Chapter 5

Optimization with Navier-Stokes
equations

In this chapter, the optimization problem will be governed by the incompressible Navier-
Stokes equations. General information about fluid mechanics and Navier-Stokes equations
can be found for example in Temam [59], Ward-Smith [64] and White [65].

In Section 5.8 flow with temperature will be considered. The Boussinesq model will be
used for the temperature.

In this chapter, Dirichlet boundary control (DBC) is applied. The developed methods
and a posteriori error estimates show again good results. The new dual-weighted error
estimator is more appropriate for grid design of optimization problems than the energy-
error estimator. For the same target functional values, the dual-weighted error estimator
needs less elements than the energy-error estimator. The refinement by the dual-weighted
error estimator shows the sensitivities in the optimization problem. Another result is that
the computations with the developed dual-weighted error estimator are more stable than
with the energy-error estimator for the applications in this chapter.

Due to a new technique for the formulation and computation of (DBC), the regular-
ization parameter o can be reduced considerably. This enables to get controls ¢ which are
not too strongly restricted by the given regularization profile. The resulting optimization
problem is then less dominated by the regularization.

The coupled systems resulting from the applications in this chapter led to numerical
problems. The solver developed in Section 6.1 enabled to solve the presented equation
systems as described therein. It provided the necessary robustness. The preconditioner in
section 6.2 led to a necessary acceleration of the solver.

Computations for both L? and H'-regularization were performed as proposed in Gunz-
burger and Hou [34] (see section 1.8). The numerical results showed no considerable dif-
ference between the two versions in the test cases.

The globalization methods developed in section 3.3 have been used for some of the
presented examples.
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5.1 Navier-Stokes equations for flow simulation

The following version of the incompressible Navier-Stokes equations posed on a domain
Q c IR? d =2, in Cartesian coordinates are considered: First the two equations resulting
from the momentum equation, leading to a conservation of momentum:

N Av + v-Vy +Vp = f. (5.1)
viscosity transport
N—— —
diffusion

The two velocity components are denoted by v = (u, w). The viscosity is denoted by v, the
pressure by p and f = (f1, fo) is the right hand side of the system. Let v bein V' C H'(Q)2.
And let p be in T' = Ly(2). The weak formulation is

F; = (v-Vu,9)a + Vo, V)a — (0, Vp)a — (fL)a +Si=0 W e vV,

with boundary conditions for 92 = I';,, Uy, UL, :
U|Fin = Vin, U|Fw =0, (pn — VO = 0)|Fout'

Iy, denotes a wall boundary condition. S; is a suitable stabilization defined below.
The continuity equation, leading to conservation of mass, takes the form:

V.o=0. (5.2)
The weak formulation is
F.=(Vu,x)a+S.=0 Vy € T. (5.3)

S, is a suitable stabilization defined below.

Since this formulation is not stable for the applied Q'/Q'-elements for the FEM dis-
cretization of v and p, the stabilization technique described in Becker [6] is used. The main
difficulties for a stable discretization are the convection dominated behavior of the flow
(small v) and the velocity-pressure coupling. A standard finite element technique for the
first difficulty is the streamline diffusion method, see also Johnson [42]. Both difficulties can
be treated simultaneously through a so-called Galerkin-least-squares approach described in
Becker [6, Chapters 5 and 6]. This techniques lead to the following stabilization: For the
momentum equation we obtain

Si=(w-Vu+Vp,7v-Vi)q.
And the continuity equation is stabilized by
Se = (v-Vv+Vp, 7 Vx)a.

The weighting parameter 7 = 7k is calculated on each cell K of the finite element
discretization. By [6] and [29], 7k can be chosen approximately as thax(W —1,0)
leading to a stable FEM discretization. In this case, § = u can be a fixed velocity field, for
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example the one from a previous step of a fix point iteration. And hx is the diameter of
the cell K.
If hxg — 0, then 7% — 0. The LBB condition of the stabilized system

{er V-vdz N ch(r,r)
7l 22 IVl 722

inf sup }Z’)’hZ’)’>0

T'ET}L vth
with weighted Laplacian ¢(p,r) = 7(Vp, Vr) leads to a stable calculability of the pressure
for the Stokes equation.

5.2 Stokes and Navier-Stokes - Poiseuille flow

As first test case for the equations derived in section 5.1, simulation calculations for
Poiseuille flow are done on the domain presented in Figure Fig 1.1 in chapter 1 (see White
[65, section 3-3.1, p. 116-118] and Ward-Smith [64, section C1, p. 135-137]). For Poiseuille
flow, the transport term v- Vv disappears because the flow is parallel to the axis. Therefore,
there is no difference between Stokes and Navier-Stokes equations.

For test purposes, the numerical results obtained with the code ’of’ show that the
implemented system leads to the expected solutions. In the following table, the values
of the residuals R(.) are given for certain numbers N of cells. The results are from the
computation with the Stokes equations.

N R(u) R(w) R(p)
256 || 2.6 1072 | 3.7« 107" | 6.5% 10" !
1024 || 5.4 %10~ | 5.7 107"3 | 6.6 x 103
4096 || 1.2%x107" [ 1.6 x 10~ | 1.4x 10"

16384 || 1.5%x10° 1 [ 1.4x107 1 [ 5.3x 1017

5.3 Bifurcation for pure simulation

For the case of computation on the domain on page 90, the following problem could be
stated for the pure simulation: For a Reynolds number smaller than 70, a convergence to a
stationary solution can be stated. At Reynolds number 80, the solution is non-stationary.
But for Reynolds number 90 and 100, again the former stationary solution is observed.

It is well-known that for small data there is a stationary solution of the mathematical
model Navier-Stokes equations. A detailed survey can be found in Heywood, Rannacher
and Turek [37]. But from Reynolds number 70, an additional non-stationary solution exists.
This is the solution which can be stated for some Reynolds numbers between 70 and 80.
Here bifurcations can happen, i.e. both solutions can occur as solutions of the Navier-Stokes
equations. For Reynolds number 90 and 100, the stationary ’base’ solution was obtained
which is physically unstable.

5.4 Lagrangian function and its differentials

In this section, the equation system for optimization with the incompressible Navier-Stokes
equations as application is derived. The presented terms are only those terms which re-
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sult directly from the incompressible Navier-Stokes equations. Terms resulting from other
parts of the optimization system like the cost functional, control terms or other boundary
conditions must be added in correspondence with the special optimization problem.

The Lagrangian function for Cartesian coordinates can be stated as usual:

L(’U,p, q, >‘7 >\2) = J(’U,p, Q) + (>‘27F0(v7p7 q)) + (>‘7 E(Capa q)) (54)

The derived equations do not contain stabilization. A detailed version of this equation
system with stabilization is given in appendix B.

The first order necessary conditions of the constraint optimization problem are for the
weak formulation of the Navier-Stokes equations omitting possible boundary integrals from
the optimization problem:

O o (AVo-v VAa - VAV (VAe)a =0 Yy VX (55)
oL
W = —(A V) =0 Vi (5.6)

The differentials g—’i and g—/@ lead to the state equations F; = 0 and F,. = 0, respectively.
The possible boundary integrals from the optimization problem depend on the special prob-
lem and will therefore be considered separately for each presented optimization problem.
The second-order differentials are obtained as in Section 4.2 by second-order differentiation
in the direction of the increments (see remarks on equation (1.10)). The detailed Hessian
operator is given in appendix B. The differentials of L with stabilization are much bigger
due to the nonlinearities and products in the stabilization S; and S..

5.5 A drag coefficient optimization problem

The following basic grid will be used for the presented drag optimization problem of this
section:

outflow T',,

wall wall Ty,

substrate I's 1r
‘wal w

wall

wall T,

fix inflow T'p

control boundary '



5.5. A DRAG COEFFICIENT OPTIMIZATION PROBLEM 91

The drag coefficient cp is calculated in the following way:

2Fp
pU2L

cCp =

with fluid density p, mean velocity U, ’length’ L of substrate I's and the drag force Fp as
follows:

0
Fp = /S(pu%vtny — Png)dS

with normal vector n on S with z-component n, and y-component n,, tangential velocity
v; on S and tangent vector t = (n,, —n;). There are two possibilities for the below given
domain: The boundary line which is the border of S is perpendicular to the flow direction.
Then,

v =u = —v = Oyu.
t on t Y
Otherwise, boundary line which is the border of S is in the flow direction. Then,

v =w = —u; = OpW.
on

For the calculated problem, the following values were used: The kinematic viscosity
v=10"3 mTZ and the fluid density p =1 %.

A first test case is to take simply J(u,q) = c¢p as cost functional. This lead to an ill-
posed problem because cp is not lower bounded. Therefore, condition (H1) in Gunzburger
and Hou [34], section 2.2. on page 1003, is not fulfilled. The numerical results showed this
problem. The control function diverged with minimal value — —oo, as expected.

The optimization problem with

J(u,q) = c}

as cost functional leads to better results. By [34], section 2.2. on page 1003, this op-
timization problem is well-posed because the conditions (H1)-(H9) are fulfilled. For this
cost functional .J, the theoretical minimum is c% = (. This value is taken as reference
value J.r in the computations and results of this section. It results from Jy.p = 0 that
By = J(un, qn) — Jyef = J(un, qn).

OPTDRAG: The calculations were done on the following domain or basic grid: There
is one fixed inflow I'r (bottom, at left). Next to it is the control boundary I'g (bottom,
at right). The drag is evaluated on the boundary of the substrate I'g in the middle. The
outflow T', is at the top.

The following boundary conditions are considered: On the fixed inflow 'z there is
u =0, w(z,y) = —4(z — 3)? + 1 (parabolic profile). On the control boundary I'g there is
u =0, w=q (DBC). On the wall T, there is u = w = A\, = A\, = 0. At the outflow T,
there is the free outflow condition for u,w proposed in Becker [6] which is also transformed
to Ay, Ayw. The substrate I's takes the same boundary conditions as the wall I,,.
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Remark 5.5.1. For a Reynolds number greater than 46 on the domain on page 90, the
above equation system for Navier-Stokes leads to oscillations in the solution with the devel-
oped solution method. In order to get a more stable solution for the Navier-Stokes equations,
the following technique is applied: One reason for problems in computation of solutions for
Navier-Stokes equations results from Newton linearization of the transport term v-Vuv. This
term can is split in two terms, the convection term and the reaction term. The reaction
term vVu, where @ means that u is fized for this iteration (or the value from the previous
iteration), is the main source for problems. This term can cause problems e.g. for vortices.
It is neglected in the equation system.

5.6 Dual-weighted a posteriori error estimates

The a priori error estimates for optimization problems governed by incompressible Navier-
Stokes equations can be found in Gunzburger and Hou [34, theorem 4.10].

For the case of pure simulation, a posteriori error estimates for incompressible Navier-
Stokes equations are given in Becker [6, theorem 4.2].

The following version of the dual-weighted a posteriori error estimate for optimization
problems is a general version for the domain integrals (T' € T}). The integrals on 9 and on
I'g depend on the special optimization problem (and will be evident from the formulation
of each optimization problem). Later on, the cost functional will be evaluated on a part of
the domain. This will change slightly the error estimator.

Proposition 5.6.1. For optimization problems governed by incompressible Navier-Stokes
equations, there holds the following dual-weighted a posteriori error estimate for (DBC) (on
the boundary T'q) and cost functional min J = 02D with drag coefficient cp on the boundary
I's as in OPTDRAG:

(2) (2) w w
Ty q) = Tunyan)] < 3 bRl i) o) 1 ST R2pl) )

rcon I'clg
+ Z thF ‘*’1“ (5.7)
rcon
(w) (AO w) (A A2
+ Z hi{por aK )+p¢(9K)wz(3K )+P§3pl)(wz(al( )}
KET;L
(0) AL A(2)
+ > Wh{pbi Wi+ o Wi+ ek Wi},
KET;L

with the cell residuals and weights

(2) - (2) _
o Z 5390 |, TCTs, o) = lp = X,
o) = hillwy, — qallr, T C T, o = b I =,
—3/2 1 —1/2
ot = 10,0 = eanlr. o = b llg = X I

ot =1 nll wff) =B I = (P,
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_ ©) _
Py = thi P ln- [Vun)llax\o0, wie ' = hi 1IN0 — 18 e o0,
» - (1) , w
e = L - [Vwn]llar o0 wie = IO — 7l 0y
_ @) _
P,(apz)g = %hz(3/2||”' [Ph]”aK\am w((aAK )= h;(l/QH)\(Q) - W;(lp)HaK\aQa
A© — u — i
oo ) = 3 s VA loc\on whi = hi*llu = 95 lox o0,
M _ _
Pf_’«)} )= %hz(?’p“”' [VAS)]HaK\aQ, wé“;? = hig P |lw — ¢§lw)||aK\aQ,
) _ N
i) = hi - D2 omon, W) = W o — P llox o0

(Q/J}(lu),w,sw),d;,sp)), (W}(lu),ﬁf(lw),wlsp)),( Elu),xgw),xgp),gsp)) are arbitrary test functions in the
discrete spaces. The cell residuals obtained from the first order necessary conditions are
omitted because the jump terms will dominate the residual terms ([13]).

Proof. See theorem 2.5.1, and proposition 2.5.2. O

The energy error estimator is built as in Section 2.7. In this application we have several
state equations.

np(un) ==cr Y Wk (b + o5 + o) +er S B + ot + o), (5.8)
keT), rcon

with the cell residuals p('}( and p(') .

5.7 Numerical results for the drag coefficient optimization
problem

There are 2 possibilities to achieve the value 02D = 0 in optimization problem OPTDRAG:
One is that all inflow on ' is sucked off by an outflow on the control boundary I' (negative
inflow). The result is that there is no flow near I's and c% = 0. This solution is obtained
by the optimization problem governed by the Stokes equation in Figure 5.2. The other
possibility for c% = 0 is that the drag on I'g is 0 by mutual elimination of the non-zero
parts. This enables to have flow near I'g. It forces a change of direction in the flow. This
solution is obtained by the optimization problem governed by the Navier-Stokes equation in
Figure 5.8. The difference in the solutions results from the additional nonlinear transport
term in the Navier-Stokes equations.
The cost functional

J(e) = E, = c%

contains the square of the drag coefficient c¢p. This means that in the presented results, the
drag coefficient values in the optimization problems can be retrieved by taking the square
root of J.

Remark 5.7.1. The value of the efficiency index has with this setting at least to weak-
nesses: Some residual terms in the error estimator are neglected. And the reqularization is
not added to the cost functional. The latter has the advantage that J gives the value of cp.
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The numerical results are obtained either with the pure Newton method or with the
modified Newton method.

Ezample 1: First, this optimization problem is governed by the Stokes equations. The
starting values for (u,w,p), (Ay, Aw, Ap) and ¢ are (0.2,—0.3,2), (0,0,0.1) and —0.3, respec-
tively. The calculations were done with the dual-weighted and the energy-error estimator.
The regularization parameter « is 0.01. Divergence was detected with o lower than 1078,
Without the (DBC)-technique of section 6.6 o has to be taken greater than 80 in order to
obtain convergence. The interpolation constant is C7 = 0.1. The following table shows the
value of the error functional Ej and the efficiency index I.;; for certain discrete solutions
with N cells of the results obtained with the dual-weighted error estimator:

N 964 2020
Ep, [[1.2%107° | 1.59 %1076
Lsr 1.26 0.41

For these discrete solutions, the parts of the dual-weighted error estimator have the follow-
ing values in the notation of proposition 5.6.1:

N 964 2020
S prwpr,L CTg |[ 8.1%10°¢ [ 1.3%10°6
pror,L CTg || 9%107° | 6%1078
3 parwar 1.4%1076 | 3.8 %107

In the error estimator given in proposition 5.6.1, many terms from the domain integral
are neglected. This leads to the observed values of the efficiency index I.7r. Nevertheless,
the generated grids are quite efficient as shown in the comparison with the energy-error
estimator. In Figure 5.1, a faster convergence to the solution of the underlying continuous
problem can be stated. This is due to the more adequate refinement for the optimization
problem by the dual-weighted error estimator as presented in the following grids. They
show that the energy-error estimator focuses mainly on the fix inflow where the gradient
has great values. The obtained grids by dual-weighted (left) [¢2, = 1.588%107%] and energy
(right) [c%, = 0.000145284] error estimator both on 2000 elements for o = 0.01 are
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The drag value 1.59x10~6 for the dual-weighted error estimate shows that the theoretical
minimum ¢%, = 0 can almost be achieved with the dual-weighted error estimator. In this
linear case for the simulation, the control tries to eliminate the flow next to the observation
which is the evaluation of the drag. This is one possibility to force the drag to be close
to 0. An other possibility is achieved with the Navier-Stokes equations in the following

examples.

Remark 5.7.2. Small changes in the control q can lead to remarkable gains in the cost
functional J. So for some applications, the difference in the controls may not to wvisible
because it is very small. On coarser grids the difference of the obtained controls are often
more visible because the dual-weighted error estimator leads faster to the optimal control
than the energy-error estimator. Furthermore not only the control is important but also to
obtain a grid which enables to get a certain accuracy of J with the least number of cells.

In the following Figure, we observe remarkable differences in the controls due to the
fact that the mesh refinement by the energy-error estimator is near the fix inflow boundary
'z and not near the control boundary I'g. Therefore, the energy-error estimator does not
lead to the optimal control obtained by the dual-weighted error estimator. This is a reason
for the worse values for c% on the grids designed by the energy-error estimator (see Figure
5.1).

Figure: Drag optimization problem governed by Stokes equations: Obtained controls
by dual-weighted (above) and energy (below) error estimator on N=200, 2000, and 2300
elements, with minimal values = -0.3, -1.17, -0.3, respectively, for « = 0.01 (note the
different scaling of the first and third control).



96 CHAPTER 5. OPTIMIZATION WITH NAVIER-STOKES EQUATIONS

Ezample 2: The next step is the optimization problem governed by the Nawier-Stokes
equations. The data is the same as for the calculations with the Stokes equations. Numer-
ical results for v~! = 15,20, 70 will be presented. The presented results for Ej, in Figures
5.3, 5.4, 5.5, 5.6 and 5.7 show that the dual-weighted error estimator is much more appro-
priate for grid design of optimization problems. The energy-error estimator does not really
consider the optimization problem and therefore the resulting refinement is inefficient. For
example, in Figure 5.5 the cost function value 0.000167 can be obtained with the dual-
weighted error estimator on 7000 elements whereas the energy-error estimator needs 66000
elements.

The following tables show the value of the error functional Ej;, and the efficiency index
I, s for certain discrete solutions with IV cells of the results obtained with the dual-weighted
error estimator. For v~ = 20, a = 0.01 we get:

N 832 9076 92812
E;, || 0.00043345 | 8.305 % 107° | 1.647 « 10~°
Ioss 1.2 0.99 0.8

For v~! =70, a = 0.007 we obtain:

N 2044 9652 48376
Ej, || 0.000353775 | 6.592 % 107> | 1.132 % 10~°

In the latter table, the values of I.;; are omitted because the showed bad values. Here,
remark 5.7.1 may be applicable. In the case v~! = 70, the effect of the neglected residual
terms are clearly observed by the resulting numerical values. Due to the greater Reynolds
number, the flow may have a stronger influence on the whole equation system. For v~! = 20,
the values of the dual-weighted error estimator are close to the error.

The notation of the terms in the following two tables is as in proposition 5.6.1. For
these discrete solutions, the parts of the dual-weighted error estimator have the following
values for =1 =20, a = 0.01:

N 832 9076 92812
> prwr,I CTg || 1.921 %1076 | 1.736  10~° 1.1%107°
S prwr, I CTg || 1421077 | 1.27%1078 2.9 % 107°
> parwar 0.00034254 | 8.3381 x 105 | 2.0525 % 10~°

And for v~ =70, a = 0.007 we get:

N 2044 9652 48376
S prwr, T CTg || 7.086 % 107 | 3.552 % 10~" 7.3% 109
> prwr,I CTq || 4.064 10 % | 2.53523 % 10 7 | 5.213 108
3" porwar 0.00386682 0.00574349 0.00250141

For v~ = 70, the error estimator is dominated by pgrwsr. The values are greater as for
the case v~! = 20. This leads to the bad values for I, 7f in combination with the neglected
residual terms.

The behavior of the dual-weighted error estimator and the energy-error estimator for the
different versions of the drag optimization problem governed by Navier-Stokes equations can
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be seen in the resulting grids. The obtained grids by dual-weighted (left) [c%, = 8.305%107°,
10000 elements] and energy (right) [cZ, = 0.00034999, 20000 elements] error estimator for
v~ =20 and a = 0.01 are

oo
Il
i

Whereas the obtained grids by dual-weighted (left) [c% = 6.488 % 1075, 14000 elements]

and energy (right) [¢Z, = 0.00031092, 10000 elements] error estimator for v=! = 15 and

a = 0.007 are

: /

The obtained grids by dual-weighted (left) [¢2, = 8.051%107°, 6000 elements] and energy
(right) [¢% = 0.00036091, 11000 elements] error estimator for v~ = 70 and o = 0.007 are
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EEEE
e

Sequences showing the grid design for several discretization levels for the dual-weighted
and the energy-error estimator can be found in figures 5.11 and 5.12, respectively.

For fine grids, the differences in the controls are very small for this application (see
Remark 5.7.2). The control can be obtained from the Figures for the velocity by the
Dirichlet boundary condition v = q on I'g.

The mesh refinement in the middle part of the grid by the dual-weighted error estimator
in the presented grids for »~! = 15, 20 and 70 can be explained by the necessity of change
of the flow direction in order to obtain c% = 0. This leads to a sensitivity to the evaluation
of the cost functional.

The energy-error estimator leads to a refinement in mainly by the corner singularities
(grids for v~! = 15) or by the flow (grids for v=! = 70).

For greater Reynolds numbers, the impact of the flow on the optimization problems is
getting stronger. This can also be seen in the resulting grids for v~ = 70.

The grids clearly show that the regularization has an impact on the grid design. Larger
values for « lead to a too strong dominance of the regularization which can be seen also
in the mesh refinement. This can be seen by comparison of grids for v~ = 20 and grids
for v=! = 15 for which different values of o were used. The choice of an appropriate «
is crucial for a good solution of the optimization problem. If « is too big, the obtained
solution is dominated by the regularization. The resulting solution is in this case not the
solution sought in the original optimization problem. The extreme case would be that there
will be a control ¢ = 0 for very big values of a. But if « is too small, the well-definedness
of the optimization problem may be lost and no good convergence of the solution method
would result. For comparison, the following two grids are the same configuration as for the
last grid for the dual-weighted error estimator. Again, v~ ! = 70 in the drag optimization
problem. But the regularization factor a is 0.0085 (left, ¢4 = 8.8 - 10°) and 0.01 (right,
2, = 10=%) both with 6000 cells as above:
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Clearly, the effect of the increasing regularization factors « not only on the region next to
the control boundary can be seen.

The velocities for flow with fixed control ¢ = 0 is given in Figure 5.9 for the case of
v~! =70 and o = 0.007. This solution corresponds to the solutions in Figure 5.8. It shows
the effect of the control on the flow. A comparison of the belonging numerical solutions of
the pressure is shown in Figure 5.10. Again, the impact of the control due to the sucking
off on the control boundary I'¢ is obvious.

The largest computation done with the Navier-Stokes equations in this application was
with 2 million variables for the solutions obtained with the dual-weighted error estima-
tor. With the energy-error estimator such large amounts of variables were not obtained
because the calculations were much slower. This results from inefficient refinement and a
numerically less stable behavior.

For all presented examples, the cells representing 30 percent of the error were refined
in each refinement step (starting with the largest error values).

5.8 Optimization governed by flow with temperature trans-
port for zero gravitation

The next application of the developed techniques is optimization governed by Navier-Stokes
equations with temperature. For the temperature, the Boussinesq viscosity model in White
[65, p. 482] and Griebel, Dornseifer, and Neunhoeffer [32, p. 125] is used. The gravitation
is neglected. Hence the temperature is used as a tracer. The solution of the following
equation represents the temperature component:

e(VT,V¢)+ (v-VT,¢) =0. (5.9)
For the associated Lagrangian multiplier ); is determined by the equation

e(VAr, V) — (v - VAr, ¢) = 0. (5.10)
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For stability reasons, only the terms
(v-VOT, ), (v - VAT, ¢) (5.11)

are taken in the second order derivation. This technique is similarly already described in
remark 5.5.1.
The stabilization is facilitated by the term

mr(v-VT,v- V). (5.12)

The factor 74 can be chosen in at least two ways. The first possibility only includes infor-
mation of the velocity:

1 h
o= ——— (5.13)

2 v|ze
The second possibility takes more information and is close to the 7 of the Navier-Stokes
equations:

1
= — (5.14)

70+ % + 2

The presented results are achieved with the second version of 7.

All numerical results are obtained with the pure Newton method.

OPTTEMP: For this application, the optimization problem is as follows: The temper-
ature 7' in the region I'; next to the substrate I's should be maximized. The calculations
were done on the following domain or basic grid:

outflow T',,

wall Ty,
wall I, wall T,
substrate I'g
wall T,
ry
wall T,
fix inflow T

control Tg

There is one fixed inflow T'r (bottom, at left). Next to it is the control boundary T'g
(bottom, at right). The ’outflow’ ', is at the top.
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The following boundary conditions are considered: On the fixed inflow I'r there is
u =0, w(z,y) = —4(z — 3)? + 1 (parabolic profile). On the control boundary I'¢ there
isu =0, w=q (DBC). On the wall Ty, there is u = w = Ay = Ay = 0. At the
outflow I', there is the free outflow condition for u,w proposed in Becker [6] which is also
transformed to A, Ay. The substrate I'g takes the same boundary conditions as the wall
I'y,. The boundary conditions for the solution of the Boussinesq equation temperature
T are Dirichlet boundary conditions on all boundaries. These Dirichlet values for T are
the same on all boundaries with exception of the boundary I'r. On boundary I'r there
is a greater value than on the other boundaries. Therefore, there are Dirichlet boundary
conditions with value 0 for A7 on all boundaries.

This optimization problem is close to the optimization problem of the application men-
tioned in the introduction.

The dual-weighted error estimates are as follows for OPTTEMP: For optimization
problems governed by incompressible Navier-Stokes equations and Boussinesq temperature
equation, there holds the following dual-weighted a posteriori error estimate for (DBC) (on
the boundary I'q) and cost functional max J = fFJ Tdx as in OPTTEMP: In the notation
of proposition 5.6.1,

|J(u7q) - uhaqh | < Z h’FIOF )+ Z h%‘p%q) wl("q)
Trcon FCFQ
+ 3 il + 3 hipl” Wl (5.15)
rcoq rcry
)\(0) A A(2) T A3
+ > hiclobruwh )+ obR W ¥ ekl )+ phR Wbk )
KETh
A(0) A A(2) A3) T
b R ol el 4 0 o) AR
KETh

with the additional cell residuals and weights

oD = alle, Tl o™ = i 2N — 2 D)p, (5.16)
ot = 50 I Millorcrons wlic” = "IN = 77 axcr00, (5.17)
o = 3P D larvans @bl = i I = 0D llarcyon: (5.18)

In addition to proposition 5.6.1, zp}(lT) W}(ZT) are appropriate test functions.

For the presented optimization problem, obtained discrete numerical solutions are
shown in Figure 5.13. The control of the velocity on I'g leads to a sucking off. So the
original outflow gets to an inflow. The reason is that with this flow the temperature in
the region I'j can be maximized as formulated by the optimization problem. Due to the
change of the direction of the velocity, the temperature is not sucked off by the flow but
is concentrated in the region I'j. There is then more higher temperature staying in the
region ['j. The strange shape of the pressure p is due to the sucking off by the computed
control on I'g. The temperature 7' is as expected for this flow. The associated Lagrangian
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multiplier A\ shows the searched duality to T and fits very well in the developed concept
of error estimation.

On fine grids, the difference in the controls on the grids obtained by the dual-weighted
error estimator and the energy-error estimator are not visible for this application (see re-
mark 5.7.2). In the following Figure, a difference can be stated because the grids are still
coarse. The belonging values of J are in Figures 5.17 and 5.18.

g

Figure: Temperature optimization problem governed by Boussinesq flow: Obtained con-
trols by dual-weighted (left) and energy (right) error estimator on N=1300 and 1500 cells,
with minimal values = -0.098 and -0.087, respectively, for & = 0.01 and s = 0.5.

In the following, a comparison of the grids obtained by the dual-weighted and the
energy-error estimator is given. All computations are done with & = 0.01 and pure Newton
method. The grids depend on the value s of the error which should be reduced in each
refinement (applying the fixed fraction strategy, see section 2.8). x = 1 means uniform
refinement. First, the obtained grids by dual-weighted (left) [J = 306.75, 1580 elements]
and energy (right) [J = 70.19, 1340 elements] error estimator for « = 0.01 and k = 0.3 with
pure Newton method are presented. The energy error estimator is rather unstable because
refinement occurs only near the inflow at corner singularities and steep gradients due to the
‘inflow’. For the energy-error estimator divergence starts on 1700 cells. The dual-weighted
error estimator behaves much more stable. Convergence up to 6700 cells was stated.

With x = 0.5, the computations are also not very stable. The obtained grids by dual-
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weighted (left) [J = 256.74, 1300 elements| and energy (right) [J = 70.31, 1500 elements]

error estimator are

With & = 0.8,

ments| and energy (right) [J = 282.38, 3800 elements| error estimator are

the energy-error estimator behaves more stable. Computations up to
3800 cells are possible with the energy-error estimator. The dual-weighted error estimator
reached 190000 cells. The obtained grids by dual-weighted (left) [J = 1559.91, 5000 ele-
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For k = 0.9, even computations on 8300 cells can be done in a stable way with the
energy-error estimator. For the the grids designed by the dual-weighted error estimator,
204000 cells were reached without any divergence. Afterwards, the computations were too
big for the used work stations. The obtained grids by dual-weighted (left) [J = 2600, 7700
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elements| and energy (right) [J = 1007.83, 8300 elements] error estimator are

For k = 0.95, stable computations on 15800 cells are possible with the energy-error esti-
mator. For the the grids designed by the dual-weighted error estimator, the computations
showed no divergence. The computations were too big for the used work stations. The
obtained grids by dual-weighted (left) [J = 4016.97, 10000 elements| and energy (right)
[J = 893.76, 6500 elements] error estimator are

The computations with grids designed by the energy-error estimator were all much
more unstable than those designed by the dual-weighted error estimator. In all cases,
computations with much more cells were possible with the dual-weighted error estimator.
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The energy-error estimator tends to refinement at corner singularities and steep gradi-
ents due to the 'inflow’ on I'r and I'g. Whereas the dual-weighted error estimator considers
the optimization problem in its refinement. The designed grids show the sensitivities of
the optimization problem. Therefore, the computed values for the cost functional to be
maximized are higher with the obtained discrete solution compared to the cost functional
values of the energy-error estimator grids with the same number of cells.

The value in the first iteration of the cost functional J was 17.46 on 224 cells (in all
cases on a uniform refined basic grid). The obtained maximal value for J was 74776.57
(by the dual-weighted error estimator with x = 0.9 on 204572 cells leading to 1.7 million
variables).

In this optimization problem, the temperature in the region I'; has to be maximized.
The main criterion for the evaluation of the error estimation and the thereby designed
grids is therefore the (maximization of the) value of the cost functional J. In this spirit,
the calculus of orientation at the value for Ej has to be replaced by the maximization of
the value of J. For k = 0.95, the values of the cost functional J in the limit of the Newton
iteration on each discrete level for the dual-weighted and energy-error estimator are shown
in Figure 5.14. All lines are plotted up to divergence of the computation or the line ends
at the box of the graphics. The values of J are clearly greater for the grids designed by
the dual-weighted error estimator. Compared to the uniform mesh refinement, the dual-
weighted error estimator enables to reduce the number of cells by a factor of 6 in order to
obtain the same value of the cost functional J. This behavior is also stated by the results
obtained with x = 0.9 and 0.8 in Figures 5.15 and 5.16, respectively.

Figure 5.17 shows a comparison of the values obtained with the energy-error estimator.
The strong dependence of divergence and k is especially significant compared with the
dual-weighted error estimator in Figure 5.18. Again, all lines are plotted up to divergence
of the computation or the line ends at the box of the graphics (besides mesh refinement
which got too big i.e. for ’dual_weighted0.95’). For all considered &, the computations with
the dual-weighted error estimator were far more stable than those with the energy-error
estimator. The energy error estimator places many vertices at the wrong regions of the
domain. Furthermore these vertices are concentrated in a few regions by the energy-error
estimator. This makes the computations more unstable as for the dual-weighted error
estimator.

The different error values in the successful dual-weighted error estimator can be seen
in the following tables. For x = 0.95, these values are in the notation of proposition 5.6.1:

N 1448 32684 111572
prwr,I C T || 8.87062 % 107¢ | 2.79328 107 | 5.59577 * 10~°
DOKWIK 0.404636 0.0123389 0.00388003

For k = 0.9, these values are in the notation of proposition 5.6.1:

N 1304 22940 69944
prwr,I C Tg || 9.72007 x 1076 | 3.27651  10~7 | 1.12613 107
DOKWIK 0.444177 0.0160497 0.00551704

For k = 0.8, these values are in the notation of proposition 5.6.1:
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N 1208 11960 80492
prwr,I C T || 8.31925 % 107¢ | 6.53136 * 10~7 | 1.62319  10~"
POKWAHK 0.492626 0.0270697 0.00431046

The results show a reduction of the values from step to step. The terms on the whole
domain are clearly dominant. This is also due to the fact that the domain €2 in this case is
larger than in the previous examples. And for the mesh refinement, the value on each cell
is important. The grids and the thereby obtained values for J show that the dual-weighted
error estimator leads to a very good method for the placing of the vertices. Keep in mind
that in this application J is not calculated by a boundary integral as in the previous cases.
So the dominance of the domain integral has also a positive effect on the evaluation of J.
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Figure 5.1: Drag optimization problem governed by Stokes equations: Comparison of efficiency
of meshes generated by the energy-error estimator ng(uy) (solid line) and the dual-weighted error
estimator 1, (up, An, gn) (dashed line) in log / log scale.
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Figure 5.2: Drag optimization problem governed by Stokes equations: Obtained solutions for
velocities w and u on 13000 cells.
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Figure 5.3: Drag optimization problem governed by Navier-Stokes equations with v—1 = 15:

Comparison of efficiency of meshes generated by the energy-error estimator ng(up) (solid line) and
the dual-weighted error estimator 1y, (up, An, qn) (dashed line) in log /log scale (o = 0.01).
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Figure 5.4: Drag optimization problem governed by Navier-Stokes equations with v—1 = 20:
Comparison of efficiency of meshes generated by the energy-error estimator ng(up) (solid line) and
the dual-weighted error estimator 1y, (up, A, qn) (dashed line) in log /log scale (e = 0.01).



5.8. OPTIMIZATION GOVERNED BY THE BOUSSINESQ MODEL 109

0.001 " "
energy” ——
"dual_weighted" -
_Cl
' 0.0001 | |
1e-05 L ‘
1000 10000

Number of elements N

Figure 5.5: Drag optimization problem governed by Navier-Stokes equations with v—! = 20:
Comparison of efficiency of meshes generated by the energy-error estimator ng(up) (solid line) and
the dual-weighted error estimator 7, (un, An,qn) (dashed line) in log /log scale (a = 0.01).
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Figure 5.6: Drag optimization problem governed by Navier-Stokes equations with v—! = 15:

Comparison of efficiency of meshes generated by the energy-error estimator ng(up) (solid line) and
the dual-weighted error estimator 7y, (up, An,qr) (dashed line) in log /log scale (o = 0.007).



110 CHAPTER 5. OPTIMIZATION WITH NAVIER-STOKES EQUATIONS
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Figure 5.7: Drag optimization problem governed by Navier-Stokes equations with v—1 = 70:
Comparison of efficiency of meshes generated by the energy-error estimator ng(up) (solid line),
the dual-weighted error estimator 7y, (un, An, qn) (dashed line) and uniform refinement (crosses) in
log / log scale (a = 0.007).
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Figure 5.8: Drag optimization problem governed by Navier-Stokes equations: Numerical solutions

for velocities u,w and corresponding Lagrangian multipliers A, \,, (v~ = 70, a = 0.007).
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Figure 5.9: Drag optimization problem governed by Navier-Stokes equations: Numerical solutions
for velocities u,w for fixed control (¢ = 0) (v~! =70, = 0.007).
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Figure 5.10: Drag optimization problem governed by Navier-Stokes equations: Comparison of
pressure p for controlled flow and fixed control (¢ = 0) (v~! = 70, a = 0.007).
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Figure 5.11: Drag optimization problem governed by Navier-Stokes equations: Sequence of ob-
tained grids by dual-weighted error estimator for N = 200, 1000, 1500, 2000, 3200, 6600 cells for

v~1 =70 and a = 0.007.
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Figure 5.12: Drag optimization problem governed by Navier-Stokes equations: Sequence of ob-

tained grids by energy-error estimator for N = 200, 1000, 1300, 1800, 3200, 7000 cells for v~ = 70
and a = 0.007.
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Figure 5.13: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-
tions: Obtained solutions for velocities, pressure p (above), temperature T and associated Ay (below)
with dual-weighted error estimator for v~! = 15 and a = 0.01, pure Newton method.



5.8. OPTIMIZATION GOVERNED BY THE BOUSSINESQ MODEL 117

100000 ¢ henmgyOBS"—4447 i
"dual_weighted0.95" -
"uniform" - b
10000 |
N ,/,/
1000 ) |
100 |

10000 100000

Number of elements N

1000

Figure 5.14: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-
tions: Comparison of efficiency of meshes generated by the energy error estimator ng (uy) (solid line),
the dual-weighted error estimator 1y, (un, An, ¢n) (dashed line) and uniform refinement (crosses) for
k = 0.95 in log / log scale (a = 0.01).
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Figure 5.15: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-
tions: Comparison of efficiency of meshes generated by the energy error estimator ng (uy) (solid line),
the dual-weighted error estimator 1y, (un, An, qr) (dashed line) and uniform refinement (crosses) for
k = 0.9 in log / log scale (« = 0.01).
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Figure 5.16: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-
tions: Comparison of efficiency of meshes generated by the energy error estimator ng(up) (solid line),
the dual-weighted error estimator 1y (up, Ap, ¢r) (dashed line) and uniform refinement (crosses) for
k = 0.8 in log / log scale (o = 0.01).
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Figure 5.17: Temperature optimization problem governed by Navier-Stokes and Boussinesq equa-
tions: Comparison of efficiency of meshes generated by the energy error estimator ng(up) for £ =
0.3, 0.5, 0.8, 0.9, 0.95 and uniform mesh refinement (crosses) in log /log scale (o = 0.01).
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Figure 5.18: Temperature optimization problem governed by Navier-Stokes and Boussinesq
equations: Comparison of efficiency of meshes generated by the dual-weighted error estimator
Nw(Uh, An,qn) for £ = 0.3, 0.5, 0.8, 0.9, 0.95 and uniform mesh refinement (crosses) in log /log
scale (o = 0.01).



Chapter 6

Numerical solution methods

In this chapter, some of the applied numerical techniques for solving the presented equations
systems are described.

6.1 Solver

As described in section 1.1, the presented approach for solving an optimization problem
governed by partial differential equations with adaptive finite element discretization results
in algebraic systems. These equations are obtained by a Newton method approach (1.10)
for all presented examples. The problem is to find a solver which is appropriate for the
presented kind of problems. As described in section 6.2, this problem may involve several
saddle points. Also the special structure from the finite element approach and the local
mesh refinement has to be considered. There may be hanging nodes from the adaptive mesh
refinement. Some methods have been tested like ordinary conjugate gradient, conjugate
residual and several GMRES methods. The best results have been observed with GMRES.
In some cases it was hard to get convergence at all.

The applied solver is a preconditioned GMRES method. The robustness of the solver
is obtained from the GMRES while the acceleration of the convergence rate results from
multi-grid.

This solver is constructed for linear problems. Hence, there must be a linearization of the
derivation of the equation system. The linearization is done by the Newton-iteration on the
continuous level. So already the continuous equation system is linearized. Therefore, the
linearization problem is excluded from the derivation of the error estimator. Nevertheless,
the linearization error can still emerge in the solution process. It is an independent error
which may cause problems.

The presented globalization in Section 3.3 has several advantages. It enables a global-
ization of the Newton method. Furthermore, it provides a regularization as described in
Section 3.3.

One of our developed codes is 'rhoptcon’. In this code exists the possibility to enable
optimization without adaptivity if a certain exactness in the discrete system is obtained.
By this, the optimization part can be disconnected from the adaptivity part. But for the
codes 'bkr’ and ’of’ this is not necessary because the iteration is done to the limit of the

120
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Newton iteration on each discrete level.
The accuracy level in the GMRES part can also be chosen with respect to the dis-
cretization level, especially depending on the number of vertices.

6.2 Preconditioner

For the applied GMRES method, a good preconditioner is necessary to accelerate the so-
lution process. Multi-grid techniques have already been successfully applied with GMRES.
The developed preconditioning technique uses information of the optimization problem.
Calculation results show that this method is very successful. The convergence is getting
much faster by this method.

Suppose, the optimization matrix has the following form

Cc, Cy, PT
c; ¢, BT
P B 0

For the Ginzburg-Landau models in Chapter 4, we get the following coefficients (already
applied on the variables as in Section 4.2):

C, = ((5’11, z,b)ol)s + (SH(U,)Q,D(;’U,, A)Q

Cy = 0

C3 = 0

Cy = a(dg, x)r,

P = (Véu,Ve)q + (s'(u)du, p)q
B = —(dg,P)r,

The coefficients build the matrix of the scalar products of the base functions.

For controllability the term u — ug tends to zero. This means for the Hessian matrix,
that the coefficient for 227’;“ on the diagonal may lead to a numerical unstable preconditioner,
because preconditioners often use the inverse of a matrix.

The diagonal entry for ‘?;—é’ can also lead to numerically unstable preconditioners. With
regularization factor « = 0, we get the original optimization problem. Choosing @ > 0
changes this problem. For a = 0, the diagonal entry is zero for above derived problems. If
« is small, we can also get some numerical problems with preconditioners.

The diagonal entry for ’327’;4 is always zero, because A is only linear in our equation
system.

For these reasons, it seems better to choose an preconditioner which is based on the
coefficient P. Here we get a well defined inverse if the simulation is well posed.

For the above optimization matrix, we get a precondition matrix like

0 0 P!
0 0 0 ) (6.1)
PT 0 0
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Several tests confirm that if we take only the simulation and the dual solution for the
precondition matrices P, we do not get a very good convergence. There is a progress to the
simple choice of the whole optimization matrix because there are no zero-infinity entries
on the diagonal, at least after using some stabilization techniques.

A better preconditioner is obtained by taking the first order differentiation of the simu-
lation and the dual solution for the precondition matrices P. So we take the sensitivities of
the simulation and the dual solution. Especially for an optimization problem, this choice
can also be maintained for optimization focuses on these sensitivities. With this matrix,
we perform a multi-grid step u = P~'X and vice versa. This preconditioner leads to very
good convergence results even for Navier-Stokes equations as simulation.

It should be mentioned that this precondition technique is also very successful for pure
simulation by numerical results for Navier-Stokes equations.

For the Poisson equation as simulation, the following matrix P can be stated:

And for the Ginzburg-Landau equations in superconductivity as simulation, the matrix P
results in:

P o= ((Vx, Vi) + (s'(u) - x,%) ) -

If the simulation are the Navier-Stokes equations, this matrix P has more entries which
are also more complicated. This matrix can easily be derived from the given equations,
because P is just the first order directional differentiation of the simulation or the part of
the Hessian matrix of the Lagrange function which is indicated in (6.1).

For calculations with cylindrical polar coordinates, additional integrals motivated by
the additional integrals arising from these coordinates can lead to an acceleration of the
solution process. For example, the following integral is added:

/ vy rdrdz.
Q

The boundary conditions are derived in section 6.4.

6.3 Symmetric discrete Hessian matrix

In the proof of Proposition 3.3.1 for the descent direction of a Newton method, the positive
definiteness as well as the symmetry is used. This symmetry of the discretized Hessian
matrix is not trivial. Tt depends on the chosen test and ansatz spaces. The presented
approach in section 1.1 leads to an symmetric Hessian matrix of this type. The continuous
primal and dual problems must be chosen as in sections 1.1 - 1.4 (i.e. some analytical
subproblems are adjoint or transposed to each other) and the test and ansatz spaces must
fit together as presented. It is much easier if the unknowns u, g, A are calculated on the
same grid. For a calculation on different grids, Petrov-Galerkin methods may be necessary.
But in this case, an appropriate relation between the different grids has to be guaranteed.
Otherwise, one looses symmetry and in some cases one will get some problems with the
descent direction in the solution process of the optimization problem. The system matrix
must be symmetrical. This is guaranteed due to a correct choice of the boundary conditions
and the choice of the same bases in the test and ansatz spaces.
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6.4 Calculation of the boundary conditions of the increments

For some solution methods, the boundary conditions of the increments are necessary. One
example is the multi-grid which is applied in the preconditioner described in section 6.2.

For an optimal control problem, there are not only the increments of the simulation
variables but also the increments of the Lagrangian multiplier and the control. As already
mentioned in Section 1.4, there are relations between the boundary conditions of these
variables. These relations will be used to calculate the boundary conditions. The boundary
conditions follow automatically from the calculus developed in Section 1.4.

On the control boundary, the proper choice of the boundary condition of the increment
of the variable du would be du™ = ™ —u* where u™ is the value of u in iteration n and u* is
the value of u in the optimum. The problem is that «* is unknown, otherwise the optimal
control problem would have already been solved. Therefore, the boundary condition for
ou™ = ¢" — u™ in an iterative method is proposed where ¢™ is the value of the control ¢ in
iteration n. The motivation for this boundary conditions is: The boundary condition of u
for (DBC) on the control boundary is u = g. Hence, the difference (which is du) is u — q.
In case of convergence we get u = ¢ and therefore du = 0.

The boundary condition of the increment of the Lagrangian multiplier § A on the control
boundary is derived as follows: As above, the boundary condition is in general dA™ = A" —\*
where )\, is the value of A in iteration n and A* is the value of A in the optimum. From
the boundary condition A = 0, it can be concluded that A* = 0. Hence, A" = A™. This is
the difference between the actual value and the value in the optimum.

On the observation boundary, there are natural Neumann boundary condition for v and
A. This applies to du and d\.

Remark for the DEAL library: It should be noted for the code that due to re-
quirements of the DEAL library the Dirichlet and Neumann boundary conditions need not
only be indicated in the function ‘void CELL::set_boundary_line() const’ in the file
‘line.cc’, but also in the file ‘vertex.cc’. The functions ‘USERVertex: :set_boundary’
and ‘USERVertex: :reset_boundary’ the boundary conditions of the increments must be
set. This is caused by a special filter technique described in [58].

6.5 Calculation of Newton residuals and Newton increments

There are various ways to compute the values of the Newton residual and the Newton
increments. The chosen evaluation is the value obtained by inserting the computed values
of the discrete solution in the weak formulation of the Newton residual. These cell values
are weighted by the Jacobi determinants on each cell. This determinant is the determinant
of the transformation on the reference element. The weighting is therefore with geometric
data. All is based on the weak formulations of the equations on the cells obtained from the
adaptive finite element discretization.

The Newton increment is chosen in the same way.

In the whole optimization problem with adaptive finite element discretization, there
are several residuals, which have to be evaluated to get good numerical results. Examples
are the above Newton residuals or the residual from the solver GMRES. It is especially
important that these residuals are weighted in an appropriate way. Otherwise the scaling
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of quantities in the algorithm is not balanced. For some residuals it is important to weight
the values of the residual on each cell with the value of the Jacobi determinant of this
cell. The general term ’residual’ for several different terms appearing in such a complicated
combination of methods may lead easily to misinterpretations and misunderstandings.

6.6 Calculation of differentials on the boundary

In this section, the chosen way of computing the values of the differentials on the boundary
should be explained. This is especially important for (DBC), where this differential is a
crucial part of the equation system of the control. An example is equation (1.21) in chapter
1. But this is also true for (DBC) in optimization for the Navier-Stokes equations.

The differentiation on the boundary in the direction of the domain is not well defined
for variables defined only on the boundary like the control g. But for (DBC), the relation
u = ¢ can be used. So w can be seen as a prolongation of ¢. Therefore one can transform
certain properties of u to ¢, i.e. that u is well-defined.

The calculation of the value of the differential on the boundary in the direction of the
domain for the control ¢ uses the same idea. The value of the differential of v on the cell
for which the control boundary is a part of the cell boundary is taken as the value of the
differential of q. Important is that the weighting factor in the finite element calculation for
the vertices on the control boundary is 0.25 due to the transformation of the value from
the domain cell (calculated on a rectangular cell with 4 vertices).

This version of the calculation was the most stable. It enables an easy possibility to
connect the values on the domain with the values on the boundary. Furthermore it is very
cheap because this value already exists.

The presented method also connects the state equations with the (DBC) control ¢g. By
the translated differentiation information from u to g, also all conditions which are fulfilled
by the state variable u are translated to the control gq.

6.7 Implementation details

The code used in the test computations has been developed on the bases of the DEAL
library (see Becker, Kanschat, and Suttmeier [6], [8], [43], [58]). DEAL is an object-
orientated class library written in C+4 which provides tools for the numerical solution
of partial differential equations by adaptive finite element methods including multi-grid
techniques. The developed codes 'rhoptcon’, ’bkr’ and ’of” are shortly organized as follows:

e Coarse grid construction: The structure of the code allows various possibilities for
this basic coarse grid.

e Main loop of the program: Here, the adaptive mesh refinement already described in
chapter 2 takes place. An adaptive mesh refinement is performed if a residual is small
enough or after a maximal number of iterations. This loop is terminated if the value
of the error indicator is smaller than a given tolerance TOL. For the codes 'rhoptcon’
and 'bkr’, a pure optimization part without adaptivity is possible afterwards.
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e Selection of error indicators: For the adaptive mesh refinement part there exist several
error indicators, which can easily be exchanged. This provides the possibility of
effective comparisons between these indicators.

e Discretization level loop: The Newton method which is formally defined on the con-
tinuous level is evaluated on the discrete levels. In each Newton step a preconditioning
by inversion of the state and dual state equations is applied (see section 6.2). This
crucial step is done by GMRES which is accelerated by multi-grid.

For the globalization of the Newton method, there exist trust region methods or line
searches as described in chapter 3. There are several types of line searches for the global-
ization of the Newton method, based on the Armijo-Goldstein principle or on modifications
of it. Additionally, several merit functions for these line searches have been implemented.
The methods have been developed for the special situation of optimization with partial
differential equations and adaptive mesh refinement. We can also perform the pure New-
ton method without any globalization, which can lead to very good convergence rates for
starting values close enough to the solution.

The code is designed to enable also calculations without regularization for the optimiza-
tion problem, i.e., for « = 0. This is done by calculating the incremental values for g by
solving directly the equations for ¢ in the full nonlinear system (1.7)-(1.9). Alternatively,
for (NBC) in the applications Poisson equation and Ginzburg-Landau models, one may
generate ¢ from the trace of the Lagrangian multiplier, A|r.= ag. However, regularization
was necessary in more complicated applications, e.g. optimization in flow problems.

Each code is splitted in several files grouping parts of the C++4 code which belong
to each other (respecting the object orientated class hierarchy). The main files are the
following;:

e The file 'delta.h’ contains the basic structure of the code.
e The C++ main program and some basic initializations are in ‘main.cc’.

e The file 'numeric.cc’ enables the management of some basic functions (invoking
other functions with respect to the object orientated class hierarchy).

e The parts handling the boundaries are found in the file '1ine.cc’.

o Whereas the handling of the domain integrals are in ’quad.cc’. Only rectangulars
are used for the discretization of the finite elements in the domain.

e In the file 'cg_vector.h’ the information on the structure for the GMRES solver is
contained.

e The file 'numcgv. cc’ gives some functions allowing the management of some functions
connected to GMRES on the finite elements. They invoke several functions on the
cells and lines.

e And the file 'dgmres.h’ contains this solver (originally contained in the DEAL library
and slightly modified for optimization problems).
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e The globalization of the Newton method described in the chapter 3 is principally
done in the file ’global.cc’.

e The file 'user.cc’ contains special functions for the problem formulation of the op-
timization problem. Examples are the (boundary) observations or regularization
functions.

e In the file 'vertex.cc’ the handling of the vertices is organized. Here the interpolation
functions or boundary values are defined.

e The functions for the grafic output are in ’grafic.cc’.

Altogether, the for this thesis developed codes rhoptcon’, ’bkr’ and ’of” contain more
than 7700, 7100 and 10000 lines, respectively (without the codes from the deal library).

The used compilers were the GNU compilers ’gec’ and "g++.

The presented graphical output is generated using CNOM, a graphic software developed
by S. Krémker at the SFB 359 in Heidelberg [46].



Appendix A

Nagopt - black box optimization
code (for flow problems)

Black box optimization codes are commonly used for optimization. One standard library
for black box optimization is the NAG library. Mark 14 and 15 in the Fortran version
were used. Based on this library, the black box optimization code 'Nagopt’ was developed
by the author. It enables to use a given simulation code in C+4, C or FORTRAN for
optimization with almost no amendments.

The developed basic program 'Nagopt’ is written in C+4 and Fortran. By this code,
the black box optimization algorithms of the NAG library are invoked. The applied NAG
library routines are EO4FCF, EO4FDF, E04JBF, EO4UCF and EO4UPF. These NAG library
functions are written in Fortran. The whole handling of data and functions is done by the
basic program. The code is split in several files which are structured by their functionalities.
The developed basic program 'Nagopt’ contains more than 2000 lines.

The developed code will be applied to incompressible, laminar flow. The simulation
code was provided by C. Waguet ([63]). The original 3D model was reduced to a 2D model
by means of the rotational symmetry in the original 3D model. The obtained 2D flow tube
has a reentrant corner.

The Navier-Stokes equations are formulated in cylindrical polar coordinates. This leads
to the three components radial velocity u, axial velocity w and pressure p. The boundary
conditions for the velocity are Dirichlet at the inflow and at the wall, on the other boundaries
we have free boundary conditions (Neumann). Whereas for the pressure p, we require free
boundary conditions on all boundaries.

The solution methods of the simulation are based on adaptive finite element methods
using the weak formulation of the Navier-Stokes equations. For the nonlinear part, fix-point
iteration is applied. The solver BICGSTAB is accelerated by a multigrid preconditioning.
The implementation is based on the DEAL code.

Calculations with Reynolds numbers Re in the range of 0.0001 < Re < 100 are possible.
The parabolic inlet profile for the axial velocity is 1= (z + 4)(z — 4).

Considering the optimization, there were two degrees of liberty in the problem:

1. Parameter estimation with respect to the Reynolds number Re or the viscosity v.

2. Parameterization of the parabolic inlet profile.
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The reference values for the parameter estimation are taken on the base grid.

Some information on the applied adaptivity: Normally, we have one or two adaptive
refinements of the grid. For example, in level 0 we have 151 vertices and 120 cells. This is
the starting grid. In level 1 we have 490 vertices and 429 cells. And in level 2 there can
be 1506 vertices and 1377 cells. We use for each optimization step the same starting grid.
The parameter estimation part was performed with black box algorithms from the NAG
library.

The first considered optimization problem is NAGOPT1: Parameter estimation by
choice of the viscosity or Reynolds number should be done. The reference values were
obtained with v~ = 10. There are 3 different sets of reference values, one with and two
without adaptivity. All data points for the parameter estimation were already on the initial
grid.

As starting values for v~!, 0.01 and 30 were used. The calculations were made both
with and without adaptivity in the finite element part.

This leads to a least squares problem. Two black box algorithms for the NAG library
were applied: The Gauss Newton method E04FCF and the Quasi-Newton method E04JBF.

In the first table, the accuracy in the parameter v~ ! was XTOL = 0.000001. The value
of the objective function is given in the column ’final value’. The number of optimization
iterations and simulation evaluations is denoted by ’#iter’ and '#sim’, respectively.

‘ algor H adaptiv ‘ start v~ ! ‘ final v~ ! ‘ final value ‘ #iter ‘ #sim ‘
e04fcf - 1 no 0.01 9.99999 3.51e-16 3 12
e04fcf - 2 no 0.01 9.99999954 1.01e-16 3 12

eQ4fcf 0.01 0.01 10.00000 1.71e-14 2 10
eQ4fef - 1 no 30 9.99999 3.51e-16 3 28
eQ4fcf - 2 no 30 9.99999956 1.62e-14 3 12

eQ4fcf 0.01 30 10.00000 1.71e-14 3 10
e04jbf - 1 no 0.01 9.99998807 3.53e-16 5 49
e04jbf - 2 no 0.01 9.99999800 1.63e-14 6 28

e04jbf 0.01 0.01 9.99999864 1.71e-14 7 30
e04jbf - 1 no 30 9.99998748 3.5be-16 4 56
e04jbf - 2 no 30 9.999999421 | 1.62e-14 6 48

e04jbf 0.01 30 9.99999835 1.71e-14 3 49

For larger XTOL no significant change was observed.

The Gauss Newton method E04FCF shows a much better behavior than the Quasi-
Newton method E04JBF. The latter needs more iterations and more simulation evaluations.
This leads to a slower solution process.

The second considered optimization problem is NAGOPT2: For this parameter esti-
mation problem, we have the parameters viscosity /Reynolds number and the inlet factor
for the inflow profile. The reference values were obtained with »~! = 10 and inlet-factor 1.
As above, there are 3 different sets of reference values, one with and two without adaptivity.
All data point for the parameter estimation were already on the initial grid.

This leads to a least squares problem. Three black box algorithms for the NAG library
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were applied: The Gauss Newton method E04FCF, the Quasi-Newton method E04JBF
and the SQP method E04UCF.

In the following table, the accuracy in the parameter ! and in the inlet factor was
XTOL = 0.000001.

‘ algor H adaptiv ‘ start v~ ! ‘ start T ‘ final value ‘ #iter ‘ #sim ‘
e04fct - 2 no 0.01 10.0 1.61e-14 8 30
eQ4fcf 0.01 0.01 10.0 1.68e-14 7 44
e04jbf - 2 no 0.01 10.0 1.61e-14 23 141
e04jbf 0.01 0.01 10.0 1.69e-14 20 124
e04ucf - 1 no 15.0 0.7 2.45e-15 18 24
e04ucf 0.01 15.0 0.7 1.84e-14 16 31
e0ducf - 1 no 0.9 4.0 5.35e-15 24 37
e04ucf - 2 no 0.01 10.0 1.62e-14 27 42

No convergence was stated for eO4fcf-1, e04jbf-1 and eO4ucf-1 for the starting values
v~1 =0.01 and I = 10.

Again, the Gauss Newton method EO04FCF shows a much better behavior than the
Quasi-Newton method E04JBF. But the SQP method E04UCF is even better.

The stated divergence in some cases shows that black box codes can not avoid difficulties
which appear also for the developed methods in the main part of this thesis. But the latter
allow a better treatment of these difficulties because more information of the simulation
can be used in the optimization part due to the coupled system.

In general, the solution process is slower for the black box optimization codes. Every
simulation needs a full solution of the forward system including its own adaptive mesh
refinement. The differentiations are done by finite differences and are very expensive,
especially for systems on fine grids. In the coupled system, this differentiation information
is obtained directly from the system; it is therefore much cheaper.

Furthermore, no error estimates for the optimization problem can be developed with
the black box version because the possible refinement in the simulation code can only be
based on the simulation information. And the adaptivity must only be done one time for
the developed method with coupled systems. For black box, adaptivity must be done in
every simulation evaluation.






Appendix B

Equation system for optimization
governed by the Navier-Stokes
equations

In this appendix, the detailed equation system for optimization governed by the incom-
pressible Navier-Stokes equations as application is derived. The presented terms are only
those terms which result directly from the incompressible Navier-Stokes equations. Terms
resulting from other parts of the optimization system like the cost functional, control terms
or other boundary conditions must be added in correspondence with the special optimiza-
tion problem.

The signs '+=" and ==’ mean adding or subtracting to the former value of the variable
on the left hand side as used in computer science. N denotes the test functions.

The presented equations contain stabilization. For this reason the resulting differentials
will lead to very large equation systems. The factor ¢ enables to change the weighting of
the transport term in the Navier-Stokes equations. Setting £ = 0 eliminates the transport
term. (In the code ’of’ £ is TRAP.)

For the first order necessary conditions of the optimization problem, the following equa-
tions result (for the Newton residual): From the continuity equation the following terms
are obtained:

A0 = DN
AL = BN

From stabilization results:

A+ = —uA?) + uA® + wAP) TN, — Ew DTN,
A 4= —eu AN, — AP + wAP + w A?) TN,
A = PN, — AP TN,
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From the first momentum equation (u) the following terms are obtained:

A 4= —wA?) + u A + AN — vAON, — v« AD N,
A — = ey NON

2D 4= \Op,

From stabilization results:

A0 — §(u>\(xo) + ux)\(o) + w)\]so))T(UNx +wNy)
A0~ = (€ A® + wu AO) + p A D)7 N,
AD - — = u AOr(uN, + wh,)

AD = (A + wuy A @) + pA0)7N,
A2 )\;O)T(uNI + wiNy)

From the second momentum equation (w) the following terms are obtained:

AO = e NN
A — = A +w A+ wAD)N
A — = DN, + DN,

A 4= DN,

From stabilization results:

A0 — = e X7 (uN, + wN,)

A0 = (e (uwy + wwy)AD + p, AN,

AL — = Al + wAY + wAD) T (uN, + wN,)
AW — = (€ (uw AV + ww, D) + p, AV,
A — = AV 7r(uN, +wh,)

The continuity equation is obtained by differentiation w.r.t. A(2):
p = —(ug +wy)N
From stabilization results:

P — = pTN; +pyTNy
p — = &(uuy + wuy)T Ny + E(uwy, + wwy)TN,

The first momentum equation results from differentiation w.r.t. A(¥):
u = &(—uug — wuy)N — vuy Ny — vuy Ny + pN,
From stabilization results:

u — = (uug + Ewuy + py)T(UNE +wNy)
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The second momentum equation is obtained by differentiation w.r.t. A(1):
w = {(—uwy — wwy)N — vwy Ny — vwyNy + pN,
From stabilization results:

w — = (buwy + Ewwy + py)T(uNE + wNy)

For the Hessian matriz, the following terms can be stated. The factor f denotes the
weighting of the reaction term in the transport term of the Navier-Stokes equations. (In
the code ’of” ¢ is TRAPREACT.)

O L(ig ),
B@aD) From continuity equation:

A0 = §(5ux>\(2)+5ux)\(2)) )+55wyx<2>TNI+55wIA<2>TNy
= Euy NN, + E0u XD TN, + £(0wyA® + 5w, A@) TN,

From momentum equation 1 (u):

A0 = £(0up A + 5u AO)VN + £(5upA© + 5u A O) 1 (uN, + wh,)
2O = §u5uz)\(0)TNx + ffuzéu)\(o)TNz + E(w(suy)\(o))TNz

A0 4 = Eébuuy TN, + Eudu A O 7N, + E(wou, AT N,

A 4 = §5wy ON + féwy)\(o)T(uNz +wNy) + qu(U)&wITNy

A0 4 = Eu O wr N, 4 E(wdw, A O)réw, N, + £€6wu, A\ O 7N,
A0 4= 5pAOrN,

A = EouyA A©) N+§5uy O 7 (uN, + wN, y) -I—{fuy 0 76uN, + Eudu 71 TN,
A 4= ggauux O 7N, + €(wduy A <0>)7Ny

A 4= §§uy T&wN + §£5wuy )TNy

AD 4 = spAO7nN,

2@ = AO sy, N,

A2 4 = )\(O)T(sszy
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From momentum equation 2 (w):

A (0)
0

>

0

>

0

>

1
1
1
1
1

(
(
(
(
(
(
(
(
(1
(

)
)
)
)
)
)
)
)
)
)

2

EEuw NV TN, + EEw, XD ruN,

6w ANV N + 0w AV 7 (uN, + wN,) 4 EEw AV 7rwN,
cudw V7N, + §é5wwy)\(1)7'Nx + f(w(swy))\(l)TNx
5py>\(1)TNI

6ug XN + E5u X7 (uN, + wNy) + Eudu A TN,
e€w NV our Ny + E(wA N by )7 N, + E€duw, AT N,
6wy AV + dw AN + £(5w, AV + dw A7 (uN, + wN,)
cudV 6w, 7N, + e€w, V6w N, 4 €(wAVéw,)TN,
{uéwx)\(l)TNy + {ééwwy)\(l)TNy + §(w6wy)\(1))7-Ny
5py)\(1)7'Ny

AW 75u, Ny + AP 78w, N,

: From continuity equation:

(AN + £(uiA? + worP) TN,
E€ur AP TN, + E€w 00D TN,

INPN + €€uydND TN,

Euor?) +wirP)TN, + Ew, oA TN,
5)\532)TNI + 5)\Z(JQ)TNy

From momentum equation 1 (u):

A(0)

¢S + wIAD)N + £€upSAON + vaAO N, + v6A0 N,
EudA O 7(uN, + wiN,) + E€updNO 7 (uN, +wN,)
§(w5)\3(/0))T(UNI + wNy) + ff(uuxé)\(o) + wuy(s)\(o))TNI
pI(D\(O)TNI

€uy OO N + ¢€uy A O 7 (uN, + wN,)

€ (uup oA + wu, X)) N, + (poX )N,

IANON, — 2O r(uN, + wN,)

From momentum equation 2 (w):

A(0)
2 (0)

EEwrOAVN + £€w o7 (uN, + wN,)

§é(uwx + wwy)(S)\(l)TNz + pyé)\(l)TNz

EudAY N + €€w, XD N + EwddV N

VoA Ny + voAI Ny + €udAM 7 (ulN, + wi,)
€wy oA T (uN, + wNy) + E(wAD ) 7 (uN, + wN,)
€ (uw, oA + ww, oA TN, 4 (p,dND)T N,
IAND N, — AV T(ulN, + wN,y)



O L(d,q,X) . .. .
@ Continuity equation:

p = OuyN + EE6uuyTN, + E(ubuy + wduy )TNy + §g5uw$TNy

p += ow,N+ {ééwuyTNx + & (udwy + wdwy )TN, + §£6wwyTNy
p += 0py7TNg + opy TN,

Momentum equation 1 (u):

= ¢E6uugN + E(udug + wouy )N + vduy Ny 4+ véuy Ny

+ = E€0uugT(uN, + wNy) + udu,T(uN, + wiNy)

+ = &(wduy)T(uN, +wN,) + E€(uuy + wuy)TOuN, + pp7ouN,
{ééwuyN + §£6wuy7'(uNx + whNy)

= &E(uug + Wiy ) TOWNy + pTOWN

— = 0pNy — 0p,7(uN, + wNy)

g 8 g g8 g g
+
|

Momentum equation 2 (w):

¢ (udwy ) T(uN, + wN,) 4 EEdww, T(uN, + wN,)
= &wowyT(uNy +wNy) + e (uwy + wwy ) TIWN,
+ = pyTowN, — 0pN, + 0p,T(uN; + wNy)

€ &8 &8 € &
I

= E0uwyN + E€5uw,T(uN, + wiNy) + € (uwy, + wWwy)TOUN,
+ = pyTouNy + {(uwdw, + wowy)N + §£6wwyN + vdw, Ny + vowy Ny
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Errata

The following errata are added for the electronic publication. These are not contained in
the version submitted to the Naturwissenschaftlichen - Mathematischen Gesamtfakultat
der Ruprecht - Karls - Universitat Heidelberg in April/May 2000.

Page 13, line 5: delete ,,, in Section 1.1¢

Page 19, line 7: replace , H'(T'; Q)“ by ,H'(T'; Q)¢

Page 19, line 21: replace ,,derivation“ by ,,differentiation“

Page 26, line 33: replace ,,to Hessian“ by ,,the Hessian*

Page 30, line 6: replace ,,Section 2.2“ by . Section 2.5“

Page 31, line 35-36: replace ,in the last preceding paragraph® by , above“
Page 34, line 6: replace ,,—Au“ by —Au + u*

Page 35, line 1: delete “continuous“ and ,,discrete“

Page 42, line 29: add after ,,,r}(f)“: »are the residuals obtained from the given functional
considered in (2.6) and (2.7), these “

Page 46, line 21: replace ,,In section“ by , In this section®

Page 47, line 19: replace ,not “ by ,,to“

Page 49, line 37: repace ,optimization“ by ,error estimation“

Page 56, line 2: replace ,,the“ by ,,of“

Page 64, line 2: delete ,normally“

Page 65, line 30: replace second ,,z“ by ,, 73

Page 66, line 3 and 6: replace ,Azy V2L(zg) ™" “ by ,Axl V2L(z))™" “
Page 90, line 18: replace , bigger“ by , more complex*

Page 92, line 6: delete ,can*

Page 93, line 31: replace ,,to“ by ,two“

Page 98, line 11: delete ,,in“

Page 99, last line: replace ,,¢“ by ,,,

Page 100, line 2: in second term: replace ,,¢“ by ,,9,,
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