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Geometrical Calibration and Filter Optimization
for Cone-Beam Computed Tomography

Abstract

This thesis will discuss the requirements of a software library for tomography and will derive a

framework which can be used to realize various applications in cone-beam computed tomography

(CBCT). The presented framework is self-contained and is realized using the MATLAB environ-

ment in combination with native low-level technologies (C/C++ and CUDA) to improve its com-

putational performance, while providing accessibility and extendability through to use of a scripting

language environment. On top of this framework, the realization of Katsevich’s algorithm on multi-

core hardware will be explained and the resulting implementationwill be compared to the Feldkamp,

Davis and Kress (FDK) algorithm. It will also be shown that this helical reconstruction method has

the potential to reduce the measurement uncertainty. However, misalignment artifacts appear more

severe in the helical reconstructions from real data than in the circular ones. Especially for helical

CBCT (H-CBCT), this fact suggests that a precise calibration of the computed tomography (CT) sys-

tem is inevitable. As a consequence, a self-calibrationmethod will be designed that is able to estimate

themisalignment parameters from the cone-beamprojection data without the need of any additional

measurements. The presentedmethod employs amulti-resolution 2D-3D registration technique and

a novel volume update scheme in combinationwith a stochastic reprojection strategy to achieve a rea-

sonable runtime performance. The presented results will show that this method reaches sub-voxel

accuracy and can compete with current state-of-the-art online- and offline-calibration approaches.

Additionally, for the construction of filters in the area of limited-angle tomography a general scheme

which uses theApproximate Inverse (AI) to compute an optimized set of 2D angle-dependent projec-

tion filters will be derived. Optimal sets of filters are then precomputed for two angular range setups

and will be reused to perform various evaluations on multiple datasets with a filtered backprojec-

tion (FBP)-type method. This approach will be compared to the standard FDK algorithm and to the

simultaneous iterative reconstruction technique (SIRT). The results of the study show that the intro-

duced filter optimization produces results comparable to those of SIRTwith respect to the reduction

of reconstruction artifacts, whereby its runtime is comparable to that of the FDK algorithm.
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Geometrical Calibration and Filter Optimization
for Cone-Beam Computed Tomography

Zusammenfassung

Diese Arbeit diskutiert die Anforderungen an eine Software-Bibliothek für die Computertomo-

graphie (CT) und leitet ein Framework her, welches zur Umsetzung von verschiedenen Anwendun-

gen im Bereich der digitalen Volumentomographie verwendet werden kann. Das vorgestellte Frame-

workwirdmittelsMATLABundnativerTechnologien (C/C++undCUDA) realisiert, um eine hohe

Berechnungsgeschwindigkeit sowie eine einfache Bedienbarkeit und Erweiterbarkeit zu gewährleis-

ten. Auf der Basis dieses Frameworks wird das Verfahren von Katsevich für die Helixtomographie

auf Mehrkern-Hardware umgesetzt und mit der FDK-Methode verglichen. Die Ergebnisse dieses

Vergleichs zeigen, dass die Helixtomographie die Möglichkeit bietet die Messungenauigkeit zu re-

duzieren. Jedoch zeigen sich bei der Helixbahn im Vergleich zur FDK-Methode im Bezug auf Echt-

daten deutlich mehr Artefakte, welche auf Fehlstellungen des CT-Scanners zurückzuführen sind.

Diese Tatsache legt nahe, dass eine präzise Kalibrierung, insbesondere bei Helixscans, unumgänglich

ist. Aus diesem Grund wird ein Selbst-Kalibrierungs-Verfahren entworfen, welches die unbekan-

ntenGeometrie-Parameter aus den Projektionsdaten schätzen bzw. berechnen kann, ohne dass dafür

zusätzliche Messungen notwendig sind. Die vorgestellte Methode verwendet ein 2D-3D Registrier-

ungsverfahren und ein neuartiges Schema zur Neuberechnung der Volumina in Kombination mit

einem stochastischen Projektionsoperator. Dadurch kann der Algorithmus akzeptable Laufzeiten

und eine Präzision im Subvoxelbereich erreichen, so dass er mit anderen aktuellen Kalibriertech-

niken vergleichbar ist. Zusätzlich wird in dieser Arbeit ein neues generelles Verfahren für die Opti-

mierung vonFiltern für dieTomographie unter begrenztemAufnahmewinkel diskutiert. Die präsen-

tierte Methode kann mit Hilfe der Approximativen Inverse (AI) zweidimensionale winkelabhängige

Filter vorberechnen, und diese Filter in einer gefilterten Rückprojektion für verschiedene Daten-

sätze wiederverwenden. Ein Vergleich mit dem FDK- und dem SIRT-Verfahren zeigen, dass die opti-

mierten Filter eine Bildqualität ähnlich zu der von iterativenRekonstruktionsverfahren haben, wobei

die Laufzeit der optimieren gefilterten Rückprojektion vergleichbar zu der der FDK-Methode ist.

iv



Publications

During the work on his doctoral degree the author has contributed to the research fields discussed
within this thesis with the following publications:

• J. Muders, J. Hesser, A. Lachner, and C. Reinhart, “Accuracy Evaluation and Exploration of
Measurement Uncertainty for Exact Helical Cone Beam Reconstruction Using Katsevich Fil-
tered Backprojection in Comparison to Circular Feldkamp Reconstruction with Respect to
Industrial CT Metrology,” in Proc. International Symposium on Digital Industrial Radiology
and Computed Tomography, Jun. 2011, pp. 1–8

• J. Muders and J. Hesser, “Stable and Robust Geometric Self-Calibration for Cone-Beam CT
Using Mutual Information,” IEEE Trans. Nucl. Sci., vol. 61, no. 1, pp. 202–217, Feb. 2014

• ——, “Projection-wise filter optimization for limited-angle cone-beam CT using the Approx-
imate Inverse,” 2014, submitted to IEEE Trans. Nucl. Sci., accepted and in print

As a consequence, a part of the presentedmaterial and results within the following chapters of this
thesis are based upon the aforementioned publications.

v



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Foundations 7

2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Circular and Helical Cone-Beam CT 18

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Material and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Geometric Calibration 52

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



5 Filter Optimization for Limited-Angle CT 97

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Summary and Outlook 143

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Appendices 147

Appendix A Transformation Matrices 148

Appendix B Message Passing from C/C++ to MATLAB 150

Appendix C Effect of Rotation Parameters on the Detector 152

Appendix D Parameter Estimation Algorithm 154

Appendix E Virtual Detector Rebinning 156

Appendix F Relation between Measured and Filtered Data 158

Figures 161

Tables 162

Algorithms 163

Acronyms 164

References 186

vii



For Senta.
♡

viii



Acknowledgments

I would like to thank my advisor, Prof. Dr. Jürgen Hesser, Heidelberg University, for his patient
guidance, encouragement and understanding during the past five years. Jürgen has been extremely
supportive and has also provided me with insightful discussions about the research. I would also like
to thank all members of the Experimental RadiationOncology group at the UniversityMedical Cen-
ter Mannheim of Heidelberg University. In particular, I want to thank Dzmitry Stsepankou for the
long discussions over the research projects and themany hints and comments onmywork. Moreover,
I also express my gratitude to the Faculty of Mathematics and Computer Science for providing the
foundation for my research making this thesis possible.

I must express my deepest gratitude to Senta, my wife, for her continued support and encourage-
ment. You made me believe that I can put together some meaningless mathematics and computer
science to finally build this thesis on top. You helped me through all the ups and downs of my re-
search and gave me the ability to see clearer and to keep focused when I needed it. Without you this
work would not have been possible and this thesis would not exist. I love you beyond∞. Addition-
ally, I thank my parents, my brother and my whole family for their patience and their support. I love
you all so much, and I would not have made it this far without you.

Iwould also like to thank thewhole teamofVolumeGraphicsGmbH.Especially,AndreasKutscheid
and Christof Rheinhardt for their support and for providing me always with a current development
version of VGStudioMAX, additional helical and circular tomographic datasets and their knowledge
in the area of computed tomography. I would also like to express my thanks to Tobias Schön at the
FraunhoferDevelopmentCenter forX-rayTechnologyEZRTfor providingme thePen and theTP09
datasets. Finally, I would like to thank Teresa Fiebig and Stefanie Kirschner from the Department of
Neuroradiology at the Medical Faculty Mannheim of the University of Heidelberg for helping me
with the µCT scans.

ix



Anybody who has been seriously engaged in scientific work
of any kind realizes that over the entrance to the gates of
the temple of science are written the words: ’Ye must have
faith.’

Max Planck

1
Introduction

Cone-beam computed tomography is an imaging technique to acquire the internal structures
of an object using X-ray projections from several views around the scanned item. The X-
rayswhich are cast from their source to a detector form a cone-shaped bundle, such that a 2D

projection of the object of interest is obtained at each source position. Over recent years, this imag-
ing process has had a tremendous impact on applications in the medical and in the industrial sector.
In medicine the high quality 3D images produced by cone-beam computed tomography (CBCT) al-
lowmore precise diagnostics than conventional fan-beam tomography and have become increasingly
important in treatment planning for the patient positioning and verification in image-guided radio-
therapy. In the areas of industrial measurement and non-destructive testing (NDT) tomography has
facilitated the inspection and quality assurance process by providing high resolution images up to the
nanometer scale [4], which can be used to detect and analyzemanufacturing inaccuracies (e.g. casting
or soldering defects).

The huge success of 3D CBCT is based on the theoretical work of Cormack and on the first com-
puted tomography (CT) scanner built and patented by Hounsfield and his colleagues in 1972. For
this invention and their work in the area of X-ray technology the two researches were awarded with
the Nobel Prize in 1979. Since then, new developments and advances in the field of X-ray engineer-
ing together with the increasing availability and computational performance of modern computer
technology have led to faster scanning and reconstruction times, more efficient dose usage, improve-
ments of image quality and in total to wider spread of applications using CT imaging systems. Along
with these proceedings many novel and more efficient image reconstruction algorithms have been
derived. A first mathematical solution to the fundamental problem of calculating an image from its
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Figure 1.1: Various X-ray CT systems1: the YXLON Y.CT Precision (left) is used for precise industrial computed tomog-

raphy applications of large objects in the fields of inspection and metrology, the microfocus YXLON Y.Fox (center) is

suited for the inspection of smaller parts (17 ′′×21 ′′) and theElekta Synergy system for combined kV imaging andMV

radiation therapy is used in themedical area.

line integrals (i.e. projections) has been solved by Johann Radon in 1917. These finding have been
transfered to the field of tomography and are used to date to introduce and to constantly evolve novel
reconstruction algorithms for various CT systems.

In general, there exist many types of CT scanners depending on the area of their application. They
can differ in their general geometric and mechanical setup, in their source and detector properties, in
the size of the scanner itself and of the scanable objects, in their ease of use, as well as in the possible
source trajectories that the machines are able to run. For CBCT the imaging systems in Figure 1.1 de-
picts three differentmachines. The left image shows a large-scale CT scanner which has to be installed
in radiation-shielded bunker and that designed for precise inspection and metrology processes in in-
dustrial CT by delivering highly accurate 3D data, long-term stability through its heavy mechanical
construction and rapid results. Also from the field of industrial tomography stems the μCT scanner
depicted in the center of Figure 1.1. However, this versatile solution has found a way to other 2D and
3D applications (e.g. high-resolution in vivo scans ofmice cerebral vessels [5]) because of its rapid and
precise inspection results, its easy operation and its low space requirements. The third machine dis-
played in Figure 1.1 is an Elekta Synergy system, which combines large field-of-view kilovoltage (kV)
and megavoltage (MV) imaging for the utilization in image-guided radiation therapy (IGRT) and
intensity-modulated radiation therapy (IMRT). It is equipped with imaging tools to visualize tumor
targets and normal tissue during the treatment to optimize the therapy outcome. For this system, the
combined use of kV and MV imaging has been suggested by Wertz et al. [6] to provide fast image
guidance with low dose and sufficient image quality for accurate patient positioning of lung cancer
patients under breathhold.

Although the three aforementioned CT systems differ in their application area and in their me-
chanical setup, they have several properties in common: (1) they all employ a single X-ray source to
acquire projection images, (2) the projections are captured using a flat-panel detector and (3) they all
produce cone-beam images of the object of interest. These properties also fit to all CBCT systems

1The left and the central images can be found online under www.yxlon.com, whereas the right photo has been
taken at the Department of Radiation Oncology of the University Medical Center Mannheim (see www.umm.uni-
heidelberg.de/inst/radonk).
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(a) (b) (c)

Figure 1.2: Reconstructed images of a memory module. In (a) the reconstruction has been computed from an non-

calibratedsystemby introducingarandommisalignment, in (b) thehorizontaldetectordisplacementhasbeenestimated

manually by fitting lines to features of the projection sinogram and in (c) the truemeasured geometric parameters have

been used.

used for the studies carried out in this thesis and they will be used as preconditions for the developed
algorithms in the later chapters. In addition to this, two types of source trajectorieswill be discussed in
the following work: (1) circular and (2) helical scanning geometries. A circular acquisition trajectory
can be realized by either placing the object of interest at the rotational center of the imaging system
while rotating the source and the detector around the object or by a rotation of the object itself while
keeping source and detector fixed. The helical scanning trajectory requires and additional shift of the
object along the rotational axis, so that the projected image of the object is moving vertically on the
detector. For both of these setups several reconstruction algorithms have been developed and well
documented in the books ofNatterer andWübbeling [7], Faridani [8], Buzug [9], Kalender [10] and
Shaw [11]. In practice, methods which use a filtered backprojection (FBP) approach are often favored
over other techniques, because of their straightforward implementation and their computational per-
formance [9]. For circular CBCT (C-CBCT) an approximate solution of the reconstruction problem
has been presented by Feldkamp, Davis and Kress (FDK) [12] in 1984, whereas as for the helical tra-
jectory Katsevich [13] was the first to derive a theoretically exact FBP-type algorithm in 2002. Both
of these methods will be used for the developments presented in this thesis.

1.1 Motivation

The overall quality of the reconstructed image depends on many factors including effects that are
caused by parameters which are inherent in the CT system setup and parameters manipulating the
output of the used algorithms. The here presented work will bymainly concentrated on two of these
effects.
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(a) (b) (c)

Figure1.3: Comparisonof referenceandreconstructed images. The topview (a) and thesideview (d) showaBGA,which

has been used to generate simulated projections. The images in (b) and (e) show the reconstruction with the standard

FBPmethod. The views in (c) and (f) visualize the reconstruction of the BGA using the iterative SIRT algorithm.

1.1.1 Scanner Calibration

One of the factors that will be studied in this thesis concerns the alignment of a CT system. For
computing an accurate solution to the inverse tomographic problem a precise measurement of the
geometric system parameters are need in addition to the acquired projection data. If these measure-
ments do not correspondwith the true systemparameters the reconstruction algorithmwill use a false
configuration to compute the final image and will introduce artifacts due to the geometric misalign-
ment. Figure 1.2 demonstrates on a scanned memory chip the effects which a misaligned scanning
system has on the reconstructed image. The slice image in Figure 1.2a shows how severe these arti-
facts are when the wrong set of geometric parameters is used to reconstruct the object. Ringing and
streak artifacts are introduced, such that the true shape of the scanned item is hardly recognizable.
For the reconstruction in the center of Figure 1.2 the value for the horizontal detector offset has been
estimated manually. Therefore, the projections have been displayed in sinogram space and pairs of
lines have been fitted by hand to corresponding features in the sinogram similar to the method de-
scribed by Mao et al. [14]. By this straightforward approach the artifacts in the final image have been
reduced significantly. However, in comparison to the reference image in Figure 1.2c which has been
computed using the precisely measured geometric setup, it can be seen that the hand-tuned recon-
struction is still worse than the calibrated one. This example clearly shows that an exact alignment of
the scanning geometry is inevitable to achieve accurate results from the chosen reconstruction algo-
rithm. Since a precise and a priori measurement of the geometric parameters which have been used
to acquire the projection data might not always be available, methods are needed that can compute
the calibration parameters from the dataset itself.

1.1.2 Filter Design

The second aspectwhich can become amain influence for the image quality of a FBP-type reconstruc-
tion algorithm is the design of the used filter. Especially when dealing with undersampled data where
the projection count is limited by the angular range or by the number of acquired views, the resulting
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image can suffer from artifacts due to missing frequency information. In this case iterative recon-
struction techniques can provide a better image quality than FBPmethods. This fact is shown in Fig-
ure 1.3 which compares a reference imagewith the reconstructions from limited-angle projection data
of a simulated BGA using standard FBP and an iterative simultaneous iterative reconstruction tech-
nique (SIRT) algorithm. The SIRT reconstruction in Figure 1.3c shows significantly fewer artifacts
than the reconstruction of the FBP in Figure 1.3b. However, the runtime of an iterative algorithm is
commonly longer than a single execution of a FBP algorithm. This is why iterative methods are not
used as widely in practice as such that employ simple filtration and backprojection operations. As
the resolution of projection data increases the computational complexity of iterative algorithms be-
comesmore andmore severe, such thatmethods are needed that achieve the image quality of iterative
methods, but have a runtime in the magnitude similar to those of FBP-type algorithms.

1.2 Objectives and Contributions

On top of the motivations given above, the main aim of this thesis is the derivation and analysis of
novel algorithms that support the improvement of the image quality in the area of CBCT reconstruc-
tion. To achieve this objective the following contributions are presented in this work:

• A detailed description of the implementation ofKatsevich’s theoretically exact FBPmethod for
helical CBCT (H-CBCT). It will point out major aspects that have to be kept in mind when
realizing the algorithm efficiently on the central processing unit (CPU) and graphics process-
ing unit (GPU). Additionally, a study on the accuracy and the measurement uncertainty of
Katsevich’s H-CBCT reconstruction in comparison to the circular FDKmethod will show the
advantages and shortcomings of both approaches.

• A derivation and analysis of a novel calibration technique for 3D helical and circular CBCT.
The method will be able to estimate a set of a priori unknown geometric system parameters
fromtheprovidedprojectiondata, such thatno additional calibrationmeasurements areneeded.
The proposed algorithm is robust against projection noise, has a reasonable runtime between
5 and 20 minutes depending on the size of the dataset, achieves an alignment of the system
such that sub-voxel accuracy is reached and therefore reduces the misalignment artifacts to a
minimum.

• Apresentationof a general scheme for the construction andoptimizationof an angle-dependent
set of 2D filters for limited-angle CBCT which can be integrated into a FBP-type algorithm.
This algorithm is called angle-optimized FBP (AO-FBP). The resulting filters can be precom-
puted and reused for a specific geometric setup and achieve an image quality that is better than
that of the FDK algorithmwith respect to image contrast and artifact reduction and is compa-
rable to current state-of-the-art iterative reconstruction techniques. The runtime performance
of the algorithm is similar to that of the FDK algorithm.
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In addition to each of the contributions above, this thesis contains substantial parts that provide
a collection and a discussion of algorithms published by other research groups world-wide. These
sections hopefully contribute as an introduction to circular and helical reconstruction techniques,
geometric calibration and filter optimization in the area of CBCT. They also can be used as a joint
source of references which provides further details on the cited methods. The main contributions
above also provide the general outline of the following work.

1.3 Outline

This thesis is structured as follows. For the derivation of new tomographic algorithms a better un-
derstanding of the essential prerequisites and needs to process CT datasets is inevitable. Therefore,
Chapter 2 will analyze and describe the requirements of a software framework which can be used to
develop and evaluate novel algorithms in the area of 3D CBCT. The discussed design will then be
used throughout the thesis as a basis for the presented algorithms.

Chapter 3 will give an introduction to FBP methods for circular and helical CBCT. It will present
details on the implementation of Katsevich’s algorithm in context of the aforementioned software
framework. Additionally, this chapter will perform a full evaluation and comparison of the FDK
algorithm and the exact method developed by Katsevich. The results will show possible reconstruc-
tion artifacts and will underline how important a precise knowledge of geometric proprieties of the
tomographic imaging system is.

Based on the previous discussion and on the review of different calibrationmethod, Chapter 4 will
derive a novel strategy for the calibration of CBCT scanners and point out how such a technique can
be efficiently implemented for helical and circular trajectories. Moreover, a complete evaluation of
the novel technique will be conducted to determine its noise and convergence properties.

In Chapter 5 a review of filter design and optimizations methods will provide an overview on cur-
rent techniques used in the area of tomosynthesis and computed laminography. Then, a new ap-
proach for the calculation of optimized filters that can be used in a FBP scheme for limited-angle
CBCT will be described. Studies on simulated and real projection data will be performed to demon-
strate the image quality of the algorithm.

Finally, the conclusion inChapter 6will summarize the presentedwork of this thesis. Additionally,
it will give an outlook on future directions of research with respect to the here derived and discussed
algorithms.

6



I learned very early the difference between knowing the
name of something and knowing something.

Richard P. Feynman

2
Foundations

The previous chapter has provided an introduction to the application areas of computed to-
mography andhas given amotivation for the study of novel techniques in the fields of cone-
beam computed tomography (CBCT) calibration and filter optimization. This chapter will

describe the software tools and the framework which has been specifically developed for computed
tomography (CT) applications. The here described foundations will be used throughout this thesis
to implement the algorithms which will be derived in following chapters.

In the first part of this chapter the software requirements encompassing theneeds and conditions of
a framework for computed tomography applicationswill be analyzed. The secondpart of this chapter
presents in Section 2.2 the design of the software framework with all of its modules and demonstrate
how it can be used easily to build CBCT applications. Additionally, this part will then discuss the re-
alization and implementation of the three layers of the derived software framework usingMATLAB,
C/C++ and Compute Unified Device Architecture (CUDA).

2.1 Requirements

Before starting to design the actual CBCT software framework, the software requirements for appli-
cations in tomographywill be analyzed. The general design issues presented belowwill then form the
basis for the design phase of the framework in Section 2.2. The following list of specifications will
point out important goals that have to be fulfilled by the final set of tools.

Full-Stack: The developed framework has to be complete in the sense that no additional installa-
tions of software development tools are needed to build tomography applications. This means

7



that the framework provides a full set of functionality that suffices to develop algorithms and
perform evaluations on tomographic datasets. Therefore the library has to contain methods
for data input and output, data visualization and evaluation, as well as methods for simulation
of and reconstruction from tomographic projection data.

Compatibility: Multiple operating systemswill be supported by the framework. It will run onWin-
dows, Linux andMacOSX. In addition to this, it has tobe compatiblewith graphics processing
units (GPUs) using a current NVIDIA chipset supporting a compute capability higher than
2.0.

Languages: The framework will have to be written in the MATLAB scripting language supported
by the use of C/C++ and CUDA to implement performance optimizations at several locations
inside the code. The build process of the native source code will have to be organized using
CMake by Kitware, Inc. [15].

In-/Output: For data import and export the framework will have to support different file types.
These types include: raw binary files with an optional header having a given size, single TIFF
images and TIFF image stacks to facilitate simple data exchange between different applications
and HIS projection files from an Elekta Synergy® System. Additionally, dBase and CSV files
will be needed for the import of projectionmetadata in toMATLAB. Since, projectiondata can
be stored with different numerical precisions into raw binary files the framework will also have
to provide a possibility to load data from raw files with the following common precision types:
unsigned integer and signed integer numbers, as well as single and double precision floating
point numbers.

Algorithms: To solve various problems in the area of tomography some basic algorithmic tools need
to be contained in the framework. As a consequence, the framework needs to providemethods
for the generation and the filtering of projection data and for the backprojection of volumes
from the computed projections. In addition to this, the offered implementations of several
non-iterative and iterative reconstruction methods support the derivation of new algorithms,
as they can be used as templates during the development process.

Modeling: Since CT scanners can have or can be configured to use different system geometries, the
framework needs to provide methods to model, store and load these different system setups.
For the integration with the simulation and reconstruction techniques, the library has to con-
tain functions to compute projections matrices from the given system configurations.

Speed: Applications in CBCT usually have to process large amounts of projection and volume data.
Especially, the simulation of projection data and the reconstruction of volumes can be very in-
tensive to compute, in particular for larger datasets. The framework needs to be able to provide
means of optimization for such computationally expensive tasks.

8



Multi-Resolution: During the development of new algorithms for CT, a large amount of time can
be spent for the processing of large datasets. As a consequence the framework needs to provide
methods to run the same algorithm at different resolution scales. By this the derivation of
new approaches can be tested quickly on coarser resolution scales with respect to volume and
projection data, whereas the final algorithm can be run exploiting the full amount of available
data.

Visualization: To facilitate the development of CBCT algorithms with the novel framework, a set
of methods will be provided to visualize the given geometric system setup of a CBCT scanner.
The framework will be able to animate a given configuration of a CT system interactively in
3Dwith the X-ray sourcemoving along the defined trajectory. In addition to this, methods are
needed to quickly show, inspect and compare the results delivered by different algorithms.

Evaluation: In addition to the visualization part, the framework needs methods to compute key
parameters from the algorithmic results to quantify their image quality and to support the
comparison of the implemented methods.

Modularity: To support the integration into a final product (e.g. VGStudio MAX) the framework
needs to bemodular, so that singlemodules can be easily extracted from the framework and in-
tegrated into another software development environment. Moreover, modularity helps in the
optimization andperformance improvementof algorithms since singlemoduleswhich support
a specific implementation can be optimized independently from the rest of the procedure.

Extensible: Since the main purpose of the framework is to develop new algorithms for CBCT, it
needs to be extensible in the sense to existing and novel methods can be integrated into the
framework with a minimal effort.

Simplicity: A requirement that can be seen more or less as a consequence of aforementioned needs
is that the framework keeps things simple and straightforward. This means that although the
framework provides a full basis for tomographic applications, it is clearly structured, free from
complex class hierarchies, easy to learn, not cluttered with optional functionality and thus
straightforward to uses and extend.

2.2 Design

The following section will describe the structure of the framework that is used throughout this thesis
for thepresented tomography applications. During theworkon this thesis thehere described software
library has been built from the ground up, so that the provided tools fit the needs of the applications
thatwill be presented in the later chapters. This sectionwill at first introduce the different layers of the
framework to point out at which places of the library specific parts of the functionality are provided
and how the source code is organized inside the framework. After this, each of the individualmodules
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root/

cpp..................C/C++ layer source files

cuda..................CUDA layer source files

lib.....................used to generate DLL

matlab.............MATLAB layer source files

bin.......................binary MEX files

configurations......Configurations module

core..........................Core module

drawing......................Draw module

external ................ external toolboxes

fileio......................FileIO module

filters.....................Filters module

mex..........................MEX wrapper

pipelines................Pipelines module

scripts...................Top-level scripts

simreco.............Reconstructions module

tests ...................Unit Tests module

transforms ...............Matrices module

mex.....................MEX layer source files

(b)

Figure2.1: Schematic viewof the tomography framework (a) combining thepotentials ofMATLABandnative codeusing

CUDA&C/C++which canbeaccessed through theprovidedMEXwrapper. Thewhole framework is split up into several

modules each designed for specific tasks and covered by unit tests. The folder structure of the framework is shown in

(b).

of the framework will be characterized and it will be outlined at which points these modules are open
for extensions.

As can be seen in Figure 2.1 the framework is split up into three layers. The top layer is realized in
the MATLAB, so that its build-in scripting language can be used to quickly and easily realize novel
and modify existing logarithms. One drawback of the MATLAB environment with respect to the
application in tomography can become its performance and its ability to optimize parts of the code
for the processing of large datasets. This problem can become a bottleneck for CT applications be-
cause the capabilities of MATLAB to parallelize algorithms on multiple cores are quite limited [16].
If the amount of data and the complexity of the algorithms increase the overall processing can become
slower in MATLAB than in a native implementation. The reason for this is that code written in the
MATLAB scripting language is executed by the interpreter on a single processing thread preventing
a parallel execution on different cores. As a consequence, the bottom layer of the framework real-
izes performance critical parts which are essential to CBCT techniques in C/C++ and CUDA on the
central processing unit (CPU) and GPU, respectively, such that a parallel execution of specific code
segments becomes possible. The two layers above are connected by a third layer which uses theMEX-
functionality of MATLAB which allows the wrapping of C-functions and enables their direct usage
from inside the MATLAB environment. In addition to this, the middle layer can be used to realize
small-scale optimizations directly in a singleMEX-filewithout the access to the functionality provided
by the bottom layer. For example an in-place multiplication of large arrays containing complex num-
bers and the generation of permutations from a large array of numbers has been implemented directly
on theMEX-layer. The folder structure of the framework is named in accordance to the three layers.
Under the root directory the folders matlab, mex, cpp and cuda contain the corresponding parts of
the source code. The complete structure of the modules and the layers is summarized schematically
in Figure 2.1a and the folder organization is visualized as a commented directory tree in Figure 2.1b.

Altogether, the top, middle and bottom layers of the framework include severalmodules with each
implementing a group of functions and techniques that can be used for various applications inCBCT
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and which will be used as a basis for the implementation of the reconstruction techniques described
in Chapter 3 and for the derivation of the novel algorithms in the Chapters 4 and 5. In the following
the contents and purpose of each of these modules will be outlined and explained:

Core,Math&Tools: This module provides the basic tools used by many parts of the framework.
All MATLAB functions belonging to these modules are organized in the core folder under the
matlab part of the framework. The functionality in the core toolbox includes methods which
allow type and unit conversion (e.g. bool2string, n2s, sizeof, numdim, deg2rad, rad2deg, ...),
random number and noise generation (e.g. shuffle, addnoise, ... ), basic image stack processing
methods (e.g.normalize_range, invert_image, flipud_slices, ...), gradient computationmethods,
system utilities, statistical tools and other mathematical functions for evaluation purposes (i.e.
snr, cnr,mse, rmse, asf, ...). All methods belonging to the core toolbox are available to all other
parts of framework.

FileIO: The file handling module contains methods to import and export projection images and
volume data from different file formats into MATLAB. The folder of this toolbox has been
named accordingly to the module name (see Figure 2.1b). The supported file formats include:
binary RAW files, TIFF image stacks and HIS projections files. For the reading and writing of
binary data the corresponding methods provide parameters to save and load MATLAB array
data with different numerical precisions (e.g. int, single, double, ...). Additionally, the FileIO
module contains functionswhich read andwritemetadata for projections, volumes and system
setups. Themeta informationwill be imported intoMATLAB structures and can be exported
to different text file formats. By the use of the FileIO methods any metadata can be stored as
and retrieved from JavaScript Object Notation (JSON), ExtensibleMarkup Language (XML),
or comma-separated values (CSV) files. Moreover, the geometric information from an Elekta
Synergy can be loaded from dBase files. In addition to the import and export functionality, the
FileIO module handles automatic ordering and resizing of projection images and volumes in
accordance to the supplied geometric system information of the CT scanner.

Draw: The Draw module bundles an easy interface to access basic drawing routines which can be
used to visualize a givenCBCT system setup (see function draw_geometricsetup). This includes
the visualization the X-ray source position and its trajectory, the location and size of the detec-
tor and the bounding box of the reconstructed volume of interest. Additionally, this module
provides methods to quickly inspect all projections, filters and slices contained in a set of pro-
jection images, in a filter set and inside a given volume, respectively. All of these functions can
be found under the drawing folder inside the matlab tree of the framework. The export of
all the figures that can be drawn with these and with other MATLAB routines is also handled
inside the drawing toolbox by the use of the export_fig function.

Matrices: In general, themodeling of the geometry of a CT scanner is addressed through the system
matrixA, which for a given object of interest f computes the projection data g by the definition
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Table 2.1: Naming conventions for the fields of the configuration structure

Parameter Description Field Name [Unit] Symbol Parameter Description Field Name [Unit]

SystemGeometry File Import

Number of detector columns sizeU Nu Number of projection columns loadU
Number of detector rows sizeV Nv Number of projection rows loadV
Number of projections sizeV Ns Number of projections loadS
Detector column width deltaU [mm] ∆u File format (RAW, TIFF or HIS) FileFormat
Detector row height deltaV [mm] ∆v Size of the file header (to be skipped) HeaderSize [byte]
Distance source-to-projection Dsp [mm] DSP Bit depth (uint16, single, double, ...) BitDepth
Distance source-to-ISO-center Dsi [mm] DSI Flip projections upside-down flip_ud
Start angle startS [°] s0 Flip projections left-right flip_lr
Angular increment deltaS [°] ∆s Flip projections first-last flip_fl
Start z-position startZ [mm] z0
z-increment deltaZ [mm] ∆z

VolumeGeometry TransformationMatrices

Number of voxels in x-direction sizeX Nx Projection of voxel indices to pixel coor-
dinates on the aligned detector MvaNumber of voxels in y-direction sizeY Ny

Number of voxels in z-direction sizeZ Nz Projection of voxel indices to pixel coor-
dinates on the misaligned detector MvVoxel edge length in x-direction deltaX [mm] ∆x

Voxel edge length in y-direction deltaY [mm] ∆y Projection of world space to pixel coordi-
nates on the misaligned detector MwVoxel edge length in z-direction deltaZ [mm] ∆z

of the connected inverse problem: Af = g. However, in the case of 3D CBCT the matrix
A cannot be computed or stored directly because of its enormous size [17]. As a result, the
modeling of the system is commonly represented by projection operators which are steered by
projectionmatrices as described byGaligekere et al. [18]. For this reason, the framework comes
with several routines that facilitate the generation of matrices in homogeneous coordinates.
For the creation of the transformation matrices (translation, rotation and scale) as described
in Appendix A, basic functions are provided by the framework. These methods are then used
to compose more complex transformations between coordinate systems that can be defined
for various system geometries (compare Section 4.3). In addition to this, the generation of
a fundamental projection matrix with respect to a given coordinate system and X-ray source
position is handled by the matrix_projection function as described in Section 4.3.1. All tools
associated with the calculation of matrices are bundled under the transforms directory of the
matlab tree.

Configurations: TheConfigurationsmodule provides on top of theMatricesmodule the possibility
to define the geometric parameters of a CT scanner. Inside the configurations folder each sys-
tem setup can be declared in a separateMATLAB script file (m-file) which additionally defines
a parameter-less function that returns a structure containing a field for each system parameter
and fields with the associated transformation matrices. The field names for the geometric pa-
rameters inside the structure follow the naming conventions defined in Table 2.1. For helical
CBCT (H-CBCT) the Configurations module provides the function compute_maximal_pitch
which computes the helical pitch in such a way that the maximal possible area of the detector

12



Script Configurations Matrices FileIO Pipeline Filters Reconstructions MEX

config file()

update matrices()

return Matrices

return Config.

read raw()

return Vol.

pipeline volumeproject()

forwardproject()

return Proj.

return Proj.

pipeline fdk()

filter fdk()

return Proj.

backproject()

return Vol.

return Vol.

pipeline sirt()

filter preprocess()

return Proj.

reco sirt()

iteration loop

forwardproject()

return Proj.

backproject()

return Vol.

return Vol.

return Vol.

return Vol.

write raw()

return bool

Figure 2.2: Call sequence diagram of aMATALB script using the CBCT tomography framework for the loading of a vol-

ume, the simulation of projections and two consecutive reconstructions of volumes using the FDK and the SIRT algo-

rithm. The involved modules are depicted at the top of the diagram and the bottom layer the framework (C/C++ and

CUDA) has been excluded from the call stack for reasons of clarity and comprehensibility.

can be used in conjunction with Katsevich’s reconstruction algorithm [13, 19]. The maximal
pitch can then be used to calculate the parameters startZ and deltaZ.

Once a system setup has been parameterized, the framework can use the supplied values to
compute the transformation matrices which are needed by the projection operators. The cal-
culation of the matrices for each projection is handled by the updated_matrices function auto-
matically when the configuration function of a previously defined system setup is called. This
behavior is also depicted in the upper part of Figure 2.2. The resulting matrices are stored
with the configuration structure in accordance to the field names shown in the lower right part
of Table 2.1. For the case that some geometric parameters have to be changed after the initial
calculation of the matrices, the Configurations module provides special update functions (e.g.
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Listing 2.1: Simplified version of the FDK filerting routine inMATLAB

function P = filter_fdk(P, H)

% compute size of the padding

[sizeV , sizeU , sizeS] = size(P);

pad = length(H)-sizeU;

prePad = floor(pad *0.5);

postPad = pad -prePad;

H = repmat(H, [sizeV 1]);

for i=1: sizeS % projection loop

% replicate border of current projection

I = P(:,:,i);

I = padarray(I, [0 prePad ], 'replicate ', 'pre');

I = padarray(I, [0 postPad], 'replicate ', 'post');

% fast frequency domain filtering

I = real(ifft(fft(I, [], 2) .* H, [], 2));

% truncate the filtered projections

P(:,:,i) = I(:,prePad +1: prePad+sizeU);

end

update_config_projection_scale, update_config_volume_set_size, ...), to modify these parameters
while keeping the transformation matrices always up-to-date.

In addition to the parameters that define the system and the volume geometry, the configura-
tion structure contains fields that are used by the FileIOmodule during the import of projec-
tion images. These fields are displayed in the upper right part ofTable 2.1. They are interpreted
together with the system parameters by the file loading routines to read the different projec-
tion image formats into MATLAB correctly. Then the imported images are preprocessed by
a rescaling and by correcting their original orientation to the specified one if needed. As the
configuration structure contains all necessary information about the CT system and since it
can be easily extended with additional fields anywhere throughout the frameworkmany of the
internal routines follow a syntax that expects only this structure and a data supplying array (i.e.
projections or volumes) as in- and output. The resulting syntax for a method do_something
that awaits the configuration structure C, the input array D_in and returns its results to the
arrayD_out can generally be written as: D_out = do_something(D_in, C).

Filters: For the computation and the application of filters to projection data the Filters module in-
side the filters directory of the framework comes with to separate classes of methods: (1) func-
tions to compute filters in the spatial or in the Fourier domain and (2) routines that apply the
resulting filter to a set of projections. Functions of the first category have the prefix compute_,
whereas function from the second category startwith filter_ in their name. A simplified version
of the FDK filtering is depicted in Listing 2.1, which shows how to carry out the in-place line-
wise filtering of the projection P using the fast Fourier transform (FFT) with a precomputed
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filterH. The filterH has been computed by the compute_fdk_filter function. The Filtersmod-
ule can be easily extended by additional m-files which follow the aforementioned syntax.

Simulations &Reconstructions: This module can be found in the simreco folder inside the MAT-
LAB layer. It provides implementations for the simulation of projections from numerical
phantoms (i.e. balls, wires, Shepp-Logan, ...) and from discrete volumetric datasets. In ad-
dition to this, the module contains common non-iterative and iterative reconstruction tech-
niques used in the area of CT. By the introduction of operator concept1, which reflects the
system matrix of the inverse problem Af = g through the use of forward- and backprojec-
tion functions provided by the MEX layer in conjunction with a given configuration struc-
ture, the reconstruction techniques are decoupled from the modeling of the CT system. This
approach has basically two advantages: (1) the reconstruction techniques can be run with dif-
ferent forward- and backprojection models and (2) additional reconstruction and simulation
techniques are more straightforward to implement since the operators provide a common in-
terface to the forward- and backprojection routines without the overhead of passing geometric
system parameters around.

Pipelines: The Pipeline module can be seen as logical grouping of methods to support easy and
quick access to the lower level functionality of the framework. A pipeline can be thought of
as a sequence of processing steps. Under the application of each step a pipeline computes the
output dataset from the input data with respect to the supplied configuration. Additionally to
the configuration structure, the input and output parameters of a pipeline are volumes and sets
of projection images. A single step carried out inside of a pipeline can range from basic calls to
MATLAB’s internal functions to the use of filters, simulation and reconstruction techniques
implemented in the other modules of the framework. Like depicted in Figure 2.2 the frame-
work comes with several predefined pipelines (e.g. pipeline_volumeproject and pipeline_fdk)
which can be used as templates to define new ones inside the pipelines folder.

Scripts: Scripts are the top level routines provided with the framework. Scripts are free from func-
tion definitions and their contained commands are processed sequentially. As an example,
Figure 2.2 shows a call sequence diagram for a script that first initializes a CT system setup by
the use of the Configurationsmodule, then imports a volume dataset from a binary file, gener-
ates simulated projections, reconstructs images using the FDKand SIRT algorithms and finally
writes the results in a binary file to the hard disk. More exemplary scripts can be found under
the scripts folder of the MATLAB layer.

Wrapper: TheWrapper module in theMEX layer provides the connection between the algorithms
implemented in native code (C/C++ and CUDA) and theMATLAB environment. Therefore
it has been divided in to two parts. The first part of the module contains the compiled MEX

1For the implementation of linear-operators the Spot toolbox has been used. The toolbox can be found online at
github.com/mpf/spot with a complete tutorial under www.cs.ubc.ca/labs/scl/spot.
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functions under the bin folder of theMATLAB layer. These binaries have been generatedwith
and without debug information which are stored in theDebug and Release subdirectories, re-
spectively, and can be called directly from thewithinMATLAB. In addition to this, the second
part of the wrapper provides a convenience layer with the functions in themex directory that
allow an easier interaction betweenMATLAB and theMEX binaries. These functions handle
the preprocessing of data arrays andMALTAB structures, pass them to theMEXmethods and
post process the resulting data. To gain an interactive feedback (e.g. error and warning mes-
sages or a progress indicator) from the native code layer inside theMATLAB environment the
techniques described in Appendix B have been used.

In addition to MEX layer described above, the framework provides an alternative use of the
native code: a dynamic-link library (DLL) which bundles the functionality of the C/C++ and
CUDA layer can be built from the definitions and implementations in the lib folder (see Fig-
ure 2.1b). This DLL-file can then be loaded in MATLAB’s environment and used to make di-
rect calls to its included functions fromwithinm-files usingMATLAB’s internal library meth-
ods loadlibrary and calllib, respectively. Furthermore, this DLL can be used to integrate the
low level functionality of the framework into other libraries and applications. However, the
MEX wrapper used to access the C/C++ and CUDA functionally showed slight performance
advantages over the DLL-solution.

Volume&Projection Processing: Thismodulehasbeen fully realized inC/C++andprovides func-
tions that were not available in the MATLAB environment and for which a native implemen-
tation resulted in a superior performance. This is why routines that operate on full sets of
projections (e.g. filter_helix, filter_virtualdetector,metric_mattes_mutual_information, ...) and
volume datasets (e.g. resize3) have been realized on the bottom layer inside this module. Fur-
ther details on the implementation of these functions will be given at the corresponding loca-
tions in the Chapters 3 to 5.

Forward- &Backprojectors: In addition to the projection and volumeprocessing, the forward- and
backprojectionmethodshavebeen realized in amodule usingCUDA. The frameworkprovides
two different implementations for projection operators: (1) sampling-based ray casting as pre-
sented byWeinlich et al. [20] and (2) the use of separable footprints as suggested in [21, 22]. In
addition to this, a stochastic forward projection operator has been implemented on that basis
of the ray casting approach and will be described in more detail in Section 4.3.

Unit Tests: For the validation of the correctness of the implemented tools and algorithms inside the
framework unit test have been written inMATLAB. These tests cover not only theMATLAB
routines of the framework as they also test the functions realized in C/C++ and CUDAby call-
ing them through the MEX wrapper. In particular, the forward- and backprojection methods
have been tested for their correctness by paying special attention to the projected locations of
the involved pixels and voxels, such that artifacts caused by errors in the implementation of the
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projection operators were detected and removed. Unit testing greatly reduced the number of
bugs and allowed an effortless integration of some components into VGStudio MAX already.

All the modules described above are loaded into the MATLAB environment by a single call the
devenv script which resides in the MATLAB module path. This script can also be seen as a configu-
ration file, which defines the modules to be loaded during initialization of the frame work and it can
be easily extended to include novel additional or existing external modules into the framework.
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What we observe is not nature itself, but nature exposed to
our method of questioning.

Werner Heisenberg

3
Circular and Helical Cone-Beam CT

Depending on the physical properties of the scanned object the requirements on the me-
chanical setups of computed tomography (CT) systems differwith their usage in themedi-
cal and industrial area. To encompass the needs of those fields of interest the employed scan

trajectory constitutes a key factor, as the specific X-ray source positions and the detector locations re-
strict the types of objects that can be scanned. Two basic types of system geometries are widely used
in both areas: acquisition systems (1) with a circular and (2) with a helical scanning trajectory.

On the one hand a simple geometric system setup, where the source and the detector move on a
circular path relative to the scanned item, lowers the demands and the costs during the manufactur-
ing process of the CT machine. This is one of the main reasons why circular CBCT (C-CBCT) has
been used intensively in medical and industrial applications, so that for the processing and the re-
construction of data from these types of systems a broad spectrum of efficient and stable algorithms
have become available. On the other hand the data acquisition and analysis of large objects, especially
in the industrial sector, require more complex geometrical configurations of the CT system. In par-
ticular, the increasing interest in the scanning of long mechanical objects, e.g. helicopter main rotor
blades [23], has leveraged the advances made in helical computed tomography.

From the algorithmic point of view, the scanning trajectory used for the data acquisitions is one
important factor for the selection of applied reconstruction method. In practice, data acquired from
circular scanning path is commonly reconstructed using the Feldkamp, Davis and Kress (FDK) al-
gorithm [12]. Since this approach is based on a filtered backprojection (FBP)-scheme it can be real-
ized in a two-step implementation (i.e. filtering and backprojection), which has been long studied,
well documented and optimized in tomography literature [24, 25]. The breakthrough for helical
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CBCT (H-CBCT) has been achieved by Katsevich [13, 19] in 2002 with his first presentation of a
theoretically exact reconstruction formula that can be realized using a FBP-type method.

When looking at the field of industrial CT the reconstruction accuracy and the reliability of mea-
surement are vitally important formetrology and non-destructive testing (NDT) applications. How-
ever, these aspects are influenced by many system intrinsic and algorithmic parameters. The first set
of parameters is mainly governed by the employed CT system, whereas the latter set depends on the
chosen reconstruction method. To achieve an optimal image quality and to reduce the measurement
errors to a minimum, a combined parameter configuration has to be selected specifically for each
CT system and algorithmic setup. With respect to the FDK algorithm the crucial factors have been
studied intensively by Barrett and Keat [26] and it has been shown that for cone-beam computed
tomography (CBCT) the circular scan trajectory can produce major artifacts in the images. These
inaccuracies occur because the amount of data acquired from the circular path is not sufficient for
an exact and artifact-free reconstruction. Consequently, only an approximation to the real object of
interest is possible. This approximation is more inaccurate at locations where the sampling provided
by the projection data is sparse, such that artifacts become more prominent, especially at the top and
bottom of the object of interest (compare with Muders et al. [1]).

On the contrary, themethod proposed byKatsevich allows the reconstruction of helical projection
data without the introduction of artifacts at the axial borders of the computed object. Because of the
theoretical exactness of this approach it can be expected to delivermore accurate results than the stan-
dard FDK method. However, Katsevich’s algorithm is non-trivial to realize on current parallel high
performance hardware due to the complexity of its filtration and backprojection steps (compare [12]
with [13]). Although various implementations [27–30] of Katsevich’s exact formula have been re-
ported in literature, these studies suggest that the specific details of each of these implementations
influence the resulting reconstructions. Thus, the implementation details form an important factor
together with the geometric and other algorithmic parameters in relation to the image quality which
can be achieved by Katsevich’s helical reconstruction approach. These numerous degrees of freedom
can be seen as one of the main reasons why the exact helical FBP is not frequently used in the area
of industrial CT, where only few studies have been conducted with real projection data [23, 31, 32]
so far. But to gain reliable dimensional measurements from datasets reconstructed with Katsevich’s
method, it needs to well implemented and tested.

Therefore, this chapter has several aims. First, it will provide a detailed discussion and study of
the implementation of Katsevich’s algorithm for H-CBCT to point out the key aspects which have
to be taken care of when realizing the method on current parallel hardware. Further, the goal of this
chapter is to demonstrate the applicability of Katsevich’s approach in industrial CT by investigating
its strengths and weaknesses in comparison to the conventional FDK method. The here presented
study will use simulated and real projection data from circular and helical trajectories to compare
C-CBCT andH-CBCT reconstructions of a calibrated cubical object with spherical caps, i.e. a calotte
cube (Kugelkalottenwürfel) (KKW), to identify and to analyze themost important factors that influ-
ence the overall image accuracy and the measurement uncertainty in terms of length and form devia-
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tions. Therefore, the reconstructed images will be analyzed in VGStudio MAX1by using coordinate
measurement techniques followed by a statistical evaluation to detect differences in their gray values
and in their geometrical shape. The exactness of the conducted measurements will be quantified and
compared for both algorithms by simultaneous and systematic tuning of the input parameters.

As a result, the presented experiments will outline the measurement uncertainty that can be ex-
pected and will highlight the limitations of both reconstruction techniques in relation to the field of
industrial CT. The resulting statistics of the simulated projections will show that Katsevich’s exact
helical is able to achieve superior image quality and that it can theoretically lead to more precise mea-
surements than the circular FDK method. In contrast to this, the measurements performed on the
real helical datasets suffer from spiral shaped artifacts. These imprecisions are a result of a misaligned
scanning geometry and show how sensible Katsevich’s algorithm is to geometric system parameters.
This fact makes a precise calibration during the data acquisition phase inevitable.

This chapter is organized as follows. At first, Section3.1will give anoverviewof the current state-of-
the-art in CBCTwith emphasis on the advances in exact helical reconstruction techniques. Then the
implementation details of the FDKmethod and Katsevich’s algorithm onmulti-core hardware based
on the software framework presented in the previous chapter will be given in Section 3.2. Addition-
ally, this section will provide an overview of CBCT scanning systems with the geometric parameters
used to generate the projection data. Afterwards, the coordinate measurement methods used to eval-
uate and to compare the circular and helical scans will be introduced, followed by a description of the
conducted experiments and their results in Section 3.3. Finally, in Section 3.4 the results of these eval-
uations will be discussed in the context of measurement uncertainty and conclusion will be drawn.
It has to be considered that the author of this thesis has discussed parts of the material described in
this chapter in [1]. Consequently, some tables and figures within this chapter have been taken over
or have been adapted from this publication.

3.1 Related Work

3.1.1 Circular CBCT Reconstruction

In the field of circular CBCTwith respects to FBP reconstruction techniques much research has been
conducted over the past 30 years. One fundamental publication in this area presented the method of
Feldkamp, Davis and Kress (FDK) [12] for the reconstruction from projection data acquired from a
circular trajectory using FBP. By the incorporation of a priori knowledge into an additional correc-
tion term the FDKmethod has been extended byHui [33] to provide more accurate reconstructions
than Feldkamp’s original approach. In order to compensate missing projection information due to
the circular scanning path Mori et al. [34] introduced a weighting scheme to reduce cone-beam ar-
tifacts and to enhance image quality, such that it cannot only be applied in medical multi-slice CT,
but also for flat-panel detector data acquire with wide cone-angles. The density drop artifact along

1VGStudio MAX is a product of Volume Graphics GmbH which can be found online at www.volumegraphics.com
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the dimension of the cone-angle has been reduced even further by Zheng et al. [35] using a heuristic
weighting functionwhich corrects the anglemismatch of the reconstructed plane from themidplane.
The results of this approach show a significant improvement in relation to the reconstruction artifacts
and demonstrate that this method can also be used to increase the resolution of the FDK algorithm.
Moreover, the past developments in the area of flat-detector computed tomography (FDCT) have
been summarized and reviewed byKalender andKyriakou [36] with a focus on the technical and per-
formance critical aspects of these techniques in comparisons to standard clinical CT. They concluded
that FDCT has superior spatial resolution properties, but implies a lower dose efficient, a reduced
field of view and less resolution in the time-domain. However, the review points out the practical ad-
vantages of FDCT and describes its application areas, e.g. in interventional radiology for immediate
imaging during surgeries.

Furthermore, Turbell [25] gives an overview of alternative algorithms used for circular CBCT and
helical CBCT in comparison to the traditional FDK approach, while he also formulates a version of
the FDK algorithm that runs inO(N3 logN) steps instead ofO(N4) needed by the originally pro-
posed variant. A runtimeperformance in the sameorder ofmagnitudehas been achievedbyXiao et al.
[37] using a recursive hierarchical decomposition of the backprojection operator into sub-volumes,
such that a 7-fold speedup has been measured for a 1283-voxel volume. In addition to these algorith-
mic improvements, the reconstruction from circular cone-beam data has recently become possible
in real-time through the use of additional hardware. Stsepankou et al. [24] suggested to speed up
the backprojection step by up to a factor of 6 using field-programmable gate arrays (FPGAs), while
the image quality of the reconstruction is not degraded by the limited precision of the hardware.
Moreover, Xu and Mueller [38] demonstrated how to exploit the programmable shading pipeline
of commodity graphics processing units (GPUs) devices to compute FDK reconstruction results im-
mediately after the image acquisition. On a PC equipped with a single GPU, their techniques were
able to process 40-50 projections per second with respect to a reconstruction of a 5123-voxel volume.
Instead of using graphics hardware, the backprojection algorithms presented by Knaup et al. [39],
Scherl et al. [40], and Kachelrießet al. [41] have been performance optimized for the Cell Broadband
Engine Architecture (CBEA). By realizing the filtration and backprojection step in a parallel man-
ner on the Cell-processor, they were able to achieve a full run of the FDK method in 6.2 seconds for
a 5123 cube, whereas a full reconstruction of their central processing unit (CPU) implementation
took 3.2minutes. For a standard clinical scenario these speed suffices to present the reconstructed
image in real-time, since the times for data acquisition are usually much higher than the reconstruc-
tion times. With the emergence of NVIDIA’s Compute Unified Device Architecture (CUDA), a C
language environment and programming model for parallel computing on GPUs, many researchers
[42–48] have proposed similar algorithms to accelerate the FDK filtered backprojection algorithm
on graphics hardware. In comparison to the CBEA-based techniques the realizations using CUDA
have a lower implementation effort (see Scherl et al. [43]), while through the use of off-chip mem-
ory access reduction, loop unrolling and multi-threading over multiple GPUs a reconstructed image
has been computed in under 5 seconds for a 5123-voxel volume in [47]. A more general overview on
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the recent use of graphics processing units (GPUs) in the area of medical physic, encompassing image
reconstruction techniques, has been presented by Pratx and Xing [49].

With respect to the FDK algorithm the factors that influence the overall quality of the recon-
structed image have been studied intensively in literature. Soimu et al. [50], for example, have con-
ducted experiments to identify and quantify the effects of several acquisition problems, such as large
cone angle, projection undersampling, limited angular range and truncated projection data. Since the
data sufficiency condition is not fulfilled by the circular cone-beam data, the Feldkamp algorithm has
been shown to perform worse than iterative reconstruction methods with respect to cone-beam arti-
facts, although its computational costs are lower than those of other approaches [51]. A full review
of the most prominent artifacts in today’s 3D CBCT that occur due to the discrepancies between the
theoretically derived system model and the actual physics behind the imaging process has been pre-
sented recently by Schulze et al. [52] with a focus on the application of the standard FDK algorithm
in the medical area. In the industrial field, a tool for the optimal placement of the scanned specimen
has been suggested by Amirkhanov et al. [53] to reduce the amount of image artifacts significantly.
Moreover, a survey with respect to important aspects of industrial CT meteorology, such as accuracy
of the unit of length and measurement uncertainty has been conducted by Kruth et al. [54].

3.1.2 Helical CBCT Reconstruction

In 2001 and 2002 the analytical derivation by Katsevich [13, 55] of a theoretically exact inversion for-
mula which can be expressed as a filtered backprojection algorithm formed a breakthrough in the area
of helical CBCT. By the using a shift-invariant filtering of the derivative of the cone-beam projection
data followed by a backprojection operation, Katsevich’s approach solves the long object problem.
In the initially proposed algorithm the filtration part can be carried out by two different schemes
(see [56]): (1) using a single filtering step requiring differentiation between adjacent projections and
(2) employing a more complicated filtering step with projection independent filtering, but having
the requirement to backproject the filtered data twice with different weighting functions. The math-
ematical properties of Katsevich’s inversion formula and the numerical precision of its implementa-
tion have been studied further in [57]. Within this article it has also been shown that the 2D Radon
transform becomes a special case of Katsevich’s formula when the helical pitch vanishes. In addition
to this, Katsevich [58] has provided a general scheme for the derivation of FBP-type reconstruction
algorithms for source trajectories that fulfill Tuy’s sufficiency condition [59]. He also showed how
to choose the weights during the construction of the inversion formula, such that the long object
problem is solved.

On the basis of this research, Katsevich et al. [60] have functionally extended the original algorithm
to a helical scanner setup where the pitch varies over time. In addition to this, an improved version
of the exact FBP method has been proposed in [19], which, in comparison to the earlier variants,
requires a smaller detector, puts no restrictions on the scanned object inside the gantry and is by a fac-
tor of two faster. Similar properties have also been achieved by an alternative FBP algorithm which
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has been suggested by Zou and Pan [61] and which also performs a theoretically exact reconstruc-
tion for specific regions of interest from aminimal amount of projection data to reduce the radiation
dose. By construction and similar to Katsevich’s algorithm, Zou and Pan’s method is also based on
the concepts of π-lines and π-segments (see Section 3.2.1.1) which need to be computed by numerical
optimization methods (compare [62, 63]) during the reconstruction phase. This fact can become a
performance critical factor during the implementation of these methods. Therefore, Yang et al. [62]
have developed the cone beam cover (CBC) method to realize Katsevich’s inversion algorithm with-
out the computation of π-segments (compare Section 3.2.1.5). While the aforementioned algorithms
only used projection data from within a 1π-window, the method presented by Katsevich [64] uses
redundant information from a three times larger detector region to improve the quality of the pro-
duced images. A summary and a comparison between the results from the 1π and 3π approaches can
be found in [65].

An additional extension of the Katsevich’s algorithm has been constructed in [66] with the re-
quirements of novel electron-beam CT in mind, such that the inversion formula can be applied to
variable radius spiral CBCT systems. The proposed reconstruction technique has been formulated in
the form of a backprojected filtration (BPF) as well as in FBP-format. Yu et al. have shown that their
BPF-based implementation requires less projection data, whereas the FBP approach delivers a supe-
rior image quality. An even more general approach to exact image reconstruction from cone-beam
projections acquired along rather arbitrary scanning curves has been developed by Ye andWang [67].
They have also discussed conditions for filtering directions and proposed a more convenient scheme
than it has been provided by the previous publications of Katsevich. As a result, themethod of Ye and
Wang can be applied to non-standard spirals with non-constant radii and pitches as wells as to saddle
trajectories. Later, Katsevich and Kapralov [68] also presented an exact and efficient FBP inversion
formula for a general class of smooth, non-self-intersecting curves and generalized the selection of π-
lines to achieve an acceptable image quality. A major difference between algorithms outlined above
lies in the selection of filtering lines on the detector. A unifying framework for these approaches has
been described in [69], such that a new2DFBP inversion formula is obtainedwhich can be utilized to
construct FBP and BPF algorithms for general scanning paths. In addition to this, the works of Chen
et al. [70] and Yarman [71] have demonstrated that by the design and the incorporation of appropri-
ate weighting functions the development of novel FBP reconstruction algorithms for arbitrary source
trajectories can also be achieved. Moreover, an optimized Katsevich-type algorithm for helical CBCT
systems with a fractional pitch has been proposed by Katsevich et al. [72] by solving a least square
problem to keep the weights of the Radon planes close to 1. Further applications of exact helical FBP
algorithms to dual- and triple-source CT have been conducted in [73] and [74], respectively.

One important aspect that influences the resolution and image quality of the theoretically exact
CBCT reconstruction is the implementation of the differentiation prior to the filtration phase. As
mentioned above and as described in [56], the differentiation can be carried out in a view-dependent
and in a view-independent manner, whereby the latter version implies more complex filter and back-
projection operations. Therefore, several view-dependent schemes have been suggested and studied
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in literature. Noo et al. [75] have developed a differentiation technique that canbe employedwith dif-
ferent sampling geometries. They have compared it to a direct differentiation and a chain-rule-based
scheme. Additionally, Katsevich [76] presented a formula to compute the derivative by minimizing
the conducted interpolation steps, such that resolution and noise properties are similar the method
described byNoo et al. [75]. However, his differencing scheme is simpler to implement and computa-
tionally more efficient. By exploring the properties of Katsevich’s algorithm in the limit of vanishing
pitch, Faridani et al. [77] have derived another promising discretization scheme for the derivatives. At
the same time, they have shown that a shift of the filtering kernel can be employed to remove ringing
artifacts in the reconstructed images. Only quite recently, Wang [78] used a polynomial interpola-
tion function to increase the precision of the numerical derivative computations and thus achieved
sharper and more accurate images.

The first concrete implementation of Katsevich’s algorithm has been described by Noo et al. [27]
for the curved and flat detector geometry. With respect to both setups they have derived equations for
finitely sampled data from their continuous forms, so that the resulting method realizes Katsevich’s
analytical inversion formula efficiently and accurately. Additional details and an implementation of
this approach inMATLAB can be found in themaster thesis ofWunderlich [79]. For the flat detector
setup, Yu and Wang [80] followed a quite similar approach, but they pointed out several important
differences to the aforementioned implementation which influence the overall image quality: (1) the
necessity of a continuous handling of the endpoints of the π-segments, (2) the superior performance
of a 2-point difference formula over an 8-point one, (3) the relative insensitivity of the reconstruction
quality to the number of filtering lines within a certain interval and (4) the optimality of the rect-
angular window function with respect to Hilbert transform. An alternative implementation, which
however did not prove as computationally efficient as the two previous ones, exploits invariance of
the reconstruction geometry and has been derived byWeber [81] in hisDiploma thesis. In the context
of the aforementioned techniques, the computation of π-lines for each voxel inside the volume of in-
terest can become a bottleneck of the algorithms. However, the fast algorithm presented by Izen [63]
usesNewton’smethod to achieve at least a quadratic rate of convergence forπ-interval computations.

The increasing algorithmic complexity in exact helical CBCT algorithms poses a big challenge on
the effective solution of the reconstruction problem. Since a major part of the computation time is
spent in the backprojection operation, Yang et al. [28] have proposed to parallelize this step in a clus-
ter environment using Message Passing Interface (MPI) in combination with the CBC method, such
that each node can process cone-beam projections independently. Deng et al. [82] have extended
this technique to run both parts, the filtering and the backprojection, on a high performance com-
puting (HPC) cluster achieving significant speedups. The resulting performance increase of their
approach has been analyzed in detail in [83, 84] by the use of estimations from an analytical model.
In contrary to a cluster-based solution other groups have exploited geometric symmetry properties
together with optimized data structures to realize Katsevich’s algorithm on multi-core PC hardware
in a multi-threaded single-instruction multiple-data (SIMD) fashion [29, 85]. For their solutions
an overall performance improvement of up to a factor of 40 has been reported. However, Fontaine
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and Lee [29] suppose that the scalability of the algorithm is limited by the memory bandwidth. For
this reason, Xue et al. [86] has designed a novel ray traversal strategy for Katsevich’s algorithm which
reduces the total memory consumption significantly by reading projection values only once. In ad-
dition to this, the precomputation of lookup tables (LUTs) for detector line coordinates and voxel
weights allowed a full vectorization of the filtering and backprojection steps [87] that performedwell
on the CBEA [88]. This technique allowed helical CT reconstructions for a typical clinical scanner
within a few seconds, such that the resulting images can be made available in almost real-time. An
even higher speedup has been achieved by the implementation of Bi et al. [89] where the convolution
and the backprojection steps have been fully realized on the GPU. In comparison to a pure CPU
implementation the runtime of the GPU version was about 20-100 times faster. Another implemen-
tation which used the graphics hardware to accelerate Katsevich’s backprojection step, while filtering
on the CPU, has been proposed by Yan et al. [90] on the basis of the OpenGL standard and the Cg
shading language. This publication also presented a novel volume blocking scheme based on an ana-
lytically derived overscan formula, which can be used to reconstruct large volume datasets efficiently.
Alternative implementations of Katsevich’s algorithm using NVIDIA’s CUDA [30]2or FPGA hard-
ware [91] have also reported similar speedups. Note that Kachelrieß [87] has compared several of the
aforementioned methods in terms of runtime performance against each other.

In addition to the numerical studies with simulated data conducted in many of the publications
above, other researchers have investigated the image quality of Katsevich’s method. Zhu et al. [92]
have compared it to Feldkamp-type algorithms on helical trajectories and found out that for small
cone-angles both methods deliver a similar quality. However, when the cone angle increases or when
sharp density changes occur along the axial direction the exact FBP is preferable. A comparison of
four different artifact types that can depend on the numerical realization of the individual steps of
Katsevich’s algorithm have been evaluated in [93] and it has been shown how to reduce and remove
these inaccuracies. More theory on the occurrence of reconstruction artifacts in the context of exact
helical backprojection algorithms has been provided by Hass and Faridani [94].

Beside the application of Katsevich’s algorithm in standard clinical spiral CT, it has also been used
for digital tomosynthesis in the area of breast imaging. Themost recent developments for cone-beam
mammo-computed tomography have been summarized in [95–97]. Furthermore, exact helical FBP
has been applied in industrial applications [1, 23, 98], wherewith respect to the probing error a helical
setup can be advantageous (compare Hiller et al. [32]).

3.2 Material and Methods

3.2.1 Reconstruction Algorithms

As it has been outlined above, there have been numerous improvements and implementations of
Katsevich’s algorithm. However, a full comparison of all the techniques used to realize and optimize

2The source code of the CUDA implementation can be found online at www.gpucomputing.net.

25

http://www.gpucomputing.net/content/cone-beam-ct-image-reconstruction-using-katsevich-algorithm-0


Figure 3.1: A parallel pipeline implementation scheme of Katsevich's algorithm. The acquired projection data and the

geometric parameters are passed to the pipeline, projections are initialized and then filtered in parallel by the CPU.

Finally, each projection is backprojected serially on the GPU using a voxel-parallel approach. The filtered projection

data and the reconstructed volume is returned after pipeline completion.

the inversion formula has been yet missing and is also beyond the scope of this thesis. Although, the
following sections will provide a detailed insight on howKatsevich’s method can be implemented on
current CPU and GPU architectures. The work presented below will serve as the basis for the exper-
iments conducted in this and in the following chapters. Please note, that since the FDK algorithm
is a standard method in CBCT, which is widely used and available through libraries and software
packages3a detailed description will be omitted.

The implementation of Katsevich’s FBP algorithm in a multi-threaded pipeline processing ap-
proach using C++ with Intel’s Thread Building Blocks (TBB) library will be described in the follow-
ing. The reconstruction pipeline is organized like depicted in Figure 3.1, such that in combination
with the software framework presented in Chapter 2 data can be passed fromMATLAB to the native
layer and backwards to the MATLAB environment again. As input arguments the pipeline expects
the geometric system parameters together with the acquired helical cone-beam projection data. The
pipeline itself consists ofmainly three processing steps, which are also called filters by the TBB library.
Each of these filters can process projections sequentially or in parallel.

The first step of the pipeline initializes for each projection an individual structure that contains the
corresponding acquisition data and the geometric information, i.e. projection size, index, and angle.
The use of a structure that represents single projections instead of a data collection that stores all
projection images in an array-like manner is preferred in the here presented pipeline implementation
to enable to processing of very large projection sets which might not fit into the internal memory
of the system. The use of individual projections in combination with the token-based scheduling
of the TBB pipeline allows limiting the memory consumption of the whole algorithm while being
able to process the work items in parallel (compare Reinders [99]). In addition to the setup of these
data structures, the first filter initializes two pointers inside of each projection structure that store
the memory locations of the neighboring projections, such that these links can be used during the

3Despite the FDK implementation inside VGStudio MAX and the one included in the MATLAB framework pre-
sented earlier, other versions that can be used in conjunctionwithMATLABare available for downloaded from theMAT-
LAB FileExchange at www.mathworks.com/matlabcentral/fileexchange or can be found within the Image Reconstruc-
tion Toolbox (IRT) at web.eecs.umich.edu/˜fessler provided by Fessler (University of Michigan).
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P1 P2 P3 

Figure 3.2: Linkage of the projections for derivative computations. Each projection stores a pointer to its neighboring

projections, i.e. the previous and next one. The first and the last projection (P1 andPN ) are linked such that their previ-

ous and next pointer link to the same projections as those of the second projection (P2) and the second last projection

(PN−1), respectively.

computation of the derivatives by the second filter in the pipeline (see Section 3.2.1.3). The pointers
to the previous and next projection are initialized in accordance the scheme displayed in Figure 3.2.
The pointers of the first projection P1 are set to the same references as those of the second projection
P2 and the pointers in the last projection PN are initialized identically to the second last projection
PN−1. All interior projections [P2, ..., PN−1] store pointers to their direct neighbors. The whole
initialization step is performed by the CPU and is applied to the projections in parallel. However, as
mentioned above, the number of active tokens, i.e. projections, which are initialized and processed
by the pipeline concurrently, has been limited to four times the number of available threads. This
ensures that for each thread running inside the pipeline sufficient projection structures are available
for processing, but also limits the overall memory consumption.

After the initialization step, the second and the last filter of the pipeline perform the filtering and
the backprojection step of Katsevich’s algorithm, respectively. The filtering is computed on the CPU
in a projection wise approach, while the backprojection is carried out sequentially for each projection
structure on the GPU in a voxel-parallel implementation (see Section 3.2.1.5). Finally, the filtered
projections and the reconstructed volume are returned from the pipeline.

3.2.1.1 Katsevich’s Algorithm

Before the implementation of the filtration and the backprojection will be described, a review of Kat-
sevich’s algorithm [19] in accordance with the derivations in Noo et al. [27], Wunderlich [79] and
Fontaine and Lee [29] will introduce the required notation. The here presented formulations and
implementation details will be restricted to the flat detector geometry, although they can be easily
transferred and applied to curved detector data by exploiting the relation given in equation (14) of
Noo et al. [27].

Commonly, the scanning path used by the Katsevich’s exact FBP is described by a helical trajectory
which can be expressed as

y(λ) =

[
DSI cos (λ0 + λ), DSI sin (λ0 + λ), z0 + P

λ

2π

]
, (3.1)
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Figure 3.3: Flat detector geometry for helical cone-beam image acquisition.DSI andDSP are the distances from the

source to the ISO-center and to the detector, respectively. The detector coordinate system is spanned by the unit vec-

tors eu, ew and ev . The helical trajectory of the X-ray source depends on the angular parameterλ and its starting point

is definedbyz0 andλ0with respect to thez-axis and the angle, respectively. The coordinate spaceof the reconstructed

volume is spanned by the vectorsx, y and z.

where the X-ray source positions y(λ) are parameterized by the angular variable λ. The helical
pitch P defines the translation along the z-axis of the scanner during a single turn. Two additional
constants, i.e. λ0 and z0, are used to define the starting point of the helix. Thus, the angle of the first
acquired projection is defined by λ0 and the initial position of the X-ray source along the z-direction
is given by z0. Additionally, the distance between the X-ray source and the center of rotation, i.e. the
radius of the helix, is given byDSI and the distance from the source to the X-ray detector is defined
byDSP . The parameterization of the source trajectory is depicted in Figure 3.3, which also visualizes
the image acquisition with the flat detector geometry.

In general, a cone-beam projection g taken from the source position y(λ) can be expressed by the
cone-beam transform:

g(λ, u, w) = g(λ, θ) =

∫ ∞

0

f(y(λ) + tθ)dt, (3.2)
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where the vector θ points from the source position y(λ) into the direction of the detector coordi-
nates (u,w). As a consequence, the projections g(λ, θ(λ, u, w)) are a function of (u,w) parameter-
ized by the angle λwith

θ(λ, u, w) =
1√

u2 +D2
SP + w2

(ueu(λ) +DSP ev(λ) + wew(λ)). (3.3)

In equation (3.3) the unit vectors eu, ev and ew span the detector coordinate system dependent on
the projection angle λ, such that the center of the detector corresponds to (u,w) = (0, 0) as shown
in Figure 3.3.

In addition to the basic notation introduced above, the Katsevich’s inversion formula relies on the
concept of π-lines. A π-line is a line that connects two points on the helical source trajectory that lie
not further than 360°, i.e. one helical turn, apart. A special property of π-line is that for a given point
x inside the cylinder encompassed by the helical turns there exists only one π-line passing through
x. Danielsson et al. [100] showed that the truncated cone-beam projections from the helical segment
bounded by the endpoints of the π-line through x suffice to reconstruct f(x). The extremities of
the π-line are denoted with y(λi(x)) and y(λo(x)) and the interval Iπ(x) = [λi(x), λo(x)] with
λi(x) ≤ λo(x) is called the π-segment, or π-interval, that corresponds to the π-line through x.

Now, the backprojection part of Katsevich’s inversion formula for f at a point x inside the cylinder
along the z-axis with radiusDSI can be constituted as

f(x) = − 1

2π

∫
Iπ(x)

1

∥x− y(λ)∥
gF
(
λ,

x− y(λ)
∥x− y(λ)∥

)
dλ (3.4)

where the integration uses the filtered projection data gF (λ, ·) from within the π-segment Iπ(x)
as defined above.

For the computation of the filtered projections gF the concept of κ-planes is used. A κ-plane has
exactly three intersections with the helical source path, such that in terms ofλ one intersection is half-
way between the other two. As a consequence, for each point y(λ) there exists a family of κ-planes
which can be parameterized by an angular parameter ϕ, such that the plane K(λ, ϕ) contains the
points y(λ), y(λ+ϕ) and y(λ+2ϕ). From these three points the normal vector n(λ, ϕ) ofK(λ, ϕ)
can be computed (see [27]).

The filtered projections gF (λ, θ) can nowbe obtained by first taking the derivative g′(λ, θ) of g(λ)
with respect to λ at all directions θ (see Section 3.2.1.3). After this, the filtered data can be calculated
as

gF (λ, θ) =

∫ 2π

0

1

π sin γ
g′(λ, cos γθ + sin γ(θ ×m(λ, θ)))dγ (3.5)

wherem(λ, θ) is a vector normal to the κ-planeK(λ, ϕ) that contains a line through y(λ) in the
direction of θ andwhich has the smallest absolute angleϕ. Note that the× symbol refers to the vector
cross product. As described byNoo et al. [27] the calculation of gF can be expressed as a convolution,
whereby a full proof for the underlying analytical inversion formula can be found in [13].
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3.2.1.2 Discretization

In order to implement Katsevich’s algorithm the equations introduced above have to be applied to
the non-continuous case of discrete sampled data. Assuming thatNs projections have beenmeasured
in total and the initial angle λ0 and the angular spacing∆λ is known, then the discrete angles for the
acquired projections are λk = λ0 + k∆λwhere k = 0, ..., Ns− 1. Each projection hasNu columns
andNw rowswith an evenly spacing∆u and∆w between the columns and rows, respectively. There-
fore, the sample locations of the detector elements can be computed as ui = (i − (Nu − 1)/2)∆u

andwj = (j−(Nw−1)/2)∆wwith i = [0, ..., Nu−1] and j = [0, ..., Nw−1]. As a consequence,
expressions of the form g(λk, ui, wj) will be abbreviated with g[k, i, j] throughout the further text
where appropriate. The detector sample positions ui and wj were precomputed and stored into a
LUTs, so that they can be efficiently accessed during the filtering process.

In addition to this, the X-ray source position along the helical path has been discretized in accor-
dance with equation (3.1) as

yk = y(λk) =

[
DSI cos (λk), DSI sin (λk), z0 + P

k∆λ

2π

]
. (3.6)

3.2.1.3 Derivatives

The first calculation performed during the filtering phase in the pipeline involves the computation
of the derivative of the cone-beam projection data at constant directions along the source trajectory.
Since the derivatives g′(λ, θ) can be discretized in variousways, three different differentiation schemes
have been implemented. The first implementation scheme S1 uses a simple chain rule scheme that
utilizes central and forward differences similar to the 2-points difference formula described in [80].
The differentiation can be carried out as

g′S1[k, i, j] = cs(g[k + 1, i, j]− g[k − 1, i, j])

+ cu(g[k, i+ 1, j]− g[k, i, j])

+ cw(g[k, i, j + 1]− g[k, i, j])

(3.7)

with the factors cs = 1/(2∆λ), cu = (D2
SP + u2i )/(DSP∆u) and cw = uiwj/(DSP∆v).

Note that for the computation of the partial derivative along the λ-direction the central difference
quotient is used, while for the directions parallel to the detector plane, i.e. the u- and w-direction,
forward differences are employed.

The second differentiation scheme S2was designed by replacing the 2-point central differences by
a 6-point central differencing term while keeping the terms for the u- and w-direction equal to S1.
The resulting formula for S2 is given by
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g′S2[k, i, j] = cs((g[k + 1, i, j]− g[k − 1, i, j])+

(g[k + 1, i+ 1, j]− g[k − 1, i+ 1, j])+

(g[k + 1, i, j + 1]− g[k − 1, i, j + 1]))

+ cu(g[k, i+ 1, j]− g[k, i, j])

+ cw(g[k, i, j + 1]− g[k, i, j]) (3.8)

with the factor cs = 1/(6∆λ), while cu and cw are the same as for the first differencing scheme.
The third derivative implementation g′S3 matches the one described by Katsevich [76] which uses

a partially optimized chain rule scheme to improve the image resolution. Details on the implemen-
tation of this differentiation method have been presented in the note of Katsevich [76]. Moreover,
further details andnumerical evaluations of the here implemented differencingmethods can be found
in the publications of Noo et al. [75], Faridani et al. [77], Yu and Wang [80] and Katsevich [76].

The computations of derivatives are carried out as the first step during the filtration phase of the
pipeline. As described earlier, these calculations (compare Figure 3.1), are performed in a projection
parallel manner. Since each projection requires the originally acquired data from its neighboring pro-
jections (g[k−1, ·, ·] and [k+1, ·, ·]) during the differencing step the derivatives cannot be computed
in-place. As a consequence, the results of the derivative computations need to be stored in a tempo-
rary buffer. This projection buffer needs to be available for each thread that carries out a differencing
operation. For this reason, a pool of projection buffers is initialized during the initialization phase of
the pipeline. A projection buffer has the same size as an ordinary projection image (Nu × Nw) and
the number of buffers equals the maximal number of tokens which can be processed concurrently by
the pipeline. References to all buffer objects are stored in a thread-safe container. Once a thread starts
a derivative calculation, it fetches a buffer object from the container and removes its reference from
it, such that two threads never use the same projection buffer. After a successful differencing oper-
ation, the buffer is released by the thread and its reference is inserted into the container again. This
strategy reduces the runtime of the derivative computations by ensuring that the needed temporary
memory is allocated only once and it does not need to be reallocated by each thread for each processed
projection image.

3.2.1.4 Shift-Invariant Filtering

After thederivatives of the cone-beamprojectionshavebeen computed successfully, the shift-invariant
filtering is applied in accordance with equation (3.5) along κ-lines on the detector. A κ-line is defined
by an angleψl as the intersection between the κ-planeK(λk, ψl) and the detector plane. The lines of
intersection can be described by the following function

w[i, l] = w(ui, ϕl) =
P

2πDSI

(ψlDSP +
ψl

tanψl

ui). (3.9)
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where αm = asin(R/DSI) is half the fan angle which depends on the object radius R and the
helix radiusDSI . Given L as the number of κ-lines which are used to map the projection data onto
the tilted lines, the separation between the lines can be computed as∆ψ = (π+2αm)/(L− 1) and
the discrete line angles are then calculated as ψl = −π/2− αm + l∆ψ.

The rebinning of the differentiated projection data g′ to the tilted κ-lines can now be carried out
using linear interpolation similar to [80] by the calculation of jw = w[i, l]/∆w + (Nw − 1)/2 and
performing the following operation:

gr[k, i, l] = gr(λk, ui, ϕl) = cl(ttg
′[k, i, jt] + tbg

′[k, i, jb]) (3.10)

with interpolation indices jt = ⌈jw⌉ and jb = ⌊jw⌋ and with the weights tt = jw − jb and
tb = jt − jw. The rebinned images gr are of the size Nu × L, where the number of filtering lines
L has been computed by the introduction of a factor fr as L = 2Nwfr. In accordance to [80] the
rebinning factor fr has been fixed to a value of 4.0 to ensure high precision during the rebinning
step. The weighting factor cl in equation (3.10) is a length correction termwhich needs to be applied
because of the flat detector geometry and can be calculated as

cl =
DSP

D2
SP + u2i + w[i, l]2

(3.11)

Different from other implementations of Katsevich’s algorithm [27, 29, 79, 80, 90], the weighting
is applied after the linear interpolation step to improve the accuracy of the length correction weight-
ing. In addition to this, the term cl is applied to the projection data in-place, such that no additional
memory is required. In the case of the third derivative scheme S3 the forward height rebinning to
κ-lines is slightly different (see [76]) from the here presented steps, but has also been realized using
the same length correction weighting cl after successful rebinning as described above.

Since the rebinned projection images gr are by a factor of 2fr larger than the original images g the
mapping onto the tilted lines can also not be performed in-place. The temporarymemory needed for
the computations in the space of the κ-lines has been preallocated during the initialization phase of
the pipeline by the same strategy that was used for the derivative computations, such that multiple
threads can acquire image buffers from a thread-safe container and do not need to create their own
buffering structures during runtime.

With the projection images rebinned to the tilted line space, a Hilbert transform is applied to each
filtering line using the fast Fourier transform (FFT) (also see [79]). Therefore, the convolution kernel
of the Hilbert transform has been computed in the spatial domain with sample positions located at
qi = −(Nu − 1) + i− 0.5with i = [0, ..., 2(Nu − 1) + 1] using the following formula:

hH [i] =
1− cos(π(qi))

π(qi)
. (3.12)

Note that the offset of the sample positions qi by half a detector cell has been introduced to com-
pensate the shift of from derivative step and to eliminate ringing artifacts (compare [77, 94]). The
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Hilbert kernel hH has then been transformed to the Fourier domain and is then applied to the filter-
ing lines by element-wise multiplication (⋆). This operation can be expressed as

gr[k, i, l] = F−1
i (Fi(gr[k, i, l]) ⋆ Fi(hH [i]))

∀ k ∈ [0, ..., Ns − 1] ∧ l ∈ [0, ..., L− 1] (3.13)

whereFi andF−1
i are the Fourier transform and the inverse Fourier transform along the rebinned

detector rows, respectively. The resulting filtered projection data is stored in-place within gr after
the Hilbert transform has been calculated, such that no additional memory is consumed. The imple-
mentation of theHilbert transform step uses the Intel Performance Primitives (IPP) library to exploit
SIMD instructions of the CPU.

The final calculation during the filtering phase of the pipeline is a backward height rebinning that
maps the κ-line data back to the detector rows. For this purpose, at each detector coordinate (ui, wj)

an index l has been determined such that

w[i, l − 1] ≤ wj ≤ w[i, l] for ui < 0

w[i, l] ≤ wj ≤ w[i, l + 1] for ui ≥ 0.

After this, linear interpolation coordinates and coefficients can be calculated as

lt = l, lb = l − 1, tt = (wj − w[i, l − 1])/(w[i, l]− w[i, l − 1]) for ui < 0

lt = l + 1, lb = l, tt = (wj − w[i, l])/(w[i, l + 1]− w[i, l]) for ui ≥ 0

and tb = 1− tt ∀ ui. These values are then used to remap the κ-lines to the detector rows by

gF [k, i, j] = tbgr(k, i, lb) + ttgr(k, i, lt). (3.14)

For reasons of runtime performance, this last step is carried out such that the filtered projections
gF are stored at the location of the original projection data g. By this means, the original data is over-
ridden since it is no longer needed by the algorithm and no additional memory needs to be allocated.

One important property of the κ-lines described byw[i, l] is that they are independent of the pro-
jection angle λk. As a consequence, the coefficients w[i, l] are equal for all projections and can be
precomputed and stored in a LUT before the projection processing starts. The coefficients w[i, l]
also have been used to precompute the linear interpolation coefficients for the forward and the back-
ward rebinning step as described above. The interpolationweights are stored into two separate LUTs
and used to speed up the rebinning process even further.
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3.2.1.5 Backprojection

With the filtered data gF (λ, u, w) the volume f can be reconstructed according to equation (3.4).
For a given voxel at location x = (x⋆, y⋆, z⋆) its projected detector coordinates can be calculated by

v⋆(λ, x) = DSI − x⋆cos(λ0 + λ)− y⋆sin(λ0 + λ) (3.15)

u⋆(λ, x) =
DSP

v⋆(λ, x)
(−x⋆sin(λ0 + λ) + y⋆cos(λ0 + λ)) (3.16)

w⋆(λ, x) =
DSP

v⋆(λ, x)
(z⋆ − z0 −

P

2π
λ). (3.17)

The reconstruction of f at point x can then be performed with the formula

f(x) =
1

2π

ko∑
k=ki

gF (λk, u
⋆(λk, x), w

⋆(λk, x))

v⋆(λk, x)
. (3.18)

where the indices ki and ko correspond to the lower and upper bound of the π-interval Iπ(x) such
that λi(x) ≤ λki < λko ≤ λo(x). To access the projection memory the coordinates (u⋆, w⋆) need
to be converted to the corresponding raster indices. For this reason, two interpolation approaches
are provided to compute the projection samples: (1) nearest neighbor [79] and (2) bi-linear interpo-
lation [29].

A straightforward approach to compute equation (3.18) is to first determine the interval Iπ at point
x and then backprojection the projections which fall into the range of Iπ(x). This technique is called
theπ-intervalmethod [79]. In its original version this approach iterates over all projections gF [k, i, j]
to reconstruct a single voxelx. To use theπ-method in combinationwith the here presented pipeline-
based processing architecture, where not all projections reside in the internal memory at the same
time, the computation of the π-intervals have to be performed multiple times for the same point x.
For this reason, the intervals Iπ(x) for all voxels inside the volume of interest are precomputed and
buffered before the first projection is backprojected. The extremities λi and λo of the π-interval of
x = (x⋆, y⋆, z⋆) have been determined by finding the root of the function

Fπ(λi) =
P

2π

[(
π − 2atan

(
βπ(λi)

απ(λi)

))(
1 +

r2 −D2
SI

2DSIαπ(λi)

)
+ λi

]
− z⋆ (3.19)

with r =
√
x⋆2 + y⋆2, γπ = atan2(y⋆, x⋆), απ(λi) = DSI − rcos(γπ − λi) and βπ(λi) =

rsin(γπ − λi). Brent’s method [101] has been employed to compute the root λi of Fπ from an
initial bracketing interval [2π

P
z⋆ − π, 2π

P
z⋆]. Then the upper boundary of the π-interval λo has been

determined by

λo = λi + π − 2atan

(
βπ(λi)

απ(λi)

)
(3.20)
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where r, γπ, απ(λi) and βπ(λi) are defined as above. A full proof for this approach can be found
in Wunderlich [79]. The resulting π-intervals are stored in a voxel-dependent LUT and are reused
during the backprojection operation.

To improve the final quality of the reconstruction it has been proposed in several publications [27,
29, 79, 80] to include the projections that lie slightly outside the π-interval into the backprojection
by using a weighting scheme. In the here presented implementation the weighting ρ(λ, x) of the
π-interval endpoints has been computed similar to Noo et al. [27] and according to the following
equations:

ρ(λ, x) =



0 if λ ≤ λi(x)−∆λ

(1 + di)
2/2 if λi(x)−∆λ < λ ≤ λi(x)

1/2 + di − d2i /2 if λi(x) < λ ≤ λi(x) + ∆λ

1 if λi(x) + ∆λ < λ ≤ λo(x)−∆λ

1/2 + do − d2o/2 if λo(x)−∆λ < λ ≤ λo(x)

(1 + do)
2/2 if λo(x) < λ ≤ λo(x) + ∆λ

0 if λ > λo(x) + ∆λ

(3.21)

where di = (λ−λi(x))/∆λ and do = (λo(x)−λ)/∆λ. With the introduction of the endpoint
weighting function ρ to the π-interval method the final contribution of each projection to f(x) is
then calculated as

δπf(x) =
∆λ

2π

ρ(λ, x)

v⋆(λ, x)
gF (λ, u⋆(λ, x), w⋆(λ, x)). (3.22)

Another approach to compute the projection contributions is the CBCmethod developed by Yang
et al. [62]. This approach uses the Tam-Danielsson (TD) window [102] which defines the region of
the detector which is required for an exact reconstruction. The top border of the TD-window can be
computed for each discrete detector column ui by the evaluation of

wt(u) =
P

2π

DSP

DSI

st(u)

(1− cos(st(u)))
(3.23)

with st(u) = 2π+2atan(DSP/u) foru < 0 and st(u) = 2atan(DSP/u) otherwise. Moreover,
the bottom border of the TD-window can be calculated as

wb(u) =
P

2π

DSP

DSI

sb(u)

(1− cos(sb(u)))
(3.24)

with sb(u) = 2atan(DSP/u) for u < 0 and sb(u) = −2π + 2atan(DSP/u) otherwise. Now,
a point x belongs to the CBC of a projection, if its projected coordinates (u⋆, w⋆) lie inside the bor-
ders of the TD-window. Additionally, Yang et al. [62] have proven that a projection belongs to the
π-interval Iπ(x) if and only if the point x is contained in the CBC of the projection. Therefore, the
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CBC can be used to reformulate the fractional contribution of the backprojection operation in equa-
tion (3.22) by replacing the weighting function ρwith

χ(λ, x) = χ(u⋆, w⋆) =



0 if w⋆ > wt(u
⋆) + wa

wt(u⋆)+wa−w⋆

2wa
if wt(u

⋆)− wa < w⋆ ≤ wt(u
⋆) + wa

1 if wb(u
⋆) + wa < w⋆ ≤ wt(u

⋆)− wa

w⋆−wb(u
⋆)+wa

2wa
if wb(u

⋆)− wa < w⋆ ≤ wb(u
⋆) + wa

0 if w⋆ ≤ wb(u
⋆)− wa

(3.25)

where wa = ξ∆w and ξ is a parameter used to control the amount and the smooth weighting
of projection information from the area slightly outside the TD-window. For the studies performed
within the later sections and chapters of this thesis the parameter ξ has been fixed to a value of 0.5,
such that the information used from outside the border of the TD-window lies within half a detector
element height.

The resulting fractional contribution of each projection to the reconstructed image f at the point
x in accordance with the CBC method can be described similarly to equation (3.22) by

δcbcf(x) =
∆λ

2π

χ(λ, x)

v⋆(λ, x)
gF (λ, u⋆(λ, x), w⋆(λ, x)). (3.26)

Note that the weighting functions χ and ρ and thus the CBC and the π-interval method will not
produce exactly the same reconstruction results, since the weights are calculated with respect to dif-
ferent dimensions. On the one hand, the function χ is defined piecewisely along the w-direction of
the detector to smoothly weight the borders of the TD-window. On the other hand, ρ has been de-
signed to weight the endpoints of the π-segment in relation to the projection angle λ. However, it
has been shown that both backprojection methods can produce accurate results, whereby the CBC
method can be used to significantly improve the performance of Katsevich’s algorithmwhen realized
on parallel hardware [28, 29, 62]. The main reason for this is that the weighting function χ does not
require any information about the π-segments. As a result, the time consumed by the numerical so-
lution of equation (3.19) and equation (3.20) in the case of the π-interval method can be saved when
employing the CBC method.

In addition to this, the TD-window is equal for all projection images, so that its upper and lower
border defined by wt(u) and wb(u), respectively, can be precomputed. As a consequence, in there
here presented implementation both boundaries have been calculated for each discrete detector col-
umnui and stored in the LUTswt[i] andwb[i] index by the column index i before the backprojection
process starts. When thenearest neighbor interpolation is chosen for thebackprojectionoperation the
projected coordinateu⋆(λ, x) is rounded to thenearest sample positionui⋆ , such that theLUT-values
wt[i

⋆] and wb[i
⋆] can be used directly within equation (3.25). In contrast to this, if a bi-linear inter-

polation strategy is used to compute the projection sample at the coordinates (u⋆, w⋆), the border of
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the TD-window is calculated by linear interpolation from the LUTs values. The linear interpolation
weights are calculated from the LUT-values corresponding to the two detector columns adjacent to
the projected coordinate u⋆(λ, x) similar to [29].

Two additional weighting schemes, ρ′ andχ′ have been implemented during the course of this the-
sis. They can be seen as simplifications of theπ-lineweighting performedbyρ and of theCBCweight-
ing scheme defined by χ, respectively, in the sense that both schemes forego the smooth weighting of
the projection data at the boundaries. The weighting functions can be defined by

ρ′(λ, x) =


0 if λ < λi(x)

1 if λi(x) ≤ λ ≤ λo(x)

0 if λo(x) < λ

(3.27)

and by

χ′(λ, x) = χ′(u⋆, w⋆) =


0 if w⋆ > wt(u

⋆)

1 if wb(u
⋆) ≤ w⋆ ≤ wt(u

⋆)

0 if w⋆ < wb(u
⋆)

. (3.28)

As mentioned above, the backprojection part of Katsevich’s algorithm has been realized on the
CPU and on the GPU using NIVDIA’s CUDA [103]. Consequently, the four weighting functions
ρ, ρ′, χ and χ′ have been realized such that they can be executed on both architectures. Addition-
ally, the nearest neighbor and the bi-linear interpolation methods are available on the CPU and on
the GPU. In accordance with equation (3.22) and with equation (3.26) the π-interval method and
the CBC method have also been implemented as host (CPU) and device (GPU) code. However, for
large volumes of interest the π-interval method can run out of memory, since the projection data is
processed sequentially by the pipeline and, as a consequence, the π-intervals need to be precomputed
and stored for each voxel. For this reason, the CBCmethod can be implementedmore efficiently with
respect to memory consumption on the GPU than the π-line-based method.

3.2.1.6 Slice Allocation on the GPU

For the backprojection of theχ-weighted projection data from the TD-window onto its correspond-
ing CBC a single projection image and voxels of the reconstructed region of interest need to reside in
the memory of the GPU. For extremely large4volume datasets, as they often occur in the industrial
area, it can happen that the not all slices of the reconstructed volume fit into the global memory of
the graphics device. Therefore, a novel slice allocation strategy has been developed which can handle
volume sizes that exceed the memory capability of the GPU.

4An industrial dataset consisting of a 4K volume with 40963 each represented by 32 − bit floating point number
requiring 4 bytes needs a final storage space of about 275GB.
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Figure 3.4: Slice allocation strategy used for GPU reconstruction of large datasets with Katsevich's algorithm. It is as-

sured that all slices that lie inside the CBC are of the currently processed projection are allocated while the cone beam

slides along the volume. Slices that exit theCBC fromone to processing of the next projection are freed and copied back

to their corresponding host memory location, while slices that enter the CBC are allocated by a pool-based strategy.

To realize this strategy, the volume is sliced up along the direction of the rotation axis intoNz indi-
vidual slices (compare Figure 3.4). During the initialization of the GPU device an array with pointers
to the volume slices is allocated whereby each pointer is initially set to null. This array of pointers
is then checked before every projection is processed by the backprojector, such that the slices covered
by the TD-window of the currently handled projection image are copied from the host memory to
the global memory of the graphics device. In addition to this, slices that are no longer involved in
the backprojection process are copied back to the host and freed from the GPU memory. Conse-
quently, as the cone-beam and thus CBC corresponding to the acquired projections move along the
volume of interest along the direction of the rotation axis, new slices need to be allocated on theGPU
at the top of the CBC, while at the same time, slices at the bottom of the CBC are freed. This is why
a pool-based allocation mechanism has been used, such that the reallocation of slice memory is car-
ried out efficiently. The aforementioned slice management strategy is summarized and visualized in
Figure 3.4.

The range of the slices that are contained in the CBC of the current projection along z-direction
can be computed in the following way:
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Table 3.1: Technical specifications of the employed CT scanner

CT scanner: v|tome|x s 225

Manufacturer Phoenix X-ray (GE Sensing & Inspection Technologies)
X-ray tube Microfocus
Max. tube voltage 225 kV
Max. output 320W
Detector Perkin Elmer 840
Detector area 204.8× 204.8mm2

Pixel count (Nu ×Nw) 512× 512
Pixel Pitch (∆u = ∆w) 400 μm
Dist. Source-Detector (DSP ) 783.4191 μm
Dist. Source-Object (DSP ) 68.5492 μm

zt = zsrc +
DSI +Rxy

DSP

wt,max (3.29)

zb = zsrc +
DSI +Rxy

DSP

wb,min (3.30)

where zt and zb are the upper and lower boundary of the slice range, respectively. TheX-ray source
position along the z-axis is given by zsrc and Rxy is the radius of the cylinder whose axis is parallel
to the rotation axis and which intersects the corners of the volume slices. The maximal and minimal
values ofwt andwb with respect to the acquired projection images in accordancewith equation (3.23)
and equation (3.24) are given bywt,max andwb,min, respectively. Furthermore, the calculated z-range
[zt, zb] can be converted to slice indices by

lt = ⌈(zt − zmin)/∆z⌉ (3.31)

lb = ⌊(zb − zmin)/∆z⌋ (3.32)

with zmin being z-coordinate of the lower corner of the volume bounding box and ∆z defining
the sampling distance between the volume slices along the z-axis. The indices lt and lb can then be
used directly to check the integrity of the slice allocation as described above.

After it has been asserted that all covered slices reside in the memory of the graphics device, each
projection is backprojected using a voxel driven and voxel parallel approach similar to the one used
by Benquassmi et al. [30] to exploit the maximal capabilities of the GPU.

3.2.2 Projection Acquisition and Simulation

For the comparison of the FDK algorithm with Katsevich’s method, as it will be presented in Sec-
tion 3.3, a solid cubical object made from titan alloy has been used. The cube has beenmanufactured

39



Figure 3.5: Numbering of the side planes and the caps of theKKW in accordance to theDKDcalibration certificate. The

numbersof the sideplanesaregiven in theboxes,while thenumbersof thecalottesaredisplayedclose to their positions.

Note that only the planes 1, 2 and 3 contain 25 spherical caps. Plane 5 contains a single calotte at its center which is

solely used to determine the orientation of the cube. The image has been taken from the DKD calibration certificate

(Calibrationmark: 7455DKD-K-25901 2007-7).

Table 3.2: Four parameter settings defining scanning and reconstruction geometries

Trajectory Number of Projections Angular Range [°] Pitch [mm]

Circular 2000 360.0 0.0
Helical 2000 720.0 12.5
Helical 1000 360.0 25.0
Circular 1000 360.0 0.0

Volume size 512× 512× 512
Voxel size 35 µm

by FEINMESS GmbH & Co. KG5and has a size of 10mm× 10mm× 10mm. Each of three sides
of the cube has 25 equidistantly spaced spherical caps, distributed over a 5× 5 grid. Each cap has a
radius of 0.4000± 0.0008mmand is drilled 0.4mmdeep into the cube. The precise edge lengths of
the cube together with the positions and the sizes of each spherical cap have been calibrated by DKD
using tactical measurements. Since the caps of the cube are also called calottes, this type of cube is
also known as a calotte cube or KKW. The image displayed by Figure 3.5 illustrates the shape of the
KKW, while additionally presenting the numbering of its side planes and calottes.

From the calibrated cube described above, real projection data has been acquired at the TPW
Prüfzentrum in Neuss, Germany, using a phoenix X-ray v|tome|x s 225 industrial CBCT scanner.
The v|tome|x s 225 is a high-resolution system which can be set up to acquire CT scans from various
X-ray source trajectories. Table 3.1 presents the technical specifications of this CT machine together

5Additional details on FEINMESS GmbH & Co. KG and on the calotte cube (Kugelkalottenwürfel) (KKW) can be
found online under www.feinmess.com.
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with its employed geometrical configuration. For the studies carried out in this thesis the CT scanner
was used to acquire three sets of projections. All the three scans use the detector geometry and the
distances, i.e. source-to-object and source-to-detector, given in Table 3.1. The first projection set of
the KKW was generated from a scan on a circular trajectory, where 2000 images have been captured
over an angular range of 360°. During the next scan the KKW was imaged 2000 times using a helical
scanning pathwith an angular range of 720°. The third scan only acquired 1000projections over 360°
in a single helical turn. Of both helical scans the pitch P was set to 25.0mm, so that the movement
of the detector relative to the scanned cube was equal for both acquisitions. Finally and as displayed
in Table 3.2, a fourth dataset has been generated from the first scan by leaving out every second pro-
jection. As a result, the fourth projection sets contains 1000 images from an angular range of 360°,
whereby the angular spacing between the projections is twice as large as for the first projection set.
In total, this leads to four different acquisition schemes, two circular and two helical ones, for which
Table 3.2 summarizes the scanning configurations.

Additionally to the real projection data acquired from the phoenix X-ray system, a digital recon-
structed radiograph (DRR) algorithm was used to generate simulated projection data. This dataset
was then used to verify the correctness of both implemented reconstruction methods and to demon-
strate the theoretical optimum of the FDK algorithm in comparison to Katsevich’s approach. The
simulations of the projections have been calculated from a voxelized KKW model with a resolution
of 5123 voxels which has been generated from a polygonal mesh within VGStudio MAX. For the
forward projection of the KKW volume the cone-beam transform given by equation (3.2) has been
discretized and implemented on the GPUusing a sampling based ray casting approach, following the
derivations presented by Weinlich et al. [20]. The implementation is based on the software frame-
work presented in Chapter 2 and is realized in native code with NVIDIA’s CUDA Toolkit [103] in
such a way that the geometric system parameters for the simulation are passed fromMATLAB to the
MEX layer and then to the CUDA routines. Finally, the generated projections are returned toMAT-
LAB (compare Figure 2.2). The forward projection operation processes the projections sequentially
and parallelizes the computations per detector pixel, i.e. per ray, in accordance with the following
steps (compare with [20]):

1. Initialization: For each discrete detector element at (ui, wi) generate a ray that points from
the X-ray source position y(λk) into the direction θ(λk, ui, wi).

2. Intersection: Compute the intersection of each ray with the volume bounding box.

3. Integration: Sample the volume along each ray between the intersection points and accumu-
late the samples.

where k is the index of the currently processed projection, as introduced in Section 3.2.1.1.
All calculations during the projection simulation are carried out on the GPU in floating point pre-

cision. To improve the accuracy of the simulated projection sets the sampling distance along the ray
has been set twice as high as the maximal edge length of the voxels. Additionally, the higher order
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Listing 3.1: Ray casting using higher order intergation and Kahan summation

float integrateRay(Texture3f tex , ray3& ray , float tnear , float tfar)
{

float t_step = cSamplingDistance;
int ti = 0;
float t_curr = tnear;

// march along ray from front to back
float sum1 = 0.0f;
float sum2 = 0.0f;
float c1 = 0.0f; // for error correction of sum1
float c2 = 0.0f; // for error correction of sum2
while (t_curr <= tfar)
{

// compute positions along the ray ...
t_curr = tnear + ti * t_step;

float t_next = tnear + (ti + 1) * t_step;
float3 rayPos_curr = ray.o + ray.d * t_curr + 0.5f;
float3 rayPos_next = ray.o + ray.d * t_next + 0.5f;
float3 rayPos_half = 0.5f * (rayPos_next + rayPos_curr);

// ... sample the volume and accumulate the samples
float y1 = tex3D(tex , rayPos_curr) - c1;
float t1 = sum1 + y1;
c1 = t1 - sum1 - y1;
sum1 = t1;

float y2 = tex3D(tex , rayPos_half) - c2;
float t2 = sum2 + y2;
c2 = t2 - sum2 - y2;
sum2 = t2;

++ti;
}

// combine results using higher order integration
return (sum1 + 2.0f * sum2) / 3.0f;

}

integration technique described by de Boer et al. [104] in combination with the Kathan summation
algorithm [105] has been used to reduce the numerical error made during the sample accumulation
process. The CUDA source code for integration along a single ray is presented in Listing 3.1.

3.2.3 Reconstruction with Detector Offset

The reconstructions from the simulated and the real projections have computed at a resolution of
512× 512× 512 voxels with a sampling distance of 35 μm along the x-, y- and z-axis. As men-
tioned above, the projection sets acquired from the circular trajectory were reconstructed using the
FDK method. During the filtration step of the FDK algorithm the Shepp-Logan filter [106] was ap-
plied to the projections. Unlike the circular datasets, the projections acquired from the helical source
trajectory were reconstructed using the implementation of Katsevich’s theoretical exact filtered back-
projection algorithm as described above. For the computation of the derivatives of the cone-beam
projections the scheme S3was used (see Section 3.2.1.3) and the CBC method with the χ-weighting
was chosen over the π-interval backprojection for performance reasons (compare Section 3.2.1.5). All
backprojection steps were carried out on the GPU using bi-linear interpolation and the slice manage-
ment strategy described in Section 3.2.1.6.

The initial reconstructions from the real projection data contained misalignment artifacts due to
a horizontal shift of the detector panel during the acquisition phase. By the use of the geometric
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(a) (b) (c)

Figure 3.6: Comparison of different choices for the horizontal detector offset during helical reconstruction from real

data. A choice of0.0mm (a) and of−0.6mm as in the circular case (b) introduced step artifacts in the reconstructed

volume. Manually tuning the parameter for the detector offset to−0.76mm yielded the best results (c).

calibration capabilities of VGStudio MAX, the detector offset along the u-axis has been estimated
from the projection sinograms for the circular data. The resulting horizontal shift of −0.6063mm
removed the geometry-induced artifacts from the reconstructed images. As for the circular scans,
misalignment artifacts were also visible for the helical reconstructions, such that a horizontal detector
shift had to be determined for this dataset as well. Although the circular and helical scans were car-
ried out on the same the CT scanner with basically the same geometric configurations, the use of the
offset determined in the circular case did not yield a reasonable result for the helical datasets. There-
fore, the horizontal detector shift for the helical projections has been tuned heuristically by manual
adjustments. Therefore, reconstructions of the helical projection were computed with various de-
tector offsets to select the optimal shift. Figure 3.6 visualizes the reconstructed images of the helical
scans from 2000projectionswith different values for horizontal detector offset. Setting the horizontal
shift of the detector to 0.0mm and to−0.6063mm, as determined for the circular reconstructions,
resulted in step artifacts after the application of Katsevich’s algorithm, like indicated by the arrows
in Figure 3.6a and Figure 3.6b, respectively. A manually determined value of−0.76mm for the de-
tector shift yielded the best results for both helical scans (Figure 3.6c). Therefore, this value will be
used during the evaluation throughout the following sections. Note that Chapter 4 will introduce a
novel geometric calibration method which allows a fully automatic tuning of system parameters to
compensate geometric misalignments of the CT scanner. Moreover, all simulated projection images
the circular and helical setups were generated and reconstructed without any detector offsets.

3.2.4 Evaluation Methods

The comparison of the FDK algorithmswithKatsevich’smethodwas performed on the basis of noise
statistics, visual inspection and shape measurements. After successful reconstruction of each of the
four projection sets, the resulting volumes were normalized to the interval [0, 1] to scale their gray
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values to a comparable range. To analyze the noise characteristics of the computed images the signal-
to-noise ratio (SNR) has been calculated using the following formula:

SNR(f) =
µSIG(f)

σBG(f)
(3.33)

where f in this context represents a vectorized version of reconstructed volume, µSIG is the mean
gray value intensity of f and σBG is the standard deviation of the background signal which has been
selected as the air in the inspected volumes. In addition to the SNR, the overall image quality of the
resulting reconstructions has been compared by visual inspection using slice images and profile plots.
Finally, the exactness of both reconstruction algorithms in terms of measurement uncertainty has
been determined using the NDT-capabilities of VGStudio MAX. Therefore, a predefined measure-
ment template of the KKWhas been used. The template contained all nominal sizes and positions of
all features, i.e. side planes and calottes, of the cube as they had been determined by the DKD. With
this measurement template it was possible to apply the shape analysis equally to all reconstructions.
To perform the measurements inside VGStudio MAX the following steps have been conducted for
each dataset:

1. Reconstruction of the KKW using the FDK algorithm for the circular datasets and the exact
FBP of Katsevich for projection data from helical scanning trajectories.

2. An ”Advanced SurfaceDetermination” has been computed for each resulting volume to define
the surface of the calotte cube, such that the registration functionalities of VGStudio MAX
become available for each dataset.

3. The predefined measurement template of the KKW was copied into the scene of interest and
was fitted by hand against the reconstructed KKW. As a result, the boundaries of the template
and the volume were roughly aligned.

4. The manual alignment was improved by copying and pasting the template under the volume
in the scene tree. By this process VGStudio MAX automatically fits the reference objects, i.e.
spheres, of the measurement template to the spherical caps of the reconstructed KKW, such
that the template and volume become more precisely aligned.

5. To improve the precision of the alignment between the KKW and the template even further,
the fitted reference objects of the volume were registered with the reference objects of the orig-
inal imported measurement template.

6. By the deleting the fitted measurements under the volume scene node and repeating steps 4
and 5 the accuracy of the fitting between the reference objects was improved even more.

7. Finally, the resolution of the reconstructed volume was adjusted, so that the actual lengths of
the cube fitted their nominal values in accordance with the information provided by the DKD
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Table 3.3: Gray value statistics and SNR of the real datasets

Traj. Proj. µSIG σBG SNR

Circ. 1000 0.8161 0.0490 16.7
Circ. 2000 0.8312 0.0495 16.8
Hel. 1000 0.7875 0.0335 23.5
Hel. 2000 0.8075 0.0346 23.3

calibration certificate of the KKW. For the precise adjustment of the resolution nine features
within the measurement template haven been selected. These features represent distances be-
tween eighteen spheres. For all features the quotient between their actual and nominal values
has been calculated and averaged to yield the scaling factor for the correction of the volume
resolution. This adjustment was repeated three times in an iterative process to gain a precisely
scaled object of interest that matches the nominal size of the KKW.

After all these steps had been carried out successfully, the reference objects fitted to the recon-
structed calotte cube was used in combination with themeasurement template to calculate the actual
center position and the actual surface form of each spherical cap. The positions were then used to
calculate all distances between all reference objects followed by a comparison of their actual and nom-
inal values. The surface form is ameasure for the roughness of the reconstructed spherical caps. It has
been computed directly within VGStudio MAX and can be defined in accordance with Smith [107]
by

Zt = Zp − Zv = max
i
Zi −min

i
Zi. (3.34)

where the values Zi are roughness measurements that represent the distance of the actual recon-
structed spherical caps to the fitted reference spheres of the template. The peak height Zp and valley
depthZv are computed from these surface measurements by picking out the largest and smallest val-
ues, respectively. Consequently, the surface form Zt quantifies the amount of distortion introduced
by the employed scanning trajectory in combination with the used reconstruction approach.

3.3 Results

3.3.1 Noise Statistics and Visual Inspection

Table 3.3 gives a comparison of the noise characteristics of the two reconstruction techniques for the
different projection sets. From the last column of the table it can be seen that for the KKW datasets
Katsevich’s FBP reconstruction algorithm has a higher SNR than the FDK method. For the FDK
reconstructions the datasets containing 2000 projections resulted in a slightly higher SNR than the
one with 1000 projection images. In contrast to this, the exact helical reconstruction algorithm de-
livered an SNR of about 23, where a small increase could be noticed for the lower projection count
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Figure 3.7: Central axial slices of the reconstructed calotte cube (window = 0.4, level = 0.15). The left image shows

the reconstruction from the simulated helical projections. The middle image and the right image show the cube recon-

structed from real data from the circular and the helical trajectory, respectively. The profiles below the slices show the

gray value profiles along the yellow line in the slice images.

from 23.3 to 23.5. In addition to these facts, the gray value statistics for the circular cases show that
with an increase of the number of projections the mean signal intensity µSIG raises together with the
standard deviation of the background signal σBG. The same effect can be observed for the helical
reconstructions. However, the mean gray value intensity resulting from Katsevich’s algorithm was
never large than the one of the FDK reconstructions, whereby the background variation follows the
same relation. In summary, the SNR does not change significantly with the number of projections,
while Katsevich’s outperforms the FDK method with respect to the studied noise properties.

The observationsmade above become clearerwith a visual inspection of the volumes reconstructed
from the real projection data in comparison to the results computed from the simulated projections
as displayed in Figure 3.7. The figure displays the central axial slices of reconstruction results of the
KKW form the simulated helical, from the real circular and from the real helical projections from left
to right. Hereby, the leftmost image of Figure 3.7 demonstrates how accurate Katsevich’s algorithms
work on the simulated projection data. The profile curve below the slice image is flat at the interior
part of the calotte cube, the edges are sharp and show only little smoothing and the background is
constantly zero without any noise. In contrast to this, the reconstruction from the FDK algorithm
in the center of Figure 3.7 shows a slight cupping artifact towards the inside of the KKW, while the
background noise is clearly visible. Additionally, the profile curve through the FDK volume reveals
some noise at the interior part of the cube. As it can be seen from the rightmost images in Figure 3.7,
the noise inside the KKW is even stronger for the reconstruction calculated with Katsevich’s FBP.
However, the background noise is lower than in the helical case than in the circular case, as it has been
described above together with the SNR.

A closer look at the corners of all three reconstructed cubes suggests that these areas are undersam-
pled in the real datasets and that this undersampling is more severe in the circular case and thus for
the FDK method, than it is for the helical case in combination with the exact FBP (see central and
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(a) (b)

Figure3.8: Artifacts at the topof the reconstructed cube. In theFDKreconstructedobject (b) conebeamartifacts occur

at the top of the cube. When using the Katsevich's FBP algorithm no cone beam artifacts are visible (b).

Table 3.4: Differences of actual and nominal distances between the spherical caps in μm

Traj. Data Proj. All planes Plane 1 only Plane 1 to 2 and 3

Circ. Real 1000 9.1± 8.4 2.5± 1.9 11.6± 7.6
Circ. Real 2000 9.0± 8.4 2.6± 2.0 11.5± 7.6
Circ. Sim. 2000 10.4± 9.3 3.5± 4.2 17.9± 8.1
Hel. Real 1000 10.9± 9.4 2.6± 2.1 12.4± 9.3
Hel. Real 2000 10.6± 8.5 5.2± 3.3 11.4± 8.3
Hel. Sim. 2000 5.7± 5.2 2.3± 3.8 7.8± 5.2

rightmost images in Figure 3.7). In addition to this, the areas close to the sides of the cube seem to
be slightly blurred and noisier than the corners of the cube. The reconstructions of the simulated
datasets do not show these artifacts. Because of this and due to the drop-off at the corners the sides
of the cube appear slightly bent in the real circular and helical datasets. The reasons for this bend ar-
tifact could be X-ray scatter of the KKW, as these this effect has not been observed for the simulated
projection sets where the sides of the calotte cube have been always perfectly flat. Furthermore, Fig-
ure 3.8 visualizes another artifact which only occurs in the Feldkamp reconstructions. When looking
at the cube from the side it shows so-called Feldkamp artifacts at the top and at the bottom of the ob-
ject of interest. These artifacts exist because the circular scanning geometry does not fulfill the Tuy’s
sufficiency condition [59], such that the acquired projection data does not provide a sampling of the
frequency space which is sufficient for an exact reconstruction (compare with Barrett and Keat [26]).

3.3.2 Length Deviation

As mentioned earlier, three sides of the calotte cube contain 25 equally spaced spherical caps. To
quantify the length deviations of the actual reconstruction and the calibrated nominal size of the
scanned KKW the distances between all 75 calottes have been calculated for all real and simulated
datasets. As a result, for each of the three side planes (252 − 25)/2 = 300 distances have been
computed, while the number of distances calculated for the whole KKWwith respect to all caps in all
planes was (752 − 75)/2 = 2775. The differences between the actual and the nominal distances of
the spherical caps were then compared to make statements about the measurement uncertainty.

For each of the six projection sets Table 3.4 presents the mean and the standard deviation of the
absolute differences of the actual and nominal lengths. The calculation of the values in the fourth
column of the table considers all 2775 distances between all calottes. The results in this column show
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(a)

(b)

Figure 3.9: Deviations of the actual and the nominal distances between the spherical caps of the cube. The length de-

viations for all circular (a) and helical (b) reconstructions are plotted against their calibrated nominal lengths. For the

reconstructions from the 2000 real projections a linear trend line has been fitted to the datasets.

that themeanof the absolute lengthdeviation for the circular reconstructions is between9 and10 μm.
This range is about one third of the voxel sampling distance of 35 μm. For the cube reconstructed
from the simulated circular projections the average length deviation of 10.4 μm is slightly higher that
from the real datasets (9.1 and 9.0 μm). Theoretically the simulation results (10.4± 9.3 μm) should
provide a lower bound for the length deviations. However, for the circular reconstructions this is not
the case. This behavior might be a result of the template fitting procedure used in VGStudio MAX,
as described in Section 3.2.4. For the circular reconstructions the fit wasmore accurate in terms of the
residual error with the real than with the simulated dataset. In contrast to this, the length deviations
resulting from the reconstructions computed with Katsevich’s exact helical FBP from the real projec-
tion data are higher than those of the simulated data. With amean length deviation of 5.7 μm, which
is about one sixth of the voxel size, the theoretical lower bound for Katsevich’s algorithm is even lower
than any results observed in the circular cases.

The length deviations in the fifth column of Table 3.4 have been calculated by considering the 25
spherical caps inplane1of the cube. With values in the range of2.3 to5.2 μm, the resulting deviations
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are significantly lower than the ones computed in the previous column. Although, the real circular
reconstructions still outperform their corresponding helical ones. For the simulation results similar
observations as in the fourth column can be made: (1) the FDK reconstruction of the circular data
performs worse than the real datasets and (2) the mean lower bound (2.3 μm) given by the helical
simulation study is not reached by the reconstruction from the real data. These two statements hold
also true when considering the length deviations in the last column of Table 3.4 which have been
computed between the top plane, i.e. plane 1 and the side planes, i.e. planes 2 and 3. The lengths
within each of the three planes and between the caps of the two sides of the cube have not been
included in the aggregations of the last column, so that a total number of252 = 1250 calotte distances
have been considered. The results of these calculations show for all cases slightly larger values, from
7.8 to 17.9 μm, in comparison to the deviations listed in the fourth column where all spherical caps
were considered. In contrast to the fourth and fifth column, the FDK and Katsevich’s algorithm
deliver almost equal length deviations (11.4 μm for the helical and 11.5 μm for the circular trajectory)
when the reconstructionwas runwith2000 real projections. In accordancewith the second statement
made above, the theoretical lower bound of 7.8 μm resulting from the measurements performed on
the simulated helical data is not reached by the other helical cases.

In Figure 3.9 the calibrated nominal lengths of the features have been plotted against the length
deviations. The comparison shows that the reconstructions from 1000 and 2000 projections with
the FDKmethod deliver almost the same results independent of the nominal length. As suggested by
the linear trend fitted to the blue data points in Figure 3.9a, a small positive increase in the length de-
viations becomes visible with larger nominal lengths. However, this trend does stay below 0.01mm.
On the contrary, a positive bias in the length deviations can be observed for all nominal lengths in the
reconstruction from the simulated projection set. This offset means that the actual reconstructed
lengths are on average smaller than their corresponding nominal lengths. The reason for this ef-
fect could be that the template fit in VGStudio MAX performed not that accurate for the simulated
datasets as for the real ones and, as a consequence, the iterative resolution adjustments were carried
out less precisely.

In contrast to the FDK cases, Figure 3.9b shows no trend and no bias for any of the reconstruc-
tions with Katsevich’s exact FBP algorithm. For the real data the helical trajectory delivered length
deviations with quite equal distributions for the 1000 and 2000 projections, similar to the results of
from the circular scanning path. As pointed out earlier for the simulated projections, the measure-
ments carried out on the reconstruction of the helical data show a smaller variance, within the range
of−20 to 20 μm, in comparison to onesmade on the circular reconstructions which range from−20
to 40 μm (compare with Table 3.4).

3.3.3 Form Deviation

In addition to the length deviations, the differences between the actual and the nominal surface form
of the spherical caps have been computed in accordance with equation (3.34). In Table 3.5) the mean
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Table 3.5: Differences between actual and nominal surface formZt of the spherical caps in μm

Traj. Data Proj. Plane 1 Plane 2 Plane 3 All planes

Circ. Real 1000 11.5± 5.9 11.8± 5.1 13.5± 6.3 12.2± 5.8
Circ. Real 2000 10.1± 4.9 10.6± 4.9 11.2± 6.4 10.6± 5.4
Circ. Sim. 2000 7.8± 7.9 9.8± 3.7 5.6± 5.2 7.7± 6.1
Hel. Real 1000 14.0± 8.0 19.7± 6.4 18.4± 8.1 17.3± 7.9
Hel. Real 2000 13.4± 7.5 20.0± 6.9 21.5± 6.4 18.3± 7.7
Hel. Sim. 2000 12.8± 8.3 10.4± 3.7 6.0± 5.2 9.7± 6.6

and standard deviations of the differences between the surface forms have been calculated over every
single plane and over all planes. With respect to the real projection sets the mean form deviations
presented in the table range from 10.1 μm, which is about one third of the voxel sampling distance,
for the circular scan from the 2000 projections up to 21.5 μm for the helical reconstruction from the
2000 projections. In general, the surface from deviations computed from the circular trajectories are
up to a factor of2more accurate than those of the helical cases, especially for plane2 and3 at the side of
the cube (see columns 5 and 6). Additionally, the top plane, i.e. plane 1, shows the lowest differences
in the surface from factor in comparison to the other planes (see fourth column). Moreover, Table 3.5
demonstrates that the surface form factors from the simulated projection sets are always lower than
the ones of their corresponding real datasets, independently of the evaluated planes. However, the
simulation studies suggest that the FDK algorithm is able to deliver more precise reconstructions of
the surface form than Katsevich’s algorithm for the here studied cases.

3.4 Discussion

On the one hand, the evaluations performed in the previous section demonstrate that the reconstruc-
tions from the real circular projection sets allowedmore precisemeasurements and resulted in a lower
measurement uncertaintywith respect to both, length and formdeviations. Although the reconstruc-
tions from the helical trajectory showed no cone-beam artifact, i.e. Feldkamp artifacts, at the bottom
and topof the object of interest, theywere outperformedby theFDKmethod in relation to the surface
form factors. On the other hand, Katsevich’s helical FBP algorithm had the smallest length deviations
for the reconstructions of the simulated projection set in comparison to all other datasets. This gap
between the processing of real and simulated projections suggests that in principle the exact method
of Katsevich’s as the potential to reach more accurate results for real datasets, which can become even
better than those of than the FDK method.

The lower SNR in the FDK reconstructions can be explained by the following coherences. Since
theTuy-Smith sufficiency condition [59] is not fulfilled by the circular scanning trajectory, spatial res-
olution is lost in the direction of the rotation axis (compare Hiller et al. [32]). As a consequence the
FDK method can only compute an approximate solution to the reconstruction problem and thus
causes Feldkamp artifacts at the lower and upper boundaries of the cube. These artifacts raise the
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background noise in the final image, such that the SNR decreases and is lower than for the exact FBP
(see Table 3.3). Conversely, Katsevich’s algorithm does not incorporate all the available detector in-
formation into the reconstruction process, since only data from inside the TD window is used (see
Section 3.2.1.5). Although detector utilization is lower than for that of the FDK algorithm, the helical
reconstructions of the cube show a higher SNR. The use of a technique which increases the detector
utilization by the incorporation of additional and redundant detector data into the exact helical re-
construction, like suggested by Katsevich [64] and Schöndube et al. [108], would not only affect the
SNR positively, but could also improve the accuracy of measured length and surface form together
with a reduction of the measurement uncertainty.

In summary, it must be considered that the horizontal defector shift for the circular reconstruc-
tions was computed automatically from the sinogram using VGStudio MAX, whereas the detector
offset for the helical projections has been determined heuristically. Therefore, the latter value is not
as reliable as the automatically estimated one what in turn influences the uncertainty of the measure-
ments conducted on the helical reconstructions. These circumstances in combination with the fact
that the helical trajectory has an additional degree of freedom in comparison to the circular scanning
path demonstrates that Katsevich’s algorithm depends on a larger number of geometric parameters
than the FDKmethod. These parameters influence the quality of the reconstructed image vitally and
leave more space for measurement errors. As shown by the experiments presented in this chapter a
precise knowledge of the geometric parameters and especially the fine tuning of the horizontal de-
tector offset is inevitable to achieve accurate results, in particular for the length and form deviations.
However, a heuristicmethod for the determination of geometric systemparameters is not practicable,
especially in industrial applications with large volumes of interest. Therefore, the next chapter will
present research conducted in the field of automatic geometrical scanner calibration together with a
novel strategy that can be employed to estimate the parameters of helical scanning trajectories.
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In questions of science, the authority of a thousand is not
worth the humble reasoning of a single individual.

Galileo Galilei

4
Geometric Calibration

The previous chapter has shown that a precise knowledge about the computed tomogra-
phy (CT) system setup, in particular about the geometric parameters, is inevitable to keep
image reconstruction artifacts at a minimum and to make accurate statements about the

measurement uncertainty. Therefore, this chapter is going to introduce a novel geometric calibration
technique for cone-beam computed tomography (CBCT). The method employs an iterative multi-
resolution 2D-3D image registration approach to maximize the similarity between the originally ac-
quired and the simulated reprojected projections. The method derived in the following is able to
retrieve the geometric misalignment of a CBCT scanner precisely without the need of a dedicated cal-
ibration phantomor any other specificmarkers placed inside the object of interest. Consequently, the
geometric system parameters can be estimated online from the acquired projections. Note that the
author of this thesis has presented parts of the aforementioned approach in a publication (see [2]).
Therefore, parts of this chapter overlap in terms of content, while other parts provide additional de-
tails and improvements. Moreover, figures and tables shown during this chapter are inherited or
adjusted versions of those used by Muders and Hesser [2].

The here developed method has several differences to current state-of-the-art registration based
calibration methods: (1) the approach evaluates the mutual information (MI) to maximize the sim-
ilarity between the simulated and the original projection sets over multiple resolutional scales, (2)
it uses a consistent strategy to keep the intermediately reconstructed volume up to date, (3) the em-
ployed forward- and backprojection operations have been implemented on the graphics card and a (4)
stochastic ray sampling has been integrated into the projection simulation process. The combination
of all those points ensures that the proposed algorithm retrieves the geometrical misalignment accu-
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rately and that the overall runtime performance of the method is comparable to current registration-
based calibration approaches. Furthermore, the conducted experiments will show that the achieved
calibration results are as accurate as those of current phantom-based methods.

Additionally, the results in this chapter will demonstrate that the algorithm can be applied to cir-
cular and helical scanning paths with arbitrary cone angles. Independent of the underlying system
geometry, the here presented approach converges stably to the correct solution, while being robust
against the amount of projection noise. Moreover, the studies are conducted on different projection
sets from simulated and real data to verify that the algorithm is able to deal with arbitrary imaging
objects.

4.1 Motivation

Over recent years, the ability ofCT to image internal structures of objects non-destructively has played
an increasing in the medical and in the industrial sector. It has been used to gain precise information
about patients and it improved the decisionmakingwith respect to diagnoses and treatment planning
in the clinical area. Moreover, CT has driven forward major developments in the industrial field by
supporting the quality assurance process through high-precision imaging methodologies, in particu-
lar for applications of non-destructive testing (NDT).

However and as pointed out in the previous chapter, the quality and the exactness of the recon-
structed CT images depend on numerous factors, such that multiple overlapping effects can cause
artifacts in the final results and decrease the precision of the subsequently performed analyses ormea-
surements. The decrease in quality can basically be categorized into three groups of effects [26]. The
first class includes effects, which are caused by the inadequatemodeling of the imaging system. To this
group belong beam hardening, X-ray scattering, photon starvation, partial volume effects, discretiza-
tion and undersampling effects. Patient- and object-based influences during the image acquisition,
such as object motion or truncated projection data, from the second category of effects. The third
group of artifacts is caused by the calibration of the scanner, which is influenced by the shortcomings
of the CT scanner. These imprecisions occur since a precise mechanical alignment of the imaging
system can only be achieved up to a certain degree. Consequently, an ideal setup system cannot be
realized in practical applications, whereas geometrical misalignment such as detector shift and tilt are
likely to be observed.

For CBCT it is well known that only a slight divergence of the actual and the nominal geometrical
system parameters can introduce visible artifacts into the reconstructed image, such that the image
quality is degraded severely [109, 110]. Since due to this measurement uncertainty, the determination
of the exact geometry of a CT system is challenging and a calibration phase is used to estimate the
inaccuracies prior to the actual scan of the object of interest. During such a calibration procedure,
the geometry of the scanner is determined to achieve a proper virtual alignment of the system. This
processmight employ projection images of a so-called calibration phantom, which can include several
geometric markers as guidance to the calibration algorithm or it is carried out using only the data
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acquired from the object of interest itself. The main goal of the calibration phase is to define a set of
projectionmatrices that reflect the system geometry as precisely as possible. In order to estimate these
matrices, a set of geometric parameters has to be known. As the parameter values can changewith each
individual data acquisition performed on the cone-beam system, the ideal case would be to perform
a full system alignment prior to each scan. For these reasons, the calibration routine developed in this
chapter models the projection matrices by a set parameters, such that a subset of the matrix values is
considered as estimates of a parameter optimization procedure.

As a consequence, the objective of this chapter will be the development of a novel calibration strat-
egy, which is robust in terms of projection noise and which employs an optimization scheme with a
stable convergence against the true constellation of the geometric system parameters. The here pro-
posed approach is similar to an iterative rigid 2D-3D registration process in the sense that the simi-
larity between the original projections and a set of simulated projections is maximized by the use of
the MI. Therefore, a preliminary reconstructed object is constantly updated from the initial set of
projection images in a multi-resolution approach with changing geometric parameters, while the op-
timization process is driven by the projection simulation of the intermediate volume reconstruction.
The projection operations have been implemented carefully on the graphics processing unit (GPU)
in combination with a stochastic projection sampling strategy. This design allows the final algorithm
to achieve runtimes between five and fifteen minutes in dependence of the underlying dataset. In
contrast to algorithms presented in [111–114], which define an objective function in the space of the
reconstructed object, the here developed method, with its estimation technique running in the pro-
jection space, can be extended to perform the needed optimizations per projection. Moreover, the
approach presented in this chapter suggests a general scheme, which is applicable in various applica-
tion areas of CBCT (e.g. medical and industrial cases) and which can be applied to different scanning
geometries, such as circular and helical source trajectories.

This chapter is organized as follows. Section 4.2 will review existing CBCT calibration methods.
In Section 4.3 a frameworkwill be introducedwhich can be used to represent various setups of CBCT
scanners. Furthermore, Section 4.3 will derive and explain the novel calibration strategy. Section 4.4
will describe the conducted experiments and present their results to demonstrate the stability and
robustness of the method. The discussion given in Section 4.5 will then compare the here achieved
results with other existing registration-based calibration approaches. A final perspective on future
work in relation to the here presented algorithm will be given in the conclusions of Chapter 6.

4.2 Related Work

In the areas of cone-beam CT image reconstruction, geometrical scanner calibration and image regis-
tration a large amount of research has been conducted in the past, in particular over the recent years.
The major advances in these fields will be described and summarized in the following sections.
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4.2.1 Cone Beam CT Reconstruction

In applications with a practical orientation, filtered backprojection (FBP) approaches are often pre-
ferred for the image reconstruction from projection data acquired with a CBCT scanner. The rea-
son for this is that the filtration and backprojection operations allow a straightforward implementa-
tion, which can be realized efficiently on current hardware to achieve a high computational perfor-
mance [43].

For the image reconstruction in themedical area and for industrial CT the algorithm of Feldkamp,
Davis and Kress (FDK) [12] is widely used for cone-beam projection data scanned with a circular X-
ray source trajectory. However, for the case when the X-ray focal spot follows a helical scanning path,
Hiller et al. [32] have demonstrated for an industrial setup that the FDK algorithm produces severe
artifacts, as it has also been discussed in Section 3.3. Turbell [25] has additionally reviewed these
image defects in a medical context. For the compensation of the so-called Feldkamp artifacts (see
Section 3.4) various adaptations of the FDK algorithm have been developed by many researchers, as
described extensively in Section 3.1.1 (compare with [25, 115]).

Although, these extensions of Feldkamp’s method improve the image quality of the final recon-
struction from the helical projection data, the breakthrough for helical CBCT (H-CBCT) has been
made by Katsevich [13, 19] by the derivation of a theoretically exact FBP algorithm. Multiple imple-
mentations of this approach haven been presented and discussed by Noo et al. [27] and by Yu and
Wang [80] aswell as in the course ofChapter 3. Realizations ofKatsevich’s algorithmonparallel hard-
ware have been suggested by Yang et al. [28], Fontaine and Lee [29], Yan et al. [90] and Benquassmi
et al. [30] (also compare with Section 3.1.2). Despite from errors introduced by the discretization
and interpolation steps, it has been shown in Chapter 3 for H-CBCT that the additional degree of
freedom due to the translation stage makes a correct alignment of a helical scanner inevitable (also
see [93]). In addition to this, the study by Hass and Faridani [94] underlines how sensitive Katse-
vich’s algorithm reacts to incorrect assumptions made on the detector data and how this can lead to
so-called ”comet tail” artifacts.

4.2.2 Geometric Calibration

As pointed out in the introduction,misaligned scanner geometry or imprecise assumptions about the
geometric setup of the scanner can lead to strong artifacts in the reconstructed image. The influence
of themisalignment parameters on the image quality of the CBCT reconstructions have been studied
intensively by many authors (see [26, 110, 116–118]). For example, Sun et al. [110] discuss the effects
of each misalignment parameter on simple test objects, i.e. points, spheres and boxes. In [112, 113,
119, 120] the misalignment artifacts that occur in helical CT are displayed and in [1] a comparison
between FDK and Katsevich’s algorithm with respect to misalignment and image quality has been
performed.

To solve the problem of misaligned scanner geometry and to reduce the caused artifacts, a multi-
tude of parameter estimation strategies has been developed in literature. Many of these of geometric
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calibrationmethodswill be reviewed in the following and can be categorized into basically two classes:
offline and online calibration methods.

4.2.2.1 Offline calibration

Approaches belonging to the class of offline calibration methods need a separate scan of a so-called
calibration phantom. This phantomhas to be specifically designed to guide the parameter estimation
process. For example, the phantom can contain positional markers, i.e. small metal balls, which are
tracked by the estimation algorithm to derive the system geometry from their movement. For this
reason, offline methods are also often called ”phantom-based” calibration techniques [121].

Gullberg et al. [122] have initially proposed the basic concept of offline calibration as a parameter
optimization problem carried out in three steps: (1)measure the projected location of one ormultiple
point objects, i.e. markers, on the detector, (2) then determine a set of non-linear equations to express
the found locations by the unknown geometric parameters and (3) finally solve the equations using
an iterative method. In the case of [122] the Levenberg-Marquardt algorithm was used. Li et al.
[116] suggested an extension ofGullberg’smethod by includingmechanical offsets into the parameter
estimation process. Later, Rougée et al. [123] introduced constraints to hold the parameters in a
certain range to make the iterative solution more stable. In addition to this, they used more than one
point object for the calibration to improve the precision of the calibration. Although Rougée et al.
have achieved more precise results than the previous methods, the manufacturing of the calibration
phantom required a very high accuracy. Moreover, in [116, 122, 123] assumptions were made on the
parameters in a sense that some of them have only a minor influence on the reconstruction and can
be set to zero. In contrast to this, Rizo and Grangeat [124] proposed a method where the complete
scanner could be misaligned. They showed that seven parameters are enough to calibrate circular
CBCT (C-CBCT) and that correlations in the simultaneous estimation of all of them can be avoided
by a splitting into intrinsic and extrinsic parameters followed by a step-wise optimization.

All the above methods try to estimate the geometric parameters by solving a highly non-linear op-
timization problem that can run into local minima depending on the order in which the parameters
are estimated and on their initial values. To avoid these problems, Noo et al. [109] introduced a set
of intermediate parameters, which lead to the straightforward problem of fitting ellipses to the pro-
jected locations of the point objects. Their estimation process showed to be robust, can be expressed
by explicit analytic formulas, is easy to implement and uses a simple phantom with two steel balls.
As a result, the calibration of six unknown parameters can be achieved from aminimum of six views.
With a similar calibration phantom Bronnikov [125] estimates two parameters from two views that
are 180° apart. However, Noo et al. [109] observed that additional steel balls make the calibration
more stable and that more than two markers are needed to calibrate for rotations around the hori-
zontal detector axis. Results of their approach on a helical scanning path have been also published
in [119]. For the use of ellipse fitting on complex trajectories and on nine parameters for each projec-
tion Cho et al. [126] presented a technique that uses a calibration phantom of 24 steel balls. Chetley
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Ford et al. [127] improved this implementation to make it more robust against phantom fabrication
imprecision and inaccurate placement of the phantom. By a novel ellipse fitting that employs singu-
lar value decomposition presented in [128], the minimal limits on the design of calibration phantom
have been reduced even further.

In contrast to this, for the accomplishment of clinical quality assurance of X-ray systems in the area
of image-guided radiotherapy a simple ball-bearing phantom is commonly used to estimate varying
detector offsets [129]. Moreover, Sawall et al. [120] have proposed a geometry estimation algorithm
for micro-CT, which does not require a dedicated calibration phantom, such that their approach is
able to calibrate the imaging system geometrically from a sequence of acquired projections of a single
metal bead. Their estimation strategy works for spiral, sequential and circular cone-beam micro-CT
and uses a genetic algorithm to find the global minimum. Further studies [110, 130] have successfully
retrieved the geometrical setup of the imaging system from multiple steel balls. In the area of com-
puted laminography Yang et al. [131] have described the estimation of the position of the X-ray focal
spot by the combination of projections images acquired over multiple views of spherical objects. An-
other contrary approach, which uses Fourier analysis of the projection orbit data to find a solution
for six system parameters, has been developed and analyzed by von Smekal et al. [117],

Nevertheless, all offline calibration techniques reviewed above require a more or less accurately
manufactured calibration phantom. The needed precision of the employed phantomdepends largely
on the used method. Therefore, the precision of the knowledge about the locations of the markers
in combination with the selected parameter estimation strategy influences and can determine the re-
sulting accuracy of the system calibration.

4.2.2.2 Online calibration

Contrary to offline calibration techniques, a separately performed image acquisition of a dedicated
phantom is not required for the geometric alignment of a CT scanner with an online calibration ap-
proach to find a solution of the parameter estimation problem. This is why online approaches are
often called ”self-calibration” [132] or ”automatic” [133] calibration techniques, because they calcu-
late a certain set of geometric conditions from the acquired projection data itself.

In this context, Panetta et al. [134] has proposed and online CBCT calibration approach, which
defines an objective function using a particular group of 3D objects by exploiting the redundancies of
the cone-beam projection data on the circular trajectory. In their experiments, they have proven that
their optimization technique can be used to estimate themost critical geometricmisalignment param-
eters of a C-CBCT system. Additionally, they have verified that their cost function can be used for
objects that do not belong to the class which has been used during the design phase of the algorithm.
In a similar manner, Patel et al. [133] have determined with respect to a plane parallel to the detector
the actual angle of the rotation axis relative to the ideal y-axis. Their algorithm uses a registration of
antiposed projection images in combination with a sinogram analysis to correct the actual horizon-
tal offset of the rotational axis. By a registration-based optimization of a cost function based on the
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cross correlation using a least-square minimization scheme in the projection space Mayo et al. [135]
and Sasov et al. [4] have determined the vertical and horizontal shifts of the CBCT detector. The
application of this method in the area of micro-CT achieved a system alignment in the order of sub-
micrometers. A similar method for calibration of circular cone-beam geometry has been proposed
byWein et al. [132]. However, they used simultaneous iterative reconstruction technique (SIRT) for
the image reconstruction in combination with a separate parameter optimization loop which mini-
mizes the reprojection error in terms of the sum of absolute differences (SAD). The application of
Wein’s method for a dental CT case showed a precise projection-wise scanner alignment with a signif-
icant reduction of artifacts in the corrected images, while a full optimization terminated within a few
minutes.

In contrast to the calibration methods above, which define their objective functions in detector
domain; other approaches have been proposed which design cost functions not over the projection
images, but in the space of the reconstructed volume. One of these approaches has been developed
byKyriakou et al. [136, 137] and uses an iterative correction scheme based on theminimization of the
volume histogram entropy. For the optimization, they employ a multi-parameter simplex algorithm,
whereby the backprojection operation was carried out efficiently on the graphics card. Reconstruct-
ing only a single volume slice from a down-sampled source trajectory and fitting a circle to it, they
were able to reduce the overall computational complexity and achieved a runtime of 1-3 seconds for
a complete calibration. Similarly to this approach, a technique inspired by the optical auto-focusing
mechanisms has been suggested by Kingston et al. [111, 112]. They maximized the sharpness of the
reconstructed image in terms of theL2 norm of the image gradient to estimate the unknown param-
eter constellation of a circular system geometry. Their method has also been modified and applied
to H-CBCT in [113]. In addition to this, Meng et al. [114] described an online calibration method,
which exploits the symmetry property of the sum of projections (SOP). By the derivation of an error
function from the SOP, they obtained the crucial geometric parameters of a C-CBCT system using
a global optimization method. With their method, they were able to achieve accurate calibration re-
sults even for noisy projection data, whereby an image quality comparable to that of existing offline
calibration methods was reached. Only quite recently, Wicklein et al. [138] have analyzed and evalu-
ated various image features, such as the histogram entropy, the total variation and other texture-based
image characteristics in relation to their capabilities to quantify a scannermisalignment in the context
of the backprojection mismatch (BPM).

4.2.3 2D-3D Registration

In principle, the geometric scanner calibration problem can be interpreted as a rigid 2D-3D image
registration operation, which iteratively aligns an approximately reconstructed intermediate volume
with a given set of CT projections. Under the assumption that a preliminary image can be recon-
structed from the initially known geometric system configuration, an iterative procedure usually op-
timizes a parameterized projection matrix that steers a forward projection operator. This operator
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generates a digital reconstructed radiograph (DRR) from a 3D volume, which is then compared to
the actual measured 2D projection.

Over recent years, major advances have been achieved in the field of image registration. Numer-
ous measures have been suggested to compute the similarity between images, even for datasets with
different modalities. In addition to this, specific optimization and regularization schemes have been
developed to improve the stability of image registration algorithms. As a result, image registration
has become awell-researched and understood field [139, 140]. Maintz andViergever [141] and Zitová
and Flusser [142] give a full overview on the specific registration strategies while pointing, explaining
and comparing the required key components.

Detailed comparisons of various image similarity metrics, which have been used for 2D-3D image
registration, have been given in the publications of Penney et al. [143] and Wein [139]. Fast and easy
to compute similarity metrics are the SAD and the sum of squared differences (SQD) [139, 140],
which can either be computed on two individual images or on two sets of images. Depending on the
given data, these twometrics are not always the preferred choice. Other similaritymeasures have been
suggested tomake the optimization process more robust, to copewith different imagemodalities and
to improve the precision of the final registration result. The normalized cross-correlation (NCC) is a
very often used [139, 143] similarity function, since it is not affected by variations in the contrast and
brightness of the registered images. Additionally, themutual information (MI) [143–145] has proven
to be a stable measure for multi-modal image registration [146, 147].

In addition to the similarity measures above, van der Bom et al. [148] has compared the different
optimization strategies, which have been proposed for the estimation of the parameters defining the
2D-3D correspondence. Moreover, Viola and Wells [149, 150] have demonstrated that the employ-
ment of a random ray sampling during theDRR generation process suffices to steer the optimization
procedure and to achieve reliable registration results. In [151] the approach ofViola andWells has also
been shown to be effective when applied to a random line sampling. Müller et al. [146, 147, 152] have
reduced the computational complexity of the 2D-3D registration process by the stochastic sampling
even further, such that the calibration parameters were estimated within less than a minute.

The important building blocks to accelerate and to successfully implement image registration on
multi-core central processing units (CPUs) and high performance GPUs are compared in depth by
Fluck et al. [140] and by Shams and Sadeghi [153]. With the use of modern stream processing hard-
ware, even real-time image registration has recently become possible [154].

4.3 Materials and Methods

The basis of the calibration technique that will be presented in the following sections is a flexible
framework that can be used to model various CBCT systems and their geometric misalignment by
using homogeneous coordinates. For this reason, the notation thatwill be used to describe the system
setup and its misalignment will be introduced first.
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4.3.1 System Setup

In principle, there exist two kinds of setups for CBCT scanners: (1) imaging systems where the X-
ray source and detector rotate around and translate along the scanned object of interest and (2) CT
machines where the scanned item is rotated and translated while the source and the detector are sta-
tionary. Without loss of generality, the derivations throughout this chapter will refer to the moving
source-detector scanner. Additionally, the assumption will be made that all detector elements have
the same height andwidth and are equally spaced in an absolutely flat plane, so that the physical detec-
tor does not have any distortions. For the geometries that will be discussed below, the X-ray source
rotates in a counter-clockwise direction with a radius of DSI around the z-axis on a circular or on
a helical path. The detector is positioned at a distance of DSP from the radiation source, whereby
the distance from the rotation/translation axis to the detector can be calculated straightforwardly as
DIP = DSP−DSI . For the case of aH-CBCT scanner, the sourcemoves along the translation axis in
the positive z-direction. The system setup for the helical case is depicted in Figure 4.1. The C-CBCT
system setup is similar to the one shown in Figure 4.1 with the only difference that the helical pitch
vanishes to zero and the trajectory becomes a circle.

To describe the ideally aligned setup of different cone-beam scanners right-handed coordinate sys-
tems are introduced similar to [126]. The coordinate spaceCw defines the world coordinate system,
in which the scanned object has its origin at (0, 0, 0). The z-axis of this coordinate system is identical
with the rotation and translation axis of the scanner. Relative to Cw the X-ray source position is de-
fined as sw := (xsw, ysw, zsw). The coordinate systemCa has its origin at the center of the virtually
aligned detector. It is spanned by the unit vectors u, v and w, where the latter axis of Ca is pointing
away from the detector towards the X-ray source. To use volume and projection data in the frame-
work described below two additional coordinate systems are defined. The first coordinate space Cv
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has the same orientation as the world coordinate systemCw, but its origin and scaling are different, so
that voxel indices can be used directly in the projection operators, as it will be described below. The
second additional coordinate system Cr defines pixel coordinates on the projection in a raster space
with the same orientation as the detector coordinate systemCa.

The calculation of the projection of any point inside the volume of interest onto the detector em-
ploys matrices in homogeneous coordinates. These transformation matrices are tightly integrated
into the forwardprojection andbackprojectionoperationsby following thedescriptions ofGaligekere
et al. [18]. For the application of the matrices to any other source trajectory, apart from the circular
and helical scanning paths, the derivations given below can be easily adapted. The inclusion of addi-
tional misalignment parameters can also be realized straightforwardly (compare with Section 4.3.2).
Please note that the central dot symbol (·) represents matrix multiplication in all equations through-
out this and the following section, i.e. Section 4.3.2.

In the derivations below, the object of interest will be represented by a discrete volume, which con-
tainsNx × Ny × Nz voxels. The edge length of each of the volume elements amounts to ∆x, ∆y
and∆z along the three axes, respectively. The voxels are arranged on a 3-D grid, whereby a single ele-
ment can be accessed through its index xv = (i, j, k). Consequently and for a fixed source position,
the projection of a voxel index xv to pixel coordinates on the perfectly aligned detector, denoted by
xa = (m,n) relative to Ca, can be expressed by a transformation matrixMva. The decomposition
of this matrix is given by

xa =Mva · xv
=Mpr · Pa ·Mwa · xw
=Mpr · Pa ·Mwa ·Mvw · xv.

(4.1)

The first operation applied to the voxel index xv in last row of equation (4.1) is a multiplication
by the matrixMvw which transforms the 3-D index in to a point of the world coordinate systemCw,
which is given by xw = (xw, yw, zw). The volume-to-world matrix can be defined by

Mvw = T (minx,miny,minz) · S(∆x,∆y,∆z) (4.2)

where the point (minx,miny,minz) defines the location of the lower corner of the axis-aligned
bounding box of the volume of interest relative to the world coordinate spaceCw. Additionally, the
matrices T (·) and S(·) represent a translation and a scaling, respectively.

The second row of equation (4.1) describes the projection of the voxel in world coordinates xw
onto its corresponding detector raster coordinates xa. Assuming that the X-ray source position is
given by sw, as defined above, relative to the world space Cw, a point in Cw can be expressed in the
coordinates of the aligned detector spaceCa by the application of the transformation matrix

Mwa = B · T (DIP , 0,−zsw) ·Rz(−ϕ). (4.3)
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In equation (4.3), the matrixRz is carrying out a rotation by−ϕ around the z-axis. Thereby, the
value of ϕ is given by the angle between the x-axis and the detector normal vectorw. The application
of the translation matrix T results in a shift ofDIP along the x-axis and in an additional translation
along the z-axis of−zsw. The final step in equation (4.3) preforms a reordering of the coordinate axes
by the matrix B. This rearrangement is carried out, such that the y-axis becomes the u-axis and the
z-axis is mapped onto the v-axis (compare with Figure 4.1). As a result, thematrixB can be expressed
as

B =


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

 . (4.4)

The explicit definitions of the transformation matrices T , S andRz can be found in Appendix A.
Additionally, note that the indices of each matrix above have been chosen accordingly to the coordi-
nate spaces involved in corresponding transformation.

In the case of an ideal scanning geometry without any misalignments the X-ray source lies at sa =
(0, 0, DSP ) relative to the detector coordinate systemCa. As a consequence, the projective transfor-
mation thatmaps a given point from the coordinate spaceCa onto the aligned detector can be defined
as

Pa =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 −1/DSP 1

 . (4.5)

The discrete detector data is stored in a projection image containingNu ×Nv pixels. The rows of
the projections have a height of∆v, while the columns have a width of∆u. With respect to these de-
tector properties, the projected coordinates, which result from the application ofPa in equation (4.1),
can finally be mapped to raster indices xa by the following transformation matrix:

Mpr = T (hu, hv, 0) · S(1/∆u, 1/∆v, 1). (4.6)

The matrix S in equation (4.6) applies a scaling by the inverses of the detector element width and
height. In addition to this, the matrix T performs a translation by the offsets hu = (Nu − 1)/2

and hv = (Nv − 1)/2. By the substitution of the matricesMvw,Mwa, Pa andMpr from the equa-
tions (4.2), (4.3), (4.5) and (4.6) into the last row of equation (4.1) the projection matrix Mva can
be calculated. This matrix can then be used to transform a voxel index directly from Cv to a raster
coordinate in the virtually aligned projection spaceCr.
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4.3.2 Misalignment Parameters

In addition to an aligned scanning geometry, the transformation framework described above can also
be employed to model the misalignment of a CBCT imaging system. Sun et al. [110] have demon-
strated that the geometrical deviations of a CT scanner can be expressed solely as parameters of the
detector position and orientation. In accordance withNoo et al. [109], Rizo andGrangeat [124] and
Kingston et al. [112], the following seven parameters suffice to describe all possible misalignments of
a C-CBCT scanner:

• Three translations of the detector: (1) the horizontal offset tu, (2) the vertical shift tv and (3)
the translation along the direction of the detector normal, denoted by tw.

• Three rotations of the detector: (1) the in-plane rotation around the detector normal vector
by rw and the two out-of-plane rotations around (2) the horizontal u-axis by ru and (3) the
vertical v-axis by rv.

• The distance between source and sample: DSI

Consequently, these seven parameters can be used to model all geometrical degrees of freedom
for the circular case. Even if other researches have used a different parameterization for the system
geometry, their expressions can be transformed to the parameters above by calculations similar to the
ones proposed in [110]. Note that, for example, the translational movement of the detector along its
normal vector, i.e. tw, can be directly related toDSP , so that the effective source-detector distance is
modeled correctly in both the aligned and the misaligned detector case.

In contrast to the C-CBCT case, a helical scanner incorporates an additional translation along the
axial direction, so that two further degrees of freedom are introduced. Therefore, the geometrical de-
viation of a H-CBCT system can be expressed by a total of nine misalignment parameters (see [113]):

• the seven detector parameters from the C-CBCT case

• two rotations of the translation axis relative to the rotation axis: rx, ry

In accordance with the discussion presented by Varslot et al. [113] about geometric calibration in
relation to helical scans of long and short objects, the following two assumptions can bemade: (1) the
rotation axis and the translation axis stay approximately parallel during the scan of short objects and
(2) the calibration problem for the scan of long objects can be split up into several parts, such that for
each scanned segment the first assumption applies. As a result, the two rotations of the translation
stage, namely rx and ry, can be set to zero and will be ignored in the following considerations to
reduce the degrees of freedom that need to be estimated by the calibration algorithm. Additionally, it
has beendemonstrated bymany researches [112, 114, 122, 133] that the distanceDSI mainly influences
the magnification of the reconstructed volume and that it does not severely degrade the overall image
quality. Therefore, the complexity of the parameter estimationprocedure canbe reduced even further
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Table 4.1: Optimal Units of themisalignment parameters

Parameter Optimal Unit Simulations Parameter Optimal Unit Simulations

tu
∆u

1 + sin(αfan)
1.209mm ru asin

(
4 ·DSP/(N

2
v ·∆v)

1 + sin(αcone)

)
0.991◦

tv
∆v

2 · tan(αfan)
2.344mm rv asin

(
4 ·DSP/(N

2
u ·∆u)

1 + sin(αfan)

)
0.991◦

tw
DSP

Nu · tan(αfan)
6.867mm rw asin

(
2 ·∆u

Nv ·∆v · (1 + sin(αfan))

)
0.338◦

by the exclusion ofDSI from the statement of the problem. Consequently, the above simplifications
leave six degrees of freedom for both C-CBCT and H-CBCT systems.

Furthermore, the results of Patel et al. [133] show that out-of-plane detector rotations, denoted by
ru and rv, have only a small effect on the quality of the reconstructed image. In addition to this, von
Smekal et al. [117] has found out that for the estimation of the two out-of-plane rotation parameters
an error of about 50% can be expected with offline calibration strategies in comparison to the in-
plane rotation, i.e. rw, forwhich the errorwas significantly lower. Moreover, the results of the analysis
presented byCho et al. [126] suggest that the overall precision that can be achieved by aCT calibration
procedure is dependent from the magnitude of the rotations ru and rv. These finding imply that
the accuracy of the parameter estimation decreases the larger the misalignment of the CT scanner
with respect to the out-of-plane rotations. Yang et al. [130] have made additional observations and
summarized themwith the onesmade above: (1) in practical applications it is quite difficult to obtain
the two out-of-plane rotations, (2) the angles ru and rv have only a small influence on the artifacts
inside the reconstructed volume in comparison to the remaining calibration parameters and (3) both
angles can be kept small enough by a good mechanical scanner design, such that their effect on the
image quality is negligible.

The observations pointed out above can be reaffirmed by looking at the influence that each pa-
rameter has on the final reconstructed volume with reference to the amount of artifacts and the im-
age degradation that it introduces. For this purpose, a common scale of influence can be introduced
by defining Optimal Units (OUs), denoted by the entity ou, for each parameter in accordance with
Kingston et al. [112] and Varslot et al. [113]: with respect to the volume of interest the change in a
single parameter value that is needed to introduce a perturbation that is not larger than one voxel can
be described approximately by 1 ou. Table 4.1 gives the formulas for computing theOUswith respect
to each misalignment parameter, whereby the fan angle and the cone angle of the imaging system are
defined by αfan and αcone, respectively, in radians. Note that the publication of Varslot et al. [113]
describes the full derivation of these formulas. For the simulation experiments conducted in Sec-
tion 4.4.1, the third and the last column of Table 4.1 show the corresponding values for the OUs of
each parameter. Note that largerOUs stand for a smaller influence of the relatedmisalignment on the
reconstructed image, since a larger variation of the parameter is required to introduce a perturbation
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of one voxel. In contrast to this, parameters with a smaller OU have a stronger effect on the final vol-
ume. Again, it can be verified that the out-of-plane detector rotations introduce only a small amount
of artifacts into the image due to their relatively large OUs. Note that a scheme for the comparison of
translation and rotation parameters is given in Appendix C. Based on the observations made above,
a reasonable criterion for the selection of a subset of misalignment parameters, which should be in-
cluded into the estimation process during the calibration procedure, is to keep only those with the
smallest OUs. By this means, those parameters are selected which have the largest influence on the
overall image quality. For these reasons, the two out-of-plane rotations ru and rv are fixed to zero and
the four parameters selected for the here presented calibration method are: tu, tv, tw and rw.

To include these four detector deviations into the projection framework, a new coordinate system
Cm is defined to represent the misaligned physical detector. Given Ca, the aligned detector can be
translated horizontally along the u-axis by tu, vertically along the v-axis by a value of tv and along the
detector normalw by applying a shift of tw. Additionally, the detector plane can be rotated around its
normalw by a value of rw. The application of these four transformations to the unit vectors u, v and
w creates the vectors that spanCm. Consequently, to transform a voxel index xv into the misaligned
detector coordinate spaceCm the matrixMwa in equation (4.1) has to be replaced by

Mwm = Rw(rw) · T (tu, tv, tw) ·Mwa

= Rw(rw) · T (tu, tv, tw) ·B · T (DIP , 0,−zsw) ·Rz(−ϕ),
(4.7)

where T applies a translation along the three axes of the detector by tu, tv and tw, respectively, and
Rw performs a rotationby rw around the detectorw-axis. Note thatRw(rw) is equal to the expression
Rz(rw), since the coordinates have been reordered by the matrixB, and thatMwa is a special case of
Mwm where the four misalignment parameters have been set to zero.

To perform a projection operation in the spaceCm and accordingly to [134] and [155], the projec-
tion matrix Pa has to be changed to

Pm =


1 0 −um/wm 0

0 1 −vm/wm 0

0 0 0 0

0 0 −1/wm 1

 , (4.8)

where the source position relative to the misaligned detector space Cm can be expressed as sm :=

(um, vm, wm) =Mwm ·sw where sw is the X-ray source in world spaceCw as defined in the previous
section. A complete derivation of the projection matrix Pm for a misaligned scanner using homoge-
neous coordinates can be found in [134].
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Figure 4.2: A schematic view of the novel calibration approach: for each resolution the projections and the volume are

appropriately scaled, then for each parameter the optimal valuep⋆ is estimated by a 1D sampling of theMI followed by

a smoothing of the sample points and a shape dependent least-square fitting procedure.

The above replacements lead to the final transformation,which defines how toproject voxel indices
directly fromCv to raster coordinatesxm on themisaligned detector by using the following equation:

xm =Mvm · xv
=Mpr · Pm ·Mwm ·Mvw · xv.

(4.9)

Using the transformation framework presented above, the novel online calibration procedure will
be derived in the following section.

4.3.3 The Calibration Technique

The calibrationmethodderived in this section steers amulti-resolution 2D-3D registrationprocedure
by the optimization of an image similarity function. The similarity is evaluated over the set of the
original acquired projections g0 and the simulated reprojected projections gi. Within this process the
reprojectionsgi are generated fromapreliminary intermediately calculated volumeof interestfi. This
temporary image is constantly kept up to date during each iteration, denoted by i, of the parameter
optimization procedure. Figure 4.2 gives a schematic overview of the here developed algorithm. A
detailed description of the approach will be presented below.

First, the set of geometric parameters is defined as Pi = (tu, tv, tw, rw) ∈ R4. This set will be
iteratively refined by the calibration process in each iteration step to find an optimal constellation
P⋆ = (t⋆u, t

⋆
v, t

⋆
w, r

⋆
w) that maximizes the reprojection similarity. Given Pi, the simulated reprojec-

tions can be computed as

gi(Pi) = X (Pi) · fi = X (Pi) · X−1(Pi) · g0, (4.10)
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Figure 4.3: Comparison of different similarity functions for each of the four misalignment parameters : SAD, NCC, MI

with full ray sampling (MI) and MI with stochastic ray sampling (MI-SRS). The functions have been sampled by varying

only a single parameter at a time, while keeping all others fixed at their true value.

where theX-ray transform, i.e. cone-beam transform (see equation (3.2)), is denotedby the forward
projection operator X which has been implemented on the GPU using a trilinear grid-interpolated
ray casting approach similar to the descriptions given by Galigekere et al. [18], Xu and Mueller [156]
and Weinlich et al. [20] and in Section 3.2.2. Further along, the reconstructed image fi in equa-
tion (4.10) is computed by the operator X−1 which represents a filtered backprojection algorithm.
In accordance with the descriptions and discussions presented in Chapter 3, the FDK algorithm [12]
in combination with a ramp filter, also known as Ram-Lak filter, has been employed for the recon-
struction of projection data acquired from the circular trajectory. For helical cone-beam projection
data the implementation of Kastsevich’s exact FBP algorithm [13, 27] presented in Section 3.2.1 has
been used. Note that the two operatorsX andX−1 in equation (4.10) depend on the set of misalign-
ment parameters Pi, as they are both required the projection matrix Mvm(Pi) during the forward
projection and backprojection process, respectively.

Given the original projections g0 and the simulated reprojections gi, different similaritymetrics can
be evaluated. Figure 4.3 shows a comparison of three similaritymeasures as functions of the fourmis-
alignment parameters: (1) the sumof absolute differences (SAD), (2) the normalized cross-correlation
(NCC) and (3) themutual information (MI). Theplotswere generated from theH-CBCTsetupwith
the Shepp-Logan (SL) phantom as described in Section 4.4.1. It can be seen that the SAD, which has
been used by Wein et al. [132], has a jagged shape and does not lead to the correct solution for all
misalignment parameters. In comparison to the NCC, which has been employed in [4, 135], the MI
shows the most defined and steepest peaks in relation to the parameter constellation of the aligned
detector. For the other datasets studied during the experiments in Section 4.4, the same observations
have been made for the three similarity metrics with respect to each parameter. For this reason, the
derivation of the calibration procedure uses the MI.

Following the descriptions of Viola and Wells [149] and Thévenaz and Unser [157], the Parzen
windowmethod can be employed for the estimation of the joint probability density of twoprojection
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Figure 4.4: Contour plots of the MI as a function of two misalignment parameters. The true parameters values (black

dot), the systemsetupand theprojectiondataare thesameas inFigure4.3. Dashed linesmark thecrestsof theobjective

functions with respect to one parameters.

sets ga and gb. Given the two discrete setsGa andGb containing the gray values associated with the
projections ga and gb, respectively, the discrete probability can be computed by

p(u, v) = α
∑
xi∈V

W(u− ga(xi))W(v − gb(xi)), (4.11)

where u ∈ Ga and v ∈ Gb and V is the domain of the projection sets, and where α is a normal-
ization factor that ensures that

∑
p(u, v) = 1. The weighting functionW(ξ) is a Parzen window

modeled by a cubic B-spline similar to [145, 157] and which fulfillsW(ξ) ≥ 0,∀ξ. For the two
projection sets, the marginal probabilities can be defined and calculated by

pa(u) =
∑
v

p(u, v) and pb(v) =
∑
u

p(u, v). (4.12)

With the definitions provided by the equations (4.11) and (4.12), the mutual information (MI) of
the projection sets ga and gb can be computed as

MI(ga, gb) =
∑
u

∑
v

p(u, v)log
p(u, v)

pa(u)pb(v)
(4.13)

For helical system setup in combination with the SL phantom, which was used for the simulation
studies in Section 4.4.1, the MI has been sampled as a function of each combination between two
misalignmentparameters. During the sampling of eachparameter pair, the two remainingparameters
were fixed to their true values. Figure 4.4 shows the resulting contour plots of each combination of
parameters. These images can be used to analyze the behavior of the objective function. In the first
row of the plots the crest of the MI follows a straight horizontal line with respect to the parameter
tu. This suggests that tu is not affected by the values and by changes of any of the other parameters.
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Equal observations for the horizontal detector shift have been made with respect to constellations
where the values of the other three parameters differed from the ones used in Figure 4.4. Also for
the datasets studied in Section 4.4, the parameter tu showed a similar behavior. As a consequence,
it can be assumed that the value of tu can be estimated independently from the values of the other
misalignment parameters. The last two plots in the second row of Figure 4.4 show that the optimal
value of the detector shift tw is changing neither with tv nor with rw, since the crest of theMI forms a
straight vertical line. This fact suggests that tw does not depend on the vertical detectormisalignment
tv and not on the in-plane rotation of the detector. In addition to this, the first plot in the second row
demonstrates that the optimal value of rw can be found independently of the choice of the vertical
detector offset tv. Similar 2D contour plots of the MI have been analyzed during the development
of the here presented algorithm with respect to various imaging system setups, for other objects of
interest and at different resolutional scales. All plots showed similar characteristics and suggest that
the optimal values of the studiedmisalignment parameters can be optimized independently from the
values of the others. The above assumption must not hold to true for any combination of geometric
system setup and considered objects, but in this thesis, it worked successfully for all studied datasets
(see Section 4.4). Consequently, a CBCT calibration can be conducted by solving the following one-
dimensional optimization problem of each parameter fromPi sequentially:

p⋆ = argmax
p

MI(g0, gi(p)) (4.14)

where the parameter p is estimated individually while all other parameters in Pi are kept fixed.
Note that consequently the reprojections gi(p) and thus the objective functionMI(g0, gi(p)) vary
only with the changes of the currently optimized parameter p.

Since the OUs provide a comparable scale, the order in which the calibration procedure estimates
the misalignment parameters can be chosen by comparing the OUs in Table 4.1 with each other. To
compare the rotation parameter rw, which is given in degree, with the three translation parameters,
the maximal shift that is introduced to the detector pixels by a rotation of rw can be computed as
described in Appendix C. As a result, the influence of rw on the reconstructed image and on the
objective function lies between tu and tv. Since a parameter with a smaller OU will influence the
reconstruction more than a parameter with larger OU, the optimization order has to be chosen such
that the parameters with the largest influence on the image quality are estimated first. This yields the
following order:

1. Horizontal detector translation tu

2. Rotation around the detector normal rw

3. Vertical detector translation tv

4. Detector translation along its normal tw
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As each evaluationof the objective functionMI needs a backprojection and a reprojection step, it is
not efficient to process the dataset only at the highest quality. Instead, an optimizedmulti-resolution
1D grid search similar to the one proposed by Kingston et al. [112] is employed to estimate the un-
known parameter constellation stably and to make a solution of the optimization problem compu-
tationally feasible. As a consequence, equation (4.14) is first solved on a coarse scale with the original
projections, the volume and the simulated reprojections sampled at a lower resolution. For this ap-
proach, a significant performance improvement can be expected with respect to the coarser scales.
Together with this speedup, the multi-resolution strategy allows the calibration algorithm to scan a
wider range of parameter values to find larger geometrical misalignments. Additionally, it has been
observed in image registration literature (see Thévenaz andUnser [158] andCole-Rhodes et al. [159])
and for the cases studied within this thesis that an optimization over multiple resolutions decreases
the risk of running into local optima. These non-global solutions to the optimization problem can
exist especially at higher resolution scales and are a result of the approximate and discrete nature of
the involved reconstruction and reprojection implementations. As a result, the objective function
can have artifacts at a finer scale, which do not exist at the coarser resolution [159]. In addition to the
robustness against local optima, the employed 1D search strategy has the advantage that it can be ex-
ecuted in parallel over different compute nodes. As each calculation of theMI at a specific parameter
constellation is independent from other configurations, samples can be calculated at the same time.
However, asmentioned above, the forward and the backprojection exploit the capability of theGPU,
such that for the concurrent evaluation of the objective function at multiple locations the number of
graphics card devices needs to scale with the amount of parallelism and performance needed by the
specific application. Note that in the studies performed within this thesis the 1D grid search has been
carried out on a single GPU, such that only one sample ofMI is computed at a time.

The suggested 1D search technique computes the samplesMI(g0, gi(Pi)) at each resolution scale
by varying only a single parameter. The sampling distance for the 1D scanning of each misalignment
from Pi is chosen so that the parameter variations are on a common scale. This means that the ef-
fects of a parameter change on the reconstructed image and on the objective function should be in a
normalized range and comparable when looking at different parameters. For this reason, the changes
from one to the next sample are selected to have a value of 1 ou in correspondence with the scanned
parameter (see Table 4.1). Consequently, for the scanning of the function MI(pi) given by equa-
tion (4.14) the sampling distance and the sample locations can be computed by ∆p = OUp and
pi = ∆ p(−2β + i), respectively, whereOUp equals 1 ou of the sampled parameter p calculated by
the formulas in Table 4.1 and i ∈ [0, ..., 4β]. The factor β defines the range of the sampled interval
and is chosen accordingly to the currently processed resolution scale. At the highest scaleβ has a value
of 1 and with each lower resolutional level β is increased by 1, such that it corresponds to the binning
of projection and volume data carried out by the downsampling process at each resolution. This scan-
ning technique is similar in terms of the employed sampling distance to the one used for sharpness
optimization byKingston et al. [111, 112]with the difference that the here proposedmethod evaluates
MI as objective function.
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Figure 4.5: Two volume update strategies are comparedwith respect to theMI: (1) update after p⋆ has been estimated

(light gray dashed line) and (2) continuous updates for each evaluation ofMI (dark gray dashed line).For the second

strategy the samples have been low-pass filtered (gray solid line) and the center (gray circle) has been computed by the

fitting of a Gaussian function. The true values of the misalignment parameters (black solid line) are tu = tv = tw =

15mm and rw = 5◦. The range from half an optimal unit below and above the true parameter value is also shown

(light gray area).

In addition to the common scale, the OUs can be employed as a stopping criterion for the opti-
mization procedure, since they provide a rough limit on how accurate the calibration can get for a
given geometrical system setup. In accordance with Kingston et al. [112], sub-voxel precision can be
achieved by a calibrated reconstruction of the object of interest, if all differences between the cali-
brated nominal and the actual values of the misalignment parameters are smaller than half of an OU.
The experiments in Section 4.4 suggested that the optimization of a single parameter p can be termi-
nated when the change of its value from one to the next performed 1D scan is less than a quarter of
OUp. This criterion ensured sufficient calibration accuracy for all datasets studied within this thesis
and it has been observed that once the parameter change dropped below the threshold of 1/4OUp

convergence was guaranteed (compare with Figure 4.10).
The next step of the calibration algorithm applies a low-pass filter to the 1D sampling at the loca-

tions pi of the objective functionMI for each parameter. Therefore, a 1DGaussian function is fitted
to the peak of the samplesMI(pi) to estimate its center. In principle, the similarity functionMI can
show a symmetric or non-symmetric behavior around the optimal values p⋆ for certainmisalignment
parameters. Figure 4.5 demonstrates the symmetry of theMI for tu and rw, while the parameters tv
and tw do not behave symmetrically around their central peak, i.e. the optimal value. Similar observa-
tions for the shape of the objective function in relation to the four parameters have been made for all
studied datasets. For this reason, a symmetric Gaussian (SG) and an asymmetric Bi-Gaussian (AG) is
fitted to all four parameters insidePi, whereby the AG function is given by the following expression:

AGa,c,b,σ,τ (x) = a · exp
(
−0.5(x− c)

2

s2

)
+ b (4.15)

where a, b and c define the amplitude, the center and a constant background value, respectively.
Moreover, the left and right standard deviations are given by s = σ for x < c and s = τ for x ≥ c,
respectively. Note that the SG function becomes a special case of the AG when σ = τ . The fit-
ting procedure itself has been carried out in a least-square sense by the application of the Levenberg–
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Marquardt algorithm. After this, the location of the center c of the Gaussian peak has been deter-
mined from the fit with the lower residual norm. The found center position is used as the optimal
value p⋆ of the currently estimated parameter and is stored in the set Pi. This step finishes the pro-
cessing of a single parameter on the current resolution scale. Afterwards, the remaining geometrical
parameters are estimated sequentially using the same 1D optimization approach. In summary, the
calibration method becomes more robust against projection noise and against local optima through
the low-pass filtering of the samples and the shape dependent fitting has the advantage that the non-
symmetric behavior of the objective function is approximated more precisely. As it will be demon-
strated in Section 4.4.1, the techniques described above let the algorithm estimate the true parameter
values stably and exactly (see Section 4.4.1).

Once the calibration algorithm has determined all misalignment parameters of the set Pi on the
currently processed scale it switches to the next higher resolutional scale to repeat the optimization
procedure until the highest resolution is reached. As it will be demonstrated by the results presented
in Section 4.4, the proposed optimization strategy refines the parameters successively and iteratively
over multiple scales, such that they converge against the true solution of the calibration problem.
Moreover, LeMoigne et al. [160] have shown that in the context of image registration a similar search
strategy can be applied successfully, although they used a multi-resolution wavelet-based decomposi-
tion in combination with a cross correlation measure to design their objective function.

The intermediate volume fi in equation (4.10) can be kept up-to-date by basically two approaches.
With the first volume update strategy, fi is kept constant during the optimization of equation (4.14).
The volume is only updated after a full 1D scanning and fitting has performed, such that p⋆ has been
estimated for a single parameter. The second update scheme synchronizes the volume updates with
the evaluations ofMI(g0, gi), such that for the calculation of each 1D sample of the objective func-
tion an updated version of the volume fi is reconstructed. The comparison of both approaches in
Figure 4.5 demonstrates that the first update strategy can lead to a faulty calibration result, where
the final estimates of the misalignment parameters are more than 1 ou off from their true values. In
contrast to this, the second update scheme shows a similarity function, which has its peak around
the true parameter constellation. The main reason for this behavior is that the updated volume fi
influences the simulated reprojections gi through equation (4.10). As a consequence, the objective
functionMI(g0, gi) is also affected by changes of fi, such that a consistently updated volume, pro-
duces more precise reprojections, which lead to a superior registration and calibration result. For this
reason and in contrast to the techniques developed by Sasov et al. [4], Mayo et al. [135] and Wein
et al. [132], the here derived calibration approach employs the second update strategy. In accordance
with the overall calibration scheme displayed in Figure 4.2, a FBP reconstruction is performed during
each evaluation of theMI prior to each forward projection step. Although the more frequent up-
dates require additional computations and thus consumemore time than the first strategy, the use of
the same set of parameters P during the reconstruction and the reprojection process promises more
precise calibration results.
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In the context of performance optimization, a stochastic forward projection has been implemented
to speedup the calibrationprocess. Thedeveloped approach follows the ideas ofViola andWells [149]
and Müller et al. [152], such that during the reprojection process only a subset of the detector pixels
is computed. Therefore, the ray casting algorithm is only executed for half of the detector elements at
random, such that the rays are distributed uniformly over the simulated projection images. For this
reason, a first stepof theDRRgenerationprocess assigns aunique index to eachof theNu·Nv detector
pixels. Then a random permutation of these indices is generated and stored in an array. Finally, the
firstNu·Nv/2 indices are picked from this list and rays are traced through the volumeof interest to the
corresponding detector elements. In addition to this, the selected permuted indices are stored for each
projection, so that they can be reused during each execution of the forward projection operation. On
the one hand, this projection-wise index buffer enables the algorithm the calculation of the compute-
intensive index permutation only once at the initialization of the forward projector. On the other
hand, it ensures that the random selection of the detector pixels is the same for all evaluations of the
MI with respect to a single resolution scale. The latter property is very important for the estimation
of the optimal parameter value, since a constantly varying random selection of detector pixels from
one to the next calculation ofMI could introduce strong artifact into the sampling of the objective
function and lead to an incorrect solution of equation (4.14). A result of this stochastic sampling is
that the time spent for the generation of the simulated reprojections is reduced by a factor of two. In
addition to this, for the evaluation ofMI only half of the detector pixels have to be considered, so
that the overall time spent for the calculation of the projection similarity can be also approximately
halved. Moreover and as demonstrated in Figure 4.3, the introduced stochastic ray sampling (SRS)
does not modify the general behavior of the similarity function, nor does it shift the location of its
maximum. Although a stochastic sampling can be implemented to improve the performance of the
backprojection operatorX−1, it has not been implemented in the context of this thesis, such that the
backprojection operation still leaves room for further optimizations.

Putting all the above steps together, the 1D multi-resolution search (1D-MRS) calibration tech-
nique can be summarized with the following steps (compare Figure 4.2):

1. Initialize all parameters p ∈ P to zero.

2. Select a resolution scale factor S to start with.

3. Resize projections g0 by the factor S.

4. Repeat steps (a) to (c) for each p ∈ P

(a) Perform a 1D sampling ofMI(g0, gi).

(b) Low-pass filter the samples.

(c) Find p⋆ by the fitting of Gaussian functions.

5. Set S to the next finer resolution and rerun the calibration from step 3.
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A more detailed description of this algorithm can be found in Appendix D.
The influence of the out-of-plane detector rotations ru and rv on the above observations has not

been studiedwithin this thesis, so that further investigation are neededbefore these twomisalignment
parameters can be integrated into themethod. For the case that the 1D search strategy described above
does not work for additional parameters, the proposed estimation scheme can be exchanged by a
multidimensional optimizationmethod. Todemonstrate that the here designed calibration approach
works well in conjunction with a different optimization algorithm, the Limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [148] will be used and compared to the 1D-MRS in
Section 4.4.

4.3.4 Implementation

The calibration algorithm has been implemented as a combination of C, C++ and Compute Unified
Device Architecture (CUDA) [103] routines that are wrapped and called from MATLAB. The for-
ward projection has been optimized with ray casting using projection matrices like described in [18]
to run completely on the GPU.

For C-CBCT and for H-CBCT filtered backprojection algorithms are used. With data from a cir-
cular trajectory the backprojection step of the FDK algorithm has been realized on CUDA according
to [24, 43], where the filtering step is carried out in MATLAB using its internal fast Fourier trans-
form (FFT) routines. The implementation ofKatsevich’s helical reconstruction algorithm follows the
descriptions of [27, 28] as described in Section 3.2.1 and is split up into two steps. The first routine
is performing the filtering along tilted lines on the CPU using the Intel Performance Primitives (IPP)
library and parallelizes the process per projection. Afterwards, a π-segment based backprojection is
computed in a second routine on the GPU using CUDA. This allows the algorithm to exploit the
compute capacities of the CPU and GPU fully by filtering and backprojecting in parallel. Katsevich’s
FBP and the FDK algorithm are used in the calibration technique for C-CBCT andH-CBCT, respec-
tively. For the computation ofMI the methods provided by the Insight Segmentation and Regis-
tration Toolkit (ITK) [145, 158, 161, 162] have been integrated into MATLAB using the techniques
described in Chapter 2.

After a set ofmisalignment parameters has been estimated, a FBP reconstructionwith the corrected
geometry has to be computed. For the FDK algorithm, the authors in [155] have shown that themis-
alignment parameters only have a minor influence on the filtering step. According to this, the FDK
filter is not modified when the misalignment parameters change, so that the parameters estimated
during the calibration are only used within the backprojection step and the projection data does not
need to be filtered multiple times. In addition to this, the projection matrixMvm for the misaligned
detector geometry from equation (4.9) is used to perform the backprojection directly from the mis-
aligned projections of the C-CBCT system.

In contrast to the FDKcase, Katsevich’s algorithmneeds a perfectly aligned geometry (see [94]). To
transform misaligned projection data into virtually aligned detector data a perspective rebinning has
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Figure 4.6: A comparison of the two virtual detector rebinning strategies. A projection of the SL phantom has been

simulated using an aligned system setup (top left) and a a misaligned geometry (bottom left). The perspective warping

(top center) and the ray casting approach (bottom center) have been used to correct the misaligned projection. The

rebinned projections (central column) have been compared to the aligned projection by computing the difference (last

column). For generation of the projection data the helical system setup described in Section 4.4.1 has been used and

for the misaligned projections the geometric parameters have been set to the following values: tu = 50mm, tv =

50mm and rw = 5◦.

to be applied. For this purpose, two different approaches have been compared. The first technique
uses perspective warping to map the projection images of the misaligned detector onto the aligned
detector plane. It has been realized by using MATLAB’s image transformation routines (maketform
and imtransform), which are accelerated by the IPP internally. The second approach uses a ray casting
strategy to resample the misaligned projection data by rays that intersect the pixels of the aligned
detector. The basic idea of this rebinning implementation can be summarized in three steps: (1) cast a
ray from the source to each element of theperfectly aligned virtual detector, (2) find the intersectionof
the ray with the misaligned detector and (3) finally store the interpolated value from the intersection
at the misaligned detector to the aligned virtual detector. A complete formulation of the ray casting
strategy for virtual detector rebinning in conjunction with the matrix transformation framework can
be found in Appendix E. This algorithm has been efficiently implemented using CUDA, so that the
computations for each ray are processed in parallel.

The projection images of the SL phantom in Figure 4.6 compare both perspective rebinning strate-
gies and show that the ray casting based approach results in a smaller error with respect to the aligned
detector data. The differences between the aligned and rebinned projection image using ray casting
are smaller than 0.154 in their absolute values, whereas as the errors for the perspective warping range
from−0.307up to0.228. When comparing thewhole projection set of the ray casting approachwith
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the aligneddetector data the root-mean-square error (RMSE) is5.95%. In contrast to this, theRMSE
for the warping-based rebinning is higher than 7.0%. With other simulated dataset, different geome-
tries and various constellations of the misalignment parameters similar results have been observed, so
that in general the ray casting based perspective correction algorithm delivers a slightly superior pro-
jection image quality after rebinning. As consequence, the volumes reconstructed with this approach
have a smaller deviation from the original image. Moreover, for the study in Figure 4.6, the rebinning
of the whole projection sets using the ray casting approach took only 0.09 seconds, whereas the per-
spective warping took 0.461 seconds. Also for larger projection sets, a similar performance increase
by up to a factor of 5 has been measured using the ray casting based rebinning. Because of its better
overall computational performance, the ray casting algorithmwill be used for all further experiments
and discussions throughout this chapter.

Furthermore, to generate high quality rebinned projections with minimal artifacts from the mis-
aligned detector data cubic B-spline interpolation (CI) provided by [163] has been integrated into the
rebinning process. After the rebinning has been completed, Katsevich’s algorithm can reconstruct
the image from the virtually aligned data. The CI can also be enabled in the reprojection and in the
backprojection process, but preliminarily experiments have shown no improvement of projected and
reconstructed images in comparison to bilinear interpolation. Therefore, the use of the CI inside
the projection operators did not show any superior calibration results and is therefore not further
considered.

4.4 Results

Before the results of the calibration algorithm described above will be presented, the artifacts that the
four different misalignment parameters (tu, tv, tw and rw) generate in the reconstructed image will
be discussed. For C-CBCT, these effects have been described using simple test objects by Sun et al.
[110]. The following study will also use simple test objects to demonstrate the misalignment artifacts
for the H-CBCT case.

For this purpose, helical cone beam projections of a single sphere and a simple cube are generated.
The system setup used for this simulation is composed of a set of parameters that resemble an average
system geometry with respect to CBCT configurations that are used for the studies of real data in
Section 4.4.2 (compare Table 4.2). The setup consists of a flat detector geometry with Nu = 512

columns and Nv = 512 rows each having a size of ∆u = ∆v = 0.8mm. Hereby, the detector is
placed atDSP = 600mmaway from theX-ray source, which is rotating around the object of interest
three times acquiring 1080 projections in total. The helical pitch is chosen to have an optimal value of
P = 50.56mm, so that the largest possible amount of data from the projections can be used during
the reconstruction process (compare [113]). During this procedure, the volume that is computed
with Katsevich’s algorithm is placed with its center at a distance ofDSI = 50.0mm from the source
and has a size ofN = 2563 voxels with each having an edge length of∆x = ∆y = ∆z = 0.1mm.
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(a) aligned (b) tu = 10 ou (c) tv = 10 ou (d) tw = 25 ou (e) rw = 25 ou

(f) aligned (g) tu = 10 ou (h) tv = 10 ou (i) tw = 25 ou (j) rw = 25 ou

Figure 4.7: Perturbations introduced by the four detectormismanagement parameters: tu, tv , tw and rw . The top row

shows the reconstruction from an aligned detector (a) and the absolute differences (b)-(e) between the reconstructions

from aligned andmisaligned detector data of a sphere. The bottom row shows the corresponding images for a cube. All

reconstructed volumes in the first column have been normalized to [0, 1] and for the difference images in the last four

columns the grey value window has been set to [0, 0.5].

The resulting perturbations of each misalignment parameter are displayed in Figure 4.7. The axial
central slices in the first column of Figure 4.7 show the objects reconstructed from the aligned de-
tector data. The last four columns show the artifacts introduced by the misalignment parameters.
Figure 4.7b and 4.7g illustrate the absolute differences in the central slices of the reconstruction from
the aligned detector and from a detector that has been horizontally shifted by 10 ou = 6.05mm. The
horizontal movement of the detector shrinks the sphere and the cube on one half and expands them
on their other half, so that the largest deviations between the aligned and misaligned reconstructions
occur at the border of the objects of interest. When visualizing these differences in 3Done can see that
the edge where the shrinking changes over to the expansion of the object has a spiral shape. Similar
artifacts, so-called ”comet trails”, have also been described by Hass and Faridani [94] while studying
the effect of different implementations strategies for the derivative computation in Katsevich’s algo-
rithm. They showed that the effect of a horizontal detector shift of only half the width of a projection
pixel can be recognized in the final reconstruction. These facts demonstrate how sensitive Katsevich’s
algorithm is for variations in the parameter tu.

The absolute differences in central coronal slices between the reconstruction from an aligned and a
vertically shifted detector (tv = 10 ou = 11.72mm) are displayed in Figure 4.7c and 4.7h. A vertical
displacement of the detector essentiallymoves the object in the reconstructed image into the direction
of the detector shift, so that the largest differences occur at the bottom and at the top of the object.
Beside of this, minor wing shaped artifacts can be recognized at the lower and upper corners of the
sphere and the cube. However, the overall shapes of the objects reconstructed from the misaligned
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projections matches those of the objects computed from the aligned data. The main difference in the
volumes introduced by the parameter tv lies in the vertical positioning of the objects.

In contrast to the twoparameters above, the parameter tw has for the given system setup a relatively
largeOUwith 1 ou = 3.433mm. As a result, a change in its value has a smaller effect on the resulting
reconstructed volume as the variations of tu and tw. The artifacts, which are introduced to the sphere
and to the cubeby a shift of the detector along its normal (tw = 25 ou = 85.83mm), are shown in the
fourth column of Figure 4.7. Themisalignment in tw creates streaking artifacts mainly at the bottom
and the top of the objects. The effect drops off towards the center of the object. This transition can
have the effect that the final reconstructed object looks tapered. Note that large shifts, as the one has
been used here tomake the artifacts of tw visible, are very unlikely to appear in practice, since formost
CT scanners the distanceDSP can be measured very accurately and large deviations can be avoided
by a precise manufacturing of the CT system.

The coronal central slices in Figure 4.7e and 4.7j show the differences between a reconstruction
from an aligned detector and from a detector rotated by rw = 25 ou = 4.23° around its normal. On
the one hand, a detector rotation introduces effects that are similar to the wing shaped artifacts like
they have been shown for a misalignment of the parameter tv. On the other hand, a rotation of the
object itself can be noticed.

The above overview helps to categorize different types of detector misalignments in H-CBCT by
looking at the reconstructed images, because the shape of the artifacts varies with the misalignment
parameters. Additionally, this study can be employed as a rough visual guide to the strength of the
influence that each detector parameter has on the final image. The major results from this study can
be summarized as follows: (1) the parameter tv mainly introduces a shift to the object, (2) the value
of tw only has a minor influence on reconstruction quality because of its relatively large OU and
(3) the detector shift tu and the rotation around the detector normal rw introduce the most serve
perturbations to the shape of the reconstructed object.

4.4.1 Simulated Data

The stability and robustness of the calibration method developed in Section 4.3 will be verified by
simulations generating synthetic projection data during the following experiments. These studieswill
demonstrate the convergence of the parameter estimationprocess and that it approximates the correct
solution. Moreover, the robustness of the algorithm will be illustrated by adding artificial noise to
the projections. As commonly known, the X-ray photons are approximately following a Poisson
noise distribution. However, for the practical simulation of projection data, it will be assumed the X-
ray image acquisition procedure behaves according to a normal distribution when a large number of
photons are involved into the process. Additionally, it can be observed during real data experiments
(see [164]) that the standard deviation of the noise is not independent from the attenuation that the
X-ray beamexperiences. Consequently, the standard deviation is not constant over awhole projection
image. Hence, the following simulationswill be carried out using twodifferent noisemodels based on
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Table 4.2: Initial system setups for the calibration from simulated and real data

Simulations Pen TP09 Stent KKW Head&Neck

Trajectory Circular | Helical Circular Helical Circular Helical Circular
Num. of Projections 1080 800 1370 600 1000 360

Nu 512 512 512 1848 512 512
Nv 512 512 512 1480 512 512

Nx,y,z 512 512 512 512 512 512
∆u [mm] 0.800 0.800 0.800 0.127 0.400 0.8
∆v [mm] 0.800 0.800 0.800 0.127 0.400 0.8

∆x,y,z [mm] 0.047 0.030 0.030 0.030 0.030 0.48
DSP [mm] 600.000 759.392 759.392 425.095 783.419 1536
DSI [mm] 50.000 87.649 207.543 59.185 68.549 1000

incr. Z [mm/proj.] 0.000 | 0.140 0.000 0.139 0.000 0.025 0.000
incr. Angle [◦/proj.] 0.333 | 1.000 0.450 0.450 0.600 0.360 1.000

Gaussiandistributions. In the firstmodel zero-meanGaussiannoisewill be added to aprojectionpixel
with value p, whereby the standard deviation was chosen to be signal-dependent (SIG) by attaining
a value of √p. The assumption that the attenuation of the X-ray beam is approximately equal for
all rays passing through the object of interest is made in the second model. Consequently, a constant
(CON) additiveGaussiannoisemodel is chosen to carry out the second runof the simulations, while a
standard deviation of one tenth of the full projection intensity range is selected. The results presented
in the following will show that the calibration technique works for both noise models.

The studies of the simulated data will be performed on a circular and on a helical scanning tra-
jectory. For both setups the first columns of Table 4.2 summarizes the employed geometrical sys-
tem configurations. To show that the novel calibration approach is able to deal with different types
of geometrical shapes, two objects with differing structures have been selected: (1) the 3D modified
SL phantom described first by Toft [165] and (2) an artificially constructed dataset of a calotte cube
(Kugelkalottenwürfel) (KKW). The latter volume dataset has been generated by the voxelization of a
polygonalmodel of theKKW,which corresponds to the one used in Section 3.3 and in [1] to compare
Katsevich’s reconstruction algorithm with the FDK method. Figure 4.8 shows a 3D visualization of
both studied objects. The clipped volume rendering of the SL phantom reveals its internal structures
and shows its plain spherical surface. In contrast to this, the KKW is internally solid, of cubic shape
and has concave spherical calottes on the outside.

During the simulations, 20 sets of projections with differing random detector misalignments are
generated for each combination of the trajectories, objects and noise levels. Therefore, the four mis-
alignment parameters values were drawn independently and randomly from a uniform distribution.
The scales of the misalignments were chosen, such that no parameter value fell outside the corre-
sponding ranges listed in the second column of Table 4.3. For this reason, the absolute value of the
three translation parameters never exceeded 1.5 cm. Furthermore, the magnitude of the rotation an-
gle rw was kept below 5.0°. Then, to retrieve the values of the misalignment parameters from the
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(a) (b)

Figure 4.8: The two objects that are used to simulate the projections. A volume renderingwith a clipping plane through

a central slice of themodified SL phantom is given in (a) and a full view of the KKW is displayed in (b).

simulated sets of projections the proposed calibration algorithm was applied twice. First it was used
in conjunction with the 1D-MRS algorithm and afterwards with the L-BFGS optimizer. Thereafter,
the resulting estimations of the parameter values were compared to their true initial values. Hence,
the mean errors between the estimated and the reference values of the 20 simulation runs have been
computed together with their corresponding standard deviations.

The following scheme summarizes the steps carriedout for the evaluationof the calibrationmethod
on the simulated datasets:

• For each trajectory, for each object and for each noise level do the steps below

1. Draw 20 random misalignment parameter constellations according to Table 4.3.

2. Simulate 20 sets of projections from the generated parameter configurations

3. Apply the calibration algorithm to each of the 20 simulations twice, once using 1D-MRS
and once using L-BFGS

4. For each optimizer compare the estimated parameter values to their reference values, by
computing the mean and the standard deviation over the 20 results.

Table 4.3 presents a full overview of the results of the experiments with respect to the mean pa-
rameter deviations. Besides the comparison of the errors, the table gives a criterion for the precision
of the calibration approach with respect to each parameter. For this purpose, OUs were used. Pa-
rameters for which the deviations between estimated and reference value were not larger than their
corresponding OU have for any ray back-projected through the volume of interest a maximum per-
turbation that is approximately smaller than one voxel. Consequently and as discussed by Kingston
et al. [112], the volume can be reconstructed with accuracy in the sub-voxel range if the estimation
error of a misalignment parameter is not larger than half of the OU. For this reason, the criterion to
judge the calibration precision of a single parameter is chosen to be half of 1 ou and is listed accord-
ingly in the last column of Table 4.3.

80



Table 4.3: Results from simulations with andwithout noise

Parameter Range Unit Algorithm Noise C-CBCT SL C-CBCTKKW H-CBCT SL H-CBCTKKW 1/2OU

tu [−15, ..., 15] [mm]
1D-MRS NONE 0.014± 0.015 0.011± 0.009 0.024± 0.018 0.018± 0.018

≤ 0.605L-BFGS NONE 0.027± 0.024 0.028± 0.014 0.036± 0.025 0.048± 0.025
1D-MRS CON 0.019± 0.020 0.010± 0.008 0.030± 0.026 0.017± 0.010
1D-MRS SIG 0.028± 0.027 0.009± 0.006 0.031± 0.020 0.022± 0.016

tv [−15, ..., 15] [mm]
1D-MRS NONE 0.337± 0.179 0.451± 0.344 0.455± 0.310 0.118± 0.126

≤ 1.172L-BFGS NONE 0.566± 0.346 0.703± 0.146 0.588± 0.285 0.738± 0.325
1D-MRS CON 0.397± 0.230 0.560± 0.307 0.378± 0.274 0.121± 0.075
1D-MRS SIG 0.506± 0.283 0.643± 0.341 0.464± 0.274 0.120± 0.113

tw [−15, ..., 15] [mm]
1D-MRS NONE 1.806± 0.327 0.685± 0.476 1.042± 0.041 0.353± 0.036

≤ 3.433L-BFGS NONE 0.679± 0.797 1.522± 0.914 0.199± 0.111 0.229± 0.128
1D-MRS CON 1.843± 0.603 0.927± 0.560 1.095± 0.025 0.393± 0.050
1D-MRS SIG 1.765± 0.289 1.297± 1.050 1.127± 0.144 0.398± 0.065

rw [−5, ..., 5] [◦]
1D-MRS NONE 0.096± 0.055 0.045± 0.022 0.040± 0.013 0.037± 0.023

≤ 0.169L-BFGS NONE 0.121± 0.024 0.027± 0.017 0.019± 0.022 0.022± 0.018
1D-MRS CON 0.087± 0.052 0.045± 0.023 0.042± 0.027 0.044± 0.013
1D-MRS SIG 0.087± 0.045 0.046± 0.025 0.060± 0.023 0.062± 0.011

4.4.1.1 Calibration Accuracy

The errors made for the estimation of the parameter tu are displayed in the first row of Table 4.3.
Comparing these errors with the last column of the table demonstrates that the corresponding OU is
an order of magnitude larger than the average deviations between the estimated and the true parame-
ter value. Additionally, the self-calibration procedure was able to retrieve the horizontal detector shift
tu in the case of noisy projection datawith an error consistently less or equal than 0.031± 0.020mm.
Consequently, as for thenoiseless projections, these deviations are considerably lower than0.605mm,
which is half of the OU of tu. In general, the calibration results achieved with respect to tu indepen-
dently from the employed scanning trajectory are slight less precise for the SL phantom than for the
KKWprojection data. Moreover, the lowest average estimation error for tu with 0.009± 0.006mm
was reached for the KKWdataset using the C-CBCT system setup while adding SIG noise during the
simulation of the projections. With respect to the detector pixel width of∆u = 0.8mm, it has been
found that the precision of the calibrated horizontal detector shift tu was 0.064 pixels in the worst
case and 3.75× 10−3 pixels in the best case.

Contrary to the translation of the detector along the horizontal u-axis, the vertical misalignment
parameter tv shows less accurate results, as it can be seen in the second row of Table 4.3. Never-
theless, for all simulations the mean calibration errors were smaller than half of the corresponding
OU of 1.172mm. Moreover and in accordance with tu, the deviations between the true and es-
timated parameter values of tv were never larger than the height of the detector elements, that is
∆v = 0.8mm. In this context, the reformulation of half of the OU in terms of the detector element
size yields (1.172mm/0.8mm) = 1.465 pixels. From this value it becomes clear that a relatively
large vertical translation of the detector along the v-axis is needed for the introduction of misalign-
ment artifacts that create a perturbation larger than one voxel. With respect to the pixel height ∆v,
the largest deviation for tv was 1.23 pixels and the smallest estimation errors was 0.057 pixels, such
that for all simulations the estimation errors were smaller than the 1.465 pixels. A comparison of
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the calibration result in relation to the KKW datasets showed that the parameter estimation of tv
from the noisy projection sets (SIG) using the circular scanning geometry resulted in the highest er-
rors. Contrary to this, the smallest estimation errors have been registered for the noiseless projection
data generated from the helical source path. For the latter case the deviations were never larger than
0.118± 0.126mm.

A quite similar behavior can be observed for the calibration of the translation along the detector
normal vector tw: the estimation process with respect to tw delivers for the helical scanning trajectory
consistently lower calibration errors than for the circular system setup. Furthermore and similar to tu
and tv, the achieved estimation errors of tw are less than half of its OU, that is 3.433mm. This result
has been noticed independently from the type of the scanning trajectory, such that sub-voxel accuracy
with respect to tw was reaches for all helical and circular cases. Hereby, the parameter calibration
procedure performed significantly less accurate for the projections of the SLphantom simulatedusing
the circular geometry, while all other cases achievedmore precise results. Accordingly, the simulations
of theKKWdataset using theH-CBCT setupproduced the lowest estimation errors for tw. However,
a comparison of the absolute calibration errors of tw with those of the other two detector shifts reveals
that the overall precision of tw is inferior to tu and tv.

For the calibration of the rotational parameter rw the errors showed a similar behavior and accu-
racy as those of the parameter tu. Consequently, all parameter deviations for rw were smaller than
half of the corresponding OU of 0.169°. The lowest calibration errors were obtained with values
of 0.037± 0.023° for the simulated noiseless projections of the KKW using the H-CBCT system
setup. Contrary to this, the highest deviations by the estimation procedure were made with values of
0.096± 0.055° for the noiseless simulations of the SL phantom using the circular source trajectory.

Comparing the calibration results obtained from the two employed noise models to each other
shows that the estimation errors of the constant (CON) noise model are slightly smaller for almost
every simulated projection set than the errors of the signal-dependent (SIG) noise model. However,
for both models it has been observed that the deviations of the parameters were consistently smaller
than half of their corresponding OUs. Similar observations have been made with respect to the cali-
bration using the L-BFGS optimization scheme: the convergence was for all simulated cases correct,
such that the true parameter constellation was approached, and sub-voxel accuracy was reached in
the sense that the resulting estimation error of each parameter was lower than half of the OU. Ad-
ditionally, the errors of the L-BFGS optimizer in relation to the detector translations tu and tv were
in principle higher than those achieved of the 1D-MRS approach. On the contrary, for almost ev-
ery case, in particular for the H-CBCT datasets, the L-BFGS optimization scheme reaches in relation
to the detector shift along and the rotation around the w-axis a calibration accuracy superior to that
achieved by the 1D-MRS. The exceptions are formed by theC-CBCTKKWdataset for the parameter
tw and the C-CBCT SL case with respect to rw, where the 1D-MRS algorithm performed better than
L-BFGS. Nevertheless, the L-BFGS optimizer was able to reach the smallest estimation errors for the
parameters tw and rw from the helical projection sets. Hereby, the smallest errors of tw and rw were
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Figure 4.9: Box-Whisker-Plots visualizing the relationship between the RMSE and the trajectory, object of interest and

the noise level. Each boxwas generated from20 simulation and calibration runs. The reconstructed volumes have been

normalized to the range [0, 1] before theRMSEbetween the reconstruction fromaligned andmisaligned detector data

(left) andbetweenalignedand calibrateddetector data (right) havebeen computed. Dots are the averageRMSE, central

black line is themedian, lowerandupperedgesof theboxesare the25%andthe75%quartiles, respectively. The fences

show the range of the RMSE excludingmild outliers, which aremarked by a cross.

0.199± 0.111mm and 0.019± 0.022°, respectively, when calibrating the helical projections of the
SL phantom.

The aforementioned observations can be generalized to derive some general characteristics about
the calibration algorithm that apply to the studies made above and which have been fulfilled during
preliminary evaluations: the here developed approach

1. achieves more precise calibration results for the KKW dataset than for the SL phantom,

2. estimates the parameters more accurately for the H-CBCT than for the C-CBCT case

3. and its accuracy is not considerably depending on noise in the initial projections.

4.4.1.2 Reconstruction Quality

By taking a closer look at the relationship between the reconstructions from the misaligned and the
calibrated detector data by means of the RMSE the latter two properties can be reaffirmed. For this
purpose, for each object, trajectory and noise-level the RMSE has been calculated in relation to the
original phantom for the volume reconstructed from the aligned detector data and for the recon-
struction computed from the misaligned projections. Note that all volumes have been normalized to
the range [0, 1] before the RMSE has been computed. The statistics about the RMSE from the 20
simulation runs are visualized in the box-and-whisker plots of Figure 4.9.

From this figure, it can be observed that randomvariations of the fourmisalignment parameter val-
ues within the intervals specified for the simulations (see Table 4.3), generate on average a reconstruc-
tion error larger than 12% for the C-CBCT case and higher than 16% for the H-CBCT geometry.
The RMSE for uncalibrated reconstructions was never smaller than 5%, whereby the smallest mean
RMSEs were obtained for the SL phantom reconstruction from the circular trajectory and the largest
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errors were reached for the KKW dataset reconstructed from the helical projection data (see left box
plot of Figure 4.9). Furthermore, a look at the RMSEs calculated with respect to the calibrated pro-
jection data reveals that the estimation of themisalignment parameters achieves a reduction of recon-
struction errors larger than 35% to under 1% on average for the H-CBCTKKWdataset. In general,
the develop method is able to reduce the initial errors of the misaligned datasets, which were larger
than 5%, below this threshold. According to the second algorithmic property formulated above,
for the noiseless case the calibrated reconstructions from the helical trajectory resulted consistently in
lower RMSEs than those calculated from the circular scanning path. In contrast to this, the results in
Figure 4.9 demonstrate the high sensitivity of Katsevich’s exact helical FBP algorithm towards noise
that increased theRMSE significantly. Amain reason for this is differentiation step involved in the re-
construction process, which can amplify noisy data. A detailed discussion about this behavior can be
found in [80, 93]. However, when comparing the uncalibrated and calibrated reconstructions from
the noisy data for each case, the box plots show that the calibration algorithm is able to reduce the
RMSE to fewer than 3% for the SL phantom and to fewer than 5% for the KKW dataset. This fact
underlines that the algorithm is stable under the presence of noise and supports the third statement
made above.

Contrary to these observations, the first characteristic of the calibration algorithm pointed out
above cannot be reaffirmed by the sole interpretation of the RMSEs, although for the noiseless cases
the errors of the KKW dataset were always smaller than 2%, whereas those of the SL phantom were
larger. Put another way, in the absence of noise the RMSEs of the calibrated SL reconstructions were
always higher than those of the correspondingKKWsimulations. Hereof, it has to be considered that
the intrinsic features of both objects influence theRMSE differently, such that the errors observed for
the noiseless cases not only depending on the accuracy of the calibration. Consequently, for an equal
detector misalignment an object with many internal structures, as the SL phantom, will result in a
larger RMSE as one that is mostly homogeneous, as the KKW. Therefore, due to the differing ob-
ject compositions, imprecisions of the calibration algorithm will lead to a higher amount of artifacts
(compare also with Figure 4.11) and thus to a larger RMSE for the SL phantom than for the KKW
dataset. As a result, the RMSE depends on both, the calibration precision and the structure of the
object of interest, and is therefore not suited to compare the results of the KKWwith those of the SL
datasets.

4.4.1.3 Runtime Performance

For the measurements of the runtime performance of the CBCT calibration algorithm a workstation
personal computer (PC) equipped with a 2.80GHz Intel Core i7 860 CPU and a NVIDIA GeForce
GTXTITANhas been used. During each run of the calibration on the 20 noiseless simulations with
the 1D-MRS and the L-BFGS approach the overall times of execution have been recorded, while the
time spent in the most compute-intense subroutines has been tracked additionally. Note that to gain
a better overview, operations that took less time during the calibration have been omitted from the
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Table 4.4: Time performance of the calibrationmethod

C-CBCT SL C-CBCTKKW H-CBCT SL H-CBCTKKW
Functions Unit 1D-MRS L-BFGS 1D-MRS L-BFGS 1D-MRS L-BFGS 1D-MRS L-BFGS

⋄ Calibration [min] 6.519 16.205 5.546 16.819 11.607 13.260 11.364 14.924
▷Objective [sec] 1.051 2.108 0.975 2.085 1.936 2.792 1.925 2.686
▷ Forward projection [sec] 0.463 0.528 0.447 0.519 0.154 0.149 0.150 0.149
▷ Backprojection [sec] 0.459 0.512 0.443 0.506 1.381 1.600 1.375 1.511
▷Mutual Information [sec] 0.168 0.278 0.132 0.274 0.163 0.256 0.159 0.230

Objective Func. calls 318 416 319 437 313 262 308 306

following presentation, since the overall performance of the procedure is only marginally influenced
by these subroutines. After the measurements, the runtimes have been averaged over each of the 20
executions. Moreover, these time recordings have been conducted for both objects and trajectories.
The resulting runtimes of the most time consuming task, i.e. function calls, are listed in Table 4.4,
where the hierarchy of the calls (see Section 4.3.3 and Section 4.3.4) is visualized by the indentation
of the tasks.

From the table it can be observed that the 1D-MRS approach takes for the calibration of a circular
projection set between 5 and 7minutes, while the parameter estimation for a helical dataset takes sig-
nificantly longer, with about 11minutes. One of the main reasons for this deviation is the differing
execution times of calls to the similarity function. In the C-CBCT case a single objective function call
needs about half the time required for the execution of the helical similarity function. This behav-
ior in turn can be explained by the times spent in the forward and backprojection operators. On the
one hand, the circular backprojection process using the FDK is considerably faster than the helical
one using Katsevich’s algorithm, which consists of more complex procedures than the FDK method
(compare Chapter 3). On the other hand, for the helical case the forward projection operation out-
performs the one of the circular simulations, since for some helical projections the scanned object is
not fully inside the field of view of the detector, so that cast rays have not to be traced through the
volume, terminate earlier and less time is spent during their computation. Nevertheless, the time
measurements show that the latter effect is not strong enough to compensate the former one. In
other words, the time spent in the helical backprojection is too long, even longer than 1 second on
average, so that in accumulationwith the shorter runtime of the helical forward projection the overall
performance is inferior to that of the C-CBCT case.

The average number of calls to the objective function has also been recorded and is shown in the
last row of Table 4.4. For all four executions of the 1D-MRS these number are almost equal. How-
ever, it can be noticed that the H-CBCT calibrations have a slightly reduced number of objective
function calls. The reason for this is that for the helical setupsmore runs of the calibration procedure
terminated earlier for some misalignment parameters, since they fulfilled the optimality criterion, as
described in Section 4.3.3, at a coarser resolutional scale (compare with Figure 4.10). Consequently,
these parameters were not optimized further and calls to the objective function were saved.
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Figure 4.10: Convergence of the calibration method over multiple resolution scales. For each of the four datasets the

residual normof the parameters has been computed after the 1D scanning of each parameter at each scale finished. For

easier interpretation the parameter values have been scaled by their correspondingOUs.

In contrast to the 1D-MRSapproach, the calibrationusing theL-BFGSoptimization scheme showed
significantly longer times of execution for all studied objects and trajectories. For the calibration of
projections froma circular trajectory theL-BFGSwas evenup to three times slower than the 1D-MRS,
while for the helical scanning path the parameter optimization with L-BFGS took only few minutes
longer than with the 1D grid search. As an explanation to the longer runtimes of L-BFGS, it has been
observed in comparison to the 1D search strategy that the optimizer made fewer calls to the objec-
tive function on the coarser resolutional scales, whereas a higher number of calls have been registered
at the finer more compute-intense resolutions. As a consequence, even the L-BFGS approach has a
lower total number of objective function calls for the H-CBCT setup, it was not able to achieve the
performance of the 1D-MRS optimizer proposed within this thesis.

4.4.1.4 Convergence

The convergence of the 1D-MRS calibration algorithm with respect to a single initial constellation
of the misalignment parameters is visualized for each of the studied objects and trajectories in Fig-
ure 4.10. For the generation of the line plots the true values of the four detector parameters were set
once randomly to tu = −7.889mm, tv = −14.770mm, tw = −8.781mm and rw = −4.005°.
With this parameter constellation, denoted in the following by Ptrue, the misaligned projection sets
were simulated for all four datasets, while no artificial noise was added during the generation process.
Then the calibration procedure was run for each projection set. After each parameter within the set
Pi had been determined by the optimization process in accordance with equation (4.14) on each res-
olutional scale the residual norm |P̂i − P̂true| has been computed. Hereby, the sets P̂i and P̂true

contain normalized parameters, such that each value has been divided by its corresponding OU. The
lines in Figure 4.10 reflect the residual norms of these sets with respect to each dataset and are plotted
against the parameter names.
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The convergence plot demonstrates that the calibration technique converges stably for all four cases
to the correct solution and shows that in the end the residual normof the final parameter set lies below
1.0 ou. Moreover, it is shown that the optimization process is able to recover estimation errors from
a previous resolution scale: even if a single parameter estimate is not correct on one resolution scale,
its value is refined and approaches the true solution on the next finer scale. For example during the
calibration on the C-CBCT SL dataset, the parameter estimate of tw on the first scale increased the
residual norm considerably, while its estimation on the second scale led to the correct solution. Note
that similar observations in relation to the convergence have been made during the other calibration
runs performed in the previous and following sections for the different studied datasets, whereby all
optimizations converged to the correct parameter constellation.

A comparison of the two system geometries with respect to the convergence of the calibration algo-
rithm reveals for most of the iterations that the residual norms of the C-CBCT cases are higher than
those of the H-CBCT dataset. This observation underlines the behavior discussed in the previous
sections (compare Table 4.3): the parameter optimization achieves for helical trajectories an accuracy
that is superior to that of circular ones. Additionally, for theH-CBCTKKWdataset it can be noticed
in Figure 4.10 that the calibration process terminates after 13 iterations, such that the parameters rw,
tv and tw are not optimized on the last scale. In contrast to this, all 16 iterations are needed by the
1D-MRS to calibrate the other three datasets. Nevertheless, these results are in accordance with the
discussion on the objective function calls in one of the previous paragraphs, where the number of
calls was lower for H-CBCT than for C-CBCT.

4.4.2 Real Data

The second set of experiments, which is used to verify the correctness of the calibration algorithm,
uses projection data from various CT scanners with different geometric setups. The last four columns
of Table 4.2 give an overview of the datasets that will be discussed in the following section.

The Pen and the TP09were both scanned on aµCT scanner at the Fraunhofer Development Cen-
ter for X-ray Technology (EZRT) in Fürth (Germany). The TP09 is an aluminum test-phantom
consisting of 12 planes and 2 drill holes. It has been developed in [166] and used in recent studies on
industrialCTmetrology [167, 168]. Forbothof these datasets theCT-scannerwas calibratedusing the
offline calibration procedure described in [169], so that the measurement error of the distances and
of the detector positionwasminimized. As a result, the resolution limit, which has been computed as
R = 1/4 ·∆u ·DSI/DSP , lies atRPen = 0.023mm for the Pen dataset and atRTP09 = 0.055mm
for the TP09 dataset. For this reason, the true values of the misalignment parameters can be assumed
to be all zero. Therefore, the values tu = tv = tw = 0.0mm and rw = 0.0° will be used as the refer-
ences for the estimated geometric parameters. Note that since the distances and the detector size are
the same for both datasets, their scan geometries have equal OUs, although the Pen has been scanned
by a C-CBCT and the TP09 dataset with a helical setup. This can be validated by using the geome-
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Table 4.5: Calibration results from real data

Parameter Unit Pen TP09 OU Stent KKW Head&Neck OU

tu mm 0.059 0.115 ≤ 0.635 5.665 0.574 0.044 ≤ 1.209
tv mm 1.849× 10−5 0.480 ≤ 1.483 −13.813 4.101 0.641 ≤ 2.344
tw mm 0.087 1.036 ≤ 5.500 −8.681 14.559 1.732 ≤ 6.867
rw ° 0.006 0.057 ≤ 0.178 0.099 0.003 0.132 ≤ 0.338

(a) (b)

Figure 4.11: Reconstruction of the Pen and the TP09dataset. In (a), the leftmost image has been generatedwith all four

misalignment parameters set to zero, in the second image the misalignment parameters were randomly chosen, the

image right from the center shows the reconstruction from the projections with the corrections from the calibration

algorithm and the rightmost image displays the signed differences between the first and the third image using a gray-

valuewindowof [−0.08, 0.09]. The images in (b) showthe reconstructionsof theTP09dataset: parameters set to zero

(left),misalignmentparameters chosenrandomly (leftof center), afteronlinecalibration (rightof center) anddifferences

(window = [−0.09, 0.13]) between first and third image (right).

try from Table 4.2 in the formulas of Table 4.1. The resulting OUs are shown in the fifth column of
Table 4.5.

To test the calibration algorithm on the two offline calibrated datasets, first a reconstruction is per-
formed from the original projectionswithout any alignment corrections. During the next reconstruc-
tion the values of the detector parameters were randomly chosen and finally the calibration method
was applied to estimate these four parameters followed by a FBP using the calibrated system. For
the Pen dataset the misalignment parameters were set to tu = 8.399mm, tv = −14.587mm,
tw = 12.546mm, rw = 2.905° and for the TP09 dataset they were fixed to tu = 9.578mm,
tv = −2.334mm, tw = −3.255mm, rw = 0.258°. All reconstructed volumes were normalized
to the range [0, 1] and are shown in Figure 4.11. The leftmost images of each study show the recon-
structions of the Pen and the TP09 from the projection data, which has been aligned by the offline
calibration. The images second from the left demonstrate the strength of the influence that the de-
tector misalignment has on the final reconstruction. For the helical TP09 dataset, the misalignment
artifacts appear not only as double edges and as object deformations like for the circular scan of the
Pen, additional wing-shaped stripes are introduced to the object as they have been discussed in the
beginning of Section 4.4. The differences between the aligned and the calibrated reconstructions oc-
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(a) (b)

Figure 4.12: Reconstructed slices of the Stent (a) and the KKW (b). The left images show the uncalibrated reconstruc-

tions and the right ones show the reconstruction using the results of the calibration algorithm. Because the slice in (a)

is positioned slightly above the crossing of the stent wires, the double points in the right image are no miscalibration

artifacts. In the uncalibrated reconstruction of the KKW the step artifacts have beenmarked (circled).

cur mainly at the edges of both objects, but do not significantly influence the image quality since the
mean absolute difference for the Pen is 0.007± 0.011 and 0.002± 0.005 for the TP09.

When looking at the numerical results of the two datasets in Table 4.5, it can be seen that the abso-
lute error (third and fourth column for the Pen and TP09, respectively) between the reference values
and the estimated parameter values is always lower than the corresponding OU. The errors are even
below half the OU, so that sub-voxel precision is reached after the calibration method has been ap-
plied. A comparison of both datasets reveals that for the Pen dataset the calibration delivered more
precise results than for the TP09. For the vertical detector translation tv the lowest absolute deviation
of 1.849× 10−5 mm is reached. A reason for this result can be that the Pen object has more inter-
nal structures with nonzero derivative along the z-axis than the mostly homogeneous TP09. These
inhomogeneities help the MI-based registration approach to find the unknown parameters more ac-
curately. The largest error relative to the OU is reached for the TP09 dataset, where the deviation of
parameter tv is almost one third of the OU. This deviation can also be seen in the difference image
of Figure 4.11b where the largest differences occur at the horizontal edges as a result of the vertical
detector shift.

In contrast to the EZRT datasets, the Stent and the KKWdataset were scanned on a μCT scanner,
for which no data from any offline calibration technique was available. This means that for those two
datasets no reference values for the misalignment parameters exist. Because of this, the visual quality
of the reconstructed images is used to evaluate the correctness of the online calibration. The system
setups for the Stent and the KKW scans are listed in Table 4.2. In Figure 4.12 the reconstructions
from misaligned projections are compared to the ones that have been corrected by the calibration
algorithm. The estimated values for the misalignment parameters are displayed in the sixth and sev-
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Figure 4.13: Reconstructed slices of theHead&Neck dataset. The images (window= [0.0, 0.25]) show the reconstruc-

tions fromtheofflinecalibrated (left),misaligned (second fromthe left) and fromthecalibratedprojections (second from

the right). The rightmost image displays the signed differences between the first and the third image using a gray-value

window of [−0.03, 0.03].

enth column of Table 4.5. For both datasets, the estimated rotation angle rw was smaller than its
corresponding optimal OU. According to this, it can be assumed that with respect to the rotation
around the detector normal the CT scanner was well aligned during the acquisition. For the Stent
dataset in Figure 4.12a the ringing artifacts are completely gone after the calibration succeeded and
each wire of the stent is clearly visible and distinguishable from the others. The step artifacts in the
KKWdataset in Figure 4.12b have also been completely removed by the alignment procedure, so that
the calibrated KKW has a clean edge.

In addition to the datasets presented above, the online calibration method has been tested on a
real clinical dataset. The Head&Neck dataset was acquired on an Elekta Synergy radiation therapy
system equipped with an X-ray tube for on-line kV imaging. The system was calibrated by a flexmap
using the offlinemethod described in [170]. The images in Figure 4.13 were generated using the same
procedure that was used for the EZRT datasets. For the leftmost image all parameters were assumed
to be zero and for the reconstruction from themisaligned projections (second from the left image) the
parameters were set to tu = −8.569mm, tv = 12.780mm, tw = 2.277mm and rw = −2.910°.
This parameter constellation was then estimated by the online calibration with the estimation er-
rors shown in the second last column of Table 4.5. The lowest error was reached for the horizontal
detector shift tu with 0.044mm. As it has been observed for the other datasets, the errors increase
with larger OUs, but stay below half of an OU, so that sub-voxel accuracy was achieved for the cal-
ibrated reconstruction. The images in Figure 4.13 demonstrate again that the calibration method is
able to recover the calibration parameters (third image) from a setup with a relatively large misalign-
ment (second image). At the same time the errors (rightmost image) between the aligned and the
calibrated reconstruction were smaller than 3% in their absolute value.
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4.5 Discussion

4.5.1 Robustness and Accuracy

The previously conducted experiments demonstrate with their results that the novel registration-
based calibration technique converges against the true parameter constellation. This behavior has
been verified for various system setups and with different objects of interest, whereby simulated and
real data has been studied on circular and helical scanning trajectories. Hereby, for the different recon-
struction techniques, i.e. the FDK and Katsevich’s method, that have been used with respect to the
C-CBCT and H-CBCT geometries, respectively, it has been observed that the final calibration error
within the estimated parameters are higher for the circular scanning path than for calculations on the
corresponding the helical trajectory. An explanation for this effect can be given by the accuracy that
the reconstruction methods that are employed during the calibration process are able to achieve for
the intermediately updated volume (compare with Section 4.3.3). Since the implementation of Kat-
sevich’s algorithm is based on a theoretically exact inversion formula for H-CBCT (see Section 3.1.2)
and the method of FDK can only compute an approximate solution to the reconstruction problem
for the circular trajectory (see Section 3.1.1), the reconstructed volumes and thus the simulated repro-
jections are more accurate for the helical case. In general, the assumption can be made that a more
precise reconstruction technique in combination with the suggested calibration algorithm will de-
liver superior parameter estimates. As a consequence, the reduction of artifacts that are inherent in
the reconstruction algorithm, especially in the CBCT case, will likely result in an improvement of the
precision of the calibration procedure and needs further attention in future studies.

Additionally, the results obtained from the simulation experiments revealed that the calibration
method is able to achieve sub-voxel precision for the parameters tu, tv, tw and rw. This is true for
cases where the originally simulated projections were contaminated by artificial noise and where the
detector before calibration was misaligned, such that the true values of the four parameters were an
order of magnitude larger than their corresponding OUs. Moreover, it has been observed that the
parameter tu was estimated more accurately than the two other translation parameters, tv and tw.
This behavior is caused by the different impacts of the artifacts, which these three translations can
introduce during the reconstruction process if they are not calibrated. For example, a vertical shift of
the detector, as it has been demonstrated in the beginning of Section 4.4 within Figure 4.7c and Fig-
ure 4.7h, in principle only translates the object of interest in relation to the reconstructed volume, but
does not create a larger amount of additional artifacts. Furthermore, a shift of the detector position
along the w-axis by tw results in a change of the source-to-detector distance and therefore modifies
mainly the magnification, i.e. the effective size, of the studied object within the volume. As a result,
variations of the parameters tv and tw have only aminor influence on the calculated reprojections and
affect the objective function given by equation (4.14) accordingly. In contrast to this, it has also been
shown in Section 4.4 that a horizontal shift of the detector by tu introduced serve artifact into recon-
structed volumes. This effect is underlined by the fact that theOUs of the two translation parameters
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tv and tw are significantly larger than that of tu. Therefore, it can be concluded that once the artifacts
generated through additional influences, e.g. noise, sampling, discretization and interpolation, on the
reprojection process become larger than the perturbations caused by tv and tw, then the MI-driven
registration procedure will become unable to determine the correct parameter constellation.

An even more general formulation is suggested by the behavior observed above:

A change in the value of a misalignment parameter will have a larger effect on the re-
constructed volume when it’s corresponding OU is relatively small. Vice versa, for pa-
rameters with larger OUs a similar variation will introduce fewer perturbations. If for
the latter case the effect on the volume decreases, the objective function will no longer be
steered by themisalignment parameter and can becomedominated by the inaccuracies of
the reprojection procedure. Consequently, the parameters are unlikely to be estimated
correctly by the calibration technique.

As a result, it can be assumed that there exists a boundary up to which the calibration algorithm
will work precisely and that this threshold depends on the OU of each parameter. However, such
extreme situation did not occur in any of the conducted experiments, so that the actual parameter
constellations were determined successfully. In any case, further studies to determine the factors that
limit the parameter estimation process will have to be performed.

From the discussion above, it becomes evident that further studies have to be conducted to deter-
mine the influences which additional system parameters, such as the two out-of-plane rotations ru
and rv, have on the reconstructions from misaligned projection data, on the similarity function and
on the calibration procedure. By such means, a successful integration of these parameters into the
current estimation algorithm can be guaranteed. In this context, the definition of OUs can provide
reasonable indicators for the order in which the additional parameters can be arranged during the
optimization process with respect to the already integrated ones (compare with Section 4.3.3). Nev-
ertheless, it has to be considered that the selected reconstruction andprojection generation algorithms
can produce artifacts that superimpose the effects introduced by the calibration parameter changes.
For this reason, further simulations that quantify these coherences are inevitable, whereby the inclu-
sion of exact analytical and approximate reconstruction techniques into these studies could lead to
further improvements.

4.5.2 Comparison to other Methods

The comparison presented in the following sectionwill highlight the differences and common aspects
of the currently existing registration-based online calibration methods. Therefore, the advantages of
the method that has been described in Section 4.3 will be contrasted to the strategies proposed by
Wein et al. [132] and Sasov et al. [4], which are also using registration approaches. Principally, online
calibration methods for CBCT that are based on a 2D-3D registration framework come with several
benefits:
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• Image registration is a well-understood field of research. Many similarity metrics, optimiz-
ers, forward projectors and samplers have been suggested for registration purposes and pro-
vide a well-documented basis for further developments in the area of registration-based self-
calibration approaches (see Section 4.2.3).

• There exist several full-featuredopen-source registration frameworks1that canbeused as a foun-
dation for the implementation of calibration methods (see [140] and [153]).

• The implementationof the2D-3Dmatching is straightforward and canbe realized in aprojection-
wise manner. Therefore, a calibration algorithm can be easily mapped to different scanning
trajectories and to a projection-dependent calibration scheme.

• From the implementationperspective, additional systemparameters canbe added to the frame-
work relative uncomplicated, although for achieving reliable calibration results further work is
necessary (see Section 4.5.1).

In contrast to the here presented technique, which uses the MI, Sasov et al. [4] has compared the
sum of squared differences (SQD) with the NCC in an iterative FDK approach, whereas the method
described byWein et al. [132] employs a modified ordered subsets SIRT (OS-SIRT) minimization of
the sum of absolute differences (SAD). However, in Figure 4.3 it has been shown that the SAD can
lead to incorrect estimates for the misalignment parameters when minimizing the reprojection error,
because the resulting objective function showed multiple local optima and had its global optimum
not always at the trueparameter value. Furthermore, it has been shown that themethodsof Sasov et al.
andWein et al.work stable forC-CBCTachievingprecise calibration results, but a verification that any
of these approaches can be successfully applied to the case of helical tomography is still unresolved.
On the contrary, for the self-calibration method derived within this thesis it has been demonstrated
during the experiments in Section 4.4 that an application to circular and helical scanning paths is
possible and stable. In addition to it, the proposed method could be extend to handle more complex
scanning trajectories, whereby it has been shown that the calibration accuracy can be improved by
employingmore precise reconstruction techniques (see Section 4.4 and Section 4.5.1). For this reason,
the calibration algorithm should be well applicable to classes of trajectories for which a theoretically
exact reconstruction algorithm exist.

Furthermore, the use of the Amoeba direct search strategy can lead to the case that Wein’s algo-
rithm is trapped inside local minima. As it has been discussed in Section 4.3.3 and shown in Fig-
ure 4.3, local optima are caused by inaccuracies during the reprojection process and can influence the
behavior of the similarity function (also compare Section 4.5.1). In the case of the here developed
method, these local extrema are studiously avoided by the 1D-MRS technique, which uses the de-
scribed combination of sampling and function fitting to overcome the problem. By this means the
calibration procedure reaches a reconstruction precision that is up to the sub-voxel scale exact. These

1For example: the elastix toolbox available from elastix.isi.uu.nl, the Orfeo Toolbox at www.orfeo-toolbox.org and
the Plastimatch software, which can be found under plastimatch.org

93

http://elastix.isi.uu.nl
http://www.orfeo-toolbox.org
http://plastimatch.org/


results are comparable to those reached by current state-of-the are offline calibration methods (see
Section 4.2.2.1). However, a detail numerical comparison of the here proposed method and the ap-
proaches of Sasov et al. and Wein et al. with offline calibration techniques has not been conducted
so far. Nevertheless, the results from Section 4.4 supplement those of [132] and [4] in the sense that
they have all demonstrated that a CBCT calibration based on the optimizations of a reprojection and
alignment procedure can be successfully used to estimate detector parameters with relatively large ini-
tial misalignments. Moreover, the experiments in Section 4.4.1 on simulated data have proven that
such a scheme can be robust against projection noise.

Contrary to the calibrationmethod constructed in Section 4.3, themethoddevelopedbyWein et al.
[132] allows the determination of an additional parameter that represents a shearing of the detector.
Additionally, their method is able to carry out a per projection calibration of misalignments with
respect to the acquisition angle. To incorporate such a projection-wise optimization into the MI-
based calibration framework, such that it becomes able to estimate a set of parameters that affect every
individual frame, there exist in principle two strategies :

Average and Refine: In a first run the proposed calibration algorithm can be used, exactly as in the
previous sections, to estimate an average value for each projection-dependent misalignment
parameter. After the mean parameter values have been determined an appropriate 2D-3D reg-
istration approach can be applied in a second phase, such that each projection is aligned indi-
vidually with the volume of interest that has been reconstructed during the first step.

Refine directly: All misalignment parameters, frame-dependent and frame-independent, could be
estimated in a single run of a large-scale optimization approach, like the Levenberg-Marquardt
algorithm. Note that a similar technique using a simplex optimizer has been introduced and
successfully applied for medical flat-panel CT by Dennerlein and Jerebko [171].

Tomakeboth strategies computationally feasible, it has tobe remembered that themulti-resolution
and the stochastic sampling techniques could be optimized even further. Additionally, a combina-
tion of both approaches could lead to a divide-and-conquer optimization strategy, which could be
formulated as follows:

Divide andConquer: During a first run the frame-independent and the average values of all frame-
dependent parameters are determined, as in the “Average and Refine” approach. Then the set
of projections is split in two parts and the parameter estimation is repeated for both projection
sets. The splitting and optimization process is carried on until all misalignment parameters
have been calculated for each individual frame. At some point during this process a switch of
the employed optimizers, from a small-scale to a large-scale optimization scheme (e.g. from the
1D-MRS to the L-BFGS or to the Levenberg-Marquardt algorithm), could become advanta-
geous.
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In contrast to the employed optimization approaches, the here developed calibration algorithm is
comparable in terms of runtime performance to that of Wein et al.. The 1D-MRS method takes be-
tween5 and12minutes to determine themisalignmentparameters dependingon thedataset, whereas
Wein et al.’s OS-SIRT approach requires in dependence of the number of estimated parameters 1 to a
fewminutes to execute a full calibration run. Note that the stochastic sampling has led to a significant
speedupof the forwardprojectionoperator andof the calculationof the overall objective function (see
Section 4.3.3). Up to now, the backprojection operator has not been optimized bymeans of a sparser
sampling, although this could additionally improve the runtime performance of the calibration al-
gorithm. Moreover, a further decrease of the number of random rays cast in the forward projector
would speed up the method even more. Nevertheless, to guarantee a stable and robust calibration in
conjunction with the aforementioned optimizations additional studies will be necessary.

In contrast to registration-based calibration, the online method presented by Kingston et al. [111,
112] is based on an auto-focus approachmaximizing the sharpness in several dedicated slices of the re-
constructed image to estimate a set ofmisalignment parameters. As themethod presented in this the-
sis, their technique has been demonstrated to work on circular [112] and on helical trajectories [113]
using Katsevich’s algorithm. Additionally, it has been shown that their method is robust against pro-
jection noise with similar properties as themethod presented in this thesis. On the contrary, the auto-
focus methods has lower runtimes than the 1D-MRS since it only operates on several single slices and
can perform a complete calibration faster than a full reconstruction of the dataset.

Nevertheless, the slice selection can become one of the main bottlenecks of Kingston’s method,
since it may not work correctly if the object of interest does not reside or too little information about
the object is contained within the chosen slices. Theoretically their method can also fail if a misalign-
ment parameter does not influence the sharpness in these slices. This can be the case for a vertical
detector shift as it has been described in the previous section. Like discussed above, a registration-
based approach can also lead to wrong calibration results in those cases, but since the full volume
is used to compute the reprojection and to perform the 2D-3D matching it will likely act more ro-
bust than the auto-focus computations on single slices. Another drawback of Kingston’s method is
that for the estimation of parameters per projection more complex models for the objective function
would be needed (see [112]) in comparison to those that have been proposed for registration-based
approaches. However, a full comparison of auto-focus and registration-based calibration techniques
on similar datasets and geometries is beyond the scope of this thesis, but needs further attention in
future studies.

In comparison to offline calibration methods, the here presented self-calibration procedure does
not require an additional scan of a specifically designed calibration phantom. Consequently, no ad-
ditional time and effort have to be invested, as the online approach computes the detector parameters
directly from the measured projection sets. However, it has to be noticed that without the infor-
mation from such a reference scan any online calibration technique can in the best case only allow
for the determination of relative geometric parameters. For the estimation of absolute parameters a
calibration phantom scan is inevitable, such that for online methods a global scaling factor remains
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undetermined. This factor can only be computed by a suitable offline calibration approach or by
fitting the reconstructed object of interest against a reference template, like it has been done in Sec-
tion 3.2.4 (compare with [1]). Having determined the global scaling by such means, the registration-
based 1D-MRS calibration technique canbe employed in industrial CBCTapplications, e.g. forNDT
and CT metrology, to gain precise quantitative measurements.

4.5.3 Performance optimization

The combination of native code with the MATLAB scripting language allows rapid changes of the
here discussed method on the one hand, but comes with certain computational costs on the other
hand. Additional overhead is accepted when calling the C-routines from MATLAB and the copying
of projection and volume data to and from the GPU has to be carried out more frequently than
in a pure native implementation. Therefore, an overall increase in performance of the calibration
procedure can be expected, when porting it to a pure C++/CUDA implementation.

In addition to this and since the stochastic sampling approach has been used for the forward projec-
tion operator, there is still room for further optimization. Future simulations will have to show how
the stochastic sampling can be improved by the further reduction of the amount of cast rays to opti-
mize the overall performance of the calibration process. Additionally, the integration of a stochastic
backprojection operator may improve the performance of the algorithm even further.
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As regards intellectual work it remains a fact, indeed, that
great decisions in the realm of thought and momentous
discoveries and solutions of problems are only possible to
an individual, working in solitude.

Sigmund Freud

5
Filter Optimization for Limited-Angle CT

The focus of the previous chapters was on the analysis and the development of a geometrical
correction method for circular and helical cone-beam computed tomography (CBCT) us-
ing an optimization strategy. In addition to this, the following chapter will introduce, eval-

uate and discuss a novel approach for the design of filters, which can be used in limited-angle CBCT
applications. The basis of the here presented method is formulated in the framework of the Approx-
imate Inverse (AI), which uses a so-called reconstruction kernel to compute a regularized solution to
a given inverse problem. For the case of the here derived filter optimization approach it will be shown
that this reconstruction kernel is view-dependent, such that it is different for each projection angle.
The reconstruction kernel will be computed using a numerical optimization technique, i.e. the simul-
taneous iterative reconstruction technique (SIRT) algorithm. For the use of this kernel in a filtered
backprojection (FBP)-type reconstruction method an intermediate filter design step will generate a
set of 2D filters by the application of a window function to the kernel. The resulting filters will have
the important properties that they are independent of the acquired projection data. Therefore, a set
of filters needs to be calculated for a given system geometry only once and can be reused on all datasets
scanned with the same setup. The novel method will be called angle-optimized FBP (AO-FBP). The
here developed filter optimization approach has also been described by the author in [3], even though
the here given presentation is intended to provide a deeper insight. Consequently, figures and tables
depicted during the derivation of Section 5.3 and in the experiments of Section 5.4 are taken over or
are adapted from this publication.

Moreover, the developed filter optimization strategy is so far the only approach which combines
the AI with SIRT in the area of limited-angle CBCT. Consequently, it is not derived from an analyt-
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ical inversion scheme and does not rely on the existence of such a formula. In comparison to other
filter optimizationmethods [172, 173], the approach does require additionalmeasurements of system
intrinsic parameters estimated from the scan of a wire-phantom. Nevertheless, the reconstruction re-
sults achieved with the here derived filtering strategy are better than those of standard FBP methods.
Furthermore, the derivation of the filtering approach bymeans of the AI suggests a general principle,
which can be used to construct filters in the same way for other scanning trajectories and system se-
tups. On top of this, the AI allows the calculation of more sophisticated filters that can be used to
implement image reconstruction and analysis in a single step.

The experiments conducted in this chapter will deal with simulated and real datasets to verify
the correctness and to examine the quality of the filter optimization approach. The comparison of
AO-FBP with standard FBP, i.e. the Feldkamp, Davis and Kress (FDK) method, and SIRT with re-
spect to the reconstruction quality will reveal that the optimized filters result in a lower root-mean-
square error (RMSE) and a higher contrast-to-noise ratio (CNR) than the standard filtering used by
the FDK algorithm. Additionally, an analysis of the three algorithms using the artifact-spread func-
tion (ASF) will demonstrate that AO-FBP can be used to improve the image quality perpendicular to
the in-focus plane, i.e. the central slice along the z-axis, by the reduction of ghosting artifacts in the
final reconstructions when the angular range is low.

5.1 Motivation

Limited-angle computed tomography (CT) has basically two application areas: (1) tomosynthesis,
which is used particularly in medicine for breast cancer diagnosis (see [174] for an overview) and (2)
laminography for the quick inspection of large and flat industrial workpieces within the field of non-
destructive testing (NDT) [175–177]. The main goal of the developments in digital breast tomosyn-
thesis (DBT) applications is the detection of different kinds of lesions at the lowest possible radiation
dosage. Therefore, the number and the angular range of projections has to be limited such that an
optimal distribution of X-source positions [178–180] yields a reasonable compromise between X-
ray radiation delivery and the detectability of microcalcifications. In contrast to tomosynthesis, the
developments in the area of laminography aim to the realization of in-production non-destructive
analysis of the assembled products. Hereby, the inspection is carried out either right before the as-
sembly process, while considering every single complement of the final workpiece, or right after the
construction with an analysis of the resulting product itself. Within this context, quality measure-
ments are conducted either on a per sample basis, where only few items are drawn and tested from
the overall production, or by an inline-CT inspection of every product directly after its assembly. For
the scan and analysis of every produced item, the scan and reconstruction times are crucial param-
eters, which need to be kept at a minimum to make inline-NDT feasible. In addition to this, the
geometric dimensions of the workpieces can place high demands on the mechanical setup of the CT
scanner. As a consequence, the requirements of laminography only allow the acquisition of a limited
number of projections from a restricted range of X-ray source positions. For example, Dobbins III
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and Godfrey [174] have proposed a limited-angle CT setup for the scanning and the analysis of large
flat workpieces where the source is located above the assembly line and the detector is right beneath
the conveyor, such that the objects of interest are translated past the fixed scanner. In summary, the
medical and industrial limited-angle CT applications end up with similar restrictions on the projec-
tion acquisition, although the former ones are motivated by optimal dose-utilization and the latter
ones try to reduce the overall measurement times. However, one has to consider that in the indus-
trial area the amount of projection noise can be greatly reduced by the increase of the X-ray tube
current, at least if the inspected item is unaffected by the exposed radiation. On the contrary, highly
noisy projections due to a dose reduction can lead to poor image quality in the area of tomosynthesis.
Nevertheless, for both application areas the final reconstruction quality requires to achieve a certain
accuracy, such that reasonable, precise and reliable medical diagnosis or industrial measurements can
be obtained.

The main problem in limited-angle CT is the decrease in image quality due to the data insuffi-
ciency caused by the incomplete angular sampling, which leaves large areas of the frequency space
unmeasured. Over the recent years, many researchers (see Section 5.2.1) have proposed methods to
overcome this problem and to improve the image quality of limited-angle tomography. On one side,
many iterative reconstruction techniques have been developed, but as their computational costs are
higher than those of FBP methods they are not widely used in practical applications [173, 181, 182].
In particular their use in industrial scenarios with high resolution projection data is fairly limited. On
the other side, FBP techniques have been adopted to the limited-angle case by filter modifications
and different weighting schemes. Themain advantages of a FBP algorithm in comparison to iterative
methods is that it can be realized more efficiently on current multi-core hardware, such that real-time
reconstructions become possible [24]. However, it has been demonstrated (see [173, 174]) that the
resulting image quality of iterative approaches is superior to the one achieved by FBP approaches. To
overcome this drawback, Kunze et al. [172] have proposed a method that iteratively constructs an
optimal view-dependent set of projection filters frommodulation transfer function (MTF)measure-
ments of a limited-angle CT scanner. Their filters can be used in a FBP-type algorithm, whereby they
achieve an image quality comparable to that of iterative methods and superior to that of standard
FBP. However, their approach needs a separate scan of a wire phantom carried out on the CT system
of interest. The analytical method of Nielsen et al. [183] does not require such a reference scan to
compute a set of object independent filters, but reaches similar results as Kunze’s method. However,
none of these two filter optimization methods have been applied to an industrial CT setup so far.

The filter optimization process developedwithin this chapterwill allow the computation of a set of
object independent projection-wise 2D filters. These filters can be precomputed for different geomet-
ric setups, such that various angle configurations can be addressed and such that they can be reused
for the reconstruction of different projections scanned with the same configuration. Moreover, the
resulting projection filters are general in the sense that they do not require any prior knowledge about
scanned object of interest. The foundation of the here derived method is formed by the theory of
the Approximate Inverse (AI), introduced by Louis [184] and first used for filter design in 3DCBCT
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in [185]. This theoretical basis is employed to numerically approximate an optimal set of projection-
dependent shift-invariant filters for a given geometrical system configuration by the use of simulta-
neous iterative reconstruction technique (SIRT). Contrary to the filter optimization strategies used
by Kunze et al. [172], Mertelmeier et al. [186] and Ludwig et al. [173], the here developed approach
does not require any additional reference measurements or a priori knowledge for the determination
of system intrinsic parameters of the CT scanner (e.g. impulse response and MTF). Furthermore,
since the algorithm approximates the filters for a given system geometry numerical by an iterative
reconstruction technique, it does not rely on the existence of an analytical inversion formula. Ad-
ditionally, the computed set of optimized filters can be used in a FBP-type algorithm, which can be
easily realized by replacing the standard filter of the FDK method (see Figure 2.2) with the calcu-
lated 2D projection-wise filters (see Section 5.3.4). The experiments conducted with simulated and
real data will demonstrate the resulting set of optimized filters can reach an overall image quality,
which is comparable to current state-of-the-art iterative reconstruction techniques. In comparison to
the FDK algorithm [12] the here developed optimized FBP method shows a superior reconstruction
quality with a significant improvement in relation to image contrast and artifact reduction. On top
of all this, the here presented procedure for the construction of the optimized filters can be employed
as a general scheme for filter design in CBCT. It can be used to construct more complex and applica-
tion specific filters for other types of system setups with different scanning trajectories. For example,
Louis and Weber [187] has recently incorporated image reconstruction and analysis into a single set
of filters derived from the AI.

This chapter is structured as follows. In Section 5.2 the related work that has been conducted on
limited-angle tomography and the AI will be described. Section 5.3 will introduce the new approach
for filter design and present its incorporation into a FBP algorithm. In Section 5.4 the conducted
experiments will be described and their result will be presented and visualized. Finally, Section 5.5
will discuss the results and a conclusion with perspectives on future work will be given in Chapter 6.

5.2 Related Work

5.2.1 Reconstruction Methods

Asmentioned above, tomosynthesis and laminography applications only incorporate a limited angu-
lar range and a limited number of projections into the reconstruction process. Consequently, infor-
mation about the object of interest is unmeasured and parts of the Fourier space are left unsampled.
For this reason the inverse problem in limited-angle CT is highly ill-conditioned [188] and the inver-
sion of the impulse response of the system is problematic, as described in [174]. However, many re-
construction algorithms have been suggested in literature to overcome this problem. An overview of
these techniques can be found in the reviews of Dobbins III and Godfrey [174], Sechopoulos [189]
and Males et al. [190]. In principle, the reconstruction algorithms proposed for limited-angle to-
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mography can be categorized into three groups: (1) FBP methods, (2) deblurring techniques and (3)
iterative reconstruction approaches.

The first group of algorithms contains FBPmethods and their extensions. For linear limited-angle
tomography Grant [191] proposed in 1972 the traditional shift-and-add algorithm (SAA) method,
which computes reconstructed planes through the object of interest by a simple backprojection op-
eration. Niklason et al. [192] have extended this fundamental method for a tomosynthesis geometry
where the X-ray source moves on an arc above a stationary detector. To facilitate the selection of fil-
ters Edholm et al. [193] suggested the so-called Ectomography. Based on the observations made with
respect to the undersampled frequency space in the case of limited-angle CT, their technique con-
structed inverse projection filters such that a constant sampling density is achieved in the 3D Fourier
space of the reconstructed volume of interest. Further investigations of inverse filtering techniques
for the development of improved FBP methods have been conducted by Matsuo et al. [194] and led
to a reduction of the artifact spread with respect to planes outside the focused slice. Moreover, the
attempts of Lauritsch and Härer [195] to enforce a uniform depth response over a wider range of
frequencies and the modifications of the blurring function proposed by Stevens et al. [196] resulted
in even further improvements of the reconstructed images.

The angular range fromwhich the projection images are acquired and the total number of sampled
projections are two of the major differences between geometric setups of tomosynthesis devices. For
this reason, Zhao andZhao [197] have developed a cascaded linear systemmodel to study the effects of
theX-ray source position distribution and the influences of different reconstruction filters on the pre-
samplingMTF and on the noise power spectrum (NPS) using a computer simulation platformZhou
et al. [198]. By the use of the linear system model, the investigations conducted by Hu et al. [178] al-
lowed a quantitative prediction of the 3Dpoint spread function (PSF) of theCT scanner. At the same
time, they were able to reduce image artifacts caused bymicrocalcifications to achieve an increased de-
tection rate of lesions. Additionally, Zhao et al. [199] have combined a slice thickness (ST) filter with
a Hanning window function to limit high-frequency components along the transaxial direction. As
a result, they greatly reduced noise aliasing, optimized the 3D detective quantum efficiency (DQE)
and significantly improved the detection performance of low-contrast, large-area mass lesions. Fur-
thermore, Mertelmeier et al. [186] and Orman et al. [200] developed and analyzed a modification
of the standard FBP technique, which has been used in [201] to demonstrate that the visibility of
low-frequency image features can be considerably improved by an increase of the angular sampling
range. By thismeans, theirmethod also enhanced the resolution of the reconstructed image along the
transaxial direction.

Another optimized FBP reconstruction technique has been developed by Kunze et al. [172]. For a
given geometric system setup, their approach computes angle-dependent filters, which can be used in
a FBP-type algorithm. The filters are calculated numerically from a reference scan of a wire phantom
using a reformulation of the SIRT algorithm, which approximates the impulse response of the system
by updates in the projection space. This is the reason why they call their filter design approach cor-
rected projections simultaneous iterative reconstruction technique (P-SIRT). Moreover, it has been
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shown that reconstructions with the optimized set of filters can reach an overall image quality that is
comparable to that of iterative reconstruction techniques. In addition to this, Kunze et al. [172] have
shown in an application of their optimized FBP (OFBP) method to real data from a digital breast
tomosynthesis (DBT) system that the resulting images do not suffer from overshoots at the borders
of the breast and that the intensity distribution in the images is more homogeneous than in the re-
constructions computed with standard FBP. An extension of Kunze’s method has been suggested by
Ludwig et al. [173], where the P-SIRT-optimized filters are modeled by an approximation through
a polynomial function. On clinical data it has been shown that the application of this technique
preserves the contrast of low-frequency image features better than standard FBP. Ren et al. [202]
have reported similar image properties for numerically optimized filters by the use of other iterative
reconstruction techniques, likemaximum-likelihood expectationmaximization (ML-EM) and simul-
taneous algebraic reconstruction technique (SART). In the area of circular and limited-view CBCT,
Batenburg and Plantagie [203] and Shtok et al. [204, 205] have proposed similar iterative optimiza-
tion strategies for the construction of a geometry-adaptive set of filters that can be used in a FBP
scheme. However, none of these techniques has been studied in conjunction with a limited angular
projection range. In contrast to the iterative approaches described above, [183] derived a set of effec-
tive filters for the limited-angle case analytically by exploiting the properties of a specific acquisition
geometry.

The second group of reconstruction algorithms used in the area of limited-angle CT is made up by
blurring methods. The approach of Matrix inversion tomosynthesis (MITS) belongs to this group
and has been proposed by Ghosh Roy et al. [206]. MITS removes blurring artifacts from adjacent
planes by the use of a set of coupled equations. These equations exploit the knowledge about the
blurring functions to solve exactly for the distortion generated by planes immediately adjacent to the
in-focus plane. An extension of this method to the entire set of conventionally reconstructed planes
has been developed by Dobbins III [207]. They have demonstrated that from the complete set of
tomosynthesized slices an exact reconstruction of in-plane structures is possible, while the amount
of out-of-plane blurring artifacts were reduced significantly. In addition to this, their improved ap-
proach can be realized efficiently with respect to runtime performance. However, [208] have shown
for the improvedMITS approach that noise at the very lowest spatial frequencies is considerably am-
plified. For this reason, Chen et al. [209] introduced a Gaussian frequency blending (GFB), which
combines the advantages of the high-pass filtered MITS approach with those of low-pass FBP algo-
rithms. A comparison between GFB and a pure MITS implementation has demonstrated that the
former approach has a superior performance in relation to small-scaled structures and for the reduc-
tion of high-frequency noise. Moreover, the images reconstructed with the GFB showed more low-
frequency content than MITS and standard FBP. Further developments in the area of deblurring
methods, in particular constrained iterative restoration techniques for the separation of blur from
in-plane image features, have been summarized in the review of Dobbins III and Godfrey [174].

The third category of techniques to solve the problem of limited-angle CT encompasses iterative
reconstruction methods like SIRT and the classical algebraic reconstruction technique (ART) algo-

102



rithm (see Colsher [210]). Bleuet et al. [211] have extended ART with half quadratic regularization
scheme for linear digital tomosynthesis, such that a significant improvement of the vertical resolution
is achieved in combination with a noise and artifact reduction superior to normal ART. Addition-
ally, Wu [212] presented an application and an analysis of the EM-algorithm for low-dose digital
breast tomosynthesis (DBT) with respect to different acquisition protocols. They found out that
for a radiological diagnosis 8 to 10 iterations deliver generally reconstructions with sufficient image
details and feature contrast. However, the discussion by Kolehmainen et al. [181] states that even
for a low number of projection views, the computational costs of iterative reconstruction algorithms
are higher than those of FBP techniques, whereby a slowdown of a factor between 20 and 100 can
be expected. In addition to this, iterative methods based on statistical optimization using the con-
cept of Bayesian smoothing [213, 214] have been compared to simple backprojection, restoration-
based deblurring and expectation maximization by Suryanarayanan et al. [213, 214]. Similar to this
study, [181] has shown that for the limited-angle case iterative approaches achieve an image quality
superior to FBP. Nevertheless, the comparison of the SAA algorithm, a FBP method and an itera-
tive maximum-likelihood (ML) technique performed byWu et al. [215] demonstrated the following
three key aspects: (1) the SAA method showed the best noise reduction capabilities with respect to
low-contrast masses, whereby details in the images were lost, (2) the FBP procedure generated the
sharpest images, although the quality of the masses was the lowest and (3) only with the iterativeML
reconstruction the microcalcifications and the masses were restored equally well. Note that for the
field of DBT additional comparisons and evaluations of iterative reconstruction techniques along
with further discussions about their clinical potentials have been presented in the publications of
Dobbins III andGodfrey [174], Badea et al. [216], Chen et al. [217] and Sechopoulos [189]. Further-
more, an overview of current state-of-the-art hardware and software platforms used by tomosynthesis
manufactures has been given in the review of Sechopoulos [180]. This publication also reveals that
iterative methods have quite recently been implemented in DBT systems by several companies.

5.2.2 Laminography

Besides tomosynthesis, the field of industrial quality assurance is an increasing application area for
limited-angleCT. As the demands onquality ofmodern printed circuit boards (PCBs) raisemore and
more, especially in the automotive and communication industry, mass production of PCBs is pushed,
whereby the reliability of electronic components becomes increasingly important. Because it is chal-
lenging to produce PCBs with low defect levels, better detection strategies are needed to increase and
guarantee quality standards. For NDT systems 2D X-ray inspection is a commonly used technique.
Although X-ray inspection has low scan times and it is fairly easy to integrate into the production
process, it has the major drawback due to the projection technique that features are superimposed in
the acquired image. As a consequence, it is not possible to get any information about the depth of the
object of interest. Especially in PCB inspection, this fact hinders the analysis of double-sided boards
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with a high density of components. As scan times are crucial in the inline-inspection of assemblies,
the main goal of an effective testing solution is to get real 3D data out of a single fast measurement.

Classical X-ray laminography was the first step into this direction. The basic principle of laminog-
raphy has been proposed by [218], where the source and the detector rotate synchronously 180 degree
out of phase while the inspected object remains stationary. Alternatively, the detector and the source
can be translated into opposite directions [175]. All collected images are averaged, so that the parts of
the object of interest that lie within the focal plane become prominent and out-of-focus features only
contribute to the background in a blurred way. Themain disadvantages of classical laminography are
that the background intensity reduces contrast and that for the acquisition of multiply layers of the
object it needs to be shifted with respect to the focus plane, resulting in long scan times. Additionally,
the complicated mechanical scanning system yields to image distortions which need to be corrected
by image post-processing [219].

To overcome the limitations of classical laminography, digital computed laminography (DCL) has
been proposed [220], where digital detectors are used to store the projections. With DCL data it has
been justified that algorithms from the fields CT and tomosynthesis can be applied to reconstruct a
3D dataset of the object of interest [221]. Furthermore, it has been shown that the 3D reconstruction
problem that results from laminography, where the object is moved in a straight line across the X-
ray beam with a fixed source and detector, is equivalent to that of a tomographic scan with limited
angular access [221]. But in contrast to its classical counterpart in digital computed laminography
all object layers can be obtained by one scan followed by a reconstruction procedure that first rebins
the projections to a parallel beam geometry and then uses an iterative reconstruction algorithm like
ART [174, 222, 223]. All in all, computed laminography has a simpler mechanical setup and yields a
sharper image with a higher contrast resolution than the classical approach, because features do not
get superimposed. The main advantage of computed laminography over CT is that large flat objects
can be scanned and that the artifacts that exist in CT due to the lateral attenuation through large
objects are significantly lower.

Digital computed laminography has been used in the NDT area, especially for the examination
of electronic components like ball-grid-arrays (BGAs) [224] with an automatic inspection of solder
joints [225] where the dimensions of the detail is vitally important. The introduction of a new ap-
proach for X-ray geometry with a minimum of moving parts in micro-laminography [226, 227] has
shown that a separation of structures by 10 μm is possible. A closer study of this technique [176]
demonstrated the location of defects in integrated circuit (IC) packages, but also pointed out that
cracks smaller than 5 μm where not detectable. In [177] a digital tomosynthesis technique has been
applied successfully to a multilayer PCB and evaluated with respect to various operation parameters
showing that for a reliable image quality the scan angle should be larger than 60° with a step angle as
narrow as possible.

Recently, the use of synchrotron radiation (SR) in CT area made it possible to distinguish weakly
contrasted materials with a high spatial resolution down to the sub-micrometer scale. As CT is not
suited for PCB inspection, the application of SR to computed laminographyhas achieved a spatial res-
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olution down to the scale of 1 μm[228, 229]. This lower limit ismainly dominated by themechanical
precision of the system and due to laminographic artifacts that are related to the sample structure it-
self [230].

5.2.3 Approximate Inverse

In 1996 Louis [184] has introduced the AI for the regularized solution of linear problems. The great
benefit of the method of AI is that a so-called reconstruction kernel can be precomputed from an
auxiliary problem, which can then be used to calculate an approximate solution to the inverse prob-
lem. This approximation can be expressed as a scalar product of the precomputed kernel with the
data of interest. Contrary to the technique presented in [231], the AI has the advantage that missing
information is compensated by the reconstruction kernel and is not reconstructed from the known
measured data, which might lead to wrong results in unsampled regions due to data incoherence.
Consequently, the main advantage of the AI is that the reconstruction kernel can be precomputed
independently from the measured data, such that it can be reused for different datasets, whereby the
correction term, i.e. the kernel, itself acts independently from the underlying data and from the mea-
surement errors. For this reason, the AI is less prone to data inaccuracies, e.g. projection noise, and
data insufficiency, e.g. projection undersampling, than the method described in [231].

The PhD thesis of Dietz [232] described the first application of the AI to 2D circular fan-beam
CT and for 3D circular CBCT (C-CBCT). The techniques derived by Dietz are quite similar to the
FBPmethod developed earlier by Davison andGrünbaum [233], whereby their derivation was more
complex and did not exploit the relation between the AI and the inverse problem of tomography.
Although Dietz and Davison and Grünbaum constructed the filters by analytical inversion of the
Radon transform, the approach of Davison and Grünbaum made a priori the assumption that the
computed reconstruction filters vary with each projection angle. Therefore, the work presented by
Dietz can be seen as an extension of [233] to a more general scheme. Additionally, Dietz [232] per-
formed a comparison between the AI and the standard FDK method. His results demonstrate the
behavior of both algorithms for varying noise levels. It can be observed that the FDKmethod achieves
a lower reconstruction error than the AI when the noise level on the projections is low. However, as
the amount of noise on the projections is increased the AI yields an image quality superior to that of
the FDK algorithm.

Since for some applications the computation of the reconstruction kernel can become instable,
Rieder and Schuster [234] have developed an alternativemethod based a combination of the AI with
a singular value decomposition of the underlying system operator. This approach has been applied
to 2D fan-beam CT and a detailed error analysis of their method in the context of FBP has been
given. In 2003, Louis [185] has presented a further generalization of the AI with the derivation of
an inversion formula for 3D cone-beam CT, whereby the implementation of the final algorithm was
made computationally feasible by the exploitation of symmetries of the underlying scanning geom-
etry. On reconstructions from real projection data, Louis has shown that the method can efficiently
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produce reasonable results and that the noise in the final reconstructions is reduced to a minimum.
A summary of the aforementioned techniques and a complete analysis of the AI with respect to 3D
CBCT in comparison to the FDK algorithm have been presented in the thesis of Mohr [235]. This
work also gives additional details on the implementation of the reconstruction kernel computation
and on its use in a FBP-type algorithm. Furthermore, the AI has been used by Louis andWeber [187]
for the development of rapid algorithms, which provide a combination of image reconstruction and
image analysis in a single step. As a result of this approach, the authors have shown that direct edge
detection can be performed within the reconstruction step, such that no additional post-processing
is required. Even further developments in the area of the AI with respect to optimizations of the ker-
nel calculation have been discussed by Louis et al. [236], Louis [237] in the context of industrial and
medical imaging. First major steps into the direction of 3D helical CBCT supported by the theory of
the AI have been conducted in the PhD thesis of Weber [238]. Weber concluded that the formulas
resulting from his derivations were too complex to allow a concrete calculation of a reconstruction
kernel for the helical CBCT (H-CBCT) case. Additionally, Hu and Zhang [239] have shown how to
reduce the complexity of Katsevich’s FBP algorithm by rewriting it in the form of the AI and by pro-
viding specific expressions for the required reconstruction kernels. Nevertheless, a concrete discrete
implementation of the AI in the context of 3D helical CT has not been presented so far.

As an extension to the FDK approach, Feng et al. [240] have presented a kernel-based method,
which obtains the reconstruction kernels as a combination of the AI with the FDK algorithm. The
resulting reconstructions have been improved by the introduction of a version of the kernel that has
compact support. Moreover, they have shown that the computation of the kernel is carried out in a
moderate time. By the integrationof an anisotropic diffusionmodel into their kernel-based approach,
Feng and Zhang have demonstrated in [241] that a truncated kernel can significantly reduce noise
in reconstructions computed from a limited number of views of a circular trajectory. Besides this
application of the AI to undersampled data, the case of 2D limited-angle CT in relation to the AI has
been analyzed byDietz [232]. Nevertheless, the calculation of reconstruction kernels for 3D limited-
angle CBCT in the areas of tomosynthesis and laminography is still outstanding.

5.3 Method

In the following the derivation of the novel optimization method will be presented. Therefore, the
next section will start with an introduction of the notation and a description of the geometric CBCT
system setup that will be assumed throughout the rest of this chapter.

5.3.1 Geometric Setup

As already explained in Section 4.3.1 there exist in principle two types of geometric setups for CBCT
image systems. For the first kind of geometries the object of interest is rotated between a fixed source-
detector setup. In the second kind of systems the X-ray detector and the source are moving around
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Figure 5.1: The general geometric setup of the used limited-angle CBCT scanner. The distance from the X-ray source

to the rotation axis is given byDSI . DSP is the source-to-detector distance andDIP is the distance from the ISO-

center to the detector. Note that all projection images used during the experiments were acquired on a µCT scanner

witha circular source trajectory. First a full scanof360°wascarriedout. Afterwards theprojection setsweregenerated
by restricting the angular range toAr .

the inspected item. Without loss of generality, this chapter will refer to a geometric setup where the
source and the detector are moving. The here derived limited-angle reconstruction algorithm will
be formulated by means of this system setup, although the CT scanner, which has been used for the
data acquisition in the experiments of Section 5.4 uses a setup with a moving object. However, note
that amapping between both geometric setups onto each other can be achieved by a simple change of
reference systems. Additionally and in accordance with Chapter 4, it will be assumed the CT scanner
has a planar physical detector. Consequently, this ideal detector has no distortions, such that all of its
elements are equally spaced and have the same dimensions.

For the here used limited-angle CT system the general geometric setup is display in Figure 5.1. The
scanned object, and thus the reconstructed region of interest, is centered on the ISO-center at the
point x = (0, 0, 0)where the ray from the X-ray source to the detector center intersects the rotation
axis, i.e. the y-axis. The X-ray source rotates on a circular path with a radius of DSI around the
object, while the physical detector is positioned at a distance ofDSP from the source. Furthermore,
the coordinate system of the detector is spanned by the vectors u and v, whereby the center of the
detector is located at (u, v) = (0, 0). Additionally, the coordinate space of the scanned object and
of reconstructed volume is defined by the x-, y- and z-axis. The projection angle λ is given as the
angle between the z-axis and the central ray of the projection (i.e. the ray from the source, through
the ISO-center, to the center of the detector). At a projection angle of λ = 0° the xy-plane is parallel
to the detector and the z-axis points into the direction of the X-ray source. The total scan angle
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range is denoted by Ar, such that the smallest and the largest projection angle can be expressed as
λmin = −Ar/2 and λmax = Ar/2, respectively.

5.3.2 The Approximate Inverse

As mentioned in Section 5.2.3 the basic idea of the AI has been introduced by Louis [184]. Al-
though the approach has been applied to the case of non-limited circular CBCTby several researchers
[185, 187, 232, 235–237, 240, 241], efforts in the direction of 3D limited-angle CT have not been
reported so far. In the following, a set of angle-dependent 2D projection filters will be constructed,
which can be integrated into a FBP reconstruction framework to compute an approximate solution
of the inverse problem in 3D limited-angle CBCT. For the design phase the method of Approximate
Inverse (AI) will be used to derive numerically optimized and regularized filters from an intermediate
reconstruction kernel.

Given the attenuation coefficients of the object of interest by f ∈ RN and the projections collected
by the image acquisition system as g ∈ RM , the inverse problem in tomography can be expressed by
the following equation:

Af = g (5.1)

where A : RN → RM is an operator that projects the volume of interest to the projections, i.e.
the forward projection operator. This operator is also commonly known as the systemmatrix. In the
case of limited-angle CT where projection data is acquired only from a restricted angular range the
inverse problem formulated by equation (5.1) is a notoriously ill-posed one (compare with [188] and
[242]). One common approach to solve ill-posed problems is by the use of the concept of regulariza-
tion operators. Note that more details on the fundamentals of regularization methods can be found
in the book of Tikhonov and Arsenin [243], while their applications in the field of CT have been
summarized by Titarenko et al. [244].

To solve the ill-pose inverse problem given by equation (5.1) the regularization method of the AI
uses a so-called mollifier, denoted by eγ . The principle idea of mollification for the solution of im-
properly posed problems has been introduced byHegland andAnderssen [245] and a detailed intro-
duction and discussion of themollifier concept in the field of CBCT can be found in the publications
of Louis et al. [236], Louis [237]. The AI uses the mollifier to compute an approximation f̃ of the
original image f by the evaluation of f̃(x) = ⟨f, eγ(x, ·)⟩ at each location x ∈ R3 inside the region
of interest. Thereby, the mollifier eγ(x, y) can be interpreted as convolution operator that applies
a certain amount of smoothing to the image f . Assuming a fixed point x that defines the location
at which the center of the mollifier is placed, the term eγ becomes a function of y ∈ R3. For this
reason, the mollifier at a fixed location xwill be denoted by eγ,x(·) = eγ(x, ·) ∈ RN throughout the
following derivation. The amount of smoothing that is applied during the reconstruction procedure
is controlled by the regularization parameter γ. The behavior of the mollifier has to be chosen such

108



y-axis

e
γ
,x

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

≥ 99%

Figure 5.2: A 1D profile plot along the central y-axis through the 3D Gaussian mollifier defined in equation (5.3). The

position of the mollifier has been fixed tox = (0, 0, 0) and the standard deviation of the Gaussian has been set 0.25

voxels. Therefore, 99% of the support of themollifier (dark gray) are within a range of 3 voxels (light gray).

that for a fixed point x and γ → 0 the function eγ,x(·) converges against the delta distribution δx(·)
at x defined by

δx(y) =

+∞, y = x

0, y ̸= x
. (5.2)

An example of a mollifier that fulfills the aforementioned properties is the Gaussian function. In
the studies conducted by Louis et al. [236], Feng et al. [240], Feng and Zhang [241], Hu and Zhang
[246] this function has been used successfully to integrate the AI with CBCT and it has been shown
that a mollifier modeled by a Gaussian function reduces the projection noise significantly and is well
suited to preserve important image structures. For these reasons, a 3D Gaussian mollifier has been
chosen to perform the subsequent filter calculations. Consequently, assuming a fixed point x, the 3D
mollifier can be expressed as a function of y as in the equation below:

eγ,x(y) = (2π)−
3
2
1

γ3
e
− ∥x−y∥2

2γ2 . (5.3)

To limit the support of the mollifier the standard deviation of the 3D Gaussian reflected by the
parameter γ has been fixed to a value of 0.25. As a result, more than 99% of the support of the
resulting 3D function are within a region of 3 × 3 × 3 voxels with respect to the system setup used
in the experiments of Section 5.4. This choice for the regularization parameter γ lets the Gaussian
approximate the delta distribution close enough, so that the blurring caused by the mollifier in the
resulting reconstructed volume is kept at a minimum. With a further reduction of γ towards 0 no
significant changes and improvements have been observed neither in the computed filters nor in the
resulting reconstructions. Additionally, Figure 5.2 depicts a 1D profile curve plotted through the
rotationally symmetric Gaussian mollifier and visualizes the voxels lying inside the support of the
function.
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With the selection of the mollifier in accordance with equation (5.3) it has been demonstrated in
[184] that equation (5.1) can be solved for f approximately by f̃ = ⟨f, eγ⟩. Additionally, since for
limited-angle CBCT the operatorA in equation (5.1) can be assumed to be linear, the solution f̃ can
be calculated by an approximation of the mollifier eγ through a so-called reconstruction kernel ψγ ,
which lies in the range of the adjoint operator A∗ : RM → RN . Consequently and in accordance
with the presentations of Louis [185], Louis et al. [236], Louis [237], an auxiliary problem can be
defined that facilitates the computation of the reconstruction kernel. Given the mollifier eγ,x(·) and
fixing its center at the location x, the auxiliary problem can be expressed as

A∗ψγ(x, ·) = eγ,x(·). (5.4)

In equation (5.4) the transposed of the system matrix A is represented by the operator A∗. Ad-
ditionally, the reconstruction kernel at the point x is given by ψγ(x, ·) ∈ RM and is also denoted
by ψγ,x(·) in the further course of this thesis. Note that the reconstruction kernel ψγ,x(·) has the
same dimensions and thus resides in the same domain as the projections g. Knowing the kernel at
the fixed point x, the approximate solution f̃ of equation (5.1) can be calculated using the following
derivation:

f̃γ(x) =

∫
RN

f(x)eγ,x(y)dy = ⟨f, eγ,x(·)⟩RN

= ⟨f, A∗ψγ(x, ·)⟩RN = ⟨Af, ψγ,x(·)⟩RM

= ⟨g, ψγ,x(·)⟩RM =: Sγg(x),

(5.5)

whereby ⟨·, ·⟩ represents the scalar products in the appropriate spaces. The first step of the deriva-
tion shows how the approximate solution f̃ atx can be expressed as a convolution of the image f with
themollifier eγ,x. This integral operation canbe reformulated as a scalar product, which canbe rewrit-
ten in terms of the projectiondata g and the reconstruction kernelψγ,x corresponding to themollifier.
Finally, in the last line of equation (5.1) the operator Sγ is defined as the AI for approximating the
solution (̃f) ofAf = g at x. The reconstruction technique formulated by this operator has two im-
portant properties: (1) the reconstruction kernels ψγ,x are independent of the underlying projection
data g and can therefore by precomputed without any knowledge of g by solving the auxiliary prob-
lem given by equation (5.4); (2) as shown in the literature on the AI [185, 232, 233, 235, 236, 238],
invariances, e.g. symmetries, of the mollifier can be exploited to speed up the computation of the
reconstruction kernels and to integrate them into a shift-invariant FBP framework. Note that these
two properties have been proven for the non-limited angle case of circular CBCT by Dietz [232].
Although the here presented filter optimization strategy is formulated for the limited-angle tomog-
raphy, it will make use of both of the above proprieties to efficiently compute and use the derived set
of filters. Since for the derivation of the AI in equation (5.5) no assumptions on the geometry of the
imaging system are required, the first property from above can be trivially transfered to the limited-
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angle case. To apply the second property to limit-angle CT a closer knowledge about the behavior of
the reconstruction kernels with respect to the mollifier positioning is required. Therefore, a detailed
analysis within this context will be discussed in Section 5.3.3.

As presentedby the relatedwork conducted on themethodofAI in Section 5.2.3, there exist several
methods to calculate the reconstruction kernel from a given mollifier: kernels can be obtained

• by derivation from an analytical reconstruction formula for C-CBCT, e.g. the Radon trans-
form or Tuy’s formula, like it has been presented in [185, 187, 232, 235–237, 240, 246] or for
H-CBCT from Katsevich’s exact inversion formula as discussed in [238, 239],

• by the analysis of the singular value decomposition associated with the operator of the inverse
problem as described by Louis [184] and Dietz [232]

• or by using an iterative numerical optimization strategy as it has been employed and analyzed
for 2D CT with a parallel scanning geometry by Rieder and Schuster [234].

None of the above approaches has been applied to the problemof cone-beam limited-angle tomog-
raphy so far and only Dietz [232] has shown briefly how a singular value decomposition can be used
to obtain kernels for the 2D limited-angle case. However, iterative optimization can provide a general
approach for the design of filters on the basis of the AI without the need of an analytical inversion
formula and without complex derivations performed by singular value decomposition (see [234]).
For this reason, the AI reconstruction kernelsψγ,x will be computed numerically using a suitable op-
timization technique, such that the auxiliary problem introduced by equation (5.4) will be solved by
a minimization operation at each point x. Consequently, the resulting optimization problem has to
be solved at N different locations that lie at the center of each voxel inside the volume to be recon-
structed. This fact suggests the following general optimization approach:

Step 1: Position the 3D Gaussian mollifier eγ,x given by equation (5.3) at a fixed point x

Step 2: Compute the minimum norm solution of ∥A∗ψγ,x − eγ,x∥R to solve equation (5.4)

Step 3: Repeat steps 1 and 2 for each voxel to be reconstructed

Note that the second step represents a weighted least-square problem, which can be solved by iter-
ative approximation using SIRT, wherebyR is a positive definite diagonal matrix containing the row
sums of the adjoint system matrixA∗ and can be defined by

R := diag

(
1∑N

j=1 a
∗
1j

, ...,
1∑N

j=1 a
∗
Mj

)
. (5.6)

Hereby, the element in the ith row and jth column of the matrixA∗ are given by a∗ij . Gregor and
Benson [247] have conducted an analysis of classical normalized SIRT and in accordance with their
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notation the calculation of a reconstruction kernel ψγ,x can be carried out by using the following
update expression in vector-matrix notation:

ψ
(k+1)
γ,x = ψ

(k)
γ,x + CAR(eγ,x − A∗ψ

(k)
γ,x), (5.7)

whereby the index k denotes the current iteration of SIRT, R is given by equation (5.6) and the
diagonal matrix C is positive definite and contains the inverse column sums of the adjoint system
matrixA∗. Consequently,C can be expressed as

C := diag

(
1∑M

i=1 a
∗
iN

, ...,
1∑M

i=1 a
∗
iN

)
. (5.8)

In equation (5.7) the matrix R merely serves as a preconditioner for the associated normal equa-
tions. In relation to this, a scalar based preconditioning with a reduced memory consumption and
a smaller memory footprint has been proposed in [247]. They have shown that this simplified pre-
conditioning scheme can achieve similar result as the classical one and that it can be used in highly
distributed implementations, e.g. on the graphics processing unit (GPU). However, since the ap-
proximation of the kernels was not performance critical and it had to be carried out only once during
the precomputation phase, SIRT has been implemented straightforwardly using equation (5.7).

Contrary to this, the implementation of the forward projection operatorA and the backprojection
operator A∗ has been realized on the GPU using Compute Unified Device Architecture (CUDA).
Both operators employ the technique of separable footprints, which has been developed by Long
et al. [21], Wu and Fessler [22]. Moreover, this forward projection and backprojection methods have
been tightly integrated into the software framework introduced in Chapter 2, so that they are accessi-
ble from all layers, in particular from MATLAB. Therefore, the update scheme from equation (5.7)
has been implemented inMATLAB to allow futuremodifications, while the projection operator per-
forms more efficiently in native GPU code.

5.3.3 Reconstruction Kernel Approximation

The steps 1 to 3 of the general optimization schemediscussed in the previous section constitute a naive
approach for the computation of the kernels. This procedure can quickly become computationally
impracticable as the size of the dataset to be reconstructed increases. The reason for this is that accord-
ingly to equation (5.5) the reconstruction kernels depend of the choice of the point x that defines the
mollifier position. Consequently, for each voxel inside the volume of interest a separate kernel ψγ,x

has to be calculated by the use of SIRT. Each of these kernels requires the same storage capacity as
the original set of acquired projections. Hence, the overall time to compute all reconstruction ker-
nels and the total storage requirements can easily be exceeded as the size of the processed datasets
becomes larger. In addition to this, it has been discussed in previous section that for an AI-based re-
construction in accordance with equation (5.5) invariance of the computed kernels can be exploited
to employ them in a FBP algorithm. For this reason, the following studies will examine the behavior
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(c)mollifier translated along central z-axis

Figure 5.3: Comparison of the reconstruction kernels computed from mollifiers placed along the central axes of the

volume of interest. For the calculation of all kernels the 3D Gaussian mollifier has been used with γ = 0.5 and SIRT

was run for 100 iterations. Note that the bounding box of the volume of interest has been normalized to [−1, 1]3. The
mollifiers have been placed along the central x-, y- and z-axis in (a), (b) and (c), respectively. The line plots on the left

depict for each kernel the profile through its central row for with respect to the projection at−30° (top),−0° (middle)
and 30° (bottom), while their corresponding frequency spectra are displayed on the right.

of reconstruction kernels ψγ,x in relation to their corresponding mollifiers eγ,x for different choices
of x.

For the study of the invariances Figure 5.3 shows line plots that compare several reconstruction
kernels. These kernels have been calculated from the 3D Gaussian mollifier located at differing posi-
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tions along the three coordinate axes of volume of interest. For the computation of the kernels the
geometric setup with an angular scan range of 60° from Section 5.4 has been used. The line plots
have been generated with respect to three different projection angles: −30° in the plots at the top,
0° in the plots in the middle and 30° in the plots at the bottom. The left part of each graph displays
the profiles of the row containing the peak of the kernel. At the right side of the plots the Fourier
spectra corresponding to the kernel rows are depicted. Note that the peak of the kernels generated
from the x-translated and from the z-translated mollifiers fall onto the central row of the projections
space, which corresponds to the central row of the kernels since ψγ,x ∈ RM . On the contrary, the
y-translated mollifier produces kernels translated accordingly along the v-axis of the detector.

In Figure 5.3a the kernels are displayed that have been computed from mollifiers translated along
the x-axis. It can be observed that at −30° and at 30° the profile plots of the central kernel rows
look similar in their shape and distribution, with the only difference that they are mirrored with re-
spect to the kernels computed from the mollifier at x = 0. Consequently, the frequency spectra at
±30° have similar shapes when comparing them in a reversed order. Moreover, the profiles of the
kernels corresponding to the projection angle of 0° only show minor changes in their shape for the
x-translated mollifiers, whereby a single kernel (x = 0.375) has a peak height differing from the
other ones. The Fourier spectrum of the central row of this kernel also shows differences to the other
kernels at higher frequency ranges. For lower frequencies all reconstruction kernels show a similar
behavior. Additionally, kernels frommollifiers placed at positions intermediate to the ones displayed
in Figure 5.3a have been inspected. For these kernels shapes, peak heights and Fourier spectra corre-
sponded to the behavior observed in the aforementioned line plots. Variations in the peak height at
0° can be explained by inaccuracies (e.g. accumulating forward- and backprojection artifacts) caused
by numerical approximations made during the kernel optimization with SIRT. In summary, it can
be concluded that the reconstruction kernels referring to the x-axis show a symmetric behavior with
respect to the projections angle.

In contrast to this behavior observed along the x-axis, the central row profiles of the kernels cal-
culated from the y-translated mollifiers do not show significant difference in their shape and peak
height for different y-positions. A closer look at the negative side lobes of the kernels at−30° and 30°
shows that these minima are mirrored with respect to the projection angle and that their amplitude
is smaller than for the 0° case. Consequently, for the different projection angles the corresponding
Fourier spectra of the kernel rows reveal a symmetric behavior in their shapes. Only for the kernel at
y = 0 the spectrum needs to be scaled to match those of the other reconstruction kernels. Addition-
ally, the kernels computed from themollifiers positioned along the z-axis indicate a symmetry for the
minimal and maximal projection angle. As for kernels of the x-translated mollifiers the row profiles
are mirrored with respect to the scan angle, what is once more reflected by the according frequency
spectra. The profile curves at 0° show slight variations of the peak height, which are caused by the
geometry of the used system setup and will be studied in detail in Section 5.4.4. Moreover, for the 0°
case the Fourier spectra of the reconstruction kernels of the z-translated mollifiers have quite similar,
vary in their scaling and differ from the spectra of the kernels at the other two projection angles.
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Eventually, the above observations suggest that the principle shape of the reconstruction kernels is
similar for differing mollifier positions. Moreover, it has been demonstrated that the profile curves
and the corresponding frequency spectra vary symmetrically with a change in the projection angle.
As a result of the above analysis, the following approximations will be assumed to make the calcula-
tion of the kernels computationally feasible and to rigorously reduce the storage requirements of the
optimization scheme proposed in the previous section:

1. The overall appearance and thus the frequency spectra of the reconstruction kernels are inde-
pendent from a translation of the mollifier along the x-, y- and z-direction

2. and the parts of a specific kernel corresponding to a projection image vary with the scan angle.

To put it differently, a reconstruction kernel does not depend on the mollifier position, but on the
projection angle. Note that for the application of the AI to 2D limited-angle CT the latter behavior
has also been observed by Dietz in his PhD thesis [232]. As a result of the above assumptions, the
numerical kernel optimizationwill be simplified by the calculation of only a single reconstruction ker-
nelψ0

γ from the Gaussian mollifier placed at the ISO-center x = (0, 0, 0). Nevertheless, through the
made simplifications one has to consider and accept a certain approximation error, which will influ-
ence the finally reconstructed image. A closer look at this error will be taken in the analysis presented
by Section 5.4.4.

5.3.4 Filter Optimization

Once the central reconstruction kernelψ0
γ has been computed bymeans of the optimizationmethods

described in the previous sections, a set of 2D image filters ω0
γ ∈ RM can be designed that depends

on the angle of the acquired projection. For these filters it will be shown that they can be used in a
shift-invariant FBP reconstruction algorithm to compute an approximation of f from the measured
projections g, whereby an evaluation of the resulting image quality will be presented in Section 5.4.

For the design of the filters, the required notations will be introduced first. Although some of the
following formulas have been employed in the previous chapters of this thesis (compare Chapter 3
and Chapter 4), they will be redefined within this section to achieve a consistent notation that avoids
misunderstandings in the derivation of the here presented method. As described in Section 5.3.1,
the parameter λ defines the acquisition angle between the central ray of projection and the z-axis.
Consequently, the positions of theX-ray source canbe expressed in dependence ofλby the expression

s(λ) = (DSI sinλ, 0, DSI cosλ), (5.9)

where λ ∈ [λmin, λmax] = [−Ar/2, Ar/2] in accordance with Section 5.3.1. Thereby, a parame-
terization of the set of projection images g can be formulated by the cone-beam transform:

g(λ, u, v) = g(λ, θ) =

∫ ∞

0

f(s(λ) + tθ)dt, (5.10)
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with the vector θ that represents the direction from the location of the X-ray source to the detector
coordinates.

Additionally, the angular projection rangeAr is sampled at L discrete points given by the setΛ =

{λ0, ..., λL}, which is index by the variable l. Hence, a discrete projection angle λl ∈ Λ defines a
source location sl := s(λl) in accordance with equation (5.9). The projection image acquired with
the source at sl is denoted by gl = g(λl, ·), whereby each projection hasNv rows andNu columns.
Consequently, the total number of elements in the acquired set of projections g can be calculated as
M = Nu × Nv × L. The size of the elements in a projection image are given by the values ∆u
and ∆v, which define the detector column width and the row height, respectively. By means of the
element count and size, the locations of the detector pixels can be derived as un = (n − (Nu −
1)/2)∆u and vm = (m − (Nv − 1)/2)∆v, whereby the columns and row indices are within the
ranges n = [0, ..., Nu − 1] and m = [0, ..., Nw − 1], respectively. According to this sampling,
the detector center lies at (u, v) = (0, 0) and the vector pointing from the source position s(λl)
to the discrete detector coordinates (un, vm) will be denoted by θn,m(λl). Moreover, the part of
the calculated central reconstruction kernel ψ0

γ that corresponds to a single projection image gl is
parameterized accordingly byψ0

γ,l = ψ0
γ(λl, ·). Similarly, the parameterization of the set of 2D filters

represented by ω0
γ will contain for each gl a separate filter that is denoted by ω0

γ,l = ω0
γ(λl, ·).

The basic notation and the parameterization of the projections, kernel and filters provided above
can now be used to take a closer look at the filter design from the central reconstruction kernel. Since
ψ0
γ is approximated numerically by an unregularized version of SIRT it can be observed in Figure 5.3

that the frequency spectra contain an unpredictable amount of ripples. These artifacts occur espe-
cially at higher frequencies and can be noticed in the spectral distributions of all partsψ0

γ,l. However,
for an ideal solution of equation (5.4) one would expect the reconstruction kernel to have a smooth
shape, like it has been shown for the analytically computed kernels in the AI literature (e.g. see the
ones depicted in [232, 235, 236]). The ripples in the here calculated solution are caused by the SIRT
algorithm, which inherently suffers from small numerical imprecisions that accumulate over the it-
erations to yield visible artifacts. This accumulation process can be avoided by the use of a suitable
regularization method, which can be integrated directly into the SIRT algorithm. For the solution
of the inverse problem in equation (5.1) many such regularization schemes have been proposed, also
in relation to limited-angle CT (see [242, 248–252]). However, none of these techniques have been
applied to solve the auxiliary problem stated in equation (5.4) in the context of the AI. Therefore
and for the sake of simplicity, the unwanted artifacts will be removed from the frequency spectra by a
low-pass filtering approach. For this purpose, a finite impulse response (FIR) filter is designed using
the window method. As window function the 2D Kaiser window, also commonly known as Kaiser-

116



Bessel window, will be employed. Given a detector pixel with the indices (n,m), the Kaiser window
can be defined in the domain of the projection images by the following equation:

wτ (n,m) =


I0(ακ( 2n

Nu−1
))I0(βκ( 2m

Nv−1
))

I0(α)I0(β)
for 0 ≤ n ≤ Nu − 1 and 0 ≤ m ≤ Nv − 1

0 otherwise
(5.11)

with I0 representing the zeroth order Modified Bessel function of the first kind and the function
κ(ξ) :=

√
1− (ξ − 1)2. Moreover, a single control parameter τ ∈ [0,+∞] is introduced, which

determines the shape of the Kaiser window by acting consistently on the variables α and β in equa-
tion (5.11). Consequently, values of both have been calculated as α := Nuτ and β := Nvτ . By this
approach the parameter τ can be interpreted as a window size, which in turn controls the smoothing
of the Fourier spectrumof thewindowed function, i.e. the image. For a value of τ = 0 theKaiserwin-
dow becomeswτ (n,m) = 1within the range of the first case in equation (5.11), while for increasing
values of τ thewindowbecomes narrower. As a result of this behavior, the application of thewindow
function to an image will smooth its Fourier spectrum stronger for larger values of τ , while a value of
τ = 0 leaves the spectrum unchanged. Note that the Kaiser window has been defined independently
of the source angle. Finally, the set of projection-wise optimized 2D filters can be calculated by the
application of the 2DKaiser windowwτ to the computed reconstruction kernelψ0

γ . This process can
be expressed as

ω0
γ,l = wτ ∗ ψ0

γ,l ∀ l ∈ [0, ..., L], (5.12)

whereby the index l corresponds to the scan angle and thus to the source position according to
equation (5.9). Note that ∗ denotes the element-wise multiplication operator for two projection im-
ages of the sizeNu×Nv. Figure 5.4 demonstrates the impact of the Kaiser window on the frequency
distribution by comparing the central rows of the originally calculated reconstruction kernel ψ0

γ , of
the Fourier spectra of ψ0

γ and of the spectra of the windowed kernel, i.e. the resulting optimized fil-
ters. It can be seen that the final filters have a smoothened appearance in the Fourier domain and that
the ripples have been removed by the application of the window function.

For the use of the filters ω0
γ,l computed from equation (5.12) in a FBP-style reconstruction algo-

rithm, a unitary matrix UT
λ,x is introduced. Given a fixed source angle λ and a point x, this matrix

rotates the vector (s− x)/|s− x| onto the vector s/DSI and can be defined through

UT
λ,x

(
s(λ)− x
|s(λ)− x|

)
=
s(λ)

DSI

, (5.13)
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Figure 5.4: Reconstruction kernel visualization demonstrating the effect of the Kaiser window. The top image shows

the central rows extracted and stacked row-wisely for each projection angle with respect to the reconstruction kernel

ψ0
γ . The middle image shows for each kernel row the corresponding Fourier spectra and the bottom image depicts the

spectra after the Kaiser windows has been applied in the spacial domain.

whereby s(λ) describes the circular X-ray source path in accordance with equation (5.9). For the
case of a circular trajectory and for the assumption thatUs′(λ) ≈ s′(λ), Dietz [232] and Louis [185]
have proven for the reconstruction kernels that the following approximate invariance holds true:

ψγ,x(λ, θ) ≈
D2

SI

|s(λ)− x|2
ψ0
γ(λ, U

T
λ,xθ). (5.14)

By the employment of this equation the central kernelsψ0
γ can be used to compute reconstruction

kernels at arbitrary positions x inside the volume of interest. Consequently, only ψ0
γ is required for

the evaluation of equation (5.5) to obtain f̃ for each desired location x. Moreover, the works of
Dietz [232, pp. 72–76] and Mohr [235, pp. 37–40] derived and proved that equation (5.5) can be
reformulated as a shift-invariant FBP algorithm by exploiting the invariance given in equation (5.14).
As a result, the AI operator Sγ with its involved scalar product can be rewritten as

f̃γ(x) = Sγg(x) = ⟨g, ψγ,x(·)⟩RM

≈ 1

8

L∑
l=1

Nu∑
n=1

Nv∑
m=1

g(λl, θn,m)ψγ,x(λl, θn,m)

≈ 1

8

L∑
l=1

D2
SI

|s(λl)− x|2
∑
n,m

g(λl, θn,m)ψ
0
γ(λl, U

T
λl,x

θn,m).

(5.15)
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The last line of the above equation makes clear that the algorithm is of FBP-type, since the inner
sum represents a 2D convolution of the projection image g(λ, ·) with the corresponding part of the
central reconstruction kernel ψ0

γ(λ, ·).
Since the optimized angle-dependent filters ω0

γ,l are left unchanged with respect to projection ge-
ometry and are only subject to a smoothing of the frequency spectrum when computed from the
corresponding part of the central kernel ψ0

γ,l in accordance with equation (5.12), the assumption can
be made that equation (5.14) also holds true when replacing the kernels ψ by the set of filters ω. For
this reason, the invariance of equation (5.14) also applies for the angle-optimized filters ω0

γ,l and the
final implementation of the limited-angle FBP approach will compute the approximation to f by

f̃γ(x) ≈
1

8

L∑
l=1

D2
SI

|s(λl)− x|
∑
n,m

g(λl, θn,m)ω
0
γ(λl, U

T
λl,x

θn,m). (5.16)

Furthermore, the convolution step, i.e. the filtering, that needs to be performed in equation (5.16)
is carried out in the Fourier domain using a projection-wise approach. Given the original acquired
projection image gl and the associated 2D filter ω0

γ,l, the filtered projection parameterized by hl =
h(λl, ·) can be calculated in accordance with the following equation:

hl(un, vm) = F−1{Fgl(un, vm) ∗ |Fω0
γ,l(un, vm)|)}, (5.17)

wherebyF is the 2DFourier transform andF−1 its inverse. Specifically, for the evaluation of equa-
tion (5.17), the Fourier transforms of gl and ω0

γ,l are calculated first. Then from the angle-optimized
filter themagnitude (|·|) of the frequency spectrum is taken to removeundesirable phase information,
which is causedby the numerical derivationof the filters using SIRT. Finally, themagnitude spectrum
is multiplied element-wisely (∗) by the Fourier transformed projection and the result is transformed
back to the spatial domain to gain the filtered projection hl. The evaluation of equation (5.17) has to
be carried out for each of the L projections in g to obtain the full set of filtered projections h. Hav-
ing successfully computed the set of images h, the backprojection operator A∗ can be employed to
calculate the reconstructed volume of interest in accordance with equation (5.15) by

f̃γ(x) = A∗h(x). (5.18)

The full algorithm which has been derived above is called angle-optimized FBP (AO-FBP). To
improve the performance of the above computations, the processing has been parallelized, such that
multiple projections are filtered concurrently. By thismeans, capabilities of currentmulti-core central
processing units (CPUs) can be fully exploited, while the backprojection step is realized efficiently on
the GPU.

119



Table 5.1: Angular ranges used for simulated and real data

LOW (60°) HIGH (120°) FULL (360°)

Num. of Projections 60 120 1000
incr. Angle [°/proj.] 1.0 1.0 0.36

5.4 Experiments

As depicted in Figure 5.1, the geometric system setup used for the derivation of themethod in the pre-
vious section looks similar to a typical breast tomosynthesis system (comparewithKunze et al. [172]).
However, the following experiments with real datasets were carried out on an industrialµCT scanner
with a circular scanning path, which also has been used for some experiments in Section 4.4. For the
image acquisition the source-to-detector distance of the scanner was set toDSP = 451.267mm and
the scanned object was placed atDSI = 111.656mm from theX-ray source. In accordance with Sec-
tion 4.4, the detector has Nv = 1848 rows and Nu = 1480 columns, whereby the height and the
width of detector elements equal δv = δu = 0.127mm. Note that for the simulation of the projec-
tion data studied in this section and for the reconstructions from this data the same system setup has
been used.

The results fromthe studyof industrial limited-angleCTpresentedbyChoet al. [177]havedemon-
strated that the image quality for a total scan angle of Ar ≥ 60° can generate results comparable to
a full scan of 360°. Therefore, an angular range of at least 60° has been used during the following
experiments. Additionally, three different angular scan ranges will be compared by the experiments
in accordance with the following acquisition protocols: (1) with the protocol denoted by LOW 60

projections have been acquired over a total scan angle of 60°; (2) during the scanswith theHIGHpro-
tocol 120 projections are taken with an angular coverage of 120° and (3) the third protocol, denoted
by FULL, uses 1000 projections from a full CT scan over 360°. Note that for the experiments per-
formed on the real data, only the FULL protocol has been used to acquire projection images. Then
the other two configurations, i.e. the LOW and HIGH protocol, have been generated from the full
scan by selecting the according subset of projections. Additionally, the reconstructions computed
from the scan of the FULL protocol will be employed as a reference for the results achieved by the
other two setups. In contrast to this, the simulated projections have been generated directly with the
LOWand theHIGHprotocol. As a reference for the reconstruction from these simulations the orig-
inal phantom images were used. Note that Table 5.1 gives an overview of the used angular projections
ranges used throughout the following presentation.

5.4.1 Quality Measurement

Since the distribution of the attenuation coefficient is known a priori for the reconstruction from
the simulated projection sets, the original phantoms can be used as reference for the resulting images.
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Given the reference and the reconstructed dataset, the RMSE can be used as ameasure for the quality
of the different reconstruction algorithms. Additionally, in Section 5.4.4 the RMSE will be used to
analyze the deviations between different sets of filtered projections.

In the general case, for two data vectors a, b ∈ RK , the RMSE can be computed as

RMSE(a, b) =

√∑K
i=1(ai − bi)2

K
, (5.19)

whereby K represents the number of vector elements ai and bi, which has to be equal for both
vectors a and b. Note that the two vectors can be either projection sets of volumes.

From the derivation of the filter optimization approach described in Section 5.3 it becomes evi-
dent that the AO-FBP is influenced by a number of parameters intrinsic to the algorithm. Two key
factors that influence the image quality are: (1) the number of SIRT-iterations used to compute the
reconstruction kernel and (2) the variable τ that controls the size of Kaiser window during the filter
construction. The study of these parameters and of how they affect the final quality of the recon-
structed images will be performed on the basis of the RMSE. Moreover, the RMSE is used to gain
better understanding of the filters designed in the above optimization approach. The here developed
method will be compare to the FDK algorithm, which has been implemented as the standard FBP
approach presented by Feldkamp et al. [12] in combination with a Shepp-Logan (SL) filtering step.
Additionally, the 2D Shepp-Logan (SL) phantom [165] is used for the generation of the simulated
projectiondata. The 2D slices of the phantomhave been arrangedparallel to thexy-plane and stacked
along the z-axis in accordance with the system setup described in Section 5.3.1. As a result, the 3D ref-
erence volume employed during the simulations is equal with respect to all xy-slices. The phantom
projections are then generated using the LOW angular range setup (see Table 5.1). After this, vol-
umes will be reconstructed with AO-FBP and FDK, whereby the voxel size is set to 0.179mm along
each dimension and the total number of reconstructed voxels is equal to 255 × 255 × 127. Note
that an odd number of voxels has been chosen along each coordinate axis, such that the mollifier can
be positioned exactly at the location of the ISO-center, as it has been pointed out in Section 5.3.3.
Furthermore, for the study of the algorithmic parameters a 2 × 2 binning has been applied to the
projection data, so that 4 pixels were averaged into a single one. As a result, the number of detector
rows and columns are given byNv = 924 andNu = 740, receptively. After the reconstructions have
been calculated successfully, slice images and profile plots will be generated to visually inspect the im-
age quality in relation to the in-focus xy-plane. The results with respect to SIRT-iteration count and
Kaiser window size will be described in following sections.

5.4.2 Iteration Count

As the reconstruction kernel from which the optimized filters are constructed is computed numer-
ically by SIRT in accordance with equation (5.7), the number of iterations used during the kernel
optimization has an influence on the final image quality achieved by the algorithm. Figure 5.5 visu-
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of SIRT iterations used to compute the reconstruction kernels is plotted against the RMSE of the original SL phantom

and the reconstructed image. The window size of τ = 0.676was determined by hand-tuning and the mollifier size γ

has been set to 0.25 voxels.

alizes this relation by comparing the number of SIRT iterations used to compute the reconstruction
kernel with the achieved image quality in terms of RMSE. A look at the number of iterations in rela-
tion to the RMSE of the images reconstructed with AO-FBP reveals that with an increasing iteration
count the RMSE drops from 9.34% down to 7.48% at 100 iterations. When using the reconstruc-
tion kernels without the application of the 2DKaiser window the RMSE of the final reconstructions
stayed above 11.9% for all iterations. However, the FDK algorithm produced a higher RMSE of
14.7% for the chosen setup.

For the proposed AO-FBP algorithm the change in the RMSE from 80 iterations to 100 is smaller
than 0.06%, so that an improvement in the image quality with further iterations can be expected to
be even lower. This is why the number of SIRT iterations is fixed to 100 for all following experiments.
The profile plots in Figure 5.6a underline this choice again. The displayed slice profiles of the central
phantom row and column generated with AO-FBP using different SIRT iterations (dashed lines)
show a visible improvement relative to the original profile from iteration 20 to 50, while the profile
curve stays almost unchanged from iteration 50 to 100. In comparison to FDK, it can be seen that
AO-FBP reconstructs the gray values of the original phantommore accurate, especially in the central
regions of the SLphantomwhere the profiles of the FDK reconstruction are clearly below the original
intensity values.

This behavior can also be verified by the images in Figure 5.6b which compare the central xy-slices
of the FDK and AO-FBP reconstructions with the original SL phantom. In the difference images at
the right of the figure it can be seen that the largest absolute deviations between the original and the
AO-FBP reconstructed slice occur mainly at the edges of the phantom and are not larger than 0.66 in
their absolute value. In contrast to this, the largest errors between the FDK and the original phantom
occur at the left and right border and have a magnitude of 1.0. Additionally, the deviations between
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Figure 5.6: In (a) the profile plots display the gray values of the central row (left) and central column (right) of the SL

phantom to compare the original image with FDK andwith AO-FBP using kernels computed from three different num-

bers of SIRT iterations. The images in (b) compare the reconstructions of the central slice of the SL phantom. The left

image shows the original phantom, the image second from the left is a reconstruction using the FDK algorithm, the cen-

tral image has been computed using AO-FBPwith a filter set from a100-iteration SIRT optimization. The image second

from the right displays the differences between the original phantomand the FDK reconstruction. The rightmost image

visualizes the deviations between the second and the third image. Note that all volumes haven been normalized to the

range [0, 1].

the FDK and original image at the interior part of the phantom (excluding the white borders) range
up to0.284with amean value of0.153, whereas these deviations for theAO-FBPhave only amaximal
value of 0.103with an average value of 0.012.

5.4.3 Window Size

As described in Section 5.3.4, the window size parameter τ controls the smoothing of the frequency
spectrum of the reconstruction kernels during the filter construction. As a result, it also influences
the final image quality of the AO-FBP algorithm. The plots in Figure 5.7 show how τ is related to the
RMSE of the final reconstruction and how the gray values change with varying parameter values. For
window sizes τ < 0.06 the left plot shows a ripple artifact. This effect is due to the fact that Kaiser
window at those parameter values becomes narrower than the central peak of the reconstruction ker-
nel, such that the windowing changes the overall shape and behavior of the kernel. For this reason,
the application of the Kaiser windowmakes little sense for values of τ < 0.06 and this area is ignored
when determining an optimal window size τ ∗.
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Figure 5.7: Comparison of different window sizes with respect to the RMSE using the SL phantom. In the left graph the

window size parameter τ is plotted against the RMSE (solid light gray line). The optimal window size of τ∗ = 0.73

(dark gray dot) hs been determined by fitting a 6th degree polynomial (dashed dark gray line) to the samples. To ignore

the artifacts introduced bywindow sizes smaller than0.06, only samples with τ ≥ 0.06 (light gray crosses) have been

considered during the estimation process. The profile plot at the right shows curves along the central column of the

central sliceof theSLphantomcomparing theoriginal grayvalueswith thoseof theAO-FBPreconstructions at different

window sizes.

The optimal value of τ ∗ is estimated using a straightforward linear line search strategy on the basis
of the minimization of the RMSE. Therefore, the reconstructions from the simulated SL projection
have been computed with AO-FBP using different windows size in the interval [0.06, 1.5] with a
sampling distance of ∆τ = 0.0025. For each τ the corresponding RMSE has been calculated with
respect to the original phantom (see light gray crosses in Figure 5.7). After the sampling of theRMSE,
a 6th degree polynomial function has been fitted to the samples to determine the location, i.e. the
window size, with the minimal error. By the application of this procedure, the optimal window size
of τ ∗ = 0.73 has been estimated. The corresponding minimal RMSE was at 7.5%. The here found
optimal value 0.73 for the window size parameter will be used in all subsequent experiments of this
chapter.

Furthermore, the left graph inFigure 5.7 shows that theRMSE rises only slowlywith anon-optimal
value of τ and for parameter values τ ∗ ± 0.5 the error is still lower than 8%. This fact suggests
that the here developed AO-FBP algorithm does not strongly depend on the precise selection of the
window size τ , since values close to the optimumproduce reasonable results. However, when looking
at the profile plots in Figure 5.7 a quite contrary observation can be made: a significant deviation
from original phantom can be seen for the reconstruction computed with window sizes of τ = 0.5

and τ = 1. Moreover, the differences for τ = 0.5 and τ = 1 occur particularly in regions at
the interior part of the SL phantom and become stronger for the other choices of τ ∈ {0.25, 1.5}.
On the contrary, the optimal window size of τ ∗ = 0.73 produces a profile curve that resembles
the gray values of the original phantom most accurately. However, the relatively small variations in
the RMSE for values of τ in the interval [0.5, 1.0], as they have been observed in the left plot of
Figure 5.7, can basically be explained by themagnitude of the gray value deviations caused by different
parameter values. For window sizes of τ < 0.5 themagnitude of these differences is relatively large in
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Figure 5.8: The line plot in (a) visualizes theRMSEbetween the filter setω0
γ and the sets of filters generated fromdiffer-

ent mollifier positions along the central coordinate axes of the volume of interest. The coordinates of the volume have

beennormalized to the range [−1, 1]. A comparison betweenfiltered projectionswith respect to each projection angle
is shown in (b). For the FDKand for theAO-FBP algorithm the filtered projections have been comparedwith the images

produced by P-SIRT after 100 iterations using the RMSE. In both plots the number of SIRT-iterations for the kernel

computation were set to 100, while a window size of τ∗ = 0.73 was used during the reconstruction with AO-FBP.

Note that both graphs have been generated using the SL phantom and an angular projection range of 60°.

comparison to those generated by other choices of the parameter value. Moreover, one has to consider
that smaller differences influence theRMSE proportionally less than larger ones, because themeasure
is based on squared differences (see equation (5.19)). Consequently, the squaring can amplify larger
deviations and weight outliers heavily, such that even if the change in the RMSE is relatively small,
the associated variations in the image intensities can introduce significant inaccuracies in the final
reconstruction.

5.4.4 Filter Quality

Additionally to the analysis of the algorithmic parameters performed on the reconstructed images in
the previous sections, theRMSE has been employed for the evaluation of the quality of the iteratively
optimized filters. For this purpose, the geometric setup described in Section 5.4.1 has been used to
simulate projections of the SL phantom. For the reconstruction process with AO-FBP the SIRT-
iteration count and the optimal window size has been fixed to the values determined in Section 5.4.2
and in Section 5.4.3, respectively.

The initial derivation in Section 5.3.3 showed how the kernels inside the region of interest can
be approximated for each point x by a single run of SIRT on a given mollifier position. However,
the final algorithm makes the simplification that the kernels for all x are equal and can be computed
by the exploitation of invariances from the central kernel ψ0

γ and thus from the central mollifier e0γ .
By means of this simplification a certain error has to be accepted in the optimized filters and in the
final reconstructions as well. To study this approximation error, the set of angle-dependent filters ω0

γ

fromequation (5.12)will be compared to filters constructed fromkernels that correspond tomollifiers
positioned along the central axes of the volume. For this purpose, the reconstruction kernels discussed
in Section 5.3.3 and depicted in Figure 5.3 will be reused in the following evaluation. Equivalently
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to equation (5.12) a set of filters, named ωγ,x, will be computed for the kernels derived from the x-,
y- and z-translated mollifiers. Then each of these filter sets will be compared with the central set of
filters ω0

γ employing the RMSE.
Figure 5.8a shows the results of this comparison. It can be observed that the maximal error, which

is made by the kernel approximation, is always smaller than 5.11%. Notably, the RMSEwith respect
to the central filters ω0

γ and the filters computed from the y-translated mollifiers were never larger
than 0.68%. Moreover, these sets of filters shows a symmetric distribution of the RMSE around
the center of the volume. The largest errors between ω0

γ and ωγ,x occurred with respect to a transla-
tion of the kernel optimization process along the x-axis. The RMSE for the x-translated filters were
continuously higher than those translated along the other two axes, but it was never larger than 6%.
Moreover, the errors in relation to the x-axis show a slightly non-symmetric behavior, while they in-
crease with further distance from the ISO-center. Contrary to this, a translation of the mollifier into
the direction of the X-ray source, along the positive z-axis, increases the RMSE between the central
and the translated set of filters. Hereby, the errors in relation to the z-axis approach those of the
positive x-axis. However, a translation of the mollifier into the negative z-direction keeps the RMSE
between ω0

γ and ωγ,x consistently smaller than 1%.
The asymmetric behavior along x- and the z-axis is directly related to the shape of the correspond-

ing shifted reconstruction kernels in relation to the central kernel ψ0
γ . The variations of the kernels

due to the translation of the mollifier depend on the system geometry. With respect to the here used
setup, as it has been depicted in Figure 5.1, a translation of themollifier along the y-axis has a symmet-
ric effect on the resulting kernels and thus on the sets of filters with respect to positive and negative
shifts. This symmetry can also be observed in the spectral analysis provided by Figure 5.3b. For a
translation of the mollifier along the x-axis one would also expect a symmetric behavior in relation to
the central kernel, because of the setup of the CT system with respect to the x-axis. But the Fourier
spectrum in Figure 5.3a shows deviations for different mollifier translations, in particular for the pro-
jections at−30° and 30°. These variations could be due to the numerical computation of thex-shifted
kernels. Consequently, for the corresponding filters the line plot in Figure 5.8a show an asymmetry
with respect to the x-axis. Moreover, it has been shown in Section 5.3.3 that the kernels computed
from the z-translated mollifiers behave non-symmetrical. Therefore, the resulting sets of filters and
their deviations from the central filters ω0

γ result in an asymmetric line plot.
In addition to the study of the central and translated sets of filters, the quality of the filters ω0

γ will
be quantified during the following analysis by comparing sets of filtered projection images on the
basis of the RMSE. Therefore, the relation between the originallymeasured projections g and a set of
“optimally” filtered projectionswill be exploited as it has been presented and discussed inAppendix F
in conjunction with the P-SIRT algorithm. Using the LOW system setup, a set of filtered projections
will be computed using the P-SIRT algorithmwith 100 iterations as introduced byKunze et al. [172]
and also summarized in Appendix F. The resulting projections from the run of P-SIRT are denoted
by hP := h100 and will be used as a reference for the projections filtered with FDK and AO-FBP.
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For reasons of readability the projection sets resulting from the latter two algorithms will be named
accordingly by hF and hA := ω0

γ , respectively.
Having computed the filtered projection sets of all three algorithms successfully, the quality of

the filters was measured and studied by the comparison of RMSE(hP , hF ) and RMSE(hP , hA)

per projection. Figure 5.8b depicts the resulting values of the RMSEs plotted against the projection
angle. The line plots in this figure reveal that the filtered projections generated with the AO-FBP ap-
proach have a smaller RMSEwith respect to the P-SIRT filtered projection than those resulting from
the FDK method. In particular, the deviations between RMSE(hP , hF ) and RMSE(hP , hA)

become evident for projection angles smaller than 25° and larger than −25°, whereby the angles
λ ∈ [−10°, 10°] also show clearly visible differences in the RMSE. Furthermore, the mean of the
RMSE between the projections filtered with P-SIRT and FDK is 1.40%, while the average RMSE
of hP and hA is lower with 1.19%. Finally, the maximal difference between RMSE(hP , hF ) and
RMSE(hP , hA) can be observed at the limits of the angular projection range with a deviation of
0.87%.

5.4.5 Contrast

In this section the image quality of theAO-FBP algorithmdeveloped abovewill be compared in terms
of contrast and object uniformity to that achieved by the standard FDK algorithm and by SIRT. For
this purpose, the evaluation will be based on the CNR, which can be defined as

CNR =
|µ̄ROI − µ̄BG|√
σ2
ROI + σ2

BG

, (5.20)

whereby the average gray value intensities of pixels, or voxels, within a region of interest (ROI) and
within a background region adjacent to that ROI are given by µ̄ROI and µ̄BG, respectively. More-
over, the corresponding standard deviations of the gray values in these ROIs are denoted as σROI and
σBG. Commonly, the CNR is used to perform, studies on reconstruction data from noisy projec-
tion data, e.g. in [118, 202, 215, 253]. However, in the following studies the projections are simulated
without any contribution of additional noise, unlike for example in the experiments conducted in
Section 4.4.1. The reason for this is that the main aim of the CNR calculation is the quantification
of the image quality of the reconstruction algorithms in the noise-free case. Therefore, it has to be
considered that the standard deviations in the denominator of equation (5.20) provide a measure for
the non-uniformity introduced by the reconstruction procedure instead of quantifying noise. As a re-
sult, the here performedCNRevaluation can be interpreted as ameasurement of a contrast-to-artifact
ratio.

For the following experiment, an artificially generated contrast-phantom has been employed to
perform the evaluations of the CNR with respect to the three algorithms. The phantom contains 8
larger circle-shaped regions, which are positioned around the center of the phantom, and 10 smaller
dot-like regions that lie closer to the center, whereby the larger circles have a higher contrast than the
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Figure 5.9: In (a), the larger inserts of the contrast-phantom (left) are numbered from 1 to 8 counterclockwise. The

line plots in (a) visualize the CNR for each region of interest with respect to each algorithm. The simulations have been

carried out for the LOW (central plot) and the HIGH (right plot) angular projection range. In (b), the slice images com-

pare the reconstructions for FDK, SIRT and AO-FBP for both angular ranges using the contrast-phantom. Again, the

reconstructed volumes have been normalized to [0, 1] and are displayedwith the same range.

smaller ones. The leftmost image in Figure 5.9a displays the central xy-slice of the contrast-phantom,
forwhich the largerROIs have been numbered in a counterclockwise order from 1 to 8 in the order of
their gray value intensities. Similar to the simulations carried out on the SL phantom in the previous
sections, the 2D slice image shown in Figure 5.9a has been stacked along the z-axis to generate a 3D
volume dataset that is homogeneous with respect to the z-direction.

In accordancewith the setups provided inTable 5.1, projections are simulated for the LOWand the
HIGHangular scan ranges from the 3Dcontrast phantom. Thedetector binningused in the previous
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simulations was abandoned to exploit the full resolution of the detector as described in the beginning
of Section 5.4. The resolution of the volumes to be reconstructed by FDK, SIRT and AO-FBP was
set to 511 × 511 × 255 voxels, whereby the sampling distance between the voxels and thus their
edge lengths were fixed to be 0.089mm. After the reconstruction procedures, for each of the eight
high-contrast regions the CNR was computed. Therefore, a circular ROI has been chosen within
the each of the eight inserts to compute the corresponding average intensity µ̄ROI and the standard
deviation of the gray values σROI . For the calculation of µ̄BG and σBG a background area in the
shape of a hollow circle has been selected, which has been placed such that it surrounds the eightROIs
during each computation of the CNR for each reconstruction algorithm. Contrary to the eight larger
ROIs, the FDKand SIRTwere not able to reconstruct the smaller low-contrast inserts of the contrast-
phantom correctly. Consequently, these ROIs have not been considered in the numerical evaluation
duringCNRcalculations and are only employed to inspect and to compare the threemethods visually
using the resulting slice images.

The diagrams at the center and at the right of Figure 5.9a visualize the result of the CNRevaluation
for all algorithms and ROIs. The line plots reveal that the CNRs for almost all ROIs and for both
angular projection ranges are consistently higher for the AO-FBP and SIRT algorithms than for the
FDK method. Only the SIRT algorithm shows a slightly lower CNR than the FDK method for the
LOW angular range setup with respect to ROI 1, which has the lowest gray value intensity out of the
eight studied regions. Independently of the angular range and for all other regions the FDKalgorithm
performs inferior to SIRTwith respect to image contrast. However, the following similarities between
SIRT and the FDK method can be observed: (1) for the LOW system setup both algorithms achieve
higher CNR for theROIs 2 and 6, which are positioned along the y-axis, i.e. the axis of rotation, while
(2) for the HIGH angular range both techniques deliver a superior contrast in regions that are not
placed on the rotation axis. The latter observation holds true for almost all inserts in the 120° case, so
that the CNRs of the ROIs 3, 4, 7 and 8 are significantly higher than those of the ROIs 2 and 6. The
exception occurs for region 1, which lies not on the y-axis but does not consistently perform better
than the axial regions 2 and 6. In principle, the lines connecting the CNRs of all ROIs plotted in
Figure 5.9a show similar patterns for SIRT and the FDK method in relation to the studied low- and
high-contrast regions. Consequently, it can be assumed that both algorithms react similar to different
levels of contrast in the images. Nevertheless, it has to be kept in mind that SIRT generally delivers a
superior CNR, particularly for the 120° case.

Comparing the qualitymeasurements of theAO-FBPapproachpresented inFigure 5.9awith those
of the FDK algorithm and SIRT shows that the optimized filters achieve a consistently higher CNR
than the other algorithms. This observation can be made independently from the studied ROI and
from the used angular scan range. Moreover, it can be seen for the AO-FBP that the values of the
CNR lie closer to each other for different ROIs. Consequently, this behavior suggests that for the
angle-optimized approach the resulting image contrast is not that strongly depending on the location
of the regions of interest within the phantom. Additionally, the average CNR has been calculated
over the eight regions together with the corresponding minima, maxima and standard deviations.
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Table 5.2: Contrast phantomCNR-results accumulated over all ROIs

Ang. Range LOW (60◦) HIGH (120◦)

Algortihm FDK SIRT AO-FBP FDK SIRT AO-FBP

Mean 3.32 3.46 4.25 3.34 3.90 4.22
Std. Dev. 0.15 0.18 0.11 0.30 0.36 0.12

Min 3.07 3.04 4.00 2.86 3.35 4.02
Max 3.49 3.63 4.35 3.68 4.22 4.37

The resulting statistics are presented in Table 5.2 and can be used to underline and verify the observa-
tions made on the line plots above numerically. The table shows that the FDK algorithm delivers the
lowest average CNR for the LOW and the HIGH projection ranges. Slightly higher mean CNRs are
reached by SIRT, whereby AO-FBP outperforms both algorithms significantly with average values
higher than 4.2 for both system setups. In addition to this, the angle optimization approach has the
smallest standard deviation with respect to the CNR. Hereby, the standard deviations of SIRT are
even slightly higher than those resulting from the FDK algorithm. As a consequence, it can be noted
that although the SIRT algorithm has a higher standard deviation with respect to the eight ROIs for
both setups, its mean CNR is lower than that of the FDK algorithm. The last two rows of Table 5.2
also demonstrate that the here derived optimized FBP approach achieves CNRs consistently higher
than a value of 4.0. Contrary to this, the minimal CNRs of SIRT and the FDKmethod are 3.04 and
2.86, respectively, while only SIRT reaches a CNRhigher than 4.0 for some regions using theHIGH
angular range (compare Figure 5.9a). Nevertheless, on the one hand, an increase in the calculated
mean CNRs can be observed for FDK and SIRTwhen comparing theHIGHwith the LOW angular
projection range. On the other hand, the average CNR is almost the same for both system setups in
the AO-FBP case. Furthermore, for all three approaches the standard deviations of the CNR increase
with the angular range.

For the visual inspection of the image quality and the contrast achieved by the different approaches
Figure 5.9b depicts the central slices of the contrast-phantom parallel to the xy-plane. The columns
of the figure show the reconstructions of the FDK, SIRT andAO-FBP approaches, respectively, while
the rows correspond to theLOWandHIGHangular projection range. Asmentioned in the introduc-
tion of this section, the smaller low-contrast ROIs are used to visually judge the overall reconstruction
quality. With respect to the FDK algorithm these regions are hardly visible in the reconstructed im-
ages for both angular setups. Anyhow, SIRTwas able to restore parts of the smaller circles, while only
the angle-optimized reconstruction technique produced images for both angular ranges that allowed
distinguishing the low-contrast regions from the background of the phantom. In summary, it can be
stated that the contrast and thus the visibility of the smaller circles increases from the FDK method,
to SIRT and to the AO-FBP. Additionally, an image improvement can be registered from the 60° to
the 120° cases. However, in images with higher contrast the prominence of streaking and shadowing
artifacts increases. These artifacts are caused by the limited amount of angular information available
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during the reconstruction process (see Section 5.2.1 and Section 5.3.2). These effects can be noticed
particularly for theLOWreconstructionwithAO-FBP and for the images computed from theHIGH
setupusing SIRT andAO-FBP. Note that the increased contrast in these cases has been demonstrated
in Figure 5.9a and in Table 5.2.

5.4.6 Artifact Spread

It has been demonstrated in [177] that the total scan range Ar and the in-plane size of the feature
of interest mainly influence the resolution in the z-direction perpendicular to the xy-plane. Conse-
quently, the result of a limited angular projection range is that the reconstructed images are interfered
by ghosting artifacts, in particular along the z-axis. Hereby, the slices right next or close to the in-
spected structures are more severely affected by the artifacts than slices further away from the studied
feature. In the publication of [215] the ASF has been proposed for the quantification of the ghosting
artifact distribution. The ASF can be calculated by the following expression:

ASF (z) =
µ̄A(z)− µ̄BG(z)

µ̄F (z0)− µ̄BG(z0)
, (5.21)

whereby z0 defines the location of the in-focus plan of the feature of interest along the z-direction
and the parameter z represents the location of off-focused planes containing the artifacts caused by
the feature due to the limited scan angle. In equation (5.21) the average gray values of the feature and
the mean intensities of the background with respect to the in-focus plane z0 are given µ̄F (z0) and
µ̄BG(z0), respectively. For an off-focus plane at a location of z the average intensities of the ghost-
ing artifacts and the background are denoted by µ̄A(z) and µ̄BG(z), respectively. Note that by its
definition the ASF function value at z0 equals 1, i.e.ASF (z0) = 1.0, because µ̄A(z0) = µ̄F (z0).

For the calculation of the ASF simulated projections were generated from a phantom which con-
sists of a 5× 5 grid of solid spheres, which are distributed in the xy-plane. The spacing between the
spheres is equal for thex- and y-direction and amounts to 5.356mm,while each sphere is having a di-
ameter of 1.161mm. The projection simulations have been carried out for the LOW and the HIGH
angular range setup with respect to the system geometry specified in Section 5.3.1 and in Section 5.4.
Moreover, the detector binning has also been disabled to employ its full resolution. Finally, volumes
are reconstructed from simulated data using FDK, AO-FBP and SIRT. The geometric parameters
for the volumes of interest are set to the same values as for the evaluation of the image contrast in
the previous section. The central slices parallel to the xz-plane of the resulting reconstructions are
depicted in Figure 5.10a. A visual inspection of this figure reveals that the ghosting artifacts for SIRT
and AO-FBP have a more blurry appearance, although they have a similar overall shape as those pro-
duced by the FDK algorithm. Moreover, it can be seen that the spread of the artifacts for the 120°
case is less wide with respect to the z-direction and less intensive in comparison to the 60° case.

In the upper left image of Figure 5.10a three of the five ball objects have beenmarked byB1,B2 and
B3, respectively. The evaluation of the ASF has been performed for each of the three spheres in rela-
tion to the six displayed combinations between employed reconstruction techniques and angular scan
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Figure 5.10: The slice images in (a) show the central xz-plane of the ball phantom reconstructed with FDK, SIRT and

AO-FBP for the 60° and the 120° case. The ASF has been calculated for the three spheres marked withB1,B2 and

B3 in the upper left image of (a) in relation to each algorithm and both angular projection ranges. The plots in (b) show

the resulting ASFs, whereby each of the three balls is plotted in the first second and third column, respectively. The60°
cases are shown in the first row and the 120° cases are displayed in the plots of the second row.

configuration. The mean values µ̄F (z0) and µ̄A(z) were calculated accordingly to equation (5.21)
from regions within the balls and their artifacts along the z-axis, respectively. The size of these ROIs
was chosen to be 8 × 8 pixels, so that they did not exceed the boundaries of the spheres. Similar to
the CNR calculation, regions in the shape of a hollow circle lying outside of the object of interest
at z0 and its ghosting artifacts were used to compute the corresponding average background inten-
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sities µ̄BG(z0) and µ̄BG(z). The plots in Figure 5.10b display the resulting ASFs for both angular
projection ranges in relation to each of the studied ballsB1,B2 andB3.

The comparison of the plots of Figure 5.10b in relation to the three employed reconstruction tech-
niques demonstrates that SIRT andAO-FBP result in anASF, which is for smaller distances from the
in-focus plane lower than that produced by the FDK algorithm. This behavior can be observed inde-
pendently from the inspected sphere and is not changedby the angular projection range. Inparticular,
for the LOW scan protocol the ASF of the FDKmethod is higher than that of SIRT and AO-FBP up
to a value of z ≈ 0.75mm. Furthermore, theASFof the FDK reconstruction lies continuously above
that of SIRT, even for values of z > 0.75mm. A contrary observation can bemade for the 120° case:
for values of z < 0.5mm the ASFs of SIRT and AO-FBP lie below that of the FDK algorithm, while
for values larger than 0.5mm FDK outperforms the other two reconstruction approaches. Never-
theless, for increasing distances z from the in-focus plane the ASF of the FDK reconstruction lies
above that of AO-FBP and SIRT again (see bottom row of Figure 5.10b). Additionally, the largest
deviations between the ASF curves can be noticed for the planes close to the in-focus object. In these
intervals the AO-FBP algorithm performs almost equal to SIRT. Consequently, the distribution of
the ghosting artifacts along the z-axis is similar for both algorithms and significantly narrower than
that of the FDK method. In particular for the 60° case, the ASFs of all three algorithms behave quite
similar for planes further away from the in-focus object. However, for theHIGHangular range setup
SIRT performs worse than the FDK algorithm in the interval 0.5mm < z < 1.25mm. In addition
to this, the ASF of the AO-FBP lies above that of the FDK algorithm over an even wider range of
0.5mm < z < 2.5mm. Moreover, it can be noticed for both angular range protocols that the
ASFs of the three ballsB1,B2 andB3 are not showing any significant deviations with respect to the
three algorithms. Note that evaluations of the ASF with respect to other ball objects inside the given
phantom showed similar results to the ones pretested above.

Besides the observations above, the ASF curves in Figure 5.10b show an approximately equal full
width at half maximum (FWHM) with respect to the three algorithms, whereby differences occur
for the two angular scan ranges. For the LOW acquisition protocol a FWHM of about 1.1mm can
be estimated for all the algorithms, whereas the FWHM for the HIGH protocol is approximately at
0.6mm. Consequently, an increase of the angular projection range by a factor of 2 has almost halved
the spread of the ghosting artifacts along the z-axis. Because of the facts mentioned above, it can be
concluded that the here developed projection-wise filter optimization strategy has a superior artifact
reduction for planes that lie close to the in-focus slice.

5.4.7 Real Data

For the demonstration and the analysis of the results from the filter optimization algorithm on real
projection data, a board of a graphics card including the chipset has been scannedwith aµCT system.
The scan was carried out using the FULL acquisition protocol in accordance with Table 5.1, whereby
the full defector resolution was employed (see beginning of Section 5.4). Afterwards, the limited-
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Figure 5.11: The images in (a) depict the centralxy-slices of the volumes reconstructedwith the FULL FDK, LOWFDK,

LOW SIRT and LOW AO-FBP protocols. A comparison of the four reconstructions with respect to the white lines in

the four slice images is given in the line plot of (a). Regions containing small point-like structures are depicted in the

four images of (b) in relation to each protocol. The profile curves in (b) correspond to the white lines in the images and

provide an indicator for the resolution that can be achieved by the four protocols. Note that all volumes are normalized

and displayed in the range [0, 1]

angle projection data for the 60° and the 120° case was generated selecting the corresponding subsets
of projection from the FULL dataset. Then, the reconstructions with FDK, SIRT andAO-FBPwere
computed from the LOW and HIGH projection sets. For these three reconstructions the full 360°
scan reconstructed with the FDK algorithm has been used as a reference.

The results of this comparison with respect to the 60° projection data are shown in Figure 5.11a
by the visualization of the central reconstructed xy-slices that lie orthogonal to the z-axis. The line
profiles in the lower part of the figure correspond to the white lines drawn in the slice images. A look
onto the profile curves reveals that the FDK reconstructions from the FULL and from the LOW ac-
quisition protocol contain severe cupping artifacts at the boundaries of the solder joints inside the
BGA. These artifacts are stronger for the limited-angle scan, whereas they do not occur in the recon-
structions computed with SIRT andwith the AO-FBP approach. Nevertheless, the images produced
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Figure 5.12: The images in the upper part show the central slices in thexz-plane of the reconstructions with the LOW

(top row) and the HIGH (second row) protocols for the FDK, SIRT and AO-FBP. The reference image (upper left) has

been reconstructed with the FULL FDK setup. For the 60° case (upper plot) and the 120° case (lower plot) the profile
curves for each algorithmare drawn along the correspondingwhite lines in the slice images. All volumes are normalized

to [0, 1] and are displayedwith this range.

by the two FDK protocols (i.e. Reference and LOW FDK) have a slightly sharper appearance than
the central slice images reconstructed by SIRT and AO-FBP. This behavior can be verified when
looking at the profile curves, where the AO-FBP has an even smoother shape than SIRTwith respect
to each ball. Additionally, since the object borders in the FDK reconstructions are amplified by the
cupping effect, the impression that the FDK algorithm produces sharper results than the other two
algorithms is even strengthened. However, the real BGA contains solid and homogeneous metal ob-
jects, for which a profile plot would show peaks with flat tops. In Figure 5.11a such a behavior can
only be observed for some peaks in the reference reconstruction (at y ≈ −5.0mm) and for SIRT,
where balls closer to the center of the BGA show more flattened peaks.

Furthermore, Figure 5.11b provides a comparison of the three algorithms with respect to the reso-
lution that they achieve for small contrast features lying in the xy-plane. For the 60° case the profile
plots show that the reconstructions of the FDK algorithm result in the highest peaks with the steepest
edges at all three feature locations. On the contrary, the profiles of SIRT and AO-FBP are even lower
than those of the reference image, so that they appear more flat, but are quite similar in their shape.
In contrast to this, it can be noticed that the FDK algorithm creates a profile plot that overshoots that
of the 360° reference image for two of the studied features. Additionally, SIRT andAO-FBP produce
lines plots that have sharper edges than that of the reference reconstruction.

Additionally to the evaluation of the reconstruction quality with respect to the xy-plane, an anal-
ysis of the projection-wise optimized FBPmethod has been conducted to study its image quality and

135



artifact behavior along the z-axis. This study has also been performed considering all three algorithms
for both angular range setups, whereby the 360° scan served as reference again. The resulting slice im-
ages and profile curves are displayed in Figure 5.12, whereby additional results are depicted for SIRT
after 500 iterations. From these images, it can be observed that the overall image quality of SIRT has
been improved significantly from iteration 100 to iteration 500. This fact suggests that the SIRT ap-
proach has not been fully converged for the here studied GPU dataset after 100 iterations. Anyway,
the slice images and profiles of the 100-iteration SIRT are shownhere for the sake of comparisonwith
the AO-FBP, since the filter optimization uses the same number of iterations to estimate the recon-
struction kernel (see Section 5.4.2). For this reason, a comparison between the 100-iteration SIRT
and AO-FBP seems to be reasonable and fairer.

For the LOW acquisition protocol, the FDK algorithm produces cupping artifacts with respect to
the large structures (i.e. the solder joints of the BGA), which become visible in the slice and in the
profile view. These artifacts have already been registered for the simulated datasets in the previous
section. Additionally and similar to the simulation experiments, the reconstruction of the FDK ap-
pears sharper, while the slice views of SIRT and AO-FBP look more blurry. This behavior can also
be noticed when comparing the profile plot of the three algorithms. These curves also reveal that af-
ter 500 iterations the SIRT algorithm approaches the reference lines at the larger masses more closely
than the other line plots. However, the 100-iteration SIRT and the AO-FBP resemble the hull of
the graphics chip more accurately than the other methods when comparing their reconstructed pro-
files against the reference curve in the interval −6.0mm < z < −5.0mm. In contrast to this, the
AO-FBP and the SIRT algorithm after 100 iterations are not able to restore to wire structure in the
area−5mm < z−4.5mm as precisely as the FDK and the 500-iteration SIRT.

For theHIGHangular rangeprotocol, similar observation canbemade. Again, the reconstructions
of the FDK algorithms are sharper than those of SIRT andAO-FBP. Nevertheless, the SIRTmethod
was capable to reconstruct small structures after 500 iterations. Additionally, the overall appearance
of the reconstructions after 500 iterations became sharper for the 120° case and was similar to that of
the FDK algorithm. In summary, it can be said that the projection-wise filter optimization strategy
derived within this chapter has a behavior that is similar to that of SIRT. Consequently, the AO-FBP
delivers superior results with respect to low intensity background areas, as it has been shown for the
hull of the chip. Contrary to this, the FDKmethod is able to recover finer structures, such as thewires,
more accurately. Additionally, it has to be kept in mind that SIRT is capable to produce sharper
reconstruction results with smaller features becoming detectable, though the number of iterations
has to be increased considerably. As a consequence, SIRT has a significantly longer runtime, but can
approach the reference reconstruction more precisely than any other algorithm. For 120° setup this
behavior has been observed after 500 iterations. A contrary observation has been made for AO-FBP
in the preliminary studies (compare Section 5.4.2): a higher number of SIRT-iterations during the
calculation of the central reconstruction kernel has not led to a significant quality improvement in
the images reconstructed with AO-FBP.
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One important fact has to be considered when looking at the above analysis, in particular with
respect to Figure 5.11a: the FDK reconstructed image for the 60° case has an appearance superior to
the reference image computed from the360° projectiondata, although the former reconstructionuses
less information. In principle, an explanation for this effect can be found by taking a look the yz-slice
images in Figure 5.12, which correspond to the views of thexy-plane inFigure 5.11a. On the onehand,
the FULL reference FDK reconstruction contains ball objects that are almost perfectly round with
respect to the yz-plane. On the other hand, for the 60° protocol the FDKmethod produces ghosting
artifacts, as discussed in Section 5.4.6, with respect to the z-axis. The profile plots of Figure 5.12
can be employed to verify and to quantify this behavior. From these plots, it can be noticed that
the profiles of the solder beads for the limited-angle configuration are wider than those of the non-
limited-angle case. Moreover, it becomes evident from slice images drawn parallel to the yz-axis that
in the reconstructed volume the BGA is not exactly aligned with the horizontal xy-plane, because
the solder spheres in Figure 5.12 are slightly angled and thus not parallel to the y-axis. Consequently,
the minor misalignment of the BGA becomes also visible in the xy-slices displayed in Figure 5.11a,
but is more difficult to interpret. Because the object of interest is slightly rotated around the x-axis,
the solder beads are intersected by the central xy-slices of Figure 5.11a at different locations, such that
balls located along the positive y-axis are sliced at their lower part and balls along the negative y-axis
are cut by the slice at their upper part. Furthermore, with Figure 5.11a it has been demonstrated
above that the limited-angle FDK reconstruction results in an artifact spread along the z-axis. As a
result of the wider artifact distribution in the 60° case, the solder balls are intersected by the central
xy-slice in conjunction with their ghosting artifacts, which let the beads appear more intensively in
the slice images. This is the main reason why the solder balls seem to be reconstructed more precisely
in images computed from the LOWacquisition protocol. As a consequence, the whole 60° FDK slice
image Figure 5.11a looks superior to the reference reconstruction.

Note that the observations from the previous paragraph can also be verified by the profile plots
of Figure 5.11a drawn along the y-axis, where the rotation of the BGA is reflected by the decreasing
peak height for further distances from the ISO-center (y = 0). In summary, it can be stated that the
appearance of the reference reconstruction seems tobe inferior to the one of theLOWFDKalgorithm
for basically two reasons: (1) the solder beads of theGPUdataset are slightlymisalignedwith they-axis
and (2) the 60° limited-angle reconstruction contains ghosting artifacts that spread along the z-axis.

5.4.8 Runtime Performance

The runtime of the FDK, AO-FBP and of SIRT have been measured during the experiments con-
ducted with the simulations and real projection data of the graphics board. The measurements were
carried out on aworkstation equippedwith an Intel Core i7 3820 3.60GHzprocessor and aNVIDIA
GeForce GTX 680. All filter computations have been run inside MATLAB 2013b and the low level
optimizations, such as those for the forward and backprojection operators, have been realized using
NVIDIA’s CUDA 4.2 (see Chapter 2 for further details).
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For the GPU dataset a SIRT reconstruction with 100 iterations took on this machine an average
time of 14.59 secondswith respect to the LOWangular range setup and 29.19-seconds for theHIGH
image acquisition protocol. For the FDK and AO-FBP algorithm the runtimes were, as expected,
significantly lower. A single run of the FDK method using MATLAB’s fft and ifft functions for the
1D line-wise filtering and the CUDA-based backprojection took in themean 0.55 seconds for the 60°
case and averagely 1.11 seconds for the 120° case. Moreover, the runtime performance of theAO-FBP
algorithm was even superior to that of the FDK approach. The execution of the AO-FBP on the 60
projections took only 0.11 seconds on average, while the reconstruction from 120 projections was
carried out within 0.21 seconds. Since FDK and AO-FBP employ the same backprojection operator
the main reason for the higher performance of AO-FBP has to lie within the filtering procedure.

For this reason, it has to be considered that the FDK filter uses the 1D fast Fourier transform (FFT)
called in a loop for each line of each projection, whereas the AO-FBP employs the 2D FFT for Fourier
domain filtering each projection. Although both FFT operations are optimized in MATLAB inter-
nally by the use of the Intel Performance Primitives (IPP), the loop over the projection lines in the
FDK algorithm could be the cause for the performance drop, since MATLAB’s strengths are matrix
operations and not loop optimizations. Moreover, it has to be noticed that the FDK realization used
for the experiments is filtering each projection row sequential, such that a further increase of the over-
all computational performance can be expected by exploiting the possible concurrency of these oper-
ations. With the parallelization of the FDK onmulti-core hardware, it can be assumed that runtimes
in the same order of magnitude as those of the AO-FBP method can be achieved.

Additionally, the calculationof the central reconstruction kernel using100 iterations took the same
amount of time as the execution of SIRT on the projection data. However, this kernel and thus the
resulting filters can be reused for different datasets, whereas a full run of SIRT has to be performed
on each projection set individually. Further speed improvements for the kernel computation could
be reached by the employment of optimization methods different from SIRT. Nevertheless, a study
of such approaches in conjunction with the here introduced AO-FBP algorithm is beyond the scope
of this thesis and is planned for future work (see also Section 6.2).

5.5 Discussion

The analysis of the reconstruction results presented in Section 5.4 demonstrated the novel projection-
wise filter optimization strategy based on the AI has the capability to improve the overall image qual-
ity in the area of limited-angle CBCT. Moreover, the selection of the algorithm-intrinsic parameters
has been shown experimentally using the RMSE. By this means, the iteration count of SIRT during
the kernel computations has been fixed to 100, since further iterations did not improve the image
quality significantly (see Section 5.4.2). Additionally, the window size parameter τ , as introduced in
Section 5.3.4, has been optimized using a line search in conjunction with a polynomial fitting proce-
dure (see Section 5.4.3). Nevertheless, during these and further evaluations the AO-FBP algorithm
showed a significantly smaller RMSE than the FDKmethod (compare Section 5.4.1 et seq.), whereby
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the determination of the number of iterations to 100 and the selection of the optimal window size of
reduced the RMSE even further.

The superior reconstruction performance of theAO-FBP approach for low-intensity regions is one
of the main reasons for its lower RMSE. The comparison of FDK and AO-FBP conducted on slice
andprofile plots of the SLphantomverified this behavior (see Figure 5.6b). In particular at interior re-
gions of the SL phantom, the AO-FBP reconstructions showed considerably smaller differences with
respect to the reference image than the FDK method. The same behavior has also been observed for
the reconstruction from the real projection sets of the GPU, where the angle-optimized filters were
able to restore regions containing low gray value intensities (e.g. the hull of the chip) better than the
FDK algorithm. To gain a deeper insight on the behavior of the constructed filters, Section 5.4.4 per-
formed a comparison between the filters used by the FDK (i.e. the Ram-Lak filter) and the AO-FBP
filters. The results of this comparison have demonstrated that the filters developed in Section 5.3
approximate the Moore-Penrose-pseudo-inverse of AA∗ (see Appendix F for an introduction) bet-
ter than the Ram-Lak filter. Consequently, these observations suggest that the projection-wise set of
angle-dependent filters lies closer to the minimum of the L2-norm of equation (F.3) than the FDK-
filter. This fact is also the reason why SIRT and AO-FBP share similar properties with respect to the
quality of the reconstructed volumes.

During the further experiments studying the CNR (see Section 5.4.5), the reconstructions com-
puted with AO-FBP showed a significantly improved performance in relation to image contrast and
object uniformity in relation toFDKandSIRT. Hereby, theCNRofAO-FBPhas shown tobe consis-
tently higher than those of the other two reconstruction techniques, whereby this behavior has been
occurred independently from the employed acquisition protocol. The CNR of AO-FBP was never
smaller than a value of 4.0, whichwas reached at ROI 1 for both angular projection ranges. This ROI
has the lowest deviation from the background area inside the contrast phantom. In general, AO-FBP
reached a higher CNR for ROIs 4 and 8 that lay further away from the rotation axis and have larger
gray values than ROI 1 (see Figure 5.9a). On the contrary, for the 60° limited-angle reconstruction it
has been noticed that SIRT and the FDK method achieved the highest CNRs for ROIs 2 and 6 that
lie on the rotation axis. However, for theHIGHacquisition protocol they achieve superior CNRs for
regions 3, 4, 7 and 8 that are not lying on the central y-axis. In addition to this, the visual inspection
of the smaller ROIs with lower contrast, which are positioned closer to the center of the phantom,
demonstrated that the AO-FBP algorithm reconstructed these structures more accurately than FDK
and SIRT. Moreover, for the 120° case the slice images of SIRT and AO-FBP have more streak-like
ghosting artifacts, which are caused by the limited amount of projection information due to the angu-
lar range, than the FDK algorithm. In summary, it registered the optimized reconstruction method
proposed in Section 5.3 shows better contrast characteristics than the two other approaches. Nev-
ertheless, the downside of the improvement of the image contrast, which is similar to SIRT, is that
streaking artifacts are not canceled out as strong as with the FDK method and therefore lower the
overall appearance of the reconstructed images (compare Figure 5.9b).
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Figure 5.13: A comparison of the central slices in the xz-plane of reconstructions computed with 1D AO-FBP (upper)

and with 2DAO-FBP (lower) is given in (b). The 1D filters have been constructed from the transaxial component of the

2D filters, whereby the angular projection range was fixed to 60°. The ASF with respect to the central sphere of the
phantom (B3) is depicted in the plot on the right of (a) for the 1D and 2DAO-FBP. The plot in (b) compares the ASFs of

FDK and AO-FBPwith respect toB3 for three different angular ranges: 60°, 120° and 180°.

In Section 5.4.6 the observations made for the CNR have been complemented by a quantification
of the streaking artifacts along the z-axis by the use of the ASF. Moreover, the ASF of the AO-FBP at
slices nearer to the in-focus plane (z ⪅ 0.5mm) was for both acquisition protocols lower than that
of the FDK, while its progression in this area was similar to that of SIRT. In the 60° case, the behavior
of the three reconstruction approaches becamemore andmore similar with increasing distances from
the in-focus plane. However, in the 120° case, the FDK reconstruction showed aminor improvement
of the ASF for z > 0.5mm. In Section 5.4.7 the reconstruction quality in relation to the z-direction
has also been evaluated visually on the real projection sets. Hereby, SIRT and the AO-FBP approach
had again a quite a similar behavior for theLOWsystem setup,where their profile plot along the z-axis
were more flat at the peaks and represented the solder beads more accurately than those of the FDK
method. Actually, the FDK algorithm produced cupping artifacts for the 60° system setup, whereas
the other methods did not. Contrary to this, a better resemblance of the reference profile curve was
achieved by the FDKwhen using 120 projections from the wider angular range. All the observations
made for the artifact spread along the z-direction suggest that with a wider angular range SIRT and
AO-FBPwill become outperformed by the FDK algorithmwith respect to theASF. Nevertheless, for
a decreasing angular projection range the here developed filter optimization approach will together
with SIRT result in a superior reconstruction quality with a lower amount of ghosting artifacts. Since
real projection data for a wider angular range is available because of the conducted FULL scan, Fig-
ure 5.13b visualizes the just proposed conjecture. It can be observed that for a reconstruction from
180° the FDK algorithm generates an ASF that has a significantly steeper edge as that achieved by
AO-FBP.

Comparing other currently existing FBP approaches that exploit the use of projection-dependent
filters for the optimization of limit-angle CBCT to the method developed within this chapter will
point out the similarities and the differences between these techniques. As mentioned in the intro-
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duction of this chapter and in Section 5.2, Kunze et al. [172] have developed a method that estimates
the impulse response of the CT system from the scan of a thin wire phantom. They have shown that
the resulting filters are dependent on the projection angle. A quite similar set of filters has been de-
rived by Nielsen et al. [183], whereby their method did not require the scan of a point or wire like
object, but calculated the filters by the analysis of the pseudo-inverse of a specific tomosynthesis sys-
tem. Both approaches have in common that the resulting projection-wise filters are 1D and can be
applied to each row of the detector equally within a FBP-type scheme. Contrary to this, the AO-FBP
method computes a set of 2D filters from the reconstruction kernels. Other than the 1D filters in
[172] and [183], the angle-dependent filters employed by the AO-FBP incorporate additional detec-
tor column information, which lies parallel to rotation axis, into the filtering operation. Therefore,
the AO-FBP filters can be interpreted as the 2D impulse response of the limited-angle CT scanner. A
comparison of slice images and ASFs that have been generated from volumes reconstructed with the
standard 2DAO-FBP approach andwith amodified version that employs a 1D set of filters generated
from the transaxial component of the 2D filters is displayed in Figure 5.13a. For both methods the
slice images have an almost equal appearance, whereby the 2D set of filters results in an ASF that lies
slightly below that of the 1D filters. Consequently, it can be assumed that the axial filtering compo-
nent that is present in 2DAO-FBPmethod improves the image quality with respect to artifact spread
along the z-axis. Although this improvement is not very large, it is obtained automatically when con-
structing the 2D filters as described in Section 5.3. However, this short study makes clear that the
here presented method can be employed to construct optimized sets of 1D and 2D filters for limited-
angle CT. Further detailed studies will are needed to find out which role the axial and the transaxial
components of the 2D filter play and in which situations the axial part of the filters are necessary and
when they can be neglected.

Additionally, the optimization method of Kunze et al., called OFBP, requires an additional scan
of a wire phantom to determine the 1D impulse response during the filter estimation process. In con-
trast to this, the AO-FBP method does not need a separate scan of a dedicated object and uses only
the provided information about the system setup to calculate the kernel and the filters. On the one
hand, this fact can constitute an advantage in situation where no wire- or point-like object is available
at the time of scanning or where a reference scan of such a phantom has not been carried out, e.g.
for projection data that has been scanned some time ago, such that an estimation of the impulse re-
sponse using the method of [172] is not possible. On the other hand, the use of a real measurement
of the wire phantom during the filter optimization process as suggested by Kunze et al. incorporates
the intrinsic properties of the CT system automatically into the resulting filters, whereas the AO-FBP
only allows the compensation of the aspects of the CT scanner simulated during the kernel calcula-
tion. Therefore, one can expect that the here introduced approach greatly benefits from improved
forward and backprojection operators that model the CT system more accurately. Moreover, when
the real measured projection data of the wire in the case of Kunze et al. is replaced by the simulated
projections of the mollifier, it can be seen that the basic theory behind the AO-FBP and the OFBP
are closely related. This fact also becomes evident when comparing the SIRT-update equations from
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Section 5.3.3 and from Appendix F with the ones described in [172]. For this reason, it should be
possible to apply the OFBP together with its filter calculation technique to simulated data, without
the need of a wire scan. Nevertheless, such studies have not been conducted so far and are beyond the
scope of this thesis, but can providemore details on the connections between both approaches. Addi-
tionally, the studies performed on clinical data using the OFBP algorithm in [172] and the technique
ofNielsen et al. [183] achieved similar results to the ones presented in Section 5.4. In accordance with
these findings, it has been demonstrated that a projection-wise optimized angle-dependent FBP re-
sembles the results of SIRT quite closely and that these approaches can generate more homogeneous
images than the standard FDK algorithm.

For the evaluations in the previous section, one has to consider that the SL phantom and the
contrast-phantom have been generated by stacking equal 2D slice images parallel to the xy-plane
along the z-axis that is orthogonal to the rotation axis, i.e. the y-axis (compare Section 5.3.1). This
fact can be irritating, especially when looking at the slices presented in Figure 5.6b and in Figure 5.9b,
because the quality of these reconstructions is by far superior to that shown in other limited-angle
CT publications (see [242, 254–257]). Nevertheless, in this literature the phantoms are aligned or-
thogonally with the rotation axis of the system, such that in the case of the here used system setup the
2D slice images would have been stacked along the y-axis to construct the final 3D phantoms. As a
result, the reason for the deviations between the images shown in the experiments and those recon-
structions known from tomosynthesis or other clinical limited-angle CT applications are the use of
different system geometries. The reason for aligning the slices of the phantoms with the xy-plane is
that it is typically the plane of interest in common industrial applications. For example, the recon-
structions of the GPU dataset in Section 5.4.7 demonstrate that the studied BGA is almost parallel
with the xy-plane. Consequently, both artificially generated phantoms have been aligned similar to
the real data for the sake of comparison. Moreover, a look at reconstructed images in the area of in-
dustrial laminography and NDT [175–177] reveals that the here visualized results are reasonable and
comparable to those of the industrial studies.
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It had long since come to my attention that people of accom-
plishment rarely sat back and let things happen to them.
They went out and happened to things.

Leonardo da Vinci

6
Summary and Outlook

The last chapter of this thesis will summarize the work and the research contributions which have
been discussed in the previous chapters. After drawing final conclusions, areas of future research and
potential implementation aspects will be pointed out.

6.1 Conclusion

During this work, the presentations and discussions in Chapters 3 to 5 have demonstrated that the
overall image quality of reconstruction from cone-beam computed tomography (CT) data depends
onmany factors. Since the implementationof novel algorithms in the area of tomography canbecome
quite complicated due to the complex mathematical background of the subject, a set of standardized
tools facilitates an easy introduction to this research field and supports the derivation of novel algo-
rithms. Such a toolbox is given by the software framework suggested in Chapter 2 and can be used
to assist future students and researchers in their development process. The software requirements
for a computed tomography library have been discussed and a framework for applications in cone-
beam computed tomography (CBCT) has been derived and explained. The presented framework is
self-contained and has been implemented using a combination of the MATLAB scripting language
and native low-level code (C/C++ and Compute Unified Device Architecture (CUDA)). This de-
sign allows a specific application to exploit the maximal available computational performance of the
underlying hardware while it provides a good accessibility and extendability through the use of the
scripting language.
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Ontopof this framework, the realizationofKatsevich’s algorithmonmulti-core hardware has been
described indetail and the resulting implementationhas been evaluated and compared to the standard
Feldkamp, Davis and Kress (FDK) algorithm. It has been shown on simulated data that the helical
reconstruction method of Katsevich has the potential to improve the resentment results in the area
of non-destructive testing (NDT). However, the artifacts due to a misaligned scanning geometry are
more severe in the helical reconstructions than in the circular ones. In summary, the discussion in the
end ofChapter 3 has suggested that even if Katsevich’s algorithm shows best results on simulated data,
the conducted study demonstrated that in the case of real data the influence and the uncertainty of
geometric parameters make a precise calibration of the CT scanner necessary to increase the accuracy
of helical acquisitions and reconstructions. For this reason, it is necessary to apply a precise, stable
and robust calibration method to obtain high quality reconstructions.

As a consequence, in Chapter 4 a novel geometrical calibration method for CBCT has been in-
troduced. The proposed self-calibration algorithm has been designed to estimate the misalignment
parameters of a CT scanner from the cone-beam projection data without the need of any additional
measurements or reference scans. It combines a multi-scale 1D grid search optimization scheme with
themaximization of themutual information (MI) with respect to the reprojected volume to estimate
a set of four unknown detector parameters. The internal optimization scheme is similar to a 2D-
3D registration approach, whereby a novel volume update scheme in combination with a stochastic
reprojection strategy has been integrated into the algorithm to achieve a reasonable runtime perfor-
mance. After a run of the calibration, the estimated parameters can be used to correct the misalign-
ment of the CT scanner.

In addition to this, it has been shown that this approach works successfully for circular and helical
trajectories, that it is stable and robust in the presence of projection noise and that its time perfor-
mance is comparable to current registration-based calibration techniques. In the experiments it has
been demonstrated that the calibration is able to handle various types of objects and that sub-voxel
precision can be reached. Additionally, the suggested calibration framework can be extended, so that
additional misalignment parameters and scanning paths can be included and the optimization can be
run per projection. It has been shown that themethod works well with a different optimization algo-
rithm even though a slight increase of the runtime can be observed. In summary, the discussed results
have shown that the calibrationmethods introduced in this thesis reaches an acceptable accuracy and
can compete with current state-of-the-art calibration approaches.

For the construction of filters in the area of limited-angle tomography a general scheme which
uses the Approximate Inverse (AI) to compute optimized angle-dependent projection filters has been
derived in Chapter 5. The approach constitutes the first application using the theory of the AI in the
context of 3D limited-angle CBCT. The method of AI is used to derive a single angle-dependent 3D
reconstruction kernel optimized by simultaneous iterative reconstruction technique (SIRT). This
kernel allows then the design of a projection-wise set of 2D filters, which can be employed in a filtered
backprojection (FBP) framework. The final algorithmdoes not require the existence of a theoretically
exact inversion formula, nor does it need a separate reference scan of a point- or line-like structure.
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Quite the contrary, the iterative estimation of the optimized filters can be carried out solely from
the knowledge about the geometric properties of the CT scanner. Moreover, the realization of the
proposed approach is straightforward, allows an easy integration into existing FBP algorithms and
can be extend to other geometric setups and scanning trajectories by following the same scheme that
has been used for the limited-angle case. Additionally, the general approach of using theAI allows the
design of application specific filters, which combine image reconstruction and analysis into a single
step. As it has been shown for a circular system in [187] such more advanced filters can be developed
using the here suggested design principle and applying it not only to limited-angle CBCT. For this
purpose, the resulting overall filter optimization approach can roughly be outlined by the following
three steps: (1) design a mollifier that performs the required image processing steps on the volume
of interest, i.e. a gradient operation, (2) compute reconstruction kernels from the given mollifier by
solving the auxiliary problem given in equation (5.4) by the application of iterative reconstruction
techniques, e.g. SIRT and (3) exploit invariances of the kernels or model them approximately to gain
a set of filters, which can be used in a FBP-style algorithm.

Additionally to the theory above, sets of filters have been precomputed during the experiments for
two angular range setups and where then reused on multiple datasets. The novel angle-optimized
FBP (AO-FBP) approach has been compared to the standard FDK algorithm and to SIRT in Sec-
tion 5.4. The evaluation of the three algorithms with respect to image quality has been conducted on
simulated andon real projectiondata. Hereby, the overall performance ofAO-FBP showed tobe com-
parable to that of SIRT. Moreover, it the technique outperformed the standard FDK method with
respect to image quality measured by the root-mean-square error (RMSE) and image contrast quan-
tified by the contrast-to-noise ratio (CNR). Similar to SIRT, the AO-FBP significantly reduced the
artifact spread for planes lying near to the in-focus features, while the characteristics of the AO-FBP
and the FDK algorithm in relation to image resolution have been noticed to be in the same order
of magnitude. Moreover, for each system configuration the experiments have clearly demonstrated
that the numerical optimization approach can be employed to precompute a set of 2D filters that
can be reused for different datasets, as it has been the case for the simulated datasets. Finally, it has
been observed that the current implementation of AO-FBP has even shorter runtimes than the FDK
algorithm. In summary, it can be stated that the here introduced filter optimization produces re-
sults comparable to those of SIRT with respect the reduction of reconstruction artifacts, whereby its
runtime performance is similar to that of the FDK algorithm.

6.2 Future Work

In the context of this work only prototypes of the introduced framework and developed algorithms
have been built. It has been shown on simulated and real data that these methods can be used effi-
ciently to support and to improve the results gained from CBCT reconstructions.

Future plans consider extending the calibration approach by a projection-wise optimization, make
further evaluations with medical datasets and pay special attention to the area of measurement un-
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certainty in industrial CT. These studies will also allow determining the limiting factors of the cali-
bration method even more precisely. Moreover, the implementation of the online calibration will be
optimized for speed using the techniques mentioned in the previous chapters.

With respect to the filter optimization algorithm it has been planned an extension of the approach
to different geometric setups, so that 2D sets of filters can be computed for arbitrary source trajecto-
ries. Furthermore, an integration of different optimization methods (e.g. conjugate gradient meth-
ods) and appropriate regularization techniques (e.g. total variation approaches) into the iteratively
driven reconstruction kernel approximation process can lead to future improvements of the here pro-
posed principal method. Additionally, further evaluations of the method will be conducted with
medical and industrial datasets. In particular, the application of the filter calculation scheme to to-
mosynthesis and to other clinical applications can be a promising direction for future research. In
addition to this, a full verification that the AO-FBP method can be applied for other geometric se-
tups in the area of tomosynthesis and industrial CT with the same success needs to be performed in
future studies.

In Section 5.2.1 it has been pointed out that several modifications of the standard FDK method
have been proposed to improve the image quality of limited-angle CT reconstruction [178, 194–
197, 199, 201]. However, the implementation of these approaches was beyond this dissertation and
they are not implemented in the current state of the reconstruction framework. A future implemen-
tation of at least some of thesemethods would allow comparisons of these improved techniques with
the AO-FBP algorithm and could lead to further enhancements of the filter optimization process.
Moreover, a detailed numerical evaluation of the here introducedmethodwith the ones presented by
[172] and [183] is still outstanding due to the large implementation effort.

Besides all this, there have been plans tomake parts of the software frameworkwhich has been used
throughout the thesis as a basis for the 3D CBCT applications publicly available, such that it can be
used and extended by other researchers in the field of CT.
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A
Transformation Matrices

For the definition of the geometric setup of a CBCT system transformation matrices are employed.
For this purpose, the basic translation, scaling and rotationmatrices in homogeneous coordinates are
defined below. A translation along the x-axis by tx, along the y-axis by ty and along the z-axis by tz
can be expressed in matrix notation as

T (tx, ty, tz) =


1 0 0 tx

0 1 0 ty

0 0 1 tz

0 0 0 1

 .

Ascaling along thex-direction, y-direction and z-directionby the factorssx, sy andsz , respectively,
can be defined as

S(sx, sy, sz) =


sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

 .

In addition to this, a rotation around the x-axis, y-axis and z-axis by the given Euler angles α, β
and γ can be decomposed as
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R(α, β, γ) = Rx(α) ·Ry(α) ·Rx(α)

=


1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1

 ·


cos β 0 sin β 0

0 1 0 0

− sin β 0 cos β 0

0 0 0 1

 ·

cos γ − sin γ 0 0

sin γ cos γ 0 0

0 0 1 0

0 0 0 1

 .
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B
Message Passing from C/C++ to MATLAB

When using C/C++ code, compiling it to a MEX binary and using it from within the MATLAB en-
vironment the console output generated by functions like printf and the use of the standard console
output std::out will not appear in theMATLAB command window. In general without the instanti-
ation of a separate graphical user interface (GUI) context, it can be quite complicated to get some kind
of visual feedback from a MEX function. For this reason, a helping class has been implemented in
C++ to support the output of command linemessage issued from inside theMEX code to theMAT-
LAB prompt. The code of theMatlabStream class which is a specialization of the stream buffer class
std::streambuf is presented in Listing B.1. The constructor of the class replaces the standard console
output stream buffer with the current instance of theMatlabStream class. Additionally, a reference
to the original stream buffer is stored in a temporary variable so that it can be restored in the class
destructor. Once an instance of theMatlabStream class has been created all C/C++methods writing
to std::cout will not use the original stream buffer, but the one provided by the implementation of the
here presented class. The virtual methods xsputn and overflow will redirect all messages to the MAT-
LABcommandpromptbyusing themexPrintf function andby issuing thedrawnow command. The
drawnowmethod causesMATLAB to flush the event queue and to update its user interface including
the command window. Since the original stream buffer stays replaced by the MatlabStream object
for the duration of its existence, it makes sense to create a MatlabStream instance at the beginning
of each MEX function that needs to issue messages to the MATLAB command line. The technique
described above can then be used to send any type message from C/C++ layer to MATLAB and has
been used intensively throughout the tomography framework introduced in Chapter 2.
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Listing B.1: Source code of theMatlabStream class

class MatlabStream : public std:: streambuf {
public:

MatlabStream () : std:: streambuf (), mStdStream (NULL) {
mStdStream = std::cout.rdbuf(this);

}

~MatlabStream () {
if (NULL != mStdStream) std::cout.rdbuf(mStdStream);

}

protected:
virtual std:: streamsize xsputn(const char *s, std:: streamsize n) {

mexPrintf("%.*s",n,s);
mexEvalString("drawnow;");
return n;

}

virtual int overflow(int c = EOF) {
if (c != EOF) {

mexPrintf("%.1s",&c);
mexEvalString("drawnow;");

}
return 1;

}

private:
std:: streambuf* mStdStream;

};
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C
Effect of Rotation Parameters on the Detector

To compare the rotation rw to the detector shifts (tu, tv and tw), the maximal transformation that a
rotation will apply to a detector pixel is calculated. Given a detector pixel (u, v), it is rotated by the
angle α around the detector center at (0, 0) and compute the difference to its original position by(

δu

δv

)
=

(
|u · cos(α)− v · sin(α)− u|
|u · sin(α) + v · cos(α)− v|

)
.

The deviations δu and δv become larger with increasing distance r of the pixel from the detector
center. Therefore, pixels at the detector corner with

rmax =
√

((Nu − 1)/2 ·∆u)2 + ((Nv − 1)/2 ·∆v)2

have the largest deviations. When setting (u, v) = (0, rmax) the maximal difference δ(rw)max =

max(δumax, δvmax) can be calculated using(
δumax

δvmax

)
=

(
| − rmax · sin(α)|
|rmax · (cos(α)− 1)|

)
.

for all pixelswith radius rmax. With theOptimalUnit (OU) of rw given inTable 4.1 and the system
setup from the first column of Table 4.2 the value α = 0.338° can be set and rmax = 289.065mm
can be computed. The maximal translation that is introduced by rw results in δmax = 1.705mm.
Comparing this value to the OUs of the other misalignment parameters in Table 4.1 shows that the
influence of rw on the reconstructed volume is between those of tu and tv.
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For the other two rotation parameters a similar approach can be used, so that ru results in(
δvmax

δwmax

)
=

(
| − rheight · sin(α)|
|rheight · (cos(α)− 1)|

)
.

and rv in (
δumax

δwmax

)
=

(
| − rwidth · sin(α)|
|rwidth · (cos(α)− 1)|

)
.

with rwidth = (Nu − 1)/2 · ∆u and rheight = (Nv − 1)/2 · ∆v. As a result, δ(ru)max =

δ(rv)max = 3.535mm is obtained.

153



D
Parameter Estimation Algorithm

The pseudocode listed below gives a detailed outline of the calibration algorithm as it has been de-
scribed in Section 4.3.3. The calibration procedure expects the original set of projections g0 and all
parameters of the system setup summarized in a single structureC to compute the projection matri-
ces during the calibration process as described in Section 4.3.1. Initially, the four parameters tu, tv, tw
and rw are set to be active and all set to zero. The outer loop beginning in line 4 of the estimation algo-
rithm implements themulti-resolution approach startingwith a binning of 16 for the projections and
the volume, so that the resolution on the first level is reduced by a factor of 0.0625. After downsam-
pling the initial projection set each parameter is optimized individually during the inner loop from
line 10 to 36. Note that the initial sample range on the first level of the multi-scale approach is set
manually to a range rinit and a step size of 8 to allow the algorithm the estimation of larger geometric
misalignments by scanning a wider range of the parameter space (line 12). During the optimization
the 1D scan is performed using OUs by centering the scan range around the actual estimate of the
currently optimized parameter (line 16). In the lines 17 to 29 the reprojection similarity is computed
at each point in the scan rangeRscan and the maximal similarityMImax is recorded with its location
Rmax. Then the samplesMI are low-pass filtered and fitted by the Gaussian functions symmetric
Gaussian (SG) and asymmetric Bi-Gaussian (AG) in line 31 to find the new parameter estimate. Fi-
nally, line 32 checks if the current parameter optimization has converged.
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Algorithm 1 Parameter Estimation Algorithm
Input: Initial projections g0, system setupC , scan range of first level rinit
Output: Estimated parameters P ⋆

1: Pactive ← {tu, tv, tw, rw} ▷ activate all parameters
2: P ⋆ ← {0, 0, 0, 0} ▷ intialize parameters with zeros
3: Pou ← ComputeOptimalUnits(C) ▷ compute OUs of all parameters
4: for each b ∈ {16, 8, 4, 2, 1} do ▷ resolution level loop
5: if Pactive = ∅ then ▷ check if any parameter left
6: return P ⋆ ▷ terminate algorithm
7: end if

8: s← 1/b ▷ compute scale factor
9: gscaled ←Resize(g0, s) ▷ downsample projections by factor s
10: for each p ∈ Pactive do ▷ parameter loop
11: if b = 16 then ▷ scan wider range on the first level
12: Rscan ← [−rinit,−rinit + 8, ..., rinit − 8, rinit]
13: else
14: Rscan ← [−2b,−2b+ 1, ..., 2b− 1, 2b]
15: end if
16: Rscan ← P ⋆[p] + Pou[p] ∗Rscan ▷ offset scan range and convert by OUs

17: Rmax = −1
18: MImax = −∞
19: for eachR ∈ Rscan do ▷ scan loop
20: Pcurr ← P ⋆

21: Pcurr[p]← R ▷ replace value of current parameter
22: fi ← FBP(gscaled, Pcurr) ▷ reconstruct volume
23: gi ←DRR(fi, Pcurr) ▷ simulate projections
24: MI[R]←MI(g0 , gi) ▷ calculate and store sample of MI
25: if MI(R) > MImax then
26: Rmax = R
27: MImax =MI[R]
28: end if
29: end for

30: MI[R]← Smooth(MI) ▷ low-pass filter all samples
31: pnew ← CenterOfBestGaussianFit(MI ,Rmax) ▷ find best parameter value

32: if (P ⋆[p]− pnew| < 0.25Pou[p] then
33: Pactive ← Pactive \ p ▷ deactivate parameter - precise enough
34: end if
35: P ⋆[p]← pnew ▷ update estimated parameter
36: end for
37: end for

38: return P ⋆ ▷ return estimated parameters
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E
Virtual Detector Rebinning

The algorithm below presents the ray casting approach for the virtual detector rebinning on a single
projection. To compute a virtually aligned projection from misaligned detector data, the projection
matricesMvar andMvmr are needed for the aligned and misaligned geometric setup, like described
in equation (4.1) and equation (4.9), respectively. Note that the notation in the pseudocode below is
similar to the one used in [18].

Algorithm 2Virtual Detector Rebinning
Input: Initial projections g0, projection matricesMmvr,Mavr, projection sizeNu ×Nv

Output: Rebinned projection gr

extract source position from aligned projectionmatrix
1: P3,a ← Extract first three columns fromMvar

2: p4,a ← Extract last column ofMvar

3: Sa ← Compute source position by−P−1
3,a · p4,a

extract source position frommisaligned projectionmatrix
4: P3,m ← Extract first three columns fromMvmr

5: p4,m ← Extract last column ofMvmr

6: Sm ← Compute source position by−P−1
3,m · p4,m

compute three positions on the detector
7: P1← Sm + P−1

3,m · (0, 0, 1)
8: P2← Sm + P−1

3,m · (Nu, 0, 1)

9: P3← Sm + P−1
3,m · (0, Nv, 1)
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computemisaligned detector plane
10: P ← P1 ▷ point on the plane
11: N ← (P2− P1)× (P3− P1) ▷ plane normal
12: for each pixel (u, v) of the aligned projection do
13: O ← Sa ▷ ray origin
14: D ← P−1

3,a · (u, v, 1) ▷ ray direction
15: I ← IntersectRayPlane(O,D, P,N ) ▷ intersect ray with misaligned detector plane
16: (us, vs)←Mvmr · I ▷ sample position
17: gr(u, v)← g0(us, vs) ▷ interpolate projection
18: end for
19: returnGr ▷ rebinned projection
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F
Relation between Measured and Filtered Data

Let h be a set of appropriately filtered projections. Then, under the assumption that a FBP approach
can be employed to reconstruct the attenuation coefficients of the volume of interest f , the following
formula can be used to express this fact:

f = A∗h, (F.1)

whereA∗ represents the backprojection operator. In addition to this, it is generally known that the
originally measured projections g are obtained through

g = Af, (F.2)

whereby A is defined as the forward projection operator, i.e. the system matrix (compare Sec-
tion 5.3.2). Substituting equation (F.1) into equation (F.2) yields g = AA∗h and demonstrates the
relation between the measured and the filtered data. The defect

||g − AA∗h||2 (F.3)

can beminimized in order to find the “optimally” filtered data ash = (AA∗)+g. From this expres-
sion it becomes evident that the optimal filtering operator is the Moore-Penrose-pseudo-inverse (+)
ofAA∗. Hereby, it has to be considered that in general the solution (AA∗)+ by the minimization of
the L2-norm is not independent of the underlying data g, such that the filter operator can be differ-
ent for each dataset and for each system geometry. The method of Kunze et al. [172] uses projections
of a wire phantom to demonstrate, which invariances can be assumed for an optimized set of filters.
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Nevertheless, since Section 5.4.4 only evaluates the filter quality of AO-FBP and FDK with respect
to a specific projection set and system geometry, invariances and generalizations for optimized sets of
filters will not be discussed here in greater detail.

However, the derivation above can be employed to calculate the filtered projections h from the
measuredprojectiondatag. To solve theminimizationproblem stated above,wide variety ofmethods
can be employed. For the sake of simplicity and convenience, SIRT [247] is selected to minimize the
L2-norm in equation (F.3). By the definition of the self-adjoint matrix M := AA∗, the update
equation for SIRT can be formulated quite similar to equation (5.7) as

hn = hn−1 + UMV (g −M∗hn−1), (F.4)

with h0 := 0, n as the iteration index and U = V as the diagonal matrices of inverse row and col-
umn sums with respect to the matrixM , respectively. Note that the update scheme above is equiva-
lent to the corrected projections simultaneous iterative reconstruction technique (P-SIRT) algorithm
described in [172]. Consequently, equation (F.4) leads to the same set of filtered projections as the
P-SIRT approach and the resulting projections hn will be called P-SIRT filtered projections.
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