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1. Introduction

Chemical reactions on catalytic surfaces are a very active and intense research area.
The catalyst offers the possibility to accelerate and to control certain features of the
reactions, which can lead to higher selectivities and conversion. In other words less
natural and financial resources are needed.

A sophisticated approach for the study of this type of chemistry is based on ele-
mentary reaction models. This means all “net” or “overall” reactions are split up into
elementary reactions which occur on a molecular level exactly in the way which is
described by the reaction equation. For example the reaction of hydroxy radicals OH
with molecular hydrogen Hy forming water and hydrogen atoms is such an elementary
reaction,

OH +Hy; — H,O +H.

On the contrary, the reaction
2Hs + Oy — 2H50

is not an elementary one. Detailed investigations show that water is not produced
by a single collision between the three reacting molecules. Instead, many reactive
intermediates like H, O, OH are formed. So this reaction can be described by 38
elementary reactions [59].

For the validation of the proposed reaction mechanisms computer simulations are
performed and the results are compared to experimental data. Methods for the
mathematical parameter estimation [11,47] are still not yet as commonly used as they
should be. In many cases, it is not sufficient to purely study the reaction mechanism
on the catalytic surface, because the transport of the chemical species to and from
the catalyst is also important. Therefore it is necessary to couple the equations for
the surface reactions with the equations of the flow field. This coupling makes the
solution of the problem more complex, because chemical reactions can be expressed
as a set of ODFE but the addition of the flow equations means the addition of a set
of partial differential equations.

One experimental configuration, which has received much attention over the last
few years, is the reactive stagnation point flow on a catalytic plate [5,6,17,18,26,34],
in which a flow of chemical species in gas-phase is directed towards a catalytic plate.
This setting has been used to assist in the development of reaction mechanisms for
several chemical problems. Their application has shown very good agreement with
corresponding experiments [17,18,60].

The software for the numerical simulation of this problem has been developed in
the research group of Prof. Warnatz over the last 10 years. It is summarized in the
package DIFRUN and simple user interfaces are provided. The reaction mechanisms
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and process parameters are taken from a number of parameter files and all other
necessary data for the reaction equations are then computed in a pre-processing step.
The model equations are discretized in space by finite differences and the resulting
differential-algebraic equations are solved by a modified LIMEX [5,38] which is based
on the original LIMEX [16].

After evaluation of the reaction mechanisms the next step is to look for optimal pro-
cess conditions, that is for example the best values for temperature, pressure, chemical
composition, or flow velocity to obtain a maximum (or minimum) of the desired out-
put. So far, trial-and-error methods have been widely used. But this optimization
by trial-and-error is extremely time consuming. A complete simulation—possibly for
a very large system of differential-algebraic equations—has to be performed for each
new value of the objective function. So this way of optimization is only feasible for
a very small number of control variables. Stationary problems with a constant con-
trol are possible examples. Transient problems with time dependent controls, leading
to 10-100 control variables after discretization, cannot be practically solved on a
trial-and-error basis anymore.

On the other hand, there has been an enormous development in the field of opti-
mization of applied problems: For example in mechanics the optimal path planning
for satellite mounted robots [51-53], or in chemistry the optimal control of distillation
columns [21,22] to mention only a few.

Mathematical sophistication, algorithm and software development, and powerful
computing resources do now enable to tackle optimal control problems with several
hundreds or even thousands of differential algebraic equations and a high number of
control variables.

Two powerful software packages have been developed in the research group of Prof.
Bock over the last several years: MUSCOD(II) [12,36,37] and OCPRSQP [48]. Both
are based on the boundary value problem approach [11,12], that is simulation and
optimization are done at the same time, and both have been applied very success-
fully to many application problems (see above). MUSCOD solves the optimal control
problem with a reduced SQP-method based on a multiple shooting discretization [37].
OCPRSQP uses a collocation method to discretize the DAFE describing the model and
solves the resulting optimization problem with a partially reduced SQP-method [48].
So far OCPRSQP is better suited for applications with a very large number of vari-
ables and only a few control variables. It has also been successfully used in a former
investigation of homogeneous reaction systems [56,57].

In the aforementioned studies, optimal control problems have been solved which
can be described as sets of DAFE. This is an established but still very active field.
The next step is now to approach optimal control problems in partial differential
equations. This is an emerging field of research and it is possible to deal with these
very large systems only in recent times. Examples for recent research are the shape
optimization of turbine blades [24,25,50,54] and optimization problems in water flow
and transport processes in soils [23], to mention only a few.

Over the last couple of years other research groups have started working on systems
similar to that we are considering here [42—44]. But this research is always restricted
to one chemical system. In this thesis we aim for the largest possible flexibility and
efficiency of the software. That means, it takes only minimal effort to go from one



chemical system to another and it is possible to use the software with only a rough
understanding of mathematical optimization.

Other optimal control packages have been developed based on collocation, for ex-
ample [58]. But they usually have the disadvantage that very large linear systems
have to be solved compared to codes based on multiple shooting [40]. Therefore
the development has concentrated on multiple shooting based algorithms [40,41,55].
A solution to this disadvantage of the algorithms based on collocation has been a
partially reduced SQP-method developed in [48].

Hence, a software package is needed for the practical application that includes an
easy-to-use user-interface to study various chemical systems and an optimal control
code which is efficient, robust and also easy-to-use.

In this thesis a new software package has been developed based on the simulation
code DIFRUN and the optimal control package OCPRSQP. This new code provides
us for the first time with a software tool for the optimal control of a reactive stagnation
point flow on a catalytic plate for different chemical processes. Only minimal effort is
needed going from one chemical system to another. This required an overall design to
use the desired features of DIFRUN and OCPRSQP and several conceptual changes,
new algorithms and modifications to OCPRSQP. In the present work, this package
is applied for computing the optimal solution to several practical problems.

Organization of this Thesis

The second chapter introduces the three application problems: the catalytic partial
oxidation of methane to syngas [17, 18], the epoxidation of ethylene on silver [39]
and the catalytic oxygen-free conversion of methane to ethane [60,61]. For these
applications we want to find the optimal process conditions and these systems are
used as typical examples from everyday practice to show the performance of our new
package. A solution from a simulation is presented for each problem, which can be
used as a reference to which the optimal solution presented in Chapter 6 can be
compared.

Chapter 3 introduces the partial differential equations, which model the reactive
stagnation point flow on a catalytic plate [5,17].

Chapter 4 shows how these model equations are discretized in space using finite
differences leading to a system of differential-algebraic equations. The dependency
of these equations on the variables is emphasized because it leads to a block band
structure of the Jacobian of this system. It is shown that this DAFE is of index 1.
Afterwards a short overview of the software package OCPRSQP is given: The col-
location discretization and the partially reduced S@QP-algorithm are presented. The
presentation of algorithmic details concentrates on the computation of the deriva-
tives and the recursion formulas for the condensing step of the partially reduced
SQP-algorithm. This complements the information from [48]

The fifth chapter is—besides the results in chapter 6—the heart of this thesis.
The development of the new software package based on DIFRUN and OCPRSQP is
described, especially some of the major obstacles on that way and possible solutions:
non standard interfaces, the need for analytic derivatives in contrast to the used
finite differences; to mention only a few. It turns out that the accuracy of the finite
differences to compute the derivatives for the optimization is not enough. Therefore
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an interface to ADIFOR [8-10] has been developed to provide the access to analytic
derivatives. Computing the derivatives, solving the linear systems in the condensing
step and solving the QP-problem are the most time consuming steps in the partially
reduced SQP-algorithm. The structure of the derivatives has been analyzed with
the aid of the dependency relations of chapter 4. This shows a characteristic block
band structure which enables the use of a condensed mode of ADIFOR [10] for the
computation the derivatives. This reduces the computing time between 20-30%. As a
next step, a sparse LU-factorization and a corresponding sparse linear system solver
was developed, taking into account the block band structure of the matrices. These
new algorithms give a speed up of almost a factor 2 compared to the non-sparse
version. In a next step the basic formulation of the partially reduced SQP-algorithm
had to be changed. Up to that point the initial values were treated as possible control
variables but in our problem class the initial values are always fixed so it is possible
to reduce the size of the QP-problems quite considerably. New recursion algorithms
are presented taking this fact into account. Reducing the size of the QP-problem
accelerates the solution of the QP-problem by a factor of 4 for the typical problem
sizes treated in this thesis.

In the sixth chapter optimal solutions to the aforementioned applications are pre-
sented. The behavior of the control and the objective function is shown when refining
the collocation mesh or using a different spatial discretization. It can be observed
that already with a very coarse discretization in space and time a fairly good approx-
imation of the control and the objective function can be obtained. It can also be seen
that all the modifications described in chapter 5 are necessary to be able to obtain
the results in a reasonable computing time.

The seventh chapter summarizes the results and gives an outlook to further research
directions.



2. Applications from Chemistry

All the processes described in this chapter are modeled by a reactive stagnation point
flow on a catalytic plate (figure 2.1) because in laboratory experiments, the chemical
processes are often considered in a stagnation flow configuration. The model equa-
tions are discussed in the next chapter. In this thesis the process optimization for

stagnation gas phase surface
point reactions reactions

flow

Figure 2.1.: Reactive stagnation point flow on a catalytic plate.

three different chemical application problems has been studied. These systems are
shortly described in this chapter. The first process is the catalytic partial oxidation
of methane to syngas—an industrial important process and of high potential to sub-
stitute the energy-costly conventional steam reforming [17,18]. The second one, the
epoxidation of ethylene on silver is a well established large scale chemical process [39].
The third and last process concerns the catalytic oxygen-free conversion of methane
to ethane is currently mainly of academic interest [60,61].

2.1. Catalytic Partial Oxidation of Methane to Syngas

Catalytic conversion of methane, the main component of natural gas, has recently
received extensive experimental and theoretical attention because of its potential to
synthesize useful chemicals. The catalytic reactors used for these processes have a
complex interaction between the reactive flow and reactions on the catalytic sur-
face. Therefore, the description of these heterogeneous reactors requires a detailed
description of the coupling of the flow field and the catalyst.

Synthesis gas is a very important chemical intermediate for many relevant pro-
cesses including the production of methanol and synthetic fuels by Fischer-Tropsch
synthesis. Syngas is currently mainly produced by the endothermic steam reforming
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of methane or by homogeneous oxidation in auto-thermal reforming. There has re-
cently been significant interest in alternate routes to syngas production. The direct
partial oxidation of light alkanes in a monolithic catalyst at very short contact times
has been shown to offer a promising route to convert light alkanes to syngas, higher
hydrocarbons, and oxygenates [13,33]. Using this type of reactor, selectivities to
syngas in excess of 90% have been achieved at methane conversions over 90% [13].

Syngas formation from methane/oxygen mixtures on noble metal catalysts is char-
acterized by the competition between a complete oxidation channel globally written
as

CH4 + 209 — CO5 + 2H50
AHp = —890 kJ/mol

and a partial oxidation channel written as

CHy4 4+ 302 — CO + 2H,0
AHp = —36 kJ/mol.

This process, which can be run nearly auto-thermally and adiabatically, exhibits an
extremely fast variation of temperature, velocity, and transport coefficients of the
reactive mixture near the catalyst entrance.

Optimal Process Control Problem

One main contribution to the control of the syngas production is the ratio of methane
to oxygen in the flow. If the mixture is too lean or rich, too much or too less COs is
obtained. Hence an optimal control problem can be stated as follows:

Maximize the ratio of the mass fluxes of CO and CO; at the outflow
depending on the ratio of the mol fractions of CH4 and O5 at the inflow.
The sum of the mol fractions of CH4 and O4 at the inflow shall be constant.

This process is modeled by a reaction mechanism consisting of 11 surface species,
7 gas-phase species and with 32 elementary reactions which is shown in table A.1.
This leads to a system of 11 ODE coupled with 11 partial differential equations (7
species + 4 flow equations). The following simulation uses a spatial discretization of
28 non-uniformly distributed grid points (the distribution is automatically computed
by DIFRUN, for more details [6,18]). This leads to an optimal control problem in
319 DAFE (227 ODE and 92 AF) and one control function.

After a short initial phase this problem is stationary so it is justified not to consider
time dependency. For this reason the coverages of the surface species are scalar values
and in all other figures it is sufficient to draw the spatial dependence of the variables.

Table 2.1 shows the values of the coverages of the surface species on the catalytic
plate. Figure 2.2 shows the mol fractions of the gas phase species and figure 2.3 the
flow variables. This simulation is performed with a value of 1.41 for the ratio of the
mol fractions of CH4 and O at the inflow. This yields a value of 149.46 for the ratio
of the mass fluxes CO and COs at the outflow.
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Figure 2.2.: Mol fraction of gas phase species of a solution from a simulation for the
syngas problem. The catalytic plate is on the ‘left’ of the figures (0 mm)
and the inflow on the ‘right’ (50 mm).
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Species | Coverage Species | Coverage
Pt(s) 6.10- 1071 O(s) 4.34-1077
H(s) 8.54-1073 HpO(s) | 1.71-107%
CH3(s) | 4.41-1077 OH(s) | 2.45-1075
CHy(s) | 3.05-107° CO(s) | 3.76-1071
CH(s) | 1.11-1071% COs(s) | 4.74-10710
C(s) 5.44-1073

Table 2.1.: Coverages for the surface species of a solution from a simulation for the
syngas problem
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Figure 2.3.: Flow variables of a solution from a simulation for syngas problem. The
catalytic plate is on the ‘left’ of the figures (0 mm) and the inflow on the
‘right” (50 mm).
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2.2. Epoxidation of Ethylene on Silver

The heterogeneous oxidation of olefines to epoxides by silver catalysts is of great
industrial importance. The significance of epoxides comes from their potential to be
intermediate for the production of glycols, polymers and other useful chemicals.

The process of the ethylenoxide production involves the interaction of ethylene
with oxygen over a silver catalyst to produce the corresponding ethylene epoxide
along with undesirable combustion products CO5 and H5O.

CoHy + %02 — CoH4O
CoHy 4+ 309 — 2C045 + 2H50

The task is to find optimal process parameters to maximize the production rate of
ethylenoxid.

Optimal Process Control Problem

One important parameter to control the production rate of ethylenoxid is the ratio of
ethylene to oxygen at the inflow. Also the temperature of the catalytic plate might
play a role. Hence an optimal control problem can be stated as follows

Maximize the production rate of CoH4O at the outflow depending on the
ratio of mol fractions CoHy/O2 at the inflow and the temperature of the
plate. The sum of mol fractions CoH4+ O5 at the inflow shall be constant.

Here a reaction mechanism with 12 surface, 5 gas-phase species and 26 elementary
reactions is considered which is shown in A.2. This results in a system of 12 ODFE
and 9 partial differential equations. The following simulation uses a uniform spatial
discretization of 40 grid points which leads after spatial discretization of the partial
differential equation to a system of 245 ODFE and 127 AFE and two control functions.

After a short initial phase the solution is stationary so it is again justified to focus
on this stationary part. Table 2.2 shows the values of the coverages for the surface
species on the catalytic plate. Figure 2.4 shows the mol fractions of the gas phase
species and figure 2.5 shows the flow variables. This simulation is done with a value of
0.13 for the ratio of the mol fractions CoH4 and O9 and a temperature of the catalytic
plate of 525 K. This yields a production rate of 6.1-10~¢ mol/m?s for CoH20 at the
outflow.

Species Coverage Species ‘ Coverage
Ag(s) 9.69-10~! HCOO(s) | 1.50-1072
O(s) 2.05-107° H(s) 6.32-1073
CoHs(s) | 5.97-1076 CO3(s1) | 6.73-1077
HoO(s) 5.97-107% CoHy(s) | 2.17-107°
OH(s) 1.28-107°

CQHgO(S) 5.13-1073

HCO(s) |831-107%

CH,O(s) | 2.70-1073

Table 2.2.: Coverages for the surface species of a solution from a simulation for the
epoxidation of ethylene.
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Figure 2.4.: Mol fraction of gas phase species of a solution from a simulation for the
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(0 mm) and the inflow on the ‘right’ (50 mm).

10



2.2. Epoxidation of Ethylene on Silver

T Y,
500
15
450
£
= T 10
<400t @
3500 5
300y 10 20 30 40 50 % 10 20 30 40 50
mm mm
pVv,
- -05
IU)
D
£
(=]
X —1F
-15
0 10 20 30 40 50
mm

Figure 2.5.: Flow variables of a solution from a simulation for epoxidation of ethylene.
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2.3. Catalytic Oxygen-Free Conversion of Methane to
Ethane

One way to obtain ethane from methane is via the syngas formation step of section
2.1. An alternate approach is the direct oxygen-free conversion of methane to ethane:

2CHy4 — CoHg + Hy

This application possesses a very high selectivity (80%) but the conversion is rather
low. The aim is now to find process conditions which lead to a higher conversion.

Optimal Process Control Problem

The problems mentioned in the last two sections posses a stationary solution whereas
this one is transient. The production rate of ethane depends mainly on three param-
eters: the velocity of the flow at the inflow, the temperature of the plate and the
pressure. An optimal control problem can be stated as follows

Maximize the production rate of CoHg at the outflow depending on the
flow velocity at the inflow, the temperature of the catalytic plate, and the
pressure.

This problem is described by 14 surface, 4 gas-phase species and 39 elementary re-
actions with the reaction mechanism shown in table A.3. This leads to a system of
14 ODFE and 8 partial differential equations. In the following simulation a uniform
spatial discretization with 30 grid points has been used which the leads to a system of
158 ODE and 96 AFE and three control functions. The whole simulation last for 300 s.
Figures 2.6 and 2.7 show the coverages of the surface species. The next figure 2.8
shows the gas phase species. The flow variables are shown in figure 2.9. This simu-
lation is done with a constant inflow velocity of 0.001 m/s, a constant temperature
of the plate of 523 K and a constant pressure of 1 bar. So an integrated production
rate of 9.817- 1075 mol/m?s is obtained for this simulation.

12
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Figure 2.6.: Coverages for the surface species of a solution from a simulation for the
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Figure 2.8.: Mol fraction of gas phase species of a solution from a simulation for
the catalytic oxygen-free conversion of methane to ethane. The extreme
variations in the beginning have to do with the setup of the problem.
The initial data are not consistent a-priori so rapid changes can be seen
before a reasonable solution is established.
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2. Applications from Chemistry

200 10

100
time [3] 00 mm time [s] 00 mm

pv,

time [3] 00 mm

Figure 2.9.: Flow variables of a solution from a simulation for the catalytic oxygen-
free conversion of methane to ethane. The extreme variations in the
beginning have to do with the setup of the problem. The initial data are
not consistent a-priori so rapid changes can be seen before a reasonable
solution is established.
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3. Reactive Stagnation Point Flow on a
Catalytic Plate

The aim of this chapter is to describe the model equations of a reactive stagnation
point flow on a catalytic plate. This gives an impression of the complexity of the
model and furthermore its structure is needed in the optimization context. For a
more detailed account of the derivation of the model equations it is refered to [5,6,
17,18,20,26, 34].

In a reactive stagnation point flow on a catalytic plate one considers an initially uni-
form flow of reacting chemicals in the gas phase leaving a pipe and hitting a catalytic
plate before escaping through a small gap between plate and pipe (figure 3.1). Only
an axial symmetric configuration is considered, which allows with certain approxima-
tions the reduction of this 3-dimensional problem to a one-dimensional. Furthermore
only chemical reactions in the gas phase and on the catalytic plate are taken into
account.

This configuration extends investigations on catalytic surface reactions, coupling
the catalytic surface reactions with the characteristics of the—possibly time dependent—
transport phenomena.

The whole model is built from three contributions: The equations describing the
flow and the chemical reactions therein, the equations modeling the chemical reactions
on the catalytic plate and the boundary conditions to the flow equations closing the
system and coupling the flow equations with the equations describing the catalytic
surface chemistry.

stagnation  gas phase surface
point reactions reactions

Figure 3.1.: Reactive stagnation point flow on a catalytic plate.
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3. Reactive Stagnation Point Flow on a Catalytic Plate

3.1. Gas Phase Equations

At first a look is taken at the equations describing the gas phase of the stagnation point
flow. As mentioned above the flow equations—temperature, mass, momentum—are
coupled with chemistry—species—and additionally an equation obtained through the
dimensional reduction process. The equation for the temperature

Ny Ng

1
atT:—[&+—Zcpw}a T——szMh + L a,00,7) (3.1)
p - pc PCp pCp
and the N, equations for the species
1 1
8,Y; = —&a Y+~ M — =0y, (3.2)
p p

describe a time evolution. The equation for the mass conservation

_pM oY  OT
0= 57 [TZ T M} — 20V — 8, (pvg) (3.3)

and the two equations for the momentum

0=— p;*“av V2—%+ 0, (V) (3.4)
0= 0,A. (3.5)

contain no time derivative and are treated as algebraic equations in time. The inde-
pendent variables in this system are the temperature T', the species mass fraction Y;,
the axial mass flux pv,., the radial momentum V', and the eigenvalue A of the momen-
tum equation. Please observe that the term pv, is considered to be an independent
variable and not the radial velocity v,. The state equation

pM

e (3.6)

p =
with fixed pressure p, mean molecular mass M, and universal gas constant R, can be
used to compute the density p.

In the following these model equations are explained in more detail. The equa-
tion (3.1) describes the evolution of the temperature 7'. The first term of the temper-
ature equation (3.1) plays the role of a convection term. The “convection velocity” v
is corrected by an additional term

PCp Z p,z]z

in which ¢, is the specific heat capacity of the mixture at constant pressure, ¢, ; the
specific heat capacity of the species i at constant pressure and N, the number of gas
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3.1. Gas Phase Equations

phase species. The diffusion flux density j; is given by

R DT DY _
ji=— <pDi,Main + 0T + %@M)

Ng
Ji=Ji =Yy
k=1

where the mean molecular mass M is
1

Ng VY
Zizgl ]\jl

with M; the molecular mass of species 4, and D; 5 is the effective diffusion coefficient
of the species ¢ in the mixture, DZ-T the thermal diffusion coefficient. As a final
equation for this first term in equation (3.1) it is necessary to compute D; s from
binary diffusion coefficients D;;

M =

1-Y;
D27M:7Z v

The second term in equation (3.1) is a source term. It represents the fact that due
to the chemical reactions the temperature might change. The chemistry in the gas
phase is described by elementary reactions

Ng Ng
I "o
VikXi — Vik Xi

i=1 i=1

with stoichiometric coefficients v, , v/} of species ¢ in reaction k, x; species symbol
and K, the number of elementary reactions. The reaction rate w; is given by

Ky Ng
w; = Z Vikkfk H[XZ]Vzk
k=1 =1

where v, = v]j. — v}, and the velocity coefficients ky, are temperature dependent and
follow a modified Arrhenius law

E,
kg, = A TP exp(—R—j’j)

with A as pre-exponential factor, i as temperature exponent and E,, as activation
energy. The specific enthalpy h is defined as

Ny T
h=Y _Yih; with h,,:/ ¢pi AT

ref
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3. Reactive Stagnation Point Flow on a Catalytic Plate

where T}t is a reference temperature and ¢, ; is the specific heat at constant pressure
of species i. ¢, ; is modeled as a polynomial function of temperature. More details
can be found in [17].

The last term in equation (3.1) is a diffusion contribution. The mean viscosity of
the mixture A is given by

1Y Mo x
A= §(ZXZM+ O )\—)71)
i=1 i=1

with A; being the heat conductivity coefficient of the species 1.

The species equation (3.2) has a very similar structure to the temperature equation.
The first term is of convective type, the second one represents a source term since
during chemical reactions a species might be the product of a chemical reaction of
other species, and the last one is a diffusion term.

Since it is assumed that the pressure is constant, the state equation (3.6) has been
used to eliminate the explicit time dependence which can usually be found in the
mass conservation equation, and this leads to (3.3) with the additional source term
2pV and the convection term 0, (pvy).

The first term of the momentum equation (3.4) has the form of a convection term,
the second and third term represent a source and the last term is a diffusive contri-
bution with the mean viscosity u

N‘] N‘] X
p= 5(2 Xipi+ Q=)
=1 =1 Hi

and p; the viscosity coefficient of the species i. The last equation (3.5) for the pressure
eigenvalue A is a result of reducing the dimension of the problem from two to one
dimensions. For further details it is refered again to [17].

3.2. Surface Equations

The chemical reactions on the catalytic plate are described by an additional set of
equations, which compute the change of the coverage ©; for the species i on the
surface. )
S0y
0,0; = r [i=1,..., N (3.7)

with the surface site density I', the number of surface sites o; needed for adsorption
of species ¢ and reaction rate $;. Furthermore it has to be ensured that the coverages
0, add up to one

The reaction rate $; in (3.7) is given by

Ks Ng+Ns+Nb
: Z ’
S; = Vikkfk H [Xi]yzk
k=1 i=1
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3.3. Boundary Conditions

with the number of elementary surface reactions K, the number of species Ny and
the number of bulk species N;,. The velocity coefficients ky, can again be described
by a modified Arrhenius law

kp, = AT exp(—

E.,
VACINSNCIY

in which f; depends on the coverages

The changed reaction order is described by p;, and the coverage dependent activation
energy by €;r.

3.3. Boundary Conditions

Besides the initial values one has to choose 2N, + 7 boundary values to close the
system (3.1)—(3.5). At the inflow Dirichlet conditions are assumed for the temperature
T, the species mass fraction Y;, the axial mass flux pv,, and the momentum V', that
is

T:=T1° Vi =YY
(pvz) == p°00 V=0

which gives us Ny + 3 conditions. At the outflow the situation is more complicated
and leads to a coupling between gas phase and surface equations. For the temperature
equation we have a differential equation

Nyt N,
I?
(pep 82" + peatCeatd) O T = N0y T — 20€¢(T* — Trty) Z silMihi + dli);l
Ng
(T = T)" szMh AxT
=1

with peat the density, ccat the heat capacity and d the thickness of the catalytic plate.
The first term describes the conductivity of the catalytic plate with the Fourier heat
conductivity law A\,d,T in which Ay is an experimental value. The second term
contains the radiative contribution as a Stefan-Boltzmann law with the Boltzmann
constant o, the temperature dependent radiation value € and the reference tempera-
ture Tyer. The third term is a contribution from chemical surface reactions and the
forth one describes the heating of the catalytic plate. I is the electric current, pq)
the specific electric resistant and b the length of the catalytic plate. The fifth term
encompasses the heat loss of the catalytic plate and the values of A\, Ty, and x are
purely experimental. Finally the last term is a source term for the energy changes
during chemical reactions.
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3. Reactive Stagnation Point Flow on a Catalytic Plate

For the species equation (3.2) a balance of species in the gas phase just above the
plate and the species on the plate is assumed

p0Y; AxT = —ji — puY; + $;M; + w; M; AxT

with the Stefan velocity
1
Pis

For the mass conservation equation (3.3) and for the momentum equation (3.4) one
has
(pvz)o =pu and V =0.

Altogether this gives another N, + 3 conditions. To compensate for the lack of a
genuine boundary condition for equation (3.5) a zero gradient condition is used for
the mass flux at the inflow

Oy (PUJ:) =0
With these boundary conditions the system is well defined [17].
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4. Numerical Methods

After describing the model equations in the last chapter it is now shown how these
equations are discretized and how the resulting optimal control problem is solved.

Since OCPRSQP is used to solve the optimal control problem the model equations
are needed in the form of a system of differential-algebraic equations. Internally the
simulation tool DIFRUN uses a modified version of LIMEX which is a solver for a
system of DAE. Therefore the model equations already have the desired form. In
section 4.1 it is shown how the model equations are discretized in space by finite
differences to obtain the desired DAFE. The dependency of the right hand sides on the
discretized variables is of particular interest. It is this dependency which is used later
on exploring the structure of the Jacobian, that is the derivative of the right hand
site of the DAFE with respect to the discretized variables. It is shown in section 4.2
that the DAFE from section 4.1 is of index 1 which is a prerequisite for the usability
of OCPRSQP. Section 4.3 is devoted to a short summary of the collocation method
which is used in OCPRSQP to discretize the DAFE in time. Section 4.4 finally contains
a short summary of the partially reduced SQP algorithm implemented in OCPRSQP.
The presentation concentrates on a detailed account of the formulas and recursions
for which new ones are presented in chapter 5 to obtain a better performance of the
algorithm. For further information regarding the partially reduced SQP method the
reader is refered to [48]

4.1. The Discretization of the Model Equations

The convention used for the labeling of the spatial discretization is shown in figure 4.1.
The first grid point =1 is assumed to be just above the catalytic plate and the last one,
xn, at the inflow. The spatial discretization of the model equations uses one-sided
and central finite differences. For the first derivative either first order one-sided

_ = £

AT

(a:vf)l :

or second order central finite differences

Axy AT
- fi-1) +
A (ft = fi-1) v

(O fi = ! (

N Ax+ Arp—1

(fr41 — fz))

are used and for the second derivatives first order central finite differences

Ou(fOrg)t = — ((fm R L L m)w) (4.1)

N Ax+ Axp_q Az AT;_1
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4. Numerical Methods

TN
Axy_y
flow
ITN-1
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Al’g
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To +
U - Axq
e — 1 4L

Figure 4.1.: Labeling for the spatial discretization.

An important observation is that using these formulas an discretized equation only
depends on the variables of at most three neighboring grid points: the grid point at
which the equation is computed and the two neighboring grid points.

The spatial discretization of the equations is now straightforward. The discretized
gas phase equations and boundary conditions are not presented in full detail but the
presentation concentrates on the dependency of these equations on the discretized
variables because this dependency is used later on to reduce the computational com-
plexity of the optimization algorithm.

Gas Phase Equations

For ease of presentation a slightly different notation is used in the remaining of this
section: the indices for the species are now superscript and the indices for the dis-
cretization subscript. The species equation becomes

. Yi,—-Y' 1 . . 1 .
atyil - _ (pvl‘)l +1 l + _w;MZ _ _Jll (42)
ol Az Pl Pl
with
N,
o= p(T1, {Y 120
i g N,
wp = (T, {7 12)
and for Jli
Ng
Ti = (0ndi)i = Y7 (Ondi )
k=1
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4.1. The Discretization of the Model Equations

with
A DT Dz sz v
(Ol = ~[0: (p D100 Yi)) = (02 (FH0.T)) = [0 (F==0,00)

in which formula (4.1) can be used to get
J[ Jl <,I11 1,Tl,Tl+1,{Yl 1’YkaY2 }k 1)

The boldface J ; is a complicated function of all the variables listed in the brackets.
In the following the precise form of this function is of no interest but the dependency
on the different variables because this defines the structure of the problem. Therefore
one obtains the following

oY =7 ((pea)t, Tin, T T, (V1 Y Y 1 )

It is a bit more work to find the dependency of the temperature equation on the
discretized variables. One has

(pvz )i 1 ” L1y — 1
0Ty = — [ N | T
! Pl plcpl i=1 pl( Z) ACE[
1 S
- g wiM'h] + [0:(NO;T)); (4.3)
PiCpy i=1 PiCp

But using the results from the species equation and since there is no dependency on
V or A one obtains

N,
0T =T ((pvm)l,Tz—l,Tl,THl, {Yzli1,sz,Yzi1}k‘:q1)

which can already be seen from the first and the last term of the equation. The next
step is the mass conservation equation. Since the calculations for the temperature
and species equation have already been done this is not too difficult. For

p Ml T]l (pvx)lJrl - (pvx)l
0==(— E — 20, V) — 4.4
R ﬂ l l JYA%) AT ( )

one obtains
0 V. T T T jrk Srk Srk Ny
— (va)l (va)h (va)l+17 Al-1,410,L14+1, { —1>11 » l+1}k—1

The discretization of the momentum equation is straightforward

(pv2)1 Vi1 =V, s A1
-V — — + — [0, (0, V 4.5
o v CT Pz[ (10 V)i (4.5)

0=-
and this equation can therefore be seen as a function V; depending on

N,
0= Vl ((pv:v)l,Al,Tl, V}—l, V}a W+1a {}/llila Yka YEﬁ-l}kil)
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4. Numerical Methods

The equation for A; is easily discretized and one obtains

Ay — Ay
0=A;(A;,A = — 4.6
(A Ay) Az (4.6)
Boundary Conditions
The first step is to discretize the boundary conditions at the inflow. One sets
Ty :=T° Yy =YY (4.7)

(pvz)n = pP0° V=0

with 79, Y% p%0 the fixed boundary values. So there are no dependencies on other
variables. At the outflow the situation is more complex. For the temperature one has

- -1 4 g R i . LPel
(plcp1 ArT + pcatccatd) 0T = Ny v 206 (T} — Tref) — Z; $"M"hj + T
i= .,
(T} = Ty)" = > @' M'hj ax™
i=1
(4.9)
with Az = %5+ and using the results from above this yields
Ty = T1(Tv, Tn, {Y{, YQk}}]gviP {9j}§y=s1)
For the species one has
P10 YT axT = —jt — pruY 4 M+ LM AT (4.10)
with Stefan velocity v and again with the results from above
O] = Yi(T0 To (Y V12, {07}
Since u = u(Ty, {Y{ ]kvil, {©7 }j\/:sl) the mass flux equation can be written as
(pva)1 = pru (4.11)
and therefore
0= (o) (o)1 T V12, {71 )
At the outflow the momentum has to be zero and therefore we set
Vi=0. (4.12)
The zero gradient condition reads
0= PRI = PBINL _ g (o, ), v ), (4.13

ATN-1
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4.2. Index of the DAE model

4.2. Index of the DAE model

In this section the index of the DAF is computed which has been obtained in the
last section discretizing the model equations by finite differences in space. Further
information about the index of a DAFE can be found for example in [31,45]. In contrast
to the system considered in [44] which is of index 2 a computation shows that the
DAE of the last section is of index 1.

The following equations show again the dependencies of the model equations on
the different variables which is a summary of the results obtained in the last section.

surface equations
8,0% = (OX) (Tl,{Yj}] MG ) k=1,...,N, (4.14)

first spatial grid point

aYi = (Yi )<T1,T2,{Y1 Y (e ) (4.15)
Ty = (T1) <T1,T2, OB ZanEN {9{} ‘:51> (4.16)
0= ((pv)r) ((pva)r T, Y, (011 (417)
0= (V1) (W) (4.18)
0= (A1) (A1,A2) (4.19)

spatial grid points [ =2,...,N —1

= (YD) (e, T, T T, A0 Y V1 ) (4.20)
0T = (T1) <(pvm)laTl717Tl7Tl+17{Eﬁl,nk,nil}gil) (4.21)
= ((pvs) (v, (v, Vio Ty, T Thn, (V50 VS VLR, ) (422)

= (V1) <(P’Ua:)l, AT Vi1, Vi Vi (Y8 Y, Yl’il}ffil) (4.23)

= (A1) (A, Agyr) (4.24)

last spatial grid point

0= (Yh) (V1) (4.25)
0= (Tn)(In) (4.26)
0= ((pvx)n) ((pvz)N) (4.27)
0=(Vn) (Vn) (4.28)
0= (A1) ((pv2) N, (pv2)N—1) (4.29)

Now all the algebraic equations are differentiated once with respect to t. The following
table then shows that it is possible to get a complete system of ODE. Therefore the
DAF is of index 1.
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4. Numerical Methods

equation number index variable

4.14 0 oF

4.15 0 Yy

4.16 0 T

4.17 1 (pva)1

4.18 1 \%1

4.19 1 Ay

4.20 0 | forl=2,...,N—1

4.21 0 T forl=2,...,N—1

4.22 1 (pvg); forl=2,...,N—2
1 Vn_1 foril=N—1

4.23 1 Vi forl=2,...,N—2
1 Any_q fori=N -1

4.24 1 A forl=2,...,N—2
1 AN fori=N—-1

4.25 1 Yy

4.26 1 TN

4.27 1 (pvz)N

4.28 1 VN

4.29 1 (p'l)gg)N_l

Table 4.1.: This table shows which equation gives rise to an ODFE for a certain vari-
able. The first column lists the equation number, the second column the
index of the variable and the third column the variable for which one
obtains an ODE.

4.3. Collocation Discretization of a DAE

In section 4.1 the model equations have been discretized to obtain a DAE. In general
this can be written as

g =fy(t),z(t))
0=g(y(t),=(t))

0=7(y(0),2(0), y(tend), (tend))

with time ¢, differential variables y € R™? algebraic variables x € R™4, and boundary
conditions r € R™P. A collocation method is used to transform this DAF to a set
of nonlinear equations. The idea is to discretize the DAFE in time using a fixed
mesh {7;}jcs with tg = 79 < -+- < 7 < -+ < Tepg = tena and to approximate the
solution on each interval 7}, 7;41] with length h; with a collocation polynomial y™(see
figure 4.2) [31,48]. The collocation polynomial y™ of degree k is defined such that for
k a positive integer and p1, ..., pr real numbers (€ [0, 1))

Y (t;) = y;
Y™ (tj + pihj) = f(t; + pihy, y" (t; + pihy), z(t; + pihy))
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4.3. Collocation Discretization of a DAE

3

Figure 4.2.: Collocation discretization.

which means that on each interval the collocation polynomial satisfies the DAE at
the collocation points. To compute the polynomial the following ansatz is used
b t— 7
yT(t) =yi +hy Yzl hlj) vt € 1), Tj+1]
=1 J

on each interval where 1); is a polynomial basis of Py 1[0, 1] with

1 1=1

0 else.

¢i(0)=0 and ¥i(p) = {

The algebraic variables are discretized by the vectors

I1=1,....k

. RnA
TLERT s m—1

representing the solution values x(t;;) with ¢; := 7; 4 p;h; at the collocation points.
A polynomial interpolation of {x;1,...,2;} yields an approximation 7 (¢) in the
whole interval [7;, 7;41]. The discretized form of the DAFE is then

k
Zj = f (yj + hj Z st¢s(ﬂl)7$jl>

j=1,....m—1

s=1
f 4.30
k Toi=1 Lk (4.30)
0=g|yj+hi Y zists(m),zji
s=1
and additionally the continuity conditions
k
yj +hy Z zjs¥s(1) —yj41 =0 (4.31)

s=1
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4. Numerical Methods

and discretized boundary constraints

0= 7“(3/1, xW(0)7 Ym, xﬂ(tend))

Further details about this collocation approach can be found in [48] and more details
about collocation in for example [2-4,31].

4.4. The Optimal Control Algorithm

In sections 4.1 and 4.2 the model equations, a set of 1 dimensional transient partial-
differential equations have been discretized in space and time to obtain a set of non-
linear equations. The optimal control problem is therefore transformed into a large
scale structured optimization problem. ‘Structured’ in this context means the special
structures one obtains using specific discretizations, in this case finite differences for
the space and collocation for the time dependence. This section describes some parts
of the implementation of the partially reduced SQP-method in OCPRSQP in more
detail. The algorithm solves a nonlinear optimal control problem of the form

Hlll’lqb(y( end)a (tend))
fly(t), (1), u(t))

0 = 9( (t), (1), u(t))

7(y(0),2(0), y(tend), T(tend)) =

s(y(t), z(t), u(t)

ul < gy < glmex 1=1,....,ny

(
) >

in which s represents the path constraints and the last expression bounds on the
controls. The DAF is now discretized with a collocation method as described in
section 4.3 and for ease of presentation we assume that the control is always constant
on each interval [7;, 7j41]. Furthermore we assume that the path constraints and the
bounds for the controls have only to be satisfied at the collocation mesh points ;.
This transforms the whole problem into a high dimensional optimization problem of
the form

min ¢(Ypm, " (tend)) (4.32)

subject to the constraints — the collocation conditions ¢! —

K :
w )7 (yj +hi Y e st?,bs(/)l),wjz,ujl) —zi=0 j=1,...,m—1

T 9 (b S st o), i) =0 = 1,....k
(4.33)
the continuity conditions c®"

COl’l

A
M =

Z]s¢s —Yj+1 = 0 for j=1,...,m—1 (434)
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4.4. The Optimal Control Algorithm

the discretized boundary constraints

r(y1,2™(0), Ym, " (tena)) = 0 (4.35)
the bounds for the controls

TSy Suf™ for j=1.m—1 (4.36)

and the discretized path constraints
s(y;, " (15),u"(75)) <0 for j=1,...,m (4.37)

The details concerning the theoretical foundations of the partially reduced SQP-
method can be found in V. Schulz thesis [48]. Further information about the (reduced)
SQP-method can be found for example in [7,14,15,27-30, 32, 35, 49

For a closer look at some parts of the algorithm it is convenient to introduce a
grouping of the variables

G=1lzn o 2l
y=1& v & ys .. Em-1 Ym]
u= [yl up u2 ... um—1]

the collocation and continuity conditions

col __ [,.col col
¢ = [CJ e Gy ]
_ [ col con col con col con
c= [Cl &1 C Co e Cm—1 cm—l]

and the discretized boundary conditions and path constraints

d=[d dy ... dp1 dp)

in which d; is the collection of boundary constraints and path constraints at the j-th
collocation mesh point.! The original version of the algorithm keeps the initial values
of the DAFE as possible controls to the problem. The formal partially reduced SQP-
algorithm is presented in figure 4.3. Computing the derivatives of the constraints
Cy = g—?j, Cy = g—z, D, := 2_57 and D, := 3_27 computing Cgl and CQ*T and
solving the @QQP-subproblem seem to be promising starting points for the reduction
of computing time. Therefore a closer look is taken on these points. A glance at
the collocation conditions 4.33, and the continuity conditions 4.34 reveals Cy and C,,
have a certain block structure which is shown in figures 4.4 and 4.5 The matrices
W;, Vj, and F; are the derivatives of the collocation equations (4.33) with respect to
&ir Yir Ui
acqol lel e lek
W= = | ; (4.39)
’ Wikt - Wik
! Actually it makes only sense to speak about the boundary constraints for j = 1 or j = m, in all
other cases there are only path constraints to be considered.
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(1) evaluate all constraints, the objective criterion
(2) determine the derivatives of the objective criterion:

V@I) and V,®

and of the constraints

(3) compute the reduced gradient

T ~=T
7 i=Vy®-C,C 0V, @

(4) solve the quadratic program
min Au” BpAu + fyTAg
Au
(Dy — DyCy ' Cu)Au+ DyCyle =0

in order to obtain Au and the adjoint variables A4
(5) determine the null space step AQN

Ay = —Cy_lCEAQ

the range space step AgR

and the adjoint variables A.

Ae = =C, T (DyAa+ V@)

(6) perform a line search and get step length «

(7) update of the Hessian

(8) iterate y = y + a(AyR + AyN) and u = u + a(AuV)
(9) k=Fk+1, go to (1) until convergence

Figure 4.3.: PRSQP algorithm
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Figure 4.4.: Block structure of Cy. Ng is the number of dynamic equations, that is
the number of differential plus algebraic equations. Ngg4 is k times Ny, k
is the number of collocation points per interval.

with

col
oc o

Wiim =
4 a&]m

v 80501
J ayj

Aol
F; =2
J auj

_ I
- 0
Vi1

| Vik ]

Fjl_

0
0

of
] + hithm(p1) [23

of
]
99
Jy |

with Vii=

ﬂ—

with  Fj = {g;
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By] Z‘j+plhj

:L'j+plhj

:Bj+plhj

in - [zj,z541]  (4.39)

in [z, 2)41]

in [z, 241]

The matrices A;, E; and ¥; result from the derivatives of the continuity condi-
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Figure 4.5.: Block structure of C. Ny is the number of dynamic equations, that is
the number of differential plus algebraic equations. Ngq is k times Ny, k
is the number of collocation points per interval.

tions (4.34) and the first two are given by

oceon
A =—1_ =7
J 8yj
ocon
E,=—l =]
T Oy

whereas the matrix ¥; has a slightly more complicated form, namely

decon

U= 6]5 =h; [ 1D | ... | Yp(1)I ]

with I the N4 dimensional unit matrix. Because of its particular structure ¥; has
not to be stored explicitly and multiplication with a matrix A is done easily through
the formula

Ay

\IJjA = \I/j = hj [zlzzl ws(l)As
Ay,
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Figure 4.6.: Block structure of D,. Ny is the number of dynamic equations, that is
the number of differential plus algebraic equations. Nyq is k times Ny, k
is the number of collocation points per interval. I(d;) is the number of
constraints (boundary + path) at the j-th collocation mesh point.

At each collocation mesh point j one has a certain number of path constraints d j.2
In the following it is assumed that d; only depends on y; and u; (and at j = m only

on ¥,,) which gives the structure for D, and D, shown in figures 4.6 and 4.7 where

d ; d; .
Dé»/ = %—y] and D;-‘ = % is used.

Recursion Formulas

It has been shown in the last section that the matrices Cy, Cy, Dy, D, posses an
rich internal structure. Taking a closer look at the partially reduced SQP algorithm
shown in figure 4.3 reveals that C 1 and Cy, T have to be computed in combination
with matrix multiplications. In the following a set of recursion formulas is presented
which uses this particular structure of Cy to obtain C L (or C T) in a very efficient
way. Two vectors x and ¢ are defined with the following internal grouping

vi=[& y2 & ... Em-1 Um)
c:= [cﬁd et CCW‘ZLI cfgﬂl]

in which the variables &;, v, cl?"l and ¢{°" indicate the dimension of the different

parts. First the system Cyz = c is to be solved. The block structure of C, shown in

2 And possibly boundary constraints if j =1 or j = m
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Figure 4.7.: Block structure of D,. Ng is the number of dynamic equations, that is
the number of differential plus algebraic equations. N, is the number of
controls. I(d;) is the number of constraints (boundary + path) at the
j-th collocation mesh point.

figure 4.4 leads to the recursion formula

—1 col
51 — Wl Cl

y2 = ¥1& — "

_ -1 col .
&= Wi (& = Viw) } i=2...,m—1

con

Yj+1 =yj + ;& — ¢
When solving Cg ¢ = x the block structure of Cg leads to

con

Cm—l = —Ym
col __ =T T con
Cm—1 =Wy, 1 (fm—l - ‘I/chmfl)
con __ _con T _col .
¢t = ¢ T Vicii — i o 5 .
CC-OI_W_T(f'—\I/TCC-OH) J=m—=4,...,
Y| J J =

The algorithm to compute Dy — D, Cy 1C’H is more complex than the previous ones.
The idea is to first solve the system C,X = (), and then multiplying X by —D, and
adding to Dj. D? is defined to be a column ‘vector’ with —D? (Dg if j =1) at the
‘j-th’ position, that is equal to the matrix we obtain if we take the columns of D,
(or D, for j = 1) containing Dé»/ and multiplying by —1 if j # 1. The same is done
to define D7 but without the multiplication by —1. This leads to a recursion of the
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4.4. The Optimal Control Algorithm

form
[ DY | Dy |:=1[ Dj| Dy |+ Dy,
[ DY | Dy |:==[ DY | Dy |+ D[ —1+Y;W, Vi | O W Fy ]

[ T—=U,W Vi | O W ] j=m—1,....2

Since this is not obvious it is illustrate with a simple example with four collocation

mesh points. The first step is

Wi
v, -7
Vo Why
I vy, I
Vs W3
L I s
which gives the solution
[Yii Y2 Yis Y| [
Xo1 Xoo Xog Xy
Yoo Yo Yoz You| _
X311 X32 X33 X3y
Y31 Y3 Y33 Yy
| X1 Xy Xy3 Xyg]

to solve Cy X = Cy, that is

Multiplying X by —D, and adding to D, yields

Dy

—DYX9 —Di X
—DiX3 —DjXso

—D{Xn

Since only the Xj; entries are

X'

which is then
—T+ 0 WY

X' = |[I - UWy Vol Xay [T — UaW, Vo] Xon

1 Y Y2 Yiz Yia| Vi Fy i
Xo1 Xoo Xoz3 Xog I
Yor Yoo Yoz You| Vi)
X351 X3 X33 Xsa|
Y31 Y3 Y33 Yy F3
1] [ X411 Xyo Xyuz Xy L i
wtv W lF 0 0 7
I+ WYy, U1Y19 0 0
Wy VoXg —WylVaXey — Wy lH 0
Xo1 + WaYor Xoo + WoYo WsYa3 0
Wy VaXg —Wy 'VaXay —Wy 'VaXas Wy 'Ky
| X31 +W3Y31 Xgo+ W3Y3e X33+ W3Yzz W3Y3y |
Dy 0 0
DY — DYXss  —DYXay
—DYXs; DY — DXy,
—Di X9 —Di X3 —Di X4
needed one can define X’
Xo1 Xoo Xog Xoy
= | X351 X322 X33 X34
Xy Xgo Xuz Xy
W R 0 0
U W, L Fy 0

I — W3 Wy V3l Xa1 [T — UsW3 ' V3] X3 [1 — WaWy V5| Xas W3y ' Fy

Therefore D,, — DgCy* IC’E can be written as

Dy

1
—DY(—I + ¥ W)
—DY[I — Wy V5] Xy
—DY[I — U3W5 V3] X3

Dy
—Dyu W
—DY[I — VW, V3] X9
—DY[I — VU3W,; V3] X 39
0
Dy
—DYU, Wy By
—DY[I — U3 W, V3] X33

0
0
Dy
—~DYUs W, ' Fy

(4.40)
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This form of the solution leads to a natural recursion which is illustrate in the fol-
lowing. One starts with the matrices D! and D7 which are arranged in the following
order _ _ _ _ _ _ _
Dy DYy DYy |D! Di Dy Dy
D{ Dy
-y Dy
-} Dy
_ Di!
Now an update of the columns Dg and Dé‘ is computed

DY = DY + DY[I — 3wy Vi) Dy = Dy + Di[UsW5 ' Fy]

and one obtains
Dy Dy | DY Dy Dy Dy
D DY
~Dj D3
—Dj Dy
—DY[I — U3W; V3 —DY[Us Wy F]

in which the column DY is discarded because it has not changed and it is not needed
any further. A glance at the solution 4.40 shows that DY now contains the last column
of the solution 4.40. It is not going to change nor contribute any further and therefore
it is not shown in the further steps. The next step computes updates to Dg and DY

DY = D§ + D3I — W, Wy 'V Dy = Dy + DY[U, Wy ' ]
and one obtains
DY | DY Dy Dy
DY D
—-DY DY
—DY[I — Wy W5 Vs — DY, Wy ' Fy]
—DY[I — U3 W5 V3][T — T, V5] —DY[I — U3 W5 V3] (W Wy ' Fy

The updated column DY now contains the third column of the solution 4.40. In the
final step of this example updates to DY and D} are computed.

DY = DY + DY[I — W Wy 'Vi] Di = Di + Dy [0, Wy ' Fi]
One obtains
Dy
Dj

—DY[—T + 9, W; ']
—DY[I — VoW, Vo[~ T + U W, 1]
—DY[I — U3 Wy ' W3)[T — WoWy Vo] [T + Uy W, 1]
Dy
Dy
— DY, W ]
—DY[I — VW, Vo) [0, W, 1 Fy]
—DY[I — U3 W5 ' W3][T — W Wy Vo] [0y W L]
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4.4. The Optimal Control Algorithm

DY and DY contain the first and second column of the solution 4.40. This example
calculation leads to the recursion

[ DY| Dy 1:=[ DY | D¢ 1+ DY [ T—W;W Vi [ WWF | j=m—1,...,2
[ DY | DY |:=[ DY | DY |+ D[ —1 + ;W Vi | W' ]
which leads to the matrix

DY Dy Dy ... D]

It can explicitly be written in a closed form as

DY Dy 0 0 0 ]
DY Zs, DY Zs Dy 0 .0
DgZ:),l DngQ DgZ:),g Dé‘ . 0
Dy 1Zm-11 Dy 1Zm-12 Dy _1Zm-13 Dy _1Zm-a .. Dp
D%Zm,l D%Zm,Q D%Zmﬁ D%IZmA cee D%IZm,m_
with
roi
Zin=— |10 = Wickr2Wih o Vioki) | [T+ TW V] 122
Lk=3
[
_ —1 1 o
Zij=— H L+ VoW, 5 o Vickt2) | Ui W, Fja i,j > 2
| k=j+1

but the recursion formula computes this matrix much more efficiently then the explicit
computation with this product formula.
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5. New Strategies

A straightforward application of the optimal control package OCPRSQP in combina-
tion with the simulation tool DIFRUN was not possible. Several new developments,
changes and modifications to OCPRSQP were necessary to obtain a working software
package and to reduce the computing times to a reasonable level. In this chapter these
new developments, changes and modifications are presented and explained.

The first section describes the design and development of the new package based
on DIFRUN and OCPRSQP.

The finite differences used so far in OCPRSQP to obtain derivatives do not yield
enough accuracy in this problem class. An interface to use analytic derivatives has
been implemented. These derivatives are computed with ADIFOR. The second sec-
tion shows how to speed up the computation using these derivatives.

One of the most time consuming steps during the optimization is the condensing
step. The development of a fast direct band solver is described in the third section.
This solver is optimized to take advantage of a block band structure of the linear
systems which have to be solved.

A much deeper change of the optimization can be done considering the condensing
itself. In the original version of OCPRSQP the QP-variables have essentially been the
initial values and the controls. In this problem class the initial values are always fixed.
Therefore one can consider QP-problems which have only the controls as free variables
which reduces the size of the QP-problem and therefore reduces the computing time.
It is shown how the recursion formulas have to be changed for this new situation.

The convention is used that names in small capitals are subroutines. So OCPRSQP
denotes the whole software package whereas OCPRSQP is just a subroutine.

5.1. A New Software Tool based on DIFRUN and OCPRSQP

The development is based on two existing software packages: DIFRUN a simulation
tool and OCPRSQP an optimal control package.

Formally these two packages fit together very well. DIFRUN is a tool which is
very flexible to use to test new chemical systems in a reactive stagnation point flow
on a catalytic plate setting. The package already contains the spatial discretized
form of the model equations since it uses a modified version of LIMEX [5,38]—a
DAE solver—for the simulation. OCPRSQP on the other hand is an optimal control
package which allows DAFE as constraints and is especially well suited to this situation
in which there are a very large number of problem variables and constraints (around
100-1000) but only a small number of controls (1-3).
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Number of variables | Contents

surface coverages ©7

species Y7 at first grid point
temperature 17 at first grid point
mass (pvg); at first grid point
momentum V; at first grid point
A; at first grid point

»—t»—\»—t»—\ng

species leﬂspa at grid point mgpa
temperature T), . at grid point mgp,
mass (PVz)mg,, at grid point mgp,
momentum V, at grid point mgp,

Mspa
A at grid point mgpa

»—t»—\»—\»—tmz--

Mspa

Table 5.1.: Ordering of the discretized variables and equations in DIFRUN.

Like in many other cases the problems are due to the practical realizations. Since
a modified version of LIMEX is used to solve the DAFE system in DIFRUN there
is no standard form of an interface for function evaluations of the right hand side.
Standard form means just the dimensions of the problem and values of the variables
as input and the function values as output. Moreover the excessive use of “common
blocks” makes it even more difficult to obtain such an interface. The first step has
therefore been to provide a new subroutine ODE for all the necessary setup to call
the right hand side subroutine DFRFCN in DIFRUN for function evaluations in a
standardized way.

This new interface has been tested using a standard form of LIMEX [16] which
confirmed the results already obtained. Since OCPRSQP uses a collocation method
for the time discretization the RADAU [31] solver based on collocation has been used
and again very satisfactory results have been obtained.

Another problem for the coupling was the ordering of differential and algebraic
equations. In DIFRUN the algebraic equations are marked by an additional array
whereas in the original OCPRSQP a fixed ordering—first differential and the alge-
braic equations—has been used. All the relevant subroutines of OCPRSQP have been
changed to adapt to the way DIFRUN handles this ordering. This is done because
the right hand sides coded in DIFRUN should be taken as they are and a manual re-
ordering of variables and functions in the subroutine ODE is just too time consuming.
Furthermore the ordering of variables in DIFRUN reveals a block band structure of
the Jacobian when computing the derivatives of the right hand sides. The ordering of
the variables is shown in table 5.1 and corresponds to the ordering of the equations.

Since all the parameters needed to compute the right hand side are kept in “com-
mon blocks” and since a minimal coupling between the source of DIFRUN and the
optimization package is desired, a point in DIFRUN has been selected to call an
interface subroutine INTERFACE which does all the setup for OcpPrsQpP. With such a
minimal coupling it is very easy to update DIFRUN with newer versions with min-
imal effort if necessary. This approach is illustrated in figure 5.1. One could view
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DIFRUN
INTERFACE
DIFRUN IL 1
INTERFACE
SUBROUTINES /
> SUBROUTINES |
A Z Scripts
Parameterfiles
ODE
OCPRSQP ADIFOR
// G_ODE =‘¥ —
/1
OCPRSQP P Ve

| SUBROUTINES

Figure 5.1.: Coupling between the software packages DIFRUN and OCPRSQP.

the new package as an extension to DIFRUN and setting the appropriate flag in IN-
TERFACE, the new package remains just a simulation tool. DIFRUN provides all the
initialization for the chemical system and the calls the subroutine INTERFACE. This
subroutine provides the setup for OCPRSQP which is then called for the optimization.
The whole interface package includes some additional subroutines which are called
from INTERFACE or from subroutines of OCPRSQP, the ODE subroutine to provide
access to the right hand side DFRFCN in DIFRUN, G_ODE which is the analytic
derivative of ODE obtained with ADIFOR and BNDS for the path constraints of the
problem.

Computational tests showed that the finite difference approach used in the original
OCPRSQP cannot be used for this new problem class. So it has been decided to pro-
vide analytic derivatives using ADIFOR [8-10]. The ODE subroutine is therefore also
the starting point for the automatic differentiation. To provide this new functionality
several internal changes had to made in OCPRSQP. Additionally some “scripts” have
been developed to automatize the process of taking all the needed subroutines from
DIFRUN and calling ADIFOR, for example for the case that something has changed
in ODE and a new G_ODE has to be computed. This makes it now a very easy to use
extension to the original package. The necessity of using an automatic differentiation
tool like ADIFOR instead of computing the derivatives with paper and pencil can
also be seen from figure 5.2. It shows that DFRFCN on its own has a very complicated
structure because of all the subroutines which are called.

The major goal is to keep OCPRSQP as some kind of “black box” hiding all the
difficulties from a potential user who is not too interested in algorithmic details con-
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i nrcow|—>| cal nec I
dgf dx |——»{ df dx |

inrcrt cal hcwl

inrcrv inrcrw|—>| bi nom |

1 dfrwtxl—>| dfrden|—>| df rvol I

Figure 5.2.: Subroutines of DFRFCN.

cerning optimization algorithms. All the features should be controllable through
parameters such that the core of the code does not have to be changed when going
to a new application. The aim is that one should have to change only a few well
defined portions of the code. This cannot be avoided because of restrictions of the
programming language FORTRAN77—the dimension of arrays for example—or be-
cause of changed problem settings—boundary formulations or a different objective
function for example. So far we have succeeded in keeping this necessary changes to
a minimum and therefore are able to switch to a new application problem in minimal
time.

To give an idea of the complexity of OCPRSQP figure 5.3 shows the most important
subroutines.
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5.1. A New Software Tool based on DIFRUN and OCPRSQP

uphess
pol colint
dl evaII
| agrstart grit
int dscal z
—
dxp2dx
i nitpol
sunpr od drlagr dert2|
qui ckgauss bnds
sol vequi g estdec2
dlw
est dec cdul
prgr
uncond
dgetrs
conden
nl p nl pl abor dgetrsb
dinit
derb
col pol
e04naf
transpose
conpdr
. per nut
finout
dgetrf
t est konv
regrid —>| dpol I
grtitle eval st 1
bandf
prit l'i nes unconb
ode
time conbds
outlin eval ag

Figure 5.3.: Most important subroutines of OCPRSQP.
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5.2. Block Band Structure of Derivatives

Providing accurate derivatives is crucial for the optimization algorithm. Computa-
tional tests showed that for the problem class under consideration computing the
derivatives with finite differences is not accurate enough. Therefore an automatic
differentiation tool, ADIFOR [8-10], has been used. It is used as a substitute for
the finite differences: ADIFOR is applied to the subroutines describing the functions
which have to be differentiated and then generates a new set of subroutines providing
the analytic form of the derivatives for computing the Jacobian.

As can be seen in figure 4.4 and from equations 4.38 and 4.39 the Jacobian, that is
W; has to be computed at each collocation point. Besides the number of species there
are two important variables controlling the problem size: the number of collocation
mesh points m, and the number of spatial grid points mgp,. Taking a closer look at
the equations 4.38, 4.39 and the figure 4.4 reveals that the number of operations to
compute all entries of C;, depends linearly on m., whereas it depends quadratically
on Mgy, because Mmgpa controls the size of the vectors f and g and the variables y
and &.

The subroutine LINEAR of OCPRSQP computes all the necessary entries of C,
Cy, Dy, and D,. Most of the time is spend on computing the Wj, j = 1,... , Meol
which is done using the subroutines G_ODE computing the derivatives obtained with
ADIFOR.

The absolute computing time does not play a role in the following considerations
and therefore the time measurements have been normalized to show the observed
relations more clearly.

Figure 5.4 shows the time spend in the subroutine LINEAR depending on the number
of collocation mesh points mco. It shows a very good agreement with the linear
dependence expected from the considerations from above.

The next figure 5.5 shows that the time spend in the subroutine LINEAR depends
quadratically on the number of grid points. A closer look at the W; matrices reveals
that they are not dense but have a special block band structure which is shown in
figure 5.6. This is due to the finite difference discretization of the spatial derivatives
of the model equations and can be obtained using the dependency relations of section
4.1. It is tempting to use this structure for computing the W; to avoid computing
“zero” entries. Fortunately ADIFOR offers the possibility to compute “structural
independent columns” at the same time by setting a seed matrix [10]. These structural
independent columns have been marked in figure 5.7. It is easy to see that all columns
marked by diagonal lines from top left to down right are structural independent. The
same applies to the columns marked by diagonals from down left to up right and
cross hatched columns. The compressed W; is then shown in figure 5.8. The number
of columns of this matrix is Vs + 3(INy +4), that is independent of the discretization
and therefore does not depend on mgp, anymore. As a result it has the dimension

[Ns + mspa(Ng +4)] X [N + 3(Ng + 4)]

and depends now only linear on mgp,. Computing these compressed W; is the most
important and time consuming part of the sparse subroutine LINEAR.
Figure 5.9 shows the time spent in the sparse LINEAR depending on the number
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Figure 5.4.: The time spend in LINEAR which computes essential parts of Cy, Cy, Dy,
and D, depends linearly on the number of collocation mesh points M.
The results are shown for different numbers of spatial grid points mgpa.
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Figure 5.5.: The time spend in LINEAR which computes essential parts of C, Cy, Dy,
and D, depends quadratically on the number of spatial grid points mgpa.
The results are shown for different numbers of collocation mesh points
Mol -
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Figure 5.6.: Block band structure of W
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Figure 5.7.: Structural independent columns of W
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Figure 5.8.: Compressed W
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Figure 5.9.: The time spend in LINEAR depending on the number of spatial grid points
Mspa. The results are shown for different numbers of collocation mesh
points M.
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Percentage of computing time
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Figure 5.10.: Percentage of computing time needed for sparse LINEAR compared to
100% for the non-sparse LINEAR depending on the number of spatial
grid points myp, for different numbers of collocation mesh points 1.

of spatial grid points mgp, for different numbers of collocation mesh points 1.
There is almost a linear dependence on mgp, but the number of other computations
in LINEAR grows with higher then linear order (D, for example). Still the result is
much better then using the non-sparse LINEAR as can be seen comparing the results
with the one shown in figure 5.5

The sparse LINEAR needs 70-80% less computing time than the non-sparse LINEAR
for medium to large size problems. This can be seen in figure 5.10 in which the
percentage of time which the sparse LINEAR needs is compared to the 100% of the
non-sparse LINEAR. Looking at the total time it is possible to save around 20-30%
computational time using the sparse LINEAR. Figure 5.11 shows the percentage of
total computing time needed with the sparse LINEAR compared to the 100% with the
non-sparse LINEAR.
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Percentage of computing time
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Figure 5.11.: Percentage of total computing time needed with sparse LINEAR com-
pared to 100% with the non-sparse LINEAR depending on the number
of spatial grid points mgp, for different numbers of collocation mesh

points M.
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5.3. Sparse Linear Algebra Solver

The last section showed that one bottleneck in the partially reduced SQP-algorithm
is the computation of the derivatives and one possibility has been shown to con-
siderably reduce the computing time. A closer inspection of the partially reduced
SQP-algorithm reveals that another bottleneck is the computation of the inverse of
the matrix Cy (or C;:F ). The recursion formulas of section 4.4 show that this re-
duces to compute the inverse of W; (or W]T ). In the non-sparse implementation of
OCPRSQP inverting is done by first computing an LU decomposition and the solving
linear systems using standard linear algebra subroutines (DGETRF for the LU factor-
ization and DGETRs for the solution of the linear systems [1]). Figure 5.12 shows
time measurements for computing the LU decomposition of all W, j = 1,...,mc.
This clearly depends linear on m., because the LU factorization has to be computed
for all W;, 1 < j < meo as can easily be seen from the recursion formulas. The
condensing step, that is computing all the data for the QP problem does also lin-
early depend on mc. which can be expected from the recursion formulas and which
is confirmed through time measurements as can be seen in figure 5.13. Looking at
the dependence of the linear algebra on the number of spatial grid points mgp, shows
a dramatically worse behavior. It is well known that the number of operations of the
algorithms for a LU decomposition is of the order O(n?), with n being the dimension
of the problem. Since the size of the matrices W; depend on mg,,—the size of W is
[N + (Ng + 4)mgpa]n—the time for factorization is expected to grow with O(m3,,).
This can be seen in figure 5.14 in which the DGETRF LU factorization subroutine
has been used. Again it is well known that solving a linear system after obtaining a
LU decomposition of the coefficient matrix is of order O(n?). Since the condensing
subroutine contains the repeated solution of n linear systems an O(n?®) behavior of
the algorithm is expected (as can be seen from the recursion formulas in section 4.4).
This is confirmed by computational tests as shown in figure 5.15. In the following a
modified LU factorization and corresponding algorithm for the solution of the linear
systems is presented. It takes into account the particular block band structure of W.

LU Factorization

As mentioned above it takes order O(n?3) operations to compute a LU factorization
if the structure of the matrix is not take into account. The structure of W; for which
the LU factorization has to be computed is shown in figure 5.6. Using a standard
LU decomposition unnecessarily operates on too many zeros and produces unwanted
fill in through pivoting. One can get around these disadvantages by restricting the
pivoting to certain areas and only performing computations on nonzero entries. The
algorithm is illustrated in the following pictures. One starts in the upper left corner
of figure 5.16(left) and computes a LU decomposition of the cross hatched part using
column pivoting, that is looking only up to the Ng-th row for a pivot element. This
yields the situation shown in figure 5.16(right) in which the horizontal lines mark the
upper part (U) and the vertical lines the lower part (L) of the LU decomposition.
Now the entries in the cross hatched part of figure 5.16(right) can be eliminated
which leads to the situation shown in figure 5.17(left) in which the cross hatched part
might have been modified through the elimination process. Now a LU decomposition
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5.3. Sparse Linear Algebra Solver

Figure 5.12.: The Time for LU factorization of W}, j = 1,...,m, depending linearly
on the number of collocation mesh points m., for different numbers of

Time

spatial grid points mgpa.

1801 éggi | 7
160! © 60pt |
140t ] |
120¢ ) |
100¢ ) |
80r ) |
60r |
40t : |
207 R B
1 ol 3l 4 =L el 1
col

Figure 5.13.: The time for the condensing depends linearly on the number of col-
location mesh points meo for different numbers of spatial grid points

Mepa-
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Figure 5.14.: Time for LU factorization of W; depending on the number of spatial
grid points myp, for different numbers of collocation grid points 1.
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Figure 5.15.: The computing time for the condensing depending on the number of
spatial grid points mgp, for different numbers of collocation mesh points
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N, Mg (N5 + 4) N, Mpa( N + 4)

Mepa(Ns + 4)

Figure 5.16.: First step (left) and second step (right) in modified LU algorithm.

N, Mepa(Ng + 4) N, Mpa(Ng + 4)

Mepa(Ns +4)
Mgpa(Ns +4)

Figure 5.17.: Third step (left) and forth step (right) in modified LU algorithm.
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N, Mpa(Ng + 4) N, Mpa(Ng + 4)

Mpa(Ng + 4)
Mepa(Ns +4)

Figure 5.18.: Third step (left) and after the last step (right) in modified LU algorithm.

is performed on the cross hatched part of figure 5.17(left) which has as the result
shown in figure 5.17(right). Again the cross hatched area of figure 5.17(right) can be
eliminated can be eliminated with the result shown in figure 5.18(left). Here the cross
hatched area has been modified during the elimination. Continuing this procedure
leads to the particular form of the LU factorized matrix shown in figure 5.18(right). It
has the advantage that there is no additional fill in and that all necessary operations
are performed purely on the non-zero entries of this particular problem structure.
It is not difficult to see that this algorithm depends only linearly on mygp, since by
construction essentially mgp, times a fixed size LU factorization has to be performed.
Computational test confirm this behavior as can be seen in figure 5.19. Not only the
linear dependence, but also a much lower computing time for the factorization has
been obtained which can also be seen in figure 5.19 compared to figure 5.14. The
result is even more obvious if the sparse factorization is compared directly with the
non-sparse factorization which is done in figure 5.20. A speed up of a factor of more
than 200 for large problems is obtained.

Solving the Linear System

In the last paragraph it has been shown that it is possible to considerably speed up the
factorization of W; by taking into account the problem structure, that is the structure
of the spatial discretization of the model equations. The condensing algorithm mainly
solves n linear systems in order O(n?) each. This leads to a O(n?) behavior as shown
in figure 5.12. An algorithm corresponding to the factorization algorithm described
in the last section has been developed to solve these linear systems. For similar
reasons as above this algorithm is only linearly dependent on msgp,. But since O(mgpa)
systems have to be solved an O(mgpa) behavior is expected for the sparse condensing.
This is fully confirmed by computational experiments as can be seen in figure 5.21.
Figure 5.22 shows the factors which the sparse solver is faster than the non-sparse
solver. This can be up to factor of 4.5 for large problems.
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Figure 5.19.: The time for sparse LU factorization of W;, j =

1,...,me depend-

ing on the number of spatial grid points mgp, for different numbers of

collocation mesh points M.
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Figure 5.20.: Sparse LU factorization is several times faster than none-sparse LU fac-
torization of Wj, j = 1,...,m¢ depending on the number of spatial
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Figure 5.21.: Time for sparse condensing depending on the number of spatial grid
points mygp, for different numbers of collocation mesh points mq.
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Figure 5.22.: Sparse condensing is several times faster than non-sparse condensing de-
pending on the number of spatial grid points mgp, for different numbers
of collocation mesh points mg).
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Results

It has been shown that taking the problem structure into account when developing
solvers for linear systems can lead to quite dramatic reductions of computing time.
But this has to be considered in relation to the total computing time and there the
improvements are still remarkable. Using the sparse factorization and sparse solver in
the condensing gives almost a factor of 2 as can be seen in figure 5.23. If in addition
the sparse LINEAR is used, then improvements of more than a factor 5 are obtained for
large problems. The results are presented in figure 5.24. The stability of this sparse
algorithm for the LU factorization and the linear system solver has been observed in
all computations of this problem class.

1.8} RPN
1.6 1
1.4f ]
/iﬁ///
L2p ~ —— 11pt]|
-~ 41 pt
L * 81 pt
10 20 30 40 50 60
spa

Figure 5.23.: The sparse LU factorization and sparse solver for the condensing is
several times faster than the non-sparse algorithm depending on the
number of spatial grid points myy, for different numbers of collocation
mesh points M.
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Figure 5.24.: Sparse LU factorization, sparse solver for the condensing and sparse
LINEAR is several times faster than the non-sparse algorithm depend-
ing on the number of spatial grid points mgy, for different numbers of
collocation mesh points M.
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5.4. Reduced Problem Size of QP

The partially reduced SQP-algorithm described in section 4.4 uses the discretized
controls and the initial values as possible ‘control’ variables, the variables denoted by
u. In this thesis a problem class is considered in which the initial values are always
fixed. So it seems desirable to reformulate the algorithm in such a way that this fact
is recognized, that is to have only the original discretized controls as control variables.
This would reduce the number of variables for the QP-problem considerably because
usually there are several hundred equations and therefore several hundred initial
values and far less than a hundred control variables. To fix the initial values y at

t = 0 another Nnp equations—cg™—are added to the continuity conditions 4.34

con

=y —y1 =0

with the initial values y° := y(t = 0) fixed. Furthermore the grouping of the variables
and the collocation and continuity conditions is changed in the vectors y, u, ¢ and is
now

y=1ln & v & .. &n-1 Ynm]
u = [ul u2 ... um_l]
c= [080“ SO egm el esen L ol cfgﬂl]

Through this new ordering the matrices Cy, Cy, D, and D, are changed and the
figures 5.25-5.28 show the modified matrices in which the derivatives are computed
like in the original algorithm. In the C, matrix N4 rows and columns have to be
added which are additionally marked by diagonal lines in figure 5.25. In the modified
Cy the first Ny columns have been removed from the original C, and additionally Ny
rows, which are marked in figure 5.26 have been added. N, columns have been added
to the original D, and are marked by diagonal lines in figure 5.27. Finally the first
Ny columns have been removed from the original D, as can be seen in figure 5.28
compared to figure 4.7. In a next step the recursion formulas are adapted to the block
band structure of these matrices. As above a partition of two variables z and c is
defined as

zi=[y & v & ..o Emo1 Ym)
c:= [C(C]OH cﬁ‘)l o Cf,(fl,l CCW‘ZEI]

With these and taking into account the block band structure of Cy (figure 5.25) one
obtains the following recursion to solve Cyz = ¢

con

Y1 = —C

&=w;! <C§01_ijj> } j=1,...,m—1

con

Yj+1 =yj + ;& — ¢
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Y1 & Y2 & Ys & Ym—2 &m—2 Ym-1 Em-1 YUm
™ % Ny
ot %1> Wi Nia
e Lan] o, | B N,
! Vo | We Nia
cgon 4, | v, | B N,
! Vs | Ws Nia
cgn A5 | 0y N
Cros E,. Ny
o, Vin—2 W2 Nia
Crmma A 2|¥m o|Em 1 Ny
oy Vin-1[Wm-1 Nia
Ctq A 1|Ym-1| En | Ny

Ny Ngg Na Neg Ng Nggoo oooooeeee Ny Neg Nag Nig Ny

Figure 5.25.: Block structure of modified C),
Similarly one obtains the recursion to solve C’g c==x

con __
Cm—1 = "Ym

ol —wT (¢, — pTeon
’ i (&= ™) j=m—1,...,1

con __ con _ , _ y/1 .ol
Ga=¢o =y = Vi

As in the original algorithm the recursion to compute Dy, — D, C, 1C, is more complex.
To illustrate the recursion a simple example with four collocation mesh points is
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dz
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Fy

con

con

F

Fy

Figure 5.26.: Block structure of modified C,,

Ny
Niq
Ng

Niq

Niq
Ny
Ny
Niq

de

Ny

o & oy & oys & e En—2 Ym-1 Em-1 Ym
1
D
Dj
Dy
Dy,
Ng Nig Ng Nigg Ng Npg-oooooooe Nya Ng Npa Ny

Figure 5.27.: Block structure of modified D,

Uy
I(d2)

I(d3)

l&dmfl)

[(dm)

63



5. New Strategies

UL Uz UG eeeeees U1

d | D* I(d1)

dy Dy I(d2)

ds Dy I(d3)

do s D5 | i)

dm I(dm)
N, N, N, ooeee N,

Figure 5.28.: Block structure of modified D,,

considered. The first step is to solve Cy X = Cy

[—1 1 [ X1
Vi W Y11
I vy I Xo1

Vo W3 Yo1
I vy I X31
Vs W3 Ya1
I I WUy —I] | Xu
which gives the solution
[ X11 X2 Xi3] i 0
Yiu Yo Y3 W,
Xo1 Xoo Xo3 UiYn
Yor Yao Yoz | = |-W, Xy
X31 X322 X33 Xo1 + WoYyy
Y31 Y3 Y33 ~W3 V3 X5
| X1 Xyo Xy3 | X31 4+ W3Y3

Multiplying X by —D, and adding to D, yields

X12

X2
Yoo
X2
Y30
Xy2

0
0
0
W, L F
WoYoo
—W5 V3 Xz
X31 + U3Ys3

—DYXy3
—DY X3

DY — DY X33

—DYXy3

DY — DY X1, —D{ X5

—DY X0 DY — D¥ X9
—Di{ X3 —Di X3
—DY{Xn —DY Xy

Since only the X;; entries are needed one can define X’ by
X111 Xio
Xo1 Xoo
X' =

X311 Xs32
Xa1 Xao
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5.4. Reduced Problem Size of QP

and obtains

0 0 0
P Wi R 0 0
[I — U W, V) Xy T W, L Fy 0

(I — UsWy Vo) Xa1 [T — UsW5 V3] X3 UsW5 ' F3

Therefore D, — DECy_ 1Cy can be written as

DY 0 0
~Dyu W Dy 0 (5.1)
—DY[I — VW, V5] Xy — DY, W, ' Fy DY '

—DY[I — U3W; V3] X3 —DY[I — U3W, V3] X3 — DWWy ' Fy

This form of the solution leads to a natural recursion which is illustrate in the fol-
lowing. Starting with the matrices ]jg/ and D}‘ which are arranged in the following
order B B _ B B B B
Dj Dy Dy D|Dy Dy DY
DY DY
—Dj Dy
-y Dy

_Dg
an update of the columns Dg and Dé‘ is computed
DY = DY + DY[T — U3 W5 V3] DY = DY + DY[W3 W, Fy]

and one obtains

D3 Dy Dy Dy Dy Dy
Dy DY
—Dj Dy
—D} DY
—DY[T — 3 W, V3] —DY[U3W, L F3]

in which the column DY is not shown anymore because it has not changed and it is
not needed any further. A glance at the solution 5.1 shows that DY contains now the
last column of the solution 5.1. This will not change nor contribute any further and
therefore it is not displayed in further steps. The next step computes updates to D
and DY

DY = DY + DY[I — Wy W; 'V DY = Dy + DWWy ' Fy

and one obtains

Dy DY | Dy Dy
DY Dy
—-DY DY
—DY[I — VW, V5 — DY [T W, L Fy]
—DY[I — U3 W5  V3][T — U Wy 1) —DY[I — U3 W5 V3][0 Wy L Fy)
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The updated column D% now contains the second column of the solution 5.1. In the
final step of this example updates to DY and D} are computed.

DY = DY + DY[I — 0, Wi V] D = D{ + Dy[¥: W' F]
and one obtains
by
Dy
—DY[I — ¥y W; W]

—DY[I — U Wy Va1 — Oy W 1]
—DY[I — U3 W3 ' V3][T — W Wy 1WA [T — U WMV

Dy
Dy
—DY[u, W R
—DY[I — VW, Vo [0, W, 1]
—DY[I — U3Wy  V3)[T — UaW, Vo [0 W, Ly

DY contains the first column of the solution 5.1. In contrast to the original algorithm
the computation of the update to DY is not really needed. This example calculation
leads to the recursion

[ DY| DY J:=[ DY | D¢ |+ DY [ T—WW Vi [ WW ] j=m—1,...,1

which is very similar to the original one. But now one is only interested in the solution
matrix of the form

(DY Dy ... DY ]
Again this can explicitly be written in closed form as

Dy 0 0 0
DYZ1, Dy 0 0
DgZ21 DgZQQ Dg . 0

Dy 1Zm—21 Dy _1Zm-12 Dy 1Zm—23 - Dy
| D% Zm—1a DY Z—12 DyZm3 .. DhZm—im—1]

A
Zig=| I U= 9irp2aW o oVikra) | W' F 1<i<j<m-—1
k=j+1

Comparison with Original Algorithm

Implementing the necessary regrouping of the variables and changing the recursion
subroutines is unfortunately not a trivial task and would be a major reprogramming
of the software package OCPRSQP. But fortunately one important aspect of this
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Percentage of computing time
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Figure 5.29.: Percentage of total computing time of optimization algorithm spend for
solving the QP-problem depending on the number of collocation mesh
points mge for different numbers of spatial grid points mgpa.

reduction can be tested. The speed up through solving only the much smaller QP-
problem. The QP-solver EO4NAF which is used in OCPRSQP allows to fix some of the
variables and takes advantage of it. So it is possible to obtain a very good estimation
of the speed up due to the reduction of the size of the QP problem. Figure 5.29
shows the percentage of the computing time of the otherwise optimized code which is
spend for solving the QP-problem. For medium sized problems this is around 5-15%.
Fixing the initial values in the QP-solver, reduces this to 2.5-5% which can be seen in
figure 5.30. Figure 5.31 shows the computing time spend on solving the QP-problem
during an optimization. Figure 5.32 shows the computing time spent on solving the
QP-problem for fixed initial data for the same optimization. So fixing the initial data
leads to a speed up for solving the QP-problem of at least 2 to up to 5 as can be seen
in figure 5.33.
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Percentage of computing time
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Figure 5.30.: Percentage of total computing time of optimization algorithm spend
for solving the QP-problem with fixed initial data depending on the
number of collocation mesh points m.y for different numbers of spatial
grid points Mmgpa.
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Figure 5.31.: Time spend on solving the QP-problem depending on the number of
spatial grid points mgp, for different numbers of collocation mesh points
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Figure 5.32.: Time spend on solving the QP-problem with fixed initial data depend-
ing on the number of spatial grid points mgp, for different numbers of

collocation mesh points M.
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Figure 5.33.: The solver for the QP-problem with fixed initial data is several times
faster than without fixed initial data. The results are shown depend-
ing on the number of spatial grid points mgp, for different numbers of

collocation mesh points mg
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6. Numeric Results

In this chapter optimal solutions to the application problems introduced in chapter 2
are presented. Several observations have been made during the optimization process
which might show directions for further research.

The first problem, the catalytic conversion of methane to syngas, mainly serves as
a benchmark problem. The optimal solution to this problem is presented and it is
shown how the control and the objective function depend on the number of collocation
mesh points me,. The computational time spent in a SQP iteration of the sparse
algorithm is compared to the time for the non-sparse algorithm and it is shown that
the sparse code is much faster then the non-sparse one in a real application. This
enables to study many different scenarios in an acceptable time.

Then the optimal solution to the epoxidation of ethylene is presented. For this
application it is not too difficult to find suitable spatial discretizations so one can
look at how the optimal control code performs with respect to different spatial and
time discretizations. In this context it is especially interesting to look at the behavior
of the objective function and the controls.

The last section of this chapter is devoted to the optimal control problem of the
catalytic oxygen free conversion of methane to ethane. From the viewpoint of op-
timal control this is the most interesting example because it is a transient system.
An optimal solution is presented which could not have been found with the current
simulation tool on a trial-and-error basis. Again it is shown how the control and the
objective function behave when the time discretization is changed.

6.1. Catalytic Conversion of Methane to Syngas

A solution to this problem which has been obtained through simulation is presented
in section 2.1. This solution is now taken as a starting point. So starting from a mol
fraction of 0.41 for CHy at the inflow on has to find an optimal ratio of CH4/Os of mol
fractions (keeping the sum of the mol fractions of CH4 and Oy constant) such that
the ratio of the fluxes CO/COz at the outflow is maximized. A non-uniform spatial
grid with 28 points, which has been obtained from the simulation, and a uniform time
discretization of 28 points has been used to obtain an optimal solution which is shown
in table 6.1 and figures 6.1, and 6.2. Table 6.1 shows the coverages of the different
surface species and figure 6.1 the mol mass of the gas phase species. Figure 6.2 finally
shows the behavior of the flow variables. Starting from an initial solution with the
mol fraction of 0.41 for CHy at the inflow the algorithm needs 29 SQP iterations to
converge. It takes 287 s for the sparse algorithm to converge whereas the non-sparse
algorithm needs 1201 s. In this optimal control problem the value of the control has

71



6. Numeric Results
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Figure 6.1.: Mol fraction of gas phase species for the optimal solution of the syngas
problem.
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6.1. Catalytic Conversion of Methane to Syngas

Species | Coverage
O(s) 3.92-1077
H,O(s) | 1.73-107%
OH(s) | 2.90-107°
CO(s) | 4.28-107!
COs(s) | 4.04-10710

Table 6.1.: Coverages for surface species for the optimal solution of the syngas prob-

Species | Coverage
Pt(s) 5.58 - 101
H(s) 8.35-1073
CHs(s) | 5.28-1077
CHy(s) | 2.85-107°
CH(s) | 6.87-10710
C(s) 5.04-1073
lem
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Figure 6.2.: Flow variables for the optimal solution of the syngas problem.
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Obijective functional
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Figure 6.3.: Objective functional, the ratio of the fluxes CO /CO3, depending on time
and different numbers of collocation mesh points m ).

been fixed at ¢ = 0 to the initial value. The control, that is the mol fraction of the CH4
of the optimal solution has increased from 0.41 to 0.443, that is the ratio of 00—24 has
increased from 1.414 to 1.724. At the same time the value of the objective function,
that is the ratio of the fluxes CO and CO2 has increased from 149.46 (section 2.1) to
now 159.06. Figure 6.3 shows the objective function for the initial solution and for
different time discretizations. Of interest for the final problem solution is only the
constant value and one can see that this value is already obtained at the end of the
time interval with a time discretization of only three points. The next figure 6.4 shows
how the control behaves when the time discretization changes. Already with three
points the optimal value is obtained. Increasing the number of mesh points shows
that some oscillations at the beginning of the time interval occur. At the end of the
time interval there is a non-physical decrease of the control when the discretization
increases. So far these observations cannot be accounted for. The last figure 6.5 in
this section shows that the effort spent in identifying the structure of this problem
class and using it in several places to reduce the computational cost has really payed
off because for the problem with 56 collocation mesh points the sparse algorithm is
4.3 times faster than the non-sparse.
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Figure 6.4.: Optimal control, mol fraction of CH,4, depending on time and different
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Figure 6.5.: Time per SQP-iteration for non-sparse and sparse code.
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6.2. Epoxidation of Ethylene on Silver

The results of a simulation of this process is presented in section 2.2. The objective
function of the optimization is the production rate of CoH4O which has to be max-
imized. The parameters which can be controlled are the %
and the temperature of the catalytic plate. This optimal control problem has been
solved with 40 points for the spatial and 40 points for the time discretization. Ta-
ble 6.2 shows the coverages of the surface species and figure 6.6 the mol fractions of
the gas phase species. The flow variables can be seen in figure 6.7. The optimization
decreases the mol fraction of CoHy at the inflow from 0.045 to 0.0368 yielding an
optimal ratio of Cé—l;l“ = 0.257. The temperature has decreased to 525 K which is
set as a lower bound since. It would decrease further so it has been decided to set
a value of 525 K as operating value for this process. An increase of the production
rate from 6.10-10~° mol/m?s to 6.50- 10~° mol/m?s is obtained. This is about 6.6
percent. The sparse algorithm needs 22 SQP iterations and 530 s in contrast to the
non-sparse algorithm which needs 2450 s.

As in the last section it is interesting to look at the performance of the algorithm
if the discretization is changed. The primary interest is not so much a very accurate
solution of the model equations but the accuracy of the control and the objective
function. In figure 6.8 the number of spatial grid points has been fixed to 40 and the
objective function is shown for different numbers of collocation mesh points mo. The
values of the objective function for the starting solution are plotted as a reference.
Already with 14 collocation mesh points a good approximation of the final values of
the objective function is obtained. Almost a constant since a stationary problem is
considered. In figure 6.9 the control is shown for 40 spatial grid points and different
numbers of collocation points. This is the control corresponding to the objective
function shown in figure 6.8. There again a good approximation of the constant
control of a mol fraction of 0.0368 for CoHy is already obtained with 14 collocation
mesh points. So far it is not possible to account for the oscillations of the control at
the beginning of the time interval and the behavior of the control and the objective
function at the end of the time interval.

In the next two figures 6.10 and 6.11 the objective function and the control are
shown for an optimization wit 20 spatial grid points and the same number of col-

ratio of mol fractions

Species Coverage Species ‘ Coverage

Ag(s) 9.72-107! HCOO(s) | 1.33-1072
O(s) 2.54-107° H(s) 5.94-1073
CoH3z(s) | 5.31-1076 COs3(s1) | 9.47-1077
Ho0(s) 6.84-1074 CoHy(s) | 1.82-107°

OH(s) 1.49-107°
CoH30(s) | 4.56-1073
HCO(s) | 7.58-1074
CH20(s) | 2.40-1073

Table 6.2.: Coverages of the surface species for optimal solution of epoxidation of
ethylene.
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Figure 6.7.: Flow variables for optimal solution of epoxidation of ethylene.

location points as before. All other parameters are kept the same. The interesting
observation is that it has almost no influence on the final shape of the objective func-
tion or control. But, the constant values of both, that are the numbers we are finally
interested in, are slightly different than before. So one could say that only a rather
coarse discretization is needed to solve the optimal control problem but to get better
values a finer discretization is necessary.

As in the last section a look is taken at the computing times. The table 6.3 shows
that there is a great difference between the times needed to compute a solution with
the non-sparse and the sparse version of the algorithm. The sparse version is up
to a factor of 5 faster than the non-sparse. The observations of the last paragraph
show that only a coarse discretization of the problem is necessary to obtain good first
values for the control and the objective function. So choosing 20 points in space and
14 points in time gives already a satisfactory answer in about 1 minute.
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Figure 6.9.: Optimal control, the CoHy mol fraction at the inflow, depending on time

and different numbers of collocation mesh points my for a fixed number

of spatial grid points mgp, = 40.

79



6. Numeric Results

6.7 107° | OF)jective ‘functior‘1al

—o— Start
Ji B
6.4r f/ T ,
63/ !
6.2
61| ! J/

Figure 6.10.: Objective function, the production rate of CoH4O, depending on time
and different numbers of collocation mesh points mg for a fixed number
of spatial grid points mgp, = 40.

Control

—e— Start
ox 3 pt
-x= 7 pt
-3 - =~ 14pt
1 —— 56 pt

Figure 6.11.: Optimal control, the CoH4 mol fraction at the inflow, depending on time
and different numbers of collocation mesh points m. for a fixed number
of spatial grid points mgp, = 40.

80



6.2. Epoxidation of Ethylene on Silver

3pt 7pt 1dpt 28 pt 56 pt

full 156 462 865 1695 3427

40 pt sparse | 38 84 163 332 654

full 41 91 172 349 733

20 pt sparse | 16 27 57 111 237

Table 6.3.: Total time for OCPRSQP in seconds.

81



6. Numeric Results

6.3. Catalytic Oxygen-Free Conversion of Methane to
Ethane

The solution of a simulation of the catalytic oxygen-free conversion of methane to
ethane is presented in section 2.3. As mentioned earlier and in contrast to the previous
two applications this one is time-dependent. So a time-dependent control is expected.
A difficulty for the setup of this problem comes directly from the chemistry: After
a certain time the catalytic surface is covered to a high percentage with carbon
reducing considerably the surface activity. In the previous applications it has been
possible to generate initial values by just computing a simulation and then using
the result as starting point for the optimization. This is not possible in this case
because due to the pollution with carbon the optimization would start with a not so
interesting situation. Since well defined initial values are needed for the optimization
it is not possible to start from ‘scratch’ as it is done in simulations using DIFRUN.
The solution of these difficulties is to do a simulation for a short time compared to
the overall time interval of the optimization and then using this initial data for an
optimization on the remaining time interval. ‘Short’ in this context means that this
time should not play a role for the optimization process but should be long enough to
obtain well defined initial data. For the application under investigation it turns out
that computing a simulation for 6 s can provide the necessary initial data and is still
short enough compared to the whole process time of 300 s. For the reduction of the
computing time, if testing different time discretizations, a simulation is computed for
the first 5 s—which takes around 2 min—and then used as input to DIFRUN which
then computes another simulation of 1 s—this takes about 2 s—before starting the
optimization.

As mentioned in section 2.3 there are three possible controls: the temperature of
the catalytic plate, the pressure, and the inflow velocity. A few simulations have been
done to obtain an idea for good starting values for these parameters. It turns out
that the temperature and the pressure have a fairly clear influence on the objective
function, the production rate of CoHg. The higher the temperature or pressure, the
higher the production rate of CoHg. These values would always approach the bounds
and for this reason they are set to 523 K and 1 bar to study the effect of the inflow
velocity on the production rate of CoHg. Like in [60] three different fixed inflow
velocities v = 0.01 ecm/s, or 0.1 cm/s, or 53 cm/s are chosen and the results for the
production rate for these simulations can be seen in figure 6.12. It is obvious that
the inflow velocity v = 0.1 cm/s produces the largest integrated production rate of
all three simulations. This can also be seen from the following table:

v[ cm/s] | integrated production rate [ mol/m?]

53 4.4194- 1076
0.1 9.8185-10°6
0.01 5.8552- 1076

The inflow velocity of v = 0.1 cm/s is now used as a starting value for the optimiza-
tion. As described above a simulation is then computed with these parameter values
for the first six seconds and then the optimization starts. The values for these first
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Figure 6.12.: Production rate of CoHg depending on time for different inflow veloci-
ties.

six seconds are not shown in the following figures because they do not play any role
for the optimization.

For practical reasons the control is bounded from below by 0.05 cm/s and from
above by 1 cm/s. A uniform mesh of 30 collocation points and 30 spatial grid points
is chosen. Figure 6.13 then shows the result of this optimization for the production
rate of CoHg (dotted line) compared to the corresponding production rate for the
constant inflow velocity (solid line). Integrating this rate gives a rise of 3% compared
to the initial profile. The next figure 6.14 shows the corresponding control to this
optimal solution. The inflow velocity increases immediately to 1 cm/s, the upper
bound, then after around 40 s decreases fast to approach a value around 0.1 cm/s.
It then decreases slowly until hitting the lower bound of 0.05 cm/s at around 210 s
at which it stays up to the end at 300 s. The shape of this solution is stable if
the collocation discretization is changed (figures 6.15 and 6.16). Already with
10 collocation mesh points the general shape of the new control and the objective
function are visible. If the collocation mesh gets refined the solution then seems to
converge to a specific shape which can be seen looking at the solutions for 20, 30, and
50 collocation mesh points.

To complete the presentation of an optimal solution to this application problem
figures 6.17 and 6.18 show the coverages of the surface species. Figure 6.19 shows the
mol fraction of the gas phase species and figure 6.20 the flow variables. To conclude
this section a look is taken at the number of variables and computing times for this
problem.

This application contains 14 surface and 4 gas-phase species which leads to a system
of 14 ODE and 8 partial differential equations. For the spatial discretizations 30 grid
points are used which leads to a system of 254 DAFE. The following table shows the
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Figure 6.14.: Optimal control, inflow velocity, depending on time for an optimal so-
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Figure 6.15.: Objective function, production rate of CoHg, depending on time for
optimal solution for different numbers of collocation mesh points m.
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Figure 6.16.: Optimal control, inflow velocity, for different numbers of collocation
mesh points M.
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Figure 6.19.: Mol fraction of gas phase species for optimal solution of the catalytic
oxygen-free conversion of methane to ethane.

total number of variables and constraints—collocation, continuity, boundary, and
path constraints—for this problem after the collocation discretization.

collocation mesh points variables constraints
10 6070 5964
20 12460 12344
30 18850 18724
50 31630 31484

The computing times are quite high, between 6 min for the sparse version and m¢, =
10 and 5 h for the non-sparse algorithm and m¢, = 50. Again the great benefit of
the sparse algorithm can be seen very clearly from the following table

\ | 10pt 20pt 30 pt 50 pt
full 1417 5038 12725 13353
sparse | 408 1042 2438 2974

30 pt
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Figure 6.20.: Flow variables for optimal solution of the catalytic oxygen-free conver-
sion of methane to ethane.

in which the computing time for the optimization is given in seconds.
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7. Conclusions and Outlook

The work in this thesis focused on the development of a reliable and easy-to-use
software package for the optimal control of a reactive stagnation point flow on a
catalytic plate. Several problems on the software engineering, the algorithmic and
the application level had to be solved to reach this goal. The code has been applied
to three application problems to illustrate its performance.

This thesis also shows the need for further research in this area. There is still
potential in reducing the computing time even further. For example, the time for
computing the Jacobian could be reduced considerably by using new specialized au-
tomatic differentiation tools, which would have to be developed along the lines of the
work by Riicker [46] taking into account the problem structure and the structure of
chemical equations. This would also reduce the high memory requirements, which in
turn enables to study more realistic chemical models with dozens of species resulting
in thousands of DAF.

The methodology of the successful coupling can now be imitated and applied to
other reactor configurations such as the reactive channel flow. For this system the
simulation tool is now finished and available. Another potential area of research is
the study of the effect of the spatial and time discretization on the quality of the
control.

The new software is based on two existing packages: DIFRUN, a tool for the
simulation of a reactive stagnation point flow on a catalytic plate, and OCPRSQP,
an optimal control package based on a collocation discretization in time and a partially
reduced SQP method to solve the optimization problem.

In a first step these two packages have been coupled to provide a solid basis for
further developments. Here the major two difficulties were the identification of the
interface to the discretized model equations in DIFRUN and the development of a
new interface for OCPRSQP to use analytic derivatives provided by ADIFOR as a
substitute for the finite differences, which had been used before but turned out to be
not accurate enough for this problem class. This first step was successfully finished,
keeping the enormous flexibility of DIFRUN to modify the chemical systems studied
with minimal effort. Furthermore only a very limited number of unavoidable changes
have to be made to the new code to switch from one chemical system to another.

Since the number of equations in the considered problem class can easily reach
several hundred or even thousands of DAE, the pure coupling of the two packages
did not provide an efficient tool. The computing times were too high and more
effort had to be made on the algorithms, for example using the problem structure
when computing the Jacobian, or for the condensing step of the partially reduced
SQP-algorithm. This new algorithms reduced considerably the computing time.
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7. Conclusions and Outlook

Furthermore it has been focused to apply the new package for the optimization of
practical problems. Three problems have been studied to demonstrate the perfor-
mance of this new tool: The catalytic partial oxidation of methane to syngas, the
epoxidation of ethylene on silver and the catalytic oxygen-free conversion of methane
to ethane. Optimal solutions have been presented. In the case of the catalytic oxygen-
free conversion of methane to ethane, it has been possible to present a solution which
could not have been obtained on a trial-and-error basis using the original DIFRUN.

For the first time a software package is available for the very fast computation of
the optimal control for arbitrary chemical systems in a reactive stagnation point flow
on a catalytic plate. The user of the software needs only little effort to set up a new
problem.
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A. Reaction Mechanisms

In this chapter, all surface reaction mechanisms are listed. The major reference for
the format of these mechanisms is [19]

Species with the suffix (s) are adsorbed species. The species named Pt(s) and
Ag(s) denote uncovered surface sites available for adsorption on platinum and silver,
respectively.

The kinetic data are given according to [19]. The units are A [mol, cm, s], S°, 8
and g [~], Eq and € [kJ mol™!]. SO denotes the initial (uncovered surface) sticking
coefficient. If the reaction kinetic exhibits an additional dependence on surface cover-
age, the line under the reaction equation names the species, to which the dependence
is referred, and gives the kinetic parameters p and €, pu and € are zero for all other
reactions.

A.1. Catalytic Partial Oxidation of Methane to Syngas

Reaction mechanisms ‘ A/ S0 ‘ B/ u ‘ E, /¢
Adsorption
Hy  +Pt(s) +Pt(s) — H(s) +H(s) 0.046E-00 00| 0.0
$Pt(s) 0.0 10| 00
0O, +Pt(s) +Pt(s) — O(s) +40(s) 1.891E+21 -0.5 0.0
CHy +Pt(s) +Pt(s) — CH;s(s)+H(s) 0.600E4+00 | 0.0 | 52.0
H,O  +Pt(s) —  Hy0(s) 7.500E-01 00| 00
CO, +Pt(s) —  COs(s) 5.000E-03 00| 0.0
CO  +Pt(s) — CO(s) 8.400E-01 0.0 0.0
Desorption
H(s) -+H(s) — Pt(s) +Pt(s) +H, | 3.700E421 | 00| 674
$H(s) 0.0 00| 6.0
O(s) +0(s) —  Pt(s) +Pt(s) +02 3.700E+21 0.0 | 213.2
$0O(s) 0.0 0.0 | 188.3
H,0(s) — Hy0  +Pt(s) 4500E+12 | 00| 41.8
CO(s) — CO  +Pt(s) 1.000E+13 | 0.0 | 146.0
$CO(s) 0.0 00| 330
COy(s) — COy +Pt(s) 1.000E+13 | 00| 271
CH3(s)+H(s) — CHs +Pt(s) +Pt(s) | 1.850E+22 0.0 21.5
$H(s) 0.0 0.0 7.0
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A. Reaction Mechanisms

Surface Reactions

O(s) +H(s)

OH(s) +Pt(s)
$O(s)

$H(s)

+OH(s)

CHa(s) +Pt(s)
CH(s) +H(s)
$H(s)
CH(s) +Pt(s)
$H(s

C(s) +H(s)
H2 —|—C(S)
CH(s) +H(s)
C(s)
CHQ(S)

+Pt(s)

+H,

l

1 |

l

l

l

A |

|

Ll Ll

HQO(S) +Pt(S)
H(s) +OH(s)

H20(s) +0(s)
OH(s) +OH(s)
COa2(s) +Pt(s)
CO(s) +0O(s)

CO(s) +Pt(s)
C(s) +O(s)

1.280E+22
1.070E+21
0.0
0.0
2.040E+4-22
1.680E+20
0.0
0.0
7.400E+21
1.000E+21
0.0
3.700E+21
0.0
3.700E+21
0.0
3.700E+21
3.700E+21
0.0
0.0
1.262E+22
3.700E+21
0.0
7.000E+-22
3.700E+21
0.0
3.000E+22
0.0
3.700E+21
5.580E4-20
3.090E+22
5.870E+11
7.690E413

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Table A.1.: Surface reaction mechanisms for syngas problem. [17]
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11.2
82.5
73.2
-3.0
66.2
106.8
-167.4
-3.0
74.0
43.1
-240.6
118.0
33.0
173.3
-94.1
0.0
236.9
-95.0
31.3
64.8
0.0
7.0
61.2
0.0
7.0
0.0
7.0
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30.1
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A.2. Epoxidation of Ethylene on Silver

A.2. Epoxidation of Ethylene on Silver

Reaction mechanisms | A/S° [ B/p|E./c¢

Adsorption
0, tAg(s)  +Ags) — O()  +O(s) 1.000E-06 | 0.0 | 00
CoHy  +Ag(s) o CoHy(s) 1.500E-03 | 00| 0.0
CoHy  +Ag(s) +Ag(s) — CoHs(s) +H(s) 6.000E+19 | 0.0 8.0
CO»  +0(s) —  CO3(s) 1.000E-03 00| 462
M0 +Ag(s) —  H,0(s) 7.500E-01 0.0 0.0

Desorption
Os)  +0(s) — Ag(s)  +Ag(s) +0, | 2.800E420| 0.0 | 135.0
$O(s) 0.0 -0.7 60.0
Oy (s) . Ag(s)  +CoHy LO00E+13 | 0.0 | 44.9
CoHs(s) +H(s) —  Ag(s) +Ag(s) +CyHy | 3.700E+21 0.0 12.0
CO3(s) —~ COy,  +0(s) 1.000E+13 | 0.0 | 147.0
$0(s) 0.0 0.0 | -40.0
H,O(s) ~ M0  +Ag(s) 1.000E+13 | 0.0 | 50.4

Surface Reactions

CQH4(S) +O(S) — Ag(s) +CyH4,0 +Ag(s) 3.500E+19 0.0 8.0
$0(s) 0.0 0.0 | -40.0
CoH O +Ag(s)  +Ag(s) —  CoHu(s) +O(s) 1.000E+13 | 0.0 | 312
CoHs(s) +O(s) — CoH;0(s) +Ag(s) 3.700E+21 | 00| 23.8
CoH;0(s) +Ag() — CoHs(s) +O(s) 3.700E421 | 0.0 | 224.3
CoH;30(s) +0(s) . HCO(s) +CH,O(s) 3.700E421 | 00| 54.3
HCO ) —|—CH20( ) —  CoH30 (S) ( ) 3.700E+21 0.0 119.8
CH,0(s) +0(s) — HCOO(s)+H(s) 3.700E+21 | 00| 514
HCOO(s)+H(s) . CH,O(s) +0(s) 3.700E+21 | 0.0 | 1312
HCO(s) +O(s) — HCOO(s)+Ag(s) 3.700E4+21 | 0.0 | 46.2
HCOO(s)+Ag(s) — HCO(s) +0(s) 3.700E+21 | 0.0 | 210.0
HCOO(s)+0(s) —  COq +O0H(s) +Ag(s) | 3.700E+21 0.0 56.0
COq +0OH(s) +Ag(s) — HCOO(s)+0(s) 3.700E+21 0.0 | 19255
H(s) +0(s) ~ OH(s) +Ag(s) 3.700E+21 | 00| 882
( ) +Ag(s) —~ H)  +0(s) 3.700E421 | 00| 67.2
H(s)  +H(s) —  HyO(s) +Ag(s) 3.700E+21 0.0 8.4
HQO(S) +Ag(s) — OH(s) +H(s) 3.700E+21 0.0 | 168.8

Table A.2.: Surface reaction mechanisms for epoxidation of ethylene. [39]
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A. Reaction Mechanisms

A.3. Catalytic Oxygen-Free Conversion of Methane to

Ethane

Reaction mechanisms A/SY | B/p]Ed/¢
Adsorption
H, +Pt(s) +Pt(s) — H(s)  +H(s) 0.046E-00 0.0 0.0
$Pt(s) 0.0 -1.0 0.0
CHy +Pt(s) +Pt(s) — CHs(s) +H(s) 9.000E-04 0.0 72.2
CH,  +C(s) — CoHy(25) 7.200E+01 | 0.5 0.0
$C(s) 0.0 00| -47.5
$Cy(25) 0.0 0.0 | -47.5
CoHg +Pt(s) +Pt(s) — CoHg(2s) 1.000E+4-00 0.0 0.0
CyHy  +Pt(s) —  CgoHy(1s) 1.000E-03 0.0 0.0
Desorption
H(s) +H(s) —  H, +Pt(s) +Pt(s) | 3.700E+21 0.0 75.0
$H(s) 0.0 0.0 15.0
$Co(2s) 0.0 0.0 15.0
$C(s) 0.0 00| 150
CHj(s) +H(s) — CHy  +Pt(s) +Pt(s) | 1.000E+21 | 0.0 | 50.0
$H(s) 0.0 0.0 15.0
CyHy(25) — CHy  +C(s) 1.000E+14 | 0.0 2.5
$C(s) 0.0 0.0 -47.5
$Cy(25) 0.0 0.0 | -47.5
CyHg(25) —  Pt(s)  +Pt(s) +CoHg | 1.000E+16 | 0.0 | 209
CyHy (1) —  Pt(s) +CoHy 1.000E+14 | 0.0 | 50.2
Surface reactions
CHs(s) +Pt(s) —  CHa(s) +H(s) 1.262E+22 0.0 70.3
CHa(s) +H(s) —  CHs(s) +Pt(s) 3.090E+22 | 0.0 0.0
CHa(s) +Pt(s) —  CH(s) +H(s) 7.314E+22 | 0.0 | 589
$C(s) 0.0 0.0 -50.0
$Cy(25) 0.0 00| -50.0
CH(s) +H(s) —  CHy(s) +Pt(s) 3.090E+22 | 0.0 0.0
CH(s) +Pt(s) —  Cfs) +H(s) 3.090E+22 0.0 0.0
C(s)  +H(s) —  CH(s) +Pt(s) 1.248E+22 | 0.0 | 138.0
CoHy(1s) —  CoHy(2s) 1.000E+13 0.0 83.3
CaoHy(2s) —  CgoHy(1s) 1.000E+13 0.0 75.3
CoHs(s) +H(s) — CyHg(25) 3.700E+22 | 0.0 | 418
CyHq(25) — CoHs(s) +H(s) 1.000E+13 | 0.0 | 57.7
CHs(s) +CHs(s) —  CqoHg(2s) 1.000E+21 0.0 00.0
CaHg(2s) — CHs(s) +CHs(s) 1.000E+413 0.0 | 124.5
CHa(s) +CHs(s) —  CqoHs(s) +Pt(s) 1.370E+22 0.0 00.0
CQH5(S) +Pt ) — CHQ(S) —‘rCHg(S) 1.370E+20 0.0 128.9
CoHs(s) +Pt(s) 5 CoHy(28)+H(s) 1.370E+22 | 0.0 | 544
CoH,(28) +H(s) —  CoHs(s) +Pt(s) 1.370E4+22 | 0.0 | 29.3
CoHs(s) +Pt(s) +Pt(s) — CoHy(3s)+H(s) 1.370E+22 0.0 16.7
CoHy(3s)+H(s) —  CqoHs(s) +Pt(s) +Pt(s) | 1.370E+20 0.0 28.9
CoHy(3s) — CoHy(28)+Pt(s) 1.000E+13 | 0.0 | 874
CoH,(25) +Pt(s) — CoHy(3s) 1.370E4+21 | 0.0 | 37.2
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CQH4(2$
CQHg(lS
CgHg(lS

$C(s)
$Cg (28)
CHs(s)
CQ (28)
$CQ (28)

$C(s)
$Cg (28)
CH2 (S)
$C(s)
$CQ (28)

)+Pt(s)
)+H(s)
)+Pt(s)

+C(s)
+CQ (28)
+C(s)
+Pt(s)

+C(s)

Ll

Ll

1.370E4-20
1.370E+4-22
1.370E4-22
0.0

0.0
1.370E+4-22
1.370E+21
0.0
1.370E+4-21
0.0
1.370E+-21
0.0
4.000E-02
0.0

0.0
7.690E+13
0.0

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

A.3. Catalytic Oxygen-Free Conversion of Methane to Ethane

99.1
75.3
46.9
-50.0
-50.0
46.0
220.0
60.0
180.0
50.0
185.0
50.0
29.7
4.6
4.6
25.1
-50.0
-50.0

Table A.3.: Surface reaction mechanisms for catalyitc oxygen-free conversion of methane to

ethane. [61]
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