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Abstract 
 

Breast cancer is not a single disease as it can be classified into different subtypes 

according to cellular composition, morphology, proliferative index, genetic lesions 

and therapeutic responses. The molecular and cellular mechanisms underpinning 

tumor heterogeneity remain a central question in the cancer biology field. To explain 

the multitude of breast cancer phenotypes, it has been proposed that tumor-initiating 

cells (TICs) might originate from different cells within the mammary lineage. Further, 

different oncogenes might elicit distinct phenotypes in a given cell, adding to the 

complexity of the disease. Single oncogene amplification is observed in human 

breast tumors. For instance, the human epidermal growth factor receptor type-2 

(HER2) proto-oncogene (also called ErbB2, or Neu) is amplified in about 20% of 

human breast cancers and associated with aggressive phenotypes and poor 

prognosis. Similarly, 16% of breast cancers have c-Myc gene amplification. Yet, it 

remains largely disputed which mammary cell type responds to a specific initiating 

oncogenic mutation. We decided to take a forward approach by testing two 

contrasting potent oncogenes, Neu (murine form of HER2) or c-Myc, that are 

frequently overexpressed in breast cancer patients for their capacity to transform 

different cells of the mammary lineage. 

A number of transgenic mouse mammary tumor models have been generated that 

mimic human breast cancers. Previous studies reported that TICs of Neu driven 

tumors are the luminal progenitor cells. These studies made use of a mouse model 

that constitutively overexpressed the Neu oncogene in mouse mammary glands 

under the MMTV promoter. In contrast, c-Myc overexpressing tumors show a 

heterogeneous mixed phenotype that is composed of both luminal and myoepithelial 

cells. Due to the presence of bi-lineage derived cells, we hypothesized that the TICs 

of c-Myc tumors are the bi-potent stem cells. To clarify the identity and 

characteristics of TICs, we employed tractable mouse models, Tet-On-Neu/MMTV-

rtTA and Tet-On-Myc/MMTV-rtTA, in which we can induce the overexpression of an 

oncogene at any given time point by administration of doxycycline. The possibility to 

induce overexpression of an oncogene at adulthood (8-9 weeks after birth) closely 

recapitulates the timing of somatic mutations acquired by breast cancer patients. In 

order to demonstrate the direct contribution of distinct breast epithelial cellular 

lineages to Myc and Neu driven tumorigenesis, we took a FACS approach to 

separate bi-potent adult stem cells from lineage-committed progenitor cells and 

differentiated cells. We transplanted the purified cell populations, then induced 

oncogenes by administration of doxycycline and observed tumor formation in vivo. 
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These tumors obtained from the transplantation experiments were compared with the 

natural arising primary mammary tumors from Tet-On-Neu/MMTV-rtTA and Tet-On-

Myc/MMTV-rtTA by their histological and molecular features. In parallel, we also 

monitored the clonal growth of these sorted cells in vitro after oncogene 

overexpression using organotypic 3D cell culture assays. Taken together and 

partially in contrast to our initial hypothesis, Neu induced tumors that are composed 

of luminal cells can originate not only from the luminal-committed progenitors but 

also from the bi-potent stem cells. Moreover, luminal committed progenitors were 

able to give rise to c- induced tumors that are composed of both luminal and 

myoepithelial lineages. We currently validate our findings by employing additional cell 

surface antibodies to closer define and sub-fractionate mammary cellular lineages 

and by an in vivo lineage tracing approach.  

Our results suggest that Neu and c-Myc TICs can arise from different cellular 

subtypes in the mammary gland. Notably, progenitor cells seem to be able to 

establish tumors that consist of basal and luminal cells. These results add to the 

growing notion that genetic predisposition directs cell fate towards distinct breast 

cancer phenotypes. 
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Zusammenfassung 
 

Brustkrebs ist eine komplexe Erkrankung, die hinsichtlich ihrer zellulären 

Komposition, Morphologie, proliferativem Index, genetischer Disposition und 

Therapierbarkeit, in verschiedene Subtypen klassifiziert werden kann. Die 

Erforschung der molekularen und zellulären Mechanismen, welche der 

Tumorheterogenität zugrunde liegen, ist daher ein Hauptanliegen der 

Krebsforschung. Eine mögliche Erklärung für die Vielfalt der Brustkrebstypen, 

vermutet man in den sogenannten tumor-iniziierenden Zellen (TIZ) die aus 

unterschiedlichen Zellen innerhalb der Brustzelltypen entstehen. Desweiteren 

können verschiedene Onkogene unterschiedliche Phenotypen in ein und derselben 

Zelle bewirken, was zur Komplexität der Krankheit beiträgt. In vielen humanen 

Brusttumoren wird eine erhöhte Expression von nur einem einzelnen Onkogen 

gefunden. So ist zum Beispiel bei ungefähr 20% der humanen 

Brustkrebserkrankungen das Proto-Onkogen Epidermaler Wachstumsfaktor 

Rezeptortyp-2 (HER2, auch ErbB2 oder Neu genannt) hoch reguliert und mit 

aggressiven Phenotypen und schlechten Prognosen assoziiert. Ein weiteres 

Onkogen, c-Myc, wird bei 16% der Brustkrebserkrankungen erhöht exprimiert. Dabei 

ist es nicht klar, welche Zellen des Brustgewebes auf eine onkogene Mutation 

reagiert und damit zur TIZ wird.  
 

In dieser Arbeit wurden die zwei oben genannten wichtigen Onkogene hinsichtlich 

ihrer Kapazität untersucht, die verschiedenen Zelltypen der Brustdrüse in TIZ zu 

transformieren. 
 

Dazu wurde eine Anzahl von transgenen Maus-Brusttumormodelle generiert, die den 

humanen Brustkrebs nachahmen soll. Frühere Studien berichteten, dass TIZ von 

Neu gesteuerten Tumoren, ursprünglich luminale Vorläuferzellen waren. Im dabei 

benutzten Mausmodell wurde Neu über den MMTV Promoter überexprimiert. Im 

Gegensatz dazu zeigen c-Myc überexprimierende Tumore einen eher heterogenen 

Phenotyp der aus luminalen und myoepithelialen Zellen besteht. Aufgrund der 

Anwesenheit von diesen beiden Zelltypen vermuteten wir, dass TIZ aus c-Myc 

Tumoren bi-potente Stammzellen sein müssten. Um die Herkunft von TIZ zu 

untersuchen, verwendeten wir ein induzierbares Mausmodell, in welchem wir die 

Überexpression eines Onkogens zu einem bestimmten Zeitpunkt mit der 

Verabreichung von Doxycyclin induzieren konnten. Die Möglichkeit der zeitlich 

steuerbaren Überexpression eines Onkogens im erwachsenen Tier erlaubt damit 
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eine größtmögliche Annäherung an humane Brustkrebsfälle hinsichtlich des 

biologischen Alters. 
 

Um den direkten Beitrag von verschiedenen Brustepithelzelltypen zur Entstehung 

eines Tumors zu demonstrieren, wurden bi-potente Stammzellen aus Vorläufer- und 

differenzierten Zellen mittels Durchflusszytometrie (FACS) isoliert. Diese 

Zellpopulationen wurden dann transplantiert und die Onkogenexpression induziert, 

um die Tumorentstehung in vivo zu beobachten. Die von den 

Transplantationsexperimenten erhaltenen Tumore wurden mit den bereits oben 

beschriebenen direkt induzierten Tumoren verglichen. Parallel dazu wurden in einem 

in vitro Ansatz isolierte bipotente Stammzellen mittels einer organtypischen 3D 

Zellkultur nach Induktion auf ihre Eigenschaften hin untersucht.  
 

Zusammenfassend lässt sich nun sagen, dass Neu-induzierte Tumore, die 

hauptsächlich aus luminalen Zellen bestehen, nicht nur aus luminalen 

Vorläuferzellen entstehen können, sondern auch aus bi-potenten Stammzellen. C-

Myc induzierte Tumore, die sowohl aus luminalen als auch aus myoepithelialen 

Zellen bestehen, können hingegen aus luminalen Vorläuferzellen enstehen. Zur Zeit 

validieren wir unsere Entdeckungen mit Hilfe von zusätzlichen Zelloberflächen 

Antikörper um die Brustzelltypen besser zu identifizieren und in Subtypen zu 

unterteilen.  
 

Unsere Ergebnisse zeigen, dass TIZ aus Neu und c-Myc induzierten Tumoren aus 

unterschiedlichen Zelltypen in der Brustdrüse entstehen können. Auffallend ist, dass 

Vorläuferzellen scheinbar in der Lage sind Tumore zu bilden, die aus Lumen- und 

Basalzellen bestehen. Dieses Ergebnis bestätigt, dass genetische Prädispositionen  

verschiedene Brustkrebs Phenotypen bewirken. 
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1. Introduction 

1.1 Overview of breast cancer, a complex disease  

Breast cancer is one of the most prevalent cancers worldwide1. WHO 2013 Report 

on Global Health Estimates stated that over 508000 women died of breast cancer in 

2011. The GLOBOCAN 2012 (estimated age-standardized incidence and mortality 

rates) reported that in women, breast cancer is the cancer of highest incidence 

(25.2%) followed by colorectal (9.2%) and lung (8.8%) cancer2,3. Moreover, breast 

cancer is one of the leading causes of cancer deaths in women (14.7%), closely 

followed by lung cancer (13.8%)2,3. Globally, among the female population, breast 

cancer incidence rate vary significantly between Western Europe (89.7 per 100000) 

and Eastern Africa (19.3 per 100000)4. Although it is rather rare, breast cancer is 

also found in male population (1 per 100000)5. 

1.2 Breast cancer heterogeneity 

Breast cancer like other cancers encompasses a number of diseases. The different 

breast cancer types can be identified according to their cellular composition, 

morphology, proliferative index, genetic lesions and therapeutic responses. Breast 

cancer can be classified into at least five molecular subtypes (Luminal A, Luminal B, 

HER2 positive, Claudin-low, and Basal-like) and 18 histological subtypes6-8. 

Clinically, it is crucial to identify the molecular subtypes of breast tumor as the 

treatment option can differ significantly (Introduction 1.4). One of the major factors 

that is known to determine the molecular subtypes is the genetic mutations 

(Introduction 1.3). Depending on the type of oncogenes, the resultant tumors may 

differ. Genetic instability is also proposed to contribute to tumor heterogeneity9. 

Another possible factor that may contribute to the tumor heterogeneity is a presence 

of Cancer Stem Cells (CSCs), a fraction of tumor cells that can self-renew, similar to 

the normal stem cells, and give rise to different lineages of tumor cells resulting in 

clonal tumor heterogeneity10. In addition, depending on the tumor initiating cells 

(TICs) or the tumor cell-of-origin, the response to the oncogenic cue may differ 

resulting in tumor heterogeneity (Introduction 1.6).  

 

 

 



	  
19 

1.3 Tumor driving genetic mutations 

Hanahan and Weinberg11,12 described several hallmarks of cancer including different 

biological capabilities acquired by human tumors. Among those, self-sufficiency in 

growth signals caused by mutations and amplifications of oncogenes are potent 

drivers of human cancers. As it was mentioned above (Introduction 1.2), one of the 

known factors of the breast tumor heterogeneity is the nature of the oncogenic 

mutation and/or loss of tumor suppressor genes. Tables 1. and 2. summarize the 

main oncogenes overexpressed in human breast cancer and the tumor suppressor 

genes that are lost or mutated. Among these, HER2 (Human Epithelial Receptor 2) 

and c-Myc (v-myc avian myelocytomatosis viral oncogene homolog) oncogene 

amplification are major contributors to human breast cancers (Figure 1.). Interestingly, 

HER2 and c-Myc oncogenes give rise to distinct and rather contrasting tumor 

phenotypes as further discussed below (Introduction 1.3.1, 1.3.2). Therefore, we 

focused our study on these two oncogenes. 

 

Table 1. Major oncogenes up-regulated in breast cancer13 
Oncogenes Function  Percentage relevance in breast 

cancer  
HER-2  Tyrosine kinase receptor, play a critical role in 

development, activate MAPK, PI3K signaling 
pathways 

Amplification 20–30% 14-16 

c-Myc Transcription factor, regulate genes involved in 
proliferation, apoptosis, differentiation  

Amplification 1-94%, 15.5% in 
average 17,18 

Cyclin D1 Cell-cycle mediator, regulate cell cycle progression Amplification 15-20% 19,20 
Ras GTPase, regulates signaling pathways involved in 

proliferation, differentiation, apoptosis, cell adhesion 
and migration 

Amplification <5% 21 

PI3K Lipid Kinase, regulate cellular growth, 
differentiation, metabolism, cell survival, 
proliferation cell cycle, and protein synthesis 

Mutation 21–40% 22 

MAPK Protein kinase, regulate cell proliferation, gene 
expression differentiation mitosis cell survival, 
apoptosis 

Mutation MAP3K1 in 6% 23 

Akt1 Serine-threonine protein Kinase, play a role in 
cellular growth, proliferation, survival and 
angiogenesis 

Mutation 1.8–8% 22 

 

Table 2. Major tumor suppressor genes lost or mutated in breast cancer13 
Tumor suppressors Function  Percentage relevance to breast 

cancer  
p27 (CDKN1B, KIP1) 
 

Inhibit cyclin-dependent protein kinases; arrest cell 
cycle in G 

Mutation 1% 13 

BRCA-1/ BRCA-2 Repair DNA double strand breaks Mutation 5-10% 24 
CHK2 Cell cycle checkpoint kinase, arrest cell cycle upon 

DNA damage 
Mutation 1% 25 (1100delC variant) 

p53 Activate DNA repair, induce cell cycle arrest, 
initiate apoptosis, cell-cycle checkpoint activation 

Mutation 20% 26 

ATM Serine-threonine protein Kinase, phosphorylates 
key proteins including p53, CHK2, H2AX 

Two fold increase in the risk 27 

PTEN Lipid/protein Phosphatase, negative regulator of 
Akt signaling pathway 

PTEN Loss 30‑40%  
Mutation PTEN <5% 28 

Rb Retinoblastoma gene, cell cycle control checkpoint 
at G1 phase 

RB1 loss of heterozygosity 29 
(LOH) 
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Figure 1. Single- and co-amplification of HER2 and Myc (c-Myc) were present in human breast cancer. Analysis of 

the Cancer Genome Atlas cohort using the cBio data portal30.  

 

1.3.1 HER2 oncogene and HER2 driven tumor  

As shown in Table 1., HER2 gene amplification is reported in 20-30% of breast 

cancer cases and correlated with cases of aggressive tumor, and poor prognosis31,32. 

HER2 (also known as Neu, ErbB2) gene is located on chromosome 17q12-q21 and 

encodes a 185-kDa trans-membrane tyrosine kinase growth factor receptor33,34. 

There are no specific ligands that only bind to HER2 receptor; this results in allowing 

HER2 to homo- or hetero- dimerize with other members of HER family (HER1, HER3, 

HER4) in various patterns35. Hetero-dimerization HER1-HER2 is common and 

preferentially activates Mitogen-activated protein kinase (MAPK) pathway that 

controls both cell proliferation and apoptosis. Another common hetero-dimerization of 

HER2-HER3 can initiate phosphatidylinositol 3-kinase (PI3K) pathways amongst 

others, leading to activation of multiple transduction cascades that affect cellular 

growth, differentiation, metabolism, cell survival, proliferation cell cycle, and protein 

synthesis22. HER2 expression is one of the key criteria for the breast cancer 

molecular subtype classification. HER2 positive tumors were known to be rather 

homogeneous, however, recent gene expression studies indicated that almost 50% 

of HER2 amplified tumors predominantly fall into the clinical Luminal subtypes36. 

1.3.2 Myc oncogene and Myc driven tumors 

The c-Myc (Myc) genome amplification found in breast cancer varies; a meta 

analysis study found its amplification in the range of 1% to 94% (in average 
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15.5%)17,18. In line with the meta analysis, a recent fluorescent in situ hybridization 

(FISH) study by Nair et al. reported that 15% of human breast cancers express Myc 

gene amplification (Figure 1.)30. The percentages of Myc overexpression in breast 

cancer may increase up to 22-35% at mRNA level, and approximately 40% at protein 

level37. Myc gene is located on chromosome 8q24 and encodes a transcription factor 

that binds to thousands of promoters. Myc orchestrates various target gene 

expression that are essential in cellular proliferation, differentiation and apoptosis38. 

Myc overexpressing tumors exhibit high degree of heterogeneity, however, the 

majority are classified as an aggressive basal-like breast cancer phenotype of with 

poor prognosis37,39. Moreover, Myc overexpression is associated with other 

oncogenes and tumor suppressor gene mutations. Myc amplification is found in 53% 

of BRCA1 (breast cancer 1, early onset) mutated basal-like breast tumors40. A small 

fraction (2.4%) of HER2 and Myc co-amplification was are also described (Figure 

1.)30. 

1.4 Breast cancer treatment options to date 

Since mammary tumor is a heterogeneous disease, a wide variety of treatment 

options are available depending on the breast tumor subtypes. Current standard 

breast cancer treatments include surgical removal of the tumor (breast-conserving 

surgery or mastectomy), radiation therapy, chemotherapy, hormone therapy and 

targeted therapy. Here are the examples of therapies that are specific for the tumor 

subtypes. Tamoxifen, a selective estrogen receptor (ER) modulator, and aromatase 

inhibitors that prevent conversion of testosterone into estrogen are examples of 

hormone therapy used in breast cancers that are categorized as ER positive41.  

Over the last three decades (from 1980s onwards), it became evident that some 

tumors are dependent on certain driving oncogenic mutations for their growth and 

maintenance42,43. As described above, in human breast carcinoma, there is a clear 

involvement of oncogene as the driver of diseases progression. Development of so-

called targeted therapies, blocking the specific oncogenic signaling pathway, has 

improved the treatment of the oncogene addicted breast tumor subtypes significantly. 

As one of the examples, in case of HER2 positive tumor subtypes, a humanized 

recombinant monoclonal antibody, trastuzumab is used and combination therapy of 

trastuzumab with other chemotherapeutic agents increases survival and therapeutic 

response rates44. The mechanism of action of trastuzumab seems to include many 

processes such as cytotoxicity effect, inhibition of receptor dimerization, stimulation 
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of HER2 endocytosis and removal of HER2 from the cell membrane45,46. 

Trastuzumab was shown to bind to the juxtamembrane region of HER2 and block 

their kinase activation47. Pertuzumab, a newer generation of monoclonal antibody 

was developed owning a different bind sites from trastuzumab on HER2. Pertuzumab 

prevents the dimerization of HER2 with other HER family members (HER1, 2 and 

4)48. Targeted therapy is frequently used in conjunction with other conventional 

therapies including surgery, chemotherapy and radiation therapy. A combination 

therapy of pertuzumab with trastuzumab and docetaxel significantly improved 

prolonged progression-free survival of HER2 positive metastatic breast cancer 

patients with no major cardio-toxicity that was the main adverse affect in the 

Trastuzumab mono-therapy49. A small molecule Lapatinib, a dual kinase inhibitor of 

HER1 (EGFR) and HER2, is also shown to be effective for the treatment of HER2 

positive breast tumors.  

Despite of the considerable therapeutic improvement, tumor cells eventually develop 

a drug resistance not only to the chemotherapeutic agents but also to the targeted 

therapy. Moreover, the mortality rate of breast cancer remains high due to the issue 

of tumor recurrence. This could be due to the failure to eradicate all the tumor cells 

especially the ones that are responsible for tumor initiating and progression. One 

potential reason for tumor relapse roots in the existence of CSCs, also mentioned 

above. The CSC hypothesis is an evolving concept in tumor biology. It was first 

identified in acute myeloid leukemia (ALM) that a fraction of tumor cells are able to 

self-renew and give rise to different lineage of cancer cells50,51. Increasing evidence 

support that the majority of cancer cells are non-tumorigenic, and only a small 

fraction of tumor cells are capable of forming new tumors upon transplantation. A 

number of studies attempt to identify the CSCs that are responsible for relapse of 

tumor, resistance to the therapy, and metastasis to other organs. In the cases that 

tumors are dependent on their CSCs for their proliferative capacity, targeting the 

CSCs have a therapeutic implication. Since current standard therapies target the 

bulk of tumor cells, development of the CSC specific targeted therapy could be a 

novel and efficient therapeutic approach. 

1.5 Mouse model to study human cancer 

Currently, a number of genetically engineered mammary tumor mouse models are 

available for studying genetic aberrations found in human breast cancer. However, it 

is essential to identify murine models that conserve clear relevance to human cancer. 

A recent transcriptomic classification study identified murine models and their human 
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breast cancer subtype counterparts7. Overexpression of oncogenes such as Neu 

(Murine form of HER2) and Myc in mouse mammary gland can lead to the 

development of mammary tumors that mimic respective human breast cancer 

subtypes.  

In the last three decades, genetically engineered mouse models (GEMMs) have 

been used increasingly for better understanding of human cancers52. Transgenic 

mouse models that overexpress oncogenes such as Myc53 or knock-out mouse 

models that lack tumor suppressor genes such as p5354,55 are valuable tools to study 

the mechanisms of tumorigenesis, tumor recurrence, metastasis, drug resistance, 

biomarkers, and drug screenings.  

Several conventional transgenic mouse mammary tumor models have been 

described including MMTV-Neu56,57 and MMTV-c-Myc58. In these models, the 

overexpression of the oncogene is achieved by tissue specific mouse mammary 

tumor virus (MMTV) promoter in a constitutive manner from the embryonic stage. 

MMTV promoter is expressed in mammary epithelial cells as well as striated ductal 

cells of the salivary gland. MMTV promoter has been the most widely used mammary 

tissue specific promoter, however, there are other mammary tissue specific 

promoters including whey-acidic-protein (WAP)59 and Beta-lactoglobulin (BLG)60 

expressed during lactation.  

In 1999, tractable transgenic mouse models were first reported (e.g. Myc in 

hematopoietic cells, HrasG12V in the skin)61-63. In contrast to constitutive oncogene 

overexpression, the inducible transgenic systems allow the induction and de-

induction of transgene expression at any given time point. One of the examples is the 

tetracycline inducible system where the original tetracycline-controlled transcriptional 

activator (tTA) is a regulator with tight control of target gene expression (Tet-Off 

system) and its expression is turned off in the presence of doxycycline. In contrast, 

the reverse tetracycline-controlled transcriptional activator (rtTA) activates the 

responsive elements only in the presence of doxycycline (Tet-On system)64. In case 

of the Tet-On system, these three following components are needed in order for 

them to function (Figure 2); 1) the rtTA under the control of the tissue specific 

promoters such as Mouse Mammary Tumor Virus (MMTV), 2) the Tet-Operator 

(TetO) repeats cloned upstream the transgene of interest, 3) the 

tetracycline/doxycycline that allow the rtTA to bind to the TetO repeats and drive 

transgene expression. In contrast to the constitutive oncogene overexpressing 

mouse models, this Tet-On system is an attractive tool that, for example, allows us to 
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study the transition between normal physiological state and tumorigenic state from 

the adulthood. Moreover, the withdrawal of doxycycline can mimic an oncogene-

targeted therapy. Further studies such as tumor oncogene addiction and tumor 

relapse can be carried out using this GEMM.  

 

Figure 2. Schematic representation of tetracycline inducible Tet-On system. In the presence of Doxycycline, rtTA 

(reversed tetracycline trans-activator) binds to TetO repeat that allow the transcription of the target gene (oncogene). 

For instance, rtTA can be driven by MMTV mammary gland tissue specific promoter.  
 

One of the examples of conventional knock-out mouse model is Rag1-/- immuno-

compromised mice. In this model, the recombination-activating genes (Rag) that 

encode enzymes involved in the process of VDJ recombination are disrupted in a 

constitutive manner65. Therefore, Rag1-/- mice lack B and T lymphocytes. 

Alternatively, the conditional knock-out models can eliminate expression of a 

functional gene in tissue specific manner by the use of either loxP site for Cre 

recombinase or Frt site for Flp recombinase. Unlike the tetracycline inducible system, 

once the recombination takes place, the excision is irreversible. Yet, conditional 

knock-outs are frequently used for studying loss-of-function of specific genes. In 

cancer research, these mouse models revealed the functions of a number of tumor 

suppressor genes including p53, Rb, BRCA-1, and BRCA-266.  

The Cre/loxP or Flp/FRT recombinase can also be used to conditionally express a 

mutant gene of interest, referring to the knock-in models. In contrast to the 
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conventional transgenics that involves random insertion, a knock-in is a targeted 

insertion of gene into a specific locus. In addition, the modification of recombinase to 

contain an estrogen-responsive moiety, Cre-ER or Cre-ERT2, enabled to control the 

gene activation by the administration of estrogen analogue, tamoxifen67.  

The use of a combination of mouse genetics enabled the current lineage tracing 

approach possible. Lineage tracing is an identification of progeny that originates from 

a single cell68. A single cell is genetically labeled and the label is transmitted to all its 

progeny, resulting in a set of labeled clones. In 2007, Clevers and his colleagues 

identified a Wnt-targeted gene Lgr5 as a marker of the intestinal stem cells 

generating a knock-in mouse, Lgr5-eGFP-CreERT269. In this model, all the Lgr5 

positive cells expressed EGFP (enhanced Green Fluorescent Protein). However, 

further cross with a Cre-reporter line and generation of a bi-transgenic mouse model 

Lgr5-eGFP-CreERT2/Rosa26-LacZ allowed the labeling of a small fraction of Lgr5 

positive stem cells to express LacZ upon administration of tamoxifen70. This 

approach permits the tracing of the progeny of the Lgr5 positive stem cells during the 

intestinal development. Furthermore, a combination of this bi-transgenic mouse 

model with APCflox/flox colon cancer mouse model71 (loss of function of Adenomatous 

polyposis coli (APC) gene caused by Cre-loxP mediated recombination) led to the 

identification of the contribution of Lgr5 positive stem cells in the intestinal 

tumorigenesis72.  

There are varieties of Cre-reporter mouse models currently available including 

Rosa26-LacZ, Rosa26-EGFP73 and Rosa26-YFP74. Recently created Rosa26-

Brainbow2.1 (Confetti) reporter line would further provide us the opportunity to study 

the heterogeneity of individual clones by multi-colored fluorescent protein labeling75,76. 

This new generation of mouse genetics is an attractive tool to study not only cell and 

developmental biological questions but also in contest of tumor biology.  

1.6 Tumor initiating cells (Tumor Cell-of-Origin) 

Accumulating evidences support that tumors of distinct subtypes could be derived 

from different “cell-of-origin”77. As described above, one of the factors contributing to 

tumor heterogeneity is the different driving oncogenic mutations78. However, one 

oncogene could give rise to heterogeneous tumors that are classified into different 

molecular subtypes. To explain the multitude of breast cancer phenotypes, it has 

been postulated that the differences in the tumor cells-of-origin or the Tumor Initiating 

Cells (TICs) might play a role.  
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There are similarities between CSCs and normal stem cell characteristics (self 

renewal and differentiation capacity), however, CSCs do not necessarily originate 

from stem cells79. CSCs are a fraction of tumor cells that have an ability to self-

renewal and differentiate whereas TICs or the tumor cell-of-origin are the normal 

cells that acquire the first genetic mutation that initiate tumorigenic proliferation77. It is 

a long-standing question in the tumor biology field that which cell types would first 

respond to somatic oncogenic mutation in early stages of mammary tumorigenesis. 

Any of the cell types within the breast epithelial hierarchy could serve as the TICs, 

however, the cell-of-origin may differ depending upon the given genetic mutations 

and tumor subtypes.  

1.6.1 Tumor initiating cells in BRCA-1 mutated tumors 

BRCA-1 mutation (185delAG, 5382insC) was first identified as the genetic 

predisposing mutation for increasing the risk of breast and ovarian cancers80. BRCA 

mutations are found in approximately 5-10% of breast cancer81. The TICs or the cell-

of-origin of BRCA-1 mutation driven breast tumors is one of the well-studied 

examples. Although the stem cells or myoepithelial/basal cells are assumed to be the 

TICs of basal-like tumors, the population that altered their growth properties upon 

BRCA-1 mutation was, unexpectedly, the luminal progenitor cells82. A further study 

using mouse mammary tumor models bearing inactivation of BRCA-1 with p53+/- 

background found that the luminal cell population initiated basal-like tumors that 

resembles the tumors found in BRCA-1 mutation carriers83. More recently, using non-

plastic human tissue from BRCA-1 mutation carriers, BRCA-1 mutated luminal cells 

developed basal-like tumors upon transplantation into the humanized mouse 

mammary fat pad84. This study also suggested a possible mechanism of cellular 

lineage transition by up-regulation of Slug protein expression. All three studies 

suggest that BRCA-1 mutation can influence cellular differentiation of the luminal 

progenitor population toward a myoepithelial-basal like state. In addition, it suggests 

that the tumor phenotypes may not directly reflect the original cellular lineage where 

TICs reside. 

1.6.2 Tumor initiating cells in HER2 driven tumors 

Various studies using mouse models attempted to identify the cellular origin of TICs 

that give rise to HER2 positive tumors. However, it became a controversial question 

in the field85,86. In 2004, partially-identified mammary epithelia cells (PI-MECs) were 

suggested as the targets of MMTV-NEU driven tumors87. PI-MECs are a fraction of 
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cells that are identified in non-pregnant, parous mice, Wap-Cre/Rosa-LacZ. The 

identity of PI-MEC was further revealed as a pregnancy-induced stem-like population 

by the cell surface protein expression, CD24positive/CD49hi, identical to the adult 

mammary stem cells88. Another report by Jeselsohn et al. indicated that the target of 

MMTV-NEU is alveolar lineage committed progenitors89. This study suggested 

cycline D1 activity is critical for the self-renewal and differentiation of lobulo-alveolar 

development progenitors as well as Neu driven tumorigenesis.  

More recently, there are three studies indicated that TICs in MMTV-NEU tumors 

originate from CD24positive luminal progenitor cells89-91. The expansion of 

CD24highCD49fmid/low luminal progenitor population was found in pre-neoplastic 

MMTV-HER2/Neu mammary glands and displayed additional luminal lineage specific 

cell surface marker Ep-CAMhigh 91. Moreover, the gene expression profiles of MMTV-

HER2/Neu tumor cells were closely correlated to the gene signature of luminal 

progenitors. 

To date, the majority of studies agree that the luminal progenitor population is the 

TICs of Neu overexpressing tumors. However, the origin and identity of TICs are yet 

to be determined, since one of the withdrawals in all those reports is the use of the 

constitutive Neu overexpressing mouse mammary tumor model. Use of tractable 

oncogenic mouse models that can closely mimic the somatic mutation of HER2 in 

patients may clarify the true cell-of-origin of Neu driven tumors.  

1.6.3 Tumor initiating cells in Myc driven tumors 

Myc amplified human breast tumors are known to exhibit a basal-like phenotype with 

a high degree of heterogeneity37,39. The tumors obtained from MMTV-Myc, a 

constitutive Myc overexpressing mouse mammary tumor model, also showed a clear 

heterogeneity confirmed by both histological and gene expression profile92. Using an 

inducible transgenic mouse model (Tet-On-Myc/MMTV-rtTA), Myc driven breast 

cancer was subjected to the oncogene withdrawal that mimics targeted therapy93. 

Myc-dependent tumor regressed as expected, however, a subset of tumors that 

acquired de novo mutation grew Myc-independent tumors. This would also mimic the 

cases of acquired drug resistance seen in patients. Myc-independent tumors 

exhibited epithelial–mesenchymal transition (EMT) phenotype with a metastatic 

property. This study showed that Myc overexpression could lead to tumor 

heterogeneity, oncogene independence and acquisition of additional mutations 

including Ras, TGFβ (Transforming growth factor beta), and TNFα (Tumor necrosis 
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factor alpha) pathways. However, the origin of TIC of Myc driven tumor is yet to be 

identified. The composition of Myc primary tumor is a mixed basal phenotype, the 

mammary stem cells or their myoepithelial lineage are the closest candidate.  

1.7 Mammary gland and their Cellular Hierarchy  

1.7.1 Composition of mammary glands 

To understand the malignant state, a detailed knowledge of the healthy tissue is 

necessary. The healthy adult mammary gland is an organized branched system 

separated by an extracellular matrix (ECM) and basement membrane, and 

embedded in stroma composed of fibroblasts, adipocytes and other non-epithelial 

cells. The mammary epithelial tree is composed of two lineages, the 1) 

myoepithelial/basal cells in the basal layer tree, 2) luminal cells in the inner layer that 

are sub-divided into excretory luminal cells in ducts and secretory alveoli cells in 

lobules (Figure 3). Major mammary gland development takes place at following three 

distinct periods, 1) embryonic stage, 2) puberty, and 3) pregnancy and lactation94. In 

mice, the formation of mammary bud starts from ectoderm approximately by 

embryonic day (E) 10.5, and the rudimentary ductal tree arises from epidermis in 

between E13.5 to birth. Secondly, the extensive branching and elongation of the 

ducts grow via terminal end buds (TEBs) in the fat pad starting 3 weeks after birth 

throughout puberty until 5-6 weeks after birth. Lastly, the lobulo-alveolar 

development takes place during late pregnancy and lactation94.  

 

Figure 3. Scheme summarizing the two distinct lineages co-exist in the mammary gland of virgin adult mice. 

Mammary epithelium is organized as a bilayer ductal system with an inner layer of luminal secretory cells (K8/18 
positive in magenta) and an outer layer of basal myoepithelial cells (SMA or K14 positive in green).  

During the embryonic stage and puberty, mammary glands rapidly expand and there 

are significant increases in number of stem cells that are actively proliferating95,96. In 
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addition, mammary glands go through cyclical proliferation and involution during 

adulthood from puberty till menopause97. In mice estrus cycles occur within a 5-day 

cycle that is equivalent in humans’ a 28-day menstrual cycle. There are four phases 

of estrus cycles including proestrus, estrus, metestrus, and diestrus. Joshi et al.98 

reported that each estrus cycle expands the total number of mammary epithelial cells 

(1.9-fold in diestrus phase). In addition, the number of colony forming unit (putative 

stem cells) increases in the diestrus phase (14-fold) at the highest and diminish in 

estrus phase98.  

1.7.2 Mammary cellular lineages 

There are specific markers that define two distinct mammary cellular lineages, the 

luminal (also referred as epithelial) and myoepithelial (also referred as basal). These 

two different cell types can be distinguished from each other by their cytokeratin 

expression due to their differentiation status94. Keratins are intermediate filament–

forming proteins and exist as heteropolymers formed by the non-covalent coiled-coil 

interaction between one of type I acidic (K9-K28) keratin family and one of type II 

basic (K1–K8 and K71–K74) keratin family99,100. Keratins not only have the structural 

role to provide cells their shape and rigidity but also regulatory role in cell cycle, 

apoptosis, cellular stress response, cell size, protein synthesis and membrane 

trafficking101-104. In mammary epithelia, the luminal cells that are responsible for milk 

production and secretion express cytokeratin of simple (non-stratified) epithelia K8 

and K18. Other cytokeratins such as K7 and K19 are also found in luminal cells in 

the mammary glands105.  

Myoepithelial cells build the basal cell layer of mammary ducts bordering with the 

basement lamina. Their cytoplasm contains bundles of smooth muscle actin (α-SMA 

or referred as SMA below) micro-filaments and myosin filaments, which serve as the 

major contractile apparatus for milk ejection106. In addition, accumulating evidence 

support a variety of functional roles of myoepithelial cells in mammary gland growth 

regulation, development, and differentiation as well as the control of tumorigenesis107. 

In contrast to the smooth muscle cells, the mammary myoepithelial/basal cells also 

express the stratified cytokeratin such as K5 and K14108. In addition, there are other 

markers employed to identify myoepithelial lineage including P-cadherin, a cell 

adhesive molecular109,110, and p63, a key regulator of cellular adhesion and survival 

in basal cells111,112. Among those myoepithelial markers, the SMA expression in the 

mammary epithelia is known as fully differentiated myoepithelial marker, whereas 

K14 is not only expressed in myoepithelial lineages but also among the un-
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differentiated luminal cells (i.e. stem/progenitor cells)113. Lastly, a member of 

transcription repressor Snail family, Slug (Snail2) is exclusively expressed in 

mammary myoepithelial/basal lineage and reported to play an important role in 

cellular differentiation and mammary gland morphogenesis114. 
 

1.7.3 Mammary cellular hierarchy 

The concept and existence of stem cells in adult tissue were first proposed over 50 

years ago in hematopoietic system115,116. Similarly, in adult mouse mammary 

epithelia, the existence of stem cells was proved by transplantation of the tissue 

fragments117 and later by serial transplantation of a single cell and in limiting-dilution 

assay118 (introduction 1.9.1). In the adult virgin mammary epithelial hierarchy, various 

distinct mammary epithelial cellular subsets have been described according to their 

morphology and functionality (Figure 4). Although mammary epithelial cellular 

hierarchy is an ongoing debate, several studies agree that multi-potent stem cells are 

present on the top of the hierarchical lineage. However, it is important to note that the 

stem cell population is not comprised of homogeneous population, but including 

different sub-class of stem cells (slow-cycling, long-term and proliferating, short-term 

repopulating cells both of which are multi-potent)119. A recent lineage tracing study 

proposed the existence of uni-potent (luminal or myoepithelial/basal) stem cells that 

retain their self-renewal capacity and differentiation in its lineage120. However, the 

presence of multi-potent adult mammary stem cells versus lineage-committed stem 

cells is still highly debated in the field78,120,121. Lower in its hierarchy, there are 

transient amplifying cells, luminal progenitor cells that are restricted to either ductal 

or alveolar differentiation, and myoepithelial progenitors. At the bottom of the 

hierarchal tree are further differentiated functional cells including ductal cells, alveolar 

cells and myoepithelial cells.  
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Figure 4. Scheme summarizing the hypothetical model of the mammary epithelial hierarchy.  
 

 

1.8 Cell surface markers  
 

Various cell surface proteins were studied in order to identify specific cellular 

lineages of the mammary gland. Mouse mammary gland share many features that 

are similar to human including cell surface protein expressions. We introduce below 

the major cell surface proteins that are used in the study of mouse mammary gland 

cellular hierarchy, however, their human counterparts are reviewed extensively 

elsewhere119,122,123.  
 

1.8.1 Stem / Myoepithelial lineage markers 
 

Some of the classical methods used to isolate stem cells are label retention with 

BrdU labeling or other label retaining dye, stem cell antigen Sca-1 expression, or 

isolation of the “side population” that can efficiently exclude Hoechst 33342 or 

rhodamine 123 dyes124. Lipophilic dye such as PKH have been reported to enrich 

putative stem cells by their label retaining characteristics125,126. Increased aldehyde 

dehydrogenase (ALDH) activity is known as one of the characteristics of 

stem/progenitor properties127.  
 

Much effort has been made to identify various cell surface proteins that can 

distinguish different mammary epithelial cell population119 (Figure 5). In 2006, a 

combination cell surface markers was described to enrich mouse mammary stem 

cells for the first time118,128. Purified stem cells in the mammary epithelia were 
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characterized by the combined expression of CD29hi (Integrin beta 1), CD24mid (heat 

stable antigen), and CD49fhi (Integrin alpha 6) presenting the estimated mammary 

repopulating unit (MRU) of 1/60-90118,128 upon transplantation.  

 
 

 
 

Figure 5. Scheme summarizing the cell surface markers used for the isolation of currently identified epithelial cell 

subsets from the mouse mammary gland. (ER = Estrogen receptor alpha) 

 

Multiple studies agree that the stem cell reside within the myoepithelial lineage129-131. 

However, there are currently no specific cell surface markers to delineate 

myoepithelial progenitors or differentiated myoepithelial cells. Gene expression 

analysis of stem cell population showed no significant difference from their 

myoepithelial population128, however, recent RNA sequencing of the stem cell 

population combined with a long-term H2B label-retaining assay identified one cell 

surface protein such as CD1d, claimed as the marker for further purified mammary 

bi-potent stem cells132. CD1d is a glycoprotein expressed in antigen-presenting cells 

involved in T-cell antigen presentation. The refined CD1d positive stem cell 

population was shown to be able to reconstitute the MG in the efficiency of 1/44.  
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1.8.2 Luminal lineage markers 
 

Increased expression of CD24 is a widely accepted luminal cell marker together with 

EpCAM82,129. Other cell surface markers that are reported to distinguish luminal 

progenitor cells from differentiated ductal and alveolar cells are CD61132,133, CD133132, 

CD49b134, CD14134,135, c-Kit135,136 and Sca1134,137. Estrogen receptor alpha is 

expressed among the luminal lineage but not in the alveolar119.  
 

 

1.9 Approaches to test cells of the mammary lineage for their stem cell and 

progenitor cell capacity  

1.9.1 Transplantation assay  

Mammary gland is a unique organ that allows transplantation and complete 

reconstitution of mammary gland using cleared fat pad transplantation assay117. The 

MRU described above is an estimate of mammary gland reconstitution efficiency 

generated from the results of transplantation and analysis by ELDA (Extreme 

Limiting Dilution Assay)118,138. In addition to the MRU, the full-ness of the mammary 

fat pad by the repopulated gland can also be assessed for the reconstitution 

efficiency of the transplanted cells. Over the last half century, the transplantation of 

cells into cleared mammary fat pads has been the gold standard assay to assess the 

stem cell self-renewal and differentiation capacity117,118,128,139. The endogenous 

mammary anlage was removed from three weeks old syngeneic or immuno-

compromised mice, and the rest of the fat pad was used as the site of transplantation 

(Figure 6).  
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Figure 6. Schematic representation of the in vivo transplantation assay for detected adult MRUs. Mammary epithelial 

cells are dissociated into a single cell suspension, and after FACS enrichment, transplanted into the cleared fat pad 

of 21 days old Rag1-/- immuno-compromised female mice. 12 weeks later, the glands are removed and scored for the 

positive reconstitution and fullness of the fat pad with the newly formed mammary glands or negative when the 

glands are absent.  
 

The transplantation assay was also used in order to assess the cellular tumorigenic 

capacity in breast CSC research extensively. This orthotopical in vivo transplantation 

site provides much closer microenvironment to the physiological mammary epithelial 

cells or breast tumor cells in comparison to subcutaneous transplantation117. As one 

of our main read-out assay, the tumor-initiating capacity of normal mammary 

epithelial sub-populations that experience oncogenic overexpression can be also 

examined in this procedure (Figure 7.). This would provide valuable information 

including the origin of TICs, their capacity for self-renew and repopulate tumors. The 

tumors obtained from transplantation and their primary tumor counterparts can be 

cross-examined for their phenotypes.  

 

Figure 7. Experimental scheme showing the comparison of FACS isolated mammary epithelial cells giving rise to 

tumors in immuno-deficient mice and the transgenic mouse models giving rise to primary tumors after administration 

of doxycycline.  

 

1.9.2 Three-dimensional in vitro culture system  

As the genetically engineered mouse models permit us to study the effect of 

oncogene overexpression in tractable manner, we are coming very close to mimic 

how the events of tumorigenesis and progression occur in patients. However, the 
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studies conducted with the mouse models have their own limitations for the time that 

takes a tumor to develop, the cost, as well as the inadequate technology to monitor 

the mechanistic insights of the cell of interest in detail over a period of time. This has 

promoted the development of in vitro culture system that can closely recapitulate an 

in vivo cellular organization and the microenvironment. Previously, Bissell and her 

colleagues developed a three-dimensional (3D) culture system of mammary cells 

that can grow and expand in an organotypic manner maintaining the correct epithelial 

polarity and other crucial features that are needed for the control of cell proliferation, 

survival and differentiation140. More recently, the 3D culture system was optimized for 

monitoring the process of induction and de-induction of oncogene in the primary 

mammary cells from the tractable mouse mammary tumor models141. We have used 

this culture system in order to observe the response of specific cell types before and 

after the overexpression of oncogenes (Figure 8.).  

 

Figure 8. Scheme of the experimental procedure of in vitro 3D culture of FACS sorted cells. 

 

1.9.3 Genetic stem cell markers  

Although the in vivo transplantation has been widely used as a gold standard assay 

in previous studies, a recent lineage tracing study suggested that the transplantation 

experiments does not necessarily reflect physiological behavior and cell-fate and 

artificially influence the ratio of differentiation and regenerative potential120. As the 

result of this transplantation “artifact”, lineage-tracing approach are increasingly 

employed in order to identify all progeny of a single cell such as stem cells and 

assess their nature and function in a physiological context. This approach allows us 

to study the labeled specific cell population and follow them overtime upon 

overexpression of oncogene.  

There are several potential genetic stem cell markers of the mammary glands. Lrp5 

is expressed in the fraction of stem cells and maintain their myoepithelial lineage142. 

Rohrschneider and his colleague identified s-SHIP promoter that mark actively 
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proliferative stem cells in the terminal end buds of mammary alveolar cap cells143. 

More recently, the lineage tracing approach was used employing two distinct lineage 

specific markers, K8 (luminal) and K14 (myoepithelial/basal) by the Blanpain 

group144. This tracing approach of luminal and myoepithelial lineage resulted in 

identification of uni-potent stem cells in the adult mammary gland. It has been rather 

a disappointment in the field that Lgr5, an established genetic marker of stem cells in 

the intestine and skin, was not specifically expressed in the stem cell 

population130,144-146. Other Wnt target genes such as Axin2146 and Protein C 

receptor130 are the two of the currently established bi-potent stem cell makers in the 

mammary gland. Interestingly, at the adult stage (8 weeks old) Axin2 is expressed 

among the stem cells, however this differs depending on the developmental stage. At 

E14, Axin2 will mark luminal cell population, and at puberty, it is expressed among 

the myoepithelial population. The limitation of lineage tracing approach is the 

availability of genetic markers and the construction of mouse models that enable to 

label the distinct cell population. Nevertheless, this approach would provide the most 

physiological environment to study a specific mammary epithelial subpopulation and 

their contribution to breast tumorigenesis.  

1.10 Un-known facts, questions to be answered 

In this research we aim to answer which cell types in the adult mammary glands are 

the TICs or tumor cell-of-origin in oncogene (HER2 and Myc) driven breast tumors. In 

the case of HER2 tumor, the majority of studies suggest that the tumor cell-of-origin 

is so far proposed as the luminal progenitor cells. However all these studies were 

conducted using a mouse model that overexpressed the oncogene in a constitutive 

manner. In order to mimic patients who acquire somatic mutation of HER2 in 

adulthood, we have employed a tractable mouse mammary tumor models instead. 

This system enables us to examine how non-plastic mammary epithelial cells 

transform into tumorigenic cells in respond to overexpression of oncogenes.  

In contrast to HER2 driven tumors that are composed of luminal cells, Myc tumors 

exhibit basal-like phenotype. The TICs of Myc induced tumors are not extensively 

studied, and we would like to identify their tumor cell-of-origin and if it differs from the 

HER2 case. In addition, it is not yet clear whether the cell-of-origin determines 

different tumor subtypes, or regardless from the cell-of-origin, the genetic mutation 

would determine the tumor subtype.  
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2. Materials and Methods  

2.1 Mouse Models 

Genetically engineered and mutant mice strains used were Tet-On-Myc/MMTV-rtTA 

(T-O-MYC)147 and Tet-On-Neu/MMTV-rtTA (T-O-NEU)148, CAG-H2B-GFP149, Axin2-

CreERT2131, Rosa26-Brainbow2.1150, Rosa26-YFP74, Rag1-/-151 . 

2.1.1 Mouse Strains, animal husbandry, genotyping  

Mice were generated in mixed background (between C57Bl/6N, 129S2/SvHsd, and 

FVB/NHanTM Hsd) and tumors were induced through the activation of transgene 

expression. All the mice were bred and maintained at EMBL Mouse Biology Unit, 

Monterotondo, RM, Italy following to the current Italian legislation (Article 9, 27. Jan 

1992, number 116) under license from the Italian Health Ministry.  

 

Table 3. List of primers used for genotyping 

TetO-MYC myc 5'-3' TAGTGAACCGTCAGATCGCCTG 
mcy 3'-5' TTTGATGAAGGTCTCGTCGTCC 

TETO-Neu TAN-IRES 3528F GACTCTCTCTCCTGCGAAGAATGG 
TAN-IRES 3914B CCTCACATTGCCAAAAGACGG 

MMTV-rtTA CMV-rtTA F GTGAAGTGGGTCCGCGTACAG 
CMV-rtTA R GTACTCGTCAATTCCAAGGGCATCG 

EGFP H2B EGFP (F) CAAGGGCGAGGAGCTGTT 
H2B EGFP (R ) AAGTCGTGCTGCTTCATGTG 

LGR5-GFP K1 LGR5-GFP K1 Fwd CACTGCATTCTAGTTGTGG 
LGR5-GFP K1 Rev CGGTGCCCGCAGCGAG 

Rag1 
Rag1 COMUN CCGGACAAGTTTTTCATCGT 
Rag1 WT GAGGTTCCGCTACGACTCTG 
Rag1 MUTANT TGGATGTGGAATGTGTGCGAG 

Axin2 
WT FW AAGCTGCGTCGGATACTTGAGA 
WT RV AGTCCATCTTCATTCCGCCTAGC 
Cre RV GCACGTTCACCGGCATCAAC 

LacZ 
LACZ 1 AAAGTCGCTCTGAGTTGTTAT 
LACZ 2  GCGAAGAGTTTGTCCTCAACC 
LACZ 3 GGAGCGGGAGAAATGGATATG 

  11341 GAATTAATTCCGGTATAACTTCG 
Brainbow2.1 oIMR8545 AAAGTCGCTCTGAGTTGTTAT 
  oIMR08916 CCAGATGACTACCTATCCTC 

MMTV-Cre CreER FW GCTGGCCCAAATGTTGCTGC 
MMTV RV TTTGAGTAAACTTGCAACAG 

 

2.1.2 Construction of transgenic lines 
 

MMTV-CreERT2 was generated together with Jens Stolte, Martin Jechlinger, Philip 

Hublitz from the gene expression core facility and Pedro Moreira from the transgenic 

core facility in EMBL Monterotondo. MMTV-LTR sequence was taken from 

Donehower et al.152 and plasmid vector was cloned by Jens Stolte, then injected to 

mouse embryonic stem cells by Pedro Moreira. 
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2.1.3 Transgene activation in tractable oncogenic mouse models 
 

Induction of transgene expression was achieved by administration of a doxycycline-

supplemented diet (625 mg/kg doxycycline) (Harlan Laboratories) after the female 

mouse reaches their adulthood (8 weeks). Low dose doxycycline administration was 

achieved by 0.012mg/ml in drinking water. Upon formation of primary mammary 

tumor in T-O-MYC and T-O-NEU, mice were sacrifice at the human end-point (1cm 

mammary tumor development).  
 

2.1.4 Transgene activation by Tamoxifen Induction 

Tamoxifen (Sigma, T5648) was dissolved in sunflower seed oil (10mg/ml) (Sigma, 

#S5007) and freshly prepared each time on the same day of the injection. In order to 

dissolve the crystal of tamoxifen, the solution was mixed at 42C up to 30 minutes 

then slowly filtrated with 0.45µm filter. Intraperitoneal Injection of tamoxifen solution 

was performed on Axin2-CreERT2/Rosa26-LSL-Brainbow2.1, Axin2-

CreERT2/Rosa26-YFP bi-transgenic female mice and their experimental controls.  

 

Table 4. Various Tamoxifen dosages used in previous studies. 
Different dosage of tamoxifen Administration method 
(High dose) Three injections of 5 mg every other day, totaling 15 mg (adult)120. 
(Medium dose) 
 

4 mg/25g body weight (adult)131.  
1 mg for prepubescent mice (injected between P14 and P16),  
2 mg for pubescent mice (injected between P28 and P35),  
4 mg for adult virgins (injected between P56 and P63).  
0.5 mg/25 g body weight single injection of TM to pregnant mothers 
between E12.5 and E17.5 

(Low dose) Single injection of tamoxifen 1.5 mg (adult)153. 
 

 

2.2 Preparation of mammary epithelial cell suspension 

Mammary glands were dissected from 7-10 weeks old female virgin mice that were in 

the diestrus phase of estrus cycle. Preparation of mammary cells to single cell 

suspension method was modified from Jechlinger et al.154. In short, the tissue from 

five mammary glands without mechanical dissociation was placed in 5ml digestion 

medium (DMEM F-12 medium (Lonza/Amaxa Cat#BE12-719F) with added 

supplements 25mM HEPES (Gibco Life technologies #15630-056), 5ml 

Penicillin/Streptomycin (Gibco Life technologies #15140-122), that has 150U/mL 

Collagenase Type 3 (Worthington Cat#LS004183) and 20mg/ml Liberase TM (Roche 

Cat#05401127001). Mammary glands were digested overnight for up to 18 hours at 

37°C in a 5%(vol/vol) CO2 atmosphere in loosely capped polypropylene 50ml conical 

tubes. Mammary glands were re-suspended with mechanical force and diluted with 
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warm phosphate buffered saline (DPBS). Re-suspension was centrifuged at 300g 

(around 1200rpm) for 5 minutes at room temperature. Interphase between fat and 

cell pellet was removed. 15ml of 0.25% trypsin EDTA (Invitrogen Cat#25200-056) 

was added to the cell pellet re-suspended and incubated for 20 minutes at 37°C in a 

5%(vol/vol) CO2 atmosphere loosely capped. The suspension was mechanically 

dissociated every 10 min. In order to stop trypsin digestion, cells were washed with 

35ml of trypsin deactivation media (DMEM/F12 with L-glutamine, 15mM HEPES, 

supplemented with 1M HEPES to 25mM final concentration and 10% Tet-Free 

Serum (Clontech Cat#631106). The solution was treated with 5–15mg/ml DNaseI 

(Sigma, #D4527) or (Roche Cat#04716728001). Cell mixture was centrifuged at 

1200pm (300g) for 5 minutes at room temperature. Supernatant including fat phase 

was removed and cell pellet was subjected to re-suspension in 1ml of Red Blood Cell 

Lysis Buffer (Sigma, #R7757) for 1 minute. Afterwards, the solution was re-

suspended in 2% Tet-free FCS containing PBS (PF2) and cells were counted in 

preparation for the cell sorting and in vitro morphogenesis assay, and injections into 

the cleared fat pad.  

2.3 Cell labeling, Flow Cytometry, and Sorting 

After the red blood cell lysis buffer treatment, the number of cells obtained from each 

sample was counted and subjected to stain with a cocktail of antibodies. The 

antibody solutions were prepared according to the number of cells that are obtained 

from the previous procedure. The buffer used for the antibody staining and washing 

steps was PF2 (PBS plus 2% FBS). Firstly, the cell pellet were subjected to blocking 

with rat anti-CD16/CD32 for 5 minutes, then washed and pelleted. Lineage of 

lymphocytes, erythrocytes and endothelial cells were stained with a cocktail of 

purified CD45, Ter119, CD31 (all 1:100 from eBioscience) antibodies for 5 minutes in 

order to separate from mammary epithelial cells. After washing in PF2, cells were 

stained with PE-Cy5 F(ab’)2 fragment of goat anti rat IgG (H+L) (Invitrogen) that 

detect all anti-rat CD45, Ter119, CD31 antibodies. After washing in PF2, cells were 

stained with anti-CD24-eFluor450 (1:100 eBioscience), anti CD29-APC/Cy7 (1:100 

Biolegend) and anti-CD49f-PE (1:800 Millipore) for 5 minutes at room temperature. 

CD29, CD24, CD49F is a combination of published stem cell markers from 

Shackleton et al.118 and Stingl et al.128. We used two additional cell surface 

antibodies CD1d (1:50 PE eBioscience) for the enrichment of more refined stem cell 

population, and CD61 (1:800) for the enrichment of the progenitors in both luminal 

and myo-epithelial cell populations132. Following washing with PF2, cells were re-



	  
40 

suspended to the 10,000cells/µl suitable for cell sorting. 7-Aminoactinomycin D, (7-

AAD) (Sigma, #A9400) 1µg/ml as added 5min prior to FACS analysis for exclusion of 

dead cells. Samples were analyzed and sorted using a flow cytometer FACS Aria 

(BD Biosciences) at a concentration of 300cells/sounds and cell populations of 

interest are collected into 1.5ml eppendorf DNA low binding tubes containing 500µl 

of growth media. Data were analyzed using the FlowJo (version 8.8.7) software. 
 

2.4 in vitro 3D organotypic culture  
 

FACS sorted cells were collected in 500µl of culture media and pelleted immediately 

after sorting. The cells were re-suspended in growth factor enriched MEGM medium 

(Lonza/Amaxa MEBM Basal Medium (Lonza/Amaxa Cat#CC-3151 with added 

MEGM Bulletkit Cat#CC3150, plus additional B27, bFGF, hEGF). The cells were 

plated in 10,000-20,000cells/100ul of cell density in 50% of matrigel, 50% of media. 

The12 well plates or special glass-slide bottomed chambers, Lab-Tek II Chambered 

Coverglass (M-Medical S.r.l #FA9155379) were used for culture and future 

microscopic analysis. The maximum cell density was 200cells/µl. Co-culture gels of 

50,000 unsorted cells were placed also on the side of the each experimental matrigel 

for the first 5-7 days of culture in order to increase the survival rate of cells after 

FACS.  

The droplets of matrigel containing cells were solidified at 37°C in a CO2 incubator 

for 45-60 minutes prior to addition of 1.5ml supplemented serum free MEGM 

(Mammary Epithelial Cell Medium BulletKit, #CC- 3150, containing one 500mL bottle 

of Mammary Epithelial Cell Basal Medium and supplements: 2 mL of bovine pituitary 

extract,, 0.5 mL of hEGF, 0.5 mL of hydrocortisone,, 0.5 mL of GA-1000, 0.5 mL 

Insulin, [Cambrex]). First 3-7 days of culture, the enriched media supplemented with 

B27, bFGF, hEGF were used. The culture media was changed every other day.  
 

2.4.1 in vitro tumorigenesis assays  
 

We induced oncogene overexpression under the control of the doxycycline inducible 

Tet-On system with tissue specific promoter, MMTV-rtTA. The in vitro transgene 

expression was achieved through the addition of doxycycline (Sigma) at a final 

concentration of 1ug/ml to the culture media. After FACS and plating of cells, we let 

the cells settle in the in vitro culture environment for at least 24 hours before inducing 

with doxycycline. The cellular response to oncogene overexpression varied between 

the cell types and also the type of oncogenes.  
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2.4.2 Passaging the organoid in 3D culture 
 

Matrigel containing cells was pre-digest in Collagenase 3 and Liberase TM for 2 

hours. The gel with media was transferred to 15ml falcon and washed with PBS. 

After centrifugation, the cells were re-suspend in 200µl of 0.25% trypsin EDTA (per 

100µl gel) for 10 minutes in 37°C. Trypsin was inactivated with 10% Tet-Free Serum 

containing media and with 5-15mg/ml DNAseI. After centrifugation, cells were re-

suspend in media followed by mixing with 50% of matrigel and allowing it to 

polymerize it in the incubator.  
 

2.5. Vaginal Smears 
 

Following the modified protocol of McLean et al. (2012)155, vaginal Smears were 

performed using 20µl-40µl of PBS, and allowed to dry on the slide at room 

temperature. Once dried, smears were fixed in 10% formalin for 1 minute, 10% PBS 

wash for 1 minute, subsequently stained with Crystal Violet solution (Sigma) for 1 

minute, followed by a one-minute wash in running tap water. Slides were dried and 

visualized on a Leica LMD 7000 mounted with Leica CD310 digital camera using 

LASV3.7 (Leica) software.  
 

2.6 in vivo cleared fat pad mammary gland reconstitution assay 

The sorted cells obtained from FACS were pelleted and re-suspended in an 

appropriate cellular concentration for the further transplantation assay. 3 weeks old 

female Rag1-/- mice were anesthetized and the mammary anlage of the inguinal 

mammary glands were dissected. The rest of the fat pad that has no mammary gland 

became the site of transplantation. The volume of injection was 10µl using a hamilton 

syringe (Hamilton Company, (83700) PB600-1 dispenser, (81101) 250 µL, Model 

1725 LT SYR, NDL). The cells were prepared shortly before the injection re-

suspended in 50% of matrigel 50% of media.  

2.7 in vivo tumorigenesis assay 

Tumorigenesis assays were preformed via injection of serial dilution of FACS 

enriched cells into the inguinal cleared mammary fat pad of Rag1-/- mice. Upon 

transplantation, the recipient mice were fed doxycycline containing food 625 mg/kg, 

or 0.012mg/ml in drinking water for 3 days low dose induction were specified in order 

to activate the transgene. Once the developed tumors in inguinal mammary fat pads 

were detected and reached a maximum 1 cm in diameter, the tumor bearing and the 
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same experimental cohort animals were sacrificed, and the tumors were fixed in 

formalin prior to embedding.  
 

2.8 Transplantation in vivo after culture  

Similarly to the previously described method, 2.4.3. Passaging the organoid/colonies 

in 3D culture, single cell suspension was obtained and after counting, the cells were 

mixed with matrigel (50%) shortly before injection and transplanted into 3 weeks old 

cleared fat pad of Rag1-/- female mice.  
 

2.9 Immunofluorescence of in-vitro 3D culture whole mount  
 

The cells cultured in Lab-Tek II Chambered Coverglass (M-Medical S.r.l 

#FA9155379) were subjected to immunostaining and further microscopic analysis. 

Prior to the fixation with 4% PFA, the matrigel containing the cells and colonies were 

partially digested by collagenase and liberase (3µl each in 1.5µl culture media) for 

less than 30 minutes. The enzymes were washed out with PBS for 5min 37°C once. 

The matrigel containing the cells was washed once with PBS and fixed in 4% 

Paraformaldehyde (PFA). Subsequently, after three times of washing with 1X IF 

buffer 5 minutes each, the matrigel was incubated with primary block (1X IF buffer + 

10% goat serum Jackson Immunoresearch #005-000-121) for 1 hour. 10X IF buffer 

was made of 38g NaCl, 9.38g Na2HPO4, 2.07g NaH2PO4, 2.5g NaN3, 5g BSA, 

10ml Triton-X100, 2.05ml Tween-20 in 500ml total volume in DDW (pH 7.4, filter 

sterilized). To make 1X IF buffer, 10X IF buffer was diluted in DDW. We made 

another incubation with 1ml of secondary block (primary block + 1:100 dilution of 

AffiniPure F(ab')2 Fragment Goat Anti-Mouse IgG, F(ab')2 Fragment Specific 1mg/ml 

stock, Jacksoon Immunoresearch #115-006-006) for 30min in order to reduce the 

unspecific binding and background staining as much as possible. Overnight 

incubation with primary antibody diluted in secondary block was routinely used in 

order to fully penetrate the antibody throughout the matrigel at 4C with gentle 

agitation. The primary antibody was washed with IX IF buffer three times for 30 

minutes each, and subsequently incubated with secondary antibody diluted in 

primary block for 1 hour. DAPI (4',6-diamidino-2-phenylindole) was also added at this 

step. The secondary antibody solution was washed away with IX IF buffer three 

times for 30 minutes each and rinsed with PBS  three times for 10 minutes each. At 

the end, the matrigel containing cells was mounted with VECTASHIELD® Mounting 

Medium with DAPI (Vinci-Biochem # VC-H-1200-L010). 
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Alternatively, the matrigel of 3D mammary cultures can be embedded in paraffin. 

Cultures were washed with PBS prior to fixation. 4% PFA was added and incubated 

for 10 minutes at room temperature. After three PBS washes, the gels were 

subjected to dehydration steps as following; 50% EtOH wash, 70% EtOH, 80% 

EtOH, 96%, EtOH 100%. It was stained with Eosin, and again 100% EtOH, twice 

Xylene, and twice paraffin at 56˚C followed by paraffin embedment. Paraffin blocks 

were cut at 3µm. The section can be subjected to immunohistochemistry or 

immunofluorescence as following. 

2.10 Histochemistry, Immunohistochemistry, and Immunofluorescence 

2.10.1 H&E 

Tissues were fixed in 10% formalin overnight and washed in PBS prior to 

dehydration in Leica ASP300S, followed by embedding in paraffin in accordance with 

standard procedures. Tissue paraffin blocks were sliced at 5µm. Tissue sections 

were placed onto SuperFrost® Plus glass slides. De-paraffinization of section was 

carried out as follows: 15 minutes incubation in Xylene twice, 3 minutes 100% EtOH 

three times, 3 minutes 96% EtOH, 3 minutes 70% EtOH, 2 minutes DDW for 5 

minutes. Sections were stained for haematoxyline for 1 minute and washed in 

running water. Subsequently, the slides were counterstained with hematoxylin then 

tissue sections were dehydrated and mounted. Dehydration steps are in 70% EtOH 

for 3 minutes, 96% EtOH for 3 minutes, 100% EtOH twice 3 minutes, then xylene 

twice 3 minutes each. We used DPX mounting media DPX mounting media (VWR 

#360294H). Images were obtained on a Leica LMD 7000 mounted with Leica CD310 

digital camera using LASV3.7 (Leica) software. 

2.10.2 Immunohistochemistry on paraffin sections 

After the hydration step of paraffin embedded sections described above, they were 

incubated in antigen retrieval solution for 40 minutes at 100˚C (Vector Lab Antigen 

Unmasking solution Vector #H-3300). Following cooling (50˚C) endogenous 

peroxidases were inactivated via incubation in 3% H2O2 for 10 minutes. Following 

thorough PBS washing for twice 5 minutes each section was blocked with 10% Goat 

Serum (Vectashield ABC Kit) diluted in PBS and incubated for 30 minutes. Primary 

antibody was diluted in blocking solution at specified concentrations in table below 

(Table 5.). Sections were incubated with primary antibody at 4˚C overnight or 1-2 

hours at room temperature. Sections were washed with PBS for 5 minutes twice. We 
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used Vector Lab Biotinylated Secondary antibody kit for secondary antibody 

incubation (30 minutes at room temperature). Subsequently, sections were washed 

for 5 minutes twice with PBS. Following the instructions of Vector Lab ABC reagent 

we added this to the sections and incubated for 30 minutes at room temperature. 

Following washing as described before the peroxidase reaction was carried out using 

Vector Lab DAB kit (#SK-4100). Sections were incubated for less than 1 minute and 

as soon as the stain was visible, the slides were washed in DDW. The slides were 

counterstained with hematoxylin then tissue sections were dehydrated and mounted. 

Images were obtained on a Leica LMD 7000 mounted with Leica CD310 digital 

camera using LASV3.7 (Leica) software. 

 

Table 5. List of antibodies used in immuno-stainings. 

Name of Antibodies (concentration used) Species of the antibody host Supplier  
Actin (Smooth Muscle) Monoclonal Mouse 
Anti-Human (1:500) Mouse Dako 

TROMA-I cytokeratin Endo-A conc. (1:250) Rat Polyclonal DSHB 
Keratin 14 Polyclonal Antibody, Purified 
(1:1000) Rabbit Covance 

Monoclonal Anti-SMA 1A4 (1:500) Mouse Sigma 

Neu Antibody (C-18) (1:200) Rabbit Polyclonal Santa-Cruz 

c-Myc (D84C12) Rabbit mAb (1:400) Rabbit Cell Signaling  

Slug (C19G7) Rabbit mAb #9585 (1:100) Rabbit Cell Signaling Technology 

Cleaved-Caspase-3 (1:200) Rabbit  Cell Signaling Technology 
Green Fluorescent Protein (GFP) Antibody 
(1:200) Chicken Aves Lab 

GFP antibody (ab290) (1:200) Rabbit Abcam 

 

2.10.3 Immunofluorescence on paraffin sections 

Deparaffinization, hydration and antigen retrieval was carried out as for IHC sections. 

Sections were blocked using 10% goat serum in 1X IF buffer (as previously 

described) for 1 hour at room temperature. Sections were incubated with primary 

antibodies for 1-2 hours at room temperature. Sections were washed three times in 

1X IF buffer for 10 minutes each. Alexa-Fluor secondary antibodies (invitrogen) were 

incubated at 1:800 (Goat anti-rat-647, anti-rabbit 568, Goat anti-mouse 488) with 

DAPI 1:1000 for 1 hour at room temperature. Subsequently, they were washed three 

times with X1 IF buffer (10 minutes each), and three times in PBS (5 minutes each), 

mounted with MOWIOL® 4-88 Reagent (Merk #475904) and stored at 4˚C. 
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2.11 Carnoy’s fixation and whole mount carmine alum staining 
 

Mammary glands were dissected out and spread on the glass slide 

(SuperFrost® Plus glass slides). After up to 30 minutes of drying the tissue in the 

room temperature, it was fixed in Carnoy's fixative (60% of absolute EtOH, 30% of 

CHCl3, 10% of glacial acetic acid) for 1 hour or overnight at room temperature. 

Before staining, the MG was washed in 70 % EtOH and change gradually to distilled 

water (70%, 50%, 0%) for 15 minutes each. MG was then stained in Carmine Alum 

Staining solution (Bio Optica #05-B07009) for 1 hour or overnight depending on the 

thickness of the tissue. The tissues were subsequently washed in acidic alcohol 

(70% EtOH, 1% HCl) to reduce excess of staining for overnight incubation. The 

tissue was dehydrated in 96 % EtOH 30 minutes, 100 % EtOH 30 minutes and then 

in xylene until the fat pad was be transparent. In the end, the tissue was mounted 

with DPX mounting media (VWR #360294H). Imaging was carried out using 

Stereomicroscope (Leica DC500). 
 

 

2.12 Real-Time Quantitative PCR 
 

Total RNA was extracted from cells using Trizol (Invitrogen). cDNA preparation, 

including DNase digestion, was performed using QuantiTect Reverse Transcription 

kit (Qiagen). Reverse transcription reaction was completed for each sample; 200ng 

of mRNA was converted to cDNA in each RT reaction. Amplifications were run using 

technical triplicates and biological triplicates in a LightCycler 480 (Roche). Values 

were adjusted using Actin-B as a reference.  The table below shows the list of 

primers used in the experiments.  
 

Table 6. List of primers for qRT-PCR 

Gene  Forward  Reverse  

HER2 TGTACCTTGGGACCAGCTCT GGAGCAGGGCCTGATGTGGGTT 

MYC AGATGGTGACCGAGCTGCTGG AAGCCGCTCCACATACAGTC 

L37a TCTGTGGCAAGACCAAGATG GACAGCAGGGCTTCTACTGG 

Actin B GCTTCTTTGCAGCTCCTTCGT ACCAGCCGCAGCGATATCG 

GAPDH CCCATTCTCGGCCTTGACTGT GTGGAGATTGTTGCCATCAACGA 

 
 

Primers were purchased from Sigma Aldrich. qPCR reaction was carried using the 

following concentrations; Primers at 5µM, Syber Green master mix, 14ng of cDNA 

were used for each reaction. Actin B primers were used to normalize results. 
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2.13 EdU incorporation  

Click-iT® EdU Alexa Fluor® 488 Imaging Kit (Life technologies #C10337) was used 

following manufactures instruction. EdU incorporation was performed 18 hours 

before fixation of the matrigel. After the staining procedure, images were acquired by 

confocal microscope, resonant scanner or spinning disk microscope and analyzed 

with velocity software (Perkin Elmer).  
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3. Results  
 
 

3.1 Expression of Myc- versus Neu- oncogenes in adult mammary gland leads 

to development of primary mammary tumors with contrasting tumor 

phenotypes.  
 

As previously shown in Moody et al. and D’cruz et al., we achieved overexpression of 

oncogenes with the new generation of tractable transgenic mouse models, Tet-On-

Neu/MMTV-rtTA (T-O-NEU) and Tet-On-c-Myc/MMTV-rtTA (T-O-MYC), in the adult 

mammary gland to better mimic the situation in the clinic148,156. The oncogenes were 

induced and overexpressed after virgin female T-O-NEU and T-O-MYC mice 

reached their adulthood at 8 weeks of age. This is an alternative to the constitutive 

models, which overexpress the transgene from the embryonic stage throughout life. 

The tetracycline inducible system enables us to control the overexpression of specific 

genes at any given time point, in this case Neu (murine form of HER2) and c-Myc52. 

We detected palpable primary mammary tumors in T-O-NEU and T-O-MYC animals 

with an average of 3 and 6 months of induction, respectively (Figure 9. Data obtained 

by Martina Mantovan).  
 

	    
Figure 9. The administration of doxycycline to the adult female T-O-MYC and T-O-NEU mice leads to the 

development of primary mammary tumors with contrasting tumor phenotypes. Primary tumor latency of T-O-NEU 

(n=49) and T-O-MYC (n=45) mice induced with doxycycline after 8 weeks of age. Neu overexpression leads to the 

development of palpable tumors after a median latency of 3 months, while in Myc expressing mice the median 

latency was 6 months. (Data produced by Martina Mantovan) 

The mammary gland is composed of bi-layered ducts, the outer layer consists of 

myoepithelial/basal cells and the inner layer is built with luminal cells (Figure 10). The 

myoepithelial lineage can be visualized by the staining of smooth muscle action 
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(SMA) or other cytokeratin markers such as cytokeratin 14 (K14). In contrast, the 

luminal lineage expresses high level of cytokeratin 8 and 18 (K8/18). These two 

distinct mammary cellular lineages are also used to characterize the mammary tumor 

arising from T-O-NEU and T-O-MYC mice. 

 

 
 

Figure 10. Mammary gland is composed of bi-layer duct of Luminal (K8/18) and Myoepithelial (SMA) lineage 

surrounded by the stroma. A) Immuno-fluorescence staining of an adult wild type mouse mammary gland (age 8 

weeks) stained with SMA (myoepithelial/basal marker) and K8/18 (luminal/epithelial marker). This clearly 

demonstrates that the mammary gland is a bi-layered duct. B) H&E staining of adult mouse mammary glands 

showing the composition of the mammary epithelia and stroma. 
 

As previously described157, Neu overexpression leads to the development of 

mammary tumors consisting of mainly luminal-like epithelial cells and display the 

classic cobblestone-like morphology (Figure 11. A-C). All tumors were of the solid 

phenotype, and the majority of tumor cells expressed luminal marker K8/18. In 

contrast, c-Myc driven tumors are reported as basal phenotype37, which give rise to 
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heterogeneous tumor subtypes93,158. The immuno-staining of the lineage specific 

markers K8/18 and SMA confirmed that c-Myc overexpression leads to basal type 

mammary tumors, which are composed of both myoepithelial cells and luminal cells 

(Figure 11. D-F).  

 
Figure 11. Two oncogenes, Neu and Myc, give rise to tumors that are histologically distinct. A) Immuno-fluorescence 

staining of Neu induced primary tumors by K8/18 and SMA showing Neu-driven tumors are composed of mainly 

luminal cells. B) H&E representation of Neu tumor (20X). C) Immuno-histochemistry of HER2 staining (40X). D) 

Immuno-fluorescence staining of Myc induced primary tumors by K8/18 and SMA. This shows Myc drives tumors to 

be a mixed/basal phenotype. E) H&E representation of c-Myc tumor (20X). F) Immuno-histochemistry of human-c-

Myc staining (40X). 
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3.2 in vitro cultures recapitulate normal development of mammary epithelial 

cells 
 

In order to address the question, which cell types are the TICs upon overexpression 

of Neu or Myc, we first took an in vitro approach. Using a 3D matrix culture system, 

we initially aimed to validate the characteristics of the different sorted cell populations 

and to observe the cellular transition from healthy adult mammary epithelia to the 

early tumorigenic state (Scheme in Figure 8 in introduction). In order to separate 

different cell populations of interest within the mammary linage, we employed FACS 

(Fluorescence-Activating Cell Sorting) according to the expression levels of specific 

cell surface proteins118,128.  
 

To date, the mammary cellular hierarchy has not been fully characterized, however, 

a number of studies suggest the presence of defined cellular compartments. By 

staining mammary epithelial cells with a combination of antibodies detecting unique 

cell surface markers, we could achieve the enrichment of the adult bi-potent stem 

cells, the luminal progenitors, the basal lineage as well as the stromal population. In 

more detail, naïve mammary glands from virgin, adult female bi-transgenic (T-O-

MYC or T-O-NEU) mice, that have never been fed doxycycline containing food and 

therefore never experienced transgene expression, were dissociated and digested 

into a suspension of single cells. The mammary cell suspension was subjected to a 

staining procedure by the combination of the antibodies that are directly conjugated 

with the specific fluoro-chromes.  
 

In order to separate hematopoietic lineages including erythrocytes, lymphocytes, 

endothelial cells, we also included the linage exclusion step, by staining with CD31, 

CD45, Ter119 antibodies. A combination of cell surface proteins including CD29, 

CD24, and CD49f was used to distinguish mammary luminal and basal lineage as 

well as enrichment of luminal progenitors and the stem cells118,128. Both CD29 (b1 

integrin) and CD49f (a6 integrin) are integrin subunits, which serve as heterodimeric 

extracellular matrix receptors. We included both antibodies in our FACS gating 

strategy in order to confine our gating strategies (Figure 12).  
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Figure 12. FACS gating strategies to isolate different mammary cellular lineages. Briefly, after the elimination of 

doublets, Lin (lineage) positive and 7-aminoactinomycin D (7-AAD) positive cells are excluded. Lin- population were 

gated into CD29 positive and separated into CD24 versus CD49f for the separation of stem cells, luminal progenitors, 

Myo hi and Myo low populations.  
 

 

 

We define our “stem cell” population to be CD29positive-hi, CD24mid, CD49fhi and gate 

for the 1-2% of highest CD49f expressing cells among the entire Myoepithelial 

population (CD29positive, CD24mid, CD49fpositive around 30% of total) (Figure 12). The 

myoepithelial population is known as a mixed myoepithelial population including the 

bi-potent stem cells, myoepithelial stem cells, myoepithelial progenitor cells and fully 

differentiated myoepithelial cells. We defined a middle population within the 

myoepithelial population as the “Myo hi” (CD29low-positive, CD24mid, CD49fmid). By 

contrast, the luminal cellular lineage can be enriched by CD24 high expression. We 

defined the population CD29positive, CD24hi, CD49fmid population (20-25% of total) as 

“Luminal Progenitors” (Lum Prog). However, this population also includes all the 

luminal lineage committed uni-potent stem cells, luminal progenitor cells, and 

differentiated luminal alveoli and ductal cells. Lastly, we have categorized the 

CD29low-positive, CD24low, CD49low population as “Myo low”. This population contains 

differentiated myoepithelial cells or sometimes also defined as fibroblast like stromal 

cells129.  
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Since these well-defined markers can enrich for partially mixed populations, we 

attempted to further purify the specific cell populations with additional cell surface 

markers. Previously, comparative gene expression profiling of FACS enriched stem 

cells versus other mammary epithelial populations showed no evident differences128. 

However, a recent RNA sequencing study by dos Santos et al. suggested CD1d to 

be the marker of more refined stem cell population132. In this study, CD61, Integrin β3, 

are also reported to enrich for progenitor cells or uni-potent stem cells of both luminal 

and myoepithelial lineage.  
 

We attempted to combine these two cell surface proteins in order to improve our 

FACS gating strategies. We compared upper/lower 30% of CD1d expressing cells in 

the conventional stem cell gate, and upper/lower 30% of CD61 expressing cells in 

the luminal progenitors and myoepithelial population (Figure 13). 

 

Figure 13. FACS gating strategies to further refine the stem and progenitor populations using CD1d and CD61 

antibodies. The FMO control (in blue) and the stained sample (in red). 

 

Upon isolation of these FACS isolated cell populations, we attempted to keep them in 

culture and to expand the different populations while maintaining their own cellular 

characteristics. We have modified the previously described three-dimensional (3D) 

organotypic culture condition141 and successfully established in vitro primary culture 

condition where FACS sorted cells are able to proliferate longer than 3 weeks in 

basement membrane extract (BME) matrix. Some stem cells colonies started to form 
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bi-layered acini after 1 week in culture, but many stayed as single cells or slowly 

proliferated and formed small cell aggregates. Without this optimization, we observed 

no colonies growing out within the culture, even from the luminal progenitor 

population (data not shown). This tells us that the FACS procedure has a detrimental 

effect on cellular proliferation. However, we found four key factors that overcome this 

effect from FACS and allow the cells to proliferate in culture. Firstly, we grow the 

sorted cells in presence of a co-culture of 50,000 unsorted mammary cells for the 

initial first week of culture. Secondly, we found that addition of supplements to the 

culture medium (EGF, FGF, and B27 for initial 3-4 days of culture) often used in the 

mammosphere assay increased the number of colony formations. Thirdly, the FACS 

sorted cells were usually plated in a concentration of 150-200cells/µl in 100µl volume. 

When culture contained a lower concentration, the majority of the cells did not 

proliferate (data not shown). Lastly, we tested the optimum concentration of BME 

and found that 50% (7,5mg/ml BME) would give the maximum number of colonies in 

both stem and luminal progenitor cells (Figure 14. A-B). A BME concentration of 

lowers than 7,5mg/ml is more prone to cause gel destabilization during long-term 

culture. Before optimization, using the protocol from Jechlinger et al., (2009)141, we 

recorded less than 1% of colony formation in all populations including stem (0.053%), 

luminal progenitor (0.46%) and Myo hi (0.026%). After the optimization of the culture 

condition in the 3D matrix, the colony forming efficiency of these sorted populations 

in culture was increased to 4.17% in stem (<50µm in diameter), 16.57% in luminal 

progenitor cells (hollow polarized acini >50µm), and 4.3% in Myo hi population 

(<50µm in diameter) after 7 days in culture (Figure 14. C).  
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Figure 14. Optimized culture condition allowed the stem cells, luminal progenitors, and Myo hi population to expand 

and form colonies. A) Colony forming efficiency of stem cells can depend on the culture conditions including the 

consistency of BME. B) Colony forming efficiency of luminal progenitor cells can depend on the culture conditions 

including the consistency of BME. C) Colony forming efficiency of different sorted populations in optimized 3D culture 

(7d in culture of 15,000 cells/100µl). Each condition was repeated at least 3 times.  
 

 

 
 

The Myo hi population gave rise to a similar number of stem-like filled colonies, 

however, this population was a mix of stem-like colonies and stromal-like cells that 

resemble the Myo low population. Interestingly, we observed a significant increase 

(nearly 20 times) in the number of acini formation in CD61hi upper 30% when 

compared with the CD61low lower 30% (Figure 15). CD61 expression in other 

populations including stem, Myo hi and Myo low population showed no significant 

differences (data not shown).  

 

Figure 15. Significant difference was observed in number of colonies (luminal acini) arising from CD61hi (30%) and 

CD61low (30%) expression luminal progenitor cells. CD61 enriched the highly proliferating luminal progenitor cells (7d 

in culture of 15,000 cells/100µl)  

 

However, CD1d expression did not show a significant difference from the bulk of 

stem cells or even less colony formation in culture. This hints that CD1dhi stem cells 

are more quiescent stem cells (data not shown).  

 

The single cells obtained after FACS were plated in matrigel and developed colonies 

or hollow acini within the 3D matrix. These structures in the matrix seemed to 

maintain cellular characteristic features. After a week in culture, stem cells (CD29hi, 

CD24mid, CD49fhi) grew into small filled colonies (approximately 50um in diameter) 

that co-express both K8/18 and SMA at the single cell level (Figure 16. A Left upper 

and Figure 16. B). Co-expression of both the luminal and myoepithelial lineage 

indicates that these stem cells are still bi-potent maintaining their differentiation 
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capacity. In contrast, the luminal progenitor cells (CD29mid, CD24hi, CD49fmid) formed 

larger hollow polarized acini (approximately 100µm in diameter) that predominantly 

express the luminal markers, K8/18 (Figure 16.A Right upper). The Myo hi population 

was a mixture of stem cell like colonies as well as stromal or fibroblast like cells 

(Figure 16. A Left lower). Using an additional antibody, CD61, in the myoepithelial 

population, we could not observe any significant enrichment of myoepithelial 

progenitor cells (data not shown). Lastly, the Myo low population contained mainly 

the stromal cells (Figure 16.A Right lower).  

 

Figure 16. FACS enriched population give rise to colonies or acini and express lineage specific proteins. A) Bright 

field images in culture and co-immuno-staining of K8/18 and SMA demonstrate that the FACS enriched cells were 

able to proliferate in 3D culture maintaining their cellular lineages (7d in culture of stem cells, upper left, luminal 

progenitors in upper right, Myo hi population in lower left, and Myo low population in lower right). B) Co-immuno-

staining of K8/18 and SMA demonstrates that the stem cell colonies co-express both luminal and myoepithelial 

lineage specific markers. 

 

 

Interestingly, all of the luminal progenitor acini developed hollow acini that express 

the luminal marker, K8/18, however, some acini also co-expressed SMA moderately 

(Figure 17. A). This finding infers that luminal progenitor cells are composed of at 

least two different subsets within their hierarchy. Using the putative progenitor 
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marker, CD61, we try to further purify the bulk of luminal progenitor population into 

CD61hi and CD61low expressing populations. From the bright field microscopic 

analysis of acini in culture, in addition to an increase in the number of acini, an 

increased thickness of the rim of acini was noticed among the CD61hi Luminal 

progenitors (Figure 15, Figure 17. B). After 1 week in culture of WT luminal cells, 

CD61hi showed greater number of colonies with mild SMA positivity compare to 

CD61low counterpart (Figure 17. C Left). When the culture time was extended to 

almost double (13 days) there was a decrease in the percentage colonies that 

express weak SMA and these barely showed any difference between CD61hi and 

CD61low luminal populations (Figure 17. C Right).  

 
Figure 17. Mind SMA expression among CD61hi Luminal progenitors became insignificant over time. A) 

Representative images of SMA positive and SMA negative luminal progenitor acini. B) Representative bright field 

images of colonies arising from CD61hi and CD61low luminal progenitors. C) Percentage of luminal acini that co-

express K8/18 and SMA after 7 days and 13 days in culture. Decrease of SMA expression in CD61hi Luminal 

progenitor acini were noted after over 10 days of culture.  
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These in vitro observations (Figure 15 and 17) support the previous report indicating 

CD61 as the marker of progenitor or transient amplifying cells within the luminal 

lineage. Moreover, it encourages that most of the luminal progenitor acini grow out 

from the un-refined Lum Prog (CD29mid, CD24hi, CD49fmid) are the CD61 positive true 

luminal progenitors. This implies the presence of positive selection towards luminal 

progenitor cells by our in vitro culture condition.  

 

In addition to the cellular lineage specific markers such as SMA and K8/18, we 

attempted to verify epithelial polarization status of FACS enriched stem cells in 

culture. Since the stem cell colonies after 1 week in culture appeared to be filled and 

we could not distinguish if the small colonies we observed were just a crumb of cells 

or if they had some kind of cellular organization; hence the epithelial polarization 

sttus was investigated. Previously, Jechlinger et al. reported that the acini growing 

out in 3D culture are composed of polarized cells with a correct orientation141. Zona 

Occludens-1 (ZO1), a protein that directly binds to occludins and marks tight 

junctions, is a known tight junction marker. The immuno-staining with ZO1 identified 

that stem cells gave rise to polarized colonies in culture with the apical surface 

juxtaposed to the lumen (Figure 18. A-B). As a positive control for correct epithelial 

polarization, we stained the luminal progenitor acini.  

 

Figure 18. Both stem cells and luminal progenitor cells maintain their correct epithelial polarity. Immuno-staining of 

ZO1 (apical marker) shows the epithelial polarization take place in both A) stem cell colonies and B) luminal 

progenitor acini in culture. 
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3.3 FACS enriched stem cells can reconstitute the mammary gland upon 

transplantation  

In addition to the in vitro analysis, we assessed if the sorted stem cells in the culture 

after 1 week would still maintain their cellular characteristics and would be able to 

repopulate a functional mammary gland upon transplantation. The cultured stem cell 

colonies and luminal progenitor acini in culture were isolated by digestion of the 

matrigel with Collagenase 3 and TM Liberase and dissociated into single-cell 

suspension upon treatment with 0.25% trypsin EDTA for 5 minutes. Serial dilutions of 

these cultured cells were subjected to the cleared mammary fat pad in vivo 

transplantation assay, a gold standard assay to assess the stem-ness by 

reconstitution of a functional mammary gland117 (Figure 6 introduction).  

 

Before examining the mammary gland reconstitution potential of cultured stem cells, 

we first performed the in vivo transplantation assay using FACS enriched stem cells 

without the culture process. Single cell suspension of FACS isolated stem cells as 

well as other cell populations were individually transplanted in serial cellular dilution. 

The site of transplantation was the fat pad of the inguinal mammary glands of 21days 

old female mice that were surgically removed of their endogenous mammary gland. 

The fat pads of recipient mice were analyzed after 4-12 weeks in order to assess the 

mammary gland reconstitution (Figure 19). 4 weeks after the transplantation, a 

mammary gland with immature duct that filled approximately 30% of entire fat pad 

was observed. 12 weeks after transplantation, the reconstituted mammary gland 

filled the entire fat pad and the mature ducts resembled th endogenous mammary 

gland with no transplantation. In higher concentrations, the FACS enriched luminal 

progenitor cells were also able to reconstitute the mammary gland, however, it filled 

less than 30% of entire fat pad.  
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Figure 19. Whole mount carmine alum staining of reconstituted and the control mammary glands. Controls: A) 

Representative images of a cleared fat pad at adult stage. B) Representative image of the cleared fat pad at 3 weeks 

of age. C) Representative images of the cleared mammary anlage surgically removed when the recipient mice are at 

3 weeks of age. D) Representative images of the mammary fat pad 4 weeks and 12 weeks after injection of 500 stem 

cells. E) Representative image of the mammary fat pad injected with 2000 luminal progenitors. (Upper panel 1X and 

lower panel 5X images). 
 

The estimated frequency of mammary repopulating units (MRU) was 1/196 in stem 

and 1/1614 in luminal progenitors calculated by Extreme Limiting Dilution Analysis, 

ELDA138 (Figure 20). However, while stem cells were able to reconstitute almost the 

entire fat pad (>80%) with a mammary tree, luminal progenitor cells gave rise to 

reconstituted mammary trees that filled less than 30% of the fat pad (Figure 19 E). 
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Compared to previously published MRU estimations (1/64 from Shackleton et al., 

2006118; 1/60 (in FVB background) and 1/90 (in C57B1/6 background) from Stingl et 

al., 2006128), our result showed 50-33% of their published MRU efficiency. This could 

be due to internal variability and setting of the experiment and the fact that Rag1-/- 

mice retain some level of immune function including natural killer (NK) cell activity. 

Also, previous studies describe this assay utilizing syngeneic mice with a pure 

genetic background. Our transgenic mice are bred in a mixed background (between 

C57Bl/6N, FVB/NHanTM Hsd, and 129S2/SvHsd), therefore, we decided to use 

female Rag1 knock out mice in C57Bl/6N background as the transplantation recipient.  

 

 
 

Figure 20. Table displays the result of transplantation WT FACS enriched populations. Full-fillness of the fat pad and 

their repopulating efficiency (MRU: Mammary Repopulating Unit) are presented from Stem, Luminal Pogenitors and 

Myo low populations. 
 

The reconstituted mammary glands were further analyzed by immuno-staining with 

SMA and K8/18. Upon injection of 500 stem cells, the reconstituted mammary glands 

were clearly composed of an outer layer of myoepithelial cells that are positive for the 

SMA staining, and the inner layer of luminal cells that are positive for the K8/18 
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(Figure 21. A Left). This result indicates that the reconstituted mammary gland has 

the same functional structure as that of the normal adult mammary gland. 

Interestingly, luminal progenitor cells were also able to reconstitute bi-layered 

mammary gland though higher cellular dilutions were required (Figure 21. A Right). 

We attempted to induce pregnancy and lactation in these reconstituted mammary 

glands. These data, although preliminary, both stem cells and luminal progenitors 

derived reconstituted mammary gland responded to pregnancy, documented 

indication of proliferation. Again, the presence of both luminal and myoepithelial cells 

were confirmed in the mammary gland subjected to pregnancy (Figure 21 B). From 

this finding, de-differentiation of luminal progenitors upon transplantation was 

suspected. Luminal progenitor cells were able to reconstitute functional mammary 

trees although the efficiency and the area of fullness were less than that of stem cells.  

 

 
Figure 21. Reconstituted mammary gland consisted of bi-layer of luminal (K8/18 positive) and myoepithelial (SMA 

positive) cells. A) Left: image of stem cell derived reconstituted mammary gland, Right: image of luminal progenitor 

cell derived reconstituted mammary gland. B) Recipient mice were mated and induced pregnancy. Both stem cells 

(Left) and luminal progenitor (Middle) derived mammary glands showed expansion of a bi-layered mammary tree 

resembling control. (Right) normal un-transplanted mammary gland induced pregnancy. 

 
 

Since we had lower frequency of MRU, we also tried to refine the purity of stem and 

luminal progenitor population further employing two additional cell surface antibodies, 

CD1d, an early marker for stem cells, and CD61, a marker of lineage committed 

progenitors132. Against our expectation, we could not confirm the enrichment of 
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refined stem cells as previously reported132. The in vivo result was not conclusive that 

CD1d enriches stem cells, or CD61 enriches progenitor cells within the myoepithelial 

lineage (data not shown).  
 

 

3.4 FACS enriched and then cultured stem cells can reconstitute the mammary 

gland upon transplantation 

 

Using the above explained in vivo transplantation approach, we attempted to assess 

the stem cells that were kept in culture if they could still maintain the stem-ness (i.e. 

being able to reconstitute the mammary gland by self-renewal and differentiation). 

The cultured colonies were dissociated and single cell suspension was obtained. 

Although in a lower efficiency, transplanted cells from stem cell colonies in culture for 

1 week were able to reconstitute the mammary glands (Figure 22). The estimated 

MRU was 1/742 in cultured stem cells (Figure 22. A). We also examined the same in 

cultured luminal progenitors and its estimated MRU was 1/5005 in cultured luminal 

progenitors. The reconstituted mammary gland from the transplanted cultured stem 

cell injection filled the cleared mammary fat pad greater (>80%) than the cultured 

luminal progenitors (<30%) (Figure 22. A). This result was similar to the 

transplantation of FACS enriched stem and luminal progenitors without culture. The 

analysis of whole mount staining of reconstituted mammary gland demonstrated that 

the luminal progenitors reconstituted mainly the ducts that lack the terminal end buds 

(Figure 22. C). In order to assess functionality of the reconstituted mammary gland, 

we induced pregnancy and examined the composition of mammary tree. Interestingly 

both reconstituted mammary gland from stem and luminal progenitor propagated in 

culture could expand into bi-layered ducts composed of luminal and myoepithelial 

cells (Figure 22. D and E). Although it is preliminary, we observed that the number 

and frequency of myoepithelial cells per duct were higher in the cultured stem cell 

derived reconstituted mammary gland.  

In short, we confirmed that FACS enriched stem cells were able to proliferate in 

culture maintaining their distinct cellular characteristics. In addition, we observed that 

luminal progenitor cells, although in lower frequency, were also able to do so. 

Altogether, we have successfully set up an in vitro culture system, which allow us to 

follow the transformation process of the sorted stem and progenitor cells upon 

overexpression of oncogenes (induced by doxycycline in the culture medium). 
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Figure 22. Transplantation of FACS enriched stem and luminal progenitor cells after in culture for 1 week were able 

to give rise to functional mammary glands. A) Estimation of frequency of mammary repopulating units can be 

determined by using the ELDA. B-C) The whole-mount carmine alum staining of reconstituted mammary glands. 

FACS enriched and cultured stem cells are able to reconstitute the functional mammary gland with end buds but not 

in case of the luminal progenitor cells (0.8X and 5X images). D) The immunostaining of pregnancy induced 

reconstituted mammary glands from injection of stem cells. E) The immunostaining of pregnancy induced 

reconstituted mammary glands from injection of luminal progenitor cells.  
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3.5 in vitro cultures recapitulate early stage of Neu driven tumorigenesis in 

vivo  
 

Using this organotypic in vitro 3D culture system, we monitored the proliferation of 

single sorted cells during early stages of tumorigenesis driven by the overexpression 

of two different oncogenes. Stem cells, luminal progenitors, Myo hi and Myo low 

population were obtained from the bi-transgenic mice T-O-NEU or T-O-MYC using 

previously described conventional FACS approach. After 24 hours of initial culture, in 

order to settle the sorted cells to its culture condition, doxycycline (1µg/ml) was 

added to the culture medium (onDOX-state) to express the transgenes Neu or Myc. 

In some populations, we found a significant difference in the proliferation and 

morphology of the colonies upon overexpression of the oncogenes. In order to 

establish that the differences between the onDOX and the Never induced state come 

from the activation of the transgenes, we first needed to confirm the transgene 

expression in each of the FACS enriched cell populations. 

 

qRT-PCR analysis of the rat-Neu transgene showed that all FACS enriched 

populations overexpressed this oncogene 24 hours after induction (Figure 23. A). 

Transgene activation was consistently confirmed also in the later time points of the 

culture period (1, 2, and 3 weeks). After 3 weeks in culture, some stem cells and Myo 

hi population gave rise to morphologically aberrant larger colonies. We separately 

analyzed the expression of the Neu transgene in the larger colonies and the rest, but 

Neu transgene was overexpressed in all cases. The expression level was lower in 

Myo low (the stromal population) compared to the other three populations (Stem, 

Lum prog and Myo hi). Interestingly, the expression of the transgenes in the luminal 

progenitor acini decreased after 2 and 3 weeks in culture.  
 

To confirm transgene expression at the protein level, we performed immuno-staining 

using an anti-HER2 antibody on the cultured colonies. Although this antibody 

recognizes both endogenous and exogenous expression of HER2, only some cells 

within the onDox state colonies appeared to express HER2 in the cellular membrane 

(Figure 23.B).  
 

There was a clear Neu overexpression in cultured colonies shown at both the mRNA 

and protein level after 1 week on Doxycycline. However, we did not observe any 

significant morphological difference using the bright field microscopic analysis 

between the onDox and the Never state. After 2-3 weeks of culture, some filled 
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colonies arose from the stem and Myo hi population that showed moderate 

differences in morphology compared to their Never induced controls (Figure 23.C).  

 

A fraction, 28.5% of colonies arising from the stem cells seem to respond to Neu 

oncogene overexpression by changing their morphology (Figure 23. C and Figure 24. 

A). The rest of stem cell colonies maintained their slower proliferation rate similar to 

their Never induced state. Similarly, 21.3% of Myo hi population also gave rise to 

colonies that resembled the ones from the stem cell population (Figure 23. C and 

Figure 24. B). Unexpectedly, no significant difference was observed in the luminal 

progenitor even after 3 weeks in culture onDox (Figure 24. C). The Myo low stromal 

population developed fibroblast like features in culture and there were neither the 

colony formation nor other noticeable morphological differences upon overexpression 

of Neu (Figure 24. D). In addition, further FACS enrichment of luminal progenitors 

into CD61hi and CD61low population in culture also exhibit no apparent morphological 

differences upon induction of Neu (data not shown). In addition, we did not observe 

any significant enrichment of Neu induced aberrant colonies within the CD1dhi stem 

cells or CD61hi Myo hi population (data not shown).  
 

We next verified that the morphological changes in onDox-cultured colonies correlate 

with increases in proliferation. EdU incorporation confirmed that proliferation among 

the fraction of stem cell colonies was higher upon Neu overexpression (Figure 25. A-

B). Along with the change in their morphology and proliferation rate, we also 

observed a gradual loss of myoepithelial lineage and expansion of luminal cells in 

those stem cell colonies (Figure 25. C). As mentioned above, the majority (over 90%) 

of stem cell colonies exhibited double positivity for SMA and K8/18 within a week in 

culture (Figure 16. B). After 2 weeks in culture, within the onDox stem cell cohort, the 

expansion of inner luminal compartment (K8/18 single positive cells) was observed. 

The outer layer of these colonies remained SMA positive varying in the degree of 

their expression. After 3 weeks of culture, SMA expression in the onDox stem cell 

colonies was very low or completely lost in some colonies, while expression of K8/18 

luminal lineage was enhanced. These observations point towards the possibility that 

Neu overexpression in stem cells lead to tumor development by specifically 

contribute towards expanding the luminal-committed lineage. 
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Figure 23. in vitro cultures recapitulate early stage of Neu driven tumorigenesis in vivo. A) Relative expression of rat-

HER2 transgene in mRNA levels in the different FACS enriched cell populations detected by qRT-PCR. Y axis 

showed relative level of mRNA expression in logarithmic scale. Different fractions of FACS enriched cell population 

from T-O-NEU express the transgene rat-Neu in culture. B) Immuno-staining of the HER2 expression in cultured 

colonies (1 week in culture onDox). C) A fraction of induced stem cell colonies and Myo low colonies in culture exhibit 

significant morphological differences upon doxycycline induction compared to their never induced controls.  
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Figure 24. Bright field photo documentation analyses of the sorted cells from T-O-Neu in culture over 3 weeks of 

period. A) Representative images of stem cell colonies. A fraction of the induced stem cells (onDox) responds to 

transgene activation. B) Representative images of Myo hi colonies. Similar response was observed in Myo hi 

population. C) Representative images of luminal progenitor acini. No significant difference was seen in luminal 

progenitors. D) Representative images of Myo low population. No significant difference was seen in Myo low 

population.  

 

Despite of the apparent transgene expression among luminal progenitors, we did not 

find any significant change in the morphology or proliferation rate upon doxycycline 

induction over 3 weeks of culture period. This lack of response among luminal 

progenitor cells in vitro might be explained by the contribution of the in vivo 

microenvironment in luminal progenitor cell driven mammary tumorigenesis, and 

would require further investigation. On the contrary, our in vitro culture hints that 

stem cells could well be TICs of Neu overexpressing breast tumors. Since Neu 

driven primary tumors are composed of mainly luminal cells (Figure 11. A), the 

preferential expansion of the luminal lineage observed in stem cell colonies in culture 

resembles the composition of the Neu primary tumors. Thus, our observation also 

adds stem cell population as an additional candidate tumor cell-of-origin in Neu 

driven tumors. 
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Figure 25. A fraction of stem cells responded to Neu overexpression in culture by increasing their proliferating and 

preferential differentiation towards luminal lineage. A) Representative pictures of Stem and Progenitor cells with and 

without doxycycline induction for 3 weeks, showing an increase number of positive EdU cells on the SC on dox. 

Green: EdU staining, blue: DAPI (EdU incorporation 18 hours no pause) B) Quantification of EdU incorporation in the 

spheres in culture (n>10 colonies). C) Immuno-fluorescence staining of cellular lineages (luminal and myoepithelial) 

of the cultured colonies. Stem cells colonies exhibit the expansion of the luminal lineage over a period of time.  
 

 
 

3.6 in vitro cultures recapitulate early stage of Myc driven tumorigenesis in 

vivo 

 

The Myc oncogene exhibited rapid morphological changes within the cultured stem 

cell derived colonies as well as luminal progenitor derived acini after 3-4 days onDox. 

In order to confirm if the c-Myc transgene is also expressed in all cell populations 
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obtained after FACS, we performed qRT-PCR analysis at the mRNA level of human 

c-Myc transgene after 24 hours and 1 week of culture (Figure 26. A). Transgene 

expression was detected in all cell populations including stem cells, luminal 

progenitors, Myo hi and Myo low population. We again separated morphologically 

aberrant larger colonies of the stem cell population and compared them to the rest. 

The Myc transgene was overexpressed in both cases. In contrast to Neu, there was 

a higher Myc transgene expression within the Myo low stromal population. Despite 

using the same promoter (MMTV) for the overexpression of the transgenes, we 

observed this difference in transgene expression. It implies that the c-Myc oncogene 

is preferentially expressed among the stromal cells.  
 

 

 

 

In addition, we performed immuno-staining of human-c-Myc co-stained with SMA and 

K8/18 antibodies on stem and progenitor colonies in culture onDox for 7 days. This 

analysis clearly demonstrated the presence of transgene human-c-Myc expression at 

the protein level inside the nuclei (Figure 26. B). The Myc expressing cells in the 

stem cell colonies are normally the SMA positive myoepithelial cells and not the 

K8/18 positive luminal cells. In the progenitor cells Myc expression was present in 

both myoepithelial and K8/18 positive luminal cells or double-positive cells.  
 

The c-Myc overexpression took a shorter time period (less than 1 week) in order to 

induce the apparent morphological cellular transformation of colonies in comparison 

to Neu (became significant only after 3 weeks onDox). The percentage of colonies 

onDox that exhibit morphological differences from their counterpart controls (Never 

state) was 30.2% in stem cells (Figure 26. C). This percentage difference was similar 

to that of Neu (28.5%). In contrast, almost all of the luminal progenitor cells (98%) 

responded to the activation of Myc and grew into filled colonies. In case of Neu, there 

were no apparent morphological and proliferative differences between the luminal 

progenitors onDox and the never induced controls. Again, the Myo hi population 

gave rise to aberrant colonies (32.3%) that are morphologically similar to the stem 

cell derived ones. Despite sharing the same MMTV-promoter, we again observed 

differences in the expression pattern of the transgenes between Neu and Myc. 
 

Interestingly, in line with the previous report by Joshi et al., depending on the phase 

of estrus cycle when the mammary glands were isolated, the total number of colonies 

arising in culture differed significantly98. However, the percentages of colonies 

responding to induction of oncogene (i.e. giving rise to aberrant morphological 

changes) were fairly constant between steady state (estrus) and highly proliferating 

(diestrus) state (data not shown) upon both Neu and Myc overexpression.  
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Figure 26. in vitro culture recapitulate early stage of Myc driven tumorigenesis in vivo. A) Relative expression of 

human-c-Myc transgene in mRNA levels in the different FACS enriched cell populations detected by qRT-PCR. Y 

axis showed relative level of mRNA expression in logarithmic scale. Different fractions of FACS enriched cell 

population from T-O-MYC express the transgene hu-c-Myc in culture. B) Immuno-staining of the transgene hu-c-Myc 

expression in cultured colonies (1 week in culture). C) A fraction (30.3%) of induced stem cells and the majority 

(98.9%) of progenitor cell colonies in culture exhibit significant morphological differences upon doxycycline induction 

compared to the never induced controls. 
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The bright field analysis of the colonies in culture showed that after 7 days, both stem 

and progenitor colonies start to have some degree of cell death. In case of the stem 

cell colonies overexpressing Myc, the inner portion of the colonies has dead cells 

(Figure 27. A). On the other hand, luminal progenitor colonies in onDox culture seem 

to have cell death from the outside (Figure 27. B). Myo hi population presented 

similar features to that of stem cells, but Myo low population gave no differences in 

culture (Figure 27. C and D). The effect of oncogenic Myc was rapid and potent at 

1mg/ml of doxycycline administration in culture. The activation of apoptotic, 

proliferative pathways by Myc overexpression resulted in both expansion and cell 

death of colonies in culture. For this reason, the FACS enriched populations from T-

O-MYC were kept in culture no longer than 2 weeks. Alternatively, a lower 

concentration of doxycycline can be used in culture in the future. 
 

 
 

Figure 27. Bright field photo documentation analysis of the sorted cells from T-O-MYC in culture over 1 week of 

period. A) Representative images of stem cell colonies. A fraction of the induced stem cells (onDox) responds to 

transgene activation. B) Representative images of Myo hi colonies. Similar response was observed in Myo hi 

population. C) Representative images of luminal progenitor acini. Nearly every colonies give rise to morphologically 

aberrant colonies in response to Myc overexpression. D) Representative images of Myo low population. No 

significant difference was seen in Myo low population.  
 

We were able to confirm the increase in proliferation of Myc overexpressing stem 

and luminal progenitor colonies through incorporation of EdU in culture (Figure 28. A-
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B). Upon Myc oncogene overexpression, the expressions of lineage specific markers 

(SMA and K8/18) were analyzed. Among the bigger stem cell derived colonies 

(became over 100µm in diameter), the number of cells express K8/18 luminal lineage 

decreased (Figure 28. C). Majority of stem cell derived colony kept the expression of 

SMA especially at the outer layer of colonies. There were some cells in the middle of 

stem cell colonies that were negative for both SMA and K8/18 (e.g. day 10). We 

assessed if it was due to lack of antibody penetration; however, that was not the 

case.  

The luminal progenitor cells from T-O-MYC showed continuous expression of luminal 

lineage marker K8/18, but Myc overexpression also increased the level of SMA 

expression in those colonies (onDox). Elevated SMA expression among onDox 

luminal progenitor colonies resulted in the double expression of luminal and 

myoepithelial lineages in early time points (day 5). Over time, the K8/18 expression 

became heterogeneous within the luminal progenitor colonies. Especially, the cells 

located at the outer layer showed a reduced K8/18 expression (at day 7). 

Furthermore, at day 10 of culture, onDox colonies had some single SMA positive 

cells in the outer layer of colonies that no longer express K8/18. Interestingly, onDox 

cultured progenitor colonies resembled more of the cellular composition of these Myc 

primary tumor, i.e., they contained both luminal and myoepithelial cellular lineages. 

While we cannot exclude the possibility of the stem cells being the TICs, these in 

vitro observations suggest that luminal progenitor cells could also be the TICs of Myc 

driven tumors.  

In contrast to Neu, overexpression of Myc in luminal progenitors resulted in the 

preferential expansion of the myoepithelial lineage that could play a role during Myc 

induced tumorigenesis. We further analyzed this phenomenon of cellular transition in 

different experimental settings both in vitro and in vivo.  
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Figure 28. A fraction of stem cells and majority of luminal progenitors responded to Myc overexpression in culture by 

increasing their proliferating and preferential differentiation towards myoepithelial lineage. A) Representative pictures 

of Stem and progenitor cells with and without doxycycline induction for 3 weeks, showing an increase number of 

positive EdU cells on the SC and Lum Prog onDox. Green: EdU staining, blue: DAPI (EdU incorporation 18 hours) B) 

Quantification of EdU incorporation in the spheres in culture (n>10 colonies). C) Immuno-fluorescence staining of 

cellular lineages (luminal and myoepithelial) of the cultured colonies. Stem cells colonies shows loss of luminal 

lineage and expansion of SMA positive myoepithelial lineage. Luminal progenitors also gain the expression of 

myoepithelial lineage upon doxycycline induction. Over a period of one week in culture, the luminal progenitors 

express single positive myoepithelial lineage in the outer layer of the colonies.  
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3.7 Slug up-regulation indicate myoepithelial lineage commitment in Myc and 

Neu driven colonies in vitro 

Previous reports suggested that an elevated level of Slug, a critical transcription 

repressor of breast epithelial differentiation, can be detected within the myoepithelial 

lineage158,159. We first attempted to confirm the expression of Slug in wild type or the 

Never induced cultured colonies. As expected, in luminal progenitor population, there 

was no Slug expression detected by immuno-fluorescence staining. Among the stem 

cells colonies, Slug was up-regulated only in the colonies where the 

myoepithelial/basal cellular differentiation took place usually after 7 days of culture 

(Figure 29. A). When the stem cells were not differentiated into a bi-layer of luminal 

and myoepithelial acini, Slug was not expressed. Upon Myc overexpression, the 

stem cell colonies expand their myoepithelial lineage shown by SMA expression. As 

expected, we confirmed an up-regulation of Slug within the nuclei of SMA positive 

cells (Figure 29. B). This also suggests a preferential expansion of the stem cells into 

the myoepithelial-committed lineage. Similarly, we attempted to show the lineage 

transition of luminal progenitor colonies upon Myc overexpression. Potential trans-

differentiation from luminal to the myoepithelial lineage can be confirmed by Slug 

staining together with SMA, K8/18 expression. The never induced luminal 

progenitors were clearly Slug negative (Figure 29. C). In favor of our hypothesis, 

Slug up-regulation was also found within the single-SMA positive cells in the outer 

layer of the onDox luminal progenitor colonies (Figure 29. D, day 10). In addition to 

the cellular lineage marker SMA and K8/18, the co-immuno-staining of Slug suggests 

a trans-differentiation of luminal progenitors to the myoepithelial lineage upon Myc 

overexpression after a given period of time.  
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Figure 29. Slug up-regulation indicates myoepithelial lineage commitment in Myc driven colonies in vitro. A) 

Immunofluorescence staining of Slug, SMA and K8/18 in the wild type stem cell colonies in culture at different time 

points. Slug is up-regulated where the stem cells differentiate and commit to the myoepithelial lineage. B) 

Immunofluorescence staining of Slug, SMA and K8/18 in the T-O-MYC stem cell colonies in culture onDox at 

different time points. The outer layer of SMA positive cells frequently co-expressed Slug. C) Immunofluorescence 

staining of Slug, SMA and K8/18 in the Never induced luminal progenitors where Slug is not expressed. D) 

Immunofluorescence staining of Slug, SMA and K8/18 in the T-O-MYC luminal progenitor colonies onDox at different 

time points. Single SMA positive cells within the luminal progenitor cells onDox are up-regulated in the level of Slug 

expression. 
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Since the majority of Slug positive cells are located in the outer rim of the acini, we 

confirmed again the expression of transgene hu-c-Myc with immuno-staining. Within 

the luminal progenitor colonies from T-O-MYC, we confirmed a clear Slug up-

regulation in the outer layer of the colonies (Figure 30). Myc transgene expression 

was not limited to the outer rim of the colonies.  

 

 
Figure 30. Representative images of immuno-staining of hu-c-Myc and Slug expression among T-O-MYC luminal 

progenitors after 7 days onDox.  
 

3.8 Slug expression status in Neu overexpression 

 

In contrast to Myc, Neu overexpression within the stem cell colonies led to down-

regulation of SMA expression (Figure 25. C). As it is suggested that Slug down-

regulation correlates with the luminal lineage expansion158, we attempted to confirm 

the preferential expansion of luminal lineage. The K8/18 expressing aberrant stem 

cell colonies from T-O-NEU exhibit no Slug up-regulation in the inner part, however, 

we found the mild Slug up-regulation in the outer layer of the colonies (Figure 31. A). 

This implies that the cells in the outer layer of Neu overexpressing stem cell colonies 

lose the SMA expression, but still keep their myoepithelial lineage. We found those 

SMA negative cells still express the un-committed myoepithelial marker (Figure 31. 

B) We also questioned that if the loss of SMA positive cells within the Neu 

overexpressing stem cell colonies is due to programed cell death. However, there 

were no sign of Caspase-3 dependent apoptosis in the outer layer of stem cell 

colonies overexpressing Neu (Figure 31.C). We have not confirmed whether longer 

overexpression of Neu would eventually down-regulate the Slug expression 

completely.  
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Figure 31. The outer layer of cells within the Neu overexpressing stem cells are still shown to be un-committed 

myoepithelial lineage. A) Representative images of Slug, SMA and K8/18 expression within the stem cells and 

luminal progenitor cells from T-O-NEU. B) Representative images of K14 and K8/18 staining within the stem cells 

and luminal progenitor cells from T-O-NEU. C) Representative images of SMA, K8/18 and cleaved Caspase-3 

staining within the stem cells and luminal progenitor cells from T-O-NEU. 

 

3. 9 Neu target the un-committed stem cells as TICs in vitro  

 

Despite the expression of Neu transgene in the progenitor population, in vitro 

cultured cells onDox did not show any sign of tumorigenicity. This puzzled us since 

previously, the luminal progenitors were thought to be the targeted population or the 
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origin of TICs of Neu driven tumors. We attempted to then test different micro-

environmental factors that could be lacking in our culture condition. First, we included 

fat cells (adipocytes) in the co-culture. This increased the proliferation of progenitor 

cells in general, but the differences were not significant between onDox and never 

induced controls (data not shown). Next, we examined the effect of myoepithelial 

cells surrounding the luminal cells. We attempted to examine this by first, letting T-O-

NEU stem cell population expand in culture for 2 weeks without doxycycline induction, 

in order to differentiate into myoepithelial- and luminal- cells containing bi-layered 

colonies. Stem cells gave rise to a heterogeneous population including three main 

categories; 1) small slow-proliferating stem-like colonies (SMA and K8/18 double 

positive), 2) partially differentiated bi-layered colonies, and 3) luminal progenitor like 

single layer acini (Figure 32 Upper). Although these results are preliminary, we found 

that Neu overexpression led to an increased proliferation in the stem like colonies 

(category 1) and some bi-layered colonies (category 2), but rarely in the luminal 

progenitor-like acini (category 3, <5%) (Figure 32 Lower). This implies that cellular 

differentiation status plays an important role for the cells to be more susceptible to 

the hit of the oncogenic mutation and become TICs. In order to confirm this result, 

further lineage tracing approaches must be employed.  
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Figure 32. Neu target the un-committed stem cells as TICs in vitro. Upper) Schematic representation of three 

different cellular categories derived from stem cells and their response to Neu overexpression. Lower) 

Representative bright field images of T-O-NEU stem cells derived colonies. 
 

3.10 in vivo reconstitution of mammary gland for the tumorigenesis assay  

 

In parallel with the in vitro culture approach, we employed in vivo transplantation 

assays in order to assess the tumorigenic capacity of potential TICs. As previously 

described, we enriched and isolated stem and luminal progenitor cells by FACS from 

the digested mammary glands of un-induced T-O-NEU and T-O-MYC 8 weeks old 

adult female mice. The FACS enriched cells were re-suspended in 50% of matrigel 

(BME) containing media, and transplanted into immune-compromised Rag1-/- mice. 

This transplantation could provide one of the closest microenvironment for the FACS 

isolated mammary epithelial cells to their original microenvironment. We injected the 

different populations of FACS isolated cells in serial dilutions obtained from un-

induced bi-transgenic mouse mammary glands. Knowing the MRU of the stem cells 

(1/196) and luminal progenitors (1/1614) we decided to perform these 

transplantations in serial dilutions of 250 cells, 500 cells, 1000 cells and 2000 cells. 

The range should cover the cellular dilution when stem cells are likely to reconstitute 

the mammary fat pad upon transplantation while the luminal progenitor cells would 

not. In order to induce oncogene expression, the immune-deficient recipient mice 

were fed with doxycycline containing food immediately after the transplantation 

(Figure 7 in introduction). After 6-8 months, tumors developed from the transplanted 

cells injected in the cleared fat pad upon continuous administration of doxycycline 

(Figure 33. A and Figure 35. A). Control mice that did not receive doxycycline-

containing diet did not develop any tumor upon transplantation. The cellular 

compositions of tumors obtained upon transplantation were then compared to the 

respective primary tumors (Figure 33. B and Figure 35. C). 
 

3.11 Luminal progenitor cells as well as stem cells are the potential TICs in Neu 

overexpressing tumors in vivo 

 

As previously reported, the luminal progenitor cells had been described as the TIC 

population of Neu/HER2 driven tumors shown in MMTV-NEU mice. From our in vitro 

observation, we suspected that stem cells could also be the TICs. Upon activation of 

Neu overexpression, we observed the formation of tumors from the stem, luminal 

progenitor and Myo hi population, but not efficiently from the Myo low stromal 
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population (Figure 33. A). The efficiency of tumor forming capacity, tumor initiating 

unit (TIU) was also calculated using ELDA. The stem cells were able to form tumors 

with an efficiency of TIU 1/530, whereas luminal progenitor cells also gave rise to 

tumors with a frequency of TIU 1/606. Interestingly, the Myo hi population could also 

give rise to tumors in vivo. In fact, we repeatedly observed that the Myo hi population 

presented similar characteristics to that of stem cells both in vitro and in vivo. 

Currently, there are no specific cell surface markers to distinguish Myoepithelial 

progenitor or Myoepithelial differentiated cells from the stem cells that also resides in 

the myoepithelial population. Although it is a mixed population, it is highly likely that 

the Myo hi population also contain cells that possess certain stem-like characteristics. 

In the in vitro culture, we did not observe any significant tumorigenic characteristics 

of the luminal progenitor cells, however, luminal progenitor cells gave rise to tumors 

as efficiently as that of stem cells.  

 

The immuno-staining with SMA and K8/18 confirmed that the tumors from 

transplanted cells were mainly composed of luminal cells in all cases (Figure 32. B 

Upper). This resembles the classical Neu driven luminal tumor phenotype as well as 

the primary tumors obtained from T-O-NEU (Figure 11. A). We could also confirm the 

HER2 expression at the protein level (immunostaining) among the tumors arising 

upon transplantation (Figure 32. B Lower). Altogether, these results suggest that 

both stem and progenitor cells are the source of TICs in Neu driven tumors.  
 

In order to confirm the contribution of T-O-NEU transplanted cells for their 

tumorigenesis, we attempted to mark the tumor cells originating from the 

transplanted cells. We crossed T-O-NEU mice with CAG-H2B-GFP transgenic line to 

be able to distinguish the transplanted cells from the cells of the recipient mice. 

Surprisingly, we observed down-regulated GFP expression in some tumors that 

originated from stem cells (n=3) (Figure 34. A). Interestingly, the neighboring 

mammary duct still expressed GFP in the nuclei only among the myoepithelial cells 

and not the luminal cells. Some luminal progenitor derived tumors expressed GFP (2 

out of 4) (Figure 34. B), but only in some areas (<10%). Although this is a preliminary 

analysis, GFP expression is either down-regulated, silenced or selected against upon 

Neu overexpression and tumor initiation. 
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Figure 33. Luminal progenitor cells as well as stem cells are the potential TICs in Neu overexpressing tumors in vivo. 

A) Table summarizing the result of in vivo tumorigenesis assay and estimation of tumorigenic efficiency of T-O-NEU 

sorted cells in vivo. B) Panel of immuno-staining of tumors arising from the transplantation of T-O-NEU sorted cells 

(upper), confirming HER2 transgene expression (lower). 
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Figure 34. H2B-GFP is not always expressed in the tumors derived from transplantation of T-O-NEU/H2B-GFP cells. 

A) Representative images of tumors developed upon transplantation of stem, and B) luminal progenitors (lower). 

Myoepithelail cells are H2-GFP negative in both cases. 

 

3.12 The potential TICs in Myc overexpressing tumors in vivo  

 

TICs of Myc induced tumors were thought to be the stem cell population that give 

rise to heterogeneous tumors of a mixed phenotype. Upon transplantation of different 

FACS enriched T-O-MYC cell populations, we indeed obtained tumors from the stem 

and Myo hi lineage both composing the myoepithelial population129. Repeatedly, Myo 

hi population showed similar results to that of stem cells. We also observed some 

tumors from the luminal progenitor population but in a lesser frequency (Figure 35. A). 

Due to the relatively long tumor latency, also in the case of primary T-O-MYC tumors, 

the results are still preliminary.  

 

We confirmed human-c-Myc expression among the tumors upon transplantations 

(Figure 35. B). Analysis of the cellular lineage markers (SMA, K8/18) showed that all 

of those tumors are composed of both luminal and myoepithelial lineage (Figure 35. 

C). This resembles the primary T-O-MYC derived tumors (Figure 11. D). T-O-

MYC/H2B-GFP tracing experiment was also performed in order to confirm the 

contribution of transplanted cells for tumorigenesis. The approach could confirm the 
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trans-differentiation of luminal progenitors to myoepithelial lineage upon Myc 

overexpression previously observed in vitro. Unfortunately, due to the long latency of 

Myc induced tumors (more than 6 months in average), the corresponding results 

cannot be shown in this thesis and will be presented somewhere else.  

 

 
 

Figure 35. Stem cells as well as luminal progenitor cells are the potential TICs in Myc overexpressing tumors. A) 

Table summarizing the result of in vivo tumorigenesis assay and estimation of tumorigenic efficiency of T-O-MYC 

sorted cells in vivo. B) Panel of human-c-Myc immunohistochemistry of tumors arising from transplantation of T-O-

MYC sorted cells. C) Immuno-staining of SMA, K8/18 in tumors obtained from transplantation.   
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3.13 Lineage tracing approach 

 

In an effort to better characterize the TICs of Neu and Myc induced breast tumors, 

we employed two lines of transgenic mice which enable lineage tracing: MMTV-

CreERT2 and Axin2-CreERT2. Axin2 has been shown as the stem cell marker at the 

adult stage (8 weeks) recently characterized by van Amerongen et al.131. We crossed 

these lines with two reporter lines Rosa26-YFP and Rosa26-Brainbow2.1 (Confetti).  

First, in order to optimize the marking efficiency and to reproduce the published 

result, we induced Axin2-CreERT2/Rosa26-YFP at 8 weeks of age. After one week, 

and 4 weeks of tracing interval, we analyzed the YFP (Yellow Fluorescent Protein) 

positive cells using a FACS approach. At one week, a small portion of Myo hi 

population and 10% of Myo low population were YFP positive (Figure 36. A). After 

another 3 weeks of tracing, YFP positive cells were found in 7% of stem cells, 7% of 

Myo hi (Figure 36. B). The Myo low YFP positive cells remained constant (10%). 

These results indicate that indeed Axin2 is able to mark putative stem cells, however, 

induction of tamoxifen at 8 weeks also label some Myo low cells. Myo low population 

is known as the stromal cells and Axin 2 positive Myo low YFP positive cells did not 

show any expansion between 1 week and 3 weeks of tracing time from the FACS 

analysis. There is a possibility that some YFP positive Myo low population could give 

a false negative or a false positive results in the future tumorigenesis tracing 

experiment, however, it is less likely that Myo low population serves as the TICs 

upon overexpression of oncogenes. This is also supported by our previous in vitro 

and in vivo experiments. In parallel, MMTV-CreERT2/Rosa26-YFP lines were also 

characterized (data not shown). After the initial validation, we started to induce Neu 

and Myc oncogenes and assess the contribution of marked cell populations for the 

formation of tumors by further crossing with T-O-NEU or T-O-MYC mouse models 

(Table 7). Due to the time limitation, we cannot present these results in this thesis. 

However, this approach will be continued further and presented elsewhere.  

 

Table 7. Various mouse models that are used for lineage tracing during 

tumorigenesis. 
 

Methods of Analysis Mouse lines 
FACS Axin2-CreERT2/Rosa26-YFP/TetO-Neu/MMTV-rtTA 
FACS Axin2-CreERT2/Rosa26-YFP/TetO-Myc/MMTV-rtTA 
Histology Axin2-CreERT2/Rosa26-Brainbow2.1/TetO-Neu/MMTV-rtTA 
Histology Axin2-CreERT2/Rosa26-Brainbow2.1/TetO-Myc/MMTV-rtTA 
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Figure 36. Initial FACS analysis of showed Axin2-YFP positive cells expanded in the Stem, and Myo hi populations 

over 4 weeks of lineage tracing. A) 1 week of tracing. B) 4 weeks of tracing. The experimental animals are Axin2-

CreERT2/Rosa26-YFP (in blue) and the respective controls are tamoxifen-induced littermates Rosa26-YFP (in red). 

In order to analyze the percentage differences between the samples and their controls, the baseline was set as the 

1% of YFPhi populations of the controls. (Data jointly produced with Marta Garcia) 
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4. Discussion  

 

4.1 Constitutive versus tractable mouse mammary tumor models 
 

The majority of previous reports indicated that the TICs of MMTV-Neu induced 

tumors are the luminal progenitors89,90,160. All these studies were conducted using 

MMTV-Neu, and the effect of Neu overexpression were present during embryonic 

and pubertal development in all mammary cellular lineages in contrast to the de novo 

activation of Neu in an adult cell. The constitutive overexpression of Neu may also 

alter the physiological mammary cellular hierarchy during development. Unlike 

mutations of the tumor suppressor gene such as BRCA-1 that is classified as a 

hereditary or germ line mutation, Neu or c-Myc oncogenic mutations appeared to be 

somatic mutations in patients that are acquired after puberty and throughout 

adulthood. In order to delineate the TICs in adult healthy mammary gland more 

accurately; we employed tetracycline inducible mouse mammary tumor models that 

closely recapitulate somatic oncogenic mutations in different adult mouse epithelial 

lineages including stem cells, and luminal progenitor cells.  
 

4.2 Use of in vivo transplantation assay to assess tumorigenicity  

 

Self-renewal and lineage differentiation capacity are two main characteristics of all 

stem cells. Therefore, as with normal stem cells, evaluations of both self-renewal and 

tumor propagating capacity of TICs were critical. The transplantation assay and 

confirmation of tumor growth in vivo could fulfill these criteria. Although there are 

some existing withdrawals, in vivo transplantation is regarded as the gold standard 

functional assay.  
 

In our study we performed, first, the orthotopic transplantation of healthy mammary 

epithelial cells into the cleared mammary fat pad. The mammary gland is one of the 

rare organs that can be dispensable and fully reconstituted upon transplantation. We 

did not use syngeneic mice that are classical recipients of mammary stem cell 

transplantation, but instead, Rag1-/- mice as the host.  Rag1-/- mice lack B and T 

lymphocytes while the other immune cells including natural killer (NK) cells are still 

present65. Other common immuno-deficient mice used for transplantation assays are 

NOD/SCID mice or nude mice. In the wild type situation, upon transplantation of bi-

potent stem cells, we were able to reconstitute functional mammary gland in cleared 
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mammary fat pad of Rag1-/- recipient mice. Our transplantation efficiency was 1/2-1/3 

times lower compared to the previous reports118,128. This could be due to technical 

variability, genetic background of bi-transgenic mice, and the use of Rag1-/- mice as 

the hosts instead of using syngeneic mice. Hence the difference could be due to 

presence of NK cells and other immune cells still present in the recipient mice.  

 

From our in vivo tumorigenesis assay, the luminal progenitor cells indeed gave rise 

to tumors that resemble the primary breast tumors from T-O-NEU. However, our 

putative stem cells and Myo hi population also could give rise to tumors that are 

composed of mainly the luminal cells similar to the primary tumors. Moreover, the 

efficiency of tumor initiation (shown in TIU) was slightly higher among stem cells than 

that of luminal progenitors. From in vivo data, it hints that adult stem cells and luminal 

progenitor cells are putative TICs of T-O-NEU mouse mammary tumor models. We 

did not perform serial transplantation of tumor cells obtained upon transplantation as 

our aim is not to identify the CSCs; identification of CSCs often involve serial 

transplantation assay.  
 

The stem cell being a potential TIC of Neu driven tumors contradicts with the recent 

reports postulating that the luminal progenitors are the TICs89-91. The PI-MECs are 

also suggested to be the TICs of Neu driven tumors87, however, we did not examine 

stem cells that are expanded during pregnancy (PI-MECs). This could be a possible 

future experiment.  

 

Upon overexpression of c-Myc, stem cells, Myo hi population gave rise to tumors and 

luminal progenitors to a lesser extent. From the primary breast tumors from T-O-

MYC the median tumor free latency was double the time of T-O-NEU. Current results 

suggest that the myoepithelial lineage including the stem cells and Myo hi 

populations are the potential TIC of Myc driven tumor. This is in line with our initial 

hypothesis as the primary Myc overexpressing tumors in human and mice exhibit 

basal/myoepithelial mixed phenotype. More conclusive result from in vivo assay will 

be presented upon collection of more data elsewhere.  

 

4.3 Transplantation assay – artifact or effect of inducing de-differentiation 

partially committed progenitor cells  
 

The in vivo transplantation assay is rather a long process. On top, we try to assess 

the tumorigenic capacity of different cell populations that are induced overexpression 
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of oncogenes. The time line of tumor development after transplantation can take over 

6 months. The activation of transgenes was achieved soon after the transplantation 

(within the first 24 hours) within the time frame that the cells of interests are likely to 

maintain their lineage characteristics and cross examined by in vitro culture. 

However, we cannot exclude the possibility of differentiation, de-differentiation 

variability induced by the transplantation procedure by itself.   
 

Not only the stem cells but also upon injection of luminal progenitor cells, we were 

able to reconstitute mammary glands, but only when a higher number of cells are 

injected into the fat pad. Their reconstituted mammary gland spread to a lesser 

extent (<30%) in the entire fat pad compare to the ones of stem cells (>80%). We 

tried to examine the functionality of reconstituted mammary glands by the expression 

of lineage specific markers including K8/18, SMA and K14161. We found that the 

reconstituted mammary glands derived from the luminal progenitor cells consists of 

bi-layered ducts similar to the control mammary glands. The presence of SMA 

positive myoepithelial cells found in the reconstituted mammary gland upon 

transplantation of luminal progenitors made us question their cellular origin. A recent 

lineage tracing study also pointed out that trans-differentiation is a potential outcome 

of transplantation assay that does not frequently occur in the physiological 

conditions120. Although it is infrequent, interchange of lineage or de-differentiation of 

lineage-committed stem/progenitor to become multi-potent in physiological condition 

can be exacerbated through transplantation procedures. It could explain why partially 

committed luminal progenitors can also give rise to the myoepithelial lineage upon 

transplantation show no particular defects in the reconstituted mammary gland.  
 

4.4 in vitro culture recapitulate normal mammary gland development 

 

Although the in vivo transplantation assay has been the gold standard for identifying 

stem cells and provides the indication for identifying the breast TIC populations, 

using animal models is time consuming and difficult for high-throughput quantification 

analysis. Moreover, we could not address how the individual transplanted cells of 

interest would respond to the respective oncogenes at the pre-neoplastic stage. 

Therefore, we attempted to develop a reliable in vitro assay that is quantitative, rapid, 

and less expensive but still sufficiently sensitive and is specific to the cells of 

interest162. Our in vitro culture system successfully allowed us to monitor individual 

cells for their proliferation and differentiation mechanism maintaining their cellular 

characteristics. 
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We first optimized an in vitro 3D culture system using wild type cells, where FACS 

enriched stem and other cell populations can be maintained and expanded. In our 

validation, we observed the stem cell being less proliferative than the luminal 

progenitors. Luminal cells usually developed into single layer hollow polarized acini 

that express luminal specific marker K8/18 dominantly. Our culture allowed the cells 

to proliferate for more than 4 weeks and can also be passaged. Among luminal 

progenitor acini in culture at 1 week, there was a mind or less dominant SMA 

expression in different degrees. CD61hi expressing luminal progenitor population 

showed a mind SMA co-expression. In contrast, larger portion of CD61low luminal 

cells give rise to SMA negative K8/18 positive acini. However, after 2 weeks in 

culture the difference between these two populations became insignificant implying 

the differentiation of CD61hi population to become more committed luminal lineage.  
 

The stem cells maintained their bi-potent lineage in culture shown by stem cell 

colonies often being dominant double positive for both luminal (K8/18) and the 

myoepithelial specific markers (SMA). After over 1 week in culture, some stem cells 

started to differentiate into bi-layered acini having inner layer of luminal cells and 

outer layer of myoepithelial cells. Other cell populations obtained from FACS 

enrichment including Myo low were also kept viable in culture but did not display any 

clonal expansion.  
 

It is obviously important for the validity of this 3D organotypic approach to 

demonstrate that the respective cells would still behave like the original sorted 

population. We followed this, isolated cells and could show that stem cells in culture 

for 1 week were still able to give rise to the functional bi-layered mammary glands 

upon transplantation. Stem cell colonies in culture for over 1 week started to develop 

a degree of heterogeneity; some cells are staining as small colonies that have no 

lumen formation, some others starting to partially differentiate into the bi-layered 

polarized acini. Shorter period in culture could increase their MRU, the reconstitution 

efficiency.  
 

Luminal progenitor cells maintained in culture were also able reconstitute the 

mammary gland, but with a lower efficiency. This could be due to the effect or artifact 

of transplantation assay as reported previously120. There is a small possibility that our 

FACS enriched stem cell populations are contaminated with other cell populations 

such as luminal progenitors. However this is unlikely, given the high FACS sorting 
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efficiency (over 96%) and the stem cell population was also examined in culture for 

their characteristic proliferation. 

 

4.5 Overexpression of oncogenes can lead stem cells and/or luminal 

progenitors to be the putative TICs in vitro 

 

In combination with the tractable oncogenic mouse mammary tumor models, we are 

able to examine the response of adult mammary epithelial populations undergo 

overexpression of oncogenes in vivo. Upon overexpression of Neu, unexpectedly, no 

significant differences were observed prior to and post induction among the luminal 

progenitor population. We suspect that those cells are highly dependent on the 

signaling from their surrounding microenvironment. Our in vitro suggests that the 

contribution of stroma that lacks in the culture system is a major contributor to 

oncogenic transformation of luminal progenitor cells.  
 

We observed heterogeneity in response to oncogene overexpression among the 

stem cell population enriched by FACS. Almost 30% of stem cell colonies expanded 

and gave rise to an aberrant morphological phenotype with an increased proliferation, 

but the rest showed no apparent differences. This observation and percentage of 

aberrant colonies onDox were consistent in the case of both Neu and Myc 

overexpression among the stem cells in culture. This could be due to the 

heterogeneous expression of MMTV-rtTA promoter. In fact, one of the reports 

claimed that MMTV-rtTA expression is actually limited to the luminal cells163. 

However, our transgene expression analysis demonstrated that all the FACS 

enriched populations including myoepithelial and stem cell lineage expressed MMTV 

confirmed by qRT-PCR and/or immuno-staining. It is striking that even after only 24 

hours of doxycycline induction in culture media, there was a potent overexpression of 

oncogenes.  
 
 

 

4.6 Effect of oncogene for lineage commitment, trans-differentiation or de-

differentiation  
 

Using those lineage specific markers K8/18, SMA, K14, and Slug, we further 

analyzed cellular lineage composition of the onDox aberrant colonies. Upon Neu 

overexpression, we observed an expansion of luminal cells in the inner part of stem 

cell colonies. The selective luminal lineage expansion may imply that stem cells are 

TICs of Neu tumors since Neu driven tumor are composed of luminal cells.  
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In contrast, there was a gradual reduction or loss of the differentiated myoepithelial 

marker, SMA, in the outer layer of colonies over a period of time (around 3 weeks). 

We questioned if those myoepithelial cells disappear by apoptosis. Surprisingly, 

these outer cells were negative for Caspase-3 dependent apoptosis, maintaining 

their myoepithelial/basal lineage shown by mild Slug expression, and an un-

differentiated myoepithelial cellular marker, K14 expression. Recent report showed 

that Slug is expressed among the proliferating myoepithelial cells (CD49f, CK5 

positive)114 and Slug down-regulation leads to expansion of the luminal-committed 

lineage84,158,164. Indeed the inner part of stem cell colonies onDox for 3 weeks 

exhibited a strong K8/18 expression and that were Slug negative confirming their true 

luminal characteristics. The outer layer of cells moderately expressed Slug and K14 

but not SMA. This hints us de-differentiation of myoepithelial-committed lineage 

towards un-committed myoepithelial progenitors by Neu overexpression. However, 

we observed no significant effect of oncogene Neu in luminal progenitor population in 

culture.  
  

On the other hand, Myc overexpression gave significant aberrant morphological 

changes and increases in proliferation upon culture in the majority of luminal 

progenitors and around 30% of stem cells. We observed classical features like the 

loss of epithelial polarity and the formation of solid spheres of luminal progenitor cells 

as described previously using the tractable Myc oncogene overexpression combined 

with Kras154. Loss of normal tissue organization is considered as one of the early 

diagnostic features of ductal carcinoma in situ165,166 and demonstrates the tumor 

promoting effect of Myc alone in the tested cell types. In contrast to Neu, 

overexpression of Myc maintained the myoepithelial lineage as shown by SMA 

expression and diminished luminal K8/18 positive cells within the stem cell 

population. Luminal progenitors, however, expanded the cell types of both linages 

and kept a substantial K8/18 positivity in the luminal fraction, making them optimal 

candidates as TICs for the Myc oncogene. In more detail, we also observed de-

differentiation and trans-differentiation of Luminal progenitors to committed 

myoepithelial lineage expressing SMA in the outer layer of their colonies. We again 

confirmed co-expression of SMA and Slug supporting that true myoepithelial lineage 

commitment as described previously114. We have observed that distinct oncogenic 

mutations can alter the physiological cell-fate decision. All of those data together 

hints that in the presence of an active oncogene, classical cellular hierarchies are not 

strictly followed. We would further like to confirm the lineage transition induced by 

oncogenes. Currently two experiments to further confirm these findings are ongoing: 
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 1) Continuation of transplantation experiment of H2B-GFP positive T-O-NEU or T-O-

MYC for tumorigenesis. This would further clarify the transition of cellular lineage and 

contribution to tumor phenotypes especially in the case of Myc overexpressing 

luminal progenitor trans-differentiation.  

2) Another ongoing experiment in vivo is the transplantation of mixed population i.e. 

T-O-NEU or T-O-MYC cell population together with wild type non-FACS enriched 

cells. This may reduce the possible artifactual trans-differentiation from the 

transplantation process and contribution of oncogene overexpressing cells toward 

tumorigenesis can be clearly defined.  

 

4.7 Different cell types such as stem cells and luminal progenitor cells can be 

TICs but not the differentiated cells 
 

Myo low population consists nearly half (40-45%) of all mammary epithelial cells. Our 

in vitro culture of different FACS enriched populations indicated that Myo low 

(stromal cells or myoepithelial differentiated cells) populations are much less 

responsive to the oncogene overexpression when measured by the aberrance of 

proliferation and morphology. More rare populations such as stem cells, luminal 

progenitor cells presented aberrant phenotypes upon overexpression of oncogenes. 

However, the transgene expression is potent in Myo low population and greater in 

the case of Myc. From our in vivo tumorigenesis assay, we observed tumor formation 

in different cell populations including stem cells and luminal progenitor cells. In case 

of both Neu and Myc, Myo low population rarely developed tumors upon over 2000 

cells is injected. Our in vivo results indicate that different subpopulation within the 

mammary epithelial hierarchy can serve as TICs except Myo low population (fully-

differentiated cells and stromal cells). What we define as differentiated cells in this 

study are non-stem and non-progenitor cell population, however, it is necessary to 

further enrich distinct functionally differentiated mammary epithelial cells. In the 

future, we would like to investigate further why those differentiated cells are less 

susceptible to overexpression of oncogenes including their proliferation and 

epigenetic status.  
 

Both tumors arising from T-O-NEU stem cell and luminal progenitor cell 

transplantations showed histo-pathologically close similarity to that of primary Neu 

overexpressing tumors. We could not identify the major differences in tumors arising 

from different cell population assessed by histological phenotypes or cellular 

compositions. Similarly, Myc overexpression led to development of tumors from the 
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transplantation of different subpopulations. More frequently, myoepithelial population 

including the stem cells and Myo hi gave rise to Myc driven tumor formation as well 

as some luminal progenitors. In both cases, we did not observe any significant 

differences between the tumors arising from different cell populations, we suspect 

that tumor phenotypes could be determined by the driving oncogene rather than 

tumor cell-of-origin in case of Neu and Myc overexpression. In other words, 

regardless of the cell-of-origin, the genetic mutation could determine the tumor in the 

specific breast cancer subtype. 

 

4.8 Mesenchymal-like state and epithelial-like state of breast cancer cells  
 

Wicha and colleagues recently demonstrated that the putative breast CSCs exist in 

both mesenchymal-like state and epithelial-like state that is interchangeable167. The 

mesenchymal-like state is associated with the expression of myoepithelial/basal 

lineage specific markers (e.g. K14, SMA, CD49f), mesenchymal specific markers 

such as vimentin, relative quiescence, and highly invasive capacity. In contrast, the 

epithelial-like state is associated with expression of luminal lineage markers (e.g. 

K8/18, CD24, EpCAM), E-cadherin (establishment of cell polarity) as well as 

enhanced proliferation. In this study, both genetic and micro-environmental factors 

are suggested to be the major contributors of cellular lineage transition.  
 

In addition, their study also implicates that different breast cancer molecular subtypes 

are characterized by distinct genetic mutations. Their findings are reminiscent to our 

results that show a remarkable plasticity of the cell types when exposed to oncogenic 

signals. While it is not too surprising that stem cells are able to preferentially expand 

specific lineage in culture upon overexpression of two contrasting oncogenes. 

Additionally, we observe plasticity and indication of cellular re-programming in the 

luminal progenitor population upon Myc overexpression. In the case of MYC 

overexpression, these findings are not only shown in vitro, but also our preliminary 

data on the in vivo tumorigenesis experiments. In addition, BRCA-1 mutation are also 

reported to induce the liminal progenitors to trans-differentiate to the myoepithelial 

lineage giving rise to basal-like tumors84. 
 

Together our finding suggests that the lineage committed luminal progenitor cells 

were able to de-differentiate into somewhat closer to the multi-potent state and 

switch their lineage upon overexpression of Myc. This might explain how the luminal 

progenitors give rise to mixed basal tumor phenotype. This plasticity is limited to the 

stem cell and luminal progenitor populations in our hands, since terminally 
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differentiated cells were unable to expand in the face of an oncogene or trans-

differentiate.  

 

4.9 Use of lineage tracing approach to identify the Tumor Initiating Cells   
 

In addition to the cell surface proteins that allow us to FACS isolate different 

mammary epithelial cells, some genetic markers for mammary epithelial cells were 

reported including several Wnt targeted genes including Axin2131, and Protein C 

Receptor130. Axin2 is reported as the genetic marker for bi-potent adult mammary 

stem cells that reside in myoepithelial population131. Interestingly, Axin2 positive cells 

at different stages of development contributed to the formation of luminal cells 

(marked at embryonic stage E14) and myoepithelial cells (marked at puberty 5 

weeks) at the adult stage. Using Axin2-Cre-ERT2/Rosa26-Brainbow2.1 and Axin2-

Cre-ERT2/Rosa26-YFP, we first assessed our marking efficiency for lineage tracing. 

Further cross of these tracing lines with T-O-MYC and T-O-NEU tumorigenic line, we 

would like to examine the contribution of specific cellular lineage to the formation of 

mammary tumor. It is possible that efficiency of marking can be problematic. Our 

initial tracing experiment showed that there are substantial amount of Axin2-YFP 

positive cells within the Myo low population after 1 week of tamoxifen induction. This 

was our initial concern of the model although our previous experiments in vitro and in 

vivo indicate that Myo low cells are less likely to be TIC giving rise to tumors upon 

oncogene induction. It was more encouraging that the percentage of YFP positive 

cells in Myo low stayed almost the same 3 weeks later, whereas YFP positive cells 

within the stem and Myo hi gating significantly expanded. Despite of the potential 

concerns, this approach could compliment our in vivo transplantation assay data with 

a closer physiological situation. In the case of very tight regulation and tightness of 

the marking system, we would overcome the current problems of 1) transplantation 

artifact in vivo and 2) lack of microenvironment in culture. In addition to the 

contribution of adult stem cells in Neu and Myc induced tumorigenesis, we would like 

to assess the role of luminal and myoepithelial cells that can be specifically marked 

at different mammary gland developmental stages. 

4.10 Possible consequences for clinical practice 
 

A number of studies and clinical trials are aiming at eradicating the CSCs through 

targeting their characteristic features including cell surface markers, signaling 

cascades, micro-environment, ABC cassette that are selective features for CSCs168. 

A study on chronic myeloid leukemia (CML) by Essers et al. proposed an example of 
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CSC specific therapy169. Dormant hematopoietic stem cells are known to serve as 

the CSCs in CML and resistant to the conventional chemotherapy. However, 

combination therapy of Interferon-alpha (IFN-α) pre-treatment that induce active 

proliferation of CSCs and anti-proliferation chemotherapeutic agent 5-fluoro-uracil 

(5FU) increased the treatment efficiency significantly. When the tumors are 

dependent upon their CSCs for their growth, the CSC targeted therapy can be an 

effective approach.  
 

What our study might add to the field is the differentiation status of cells at the pre-

tumorigenesis stage may play a role upon acquisition of oncogenic mutations. 

Although it is preliminary, our in vitro and in vivo results indicate that the 

differentiated cells within the mammary epithelial hierarchy did not exhibit any 

morphological aberrance in culture and are less likely to initiate tumors upon 

transplantation. Having been multi-potent and/or possessing the proliferative capacity 

might make the cells to be more susceptible to oncogenic hits. This finding supports 

the clinical relevance of developing so called “differentiation therapy”. Instead of 

aiming at the eradication of tumor cells, differentiation therapy force to induce the 

terminal differentiation of un-differentiated tumor cells so that they become less 

responsive to oncogenic mutation signaling. Previous studies on acute pro-

myelocytic leukemia with retinoic acids (vitamin A analogs) are the examples of 

differentiation therapy by unblocking the maturation arrest170,171. A recent report 

suggested that the use of Cripto antagonist may induce mammary cellular 

differentiation and reduces self-renewal of mammary stem cells172. The small 

molecules that could de-induced pluripotency or determine the cellular lineage 

commitment and differentiation in the field of iPS research might open up the new 

avenue of differentiation therapy in the breast cancer treatment173,174.  
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