
Chapter 5

Optimization with Navier-Stokes

equations

In this 
hapter, the optimization problem will be governed by the in
ompressible Navier-

Stokes equations. General information about 
uid me
hani
s and Navier-Stokes equations


an be found for example in Temam [59℄, Ward-Smith [64℄ and White [65℄.

In Se
tion 5.8 
ow with temperature will be 
onsidered. The Boussinesq model will be

used for the temperature.

In this 
hapter, Diri
hlet boundary 
ontrol (DBC) is applied. The developed methods

and a posteriori error estimates show again good results. The new dual-weighted error

estimator is more appropriate for grid design of optimization problems than the energy-

error estimator. For the same target fun
tional values, the dual-weighted error estimator

needs less elements than the energy-error estimator. The re�nement by the dual-weighted

error estimator shows the sensitivities in the optimization problem. Another result is that

the 
omputations with the developed dual-weighted error estimator are more stable than

with the energy-error estimator for the appli
ations in this 
hapter.

Due to a new te
hnique for the formulation and 
omputation of (DBC), the regular-

ization parameter � 
an be redu
ed 
onsiderably. This enables to get 
ontrols q whi
h are

not too strongly restri
ted by the given regularization pro�le. The resulting optimization

problem is then less dominated by the regularization.

The 
oupled systems resulting from the appli
ations in this 
hapter led to numeri
al

problems. The solver developed in Se
tion 6.1 enabled to solve the presented equation

systems as des
ribed therein. It provided the ne
essary robustness. The pre
onditioner in

se
tion 6.2 led to a ne
essary a

eleration of the solver.

Computations for both L

2

and H

1

-regularization were performed as proposed in Gunz-

burger and Hou [34℄ (see se
tion 1.8). The numeri
al results showed no 
onsiderable dif-

feren
e between the two versions in the test 
ases.

The globalization methods developed in se
tion 3.3 have been used for some of the

presented examples.
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5.1 Navier-Stokes equations for 
ow simulation

The following version of the in
ompressible Navier-Stokes equations posed on a domain


 � IR

d

; d = 2; in Cartesian 
oordinates are 
onsidered: First the two equations resulting

from the momentum equation, leading to a 
onservation of momentum:

� �

|{z}

vis
osity

4v

| {z }

di�usion

+ v � rv

| {z }

transport

+ rp =

~

f: (5.1)

The two velo
ity 
omponents are denoted by v = (u;w). The vis
osity is denoted by �, the

pressure by p and

~

f = (f

1

; f

2

) is the right hand side of the system. Let v be in V � H

1

(
)

2

.

And let p be in T = L

2

(
). The weak formulation is

F

i

= (v � rv;  )




+ (�rv;r )




� (p;r: )




� (

~

f;  )




+ S

i

= 0 8 2 V;

with boundary 
onditions for �
 = �

in

[ �

out

[ �

w

:

vj

�

in

= v

in

; vj

�

w

= 0; (pn� ��

n

v = 0)j

�

out

:

�

w

denotes a wall boundary 
ondition. S

i

is a suitable stabilization de�ned below.

The 
ontinuity equation, leading to 
onservation of mass, takes the form:

r:v = 0: (5.2)

The weak formulation is

F




= (r:v; �)




+ S




= 0 8� 2 T: (5.3)

S




is a suitable stabilization de�ned below.

Sin
e this formulation is not stable for the applied Q

1

=Q

1

-elements for the FEM dis-


retization of v and p, the stabilization te
hnique des
ribed in Be
ker [6℄ is used. The main

diÆ
ulties for a stable dis
retization are the 
onve
tion dominated behavior of the 
ow

(small �) and the velo
ity-pressure 
oupling. A standard �nite element te
hnique for the

�rst diÆ
ulty is the streamline di�usion method, see also Johnson [42℄. Both diÆ
ulties 
an

be treated simultaneously through a so-
alled Galerkin-least-squares approa
h des
ribed in

Be
ker [6, Chapters 5 and 6℄. This te
hniques lead to the following stabilization: For the

momentum equation we obtain

S

i

= (v � rv +rp; � v � r )




:

And the 
ontinuity equation is stabilized by

S




= (v � rv +rp; � r�)




:

The weighting parameter � = �

K

is 
al
ulated on ea
h 
ell K of the �nite element

dis
retization. By [6℄ and [29℄, �

K


an be 
hosen approximately as h

K

max(

h

K

k�k

K;1

� �; 0)

leading to a stable FEM dis
retization. In this 
ase, � = u 
an be a �xed velo
ity �eld, for
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example the one from a previous step of a �x point iteration. And h

K

is the diameter of

the 
ell K.

If h

K

! 0, then �

K

! 0. The LBB 
ondition of the stabilized system

inf

r2T

h

sup

v2V

h

n

R




r r � v dx

krk

L

2
krvk

H

1

+

R





(r; r)

krk

L

2

o

� 


h

� 
 > 0

with weighted Lapla
ian 
(p; r) = �(rp;rr) leads to a stable 
al
ulability of the pressure

for the Stokes equation.

5.2 Stokes and Navier-Stokes - Poiseuille 
ow

As �rst test 
ase for the equations derived in se
tion 5.1, simulation 
al
ulations for

Poiseuille 
ow are done on the domain presented in Figure Fig 1.1 in 
hapter 1 (see White

[65, se
tion 3-3.1, p. 116-118℄ and Ward-Smith [64, se
tion C1, p. 135-137℄). For Poiseuille


ow, the transport term v �rv disappears be
ause the 
ow is parallel to the axis. Therefore,

there is no di�eren
e between Stokes and Navier-Stokes equations.

For test purposes, the numeri
al results obtained with the 
ode 'of' show that the

implemented system leads to the expe
ted solutions. In the following table, the values

of the residuals R(:) are given for 
ertain numbers N of 
ells. The results are from the


omputation with the Stokes equations.

N R(u) R(w) R(p)

256 2:6 � 10

�12

3:7 � 10

�11

6:5 � 10

�11

1024 5:4 � 10

�14

5:7 � 10

�13

6:6 � 10

�13

4096 1:2 � 10

�15

1:6 � 10

�14

1:4 � 10

�14

16384 1:5 � 10

�15

1:4 � 10

�14

5:3 � 10

�15

5.3 Bifur
ation for pure simulation

For the 
ase of 
omputation on the domain on page 90, the following problem 
ould be

stated for the pure simulation: For a Reynolds number smaller than 70, a 
onvergen
e to a

stationary solution 
an be stated. At Reynolds number 80, the solution is non-stationary.

But for Reynolds number 90 and 100, again the former stationary solution is observed.

It is well-known that for small data there is a stationary solution of the mathemati
al

model Navier-Stokes equations. A detailed survey 
an be found in Heywood, Ranna
her

and Turek [37℄. But from Reynolds number 70, an additional non-stationary solution exists.

This is the solution whi
h 
an be stated for some Reynolds numbers between 70 and 80.

Here bifur
ations 
an happen, i.e. both solutions 
an o

ur as solutions of the Navier-Stokes

equations. For Reynolds number 90 and 100, the stationary 'base' solution was obtained

whi
h is physi
ally unstable.

5.4 Lagrangian fun
tion and its di�erentials

In this se
tion, the equation system for optimization with the in
ompressible Navier-Stokes

equations as appli
ation is derived. The presented terms are only those terms whi
h re-
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sult dire
tly from the in
ompressible Navier-Stokes equations. Terms resulting from other

parts of the optimization system like the 
ost fun
tional, 
ontrol terms or other boundary


onditions must be added in 
orresponden
e with the spe
ial optimization problem.

The Lagrangian fun
tion for Cartesian 
oordinates 
an be stated as usual:

L(v; p; q; �; �

2

) := J(v; p; q) + (�

2

; F




(v; p; q)) + (�; F

i

(
; p; q)): (5.4)

The derived equations do not 
ontain stabilization. A detailed version of this equation

system with stabilization is given in appendix B.

The �rst order ne
essary 
onditions of the 
onstraint optimization problem are for the

weak formulation of the Navier-Stokes equations omitting possible boundary integrals from

the optimization problem:

�L

�v

= (� � rv � v � r�;  )




� (�r�;r )




� (r:�

2

; �)




= 0 8 8� (5.5)

�L

�p

= �(�;r: ) = 0 8 (5.6)

The di�erentials

�L

��

and

�L

��

2

lead to the state equations F

i

= 0 and F




= 0, respe
tively.

The possible boundary integrals from the optimization problem depend on the spe
ial prob-

lem and will therefore be 
onsidered separately for ea
h presented optimization problem.

The se
ond-order di�erentials are obtained as in Se
tion 4.2 by se
ond-order di�erentiation

in the dire
tion of the in
rements (see remarks on equation (1.10)). The detailed Hessian

operator is given in appendix B. The di�erentials of L with stabilization are mu
h bigger

due to the nonlinearities and produ
ts in the stabilization S

i

and S




.

5.5 A drag 
oeÆ
ient optimization problem

The following basi
 grid will be used for the presented drag optimization problem of this

se
tion:

out
ow �

o

substrate �

S


ontrol boundary �

Q

�x in
ow �

F

wall

wall

wall �

w

wall �

w

wall �

w
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The drag 
oeÆ
ient 


D

is 
al
ulated in the following way:




D

=

2F

D

�U

2

L

with 
uid density �, mean velo
ity U , 'length' L of substrate �

S

and the drag for
e F

D

as

follows:

F

D

=

Z

S

(��

�

�n

v

t

n

y

� Pn

x

)dS

with normal ve
tor n on S with x-
omponent n

x

and y-
omponent n

y

, tangential velo
ity

v

t

on S and tangent ve
tor t = (n

y

;�n

x

). There are two possibilities for the below given

domain: The boundary line whi
h is the border of S is perpendi
ular to the 
ow dire
tion.

Then,

v

t

= u )

�

�n

v

t

= �

y

u:

Otherwise, boundary line whi
h is the border of S is in the 
ow dire
tion. Then,

v

t

= w )

�

�n

v

t

= �

x

w:

For the 
al
ulated problem, the following values were used: The kinemati
 vis
osity

� = 10

�3

m

2

s

and the 
uid density � = 1

kg

m

3

.

A �rst test 
ase is to take simply J(u; q) = 


D

as 
ost fun
tional. This lead to an ill-

posed problem be
ause 


D

is not lower bounded. Therefore, 
ondition (H1) in Gunzburger

and Hou [34℄, se
tion 2.2. on page 1003, is not ful�lled. The numeri
al results showed this

problem. The 
ontrol fun
tion diverged with minimal value ! �1, as expe
ted.

The optimization problem with

J(u; q) = 


2

D

as 
ost fun
tional leads to better results. By [34℄, se
tion 2.2. on page 1003, this op-

timization problem is well-posed be
ause the 
onditions (H1)-(H9) are ful�lled. For this


ost fun
tional J , the theoreti
al minimum is 


2

D

= 0. This value is taken as referen
e

value J

ref

in the 
omputations and results of this se
tion. It results from J

ref

= 0 that

E

h

= J(u

h

; q

h

)� J

ref

= J(u

h

; q

h

).

OPTDRAG: The 
al
ulations were done on the following domain or basi
 grid: There

is one �xed in
ow �

F

(bottom, at left). Next to it is the 
ontrol boundary �

Q

(bottom,

at right). The drag is evaluated on the boundary of the substrate �

S

in the middle. The

out
ow �

o

is at the top.

The following boundary 
onditions are 
onsidered: On the �xed in
ow �

F

there is

u = 0; w(x; y) = �4(x�

1

2

)

2

+ 1 (paraboli
 pro�le). On the 
ontrol boundary �

Q

there is

u = 0; w = q (DBC). On the wall �

w

there is u = w = �

u

= �

w

= 0. At the out
ow �

o

there is the free out
ow 
ondition for u;w proposed in Be
ker [6℄ whi
h is also transformed

to �

u

; �

w

. The substrate �

S

takes the same boundary 
onditions as the wall �

w

.
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Remark 5.5.1. For a Reynolds number greater than 46 on the domain on page 90, the

above equation system for Navier-Stokes leads to os
illations in the solution with the devel-

oped solution method. In order to get a more stable solution for the Navier-Stokes equations,

the following te
hnique is applied: One reason for problems in 
omputation of solutions for

Navier-Stokes equations results from Newton linearization of the transport term v �rv. This

term 
an is split in two terms, the 
onve
tion term and the rea
tion term. The rea
tion

term vru, where u means that u is �xed for this iteration (or the value from the previous

iteration), is the main sour
e for problems. This term 
an 
ause problems e.g. for vorti
es.

It is negle
ted in the equation system.

5.6 Dual-weighted a posteriori error estimates

The a priori error estimates for optimization problems governed by in
ompressible Navier-

Stokes equations 
an be found in Gunzburger and Hou [34, theorem 4.10℄.

For the 
ase of pure simulation, a posteriori error estimates for in
ompressible Navier-

Stokes equations are given in Be
ker [6, theorem 4.2℄.

The following version of the dual-weighted a posteriori error estimate for optimization

problems is a general version for the domain integrals (T 2 T

h

). The integrals on �
 and on

�

Q

depend on the spe
ial optimization problem (and will be evident from the formulation

of ea
h optimization problem). Later on, the 
ost fun
tional will be evaluated on a part of

the domain. This will 
hange slightly the error estimator.

Proposition 5.6.1. For optimization problems governed by in
ompressible Navier-Stokes

equations, there holds the following dual-weighted a posteriori error estimate for (DBC) (on

the boundary �

Q

) and 
ost fun
tional minJ = 


2

D

with drag 
oeÆ
ient 


D

on the boundary

�

S

as in OPTDRAG:

jJ(u; q) � J(u

h

; q

h

)j �

X

���


h

2

�

�

�

(�

(2)

)

�

!

(�

(2)

)

�

+ �

(w)

�

!

(w)

�

	

+

X

���

Q

h

2

�

�

(q)

�

!

(q)

�

+

X

���


h

2

�

�

(p)

�

!

(p)

�

(5.7)

+

X

K2T

h

h

2

K

�

�

(u)

�K

!

(�

(0)

)

�K

+ �

(w)

�K

!

(�

(1)

)

�K

+ �

(p)

�K

!

(�

(2)

)

�K

	

+

X

K2T

h

h

2

K

�

�

(�

(0)

)

�K

!

(u)

�K

+ �

(�

(1)

)

�K

!

(w)

�K

+ �

(�

(2)

)

�K

!

(p)

�K

	

;

with the 
ell residuals and weights

�

(�

(2)

)

�

= h

�3=2

�

k2


D

� n

x

k

�

; ���

S

; !

(�

(2)

)

�

= h

�1=2

�

kp� �

(p)

h

k

�

;

�

(w)

�

= h

�3=2

�

kw

h

� q

h

k

�

; � � �

Q

; !

(w)

�

= h

�1=2

�

k�

(1)

� �

(w)

h

k

�

;

�

(q)

�

= h

�3=2

�

k�

n

�

(1)

h

� �q

h

k

�

; !

(q)

�

= h

�1=2

�

kq � �

(q)

h

k

�

;

�

(p)

�

= h

�3=2

�

k�

n

p

h

k

�

; !

(p)

�

= h

�1=2

�

k�

(2)

� �

(p)

h

k

�

;



5.7. NUMERICAL RESULTS 93

�

(u)

�K

=

1

2

h

�3=2

K

kn� [ru

h

℄k

�Kn�


; !

(�

(0)

)

�K

= h

�1=2

K

k�

(0)

� �

(u)

h

k

�Kn�


;

�

(w)

�K

=

1

2

h

�3=2

K

kn� [rw

h

℄k

�Kn�


; !

(�

(1)

)

�K

= h

�1=2

K

k�

(1)

� �

(w)

h

k

�Kn�


;

�

(p)

�K

=

1

2

h

�3=2

K

kn� [p

h

℄k

�Kn�


; !

(�

(2)

)

�K

= h

�1=2

K

k�

(2)

� �

(p)

h

k

�Kn�


;

�

(�

(0)

)

�K

=

1

2

h

�3=2

K

kn� [r�

(0)

h

℄k

�Kn�


; !

(u)

�K

= h

�1=2

K

ku�  

(u)

h

k

�Kn�


;

�

(�

(1)

)

�K

=

1

2

h

�3=2

K

kn� [r�

(1)

h

℄k

�Kn�


; !

(w)

�K

= h

�1=2

K

kw �  

(w)

h

k

�Kn�


;

�

(�

(2)

)

�K

=

1

2

h

�3=2

K

kn� [�

(2)

h

℄k

�Kn�


; !

(p)

�K

= h

�1=2

K

kp�  

(p)

h

k

�Kn�


:

( 

(u)

h

;  

(w)

h

;  

(p)

h

); (�

(u)

h

; �

(w)

h

; �

(p)

h

); (�

(u)

h

; �

(w)

h

; �

(p)

h

; �

(p)

h

) are arbitrary test fun
tions in the

dis
rete spa
es. The 
ell residuals obtained from the �rst order ne
essary 
onditions are

omitted be
ause the jump terms will dominate the residual terms ([13℄).

Proof. See theorem 2.5.1, and proposition 2.5.2.

The energy error estimator is built as in Se
tion 2.7. In this appli
ation we have several

state equations.

�

E

(u

h

) := 


I

X

K2T

h

h

3

K

(�

(u)2

�K

+ �

(w)2

�K

+ �

(p)2

�K

) + 


I

X

���


h

3

�

(�

(u)2

�

+ �

(w)2

�

+ �

(p)2

�

); (5.8)

with the 
ell residuals �

(:)

�K

and �

(:)

�

.

5.7 Numeri
al results for the drag 
oeÆ
ient optimization

problem

There are 2 possibilities to a
hieve the value 


2

D

= 0 in optimization problemOPTDRAG:

One is that all in
ow on �

F

is su
ked o� by an out
ow on the 
ontrol boundary �

C

(negative

in
ow). The result is that there is no 
ow near �

S

and 


2

D

= 0. This solution is obtained

by the optimization problem governed by the Stokes equation in Figure 5.2. The other

possibility for 


2

D

= 0 is that the drag on �

S

is 0 by mutual elimination of the non-zero

parts. This enables to have 
ow near �

S

. It for
es a 
hange of dire
tion in the 
ow. This

solution is obtained by the optimization problem governed by the Navier-Stokes equation in

Figure 5.8. The di�eren
e in the solutions results from the additional nonlinear transport

term in the Navier-Stokes equations.

The 
ost fun
tional

J(e) = E

h

= 


2

D


ontains the square of the drag 
oeÆ
ient 


D

. This means that in the presented results, the

drag 
oeÆ
ient values in the optimization problems 
an be retrieved by taking the square

root of J .

Remark 5.7.1. The value of the eÆ
ien
y index has with this setting at least to weak-

nesses: Some residual terms in the error estimator are negle
ted. And the regularization is

not added to the 
ost fun
tional. The latter has the advantage that J gives the value of 


D

.
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The numeri
al results are obtained either with the pure Newton method or with the

modi�ed Newton method.

Example 1: First, this optimization problem is governed by the Stokes equations. The

starting values for (u;w; p); (�

u

; �

w

; �

p

) and q are (0:2;�0:3; 2); (0; 0; 0:1) and �0:3, respe
-

tively. The 
al
ulations were done with the dual-weighted and the energy-error estimator.

The regularization parameter � is 0:01. Divergen
e was dete
ted with � lower than 10

�8

.

Without the (DBC)-te
hnique of se
tion 6.6 � has to be taken greater than 80 in order to

obtain 
onvergen
e. The interpolation 
onstant is C

I

= 0:1. The following table shows the

value of the error fun
tional E

h

and the eÆ
ien
y index I

eff

for 
ertain dis
rete solutions

with N 
ells of the results obtained with the dual-weighted error estimator:

N 964 2020

E

h

1:2 � 10

�5

1:59 � 10

�6

I

eff

1.26 0.41

For these dis
rete solutions, the parts of the dual-weighted error estimator have the follow-

ing values in the notation of proposition 5.6.1:

N 964 2020

P

�

�

!

�

;� � �

S

8:1 � 10

�6

1:3 � 10

�6

P

�

�

!

�

;� � �

Q

9 � 10

�9

6 � 10

�8

P

�

�T

!

�T

1:4 � 10

�6

3:8 � 10

�5

In the error estimator given in proposition 5.6.1, many terms from the domain integral

are negle
ted. This leads to the observed values of the eÆ
ien
y index I

eff

. Nevertheless,

the generated grids are quite eÆ
ient as shown in the 
omparison with the energy-error

estimator. In Figure 5.1, a faster 
onvergen
e to the solution of the underlying 
ontinuous

problem 
an be stated. This is due to the more adequate re�nement for the optimization

problem by the dual-weighted error estimator as presented in the following grids. They

show that the energy-error estimator fo
uses mainly on the �x in
ow where the gradient

has great values. The obtained grids by dual-weighted (left) [


2

D

= 1:588�10

�6

℄ and energy

(right) [


2

D

= 0:000145284℄ error estimator both on 2000 elements for � = 0:01 are
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The drag value 1:59�10

�6

for the dual-weighted error estimate shows that the theoreti
al

minimum 


2

D

= 0 
an almost be a
hieved with the dual-weighted error estimator. In this

linear 
ase for the simulation, the 
ontrol tries to eliminate the 
ow next to the observation

whi
h is the evaluation of the drag. This is one possibility to for
e the drag to be 
lose

to 0. An other possibility is a
hieved with the Navier-Stokes equations in the following

examples.

Remark 5.7.2. Small 
hanges in the 
ontrol q 
an lead to remarkable gains in the 
ost

fun
tional J . So for some appli
ations, the di�eren
e in the 
ontrols may not to visible

be
ause it is very small. On 
oarser grids the di�eren
e of the obtained 
ontrols are often

more visible be
ause the dual-weighted error estimator leads faster to the optimal 
ontrol

than the energy-error estimator. Furthermore not only the 
ontrol is important but also to

obtain a grid whi
h enables to get a 
ertain a

ura
y of J with the least number of 
ells.

In the following Figure, we observe remarkable di�eren
es in the 
ontrols due to the

fa
t that the mesh re�nement by the energy-error estimator is near the �x in
ow boundary

�

F

and not near the 
ontrol boundary �

Q

. Therefore, the energy-error estimator does not

lead to the optimal 
ontrol obtained by the dual-weighted error estimator. This is a reason

for the worse values for 


2

D

on the grids designed by the energy-error estimator (see Figure

5.1).

Figure: Drag optimization problem governed by Stokes equations: Obtained 
ontrols

by dual-weighted (above) and energy (below) error estimator on N=200, 2000, and 2300

elements, with minimal values = -0.3, -1.17, -0.3, respe
tively, for � = 0:01 (note the

di�erent s
aling of the �rst and third 
ontrol).



96 CHAPTER 5. OPTIMIZATION WITH NAVIER-STOKES EQUATIONS

Example 2: The next step is the optimization problem governed by the Navier-Stokes

equations. The data is the same as for the 
al
ulations with the Stokes equations. Numer-

i
al results for �

�1

= 15; 20; 70 will be presented. The presented results for E

h

in Figures

5.3, 5.4, 5.5, 5.6 and 5.7 show that the dual-weighted error estimator is mu
h more appro-

priate for grid design of optimization problems. The energy-error estimator does not really


onsider the optimization problem and therefore the resulting re�nement is ineÆ
ient. For

example, in Figure 5.5 the 
ost fun
tion value 0.000167 
an be obtained with the dual-

weighted error estimator on 7000 elements whereas the energy-error estimator needs 66000

elements.

The following tables show the value of the error fun
tional E

h

and the eÆ
ien
y index

I

eff

for 
ertain dis
rete solutions withN 
ells of the results obtained with the dual-weighted

error estimator. For �

�1

= 20, � = 0:01 we get:

N 832 9076 92812

E

h

0:00043345 8:305 � 10

�5

1:647 � 10

�5

I

eff

1.2 0.99 0.8

For �

�1

= 70, � = 0:007 we obtain:

N 2044 9652 48376

E

h

0:000353775 6:592 � 10

�5

1:132 � 10

�5

In the latter table, the values of I

eff

are omitted be
ause the showed bad values. Here,

remark 5.7.1 may be appli
able. In the 
ase �

�1

= 70, the e�e
t of the negle
ted residual

terms are 
learly observed by the resulting numeri
al values. Due to the greater Reynolds

number, the 
ow may have a stronger in
uen
e on the whole equation system. For �

�1

= 20,

the values of the dual-weighted error estimator are 
lose to the error.

The notation of the terms in the following two tables is as in proposition 5.6.1. For

these dis
rete solutions, the parts of the dual-weighted error estimator have the following

values for �

�1

= 20, � = 0:01:

N 832 9076 92812

P

�

�

!

�

;� � �

S

1:921 � 10

�6

1:736 � 10

�7

1:1 � 10

�9

P

�

�

!

�

;� � �

Q

1:42 � 10

�7

1:27 � 10

�8

2:9 � 10

�9

P

�

�T

!

�T

0:00034254 8:3381 � 10

�5

2:0525 � 10

�5

And for �

�1

= 70, � = 0:007 we get:

N 2044 9652 48376

P

�

�

!

�

;� � �

S

7:086 � 10

�7

3:552 � 10

�7

7:3 � 10

�9

P

�

�

!

�

;� � �

Q

4:064 � 10

�8

2:53523 � 10

�7

5:213 � 10

�8

P

�

�T

!

�T

0:00386682 0:00574349 0:00250141

For �

�1

= 70, the error estimator is dominated by �

�T

!

�T

. The values are greater as for

the 
ase �

�1

= 20. This leads to the bad values for I

eff

in 
ombination with the negle
ted

residual terms.

The behavior of the dual-weighted error estimator and the energy-error estimator for the

di�erent versions of the drag optimization problem governed by Navier-Stokes equations 
an
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be seen in the resulting grids. The obtained grids by dual-weighted (left) [


2

D

= 8:305�10

�5

,

10000 elements℄ and energy (right) [


2

D

= 0:00034999, 20000 elements℄ error estimator for

�

�1

= 20 and � = 0:01 are

Whereas the obtained grids by dual-weighted (left) [


2

D

= 6:488 � 10

�5

, 14000 elements℄

and energy (right) [


2

D

= 0:00031092, 10000 elements℄ error estimator for �

�1

= 15 and

� = 0:007 are

The obtained grids by dual-weighted (left) [


2

D

= 8:051�10

�5

, 6000 elements℄ and energy

(right) [


2

D

= 0:00036091, 11000 elements℄ error estimator for �

�1

= 70 and � = 0:007 are
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Sequen
es showing the grid design for several dis
retization levels for the dual-weighted

and the energy-error estimator 
an be found in �gures 5.11 and 5.12, respe
tively.

For �ne grids, the di�eren
es in the 
ontrols are very small for this appli
ation (see

Remark 5.7.2). The 
ontrol 
an be obtained from the Figures for the velo
ity by the

Diri
hlet boundary 
ondition u = q on �

Q

.

The mesh re�nement in the middle part of the grid by the dual-weighted error estimator

in the presented grids for �

�1

= 15, 20 and 70 
an be explained by the ne
essity of 
hange

of the 
ow dire
tion in order to obtain 


2

D

= 0. This leads to a sensitivity to the evaluation

of the 
ost fun
tional.

The energy-error estimator leads to a re�nement in mainly by the 
orner singularities

(grids for �

�1

= 15) or by the 
ow (grids for �

�1

= 70).

For greater Reynolds numbers, the impa
t of the 
ow on the optimization problems is

getting stronger. This 
an also be seen in the resulting grids for �

�1

= 70.

The grids 
learly show that the regularization has an impa
t on the grid design. Larger

values for � lead to a too strong dominan
e of the regularization whi
h 
an be seen also

in the mesh re�nement. This 
an be seen by 
omparison of grids for �

�1

= 20 and grids

for �

�1

= 15 for whi
h di�erent values of � were used. The 
hoi
e of an appropriate �

is 
ru
ial for a good solution of the optimization problem. If � is too big, the obtained

solution is dominated by the regularization. The resulting solution is in this 
ase not the

solution sought in the original optimization problem. The extreme 
ase would be that there

will be a 
ontrol q � 0 for very big values of �. But if � is too small, the well-de�nedness

of the optimization problem may be lost and no good 
onvergen
e of the solution method

would result. For 
omparison, the following two grids are the same 
on�guration as for the

last grid for the dual-weighted error estimator. Again, �

�1

= 70 in the drag optimization

problem. But the regularization fa
tor � is 0.0085 (left, 


2

D

= 8:8 � 10

�5

) and 0.01 (right,




2

D

= 10

�4

) both with 6000 
ells as above:
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Clearly, the e�e
t of the in
reasing regularization fa
tors � not only on the region next to

the 
ontrol boundary 
an be seen.

The velo
ities for 
ow with �xed 
ontrol q = 0 is given in Figure 5.9 for the 
ase of

�

�1

= 70 and � = 0:007. This solution 
orresponds to the solutions in Figure 5.8. It shows

the e�e
t of the 
ontrol on the 
ow. A 
omparison of the belonging numeri
al solutions of

the pressure is shown in Figure 5.10. Again, the impa
t of the 
ontrol due to the su
king

o� on the 
ontrol boundary �

Q

is obvious.

The largest 
omputation done with the Navier-Stokes equations in this appli
ation was

with 2 million variables for the solutions obtained with the dual-weighted error estima-

tor. With the energy-error estimator su
h large amounts of variables were not obtained

be
ause the 
al
ulations were mu
h slower. This results from ineÆ
ient re�nement and a

numeri
ally less stable behavior.

For all presented examples, the 
ells representing 30 per
ent of the error were re�ned

in ea
h re�nement step (starting with the largest error values).

5.8 Optimization governed by 
ow with temperature trans-

port for zero gravitation

The next appli
ation of the developed te
hniques is optimization governed by Navier-Stokes

equations with temperature. For the temperature, the Boussinesq vis
osity model in White

[65, p. 482℄ and Griebel, Dornseifer, and Neunhoe�er [32, p. 125℄ is used. The gravitation

is negle
ted. Hen
e the temperature is used as a tra
er. The solution of the following

equation represents the temperature 
omponent:

�(rT;r�) + (v � rT; �) = 0: (5.9)

For the asso
iated Lagrangian multiplier �

t

is determined by the equation

�(r�

T

;r�)� (v � r�

T

; �) = 0: (5.10)
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For stability reasons, only the terms

(v � rÆT; �); (v � rÆ�

T

; �) (5.11)

are taken in the se
ond order derivation. This te
hnique is similarly already des
ribed in

remark 5.5.1.

The stabilization is fa
ilitated by the term

�

T

(v � rT; v � r�): (5.12)

The fa
tor �

t


an be 
hosen in at least two ways. The �rst possibility only in
ludes infor-

mation of the velo
ity:

�

T

=

1

2

h

jvj

L

2

: (5.13)

The se
ond possibility takes more information and is 
lose to the � of the Navier-Stokes

equations:

�

T

=

1

70 �

�

h

2

+

jvj

L

2

h

: (5.14)

The presented results are a
hieved with the se
ond version of �

T

.

All numeri
al results are obtained with the pure Newton method.

OPTTEMP: For this appli
ation, the optimization problem is as follows: The temper-

ature T in the region �

J

next to the substrate �

S

should be maximized. The 
al
ulations

were done on the following domain or basi
 grid:

�

J

out
ow �

o

substrate �

S

�x in
ow �

F


ontrol �

Q

wall �

w

wall �

w

wall �

w

wall �

w

wall �

w

There is one �xed in
ow �

F

(bottom, at left). Next to it is the 
ontrol boundary �

Q

(bottom, at right). The 'out
ow' �

o

is at the top.
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The following boundary 
onditions are 
onsidered: On the �xed in
ow �

F

there is

u = 0; w(x; y) = �4(x �

1

2

)

2

+ 1 (paraboli
 pro�le). On the 
ontrol boundary �

Q

there

is u = 0; w = q (DBC). On the wall �

w

there is u = w = �

u

= �

w

= 0. At the

out
ow �

o

there is the free out
ow 
ondition for u;w proposed in Be
ker [6℄ whi
h is also

transformed to �

u

; �

w

. The substrate �

S

takes the same boundary 
onditions as the wall

�

w

. The boundary 
onditions for the solution of the Boussinesq equation temperature

T are Diri
hlet boundary 
onditions on all boundaries. These Diri
hlet values for T are

the same on all boundaries with ex
eption of the boundary �

F

. On boundary �

F

there

is a greater value than on the other boundaries. Therefore, there are Diri
hlet boundary


onditions with value 0 for �

T

on all boundaries.

This optimization problem is 
lose to the optimization problem of the appli
ation men-

tioned in the introdu
tion.

The dual-weighted error estimates are as follows for OPTTEMP: For optimization

problems governed by in
ompressible Navier-Stokes equations and Boussinesq temperature

equation, there holds the following dual-weighted a posteriori error estimate for (DBC) (on

the boundary �

Q

) and 
ost fun
tional max J =

R

�

J

Tdx as in OPTTEMP: In the notation

of proposition 5.6.1,

jJ(u; q) � J(u

h

; q

h

)j �

X

���


h

2

�

�

(w)

�

!

(w)

�

+

X

���

Q

h

2

�

�

(q)

�

!

(q)

�

+

X

���


h

2

�

�

(p)

�

!

(p)

�

+

X

���

J

h

2

�

�

(T )

�

!

(T )

�

(5.15)

+

X

K2T

h

h

2

K

�

�

(u)

�K

!

(�

(0)

)

�K

+ �

(w)

�K

!

(�

(1)

)

�K

+ �

(p)

�K

!

(�

(2)

)

�K

+ �

(T )

�K

!

(�

(3)

)

�K

	

+

X

K2T

h

h

2

K

�

�

(�

(0)

)

�K

!

(u)

�K

+ �

(�

(1)

)

�K

!

(w)

�K

+ �

(�

(2)

)

�K

!

(p)

�K

+ �

(�

(3)

)

�K

!

(T )

�K

	

;

with the additional 
ell residuals and weights

�

(T )

�

=

1

2

h

�3=2

K

knk

�

; ���

J

�
; !

(�

(3)

)

�

= h

�1=2

K

k�

(3)

� �

(T )

h

k

�

; (5.16)

�

(T )

�K

=

1

2

h

�3=2

K

kn� [T

h

℄k

�Kn�


; !

(�

(3)

)

�K

= h

�1=2

K

k�

(3)

� �

(T )

h

k

�Kn�


; (5.17)

�

(�

(3)

)

�K

=

1

2

h

�3=2

K

kn� [�

(3)

h

℄k

�Kn�


; !

(T )

�K

= h

�1=2

K

kT �  

(T )

h

k

�Kn�


: (5.18)

In addition to proposition 5.6.1,  

(T )

h

; �

(T )

h

are appropriate test fun
tions.

For the presented optimization problem, obtained dis
rete numeri
al solutions are

shown in Figure 5.13. The 
ontrol of the velo
ity on �

Q

leads to a su
king o�. So the

original out
ow gets to an in
ow. The reason is that with this 
ow the temperature in

the region �

J


an be maximized as formulated by the optimization problem. Due to the


hange of the dire
tion of the velo
ity, the temperature is not su
ked o� by the 
ow but

is 
on
entrated in the region �

J

. There is then more higher temperature staying in the

region �

J

. The strange shape of the pressure p is due to the su
king o� by the 
omputed


ontrol on �

Q

. The temperature T is as expe
ted for this 
ow. The asso
iated Lagrangian
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multiplier �

T

shows the sear
hed duality to T and �ts very well in the developed 
on
ept

of error estimation.

On �ne grids, the di�eren
e in the 
ontrols on the grids obtained by the dual-weighted

error estimator and the energy-error estimator are not visible for this appli
ation (see re-

mark 5.7.2). In the following Figure, a di�eren
e 
an be stated be
ause the grids are still


oarse. The belonging values of J are in Figures 5.17 and 5.18.

Figure: Temperature optimization problem governed by Boussinesq 
ow: Obtained 
on-

trols by dual-weighted (left) and energy (right) error estimator on N=1300 and 1500 
ells,

with minimal values = -0.098 and -0.087, respe
tively, for � = 0:01 and � = 0:5.

In the following, a 
omparison of the grids obtained by the dual-weighted and the

energy-error estimator is given. All 
omputations are done with � = 0:01 and pure Newton

method. The grids depend on the value � of the error whi
h should be redu
ed in ea
h

re�nement (applying the �xed fra
tion strategy, see se
tion 2.8). � = 1 means uniform

re�nement. First, the obtained grids by dual-weighted (left) [J = 306:75, 1580 elements℄

and energy (right) [J = 70:19, 1340 elements℄ error estimator for � = 0:01 and � = 0:3 with

pure Newton method are presented. The energy error estimator is rather unstable be
ause

re�nement o

urs only near the in
ow at 
orner singularities and steep gradients due to the

'in
ow'. For the energy-error estimator divergen
e starts on 1700 
ells. The dual-weighted

error estimator behaves mu
h more stable. Convergen
e up to 6700 
ells was stated.

With � = 0:5, the 
omputations are also not very stable. The obtained grids by dual-
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weighted (left) [J = 256:74, 1300 elements℄ and energy (right) [J = 70:31, 1500 elements℄

error estimator are

With � = 0:8, the energy-error estimator behaves more stable. Computations up to

3800 
ells are possible with the energy-error estimator. The dual-weighted error estimator

rea
hed 190000 
ells. The obtained grids by dual-weighted (left) [J = 1559:91, 5000 ele-

ments℄ and energy (right) [J = 282:38, 3800 elements℄ error estimator are

For � = 0:9, even 
omputations on 8300 
ells 
an be done in a stable way with the

energy-error estimator. For the the grids designed by the dual-weighted error estimator,

204000 
ells were rea
hed without any divergen
e. Afterwards, the 
omputations were too

big for the used work stations. The obtained grids by dual-weighted (left) [J = 2600, 7700
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elements℄ and energy (right) [J = 1007:83, 8300 elements℄ error estimator are

For � = 0:95, stable 
omputations on 15800 
ells are possible with the energy-error esti-

mator. For the the grids designed by the dual-weighted error estimator, the 
omputations

showed no divergen
e. The 
omputations were too big for the used work stations. The

obtained grids by dual-weighted (left) [J = 4016:97, 10000 elements℄ and energy (right)

[J = 893:76, 6500 elements℄ error estimator are

The 
omputations with grids designed by the energy-error estimator were all mu
h

more unstable than those designed by the dual-weighted error estimator. In all 
ases,


omputations with mu
h more 
ells were possible with the dual-weighted error estimator.
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The energy-error estimator tends to re�nement at 
orner singularities and steep gradi-

ents due to the 'in
ow' on �

F

and �

Q

. Whereas the dual-weighted error estimator 
onsiders

the optimization problem in its re�nement. The designed grids show the sensitivities of

the optimization problem. Therefore, the 
omputed values for the 
ost fun
tional to be

maximized are higher with the obtained dis
rete solution 
ompared to the 
ost fun
tional

values of the energy-error estimator grids with the same number of 
ells.

The value in the �rst iteration of the 
ost fun
tional J was 17.46 on 224 
ells (in all


ases on a uniform re�ned basi
 grid). The obtained maximal value for J was 74776.57

(by the dual-weighted error estimator with � = 0:9 on 204572 
ells leading to 1.7 million

variables).

In this optimization problem, the temperature in the region �

J

has to be maximized.

The main 
riterion for the evaluation of the error estimation and the thereby designed

grids is therefore the (maximization of the) value of the 
ost fun
tional J . In this spirit,

the 
al
ulus of orientation at the value for E

h

has to be repla
ed by the maximization of

the value of J . For � = 0:95, the values of the 
ost fun
tional J in the limit of the Newton

iteration on ea
h dis
rete level for the dual-weighted and energy-error estimator are shown

in Figure 5.14. All lines are plotted up to divergen
e of the 
omputation or the line ends

at the box of the graphi
s. The values of J are 
learly greater for the grids designed by

the dual-weighted error estimator. Compared to the uniform mesh re�nement, the dual-

weighted error estimator enables to redu
e the number of 
ells by a fa
tor of 6 in order to

obtain the same value of the 
ost fun
tional J . This behavior is also stated by the results

obtained with � = 0:9 and 0:8 in Figures 5.15 and 5.16, respe
tively.

Figure 5.17 shows a 
omparison of the values obtained with the energy-error estimator.

The strong dependen
e of divergen
e and � is espe
ially signi�
ant 
ompared with the

dual-weighted error estimator in Figure 5.18. Again, all lines are plotted up to divergen
e

of the 
omputation or the line ends at the box of the graphi
s (besides mesh re�nement

whi
h got too big i.e. for 'dual weighted0.95'). For all 
onsidered �, the 
omputations with

the dual-weighted error estimator were far more stable than those with the energy-error

estimator. The energy error estimator pla
es many verti
es at the wrong regions of the

domain. Furthermore these verti
es are 
on
entrated in a few regions by the energy-error

estimator. This makes the 
omputations more unstable as for the dual-weighted error

estimator.

The di�erent error values in the su

essful dual-weighted error estimator 
an be seen

in the following tables. For � = 0:95, these values are in the notation of proposition 5.6.1:

N 1448 32684 111572

�

�

!

�

;� � �

Q

8:87062 � 10

�6

2:79328 � 10

�7

5:59577 � 10

�8

�

�K

!

�K

0:404636 0:0123389 0:00388003

For � = 0:9, these values are in the notation of proposition 5.6.1:

N 1304 22940 69944

�

�

!

�

;� � �

Q

9:72007 � 10

�6

3:27651 � 10

�7

1:12613 � 10

�7

�

�K

!

�K

0:444177 0:0160497 0:00551704

For � = 0:8, these values are in the notation of proposition 5.6.1:
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N 1208 11960 80492

�

�

!

�

;� � �

Q

8:31925 � 10

�6

6:53136 � 10

�7

1:62319 � 10

�7

�

�K

!

�K

0:492626 0:0270697 0:00431046

The results show a redu
tion of the values from step to step. The terms on the whole

domain are 
learly dominant. This is also due to the fa
t that the domain 
 in this 
ase is

larger than in the previous examples. And for the mesh re�nement, the value on ea
h 
ell

is important. The grids and the thereby obtained values for J show that the dual-weighted

error estimator leads to a very good method for the pla
ing of the verti
es. Keep in mind

that in this appli
ation J is not 
al
ulated by a boundary integral as in the previous 
ases.

So the dominan
e of the domain integral has also a positive e�e
t on the evaluation of J .
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Figure 5.1: Drag optimization problem governed by Stokes equations: Comparison of eÆ
ien
y

of meshes generated by the energy-error estimator �

E

(u

h

) (solid line) and the dual-weighted error

estimator �

w

(u

h

; �

h

; q

h

) (dashed line) in log = log s
ale.

Figure 5.2: Drag optimization problem governed by Stokes equations: Obtained solutions for

velo
ities w and u on 13000 
ells.
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Figure 5.3: Drag optimization problem governed by Navier-Stokes equations with �

�1

= 15:

Comparison of eÆ
ien
y of meshes generated by the energy-error estimator �

E

(u

h

) (solid line) and

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) in log = log s
ale (� = 0:01).
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Figure 5.4: Drag optimization problem governed by Navier-Stokes equations with �

�1

= 20:

Comparison of eÆ
ien
y of meshes generated by the energy-error estimator �

E

(u

h

) (solid line) and

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) in log = log s
ale (� = 0:01).
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Figure 5.5: Drag optimization problem governed by Navier-Stokes equations with �

�1

= 20:

Comparison of eÆ
ien
y of meshes generated by the energy-error estimator �

E

(u

h

) (solid line) and

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) in log = log s
ale (� = 0:01).
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Figure 5.6: Drag optimization problem governed by Navier-Stokes equations with �

�1

= 15:

Comparison of eÆ
ien
y of meshes generated by the energy-error estimator �

E

(u

h

) (solid line) and

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) in log = log s
ale (� = 0:007).
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Figure 5.7: Drag optimization problem governed by Navier-Stokes equations with �

�1

= 70:

Comparison of eÆ
ien
y of meshes generated by the energy-error estimator �

E

(u

h

) (solid line),

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) and uniform re�nement (
rosses) in

log = log s
ale (� = 0:007).
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Figure 5.8: Drag optimization problem governed by Navier-Stokes equations: Numeri
al solutions

for velo
ities u;w and 
orresponding Lagrangian multipliers �

u

; �

w

(�

�1

= 70; � = 0:007).
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Figure 5.9: Drag optimization problem governed by Navier-Stokes equations: Numeri
al solutions

for velo
ities u;w for �xed 
ontrol (q = 0) (�

�1

= 70; � = 0:007).
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Figure 5.10: Drag optimization problem governed by Navier-Stokes equations: Comparison of

pressure p for 
ontrolled 
ow and �xed 
ontrol (q = 0) (�

�1

= 70; � = 0:007).
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Figure 5.11: Drag optimization problem governed by Navier-Stokes equations: Sequen
e of ob-

tained grids by dual-weighted error estimator for N = 200; 1000; 1500; 2000; 3200; 6600 
ells for

�

�1

= 70 and � = 0:007.



5.8. OPTIMIZATION GOVERNED BY THE BOUSSINESQ MODEL 115

Figure 5.12: Drag optimization problem governed by Navier-Stokes equations: Sequen
e of ob-

tained grids by energy-error estimator for N = 200; 1000; 1300; 1800; 3200; 7000 
ells for �

�1

= 70

and � = 0:007.
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Figure 5.13: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-

tions: Obtained solutions for velo
ities, pressure p (above), temperature T and asso
iated �

T

(below)

with dual-weighted error estimator for �

�1

= 15 and � = 0:01, pure Newton method.
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Figure 5.14: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-

tions: Comparison of eÆ
ien
y of meshes generated by the energy error estimator �

E

(u

h

) (solid line),

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) and uniform re�nement (
rosses) for

� = 0:95 in log = log s
ale (� = 0:01).

100

1000

10000

100000

1000 10000 100000

J

Number of elements N

"energy0.9"
"dual_weighted0.9"

"uniform"

Figure 5.15: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-

tions: Comparison of eÆ
ien
y of meshes generated by the energy error estimator �

E

(u

h

) (solid line),

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) and uniform re�nement (
rosses) for

� = 0:9 in log = log s
ale (� = 0:01).
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Figure 5.16: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-

tions: Comparison of eÆ
ien
y of meshes generated by the energy error estimator �

E

(u

h

) (solid line),

the dual-weighted error estimator �

w

(u

h

; �

h

; q

h

) (dashed line) and uniform re�nement (
rosses) for

� = 0:8 in log = log s
ale (� = 0:01).
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Figure 5.17: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-

tions: Comparison of eÆ
ien
y of meshes generated by the energy error estimator �

E

(u

h

) for � =

0.3, 0.5, 0.8, 0.9, 0.95 and uniform mesh re�nement (
rosses) in log = log s
ale (� = 0:01).
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Figure 5.18: Temperature optimization problem governed by Navier-Stokes and Boussinesq

equations: Comparison of eÆ
ien
y of meshes generated by the dual-weighted error estimator

�

w

(u

h

; �

h

; q

h

) for � = 0.3, 0.5, 0.8, 0.9, 0.95 and uniform mesh re�nement (
rosses) in log = log

s
ale (� = 0:01).



Chapter 6

Numeri
al solution methods

In this 
hapter, some of the applied numeri
al te
hniques for solving the presented equations

systems are des
ribed.

6.1 Solver

As des
ribed in se
tion 1.1, the presented approa
h for solving an optimization problem

governed by partial di�erential equations with adaptive �nite element dis
retization results

in algebrai
 systems. These equations are obtained by a Newton method approa
h (1.10)

for all presented examples. The problem is to �nd a solver whi
h is appropriate for the

presented kind of problems. As des
ribed in se
tion 6.2, this problem may involve several

saddle points. Also the spe
ial stru
ture from the �nite element approa
h and the lo
al

mesh re�nement has to be 
onsidered. There may be hanging nodes from the adaptive mesh

re�nement. Some methods have been tested like ordinary 
onjugate gradient, 
onjugate

residual and several GMRES methods. The best results have been observed with GMRES.

In some 
ases it was hard to get 
onvergen
e at all.

The applied solver is a pre
onditioned GMRES method. The robustness of the solver

is obtained from the GMRES while the a

eleration of the 
onvergen
e rate results from

multi-grid.

This solver is 
onstru
ted for linear problems. Hen
e, there must be a linearization of the

derivation of the equation system. The linearization is done by the Newton-iteration on the


ontinuous level. So already the 
ontinuous equation system is linearized. Therefore, the

linearization problem is ex
luded from the derivation of the error estimator. Nevertheless,

the linearization error 
an still emerge in the solution pro
ess. It is an independent error

whi
h may 
ause problems.

The presented globalization in Se
tion 3.3 has several advantages. It enables a global-

ization of the Newton method. Furthermore, it provides a regularization as des
ribed in

Se
tion 3.3.

One of our developed 
odes is 'rhopt
on'. In this 
ode exists the possibility to enable

optimization without adaptivity if a 
ertain exa
tness in the dis
rete system is obtained.

By this, the optimization part 
an be dis
onne
ted from the adaptivity part. But for the


odes 'bkr' and 'of' this is not ne
essary be
ause the iteration is done to the limit of the

120
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Newton iteration on ea
h dis
rete level.

The a

ura
y level in the GMRES part 
an also be 
hosen with respe
t to the dis-


retization level, espe
ially depending on the number of verti
es.

6.2 Pre
onditioner

For the applied GMRES method, a good pre
onditioner is ne
essary to a

elerate the so-

lution pro
ess. Multi-grid te
hniques have already been su

essfully applied with GMRES.

The developed pre
onditioning te
hnique uses information of the optimization problem.

Cal
ulation results show that this method is very su

essful. The 
onvergen
e is getting

mu
h faster by this method.

Suppose, the optimization matrix has the following form

0

�

C

1

C

2

P

T

C

3

C

4

B

T

P B 0

1

A

:

For the Ginzburg-Landau models in Chapter 4, we get the following 
oeÆ
ients (already

applied on the variables as in Se
tion 4.2):

C

1

= (Æu;  )

obs

+ (s

00

(u) Æu; �)




C

2

= 0

C

3

= 0

C

4

= �(Æq; �)

�

2

P = (rÆu;r�)




+ (s

0

(u)Æu; �)




B = �(Æq; �)

�

2

The 
oeÆ
ients build the matrix of the s
alar produ
ts of the base fun
tions.

For 
ontrollability the term u � u

d

tends to zero. This means for the Hessian matrix,

that the 
oeÆ
ient for

�

2

L

�u

2

on the diagonal may lead to a numeri
al unstable pre
onditioner,

be
ause pre
onditioners often use the inverse of a matrix.

The diagonal entry for

�

2

L

�q

2


an also lead to numeri
ally unstable pre
onditioners. With

regularization fa
tor � = 0, we get the original optimization problem. Choosing � > 0


hanges this problem. For � = 0, the diagonal entry is zero for above derived problems. If

� is small, we 
an also get some numeri
al problems with pre
onditioners.

The diagonal entry for

�

2

L

��

2

is always zero, be
ause � is only linear in our equation

system.

For these reasons, it seems better to 
hoose an pre
onditioner whi
h is based on the


oeÆ
ient P . Here we get a well de�ned inverse if the simulation is well posed.

For the above optimization matrix, we get a pre
ondition matrix like

0

�

0 0 P

�1

0 0 0

P

�T

0 0

1

A

: (6.1)
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Several tests 
on�rm that if we take only the simulation and the dual solution for the

pre
ondition matri
es P , we do not get a very good 
onvergen
e. There is a progress to the

simple 
hoi
e of the whole optimization matrix be
ause there are no zero-in�nity entries

on the diagonal, at least after using some stabilization te
hniques.

A better pre
onditioner is obtained by taking the �rst order di�erentiation of the simu-

lation and the dual solution for the pre
ondition matri
es P . So we take the sensitivities of

the simulation and the dual solution. Espe
ially for an optimization problem, this 
hoi
e


an also be maintained for optimization fo
uses on these sensitivities. With this matrix,

we perform a multi-grid step u = P

�1

� and vi
e versa. This pre
onditioner leads to very

good 
onvergen
e results even for Navier-Stokes equations as simulation.

It should be mentioned that this pre
ondition te
hnique is also very su

essful for pure

simulation by numeri
al results for Navier-Stokes equations.

For the Poisson equation as simulation, the following matrix P 
an be stated:

P =

�

(r�;r )

�

:

And for the Ginzburg-Landau equations in super
ondu
tivity as simulation, the matrix P

results in:

P =

�

(r�;r ) + (s

0

(u) � �; )

�

:

If the simulation are the Navier-Stokes equations, this matrix P has more entries whi
h

are also more 
ompli
ated. This matrix 
an easily be derived from the given equations,

be
ause P is just the �rst order dire
tional di�erentiation of the simulation or the part of

the Hessian matrix of the Lagrange fun
tion whi
h is indi
ated in (6.1).

For 
al
ulations with 
ylindri
al polar 
oordinates, additional integrals motivated by

the additional integrals arising from these 
oordinates 
an lead to an a

eleration of the

solution pro
ess. For example, the following integral is added:

Z




v

r

�

r

drdz:

The boundary 
onditions are derived in se
tion 6.4.

6.3 Symmetri
 dis
rete Hessian matrix

In the proof of Proposition 3.3.1 for the des
ent dire
tion of a Newton method, the positive

de�niteness as well as the symmetry is used. This symmetry of the dis
retized Hessian

matrix is not trivial. It depends on the 
hosen test and ansatz spa
es. The presented

approa
h in se
tion 1.1 leads to an symmetri
 Hessian matrix of this type. The 
ontinuous

primal and dual problems must be 
hosen as in se
tions 1.1 - 1.4 (i.e. some analyti
al

subproblems are adjoint or transposed to ea
h other) and the test and ansatz spa
es must

�t together as presented. It is mu
h easier if the unknowns u; q; � are 
al
ulated on the

same grid. For a 
al
ulation on di�erent grids, Petrov-Galerkin methods may be ne
essary.

But in this 
ase, an appropriate relation between the di�erent grids has to be guaranteed.

Otherwise, one looses symmetry and in some 
ases one will get some problems with the

des
ent dire
tion in the solution pro
ess of the optimization problem. The system matrix

must be symmetri
al. This is guaranteed due to a 
orre
t 
hoi
e of the boundary 
onditions

and the 
hoi
e of the same bases in the test and ansatz spa
es.
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6.4 Cal
ulation of the boundary 
onditions of the in
rements

For some solution methods, the boundary 
onditions of the in
rements are ne
essary. One

example is the multi-grid whi
h is applied in the pre
onditioner des
ribed in se
tion 6.2.

For an optimal 
ontrol problem, there are not only the in
rements of the simulation

variables but also the in
rements of the Lagrangian multiplier and the 
ontrol. As already

mentioned in Se
tion 1.4, there are relations between the boundary 
onditions of these

variables. These relations will be used to 
al
ulate the boundary 
onditions. The boundary


onditions follow automati
ally from the 
al
ulus developed in Se
tion 1.4.

On the 
ontrol boundary, the proper 
hoi
e of the boundary 
ondition of the in
rement

of the variable Æu would be Æu

n

= u

n

�u

�

where u

n

is the value of u in iteration n and u

�

is

the value of u in the optimum. The problem is that u

�

is unknown, otherwise the optimal


ontrol problem would have already been solved. Therefore, the boundary 
ondition for

Æu

n

= q

n

� u

n

in an iterative method is proposed where q

n

is the value of the 
ontrol q in

iteration n. The motivation for this boundary 
onditions is: The boundary 
ondition of u

for (DBC) on the 
ontrol boundary is u = q. Hen
e, the di�eren
e (whi
h is Æu) is u � q.

In 
ase of 
onvergen
e we get u = q and therefore Æu = 0.

The boundary 
ondition of the in
rement of the Lagrangian multiplier Æ� on the 
ontrol

boundary is derived as follows: As above, the boundary 
ondition is in general Æ�

n

= �

n

��

�

where �

n

is the value of � in iteration n and �

�

is the value of � in the optimum. From

the boundary 
ondition � = 0, it 
an be 
on
luded that �

�

= 0. Hen
e, Æ�

n

= �

n

. This is

the di�eren
e between the a
tual value and the value in the optimum.

On the observation boundary, there are natural Neumann boundary 
ondition for u and

�. This applies to Æu and Æ�.

Remark for the DEAL library: It should be noted for the 
ode that due to re-

quirements of the DEAL library the Diri
hlet and Neumann boundary 
onditions need not

only be indi
ated in the fun
tion `void CELL::set_boundary_line() 
onst' in the �le

`line.

', but also in the �le `vertex.

'. The fun
tions `USERVertex::set_boundary'

and `USERVertex::reset_boundary' the boundary 
onditions of the in
rements must be

set. This is 
aused by a spe
ial �lter te
hnique des
ribed in [58℄.

6.5 Cal
ulation of Newton residuals and Newton in
rements

There are various ways to 
ompute the values of the Newton residual and the Newton

in
rements. The 
hosen evaluation is the value obtained by inserting the 
omputed values

of the dis
rete solution in the weak formulation of the Newton residual. These 
ell values

are weighted by the Ja
obi determinants on ea
h 
ell. This determinant is the determinant

of the transformation on the referen
e element. The weighting is therefore with geometri


data. All is based on the weak formulations of the equations on the 
ells obtained from the

adaptive �nite element dis
retization.

The Newton in
rement is 
hosen in the same way.

In the whole optimization problem with adaptive �nite element dis
retization, there

are several residuals, whi
h have to be evaluated to get good numeri
al results. Examples

are the above Newton residuals or the residual from the solver GMRES. It is espe
ially

important that these residuals are weighted in an appropriate way. Otherwise the s
aling
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of quantities in the algorithm is not balan
ed. For some residuals it is important to weight

the values of the residual on ea
h 
ell with the value of the Ja
obi determinant of this


ell. The general term 'residual' for several di�erent terms appearing in su
h a 
ompli
ated


ombination of methods may lead easily to misinterpretations and misunderstandings.

6.6 Cal
ulation of di�erentials on the boundary

In this se
tion, the 
hosen way of 
omputing the values of the di�erentials on the boundary

should be explained. This is espe
ially important for (DBC), where this di�erential is a


ru
ial part of the equation system of the 
ontrol. An example is equation (1.21) in 
hapter

1. But this is also true for (DBC) in optimization for the Navier-Stokes equations.

The di�erentiation on the boundary in the dire
tion of the domain is not well de�ned

for variables de�ned only on the boundary like the 
ontrol q. But for (DBC), the relation

u = q 
an be used. So u 
an be seen as a prolongation of q. Therefore one 
an transform


ertain properties of u to q, i.e. that u is well-de�ned.

The 
al
ulation of the value of the di�erential on the boundary in the dire
tion of the

domain for the 
ontrol q uses the same idea. The value of the di�erential of u on the 
ell

for whi
h the 
ontrol boundary is a part of the 
ell boundary is taken as the value of the

di�erential of q. Important is that the weighting fa
tor in the �nite element 
al
ulation for

the verti
es on the 
ontrol boundary is 0.25 due to the transformation of the value from

the domain 
ell (
al
ulated on a re
tangular 
ell with 4 verti
es).

This version of the 
al
ulation was the most stable. It enables an easy possibility to


onne
t the values on the domain with the values on the boundary. Furthermore it is very


heap be
ause this value already exists.

The presented method also 
onne
ts the state equations with the (DBC) 
ontrol q. By

the translated di�erentiation information from u to q, also all 
onditions whi
h are ful�lled

by the state variable u are translated to the 
ontrol q.

6.7 Implementation details

The 
ode used in the test 
omputations has been developed on the bases of the DEAL

library (see Be
ker, Kans
hat, and Suttmeier [6℄, [8℄, [43℄, [58℄). DEAL is an obje
t-

orientated 
lass library written in C++ whi
h provides tools for the numeri
al solution

of partial di�erential equations by adaptive �nite element methods in
luding multi-grid

te
hniques. The developed 
odes 'rhopt
on', 'bkr' and 'of' are shortly organized as follows:

� Coarse grid 
onstru
tion: The stru
ture of the 
ode allows various possibilities for

this basi
 
oarse grid.

� Main loop of the program: Here, the adaptive mesh re�nement already des
ribed in


hapter 2 takes pla
e. An adaptive mesh re�nement is performed if a residual is small

enough or after a maximal number of iterations. This loop is terminated if the value

of the error indi
ator is smaller than a given toleran
e TOL. For the 
odes 'rhopt
on'

and 'bkr', a pure optimization part without adaptivity is possible afterwards.
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� Sele
tion of error indi
ators: For the adaptive mesh re�nement part there exist several

error indi
ators, whi
h 
an easily be ex
hanged. This provides the possibility of

e�e
tive 
omparisons between these indi
ators.

� Dis
retization level loop: The Newton method whi
h is formally de�ned on the 
on-

tinuous level is evaluated on the dis
rete levels. In ea
h Newton step a pre
onditioning

by inversion of the state and dual state equations is applied (see se
tion 6.2). This


ru
ial step is done by GMRES whi
h is a

elerated by multi-grid.

For the globalization of the Newton method, there exist trust region methods or line

sear
hes as des
ribed in 
hapter 3. There are several types of line sear
hes for the global-

ization of the Newton method, based on the Armijo-Goldstein prin
iple or on modi�
ations

of it. Additionally, several merit fun
tions for these line sear
hes have been implemented.

The methods have been developed for the spe
ial situation of optimization with partial

di�erential equations and adaptive mesh re�nement. We 
an also perform the pure New-

ton method without any globalization, whi
h 
an lead to very good 
onvergen
e rates for

starting values 
lose enough to the solution.

The 
ode is designed to enable also 
al
ulations without regularization for the optimiza-

tion problem, i.e., for � = 0. This is done by 
al
ulating the in
remental values for q by

solving dire
tly the equations for q in the full nonlinear system (1.7)-(1.9). Alternatively,

for (NBC) in the appli
ations Poisson equation and Ginzburg-Landau models, one may

generate q from the tra
e of the Lagrangian multiplier, �j

�

C

= �q. However, regularization

was ne
essary in more 
ompli
ated appli
ations, e.g. optimization in 
ow problems.

Ea
h 
ode is splitted in several �les grouping parts of the C++ 
ode whi
h belong

to ea
h other (respe
ting the obje
t orientated 
lass hierar
hy). The main �les are the

following:

� The �le 'delta.h' 
ontains the basi
 stru
ture of the 
ode.

� The C++ main program and some basi
 initializations are in 'main.

'.

� The �le 'numeri
.

' enables the management of some basi
 fun
tions (invoking

other fun
tions with respe
t to the obje
t orientated 
lass hierar
hy).

� The parts handling the boundaries are found in the �le 'line.

'.

� Whereas the handling of the domain integrals are in 'quad.

'. Only re
tangulars

are used for the dis
retization of the �nite elements in the domain.

� In the �le '
g_ve
tor.h' the information on the stru
ture for the GMRES solver is


ontained.

� The �le 'num
gv.

' gives some fun
tions allowing the management of some fun
tions


onne
ted to GMRES on the �nite elements. They invoke several fun
tions on the


ells and lines.

� And the �le 'dgmres.h' 
ontains this solver (originally 
ontained in the DEAL library

and slightly modi�ed for optimization problems).
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� The globalization of the Newton method des
ribed in the 
hapter 3 is prin
ipally

done in the �le 'global.

'.

� The �le 'user.

' 
ontains spe
ial fun
tions for the problem formulation of the op-

timization problem. Examples are the (boundary) observations or regularization

fun
tions.

� In the �le 'vertex.

' the handling of the verti
es is organized. Here the interpolation

fun
tions or boundary values are de�ned.

� The fun
tions for the gra�
 output are in 'grafi
.

'.

Altogether, the for this thesis developed 
odes 'rhopt
on', 'bkr' and 'of' 
ontain more

than 7700, 7100 and 10000 lines, respe
tively (without the 
odes from the deal library).

The used 
ompilers were the GNU 
ompilers 'g

' and 'g++'.

The presented graphi
al output is generated using CNOM, a graphi
 software developed

by S. Kr}omker at the SFB 359 in Heidelberg [46℄.



Appendix A

Nagopt - bla
k box optimization


ode (for 
ow problems)

Bla
k box optimization 
odes are 
ommonly used for optimization. One standard library

for bla
k box optimization is the NAG library. Mark 14 and 15 in the Fortran version

were used. Based on this library, the bla
k box optimization 
ode 'Nagopt' was developed

by the author. It enables to use a given simulation 
ode in C++, C or FORTRAN for

optimization with almost no amendments.

The developed basi
 program 'Nagopt' is written in C++ and Fortran. By this 
ode,

the bla
k box optimization algorithms of the NAG library are invoked. The applied NAG

library routines are E04FCF, E04FDF, E04JBF, E04UCF and E04UPF. These NAG library

fun
tions are written in Fortran. The whole handling of data and fun
tions is done by the

basi
 program. The 
ode is split in several �les whi
h are stru
tured by their fun
tionalities.

The developed basi
 program 'Nagopt' 
ontains more than 2000 lines.

The developed 
ode will be applied to in
ompressible, laminar 
ow. The simulation


ode was provided by C. Waguet ([63℄). The original 3D model was redu
ed to a 2D model

by means of the rotational symmetry in the original 3D model. The obtained 2D 
ow tube

has a reentrant 
orner.

The Navier-Stokes equations are formulated in 
ylindri
al polar 
oordinates. This leads

to the three 
omponents radial velo
ity u, axial velo
ity w and pressure p. The boundary


onditions for the velo
ity are Diri
hlet at the in
ow and at the wall, on the other boundaries

we have free boundary 
onditions (Neumann). Whereas for the pressure p, we require free

boundary 
onditions on all boundaries.

The solution methods of the simulation are based on adaptive �nite element methods

using the weak formulation of the Navier-Stokes equations. For the nonlinear part, �x-point

iteration is applied. The solver BiCGSTAB is a

elerated by a multigrid pre
onditioning.

The implementation is based on the DEAL 
ode.

Cal
ulations with Reynolds numbers Re in the range of 0:0001 � Re � 100 are possible.

The paraboli
 inlet pro�le for the axial velo
ity is

1

16

(x+ 4)(x� 4).

Considering the optimization, there were two degrees of liberty in the problem:

1. Parameter estimation with respe
t to the Reynolds number Re or the vis
osity �.

2. Parameterization of the paraboli
 inlet pro�le.
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The referen
e values for the parameter estimation are taken on the base grid.

Some information on the applied adaptivity: Normally, we have one or two adaptive

re�nements of the grid. For example, in level 0 we have 151 verti
es and 120 
ells. This is

the starting grid. In level 1 we have 490 verti
es and 429 
ells. And in level 2 there 
an

be 1506 verti
es and 1377 
ells. We use for ea
h optimization step the same starting grid.

The parameter estimation part was performed with bla
k box algorithms from the NAG

library.

The �rst 
onsidered optimization problem is NAGOPT1: Parameter estimation by


hoi
e of the vis
osity or Reynolds number should be done. The referen
e values were

obtained with �

�1

= 10. There are 3 di�erent sets of referen
e values, one with and two

without adaptivity. All data points for the parameter estimation were already on the initial

grid.

As starting values for �

�1

, 0.01 and 30 were used. The 
al
ulations were made both

with and without adaptivity in the �nite element part.

This leads to a least squares problem. Two bla
k box algorithms for the NAG library

were applied: The Gauss Newton method E04FCF and the Quasi-Newton method E04JBF.

In the �rst table, the a

ura
y in the parameter �

�1

was XTOL = 0.000001. The value

of the obje
tive fun
tion is given in the 
olumn '�nal value'. The number of optimization

iterations and simulation evaluations is denoted by '#iter' and '#sim', respe
tively.

algor adaptiv start v

�1

�nal �

�1

�nal value #iter #sim

e04f
f - 1 no 0.01 9.99999 3.51e-16 3 12

e04f
f - 2 no 0.01 9.99999954 1.01e-16 3 12

e04f
f 0.01 0.01 10.00000 1.71e-14 2 10

e04f
f - 1 no 30 9.99999 3.51e-16 3 28

e04f
f - 2 no 30 9.99999956 1.62e-14 3 12

e04f
f 0.01 30 10.00000 1.71e-14 3 10

e04jbf - 1 no 0.01 9.99998807 3.53e-16 5 49

e04jbf - 2 no 0.01 9.99999800 1.63e-14 6 28

e04jbf 0.01 0.01 9.99999864 1.71e-14 7 30

e04jbf - 1 no 30 9.99998748 3.55e-16 4 56

e04jbf - 2 no 30 9.999999421 1.62e-14 6 48

e04jbf 0.01 30 9.99999835 1.71e-14 3 49

For larger XTOL no signi�
ant 
hange was observed.

The Gauss Newton method E04FCF shows a mu
h better behavior than the Quasi-

Newton method E04JBF. The latter needs more iterations and more simulation evaluations.

This leads to a slower solution pro
ess.

The se
ond 
onsidered optimization problem is NAGOPT2: For this parameter esti-

mation problem, we have the parameters vis
osity/Reynolds number and the inlet fa
tor

for the in
ow pro�le. The referen
e values were obtained with �

�1

= 10 and inlet-fa
tor 1.

As above, there are 3 di�erent sets of referen
e values, one with and two without adaptivity.

All data point for the parameter estimation were already on the initial grid.

This leads to a least squares problem. Three bla
k box algorithms for the NAG library
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were applied: The Gauss Newton method E04FCF, the Quasi-Newton method E04JBF

and the SQP method E04UCF.

In the following table, the a

ura
y in the parameter �

�1

and in the inlet fa
tor was

XTOL = 0.000001.

algor adaptiv start �

�1

start I �nal value #iter #sim

e04f
f - 2 no 0.01 10.0 1.61e-14 8 30

e04f
f 0.01 0.01 10.0 1.68e-14 7 44

e04jbf - 2 no 0.01 10.0 1.61e-14 23 141

e04jbf 0.01 0.01 10.0 1.69e-14 20 124

e04u
f - 1 no 15.0 0.7 2.45e-15 18 24

e04u
f 0.01 15.0 0.7 1.84e-14 16 31

e04u
f - 1 no 0.9 4.0 5.35e-15 24 37

e04u
f - 2 no 0.01 10.0 1.62e-14 27 42

No 
onvergen
e was stated for e04f
f-1, e04jbf-1 and e04u
f-1 for the starting values

�

�1

= 0.01 and I = 10.

Again, the Gauss Newton method E04FCF shows a mu
h better behavior than the

Quasi-Newton method E04JBF. But the SQP method E04UCF is even better.

The stated divergen
e in some 
ases shows that bla
k box 
odes 
an not avoid diÆ
ulties

whi
h appear also for the developed methods in the main part of this thesis. But the latter

allow a better treatment of these diÆ
ulties be
ause more information of the simulation


an be used in the optimization part due to the 
oupled system.

In general, the solution pro
ess is slower for the bla
k box optimization 
odes. Every

simulation needs a full solution of the forward system in
luding its own adaptive mesh

re�nement. The di�erentiations are done by �nite di�eren
es and are very expensive,

espe
ially for systems on �ne grids. In the 
oupled system, this di�erentiation information

is obtained dire
tly from the system; it is therefore mu
h 
heaper.

Furthermore, no error estimates for the optimization problem 
an be developed with

the bla
k box version be
ause the possible re�nement in the simulation 
ode 
an only be

based on the simulation information. And the adaptivity must only be done one time for

the developed method with 
oupled systems. For bla
k box, adaptivity must be done in

every simulation evaluation.





Appendix B

Equation system for optimization

governed by the Navier-Stokes

equations

In this appendix, the detailed equation system for optimization governed by the in
om-

pressible Navier-Stokes equations as appli
ation is derived. The presented terms are only

those terms whi
h result dire
tly from the in
ompressible Navier-Stokes equations. Terms

resulting from other parts of the optimization system like the 
ost fun
tional, 
ontrol terms

or other boundary 
onditions must be added in 
orresponden
e with the spe
ial optimiza-

tion problem.

The signs '+=' and '{=' mean adding or subtra
ting to the former value of the variable

on the left hand side as used in 
omputer s
ien
e. N denotes the test fun
tions.

The presented equations 
ontain stabilization. For this reason the resulting di�erentials

will lead to very large equation systems. The fa
tor � enables to 
hange the weighting of

the transport term in the Navier-Stokes equations. Setting � = 0 eliminates the transport

term. (In the 
ode 'of' � is TRAP.)

For the �rst order ne
essary 
onditions of the optimization problem, the following equa-

tions result (for the Newton residual): From the 
ontinuity equation the following terms

are obtained:

�

(0)

= ��

(2)

x

N

�

(1)

= ��

(2)

y

N

From stabilization results:

�

(0)

+ = ��(u�

(2)

x

+ u

x

�

(2)

+ w�

(2)

y

)�N

x

� �w

x

�

(2)

�N

y

�

(1)

+ = ��u

y

�

(2)

�N

x

� �(u�

(2)

x

+ w�

(2)

y

+ w

y

�

(2)

)�N

y

�

(2)

= ��

(2)

x

�N

x

� �

(2)

y

�N

y

131



132 APPENDIX B. EQUATIONS FOR OPTIMIZATION WITH NAVIER-STOKES

From the �rst momentum equation (u) the following terms are obtained:

�

(0)

+ = ��(u�

(0)

x

+ u

x

�

(0)

+ w�

(0)

y

)N � ��

(0)

x

N

x

� � � �

(0)

y

N

y

�

(1)

� = �u

y

�

(0)

N

�

(2)

+ = �

(0)

N

x

From stabilization results:

�

(0)

� = �(u�

(0)

x

+ u

x

�

(0)

+ w�

(0)

y

)�(uN

x

+ wN

y

)

�

(0)

� = (�(uu

x

�

(0)

+ wu

y

�

(0)

) + p

x

�

(0)

)�N

x

�

(1)

� = �u

y

�

(0)

�(uN

x

+ wN

y

)

�

(1)

� = (�(uu

x

�

(0)

+ wu

y

�

(0)

) + p

x

�

(0)

)�N

y

�

(2)

� = �

(0)

x

�(uN

x

+ wN

y

)

From the se
ond momentum equation (w) the following terms are obtained:
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The 
ontinuity equation is obtained by di�erentiation w.r.t. �

(2)

:

p = �(u

x

+ w

y

)N

From stabilization results:

p � = p

x

�N

x

+ p

y

�N

y

p � = �(uu

x

+ wu

y

)�N

x

+ �(uw

x

+ ww

y

)�N

y

The �rst momentum equation results from di�erentiation w.r.t. �

(0)

:

u = �(�uu

x

� wu

y

)N � �u

x

N

x

� �u

y

N

y

+ pN

x

From stabilization results:

u � = (�uu

x

+ �wu

y

+ p

x

)�(uN

x

+wN

y

)



133

The se
ond momentum equation is obtained by di�erentiation w.r.t. �

(1)

:
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For the Hessian matrix, the following terms 
an be stated. The fa
tor

^

� denotes the

weighting of the rea
tion term in the transport term of the Navier-Stokes equations. (In

the 
ode 'of'

^

� is TRAPREACT.)

�

(2)

L(~u;q;

~

�)

�(~u)�(~u)

: From 
ontinuity equation:

�

(0)

= �(Æu

x

�

(2)

+ Æu

x

�

(2)

)�N

x

) + �Æw

y

�

(2)

�N

x

+ �Æw

x

�

(2)

�N

y

�

(1)

= �Æu

y

�

(2)

�N

x

+ �Æu

x

�

(2)

�N

y

) + �(Æw

y

�

(2)

+ Æw

y

�

(2)

)�N

y

From momentum equation 1 (u):

�

(0)

+ = �(Æu

x

�

(0)

+ Æu

x

�

(0)

)N + �(Æu

x

�

(0)

+ Æu

x

�

(0)

)�(uN

x

+ wN

y

)

�

(0)

+ = �uÆu

x

�

(0)

�N

x

+ �

^

�u

x

Æu�

(0)

�N

x

+ �(wÆu

y

�

(0)

)�N

x

�

(0)

+ = �

^

�Æuu

x

�N

x

+ �uÆu

x

�

(0)

�N

x

+ �(wÆu

y

�

(0)

)�N

x

�

(0)

+ = �Æw

y

�

(0)

N + �Æw

y

�

(0)

�(uN

x

+wN

y

) + �u�

(0)

Æw

x

�N

y

�

(0)

+ = �

^

�u

x

�

(0)

Æw�N

y

+ �(wÆw

y

�

(0)

)�Æw

y

N

y

+ �

^

�Æwu

y

�

(0)

�N

x

�

(0)

+ = Æp

x

�

(0)

�N

x

�

(1)

+ = �Æu

y

�

(0)

N + �Æu

y

�

(0)

�(uN

x

+ wN

y

) + �

^

�u

y

�

(0)

�ÆuN

x

+ �uÆu

x

�

(0)

�N

y

�

(1)

+ = �

^

�Æuu

x

�

(0)

�N

y

+ �(wÆu

y

�

(0)

)�N

y

�

(1)

+ = �

^

�u

y

�

(0)

�ÆwN

y

+ �

^

�Æwu

y

�

(0)

�N

y

�

(1)

+ = Æp

x

�

(0)

�N

y

�

(2)

= �

(0)

�Æu

x

N

x

�

(2)

+ = �

(0)

�Æw

x

N

y



134 APPENDIX B. EQUATIONS FOR OPTIMIZATION WITH NAVIER-STOKES

From momentum equation 2 (w):
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Errata

The following errata are added for the ele
troni
 publi
ation. These are not 
ontained in

the version submitted to the Naturwissens
haftli
hen - Mathematis
hen Gesamtfakult�at

der Rupre
ht - Karls - Universit�at Heidelberg in April/May 2000.

Page 13, line 5: delete

"

, in Se
tion 1.1\

Page 19, line 7: repla
e

"

H

1

(�;
)\ by

"

H

1

(�;
)

0

\

Page 19, line 21: repla
e

"

derivation\ by

"

di�erentiation\

Page 26, line 33: repla
e

"

to Hessian\ by

"

the Hessian\

Page 30, line 6: repla
e

"

Se
tion 2.2\ by

"

Se
tion 2.5\

Page 31, line 35-36: repla
e

"

in the last pre
eding paragraph\ by

"

above\

Page 34, line 6: repla
e

"

��u\ by ��u+ u\

Page 35, line 1: delete \
ontinuous\ and

"

dis
rete\

Page 42, line 29: add after

"

; r

(q)

h

\:

"

are the residuals obtained from the given fun
tional


onsidered in (2.6) and (2.7), these \

Page 46, line 21: repla
e

"

In se
tion\ by

"

In this se
tion\

Page 47, line 19: repla
e

"

not \ by

"

to\

Page 49, line 37: repa
e

"

optimization\ by

"

error estimation\

Page 56, line 2: repla
e

"

the\ by

"

of\

Page 64, line 2: delete

"

normally\

Page 65, line 30: repla
e se
ond

"

x

k

\ by

"

~x

k

\

Page 66, line 3 and 6: repla
e

"

4x

k

r

2

L(x

k

)

�1

\ by

"

4x

T

k

r

2

L(x

k

)

�1

\

Page 90, line 18: repla
e

"

bigger\ by

"

more 
omplex\

Page 92, line 6: delete

"


an\

Page 93, line 31: repla
e

"

to\ by

"

two\

Page 98, line 11: delete

"

in\

Page 99, last line: repla
e

"

�\ by

"

 

"

Page 100, line 2: in se
ond term: repla
e

"

�\ by

"

 

"
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