Direct Communication Methods for
Distributed GPUs

INAUGURAL — DISSERTATION
zur
Erlangung der Doktorwiirde
der
Naturwissenschaftlich-Mathematischen Gesamtfakultat
der
Ruprecht—Karls—Universitat
Heidelberg

von

Lena Oden
Diplom Ingenieurin der Elektrotechnik

aus Moers

Kaiserslautern, 2014

Betreuer: Professor Dr. Ulrich Briining, Universitat Heidelberg

Tag der miindlichen Priifung:

Abstract

Today, GPUs and other parallel accelerators are widely used in high performance com-
puting, due to their high computational power and high performance per watt. Still,
one of the main bottlenecks of GPU-accelerated cluster computing is the data transfer
between distributed GPUs. This not only affects performance, but also power consump-
tion. Often, a data transfer between two distributed GPUs even requires intermediate
copies in host memory. This overhead penalizes small data movements and synchro-
nization operations.

In this work, different communication methods for distributed GPUs are implemented
and evaluated. First, a new technique, called GPUDirect RDMA, is implemented for
the Extoll device and evaluated. The performance results show that this technique
brings performance benefits for small- and mediums-sized data transfers, but for larger
transfer sizes, a staged protocol is preferable since the PCle-bus does not well support
peer-to-peer data transfers.

In the next step, GPUs are integrated to the one-sided communication library GPI-2.
Since this interface was designed for heterogeneous memory structures, it allows an easy
integration of GPUs. The performance results show that using one-sided communica-
tion for GPUs brings some performance benefits compared to two-sided communication
which is the current state-of-the-art. However, using GPI-2 for communication still re-
quires a host thread to control GPU-related communication, although the data is trans-
ferred directly between the GPUs without any host copies. Therefore, the subsequent
part of the work analyze GPU-controlled communication.

First, a put/get communication interface, based on Infiniband verbs, for the GPU
is implemented. This interface enables the GPU to independently source and synchro-
nize communication requests without any involvements of the CPU. However, the In-
finiband verbs protocol adds a lot of sequential overhead to the communication, so the
performance of GPU-controlled put/get communication is far behind the performance
of CGPU-controlled put/get communication.

Another problem is intra-GPU synchronization, since GPU blocks are non-preemptive.
The use of communication requests within a GPU can easily result in a deadlock. Dy-
namic parallelism solves this problem. Although the performance of applications using
GPU-controlled communication is still slightly worse than the performance of hybrid
applications, the performance per watt increases, since the GPU can be relieved from
the communication work.

As a communication model that is more in line with the massive parallelism of GPUs,
the performance of a hardware-supported global address space for GPUs is evaluated.
This global address space allows communication with simple load and store instructions
which can be performed by multiple threads in parallel. With this method, the latency

1

for a GPU-to-GPU data transfer can be reduced to 3 us, using an FPGA. The results
show that a global address space is best for applications that require small, non-blocking,
and irregular data transfers. However, the main bottleneck of this method is that is does
not allow overlapping of communication and computation which is the case for put/get
communication. However, by using GPU optimized communication models, depending
on the application, between 10 and 50% better energy efficiency can be reached than
by using a hybrid model with CPU-controlled communication.

v

Zusammenfassung

Heutzutage sind Grafikkarten und andere Beschleuniger weit verbreitet im Bereich des
Hochleistungsrechnens, da sie eine hohe Leistungsfahigkeit und einen vergleichswei-
se geringen Energie Verbrauch versprechen. Trotz dieser weiten Verbreitung ist die
Kommunikation und der Datentransfer zwischen verteilten Grafikkarten der groBte
Flaschenhals fur Grafikkarten unterstitztes Rechnen. Das bedeute fur viele Programme,
die mit Grafikkarten beschleunigt werden, Einschrankungen, nicht nur was die Leistung
betrifft, sondern auch den Energieverbrauch. Der Datentransfer zwischen zwei Grafik-
karten benotigt hiufig Kopien im Hauptspeicher, was die Leistung weiter einschrankt.
Besonders die Ubertragung von kleinen Datenmengen wird von diesen zwischen-Kopien
beeintrachtig.

Neue Technologien wie GPUDirect RDMA ermoglichen einen direkten Datentrans-
fer zwischen zwei Grafikarten, ohne Puffer im Hauptspeicher. Aus diesem Grund wird
im ersten Teil dieser Arbeit die Unterstiitzung fiir diese Technik fiir den Netzwerkcon-
troller der Extoll Netzwerkarchitektur implementiert und evaluiert. Die Messergebnisse
zeigen, dass diese Technologie zwar Leistungsgewinne fiir kleine und mittlere Nachrich-
tengroBen bringt, fiir gréBere Nachrichten jedoch ein gepufferter Transfer besser ist.
Der Grund dafiir ist die schlechte Unterstiitzung des PCle-Busses fiir die Datentibertra-
gung zwischen zwei externen Geraten.

In einem weiteren Schritt werden Graphikarten in die Kommunikationsbibliothek
GPI-2 integriert, die vorwiegend einseitige Kommunikation verwendet. Da GPI-2 fiir
heterogene Speicherarchitekturen entworfen wurde, konnen Grafikkarten einfach inte-
griert werden. Der vergleich mit einer GPU unterstiitzenden MPI Variante, die aktuell
stand der Technik ist, zeigt, dass auch Grafikkarten von einseitigen Kommunikationsmo-
dellen profitieren konnen. Auch wenn die Daten ohne Pufter im Hauptspeicher tber-
tragen werden konnen, so benotigen GPI-2 und MPI immer noch die CPU, um die
Kommunikation zu starten und zu synchronisieren. Daher widmet sich die folgenden
Teile der Arbeit GPU-kontrollierter Kommunikation.

Dazu wird zunichst eine put/get (schreibe/lese)-Kommunikationsschnittstelle fir
Grafikkarten, die auf Infiniband Verbs basiert, implementiert. Diese Schnittstelle er-
moglicht es der Grafikkarte unabhingig von der CPU eine Kommunikationsanfrage
zu starten und zu synchronisieren. Leider benétig Infiniband sehr viele sequentielle
Arbeitsschritte, fiir die Grafikkarten nicht optimiert sind. Dies fithrt zu einer deutlich
schlechteren Leistung fiir die Grafikkarten kontrollieren Kommunikation im Vergleich
zu CPU kontrollierter Kommunikation.

Ein weiteres Problem ist die interne Synchronisation der Threads auf einer Grafik-
karte, da die Thread Blocke auf einer Grafikkarte nicht unterbrechbar sind. Dies kann
in verbindung mit Grafikkarten kontrollierter Kommunikation schnell zu einer Blockie-

rung der Threads untereinander fithren. Dieses Problem kann mit dynamic parallelism,
einer neuen Funktion von Nvidia Grafikkarten, gelost werden. Die Leistung von Pro-
grammen, die GPU-Kontrollierte Kommunikation verwenden, ist immer noch schlech-
ter als die Leistung von Programmen, bei denen die CPU die Kommunikation kontrol-
liert. Da aber bei der Verwendung von Grafikkarten kontrollierter Kommunikation die
CPU entlastet werden kann, ist die Energie-Effizient deutlich besser.

Als eine Kommunikationsmethode, die besser mit dem massiv parallelen Model von
Grafikkarten zusammenpasst, wird im letzten Teil der Arbeit ein Hardware-unterstiitzter
globaler Grafikkarten Adressraum betrachtet. In diesem globalen Adressraum kénnen
mehrere Grafikkarten mit einfachen Lese- und Schreib- Instruktionen kommunizieren,
die von mehreren Threads parallel ausgefiithrt werden kénnen. Auf diese Art kénnen
kleine Nachrichten in etwa 3 us von einer Grafikkarte auf eine andere tibertragen wer-
den. Diese Kommunikationsmethode eignet sich am besten fiir Programme, welche vie-
le kleine und unregelmaBige Datentransfers bendtigen. Der Nachteil dieser Methode
ist, dass sie kein Uberlappen von Kommunikation und Rechnern erlaubt, was jedoch
mit put/get Kommunikation moglich ist. Die Verwendung von Kommunikationsmetho-
den, die fir Grafikkarten optimiert sind, fithrt, abhdngig von der Applikation, zu einer
10-50% besseren Energieeflizienz.

vi

Contents

1.

Introduction 1
1.1. Objectivesof thiswork 3
1.2. Outline e 4
Background 5
2.1. Parallel Systems oL 6
2.1.1. Shared memory systems 6
2.1.2. Communication and synchronization in distributed memory sys-
TEIMIS . v v v v v e e e e e e e e e e e e e e 8
2.1.3. Collective communication functions 12
2.1.4. Communication performance 13
2.1.5. Communication Interfaces 14
2.2. Modern Parallel Processors 19
2.2.1. Multicore and Manycore architectures 19
2.2.2. Architecture of amodernGPU 20
2.2.3. Other manycore processors « oo oo . 23
2.3. GPU Programming Models 25
2.3.1. CUDA e 25
232, OpenCL 28
2.3.3. Directive-based approaches 29
2.4. Interconnection Networks and Network Interfaces 29
2.4.1. Interconnectionnetworks 30
24.2. PCI-Express v 30
2.4.3. QPIand Hyper Transport 31
2.44. Network Interfaces, 32
2.4.5. Remote Direct Memory Access 33
2.4.6. Infintband. 35
2.4.7. Extoll 40
2.5. Communication between Distributed GPUs 43
Direct Data Transfer between GPUs 47
3.1. Inter- and Intra-Node Data Transfer 47
3.2. Data Transfer Methods 47
3.2.1. GPUDirect1.0 49
3.2.2. GPUDirect peer-to-peer 50
3.3. GPUDirect RDMA 51

Contents

viil

3.3.1. Nwvidia GPUDirect Interface 32
3.3.2. Mellanox GPUDirect RDMA support 32
3.3.3. Host mapped GPUDirect RDMA support. 54
3.4. Performance Results of GPUDirect RDMA 56
3.4.1. Latencyand bandwidth 57
3.4.2. PCle peer-to-peer performance 58
34.3. IntellvyBridge L. 59
3.4.4. Inter I/O-hub data transfer 60
3.5, Summary e 61
Host-controlled GPU-to-GPU Communication 63
4.1. Relatedwork L 64
4.1.1. CUDA-aware MPI 64
4.1.2. GPUsin PGAS languages and libraries 65
4.2. GASPI-Standard Lo 67
4.2.1. Shared memory segmentsin GASPI 67
4.2.2. One-sided communication 68
4.2.3. Passive communication 69
4.2.4. Collective Operations 70
4.2.5. Atomic operations e 70
4.2.6. Weak synchronization 70
4.3. Integration of GPUs to the GASPI-specification 71
4.3.1. GPU memory segmentsin GASPI 72
4.3.2. Imtialization 73
4.3.3. GPU memory segment creation 74
4.3.4. Remote write and read operations 74
4.3.5. Passive communication and atomic operations 75
4.3.6. Weak synchronization for GPU segments 75
43.7. Allreduce 75
4.3.8. Additional functionsfor GPUs 76
4.4. Performanceresults Lo 79
44.1. Bandwidth 80
442, Latency 80
4.4.3. CPU-communication overhead 81
4.5. Application level performance00 83
4.5.1. Synchronization between GPU and host 83
4.5.2. Stencilcodes L 85
4.6, Summaryo e 88
GPU-Controlled Put/Get Communication 89
5.1. RelatedWork Lo 89
5.1.1. Communication libraries for the Intel Xeon Phi 90
5.1.2. Libraries for GPU computing 90
5.2. Sourcing communication requests to RDMA-capable hardware 91

Contents

5.2.1. Work processing on Infiniband 91
5.2.2. Work request generation for the Extoll RMA unit 93
5.2.3. Conclusion for GPU-controlled communication 94

5.3. GPU-controlled communication 95
5.4. Creating a communication environment on the GPU 96
5.4.1. Porting resourcestothe GPU 97

5.5. Creating an Infiniband communication environment on the GPU . . . 98
5.5.1. Context SetupontheHost 99
5.5.2. Creating Infiniband elements for the GPU 100
5.5.3. Infiniband interfaceonthe GPU 101
5.5.4. Micro-benchmark results for Infintband 104
5.5.5. Analysis and optimization L. 109

5.6. Creating an RMA environmentonthe GPU 114
5.6.1. Setting up an RMA connectionon host 114
5.6.2. Porting of an RMA environment to the GPU 115
5.6.3. Micro-benchmark results for the RMA unit 116
5.6.4. Performance counter analysis for the RMA 119

5.7. One-sided Communication Interface onthe GPU 120
5.7.1. Communication endpoints 120
5.7.2. Block-save communication 121
5.7.3. Asynchronous one-sided communication 122
574, Queues 122
5.7.5. Remote Synchronization 122

5.8. Imter-block synchronization 123
5.8.1. In-kernel synchronization and communication 124
5.8.2. Stream Synchronization 126
5.8.3. Synchronization with dynamic parallelism 128
5.8.4. Himeno performanceresults 131
5.8.5. Energyefficiency o 0oL 134

5.9. Summary 136
. Global Address Space for GPUs 139
6.1. Relatedwork 141
6.2. GPU memory coherence and consistency 142
6.2.1. Coherence 142
6.2.2. Consistency 142

6.3. Hardware support for distributed global address spaces 143
6.4. Extending the global address space for GPUs 145
6.4.1. Restrictions for the global memory size 147

6.5. The GGAS Software 147
6.5.1. GGASsetup 148
6.5.2. GGASGPUAPI 149

6.6. Micro-benchmark performance 150
6.6.1. Latency 151

X

Contents

6.6.2. Bandwidth o 0oL 152

6.6.3. Coalescingeffects L 0oL 154

6.7. GGASbarrier L 155
6.7.1. Intra-GPU synchronization 155

6.7.2. Barrier performance L Lo 156

6.8. Allreduce and reduce using GGAS 157
6.8.1. Reduction with remote read operations 158

6.8.2. Reduction with remote write operations 158

6.8.3. Work sharing: data distribution over multiple GPUs 159

6.8.4. Performance results for the reduce and allreduce operation . . . 160

6.8.5. Comparisonto MPL 0oL, 162

6.9. Application-level performance 163
6.9.1. Stencilcode 163

6.9.2. Global reduction benchmark 165

6.9.3. RandomAccess benchmark 166

6.10. Energy Efficiency oo 168
6.10.1. Energy efficiency of the Himeno benchmark 168

6.10.2. Energy efficiency of the global reduction benchmark 168

6.10.3. Energy efficiency of the RandomAccess benchmark 169

6.11. Summary 170

7. Conclusion and Future Outlook 171
A. Power Measurement 175
B. Acronyms 176
List of Figures 178
List of Tables 182
Listings 183

1. Introduction

In the past, it was very simple for programmers to reach higher performance with the
next generation of computing systems. The performance of single core CPUs increased
dramatically for two decades while the costs rapidly were reduced. The same software
simply ran faster with the next generation of CPUs.

However, since 2003, this growth has slowed down, as heat-dissipation and energy
consumption limit a further increase of the CGPU clock speed. Only by introducing mul-
tiple cores were CPU vendors able to maintain Moore’s law. This change of adjustment
has an enormous impact on software developers [1] as code has to be rewritten to reach
better performance on new generation CPUs, or in other words the free lunch was over [2].

While the performance of single threaded CPUs stagnated, the performance of GPUs
increased dramatically in the last years, as shown in Figur 1.1. Therefore, it is no suprise
that the high performance computing community rapidly adopted GPUs for their pur-
poses, trying to satisfy more of the computational needs of their performance-hungry
applications. This interest grew, especially since programming languages like CUDA
[3], OpenCL [4], or directive-based approaches like OpenACC [5] make the features of
GPUs better available for developers who are not familiar with classic graphical aspects.
Today, GPUs are an integral part of high performance computing.

However, high performance is not the only reason for the increased interest in GPUs;
their high energy efficiency, since power consumption becomes more and more impor-
tant due to ecological, economical, and technical reasons, is another important aspect.
In particular, the first 15 systems of the Green500 list, the list of the most energy eflicient
high performance computing systems, from June 2014, are all accelerated with NVIDIA
Kepler K20 GPUs [6].

Theoretical GFLOP/s

5750
5500

5250 -
5000 NVIDIA GPU Single Pr

4750 emsmNVIDIA GPU Doul

4500 Intel CPU Double Pre
4250 e=s=mintel CPU Single Precision

4000

3750

3500

3250

3000

2750

2500

2250

2000

1750 Tesla k40

on

1500 Tesla K20X

1250
1000 Testa M2090
750 Te:
60

sta C2050
500 a vy Bridge
wn Sandy Bridge.

I
250 Wooderest "
Bloomfield Westr

0 “pentium 4 @ v N o mere
Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

Figure 1.1.: Floating points per second, GPUs vs. Intel Processors [3]

1. Introduction

For example, an Intel Xeon E5-2687W Processor (8 cores, 3.4 GHz, AVX) achieves
about 216 GFLOPS at a thermal design power (TDP) of about 150 watts, resulting in
1.44 GFLOPS/watt. An NVIDIA K20 GPU is specified with a TDP of 250 Watt and a
single precision peak performance of 3.52 TFLOPS resulting in 14.08 GFLOPS/watt.

Still, GPUs were primarily designed for graphical aspects. Therefore, throughput ori-
ented applications can benefit most from GPUs. Furthermore, GPUs only excel if they
can perform their calculations in-core. That means that they use their own, dedicated
device memory. This device memory, however, is a very scarce resource. The latest
GPUs, Nvidia’s K40 Atlas GPU, provides 12 GB GDDRY device memory, while the
previous model the Nvidia K20 GPU, only provides around 6 GB device memory. Typ-
ically, GPUs are connected as peripheral devices through the PCle-bus. The bandwidth
of PCle is fast (8 GB/s for x16 PCle-2 and 15.75 GB/s for x16 PCle 3.0) but it is still
far behind the memory bandwidth of the device memory (up to 288 GB/s).

To satisty the requirements of modern applications (for example, big data), GPUs are
deployed in clusters and used in parallel to fulfill the requirements of memory-hungry
applications. However, if GPUs are deployed in clusters, most applications require com-
munication and data transfer among these GPUs. This is the main bottleneck of GPU
accelerated high performance computing, with regard to performance and energy con-
sumption [7, 8, 9].

The communication overhead is a potential bottleneck for all distributed memory sys-
tems, but gets reinforced for heterogeneous systems with accelerators. A closer look at
the first ten systems of the top500 list from June 2014 shows that the accelerated com-
puters attain 60-80% of their theoretical peak performance, whereas systems without
accelerators attain 64-93% of the peak performance [10]. The main reason for this is
the dedicated device memory of accelerators which is separated from the host memory.

Most communication libraries and frameworks only provide support for the transfer
of data that is residing in host memory. Then, an explicit data transfer between GPU
and host memory is required. This adds additional work to both, CPU and GPU, and
increases the latency of the GPU to GPU data transfer.

New technologies like GPUDirect RDMA help to overcome some of these limitations,
as they allow other peripheral devices direct access to GPU memory. This enables net-
work devices to directly transfer data between GPUs without any copies in host memory.
However, these methods must be tested and evaluated, and their benefits for common
communication models must be discussed.

In most common approaches, the communication and the data transfer among mul-
tiple GPUs is controlled by the CPU. This involves a dedicated CPU thread to control
the data flow between host, GPU, and network device. If the GPU is enabled to control
the communication, the CPU can be relieved this work. Thereby, context switches be-
tween CPU and GPU can be avoided and the CPU can be used for other work or set
to a sleep state to save power. On the other hand, if the communication is controlled
by the GPU, communication overhead is added to the GPU, which may slow down the
performance of communication centric applications.

Most common interconnection networks for high performance systems were espe-
cially designed for communication and data transfer among processors nodes, controlled

1.1. Objectives of this work

by the CPUj, transferring the data between the memory of these systems. So far, GPUs
and other accelerators have only been of marginal interest for communication optimiza-
tion. Still, several studies [11] have shown that data transfer will be one of the main
factors for scaling and energy efficiency in next generation high performance comput-
ing systems. Therefore, evaluation of communication and data transfer methods for
distributed systems, including GPUs and other accelerators, within the scope of energy
and performance is mandatory.

1.1. Objectives of this work

In this work, different communication and data transfer methods for GPU accelerated
clusters are designed, tested, and evaluated. In a first step, the GPUDirect RDMA
technology is analyzed. Therefore, the support is added to the Extoll interconnection
network and the direct data transfer is compared to previous methods, using staged copies
in host memory.

To evaluate the performance of a host-controlled interface for inter GPU communi-
cation, GPUs are integrated to the one-sided communication interface GASPI. By this,
the performance of a one-sided communication interface can be compared to the per-
formance of a two-sided communication interface. Furthermore, a good performing
host-controlled communication interface is required to be comparable against GPU-
controlled communication.

So far, little research has been devoted to GPU-controlled communication. To be
specific, as far as we know, no previous work exits, in which the GPU is enabled to
control the network device and completely bypasses the host CPU. Therefore, one of
the contributions of this work is to do exactly that. The first goal is to implement a
put/get communication interface on the GPU, similar to the communication model

used in GASPI.

As a further GPU-controlled communication model, communication over a shared
global address space, based on remote load and stores, will be examined. Although
this method shows some drawbacks for CPU-based communication, it is more in line
with the GPU programming model and therefore meets some of the claims for GPU-
controlled communication.

The objective of this work is not only to implement these communication method,
but also to analyze them regarding performance and energy efficiency. As most inter-
connection networks are not designed for the use with GPUs, the scope of this work is
also to analyze the strengths and weaknesses of different communication methods for
GPUs and thus find the requirements for the communication of GPU-centric applica-
tions, helping the designers of next-generation hardware to optimize these also with the
view to GPUs and other data parallel processors.

1. Introduction

1.2. Outline

This thesis is structured as follows. The next section gives a short overview of the archi-
tecture of GPU-accelerated clusters and communication models for distributed systems.

Section three introduces the GPUDirect technology and compares direct and staged
data transfers. In the fourth section, CPU-controlled communication for distributed
GPUs is discussed. The GASPI standard and the integration of GPU memory segments
is explained.

Section five deepens GPU controlled put/get communication. In this chapter, the in-
dividual steps that are required to enable GPU-controlled communication are explained
in more detail. Also, the problems of GPU controlled communication and the GPU pro-
gramming model are discussed in more detail here.

Section six introduces a hardware-supported global GPU address space as an alterna-
tive for GPU-controlled communication, which is more in line with the GPU program-
ming model. The seventh section closes with a reflection on the achievements and the
contributions of this work.

2. Background

Communication and data transfer in heterogeneous systems are multifaceted problems
and many different aspects have to be considered to find an ideal communication method
for distributed GPUs. Therefore, in this chapter, the different aspects of a GPU accel-
erated system are examined in more detail.

Figure 2.1 shows the simplified view of a GPU accelerated cluster. This cluster es-
sentially consists of multiple compute nodes which are connected with a high performance
interconnection network. Each of this compute nodes has got its own local system memory and
one or more CGPUs. The connection point between an interconnection network and
the compute node is called Network Interface (NI). In most clusters today, this network
interface is located on a peripheral device, the Network Interface Card (NIC). The Graphic
Processing Unit (GPU) 1s also attached to the host system over the I/O-bus, normally over
PCle.

To optimize the communication, all this components have to be examined. In the
following section, a short introduction to parallel computer architectures as well as com-
munication and synchronization in this architectures is given. The subsequent sections
give a short introduction to GPUs and GPU programming models, followed by a section
about interconnection networks.

]
System | I] \
[| —
| —

Node (n-1)

GPU

1/0

System
Memory
- System Processor
[[Memory (CPU)
I
ol

A —

GPU
1/0
Bridge
NIC 8
Node 0

Interconnection
Network

Figure 2.1.: Simplified structure of a GPU accelerated cluster

2. Background

Parallel
architectures

Data Function

parallelism parallelism
MIMD

Instruction Thread Process Shared Distributed
level level level Memory Memory
Figure 2.2.: Parallel architectures [12] Figure 2.3.: MIMD architectures

With the background knowledge of those sections, in the last section of this chapter, a
design space for possible communication methods for distributed GPUs is created.

2.1. Parallel Systems

Parallel architectures can be classified into two kinds of parallelism, data parallelism and
Sunctional parallelism, as shown in Figure 2.2 [12]. Data parallelism requires data struc-
tures like vectors or matrices, which allow a parallel execution of instructions.

Functional parallelism is divided into three levels, according to the level of parallelism:
instruction level, thread level, and process level parallelism. The large amount of depen-
dencies of instruction-level parallelism (fine-grain parallelism) requires a close coupling of
the elements which can normally only be achieved in a single processing unit.

Process level and thread level parallelism correspond to the Multi Instruction Multiple
Data Stream (MIMD)-architectures as introduced by Flynn [13]. MIMD architectures
are divided into shared memory computers and distributed memory computers, also
called multiprocessors and multicomputers.

2.1.1. Shared memory systems

A single node of a modern cluster —without the GPU- is a shared memory system. The
memory of this machine is visible to all CPU cores and can be accessed over the same
address space, without the involvement of a further unit. A single GPU with dedicated
device memory is also a shared memory system since all compute cores of the GPU can
access the device memory.

The communication in shared memory systems is handled over the shared memory.
Using shared memory for communication, two things have to be considered: cache
coherence and consistency.

Coherence Cache coherence guarantees that the caches of two processes, P1 and P2,
return the same value for the same memory region. This is required since both
processes can have a copy of the memory region in their caches. If one process
updates the value, cache coherence guarantees that all other copies are updated

2.1. Parallel Systems

Listing 2.1: Example for memory consistency

int X = 1, Y = 2;

Thread_1: Thread_2:

void writeXY () { 1 void readXY() {

X = 10; int B = Y; 2
Y = 20; 3 int A = X;

} } 4

as well. Short inconstancies in the caches are allowed, as long as no process reads
a wrong value.

Consistency Memory consistency specifies the legal ordering of memory load and
stores with respect to all threads. The simplest consistency model is sequential con-
sistency [14] which defines a total order for all load and stores across all threads.
In a relaxed consistency model, this is not guaranteed.

To illustrate the effect of memory consistency, the example code in Listing 2.1 1s used.
In this example, the function writeXY is executed from thread_1 while the function
readXY is executed from thread_2.

With a sequential consistency model, there are three different possibilities for the val-
ues of A and B:

e A =10 and B = 20: if thread_1 executes writeXY before thread_2 executes
readXY

o A =1and B = 2if thread_2 executes readXY before thread_1 executes writeXY

e A =10and B = 2, if thread_1 writes to X before thread_2 reads X and thread_1
writes to Y after thread_2 reads Y

If a more relaxed consistency model is used, it is also possible that A = 1 and B = 20
for two possible reasons:

o At the time thread_2 reads X and Y, thread_1 has written to Y but not yet to X
— at least from the perspective of thread_2

e Thread-2 reads X before Y and the writes to X and Y happen after thread_2
reads X.

Most GPUs have a relaxed consistency model. If consistency is desired, the programmer
is responsible to add a fence operation manually. A fence operation guarantees that all
instructions before the fence operation are executed before all memory instructions after
the fence operation.

Another well-known consistency model is the Total Store Order (T'SO) model that
was first used in the SPARC architecture and later formalized as the x86-TSO model
for X86 CPUs [15]. Itis similar to the sequential order model but allows the reordering

2. Background

Communication models
for distributed memory systems

two-sided one-sided remote
communication communication load/stores

Figure 2.4.: Communication models in distributed memory systems

of a store to a subsequent (in program order) load to a different address. This allows the
use of a First-In-First-Out (FIFO) buffer for stores, which enables the core to commit a
store to this buffer without waiting for the store to access the cache. If an order between
aload and a store request is required, the programmer or the compiler must add a fence
instruction.

Atomic operations

To synchronize parallel programs on shared memory systems, often afomic operations are
used. Atomic operations describe operations (or a set of operations) which appear un-
interruptible for the rest of the system. Most systems provide, for example, an atomic
compare-and-swap instruction. This instruction reads a value from a memory region,
compare it with an expected value and writes out a new value, if the two match. If this
operation would not be atomic, another process may change the value during one of
these steps.

2.1.2. Communication and synchronization in distributed memory
systems

The individual nodes of a cluster build a distributed memory system. The CPU of one
node cannot directly access the memory of a different node. The memory is divided
into multiple address spaces and, from a process perspective, is divided into local and
remote memory. Access to remote memory requires special communication functions
and additional hardware units since the accesses are routed through an interconnection
network.

The implementation of this communication and synchronization is very important
for the scalability of distributed memory systems. Figure 2.4 shows the most common
communication approaches for distributed memory systems.

The most widely used communication paradigm is two-sided communication, as shown in
Figure 2.5. As the name suggests, for two-sided communication, both sides, the source
and the target process, are involved in the communication process. A send request on
the source process requires always a receive request on the target process to be completed.
The main advantage of this method is that the sending side does not require detailed
information about the remote side, for example, the remote memory address. However,

2.1. Parallel Systems

Communication Communication
Process 1 Process 2

System System
| | | |
Possible
overlap

send request

| |
" recive request O

transfer data— |

T recive >O

[[[completion I

Figure 2.5.: Two-sided communication

Communication Communication
Process 1 Process 2

System System
|
Possible
overlap

put request \

|
transfer data\ |

put completion

-get request-

Kk —transferdata——————|

Possible
overlap

get completion

I I
CP I

I
I I
I I
I I
Cx |
I I
I I
I I
(:) got request I

I
I I
I I
I I
I I
I L] I
O I I
I I I
v v v v
Figure 2.6.: One-sided communication paradigma

Communication Communication
Process 1 Process 2
System System
|

remote store

remote load

load request——now——

transfer data—————

|
|
|
|
|
|
|
|
|
|
|
|
|
I — I
|
|
|
|
|
v

P S

-

€« ————
€« ————

Figure 2.7.: Remote load stores

2. Background

synchronization

implicit explicit

Figure 2.8.: Explicit und implicit synchronization

two-sided communication often also requires tag matching to match a received request to
a received message.

In contrast to this, by using one-sided communication, as shown in Iigure 2.6 on the pre-
ceding page, only one process is involved in the communication. By using a get or remote
read operation, a process directly gets data from a remote memory region and copies it
to its own, local memory. By using a put or remote write operation, a process directly puts
data from its own, local memory to the remote memory of the target node. A put or
get operation requires all information to perform the communication, which includes
information about the remote memory region. However, the completion of a one-sided
communication request does not depend on the remote process.

In contrast to the previously described approaches, remote load and store operations,
shown in Figure 2.7, do not require special communication functions. Instead, writ-
ing or reading a value to or from a specified address triggers the communication. The
remote memory is, so to say, mapped in address space of the local system. This approach
requires hardware that allows forwarding of remote read and write requests, as, for ex-
ample, described in [16] and [17], or an underlying framework, e.g., a compiler, that
translates remote memory requests to one- or two-sided communication requests. In
contrast to real shared memory systems, remote memory regions are not necessarily cache
coherent and a more relaxed consistency model may be used.

Synchronization

A very important aspect of communication is the synchronization between source and
target side. Synchronization is always strongly connected with communication: without
synchronization, the source side would transfer the data to the remote side, but the
target side would not notice this. As shown in Figure 2.8, synchronization can be either
implicit or explicit. Using two-sided communication, the sending and the receiving side
are always implicitly synchronized since both sides are involved in the communication
process and a send or receive function is only completed with the corresponding function
on the remote side.

Using one-sided communication or remote load/stores, an implicit synchronization
between the source and the target side of the data transfer is not provided and explicit
synchronization methods, like barriers or global locks, are required. The risk of race condi-
tions is much higher if explicit synchronization is required. A process may transfer data

10

2.1. Parallel Systems

communication

synchronous asynchronous

overlap

communication &
computation

Figure 2.9.: Synchronous and asynchronous communication

to a remote buffer. This buffer may be in use on the target side which is not aware of
the data transfer.

Still, the decoupling of synchronization and data transfer can help to improve the
performance, especially for programs with irregular communication patterns like graph
algorithms [18] or sorting functions [19].

Synchronous and asynchronous communication

Another characteristic of a communication function is the local synchronicity. A com-
munication function can either be synchronous or asynchronous. A synchronous com-
munication function blocks until the communication is completed — at least locally. An
asynchronous communication function may return before the communication is com-
pleted. The communication is handled in the background, by the hardware or an under-
lying communication framework, for example. Asynchronous communication allows
the overlapping of communication and computation. The communication process can
do other work while the data transfer is handled in the background. An asynchronous
communication operation consists of at least two functions: one function that starts the
data transfer and another function that synchronizes this data transfer locally.

One-sided and two-sided communication can support both synchronous and asyn-
chronous communication functions, as shown in Figures 2.5 and 2.6 on page 9 .

For remote load and store operations, asynchronous communication is not supported.
A store operation triggers a communication request to a remote address and returns.
In this case, the communication is locally completed. A remote load operation is not
completed until the remote value is returned. The process that issues the remote load
blocks until the communication is completed. Since the CPU can only handle a limited
number of outstanding load operations, this could stall CPU-cores.

The terms blocking and non-blocking communication functions are often used in conjunc-
tion with synchronous and asynchronous communication, but there is a small difference:
A non-blocking communication function may also return before the communication is

11

2. Background

completed but the communication is not necessarily handled in the background but
completed by the next call of the function or a local fence/synchronization function.

Communication buffers

Another property of a communication interface is the location of the communication buffers,
the memory regions that can be used as source or synchronize of a data transfer.

Using one-sided communication, the source side requires all information for the data
transfer, in particular information about the remote memory buffer. Therefore, one-
sided communication often is only provided between so-called windows or segments. These
segments have to be registered and the information about these buffers have to be shared
between the processes before the communication can be started. The same is true for
remote load/stores which also allow communication only between shared memory regions.
This limitation may require extra data copies between shared and not-shared memory
regions.

Two-sided communication can allow a data transfer between the complete memory
areas of the participating processes. Thus, send- and receive- buffers can be allocated
dynamically. Still, to provide this, the communication framework internally often still re-
quires memory copying or special combination protocols which also add extra overhead
to the communication.

Data transfer sizes

A further communication property is the possible data transfer size which describes the
amount of data that can be transferred with a single communication request. For mes-
sage passing and one-sided communication, theoretically any size can be transferred for
a single communication request; for remote loads and stores, only transactions between
1 and 8 bytes are supported, which corresponds to the register size, respectively, the size
of a char or double-value. Since many small data transfers are often not very efficient,
internally, the communication framework can coalesce this communication request to
a single communication request.

2.1.3. Collective communication functions

The approaches above describe communication functions between two points, a source
and a target side. Apart from those point-to-point communication functions, also a great
area of collective communication functions exist. In a collective communication function,
all processes of a specified group participate. The simplest collective function is a barrer,
which synchronizes all participants. Other well-known collective operations are allreduce
and reduce, which combine the input data of all participants with a given operation, for
example, a summation. For an allreduce operation, all processes return the result. Be-
sides this, a wide area of collective functions exist to distribute and collect the data in a
specified manner. Using a collective operation, all processes are implicitly synchronized,
since a collective operation is not completed until all processes have at least entered the
collective communication operation.

12

2.1. Parallel Systems

performance of a
communication
interface

message
rate

bandwidth latency overhead

Figure 2.10.: Performance parameter for communication

Collective operations are often implemented on top of point-to-point communication
functions. However, newer interconnection networks often provide special support for
collective operations.

2.1.4. Communication performance

The performance of a communication interface can be evaluated in terms of bandwidth,
latency, message rate, and overhead, as shown in Figure 2.10.

The bandwidth or throughput describes the amount of data that can be transferred
in a period of time. The bandwidth varies for different data transfer sizes and is nor-
mally higher for larger transfer sizes. The latency describes the minimal time a message
requires to be transferred, including communication request generation and synchro-
nization. Hence, the minimal latency is reached for small messages. The message rate
describes the number of messages that can be sent in a specific time period from a single
process. In other words, it describes how well the processing of independent messages
can be overlapped. The message rate is different for varying messages sizes and limited
by the maximal bandwidth.

The communication overhead describes the time a processor spends in sending or re-
ceiving a message and cannot perform other operations [20]. It is a good measure for
how well communication and computation can be overlapped.

The data transfer latency consists of the data transfer time, which allows overlapping,
and the communication overhead. Therefore, the time span communication and com-
putation theoretically can overlap can be calculated with:

7foverlap = tlatency — toverhead

In [21], Griinewald describes the overlap efficiency of an application as a further measure
for the communication overhead. The overlap efficiency 7 is defined as the pure com-
pute time, normalized by the complete runtime of an application:

o tcompute

truntime

13

2. Background

If the communication can completely be overlapped, the overlap efficiency is equal to
1. However, due to the communication overhead, the theoretical peak overlap efficiency
of 1 cannot be reached.

2.1.5. Communication Interfaces

To allow programmers the use of distributed memory systems, several communication
Application Programming Interfaces (API) exist. These APIs use the different commu-
nication approaches described above. The following section gives a short overview of
the most common communication APIs and languages for distributed memory systems.

MPI

The de-facto standard for message passing and the most commonly used communica-
tion interface for distributed memory systems is the Message Passing Interface (MPI).
MPI-1 was released in 1994 to define a standard for communication in distributed
memory computers [22]. The most important communication functions in MPI are
the two-sided point-to-point communication functions send and recewe. MPI-1 supports
synchronous and asynchronous two-sided communication functions.

The specification also supports buffered and synchronous send operations. A buffered
send can be called without a matching receive on the remote side. The send function
may return before the remote receive operation is called. Therefore, the data must be
buffered. On the other hand, a synchronous send operation requires a receive operation
on the remote side to be completed. However, although the distinction between these
two send operations may be very useful, they are only rarely used [23].

MPI-1 also support communication groups, topology related operations and vari-
ous other functions. All in all, the standard defines 128 routines [23]. One very im-
portant group of functions are the collective operations like MPI_Barrier, MPI_AlltoAll,
MPI_Gather, or the global reduction operations MPI_Reduce and MPI_Allreduce. A great
deal of research was done to optimize these global operations, see for example [24, 25].
All these global operations are defined as synchronous and blocking and have to be
called by all processes in a specified group.

In Version 2 of the MPI standard [26], MPI-2.0, 192 new routines were added [23].
These new functions add, for example, non-blocking asynchronous collective operations,
C++ bindings, parallel I70 functions, and dynamic process management. Another
important new feature is the support of one-sided communication.

The one-sided communication in MPI is handled between so-called windows. A win-
dow is created on pre-allocated memory buffers and for a group of processes. The
pre-allocated memory buffers can differ in size and address for the different processes
and even be set to zero.

MPI-2 defines three one-sided communication functions: MPI_Put, MPI_Get and
MPI_Accumulate. All one-sided communication functions must be used together with
one of the three explicit synchronization methods: fence, post-start-complete-wait, and
locking. The one-sided communication functions are non-blocking (but not necessarily
asynchronous) and completed at the end of a synchronization epoch.

14

2.1. Parallel Systems

Process 0 Process 1 Process 2 Process 3
| ! ! |
| _ win_post(0) _..— win_post(0,3) { |
| e T ! ~ |

. T | A

win_start(1,2) - | | win_start(2)
| | | |
| | | |
: | |
put(1) | |
' |

|
|

put(2) | :4/ put(2)
| |
|
|

|

_» win_complete()
win_co 7
./v

|
|
|
| | /0
A win_wait() e win_wait() »
1
|
|
|
|

Figure 2.11.: General-active-target-synchronization in MPI [27]

The fence synchronization is comparable with a barrier. All processes must call the
MPI_Win_Fence operation to demarcate the beginning and the end of a remote memory
access epoch. All previous operations on remote memory are completed if the process
leaves the fence operation.

The post-start-complete-wait synchronization is also known as general-active-target-
synchronization (GATYS). Figure 2.11 illustrates the GATS method for four processes.
This method distinguishes between the processes accessing as targets (process 1 and 2)
and processes issuing a one-sided communication request (process 0 and 3).

Processes that access as targets must call MPI_win_post before any process can access
the window. Correspondingly, processes that issue communication requests must call
the function MPI_win_start. When the source processes have posted one-sided com-
munication requests, they have to call MPI_win_complete to force the completion of all
these communication requests. The target processes must call MPI_win_wait to wait
until all remote communication requests are completed.

The fence and the GAT'S synchronization require an active participation of the target
side. In contrast to this is the locking synchronization, called passive target synchronization since
the target side is not actively involved in the synchronization. To start a remote access
epoch, the active side calls the function MPI_win_lock. This lock can either be exclusive
or shared. While one process owns an exclusive lock, no other process can access the
window. If a process owns a shared lock, no process can get access to a window with an
exclusive lock. An access epoch is completed with MPI_win_complete. If the function
returns, it is guaranteed that all remote memory operations are completed on the local
and the target side.

However, in many MPI-2 implementations, one-sided communication is built up on
top of send/receive operations. This adds a massive synchronization overhead to the
communication. Furthermore, MPI requires explicit synchronization between the ori-

15

2. Background

gin and the target side to guarantee that the communication is completed. Therefore,
one-sided communication in MPI often suffers from a massive synchronization overhead
and for many MPI versions, one-sided communication performs much worse than two-
sided communication [28, 29]. The main problem is the underlying data consistency
model of MPI-2, which was designed for high portability [30] and defines a separate
memory model. This means that the user assumes MPI may maintain two copies of the
exposed buffers — one for local and one for remote accesses. If the synchronization is
performed, the MPI implementation synchronizes these two copies. Thus, MPI forbids
overlapping accesses to the data on the shared window if one access is a write operation.
In addition, local accesses cannot be performed concurrently since the MPI implemen-
tation is unaware if the local process updates a buffer. Any violation of these semantics
is defined as an error.

Some of these limitations are solved with the upcoming MPI-3 standard [30]. MPI-3
supports atomic operations on windows. Another feature are request-handles for one-sided
operations. One-sided operations in MPI-2 are non-blocking, but the completion de-
pends on the completion of a synchronization epoch. In MPI-3, most of the commu-
nication requests can return a handle, which can be passed to a MPI_wait routine to
ensure the completion of the operation.

MPI-3 also optionally supports a unified memory model. This model will relaxe some
of the restrictions of the separate memory model described above. On shared memory
machines, shared windows are supported. Shared windows allow the mapping of the mem-
ory of one process to the other process and thus, communication with load and store
instructions.

PGAS

The term Partitioned Global Address Space (PGAS) is used for a number of different
communication libraries and languages which relay on the PGAS-memory model. The
idea of PGAS is to create global but logically partitioned address space. This means
that all parallel processes share one global address space, but this global address space is
created out of memory segments in the local memory of every process. For every process
the global address space consists of a local and a global part. Besides this global mem-
ory which can be used for communication, every process also has got its local private
memory which cannot be accessed by other processes. Figure 2.12 illustrates this basic
memory model.

The term PGAS is used for both, communication libraries and special parallel pro-
gramming languages, although most libraries are rather one-sided communication li-
braries than PGAS-APIs. The most common PGAS-languages are Universal Parallel
C (UPC) [31] and Co-Array Fortran [32]; another is Titanium[33]. Relatively new
parallel programming languages which are based on a PGAS-model are the Java-based
language X10 [34], Fortress[35], and Chapel [36]. In [37], a relatively good overview
over these new programming languages is given.

Co-Array Fortran is an extension to Fortran to allow parallel programming with some
extension to the Fortran programming language. The data distribution is done with the

16

2.1. Parallel Systems

1
|
} Partitioned shared memory
i

Private Private oo0 Private

Figure 2.12.: PGAS Modell

co-array extension. A co-array is a data-structure which is distributed over all processes
and threads, which are called #mages in Fortran. One process can access the memory of
another process by using indices and load and store operations to such a co-array.

UPC is a parallel extension to the C standard. Like Co-Array Fortran, UPC uses
distributed data structures which allow load/store access to a remote memory area by
using the right indices. UPC also supports put and get functions to directly copy data
between different processes, using a one-sided communication pattern.

These PGAS-languages are extensions to common programming languages and re-
quire special compilers. These compilers translate local accesses to a shared memory
structure to normal, local load/store instructions while remote accesses are translated
into communication requests. One possibility here would be to use a special hardware
that forwards load and store instructions to remote memory, as described, for example,
in [17]. However, since most hardware does not support this, normally the compiler
translates remote load and store instructions to one- or two-sided communication oper-
ations, using an underlying communication framework.

A communication interface that is often used to deliver the communication for these
PGAS-languages, especially UPC, is Global-Address Space Networking (GASNet) [38].
The main goal of GASNet 1s to provide a high performance, network independent com-
munication interface for PGAS languages. During initialization, GASNet allocates on
all nodes a shared memory segment. Remote processes can access these segments with
one-sided put and get functions. GASNet is, for example, used in the Berkeley UPC
compiler[39]. The distributed structures of UPC are allocated in the shared GASNet
segments.

Next to PGAS languages, several PGAS libraries exist. These libraries allow direct
one-sided put and get operations from and to special, shared memory regions or seg-
ments, but they normally do not allow direct load and store instructions. These shared
segments create the partitioned global address space. GASNet, or, more precisely, the
extended GASNet API, can be counted into this group.

Another example is ARMCI (aggregated remote memory copy interface), which is
optimized for non-continuous data transfer operations. To allow a remote process to
perform one-sided put and get operations, the memory must be allocated with a special
allocation function.

A relatively new but widely known PGAS-API is openSHMEM [40]. The Symmetric
Hierarchical Memory (SHMEM) communication library was originally developed for
the Cray T3D [41] system and was a proprietary application interface. Different ven-

17

2. Background

Symetric
Objects

Symetric Heap
1
L

I

Local memory space

Figure 2.13.: OpenSmem memory model [42]

dors came up with their own SHMEM libraries, which diverged over the years. The
idea of openSHMEM is to deliver a standardized, community driven open library for
one-sided communication in distributed memory systems [42].

In openSHMEM, data objects can be allocated in local private or in remotely acces-
sible memory. Remotely accessible objects are also referred to as symmetric objects. An
object is symmetric if it has a corresponding object with the same type, size, and offset
on all other processes. Symmetric objects can be allocated statically. Then they are
located in the exact same area in the local address space of all processes. Symmetric
objects can also be allocated dynamically during runtime. These objects are created in
a special memory region called dynamic heap. The location of this dynamic heap is deter-
mined by the implementation and may be different on different processes, as shown in
Figure 2.13. However, the offset of a dynamic object in the heap should be the same on
all processes.

Remote dynamic objects can be accessed with put, get, and atomic operations. A
put operation blocks until the data are copied out of the local buffer. The delivery on
the remote side is not guaranteed. A get operation blocks until the data has completely
arrived in the local buffer. Thus, these operations are not asynchronous.

Next to one-sided communication operations, collective operations are also supported.
These collective operations are reduce and allreduce operations and operations to dis-
tribute and collect data among all nodes.

OpenSHMEM also supports remote load and store operations, if this is supported
by the underling hardware. Otherwise, a remote load or store instruction results in a
segmentation fault. Currently, this feature is mainly used on shared memory systems.

The main drawback of openSHMEM is that it does not support heterogeneous mem-
ory structures. The symmetric memory segments must have the same size in all pro-
cesses. This makes the integration of accelerators like GPUs difficult. The lack of asyn-
chronous communication operations is a further disadvantage of this standard.

A similar communication PGAS-API is the Global Address Space Programming In-
terface (GASPI) [43] and its implementation, GPI-2. In contrast to openShmen, it pro-
vides support for heterogeneous memory structures and asynchronous one-sided com-
munication requests. A more detailed description of the GASPI-standard will follow in
section 4.3, in which the integration of GPUs to this standard is discussed in more detail.

18

2.2. Modern Parallel Processors

ALU ALU

Control

ALU ALU

Figure 2.14.: Difference between a GPU and a CPU

(@)
v
c
()
| o o .=
B | A B

(AR

2.2. Modern Parallel Processors

After analyzing parallel systems in the previous sections in detail, the next sections con-
centrate more on the individual parts of this systems. This section gives a short introduc-
tion to GPUs and especially the differences between GPUs and CPUs. This introduction
primarily refers to the excellent book Programming Masswely Parallel Processors by Kirk and
Hwu[44], in which a more detailed introduction can be found.

2.2.1. Multicore and Manycore architectures

The hardware industry today is devolving into two directions for new parallel micro-
processors: multicore and manycore. The multicore architecture began with a two-core
processor by doubling the functionality of a single CPU core on the same chip. A cur-
rent example is the Intel Xeon Processor E5-2697 v2, which comes with up to twelve
cores. Each of these cores comes with a full X86 introduction set and supports hyper
threading with two hardware threads per core.

The manycore direction focuses more on the higher data throughput. Manycore, there-
fore, is defined as a larger number of smaller cores with a limited instruction set. A current
example is the Nvidia Kepler 40 GPU, which comes with 2,880 lightweight cores.

The main difference between a general purpose multicore CPU and a manycore GPU
is llustrated in Figure 2.14.

The individual CPU cores are optimized for sequential code execution. Sophisticated
control logic allows the execution of multiple instructions of a single thread in parallel.
Techniques like branch prediction, executing multiple instructions in the same clock
cycles (instruction level parallelism), and reordering of the instruction stream for out-of-order
execution allow for improving the instruction flow on a single CPU and thereby increase
the performance [2].

Furthermore , a modern CPU often has a small vector unit which allows performing
the same instruction on a vector of input data in parallel, following the Single Instruc-
tion Multiple Data Stream (SIMD) after Flynn’s taxonomy [13]. Examples for this are

19

2. Background

the Streaming SIMD Extensions (SSE), designed by Intel, and the Advanced Vector
Extensions (AVX) for the X86 instruction set architecture, proposed by Intel and AMD
in 2008. Thereby, the performance of a modern CPU is not only determined by its
clock rate. Still, CPU cores are mainly optimized for sequential code execution. This
all leads to heavyweight, high performance compute cores, with a relatively high power
consumption.

In contrast to this, the compute core of a GPU is very lightweight and features like
branch prediction or pipelining are not part of the GPU core architecture. The reduced
instruction set of a GPU core is not optimized for single threaded executions. Instead a
GPU is optimized to perform a massive number of floating point instructions in parallel.

Due to the large number of lightweight compute cores, GPUs reach a very high the-
oretical peak performance with a lower energy consumption. CPUs and GPUs also
differ in cache size and cache functionality. CPUs have very large caches to reduce in-
structions and the data access latency of complex applications. In contrast, GPUs have
very small caches. Starting a massive number of threads in parallel optimizes the per-
formance of GPUs. Caches are used to minimize accesses to the device memory. If
a thread is waiting for a long latency memory access, another thread is scheduled. To
allow a fast switching between threads, the control logic for an execution thread is min-
imized. In the following, a more detailed description of the architecture of a modern
GPU is given.

2.2.2. Architecture of a modern GPU

Figure 2.15 shows the block diagram of a modern GPU, in particular the Nvidia GK110
Kepler GPU. The cores of a GPU are grouped in so-called Streaming Multi Processors
(SM) (or SMX for Kepler GPUs). The GPU in Figure 2.15 has 15 SMXs; however,
there are also Kepler GPUs with 13 or 14 SMXs. All SMXs share one L2 cache. Six
64-bit memory controllers provide access to the device memory. The GPU is connected
to the host-system via a PCI express interface. The GigaThreadEngine is responsible for
scheduling the threads to the individual SMXs.

Streaming multi processor architecture

Figure 2.16 shows a more detailed diagram of a Streaming Multi Processor (SMX) of
an Nvidia Kepler GPU.

The compute cores of one SMX share the control logic and the instruction cache.
One SMX comes with 192 CUDA-cores, 64 double-precision units, 32 special function
units, and 32 load/store units. The 32 special function units (SFU) are used for fast
approximate transcendental operations.

The scheduler of a GPU does not handle each single thread; instead, threads are orga-
nized in wraps (typically 32 threads). On a modern GPU, one SMX has more than one
wrap scheduler. An SMX of the Nvidia-GK 110 architecture has four wrap schedulers,
as shown in Figure 2.16. This allows the execution of four wraps concurrently on one
SMX. The eight dispatch units allow that two independent instructions of a wrap can

20

2.2. Modern Parallel Processors

[PCl Express Host Interface

| GigaThreadEngine

Figure 2.15.: Block diagram of a GK100 GPU (Kepler K20 architecture) [45]

Instruction Cache

Register File

Shared memory/L1 cache

Read only Cache
Texture || Texture || Texture || Texture || Texture || Texture || Texture || Texture
Texture || Texture || Texture]| Texture || Texture || Texture || Texture || Texture

Figure 2.16.: Block diagram of a streaming multi
architecture [45]

processor of the Nvidia Kepler GK 110

21

2. Background

= = N N
o v o G
S =} S =}

bandwidth[GB/s]

u
o

written data

—¢-Consecutive ~#-Stride 2 Stride 4 —¢Stide 8

Figure 2.17.: GPU memory write bandwidth

be dispatched each cycle. On a Kepler GPU, every thread can use up to 255 registers.
The complete register file has a size of 65,536 x 32bit.

The shared memory and the L1 cache use the same on-chip memory. Therefore, it
can be configured as 48 kB of shared memory and 16 KB of L1 cache or as 16 KB of
shared memory and 48 kB of L1 cache. The cores of one SMX share one L1 cache/
shared memory unit and one read only cache. Each SMX also contains sixteen texture
filtering units, which are used to sample and filter image data.

Context switching on the GPU comes with very low costs and long-latency events
can easily be hidden. For optimal performance, the threads of a single wrap should
avold branch divergences since this result in performance losses. If a branch divergence
occurs, one thread does the work while all other threads block. Enough threads have to
be ready to maintain full utilization when long-latency events occur. A well performing
application typically runs with 5,000 — 20,000 threads in parallel.

GPU device memory

A GPU comes with up to 12 GByte (Kepler K40) Graphical Double Rate DRAM
(GDDR) memory, which is referred to as global memory or device memory. This device mem-
ory is shared by all SMs or SMXs and can be used for communication between the multi
processors. GPUs also support atomic operations on this device memory.

Due to a simpler memory model and fewer legacy constrains than CPUs, GPUs are
able to achieve much better memory bandwidth than CPUs. The memory bandwidth
of the Nvidia Kepler K40 GPU is specified with 288 Gbytes/second, while for the Intel
Processor E5-2697 v2, 59.3 Gbytes/second are specified as the maximal bandwidth.
One of the reasons for this is the higher cache line size. The size of one cache line of
a Kepler K20 GPU is 128 Bytes, while it is normally 64 Bytes for X86 CPUs. GPUs
can only achieve this bandwidth if the memory accesses can be coalesced. The memory
controller of the GPU can coalesce the accesses to continuous memory regions from
multiple threads in parallel.

Figure 2.17 shows the memory write bandwidth, measured on an Nvidia K20 GPU.
The bandwidth is measured by writing a number of double values to GPU device
memory to consecutive and non-consecutive addresses, varying the size of the stride

22

2.2. Modern Parallel Processors

Figure 2.18.: Simplified block diagram of the Intel Xeon Phi [46]

between the written values. The full bandwidth is only reached if the accesses are to
consecutive addresses. If only every second value is written, the bandwidth is halved; if
the GPU only writes every fourth value, only a fourth of the bandwidth can be reached,
and so on.

2.2.3. Other manycore processors

GPUs are the most commonly used accelerators for high performance computing and
primarily used in this work. However, GPUs are not the only manycore processors.
Therefore, now a short introduction to other manycore architectures — and their differ-
ences to GPUs —is given.

Intel Many Integrated Core Architecture

The Intel Many Integrated Core (MIC) architecture, a coprocessor developed by Intel,
1s, next to GPUs, the most popular accelerator in today’s high performance systems. Of
the Top500 List from June 2014, 62 systems use accelerators. While 44 of these systems
use Nvidia GPUs, 17 use the Intel MIC technology [10]. One of these systems is the
No.1 system of June 2014, the Titanhe-2 at the National Super Computer Center in
Guangzhou.

The MIC technology is sold under the product name Intel Xeon Phi. In Figure 2.18
the simplified block diagram of an Intel Xeon Phi coprocessor, more precisely the Intel
Knights Corner, is shown. Note that this is a simplified block diagram, not showing the
actual number of cores. The Intel Xeon Phi actually provides up to 61 cores.

Each of these cores comes with a private L2 cache, that is kept fully coherent by a
global distributed tag directory (7D). Four memory controllers provide direct interface

23

2. Background

E Northbridge
X86 core [«>| §] <> Physical
2 Memory
=
N
X86 core |« ?5- - <
a
L2 Front Cross Dram
S END bar Controll
X86 core <> & == |
%] -
=
N
X86 core [« 8 |
3
2 L

Graphics Memory Contoller

AMD Radeon GFX Cores

Figure 2.19.: Simplified block diagram of a AMD Liano APU[47]

to the GDDRJ5 device memory. The host is accessed over a PCle client. All these
components are connected with a ring interconnect [46].

The cores of the Xeon Phi are X86-CPUs, based on the Intel Pentium Processor but
with 64 bit support. One core supports four threads in hardware. A further addition to
the Pentium architecture is the vector processing unit (VPU) which supports a 512-bit
SIMD instruction set. Thus the VPU can execute 16 single-precession or 8 double-
precession per cycle, supporting the AVX instruction set.

In contrast to GPUs, the Intel Xeon Phi provides its own Linux operating system
and it is possible to log into this system over SSH. The Xeon Phi supports x86 memory
order model and IEEE 754 floating-point arithmetic. It is also possible to compile an
application written in Fortran, G, or G++ directly for the Xeon Phi.

The current version of the Intel Xeon Phi, called Nights Corner, is only available as
an add-in card. However, the next generation, Intel Knights Landing, will be available
as both, a stand alone CPU and an add-in card.

AMD APUs

One of the bottlenecks for the performance of GPU applications is the data transfer
between host memory and GPU memory over PCle. To overcome this bottleneck, an
Accelerated Processing Unit (APU) combines a general purpose CPU and a GPU-vector
processor on the same die, sharing the same memory. In Figure 2.19, the simplified
block diagram of the AMD Liano APU is shown. This APU has four general purpose
x86 CPUs (AMD Stars), each with 1 MB L2 cache. The AMD Radeon GPU consist
of 4 SIMD-processing units. Each of these processing units combine 16 VLIW-5 AMD
Radeon”™ cores. Each of these cores has four 4 streaming-cores and one special functions
core, resulting in five processing units for every VLIW-5 AMD Radeon”™ core and in
400 processing units for the complete Radeon GFX unit [47].

24

2.3. GPU Programming Models

Since both compute units, the CPU and the GPU; can access the same DRAM mem-
ory, copies over the PCle-bus can be avoided. The first generation of the APUs divides
the system memory into two parts: one part is visible to be managed by the operating
system running on the x86 cores and one part i3 managed from the software running
on the SIMD cores. This requires a memory copy between the two memory regions.
For that, AMD provides a highspeed block transfer engine. Despite this bottleneck, this
first generation APU shows better performance than a similar discrete GPU, but lower
performance compared to a GPU with more compute power [48].

APUs are currently used especially for mobile computing and low power devices. The
third generations of APUs are also used for the Sony PlayStation 4 [49] and the Mi-
crosoft Xbox One[50] video game consoles. However, due to the lower performance
of the CPUs compared to Intel Xeon CPUs and the lower performance of the GPU
cores compared to current GPGPUs, they are currently not used in High Performance
Computing.

2.3. GPU Programming Models

GPUs, as the name suggests, originally were designed for graphic processing, more pre-
cisely, for 3-dimensional rendering. Over the years, the GPU designs evolved form a
fixed-pipeline design to a more unified processor design, resembling high-performance
computers. Therefore, they become more and more interesting for researches from
other areas.

However, the used APIs, openGL and DirectX, were designed for Graphic processing,
Therefore, a programmer was forced to map the problem into native graphic problems.
For example, to run multiple instances of a compute function in parallel, the computa-
tion had to be written as a pixel shader and the input data had to be stored into texture
images to be readable for the GPU.

Nevertheless, some researchers ported applications to the GPUs and reached perfor-
mance benefits compared to the CPU versions [51, 52]. That was the beginning of
General Purpose GPUs (GPGPUs) [53].

Due to the growing interest in GPUs for general purpose computing, vendors and
computer scientists started the development of programming languages and models for
GPUs that allow the developing of programs for users who are not that familiar with
classic graphical aspects.

2.3.1. CUDA

Nvidia was one of the first companies that realized the growing interest in GPUs for
general purpose computing. This appears in both the software and the hardware devel-
opment.

Firstly, their shader became a fully programmable processor, with large instruction
memory, instruction cache, and instruction sequencing control logic. They also added
memory load and store instructions with random byte addressability.

25

2. Background

Table 2.1.: CUDA extensions for function calling

executed on callable from

__device__ float DeviceFunc() device device
__host__ float hostFunc() host host
__global__ void MyKernel() device host, device (since CUDA 5.0)

Simultaneous, Nvidia develops the Compute Unified Device Architecture (CUDA)
[54, 53], a parallel computing platform with libraries, compiler, and runtime software
to enable programmers who are not familiar with graphic processing to access the com-
putational capabilities of GPUs.

For a GUDA programmer, a computing system consists of a /fost and one or more
devices, a GUDA enabled GPU. A CUDA program consists of one or more phases that
are either executed on host or on GPU. The source code provides both host code and
GPU code. The NVIDA compiler separates both during the compile process.

The GPU device memory is managed from the host. The functions cudaMalloc and
cudaFree are used to allocate and free GPU device memory and can only be called from
the host. To transfer data between host and GPU, the host-functions cudaMemcpy and
cudaMemcpyAsync can be used.

A GPU has at least one Direct Memory Access (DMA)-engine to access host memory.
This means that a GPU can directly access host memory without any CPU-involvement.
Host memory can be pinned and registered for the GPU. Pinned means that the mem-
ory is locked and cannot be swapped. That allows the GPU a static virtual-to-physical
address translation. For registered memory, the GPU creates own page tables.

This enables the GPU to directly transfer data between GPU memory and pinned
host memory region. Data from non-registered memory is buffered in pinned host
memory buffers, which are managed by the CUDA runtime system. If pinned mem-
ory 1is used, the asynchronous copy operation cudaMemcpyAsync can be used. Then,
the memory transfer is handled by the DMA engines of the GPU. Pinned host memory
can either be directly allocated with cudaMallocHost or subsequently registered with
cudaRegisterHostMemory.

The GPU device code is written in extended ANSI C, with special keywords labeling
the data-parallel functions and data structures. In Table 2.1, the G extension keywords
and their meanings are summarized.

Device functions that can be called from host are called kernel and must have a void
type. They are labeled with the keyword __global__. The invocation of a CUDA-
kernel on the GPU is also called launch. When a new kernel is launched, it is executed as
a grid of parallel threads. These threads are organized in blocks. Both, a block and a grid
can have a 3-dimensional structure. A grid typically consist of several thousand threads.
In Figure 2.20, the structure of a two dimensional grid with four blocks is shown. If
the host launches a kernel, it defines the size of the blocks and the grid via the execution
configuration parameters. Listing 2.2 shows how a kernel is launched on the GPU.

26

2.3. GPU Programming Models

Grid

Block(0,0) Block(1,0)

)

Block(1,0) b

NN Block(1,1)

s
TN

Block(1,0)
\

\
\
\
\
\
\
\
\
\
\

Figure 2.20.: A 2-dimensional GPU-thread grid with 2-dimensional blocks

All threads execute parallel the code in the kernel function. Therefore CUDA is an
instance of the Single Programm Multiple Data (SPMD) programming style [56], a clas-
sic example of a data-parallel programming style. A kernel innovation is asynchronous;
this means that the function returns while the kernel is still running on the GPU.

Listing 2.2: CUDA kernel launch

cuda_kernel<<<blocks, threads, O,stream>>>(parl, par2, ---);

A kernel is launched to a so-called stream. A stream is a sequence of operations that
are executed in order on the GPU. This means that two operations on different streams
can be executed concurrently. Streams are often used to overlap computation on the
GPU and data transfer between host and GPU. Since CUDA 4 not only is it possible to
overlap the data transfer and the computation, but also multiple kernels can be executed
simultaneously if they are submitted to different streams. If no stream is specified, the
so-called null-stream is used.

In the past, only the host was able to launch a new GPU-kernel. However, the new

dynamic parallelism feature, which was introduced with CUDA 5 and Kepler Class GPUs,
now allows launching of GPU-kernels directly from the GPU.

The CUDA memory model

CUDA threads have access to different memory spaces during their execution. The
CUDA memory model is closely related to the GPU-architecture, as shown in Figure

2.21. All threads running on the GPU have access to the global device memory. The
threads of one block access the same shared memory region. The memory access latency

27

2. Background

Global memory

Figure 2.21.: CUDA memory Modell

to shared memory is much lower than the latency to the device memory. This can be
used for optimization.

Furthermore, every thread has a private, local memory. The local memory is allo-
cated in the device memory and therefore has got the same long access latencies as
access to global memory. Therefore, local static allocated variables are often held in
the registers. The registers of one shared multiprocessor are dynamically distributed
between the threads and are also used to store local and global data.

Access to the global memory is cached. On Kepler architecture, the L1 cache is
reserved only for local memory accesses such as register spills and stack data. Accesses
to global memory are only cached in L2 cache [57].

2.3.2. OpenCL

Next to CUDA, several other approaches exist to use GPU for accelerated computing.
Open Computing Language (OpenCL) by Chronos [4] is a low-level programming in-
terface for parallel programming which can also be used for GPUs. The syntax and
program structure of an OpenCL program is very similar to CUDA. As in CUDA, an
OpenCL program consists of parallel kernels and sequential host functions. A kernel
can be task-parallel or data-parallel; on GPUs only data-parallel kernels make sense.
Kernels and data transfers can be submitted to gueues, similar to CUDA streams.

In OpenCl, the work is distributed between so-called work-items which are grouped in
so-called work-groups. This concept is very similar to the threads and blocks in CUDA.

Also, the openCL memory model is very similar to CUDA. The private memory can only
be accesses by a single work item (CUDA: local memory), the local memory in OpenCL
can be accessed by all work-items of one work-group (CUDA: shared memory) and the
global device memory can be accessed by all work-groups (CUDA: global memory).

In contrast to CUDA, OpenCL cannot only be used for Nvidia GPUs, but it can be
seen as a framework for heterogeneous systems, consisting of central processing units
(CPUs), digital signal processors (DSPs), field-programmable gate arrays (FPGAs), the

28

2.4. Interconnection Networks and Network Interfaces

Intel Xeon Phi, and other coprocessors. OpenCl is also not only usable for Nvidia GPUs,
but can also be used on GPUs from other vendors, for example, AMD. In most applica-
tions, the performance of OpenCL is worse than the performance of a CUDA-program
on an Nvidia GPU, but with some GPU specific optimizations a similar performance
can be reached [58][59]. However, since GUDA provides some features which are re-
quired in this work, in particular dynamic parallelism and GPUDirect, and that are not
yet supported in current openCL versions, CUDA is used in this work.

2.3.3. Directive-based approaches

Some developers are of the opinion that using low level APIs like CUDA or OpenCL re-
sult in an unproductive development process since a lot of code has to be ported, which
is also very error-prone [60]. Therefore, several directive-based approaches have been
proposed. The idea of directive based programming is that the user adds only a few
lines with compiler hints to a sequential code while the compiler implements the par-
allel accelerator code. The most widely used standards for directive-based accelerator
programming are OpenACC [5] and OpenMP extensions for accelerators [61].

OpenACC is an industrial standard which was developed by Cray, Nvidia PGI, and
CAPS. The specification describes a collection of compiler directives for G, C++, and
Fortran which allow the offloading of compute intensive tasks to an accelerator, for ex-

ample, a GPU.

OpenMP was designed for productive programming in shared memory machines.
With version 4.0, additional directives to support accelerators were introduced.

However, although for some applications almost 90% of the performance of an ap-
plication written in CUDA can be reached, for other applications, only 50% of the
performance of a GUDA program using a directive-based approach are reached [62].

Besides, for Nvidia GPUs, most openMP/OpenACC compilers internally translate
the directives to CUDA or openCL code. The communication concepts analyzed in
this work are realized in CUDA. A next step would be to allow the use of these concepts
in conjunction with OpenACC or OpenMP. However, this is not the scope of this work,
therefore directive based approaches are not considered here in more detail.

2.4. Interconnection Networks and Network Interfaces

Another important part of a cluster are interconnection networks. In this section, a short
introduction to Interconnection Networks (IN) and Network Interfaces (NI) is given.
The section ends with a more in depth analysis of two Interconnection Network (IN),
Infiniband and Extoll, which are used in this work. The goal of this section is to get a
better understanding of the functionality of IN and Network Interface (NI). This is nec-
essary in order to find a suitable communication model for inter GPU communication
and data transfer.

29

2. Background

Interconnection
Networks

[|

flow controll topology routing

Figure 2.22.: Design space of network interfaces

2.4.1. Interconnection networks

An Interconnection Network is defined as a programmable system that transports data
between terminals [63]. It is programmable in the sense it that differences connections
at points in time. Switches are opened and closed to provide a connection path from one
terminal to another [64].

This definition of a IN occurs at many stages, from the on-chip network that delivers
data transfers between memory areas within a single processor to wide-area networks
that connect distribute systems. In this work, mainly the interconnection networks be-
tween distributed nodes with distributed memory are considered. However, also the
interconnection network between host and GPU and the GPU and another peripheral
device, for example, a network adapter, have to be considered. Figure 2.22 shows the
design space of interconnection networks.

The topology is very important for the scalability. It describes the arrangement of nodes
and the connection between the nodes. The topology can either be direct or indirect. In
a direct topology, every node is directly connected to another node. An indirect topology
uses intermediate switches.

The routing method describes, how a package is send from one node to the destination
node. While the topology determines the ideal performance of a network, the routing
is one of the key factors of how much of the potential performance could be realized.
Routing algorithms are classified to deterministic and adaptive algorithms. Deterministic
algorithms always choose the same path between two nodes, without using further in-
formation like the current network traffic, for example. Adaptive algorithms adapt the
route to the state of the network, using state information like the status of a node or
historical channel information. The flow control is required to manage the allocation of
resources to packages. The key resources of most interconnection networks are buffers
and channels. Buffers are registers or memories that allow holding a package temporar-
ily. In the following, some interconnection networks which are of interest in this work
are examined in more detail.

2.4.2. PCIl-Express

The GPUs — and in most cases also the network interface for the connection to a remote
node are connected to the host system over the Peripheral Component Interconnect
Express (PCle)-bus. The PCle-bus is a serial bus with point-to-point connections. In
Figure 2.23, the topology of the PCle-bus is shown. The Root Complex connects the CPU

30

2.4. Interconnection Networks and Network Interfaces

CPU

|

Root
Complex

Memory

Endpoint Endpoint
device device
Endpoint Endpoint
device device

Figure 2.23.: PCle topology

and system memory to the PCI Express fabric and may support several PCle ports. A
port can be connected to an endpoint or a switch which then forms a sub-hierarchy.

The CPU can order the root complex to send requests over the PCle-fabric. The root
complex transmits packages out of the port to the devices and also forwards incoming
requests to the CPU or the system memory. The root complex does not necessarily sup-
port the transport of a package from one port to another; this is the case for many older
systems. However, this peer-to-peer data transfer is necessary for a direct data transfer
between a GPU and a other peripheral device like a network interface. Therefore, one
of the conditions for a direct communication is that the used PCle-bus and root complex
support peer-to-peer communication.

PCle transaction can be divided into posted (write operations) and non-posted (read
operations) transactions. A non-posted transaction requires a completion (with the read
data) to be completed, while a posted-transaction consists of a memory write packet and
does not require a completion.

A PCle interconnection consists of either a x1, x2, x4, x8, x12, x16, or x32
link (physical connection). The bandwidth of one lane (without protocol-overhead) is
500 M B/s for PCle 2.0 and 984.6 M B for PCle 3.0. This leads to a bandwidth
of 4 GB/s or 15.754 M B/s for device that is connected through a x16 slot, most
commonly used to connect GPUs to the host system.

2.4.3. QPI and Hyper Transport

QuickPath Interconnect (QPI) and Hyper Transport (HT) are processor interconnects.
Intel’s QPI connects one or more processors and one or more I/O-hubs on a single
motherboard, enabling all components to access the other components over this net-
work, see in Figure 2.24. QPI is a point-to-point interconnect. As the block diagram
in Figure 2.24 shows, the DRAM memory banks are directly attached to one of the
processors. All processors can access the complete memory, with more latency if ac-
cesses are routed through the QPI interconnect. Therefore, such a machine is called a

31

2. Background

& %,

E Processor arl Processor E

Processor ael Processor
Processor HT Processor HT

dD
140
©
dD

|edaydiiad

%, & 4 &
Figure 2.24.: QPI interconnect Figure 2.25.: HT interconnect

NUMA (non uniform memory access) machine or, more precisely, a Cache-Coherent
(CC-NUMA) machine as the caches of the processors are kept coherent.

In the system shown in Figure 2.24, peripheral devices can be connected to both 1I/O-
hubs. This can lead to different access times to the host memory from a peripheral
device, depending on the location of the memory bank memory and the peripheral de-
vice. Peer-to-peer accesses between two peripheral devices that are located on different
I/0O-hubs also have to be routed through the QPI link.

Hyper Transport(HT) is an interconnection network for multiple Processors and the
I/0-hubs, similar to QPI. HT is mainly used for AMD CPUs, while QPI is used for
Intel processors. In contrast to QPI, the HyperTransport eXpansion (HTX) also allows
slot-based peripheral devices a direct connection to a micro processor.

This allows the use of plugin cards that are directly connected to the GPU and have
direct access to the system memory, without going over the I/O-hub or a PCle bridge,
as shown in Figure 2.25.

2.4.4. Network Interfaces

The connection point between an interconnection network and the network client is
called the Network Interface (NI). The NI is often one of the main factors for the perfor-
mance of an interconnection network. If such network interface is located on a periph-
eral device, it is called Network Interface Card (NIC).

Two register interface

The simplest network interface is the &wo register interface shown in Figure 2.26 [63]. This
interface has two registers, one for sending and one for receiving messages. To send

32

2.4. Interconnection Networks and Network Interfaces

Figure 2.26.: Two register interface

messages, a processor moves a message word by word to the send register. A special
move instruction marks the last work and terminates the message.

On the receiving side, the processor reads the message word by word out of the regis-
ter. To synchronize with the sending side, the processor may test the register for a new
message or block it, until a new message arrives.

However, this network interface has got two disadvantages: First of all, it adds a lot
of overhead to the processor, because it has to move the message to the register word by
word, so it 1s serving as a DMA-engine. The second problem is that the network interface
1s not protected from software running on the processor. If a processor starts to send a
message and then delays infinitely, the partial message can also occupy resources like
buffers infinitely.

For a safe network interface, any shared resource must be released in a limited amount
of time.

Descriptor-based interface

A descriptor-based interface overcomes the limitations of the two-register interface [63].
The processor composes a descriptor for the message that should be transferred. The
descriptor may contain an immediate value or an address to a memory block and the
size of the required data transfer. The processor moves this descriptor to a set of dedi-
cated descriptor registers in an atomic manner. A dedicated hardware on the network
interface now can process the message. Thereby, the overhead for the CPU is mini-
mized.

On the receiving, side also the network hardware can handle the incoming messages.
Here, a descriptor may be required to prepare the buffer for an incoming message. An-
other solution would be the use of pre-allocated buffers.

2.4.5. Remote Direct Memory Access

A message transfer always requires a source process and a destination process. Although
the data transfer can be handled by dedicated hardware, a processor is still required to
initiate the data transfer (prehaps with a descriptor) on the sending side and to accept
the data on the remote side.

Direct Remote Memory Access (RDMA) capable interconnects, like Infiniband, Ex-
toll or Myrinet are widely used in high performance computing. RDMA means the

33

2. Background

network device can directly transfer data from the memory of one node to the mem-
ory of another node, without involving the processor on the target side. On the target
side, the network hardware can handle an incoming request from a remote process by
completely bypassing the host CPU.

Virtual memory and memory registration

User space applications normally use virtual addresses (VA) to address host memory.
The CPU translates these addresses to the physical addresses (PA). Normally, the mem-
ory belonging to a virtual address is physical not continuous.

A user space program usually only knows the virtual address due to security reasons,
while a peripheral device requires the physical address to access the memory area. There
are two possible ways to allow user space applications communication with virtual mem-
ory areas as communication buffers: Either, every communication request requires ac-
cess to the operating system to perform a physical to virtual address translation, or the
peripheral device, here a NIC, has is own memory management unit (MMU), which
allows a virtual to physical address translation. One-sided RMDA communication is
only enabled in the second case. However, to allow a static virtual to physical address
translation, the host memory must be locked, since a locked memory area cannot be
swapped.

Therefore, the device drivers of RDMA capable NICs provide a function to lock and
register host memory. This function locks the memory, performs a virtual to physical
address translation and creates page tables for the NIC.

Memory pinning and registration is the main bottleneck of RDMA-based communi-
cation: itis a very expensive operation [65], not only because of the memory registration
but also because of the data exchange with the remote side. To allow RDMA communi-
cation, the sourcing processor requires information about the remote registered memory
segments. Normally, the virtual address is not sufficient for communication, due to se-
curity reasons, and keys or special network addresses are required. Therefore, different
strategies exist [65] and much work was done in optimizing memory registration for
higher-level communication libraries [66].

RMDA in communication APls

As RDMA is a common data transfer method, it is widely used in common communi-
cation APIs. In two-sided MPI communication, two different protocols, depending on
the message size, are used.

The eager protocol, which is mostly used for small messages, uses pre-allocated and
pinned buffers to cache data and meta-data [67]. For a data transfer, the data is copied
to and from these buffers. The advantage of this protocol is that latency is very small,
but it adds some overhead to the CPU due to the extra memory copies. Because of the
size of the buffers and the overhead, this protocol is not suitable for larger messages.

Therefore, for larger messages the rendezvous protocol is used [68]. One side (it
can be either the sending or the receiving side) initially sends the meta-data about the
communication request to the remote side. This meta-data is matched with a local send

34

2.4. Interconnection Networks and Network Interfaces

Figure 2.27.: Infiniband subnet topology

or receive call and then the data transfer is started. If the data transfer is completed,
both sides are notified about the completion. Using the eager protocol, the memory
buffers for the data transfer are registered dynamically. This approach avoids extra
memory copies, but due to extra data transfers and the memory registration, the latency
1s affected.

These techniques are often used together with lazy pinning- and unpinning strategies
[69, 70, 71]. The memory is not directly unpinned if the communication is completed,
but stays pinned for as long as possible. A pinned memory region may be used in further
communication and thus unnecessary pinning and unpinning can be avoided.

In this work, two different RMDA capable interconnection networks are used: In-
finiband and Extoll. The next sections give a short overview of these interconnection
networks.

2.4.6. Infiniband

Infiniband is an industry-standard architecture for server I/O and inter-server commu-
nication. It was developed by the InfiniBandSM TradeAssociation IBTA)! to provide high
levels of reliability, availability, and performance. In the last years, Infiniband gained
high popularity in high performance computing. In fact, over 40% of the Top500 sys-
tems today use Infiniband as interconnect [10]. In the next paragraphs, a shot introduc-
tion to Infiniband is given. A more detailed description can be found in [72].

The topology of a so-called Infiniband subnet, the smallest unit in an Infiniband net-
work, is shown in Figure 2.27. The endpoints of an Infiniband network are connected to
switches. Infiniband provides an indirect topology. The switches can also be connected
to other Infiniband switches. All data transfer in Infiniband is point-to-point, not busted.
This should provide failure isolation and allow scaling to large networks.

Messages are sent from one endpoint, for example, a host node, to another endpoint
over the links and routed by the switches. To create larger networks, routers can join
multiple subnets. Infiniband uses a deterministic routing.

"nttp://www.infinibandta.org/

35

http://www.infinibandta.org/

2. Background

Queue
Post Work Work Work Work
work request request request request request
<
o
=3
a
§ @
o
by
& Queue
o
Poll -))) .
Completion i

Figure 2.28.: Work request processing in Infiniband

The network interface card for Infiniband is acalled Host Channel adapter (HCA).
Normally, the HCA is a network device, which is connected to the node over the PCle-
bus. The software interface required to control the HCA from host is called Infiniband
verbs (ib verbs).

Memory registration in Infiniband

To allow an Infiniband HCA to access host memory, the memory has to be locked and
registered. This applies to both memory that is required for communication and mem-
ory that is required for communication resources. To manage the memory, a table of
the registered pages, the Memory Translation Table (MTT), is used. This page table
1s normally allocated in host memory. To allow the HCA to access the memory, the
virtual address and a specified key is required. For local accesses, the so-called local-key
(I-key) and for remote accesses the remote-key (r-key) are used. The keys are created
during memory registration. The Infiniband HCA uses the key and the virtual address
to find the right entry in the M'T'T and to determine the physical addresses.

Communication in Infiniband

Communication in Infiniband is handled between so-called queues. There are three
kinds of queues: send, receive, and completion queues.The send and receive queues are
always used together as Queue Pair (QP). Each send and receive queue is assigned to
one completion queue, but a single completion queue can be used by several send and
receive queues.

Queues are ring buffers in host memory, which are pinned and registered for the
network device, so the HCA can directly read and write the data from this queues.

Figure 2.28 shows the processing of a work request in Infiniband . A host process
submits a work request to a queue and the HCA processes this work request. When
the HCA completes the processing of a work request, it optionally places a completion
notification to the associated completion queue. This notification is called completion
element. The host can process this notification to ensure that the data transfer is com-

36

2.4. Interconnection Networks and Network Interfaces

pleted. Posting of work requests and polling for a completion is handled from the Infini-
band verbs API. Infiniband supports the following communication requests:

RDMA_WRITE is a one-sided communication request to puf data to a remote memory
region. This request does not require a remote work request to be completed.
Therefore, the work request needs information about the local and the remote
memory region. Write requests are submitted to the send queue.

RMDA_READ is a one-sided communication request to get data from a remote mem-
ory region. This request does not require a remote work request to be completed.
Therefore, the work request needs information about the local and the remote
memory region, including local and remote memory keys. Read requests are also
submitted to the send queue.

SEND is a request to send data to a remote side. It has a two-sided semantic, so it
requires a receive request on the remote side to be completed. A send request
only requires information about the local memory segment and is submitted to
the send queue.

RECEIVE is a request to receive data and is required to complete a send request from
a remote process. A receive request is submitted to the receive queue and must
be posted before the send request on the remote side, otherwise the send request
fails. The receive request requires information about the local memory segment.
It is submitted to the receive queue.

RMDA_WRITE_WITH_IMM is a communication request some what inbetween one-
sided and two-sided communication. Remote write requests with immediate data
require the same information as normal write request plus an additional immedi-
ate value. In contrast to normal remote write requests, a receive request on the
remote side 1s needed to successfully complete the communication. The destina-
tion address and the key of the receive request can have an arbitrary value and
will be ignored. Yet without the receive request, a remote write request with im-
mediate data fails. The benefit of a remote write request with immediate data is
that a completion element is created on both sides. The completion element on
the target side contains the immediate value. This technique provides an implicit
synchronization mechanism for one-sided communication.

SEND_WITH_IMM is a request similar to normal send requests but with an addi-
tional immediate value that is added to the completion element on the receiving
side.

FETCH_AND_ADD performs an atomic fefch-and-add operation on a remote memory
segment. This request is also submitted to the send queue. This atomic operation
atomically fetches a value from a remote memory segment, adds a specified value
and writes the result back. The completion element returns the old value to the
process.

37

2. Background

COMPARE_AND_SWAP performs an atomic compare-and-swap operation on a re-
mote memory segment. This request is also submitted to the send queue. It
atomically compares a remote value to a given value. If the values are equal, the
old value is replaced with the predefined new value. The completion element
returns the old value to the process.

Transport types in Infiniband

If a QP is created, it must be associated with one of the following transport types:

Reliable Connection (RC) One RC-QP is connected to exactly one other RC-QP.
The data transfer is reliable, the order of the data is guaranteed.

Unreliable Connection (UC) One UC-QP is connected to exactly one other UC-
QP. Data may get lost during transport and the order is not guaranteed. The
data transfer size is limited to a maximal transfer unit (M'TU), which is between
2 kB and 4 kB for current hardware. RDMA-write requests are not supported.

Reliable Datagram (RD) An RD-QP can send and receive data from multiple RD-
QPs using a reliable datagram channel. RD-QPs are optional and therefore often
not supported in current hardware.

Unreliable Datagram (UD) A UD-QP can send and receive data from multiple other
UD-QPs. It is the most basic transport for Infiniband and therefore has got a
number of limitations. The message size is limited to the M'TU size and RDMA
operations are not supported.

Most communication libraries like GPI or MPI use RC-QPs for communication as
they provide a lot of benefits compared to the other QP types. First of all, all RDMA
communication types are supported. The data payload is not limited to the M'TU size
and therefore, a large message can be transferred with a single work request. The main
advantage, however, is the data reliability. The hardware recognizes if data is dropped
and the order of messages is guaranteed. For unreliable transport, this has to be guar-
anteed by the software which is more costly.

However, the main disadvantage of RC-QPs is the memory footprint [73]. Every RC-QP
can only be connected to one other QP, therefore, for every connection, a new QP is
required. As mentioned above, for every QP, the queues for the work requests have to
be allocated. For larger systems with several thousand processes, this memory footprint
can become a problem.

To overcome this limitation, in [74] and [73] UD-QPs were used for two-sided MPI
communication. The memory footprint of MPI could be reduced from 140 MB to
40 MB for every MPI process with 8k MPI endpoints. However, due to the limitations
in message size and reliability, the latency increased by around 23% for 1 kb messages
and the bandwidth droped about 9% for the optimized version compared to a data
transfer using RC-QPs.

38

2.4. Interconnection Networks and Network Interfaces

libibverbs ‘

’ libmIx4 ‘
User Space
Kernel Space
‘ ib_core ‘ ‘ ib_uverbs ‘
‘ mix4_ib
‘ mix4_core ‘

‘ Mellanox connectX Infiniband HCA ‘

Figure 2.29.: Simplified view of the Infiniband software stack [75]

Infiniband Software Stack

In Figure 2.29, a simplified diagram of the Infiniband software stack is shown. The
block diagram shows the parts of the Infiniband stack that are important for this work.

User space applications use the Infiniband verbs library (&bibverbs) to access the In-
finiband hardware. However, since this library mainly defines the Infiniband verbs
API, which 1s valid for multiple devices, below this general library, a device specific li-
brary is required to implement the device specific function calls. This example shows

the required libraries and device drivers for the Mellanox ConnectX, ConnectX-2, and
connectX-4 Infinitband HCA:s.

The same applies to the kernel space. The ib_core driver defines the device-independent
functions and forwards requests to the hardware specific drivers. For communication
between kernel space and user space, a special driver, b_uverbs is required. This driver
forwards user space requests to the core driver.

The Mellanox ConnectX cards can operate as both, an Infiniband adapter and an
Ethernet adapter. Therefore, the device driver is split up. The mix4_core driver handles
low-level functions like device initialization and resource allocation. The mix4_ib driver
handles infiniband specific function. Another special driver (not illustrated in Figure
2.29) handles the ethernet specific functions.

Infiniband also allows direct access to the hardware from user space by completely
bypassing the operating system. For this, device specific registers are mapped to the
user space. The required functions are implemented in the device specific user space
library.

39

2. Background

Link
I I
Link
o oo [
o < «
5 2 S Kk ke
<1|:> = @ <::|’> <):> E i Port
2 > 2 RMA é}"é
£ [=%
c =0 Link
B | S DT 2K o K
= c i
o
SMFU Link
A @ el @
<):‘r> Status & Link
Control Port

Figure 2.30.: The principle block diagram of the Extoll NIC[76, 80]

2.4.7. Extoll

The Extoll interconnection network was developed at the university of Heidelberg and
is now sold by the Extoll Company.? In Extoll, the endpoints are directly connected and
no switches are used, so Extoll provides a direct topology with up to 64k nodes and natu-
rally supports a 3-d torus topology. Extoll supports deterministic and adaptive routing
strategies on package granularity. The messages are sent from one node to another and
routed through the network interface cards.

The Extoll NIC

The general block diagram of the Extoll NIC is shown in Figure 2.30. A more detailed
description of Extoll can be, found for example, in [76]. The complete architecture is
formed through major blocks: the host interface, the on-chip network, the functional
units, the Extoll network switch, and multiple link ports.

The host interface was first implemented by the Hyper Transport (HT) core [77],
which was optimized for low latency operations. However, since Intel systems do not
support HT, the current version also provides a PCle interface in which a translation
layer, a PCle-Bridge, is required.

To connect the functional units to the host interface and the functional units with each
other, the HyperTransport Advanced Crossbar (HTAX) forms a dynamic network on
chip.

The network interface part is formed by the Extoll crossbar [78], and the link ports
(LP) [79]. The Extoll crossbar implements the switching and routing routines, which
use a table-based routing algorithm.

Extoll provides the following five main functional units:

Virtual engine for low overhead The Virtual Engine for Low Overhead (VELO)
[81, 78] is optimized for low latency data transfer and high message rates for small

*http://www.extoll.de/

40

http://www.extoll.de/

2.4. Interconnection Networks and Network Interfaces

messages up to 64 byte, which corresponds to the cache line size on X86-based
processors. The VELO can also transmit larger messages bit with a decreased
efficiency.

The Remote Memory Access The Remote Memory Access (RMA) [82] unit is used
for larger message sizes. It supports one-sided put and get operations. tn can work
with virtual and physical memory areas. A more detailed description of one-sided
communication with Extoll is given below.

Address Translation Unit The Address Translation Unit (ATU) [83] is required to
translate so-called Network-Logical-Addresses to the physical addresses for the
RMA unit without involving the host CPU.

Shared Memory Function Unit The Shared Memory Function Unit (SMFU)[17]
forwards load and store instructions to remote nodes. This unit can be used to
create non-coherent, shared address spaces between multiple nodes.

Control and status These are registers that provide control information for all inter-
nal units. For example, they can be used to count the number of incoming requests
to one unit. The register file can also be used to change settings like the node ID
or routing tables [83].

One-sided communication in Extoll

This section gives a short overview of RDMA-communication in Extoll. A more detailed
description can be found in [82].

In Extoll, the one-sided communication is performed by the RMA unit. Before a
virtual memory region can be used as source or destination for a one-sided communica-
tion request, it must be pinned and registered. Then the address translation unit (ATU)
of Extoll can perform the address translation without involvement of the host CPU. In
contrast to Infiniband, Extoll does not use the virtual user space address and a key for
identification of a virtual memory region, but the so-called Network Logical Address
(NLA). The use of the NLA allows a low latency translation mechanism. The physi-
cal addresses are fetched from main memory or from the ATU-integrated Translation
Lookaside Buffer (I'LB). If a physical address is not stored in the TLB, only one access
to main memory is required to get the physical address.

In contrast to Infiniband, the descriptor for a work request is directly written to the
network device. To allow this from user space, a window within the Extoll Base Address
Register (BAR) is mapped to the user space. A BAR is a memory window in the physical
address space of the host system which is used for communication between CPU and
the peripheral device. The RMA unit supports a transfer size between 1 byte and 8 MB
with a single put or get command.

The RMA unit consists of three function units: The requester, the responder, and the
completer. Every command first passes the requester unit. A gef command is forwarded to
the responder unit on the remote side. Every command is completed by the completion

41

2. Background

Table 2.2.: Possible configurations for notifications[76, 80]

Command Requester Completer Responder

PUT 0 0 0 no notification
1 0 0 Put with local completion
1 1 0 Put with local completion
and remote notification
GET 0 0 0 no notification
0 1 0 Get with local completion
0 1 1 Get with local completion

and remote notification

unit, which usually writes the results to main memory. For a gef command, the comple-
tion unit is passed on the active side, for a put command it is passed on the target side.

Each of the three function units can create a notification if it is successfully passed.
For a get command, a local requester notification is created if the command passes the
requester unit. On the remote side, the responder notification is created as soon as the data
is successfully read from memory. The completer notification is created as soon as all data
has been written to the destination address. For put commands, no responder notification
is created. Table 2.2 shows which combinations of notifications are supported and useful
for put/get operations. The Extoll device writes a notification to a pre-allocated buffer
in host memory. The use of this notification allows an easy, explicit synchronization
method for one-sided communication.

Atomic operations in Extoll

The RMA unit of Extoll also supports atomic operations,which are called lock operations.
The idea of the lock operations is to enable efficient mapping of software locking algo-
rithms in hardware. The lock operation performs a compound fetch-compare-and-add
(FCAA) atomic operation.

In contrast to Infiniband, the lock variables are not located in registered and pinned
host memory regions. Instead, the locks are located in their own lock address space [76].

Extoll software stack

Figure 2.31 shows the Extoll software stack. The extolldrv forms the PCI device driver. It
performs the basic configuration and enumeration of the device and offers the possibility
to get the physical und virtual addresses of the device resources (BARs) to the other
device drivers. It also manages the interrupts.

The extoll_1f driver forms the interface for the Extoll register file. It implements a
sysfs interface, a pseudo file-system of Linux, that provides user space access to driver
level configuration and status. The registers of the device can be accessed by reading or

42

2.5. Communication between Distributed GPUSs

libsmfu libvelo libRMA

User space {} {} {}

Kernel space

7
AV

extoll_rf

EXTOLL
Basedriver

PCI Config-
space

Registerfile

Figure 2.31.: Extoll software stack [76]

writing a file in the sysfs file system. The smfudry, velodyf, rmadrv, and atudrv drivers handle
the particular function unit. They also expose an interface to the user space.

The low-level user space library lbvelo provides a user space API with all basic services
available from the VELO; the lbsmfu provides the interface for the SMFU. The lbrma
API provides all services for the RMA-function unit. It also provides an interface to reg-
ister user space memory to allow one-sided communication from user space. However,
the memory registration is handled by the ATU-driver.

The user space libraries also provide direct access to the hardware by bypassing the
operating systems. This is done by mapping device registers to the user space with
memory mapped 1/0O (MMIO).

2.5. Communication between Distributed GPUs

In the previous sections, an introduction to communication models, interconnection
networks, and GPUs was given. In this section, all this is brought together to discuss
communication models for distributed GPUs.

In a GPU-accelerated application, the communication can either be controlled by the
CPU or by the GPU, shown in Figure 2.32. If the CPU controls the communication, a
hybrid-programming model is required. For the GPU, a GPU programming language
like CUDA or openCL or a directive based approach like openACC is used, while for
the inter-GPU communication, a communication library like MPI is required.

If the communication is controlled by the GPU, either the GPU must be able to con-
trol the network device or an underlying communication-framework is required. In this
framework, the CPU accepts communication requests from the GPU and forwards them
to the hardware. This case 1s called fost-assisted. However, the control flow stays on the
GPU and therefore we count this to the GPU-controlled class. If the communication is
controlled by the GPU, the communication must be described in a GPU programming
language like CUDA. If the GPU directly controls the network device, a communication
between the two devices is required. This is referred to as device-to-device communica-
tion.

43

2. Background

inter GPU
communication

CPU GPU
controlled controlled

host-

direct .
assited

Figure 2.32.: Communication Control for inter-GPU communication

Figures 2.33 and 2.34 on the facing page show the control flow of an application for
both approaches. For the hybrid approach, the control flow reverts from the GPU to
the CPU to synchronize the computational tasks on the GPU with the communication
tasks on the CPU.

This approach allows very good overlapping of communication and computation, as
the communication is offloaded to the CPU. The communication overhead on the GPU
is equal to zero. However, the synchronization between CPU and GPU adds some
overhead and therefore increases the latency of the whole application. Furthermore, a
CPU thread is required to control the GPU and GPU-related communication.

If the GPU controls the communication, synchronization between GPU and CGPU can
be avoided. A CPU thread is only required to start a single initial kernel on the GPU
which then handles communication and computation. The CPU thread can be used
for other work or set to sleep. On the other hand, this approach adds communication
overhead to the GPU. This overhead may also slow down the performance of a GPU
application.

Figure 2.35 shows the design space for communication methods between distributed
GPUs. If the communication is host-controlled, one-sided and two-sided communica-
tion 1s supported, whereas remote loads and stores are only supported for GPU-controlled
communication. A remote load/store communication is based on copying data between
local and remote memory regions with load and store instructions. From the CPU point
of view, GPU memory regions are always remote.

All communication methods have advantages and disadvantages. While a lot of re-
search was done on optimizing CPU controlled communication, GPU controlled com-
munication has, up to now, rarely been examined. There are several reasons for this.
The GPU memory was not accessible for other peripheral devices as NICs and the data-
parallel programming model for GPUs does not fit in parallel programming APIs like
MPIL

Recent technologies like GPUDirect RDMA and dynamic parallelism help to over-
come some of these limitations. Therefore, GPU-controlled communication requires
furthe, more detailed consideration.

44

2.5. Communication between Distributed GPUSs

Start Kernel

A\

Compute
Start/Sync Kernel _ |
Data Transfer Compute
and Synchronization P
Start/Sync Kernel -~
Data Transfer c o
and Synchronization ompute
Sync Kernel l

Figure 2.33.: Workflow of a GPU program, when communication is controlled by the host

Start Kernel ‘

Compute

Communicate

Compute

Communicate

Compute

Sync Kernel N l

v

Figure 2.34.: Workflow of a GPU program when communication is controlled by the GPU

45

2. Background

communication models
for distributed

GPUs
controlled by host controlled by GPU
two-sided one-sided two-sided one-sided remote
communication communication communication communication load/store

Figure 2.35.: Communication methods for distributed GPUs

The next section applies to the first problem, the data transfer between distributed GPUs
and the direct access to GPU memory from a peripheral device. The subsequent sec-
tions deal with the different communication approaches for distributed GPUs. The
focus will be on one-sided communication. CPU-controlled two-sided communication
was handled in a lot of previous work and will be used for comparisons. Due to the
use of RDMA-capable interconnection networks, a two-sided communication frame-
work for a GPU can be implemented on top of a one-sided communication framework,
probably using the eager or rendezvous protocol. As a communication model that may be
more in line with the data-parallel programming model of GPUs, another focus will be

communication using remote load/store instructions.

46

3. Direct Data Transfer between GPUs

One important factor of efficient communication in heterogeneous systems is the data
transfer, meaning in which way a data package is transferred between the memories of
two GPUs. The data transfer has always been one of the main bottlenecks for distributed
GPU computing, as shown, for example, in [84, 85, 86]. In the past, often several copies
in host memory were required to transfer the data between two GPUs.

Recent technologies like GPUDirect RDMA help to overcome some of these limita-
tions since they allow a peripheral device direct access to GPU memory. This direct
access 1s also one condition for one-sided communication between distributed GPUs.

In this chapter, an overview about data transfer methods between distributed GPUs is
given. We describe how GPUDirect RDMA support is introduced to the RMA unit of
the Extoll device and Infiniband. The performance of a direct data transfer is compared
with previous methods of data transfer between distributed GPUs and the assets and
drawbacks of different techniques are discussed.

3.1. Inter- and Intra-Node Data Transfer

One important factor of data transfer between GPUs is the relative location of the GPUs
to each other. GPUs can either be located on the same node or on different nodes.
If the GPUs are located on the same node, data transfer can be routed through the
interconnection network of the host system, for example, through the PCle-bus or the
QPI-link. This is referred to as intra-node data transfer. If the GPUs are located on
different nodes, the data has to be routed through the interconnection network of the
cluster. This also means that the data is transferred between the GPU and the NIC.
This is referred as inler-node data transfer.

This work primarily focuses on inter-node data transfer and communication, and thus
on the data transfer between GPU and the NIC. However, as some of the knowledge of
the intra-node communication is also useful for the inter-node communication, some of
the aspects of intra-node data transfer will be explained in more detail.

3.2. Data Transfer Methods

Figure 3.1 shows the design space for data transfer between distributed GPUs. Data
transfer between GPUs can either be direct or staged. Direct means that the data is directly
transferred between the memories of two GPUs, whereas a staged transfer uses one or
more copies in host memory.

A staged transfer can be either sequential or pipelined. In a sequential transfer, the data
is completely transferred to one buffer before the transfer to the next buffer is started.

47

3. Durect Data Transfer between GPUs

data transfer
between GPUs

direct staged

pipelined sequential

Figure 3.1.: Data transfer methods between distributed GPUs

|

\/

(a) Sequential data transfer (b) Pipelined data transfer
Figure 3.2.: Sequential and pipelined data transfer

In a pipelined transfer, the data is transferred in chunks. As soon as the first chunk is
transferred to a buffer, the transfer to the next buffer is started. Figure 3.2 shows the
difference between both approaches. At first sight, a pipelined data transfer allows a
faster data transfer between source and destination. Still, a staged data transfer requires
a CPU thread to control the data flow between host memory and GPU memory buffer
and adds more overhead to the CPU. Therefore, the size of the chunks should be care-
fully selected.

A staged transfer between two GPUs requires a two-sided communication scheme.
On both sides, a host thread is required to control the data flow. A direct data transfer
supports both one-sided and two-sided communication paradigms. Remote loads and
stores require also a direct data transfer.

A direct data transfer between two GPUs seems to be the best solution: copies in
host memory are avoided, the communication overhead is minimized, and one-sided
communication is supported. To allow direct inter-node data transfer with RDMA-
capable devices, the NIC must be able to read and write GPU device memory. However,

48

3.2. Data Transfer Methods

GPU GPU
memory memory
Network Network
device device
GPU f \GPU

N\ chipset /] [\ chipsr]
\ e N

CcPU CcPU
Sysmem Sysmem
Figure 3.3.: Data transfer without Figure 3.4.: Data transfer with
GPUDirect 1.0 GPUDirect 1.0

GPU memory normally is neither directly accessible from host the nor from the network
device. Only recent technologies enable support for this.

To improve staged and allow direct data transfer between distributed GPUs, several
optimization strategies for Nvidia GPUs were introduced in the past. These techniques
are referred to as GPUDurect technologies and are now explained in more detail.

3.2.1. GPUDirect 1.0

The first step to a more efficient data transfer between GPUs is called GPUDirect 1.0.
It was introduced in 2009 with CUDA 4. This technique allows a GPU and another
peripheral device to share a locked memory region in host memory.

Before GPUDirect 1.0, two copies in host memory on both sides were required to
transfer the data between distributed GPUs, as shown in Figure 3.3. The GPU and
the network device uses different buffers in host memory, so the data has to be copied
between this two host memory buffers. This adds also a lot of overhead to the CPU
since the CPU was responsible for copying data.

GPUDirect 1.0 was first developed for Infiniband network devices and helps to im-
prove the performance of several applications up to 40% [87]. To allow this, changes in
the Linux operating system as well as in the device drivers of the GPU and the network
device were required. The support of shared pinned pages was added to the Linux ker-
nel. Both the Nvidia driver and the Infiniband network driver were enabled to use these
shared pinned pages. The Extoll device driver uses a different memory pinning strategy
than Infiniband [76], therefore, no changes in the Extoll RMA and ATU drivers were
required to support GPUDirect 1.0.

Using GPUDirect 1.0 technology, the actual data transfer can be offloaded to the
network device and the DMA engines of the GPU. The GPU DMA engine copies the
data between host and GPU while the network device transfers the data between the host
memory buffers. However, the CPU is still required to control the data flow between

49

3. Durect Data Transfer between GPUs

GPU GPU
memory memory

L]
NG

GPU GPU

Chipset \

h\.

CPU
Sysmem

Figure 3.5.: Data transfer between two GPUs on the same host with GPUDirect peer-to-
peer

CPU VA Space CUDA VA Space CPU VA Space

e ~ <
s - S
- ~
GPU [y
1 |3 GPU2 Host | GPU1 | @ | Host GPU2
1] 1)

Figure 3.6.: Unified virtual address space (UVA)

the GPU and the network device. For this, a thread is required on both sides, so only
two-sided communication is supported.

3.2.2. GPUDirect peer-to-peer

With CUDA 4.5, GPUDirect peer-to-peer was introduced. GPUDirect peer-to-peer
allows a direct data transfer between two GPUs on the same host, without any copies in
host memory, as shown in Figure 3.5. The data is directly routed through the PCle-bus.

This technique also allows a GPU a direct access to the memory of another GPU with
load and store instructions within a CUDA kernel. This development came simultane-
ously with the introduction of the Unified Virtual Address Space (UVA) in CUDA. The UVA
creates one virtual address space for all GPUs in one compute node. Host memory that
is allocated with cudaMalloc also lies in this virtual address space, as shown in Figure
3.6. A GPU kernel can use pointers to this virtual address space to directly access host
memory or the memory of another GPU on the same host node. The memory con-
troller of the GPU recognizes if a virtual address belongs to the local GPU, a remote
GPU, or host memory and forwards the access to the right physical address.

50

3.3. GPUDurect RDMA

GPU
memory

GPU \

| Chipset \ |

N

CPU

Sysmem

Figure 3.7.: Data transfer between GPU and the network device, using GPUDirect RDMA

This also allows GPU-controlled communication between GPUs on the same host
by using load and store instructions. Before this, the only possibility to transfer data
between two GPUs on the same host were cudaMemcpy operations with staged buffers
in host memory, called from a CPU thread.

However, the Nvidia peer-to-peer technique is not open for third party devices, like
network interface cards, since it uses a prohibitive protocol and requires special support
in the network hardware.

The APEnet+ project [88] applied the protocol to the APEnet+ FPGA network device
[89]. While the performance for RDMA-write accesses was quite good, the peer-to-peer
reading protocol was difficult to implement. The work showed that using a direct proto-
col between GPUs minimizes the communication overhead on the CPU and provides
better overlapping efficiency. The peer-to-peer protocol seems to be especially effective
for latency-sensitive applications. In later work [90], they showed that for APEnet+,
the protocol is useful for messages up to 128 kb. For larger messages, a staged proto-
col provides a lower latency and a higher bandwidth for inter-node GPU to GPU data
transfers.

3.3. GPUDirect RDMA

To overcome the limitations of GPUDirect peer-to-peer GPUDirect RDMA was intro-
duced, in 2012, with CUDA 5. This technique allows RDMA-capable network devices
to directly read and write GPU device memory, as shown in Figure 3.7. This technique
requires no changes in the network interface hardware but in the device drivers and user
space libraries of the NIC. In the following, a more detailed description of this technique
and the required adaptions in the device drivers is given.

Normally, GPU memory is only accessible with load and store instructions from the
GPU. From host, the virtual GPU memory pointer can be used with CUDA related

functions like cudaMemcpy, but direct read- or write-accesses result in a segmentation

51

3. Durect Data Transfer between GPUs

fault. The GPU memory is not directly visible from the host, since it has no address in
the physical address space of the host system.

Therefore, to allow a CPU thread or an RDMA capable device to access GPU mem-
ory, the memory must be accessible over an address in the physical address space of the
host system. This is enabled with GPUDirect RDMA technology. It allows a translation
from a virtual GPU device address to an address in the physical address space of the host
system.

This is done by mapping a part of the GPU device memory to addresses within one
of the Base Address Register (BAR) of the GPU. The BAR is a memory window in the
physical address space of the host system which is normally used for communication
between the CPU and the peripheral device.

From a peripheral device point of view, it makes no difference if a physical address
points to host memory or to a BAR of another device. Therefore, to enable support for
GPUDirect RDMA, the user space libraries and device drivers must support a virtual to
physical address translation from a GPU device pointer to the physical addresses within
the GPU BAR.

3.3.1. Nvidia GPUDirect Interface

In the first version, the NVIDIA-GPUDirect Interface consists of two parts, one in
the user space and one in the kernel space. In the user space, the CUDA-function
cuPointerGetAttribute is required to determine two tokens, p2pToken and vaSpacelo-
ken, which are necessary to uniquely identify a GPU virtual address. The function re-
quires a GPU device pointer as input. In the kernel space, the GPU kernel function
nvidia_p2p_get_pagesrequires these two tokens and the virtual GPU memory address.
The function pins the GPU memory and maps it to the BAR. The function returns a
table with the BAR addresses belonging to the virtual GPU memory address.

The memory registration function of the NIC has to forward these two tokens to the
kernel space. Since these tokens are not required for a normal host address, either the
user space memory registration functions must be adapted or two different memory-
registration functions, one for GPU memory and one for host memory, must be imple-
mented. Therefore, changes in the user space and in the kernel space are required.

This was changed is the latest version of the GPUDirect RDMA. For the p2p_get_pages

function-call, the tokens can be set to zero and the user space part is not required.
Therefore, the latest version only requires changes in the device drivers of the network
device; the user space part can remain unchanged.

3.3.2. Mellanox GPUDirect RDMA support

The GPUDirect technology was first officially supported on Mellanox Infiniband de-
vices. To support GPUDirect RDMA technology, a special device driver, no_peer_mem is
required. In the following, the functionality of this driver is explained in more detail.
The latest version of the Mellanox Infiniband device drivers, part of the OFED-Stack
2.5, allows the registration of so-called peer-memory agents. A peer-memory agent is a spe-

32

3.3. GPUDurect RDMA

gpu_vaddr

ibv_register_mr

peer memory «4—ib_get_peer_client—— Infiniband user space Infiniband core
agent manager driver register_mr—— driver
(peer_mem) ®——peer_umem_get— (ib_uverbs) (ib_core)
peer_agent->acquire T
ib_umem_get device->reg_use_mr
nvidia peer
memory agent
(nv-peer-mem) Device specific driver

(e.g., mix4, mix5,mthca)

nvidia_p2p_get_pages
A J

Nvidia GPU device
driver
(nvidia)

Figure 3.8.: Mellanox GPUDirect RDMA support, memory registration

cial device driver which allows the registration of so-called peer-memory regions for Infini-
band devices. Peer-memory regions are regions that can be registered for an Infiniband
HCA but are not located in the user space memory. A peer-memory agent must pro-
vide several functions to pin and unpin memory, to create page tables for peer-memory
addresses andm to check if a virtual address belongs to this peer-memory agent. Figure
3.8 illustrates, how a virtual address, belonging to a GPU memory; is registered using
the Mellanox peer-memory driver.

If a host process tries to register a user space memory region, the virtual address is
forwarded to the Infiniband user space driver, uverbs. This driver is the interface for host
processes to the Infiniband kernel stack. The user space driver forwards the address
to the core diver, which forwards the registration request to the device specific driver.
This driver eventually calls the function ib_get_umem, which is also part of the Infini-
band user space driver. This function is responsible for handling user space memory
registration.

The registration function forwards the virtual address to the registered peer-memory
agents (ib_peer_mem_get). The peer-memory agent now checks if the virtual memory
address belongs to this agent (acquire). If so, a pointer to the peer-memory agent is re-
turned. If no fitting peer-memory agent is found, the memory is handled as normal user
space memory.

The Nvidia peer-memory driver checks the affiliation of an address by trying to pin
this memory region withnvidia_p2p_get_pages. If the pinning is successful, the virtual
address belongs to GPU memory and, therefore, the function returns a success. How-
ever, before the affiliation testing function returns, the pinned GPU memory is released
with nvidia_p2p_put_pages.

Later, the Infiniband user space driver pins the memory by calling the peer_umem_get
function of the peer-memory agent. For the Nvidia drivers, againnvidia_p2p_get_pages

53

3. Durect Data Transfer between GPUs

is called. The returned page table is now used to create the memory translation table
(mtt) for the Infiniband HCA, with addresses pointing to the BAR of the GPU.

After registration, a GPU memory region can be used like a host memory region for
Infiniband communication functions, with one exception. The Infiniband specification
allows the flag IBV_SEND_INLINE for write and send-operations. Using this flag, the
CPU copies the data payload directly to the Infiniband work request. In this case, the
network device reads the data payload from the work request and not from the memory
buffer.

Since GPU memory is not directly readable from host, using this flag results in a seg-
mentation fault for GPU memory regions. Therefore, the inline flag should be avoided
for GPU memory segments.

3.3.3. Host mapped GPUDirect RDMA support

To support GPUDirect technology for the Extoll device, another approach was imple-
mented. This approach is more general and does not require special peer-memory
agents. We describe the implementation for the Extoll device, however, this overall ap-
proach can be used to allow any kind of DMA capable devices access to GPU memory.
It also allows direct access to GPU device memory from the host, which is a pleasant
side effect.

The approach works in three steps:

1. Pin the GPU memory and map it to the GPU BAR using GPUDirect RDMA
2. Map the BAR addresses to the user space using memory mapped 170 (MMIO)
3. Register the MMIO address for the DMA capable device

The individual steps are shown in Figure 3.9 and now explained in more detail. To
pin GPU device memory and map it to the user space a special device driver, gpumap,
and a corresponding user space library, ghumap-lib, were developed.

The GPU memory pointer (gpu_vaddr) is handed over to the gpumap library func-
tion map_gpu. Here, the two tokens, p2pToken and vaSpaceToken, are determined. This
step can be omitted in the newest version of GPUDirect RDMA. To pin the GPU mem-
ory, the tokens and the device pointer are forwarded to the gpumap driver, see Figure
3.9.

The gpumap driver calls the nvidia driver function nvidia_p2p_get_pages. This func-
tion pins the GPU memory and maps it to the BAR of the GPU.

In the next step, these BAR-addresses are mapped to the user space with Memory
Mapped 170 (MMIOQO), using the mmap-function of the gpumap driver. This way, the
GPU-memory is mapped into the user space (cf. Figure 3.9) with a new virtual address
(host_vaddr) which allows the host to direct access to GPU memory with simple load
and store instructions.

However, since the memory is now accessible with two different virtual addresses,
with gpu_vaddr from the GPU and with host_vaddr from the host, this approach may
require some address translation in the higher level communication libraries.

54

3.3. GPUDurect RDMA

gpu_vaddr
vaSpaceToken,
p2pToken

host_vaddr
(MMIO)

. mmap
pin memory (host_vaddr)

rma2_register()

gpumap- driver rma2_driver

atu2_register_virtual_region()
nv_p2p_get_pages()

atu2_driver

nvidia GPU driver
(nvidia)

Figure 3.9.: Pinning and mapping of GPU memory using GPUDirect RDMA and memory
mapped |/0O

To allow one-sided communication operations with the RMA unit of the Extoll de-
vice, the mapped GPU-memory must be registered for the network device. Therefore,
the MMIO address is handed over to the RMA memory registration function, which
eventually forwards the address to the atu driver. To pin host memory and determine
the physical page addresses to create a page table, the device driver normally calls the
kernel function get_user_pages. This function locks the memory and returns a table
with the physical memory pages.

However, this function fails for MMIO-addresses, as these addresses do not provide
a page table. Therefore, a driver patch was developed that determines the physical
addresses belonging to an MMIO address and creates a page table with these addresses.
Figure 3.10 shows the functionaltiy of the patch.

1. Before get_user_pages is called, the virtual address is handed over to the the
Linux kernel function find_vma. The virtual memory area (vma) is the structure
that Linux uses to manage virtual memory regions. It provides the page tables
and is required to perform virtual to physical address translations. If no area is
found, an error is returned.

2. If avirtual memory area is found, it is checked if the VM_I0 and VM_PFNMAP flags
are set. These flags mark MMIO memory regions. If the flags are not set, the
virtual address probably belongs to a normal user space memory area and the
memory registration function is continued as usual by calling get_user_pages.

3. If the MMIO flags are set, the Linux kernel function follow_pfnis used to de-
termine the physical addresses. To create a page table for MMIO addresses, the

33

3. Durect Data Transfer between GPUs

virtual address

get_vma() _NOtfound

find virtual
memor area

VM_IO &
VM_PFNMAP

no yes.

get_user_pages() follow_pfn()

Figure 3.10.: Registration of MMIO addresses

Listing 3.1: Stepwise creation of the page table for MMIO addresses

unsigned int mapped = O0;
int i =0; 2
uint64_t physical_address = 0, curr_addr = virt_address;
while (mapped <length){ 4
follow_pfn(vma, curr_addr, &physical_address);
pages [i++] =physical_address<<PAGE_SHIFT; 6
mapped+=PAGE_SIZE;
curr_addr+=PAGE_SIZE; 8
}

physical addresses are determined, as shown in Listing 3.1. This has to be done
in steps of the memory page size to pretend a real page table.

The result of this patch is the same as that of the Mellanox Infiniband patch: a page
table with the GPU-BAR addresses. If the memory registration time is neglected, the
latency and bandwidth results of GPUDirect RDMA are not affected by the way the
support for GPUDirect is attached to the device drivers. The performance results in the
following sections neglect the pinning time.

3.4. Performance Results of GPUDirect RDMA

In this section, we evaluate the performance results, using GPUDirect RDMA technol-
ogy for Infiniband and the RMA unit of the Extoll device. We do not directly compare
the Infiniband and the Extoll device, as the Infiniband device uses an ASIC with a peak

56

3.4. Performance Results of GPUDirect RDMA

10000 3500
3000
1000
7 2500
- -]
2 £ 2000
z =
g 100 S
E _g 1500
©
“ 1000
10 =—m
500
1 0 1mrm
1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M 1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M
data size [byte] data size [byte]
~+host to host -®-GPUDirect RDMA host staged —*—host to host -®-GPUDirect RDMA host staged
(a) Latency (b) Bandwidth

Figure 3.11.: GPUDirect RDMA performance of Infiniband

bandwidth of 32 Gbps while EXTOLL is implemented on an FPGA with a peak band-
width of 9.8 Gbps.

3.4.1. Latency and bandwidth

The latency test uses a simple pingpong benchmark. To synchronize the source and the
target side, we use the RDMA_WRITE_WITH_IMM operation for Infiniband. On Extoll, we
use the completer-notification for RMA put operations. By this, polling on GPU mem-
ory from host can be avoided. For the bandwidth tests, multiple remote write requests
are posted subsequently to the hardware before they are synchronized. We use remote
write operations for both benchmarks.

In order to assess the capabilities of the GPUDirect RDMA technology, we compare
the results with previous methodologies. We use GPUDirect v1.0, so one host copy is
required on both sides, but the network device and the GPU use the same pinned host
memory buffer. To optimize the performance of this data transfer, we use a pipelined
transfer protocol. On the sourcing side, the GPU copies the data to host memory in
blocks with asynchronous CUDA copy operations. The network device starts to transfer
the data as soon as the first block is completely copied to host memory. On the receiving
side, the GPU starts to transfer the data from host to the GPU as soon as the first data
block has arrived.

For Infiniband, we used two workstations, each equipped with two Xeon X5660 six
core CPUs and one K20c Nvidia GPU, linked up with Mellanox Connect 3X QDR
Infiniband.

For Extoll, we used two workstations with two Intel Xeon E5-2630-six core CPUs and
also one K20c Nvidia GPU. We used the 32 GB Galibier Card, which provides a PCle
interface and runs at 157 MHz.

Figure 3.11 shows the results for Infiniband and Figure 3.12 for the Extoll device.
For comparison, we also represent the latency for a host-to-host transfer with the used
hardware.

57

3. Durect Data Transfer between GPUs

10000 1000

/ 900
/ 800

r
1000
7 — 700] _-M—I—_.
<
- A 2
2 7/ S 600
3 £
¢ 100 £ 500
2 H
8 T 400
©
@ 300
10
200
100
1 0 oo
1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M 1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M
data size [byte] data size [byte]
~*—host to host -®-GPUDirect RDMA host staged ~#host to host -#-GPUDirect RDMA host staged
(a) Latency (b) Bandwidth

Figure 3.12.: GPUDirect RDMA performance of the RMA unit of the Extoll device

For small messages, the use of GPUDirect RDMA clearly outperforms the staged data
transfer. Bandwidth and latency are very close to the performance of a host-to-host data
transfer. The result is different for larger data sizes.

Here, the host-to-host data transfer clearly outperforms a GPU to GPU data transfer.
Even a staged data transfer, using host memory buffers on both sides, outperforms the
direct data transfer using GPUDirect RDMA. Another interesting observation is that
for a data size larger than 1 MB, the bandwidth of a direct GPU to GPU data transfer
slows down for both Extoll and Infiniband.

3.4.2. PCle peer-to-peer performance

To get to the bottom of this, in the next step, the different directions for a data trans-
fer between GPU and the NIC are examined. Thus, the bandwidth for data transfers
between host and GPU over the RDMA interconnect are considered. In this case, the
GPU memory can either be the source or the destination of the data transfer.

Figure 3.13a shows the results for the Infiniband device and Figure 3.13b for the Extoll
device. The maximal bandwidths for the different directions are also summarized in
Tables 3.2a and 3.2b. These results show that the bandwidth is slowed down if GPU
memory is the data source. In this case, the network device has to read the data from the
GPU. This effect is clearer for Infiniband since the maximal bandwidth of the Infiniband
ASIC is higher. However, it is also noticable for the Extoll device.

The PCle-bus causes this low performance. While posted peer-to-peer operations are
well supported on many chip-sets, non-posted peer-to-peer operations are only poorly
supported. This issue was also reported in other works, using GPUDirect RDMA tech-
nology [91] or using the XeonPhi accelerator card [92] and direct data transfer between
the XeonPhi and an Infiniband card. Because of this limitation, the Nvidia GPUDirect
peer-to-peer, which allows direct data transfer between GPUs on the same nodes, only
uses peer-to-peer write operations[89].

58

3.4. Performance Results of GPUDirect RDMA

3500 1000
3000
- = 800
g 2500 E
= 2000 < 600
b} 3
S 1500 2 400
T T°
5 1000 5
= <200
500
0 RS a 0
1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M 1 4 16 64 256 1k 4k 16k 64k 256k 1M 4M
data size [byte] data size [byte]
—#-GPU to Host -#-Host to GPU GPU to GPU —**Host to Host —#-GPU to host -®-host to GPU GPU to GPU —*host to host
(a) Infiniband (b) Extoll RMA

Figure 3.13.: Bandwidth using different transfer directions

6000

S U
o o
o O
o o

bandwidth[MB/s]
N w
o o
o o
o o

1000

TN T e e IReYAITEIEIIE IS
— o~ wn — (a2} o o~ wn — — ~N <
- o~ wn
data size [byte]
~+-GPU to host ~®-host to GPU GPU to GPU —*host to host

Figure 3.14.: Bandwidth using different transfer directions on an lvy Bridge machine

3.4.3. Intel lvy Bridge

The data in Figures 3.13a and 3.13b are measured on a machine with an Intel Sandy
Bridge processor and chipset. On newer machines, using the Intel Ivy Bridge processor
and chipset, the support for non-posted PCle peer-to-peer accesses is better, though not
ideal.

Figure 3.14 shows the bandwidth for GPU transfers on an Ivy Bridge machine. Again,
the data is transferred between two K20c GPUs on different nodes. We use two ma-
chines with two 10-core Intel Xeon CPU E5-2690 v2 CPUs and Mellanox FDR Infini-
band.

Table 3.1.: Maximal bandwidth in MB/s using GPUDirect RDMA

Destination Host GPU Destination Host GPU

Sour Host 3212 3212 Sour Host 892 892

ource GPU 968 969 ource GPU 769 767
(a) Infiniband (b) RMA

59

3. Durect Data Transfer between GPUs

2500

1000 /"’_'_/h—.—’—‘—-—-—\._.

N
o
o
o

[y
%
o
o

bandwidth[MB/s]

%
o
o

|

o

15
21
40
8
16

Iy oEd¥sEIEsgazzs
— o~ wn — o e} o wn Ll — o~ <
- &N un
data size [byte]
~*-no QPI -#-QPI write QPI read

Figure 3.15.: Bandwidth on an lvy Bridge machine over the QPI link for different directions

The results show that the maximal bandwidth for non-posted peer-to-peer data trans-
fers on an Ivy bridge machine is approximatly 2.2 Gb/s. This is better than on Sandy
Bridge machines. However, the performance is still much lower than the performance
for host to host transfers using Infiniband FDR.

3.4.4. Inter 1/0O-hub data transfer

So far, all data were collected on machines where the GPU and the NIC are connected
to the same socket and therefore use the same PCle root complex. If the GPU and the
network device are not located on the same socket, the data transfer have to be routed

through the QPI (Intel) or HT (AMD) link.

On machines using a Sandy Bridge chipset, this is not supported. The I/O-hub does
not forward peer-to-peer accesses over the QPIlink [93]. Therefore, neither GPUDirect
peer-to-peer nor GPUDirect RDMA is supported between devices located on different
sockets using these chipsets.

On machines using the Intel Ivy Bridge chipsets, peer-to-peer request are forwarded,

but the maximal bandwidth is very low. Figure 3.15 shows the reachable bandwidth if
the data have to be routed through the QPI link.

In the no QPI case, both GPUs are located on the same socket as the Infiniband device.
This result corresponds to the result in the previous section for a GPU to GPU data
transfer. Tor the QPI-wnite graph, the destination GPU is located on a different socket
than the Infiniband network device. In this case, the Infiniband device has to write the
data to the destination GPU over the QPI link. For the QPI-read graph, the source GPU
is located on a different socket than the Infiniband device. In this case, the Infiniband
device has to read the data from the GPU over the QPI ink.

If the Infiniband device writes the data over the QPI link, the bandwidth is slowed
down to maximal 1 GB/s. If the Infiniband device reads the data from the GPU over
the QPI link, the bandwidth is even further slowed down to 350 MB/s. An interesting
observation is that for small messages, up to 256 byte, the QPI-write performance is worse
than the QPI-read performance.

60

3.5. Summary

Still, to reach maximal performance, the GPU and the network device should be
located on the same socket. If this is not possible, staged copies for larger messages
should be used to reach optimal performance.

3.5. Summary

In this chapter, we have shown that a direct data transfer between distributed GPUs
is enabled by mapping a part of the GPU memory to one of the BARs of the GPU.
Since these BARs are located in the physical address space of the host system, another
peripheral device can handle these addresses like physical host memory addresses.

The performance results for GPUDirect RDMA show that a direct data transfer be-
tween GPUs brings performance benefits for small- and medium-sized data transfers.
For larger data transfers, the benefits are limited due to limitations of the PCle-bus.
Since newer machines already show some improvements here, it can be expected that
this will change in future systems. The same applies for current performance issues for
the QPI link.

However, we should bear in mind that currently a direct data transfer has some per-
formance limitations. For optimal performance, GPU and network device should be
located on the same root complex, otherwise the performance is scaled down.

61

3. Durect Data Transfer between GPUs

62

4. Host-controlled GPU-to-GPU
Communication

In the previous chapter, different data transfer methods between distributed GPUs were
discussed. This and the following chapters focus on communication control. A data
transfer, whether staged or direct, has to be initiated and synchronized. To avoid race
conditions and to guarantee data consistency, basic synchronization methods between
source and destination of a data transfer must be provided. In the second chapter it was
stated that on a heterogeneous system, either the GPU or the host CPU can control the
communication. This chapter elaborates on CPU-controlled communication.

If the CPU controls the communication between distributed GPUs, a hybrid- pro-
gramming model is required. In this case, the GPU is only used for computation while
the CPU manages the communication and the data transfer. For this, a CPU-based
communication library or language is needed. The data can be transferred directly or
staged and the communication can either be one- or two-sided.

The advantage of a hybrid model is that it adds no overhead to the GPU due to
communication functions. Also, often only a few or no changes in the GPU code are
required to distribute a computation job from one GPU to a cluster of GPUs, because
the CPU handles the communication and the data distribution.

A good communication API should allow overlapping of communication and com-
putation. The communication time consists of the data transfer time and the com-
munication overhead, for example, synchronization, tag matching, and data buffering.
While the data transfer can be offloaded to the network device, the overhead blocks the
CPU. Therefore, the communication cannot be completely overlapped for pure CPU-
applications.

On GPU-accelerated applications, however, the communication overhead on the
CPU can be overlapped with the computation on the GPU. If the communication time
is smaller than the computation time, the communication can be overlapped completely.
This is well implemented in many GPU-accelerated applications by using CUDA streams
and asynchronous memory transfers [94, 7].

However, using more GPUs on the same job size (strong scaling) often means that
the computation work for ever GPU declines while the communication overhead stays
constant or rises. At a certain point, the communication time exceeds the computation
time and can no longer be completely overlapped. Data transfer between distributed
GPUs is more expensive than data transfer between distributed host memory regions, as
shown in the previous chapter. Thus, GPU accelerated applications often show a worse
strong scaling [7] than not accelerated applications.

63

4. Host-controlled GPU-to-GPU Communication

Listing 4.1: Using MPI for data transfer between GPUs, no CUDA-aware MPI

/*on Sender sidex/

cudaMemcpy (s_buf_h,s_buf_d,size,cudaMemcpyDeviceToHost) ; 2
MPI_Send(s_buf_h,size,MPI_CHAR,1,100,MPI_COMM_WORLD) ;

/*on Receiver sidex*/ 4
MPI_Recv(r_buf_h,size,MPI_CHAR,0,100,MPI_COMM_WORLD, &status);
cudaMemcpy (r_buf_d,r_buf_h,size,cudaMemcpyHostToDevice) 6

Listing 4.2: Using CUDA-aware MPI

/*on Sender side:*/

MPI_Send(s_buf_d, size,---); 2
/*one Receiver sidex/
MPI_Recv(r_buf_d, size,---); 4

Therefore, the communication between two GPUs must be as efficient as possible, and
a one-sided communication model can help to improve the strong scaling capabilities of
GPU accelerated applications.

In this chapter, GPUs are integrated into the GASPI specification and the implemen-
tation of this specification, GPI-2. This is an example for one-sided, CPU-controlled
communication for distributed GPUs. We evaluate the benefits of this model by com-
paring the performance to an optimized CUDA-aware MPI version as state-of-the-art.
A part of this work was already published in [95].

4.1. Related work

Since GPU computing becomes more and more important for high-performance com-
puting, the support of GPUs was integrated in many communication libraries and APIs.
This section gives a short overview of exiting approaches.

4.1.1. CUDA-aware MPI

The most common way to utilize a hybrid cluster is a combination of CUDA and MPI
and a lot of work has been done in optimizing CUDA-aware MPI versions [96].

CUDA-aware MPI means that the MPI version supports pointers to GPU device mem-
ory, as shown in listing 4.2. Otherwise, the data has to be copied explicitly between
GPU device memory and host memory, as shown in listing 4.1. This can be optimized
by using a pipelined protocol, but this requires extra effort from to the programmer.

However, using CUDA-aware MPI does not mean that the data is directly transferred
between the GPUs, but that the MPI runtime system handles the underlying data trans-
fer, which can be both direct or staged.

Even if the data are internally buffered, a CUDA-aware MPI version not only provides
better programmability but also improves the performance, especially the latency of

GPU to GPU data transfers [97].

64

4.1. Related work

If MPI is only used for host-to-host data transfers, the step of moving data back to the
GPU may get delayed, even if the data has been received in host memory, as the MPI
library may handle other incoming messages before the receive function returns.

Currently, two widely used CUDA-aware MPI-versions exist: OpenMPI[98] and
Mvapich2 [99]. The Ohio State University developed a highly optimized MPI ver-
sion for Infiniband clusters, Mvapich2 [100], and some work was done on integrating
GPUs into this framework. In [101], Wang et al. introduce Mvapich2-GPU, a CUDA-
aware MPI library. Internally, the data transfer is pipelined through the host and the
features of GPUDirect 1.0 are used. In [102], the intra-node communication is opti-
mized by using GPUDirect peer-to-peer and Nvidia inter-process communication. In
further work, global all-to-all operations on GPU memory [103] and non-continuous
data transfers[104] were optimized. The interesting point of the non-continuous data
transfers is that GPUs are used to pack and unpack non-continuous data. Here, the
GPU is used to support the communication.

In [91], the inter node communication in Mvapich? 1.9 was optimized by using
GPUDirect RDMA technology. Normally, in MPI, the eager protocol is used for small
messages. The sender transfers data to pre-allocated buffers. The receiver polls on flags,
which are part of the transferred data. However, this technique is not usable for trans-
fers to GPUs, because GPU memory is normally not directly accessible from host and
therefore, polling on flags is expensive. Also, extra data copies between the buffer and
the destination are required. These are much more expensive than host-to-host copies
and significantly reduce the benefit of GPUDirect RDMA. Therefore, for a data trans-
fer to a GPU memory buffer, the rendezvous protocol is used for all message sizes. This
adds some overhead to the communication, but this overhead is small compared to data
movement from and to the GPU. However, this shows that two-sided communication
may not be the best communication method for host-controlled direct GPU to GPU
data transfers.

Another framework that combines MPI with GPUs is MPI-ACC [105]. The main
focus of MPI-ACC is portability, therefore it not only supports CUDA but also OpenCL.
Also, it is independent of library versions and device families. Currently, it does not
support GPU DirectRDMA.

4.1.2. GPUs in PGAS languages and libraries

Due to the growing interest in GPUs and the PGAS programming model, GPUs were
also integrated in different PGAS languages and APIs. The idea of an asynchronous parti-
tioned global address space was proposed in [106] by Sarawat et.al. They extend the PGAS
model with two ideas: places and asynes. A place is a collection of threads and data the
threads operate on. These places must not be synchronous, so they do not have to have
the same instruction set or number of cores. Activities are launched to places through
asynes and stay there for their lifetime. Asyncs can also be used for remote accesses and
data transfers.

In [107], UPC is extended to support GPUs. A memory segment can either be al-
located on GPU memory or host memory. UPC for GPUs can be used for data trans-

65

4. Host-controlled GPU-to-GPU Communication

fer between the shared memory regions in UPC with upc_memcpy (src,dest ,nbytes),
whereby both source and destination can either be located on host memory or on GPU
memory. To allow this, GASNet was also modified to support GPUs.

In [108], Potluri et.al. extend openShmem to support GPUs. The openShmen stan-
dard provides no natural support for heterogeneous memory structures; therefore, some
extensions were added. Potluri et.al propose three possibilities to extend openShmem
for heterogeneous systems. The first one is a static heap selection whereby every process
can create shared memory segments on either host memory or on GPU memory, but
not on both. This approach requires only a few changes to the API, but does not work
well with applications that require both shared buffers on host memory and on GPU
memory.

Another possibility is the dynamic heap selection which allows a single process to cre-
ate shared memory segments on both, GPU memory and host memory to overcome
this limitation. However, this model has some interoperability issues with CUDA and
OpenCL. The problem is caused by the openShmem interface which requires virtual
pointers as input parameter for memory transfer operations.

CUDA provides several functions to detect if a virtual pointer points to GPU memory
or to host memory; however, this is not supported for openCL. To support both libraries,
a third method was chosen: Symmetric mapping. This solution allows the user to allocate
GPU memory regions and then map them to the shared symmetric address space. The
mapping and unmapping functions are collective blocking functions. The disadvantage
of this solution is that for openShmem-related functions a different virtual pointer is
required than for GPU related functions.

The current expansion of openShmem uses GPUDirect peer-to-peer for intra-node
communication and buffered data transfers with GPUDirect 1.0 for inter-node com-
munication. The support of GPUDirect RDMA is not yet implemented. However, in
[109] was noted that it is planed for the future.

However, openShmem does not natively support heterogeneous memory structures.
Another shortcoming is the lack of non-blocking one-sided communication functions
and fault tolerance.

A further problem is that the openShmem standard 1.0 is not thread safe. This makes
it harder to use with other approaches like openACC [110]. Some of these problems
may be solved in future releases [111].

A one-sided communication library that provides these features already is GASPI.
GAPSI seems to be the ideal candidate for a PGAS communication library to support
GPUs. As GASPI is a relatively new specification and not yet wide spread, a short intro-
duction to the standard and its first implementation, GPI-2, is given. GPI-2 currently
only supports Infiniband and RDMA over Converged Ethernet (RoCe). The following
description refers to the Infiniband implementation.

66

4.2. GASPI-Standard

4.2. GASPI-Standard

The GASPI 1.0 specification [43] was released on February 14, 2013, together with the
first reference implementation, GPI-2[112]. GPI-2 is the extension of the proprietary

communication API GPI, which is also known as the Fraunhofer Virtual machine (FVM
) [113]. The GASPI standard is based on the GPI-interface.

GASPIis a RDMA-based communication interface and all communication in GASPI
is routed through the NIC. The basic idea of GASPI is to start one process per node or
socket and to use thread-based parallelism on the node level. Therefore, all communica-
tion functions in GASPI are thread-save. GASPI should not be used for communication
on shared memory machines, since the communication is routed through the NIC. This
is one of the main differences to openSHMEM.

The processes of a GASPI application are organized in groups. These groups can be
created dynamically during runtime. One initial group, GASPI_GROUP_ALL includes all
participating processes. One of the main benefits of GASPI — compared to other PGAS
communication libraries and languages — is _faull tolerance. All non-local operations in
GASPI come with a timeout parameter. A non-local operation is an operation that
depends on a remote process. This prevents process blocking for an infinite amount of
time, if a remote process does not react.

GASPI also maintains a failure vector with the current status of the nodes. If a node
fails, GASPI allows continuing the work with a reduced node set. However, GASPI does
not provide an automatic failure handling like check pointing or restarting.

4.2.1. Shared memory segments in GASPI

Figure 4.1 shows the GASPI memory model. Every process has its own, local memory
which is not accessible for other processes. The memory in the partitioned global address
space 1s also located on a specific node, but accessible for all other processes with special
GASPI read and write functions. In GASPI, this global address space is made up from
so-called segments. The segments are created dynamically during runtime. Every seg-
ment has a local, unique ID for communication functions. One of the goals of GASPI is
to map the versatility of the memory hierarchies of modern high performance systems to
the software layer, therefore heterogeneous memory structures are naturally supported.
A segment can be created on individual nodes and can have a different size on every
node, as shown in Figure 4.1.

In the implementation GPI-2, the creation of a shared memory segment means that
the memory for a segment is allocated, locked, and registered for the network device.
The memory is not unpinned until the segment is destroyed. To register the segment for
a remote process, all required information about this segment is shared with the remote
process.

For Infiniband, this information includes the virtual address, the size, and the r_key
of the registered memory region. Segment creation and registration are very time con-
suming operations. However, once a segment is created and registered for remote pro-

67

4. Host-controlled GPU-to-GPU Communication

Partitioned Global Address Space

shared shared shared shared shared segment
segment segment segment segment 00D g
local local local
memory memory memory

Threads

Threads

Threads

Node 2

Figure 4.1.: GASPI memory model

cesses, it can be used for one-sided communication without sharing further information
between the processes.

4.2.2. One-sided communication

The main communication functions in GASPI are one-sided read (gaspi_read) and
write (gaspi_write) functions from and into the shared segments. All one-sided com-
munication functions are non-blocking and asynchronous. Calling gaspi_read or
gaspi_write adds the communication request to a queue and directly returns with-
out completing the communication locally or remotely. The function still has a timeout
parameter. This timeout parameter is required because the read and write functions are
thread-save. If GASPI_BLOCK is used as timeout parameter, the function still returns with-
out completing the communication. The function only blocks until the calling thread
can submit a new communication request without interfering with another thread.

GASPI does not use the virtual addresses to identify a memory segment but the the
remote segment IDs and the offsets within the segments. The GASPI runtime system
determines the source and the destination address by using the segment IDs and these
offsets.

Communication requests are submitted to so-called queues. GASPI provides an in-
order execution of the requests in one queue, while requests in different queues are
independent of each other and can be synchronized independently. The concept of
queues is very similar to the concepts of streams for GPUs and the QPs in Infiniband.

The communication requests in one queue are synchronized with gaspi_wait. A
queue has a maximum number of pending requests and posting a communication re-
quest to a full queue can result in undefined behavior. A gaspi_wait call only ensures
the local completion of the communication requests. So for remote write requests, it is
only guaranteed that all the data from the local buffer are read but not that the data is
actually completely written to the remote memory segment.

68

4.2. GASPI-Standard

Process 1 — — passive-send — — — — — — P
{ A

wake up
ProcessZ—| passiv-receive |— passive-receive |— — —»
start data transfer
Y
Process3 — — — —| pAssive-send — —

Figure 4.2.: Passive communication in GASPI

In GPI-2 for Infiniband, for every queue an RC-QP connection to every remote pro-
cess 1s established. The QPs of one queue share a sinle completion queue.

A write or a read request adds a work request to the send queue of a QP, the wait
routine polls for the completions of all requests on the respective completion queue.

4.2.3. Passive communication

Another concept in GASPI 1s passive communication which has a two-sided semantic with
a passwe-send operation, on the one side, and a matching passive-receive operation, on the
other side. A passive- recewe operation requires no knowledge about the sending process
but waits for a passiwe send from all processes within a specified group.

A passive-receive operation blocks until the receive operation is completed, but should
preferably consume no CPU-cycles. Therefore, at best, a blocked thread is woken up by
the network hardware. Figure 4.2 shows how passive communication works. Process 2
posts a passive-receive request and then blocks. It now can accept passive-send requests from
processes 1 and 3. Then, process 1 posts a passiwe-send request to process 2 and thereby
process 2 is woken up. Now the data transfer starts and both processes block until the
communication is completed.

Meanwhile, process 3 also posts a passiwe-send to process 2. The data transfer cannot be
started until process 2 completes the first receive request and posts a new one. Therefore,
process 3 blocks until the previous operation is completed and process 2 posts a new
passive- receive request. Process 3 waits in a busy sate. Both passive- send and passive-
receive operations come with a timeout parameter so the blocking is time-based.

Passive communication can be used to redistribute work, to log status messages, or to
check the load status of a remote node. It should be used out of sync with the rest of
the application, because the latency of passive communication is much higher than the
latency of remote read and write requests.

In GPI-2, for the passive communication a further RC-QP connection to all remote
processes 1s created. These QPs share one shared recewe queue. A passive receive adds a
receive request to this queue and waits on the completion channel for the completion of
this requests. A completion channel is a file descriptor that is used to deliver completion
notifications to user-space processes.

69

4. Host-controlled GPU-to-GPU Communication

Waiting on a completion channel sets the thread to sleep and the thread blocks until
a completion is created or a timeout occurs. A passive send request adds an Infiniband
send request to the send queue of the QP and waits until the communication is com-
pleted or a timeout occurs. In this case, the remote send request is continued with the
next call.

4.2.4. Collective Operations

A collective operation in GASPI is an operation that involves all processes in a specified
group. Collective operations are time-based blocking. They block until the operation is
completed or until they are interrupted by a timeout. In this case, the collective opera-
tion is continued with the next call.

GASPI supports only two kinds of collective operations: a barrier and an allreduce op-
eration. The allreduce operation is not bound to a segment but can use any memory
buffer for input or output.

Compared to other communication libraries, like MPI, the number of collective op-
crations 1s limited. The reasoning for this is that a user-defined and application-specific
collective operation to distribute or collect data is easy to implement and, in most cases,
outperforms a generic solution. Furthermore, since the GASPI-interface should stay as
small as possible, collective operations are deliberately omitted.

Collective operations should not interfere with one-sided communication requests or
passive communication. Therefore, a further QP connection between all nodes is es-
tablished for collective communication requests. Therefore, every GPI-2 process has to
manage at least

N+ (24 Qn)

QPs, whereby N is the number of processes and @n is the number of queues.

The collective operations are performed on a pre-allocated memory area, which is 1s
also locked and registered for the Infiniband device. Internally, the collective operations
use RDMA write requests and a binomial tree.

4.2.5. Atomic operations

GASPI also provides support for global atomic operations on shared memory segments.
The two basic atomic operations, compare-and-swap and fetch-and-add, are supported. Global
atomic operations can be used for global counter variables or global synchronization
primitives.

GPI-2 uses the atomic operation support of Infiniband. Atomic work requests are
submitted to the same RC-QP as the collective operations, therefore no additional QPs
are required.

4.2.6. Weak synchronization

As a point-to-point synchronization mechanism between source and target of a one-
sided communication process, GASPI provides a so-called weak synchronization. Weak

70

4.3. Integration of GPUs to the GASPI-specification

Communication Communication
Process 1 system system Process 2

| |
write \ | |
notify |

transferdata\> |

write notification

I
1 \ gaspi
i —

Figure 4.3.: Weak synchronization in GASPI

synchronization allows the origin process to update a notification flag for a shared mem-
ory segment on a remote process. On the target side, the flag can be used, for example,
to check if a remote write or read operation is completed. To every shared memory
segment, several flags are assigned for weak synchronization. Figure 4.3 shows the func-
tionality of weak synchronization. Process 1 uses a write operation to transfer data to
a remote memory segment. Next, a notification is sent to the remote side. Since both
requests are posted to the same queue, they are guaranteed to be in order and process
1 synchronizes them locally with the same gaspi_wait call.

On the target side, the function gaspi_notify_waitsomeis used to wait for notifica-
tions. Multiple threads can call this function in parallel and poll on one or more flags.
If the notification flag is updated, it is guaranteed that the previous write operation is
completed.

To reset a notification, a further local function call, gaspi_notify_resetis required.
This function resets the flag in an atomic manner.

GASPI provides two kinds of operations with a notification: gaspi_notify updatesa
flag for a remote segment while gaspi_write_notify first performs a write operation on
a remote memory segment and then directly updates a notification flag for this segment.
Both operations are non-blocking and locally synchronized with gaspi_wait.

Writing a notification is still a one-sided operation, since the target side is not required
to complete the communication function. The remote side can ignore a notification
without further consequences for the communication process.

GPI-2 for Infiniband uses an RDMA write operation to update a notification flag on
a remote segment. The request is submitted to the RC-QP that belongs the queue for
remote write and read requests.

4.3. Integration of GPUs to the GASPI-specification

GPUDirect RDMA allows RDMA-capable devices direct access to GPU device mem-
ory, so this technique is best suitable for RDMA-based programming models like GASPI.
As mentioned before, currently, GASPI supports only Infiniband network devices and

71

4. Host-controlled GPU-to-GPU Communication

Partitioned Global Address Space

GPU host GPU host GPU segment
segment segment segment segment *° 6
local host jocal local host jocal local host jocal
GPU GPU GPU
memory memory memory
memory memory memory

Threads

Threads

Threads

Node 2

Figure 4.4.: GASPI support for GPUs

RDMA over Converged Ethernet (RoCe) but not Extoll. Therefore, the expansions to
GASPI for GPUs only refers to the Infiniband version. However, the basic ideas can
also be applied to Extoll.

4.3.1. GPU memory segments in GASPI

The GASPI specification was from the very beginning designed to support heteroge-
neous memory structures. This idea allows an easy integration of GPUs and GPU
memory segments to that specification, as shown in Figure 4.4. The GPU-expansion
allows not only the creation of shared memory segments on host memory but also on
GPU memory. Thereby, a part of the memory of each GPU is made accessible for other
processes with GASPI communication functions.

In GASPI two functions exist to create a shared memory segment: The function
gaspi_segment_create(ID,size,group,timeout,gaspi_alloc_policy) creates a seg-
ment and registers this segment for all other processes in the specified group. The func-
tion gaspi_segment_alloc(id,size,gaspi_alloc_policy) only allocates a segment
but does not register it for remote processes. It can be used on the local node as source
or target for a write or read request, but a remote process cannot read or write these seg-
ments with RDMA requests. To allow this, the segment must be subsequently registered
with gaspi_segment_register. This functionality can be used to create heterogeneous
memory structures.

Both functions require the parameter gaspi_alloc_policy which defines the alloca-
tion policy for the memory segment. In the current specification, two values for this flag
are defined: GASPI_MEM_DEFAULT and GASPI_MEM_INITIALIZED. The latter one initial-
izes the segment memory with zero. The GPU extension uses this parameter to specify
if a segment should be allocated on GPU device memory. If the flag GASPI_MEM_GPU is
set, the segment will allocated on GPU memory, otherwise it will be allocated on host
memory. The GASPI_MEM_INITIALIZED and GASPI_MEM_GPU flags can be connected
with an OR-conjunction.

72

4.3. Integration of GPUs to the GASPI-specification

Listing 4.3: GASPI code example
gaspi_segment_create(segID,size,GASPI_GROUP_ALL,

GASPI_BLOCK,GASPI_MEM_INITIALIZED) ; 2
gaspi_segment_ptr (seglD,
&(gaspi_pointet_t)HostMem) 4
/*pointer to host memory*/
/*do somethingx*/ 6
gaspi_write(segID,loc0ff ,remrRank,remSegID,rem0ff,
size, queue, GASPI_BLOCK); 8
/*do somethingx*/
gaspi_wait (queue, GASPI_BLOCK); 10

Listing 4.4: GASPI for GPUs code example
gaspi_segment_create(segID,size,GASPI_GROUP_ALL,

GASPI_BLOCK, p)
GASPI_MEM_INITIALIZED|GASPI_MEM_GPU);
gaspi_segment_ptr (seglD, 4
&(gaspi_pointet_t)DeviceMem)
/*pointer to GPU memoryx*/ 6
cudakernel<<< --- >>>(DeviceMem,---);
gaspi_write (segID,loc0ff ,remRank,remSegID,rem0ff, 8
size,queue,GASPI_BLOCK) ;
cudakernel<<< --- >>>(DeviceMem,:--); 10

gaspi_wait (queue, GASPI_BLOCK);

Once a segment is created, it makes no difference for GASPI-related operations where
the segment is allocated. All GASPI functions operating on shared host memory seg-
ments are also supported on GPU memory segments.

Listings 4.3 4.4 show short GASPI code examples. In Listing 4.3, a host memory
segment is created and gaspi_write initiates a data transfer between two host memory
segments. In Listing 4.4, a GPU memory segment is created, therefore gaspi_write
Initiates a data transfer between two GPU memory segments. The only difference be-
tween the two code examples is the use of the GASPI_MEM_GPU flag. Of course, GASPI
can also be used to transfer data between a host and a GPU segment. It is not required
that both segments are of the same type. The following sections describe how this inte-
gration of GPUs to GPI-2 is realized.

4.3.2. Initialization

Before GASPI can be used with GPU memory segments, the function gaspi_init_GPUs
must be called. This function detects all GPUs on the same root complex as the Infini-
band device that is used by the GASPI process.

To detect these GPUs, the Linux sysfs filesystem is used. The spsfs provides information
about the location of every PCle device. The initialization function reads this informa-
tion for the GPUs and compares it with the information of the Infiniband device that is
associated with the GASPI process.

73

4. Host-controlled GPU-to-GPU Communication

Only GPUs on the same root complex can be used for direct, one-sided communica-
tion, as shown in section 3.4.4, since, otherwise, GPUDirect RDMA is not supported.
This case requires a work-around with helper threads on both sides. However, this is
not the topic of this work and will therefore be addressed in future work. Also, before
GPUDirect was introduced, staged protocols and helper threads were necessary to trans-
fer data between distributed GPUs and, therefore, this has been discussed in great detail
before, for example, in[101] or [108]. For the further description and discussion in this
work, we assume that the GPU and the network device are located on the same root
complex and GPUDirect RDMA is supported.

4.3.3. GPU memory segment creation

If a shared GPU memory segment is created, the GASPI library allocates the device
memory, locks it, and registers it for the Infiniband device using GPUDirect RDMA.
Locking and unlocking of GPU memory are expensive operations. Therefore, the most
straightforward way, pin memory before each transfer and unpin it right after the trans-
fer is completed, would perform poorly in general which means lazy pinning and unpin-
ning strategies are required. The memory management in GASPI is simple: A memory
area 1s pinned when it is created and will not be unpinned until the segment is destroyed.

By this, unnecessary locking and unlocking operations can be avoided and communi-
cation can be performed without entering the operation system. However, this means
that in GASPI for GPUs, the size of GPU memory segments is limited to the BAR size,
which is 256 MB on most systems today. This problem is addressed later in more detail.

On a system with more than one GPU, the memory is allocated on the currently
active GPU device, which can be defined with cudaSetDevice. If the active device does
not support GPUDirect RDMA or is located on a different root complex, an error is
returned.

Host memory segment allocation

If GPUs are initialized for the current GASPI process, new host memory segments are
allocated with cudaMallocHost. Thereby, the memory is directly locked and registered
for the GPU. Host memory regions are registered for the network device anyway, which
also includes locking, so by this, no additional host memory is locked. The advantage of
this is that for internal copies between a host and a GPU memory segment, the memory
engine of the GPU can be used. This can help to relieve the network device from internal
copies.

4.3.4. Remote write and read operations

Once a GPU memory segment is allocated and registered, it makes no difference for the
Infiniband network device if the memory segment is allocated on host memory or on
device memory. Therefore, remote read and write operations are natively supported on
GPU device memory. However, for small messages, GASPI uses the Infiniband inline-

74

4.3. Integration of GPUs to the GASPI-specification

flag which is not supported for GPU memory segments and, therefore, this must be
avoided for GPU memory segments.

4.3.5. Passive communication and atomic operations

Passive communication uses the two-sided send/receive communication supported by In-
finiband. Since this works on GPU memory segments as well as on host memory seg-
ments, no further changes in the code are required to support this.

The same holds true for atomic operations, which also use the native support of Infini-
band. It should be noted that the atomic operations are only atomic regarding GASPI
accesses. If a GUDA thread accesses a value simultaneously, the atomic access is not
guaranteed.

4.3.6. Weak synchronization for GPU segments

In GASPI, for every shared memory segment, an additional area of flags, which are used
for weak synchronization, is allocated, locked, and registered. Normally, this segment
is located at the beginning of the shared memory area. However, for GPU memory
segments, this is not recommended, as, in this case, the flags would be allocated on
GPU device memory.

Since the host controls the communication and synchronization, the flags are only
accessed from host. Waiting for a notification means polling on a flag. To allow the
CPU polling on flags in GPU memory, the GPU memory must be mapped to the user
space with MMIO, as described in section 3.3.3 or CUDA memory copy operations
must be used.

This would result in many additional read accesses through the PCle-bus, which
would result in performance losses. Also, as mentioned before, lockable GPU memory
1s a very scarce resource and should be used sparsely.

Therefore, for every GPU memory segment, a smaller host memory segment for the
flags 1s allocated and registered for the network device. This host memory area is also
registered for all other nodes in a specified group but invisible to the user.

A gaspi_write_notify operation, which targets a remote GPU memory segment,
first initiates a data transfer between the local segment and the remote GPU segment.
Then, the flag is transferred to the remote flag area in host memory. This allows an
easy synchronization between the source and the target side. By this, some of the issues
which we have seen for two-sided communication in section 4.1.1 can be avoided.

4.3.7. Allreduce

The allreduce operation is not bound to a shared memory segment, but it can use any
buffer as input and output. GPI-2 for GPUs also supports allreduce operations with any
GPU buffers for input or output.

For host memory input or output buffers, GASPI copies the input data to a shared
memory segment. This shared memory segment is invisible to the user and only used

75

4. Host-controlled GPU-to-GPU Communication

for collective operations: the allreduce operation and the barrier. We call this segment
the shared group segment.

This shared group segment has a limited size and, therefore, allreduce operations are
only supported up to a limited number of input elements, which in the current version,
amount to 255 input elements.

A memory copy between two host memory buffers is much faster than a copy oper-
ation between GPU and host memory and therefore slows down the performance of
allreduce operations with GPU memory buffers.

However, if the data are not copied to host memory but remain on the GPU, the GPU
has to perform the reduction operation since the CPU is not able to access data on the
GPU directly. In principle, GPUs are highly suitable for this kind of workload. Still, the
time-consuming part of the allreduce operation is not the reduction but the data transfer.
First, the input data are collected from all processes. After the reduction, the result is
broadcasted back to all processes.

To optimize this, often tree-based approaches are used. The same is true for GPI-2. If
the GPU performs the reduction, a reduction kernel has to be started for every branch of
this tree. Due to the nature of GASPI, the GPU then can perform at least 255 reduction
operations in parallel. The overhead of starting and stopping the kernel outperforms
the benefit of the GPU in this case. Another problem is that a reduction kernel may
interfere with a computation kernel on the GPU. Although concurrent kernel execution
is possible, a large compute kernel may block the GPU so that the reduction kernel is
not scheduled. This may result in a large delay for the allreduce operation.

Besides this overhead, the input or output buffers do not have to be located in shared
memory segments. Therefore, either the buffers have to be registered dynamically with
GPUDirect RDMA or the data have to be copied to a registered shared group segment
in GPU memory. This overhead may be smaller than copying the data to host memory,
but it still cannot be neglected.

Because of this, we decide to copy the data to the shared group segment on host
memory. To do this as fast as possible and to avoid additional copies, the shared group
segment 1s registered for the GPU during GPU initialization.

The allreduce function first checks if the input or output pointer belongs to GPU
memory or to host memory. For this, the function cudaGetDeviceProberties is used.
If the pointer belongs to GPU memory, cudaMemcpy is used to copy the data. Except
for this modification, no further changes are required to support the allreduce function
with GPU memory buffers as input or output.

4.3.8. Additional functions for GPUs
To allow a more flexible use of GPUs and to facilitate the use of GPUs in GASPI, we

defined some additional, GPU-related, functions. These functions will now be explained
in more detail.

76

4.3. Integration of GPUs to the GASPI-specification

GPU
memory
Network _/_* Network
device device
GPU

f \

M\ Chipset 1 | Serpee” |
\H_F —
CPU CPU
Sysmem Sysmem

Figure 4.5.: Data flow for the hybrid data transfer protocol, CPU on the left system is
required to control the data flow between host memory and network device

Hybrid transfer protocol

As shown in the pervious chapter, the maximal bandwidth for a GPU to GPU data trans-
fer is limited due to the insufficient support for non-posted device-to device operations
through the PClIe-bus. We also showed in section 3.4 that better latency and bandwidth
can be reached by using staged copies in host memory.

Therefore, we developed a hybrid protocol for remote write operations which uses
GPUDirect 1.0 for large data transfer sizes and GPUDirect RDMA for small data trans-
fer sizes.

Small messages are still directly transferred using GPUDirect RDMA. Larger mes-
sages are first copied to a buffer in the host memory on the sourcing side, as shown in
Figure 4.5. Therefrom, the data is directly transferred to the GPU memory on the tar-
get side. This operation is still one-sided, as the target side is not actively involved in
the communication process. However, on the sourcing side, a CPU thread is required
to control the data flow between host and device. Thus this protocol is not fully asyn-
chronous, which dissents the GASPI standard. Therefore, we define a new command:
gaspi_gpu_write, so gaspi_write still can be used for fully asynchronous but slower
remote write operations.

Since the concept of queues in GASPI is very similar to the concept of streams in
CUDA, we create one GUDA stream for every GASPI-queue which is used to transfer
the data from GPU to host. To achieve the maximal performance for larger messages,
we use a pipelined protocol to transfer the data, so data is transferred in chunks. The
chunks are copied between the GPU and the host buffer with an asynchronous CUDA
copy operation and every copy operation is followed by a CGUDA event. If all GPU to
host copy operations are added to the stream, the process starts to poll for the completion
of the events and, thereby, for the completion of the asynchronous copy operations. If such
an asynchronous CUDA copy operation is completed, the network device is initialized
to transfer the data between the host memory buffer and the remote memory segment
by adding a new work request to the Infiniband queue.

77

4. Host-controlled GPU-to-GPU Communication

6000 10000

5000
1000

IS
S
<]
S

w
=]
<]
S

100

latency [ps]

2000

bandwidth [MB/s]

1000

data size[Byte] data size[Byte]

—*—direct —#4k 16k =32k —64k 128k 256k 512k —*—direct -#-4k 16k =32k 64k 128k 256k 512k

(a) Bandwidth (b) Latency

Figure 4.6.: One-sided staged data transfers with different block sizes on a Sandy Bridge
machine with K20 GPUs and QDR Infiniband

7000 10000
6000

5000 1000

4000 //_\—

100

bandwidth [MB/s]

latency [ps]

3000 4
2000 Sy— 10
1000 =
0 +ErETeT - 1
N33R RISIITIEITI 8222
— N N MmO ANn oSN
Sd 0
data size[Byte] data size[Byte]
—+-direct -4k —+16k —<32k —~64k -*-128k ——256k 512k —direct -4k 16k —<32k —+64k 128k ——256k —512k
(a) Bandwidth (b) Latency

Figure 4.7.: One-sided staged data transfers with different block sizes on a lvy Bridge
machine with K40 GPUs and FDR Infiniband

To allow efficient copy operations between GPU and host, we use pre-allocated host
buffers. These buffers are registered for the network device and for the GPU, thus asyn-
chronous copy-operations are supported. These segments do not have to be registered
for remote processes since they are only required for local transfers and not remotely
accessed.

Optimization

The data transfer using gaspi_gpu_writecan be optimized by two factors: the maximal
data size that is transferred directly and the chunk size for the pipelined transfer.
Figures 4.6 and 4.7 show the latency and the bandwidth for a direct data transfer and
a one-sided staged transfer with different block sizes.
Figure 4.6 shows the results for two Kepler K20 GPUs, each on a machine with two
Intel Xeon E5-2609 four core CPUs (Sandy Bridge), connected with Mellanox QDR
Infiniband. Figure 4.7 shows the results for two Nvidia K40 GPUs on a dual socket

78

4.4. Performance results

machine with two 10 core Intel Xeon CPU E5-2690 v2 CPUs (Ivy Bridge), connected
with Infiniband FDR.

On the Sandy Bridge machine with K20 GPUs, a direct data transfer of up to4—8 kB
shows the best performance, on the Ivy Bridge machine, this is the case for a transfer
size of up to 32 kB.

On both machines, the best bandwidth is reached for a block size between 256 kB
and 512 kB. The latency is slightly better for a block size of 256 kB. However, since
the perfect choice of these parameters strongly depends on the used hardware, they are
defined as runtime parameters.

Dynamic segment mapping

On most devices, the GPU BAR size is limited to 256 M B. Therefore, the maximal
size of all GPU segments on one GPU also corresponds to 256 M B. For some Tesla
Cards, a larger BAR size is supported,or example, 6 G B. This allows the mapping of the
complete GPU memory to the BAR. However, a larger BAR size can cause problems
for older BIOS due to compatibility support for 32 bit operating systems. On these
systems, the bootstrap can fail, or the GPU may be unusable due to misconfiguration.
However, the limit of 256 M B shared memory can limit the problem size or induce
additional memory copies.

Therefore, for GPU segments, a more flexible usage is allowed. Similar to open-
SHMEM, GASPI allows the dynamic mapping of GPU memory to shared memory
segments.

This means that an already allocated GPU memory region can subsequently be mapped
to the shared address space. Since GASPI does not use virtual addresses but segment
IDs for identification, a subsequently registered segment can be used like a normally
allocated segment, without further address translation. Similar to the segment alloca-
tion functions, GPI-2 for GPUs provides two different functions for mapping registered
memory to the global address space. The function gaspi_map_create is a collective
operation that maps the memory to the global address space and registers it for all pro-
cesses 1n the specified group, whereas gaspi_map_seg only creates the segment locally
but does not register it for other processes.

However, pinning of these memory regions is a very time- consuming function and
therefore this feature should not be used to frequently map and unmap shared memory
regions.

4.4. Performance results

In this section, the performance results for GPI-2 GPU support are presented and dis-
cussed. The results are compared with the CUDA-aware MPI version Mvapich2, with
GPUDirect RDMA support enabled. Unless otherwise noted, the following machines
are used for testing: one node of these systems is a dual socket machine with two 10-core
Intel Xeon CPU E5-2690 v2 CPUs (Ivy Bridge), connected with Infiniband FDR. Every

79

4. Host-controlled GPU-to-GPU Communication

bandwidth [MB/s]
BoR NN
o w o v
o o o o
s & & o

[V
o
o

o

2 4 8 16 32 64 128 256 512 1k 2k 4k 2k 4k 8k 16k 32k 64k 128k256k512k 1M 2M 4M

data size [Byte] data size [Byte]
—+=Mvapich2 -®-gaspi_write gaspi_gpu_write —+=Mvapich2 -®-gaspi_write gaspi_gpu_write
(a) Small data sizes (b) Large data sizes

Figure 4.8.: Bandwidth in GPI-2 for a GPU to GPU inter node data transfer, compared
with Mvapich2

machine has six Nvidia K40c GPUs, of which four are connected to the same socket as
the Infiniband device and therefore can be used with GPUDirect RDMA.

4.4.1. Bandwidth

Figure 4.8 shows the results for bandwidth for small and large data transfer sizes. The
results show the bandwidth of a remote write data transfer between two GPUs located
on different nodes. The GASPI results are compared with the results of the bandwidth
benchmark of the osu-micro-benchmark suite for MPI [114]. This benchmark uses
asynchronous MPI_Isend and MPI_Irecv operations to transfer the data.

For small transfer sizes, gaspi_write and gaspi_gpu_write clearly outperform MPI.
For larger messages, gaspi_write is limited due to the PCle issues described in the
previous chapter, while gaspi_gpu_write still outperforms the MPI version, if only
marginally. For lager messages, the overhead that is caused by the two-sided communi-
cation scheme becomes smaller compared to the data transfer latency. Both the MPI
version and gaspi_gpu_write show a clear bend between 16 kB and 32 kB. Here, the
data transfer switches from direct to staged for both communication libraries.

4.4.2. Latency

Figure 4.9 on the next page shows the results for the latency benchmarks. For GASPI
a pingpong benchmark with gaspi_write_notify and gaspi_gpu_write_notify and
gaspi_waitsome on the remote site is used. The use of weak synchronization avoids
polling on GPU memory from host. For MPI, the latency benchmark of the osu-micro-
benchmark suite is used. This benchmark uses MPI_Send and MPI_Recv for the pingpong
benchmark. For small messages, gaspi_write_notify and gaspi_gpu_write_notify
show the same low latency, since both use direct copies. Here again GASPI clearly out-
performs MPI. For large messages, the results for MPI and GASPI using staged copies
do not differ by much. Here, both communication libraries use staged copies and the

80

4.4. Performance results

12 10000
10 / 1000
7 8 : g e
o - -
= e el
—a—a—n—a—= 0
2
1
0 R I T O i T) S SR N
2 4 8 16 32 64 128 256 512 1k 2k 4k VRO IELL S
data size [Byte] data size [Byte]
~+=Mvapich2 -®-gaspi_write gaspi_gpu_write ~+=Mvapich2 -®-gaspi_write gaspi_gpu_write
(a) Small data sizes (b) Large data sizes
Figure 4.9.: Latency GPI-2 for a GPU to GPU inter node data transfer, compared with
MPI, Mvapich2

overhead of the communication becomes smaller compared to the data transfer time.
The latency of the direct data transfer, however, is much larger.

4.4.3. CPU-communication overhead

If the communication is controlled by the CPU, the communication overhead on the
GPU is equal to zero. Still, a GPU-to-GPU data transfer causes some overhead on the
CPU, which is determined with the following benchmark.

The smaller the communication overhead, the better communication and compu-
tation can be overlapped on the CPU. The most common way to overlap commu-
nication and computation is the post-work-wait method [115]. This means, an asyn-
chronous communication is started, in GASPI, for example, with gaspi_write, in MPI
with MPI_Isend,then some work is performed before communication is synchronized,
in GASPI with gaspi_wait, and in MPI with MPI_wait. Listings 4.5 and 4.6 show
short code examples for this.

Listing 4.5: Post-work-wait loop for Listing 4.6: Post-work-wait loop for
GASPI MPI

gaspi_write(--); MPI_Isend(---); 1

do_work (ms) ; 2 do_work (ms) ;

gaspi_wait(---); MPI_Wait(---); 3

To measure the overhead, a method similar to the method described in [115] is used.
The codes shown in Listings 4.5 and 4.6 are executed for several iterations. With every
iteration, the runtime of the workload is increased and the runtime of the complete loop
is measured. At one point, the runtime becomes larger than the communication time.
At this point, the work time is equal to the data transfer time and the communication
overhead can be determined with:

toverhead = truntime — tworkload=0

81

4. Host-controlled GPU-to-GPU Communication

800
700 . .
600

2500

o

§ 400

£

g 300

o
200 > - - - - - - B
100 -

O iy £ L
ak 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 2 4 8 16 32 64 128 256 512 1k 2k

N

overhead [ps]
o -
wn [w

o

data size [Byte] data size [Byte]
~#—Mvapich2 -#-gaspi_write gaspi_gpu_write —¢—Mvapich2 -#-gaspi_write gaspi_gpu_write
(a) Small data sizes (b) Large data sizes

Figure 4.10.: Communication overhead in GASPI and MPI for am inter node GPU-to-GPU
data transfer

We run this benchmark for gaspi_write, gaspi_gpu_write and asynchronous MPI-
communication, using MPI_Isend and MPI_Irecv, to transfer the data between two
GPUs on different nodes. Figure 4.10 shows the results for the overhead. The overhead
of gaspi_writeis hardly measurable and is in the area of measurement uncertainty. The
same is true for small messages with gaspi_gpu_write since here also a direct data
transfer is used.

This is different for larger messages using gaspi_gpu_write and MPI. The staged
protocol adds a lot of overhead to the CPU due to synchronizing of the data streams
between network device, GPU, and host memory. For MPI, the message passing over-
head is added on top, which includes the synchronization between the sending and the
receiving side as well tag matching. Note that for MPI only the overhead on the sending
side 1s considered, on the receiving side additional overhead may be added. This is not
the case for one-sided communication in GASPIL

Collective allreduce

Figure 4.11 shows the results for the total runtime of the allreduce operation in GASPI,
using buffers in GPU memory as input and output. Additionally, Figure 4.12 shows
the performance of the GPU allreduce operation, relative to the performance of the
allreduce operation with input and output buffers in GPU memory. This benchmark
was started on four nodes, each using the four GPUs connected to the same root complex
as the Infiniband network device. For every GPU, a single GASPI process is started.
However, the data transfer is routed through the network hardware, even if the GPUs
are located on the same node. The results are not compared to MPI since MPI currently
does not support allreduce operations on GPU memory.

The results show that an allreduce operation with GPU memory as input and output
has a much lower performance then the operation with host buffers as input and output.
For two GPUs, the latency of an allreduce operation is over 20 ps, for all numbers of
input elements; for sixteen GPUs is it even more then 30 ps. This is due to the double
copies between host memory and GPU memory from and to the shared buffer. For this

82

4.5. Application level performance

40 10
B 8
g30 S]
=] ° |
20 o
> |
3 2 4
o i}
10 e 5 -
0 - 0
1 2 4 8 16 32 64 128 255 1 2 4 8 16 32 64 128 255
Input elements (float) Input elements (float)
W2 GPUs ®4GPUs 8 GPUs M 16 GPUs B2 GPUs B4GPUs 8 GPUs M 16 GPUs

Figure 4.11.: GASPI total runtime of the Figure 4.12.: GPU-allreduce, relative to
allreduce operation host-allreduce operation

relatively small number of GPUs, this is the dominating factor for the allreduce oper-
ation. However, this overhead stays constant for larger numbers of GPUs. Therefore,
for more GPUs the difference between host and GPU memory buffers becomes smaller
and the performance relative to the host-allreduce version, becomes better. While for
two GPUs the allreduce operation with GPU memory buffers takes about eight times
longer than the host allreduce operation, for sixteen GPUs, it only takes twice as long.

4.5. Application level performance

The previous sections presented the results for several micro-benchmarks for GPU-to-
GPU data transfers. All these benchmarks use GPU memory as source and target of a
data transfer, while the GPU itself is not used for computation. However, on an appli-
cation level, the GPU is used for computation and, therefore, synchronization between
GPU and CPU is required. The GPU computes the data and if a new message has
to be sent or if remote data are required to resume the computation, a context switch
between GPU and CPU is required. Therefore, synchronization methods for GPU and
CPU have to be considered first.

4.5.1. Synchronization between GPU and host

The GPU is controlled by the CPU and requires a host thread for this. This host thread
starts computation kernels and waits for the completion of these kernels. Therefore, syn-
chronization between host and GPU is synonymous with starting and synchronizing a
computation kernel. However, there are several ways to handle this, which add different
overhead to the application. Figure 4.13 on the following page shows the design space
for Cuda GPU-CPU synchronization.

The simplest way to synchronize GPU and CPU is the device synchronization, using
cudaDeviceSynchronize. This host function waits until all computation kernels and all
data transfers between GPU and host are completed.

The function cudaStreamSynchronize does not return until all kernels and data
GPU-host transfer operations on a specified stream are completed. The function

83

4. Host-controlled GPU-to-GPU Communication

CUDA
GPU<->CPU
synchronization

device stream
synchronization synchronization
(busy wait) (busy wait)

event
synchronization

busy wait blocking wait

Figure 4.13.: Synchronization methods for GPU/host synchronization

cudaStreamQuery only tests,if all operations on a stream are completed and then di-
rectly returns. If all operations are completed, a success is returned, otherwise it will be
a not-ready notification.

A more flexible way to synchronize CPU and GPU are events. Events can be sub-
mitted to a specified stream or the null-stream. The null-stream is the stream that is
used if no specific stream is indicated. The function cudaEventSynchronize waits
until all operations that a submitted before the event are completed. The function
cudaEventQuery queries for the completion of an event, analogous to cudaStreamQuery
for streams. These synchronization functions normally wait in a busy state, polling for the
completion of the submitted operations. Events are an exception if they are created with
the flag cudaEventBlockingSync. A host thread calling cudaEventSynchronize on an
event that is created with this flag stays in a blocked state until the event is completed.
The GPU wakes the thread with an interrupt.

To quantify the overhead of these different synchronization methods, a simple kernel
is started on the GPU and then synchronized with one of these methods. The kernel is
started with 64 blocks, each with 128 threads. The kernel only calls the function clock
which returns the value of a per-multiprocessor counter and then directly returns. We
run the test on a K20c GPU, which was linked to a workstation with two Intel Xeon
E5-2630 six core CPUs. Table 4.1 shows the results.

These results show that the synchronization and context-switching overhead cannot
be neglected. The fastest synchronization is the polling event synchronization . The only
method in which the CPU does not poll is the blocking event synchronization. However,
since an interrupt is required to wake the host thread, the latency of this synchronization

Table 4.1.: Synchronization time for different host-GPU synchronization methods

device stream event blocking event
synchronization synchronization synchronization synchronization

15.24 s 12.25us 11.98us 65.71us

84

4.5. Application level performance

® @

0 0 &—9v—E0

o—0 @ O @

(a) 1D 3-point stencil (b) 2D 5-point stencil (c) 3D 7-point stencil
Figure 4.14.: Stencil environments

method is much higher. Tor an efficient synchronization between host and GPU, the
event or stream synchronization should be used.

4.5.2. Stencil codes

For a benchmark that is targeted more at the application level, we use a stencil code.
Stencil codes are iterative kernels which update an element according to some fixed
pattern, called stencil.

A stencil is usually performed on a two- or three-dimensional grid. In each iteration,
the stencil code updates all elements within this grid using neighboring elements, as
shown 1n Figure 4.14, for different stencil configurations. Stencil codes are very com-
mon in computer simulations like computational fluid dynamics or for solving partial
differential equations.

On distributed memory systems (for example, distributed GPUs), the grid is decom-
posed and distributed between all participating processes. Before a new value is calcu-
lated, it must be ensured that all neighboring elements are up to date.

On a single GPU, this means that after an iteration all threads have to be synchronized
before a new iteration is started. This is normally done by starting a new computation
kernel for every iteration and putting all these kernels to the same stream.

If the grid is distributed over multiple GPUs, the boundary points of each iteration
have to be exchanged with the remote GPUs, as shown in Figure 4.15 for a two di-
mensional grid. In this simple case, the domain is only decomposed along the slowest
direction. In every iteration, the left and the right borders have to be exchanged with the
neighbors. The advantage of this domain decomposition is that only continous memory
areas have to be transferred.

Since the left part of a grid can be updated independently from the right part of the
grid, the computation of the right part can be overlapped with the boundary exchange
of the left part and the other way around. There are a lot of examples, e.g. [116, 117],
of optimizing this for GPUs with CUDA and MPL.

In this work, we use the himeno code [118]. It was developed in 1996 at the RIKEN
Institute in Japan and it focuses on the solution of 3D Poisson equations in generalized

85

4. Host-controlled GPU-to-GPU Communication

E
|

(0)

B

c

o
| [[]]]
[[[]|]

()

)

c

[y
| [[]]]
[[]]|
| [[] 1]
[[]]|

(0)]

v

c

2

=

i
|

Figure 4.15.: Boarder exchange for a 2-D stencil code

coordinates on a structured curvilinear mesh. Using finite differences, the Poisson equa-
tion 1s discretized in space. The discretized Poisson equation is solved iteratively, using
Jacobi relaxation, which yields a 19-point stencil.

A recent and well performing multi-GPU version with MPI for inter-GPU commu-
nication 1s described in [8]. The domain is sliced along the z-direction and distributed
over the GPUs.

The benchmark uses two kernels, one for the upper part of the grid, one for the lower
part. In our version, a single stream is used for both compute kernels to guarantee
the local data consistency. The version in [8] uses two streams, one for the upper part
and one for the lower part of the grid. Since this version does not use a CUDA-aware
MPI version, two streams are required to overlap the computation and the data transfer
between GPU and host. Using CUDA-aware MPI or GASPI for communication, this
overlapping is handled by the communication library. Therefore, a single stream is
sufficient.

To synchronize the kernels and the CPU for data transfer, we use events, because this
is the most efficient synchronization method, as shown in the table 4.1. In Figure 4.16,
the control flow of this hybrid application is shown.

In every iteration, a host thread first starts the data transfer of the bottom boundary
(send_top) and then the compute kernel for the top part of the grid (top_kernel_start). The
data transfer itself is handled by the network device or the underlying communication
library and overlapped with the computation on the GPU. Theoretically, the CPU can
now be used for other work or set to sleep while the compute kernel is running on the
GPU and the network device handles the data transfer. Before the next compute kernel
can be started, the CPU has to ensure that the remote boundaries are updated (wait_btm).
Similarly, before the CPU can start the data transfer of the top boundaries (send_top), it has
to ensure that the top kernel is completed. Therefore, usually a host thread is delegated
to control the flow between network device and GPU for such multi-GPU applications.

The MPI-version uses asynchronous MPI_Isendto send the data and MPI_Ireceive
to wait for the remote data. The GASPI-version uses gaspi_gpu_write_notifyto send
the data and gaspi_notify_waitsometo wait for the remote data. The MPI- and the
GASPI-version only differ in the communication routines.

86

4.5. Application level performance

send_btm
top_kernel_start

Ki

il
s |

cudaEventSynchronize |«(mmmmpm—m"" EVENOp
send_top
kernel_top_start P —

1)
s |)

g event btm

cudaEventSynchronize

Figure 4.16.: Control flow of a multi-GPU application, using events for synchronization;
communication is controlled by the CPU

This version of tje benchmark only uses the GPU for computation while the CPU
is only used for the communication. Therefore, this benchmark does not count in the
CPU overhead. We run the benchmark with two fixed problem sizes, as shown in table
4.2. The performance results for strong scaling are shown in Figure 4.17a for the M-
problem size and in 4.17b for the L-problem size. The graphs also show the speedup
relating the single GPU- version.

For two GPUs, GASPI and MPI show the same results. For more GPUs, the GASPI-
version shows progressively a better performance and scaling than the MPI-version. For
the larger problem size, the scaling for GASPI is almost linear and using sixteen GPUs
brings a speedup of 16, whereas for MPI, only a speedup of 13 can be reached. For the
smaller problem size, the scaling is not as good. The GASPI version provides a speedup
of 7.3, while the MPI-version only shows a speedup of 5 for sixteen GPUs.

Table 4.2.: Himeno problem size

X Y V4 MTFlops data transfer

per iteration size (kByte)
M 128 128 256 137.1 64
L 256 256 512 1118.7 256

87

4. Host-controlled GPU-to-GPU Communication

— 800 /. 8 — 1500 20
S~ S~
v v
& 600 6 4 81000 - / 15 a
[5 [k=1
9 - 9 10 @
o 400 - 49 9 2
o o o 500 - @
c o c 5
g 200 - 2 g
S g o0~ 0
E 0 0 o 2 GPUs 4 GPUs 8 GPUs 16
2 GPUs 4 GPUs 8 GPUs 16 GPUs GPUs
= Mvapich2 EEGPI2 B Mvapich2 EEGPI2
~*=Mvapich2 Speedup -#-GPI2 Speedup ~*=Mvapich2 Speedup -®-GPI2 Speedup
(a) Problem size M (b) Problem size L

Figure 4.17.: Strong scaling of the Himeno benchmark using GPI-2 and MPI

The medium problem size provides 256 points along the z-direction. This means
that for 16 GPUs, only a grid size of 128 x 128 x 16 is processed on a single GPU.
Here, the computation cannot be completely overlapped with the computation and the
communication time becomes the dominating factor. Since the communication latency

in GASPI is lower, the GASPI-version provides the better scalability.

4.6. Summary

In this chapter, we have shown how GPUDirect RDMA can be used to integrate GPUs
into the one-sided communication library GASPI. A one-sided communication pattern
can benefit from these new techniques, in particular for small message sizes. For larger
messages, staged protocols, in which the data are buftered on one side of the communi-
cation, show a better performance but add a lot of overhead to the CPU.

However, the performance results show that GASPI outperforms MPI as state-of-the-
art for small and medium- sized messages and on the application-level benchmark. The
lower latency — caused by a lower communication overhead— results in a better scalabil-
ity.

Nevertheless, a hybrid model requires a lot of context switches between host and GPU
which adds a lot of overhead to the CPU. Event synchronization is the most efficient
way to synchronize host and GPU, but still requires approximately 12pus. Still, on an-
application level benchmark, this overhead can completely be overlapped with compu-
tations on the GPU. Therefore, almost a linear speedup can be reached if the problem
size 13 large enough. However, using this hybrid communication model, a host thread
1s always required to control the communication.

If an application is running on the GPU that requires frequent communication, this
thread can hardly be used for other issues or set to sleep. The only way to achieve this
1s to allow the GPU to control the communication and completely bypass the host CPU.
This will be addressed in the folowing chapters.

88

5. GPU-Controlled Put/Get
Communication

In the previous chapter, GPI-2 for GPUs, a host-controlled, one-sided communication
library for GPUs was implemented and evaluated. This model allows good overlapping
of communication and computation since the complete communication overhead is of-
floaded to the CPU. However, this model requires context switches between the GPU
and the CPU, which add overhead to the application.

Besides this overhead, a CPU thread is always required to control GPU-related com-
munication. This CPU thread consumes additional cycles and thereby power. Further-
more, it can hardly be used for other work without performance losses. Therefore, in
this chapter, we analyze GPU-controlled one-sided put/get communication.

To allow the GPU to control inter-node communication, the GPU must be able to
source communication requests to the network interface card. In this chapter, it will be
described which steps are necessary to enable this, withe the example of the Infiniband
host channel adapter and the RMA unit of the Extoll device.

The only way to utilize a GPU is launching compute kernels. Therefore, all GPU-
issued communication must happen within such a GPU kernel. A GPU-communication
library must be implemented in a GPU programming language like CUDA or openCI.
The GPU programming and thread execution model differs in some points strongly
from the execution model of the host system. This requires a discussion on how a put/get
API can be reconciled with the GPU thread execution model.

In this chapter, the implementation of a communication library for GPUs is discussed
and described. Last but not least, it is necessary to compare the possible performance
of GPU-Initiated communication with the hybrid communication/computation model
regarding power and energy. Parts of this work were already published in [119, 120]
and [121].

5.1. Related Work

The idea of controlling communication from the GPU was first introduced by Owens
et.al in [122] with DCGN (Distributed Computing on GPU Networks), a framework
that allows GPU threads to send and receive data with commands similar to MPI. An
underlying MPI framework on the host actually performs the communication, but the
communication calls are made within a GPU kernel. The performance of this commu-
nication library was much lower than the performance of the hybrid model. However,
direct GPU- to-GPU data transfers were not supported yet and the host was required.

89

5. GPU-Controlled Put/Get Communication

Still, the authors clearly state that support for direct communication among GPUs
without CPU involvement is desirable. They repeat this in [123] where they claim their
requirements for an MPI-version running on a GPU. However, as far as we know, cur-
rently no library exists which supports direct communication from the GPU without
CPU involvement. Therefore, this is the first work implementing and analyzing the per-
formance of GPU-controlled put/get communication, whereby the GPU controls the
communication and the CPU is completely bypassed.

5.1.1. Communication libraries for the Intel Xeon Phi

For the Intel Xeon Phi architecture, several projects in this area exist. In contrast to
GPUs, the Xeon Phi provides a Linux operating system, thus genuine device drivers
can be developed. In [124] Si et.al. design DCFA (direct communication facility for
manycore-based accelerators) which provides an Infiniband verbs interface for the Intel
Xeon Phi. This interface allows the Xeon Phi to control the Infiniband network de-
vice. The host CPU is required to initialize the Infiniband HCA, but then the Xeon
Phi Co-processor is enabled to directly communicate with the HCA without any further
CPU involvement. For this, a special Infiniband device driver for the Xeon Phi was
developed. In [125], this interface is used to create an MPI library for inter-node com-
munication between distributed Xeon Phis and the host systems. In [126], Potluri et.al.
introduce the Xeon Phi support for the MPI implementation Mvapich, optimized for
Infiniband clusters. Since the PCle peer-to-peer performance is also a bottleneck for the
data transfer between the Xeon Phi and the network device, a proxy-based architecture
was introduced in [92], which uses staged copies in host memory and a proxy server to
perform these copies.

For GPI-2, the native support for the intel Xeon Phi was added. This GPI-2 version
also uses the Infiniband verbs API of the Xeon-Phi device [127].

However, these approaches for the Intel Xeon Phi can only be partly transferred to
the GPU. A GPU does not have a Linux-like operating system, so no genuine device
drivers can be developed. Also, in contrast to the Xeon Phi, the GPU does not support
X86 code, so the source code for a GPU communication library cannot just be compiled

for the GPU.

5.1.2. Libraries for GPU computing

To allow the GPU to control the communication, a communication library is required
to define a set of functions that can be called within the GPU. Most existing GPU
libraries provide a CPU interface to offload special tasks to the GPU. Examples for
these GPU/CPU-libraries are Thrust [128] or GPU-accelerated libraries like cuBLAS-
XTT129], which support the execution of linear algebra subroutines on multiple GPUs,
or cuFFT [130], a library for Fast Fourier Transformations on the GPU.

In contrast to the wide support of GPU-accelerated libraries, libraries that provide an
interface with functions that can be called within a GPU kernel are hard to find. One

reason for this is that GUDA supports a separate compiling and linking of device code

90

5.2, Sourcing communication requests to RDMA-capable hardware

only since CUDA 5 [131]. This feature enables the separate development of libraries
and APIs for GPU kernel which was not possible before. An example for a GPU-kernel
library is CUB [132], which provides an abstraction layer for complex block-level, wrap-
level, and thread-level operations on the GPU.

In [133], Stuart et.al. provide an interface for GPU-to-CPU callbacks. This interface
allows forwarding requests from the GPU to the CPU. They implement three sample
applications on top of this interface: a TCP/IP client and server, a memory manager
for the GPUj, and a command-line debugging tool that uses printf.

Another example of a library is GPUfs [134] which allows file system calls on the GPU.
It also requires a host thread to handle request from the GPU and for system calls.

5.2. Sourcing communication requests to RDMA-capable
hardware

If the GPU controls the communication, the GPU must be able to communicate with
the network interface. Even though the CPU can set up the device, at least the sourcing
and synchronizing of communication requests must be handled directly by the GPU,
completely bypassing the CPU. However, to enable the GPU to source and synchronize
communication requests, it must, first be understood how this is handled on the CPU.

Communication request are submitted to the hardware via to so-called work requests
or descriptors. A work request includes all necessary information for the communication
like the local and the remote memory address, the destination node, and the payload
size. The network device uses this information to perform the communication while the
CPU can be used for other tasks. If the communication is completed, the network device
may send a completion notification to the host. To allow direct communication from
user space, the user space process must be able to directly access the network device.
Normally, this is done by mapping a device register to the user space with memory
mapped I/0 (MMIO). These registers have physical addresses within a base address R
register (BAR) of the device.

How exactly a work request is submitted to the hardware is different for the various
types of hardware. Here, we analyze it in more detail for Infiniband and the Extoll
RMA unit.

5.2.1. Work processing on Infiniband

As explained in section 2.4.6, communication in Infiniband is handled between so-called
queues. The descriptor for a communication request is submitted to a send or receive
queue, a ring buffer in host memory. In a further step, the Infiniband HCA has to be
notified about this new communication request. Therefore, the initiating process writes
a notification to the so-called doorbell register. The doorbell register is a register on the
Infiniband device. For user space processes, the doorbell register is mapped to the user
space with memory mapped I/0. If the communication is completed, the Infiniband
HCA may write a completion notification to the completion queue which can be used
for local synchronization.

91

5. GPU-Controlled Put/Get Communication

[/ /
’ payload (up to 54,22B) I size (32) ‘
77

’ local_addr (64) I_key (32) I size (32) ‘
’ reserved (32) I r_key (32) ‘
remote_addr (64) imm_value (32) l flags (32) I (8) I (8) l opcode (32) ‘

T

| 11 |
| fence size |
| reserved |
——— — - header— — — — — —
- 176 bit »

Figure 5.1.: Sample work request for Infiniband

The actual format and size of completion element and work request are device specific
and also depend on the kind of work request. A remote write request, for example,
requires information about the remote memory segment which is not required for a
send request.

Figure 5.1 shows the structure of the descriptor for an RDMA read or write request
for Mellanox Infiniband Connect-X2 devices. The first 80 bits build the header of the
work request. This header is comprised of the command code (opcode), the flags, the
actual size of the work request (fence size), and eight reserved bits. The immediate value
1s used for write work requests with immediate data and can be ignored otherwise. The
remote address and the r_key describe the remote memory segment.

If the inline flag is set, the payload of a write request is directly copied to the work
request. The payload is split up into segments of up to 54,228 bits (6,788 bytes). Such
a payload segment starts with the data size followed by the data. Infiniband allows the
use of multiple payload segments within a single communication request. However, the
complete payload size for an inline operation is limited, normally to 64 kbytes.

If the inline flag is not set, the work request requires one or more local segment descriptors.
Such a descriptor consists of the size, the [_key, and the local_addr. If more than one local
segment is used, the transferred data is assembled on the remote side for a remote write
and distributed between the local segments for a remote read.

Therefore, an RDMA request has to be at least the size of 352 bit but can be signifi-
cantly larger if the inline operation or multiple local segments are used.

Figure 5.2 shows the format of a completion element that a Mellanox Connect2X
Infiniband HCA writes to the completion queue. This completion element should not
be mixed up with the ibv_wc structure that is returned by the ibv_poll_cq function.
The ibv_wc is created after a successful polling on a completion element, using the
information provided by the completion element.

Since multiple queues can share one completion queue, the first 32 bits code the QP
number. The mipath_rgn field is only required for UD-QPs; the service level flag distinguish
between Ethernet and Infiniband completion elements. The 7/id describes the remote
process. The wge flag 1s required to match the completion element with a corresponding

92

5.2, Sourcing communication requests to RDMA-capable hardware

’ (8) I reserved (24) I (16) I wqe (16) I Byte count (32) I reserved (32) ‘
opcode cheisum
’ rlid (16) | (8) | 8) | mlpath_rgn (32) | imm_data (32) | qpn (32) ‘
T 4
service level
reserved
- 128 bit Lt

Figure 5.2.: Sample completion element for Infiniband

‘ destination address (64) ‘

‘ source address (64) ‘

‘ size (24) ‘ ‘ ‘ node ID (16) ‘ VPID (8) l cmd (6) l ‘

mod.(5)

notification (3) 3(2)

- 64 bit -

Figure 5.3.: Structure of an RMA descriptor for remote put/get commands

work request. If an error occurs, this is coded in the opcode field and all other bits get a
new meaning. All in all, the completion element has a size of 256 bits. The Infiniband
poll function polls for a new completion element and evaluates it.

5.2.2. Work request generation for the Extoll RMA unit

The work processing for the RMA unit works in a slightly different way than for Infini-
band. Instead of first writing the descriptor to a queue in host memory and then writing
a notification to the network interface, the descriptor is directly written into one of the
registers of the Extoll device, called requester page. This requester page is accessible over
a BAR of the Extoll device. To allow communication from the user space without enter-
ing the operating systems, this requester page is mapped to the user space with MMIO.
The Extoll device provides more than one requester page. To every port that is opened,
a new page is assigned.

The descriptor has the size of 192 bits (24 bytes), the structure is shown in Figure 5.3.
The descriptor includes all necessary information to perform the communication. The
source and the destination address can either be the physical addresses or the network
logical address (NLA) which is created during memory registration. The physical address
can only be used for physical continuous memory regions, while the use of NLAs allows
the data transfer between larger virtual memory regions. Depending on the address
(physical or NLA), the descriptor is written to another address within the requester page
so the hardware can recognize which addressing is used.

93

5. GPU-Controlled Put/Get Communication

‘ address (64) ‘

Tr~a \re‘mote vpid (8)

‘ cmd filed (16) l remote node ID (16) ‘ l payload size (24) ‘
r
i
i
i

noti (3)\ ‘

‘ comand
(5)

error (3) ‘ mode (5)

- 4 bi »-
64 bit:

Figure 5.4.: Structure of a RMA notification for put/get commands

The Node ID and the VPID describe the destination node and port. The notification
flag specifies which notifications should be created for this communication request (cf.
section 2.4.7).

Notifications are used to get information about the current state of a communication
request. Notifications are created by the hardware and written to pre-allocated buffers
in host memory. These buffers are located in kernel space and allocated when the device
driver is loaded. For user space processes, they are mapped to the user space with MMIO.
Every port (or endpoint) gets its own notification queue.

A notification has the size of 128 bits. Figure 5.4 shows the structure of an RMA
put notification. The address field returns the NLA or physical address that is involved
with this node. The 16 bits of the command field are split up into 3 bits for errors, 5 bits,
each for the modification and the command, and 4 bits that code the kind of notification.
Consuming a notification does not automatically free the notification. This has to be
done by the programmer. To avoid an overflow, the notifications should be freed as soon
as possible.

5.2.3. Conclusion for GPU-controlled communication

Although work request processing for Infiniband and for the Extoll RMA unit differ,
there are still a lot of commonalities which have to be observed to allow a GPU to use this
hardware. First of all, both allow a user space process to direct access the network device.
This is done by mapping a device register to the user space with memory mapped 1/0.
In the setup-phase, however, for both several accesses to the kernel space are required.

For both, the data transfer is handled by the hardware after a work request is sub-
mitted. The network hardware can write a notification to a queue in host memory if
the communication is completed. For Extoll, the queues are located in kernel space, for
Infiniband in user space. However, a user space process can consume this notifications
for local synchronization for both network devices.

This means that both devices allow sourcing and synchronizing of communication
requests from user space once a connection is set up. This principle also allows the
GPU to directly source and synchronize communication request, as we will show in the
upcomming sections.

94

5.3. GPU-controlled communication

GPU-Kernel

GPU put/get API

GPU space
User space

Host Programm

’ Host-Setup-Library ‘

i { ‘ ‘

‘ Network Device Library ‘ ’ CUDA-Library ‘

User space
Kernel space

‘ Network Device Driver ‘ ’ GPU Device Driver ‘

Network Interface Card (NIC)

Figure 5.5.: Software stack to allow a GPU to communicate

5.3. GPU-controlled communication

The main problems for GPU-controlled communication are the GPU programming
model and runtime system which are not designed for this kind of workload.

GPUs neither have a Linux-like operating system nor are they accessible in another
way than launching kernels or transferring data between host and GPU. This is different
on the Intel Xeon Phi, which also allows the starting of applications directly on the Xeon
Phi in the so-called native-mode. A GPU always requires a host process to control it.
Everything on the GPU has to be implemented in the form of a GPU kernel.

Another problem is that the network device is shared between the GPU and the CPU
and the device drivers of the network device are required to manage the network device
resources. To register memory and to create a connection to a remote node, oftentimes
operating system accesses are required. However, the GPU cannot directly access the
operating system. This has to be done by the CPU.

The Intel Xeon Phi Infiniband drivers, which are described, for example, in [125], use
a proxy model. The device driver of the Xeon Phi communicates via a proxy system
with the device drivers of the host. The Xeon Phi device driver forwards requests to the
host device drivers. This model allows a sharing of the resources between the Xeon Phi
and the host system.

However, this model cannot be used for GPUs due to the above mentioned reasons.
Therefore, a GPU-initiated communication requires a host process to set up the net-
work device, register the memory, and connect to remote nodes. Figure 5.5 shows the
principle software stack for such an application.

95

5. GPU-Controlled Put/Get Communication

create environment :> map resources to GPU :l> create environment
on host address space on GPU

Figure 5.6.: Steps to create an communication context on the GPU

The GPU-communication library consists of two parts: one library for the GPU (GPU
put/get API) and one for the host (Host-Setup Library). The host library is required to set up
connections, register memory, and to manage the network device resources. It accesses
the NIC library and thereby the NIC device drivers.

The host library is also required to port resources to the GPU. The functions of the
API are called by a host application which also starts the GPU kernel. This kernel, however,
now can use the GPU put/get API for communication with remote GPUs. This API
provides direct access to the NIC by completely bypassing the host.

The next sections describe, how the individual parts of this software stack are imple-
mented and cooperate to allow put/get communication from the GPU.

5.4. Creating a communication environment on the GPU

This section describes, how a communication environment is created on the GPU. First,
we describe in general which steps are required and what must be taken into account.
Then, we describe how these steps are implemented for Infiniband and for the Extoll
RMA unit.

Figure 5.6 illustrates which individual steps are required to create a communication
environment on a GPU. The NIC has to be initialized and connections to remote pro-
cesses have to be established. To allow direct and one-sided communication, communi-
cation buffers have to be allocated and registered for the NIC and the information about
the registered memory regions have to be shared between the processes. Only the CPU
can do this work since it requires several accesses to the operating system.

In establishing such a communication environment, several communication resources are
created or mapped to the user space. These resources are, for instance, the device regis-
ters, the queue buffers, or runtime variables, which describe, for example, the number
of open communication requests. Parts of these resources have to be ported to the GPU
to allow communication and it has to be considered which of them are required and
where these resources are located.

If the CPU controls the communication, resources can either be located on host mem-
ory or on the network device. If resources are located in host memory, they can either
be found in kernel space or in user space. If they are located in kernel space, they are
cither also only accessible in kernel space or they are mapped to the user space with
MMIO. The buffers for RMA notifications, for example, are located in kernel space
and mapped to the user space with MMIO.

96

5.4. Creating a communication environment on the GPU

location
of communication
resources

host memory GPU memory network device

kernel space user space

Figure 5.7.: Location of communication resources

Resources on the NIC that are required for user space communication are mapped
to the user space with MMIO. This applies, for example, to the doorbell register for
Infiniband or the requester page of the RMA unit.

However, if communication is controlled by the GPU, there are three different pos-
sibilities for the location of the resources, as shown in Figure 5.7.If the resources are

located in GPU device memory, then they must be located in the global device memory
to be visible and usable for all GPU threads.

5.4.1. Porting resources to the GPU

Bearing the possible locations for communication in mind, there are three different ways
to port communication resources to the GPU, as shown in Figure 5.8.

Resources that are only accessible in kernel space can only be accessed by the CPU;
because the GPU cannot access the operating system. During memory registration, for
example, a host thread creates the page table for the registered memory area. After
this, the page tables are not touched from the host until the memory is deregistered.
Therefore, the GPU does not need a direct access to this resource. Furthermore, it is also
useful to allow only the CPU to access the page table, since it is not possible to prevent
simultaneous accesses from the CPU and GPU. Current GPUs do not support atomic
accesses through the PCle-bus to the host memory, which are atomic with respect to the
host CPU. This may be different in the future, because atomic accesses are supported
with PCle 3. However, at the moment it is not supported and, therefore, the GPU
should not be allowed to directly access resources that can only be accessed in kernel
space.

Other resources can be copied to the GPU. That applies to runtime variables like
identification numbers, communication properties and internal counters. In short, all
data that is required for communication but neither read nor written directly from the
network device.

For resources that are located on the network device or on registered host memory,
the third method must be used: mapping the resource to the virtual GPU address space.

97

5. GPU-Controlled Put/Get Communication

port resources to
GPU
map to GPU
only over CPU copy to GPU address space

Figure 5.8.: Access to remote resources

This applies to all host-memory variables and buffers that are accessed from both, the
network device and the GPU/CPU during work request generation and processing.
This also applies to device-registers that are mapped to the user space with MMIO.
However, as long as these resources are owned by the GPU, they should not be used by
a CPU process, since it is not possible to avoid race conditions between CPU and GPU.

User-space host buffers and variables can be registered for the GPU with the CUDA
function cudaHostMemRegister. This function registers already allocated memory for
the GPU. If the registration is successful, the function cudaHostGetDevicePointer re-
turns a pointer with an address in the virtual GPU address space. A GPU kernel now
can access the host memory buffers directly, using this address.

However, the memory registration function of the GPU driver normally would fail
trying to register an MMIO address. This applies to both, the MMIO device registers
and to MMIO kernel-space buffers. This problem can be solved by using the patch
described in section 3.3.3. This patch allows the registration of MMIO addresses for
the network device and can also be used for the GPU. Although most of the GPU device
driver is prohibitive and cannot be patched, the memory registration function must be
linked against the operation system. Therefore, this part of the Nvidia GPU device
driver can be patched with an appropriate patch.

If these steps are done, the mapped addresses and the replicated elements on the GPU
can be used to create the communication interface on the GPU. For this, the required
information has to be copied to the GPU, using CUDA kernels.

The next section describes in more detail, how an Infiniband communication environ-
ment is created for the GPU under the above-mentioned conditions. The subsequent
section describes this for the RMA unit of the Extoll device.

5.5. Creating an Infiniband communication environment
on the GPU

This section describes how an Infiniband communication environment is created on
the GPU. Furthermore, the performance of this interface is evaluated and potential
bottlenecks are identified and — if possible — solutions for these bottlenecks are developed.

98

5.5, Creating an Infintband communication environment on the GPU

Table 5.1.: List of resources that are required to create an Infiniband connection

element description resources

ibv_context Infiniband user space context doorbell register, QP-table, run-
time variables

ibv_pd protection domain -

ibv_cq completion queue queue buffer, queue counter, run-
time variables (e.g., queue size,
ID,...)

ibv_qgp queue pair send and receive queue buffer,
counter, property variables (e.g,
queue size, ID; ...)

ibv_mr registered memory region property variables (address, size,

keys)

5.5.1. Context Setup on the Host

In the first step, the Infiniband communication context is set up on the host. Here, only
a short introduction to this is given. A more detailed description of the setup routines
for Infiniband connections can be found in, for example, [135].

Table 5.1 shows the list of Infiniband resources that are required to set up a connection
and to allow one-sided communication.

First, the Infiniband device is set up and an Infintband user space context (ibv_contex) 1s cre-
ated. For our purposes, the most important part is the doorbell register that is assigned
to this user space context and mapped to the user space with MMIO. Every user space
context gets its own doorbell register.

The next required element is the protection domain (pd). Protection domains allow the
association of multiple resources like completion queues and queue pairs within a single
domain of trust. To avoid race conditions, only one protection domain is created for all
GPU communication resources and the same protection domain should not be used for
host-controlled communication.

However, the protection domain itself mostly exists on the Infiniband hardware. The user
space data structure only contains a pointer to the user space context and a handle. This
handle is only required for initialization and the allocation of other Infiniband elements.
Therefore, it does not have to be ported to the GPU.

Tor this protection domain, then the completion queues (ib_cq) and queue pairs (ibv_qp) are
created. The creation includes the allocation and registration of the queue buffers.

We use reliable connection (RC-)QPs for GPU-controlled communication. Unreli-
able connection QPS would add overhead to the GPU due to software based reliability
checks. The lacking support for one-sided communication types of the datagram QP
types led us to the use of RC-QPs.

An RC-QP has to be connected to another RG-QP since the communication is han-
dled between these two QPs. Currently, QPs have no means to locate each other. There-
fore, a TCP/IP connection is opened to exchange the information that is required to

99

5. GPU-Controlled Put/Get Communication

connect the QQPs. This information includes the LID, QPN, and PSN. The LID is the
unique local identifier for an active Infiniband port. The QPN is the queue pair identi-
fication number. The PSN (Package Sequence Number) is required for reliable connection
QPs to verify that packages arrive in the correct order and that no packages are missing:
To establish a virtual connection between two QPs, these variables are exchanged and
forwarded to the kernel space where the device driver forwards them to the Infiniband
hardware.

Last, to allow communication, communication buffers have to be allocated and reg-
istered for the network device. This means that an Infiniband memory region (ibv_mr)
is created. For GPU-controlled communication, these communication buffers are allo-
cated in GPU memory, therefore the support of GPUDirect RDMA is required.

To allow one-sided communication, the information about these memory segments
(virtual address, size and memory key) has do be exchanged between the processes. For this,
the TCP/IP connection is used.

After the setup-phase on the host, communication in Infiniband can be handled with-
out entering the operation system kernel. Therefore, it is possible to port existing Infini-
band resources to the GPU and source and synchronize network traffic by completely
bypassing the host CPU. However, it must be ensured that communication resources
like QPs or the doorbell registers are not used by the host system as long as they are
used by the GPU;, otherwise a simultaneous access cannot be avoided.

In the next step, communication resources that are located in host memory or on the
device and are accessed from both the GPU and the Infiniband device are mapped to
the GPU address space. These resources are the doorbell register, the queue buffers, and

some counter variables that indicate the position in the queue buffers for the network
device and the GPU.

5.5.2. Creating Infiniband elements for the GPU

In the last step, the Infiniband elements are created on the GPU and the information
about these resources is copied from the CPU to the GPU. To allow the GPU to source
and synchronize communication requests, the user space context (ibv_context), the
queue pairs (ibv_gp), and the completion queue (ibv_cq) require a counterpart on
the GPU.

To allow RDMA communication, also a structure for local and remote memory re-
gions is required to manage the virtual addresses, the memory keys, and the size of the
segments. For local memory regions, these regions correspond to the Infiniband mem-
ory regions (ibv_mr).

These last steps also includes the copying of variables and pointers to the GPU. Listings
5.1 and 5.2 show, in a simplified example, how this is realized for a queue pair on host
and GPU.

The GPU device memory is managed from host with cudaMalloc. Therefore, first

the memory for the new GPU element has to be allocated, as shown in line 4 of Listing
5.1. Next, a GPU kernel is launched to set the variables on the GPU.

100

5.5, Creating an Infintband communication environment on the GPU

Listing 5.1: Creation of a QP for the GPU, host function
struct gpu_qgp* export_qgp_to_gpu(struct ibv_qgp *qp,

struct ibv_gpu_ctx *ctx){ 2
cuErr= cudaMalloc ((void**)&new_gpu_qp, sizeof (struct gpu_qp)); 4
/*allocate memory for the new GPU QP*/
if (cuErr!=cudaSuccess){ 6
/*error handlingx*/
} 8
init_qp<<<1,1,0,0>>>(new_gpu_qp, qp->buf_size, qp->qpn,
m_send_queue, m_recv_queue ctx); 10
/*port resources the QPx/
cudaErr = gutaGetLastError(); 12
if (cuErr!=cudaSuccess){
/*error handling*/ 14
}
cudaDeviceSynchronize () ; 16
return new_gpu_qp; 18
}
Listing 5.2: Creation of a QP for the GPU, GPU kernel
__global__ void init_gp(struct gpu_qp *new_qp, int buf_size, 1
int qp_num, void* send_q, void *recv_q,
struct ibv_gpu_ctx* ctx){ 3
new_qp->buf_size = buf_size;
new_qp->qp_num = gp_num; 5
new_qp->send_queue = send_q:
new_gp->recv_queue= recv_q; 7
new_qgp->ctx = ctx;
} 9

The kernel launching is shown in line 7 of Listing 5.1. The parameters m_send_queue
and m_recv_queue describe the mapped addresses of the queue buffers. The GPU
kernel itself is shown in Listing 5.2. For every Infiniband GPU element, at least one
kernel has to be called and synchronized to set the values on the GPU. Therefore, setting
up the Infiniband context on the GPU is a very time-consuming operation.

5.5.3. Infiniband interface on the GPU

To use these Infiniband elements on the GPU;, a part of the Infiniband verbs API is
ported to the GPU: ibv_post_send, ibv_post_recive, and ibv_poll_cq. These
three functions are sufficient to source and synchronize communication requests.

The CUDA C language allows an easy porting of these library functions to the GPU,
since most of host code can be reused. Still, for better performance, some GPU-specific
optimization 1s required. The creation of the work request is a sequential workload,

101

5. GPU-Controlled Put/Get Communication

GPU
Memory

GPU
T\ ——(2)—,| Infiniband
(5) (1)

_ -1 Network
CPU 5 @ - 7
IA/

- D i
\{(41 &) evice
— I_/

Host
mem

Figure 5.9.: PCle accesses to source and synchronize communication requests on the GPU
with queue buffers on host

and GPUs are optimized for data-parallel code execution. Therefore, most of the work
request generation can only be performed by a single thread and there is virtually no
optimization strategy for single-threaded workloads on the GPU, expect avoiding them.

However, the host version of ibv_post_send handles a lot of different cases, depend-
ing on the work requests and the used QP, which results in a lot of if and switch/case
branches. This is not very efficient on a GPU. Therefore, we reduced the functionality
on the GPU to a minimum, only supporting RC-QPs to get a more efficient version.

We also decided not to support inline operations on GPUs. For inline operations,
the data are directly copied to the work request so the network device does not have
to read them with further DMA access from the communication buffer. This works
for small messages on host very well. On the GPU, memory copy operations that are
performed by a single thread are not very efficient. Also, since the send queue is located
on host memory, this would require further memory accesses through the PCle-bus
and, therefore, nothing would be gained by using the inline-operations on the GPU. On
the other hand, not supporting inline operations avoids further branch divergences. A
further optimization is the location of the queue buffers.

Allocation of the queue buffers

Normally, the queue buffers are allocated in user space memory on the host and regis-
tered for the Infiniband device during QP and CQ) creation. Then, they are mapped
to the GPU address space to allow access within a GPU kernel. Figure 5.9 shows how
many accesses via the PCle-bus are at least required to source and synchronize a com-
munication request if the queues are located on host memory.

102

5.5, Creating an Infintband communication environment on the GPU

GPU
Mg’norx\
NN
NNIRC!
GPU | (bl ™~ —
SON Infiniband
(@ ™| Network
CPU ™~ Device
Host
mem

Figure 5.10.: PCle accesses to source and synchronize communication requests on the GPU
with queue buffers on GPU

Note that this is only a simplified illustration of the process. For the actual data trans-
fer, further accesses through the PCle-bus are required, for example, to incremented a
special counter that marks the position in the queue. Also, the submission of work re-
quests requires more than one access to host memory. However, for overview purposes,
we omit these accesses here. The actual data transfer is also omitted.

First, the GPU writes the work request to host memory (1). This requires at least one
write access through the PCle-bus. Then, the GPU writes to the doorbell register to
trigger the data transfer (2). Next, the network device reads the work request from the
host (3) and starts the data transfer by reading or writing the data directly from the GPU
memory. If the communication is completed, the Infiniband device writes a completion
notification to host memory (4). To verify the completion, the GPU reads the completion
from host memory (5).

Another possibility is to allocate the ring buffers directly in GPU memory. IFigure
5.10 shows how many accesses through the PCle-bus are required in this case. The
GPU writes the work request to the local device memory, so here, no accesses via the
PCle-bus are required. In order to inform the network device of the new work request,
a GPU thread writes to the doorbell register (a) and the network device reads the work
request from GPU memory (b). If the data transfer is completed, the Infiniband device
writes the completion directly to GPU memory (c), where a GPU thread can consume
the completion from device memory without further accesses via the PCle-bus.

Therefore, the allocation of the queue buffers in device memory reduces the accesses
through the PCle-bus. We implemented new versions of the Infiniband user space li-
brary functions ibv_create_cqand ibv_create_gp which allocate the buffers on GPU
memory instead of host memory.

103

5. GPU-Controlled Put/Get Communication

The queue buffers in GPU memory have to be registered for the Infiniband device.
This requires a small modification of the peer-memory device driver described in section
3.3.2. The peer-memory driver allows only the registration of GPU memory regions,
which are used as communication buffers, but not for queue buffers. However, the device
drivers forward the virtual address to the same user-space memory registration function
in kernel space for both cases, but this function normally does not check, if the address
may belong to a peer client for queue buffers . Apart from this, the registration process
is the same. Therefore, the Infiniband device drivers were adapted to allow also the
registration of queue buffers in GPU memory.

The modification enables the registration peer-memory clients for Infiniband user-
space contexts. If a new user space context is created, the device driver checks if a GPU
peer-memory client exists. If so, the peer memory-client is registered for this user-space
context. If the device driver now tries to register a queue buffer, the peer-memory client
checks, if the memory address belongs to this peer-memory client and registers it in the
same way as communication buffers.

However, GPU memory is a scarce resource and every QP requires at least one ad-
ditional ring buffer. Furthermore, for every connection to a remote GPU, at least one
new QP is required. The memory footprint of the QPs is already a known problem
for host processes in Infiniband [73]. Since GPUs have less memory, this problem is
compounded for queues in GPU memory. Therefore, it may be unavoidable for larger
systems to allocate the queue buffers on host memory . However, we implemented both
versions to validate the influence of the location of the buffers to the performance.

5.5.4. Micro-benchmark results for Infiniband

In this section, some micro-benchmarks are used to analyze the basic performance of
GPU-vontrolled communication using Infiniband. We compare four different commu-
nication mechanisms:

GPU-controlled, queues on GPU The communication is controlled by the GPU,
the queue buffers are allocated in GPU memory.

GPU-controlled, queues on host The communication is controlled by the GPU,
the queue buffers are allocated in host memory.

Host-controlled, queues on host The CPU controls the communication, no CUDA
kernel is started, the queue buffers are allocated in host memory.

GPU-host-assisted, queues on host Like host-controlled, but a GPU kernel is started
and the GPU triggers the communication.

The host-controlled version uses the GASPI interface for communication since it adds
minimal overhead to the application. The host-assisted version is similar to the ap-
proaches described in [122] for MPI or [133] for TCP/IP connections. Here, the GPU
writes to a flag in host memory to initiate a data transfer while an underlying framework
on the host actually controls the NIC. By this approach, kernel synchronization can be

104

5.5, Creating an Infintband communication environment on the GPU

20 10000

18
16
1000
_ 14
m
212

100

6
)___/.// 10
4

latency [ps]

0 1
2 4 8 16 32 64 128 256 512 1k 2k 4k 2k 4k 8k 16k 32k 64k 128k256k512k 1M 2M 4M
data size[Byte] data size[Byte]
~#=GPU-controlled ~#-GPU-controlled host-assited =>~CPU-controlled ~#=GPU-controlled ~#-GPU-controlled host-assited ==CPU-controlled
GPU queues host queues host queues host queues GPU queues host queues host queues host queues
(a) Small data transfer sizes (b) Large data transfer sizes

Figure 5.11.: Latency of a GPU device to device transfer, initiated on host or GPU, using
Infiniband

avoided. However, to get rid of the MPI or TCP/IP overhead, GASPI is used as a
communication layer on the host. This approach is described in more detail in [119].

Allowing the GPU to control communication requires a lot of changes in the device
drivers and Infiniband user space libraries, so we were not able to run the Infiniband
benchmarks on a system with more than two workstations, equipped with two Xeon
X5660 six core CPUs, one K20c GPUm and connected with Mellanox Connect X3
Infiniband. However, to analyze the capabilities of GPUs to source and synchronize
network traffic, a test system with two GPUs is sufficient. As micro-benchmarks, we
measure the latency, the bandwidth, the performance of atomic operations, and the
message rate.

Latency test

Our first test is a simple pingpong benchmark to measure the latency of a GPU-to-GPU
data transfer. For the GPU-controlled and host-assisted benchmarks, for every transfer
size one GPU kernel with a single block of 64 threads is started on the GPU. This kernel
runs the pingpong test for a given number of iterations.

We use a remote write operation to directly transfer data to the memory of a remote
GPU. On the remote GPU, a thread polls on the last transferred byte for a change. This
is possible since, for reliable connections, the data are transferred in the correct order. If
the data are completely transferred, this last byte is reset and the data transfer in turn is
started.

We measure the complete run time of this kernel and divide this by the number of
iterations. If the number of iterations is large enough, the kernel launching and syn-
chronization overhead can be neglected. The benchmark runs with 1,000 iterations.

The host-controlled version uses GASPI notifications for remote synchronization to
avoid polling on GPU memory from host. Here, no GPU kernel is started. For the
sake of clarity, we only use gaspi_write_notify for this benchmark. The performance

105

5. GPU-Controlled Put/Get Communication

1200 1200

1000 1000

800

600 600

400 /

200

400

bandwidt [MB/s]
bandwidt [MB/s]

200

—

0 P 0

2 4 8 16 32 64 128 256 512 1k 2k 4k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M
data size [Byte] data size [Byte]

~#=GPU-controlled -#-GPU-controlled host-assited =>~CPU-controlled ~#-GPU-controlled —#-GPU-controlled host-assited =>CPU-controlled
GPU queues host queues host queues host queues GPU queues host queues host queues host queues

(a) Small data transfer sizes (b) Large data transfer sizes

Figure 5.12.: Bandwidth of a GPU device to device transfer, initiated on host or GPU,
using Infiniband

difference between gaspi_write_notifyand gaspi_gpu_write_notify, which means
the difference between direct and staged copies, was discussed in detail in section 4.3.8.

For the host-assisted version, the helper thread on the host uses gaspi_write. As for
the GPU-controlled communication, on the GPU a threads polls for the last transferred
byte before a new communication is triggered.

The results for the half round latency can be seen in Figure 5.11. They show that
GPU-controlled communication is performing poorly compared to host-controlled com-
munication, especially for small data transfer sizes.

The difference between GPU queue buffers and host queue buffers lies around 1 s
for smaller data transfer sizes. The minimal latency, however, lies around 12.7 ps or
13.6 ps, which is much higher than the latency for a host-controlled communication,
which is approximately 3 ps. Even the host-assisted version has a latency of around
12.2 ps, which 1s still faster than controlling the communication directly on the GPU.

The absolut difference between the four methods stays constant. For larger messages,
the data transfer latency is the dominating factor, therefore the difference between the
latencies become smaller.

Bandwidth

For the bandwidth benchmark, a number of remote write requests are subsequently
submitted to one QP. If the send queue of this QP is full, the GPU or the CPU waits
for the completion of these requests by polling on the completion queue. For GPU-
controlled communication, a kernel is started to submit the communication request; for
the host controlled version, no GPU kernel is started and the complete communica-
tion is handled by the CPU. The host-controlled and the host-assisted version both use
gaspi_write, transferring data directly between GPU memory segments. The results
are shown in Figures 5.12a and 5.12b.

For small messages, the bandwidth of a host-controlled data transfer is much higher
than the bandwidth of a GPU-controlled data transfer. This corresponds to the results

106

2.9, Creating an Infintband communication environment on the GPU

w
o

latency [ps]
= [[) N
o (53] o [6,]

wv

) I .

fetch and add compare and swap
B GPU-controlled M GPU-controlled host-assited ™ CPU-controlled

GPU queues host queues host queues host queues

Figure 5.13.: Latency of atomic operations on GPU memory, initiated on host or GPU,
using Infiniband

from the latency benchmark. The host-controlled version reaches its peak bandwidth
of 980 MByte/s for a message size of 4 kb, while for the GPU-controlled versions, the
maximal bandwidth is not reached for data transfer sizes smaller than 32 kb. Allocating
the queues in GPU memory leads to a slightly better bandwidth for GPU-controlled
communication for medium sized-messages.

The peak bandwidth for the GPU-controlled version is also slightly worse then the
peak bandwidth of the host- controlled communication. Again, the PCle problems for
a direct device-to-device transfer can be observed here, especially the decline of the
bandwidth for data sizes larger than 1 MB. By using staged host copies for larger trans-
fer sizes, the difference between a GPU-controlled and a host-controlled data transfers
would be even larger.

Atomic operations

Since Infiniband supports atomic operations on registered GPU memory, we also mea-
sured the latency of Infiniband atomic operations in GPU memory. The results are
shown in Figure 5.13.

Again, GPU-controlled communication is performing poorly compared to host- con-
trolled communication. Even the host-assisted version, which requires a context switch
between GPU and CPU, is almost three times faster than GPU-controlled communica-
tion. However, this result follows the results of the previous benchmarks.

Message rate

As a last micro-benchmark we run a message rate test. We run the test with one QP
connection and with 16 QP connections between the two GPUs.

For the tests with 16 QP connections, on the GPU, a kernel with sixteen thread blocks
is started. Every block can use its own QP connection, so the communication requests
can be submitted in parallel. On the host, for every connection, a CPU thread is started.

107

5. GPU-Controlled Put/Get Communication

10000000

1000000
| =—— === —— e

100000 B = 1 = r 1 —=

messages rate [msg/s]

10000

1 2 4 8 16 32 64 128 256 512 1k 2k 4k 8k
data size [Byte]

=& GPU-controlled, =#= GPU-controlled, ~#- GPU-controlled, =#= GPU-controlled,
GPU queues GPU queues host queues host queues
1 connection 16 connections 1 connection 16 connections
host-assited, host-assited, == CPU-conntolled =%= CPU-conntolled
host queues host queues Host queues Host queues
1 connection 16 connections one connection 16 connections

Figure 5.14.: Message rate of a GPU device to device transfer, initiated on host or GPU,
using Infiniband

Every thread uses its own GASPI queue, so on the CPU, the communication requests
are also submitted in parallel.

The host-assisted version starts a kernel with one block for every connection. The
underlying GASPI-communication interface uses the same number of queues. How-
ever, in contrast to the host-controlled communication, a single thread serves all GPU-
communication requests. Figure 5.14 shows the results of the message rate benchmark.

If the communication is controlled by the GPU, for a single connection, the message
rate 1s very low and nearly constant for all message sizes . The same applies to the host-
assisted version, although the message rate is slightly higher then the message rate of the
GPU-controlled communication. Using more connections, the message rate increases
for all communication methods apart from the host-assisted communication.

Especially the message rate for GPU-controlled communication with GPU queues
increases almost linearly with the number of connections. For messages up to 256 bytes,
the message rate that is achieved with sixteen connections (ca. 1.5 million messages
per second) is fifteen times higher than the message rate that can be achieved with one
connection (ca.100,000 messages per second).

However, if the queues are located in host memory, the message rate does not increase
that much at all. With sixteen connections on the GPU and queues in host memory, the
GPU reaches the same message rate as the CPU with one connection. For the host-
assisted version, the message rate does not increase at all for more connections.

We repeated the message rate benchmark with a constant data size of 32 bytes and
varied the number of connections between 1 and 32 queue pairs. The results are shown
in Figure 5.15.

The message rates for GPU-controlled communication with GPU queues and host
queues diverge more for a larger number of connections. While for a single connection,

108

5.5, Creating an Infintband communication environment on the GPU

10000000

1000000

o

100000 /

message rate [messages/s]

10000

1 2 4 8 16 32
number of connections
=& GPU-controlled, =#- GPU-controlled, host- assited, == CPU-controlled
GPU queues host queues host queues host queues

Figure 5.15.: Message rate of a GPU device-to-device transfers for a data transfer size of
32 bytes and varying numbers of connections, initiated on host or GPU, using
Infiniband

the transfer with most queues reaches around 80% of the message rate of the transfer
with GPU queues, for 32 connections it only reaches 40% of the message rate.

Here, the PCle-bus is the bottleneck. If more connections are used, more thread-
blocks try to access the queues in host memory over the PCle-bus in parallel and this
slows down the message rate.

For the host-assisted version, the message rate goes down for more connections. The
reason for this is that all blocks on the GPU are served by the same host thread. If
the host thread serves a request from one thread block, this host thread is blocked for all
other aspirants. This results in a blocking state for the GPU and slows down the message
rate.

5.5.5. Analysis and optimization

The results of the micro-benchmarks are quite disappointing, especially for small mes-
sage sizes. Therefore, a more detailed analysis of the communication process is required.

The time fraction spent for data transfer on the network should be identical for all
methods, regardless of if the communication is initiated on the GPU or on the host.
Therefore, the additional latency must be caused by the communication control, the com-
munication overhead. Essentially, communication control is done by the functions
ibv_post_send, which initiates the communication and ibv_poll_cq, which waits
for the completion of the communication. Therefore, we measure the run time of these
functions on both GPU and host. The results are shown in Table 5.2. Note that the
benchmark for ibv_poll_cq guarantees that the polling for the completion is success-
ful, so we only measure the runtime of a successful handling of the completion element.

It takes more than 100 times longer to create a work request and add it to the queue
on the GPU than it does on the host. While the network request generation can be

109

5. GPU-Controlled Put/Get Communication

Table 5.2.: Latency (in us) associated with communication control functions in Infiniband,
excluding data transfer latencies

CPU-controlled GPU-controlled GPU-controlled

host queues GPU queues host queues
ibv_post_send ~ 0.01 10.66 12.46
ibv_poll_cq ~ 0.01 15.69 8.27

Table 5.3.: Number of memory accesses, cache misses and, instructions for Infiniband func-
tions on the GPU

queues on host queues on GPU
ibv_post_send ibv_poll.cq ibv_post.send ibv_poll cq

host read 147 586 0 112
host write 1,404 101 197 1
device read 1,550 39,332 1,550 30,332
device write 1,600 6,700 1,600 6,700
instructions 46,918 17,158 46,918 17,158

neglected on the CPU, it exceeds the data transfer latency on the GPU. Also, the polling
and handling of the completion queue elements is very time consuming, especially if the
completion queue is located in host memory. There are two explanations for this:

First of all, only a single thread can create work requests and the single thread per-
formance of GPUs is very low. Second, the work request generation requires several
accesses to the global device memory, respectively the host memory. A single thread
performs these accesses, so these fine-grain accesses cannot be coalesced into a larger
one.

Analysis with the GPU performance counter

To verify the assumptions about the bottlenecks of GPU-controlled communication and
to get a better understanding of the behavior, we use the Infiniband performance counter
to measure the number of instructions and accesses to device and system memory that
are required to source and synchronize communication requests on the GPU.

We measure the instructions and memory accesses for one hundred executions of
ibv_poll_cqand ibv_post_send on the GPU. We use a hundred iterations since ker-
nel launching and preparing of the communication functions require some additional
accesses whose impact on the results should be minimized. The benchmark guarantees
that the polling for a completion element is successful at the first try, so there are no
additional instruction or accesses to memory caused by long-term polling. The results
are shown in Table 5.3.

Almost 47,000 instructions are required to submit 100 communication requests to the
Infiniband HCA from the GPU. This means, that roughly 470 instructions are needed

for a single communication request. Additional, 170 more instructions are required

110

5.5, Creating an Infintband communication environment on the GPU

to synchronize a request locally. Most of these instructions are performed by a single
thread, because there is hardly any data parallelization.

The number of accesses to host memory explains best the performance differences
between GPU-queues and host-queues. Over one thousand accesses to host memory
are required, if the queues are located there, to submit the communication requests,
while for GPU-queues, only around 200 accesses are required. These accesses cannot
be coalesced since they are performed by a single thread. The high number of host
memory read accesses (ca. 39,000) explains the long duration of ibv_post_cq with
host-queues. Read accesses from the GPU to host memory have a very long latency.

Optimization and simplification

Based on this analysis, an optimization strategy should reduce the number of instruc-
tions and accesses to system memory. Necessary accesses to systems memory should
be coalesced if possible. Therefore, we use the following steps to optimize sourcing and
synchronizing of communication requests:

Shared memory The work request first created in shared memory. Then multiple
threads in parallel copy the request to the send queue, thereby leveraging the
coalescing capabilities of the GPU’s DMA engine and avoiding multiple small
accesses to system memory. For the completion element, the same is done. Mul-
tiple threads copy in parallel the completion to shared memory and only then it
is evaluated.

Static calculation The Infiniband HCA requires a big-endian-to-little- endian con-
version for the work request elements. For the memory keys and static variables,
this can be done during initialization and does not have to be repeated for every
new communication request. However, for the source and destination address as
well as the data transfer size, the values cannot be calculated statically since they
may differ for every communication request. By this, the number of instructions
can be reduced.

In addition to the optimizations, in the next step, the Infiniband functions are simplified
by removing some of thefunctionalities. The goal of this is to estimate the overhead that
these functionalists cause.

No stamping Consumed send queue entries are stamped during work request gener-
ation to avoid prefetching from the network device. If the queues are located on
host memory, this requires additional accesses through the PCle- bus. In order
to assess the overhead that is caused by this stamping, we omit this. This reduces
both the number of instructions and memory accesses. However, since the queue
buffer is a ring buffer, this could mean that the Infiniband device wrongly reads
an old work request in this buffer by trying to prefetch communication requests.
This could result in an error. However, like mentioned above, this is omitted
primarily to estimate the overhead that is caused by the stamping on the GPU.

111

5. GPU-Controlled Put/Get Communication

No queue and parameter handling This is the most drastic step. The bv_post_send
send function normally does some parameter checks at the beginning and also
checks if an overflow in the queue occurs. For optimization and to assess the
overhead, we omit this.

The bv_poll_¢q tunction normally not only polls for a new completion element
but also interprets the completion element. One step during this interpretation
1s finding the associated QP in a list of all QPs connected to the user space con-
text. If the QP is found, the index of the send queue buffer of the QP is updated.
This means that the buffer entry is freed and can be used again for new work
requests. For analysis purposes, this is also omitted. This has little impact on the
experiment since the overflow check is omitted anyway. Thereby, we can reduce
the functionality of ibv_poll_cq to a minimum. The reduced polling function only
checks for a new completion and for errors. Copying of the request to shared
memory can be omitted. However, if more information about the completion is
required, another function can be used to interpret the completion element. This
step again reduces the number of instructions and accesses to host memory.

In order do determine the influence of the individual simplification steps, again the
runtimes of tbv_post_send and ibv_poll_cq are measured. The results are presented in Table
5.4. The use of shared memory is valuable if the queues are located in host memory;,
especially for the completion handling, If the buffers are located in GPU memory, no
improvement can be achieved by using shared memory.

The results show that most of the speedup is gained by the last two steps. The stamp-
ing of old work requests requires additional accesses to the host or system memory, de-
pending on the location of queues, while the parameter checking and queue handling
requires a lot of additional instructions, which can only be performed by a single thread.

Figure 5.16 shows how the number of instructions and accesses to host memory change
for the different simplification steps. Using shared memory at first increases the number
of instructions. Therefore, there is no benefit if the queues are located in GPU memory.
However, if the buffers are located in host memory, the accesses to host memory can
be reduced, especially the host memory read accesses for bv_poll_cq. This explains the

Table 5.4.: Latency (in us) of simplified and optimized versions for sourcing and synchro-
nizing communication requests on the GPU

queues on host queues on GPU
ibv_post_send ibv_poll.cq ibv_post_send ibv_poll_cq

No optimization 12.46 15.69 10.66 8.27
1. Shared memory 11.86 10.70 10.86 8.27
2. Static calc 11.83 10.70 10.56 8.20
3. No stamping 9.50 10.70 8.80 8.20
4. No parameter/ 7.52 5.45 7.00 3.12
queue handling

112

2.9, Creating an Infintband communication environment on the GPU

60000
40000
20000
0
ibv_post_send, ibv_poll_cq, ibv_post_send, ibv_poll_cq,
queues on GPU queues on GPU queues on host queues on host

M no simplification M shared memory ¥ static calculatation ™ no stamping ™ no queue and parameter handling

(a) Number of instructions

800
600
400
0 S F
0 T T — SEmmn mmw
ibv_post_send, ibv_poll_cq, ibv_post_send, ibv_poll_cq,
queues on GPU queues on GPU queues on host queues on host
¥ no simplification M shared memory ¥ static calculatation ™ no stamping ™ no queue and parameter handling
(b) Host memory read accesses
1500
1000
500
0 -
ibv_post_send, ibv_poll_cq, ibv_post_send, ibv_poll_cq,
queues on GPU queues on GPU queues on Host queues on Host

¥ no simplification ™ shared memory ¥ static calculatation ™ no stamping ™ no queue and parameter handling

(c) Host memory write accesses

Figure 5.16.: Results of the performance counter for the different simplification steps in
comparison

reduction from 15.7us to 10.7us for the runtime of this function using shared mem-
ory. Tor the ibv_post_send function, the number of write accesses to the system memory
is halved if the queues are located in host memory.

Using static calculated keys only reduces the number of instructions minimally, so
there is hardly any performance gain. Omitting the stamping of old work requests has
no influence on the wv_poll_cq function. However, for ibv_post_send, the number of in-
structions and the accesses to system memory are clearly reduced. Read accesses to
host memory can completely be avoided with this step, even if the queues are located in
host memory.

The last step reduces the number of instructions for both functions the most. This,
most likely, explains the shorter runtime. For bv_poll_cq, additional read accesses to host
memory are reduced massively, which saves further time.

113

5. GPU-Controlled Put/Get Communication

Summary for Infiniband verbs

The results of the micro-benchmarks show, that the overhead of creating and synchro-
nizing work requests on the GPU is much higher than on the host. The evaluation of
the performance counter and different simplification steps show that the reason for this
is the comparatively complicated Infiniband verbs protocol, which requires a lot of se-
quential work that cannot be parallelized. This work includes the stamping of old work
request, error checking, and completion handling.

A suitable communication interface for GPUs should allow a simpler creating of com-
munication requests and also a simpler local synchronization of theses communication
requests.

5.6. Creating an RMA environment on the GPU

This section describes which steps are required to create an environment to allow the
GPU to source and synchronize communication requests to the RMA unit of the Extoll
device from the GPU.

In principle, the same steps are required as for Infiniband. A detailed description of
this can be found in [80]. The aim of this section is mainly to analyze the differences
and commonalities to the Infiniband implementation and to get a better understanding
of what kind of communication interface is best suitable for GPUs.

5.6.1. Setting up an RMA connection on host

As for Infiniband, first, the host GPU has to establish connections between the endpoints,
then, the required resources are ported to the GPU. Listing 5.3 shows how a connection
is established using the RMA unit of the Extoll device. The procedure is much simpler
than for Infiniband. First, a so-called port (or endpoint) is opened. Every endpoint
identifies itself with a node_id, which is unique for the Extoll device, and a ypid, which is
unique for an endpoint on the respective node.

If the port is opened, a requester page and a notification queue are mapped to the user space
with MMIO. The requester page is a window in one of the BARSs of the Extoll device. The
notification queue is a buffer for notifications, llocated in kernel space. To allow communi-
cation, one or more virtual connections to another endpoint have to be established with
the rma2_connect function. For this, the node_id and the vpid of the remote node are
required, so they have to be exchanged with the remote processes. For this, a TCP/IP
connection, like for Infiniband, can be used.

However, the connection to a remote process is a real virtual connection. 'This means
that it is only a software abstraction to make the addressing and mapping of operations
simpler. The connections of one port use the same requester page and notification queue.
So, to allow communication with a remote endpoint, the ypid and the node_id of a remote
port have to be copied to the GPU.

To allow one-sided communication, the communication buffers are allocated on the
GPU and registered. We use the NLA to represent a registered GPU memory region. To

114

2.6, Creating an RMA environment on the GPU

Listing 5.3: Creating an RMA connection
RMA2_Port port;

RMA2_ERROR rc; 2
RMA2 Handle handle;
uintl6_t local_node, destination_node; 4

uintl16_t local_vpid,destination_vpid;

rc=rma2_open (&port);

if (rc!=RMA2_SUCCESS) 8

{
/*Error handling */ 10

}
/* exchange node_id and vpidx*/ 12
/* establish a virtual connection */ 14

rc=rma2_connect (port, destination_node,destination_vpid,
RMA2_CONN_DEFAULT, &handle);

if (rc!=RMA2_SUCCESS) 16
{

/*Error handling x*/ 18
}

allow one-sided communication, the NLAs have to be exchanged between the processes.
This can be done by using the notification mechanisms of the RMA unit, or by using
the TCP/IP connection.

5.6.2. Porting of an RMA environment to the GPU

Once an RMA-connection is created on the host, it can be ported to the GPU. Therefore,
the requester page and the notification queue have to be mapped to the GPU address
space.

On the GPU, a very simple structure is sufficient to allow the GPU to control the
communication. In Listing 5.4, the according structure for an RMA port on the GPU
1s shown. The queue 1s the pointer to the mapped notification queue and req_page is the
mapped requester page. The parameters 7p, rw_wb, and rp_bak describe counter variables
which are required to find the right entry in the notification queue. The size parameter
describes the size of the notification queue. Besides this, also the node_id and the vpid of
all remote endpoints are copied to the GPU.

With the structure in Listing 5.4 it is very simple to source a communication request
to the RMA unit from the GPU. A GPU just has to write the descriptor in the right
format to the requester page, as shown in Listing 5.5

In contrast to the Infiniband work processing, the single-threaded workload is lower.
However, next to the function in Listing 5.5, also the handling of notifications has to
be ported to the GPU. These functions are sufficient to allow the GPU to source and
synchronize communication requests on the GPU.

115

5. GPU-Controlled Put/Get Communication

Listing 5.4: RMA port for a GPU
typedef struct {

volatile RMA2_Notification *queue; 2
volatile uint32_t *rp;
volatile uint64_t *rp_wb; 4
uint32_t size;
volatile uint32_t *rp_bak; 6
volatile uint64_t *req_page;

} gpu_rma_port_t; 8

Listing 5.5: Creating a descriptor on the GPU and copying it to the requester page
__device int gpu_rma2_put(---) {

[])

unsigned int modifier = RMA2_CMD_DEFAULT;

if (== threadid){ 4
port.req_page[0] = (((size-1) & Ox7FFFFFl) <<401) | \
((modifier & OxF1) <<351) | \ 6
((noti & 0x71) <<321) | \
((remote_node & OxFFFF1)<<161) | \ 8
((remote_vpid & OxFFF1l) <<81) | \
((command_put & OxF1l) <<21) | \ 10
31;
port.req_page[1] = src_address + src_offset; // src nla 12
port.req_page[2] = dest_address + dest_offset; // dest nla
} 14
} 16

Location of the queue buffers

As for Infiniband, the queues for the notifications theoretically can be allocated in GPU
memory instead of host memory. However, the problem is that for the RMA unit of
the Extoll device these buffers are allocated in kernel space during device initialization.
This is different for Infiniband where the queues are allocated dynamically during QP
creation in user space. There is no way to allocate GPU memory in kernel space. Al-
lowing a subsequent allocation of notification queues in GPU memory would require
massive changes in the Extoll device drivers and therefore will be addressed in future
work.

5.6.3. Micro-benchmark results for the RMA unit

We runlatency and a bandwidth benchmarks for the Extoll RMA unit. Most of the re-
sults of this chapter are already published in [80] and [120], but for the sake of complete-
ness will listed here again. The benchmarks run on two machines with Extoll Galibier
Cards, implemented on an FPGA with a core frequency of 157 MHz and a 64 bit wide
data-path.

116

2.6, Creating an RMA environment on the GPU

25 10000

20
1000

s
&

100

e

latency [ps]
latency [ps]

.
5}

0 1
4 16 64 256 1k 4k 4k 16k 64k 256k im 4am
data size [byte] data size [byte]
~#—host-controlled ~#®-host-assited GPU-controlled, =*<GPU-controlled, ~#—host-controlled —#-host-assited GPU-controlled, =*<GPU-controlled,
notifications no notifications notifications no notifications
(a) Small data transfer sizes (b) Large data transfer sizes

Figure 5.17.: Latency of a GPU device-to-device transfer, inititated on host or GPU, using
Extoll RMA

Latency Benchmark

To measure the latency, again a pingpong benchmark is used. For the RMA unit, we
compare four different data transfer and synchronization methods:

GPU-controlled, notifications The communication is controlled by the GPU. The
completer notification is used for remote synchronization. The GPU on the remote
side polls for the completer notification before the data transfer is started. On the
sourcing side, the requester notification is used for synchronization.

GPU-controlled, no notification The communication is controlled by the GPU. For
remote synchronization, a GPU thread polls for the last transferred element in
GPU memory before the data transfer is started. On the sourcing side, no no-
tification is used. The ping and the pong side mutually synchronize each other.
However, this method cannot be used for real-world applications, since at least
local synchronization is required.

Host-assisted The GPU triggers the CPU to perform the communication.
Host-controlled The CPU controls the communication, no CUDA kernel is started.

For the host-controlled communication, we use RMA completer notifications for re-
mote synchronization and the requester notification for local synchronization.

Again, for the GPU-controlled benchmarks, for every message size, a GPU kernel
with a single block of 32 threads is started. This kernel runs the pingpong benchmark
for a given number of iterations. The results are presented in Figure 5.17 and show
half-round trip latency.

The results differ from the Infiniband results. If the GPU uses notifications for syn-
chronization, the latency (15.9 ps) is three times higher than the latency of the host con-
trolled communication (4.9 us). Still, when a GPU thread polls on the last transferred

117

5. GPU-Controlled Put/Get Communication

600

©
S
S)

©
S
<3

500

»
S
=]
[E- NN
e o 9
s & ©

bandwidth [MB/s]
IS
S
3

w
&
]
bandwidth [MB/s]

N
=3
S]

w

=3

S)

N
=}
S)

.
1<)
3

o
o

1 4 16 64 256 1k 4k 4k 16k 64k 256k M am

data size [byte] data size [byte]
—#—host-controlled —®-host-assited GPU-controlled —#—host-controlled —#-host-assited GPU-controlled
(a) Small data transfer sizes (b) Large data transfer sizes
Figure 5.18.: Bandwidth of a GPU device to device, using GASPI running on host and

GPU

element and the communication is handled without notifications, the latency is almost
as small as the latency of a CPU- initiated communication (5.1 ps). Itis also better than
the host-assisted version (6.4 us).

Polling for notifications causes many additional accesses through the PCle-bus, since
the notifications are located in host memory. This may slow down the performance.
If notifications are used, it is also necessary to free them after consumption to avoid
an overflow of the notification queue. Freeing the notification adds some more single-
threaded work to the GPU, which is not required if the thread polls on the received data.
This will be analyzed later, in more detail, with the help of the performance counters.

Bandwidth

For the bandwidth measurements with the RMA unit, no remote synchronization is
required. Therefore, now three different methods are used:

GPU-controlled The communication is controlled by the GPU, using the put opera-
tion with the requester notification for local synchronization.

Host-assisted The GPU triggers the CPU to transfer the data.

Host-controlled The communication is controlled by the host, using the put operation,
with the requester notification for local synchronization

The results are pictured in Figure 5.18 and show a large gap between GPU-controlled
communication host-controlled communication, even for larger data transfer sizes. This
differs from the results of the latency benchmark where GPU controlled communication
almost reaches the same latency as-host controlled communication, if no notifications
are used. However, although no remote notifications are used, this benchmark requires
requester notifications for local synchronization. This gap also stays for larger message sizes.

118

2.6, Creating an RMA environment on the GPU

That is in contrast to the results for Infiniband where the gap between the peak band-
widths of GPU-controlled and host-controlled communication is much smaller. The
reason for this may be the polling on the host-notification buffer which results in a lot of
additional accesses through the PCle-bus and, therefore, slows down the bandwidth.

However, this is also true for Infiniband if the completion queue is located in host
memory, because then the GPU also has to poll on host memory for local completion.
But for Infiniband even then the gap between the maximal bandwidth of host-controlled
communication and GPU-controlled communication is much smaller.

Using Infiniband, multiple communication requests can be added to the send queue
before the GPU has to poll on the completion queue for local synchronization. Using the
RMA unit, the requests are directly submitted to the hardware, so this is not possible.
The bandwidth benchmark submits a put request to the hardware and then directly
starts polling on the requester notification before the next communication request is
submitted. On the host, a queue is used to handle failed communication requests .
However, on the GPU, this would add a lot of overhead to the communication and
therefore is not implemented [80].

5.6.4. Performance counter analysis for the RMA

This section is dedicated to the analysis of the previously discussesed results, which was
already published in [120]. For this analysis, again the GPU performance counter are
used. Therefore, the pingpong benchmark with 100 iterations and a payload size of 1 kb
was started and accesses to host and device memory and the number of instructions were
counted.

Table 5.5 shows the performance counters for the pingpong benchmark with 100 it-
erations. Compared to the Infiniband results, the number of instructions is much lower,
especially if no notifications are used. Only around 46 instructions are required per it-
eration if notifications are used and only around 22 instructions if no notifications are
used. On Infiniband, however, 460 instructions were required to create a communica-
tion request. Sourcing a communication request to the RMA unit is much simpler than
using Infiniband verbs. However, using notifications results in double the number of
instructions. This is caused by the handling of the notifications, since notifications have
to be consumed and later freed.

The other reason for the increased latency is the number of accesses to the host mem-
ory, especially read accesses. If the notifications are used, over 4,000 read accesses to
host memory are required, which means that around 40 accesses are required per iter-
ation. However, this benchmark also includes the repeated polling on the notifications
in host memory. Further accesses are required to handle and evaluate the notifications
after successful polling.

If notifications are used, further write accesses to host memory are required. The read
counter for the notifications, which is located in host memory, has to be incremented and
the notification has to be freed, what means that it is set to zero. This has to be done
for the local requester notification and for the completer notification, which results in many
additional accesses to system memory through the PCle-bus.

119

5. GPU-Controlled Put/Get Communication

Summarized, the same conclusions can be drawn as for Infiniband: There are two
main factors which slow down the performance of GPU -controlled put/get communi-
cation: The number of single-threaded instructions and and the number of accesses to
system memory which are required to source or synchronize a communication request.

5.7. One-sided Communication Interface on the GPU

So far, only micro-benchmarks were used on the GPU. These benchmarks start with a
minimum number of threads and do not perform any computations. The message rate
benchmark is the only benchmark that is started with more than one thread block but
still so few that all thread blocks can be scheduled in parallel.

However, although GPU-controlled communication did not provide any performance
benefits so far, this may be different for an application level benchmark. For the hybrid
methods, so far, no GPU kernel was started, which means also no context switches be-
tween host and GPU were required.

The micro-benchmarks also require no synchronization between the threads and
blocks on the GPU. Besides, the micro-benchmarks are only started with so few threads
that all threads are scheduled simultaneously on the GPU. Looking at the application
level, this is seldom the case. Allowing put/get communication directly on the GPU
causes several problems related to the GPU programming model. Therefore, before
looking at an application level benchmark, first some observations on the communica-
tion library running on the GPU are required.

5.7.1. Communication endpoints

Communication is performed between endpoints, regardless of looking at one-sided or at
two-sided communication. In communication libraries like MPI, GPI, or openShmem,
these endpoints are identified by processes. Every process has a unique ID. However,
the concept of a process does not exist on a GPU.

For DCGN [122] the concept of slots was introduced. Slots allow a variable number
of connections between GPUs for communication. Every GPU has at least one slot, the
maximal number of slots is equal to the number of threads that can run concurrently
on the GPU. The results show that using too many slots creates a lot of overhead.

Table 5.5.: Comparison of different synchronization mechanism for the pingpong bench-
mark, using GPU Extoll RMA API

notifications poll device memory

host memory read 4,368 0
host memory write 2,908 303
device memory accesses (r/w) 6,788 1714
instruction 46,413 22,491

120

5.7. One-sided Communication Interface on the GPU

Using a specific communication slot for every thread or block restricts the usability of
the GPU, since it allows only starting a kernel with as many threads as can be executed
concurrently on the GPU. Thread-blocks are non-preemptive, so once a thread-block is
scheduled, it occupies a GPU until it is completed. It is not predictable when a specific
thread-block is scheduled. Using this in conjunction with message passing could easily
result in a deadlock if one block or thread waits for a specific thread that is not scheduled.

This describes the main problem with message passing and synchronization on GPUs.
We will return to this problem later, when we describe the implementation of our bench-
marks in more detail. However, to avoid race conditions and to allow the scheduling of
as many threads as supported by the GPU, the completion of a communication request
or the synchronization with a remote GPU should not depend on the scheduling of a
spectfic block or thread.

Furthermore, all threads and blocks on a GPU share the same virtual GPU address
space. Changes in the device memory are visible to all threads on the GPU and com-
munication resources are visible to all threads.

Because of this we use a GPU-centric communication library. Every GPU in the
system represents an endpoint. Communication is handled between the GPUs and
every GPU gets a unique ID.

5.7.2. Block-save communication

To avoid race conditions, the communication libraries must provide a kind of thread
safety. However, instead of creating a thread-save communication library on the GPU,
we decide to create a block-save communication library. A block corresponds to a virtual-
ized shared multiprocessor on the GPU. Blocks are independent of each other and therefore
can execute different tasks while between the threads of one block, only data parallelism
1s supported.

The threads of one block should call a communication request in parallel. The com-
munication library handles the synchronization between these threads. However, if
shared memory is used to optimize the communication, this is required anyway. Multi-
ple parallel threads are required to copy the request from shared memory to the queue.
To synchronize the blocks and to provide a block-save communication library, we used
a mutex-variable and GPU-atomic operations, as described, for example, in [136].

Newer GPUs also allow concurrent kernel executions on the same GPU] if the kernels
are submitted to different streams. If these kernels are launched from the same host
process, they share one virtual GPU address space. The resources, which are required
for the communication, are also located in this virtual GPU address space. The same
applies to block-synchronization variables like mutexes. Therefore, concurrent kernels
also share the same communication infrastructure and, therefore, represent the same
communication endpoint.

121

5. GPU-Controlled Put/Get Communication

5.7.3. Asynchronous one-sided communication

One-sided communication functions on the GPU should be asynchronous and non-
blocking to allow overlapping of communication and computation. A thread block ini-
tiates the communication and directly returns.

Therefore, a wait function is required to synchronize the communication locally. It is
not required that the same block that initiates a data transfer also synchronizes it, which
allows a more flexible usage.

For Infiniband, this functions polls on the completion. For the RMA, notifications are
used. For put operations, the requester notification is used for local synchronization, for get
operations, it is the completer notification.

5.7.4. Queues

The idea of communication queues, similar to the queues in GAPSI, is very suitable for
GPU-controlled communication. Queues allow multiple blocks to source communica-
tion requests independently and simultaneously, without binding a block to a specific
communication slot. The previous sections have shown that using multiple connections
can help to achieve higher message rates on the GPU.

Hence, at first sight, it seems to be reasonable to create one queue for every thread-
block on the GPU, so every thread-block can use its own queue for communication.
For Infiniband, this implies that for every thread-block, one QP connection to every
remote GPU is required. For the RMA-unit, for every queue, another RMA port can
be used. However, on a modern GPU, a kernel with more than one million blocks can
be launched. Although not all applications start kernels with many blocks in parallel,
often kernels with more than thousand blocks are started. To create one queue for every
thread-block would exhaust the communication resources. Especially for the Infiniband
queue buffers, the memory footprint is very large and easily exceeds the amount of
available memory.

Therefore, between 2 and 32 communication queues should be used. This saves the
communication resources and provides flexibility between the thread-blocks.

5.7.5. Remote Synchronization

To allow synchronization between the active and the target side of one-sided communi-
cation, we also implemented a weak synchronization (remote notification) mechanism
on the GPU. For Infiniband, theoretically two possible methods for weak synchroniza-
tion exist. Either a flag mechanism as in GPI-2 or remote write requests with immediate
data can be used. In the first case, an additional area of flags is allocated in GPU device
memory and registered for the network device. Then, the flags are updated with remote
write operations to this area. However, in this case, gaspi_write_notifyinternally re-
quires a double creation of work requests, one for the notifications and one for the actual
data transfer.

By using the immediate value instead, this additional work request creation can be
avolded. Instead the flag is directly transferred along with the remote write operation.

122

5.8. Inter-block synchronization

However, this method has also some disadvantages. On the remote side, a receive request
is required to accept the immediate data. If no receive request is posted before a remote
write request with immediate data arrives, an error occurs. This would also require an
evaluation of the completion element on the target side, which adds a lot of additional
overhead to the communication as shown in the previous section. Another problem
is that the target side cannot simply ignore the notification. If the notification is not
consumed, an overflow may occur on the completion queue. Also, it is not possible to
just send a notification without data transfer since a zero-data transfer is not supported
in Infiniband. Therefore, we decided to use a flag mechanism on the GPU.

For the RMA unit, also the flag mechanism can be used. Another possibility is the
use of notifications. For put operations, the completer notification can be used. The
RMA unit allows the creation of a remote notification without transferring data. In
contrast to Infiniband, it is not required to post a receive request on the target side to
accept a notification. However, there are still two disadvantages to this method. First,
notifications have to be consumed to avoid an overflow of the notification queue. The
second disadvantage is that the queues are located in host memory, so polling on the
completion of a remote notification results in polling on host memory. Beside this, no-
tifications for remote and local synchronization are submitted to the same notification
queue if the same port is used. Therefore, additional overhead is added to the GPU to
handle these notifications. In the previous section we showed that this overhead slows
down the performance, so here also a flag mechanism is preferable.

5.8. Inter-block synchronization

The above described communication interface can now be used for applications, where
the GPU controls the communication. However, the main problem of GPU-controlled
one-sided communication is the intra-GPU synchronization between the thread-blocks.
This problem is best illustrated by describing the implementation of a simple benchmark.
As in the previous chapter, we use the Himeno benchmark.

The himeno benchmark, a stencil code, provides a very simple communication pat-
tern. Every endpoint only communicates with its direct neighbors.

In contrast to the previous chapter, now changes in the GPU kernel code are required,
as the communication is controlled by the GPU. Therefore, in the following, first the
implementation of the GPU compute kernel is addressed in more detail.

Every iteration all points of the grid are updated using the neighboring points. On a
single GPU, the 3-D domain is processed by two-dimensional thread-blocks, as shown
in Figure 5.20. These thread-blocka processe the domain from the bottom to the top of
the 3-D grid, as shown in Figure 5.19.

Using multiple GPUs, in the simplest case, the complete domain is sliced along the
z-direction and then distributed between the GPUs. In this case, the boundary values,
which have to be exchanged, are on the top and bottom of the grid, as shown in Figure
5.19 in green. That implies that all thread-blocks update a part of these boundaries —
and that all thread- blocks require data from a remote GPU. FFurthermore, all thread-

123

5. GPU-Controlled Put/Get Communication

' ~

Figure 5.20.: Structure of two dimen-
Figure 5.19.: 3-D stencil, thread-block process sional thread-block

columns of the domain, boundaries
are on top and bottom

blocks also require points that are processed by the surrounding blocks, since not only
values on the top and bottom are required, but also from right, left, front, and back.
Therefore, inter-block synchronization is required. This is the crux of the matter of
GPU-controlled communication.

Normally, this inter-block synchronization is provided by starting a new kernel for ev-
ery iteration and adding this kernels to the same stream. A thread-block is nonpreemp-
tive, so once a block is scheduled, it uses GPU resources until it is completed. Staring a
kernel with more blocks than can run concurrently on the GPU can result in a deadlock
if another method of inter-block synchronization is used. In the following, three possible
solutions for this problem are presented.

5.8.1. In-kernel synchronization and communication

In the first approach, a communication request is directly sourced in the compute kernel.
Also, the synchronization with a remote GPU is handled in the compute kernel. The
control flow of such an application is shown in Figure 5.21. Using this approach, inter-
block synchronization within the compute kernel is required. That, however, involves
the risk of deadlocks.

One possibility to avoid dead-locks is to start only as many threads on the GPU as can
be scheduled concurrently. This technique is also called persistent threads. For intra-GPU
synchronization, then a barrier as described in [137] can be used. All blocks on the GPU
first synchronize using an inter-block barrier. After this, one block can start the data
transfer of the complete boundary before the next iteration is started. However, using
persistent threads either restricts the problem size to a minimum or requires several non-
trivial changes in the code, since normally the number of used threads is determined by
the problem size (one thread for every point along the x/y domain). This is not only true
for the Himeno benchmark but for most GPU-related applications. Furthermore, it was
shown in [138] that the use of persistent threads on GPUs often results in performance
losses. Therefore, this is not a suitable solution.

Another possibility is to organize the communication in a way that every block is
responsible for its own part of the boundary. For every iteration, a new kernel is started.

124

5.8. Inter-block synchronization

start kernel ‘g |

kernel btm

I
1))

DN
l sync kernel | g l

Figure 5.21.: Control flow of an application with communication control on the GPU, inter-
block Synchronization within a CUDA kernel

At the beginning of a new iteration, every block checks, if its part of the remote boundary
is updated by checking for a notification flag. At the end, every block starts the transfer
of his part of the boundary to the remote GPU. Since for every iteration a new kernel is
started, a live lock can be avoided. If two kernels are used, one for the top part of the grid
and one for the bottom part, as shown in Figure 5.21, data transfer and computation
can be overlapped.

The CPU is required to submit the kernels to the stream. For every iteration, at least
one new kernel is required. After this, however, the CPU is not needed anymore and can
be set to sleep or used for other work while the GPU subsequently executes the kernels
since kernel execution is asynchronous with respect to the host CPU.

However, this solution results in many small data transfers. Due to the two- dimen-
sional structure of the blocks, the data of one block are also non-continuous in memory.
That results in more data transfers or in additional work due to data packing and un-
packing. Therefore, a solution is required that allows the starting of as many threads as
required but still provides intra-GPU synchronizations.

Our solution uses an atomic counter for this. Again, for every iteration, a new ker-
nel is started to guarantee inter-block synchronization. To overlap communication and
computation, it is also possible to use more than one kernel, for example, one for the
top and one for the bottom part of the grid, as shown in Figure 5.21. The kernels are
started with as many thread-blocks as are required to process the grid.

Once a new kernel is started, the GPU schedules the thread-blocks of this kernel until
all blocks are completed. Only then a new kernel in the same stream is started. When
the last block has finished the computation, all points in the grid are updated and the

125

5. GPU-Controlled Put/Get Communication

Listing 5.6: Stencil code with communication in compute kernel

__global__ void kernel_iter_btm(float* in, ---, int iter){
/*wait for remote boundariesx*/ 2
if (iter>0) {
wait_for_notification(); 4
}
for(i= 0; i<Z_MID, i++){ 6
[---] /*calc points along column*/
} 8
/* find last block*/
unsigned int old; 10
if (threadIdx.x==0&& threadIdx.y==0)
old=atomicAdd (&send_counter, 1); 12
if (old == blocks -1) {/*last block starts data transferx/
if (threadIdx.x==0 && threadIdx.y==0) 14
atomicExch (&send_counter, 0); /*reset counterx*/
/*write borders to remote GPU*/ 16
gpu_write (source_address, remoteGPU,
destination_address,size,queue) 18
/*send notification and reset own*/
notify_gpu(remoteGPU) ; 20
notify_reset () ;

} 22

boundary can be transferred. Therefore, this last block should start the data transfer.
Since it is not predictable which block is scheduled when, we use an atomic counter to
determine the last thread-block.

At the end of each iteration, every block increases this counter by one. The last ar-
riving block resets the counter and starts the data transfer, as shown in lines 10 to 22 of
Listing 5.6.

To synchronize the GPUs, a flag-based notification mechanism is used. Immediately
after a remote write operation, which transfers the boundaries, a notification is written
to the remote GPU to announce the new data. At the beginning of every iteration, all
blocks have to wait for this remote notification before the computation is continued. All
threads can poll in parallel the notification flag, as shown in lines 3 to 5 of Listing 5.6.
The last block resets the notification for the next iteration before starting a new data
transfer. We use two notifications, one for the odd and one for the even iterations.

5.8.2. Stream Synchronization

The second approach usesstream synchronization to synchronize communication and
computation on the GPU. Figure 5.22 shows the control flow for a stencil benchmark
using this approach.

The communication functions send_top/btm are added to a stream as kernels, so now
these functions are implemented as cuda kernels and not as GPU device functions, see List-
ing 5.7 for the send function. The same applies to the synchronization kernel wait_top/btm.

126

5.8. Inter-block synchronization

start kernel

¥¥ ¥ send_btm¥¥¥
— | k

= 1)
= 1))

¥¥ ¥ wait_btm ¥¥¥
¥V ¥ send_top ¥¥¥

)
=L NI

¥¥ ¥ wait_top ¥¥¥

sync kernel

Figure 5.22.: Control flow of an application with communication control on the GPU, using
stream synchronization

Listing 5.7: Communication kernel

__global__ void send_top(int remote, ---){ 1
gpu_write(source_address, remoteGPU,
destination_address, size, queue) 3
notify_gpu(remoteGPU) ;
} 5

To overlap communication and computation, two pure computation kernels kernel_top
and kernel_btm are used. For every iteration, first a communication kernel (send_btm) is
added to the stream. This kernel starts the data transfer of the bottom boundary which
is then handled by the NIC. Next, the compute kernel for the top part of the grid is added
to the stream (kernel_top). The execution of this kernel is overlapped with the data transfer
from the bottom boundary. Next, a kernel that waits until the bottom boundaries are
updated by a remote GPU is added to the stream. This kernel polls for an update of a
notification flag. The same procedure is now repeated with the data transfer from the
top boundary (send_top and wait_top) and the computation of the bottom part of the grid
(kernel_btm). Since the order of the kernels in one stream is guaranteed, the data transfer
is not started until the local boundary is updated and a new kernel is not started until
the remote boundary is updated.

127

5. GPU-Controlled Put/Get Communication

send_btm
top_kernel_start

LI
I

cudaDeviceSynchronize
wait_btm
send_top

btm_kernel_start i

send

and

recive

data))

—————1 | cudaDeviceSynchronize
wait_top

start kernel

sync kernel

Figure 5.23.: Control flow of an application with communication control on the GPU, using
cudaDynamic parallelism and device synchronization

5.8.3. Synchronization with dynamic parallelism

The last method described uses dynamic parallelism, which is usable for newer GPUs with
Cuda compute capability 5 and higher. Dynamic parallelism allows starting and synchro-
nization of compute kernels directly on the GPU. Therefore, dynamic parallelism seems
to be a good method to support communication libraries which are directly running on
the GPU.

In principle, the approach for hybrid applications, in which the host controls the com-
munication can be transferred to the GPU. The host CPU only starts a single kernel
with one thread-block, the control kernel. This control kernel starts the communication
and the compute kernels on the GPU. However, the hybrid approach described in the
previous chapter cannot directly be transferred to the GPU since most kernel and stream
synchronization functions are not supported on the GPU. Neither cudaEventSynchronoize
nor cudaStreamSynchronized are supported using dynamic parallelism, thus other synchro-
nization methods must be used.

Our approach uses cudaDeviceSynchronize to synchronize computation kernels and com-
munication functions. The workflow of this approach is shown in Figure 5.23. Again,
two pure compute kernels are used. In contrast to the previous approach, the commu-
nication functions are not implemented as GPU kernels but as device functions which
are called by the control kernel.

The CPU starts a kernel with a single block. For every iteration, this block first starts
the data transfer of the top boundary by submitting a work request to the network hard-
ware (send_btm). 'Then, the compute kernel for the top part of the grid is started (kernel_Top)

128

5.8. Inter-block synchronization

and overlapped with the data transfer, which is handled by the NIC. The control kernel
blocks until the compute kernel is completed by using cudaDeviceSynchronize. If the com-
pute kernel is completed, the control blocks waits for a notification of a remote GPU to
ensure, that the bottom boundary is updated (wazit_btm). Once the boundary is updated,
the GPU starts the data transfer of the top boundary (send_top) and the compute kernel
for the bottom part of the grid (kernel_btm). Then, the data transfer of the top boundary
1s overlapped with the computation of the bottom part of the grid. Again, the control
block synchronizes the compute kernel by using cudaDeviceSynchronize and then waits for a
notification of the remote GPU to ensure that the top boundaries are updated (wazt_top)
before a new iteration is started.

Dynamic parallelism and stream/in-kernel synchronization

It is also possible to combine the stream synchronization and the in-kernel synchroniza-
tion with dynamic parallelism. Then, the CPU also starts a single kernel with a single
thread-block. This kernel starts the computation and, if necessary, the communication
kernels for every iteration.

This may be useful, as one of the main goals of this work is to relieve the CPU of addi-
tional work. Therefore, we run a small benchmark on a single GPU using the Himeno
benchmark. In the single GPU version, no communication is required. However, we
still use two compute kernels, one for the top part of the grid and one for the bottom
part.

The first version of this benchmark does not use dynamic parallelism. A host thread
adds all compute kernels for every iteration to the same stream. Then, this stream is
synchronized with cudaStreamSycnhronize.

The version using dynamic parallelism starts a single kernel on the GPU, the master
kernel. 'T'his kernel starts the actual compute kernels for every iteration. On the host, the
master kernel 1s synchronized with cudaStreamSynchronize.

We measure the complete runtime of all kernels on the host and thereby the time
from issuing the kernel(s) from host until cudaStreamSynchronize completes. In addition, we
measure the time the host thread spends on adding the kernel(s) to the stream, reported
as CPU overhead. In this time, the CPU cannot be used for other work, while for

tidle = teazecution - toverhead

the CPU can enter a sleep state or can be used for other tasks.

We run the himeno benchmark with a size of 512 x 512 x 256 on a single GPU and
vary the number of iterations. The results are shown in Figure 5.24. The execution
times differ so little that the graphs are hardly distinguishable. For a smaller number
of iterations, the CPU overhead is also negligible for both cases. However, for more
than 500 iterations, the overhead rises linearly without dynamic parallelism. If dynamic
parallelism is used, the overhead is still barley noticeable. The reason for this is probably
the queue size of a CUDA stream. The CPU overhead rises suddenly for more than 500
iterations, while two kernels are added to the stream for every iteration. Therefore, it is
obvious that a stream queue has space enough for approximately 1,000 entries.

129

5. GPU-Controlled Put/Get Communication

40
35
30
= 25
2 20
F15
10

(%))

50 250 450 650 850 1050 1250 1450
number of iterations

=®-runtime no dynamic parallelism =#-overhead no dynamic parallelism

=A—runtime dynamic parallelism =>*=overhead dynamic parallelism

Figure 5.24.: CPU overhead with and without parallelism dynamic parallelism

Using stream synchronization for communication, for every iteration, four kernels are
required, using in-kernel synchronization instead, two kernels are required. Since we
normally run the Himeno benchmark with 1,000 iterations, it is useful to use dynamic
parallelism to keep the overhead on the CPU as small as possible — especially since there
1s hardly any impact on the performance.

Using dynamic parallelism does not affect the performance but the energy efliciency.
For that, the power consumption of CPU, DRAM, and GPU is measured while the
benchmark is running with different number of iterations. With this power consumption,
the energy consumption of the complete benchmark and the performance per watt,
expressed in MFlop/second/watt (or Mflop/joul) is determined. For the method of
power measurement, refer to Appendix A on page 175. The results are shown in Figure
5.25.

To synchronize the kernels, the synchronization shown in Listing 5.8 is used. This
synchronization method allows a decreased polling rate so that the CPU can enter sleep
states.

Since the runtime of the iterated kernels is large enough, there are no performance
penalties. The results in Figure 5.25 show that with dynamic parallelism the energy
efficiency of this benchmark is always better.

The reason for the increased energy efficiency becomes clear by looking at the power
consumption over time for the different approaches, shown in Figure 5.26 for the bench-
mark with 500 iterations.

The power consumption of the GPU does not differ for both cases. This is different
for the power consumption of CPU and DRAM. Although the CPU is set to a sleep state

Listing 5.8: Set CPU to sleep while waiting for completion

while(cudaStreamQuery(stream) == cudaErrorNotReady)
usleep (5000) ; 2

130

5.8. Inter-block synchronization

250 500 750

1000 1250 1500
number of iterations

9]
(9]
o

Ul

B S

o w o

o o o
1

eneergy efficiency
MFLOPs/sec/watt

w

w

o
I

B no dynamic parallelism B dynamic parallelism

Figure 5.25.: Energy efficiency for a single GPU for different numbers of iterations, using
host kernels and dynamic parallelism

N
o
o
[N
o
o

150 \

S £ 150 1
2 2
+ 100 »~ 100
g /V g /'/\/
g so0 < g 50

0 - - ; ") 0 - - - -)

0 2 4 6 8 10 0 2 4 6 8 10
runtime [s] runtime [s]
——CPU ——DRAM GPU —summary ——CPU ——DRAM GPU ——summary
(a) no Dynamic parallelsim (b) with dynamic parallelism

Figure 5.26.: Power over time for the Himeno Benchmark of a size 512 x 512 x 156 with
250 iterations, with and without dynamic parallelism

in both cases after issuing the kernels, the power consumption of the CPU is significantly
lower (between 22-24 watt) if dynamic parallelism is used than if not (ca. 32 Watt).

The power consumption of the DRAM memory also differa, although it can hardly
be recognized in Figure 5.26. If dynamic parallelism 1s used, the DRAM memory con-
sumes approximatly 2.2 watt with dynamic parallelism and 3.3 watt without dynamic
parallelism. Therefore, the summarized power consumption with dynamic parallelism
is significantly smaller. Summarized, using dynamic parallelism seems to be a good way
to relive the CPU for GPU-centric applications and thereby save energy.

5.8.4. Himeno performance results

In this section, the performance results of the previously described approaches for intra-
GPU synchronization for GPU-controlled communication are discussed and analyzed.
The results are compared with the hybrid implementation of the benchmark described
in section 4.5 where the CPU controls the communication, using GASPI as a commu-
nication layer.

131

5. GPU-Controlled Put/Get Communication

¥ hybrid ™ stream-sync device-sync M in-kernel-sync

Figure 5.27.: Performance of the Himeno benchmark for different problem sizes and syn-
chronization/ communication methods

The test system consists of two nodes with two Intel 4-core Xeon E5-2609 CPUs,
connected with a Mellanox ConnectX-3 FDR Infiniband. Each node is equipped with
a single Nvidia K20c GPU.

We run the Himeno benchmark for different input sizes. Table 5.6 summarizes the
properties for the different sizes. Since we are only able to run the benchmark on two
GPUs, these sizes are selected in such a way that each of the three problem sizes requires
the same amount of data transfer while the number of Floating Point Operations (FLOP)
differ. By this, the ratio between communication and computation is varied.

Figure 5.27 shows the performance results for the different benchmark sizes of the Hi-
meno benchmark. The hybrid version, using the GPU to control the communication, is
always performing best, especially for small problem sizes. However, this corresponds
to the results in the previous sections. As shown in the previous chapters, this kind of
workload allows to exploit overlapping the communication overhead and data transfer,

Table 5.6.: Properties of the Himeno benchmark for different problem sizes and execution

on two GPUs
required memory FLOPsper number of boundary

Problem size per GPU GPU per blocks size

(Byte) iteration (Byte)
256 x 256 x 256 482 M 280 M 4 x 64 256 k
256 x 256 x 256 954 M 561 M 4 x 64 256 k
256 x 256 x 1024 1.90 G 1.78 G 4 x 64 256 k
512 x 512 x 256 1.93 G 1.13 G 8 x 128 1M
512 x 512 x 512 381G 226 G 8 x 128 1M
512 x 512 x 640 4.75 G 283G 8 x 128 1M
640 x 640 x 128 1.54 G 0.89 G 10 x 160 1.5 M
640 x 640 x 256 3.01G 1.77G 10 x 160 1.5 M
640 x 640 x 384 448 G 2.56 G 10 x 160 1.5 M

132

5.8. Inter-block synchronization

s — - [| 30 2
- - =
) o 20 o 0
E E15 £2
10
1
5 10
0 0 - 0
hybrid stream device in-kernel hybrid stream device in-kernel hybrid stream device in-kernel
sync sync sync sync sync sync sync sync sync
B compute time ® communication overhead B compute time M communication overhead M compute time M communication overhead
(a) 256 x 256 x 256 (b) 512 X 512 x 512 (c) 640 x 640 x 384

Figure 5.28.: Runtime and communication overhead for the different problem sizes of the
Himeno benchmark

which is clearly done for host-controlled communication. For GPU-controlled commu-
nication, such an exploitation is not possible. This results in an increased execution time.
Here, namely the data transfer can be overlapped but not the work request generation
and the completion handling. Furthermore, the communication overhead on the CPU
is negligible small compared to the overhead on the GPU, as we have shown in the
previous section.

However, for larger problem sizes, the performance of the GPU-controlled communi-
cation gets all the more closer to the performance of CPU-controlled communication if
stream or device synchronization is used. Only the version using in-kernel synchroniza-
tion 1s performing significantly worse for all problem sizes. The stream-synchronization
1s performing best for all problem sizes using GPU-controlled communication. For a
problem size of 256 x 256 x 256 grid points, the GPU-controlled version reaches almost
96% of the performance of hybrid version while, for a problem size of 640 x 640 x 386,
over 99% of the performance of the hybrid version are reached. The version using in-
kernel synchronization is performing worse for larger problem sizes. While for a bench-
mark size of 256 X 256 x 256, approximately 88% of the performance of the hybrid
version are reached, for a benchmark size of 640 x 640 x 386, it only reaches around
67% of the performance.

The reason for this becomes clear by looking at the communication overhead of differ-
ent configurations and synchronization methods. Figure 5.28 shows the execution time
of the benchmark for three problem sizes. The complete execution time is divided into
computation time and communication overhead. For this, the application is executed
once with communication and once without. The communication overhead can then
be determined with

toverhead = twith,communication - twithout,communication

For the hybrid approach, the overhead is very small for all problem sizes and is actually
in the area of measurement uncertainty. The data transfer can completely be overlapped
with the computation resulting in the best performance.

For GPU-controlled communication using stream-synchronization or device synchro-
nization, the communication overhead for the small problem size is large in relation to
the computation time. Therefore, the communication overhead has a large influence on

133

5. GPU-Controlled Put/Get Communication

D
(=]
o

%
o
o

N
o
]

Pprfomance per qatt
[MFLOPs/second/qatt]
N w
o o
o o

=
o
o

¥ hybrid ™ stream-sync device-sync M in-kernel-sync

Figure 5.29.: Energy efficiency of the Himeno benchmark for different problem sizes and
communication methods

the performance. The overhead caused by the stream synchronization is the smallest.
However, for larger problem sizes the communication overhead stays constant, while
the computational work rises, making the overhead less relevant for the performance of
the complete application.

This is different for the in-kernel synchronization. Here, the communication over-
head increases for larger problem sizes. We assume two reasons for this: For the larger
problem size, more thread-blocks are started, resulting in an increasing overhead for
inter-block synchronization. Furthermore, if more thread-blocks are started, a thread
block advancing slower (e.g., the thread block that starts the communication) can slow
down all the other thread-blocks, so the effect of in-kernel synchronization is strength-
ened.

5.8.5. Energy efficiency

The results in the previous section show that there are no performance benefits to us-
ing GPU controlled communication compared to the hybrid approach. This section
provides a closer look at the energy efficiency of the different communication and syn-
chronization methods.

To allow the GPU to enter a sleep state, an increased polling period is used, as illus-
trated in Listing 5.8 (p. 130. For the hybrid application, an increased polling is used
for the kernel synchronization and for the notifications flags for weak synchronization,
as shown in Listing 5.9. If GASPI_TEST is used as timeout parameter, the function just
checks once for a new notification and then directly returns. However, to avoid perfor-
mance losses, for the hybrid version, the sleep period can set to maximal 1,000 ps.

Listing 5.9: Increased polling for a notification on the host using the GASPI interface

while (gaspi_notify_waitsome(---,GASPI_TEST)==GASPI_TIMEQUT)
usleep (sleep_period) ; 2

134

5.8. Inter-block synchronization

200 200
,—«wﬁv-—n~n~oa--*
¥ 150 r ‘ ¥ 150
(1] (1]
2 \ 2
g. 100 g. 100
° °
2 50 T - 2 50 -
\ r"\A-~m~n-a—~n~mwnu-~naJt
0 u u u T d 0 T T T T d
10 20 30 40 50 0 10 20 30 40 50
runtime[s] runtime [s]
—CPU ——DRAM GPU =—summary —CPU ——DRAM GPU =—summary
(a) Hybrid (b) Stream synchronization

200 200
T 150 r \ F 150
[[
e \ 2
»~ 100 »~ 100
H :
° °
a 50 f Q 50

S_
1
2

o
o

20 30 40 50

o
=
o

0 10 20 30 40 50
runtime [s] runtime(s]
==CPU =——DRAM GPU =—summary ==CPU =——DRAM GPU =—summary
(c) Device synchronization (d) In-kernel synchronization

Figure 5.30.: Power over time for the Himeno benchmark using a problem size of 640 x
640 x 384 and different communication methods

Using GPU-controlled communication, the CPU is set to sleep right after starting the
master kernel. Since the runtime of this master kernel is much longer, here an increased
polling with a sleep period of 5000 ps can be used without any performance losses.

The benchmarks run with 1,000 iterations and the power consumption of GPU, CPU
and DRAM is measured. Figure 5.29 shows the energy efficiency of the different com-

munication methods, expressed in MFLOP/s/watt (or M F'LOP / Joule). GPU-controlled

communication with stream synchronization is the most energy-efficient method for all
problem sizes, although the performance for small problem sizes is recognizably worse
than the performance of the hybrid version.

Tor larger problem sizes, the energy efficiency for GPU-controlled communication is
significantly better than the hybrid approach if stream or device synchronization is used.
For instance, for a problem size of 640 x 640 x 386, the energy efficiency of the stream
synchronization 1s about 10% better than that of the hybrid version. The main reason for
this is the increasing number of floating point operations which are required for a single
iteration, i.e., the relation between communication requests and computation.

Figure 5.30 shows the power consumption of the different components over time for
a benchmark size of 640 x 640 x 386. The figures illustrate the use of power on a single
machine.

135

5. GPU-Controlled Put/Get Communication

While the power consumption of the GPU is identical for the hybrid, stream- and
device-synchronization methods, it is considerably lower for the in-kernel synchroniza-
tion. The reason for this is probably that the in-kernel synchronization slows down
the complete GPU. Therefore, not all multiprocessors can be completely utilized. This
leads to a considerably smaller energy consumption of the GPU. However, the increased
execution time outweighs this benefit for almost all problem sizes.

For all methods using GPU-controlled communication, the power consumption of the
CPU is considerably lower than for the hybrid method. Although the communication
is handled by the network device, the CPU cannot enter a sleep state for a longer period
and therefore it consumes about 50 watts while the benchmark is running on the GPU.
If the GPU controls the communication, the CPU can be set to sleep for the complete
execution time of the kernel. Therefore, it only consumes between 24 and 29 watt.

The DRAM power consumption can hardly be recognized in Figure 5.30, however
it also differs for the hybrid and the GPU-controlled versions. During execution time,
in the hybrid version, the memory consumes about 3.9 watt, while in GPU-controlled
version it requires only about 2.2 watt.

These results show that the lower power consumption of CPU and DRAM leads
to a considerably lower power consumptions of the approaches using GPU-controlled
communication and, therefore, to a better energy efficiency than the hybrid version.

5.9. Summary

This chapter shows how a GPU can be enabled to control an RDMA capable network
device. This allows the creation of a put/get interface on the GPU.

To create a communication environment on the GPU, a host thread is required, as
the GPU is not able to access the operating system. However, once the connection to
remote GPUs are set up, the GPU is able to issue communication requests to the NIC
by completely bypassing the host GPU.

Still, so far there are no performance benefits gained from this method compared to
a hybrid model, in which the CPU controls the communication. The reason for this is
that the overhead of creating work requests and handling completion notifications on
the GPU is much larger than on the CPU.

Two things slow down the performance on the GPU: Creating work requests and
handling completion notifications are sequential workloads, which hardly can be paral-
lelized. GPUs, in contrast to CPUs, are not optimized for this kind of workload.

The second reason is that some communication resources are allocated on host mem-
ory, since GPU memory is a scarce resource and due to software architecture, not all
communication resources can be allocated on GPU memory. Accesses to host memory
are routed through the PCle-bus and so slow down the performance.

Another problem is the inter-block synchronization on the GPU. GPUs blocks are
non-preemptive and an inter-block barrier on the GPU can easily result in a deadlock.
The best way to synchronize computation and communication on the GPU is using
communication kernels, which are added to the same stream as the compute kernels.

136

5.9. Summary

Using this method, the performance of applications using GPU-controlled commu-
nication is still worse than the performance of hybrid applications, but, depending on
the ratio between communication and computation, the performance difference is very
low. However, in the hybrid approach, the CPU requires additional power and there-
fore the energy efficiency of GPU-controlled communication is better than the energy
efficiency of the hybrid version. Due to technical, economical, and ecological reasons,
energy efficiency become more and more important for future high performance sys-
tems. Therefore, this factor should not be disregarded. The energy is saved by relieving
the CPU. Alternatively, one can argue that the CPU is available for other tasks and then
a higher performance of a heterogeneous application could be reached.

However, the energyefficiency shows that allowing the GPU to control the communi-
cation is a good approach for future GPU-accelerated high performance systems. Still,
for better efficiency, a communication interface is required that fits better to the GPU
programming model since even higher energy savings would be possible if the GPUs
could handle communication more efficiently, especially for small messages. The next
section will introduce a global GPU address space as one possible solution.

137

5. GPU-Controlled Put/Get Communication

138

6. Global Address Space for GPUs

In the previous chapter, we analyzed the performance of GPU-controlled one-sided
put/get communication for distributed GPUs. The results show that the overhead of
creating work requests and handling notifications on the GPU surpasses the data trans-
fer latency of small data transfer sizes. This sequential work does not fit into the massive
parallel execution model of GPUs. On an application level benchmark, further prob-
lems are added, because inter-block synchronization is required, which is not naturally
supported by GPUs and adds further overhead to the communication.

Therefore, GPU-controlled one-sided communication does not bring any performance
benefits compared to a hybrid solution so far. However, the power and energy analysis
shows that the CPU thread that is required to control the communication consumes
so much power that the total power consumption of the hybrid application is higher
than the power consumption of an application in which the GPU controls the commu-
nication. This results in a better energy efficiency for GPU-controlled communication,
although the performance is worse. Therefore, controlling the communication from the
GPU appears to be useful. Still, especially for small messages, a communication model
1s required which fits better to the GPU execution model.

The experiences from the pervious chapters imply the following requirements for
GPU-controlled communication:

e The communication should maintain the massive parallel GPU execution model
instead of allowing communication despite the GPU execution model.

e Sourcing and synchronizing of communication requests should be as simple as
possible, reducing the communication overhead on the GPU to a minimum.

e The memory footprint for communication resources on the GPU should be as
small as possible since GPU memory is a scarce resource.

e The CPU can be used for setup; however, once the communication framework is
set up, the GPU should be able to communicate by completely bypassing the host
CPU.

o Accesses and copies to host memory should be avoided if possible to provide small
data transfer latency and avoid the PCle bottleneck.

This chapter introduces one possible solution that fulfills these requirements: a hardware-

supported global address space, shared between all GPUs in a cluster. In Figure 6.1 on
the next page, the concept of such a distributed global address space is presented.

139

6. Global Address Space for GPUs

[registers | [registers | [registers | [registers |

registers

shared
memory

shared
memory

shared
memory

shared
memory

shared
memory

shared
memory

M3IA 195N

GPU memory GPU memory i i GPU memory

Node 0 Node 1 Node n

Figure 6.1.: Simplified system and user view of a cluster using a global address space

MOIIA Wd)SAs

The lower part of Figure 6.1 shows the simplified structure of a GPU cluster. The
cluster consists of multiple nodes, equipped with a single GPU and connected via a high
performance interconnect. Each GPU in the system is a discrete system which only has
direct access to its own, local device memory.

RDMA-technologies allow the creation of shared memory segments on GPU memory
and a direct data transfer between these segments, but it is not possible to directly access
the memory of remote a GPU with a simple load/store instruction. All communication
and data transfers between the individual nodes are translated to a special communica-
tion functions like put/get or send/receive, as discussed in the previous chapters.

In contrast to this, the top part of Figure 6.1 depicts how a global address space trans-
forms this system view into a simplified user view. The distributed device memories of
all GPUs in the system are aggregated into one global GPU address space. Each thread,
independently of the GPU it is running on, can access every part of this global address
space directly.

All other resource, like the SMs, the caches, or the shared memory, are still local to one
GPU. From the point of view of a single GPU, the memory of remote GPUs is mapped
into the own, local address space. Although such a global address space allows access to
the distributed memories of all GPUs in the system, locality is still an important factor
for scalability since the latency of a remote memory access is higher than the latency of
a local access.

Accesses to remote memory regions should only be used for synchronization and com-
munication tasks, while only local memory should be used for computations which re-
quire frequent memory accesses. In this way, a Global GPU Address Space (GGAS)
corresponds to the PGAS model, as described in section 2.1.5.

140

6.1. Related work

However, in most known PGAS languages, the accesses to remote memory are inter-
nally translated (by the compiler) to one- or two-sided communication requests. On a
GPU, this is not an appropriate solution to meet the previously announced claims. Ei-
ther these communication requests have to be performed by the GPU or by the CPU.
Then, we have the same starting point as in the previous chapters and nothing would
be gained by using a global, shared address space.

Instead, an efficient hardware support for a global address space is required to avoid
the translation of remote load/stores to one- or two-sided communication requests. The
hardware should directly forward load and store instructions to a remote node. In this
case, the previously announced requirement for a communication interface are fulfilled:

e Communication using global, shared address space is realized with simple load
and store instructions. These instructions are simple and can be performed by
many threads in parallel, maintaining the massive parallel and bulk synchronous
GPU programming model.

o A hardware-supported global address space requires structures for organization of
the global memory but no additional memory for queues or notifications. There-
fore, the memory footprint is very small.

o A hardware-supported global address space allows bypassing the CPU,if the GPU
can directly access the network hardware.

In this chapter, such a hardware-supported global address space for GPUs is discussed.
The Shared Memory Function Unit (SMFU) of the Extoll device provides the necessary
hardware functionality to support such a global address space. The support for GPUs
requires some adaptions in the device drivers, which will be explained in more detail in
this chapter.

We analyze the performance, advantages, and disadvantages of this communication
model for distributed GPUs and compare it with the previously described approaches.

6.1. Related work

As multi-GPU programming becomes more and more important, different models for
inter-GPU data transfer were discussed, as were shared memory approaches. In [139],
an environment for distributed texture memory for distributed GPUs is implemented
and discussed. The framework allows programs to run across multiple GPUs, which can
be distributed over different nodes, with a common consistent but distributed address
space.

The core of the system is a directory-based shared memory system, which handles
the memory management transparent for the user. However, the GPU memory is only
handled as cache while the host memory builds the main memory of this system.

An underlying CPU-controlled framework controls all communication and the GPU
data are always buffered in main memory. However, the benefit of this model is that it
provides better programmability for multi-GPU programs.

141

6. Global Address Space for GPUs

A similar approach is GPUZippy [140], which follows the concept of global arrays
(GA) [141]. A global array is a multidimensional array that is distributed among mul-
tiple GPUs, providing a virtual, shared address space among these GPUs. However,
internally, MPI is used for communication and the CPU handles the communication.
The goal of this approach is to provide a better programmability for multit GPU pro-
grams instead of providing high performance.

Between multiple GPUs on the same node, the unified virtual address space (UVA),
introduced with CUDA 5, provides a virtual address space for all GPUs on the same
node. The GPUDirect peer-to-peer technology allows load/store access to the memory
of another GPU on the same node, without any copies in host memory or CPU involve-
ment. The GPU memory controller forwards an access to another GPU directly over
the PCle-bus. The idea of the global GPU address space discussed in this chapter is to
extend this concept to GPUs, that are distributed among multiple nodes.

6.2. GPU memory coherence and consistency

Working with global and distributed memory systems, the coherence and consistency
of GPUs are important. Therefore, the next paragraphs give a short overview of the
coherence and consistency models of GPUs.

6.2.1. Coherence

Caches were introduced to GPUs to reduce accesses to global device memory rather
than to hide latency. A modern Fermi GPU provides four different kinds of caches
which are now explained in more detail.

The constant cache 1s a read-only cache which allows fast access to constant variables.
Every SM has one constant cache. The texture cache is also a read-only cache, which is
used for memory regions which are defined as textures.

However, since neither constant variables nor textures should be changed during ker-
nel runtime, these read-only caches are not coherent. Constant variables and textures
should not be touched from outside (from host) or by another kernel. Before a new
kernel is launched, these caches are invalidated.

Every SM has its own LI cache, which uses the same hardware unit like the shared
memory. L1 caching in Kepler GPUs is reserved only for local memory accesses, such
as register spills and stack data, but not for accesses to the global device memory [142].

These accesses are cached in the L2 cache which is shared between all SMs on the
GPU. Therefore, no cache coherency protocol is required.

6.2.2. Consistency

The consistency model of GPUs is relaxed. This means that it is not defined when an
access to the global device memory is visible for other threads and reordering between
the accesses 1s allowed. Sequential consistency is only ensured within one thread. In
other words:

142

6.3. Hardware support for distributed global address spaces

e The order in which a CUDA thread writes data to shared memory, global memory;,
page-locked host memory, or to the memory of a peer device is not necessarily the
order in which the data is observed being written by another GPU or host thread.

o The order in which a CUDA thread reads data from shared memory, global mem-
ory, page-locked host memory, or the memory of a peer device is not necessarily
the order in which the read instructions appear in the program for instructions
that are independent of each other. [143]

CUDA provides several functions to guarantee memory consistency manually:

__threadfence_block all read and write operations to shared and global device mem-
ory previous to the threadfence_block call are observed to occur before all read
and write operations after the threadfence_block call, for all threads of the block
of the calling thread.

__threadfence as threadfence_block, but additionally all read and write accesses to
global device memory before the threadfence call are observed to occur before
all read and write accesses after the threadfence call, for all thread-blocks run-
ning on the GPU.

__threadfence_system as threadfence_block, additionally all read and write accesses
to global memory, page-locked host memory, and the memory of a peer device
before a threadfence_system call are observed to occur before all read and write
accesses of the calling thread after calling threadfenc_system, for all threads on
the GPU, the host, and a peer GPU.

Using a global, shared address space for distributed GPUs, the last memory fence
function, threadfence_system should be used to guarantee the order of requests to the shared
memory area.

6.3. Hardware support for distributed global address
spaces

At the beginning of this chapter, we stated that for a hardware-supported global address
space, a hardware unit is required that allows the forwarding of load and store requests to
aremote node. The shared memory function unit (SMFU) of the Extoll device provides
the required support for such a global address space [17]. The SMFU aggregates mem-
ory on different nodes to a single, non-coherent, distributed shared memory area. This
1s different to approaches like ScaleMP or NumaScale which aggregate the complete
resources of a distributed system to a single coherent system image. Cache coherence is
one of the main bottlenecks of these systems. The idea of a PGAS system is to provide
local coherency domains while the global memory is non-coherent. This is also in line
with the GPU coherence and consistency model.

143

6. Global Address Space for GPUs

iStartAddr0

/ Node 0

/ . iStartAddrl private

private / local

/ Node 1
local

Node 2

tStartAddr
shared
local

shared
local

global
global

~ iStartAddr(n-1) X
private ~ private

(sl ~o Noden -1 local

"%

Figure 6.2.: SMFU Address Space Layout[17]

In this section, the functionality of the SMFU is illustrated, first without observing
GPUs. Figure 6.2 shows the address space layout on a machine using the SMFU [17]
to aggregate the memory. On the left, the address space of a target node is shown.
The address space consists of the local memory and the global memory area. In this
example, all addresses between 240 and 250 belong to the global memory. The global
memory area is split into intervals, where every interval belongs to a remote node. Every
node ports a part of its own, local memory to the global memory area. The SMIU is
responsible for forwarding read/write access from an address in the global address area
to the destination node.

For the SMFU, the global addresses correspond to one of the base address registers
(BAR) of the Extoll device. A write or read to an address within this BAR is forwarded
to a remote node. For user space processes, the BAR is mapped to the user space.

The simplest way to use the SMFU is the nferval configuration. Start (1StartAddr)
and end (1EndAddr) addresses of the intervals and the respective nodes are configured
with the Extoll device registers.

For every node, also the target destination address (tStartAddr) is defined. This
address marks the start of the local shared memory area. The SMFU forwards an in-
coming request to this address. To minimize the communication overhead, the shared
memory must be physically continuous to avoid logical to physical address translation.

The SMFU is divided into two parts, the egress unit and the ingress unit. A load/store
request to an address within the SMFU BAR is forwarded to the egress unit. The egress
unit receives this load (non-posted) or store (posted) request to the address oAddr. If this
address lies in the interval n, the egress unit determines the global address (gAddr) with:

gAddr = oAddr — iStartAddr,

which StardAddr_n beiing the start address of the hit interval n. With this address, a
network package is created and sent to the node the hit interval is assigned to. On this

144

0.4. Extending the global address space for GPUs

host
iStartAddr0 memory
GPU O -
iStartAddrl —
GPU 1 o global
SMFU-BART
SMFU ’Gw:U,addreSS space addresses
(Extoll BAR)
J—
- —
GPU
memory
- — shared local
iStartAddrN w0
oty memory
Eru — oW mg“\:q\(h
| tStartAddr MoP U BAR RDN‘A
G et~
GPU (,P&
BAR -

Figure 6.3.: GGAS address space layout

node, the ingress unit receives the package and calculates the destination address (tAddr)
with:
tAddr = gAddr + tStart Addr

tStartAddr is the start address of the shared memory region on the destination node. For
a store request, the ingress unit forwards the transaction to the memory address. For a
load request, the data is read and then sent back to the destination node.

Since the number of intervals is limited, it is also possible to use an address mask
instead of the interval configuration. In this case, the destination node is coded into
the global address gdddr. In simplified terms, the node ID can be determined with the
address mask and a shift operation :

iNodelD = (gAddr&mask) >> shif_count

On the target side, the destination address can be determined with the inverted mask:

tAddr = (gAddr& ~ mask) + tStartAddr

The operation is very similar to the one described in [16] for the T3E multi-processor.
Due to the simplicity, only minimal latency is added to the communication process.

6.4. Extending the global address space for GPUs

To create a Global GPU Address Space (GGAS), the concept of the shared memory
described above is extended to GPU memory. For this, two steps are required. In the
first step, the ingress unit of the SMFU has to be configured to forward an incoming
request to GPU device memory instead of host memory. To allow this, the GPU memory

145

6. Global Address Space for GPUs

Source GPU, Target GPU,
virtual address virtual address
space space

'l local shared
/ memory

local shared
memory

Alowaw ulew

SMFU SMFU

£9
> C

global
—— memory /

global
memory

(¥va 1103x3)
N4NS

Figure 6.4.: Simplified way of a store request using GGAS

requires an address in the physical address space of the host system, which is allowed by
GPUDirect RDMA. Therefore, a part of the GPU device memory is locked and mapped
to the physical continuous, addresses of the BAR of the GPU, using GPUDirect RDMA.
This memory is the local shared memory of the GPU.

The SMFU is now configured to forward an incoming read or write request to an
address within the GPU BAR by setting the ¢StartAddr to the address of the GPU BAR,
as shown in Figure 6.3.

Currently, with a single Extoll device, it i3 only possible to share the memory of a
single GPU since only one target address can be configured. Two GPUs in the same
node would map their memory to different BARs, which cannot be managed by the
SMIU.

The second step to create a GGAS 1is to enable the GPU to access the global address
space. Therefore, the shared memory region must be accessible to the GPU. As men-
tioned in the previous section, the global address space is accessible over one of the BARs
of the Extoll device. This BAR has to be mapped to the virtual GPU address space, as
illustrated in Figure 6.3.

In this work, we use the interval configuration of the SMFU. The intervals of the
SMFU are evenly distributed over the involved GPUs. Since only nodes can be targeted,
in fact, the intervals are configured to forward an outgoing request to a remote node.
This node, however, is equipped with a single GPU and the SMFU is configured to
forward an incoming request to the memory of this GPU.

Figure 6.4 shows how a store request to a remote GPU is forwarded to this remote
GPU using the GPU configuration for the SMI'U.

A GPU thread writes to an address that points to the mapped SMFU BAR and, there-
fore, the GPU memory controller forwards this request to the SMI'U. Depending on the
hit interval, the SMFU forwards the request over the network to a remote node. On this
node, the SMFU accepts the package and forwards the request to the target address in

146

6.5. The GGAS Sofiware

GPU BAR. Finally, the GPU memory controller accepts the data and forwards the
package to GPU memory.

By this, the GPU can directly read and write the memory of a remote GPU, by com-
pletely bypassing the host CPU. The host CPU is only required for setup, and thus the
locking of GPU memory and the configuration of the SMFU.

6.4.1. Restrictions for the global memory size

Currently, the size of the global address space is limited to 256 MB, because the BAR
size is limited to 256 MB. These 256 MB have to be split over all GPUs. So for eight
GPUs, every GPU only can port 32 MB of its device memory to the global address space
and for sixteen GPUs, only 16 MB of the memory of every GPU can be mapped to the
global address space. This currently limits the capabilities of the GGAS model.

However, theoretically, the SMTFU supports larger BAR sizes, if the host system sup-
ports this. In this case, the BIOS often assigns the BARs to addresses above 240, The
GPU memory controller, however, only supports addresses with 40 bits or less, so ad-
dresses above 240 cannot be managed by the GPU memory controller. This prevents
mapping the SMFU BAR to the GPU address space. Possible solutions for this problem
are enlarging the address size for GPUs or enabling the BIOS to assign BAR addresses
to a lower range. However, both solutions are currently not enabled. Therefore, to date
the shared address space is limited to 256 MB. Parts of this work were already published
in [144] and [145].

6.5. The GGAS Software

Figure 6.5 shows the software stack for a GPU application using GGAS for communi-
cation. The GGAS software stack has parts in the user space,the kernel space, and on
the GPU.

The user space part is required for setup, starting and stopping GPU kernels, and for
communication with the device drivers, since these tasks cannot be handled by the GPU.
However, once the setup phase is completed, the GPU can directly access the SMFU
hardware by completely bypassing the host CPU.

The GGAS GPU-library provides basic functions to allow communication with GGAS
on the GPU. In the following, the individual parts of this software stack are described
in more detail.

In the setup phase, the global address space is created and initialized. This is realized
by the GGAS host library and the device drivers. Figure 6.6 on page 149 illustrates the
procedure of initializing the global GPU address space. First, the local part of the shared
memory (gpu_local_pointer) is allocated with cudaMalloc. This requires an access to the
GPU device driver. The next step is to lock the GPU device memory, map it to the GPU
BAR, and configure the SMFU to use this GPU BAR as target address for incoming
requests. For this, a small device driver (ggas_driwver) is used. The local GPU memory

pointer (gpu_local_pointer) is forwarded to the kernel space using a pinning function
(ggas_pin) of the GGAS device driver. In the old version of GPUDirect RDMA, also the

147

6. Global Address Space for GPUs

‘ compute kernel ‘

‘ GGAS-GPU API ‘

GPU

Host

‘ GGAS-library (host) ‘

—| b o |—Mserspace _{ __ _ _ | _ . - T — — — — — —
kernel space

GGAS driver

SMFU driver Nvidia CUDA driver

hardware

Figure 6.5.: GGAS software

two tokens p2pToken and vaSpaceToken were required and also forwarded to kernel space
(see section 3.3.1). However, the GGAS driver uses GPUDirect RDMA to lock and map
the GPU memory to the GPU BAR by calling the nvidia kernel function nv_p2p_get_pages.
The returned BAR address is used to configure the target start address tstartdddr for the
SMIU (smfu_set_intervalls). This function also splits the global address space among the
GPUs by defining the intervals.

6.5.1. GGAS setup

In the next step, the SMFU BAR is mapped to the GPU address space. To do so,
the SMFU BAR is first mapped to the user space with memory mapped 1/0O, using
the mmap function of the SMFU device driver. This allows the host direct access to
the memory of remote GPUs with simple read and write instructions, using the virtual
host_global_address. 'This 1s especially useful for testing and debugging — but it also allows
the host to transfer small data sizes to a remote GPU in a fast way. The virtual host
address (host_global_address) cannot be used on the GPU, a read or write access on the
GPU would result in a segmentation fault.

To allow the GPU to access the global memory, the SMFU BAR has to be mapped
to the virtual address space of the GPU, as shown in Figure 6.3. For that, the MMIO host
address (host_global_address) 1s handed over to the GPU device driver, using the
cudaHostRegister to register this address for the GPU.

Again, the low level driver patch, described in section 3.3.3, is required to allow the
registration of MMIO addresses for the GPU. If the MMIO address is registered for
the GPU, the function cudaGetDevicePointer returns a pointer in the virtual address
space of the GPU (gpu_global_pointer) which can be used in a GUDA kernel to access the
global memory space.

148

6.5. The GGAS Sofiware

| host_local_pointer | gpu_local_pointer gpu_gloabal_pointer

host_global_pointer

[5])
8
(9)mmap é’as\p,.n (6)mmap

(8)cy, o
(1)cudaMalloc

’ GGAS driver ‘

(3)nv_p2p_get_pages

L

Nvidia CUDA driver ‘

(4)smfu_set_intervalls

Figure 6.6.: Initialization of the global GPU address space

The GGAS device driver also allows a direct mapping of the GPU BAR to the user
space. Therefore, there are two ways to access the local part of the shared GPU mem-
ory from host, firstly over the BAR of the GPU (host_local_pointer) and secondly over the
mapped BAR of the SMFU (host_global_pointer), taking a detour over the SMFU. The
GGAS-host-library provides functions for both, but for latency reasons, the direct way
is preferable.

6.5.2. GGAS GPU API

To allow a GPU kernel to communicate using GGAS, a small API for the GPU was
developed to provide access to the shared address space and to manage the communica-
tion resources. Every GPU using GGAS has a unique ID for identification. The local
GPU ID and the number of GGAS-nodes are stored in the constant GPU memory. The
same applies to the size and the shared memory address.

Remote read and write

The simplest way to communicate in GGAS 1is with remote read and write instruc-
tions. To get a pointer to the shared memory area of a remote GPU, the function
_ggas_get_pointer_of_node(int remote_node) is used. Listing 6.1 shows how GGAS
can be used to write to the memory of a remote GPU. This remote write function can
be called by multiple threads in parallel. All threads copy data to the memory of the
remote GPU in a parallel manner.

149

6. Global Address Space for GPUs

Listing 6.1: Simple remote write example with GGAS

__device__ void remote_write(float* input,int remote)

{ 2
float *remote= _ggas_get_pointer_of_node(remote) ;
remote [threadId]= input[threadId] 4

}

Local shared memory

As on the host, the local part of the global shared memory can be accessed in two ways.
Once over the address in the global address space (gpu_global_poiner), one is over the orig-
inal address in the GPU address space (gpu_local_poiner) which 1s assigned to the memory
when it is allocated with cudaMalloc. For local accesses, the local address should be
used. Otherwise, the local access is forwarded over the PCle-bus to the SMFU, that
forwards it to back to the GPU. This detour would result in a much longer latency for
a local memory access.

The function ggas_get_poiter_of_node with the local GPU ID returns the local
device pointer. However, the function ggas_get_global_pointerreturns a pointer to
a global address and can be used for debugging,

Collective operations

The GGAS-API also supports two collective operations: a barrier (ggas_barrier)and
an allreduce operation (ggas_allreduce). A part of the shared address space is used for
these collective operations and therefore not available for remote read or write accesses.
Since the implementation of these collective operations gives a deeper insight to the
GGAS programming model, the implementation is explained in more detail in sections
6.7 and 6.8.

6.6. Micro-benchmark performance

In this section the basic performance of a global GPU address space for communication
1s evaluated. The goal of this section is to get an overview of the performance capabilities
of this communication method and thus the strength and weakness of remote load and
store operations for communication.

The test system consists of eight dual-socket nodes with two Intel E5-2630 Ivy Bridge
processors and one NVIDIA K20 GPU. The Extoll network cards based on an FPGA
run with 175 MHz core frequency and 64 bits wide data paths. The NIC and the GPU
use PCle 2.0 and share one root complex. For some of the benchmarks, twelve nodes
are used. Two of the additional nodes are also Ivy Bridge dual socket machines with
two Intel E5-2630 processors. The other two nodes are Intel Sandy Bridge machines
with two Intel E5-2609 processors. All four additional nodes are also equipped with one
K20 GPU.

150

6.6. Micro-benchmark performance

Listing 6.2: Code example using GGAS, pingpong Benchmark

__device__ ping (int remote_id)
{ 2
volatile int* local = __ggas_get_ptr_of_node (ggas_id);
long* remote = __ggas_get_ptr_of_node (remote_id); 4
int ix = threadIdx.x + blockIdx.x * blockDim.x;
long tmp; 6
// start collective ping by all threads
remote [ix] = 1; 8
// poll collectively for pong
do { 10
tmp = local [ix 1;
} while (!tmp); 12
local [ix] = 0; // reset for next polling
} 14

6.6.1. Latency

As first tests, we run read and write latency benchmarks. For the write latency, a ping-
pong benchmark is used. As GGAS benefits from a collaborative use by multiple threads,
an extended parallel version of the pingpong test was developed.

This parallel version starts a bundle of threads in parallel on the GPUs. On the ping
side, all threads write in parallel to the shared memory of the remote GPU. On the pong
side, all GPUs poll on the local part of the shared memory until the memory is updated.
Then, the local data is reset and the threads on the pong side write back to the global
shared memory of the ping GPU. Listing 6.2 shows a code snippet for the ping side. The
treads write to different but consecutive addresses in remote memory.

Since the execution of a CUDA thread-block is non-preemptive, the possibility of
deadlocks is present if more threads are scheduled than cores are available. Our exper-
iments validate this, and for an Nvidia Kepler-class K20 GPU. up to 8,192 threads for
the pingpong benchmark can be started without running into unsafe situations. This
number only applies to this pingpong test. The exact number of threads for a given
workload depends on the overall resource usage, including shared memory and regis-
ters. The remote pointer in Listing 6.2 has to be defined as volatile. Otherwise, the
threads would read the remote value (line 11) from the registers or the L2 cache and not
repeatedly from the remote memory.

Listing 6.3: Code example for remote read using GGAS

__device__ remoteRead(long* dest)

{ 2
long* remote = __ggas_get_ptr_of_node (remote_id);
dest [idx] =remote [idx] 4
__threadfence_system() ;

} 6

151

6. Global Address Space for GPUs

= 30
3

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
(8) (16) (32) (64) (128) (256) (512) (1k) (2k) (4k) (8k) (16k) (32I) (64k)

number of threads (transferred data [Byte])
=4—write latency -#-read latency

Figure 6.7.: Latency for communication using GGAS

For the read latency, another benchmark is required. In this benchmark, the threads
simply load a value from the memory of a remote GPU and write it to their own local
device memory as shown in Listing 6.3. The fence operation is required to ensure that
the read operation is executed before the next iteration is started. The read benchmark
can be started with more than 8192 threads, since the risk of a deadlock is not present.

Latency results

Figure 6.7 shows the results of the latency benchmarks. Every thread reads or writes a
long value in remote memory, so 8 bytes are transferred with a single load/store instruc-
tion. For the write latency, the half round trip latency of the pingpong benchmark is
presented.

Up to a data transfer size of 4 kb or for up to 512 parallel threads, the write latency is
approximately 3 us and the read latency is aboutt 5.6 ps. This results surpasses clearly
the results for put/get communication presented in the previous chapter.

Up to a transfer size of 1,024 bytes, the write latency is better than the read latency.
However, for larger transfer sizes — or a larger number of threads —, the read latency
gets a little better than the write latency. However, the reason for this may also be the
simpler structure of the read latency benchmark.

6.6.2. Bandwidth

To measure the sustained read and write bandwidth using GGAS, we implement two
different bandwidth benchmark types:

Remote load and stores This benchmark uses remote load and store instructions to
copy data between a local and a remote memory region. The benchmark is started
with 8,192 threads, grouped into blocks of 64 threads each. These threads read
and write data from and to remote memory in parallel, using the coalescing ca-
pabilities of the GPU.

152

6.6. Micro-benchmark performance

8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M
data size [byte]

——remote stores —®—remote loads =4 - memcpy put = #= memcpy (read)

Figure 6.8.: Bandwidth for communication using GGAS

cudaMemcpy Dynamic parallelism allows the GPU to call asynchronous memory
copy operations in a CUDA kernel. This can be used to transfer data between a
local and a remote memory buffer. Therefore, this benchmark starts a CUDA ker-
nel with only one thread. This thread initiates multiple CGUDA copy operations on
the GPU and synchronize these copy operations with cudaDeviceSynchronize.
These one-sided communication operations correspond to one-sided put and get
operations.

Bandwidth results

Figure 6.8 shows the results of the bandwidth benchmarks. The maximal bandwidth
for remote store/put operations is about 800 MB/s and for remote load/get operations
about 600 MB/s. We see two reasons for the worse read bandwidth:

First, the GPU can only handle a limited number of outstanding remote read requests.
If the number of remote read requests is too large, it takes longer to complete a request.
The evaluation of the Extoll register file, using the sys-filesystem, shows that the maximal
number of outstanding read requests on the SMFU is 25 while the read-bandwidth test
is running. This suggests, that the GPU cannot handle more then 25 outstanding read
requests.

Second, a remote read request requires two non-posted device-to-device accesses over
the PCle-bus. On the sourcing side, the GPU loads the values from the SMFU, on the
target side, the SMFU loads the values from the GPU. So here, the bandwidth is limited
due to the PCle bottleneck described in chapter 3. Using remote write operations, this
PCle bottleneck can be avoided: On the sourcing side, the GPU pushes the data to the
SMFU and on the target side, the SMFU pushes the data to the GPU. Therefore, for
remote write operations, the decrease of the bandwidth for transfer sizes larger than
1 Gbytes cannot be observed.

For smaller data transfer sizes, remote loads and stores provide a better bandwidth
than their counterparts using cudaMemcpy. This is caused by the overhead of calling
cudaMemepy on the GPU, the dynamic parallelism overhead. However, for transfer sizes
larger than 16 kbytes for remote writes and 256 kbytes for remote reads, this overhead
becomes negligible compared to the data transfer latency.

153

6. Global Address Space for GPUs

@ 600
=

= 500
5

3400

§300

200

100

0

8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M
data size [byte]
~—#—consecutive write —#—consecutive read =# -non-consecutive write = ®- non-consecutive read

Figure 6.9.: Coalescing effects for remote memory accesses

6.6.3. Coalescing effects

Data with remote load and store instructions theoretically causes a network transfer for
every remote memory accesses. But, in fact, the GPU does not forward every single
request to the NIC but coalesces accesses to consecutive addresses, as shown in section
2.2.2 for the local device memory. In the following, the impact of this coalescing capa-
biliy for accesses to remote GPU memory is examined.

Now, the bandwidth of thread-collective load and store operations to remote memory
regions, using consecutive and non-consecutive addresses, is measured. For the noncon-
secutive case, only every second value is written or read.

Figure 6.9 shows the results of these benchmarks. The bandwidth of consecutive
writes 1s about seven times higher than the bandwidth of writes to nonconsecutive ad-
dresses. The bandwidth of consecutive reads is twice the bandwidth of reads to non-
consecutive addresses. This is due to the coalescing abilities of the GPU memory con-
troller.

The Extoll device allows counting of incoming requests to the SMFU. This feature
allows counting the number of incoming requests for consecutive and non-consecutive
reads and writes. Table 6.1 shows the number of written and read values and the number
of incoming requests to the hardware for both cases.

The memory controller of the GPU coalesces read and write accesses to consecutive
addresses to packages of 16 values, which corresponds to 64 bytes for integer values with
asize of 16 bytes. For non-consecutive writes, the number of incoming requests matches
the number of the written values. Thus these accesses are not coalesced and the band-

Table 6.1.: Incoming requests to the SMFU for consecutive and non-consecutive remote
writes

Values 1 16 64 256 1024 4096

consecutive writes/reads 1 1 4 16 64 256
non-consecutive writes 1 16 64 256 1024 4096
non-consecutive reads 1 2 8 32 128 512

154

6.7. GGAS barrier

width is massively slowed down. Remote read accesses to non-consecutive addresses
are also coalesced. Since only every second value is read, twice as many requests are
required and the bandwidth is halved.

6.7. GGAS barrier

A global address space model like GGAS requires explicit synchronization to ensure con-
sistency. In parallel computing, a barrier is a synchronization primitive that guarantees
that each thread or process reaches a specific point in its control flow before proceed-
ing. Using GGAS, a barrier must also guarantee that all remote reads and writes to the
GGAS memory previous to the barrier are completed before a thread leaves the barrier.

Therefore, to synchronize distributed GPUs, an efficient and fast barrier, developed
for distributed shared memory architectures is used, similar to the barrier described
in [146] for shared memory architectures or the barrier described in [137] for inter-
block synchronization on the GPU. It is a lock free barrier that does not require atomic
operations and avoids multiple writes to a single location. The barrier consist of two
phases:

1. Check-in phase: For every GPU arriving at the barrier, a single thread sets the check-
in-flag. This check-in-flag is located in the global address space. One master GPU
waits for the flags of all other GPUs by polling on them. This can be done by
multiple threads of one block in parallel, so every thread of this block is responsible
for polling on the flag of one remote GPU. Once all GPUs have reached the
barrier, the check-in phase in completed.

2. Check-out phase If all GPUs have reached the barrier, the master GPU sets the check-
out-flags for all GPUs. The check-out-flags are also located in the global address
space. Again, the check-out-flags can be updated by multiple threads of the master
GPU simultanously. On all other GPUs, a single thread polls on the checkout-flag.
If this flag changes, the GPU can leave the barrier.

To achieve good performance, the location of the flags is important. As shown in
[146] and the previous section, for a strong scalability, remote loads should be avoided
and polling on remote locations massively increases latency. We avoid remote loads by
placing the check-in flags on the master GPU and the check-out flags on the respective
GPU. Thus, remote loads are completely avoided and, instead, the barrier relies solely
on a push model.

6.7.1. Intra-GPU synchronization

A GGAS barrier can be used for inter-GPU synchronization between distributed GPUS
while inter-block synchronization on the GPU is still required. One possible solution is
the use of dynamic parallelism for intra-GPU synchronization. The ggas_barrier can be
employed for synchronization between separate compute kernels, as shown in Listing

6.4.

155

6. Global Address Space for GPUs

In this case, the compute kernels have to be synchronized with cudaDeviceSynchronize
before the barrier is executed. The GGAS-barrier also can be used as CUDA kernel
in-between two separate compute kernels, as shown in Listing 6.4. Here, the stream
ensures the intra-GPU synchronization.

Another possibility for intra-GPU synchronization is to use persistent threads. In this
case, only as many threads are started on the GPU as can run in parallel, so the risk of
deadlocks can be avoided. Then, for inter-block synchronization, a barrier as described
in [137] is used. In GGAS, a hierarchical approach is used: First, all thread-blocks
within a GPU execute the check-in phase of the intra-GPU barrier; then the GGAS
barrier for inter-GPU synchronization is executed before the intra-GPU barrier is com-
pleted with the check-out phase. However, in the last passage in section 5.8, we already
argued that the use of persisted threads is not very efficient on GPUs. However, in the
event that the ggas_barrier is called by multiple thread-blocks in parallel, the hierarchical
approach is used.

6.7.2. Barrier performance

To evaluate the performance of the barrier, two different benchmarks are started. The
first benchmark starts a single kernel from host with a sufficient number of threads. This
kernel calls a ggas_barrier device function for several iterations, as shown in Listing 6.4.
In the second benchmark, also a single kernel from host is started, but this one only
with a single thread. This thread, however, starts the barrier as a kernel on the GPU,
using dynamic parallelism, as shown in Listing 6.5. Figure 6.10 shows the results for both
approaches.

The performance of the barrier kernel is worse than the performance of the device function
barrier. This is due to the dynamic parallelism overhead [147], the overhead that is caused by
starting and synchronizing kernels on the GPU. According to Figure 6.10, this overhead
lies around 10 ps. The benchmark for the device function barrier does not count in the
overhead of the synchronization compute kernels, which may be required for a real
application. Both barriers show very good scaling. The latency for two GPUs is about

Listing 6.4: Barrier using dynamic parallelism
if (threadIdx.x==0)

compute_kernell<<<blocks, threads,0,0>>>(---); 2
cudaDeviceSynchronize () ; /*Make sure the kernel is completedx*/
_ggas_barrier(); /*sync remote GPUsx*/ 4
if (threadIdx.x==0) /*start new kernelx*/

compute_kernel2<<<blocks, threads,0,0>>>(---); 6

Listing 6.5: Barrier using a barrier kernel

compute_kernell<<<blocks, threads,0,stream>>>(---);

ggas_barrier_kernel<<<1l, 64, 0, stream>>>(); /*sync between two 2
kernelsx*/

compute_kernel2<<<blocks, threads,0,stream>>>(---);

156

6.8. Allreduce and reduce using GGAS

25,00

20,00

15,00

10,00 5
500 /_/

0,00

latency [ps]

1 2 3 4 5 6 7 8 12
number of GPUs

=¢=barrier_function -®-barrier_kernel

Figure 6.10.: Performance of the GGAS-barrier

9 ps and for eight GPUs it 1s 11 p for the barrier function; for the barrier kernel the
latency for two GPUs is about 18 s, for eight GPUs it is 22 s, so the latency of the
barrier only increases marginally for more GPUs.

6.8. Allreduce and reduce using GGAS

Reduce and allreduce operations are among the most commonly used collective op-
erations in high performance computing. Most parallel programming languages and
libraries provide implementations of these operations. For host-controlled communica-
tion APIs or languages, every process submits an input vector to the collective operation.
The function performs a reduction operation across the input vectors of all processes and
returns a vector with the combined values. For the reduce operation, the output vector
is returned by the root process, while for an allreduce operation, the result is returned
by all processes. For a multi-threaded program, only one thread should call the reduce
operation.

Tor a GPU, the concept of processes does not exist. Since GGAS is a communication
model for inter-GPU communication, reduce and allreduce operations in GGAS are
performed between multiple GPUs. Since GGAS maintains the parallel programming
model of GPUs, the reduction operation is not only performed by a single thread but by
multiple threads in parallel. Therefore, the allreduce and reduce operations should be
used similarly to the ggas_barrier: either the operation is submitted to a stream as kernel
function or used between two compute kernels, using dynamic parallelism. Thecollec-
tive reduce and allreduce functions also synchronize the distributed GPUs.

However, there are many possible implementations for reduce and allreduce oper-
ations using a hardware-supported global address space. Therefore, in the following,
different implementation methods are introduced, discussed, and evaluated to find the
best model for the different input sizes and numbers of GPUs. The idea of this section is
also to get a better understanding of the behavior of the global address space for GPUs.

157

6. Global Address Space for GPUs

Listing 6.6: Reduce with remote read
idx = threadIdx.x+blockDim.x*blockIdx.x; /*thread IDx*/

if (idx <vector_size) { 2
result[idx] = O;
__ggas_barrier(); /*sync GPUsx*/ 4
for(i=0; i<ggas_nodes; i++) /*read data from remote GPUsx/
result [idx]+=pointer_to_gpu_i[i] [idx]; 6
b;

6.8.1. Reduction with remote read operations

A global address space allows direct reading of remote GPU memory, so in the naive
implementation of a distributed reduce operation, the input data are directly read from
the global shared memory, as shown in Listing 6.6 for a global summation. Before the
GPUs read the input data, first the GPUs have to be synchronized with a barrier to
guarantee that the data in the global shared memory are valid. For larger input vectors,
the reduction operation is performed by multiple threads in parallel, using the massive
parallelism of the GPU.

For a reduce operation, only the root GPU executes the reduction operation while
for an allreduce operation, the reduction operation is executed by all GPUs in parallel.
This adds some network traffic to the operation, since every GPU has to read the input
data from the memory of all other GPUs. On the other hand, data copies and additional
synchronization between the GPUs can be avoided.

The main disadvantage of this implementation is that it requires remote reads. In
section 6.6, it was shown that the bandwidth of remote reads is much lower than the
bandwidth of remote writes. Hence, this implementation may be only suitable for small
input vectors. For larger input vectors, another implementation which avoids remote
read operations may be more performant.

6.8.2. Reduction with remote write operations

To avoid remote reads, the input data has to be copied between the individual GPUs
using remote writes. Then the GPUs can read the input data from local device memory
to perform the reduction. A reduce operation based on remote writes can be divided
into two steps, an allreduce operation into three steps:

1. In the collection phase, input data are collected on one or more GPUs.

2. In the reduction phase, the reduction operation is performed on the collected input
data.

3. Yor an allreduce operation, in the distribution phase, the result is distributed back to

all GPUs.

In the nalve implementation, all input data are collected on one GPU; the 700t GPU.
which then performs the reduction. This means that all other GPUs copy their input

158

6.8. Allreduce and reduce using GGAS

eru1 [| GPU1 | | | |

epru2 [T GPU 2 I%\III

eru3 [GPU 3 7

T — GPU4 ——
Figure 6.11.: Gathering Figure 6.12.: Broadcast

Gcpu1 [1]2]3]4] [a]2]3]4]2]2]3]4] 1] 2]3] 4] 1] 2[3]4] Gpu1 [2]2]3]4] [a]a]1]2]

Gcpu2 [1]2]3]4] [a]2]3]4]2]2]3]4] 1] 2]3] 4] 1] 2[3]4] Gpu2 [1]2]3]4] [2]2]2] 2]

{

Gpu3 [1]2]3]4] [a]2]3]4]a]2]3] 4] 1[2]3] 4] 1] 2] 3] 4] Gpu3 [1]2]3]4] [3]3]3]3]

Gpu4 [1]2]3]4] [a]2]3]4]1]2]3]4] 1]2][3]4]1][2]3]4] Gpu4 [1]2]3]4] [4] 4] 4] 4]
Figure 6.13.: All-gather Figure 6.14.: All-to-all

data to the root GPU. This collection of data is similar to the MPI-gather-operation,
illustrated in Figure 6.11. TYor an allreduce operation, the root-GPU distributes the
reduction result back to all other GPUs, which corresponds to a broadeast operation, il-
lustrated in Figure 6.12. Therefore, these methods are referred to as gather-reduce and the
beast-allreduce method in the following.

Using this approach, the allreduce operation requires a synchronization between the
GPUs at least twice. The first one is required after the gather operation to guarantee that
all GPUs have transferred their input data to the reduction buffer on the root GPU. The
second one is required after the result is copied back with the bcast operation to inform
the GPU that the output vector is available.

Although GGAS allows fast synchronization between the GPUs with a barrier, as
shown in the previous section, every synchronization requires additional data transfers
and adds overhead to the application. Especially for small sizes, this synchronization
overhead may surpass the data transfer latency. The all-gather allreduce operation avoids
this double synchronization. Using this method, a/l GPUs transfer their input data to a//
other GPUs in an all-gather manner, illustrated in Figure6.13.

This allows all GPUs to perform the reduction operation on their local device mem-
ory; and thus the second synchronization and broadcasting of the results are avoided.
Still, the all-gather operation increases the amount of data transfers, so this method may
only scale for a small number of input elements.

6.8.3. Work sharing: data distribution over multiple GPUs

For larger message sizes and a larger number of involved GPUs, the implementations
described above may not scale. Either the same work is performed several times on
different GPUs or a single GPU performs all the reduction work while all other GPUs
idle. Moreover, the data collection and distribution cause a lot of network traffic between
the GPUs, which may also slow down the performance.

To achieve a better scaling for a larger number of input elements and a larger number
of GPUs, the work is distributed among the GPUs. We implemented two work distri-

159

6. Global Address Space for GPUs

(0)
@ @ @
© & &
@
Figure 6.15.: Binomial tree for eight nodes

bution strategies which also could be combined for larger input vectors and a larger
number of GPUs.

Tree-based design

For larger cluster sizes, a tree-based design is recommended to collect and distribute the
data. However, some work has already been done in optimizing these trees for MPI,
e.g.,[148, 149], and this is not within the scope of this work. Still, it is worth to mention
that these structures can also be used for GGAS and GPU clusters. In the presented
work, a binomial tree, as shown in Figure 6.15, for eight endpoints was implemented to
compare the performance against other methods.

Work distribution

Tor a larger number of input-elements, the input vectors of all GPUs can be split up into
smaller blocks and then evenly distributed among all GPUs. Analogous to MPI, this
operation is called all-to-all (see Figure 6.14). This method is referred as the all-to-all-
reduce/allreduce operation.

Every GPU executes the reduction operation on its part of the input data. For a reduce
operation, all GPUs write their results back to the root GPU in a (gather) manner; for an
allreduce operation, the results are distributed over all GPUs in an all-gather manner.

6.8.4. Performance results for the reduce and allreduce operation

In this section, the performance results for the reduce and allreduce operations with
GGAS, using the different approaches described above, are discussed. We consider the
results for eight GPUs. We run the operations with float values as input. Figure 6.16
shows the results for the reduce operation. The input vector is only split if the number
of values is equal or larger than the number of GPUs; therefore, some of the values of
the all-to-all method are missing.

For small input sizes, the gather method, whereby all GPUs send the input data to the
root GPU, is performing the best. The work distribution, using a tree-based approach
or using a work distribution with an all-fo-all data transfer, is performing worse than the
gather-approach. For only a few input elements, the overhead due to work distribution
and creating tree-structures outperforms the overhead of collecting the data on a single

160

6.8. Allreduce and reduce using GGAS

i
o
o

1000000 -

i
o
=]

100000 |

NS
[ST
o o
~

10000 -

latency [ps]
.
2] o
o o
latency [ps]

1000 -

\

100

[SEEFN
o o©

o

10

1 2 4 8 16 32 64 128 256 512 1k 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

input values [float] input values [float]
~#-reduce read —®-reduce gather reduce alltoall =¢reduce tree ~#—reduce read -#-reduce gather reduce alltoall —-reduce tree
(a) Small number of input elements (b) Large number of input elements GPUs

Figure 6.16.: Results of the reduce operation on eight GPUs

i
1)
S

1000000 |

=
Y
o

/ 100000 |

RS
[SEEN
o o
~

10000 -

1000 -

latency [ps]
[
=] o
o o
latency [us]

-
=]

\

100 &

N
o

o

10

1 2 4 8 16 32 64 128 256 512 1k 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

input values [float] input values [float]
~4=allreduce read ~#-allreduce bcast allreduce allgather ~#-allreduce read ~#-allreduce bcast allreduce allgather
—*-allreduce alltoall allreduce tree —*allreduce alltoall allreduce tree
(a) Small number of input elements (b) Large number of input elements GPUs

Figure 6.17.: Results of the allreduce operation on eight GPUs

GPU. The reduction operation based on remote reads is performing worse than other
approaches and the performance gets significantly worse for larger input vectors. For
larger messages, the work distribution pays off and the all-to-all method, whereby the
input data are distributed among the GPUs, is performing the best. The tree-based
method is only slightly worse. However, the benchmark runs only on a GGAS system
with eight GPUs, so this may be different for a larger cluster.

Figure 6.17 shows the results of the allreduce benchmarks. For small input vectors, the
allgather method 1s performing best. Using this method, all GPUs transfer their complete
input data to all other GPUs, and all GPUs perform the reduction operation on their
own, local memory. The overhead that is caused by the several data transfers and the
multiple execution of the same reduction operation is smaller than the overhead that is
caused by the two-time synchronization if the root GPU first collects all input data and
then sends the result back to all other GPUs. Similar to the reduce operation, for a small
number of input elements, the work distribution does not pay off.

161

6. Global Address Space for GPUs

100000 100000
10000 10000
1000 1000

100 100

latency [us]
latency [ps]

10 10

NS 0 O N T 00N XN NN XX XXX s B R R R s

input values [float] input values [float]

—+MPI 8 GPUs —®-GGAS 8 GPUs —-MPI8 GPUs —®-GGAS 8 GPUs
(a) Reduce (b) Allreduce
Figure 6.18.: Results of the reduce and allreduce benchmarks for an optimized GGAS ver-
sion and MPI

For a larger number of input elements, the work distribution, using an all-to-all data
transfer to distribute the input vectors among the GPUs and later collect the results with
an all-gather operation, is clearly performing the best. A tree- based approach currently
is not very efficient. Again, the benchmark runs only on a GGAS system with eight
GPUs, so this may also be different for a larger cluster.

The read-method is not performing well for any problem size. Therefore, remote
read operations, especially from multiple GPUs in parallel, should be avoided.

6.8.5. Comparison to MPI

In this section, the performance of the optimized reduce and allreduce operations is
compared against the performance of MPI reduce and allreduce.

The optimized GGAS reduce operation uses the gather method for small messages
and the all-to-all method for larger messages. The optimized allreduce operation uses
the all-gather method for small messages and the all-t0-all method for large messages.

We compare the GGAS version with openMPI, version 1.6.1, using the RMA and
VELO unit of the Extoll device. This comparison seems to be fair, as both methods
use the same FPGA. A comparison to Infiniband would result in a comparison between
an ASIC with a peak bandwidth of 32 Gbps and an FPGA with a peak bandwidth of
9.8 Gbps and not a comparison between two different GPU communication methods.

Although the GPUDirect RDMA technology allows the network hardware to directly
read and write GPU memory, this technique cannot be used for MPI for reduce and
allreduce operations without further ado, as explained above for the allreduce operation
in GASPI (see section 4.3.7).

Either the data has to be copied to the host to perform the reduction operation or the
data stays on the GPUs and a reduction kernel is started to perform the reduction. We
use the first method, so the GPU input vector is copied to host memory and the result
is copied back to GPU memory.

Figure 6.18 illustrates the results for the reduce and allreduce benchmarks on eight
GPUs. The results show that GGAS is outperforming MPI for all vector sizes. The
performance differences are clearer for the allreduce benchmark. For eight GPUs, the

162

6.9. Application-level performance

Listing 6.7: boundary transfer using GGAS
for (z = 1; z < ZMAX; z++) {

- // do calculations 2
p_new [index] = new_value;
if (z ==ZMAX || z == 1) /*x z is part of the boundaryx*/ 4
remote_buf [index] = new_value;
} 6

main overhead for the MPI allreduce operation is the transfer between host and GPU
memory. The allreduce operation requires two of these transfers, while the reduce oper-
ation only require one data transfer on most GPUs. This additional transfer operations
explain best the performance differences. For larger input vectors, GGAS also benefits
from the parallel execution of the reduction operation on the GPU.

6.9. Application-level performance

In this section, the performance of different applications, using GGAS as communica-
tion layer, are evaluated and discussed.

The results of the benchmarks are compared to a hybrid version, using openMPI
version 1.6.1 with Extoll and — for some benchmarks — with GPU-controlled put/get
communication, using the RMA unit of the Extoll device. A comparison to Infiniband
would rather result in a comparison between an ASIC and an FPGA, which is not within
the scope of this work.

In contrast to the previous chapters, a wider range of benchmarks is evaluated to get
a better understanding of the advantages and disadvantages of the different commu-
nication methods. A more in-depth analysis of the implementation of some of these
benchmarks can be found in [80].

6.9.1. Stencil code

The first benchmark is the already known Himeno benchmark. The GGAS solution
uses dynamic parallelism for intra-GPU synchronization. In contrast to the approaches
using put/get communication, no special communication functions are required, but
the data are directly copied in the compute kernels, using store instructions to a remote
memory region. Listing 6.7 shows, in a simplified manner, how this is realized during
the computation. On the remote side, the boundary values are directly read from local
memory and no further copy operations are required. To synchronize the GPUs, after
every iteration a barrier is required. Figure 6.19 illustrates the control flow of the stencil
code using GGAS for the boundary exchange.

Due to the limitation of the size of the global address space, the problem size for this
benchmark is very limited for GGAS. The complete grid has to fit into the global address
space.

163

6. Global Address Space for GPUs

start kernel h; |
TR l kernel
remote l
stores

remote

forward l

stor‘es T

Figure 6.19.: Control flow of a stencil code, using GGAS for communication, transfer top
and bottom boundaries

The first benchmark evaluates the weak scaling capabilities of GGAS and the other
communication methods. The grid size per GPU stays constant while the number of
GPUs increases. So the total grid size gets larger for more GPUs. Figure 6.20 shows the
weak scaling results for two, four, eight, and twelve GPUs. On every GPU, the grid has
as size of 128 x 192 x 64 points.

The results show that GGAS is performing poorly compared to RMA put/get com-
munication and the hybrid MPI version. The RMA version is performing best for more
thqn two GPUs. Still, the MPI version does not use GPUDirect RDMA, but staged
host copies on both sides. Therefore, this may be different for an MPI version using
GPUDirect RDMA.

The put/get communication and MPI allow overlapping of communication and com-
putation, which is not supported for remote store instructions. Figure 6.19 illustrates that
the communication adds some overhead to all threads running on the GPU, since they
have to copy the boundaries. This additional remote write operations cannot be over-
lapped with computations on the GPU. Although the latency of a data transfer using
GGAS is smaller than the latency of the other communication methods, the missing
capability of asynchronous communication slows down the performance.

In Figure 6.21, the strong scaling results for the Himeno benchmark are shown. For
strong scaling, the total grid size stays constant if more GPUs are used, so the size on a
single GPU decreases. The size of the grid that is distributed over the GPUs is 128 x
128 x 192 points, so for twelve GPUs, on a single GPU, only 128 x 128 x 16 points
are calculated. For twelve GPUs, GGAS shows the best performance. However, all
approaches scale not very well. For GGAS, the performance of twelve GPUs is only

164

6.9. Application-level performance

1000

performance
[GFLOPs/second]

2 4 8
number of GPUs

EMPI BRMA F GGAS

Figure 6.20.: Himeno weak scaling, ideal scaling is compared to two GPUs, problem size
per GPU: 128 x 192 x 64

400
350
2 300

50
00
50
00 -
2 4 8

number of GPUs

performance
[GFLOPs/second]
B R NN

w
o o

HEMPI BRMA F GGAS

Figure 6.21.: Himeno strong scaling, problem size: 128 x 128 x 192

slightly better than the performance of eight GPUs, whereas for MPI, the performance
of twelve GPUs is worse than the performance for eight GPUs. The reason for the better
scalability of GGAS is the lower data transfer latency. For strong scaling of this stencil
benchmark, the work load per GPU becomes smaller if more GPUs are used, while the
amount of transferred data stays constant. At one point, the data transfer latency is
larger than the compute time, so the communication cannot completely be overlapped.
Then, the communication latency is the dominating factor. However, due to the bad
scalability of all approaches, the benefit of GGAS seems to be limited. This kind of
problem seems to be not suitable for a communication method like GGAS.

6.9.2. Global reduction benchmark

The second benchmark is a global reduction benchmark. This benchmark reduces an ar-
ray of input values, which is distributed over the GPUs, to a single value with a specified
reduction operation. This can be used, for example, to find a global maximum or to
perform a global summation of all input values. First, every GPU reduces its own field
of input values, then an allreduce operation is used to determine the global reduction
product. This operation is often required in numerical algorithms, for example, to de-
termine a residual.

The MPI version starts a compute kernel to determine the local reduction result. This
local result is copied to host memory and an MPI-allreduce operation is used to find the

165

6. Global Address Space for GPUs

30000

2
£ 25000
o

Q
g 20000

215000 |
<

§ 10000 -

redu

5000

o -
1k 2k 4k 8k 16k 32k 64k 128k 256k 512k M
input values per GPU

HMPI ®GGAS

Figure 6.22.: Performance of the global reduction benchmark on eight GPUs

global reduction result. This result is then copied back to the GPUs. The GGAS version
handles everything on the GPU.

In contrast to the Himeno benchmark, communication and computation cannot be
overlapped. However, the amount of data that have to be exchanged is very small, be-
cause the allreduce operation is executed with only a single input value, independent of
the input size.

This benchmark was not implemented for RMA put/get communication. Only one
value has to be transferred for every iteration and the overhead of creating work requests
would clearly outperform the latency of the data transfer in GGAS. Figure 6.22 shows
the performance in reductions per second of the global reduction benchmark for eight GPUs.

In this benchmark, GGAS is clearly outperforming MPI, especially for smaller input
vectors. For a small number of input elements, the difference between the GGAS version
and the MPI version is larger, since then the data transfer is the dominating part of the
distributed reduction operation. For a lager number of input values, the local reduction
is dominant, so the performance difference between GGAS and MPI is less significant.

6.9.3. RandomAccess benchmark

The RandomAccess benchmark[150] was introduced with the HPC Challenge Bench-
mark Suite [151]. The goal of the RandomAccess benchmark is to asses the network
performance. It was first implemented for MPI but without GPU support.

The benchmark operates on a large distributed (2¥) table. Each processor creates a
sequence of random 64-bit integer values. The most significant values of these random
numbers are used to index an entry in the table. This entry can be on a local or on
a remote part of the table. The selected entry of the table is updated using a bit-wise
xor operation between the random number and the table entry. Every process updates
four times the size of the local table size. The benchmark specification allows to store at
most 1,024 updates before they are applied to the table. Such an update is then called
look ahead. The accesses are random, but every process accesses the table of every other
node at least once during run time. The performance of the benchmark is measured in
giga updates per second (GUPS). A detailed description of the implementation of this
benchmark for GPUs, using MPI, RMA put/get and GGAS for communication, can
be found in [80].

166

6.9. Application-level performance

0,1
0,08 -
¥ 0,06

2
00,04 - —
0,02 - -
0 I T T T T
2 4 6 8 12

mumber of GPUs

EMPI MRMA = GGAS

Figure 6.23.: Performance of the RandomAccess benchmark in giga updates per second
(GPUS)

The MPI/GPU version creates the table in GPU memory, but the sequence of ran-
dom numbers is created on the CPU. MPI is used to distribute these values along the
other processes. The table updated on the GPU. The RMA version uses put-operations
to distribute the random numbers, which are required to update the table. The put-
operations are issued from the GPU. For every look-ahead, a block with 1,024 threads
1s started to update the table with parallel threads.

Due to the size of the table, for GGAS, the table cannot be located in the shared
memory, as this would allow every GPU direct access to any entry in the table, regardless
of where it is located. However, this approach would also require remote read accesses,
which are performing worse compared to remote write accesses. Another reason why
this approach should not be used is that the modification of a table entry requires an
atomic read-modify-write access to a table entry. Since the shared address space does
not allow atomic operations, this could result in data-hazards if two GPUs tried to access
the same table entry at the same time. Therefore, a mailbox-system is used and every GPU
writes the random number to the mailbox of the appropriate node.

Figure 6.23 shows the results of the RandomAccess benchmark for the different com-
munication methods. The size of the input table corresponds to half of the available
GPU memory.

The results show that GGAS is outperforming RMA and MPI communication for
more than two GPUs. The more GPUs are used, the more significant the difference be-
tween GGAS and the other communication methods will become. The RMA version
is performing worse for more than two GPUs. The reason for this is that the Rando-
mAccess benchmark requires frequent and small communication requests, which are
random and can hardly be overlapped. Tor this kind of workload, the overhead of cre-
ating and synchronizing work requests using the RMA unit on the Extoll device carry
on more weight and the simpler GGAS interface allows more efficient communication.
For eight and twelve GPUs, GGAS reaches almost twice the performance of the RMA
and MPT versions of the benchmarks.

167

6. Global Address Space for GPUs

& 600

£ s00
2
'§4oo 1
g 300 -
5200 -
-9
Q 100 -
= 0 T
2 4 8

number of GPUs

EMPI ERMA ¥ GGAS

Figure 6.24.: Energy efficiency for the Himeno benchmark

6.10. Energy Efficiency

In this section, the energy efficiency of the different benchmarks for the different com-
munication approaches is evaluated. For this, we again use the Himeno, the global
reduction, and the RandomAccess benchmark.

If the communication is controlled by the GPU, the CPU can be set to sleep and an
increased polling rate can be used, as described in section 5.8.5. If MPI is used for com-
munication, a CPU thread is required to control the communication. For comparison,
openMPI, version 1.6.1 , using the RMA and VELO unit of the Extoll device, is used.

6.10.1. Energy efficiency of the Himeno benchmark

Figure 6.24 shows the results for the energy efficiency of the himeno benchmark (weak
scaling) for two, four and eight GPUs.

The energy efficiency is expressed in MFLOPs per second per watt. Using GPU-
controlled put/get communication shows the best energy efficiency for all numbers of
GPUs. However, this is obvious since the RMA version shows the best performance (see
Figure 6.20) and relieves the CPU from the communication work so it can be set to sleep
for a longer period of time. This leads to a 10% better energy efficiency for two GPUs
and to a 15% better energy efficiency for four and eight GPUs compared to MPI and
GGAS. These results are based on a very small problem size with 128 x 192 x 64 points
per GPU. Regarding the results in section 5.8.3, a greater increase may be reachable for
larger benchmark sizes.

The MPI and the GGAS version have a very similar energy efficiency. For two GPUs,
the MPI version is slightly better, for four and eight GPUs it is the GGAS version. Al-
though the weak scaling performance of the MPI is clearly better then the GGAS ver-
sion, relieving the CPU from additional work leads to a similar energy efficiency for
both approaches. However put/get communication controlled from the GPU, seems
to be the best solution for this kind of workload, because it allows an overlapping of
communication and computation and relieves the CPU.

6.10.2. Energy efficiency of the global reduction benchmark

Figure 6.25 shows the energy efficiency, expressed in reductions per joule, for the global
reduction benchmark on eight GPUs. The energy efficiency of the global reduction

168

6.10. Energy Efficiency

N
@

=N
o

«

reductions per joule
=
o

o w

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k M
input values per GPU

HMPI B GGAS

Figure 6.25.: Energy efficiency of the global reduction benchmark on eight GPUs

2500

2000 -

Gupdates/s/watt
= =
w1 o (9]
o o o
o o o
\

o

2 4 8 10 12
number of GPUs

EMPI MRMA ™ GGAS

Figure 6.26.: Energy efficiency of the RandomAccess benchmark

benchmark using GGAS is significantly better than the energy efficiency of the MPI
version for all input sizes. For a small number of elements, this difference is clear. On
the whole, the energy efficiency results correspond to the performance results of the
reduction benchmark. However, for larger input sizes, the energy efficiency of GGAS
is still clearly better than the energy efficiency of the MPI version, which is not the case
for the performance. The reason for this is again the relieve of the CPU.

6.10.3. Energy efficiency of the RandomAccess benchmark

Figure 6.26 shows the energy efficiency of the randomAccess benchmark, expressed in
updates per second per watt (or updates per joule). The results for the energy efficiency
also correspond to the performance results of the RandomAccess benchmark. For two
GPUs, RMA put/get communication has the best energy efficiency, for more GPUs,
the GGAS version is better. It is notable that for eight and more GPUs, the energy
efficiency of the GGAS version is more than twice as good as the energy efficiency of
the MPI and the RMA version. This is caused by the better performance and the lower
CPU utilization using GGAS for communication.

169

6. Global Address Space for GPUs

6.11. Summary

In this section, a hardware-supported global address space for thread collective com-
munication between distributed GPUs was introduced. The performance of the micro-
benchmarks showed that by using this communication model, the latency for GPU-to-
GPU data transfer can be reduced to 3 us for small data transfer sizes. By using remote
write operations, the PCle issue for non-posted device-to-device transfer can be avoided,
resulting in a peak bandwidth of 800 MB/s, using an FPGA.

We showed that this communication model is best suitable for small data transfers
and blocking collective operations like a barrier or an allreduce operation. However,
the main drawback of this communication method is that it currently does not support
asynchronous communication. Therefore, communication and computation cannot be
overlapped. Furthermore, a lot of GPU-threads are required to transfer a large amount
of data which adds a lot of overhead to the GPU. For applications that allow a good
overlapping of communication and computation, for example, the Himeno benchmark,
other communication methods like GPU-conrtolled put/get communication are prefer-
able.

Still, for applications which require small, non-blocking, and irregular data transfers,
a global address space is a very efficient communication method. The performance
results of the global reduction and the RandomAccess clearly show the benefits of the
GGAS communication model.

The results of the energy efficiency for the different benchmarks and communication
methods show that by relieving the CPU and by using an efficient, application-specific
GPU-controlled communication method, GPU-controlled communication has a better
energy-efficiency than a hybrid model using the GPU for communication.

170

7. Conclusion and Future Outlook

The goal of this work was to implement, analyze, and evaluate different communication
methods for distributed GPUs. The main contributions of this work are the integration
of GPUs into a host-controlled, one-sided communication library and the implementa-
tion of GPU-controlled put/get and load/store communication libraries for distributed
GPUs. Furthermore, the strengths and weaknesses of these communication methods
were analyzed within the scope of performance and energy efficiency. All implementa-
tions and modifications used in this work are done in the software level, in kernel-space,
in user-space, and on the GPU. So far, no changes on the used hardware were required.
However, the results of this work give hints and tips to hardware developers about the
requirements for communication-centric, GPU-accelerated systems.

In the first part of this work, the contribution was the implementation of the support
for GPUDirect RDMA for the RMA function unit of the Extoll device. This technique
allows a direct data transfer between two GPUs without copies in host memory. The sup-
port for GPUDirect RDMA forms the basis for the communication methods described
in the subsequent chapters. The performance results show that, although GPUDirect
RDMA brings a lot of benefits for small- and medium-sized data transfers, for larger
data transfers, the performance is limited due to PCle issues since non-posted peer-to-
peer transfers are not well supported on current chipsets.

A further contribution of this work is the integration of GPUs into the host-controlled
communication specification GASPI and its implementation GPI-2. So far, GPI-2 only
supports Infiniband, therefore the GPU integration is also based on Infiniband. The
integration of GPUs to the GASPI specification requires only minor changes to the APL
However, to reach optimal performance, some additional, GPU-related functions were
added. The performance results show that GPI-2 for GPUs shows a significantly better
performance than CUDA-aware MPI which is the current state-of-the-art.

The rest of this work concentrates more on GPU-controlled communication, a re-
search area that has hardly been explored so far. As far as it is known, this is the first
work in which the GPU is enabled to source and synchronize communication requests
directly to the hardware. In all preliminary work, a CPU thread was always required to
control the NIC.

The first individual contribution here was the implementation and evaluation of the
Infiniband verbs interface for GPUs. Due to the low performance compared to host-
controlled communication, the bottlenecks of this method were analyzed. The results
show that a communication protocol like Infiniband verbs causes too much overhead
on the GPU. The creation of work requests for Infiniband devices takes on the GPU
more than 100 times longer than on the CPU. The main reason for this is the Infini-
band verbs protocol, which requires complicated error checking and big-to-little endian

171

7. Conclusion and Future Outlook

translation. This is a sequential workload and cannot be parallelized for GPUs. For
GPUgs, a simpler and more effective communication framework is required which should
best allow thread-collaborative communication. Another important factor for efficient
GPU-controlled communication is the amount od accesses to the host memory over the
PCle-bus. For a good performance, these accesses should be reduced to a minimum. A
comparison with a GPU-interface for the RMA unit of the Extoll device showed that a
simplified communication interface could lead to better performance.

The problems that are related with to the GPU-programming model and put/get-
communication were analyzed and possible solutions were introduced. The main prob-
lem is that communication requires intra-GPU synchronization. This work showed that
dynamic parallelism provides a good solution for this. The performance results show that
GPU-controlled put/get communication has a lower performance than CPU-controlled
communication, using GPI-2 as communication layer. Still, the power and energy anal-
ysis shows that relieving the CPU from the communication work results in better perfor-
mance per watt for GPU-controlled communication.

The last but not least individual contribution of this work is the implementation of a
hardware-supported Global GPU Address Space (GGAS) for distributed GPUs. This
global address space uses the shared memory function unit (SMFU) of the Extoll de-
vice. It allows fast and thread-collective communication on the GPU with simple load
and store instructions. The latency and the bandwidth of this communication method
surpass the performance of all other communication methods. However, the main bot-
tleneck is that the communication cannot be overlapped and for larger data transfer sizes,
a huge overhead on the GPU is created. Therefore, this communication method is only
suitable for small and irregular communication patterns and applications hardly hav-
ing room for overlapping communication and computation. Here, a GPU-controlled
put/get communication model appears to be more efficient.

In conclusion, currently no ideal communication method for all sizes of data transfers
and communication patterns for distributed GPUs exist. However, the power and en-
ergy analyses show that GPU-controlled communication always shows a better energy
efficiency than CPU-controlled communication and energy efficiency will become more
important for future high-performance systems.

By using commodity hardware like Infiniband, the performance per watt increases by
approximalty 10%; with more specialized hardware, even better results can be achieved.
Future energy-efficient systems require specialized processors like GPUs to improve the
performance-per-watt metric. Communication models and methods have to match
these specialized architectures as, otherwise, gains in energy efficiency can be dimin-
ished or even neutralized.

Currently, using these communication methods requires a lot of efford from the pro-
grammer and a lot of work is required to optimize an application for the best commu-
nication method. In future systems, this must be more simplified for the user. In a
next step, a transparent communication interface is needed that allows a programmer
to source and synchronize communication requests transparently from the underlying
communication hardware.

172

Currently, one of the main bottlenecks for GPU communication is the PCle-bus. One
reason for this is the insufficient support for non-posted PCle peer-to-peer data transfers.
But, also the usual bandwidth of the PCle bus is far bellow the memory bandwidth of the
GPU memory. However, future GPUs may no longer be only connected with the PCle-
bus. Instead, new technologies like NVLINK will overcome some of the limitations of
the PCle-bus. Still, to allow efficient communication between GPUs across the borders
of asingle node, the interconnection networks for inter-node communication must keep
up with these developments.

173

7. Conclusion and Future Outlook

174

A. Power Measurement

In this work, a software bases approach is used to measure the power. There are two
possibilities to measure the power consumption of a running application: internal and
external power measurements. [152].

External power measurements use external devices to measure the power of a running
application. The easiest type of equipment is a power meters for outlets, which measures
the power of the complete system. However, this method does not allow a break down
to the individual components like CPU, DRAM or GPU.

A fine grain-measurement is enabled by hooking wires into power supplies for the
individual components, as for example described in [153]. However, this approach
usually requires extensive installation costs and is often not practical or obstructive.

Another disadvantage of this method is that the temporal resolution is often too coarse
to make precise conclusions to the actual power consumption of an application.

Therefore, in this work internal power measurement is used. This approach uses the
internal hardware support to measure energy and power consumption. This approach is
less accurate then external power meters, but allows an easy break down to the individual
components and a fine grain resolution in time.

Nvidia offers utilities to measure power accurately using the Nvidia Management
Library (NVML). The power is is estimated with milliwatt precision within a range of
+5.

For Intel CPUs, the Running Average Power Limit (RAPL) registers[154] are used.
This registers report power consumption of CPU and DRAM.

Both techniques use power modeling to estimate the current power consumption of
the respective hardware components, and are widely accepted as accurate [152].

This approach leaves other components like the network device uncovered. However,
communication patterns to not differ for the different communication approaches used
here, and network power consumption is typically independent of the actual traffic, as it
is dominated by (de-)serializers that employ serial link coding and embedded clocking.

175

B. Acronyms

APl Application Programming Interface

APU Accelerated Processing Unit

ATU Address Translation Unit

AVX Advanced Vector Extensions

BAR Base Address Register

COF Co Array Fortran

CPU Central Processing Unite

CQ Completion Queue

CUDA Compute Unified Device Architecture
DMA Direct Memory Access

GASNet Global-Address Space Networking
GASPI Global Address Space Programming Interface
GDDR Graphical Double Rate DRAM

GGAS Global GPU Address Space

GPGPU General Purpose Graphic Processing Unit
GPI1 Global Address Space Programming Interface
GPU Graphic Processing Unit

GPGPU General Purpose

HCA Host Channel adapter

HT Hyper Transport

1/0 Input/Output

IB-verbs Infiniband Verbs

IN Interconnection Network

176

MIC Many Integrated Core

MIMD Multi Instruction Multiple Data Stream
MMIO Memory Mapped 170

MPI Message Passing Interface

NIC Network Interface Card

NI Network Interface

NVML Nvidia Management library

OpenCL Open Computing Language

PCle Peripheral Component Interconnect Express

PGAS Partitioned Global Address Space
QPI QuickPath Interconnect

QP Queue Pair

RAM Random Access Memory

RDMA Direct Remote Memory Access
RMA Remote Memory Access

SHMEM Symmetric Hierarchical Memory
SIMD Single Instruction Multiple Data Stream
SM Streaming Multiprocessor

SMFU Shared Memory Function Unit
SPMD Single Programm Multiple Data
SSE Streaming SIMD Extensions

UPC Universal Parallel C

VELO Virtual Engine for Low Overhead
UVA Unified Virtual Address Space

hUMA heterogeneous Unified Memory Access

177

List of Figures

178

1.1. Floating points per second, GPUs vs.Processors 1
2.1. Simplified structure of a GPU accelerated cluster 5
2.2. Parallel architectures oL oL oL 6
2.3. MIMD architectures e 6
2.4. Communication models in distributed memory systems 8
2.5. Two-sided communication 9
2.6. One-sided communication paradigma 9
2.7. Remoteloadstores 9
2.8. Explicit und implicit synchronization 10
2.9. Synchronous and asynchronous communication 11
2.10. Performance parameter for communication 13
2.11. General-active-target-synchronizationin MPI 15
2.12.PGASModell 17
2.13. OpenSmem memory model 18
2.14. Difference between a GPUanda CPU 19
2.15. Block diagram of a GK100GPU 21
2.16. Block diagram of a streaming multi processor 21
2.17. GPU memory write bandwidth 22
2.18. Simplified block diagram of the Intel XeonPhi 23
2.19. Simplified block diagram of a AMD LianoAPU 24
2.20. A 2-dimensional GPU-thread grid with 2-dimensional blocks 27
2.21. CUDA memory Modell, 28
2.22. Design space of network interfaces 30
223.PCletopology 31
2.24. QPlinterconnect oL 32
2.25. Hl'interconnect oo . 32
2.26. Two register interface oL oL 33
2.27. Infiniband subnet topology oL 0oL 35
2.28. Work request processing in Infinibando 0000 36
2.29. Simplified view of the Infiniband software stack 39
2.30. The principle block diagram of the Extol NIC 40
2.31. Extoll softwarestack oL oL 43
2.32. Communication Control for inter-GPU communication 44
2.33. Workflow, communication is controlled by CPU 45
2.34. Workflow, communication is controlled by GPU 45

2.35.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.
3.14.
3.15.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.
4.10.
4.11.
4.12.
4.13.
4.14.
4.15.
4.16.
4.17.

5.1
5.2.
5.3.
5.4.
3.5.
5.6.
3.7.
5.8.

List of Figures

Communication methods for distributed GPUs 46
Data transfer methods between distributed GPUs 48
Sequential and pipelined data transfero 48
Data transfer without GPUDirect 1.0 49
Data transfer with GPUDirect 1.0 49
Data transfer with GPUDirect peer-to-peer 50
Unified virtual address space (UVA) 50
Data transfer with GPUDirect RDMA 51
Mellanox GPUDirect RDMA support 53
GPUDirect RDMA with MMIO 35
Registration of MMIO addresses 56
GPUDirect RDMA performance of Infiniband 57
GPUDirect RDMA performance 58
Bandwidth using different transfer directions 59
BandwidthonIvy Bridge L. 59
Bandwidth over the QPI'link 60
GASPI memorymodelo L 68
Passive communicationin GASPI 000 ... 69
Weak synchronizationin GASPI 71
GASPIsupportfor GPUs oL 72
Data flow for gaspi_gpu_write, 77
Staged data transfers on Sandy Bridge, K20 GPUs 78
Staged data transfers on Ivy Bridge, K40 GPUs 78
Bandwidth, GPI-2 vs. Mvapich2 80
Latency, GPI-2 vs. Mvapich2 81
Overhead, GPI-2 vs. Mvapich2 82
GASPI total runtime of the allreduce operation 83
GPU-allreduce, relative to host-allreduce operation 83
Synchronization methods for GPU/host synchronization 84
Stencil environments Lo Lo 85
Boarder exchange for a 2-D stencilcode 86
Control flow of a hybrid stencil application 87
Strong scaling of the Himeno benchmark using GPI-2 and MPI 88
Sample work request for Infintbando 92
Sample completion element for Infiniband 0oL 93
Structure of an RMA descriptor for remote put/get commands 93
Structure of a RMA notification for put/get commands 94
Software stack to allow a GPU to communicate 95
Steps to create an communication context on the GPU 96
Location of communication resources 97
Access to TEMOLE TESOUICES v v v v vttt e e 98

179

List of Figures

5.9. PCle accesses with queue buffersonhost 102
5.10. PCIe accesses with queue bufferson GPU 103
5.11. Latency of GPU-controlled Infiniband communication 105
5.12. Bandwidth of GPU-controlled Infiniband communication 106
5.13. Latency of GPU-controlled Infiniband atomic operations 107
5.14. Message rate of GPU-controlled Infiniband communication 108
5.15. Message rate of GPU-controlled Infiniband communication2 109
5.16. Performance counter for Infiniband communication 113
5.17. Latency of GPU-controlled communication, using Extoll RMA 117
5.18. Bandwidth of GPU-controlled communication, using Extoll RMA . . . 118
5.19. 3-D stencil thread blocks 0oL 124
5.20. 2-D thread block oo 124
5.21. Control flow of a stencil application, in kernel synchronization 125
5.22. Control flow of a stencil application, stream synchronization 127
5.23. Control flow of a stencil application, device synchronization 128
5.24. CPU overhead dynamic parallelism 130
5.25. Energy efficiency forasingle GPU 0000 131
5.26. Power over time without communication 131
5.27. Performance of the Himeno benchmark 132
5.28. Communication overhead of the Himeno benchmark 133
5.29. Energy efficiency of the Himeno benchmark 134
5.30. Power over time for the Himeno benchmark 135
6.1. Simplified system and user view of a GGAS cluster 140
6.2. SMFU Address Space Layout 144
6.3. GGAS address spacelayout 145
6.4. Simplified way of a store request using GGAS 146
6.5. GGASsoftware oo o 148
6.6. Initialization of the global GPU address space 149
6.7. Latency for communication using GGAS 152
6.8. Bandwidth for communication using GGAS 153
6.9. Coalescing effects for remote memory accesses 154
6.10. Performance of the GGAS-barrier 157
6.11. Gathering L 159
6.12. Broadcast 159
6.13. All-gather L 159
6.14. All-to-all 159
6.15. Binomial tree for eightnodes L L. 160
6.16. Results of the reduce operation on eight GPUs 161
6.17. Results of the allreduce operation on eight GPUs 161
6.18. Results of the reduce and allreduce benchmarks 162
6.19. Control flow of a stencil application, using GGAS 164
6.20. Himeno weak scaling, 165
6.21. Himeno strong scaling 165

180

List of Figures

6.22. Performance of the global reduction benchmark 166
6.23. Performance of the RandomAccess Benchmark 167
6.24. Energy efficiency for the Himeno benchmark 168
6.25. Energy efficiency of the global reduction benchmark 169
6.26. Energy efficiency of the RandomAccess benchmark 169

181

List of Tables

182

2.1.
2.2.

3.1.

4.1.
4.2.

5.1.
5.2.
5.3.
5.4.
3.5.
5.6.

6.1.

CUDA extensions for function calling 26
Possible configurations for notifications 42
Maximal bandwidth in MB/s using GPUDirect RDMA 59
Synchronization time for different host-GPU synchronization methods . 84
Himeno problemssize 87
List o Infiniband resources 0L 99
Latency of Infiniband communication control functions 110
Performance counter Infiniband 0000 110
Latency of simplified communication requests on the GPU 112
Performance counter for Extol RMA 120
Properties of the Himeno benchmark 132
Incoming requestson SMFUo o000 154

Listings

2.1.
2.2.

3.1.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

5.1
3.2.
3.3.
5.4.
3.5.
5.6.
5.7.
5.8.
5.9.

6.1.
6.2.
6.3.
6.4.
6.3.
6.6.
6.7.

Example for memory consistency L 7
CUDA kernellaunch 27
Stepwise creation of the page table for MMIO addresses 56
Using MPI for data transfer between GPUs, no CUDA-aware MPI . . . 64
Using CUDA-aware MPT 64
GASPIcodeexample Lo oL 73
GASPI for GPUs code example 73
Post-work-wait loop for GASPI 0oL 81
Post-work-wait loop for MPT 0oL 81
Creation of a QP for the GPU, host function 101
Creation of a QP for the GPU, GPU kernel 101
Creating an RMA connection 115
RMAportforaGPU 116
Creating a descriptoronthe GPU 116
Stencil code with communication in compute kernel 126
Communicationkernelo 127
Set CPU to sleep while waiting for completion 130
Increased polling with GASPL 134
Simple remote write example with GGAS 150
Code example using GGAS, pingpong Benchmark 151
Code example for remote read using GGAS 151
Barrier using dynamic parallelism00 00000 156
Barrier using a barrierkernelo 000000000 156
Reduce withremoteread 158
boundary transferusing GGAS 0oL 163

183

Danksagung

An dieser Stelle méchte ich mich bei allen Menschen bedanken, die mich beim Erstellen
dieser Arbeit Unterstiitzt haben.

An erster Stelle mochte ich mich bei Professor Dr. Ulrich Briining bedanken, der mich
bei dieser Dissertation betreut hat und mir mit fachlichen und personlichen Rat zur Seite
stand und mich sicher durch die Zeit der Promotion geleitet hat. Ein besonderer Dank
gilt auch Professor Dr. Holger Froning, der durch Ratschldge und fachliche Diskussionen
viel zur Steigerung der Qualitat dieser Arbeit beigetragen hat und mir gerade in der
Anfangszeit bei Weiterentwicklung meiner wissenschaftlichen Fahigkeiten geholfen hat.
Ein weiterer Dank geht an Benjamin Klenk, der mit seinen Arbeiten auch zum gelingen
dieser Promotion beigetragen hat. Da ich an dieser Stelle nicht alle einzeln nennen kann,
mochte ich dem gesamten Lehrstuhl fiir Rechnerarchitektur der Universitat Heidelberg
danken.

Weiter Dank geht an Dr. Franz-Joseph Pfreundt und Dr. Carsten Lojewski vom Fraun-
hofer Institut fiir Wirtschafts- und Technomathematik (ITWM), die mir diese Promotion
ermoglicht haben und mir in meiner Zeit am ITWM immer mit Rat und Tat zu Seite
standen. Mein Dank gilt der Fraunhofer Gesellschaft, die mir diese Promotion finanziell
ermoglicht hat und mir die Méglichkeit gab, an internationalen Konferenzen teilzuneh-
men. Ich bedanke mich bei dem gesamten Team vom Competence Center High Per-
formance Computing am I'TWM fir die gute Aufnahme und herzliche Unterstiitzung.
Ganz besonderen Dank mdchte ich an dieser Stelle Frauke Santa Cruz aussprechen, die
mir bei vielen organisatorische Aufgaben zur Seite stand und mir auch viele personliche
Ratschlage gegeben hat.

Weiterhin méchte ich mich bei Nvidia, der Extoll GmbH und bei Xilinx Inc. fiir die
Unterstiitzung durch Hardware und inhaltliche Anregungen bedanken.

Ein weiterer Dank gilt auch den Reviewern meiner Veréffentlichungen, die mit ihrer
teilweise konstruktiven Kritik zur Steigerung der fachlichen Qualitét dieser Arbeit beige-
tragen haben. Ferner bedanke ich mich bei Hemant Shulka fiir die Betretung in meiner
Zeit in Berkeley. Sean danke ich fiir das gewissenhafte Korrekturlesen dieser Arbeit.

GroBer Dank gilt meiner Familie, die mir durch ihre finanzielle und vor allem emo-
tionale Unterstiitzung den Weg in die Wissenschaft erst ermdglicht hat. Bet meinem
Freundeskreis mochte ich mich ebenfalls bedanken, da sie mir gelegentlich zum nétigen
Abstand verholfen haben. Ganz besonders méchte ich mich bei Philipp bedanken, der
mir nicht nur in den schweren Stunden die Stabilitit gegeben hat, dieser Promotion
erfolgreich zu schaffen.

184

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

(8]

[10]

[11]

[12]

H. Sutter and J. Larus, “Software and the concurrency revolution”, Queue, vol.

3, no. 7, pp. 54-62, 2005.

H. Sutter, “The free lunch is over: a fundamental turn toward concurrency in
software”, Dr. Dobb’s Journal, vol. 30, no. 3, pp. 202-210, 2005.

CUDA C programming guide, version 6.5, Nvidia, Oct. 19, 2014. [Online]. Avail-
able: http://docs.nvidia.com/cuda/index.html.

The OpenCL specification, Khronos OpenCL Working Group, Nov. 2013. [Online].
Available: https : //www . khronos . org/registry/cl/specs/opencl-
1.2.pdf.

The OpenACC application programming interface, OpenACC Working Group, CRAY
Inc, The Portland Group Inc, and NVIDIA, Aug 2013. [Online]. Available:
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.
pdf.

(Aug. 30, 2014). Green500, [Online]. Available: http : / / www . green500 .
org/.

D. Jacobsen, J. Thibault, and I. Senocak, “An MPI-CUDA implementation for
massively parallel incompressible flow computations on multi-GPU clusters”,
in Proceedings of 48th AIAA Aerospace Sciences Meeting and Exhibit, vol. 16, Orlando,
Florida, USA, 2010, pp. 6151-6166.

E. Phillips and M. Fatica, “Implementing the Himeno benchmark with CUDA
on GPU clusters”, in Proceedings of International Symposium on Parallel & Distributed
Processing (IPDPS), IEEE, Atlanta, Georgia, USA, 2010, pp. 1-10.

W. Ma, S. Krishnamoorthy, O. Villay, and K. Kowalski, “Acceleration of streamed
tensor contraction expressions on GPGPU-based clusters”, in International Con-

Jerence on Cluster Computing (CLUSTER), IEEE, Heraklion, Crete, Greece, 2010,
pp- 207-216.

(Sep. 3, 2014). Top 500 website, [Online]. Available: http: //www . top500.
org/.

J- Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology chal-
lenges”, in Proceedings of the 9th International Conference on High Performance Computing
Jor Computational Science (VECPAR), Berkeley, California, USA: Springer, 2011,
pp. 1-25.

D. Sima, T. Fountain, and P. Kacsuk, Advanced Computer Architectures A Design Space
Approach. Addison-Wesley Longman Publishing Co., Inc., 1997.

185

http://docs.nvidia.com/cuda/index.html
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.green500.org/
http://www.green500.org/
http://www.top500.org/
http://www.top500.org/

Bibliography

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]
(23]

[24]

[25]

[26]

186

M. Flynn, “Exploring memory consistency for massivelythreaded throughput-
oriented processors”, Proceedings of the IEEE, vol. 54, no. 12, pp. 1901-1909,
1966.

L. Lamport, “How to make a multiprocessor computer that correctly executes
multiprocess programs” , Computers, IEEE Transactions on, vol. 100, no. 9, pp. 690—
691, 1979.

B. A. Hechtman and D. J. Sorin, “Exploring memory consistency for massively-
threaded throughput-oriented processors”, in Proceedings of the 40th Annual Inter-
national Symposium on Computer Architecture, ACM, Tel-Aviv, Israel, 2013, pp. 201—
212.

S. L. Scott, “Synchronization and communication in the T3E multiprocessor”,
ACM SIGPLAN Notices, vol. 31, no. 9, pp. 26-36, 1996.

H. Froning and H. Litz, “Efficient hardware support for the partitioned global
address space”, in Proccedings ofInternational Symposwum on Parallel & Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW), IEEE, Atlanta, Georgia, USA, 2010,

pp. 1-6.
R. Machado, C. Lojewski, S. Abreu, and E-]. Pfreundt, “Unbalanced tree search

on a manycore system using the GPI programming model”, Computer Science-

Research and Development, vol. 26, no. 3-4, pp. 229-236, 2011.

R. Machado, S. Abreu, and D. Diaz, “Parallel local search: experiments with
a PGAS-based programming model”, in International Colloguium on Implementation
of Constraint and LOgic Programming Systems (CICLOPS), Budapest, Hungary, 2012,
pp- 101-116.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Sub-
ramonian, and T. Von Eicken, LogP: Towards a realistic model of parallel computation,
7. ACM, 1993, vol. 28.

D. Grinewald, “BQCD with GPI: a case study”, in International Conference on
High Performance Computing and Simulation (HPCS), IEEE, Madrid, Spain, 2012,
pp- 388-394.

MPI: A Message-Passing Interface Standard, Knoxville, TN, USA, May 1994.

W. D. Gropp, “Learning from the success of MPI” | in High Performance Computing
(HiPC), ser. Lecture Notes in Computer Science, vol. 2228, 2001, pp. 81-92.

R. Rabenseifner, “Optimization of collective reduction operations”, in In Pro-
ceedings of 4th International Conference, Computational Science (ICCS), Krakow, Poland:
Springer, 2004, pp. 1-9.

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective com-
munication operations in MPICH?” | International Journal of High Performance Com-
puting Applications, vol. 19, no. 1, pp. 49-66, 2005.

W. D. Gropp, MPI: the complete reference. the MPI-2 extensions, MIT Press, 2003.

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Bibliography

(Oct. 1, 2014). General active target synchronization, [Online]. Available: http:
//www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node240.htm.

R. Thakur, W. D. Gropp, and B. Toonen, “Minimizing synchronization over-
head in the implementation of MPI one-sided communication”, in Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, ser. Lecture Notes in
Computer Science, vol. 3241, Springer, 2004, pp. 57-67.

D. Ashton, W. Gropp, R. Thakur, and B. Toonen, “The CH3 design for a simple
implementation of ADI-3 for MPICH-2 with a TCP-based implementation”,
Tech. Rep., May 2004.

J- Dinan, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, and R. Thakur, “An
implementation and evaluation of the MPI 3.0 one-sided communication inter-
face”, Preprint, Argonne National Labs, 2013.

UPC language specifications v1.2, UPC Consortium et al., 2005. [Online]. Available:
http://www.gwu.edu/~upc/docs/upc_specs_1.2.pdf.

R. W. Numrich and J. Reid, “Co-array fortran for parallel programming”, in
Proccedings of ACM SIGPLAN Fortran Forum, ACM, vol. 17, New York City, New
York, USA, 1998, pp. 1-31.

A. Aiken, P. Colella, D. Gay, S. Graham, P. Hilfinger, A. Krishnamurthy, B. Li-
blit, C. Miyamoto, G. Pike, L. Semenzato, et al., “Titanium: a high-performance
java dialect”, Concurrency: Practice and Experience, vol. 10, no. 11-13, pp. 825-836,
1998.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C.
Von Praun, and V. Sarkar, “X10: an object-oriented approach to non-uniform
cluster computing”, ACM SIGPLAN Notices, vol. 40, no. 10, pp. 519-538, 2005.

E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. Steele
Jr, S. Tobin-Hochstadyt, J. Dias, C. Eastlund, et al., The fortress language specification,
Sun Microsystems, 2005, p. 140.

Chapel language specification version 0.95, Cray Inc, Apr. 2014. [Online]. Available:
http://chapel.cray.com/spec/spec-0.95.pdf.

M. Weiland, “Chapel, fortress and x10: novel languages for hpc”, The Univer-
sity of Edinburgh, Tech. Rep., 2007.

D. Bonachea, GASNet specification, v1. University of California, Berkeley, 2002.
[Online]. Available: http://gasnet.1bl.gov/CSD-02-1207.pdf.

(Oct. 6, 2014). Berkeley unified parallel C, Lawrence Berkeley National Labs
and UC Berkeley, [Online]. Available: http://upc.1lbl.gov/.

J. A. Kuehn, B. Chapman, A. R. Curtis, R. Mauricio, S. Pophale, R. Nanje-
gowda, A. Banerjee, K. Feind, S. W. Poole, and L. Smith, OpenSHMEM appli-
cation programming interface, v1.0 final, Oak Ridge National Laboratory (ORNL),
2012. [Online]. Available: http://info.ornl.gov/sites/publications/
files/Pub38857.pdf.

187

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node240.htm
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node240.htm
http://www.gwu.edu/~upc/docs/upc_specs_1.2.pdf
http://chapel.cray.com/spec/spec-0.95.pdf
http://gasnet.lbl.gov/CSD-02-1207.pdf
http://upc.lbl.gov/
http://info.ornl.gov/sites/publications/files/Pub38857.pdf
http://info.ornl.gov/sites/publications/files/Pub38857.pdf

Bibliography

[41]

[42]

[43]

[44]

[43]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

188

R. E. Kessler and J. L. Schwarzmeier, “CRAY T3D: a new dimension for cray
research”, in Proccedings ofInternational Computer Conference, Compcon Spring’93, Digest
of Papers, IEEE, San Francisco, California, USA, 1993, pp. 176-182.

B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and L.
Smith, “Introducing OpenSHMEM: SHMEM for the PGAS community”, in
Proceedings of the Fourth Conference on Partitioned Global Address Space Programming Model
(PGAS), ACM, New York, New York, USA, 2010, 2:1-2:3.

Specification of a PGAS API for communication v. 1.0, GASPI: Global Address Space
Programming Interface, Jun. 2013. [Online]. Available: http://www.gaspi.
de/fileadmin/GASPI/pdf/GASPIY,5C_Standard’%5C_Draft.pdf.

D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A Hands-
on Approach, 1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2010.

NVIDIA’s next generation CUDA compute architecture: Kepler GK110, whitepaper, 2013.
[Online]. Available: http://www .nvidia . com/content /PDF/kepler/
NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf.

G. Chrysos. (Nov. 11, 2014). Intel Xeon Phi coprocessor - the architecture, Intel,
[Online]. Available: https://software. intel.com/en-us/articles/
intel-xeon-phi-coprocessor-codename-knights—-corner.

A. Branover, D. Foley, and M. Steinman, “AMD’s llano fusion APU”, Micro, vol.
32, no. 2, pp. 26-37, Mar. 2012.

M. Daga, A. Aji, and W.-C. Feng, “On the efficacy of a fused CPU+GPU pro-
cessor (or APU) for parallel computing”, in Proceedings of Symposium on Application
Accelerators in High-Performance Computing (SAAHPC), Knoxville, Tennessee, USA,
Jul. 2011, pp. 141-149.

Wikipedia. (Sep. 23, 2014). Playstation 4 , wikipedia, the free encyclopedia, [On-
line]. Available: http://en . wikipedia . org/w/index . php?title=
PlayStation_4&01did=626004784.

—, (Sep. 23, 2014). Xbox one, wikipedia, the free encyclopedia, [Online].
Available: http://en.wikipedia.org/w/index.php?title=Xbox_0One&
01did=626747406.

J- Bolz, I. Farmer, E. Grinspun, and P. Schroder, “Sparse matrix solvers on the
GPU: conjugate gradients and multigrid”, ACM Transactions on Graphics (TOG),
vol. 22, no. 3, pp. 917-924, 2003.

J- Kriiger and R. Westermann, “Linear algebra operators for GPU implemen-
tation of numerical algorithms” , ACM Transactions on Graphics (TOG), vol. 22, no.
3, pp- 908-916, 2003.

http://www.gaspi.de/fileadmin/GASPI/pdf/GASPI%5C_Standard%5C_Draft.pdf
http://www.gaspi.de/fileadmin/GASPI/pdf/GASPI%5C_Standard%5C_Draft.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-kepler-GK110-Architecture-Whitepaper.pdf
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://en.wikipedia.org/w/index.php?title=PlayStation_4&oldid=626004784
http://en.wikipedia.org/w/index.php?title=PlayStation_4&oldid=626004784
http://en.wikipedia.org/w/index.php?title=Xbox_One&oldid=626747406
http://en.wikipedia.org/w/index.php?title=Xbox_One&oldid=626747406

[53]

[54]

[53]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[63]

Bibliography

D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M. Houston, J. Owens, M.
Segal, M. Papakipos, and I. Buck, “GPGPU: general-purpose computation on
graphics hardware”, in Proceedings of the Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Tampa, Florida, USA: ACM/IEEE, 2006.

D. Kirk, “NVIDIA CUDA software and GPU parallel computing architecture”,
in Proceedings of the Oth international symposium on Memory management, ISMM, vol. 7,
Montreal, Canada, 2007, pp. 103-104.

J- Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel program-
ming with CUDA”, Queue, vol. 6, no. 2, pp. 40-53, Mar. 2008, ISSN: 1542-
7730.

M. J. Atallah, Algorithms and theory of computation handbook, 1st. Boca Raton, FL,
USA: CRC Press, Inc., 1998, ISBN: 0849326494.

(Apr. 26, 2014). Nvidia kepler tuning guide, Nvidia, [Online]. Available: http:
//docs.nvidia.com/cuda/kepler-tuning-guide/#1l1-cache.

J- Fang, A. L. Varbanescu, and H. Sips, “A comprehensive performance com-
parison of CUDA and OpenCL”, in Proccedings ofInternational Conference on Parallel
Processing (ICPP), 2011, IEEE, Taipei, Taiwan, 2011, pp. 216-225.

K. Karimi, N. G. Dickson, and F. Hamze, “A performance comparison of
CUDA and OpenCL”, Tech. Rep., 2010.

S. Wienke, P. Springer, C. Terboven, and D. an Mey, “OpenACC—first expe-
riences with real-world applications”, in Proccedings ofFuro-Par — Parallel Processing,
Rhodes Islands, Greece: Springer, 2012, pp. 859-870.

J- G. Beyer, E. J. Stotzer, A. Hart, and B. R. de Supinski, “OpenMP for accel-
erators” , in OpenMP in the Petascale Era, Springer, 2011, pp. 108-121.

T. Hoshino, N. Maruyama, S. Matsuoka, and R. Takaki, “CUDA vs OpenACC:
performance case studies with kernel benchmarks and a memory-bound cfd ap-
plication”, in Proccedings of13th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), 2013, IEEE, Delft, Netherlands, 2013, pp. 136-143.

W. Dally and B. Towles, Principles and Practices of Interconnection Networks, ser. The

Morgan Kaufmann Series in Computer Architecture and Design Series. Mor-
gan Kaufmann Publishers, 2004.

T.-y. Feng, “A survey of interconnection networks”, Computer, vol. 14, no. 12,
pp- 12-27, Dec. 1981, ISSN: 0018-9162.

F. Mietke, R. Rex, R. Baumgartl, T. Mehlan, T. Hoefler, and W. Rehm, “Anal-
ysis of the memory registration process in the mellanox infiniband software
stack”, in Proceedings of Euro-Par — Parallel Processing, Dresden, Germany: Springer,
2006, pp. 124-1335.

189

http://docs.nvidia.com/cuda/kepler-tuning-guide/#l1-cache
http://docs.nvidia.com/cuda/kepler-tuning-guide/#l1-cache

Bibliography

[66]

[67]

(68]

[69]

[70]

[71]

[72]

[73]

[74]

[73]

[76]

[77]

190

T. Woodall, G. Shipman, G. Bosilca, R. Graham, and A. Maccabe, “High per-
formance RDMA protocols in HPC”, in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, ser. Lecture Notes in Computer Science, B. Mohr,
J- Troft, J. Worringen, and J. Dongarra, Eds., Springer Berlin Heidelberg, 2006,
pp. 76-85.

J- Liu, J. Wu, and D. K. Panda, “High performance RDMA-based MPI imple-
mentation over infiniband”, International Journal of Parallel Programming, vol. 32,
no. 3, pp. 167-198, 2004.

S. Sur, H.-W. Jin, L. Chai, and D. K. Panda, “RDMA read based rendezvous
protocol for MPI over infiniband: design alternatives and benefits”, in Proceed-
ings of the 11th ACM SIGPLAN symposium on Principles and practice of parallel program-
ming(PPoPP), ACM, New York City, New York, USA, 2006, pp. 32-39.

V. Tipparaju, G. Santhanaraman, J. Nieplocha, and D. K. Panda, “Host-assisted
ZEro-copy remote memory access communication on infiniband”, in Proceedings
of International Parallel and Distributed Processing Symposwum (IPDPS), IEEE, Santa Fe,
New Mexico, USA, 2004, pp. 31-36.

H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa, “Pin-down cache: a virtual
memory management technique for zero-copy communication”, in Proceedings
of the Furst Merged International Conference and Symposium on Parallel and Distributed
Processing (IPPS/SPDP), IEEE, Orlando, Florida, USA, 1998, pp. 308-314.

E Mietke, R. Rex, T. Mehlan, T. Hoefler, and W. Rehm, “Reducing the impact
of memory registration in infiniband”, pp. 1-13, Nowv. 2005.

G. F. Pfister, “An introduction to the infiniband architecture”, High Performance
Mass Storage and Parallel 1/0, vol. 42, pp. 617-632, 2001.

M. Koop, S. Sur, Q. Gao, and D. Panda, “High performance MPI design using
unreliable datagram for ultra-scale infiniband clusters”, in Proceedings of the 21st
annual international conference on Supercomputing (1SC), ACM, Dresden, Germany,
2007, pp. 180-1809.

M. J. Koop, S. Sur, and D. K. Panda, “Zero-copy protocol for MPI using in-
finiband unreliable datagram”, in Proceedings of International Conference on Cluster

Computing (CLUSTER), IEEE, Austin, Texas, USA, 2007, pp. 179-186.

“Mellanox OFED for linux user’s manual rev. 1.5.1”7, Mellanox Technologies,
Tech. Rep., 2010. [Online]. Available: http://www.mellanox.com/related-
docs/prod_software/Mellanox OFED_Linux_user_manual _1_5_1.
pdf.

M. B. Nussle, “Acceleration of the hardware-software interface of a communi-
cation device for parallel systems”, PhD thesis, Universitait Mannheim, 2009.

D. Slogsnat, A. Giese, M. Nissle, and U. Brining, “An open-source hypertrans-
port core” , ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol.
1, no. 3, 14:1-14:21, 2008.

http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_user_manual_1_5_1.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_user_manual_1_5_1.pdf
http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_user_manual_1_5_1.pdf

[78]

[79]

(80]

(81]

(82]

(83]

[84]

[85]

(86]

(87]

(88]

(89]

Bibliography

B. Geih, “Hardware support for efficient packet processing”, PhD thesis, Uni-
versitat Mannheim, 2012.

N. Burkhardt, Fast hardware barrier synchronisation for a reliable interconnection network,
Diploma Thesis, 2007.

B. Klenk, “Comparing different communication paradigms for data-parallel
processors”, Master Thesis, Institute of Computer Engineering, Department
of Physics and Astronomy, University of Heidelberg, 2013.

H. Litz, H. Froning, M. Nuessle, and U. Brining, “Velo: a novel communi-
cation engine for ultra-low latency message transfers”, in Proceedings of the 37th
international conference on parallel processing (ICPP), Portland, Oregon, USA, 2008,
pp- 238-245.

M. Nuessle, M. Scherer, and U. Bruening, “A resource optimized remote-memory-
access architecture for low-latency communication”, in Proceedings of the 38th Con-

Jerence on Parallel Processing (ICPP), Vienna, Austria, 2009, pp. 220-227.

C. Leber, “Efficient hardware for low latency application”, PhD thesis, Univer-
sitit Mannheim, 2012.

7. Fan, E. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU cluster for high per-
formance computing” , in Proceedings of the Conference on High Performance Computing,
Networking and Storage , SC, Pittsburg, Pennsylvania, USA: IEEE, ACM, 2004,
p-47.

J- A. Stuart and J. D. Owens, “Multi-GPU MapReduce on GPU clusters”, in
Proceedings of International Symposium on Parallel & Distributed Processing Symposium
(IPDPS),, IEEE, Anchorage, Alaska, USA, 2011, pp. 1068-1079.

J. C. Thibault and I. Senocak, “Cuda implementation of a navier-stokes solver
on multi-gpu desktop platforms for incompressible flows” , in Proceedings of the 471h
AIAA Aerospace Sciences Meeting, Orlando, Florida, USA, 2009, pp. 2009-758.

G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott, G. Scantlen, and
P S. Crozier, “The development of mellanox/nvidia GPUDirect over infiniband—
a new model for GPU to GPU communications”, Computer Science-Research and
Development, vol. 26, no. 3-4, pp. 267273, 2011.

R. Ammendola, A. Biagioni, O. Frezza, F. L. Cicero, A. Lonardo, P. Paolucci,
R. Petronzio, D. Rossetti, A. Salamon, G. Salina, ¢t al., “Apenet+: a 3d toroidal
network enabling petaflops scale lattice qecd simulations on commodity clusters”,
Computing Research Repository (CoRR), vol. abs/1012.0253, 2010.

R. Ammendola, M. Bernaschi, A. Biagioni, M. Bisson, M. Fatica, O. Frezza, F.
Lo Cicero, A. Lonardo, E. Mastrostefano, and P. S. Paolucci, “GPU peer-to-
peer techniques applied to a cluster interconnect”, in Proceedings of 27th Interna-
tional Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW),
IEEE, Boston, Massachusetts, USA, 2013, pp. 806-815.

191

Bibliography

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

192

R. Ammendola, A. Biagionil, O. Frezza, F. Cicero, A. Lonardo, P. Paolucci, D.
Rossetti, F. Simula, L. Tosoratto, and P. Vicini, “Design and implementation of
a modular, low latency, fault-aware, fpga-based network interface”, in Proceedings
of International Conference on Reconfigurable Computing and FPGAs (ReConlig), Cancun,
Mexico, Dec. 2013, pp. 1-6.

S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. K. Panda, “Ef-
ficient inter-node mpi communication using GPUDirect RDMA for infiniband

clusters with nvidia GPUS” | in Proceedings of International Conference on Parallel Pro-
cessing (ICPP), Lyon, France, 2013, pp. 80—-89.

S. Potluri, D. Bureddy, K. Hamidouche, A. Venkatesh, K. Kandalla, H. Subra-
moni, and D. K. Panda, “MVAPICH-PRISM: a proxy-based communication
framework using infiniband and SCIF for intel MIC clusters”, in Proceedings of

International Conference for High Performance Computing, Networking, Storage and Analysis
(SC), ACM, IEEE, Denver, Colorado, USA, 2013, p. 54.

Intel 5520 chipset and intel 5500 chipst,datasheet, Intel, 2006. [Online]. Available:
http://www.intel.com/content/www/us/en/chipsets/55620-5500-
chipset-ioh-datasheet.html.

D. Komatitscha, G. Erlebacherc, D. Géddeked, and D. Michéaa, “High-order
finite-element seismic wave propagation modeling with MPI on a large GPU
cluster”, Journal of Computational Physics, vol. 229, pp. 7692-7714, 2010.

L. Oden, “GPI2 for GPUs: a PGAS framework for efficient communication in
hybrid clusters”, in Parallel Computing: Accelerating Computational Science and Engineer-
ing (GSE), M. Bader and A. Bode, Eds., ser. Advances in Parallel Computing,
vol. 25, IOS Press, Mar. 2014, pp. 461-470.

M. Bernaschi, M. Bisson, and D. Rossetti, “Benchmarking of communication
techniques for GPUs”, Journal of Parallel and Distributed Computing, vol. 73, no. 2,
pp- 250-255, 2013.

H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. Panda, “GPU-aware MPI
on RDMA-enabled clusters: design, implementation and evaluation”, Parallel
and Distributed Systems, IEEE Transactions on, vol. 25, no. 10, pp. 2595-2605, 2013.

(Apr. 5, 2014). CUDA-aware OpenMPI distribution, [Online]. Available: http:
//www.open-mpi.org/faq/?category=building#build-cuda.
D. K. Panda. (Apr. 5, 2014). CUDA-aware MVAPICH?2 distribution, [Online].

Available:http://mvapich.cse.ohio-state.edu/overview/mvapich2/.

W. Huang, G. Santhanaraman, H.-W. Jin, Q. Gao, and D. K. Panda, “Design
of high performance MVAPICH2: MPI2 over infiniband”, in /4th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-Grid), IEEE, vol. 1,
2006, pp. 43-48.

H. Wang, S. Potluri, M. Luo, A. K. Singh, S. Sur, and D. K. Panda, “MVAPICH2-
GPU: optimized GPU to GPU communication for infiniband clusters” , Computer
Science-Research and Development, vol. 26, no. 3-4, pp. 257-266, 2011.

http://www.intel.com/content/www/us/en/chipsets/5520-5500-chipset-ioh-datasheet.html
http://www.intel.com/content/www/us/en/chipsets/5520-5500-chipset-ioh-datasheet.html
http://www.open-mpi.org/faq/?category=building#build-cuda
http://www.open-mpi.org/faq/?category=building#build-cuda
http://mvapich.cse.ohio-state.edu/overview/mvapich2/

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Bibliography

S. Potluri, H. Wang, D. Bureddy, A. K. Singh, C. Rosales, and D. K. Panda,
“Optimizing MPI communication on multi-GPU systems using CUDA inter-
process communication”, in Proccedings ofoth International Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), IEEE, Shanghai, China,
2012, pp. 1848-1857.

A. K. Singh, S. Potluri, H. Wang, K. Kandalla, S. Sur, and D. K. Panda, “Mpi
alltoall personalized exchange on gpgpu clusters: design alternatives and bene-
fit”, in Proccedings ofInternational Conference on Cluster Computing (CLUSTER), IEEE,
Austin, Texas, USA, 2011, pp. 420-427.

H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur, and D. K. Panda,
“Optimized non-contiguous MPI datatype communication for GPU clusters:
design, implementation and evaluation with MVAPICH2”, in Proceedings of In-
ternational Conference on Cluster Computing (CLUSTER), IEEE, Austin, Texas, USA,
2011, pp. 308-316.

A. Aj1, J. Dinan, D. Buntinas, P. Balaji, W.-c. Feng, K. R. Bisset, and R. Thakur,
“MPI-ACC: an integrated and extensible approach to data movement in accelerator-
based systems” , in Proccedings of International Conference on High Performance Computing

and Communication & Embedded Software and Systems (HPCC-ICESS), IEEE, Liver-
pool, UK, 2012, pp. 647-654.

V. Saraswat, G. Almasi, G. Bikshandi, C. Cascaval, D. Cunningham, D. Grove,
S. Kodali, I. Peshansky, and O. Tardieu, “The asynchronous partitioned global
address space model”, in Proceedings of The First Workshop on Advances in Message
Passing (AMP), Toronto, Canada, 2010, pp. 1-8.

L. Chen, L. Liu, S. Tang, L. Huang, Z. Jing, S. Xu, D. Zhang, and B. Shou,
“Unified parallel ¢ for gpu clusters: language extensions and compiler imple-
mentation”, in Languages and Compilers for Parallel Computing, ser. Lecture Notes in
Computer Science, vol. 6548, Springer, 2011, pp. 151-165.

S. Potluri, D. Bureddy, H. Wang, H. Subramoni, and D. K. Panda, “Extending
openSHMEM for GPU computing”, in Proccedings of International Symposium on
Farallel & Dustributed Processing (IPDPS), IEEE, Shanghai, China, 2013, pp. 1001-
1012.

D. Panda, Enabling efficient use of upc and openshmem pgas models on ghu clusters, San

Jose, CA, USA, Mar. 2013. [Online]. Available: http://on-demand. gputechconf.
com/gtc/2014 /presentations/S4528 - upc - openshmem - gpas - gpu -
clusters.pdf.

M. Baker, S. Pophale, J.-C. Vasnier, H. Jin, and O. Hernandez, “Hybrid pro-
gramming using OpenSHMEM and OpenACC”, in OpenSHMEM and Related
Technologies. Experiences, Implementations, and Tools, Springer, 2014, pp. 74—89.

S. Poole, P. Shamis, A. Welch, S. Pophale, M. G. Venkata, O. Hernandez, G.
Koenig, T. Curtis, and C.-H. Hsu, “Openshmem extensions and a vision for its
future direction”,

193

http://on-demand.gputechconf.com/gtc/2014/presentations/S4528-upc-openshmem-gpas-gpu-clusters.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4528-upc-openshmem-gpas-gpu-clusters.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4528-upc-openshmem-gpas-gpu-clusters.pdf

Bibliography

[112] D. Grinewald and C. Simmendinger, “The GASPI API specification and its
implementation GPI 2.0”, in Proccedings of7th International Conference on PGAS Pro-
gramming Models, Edinburgh, Scotland, UK, 2013, pp. 243-248.

[113] R. Machado and C. Lojewski, “The fraunhofer virtual machine: a communi-
cation library and runtime system based on the rdma model”, Computer Science-
Research and Development, vol. 23, no. 3-4, pp. 125-132, 2009.

[114] (Oct. 12,2014). Osu micro benchmarks, [Online]. Available: http://mvapich.
cse.ohio-state.edu/benchmarks/.

[115] D.Doerfler and R. Brightwell, “Measuring MPI send and receive overhead and
application availability in high performance network interfaces”, in Proceeding of
PVM/MPI user Group meeting, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Bonn, Germany: Springer, 2006, pp. 331-338.

[116] N.Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: an implicitly par-
allel programming model for stencil computations on large-scale gpu-accelerated
supercomputers”, in Proceedings of International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), IEEE,ACM, Seattle, Washington, USA,
Nov. 2011, pp. 1-12.

[117] P. Micikevicius, “3d finite difference computation on gpus using cuda”, in Pro-
ceedings of Znd Workshop on General Purpose Processing on Graphics Processing Units, ACM,
Washington, DC, USA, 2009, pp. 79-84.

[118] (Oct.11,2014). Himeno benchmark, Riken Institute, [Online]. Available: http:
//accc.riken. jp/2444 .htm.

[119] L. Oden, H. Iréning, and F-J. Pfreundt, “Infiniband-verbs on GPU: a case
study of controlling an infiniband network device from the GPU” | Proceedings of

International Symposion on Parallel and Dustributed Processing Symposium Workshops &
PhD Forum (IPDPSW), pp. 1-8, 2014.

[120] B.Klenk, L. Oden, and H. Froning, “Analyzing put/get apis for thread-collaborative
processors” , in Proceedings of International Conference on Parallel Processing Workshops
(ICPPW), IEEE, Minneapolis,Minnesota, USA, 2014, pp. 1-8.

[121] L. Oden, B. Klenk, and H. Froning, “Energy-efficient stencil computations
on distributed gpus using dynamic parallelism and gpu-controlled communica-
tion”, in Proceedings of the 2nd International Workshop on Energy Efficient Supercomputing,
in Press, New Orleans, Louisiana, USA, 2014, pp. 1-10.

[122] J. A. Stuart and J. D. Owens, “Message passing on data-parallel architectures”,
in Proccedings ofInternational Symposium on Parallel & Distributed Processing, IPDPS,
IEEE, Roma, Italy, 2009, pp. 1-12.

[123] J. A. Stuart, P. Balaji, and J. D. Owens, “Extending MPI to accelerators”, in
Proceedings of the 1st Workshop on Architectures and Systems for Big Data, ser. ASBD °11,
Galveston Island, Texas: ACM, 2011, pp. 19-23.

194

http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://accc.riken.jp/2444.htm
http://accc.riken.jp/2444.htm

Bibliography

[124] M. Siand Y. Ishikawa, “Design of direct communication facility for many-core
based accelerators”, in Proceedings of International Symposion on Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), IEEE, Shanghai, China,
2012, pp. 924-929.

[125] M. Si, Y. Ishikawa, and M. Tatagi, “Direct mpi library for intel xeon phi co-
processors”, in Proceedings of International Symposion on Parallel and Distributed Process-
ing Symposium Workshops & PhD Forum (IPDPSW), IEEE, Boston, Massachusetts,
USA, 2013, pp. 816-824.

[126] S. Potluri, K. Hamidouche, D. Bureddy, and D. Panda, “MVAPICH2-MIC: a
high performance mpi library for xeon phi clusters with infiniband”, in Extreme
Scaling Workshop (XSCALE), Aug. 2013, pp. 25-32.

[127] Fraunhofer itwm demonstrates gpt 2.0 with mellanox connect-ib and intel xeon phi, Mel-
lanox Technologies, Fraunhofer ITWM, and Intel, Jun. 2013. [Online]. Avail-
able: http://www.mellanox . com/related-docs/whitepapers /WP _
Fraunhofer_ITWM_Mellanox_Intel_CollaborationVersionl.pdf.

[128] N. Bell and J. Hoberock, “Thrust: a productivity-oriented library for CUDA”,
GPU Computing Gems, vol. 7, 2011.

[129] (Jul. 14, 2014). Cublas-xt — accelerate blas calls with multiple gpus, Nvidia, [On-
line]. Available: https://developer.nvidia.com/cublasxt.

[130] (Jul. 14, 2014). Cufft, Nvidia, [Online]. Available: https://developer.nvidia.
com/cufft.

[131] T Scudiero and M. Murphy. (Jul. 14, 2014). Separate compilation and linking
of CUDA C++ device code, Nvidia, [Online]. Available: http://devblogs.
nvidia.com/parallelforall/separate-compilation-linking-cuda-
device-code/.

[132] D. Merrill, CUB: Rernel-level sofiware reuse and library design, GPU Technology Con-
ference, 2013. [Online]. Available: http://on-demand. gputechconf . com/
gtc/2013/poster/pdf/P0267%5C_DuaneMerrill.pdf.

[133] J. A. Stuart, M. Cox, and J. D. Owens, “Gpu-to-cpu callbacks”, in In Proceeding
of Euro-Par 2010 Parallel Processing Workshops, Springer, Bordeaux, France, 2011,
pp- 365-372.

[134] M. Silberstein, B. Ford, I. Keidar, and E. Witchel, “Gpufs: integrating a file
system with gpus”, ACM Transactions on Computer Systems (TOCS), vol. 32, no. 1,
p. 1,2014.

[135] G.Kerr, “Dissecting a small infiniband application using the verbs api”, Computer
Research Repository (CoRR), vol. abs/1105.1827, 2011.

[136] J. A. Stuart and J. D. Owens, “Efficient synchronization primitives for GPUs”,
Computing Research Repository (CoRR), vol. abs/110.4623, pp. 1-12, 2011.

195

http://www.mellanox.com/related-docs/whitepapers/WP_Fraunhofer_ITWM_Mellanox_Intel_CollaborationVersion1.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_Fraunhofer_ITWM_Mellanox_Intel_CollaborationVersion1.pdf
https://developer.nvidia.com/cublasxt
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
http://devblogs.nvidia.com/parallelforall/separate-compilation-linking-cuda-device-code/
http://devblogs.nvidia.com/parallelforall/separate-compilation-linking-cuda-device-code/
http://devblogs.nvidia.com/parallelforall/separate-compilation-linking-cuda-device-code/
http://on-demand.gputechconf.com/gtc/2013/poster/pdf/P0267%5C_DuaneMerrill.pdf
http://on-demand.gputechconf.com/gtc/2013/poster/pdf/P0267%5C_DuaneMerrill.pdf

Bibliography

[137] S.Xiao and W. Feng, “Inter-block gpu communication via fast barrier synchro-
nization”, in Proceedings of International Symposium on Parallel & Distributed Processing
(IPDPS), IEEE, Atlante, Georgia, USA, 2010, pp. 1-12.

[138] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads style
gpu programming for gpgpu workloads”, in Proceedings of Conference on Innovative
Farallel Computing (InPar), 2012, IEEE, San Jose, California, USA, 2012, pp. 1-
14.

[139] A. Moerschell and J. D. Owens, “Distributed texture memory in a multi-gpu
environment” , Computer Graphics Forum, vol. 27, no. 1, pp. 130-151, 2008.

[140] Z. Fan, F. Qiu, and A. Kaufman, “Zippygpu: programming toolkit for general-
purpose computation on gpu clusters”, in GPGPU Waorkshop at Supercomputing,
Poster, Tampa, Florida, USA, 2006.

[141] J. Nieplocha, R. J. Harrison, and R.]J. Littlefield, “Global arrays: a nonuni-
form memory access programming model for high-performance computers”,
The Journal of Supercomputing, vol. 10, no. 2, pp. 169-189, 1996.

[142] (Jul. 30, 2014). Tuning CUDA applications for kepler, Nvidia, [Online]. Avail-
able: http://docs.nvidia.com/cuda/kepler-tuning-guide/index.
html#ixzz38wvjorz3.

[143] (Jul. 30, 2014). CUDA C programming guide, memory fence functions, Nvidia,
[Online]. Available: http://docs.nvidia.com/cuda/cuda-c-programming-
guide#memory-fence-functions.

[144] L. Oden and H. Froning, “GGAS: global GPU address spaces for efficient com-
munication in heterogeneous clusters”, in Proccedings ofInternational Conference on
Cluster Computing (CLUSTER), IEEE, Indianapolis, Indiana, USA, 2013, pp. 1-
8.

[145] L. Oden, B. Klenk, and H. Froning, “Energy-efficient collective reduce and
allreduce operations on distributed gpus”, in Proceedings of International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), IEEE/ACM, Chicago,Illinois, US,
2014, pp. 483-492.

[146] H. Froning, A. Giese, H. Montaner, I Silla, and J. Duato, “Highly scalable
barriers for future high-performance computing clusters”, in Proccedings of 181h
International Conference on High Performance Computing (HiPC), IEEE, Bangalore, In-
dia, 2011, pp. 1-10.

[147] Y. Yang and H. Zhou, “CUDA-NP: realizing nested thread-level parallelism in
gpgpu applications”, in Proceedings of the 19th ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP, Orlando, Florida, USA, 2014, pp. 93—
106.

[148] 'T. Hoefler, A. Lumsdaine, and W. Rehm, “Implementation and performance
analysis of non-blocking collective operations for mpi”, in Proccedings ofInterna-
tional Conference on High Performance Computing, Networking, and Analysis (SC), IEEE,ACM,
Reno, Nevada, USA, 2007, pp. 1-10.

196

http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html#ixzz38wvj9rz3
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html#ixzz38wvj9rz3
http://docs.nvidia.com/cuda/cuda-c-programming-guide#memory-fence-functions
http://docs.nvidia.com/cuda/cuda-c-programming-guide#memory-fence-functions

[149]

[150]

[151]

[152]

[153]

[154]

Bibliography

M. G. Venkata, P. Shamis, R. Sampath, R. L. Graham, and J. S. L. Ladd, “Op-
timizing blocking and nonblocking reduction operations for multi core clusters:
hierarchical design and implementation”, in Proccedings ofInternational Conference on
Cluster Computing (CLUSTER), IEEE, Indianapolis, Indiana, USA, 2013, pp. 1—
8.

V. Aggarwal, Y. Sabharwal, R. Garg, and P. Heidelberger, “HPCC randomac-
cess benchmark for next generation supercomputers”, in Proceedings of Interna-
tional Symposium on Parallel Distributed Processing (IPDPS), IEEE, Rome, Italy, May
2009, pp. 1-11.

P. Luszcek, J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner, J.
McCalpin, D. Bailey, and D. Takahashi, Introduction to the HPC challenge benchmark
sutte, 2005.

V. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra,
and S. Moore, “Measuring energy and power with PAPI” | in 415t International
Conference on Parallel Processing Workshops (ICPPW), Sep. 2012, pp. 262-268.

J- Enos, C. Steffen, J. Fullop, M. Showerman, G. Shi, K. Esler, V. Kindratenko,
J- Stone, and J. Phillips, “Quantifying the impact of GPUs on performance and
energy efficiency in HPC clusters”, in Proceedings of Green Computing Conference,
IEEE, Chicago, Illinois, USA, 2010, pp. 317-324.

H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL: mem-
ory power estimation and capping” , in Proceedings of International Symposium on Low
Power Electronics and Design (ISLPED), Austin, Texas USA: ACM/IEEE, 2010,
pp. 189-194.

197

	Introduction
	Objectives of this work
	Outline

	Background
	Parallel Systems
	Shared memory systems
	Communication and synchronization in distributed memory systems
	Collective communication functions
	Communication performance
	Communication Interfaces

	Modern Parallel Processors
	Multicore and Manycore architectures
	Architecture of a modern GPU
	Other manycore processors

	GPU Programming Models
	CUDA
	OpenCL
	Directive-based approaches

	Interconnection Networks and Network Interfaces
	Interconnection networks
	PCI-Express
	QPI and Hyper Transport
	Network Interfaces
	Remote Direct Memory Access
	Infiniband
	Extoll

	Communication between Distributed GPUs

	Direct Data Transfer between GPUs
	Inter- and Intra-Node Data Transfer
	Data Transfer Methods
	GPUDirect 1.0
	GPUDirect peer-to-peer

	GPUDirect RDMA
	Nvidia GPUDirect Interface
	Mellanox GPUDirect RDMA support
	Host mapped GPUDirect RDMA support

	Performance Results of GPUDirect RDMA
	Latency and bandwidth
	PCIe peer-to-peer performance
	Intel Ivy Bridge
	Inter I/O-hub data transfer

	Summary

	Host-controlled GPU-to-GPU Communication
	Related work
	CUDA-aware MPI
	GPUs in PGAS languages and libraries

	GASPI-Standard
	Shared memory segments in GASPI
	One-sided communication
	Passive communication
	Collective Operations
	Atomic operations
	Weak synchronization

	Integration of GPUs to the GASPI-specification
	GPU memory segments in GASPI
	Initialization
	GPU memory segment creation
	Remote write and read operations
	Passive communication and atomic operations
	Weak synchronization for GPU segments
	Allreduce
	Additional functions for GPUs

	Performance results
	Bandwidth
	Latency
	CPU-communication overhead

	Application level performance
	Synchronization between GPU and host
	Stencil codes

	Summary

	GPU-Controlled Put/Get Communication
	Related Work
	Communication libraries for the Intel Xeon Phi
	Libraries for GPU computing

	Sourcing communication requests to RDMA-capable hardware
	Work processing on Infiniband
	Work request generation for the Extoll RMA unit
	Conclusion for GPU-controlled communication

	GPU-controlled communication
	Creating a communication environment on the GPU
	Porting resources to the GPU

	Creating an Infiniband communication environment on the GPU
	Context Setup on the Host
	Creating Infiniband elements for the GPU
	Infiniband interface on the GPU
	Micro-benchmark results for Infiniband
	Analysis and optimization

	Creating an RMA environment on the GPU
	Setting up an RMA connection on host
	Porting of an RMA environment to the GPU
	Micro-benchmark results for the RMA unit
	Performance counter analysis for the RMA

	One-sided Communication Interface on the GPU
	Communication endpoints
	Block-save communication
	Asynchronous one-sided communication
	Queues
	Remote Synchronization

	Inter-block synchronization
	In-kernel synchronization and communication
	Stream Synchronization
	Synchronization with dynamic parallelism
	Himeno performance results
	Energy efficiency

	Summary

	Global Address Space for GPUs
	Related work
	GPU memory coherence and consistency
	Coherence
	Consistency

	Hardware support for distributed global address spaces
	Extending the global address space for GPUs
	Restrictions for the global memory size

	The GGAS Software
	GGAS setup
	GGAS GPU API

	Micro-benchmark performance
	Latency
	Bandwidth
	Coalescing effects

	GGAS barrier
	Intra-GPU synchronization
	Barrier performance

	Allreduce and reduce using GGAS
	Reduction with remote read operations
	Reduction with remote write operations
	Work sharing: data distribution over multiple GPUs
	Performance results for the reduce and allreduce operation
	Comparison to MPI

	Application-level performance
	Stencil code
	Global reduction benchmark
	RandomAccess benchmark

	Energy Efficiency
	Energy efficiency of the Himeno benchmark
	Energy efficiency of the global reduction benchmark
	Energy efficiency of the RandomAccess benchmark

	Summary

	Conclusion and Future Outlook
	Power Measurement
	Acronyms
	List of Figures
	List of Tables
	Listings

