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Introdu
tion

Optimization has various appli
ations in natural s
ien
es and e
onomy. The development

of appropriate models for (real life) problems 
an be a 
hallenging and diÆ
ult task. But

the appli
ation of this model may lead to further problems. Missing model parameter data

has to be determined (parameter estimation). Some data should be 
hosen in order to

get optimal solutions like a minimal drag or a maximal output (optimal 
ontrol or pro
ess

optimization).

This thesis is a part of a proje
t within the Sonderfors
hungsberei
h 359 'Rea
tive Flow,

Di�usion and Transport' with resear
h by several work groups. In this proje
t one �nal

aim is to optimize the following Chemi
al Vapour Deposition (CVD) experiment:

�����
�����
�����
�����G_J

substrate

The experiment leads to arti�
ial produ
tion of diamond on a substrate ('Substrathalter' in

above experiment Figure). The methyl radi
al CH

3

is as
ribed playing a 
ru
ial role in the

produ
tion of the diamond. So one possible optimization 
riterion is that the 
on
entration

of CH

3

should be maximized in an appropriate region G

J

:

max

1

G

J

Z

G

J

C

CH

3

:

The problem 
an be given either in Cartesian 
oordinates or in 
ylindri
al polar 
oordinates.

Contributions from mathemati
s, 
omputer s
ien
e, physi
s and 
hemistry are ne
essary

in order to solve this problem modeled by rea
tive 
ow. The aim of this thesis is to provide

mathemati
al te
hniques whi
h will enable to solve the optimization problem. Therefore,

the following systemati
 stru
ture for developing appropriate optimization methods was


hosen:

� Optimization governed by the Poisson equation. The optimization problem is derived

in a very detailed way in Se
tions 1.1, 1.2, and 1.3. Numeri
al results are given in

Se
tion 1.6.
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� Optimization governed by the linear state equation ��u + u = 0 as an exemplary

problem. The developed te
hniques will be explained. The problem formulation and

the numeri
al results are presented in Se
tion 2.13.

� Optimization governed by the nonlinear state equation ��u + u

3

� u = f . It is

used in Ginzburg-Landau models in super
ondu
tivity for semi
ondu
tors. Boundary


ontrol problems on Neumann boundaries on several domains will be 
onsidered.

The optimization 
riteria are retrieval of pres
ribed solutions either on the domain

or on parts of it (distributed or boundary observation). The optimization problem

formulation is given in Se
tion 4.2. Numeri
al results will be presented in Se
tions

4.4, 4.5, 2.12, 4.6, and 4.7.

� Optimization governed by the Navier-Stokes equations modeling 
ow ('laminar 
ow

around an obje
t'). Boundary 
ontrol problems on Diri
hlet boundaries on more


ompli
ated domains will be solved. The optimization 
riteria are minimal drag


oeÆ
ients on boundaries of an obje
t in the domain. The problem formulation is in

Se
tion 5.5. The numeri
al results 
an be found in Se
tion 5.7.

� Optimization governed by the Navier-Stokes equations modeling 
ow with tempera-

ture by the Boussinesq model. Boundary 
ontrol problems on Diri
hlet boundaries

on more 
ompli
ated domains will be solved. The optimization 
riteria are maximal

temperature in a 
ertain region. The problem formulation and the numeri
al results

are presented in Se
tion 5.8.

In these examples, optimization may lead to unexpe
ted solutions e.g. for the state

equation. We have to keep in mind that the optimization is based on the presented mathe-

mati
al models and may not ne
essarily be for the original physi
al optimization problems.

Furthermore, the real sensitivities in optimization problems 
an also lead to solutions whi
h

are di�erent from expe
ted solutions ('we 
an learn from optimization').

Various methods have been developed to solve optimization problems. Two main

streams are 'bla
k-box optimization' and 'simultaneous optimization' leading to a 
oupled

system. Bla
k-box optimization takes a given simulation with the possibility to 
hoose

some model data. The simulation is the bla
k box. The optimization pro
ess 
hanges the

model data su
h that the simulation ful�lls in some way pres
ribed 
riteria. The simulta-

neous optimization approa
h tries to solve the whole problem in one equation system. The

simulation is a more or less integrated part of the system.

The presented approa
h utilizes the 
lassi
al Lagrangian framework for reformulating

the optimal 
ontrol problem as a boundary value problem for stationary solutions of the

asso
iated �rst-order ne
essary optimality 
onditions. By di�erentiation of the 
ontinu-

ous Lagrangian fun
tional, the �rst order ne
essary 
onditions of a 
onstraint optimization

problem are derived. This leads to a 
oupled system for the equations of the variables. In

ea
h step, the whole equation system is solved (simultaneous optimization). A standard

�nite element method is used for dis
retizing this saddle-point problem whi
h then results

in �nite dimensional problems. As long as the dis
retization pro
edure uses a pure Galerkin

approa
h, the dis
rete problem a
tually 
orresponds to a formulation of the original min-

imization problem on the dis
rete state spa
e. Sin
e dis
retization in partial di�erential

equations is expensive, at least for 
hallenging appli
ations, the question of how this \model
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redu
tion" a�e
ts the quality of the optimization result is 
ru
ial for a 
ost-eÆ
ient 
om-

putation. The need for a posteriori error 
ontrol is therefore evident.

The dis
retization of the state equation generally leads to approximate solutions, whi
h

are not admissible in the stri
t sense for the original 
ontinuous 
onstrained optimization

problem. If numeri
al 
omputation with 
ontrolled a

ura
y should be performed, the

notion of an \admissible solution" must be substituted by an error estimate for the state

equation. Of 
ourse, the distan
e between the numeri
al and the exa
t solution should be

measured with respe
t to the spe
i�
 needs of the optimization problem, i.e. its e�e
t on

the fun
tional to be minimized. This asks for a sensitivity analysis of the optimization

problem with respe
t to perturbations in the state equation, parti
ularly perturbations

resulting from dis
retization. In this sense, the a posteriori error estimation aims to 
on-

trol the error due to repla
ing the in�nite dimensional problem by its �nite dimensional

analogue. The 
ru
ial question is now whi
h quality measure is appropriate for 
ontrolling

the dis
retization error. In general, for
ing this error to be small uniformly in the whole


omputational domain, as is often required in ODE and DAE models, is not feasible for

partial di�erential equations. Therefore, it seems to be ne
essary to develop 
ontrol of

the dis
retization error in a

ordan
e with the sensitivity properties of the optimization

problem.

Little resear
h has been done on adaptivity and error estimation for optimization prob-

lems governed by partial di�erential equations. Habitually, this adaptivity is based on


riteria 
onsidering simulation. One main idea of this thesis is that the adaptivity is ob-

tained by error estimation 
riteria really originating in the optimization problem. The

equation system for the error estimation problem is derived analyti
ally. The s
aling of

the terms of the error estimator is done naturally by analyti
ally derived weights. These

weights involve dual solutions of the optimization problem. They des
ribe the dependen
e

of the error on variations of the lo
al residuals, i.e. on the lo
al mesh size. In general,

the developed a posteriori error estimate has to be approximated by numeri
ally solving

the dual problem. This results in a feed-ba
k pro
ess for generating su

essively more and

more a

urate error bounds and solution-adapted meshes. In applying this approa
h to

saddle-point problems arising from optimal 
ontrol problems, a natural 
hoi
e for the error

fun
tional results. It is the (dis
retization) error in the 
ost fun
tional. Applying this

te
hnique, the mesh re�nement re
e
ts the optimization problem. Some numeri
al results

illustrate the main features of the adaptive algorithm parti
ularly in 
omparison to more


onventional methods based on global error 
ontrol for the state equation.

The developed methods merge 
on
epts from numeri
s of partial di�erential equations,

(a posteriori) error estimation theory and nonlinear optimization. The error estimation

theory is valid for the 
ase of nonlinear state equation and nonlinear 
ost fun
tional. Good

analyti
 
riteria for model redu
tion or dis
retization in optimization with partial di�er-

ential equations are derived based on the theory for dual-weighted error estimators for

numeri
al solutions of partial di�erential equations developed by R. Be
ker and R. Ran-

na
her. Small dis
rete optimization problems result with good a

ura
y with respe
t to the

optimization problem. This model redu
tion pro
ess is driven by developed dual-weighted

error estimators. The aim was to develop a general method whi
h 
an be applied to various

families of optimization problems. Good numeri
al results are obtained for the presented

optimization problems. Furthermore, the value of the developed weighted error estimator



10 CONTENTS


an be a good estimator for error in the dis
rete optimization problems. An eÆ
ient and

simple method for error estimation results. Adaptivity is obtained with very low additional


osts. This results from a new interpretation of the (dis
rete) Lagrangian multiplier. It is

used for the error estimation as dual solution for the primal variables. A mutual weighting

for u and � in the error estimator is derived analyti
ally. The 
hosen formulation of the

optimization problem in
luding boundaries leads to a spe
ial property of the developed

dual-weighted error estimator for optimization: By these weights depending on dual solu-

tions and �, a lo
al 
ontrol of sensitivities in the optimization problem is provided. An

automati
 and natural 
hoi
e of the s
aling in the error estimator results. In the original

error estimation theory, these weights enable lo
al stability 
ontrol and lo
al error prop-

agation (whi
h is of 
ourse also valid for the presented error estimator). In Se
tion 2.5

it will be shown that the approa
h is not restri
ted to optimization problems. A general

nonlinear error estimator theory is derived. An eÆ
ient method for error estimation in

several appli
ations is presented.

It may be seen as a drawba
k that in this approa
h the a

ura
y in the dis
retization

of the state equation is only 
ontrolled with respe
t to its e�e
t on the 
ost fun
tional.

This 
an lead to dis
rete models whi
h approximate the original optimization problem

with minimal 
ost but the obtained dis
rete states and 
ontrols are \admissible" only in

a very weak sense, possibly insuÆ
ient for parti
ular appli
ations. If satisfa
tion of the

state equation is desired in a stronger sense, the method 
an be 
ombined with traditional

\energy-error 
ontrol" or with other ne
essary 
riteria of the problem.

The approa
h to dis
retization is relevant for good numeri
al solutions of systems with

partial di�erential equations. Using the wrong dis
retization may lead to dis
rete solutions

whi
h are very di�erent from the original 
ontinuous solution. This was observed for the

presented optimization problems, espe
ially with Navier-Stokes equations in Chapter 5.

Criteria for good a

ura
y should be based on the whole optimization problem.

To avoid misunderstandings easily arising in this �eld 
onne
ting error estimation and

optimization, there will be the following notation: The dual problem is the problem stated

for solving the error estimation problem. Whereas the adjoint problem is the problem

arising from the Lagrangian approa
h to solve the optimization problem.

The optimization problems may not ful�ll Hadamard's postulates of well-posedness.

For this reason, regularization methods are applied. Possible reasons for ill-posed problems

are:

� no solution in the stri
t sense for all admissible data,

� solutions might not be unique for all admissible data,

� solutions might not depend 
ontinuously on the data.

By the dis
retization, non-uniqueness of the obtained dis
rete (numeri
al) solutions 
an be

introdu
ed.

Due to a new te
hnique for Diri
hlet boundary 
ontrol (DBC), the regularization param-

eter � for the optimization problems governed by in
ompressible Navier-Stokes equations


ould be redu
ed from around 80 to 10

�5

or even lower. By means of this te
hnique, the


omputed 
ontrol q is less restri
ted by the given regularization pro�le.
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The error estimator is derived from the full analyti
al Fr�e
het di�erentiations of the

optimization problem resulting in the �rst order ne
essary 
onditions. These full analyti
al

systems will be given for optimization governed by Poisson equation, Ginzburg-Landau

models in super
ondu
tivity and Navier-Stokes equations. These equation systems will

be solved by applying a Newton-type method. To get a better sear
h dire
tion in the

Newton method, a globalization method whi
h exploits the se
ond order 
ondition of the

optimization problem is developed. The se
ond order information 
an also be used to

determine if the stationary point is a (lo
al) maximum, minimum or saddle point.

The numeri
al solution methods will be des
ribed in Chapter 6. The solver is based on a

GMRES method with multi-grid pre
onditioning. The robustness of the solver is obtained

from GMRES. The a

eleration of the 
onvergen
e rate results from multi-grid te
hniques.

Due to the simultaneous optimization approa
h, a multi saddle point stru
ture results.

This leads to the requirement of an appropriate pre
onditioner and other spe
ial numeri
al

solution methods. The multi-grid te
hniques have to be adapted for optimization problems.

The developed methods lead to a 
onvergen
e even for the 'pure' Newton method.

The implementation of the optimization 
ode is based on the DEAL library ([8℄). This

library was developed to 
ompute numeri
al solutions of partial di�erential equations. In

this proje
t, optimization was added. Now, optimization features like globalization and

spe
ial numeri
al solution methods are provided. A new 
lass in C++ for spe
ial boundary

handling was designed in
luding boundary 
ontrol and boundary observation. There is

a distin
tion in Neumann and Diri
hlet boundaries. It should be noted that boundary

handling is more diÆ
ult for optimization problems than for normal partial di�erential

equation simulations. For example the 
hoi
e of priority of boundary 
onditions is stri
ter

be
ause adjoint solution, 
ontrol and observation have additionally to be 
onsidered.

Several 
odes have been developed in order to solve the optimization problems as men-

tioned. They all use a similar basi
 stru
ture, but have di�erent appli
ations and features.

Numeri
al results for iteration to the limit on ea
h dis
retization level (
odes 'bkr', 'of' and

'oft') and for a less rigorous diagonal version (
ode 'rhopt
on') are provided.

This thesis is organized in the following way: In Chapter 1 the new approa
h for

solving optimization problems governed by partial di�erential equations will be presented

in detail. In Chapter 2 the developed error estimation te
hnique is derived and explained.

Chapter 3 
ontains 
onsiderations on globalization methods for the presented optimization

problems. Chapter 4 gives results for the optimization problems governed by the nonlinear

Ginzburg-Landau equations. Chapter 5 
onsiders the optimization problems governed by

Navier-Stokes equations. In Chapter 6 basi
 ideas on the developed numeri
al solutions

methods are 
ontained. And in appendix A results obtained with bla
k box optimization

are given.



Notations


: domain

�

Q

;�

C

: 
ontrol boundary

�

O

: observation boundary

�

o

: out
ow boundary

�

w

: wall boundary

�

S

: substrate boundary

�

s

: symmetry boundary (
ylindri
al polar 
oordinates)

�

F

: �x in
ow boundary

�

J

: region of evaluation of 
ost fun
tional

T

h

: triangulation (of the domain 
)

V : Hilbert spa
e (for state and 
o-state variables)

Q: Hilbert spa
e (for 
ontrol variables)

H: Hilbert spa
e (for observations)

H

1

(
): �rst-order Sobolev Hilbert-spa
e on 
 (in the standard notation)

L

2

(�): Lebesgue Hilbert-spa
e on � � 


(:; :)




: L

2

dual produ
ts over 


(:; :)

�


: L

2

dual produ
ts over �


(:; :): dual produ
t

K

�

: adjoint of K (8x; y : (Kx; y) = (x;K

�

y))

obs: part of domain, where obje
tive fun
tion is evaluated ('observe') (
 or �

O

)


 : V ! H (bounded linear) observation operator

q: boundary 
ontrol variable (2 Q or 2 L

2

(�

C

))

u: solution of the state equations (2 V or 2 H

1

(
))

v = (u;w): velo
ities (2 V or 2 H

1

(
)

2

)

p: pressure (2 V or 2 L

2

(
)=IR)

t: temperature (2 V or 2 H

1

(
))

�: Lagrangian multiplier (2 V

0

or 2 H

1

(
)

0

)

L: Lagrangian fun
tion

H: Hessian matrix (se
ond order di�erentiation of L)

J : 
ost fun
tional

J(:); E

h

: (value of) error fun
tional

F : simulation or model or forward problem

!(z): dual weights (in the error estimator)




D

: drag 
oeÆ
ient

�: regularization fa
tor

�: per
entage of re�nement in adaptive step (�xed fra
tion strategy)

12



Chapter 1

Basi
 prin
iples for optimization

with PDE models

In this 
hapter, a new approa
h for solving optimization problems governed by partial

di�erential equations will be presented in Se
tion 1.1. The developed method will be

explained for an exemplary optimization problem whi
h is governed by the Poisson equation

in the following Se
tions. In Se
tion 1.8, relations to other approa
hes in optimization

theory for problems governed by partial di�erential equations is given. Di�erentiation and

stabilization play an important role in the presented approa
hes and will be analyzed in a

general way for the given 
ases in Se
tions 1.9 and 1.10.

1.1 A new approa
h for solving an optimization problem

governed by PDE

Let V ,W andQ be Hilbert spa
es. Although the following approa
h is rather general, it will

be presented in the general framework of models 
ontaining partial di�erential equations.

The following type of optimization problems will be 
onsidered in the sequel for u 2 V and

q 2 Q:

min

u;q

J(u; q); (1.1)

s.t. F (u; q) = 0: (1.2)

In this dissertation, the optimization variable q will denote a boundary 
ontrol variable.

The primal solution whi
h 
orresponds to the solution of the simulation will be denoted by

the state variable u. The obje
tive fun
tion or 
ost fun
tion J is de�ned as:

J : V � Q ! IR: (1.3)

For 
onvex 
ost fun
tionals J , it is shown in [34℄ that the presented optimization problems

are well-de�ned. As indi
ated, the fun
tional J 
an be evaluated on the whole domain 


(distributed observation) or on the boundary of 
 or parts of it (boundary observation). The

equality 
onditions F will always 
ontain a simulation from partial di�erential equations:

F : V �Q ! W � V

0

: (1.4)

13



14 CHAPTER 1. BASIC PRINCIPLES FOR OPTIMIZATION WITH PDE

For the 
onstraints, inequalities will not be 
onsidered.

For nonlinear state equations 
ontained in F there may be a non uniqueness of the

solutions. The developed theory is still valid in that 
ase (see [34, p. 1004, remark℄). In

this 
ase, there 
an be several stationary points (e.g. lo
al minima).

In the �rst des
riptive step, the problems 
onsidered have the form

J(u; q) ! min!; A(u) = f +B(q); (1.5)

where A is an ellipti
 di�erential operator, B an impa
t operator and J is the 
ost

fun
tional. The 
onstraints are in this 
ase F (u; q) := A(u)� f �B(q).

The developed approa
h is based on the weak formulation of system by requiring

(F (u; q); �) = 0 8� 2 V:

The Lagrangian formalism is applied in order to solve the 
onstraint optimization prob-

lem. The Lagrangian fun
tion is introdu
ed

L(u; q; �) := J(u; q) + (�; F (u; q)) (1.6)

involving a Lagrangian multiplier � 2 H

�1

(
) required by the de�nition of the dual produ
t

(:; :). It should be mentioned that H

�1

(
)

�

=

H

1

(
) as shown in [17, p. 54, (2.4.6)℄. This

fa
t will also be important for the 
orre
t 
hoi
e of the test spa
es in the weak formulation.

Stationary points of L are sought whi
h are 
andidates for optimal solutions,

�L(u; q; �)

�(u; q; �)

= 0:

This is a boundary value problem for triples fu; q; �g 2 H

1

(
)� L

2

(�

C

)�H

1

(
),

(J

0

u

(u; q);  ) + (�; F

0

u

(u; q) ) = 0 8 2 H

1

(
); (1.7)

(J

0

q

(u; q); �) + (�; F

0

q

(u; q)�) = 0 8� 2 L

2

(�

C

); (1.8)

(F (u; q); �) = 0 8� 2 H

1

(
): (1.9)

To get the solution of this equation system, a Newton type method on the 
ontinuous

level is applied. Denoting by H(u; q; �) the Hessian matrix of L(u; q; �), ea
h Newton step

amounts to solving a linear system

H(u; q; �)(Æu; Æq; Æ�) = �

�L(u; q; �)

�(u; q; �)

; (1.10)

for the in
rements fÆu; Æq; Æ�g of fu; q; �g. The right hand side of (1.10) will further on be


alled Newton residual. There are di�erent ways to solve the linear systems o

urring in the

Newton method. In order to redu
e 
osts, we evaluate the produ
t H(u; q; �)(Æu; Æq; Æ�) as

the se
ond-order di�erentiation in the dire
tion of the in
rements fÆu, Æq, Æ�g.

This system has the stru
ture of a saddle point problem whi
h, be
ause of its indef-

initeness, requires spe
ial 
are in the numeri
al solution. In the present examples, the

di�erentials J

0

u

; J

0

q

; F

0

u

; F

0

q

;H are derived analyti
ally (see Se
tion 1.9).

For the 
onsidered optimal 
ontrol problems, one of the main properties is the type

of boundary 
ontrol, i.e. Neumann or Diri
hlet boundary 
ontrol depending if there is a
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Neumann (NBC) or a Diri
hlet (DBC) boundary 
ondition on the 
ontrol boundary. The

fun
tional F : V � Q ! V

0

takes a di�erent form for (NBC) or (DBC). There will be

di�erent boundary integrals in the derived equation systems depending on the type of the


ontrol boundary.

1.2 Exemplary optimization problem: Poisson equation as

simulation

The goal of this and the following se
tions is to give an introdu
tion to some basi
 prin
iples

underlying the applied methods. The �rst and exemplary optimization problem will be

governed by the Poisson equation:

A(u) := ��u = f in 
 (1.11)

In the presented appli
ations, the state variables u are taken in H

1

(
) and the Lagrangian

multiplier � in its dual spa
eH

1

(
)

0

. The Poisson equation will be 
onsidered with di�erent

boundary values for the 
ontrol boundary �

C

. The boundary 
ontrol variables q are in

L

2

(�

C

). The 
ost fun
tional 
an be evaluated on the observation boundary �

O

or on

subdomains 


0

� 
. The equation system is formulated in Cartesian 
oordinates. The

following two types of boundary 
onditions are 
onsidered with �

w

= �
 n (�

C

[ �

O

):

Neumann boundary 
ontrol (NBC): �

n

u = q on �

C

;

u = 0 on �

w

; (1.12)

�

n

u = 0 on �

O

:

Diri
hlet boundary 
ontrol (DBC): u = q on �

C

;

u = 0 on �

w

; (1.13)

�

n

u = 0 on �

O

:

The state equation (1.11) and the boundary 
onditions (1.12) or (1.13) will be the 
on-

straints F .

For simpli
ity, the exemplary 
ase of a re
tangular domain 
 in Figure 1.1 is 
hosen.

The mathemati
al theory whi
h will be developed in the following se
tions is independent

of the spe
ial 
hoi
e of the presented domain.
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observation �

O


ontrol �

C

wall �

w

wall �

w

Figure 1.1: Domain for Cartesian 
oordinates

For (DBC), after 
onsidering the boundary 
onditions, the weak formulation of the

simulation takes the form with appropriate test fun
tions �:

(F (u; q); �) = (ru;r�)




� (�

n

q; �)

�

C

� (f; �)




= 0 8�:

Keep in mind that u = q on �

C

, whi
h will be important in the formulation of the equation

system whi
h will be solved.

For (NBC), the boundary 
ontrol 
ondition �

n

u = q on �

C

are 
onsidered in the term

(��

n

u; �)

�


. We get for (NBC) the following weak formulation of the simulation with

appropriate test fun
tions �:

(F (u; q); �) = (ru;r�)




� (q; �)

�

C

� (f; �)




= 0 8�:

The following optimal 
ontrol problem for the Poisson equation is 
onsidered: For a

pres
ribed pro�le u

d

the boundary 
ontrol variable q is sought to minimize the distan
e

between u and u

d

(Diri
hlet observation). This pro�le may be given on sub-domains 


0

� 


or on parts of the boundary �

O

. The 
orresponding obje
tive fun
tion J : H

1

(
) �

L

2

(�

C

) ! IR is

J(u; q) =

1

2

ku� u

d

k

2

obs

:

The index 'obs' indi
ates an evaluation only in that part of the domain, where the obje
tive

fun
tion is evaluated ('observe'). In the 
onsidered 
ases this is a sub-domain 


0

� 
 or

an observation boundary �

O

.

To enhan
e the stability of the optimization problem, the obje
tive fun
tion is aug-

mented by a regularization term. In Se
tion 1.8, a short motivation for regularization in

optimization problems will be given. For (NBC), the following regularization is used (see

[41℄ and [34℄):

J(u; q) =

1

2

ku� u

d

k

2

obs

+

�

2

kq � q

0

k

2

�

C

; (1.14)

where q

0

is a suitable referen
e value. For (DBC), Gunzburger and Hou propose in [34℄ the

following regularization:

J(u; q) =

1

2

ku� u

d

k

2

obs

+

�

2

kq � q

0

k

2

�

C

+

�

2

kr

s

qk

2

�

C

; (1.15)
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where r

s

denotes the surfa
e gradient. With this latter regularization, the 
ontrol q 
an be

taken inH

1

2

(�

C

). For more theoreti
al details see [34, p. 1033℄. This regularization 
hanges

the setting sin
e the original optimization problem is not solved. There are theoreti
al


onsiderations (for details see [41℄) as well as pra
ti
al experien
es whi
h indi
ate that in

this 
ase, 
al
ulations are also possible without regularization.

For this 
ase it has been shown in [34℄ and [41℄, that the 
orresponding optimization

method is well-posed.

1.3 Equation systems for optimization with Poisson equa-

tion

The optimization problem of Se
tion 1.2 leads to the following Lagrangian fun
tion with

the notation of equation (1.5):

L(u; q; �) = ku� u

d

k

2

+

1

2

n(q; q) +A(u; �) � (f; �)�B(q; �)

The operator n(:; :) denotes the regularization of the 
ost fun
tional. For nonlinear A, the

term A(u; �) 
an be repla
ed by A(u)(�). The general setting will be des
ribed in a more

detailed way in Se
tion 2.2. This operator in
ludes the state equations with boundary


onditions. The boundary 
ontrol operator B(q; �) is either (q; �) for (NBC) or (�

n

q; �) for

(DBC). The �rst order ne
essary 
onditions of the 
onstrained optimization problem are

obtained by di�erentiation w.r.t. the variables u; q; �.

For (NBC), the �rst order ne
essary 
onditions are:

(u� u

d

;  )

obs

+ (r ;r�)




= 0 8 2 H

1

(
); (1.16)

�(q; �)

�

C

� �(q

0

; �)

�

C

� (�; �)

�

C

= 0 8� 2 L

2

(�

C

); (1.17)

(ru;r�)




� (f; �)




� (q; �)

�

C

= 0 8� 2 H

1

(
): (1.18)

For this equation system, the following form on the left hand side of (1.10) for (NBC)

is obtained:

H(u; q; �)(Æu; Æq; Æ�)( ; �; �) =

0

�

(Æu;  )

obs

+ (r ;rÆ�)




�(Æq; �)

�

C

� (�; Æ�)

�

C

(rÆu;r�)




+ (Æq; �)

�

C

1

A

: (1.19)

It should be pointed out that for (NBC) there are no di�erentials needed in the equation

on the boundary �

C

resulting from the di�erentiation w.r.t. q. This will be di�erent for

(DBC), and there will be the problem of 
hoosing the 
orre
t formulation of the di�erentials

on �

C

in order to get a numeri
ally stable solution pro
ess.

For (DBC), the boundary 
ondition u = q has to be 
onsidered in the formulation of

the equation system. In order to get symmetry of the equation system, the term (�

n

�; �)

�

C

is transformed to �(�; �

n

�)

�

C

by partial integration.

(u� u

d

;  )

obs

+ (r ;r�)




= 0 8 2 H

1

(
); (1.20)

�(q � q

0

; �)

�

C

+ �(r

s

q;r

s

�)

�

C

� (�

n

�; �)

�

C

= 0 8� 2 L

2

(�

C

); (1.21)

(ru;r�)




� (�

n

u; �)

�


� (f; �)




= 0 8� 2 H

1

(
): (1.22)
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Applying the Newton method on the 
ontinuous level, the following form of the left hand

side of (1.10) results for (DBC):

H(u; q; �)(Æu; Æq; Æ�)( ; �; �) =

0

�

(Æu;  )

obs

+ (r ;rÆ�)




�(Æq; �)

�

C

+ �(r

s

Æq;r

s

�)

�

C

� (�

n

Æ�; �)

�

C

(rÆu;r�)




� (�

n

Æu; �)

�


1

A

: (1.23)

In the stated equations, the 
ontrol q is obtained by a weak equation system on the

boundary. Whereas the boundary 
onditions for the variables u and � are a mixture of

strong boundary 
onditions and weak boundary 
onditions obtained by the equation system

derived above.

It should be mentioned that there are 
ompatibility 
onditions valid for the 
ontrol q by

its relation with the state variable u. Only those q are allowed whi
h lead to a u ful�lling

its state equations.

So far, only the �rst order ne
essary 
onditions of an optimization problem with 
on-

straints are 
onsidered. The se
ond order 
ondition for optimization problems will be used

later on to develop trust region-like modi�ed Newton methods in Chapter 3.

1.4 Choi
e of boundary 
onditions

In this se
tion, a theoreti
al derivation of the boundary 
onditions for the Lagrangian

multiplier should be given. Later on, the Lagrangian multiplier � will be in relation with

the dual solution arising from the error estimation problem. A detailed derivation of these

equation systems will be given in Chapter 2. The duality 
an easily be seen by the following

fa
t: � is the solution of the equations attained by the di�erentiation of the Lagrangian

fun
tion w.r.t. u. And u is obtained by the di�erentiation of the Lagrangian fun
tion w.r.t.

�.

The notation of the boundaries is the same as in the last se
tion. The example in this


hapter is the Lapla
e equation

��u = 0 in 
:

For Neumann boundary 
ontrol (NBC), the derivation leads to the same boundary 
on-

ditions for u and � on the boundaries. For the Diri
hlet boundary 
ontrol (DBC), only

the observation and 
ontrol boundary will be 
onsidered. We have the following boundary


onditions for u:

u = q on �

C

; �

n

u = 0 on �

O

:

For the other boundaries, the boundary 
onditions are normally obvious and are in general

the same boundary 
onditions as u. They have a natural Diri
hlet or natural Neumann

boundary 
ondition.

Let the 
ost fun
tional J(u; q) be

J(u; q) =

1

2

ku� u

d

k

2

�

O

+

�

2

kqk

2

�

C

+

�

2

kr

s

qk

2

�

C

+




2

kqk

2

H

1=2

(�

C

)

+

�

2

kruk

2
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In this formulation, several regularization methods are 
ontained. The appropriate spa
e

for q depends now on the 
hosen regularization. For � = 0, q 2 H

1=2

(�

C

) with qj

��

C

= 0,

the boundary 
ondition for u whi
h is also valid for q. This means that q must be at least

in the spa
e of the tra
es of H

1

-fun
tions. For � 6= 0, q 2 H

1

(�

C

) again with qj

��

C

= 0.

Let now L := J(u; q) + (r�;ru)




be the Lagrangian fun
tion of the optimization

problem of the previous se
tion (without expli
it boundary 
onditions). The variable u is

in q+H

1

(�;
) and � is in H

1

(�;
), the dual spa
e. Di�erentiation of L w.r.t. � leads to:

�L

��

= (rÆ�;ru)




= 0 8Æ� ) �u = 0 �

n

uj

�

O

= 0:

The above boundary 
onditions for u 
an be stated.

Di�erentiation of L w.r.t. u leads then to the equation system for �:

�L

�u

= (u� u

d

; Æu)

�

O

+ (r�;rÆu)




= 0 8Æu

) ��� = 0 �

n

�j

�

O

= u� u

d

:

The latter boundary integral results from partial integration. The boundary 
ondition on

the 
ontrol boundary �

C

is obtained by the error 
ondition from the dual problem u�u

h

= 0

with the dis
rete variable u

h

of u. This means that there is no error on �

C

. Otherwise,

also the Galerkin orthogonality (see Se
tions 2.2 and 2.4) would not be true. Hen
e, the

following equations result for �:

��� = 0 �j

�

C

= 0 �

n

�j

�

O

= u� u

d

:

For � 6= 0, the term

�

2

(ru;r )





an be eliminated by partial integration. The resulting

terms (�u; Æu)




and (�

n

u; Æu)

�


are equal to 0.

The derivation of L by the 
ontrol q underlines the above 
hoi
e for some 
riti
al

boundary 
onditions:

�L

�q

=

d

dt

L(u; q + t�; �)j

t=0

:

Let � be the harmoni
 prolongation of � on 
, i.e. �j

�

C

= � ; �� = 0. It is not used

expli
itely, but for theore
ti
al reasons it must be de�ned. Hen
e,

d

dt

L(u; q + t�; �)j

t=0

=

1

2

d

dt

J(u+ t�; q + t�) + (r�;r(u+ t�))




;

with u+ t� 2 (q + t�) +H

1

0

= (u� u

d

; �)

�

O

+ �(q; �)

�

C

+ �(r

s

q;r

s

�)

�

C

+ 
(q; �)

�

C

+�(r�;ru)




+ (r�;r�)




= (u� u

d

; �)

�

O

+ �(q; �)

�

C

+ �(r

s

q;r

s

�)

�

C

+ 
(q; �)

�

C

+�(r�;ru)




� (��; �)




+ (�

n

�; �)

�

C

+ (�

n

�; �)

�

O

= 0 8�

) u� u

d

= �

n

� on �

O

for � = � = 
 = � = 0 : �

n

� = 0 on �

C

:

The 
riti
al reformulation of the equation is done by partial integration. The last equation

is equation (1.21) for (DBC).
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On the boundary �

C

, we 
an now state the following equation:

��q + ��

s

q � 
�

1=2

s

q + ��

n

u+ �

n

�j

�

C

= 0: (1.24)

For 
 = � = 0, the following equation is obtained:

��q + ��

s

q + �

n

�j

�

C

= 0: (1.25)

This is the equation whi
h results from the regularization of the previous se
tion.

Whereas for 
 = � = 0, the following equation is obtained:

��q + ��

n

u+ �

n

�j

�

C

= 0: (1.26)

The latter equation with the di�erential of u was taken for (DBC). It enabled good 
om-

putations.

By the above derivation, u and � have always Diri
hlet or Neumann boundary 
onditions

on the same boundaries. If u has an inhomogeneous Diri
hlet boundary 
ondition, then

� has a homogeneous Diri
hlet boundary 
ondition. Hen
e, the same test fun
tions 
an

be used for u and �. These test fun
tions have the same boundary 
onditions as u and

�. They 
an also be interpreted as test fun
tions of ea
h other. This is important for a

good formulation of the error equations. The problem with weak and strong formulations

of boundary 
onditions is eliminated by this 
hoi
e.

The boundary 
ondition u � u

d

= 0 on �

O

is not true for all 
ases. The boundary


ondition �

n

uj

�

O

= 0 need not be ful�lled for u

d

. The data u

d

is a given pro�le. Otherwise,

the 
hoi
e u� u

d

= 0 on �

O

seems to be 
orre
t.

The boundary 
ondition u � u

h

= 0 on �

C

need not be valid. There 
an be some

additional errors in the equation system like the interpolation error or the linearization

error. By the above derivation, it is 
lear that there is a Diri
hlet boundary 
ondition

on �

C

. The question is whi
h (Diri
hlet) value should be assigned. Negle
ting the other

errors, the 
hoi
e u� u

h

= 0 on �

C

seems to be 
orre
t.

If there is no regularization and u � u

d

on �

O

, then � = 0 in the optimal solution.

(Also L = 0).

The boundary 
onditions for the in
rements are des
ribed in Se
tion 6.4.

1.5 Galerkin method

The Galerkin �nite element dis
retization of the saddle-point problem resulting from the

Lagrangian formulation of the optimization problem uses subspa
es V

h

� V of pie
ewise

polynomial fun
tions de�ned on regular de
ompositions T

h

= [

T2T

h

fTg of the domain


 into 
ells T (triangles or quadrilaterals); see Brenner and S
ott [17℄. The applied

dis
retization is based on standard �nite element Galerkin te
hniques.

The following well-known (and generalized) pre
is of the Ritz-Galerkin method given in

[17℄ should be indi
ated. Let V be the 
ontinuous spa
e in whi
h we solve the 
ontinuous

problem. In the weak formulation, the solution u of the optimization problem 
an be


hara
terized by �nding

u 2 V su
h that a(u; v) = (f; v) 8v 2 V: (1.27)
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Let V

h

;W

h

� V be any (�nite dimensional) subspa
es of the 
ontinuous spa
e V . Then

the dis
rete s
heme for approximating (1.27) 
an be stated as

u

h

2 V

h

su
h that a(u

h

; v) = (f; v) 8v 2W

h

: (1.28)

The Ritz-Galerkin method (V

h

=W

h

) 
an be 
hara
terized by solving

KU = F: (1.29)

The matrix K = (K

ij

) and the ve
tors U = (U

j

) and F = (F

i

) 
an be stated in the

following way: u

h

=

P

n

j=1

U

j

�

j

, K

ij

= a(�

j

; �

i

) and F

i

= (f; �

i

). f�

i

j1 � i � ng is a basis

of V

h

and n is the dimension of V

h

.

1.6 Numeri
al results for the Poisson equation for 
artesian


oordinates

In this se
tion, some numeri
al results for the equation systems in Cartesian 
oordinates

derived above will be presented.

The resulting linear systems in the Newton iteration will be solved by an adaptive �nite

element s
heme.

The dis
retization of this equation system is based on a �nite element Galerkin method

with Q

1

-elements. The meshes ful�ll the usual regularity 
onditions. Hanging nodes are

allowed and fa
ilitate lo
al mesh re�nement, but at most one hanging node per edge:

P

P

P

P

P

P

P�

�

�

�

�

�

�

(

(

(

(

(

(

(

K

t t t t

t

t

t

t

t

t

d

The 
orresponding degrees of freedom are eliminated by interpolation in order to keep the

dis
retization 
onforming. For the state and adjoint variables, pie
ewise polynomial shape

fun
tions are taken. For the 
ontrol variables, the tra
es of the above shape fun
tions on �

C

are used. This 
hoi
e is not ne
essary but simpli�es notation. In order to avoid unne
essary


ompli
ations due to 
urved boundaries, the domain 
 is supposed to be polygonal. The

dis
retization is realized using the DEAL library ([8℄).

There is a 
ru
ial di�eren
e between (NBC)-systems and (DBC)-systems. (NBC)-

systems for the presented 
ase do not need di�erentiation on the 
ontrol boundary �

C

.

The 
al
ulation of the boundary 
ontrol values is therefore easier. One needs a possibility

to handle boundary integrals.

(DBC)-systems have not only the problem mentioned in Se
tion 1.4 that the values

from the 
ontrol q to the state variable u have to be assigned. The appropriate 
hoi
e

of the test spa
es results from this fa
t. Additionally, there is di�erentiation information

needed on the 
ontrol boundary �

C

. With the boundary 
onditions from Se
tion 1.4, one
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an not avoid to take information from the integration on the domain next to the boundary

to get the ne
essary di�erentiation information. The di�erentiation values on the boundary

�

C

are 
omputed for the presented version of (DBC) by the 
ell (in this 
ase a re
tangle)

next to the boundary element, or, in fa
t, the �nite element whi
h 
ontains the boundary

element as des
ribed in Se
tion 6.6. These values are transformed to the boundary (
hoi
e

of 
onvenien
e).

Due to the 
al
ulation of q and the boundary 
onditions for u on �

C

leading to a


hange of u by q, 
onvergen
e in one Newton iteration is not ne
essarily obtained. For this


onsideration, the 
ontrol q 
an be taken as a 'perturbation', de
elerating the solution (and


onvergen
e) pro
ess.

In the test problem in Figure 1.1, the observation is u

d

= 0 on �

O

. Thus one solution

would be with a state equation whi
h is u = 0 in 
. But also other solution whi
h are

harmoni
 fun
tions with u = 0 on �

O

and ful�lling the boundary 
onditions u = 0 on the

wall �

w

are possible. The starting value for u is 10 and for q is 4. Therefore, one expe
ts

a 
onvergen
e to 0 of u and q. Espe
ially q should be a paraboloid be
ause of the strong

e�e
t of the boundary 
onditions u = 0 on �

w

. This behavior was observed. There were

other starting values tested for q (0 and -5), both leading to similar results.

The following table shows numeri
al results. In this numeri
al examples, � is equal

to 1. The 
ontrol boundary type, observation boundary type, number of 
ells, Newton

residual and Newton in
rement are denoted by '
ontrol', 'obs', '#
ells', 'n res' and 'n in
r',

respe
tively:


ontrol obs #
ells n res n in
r CPU-se
onds

(DBC) D 256 2 � 10

�6

5:4 � 10

�6

20.3

(DBC) N 256 10

�8

1:1 � 10

�8

1.5

(NBC) D quadrati
 
onvergen
e

256 2 � 10

�7

3 � 10

�7

25

1024 5:7 � 10

�7

2 � 10

�6

92.8

(NBC) N quadrati
 
onvergen
e

256 2 � 10

�7

3 � 10

�7

29

1024 5:7 � 10

�7

2 � 10

�6

103

For the presented version of (DBC), the solutions are obtained faster than for (NBC)

in all test 
ases. Espe
ially (DBC) with Neumann observations, the solution is found in

only 4 Newton iterations. The optimization problems governed by the Poisson equation


an be solved in a satisfa
tory way even on rather 
oarse meshes. The obtained residuals

and in
rements are suÆ
iently small.

As we will see later on, the solutions of the optimization problem depend of the value

of the regularization fa
tor �. Big � lead to faster 
onvergen
e, but do also 
hange the

original optimization problem and therefore the attained solution in a stronger way. See

Se
tion 2.13 for numeri
al examples.
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1.7 Optimization for the Poisson equation in 
ylindri
al po-

lar 
oordinates

In this se
tion, the equation system for optimization in 
ylindri
al polar 
oordinates for

s
alar solution of the Poisson equation u is 
onsidered. As mentioned in the introdu
tion,

important future appli
ations like the CVD experiment 
an also be formulated in 
ylindri
al

polar 
oordinates. There is an additional integral

R




u

r

r

2

� d
 for the Poisson equation


omparing the previous formulation in Cartesian 
oordinates with the 
ylindri
al polar


oordinates. Note that the following integrals are the same:

R




u

r

r

2

� d
 =

R




u

r

r

� dr dz.

The theoreti
al derivation of this additional integral and general information on 
ylindri
al

polar 
oordinates 
an be found in [5℄, [54℄ or [63℄.

Due to the formulation in 
ylindri
al polar 
oordinates, there are di�erent boundary


onditions than in the Cartesian 
ase. Additionally, there is a symmetry boundary �

s

,

whi
h is the axis of rotation (see Figure 1.2).

observation �

O


ontrol �

C

wall �

w

symmetry �

s

Figure 1.2: Domain for 
ylindri
al polar 
oordinates

The following boundary 
onditions are stated for u and � for the presented problem in


ylindri
al polar 
oordinates and domain as in Figure 1.2:

(NBC): �

n

u = q and �

n

� = 0 on �

C

;

u = 0 and � = 0 on �

w

;

�

n

u = 0 and �

n

� = 0 on �

s

;

�

n

u = 0 and �

n

� = 0 on �

O

:

For the Diri
hlet boundary 
ontrol, we have a Diri
hlet boundary on �

C

:

(DBC): u = q and � = 0 on �

C

;

u = 0 and � = 0 on �

w

;

�

n

u = 0 and �

n

� = 0 on �

s

;

�

n

u = 0 and �

n

� = 0 on �

O

:
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For (NBC), the weak formulation of the Poisson equation 
an be stated as:

(F (u; q); �) = (ru;r�)




+ (u

r

r

�1

; �)




� (q; �)

�

C

� (f; �)




:

Therefore, the �rst order ne
essary 
ondition of this optimization problem reads:

(u;  )

obs

� (u

d

;  )

obs

+ (r ;r�)




+ (�

r

r

�1

;  

r

)




� (�

n

�;  )

(�
n�

C

)

= 0;

�(q; �)

�

C

� �(q

0

; �)

�

C

� (�; �)

�

C

= 0;

(ru;r�)




+ (u

r

r

�1

; �

r

)




� (f; �)




� (q; �)

�

C

� (�

n

u; �)

(�
n�

C

)

= 0:

The left hand side of (1.10) for (NBC) is:

0

�

(Æu;  )

obs

+ (r ;rÆ�)




+ (Æ�

r

r

�1

;  

r

)




� (�

n

Æ�;  )

(�
n�

C

)

�(Æq; �)

�

C

� (�; Æ�)

�

C

(rÆu;r�)




+ (Æu

r

r

�1

; �

r

)




� (Æq; �)

�

C

� (�

n

Æu; �)

(�
n�

C

)

1

A

:

For (NBC) in the test 
ase of Figure 1.2, 
onvergen
e is stated.

Also for (DBC), the di�eren
e to the formulation in Cartesian 
oordinates is the in-

tegral

R




u

r

r

�2

� d
 and the additional boundary 
ondition on the boundary for r = 0

(symmetry). The weak formulation of the Poisson equation 
an be stated as:

(F (u; q); �) = (ru;r�)




+ (u

r

r

�1

; �)




� (�

n

u; �)

�


� (f; �)




:

The �rst order ne
essary 
ondition of this optimization problem for (DBC) reads:

(u;  )

obs

� (u

d

;  )

obs

+ (r ;r�)




+ (�

r

r

�1

;  

r

)




� (�

n

�;  )

(�
n�

C

)

= 0;

�(q; �)

�

C

� �(q

0

; �)

�

C

� (�

n

�; �)

�

C

= 0;

(ru;r�)




+ (u

r

r

�1

; �

r

)




� (�

n

u; �)

(�
n�

C

)

� (f; �)




= 0:

The left hand side of (1.10) for (DBC) is:

0

�

(Æu;  )

obs

+ (r ;rÆ�)




+ (Æ�

r

r

�1

;  

r

)




� (�

n

Æ�;  )

(�
n�

C

)

�(Æq; �)

�

C

� (�

n

Æ�; �)

�

C

(rÆu;r�)




+ (Æu

r

r

�1

; �

r

)




� (�

n

Æu; �)

(�
n�

C

)

1

A

:

For (DBC) in the test 
ase of Figure 1.2, 
onvergen
e 
an be stated. If the solution of

the optimization problem is taken as starting value for the iterations, the 
ode terminates

immediately dete
ting that the optimum is already obtained.

1.8 Optimization theory with PDE simulation

In this se
tion, a fundamental outline on optimization theory of systems governed by partial

di�erential equations with respe
t to the presented optimization problems should be given.

The outline is mainly based on a paper of Gunzburger and Hou [34℄ and on a book of Lions

[48℄.

For optimal 
ontrol theory of systems governed by ellipti
 partial di�erential equations,

the general and abstra
t derivation of the equations of an optimal 
ontrol problem 
an

be found in [48, 
hapter II℄. For the 
ontrol, there is a distin
tion between distributed
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ontrol and boundary 
ontrol. Distributed 
ontrol means that the 
ontrol is distributed

over the domain 
. An alternative de�nition would be that the '
ontrol is e�e
ted through

a sour
e term in the governing partial di�erential equations'([34℄). Whereas boundary


ontrol means that the 
ontrol is a fun
tion de�ned only on (a part of) the boundary of


. The same de�nitions are applied for the observations. The hardest 
ase is boundary


ontrol and boundary observation. For distributed observation, the observation represents

the 
anoni
al inje
tion 
 : H

1

(
) ! L

2

(
). Whereas for boundary observation, the

observation leads to a tra
e operator 
 : H

1

(
) ! L

2

(�

O

). But also the sensitivities

of the 
ontrol from the observations seem to be better. For distributed observation, the

transmission of model information from 'obs' de�ned on the whole domain to �

C

is 
learly

easier. Furthermore, there is a distin
tion between Neumann and Diri
hlet problems, both

implying di�erent diÆ
ulties. Some stated diÆ
ulties in the formulas derived above are

not given in Lions [48℄. Also pointwise 
ontrol and observation are 
onsidered ([48, se
tion

5.4℄). Furthermore, existen
e results for optimal 
ontrols are proved ([48, se
tion 7℄).

The derivation of the optimal 
ontrol theory for systems governed by paraboli
 and

hyperboli
 partial di�erential equations 
an also be found in [48℄.

An introdu
tion in optimization for 
ow problems 
an be found in [33℄.

In [34℄, an abstra
t framework for the analysis and approximation of a 
lass of nonlinear

optimization problems is given. Both 
onstraints and obje
tive fun
tional 
an be nonlinear.

Existen
e results of optimal solutions and of the Lagrangian multipliers are given. By

this, an optimization system is derived whi
h leads to the optimal states and 
ontrols.

The approximation is done by �nite element methods as in this thesis. Two appli
ations

are Ginzburg-Landau equations of super
ondu
tivity and the Navier-Stokes equations for

in
ompressible, vis
ous 
ow. Both will be analyzed later on. A main step is that there

must be the existen
e of a solution for the simulation. Then the existen
e of a solution

for the optimization problem 
an be attained. But the restri
tions for the solutions of the

simulation will somehow o

ur in the solution of the optimization problem.

In many 
ases of optimization with partial di�erential equation models, regularization

terms for the optimization problem are ne
essary. Regularization te
hniques usually are

applied in order to get stability of the optimization problem. Additionally, if there is no

existen
e of a solution of the optimization problem in the 
lassi
al sense, regularization

methods are used to obtain well-posedness. The regularization terms are originally not

introdu
ed for dis
retization reasons. A general introdu
tion in regularization te
hniques

for optimization problems, mainly for inverse problems, 
an be found in [26℄: 'In general

terms, regularization is the approximation of an ill-posed problem by a family of neigh-

boring well-posed problems'. 'All that a regularization method 
an do is to re
over partial

information about the solution as stably as possible. The "art" of applying regularization

methods will always be to �nd the right 
ompromise between a

ura
y and stability'. Many


on
rete examples are given therein. Some very elaborated regularization methods like the

Tikhonov regularization (minimizing Tikhonov fun
tional x! kTx�y

Æ

k

2

+�kxk

2

) do not

seem to be appli
able for the presented 
ontext in the moment for the evaluation of the

operators seems to be
ome too 
ompli
ated and too 
ostly. Therefore, the regularization

methods published in [34℄ have been used. Depending on the type of 
ontrol, there are sev-

eral regularization methods: for distributed 
ontrol on page 1017 (

R




q

2

d
), for (NBC) on

page 1024 (

R

�

q

2

d�) and for (DBC) on page 1032 (

R

�

(jr

s

qj

2

+ jqj

2

)d� whereas r

s

denotes
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the surfa
e gradient). These regularization methods are motivated by theoreti
al optimiza-

tion 
riteria, e.g. proofs on existen
e of the optimization problems. The main reasons for

regularization are:

� enhan
e the stability of the optimization problem

� avoid ill-posedness of the optimization problem

� improve 
onditioning

� enable rigorous mathemati
al analysis under less restri
tive assumptions

� enable 
ontrol on the optimization variable whi
h guarantees solvability and 
onver-

gen
e of approximations

The regularization 
hanges the original optimization problem leading to (a family of) better-

posed problems. Nevertheless, the regularizations 
an in
uen
e the solution of the opti-

mization problem in a strong way. See Se
tion 2.13 for numeri
al examples. Above reg-

ularization te
hniques were used with an appli
ation-dependent regularization fa
tor (not

ne
essarily equal to 1).

1.9 Possible 
hoi
es for the di�erentiation operators

The presented equation systems (1.10) are obtained by applying the exa
t Fr�e
het di�er-

entiation on the 
ontinuous level. More pre
isely, it is the formal di�erentiation on the

di�erential equation level. For optimization with partial di�erential equations this strategy

seems more appropriate than other te
hniques like external numeri
al di�erentiation (END)

or internal numeri
al di�erentiation (IND) ([15℄). For optimization with partial di�erential

equations, the dis
retization 
an lead to a large number of dis
rete variables. Therefore,

the fun
tion evaluations are very expensive. Additionally, high a

ura
y is needed in the

solution pro
ess. Numeri
al di�erentiation te
hniques lead to additional errors, whi
h are

mu
h higher for huge systems arising from the dis
retization of the solutions of the partial

di�erential equations and the whole optimization problem. Furthermore, in the 
ontext of

error estimation for solutions of optimization problems with simulations from partial di�er-

ential equations, the error by END or IND would be an additional error to be 
onsidered.

There are also alternative 
omputation strategies for the Hessian matrix. One example

are the approximations BFGS or DFP updates (see [31℄). The Fr�e
het di�erentiation has

the advantage that the analyti
al system for the Newton method is taken. Again, the

exa
t system is 
onsidered, not an approximate one, redu
ing the total error of the system.

Nevertheless, one advantage of the BFGS formula would be that, under 
ertain 
onditions,

to Hessian matri
es are positive de�nite. Additionally, re
ent resear
h in [47℄, [53℄ indi
ates

that the optimal solution attained by exa
t Hessian matri
es are 
loser to the 
ontinuous

one or the results in experiments (at least for ODE and DAE models).

A good survey on a 
omparison on di�erent methods to 
ompute the sensitivities for

optimization with partial di�erential equation models, mainly for 
ow problems, is given in

[3℄. It also supports the 
hosen approa
h whi
h should even be better then methods using

automati
 di�erentiation te
hniques. The latter 
omparison was done by J.R. Appel and

M.D. Gunzburger with ADIFOR.
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1.10 Stabilization of the optimization problem

In this thesis, by 'stabilization' a stability of the dis
retization should be obtained. The

presented method uses the stabilization of the simulation for the whole optimization prob-

lem. For the stabilization of the Navier-Stokes equations, a S
hur 
omplement te
hnique

using the LBB 
ondition and the Rayleigh quotient to redu
e the e�e
t of the saddle point

stru
ture is des
ribed in [6, p. 53℄. The zero entry on the diagonal of the matrix is repla
ed

to get a stable formulation of the simulation. By symmetry, this method 
an as des
ribed

be applied to the dual solution. The advantage of this approa
h is that a stable simulation

is suÆ
ient for the stabilization of the primal and dual problem. With additional te
hniques

for the 'pure' optimization part, a solution for the optimization problem 
an be attained.

Another method would be to 
onstru
t the stabilization for the dual solution separately.

This would lead to additional e�ort for the additional stabilization. For this method, expert

knowledge for the formulation of stabilization of the dual solution would be required.

Depending on the optimization problem, the diagonal of the matrix of the di�erential of

se
ond order of the Lagrangian fun
tion 
an have several zero entries.

�

2

L

��

2

is always equal

to 0 be
ause the Lagrangian multiplier is only linear in our equation systems.

�

2

L

�q

2

depends

on the regularization, espe
ially on the regularization fa
tor � in the 
hosen regularization.

�

2

L

�u

2

depends strongly on the kind of optimization problem. For example, in the 
ase of

parameter estimation problems, this diagonal entry 
an also tend to 0 (and should do so

for the global minimum, if the data is not perturbed). Also for the zero entries resulting

from the optimization part, a stabilization for example by S
hur 
omplement methods for

the appearing saddle points would be needed. This 
ould lead to a better 
onvergen
e

and behavior of the equation system. The whole problem 
ould also be stabilized without


onsidering spe
ial parts like the simulation separately. Anyway, it would need mu
h e�ort

for every new optimization problem and also for every new formulation of it. To avoid a

new derivation of the stabilization for ea
h optimization problem, the presented te
hnique

based on the stabilization of the simulation was developed.

Furthermore, stabilization depends always on the norm in whi
h it is 
onsidered. For

example, if the 
onsidered problem is stable in the L

2

-norm ((u; v)

L

2 =

R




u(x)v(x)dx), it

need not be stable in the H

1

-norm ((u; v)

H

1 =

R




u(x)v(x)dx +

R




ru(x)rv(x)dx). The

additional integral with the di�erentials of the fun
tions may lead to an unstable behavior.

This e�e
tuates various dis
ussions on appropriate norms for optimization problems. One

problem is that the 
al
ulation of the residual and the in
rement in the H

1

-norm is not easy

for the determination of the di�erentials of the residuals and in
rements is not obvious.





Chapter 2

Error estimation and adaptivity in

optimization with partial

di�erential equations

Error estimation for optimization problems di�ers from error estimation for a 
lassi
al sim-

ulation (forward solution). For an optimization problem, both the 
ost fun
tional and the


ontrol (for optimal 
ontrol problems) have to be 
onsidered. The error estimator in [13℄

is extended to optimization problems. First steps and 
omparison with some heuristi
 er-

ror estimators 
an be found in [9℄. The theoreti
al approa
h for the linear 
ase and some

of the presented results are published in [10℄ and [11℄. A residual-based a posteriori er-

ror estimator will be developed for the Lagrangian approa
h of a nonlinear optimization

problem (exploiting the stru
ture given by the �rst order ne
essary 
onditions). Duality

arguments are applied to get information on the global error propagation. This approa
h

enables to bypass the problem of the determination of the (global) stability error 
onstant

arising in error estimation. Additionally for lo
al mesh re�nement, the lo
al information

from the weights seems more appropriate then the global information from the stability


onstant. Furthermore these lo
al weights enable a lo
al sensitivity 
ontrol of the opti-

mization problem. For the developed approa
h, the dual solutions are dire
tly 
onne
ted

to the Lagrangian multiplier te
hnique in optimization. There are two dual problems: One

dual problem 
orresponds to the adjoint problem in the optimization approa
h. The se
-

ond dual problem enables error estimation of a given fun
tional. The 
omputed state and


o-state variables 
an be used as sensitivity fa
tors multiplying the lo
al 
ell residuals in

the error estimator. An other essential new feature is a natural 
hoi
e of the error fun
-

tional by whi
h the quality of the dis
retization of the optimization problem is measured.

The presented approa
h also gives an automati
 and natural 
hoi
e of the s
aling of the

terms (espe
ially those arising from boundary 
ontrol and boundary observation) in the

developed error estimator.

The approa
h to adaptivity in optimization problems will be developed within a general

setting in order to abstra
t from inessential te
hni
alities. Numeri
al results will be given in

the following 
hapters for optimization problems with a partial di�erential equation-simula-

tion from super
ondu
tivity (Ginzburg-Landau equations) and from 
ow problems (Navier-

29
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Stokes equations). The adaptive mesh re�nement for the �nite element dis
retization is

driven by the developed error estimator. This new error estimator will be 
ompared to a

simple energy error estimator for the state equations.

One main advantage of the presented error estimation theory is that no additional dual

problem has to be built. The resulting adaptive mesh re�nement is therefore almost with

no additional 
osts (see Se
tion 2.2).

The presented error estimation te
hniques have two prin
ipal points: The �rst aim is

mesh design for e
onomi
al 
omputation (qualitative error estimation). The solution of the

dis
rete system should be as 
lose as possible to the solution of the underlying 
ontinuous

problem. This 
an be a
hieved with the least number of dis
retization elements whi
h is

possible for a given a

ura
y. Or, for a given quantity of dis
retization elements, the to the


ontinuous solution 
losest dis
rete solution should be obtained (in the measure given by

the optimization problem).

The se
ond aim is to know how 
lose the solution of the dis
rete system is to the

solution of the underlying 
ontinuous system (quantitative error estimation). This gives an

evaluation of the quality of the solution of the dis
rete optimization problem by the value

of the error estimator. The duality arguments are espe
ially valuable for this appli
ation of

the error estimator, be
ause the error 
onstants 
an so far not analyti
ally be determined

for all 
ases in a sharp sense. The e�e
tivity index I

eff

will be used for 
lassi�
ation of the

obtained values of the error estimators.

The developed error estimator 'measures' the error between the solution of the 
ontinu-

ous optimization problem and the solution of the dis
rete optimization problem (dis
retiza-

tion error). For nonlinear problems additionally the linearization error may be important.

This does not dire
tly mean that it 'measures' the error between the 
omputed dis
rete

solution and given data like observations. This latter error 
an be seen in the proposed dual

solutions (whi
h are an important part of the developed residual based error estimator).

This di�eren
e is not only of theoreti
al interest. If the 
al
ulations are done on a too


oarse grid, the resulting numeri
al solutions may be very di�erent from the underlying


ontinuous solution. This will be stated in 
hapters 4 and 5. The a

ura
y of the numeri
al

solution depends on its proposed reliability.

It will be shown that the 
on
epts of error estimation theory for optimization prob-

lems are also valid for the nonlinear 
ase. A generalized version for the 
ase of arbitrary

fun
tionals will be derived in se
tion 2.5.

The indire
t approa
h to solve an optimization problem 
an be viewed as more ap-

propriate for the presented methods in error estimation than the dire
t approa
h. The

indire
t approa
h seems to be 
loser to the idea of approximating the underlying 
ontin-

uous problem by dis
rete problems. But if the (Newton) iteration is done to the limit on

ea
h dis
retization level, this di�eren
e disappears by the reasoning in se
tion 2.2.

The dis
retization of the equation system may also be viewed as a perturbation of the


ontinuous equation system. So the 
lassi
al theorems for perturbation theory as e.g. in

Bo
k [14℄ and Lions [48℄ 
ould be applied.
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2.1 Interpretation of �

This se
tion is dedi
ated to the interpretation of the Lagrange multiplier introdu
ed in the

formulation of the Lagrangian approa
h. The standard interpretation (see [49℄) should be

indi
ated as well as the interpretation in the 
ontext of error estimation for optimization

problems.

The gradient of the 
onstraints is a linear 
ombination of the gradient of the obje
-

tive fun
tion by the Lagrange multipliers from the �rst order ne
essary 
onditions of an

optimization problem for regular points, rJ(x

�

) = ��

t

rF (x

�

).

From sensitivity analysis, the Lagrange multipliers asso
iated with a 
onstrained min-

imization problem 
an be understood as pri
es, similar to the pri
es asso
iated with 
on-

straints in linear programming. In the nonlinear 
ase the Lagrange multipliers are asso
i-

ated with the parti
ular solution point and 
orrespond to in
remental or marginal pri
es,

that is, pri
es asso
iated with small variations in the 
onstraint requirements. They are

the in
remental pri
es of the 
onstraint requirements measured in units of the obje
tive

fun
tion (r




J(x(
))j


=0

= ��

t

).

In general, the Lagrangian multipliers are not 
onsidered to be fun
tions. In this 
on-

text, a 'natural' interpretation of � as a dual solution in the optimization problem is

obtained. In this 
ase, the Lagrangian multipliers are fun
tions.

Ea
h Lagrangian multiplier is asso
iated to one 
onstraint. Some of these 
onstraints are

equations from the simulation. The solutions of these equations are primal variables. The

equation for 
al
ulating this type of Lagrangian multiplier is obtained by di�erentiation of

the Lagrangian fun
tion w.r.t. a primal variable. This points out that we get the sensitivities

for the solutions of the belonging equation by the Lagrangian multiplier. Stri
tly speaking,

ea
h Lagrangian multiplier whi
h belongs to a state equation gives the sensitivity of this

state equation with respe
t to the 
ost fun
tional J . So also the sensitivity of the primal

variable derived as solution of this state equation is obtained.

To 
ompute the values for a Lagrangian multiplier implies that we use the values of other

Lagrangian multipliers. Therefore, if the values of one Lagrangian multiplier be
ome too

large, this 
an have an e�e
t on the other Lagrangian multipliers. This was one problem

observed during the resear
h for this thesis, espe
ially in 
omputations with 
ylindri
al

polar 
oordinates.

A general way to 
al
ulate the Lagrangian multiplier is �

T

= J

x

1

F

�1

x

1

, whereas J is

obje
tive fun
tion and F are the 
onstraints as above. F is a ve
tor and F

x

1

is the regular

part of the matrix F

x

with x

1

a sub-ve
tor of x. This formula 
an be derived from the

proof of the ne
essary 
onditions for an optimal point. This formula was already used in

the last pre
eding paragraph. The di�erentiation w.r.t. a primal variable leads to a regular

part in the matrix F

x

. Stri
tly speaking, this formula is only valid in the optimal point x

�

by de�nition.

Normally, for ea
h variable in the optimization problem (u; q; �) a dual variable (z

u

; z

�

; z

q

)

would have to be introdu
ed. This leads to the double amount of variables. In the presented

approa
h, the Lagrangian multiplier 
an be viewed as the dual solution of the solution of

the equation for whi
h the Lagrangian multiplier is introdu
ed (���

h

= z

u

). The formulas

are given in se
tion 2.6 with the derivation of the weighted error estimator. This redu
es

the equation system for error estimation with an optimization problem remarkably. There
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are no additional variables and no additional equation systems have to be solved. For the


omputation, the solution of the simulation and the Lagrangian multiplier 
an be adopted

for the error estimation. So there are not mu
h additional 
osts for the error estimation

with the presented approa
h.

As already indi
ated, � 
an be 
onsidered as dual solution of the optimization problem.

The derivation of this fa
t will be given below with the derivation of the weighted error

estimator. One motivation is that

�L

��

= 0 leads to the equation system for the primal

variables u, whereas

�L

�u

= 0 gives the equations system for the Lagrangian multipliers.

One main interpretation in the 
ontext of error estimation is that the Lagrangian mul-

tiplier enables to measure the lo
al error propagation. This means that the in se
tion 2.6

derived weighted error estimator the weights !(z) des
ribe the dependen
e of the error

fun
tional J(e) on variations of the residuals �(u; �; q). Therefore, for ea
h 
ell T of the

triangulation T

h

the relation

�J(e)

��

T

(u;�;q)

� h

k

T

!

T

(z) with k depending on the �nite element,

the error indi
ator and the error fun
tional J(e) 
an be stated, as generally indi
ated in [7℄

and [51℄. In se
tion 2.6 the relation between the primal variables (u; �; q) and dual variables

z = (z

u

; z

�

; z

q

) will be stated with the already mentioned ���

h

= z

u

. A motivation for this

is that the dual problem is an inverse problem and its solution is the ba
kward solution.

The error e is here the error from the di�eren
e between the solutions of the 
ontinuous

and the dis
rete optimization problem. It is mainly the dis
retization error, but also the

linearization error may 
ome into play.

In the error estimation approa
h, the Lagrangian multiplier arises in its 
ontinuous

formulation. For the used error estimator, the dual problem is repla
ed by the linearized

dual problem. For the evaluation of the error estimator, the dis
rete values are taken

as des
ribed in se
tion 2.6. Therefore, problems may appear for 
omputations on 
oarse

grids where the used dis
rete Lagrangian multiplier 
an be 'far away' from the 
ontinuous

Lagrangian multiplier. The sensitivity for the a

ura
y of the 
al
ulation of the Lagrangian

multiplier is given in the developed 
al
ulus by u � u

h

. The lo
al a

ura
y 
he
k of the


al
ulation of the Lagrangian multiplier is also driven by the weighted error estimator

developed in se
tion 2.6, as shown in se
tion 2.6.2.

2.2 General model formulation for nonlinear problems

A linear version of this se
tion 
an be found in [10℄. The following abstra
t setting for

optimal 
ontrol will be 
onsidered: Let Q , V and H be Hilbert spa
es for the 
ontrol

variable q 2 Q , the state variable u 2 V , and given observations u

d

2 H . The inner

produ
t and norm of H are (�; �) and k � k, respe
tively. The state equation is given in

the form

a(u; �) + b(q; �) = (f; �) 8� 2 V; (2.1)

where the semi-linear form a(�; �) (linear in its se
ond argument) represents an (ellipti
)

operator and the bilinear form b(�; �) expresses the a
tion of the 
ontrol. The goal is to

minimize the 
ost fun
tional

J(u(q); q) =

1

2

k
u(q) � u

d

k

2

+

1

2

n(q; q); (2.2)
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where 
 : V ! H is a linear bounded observation operator. It is assumed that ea
h q 2 Q

de�nes a unique solution u = u(q) 2 V of (2.1) and that the resulting fun
tional J(�)

has the appropriate 
ontinuity and 
oer
ivity properties in order to apply the 
al
ulus of

variations. For presented appli
ations, this guarantees the existen
e of a unique solution

of the optimal 
ontrol problem and the 
lassi
al regularity theory for ellipti
 equations

applies (see, e.g., [48℄). For nonlinear state equations there may be a non uniqueness of

the solutions. The developed theory is still valid (see [34, p. 1004℄). In this 
ase, there


an be several stationary points (e.g. lo
al minima). The operator n(�; �) will denote the

regularization of the 
ost fun
tional. It is mainly determined by the 
ontrol, for example

to a
hieve the ne
essary 
oer
ivity properties for the optimization problem. For simpli
ity,

we suppose that a(�; �) and n(�; �) indu
e norms denoted by k � k

a

and k � k

n

on the spa
es

V and Q , respe
tively, whi
h will be used in the following.

Introdu
ing a Lagrangian parameter � 2 V and the 
orresponding Lagrangian fun
tion

L(u; q; �) , the �rst order ne
essary 
onditions (Euler-Lagrange equations) of the optimiza-

tion problem reads

a

0

(u; v; �) + (
u� u

d

; 
v) = 0 8v 2 V;

a(u;�) + b(q; �) = (f; �) 8� 2 V; (2.3)

�b(r; �) + n(q; r) = 0 8r 2 Q:

The �rst equation results from

�L

�u

= 0, the se
ond from

�L

��

= 0 and the third from

�L

�q

= 0

as already des
ribed in se
tion 1.1. The simulation equation is a(u; �) + b(q; �) = (f; �).

The operator b(:; �) results from the optimal 
ontrol. It is generally analyzed in se
tions 1.1

and 1.2. For (NBC) it is just (:; �)

�

Q

. Whereas for (DBC), the strong boundary 
ondition

u = q on �

Q

is stated. The operator n(:; r) represents the regularization of the obje
tive

fun
tion J . The nonlinearity 
an be in the operator a(:; :) (whi
h is linear in the se
ond

argument, the test fun
tion) and in the obje
tive fun
tion J .

This system leads to a non-symmetri
 saddle point stru
ture

(
u; 
v) + a

0

(u; v; �) = (u

d

; 
v) 8v 2 V;

a(u;�) + b(q; �) = (f; �) 8� 2 V; (2.4)

b(r; �) � n(q; r) = 0 8r 2 Q:

For the resulting Hessian matrix (see se
tions 1.1 and 6.2), a symmetri
 saddle point stru
-

ture is obtained.

For appli
ations with linear operator a(�; �) , the symmetri
 saddle point stru
ture is

already obtained for the �rst order ne
essary 
ondition, be
ause a

0

(u; v; �) = a(�; v).

For all linear problems and problems with spe
ial nonlinearities like in the Ginzburg-

Landau equations (
hapter 4) or in the Navier-Stokes equations (
hapter 5), the following

matrix form 
an be stated. Introdu
ing operators A;A

0

,B,C,N whi
h represent the 
or-

responding bilinear or nonlinear forms, system (2.4) 
an also be written in matrix form

as

2

4

C A

0

0

A 0 B

0 B

T

�N

3

5

2

4

u

�

q

3

5

=

2

4

u

d

f

0

3

5

: (2.5)
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The matrix will be in the following denoted by M .

To illustrate the following theoreti
al 
onsiderations, the (linear) example of the �rst


hapter will be used. For simpli
ity, (NBC) is taken. Let 
 � IR

2

be an open bounded

domain with Lips
hitz boundary �
 whi
h is de
omposed into a Diri
hlet part �

D

and a


ontrol part �

Q

on whi
h the 
ontrol a
ts,

��u = f in 
; (2.6)

u = 0 on �

D

; �

n

u = q on �

Q

:

The observations are given on a part �

O

of the boundary and the asso
iated 
ost fun
tional

is

J(u; q) =

1

2

ku� u

d

k

2

�

O

+

1

2

�kqk

2

�

Q

: (2.7)

with a regularization parameter � � 0. In this 
ase the natural fun
tion spa
es are V =

fv 2 H

1

(
) : v = 0 on�

D

g , H = L

2

(�

O

) and Q = L

2

(�

Q

), whereas the operator 



orresponds to the tra
e operator. V is the �rst-order Sobolev Hilbert-spa
e over 
. H

and Q are the usual Lebesgue Hilbert-spa
es over �

O

and �

Q

. The bilinear forms a(�; �) ,

b(�; �) and n(�; �) are given by

a(u; v) = (ru;rv)




+ (u; v)




; b(q; v) = (q; v)

�

Q

; n(q; r) = �(q; r)

�

Q

;

where (�; �)

�

denotes the L

2

-inner produ
t on �.

The main issue of the rest of this se
tion will be the dis
ussion of the dire
t and indire
t

approa
h for solving an optimization problem in the presented 
ontext of partial di�erential

equations with adaptive �nite element Galerkin dis
retization (see Se
tion 1.5).

The indire
t approa
h takes the 
ontinuous formulation of the optimization problem.

The dis
retization is done after the equation system (1.10) is derived. Whereas in the

dire
t approa
h the dis
retization is done before these equations are derived. The latter

means that equation (1.10) is derived for the dis
rete system. Therefore, the optimization

problem is the one of the dis
rete formulation. In both 
ases, the same original optimization

problem is 
onsidered. Only the dis
retization is done at another point of the derivation

of the equations of the optimization system. So it 
an be questioned, whi
h in
uen
e this

has on the solution of the whole optimization problem and its numeri
al solution.

The applied dis
retization is based on standard �nite element Galerkin te
hniques. So

the di�eren
e between the dire
t and indire
t Galerkin methods has to be analyzed.

In the dire
t Galerkin approa
h, an operator a

h

and a matrix K

h

is derived from the

dis
retized optimization problem (see Se
tion 1.5). For the indire
t approa
h, this operator

and this matrix are denoted by a and K, respe
tively. For the Galerkin approa
h, it is

obvious that there is no di�eren
e to the equations of the indire
t Galerkin approa
h, i.e.

a(u

h

; v) = a

h

(u

h

; v) and f = f

h

. Con
erning the �nite element formulation, also the same

equations result be
ause, again, K = K

h

.

From the stated equations, it is obvious that there is no di�eren
e between the dire
t

and the indire
t Galerkin approa
h. The resulting equations are the same for the two

approa
hes. This is even valid for the �nite element formulation.

A di�eren
e between the dire
t and the indire
t approa
h 
an arise in the numeri
al

evaluation on the �nite elements. On this level, it is possible to noti
e a di�eren
e between
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the 
ontinuous operator of the indire
t approa
h and the dis
rete operator of the dire
t

approa
h.

2.3 A priori error estimate

This se
tion is dedi
ated to state a priori error estimates for the presented appli
ations.

These are related to the operator A(:) introdu
ed in the last se
tion. A(:) will be linear,

resulting from the Ginzburg-Landau equations (
hapter 4) or from the Navier-Stokes equa-

tions (
hapter 5). The following reasoning 
an be developed for the general linear 
ase for

A(:). If A(:) is nonlinear, the estimates have to be derived for 
ertain 
lasses of problems

or even for only one problem, depending on the diÆ
ulty of the problem. Until now, there

is no general proof in the nonlinear 
ase known to the author.

For simpli
ity of notation, we introdu
e the spa
e X = V � V � Q, with elements of

the form x = fu; �; qg whi
h is equipped with the produ
t-spa
e norm

kxk

X

:=

�

kuk

2

V

+ k�k

2

V

+ kqk

2

Q

�

1=2

:

Furthermore, M(�; �) on X representing the �rst order ne
essary 
onditions of the opti-

mization problem is de�ned by

M(x; y) =M(fu; �; qg; fv; �; rg) :=

(
u; 
�) + a(u; v) � b(q; v) + a

0

(u;�; �)� b(r; �) � n(q; r):

Using this notation, system (2.4) 
an be written in 
ompa
t form as

M(x; y) = F (y) 8y 2 X; (2.8)

with the linear fun
tional F (�) de�ned by

F (y) = F (fv; �; rg) := (u

d

; 
�) + (f; v):

For a linear operator a(:), the following a priori error estimates 
an be derived as

des
ribed in [10℄. In order to simplify the analysis, we impose the following 
onditions,

jM(x; y)j � 


M

kxk

X

kyk

X

; (2.9)

jb(r; v)j � 


b

krk

n

kvk

a

: (2.10)

The se
ond 
ondition, whi
h relies on the regularization term n(�; �) (requiring that � > 0),

is rather strong. It 
an be substituted by an 'inf-sup'-
ondition for b(�; �) under whi
h the

regularization 
ould be omitted. M(�; �) satis�es the following stability 
ondition:

Proposition 2.3.1. Under the assumptions (2.9) and (2.10) there exists a 
onstant 
 su
h

that

inf

x2X

sup

y2X

M(x; y)

kxk

X

kyk

X

� 
 > 0: (2.11)
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Proof. For any �xed x = fu; �; qg , we 
hoose the test triple y = fv; �; rg := fu; �;�qg , in

order to obtain

M(x; y) = k
uk

2

+ kuk

2

a

+ k�k

2

a

+ kqk

2

n

� b(q; �)� b(q; u)

� k
uk

2

+ kuk

2

a

+ k�k

2

a

+ kqk

2

n

�

1

4

kqk

2

n

�

3

4

k�k

2

a

�

1

4

kqk

2

n

�

3

4

kuk

2

a

� k
uk

2

+

1

4

kuk

2

a

+

1

4

k�k

2

a

+

1

2

kqk

2

n

:

We 
on
lude the asserted estimate by noting that kyk = kxk.

We 
onsider the dis
retization of the variational equation (2.8) by a standard Galerkin

method using trial spa
es X

h

:= V

h

� V

h

� Q

h

� X . For ea
h x 2 X , there shall exist

an \interpolation" i

h

x 2 X

h

, su
h that kx� i

h

xk

X

! 0 (h! 0) . The dis
rete problem

reads

x

h

2 X

h

: M(x

h

; y

h

) = F (y

h

) 8y

h

2 X

h

: (2.12)

This dis
retization is automati
ally stable sin
e a dis
rete analogue of (2.11) is ful�lled by

the same argument as used above,

inf

x

h

2X

h

sup

y

h

2X

h

M(x

h

; y

h

)

kx

h

k

X

ky

h

k

X

� 
 > 0: (2.13)

Combining equations (2.12) and (2.8), we get the Galerkin orthogonality

M(x� x

h

; y

h

) = 0; y

h

2 X

h

: (2.14)

This leads us to the following abstra
t a priori error estimate.

Proposition 2.3.2. For the Galerkin approximation on spa
es X

h

� X, there holds

ku� u

h

k

a

+k�� �

h

k

a

+ kq � q

h

k

n

(2.15)

� 


�

inf

v

h

2V

h

ku� v

h

k

a

+ inf

v

h

2V

h

k�� v

h

k

a

+ inf

p

h

2Q

h

kq � p

h

k

n

�

:

Proof. The stability estimate (2.13) implies that


ki

h

x� x

h

k � sup

y

h

2X

h

M(i

h

x� x

h

; y

h

)

ky

h

k

X

= sup

y

h

2X

h

M(i

h

x� x; y

h

)

ky

h

k

X

� 


M

ki

h

x� xk

X

:

Here, we have used the Galerkin relation (2.14) and the 
ontinuity estimate (2.9).

Of 
ourse, more pre
ise error estimates 
an be given using re�ned arguments, whi
h

exploit the stru
ture of the underlying problem. For instan
e, it would be interesting

to equip the spa
e Q with a di�erent norm than the one indu
ed by n(�; �) in order

to get robustness with respe
t to the regularization. This a�ords repla
ing (2.10) by an

appropriate (weaker) inf-sup-
ondition like

inf

q2Q

�

sup

v2V

b(q; v)

kvk

a

�

� � > 0:
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It should be noted that for the model example with boundary 
ontrol and boundary ob-

servations given above the 
onditions (2.9) and (2.10) are satis�ed.

For nonlinear A, theoreti
al results already stated in [34℄ are used. In fa
t, the sear
hed

a priori error estimates 
an be found therein. A general theorem for a priori error estimates

is theorem 3.5 on page 1013. Here some abstra
t results are stated for a 
ertain 
lass of

optimization problems. For the Ginzburg-Landau equations the a priori error estimates

are given in theorem 4.7 on page 1030. And for the Navier-Stokes equations they 
an be

found in theorem 4.10 on page 1041.

2.4 Motivation: Poisson equation

The a posteriori error estimator for optimization problem whi
h will be derived in the

following se
tions 
an be motivated starting from already known fa
ts in error estimation for

the Poisson equation ([12℄,[13℄). Taking the Poisson equation as an optimization problem,

will lead to the 
lassi
al a posteriori error estimator for solutions of partial di�erential

equations.

The motivation is for the Poisson problem

��u = f in 
; uj

�


= 0:

Let (:; :)




; k:k




denote the L

2

-inner produ
t and norm. Then the variational form seeks

u 2 V := H

1

0

(
) su
h that (ru;r�)




= (f; �)




8� 2 V:

Let T

h

be a triangulation of 
. We de�ne the subspa
e V

h

� V as

V

h

= f� 2 V : �j

K

2 Q

1

(K) 8K 2 T

h

g:

This leads to the following �nite element Galerkin approximation for the above variational

form:

u

h

2 V

h

: (ru

h

;r�

h

)




= (f; �

h

)




8�

h

2 V

h

:

De�ning the error e = u�u

h

, the Galerkin orthogonality 
an be stated (whi
h is an essential

feature):

(re;r�

h

)




= 0 8�

h

2 V

h

:

The a posteriori error estimation is done with respe
t to the (linear) fun
tional output

jJ(u)� J(u

h

)j � TOL:

The 
orresponding dual problem is:

z 2 V : (r�;rz)




= J(�) 8� 2 V: (2.16)
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Taking the error representation for the test fun
tion equal to the error (� = e) and using

the Galerkin orthogonality and 
ell wise integration by parts leads to

J(e) = (re;rz)




= (re;r(z � z

h

))




= (f; z � z

h

)




� (ru

h

;r(z � z

h

))




=

X

K2T

h

f(f +�u; z � z

h

)

K

�

1

2

([�

n

u

h

℄; z � z

h

)

�K

g (2.17)

�

X

K2T

h

fkf +�uk

K

kz � z

h

k

K

+

1

2

k[�

n

u

h

℄k

�K

kz � z

h

k

�K

g

�

X

K2T

h

fkf +�uk

K

kz � z

h

k

K

+

1

2

�

K

(u

h

)!

K

(z)g:

when taking only the dominant terms after the inequality. The jump over the 
ell K is

denoted by [:℄. The 
ell residuals

�

K

(u

h

) =

1

2

h

1

2

K

k[�

n

u

h

℄k

�K


an be interpreted as smoothness measure of the solution. Whereas the weights

!

K

(z) � C

i

h

K

kr

2

zk

K

� h

1

2

K

k[�

n

z

h

℄k

�K

represent sensitivity fa
tors of J(e). The full a posteriori error estimate would be by

equation (2.17):

jJ(e)j � �(u

h

) :=

X

K2T

h

h

2

K

�

�

(u)

K

!

(z)

K

+ �

(u)

�K

!

(z)

�K

	

; (2.18)

with the 
ell residuals and weights

�

(u)

K

:= h

�1

K

kf +�u

h

k

K

; �

(u)

�K

:=

1

2

h

�3=2

K

kn�[ru

h

℄k

�Kn�


;

!

(z)

K

:= h

�1

K

kz � z

h

k

K

; !

(z)

�K

:= h

�1=2

K

kz � z

h

k

�Kn�


:

In view of the lo
al approximation properties of �nite elements, there holds

!

(z)

K

+ !

(z)

�K

� 


I

h

2

K

max

K

jr

2

zj : (2.19)

In pra
ti
e the weights !

(z)

K

; !

(z)

�K

have to be determined 
omputationally. Let z

h

2 H

h

be the Galerkin approximation of z de�ned by

(r�

h

;rz

h

)




= J(�

h

) 8�

h

2 V

h

: (2.20)

In view of the estimate (2.19), we 
an approximate

!

(z)

K

+ !

(z)

�K

� 


I

h

2

K

max

K

jr

2

h

z

h

j; (2.21)
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where r

h

z

h

is a suitable di�eren
e quotient approximating r

2

z. The interpolation 
on-

stant is usually in the range 


I

� 0:1 to 1 and 
an be determined by 
alibration. Alterna-

tively, we may 
onstru
t from z

h

2 H

h

a pat
h wise bi-quadrati
 extrapolation I

2

h

z

h

and

repla
e z � �

h

in the weights by I

2

h

z

h

� z

h

. This gives an approximation whi
h is free

of any interpolation 
onstant. The quality of these approximations for the model problem

has been analyzed in [13℄.

This derivation 
an be reformulated as an optimization problem. The results 
an be seen

as a motivation for the following se
tions on error estimation for optimization problems.

Let the weak formulation of the Poisson equation be the fun
tional to be minimized (i.e.

the 
ost fun
tional of the optimization problem):

min

u2V=H

1

0

(
)

F (u) :=

1

2

kruk

2




� (f; u)




:

Considering the error e := u� u

h

results

F (u)� F (u

h

) =

1

2

kruk

2




� (f; u)




�

1

2

kru

h

k

2




+ (f; u

h

)




= �

1

2

kruk

2




�

1

2

kru

h

k

2




+ (ru;ru

h

)




= �

1

2

krek

2




:

In this 
ase, energy-error 
ontrol means error 
ontrol with respe
t to the '
ost fun
tional'

F . Exploiting the Galerkin orthogonality for the �rst equation leads to a motivation for

the error fun
tional

G(e) := �

1

2

krek

2




= �

1

2

(re;ru)




= F (u)� F (u

h

):

By the de�nition of the dual problem (2.16), we get

(rz;r�)




= �

1

2

(re;r�)




leading to the dual solution

z = �

1

2

e:

The general a posteriori error estimate (2.18) takes the parti
ular form

krek

2




�

X

K2T

h

h

2

K

�

�

(u)

K

!

(u)

K

+ �

(u)

�K

!

(u)

�K

	

; (2.22)

with the weights !

(u)

K

= h

�1

K

ku� �

h

k

K

and !

(u)

�K

= h

�1=2

K

ku� �

h

k

�Kn�


. Then, using the

lo
al approximation estimate

inf

�

h

2H

h

�

X

K2T

h

�

h

�2

K

ku� �

h

k

2

K

+ h

�1

K

ku� �

h

k

2

�K

	

�

1=2

� 


I

krek




; (2.23)

it 
an be 
on
luded from (2.22) that

krek

2




� 


I

�

X

K2T

h

h

4

K

�

�

(u)2

K

+ �

(u)2

�K

	

�

1=2

krek




:
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This implies the standard residual{based energy-norm a posteriori error estimate (see, e.g.

Verf�urth [62℄):

jF (u)� F (u

h

)j =

1

2

krek

2




�

1

2




2

I

X

K2T

h

h

4

K

�

�

(u)2

K

+ �

(u)2

�K

	

: (2.24)

Below, it will be shown that the pe
uliar relation z = �

1

2

e for the dual solution 
orre-

sponding to the \energy fun
tional" F (�) follows from a general prin
iple whi
h 
an be

used also for the dis
retization of the optimal 
ontrol problem des
ribed above.

2.5 General approa
h to a posteriori error analysis

In this se
tion, two abstra
t and general approa
hes to a posteriori error analysis are

presented. Applying these approa
hes to optimization problems leads to the presented dual-

weighted a posteriori error estimator. Both approa
hes are not restri
ted to optimization

problems. Starting from a (possibly nonlinear) fun
tional, the des
ribed me
hanism 
an

be applied. The �rst version has been published in [11℄. For linear or quadrati
 problems,

the error estimate 
an be exa
t. Otherwise, there is an additional error. This error will be

given in the se
ond version in this se
tion by the remainder R (see [10℄).

Let L(u) be a twi
e di�erentiable fun
tional on some Hilbert spa
e V , e.g. the energy

fun
tional related to the Poisson problem or the Lagrangian fun
tional de�ned for the

Ginzburg-Landau model. For its �rst and se
ond di�erentials at u , the notation L

0

(u; �)

and L

00

(u; �; �), respe
tively, is used. Noti
e that L

00

(u; �; �) is symmetri
. Stationary points

u 2 V of L(�) are sear
hed,

L

0

(u;�) = 0 8� 2 V: (2.25)

For an optimization problem, this equation is the �rst order ne
essary 
ondition of the

underlying original 
ontinuous optimization problem, i.e. the equation whi
h has to be

solved. Corresponding approximations u

h

2 V

h

are de�ned in �nite dimensional subspa
es

V

h

� V by the Galerkin equations

L

0

(u

h

;�

h

) = 0 8�

h

2 V

h

: (2.26)

Let J(�) be a fun
tional 
hosen for measuring the error e = u� u

h

. Then,

J(u)� J(u

h

) =

Z

1

0

J

0

(u

h

+ te; e) dt; (2.27)

L

0

(u; �) � L

0

(u

h

; �) =

Z

1

0

L

00

(u

h

+ te; e; �) dt; (2.28)

leads to 
onsider the \dual problem"

Z

1

0

L

00

(u

h

+ te;�; z) dt =

Z

1

0

J

0

(u

h

+ te;�) dt 8� 2 V; (2.29)
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whi
h is assumed to have a solution z 2 V . Then, taking � = e in (2.29) and using the

Galerkin equation (2.26) results in the error identity

J(u)� J(u

h

) = L

0

(u; z)� L

0

(u

h

; z) = �L

0

(u

h

; z � �

h

); (2.30)

with arbitrary �

h

2 V

h

. In general, this error representation 
annot be evaluated sin
e

the left-hand side as well as the right-hand side in the dual problem (2.29) depend on the

unknown 
ontinuous solution u . The simplest way of approximation is to repla
e u by

u

h

, whi
h yields the perturbed dual problem

L

00

(u

h

;�; ~z) = J

0

(u

h

;�) 8� 2 V: (2.31)

Controlling the e�e
t of this perturbation on the a

ura
y of the resulting error estimate

may be a deli
ate task and depends strongly on the parti
ular problem under 
onsideration.

Experien
es from di�erent types of appli
ations (e.g. the Navier-Stokes equations) indi
ate

that this problem is not 
riti
al as long as the solution to be 
omputed is stable. The


ru
ial problem is the approximation of the perturbed dual solution by solving a dis
rete

dual problem

L

00

(u

h

;�

h

; ~z

h

) = J

0

(u

h

;�

h

) 8�

h

2 V

h

: (2.32)

So far, the derivation of the error representation (2.30) did not use that the variational

equation (2.25) stems from an \energy fun
tional". In fa
t it 
an be used for mu
h more

general situations; see the surveys given in Eriksson, et al. [27℄, and in [51℄. It seems

natural to 
ontrol the error e = u�u

h

with respe
t to the given \energy" fun
tional L(�) .

Observing that L

0

(u;�) = 0 , it follows by integration by parts that

Z

1

0

L

0

(u

h

+ te;�) dt = �

Z

1

0

L

00

(u

h

+ te; e; �)t dt = �

Z

1

0

L

00

(u

h

+ te;�; e)t dt:

Hen
e, in this 
ase the dual problem (2.29) takes the spe
ial form

Z

1

0

L

00

(u

h

+ te;�; z) dt = �

Z

1

0

L

00

(u

h

+ te;�; e)t dt 8� 2 V: (2.33)

If the fun
tional L(�) is quadrati
 or in the general 
ase by linearization u ! u

h

, the

following perturbed dual problem is obtained

L

00

(u

h

;�; ~z) = �

1

2

L

00

(u

h

;�; e) 8� 2 V; (2.34)

with the solution ~z = �

1

2

e . The resulting a posteriori error estimate has the form

jL(u)� L(u

h

)j � inf

�

h

2V

h

jL

0

(u

h

; ~z � �

h

)j = inf

�

h

2V

h

1

2

jL

0

(u

h

; ~u� �

h

)j: (2.35)

In the ideal 
ase of a quadrati
 fun
tional L(�) linearization is not required and this error

bound be
omes exa
t. Here, again the quantity

~z � �

h

= �

1

2

e� �

h

=

1

2

(u�  

h

)
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has to be approximated as des
ribed above by using the 
omputed solution u

h

2 H

h

.

It should be emphasized that in this parti
ular 
ase the evaluation of the a posteriori

error estimate with respe
t to the \energy fun
tional" does not require the expli
it solution

of the dual problem. This abstra
t reasoning 
an be taken as guide-line for systemati
ally

deriving a posteriori error estimates in 
on
rete situations, for example for optimization

problems in the following 
hapters.

Remark 2.5.1. The fa
tor �

1

2

results from the di�eren
e between the �rst and the se
ond

order of di�erentiation. Alternatively, it 
an be found in the Taylor approximation in

equation (2.51). It 
ould be eliminated by a multipli
ation of the 
ost fun
tional with fa
tor

2. The standard notation in optimization theory is the �rst one.

Following the formalism of this and the previous 
hapter, the estimation of the error e =

fe

u

; e

�

; e

q

g with respe
t to the Lagrangian fun
tional L(�) is sear
hed. The 
orresponding

linearized dual problem

L

00

(u

h

;�; ~z) = �

1

2

L

00

(u

h

;�; e) 8� 2 V; (2.36)

then has the solution ~z = �

1

2

fe

u

; e

�

; e

q

g . Hen
e, this dual problem has not to be built (nor

extra work for solving it has to be spent). The following result is also true for nonlinear

state equations as for example shown in 
hapter 4.

Theorem 2.5.1. For the �nite element dis
retization of the variational equation (1.7) -

(1.9) for the 
onsidered optimization problem, there holds the a posteriori error relation

jJ(u; q) � J(u

h

; q

h

)j � �

!

(u

h

; �

h

; q

h

) =

X

K2T

h

�

K

(u

h

; �

h

; q

h

); (2.37)

with the lo
al error indi
ators

�

K

(u

h

; �

h

; q

h

) := �

(u)

K

!

(�)

K

+ �

(u)

�K

!

(�)

�K

+ �

(�)

K

!

(u)

K

+ �

(�)

�K

!

(u)

�K

+ �

(q)

�K

!

(q)

�K

:

and the 
ell-wise residuals and weights

�

(u)

K

:= kR

(u)

h

k

K

; !

(�)

K

:= k�� i

h

�k

K

;

�

(u)

�K

:= kr

(u)

h

k

�K

; !

(�)

�K

:= k�� i

h

�k

�K

;

�

(�)

K

:= kR

(�)

h

k

K

; !

(u)

K

:= ku� i

h

uk

K

;

�

(�)

�K

:= kr

(�)

h

k

�K

; !

(u)

�K

:= ku� i

h

uk

�K

;

�

(q)

�K

:= kr

(q)

h

k

�K\�

C

; !

(q)

�K

:= kq � j

h

qk

�K\�

C

;

The \
ell residuals" R

(u)

h

; R

(�)

h

, and the \edge residuals" r

(u)

h

; r

(�)

h

; r

(q)

h

, are on 
ells K

and 
ell edges � de�ned by

R

(u)

hjK

:= ��u

h

+ u

h

� f; R

(�)

hjK

:= ���

h

+ �

h

; r

(q)

hj�

:= �q

h

� �

h

; if � � �

C

;

r

(u)

hj�

:=

8

>

<

>

:

1

2

h

�1=2

�

[�

n

�

h

℄; if ���K n �
;

h

�1=2

�

�

n

u

h

; if ���
n�

C

;

h

�1=2

�

(�

n

u

h

� q

h

); if ���

C

;

r

(�)

hj�

:=

8

>

<

>

:

1

2

h

�1=2

�

[�

n

�

h

℄; if ���K n �
;

h

�1=2

�

�

n

�

h

; if ���
n�

O

;

h

�1=2

�

(


0

� u

h

+ �

n

�

h

); if ���

O

:
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Here, [�

n

�

h

℄ denotes the jump of the normal derivative of �

h

a
ross the inter-element

edges �, the boundary 
omponents �

C

, �

O

are the 
ontrol and observation boundary,

respe
tively, and i

h

, j

h

denote some lo
al interpolation operators into the �nite element

spa
es.

If the Lagrangian fun
tional L(�) is quadrati
 this error relation yields a true upper

bound.

Proof. In the present 
ase, there holds

L(v)� L(v

h

) = J(u; q) + (ru;r�)




� (f; �)




� (q; �)

�

C

� J(u

h

; q

h

)� (ru

h

;r�

h

)




+ (f; �

h

)




+ (q

h

; �

h

)

�

C

= J(u; q) � J(u

h

; q

h

);

sin
e fu; �; qg and fu

h

; �

h

; q

h

g satisfy the 
ontinuous and dis
rete version of equation

(1.9). Hen
e, error 
ontrol with respe
t to the Lagrangian fun
tional L(�) and the 
ost

fun
tional J(�) is equivalent. Now, the general error identity (2.35) implies that

jJ(u; q)� J(u

h

; q

h

)j � inf

�

h

2V

h

jL

0

(v

h

; v � �

h

)j; (2.38)

where v

h

= fu

h

; �

h

; q

h

g and v = fu; �; qg . Noti
e that this relation is an identity if the

fun
tional J(�) is quadrati
. From the dis
rete version of (1.7) - (1.9), it results that

L

0

(v

h

; v � �

h

) = (u

h

� u

O

; u�  

h

)

�

O

+ (r(u�  

h

);r�

h

)




+ (u�  

h

; �

h

)




+ (ru

h

;r(�� �

h

))




� (f; �� �

h

)




� (q

h

; �� �

h

)

�

C

+ (�

h

� �q

h

; q � �

h

)

�

C

:

Splitting the global integrals into the 
ontributions from ea
h single 
ell K 2 T

h

and ea
h


ell edge � � �
 , respe
tively, and integrating lo
ally by parts yields

L

0

(v

h

; v � �

h

) =

X

���

O

(u

h

� u

O

+ �

n

�

h

; u�  

h

)

�

+

X

���
n�

O

(�

n

�

h

; u�  

h

)

�

+

X

���

C

(�

n

u

h

� q

h

; �� �

h

)

�

+

X

���
n�

C

(�

n

u

h

; �� �

h

)

�

+

X

���

C

(�

h

� �q

h

; q � �

h

)

�

+

X

K2T

h

�

(��u

h

� f; �� �

h

)

K

+

1

2

(n�[ru

h

℄; �� �

h

)

�Kn�


	

+

X

K2T

h

�

(u�  

h

;���

h

+ �

h

)

K

+

1

2

(u�  

h

; n�[r�

h

℄)

�Kn�


	

:

From this the asserted relation follows by applying the H�older inequality.

The linearization error 
an be given in an expli
it form. In the rest of this se
tion this

will be shown.

The a posteriori error estimation in the 
ase of a nonlinear state equation follows the

same pattern as in the linear 
ase. First, an abstra
t result is stated.
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Proposition 2.5.1. For the Galerkin �nite element approximation of the abstra
t model

problem (2.3) with nonlinear state equation and quadrati
 
ost fun
tional there holds

J(u; q)� J(u

h

; q

h

) =

1

2

rL(x

h

)(x� i

h

x) +R(x; x

h

) ; (2.39)

where the remainder term R(x; x

h

) 
an be estimated by

jR(x; x

h

)j � sup

x̂2[x

h

;x℄

jr

3

L(x̂)(x� x

h

; x� x

h

; x� x

h

)j: (2.40)

Proof. The Galerkin orthogonality relation now reads

r

2

L(xx

h

)(x� x

h

; �

h

) = rL(x)(�

h

)�rL(x

h

)(�

h

) = 0; �

h

2 X

h

; (2.41)

with the abbreviating notation

L(xx

h

) :=

Z

1

0

L(x+ t(x

h

� x)) dt:

Sin
e the solutions u and u

h

satisfy the 
orresponding state equations there holds again

J(u; q)� J(u

h

; q

h

) = L(x)�L(x

h

):

By Taylor expansion, there holds

L(x)�L(x

h

) = rL(x)(x� x

h

)�

1

2

r

2

L(x)(x� x

h

; x� x

h

)

+

1

6

r

3

L(~x)(x� x

h

; x� x

h

; x� x

h

);

where ~x lies between x and x

h

. Sin
e x is a stationary point of L , the �rst term on

the right vanishes. In order to relate the se
ond term to the Galerkin relation (2.41), again

Taylor expansion is used:

r

2

L(x)(x� x

h

; x� x

h

) = r

2

L(xx

h

)(x� x

h

; x� x

h

)

+r

3

L(x̂)(x� x

h

; x� x

h

; x� x

h

);

where x̂ is another point between x and x

h

. In view of the identity

r

2

L(xx

h

)(x� x

h

; �) = rL(x)(�)�rL(x

h

)(�) = �rL(x

h

)(�);

and the Galerkin relation (2.41), it 
an be 
on
luded that

L(x)�L(x

h

) = �

1

2

r

2

L(xx

h

)(x� x

h

; x� x

h

) +R(x; x

h

)

= �

1

2

r

2

L(xx

h

)(x� x

h

; x� x

h

� �

h

) +R(x; x

h

)

=

1

2

rL(x

h

)(x� x

h

� �

h

) +R(x; x

h

);

with an arbitrary �

h

2 X

h

, and the remainder term

R(x; x

h

) = r

3

L(x̂)(x� x

h

; x� x

h

; x� x

h

) +

1

6

r

3

L(~x)(x� x

h

; x� x

h

; x� x

h

):

Taking here �

h

= i

h

x� x

h

, eventually results in

L(x)�L(x

h

) =

1

2

rL(x

h

)(x� i

h

x) +R(x; x

h

);

whi
h 
ompletes the proof.
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It should be noted that, if the 
ost fun
tional J(�) is quadrati
 and the 
ontrol form

b(�; �) bilinear, then the only non-zero terms in r

3

L are

�

3

L

���

2

u

(x) = a

00

(u)(�; �; �);

�

3

L

�

3

u

(x) = a

000

(u)(�; �; �; �):

Further, if additionally the state equation is linear, then the remainder term R(x; x

h

)

vanishes.

This abstra
t result will be applied for a nonlinear problem of optimal 
ontrol in the

\Ginzburg-Landau model" of super
ondu
tivity in semi
ondu
tors in 
hapter 4. It has the

same stru
ture as the model problem 
onsidered above,

��u+ s(u) = f in 
; (2.42)

�

n

u = 0 on �

N

; �

n

u = q on �

C

;

with the nonlinearity s(u) := u

3

� u , and the quadrati
 
ost fun
tional

J(u; q) =

1

2

ku� 


0

k

2

�

O

+

�

2

kqk

2

�

C

:

The 
orresponding �rst-order ne
essary 
ondition (2.3) uses the notation

a(u)(v) = (ru;rv)




+ (s(u); v)




; b(q; v) = (q; v)

�

C

; n(q; r) = �(q; r)

�

C

;

and is approximated by the Galerkin �nite element approximation of the s
heme (2.3). The

well-posedness of this optimization problem, the existen
e of the adjoint variable �, as well

as a priori error estimates for its dis
retization have been dis
ussed by Gunzburger and

Hou [34℄. From Proposition 2.5.1, we 
on
lude the following a posteriori result.

Proposition 2.5.2. For error 
ontrol with respe
t to the 
ost fun
tional J , there holds

the weighted a posteriori error estimate

jJ(u; q)� J(u

h

; q

h

)j � �

!

(u

h

; �

h

; q

h

) +R(fu; �; qg; fu

h

; �

h

; q

h

g); (2.43)

where the lo
al error indi
ators �

K

(u

h

; �

h

; q

h

) in the linearized error estimator

�

!

(u

h

; �

h

; q

h

) :=

X

K2T

h

�

K

(u

h

; �

h

; q

h

) (2.44)

are de�ned as in the linear 
ase, here with the \
ell residuals"

R

(u)

hjK

:= ��u

h

+ s(u

h

)� f; R

(�)

hjK

:= ���

h

+ s

0

(u

h

)�

h

;

r

(q)

hj�

:= �q

h

� �

h

; if � � �

C

: (2.45)

For the remainder term, there holds the a priori estimate

�

�

R(fu; �; qg; fu

h

; �

h

; q

h

g)

�

�

� 6

Z




n

maxfjuj; ju

h

jgju� u

h

j

3

+ ju� u

h

j

2

j�� �

h

j

o

dx: (2.46)
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As in the linear 
ase, the weights are evaluated numeri
ally using the approximations

fu

h

; �

h

; q

h

g, but now the weighted error estimator 
ontains an additional linearization

error represented by the remainder R . Theory as well as pra
ti
al experien
e show that,

in the present 
ase, this additional error is of higher order on well-adapted meshes and 
an

therefore be negle
ted. In fa
t, assuming suÆ
ient smoothness of the solution fu; �; qg ,

there holds

�

�

R(fu; �; qg; fu

h

; �

h

; q

h

g)

�

�

� 
(u; u

h

)h

6

max

; (2.47)

with the maximum step size h

max

of the mesh. The proof of this order-optimal estimate

employing te
hniques from L

1

-error analysis of �nite elements 
ould be given by known

te
hniques whi
h are beyond the topi
 of this thesis. In view of this observation, the

remainder term in the a posteriori error estimate (2.43) is negle
ted and base the mesh

adaptation on its main part �

!

(u

h

; �

h

; q

h

) .

The dis
rete problems of (2.3) are solved by a quasi-Newton iteration whi
h is derived

from a 
orresponding s
heme formulated on the 
ontinuous level. On ea
h dis
rete level

the Newton iteration is 
arried to the limit before the error estimator is applied for mesh

re�nement. The results of this pro
ess may signi�
antly di�er from those obtained if ea
h

Newton step is dis
retized separately mixing iteration and dis
retization errors together;

see the publi
ation [9℄ for the latter approa
h.

2.6 Derivation of the dual weighted error estimator for op-

timization problems

In the last se
tion, the dual-weighted error estimator was derived. In se
tion, some addi-

tional remarks for the 
ase of optimization problems should be given.

As already stated, the primal optimization problem in the weak formulation reads

y 2 X := V � V

0

�Q : M(y; v) = F (v) 8v 2 X; (2.48)

leading to a primal solution y = (u; �; q) of the optimization problem. Following the

general theory for dual problems, a dual problem �tting to the error estimation problem

y � y

h

= (u � u

h

; � � �

h

; q � q

h

) 
an be 
onstru
ted. Let G(:) be a general linear error

fun
tional G(�) = fG

u

(�); G

�

(�); G

q

(�)g de�ned on X . G(:) is linear in the error y � y

h

,

but not ne
essarily in the variables y. In order to obtain an a posteriori error estimator for

G(y � y

h

) , the following 
orresponding dual problem has to be 
onsidered:

z 2 X : M

t

(z; x) = G(x) 8x 2 X (2.49)

with the dual solution z = (z

u

; z

�

; z

q

) of the optimization problem. In equation (2.49), x

is an arbitrary test fun
tion of X. It will later on be set to the error y � y

h

.

For the spe
ial 
ase of G(x) = J(y)�J(y

h

) with J being the obje
tive fun
tional of the

optimization problem, the following approa
h 
an be derived: The Lagrangian fun
tional

L(y) = J(u; q)+hAu�Bq; �i is stationary at the 
ontinuous solution y = fu; �; qg and the

dis
rete solution y

h

. This leads for the di�eren
e between the 
ontinuous and the dis
rete
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version to

J(u; q) � J(u

h

; q

h

) = L(u; �; q)�L(u

h

; �

h

; q

h

) (2.50)

= rL(y)(y � y

h

) +

1

2

r

2

L(y)(y � y

h

)

2

+O(ky � y

h

k

3

X

)

=

1

2

r

2

L(y)(y � y

h

)

2

+O(ky � y

h

k

3

X

): (2.51)

A(:) 
an be nonlinear. The 
ontinuous and dis
rete state equations must be equal to 0 for

equation (2.50). In equation (2.51), the �rst order ne
essary 
ondition for the Lagrange

fun
tion L is used. Until now, only the primal optimization problem has been exploited.

With the 
hoi
e G(x) = J(y)� J(y

h

), an interpretation of equation (2.51) by the dual

problem 
an be found, leading to an error estimate. The above matrix M is the matrix

of the �rst order ne
essary 
onditions. Thus it 
ontains the �rst order di�erential of L.

This matrix M is not symmetri
 for nonlinear A. But the se
ond order di�erential of L is

symmetri
. So the matrix r

2

L 
an also be interpreted as an equation by the dual problem

M

t

. Taking G(x) = J(y) � J(y

h

), an equation for the estimation of the error fun
tional

G(:) was derived. The variable x is now the error y � y

h

, so this test fun
tion is taken.

Now, also the relation between the primal and the dual solutions 
an be derived. The

dual variable of � is z

�

= u � u

h

be
ause u; u

h

appear in the error fun
tional J(u; q) �

J(u

h

; q

h

) and the 
onsidered (dual) problem is M

t

and not M . By the same argument,

z

u

= �� �

h


an be stated. This means that the dual variable z 
an be expressed in terms

of the primal variable y. Hen
e no extra dual variables need not be generated for the


omputation. This redu
es the system on the half of the variables of the whole system for

adaptivity. And error estimation is almost \for free".

Remark 2.6.1. In theorem 2.5.1 an error estimate similar to the linear will be derived for

the general 
ase. The derived estimate is an approximation and will be an upper bound in

(the given) 
ase of a quadrati
 
ost fun
tional.

Remark 2.6.2. In the a posteriori error estimate (2.37), the residual of the state equa-

tion is weighted by terms involving the Lagrangian multiplier � from the original equation

(2.4). This has a natural interpretation as it is well-known from sensitivity analysis that

the Lagrangian multiplier measures the in
uen
e of perturbations on the 
ost fun
tional.

Sin
e dis
retization 
an be interpreted as a spe
ial perturbation, the appearan
e of � in

the estimator is not surprising. The spe
ial form of the weights involving the interpolation

i

h

z is a 
hara
teristi
 feature of the Galerkin dis
retization (orthogonality of residuals with

respe
t to the test spa
e).

Remark 2.6.3. The a posteriori error estimate (2.37) is derived from the �rst-order op-

timality 
ondition whi
h is a system of partial di�erential equations. An interpretation

in terms of the original minimization problem 
an be very illuminative. Indeed, the dis-


retization of the state equation leads to numeri
al solutions whi
h are not admissible (in

the stri
t sense) for the original 
onstrained minimization problem. The situation 
an be

summarized as follows: Let s : Q ! V denote the (linear) solution operator whi
h asso-


iates the state variable to a given 
ontrol fun
tion. The optimal 
ontrol then minimizes the

fun
tional j(q) := J(s(q); q) without 
onstraints over the spa
e Q. Sin
e the dis
retization


hanges the state equation, not only the spa
e of possible 
ontrols is 
hanged, but also the

fun
tional. Denoting by s

h

: Q ! V

h

the dis
rete solution operator, the dis
rete optimal
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ontrol q

h

minimizes the fun
tional j

h

(q) := J(s

h

(q); q) over the spa
e Q

h

. If numeri
al


omputation is performed, the notion of \admissible" solution has to be substituted by an

error estimate for the state equation. Of 
ourse, the distan
e between the numeri
al and the


ontinuous state should be measured with respe
t to the spe
i�
 needs of the optimization

problem, i.e., the in
uen
e on the fun
tional to be minimized. This is exa
tly what the a

posteriori estimator derived above is designed for.

2.6.1 Error fun
tional for optimization problems

In the general approa
h in se
tion 2.6, the error fun
tional G(:) is not for
ed to be related

to the 
ost fun
tional J(:) of the optimization problem. For spe
ial optimization problems,

there may exist good error fun
tionals whi
h are not related to the 
ost fun
tional J(:).

The prin
ipal point of this approa
h is that a general approa
h for error estimation of

optimization problems should be developed. Furthermore, the presented error fun
tional

results from the analyti
 derivation of the dual-weighted error estimate.

The sometimes for optimization problems applied strategy that the 
ost fun
tional is

mainly used as regularization to get a well-stated state equation is not 
onsidered. For this

se
tion, the 
ost fun
tional J(:) is really the fun
tion whi
h gives the quality of the obtained

solution of the 
ontinuous and dis
retized optimization problem. The error fun
tional G(:)

shows the quality of the dis
rete solution of the (dis
retized) optimization problem. These

two qualities are very 
lose. So it 
an be 
onsidered as a natural 
hoi
e to sear
h for a

relation between G(:) and J(:). By the analyti
al derivation of the weighted error estimator

in equation (2.51), this natural 
hoi
e 
an be stated. The proposed relation is that the

error fun
tional G(:) shows the e�e
t of the dis
retization on the 
ost fun
tional J(:). As

already stated, the dis
retization 
an be interpreted as a perturbation of the optimization

problem. For this interpretation, G(:) is the di�eren
e of the 
ontinuous and dis
retized


ost fun
tional G(x; x

h

) := J(x)� J(x

h

), where x is the 
ontinuous solution (u; �; q).

If the global minimum �ts to the data or measurements u

d

(e.g. no perturbations of

the measurements) and this global minimum is the solution of the optimization problem,

then u � u

d

= 0. Therefore, J(x) � J(x

h

) =

1

2

(u � u

d

)

2

�

1

2

(u

h

� u

d

)

2

=

1

2

(u

h

� u

d

)

2

.

This is equivalent to the right hand side of the equation

�L

�u

= 0 in �rst order ne
essary


ondition of the optimization problem, whi
h is the equation for the determination of the

dual solution �. Hen
e, in some 
ases, G(x; x

h

) =

�J

�x

j

x

h


an be taken. It is an integral on

the observation boundary or on the domain 
.

By the equations of the error estimator and numeri
al results, it 
an be observed that

the sensitivities of the optimization problem show up by this approa
h. The dependen
ies

of the observation, of the 
ontrol and of the primal solutions 
an be stated.

It should be noted that the term 'error fun
tional' is not the one really known in

traditional error estimation theory. Here, the error fun
tional is de�ned as the di�eren
e

of two solutions. A term like 'output fun
tional' 
ould be more appropriate for this fa
t.

Nevertheless, the traditional term is taken in order to simplify the understanding of the

developed theory.
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2.6.2 Interpretation of weighted error estimator for optimization prob-

lems

In this se
tion, some 
riteria for heuristi
 error estimation for optimization problems with

partial di�erential equation models should be dis
ussed. It will be shown that these are

ful�lled for the analyti
ally derived weighted error estimator in se
tion 2.6.

The main idea is that the important properties of the original and underlying 
ontin-

uous optimization problem must be valid in the dis
rete optimization problem in a 
ertain

a

ura
y. Therefore, the following question arises: Where pla
ing how many dis
retiza-

tion elements in the dis
rete optimization problem? This is a multidimensional problem

depending on the domain 
.

The following points 
an be seen as heuristi
 
riteria for a good dis
rete optimization

problem in the indi
ated 
ontext:

1. The evaluation of 
ost fun
tional J . J provides the 
riterion for the quality of the

solution of optimization problem. It is the fun
tion whi
h is to be minimized. By

se
tion 2.6.1, J leads to a 
hoi
e of error fun
tional for adaptivity whi
h enables to

measure this quality.

2. The sensitivities with respe
t to J in optimization problems. These sensitivities arise

for example by the �rst order ne
essary 
onditions of the 
onstraint optimization

problem. They are derivations of the Lagrangian fun
tion. So the optimization pro-


ess in
ludes automati
ally the sensitivities. By standard interpretation (see se
tion

2.1), the Lagrangian multipliers � show sensitivities in optimization problem. Fur-

thermore, sensitivities 
an also be motivated by variation of (input) data. Taking the

whole 
al
ulation as a bla
k box, 
hanges in the input data 
an 
ause other output

values like for the 
ost fun
tional J .

3. Lo
al 
ontrol of these sensitivities with respe
t to J . The e�e
t of perturbation at

dis
rete points on evaluation of J is studied. If this perturbation has a big e�e
t on

the evaluation, a high sensitivity is stated. Hen
e, a higher evaluation a

ura
y is

ne
essary. In other words: An inappropriate dis
retization will automati
ally lead to

large values of the weights, whi
h in turn will indu
e lo
al mesh re�nement. This has

also a 
ontribution to the question: where pla
ing the dis
retization elements?

These points 
an be stated for the developed error estimator. The evaluation of J is

in
luded by the 
hoi
e of the error fun
tional G = J � J

h

.

The sensitivity analysis is 
ontained by the derivation of the weighted error estimator

from the �rst order ne
essary 
onditions of the 
onstraint optimization problem. Further-

more, the Lagrangian multipliers � play an important role in the weighted error estimator.

The lo
al 
ontrol of the sensitivities is done by the weights arising from the duality.

These weights have for optimization two interpretations: The standard interpretation is a


ontrol of the lo
al stability (see se
tion 2.9). It is used for treating the error propagation.

The new interpretation is the lo
al 
ontrol of the sensitivities in the optimization problem in


ombination with the duality theory from optimization. The new property arises from the

merge of the weights and the interpretation of the Lagrangian multiplier �. A motivation
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is the greater value of the weights in 
ase of a bad dis
retization. The appropriate term in

the weighted error estimator is then more important.

Another point 
ould be that the dis
rete stationary point is as 
lose as possible to the

stationary point of the underlying 
ontinuous problem. By the above reasoning, this is only

partially true. In regions, whi
h are not important for the optimization problem, the two

stationary points 
an be far away from ea
h other for some appli
ations.

For the above mentioned interpretation, an appropriate formulation of the optimization

problem is ne
essary. For other formulations, the appli
ation of the weighted a posteriori

error estimation theory in [12℄ and [13℄ may not be as straight forward as presented. From

the presented formulation, all dependen
ies and s
alings in the error estimator are somehow

natural. In this formulation, also the additional parts for optimization instead of only the

forward solution are 
ontained. This means, that the 
onsidered me
hanisms and depen-

den
ies of the optimization problem 
an be found in the �rst order ne
essary 
onditions of

the 
onstrained optimization problem. This in
ludes also the applied regularization meth-

ods. Whereas some optimization features like the globalization part 
an not be found here,

see 
hapter 3.

2.7 Heuristi
 error indi
ators

The presented heuristi
 error estimates are developed for the appli
ations of the Poisson

equation (
hapter 1, s(:) = 0) and of the Ginzburg-Landau equations (
hapter 4).

In the following error indi
ator, the equation for the Lagrangian multiplier is not 
on-

sidered. It 
an therefore be interpreted as error indi
ator with 'frozen' �. The general

approa
h in [10℄ led to the following a posteriori error estimate

jJ(u)� J(u

h

)j � j < J

0

u

(u); u � u

h

> j � �

weight

(u

h

; q

h

); (2.52)

where

�

weight

(u

h

; q

h

) :=

X

K2T

h

n

�

K

(u

h

; q

h

) !

K

(z

h

) + �

�K

(u

h

; q

h

) !

�K

(z

h

)

o

(2.53)

with the residual terms

�

K

(u

h

; q

h

) = kf +�u

h

� s(u

h

)k

K

+

1

2

h

�

1

2

K

k[�

n

u

h

℄k

�K

;

�

�K

(u

h

; q

h

) = kq

h

+ �

n

u

h

k

�K\�

2

;

and the weights

!

K

(z

h

) = C

i

h

2

K

kD

2

h

�

h

k

K

; !

�K

(z

h

) = C

i

h

3=2

�

2

kD

2

h

�

h

k

�K\�

2

:

By [�

n

u

h

℄ the jump of �

n

u

h

a
ross the element boundary is denoted. This error indi
ator

is derived in [10℄. It will be named 'opt1' in the numeri
al tests presented below.

The following error indi
ator 
ontains the 
o-state equations for �. But not all boundary

integrals of the optimization problem are 
ontained. The above mentioned (heuristi
ally
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motivated) alternative for an error indi
ator for optimization problems by augmenting the

residual terms in (2.53) 
an be obtained as follows:

�

K

(u

h

; q

h

) = k�u

h

� s(u

h

) + fk

K

+ k��

h

+ s

0

(u)�k

K

;

while the boundary terms �

�K

are kept un
hanged. This error indi
ator 
ontains the

residuals of the full equation system (1.7)-(1.9) and will be named 'opt2' in the numeri
al

tests presented below.

The weighted a posteriori error indi
ators and estimators will be 
ompared against

a more traditional energy error indi
ator whi
h links the mesh adaptation to the lo
al

residuals of the 
omputed solution with respe
t to the equation of state alone (for a survey

of this type of error indi
ators see, e.g., [62℄). In this 
ase there is no duality information

used. Furthermore, the optimization problem is not 
onsidered in an appropriate way. Su
h

an error indi
ator has the form

�

energy

(u

h

; q

h

) =

�

X

K2T

h

h

2

K

�

K

(u

h

)

2

�

1

2

; �

K

(u

h

) := h

�

1

2

K

k[�

n

u

h

℄k

�K

:

The residual terms are omitted be
ause the jump terms will dominate the residual terms

([13℄).

There is just a 
ontrol of the error in the \energy norm" of the state equation alone.

Alternatively, the energy error indi
ator 
an be formulated by

�

E

(u

h

) := 


I

X

K2T

h

h

3

K

�

(u)2

�K

+ 


I

X

���


h

3

�

�

(u)2

�

; (2.54)

with the 
ell residuals �

(u)

�K

and �

(u)

�

. This version also in
ludes the boundary terms of the

problem (and not only 
ell boundaries). Furthermore, in
orporating error 
ontrol for the

adjoint equation results in

�

E

(u

h

; �

h

) := 


I

X

K2T

h

h

3

K

�

�

(u)2

�K

+ �

(�)2

�K

	

+ 


I

X

���


h

3

�

�

�

(u)2

�

+ �

(�)2

�

	

: (2.55)

Both ad-ho
 
riteria aim at satisfying the state equation and the adjoint equation uniformly

with good a

ura
y. However, this 
on
ept seems questionable sin
e it does not take

into a

ount the sensitivity of the 
ost fun
tional with respe
t to the lo
al perturbations

introdu
ed by dis
retization. Capturing these dependen
ies is the parti
ular feature of the

presented approa
h.

In some 
ases it may be interesting to 
onsider a 
ombination of the weighted error

estimator and the energy error estimator. An appli
ation 
an be if one needs a 
ertain ex-

a
tness of the state equation. This 
ombination 
an be done as follows: �

!;E

(u

h

; �

h

; q

h

) :=

�

!

(u

h

; �

h

; q

h

) + ��

E

(u

h

) , with a suitable weighting fa
tor � � 0 .

2.8 Algorithmi
 realization

The main issue in the solution approa
h is the appropriate design of the 
omputational

mesh by using adaptivity. To get 
lose to the 
ontinuous solution of the optimization prob-

lem, 
al
ulations on �ne grids have to be done. There are various ways to design the grid
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for the 
al
ulations. One possibility is to take equidistant grids leading to very expensive


al
ulations. To redu
e the 
osts of the 
al
ulation, one 
an use adaptively 
onstru
ted

meshes, i.e., the meshes are re�ned only where it is ne
essary for a
hieving suÆ
ient a
-


ura
y. In this 
ase, the 
omputations are done on a series of lo
ally re�ned meshes. The


riterion for mesh re�nement has to be 
hosen in a

ordan
e with the parti
ular needs of

the problem 
onsidered. For the presented approa
h, the mesh re�nement is based on a

posteriori error estimates for the dis
rete solution derived by duality arguments.

In designing the solution method for the optimization problem (see se
tion 2.2), the

method tries to stay as long as possible within the 
ontext of the 
ontinuous formulation.

A

ordingly, the Newton iteration for solving the boundary value problem (1.7)-(1.9) is

applied on the 
ontinuous level while dis
retization takes pla
e independently for ea
h

linear sub-step. This approa
h �ts better with the presented 
on
ept of mesh adaptivity

whi
h is based on a 
omputational sensitivity analysis for the 
ontinuous problem.

There are several possibilities for 
ombining adaptive dis
retization with the optimiza-

tion pro
ess. The approa
h tries to stay 
lose to the 
ontinuous problem in order to exploit

the inherent partial di�erential equation stru
ture. Alternatively, one 
ould dis
retize at

�rst and then use optimization strategies for the dis
rete problem. In this 
ase, there

would be less diÆ
ulties in determining appropriate sear
h dire
tions for the dis
rete New-

ton method. In the 
ontinuous approa
h it may happen that the sear
h dire
tions obtained

after dis
retization are not very good for the underlying 
ontinuous Newton iteration. How-

ever, this potential diÆ
ulty seems to be less 
riti
al in the present situation provided that

good globalization strategies are used if ne
essary, parti
ularly on 
oarser meshes.

Sin
e in the presented approa
h Newton iteration and dis
retization is nested it is not

so 
lear when to apply mesh adaptivity at best. The theory is oriented at the dis
retiza-

tion error for the boundary value problem (1.7)-(1.9). Two possibilities for mesh adaptivity

have been tried: 1) The adaptive mesh re�nement is done after at most a maximal number

of Newton iterations on ea
h dis
retization level. The Newton system is therefore not ne
-

essarily in the limit of the Newton iteration on the dis
retization levels when re�nement is

done. In order to save 
osts in the model 
omputations, optimization and the mesh adap-

tation pro
ess is mixed, yet rigorous justi�
ation is la
king. Furthermore, an a

eleration

of the 
onvergen
e 
an be stated for some examples. The results presented below indi
ate

that this 'diagonal' iteration is suÆ
iently robust and eÆ
ient. For the Ginzburg-Landau

equations presented in 
hapter 4 this version is implemented in the 
ode 'rhopt
on'.

2) The re�nement is always done in the limit of the Newton iteration on the dis-


retization levels. In this 
ase, the theory 
an be applied in a more rigorous way. The

error estimates are then really estimates and not only heuristi
 error indi
ators. For the

Ginzburg-Landau equations this version is implemented in the 
ode 'bkr'.

The adaptive mesh re�nement itself is organized as follows: From the global error

estimator, lo
al 'error indi
ators' are extra
ted by whi
h the mesh adaptation is driven:

� :=

X

T2T

h

�

T

; (2.56)

with 
ertain 
ell indi
ators, e.g. �

T

:= h

3

T

�(u

h

)

�T

�(�

h

)

�T

. We aim at a
hieving a pre-

s
ribed toleran
e TOL for the quantity J(u) and the number of mesh 
ells N whi
h

measures the 
omplexity of the 
omputational model. Usually the admissible 
omplexity is
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onstrained by some maximum value N

max

. Here, a version of the so 
alled �xed fra
tion

strategy as des
ribed in [13℄ is adopted. In ea
h adaptation 
y
le the mesh 
ells are ordered

in a

ordan
e to the size of the value of their lo
al error indi
ators. Then, those elements

with the largest values in the ordered list are re�ned until a 
ertain per
entage of the total

error bound (say 30%) is rea
hed. This leads to a gradual re�nement of the (too) 
oarse

starting grid.

For good quantitative error estimation, the value of the (weighted) error estimator is

used as stopping 
riterion for the adaptive mesh re�nement pro
ess. The stopping value

depends strongly on the appli
ation. Main ideas are a

ura
y of measurements, formulation

of the 
ost fun
tional, exa
tness of the solution of the 
ode and last but not least the model

itself.

On ea
h mesh, the Euler-Lagrange equations are dis
retized by the Galerkin �nite

element method as des
ribed above using pie
ewise bilinear shape fun
tions for both the

state and adjoint variables u and � , while the tra
es on �

C

of the bilinear shape fun
tions

form the 
ontrol spa
e Q

h

. Then, the resulting dis
rete systems are solved iteratively and

new meshes are generated on the basis of a posteriori error estimators. In all 
ases, the

weights are evaluated by using di�eren
e approximation as des
ribed in the previous se
tion

with interpolation 
onstants set to appropriate values like C

I

= 0:1 .

2.9 Comparison of di�erent error indi
ators

In this se
tion, a 
omparison of several applied error indi
ators should be given.

An important feature of the presented approa
h in error estimation is that the error

fun
tional has to be taken su
h that the mesh re�nement is organized in a

ordan
e to

the parti
ular needs of the optimization pro
ess. In 
ontrast to the standard energy-error

estimator 
ommonly used in stati
 ellipti
 problems, error 
ontrol in optimization problems

has to follow di�erent strategies. The most natural 
hoi
e appears, as already des
ribed in

se
tion 2.6.1, to relate the error fun
tional for driving the mesh re�nement with the 
ost

fun
tional of the optimization problem.

The numeri
al tests presented below 
on�rm that the philosophy underlying the pre-

sented approa
h to adaptivity in optimization is valid: The dis
retization of the problem

should be adapted in a

ordan
e to the sensitivity of the optimization problem and not

merely to the a

ura
y requirements of the partial di�erential equation (equation of state).

Consequently it may happen that some of the 
onstraints do not need to be ful�lled with

high a

ura
y in some parts of the domain while still allowing a good approximation of the

optimization pro
ess.

The energy error estimator from se
tion 2.7 just 
onsiders the state equation. It will

be therefore not appropriate for optimization problems in whi
h the state equation is not

the sole important determining 
riterion.

If the diagonal version des
ribed in se
tion 2.8 is applied, an additional error is esti-

mated: The error arising from the Newton method. This results from the fa
t that we are

not in the limit of the Newton iteration.
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Traditional a posteriori error estimates like the one derived in [13℄

kr

1�r

ek � C

s

C

i

�

X

T2T

h

h

2r

T

�

2

T

�

(2.57)

have a bound in the energy norm for r = 0 and in the L

2

-norm for r = 1. It depends on the

interpolation 
onstant C

i

and the stability 
onstant C

s

. C

i

is usually of size 0:1 � C

i

� 1.

C

s

measures the stability properties of the dual problem z 2 X :M

t

(z; y) = G(y) 8y 2 X in

terms of the global a priori estimate kr

1+r

zk � C

s

kr

1�r

ek. The a posteriori error estimate

(2.57) 
ontains information about the me
hanism of error propagation only through the

global stability 
onstant C

s

. To over
ome this de�
ien
y, the lo
al weights !

T

have been

introdu
ed as fa
tors to the lo
al residuals �

T

. They have been proposed by R. Be
ker

and R. Ranna
her for a posteriori error estimators for the forward solution in [12℄. These

weights 
ontain all information about the lo
al approximation properties of the spa
es X

h

,

as well as the lo
al stability properties of the underlying 
ontinuous problem. The stability


onstant C

s

is repla
ed by this weights. So the me
hanism of error propagation is now

also 
aptured by lo
al information. Hen
e the approa
h gets independent of C

s

whi
h is

diÆ
ult to 
ompute for advan
ed appli
ations, espe
ially in a sharp sense. In general, C

s

has to be determined by numeri
al 
omputation.

The weighted residual based a posteriori error estimates developed by R. Be
ker and

R. Ranna
her (see for example in [12℄ and [13℄) take the following spe
ial form:

jG(e)j � C

i

X

K2T

h

�

K

!

K

(z

h

):

The residual terms �

K

are 'weighted' with the lo
al weights !

K

(z

h

) mentioned above. They

repla
e the global stability 
onstant C

s

. For lo
al mesh re�nement, the lo
al information

from the weights seems more appropriate then the global stability 
onstant C

s

. The error

estimators are used to 
onstru
t good grids. They give 
riteria for a good dis
retization.

The estimation of the (spe
ial) error fun
tional G(e) is a 
onsequen
e of this.

In the literature exist one error estimation approa
h for optimization problems known

to the author. The approa
h in [34℄ is of theoreti
al importan
e. It provides a priori error

estimates. Therefore, only estimation of the variables of the optimization problem is given.

No error fun
tional is provided. So not the whole optimization problem is 
onsidered.

Furthermore, no lo
al stability 
ontrol and no lo
al sensitivity 
ontrol is provided. Only

an abstra
t error 
onstant independent of the mesh size h is given. There are no numer-

i
al 
omputations done (whi
h are not possible for the estimates 
ontaining (unknown)


ontinuous information).

It should be mentioned that it is theoreti
ally possible with the presented approa
h to


ompute for ea
h 
ontinuous variable an own grid representing the spe
ial properties just

of this variable. This leads to split error estimates for the variables. The present version of

the approa
h 
al
ulates one grid whi
h represents all important information of the whole

optimization problem on one grid whi
h is the bases for the grids of all variables. The grids

for the boundary variables like the 
ontrol are just a part of this base grid.

The error due to the linearization of the nonlinear optimization problem 
an 
ause

additional strategies for mesh re�nement. One solution is the development of hybrid error

estimates �rst redu
ing the linearization error and then the dis
retization error.
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2.10 Comparison to model redu
tion approa
hes

The presented approa
h 
an be interpreted in the well-known s
heme of model redu
tion

as des
ribed in [44℄.

Nonlinear 
ontinuous optimization problems like the one stated above generally 
annot

be solved analyti
ally. They have to be approximated by dis
retization. For the presented

approa
h, the model redu
tion is dis
retization of the problem. This means the redu
tion

of an originally in�nite dimensional problem to a �nite dimensional problem whi
h 
an be

solved on the 
omputer. The question is, how 
an this redu
ed model be 
onstru
ted as

appropriate as possible? The 
riteria are 
heap solution and good a

ura
y.

The model redu
tion has to follow 
riteria whi
h respe
t the original optimization prob-

lem parti
ularly the sensitivities of the 
ost fun
tional J . A

ordingly, the strategy for

arranging the 
omputational mesh should take into a

ount these sensitivities. Further the

important properties of the underlying 
ontinuous model must be preserved with a 
ertain

a

ura
y. This leads to the heuristi
 motivation of se
tion 2.6.2.

Considering the stru
ture of the above optimization problem, 
riteria like the following


an be derived: The value of the 
ost fun
tional J shows the quality of an approximate

solution of the optimization problem. Hen
e, the quality of the evaluation of the 
ost

fun
tional J is one possible heuristi
 
riterion. Other 
riteria result from the sensitivities

inherent to the optimization problem whi
h are represented by the Lagrangian multiplier

�. Further, the e�e
t of variations of the 
ontrol fun
tion on the state variable should

be in
luded. Therefore, lo
al 
ontrol of all these sensitivities is ne
essary. A big e�e
t

means a high sensitivity. So a higher evaluation a

ura
y is ne
essary. This leads again to

the question of how to turn these qualitative arguments into quantitative 
riteria for mesh

arrangement.

The presented analyti
 approa
h in se
tions 2.6 and 2.5 leads to a model redu
tion for

the system. These 
riteria should not only provide information about \where the mesh


ells have to be pla
ed", but also quantitative information about \how many mesh 
ells

have to be pla
ed in 
ertain areas". The too 
oarse model is re�ned (or enri
hed) gradually

by the error estimator until the dis
rete problem is 
lose enough to the original 
ontinuous

model.

2.11 Quantitative error estimation

This se
tion should provide a measure to 
ompare the error of the dis
rete system (in


omparison with the underlying 
ontinuous problem) with the value of the error indi
ator.

This is 
alled quantitative error estimation.

The e�e
tivity index I

e�

:=

error

�(u

h

;q

h

;�

h

)

provides the measure mentioned above. In the

literature, also the inverse 
an be found as e�e
tivity index. The presented version seems

better for the presented problems be
ause �(u

h

; q

h

; �

h

) > error. Asymptoti
 sharpness is

stated for lim

TOL!0

I

e�

= 1. If the e�e
tivity index I

e�

is 
lose to 1, the value of the error

indi
ator is 
lose to the error of the dis
rete system. If I

e�

< 1, the error is overestimated

(�(u

h

; q

h

; �

h

) > error). This shape of the quotient I

e�

is used for the error 
an more easily

be equal to 0 than the value of the applied error indi
ators (see for example upper bound

in error inequality and parameter estimation problems).
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If there is a good 
onne
tion between error of the dis
rete system and value of the error

indi
ator, the latter 
an be used as a stopping 
riterion the the grid adaptivity pro
ess.

The spe
ial 
hoi
e of the stopping value depends on the appli
ation. It has very often a


onne
tion with (the evaluation of) the 
ost fun
tional.

2.12 Example: A \forward" test 
ase

In this se
tion, the di�eren
e between traditional \energy error 
ontrol" and our fun
tional-

oriented \dual-weighted error 
ontrol" by 
onsidering the following linear primal test ex-

ample should be illustrated:

��u+ u = 0 on 
; (2.58)

�

n

u = q on �

C

; �

n

u = 0 on �
 n �

C

:

The domain 
 for the test in this se
tion is the following Con�guration 2. The two 
on�g-

urations di�er in the 
hoi
e of the observation boundary. The two 
on�gurations will be

used in the next se
tion for the numeri
al tests of the error indi
ators for an optimization

problem. The numeri
al results are obtained with the 
ode 'bkr' (whi
h re�nes in the limit

of the Newton iteration of the dis
retization levels).

Figure: Con�guration of the boundary 
ontrol model problem on a T-domain (Ginzburg-Landau

model): Con�guration 1 (left), Con�guration 2 (right).

The boundary 
ontrol is frozen as q � 0:0503455 (taken from an optimization result).

The 
orresponding dis
rete equations read

(ru

h

;r 

h

)




+ (u

h

;  

h

)




= (q;  

h

)

�

C

8 

h

2 V

h

: (2.59)

The error e = u� u

h

with respe
t to the quadrati
 observation fun
tional

J(u) =

1

2

ku� u

O

k

2

�

O

should be 
ontrolled.
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The 
orresponding dual solution z 2 V is obtained by solving the 
orresponding system

(4.3) - (4.5) with frozen boundary fun
tion q and linearized right-hand side J

0

(u

h

; ) . The

resulting a posteriori error bound is

jJ(u)� J(u

h

)j � �

!

(u

h

) :=

X

T2T

h

h

2

T

�

�

(u)

T

!

(z)

T

+ �

(u)

�T

!

(z)

�T

	

+

X

�2�


h

2

�

�

(u)

�

!

(z)

�

; (2.60)

with 
ell residuals and weights de�ned as above. The asymptoti
 
orre
tness of this error

estimator is demonstrated in the following table. It shows e�e
tivity index I

eff

of the

dual{weighted error estimator �

!

(u

h

) applied to the linear primal model problem, i.e.

E(u

h

) := jJ(u)� J(u

h

)j .

N 1376 5840 22544 57104 84368

E(u

h

) 1.64e-05 4.17e-06 1.01e-06 3.5e-07 2.49e-07

I

eff

0.81 0.91 0.92 0.95 0.88

The dual{weighted error estimator should be 
ompared with the traditional energy-norm

error estimator whi
h in this 
ase reads as follows:

krek

2




� �

E

(u

h

) := 


I

X

T2T

h

h

4

T

�

�

(u)2

T

+ �

(u)2

�T

	

+ 


I

X

�2�


h

4

�

�

(u)2

�

; (2.61)

with the notation as introdu
ed above. Clearly, small krek




implies small E(u

h

) , but

not vi
e versa. Hen
e, mesh adaptation based on the energy-error estimator may result in

overly re�ned meshes. This is 
learly seen in the following �gures. They 
ontain results on

meshes obtained by the error estimators �

E

(u

h

) (left) and �

!

(u

h

) (right) with N � 5000


ells in both 
ases. The graph of the solution is strongly s
aled up.

The eÆ
ien
y of the 
omputed meshes generated by the error estimators �

E

(u

h

) (solid line)

and �

!

(u

h

) (dashed line), and by uniform re�nement (
rosses) is shown in the following

�gure. The values are in log=log s
ale.
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1e-07

1e-06

1e-05

1000 10000 100000

E
(V

_
h
)

Number of elements N

"energy"
"dual_weighted"

"uniform"

The referen
e value J(e)

ref

=1.990239068196715 is 
al
ulated on a very �ne grid. It 
an be

stated that this value seems to be good also if it is 
ompared to the values given by the

equidistant re�nement in the following table. By the �gure 
omparing the eÆ
ien
y of the


omputed meshes, the meshes by the equidistant re�nement are the worse for �ner grids.

From the 
omputed data, also for these meshes a gradual 
onvergen
e to the referen
e value

is obvious.

N 8192 32768 131072 524288

J(e) 1.99023622 1.99023762 1.99023840 1.99023876

E(u

h

) 2.8e-06 1.4e-06 6.7e-07 3.0e-07

Obviously, the energy-error estimator puts too mu
h emphasis on re�ning at the reentrant


orners whi
h is obviously less important for a
hieving good a

ura
y along the observation

boundary �

O

. In 
ontrast to that, the dual{weighted error estimator provides a better

balan
e between resolving the 
orner singularities and the neighborhood of �

O

. This

results in a higher mesh e
onomy as shown by the 
orresponding error plots in the above

�gure. This demonstrates the value of 
apturing the sensitivities inherent to the problem

under 
onsideration. This e�e
t will be
ome even more pronoun
ed in solving the optimal


ontrol problem.

2.13 Example: A linear test 
ase

A �rst example of the theory developed above should be provided by the following opti-

mization problem with linear state equation. It has already been 
onsidered in [10℄. In

this se
tion some additional numeri
al data will also be provided. In this example the 
on-

trol a
ts along the lower boundary �

C

, whereas the observation is taken along the upper

boundary �

O

.



2.13. EXAMPLE: A LINEAR TEST CASE 59

observation �

O


ontrol �

Q

��u + u = 0 in 
; (2.62)

�

n

u = 0 on �
 n �

Q

;

�

n

u = q on �

Q

:

The 
ost fun
tional is 
hosen as

J(u; q) :=

1

2

ku� 


0

k

2

�

O

+

�

2

kqk

2

�

C

;

with 


0

� 1 and � = 1. In this 
ase, the regularization term

�

2

kqk

2

�

C

may be viewed as

part of the 
ost fun
tional with its own physi
al meaning. Computations on a series of

lo
ally re�ned meshes are performed. On ea
h mesh, the system of the �rst-order ne
es-

sary 
ondition is dis
retized by the Galerkin �nite element method des
ribed above. The

resulting dis
rete saddle-point problems are solved iteratively by a GMRES method with

multi-grid pre-
onditioning. The adaptive mesh re�nement is based on an a posteriori error

estimator already des
ribed in the previous se
tions. The weights in the error estimator

(2.37) are evaluated with an interpolation 
onstant set to C

I

= 0:1 . The mesh re�nement

uses the \Fixed-Fra
tion Strategy" des
ribed above.

Table 2.1 shows the quality of the error estimator (2.37) for quantitative error 
ontrol.

The e�e
tivity index is de�ned by I

eff

:= E

h

=�

h

, where E

h

:= jJ(u; q) � J(u

h

; q

h

)j is

the error in the 
ost fun
tional and �

h

:= �(u

h

; q

h

) the value of the error estimator used.

The referen
e value is obtained on a mesh with more than 200; 000 
ells. We 
ompare the

weighted error estimator with a simple ad ho
 approa
h based on the already presented

standard energy-error estimator for the state equation. Figure 2.1 shows the 
omputed

\optimal" states over the meshes generated by the two di�erent error estimators.

The two meshes are quite di�erent: The energy-error estimator over-emphasizes the steep

gradients near the 
ontrol boundary and it leaves the mesh too 
oarse along the observation

boundary. The more sele
tive weighted error estimator 
on
entrates the mesh 
ells where

they are needed for the optimization pro
ess. The quantitative e�e
ts on the mesh eÆ
ien
y

of these two di�erent re�nement 
riteria is shown in Figure 2.2 (E

h

versus N in log/log-

s
ale).

Finally, how the approximation fu

h

; �

h

; q

h

g obtained by the weighted error estimator

(2.37) a
tually satis�es the state equation is 
he
ked; for this the global energy-error es-

timator is taken as quality measure. Table 2.2 shows a 
omparison of the two sequen
es

of meshes generated by the weighted error estimator �

!

= �

!

(u

h

; �

h

; q

h

) (\!-meshes")

and the energy-error estimator �

E

= �

E

(u

h

) (\E-meshes"). The �rst and se
ond 
olumns


ontain the values of �

!

and �

E

on !-meshes, while the third and fourth 
olumns 
ontain

the values of �

!

and �

E

on E-meshes.

The energy-norm error bound �

E

for the state equation on the !-meshes is slightly larger

than on the E-meshes. This is not surprising sin
e the !-meshes are not so mu
h re�ned in

the regions where the state variable has a steep gradient. The 
ells are rather 
on
entrated

along the 
ontrol and observation boundaries whi
h seems to be more e�e
tive for the opti-

mization pro
ess. Indeed, the approximate solution fu

h

; �

h

; q

h

g obtained by the weighted
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error estimator �

!

a
hieves a mu
h smaller value (fa
tor � 0:1 ) of the 
ost fun
tional.

However, for other data, e.g., 


0

= 
os(2x) and � = 0:0001 , the dis
repan
y between the

two kinds of meshes with respe
t to the satisfa
tion of the state equation may be more

signi�
ant.

Regularization 
an in
uen
e the solution of the optimization system. If the regular-

ization fa
tor � is 
hosen too big, the solution of the optimization problem 
an be (very)

di�erent from the solution of the original optimization problem. In other words: The solu-

tion of the optimization problem 
an be dominated by the regularization for big �. For the

optimization problem of this se
tion an example should be given with the following data:

The domain is the same as in the previous 
al
ulations. The starting values for u is 100, for

� is 0.1 and for q is 0. The observation is 
os(3x) and the regularization pro�le is q

0

= 0.

Figure 2.3 shows the primal solution and the Lagrangian multiplier obtained with regu-

larization fa
tor � = 0:01. Whereas Figure 2.4 shows the same with � = 0:00001. These

results show that the solution with � = 0:00001 seems to be 
lose to the solution of the

original optimization problem. The solution with � = 0:01 
learly shows the (too) strong

in
uen
e of the regularization espe
ially on the 
ontrol fun
tion. The spe
ial stru
ture of

the boundary regularization may 
ause the e�e
t that in some 
ases this in
uen
e of the

regularization on the grid re�nement is almost without transition (see se
tion 5.7).
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Table 2.1: Linear test (Con�guration 1): EÆ
ien
y of the weighted error estimator.

N 320 1376 4616 11816 23624 48716

E

h

1:0e � 3 3:5e � 4 3:2e � 5 1:6e� 5 6:4e � 6 2:8e � 6

I

eff

1.1 0.7 0.7 1.0 0.8 0.7

Figure 2.1: Linear test: Comparison of dis
rete solutions obtained by the weighted error estimator

(left,N � 1600 
ells) and the energy-error estimator (right,N � 1700 
ells).

-13

-12

-11

-10

-9

-8

-7

-6

-5

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

lo
g
(e

rr
)

log(N)

Figure 2.2: Linear test (Con�guration 1): Comparison of the eÆ
ien
y of the meshes generated

by the the weighted error estimator (symbol 2 ) and the energy -error estimator (symbol � ) in

log = log s
ale.
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Table 2.2: Linear test (Con�guration 1): Values of the two error estimators �

!

and �

E

obtained

on \!-meshes" and on \E-meshes".

N � �

!

on !-meshes �

E

on !-meshes �

!

on E-meshes �

E

on E-meshes

140 0.0040205 0.0193270 0.0043245 0.0162589

300 0.0022030 0.0157156 0.0026536 0.0112183

750 0.0008330 0.0092718 0.0020437 0.0074801

3700 0.0001660 0.0049598 0.0004870 0.0034197

11000 0.0000532 0.0026208 0.0002199 0.0019036

21000 0.0000317 0.0020740 0.0001189 0.0014285

28000 0.0000239 0.0016294 0.0001088 0.0012403

48000 0.0000108 0.0013373 0.0000722 0.0009399

145000 0.0000037 0.0006950 0.0000328 0.0005466

Figure 2.3: Linear test: Dis
rete primal solutions (left) and Lagrangian multiplier (right) obtained

by the weighted error estimator with � = 0:01.

Figure 2.4: Linear test: Dis
rete primal solutions (left) and Lagrangian multiplier (right) obtained

by the weighted error estimator with � = 0:00001.



Chapter 3

Globalization te
hniques

In our 
ontext, one main problem involved with the appli
ation of a Newton method is

that its 
onvergen
e depends on the starting values. The robustness of the developed

Newton method 
an not be assured. Mu
h e�ort is spent in optimization theory to develop

appropriate methods in order to improve the range of 
onvergen
e. These te
hniques

are known as globalization methods. In the presented 
ontext, the globalization must

work with adaptivity and error estimation, espe
ially the original underlying 
ontinuous

optimization problem should still play a de
isive role. Furthermore it should not be too


ostly. Fun
tion and di�erentiation evaluations are very expensive for partial di�erential

equations, espe
ially for large and 
oupled systems as in the presented 
ase.

The prin
ipal goal of this thesis is to develop optimization and adaptivity te
hniques

for partial di�erential equations. This is the �rst step. Globalization will be the se
ond

step. Some standard methods have been tested for the presented appli
ations. Certain

new developments are sket
hed. Promising results will be given in se
tions 4.5 and 4.7

and 
hapter 5. Further resear
h would be ne
essary to develop as tuned strategies as for

optimization governed by ODE and DAE systems. However, this is beyond the topi
 of

this thesis.

Two main streams 
an be sket
hed as globalization te
hniques: redu
ing the step size

and 
hanging the sear
h dire
tion of the Newton method. Various te
hniques and mixtures

have been developed in the last de
ades. The appli
ation of these methods on optimiza-

tion governed by partial di�erential equations is not yet satisfa
tory solved, espe
ially, if

error estimation is in
luded. For the sear
h dire
tion, a prin
ipal problem is the di�er-

en
e between the dire
tion from the dis
rete optimization problems and the dire
tion from

the underlying 
ontinuous optimization problem. The 
omputations are for the dis
rete

problems but the 
ontinuous optimization problem originally has to be solved.

A modi�ed Newton method will be developed in se
tion 3.3. The se
ond order 
on-

ditions of a 
onstraint optimization problem are exploited for a 
orre
tion of the sear
h

dire
tion of the Newton method. A 
he
k of these se
ond order 
onditions and the deter-

mination of the stationary point as minimum, maximum or saddle point results additionally

by this te
hnique as shown in se
tion 3.3.

It is well-known that Newton methods with full step length lead to quadrati
 
onver-

gen
e rates in the neighborhood of the solutions in 
ase of 
onvergen
e. Normally, the

globalized methods do not rea
h su
h an 
onvergen
e rate. For example, gradient methods

63
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just have linear 
onvergen
e. Quasi-Newton methods like the presented te
hnique normally

rea
h normally super-linear 
onvergen
e.

3.1 Damped Newton methods

Damped Newton methods redu
e the step length of the Newton in
rement by a �xed fa
tor

until the value of the residual is redu
ed with respe
t to the former iteration. This 
heap

method is not elaborated but it may help in many 
ases. It is applied in the developed


odes as additional means if the full step length leads to divergen
e.

3.2 Line sear
h methods

Line sear
h is one standard method for a good redu
tion of the step length of the sear
h

dire
tion of the Newton method. An often applied version is the Armijo-Goldstein prin
iple

([31, p. 100℄). By this method, normally a larger range of 
onvergen
e 
an be a
hieved. For

ODE and DAE systems, line sear
h methods are applied su

essfully. For the presented


ontext of adaptivity in partial di�erential equations with �nite element dis
retization, line

sear
h methods may fa
e other types of problems. In se
tion 4.5, good results with a

slight modi�
ation of the Armijo-Goldstein line sear
h will be presented. In some 
ases,

the values of the Newton residuals are bad and the resulting primal and dual solutions are

not satisfa
tory. An explanation may be the fa
t that step length redu
tion has a di�erent

e�e
t on ea
h of the 
ells. A good redu
tion for one 
ell 
an be a bad redu
tion for an other

one. The numeri
al results indi
ate that these methods in the present formulation are not

appropriate for the presented nonlinear appli
ations and solution methods (see 
hapter 6).

Additionally, a 
y
li
 behavior (Maratos e�e
t) and divergen
e was stated for some test


ases (examples from the optimization problems presented in 
hapter 4). For this reason,

also a wat
h-dog line sear
h method was tested ([19℄, [38℄ and [39℄). It prevents standard

problems like a 
y
li
 behavior of the iterations by its spe
ial algorithmi
 stru
ture and

relaxed 
riteria for the trial step-length a

eptan
e. Ba
ktra
k 
apabilities allow the pro-

gram to abandon a nonprodu
tive 
orre
tion step and re
over a base step. Furthermore, it

uses se
ond-order 
orre
tion methods. Some algorithms even apply bypass 
onditions: Use

se
ond-order 
orre
tion methods when they will improve performan
e; otherwise do not

use them. One main problem for optimization governed by partial di�erential equations is

that the storage of the base steps needs mu
h memory - espe
ially on �ne grids. Numeri
al

results showed that a simpli�ed version of this te
hnique does not lead to an appropri-

ate globalization method for optimization governed by partial di�erential equations. The

reasons are again that the step length redu
tion has a di�erent e�e
t on ea
h 
ell.

One possibility to use these methods is to apply them in the beginning until the sta-

tionary point is '
lose enough'. Then, a pure Newton method is used. This method was

already tested su

essfully.
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3.3 Trust region like modi�ed Newton method

A very simple and eÆ
ient method was developed together with G.H. Bo
k and J. S
hl�oder

to adapt the sear
h dire
tion of the Newton method. Additional information is attained

by exploiting the se
ond order 
onditions of a 
onstraint optimization problem:

The Hessian matrix H = r

2

L(x

�

; q; �) must be positive semide�nite in a minimum. For

equality 
onstraints F (x

�

) = 0 in the optimal solution x

�

this means:

P

T

r

2

L(x

�

; q; �) P � 0 8P 2 T (x

�

);

with

T (z) := fP j rF (z)

T

P = 0g:

As above L denotes the Lagrangian fun
tion. If the se
ond order suÆ
ient 
onditions of a


onstraint optimization problem

P

T

r

2

L(x

�

; q; �) P > 0 8P 2 T (x

�

)

are ful�lled, then x

�

is a stri
t lo
al minimum.

The above 
ondition ensures that the stationary point is a minimum. If this 
ondition

is not ful�lled, the method may 
onverge to a maximum, a saddle point or may even lead

to divergen
e.

Proposition 3.3.1. If the Hessian matrix is positive de�nite, the presented Newton method


onverges to a minimum.

Proof. Let � be the following merit fun
tion:

�(t) := L(x

k

+ t4x

k

):

Then derivation w.r.t. parameter t leads to:

�

0

(t)j

t=0

= rL(x

k

)

T

4x

k

= �rL(x

k

)

T

r

2

L(x

k

)

�1

rL(x

k

) < 0

if the symmetri
 Hessian matrix is positive de�nite (whi
h means that also its inverse

matrix r

2

L(x

k

)

�1

is positive de�nite be
ause the eigenvalues of the inverse matrix are the

inverse eigenvalues of the original matrix). The latter equality results from the Newton

step. This means that a Newton method leads to a des
ent dire
tion for a positive de�nite

Hessian matrix.

This idea leads to the appli
ation of the Levenberg-Marquardt approa
h ([31℄). The Hessian

matrix is updated with a non-negative multiple of the identity matrix:

(r

2

L(x

k

) + �

k

I)x

k

= rL(x

k

):

A traditional 
hoi
e for the Levenberg-Marquardt parameter �

k

is the absolute value of the

smallest eigenvalue of the Hessian matrix (if this smallest eigenvalue is negative). Then

the updated Hessian matrix is positive de�nite. The 
omputation of this eigenvalue 
an be

very expensive espe
ially for large systems often arising in adaptive �nite element methods.
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Therefore, the Levenberg-Marquardt parameter �

k

is 
omputed by the following approa
h:

If the Hessian matrix is positive de�nite, then

4x

k

r

2

L(x

k

)

�1

4x

k

> 0:

Otherwise, this value is� 0. In the latter 
ase, the absolute value of it is taken as Levenberg-

Marquardt parameter:

�

k

:= j4x

k

r

2

L(x

k

)

�1

4x

k

j+ 


k

if 4x

k

r

2

L(x

k

)

�1

4x

k

� 0:

Small 


k

e�e
tuate a better numeri
al behavior as 
al
ulation without 


k

. For optimization

governed by Ginzburg-Landau models in super
ondu
tivity and by Navier-Stokes equations,




k

= 0:001 was 
hosen.

Again the updated Hessian matrix is positive de�nite but with mu
h less 
osts. If the

original Hessian matrix is already positive de�nite, the pure Newton method is applied. So

a relatively 
heap globalization method based on se
ond order information is derived. This

modi�ed Newton method is a Quasi-Newton method.

Several additional advantages are obtained by this te
hnique: It 
an be determined by

the update fa
tor if the stationary point is a minimum, a maximum or a saddle point.

For this modi�ed Newton method, promising results will be presented in se
tion 4.7 and

in 
hapter 5. In general, Quasi-Newton methods lead to a de
eleration of the 
onvergen
e


ompared with pure Newton methods in a neighborhood of the solution. This 
an be

derived analyti
ally and was also 
on�rmed by numeri
al examples (see [31, 4.5.2.3.℄).

There is a 
onne
tion between trust region, modi�ed Newton, Levenberg-Marquardt

and regularization methods. In [26℄, se
tion 11.2, this 
onne
tion is sket
hed: 'The key

idea of any Newton type method 
onsists in repeatedly linearizing the operator equation

F (x) = y around some approximate solution x

Æ

k

, and then solving the linearized problem

: : : for x

Æ

k+1

'

F

0

(x

Æ

k

)(x

Æ

k+1

� x

Æ

k

) = y

Æ

� F (x

Æ

k

): (3.1)

The Levenberg-Marquardt method

x

Æ

k+1

= x

Æ

k

+ (F

0

(x

Æ

k

)

�

F

0

(x

Æ

k

) + �

k

I)

�1

F

0

(x

Æ

k

)

�

(y

Æ

� F (x

Æ

k

)) (3.2)


an be interpreted as a (nonlinear) Tikhonov regularization (by linearizing F ):

ky

Æ

� F (x

Æ

k

)� F

0

(x

Æ

k

)(x

Æ

k+1

� x

Æ

k

)k

2

+ �

k

kx

Æ

k+1

� x

Æ

k

k

2

(3.3)

when minimizing this quadrati
 fun
tional for x

Æ

k+1

. The appropriate 
hoi
e of the regular-

ization parameters �

k

in (3.2) is a 
ru
ial question. The original idea behind the Levenberg-

Marquardt approa
h is to minimize ky

Æ

�F (x

Æ

k

)k within a trust region kx�x

Æ

k

k � h

k

. This

gives a relation to trust region methods.

The presented modi�ed Newton method 
an by the same kind of argument also be inter-

preted as a regularization method. An alternative and very less expensive way for 
hoosing

the regularization parameters �

k

is given. It is just an other regularized approximation of

the solution of the above optimization problem (3.1).



Chapter 4

Optimization for nonlinear

Ginzburg-Landau models

In this 
hapter, the above developed theory will be applied to the model of nonlinear

Ginzburg-Landau equations des
ribing super
ondu
tivity in semi
ondu
tors. The 
ontrol

will always be a Neumann boundary 
ontrol (NBC). The observations are both distributed

or boundary observations. The systems are derived by analyti
al di�erentiation as des
ribed

in se
tion 1.9. The obtained numeri
al results, espe
ially those with the dual-weighted error

estimator, are the �rst 
hallenging appli
ation for the developed theory. The important

results 
an mainly be found in the last se
tions. Many results of this 
hapter have already

been published in [9℄, [10℄, [11℄ and [44℄.

4.1 Super
ondu
tivity

The purpose of this se
tion is a motivation for the presented equations for super
ondu
tiv-

ity. Only some basi
 fa
ts will be given. Further details should be sear
hed in literature

for this is beyond the purpose of this thesis.

Super
ondu
tivity was dis
overed 1911 by H. Kamerlingh Onnes in Leiden. It is de�ned

as 'ele
tri
al resistan
e of various metals disappears 
ompletely in a small temperature range

at a 
riti
al temperature T




'([60℄). It is a 
hara
teristi
 of metals like mer
ury, lead, tin.

There are two prin
ipal points 
onne
ted with super
ondu
tivity: The �rst aim is perfe
t


ondu
tivity, whi
h means that the magneti
 �eld is ex
luded from a super
ondu
tor. The

se
ond aim is perfe
t diamagnetism dis
overed by Meissner and O
hsenfeld. The latter

means that the magneti
 �eld is expelled from an originally normal sample. Appli
ations

are high-
urrent transmission lines and high �eld magnets.

There are three main models: The London equations, the BCS theory and the Ginzburg-

Landau theory. A des
ription of these theories 
an be found in [60℄.

'A super
ondu
tor with a perfe
t Meissner e�e
t : : : is the ideal super
ondu
tor with a


onstant density of super
ondu
ting 
harge-
arriers and an ex
luded magneti
 �eld' ([24℄).

In the 
ase of a perfe
t Meissner e�e
t, the Ginzburg-Landau equations redu
e to the


onsidered system version (see [24℄): They result in a model of partial di�erential equa-

tions de�ning a 
omplex pseudo-wave fun
tion u. Negle
ting internal magneti
 �elds, the

67
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simpli�ed Ginzburg-Landau model takes the form (for details see [60℄):

��u + s(u) = f in 
;

�

n

u = 0 on �
n�

C

; (4.1)

�

n

u = q on �

C

:

The nonlinearity s(u) may be 
hosen for example as u

3

� u and the right hand side is

usually f = 0.

The Neumann boundary 
ontrol q 
an be interpreted as external magneti
 �elds whi
h

have an impa
t on the domain 
.

4.2 General optimization problem

The weak formulation of system (4.1) in whi
h a state variable u 2 H

1

(
) and a 
ontrol

fun
tion q 2 L

2

(�

C

) is determined by requiring

(F (u; q); �) = 0 8� 2 H

1

(
):

Here, the fun
tional F : H

1

(
) � L

2

(�

C

) ! H

1

(
)

0

is de�ned by

(F (u; q); �) = (ru;r�)




+ (s(u); �)




� (f; �)




� (q; �)

�

C

;

where (:; :)




and (:; :)

�

C

denote the L

2

inner produ
ts over 
 and �

C

, respe
tively.

We 
onsider an optimal 
ontrol problem for the simpli�ed Ginzburg-Landau model. For

a pres
ribed pro�le u

d

the boundary 
ontrol variable q is sought to minimize the distan
e

between u and u

d

. This pro�le may be given on the whole domain or on parts of its

boundary. The 
orresponding obje
tive fun
tion J : H

1

(
) � L

2

(�

C

) ! IR is

J(u; q) =

1

2

ku� u

d

k

2

obs

:

The index 'obs' indi
ates an evaluation only in that part of the domain, where we evaluate

the obje
tive fun
tion ('observe'). In this 
ase the 
ontrol variable q may be viewed as

modeling the e�e
t of an external magneti
 �eld.

To enhan
e the stability of the optimization problem, we augment the obje
tive fun
tion

by a regularization term,

J(u; q) =

1

2

ku� u

d

k

2

obs

+

�

2

kq � q

0

k

2

�

C

; (4.2)

where q

0

is a suitable referen
e value. Besides avoiding ill-posedness and improving 
ondi-

tioning, regularization makes rigorous mathemati
al analysis possible under less restri
tive

assumptions. Parti
ularly, in the 
ontext of partial di�erential equations the regularization

gives 
ontrol on the optimization variable whi
h guarantees solvability and 
onvergen
e of

approximations (see se
tion 1.8). As we 
an see, this regularization 
hanges our setting as

we do not solve the original optimization problem (see e.g. Figures 2.3 and 2.4). There

are theoreti
al 
onsiderations (for details see [41℄) as well as pra
ti
al experien
es whi
h

indi
ate that 
al
ulations are also possible without regularization in this 
ase.
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Sin
e the 
al
ulations were stable, there was no need to use a stabilization besides the

regularization in the 
ost fun
tional.

The optimization problem is well-posed by [41℄ and [34℄.

The �rst order ne
essary 
onditions for this (NBC) optimization problem is

(u;  )

obs

� (u

d

;  )

obs

+ (r ;r�)




+ (s

0

(u)  ; �)




= 0; (4.3)

�(q; �)

�

2

� �(q

0

; �)

�

2

� (�; �)

�

2

= 0; (4.4)

(ru;r�)




+ (s(u); �)




� (f; �)




� (q; �)

�

2

= 0: (4.5)

For the dis
rete optimization problem, the �rst order ne
essary 
onditions for this (NBC)

optimization problem reads

(u
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The resulting dis
rete solutions are the 
al
ulated solutions.

The left hand side in the Newton method (1.10) is

0

�

(Æu;  )

obs

+ (s

00

(u) Æu; �)




+ (r ;rÆ�)




+ (s

0

(u) ; Æ�)
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0
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� (Æq; �)
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1

A

: (4.9)

The dis
retization of this equation system is done by a �nite element Galerkin method

with Q

1

-elements. The meshes ful�ll the usual regularity 
onditions. 'Hanging nodes' are

allowed and fa
ilitate lo
al mesh re�nement, but at most one 'hanging node' per edge. For

the state and adjoint variables, pie
ewise polynomial (linear or bilinear) shape fun
tions

are taken. For the 
ontrol variables, the tra
es of the above shape fun
tions on �

C

are

used. The dis
retization is realized by using the DEAL library ([8℄).

4.3 Weighted a posteriori error estimator

Proposition 4.3.1. For 
ontrol of the given 
ost fun
tional J(�), there holds the weighted

a posteriori error estimate

jJ(u; q) � J(u

h

; q

h

)j �

X
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h
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�
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with the 
ell residuals and weights
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Proof. In the present 
ase, there holds

L(v)� L(v

h

) = J(u; q) + (ru;r�)




+ (s(u)� f; �)




� (q; �)

�

C

� J(u

h
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h

)� (ru
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� (s(u

h

)� f; �
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+ (q

h

; �

h
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�

C

= J(u; q) � J(u

h

; q

h

);

sin
e fu; �; qg and fu

h

; �

h

; q

h

g satisfy the equations (4.5) and (4.8), respe
tively. Hen
e,

error 
ontrol with respe
t to the Lagrangian fun
tional L(�) and the 
ost fun
tional J(�)

is equivalent. Now, the general error identity (2.35) implies that

jJ(u; q) � J(u

h

; q

h

)j = inf

�

h

2V

h

jL

0

(v

h

; v � �

h

)j; (4.11)

where v

h

= fu

h

; �

h

; q

h

g and v = fu; �; qg . From (4.6) - (4.8), we see that
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:

Splitting the global integrals into the 
ontributions from ea
h single 
ell T 2 T

h

and ea
h


ell edge � � �
 , respe
tively, and integrating lo
ally by parts yields
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From this the asserted relation follows by applying the H�older inequality.

4.4 Comparison to other approa
hes

In this se
tion, some numeri
al results will be presented, whi
h have been obtained with

the 
ode 'rhopt
on'. The adaptive mesh re�nement is done after some Newton iterations

on the dis
retization level. The Newton system is therefore not ne
essarily in the limit of

the Newton iteration. The main purpose is to demonstrate that our solution approa
h is


apable to reprodu
e solutions of 
ertain test problems obtained by other authors.

The presented appli
ation to super
ondu
tivity was already 
onsidered in a paper of Ito

and Kunis
h [41℄. These authors applied an augmented Lagrangian approa
h for stabilizing

the saddle point problem. This was dis
retized by the usual �ve-point di�eren
e operator on

an equidistant grid without adaptivity. From [41℄ we re
all the following test 
on�guration

('Run1' in [41℄):


 = [0; 1℄ � [0; 2℄; �

C

= �
; obs = 
;

s = u

3

� u; f = 0;

J(u; q) =

1

2

Z




ju� u

d

j

2

+

�

2

Z

�

C

(q � q

0

)

2

;

u

0

= 3 ; �

0

= 0 ; q

0

= 0 ; u

d

= 3:

The regularization fa
tor has the value � = 10

�3

. We note that in this 
ase, the 
ode also

allows 
al
ulations without regularization. If we start with u

0

= 3 as proposed in [41℄, the

solver immediately terminates sin
e we are too 
lose to an optimum. Therefore, we 
hose

other starting values for the 
omparison. In the tables of this se
tion the following notation

is used:

� The starting value for u is 'u

0

'.

� The regularization parameter is '�'.

� '#iter' is the number of Newton iterations required to rea
h a 
ertain pres
ribed level

for the the norm of the algebrai
 Newton residual. We note that on the dis
rete level

our iteration 
orresponds only to an approximate Newton method.

� The value of the obje
tive fun
tion for the 
omputed approximation is 'J(u

h

; q

h

)'.

� The Newton residual and the Newton in
rement both measured in the dis
rete Eu-


lidean norm are denoted by 'res

Newton

' and 'in
r

Newton

', respe
tively.

� The 
al
ulation time in CPU se
onds is 'time'.

� L is the maximal number of Newton steps whi
h are performed between two re�ne-

ment 
y
les.

The following tables show the results of some 
al
ulations by our 
ode for the present

test 
ase. In the �rst test, we �x the number of Newton iterations to L = 8 and 
ompare

the e�e
t of varying u

0

and �.
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u

0

� #iter J(u

h

; q

h

) res

Newton

in
r

Newton

time

100. 0.0 48 6.26262e-6 0.0020208 0.0019185 1554

100. 0.01 42 6.28279e-6 0.0019931 0.0017035 �800

0.0 0.001 47 0.0743429 0.0050597 0.0051517 �2500

The values obtained for the obje
tive fun
tion show that, in the �rst two 
ases, we rea
h a

global minimum while in the third 
ase apparently only a lo
al minimum is obtained. The

global minimum and the 
orresponding mesh is shown in Figure 1.

Fig 1: Run1 - 
lose to the global minimum

If only L = 4 Newton steps are performed between two re�nement 
y
les, we get the

following result:

u

0

� #iter J(u

h

; q

h

) res

Newton

in
r

Newton

time

0.0 0.001 23 0.0739137 0.0058241 0.0056670 �650

This 
orresponds to a lo
al minimum shown in Figure 2 whi
h was obtained in [41℄. This

test demonstrates that mesh adaptivity may have a strong in
uen
e on the optimization

pro
ess. Further, we see that in the 
ase of 
onvergen
e the pure Newton method 
an give

very good results even without regularization as demonstrated in the following table:

u

0

� #iter J(u

h

; q

h

) res

Newton

in
r

Newton

time

100. 0.0 15 2.73916 0.001741 5.82511e-8 61

150. 0.0 16 2.73916 0.0017416 4.73266e-8 56

-100. 0.0 32 2.73917 0.0001957 5.22385e-8 569

-7.0 0.0 14 2.73915 0.0003929 1.79801e-8 105

-17007. 0.0 47 2.73916 3.64664e-5 1.55469e-8 34060
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In this 
ase, L = 4 Newton steps are performed between mesh adaptation 
y
les. However,

for all starting values, we do not rea
h a global minimum. The obtained lo
al minimum is

shown in Figure 3.

Fig 2: Run1 - a lo
al minimum Fig 3: Run1 - pure Newton method

Finally, we 
onsider a non homogeneous right hand side, f = 100

3

� 100. Using again

L = 4 Newton steps per re�nement 
y
le the following results are obtained, showing that

again only a lo
al minimum is rea
hed:

u

0

� #iter J(u

h

; q

h

) res

Newton

in
r

Newton

time

0.0 0.001 24 0.0739041 0.0056094 0.0057108 753

0.0 0.0 24 0.0739037 0.0056095 0.0057108 753

For the other test 
ases in [41℄, our 
ode has produ
ed similar results. We omit further

details. For these �rst tests the mesh adaptation has been driven by the simple energy error

indi
ator mentioned above. In the next se
tion we will 
ompare this approa
h against our

new weighted error estimator.

4.5 Numeri
al results for heuristi
 error estimators

In this se
tion, we 
ompare the performan
e of the di�erent error indi
ators 'opt1', 'opt2',

and 'energy' de�ned in 
hapter 2 at the following test problem. The presented two versions

of the error indi
ator 'opt1', whi
h will be named 'opt1 2' and 'opt1', di�er only in the

presen
e of the residual term in �

K

(u

h

; q

h

) in addition to the normal-jump terms. For the

error estimator 'opt1', we 
onsider only the jump terms. This di�eren
e is motivated by the

observation that, for linear �nite elements in the 
ase of smooth f , 'the 
ontribution of the

normal jump terms asymptoti
ally dominates that of the domain residuals, and the latter

may therefore be negle
ted' (see [13℄). The results are obtained with the 
ode 'rhopt
on',

so the re�nement is not ne
essarily done in the limit of the Newton iterations on ea
h

dis
retization level.
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��

��

singularity

only on this boundary


ontrol and observations

�

C

= obs � �


s = u

3

� u

f = 0

J(u; q) =

1

2

R

�

C

�

ju� u

d

j

2

+ �(q � q

0

)

2

	

ds

u

0

= 5 ; �

0

= 0 ; q

0

= 0

� = 0

u

d

(x; y) =

8

>

>

<

>

>

:

1

jy�0:5j

,

for y < 0:45 or y � 0:55;

�(y � 0:5)

2

+ 25:00025,

for 0:45 � y < 0:55 .

Using the energy error indi
ator, the adaptive mesh re�nement leads to the result (grid

and solution) shown in Figure 4, while those obtained with 'opt1' and 'opt2' are shown in

Figures 5 and 6, respe
tively. Comparing the grids, we see that the energy indi
ator tends

to over re�ne at the 
orner singularity whi
h is insigni�
ant for the optimization pro
ess

while the other two indi
ators 
orre
tly 
ause re�nement along the 
ontrol/observation

boundary. Of 
ourse, all three estimators yield stronger re�nement in the areas of larger

variations of the state variable.

Fig 4: Energy error indi
ator

Fig 5: Error indi
ator opt1
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Fig 6: Error indi
ator opt2

Figures 7 and 8 show the 
orresponding Lagrangian multiplier � and 
ontrol variable q

for the indi
ator 'opt1', respe
tively. Clearly, q ful�lls the 
ondition that the tra
e of the

Lagrangian multiplier must be equal to the 
ontrol.

Fig 7: Adjoint variable � Fig 8: Control q

The following Figures 9 and 10 show the 
onvergen
e history for the several error in-

di
ators and the 
orresponding values of the obje
tive fun
tion of our solution method in
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the 
ase that the Newton method is used without globalization.
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Fig 9: Values error indi
ators
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Fig 10: Values obje
tive fun
tion

The results for 'opt1' and 'energy' are very 
lose to ea
h other sin
e both indi
ators use

essentially smoothness information, while 'opt2' also measures the Newton iteration error

whi
h apparently yields mu
h better results. The algebrai
 Newton residual shows a similar

behavior for all three indi
ators, see Figure 11.

1e-07

1e-06

1e-05

0.0001

1000 10000

N
e
w

to
n
 r

e
s
id

u
a
l

Number of elements N

"energy"
"opt1"

"opt1_2"
"opt2"

Fig 11: Dis
rete Newton residual

Using a modi�ed Armijo-Goldstein line sear
h strategy in the Newton iteration, we

observe quite di�erent 
onvergen
e behavior for error indi
ators and 
orresponding values

for the obje
tive fun
tion as shown in Figures 12 and 13.
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Fig 12: Values error indi
ators
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Fig 13: Values obje
tive fun
tion

Again the Newton residual and Newton in
rement exhibit a similar development for all

three indi
ators shown in Figures 14 and 15.
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Fig 14: Dis
rete Newton residual
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Fig 15: Dis
rete Newton in
rement

We summarize that in both 
ases, plain Newton and globalized Newton, the values of

the error indi
ators and the 
orresponding values of the obje
tive fun
tion show a similar

development. However, for the plain Newton method, the values of the obje
tive fun
tion

are smaller. This is due to the fa
t that the plain Newton method has a higher 
onvergen
e

rate than the globalized Newton method. This e�e
t 
an also be seen by the values for the

Newton residual. For the globalized Newton method, we have a larger di�eren
e between

'opt2' and the other two error indi
ators than for the plain Newton method. This re
e
ts

the fa
t that 'opt2' also measures the size of the Newton residual whi
h 
auses di�eren
es

if we are still far away from the limit point.
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4.6 Numeri
al results for weighted error estimator

The equations of state are again the nonlinear Ginzburg-Landau equations

��u+ s(u) = f on 
; (4.12)

�

n

u = q on �

C

; �

n

u = 0 on �
 n �

C

;

with s(u) = u

3

� u and right hand side f = 0. The 
orresponding �rst-order ne
essary


ondition to be solved are the equations (4.3)-(4.5).

By the nonlinear situation, the derivation of the dual-weighted error estimator intro-

du
es an additional linearization error in the duality argument. Theory as well as pra
ti
al

experien
e show that, in the present 
ase, this additional error is of higher order on well-

adapted meshes and 
an therefore be negle
ted. The a posteriori error estimate derived in

(4.10) is applied. The dis
retization is the same as in the previous se
tions 
ombined with

linearization by a Newton iteration. We note that the Newton iteration is always 
arried

to the limit before the error estimator is applied for mesh re�nement. The 
omputations

are done with the 
ode 'bkr'. The results of this pro
ess may signi�
antly di�er from those

obtained if dis
retization and iteration error are mixed together (see the pre
eding se
tions

4.4 and 4.5).

We again 
ompare the dual-weighted error estimator with a simple ad ho
 energy-error

estimator. We 
onsider two di�erent 
hoi
es for the boundaries of 
ontrol and observation.

First, the extreme situation is taken that 
ontrol and observation are on the same boundary,

�

C

= �

O

(lower boundary of the T-shaped domain). This is Con�guration 1 on page 56.

In this 
ase, we have the main parts of the optimization problem at one boundary. Hen
e,

we do not expe
t any need for indu
ed stronger mesh re�nement 'far away' from this

boundary if we only want to deal with the optimization problem. In the se
ond 
ase, we

take the 
ontrol and the observation on opposite boundaries, �

C

\ �

O

= ; (lower and

upper boundary of the T-shaped domain). This is Con�guration 2 on page 56. In this


ase, we expe
t better results for the energy-error estimator be
ause the information must

pass from the 
ontrol to the observation boundary and the 
orner singularities will have a

stronger e�e
t on the mesh re�nement. Therefore, the simulation will play a more de
isive

role for mesh re�nement.

Test 
ase 1: The observations for Con�guration 1 are taken as u

d

(x) = sin(0:19x). The

following table shows the quality of the dual-weighted error estimator for quantitative error


ontrol for this �rst nonlinear test 
ase for � = 0. This means that there is no regularization

and the original optimization problem is solved.

N 596 1616 5084 8648 15512

E

h

2.56e-04 2.38e-04 8.22e-05 4.21e-05 3.99e-05

I

eff

0.34 0.81 0.46 0.29 0.43

The referen
e value J(u; q) for the obje
tive fun
tion is 
omputed on a re�ned mesh with

about 131000 
ells. Due to the spe
ial 
hoi
e �

C

= �

O

, the dual solution equals zero

almost everywhere away from �

C

, and the error indi
ators �

�

�

;� � �

O

in (4.10) dominate

all the other terms in the estimator. The dual-weighted error estimator 
onsiders only

the neighborhood of the 
ontrol boundary, whereas the energy-error estimators re
e
t too
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mu
h the singularity in primal solution at the reentrant 
orners (see Figure 4.2). The

distributions of the values for the error estimators �

E

(u

h

), �

E

(u

h

; �

h

) and �

w

(u

h

; �

h

; q

h

)

are given in Figure 4.1. It should be mentioned that the 
oupling between the 
ontrol and

the observation is by 
omputation on the whole domain 
 and not only by assignment on

the boundary �

C

= �

O

.

In Figure 4.3, we 
ompare the eÆ
ien
y of the meshes generated by the two estimators in

the �rst nonlinear 
ase with � = 0. We see that in this "extreme" boundary layer example,

we 
an approximate the solution of the optimization problem on a grid with mu
h less 
ells

using the dual-weighted error estimator. In this example it is possible to get the same

a

ura
y with the dual-weighted error estimator on 3500 elements 
ompared to the energy

estimator on 100000 elements. This means that the heuristi
 energy-error indi
ator produ
e

ineÆ
ient meshes in this example.

Whi
h values do the several terms of the dual-weighted error estimator have? For

test 
ase 1, the main part of the optimization problem is fo
used on the 'optimization

boundary' �

C

= �

O

. It seems therefore 
onsequential that the dominant integrals lie on

this boundary. The following table shows the detailed information for the dual-weighted

error estimator. The whole value of the integrals on the 
ells are split in their several parts.

The notation is the one of proposition 4.3.1:

N 1616 15512 81536

P

�

w

0.0032855 0.000827338 0.000421932

P

�

T

9.1e-11 1.1e-10 1 e-10

P

�

�

�

;� � �

O

0.00328542 0.000827337 0.000421932

P

�

u

�

;� 2 �

C

8.2e-08 6.3e-10 7.2e-11

P

�

q

�

2.7e-10 1.1e-10 5.3e-11

This is an explanation for the big gain whi
h 
an be a
hieved by the dual-weighted error

estimator. The heuristi
 energy-error indi
ator does not use this important information on

the boundary in an appropriate way and therefore it leads to ineÆ
ient meshes. Su
h an

extreme behavior 
an normally be expe
ted if the boundary indi
ators are dominant over

the interior indi
ators.

Test 
ase 2: For Con�guration 2, the observations are taken as u

d

� 1 and the regulariza-

tion fa
tor � is set to 0:1 or 1. Now, depending on the nonlinearity s(u), there exist several

stationary points of L(u; q; �). By varying the starting values for the Newton iteration,

these solutions 
an be approximated. One solution 
orresponds to 
onstant u � u

d

, whi
h

is a
tually the global minimum. For this stationary point, we get an obje
tive fun
tion

value equal to zero (up to round-o� error). A

ordingly, we mat
h these observations with

our numeri
al solution already on a rather 
oarse mesh with N = 512 
ells. The 
orre-

sponding Newton residual and Newton in
rement are both 
onverged to zero. We do not

show the trivial results of these 
omputations.

The other two obtained stationary points are symmetri
 to ea
h other with respe
t to

the plane fx = 0g in this 
ase. These 
omputed solutions 
orrespond to a lo
al minimum

and a lo
al maximum by se
ond order information of the optimization problem. The

following table shows the quality of the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) for

error 
ontrol of one of these stationary points (the se
ond one) for test 
ase 2 with � = 0:1.

The referen
e value 0:04888934625::: for the obje
tive fun
tion is obtained on an adaptive
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mesh with N = 545216 
ells 
orresponding more than 10

6

unknowns.

N 512 15368 27800 57632 197408

E

h

9.29e-05 8.14e-07 4.86e-07 2.31e-07 4.58e-08

I

eff

1.32 0.56 0.35 0.42 0.32

The numeri
al results demonstrate the 
orre
t qualitative behavior of the dual-weighted

error estimator. The e�e
tivity index indi
ates also a relatively good quantitative a

ura
y

(with interpolation 
onstant C

I

= 0:1), although the values produ
ed are still too big. This

defe
t is 
aused by taking the absolute signs under the sums thereby suppressing possible

error 
an
ellation. Furthermore, the error E

h

is very small for � = 0:1. In the 
ase � = 1 ,

we get better results as shown in the following table for the se
ond stationary point.

N 512 8120 25544 42608 126284

E

h

2.08e-03 4.35e-05 9.26e-06 5.95e-06 8.94e-07

I

eff

0.52 0.73 0.88 1.21 0.98

Next, Figure 4.4 shows the distribution of lo
al 
ell indi
ators for the three error estimators

in the 
riti
al 
ase � = 0:1. Figure 4.5 shows the 
orresponding 
omputed dis
rete solu-

tions. Obviously, the dual-weighted error estimator indu
es a mu
h stronger re�nement

along the observation and 
ontrol boundaries whi
h seems more relevant for the optimiza-

tion pro
ess than resolving the 
orner singularities. Whereas the energy-error estimator

emphasizes the 
orner singularities.

In Figure 4.6, a faster 
onvergen
e to the solution of the 
ontinuous problem with the

dual-weighted error estimator 
an be stated. Espe
ially interesting is that the values of

�

E

(u

h

; �

h

) are worse than those of �

E

(u

h

). Normally, one would expe
t a better behavior

(as in Figure 4.3) be
ause of the additional dual information whi
h is used. This shows

that the energy-error indi
ators are just based on heuristi
 
riteria. The observed jumps in

the plotted results 
an be explained by the hanging nodes. There are some hanging nodes

introdu
ed at 
riti
al points. This deteriorates the obtained results.

Finally, for the third stationary point, we indi
ate the eÆ
ien
y of the generated meshes.

As seen from the e�e
tivity index in the following table for the third stationary point,

the quantitative behavior of the dual-weighted estimator is very good in this 
ase (with

interpolation 
onstant C

I

= 0:1).

N 1784 4544 15452 29096 77096

E

h

1.663e-05 6.02e-06 1.54e-06 7.43e-07 2.73e-07

I

eff

0.91 0.97 0.97 0.82 0.84

For test 
ase 2, the dominant parts of the error estimator are di�erent from those in

test 
ase 1. The total 
ontribution of the interior 
ell indi
ators is dominant over that of

the boundary indi
ators. The following table will show this split in several parts of the

values of the 
ell indi
ators for the se
ond stationary point. The notation is again the one

of proposition 4.3.1:
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N 8120 77096 283016

P

�

w

0.000566207 5.162e-05 1.289e-05

P

�

T

0.000498468 4.857e-05 1.181e-05

P

�

�

�

;� � �

O

3.3e-05 1.50e-06 5.3e-07

P

�

u

�

;� 2 �

C

3.4e-05 1.54e-06 5.5e-07

P

�

q

�

9.8e-15 2 e-14 1.3e-13

This gives another explanation why the gain in test 
ase 2 is not so big as for test 
ase

1. The interior lo
al 
ell indi
ators play a mu
h more important role than in test 
ase 1.

This means that the error is mu
h bigger in the interior than on the boundaries. Hen
e

the energy-error indi
ators 
an get the true error of the optimization problem in a better

way than in test 
ase 1.

It should be mentioned that 
al
ulations with up to 1.4 million variables on 700 000

grid points have been done for the presented appli
ation with this 
ode 'bkr'.

By the above results it 
an be 
on
luded that it is possible to derive good 
riteria in

an analyti
 way for model redu
tion in optimization with the presented Ginzburg-Landau

model. The model redu
tion pro
ess is driven by the error indi
ators leading to small

dis
rete optimization models. The qualitative error estimation with the dual-weighted

error estimator enables to get good numeri
al results. The important properties of the

original 
ontinuous optimization problem are preserved by redu
ed models in a 
ertain

a

ura
y.

The quantitative error estimation is also su

essful. This is not instantly 
lear be
ause

the 
oupling of the di�erent equations and s
alings 
an lead to many problems. By the

numeri
al results, the value of the developed dual-weighted error estimator is a good esti-

mator for the error in the dis
rete optimization problem. The error 
ontrol is solely based

on the 
omputed primal solution of the variables u

h

; q

h

; �

h

and is therefore relatively 
heap.

4.7 Modi�ed Newton method

The modi�ed Newton method of se
tion 3.3 will be applied to the problem of se
tion 4.6.

Globalization methods may de
elerate the 
onvergen
e in 
omparison with 
onvergen
e

of the pure Newton method. But one advantage is a larger range of 
onvergen
e of the

globalized Newton method. Furthermore, this modi�ed Newton method leads only to

stationary points whi
h are minima as shown below. The starting values of the variables

de
ide whi
h minimum is obtained.

By the se
ond order information it 
an be stated that in the 
al
ulations of se
tion

4.6, test 
ase 2, the global minimum is really a minimum, the se
ond stationary point is a

lo
al maximum and the third stationary point is a lo
al minimum (whi
h 
ould have been

imagined by the fa
t that the latter two saddle points lie symmetri
ally to ea
h other).

Several tests were done with the 
on�guration of se
tion 4.6, test 
ase 2. The initial

values of u were 
hanged in order to test the range of 
onvergen
e. Results are shown in

the tables below. The following notation is used:

� N : the number of 
ells,
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� 'JJ': the value of the 
ost fun
tional in the limit of the Newton iteration on the

dis
rete level,

� '#
orr': the number of ne
essary updates by the modi�ed Newton methods (
orre
-

tions),

� 'max TRfa
tor': the maximal value of a fa
tor for the update of the Hessian for the

modi�ed Newton method on this dis
rete level,

� 'min TRfa
tor': the minimal value of a fa
tor for the update of the Hessian for the

modi�ed Newton method on this dis
rete level,

� 'CPU se
onds TR': the CPU se
onds of the modi�ed Newton method ne
essary to

rea
h the limit,

� 'CPU se
onds pure': the CPU se
onds of the pure Newton method ne
essary to rea
h

the limit.

The regularization fa
tor in all tests is � = 1.

Test1: Starting value of u in the iterations is �200. Both methods lead to the third

stationary point whi
h is a lo
al minimum. The starting value of the 
ost fun
tional is

JJ=90395:7:

N 128 632 1160 1784

JJ 8.015748 7.997655 7.997659 7.997657

#
orr 9 0 1 0

max TRfa
tor 3 � 10

7

0 0.001 0

min TRfa
tor 25.1 0 0.001 0

CPU se
onds TR 124.55 314.21 713.35 894.98

CPU se
onds pure 59.64 196.36 417.94 564.31

Test2: Starting value of u in the iterations is 1100. The modi�ed Newton method leads

to the global minimum. The pure Newton method leads to the lo
al maximum. Therefore a


omparison of the CPU se
onds is omitted. The pure Newton method needs more iterations

due to the more diÆ
ult stru
ture of the stationary point. The starting value of the 
ost

fun
tional is JJ=107526224:8.

Test3: Even for a starting value u = 951100000000 in the iterations, the modi�ed

Newton method leads to the global minimum. The starting value of the 
ost fun
tional is

JJ=8:04 � 10

23

.

The following table shows numeri
al results for test2 and test3 for the last dis
retization

level in ea
h test 
ase:

test test2 test3

N 512 728

JJ 7 � 10

�11

8:36 � 10

�28

#
orr 1 2

max TRfa
tor 0.368645 2.02635

min TRfa
tor 0.368645 0.135268

CPU se
onds TR 297.67 1568.95
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Figure 4.1: Nonlinear test 1 (� = 0): Distributions of lo
al error indi
ators in the energy-error

estimator �

E

(u

h

) (left), the energy-error estimator �

E

(u

h

; �

h

) (right) and the dual-weighted error

estimator �

w

(u

h

; �

h

; q

h

) (bottom).
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Figure 4.2: Nonlinear test 1 (� = 0): Comparison of dis
rete solutions obtained by the energy-

error estimator �

E

(u

h

) (leftN � 4800 
ells), the energy-error estimator �

E

(u

h

; �

h

) (rightN � 5700


ells) and the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (bottomN � 5000 
ells).
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Figure 4.3: Nonlinear test 1 (� = 0): Comparison of eÆ
ien
y of meshes generated by the error

estimators �

E

(u

h

) (solid line), �

E

(u

h

; �

h

) (
rosses) and �

w

(u

h

; �

h

; q

h

) (dashed line) in log = log s
ale.
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Figure 4.4: Nonlinear test 2: Distributions of lo
al 
ell indi
ators in the energy-error estimator

�

E

(u

h

) (left), the energy-error estimator �

E

(u

h

; �

h

) (right) and the dual-weighted error estimator

�

w

(u

h

; �

h

; q

h

) (bottom).
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Figure 4.5: Nonlinear test 2: Comparison of dis
rete solutions obtained by the energy-error esti-

mator �

E

(u

h

) (left, N � 3300 
ells), the energy-error estimator �

E

(u

h

; �

h

) (right, N � 3100 
ells)

and the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (bottom, N � 3000 
ells).
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Figure 4.6: Con�guration 2: Comparison of eÆ
ien
y of meshes generated by the error indi
ators

�

E

(u

h

) (solid line), �

E

(u

h

; �

h

) (
rosses), and �

!

(u

h

; �

h

; q

h

) (dashed line) in log = log s
ale for 2nd

stationary point.


