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Two-Phase Compositional Flow Simulation with Persistent Variables

Carbon capture and storage (CSS) is a recently discussed new technology, aimed at allow-
ing an ongoing use of fossil fuels while preventing the produced CO2 from being released
into the atmosphere. A suitable mathematical model to simulate this process is com-
positional multiphase flow with equilibrium phase exchange. It is able to represent the
important process of solubility trapping. One of the big problems arising in two-phase
two-component flow simulations is the disappearance of the nonwetting phase, where the
saturation cannot be used as independent variable.

In this thesis, a persistent variable formulation is presented, which has the important
advantage that only one set of primary variables can be used for the biphasic as well as
the monophasic case. Using a modified Newton solver, also developed in the course of this
work, the convergence at the single-phase/two-phase interface can be greatly improved.

The persistent variable formulation is implemented in the DUNE simulation framework
with capillary pressure and nonwetting phase pressure as primary variables. The presented
method is verified by numerical test simulations of CO2 injection in saline aquifers. A
fine grid resolution for these large-scale simulations can only be achieved by the use of
heavy parallelization. The numerical results for the recent MoMas benchmark agree with
the output of other groups. For several test cases, grid convergence and scalability are
analyzed numerically. The method scales well and converges with the optimal order of
convergence.

Zweiphasen-Strömungssimulation unter Berücksichtigung von
Löslichkeitseffekten mit persistenten Variablen

Carbon capture and storage (CSS) ist eine viel diskutierte Technologie, die freigesetztes
CO2 daran hindert, in die Atmosphäre zu gelangen, um so eine längere Nutzung fossiler
Energieträger zu ermöglichen. Unter Annahme eines Gleichgewichts des Phasenaustauschs
wird eine Mehrphasen-Strömung unter Berücksichtigung von Löslichkeitseffekten für die
Simulation von CSS verwendet. Ein großes Problem bei der Simulation von Mehrphasen-
Strömung mit Löslichkeitseffekten tritt auf, wenn eine Phase verschwindet. In diesem Fall
kann die Sättigung nicht als eigenständige Variable verwendet werden.

In dieser Arbeit wird eine Formulierung mit persistenten Variablen vorgestellt. Diese Her-
angehensweise hat den Vorteil, dass die gleichen Primärvariablen sowohl im Zweiphasen-
als auch im Einphasebereich verwendet werden können. Ein verbessertes Newton-Verfahren
liefert deutlich bessere Konvergenzergebnisse für den Übergang zwischen Ein- und Zwei-
phasenbereich.

Dieses Verfahren ist in der DUNE-Simulationsumgebung implementiert. Dabei werden
Kapillardruck und der Druck der CO2 Phase als Primärvariablen verwendet, um die Ver-
pressung von CO2 in salzhaltigen Wasserschichten numerisch zu simulieren. Damit die
großflächigen Rechengebiete genau aufgelöst werden können, wird die Simulation stark
parallelisiert. Es wird eine sehr gute Übereinstimmung zu den Ergebnissen anderer Teil-
nehmer des vor kurzem durchgeführten MoMas Benchmark erreicht. Anhand mehrerer
Testprobleme werden Gitterkonvergenz- und Skalierbarkeitseigenschaften des Verfahrens
numerisch untersucht. Die Formulierung liefert die optimale Konvergenzordnung.
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1 Introduction

Carbon Capture and Storage (CCS) describes the process of capturing carbon dioxide
from power plants or other industrial sources. The compressed CO2 is then injected into
suitable geological formations with the aim to store it there permanently (see Figure 1.1).
The injection takes usually place at depths of at least 750 m to ensure that the injected
CO2 is in a supercritical aggregation state, i. e., it has a very high density compared to
gaseous CO2.

Even in supercritical state, CO2 has a lower density than the brine present in the formation.
This causes an upward migration of the CO2. Therefore, it is important, that a geological
layer with a significantly lower permeability is present, to stop the upward movement.
This layer is usually called a caprock.

Suitable storage sites are, e. g., deep saline aquifers or depleted gas or oil fields (see [48]).
Examples for CCS pilot projects are Ketzin in Germany (since 2008, see [47]), Hontomín
in Spain (since 2013, see [63]) and the first CCS site Sleipner in Norway (since 1996, see
[53]).

Figure 1.1: Schematic showing geological sequestration of CO2 from a power plant (source:
www.co2crc.com.au)
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Introduction

Figure 1.2: Schematic representation of CCS trapping mechanisms at different time scales (source:
www.co2crc.com.au)

CCS is a highly debated topic in Germany and worldwide. Carbon Dioxide (CO2) is the
most significant greenhouse gas, which affects the atmosphere causing global warming.
Many people consider CO2 storage as an important factor in the effort to reduce the
emission of greenhouse gases. With CCS the CO2 emissions of suitable power plants can
be reduced by up to 90 %. A detailed evaluation of the potential of CCS is published in
the IPCC Special Report [48].

Major concerns with the CCS technology are, e. g., CO2 leakage or migration of brine that
may lead to pollution of freshwater aquifers. There is also a risk of structural failing due
to large pressure peaks caused by the high injection rates. A risk assessment study for
CO2 storage can be found in [60]. One of the biggest problems especially for depleted gas
or oil fields in Northern America is the existence of a lot of wells (confer the contribution
of Celia in [38]). These wells provide vertical pathways to the surface for the CO2.

Due to the risks described above, reliable simulation data is crucial for all stages of CCS
projects. The mathematical model has to include all relevant physical processes during
the injection and storage of CO2.

1.1 Trapping Mechanisms

When CO2 is injected into the subsurface several mechanisms lead to an entrapment of
the CO2 underground. All those mechanisms operate on different time scales.

Figure 1.2 demonstrates the different trapping mechanisms and their temporal appear-
ance. The dominant and most important trapping mechanism directly after injection is
the structural trapping. CO2 has a lower density than water and percolates upwards

16



1.1 Trapping Mechanisms

Figure 1.3: CO2 fingering caused by density driven flow (picture from [19])

(a) Residual Trapping (b) Mineral Trapping

Figure 1.4: Residual and mineral trapping (source: www.co2captureproject.com)

through the porous medium until it reaches the caprock. This impermeable layer keeps
the CO2 from further upward movement.

During the movement of the CO2 phase some of the CO2 is left behind as disconnected,
immobile droplets due to capillary forces. This process is called residual or capillary
trapping (see Figure 1.4a).

CO2 dissolves into the brine, that is already present in the subsurface. The amount of
dissolved CO2 depends on pressure, temperature and the salinity of the brine. This is called
solubility trapping. Additionally the density of brine with dissolved CO2 is higher than
that of pure brine. This leads to convective flow and gravity fingers of dense fluids that
sink into the underlying brine. Figure 1.3 shows gravity fingers from numerical experiments
conducted by Burchardt in his diploma thesis [19].

Over a long time period CO2 could also bind with the surrounding rock and form solid
carbonate minerals, calledmineral trapping (see Figure 1.4b). The rate of mineralization
is heavily dependent on the chemistry of rock and water at the storage site.

17



Introduction

1.2 Challenges in Modeling Compositional Multiphase Flow

A very important part of modeling CCS is to decide on the capability and complexity of
the mathematical model. A simple model is immiscible two-phase flow which is a system of
two coupled nonlinear partial differential time-dependent equations. It describes the flow
of two immiscible phases in a porous medium (the two phases for modeling CCS are water
and CO2). However, the drawback of this model is, that it does not include solubility. As
solubility trapping is an important factor in determining the storage capability of a given
site this simple model is not chosen for this work.

A suitable mathematical model describing CO2 injection in geologic reservoirs including
solubility trapping is two-phase two-component flow. As an extension of immiscible two-
phase flow it is also a system of two partial differential equations. In contrast to the latter
model each phase consists of two components (again water and CO2). The components
are exchanged across the phases and with that this model takes into account solubility
trapping. Residual trapping is included in both models by the shape of the water retention
curve (described in Section 3.1). Mineral trapping is not considered in this work.

For both models two primary variables have to be chosen. Together with a number of
additional algebraic relations the primary variables close the system. For immiscible two-
phase flow a standard choice of primary variables is the pressure of one phase and the
saturation of the other phase. A great challenge in modeling compositional multiphase
flow with the assumption of equilibrium phase exchange is the treatment of disappearing
phases, because the saturation cannot be used as a primary variable. In the last years this
topic has gained much attention, and many different papers show approaches to deal with
this problem. Chapter 4 of this work presents the different methods for the treatment of
disappearing phases. A special method is presented, which uses nonwetting phase pressure
and capillary pressure as primary variables.

A further challenge in modeling CCS is the fact that huge domains and very large time
spans (up to thousands of years) have to be taken into account. Nordbotten and Celia
[31] propose upscaled models on 2D grids for CO2 injection. For upscaled models accuracy
must be sacrificed to obtain improvements in computational speed. In this work another
approach is chosen. Heavy parallelization is used as a possibility to speed up the compu-
tation of simulations with a fine grid resolution in 3D (confer Chapter 9).

1.3 Outline

In this work, a special set of primary variables is chosen that is valid for the monophasic as
well as the biphasic case and can easily handle the disappearance of one phase. As an ad-
vantage of this approach, the chosen variables are continuous over material heterogeneities
if both phases are present. The mathematical model for this is presented in Chapter 2.

To simulate CSS, constitutive relations between physical properties like pressure and den-
sity are necessary. The selected models are summarized in Chapter 3.

18



1.3 Outline

Various approaches to choosing primary variables and to deal with the phase appearance
problem are presented in Chapter 4.

In Chapter 5 crucial parts of the numerical solution and implementation of the model are
discussed.

A large part of this work consists of the numerical simulation of different test cases and
the evaluation of the results. In Chapter 6–9, various test cases from 1D to 3D are inves-
tigated.

Major contributions of this work are:

• Development of a persistent variable formulation for two-phase two-component flow.

• Dimension independent implementation of CO2 injection in the DUNE framework.

• Development of an improved Newton solver for compositional two-phase flow.

• Parallel simulation of large scale CO2 injection examples

Some material presented here has been previously published in [51]. These parts are cited
in the following without explicit mention.
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2 Mathematical Model of Isothermal
Two-Phase Two-Component Flow

In this chapter, a system of partial differential equations describing two-phase two-com-
ponent flow in a porous medium is derived. For meaningful results, it is important that
the mathematical model for carbon capture and storage (CCS) supports solubility trap-
ping. Two-phase two-component flow, the model presented here, does this by taking the
composition of the phases into account.

For the sake of simplicity the temperature is assumed to be constant. However, thermo-
dynamic effects can be included in the model in a straightforward manner. The salinity of
the water phase is also considered to be constant.

2.1 Fundamental Terms

Different length scales have to be taken into account for modeling flow in porous media. On
the macroscopic scale for example regions with finer and coarser sand can be identified.
On the microscopic scale one can see individual sand grains. The smallest scale is the
molecular scale, where single molecules can be identified. For a continuous model on the
macroscopic scale possible heterogeneities and characteristics on the smaller scale have to
be taken into account. In this work the averaging procedure by Bear [10] is used, where
an average value for each point in the continuum is determined through a representative
elementary volume (REV) on the microscopic scale. All quantities defined in this section
are summarized in Table 2.1.

A porous medium consists of a solid part and interconnected void space called pores, that
may be filled with different fluids. In a porous medium the porosity φ(x) is defined as the
ratio between the volume of the void space and the total volume of a given REV (see [5]).
Per definition the value of φ(x) lies between 0 and 1, e. g., gravel typically has a porosity
of about 0.3 and a typical value for sandstone is 0.1. In this work, φ is assumed to be
constant throughout the domain.

The fluids in the void space establish one or more phases. The ratio between the volume
of phase α and the total volume of pore space in a given REV is defined as Sα(x, t), the
saturation of phase α. From this definition it is clear that:

0 ≤ Sα(x, t) ≤ 1,
∑
α

Sα(x, t) = 1. (2.1)
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Mathematical Model of Isothermal Two-Phase Two-Component Flow

For compositional flow, each phase consists of several components. In this work two-
phase two-component flow is modeled, so there are two phases α ∈ {w,n}, wetting and
nonwetting, and two components κ ∈ {a,b}, wetting and nonwetting component. In the
context of CCS the wetting phase is equivalent to the water phase and the nonwetting
phase to the CO2 phase. CO2 can dissolve into the water phase and the water phase consists
of the two components water and CO2. Correspondingly the CO2 phase also consists of
the CO2 component and a small water component.

The mass fraction Xκ
α of component κ in phase α is the ratio of the mass of component

κ in phase α and the mass of phase α in a REV. For two components, the molar fraction
xκα, which is used in the mathematical model, is derived from the mass fraction by

xb
α = Xb

αM
a

Xb
αM

a + (1−Xb
α)Mb

where Mκ is the molar mass of component κ. By definition, the molar fractions in one
phase sum up to one:

xa
α + xb

α = 1. (2.2)

The absolute permeability K measures the ability of a fluid to flow through a porous
medium. The tensor K solely depends on the porous medium, not the fluid. If the porous
medium has a preferred flow direction, K is anisotropic. In this work, the porous medium
is considered isotropic, so the value of K is the same in every direction.

If more than one phase flows in the porous medium, the flow of one phase is inhibited by
the presence of another one. This is measured by krα, the relative permeability of phase
α, which depends on the saturation of the phase. If only phase α is present, krα = 1. Models
for the relative permeability based on experimental data are described in Chapter 3.

The molar density ρα is defined as the number of moles per volume in phase α. The
density depends on pressure and temperature and also on the composition of the phase.
For example, water with dissolved CO2 is more dense than pure water, which results in a
density-driven convection.

The viscosity µw describes the resistance of a fluid to deformation by shear stress. Dy-
namic viscosity heavily depends on the pressure and temperature. The influence of the
composition of the phase is not considered in this work.
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2.2 Balance Equations

description symbol SI unit
porosity φ
wetting and nonwetting phase pressure pw, pn [Pa]
wetting and nonwetting phase saturation Sw, Sn
wetting and nonwetting phase mass density ρmass,w, ρmass,n [kg m−3]
wetting and nonwetting phase molar density ρw, ρn [mol m−3]
wetting and nonwetting phase viscosity µw, µn [Pa s−1]
molar fraction of component in wetting phase xa

w, xb
w

molar fraction of component in nonwetting phase xa
n, xb

n
relative permeability of wetting and nonwetting phase krw, krn
absolute permeability K [m2]
molar mass of wetting and nonwetting component Ma, Mb [g mol−1]

Table 2.1: Quantities in two-phase two-component flow

2.2 Balance Equations

2.2.1 Phase Velocities

Darcy’s Law is a constitutive equation that describes flow through a porous medium. It was
first determined experimentally. It can also be derived by averaging techniques from the
Navier-Stokes equation. The momentum conservation of Navier-Stokes on the microscopic
scale reduces to Darcy’s Law on the macroscopic scale (confer [36] for the derivation). The
phase velocities uα are given by an extended Darcy’s Law:

uw = −Kkrw
µw

(∇pw − ρmass,w · g),

un = −Kkrn
µn

(∇pn − ρmass,n · g), (2.3)

where g is the gravity vector.

2.2.2 Diffusive Fluxes

Following Fick’s Law, the diffusive flux of a component κ in the phase α is given by

jκα = −Dκ
pm,α ρα∇xκα, (2.4)

where Dκ
pm,α is the diffusion coefficient of component κ in phase α in a porous medium.

In many previous works, such as [21] and [16], it is assumed that

ja
α + jb

α = 0 (2.5)

holds. This assumption is also used in this work, so instead of four only two diffusion
coefficients are necessary.
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Mathematical Model of Isothermal Two-Phase Two-Component Flow

2.2.3 Two-Phase Two-Component Flow

For the two-phase two-component model, chemical reactions inside each phase are ne-
glected. Local equilibrium phase exchange of the components in the phases is assumed.
The conservation of the amount of substance of each component is given by

φ∂t(ρα xκαSα) +∇ · (ρα xκαuα + jκα)− qκα − rκα = 0

for each component κ in each phase α. Here qκα is the source/sink term for component κ
in phase α and rκα the term that models the exchange of mass of component κ with other
phases. The equation states that the flow of component κ in phase α over the surface of
the domain together with the sources or sinks within the domain equals the change of
molar mass of component κ in phase α.

It is assumed that no intraphase chemical reactions take place, that means ∑α r
κ
α = 0

(confer [5]). By summing up the balance equation for one component over all phases the
reaction terms cancel out and the final form of the two-phase two-component model in
porous media is achieved (see also [54] for a detailed derivation):

φ∂t(ρw x
a
wSw + ρn x

a
nSn) +∇ · (ρw x

a
wuw + ρnx

a
nun) +∇ · (ja

w + ja
n)− qa = 0,

φ∂t(ρw x
b
wSw + ρn x

b
nSn) +∇ · (ρw x

b
wuw + ρnx

b
nun) +∇ · (jb

w + jb
n)− qb = 0,

(2.6)

with the phase velocities uα as given by Equation (2.3) and qκ being the source/sink term
for the component. To complete System (2.6), suitable initial and boundary conditions
have to be chosen. Example conditions for different test setups are presented in Chapters
6–9. An expansion of this model including kinetic interphase mass transfer that does not
assume a local equilibrium phase exchange can, e. g., be found in [35].

Equations (2.6) represent an isothermal model, so the temperature in the whole simulation
domain is assumed to be constant. If required, a variable temperature can be included in

symbol variable count
pα phase pressures 2
Sα phase saturations 2
ρmass,α mass densities 2
ρα molar mass densities 2
µα phase viscosities 2
xκα molar fractions of components in phases 4
krα relative permeabilities of phases 2
jκα diffusive fluxes 4
uα phase velocities 2
sum 22

Table 2.2: Number of unknowns for two-phase two-component flow
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2.2 Balance Equations

relations count
component mass balance summed over phases (2.6) 2
extended Darcy’s law (2.3) 2∑
α Sα = 1 (2.1) 1

Sw = Sw(pc = pn − pw) Section 3.1 1
krα = krα(Sα) Section 3.1 2∑
κ x

κ
α = 1 (2.2) 2

xκα = xκα(pn, T, ssal) Section 3.2 2
ρmass,w = ρmass,w(xb

w, T ), ρmass,n = ρmass,n(pn, T ) Section 3.3 2
ρw = ρmass,α/(xb

αM
b + xa

αM
a) (3.3) 2

µw = µw(T ), µn = µn(pn, T ) Section 3.3 2∑
κ j

κ
α = 0 (2.5) 2

jκα = −Dκ
pm,α ρα∇xκα, Dpm,α = Dpm,α(φ, Sα, Dκ

α) (2.4), (3.4) 2
sum 22

Table 2.3: Constitutive relations for two-phase two-component flow

the model in a straightforward manner (see, e. g., [11]). This also holds for the salinity of
the water ssal, that is supposed to be constant in this work.

Table 2.2 lists all unknowns. Porosity φ, absolute permeability K, temperature T and
salinity of water ssal are constants in this work. Molar masses Ma and Mb are physi-
cal constants depending on the specific components used for the model. The two phase
pressures are related through the capillary pressure pc = pn − pw. In Table 2.3 all alge-
braic relations are summarized. Having the same number of unknowns and relations, these
relations are sufficient to determine all unknowns.

Chapter 3 discusses certain algebraic relations for a water CO2 system in detail. If the
model uses other components than water and CO2, some of the relations in Table 2.3 have
to be adapted to the physical properties of these components and dependencies on other
variables may change.

For the two equations (2.6), one chooses two independent primary variables. With the
algebraic relations in Table 2.3 all other variables (called secondary or derived variables)
are derived from the primary variables. The choice of the primary variables is crucial for the
efficient numerical solution of the equation system. It is discussed in detail in Chapter 4.

In this Chapter a suitable mathematical model for CCS is derived, and all important
physical properties are introduced. Two-phase two-component flow is preferred over the
simple two-phase flow, because the model is able to support solubility trapping with the
composition of the phases.
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3 Constitutive Relations for a Water/CO2
System

In this thesis most of the test setups are taken from the context of CCS, where a liquid
water phase and a liquid, gaseous or supercritical CO2 phase are present. The components
are water and CO2. For meaningful simulation results, the physical properties of CO2
and water are essential. Typically, experimental data is gathered and fitted to a curve.
In the following, different functions and equation of state (EOS) relating several physical
quantities are presented and their dependence on other variables is given.

3.1 Capillary Pressure Saturation Curves and Relative
Permeabilities

For the relation between capillary pressure and saturation

Sw = Sw(pc) = Sw(pn − pw),

there exist different approaches.

In this work, two important models are used for capillary pressure-saturation curves:
Brooks-Corey and van Genuchten. Both of them also provide a constitutive relation be-
tween relative permeability and saturation.

Brooks-Corey model (see [18], [5])

In the Brooks-Corey model, the constitutive relation between saturation and capillary
pressure is:

Sw(pc) =
(
pentry
pc

)−λ
Sw = 1 if Sw(pc) > 1,

where the parameters have to be chosen depending on the characteristics of the porous
media. For CCS in saline aquifers an adequate example is the Brooks-Corey curve from
[11] with values λ = 2 and an entry pressure pentry = 1000 Pa. The entry pressure is the
minimum pressure that has to be applied before the nonwetting phase appears (i. e., the
minimum pressure before Sn > 1). Figure 3.1 shows the resulting curve.
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Figure 3.1: The Brooks-Corey capillary pressure/saturation function for parameters λ = 2 and
pentry = 1000 Pa. Notice the steep descent at the entry pressure pentry

The special form of the curve (the steep descent at the entry pressure) presents numerical
challenges, as discussed in detail in Section 6.3.

The model also provides a constitutive relation between the saturation and the relative
permeabilities (see Figure 3.2 for the resulting curve with τ = 0.5):

krw(Sw) = S
2+τ+ 2

λw

krn(Sn) = S τ
n

(
1− (1− Sn)

1+λ
λ

)2

van Genuchten model (see [32], [5])

The van Genuchten model predicts the saturation and capillary pressure relationship as:

Sw(pc) =
(
1 + (αVG pc)n

)−m
Sw = 1 if Sw(pc) > 1.

The parameters for the van Genuchten curve in Figure 3.3 are αVG = 6.5 · 10−4 Pa−1,
n = 6 and m = 5

6 . These parameters were chosen to obtain a similar curve like for the
Brooks-Corey model above.

The constitutive relation between the saturation and the relative permeabilities for van
Genuchten is (see Figure 3.4):

krw(Sw) = S τ
w

(
1−

(
1− (Sw)

1
m

)m)2

krn(Sn) = S τ
n

(
1− (1− Sn)

1
m

)2m
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3.1 Capillary Pressure Saturation Curves and Relative Permeabilities
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Figure 3.2: The Brooks-Corey relative permeability/saturation function for parameters λ = 2,
τ = 0.5 and pentry = 1000 Pa
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Figure 3.3: The van Genuchten capillary pressure/saturation function for parameters αVG =
6.5 · 10−4 Pa−1, n = 6 and m = 5
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Figure 3.4: The van Genuchten relative permeability/saturation function for parameters τ = 0.5,
n = 6 and m = 5

6

The van Genuchten model does not have an explicit entry pressure like the Brooks-Corey
model. From definition it is evident that pc = 0 is the minimum pressure required before
Sw drops below 1. So the corresponding entry pressure for the van Genuchten model is
pentry = 0.

Both models can be modified to include residual saturations Sα,res. The saturation of phase
α cannot be reduced below Sα,res. By using the effective saturation:

S̄α = Sα − Sα,res
1−∑β Sβ,res

instead of the saturation in the equations above the effect of residual trapping can be
included into the models. In general the capillary pressure saturation curves are different
for a drainage or imbibition cycle. For this hysteresis effect the history of the pressure
evolution has to be taken into account. Hysteresis is not part of the simulations in this
work.

For numerical simulation, the water retention curves have to be evaluated several times
in each cell in every time step. Because of the expensive power function evaluations this
is quite time consuming. A solution for this is the use of interpolation tables (see Section
5.7).
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3.2 Solubility of Components

3.2 Solubility of Components

There are several approaches to quantify the amount of dissolved CO2 in water and water in
CO2. For all EOS, the authors try to fit curves to experimental data points. The solubility
of CO2 in water is much higher than the solubility of water in CO2. Therefore less complex
EOS give good results for the solubility of CO2 but only use rough approximations for the
water solubility.

A very simple approach is Henry’s law:

Xb
w = H

ρw
pb

n. (3.1)

Here H is the Henry constant that depends on the temperature, the solute and solvent of
the system. Assuming the amount of CO2 in water can be neglected, the partial pressure
of the nonwetting component in the nonwetting phase is pb

n = pn. This very simple, linear
relationship between the mass fraction and the nonwetting phase pressure is only valid for
very low solute mass fractions (see [4]). Though, for CCS the pressure reaches relatively
high values and with that high solubilities. Therefore, Henry’s law is not used for the CO2
simulations. The advantage of Henry’s law is the easy implementation, thus it is used for
the benchmark in Appendix A.

The EOS of Duan and Sun (confer [27]) is one example for an EOS with good results for
the solubility of CO2 in water. In this work, the EOS by Spycher and Pruess (see [59] and
[58]) is preferred because it also represents the solubility of water in CO2 well. Figures 3.6
and 3.7 show the solubility curves for different temperatures.

For a CO2 water system the solubility of the components is influenced by the pressure pn,
the temperature T of the system and the salinity ssal of water:

xb
w = xb

w(pn, T, ssal), xa
n = xa

n(pn, T, ssal). (3.2)

The complete EOS by Spycher and Pruess is described in detail in [58]. First the Redlich
Kwong cubic equation is solved to determine the molar volume of the compressed gas
phase. After that the solubilities can be computed via a combination of polynomials and
exponential functions.

Figure 3.5 depicts a phase diagram for pure CO2. The different aggregation states depend
on pressure and temperature. For temperatures below the critical temperature Tcrit =
304.15 K, the state of the CO2 changes from gaseous to liquid with rising pressure. For
temperatures above Tcrit the CO2 is gaseous up to the saturation pressure and then changes
to a supercritical state. Supercritical CO2 has properties between those of gas and liquid.

The state of the CO2 also has an influence on the solubility. Figure 3.6 shows, that the
solubility of CO2 in the water phase increases fast with rising pressure up to the saturation
pressure, above which it rises with a smaller rate. For temperatures below the critical
temperature Tcrit = 304.15 K, the state of the CO2 changes from gaseous (below saturation
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Figure 3.5: Pressure temperature phase diagram for CO2
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Figure 3.6: xb

w/pressure function by Spycher and Pruess (with ssal = 0)

32
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n/pressure function by Spycher and Pruess (with ssal = 0)

pressure) to liquid. This phase transition results in a not continuously differentiable sharp
break at the transition point.

Suitable geological storage sites are located very deep under the surface, where the tem-
perature is normally higher than the critical temperature Tcrit. Therefore, the non-diff-
erentiabilities for T < Tcrit are not relevant to the simulations in this work. Furthermore,
for CCS the phase pressure is quite high if a CO2 phase appears. That means for the case
that not all the CO2 is dissolved in the water CO2 exists in a supercritical state.

3.3 Densities and Viscosities

For the density of the water phase, the approach of Garcia [30] is applied. The density
increases slightly for a larger fraction of CO2 in the water phase. Experimental data
show, that for temperatures below 573.15 K the density is almost independent of pressure
(confer [30]) and is therefore neglected in Garcia’s approach. The EOS of Duan [26] is
used to calculate the density of the CO2 phase, which strongly depends on the CO2 phase
pressure:

ρmass,w = ρmass,w(xb
w, T ), ρmass,n = ρmass,n(pn, T ).

Figure 3.8 shows the density of CO2 for different temperatures.

Like for the solubility (see Section 3.2), the density below the critical temperature shows
a distinct kink where the CO2 changes from gaseous to liquid state.

Often molar density instead of mass density is used. To convert mass density to molar
density the phase composition has to be taken into account:

ρα = ρmass,α
xb
αM

b + xa
αM

a . (3.3)
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Figure 3.8: CO2 density/pressure function by Garcia

The viscosity of the water phase is computed using a function by Atkins [4], for the
CO2 phase the approach of Fenghour and Vesovic [28] is employed. Again the CO2 phase
viscosity also depends on the CO2 phase pressure,

µw = µw(T ), µn = µn(pn, T ).

Figure 3.9 shows the viscosity of CO2 for different temperatures.
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Figure 3.9: CO2 viscosity/pressure function by Fenghour and Vesovic

3.4 Diffusion

Following [42] an approach suggested by Millington and Quirk is used to obtain the diffu-
sion coefficient in the porous medium,

Dκ
pm,α = (φSα)10/3

φ2 Dκ
α. (3.4)

where Dκ
α is the binary diffusion coefficient of component κ in phase α.

In this Chapter all missing algebraic relations for System (2.6) were introduded. The con-
stitutive relationsships for, e. g., density and solubility are approximations of experimental
data. The computation of these variables is quite expensive, therefore interpolation tables
are used to speed up the computations (confer Section 5.7).
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4 Choice of Primary Variables

In compositional two-phase flow the choice of primary variables is crucial for the numer-
ical performance. A standard choice for two-phase flow simulations is one phase pressure
and the saturation of the other phase. However, this approach is not valid if there are
regions where only one phase exists. In this chapter, existing solutions to this problem are
discussed. As selected solution, a choice of variables is presented, where capillary pressure
and nonwetting phase pressure are used as primary variables.

4.1 Existing Approaches

A standard choice for the primary variables are one phase pressure and the saturation
(confer [5]). In all examples in this work, the nonwetting component is injected into a
fully water saturated domain and at the beginning of the process only the wetting phase
is present. During injection the nonwetting phase appears and both phases are present.

In the one phase region (Sn = 0), the system (2.6) degenerates to

φ∂t(ρw x
a
w) +∇ · (ρw x

a
wuw + ja

w)− qa = 0, (4.1)
φ∂t(ρw x

b
w) +∇ · (ρw x

b
w uw + jb

w)− qb = 0. (4.2)

Adding equations (4.1) and (4.2) and using (2.2) and (2.5) the system can be rewritten as
a coupled groundwater-flow and transport problem

φ∂t (ρw) +∇ · (ρwuw) = qa + qb, (4.3)

φ∂t
(
ρw x

b
w

)
+∇ ·

(
ρw x

b
w uw + jb

w

)
= qb. (4.4)

With the disappearance of the nonwetting phase the saturation can no longer be used as
primary variable and the standard choice of variables cannot be applied here. One natural
set of variables for the one-phase region would be the wetting phase pressure pw and the
solubility xb

w.

There are several approaches to solve the problem at the phase transition. A classification
of several methods can also be found in [46].
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Choice of Primary Variables

4.1.1 Extended and Nonstandard Variables

The presented methods in this section use nonstandard primary variables or extend the
scope of variables. Several approaches deal with the special case that Henry’s Law is used
to couple solubility and pressure in the context of nuclear waste management. Often the
nonwetting phase is assumed to consist only of the nonwetting component.

Bourgeat et al. [16] describe several possibilities for sets of primary variables. They use
Henry’s Law to determine the saturations. One possibility is to use the total nonwetting
concentration

ρn
tot = Swρmass,wX

n
w + Snρmass,n

together with the wetting phase pressure pw. Another approach is to exchange ρn
tot by the

nonwetting concentration in the wetting phase ρn
w = ρmass,wX

n
w. These primary variables

have the advantage that they are continuous across material heterogeneities.

Angelini et al. [3] use the two phase pressures as primary variables and extend the
definition of the nonwetting phase pressure in the case that only the wetting phase is
present Sw = 1.

Amaziane et al. [2] introduce two new variables, the global pressure variable and the
total hydrogen mass density (following the idea of [15]). They show a fully equivalent
fractional flow formulation for compositional compressible two-phase flow in porous media.
With the concept of global pressure the equations are partially decoupled. The global
pressure equals pw when only the wetting phase is present. Both global pressure and total
hydrogen mass density are valid for the saturated and unsaturated case and Amaziane et
al. use them as primary variables.

Abadpour and Panfilov [1] extend the saturation to artificial negative values and values
higher than 1. This causes System (2.6) to not degenerate in the one-phase region. Thus,
one of the saturations can be used as a primary variable. Abadpour and Panfilov use Sn
and pn as primary variables. According to the authors, an advantage of this formulation
is that existing two-phase simulators can be easily adapted to work for two-phase two-
component-models.

4.1.2 Switching Primary Variables

A common method to deal with phase appearance and disappearance is primary variable
switching. Here in addition to the classic variables, saturation and phase pressure, an
additional variable like the total concentration or mass/mole fraction is chosen.

Depending on the phases existence at a certain location, different sets of primary vari-
ables are used. In the two-phase region, a phase pressure and saturation are used as
variables, while in the one-phase region, the saturation is replaced by total concentration
or mass/mole fraction. Switching the primary variables is a nondifferentiable process that
can potentially lead to numerical difficulties.
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4.1 Existing Approaches

Forsyth and Simpson [29] use the pressure and temperature as primary variables for
the non-isothermal two-phase two-component flow. The state of the system is determined
in each Newton iteration. Depending on the present phases the additional primary variable
is chosen as:

• Sw, if both phases are present
• xb

w, if only the wetting phase is present (Sw = 1)
• xb

n, if only the nonwetting phase is present (Sw = 0)

Bielinski [11] uses pn and Sw for the two phase region and pn and Xb
w in the one phase

region. Helmig et al. [23] describe primary variable switching for a dense non-aqueous
phase liquid (DNAPL) system with three phases and three components (see Table 2 in
[23] for details).

4.1.3 Using Complementarity Constraints with Semi-Smooth Newton
Method

The phase transition problem can be circumvented by the use of nonlinear complementarity
constraints that describe the composition of the phases and decide about the number of
present phases. One additional primary variable has to be chosen for the complementarity
constraint.

Gharbia and Jaffré [41] use Sw and pw together with the molar fraction xb
w as main

variables. Additionally, nonlinear complementarity constraints describing the transition
from one-phase to two-phase region are used to close the system. These complementarity
constraints consist of equations and inequalities. By expressing the constraints equivalently
through a complementarity function, the resulting system is free of inequalities.

The introduction of a complementarity function means that the problem is no longer
C1, and convergence is not assured for the standard Newton algorithm. So instead of
the standard Newton method, Gharbia and Jaffré use a semi-smooth Newton method.
Using their method for the MoMas benchmark (see Chapter 6), they observe a quadratic
convergence for the semi-smooth Newton method for this problem (confer [33]).

Lauser et al. [43] present a method that is capable of handling an arbitrary number
of phases and components. Their model includes temperature changes throughout the
domain and therefore has an additional unknown (the temperature T ).

Lauser et al. useM nonlinear complementarity conditions for the N +1 balance equations
(for N components and the temperature) and chooseM+N+1 primary variables. For the
case of two phases and two components, which is regarded in this work, the five primary
variables are: pn, f1, f2, Sw and T . Instead of f i (the fugacity of the component i) also
the mole fractions xa

n and xb
n can be used.

Like Gharbia and Jaffré [33] the resulting complementarity functions are linearized with
a semi-smooth Newton method. The authors show that with local static condensation the
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Choice of Primary Variables

size of the resulting Jacobian matrix can be reduced to three local unknowns instead of
five.

4.1.4 Using Extended Variables and Complementarity Constraints with
Semi-Smooth Newton

Marchand et al. [46] and [45] use a combination of complementarity constraints with
a semi-smooth Newton solver together with nonstandard primary unknowns and a stan-
dard Newton solver. Here the primary variables are extended versions of molar fraction
and pressure. X is the total molar fraction of the nonwetting component and P a mean
pressure:

X = ρnx
b
nSn + ρwx

b
wSw

ρnSn + ρwSw
,

P = %(Sn)pn + (1− %(Sn))pw

with a weight function %, e. g., %(Sn) = Sn.

The primary variables P and X always remain meaningful even when one phase is missing.
Depending on the choice of %, this model can handle the disappearance of the nonwetting
as well as the wetting phase.

Marchand et al. call the constitutive relations that are needed to reconstruct all variables
from the two primary variables a system of static equations. This system of static equations
is reformulated as complementarity problem.

A Newton method is used to solve the global balance equations (2.6). The global Newton
method calls local solvers for each cell that solve the system of static equations with a
semi-smooth Newton method.

4.1.5 Compositional Modeling Using Flash Calculation

A very different approach to deal with the phase appearance problem is a method named
flash calculation. In this case the balance equations use global compositions of each com-
ponent (summed up over all phases) instead of component concentrations in each phase.
The calculation of the thermodynamical equilibrium state splits global compositions of
components into phase compositions. This process is called flash calculation. A drawback
of this method is that the flash calculation is quite complex and iterative methods have
to be used for the solution on every grid cell.

The work of Heimsund [37] covers the non-isothermal black oil model, which uses three
phases (water, gas, oil) and three components (aquatic, light, heavy). The water phase
consists only of the aquatic component. Heimsund chooses water pressure pw, phase sat-
urations of water and oil phase Sw and Soil and temperature T as primary variables for
the black oil model.
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He uses a decoupled solution technique and splits the mass balance equations into a pres-
sure equation and equations for the saturations.

The solution algorithm for each time step is then as follows:

• Solve pw from the black oil pressure equation
• Solve Sw and Soil from the black oil phase volume balance equations
• Compute Darcy velocities with determined pressures and saturations
• Determine the total number of moles (Nk) for each component k from mole balance

equations
• Solve T from conservation of energy equation
• Calculate thermodynamical equilibrium state. Split the global compositions Nk into

phase compositions (flash calculation)
• Repeat above steps until convergence is achieved

The phase saturations computed in the second step of the algorithm are in general different
to those computed from the thermodynamical equilibrium state. Heimsund solves this by
overwriting the saturation with those found from thermodynamics.

During flash calculation, the global compositions Nk are split into phase compositions.
Then, phase volumes and densities are determined from pressure pw, total component
mass Nk and temperature T . Therefore, a fitting equation of state (EOS) together with
equations for the chemical potential and fugacity are used. The flash algorithm uses New-
ton’s method or successive substitution (or a combination of both) to solve the complex
equations.

Polívka and Mikyška [57] use a two-phase multicomponent system and solve the prob-
lem of phase appearance and disappearance by a flash calculation. In contrast to the
mathematical model used in this work, Polívka and Mikyška neglect diffusion and capil-
larity, therefore only one total pressure instead of two phase pressures are present.

For known temperature T and total molar concentrations of each component c1, . . . , cnc ,
they perform a constant volume phase stability test (called V T -stability) (described in
[50]) to test whether a phase splitting occurs. If the V T -stability indicates that the system
is in two phases, a V T -flash calculation (described in [49]) is performed, which computes
saturations Sα and molar concentrations cα,κ of all components in both phases. Afterwards
the pressure is determined by the EOS of Peng and Robinson (confer [55]).

The authors conclude, that the advantage of their method over a standard PT -flash is
that there is no need to invert the EOS in order to determine the pressure.

Polívka and Mikyška use a fully implicit combination of RT0 mixed finite elements for the
total flux and the finite volume method for the discretization of the transport equations.
The resulting nonlinear system of nknc + ne algebraic equations is then linearized with
a Newton method. (Here nk is the number of mesh-elements, ne the number of edges
and nc the number of components.) The primary variables are the nknc overall molar
concentrations of each component in each mesh-cell and ne pressures on the edges. The
overall molar concentrations and edge-pressures are well defined for both the one-phase
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and two-phase region. For the special case of two components this means there are three
primary variables, two overall molar concentrations c1 and c2 and the pressure p.

The computational algorithm is then as follows for each time step:

Repeat Newton iterations until the convergence criterion is satisfied:

• Perform the stability and flash calculations (with values from last time step or last
Newton step) to obtain a number of phases and their compositions locally on all
elements

• Compute the cell-averaged pressures and edge pressures with the EOS of Peng-
Robinson

• Assemble and solve the final system for molar concentrations and edge pressures

In another article, Polívka and Mikyška ([56]) show, that with a semi-implicit approach
they can reduce the size of the system to ne equations, a number that does not depend on
the number of components in the system.

4.2 Selected Approach: pn/pc Formulation

In this work, an approach based on extended variables is developed using the pressure
of the nonwetting phase and the capillary pressure as primary variables. In the absence
of the nonwetting phase, pn is defined as the corresponding pressure to the solubility xb

w.
This idea was first presented by Ippisch [39] for coupled transport processes.

This approach has the advantage that there are only two primary variables in contrast
to the complementarity constraints method, where an additional variable is needed. With
this constant set of variables, switching of the primary variables is avoided, which is a
non-differentiable process that can lead to numerical difficulties.

In Chapters 6–9 this approach is applied to a recent benchmark study on nuclear waste
management and also to the very challenging field of CCS. In contrast to nuclear waste
management and the work of Bourgeat et al. (see [16]) and Angelini et al. (see [3]), it is
not possible to use Henry’s Law for the solubility because the approximation is not valid
for CO2. In this work, a nonlinear function (see Section 3.2) is necessary to describe the
dependency between the nonwetting pressure and the molar fraction.

4.2.1 Interpretation as Algebraic Transformation

The entry pressure pentry is the critical capillary pressure that must be applied so that the
nonwetting phase appears. One has to distinguish two cases:

1. pc ≤ pentry where Sn = 0 and only the wetting phase exists;

2. pc > pentry where Sn > 0 and both wetting and nonwetting phase exist.
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Case 1: pc ≤ pentry
As mentioned in the beginning of the section the natural set of variables for the one phase
system (4.3) would be pw and xb

w. Consider the following transformation of variables

pw = pn − pc

xb
w = ψ(pn)

(4.5)

where ψ is a continuous and invertible function. The solubility relation for xb
w (3.2) satisfies

these demands (see Figure 3.6 and Spycher and Pruess [58]). The mapping between pn
and xb

w is hence unique and pn and pc is a valid set of primary variables.

The relation between the capillary pressure and the saturation pc(Sw) (see Section 3.1) is
a strictly decreasing function for Sw ∈ [0, 1] and can therefore be inverted

Sw = η(pc).

The dependent variables are then obtained through

Sw = η(pc) Sn = 1− η(pc)
xb

w = ψ(pn) xa
w = 1− ψ(pn)

xa
n = γ(pn) xb

n = 1− γ(pn)

where γ is the solubility curve given in (3.2). All other variables are computed as given in
Chapter 2 and 3.

This choice of primary variables is not unique, another possible set would be pw/pc or
pw/pn. Using pn as a primary variable has the advantage, that the highly nonlinear density
and viscosity functions are directly dependent on a primary variable. pc is preferred over pw
as additional primary variable, because then the saturation only depends on the primary
variable pc through the nonlinear capillary pressure-saturation relationship.

Instead of the nonwetting phase pressure pn the molar fraction xb
w = ψ(pn) could also

be used as primary variable, which is very similar to the hydrogen concentration used by
Bourgeat et al. [16].

Case 2: pc > pentry
The common choice of primary variables in the two-phase region is one pressure and the
saturation. With the pn/pc formulation the saturations are obtained through the retention
curve Sw = η(pc), the other variables are computed accordingly.

pw and xb
w are continuous at the interface between the one-phase and the two-phase re-

gion. Through the transformation (4.5), pn and pc are continuous at the interface too.
Furthermore, a formulation using pn/pc as primary variables can be consistently used in
the presence or absence of the nonwetting phase. One advantage of the pn/pc formula-
tion is, that the pressures, in contrast to the saturations, are continuous across material
heterogeneities if both phases exist.
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5 Numerical Solution

This Chapter focuses on the numerical solution of compositional two-phase flow. It high-
lights several important parts of the implementation. The applications of compositional
two-phase flow (e. g., CO2 sequestration) typically take place on huge domains. Addition-
ally, large time spans have to be covered by the simulation. Therefore, the aim of the
implementation is to have an efficient code, that is able to achieve an adequate precision
of the solution. The numerical solution of the problem must not take longer than some
days or weeks. Hence, extensive parallelization of the code is necessary.

5.1 The DUNE Framework

All simulations present in this work are based on the C++ libraries of the DUNE (Dis-
tributed and Unified Numerics Environment) simulation framework (confer [61], [8], [7]).
DUNE provides data structures and algorithms for the grid-based solution of partial dif-
ferential equations. While DUNE core-modules facilitate basic functionality, it can be ex-
tended to further applications by additional modules. The author of this work co-developed
the high-level discretization module dune-pdelab (confer [9]) in the context of this thesis.

In PDELab the user provides a local operator that describes the residual assembly of the
balance equations (see Equations (2.6)) on a local degree of freedom. The local opera-
tor splits the assembly into volume and face integrals. With the grid operator, PDELab
assembles the global matrix. The algebraic system can then be solved using a suitable
combination of nonlinear and linear solvers.

As a nonlinear solver, PDELab already implements an inexact Newton solver (see Section
5.5). For the linear part, there exists a great variety of preconditioners and sequential
and parallel linear solvers. Here, libraries from the DUNE core module dune-istl (see [13])
are used. A very efficient and scalable preconditioner is the algebraic multigrid (AMG)
method (see Section 5.6). A detailed description and introduction to PDELab can be found
in [62].

Dune
Figure 5.1: Logo of DUNE simulation framework
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5.2 Spatial Discretization with Finite Volumes

The domain Ω is discretized with a cell-centered finite volume method on a structured grid
using a two-point flux approximation. The grid only consists of rectangles of the same size,
so the simple cell-centered finite volume scheme is a suitable choice. One advantage of this
method is, that it is local mass conservative.

The grid Eh = e1, . . . , en consists of rectangular elements ei and the boundary of each
element is ∂ei = ⋃

j∈Σ(i) γij where Σ(i) contains the indices of the neighbor cells of ei and
γij denotes the boundary between elements ei and ej . Fh contains all faces in the grid.
The center of each cell ei is xi.

Based on the grid the non-conforming space Wh is defined as

Wh = {w ∈ L2(Ω) : u |Ωe = const ∀e ∈ Eh}.

The weak formulation of System (2.6) is: ∀v ∈Wh∑
ei∈Eh

∫
ei

(
φ∂t (ρw x

κ
wSw + ρn x

κ
nSn)

+∇ · (ρw x
κ
wuw + ρn x

κ
nun + jκw + jκn )− qκ

)
· v de

=
∑
ei∈Eh

{ ∫
ei

(
φ∂t (ρw x

κ
wSw + ρn x

κ
nSn)− qκ

)
· v de

+
∑
j∈Σ(i)

∫
γij

(
ρw x

κ
wuw + ρn x

κ
nun + jκw + jκn

)
· nij v dγ

}

=
∑
ei∈Eh

∫
ei

(
φ∂t (ρw x

κ
wSw + ρn x

κ
nSn)− qκ

)
· v de

+
∑

γij∈Fh

∫
γij

(
ρw x

κ
wuw + ρn x

κ
nun + jκw + jκn

)
· nij [v] dγ = 0.

Here nij denotes the unit outer normal to face γij pointing from ei to ej and [v] =
v(xi)− v(xj).

The integrals over the faces are approximated by the midpoint rule:

rκh(ph, v) =
∑
ei∈Eh

(
φ(xi)∂t

( ∑
α∈{w,n}

ρα(xi)xκα(xi)Sα(xi)
)
− qκ(xi)

)
v(xi)|ei|

+
∑

γij∈Fh

( ∑
α∈{w,n}

ρα,ij x
κ
α,ijuα,ij + jκα(xi)− jκα(xj)

‖xi − xj‖

)
· nf [v] dγ = 0.

ρα,ij , xκα,ij and uα,ij are computed depending on the upwind element (see 5.3).

The cell-centered finite volume method for System (2.6) for each component κ (ph is one
of the primary variables pc and pn depending on κ) then reads:

Find ph ∈Wh : rκh(ph, v) = 0 ∀v ∈Wh (5.1)
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5.3 Upwinding

5.3 Upwinding

In general, the finite volume approximation will not produce stable results. An upwinding
scheme can be utilized to stabilize the problem. In [40] Ippisch presents a special upwinding
scheme for coupled transport in porous media. This scheme is used for the calculation of the
phase fluxes at the interface between two elements. It can handle material discontinuities,
which result in different capillary-pressure saturation curves and relative permeability
functions in neighboring elements. This upwinding scheme is adapted here for two-phase
two-component flow.

The direction of the flux of phase α at the interface between two elements i and j can be
obtained from the sum of the pressure gradient and the force of gravitation

wα,ij =
(
pα(xi)− pα(xj)
|xi − xj |

+ ρmass,α,ij · g
)
· nij ,

where ρmass,α,ij is computed as the arithmetic average of cells ei and ej . Depending on the
sign of wα,ij the upwind element is determined as:

upwindα =
{
i wα,ij ≥ 0,
j else.

.

The capillary pressure of the upwind element is used to calculate the relative permeability
in each element. The obtained relative permeabilities are multiplied by the absolute per-
meabilities and the viscosities in each element. A harmonic average of the values is used
to calculate the flux at the interface:

Kα,i = Ki
krα,i(pc,upwindα)

µα,i

Kα,j = Kj
krα,j(pc,upwindα)

µα,j

uα,ij = Kα,iKα,j

Kα,i +Kα,j
wα,ij

For homogeneous porous media, this upwinding scheme corresponds to an upwinding of
saturation.

For the calculation of the convective component transport a full upwinding of the molar
fractions and the molar densities based on the upwind direction is used with

xκα,ij = xκα,upwindα , ρα,ij = ρα,upwindα .

5.4 Time Discretization with Implicit Euler

In time Equation (5.1) is discretized with the implicit Euler scheme. The time interval
[0, T ] is split into parts with time points: 0 = t0, . . . , tN = T . Time step n is then the
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interval of length ∆tn = tn+1 − tn starting at tn. The evaluation of a variable at time tn
is abbreviated with a superscript n, e. g., pw(tn) = pnw.

With the implicit Euler method, Equation 5.1 reads in time step n∑
ei∈Eh

{ ∫
ei

( φ

∆tn

{
νκ,nw Snw + νκ,nn Snn − νκ,n−1

w Sn−1
w − νκ,n−1

n Sn−1
n

}
− qκ,n

)
de

+ 1
‖ei‖

∑
j∈Σ(i)

∫
γij

(
{νκ,nw unw + νκ,nn unn}+ {jκ,nw + jκ,nn }

)
· nij dγ

}
= 0,

with νκα = ρα x
κ
α.

5.5 Inexact Newton Method with Line Search

5.5.1 Standard Method

The system of equations arising from numerical discretization is highly nonlinear. Newton’s
method is an efficient way to solve the difficult, nonlinear equations. It is an iterative
scheme that uses a linear approximation to find roots of the nonlinear system. A description
of the inexact Newtons Method can be found in [5].

After discretization, there is a set of nonlinear algebraic equations with solution vector
u

R(u) = 0,
to be solved per time step. The Jacobian matrix is defined as the local derivative of R in
u:

Ai,j = (∇R(u))i,j = ∂(R)i
∂uj

(u)

The exact computation of the Jacobian for compositional two-phase flow is very difficult.
In this work an approximation is used and the Jacobian is derived by one-sided numerical
differentiation through:

∂(R)i
∂uj

(u) = Ri(u+ ∆ujej)−Ri(u)
∆uj

+O(∆uj)

where ∆uj = ε(1 + ‖uj‖). In this work ε = 1 · 10−7 is used for all computations.

For strongly nonlinear functions line search increases the convergence sphere by adding
only a fraction of the correction until convergence is achieved. A theoretical motivation of
the line search strategy can be found in [17]. Here the line search strategy of Hackbusch
and Reusken is employed (confer [34]).

The algorithm below solves the equation R(u) = 0 with initial guess u0 and relative
accuracy εnl or absolute error εabs

nl :

With a given u0, compute residual r0 = R(u0). Do in each Newton iteration k:
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5.5 Inexact Newton Method with Line Search

• Assemble Jacobian system A = (∇R(uk))
• Solve Azk = rk with a linear solver with accuracy εlin: ‖Azk − rk‖2 ≤ εlin‖rk‖2
• Throw exception if linear solver does not converge
• Use zk as correction and update for l = 0: uk+1,0 = uk − zk
• σ = 1. Do in each line search iteration l:

– Accept uk+1,l as uk+1 if ‖R(uk+1,l)‖2 > (1− σ
4 )) · ‖R(uk)‖2

– Scale with dampening factor λ: σ = λσ
– Update uk+1,l+1 = uk − σzk
– Throw exception if l > maxlinesearch

• Compute residual rk+1 = R(uk+1)
• Accept uk+1 as solution if ‖rk+1‖2 ≤ εnl‖r0‖2 or ‖rk+1‖2 ≤ εabs

nl
• Set k = k + 1
• Throw exception if k > maxnewtoniterations

A typical dampening factor for line search is λ = 0.5. In the simulations in this work either
λ = 0.5 or λ = 0.7 are chosen. A maximum number of line searches maxlinesearch = 10
and a maximum number of newton iterations maxnewtoniterations = 10 have been proven
appropriate. The choice of the stopping criteria εnl and εabs

nl is crucial for the performance
and accuracy of the simulation.

The resulting linear equation system is solved with a suitable solver preconditioned by an
algebraic multigrid method (see Section 5.6.1) or a direct solver like SuperLU for problems
with a small number of unknowns.

5.5.2 Modified Newton Method for Pressure/Pressure Formulation

Using the pressure/pressure formulation from Section 4.2, the typical Newton scheme
does not always converge as expected. During the appearance of a phase in a cell, it only
converges if very small time steps are chosen.

For test case 1 from Chapter 6, Figure 5.2 shows the pressure evolution in a cell during
phase appearance for the pn/pc formulation: Before the nonwetting phase appears (until
approximately 13000 years), the derivative of pc is very high. After the appearance of the
second phase, pc is almost constant. This kink in the capillary pressure is a problem for
the standard Newton solver: Close to the kink, the solver uses the high derivative of the
capillary pressure and overestimates the update for pc dramatically. Thus, convergence is
only achieved for relatively small time steps.

Part of this work is the development of a modified Newton solver that is able to handle
larger time steps. The modified Newton solver identifies the cells where a second phase
appears. In these cells a different, more suitable starting point for the primary variables
pc and pn is chosen. As new pc a value slightly above the entry pressure is used, where
the derivative has a reasonable value. The nonwetting phase pressure pn is adjusted to the
new capillary pressure and is set to pc + pw.
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Figure 5.2: Capillary pressure evolution during phase appearance: the capillary pressure rises ap-
proximately linear until the entry pressure 0 is reached and the second phase appears.

Newton step k with phase appearance:
if
(
pkc < pentry

(
Skn = 0

)
& pk+1

c > pentry
(
Sk+1

n > 0
) )

:
Assemble new Jacobian system with

• pkc = pentry + ε

• pkn = pentry + ε+ pkw

This check for an appearance of a new phase is carried out in every Newton iteration
k just before the line search takes place. If no modifying of the primary variables is
necessary the Newton algorithm just continues as discussed in the standard algorithm.
Otherwise the solver restarts step k by assembling a new Jacobian system with the modified
uk =

(
pkc , p

k
n

)
.

ε has to be chosen depending on the parameters of the van Genuchten or Brooks-Corey
function. For the van Genuchten curve in Section 6.3, pentry = 0 and ε = 10 is a reasonable
choice.

5.6 Parallelization

The huge size and the long time spans needed for the applications require the use of par-
allelization. Otherwise, the numerical simulations of complex test problems is not feasible
in a reasonable time. Especially the use of an efficient and fast linear solver is crucial, as
the linear solver claims a lot of the overall simulation time. DUNE uses a domain decom-
position approach with a disjoint partitioning, where each process is responsible for one
partition of the grid (confer [13]).
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5.6 Parallelization

5.6.1 Overlapping Solvers

In this work, a BiCGStab solver preconditioned with an AMG method (confer [12]) is used.
This solver is already implemented in the modules dune-istl and dune-pdelab. Each process
is liable for one partition of the grid. A layer of overlap cells adjacent to the boundary of
the subdomain ensures that each process has the relevant information to assemble its part
of matrices independently.

The AMG preconditioned solver was developed by Blatt [12]. The scalability of this solver
has been shown for computations with up to 917504 processes on the supercomputer
JUQUEEN in Jülich by Ippisch [40].

The solver needs an appropriate grid that supports the domain decomposition approach.
For this work structured rectangular grids are used. YaspGrid is an efficient grid manager
for structured grids in the module dune-grid that can be used with as well as without
overlap. In all applications YaspGrid with an overlap of one cell is chosen.

5.6.2 Nonoverlapping Solvers

There are two grids available in DUNE that support unstructured or tetrahedral meshes:
ALUGrid (see [25]) and UG (see [6]). Both of them are nonoverlapping grids, which means
that the additional overlap cells used for AMG in [12] are not available.

In the context of this work, a nonoverlapping AMG method was introduced in dune-pdelab
and dune-istl. The existing AMG clearly separates parallel data composition together with
the communication interfaces from the data structures. Thus, the implementation of a
nonoverlapping version is straightforward. It is only necessary to provide nonoverlapping
versions of scalar product, preconditioner and linear operator.

The missing overlap implies some extra work for the cells at the border of each process’
subdomain. For cells on the border of a process, in contrast to the overlapping version,
several additional processes have to contribute to the matrix line assembly of those cell.
The nonoverlapping linear operator solves this problem by additional communication.

The code is verified for a linear test problem obtained from the Poisson equation. The
results for different grid size and number of processes are summarized in Table 5.1. For
YaspGrid, overlapping and nonoverlapping domain decomposition can be used (denoted
as OY and NY in the table), for ALUGrid only the nonoverlapping solver is applicable

Table 5.1 demonstrates the efficiency of AMG in contrast to other preconditioners. It also
shows that the nonoverlapping and overlapping version achieve similar results. Compared
to the YaspGrid versions, the total simulation time for ALUGrid is only slightly larger.
This is due to the overhead of ALUGrid as an unstructured grid compared to the structured
YaspGrid.

Nonoverlapping AMG is part of the DUNE library since the DUNE 2.0 release.
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OY NY ALU
BiCGStab SSOR
iterations 27.5 29 49.5
convergence rate 0.415 0.448 0.625
TIT [s] 0.45 0.39 0.40
total time [s] 12.5 11.2 19.6
BiCGStab AMG
iterations 8.5 8.0 8.0
convergence rate 0.063 0.046 0.055
TIT [s] 0.56 0.53 0.60
total time [s] 4.74 4.28 4.78

OY NY ALU
BiCGStab SSOR
iterations 114 101.5 84
convergence rate 0.851 0.796 0.752
TIT [s] 1.0 1.8 1.4
total time [s] 114.5 184.2 117.0
BiCGStab AMG
iterations 11.5 10.5 11.5
convergence rate 0.132 0.100 0.120
TIT [s] 3.2 3.9 2.3
total time [s] 36.9 40.9 26.0

Table 5.1: Comparison of different preconditioners for BiCGStab applied to a Poisson model prob-
lem using overlapping and nonoverlapping partitions on a grid with 60×60×60 elements
and 6 processes (left) and 120× 120× 120 elements and 16 processes (right)

5.7 Interpolation Tables

In every time step, the program has to evaluate different parameters like solubility or
permeability in every grid cell. The evaluation of the nonlinear EOS and the many power
functions is quite time consuming. A good solution to this problem is the usage of inter-
polation tables, where precomputed values in in certain intervals are interpolated. This
uses more memory but saves computation time. Linear splines with equidistant intervals
as recommended and implemented in [40] are used in this work.

Additional to interpolation tables for saturation and relative permeabilities (confer Section
3.1) also tables for density and viscosity of CO2 (confer Section 3.3) and especially the
solubilities (confer Section 3.2) are used. A description of the interpolation class can be
found in Appendix B.

With a simple test the time savings achieved through interpolation tables is measured. A
test case with a setup similar to test case 2 (see Section 7.1) is used, one with interpolation
tables, the other without. For 113 time steps, the simulation without interpolation tables
takes 457 s, while with interpolation tables, the simulation takes only 249 s (180% faster).
For every further time step this difference increases, so that the time saving for simulations
with many time steps (for example test case 4, see Chapter 9) is enormous.
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6 Test Case 1 (MoMas Benchmark): Gas
Injection in a Fully Water Saturated
Domain (1D)

The first test case is part of a recent benchmark study in the context of nuclear waste
management focusing on appearance and disappearance of phases. As there are no analyt-
ical solutions for two-phase two-component flow systems, results of other research groups
are used as possibility to validate the results. The test case is an example from the MoMas
benchmark on multiphase flow in porous media (see [64]).

6.1 Parameters and Setup

The descriptions from the MoMas benchmark are converted to match the variables used in
this work. For the MoMas benchmark the considered nonwetting component is hydrogen
and the wetting component is water. The solubility of water in the nonwetting phase is
neglected: xa

n = 0. Hydrogen is injected into the left part of a rectangular domain Γin (see
Figure 6.1) with a flux of wb

in for 5 · 105 years. Gravitation is neglected, which leads to a
quasi-1D problem.

The domain is initially fully saturated by the water phase, consisting only of pure water
with initial conditions pα = pi

α (see Table 6.1). The boundary conditions are no-flux
conditions at the top and bottom (see Figure 6.1). The Dirichlet boundary conditions for
the outflow boundary Γout are the same as the initial conditions: pα|Γout

= pi
α.

The relationship between pn and Xb
w (where Xκ

α is the mass fraction in contrast to the
molar fraction xκα) is given through Henry’s law (confer (3.1)):

Xb
w = H

ρw
pb

n.

Γout

noflux

noflux

Γin

Figure 6.1: Domain setup for test case 1
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Test Case 1 (MoMas Benchmark): Gas Injection in a Fully Water Saturated Domain (1D)

parameter symbol value unit
porosity φ 0.15
van Genuchten parameter Sw,res 0.4
van Genuchten parameter Sn,res 0
van Genuchten parameter n 1.49
van Genuchten parameter αVG 5 · 10−7 Pa−1

absolute permeability K 5 · 10−20 m2

molar mass Ma 1 · 10−2 kg mol−1

molar mass Mb 2 · 10−3 kg mol−1

initial pressure pi
w 1 · 106 Pa

initial pressure pi
n 0 Pa

source/sink term qκ 0 kg m−2 s−1

molecular diffusion coefficient Db
w 3 · 10−9 m2 s−1

molecular diffusion coefficient Da
n 0 m2 s−1

standard water mass density ρa 1 · 103 kg m−3

viscosity µw 1 · 10−3 Pa s−1

viscosity µn 9 · 10−6 Pa s−1

Henry’s law parameter H 7.65 · 10−6 mol m−3 Pa−1

flux of hydrogen at Γin wb
in 1.77 · 10−13 kg m−2 s−1

flux of water at Γin wa
in 0 kg m−2 s−1

Table 6.1: Parameters for test case 1

Here, the partial pressure of hydrogen in the nonwetting phase is pb
n = pn because there

is no water in the nonwetting phase for this example.

The nonwetting phase density is determined by the ideal gas law, wetting phase density
is obtained through Henry’s Law as

ρmass,n = pnM
b(RT )−1, ρmass,w = ρa +H(T )Mnpn,

where ρstd
w is the standard water mass density.

Here, the diffusion coefficient is defined as

Dκ
pm,α = φSα

(
Xa
α

Ma + Xb
α

Mb

)
Dκ
α.

A van Genuchten model (confer Section 3.1) with the parameters n, αVG and Sα,res as
given in Table 6.1 is used for the saturation/capillary pressure and relative permeability
relationships. All other parameters used in the simulation are also noted in Table 6.1.

6.2 Numerical Results

The choice of the right time step size is very important for the performance of the code.
If the time step is too large, the Newton solver might not converge. If it is too small,
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6.3 Preventing Time Step Breakdown during Phase Appearance
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Figure 6.2: Saturation and pressure evolution at influx boundary (Γin) of test case 1

the simulation takes too much time. Unfortunately, the right time step size can often
not be determined beforehand. Additionally, it may change over time (e. g., the time step
must not be too large, when a new cell is filled with the nonwetting phase). Therefore,
an adaptive time stepping is commendable. For that an initial time step size dtinitial is
chosen. Then, if the Newton solver converges the size for the next time step is increased
by a certain factor dtup

scale (for test case 1: dtup
scale = 1.2). Otherwise, i. e., if the Newton

solver does not converge, the time step computation is unsuccessful. In this case, the
computation is repeated with a time step that is decreased by the factor dtdown

scale (for test
case 1: dtdown

scale = 0.5). dtup
scale and dtdown

scale have to be chosen carefully depending on the setup
of the simulation.

Figure 6.2 shows the evolution of the nonwetting phase saturation and phase pressures at
Γin over time. Sn is zero at the beginning. All injected hydrogen dissolves into the wetting
phase and no nonwetting phase is present. At t ≈ 13000 years, a nonwetting phase starts
to appear at the injection point Γin. The maximum hydrogen saturation is reached at
about t ≈ 5 · 105 years. After that the injection is stopped and the hydrogen saturation
decreases fast. A structured grid of 400 cells is used for the computations.

The output of the simulation corresponds well to the results of other groups. The results
of the benchmark and a comparison between all participating groups can be found in [14].
The test case described here corresponds to test case 1 in the article. A detailed comparison
with the results of Marchand and Knabner is available in [44]. The good correspondence
to the results of various research groups indicates that the model and implementation in
this work provides accurate results.

6.3 Preventing Time Step Breakdown during Phase Appearance

In the course of this work it became clear, that the standard Newton solver is not sufficient
for the efficient simulation of all test cases. For some applications (i. e., test case 2 in
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Test Case 1 (MoMas Benchmark): Gas Injection in a Fully Water Saturated Domain (1D)
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Figure 6.3: Different water retention curves:
curve 1: from Svalbard CO2 benchmark (Brooks-Corey) (see [24] and [52])
curve 2: from Stuttgart CO2 benchmark (Brooks-Corey) (see [22])
curve 3: from MoMas benchmark 1a (van Genuchten) (see [64])
curve 4: test curve for CO2 (van Genuchten)

Chapter 7) the time step size occasionally dropped to a very small value due to non-
convergence in the Newton solver.

For test case 1 this behavior did not appear. One big difference between test case 1 and
2 is the underlying physical process. Test case 1 models hydrogen injection into a very
dense material, whereas the application of test case 2 is injection of CO2 into an aquifer
consisting of sandstone. The water retention curves (see Section 3.1) are very different due
to different soil structure. Figure 6.3 shows typical water retention curves for recent CO2
benchmarks and for the MoMas benchmark.

To investigate the problem, the setup of the simple 1D MoMas test was chosen to directly
compare the influence of different water retention curves. A van Genuchten curve (curve
4 in Figure 6.3) resembling the CO2 benchmark curves is chosen for the CO2 setup. The
only difference between the CO2 and MoMas curve is the van Genuchten parameter αVG,
which is α1 = 5 · 10−7 for MoMas and α2 = 5 · 10−4 for CO2.

Large values of αVG lead to a higher saturations in fewer cells compared to the smaller
αVG. Figure 6.4 shows the nonwetting phase saturation distribution in the domain at
100 000 years.

Numerical simulations with the exact same parameters (see Table 6.1) and a maximum
time step size of 5 000 years are performed, where the only difference is the parameter
αVG. The results are summarized in Table 6.2.

For the CO2 case, the average time step size (ADT) is only a third of the ADT for the
MoMas case and the simulation takes almost 20 times longer because the number of time
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α1
α2

0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100 120 140 160 180 200

sa
tu
ra
tio

n
S
n

x-axis [m]

Figure 6.4: Nonwetting phase saturation distribution at 100 000 years

α1 (MoMas) α2 (CO2)
ADT 4350 y 1420 y
TS 228 708
total simulation time 1.7 min 33.1 min

Table 6.2: Comparison between simulations for different αVG

steps (TS) is larger. Unsuccessful time steps consume a lot of computation time. This is
due to the fact that the Newton solver uses the maximum number of allowed Newton
iterations (in this case 10) for the computation of an unsuccessful time step, while for a
successful time step usually only few iterations are needed.

Using a smaller maximum number of allowed Newton iterations reduces the computation
time spent on unsuccessful time steps. On the other hand it could cause time steps to not
converge that would otherwise be successful. Then the computation has to be repeated
with a smaller time step. Therefore, the maximum number of Newton iterations and the
time stepping control have to be chosen carefully for each problem.

Figure 6.5 shows wetting phase pressure and capillary pressure over time at the leftmost
cell directly at the influx boundary. At the beginning (until ≈ 13 000 y) only the water
phase exists in the cell. After that, the nonwetting phase appears and the behavior of the
pressure curves changes significantly. The capillary phase pressure for α1 rises steadily,
while for α2 there is a distinct kink where the nonwetting phase appears. After the kink
the capillary pressure is almost constant for the CO2 case in contrast to the MoMas case.

This difference in the pressure evolution for different choices of αVG causes convergence
problems. For large αVG the derivative of pc is very high before the nonwetting phase
appears. During the appearance, the Newton solver overestimates the update for pc dra-
matically and does not converge. The standard Newton solver only converges for very
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Figure 6.5: Pressure evolution for different α in the leftmost cell directly at the influx boundary
Γin

Standard Newton Solver Modified Newton Solver
ADT 1420 y 2956 y
TS 709 341
total simulation time 33.1 min 10.7 min

Table 6.3: Comparison between standard and modified Newton solver for simulation with α2 (CO2
case)

small time steps. Instead, a modified Newton solver (confer Section 5.5) was developed,
which uses a more suitable starting point for pc in these cases.

The same simulation for α2 with the modified Newton solver is three times faster than the
standard Newton solver, see Table 6.3. The reason for this large speedup is the increased
time step size which results in only half as many time steps. There are fewer unsuccessful
time steps, thus saving a lot of computing time.

6.4 Grid Convergence

A grid convergence study can verify the experimental order of convergence in the imple-
mentation. As the grid is refined and the time step is reduced the spatial and temporal
discretization errors should asymptotically approach zero. The order of this error reduction
depends on the discretization methods and can be determined experimentally.

For a better understanding of the challenges in compositional two-phase flow, a second
benchmark is proposed in this work. This benchmark concentrates on phase appearance
and disappearance and includes two different test cases for different van Genuchten αVG
(corresponding to Section 6.3).
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6.4 Grid Convergence

The simulation setup is almost identical to the MoMas benchmark in Section 6.1. Although,
the system is written in terms of molar mass balances. A minor difference is the definition
of the density of the wetting phase. The complete setup is presented in Appendix A.

There are two test cases that are identical apart from different values of αVG for the van
Genuchten curves:

• α1 = 5 · 10−7 easy case (original value)

• α2 = 5 · 10−4 difficult case (new value)

Note the slightly different notation in Appendix A. Mass densities are denoted by ρα and
να is the molar density. The molar fraction of a component in a phase xκα can be computed
via the molar density concentration νκα = xκανα.

Parallelity would introduce an additional error through runs with different numbers of
processes. Therefore a setup is chosen that allows all simulations to run sequentially. The
simple 1D setup is a very good example for this application as the amount of grid cells is
small.

The Newton solver uses a relative error of εnl = 1 · 10−6, the absolute error is εabs
nl = 0. To

minimize the influence of the time discretization error the time step size must not be too
large. For all simulations an initial and maximum time step size of dt = 4 years is used.

For the coarsest level (level 0), 100 cells are used. For each level, the amount of grid cells in
x direction is doubled, so there are 2i ·100 cells for level i. The solution on level 7 is used as
reference solution, because no analytical solution is available. The resulting experimental
order of convergence (EOC) is then computed through

EOCi+1 = 1
log (2) | log

(
ei
ei+1

)
|,

where ei is the L2 error between the solution on level i and the reference solution. The
relative L2 error erel

i is defined as ei divided by the L2 norm of the reference solution.

Tables 6.4 and 6.5 show EOC and relative error to the reference solution for saturation
and wetting phase pressure at t = 1 · 105 years. In order to reduce the time discretization
error a maximum time step of only dt = 0.5 years is used.

The convergence study shows that the numerical solution with the finite volume discretiza-
tion converges with an optimal EOC of one for α1. For α2, the EOC is slightly smaller.
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Test Case 1 (MoMas Benchmark): Gas Injection in a Fully Water Saturated Domain (1D)

N Sn pw

erel EOC erel EOC
20 · 100 2.0 · 10−2 5.9 · 10−4

21 · 100 1.0 · 10−2 0.97 2.9 · 10−4 1.02
22 · 100 5.1 · 10−3 0.98 1.5 · 10−4 0.96
23 · 100 2.5 · 10−3 1.01 7.3 · 10−5 1.02
24 · 100 1.2 · 10−3 1.04 3.6 · 10−5 1.01
25 · 100 5.7 · 10−4 1.10 1.8 · 10−5 1.00
26 · 100 2.5 · 10−5 1.21 9.5 · 10−6 0.94

Table 6.4: Grid convergence study for α1 at t = 1 · 105 years

#elements Sn pw

N erel EOC erel EOC
20 · 100 0.104 2.1 · 10−3

21 · 100 0.060 0.79 1.0 · 10−3 0.99
22 · 100 0.036 0.76 6.7 · 10−4 0.64
23 · 100 0.022 0.68 3.6 · 10−4 0.91
24 · 100 0.014 0.65 1.9 · 10−4 0.92
25 · 100 0.008 0.69 9.8 · 10−5 0.94
26 · 100 0.005 0.80 5.0 · 10−5 0.96

Table 6.5: Grid convergence study for α2 at t = 1 · 105 years

6.5 Performance

Apart from grid convergence the benchmark in Appendix A also aims to compare the
performance of different code implementations. For the simulations following values were
chosen for the Newton solver (confer 5.5) and the time stepping scheme:

• εnl = 10−6

• εabs
nl = 0

• εlin = 0 (a direct solver (SuperLU) is used for this 1D problem)
• maxnewtoniterations = 10
• maxlinesearch = 30
• λ = 0.5 (dampening factor)
• dtinitial = 5 000 years
• dtmax = 50 000 years
• dtdown

scale = 0.5, dtup
scale = 1.2

Table 6.6 and 6.7 display the number of successful and failed time steps and Newton steps.
Additionally the wall time for the simulation is given. All simulations were performed
sequentially.
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6.5 Performance

N time steps (failed) Newton steps (failed) wall clock time [s]
20 · 100 48 (7) 309 (70) 1.8
21 · 100 62 (11) 422 (110) 4.9
22 · 100 76 (15) 511 (150) 12.6
23 · 100 89 (18) 630 (180) 38.7
24 · 100 92 (19) 643 (190) 61.6
25 · 100 89 (18) 629 (180) 121.3

Table 6.6: Benchmark performance results for α1 = 5e−7

N time steps (failed) Newton steps (failed) wall clock time [s]
20 · 100 213 (55) 1335 (550) 8.5
21 · 100 403 (107) 2641 (1070) 37.5
22 · 100 781 (206) 5535 (2060) 141.1
23 · 100 1477 (390) 10701 (3990) 518.0
24 · 100 2827 (746) 20751 (7440) 2043.6
25 · 100 5488 (1441) 38942 (13699) 7611.3

Table 6.7: Benchmark performance results for α2 = 5e−4

Table 6.8 and 6.9 show the results obtained at Friedrich-Alexander University of Erlangen-
Nuremberg FAU (Fabian Brunner and Peter Knabner).

They use capillary pressure pc and the molar density concentration νbw as primary variable.
The domain is discretized with a combination of linear finite elements and vertex centered
finite volume scheme. They perform a 2D simulation with (nx + 1) · (ny + 1) degrees of
freedom and use ny = 1. Thus, they have approximately two times the number of degrees
of freedom compared to the cell centered finite volume scheme used in this work, where
the number of freedoms corresponds to the number of cells. Furthermore, they use the
following parameters for their simulation:

• εnl = 10−6

• εabs
nl = 0

• maxnewtoniterations = 30
• maxlinesearch = 2
• dtinitial = 10 years
• dtmax = 1 000 000 years
• dtdown

scale = 0.5, dtup
scale = 10/s with s number of Newton steps in last time step

The numbers in Table 6.8 and 6.9 show a very similar behavior compared to the results in
this work (Table 6.6 and 6.7). The simulations for test case α2 show that significantly more
time steps and Newton steps are needed compared to test case α1. For α2 the number of
Newton steps approximately doubles for each level, where it only increases very slowly for
α1.
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Test Case 1 (MoMas Benchmark): Gas Injection in a Fully Water Saturated Domain (1D)

N time steps (failed) total Newton steps
20 · 100 23 (5) 156
21 · 100 30 (9) 220
22 · 100 47 (17) 370
23 · 100 63 (26) 523
24 · 100 53 (16) 415
25 · 100 78 (35) 654

Table 6.8: FAU (Fabian Brunner and Peter Knabner): Benchmark performance results for
α1 = 5e−7

N time steps (failed) total Newton steps
20 · 100 107 (25) 1100
21 · 100 175 (38) 1717
22 · 100 300 (74) 3167
23 · 100 540 (56) 5584
24 · 100 1000 (204) 10816
25 · 100 2048 (620) 22823

Table 6.9: FAU (Fabian Brunner and Peter Knabner): Benchmark performance results for
α2 = 5e−4

FAU reports results where the improved Newton solver developed in Section 5.5 is used
instead of the standard one. They also observe much better results for the modified version
for α2, confer Table 6.11.

In total, the simulations of FAU clearly need less time steps and Newton steps. Instead of
deriving the Jacobian by numerical differentiation, FAU uses the exact analytical Jacobian.
Furthermore, the exact Newton and time stepping scheme customization is very different
from the simulations in this work and can have a very big impact on the simulation results.
A predefined Newton setup and time stepping scheme configuration would be helpful for
a better comparison.

N time steps (failed) total Newton steps
20 · 100 21 (2) 153
21 · 100 20 (1) 144
22 · 100 18 (3) 123
23 · 100 29 (9) 246
24 · 100 31 (12) 253
25 · 100 32 (13) 263

Table 6.10: FAU (Fabian Brunner and Peter Knabner): Benchmark performance results for
α2 = 5e−7 with modified Newton solver
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6.5 Performance

N time steps (failed) total Newton steps
20 · 100 93 (11) 994
21 · 100 167 (25) 1756
22 · 100 273 (46) 3060
23 · 100 454 (64) 4923
24 · 100 883 (166) 9659
25 · 100 1490 (380) 16626

Table 6.11: FAU (Fabian Brunner and Peter Knabner): Benchmark performance results for
α2 = 5e−4 with modified Newton solver

In this Chapter a simple 1D setup from the MoMas benchmark is used as application
for the code. The experimental order of convergence for the implemented finite volume
method is optimal. Other research groups’ output matches the results of the simulation in
this work very well. This indicates that the implementation in this work provides accurate
solutions. Additionally, a further benchmark is proposed. This benchmarks is based on
the MoMas benchmark, but considers two different van Genuchten curves. Performance
markers and a grid convergence study for this benchmark are provided. A comparison
with the results from FAU shows a very similar behavior. FAU also observes much better
results with the modified Newton solver developed in this work.
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7 Test Case 2: CO2 Injection into a Fully
Water Saturated Domain (2D)

In the second test case, CO2 is injected into a 2D domain. Here, the physical properties of
CO2 and water from Chapter 3 are employed and tested. A strong scalability test shows
the parallel performance of the simulation code.

7.1 Parameters and Setup

In the second test case, CO2 is injected into the lower left part of a rectangular geometry
(600 m × 100 m) with a flux of wb

in. The domain is located 800 m under the surface. As
in test case 1, the top and bottom of the domain have no-flux boundary conditions (see
Figure 7.1). For the Dirichlet boundary on the right side, hydrostatic pressure for the
water phase and zero pressure for the CO2 phase is chosen (that corresponds to xn

w = 0,
i. e., the water phase contains no CO2):

pw|Γout
= 105 Pa + (900− z)ρmass,w · gPa, pb|Γout

= 0 Pa,

where z is the z coordinate in the domain and g the gravity in z-direction. Again, the
values on Γout are taken as initial values.

Densities, viscosities and solubilities are chosen as suggested in Chapter 3. All other pa-
rameters are given in Table 7.1. For the computations, a structured grid with 240 × 40
cells is used.

noflux
Γout

noflux

noflux
Γin

Figure 7.1: Domain setup for test case 2
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Test Case 2: CO2 Injection into a Fully Water Saturated Domain (2D)

parameter symbol value unit
porosity φ 0.2
salinity ssal 0
temperature T 313.15 K
van Genuchten parameter Sα,res 0
van Genuchten parameter n 6
van Genuchten parameter α 6.5 · 10−4 Pa−1

absolute permeability K 1 · 10−12 m2

source/sink term qκ 0 kg m−2 s−1

molecular diffusion coefficient Db
w 2 · 10−9 m2 s−1

molecular diffusion coefficient Da
n 2 · 10−9 m2 s−1

molar mass Ma 1.8 · 10−2 kg mol−1

molar mass Mb 4.4 · 10−2 kg mol−1

flux of CO2 at Γin wb
in 4 · 10−2 kg m−2 s−1

flux of water at Γin wa
in 0 kg m−2 s−1

Table 7.1: Parameters for test case 2

7.2 Numerical Results

The results of test case 2 are shown in Figure 7.2. Each picture shows the CO2 phase
saturation at a specific time point. The contour lines depict the molar fraction of CO2 in
the water phase. The CO2 migrates upwards until it reaches the top of the domain with
the no-flux conditions and is then driven to the right by advective forces.
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7.3 Strong Scalability

(a) 7 days, max(Sn) = 0.82, max(xb
w) = 0.022

(b) 20 days, max(Sn) = 1, max(xb
w) = 0.020

(c) 65 days, max(Sn) = 1, max(xb
w) = 0.020

Figure 7.2: Test case 2: CO2 phase saturation and molar fraction of dissolved CO2 in water (con-
tour lines for xb

w = 0.005, 0.011, 0.016). Color scale ranges from Sn = 0 (blue) to
Sn = max(Sn) (red).

7.3 Strong Scalability

All simulations are performed in parallel. To analyze the parallel performance of the sim-
ulations, a strong scalability test is conducted, where the global problem size stays fixed
and the number of processes is increased. For a weak scalability test (see for example in
Section 8.3), the global problem size in each direction is doubled in each level. Simulta-
neously the number of processes in each direction is doubled, so the number of cells per
process stays constant.

The parallel efficiency is defined as

E = T1
pTp

,

#processes total time [s] efficiency
1 13975 1
2 7763 0.90
4 4151 0.84
8 2658 0.65

Table 7.2: Strong scalability test
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Test Case 2: CO2 Injection into a Fully Water Saturated Domain (2D)

#processes TS ADT [s] MDT [s] ANI
1 2249 3579.7 156.25 3.9
2 2276 3527.6 156.25 3.9
4 2205 3593.1 312.5 3.9
8 2282 3514.4 312.5 3.9

Table 7.3: Performance indicators for strong scalability test

where T1 is the time for the sequential method, p the number of processes and Tp the
time for the parallel method with p processes. The efficiency for one process is E = 1
by definition. With more processes, the problem size for one process becomes smaller but
due to the parallel overhead (interprocess communication), the efficiency decreases. It is
important that the problem size for one process does not get too small, otherwise the
communication overhead dominates.

Table 7.2 shows the results for test case 2 for a simulation time of 65 days. The total
time needed for solving the problem scales very well with the number of processes and the
efficiency only slowly decreases with the number of processes.

To facilitate a comparison with other implementations, important performance indicators
are listed in Table 7.3. TS is the number of time steps performed (both successful and
unsuccessful). For average and minimum time step sizes only the successful time steps are
regarded. Table 7.3 shows that average time step size (ADT), average number of Newton
iterations (ANI) and minimum time step size (MDT) stay almost constant for different
numbers of processes.
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8 Test Case 3: CO2 Injection into a Fully
Water Saturated Domain (3D)

This section shows numerical results for a CO2 injection setup in 3D. The setup is very
close to that of Chapter 7. Naturally, the 3D test has a large number of unknowns in
comparison to a 2D test. A Weak Scalability test, which is an important tool to measure
the parallel performance of the code, is part of this chapter.

8.1 Parameters and Setup

For test case 3, we use the same parameters and a very similar setup as in test case 2 in
Section 7.1. The difference is that we look at a 3D domain as shown in Figure 8.1.

The domain is a cube with dimensions 120 m×120 m×120 m. The source Γin is 10 m×10 m.
For the computations, a structured grid with 60× 60× 60 cells is used.

noflux
noflux

noflux

Γout

Γin

Figure 8.1: Domain setup for test case 3
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Test Case 3: CO2 Injection into a Fully Water Saturated Domain (3D)

8.2 Numerical Results

The results of test case 3 are shown in Figure 8.2. As in test case 2, each picture shows
the CO2 phase saturation. The CO2 rises until it reaches an impermeable layer at the top
of the domain. Then it spreads throughout the top. The solubility of CO2 in the water
phase is given by the contour lines. After 18 days a noticeable amount of water contains
dissolved CO2.

8.3 Weak Scalability

Weak scale tests on different parallel computers and for different simulation setups are
used to ensure the parallel efficiency of the code. In contrast to the strong scalability test
in Section 7.3, the problem size for one process stays fixed, whereas the global problem
size increases.

As computation domain, a cube of 100 m×100 m×100 m is used. For the sequential version,
a cube grid of 50× 50× 50 elements is used. The grid is then globally refined everywhere
(that correlates to eight times more grid cells in total). For the sake of accuracy, the time
step size has to be chosen such that the CO2 front travels about one grid cell layer per
time step. To achieve this, the allowed maximum time step size is halved for each level.

Weak scale tests were performed on two different parallel computers, helics3a located
at IWR, University of Heidelberg, and hermit (CrayXE6) at the HLRS, University of
Stuttgart.

The technical details of the two supercomputers are summarized in Table 8.1. Table 8.2
shows the results of the weak scaling test for a fixed wall clock time of 20 500 s (5.7 h).

Machine name helics3a hermit
# nodes 32 3552
CPU sockets per node 4 2
RAM per node 128 GB 32 GB
total # cores 1024 113 664
CPU socket AMD Opteron 6216 AMD Opteron 6276

at 2.6 GHz at 2.3 GHz
# cores per CPU 8 16
Launch date May 2012 December 2011
InfiniBand Mellanox 40G QDR single port Cray Gemini

PCIe Interconnect QSFP

Table 8.1: Supercomputers used for the scalability tests
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8.3 Weak Scalability

(a) 4 days, max(Sn) = 0.65,
max(xb

w) = 0.021
(b) 9 days, max(Sn) = 0.77,

max(xb
w) = 0.021

(c) 14 days, max(Sn) = 0.82,
max(xb

w) = 0.021
(d) 18 days, max(Sn) = 0.82,

max(xb
w) = 0.021

Figure 8.2: CO2 phase saturation and molar fraction of dissolved CO2 in water for test case 3
(contour lines for xb

w = 0.005, 0.010, 0.016)
Color scale ranges from Sn = 0 (blue) to Sn = max(Sn) (red).

#p N TS ADT[s] ST[s] ANI ALI TIT[s]
1 503 310 279 86400 3.0 4.7 0.6
8 1003 176 140 24430 3.8 5.6 1.1
64 2003 116 68 7892 4.0 5.7 1.2

512 4003 82 33 2690 4.3 6.2 1.5

Table 8.2: Weak scalability test on helics3a for test case 3
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Test Case 3: CO2 Injection into a Fully Water Saturated Domain (3D)

#p N TS ADT[s] ST[s] ANI ALI TIT[s]
1 (only 4.5h) 503 310 279 86400 3.0 5.0 0.4

8 1003 165 140 23030 3.7 5.6 1.2
64 2003 99 67.3 6668 4.0 5.7 1.4
512 4003 78 31.7 2417 4.2 6.8 1.5

Table 8.3: Weak scalability test on hermit for test case 3

The symbols in the table have the following meaning:

N number of cells
TS number of time steps
ADT average time step size
ST simulation time
ANI average number of Newton iterations
ALI average number of linear iterations per Newton iteration
TIT average time for a linear iteration

In this weak scalability test, in each level the mesh is refined by a factor of two in each
spatial dimension and correspondingly the number of processors is increased by eight. The
time step size needs to be decreased for smaller cells. Thus, the time that is simulated
for the same number of time steps is less. In total, 512 processors compute 82 time steps
compared to 310 for 1 processor (factor of 3.8 less).

For an optimal method without communication, ANI, ALI and TIT would stay constant.
For 512 processors, the number of Newton steps and the number of linear iterations do
only slightly increase compared to 1 processor. However, the average time for a linear
iteration increases almost by a factor of three. This increase is the reason that less time
steps are performed for 512 processors.

An explanation for the big increase of the average time per linear iteration could be the
Bulldozer microprocessor architecture of the AMD Opteron 6200 series, that is used in
both supercomputers (confer Table 8.1). Bulldozer shares one floating point execution unit
between two threads (confer [20]) which reduces the floating point performance.

The same weak scalability test performed on hermit gives similar results (see Table 8.3).
In summary: Going from the sequential (1 process) to the parallel version (8 processes)
there is an expectable drop, especially for the TIT. After that, the code scales very well
on both helics3a and hermit.
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9 Test Case 4: Svalbard Benchmark

As last example a recent benchmark studied at a workshop in Svalbard is chosen. The Sval-
bard benchmark is chosen as a possibility for a setup with a large number of unknowns.

One of the main goals is to test the parallel capability of the code on the supercomputer
hermit (CrayXE6) at the HLRS, University of Stuttgart and to look at the spreading of
the CO2 plume for different grid resolutions.

A weak scalability test is presented to evaluate the parallel efficiency of the code. Further-
more, a new benchmark is proposed. This new benchmark uses a very simple 2d setup and
concentrates on the evolution of time step sizes after injection stop.

9.1 Parameters and Setup

The complete description of the benchmark can be found in [24]. Results of different groups
are available (see [52]). The CO2 injection stops after a certain time span. The aim of the
benchmark is to track the movement of the CO2 plume long after injection stop.

In contrast to the MoMas benchmark discussed in Chapter 6, many modeling decisions
are left open. Fluid properties like density or viscosity are not defined. Additionally, even
miscibility is not mandatory. One of the aims of the Svalbard benchmark is to compare
the influence of the specific modeling on the numerical results. But the great liberty in
modeling choices also means, that the complexity and with that the specific numerical
challenges of the different implementations are very different.

In order to cover the large time span required by the benchmark (10 000 years), the
participating groups used different approaches to simplify the numerical simulation. Many
groups do not include solubility or compressibility in their simulations and use a simple
two-phase flow model. One group (University of North Carolina) uses vertical upscaling
as a possibility to reduce the complexity to that of a 2D problem. Furthermore, many
groups simply use a very small grid. Only Potsdam reports results for a relatively large
grid (1 million cells) that includes solubility of CO2 in water.

The emphasis of this work is a very large grid resolution together with a model that
includes solubility trapping. Therefore, solubility of CO2 in water is included in the simu-
lations. Furthermore, the complex physical behavior of, e. g., density and viscosity is part
of the model. A fine grid is chosen to resolve the large domain and large parallelization is
employed to make the numerical simulation feasible in a reasonable time.
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Test Case 4: Svalbard Benchmark

1%

5 km

20 km

9.7 km

50m

312.5 m

468.75 mwell at bottom

Figure 9.1: Domain setup for test case 4

One difficulty of this particular benchmark is the very anisotropic domain. The original
benchmark definition has an extent of 100 km × 200 km but only 50 m in z-direction. A
well is located at the center of the bottom of the domain.

Initial tests show a close relation between the size of the cells and the time step size. For a
very fine grid resolution the time step size gets very small. In order to use a large number
of cells only the first 20 years of the benchmark can be covered in reasonable time. Another
observation is, that the CO2 does not travel far during the first years and it is enough to
model only part of the domain. Furthermore, it is sufficient to only simulate half of the
domain as the whole setup is symmetric in x-direction. Figure 9.1 shows the domain that
is used for the simulations (note that the domain has a constant tilt of 1%).

The simulations are performed in parallel using 512 processes. A structured grid with
1024 × 256 × 16 cells (≈ 4.2 million cells) for a domain of 20 000 m × 5000 m × 50 m is
used. The well size is chosen as 312.5 m× 468.75 m for half the domain, that corresponds
to 16 × 24 cells. The setup is almost the same as for the weak scalability test in Section
9.3. This explains the choice of the size of the well. For the scalability test, twice as many
cells in each direction (that is 8 times as many in total) are used, because only a small
time span is modeled (see Section 9.3).

As in test cases 2 and 3, water is the wetting component and CO2 the nonwetting compo-
nent. The solubility of water in the nonwetting phase is neglected: xa

n = 0. For 20 years 1
megaton CO2 per year (that corresponds to 31.71 kg s−1) is injected from the well (for the
simulation only half that amount is injected, because only half the domain is simulated).
The top of the domain is located 2500 m under the surface.

The gravity vector is in general given by:

g = (0, 0,−9.81)m s−2

To include the dip of β = arctan(1%) = 0.5729° of the domain in the simulation, the
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9.1 Parameters and Setup

parameter symbol value unit
porosity φ 0.15
salinity ssal 0
temperature T 345.65 K
Brooks-Corey parameter Sw,res 0.2
Brooks-Corey parameter Sn,res 0.1
Brooks-Corey parameter τ 1
Brooks-Corey parameter λ 2
Brooks-Corey parameter pentry 2 · 104 Pa
absolute permeability K 1 · 10−13 m2

source/sink term qκ 0 kg m−2 s−1

molecular diffusion coefficient Db
w 1 · 10−9 m2 s−1

molecular diffusion coefficient Da
n 1 · 10−9 m2 s−1

molar mass Ma 1.8 · 10−2 kg mol−1

molar mass Mb 4.4 · 10−2 kg mol−1

flux of water at Γin wa
in 0 kg m−2 s−1

flux of CO2 at Γin wb
in 15.855 kg m−2 s−1

Table 9.1: Parameters for Svalbard benchmark

gravity vector can be adapted as follows:

g =
(
− sin

(
βπ

180

)
· 9.81, 0,− cos

(
βπ

180

)
· 9.81

)
m s−2.

The boundary conditions are similar to those in test case 3. No-flux boundary conditions
are chosen at the top and bottom of the domain. As only half of the domain is simulated,
no-flux conditions are also used at the right side of the domain where the well is located.
For the Dirichlet boundaries on the remaining sides, hydrostatic pressure for the water
phase and zero pressure for the CO2 phase (which leads to xn

w = 0) are used:

pw|Γout
= 105 Pa + (2550− z)ρmass,w · gPa, pn|Γout

= 0 Pa,

where z is the z-coordinate in the domain and g the gravity in z-direction. The z-coordinate
has to be computed according to the dip of the domain. Again the same values are taken
as initial values.

According to the benchmark description (see [24]) the Brooks-Corey model is used (confer
Section 3.1) for the water retention curve. The Svalbard benchmark uses a slightly different
formula for the computation of the relative permeability of the nonwetting phase:

krn(Sn) = 0.4S2
n

(
1− (1− Sn)2

)
.

All other parameters used in the simulation are listed in Table 9.1.
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Test Case 4: Svalbard Benchmark

9.2 Numerical Results

The simulation is performed in parallel on 512 cores (16 nodes with 32 cores, see also
Table 8.1 in Chapter 8) on hermit (CrayXE6) at the HLRS, University of Stuttgart. On
hermit there are usage time restrictions (i. e., jobs are only allowed to run for 24 hours).
With the large number of cells and the long simulation time of this setup, the simulation
is not finished after 24 hours, therefore a restarting mechanism has to be implemented. At
certain checkpoints each process writes the current solution on all degrees of freedom into
a file. The simulation can then be restarted from the last checkpoint. For the restarting
mechanism, every 500th time step is chosen as checkpoint (and later every 250th time
step).

For the first 1200 time steps the overall computation time is 14 000 s, so the average
computation time for one time step is 11.7 s. The mean time needed for writing the output
is 2.82 s. That means that writing output increases the computation time for one time step
by 25%. So, in order to reduce computation time, the output is not stored for every time
step. The data in each degree of freedom is written out each month (1 month = 2 628 000 s).

Table 9.2 shows the number of time steps simulated in each run (24 hours) and the average
time step size (ADT) for the first 10 runs. After a short period in the beginning the average
time step size decreases slowly over time. The reason for that behavior is, that the surface
of the CO2 front increases over time. With that also the number of cells that potentially
switch from one phase to two phases increases. Due to the kink in the pressure evolution
at the one-phase/two-phase interface described in Section 5.5, the time step size cannot
grow too big.

Figure 9.2 and 9.3 show a comparison of the spread of the CO2 plume for different numbers
of cells. Each picture shows the CO2 saturation and the solubility of CO2 in the water

number of run TS start TS end ST[years] ADT[s]
0 1 5433 4.5 26153
1 5000 10067 5.7 8580
2 10000 15500 6.4 3510
3 15500 21096 6.9 3346
4 21000 26805 7.2 1790
5 26500 32423 7.5 1685
6 32000 37501 7.9 2058
7 37500 43803 8.2 1316
8 43750 49538 8.4 1296
9 49500 55120 8.6 1372

10 55000 60588 8.9 1369

Table 9.2: Number of time steps and average time step size per run of 24 hours
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9.2 Numerical Results

phase. Of the whole simulation domain only a part of 1.75 km is shown and the z-axis is
magnified by a factor of 5 for better visibility.

Many benchmark participants use non-uniform or variable-sized grids for their simulation
(confer [52]). But even so the reported cell sizes for the cells near the source have a length of
at least 100 m compared to 19.5 m for the simulation in this work. Figure 9.2 and 9.3 show
that the shape and the extent of the CO2 plume differs very much for different numbers
of cells. This indicates that simulations with too few cells are possibly not sufficient to
predict the migration of CO2.

Figure 9.4 shows the results for 512 processes including the solubility of CO2 in the water
phase. As before, only a part of 1.75 km is shown and the z-axis is magnified by a factor
of 5.
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Test Case 4: Svalbard Benchmark

(a) #p = 1, N = 213 ≈ 8200 cells

(b) #p = 64, N = 219 ≈ 0.5 million cells

(c) #p = 512, N = 222 ≈ 4.2 million cells

Figure 9.2: CO2 phase saturation for different processor numbers p for t = 1 year, 7 months for
test case 4. Only a part of 1.75 km is shown, z-axis scaled by a factor of 5.
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9.2 Numerical Results

(a) #p = 1, N = 213 ≈ 8200 cells

(b) #p = 64, N = 219 ≈ 0.5 million cells

(c) #p = 512, N = 222 ≈ 4.2 million cells

Figure 9.3: CO2 phase saturation for different processor numbers p for t = 5 years, 9 months for
test case 4. Only a part of 1.75 km is shown, z-axis scaled by a factor of 5.
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Test Case 4: Svalbard Benchmark

(a) 0 year, 9 months

(b) 1 years, 4 months

(c) 2 year, 7 months
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9.3 Weak Scalability

(d) 7 years, 5 months

Figure 9.4: CO2 phase saturation and molar fraction of dissolved CO2 in water for test case 4
(contour lines for xb

w = 0.0025, 0.0049, 0.0074). Only a part of 1.75 km is shown, z axis
scaled by a factor of 5. Color scale ranges from Sn = 0 (blue) to Sn = 0.579 (red).

9.3 Weak Scalability

A weak scalability test is performed for the Svalbard benchmark. In contrast to the weak
scalability test for test case 3 (see Section 8.3) the domain is very anisotropic. This has to
be considered for the distribution of cells to processes.

9.3.1 Choice of Cell Structure and Processor Domains

If the number of unknowns per process is too small, the performance of the linear solver
(AMG, confer Subsection 5.6.1) may not be optimal. Therefore, twice as many cells in
each direction are used compared to Section 9.1.

This is due to the fact, that the employed linear solver (AMG, confer Subsection 5.6.1) does
not perform optimal if the number of unknowns on every process is too small. Therefore,
larger grid is chosen to get meaningful results.

The domain size is quite small in z-direction (50 m) compared to the other two dimensions
(20 000 m × 5000 m). At the beginning the main CO2 movement is in z-direction and
there exists a strong coupling between cells in this direction. This is important for the
distribution of cells to processors. Therefore, for this scalability test the domain for one
process always covers all cells in one column in z-direction.

Table 9.3 displays the number of cells in each direction. A relatively conformable processor
domain size is achieved by doubling and quadrupling the processor number in x- and y-
direction in turns (see Table 9.4).
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Test Case 4: Svalbard Benchmark

#p nx ny nz N

1 28 = 256 26 = 64 22 = 4 216 = 65 536
8 29 = 512 27 = 128 23 = 8 219 = 524 288

64 210 = 1024 28 = 256 24 = 16 222 = 4 194 304
512 211 = 2048 29 = 512 25 = 32 225 = 33 554 432

4096 212 = 4096 210 = 1024 26 = 64 228 = 268 435 456

Table 9.3: Amount of cells for different processor numbers for weak scalability test (where nx is
number of cells in x-direction).

#p px py pz npx npy npz

1 1 1 1 28 = 256 26 = 64 22 = 4
8 22 = 4 21 = 2 1 27 = 128 26 = 64 23 = 8
64 24 = 16 22 = 4 1 26 = 64 26 = 64 24 = 16

512 25 = 32 24 = 16 1 26 = 64 25 = 32 25 = 32
4096 27 = 128 25 = 32 1 25 = 32 25 = 32 26 = 64

Table 9.4: Distribution of domain to processes (where px is number of processes in x-direction and
np

x number of cells of one process domain in x-direction.)

9.3.2 Results

The weak scalability test is performed on hermit (CrayXE6) at the HLRS, University of
Stuttgart. The simulations have to be restarted after 24 hours (see Section 9.2) and after
12 hours for a sequential process (i. e., #p = 1).

Table 9.5 shows the results of the weak scalability test for a fixed wall clock time of 12
hours.
The symbols in the table have the following meaning:

N number of cells
TS number of time steps
ADT average time step size
ST simulation time
ANI average number of Newton iterations
ALT average number of linear iterations per time step
TIT average time for a linear iteration

The average time for a linear iteration (TIT) stays almost constant after the first level.
However, the average number of Newton iterations (ANI) drops considerably. As ANI
differs very much, instead of the average number of linear iterations per Newton iteration
(ALI), average number of linear iterations per time step (ALT) is shown. That is, the
average number of linear iterations per time step and not per Newton iteration is given. The
table shows a distinct change beginning at 512 processes. Here, ADT drops considerably
and additionally ANI is reduced to a much smaller number. The reduced ANI can be
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9.4 Convergence Problems after Injection Stop

#p N TS ADT[s] ST[days] ANI ALT TIT[s]
1 216 = 65 536 558 622916 4023 5.96 86.3 0.16
8 219 = 524 288 282 301997 985 5.35 118.8 0.41
64 222 = 4 194 304 231 72540 193 5.37 164.2 0.47

512 225 = 33 554 432 321 4325 16 2.96 112.7 0.53
4096 228 = 268 435 456 233 2107 5 2.46 149.6 0.61

Table 9.5: Weak scalability test on hermit for test case 4 (Svalbard benchmark)

explained by the much smaller ADT. With smaller time steps the nonlinear problem is
easier to solve, and a smaller number of Newton steps is sufficient for convergence.

During grid refinement, the volume of each cell is reduced by a factor of 8 while the
surface only decreases by a factor of 4. The CO2 moves mainly in vertical direction after
an initial upwards movement. Therefore, at specific cells (e. g., at the front of the CO2
plume) in each refinement level the CO2 flux doubles in relation to the cell volume. That
means, for small cells (and with that a larger number of processes) a large amount of
CO2 has to be distributed to a relatively small volume. Presumably, this means that the
nonlinear problem is harder to solve and can explain the distinct decrease of ADT for 512
processes.

9.4 Convergence Problems after Injection Stop

Previous tests (see Section 5.5) showed that during injection the time step size closely
relates to number of new cells switching from one-phase to two-phase and thus the cell
size. After injection stop, the time step size should increase because the CO2 front moves
more slowly and less cells switch to two-phase.

Tests in preparation for the Svalbard benchmark showed a very different behavior. During
injection the time step stays more or less constant. After injection stop the time step
first increases as expected followed by a breakdown of the step size (smaller than during
injection).

To simplify the analysis of this problem, a 2D setup of the Svalbard benchmark is chosen:
The domain size is 20 000 m×50 m. The domain is a 2D section of the 3D setup in Figure 9.1
and matches the rightmost surface in x-z-direction. All other parameters are not changed
compared to Section 9.1. The simulation is performed in parallel.

Figure 9.5 shows the time step size evolution for three different simulations. The first two
use a different number of cells in x direction, the third one uses a grid with nonuniform
rectangles (i. e., the cells are smaller near the well).

All three show the same behavior described above. The time step size is more or less
constant until injection stop at approximately 0.6 · 109 s. After an intermittent increase,
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Test Case 4: Svalbard Benchmark
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Figure 9.5: Time step evolution for a 2D version of test case 4 for three different grids

the time step size drops down to very small values. These small time step sizes make large
scale simulations with fine grids impossible because the computation takes too long.

This behavior can only be observed for at least 2D simulations (more than one cell in
z-direction) and for simulations including miscibility. Many participants of the Svalbard
benchmark used no miscibility or upscaling (i. e., only one cell in z-direction) and thus
did not experience this problem. If some of the remaining groups, that used miscibility
in combination with a larger grid did observe a similar behavior is unknown, because
the participants did not report information about their average time step size or overall
computation time.

Many attempts to solve this problem have been made in the course of this work:

• using different versions of Henry’s law (a linear function) for the solubility instead
of the complex constitutive relation described in Section 3.2

• using the wetting phase pressure instead of the nonwetting phase pressure as primary
variable (pc/pw formulation)

• using solubility as primary variable (pc/xb
w formulation)

• employing variable switching instead of persistent variables

• applying constant densities

• neglect of upwinding

• using sequential instead of parallel simulations

Nevertheless, for all attempts the time step breaks down after the injection phase.

84



9.5 Proposal for a Simple 2D Benchmark to Investigate Time Step Evolution

parameter symbol value unit
initial wetting phase pressure piw 105 + z · ρa · 9.81 Pa
injection time Tinj 10 years
flux of water at Γin wa

in 0 kg m−2 s−1

absolute permeability K 5 · 1017 m2

Table 9.6: Parameters for proposed 2D benchmark that differ from definitions in Appendix A

9.5 Proposal for a Simple 2D Benchmark to Investigate Time
Step Evolution

To investigate the time step behavior observed in Section 9.4 a new benchmark is proposed:
To simplify the analysis of this problem, a 2D version of the benchmark presented in
Appendix A is developed. The setup is basically a 2D version of the MoMas benchmark
which has the advantage that the simple Henry’s law is used for the solubility. Thus, it is
easy to implement because no complex constitutive relations (as, e. g., for carbon capture
and storage (CCS), see Chapter 3) are needed. An additional simplification is the neglect
of diffusion.

The test case is two-dimensional in space (200 m× 1 m), and the time interval to simulate
is Σ = (0, 160) years. There are no sources and sinks inside the domain, i.e.,

qκα = 0. (9.1)

Initial conditions are completely water-saturated with hydrostatic pressure:

pi
w = p0 = 105 Pa + z · ρa · 9.81 Pa

pi
n = 0 Pa

at the left boundary. The top of the domain is at 500 m depth. Dirichlet boundary condi-
tions on Γout are chosen corresponding to the initial conditions. On the top and bottom
the domain is closed and no-flux boundary conditions are chosen.

The nonwetting component is injected into the left side of the domain Γin with a flux of
q0 for 10 years. All parameters that are different from Appendix A are listed in Table 9.6.

For the numerical simulation a grid of 125 × 2 cells is chosen. The initial time step size
is dtinitial = 15 768 000 s. After successful Newton steps the time step is increased by
dtup

scale = 1.5.

The Newton solver uses a maximum of 15 line search iterations. The relative accuracy is
εnl = 1 · 10−6, and the absolute error is εabs

nl = 0. During phase appearance the modified
Newton solver uses ε = 1.5 for the correction of the capillary pressure (confer Section 5.5).
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Figure 9.6: Time step size evolution for 2D benchmark

Two simulations are performed. The only difference is the number of cells in z-direction,
the 1D simulation uses nz = 1 and the 2D simulation nz = 2. Figure 9.7 displays the
distribution of several variables at 4.55 · 109 s (approximately 144 years). The red and
green lines display the distribution of the variables for the upper and lower cells of the 2D
simulation. The blue line shows the distribution for the 1D simulation. Only a part of the
whole simulation domain is shown, because the nonwetting phase only fills about half of the
domain. The same amount of nonwetting component is injected for both simulations, so
the values for the nonwetting saturation for the 1D simulation lie between the saturations
for the upper and lower cells of the 2D simulation.

Figure 9.6 shows a comparison of the time step evolution of the two simulations. For the 2D
simulation (using nz = 2), the time step size is more or less constant during the injection
(until approximately 3.2 · 108 s). After injection the time step size breaks down.

Using only one cell in z-direction (nz = 1), the time step size behaves as expected. During
the injection, the time step size is similar to that of the 2D simulation. After that the
time step size increases as expected, because no new nonwetting component is injected.
The distribution of CO2 and water only changes slowly by, e. g., diffusion and dissolution
processes.

Results of other groups for this proposed 2D benchmark are highly appreciated. It is an
important question, if other approaches for the choice of primary variables (confer Chapter
4) produce better results.

In this chapter, the Svalbard benchmark is used for a simulation with a large number of
cells. Numerical simulations with different grid resolutions show that the cell size impacts
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9.5 Proposal for a Simple 2D Benchmark to Investigate Time Step Evolution
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Figure 9.7: Distribution of important variables at 4.55 · 109 s for 2D benchmark. Only the first
80 m of the domain are shown.

the CO2 plume distribution. Furthermore, a weak scalability test is performed. After in-
jection stop a distinct decrease of the time step size is observed. A simple 2D benchmark is
proposed, which aims to evaluate the time step size evolution during and after injection.
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10 Summary and Outlook

The numerical simulation of carbon capture and storage (CCS) poses a challenge for
present-days models and computers. During CCS, CO2 is injected into the subsurface
and moves upward until it reaches a structural barrier. Different trapping mechanisms
(e. g., residual trapping and solubility trapping) have to be considered for the numerical
simulation.

Accurate constitutive relations for water and CO2 are crucial for meaningful simulation
results. The relations for the physical properties, e. g., densities and solubilities are typ-
ically developed by fitting a curve to experimentally gathered data. Interpolation tables
are successfully used to save computation time for the evaluation of the constitutive rela-
tions.

The mathematical model that describes CCS and incorporates solubility trapping is two-
phase two-component flow in porous media. This is a system of two coupled partial differ-
ential equations with suitable initial and boundary conditions. It describes the interaction
between the two phases water and CO2. Two primary variables have to be chosen for this
system of two equations, all other secondary parameters are derived from the primary
variables.

One of the challenges in simulating compositional two-phase flow in contrast to immiscible
two-phase flow is the fact that there are regions where only one of the phases is present.
A standard choice for the set of primary variables is, for example, one phase pressure and
the saturation of the other phase. However, this choice is only valid if both phases are
present. For two-phase two-component flow a different approach has to be taken.

As an important result in this work, a set of persistent primary variables is developed.
Capillary pressure and nonwetting phase pressure are chosen as primary variables. This
formulation can be consistently used in the presence or absence of the nonwetting phase.
Numerical test show, that this set of primary variables can be successfully used for the
challenging simulation of phase appearance in two-phase two-component flow.

All simulations in this work are performed within the DUNE simulation framework. Simu-
lations show that an adapted Newton solver developed in the context of this thesis signifi-
cantly improves the convergence behavior. Algebraic Multigrid is used as a preconditioner
to get an efficient and fast parallel linear solver.

Different test cases show the capability of the implemented code. First, the simple 1D
MoMas benchmark is implemented. The results are compared to those of other groups
and are in good agreement. A grid convergence study demonstrates, that the solution
converges with an optimal order of one during grid refinement.
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Summary and Outlook

Using a 2D and 3D domain, CO2 injection is simulated by employing the constitutive re-
lations for water and CO2. The spreading of the CO2 plume in the simulations behaves as
expected. Parallel simulations are one possibility for a speed up of simulations of large do-
main. A strong and weak scalability test demonstrate successfully the parallel capabilities
of the simulation.

As last example the 3D Svalbard benchmark is treated. A special challenge of this bench-
mark is the very large and anisotropic domain. In this setup, CO2 is only injected for
a certain time span. After the injection period, the time step size breaks down contrary
to expectations. To investigate this behavior further, a new 2D benchmark similar to the
MoMas benchmark is proposed.

The simulation of CCS poses a big challenge, mainly due to the long time spans and the
large domains that have to be regarded. Nevertheless, the grids used for the simulation
need to be fine enough, to be able to track the position of the CO2 plume accurately. A
good parallel performance of the code, as demonstrated in this work is the key to successful
simulations in reasonable time.

A problem in this context is, that in general the time step size for the simulation decreases
for smaller grid sizes. Because more cells have to undergo the transition from containing
one phase to two phases, the Newton solver does not converge if the time step is too large.
Hence, the simulation of long time spans is still computationally expensive.

In this work a set of persistent primary variables is used for all simulations. Using persis-
tent variables is only on possibility to deal with the problem of disappearing phases for
compositional two-phase flow. An important question is, how other approaches perform
in comparison to the persistent variable approach.

Different benchmarks are regarded in the course of this work. The MoMas benchmark is
a simple 1D setup that concentrates on phase appearance for a two-phase two-component
flow model. The results of the participating groups are compared and mostly in good
correspondence. Nevertheless, a detailed comparison between the numerical advantages
and disadvantages and the overall performance of the different models is still missing.

To this end, a new 1D and 2D benchmark are presented in this work. They use the
MoMas benchmark with a simple physical setup as a basis. Hopefully, these propositions
will inspire groups to contribute with performance results for their approaches.
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Appendix A

Compositional Multiphase Benchmark

This benchmark proposition was developed in cooperation with Peter Bastian and Olaf
Ippisch.

We consider a generic system consisting of two phases α ∈ {w,n} and two components
κ ∈ {a, b}. The system is written in terms of molar densities and should be able to
accommodate the MoMas test case as well as a CO2 test case later. For the numerical
solution a choice of primary variables needs to be made and a set of reduced equations
needs to be derived. Each participant should state this derivation starting from the system
given in this section.

The quantities used below are listed in table A.1.

Conservation of each component κ in each phase α:

∂t(φνκαSα) +∇ · (νκαuα + jκα) = qκα + rκα. (A.1)

Table A.1: Quantities in the generic tow-phase two-component model.

Symbol Meaning Unit
φ porosity -
νκα molar density (concentration) of κ in α mol m−3

Sα saturation of phase α -
pα pressure of phase α Pa
qκα source/sink term of κ in α mol m−3 s−1

rκα phase exchange of κ in α mol m−3 s−1

uα velocity of phase α m s−1

krα relative permeability function -
µα dynamic viscosity of phase α Pa s−1

K absolute permeability m2

ρα mass density of phase α kg m−3

g g = (0, 0,−9.81)T gravitational acceleration vector m s−2

jκα diffusive flux of κ in α mol m−2 s−1

Dκ
α effective diffusion coefficient of κ in α m2 s−1

pc(Sw) capillary pressure saturation relationship Pa
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Extended Darcy’s law:
uα = −krα(Sα)

µα
K (∇pα − ραg) . (A.2)

(Note that the source/sink term includes phase exchange).

Diffusion of component κ in phase α:

jκα = −Dκ
α(Sα)∇νκα. (A.3)

We assume in addition the condition

∀α :
∑
κ

jκα = 0. (A.4)

Finally, we have the capillary pressure saturation relationship

pn − pw = pc(Sw) (A.5)

and
Sw + Sn = 1. (A.6)

MoMas Benchmark Test Case 1

This test case has been published in [64, 14]. Parameters have been adapted from the
mass-based formulation and are not changed with the exception of the van Genuchten
αVG parameter. A minor difference to the original MoMas Benchmark is a small change
in the definition of the water phase density.

Completion of the Model

In this application w is the liquid phase, n is the gas phase, w is the component water and
b is the component hydrogen. A first assumption for this system is

νa
n = 0. (A.7)

Molar and mass densities of the gas phase (component) are related to gas phase pressure
via the ideal gas law:

νb
n = pn

RT
, ρb

n = pnM
b

RT
(A.8)

The water phase is assumed to be an ideal solution with constant molar concentration but
varying mass density:

νa
w + νb

w =: νw = ρa

Ma , ρw = νa
wM

a + νb
wM

b (A.9)
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where Ma, Mb are the molar masses of water and hydrogen in kg mol−1 and ρa is the
mass density of pure water.

Equilibrium phase exchange according to Henry’s law is assumed :

kHpn = χb
w = νb

w
νa

w + νb
w

= νb
w
νa ⇒ νb

w = νakHpn = Hpn (A.10)

where we used (A.9).

For the effective diffusion coefficient of hydrogen (b) in the water phase (w) we take the
Ansatz [42]:

Db
w(Sα) = φ

4/3S2
wD

b
mol,w (A.11)

Then, according to (A.4) we have ja
w = −jb

w and since the gas phase consists only of
hydrogen there is no diffusion of hydrogen in the gas phase.

Finally, capillary pressure and relative permeabilities are given by the van Genuchten
model:

pc(Sw) = 1
αVG

(
S̄−1/m

w − 1
)1/n

(A.12)

krw(Sw) =
√
S̄w
(
1−

(
1− S̄1/m

w

)m)2
(A.13)

krn(Sn) =
√

1− S̄w
(
1− S̄1/m

w

)2m
(A.14)

where
S̄w = Sw − Sw,res

1− Sw,res
, m = 1

n
. (A.15)

In the first test case the van Genuchten Parameter αVG will be varied. We will choose:

Parameter Value Unit Comment
α1 5 · 10−7 Pa−1 original value (easy)
α2 5 · 10−4 Pa−1 new value (difficult)

Domain, Boundary and Initial Conditions

The test case is one-dimensional in space with Ω = (0, 200m) and the time interval to
simulate is Σ = (0, 106y).

There are no sources and sinks inside the domain, i.e.

qκα = 0. (A.16)

Initial conditions are completely water-saturated:

pw(0, x) = p0, Sw(x, 0) = 1, νb
w = 0 (A.17)
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Table A.2: Parameter values for the MoMas test case 1.

Parameter Value Unit
ρa 1 · 103 kg m−3

Ma 1 · 10−2 kg mol−1

Mb 2 · 10−3 kg mol−1

H 7.65 · 10−6 mol m−3 Pa−1

µn 9 · 10−6 Pa s−1

µw 1 · 10−3 Pa s−1

Db
mol,w 3 · 10−9 m2 s−1

R 8.3144621 J mol−1 K−1

T 303 K
φ 0.15 -
Sw,res 0.4 -
K 5 · 10−20 m2

n 1.49 -

Table A.3: Initial and boundary condition values for the MoMas test case 1. Note that the time
unit is years in this table!

Parameter Value Unit
p0 106 Pa
Tinj 5 · 105 y
q0 2.785 · 10−3 mol m−2 y−1

with pressure p0 given in table A.3.

Denoting by wa = νa
wuw + ja

w and wb = νb
nun + νb

wuw + jb
w the total fluxes of components

a (water) and b (hydrogen) we specify the boundary conditions at the left boundary

wa(0, t) = 0, wb(0, t) =
{
q0 0 ≤ t < Tinj
0 else (A.18)

and at the right boundary

pw(200, t) = p0, Sw(200, 0) = 1, νb
w = 0. (A.19)

The values q0, Tinj and p0 are given in Table A.3.
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Appendix B

Implementation of the Constitutive
Relations for CO2 and Water

A short overview over the existing classes and functions for the constitutive relations be-
tween CO2 and water is given here. The implementation is part of the dune-pm module.
The class PhysicalChemistry is a collection of constants and functions for the computa-
tion of physical properties. Only mass units are used instead of molar units. The cor-
responding molar units can then be computed via the molar masses of CO2 and water
(Ma = 1.8 · 10−2 kg mol−1 and Mb = 4.4 · 10−2 kg mol−1). Table B.1 lists the units for all
parameters. The template parameter T is the data type used for all computations, in this
work double is used for all computations.

The two functions SolubilityWaterInCO2 and SolubilityCO2InWater take temperature T ,
nonwetting phase pressure pw and salinity ssal as arguments and return the mass fractions
Xb

w and Xa
n respectively.

template < typename T>
T PhysicalChemistry <T >::

SolubilityWaterInCO2 (T temperature , T pressure , T salinity )

template < typename T>
T PhysicalChemistry <T >::
SolubilityCO2InWater (T temperature , T pressure , T salinity )

The functions DensityCO2 and ViscosityCO2 take temperature T and nonwetting phase
pressure pw as arguments and return the mass density ρmass,n and viscosity νn.

parameter symbol unit
temperature T K
pressure p Pa
salinity ssal mol kg−1

density ρmass kg m−3

viscosity µ Pa s−1

mass fraction X kg kg−1

Table B.1: Units used for the implementation of constitutive relations between water and CO2
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template < typename T>
T PhysicalChemistry <T >:: DensityCO2 (T temperature , T pressure )

template < typename T>
T PhysicalChemistry <T >:: ViscosityCO2 (T temperature , T pressure )

The function DensityBrine returns the mass density ρmass,w and takes temperature T ,
wetting phase pressure pw, salinity ssal and mass fraction Xb

w as arguments.
template < typename T>
T PhysicalChemistry <T >::

DensityBrine (T temperature , T pressure , T salinity , T massfraction )

For the computation of the CO2 parameters, the class InterpolateCO2 should be used,
because the evaluation of the functions above is expensive (confer Section 5.7). The con-
structor of the class needs values for temperature and salinity, that are constant in all
simulations in this work.

template < typename T>
class InterpolateCO2
{ public :

InterpolateCO2 (T temperature , T salinity ) };

To initialize the interpolation table, the member function Init has to be used. The default
value for parameter numPoints is 10000. For all underlying functions numPoints equally
distributed values are stored. Afterwards a specific value is approximated with linear
interpolation. Table B.2 shows the important member functions of the class. All functions
take the pressure pn as argument.
void Init(int numPoints = 10000)

The CO2 interpolation class can then be used in the code like this:
#include <dune/pm/ physics / physical_chemistry .hh >
...
// co2 v a l u e s i n t e r p o l a t i o n

Dune ::PM:: InterpolateCO2 <T>* co2values =
new Dune ::PM:: InterpolateCO2 <T>( temperature , salinity );

co2values ->Init ();
T viscosity = co2values -> viscosity ( pressure );

Member function Description
Xlg (pressure) returns Xb

w
Xgw (pressure) returns xb

w
xgw (pressure) returns xa

n
density (pressure) returns ρmass,n
viscosity (pressure) returns νn

Table B.2: Member functions of class InterpolateCO2
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List of Acronyms

CCS Carbon capture and storage

EOS Equation of state

EOC Experimental order of convergence

TS Time steps

ADT Average time step size

MDT Minimum time step size

ANI Average number of Newton iterations

ALI Average number of linear iterations per Newton iteration

ALT Average number of linear iterations per time step

TIT Average time for a linear iteration

REV Representative elementary volume

AMG Algebraic multigrid

DNAPL Dense non-aqueous phase liquid

97





List of Symbols

α phase α
αVG parameter for van Genuchten-Mualem model [Pa−1]
S̄α effective saturation of phase α
εlin relative accuracy for linear solver in Newton step
εabs
nl absolute error for Newton solver
εnl relative accuracy for Newton solver
κ component κ
λ parameter for Brooks-Corey model
Γin influx boundary
Γout outflow boundary
maxlinesearch maximum allowed number of linesearch steps for Newton solver
maxnewtoniterations maximum allowed number of Newton steps
µα viscosity of phase α [Pa/s]
b nonwetting component
νκα molar density concentration of component κ in phase α [mol/m3]
n nonwetting phase
Ω simulation domain
φ porosity
ρa standard water mass density ρa = 1000 [kg/m3]
ρα molar density of phase α [mol/m3]
ρmass,α mass density of phase α [kg/m3]
τ parameter for Brooks-Corey model
a wetting component
w wetting phase
Dκ
α molecular diffusion coefficient of component κ in phase α [m2/s]

Dκ
pm,α diffusion coefficient of component κ in phase α in porous medium[m2/s]

g gravity vector g = (0, 0,−9.81) [m/s2]
H Henry’s Law parameter [mol/(m3 Pa)]
jκα diffusive flux of component κ in phase α [mol s/m2]
K absolute permeability [m2]
krα relative permeability of phase α
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List of Acronyms

m parameter for van Genuchten-Mualem model
Mκ molar mass of component κ [kg/mol]
n parameter for van Genuchten-Mualem model
pi
α initial pressure of phase α [Pa]
pw, pn wetting and nonwetting phase pressure [Pa]
pc capillary pressure [Pa]
pentry entry pressure [Pa]
qκ source/sink term for component κ [kg/(m2 s)]
qκα source/sink term for component κ in phase α [kg/(m2 s)]
rκα phase exchange of componentκ in phase α [mol/(m3 s)]
Sα saturation of phase α
Sα,res residual saturation of phase α
ssal salinity of water
T temperature [K]
uα velocity of phase α [m/s]
wκin flux of component κ at Γin [kg/(m2 s)]
Xκ
α mass fraction of component κ in phase α

xκα molar fraction of component κ in phase α
dtinitial initial time step size
dtmax maximum time step size
dtdown

scale scaling factor for time step after failed time step
dtup

scale scaling factor for time step after successful time step
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