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Abstract

We propose a new measure of the expected variance risk premium that is based on a

forecast of the conditional variance from a GARCH-MIDAS model. We find that the

new measure has strong predictive ability for future U.S. aggregate stock market

returns and rationalize this result by showing that the new measure effectively

isolates fundamental uncertainty as the factor that drives the variance risk premium.
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1 Introduction

The findings in Bollerslev et al. (2009, 2012, 2014), Bekaert and Hoerova (2014) and others

strongly suggest that the variance risk premium (VRP) predicts medium-term aggregate

stock market returns. Economically, the predictive ability of the VRP can be rationalized

by its close relation to economic uncertainty and aggregate risk aversion (see Bollerslev

et al., 2009, 2011 or Corradi et al., 2013).1

Formally, the expected VRP is defined as the difference between the ex-ante risk-

neutral expectation of future stock market variation and the statistical expectation of the

realized variance. While ‘model-free implied volatilities’ can be constructed from option

prices, the expected realized variance has to be estimated. The most common approaches

are either to assume that the realized variance follows a martingale difference or to es-

timate a heterogeneous autoregressive model for the realized variance (HAR-RV). We

follow a different approach by modeling the conditional variance of daily stock returns as

a GARCH-MIDAS process. In this setting, the conditional variance is decomposed into

a short-term GARCH component and a long-term component that is driven by macroe-

conomic explanatory variables. We think of the long-term component as ‘the part’ of

the conditional variance of stock market returns that is driven by “uncertainty about the

variability of economic prospects” (Bollerslev et al., 2013, p.417).

Our contribution to the literature on the VRP is twofold. First, we suggest a new

proxy for the expected VRP that is based on the difference between the option-implied

variance and the variance forecast from the GARCH-MIDAS model. We then show that

the proposed measure has considerably stronger predictive power for stock returns than

conventional measures of the VRP. Second, we rationalize the strong predictive power of

our new measure by showing that it effectively isolates the long-term volatility component

as the factor that determines the VRP.

1Using a stylized self-contained general equilibrium model, Bollerslev et al. (2009) show that the

equity risk premium can be decomposed into two terms. While the first term describes the classical risk-

return trade-off, the second one suggests a positive relation between expected returns and the volatility

of consumption growth volatility (vol-of-vol). The predictive ability of the VRP then follows from the

observation that the VRP is proportional to the time-varying vol-of-vol.
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2 A New Variance Risk Premium Measure

2.1 The GARCH-MIDAS Model

The GARCH-MIDAS model specifies the conditional variance of daily returns as the prod-

uct of a short-term GARCH component that captures day-to-day fluctuations in volatility

and a long-term component that is entirely driven by low-frequency (monthly) macroe-

conomic variables. The long-term component fluctuates at the monthly frequency only

and can be considered as representing economic or fundamental uncertainty. Following

Conrad and Loch (2014), we denote daily returns by ri,t, where t refers to a certain month

and i = 1, . . . , N (t) to the i’th day within that month. We then assume that

ri,t = µ+
√
gi,tτtZi,t, (1)

where Zi,t is IID with mean zero and variance one. gi,t and τt represent the short- and

long-term conditional variances, which are measurable with respect to the information

set given at day i − 1 of month t. The short-term component follows a mean-reverting

asymmetric unit variance GARCH process

gi,t = (1− α− β − γ/2) +
(
α + γ · 1{ri−1,t−µ<0}

) (ri−1,t − µ)2

τt
+ βgi−1,t, (2)

with α > 0, β > 0 and α + β + γ/2 < 1. The long-term component is driven by lagged

values of an explanatory variable Xt:

log(τt) = m+ θ
K∑
k=1

ϕk(ω1, ω2)Xt−k, (3)

where the behavior of the MIDAS weights ϕk(ω1, ω2) is parsimoniously determined using

a flexible Beta weighting scheme. For a more detailed discussion, see Engle et al. (2013)

or Conrad and Loch (2014).

At the last day of each month t, we use the GARCH-MIDAS (GM) model to construct

out-of-sample forecasts for the realized variance during the following month, RVt+1. Note

that next month’s long-term volatility, τt+1, is predetermined with respect to macro real-

izations up to month t. Then, the realized variance prediction is given by

R̂V
GM

t+1 = Et

N(t+1)∑
i=1

gi,t+1τt+1Z
2
i,t+1

 = g̃t+1τt+1, (4)

where g̃t+1 =

(
N (t+1) + (g1,t+1 − 1)1−(α+β+γ/2)

N(t+1)

1−α−β−γ/2

)
. For a given value of the monthly

short-term variance, g̃t+1, a high (low) value of fundamental uncertainty, τt+1, will upscale

2



(downscale) the forecast of the expected monthly realized variance. In this sense, τt+1 is

similar to the vol-of-vol factor in the model of Bollerslev et al. (2009).

2.2 Constructing the VRP

We define the monthly expected VRP as IVt − Et[RVt+1], where IVt is the risk-neutral

expected variation during month t+ 1 and Et[RVt+1] is the expected (under the physical

measure) realized variation for that period. We build on the approximation of the expected

VRP in Bollerslev et al. (2009) and measure IVt by the end-of-month t − 1 value of the

squared VIX and, assuming that RVt follows a martingale difference sequence, replace

Et[RVt+1] by RVt. The VRP is thus given by

V RPt = V IX2
t −RVt. (5)

This measure is both directly observable and model free. However, as discussed in Bekaert

and Hoerova (2014), the assumption that RVt follows a martingale difference sequence may

be inappropriate. As a new measure, we propose to base the expected VRP on the condi-

tional variance forecast from the GARCH-MIDAS model, R̂V
GM

t+1 . This forecast explicitly

takes into account the macroeconomic uncertainty via the long-term component:2

V RPGM
t = V IX2

t − R̂V
GM

t+1 . (6)

3 Data

We use daily continuously compounded returns, ri,t, for the S&P 500 and monthly

U.S. macroeconomic data from 1970 to 2011. We include industrial production growth

(annualized month-to-month percentage change), the new orders index of the Institute for

Supply Management (levels) and the Chicago Fed National Activity Index (NAI).3 Annu-

alized monthly excess returns are calculated as rext = 12 · (rt − rf,t), where rt =
∑N(t)

i=1 ri,t

and rf,t denotes the one-month T-bill rate. For the 2000 to 2011 period, we employ

observations for the ‘new’ VIX and daily realized volatilities, RVi,t, based on 5-minute

2In order to predict Et[RVt+1], Bekaert and Hoerova (2014) estimate a HAR-RV model. However,

in contrast to the GARCH-MIDAS specification, this model does not allow us to explicitly relate the

predicted variance to fundamental uncertainty.
3The NAI is a weighted average of 85 monthly national economic indicators. Positive realizations in-

dicate growth above trend, while negative realizations indicate growth below trend. Industrial production

and new orders are among the indicators considered.
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intra-day returns obtained from the website of the Oxford-Man Institute of Quantitative

Finance. Monthly realized variances are constructed as RVt =
∑N(t)

i=1 RVi,t. Otherwise, all

data are obtained from the FRED database at the Federal Reserve Bank of St. Louis.

4 Empirical Results

4.1 VRP Estimation

We estimate the GARCH-MIDAS models for the 1973 to 1999 period. Following Conrad

and Loch (2014), we include three MIDAS lag years of the macro variables and use a

restricted (ω1 = 1, i.e. strictly decreasing) Beta weighting scheme. The estimation results

presented in Table 1 basically replicate the findings in Conrad and Loch (2014) but for

a briefer sample. Specifically, for all variables the estimate of θ is highly significant and

negative, thus confirming the counter-cyclical behavior of long-term volatility. Periods of

economic growth above trend (e.g. measured by positive NAI realizations) are associated

with a decline in long-term volatility, while recession periods coincide with increasing long-

term volatility. We use out-of-sample forecasts for τt+1 and R̂V
GM

t+1 for the 2000 to 2011

period to construct our new measure of the VRP. Table 2 provides summary statistics

and Figure 1 depicts the different measures of the VRP over the out-of-sample period.4

The table also presents summary statistics for the ex-post VRP defined as V IX2
t −RVt+1.

As expected, the VRP is positive on average. Note that the different VRP measures are

much less persistent than realized volatility or the VIX squared.

4.2 Return predictability

In this section, we investigate the predictive abilities of the expected VRP measures for

future stock market returns. We rely on simple monthly regressions of the form:

1

h

h∑
j=1

rext+j = ah + bhZt + ut,t+h, (7)

4Bollerslev et al. (2014) consider the same out-of-sample period, but employ a different risk-free rate

in calculating the excess returns and base their RVt measure on daily squared returns. This explains the

slight differences in the summary statistics and the following return predictability regression results.
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where Zt ∈ {V RPt, V RPGM
t }. Following Bollerslev et al. (2014), we use Newey-West

robust standard errors.5 Table 3 presents the regression results for different horizons h,

while Figure 2 shows the estimated bh coefficients for our VRP measures along with 90%

confidence bands based on the critical values simulated in Bollerslev et al. (2014). First,

based on these critical values, V RPt significantly predicts future returns for horizons one

to five. In accordance with the theoretical model developed in Bollerslev et al. (2009),

the adjusted R2 initially increases and then decreases with expanding forecast horizon.

The maximum R2 is achieved for h = 4 months.6 Second, and most importantly, all

three proxies for the expected VRP based on the GARCH-MIDAS models have strong

predictive power for future returns with significant regression coefficients up to the 6

months horizon. At almost all horizons, the R2s from these models are markedly higher

than the ones based on V RPt. In all three cases, the maximum R2 is achieved at h = 5.

These findings suggest that our new proxy – which explicitly takes into account the state

of the macroeconomy – is a more precise measure for the ex-ante VRP than alternative

proxies and, thus, has superior forecasting power for returns. In other words, using R̂V
GM

t+1

as a measure of the expected variance clearly helps to “isolate the factor that drives the

volatility risk premium” (Bollerslev et al., 2009, p.4485).

4.3 The Ex-post VRP and Fundamental Uncertainty

In a final step, we provide an intuitive argument for the successfulness of our new measure

in predicting returns. Recall that the variance forecast from the GARCH-MIDAS model

can be written as R̂V
GM

t+1 = g̃t+1τt+1, where τt+1 reflects fundamental uncertainty. Then,

similarly to Bollerslev et al. (2012), we decompose the squared VIX into the expected

conditional variance plus the VRP. In the model of Bollerslev et al. (2012), the VRP

can be written as an affine function of fundamental uncertainty. Assuming the same

relationship, we obtain:

V IX2
t = c+ R̂V

GM

t+1 + b(τ)τt+1 (8)

or V IX2
t − R̂V

GM

t+1 = c+ b(τ)τt+1 with some constant b(τ) > 0. We test this mechanism by

first regressing V IX2
t on a constant, R̂V

GM

t+1 and τt+1 and, second, by regressing the ex-post

5We choose the same bandwidth in the Bartlett kernel as suggested in their paper. As shown in

Bollerslev et al. (2014, p.635), given the low persistence in the VRP (see Table 2), the robust t-statistics

“are reasonably well behaved” despite the overlapping nature of the return regressions.
6As in Bekaert and Hoerova (2014), we also considered a VRP based on conditional variance forecasts

from a HAR-RV model. The corresponding R2s are slightly lower.
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VRP on a constant, R̂V
GM

t+1 and τt+1. Both should be significant in the first regression,

but only τt+1 in the second one. Relying on the ex-post VRP in the second regression has

the advantage that we do not have to estimate Et[RVt+1].

Panel A of Table 4 confirms that V IX2
t is positively related to both R̂V

GM

t+1 and τt+1.

In this regression, the conditional variance forecast can be interpreted as an interaction

term: the predicted effect of a change in the long-term component is stronger the higher

the forecast for the short-term component is. On the other hand, in the regressions with

the ex-post VRP as the dependent variable, only the long-term components are highly

significant (see Panel B).7 Both regressions support our hypothesis that the long-term

volatility components from the GARCH-MIDAS models can be considered as represent-

ing the vol-of-vol factor driving the VRP.8 The fact that the counter-cyclical long-term

component drives the VRP also provides direct evidence for the conclusion of Campbell

and Diebold (2009) that expected returns are inversely linked to expected business con-

ditions. However, it should be noted that the R2s in the regressions involving the ex-post

VRP are quite low. Thus, the VRP is driven by additional factors that are not directly

captured by the long-term component, such as aggregate risk aversion and disagreement

in beliefs. However, these factors are also likely to behave counter-cyclically and, hence,

should comove with τt+1.

Finally, note that the ex-post VRP corresponds to the payoff from selling a variance

swap. Thus, when τt is increasing, the expected payoff from selling a variance swap

increases as well. Intuitively, in times of high economic uncertainty investors are willing

to pay a high premium to ensure against volatility risk.

5 Conclusions

Our results strongly confirm the theoretical insight from the models discussed in Bollerslev

et al. (2009, 2012) that fundamental uncertainty (the vol-of-vol) is an important factor

driving the VRP. In particular, we show that our new VRP measure, which is based on a

volatility component reflecting the ‘state of the macroeconomy’, has considerably higher

predictive power for future stock market returns than previously suggested measures.

7Additionally including the lagged ex-post VRP does not change our result.
8Our findings are in line with Bollerslev et al. (2011) who estimate a time-varying VRP that is driven

by macroeconomic state variables and report that, e.g., higher industrial production leads to a decrease

in the VRP.
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6 Figures and Tables
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Figure 1: Different measures of the VRP for the January 2000 to December 2011 period.

Shaded areas represent NBER recessions.
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Figure 2: Estimated regression coefficients for the different VRP measures in the return

predictability regressions (equation (7)) with 90% confidence bands based on Newey-West

standard errors and the simulated critical values from Bollerslev et al. (2014).
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Table 1: GARCH-MIDAS model estimation

Variable µ α β γ m θ ω2 LLF

Ind. prod. 0.0348???
(0.0098)

0.0253???
(0.0068)

0.9153???
(0.0239)

0.0773??
(0.0305)

−0.0003
(0.1647)

−0.0531???

(0.0144)
4.2582???
(1.0124)

−8660.61

New orders 0.0339???
(0.0098)

0.0233???
(0.0069)

0.9176???
(0.0225)

0.0784???
(0.0295)

2.5077???
(0.6514)

−0.0481???

(0.0115)
4.6872??
(2.0799)

−8655.37

NAI 0.0343???
(0.0098)

0.0250???
(0.0069)

0.9158???
(0.0230)

0.0782???
(0.0299)

−0.0806
(0.1657)

−0.3503???

(0.0889)
7.2203??
(2.9228)

−8658.29

Notes: The table reports estimation results for the GARCH-MIDAS model including 3 MIDAS lag years of a monthly macro

variable X, i.e the long-run component is specified as log(τt) = m + θ ·
∑K
k=1 ϕk(ω1, ω2)Xt−k with K = 36. The three

variables require a restricted Beta weighting scheme with ω1 = 1, see Conrad and Loch (2014) for details. All estimations are

based on daily return data from January 1973 to December 1999 and include monthly macroeconomic data beginning in January

1970. LLF is the value of the maximized log-likelihood function. The numbers in parentheses are Bollerslev-Wooldridge robust

standard errors. ???, ??, ? indicate significance at the 1%, 5%, and 10% level.

Table 2: Summary statistics

Variable Mean Std. dev. Skew. Kurt. AC(1)

Excess returns −3.57 57.39 −0.58 3.89 0.15

RV 30.77 48.35 6.01 50.38 0.62

VIX2 46.82 42.35 2.89 14.28 0.81

VRP 16.02 23.89 −3.08 30.61 0.14

VRPGM - Ind. prod. 14.04 21.99 −3.45 34.75 0.13

VRPGM - New orders 13.27 20.78 −2.66 23.92 0.34

VRPGM - NAI 11.96 21.89 −3.63 33.28 0.24

VRP ex-post 16.07 39.83 −5.02 47.65 0.26

Notes: Summary statistics for monthly excess returns and different mea-

sures of the VRP, see Section 2.2. Monthly excess returns are constructed

using the one-month T-bill rate as the risk-free rate and are in annualized

percentage form. Monthly realized volatility (RV ) is the sum of daily re-

alized volatilities based on 5-minute intra-day returns. V IX2 denotes the

squared ‘new’ VIX index in monthly units. The out-of-sample period ex-

tends from January 2000 to December 2011 and includes 144 observations.
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Table 3: Return predictability regressions

Variance Premium Horizon 1 2 3 4 5 6 9 12

VRP Constant -12.28 -11.53 -11.62 -11.09 -9.59 -8.18 -6.18 -5.49

( -2.45 ) ( -2.32 ) ( -2.49 ) ( -2.27 ) ( -1.99 ) ( -1.69 ) ( -1.24 ) ( -1.10 )

VRP 0.57 0.54 0.53 0.50 0.41 0.32 0.18 0.15

( 3.91 ) ( 3.09 ) ( 4.42 ) ( 5.13 ) ( 3.91 ) ( 2.78 ) ( 1.77 ) ( 1.60 )

adj. R2 4.69 7.60 11.28 12.58 9.60 6.40 2.39 2.02

VRPGM - Ind. prod. Constant -13.52 -13.33 -11.35 -10.47 -10.79 -9.28 -6.90 -5.67

(-2.15) (-2.32) (-2.16) (-2.00) (-1.99) (-1.76) (-1.38) (-1.17)

VRP 0.76 0.76 0.60 0.54 0.57 0.46 0.26 0.18

(3.43) (7.20) (5.17) (4.81) (5.70) (4.47) (2.50) (1.76)

adj. R2 7.62 13.78 12.66 12.75 16.44 11.78 5.12 3.11

VRPGM - New orders Constant -14.36 -14.53 -13.11 -11.83 -11.36 -9.60 -6.80 -5.54

(-2.31) (-2.61) (-2.52) (-2.26) (-2.11) (-1.83) (-1.37) (-1.15)

VRP 0.87 0.90 0.78 0.68 0.65 0.51 0.27 0.19

(3.40) (7.30) (6.20) (5.77) (6.12) (4.88) (2.43) (1.59)

adj. R2 9.06 17.39 19.04 18.23 19.10 13.15 4.79 2.72

VRPGM - NAI Constant -12.81 -12.63 -11.17 -10.10 -9.87 -8.34 -6.01 -4.88

(-2.25) (-2.40) (-2.24) (-2.00) (-1.89) (-1.61) (-1.21) (-1.01)

VRP 0.84 0.84 0.70 0.61 0.60 0.46 0.24 0.15

(3.88) (7.91) (6.01) (5.82) (6.35) (4.83) (2.30) (1.43)

adj. R2 9.33 16.79 17.07 16.17 17.81 11.80 3.86 1.77

Notes: Monthly return predictability regressions 1
h

∑h
j=1 r

ex
t+j = ah+bhZt+ut,t+h with Zt ∈ {V RPt, V RPGMt }. In parentheses,

we present t-statistics based on Newey-West standard errors, where we adjust the bandwidth in the Bartlett kernel following Bollerslev

et al. (2014). The adjusted sample period extends from February 2000 to January 2011 and includes 132 observations. Adjusted R2

in percentage form.

Table 4: The ex-post VRP and fundamental uncertainty

c b(RV ) b(τ) adj. R2

Panel A: VIX2 (depend. Var.)

Ind. prod. −18.72
(−1.71)

0.81
(6.36)

41.12
(3.44)

77.05

New orders −10.59
(−1.35)

0.74
(8.20)

34.70
(3.77)

82.27

NAI −7.52
(−1.07)

0.71
(6.99)

26.69
(3.74)

80.34

Panel B: Ex-post VRP (depend. Var.)

Ind. prod. −28.38
(−2.02)

−0.19
(−0.66)

53.42
(3.31)

5.20

New orders −22.13
(−2.19)

−0.15
(−0.61)

45.81
(3.33)

6.10

NAI −18.50
(−2.27)

−0.19
(−0.78)

37.26
(3.68)

6.88

Notes: Regression results for

Panel A: V IX2
t = c + b(RV ) R̂V

GM
t+1 + b(τ) τGMt + ξt

Panel B: Ex-post VRPt = c + b(RV ) R̂V
GM
t+1 + b(τ) τGMt + ξt

with Ex-post VRPt = V IX2
t − RVt+1.

The numbers in parentheses are t-statistics based on Newey-West standard errors. The

sample period extends from January 2000 to December 2011. Adjusted R2 in percentage

form.
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