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Zusammenfassung

Diese Dissertation betrachtet zwei verschiedene Fragestellungen, eine aus
der probabilistischen Zahlentheorie und eine aus der mathematischen Statis-
tik.

In Kapitel 1 untersuchen wir die Verteilung der Werte des Logarithmus
der Riemannschen Zeta-Funktion auf der kritischen Geraden. Wir beweisen
Mod-Gaußsche Konvergenz für ein Dirichlet-Polynom, welches Im log ζ(1/2+
it) approximiert. Dieses Dirichlet-Polynom ist lang genug um unter ande-
rem einen neuen Beweis für Selbergs zentralen Grenzwertsatz mit explizitem
Fehlerterm zu erhalten. Unter der Annahme der Riemannschen Hypothese
und indem wir die Theorie der Riemannschen Zeta-Funktion anwenden, zei-
gen wir, dass sich diese Mod-Gaußsche Konvergenz auf die komplexe Zahlen-
ebene erweitern lässt. Mit Hilfe dieser stärkeren Konvergenz und der Theorie
Großer Abweichungen können wir beweisen, dass Im log ζ(1/2 + it) auf der
kritischen Geraden ein Prinzip großer Abweichungen erfüllt.

In Kapitel 2 betrachten wir ein nichtparametrisches Regressionsmodell
Y = f1(X1)+f2(X2)+ε und beschäftigen uns mit dem Problem die Funktion
f1 zu schätzen. Den Term f2(X2) sehen wir dabei als Störterm an, welcher
wesentlich komplexer sein kann als f1(X1). Unter minimalen Annahmen
beweisen wir mehrere nichtasymptotische obere Schranken für das L2(PX)-
Risiko unserer Schätzer von f1. Unsere Herangehensweise ist geometrisch
und basiert auf Betrachtungen in Hilberträumen. Es zeigt sich, dass die
Güte unserer Schätzer eng verknüpft ist mit geometrischen Größen aus der
Theorie der Hilberträume, wie zum Beispiel den minimalen Winkeln und
den Hilbert-Schmidt Normen. Mit Hilfe unserer Resultate lassen sich allge-
meine Bedingungen aufstellen, unter denen unsere Schätzer von f1 (in erster
Ordnung) dieselbe scharfe obere Schranke besitzen wie die entsprechenden
Schätzer von f1 in dem Modell Y = f1(X1) + ε. Als Anwendung betrachten
wir unter anderem ein additives Modell, in dem die Anzahl der Kovariablen
sehr groß oder die Glattheit der Störfunktionen sehr klein ist.

In Kapitel 3 und 4 betrachten wir das Problem der Variablenwahl in
hochdimensionalen additiven Regressionsmodellen. Dabei interessieren wir
uns für den Fall, dass die Komponenten in nichtparametrischen Funktionen-
klassen enthalten sind. Wir konstruieren ein Verfahren, in welchem die
Normen der Projektionen der Daten auf verschiedene additive Unterräume
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verglichen werden. Unsere Hauptresultate sind allgemeine Konzentrations-
ungleichungen, die zu Bedingungen führen, unter welchen konsistente Vari-
ablenwahl möglich ist. Unsere Herangehensweise ist wie in Kapitel 2 geo-
metrisch und beruht auf Betrachtungen in Hilberträumen. Des Weiteren
wenden wir Methoden aus der Theorie der Zufallsmatrizen an um den Über-
gang von der L2(PX)-Norm zur empirischen Norm zu erreichen. Als Anwen-
dung unserer Resulate stellen wir Bedingungen auf, unter denen eine einzelne
Komponente mit derselben nichtasymptotischen optimalen Konvergenzrate
geschätzt werden kann wie in dem Fall, dass die anderen Komponenten
bekannt sind. Zuletzt betrachten wir auch das verwandte und einfachere
Modell des additiven Signals in weißem Rauschen und leiten optimale Be-
dingungen für die Variablenwahl her.



Abstract

This thesis considers two problems, one in probabilistic number theory
and another in mathematical statistics.

In Chapter 1, we study the distribution of values taken by the logarithm
of the Riemann zeta-function on the critical line. We prove mod-Gaussian
convergence for a Dirichlet polynomial which approximates Im log ζ(1/2+it).
This Dirichlet polynomial is sufficiently long to deduce Selberg’s central
limit theorem with an explicit error term. Moreover, assuming the Riemann
hypothesis, we apply the theory of the Riemann zeta-function to extend
this mod-Gaussian convergence to the complex plane. From this and the
theory of large deviations, we obtain that Im log ζ(1/2 + it) satisfies a large
deviation principle on the critical line. Results about the moments of the
Riemann zeta-function follow.

In Chapter 2, we consider the nonparametric random regression model
Y = f1(X1) + f2(X2) + ε and address the problem of estimating the func-
tion f1. The term f2(X2) is regarded as a nuisance term which can be
considerably more complex than f1(X1). Under minimal assumptions, we
prove several nonasymptotic L2(PX)-risk bounds for our estimators of f1.
Our approach is geometric and based on considerations in Hilbert spaces.
It shows that the performance of our estimators is closely related to geo-
metric quantities from the theory of Hilbert spaces, such as minimal angles
and Hilbert-Schmidt norms. Our results establish general conditions un-
der which the estimators of f1 have up to first order the same sharp upper
bound as the corresponding estimators of f1 in the model Y = f1(X1) + ε.
As an example we apply the results to an additive model in which the num-
ber of components is very large or in which the nuisance components are
considerably less smooth than f1.

In Chapter 3 and 4, we consider the problem of variable selection in
high-dimensional sparse additive models. We focus on the case that the
components belong to nonparametric classes of functions. The proposed
method consists of comparing the norms of the projections of the data
onto various additive subspaces. Under minimal geometric assumptions,
we prove concentration inequalities which lead to general conditions under
which consistent variable selection is possible. Again, our approach is based
on geometric considerations in Hilbert spaces. Moreover, we apply recent
techniques from the theory of structured random matrices to accomplish the
transition from the L2(PX)-norm to the empirical norm. As an application,
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we establish conditions under which a single component can be estimated
with the rate of convergence corresponding to the situation in which the
other components are known. Finally, we derive optimal conditions for vari-
able selection in the related and more simple additive Gaussian white noise
model.
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CHAPTER 1

On the mod-Gaussian convergence of a sum over
primes

1. Introduction

In this chapter we study the distribution of values taken by log ζ(1/2+it).
A breakthrough was achieved by Selberg who showed that as t varies in
[T, 2T ], the distribution of (Re log ζ(1/2 + it), Im log ζ(1/2 + it)) is approxi-
mately Gaussian, with independent components each having expectation 0
and variance (log log T )/2. More precisely, he proved a central limit theorem
which, by the Lévy continuity theorem, is equivalent to the statement that

1

T

∫ 2T

T
e
iu

Re log ζ(1/2+it)√
(log log T )/2

+iv
Im log ζ(1/2+it)√

(log log T )/2 dt→ e−u
2/2−v2/2, (1.1)

as T →∞, for all real numbers u and v. For the case of Im log ζ(1/2+it) see
[66], [67], and also the work of Ghosh [31]. The general case is investigated
for instance in the book of Joyner [39]. Some of Selberg’s more recent
results, for example about the rate of convergence, can be found in [68]
and the thesis of Tsang [73]. Initially, Selberg obtained the asymptotics of
the joint moments which lead to (1.1) by the method of moments. A more
effective approach, applied in our analysis, too, is treated in the work of
Bombieri and Hejhal [14]. A central limit theorem for the sum over primes

(1/
√

(log log x)/2)
∑

p≤x p
−1/2−iUT , UT being random variables uniformly

distributed on [T, 2T ], log x = log T/(log log T )1/4, follows from the mean
value theorem of Montgomery and Vaughan and the method of moments.
To complete the proof (see [14, Lemma 3 and Corallary]), they showed that

the L1-norm of log ζ(1/2 + iUT )−
∑

p≤x p
−1/2−iUT is sufficiently small.

The convergence in (1.1) is also a consequence of a conjecture on the
behaviour of the moments of the Riemann zeta-function on the critical line
(see, e.g., the work of Keating and Snaith [41] and the references therein).
It asserts that

e(z2
1+z2

2)(log log T )/4 1

T

∫ 2T

T
eiz1 Re log ζ(1/2+it)+iz2 Im log ζ(1/2+it)dt

→ Φg(z1, z2)Φa(z1, z2) as T →∞ (1.2)

locally uniformly for z1, z2 ∈ C with Re(iz1) > −1 and analytic functions
Φg, Φa (see [45, Conjecture 9] and also [33, Conjecture 1]). This type of

1



2 1. MOD-GAUSSIAN CONVERGENCE OF A SUM OVER PRIMES

convergence was introduced in [38] where it is called mod-Gaussian conver-
gence.

A precise form of the function Φg was conjectured by Keating and Snaith
and is based on calculations in the theory of random matrices (see [41],
[45, formula (18)]). The arithmetic factor Φa can be explained, e.g., by

computing the characteristic function of
∑

n≤x Λ(n)/(n1/2+iUT log n) (see

[33, Theorem 2], where x has to be O((log T )2−ε)) or of the corresponding
stochastic model (replace

{
piUT

}
p∈P by an independent sequence of random

variables uniformly distributed on the unit circle, see [45, Example 4]).
In this chapter we further investigate the distribution of the sum over

primes
∑

p≤x p
−1/2−it as t varies in [T, 2T ] and its consequences on the dis-

tribution of values of the Riemann zeta-function on the critical line. Here,
we will restrict ourselves to the case of Im log ζ(1/2 + it). Note that some
of the arguments cannot be applied to the case of Re log ζ(1/2 + it). It
is our first aim to establish mod-Gaussian convergence if x fulfills certain
conditions. Precisely, in Section 4 we prove the following:

Theorem 1. Let x = elog T/N and N such that N/ log log T → ∞ and
x→∞ as T →∞. Then

eu
2(log log x+γ)/4 1

T

∫ 2T

T
e
iu
∑
p≤x

sin(t log p)√
p dt→ Φ(u) as T →∞ (1.3)

locally uniformly for u ∈ R. Here, γ denotes Euler’s constant and Φ is the
analytic function given by

Φ(u) =
∏
p∈P

(
1− 1

p

)−u2/4
J0

( u
√
p

)
, (1.4)

where J0 denotes the zeroth Bessel function (see, e.g., Section 3).

One interesting point of the result seems to be the size of x. It can be
chosen large enough to obtain Selberg’s central limit theorem with Selberg’s
explicit error term (see [68, Theorem 2] and Appendix A). Moreover, we
obtain the following improvement of (1.1):

Corollary 1. Assume RH. For T sufficiently large, we have

1

T

∫ 2T

T
e
iv

Im log ζ(1/2+it)√
(log log T )/2 dt = e−v

2/2 + v2O
( log log log T

log log T

)
+O(1/ log T )

uniformly for |v| ≤
√

log log T/ log log log T .

In Section 5 we deal with the question if the convergence in Theorem 1
can be extended to the complex plane. Assuming the Riemann hypothesis,
we prove such a result for a weighted sum over primes.

Theorem 2. Assume RH. Let x = elog T/N and N such that x → ∞
and N/ log log T → ∞ as T → ∞. Furthermore, let f be the function



1. INTRODUCTION 3

f(u) = (πu/2) cot(πu/2) and γf = −0.1080 . . . be the constant defined by∏
p≤x(1− f2(log p/ log x)/p) = (e−γf / log x)(1 + o(1)). Then

ez
2(log log x+γf )/4 1

T

∫ 2T

T
e
iz
∑
p≤x

sin(t log p)√
p

f
(

log p
log x

)
dt→ Φ(z) as T →∞

locally uniformly for z ∈ C, where Φ is given by (1.4).

More general sums are possible as well (see [32, Lemma 1] and [14,
Lemma 1]). For the evaluation of γf see [32, proof of Lemma 6].

The crucial step from Theorem 1 to Theorem 2 is an estimate of the
exponential moments of the above sum. For this purpose let x ≤ T 2 and
h ∈ R. Assuming the Riemann hypothesis, we then show that there exist
constants C,C ′, and C ′′ such that

1

T

∫ 2T

T
e
h
∑
n≤x

Λ(n)
logn

sin(t logn)√
n

f
(

logn
log x

)
dt ≤ C ′′eC|h|

log T
log x

+C′h2 log log T
.

Note that this inequality, which is almost a subgaussian bound, is valid
beyond the range which is contained in Theorem 1 and Theorem 2.

We turn to the applications of Theorem 2. As described above, The-
orem 1 can be used to obtain results in connection with the central limit
theorem. In addition, Theorem 2 yields large deviations results. Applying
the Gärtner-Ellis theorem and Theorem 2, one obtains a large deviation
principle (see [22, chapter 1.2] or Appendix A for the definition of the large
deviation principle) from which we will deduce the following two Corollaries.

Corollary 2. Assume RH. Let UT be random variables uniformly dis-
tributed on [T, 2T ]. Then the family (1/((log log T )/2)) Im log ζ(1/2 + iUT )
satisfies the large deviation principle with the speed 1/((log log T )/2) and the
rate function I(h) = h2/2. For instance,

1

(log log T )/2
log
( 1

T
λ({t ∈ [T, 2T ] : Im log ζ(1/2 + it) ≥ h(log log T )/2})

)
→ −h2/2 as T →∞, (1.5)

where h > 0 and λ denotes the Lebesgue measure.

Corollary 3. Assume RH. Let h ∈ R. Then

1

(log log T )/2
log

(
1

T

∫ 2T

T
eh Im log ζ(1/2+it)dt

)
→ h2/2 as T →∞.

Related papers which also discuss large deviations results are the work
of Radziwi l l [56], who extended the range of Selberg’s central limit theorem
for Re log ζ(1/2 + it) and the work of Soundararajan [69], who proved large
deviation bounds for Re log ζ(1/2+it). In fact, Soundararajan [69, Corollary
A] completed the proof of Corollary 3 in the case of Re log ζ(1/2 + it) by
proving the upper bound. The result can be stated as follows. For all

ε > 0 and all h > 0 we have (log T )h
2−ε �h,ε

∫ 2T
T |ζ(1/2 + it)|2hdt �h,ε
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(log T )h
2+ε. Note that the proof of the upper bound also applies to the case

of Im log ζ(1/2 + it) and that we apply a slightly weaker upper bound in the
proofs of Theorem 2 and Corollary 3.

Finally, I mention that Chapter 1 appeared in Math. Z., see [79].

Notation 1. For y ≥ 2 and a function g : [0, 1]→ [0, 1], we define

Σg,y(t) =
∑
p≤y

1

p1/2+it
g
( log p

log y

)
,

Σ∗g,y(t) =
∑
n≤y

Λ(n)

log n

1

n1/2+it
g
( log n

log y

)
,

rg,y(t) = log ζ(1/2 + it)− Σg,y(t), and r∗g,y(t) = log ζ(1/2 + it)− Σ∗g,y(t).

2. Moments of a sum over primes

Section 2 is devoted to some standard mean value calculations. In doing
so, we will apply the following generalization of the mean value theorem of
Montgomery and Vaughan contained in [57, Theorem 1.4.3] (see also [73,
Lemma 3.1]). Let a1, . . . , aM and b1, . . . , bM be complex numbers, M ≥ 2,
and let T > 0. Then

1

T

∫ 2T

T

( ∑
m≤M

amm
−it
)( ∑

m≤M
bmm−it

)
dt

=
∑
m≤M

ambm + θ
2D

T

√∑
m≤M

m|am|2
√∑
m≤M

m|bm|2, (2.1)

where θ depends on the various parameters but satisfies |θ| ≤ 1 and D is
the universal constant in [57, Theorem 1.4.3].

Proposition 1. Let x ≥ 2 and T > 0 be real numbers, k be a nonnega-
tive integer, and p1, . . . , pn be the prime numbers not exceeding x. Then

1

T

∫ 2T

T

(∑
p≤x

sin(t log p)
√
p

)2k

dt

=
1

22k

(
2k

k

) ∑
λ1+···+λn=k

(
k!

λ1! · · ·λn!

)2

p−λ1
1 · · · p−λnn + θ

2D

T

√
n2k(2k)!

(2.2)

and |(1/T )
∫ 2T
T (
∑

p≤x sin(t log p)/
√
p)2k+1dt| ≤ (2D/T )

√
n2k+1(2k + 1)! with

|θ| ≤ 1 and D the constant in (2.1). Furthermore, the main term in (2.2)
is bounded by ((2k)!/22kk!)(

∑
p≤x 1/p)k.
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Proof. From sin(t log p) = (pit − p−it)/2i, we obtain

1

T

∫ 2T

T

(∑
p≤x

sin(t log p)
√
p

)k
dt

=
1

(2i)k

k∑
j=0

(
k

j

)
(−1)j

T

∫ 2T

T

(∑
p≤x

1

p1/2+it

)j(∑
p≤x

1

p1/2+it

)k−j
dt. (2.3)

For j = 1, . . . , k the multinomial theorem yields(∑
p≤x

1

p1/2+it

)j
=

∑
λ1+···+λn=j

j!

λ1! · · ·λn!
(p−λ1

1 · · · p−λnn )1/2+it. (2.4)

If we plug in (2.4) into (2.3) with k replaced by 2k, we obtain from (2.1)
that

1

T

∫ 2T

T

(∑
p≤x

sin(t log p)
√
p

)2k

dt (2.5)

=
1

22k

(
2k

k

) ∑
λ1+···+λn=k

(
k!

λ1! · · ·λn!

)2

p−λ1
1 · · · p−λnn

+
θ2D

22kT

2k∑
j=0

(
2k

j

)√√√√ ∑
λ1+···+λn=j

(
j!

λ1! · · ·λn!

)2
√√√√ ∑

λ1+···+λn=2k−j

(
(2k − j)!
λ1! · · ·λn!

)2

with |θ| ≤ 1. Applying j!/(λ1! · · ·λn!) ≤ j!, j = 0, . . . , 2k, we bound the
absolute value of the remainder by

2D

22kT

2k∑
j=0

(
2k

j

)√
njj!n2k−j(2k − j)! ≤ 2D

T

√
n2k(2k)!. (2.6)

The main term in (2.2) can be bounded similarly. As in (2.5) and (2.6), we
also bound the (2k+ 1)th moment. Note that there is no main term in this
case. This completes the proof. �

We want to compare these mean value estimates to some random vari-
ables expectations. Therefore, let X1, X2, . . . be an i.i.d. sequence of random
variables uniformly distributed on the unit circle and let p1, . . . , pn be the
primes not exceeding x. Then

E
[( n∑

i=1

ImXi√
pi

)2k]
=

1

22k

(
2k

k

) ∑
λ1+···+λn=k

(
k!

λ1! · · ·λn!

)2

p−λ1
1 · · · p−λnn

(2.7)
and E

[
(
∑n

i=1 ImXi/
√
pi)

2k+1
]

= 0. To prove this, we replace sin(t log p) by
ImXi and integration by expectation in (2.3) and (2.4) and then apply the

formula E[Xλ1
1 · · ·Xλn

n X−µ1
1 · · ·X−µnn ] = 1 if λj = µj for all j = 1, . . . , n and

= 0 else.
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3. Bessel functions

The Bessel functions appear in the Fourier expansion of the function
eiz sin θ,

eiz sin θ =
∞∑

k=−∞
Jk(z)e

ikθ. (3.1)

Explicitly the kth Bessel function Jk(z) is given by

Jk(z) =

∞∑
n=0

(−1)n(z/2)k+2n

n!(k + n)!
(3.2)

for k ≥ 0 and given by the relation Jk(z) = (−1)kJ−k(z) for k < 0 (for
these and more facts about Bessel functions see, e.g., the book of Andrews,
Askey, and Roy [1]). This section is devoted to the following mod-Gaussian
convergence result (compare to [38, Proposition 4.1]).

Proposition 2. Let X1, X2, . . . be an i.i.d. sequence of random vari-
ables uniformly distributed on the unit circle and let p1, p2, . . . be the in-
creasing sequence of all primes. Then

ez
2(log log x+γ)/4E

[
e
iz
∑π(x)
j=1

ImXj√
pj

]
→ Φ(z) as x→∞ (3.3)

locally uniformly for z ∈ C. Here, γ denotes Euler’s constant, π(x) denotes
the number of primes not exceeding x, and Φ(z) is given by (1.4).

Proof. By (3.1), we have

E
[
eiz ImX1

]
=

1

2π

∫ 2π

0
eiz sin θdθ = J0(z). (3.4)

Applying the independence of the Xj ’s, (3.4), and finally Merten’s formula∏
p≤x(1 − 1/p) = (e−γ/ log x)(1 + o(1)), we obtain that the left hand side

of (3.3) is equal to

ez
2(log log x+γ)/4

∏
p≤x

J0

( z
√
p

)
= (1 + o(1))z

2/4
∏
p≤x

(
1− 1

p

)−z2/4
J0

( z
√
p

)
.

It remains to show that the above product converges to Φ(z), locally uni-
formly for z ∈ C. This follows from the fact that the product Φ(z) is nor-
mally convergent (see [29, Chapter IV.1, especially Remark IV.1.7]). This
completes the proof. �

Consider the random variables Im Σ1,x(−UT ), UT being random vari-
ables uniformly distributed on [T, 2T ]. As mentioned in the Introduction,

one can use the method of moments to deduce that, as x → ∞, x = T o(1),
(1/
√

(log log x)/2) Im Σ1,x(−UT ) converges in distribution to a Gaussian
random variable with expectation 0 and variance 1 (see [14, Proof of The-
orem B]). We will generalize this result by considering the cumulants of
Im Σ1,x(−UT ).
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If Y is a real random variable such that E[ezY ] exists and is finite for all
z ∈ C, E[ezY ] is an analytic function and there exists a neighbourhood of
0 where logE[ezY ] =

∑∞
m=1 κm(Y )zm/m!. The coefficients κm(Y ), m ≥ 1,

are called the cumulants of Y . Thus, κm(Y ) is equal to the mth derivative
of logE[ezY ] evaluated at 0.

Corollary 4. Let x = elog T/N and N such that x → ∞ and N → ∞
as T →∞ and let UT be random variables uniformly distributed on [T, 2T ].
Then, as T →∞, κ2(Im Σ1,x(−UT ))− (log log x+ γ)/2→ c2 and for m 6= 2
κm(Im Σ1,x(−UT ))→ cm, where the cm’s are defined by the series expansion
log Φ(−iz) =

∑∞
m=1 cmz

m/m!, for z in a neighbourhood of 0.

Proof. By the construction of Φ, there exists a real number 0 < r ≤ 1
such that for |z| ≤ r, log Φ(z) =

∑
p∈P((−z2/4) log(1−1/p)+log J0(z/

√
p)).

Hence, by Merten’s formula,

(−z2/4)(log log x+ γ) +
∑
p≤x

log J0

(−iz
√
p

)
→ log Φ(−iz) as x→∞ (3.5)

uniformly for |z| ≤ r, z ∈ C. The uniform convergence implies (see [29,
Theorem III.1.3]), that the mth derivative of the left hand side of (3.5)
evaluated at 0 converges to cm. Hence, under the assumptions of Proposi-

tion 2, the cumulants of
∑π(x)

j=1 ImXj/
√
pj satisfy the convergence described

in Corollary 4, since E[exp(z
∑π(x)

j=1 ImXj/
√
pj)] =

∏
p≤x J0(−iz/√p). It

remains to show that for m ≥ 1

κm (Im Σ1,x(−UT ))− κm
( π(x)∑
j=1

ImXj√
pj

)
→ 0 as T →∞. (3.6)

To prove this, we use the fact that the cumulants can be expressed in terms
of the moments, namely κm(Y ) =

∑
aλ1,...,λmE[Y 1]λ1 · · ·E[Y m]λm , where

the sum is over all positive integers such that 1λ1 + 2λ2 + · · ·+mλm = m,
aλ1,...,λm are integers, and Y is a random variable as above. If we plug in
Proposition 1 and (2.7) into this formula, (3.6) follows from multiplying out
since for k ≤ m and x ≥ 3 the main terms in (2.2) are O((

∑
p≤x 1/p)m) =

O((log log x)m) (see [20, (5) of chapter 7]), while for k ≤ m the remainders

in (2.2) are O(T (m/N)−1) which is O(T−a) for some 0 < a < 1 if T is
sufficiently large. �

4. Mod-convergence of a sum over primes

By means of Proposition 1 and (2.7), we can apply the method of mo-
ments for fixed x and obtain the following convergence

1

T

∫ 2T

T
e
iu
∑
p≤x

sin(t log p)√
p dt→

∏
p≤x

J0

( u
√
p

)
as T →∞. (4.1)
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Another proof of (4.1) is contained in [48, Theorem 5.1]. The techniques
used therein can be applied to get Theorem 1 and Theorem 2 for the choice
x = (log T )2−ε, ε > 0 arbitrary. The improvement of Theorem 1 follows
from Proposition 3 combined with Proposition 2.

Proposition 3. Let c > 1 be a constant. Define x = elog T/N with
N = (c′ec2/4) log log T , where c′ > 1 is allowed to depend on T but such
that x → ∞ as T → ∞. For T ≥ 3, sufficiently large such that x ≥ 2 and
N ≥ 1, we have

1

T

∫ 2T

T
e
iu
∑
p≤x

sin(t log p)√
p dt =

∏
p≤x

J0

( u
√
p

)
+O((1/c′)N−1 + (2c2/ log x)N )

(4.2)
uniformly for |u| ≤ c, u ∈ R.

Proof of Theorem 1. We apply Proposition 3 with x, N as in The-
orem 1 and c an arbitrary constant with c > 1. Since c′ → ∞ in that case,
the remainder in (4.2) is o(exp(−c2(log log T )/4)). If we multiply in (4.2)
both sides by exp(u2(log log x+ γ)/4) and then apply Proposition 2, we ob-
tain (1.3) uniformly for |u| ≤ c. Since c > 1 is arbitrary, this completes the
proof. �

Proof of Proposition 3. Let N ′ = bNc. From the Taylor expansion

eiu =
∑

k≤2N ′−1(iu)k/k!+ θu2N ′/(2N ′)!, u ∈ R, with |θ| ≤ 1, we obtain

1

T

∫ 2T

T
e
iu
∑
p≤x

sin(t log p)√
p dt =

∑
k≤2N ′−1

(iu)k

k!

1

T

∫ 2T

T

(∑
p≤x

sin(t log p)
√
p

)k
dt

+ θ
u2N ′

(2N ′)!

1

T

∫ 2T

T

(∑
p≤x

sin(t log p)
√
p

)2N ′

dt (4.3)

with |θ| ≤ 1. By Proposition 1, the remainder is

O

(
c2N ′

N ′!

1

22N ′

(∑
p≤x

1

p

)N ′
+

(c2π(x))N
′

T

)
.

Using the bound (N ′)! ≥ (N ′/e)N
′
, elementary results in the theory of

primes, namely the formulas
∑

p≤x 1/p = log log x + c1 + O(1/ log x) and

π(x) ≤ 2x/ log x, and finally N ′ = bNc, this is

O

((ec2 log log T

4N ′

)N ′
+

(c2π(x))N

T

)
= O

(( 1

c′

)N−1
+
( 2c2

log x

)N)
.

Now, let X1, X2, . . . be an i.i.d. sequence of random variables uniformly
distributed on the unit circle. By Proposition 1 and (2.7), the moments
in (4.3) are equal to those of the stochastic model plus a remainder which

is bounded by (2D/T )
√

(π(x))kk!. The resulting remainders in (4.3), k ≤
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2N ′ − 1, add up to O((c2π(x))N/T ) = O((2c2/ log x)N ). Hence, (4.3) is
equal to

∑
k≤2N ′−1

(iu)k

k!
E
[( π(x)∑

j=1

ImXj√
pj

)k]
+O((1/c′)N−1 + (2c2/ log x)N ).

Applying the above Taylor expansion again, we obtain

∏
p≤x

J0

( u
√
p

)
= E

[
e
iu
∑π(x)
j=1

ImXj√
pj

]

=
∑

k≤2N ′−1

(iu)k

k!
E
[( π(x)∑

j=1

ImXj√
pj

)k]
+ θ

u2N ′

(2N ′)!
E
[( π(x)∑

j=1

ImXj√
pj

)2N ′]
with |θ| ≤ 1. The remainder already appeared in (4.3) and is O((1/c′)N−1).
This completes the proof. �

5. Mod-convergence in the complex plane

Section 5 is devoted to the proof of Theorem 2. Here, we will apply
an explicit formula obtained by Goldston [32, Lemma 1] assuming RH. For
4 ≤ x ≤ t2 and t 6= γ, we have

Im log ζ(1/2 + it) = −
∑
n≤x

Λ(n)

log n

sin(t log n)√
n

f

(
log n

log x

)

+
∑
γ

sin((t− γ) log x)

∫ ∞
0

u

u2 + ((t− γ) log x)2

du

sinhu
+O

(
1

t(log x)2

)
,

(5.1)

where f(u) = (πu/2) cot(πu/2). We will also apply the following estimate
obtained by Soundararajan assuming RH. For every h ∈ R there exist con-
stants C ′, C ′′ > 0 such that

1

T

∫ 2T

T
eh Im log ζ(1/2+it)dt ≤ C ′′eC′h2 log log T . (5.2)

Soundararajan [69] proved (5.2) for Re log ζ(1/2 + it). However, by us-
ing [66, Theorem 1] instead of [69, Proposition], his arguments apply to
Im log ζ(1/2 + it), too. We prove (compare to [14, Lemma 3 and Coral-
lary]):

Proposition 4. Assume RH. Let 4 ≤ x ≤ T 2, f(u) = (πu/2) cot(πu/2).
For every h ∈ R there exist constants C,C ′, and C ′′ such that

1

T

∫ 2T

T
e
h
∑
n≤x

Λ(n)
logn

sin(t logn)√
n

f
(

logn
log x

)
dt ≤ C ′′eC|h|

log T
log x

+C′h2 log log T
.
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Proof of Theorem 2. The proof mainly differs from the proof of The-
orem 1 and Proposition 3 in its estimation of the remainder term. Never-
theless, we will repeat the main steps. We assume that |z| ≤ c, where c > 1
is an arbitrary constant and z ∈ C, say z = u − ih with u, h ∈ R. Let
N ′ = bN/2c. From the Taylor expansion eiz = eh+iu =

∑
k≤2N ′−1(iz)k/k! +

θeh(|z|2N ′/(2N ′)!) with |θ| ≤ 1, we obtain

1

T

∫ 2T

T
eiz Im Σf,x(−t)dt =

∑
k≤2N ′−1

(iz)k

k!

1

T

∫ 2T

T
(Im Σf,x(−t))k dt

+ θ
c2N ′

(2N ′)!

1

T

∫ 2T

T
eh Im Σf,x(−t) (Im Σf,x(−t))2N ′ dt (5.3)

with |θ| ≤ 1. To continue as in the proof of Proposition 3, we use that under
the assumptions of Proposition 1 we have

1

T

∫ 2T

T
(Im Σf,x(−t))kdt = E

[( π(x)∑
j=1

ImXj√
pj

f

(
log pj
log x

))k]
+ θ

2D

T

√
(π(x))kk!

(5.4)
with |θ| ≤ 1. Moreover, if we replace k by 2k, the main term is bounded by
((2k)!/22kk!)(

∑
p≤x 1/p)k. These estimates follow as in the proof of Proposi-

tion 1 and (2.7). Applying the Cauchy-Schwarz inequality, the absolut value
of the remainder in (5.3) can be bounded by

c2N ′

(2N ′)!

√
1

T

∫ 2T

T
(Im Σf,x(−t))4N ′dt

√
1

T

∫ 2T

T
e2h Im Σf,x(−t)dt.

For x ≥ 2, we have | Im Σf,x(−t)− Im Σ∗f,x(−t)| ≤ (log log x)/2 + O(1), say

≤ CN for T sufficiently large. Hence, by (5.4) and Proposition 4, the above
is

O

 c2N ′

(2N ′)!

√
(4N ′)!(

∑
p≤x 1/p)2N ′

24N ′(2N ′)!
+

√
(4N ′)!(π(x))4N ′

T

√
e4CcN+4C′c2N


for T sufficiently large. Applying (4N ′)!/(24N ′(2N ′)!) ≤ (2N ′)!,

√
(2N ′)! ≥

(2N ′/e)N
′
, π(x) ≤ 2x/ log x, and N ′ = bN/2c, there exists a constant c′′ > 0

(depending on c, C, and C ′) such that this is

O

(c′′∑p≤x 1/p

N ′

)N ′
+

(
c′′

log x

)N/2 .

Since N ′/
∑

p≤x 1/p and log x go to infinity, this is o(exp(−c2(log log x)/4)).

Hence, applying (5.4) to the other terms, (5.3) is equal to∑
k≤2N ′−1

(iz)k

k!
E
[( π(x)∑

j=1

ImXj√
pj

f

(
log pj
log x

))k]
+ o(e−c

2(log log T )/4)



5. MOD-CONVERGENCE IN THE COMPLEX PLANE 11

uniformly for |z| ≤ c. If we replace sin(t log p) by ImXi and integration by
expectation in (5.3), we can bound the resulting remainder as above. In
doing so, we apply (5.5) instead of Proposition 4. The result is that

1

T

∫ 2T

T
eiz Im Σf,x(−t)dt = E

[
e
iz
∑π(x)
j=1

ImXj√
pj

f
(

log pj
log x

)]
+ o(e−c

2(log log T )/4)

uniformly for |z| ≤ c. If we multiply both sides by exp(z2(log log x+ γf )/4)
and then apply the formula

ez
2(log log x+γf )/4E

[
e
iz
∑π(x)
j=1

ImXj√
pj

f
(

log pj
log x

)]
→ Φ(z) as x→∞ (5.5)

locally uniformly for z ∈ C, the statement of Theorem 2 follows by the
same argument as in the proof of Theorem 1. (5.5) follows as in the proof
of Proposition 2 by using the additional fact, that∏

p≤x

(
1− 1

p
f2

(
log p

log x

))−z2/4

J0

(
z
√
p
f

(
log p

log x

))
→ Φ(z) as x→∞

locally uniformly for z ∈ C. We conclude by a brief argument why this
holds. Split the product in p ≤ y and y < p ≤ x. The product over
y < p ≤ x converges locally uniformly to 1 if y → ∞, while one can show
that the product over p ≤ y, say y = log x, converges locally uniformly to
φ(z), by using, e.g., f2(log p/ log x) − 1 = O((log log x)/ log x) if p ≤ log x.
This completes the proof. �

Proof of Proposition 4. From (5.1), (5.2) and the Cauchy-Schwarz
inequality, we obtain

1

T

∫ 2T

T
e
h
∑
n≤x

Λ(n)
logn

sin(t logn)√
n

f
(

logn
log x

)
dt

≤ C ′′′e2C′h2 log log T

√
1

T

∫ 2T

T
e

2h
∑
γ sin((t−γ) log x)

∫∞
0

u
u2+((t−γ) log x)2

du
sinhudt

where C ′′′ is a constant. The absolute value of the sum over zeros is bounded
by a constant times ∑

|(t−γ) log x|≤1

1 +
∑

|(t−γ) log x|>1

1

((t− γ) log x)2
(5.6)

and therefore it suffices to deal with the exponential moments of (5.6) with
h ≥ 0. Using the Cauchy-Schwarz inequality again, we obtain

1

T

∫ 2T

T
e
h
∑
|(t−γ) log x|≤1 1+h

∑
|(t−γ) log x|>1

1
((t−γ) log x)2 dt

≤

√
1

T

∫ 2T

T
e2h

∑
|(t−γ) log x|≤1 1dt

√
1

T

∫ 2T

T
e

2h
∑
|(t−γ) log x|>1

1
((t−γ) log x)2 dt.
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We start with the first term, using the following fact on the number of zeros
(see [20, (1) of Ch. 15])

N(t) =
t

2π
log

t

2π
− t

2π
+

7

8
+ S(t) +O(1/t), (5.7)

where t 6= γ and S(t) = (1/π) Im log ζ(1/2 + it). We compute (note that
h ≥ 0)

1

T

∫ 2T

T
eh
∑
|(t−γ) log x|≤1 1dt

=
1

T

∫ 2T

T
e
h
(
N
(
t+ 1

log x

)
−N

(
t− 1

log x

))
dt

≤ 1

T

∫ 2T

T
e
Ch log t

log x
+h
(
S
(
t+ 1

log x

)
−S
(
t− 1

log x

))
dt

≤ eCh
log T
log x

√
1

T

∫ 2T

T
e

2hS
(
t+ 1

log x

)
dt

√
1

T

∫ 2T

T
e
−2hS

(
t− 1

log x

)
dt

= O(e
Ch log T

log x
+4C′(h/π)2 log log T

). (5.8)

In the last step we used (5.2). Next, we divide the sum over |(t−γ) log x| > 1
into |t− γ| ≥ T , 1 < |t− γ| < T , and 1/ log x < |t− γ| ≤ 1.

For t ∈ [T, 2T ], we have∑
|t−γ|≥T

1

((t− γ) log x)2
= O

(∑
γ

1

γ2(log x)2

)
= O

(
1

(log x)2

)
.

The last step results from [20, (4) of Ch. 12]. For the second sum we use
the fact that N(t+ 1)−N(t) = O(1 + log+ |t|) (see [20, (2) of Ch. 15]). For
t ∈ [T, 2T ], we obtain∑

1<|t−γ|<T

1

((t− γ) log x)2

≤
dT e−1∑
k=1

N(t+ k + 1)−N(t+ k)

k2(log x)2
+

dT e−1∑
k=1

N(t− k)−N(t− k − 1)

k2(log x)2

= O

( dT e−1∑
k=1

log T

k2(log x)2

)
= O

(
log T

(log x)2

)
.

Next, we consider the sum over 1/ log x < γ − t ≤ 1. We have

∑
1/ log x<γ−t≤1

1

((t− γ) log x)2
≤

M∑
j=1

N
(
t+

kj
log x

)
−N

(
t+

kj−1

log x

)
k2
j−1

(5.9)
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where 1 = k0 < k1 < · · · < kM with kM−1 < log x ≤ kM . By (5.7), this is
bounded by, recall t ∈ [T, 2T ],

M∑
j=1

C(kj − kj−1) log T

(log x)k2
j−1

+
S
(
t+

kj
log x

)
− S

(
t+

kj−1

log x

)
k2
j−1

 .

We choose kj = 2j/2 and bound the left hand side of (5.9) by

√
2C

log T

log x
+

M∑
j=1

S
(
t+ 2j/2

log x

)
− S

(
t+ 2(j−1)/2

log x

)
2j−1

.

It follows that

1

T

∫ 2T

T
e
h
∑

1/ log x<γ−t≤1
1

((t−γ) log x)2 dt

≤ e
√

2Ch log T
log x

1

T

∫ 2T

T
e
h
∑M
j=1

1

2j−1

(
S

(
t+ 2j/2

log x

)
−S
(
t+ 2(j−1)/2

log x

))
dt.

Using E[eh
∑M
j=1 Xj/2

j

] ≤
∏M
j=1(E[ehXj ])1/2j , which follows from repeated

application of the Cauchy-Schwarz inequality, this is

≤ e
√

2Ch log T
log x

M∏
j=1

(
1

T

∫ 2T

T
e

2h

(
S

(
t+ 2j/2

log x

)
−S
(
t+ 2(j−1)/2

log x

))
dt

)1/2j

.

Applying again the Cauchy-Schwarz inequality and then (5.2) (as in (5.8)),
this is

O(e
√

2Ch log T
log x e16C′(h/π)2 log log T ).

The same bound is true for the sum over 1/ log x < t − γ ≤ 1. The claim
now follows from putting together all these estimates. �

6. Proof of Corollary 1

Let T , c, c′, x, and N be as in Proposition 3, T ≥ 3 sufficiently large
such that x ≥ 2 and N ≥ 2. Assume further that c′ > 4 is a constant such
that the bound (log log T )1/2(c′/4)−N/2 = O(1/ log T ) holds and that T is

so big that the bound (log T )(2c2/ log x)N/2 = O(1/ log T ) holds, too. Then
we show that

1

T

∫ 2T

T
eiu Im log ζ(1/2+it)dt =

∏
p≤x

J0

( u
√
p

)
−

∑
p≤x

k≥3 odd

u

k
√
pk
Jk

( u
√
p

)∏
q≤x
q 6=p

J0

( u
√
q

)
+ u2O(log log log T ) +O(1/ log T )

(6.1)

uniformly for |u| ≤ c, u ∈ R. One can deduce Corollary 1 from (6.1) as fol-

lows. Replace u by v/
√

(log log T )/2 with |v| ≤
√

log log T/ log log log T and
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let T be sufficiently large. Then, by (3.2), the formula
∑

p≤x 1/p = log log x+

c1 +O(1/ log x), and log log x/ log log T = 1 +O(log log log T/ log log T ), the
first term on the right hand side of (6.1) is equal to

exp

(∑
p≤x

log J0(v/
√
p(log log T )/2)

)
= e−v

2/2

(
1 + v2O

(
log log log T

log log T

))
and, by using |Jk(u)| ≤ (|u|/2)k/k! and |J0(u)| ≤ 1, u ∈ R, the second term
is v4O(1/(log log T )2) which is smaller than v2O(log log log T/ log log T ).

Hence, it remains to prove (6.1). From Im log ζ(1/2 + it) = Im Σ1,x(t) +
Im r1,x(t) and Taylor’s theorem, we obtain

1

T

∫ 2T

T
eiu Im log ζ(1/2+it)dt =

1

T

∫ 2T

T
eiu Im Σ1,x(t)dt

+ iu
1

T

∫ 2T

T
Im r1,x(t)eiu Im Σ1,x(t)dt+ θ

u2

2

1

T

∫ 2T

T
(Im r1,x(t))2dt

with |θ| ≤ 1. By Proposition 3 and the above assumptions, the first term
is equal to

∏
p≤x J0(u/

√
p) +O(1/ log T ) and by [73, Corollary of Theorem

5.1], the third term is u2O(log log log T ). It remains to consider the second
term. We start showing that

1

T

∫ 2T

T
Im log ζ(1/2 + it)eiu Im Σ1,x(t)dt

=
∑
p≤x

k≥1 odd

i

k
√
pk
Jk

( u
√
p

)∏
q≤x
q 6=p

J0

( u
√
q

)
+O(1/ log T ) (6.2)

uniformly for |u| ≤ c. Let N ′ = bN/2c. From the Taylor expansion eiu =∑
k≤2N ′−1(iu)k/k!+ θu2N ′/(2N ′)!, u ∈ R, with |θ| ≤ 1, we obtain that the

left hand side of (6.2) is equal to

∑
k≤2N ′−1

(iu)k

k!

1

T

∫ 2T

T
Im log ζ(1/2 + it)(Im Σ1,x(t))kdt

+ θ
c2N ′

(2N ′)!

1

T

∫ 2T

T
| Im log ζ(1/2 + it)|(Im Σ1,x(t))2N ′dt (6.3)

with |θ| ≤ 1. Applying the Cauchy-Schwarz inequality, the estimates in the

proof of Proposition 3, and [67, Theorem 3], i.e. (1/T )
∫ 2T
T (Im log ζ(1/2 +

it))2dt = (log log T )/2+O(1), the remainder is O((log log T )1/2((c′/4)−N/2+

(2c2/ log x)N/2) = O(1/ log T ). The remaining moments can be computed
by using the following lemma which is a modification of [66, Lemma 5] and
[32, equation (6.3)] and serves as a substitute for the mean value theorem
of Montgomery and Vaughan in Section 2.
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Lemma 1. Assume RH. Let k, h ≤ T be two positive integers with
(k, h) = 1. Then

∫ 2T

T
log ζ(1/2 + it)

(k
h

)it
dt =

TΛ(k)√
k log k

+O(
√
kh log T ), h = 1

O(
√
kh log T ), h 6= 1,∫ 2T

T
Im log ζ(1/2 + it)

(k
h

)it
dt =

−iTΛ(k)

2
√
k log k

+O(
√
kh log T ), h = 1 (6.4)

=
iTΛ(h)

2
√
h log h

+O(
√
kh log T ), k = 1

O(
√
kh log T ), h, k 6= 1.

Denote by p1, p2, . . . , pn the prime numbers not exceeding x, and let
X1, X2, . . . be an i.i.d. sequence of random variables uniformly distributed
on the unit circle. Furthermore, let k, h ≤ T be positive integers with
k/h = p−k1

1 · · · p−knn . Then (6.4) can be written as

1

T

∫ 2T

T
Im log ζ(1/2 + it)(p−k1

1 · · · p−knn )itdt (6.5)

=E
[
−

n∑
j=1

Im log(1−Xj/
√
pj)X

k1
1 · · ·X

kn
n

]
+O

( 1

T

√
p
|k1|
1 · · · p|kn|n log T

)
.

Expanding (Im Σ1,x(t))k as in (2.3) and (2.4), we deduce from (6.5) that

1

T

∫ 2T

T
Im log ζ(1/2 + it)(Im Σ1,x(t))kdt

= E
[(
−

n∑
j=1

Im log(1−Xj/
√
pj)

)( n∑
j=1

ImXj√
pj

)k]

+O

(
log T

2kT

k∑
l=0

(
k

l

) ∑
λ1+···+λn=l

l!

λ1! · · ·λn!

∑
λ1+···+λn=k−l

(k − l)!
λ1! · · ·λn!

)
.

The remainder is O((log T )nk/T ) and the resulting remainders in (6.3), k ≤
2N ′ − 1, add up to O((log T )(2c/ log x)N ) = O(1/ log T ). Hence, (6.3) is
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equal to∑
k≤2N ′−1

(iu)k

k!
E
[(
−

n∑
j=1

Im log(1−Xj/
√
pj)

)( n∑
j=1

ImXj√
pj

)k]
+O(1/ log T )

= E
[(
−

n∑
j=1

Im log(1−Xj/
√
pj)

)
e
iu
∑n
j=1

ImXj√
pj

]

+ θ
c2N ′

(2N ′)!
E
[∣∣∣− n∑

j=1

Im log(1−Xj/
√
pj)
∣∣∣( n∑

j=1

ImXj√
pj

)2N ′]
+O(1/ log T ).

(6.6)

The last equality follows from applying Taylor’s theorem as in (6.3). If one
treats the first remainder in the last row as the corresponding one in (6.3),

using E[(
∑π(x)

j=1 Im log(1 −Xj/
√
pj))

2] = (log log x)/2 + O(1) this time, one

can show that it is also O(1/ log T ). By plugging in (3.1) and expanding the
logarithm, we obtain that (6.6) is equal to∑

p≤x
k≥1 odd

i

k
√
pk
Jk

( u
√
p

)∏
q≤x
q 6=p

J0

( u
√
q

)
+O(1/ log T )

which completes the proof of (6.2). The last step in the proof of (6.1) is to
show that

1

T

∫ 2T

T
ImΣ1,x(t)eiu Im Σ1,x(t)dt

= E
[( n∑

j=1

ImXj√
pj

)
e
iu
∑n
j=1

ImXj√
pj

]
+O(1/ log T )

=
∑
p≤x

i
√
p
J1

( u
√
p

)∏
q≤x
q 6=p

J0

( u
√
q

)
+O(1/ log T )

uniformly for |u| ≤ c. The first equality follows as above or as in the proof of
Proposition 1, the second equality again by plugging in (3.1). This completes
the proof. �

7. Proof of Corollary 2 and 3

Proof of Corollary 2. Let x ≥ 2 be as in Theorem 2 with the ad-
ditional property that N/ log log T = O(log log T ). By Theorem 2 and the
fact that log log T/ log log x→ 1 in this case, we obtain for each h ∈ R

1

(log log T )/2
log

(
1

T

∫ 2T

T
eh Im Σf,x(t)dt

)
→ h2/2 as T →∞. (7.1)

By Theorem 16, we obtain that the family (1/((log log T )/2)) Im Σf,x(UT )
satisfies the large deviation principle with the speed 1/((log log T )/2) and
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the rate function I(h) = h2/2. Next, consider Im rf,x(UT ). We will show
that there exists a constant C > 0 (the constant in (7.4)) such that for each
δ > 0

(1/T )λ({t ∈ [T, 2T ] : | Im rf,x(t)| ≥ Cδ log log T})

≤ e−(1−o(1))(δ log log T ) log(δ log log T ). (7.2)

We postpone the proof of (7.2) to the end of this section. From (7.2) we
deduce that for each δ > 0

1

(log log T )/2
log

(
1

T
λ({t ∈ [T, 2T ] : | Im rf,x(t)| ≥ δ log log T})

)
≤ −2(δ/C)(1− o(1))(log log log T + log(δ/C)).

As T →∞, the right hand side goes to −∞. Hence, by Definition 3, the fam-
ilies (1/((log log T )/2)) Im log ζ(1/2 + iUT ) and (1/((log log T )/2))Σf,x(UT )
are exponentially equivalent. To obtain the statement of the theorem, we
finally apply [22, Theorem 4.2.13], which states that if two families of ran-
dom variables are exponentially equivalent, and one of them satisfies the
large deviation principle with good rate function I, then the same large
deviation principle holds for the other family.

It remains to show (7.2). Therefore, let V = δ log log T and decompose

Im rf,x = Im(r∗
g,T 1/V + (Σ∗

g,T 1/V − Σg,T 1/V ) + (Σg,T 1/V − Σg,x) + Σg−f,x).

If | Im rf,x(t)| ≥ CV , there exists a summand on the right hand side whose
absolute value is greater or equal to CV/4. Applying the union bound, we
obtain

(1/T )λ({t ∈ [T, 2T ] : | Im rf,x(t)| ≥ CV }
≤(1/T )λ({t ∈ [T, 2T ] : | Im r∗

g,T 1/V (t)| ≥ CV/4})
+ (1/T )λ({t ∈ [T, 2T ] : | Im Σ∗

g,T 1/V (t)− Im Σg,T 1/V (t)| ≥ CV/4})
+ (1/T )λ({t ∈ [T, 2T ] : | Im Σg,T 1/V (t)− Im Σg,x(t)| ≥ CV/4})
+ (1/T )λ({t ∈ [T, 2T ] : | Im Σg−f,x(t)| ≥ CV/4}). (7.3)

If we choose Selberg’s function g(u) = e−2u min(1, 2(1 − u)), we can ap-
ply [66, Theorem 1], which says that, assuming RH, there exists constants
C,C ′ > 0 such that for 2 ≤ y ≤ t2 and t ≥ 2,

| Im r∗g,y(t)| ≤
∣∣∣∣ C ′log y

∑
n≤y

Λ(n)

n1/2+it
g

(
log n

log y

)∣∣∣∣+
C

16

log t

log y
. (7.4)
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If we choose y = T 1/V and t ∈ [T, 2T ], T ≥ 2, we have (C/16)(log t/ log y) ≤
CV/8. For T ≥ 2, sufficiently large such that 2 ≤ T 1/V ≤ T 2, we obtain

(1/T )λ({t ∈ [T, 2T ] : | Im r∗
g,T 1/V (t)| ≥ CV/4})

≤ 1

T
λ

({
t ∈ [T, 2T ] :

∣∣∣∣ C ′

log T 1/V

∑
n≤T 1/V

Λ(n)

n1/2+it
g

(
log n

log T 1/V

)∣∣∣∣ ≥ CV/8}).
Now, we can apply Markov’s inequality and (0.11) to bound the last term
by (

8C ′

CV

)2bV c
32V (2(AV )V +O(1)V ) = e−(1−o(1))V log V .

Similarly, by using the other bounds in Appendix A, we can bound the three
other terms in (7.3) by exp(−(1− o(1))V log V ). Hence, (7.2) follows. This
completes the proof. �

Proof of Corollary 3. The asserted formula is exactly content of
Varadhan’s integral lemma (see Theorem 17). The assumptions of the the-
orem are satisfied by Corollary 2 and Equation (5.2). �



CHAPTER 2

A theory of nonparametric regression in the
presence of complex nuisance components

1. Introduction

In this chapter, we consider the nonparametric random regression model

Y = f1(X1) + f2(X2) + ε. (1.1)

We study the problem of estimating the function f1, while the function f2 is
regarded as a nuisance parameter. We are interested in settings where the
second term f2(X2) is much more complex than the first term f1(X1). A
particular model of interest is the additive model

Y = f1(X1) +

q−1∑
j=1

f2j(X2j) + ε (1.2)

in which the nuisance components f2j are considerably less smooth than f1

or in which the number of components q is very large, for instance in the
sense that q is allowed to increase with the sample size n. The estimation
problem is similar to the one arising in semiparametric models where the
aim is to estimate a finite-dimensional parameter in the presence of a (more
complex) infinite-dimensional parameter.

Estimation in nonparametric additive models is a well-studied topic,
especially when considering the problem of estimating all components in
the case that q is fixed. One of the seminal theoretical papers is by Stone
[70], who showed that each component can be estimated with the rate of
convergence corresponding to the situation in which the other components
are known. Since then, many estimation procedures have been proposed,
many of them consisting of several steps. In the work by Linton [50] and
Fan, Härdle, and Mammen [26], it is shown that there exist estimators of
single components which have the same asymptotic bias and variance as the
corresponding oracle estimators for which the other components are known.

Probably the most popular estimation procedures are the backfitting
procedures, which are empirical versions of the orthogonal projection onto
the subspace of additive functions in a Hilbert space setting (see, e.g., the
book by Hastie and Tibshirani [35] and the references therein). This orthog-
onal projection was studied, e.g., by Breiman and Friedman [15] (see also
the book by Bickel, Klaassen, Ritov, and Wellner [8, Appendix A.4]). They

19
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showed that, under certain conditions including compactness of certain con-
ditional expectation operators, it can be computed by an iterative procedure
using only bivariate conditional expectation operators. Replacing these con-
ditional expectation operators by empirical versions leads to the backfitting
procedures. Opsomer and Ruppert [55] and Opsomer [54] computed the as-
ymptotic bias and variance of estimators based on the backfitting procedure
in the case where the conditional expectation operators are estimated using
local polynomial regression. Mammen, Linton, and Nielsen [51] introduced
the smooth backfitting procedure and showed that their estimators of single
components achieve the same asymptotic bias and variance as oracle estima-
tors for which the other components are known. Concerning the distribution
of the covariates, they make some high-level assumptions which are satisfied
under some boundedness conditions on the one- and two-dimensional densi-
ties. This is still more than is required in the Hilbert space setting (see [15]).
In the work by Horowitz, Klemelä, and Mammen [36], a general two-step
procedure was proposed in which a preliminary undersmoothed estimator
is based on the smooth backfitting procedure of [51]. They also showed
that there are estimators which are asymptotically efficient (i.e., achieve the
asymptotic minimax risk) with the same constant as in the case with only
one component. In addition to the assumptions coming from the results in
[51], they require a Lipschitz condition for all components.

The problem of estimating f1 in cases in which f2(X2) is more com-
plex than f1(X1) is also considered in the work by Efromovich [24] and
Muro and van de Geer [75]. In [24], an estimator of f1 is constructed
which is both adaptive to the unknown smoothness and asymptotically ef-
ficient with the same constant as in the case with only one component.
The assumptions include smoothness and boundedness conditions on the
full-dimensional density of (X1, X2). The construction of the estimator is
involved and starts with a blockwise-shrinkage oracle estimator. In [75], a
penalized least squares estimator is analyzed in cases where the function
f1 is smoother than the function f2. Under certain assumptions including
smoothness conditions on the design densities, it is shown that for both com-
ponents, the estimator attains the rate of convergence corresponding to the
situation in which the other component is known; i.e., no undersmoothing
of the function f2 is needed to estimate the function f1.

The previously discussed literature on additive models focuses on the
asymptotic behavior of estimators as the number of observations n goes to
infinity in the case that q is fixed. Note that one of our purposes is to
generalize several results to the case that q increases with n.

More recently, high-dimensional sparse additive models have been stud-
ied, e.g., in the work by Meier, van de Geer, and Bühlmann [53], Huang,
Horowitz, and Wei [37], Koltchinskii and Yuan [44], Raskutti, Wainwright,
and Yu [58], Suzuki and Sugiyama [71], and Dalalyan, Ingster, and Tsy-
bakov [19]. These papers consider the case that the number of covariates
q is much larger than the sample size n. The focus is on the problem
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of estimating all components under sparsity constraints. In [19], e.g., the
authors construct an estimator achieving optimal minimax rates of conver-
gence. These rates of convergence depend on q and also on the smallest
degree of smoothness of the f2j . Hence, they may only lead to crude bounds
for the rates of convergence of estimators of f1. Let us mention that in this
chapter, we do not consider a sparsity scenario. We are interested in cases
in which the number of components q is very large, but smaller than n.

In this chapter, we consider model (1.1) in the case that the functions f1

and f2 belong to closed subspaces H1 and H2 of {g1 ∈ L2(PX1) : E [g1(X1)] =
0} and L2(PX2), respectively. We propose an estimator of f1 which is based
on the composition of two least squares criteria. Our main contribution is to
derive several nonasymptotic risk bounds which show that the performance
of our estimators is closely related to geometric quantities of H1 and H2,
such as minimal angles and Hilbert-Schmidt norms. These risk bounds lead
to minimal conditions under which the function f1 can be estimated (up to
first order) just as well as in the model Y = f1(X1) + ε. Our analysis is
based on geometric considerations in Hilbert spaces, and relies on the theory
of projections on sumspaces in Hilbert spaces (see, e.g., [8, Appendix A.4]).
Moreover, we apply recent concentration inequalities for structured random
matrices (see, e.g., the work by Rauhut [59]) in order to show that several
geometric properties in the Hilbert space setting carry over to the finite
sample setting with high probability. As a main example we apply our results
to the additive model (1.2) which corresponds to the case that H2 has an
additive structure. Using our results, we establish new conditions on q and
on the smoothness of the nuisance components under which our estimator
of f1 attains the same (nonasymptotic) optimal rate of convergence as the
corresponding least squares estimator in the model Y = f1(X1)+ ε. We also
address the question of when the corresponding constants coincide.

2. The framework

2.1. The model. Let (Y,X1, X2) be a triple of random variables satis-
fying (1.1), where X1 and X2 take values in some measurable spaces (S1,B1)
and (S2,B2), respectively, ε is a real valued random variable such that
E [ε|X] = 0 and E

[
ε2|X

]
= σ2, and the unknown regression functions satisfy

the following assumption:

Assumption 1. Suppose that f1 ∈ H1, where

H1 ⊆ {g1 ∈ L2(PX1) : E [g1(X1)] = 0}
is a closed subspace, and that f2 ∈ H2, where H2 ⊆ L2(PX2) is a closed
subspace.

Structural assumptions on f1 and f2 (see, e.g., Section 4 where we
also consider the additive model) should be incorporated into the model
by making assumptions on H1 and H2. From the above, we have that
X = (X1, X2) is a random variable taking values in (S1×S2,B1⊗B2) (note
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that in Section 4.3, we consider the example S1 = [0, 1], S2 = [0, 1]q−1, and
S1 × S2 = [0, 1]q, where all spaces are equipped with the Borel σ-algebra).
Moreover, we have that the spaces L2(PX1) and L2(PX2) are (in a canonical
way) subspaces of L2(PX), which implies that H1 and H2 are also closed
subspaces of L2(PX). Finally, we denote by f the whole regression function
given by f = f1 + f2. We assume that we observe n independent copies

(Y 1, X1), . . . , (Y n, Xn)

of (Y,X), where Xi = (Xi
1, X

i
2), 1 ≤ i ≤ n. Based on this sample, we

consider the problem of estimating the function f1.

2.2. The main assumption. Our approach relies strongly on the fact
that the space L2(PX) is a Hilbert space with the inner product 〈g, h〉 =

E[g(X)h(X)] and the corresponding norm ‖g‖ =
√
〈g, g〉 (see, e.g., [23, The-

orem 5.2.1]). In order to state our main assumption, we give the following
general definition of a minimal angle in Hilbert spaces (see [40, Definition
1] and the references therein).

Definition 1. Let H1 and H2 be two closed subspaces of a Hilbert
space H with inner product 〈·, ·〉 and norm ‖ ·‖. The minimal angle between
H1 and H2 is the number 0 ≤ τ0 ≤ π/2 whose cosine is given by

ρ0 = ρ0(H1,H2) = sup

{
〈h1, h2〉
‖h1‖‖h2‖

∣∣∣∣ 0 6= h1 ∈ H1, 0 6= h2 ∈ H2

}
.

Assumption 2. Suppose that the cosine of the minimal angle between
H1 and H2 is strictly less than 1, i.e.,

ρ0(H1, H2) < 1.

The next lemma states two equivalent formulations of Assumption 2.
Since we will also apply it to the finite sample setting in later sections, we
again give a general statement.

Lemma 2. Let H1 and H2 be two closed subspaces of a Hilbert space H
with inner product 〈·, ·〉 and norm ‖ · ‖. Let 0 ≤ % < 1 be a constant. Then
the following assertions are equivalent:

(i) For all 0 6= h1 ∈ H1, 0 6= h2 ∈ H2 we have

|〈h1, h2〉|
‖h1‖‖h2‖

≤ %.

(ii) For all h1 ∈ H1, h2 ∈ H2 we have

‖h1 + h2‖2 ≥ (1− %)(‖h1‖2 + ‖h2‖2).

(iii) For all h1 ∈ H1, h2 ∈ H2 we have

‖h1 + h2‖2 ≥ (1− %2)‖h1‖2.

A proof of Lemma 2 is given in Appendix B.
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2.3. The estimation procedure. Let V1 ⊆ H1 and V2 ⊆ H2 be d1-
and d2-dimensional linear subspaces, respectively, and let W1 ⊆ V1 be a
linear subspace. Let V = V1 + V2 and d = d1 + d2. By Assumption 2, we
have V1 ∩V2 = {0}, which implies that d is equal to the dimension of V and
that each g ∈ V can be decomposed uniquely as g = g1 + g2 with g1 ∈ V1

and g2 ∈ V2. We will make only one assumption on V which relates the
∞-norm with the 2-norm, and which will be needed to apply concentration
of measure inequalities (compare to, e.g., [11, Section 3.1.1] and [5, Section
1.1]).

Assumption 3. Suppose that there is a real number ϕ ≥ 1 such that

‖g‖∞ ≤ ϕ
√
d‖g‖ (2.1)

for all g ∈ V .

Remark 1. In view of Assumption 2, Equation (2.1) is satisfied if there
are real numbers ϕj ≥ 1 such that ‖gj‖∞ ≤ ϕj

√
dj‖gj‖ for all gj ∈ Vj ,

j = 1, 2. Indeed, applying the Cauchy-Schwarz inequality and Lemma 2, we
have

‖g1 + g2‖∞ ≤ ϕ1

√
d1‖g1‖+ ϕ2

√
d2‖g2‖ ≤

ϕ1 ∨ ϕ2√
1− ρ0

√
d1 + d2‖g1 + g2‖.

The construction of our estimator is based on two least squares criteria.
First, let f̂V be the least squares estimator on the model V which is given
(not uniquely) by

f̂V = arg min
g∈V

1

n

n∑
i=1

(Y i − g(Xi))2. (2.2)

By the definition of V , we have f̂V = (f̂V )1 + (f̂V )2 with (f̂V )1 ∈ V1 and

(f̂V )2 ∈ V2. Next, by applying a second least squares criterion, we define

the estimator f̂1 by

f̂1 = arg min
g1∈W1

1

n

n∑
i=1

((f̂V )1(Xi
1)− g1(Xi

1))2. (2.3)

We will also consider the special case W1 = V1, in which we have f̂1 = (f̂V )1.
This means that the second least squares criterion can be dropped. However,
we will see that choosing V1 as a preliminary space of larger dimension leads
to a smaller bias (it lowers the dependence on ρ0). Finally, since we want
to establish risk bounds, it is convenient to eliminate very large values.
Therefore, we define our final estimator f̂∗1 by

f̂∗1 = f̂1 if ‖f̂1‖∞ ≤ kn and f̂∗1 ≡ 0 otherwise, (2.4)

where kn is a real number to be chosen later (compare to the work by Baraud
[5, Eq. (3)]). Finally, note that the estimator is not feasible since the distri-
bution of X is not known and therefore the condition E [g1(X1)] = 0 cannot
be checked. However, one can replace this condition by (1/n)

∑n
i=1 g1(Xi

1) =
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0. In Appendix B, we show how our results carry over to these modified
estimators.

In our analysis of f̂∗1 , one important step is to carry over the geometric
properties valid in the Hilbert space setting to the finite sample setting. For
this, the following event

Eδ =
{

(1− δ)‖g‖2 ≤ ‖g‖2n ≤ (1 + δ)‖g‖2 for all g ∈ V
}
,

0 < δ < 1, will play the key role. Here, ‖ · ‖n denotes the empirical norm
(see, e.g., Section 5.1). A first observation is that, under Assumptions 1

and 2, the estimator f̂∗1 is unique on the event Eδ. This can be seen as
follows. If Eδ holds, then ‖ · ‖ and ‖ · ‖n are equivalent norms on V , which in
turn implies that each g ∈ V is uniquely determined by (g(X1), . . . , g(Xn))T .
Hence, the solutions of the least squares criteria in (2.2) and (2.3) are unique
(since the solutions are unique when restricted to vectors in Rn evaluated

at the observations). Moreover, by Assumption 2, the decomposition f̂V =

(f̂V )1 + (f̂V )2 is unique.
In addition, we also obtain a simple representation of our estimator.

Therefore, let Π̂V be the orthogonal projection from Rn to the subspace
{(g(X1), . . . , g(Xn))T |g ∈ V }, and let Π̂W1 be defined analogously. If Eδ
holds, then we have

(f̂1(X1
1 ), . . . , f̂1(Xn

1 ))T = Π̂W1(Π̂V Y)1,

where Π̂V Y = (Π̂V Y)1 + (Π̂V Y)2 is the unique decomposition of the least
squares estimator on the model V , considered as a vector in Rn, with
(Π̂V Y)j ∈ {(gj(X1

j ), . . . , gj(X
n
j ))T |gj ∈ Vj}.

3. Main results

3.1. A first risk bound. In this section, we present a nonasymptotic
risk bound in the case W1 = V1, which will be further improved (under
additional assumptions) in later sections. We denote by ΠV (resp. ΠV1 ,
ΠV2 , and ΠW1) the orthogonal projection from L2(PX) to the subspace V
(resp. V1, V2, and W1).

Theorem 3. Let Assumption 1, 2, and 3 be satisfied. Let 0 < δ < 1 be
a real number. Let W1 = V1. Then

E
[
‖f1 − f̂∗1 ‖2

]
≤ 1 + δ

(1− δ)3

1

1− ρ2
0

((
1 +

ϕ2d

n

)
‖f −ΠV f‖2 +

σ2 dimV1

n

)
+Rn

with

Rn =

2(1 + δ)ϕ2d‖f1‖2(‖f −ΠV2f‖2 + σ2)

(1− δ)2(1− ρ2
0)k2

n

+ 2(‖f1‖+ kn)2d exp

(
−κ δ

2n

ϕ2d

)
,
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where κ is the universal constant in Theorem 9.

Before we discuss the two main terms, let us give conditions under which
the remainder term Rn is small. Suppose that for some real number c > 0,
we have

ϕ2d ≤ cδ2n

log n
,

and let k2
n = ‖f1‖2nκ/(2c) (this is a theoretical choice of kn leading to a

simple upper bound for Rn, many other choices are possible, too). Then
one can show that

Rn ≤
12c(1 + δ)δ2

(1− δ)2(1− ρ2
0)

(
‖f1‖2 + ‖f2 −ΠV2f2‖2 + σ2

)
n−

κ
2c

+1.

Letting, e.g., δ = 1/ log n and c = 1/ log n, we obtain the following corollary
of Theorem 3.

Corollary 5. Let Assumption 1, 2, and 3 be satisfied. Suppose that

ϕ2d ≤ n

(log n)4
. (3.1)

Then there is a universal constant C > 0 such that

E
[
‖f1 − f̂∗1 ‖2

]
≤ 1

1− ρ2
0

(
‖f1 −ΠV1f1‖2 +

σ2 dimV1

n

)
(1 + C/ log n)

+
C

1− ρ2
0

(
(log n)‖f2 −ΠV2f2‖2 + ‖f1‖2n−

κ
2

logn+1
)
.

The first two terms on the right hand side are (up to the factor (1−ρ2
0)−1)

equal to the bias term and the variance term of the same estimator with
V2 = 0 in the model Y = f1(X1) + ε. The third term is the approximation
error of the function f2 with respect to the space V2. It decreases if V2 is
chosen larger. Moreover, the choice of V2 does not effect any of the other
terms, the only restriction is given by (3.1). The question arising now is as
follows: Is it possible to choose a space V2 subject to the constraint (3.1)
such that (1 − ρ2

0)−1(log n)‖f2 − ΠV2f2‖2 is negligible with respect to the
first two terms.

3.2. A refined risk bound. In this section, we improve Theorem 3
such that the factor (1− ρ2

0)−1 only appears in remainder terms. Since the
refined upper bound for the variance term will also contain a Hilbert-Schmidt
norm, we give the following general definition (see, e.g., [81]).

Definition 2. Let H1 and H2 be Hilbert spaces. A bounded linear
operator T : H1 → H2 is called Hilbert-Schmidt if for some orthonormal
basis {φ1α}α∈I of H1, ∑

α∈I
‖Tφ1α‖2 <∞. (3.2)
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This sum is independent of the choice of the orthonormal basis (see [81,
Satz 3.18]). The square root of this sum is called the Hilbert-Schmidt norm
of T , denoted by ‖T‖HS .

Let ΠV2 be the orthogonal projection from L2(PX) to V2, and let ΠV2 |W1

be the restriction of ΠV2 to W1. Then ΠV2 |W1 is a Hilbert-Schmidt operator,
since W1 is finite-dimensional. We prove:

Theorem 4. Let Assumption 1, 2, and 3 be satisfied. Let 0 < δ < 1 be
a real number. Then

E
[
‖f1 − f̂∗1 ‖2

]
≤
(
‖f1 −ΠW1f1‖2 +

1

1− δ
σ2 dimW1

n

)(
1 +

1 + δ

(1− δ)3

1

1− ρ2
0

2ϕ2d

n

)
+

1 + δ

(1− δ)2

6

1− ρ2
0

(
‖f1 −ΠV1f1‖2 + ‖f2 −ΠV2f2‖2

)
+

1 + δ

(1− δ)4

1

1− ρ2
0

σ2 ‖ΠV2 |W1‖
2
HS

n
+Rn, (3.3)

where Rn is given in Theorem 3.

In order to state a corollary of Theorem 4 similar to Corollary 5, we have
to discuss the quantity ‖ΠV2 |W1‖

2
HS . If {φ1k}1≤k≤dimW1 is an orthonormal

basis of W1, then it can be bounded as follows:

‖ΠV2 |W1‖
2
HS =

dimW1∑
k=1

‖ΠV2φ1k‖2 ≤
dimW1∑
k=1

ρ2
0‖φ1k‖2 = ρ2

0 dimW1, (3.4)

where the inequality can be shown as in (5.7). Using this bound, we get a
variance term which coincides (up to first order) with the one in Theorem 3.
However, (3.4) can be considerably improved under certain Hilbert-Schmidt
Assumptions. In particular, we will derive upper bounds which are dimen-
sion free. The first assumption is as follows:

Assumption 4. Suppose that there are measures ν1 and ν2 on B1 and
B2, respectively, such that X has the density p with respect to the product
measure ν1⊗ ν2. Let p1 and p2 be the marginal densities of X1 and X2 with
respect to the measures ν1 and ν2, respectively. Suppose that

‖K‖2HS =

∫
S2

∫
S1

(
p(x1, x2)

p1(x1)p2(x2)

)2

p1(x1)p2(x2)dν1(x1)dν2(x2)

=

∫
S2

∫
S1

(p(x1, x2))2

p1(x1)p2(x2)
dν1(x1)dν2(x2) <∞.

If Assumption 4 is satisfied, then we can define the integral operator
K : L2(PX1)→ L2(PX2) by

(Kg1)(x2) =

∫
S1

g1(x1)
p(x1, x2)

p1(x1)p2(x2)
p1(x1)dν1(x1)
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which is the orthogonal projection from L2(PX) to L2(PX2) restricted to
L2(PX1). Applying [81, Satz 3.19], we obtain that K is a Hilbert-Schmidt
operator with Hilbert-Schmidt norm ‖K‖HS . We conclude that

‖ΠV2 |W1‖HS ≤ ‖K‖HS .
Next, we present a more sophisticated upper bound, by using the spaces
H1 and H2 instead of L2(PX1) and L2(PX2). Let ΠH2 be the orthogonal
projection from L2(PX) to H2, and let ΠH2 |H1 be the restriction of ΠH2 to
H1.

Assumption 5 (Weaker form of Assumption 4). Suppose that ΠH2 |H1

is a Hilbert-Schmidt operator.

If Assumption 5 is satisfied, then

‖ΠV2 |W1‖HS ≤ ‖ΠH2 |H1‖HS .
Letting now δ = 1/ log n and c = 1/ log n as in Corollary 5, we obtain the
following corollary of Theorem 4.

Corollary 6. Let Assumption 1, 2, 3, and 4 be satisfied. Suppose that

ϕ2d ≤ n

(log n)4
.

Then there is a universal constant C > 0 such that

E
[
‖f1 − f̂∗1 ‖2

]
≤
(
‖f1 −ΠW1f1‖2 +

σ2 dimW1

n

)(
1 + C ′/ log n

)
+ C ′

(
‖f1 −ΠV1f1‖2 + ‖f2 −ΠV2f2‖2 +

σ2 ‖K‖2HS
n

+
‖f1‖2

n
κ
2

logn−1

)
,

where C ′ = C/(1−ρ2
0). Moreover, if Assumption 5 holds instead of Assump-

tion 4, then the above inequality holds if ‖K‖2HS is replaced by ‖ΠH2 |H1‖
2
HS.

Finally, if Assumption 5 and 4 are not satisfied, then the above inequality
holds if ‖K‖2HS is replaced by ρ2

0 dimW1.

Now the first two terms in the brackets on the right hand side are equal
to the bias term and the variance term of the same estimator with V2 = 0
in the model Y = f1(X1) + ε. As in Corollary 5, we see that the choices of
V1 and V2 do not effect any of the other terms, the only restriction is given
by (3.1).

Finally, we give an alternative representation of the Hilbert-Schmidt
norm ‖ΠH2 |H1‖HS using the operator ΠH1ΠH2ΠH1 (which we consider as
a map from H1 to H1). To simplify the exposition, we suppose that H1

is separable, which implies that each orthonormal basis of H1 is countable
(see, e.g., [60, Chapter II]). From Assumption 5, it follows that ΠH1ΠH2ΠH1

is compact (see, e.g., [49, Chapter 30.8]). Since it is also symmetric and
positive, the spectral theorem (see, e.g., [49, Theorem 3 in Chapter 28])
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implies that there is an orthonormal basis for H1 consisting of eigenvectors
of ΠH1ΠH2ΠH1 . These all have non-negative eigenvalues. We arrange the
positive eigenvalues of ΠH1ΠH2ΠH1 in decreasing order: α1 ≥ α2 · · · > 0.
We now have:

Lemma 3. Under the above assumptions, we have

ρ2
0 = α1

and

‖ΠH2 |H1‖
2
HS = tr (ΠH1ΠH2ΠH1) =

∑
k≥1

αk.

Proof. We only prove the second equality. Let {φ1k}k≥1 be an or-
thonormal basis for H1 consisting of eigenvectors of ΠH1ΠH2ΠH1 . Then

‖ΠH2 |H1‖
2
HS =

∑
k≥1

‖ΠH2φ1k‖2 =
∑
k≥1

〈ΠH1ΠH2ΠH1φ1k, φ1k〉2 =
∑
k≥1

αk.

�

Example 1. Consider the case that X = (X1, X2) is a bivariate Gauss-
ian random variable such that E[X1] = E[X2] = 0, E[X2

1 ] = E[X2
2 ] = 1, and

E [X1X2] = ρ.
First, suppose that H1 and H2 are the spaces of linear centered functions,

i.e., H1 = {g1 : g1(x1) = a ·x1, a ∈ R} and H2 = {g2 : g2(x2) = a ·x2, a ∈ R}.
Then it is easy to see that

ρ0 = |ρ|
and

‖ΠH2 |H1‖
2
HS = ρ2.

Second, suppose that H1 = {g1 ∈ L2(PX1) : E [g1(X1)] = 0} and
H2 = L2(PX2). Then it follows from [46] that ΠH1ΠH2ΠH1 has eigenvalues
{ρ2, ρ4, . . . }. Hence, the above lemma implies that

ρ0 = |ρ|
and

‖ΠH2 |H1‖
2
HS =

∞∑
k=1

ρ2k =
ρ2

1− ρ2
,

which is an improvement over (3.4) if dimW1 is large.

3.3. Regularity conditions on the design densities. In this sec-
tion, we present two improvements of Theorem 4 which are possible under
Assumption 4 and additional regularity conditions on the design densities.
In particular, we show that the dependence of the bias term on the function
f2 can decrease considerably.

By Assumption 4 and Fubini’s theorem, we have

p(x1, ·)
p1(x1)p2(·)

∈ L2(PX2) (3.5)
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for PX1-almost all x1. Thus we can make the following assumption. Suppose
that there is a real number ψ(V2) and a function h1 ∈ L2(PX1) such that∥∥∥∥(1−ΠV2)

p(x1, ·)
p1(x1)p2(·)

∥∥∥∥
L2(PX2 )

≤ h1(x1)ψ(V2) (3.6)

for PX1-almost all x1. In analogy, we let φ(V2) be a real number such that
‖f2 −ΠV2f2‖ ≤ φ(V2). We prove:

Theorem 5. Let Assumption 1, 2, 3, and 4 be satisfied. Let 0 < δ < 1
be a real number. Suppose that (3.6) is satisfied. Moreover, suppose that
‖g1‖∞ ≤ ϕ

√
d1‖g1‖ for all g1 ∈ V1, where ϕ is the constant from Assumption

3. Then (3.3) holds when

1 + δ

(1− δ)2

6

1− ρ2
0

(
‖f1 −ΠV1f1‖2 + ‖f2 −ΠV2f2‖2

)
is replaced by

(1 + δ)2

(1− δ)4

12

1− ρ2
0

(
‖f1 −ΠV1f1‖2 +

‖h1‖2(φ(V2)ψ(V2))2

1− ρ2
0

+
1

n

‖h1‖2‖f2 −ΠV2f2‖2∞(ψ(V2))2

1− ρ2
0

+
(φ(V2))2

1− ρ2
0

ϕ2d1

n

)
.

Theorem 5 shows that the regularity conditions on p/(p1p2) and f2 have
similar effects, which can be seen from second term. In contrast to Theorems
3 and 4, Theorem 5 shows that the estimator f̂∗1 can also behave well when
f2 is considerably less regular than f1. For instance, if we apply Theorem
5 to an asymptotic scenario, then, under suitable conditions on ψ(V2), the
regularity conditions on f2 can be (almost) reduced to φ(V2)→ 0 (see, e.g.,
Corollary 10).

For fixed x1, let the function r(x1, ·) be the orthogonal projection of
p(x1, ·)/(p1(x1)p2(·)) on H2. By (3.5), r(x1, ·) is defined for PX1-almost all
x1. Thus we can consider the following weaker version of (3.6). Suppose
that there exists a real number ψΠ(V2) and a function h1 ∈ L2(PX1) such
that

‖(1−ΠV2)r(x1, ·)‖L2(PX2 ) ≤ h1(x1)ψΠ(V2) (3.7)

for PX1-almost all x1. If (3.7) holds, then we obtain the following theorem.
Note that, compared to Theorem 5, the last term is not always negligible.

Theorem 6. Let Assumption 1, 2, 3, and 4 be satisfied. Let 0 < δ < 1
be a real number. Suppose that (3.7) is satisfied. Then Theorem 4 also holds
when the term

1 + δ

(1− δ)2

6

1− ρ2
0

(
‖f1 −ΠV1f1‖2 + ‖f2 −ΠV2f2‖2

)
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is replaced by

1 + δ

(1− δ)3

6

1− ρ2
0

(
‖f1 −ΠV1f1‖2

(
1 +

2ϕ2d

n

)
+
‖h1‖2(φ(V2)ψΠ(V2))2

1− ρ2
0

+
(φ(V2))2

1− ρ2
0

2ϕ2d

n

)
.

4. Applications

4.1. The two-dimensional case. In this section, we want to discuss
Theorem 3 and 4 in the case that X1 and X2 take values in R and that
Assumptions 1 and 2 are satisfied with

H1 = {g1 ∈ L2(PX1)|E [g1(X1)] = 0}
and

H2 = L2(PX2).

The main remaining issue is to bound the approximation errors. This is
possible if the fj belong to certain nonparametric classes of functions and
if the Vj are chosen appropriately. Here, we shall restrict our attention
to (periodic) Sobolev smoothness and spaces of trigonometric polynomials.
Note that we will also consider Hölder smoothness and spaces of piecewise
polynomials in Section 4.4 and 4.5. Recall that the trigonometric basis is
given by φ0(x) = 1, φk(x) =

√
2 cos(2πkx) and φ−k(x) =

√
2 sin(2πkx),

k ≥ 1, where x ∈ [0, 1].

Assumption 6. Suppose that the Xj take values in [0, 1] and have den-
sities pXj with respect to the Lebesgue measure on [0, 1], which satisfy c ≤
pXj ≤ 1/c for some constant c > 0. Moreover, suppose that the fj belong to
the Sobolev classes

W̃j(αj ,Kj) =

{ ∞∑
k∈Z

θkφk(xj) :
∞∑
k∈Z
|k|2αjθ2

k ≤ K2
j

}
,

where αj > 0 and Kj > 0 (see, e.g., [74, Definition 1.12]).

For j = 1, 2, let Vj be the intersection of Hj with the linear span of the
φk (in the variable xj) such that |k| ≤ mj , and let W1 be the intersection of
H1 with the linear span of the φk (in the variable x1) such that |k| ≤ mW1 .
Note that we have d1 = 2m1 and d2 = 2m2 + 1. Using the definition of the
W̃j(αj ,Kj), we have for all hj ∈ W̃j(αj ,Kj) ∩Hj ,

‖hj −ΠVjhj‖2 ≤ (1/c)K2
j (1 +mj)

−2αj

and thus
‖hj −ΠVjhj‖2 ≤ CjK2

j d
−2αj
j , (4.1)

where Cj = 22αj/c. The same bound holds if V1 and d1 are replaced by
W1 and dimW1. Moreover, by applying the Cauchy-Schwarz inequality,
we have ‖gj‖∞ ≤

√
1/c
√

2mj + 1‖gj‖ for all gj ∈ Vj , which implies that
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‖gj‖∞
√

2/c
√
dj‖gj‖ for all gj ∈ Vj . By Remark 1, this implies that As-

sumption 3 is satisfied with

ϕ2 ≤ 2

c(1− ρ0)
. (4.2)

We now choose d1 and d2 as the smallest possible integer satisfying

dj ≥
n

4ϕ2 log4 n
, (4.3)

and we choose dimW1 (up to constant) equal to(
K2

1n

σ2

) 1
2α1+1

.

If n is large enough, then these choices imply that (3.1) of Corollary 5 is
satisfied. Applying (4.1) and (4.3), we obtain that

‖f2 −ΠV2f2‖2 ≤ C2K
2
2

(
n

4ϕ2 log4 n

)−2α2

,

where the last expression is o(n−(α1/(2α1+1)) if α2 > α1/(2α1 + 1). Finally,
note that ‖f1‖2 ≤ E[(f1(X1) − θ0)2] ≤ K2

1/c. From Corollary 6, we now
obtain the following asymptotic result when the sample size n tends to
infinity:

Corollary 7. Let Assumption 2 and 6 be satisfied. Suppose that

α2 > α1/(2α1 + 1). (4.4)

Then

lim sup
n→∞

sup
fj∈W̃j(αj ,Kj)

E
[
n

2α1
2α1+1 ‖f1 − f̂∗1 ‖2

]
≤ Cσ

4α1
2α1+1K

2
2α1+1

1 , (4.5)

where C is a constant depending only on α1, c, and ρ0. If, in addition,
Assumption 5 holds, then the dependence of C on ρ0 disappears and we
obtain the same constant as for the corresponding estimator with V2 = 0 in
the model Y = f1(X1) + ε.

Remark 2. Corollary 7 says that the estimator f̂∗1 attains the optimal
rate of convergence in a minimax sense. Note that one can also take the
supremum over random variables X such that c, 1/c, and 1/(1 − ρ2

0) are
bounded by a fixed constant.

Remark 3. The assumptions of Corollary 7 are weaker than those
needed in [36], where it is also assumed that the joint density of (X1, X2) is
bounded away from zero and infinity and that the functions f1 and f2 are
Lipschitz continuous. Note that (4.4) is always satisfied if, e.g., α2 ≥ 1/2
and that the boundedness conditions imply Assumption 4 and also Lemma
2 (ii). Hence, the boundedness conditions imply Assumption 2 and 5.
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Remark 4. In semiparametric models, one often requires a global rate
of convergence of order o(n−1/4) in order to obtain the rate of convergence

n−1/2 for the parametric component (see, e.g., the book by van de Geer [76,
Chapter 11]). Since α1/(2α1 + 1) goes to 1/2 as α1 → ∞, condition (4.4)
extends this result to the nonparametric case.

4.2. The multidimensional case. Now, we suppose that the X1 and
X2 take values in [0, 1]q1 and [0, 1]q2 , respectively, and that Assumptions 1
and 2 are again satisfied with

H1 = {g1 ∈ L2(PX1)|E [g1(X1)] = 0}

and

H2 = L2(PX2).

In this case, we consider the tensor product Fourier basis:

φk(xj) =

qj∏
l=1

φkl(xjl),

where k ∈ Zqj and xj ∈ [0, 1]qj . We define the following Sobolev class

W̃j(αj ,Kj) =


∞∑

k∈Zqj
θkφk(xj) :

∞∑
k∈Zqj

a2
jkθ

2
k ≤ K2

j


with ajk = ‖k‖αj∞ , where ‖k‖∞ = maxl=1,...,qj |kl|, αj > 0, and Kj > 0 (an

alternative choice would be, e.g., a2
jk =

∑qj
l=1 |kl|

αj ).

Assumption 7. Suppose that the Xj have densities pXj with respect to
the Lebesgue measure on [0, 1]qj , which satisfy c ≤ pXj ≤ 1/c for some
constant c > 0. Moreover, suppose that the fj belong to the Sobolev classes

W̃j(αj ,Kj), where αj > 0 and Kj > 0.

For j = 1, 2, let Vj be the intersection of Hj with the linear span of the φk
(in the variable xj) such that ‖k‖∞ ≤ mj , and let W1 be the intersection of
H1 with the linear span of the φk (in the variable x1) such that ‖k‖∞ ≤ mW1 .
Note that we have d1 = (2m1 + 1)q1 − 1 and d2 = (2m2 + 1)q2 . Similarly as
above, one can show that

‖hj −ΠVjhj‖2 ≤ CjK2
j d
−2αj/qj
j

for all hj ∈ W̃j(αj ,Kj) ∩ Hj , where Cj = 22αj/c, and that Assumption 3
holds with a ϕ satisfying again (4.2). We now choose d1 and d2 as in (4.3),
and we choose dimW1 (up to constant) equal to(

K2
1n

σ2

) q1
2α1+q1

.

Similarly as above, we conclude:
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Corollary 8. Let Assumption 2 and 7 be satisfied. Suppose that

α2/q2 > α1/(2α1 + q1).

Then

lim sup
n→∞

sup
fj∈W̃j(αj ,Kj)

E
[
n

2α1
2α1+q1 ‖f1 − f̂∗1 ‖2

]
≤ Cσ

4α1
2α1+q1K

2q1
2α1+q1
1 ,

where C is a constant depending only on α1, c, and ρ0. If, in addition,
Assumption 5 holds, then the dependence of C on ρ0 disappears and we
obtain the same constant as for the corresponding estimator with V2 = 0 in
the model Y = f1(X1) + ε.

4.3. The additive model with Sobolev smoothness. In this sec-
tion, we want to discuss Theorem 3 and 4 in the case that the random
variables X1 and X2 take values in R and Rq−1, q ≥ 2, respectively, and
that Assumptions 1 and 2 are satisfied with

H1 = {g1 ∈ L2(PX1)|E [g1(X1)] = 0}
and

H2 =

q−1∑
j=1

L2(PX2j ),

where the X2j , j = 1, . . . , q − 1, are the components of X2. If we define
H2j = {g2j ∈ L2(PX2j )|E [g2j(X2j)] = 0}, if j = 1, . . . , q − 2, and H2j =

L2(PX2j ), if j = q − 1, then we can write H2 =
∑q−1

j=1 H2j .

Assumption 8. Suppose that X1 and the X2j take values in [0, 1] and
have densities pX1 and pX2j with respect to the Lebesgue measure on [0, 1],
which satisfy c ≤ pX1 ≤ 1/c and c ≤ pX2j ≤ 1/c for some constant c > 0.

Moreover, suppose that f1 ∈ W̃1(α1,K1), where α1 > 0 and K1 > 0, and

that there is a decomposition f2 =
∑q−1

j=1 f2j such that f2j ∈ W̃2j(α2,K2) ∩
H2j, where α2 > 0 and K2 > 0.

Now, let V1 and W1 be as in Section 4.1, and let V2 =
∑q−1

j=1 V2j , where

V2j is the intersection of H2j with the linear span of the φk (in the variable
x2j) such that |k| ≤ m2. In order to show that Assumption 3 is satisfied, we
we need the following additional assumption on H2.

Assumption 9. There is an ε2 < 1 such that for each h2 ∈ H2, there is
a decomposition h2 =

∑q−1
j=1 h2j with h2j ∈ H2j such that

‖h2‖2 ≥ (1− ε2)

q−1∑
j=1

‖h2j‖2. (4.6)

Applying iteratively [8, Proposition 2.A in Appendix A.4], one can show
that Assumption 9 is equivalent to the assertion that

∑
j∈J H2j is closed for

all J ⊆ {1, . . . , q− 1}. In particular, Assumption 9 implies that H2 is closed
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meaning that Assumption 1 is included in Assumption 9. We mention that
Assumption 9 can also be related to bounds on certain complementary angles
(see [8, Definition 2 and Proposition 2.D in Appendix A.4]).

Lemma 4. Let Assumption 2, 8, and 9 be satisfied. Then Assumption 3
holds with a constant ϕ satisfying

ϕ2 ≤ 2

c(1− ρ0)(1− ε2)

d1 +
∑q−1

j=1 d2j

d
,

where d2j = dimV2j. In particular, if the V2j are linearly independent, then
we have

ϕ2 ≤ 2

c(1− ρ0)(1− ε2)
. (4.7)

A proof of Lemma 4 is given in Appendix B. Thus (3.1) of Corollary 5
is satisfied if

2
(
d1 +

∑q−1
j=1 d2j

)
c(1− ρ0)(1− ε2)

≤ n

log4 n
.

We now choose dimW1 as in Section 4.1, and we choose d1 and the d2j equal
to the smallest possible integers satisfying

d1 ≥
c(1− ρ0)(1− ε2)n

8 log4 n

and

d2j ≥
c(1− ρ0)(1− ε2)n

8(q − 1) log4 n
. (4.8)

If the right hand side of (4.8) is greater than or equal to 2, then (3.1) of
Corollary 5 is satisfied. In order to bound the approximation error ‖f2 −
ΠV2f2‖, we introduce ε′2 which is the smallest number such that

‖h2‖2 ≤ (1 + ε′2)

q−1∑
j=1

‖h2j‖2 (4.9)

for all h2 =
∑q−1

j=1 h2j with h2j ∈ H2j . Note that

1 + ε′2 ≤ q − 1,

by the Cauchy-Schwarz inequality. Using the decomposition of f2 in As-
sumption 8, the projection theorem, (4.9), and finally (4.1) and (4.8), we
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have

‖f2 −ΠV2f2‖2 ≤
∥∥∥∥ q−1∑
j=1

(f2j −ΠV2jf2j)

∥∥∥∥2

≤ (1 + ε′2)

q−1∑
j=1

‖f2j −ΠV2jf2j‖2

≤ (1 + ε′2)C2K
2
2 (q − 1)

(
c(1− ρ0)(1− ε2)n

8(q − 1) log4 n

)−2α2

.

From Corollary 6, we now obtain:

Theorem 7. Let Assumption 2, 8, and 9 be satisfied. Suppose that the
right hand side of (4.8) is greater than or equal to 2 and that dimW1 ≤ d1.
Then

sup
f1∈W̃1(α1,K1)

sup
f2j∈W̃2j(α2,K2)

E
[
‖f1 − f̂∗1 ‖2

]
≤ Cσ

4α1
2α1+1K

2
2α1+1

1 n
− 2α1

2α1+1

+ C ′(1 + ε′2)q2α2+1(log n)8α2((1− ε2)n)−2α2 , (4.10)

where C is a constant depending only on α1, c and ρ0, and C ′ is a constant
depending only on α2, c, ρ0, K2, and K1.

Remark 5. If the last expression in (4.10) is of smaller order, then

Theorem 7 says that the estimator f̂∗1 attains the (nonasymptotic) optimal
rate of convergence in a minimax sense. The last expression in (4.10) is of
smaller order if, e.g.,

q2α2+1(log n)8α2+1n−2α2 ≤ C ′′n−
2α1

2α1+1 , (4.11)

where C ′′ depends only on α2, c, ρ0, K2, K1, ε2, and ε′2. This result can
be applied to an asymptotic scenario in which q and n tend to infinity such
that (4.11) is satisfied.

Next, we apply Theorem 7 in the case that the sample size n tends to
infinity, and q is a fixed constant.

Corollary 9. Let Assumption 2, 8, and 9 be satisfied. Suppose that

α2 > α1/(2α1 + 1).

Then

lim sup
n→∞

sup
f1∈W̃1(α1,K1)

sup
f2j∈W̃2j(α2,K2)

E
[
n

2α1
2α1+1 ‖f1 − f̂∗1 ‖2

]
≤ Cσ

4α1
2α1+1K

2
2α1+1

1 ,

where C is a constant depending only on α1, c, and ρ0. If, in addition,
Assumption 5 holds, then the dependence of C on ρ0 disappears and we
obtain the same constant as for the corresponding estimator with V2 = 0 in
the model Y = f1(X1) + ε.
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Remark 6. Again, the assumptions of Corollary 9 are weaker than those
needed in [36] (compare to Remark 3). For instance, the condition that
the one- and two-dimensional marginal densities of X2j and (X2j , X2j′) are
bounded away from zero and infinity implies that Assumption 9 is satisfied
(see, e.g., [8, Proposition 2.C in Appendix A.4] for the case q = 3 and [51,
Lemma 1] for the general case).

4.4. The additive model with Hölder smoothness. We continue
the discussion of the additive model in Section 4.3, and consider briefly the
case of Hölder smoothness and spaces of piecewise polynomials.

Assumption 10. Suppose that X1 and the X2j take values in [0, 1] and
have densities pX1 and pX2j with respect to the Lebesgue measure on [0, 1],
which satisfy pX1 ≥ c and pX2j ≥ c for some constant c > 0.

Moreover, suppose that the function f1 is contained in the Hölder class
H1(α1,K1) on [0, 1], where α1 > 0 and K1 ≥ 0 (see, e.g., [74, Definition

1.2]), and that there is a decomposition f2 =
∑q−1

j=1 f2j such that f2j ∈
H2j(α2,K2) ∩H2j, where α2 > 0 and K2 ≥ 0.

Let V1 be the intersection of H1 with the space of regular piecewise
polynomials (in the variable x1) with integer-valued parameters r1 = bα1c
and m1, where r1 is the maximal degree of the polynomials and {0 < 1/m1 <
2/m1 < · · · < 1} generates the partition of [0, 1] into m1 intervals (see,
e.g., [10]), and let W1 be the intersection of H1 with the space of regular
piecewise polynomials (in the variable x1) with integer-valued parameters
r1 = bα1c and mW1 (in order that W1 ⊆ V1 we need that m1 is a multiple

of mW1). Moreover, let V2 =
∑q−1

j=1 V2j , where V2j is the intersection of H2j

with the space of regular piecewise polynomials (in the variable x2j) with
integer-valued parameters r2 = bα2c and m2. Note that alternatively, one
could also consider spaces of splines with the same parameters (see, e.g., [21,
Chapter VII, VIII]). We have d1 = (r1 + 1)m1 − 1, d2j = (r2 + 1)m2 − 1, if
j = 1, . . . , q− 1, and d2j = (r2 + 1)m2, if j = q− 1. Using Taylor’s theorem,
one can show that there are constants C1 and C2 depending only on α1 and
α2, respectively, such that

inf
g1∈V1

‖h1 − g1‖2∞ ≤ C1K
2
1d
−2α1
1 (4.12)

for all h1 ∈ H(α1,K1) ∩H1 and

inf
g2j∈V2j

‖h2j − g2j‖2∞ ≤ C2K
2
2d
−2α2
2j (4.13)

for all h2j ∈ H(α2,K2) ∩H2j . Note that similar bounds also hold for spline
spaces (see, e.g., [21, Chapter XII]). Concerning Assumption 3, we have a
similar result as in the previous section:

Lemma 5. Let Assumptions 2 and 9, and 10 be satisfied. Let r = r1∨r2.
Then we have

ϕ2 ≤ 2(r + 1)

c(1− ρ0)(1− ε2)

d1 +
∑q−1

j=1 d2j

d
.
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In particular, if the V2j are linearly independent, then we have

ϕ2 ≤ 2(r + 1)

c(1− ρ0)(1− ε2)
.

A proof of Lemma 5 is given in Appendix B. Choosing d1, dimW1, and
d2j , j = 1, . . . , q − 1, similarly as in the previous section, we obtain the
following analogue of Theorem 7:

Theorem 8. Let Assumption 2, 9, and 10 be satisfied. Suppose that the
right hand side of (4.8) is greater than or equal to r+ 1 and that dimW1 ≤
c(1− ρ0)(1− ε2)n/(4(r + 1) log4 n). Then

E
[
‖f1 − f̂∗1 ‖2

]
≤ Cσ

4α1
2α1+1K

2
2α1+1

1 n
− 2α1

2α1+1

+ C ′(1 + ε′2)ϕ4α2q2α2+1(log n)8α2+1((1− ε2)n)−2α2

where C is a constant depending only on α1 and ρ0, and C ′ is a constant
depending only on α2, c, r, ρ0, K2, and ‖f1‖.

4.5. The additive model with smooth design densities. We con-
tinue the example in Section 4.4 and discuss Condition (3.6) and (3.7) in
Theorem 5 and 6, respectively. First, we apply Theorem 5 in the simple
case q = 2. We suppose that Assumption 4 holds and that for each fixed x1,

pX(x1, x2)

pX1(x1)pX2(x2)
∈ H(β, h1(x1)) (4.14)

with h1 ∈ L2(PX1). Let V1 and W1 as in the previous section, and let V2 be
the space of regular piecewise polynomials in the variable x2 with parameters
r2 = bα2c ∨ bβc and d2 as in (4.3). Then (4.13) holds with a constant C2

depending only on α2 and r2. Moreover, (3.6) is satisfied with h1 from (4.14)

and ψ(V2) =
√
C3d

−β
2 , where C3 is a constant depending only on β and r2.

Thus

‖h1‖ψ(V2)φ(V2) ≤
√
C2C3K2‖h1‖

(
n

4ϕ2 log4 n

)−α2−β

From Theorem 5, we obtain:

Corollary 10. Let q = 2. Let Assumption 2, 10, and 4 be satisfied.
Suppose that (4.14) holds, and that

α2 + β > α1/(2α1 + 1). (4.15)

Then

lim sup
n→∞

E
[
n

2α1
2α1+1 ‖f1 − f̂∗1 ‖2

]
≤ Cσ

4α1
2α1+1K

2
2α1+1

1 , (4.16)

where C is a constant depending only on α1.
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Finally, we apply Theorem 4. In the particular case that the X2j , j =
1, . . . , q − 1, are independent, one can show that (see (0.15))

r(x1, x2) =

q−1∑
j=1

pX1,X2j (x1, x2j)

pX1(x1)pX2j (x2j)
− (q − 2),

where pX1,X2j denotes the joint density of (X1, X2j). In this particular case,
condition (3.7) is thus much weaker than condition (3.6): we only need
smoothness conditions on several kernels which involve only one- and two-
dimensional design densities. In the general case, we have a similar result.
Suppose that for each fixed x1

pX1,X2k
(x1, x2k)

pX1(x1)pX2k
(x2k)

∈ H(β, h1k(x1)) (4.17)

with h1k ∈ L2(PX1), for all k = 1, . . . , q − 1. Moreover, suppose that for
each fixed x2j

pX2j ,X2k
(x2j , x2k)

pX2j (x2j)pX2k
(x2k)

∈ H(β, h′jk(x2j)) (4.18)

with h′jk ∈ L2(PX2j ), for all j, k = 1, . . . , q − 1. Then we have:

Corollary 11. Let q > 2. Let Assumption 2, 9, 10, and 4 be satisfied.
Suppose that (4.17) and (4.18) are satisfied. Moreover, suppose that α2 +
β/(2α1 + 1) > α1/(2α1 + 1). Then (4.16) holds, where C is a constant
depending only on α1.

A proof of Corollary 11 is given in Appendix B. Note that in Corollary
11, the smoothness condition is stronger than the smoothness condition
given in (4.15).

5. Proof of Theorem 3 and 4

5.1. The finite sample geometry. In this section, we present an
empirical version of Assumption 2, which holds on the event

Eδ =
{

(1− δ)‖g‖2 ≤ ‖g‖2n ≤ (1 + δ)‖g‖2 for all g ∈ V
}
,

where 0 < δ < 1 is the constant from Theorem 3. Moreover, using con-
centration of measure inequalities for structured random matrices, we lower
bound the probability that the event Eδ occurs.

In order to state our first result, we introduce the empirical inner product
〈·, ·〉n and the corresponding empirical norm ‖ · ‖n which are given by

〈g, h〉n =
1

n

n∑
i=1

g(Xi)h(Xi)

and ‖g‖2n = 〈g, g〉n for g, h ∈ L2(PX).
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Proposition 5. Let Assumptions 1 and 2 hold. If Eδ holds, then we
have

‖g1 + g2‖2n ≥
(1− δ)
(1 + δ)

(1− ρ0)(‖g1‖2n + ‖g2‖2n) and (5.1)

‖g1 + g2‖2n ≥
(1− δ)
(1 + δ)

(1− ρ2
0)‖g1‖2n (5.2)

for all g1 ∈ V1, g2 ∈ V2, and also

|〈g1, g2〉n|
‖g1‖n‖g2‖n

≤ 1− (1− δ)
(1 + δ)

(1− ρ0) (5.3)

for all 0 6= g1 ∈ V1, 0 6= g2 ∈ V2.

Proof. Let g1 ∈ V1 and g2 ∈ V2. By the definition of Eδ and Lemma 2
combined with Assumption 2, we have

‖g1 + g2‖2n ≥ (1− δ)‖g1 + g2‖2 ≥ (1− δ)(1− ρ0)(‖g1‖2 + ‖g2‖2)

≥ (1− δ)
(1 + δ)

(1− ρ0)(‖g1‖2n + ‖g2‖2n)

and similarly

‖g1 + g2‖2n ≥ (1− δ)‖g1 + g2‖2 ≥ (1− δ)(1− ρ2
0)‖g1‖2

≥ (1− δ)
(1 + δ)

(1− ρ2
0)‖g1‖2n.

This gives (5.1) and (5.2). (5.3) follows from (5.1) and Lemma 2. This
completes the proof. �

The following result follows from Rauhut [59, Theorem 7.3] (see also [63,
Theorem 3.1]). It can also be obtained from a combination of Talagrand’s
inequality and Rudelson’s lemma (see [62, Theorem 1]). The details are also
given in Appendix B.

Theorem 9. Let Assumption 3 hold. Then we have

P (Eδ) ≥ 1− 23/4d exp

(
−κnδ

2

ϕ2d

)
,

where κ is a universal constant.

Proof. Let b1, . . . , bd be an orthonormal basis of V . By Assumption 3
and [11, Lemma 1], we have∥∥∥ d∑

j=1

b2j

∥∥∥
∞
≤ ϕ2d. (5.4)

Now let

Bn = (〈bj , bk〉n)1≤j,k≤d.
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Then [59, Theorem 7.3] (in the case s = N = d) yields for 0 < δ < 1,

P(‖Bn − I‖op ≤ δ) ≥ 1− 23/4d exp

(
−κnδ

2

ϕ2d

)
, (5.5)

where κ > 0 is a universal constant. Here, ‖ · ‖op denotes the operator norm
(see Lemma 7 (iii) for the definition). Note that we can apply [59, Theorem
7.3] since in the proof the condition [59, (4.2)] is only used in the form [59,
(7.5)], which is satisfied by (5.4). A similar result follows from [63, Theorem
3.1].

Now, a function g ∈ V with ‖g‖ ≤ 1 can be written uniquely as g =∑d
j=1 xjbj with x ∈ Rd and ‖x‖2 ≤ 1. Using this and ‖g‖2n = xTBnx, we

obtain

sup
g∈V,‖g‖≤1

|‖g‖2n − ‖g‖2| = sup
x∈Rd,‖x‖2≤1

|xT (Bn − I)x| = ‖Bn − I‖op, (5.6)

where the latter equality follows from the spectral theorem. Moreover, we
have that Eδ holds if and only if

sup
g∈V,‖g‖≤1

|‖g‖2n − ‖g‖2| ≤ δ.

Applying this, (5.5), and (5.6), we complete the proof. �

5.2. Analysis of the variance via von Neumann’s theorem. The
basic theorem in the theory of projections on sumspaces is due to von Neu-
mann [78]. We state the following version dealing only with the first compo-
nent, which is a consequence of [3, (15) on page 378] (see also [8, Theorem
2.C in Appendix A.4]).

Lemma 6. Let H1 and H2 be two closed subspaces of a Hilbert space H
with inner product 〈·, ·〉 and norm ‖ · ‖. Suppose that ρ0(H1,H2) < 1. Let
Π, Π1, Π2 be the orthogonal projections on H1 +H2, H1, H2, respectively.
Let h ∈ H, and let (Πh)1 ∈ H1, (Πh)2 ∈ H2 be the unique elements such
that Πh = (Πh)1 + (Πh)2. Then∥∥(Πh)1 −

(
Π1 −

k∑
j=1

(Π1Π2)j(1−Π1)
)
h
∥∥→ 0

as k goes to infinity.

Remark 7. If we set h
(1)
1 = Π1h and proceed iteratively by setting

h
(m)
2 = Π2(h − h(m)

1 ) and h
(m+1)
1 = Π1(h − h(m)

2 ), m ≥ 1, then Lemma 6

can be rewritten as ‖(Πh)1 − h
(m)
1 ‖ → 0. This procedure is often called

“backfitting”.

For completeness, a proof of Lemma 6 is given in Appendix B. In this
section, we apply Lemma 6 to the finite sample setting, using results from
the previous section. Recall that Π̂V is the orthogonal projection from Rn
to the subspace {(g(X1), . . . , g(Xn))T |g ∈ V }, and that Π̂V1 , Π̂V2 , and Π̂W1
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are defined analogously (replace V by V1, V2, and W1, respectively). We
first prove:

Proposition 6. Let Assumption 1 and 2 be satisfied. Let

ρ0,δ = 1− (1− δ)
(1 + δ)

(1− ρ0).

If Eδ holds, then we have

E
[
‖Π̂W1(Π̂V ε)1‖2n|X1, . . . , Xn

]
≤ σ2 dimW1

n
+

1

1− ρ2
0,δ

σ2 tr(Π̂W1Π̂V2)

n
.

In the proof, we will need the following result:

Lemma 7. Let A ∈ Rk1×k2 and B ∈ Rk2×k1. Then

(i) tr(AB) = tr(BA).

(ii) | tr(AB)| ≤
√

tr(AAT ) tr(BBT ).
(iii) Let k1 = k2 and B be symmetric and positive semi-definite. Then

| tr(AB)| ≤ ‖A‖op tr(B),

where ‖A‖op = sup‖x‖2=1 ‖Ax‖2 denotes the operator norm. Here,

‖ · ‖2 denotes the Euclidean norm.

For completeness, a proof of Lemma 7 is given in Appendix B.

Proof of Proposition 6. Throughout the proof, we suppose that Eδ
holds. Furthermore, we consider V as a subset of Rn. This is no re-
striction, since (on Eδ) each element g ∈ V is uniquely determined by
(g(X1), . . . , g(Xn))T . From (5.3) and Lemma 6 applied to (H, 〈·, ·〉) =
(V, 〈·, ·〉n) and Hj = Vj , j = 1, 2, we have

∥∥(Π̂V ε)1 −
(
Π̂V1 −

k∑
j=1

(Π̂V1Π̂V2)j(1− Π̂V1)
)
ε
∥∥
n
→ 0

as k goes to infinity. From (5.3), we have

‖Π̂V1g2‖n ≤ ρ0,δ‖g2‖n (5.7)

for all g2 ∈ V2, which follows from

‖Π̂V1g2‖2n = 〈Π̂V1g2, Π̂V1g2〉n = 〈Π̂V1g2, g2〉n ≤ ρ0,δ‖Π̂V1g2‖n‖g2‖n.

Similarly, we have

‖Π̂V2g1‖n ≤ ρ0,δ‖g1‖n (5.8)
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for all g1 ∈ V1. This gives the improved convergence result∥∥(Π̂V ε)1 −
(
Π̂V1 −

k∑
j=1

(Π̂V1Π̂V2)j(1− Π̂V1)
)
ε
∥∥
n

≤
∞∑

j=k+1

‖(Π̂V1Π̂V2)j(1− Π̂V1)ε‖n

≤
∞∑

j=k+1

ρ2j−1
0,δ ‖ε‖n

=
ρ2k+1

0,δ

1− ρ2
0,δ

‖ε‖n,

and also ∥∥Π̂W1(Π̂V ε)1 − Π̂W1

(
Π̂V1 −

k∑
j=1

(Π̂V1Π̂V2)j(1− Π̂V1)
)
ε
∥∥
n

≤
ρ2k+1

0,δ

1− ρ2
0,δ

‖ε‖n. (5.9)

Applying (5.9) and the bound (x+ y)2 ≤ (1 + ε)x2 + (1 + 1/ε)y2, ε > 0, and
then taking expectation, we obtain

E
[
‖Π̂W1(Π̂V ε)1‖2n | X1, . . . , Xn

]
≤ (1 + ε)E

∥∥Π̂W1

(
Π̂V1 −

k∑
j=1

(Π̂V1Π̂V2)j(1− Π̂V1)
)
ε
∥∥2

n

∣∣ X1, . . . , Xn


+ (1 + 1/ε)

ρ4k+2
0,δ

(1− ρ2
0,δ)

2
σ2. (5.10)

Since E
[
‖Aε‖2n

]
= σ2 tr(AAT )/n for all A ∈ Rn×n, it remains to bound the

trace of

Π̂W1

(
Π̂V1 −

k∑
j=1

(Π̂V1Π̂V2)j(1− Π̂V1)
)(

Π̂V1 −
k∑
j=1

(Π̂V1Π̂V2)j(1− Π̂V1)
)T

Π̂W1 .

(5.11)
Using

Π̂V1 −
k∑
j=1

(Π̂V1Π̂V2)j(1− Π̂V1)

=

k−1∑
j=0

Π̂V1(Π̂V2Π̂V1)j(1− Π̂V2) + (Π̂V1Π̂V2)kΠ̂V1 ,
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(5.11) is equal to

Π̂W1

k∑
j=0

(Π̂V1Π̂V2)jΠ̂V1

(
Π̂V1 − (1− Π̂V1)

k∑
j=1

(Π̂V2Π̂V1)j
)

Π̂W1

−Π̂W1

k∑
j=1

(Π̂V1Π̂V2)j
(

(1− Π̂V2)
k−1∑
j=0

(Π̂V1Π̂V2)jΠ̂V1 + (Π̂V1Π̂V2)kΠ̂V1

)
Π̂W1

and, since Π̂V1(1− Π̂V1) = 0 and Π̂V2(1− Π̂V2) = 0, this is equal to

Π̂W1

k∑
j=0

(Π̂V1Π̂V2)jΠ̂W1 − Π̂W1

k∑
j=1

(Π̂V1Π̂V2)j+kΠ̂W1 .

By Lemma 7 (i) and the identities Π̂W1Π̂V1 = Π̂W1 and Π̂V2Π̂V2 = Π̂V2 , we
have for j = 1, . . . , 2k,

tr(Π̂W1(Π̂V1Π̂V2)jΠ̂W1) = tr((Π̂V2Π̂V1)j−1Π̂V2Π̂W1Π̂V2)

= tr((Π̂V2Π̂V1Π̂V2)j−1Π̂V2Π̂W1Π̂V2).

Thus the trace of (5.11) is bounded by

dimW1 +
2k∑
j=1

| tr((Π̂V2Π̂V1Π̂V2)j−1Π̂V2Π̂W1Π̂V2)|. (5.12)

Applying Lemma 7 (iii), this can be bounded by

dimW1 +
2k−1∑
j=0

‖Π̂V2Π̂V1Π̂V2‖jop tr(Π̂V2Π̂W1Π̂V2).

By (5.7) and (5.8), we have

‖Π̂V2Π̂V1Π̂V2‖op ≤ ρ2
0,δ. (5.13)

Moreover, we have tr(Π̂V2Π̂W1Π̂V2) = tr(Π̂W1Π̂V2). Thus we obtain that
(5.12) is bounded by

dimW1 +
1

1− ρ2
0,δ

tr(Π̂W1Π̂V2). (5.14)

From (5.10)-(5.14), we conclude that

E
[
‖Π̂W1(Π̂V ε)1‖2n|X1, . . . , Xn

]
≤ (1 + ε)

(
σ2 dimW1

n
+

1

1− ρ2
0,δ

σ2 tr(Π̂W1Π̂V2)

n

)

+ (1 + 1/ε)
ρ4k+2

0,δ

(1− ρ2
0,δ)

2
σ2.
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Now, send k off to infinity first, and then let ε go to zero. This completes
the proof. �

From Proposition 6, we obtain a first upper bound for the variance term,
which does not depend on the dimension of V2. Note that in Proposition 7
and Corollary 13, we show that this upper bound can be further refined.

Corollary 12. Let Assumption 1 and 2 be satisfied. If Eδ holds, then
we have

E
[
‖Π̂W1(Π̂V ε)1‖2n|X1, . . . , Xn

]
≤ 1 + δ

1− δ
1

1− ρ2
0

σ2 dimW1

n
.

Proof. By Lemma 7 (i) and (ii), we have

tr(Π̂W1Π̂V2) = tr(Π̂W1Π̂V2Π̂W1Π̂W1).

Applying Lemma 7 (iii) and (5.13), we obtain on Eδ,

tr(Π̂W1Π̂V2) ≤ ‖Π̂W1Π̂V2Π̂W1‖op tr(Π̂W1) ≤ ρ2
0,δ dimW1.

Thus, if Eδ holds, Proposition 6 yields

E
[
‖Π̂W1(Π̂V ε)1‖2n|X1, . . . , Xn

]
≤ 1

1− ρ2
0,δ

σ2 dimW1

n
.

Since (1− c(1− %))2 ≤ 1− c(1− %2) for % ∈ [0, 1] and a constant 0 ≤ c ≤ 1
(both functions are equal to 1 at the right endpoint % = 1 and the derivative
of the left hand side is greater or equal than the derivative of the right hand
side for all % ∈ [0, 1]), we obtain (set c = (1− δ)/(1 + δ) and % = ρ0)

1

1− ρ2
0,δ

≤ 1 + δ

1− δ
1

1− ρ2
0

. (5.15)

This completes the proof. �

Remark 8. An alternative proof of Corollary 12 is given in Appendix
B.

Proposition 7. Let Assumption 1, 2, and 3 be satisfied. Then

1

n
E
[
1Eδ tr(Π̂W1Π̂V2)

]
≤ 1

(1− δ)2

(
‖ΠV2 |W1‖

2
HS

n
+

dimW1

n

ϕ2d

n

)
.

Proof. Let {φ1j}1≤j≤dimW1
be an orthonormal basis of W1, and let

{φ2j}1≤j≤d2
be an orthonormal basis of V2. Let

Z1 = (φ1j(X
i
1))1≤i≤n,1≤j≤dimW1

and

Z2 = (φ2j(X
i
2))1≤i≤n,1≤j≤d2 ,
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Now, suppose that Eδ holds. Then we have Π̂W1 = Z1(ZT1 Z1)−1ZT1 and

Π̂V2 = Z2(ZT2 Z2)−1ZT2 . Thus

tr(Π̂W1Π̂V2) = tr

((
1

n
ZT1 Z1

)−1 1

n
ZT1 Z2

(
1

n
ZT2 Z2

)−1 1

n
ZT2 Z1

)
,

where we applied Lemma 7 (i). By Theorem 9, we have ‖(1/n)ZTj Zj−I‖op ≤
δ and thus (

1

n
ZTj Zj

)−1

=
∑
k≥0

(
I − 1

n
ZTj Zj

)k
for j = 1, 2. We conclude that

E
[
1Eδ tr(Π̂W1Π̂V2)

]
≤

∞∑
k,l=0

E

[
1Eδ

∣∣∣∣∣tr
((

I − 1

n
ZT1 Z1

)k 1

n
ZT1 Z2

(
I − 1

n
ZT2 Z2

)l 1

n
ZT2 Z1

)∣∣∣∣∣
]

≤
∞∑

k,l=0

E

1Eδ

√√√√tr

((
I − 1

n
ZT1 Z1

)2k 1

n
ZT1 Z2

(
1

n
ZT1 Z2

)T)

·

√√√√tr

((
I − 1

n
ZT2 Z2

)2k 1

n
ZT2 Z1

(
1

n
ZT2 Z1

)T)
≤

∞∑
k,l=0

δk+lE

[
tr

(
1

n
ZT1 Z2

(
1

n
ZT1 Z2

)T)]
,

where we applied Lemma 7 (i) and (ii) in the second inequality and Lemma
7 (i) and (iii) and the bound ‖(1/n)ZTj Zj − I‖op ≤ δ in the third inequality.
Now

E

[
tr

(
1

n
ZT1 Z2

(
1

n
ZT1 Z2

)T)]

=

dimW1∑
j=1

d2∑
k=1

(
(E [φ1j(X1)φ2k(X2)])2 +

1

n
Var(φ1j(X1)φ2k(X2))

)

≤
dimW1∑
j=1

d2∑
k=1

〈φ1j , φ2k〉2 + dimW1
ϕ2d

n
,

where we applied (5.4). Finally, we use

‖ΠV2 |W1‖
2
HS =

dimW1∑
j=1

‖ΠV2φ1j‖2 =

dimW1∑
j=1

d2∑
k=1

〈φ1j , φ2k〉2

This completes the proof. �
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Remark 9. By considering ΠW1ΠV2ΠW1 as a map from W1 ⊆ L2(PX1)

to itself, we have ‖ΠV2 |W1‖
2
HS = tr(ΠW1ΠV2ΠW1).

Combining Proposition 6 and 7, we obtain the following improvement of
Corollary 12:

Corollary 13. Let Assumption 1, 2, and 3 be satisfied. Then

E
[
1Eδ‖Π̂W1(Π̂V ε)1‖2n

]
≤ σ2 dimW1

n
+

(1 + δ)

(1− δ)3

1

1− ρ2
0

(
σ2 ‖ΠV2 |W1‖

2
HS

n
+
σ2 dimW1

n

ϕ2d

n

)
.

5.3. End of the proof of Theorem 3. Applying the arguments of
[5], we obtain

E
[
‖f1 − f̂∗1 ‖2

]
≤ E

[
1Eδ‖f1 − (f̂V )1‖2

]
+Rn. (5.16)

The details can be found in Appendix B. By the projection theorem (see,
e.g., [60, Theorem II.3]), we have

‖f1 − (f̂V )1‖2 = ‖f1 −ΠV1f1‖2 + ‖ΠV1f1 − (f̂V )1‖2. (5.17)

By the definition of Eδ and the definition of f̂V , we have

E
[
1Eδ‖ΠV1f1 − (f̂V )1‖2

]
≤ 1

(1− δ)
E
[
1Eδ‖ΠV1f1 − (f̂V )1‖2n

]
=

1

(1− δ)
E
[
1Eδ‖ΠV1f1 − (Π̂V Y)1‖2n

]
=

1

(1− δ)
E
[
1EδE

[
‖ΠV1f1 − (Π̂V Y)1‖2n|X1, . . . , Xn

]]
. (5.18)

Recall from Section 2.3 that on Eδ each g ∈ V is determined uniquely by
(g(X1), . . . , g(Xn))T , which implies that on Eδ we don’t have to distinguish

between those objects. For instance, if Eδ holds, then Π̂V and Π̂V1 can also be

seen as maps from L2(PX) to V and V1, respectively (by letting Π̂V h (resp.

Π̂V1h) equal to Π̂V (h(X1), . . . , h(Xn))T (resp. Π̂V1(h(X1), . . . , h(Xn))T ) for

h ∈ L2(PX)). Moreover, if Eδ holds, then we have E[(Π̂V ε)1|X1, . . . , Xn] = 0

and (Π̂V Y)1 = (Π̂V f)1+(Π̂V ε)1 (the former follows for instance from (5.9)).
Thus (5.18) is equal to

1

(1− δ)
E
[
1Eδ

(
‖ΠV1f1 − (Π̂V f)1‖2n + E

[
‖(Π̂V ε)1‖2n|X1, . . . , Xn

])]
.

(5.19)
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From (5.17)-(5.19) and the definition of Eδ, we obtain

E
[
1Eδ‖f1 − (f̂V )1‖2

]
≤ (1 + δ)

(1− δ)
E
[
1Eδ

(
‖f1 −ΠV1f1‖2 + ‖ΠV1f1 − (Π̂V f)1‖2

)]
+

1

(1− δ)
E
[
1EδE

[
‖(Π̂V ε)1‖2n|X1, . . . , Xn

]]
. (5.20)

Applying the projection theorem and Corollary 12, this is bounded by

(1 + δ)

(1− δ)
E
[
1Eδ‖f1 − (Π̂V f)1‖2

]
+

(1 + δ)

(1− δ)2

1

1− ρ2
0

σ2 dimV1

n
.

By Assumption 2 and Lemma 2, we have

‖f1 − (Π̂V f)1‖2 ≤
1

1− ρ2
0

‖f − Π̂V f‖2.

The projection theorem implies that

‖f − Π̂V f‖2 = ‖f −ΠV f‖2 + ‖ΠV f − Π̂V f‖2.

Now, the following proposition completes the proof.

Lemma 8. Let Assumption 3 be satisfied. Then

E
[
1Eδ‖(ΠV − Π̂V )f‖2

]
≤ 1

(1− δ)2

ϕ2d

n
‖f −ΠV f‖2.

Remark 10. Instead of applying Lemma 8, one can also apply the easier
and weaker bound

‖ΠV f − Π̂V f‖2 ≤
1

1− δ
‖ΠV f − Π̂V f‖2n ≤

1

1− δ
‖f −ΠV f‖2n,

which follows from the definition of Eδ and the projection theorem.

Proof of Lemma 8. Throughout the proof we suppose that the event
Eδ holds. Let b1, . . . , bd be an orthonormal basis of V . Let

Bn = (〈bj , bk〉n)1≤j,k≤d,

and let

x = (〈b1, f〉, . . . , 〈bd, f〉)T and xn = (〈b1, f〉n, . . . , 〈bd, f〉n)T .

Then we have

ΠV f =

d∑
j=1

xjbj and Π̂V f =

d∑
j=1

(B−1
n xn)jbj

and thus

‖(ΠV − Π̂V )f‖2 = ‖B−1
n xn − x‖22. (5.21)
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Since Eδ holds, we have ‖Bn − I‖op ≤ δ (see the proof of Theorem 9). This
implies that

B−1
n =

∑
k≥0

(I −Bn)k.

Thus

B−1
n xn − x =

∑
k≥0

(I −Bn)kxn − x

=
∑
k≥0

(I −Bn)k(xn − x) +
∑
k≥1

(I −Bn)kx.

Applying the bounds ‖Bn− I‖op ≤ δ and (x+ y)2 ≤ (1 + ε)x2 + (1 + 1/ε)y2,
ε > 0 arbitrary, we obtain

‖B−1
n xn − x‖22 ≤

1

(1− δ)2
(‖xn − x‖2 + ‖(Bn − I)x‖2)2

≤ 1

(1− δ)2
((1 + ε)‖xn − x‖22 + (1 + 1/ε)‖(Bn − I)x‖22).

(5.22)

Now we have

E
[
‖xn − x‖22

]
= E

[ d∑
j=1

(〈bj , f〉n − 〈bj , f〉)2
]

=
1

n

d∑
j=1

Var(bj(X)f(X)) ≤ ϕ2d

n
‖f‖2, (5.23)

where we applied (5.4). The jth coordinate of (Bn − I)x is is equal to

〈bj ,
d∑

k=1

bkxk〉n − 〈bj , f〉 = 〈bj ,ΠV f〉n − 〈bj ,ΠV f〉 (5.24)

and thus

E
[
‖(Bn − I)x‖22

]
= E

[ d∑
j=1

(〈bj ,ΠV f〉n − 〈bj ,ΠV f〉)2
]

=
1

n

d1∑
j=1

Var(bj(X)ΠV f(X)) ≤ ϕ2d

n
‖ΠV f‖2. (5.25)

Applying (5.21)-(5.25), we conclude that

E
[
1Eδ‖(ΠV − Π̂V )f‖2

]
≤ 1

(1− δ)2

ϕ2d

n
((1 + ε)‖f‖2 + (1 + 1/ε)‖ΠV f‖2).

(5.26)
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Finally, since ΠV and Π̂V fix elements in V , we obtain (ΠV − Π̂V )ΠV f = 0

and thus (ΠV − Π̂V )f = (ΠV − Π̂V )(1−ΠV )f . Combining this with (5.26),
we see that

E
[
1Eδ‖(ΠV − Π̂V )f‖2

]
≤ 1

(1− δ)2

ϕ2d

n
(1 + ε)‖f −ΠV f‖2.

Since ε > 0 is arbitrary, this completes the proof. �

5.4. End of the proof of Theorem 4. Compared with the previous
section, we modify our analysis of the bias term, which is based the following
two lemmas. Moreover, we replace Corollary 13 by Corollary 12.

Lemma 9. Let Assumption 1 and 2 be satisfied. If Eδ holds, then we
have

‖Π̂V1h1 − (Π̂V h1)1‖2n ≤
(1 + δ)

(1− δ)
1

(1− ρ2
0)
‖h1 − Π̂V1h1‖2n

for all h1 ∈ H1 and

‖(Π̂V h2)1‖2n ≤
(1 + δ)

(1− δ)
1

(1− ρ2
0)
‖h2 − Π̂V2h2‖2n

for all h2 ∈ H2.

Proof of Lemma 9. By (5.2) and the fact that projections lower the
norm, we have

‖Π̂V1h1 − (Π̂V h1)1‖2n = ‖(Π̂V (h1 − Π̂V1h1))1‖2n

≤ (1 + δ)

(1− δ)
1

(1− ρ2
0)
‖h1 − Π̂V1h1‖2n.

This gives the first inequality. Since Π̂V Π̂V2h2 = Π̂V2h2 and (Π̂V2h2)1 = 0,

we have (Π̂V h2)1 = (Π̂V (h2 − Π̂V2h2))1. Using the previous arguments, we
conclude that

‖(Π̂V h2)1‖2n = ‖(Π̂V (h2 − Π̂V2h2))1‖2n ≤
(1 + δ)

(1− δ)
1

(1− ρ2
0)
‖h2 − Π̂V2h2‖2n.

This completes the proof. �

Lemma 10. Let Assumption 1 and 2 be satisfied. Then we have

E
[
1Eδ‖f1 − (Π̂V f)1‖2n

]
≤ (1 + δ)

(1− δ)
3

(1− ρ2
0)

(
‖f1 −ΠV1f1‖2 + ‖f2 −ΠV2f2‖2

)
.

Proof of Lemma 10. By the projection theorem, we have

‖f1 − (Π̂V f)1‖2n = ‖f1 − Π̂V1f1‖2n + ‖Π̂V1f1 − (Π̂V f1)1 − (Π̂V f2)1‖2n.
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Applying this, the bound ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2, and Lemma 10, we
obtain

E
[
1Eδ‖f1 − (Π̂V f)1‖2n

]
≤ (1 + δ)

(1− δ)
3

(1− ρ2
0)

(
E
[
‖f1 − Π̂V1f1‖2n + ‖f2 − Π̂V2f2‖2n

])
.

By the projection theorem, we have for j = 1, 2,

‖fj − Π̂Vjfj‖2n ≤ ‖fj −ΠVjfj‖2n.
Moreover, taking expectation, we get for j = 1, 2,

E
[
‖fj −ΠVjfj‖2n

]
= ‖fj −ΠVjfj‖2.

This completes the proof. �

Now, we begin with the proof of Theorem 4. Repeating the steps (5.16)-
(5.19) in the proof of Theorem 3, we have

E
[
‖f1 − f̂∗1 ‖2

]
≤ ‖f1 −ΠW1f1‖2 +

1

(1− δ)
E
[
1Eδ‖ΠW1f1 − Π̂W1(Π̂V f)1‖2n

]
+

1

(1− δ)
E
[
1EδE

[
‖Π̂W1(Π̂V ε)1‖2n|X1, . . . , Xn

]]
+Rn.

Applying the bound ‖x+ y‖2 ≤ 2‖x‖2 + 2‖y‖2 and the fact that projections
lower the norm, we obtain

‖ΠW1f1 − Π̂W1(Π̂V f)1‖2n
≤ 2‖ΠW1f1 − Π̂W1f1‖2n + 2‖Π̂W1f1 − Π̂W1(Π̂V f)1‖2n
≤ 2‖ΠW1f1 − Π̂W1f1‖2n + 2‖f1 − (Π̂V f)1‖2n.

Thus

E
[
‖f1 − f̂∗1 ‖2

]
≤ ‖f1 −ΠW1f1‖2 +

2

(1− δ)
E
[
1Eδ‖ΠW1f1 − Π̂W1f1‖2n

]
+

1

(1− δ)
E
[
1EδE

[
‖Π̂W1(Π̂V ε)1‖2n|X1, . . . , Xn

]]
+

2

(1− δ)
E
[
1Eδ‖f1 − (Π̂V f)1‖2n

]
+Rn. (5.27)

Similarly as in Lemma 8, we have

E
[
1Eδ‖ΠW1f1 − Π̂W1f1‖2

]
≤ 1

(1− δ)2

ϕ2d

n
‖f1 −ΠW1f1‖2. (5.28)

Inserting (5.28), Lemma 10, and Corollary 13 into (5.27), we complete the
proof. �
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6. Proof of Theorem 5 and 6

6.1. The bias term revisited. In this subsection, we prove two results
which lead to improvements of the bias term considered in Lemma 10. This
improvement is possible under the additional regularity conditions on the
design densities, namely (3.6) or (3.7). We first prove:

Proposition 8. Let Assumption 1, 2, and 4 be satisfied. Let r, φ(V2),
ψΠ(V2), and h1 be as in Theorem 6. Then

‖(ΠV f2)1‖ ≤
1

1− ρ2
0

‖h1‖ψΠ(V2)φ(V2). (6.1)

Proof. Let φ1, . . . , φd1 be an orthonormal basis of V1. We have

‖ΠV1(f2 −ΠV2f2)‖2

=

d1∑
j=1

(∫
S1×S2

φj(x1)(f2(x2)−ΠV2f2(x2))p(x1, x2)d(ν1 ⊗ ν2)(x1, x2)
)2

=

d1∑
j=1

(∫
S1

φj(x1)

∫
S2

((1−ΠV2)f2(x2))
p(x1, x2)

p1(x1)p2(x2)
dPX2(x2)dPX1(x1)

)2

=

d1∑
j=1

(∫
S1

〈
(1−ΠV2)f2,

p(x1, ·)
p1(x1)p2(·)

〉
L2(PX2 )

φj(x1)dPX1(x1)
)2
,

where we already applied Fubini’s theorem and Assumption 5 in the second
equality. Since orthogonal projections are idempotent and self-adjoint, the
above is equal to

=

d1∑
j=1

(∫
S1

〈(1−ΠV2)f2, (1−ΠV2)(r(x1, ·))〉L2(PX2 )φj(x1)dPX1(x1)
)2

≤
∫
S1

〈(1−ΠV2)f2, (1−ΠV2)(r(x1, ·))〉2L2(PX2 )dP
X1(x1)

≤ ‖h1‖2(ψΠ(V2)φ(V2))2,

where we applied Bessel’s inequality in the first inequality and the Cauchy-
Schwarz inequality and (3.7) in the second inequality. Thus we have shown
that

‖ΠV1(f2 −ΠV2f2)‖ ≤ ‖h1‖ψΠ(V2)φ(V2). (6.2)

Now, by Lemma 6, we have∥∥(ΠV h)1 −
(
ΠV1 −

k∑
j=1

(ΠV1ΠV2)j(1−ΠV1)
)
h
∥∥→ 0, (6.3)

as k →∞, for all h ∈ L2(PX). By Assumption 2, we have

‖ΠV1ΠV2h‖ ≤ ρ0‖ΠV2h‖ and ‖ΠV2ΠV1h‖ ≤ ρ0‖ΠV1h‖
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for all h ∈ L2(PX), which follows as in the proof of (5.7). Applying this and
(6.2), we obtain

∥∥(ΠV1 −
k∑
j=1

(ΠV1ΠV2)j(1−ΠV1)
)
(f2 −ΠV2f2)

∥∥
=
∥∥ k∑
j=0

(ΠV1ΠV2)jΠV1(f2 −ΠV2f2)
∥∥

≤
k∑
j=0

ρ2j
0 ‖ΠV1(f2 −ΠV2f2)‖ ≤ 1

1− ρ2
0

‖h1‖ψΠ(V2)φ(V2). (6.4)

Since ΠV ΠV2f2 = ΠV2f2 and (ΠV2f2)1 = 0, we have (ΠV f2)1 = (ΠV (f2 −
ΠV2f2))1. Applying this, (6.3), and (6.4), we conclude that

‖(ΠV f2)1‖ ≤
1

1− ρ2
0

‖h1‖ψΠ(V2)φ(V2).

This completes the proof. �

Proposition 9. Let Assumption 1, 2, 3, and 4 be satisfied. Let φ(V2),
ψ(V2), and h1 be as in Theorem 5. Suppose that ‖g1‖∞ ≤ ϕ

√
d1‖g1‖ for all

g1 ∈ V1. Then

E
[
1Eδ‖(Π̂V f2)1‖2n

]
≤ (1 + δ)2

(1− δ)3

2

(1− ρ2
0)2

(
‖h1‖2(ψ(V2)φ(V2))2

+
1

n
‖h1‖2‖(1−ΠV2)f2‖2∞ψ2(V2) + φ2(V2)

ϕ2d1

n

)
. (6.5)

Proof. The proof is similar to the proof of Proposition 8. In the follow-
ing, suppose that the event Eδ holds. Then Π̂V is a well-defined map from
L2(PX) to V . Let φ1, . . . , φd1 be an orthonormal basis of V1. By repeating
the arguments at the beginning of the proof of Lemma 8, we obtain

‖Π̂V1(f2 − Π̂V2f2)‖2n ≤
1

1− δ

d1∑
j=1

〈φj , (1− Π̂V2)f2〉2n.

Thus

E
[
1Eδ‖Π̂V1(f2 − Π̂V2f2)‖2n

]
≤ 2

(1− δ)
E

 d1∑
j=1

〈φj,Π2 , (1− Π̂V2)f2〉2n

 (6.6)

+
2

(1− δ)
E

 d1∑
j=1

〈φj − φj,Π2 , (1− Π̂V2)f2〉2n

 , (6.7)
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where

φj,Π2(x2) =

∫
φj(x1)

p(x1, x2)

p1(x1)p2(x2)
p1(x1)dν1(x1)

is the conditional expectation of φj(X1) given X2 = x2 (for PX2-almost all
x2, by Assumption 4). The expectation in (6.6) is equal to

E

 d1∑
j=1

(∫ 〈
p(x1, ·)

p1(x1)p2(·)
, (1− Π̂V2)f2

〉
n

φj(x1)p1(x1)dν1(x1)

)2


≤
∫

E

[〈
p(x1, ·)

p1(x1)p2(·)
, (1− Π̂V2)f2

〉2

n

]
p1(x1)dν1(x1),

where we applied Bessel’s inequality and Fubini’s theorem in the last in-
equality. Applying the fact that orthogonal projections are idempotent and
self-adjoint and then the Cauchy-Schwarz inequality, this is

≤
∫

E

[∥∥∥∥(1− Π̂V2)
p(x1, ·)

p1(x1)p2(·)

∥∥∥∥2

n

∥∥∥(1− Π̂V2)f2

∥∥∥2

n

]
p1(x1)dν1(x1).

Applying the projection theorem and then (3.6), this is

≤
∫

E

[∥∥∥∥(1−ΠV2)
p(x1, ·)

p1(x1)p2(·)

∥∥∥∥2

n

‖(1−ΠV2)f2‖2n

]
p1(x1)dν1(x1)

≤ n− 1

n
‖h1‖2(ψ(V2)φ(V2))2 +

1

n
‖h1‖2‖(1−ΠV2)f2‖2∞(ψ(V2))2.

Now we turn to the expectation in (6.7). We have

E

 d1∑
j=1

〈φj − φj,Π2 , (1− Π̂V2)f2〉2n

 ≤ ϕ2d1

n
E
[
‖(1− Π̂V2)f2‖2n

]
≤ ϕ2d1

n
‖(1−ΠV2)f2‖2.

To prove the first inequality, first note that the ((1 − Π̂V2)f2)(Xi
2) depend

only on X1
2 , . . . , X

n
2 and we have

E
[
(φj − φj,Π2)(Xi)|X1

2 , . . . , X
n
2 , X

i′
1

]
= E

[
(φj − φj,Π2)(Xi)|Xi

2

]
= 0

for i 6= i′. This implies that the nondiagonal terms vanish. Next, apply the
inequalities E[(φj − φj,Π2)2(X)|X2] ≤ E[φ2

j (X1)|X2] and

∥∥∥ d1∑
j=1

φ2
j

∥∥∥
∞
≤ ϕ2d1,
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which follows from the bound ‖g1‖∞ ≤ ϕ
√
d1‖g1‖, for all g1 ∈ V1, and [11,

Lemma 1]. Thus we have shown that

E
[
1Eδ‖Π̂V1(f2 − Π̂V2f2)‖2n

]
≤ 2

(1− δ)
(
‖h1‖2(ψ(V2)φ(V2))2

+
1

n
‖h1‖2‖(1−ΠV2)f2‖2∞(ψ(V2))2 + φ2(V2)

ϕ2d1

n

)
. (6.8)

The remaining arguments are as in the proof of Proposition 8. From (5.3)
and Lemma 6 we have∥∥(Π̂V h)1 −

(
Π̂V1 −

k∑
j=1

(Π̂V1Π̂V2)j(1− Π̂V1)
)
h
∥∥
n
→ 0 (6.9)

as k → ∞, for all h ∈ L2(PX). Applying (5.7) and (5.8) as in (6.4), we
obtain ∥∥(Π̂V1 −

k∑
j=1

(Π̂V1Π̂V2)j(1− Π̂V1)
)
(f2 − Π̂V2f2)

∥∥
n

≤ 1

1− ρ2
0,δ

‖Π̂V1(f2 − Π̂V2f2)‖n. (6.10)

From (6.9) and (6.10), we conclude that

‖(Π̂V f2)1‖2n = ‖(Π̂V (f2 − Π̂V2f2))1‖2n ≤
1

(1− ρ2
0,δ)

2
‖Π̂V1(f2 − Π̂V2f2)‖2n.

Combining this with (6.8) and (5.15) gives (6.5). This completes the proof.
�

6.2. End of proof of Theorem 5 and 6. The only place where we
modify the proof of Theorem 4 is the analysis of the term

2

(1− δ)
E
[
1Eδ‖f1 − (Π̂V f)1‖2n

]
, (6.11)

which we bounded by

1 + δ

(1− δ)2

6

1− ρ2
0

(
‖f1 −ΠV1f1‖2 + ‖f2 −ΠV2f2‖2

)
, (6.12)

by using Lemma 10. We show that, under the additional Assumptions (3.6)
or (3.7), one can replace the upper bound (6.12) by the ones given in Theo-
rem 5 and 6, respectively. To achieve this, we replace Lemma 10 by Propo-
sition 8 and 9.

In order to proof Theorem 5 we decompose

f1 − (Π̂V f)1 = f1 − (ΠV f1)1 + (ΠV f1)1 − (Π̂V f1)1 − (Π̂V f2)1.
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Thus

E
[
1Eδ‖(f1 − (Π̂V f1)1‖2

]
≤ 3E

[
‖f1 − (ΠV f1)1‖2n

]
+ 3E

[
1Eδ‖(ΠV f1)1 − (Π̂V f1)1‖2n

]
+ 3E

[
1Eδ‖(Π̂V f2)1‖2n

]
.

The third term on the right-hand side is part of Proposition 9. Using Lemma
2 and the projection theorem, the first term can be bounded by

E
[
‖f1 − (ΠV f1)1‖2n

]
= ‖f1 − (ΠV f1)1‖2

≤ 1

(1− ρ2
0)
‖f1 −ΠV f1‖2

≤ 1

(1− ρ2
0)
‖f1 −ΠV1f1‖2. (6.13)

Applying Proposition 5 and the projection theorem, the second term can be
bounded by

E
[
1Eδ‖(ΠV f1)1 − (Π̂V f1)1‖2n

]
≤ (1 + δ)

(1− δ)
1

(1− ρ2
0)
E
[
‖ΠV f1 − Π̂V f1‖2n

]
≤ (1 + δ)

(1− δ)
1

(1− ρ2
0)
E
[
‖f1 −ΠV f1‖2n

]
≤ (1 + δ)

(1− δ)
1

(1− ρ2
0)
‖f1 −ΠV1f1‖2.

This completes the proof of Theorem 5. In order to proof Theorem 6 we
decompose

f1 − (Π̂V f)1 = f1 − (ΠV f1)1 − (ΠV f2)1 + (ΠV f)1 − (Π̂V f)1.

Thus

E
[
1Eδ‖(f1 − (Π̂V f1)1‖2

]
≤ 3E

[
‖f1 − (ΠV f1)1‖2n

]
+ 3E

[
‖(ΠV f2)1‖2n

]
+ 3E

[
1Eδ‖(ΠV f)1 − (Π̂V f)1‖2n

]
.

The first term on the right-hand side is bounded in (6.13), the second one
in Proposition 8. Using the definition of Eδ and Lemma 2, we obtain

E
[
1Eδ‖(ΠV f)1 − (Π̂V f)1‖2n

]
≤ (1 + δ)E

[
1Eδ‖(ΠV f)1 − (Π̂V f)1‖2

]
≤ (1 + δ)

1

(1− ρ2
0)
E
[
1Eδ‖ΠV f − Π̂V f‖2

]
.
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By Proposition 8, this can be bounded by

(1 + δ)

(1− δ)2

2

(1− ρ2
0)

ϕ2d

n

(
‖f1 −ΠV1f1‖2 + ‖f2 −ΠV2f2‖2

)
.

This completes the proof. �



CHAPTER 3

Variable selection in high-dimensional additive
models

1. Introduction

In this chapter, we consider the two related problems of variable selec-
tion and component estimation in high-dimensional nonparametric additive
models in which the number of covariates is much larger than the number
of observations. We study these models under the assumption that most
components are equal to zero.

High-dimensional linear models have been investigated intensively in the
literature. A great deal of attention has been given to the Lasso (see, e.g.,
the book by Bühlmann and van de Geer [7] and the references therein).
The Lasso is based on l1-penalization and can be used for both estimation
and variable selection. There is also a huge literature on estimation and
variable selection via l0-penalization. These procedures can be found, e.g.,
in the book by Massart [52], where a general approach to model selection via
penalization is developed (see also the work by Barron, Birgé, and Massart
[6] and the references therein). Finally, there is a third approach which is
based on exponentially weighted aggregation (see, e.g., the work by Rigollet
and Tsybakov [61] and Arias-Castro and Lounici [2] and the references
therein).

More recently, high-dimensional additive models have been studied, e.g.,
in the work by Meier, van de Geer, and Bühlmann [53], Huang, Horowitz,
and Wei [37], Koltchinskii and Yuan [44], Raskutti, Wainwright, and Yu
[58], Gayraud and Ingster [30], Suzuki and Sugiyama [71], and Dalalyan,
Ingster, and Tsybakov [19]. One approach generalizes the (group) Lasso
and combines sparsity penalties with smoothness penalties or constraints
(see [53, 37, 44, 58, 71]). As in the case of the Lasso, these procedures
can be used for both estimation and variable selection (see [53, 37]). An-
other approach based on exponential aggregation is developed in the work
by Dalalyan, Ingster, and Tsybakov [19]. They considered the problem of
estimation in a more general model which they called the compound model
and which includes the additive model as a special case. In a Gaussian white
noise setting, they showed that their estimator achieves non-asymptotic min-
imax rates of convergence.

Comminges and Dalalyan [18] considered the problem of variable se-
lection in a high-dimensional Gaussian white noise model and established

57
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tight conditions which make the estimation of the relevant variables possible.
They also extended their method to a high-dimensional random regression
model, but they assumed that the joint density of all covariates is known.
Similar results were obtained earlier by Wainwright [80] for high-dimensional
linear models with Gaussian measurement matrices.

Several results in the theory of high-dimensional statistical inference are
initiated by achievements in the theory of compressive sensing (see, e.g., the
introductory book chapters by Fornasier and Rauhut [28] and Rauhut [59]
and the references therein). A popular method is the l1-minimization which
enables sparse recovery if the measurement matrix satisfies, for instance, a
restricted isometry property (RIP). It is known that several random matrices
satisfy the RIP with probability close to one, important examples being the
Gaussian random matrices and the so-called structured random matrices
(see, e.g., the work by Candès and Tao [17], Baraniuk, Davenport, DeVore,
and Walkin [4], and Rauhut [59]). These results were generalized to high-
dimensional linear models by Candès and Tao [16] (see also the work by
Bickel, Ritov, and Tsybakov [9] and the book by Koltchinskii [43, Chapters
7 and 8]).

In this chapter, we study a method for variable selection which consists
of comparing the norms of the projections of the data onto various finite-
dimensional additive subspaces. Given an upper bound q∗ for the number of
nonzero components, the procedure selects the subset of cardinality smaller
than or equal to q∗ which best explains the data in the finite sample setting.
The basis of this procedure is a selection criterion in the population setting
which works well under the essential assumption that the minimal angles
between various disjoint additive subspaces are bounded away from zero.
Applying this assumption and tools from the theory of structured random
matrices, we derive a strong uniform concentration property of the empirical
norm around the L2(PX)-norm, which, in the special case of independent
covariates, can be rewritten as a restricted (block)-isometry property. This
property enables us to carry over the geometry in the population setting to
the finite sample setting, and thus leads to an analysis of our procedure.
Our results are of theoretical interest. Under minimal geometric assump-
tions, we prove upper bounds for the probability that our procedure misses
relevant variables. These concentration inequalities lead to conditions mak-
ing consistent estimation of the relevant variables possible. In the case of
the linear model with random measurement and also in settings considered
in the theory of compressive sensing, these conditions coincide with what
can be usually found in the literature (see, e.g., [80, 59]). In the general
case of the nonparametric additive model, we find conditions which are, to
the best of our knowledge, new. As an application of our variable selec-
tion procedure, we consider the problem of estimating single components.
Combining the results of this chapter with those obtained in Chapter 2, we
establish conditions under which a single component can be estimated with
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the rate of convergence corresponding to the situation in which the other
components are known.

2. The main result

2.1. The variable selection problem. Let (Y,X) be a pair of ran-
dom variables such that X = (X1, . . . , Xq)

T and

Y =

q∑
j=1

fj(Xj) + ε, (2.1)

where the Xj are real-valued random variables, the fj are unknown functions
which are contained in L2(PXj ), and ε is a Gaussian random variable with
expectation 0 and variance σ2 which is independent of X. Moreover, we
suppose that fj satisfies E[fj(Xj)] = 0 for j = 1, . . . , q − 1. We denote by
f the whole regression function given by f(x) =

∑q
j=1 fj(xj). We assume

that we observe n independent copies (Y 1, X1), . . . , (Y n, Xn) of (Y,X), i.e.,

Y i =

q∑
j=1

fj(X
i
j) + εi, i = 1, . . . , n. (2.2)

The number of covariates q can be much larger than the number of ob-
servations n, but we assume that the number of non-zero components is
smaller than n. Thus we consider a high-dimensional sparse additive model.
We define J0 = {j ∈ {1, . . . , q} : ‖fj‖ > 0}, meaning that we have f(x) =∑

j∈J0
fj(xj). Moreover, we denote by s the cardinality of J0, i.e., s = |J0|.

The set J0 is supposed to be unknown, but we assume that we are given an
integer q∗ such that |J0| ≤ q∗. We aim at selecting a subset of cardinality
smaller than or equal to q∗ which contains J0.

2.2. The main assumption. Without any further assumption, the
components are not necessarily uniquely determined. In this section, we
give an assumption which implies uniqueness and furthermore makes the
variable selection task accessible. We define Hq = L2(PXq) and

Hj =
{
hj ∈ L2(PXj )|E [hj(Xj)] = 0

}
for j = 1, . . . , q − 1. Note that fj ∈ Hj . The spaces Hj are all canonically
contained in L2(PX) which is a Hilbert space with the inner product 〈g, h〉 =

E[g(X)h(X)] and the corresponding norm ‖g‖ =
√
〈g, g〉. Moreover, for

J ⊆ {1, . . . , q}, we define

HJ =
∑
j∈J

Hj

(with the convention that HJ = 0 if J = ∅).

Assumption 11. There exists a constant 0 ≤ ρ < 1 such that for all
subsets J1, J2 ⊆ {1, . . . , q} satisfying J1∩J2 = ∅ and |J1|, |J2| ≤ q∗, we have

〈hJ1 , hJ2〉 ≤ ρ‖hJ1‖‖hJ2‖ (2.3)
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for all hJ1 ∈ HJ1, hJ2 ∈ HJ2.

It follows from the fact that the spaces Hj are closed combined with
Assumption 11 and [42, Theorem 1a] (applied inductively) that all spaces
HJ with J ⊆ {1, . . . , q} and |J | ≤ 2q∗ are closed. The real number

ρ0(HJ1 , HJ2) = sup

{
〈hJ1 , hJ2〉
‖hJ1‖‖hJ2‖

∣∣∣∣0 6= hJ1 ∈ HJ1 , 0 6= hJ2 ∈ HJ2

}
is the cosine of the minimal angle between HJ1 and HJ2 (see, e.g., [40,
Definition 1]). Letting ρq∗ = max ρ0(HJ1 , HJ2), where the maximum is taken
over all subsets J1, J2 ⊆ {1, . . . , q} satisfying J1 ∩ J2 = ∅ and |J1|, |J2| ≤ q∗,
then Assumption 11 says that ρq∗ < 1. By a simple argument which is given
in Section 5.1, one can show that Assumption 11 can be written as follows:

Remark 11 (Equivalent form of Assumption 11). For all subsets J1, J2 ⊆
{1, . . . , q} satisfying J1 ∩ J2 = ∅ and |J1|, |J2| ≤ q∗, we have

‖hJ1 + hJ2‖
2 ≥ (1− ρ2

q∗) ‖hJ1‖
2 (2.4)

for all hJ1 ∈ HJ1 , hJ2 ∈ HJ2 .

Remark 11 shows that Assumption 11 is essential for variable selection:
if (2.4) does not hold, then it is possible that f is arbitrary close to a sparse
additive function which is based on a completely different set of variables.
From (2.4) and the definition of J0, we obtain:

Lemma 11. Let Assumption 11 be satisfied. Then

κ := min
∅6=J⊆J0

∥∥∥∑
j∈J

fj

∥∥∥2
> 0.

For J ⊆ {1, . . . , q} let ΠHJ be the orthogonal projection from L2(PX) to
HJ . In the following we abbreviate ΠHJ as ΠJ . Since projections lower the

norm, the set J0 maximizes the quantity ‖ΠJf‖2. If Assumption 11 holds,

the following Lemma shows that ‖ΠJ0f‖
2 − ‖ΠJf‖2 is strictly positive for

all subsets J ⊆ {1, . . . , q} with |J | ≤ q∗ and J0 \ J 6= ∅. This means that

a subset J ⊆ {1, . . . , q} with |J | ≤ q∗ which maximizes ‖ΠJf‖2 always
contains J0 (and is equal to J0 in the special case when |J0| = q∗). These
observations will be the theoretical basis for our selection criterion in the
finite sample setting.

Proposition 10. Let Assumption 11 be satisfied, and let J ⊆ {1, . . . , q}
be a subset such that |J | ≤ q∗ and J0 \ J 6= ∅. Then

‖ΠJ0f‖
2 − ‖ΠJf‖2 = ‖f −ΠJf‖2 ≥ (1− ρ2

q∗)κl,

where l = |J0 \ J | and

κl := min
J ′⊆J0,|J ′|=l

∥∥∥∑
j∈J ′

fj

∥∥∥2
.
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Proof. The equality follows from ΠJ0f = f and the projection theo-
rem. We turn to the proof of the inequality. We have f =

∑
j∈J0∩J fj +∑

j∈J0\J fj =: fJ0∩J + fJ0\J . Hence

ΠJf = fJ0∩J + ΠJfJ0\J

and

f −ΠJf = fJ0\J −ΠJfJ0\J .

We have fJ0\J ∈ HJ0\J , ΠJfJ0\J ∈ HJ , and l = |J0 \ J | ≥ 1. Thus (2.4) and
the definition of κl yield

‖f −ΠJf‖2 =
∥∥fJ0\J −ΠJfJ0\J

∥∥2 ≥ (1− ρ2
q∗)‖fJ0\J‖

2 ≥ (1− ρ2
q∗)κl.

This completes the proof. �

Finally, we show that ρq∗ can be related to a quantity which is known
in the literature on sparse additive models (see, e.g., [44]).

Lemma 12. Let ε2q∗ be the smallest number such that∥∥∥∑
j∈J

fj

∥∥∥2
≥ (1− ε2q∗)

(∑
j∈J
‖fj‖2

)
(2.5)

for all J ⊆ {1, . . . , q} with |J | ≤ 2q∗ and all
∑

j∈J fj ∈ HJ . Then we have
ρq∗ < 1 if and only if ε2q∗ < 1.

A proof of this lemma is given in Section 5.2.

2.3. The selection criterion. In this section, we construct the selec-
tion criterion. For j = 1, . . . , q, let Vj ⊆ Hj be finite-dimensional linear
subspaces. For J ⊆ {1, . . . , q}, let

VJ =
∑
j∈J

Vj

and dJ = dimVJ . Moreover, for l = 1, . . . , q, let dl = max|J |=l dJ .
In order to proceed, we introduce some further notation. Let ‖ · ‖n be

the empirical norm which is defined by

‖h‖2n =
1

n

n∑
i=1

h2(Xi)

for h ∈ L2(PX), and which is defined by ‖ · ‖2n = (1/n)‖ · ‖22 if applied to

vectors in Rn. Here, ‖ · ‖2 denotes the usual Euclidean norm. Let Π̂J be the
orthogonal projection from Rn to the subspace {(gJ(X1), . . . , gJ(Xn))T |gJ ∈
VJ}. If h ∈ L2(PX), then we abbreviate Π̂J(h(X1), . . . , h(Xn))T as Π̂Jh.
Finally, let Y = (Y 1, . . . , Y n)T and ε = (ε1, . . . , εn)T . Motivated by Propo-

sition 10, we define an estimator Ĵ0 of J0 as follows:

Ĵ0 = arg max
J⊆{1,...,q},|J |≤q∗

(∥∥Π̂JY
∥∥2

n
− σ2dJ/n

)
. (2.6)
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Conditioning on X1, . . . , Xn, the random variable (n/σ2)‖Π̂Jε‖2n has a chi-

square distribution with rank(Π̂J) ≤ dJ degrees of freedom and the last term
is supposed to cancel its expectation. The last term can also be seen as a
penalty term. In fact, the criterion in (2.6) can be written as a penalized
least squares criterion (see, e.g., [52]).

The success of the criterion depends on a suitable choice of the Vj ,
which in turn depends on the regularity conditions of the fj . For instance,
if the fj belong to some known finite-dimensional linear subspaces of Hj ,
then we let the Vj be equal to these spaces. In the following, we con-
sider the nonparametric case. Without loss of generality, we shall restrict
our attention to (periodic) Sobolev smoothness and spaces of trigonometric
polynomials. A similar treatment is possible, e.g., for Hölder smoothness
and spaces of piecewise polynomials or spaces of splines. Recall that the
trigonometric basis is given by φ1(x) = 1 and φ2k(x) =

√
2 cos(2πkx) and

φ2k+1(x) =
√

2 sin(2πkx), k ≥ 1, where x ∈ [0, 1].

Assumption 12. Suppose that the Xj take values in [0, 1] and have
densities pj with respect to the Lebesgue measure on [0, 1], which satisfy
c ≤ pj ≤ 1/c for some constant c > 0. Moreover, suppose that the fj belong
to the Sobolev classes

W̃j(αj ,Kj) =

{ ∞∑
k=1

θkφk(xj) :
∞∑
k=1

(2πk)2αj (θ2
2k + θ2

2k+1) ≤ K2
j

}
,

where αj > 1/2 and Kj > 0 (see, e.g., [74, Definition 1.12]).

For j = 1, . . . , q, let Vj be the intersection of Hj with the linear span of
φ1, . . . , φmj (in the variable xj). The choice of the mj will depend on the
following approximation properties.

Lemma 13. Let Assumption 12 be satisfied. Then there exists a constant
Cj > 0 depending only on αj and c (given explicitly in the proof) such that

‖hj −ΠVjhj‖2 ≤ CjK2
jm
−2αj
j and

‖hj −ΠVjhj‖2∞ ≤ CjK2
jm

1−2αj
j

for all hj ∈ W̃j(αj ,Kj) ∩ Hj, where ΠVj is the orthogonal projection from

L2(PX) to Vj.

For completeness, a proof of this lemma is given in Section 5.3. We
suppose that for j = 1, . . . , q,

mj ≥

(
CjK

2
j q
∗(1 + ε′q∗)

c′(1− ρ2
q∗)κ

)1/2αj

, (2.7)

where 0 < c′ < 1 is a small constant satisfying (4.3) and ε′q∗ is a positive
real number such that∥∥∥∑

j∈J
fj

∥∥∥2
≤ (1 + ε′q∗)

(∑
j∈J
‖fj‖2

)
(2.8)
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for all J ⊆ {1, . . . , q} with |J | ≤ q∗ and all
∑

j∈J fj ∈ HJ . Note that, by

the Cauchy-Schwarz inequality, we can always choose 1 + ε′q∗ = q∗. The mj

are chosen such that the following upper bound holds∥∥∥f −∑
j∈J0

ΠVjfj

∥∥∥2
≤ (1 + ε′q∗)

∑
j∈J0

‖fj −ΠVjfj‖2 ≤ c′(1− ρ2
q∗)κ, (2.9)

where we used (2.8) and Lemma 13. Applying Bennett’s inequality and
Lemma 13, one can show that a similar bound holds with high probability
when the L2(PX)-norm is replaced by the empirical norm ‖ · ‖n. The result
is as follows:

Lemma 14. Let Assumptions 11 and 12 be satisfied. Suppose that (2.7)
is satisfied for j = 1, . . . , q. Let the event A be given by

A =

∥∥∥f −∑
j∈J0

ΠVjfj

∥∥∥2

n
≤ 2c′(1− ρ2

q∗)κ

 .

Then

P (Ac) ≤ exp

(
− 3

16

n

dq∗

)
. (2.10)

A proof of Lemma 14 is given in Section 5.4

2.4. The main result and some consequences. In this section, we
present our first main theorem and derive several consequences. These re-
sults will be further developed in Section 3, where the final results can be
found.

For J ⊆ {1, . . . , q} and 0 < δ < 1 (e.g. δ = 1/2), we define the events

Eδ,J =
{

(1− δ)‖gJ‖2 ≤ ‖gJ‖2n ≤ (1 + δ)‖gJ‖2 for all gJ ∈ VJ
}
.

Moreover, we define

Eδ,q∗ =
⋂

J⊆{1,...,q},|J |≤q∗
Eδ,J∪J0 .

We prove:

Theorem 10. Let Assumptions 11 and 12 be satisfied. Let 0 < δ < 1.
Suppose that (2.7) is satisfied for j = 1, . . . , q. Then there is a constant
c1 > 0 depending only on δ (given explicitly in the proof) such that

P
(
J0 ⊆ Ĵ0

)
≥ 1− P

(
Ecδ,q∗

)
− exp

(
− 3

16

n

dq∗

)

−
s∑
l=1

q∗−(s−l)∑
m=0

(
s

l

)(
q − s
m

)
4 exp

(
−c1

n2(1− ρ2
q∗)

2κ2
l

σ4dq∗−s+l + σ2n(1− ρ2
q∗)κl

)
.

(2.11)

Recall, that the dl are given by dl = max|J |=l dJ .
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Remark 12. Theorem 10 also holds in the parametric case, i.e., if
fj ∈ Vj for j ∈ J . In this case, only Assumption 11 has to be satisfied,
Assumption 12 and the condition (2.7) disappear. Moreover, in (2.11) the
term exp(−3n/(16dq∗)) can be dropped.

The bound (2.11) yields the following simpler one

P
(
J0 ⊆ Ĵ0

)
≥ 1− P

(
Ecδ,q∗

)
− exp

(
− 3

16

n

dq∗

)
−
(
eq

q∗

)q∗
4 exp

(
−c1

n2(1− ρ2
q∗)

2κ2

σ4dq∗ + σ2n(1− ρ2
q∗)κ

)
. (2.12)

This can be seen as follows. First, we successively apply the bounds κl ≥ κ
and dq∗−s+l ≤ dq∗ . Then, we use the following combinatorial result (for a
proof see, e.g., [52, Proposition 2.5])

q∗∑
j=0

(
q

j

)
≤
(
eq

q∗

)q∗
. (2.13)

From (2.12), we conclude:

Corollary 14. Suppose that the assumptions of Theorem 10 hold.
Then for each constant c2 > 0, there is a constant c3 > 0 (depending only
on c1 and c2) such that

P
(
J0 ⊆ Ĵ0

)
≥ 1− P

(
Ecδ,q∗

)
− q−c2 ,

provided that

max

{
σ2
√
q∗dq∗ log(eq/q∗)

(1− ρ2
q∗)κ

,
σ2q∗ log(eq/q∗)

(1− ρ2
q∗)κ

, dq∗ log q

}
≤ c3n.

Remark 13. Corollary 14 also holds if the assumptions of Remark 12
are satisfied. In this case, the term dq∗ log q can be dropped.

Next, we present another analysis of (2.11) in the case that q∗ = s. Then

J0 ⊆ Ĵ0 if and only if J0 = Ĵ0. Thus, we can rewrite (2.11) as

P
(
J0 6= Ĵ0

)
≤ P

(
Ecδ,q∗

)
+ exp

(
− 3

16

n

dq∗

)
+

s∑
l=1

l∑
m=0

(
s

l

)(
q − s
m

)
4 exp

(
−c1

n2(1− ρ2
s)

2κ2
l

σ4dl + σ2n(1− ρ2
s)κl

)
. (2.14)

Applying κl ≥ (1− εs)lκ1, dl ≤ ld1, and

l∑
m=0

(
s

l

)(
q − s
m

)
≤ q2l,
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the last expression in (2.14) can be bounded by
s∑
l=1

4q2l exp

(
−c1

l(n(1− ρ2
s)(1− εs)κ1)2

σ4d1 + σ2n(1− ρ2
s)(1− εs)κ1

)
.

We obtain:

Corollary 15. Suppose that the assumptions of Theorem 10 hold.
Moreover, suppose that q∗ = s. Then for each constant c2 > 0, there is
a constant c3 > 0 (depending only on c1 and c2) such that

P
(
J0 6= Ĵ0

)
≤ P

(
Ecδ,q∗

)
+ q−c2 , (2.15)

provided that

max

{
σ2
√
d1 log q

(1− ρ2
s)(1− εs)κ1

,
σ2 log q

(1− ρ2
s)(1− εs)κ1

, ds log q

}
≤ c3n.

Remark 14. Corollary 15 also holds if the assumptions of Remark 12
are satisfied. In this case, the term ds log q can be dropped. In the special
case that the covariates are also independent, we have ρs = εs = 0 and the
conditions become

max

{
σ2
√
d1 log q

κ1
,
σ2 log q

κ1

}
≤ c3n.

Note that in Chapter 4, we show that this conditions are also necessary.

Finally, we mention that in the case q∗ = s, the conditions in Corollary
14 and 15 are both consequences of a more general condition. One can show
that for each c2 > 0, there is a c3 > 0 such that (2.15) holds, provided that
for l = 1, . . . , s,

max

{
σ2
√
ldl log(eq/l)

(1− ρ2
s)κl

,
σ2l log(eq/l)

(1− ρ2
s)κl

, ds log q

}
≤ c3n. (2.16)

Note that Corollary 14 follows from the bounds κl ≥ κ and the fact that
l log(eq/l) is increasing in l for 1 ≤ l ≤ q, and Corollary 15 follows (up to the
constant e in the logarithm) from the bounds κl ≥ (1− εs)lκ1 and dl ≤ ld1

and the fact that log(eq/l) is decreasing in l.

3. Structured random matrices and the event Eδ,q∗

3.1. Independent covariates and the RIP. In this subsection, we
suppose that X1, . . . , Xn are independent, which implies that the spaces
V1, . . . , Vq are orthogonal in L2(PX). In this particular case, we rewrite the
event Eδ,q∗ as a restricted (block)-isometry property. This allows us to apply
known concentration inequalities.

For j = 1, . . . , q, let {φjk}1≤k≤dimVj be an orthonormal basis of Vj . Then
we define the n× dimVj-matrix

Aj =
1√
n

(
φjk(X

i
j)
)

1≤i≤n,1≤k≤dimVj
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and for J ⊆ {1, . . . , q}, we define the n × dJ -matrix AJ = (Aj)j∈J (we

abbreviate A{1,...,q} as A). With these definitions, it is easy to see that Eδ,J
is the event such that

(1− δ)‖zJ‖22 ≤ ‖AJzJ‖22 ≤ (1 + δ)‖zJ‖22
for all zJ ∈ RdJ . Here, we have used that the spaces V1, . . . , Vq are orthogo-
nal. Thus, if we define

δq∗ = max
J⊆{1,...,q},|J |≤q∗

‖ATJ∪J0
AJ∪J0 − I‖op,

then we have

Eδ,q∗ = {δq∗ ≤ δ} .
The constant δq∗ is bounded by the restricted isometry constant of order d2q∗

of the matrix A (see [59, Definition 2.4]). Note that the restricted isometry
constant plays a prominent role in the theory of sparse recovery. More-
over, there exist many concentration inequalities for the restricted isometry
constant in many ensembles of random matrices. We give two examples.

Example 2. Consider the model Y =
∑q

j=1Xjβj + ε, where the Xj

are independent centered Gaussian random variables and the βj are real
numbers. Then A is a Gaussian random matrix (the entries are indepen-
dent Gaussian random variables, each with expectation zero and variance
1/n), and [4, Theorem 5.2] implies that there exist constants c3, c4 > 0 de-
pending only on δ such that P(δq∗ ≤ δ) ≥ 1 − 2 exp(−c4n), provided that
q∗ log(q/q∗) ≤ c3n. Combining this with Corollary 15, we obtain (in the

case q∗ = s) that P(J0 6= Ĵ0) ≤ 2 exp(−c4n) + q−c2 , provided that

max

{
s log(q/s),

σ2 log q

κ1

}
≤ c3n.

These conditions are also known to be necessary (see, e.g., [59, Section 2.6]
for the setting without noise and [80, Theorem 2] for the noisy setting).

Example 3. Consider the nonparametric case where X1, . . . , Xn are
independent and uniformly distributed on [0, 1]. Then the trigonometric
bases of the Vj are also orthonormal bases and we can apply [59, Theo-
rem 8.4] (recall that the constant δq∗ is bounded by the restricted isome-
try constant of order d2q∗) which says that there are constants c3, c4 > 0
such that for δ ≤ 1/2, P(δq∗ > δ) ≤ exp(−c4nδ

2/d2q∗), provided that

d2q∗ log2(100d2q∗) log(4dq) log(10n) ≤ c3nδ
2.

3.2. A general upper bound for P(Ecδ,q∗). In this section, we give a
general upper bound for the probability that the event Ecδ,q∗ occurs. This

upper bound is a generalization of [64, Theorem 3.3] and [59, Theorem 8.1
and 8.4]. The derivation will consist in two steps. The first step is the
following generalization of Theorem 3.6 by Rudelson and Vershynin [64].
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Proposition 11. Let Assumptions 11 and 12 be satisfied. Then there
is a universal constant C1 > 0 such that

E

[
sup

g∈VJ ,|J |≤2q∗,‖g‖≤1

∣∣‖g‖2n − ‖g‖2∣∣
]
≤ C1

√
d2q∗

c(1− ε2q∗)n
log2(dq ∨ n), (3.1)

provided that the last expression is smaller than 1.

A proof of Proposition 11 is given in Section 5.5. The second step is an
application of Talagrand’s inequality (see [72]). Here, we state a version of
Talagrand’s inequality presented in [11, Corollary 2]:

Theorem 11 (Talagrand’s inequality). Let X1, . . . , Xn be n independent
and identically distributed random variables taking values in some measur-
able space (S,B). Let G be a countable family of real-valued measurable
functions on (S,B) that are uniformly bounded by some constant b. Let
Z = supg∈G

∣∣ 1
n

∑n
i=1 g(Xi)− E

[
g(Xi)

]∣∣ and v = supg∈G E
[
g2(X1)

]
. Then

for every positive number λ,

P (Z ≥ 2E [Z] + λ) ≤ 3 exp

(
−nκ

(
λ2

v
∧ λ
b

))
,

where κ is a universal constant.

We want to apply Talagrand’s inequality to the family G = {g2 : g ∈
VJ , |J | ≤ 2q∗, ‖g‖ ≤ 1}. This family is not countable, but the value of Z
does not change if we restrict the supremum to a countable and dense subset
(note that the VJ are finite-dimensional spaces). For J ⊆ {1, . . . , q}, let

ϕJ =
1√
dJ

sup
06=g∈VJ

‖g‖∞
‖g‖

.

Moreover, let ϕ2q∗ = max|J |≤2q∗ ϕJ . Under Assumptions 11 and 12, we have

ϕ2
2q∗ ≤

2

c(1− ε2q∗)
, (3.2)

the details are given in Section 5.6. Therefore, for all g2 ∈ G, we have

‖g‖2∞ ≤ ϕ2
2q∗d2q∗‖g‖2 ≤

2d2q∗

c(1− ε2q∗)
.

Using this and the bound E
[
g4(X1)

]
≤ ‖g‖2∞‖g‖2, we conclude that b, v ≤

2d2q∗/(c(1− ε2q∗)). Now, suppose that the last expression in (3.1) is smaller
than δ/4, 0 < δ < 1. Then Theorem 11, applied with λ = δ/2, yields

P
(
Ecδ,q∗

)
≤ P

(
sup

g∈VJ ,|J |≤2q∗,‖g‖≤1

∣∣‖g‖2n − ‖g‖2∣∣ > δ

)

≤ 3 exp

(
−nκc(1− ε2q

∗)δ2

8d2q∗

)
.

We have shown:



68 3. VARIABLE SELECTION IN ADDITIVE MODELS

Theorem 12. Let Assumptions 11 and 12 be satisfied. Let c4 = cκ/8
and c3 =

√
c/(4C1), where C1 and κ are the constants in Proposition 11 and

Talagrand’s inequality, respectively. Let δ ∈ (0, 1). Suppose that√
d2q∗

(1− ε2q∗)n
log2(dq ∨ n) ≤ c3δ.

Then

P
(
Ecδ,q∗

)
≤ 3 exp

(
−c4

(1− ε2q∗)nδ2

d2q∗

)
.

3.3. Conditions for variable selection. In this section, we combine
Corollary 15 with Theorem 12. Therefore, suppose that the assumptions of
Theorem 10 hold. To simplify the exposition, we will treat the quantities
α = minj αj , K = maxjKj , and c from Assumption 12 and the geometric
quantities ρs, ε2s, and ε′s as constants. Moreover, we assume that q∗ = s and
that q ≥ n. Recall from (2.7) that in this case it suffices to choose the mj of

size constant times (s/κ)1/(2α). By the inequalities κl ≥ l(1− εl)κ1, we have
that κ is bounded from below by a constant times κ1, which in turn implies
that the mj can be chosen of size constant times (s/κ1)1/(2α). Inserting this
into Corollary 15 and Theorem 12 (let, e.g., δ = 1/2), we obtain:

Theorem 13. Make the above assumptions. Then for each constant
c2 > 0, there are constants c3 > 0 and c5 > 0 such that

P
(
J0 6= Ĵ0

)
≤ q−c2 + q−c5 log3 q,

provided that

max

{
σ2s1/(4α)

√
log q

κ
(4α+1)/(4α)
1

,
σ2 log q

κ1
,
s(2α+1)/(2α) log4 q

κ
1/(2α)
1

}
≤ c3n. (3.3)

Remark 15. In Chapter 4, we will show that the condition

max

{
σ2
√

log q

κ
(4α+1)/(4α)
1

,
σ2 log q

κ1

}
≤ c3n.

is optimal in an additive Gaussian white noise model. Obviously, this con-
dition is weaker than (3.3). In (3.3), we have the additional factor s1/(4α) in
the first term, and we have an additional term coming from the event Eδ,q∗
(note that this event disappears in the Gaussian white noise framework).

3.4. Estimation of single components. The proposed selection cri-
terion can be seen as a method to reduce the dimension of the model. We
start with n independent observations of a sparse additive model with q
covariates and an unknown subset J0 of indices corresponding to the non-
zero components, and we end up with a subset Ĵ0 such that |Ĵ0| ≤ q∗ and
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J0 ⊆ Ĵ0 with high probability. More precisely, if {J0 ⊆ Ĵ0} holds, then we
have successfully reduced the model (2.1) to

Y =
∑
j∈Ĵ0

fj(Xj) + ε. (3.4)

We now consider the problem of estimating a single component fj of the
model (2.1) with j ∈ J0. We may assume without loss of generality that
j = 1. To simplify the exposition, we make the same assumptions as in
the previous Section 3.3. We split the sample into two parts. More pre-
cisely, we assume that we observe an even number of independent copies
(Y 1, X1), . . . , (Y 2n, X2n) of (Y,X). The estimator Ĵ0 of J0 is constructed as
in Section 2.3 using the sample (Y 1, X1), . . . , (Y n, Xn), and the estimator

f̂1 of f1 is constructed as in Section 4.3 of Chapter 2 using Ĵ0 and the sample
(Y n+1, Xn+1), . . . , (Y 2n, X2n). We have

E
[
‖f1 − f̂∗1 ‖2

]
≤ E

[
1{Ĵ0=J0}‖f1 − f̂∗1 ‖2

]
+ (‖f1‖+ kn)2P

(
J0 6= Ĵ0

)
meaning that we can apply Theorem 7 to the first term (note that Assump-
tion 11 implies Assumptions 1 and 2) and Theorem 13 to the second term.

Theorem 14. Make the same assumptions as in Theorem 13. Then
there are constants c3 > 0, C > 0 such that

E
[
‖f1 − f̂∗1 ‖2

]
≤ Cn

−2α1
2α1+1 ,

provided that (3.3) is satisfied and that

s(2α+1)/(2α)n
2α1

2α(2α1+1) log4 n ≤ c3n.

4. Outline of the proof of Theorem 10

4.1. The finite sample geometry. In this section, we present empir-
ical versions of Assumption 11 and Proposition 10. Throughout this section,
let 0 < δ < 1 be the constant in Theorem 10. Recall that in Section 2.4, we
defined the events

Eδ,J =
{

(1− δ)‖gJ‖2 ≤ ‖gJ‖2n ≤ (1 + δ)‖gJ‖2 for all gJ ∈ VJ
}

for J ⊆ {1, . . . , q}. Written in the equivalent form of Remark 11, we have:

Lemma 15. Let Assumption 11 be satisfied. Let J1, J2 ⊆ {1, . . . , q} be
two subsets such that J1 ∩ J2 = ∅ and |J1|, |J2| ≤ q∗. If Eδ,J1∪J2 holds, then
we have

‖gJ1 + gJ2‖
2
n ≥

(1− δ)
(1 + δ)

(1− ρ2
q∗) ‖gJ1‖

2
n (4.1)

for all gJ1 ∈ VJ1, gJ2 ∈ VJ2.
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Proof. Under the assumptions of Lemma 15, we have

‖gJ1 + gJ2‖2n ≥ (1− δ)‖gJ1 + gJ2‖2

≥ (1− δ)(1− ρ2
q∗)‖gJ1‖2

≥ (1− δ)
(1 + δ)

(1− ρ2
q∗)‖gJ1‖2n.

This completes the proof. �

Applying (4.1) as in the proof of Proposition 10, we obtain:

Proposition 12. Let Assumption 11 be satisfied. Let J ⊆ {1, . . . , q} be
a subset such that |J | ≤ q∗ and J0 \ J 6= ∅. Let v =

∑
j∈J0

vj with vj ∈ Vj
for j ∈ J0. If Eδ,J∪J0 holds, then we have

‖Π̂J0v‖2n − ‖Π̂Jv‖2n = ‖v − Π̂Jv‖2n ≥
(1− δ)
(1 + δ)

(1− ρ2
q∗)
∥∥∥ ∑
j∈J0\J

vj

∥∥∥2

n
.

By decomposing f as v + f − v with v =
∑

j∈J0
ΠVjfj , we can apply

Proposition 12 to v and Lemma 14 to f − v. The result is the following
empirical version of Proposition 10.

Proposition 13. Let Assumption 11 and Assumption 12 be satisfied.
Suppose that (2.7) is satisfied for j = 1, . . . , q. Let J ⊆ {1, . . . , q} be a subset
such that |J | ≤ q∗ and J0 \J 6= ∅. Let l = |J0 \J |. If Eδ,J∪J0 ∩A holds, then
we have

‖Π̂J0f‖2n − ‖Π̂Jf‖2n ≥
1

2

(1− δ)2

(1 + δ)
(1− ρ2

q∗)κl, (4.2)

provided that

(2/3)(1−
√
c′)2 − 8

(1 + δ)

(1− δ)2
c′ ≥ 1/2. (4.3)

A proof of Proposition 13 is given in Section 5.7. In the absence of
noise, Proposition 12 and 13 already prove Theorem 10. In fact, if the event
Eδ,q∗ ∩ A holds, then (2.6) selects a subset Ĵ0 ⊆ {1, . . . , q} with |Ĵ0| ≤ q∗

and J0 ⊆ Ĵ0. Proposition 13 applies to the nonparametric setting, while
Proposition 12 applies if the components fj satisfy fj ∈ Vj , the latter being
a commonly used setting in the theory of compressive sensing (see, e.g., [28]
and the references therein).

4.2. End of the proof of Theorem 10. We have

P
(
J0 * Ĵ0

)
= P

(
J0 \ Ĵ0 6= ∅

)
≤ P (∃J ⊆ {1, . . . , q}, |J | ≤ q∗ with J0 \ J 6= ∅

and ‖Π̂JY‖2n − dJ/n ≥ ‖Π̂J0Y‖2n − dJ0/n
)
.



5. PROOFS 71

Applying the union bound, we obtain

P
(
J0 * Ĵ0

)
≤ P

(
Ecδ,q∗

)
+ P (Ac)

+
∑

J⊆{1,...,q}
|J |≤q∗,J0\J 6=∅

P
(
Eδ,J∪J0 ∩ A ∩ ‖Π̂JY‖2n − dJ/n ≥ ‖Π̂J0Y‖2n − dJ0/n

)
,

where A is the event defined in Proposition 13. We have:

Lemma 16. Let Assumptions 11 and 12 be satisfied. Suppose that (2.7)
is satisfied for j = 1, . . . , q. Let J ⊆ {1, . . . , q} be a subset such that |J | ≤ q∗
and J0 \ J 6= ∅. Let l = |J0 \ J |. Then there is a constant c1 depending only
on δ (given explicitly in the proof) such that

P
(
Eδ,J∪J0 ∩ A ∩ ‖Π̂JY‖2n − σ2dJ/n ≥ ‖Π̂J0Y‖2n − σ2dJ0/n

)
≤ 4 exp

(
−c1

n2(1− ρ2
q∗)

2κ2
l

σ4dq∗−s+l + σ2n(1− ρ2
q∗)κl

)
.

A proof of Lemma 16 is given in Section 5.8. Thus

P
(
J0 * Ĵ0

)
≤ P

(
Ecδ,q∗

)
+ P (Ac)

+
s∑
l=1

q∗−(s−l)∑
m=0

(
s

l

)(
q − s
m

)
4 exp

(
−c1

n2(1− ρ2
q∗)

2κ2
l

σ4dq∗−s+l + σ2n(1− ρ2
q∗)κl

)
.

Now apply Lemma 14. This completes the proof. �

5. Proofs

5.1. Proof of Remark 11. Suppose that (2.3) holds, and let hJ1 ∈
HJ1 and hJ2 ∈ HJ2 . Then ‖hJ1 +hJ2‖2 ≥ ‖hJ1‖2− 2ρq∗‖hJ1‖‖hJ2‖+ ‖hJ2‖2
and (2.4) follows from the inequality 2ρq∗‖hJ1‖‖hJ2‖ ≤ ρ2

q∗‖hJ1‖2 + ‖hJ2‖2.
Conversely, suppose that (2.4) holds, and let hJ1 ∈ HJ1 and hJ2 ∈ HJ2 .

We may assume without loss of generality that hJ2 6= 0 and that ‖hJ2‖ = 1.

Then ‖hJ1‖
2−〈hJ1 , hJ2〉2 = ‖hJ1 − 〈hJ1 , hJ2〉hJ2‖

2 ≥ (1− ρ2
q∗) ‖hJ1‖

2 which
gives (2.3). This completes the proof. �

5.2. Proof of Lemma 12. Let J1, J2 ⊆ {1, . . . , q} be two subsets sat-
isfying J1 ∩ J2 = ∅ and |J1|, |J2| ≤ q∗. Applying (2.5) and (2.8), we see
that

‖fJ1 + fJ2‖
2 ≥ 1− ε2q∗

1 + ε′q∗

(
‖fJ1‖

2 + ‖fJ2‖
2
)

for all fJ1 ∈ HJ1 , fJ2 ∈ HJ2 . Thus Remark 11 gives the “if” part. Con-
versely, applying (2.3) iteratively, one gets for instance

1− ε2q∗ ≥ (1− ρ2
q∗)

log2 q
∗+1

which gives the “only if” part. �
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5.3. Proof of Lemma 13. Let
∑∞

k=1 θkφk ∈ W̃j(αj ,Kj). Then there
is a constant cαj depending only on αj such that (see, e.g., [74, Proof of
Lemma 1.8 and Theorem 1.9])∑

k>mj

θ2
j ≤ cαjK2

jm
−2αj
j (5.1)

and ∑
k>mj

|θj |

2

≤ cαjK2
jm

1−2αj
j . (5.2)

We now define Uj = Vj + R, where R denotes the constant functions. Since
Vj and R are orthogonal for j = 1, . . . , q − 1, and since Vq = Uq, we have

ΠVjhj = ΠUjhj for hj ∈ Hj and j = 1, . . . , q. Now, let fj ∈ Hj∩W̃j(αj ,Kj).

Then fj(xj) =
∑∞

k=1 θkφk(xj). Let qj(xj) =
∑mj

j=1 θkφk(xj). Then qj −
E[qj(Xj)] ∈ Vj and thus qj ∈ Uj . We conclude that

‖fj −ΠVjfj‖2 = ‖fj −ΠUjfj‖2 ≤ ‖fj − qj‖2 ≤ (1/c)
∑
k>mj

θ2
j

and similarly that

‖fj −ΠVjfj‖2∞ ≤ 2‖fj − qj‖2∞ + 2‖qj −ΠVjfj‖2∞

≤ 4

∑
k>mj

|θj |

2

+ 2(1/c)mj‖qj −ΠUjfj‖2

≤ 4

∑
k>mj

|θj |

2

+ 2(1/c)mj‖qj − fj‖2

≤ 4

∑
k>mj

|θj |

2

+ 2(1/c)2mj

∑
k>mj

θ2
j (5.3)

Using (5.1)-(5.3), we obtain Lemma 13. This completes the proof. �

5.4. Proof of Lemma 14. Let v =
∑

j∈J0
vj with vj = ΠVjfj for

j ∈ J0. By (2.9), we have

‖f − v‖2 ≤ c′(1− ρ2
q∗)κ.

Moreover, by Lemma 13 and the Cauchy-Schwarz inequality, we also have

‖f − v‖2∞ ≤ q∗
∑
j∈J0

CjK
2
jm

1−2αj
j ≤

2dq∗c(1− ρ2
q∗)κ

(1 + ε′q∗)
. (5.4)
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Thus, letting x = c′(1−ρ2
q∗)κ, Bennett’s inequality (see, e.g., [52, Comment

after Proposition 2.8]) yields

P
(
‖f − v‖2n > 2x

)
≤ P

(
‖f − v‖2n − ‖f − v‖2 > x

)
≤ exp

(
− nx2

2‖(f − v)2‖2 + (2/3)‖f − v‖2∞x

)
≤ exp

(
− 3nx

8‖f − v‖2∞

)
.

Using this and (5.4), we obtain (2.10). This completes the proof �

5.5. Proof of Proposition 11. The proof is taken from [64, proof of
Theorem 3.6] (see also [59, proof of Theorem 8.1]). However, we have to
modify several details. For j = 1, . . . , q − 1, the spaces Vj are spanned by
the functions ψjk(xj) = φk(xj)−E[φk(Xj)], 2 ≤ k ≤ mj , and the space Vq is
spanned by ψqk(xq) = φk(xq), 1 ≤ k ≤ mq. Thus each function in

∑q
j=1 Vj ,

can be written as gα =
∑

j,k αjkψjk, for some α = (αT1 , . . . , α
T
q )T ∈ Rdq .

Letting

T =
{
α ∈ Rdq : gα ∈ VJ , |J | ≤ 2q∗, ‖gα‖ ≤ 1

}
,

we have to show that there is a constant C1 > 0 such that

E := E
[

sup
α∈T

∣∣‖gα‖2n − ‖gα‖2∣∣] ≤ C1

√
d2q∗

c(1− ε2q∗)n
log2(dq ∨ n),

provided that the last expression is smaller than 1. Using the symmetrization
lemma (see, e.g., [77, Lemma 2.3.1]), we obtain

E ≤ 2E

[
sup
α∈T

1

n

n∑
i=1

δig2
α(Xi)

]
,

where δ1, . . . , δn are independent Rademacher random variables. Applying
[77, Corollary 2.2.8], we have for a universal constant C2,

E1 := E

[
sup
α∈T

1

n

n∑
i=1

δig2
α(Xi)

∣∣∣∣X1, . . . , Xn

]
≤ C2

∫ ∞
0

√
logN(T, d, u)du,

where N(T, d, u) denotes the minimal number of balls of radius u in the
semimetric d needed to cover T and d is the given by

d(α, β) =

(
1

n2

n∑
i=1

(
g2
α(Xi)− g2

β(Xi)
)2)1/2

.
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Now,

d(α, β) ≤

(
1

n2

n∑
i=1

(
gα(Xi) + gβ(Xi)

)2)1/2

max
i=1,...,n

∣∣gα(Xi)− gβ(Xi)
∣∣

≤ 2√
n

sup
α∈T
‖gα‖n max

i=1,...,n

∣∣gα(Xi)− gβ(Xi)
∣∣ .

Applying a linear change of variables, we obtain

E1 ≤ sup
α∈T
‖gα‖n

2C2√
n

∫ ∞
0

√
logN(T, ‖ · ‖X , u)du,

where the seminorm ‖ · ‖X is given by

‖α‖X = max
i=1,...,n

∣∣gα(Xi)
∣∣ = max

i=1,...,n
|〈α, xi〉| .

Here, the xi are the vectors of the basis functions evaluated at Xi. Note
that the xi are uniformly bounded by K = 2

√
2 and that the last expression

coincides with the definition of ‖ · ‖X in [64]. Now, if α ∈ T , then

‖α‖0 = |{j : αj 6= 0}| ≤ d2q∗

and

‖α‖2 ≤
1√

c(1− ε2q∗)
.

The first inequality follows from the definition, the second one from As-
sumption 12, (2.5), and ‖gα‖ ≤ 1. Thus

T ⊆ 1√
c(1− ε2q∗)

D
d2q∗ ,dq
2 ,

where

D
d2q∗ ,dq
2 =

{
α ∈ Rdq : ‖α‖0 ≤ d2q∗ , ‖α‖2 ≤ 1

}
.

Applying again a linear change of variables, we obtain

E1 ≤

sup
α∈T
‖gα‖nC2

√
d2q∗

c(1− ε2q∗)n

∫ ∞
0

log1/2N

(
1√
d2q∗

D
d2q∗ ,dq
2 , ‖ · ‖X , u

)
du.

The above integral is the same as in [64, (3.7)] and can be bounded by
C3 log(d2q∗)

√
log n

√
log dq ≤ C3 log2(dq ∨ n) (here, we use that the xi are

uniformly bounded by 2
√

2). We conclude that

E1 ≤ C(q∗, q, n) sup
α∈T
‖gα‖n,

where

C(q∗, q, n) = C2C3

√
d2q∗

c(1− ε2q∗)n
log2(dq ∨ n)
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Using this and the Cauchy-Schwarz inequality, we obtain

E ≤ C(q∗, q, n)

(
E
[

sup
α∈T
‖gα‖2n

])1/2

≤ C(q∗, q, n) (E + 1)1/2 .

If

C(q∗, q, n) ≤ 1,

then we get

E ≤ 2C(q∗, q, n).

This completes the proof. �

5.6. Proof of Equation (3.2). By the Cauchy-Schwarz inequality, we
have for g =

∑m
k=1 θkφk,

‖g‖2∞ ≤ m
m∑
k=1

θ2
k = m

∫ 1

0
g2(x)dx.

This implies that

‖gj‖2∞ ≤ (2/c) dimVj ‖gj‖2 (5.5)

for all gj ∈ Vj . Now, let J ⊆ {1, . . . , q} be a subset with |J | ≤ 2q∗. Applying
(5.5), the Cauchy-Schwarz inequality, and Lemma 12, we obtain

‖gJ‖∞ ≤
∑
j∈J
‖gj‖∞ ≤

√
2/c

√∑
j∈J

dimVj

√∑
j∈J
‖gj‖2

≤

√
2

c(1− ε2q∗)
√

dimVJ ‖gJ‖

for all gJ =
∑

j∈J gj ∈ VJ . This completes the proof. �

5.7. Proof of Proposition 13. Let v =
∑

j∈J0
vj with vj = ΠVjfj for

j ∈ J0. We have

‖Π̂J0f‖2n − ‖Π̂Jf‖2n
= ‖Π̂J0v‖2n + 2〈Π̂J0v, Π̂J0(f − v)〉n + ‖Π̂J0(f − v)‖2n
− ‖Π̂Jv‖2n − 2〈Π̂Jv, Π̂J(f − v)〉n − ‖Π̂J(f − v)‖2n
≥ ‖Π̂J0v‖2n − ‖Π̂Jv‖2n + 2〈Π̂J0v − Π̂Jv, f − v〉n − ‖f − v‖2n, (5.6)

where the inequality holds since orthogonal projections are self-adjoint and
lower the norm. Since Π̂J0v = v and ‖v − Π̂Jv‖2n = ‖v‖2n − ‖Π̂Jv‖2n, we get

2〈Π̂J0v − Π̂Jv, f − v〉n
≤ (1/3)‖Π̂J0v − Π̂Jv‖2n + 3‖f − v‖2n
= (1/3)

(
‖Π̂J0v‖2n − ‖Π̂Jv‖2n

)
+ 3‖f − v‖2n, (5.7)
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where we also applied the bound 2xy ≤ 3x2 + (1/3)y2. Combining (5.6) and
(5.7), we conclude that

‖Π̂J0f‖2n − ‖Π̂Jf‖2n ≥ (2/3)
(
‖Π̂J0v‖2n − ‖Π̂Jv‖2n

)
− 4‖f − v‖2n. (5.8)

If Eδ,J∪J0 holds, then Proposition 12 says that∥∥Π̂J0v
∥∥2

n
−
∥∥Π̂Jv

∥∥2

n
≥ (1− δ)

(1 + δ)
(1− ρ2

q∗)‖vJ0\J‖
2
n,

where vJ0\J =
∑

j∈J0\J vj . If Eδ,J0 holds, then

‖vJ0\J‖
2
n ≥ (1− δ)‖vJ0\J‖

2 ≥ (1− δ)
(
‖fJ0\J‖ − ‖fJ0\J − vJ0\J‖

)2
,

where fJ0\J =
∑

j∈J0\J fj . As in (2.9), we have

‖fJ0\J − vJ0\J‖
2 ≤ c′(1− ρ2

q∗)κ ≤ c′κl.
Thus

‖vJ0\J‖
2
n ≥ (1− δ)(1−

√
c′)2κl

If Eδ,J∪J0 holds, then we obtain∥∥Π̂J0v
∥∥2

n
−
∥∥Π̂Jv

∥∥2

n
≥ (1−

√
c′)2 (1− δ)2

(1 + δ)
(1− ρ2

q∗)κl. (5.9)

If Eδ,J∪J0 ∩ A holds, then we conclude from (5.8) and (5.9) that

‖Π̂J0f‖2n − ‖Π̂Jf‖2n ≥
1

2

(1− δ)2

(1 + δ)
(1− ρ2

q∗)κl,

provided that (4.3) is satisfied. This completes the proof. �

5.8. Proof of Lemma 16. We have

‖Π̂JY‖2n − σ2dJ/n ≥ ‖Π̂J0Y‖2n − σ2dJ0/n

if and only if

‖Π̂Jε‖2n − ‖Π̂J0ε‖2n − σ2dJ/n+ σ2dJ0/n+ 2〈(Π̂J − Π̂J0)f, ε〉n
≥ ‖Π̂J0f‖2n − ‖Π̂Jf‖2n.

If Eδ,J∪J0 ∩ A holds, then (5.8), (4.3), and (4.2) yield

‖Π̂J0f‖2n − ‖Π̂Jf‖2n ≥
1

2

(1− δ)2

(1 + δ)
(1− ρ2

q∗)κl

and also

‖Π̂J0f‖2n − ‖Π̂Jf‖2n ≥
1

2(1−
√
c′)2
‖v − Π̂Jv‖2n ≥

1

2
‖v − Π̂Jv‖2n.

Recall that the random variables ε1, . . . , εn are independent and Gaussian,
each with expectation 0 and variance σ2. Moreover, they are independent of
X1, . . . , Xn. One can show that, conditioned on X1, . . . , Xn and if Eδ,J∪J0

holds, we have

‖Π̂Jε‖2n − ‖Π̂J0ε‖2n
d
= (σ2/n)χ2(dJ\J0

)− (σ2/n)χ2(dJ0\J),
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where
d
= denotes equality in distribution, and where χ2(dJ\J0

) and χ2(dJ0\J)
are chi-square distributed random variables with dJ\J0

and dJ0\J degrees of
freedom, respectively. Applying all these arguments and the union bound,
we conclude that

P
(
Eδ,J∪J0 ∩ A ∩ ‖Π̂JY‖2n − σ2dJ/n ≥ ‖Π̂J0Y‖2n − σ2dJ0/n

)
≤ P

(
σ2

n

(
χ2(dJ\J0

)− dJ\J0

)
≥ 1

8

(1− δ)2

(1 + δ)
(1− ρ2

q∗)κl

)
+ P

(
σ2

n

(
χ2(dJ0\J)− dJ0\J

)
≤ −1

8

(1− δ)2

(1 + δ)
(1− ρ2

q∗)κl

)
+ P

(
Eδ,J∪J0 ∩ A ∩ 2〈(Π̂J − Π̂J0)f, ε〉n ≥

1

4
‖v − Π̂Jv‖2n

)
.

The first and the second term can be bounded by standard concentration
inequalities for chi-square distributions.

Lemma 17. Let d be a positive integer. Then, for all x ≥ 0, we have

P
(
χ2(d)− d ≥ x

)
≤ exp

(
− x2

2(2d+ 2x)

)
and

P
(
χ2(d)− d ≤ −x

)
≤ exp

(
−x

2

4d

)
.

For a proof of this lemma see [47, Lemma 1] and [11, Lemma 8]. Since
|J0\J | = l and |J \J0| ≤ q∗−s+ l, we have dJ0\J , dJ\J0

≤ dq∗−s+l. Applying
this and Lemma 17, we obtain

P
(
σ2

n

(
χ2(dJ\J0

)− dJ\J0

)
≥ 1

8

(1− δ)2

(1 + δ)
(1− ρ2

q∗)κl

)
+ P

(
σ2

n

(
χ2(dJ0\J)− dJ0\J

)
≤ −1

8

(1− δ)2

(1 + δ)
(1− ρ2

q∗)κl

)
≤ 2 exp

(
− 1

32

c2
δn

2(1− ρ2
q∗)

2κ2
l

8σ4dq∗−s+l + cδσ2n(1− ρ2
q∗)κl

)
, (5.10)

where cδ = (1 − δ)2/(1 + δ). Thus it remains the third term. It can be
bounded by

P
(
Eδ,J∪J0 ∩ 〈Π̂Jv − v, ε〉n ≥

1

16
‖v − Π̂Jv‖2n

)
+P
(
Eδ,J∪J0 ∩ A ∩ 〈(Π̂J − Π̂J0)(f − v), ε〉n ≥

1

16
‖v − Π̂Jv‖2n

)
. (5.11)
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These terms can be bounded by standard concentration inequalities for
Gaussian random variables. Applying (5.9), we obtain

P
(
Eδ,J∪J0 ∩ 〈Π̂Jv − v, ε〉n ≥

1

16
‖v − Π̂Jv‖2n

)
≤ E

[
1Eδ,J∪J0

exp

(
− n

29

‖v − Π̂Jv‖2n
σ2

)]

≤ exp

(
− cδ

210

n(1− ρ2
q∗)κl

σ2

)
,

which bounds the first term in (5.11). If A holds, then

‖(Π̂J − Π̂J0)(f − v)‖2n ≤ 4‖f − v‖2n ≤ 8c′(1− ρ2
q∗)κ ≤ 8c′(1− ρ2

q∗)κl.

Applying this and (5.9), we obtain

P
(
Eδ,J∪J0 ∩ A ∩ 〈(Π̂J − Π̂J0)(f − v), ε〉n ≥

1

16
‖v − Π̂Jv‖2n

)
≤ P

(
Eδ,J∪J0 ∩ A ∩ 〈(Π̂J − Π̂J0)(f − v), ε〉n ≥

1

32

(1− δ)2

(1 + δ)
(1− ρ2

q∗)κl

)
≤ exp

(
−

c2
δ

214c′
n(1− ρ2

q∗)κl

σ2

)
which bounds the second term in (5.11). This completes the proof. �



CHAPTER 4

Optimal conditions for variable selection in
additive Gaussian white noise models

1. Introduction

In this chapter, we study the problem of variable selection in high-
dimensional Gaussian white noise models. We suppose that the regression
function has an additive form and that its additive components belong to
nonparametric classes of functions. The aim is to derive optimal conditions
under which consistent variable selection is possible.

In order to obtain sufficient conditions, we analyze a penalized least
squares criterion. In contrast to Chapter 3, we do not assume that an upper
bound q∗ for the number of non-zero components is known. This forces us
to introduce an additional penalty term. Our main result is a general expo-
nential bound for the probability that our procedure recovers the support,
i.e., the set of indices corresponding to the non-zero components. In the case
that the components belong to Sobolev classes, we establish conditions mak-
ing consistent estimation of the support possible. Finally, we prove minimax
lower bounds showing that these conditions are also optimal.

High-dimensional additive models have been recently studied in a series
of papers by Meier, van de Geer, and Bühlmann [53], Huang, Horowitz, and
Wei [37], Koltchinskii and Yuan [44], Raskutti, Wainwright, and Yu [58],
Gayraud and Ingster [30], Suzuki and Sugiyama [71], and Dalalyan, Ingster,
and Tsybakov [19]. Most of these papers focus on the problem of estimation.
The latter, e.g., constructs an estimator achieving optimal minimax rates of
convergence. In this chapter, we analyze a penalized least squares criterion
similar to those developed in the work by Birgé and Massart [12, 13] (see
also [10, 6]). Since we are dealing with nonparametric components and
since we focus on the problem of variable selection instead of estimation, we
introduce a slightly different penalty term. This chapter can also be seen
as a complement to Chapter 3. By switching to the Gaussian white noise
framework, the constructions, statements, and proofs become simpler and
more transparent. In addition, we also derive minimax lower bounds. The
proofs of these lower bounds use standard tools, such as Fano’s lemma and
the method of several fuzzy hypothesis (see, e.g., the book by Tsybakov
[74]), and are based on proofs of lower bounds obtained previously in the
linear model (see the work by Wainwright [80] and Arias-Castro and Lounici

79
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[2]) and in the single atom model (see the work by Comminges and Dalalyan
[18]).

2. The main result

2.1. The Gaussian white noise framework. We suppose that we
observe a process (Yε(h) : h ∈ L2([0, 1]q)) such that

Yε(h) = 〈f, h〉+ εW (h),

where f is an unknown function in L2([0, 1]q), ε > 0 is a known parameter,
and (W (h) : h ∈ L2([0, 1]q)) is a centered Gaussian process with covariance
given by

E
[
W (h)W (h′)

]
=
〈
h, h′

〉
(2.1)

(see, e.g., the book by Massart [52, Chapter 3.5] and the references therein).
Here, 〈·, ·〉 denotes the inner product on the Hilbert space L2([0, 1]q). More-
over, we suppose that f has the form

f(x1, . . . , xq) =

q∑
j=1

fj(xj),

where the fj satisfy
∫ 1

0 fj(xj)dxj = 0. We denote by J0 the set of non-zero
functions in this sum, i.e.,

J0 = {j ∈ {1, . . . , q} : ‖fj‖ > 0} ,

where ‖ · ‖ =
√
〈·, ·〉. This implies that f can also be written as

f(x1, . . . , xq) =
∑
j∈J0

fj(xj).

In this chapter, we consider the problem of estimating J0. We are interested
in settings where q is very large, for instance in the sense that qε2 is still very
large. Note that ε2 plays the same role as σ2/n in the regression framework.

2.2. Model selection via penalization. We begin with introducing
some notation. For j = 1, . . . , q, let L2

j ([0, 1]) ⊆ L2([0, 1]q) be those functions
which depend only on the variable xj , and let

Hj =

{
hj ∈ L2

j ([0, 1]) :

∫ 1

0
hj(xj)dxj = 0

}
.

For j = 1, . . . , q, let Vj ⊆ Hj be finite-dimensional linear subspaces, and for
J ⊆ {1, . . . , q}, let

VJ =
∑
j∈J

Vj

and dJ = dimVJ . Moreover, we define dl = max|J |=l dJ , l = 1, . . . , q.
For simplicity, we suppose that the Vj all have the same dimension. This
implies that dJ = |J |d1 and also that dl = ld1. Note that the spaces VJ
will be the models used in the selection criterion below. In this and in
the next section, we let these spaces unspecified. We only assume that the



2. THE MAIN RESULT 81

fj can be approximated well (see Theorem 15 below) by some function in
Vj . Concrete examples can be found in Section 3.1. We denote by ΠVJ

the orthogonal projection from L2([0, 1]q) to VJ . Recall that ΠVJ satisfies
〈ΠVJh,ΠVJh

′〉 = 〈ΠVJh, h
′〉 for all h, h′ ∈ L2([0, 1]q), which is one of its key

properties. If {φjk}1≤k≤d1
are orthonormal bases of the Vj , then ΠVJ is given

by

ΠVJh =
∑
j∈J

d1∑
k=1

〈h, φjk〉φjk

for all h ∈ L2([0, 1]q). This representation shows that we can also apply ΠVJ
to W and Y by letting

ΠVJW =
∑
j∈J

d1∑
k=1

W (φjk)φjk (2.2)

and
ΠVJY = ΠVJf + εΠVJW.

Note that we have
〈ΠVJW,ΠVJh〉 = W (ΠVJh)

for all h ∈ L2([0, 1]q), which can be compared to the above key property.
We now turn to the construction of the variable selection criterion. We

will consider the following penalized least squares procedure (see, e.g., [10,
6, 12, 13], or the book by Massart [52])

Ĵ0 = arg max
J⊆{1,...,q}

(
‖ΠVJY ‖

2 − ε2dJ − ε2p(J)
)

(2.3)

in the special case that

p(J) = p(|J |) = 2
√
c|J |d|J | log q + 2c|J | log q,

where c > 1 is a constant. Letting k = |J |, we have

p(k) = 2k
(√

cd1 log q + c log q
)
. (2.4)

The choice of the penalty function has the following two explanations. The
first term ε2dJ is equal to the expectation of ‖ΠVJ εW‖2 and is there for
centering. The second term ε2p(|J |) is chosen such that the procedure will
not choose large values of k = |J |. Its particular form is based on the
following exponential inequality for chi-square random variables

P
(
χ2(dk)− dk > p(k)

)
≤ exp(−ck log q), (2.5)

where χ2(dk) denotes a chi-square random variable with dk degrees of free-
dom (see Lemma 18). We mention that in the special case d1 = 1, the whole
penalty is equal to

ε2k(1 + 2
√
c log q + 2c log q),

which has the form considered in [13] (see, e.g., [13, Equation (26)]). Finally,
note that if ε > 0 (which we assume in this chapter), then the solution of
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(2.3) is almost surely unique, since the probability that the expression inside
the argmax takes the same value for two different sets is equal to 0. Here, one
uses that the difference of two independent non central chi-square random
variables is absolute continuous with respect to the Lebesgue measure.

2.3. A general variable selection theorem. In this section, we state
our main theorem, which roughly speaking asserts that variable selection is
possible if ‖ΠVjfj‖2 is greater than a constant (strictly larger than 1) times

ε2p(1), for j = 1, . . . , q. Using the quantity

κ1 = min
j∈J0

‖fj‖2,

we will derive this condition from two more concrete ones. Note that appli-
cations can be found in the next section.

Theorem 15. Let c > 8. Suppose that the following two assumptions
hold:

(i) For j = 1, . . . , q, we have

‖fj −ΠVjfj‖2 ≤ κ1/2.

(ii) We have

ε2p(1) ≤ κ1/8.

Then

P
(
Ĵ0 6= J0

)
≤ 9q−(c/4−2).

3. Optimal Conditions

3.1. Sufficient conditions. In this section, we want to apply Theorem
15 in a parametric and in a nonparametric setting. The parametric one is
as follows. Suppose that the fj belong to known finite-dimensional linear
subspaces Vj of Hj , and that these spaces are also chosen in the selection
criterion (2.3). In this case, Theorem 15 has the following corollary. Note
that, since ΠVjfj = fj , the approximation condition (i) disappears.

Corollary 16. Suppose that the fj satisfy fj ∈ Vj. Let c > 8. More-
over, suppose that the following two conditions hold:

(i)

32ε2c log q ≤ κ1,

(ii)

32ε2
√
cd1 log q ≤ κ1.

Then

P
(
Ĵ0 6= J0

)
≤ 9q−(c/4−2).
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Next, we consider the nonparametric case. Now, the success of the
criterion depends on a suitable choice of the Vj , which in turn depends on
the regularity assumptions on the fj . In the following, we shall restrict our
attention to the case that the coefficients of the fj with respect to some
orthonormal basis belong to some Sobolev ellipsoid. For j = 1, . . . , q, let
{φjk}k≥1 be orthonormal bases of the Hj . Moreover, let Σj(α,K) be the

Sobolev class of functions defined by

Σj(α,K) =

{
hj ∈ L2

j ([0, 1]) :
∞∑
k=1

k2α 〈hj , φjk〉2 ≤ K

}
, (3.1)

where α > 0 and K > 0 are real numbers (see, e.g., the book by Tsybakov
[74]). Specifically, we can consider trigonometric bases (by omitting the
constant function). We now make the following assumption:

Assumption 13. There are α > 0 and K > 0 such that that fj ∈
Hj ∩ Σj(α,K) for j = 1, . . . , q.

For j = 1, . . . , q, let Vj be the linear span of the first d1 basis functions
φj1, . . . , φjd1 . Using (3.1), we have

‖hj −ΠVjhj‖2 ≤ K(1 + d1)−2α

for each hj ∈ Σj(α,K). In particular, if

1 + d1 ≥
(

2K

κ1

)1/(2α)

, (3.2)

then we have
‖hj −ΠVjhj‖2 ≤ κ1/2 (3.3)

for each hj ∈ Σj(α,K), meaning that Assumption (i) of Theorem 15 holds.
From Theorem 15, we now obtain:

Corollary 17. Let Assumption 13 be satisfied. Let the Vj be chosen as
above, where d1 is the smallest integer such that (3.2) is satisfied. Moreover,
suppose that the following two conditions hold:

(i)

32ε2c log q ≤ κ1,

(ii)

32ε2
√
c log q ≤ κ(4α+1)/4α

1 (2K)−1/(4α).

Then

P
(
Ĵ0 6= J0

)
≤ 9q−(c/4−2).

Proof. Recall that Assumption (i) of Theorem 15 is satisfied by the
choice of d1 and (3.3). Thus it remains to verify that Assumption (ii) of
Theorem 15 is also satisfied. By the definition of d1, we have

d1 ≤
(

2K

κ1

)1/(2α)

.
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Using this and the Assumptions of the corollary, we conclude that

p(1) = 2ε2
(√

cd1 log q + c log q
)
≤ κ1/16 + κ1/16 = κ/8,

which is Assumption (ii) of Theorem 15. This completes the proof. �

3.2. Necessary conditions. In this section, we complete Corollaries
16 and 17 by showing that the conditions are (up to constants) also neces-
sary, thus optimal.

We define

Σj(α,K, κ1) =
{
fj ∈ Σj(α,K) : ‖fj‖2 ≥ κ1

}
and

Σ(α,K, κ1, s) =

f =
∑
j∈J

fj : fj ∈ Σj(α,K, κ1), |J | = s

 .

We prove:

Proposition 14. Let s 6= 0, s ≤ q − 3, and q ≥ 5. If

ε2 max {log(q − s+ 1), log(s+ 1)} ≥ 4κ1

or if

ε2
√

log(q − s+ 1) ≥ 8κ
(4α+1)/4α
1 K−1/(4α),

then we have

inf
Ĵ

sup
f∈Σ(α,K,κ1,s)

Pf
(
Ĵ 6= Jf

)
≥ 1/4.

Remark 16. Applying the bound max{log(q − s + 1), log(s + 1)} ≥
log(q/2), the first condition can also be replaced by ε2 log(q/2) ≥ 4κ1.

The proof of this proposition is given in Section 4.2, and uses standard
techniques, namely Fano’s lemma and the method of several fuzzy hypothesis
(see, e.g., [74]).

A similar result also holds in the setting considered in Corollary 16. In
this case, we define

Vj(κ1) =
{
gj ∈ Vj : ‖gj‖2 ≥ κ1

}
and

V (κ1, s) =

f =
∑
j∈J

fj : fj ∈ Vj(κ1), |J | = s

 .

Then we have (see Remark 17):

Proposition 15. Let s 6= 0, s ≤ q − 3, and q ≥ 5. If

ε2 max {log(q − s+ 1), log(s+ 1)} ≥ 4κ1

or if

ε2
√
d1 log(q − s+ 1) ≥ 8κ1,
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then we have
inf
Ĵ

sup
f∈V (κ1,s)

Pf
(
Ĵ 6= Jf

)
≥ 1/4.

4. Proofs

4.1. Proof of Theorem 15. Before we begin with the proof of The-
orem 15, we present some known exponential inequalities for Gaussian and
chi-square random variables which will be used in the proof. Moreover, we
derive a consequence of Assumption (i) and (ii) of Theorem 15.

From (2.1), we have that the random variables W (h), h ∈ L2([0, 1]q),
are Gaussian, with expectation 0 and variance ‖h‖2. Hence,

P (W (h) ≥ x) ≤ exp

(
− x2

2‖h‖2

)
(4.1)

(see, e.g., [52, Chapter 2]). Moreover, from (2.2), we have

‖ΠVJW‖
2 =

∑
j∈J

d1∑
k=1

(W (φjk))
2,

which is the sum of the squares of dJ independent standard Gaussian random
variables, thus a chi-square random variable with dJ degrees of freedom. In
the proof, we will make use of the following lemma.

Lemma 18. Let d be a positive integer, and let χ2(d) be a chi-square
random variable with d degrees of freedom. Then, for all x ≥ 0, we have

P
(
χ2(d)− d ≥ 2

√
dx+ 2x

)
≤ exp (−x)

and
P
(
χ2(d)− d ≤ −2

√
dx
)
≤ exp (−x) .

Moreover, let d′ be another positive integer, and let χ2(d′) be a chi-square
random variable independent of χ2(d). Then, for all x ≥ 0, we have

P
(
χ2(d)− d− (χ2(d′)− d′) ≥ 2

√
(d+ d′)x+ 2x

)
≤ exp (−x) .

The first two inequalities of Lemma 18 follow from [47, Lemma 1]. The
third one follows by the same arguments. Let Z = χ2(d)− d− (χ2(d′)− d′).
Then, for 0 < u < 1/2,

log (E [exp(uZ)]) ≤ du2

1− 2u
+ d′u2 ≤ (d+ d′)u2

1− 2u
.

Now, proceed as in [47] or as in the proof of Proposition 2.9 in [52].
In the proof of Theorem 15, we will apply Assumption (i) and (ii) of

Theorem 15 in the following form:

Lemma 19. Let J ′ ⊆ J0 be a subset. Then Assumption (i) and (ii) of
Theorem 15 imply that

‖ΠVJ′f‖
2 ≥ 4ε2p(|J ′|) (4.2)
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Proof. Applying (i), we obtain

‖ΠVJ′f‖
2 =

∑
j∈J ′
‖ΠVjfj‖2

=
∑
j∈J ′

(
‖fj‖2 − ‖fj −ΠVjfj‖2

)
≥ |J ′|κ1

2
.

Combining this with (ii), we get

4ε2p(|J ′|) = 4ε2|J ′|p(1) ≤ |J ′|κ1

2
≤ ‖ΠVJ′f‖

2.

This completes the proof. �

Proof of Theorem 15. Let

PJ,J0 = P
(
‖ΠVJY ‖

2 − ε2dJ − ε2p(J) > ‖ΠVJ0
Y ‖2 − ε2dJ0 − ε2p(J0)

)
.

We have

‖ΠVJY ‖
2 − ε2dJ − ε2p(J) > ‖ΠVJ0

Y ‖2 − ε2dJ0 − ε2p(J0) (4.3)

if and only if

ε2(‖ΠVJ\J0
W‖2 − dJ\J0

)− ε2(‖ΠVJ0\J
W‖2 − dJ0\J) + 2εW (ΠVJ0\J

f)

> ‖ΠVJ0\J
f‖2 + ε2(p(J)− p(J0)).

Let l = |J0 \ J | and m = |J \ J0|. Then (4.3) is equivalent to

ε2(‖ΠVJ\J0
W‖2 − dm)− ε2(‖ΠVJ0\J

W‖2 − dl) + 2εW (ΠVJ0\J
f)

> ‖ΠVJ0\J
f‖2 + ε2(p(m)− p(l)). (4.4)

By the union bound, we have

P(Ĵ0 6= J0) ≤
∑
J 6=J0

PJ,J0

=
∑
|J |<|J0|

PJ,J0 +
∑

|J |>|J0|,J0⊂J

PJ,J0 +
∑

|J |≥|J0|,J0*J

PJ,J0

=: S1 + S2 + S3.

Step 1. We first consider S1, i.e., the sum over subsets J satisfying |J | < |J0|.
For such a set, we have l > m. By (4.2), we have

‖ΠVJ0\J
f‖2/2− ε2p(l) + ε2p(m) ≥ ε2p(l) + ε2p(m) = ε2p(l +m). (4.5)
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Using (4.4), (4.5), and the union bound, we obtain

PJ,J0

≤ P
(
ε2(‖ΠVJ\J0

W‖2 − dm)− ε2(‖ΠVJ0\J
W‖2 − dl) > ε2p(l +m)

)
+ P

(
2εW (ΠVJ0\J

f) > ‖ΠVJ0\J
f‖2/2

)
.

Thus Lemma 18 (see also (2.5)) and (4.1) imply

PJ,J0 ≤ exp (−c(l +m) log q) + exp

(
−
‖ΠVJ0\J

f‖2

32ε2

)
.

Using the bound ‖ΠVJ0\J
f‖2 ≥ 4ε2p(l) ≥ 8ε2cl log q, we get

PJ,J0 ≤ q−c(l+m) + q−(c/4)l ≤ 2q−(c/4)l.

We conclude that

S1 ≤
s∑
l=1

l−1∑
m=0

(
s

l

)(
q − s
m

)
2q−(c/4)l

≤
s∑
l=1

l∑
m=0

(
s

l

)(
q − s
m

)
2q−(c/4)l

≤
s∑
l=1

sl

l!

(
e(q − s)

l

)l
2q−(c/4)l

≤
s∑
l=1

2

l!
q−(c/4−2)l

≤ 2(e− 1)q−(c/4−2),

where we used the following combinatorial result (for a proof see, e.g., [52,
Proposition 2.5])

l∑
m=0

(
q

m

)
≤
(eq
l

)l
(4.6)

and the inequality s(q − s)e ≤ q2e/4 ≤ q2.
Step 2. Second, we consider S2, i.e., the sum over subsets J satisfying

J0 ⊂ J and |J | > |J0|. For such a set, we have m = |J \ J0| ≥ 1 and
l = |J0 \ J | = 0. Thus (4.4) and Lemma 18 (see also (2.5)) yield

PJ,J0 ≤ P
(
‖ΠVJ\J0

W‖2 − dm > p(m)
)
≤ exp (−cm log q)
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We conclude that

S2 ≤
q−s∑
m=1

(
q − s
m

)
q−cm

≤
q−s∑
m=1

1

m!
q−(c−1)m

≤ (e− 1)q−(c−1).

Step 3. Finally, we consider S3, i.e., the sum over subsets J satisfying
J0 * J and |J | ≥ |J0|. For such a set, we have m ≥ l ≥ 1. Similarly as in
Step 1, we have

‖ΠVJ0\J
f‖2/2− ε2p(l) + ε2p(m)/2 ≥ ε2p(l +m)/2.

Using this, (4.4), and the union bound, we obtain

PJ,J0

≤ P
(
ε2(‖ΠVJ\J0

W‖2 − dm)− ε2(‖ΠVJ0\J
W‖2 − dl) > ε2p(l +m)/2

)
+ P

(
2εW (ΠVJ0\J

f) >
(
‖ΠVJ0\J

f‖2 + ε2p(m)
)
/2
)
.

Thus Lemma 18 and (4.1) imply

PJ,J0 ≤

exp (−(c/4)(l +m) log q) + exp

−
(
ε2p(m) + ‖ΠVJ0\J

f‖2
)2

32ε2‖ΠVJ0\J
f‖2

 .

The last expression can be bounded by

exp

(
− 1

32
inf
y≥0

(yp(m) + 1/y)2

)
≤ exp

(
−1

8
p(m)

)
.

Using p(m) ≥ 2cm log q, we get

PJ,J0 ≤ q−(c/4)(l+m) + q−(c/4)m ≤ 2q−(c/4)m.

By proceeding as in Step 1, we conclude that

S1 ≤
q−s∑
m=1

m∑
l=1

(
s

l

)(
q − s
m

)
2q−(c/4)m

≤
q−s∑
m=1

(q − s)m

m!

(es
m

)m
2q−(c/4)m

≤
q−s∑
m=1

2

m!
q−(c/4−2)m.

≤ 2(e− 1)q−(c/4−2)
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Finally, from Steps 1-3, we conclude that

P(Ĵ0 6= J0) ≤ (2(e− 1) + (e− 1) + 2(e− 1)) q−(c/4−2) ≤ 9q−2(c/8−1).

This completes the proof. �

4.2. Proof of Proposition 14. The first part of Proposition 14 follows
from:

Proposition 16. Let s 6= 0, s 6= q, and q ≥ 3. Then

inf
Ĵ

sup
f∈Σ(α,K,κ1,s)

Pf
(
Ĵ 6= Jf

)
≥ 1− κ1/ε

2 + log 2

max{log(q − s+ 1), log(s+ 1)}
.

Proof. The proof is based on Fano’s Lemma (see, e.g., [74] and also
[80, proof of Theorem 2]). We have

inf
Ĵ

sup
f∈Σ

Pf
(
Ĵ 6= Jf

)
≥ inf

Ĵ

1

M

M∑
l=1

Pfl
(
Ĵ 6= Jfl

)
,

where fl ∈ Σ = Σ(α,K, κ1, s) have different support sets Jfl . By Fano’s
Lemma, the right hand side is bounded from below by

1−
1
M2

∑M
l,m=1K(Pfl ,Pfm) + log 2

logM
, (4.7)

provided that M ≥ 3. Let M = max{q − s + 1, s + 1}, which greater than
or equal to 3, since q ≥ 3. If M = s+ 1, then we choose

Jl = {1, . . . , s+ 1} \ {l},

for l = 1, . . . ,M . On the other hand, if M = q − s+ 1, then we choose

Jl = {1, 2, . . . , s− 1} ∪ {s− 1 + l},

for l = 1, . . . ,M . The sets are chosen such that for l 6= m, we have

|Jl \ Jm| = |Jm \ Jl| = 1.

Moreover, let hj ∈ Σj(α,K, κ1) be elements such that ‖hj‖2 = κ1, for
j = 1, . . . , q. We choose

fl =
∑
j∈Jl

hj ,

for l = 1, . . . ,M . By [52, Lemma 4.6], we have

K(Pfl ,Pfm) =
1

2ε2
‖fl − fm‖2 =

κ1

ε2
,
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for l 6= m. We conclude that

inf
Ĵ

sup
f∈Σ

Pf
(
Ĵ 6= Jf

)
≥ 1− κ1

ε2 logM
− log 2

logM
.

This completes the proof. �

The second part of Proposition 14 follows from:

Proposition 17. Let s 6= 0 and s ≤ q − 2. We have

inf
Ĵ

sup
f∈Σ(α,K,κ1,s)

Pf
(
Ĵ 6= Jf

)
≥ 1− 2κ

4α+1
2α

1 K−
1

2α /ε4 + log 2

log(q − s+ 1)
.

Proof. The proof is based on with Fano’s Lemma combined with the
method of several fuzzy hypothesis (see, e.g., [74, Section 2.7.4 and 2.7.5]).
Again the proof is standard (compare to [74, Chapter 2.7.5] and [18, The-
orem 2]). We start with the inequality

inf
Ĵ

sup
f∈Σ

Pf
(
Ĵ 6= Jf

)
≥ inf

Ĵ

1

M

M∑
l=0

∫
Σ
Pf
(
Ĵ 6= Jl

)
µl(df),

where the Jl are different support sets and where µl are probability measures
on Σ each supported on a finite set of functions having support Jl. By Fano’s
Lemma, the right hand side is bounded from below by

1−
1
M

∑M
l=1K(Pl,Q) + log 2

logM
, (4.8)

provided that M ≥ 3, where

Pl(·) =

∫
Σ
Pf (·)µl(df)

and Q is an arbitrary probability measure to be chosen later (for this version
of Fano’s lemma, see [34, Eq. (1.3)]). Let M = q − s+ 1, and let

Jl = {1, 2, . . . , s− 1} ∪ {s− 1 + l},
for l = 1, . . . ,M . Moreover, let µl be the uniform measure on the set

Sl =

f =
∑
j∈Jl

fj : fj = A
d∑

k=1

ωjkφjk, ωjk ∈ {−1, 1}

 ,

where

A =

√
κ1

d
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and d is the greatest integer satisfying

d ≤
(
K

κ1

) 1
2α

.

Thus, µl is supported on 2sd functions which all have the support Jl. More-
over, for such a function f =

∑
j∈Jl fj , we have

‖fj‖2 =
κ1

d

d∑
k=1

‖φjk‖2 = κ1

and
∞∑
k=1

k2α 〈fj , φjk〉2 =
κ1

d

d∑
k=1

k2α ≤ κ1d
2α ≤ K

which implies that f ∈ Σ(α,K, κ1, s), as required. Next, we choose the
probability measure Q as follows:

Q(·) =

∫
Σ
Pf (·)µ(df),

where µ is the uniform measure on the set

S =

f =

s−1∑
j=1

fj : fj = A

d∑
k=1

ωjkφjk, ωjk ∈ {−1, 1}

 ,

with A and d as above. We now use:

Lemma 20. We have

K(Pl,Q) ≤ dA4

ε4
.

A proof of Lemma 20 is given in Appendix C. Inserting the choices of
A and d, we get

K(Pl,Q) ≤ 2κ
4α+1

2α
1 K−

1
2α

ε4
.

We conclude that

inf
Ĵ

sup
f∈Σ

Pf
(
Ĵ 6= Jf

)
≥ 1− 2κ

4α+1
2α

1 K−
1

2α

ε4 logM
− log 2

logM
.

�

Remark 17. The proof of Proposition 15 follows essentially the same
lines as that of Proposition 14. The only difference is that, in the proof of
Proposition 17, we choose d = d1 and we let the φjk be orthonormal bases
of the Vj .





APPENDIX A

Appendix to Chapter 1

Selberg’s result

In this appendix we briefly discuss Selberg’s result about the rate of con-
vergence in the central limit theorem of Im log ζ(1/2+ it) (see [68, Theorem
2] and [73, Theorem 6.2]). From Theorem 1 we deduce:

Lemma 21. Let x = elog T/N and N such that N/ log log T → ∞ and
x→∞ as T →∞. Suppose further that N/ log log T = O(log log T ). Then

sup
a<b

(
1

T
λ
({
t ∈ [T, 2T ] :

1√
(log log x+ γ)/2

∑
p≤x

sin(t log p)
√
p

∈ [a, b]
})

−
∫ b

a
e−t

2/2 dt√
2π

)
= O(1/

√
log log T ). (0.9)

Proof. We denote by Φn(u) the left hand side of (1.3). Using [27,
XVI.3, formula 3.13] we can bound the left hand side of (0.9) by

2

π

c
√

log log x∫
−c
√

log log x

e−u
2/2|(Φn(u/

√
(log log x+ γ)/2)− 1)/u|du+O

( 1

c
√

log log x

)
.

(0.10)
An inspection of the proof of Proposition 2 combined with (4.2) shows that
Φn(u) = Φ(u)(1 + O(1/ log x)) + O(1/ log T ), |u| ≤ c. If we choose c > 0
such that Φ(u) has no zeros for |u| ≤ c, we obtain Φn(u) = Φ(u)(1 +

O(1/ log x)), |u| ≤ c. On the other hand, we have Φ(u/
√

(log log x+ γ)/2) =
1 + O(u2/ log log x), |u| ≤ c

√
log log x. Plugging in these estimates gives

that (0.10) isO(1/
√

log log x). FromN/ log log T = O(log log T ) we conclude
that log log T/ log log x→ 1 and this completes the proof. �

This lemma combined with the bound (see [73, Lemma 6.2])

|{t ∈ [T, 2T ] : |r1,x(t)| ≥ c′ log log log T}| = O(1/
√

log log T ),
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where c′ > 0 is a constant, yields Selberg’s result

sup
a<b

(
1

T
λ
({
t ∈ [T, 2T ] :

Im log ζ(1/2 + it)√
(log log T )/2

∈ [a, b]
})

−
∫ b

a
e−t

2/2 dt√
2π

)
= O

(
log log log T√

log log T

)
.

Mean value estimates

For completeness we present some standard mean value estimates which
we applied in the proof of Corollary 2 (see [66, Lemma 3] and [69, Lemma
3]). For this purpose let x and y be positive real numbers, ap and bp be
complex numbers with |ap| ≤ 1 and |bp| ≤ log p/ log x, and k be a nonnega-
tive integer. By repeating the arguments in the proof of Proposition 1, we
obtain

1

T

∫ 2T

T

∣∣∣∣∑
p≤x

ap
p1+2it

∣∣∣∣2kdt ≤ k!
(∑
p≤x

1

p2

)k
+ 2Dk!(π(x))k/T,

1

T

∫ 2T

T

∣∣∣∣ ∑
y<p≤x

ap

p1/2+it

∣∣∣∣2kdt ≤ k!
( ∑
y<p≤x

1

p

)k
+ 2Dk!(π(x)− π(y))k/T

1

T

∫ 2T

T

∣∣∣∣∑
p≤x

bp

p1/2+it

∣∣∣∣2kdt ≤ k!
1

(log x)k

(∑
p≤x

log p

p

)k
+ 2Dk!(π(x))k/T.

If x ≤ T 1/k, the first and the third term are bounded by (Ak)k and the
second by (k(log log x− log log y +A))k, A > 0 some constant.

For example, we obtain for a function |g(u)| ≤ 1

1

T

∫ 2T

T

∣∣∣∣ 1

log T 1/V

∑
n≤T 1/V

Λ(n)

n1/2+it
g
( log n

log T 1/V

)∣∣∣∣2bV cdt
=

1

T

∫ 2T

T

∣∣∣∣ ∑
p≤T 1/V

bp

p1/2+it
+

∑
p2≤T 1/V

ap
p1+2it

+O(1)

∣∣∣∣2bV cdt
≤ 32V ((AV )V + (AV )V +O(1)V ). (0.11)

Large deviation theory

In this appendix we give the definition of the large deviation principle
and state two important results which we used in the proofs of Corollary 2
and 3 (see [22]).

A function I : R → [0,∞] is called a rate function (resp. good rate
function), if for all α ∈ [0,∞), the sets {x : I(x) ≤ α} are closed (resp.
compact). A family {Zε} of real-valued random variables satisfies the large
deviation principle with the speed ε and the rate function I, if
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(a) For any closed set F ⊆ R
lim sup
ε→0

ε logP(Zε ∈ F ) ≤ − inf
x∈F

I(x).

(b) For any open set G ⊆ R
lim inf
ε→0

ε logP(Zε ∈ G) ≥ − inf
x∈G

I(x).

Theorem 16 (Gärtner-Ellis, see Theorem 2.3.6 or 4.5.20 in [22]). Sup-
pose that for each λ ∈ R

Λ(λ) := lim
ε→0

ε logE
[
eλZε/ε

]
exists and that Λ is differentiable. Then the family {Zε} satisfies the large
deviation principle with the good rate function I(x) = supλ∈R(λx− Λ(λ)).

Theorem 17 (Varadhan, see Theorem 4.3.1 in [22]). Suppose that {Zε}
satisfies the large deviation principle with a good rate function I and let
h ∈ R. Assume further that for some γ > 1

lim sup
ε→0

ε logE
[
eγhZε/ε

]
<∞. (0.12)

Then
lim
ε→0

ε logE
[
ehZε/ε

]
= sup

x∈R
(xh− I(x)).

Definition 3 (see Definition 4.2.10 in [22]). Let {Zε} and {Z̃ε} be two
families of real-valued random variables, defined on the same probability
space. Then {Zε} and {Z̃ε} are called exponentially equivalent if for each
δ > 0,

lim sup
ε→0

ε logP(|Zε − Z̃ε| > δ) = −∞. (0.13)





APPENDIX B

Appendix to Chapter 2

Proof of Lemma 2

We first show how (i) implies (ii) and (iii). Let h1 ∈ H1 and h2 ∈ H2.
Then by (i) we have ‖h1 + h2‖2 ≥ ‖h1‖2 − 2%‖h1‖‖h2‖ + ‖h2‖2 and (ii)
follows from the inequality 2‖h1‖‖h2‖ ≤ ‖h1‖2 + ‖h2‖2, while (iii) follows
from 2%‖h1‖‖h2‖ ≤ %2‖h1‖2 + ‖h2‖2.

Next, we show how (ii) implies (i). Let 0 6= h1 ∈ H1 and 0 6= h2 ∈ H2.
We may assume without loss of generality that ‖h1‖ = ‖h2‖ = 1 and that
〈h1, h2〉 ≥ 0. Then by (ii) we have 2 − 2〈h1, h2〉 = ‖h1 − h2‖2 ≥ 2(1 − %)
which gives (i).

Finally, suppose that (iii) is true. Let 0 6= h1 ∈ H1 and 0 6= h2 ∈ H2.
Again, we may assume that ‖h1‖ = ‖h2‖ = 1. Then by (iii) we have
1− 〈h1, h2〉2 = ‖h1 − 〈h1, h2〉h2‖2 ≥ 1− %2 which gives (i). This completes
the proof. �

A feasible estimator

In this appendix, we show that estimators which are based on the
condition (1/n)

∑n
i=1 g1(Xi

1) = 0 have (up to a constant and a term of
smaller order) the same risk bound as our estimators based on the condition
E [g1(X1)] = 0. We only sketch the main arguments in the case W1 = V1.
Suppose that we choose U1 ⊂ L2(PX1) and V2 ⊂ L2(PX2), where V2 con-
tains all constant functions. Let V ′1 = {g1 ∈ U1|(1/n)

∑n
i=1 g1(Xi

1) = 0} and
V1 = {g1 ∈ U1|E [g1(X1)] = 0}. Since V2 contains all constants, we have

V = V1 + V2 = V ′1 + V2. This implies that the first components of f̂V1+V2

and f̂V ′1+V2
in V1 and V ′1 , respectively, differ only by the constant

1

n

n∑
i=1

(f̂V )1(Xi
1).
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The risk of this constant can be bounded as follows. By the bound (x+y)2 ≤
2x2 + 2y2, we have

E

1Eδ

(
1

n

n∑
i=1

(f̂V )1(Xi
1)

)2


≤ 2E

1Eδ

(
1

n

n∑
i=1

(f̂V )1(Xi
1)− f1(Xi

1)

)2


+ 2E

1Eδ

(
1

n

n∑
i=1

f1(Xi
1)

)2
 .

Applying the Cauchy-Schwarz inequality and the fact that the f1(Xi
1) are

independent and centered, this can be bounded by

2E
[
1Eδ‖(f̂V )1 − f1‖2n

]
+

2‖f1‖2

n
.

Now apply Lemma 10 to the first term.

Proof of Lemma 4 and 5

First, we prove Lemma 4. In Section 4.1, we have shown that

‖g1‖2∞ ≤ ϕ
2
1d1 ‖g1‖2

and

‖gj2‖2∞ ≤ ϕ
2
2dj2 ‖gj2‖

2

for all g1 ∈ V1, gj2 ∈ Vj2, 1 ≤ j ≤ q − 1, with ϕ2
1 = 2/c and ϕ2

2 = 2/c.

Now let g = g1 + g2 ∈ V . Suppose that g2 =
∑q−1

j=1 g2j is the decomposition

satisfying (4.6). Applying the above bounds, the Cauchy-Schwarz inequality,
and Assumption 9, we obtain

‖g2‖∞ ≤
q−1∑
j=1

ϕ2

√
d2j ‖g2j‖ ≤

ϕ2√
1− ε2

√√√√q−1∑
j=1

d2j ‖g2‖ .

Applying again the Cauchy-Schwarz inequality and then Assumption 2 and
Lemma 2, we conclude that

‖g1 + g2‖∞ ≤ ϕ1

√
d1‖g1‖+

ϕ2√
1− ε2

√√√√q−1∑
j=1

d2j‖g2‖

≤
√

ϕ1 ∨ ϕ2

(1− ε2)(1− ρ0)

√√√√d1 +

q−1∑
j=1

d2j‖g1 + g2‖. (0.14)
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This completes the proof of Lemma 4. The proof of Lemma 5 is similar. In
[10], it is shown that

‖g1‖2∞ ≤ (r1 + 1)2m1

∫ 1

0
g2

1(x1)dx1

and

‖gj2‖2∞ ≤ (r2 + 1)2m2

∫ 1

0
g2
j2(xj2)dxj2

for all g1 ∈ V1, gj2 ∈ Vj2, 1 ≤ j ≤ q − 1. This implies that

‖g1‖2∞ ≤ ϕ
2
1d1 ‖g1‖2

and

‖gj2‖2∞ ≤ ϕ
2
2dj2 ‖gj2‖

2

with ϕ2
1 = 2(r1 + 1)/c and ϕ2

2 = 2(r2 + 1)/c. Now proceed as above. This
completes the proof. �

Proof of Corollary 11

Lemma 22. Let Assumption 4 and 9 be satisfied. Suppose that (4.17)
and (4.18) are satisfied. Then (3.7) is satisfied with

ψΠ(V2) =
√
C3

√√√√q−1∑
k=1

d−2β
2k

and

h1(x1) =

√√√√ q∑
k=1

h2
1k(x1) +

√
c′

1− ε2

∫ (
pX(x1, x2)

pX1(x1)pX2(x2)

)2

pX2(x2)dx2,

where c′ =
∑q−1

j,k=1,j 6=k ‖h
′
jk‖2. Note that h1 ∈ L2(PX1), by Assumption 4.

Proof. Let x1 be fixed (such that pX(x1, ·)/(pX1(x1)pX2(·)) ∈ L2(PX2),
which is satisfied for PX1-almost all x1, by Assumption 4). By the projection
theorem, the expression∫ (

pX(x1, x2)

pX1(x1)pX2(x2)
− g(x2)

)2

p2(x2)dx2,

subject to the constraints g ∈ H2, is minimized by r. Suppose that r =∑q−1
k=1 rk is the decomposition such that (4.6) is satisfied (note that we omit

the dependence of r and the rk on x1). For k = 1, . . . , q − 1, we have

E
[

pX(x1, X2)

pX1(x1)pX2(X2)

∣∣∣∣X2k = x2k

]
=

pX1,X2k
(x1, x2k)

pX1(x1)pX2k
(x2k)

. (0.15)
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Thus the rk satisfy the q − 1 equations

rk(x2k) =

pX1,X2k
(x1, x2k)

pX1(x1)pX2k
(x2k)

−
q−1∑

j=1,j 6=k

∫
rj(x2j)

pX2j ,X2k
(x2j , x2k)

pX2j (x2j)pX2k
(x2k)

pX2j (x2j)dx2j ,

for PX2k -almost all x2k, 1 ≤ k ≤ q − 1 (note again that we omit the de-
pendence of the rk on x1). By (4.17), (4.18), and the Cauchy-Schwarz
inequality, the first and the second term on the right hand side are con-
tained in H(β, h1k(x1)) and H(β,

∑q−1
j=1,j 6=k ‖rj‖L2(PX2j )

‖h′jk‖), respectively.

We conclude that

‖r −ΠV2r‖L2(PX2 )

≤
q−1∑
k=1

‖rk −ΠV2k
rk‖L2(PX2k )

≤
q−1∑
k=1

C3

h1k(x1) +

q−1∑
j=1,j 6=k

‖rj‖L2(PX2j )
‖h′jk‖

 d−β2k .

Applying the Cauchy-Schwarz inequality and Assumption 9, this is bounded
by

≤
q−1∑
k=1

C3d
−β
2k

h1k(x1) +

√√√√‖r‖2L2(PX2 )

1− ε2

q−1∑
j=1,j 6=k

‖h′jk‖2

 .

Applying the Cauchy-Schwarz inequality again and the fact that orthogonal
projections lower the norm, we obtain the claimed ψΠ(V2) and h1(x1). This
completes the proof. �

A remark on Theorem 9

In this appendix, we show how to derive Theorem 9 from Rudelson’s
lemma combined with Talagrand’s inequality. We use the same notation as
in the proof of Theorem 9. Then Rudelson’s lemma [62, Theorem 1] says
that there is a universal constant C1 such that

E
[
‖Bn − I‖op

]
≤ C1

√
ϕ2d log d

n
, (0.16)

provided that the last expression is smaller than 1. Here, we also used (5.4).
From (5.6), Theorem 11 (applied with λ = δ/2, note that v, b ≤ ϕ2d), and
(0.16), we now conclude:

Theorem 18. Let δ ∈ (0, 1). Suppose that

4C1

√
ϕ2d log d

n
≤ δ, (0.17)
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where C1 is the constant (0.16). Then

P

(
sup

g∈V,‖g‖≤1
|‖g‖2n − ‖g‖2| > δ

)
≤ 3 exp

(
−κ

4

nδ2

ϕ2d

)
,

where κ is the constant from Talagrand’s inequality.

Proof of Lemma 6

In this appendix, we prove the following stronger convergence in norm
result

∥∥(Πh)1 −
(
Π1 −

k∑
j=1

(Π1Π2)j(1−Π1)
)
h
∥∥ ≤ ρ2k+1

0

1− ρ2
0

‖h‖.

First, note that

‖Π1h2‖ ≤ ρ0‖h2‖ and ‖Π2h1‖ ≤ ρ0‖h1‖ (0.18)

for all h2 ∈ H2, h1 ∈ H1. The first inequality follows from

‖Π1h2‖2 = 〈Π1h2,Π1h2〉 = 〈Π1h2, h2〉 ≤ ρ0‖Π1h2‖‖h2‖,

the second one can be shown analogously. Now, define the alternating sums

L
(k)
1 = Π1 −Π1Π2 + Π1Π2Π1 − · · ·+ Π1(Π2Π1)k

= Π1 −
k∑
j=1

(Π1Π2)j(1−Π1)

=
k−1∑
j=0

Π1(Π2Π1)j(1−Π2) + Π1(Π2Π1)k (0.19)

and

L
(k)
2 = Π2 −Π2Π1 + · · · − (Π2Π1)k

= Π2 −
k−1∑
j=1

(Π2Π1)j(1−Π2)− (Π2Π1)k

=

k−1∑
j=0

Π2(Π1Π2)j(1−Π1). (0.20)
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Applying (0.18), we obtain

‖L(l)
1 − L

(k)
1 ‖op ≤

l∑
j=k+1

‖(Π1Π2)j(1−Π1)‖op

≤
l∑

j=k+1

ρ2j−1
0

≤ ρ2k+1
0

1− ρ2
0

.

Similarly, we obtain

‖L(l)
2 − L

(k)
2 ‖op ≤

ρ2k
0

1− ρ2
0

.

We conclude that {L(k)
j } is a Cauchy sequence in the Banach space of all

bounded linear mappings (see, e.g., [65, Theorem 4.1]). Hence L
(k)
j con-

verges to a bounded linear mapping Lj and we have

‖L1 − L(k)
1 ‖op ≤

ρ2k+1
0

1− ρ2
0

.

Moreover, L(n) = L
(n)
1 + L

(n)
2 converges to the linear map L = L1 + L2.

Since Lj takes values in Hj , it remains to show that L = Π. Since L(n)

is self-adjoint, the limit L is also self-adjoint. Applying (0.19), (0.20), and
(0.18), we have

L1h1 = h1, L2h2 = h2, and L1h2 = L2h1 = 0 (0.21)

for all h1 ∈ H1, h2 ∈ H2. This implies that L is idempotent, i.e. satisfies
L2 = L. It follows from [8, Proposition 2] that L is an orthogonal projection.
But (0.21) also implies that the range of L is equal to H1 +H2. This gives
L = Π. This completes the proof. �

Proof of Lemma 7

We only proof (iii), since (i) and (ii) are standard. By the spectral
theorem, there exists an orthogonal matrix V and nonnegative real numbers
λ1(B), . . . , λk1(B) such that

B = V T diag(λ1(B), . . . , λk1(B))V. (0.22)

Now, by the Cauchy-Schwarz inequality, each entry of a matrix is bounded
by the operator norm of that matrix. In particular, we have |(V AV T )jk| ≤
‖V AV T ‖op = ‖A‖op for all j, k, since V is orthogonal. Applying (0.22), part
(i) of this Lemma, the fact that the λj(B) are nonnegative, and the previous
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argument, we obtain

| tr(AB)| =
∣∣∣ k1∑
j=1

(V AV T )jjλj(B)
∣∣∣

≤ max
j=1,...,k1

|(V AV T )jj | tr(B) ≤ ‖A‖op tr(B).

This completes the proof. �

An alternative proof of Corollary 12

Let {φ1j}1≤j≤d1 be a basis of V1 and let {φ2j}1≤j≤d2 be a basis of V2.
Let

Z1 = (φ1j(X
i
1))1≤i≤n,1≤j≤d1 ∈ Rn×d1

and

Z2 = (φ2j(X
i
2))1≤i≤n,1≤j≤d2 ∈ Rn×d2 .

Moreover, let

Z = (Z1|Z2) ∈ Rn×d.
In the following, suppose that the Eδ holds. Then Theorem 9 implies that
ZTZ is invertible (see, e.g., (5.5)). Thus the minimum of ‖ε−Zβ‖2n is taken

at β = (ZTZ)−1ZT ε and we have Π̂V ε = Z(ZTZ)−1ZT ε. This implies that

(Π̂V ε)1 = (Z1|0)(ZTZ)−1ZT ε. We conclude that

E
[
‖(Π̂V ε)1‖2n|X1, . . . , Xn

]
= tr

(
(Z1|0)(ZTZ)−1(Z1|0)T

) σ2

n
.

On the other hand, (5.2) is equivalent to the inequality

βTZTZβ ≥ (1− δ)
(1 + δ)

(1− ρ2
0)βT1 Z

T
1 Z1β1 (0.23)

for all β = (βT1 , β
T
2 )T with β1 ∈ Rd1 and β2 ∈ Rd2 . Now, we apply the

following lemma. Note that a proof of a more general result can be found
in [25, Lemma 2.1] and that this result was also applied in [70].

Lemma 23. Let F ∈ Rd×d and F1 ∈ Rd1×d1 be two symmetric and
positive definite matrices with d2 = d−d1 ≥ 0. Suppose that vTFv ≥ vT1 F1v1

for all v = (vT1 , v
T
2 )T with v1 ∈ Rd1 and v2 ∈ Rd2. Then, for all w1 ∈ Rd1,(

w1

0

)T
F−1

(
w1

0

)
≤ wT1 F−1

1 w1. (0.24)

Applying (0.23) and this Lemma with

F = ZTZ and F1 =
(1− δ)
(1 + δ)

(1− ρ2
0)ZT1 Z1,

we obtain

tr((Z1|0)(ZTZ)−1(Z1|0)T ) ≤ (1 + δ)

(1− δ)
1

(1− ρ2
0)

tr(Z1(ZT1 Z1)−1ZT1 ).
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Since Π̂V1 = Z1(ZT1 Z1)−1ZT1 , we have tr(Z1(ZT1 Z1)−1ZT1 ) = dimV1 = d1.
This completes the proof. �

Proof of (5.16)

In this appendix, we prove (5.16). As mentioned in the proof of Theorem
3, the main arguments are taken from [5, page 139 and 140]. We define the

event A = {‖f̂1‖∞ ≤ kn}. Then

E
[
‖f1 − f̂∗1 ‖2

]
= E

[
(1Eδ1A + 1Eδ1Ac + 1Ecδ )‖f1 − f̂∗1 ‖2

]
≤ E

[
1Eδ‖f1 − f̂1‖2

]
+ E

[
1Eδ1Ac‖f1‖2

]
+ E

[
1Ecδ (‖f1‖+ kn)2

]
.

Thus it remains to consider the last two expressions. By Theorem 9, the
last one is bounded by

23/4(‖f1‖+ kn)2d exp

(
−κnδ

2

ϕ2d

)
.

Consider the other one. By Assumption 3, we have ‖f̂1‖2∞ ≤ ϕ2d‖f̂1‖2. If
Eδ holds, then

‖f̂1‖2∞ ≤
ϕ2d

(1− δ)
‖Π̂W1(Π̂V Y)1‖2n ≤

ϕ2d

(1− δ)
‖(Π̂V Y)1‖2n,

where we applied the definition of Eδ and the fact that projections lower the
norm. By Proposition 5, the last expression is bounded by

(1 + δ)ϕ2d

(1− δ)2(1− ρ2
0)
‖Π̂V Y − g2‖2n,

for g2 ∈ V2 arbitrary. Using ‖Π̂V Y − g2‖n ≤ ‖Π̂V (f − g2)‖n + ‖Π̂V ε‖n ≤
‖f − g2‖n + ‖ε‖n and Markov’s inequality, we conclude that

P(Eδ ∩ Ac) ≤ P
(

(1 + δ)ϕ2d

(1− δ)2(1− ρ2
0)

(‖f − g2‖n + ‖ε‖n)2 > k2
n

)
≤ 2(1 + δ)ϕ2d(‖f − g2‖2 + σ2)

(1− δ)2(1− ρ2
0)k2

n

.

Letting g2 = ΠV2f , this completes the proof. �
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Appendix to Chapter 4

Proof of Lemma 20

The proof of Lemma 20 is similar to the proof of Lemma 10 in [18] (see
also [74, Chapter 2.7.5]). For completeness, we repeat the arguments. First,
we compute dPl/dP0(y). By [52, Lemma 4.6], we have

dPfl
dP0

(y) = exp

[
ε−2

(
y(fl)−

‖fl‖2

2

)]

= exp

[
−A

2sd

2ε2

]
exp

A∑
j∈Jl

d∑
k=1

ωjky(φjk)

 .
which implies that

dPl

dP0
(y) =

1

2sd

∑
fl∈Sl

dPf
dP0

(y)

= exp

[
−A

2sd

2ε2

] ∏
j∈Jl

d∏
k=1

{
exp

[
Ay(φjk)/ε

2
]

+ exp
[
−Ay(φjk)/ε

2
]

2

}
.

Setting

Ejk(y) =
exp

[
Ay(φjk)/ε

2 −A2/(2ε2)
]

+ exp
[
−Ay(φjk)/ε

2 −A2/(2ε2)
]

2
,

we obtain

dPl

dP0
(y) =

∏
j∈Jl

d∏
k=1

Ejk(y).

Similarly, we have

dQ

dP0
(y) =

s−1∏
j=1

d∏
k=1

Ejk(y).

We have that the Ejk(εW ) are independent, and that E [Ejk(εW )] = 1 and

E
[
E2
jk(εW )

]
=

exp
[
A2/ε2

]
− exp

[
−A2/ε2

]
2

.
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Using these facts, one can compute the χ2 divergence between Pl and Q

χ2(Pl,Q) + 1 = E

[(
dPl

dP0
(εW )

)2

/
dQ

dP0
(εW )

]

=

(
exp

[
A2/ε2

]
− exp

[
−A2/ε2

]
2

)d
.

Applying the bound (ex − e−x)/2 ≤ ex2
, we obtain

χ2(Pl,Q) + 1 ≤ exp

[
dA4

ε4

]
Now apply K(Pl,Q) ≤ log(1+χ2(Pl,Q)) (see, e.g., [74, Lemma 2.7]). This
completes the proof. �
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[53] L. Meier, S. van de Geer, and P. Bühlmann. High-dimensional additive modeling.

Ann. Statist., 37:3779–3821, 2009.
[54] J. D. Opsomer. Asymptotic properties of backfitting estimators. J. Multivariate Anal.,

73:166–179, 2000.
[55] J. D. Opsomer and D. Ruppert. Fitting a bivariate additive model by local polynomial

regression. Ann. Statist., 25:186–211, 1997.
[56] M. Radziwi l l. Large deviations in Selberg’s central limit theorem.

http://arxiv.org/abs/1108.5092, 2011.
[57] K. Ramachandra. On the Mean-Value and Omega-Theorems for the Riemann Zeta-

Function. Tata Institute of Fundamental Research Lectures on Mathematics and
Physics, 85. Published for the Tata Institute of Fundamental Research, Bombay,
Springer, 1995.

[58] G. Raskutti, M. J. Wainwright, and B. Yu. Minimax-optimal rates for sparse additive
models over kernel classes via convex programming. J. Mach. Learn. Res., 13:389–427,
2012.

[59] H. Rauhut. Compressive sensing and structured random matrices. In Theoretical
Foundations and Numerical Methods for Sparse Recovery, Radon Ser. Comput. Appl.
Math., 9, pages 1–92. Walter de Gruyter, Berlin, 2010.

[60] M. Reed and B. Simon. Methods of modern mathematical physics. I. Functional anal-
ysis. Academic Press, Inc., New York, 2nd edition, 1980.

[61] P. Rigollet and A. Tsybakov. Exponential screening and optimal rates of sparse esti-
mation. Ann. Statist., 39:731–771, 2011.

[62] M. Rudelson. Random vectors in the isotropic position. J. Funct. Anal., 164:60–72,
1999.

[63] M. Rudelson and R. Vershynin. Sampling from large matrices: an approach through
geometric functional analysis. J. ACM, 54:19 pp, 2007.

[64] M. Rudelson and R. Vershynin. On sparse reconstruction from fourier and gaussian
measurements. Comm. Pure Appl. Math., 61:1025–1045, 2008.

[65] W. Rudin. Functional analysis. McGraw-Hill, Inc., New York, 2nd edition, 1991.
[66] A. Selberg. On the remainder in the formula for N(T ), the number of zeros of ζ(s)

in the strip 0 < t < T . Avh. Norske Vid. Akad. Oslo. I., 1944:27 pp, 1944.
[67] A. Selberg. Contributions to the theory of the Riemann zeta-function. Arch. Math.

Naturvid., 48:89–155, 1946.
[68] A. Selberg. Old and new conjectures and results about a class of Dirichlet series.

In Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori 1989),
pages 367–385. Univ. Salerno, Salerno, 1992.

[69] K. Soundararajan. Moments of the Riemann zeta function. Ann. of Math., 170:981–
993, 2009.

[70] C. J. Stone. Additive regression and other nonparametric models. Ann. Statist.,
13:689–705, 1985.

[71] T. Suzuki and M. Sugiyama. Fast learning rate of multiple kernel learning: trade-off
between sparsity and smoothness. Ann. Statist., 41:1381–1405, 2013.

[72] M. Talagrand. New concentration inequalities in product spaces. Invent. Math.,
126:505–563, 1996.

[73] K. M. Tsang. The Distribution of the values of the Riemann zeta-function. PhD thesis,
Princeton University, 1984.



110 BIBLIOGRAPHY

[74] A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, New York,
2009.

[75] S. Van de Geer and A. Muro. The additive model with different smoothness for the
components. http://arxiv.org/abs/1405.6584, 2014.

[76] S. A. Van de Geer. Applications of empirical process theory. Cambridge University
Press, Cambridge, 2000.

[77] A. W. Van der Vaart and J. A. Wellner. Weak convergence and empirical processes.
With applications to statistics. Springer, New York, 1996.

[78] J. Von Neumann. Functional Operators. II. The Geometry of Orthogonal Spaces.
Princeton University Press, Princeton, 1950.

[79] M. Wahl. On the mod-Gaussian convergence of a sum over primes. Math. Z., 276:635–
654, 2014.

[80] M. J. Wainwright. Information-theoretic limits on sparsity recovery in the high-
dimensional and noisy setting. IEEE Trans. Inform. Theory, 55:5728–5741, 2009.

[81] J. Weidmann. Lineare Operatoren in Hilberträumen. Teil 1. Grundlagen. B. G. Teub-
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