apoptosis, due to the

downregulation of MCL1 [48]. Recently, miR-139b knockdown was reported to significantly

inhibit head and neck squamous cell carcinoma (HNSCC) progression and invasion by directly

targeting neurofibromin 1 in these cells [198]. Both results indicate that one single miRNA is

potent enough to regulate several signaling pathways influencing cancer survival, progression

and metastasis.

Additionally, miR-125b could be shown to influence MCL1, IL-6R and an another Bcl-

2 family member, Bcl-w, expression leading to decreased hepatocellular carcinoma (HCC)

survival and progression [109]. Controversially, the group of Wu et al. [365] could show

that miR-125b is a marker of poor patient prognosis due to its accelerating effect on gastric

cancer cell invasion [365]. These contradictory findings might indicate a complex regulatory

network, where small changes direct complex intracellular signaling cascades. miRNA al-

terations might therefore result in completely different phenotypes depending on cell type,

differentiation or malignant state of the respective cell. These reports would support the
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hypothesis, that miR-339-3p might inhibit melanoma cell invasion via a complex network

of signaling events that require MCL1 downregulation as an intermediate step in the down-

stream signaling cascade. Thus, a direct regulation of MCL1 by miR-339-3p was anticipated

as all isoforms, if present in the respective cell lines, were regulated simultaneously.

6.6.1 MCL1 as direct target of miR-339-3p

MCL1 was predicted as target of miR-339-3p by database analysis and supported by the

finding, that miR-339-3p is able to regulate MCL1 protein and mRNA expression. Therefore,

the mode of interaction of miR-339-3p and MCL1 3’UTR was of immanent interest and

investigated by a luciferase binding assay. Two putative binding sites in the MCL1 3’UTR

were mutated to abrogate putative miR-339-3p binding at the respective 3’UTR region,

which would be translated into a restored luciferase signal. It could be shown that miR-339-

3p decreased the observed luciferase activity indicating an interaction of miR-339-3p with

the 3’UTR of MCL1. In contrast, the direct interaction can only be proven by restoration

of the observed decreased luciferase signal after MCL1 3’UTR mutation at the respective

predicted binding sites of miR-339-3p.

Mutation of binding site one did not result in a significant change in luciferase activity

indicating no direct interaction of miR-339-3p and this respective binding site. Thus, the

attenuated luciferase activity was restored to almost 100% after mutation of the second

binding site in two different melanoma cell lines, WM 266.4 and A375 indicating a direct

functional interaction of miR-339-3p with this region of the MCL1 3’UTR. Unfortunately, due

to side-effects during the process of site-directed mutagenesis, several additional mutations

were introduced ancillary to the intended mutation. Therefore, the luciferase restoration

effect observed, cannot be clearly contributed to the abrogated binding on the predicted

binding site as it may also be due to mutations in neighboring regions of the MCL1 3’UTR.

Overall, it can be hypothesized that miR-339-3p does directly bind to the 3’UTR of MCL1

indicated by the strong luciferase restoration effect that can be observed after introduction

of several distinct mutations.
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6.6.2 miR-339-3p does not promote melanoma cell death induc-

tion

miR-339-3p could be shown to inhibit melanoma cell invasion and target MCL1 expres-

sion. As MCL1 is known to play a role in intracellular cell death and survival decisions

mediating cancer cell resistance to therapies [325, 364, 372, 389], the role of miR-339-3p

on melanoma cell death induction was investigated. miR-339-3p did not strongly induce

melanoma cell death in the melanoma cell lines, WM 266.4 and A375. In contrast, consis-

tently with previous reports, MCL1 knockdown did result in increased cell death observed in

both melanoma cell lines [325, 364, 372, 389]. MCL1 downregulation, might be one impor-

tant regulatory mechanism among others, to mediate the observed miR-339-3p dependent

invasion suppressive activity.

Several studies focusing on tumor suppressive miRNAs could correlate MCL1 downregu-

lation with an increased cell death induction in the respective cancer cells [371, 372, 219, 48].

However, successful cell death induction could not be mediated by MCL1 downregulation

alone, additional death receptor activation or outside stimuli were required [244, 257, 63, 109].

This could be shown on the one hand by Mott et al. for miR-29b, which directly targets

MCL1 and therefore sensitizes cholangiocarcinoma cells to trail-mediated apoptosis induction

[244]. One the other hand MCL1 knockdown did require additional ultraviolet irradiation to

successfully induce apoptosis in HeLa cervical cancer cells reported by Nijhawan et al. [257].

Supported by these reports our findings suggest a specific interplay of several signaling

pathways regulated by miR-339-3p, which on the one hand affect MCL1 expression and

therefore provide a less favorable intracellular environment for melanoma cell invasion and

on the other hand might influence melanoma cell invasion directly by abrogating expression of

currently unknown target genes. Therefore, a more global impact of miR-339-3p on melanoma

cell intracellular signaling had to be assessed.

6.7 miR-339-3p induces specific gene expression pro-

files in melanoma cell lines

miR-339-3p could be shown to influence melanoma cell invasion and deregulate MCL1

expression. In order, to assess global mRNA expression changes a microarray assay was used

to compare gene expression of melanoma cells transfected with miR-339-3p to untreated
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melanoma cells. Overall, more genes were significantly downregulated than upregulated in

response to increased miR-339-3p expression in both cell lines, correlating with miRNAs

known potency in target gene knockdown [9, 10]. No genes could be found to be more than

two fold deregulated overlapping in both cell lines after miR-339-3p overexpression. How-

ever, overall more than 3000 genes could be found to be significantly differentially regulated

after miR-339-3p overexpression in both melanoma cell lines. In respect of target gene se-

lection for miR-339-3p, only 36 genes identified by database analysis could be confirmed as

being deregulated by miR-339-3p overexpression via microarray gene expression analysis si-

multaneously in both different melanoma cell lines, including MCL1. This might be due to

specific algorithms of the databases used to identify miRNA targets, that are mainly focus-

ing in miRNA:mRNA duplex formation due to seed paring, whereas seedless pairing gains

increased attention and seems to be as important in miRNA-target interaction [290]. While

a wide range of additional miRNA:mRNA interaction possibilities are not covered by these

algorithms yet, additional putative targets cannot be predicted in silico that can be detected

by genexpression analysis [61, 379, 182, 290]. Thus, miR-339-3p dependent gene expression

analysis indicates the global pattern of target regulation independent of its direct and indirect

effects.

MCL1, which was predicted by database analysis, was differentially regulated in both cell

lines after miR-339-3p overexpression. In the model cell line A375 miR-339-3p overexpression

resulted in a significant decrease of MCL1 gene expression, whereas in the MaMel-86b the

opposite effect was observed. This observation can be explained by substantial differences in

the invasiveness of these melanoma cell lines, while A375 shows a strong invasive capacity,

MaMel-86b invades rather weakly. A higher level of endogenous miR-339-3p expression might

abrogate its intracellular impact in MaMel-86b cells in comparison to the cell line A375.

Overall, a distinct context specific regulation giving rise to a high complexity, includes both

direct and indirect miRNA target effects. Different intracellular signaling pathways influenced

by miR-339-3p overexpression might mediate the observed inhibition of cell invasion.

The performed gene enrichment analysis indicated comparable signaling networks being

influenced by increased miR-339-3p overexpression in both melanoma cell lines. Support-

ing our in vitro findings of miR-339-3p inhibiting invasion in melanoma cell lines, networks

influencing developmental processes, inflammation, proliferation but also cell adhesion pro-

cesses and chemotaxis are particularly regulated by miR-339-3p overexpression in MaMel-86b

cells whereas inflammation, developmental processes and cell adhesion are mainly affected

in A375 cells. However, no cell viability or cell death effects of miR-339-3p were observed in

our setting, which might indicate distinct physiological phenotypes induced after miR-339-

3p overexpression maybe at later time points post transfection. Furthermore, inflammatory
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processes which might favor melanoma progression and might be inhibited by miR-339-3p

overexpression were not investigated so far. On a more long-term basis miR-339-3p might

influence melanoma cell viability and inflammation processes, whereas a more immediate

mechanism induces alterations in melanoma cell adhesion and therefore inhibits melanoma

cell invasion as it could be observed during the functional invasion screening. For further

clarification, time-lapse experiments should be conducted to unravel possible time dependent

effects of miR-339-3p on melanoma cell viability. Inflammation processes deregulated by

miR-339-3p can be further investigated by identification of additional targets genes to eluci-

date the exact mechanisms and physiological changes of miR-339-3p influencing cell survival

and inflammatory stress responses.

These results reflect the complexity of miRNA regulation where identical pathways are

regulated by distinct genes and on different levels, possibly leading to a similar physiological

outcome. miR-339-3p might interfere on different levels with expression of various genes

which alone might not induce certain phenotypes but altogether are potent enough to mediate

the here presented invasion inhibiting phenotype.

Most studies at the moment are focusing on miRNA profiles to distinguish cancer types

or detect malignant progression [36, 45, 129, 197, 205]. Therefore, studies comparing gene ex-

pression profiles after specific miRNA deregulation to further highlight differences within the

same cancer type, are still lacking. However, different melanoma subtypes were investigated

for their distinct miRNA profile, indicating significant differences in the physiological gene

expression as well as miRNA expression profile between these subtypes [45]. Additionally, as

it could be seen in the microarry data presented here, that every melanoma cell line exhibits

a distinct gene expression profile after miRNA transfection indicating a distinct physiological

status even before miRNA treatment. The analysis of additional melanoma cell lines as well

as mock transfection as proper control would further clarify specifically deregulated signaling

pathways induced by miR-339-3p overexpression, since even small changes in the miRNA

profile might induce distinct phenotypes dependent on the physiological state of the respec-

tive cells before treatment. Finally, in vivo analysis of miR-339-3p overexpression impact on

melanoma metastasis was required to clarify its potency to inhibit melanoma cell invasion.
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6.8 Abrogated lung metastasis formation by miR-339-

3p overexpression in vivo

All results presented so far indicate a tumor suppressive role, induced by inhibition of

invasion, for miR-339-3p in melanoma. To further support this hypothesis, the effect of

miR-339-3p on melanoma metastasis formation was elucidated in a lung metastases assay in

immunodeficient NSG mice in vivo.

Lung metastasis assays in NSG mice, performed with patients melanoma samples, could

be shown to be clinical relevant as the metastasis rate and spontaneous metastasis formation

in the lungs correlated with clinical outcome in these melanoma patients [283]. Therefore,

a lung metastasis assay in NSG mice was performed with A375 cells stably overexpress-

ing miR-339 (A375 miR-339), the control A375 cell line transfected with the empty vector

(A375 empty) and parental A375 cells. Fourteen days post injection all mice showed lung

metastasis formation. However, mice injected with A375 miR-339 showed significantly less

lung metastases then control mice receiving A375 parental or A375 empty cells. Decreased

lung metastasis formation in mice after A375 miR-339 i.v. injection correlated with the ob-

served decreased invasive potential of this cell line due to miR-339-3p overexpression in the

functional invasion screening supporting our hypothesis for miR-339-3p as a putative tumor

suppressor in melanoma.

Additionally, mice injected with A375 miR-339 and A375 empty cells showed liver metas-

tasis, which were not observed in livers of mice injected with parental A375 cells. A375 cells

are reported to form lung metastasis in NSG mice but the appearance of liver metastasis was

not reported so far [43, 180].

Recently, a paper was published proposing a newly identified immature NK cell subset

which resides in the liver and interferes with hepatic metastasis formation of B16 melanoma

cells after i.v. injection into wild type black 6 (B6) mice [22]. Depletion of this specific NK cell

subset enabled liver metastasis formation in this murine B16 melanoma model. Lung metas-

tasis formation was not affected, as this specific NK cell subset was found to be restricted to

the liver. Conclusively, they could show that hepatic NK cells need to be present to prevent

liver colonization by B16 melanoma cells and propose a suppressive role in B16 melanoma

metastasis formation for distinct organ-specific NK cell subsets, so far mainly investigated

in the liver [22]. These results suggest an important role of immune cells in modulating

melanoma metastasis formation. Thus, NSG mice used in the reported lung metastases

assay, lack NK cells or any other immune cells which could influence melanoma cell dis-

semination and metastases formation. Nevertheless, the appearance of hepatic colonization
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might be due to the lack of this specific immature NK cell subset [22] and in combination

with altered surface molecule expression favor hepatic colonization in these mice.

Irrespective, of the so far not described mechanism of liver metastasis formation in mice

injected with A375 cells, A375 miR-339-3p cells induced the formation of viewer metastasis

and of smaller size than mice receiving A375 empty cells. Consequently, A375 cells stably

transfected with this specific vector seem to acquire the capability to form liver metastases.

The question arises, if due to vector integration tumor suppressor genes are silenced inducing

a more aggressive form of A375 cells or altered cell surface molecule expression patterns

enforce A375 cells to colonize preferentially to the liver at an earlier time point. The organ

specificity of a distinct tumor system is mediated by its own mutagenenic properties and the

host microenvironmental influences. Subsidiary metastases might occur due to stochastic

events and molecular modulation of A375 cell adhesion and invasion properties. As liver

metastases were observed in NSG mice three weeks post i.v. injection of 1x106 A375 cells,

liver colonization might be a secondary time dependent phenomenon in this model system.

The integration site of the empty vector needs to be further elucidated to clarify the observed

effect. This would indicate either a preferred integration site for this vector at one specific

position or a selective advantage of specific clones in vitro as well as in vivo.

Overall, a complex regulatory mechanisms post miR-339-3p upregulation inhibits metas-

tasis formation in the lung as well as in the liver of immunosuppressed mice. Despite, the

decreased metastasis formation in the lungs and livers observed in NSG mice after injection

with A375 miR-339-3p overexpressing cells, the mechanism of liver metastasis formation has

to be further clarified.

6.9 Conclusion and outlook

In conclusion, a high throughput functional miRNA invasion screening was performed

successfully and miRNAs inhibiting or accelerating melanoma cell invasion were identified.

Specifically, miR-339-3p was validated as new tumor suppressor miRNA and was found to

be downregulated in melanoma cells. Furthermore, MCL1 was unraveled as a new specific

target of miR-339-3p and MCL1 knockdown by siRNA was able to mimic the phenotype of

miR-339-3p overexpression in melanoma cell lines.

To understand the full range of miR-339-3p regulation in melanoma, global changes in

gene expression patterns after miR-339-3p overexpression should be extended by using addi-

tional melanoma cell lines. These results will help to depict the most prominently occurring
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alterations in gene expression in response to miR-339-3p activity. As single miRNAs might

impact on complex intracellular signaling networks, direct and indirect effects determine their

physiological influence and have to be considered. Subsequently, newly identified target genes

by gene expression analysis can be validated by AGO2 immunoprecipitation for their direct

interaction with miR-339-3p in melanoma cells.

Overall, a more comprehensive understanding of the miR-339-3p:target network might

lead to future therapeutic applications of miR-339-3p in melanoma, especially in respect

of the cellular context and the malignant state. Despite promising in vivo data presented

here, indicating abrogated metastasis formation in NSG mice after i.v. injection of miR-339-

3p overexpressing A375 melanoma cells, the appearance of unexpected liver metastases has

to be further investigated. Clones of the stable miR-339-3p overexpressing and especially

control vector transfected A375 cell lines should be established and used for future in vivo

experiments. These clones can subsequently be analyzed for genomic insertion of the insert

which might help to understand the unexpected phenotype of the control cell line resulting

in increased hepatic colonization in NSG mice.

Conclusively, miR-339-3p is a new promising tumor suppressive miRNA candidate, thus

further preclinical studies are required to determine its therapeutic potential in melanoma

progression and invasion in vivo. Since the beginning of miRNA research miRNAs have

emerged as essential regulatory molecules in various malignancies which might yield promising

therapeutic and diagnostic potential in the future.
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Supplement

50 of the most promising miRNA candidates accelerating or inhibiting A375 cell invasion

are listed here, the complete Table S1 and S2 for all 988 miRNA candidates will be presented

in digital form attached to the here presented work.

Table S1: Significance test for the invasive effects of 50 miRNA candidates in the A375

cell line in comparison to the irrelevant control cel-miR-342 (ctrl1 miRNA).

Source DF Sum of Squares Mean Square F Value Pr > F

Model 882 902.0977567 1.0227866 40.58 <0001

Error 2121 53.4573924 0.0252049

Corrected Total 3003 955.5551492

Note: This test controls the Type I experiment wise error for comparisons of all treatments

against a control

Comparisons significant at the 0.05 level are indicated by ***

miRNA Comparison Difference

Between

Means

Simultaneous

95% Confidence

Limits

hsa-miR-576-5p - cel-miR-243 2.06983 1.68985 2.44980 ***

hsa-miR-554 - cel-miR-243 2.00980 1.62983 2.38977 ***

hsa-miR-483-5p - cel-miR-243 1.9707 1.59073 2.35068 ***

hsa-miR-559 - cel-miR-243 1.94073 1.56076 2.32070 ***

hsa-miR-206 - cel-miR-243 1.92378 1.54381 2.30375 ***

hsa-miR-2054 - cel-miR-243 1.75757 1.37760 2.13754 ***

hsa-miR-578 - cel-miR-243 1.74991 1.36993 2.12988 ***

hsa-miR-575 - cel-miR-243 1.72654 1.34657 2.10651 ***

hsa-miR-202 - cel-miR-243 1.70262 1.32265 2.08259 ***
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hsa-miR-1200 - cel-miR-243 1.69209 1.31212 2.07207 ***

hsa-miR-200b - cel-miR-243 1.68529 1.30532 2.06526 ***

hsa-miR-20b - cel-miR-243 1.67454 1.29457 2.05451 ***

hsa-miR-507 - cel-miR-243 1.66553 1.28556 2.04551 ***

hsa-miR-595 - cel-miR-243 1.65485 1.27488 2.03482 ***

hsa-miR-2052 - cel-miR-243 1.62927 1.24930 2.00925 ***

hsa-miR-611 - cel-miR-243 1.61860 1.23863 1.99857 ***

hsa-miR-205* - cel-miR-243 1.60648 1.22651 1.98645 ***

hsa-miR-202* - cel-miR-243 1.56418 1.18421 1.94415 ***

hsa-miR-21 - cel-miR-243 1.55159 1.17162 1.93156 ***

hsa-miR-518b - cel-miR-243 1.53961 1.15964 1.91958 ***

hsa-miR-498 - cel-miR-243 1.53842 1.15844 1.91839 ***

hsa-miR-661 - cel-miR-243 1.53428 1.15431 1.91426 ***

hsa-miR-632 - cel-miR-243 1.53245 1.15248 1.91242 ***

hsa-miR-640 - cel-miR-243 1.52985 1.14988 1.90982 ***

hsa-miR-2053 - cel-miR-243 1.51840 1.13843 1.89837 ***

hsa-miR-301b - cel-miR-243 -0.75754 -1.13751 -0.37757 ***

hsa-miR-139-5p - cel-miR-243 -0.76758 -1.14755 -0.38761 ***

hsa-miR-129* - cel-miR-243 1 -0.77213 -1.1521 -0.39216 ***

hsa-miR-125a-3p - cel-miR-243 -0.81255 -1.19252 -0.43258 ***

hsa-miR-194 - cel-miR-243 -0.82678 -1.10310 -0.55046 ***

hsa-miR-127-3p - cel-miR-243 -0.84504 -1.22501 -0.46507 ***

hsa-miR-196b* - cel-miR-243 -0.88194 -1.26191 -0.50197 ***

hsa-miR-523 - cel-miR-243 -0.89000 -1.26997 -0.51003 ***

hsa-miR-660 - cel-miR-243 -0.89769 -1.27767 -0.51772 ***

hsa-miR-1248 - cel-miR-243 -0.89838 -1.27835 -0.51841 ***

hsa-miR-198 - cel-miR-243 -0.90694 -1.28692 -0.52697 ***

hsa-miR-192* - cel-miR-243 -0.91787 -1.29784 -0.53790 ***

hsa-miR-659 - cel-miR-243 -0.92156 -1.30153 -0.54159 ***

hsa-miR-331-3p - cel-miR-243 -1.00843 -1.38840 -0.62846 ***

hsa-miR-31* - cel-miR-243 -1.02517 -1.40514 -0.64519 ***

hsa-miR-193b - cel-miR-243 -1.05052 -1.43049 -0.67055 ***

hsa-miR-187* - cel-miR-243 -1.07600 -1.45597 -0.69603 ***

hsa-miR-302d - cel-miR-243 -1.08544 -1.46541 -0.70547 ***

hsa-miR-211 - cel-miR-243 -1.10715 -1.48712 -0.72718 ***

hsa-miR-549 - cel-miR-243 -1.11725 -1.49722 -0.73728 ***
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hsa-miR-342-3p - cel-miR-243 -1.13354 -1.51351 -0.75357 ***

hsa-miR-624 - cel-miR-243 -1.15976 -1.53973 -0.77979 ***

hsa-miR-339-3p - cel-miR-243 -1.51124 -1.89121 -1.13127 ***

hsa-miR-30c-1* - cel-miR-243 -1.51997 -1.89994 -1.14000 ***

hsa-miR-325 - cel-miR-243 -1.91813 -2.29810 -1.53815 ***

Table S1: Significance test for all miRNA mimics tested for their effect on A375 cell invasion. Each

MFI value, normalized to the mock control, was logarithmized to control for the normal distribution. Then a

one way anova was performed in the first step and a Dunnetts test in the second step to calculate significance

of specific miRNA candidates to the control (cel-miR-243). Comparisons significant at the 0.05 level are

indicated by ***.
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Table S2: 50 strongest miRNA candidates tested for their effect on A375 cell invasion

miRNA Candidates

Mean

Fluorescence

Intensity

(MFI)

Standard

Deviation

(STD)

z-score

cel-miR-243 0.96 0.08 -0.46

ath-miR-416 1.01 0.08 0.41

hsa-miR-182 1.76 0.06 0.38

hsa-miR-101 0.45 0.05 -0,99

hsa-miR-576-5p 7.60 0.24 6.48

hsa-miR-554 7.16 0.07 6.02

hsa-miR-483-5p 6.95 1.15 5.80

hsa-miR-559 6.68 0.12 5.52

hsa-miR-206 6.57 0.17 5.40

hsa-miR-19b 5.87 0.40 4.67

hsa-miR-2054 5.57 0.30 4.36

hsa-miR-578 5.52 0.10 4.31

hsa-miR-575 5.39 0.17 4.17

hsa-miR-202 5.26 0.05 4.04

hsa-miR-1200 5.21 0.12 3.98

hsa-miR-200b 5.17 0.04 3.94

hsa-miR-20b 5.12 0.28 3.89

hsa-miR-507 5.07 0.10 3.84

hsa-miR-595 5.02 0.24 3.78

hsa-miR-2052 4.91 0.59 3.67

hsa-miR-611 4.85 0.35 3.61

hsa-miR-205* 4.80 0.50 3.55

hsa-miR-518a-3p 4.67 0.06 3.42

hsa-miR-202* 4.60 0.44 3.35

hsa-miR-21 4.54 0.40 3.28

hsa-miR-518b 4.47 0.07 3.21

hsa-miR-498 4.47 0.09 3.21
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hsa-miR-632 4.45 0.40 3.19

hsa-miR-661 4.45 0.16 3.19

hsa-miR-640 4.44 0.37 3.18

hsa-miR-2053 4.38 0.25 3.12

hsa-miR-301b 0.45 0.05 -0.99

hsa-miR-139-5p 0.45 0.05 -0.99

hsa-miR-129* 0.44 0.03 -0.99

hsa-miR-1302 0.43 0.01 -1.00

hsa-miR-125a-3p 0.43 0.02 -1.01

hsa-miR-127-3p 0.41 0.01 -1.01

hsa-miR-196b* 0.40 0.01 -1.03

hsa-miR-523 0.39 0.03 -1.04

hsa-miR-660 0.39 0.02 -1.05

hsa-miR-1248 0.39 0.02 -1.05

hsa-miR-198 0.39 0.01 -1.05

hsa-miR-192* 0.38 0.01 -1.05

hsa-miR-659 0.38 0.01 -1.06

hsa-miR-331-3p 0.35 0.06 -1.06

hsa-miR-31* 0.34 0.01 -1.10

hsa-miR-193b 0.34 0.01 -1.11

hsa-miR-187* 0.33 0.03 -1.12

hsa-miR-302d 0.32 0.01 -1.13

hsa-miR-194 0.32 0.01 -1.13

hsa-miR-211 0.32 0.02 -1.13

hsa-miR-549 0.31 0.01 -1.14

hsa-miR-342-3p 0.31 0.05 -1.14

hsa-miR-624 0.30 0.01 -1.15

hsa-miR-339-3p 0.21 0.01 -1.24

hsa-miR-30c-1* 0.21 0.03 -1.24

hsa-miR-325 0.14 0.02 -1.31

Table S2: 50 strongest accelerating or inhibiting miRNA candidates in the functional invasion assay

screening. Mean fluorescence intensity (MFI) directly correlates with the amount of invaded cells 48h post

miRNA transfection The irrelevant controls (cel-miR-243, ath-miR-416) and positive controls miR-101 and

miR-182 are listed on top, indicated in italic letters. Data is represented as mean of technical replicates

(MFI) and standard deviation (STD). The z-score represents the distance between the raw score and the
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population mean in units of the standard deviation. miRNA candidates, miR-339-3p and miR-576-5p are

highlighted in the bold letters.
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Auch möchte ich mich bei meinen beiden
”
Thesis Advisory Comittee“ (TAC) Mitglie-

dern bedanken, Dr. Martina Muckenthaler und Prof. Dr. Stefan Wiemann. Vielen Dank für

konstruktive Diskussionen, Anregungen und ein stetiges Interesse am Verlauf meiner Dok-

torarbeit.
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