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Prefae

Diabetis would greatly bene�t from a devie apable of providing ontinuous noninvasive

monitoring of their blood gluose levels. At present, diabetis rely on priking their �nger to

obtain a blood sample whih in turn is plaed upon a test strip. Life long �nger priking is

often aompanied by hroni infetions and pain during the lanets prik. Moreover, to sig-

ni�antly redue longer-term seondary e�ets of diabetes suh as retinopahy, nephropathy

or neuropathy on the one hand and to redue the risk of unnotied su�ering from hypo-

glyemia on the other hand a more frequent or even ontinuous monitoring of blood gluose

swings is needed.

In the past deade several attempts have been made to measure the gluose ontent of blood

in a more ompliant fashion. These endeavors will gain importane in the near future. Al-

ready nowadays, diabetes ranges among the top ivilization deseases, about 10% of all U.S.

itizens are living with this diagnosis, European itizens will make up in the future.

Many tehniques have been suggested for ontinuous monitoring of gluose, ranging from

implanted eletrohemial sensors to noninvasive optial methods. So far none of these meth-

ods have proven to be sensitive or spei� enough for ommerial use.

The method proposed in this thesis deals with an e�et whih is based upon hanges of the

light sattering oeÆient in the upper dermal regions of skin indued by gluose dissolved

in the interstitial uid. We will fous on the identi�ation of this oeÆient in vivo. As we

want to probe our tissue with deoherent light of a single wavelength in the near infrared

regime, the physial proess is properly desribed by the radiative transfer equation.

The modeling has to fae the task of mapping a speial measurement setting as well as

spatial and temporal varying skin optial properties to a proper boundary value problem

formulation for the radiative transfer equation and an e�etive solution of the inverse prob-

lem. As we will soon reognize, an e�etive solution of the forward and more urging of the

inverse problem is neessarily based on approximations of the radiative transfer equation,

espeially the di�usion approximation will be treated in detail. Moreover we will have to

exurse to data-driven approahes in order to overome the limitations of modeling within

partial di�erential equations whih have been revealed to be obvious for this problem.

This thesis resulted from a ooperation between Boehringer Mannheim GmbH respetively

their suessor Rohe diagnostis GmbH in Mannheim and the Interdisplinary Center for

Sienti� Computing in Heidelberg. It is written in the sense of bringing together sophisti-

ated mathematis with the omplexity of an in vivo setting, and is thus ompletely problem

oriented.
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Introdution

Among other noninvasive monitoring tehniques suh as ultrasound and magneti resonane

imaging the use of light in the near infrared regime (NIR) leads to one of the least spae

onsuming measurement settings known, resulting probe units are portable and easy to

handle. In this regard, about 15 years ago an e�et has been found that revealed a orrelation

between the light sattering oeÆient (LSC) of upper skin tissue and its gluose ontent.

Some time later, this e�et was explained by the optial properties of interstitial uid (ISF)

whih are hanging under the soaking inuene of gluose. Namely the LSC of skin tissue is

dependent on the refrative index mismath between the ISF and the ellular membranes,

whih an be proven quantitatively by Mie theory if we assume the tissue ells to be given

by geometrial objets of simple shape (e.g. balls or ylinders) [6℄. The LSC is therefore a

marosopi parameter, the orrelation to the underlying mirosopi ell membrane optial

e�ets is assumed to be given. The orrelation between gluose levels in the ISF and the LSC

of skin, for the sake of brevity we will refer to it as the gluose e�et, has been reprodued in

skin tissue-simulating phantoms [37℄ and studies with volunteers for the in vivo setting [8℄.

In order to measure the sattering oeÆient of upper skin, di�erent possibilities to �x a

probe unit onto skin are oneivable, suh as light transmittane through the earlobe or

reetane measurements. In the latter ase the light is usually radiated perpendiular

into skin and an array of also perpendiular oriented detetors measure the baksattered

photons. In this thesis we deal with a probe unit whih onsists of a single illuminating �ber

and a dozen olleting �bers arranged for NIR reetane measurements.

In the past, the problem of identifying the interesting sattering oeÆient within the many

other parameters that interfere with the measured signal has been approahed by pure data

driven methods, suh as neural networks and by parameter estimation algorithms based on

skin models to enter the radiative transfer equation (RTE). Partiularly models based on

the di�usion approximation of the RTE have been investigated in detail by several authors.

Within this approximation, the appliane of a fresnel boundary ondition on the top of

skin to build a semi-in�nite geometry has been asserted to be omputationally heap and

aurate at soure-detetor distanes a few mean free paths apart from the light soure.

This in turn is meaningful owing to the demand on portability of the probe and its data

evaluation devie on the one hand and the irumstane that we have to evaluate signals

ontinuously i.e. several times a minute on the other hand.

1
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Modeling in noninvasive diagnostis therefore has to fae the problem of ombining a small

omputation omplexity and the ability of oping with skin optial parameters whih vary

spatially and temporaly on di�erent sales as well as between individuals.

In this thesis we embark on the following strategy:

First, we introdue radiative transport theory outlining the Cauhy problem of radiative

transport and related problems that have espeially been developed in nulear reator theory.

Next, we advane to the di�usion approximation of the RTE and will establish a layered

skin model using the method of images, likewise borrowed from nulear reator theory.

Progress and restritions will be disussed espeially onerning models for small layers

(e.g. epidermal), fourier spae models, and the use of a gaussian onvolution kernel in order

to model the sattering inside the bottom layer of a two-layer model. Furthermore, we will

propose a heuristis to model the light trait in the viinity of a direted light soure within a

proper lass of funtions, a relation to a fundamental solution of a feasable di�usion equation

and �rst results for in vivo data.

Using the law of Lambert-Beer, we will derive an algorithm to separate absorption hanges,

and present some results for in vivo data. In the last hapter we will have to exurse to data-

driven approahes in order to ope e.g. with drift artefats that pollute to a great extent our

in vivo experiments. A new higher-order method, namely independent omponent analysis

(ICA) will be proposed and an implementation issued by the neural network researh entre

at Helsinki University of Tehnology will be applied to in vivo data. Combining a model-

based approah and the ICA approah, we will outline a hybrid method to simultaneously

suessfully eliminate absorption artefats, and an existing drift artefat.



Chapter 1

Medium, Probe Unit

1.1 Skin Tissue: Anatomy, Physiology

We will review the anatomial and physiologial properties of skin, provided they a�et skin

optial properties and hanges thereof. First, we have to speak of skin as a layered medium,

namely we an distinguish three di�erent types of tissue whih are alled the epidermis,

the dermis and the subutis layer. The epidermal layer ould be further distinguished into

the stratum orneum and the stratum basale. The following piture shows the anatomial

struture of skin inluding spei�ations and several substrutures like hair, sweat glands

and �rst of all the apillary loops at the upper dermis:

Figure 1.1: Skin tissue in setional view, (Soure: Rohe [48℄).

3



4 CHAPTER 1. MEDIUM, PROBE UNIT

Figure 1.2 shows a three-dimensional view of an in vivo san obtained by optial oherene

tomography. The stak of two-dimensional setional slies was merged to a three-dimensional

piture by an algorithm developed by C. Dartu at the IWR Heidelberg.

Figure 1.2: Skin tissue in three dimensions, about 500�m deep.

The apillary loops are of speial importane beause they aomplish the exhange of sub-

stanes produed or onsumed by tissue ells (gluose, oxygen, arbon dioxide et.). The

exhange of suh substanes through apillary walls is maintained by di�usion along the on-

entration gradient whih in turn auses a time lag between onentration hanges of blood

onstituents and their ounterparts in ISF. Although the statements vary to a great extent,

it turns out that at inreasing blood gluose onentrations the time delay is about 5min

and at dereasing blood gluose onentrations it is about 8min [48℄. The time delay varies

signi�antly intra- and inter-individually and may depend on blood ow, tissue struture,

the sensors implantation site, the atual tissue metaboli requirements et. An ISF gluose

signal orresponds in some sense to a regularized version of the respetive blood gluose

signal: sharp gluose peaks provoked e.g. by gluose infusion are mapped to smooth ISF

gluose swings. This fat is of importane if we want to alibrate a noninvasively measured

ISF gluose signal by blood gluose measurements. Figure 1.3 illustrates the di�erene under

the assumption of a linear orrelation between the sattering oeÆtient �

0

s

and ISF gluose.

The physiologial harateristis of interest are mainly governed by hanges in blood ow,

blood onsisteny, blood volume and water ontent of skin. Physial hanges of interest
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Figure 1.3: Gluose lamps & gluose swings (noisy), (Soure: Rohe [8℄).

onern temperature variations and mehanial impat.

1.2 Skin Optial Parameters

As we are interested in the modeling of skin struture within radiative tranport theory we

have to map the anatomial and physiologial fats given above to skin optial parameters

in a meaningful way. In the following we will distinguish between absorption and sattering

properties of the inuening fators as they ensue for NIR or visible light. Additionally, eah

layer hange de�nes a ertain boundary involving a proper boundary ondition. In partiular

we get the following shedule:

i. Epidermis

The main absorbing onstituents are water and the skin pigment melanin. Due to its small

thikness (50 � 150�m) the spei� absorption is small ompared to the total absorption

inside skin. The spei� sattering is also small with a strong forward orientation. The re-

frative index ratio between stratum orneum and stratum basale is about n

rel

' 1:51=1:34

, [52℄.

Beause the epidermis has no blood supply there is no diret absorption hange due to blood

indued physiologial variations. But the epidermis is inuened by temperature hanges

and hanges of water ontent, whih has a ruial impat on sattering properties as well as

on the boundary struture.

ii. Dermis

The main absorption inside dermis in the range of 600nm to 900nm is aused by haemoglobin

absorption. We distinguish between oxygenated and deoxygenated haemoglobin whose ab-
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sorption spetra are disussed in the exursus below.

As in the introdution stated, the gluose e�et has its roots in the di�erene between the

refrative index of ISF and ell membranes, where the former is altered. More spei�: the

refrative indies are n = 1:35 for the ISF and n ' 1:38 for the membranes [27℄. An inrease

of gluose in the ISF yields an inrease of the refrative index of the ISF and thus dereases

the di�erene to the index of the membranes with the onsequene that the sattering oef-

�ient dereases: the gluose e�et is antiorrelated to gluose hanges.

We don't want to forget the ollagen �bers whih onstitute about 20% of the dermis vol-

ume. They make up the so alled Langer lines, whih give skin a permanent tension. It has

reently been found that they also give light a preferred sattering diretion: light sattering

inside dermis is greater perpendiular to those lines than along them [23℄ [45℄.

Due to the strong blood irulation espeially at the upper dermal regions we an assume

isothermal onditions exept for the reason of physiologially indued blood irulation

hanges.

Both, epidermal as well as dermal tissue are satter-dominated media. Spei� values for

absorption and sattering oeÆients will be given in the next hapter.

iii. Subutis

The subutis onsists in the main part of fatty onnetive tissue ells. Both, the sattering

oeÆient and the absorption oeÆient are smaller than inside the dermis.

1.2.1 Exursus: Measuring Blood Oxygenation

We exurse to a method of noninvasive blood onstituent measurement whih utilizes the

virtue of having spei� absorption spetra. As an be seen in �gure 1.4 there is a lear

di�erene in the absorption spetra of oxygenated to deoxygenated haemoglobin exept in

one point. At this isosbesti point at �

i

= 805nm the extintion oeÆients of haemoglobin

and oxyhaemoglobin oinide. The extintion is given by the law of Lambert-Beer:

E = �

�

�  � d : (1.1)

The extintion E is a produt of the pathlength d , the extintion oeÆient �

�

and the

onentration  . It is now possible to trak temporal variations in blood oxygenation by

building the quotient E

�

=E

�

i

. If we assume that the optial path lengths of photons at

both wavelengths are almost equal, we get a measure whih orrelates to the oxygenation

hange [36℄.

Blood oxygenation is one of the few well understood and ontrollable physiologial pa-

rameters. Unfortunately the situation for gluose is muh less spei�: The absorption

oeÆient for gluose in the diagnosti window lies between 10

�3

and 10

�2

m

�1

. In the

visible and NIR range, absorption is thus learly dominated by other blood onstituents

and onsequently there is no possibility to trak gluose hanges by utilization of absorption
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Figure 1.4: Absorption spetra of di�erent blood

onstituents, (Soure: Kl�otzer [36℄).

spetra only.

Summary and Annotations

# Skin is organized in layers whih are heterogeneous in themselves on di�erent sales.

They vary in tissue ompartimentation, skin appendages, organization and distri-

bution of blood vessels, regional di�erenes in tissue struture et.

# Variations of blood volume, blood ow and haemoglobin oxygenation are mostly

responsible for absorption hanges in skin tissue thus interfering with noninvasive

ISF gluose monitoring.

# It is virtually impossible to eliminate the inuene of most of the interfering pro-

esses on gluose determination by keeping them onstant, at least under normal life

onditions sine the underlying regulation mehanisms are very omplex, strongly

linked to eah other, and essential for maintaining the viability of the human body.

Therefore interfering proesses have to be eliminated by algorithms applied to the

devies signal.
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1.3 The Probe Unit

The probe used for the measurements onsists of a linear array of optial �bers with a ore

diameter of 200�m. There are two types of �bers, namely one illuminating �ber (soure) and

a dozen olleting �bers at distanes ranging from 0:8 to 10mm from the illuminating point.

The soure light is swithable between di�erent single wavelengths in the NIR range and

power stabilized in diret urrent (DC) mode. Both, the illuminating �ber and the olleting

�bers are oriented perpendiular to the skin surfae. The soure light has the harateristis

of a penil beam and is thus anisotropi. The paths of the photons arriving at the detetor

�bers are haraterized by multiple reetions and baksattering. Summarizing, we speak

of spatially-resolved reetane measurements in DC mode.

A ruial point in noninvasive measurements is the onnetion of the probe to the skin

surfae. We assume that the onnetion prevents the probe from slipping on the skin and

that the interfae material provides stable optial onditions between the probe and the skin

surfae. Espeially the interfae material has almost no sattering and almost no absorption.

Figure 1.5 shows a setional view of the probe in original size and the dereasing reetane

dependent on the soure-detetor distane. Contrary to the suggestion of �gure 1.5, the

Figure 1.5: The NIT 1.37 probe unit, sattered photons in upper

skin and a harateristi reetion pro�le, (Soure: Rohe [36℄).

distane between the skin surfae and the probe surfae is exlusively dependent on the

thikness of the interfae material whih amounts to about several tenth of a millimeter.

However, all modeling proposed in this thesis assumes the �bers to be plaed diretly above

the epidermis i.e. the top boundary of skin.



Chapter 2

Modeling within Radiative Transport

Theory

2.1 Analysis of the RTE

We start our onsiderations with an equation that desribes the dynamis of light in

a satter-dominated medium. In the following, we assume that the phase relations of

photons vanish after a few sattering events. Aordingly, the Maxwell equations whih

are onvenient to desribe the wave harater of light an be replaed by an equation that

desribes gas dynamis whih in turn is omparable in a very high auray to photon

dynamis [31℄. If we assume the unique veloity of light , we get in the monohromati

ase the radiative transfer equation (RTE) whih is a linear equation in the NIR regime [10℄:

1
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for (x; �; t) 2 IR
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;

with the angle-, spae-, and time-dependent radiation intensity u, and soure q. In skin

tissue the attenuation oeÆient �

t

(x) = �

s

(x) + �

a

(x) almost equals the satter oeÆient

�

s

� 15 whih is about 1000 times bigger than the absorption oeÆient �

a

� 0:01. The

integral kernel � known as phase funtion is normalized:

Z

S

2

�(�; �

0

)d�

0
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and ful�lls the symmetry onditions:
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0

) = �(��;��

0

) ;

�(�

0

; �) = �(�; �

0
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10 CHAPTER 2. MODELING WITHIN RADIATIVE TRANSPORT THEORY

Two possibilities of ful�lling these onditions are given by:

�(�; �

0

) = P (os�) =

(

onst. isotropi sattering;

1

4�

1�g

2

(1+g

2

�2g os�)

3=2

Henyey-Greenstein sattering.

To go more into detail, the phase funtion P is expanded into spherial harmonis:

P (os�) =

1

4�

N

X

k=0

(2k + 1)m

k

L

k

(os�) ; (2.2)

where the L

k

's are the Legendre polynomials of the order k. Following the Henyey-Greenstein

interpretation of anisotropi sattering, the omponents m

k

are expressed by onstant ex-

ponentials m

k

= g

k

and N = 2 . The parameter g is alled the anisotropy parameter. It is

de�ned as the average osine of the sattering angle � [54℄:

g :=

R

S

2

(� � �

0

)P (os�)d�

0

R

S

2

P (os�)d�

0

; � =

6

(�; �

0

) :

The Henyey-Greenstein phase funtion is ommonly used in tissue optis and has been

proven to �t experimental data for a wide range of tissue types, where g ' 0:9 whih stands

for a strong forward diretion of sattering [50℄ [54℄.

2.1.1 The Cauhy Problem of Radiative Transport

We will sketh one possibility of putting up a boundary struture and initial values for

equation 2.1 to yield the Cauhy problem of the transport equation. We will outline some

existene and uniqueness results onerning this problem and refer to the book of R. Dautray

and J. L. Lions [15℄ for further details and proofs.

The Cauhy problem of the time-dependent RTE is formulated as follows:

Problem 2.1 Find a solution u(x; �; t) for equation 2.1, and (x; �; t) 2 IR

3

� S

2

�℄0; � [ ,

with the initial ondition u(x; �; 0) = u

0

(x; �) in V � � � IR

3

� S

2

; V ompat ;

and the boundary ondition u(x; �; t) = b(x; �; t) on �

�

= f(x; �) 2 �V � �;n � � < 0g ;

where n denotes the outward normal to �V at x.
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Remark 2.1 We mention two speial types of Cauhy problems that have been onsidered in

the past espeially to model the neutron dynamis inside nulear reators. The one problem

is alled the reator problem whih is haraterized by the lak of soures and reeting

boundaries (no neutrons ome from outside into the reator), V is hereby relative-ompat,

open and onvex in IR

3

. The other problem is alled the sattering problem and is de�ned on

whole IR

3

. Both problems are given initial values u

0

. The interested reader is e.g referred to

the work done by Choulli & Stefanov [11℄. They utilized the sattering problem to investigate

tissue media by extension of the restrited sattering area V by a vauum area IR

3

n V so

that there are no interations of the photons inside IR

3

n V with the surrounding area. We

stress that the results obtained in nulear physis are hardly transferable to the muh more

omplex ase of living tissue.

To treat the general Cauhy problem, we �rst de�ne the funtion spae L

p

(V � �); p 2

[1;1[ to be the spae of all funtions f whih are measurable in respet to the produt

measure dxd� suh that

kfk

L

p

(V��)

:=

�

Z

V��

jf(x; �)j

p

dxd�

�

1=p

<1 :

We want to searh for solutions in the spaes L

p

(V ��) . A kind of natural hoie would be

to take the L

p

(V � �) with p = 1 due to the interpretation of the total urrent of photons

N(t) at time t in on�guration spae:

kuk

L

1

(V��)

=

Z

V��

u(x; �; t)dxd� = : N(t) <1 :

In analogy to the L

p

(V ��) spaes, we de�ne the L

p

(V ���℄0; � [) spaes and the sobolev

spaes W

p

(V ���℄0; � [) to be those spaes of funtions f suh that f and its distributional

derivatives D

s

f of order jsj =

n

P

j=1

js

j

j � k all belong to L

p

(V � ��℄0; � [) . W

p

is a normed

linear spae, for further details on those spaes see e.g. [58℄. We are now able to formulate

theorems of existene and uniqueness for problem 2.1 in the homogeneous ase b = 0 .

Theorem 2.1 For

a(x; �) 2 L

1

(V ��) ; a � 0

and

Z

S

2

�(x; �

0

; �)d�(�) � C

1

8(x; �

0

) 2 V � �

Z

S

2

�(x; �

0

; �)d�(�

0

) � C

2

8(x; �) 2 V ��

with positive onstants C

1

, C

2

, and

q 2 L

p

(V ���℄0; � [) ; p 2 [1;1[ ;

u

0

2 L

p

(V ��) ;
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problem 2.1 with b = 0 has a unique solution in W

p

.

Theorem 2.2 If further the following onsisteny ondition is ful�lled:

� � ru

0

2 L

p

(V � �) ; u

0

j

�

�

= 0

q 2 C

1

([0; � ℄;L

p

(V � �)) ;

then u is a strong solution of 2.1; it satis�es:

u 2 C

1

([0; � ℄;L

p

(V � �)) ;

� � ru 2 C

0

([0; � ℄;L

p

(V � �)) ;

u(t)j

�

�

= 0 ; 8t 2 [0; � ℄ :

If q � 0, then u

0

� 0 implies u � 0.

In the ase of an inhomogeneous boundary ondition b 2 L

p

6= 0 we have an existene and

uniqueness result in a weak sense as stated in [15℄ and also the positivity result: If b; u

0

and

q are positive then the solution u of the inhomogeneous problem is also positive.

Remark 2.2 The previous theorems inlose the fat that transport problems as opposed

to related di�usion problems do not have a regularizing e�et to their solutions. Both in

the homogeneous and the inhomogeneous ase u an be disontinuous even for u

0

2 C

1

,

espeially if the domain has 'holes' [15℄.

Analoguous existene and uniqueness results are given for the stationary RTE as an be seen

in the referenes [9℄ [15℄.

2.1.2 The Inverse Sattering Problem

If we look at transport equation 2.1 and assume that the sattering integral is idential to

zero, we are in a regime were the attenuation oeÆient �

t

(x) is uniquely determined by

boundary data

1

. The algorithm whih performs this inversion is alled an inverse Radon

transform and all reonstrution tehniques in X-ray tomography are based on this transfor-

mation. It is now an interesting question as to what rate it is possible to redue the energy

of X-ray photons thus leading a sattering integral 6= 0 until in the NIR regime at least parts

of the medium are satter-dominated. Choulli & Stefanov [11℄ as well as Antyufeev & Bon-

darenko [7℄ have proven existene and uniqueness results of an inverse problem to equation

2.1 in the ase of given boundary data, i.e. the possibility of reonstruting the attenuation

oeÆient under ertain onditions on �

t

(x) and � and -unfortunately- in the ase of weak

sattering. This is due to the fat that one applies a Radon transform to the singular stru-

tures of the solutions and therefore to the maximally one sattered photons: E. W. Larsen

1

within a lass of appropriate regularizations [42℄
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has proven that suh singular strutures exist in L

1

(V ��) and that those terms are due to

unsattered or maximally one sattered photons, the portion of all other photons has been

proven to be desribable by regular integrals [38℄. But in the satter-dominated ase it is

impossible to measure unsattered or one sattered photons separately from other photons:

the probability for a photon to get through tissue of the thikness 10mm unsattered is about

exp(�100). Existene and uniqueness results are obsolete a few mean free paths (mfp) apart

from the light soure in the di�usion regime as we will see in hapter 4. Therefore, las-

sial reonstrution tehniques are not appliable in satter-dominated media. Corretion

of sattering artefats as well as the identi�ation of a sattering-dependent parameter will

depend on the auray of a model used for parameter estimation.

2.2 Disretizations of the RTE

2.2.1 Monte-Carlo Simulation

An easy to handle and very intuitive way to disretize transport problems is theMonte-Carlo

method whih in opposition to the demanding and usually sophistiated PDE solvers based

on �nite-di�erenes is mainly used when only qualitative inuenes of e.g. measurement

settings on the reetane pro�le have to be investigated. Contrary to �nite-di�erene

methods there is no error ontrol depending on the disretizing demands of loal strutures

of the medium, the error is only asymptotially ontrollable with unknown onstants, i.e. the

quality of the simulation depends on the number of photon runs whih are usually in the

range of 10

7

�10

8

. Due to the very slow onvergene, the omputation osts are respetively

high and amount from several hours to days on a usual workstation. A very useful and often

used implementation is the MCML ode of Wang & Jaques [47℄ whih is publi domain and

overs most of everydays demands on probe simulation, skin phantom spei�ation as well

as the veri�ation of physiologially motivated skin optial e�ets in vivo, for examples we

refer e.g. to [23℄ [32℄.

2.2.2 Finite-Di�erene Methods

For the sake of ompleteness we want to mention �nite-di�erene methods and their most

important representative the �nite-element methods. Due to the utilization of the so-alled

galerkin orthogonality, the latter methods obtain optimal error ontrol ontrary to Monte-

Carlo simulations.

Conerning a priori and a posteriori estimates for galerkin and petrov-galerkin methods as

well as several aeleration shemes like rosswind di�usion, streamline di�usion and the

whole endeavors made in adaptive grid re�nement we want to mention the researh team

of R. Rannaher et al. at Heidelberg University and some of their publiations [18℄ [31℄ for
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further investigations. An overview of the methods has been given e.g. by the book of Lewis

& Miller,Jr. [40℄.

2.3 Evaluation

The attempts to solve the RTE in the ase of satter-dominated media leads to omputation

osts whih are preferentially settled on large non-portable omputing devies. Espeially

researh teams who have foussed on the development of NIR imaging algorithms whih yield

a spatially resolved three-dimensional parameter spae (usually the attenuation oeÆient)

are subjet to this irumstane. We mention the researh teams of A. Hielsher at SUNY

downstate medial enter, Brooklyn, and of S. Arridge at King's Colledge, London. Both

teams raise the laim of identifying the attenuation oeÆient within NIR datasets in three

dimensions. They on�rm that in most ases it is still impossible at the moment to even

state whether those endeavors for all kind of tissues will sueed [4℄.

In general, theoretial motivated benhmarking as well as the formulation of existene and

uniqueness results for omplex geometries remain open. At the moment it seems that the

searh for some kind of "Radon transform for sattering media" will produe no results and

most likely will never do, at least for satter-dominated media.

Having this in mind, the strategy of solving an inverse boundary value problem for the RTE

several times an hour on a portable devie has to be thought over. Therefore in the following

two hapters we try to handle the problem on the basis of an approximation.



Chapter 3

The Di�usion Approximation

The motivation to take the di�usion approximation of the RTE is due to the fat that

skin is a satter-dominated medium, and therefore the dynamis of photons a few mfp

apart from a direted light soure is desribable by a di�usion proess. On the basis of

this approximation, multi-layer models will be formulated in order to meet skin optial

properties. Due to the regularizing e�et of di�usion proesses, the solutions of those

models all are in C

1

. We do not have to weaken the topology of our funtion spaes to

Sobolev spaes. Additionally, a heuristis to treat the harateristis of light propagation in

the viinity of a direted light soure will be proposed. The models are usually formulated

in three spae dimensions and time domain (DC mode if stated). We repeat the RTE of

hapter 2 to write:

1



�u

�t

+ � � ru(x; �; t) + �

t

(x)u(x; �; t) = �

s

(x)

Z

S

2

�(� � �

0

)u(x; �

0

; t)d�

0

+ q(x; �; t) (3.1)

for (x; �; t) = (r; z; �; t) 2 IR

2

� IR� S

2

� IR

+

:

It is transformed to a ontinuity equation by integrating over all solid angles and using the

de�nitions of the uene rate � and the ux J :

1



��(x; t)

�t

+rJ(x; t) = ��

a

�(x; t) +Q(x; t) ; (3.2)

where

�(x; t) =

Z

S

2

u(x; �; t)d� ; (3.3)

J(x; t) =

Z

S

2

� � u(x; �; t)d� ; (3.4)

Q(x; t) =

Z

S

2

q(x; �; t)d� :

15
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If we assume Fik's di�usion law:

J(x; t) := �D(x) � r�(x; t) ;

we arrive at the di�usion approximation of the RTE:

�r �D(x)r�(x; t) + �

a

�(x; t) +

1



��(x; t)

�t

= Q(x; t) ; (x; t) 2 IR

3

� IR

+

; (3.5)

using the de�nitions:

Q(x; t) isotropi soure; (3.6)

D(x) = 1=3(�

a

(x) + �

0

s

(x)) di�usion oeÆient

1

; (3.7)

�

0

s

(x) = (1� g)�

s

(x) redued sattering oeÆient : (3.8)

(3.9)

In the de�nition of the redued sattering oeÆient, the parameter g orresponds to the

anisotropy parameter de�ned in hapter 2.

A solution of 3.1 also satis�es equation 3.5 if (see also [15℄):

i. the light soures are isotropi,

ii. the solution is onsidered far from boundaries and far (3.10)

from zones where the medium parameters vary strongly,

iii. the medium is satter-dominated (�

s

>> �

a

):

Remark 3.1 If ondition iii holds, then for soure-detetor distanes greater than two to

three mfp a solution of equation 3.1 behaves as if assumption i would hold. In tissue media,

we therefore assume that the harateristis of the light trait remains onstant for distanes

greater than two to three mfp from the soure.

Exat estimates for the appliability of the di�usion approximation exist for very simple

geometries only. In setion 3.1.4 we will sketh a result given in [15℄ for the Cauhy problem.

The extension to omplex geometries of tissue optis is a subjet of permanent -prinipally

phenomenologial- researh. For omparisons to Monte-Carlo simulations see e.g. [49℄, and

for omparisons to two-layer models see e.g. [1℄ [23℄.

1

Some authors argue that D(x) = 1=3�

s

(x) is the right de�nition of the di�usion oeÆient. For a

ontribution to the disussion see e.g. [3℄ [16℄
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3.1 Boundaries - The Semi-In�nte Medium

In the next step in skin modeling within the di�usion approximation we will map the layer

struture of skin to a proper boundary setting. For simpliity, we assume that skin layers

are onneted by parallel oriented planes applying translationally invariant boundaries with

a proper boundary ondition. We begin our onsiderations with the simplest ase: the semi-

in�nite medium onsisting of a satter-dominated medium at bottom and vauum on top.

The proper boundary ondition is assumed to be a Fresnel boundary ondition whih gives

the amount of reeted and transmitted light at a smooth boundary dependent on the ratio

of refrative indies.

3.1.1 Fresnel Reetion

Figure 3.1: Fresnel reetion at the surfae in setional view.

Vetors 


0

and 
 give the diretions of upoming and reeted light � respetively. Fresnel's

law of reetion states that on the boundary we have:

�(x;
; t)j

z=0

= R(


0

)�(x;


0

; t)j

z=0

; (x; t) = (r; z; t) 2 IR

3

� IR

+

; 
;


0

2 S

2

;

(3.11)

where R(


0

) is the reetion funtion given in Fresnel's law (in the ase of unpolarized light)

R(


0

) =

1

2

�

n

m

os �

v

� n

v

os �

0

n

m

os �

v

+ n

v

os �

0

�

2

+

1

2

�

n

m

os �

0

� n

v

os �

v

n

m

os �

0

+ n

v

os �

v

�

2

; (3.12)

where n

m

and n

v

are the refrative indies of medium and vauum respetively, �; �

0

are the

polar angles of diretion 
;


0

resp. and �

v

depends on �

0

by Snell's law:

sin �

v

sin �

0

=

n

m

n

v

:
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Remark 3.2 For pratial situations, funtion 3.12 an suÆiently be approximated by the

pieewise onstant funtion

R

�

(


0

) =

8

<

:

1 �



� �

0

�

�

2

R

0

0 � �

0

� �



; (3.13)

with the ritial angle of total reetion �



= arsin

n

v

n

m

.

Applying an idea of Marshak [43℄, we are able to get the Fresnel ondition making the ansatz:

Z

S

2

=2

�(x;
; t)Y

k;l

(
)d
 =

Z

S

2

=2

R(


0

)�(x;


0

; t)Y

k;l

(


0

)d


0

: (3.14)

We expand the produt � � Y

k;l

with the spherial harmonis Y

k;l

to the �rst order and get

the approximation:

�

�

(x;
; t) '

1

4�

�(x; t) +

3

4�

J(x; t) � 
 :

Thus we an write both sides of 3.26 as

Z

S

2

=2

�

�

(x;
; t)d
 '

�(x; t)

4

+

J(x; t)

2

;

and

Z

S

2

=2

R(


0

)�

�

(x;


0

; t)d


0

' R

�

�(x; t)

4

� R

j

J(x; t)

2

;

where

R

�

=

�=2

Z

0

2 sin � os �R(�)d� ;

R

j

=

�=2

Z

0

3 sin � os

2

�R(�)d� :

Finally, ansatz 3.26 redues to
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�(x; t)

4

+

J(x; t)

2

= R

�

�(x; t)

4

� R

j

J(x; t)

2

; (3.15)

or �(x; t) =

1 +R

j

1� R

�

(�2J(x; t)) :

3.1.2 The Extrapolated Boundary

The boundary ondition we just derived, represents the fresnel law at a boundary in the

di�usion approximation. It has the form of a mixed boundary ondition. Using the method

of images, we an easily transform this ondition to a Dirihlet boundary ondition above

the physial boundary at a so alled extrapolated boundary [17℄. We assume that on the

physial boundary we have �(x; t)j

z=0

> 0. If we further assume the light soure Q to be

positioned inside the medium (see also the next subsetion) we an infer that �

0

(x; t)j

z=0

=

�

�z

�(x; t)j

z=0

< 0. We are thus able to extrapolate �(x) above the physial boundary by a

distane � suh that we have:

�(x; t)j

z=�

= 0 ; � =

�(x; t)j

z=0

�

0

(x; t)j

z=0

: (3.16)

Substituting 3.15 into 3.16 and using Fik's law we get:

� = 2

1 +R

j

1� R

�

�D =

1 +R

j

1�R

�

�

2

3

l

tr

; (3.17)

where l

tr

= 1mfp , � is alled the extrapolation length.

3.1.3 Soure Considerations

Following remark 3.1, a direted point soure situated at the top of skin in tissue optis is

usually substituted by an isotropi point soure loated at z

0

= 1mfp inside skin, alled a

virtual sattering light soure:

Q(r; z; �; t)j

r=z=0

= Q(t)Æ(x)Æ(� � �

0

) 7�! Q(r; z; t)j

r=0;z=�z

0

= Q(t)Æ(x� z

0

) :

(3.18)

The advantage of replaing the direted soure is that in the latter ase we have a fundamen-

tal solution for equation 3.5 if we set the di�usion oeÆient onstant. It is simply written

as:

�(jxj; t) =



(4�Dt)

3=2

� exp(�

jxj

2

4Dt

� �

a

t) ; (x; t) 2 IR

3

� IR

+

: (3.19)
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To get the DC mode, the time derivative in equation 3.5 is set to zero, the resulting funda-

mental solution in this ase reads:

�(jxj) =

1

4�Djxj

� exp(�

r

�

a

D

� jxj) ; x 2 IR

3

: (3.20)

To ful�ll the extrapolated boundary ondition, we have to simply add a negative virtual

sattering light soure at a distane 2 � (� + z

0

) above the physial boundary. In DC mode

we get the model funtion:

�

tot

(x) = �(x� z

0

)� �(x + z

B

) ; (3.21)

with

z

B

= 2 � (� + z

0

) ; z

0

= �

t

;

where � is the fundamental solution 3.20 .

Haskell et al. proposed a modi�ation of model funtion 3.21 whih takes into aount that

on the physial boundary the deteted signal has ontributions from the uene � and the

ux J =

��

�z

, [21℄. The total signal is then given by:

�

Haskell

(x)j

z=0

=

1� R

�

4

� �

tot

(x)j

z=0

+

1� R

j

2

�

�

�z

�

tot

(x)j

z=0

; (3.22)

where the preise linear ombination of uene and ux is a funtion of the numerial

aperture of the �ber. For appliations of this method we refer to [17℄ [21℄ [33℄ [46℄.

3.1.4 Estimates

In order to justify the di�usion approximation of the RTE, we give a pointwise, i.e. L

1

estimate. Therefore, we onsider the stationary ounterpart of the Cauhy problem as

given in hapter 2. The following theorem ompares a solution of the stationary transport

problem in the ase of a saled medium with a solution of the appropriate stationary

di�usion problem. Again, we refer to [15℄ for further details and proofs.

Theorem 3.1 We assume the following regularity onditions:

�

s

(x) 2 C

2;�

(V ) ; and q(x); �

a

(x) 2 C

1;�

; V � IR

3

open, bounded

1

;

then the unique solution u

�

in L

1

(V � S

2

) of the stationary transport problem:

1

�

� � ru

�

(x; �) +

�

�

a

(x) +

1

�

2

�

s

(x)

�

u

�

(x; �) =

1

�

2

�

s

(x)

Z

S

2

�(� � �

0

)u

�

(x; �

0

)d�

0

+ q(x; �) ;

for (x; �) 2 V � S

2

and u

�

j

�

�

= 0 ;

1

1

In the ase where V is unbounded, we need a further ondition at in�nity: lim

jxj!1

q = 0.
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and the unique solution u in L

1

(V ) of the stationary di�usion problem:

�

�

�x

i

�

D(x)

�u(x)

�x

j

�

+ �

a

(x)u(x) = q(x) ;

for x 2 V and uj

�V

= 0 ;

satisfy:

ku

�

� uk

L

1

(V�S

2

)

� � C

q

;

with a positive onstant C

q

depending on q.

We emphasize the fat that the previous theorem assumes the Dirihlet boundary ondition

to be ful�lled at diret neighbourhood of the sattering medium. A virtual sattering light

soure, as onstruted previously would therefore approah the extrapolated boundary in

the ase � ! 0, if we would transfer this theorem to the ase of an extrapolated boundary

ondition. However, a onsistent formal framework for this ase would need a two-saled

medium, thus leading to �!1 in the vauum area between the physial boundary and the

extrapolated boundary.

3.2 Two-Layer Models

We will onsequently improve the halfspae model of the preeding setion and introdue

two-layer models in order to simulate the dermis-subutis struture of skin

2

. This struture

is mainly given by a distint pair of (�

a

; �

0

s

) for eah of the layers. Additionally, some

models allow a refrative index mismath between the layers if suited. There are roughly

two methods distinguishable: fourier spae models and models in real spae; both will be

proposed in the following.

3.2.1 A Fourier Spae Model

The fourier spae model of Kienle et al. is of great importane in the imaging ommunity

to model the dermis-subutis struture in the refrative index mathed ase. In addition,

this model serves as a basis for hybrid methods whih inlude Monte-Carlo simulations in

order to improve the auray of the model in the viinity of a direted light soure [1℄

[2℄ [34℄ [35℄. Our starting point is di�usion equation 3.5 transformed to DC mode, in the

inhomogeneous ase for a virtual sattering light soure situated in the top layer, and in the

homogeneous ase for the bottom layer:

�r �Dr�(x) + �

a

�(x) =

8

<

:

Æ(x� z

0

) 0 � z > l

0 l � z

; (3.23)

2

We reall that: �

�

:= f(x; �) 2 �V � S

2

;n � � < 0g.

2

\two-layer" means one layer and a halfspae beneath.
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for x 2 IR

3

and layer-thikness jlj.

Assuming translational invariane, these equations are transformed to ordinary di�erential

equations using a two-dimensional Fourier transform:

�(s; z) =

1

Z

�1

1

Z

�1

�(x; y; z) exp[i(s

1

x + s

2

y)℄dxdy: (3.24)

We apply transformation 3.24 to equation 3.23 and obtain

�

2

�z

2

�

1

(s; z)� �

2

1

�

1

(s; z) =

1

D

Æ(z � z

0

); 0 � z > l; (3.25)

�

2

�z

2

�

2

(s; z)� �

2

2

�

2

(s; z) = 0; l � z ;

where

�

2

i

=

(D

i

s

2

+ �

ai

)

D

i

; s

2

= s

2

1

+ s

2

2

; i = 1; 2 indiating the layers:

The following boundary onditions are applied:

i. �(s;�) = 0; extrapolated boundary ondition ;

ii. �(s;�1) = 0; boundary ondition at in�nity;

iii.

�

1

(s;l)

�

2

(s;l)

= 1; ontinuity of the uene;

iv. D

1

��

1

(s;z)

�z

j

z=l

= D

2

��

2

(s;z)

�z

j

z=l

; ontinuity of ux:

(3.26)

Conditions iii. and iv. apply at the boundary between the layers and are ful�lled in the

mathed refrative index ase only [20℄. Applying boundary onditions 3.26, the solution of

equation 3.25 at the top boundary is given by (see also [30℄):

�(s; z)j

z=0

=

sinh(�

1

(� + z

0

))

D

1

�

1

)

D

1

�

1

osh(�

1

(l � z)) +D

2

�

2

sinh(�

1

(l � z))

D

1

�

1

osh(�

1

(l +�)) +D

2

�

2

sinh(�

1

(l +�))

(3.27)

�

sinh(�

1

(z

0

� z))

D

1

�

1

:

We now have to transform solution 3.27 bak to real spae. As we assume ylinder symmetry,

the two-dimensional fourier transform an be written as a Hankel transform, whih in our

ase is given by:

�(r; z)j

z=0

=

1

2�

1

Z

0

�(s; z)sJ

0

(sr)ds ; (3.28)
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where J

0

is the Bessel-funtion of zeroth order.

The evaluation of this integral is a ruial step in solving this two-layer model, several

authors have foussed on it [41℄ [59℄. Another relevant point of fourier-spae models in

general is the number of detetors whih in our ase amounts to 12, whih yields osillating

solutions in spae for the forward problem. To have smooth solutions, several hundered

widespread detetors are needed as it is e.g. the ase for the SCATTI imager desribed in

[23℄. For the inverse problem, this raises the omputation osts of alulating the Hankel

transform to several hours on a usual workstation. G. Alexandrakis (HRCC, Hamilton,

Canada) proposed in his PhD thesis a hybrid approah based on this two-layer model and

Monte-Carlo simulations to handle short soure-detetor distanes [2℄. In a disussion, he

learly stated that his experienes onerning alulation times onfute e�etivity for the in

vivo setting.

3.2.2 Models in Real Spae

In setion 3.1, a halfspae model has been onstruted adding a negative light soure to the

positive one. Consequently it is possible to add on further boundary onditions by adding

further virtual light soures.

To do this, we de�ne two operators R

d

and R



whih map light soures � given by the

time-dependent fundamental solution 3.19 and situated at ~x = (0; ~z) to their images:

�(0; ~z; t) 7! R

d

�(0; ~z; t) := � �(0; z

B

(�; ~z); t) (3.29)

�(0; ~z; t) 7! R



�(0; ~z; t) := (G � �)(0; z

0

B

(�

0

; ~z); t) : (3.30)

R

d

is known to ful�ll a Dirihlet ondition at an extrapolated boundary situated at �

with the arising image soure situated at z

B

(�; ~z), as needed to onstrut a semi-in�nite

medium.

The onvolution operator R



is needed to ful�ll a seond boundary ondition in order to

represent a seond layer. In analogy to the light soure reated by the operator R

d

, whose

position is dependent on two degrees of freedom (�; ~z), the light soure reated by the

operator R



is dependent on (�

0

; ~z). We propose two useful boundary onditions ful�lled at

�

0

, dependent on the atual medium setting:
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i. Index mismathed ase: the medium beneath the seond boundary is not

sattering (turbid slab geometry). �

0

in this ase �xes the position of a seond

extrapolated boundary situated beneath the seond physial boundary:

G = �Æ(x� z

0

B

) :

ii. Index mathed ase: the medium beneath the seond boundary is sattering.

We assume ontinuity of ux and uene at �

0

, as proposed in 3.26. �

0

in this ase

serves as a parameter whih is related to the sattering properties of the bottom

halfspae:

G=̂ Gaussian kernel (proposed) :

Figure 3.2 shows a oordinate system with notations for the extrapolated boundaries as well

as the positions of the light soures situated on the z-axis.

Figure 3.2: Physial boundary (r-axis) as well

as extrapolated boundaries and positions of light

soures.

To take into aount the simultaneous presene of the Dirihlet boundary ondition at

the top boundary and one of the former onditions, we have to iterate the appliation of

boundary onditions and therefore of the operators. One gets the following expression for



3.3. ANISOTROPIC DIFFUSION - A HEURISTICS 25

the light intensity at the top boundary (see also [53℄):

�

tot

(x; t)j

z=0

=

("

1 + (1 +R

d

)

1

X

n=1

(R

d

R



)

n

#

(1 +R

d

)�

)

(x; t) ; (x; t) 2 IR

3

� IR

+

:

(3.31)

To redue omputation osts, the series is usually trunated after n = 2. Case i. orresponds

to the models of Wang [55℄ or Contini et al. [13℄ to model turbid slabs. Case ii. is related to

a model of Tualle et al. [53℄ extended by the proposition of the Gaussian onvolution kernel.

It is also possible to merge ases i. and ii. to a model that provides two index mismathes

and sattering inside the bottom halfspae, whih is left here.

Remark 3.3 Reasons for taking the Gaussian in ase ii.

At �rst, it is not lear whih onvolution kernel should be used in ase ii. and whether suh

a omputation ould be done analytially, or numerially and therefore time onsuming. In

order to overome this awkwardness we propose the following strategy:

It is a lassial result that the solution of a time-dependent di�usion proess with no absorp-

tion is given by a Gaussian funtion with inreasing variane in time. In the ase of skin

tissue where we have almost no absorption in omparison to sattering, the approximation

�

a

= 0 is therefore oneivable. As the onvolution in 3.30 performs further sattering inside

the bottom halfspae of already sattered light oming from the top layer, translation to arith-

metis of Gaussian funtions therefore yields the onvolution of a Gaussian by a Gaussian

whih is nothing but a spreading of a Gaussian. The operator R



in this ase just substitutes

a variane by a greater variane.

We have to annotate that our measurement setting works in DC mode. Therefore, the

proposition of remark 3.3 is not of pratial bene�t for our studies. Nevertheless, it may

be signi�ant for noninvasive measurements in general: it is not yet fully lari�ed how the

model of Tualle et al. motivates the use of a ertain onvolution kernel in the ii. ase and

how the degrees of freedom of the numerous virtual light soures are mapped to skin optial

properties.

3.3 Anisotropi Di�usion - a Heuristis

In the preeding setions we dealt with some possibilities of properly applying boundary

onditions within the di�usion approximation. We now want to present a heuristis to

model the trait of a direted light soure introduing a proper lass of funtions detahed

from the framework of fundamental solutions. This lass of funtions is onstruted replaing

the di�usion onstant D in equation 3.20 by a symmetri positive de�nite di�usion tensor



26 CHAPTER 3. THE DIFFUSION APPROXIMATION

~

D 2 IR

3�3

. In this way, we are able to hange the trait of a light soure to be a rotational

ellipsoidal in spae (in [56℄ this type is alled anisotropi di�usion for the ase of absent

absorption). In our appliation, we have to assume that the ellipsoidal trait of the soure

will hange fast in spae to beome a spheroidal trait. The assumption that isosurfaes of

light intensity hange in this harateristi manner is motivated by experiments where light

is radiated obliquely into skin and resulting isolines of the reeted light on the boundary

are egg-shaped i.e. the isolines eentriity in diretion of the light soure di�ers from the

eentriity in the opposite diretion. Moreover, this di�erene vanishes a few mfp apart

from the soure; more �ndings onerning probes with an oblique light soure are treated in

the PhD thesis of Marus Hermann (Rohe diagnostis GmbH) (to be published).

We model this behaviour by setting

~

D dependent on the distane from the soure:

~

D =

~

D(jxj) :=

8

>

>

>

>

>

>

>

>

:

D

1

(jxj) 0 0

0 D

2

(jxj) 0

0 0 D

3

(jxj)

9

>

>

>

>

>

>

>

>

;

; D

1

(jxj) = D

2

(jxj) : (3.32)

In DC mode we arrive at the following expression:

�(jxj) =

1

4�

�

�

�

~

D(jxj)x

�

�

�

� exp

0

B

�

�

p

�

a

�

�

�

�

�

�

�

D

�1=2

1

(jxj) � x

1

D

�1=2

2

(jxj) � x

2

D

�1=2

3

(jxj) � x

3

�

�

�

�

�

�

�

1

C

A

; x = (x

1

; x

2

; x

3

)

T

2 IR

3

:

(3.33)

Figure 3.3 illustrates a plot of isosurfaes for � dependent on di�erent ratios of D

1;2

=D

3

.

As we are interested in the light intensity at an array on the top of skin, expression 3.33

redues to:

�(jxj)j

x

2

=x

3

=0

=

1

4�D

1

(jxj)jxj

� exp

�

�

r

�

a

D

1

(jxj)

� jxj

�

; x 2 IR

3

: (3.34)

To answer the question, whih is the funtional behaviour of D

1

(jxj), we have to put up

a heuristis: Sine D

1

(jxj) is inuened by sattering events and sine the radiation gets

isotropi after a few of them it is proximate to take the funtion:

D

1

(jxj) = D [1� a � b � exp(�a � jxj)℄ ; a; b 2 IR : (3.35)

This funtion orresponds to the seeding probability of a photon being still unsattered as

it travels through the medium (we leave out the 1=jxj

2

-fator for reasons of onsisteny and

get the limit of isotropi di�usion for a = 0). The anisotropy parameters a and b have to

be estimated using in vivo or skin phantom measurements, a respetive �t result is given in

appendix A.

We emphasize that a spae-dependent di�usion oeÆient is inompatible with the funda-

mental solution of equation 3.5 and its steady-state ounterpart for the ase Q(x) = Æ(x).
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Figure 3.3: Isosurfaes of � for anisotropi di�usion

(arbitrary units in (x

1

; x

2

; x

3

)-spae).

However the funtion lass given by 3.33 is a solution of equation 3.5 with an extended soure

Q(x):

�r �

~

D(jxj)r�(jxj) + �

a

�(jxj) = Q(x) ; x 2 IR

3

: (3.36)

In appendix A we give the appropriate expression for Q(x). In this way, we simulate light

propagation issued by a sharp, direted light soure in a homogeneous medium by a spatially

varying medium (via the virtual di�usion tensor

~

D(jxj)) and a virtual, extended light soure

Q(x).
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3.4 Evaluation

The di�usion approximation of the RTE has been treated in detail in order to onstrut

layered boundary models of skin. We summarize the advantages and disadvantages of this

approah:

The di�usion equation has a very simple fundamental solution whose appliability is

restrited to an in�nite medium at �rst. Building linear ombinations of suh fundamental

solutions, it is possible to meet fresnel boundary onditions in order to onstrut a halfspae,

or, if we take in�nitely many terms, to represent a multi-layer setting. Alternatively, it is

possible to transform the di�usion equation to fourier spae, meet a boundary ondition

there and to numerially bak-transform the solution to real spae leading to diÆulties

onerning e.g. alulation times.

Eah of the multi-layer models suggested treats inoherent boundary sattering only. This

means that no phase relations are indued by multiple sattering between boundaries.

Therefore, the layer thikness for eah of the multi-layer models has to be greater than at

least 1mfp. This fat has to be taken into aount if one tries to model boundary sattering

within the epidermis whose thikness is below 1mfp. A layered model of the epidermis

is neessary beause the optial properties of the epidermis are supposed to be strongly

varying during a measurement period whih in turn auses partly strong artefats. The

appliability of the proposed models is therefore restrited.

It is of ourse an interesting question why we treat the di�usion approximation of the

RTE exlusively. Espeially at small soure-detetor distanes in DC mode and at small

times in the time-domain the di�usion approximation is inaurate as omparisons to

Monte-Carlo simulations reveal [1℄ [23℄. Therefore, an improvement of the light propagation

model is desired. The interested reader may take a look at ertain attempts to model

light sattering in tissue using higher approximations of the RTE. Conerning the next

higher approximation (P

3

) we refer to the artile [49℄ and the diploma thesis [57℄ that

was motivated by Boehringer Mannheim GmbH. The latter title learly stated the result

that it is not possible to e�etively solve the related inverse problem of identifying the

optial parameters (�

a

; �

s

) within the P

3

approximation applying mixed Fresnel/vauum

boundary onditions in three spae dimensions in less than a week on a usual workstation.

This negative result has been on�rmed in a disussion with the author. However to our

knowledge, a rigorous development of error estimates for the P

3

approximation in the ase

of mixed Fresnel/vauum boundary onditions remains open.



Chapter 4

Implementation

Sensitivity matries are introdued in order to assess a skin model in respet of its ability to

map reetane hanges to spei� parameter hanges.

4.1 Sensitivity Analysis

The sensitivity of a funtion y(r; P ) = y(x; P )j

z=0

at a soure-detetor distane r with respet

to a parameter p

j

2 P � IR

m

, P a vetor of parameters, is de�ned by:

S

p

j

(r; P ) := �

�(y(r; P ))

�p

j

; y(r; P ) 2 C

1

: (4.1)

We disretize the distane r to the vetor r = (r

1

; r

2

; :::) 2 IR

n

and get a sensitivity matrix

S 2 IR

n

� IR

m

S :=

8

>

>

>

>

>

>

>

>

>

>

>

>

:

S

p

1

(r

1

; P ) � � � S

p

m

(r

1

; P )

� �

� �

S

p

1

(r

n

; P ) � � � S

p

m

(r

n

; P )

9

>

>

>

>

>

>

>

>

>

>

>

>

;

: (4.2)

In the following we distinguish between the sensitivity S

I

p

of a measured signal with respet to

a parameter p and the sensitivity S

�

p

of a proposed model with respet to a model parameter.

4.1.1 Ill-Posedness, Optimal Probes and Killing Fators

We follow the treatment of Hadamard to de�ne well-posedness [42℄:

De�nition 4.1 Regard a mapping A : X 7! Y between topologial spaes X and Y

respetively. The problem (A;X; Y ) is alled well-posed if

i. Af = g ; 8g 2 Y has a solution

ii. this solution is unique

iii. the solution depends ontinuously on the data

if one of these onditions fails the problem is alled ill-posed.

29
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Therefore, a homeomorphism between topologial spaes de�nes a well-posed forward and

inverse problem whih is expressed by the demands on ontinuity and uniqueness in the

previous de�nition. An ill-posed problem therefore weakens the topology of a parameter

spae to the topology of a signal spae: the information ontent of the parameter spae is

not represented by the measured signal.

The only way to get bak a homeomorphism is to weaken the toplogy of the parameter spae,

whih is also alled a regularization of the problem. Important examples of regularizations

are given e.g. for the Radon transform whih is an ill-posed problem at �rst but yields very

useful results after applying regularization �lters to the data [42℄.

As already stated, di�usion proesses whih arise in satter dominated media are har-

aterized by a strong weakening e�et on the topology of their solution

1

, furthermore all

solutions are in C

1

.

Exursus: Singular Values

Due to the regularizing e�et of di�usion proesses, the di�erentiability in 4.1 an be

assumed onerning model equations based on the di�usion approximation. Resulting

sensitivity matries S

�

and their singular value deompositions are thus de�ned.

In the ase where we have as many detetors as parameters in a model equation, the value

of the determinant of S

�

gives a measure of how good signal hanges �I are assignable to

single parameter hanges �Ij

�p

j

. Orthogonal olumn vetors in S

�

therefore represent the

optimal ase: the value of the determinant is maximized.

In the ase where we have more detetors than parameters, the determinant is replaed by

the produt of singular values of S

�

. Based on a spei� model an optimal probe design

therefore maximizes the produt of singular values of S

�

with regard to optimal soure

detetor distanes, a valid model provides suh an optimization to be done suessfully.

Furthermore, an artefat p

�

whih is orretly modeled by

~

� having a sensitivity funtion

S

~

�

p

�

(r) that is linear dependent to S

~

�

�

0

s

(r) in S

~

�

is denotable a killing fator leading to the

onsequene that this artefat is not separable from sattering by the given probe design

having the distane vetor r = (r

1

; r

2

; :::). In this ase, a new probe design would have

to be established. Separability of parameters is therefore strongly related to the notion

of well-posedness: the topology of the parameter spae has to be strong enough to isolate

sattering from artefats. It is dependent on the distane vetor r whih onstitutes the

probe design.

Non-Uniqueness in Di�usion-Based Tomography

If we apply fundamental solution 3.20 to 4.2 it is obvious that both S

�

�

a

(r; �

a

; �

0

s

) and

S

�

�

0

s

(r; �

a

; �

0

s

) are given by linear funtions. Therefore S

�

�

a

(r; �

a

; �

0

s

) and S

�

�

0

s

(r; �

a

; �

0

s

) are

linear dependent olumns of the matrix 4.2; a transport model assuming onditions 3.10 is

1

In [42℄ those problems are assigned their own lass: They are alled exponentially ill-posed
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thus not a valid model to separate �

a

and �

0

s

2

. In the following setion, we will develop a

heuristis to overome this negative result in the viinity of a direted light soure.

4.2 A Simple In Vivo Data Evaluation Heuristis

The task of parameter separation is plaed as a nonlinear parameter estimation problem:

Problem 4.1 For given parameters P = (�

a

; �

0

s

; :::)

T

2 IR

m

, a model funtion �(r

k

; P ) ,

r 2 IR

n

and measured signals I(r), a tupel P

�

of parameters has to be found suh that

kI(r)� �(r; P )k

2

=

n

X

k=1

[y(r

k

)� �(r

k

; P )℄

2

; �(r; P ) = �(x; P )j

z=0

is minimized.

If we assume that every �(r

k

; P ) is ontinuously di�erentiable, problem 4.1 an be expressed

as a sequene of linear minimization problems [51℄. Therefore, we onsider the funtional

matrix D�(r

k

; P ) 2 IR

n

� IR

m

. Then we have:

�(r; P

�

) = �(r; P ) +D�(r; P ) � (P

�

� P ) + h ; khk = o(kP

�

� Pk)

and the following optimization problem [51℄:

Problem 4.2

min

P

�

kI(r)� �(r; P )�D�(r; P ) � (P

�

� P )k

2

A solution of problem 4.2 therefore �ts a model based reetane vetor optimally to a

measured reetane vetor.

If we onsider a time series of measurements instead of spot measurements, we an take

advantage of this fat, if we regard the parameter dependent ounterpart I(r

k

; P (t); t) of

I(r

k

; t). The mapping I(r

k

; P (t); t) 7! I(r

k

; P (t+ 1); t+ 1) is then expressible by:

I(r

k

; P (t+ 1); t+ 1) = I(r

k

; P (t); t) +D�(r

k

; P (t); t) � (P (t+ 1)� P (t)) :

A temporal reetane hange (relative hange) is therefore assigned the following linear

form:

4

t

I(r

k

; P (t); t) :=

m

X

j=1

S

�

p

j

(r

k

; P (t); t) � 4

t

P (t) ; (4.3)

and the related inverse problem:

2

Similar results are given by [5℄ and [44℄ in a more tehnial manner.



32 CHAPTER 4. IMPLEMENTATION

Problem 4.3

4

t

P (t) := (S

�

)

�1

� 4

t

I(r

k

; P (t); t) : (4.4)

The solution to this inverse problem is now simply a matrix inversion or singular value deom-

position (SVD), whether S

�

is square and full rank or not. Hereby any model information

enters the problem via the time and parameter dependent sensitivity matrix S

�

(P (t); t).

4.2.1 Appliations

If we assume that in the viinity of a direted light soure the law of Lambert-Beer holds

(i.e. that upper skin behaves like a uvette) then we have S

I

�

a

(r) = onst � r . If we further

assume that S

I

�

0

s

is not orretly represented by model equation 3.20 and thus S

I

�

0

s

(r) 6=

onst �r , then problem 4.3 is easily modi�ed to simultaneously eliminate absorption hanges

and hanges of soure light intensity (ommon mode hanges) with S

I

CM

(r) = onst.

Taking the seond spatial di�erene of �

t

I(r

k

; P (t); t) in equation 4.3 und summing up over

all time intervals, we get an algorithm produing the signal Al:

Algorithm 4.1

Al (r

0

k

; P; T ) :=

T

X

t=0

4

2

r

4

t

I(r

k

; P (t); t) (4.5)

whih is insensitive with respet to �

a

and ommon mode hanges. In the following,

we onsider the vetor of signals Al(r

0

1

; :::; r

0

p

) ; p = n � 2 . The near distane vetor

r = (0:8; 1:2; 1:6; 2:0; 2:4; 2:8) [mm℄ of probe NIT 1.37 is therefore mapped to the vetor

r

0

= (1:2; 1:6; 2:0; 2:4) [mm℄, with �

2

I(r) := I(r � 1) � 2I(r) + I(r + 1). We regard the

values of Al to be arbitrary units for simpliity. If suited, the values are transformable to

physial units applying an appropriate model to alulate values for e.g. 4

2

r

S

�

�

0

s

(r

0

; P ). In

appendix B the funtion 4

2

r

S

�

�

0

s

(r

0

; P ) is plotted assuming the semi-in�nite di�usion model

given in 3.22.

Appliations of algorithm 4.1 to ontinuous in vivo measurements show very enouraging

results with respet to the absorption separating properties. Even if we know that the law

of Lambert-Beer is not exatly ful�lled in skin tissue (e.g. due to the boundary struture)

it seems that the power expansion of the funtion S

I

�

a

(r; P ) =

P

1

k=0

a

k

(P )r

k

is learly

dominated by the seond oeÆient. Also interesting is the fat that the sensitivity of

signal Al with respet to gluose hanges is nearly exponentially dereasing for inreasing

soure-detetor distanes r

0

. This �nding agrees with alulations using model 3.22 (see also

appendix B) and underpins model equation 3.20 to gain appliability apart from a direted

light soure (and despite the inuene of boundaries).
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4.2.2 Drift

Apparently onverse to ommon mode and absorption whose sensitivity funtion expan-

sions are dominated by the �rst and seond oeÆient respetively, are artefats onerning

boundary hanges. Evaluations using algorithm 4.1 in some experiments show ampli�ations

of e.g. drift artefats. The drift artefats are supposed to result from epidermal imbuane

aused by the probe over (whih in turn would hange refrative indies inside and above

the epidermis). This �nding emphasizes the fat that algorithm 4.1 treats absorption and

ommon mode artefats only and neglets e.g. boundary hanges that also have a ruial

e�et on noninvasive measured signals. Using Al signals, the need to treat drift artefats is

therefore forti�ed. We have to fae this fat in the following.

4.2.3 Some Examples

First, we present some examples of a unique 5-hour in vivo experiment where gluose has

been varied by an oral gluose drink after the (nearly diabeti) volunteer has been demure

for several hours (so alled OGT experiment). The gluose impat amounts to an amplitude

of 130mg/dl and it was the goal of this run to show the impat of small gluose amplitudes

on the sattering oeÆient [22℄ .

Suessively, the plots show the same experiment, �rst applying the �t algorithm N4 based

on the semi-in�nite halfspae di�usion model 3.22 implemented by M. Hermann [23℄ and

S. Nikell [45℄ for Boehringer Mannheim GmbH (Fig.4.1). We see the redued sattering

oeÆient �

0

s

at 805nm and the interpolated referene gluose (taken by invasive spot mea-

surements):

Figure 4.1: Fit result using a semi-in�nte halfspae model.
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Figures 4.2 to 4.5 plot the same experiment, but evaluated with algorithm 4.1 (alibrated

to absolute gluose values). The Al(r

0

) signals show a more balaned behaviour whih is

typial for this algorithm. In order to redue a drift artefat whih is present during the

whole measurement period, plots 4.3 to 4.5 have been subtrated by an exponential funtion

whose parameters have been estimated using four referene gluose values. The use of an

exponential funtion as drift model has been motivated by in-house (Rohe) refratometer

experiments where the refratometer has overed the epidermis for several hours. The half-

life period of the refratometer experiments are omparable to the ones of most of the drifting

OGT experiments (whih amount to about 50% of the total) and lie in the range of 3 to

5 hours. Plots 4.3 to 4.5 are given the same half-life period that was estimated utilizing

signal Al(r

0

1

). They on�rm the �nding that the sensitivity for gluose hanges dereases

monotonially for inreasing distanes r

0

= (1:2; 1:6; 2:0; 2:4) [mm℄.

Figure 4.2: The signal Al(r

0

1

) applied to the same data.

Figure 4.3: Al signal (drift removed) in diret viinity of the

soure: Al(r

0

1

).
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Figure 4.4: Al signal (drift removed) more distant from the

soure: Al(r

0

2

).

Figure 4.5: Al signal (drift removed) even more distant from the soure:

Al(r

0

3

).

In opposition to the preeding OGT experiment where the probe temperature has been

held onstant, the following experiment shows the impat of a temperature hange whih

has been triggered outside skin by heating and ooling the probe. In �gure 4.6 we see rude

signals (relative signal hanges �

t

I(r

k

; t)) at the �rst four distanes r = (0:8; 1:2; 1:6; 2:0)

[mm℄ of the NIT 1.37 probe using arbitrary units, and bold on top the absolute temper-

ature T at the probes temperature sensor. The plot learly shows that the sensitivity

S

I

Temp.

(r) =

�

t

I(Temp:;t)j

�Temp.

�Temp:

of the measured signal with respet to temperature hanges

doesn't have to be onstant: the signal response at r = (1:2; 1:6; 2:0) [mm℄ hanges sign in

the seond temperature swing.
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Figure 4.6: Di�erene in signal response at onseutive temperature

variations (0:8mm thin line on top to 2:0mm on bottom).

4.3 Evaluation

The implementation of sensitivity based methods, espeially �ndings onerning algorithm

4.1 give rise to the following statements:

1. It is possible to improve rude signal hanges by the very simple evaluation al-

gorithm 4.1 in a way that short time artefats whih are supposed to be dominated

by absorption hanges an be redued signi�antly. Comparisons to lassial �t al-

gorithms like N4/N5 ([23℄ [45℄) show more balaned results. Furthermore algorithm

4.1 gives a vetor of time-dependent signals instead of a single �

0

s

(t)-signal and thus

an serve as a basis for further e.g. data driven evaluation proedures in order to

redue drift artefats.

2. The results of algorithm 4.1 partly show strong drift artefats. A omparison to

the assoiated rude signal hanges give rise to the presumption that sensitivities

of the underlying boundary e�ets are dominated by oeÆients of higher order

(onerning their power expansion) and that drifts are therefore ampli�ed by taking

the seond spatial di�erene. Due to the great variety of possible physiologial

impats of imbuane inside and above the epidermis, it is not realisti to have

a simple funtional desription of sensitivity funtions with respet to boundary

hanges. For the sake of an e�etive problem-handling, we therefore have to exurse

to data driven approahes in the next hapter.
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3. Conerning temperature artefats the situation is more ompliated: the sensi-

tivities of gluose indued sattering hanges and drift artefats have to be assumed

to be nearly onstant during usual measurement periods (several hours) whih is

on�rmed by the fat that alibration oeÆients remain unhanged during these

periods. In opposition to this, we have to assume that in some ases it is im-

possible to eliminate temperature artefats by a linear transformation of detetor

signals with a onstant oeÆient in time. Therefore, we have to assume that

S

Temp.

(r) = S

Temp.

(r; t) and thus, an elimination of temperature artefats by simply

adding a multiple of the temperature sensor signal �T to the signal won't work.

An overview of several other artefats ouring in noninvasive measurements suh as

hanges of the water ontent of skin, body movements, oxygenation hanges et. and

their impat on noninvasive signals has been given in the PhD thesis of H.-M. Kl�otzer

(Rohe diagnostis GmbH) [36℄.

4. It is hardly possible to give any statistial warranty for those of the above state-

ments that need to be on�rmed by appropriate investigations. This is mostly due to

the fat that physiologial side onditions di�er signi�antly between the experimen-

tal runs, making the volunteers and therefore the experiments hardly omparable.

Moreover, the total number of in vivo experiments under onsideration amounts to

about 100. This number may lie in the range of the number of more or less di�ering

parameters triggered by anatomy or physiology. We therefore won't try to apply an

aording statistial framework.
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Chapter 5

Exursus: Data-Driven Approahes

In this hapter, we will exurse to data-driven approahes in order to evolve our data eval-

uation possibilities. Reently, a new method for 'blind' data evaluation has been proposed,

namely independent omponent analysis [12℄ whih will be treated in detail. To motivate

the tehnique, we will give a summarizing overview of the papers of A. Hyv�arinen [25℄ and

T.-W. Lee et al. [39℄. First, we put up the so-alled linear mixing problem of the hidden

parameter hanges �

t

P (t) 2 IR

m

that have to be reonstruted from the observed signals

�

t

I(t) 2 IR

n

(see also equation 4.3), i.e.

�

t

I

r

i

t

k

:=

I

r

i

t

k

� I

r

i

t

k�1

I

r

i

t

k

=

m

X

j=1

S

r

i

p

j

��

t

p

j

(t

k

) ; �

t

I

r

i

t

k

2 IR

n

� IR

�

at � disrete time points t

k

, or in short form:

8t : �I = S ��P ; S 2 IR

n

� IR

m

; (5.1)

where the mixing matrix S is assumed to be onstant over time.

5.1 Seond-Order Methods

Contrary to the inverse problem 4.3, we now want to estimate matrix S without having a

skin model to provide for S

�

. One popular approah to �nd a linear transform S in 5.1 is

seond-order methods with important derivatives like prinipal omponent analysis (PCA),

sometimes alled the (disrete) Karhunen-Lo�eve transform or fator analysis. Both methods

put an orthogonal basis inside the observed data spae, thus minimizing an error funtional

based on mean squares. A SVD deomposition of �

t

I(r; t) = U�V

T

aomplishes this task

easily, leading to a PCA subspae U and the appropriate fator loadings ontained in V

T

. If

we drop priniple omponents belonging to small singular values ontained in �, we speak

of a biased method, otherwise it is alled unbiased.

39
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5.2 Higher-Order Methods

We want to strengthen the requirement of unorrelatedness of data arising from seond-order

methods to the notion of statistial independene.

Statistial independene

Denote by u

1

; u

2

; :::; u

m

some random variables with joint density f(u

1

; :::; u

m

). The variables

u

i

are (mutually) independent if the density funtion an be fatorized:

f(u

1

; :::; u

m

) = f

1

(u

1

)f

2

(u

2

):::f

m

(u

m

) ; (5.2)

where f

i

(u

i

) denotes the marginal density of u

i

. An equivalent formulation of independene

states that:

Efg

1

(u

i

)g

2

(u

j

)g � Efg

1

(u

i

)gEfg

2

(u

j

)g = 0; for i 6= j ; (5.3)

for any measurable funtions g

1

and g

2

. This property is sometimes alled statistial inde-

pendene, as ompared to unorrelatedness whih is de�ned by:

Efu

i

u

j

g � Efu

i

gEfu

j

g = 0; for i 6= j : (5.4)

It follows that independene is a suÆient but not a neessary ondition for unorrelatedness.

But both qualtities oinide in the ase when u

1

; :::; u

m

have a joint Gaussian distribution.

Due to this property, the onept of statistial independene is not advantageous for Gaussian

variables.

5.2.1 Independent Component Analysis

We state two de�nitions of independent omponent analysis (ICA) that are somehow inverse

to eah other. In the following, the observed n-dimensional signal vetor is denoted by

�I = (�I

1

; :::;�I

n

)

T

. First we give a de�nition that states the priniple of ICA:

De�nition 5.1 ICA of a signal vetor �I 2 IR

n

onsists of �nding a linear transform �P =

W ��I ; W 2 IR

n

� IR

m

so that the parameters �P

i

2 IR

m

are as independent as possible,

in the sense of maximizing some funtion F (�P

1

; :::;�P

m

) that measures independene.

This de�nition just says that if a measure of independene exists, ICA provides for the

appropriate linear transform, no additional assumptions on the data are made. In this

regard, a setion below we will have to deal with ontrast funtions providing for manageable

measures of independene for the �P

i

. The following de�nition reprodues our mixing

problem 5.1:
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De�nition 5.2 (Jutten and H�erault [29℄) ICA of a signal vetor �I 2 IR

n

onsists of

estimating the following generative model for the sensor data:

8t : �I = S ��P ; S 2 IR

n

� IR

m

;

again S is assumed to be onstant in time.

It an be shown [12℄ that if the data does follow the generative model in de�nition 5.2,

de�nitions 5.1 and 5.2 beome asymptotially equivalent in a weak topology of matrix lasses

for ertain F .

Identi�ability of the ICA Model

We refer to the treatment of identi�ability in [12℄ and [25℄. For simpliity, ourane of

(weak) Gaussian noise in the data will be treated like an additional independent (Gaussian)

omponent and measured signals are assumed to be 0-1 normed. The identifyability of a lass

of independent omponents within the ICA model, where independent omponents inside

a ertain lass are unique up to a permutation and saling, an be assured if the following

restritions are imposed:

i. At most, one soure is normally distributed.

ii. The number of sensors n must be at least as large as the number

of parameters m, i.e. n � m .

iii. 8 t: The parameter hanges �P (t) are mutually independent.

Referring to our mixing problem, the parameters are exatly reovered whenW is the inverse

of S up to a permutation and sale hange:

P = R �D = W � S ;

where R is a permutation matrix and D is a saling matrix.

5.2.2 Appliations of ICA

Contrast Funtions

The notion of statistial independene between random variables yields pratial results if

we transfer it to equivalent onepts like information maximation and negentropy maxima-

tion. Without going into detail, we want to briey review the basi de�nition of mutual

information:

De�nition 5.3 The mutual information I(u) of a measured signal vetor u is given by the

Kullbak-Leibler (KL) divergene D(�k�) of the multivariate density f(u) and the density

written in produt form:

I(u) :=

Z

f(u) log

f(u)

�

N

i=1

f

i

(u

i

)

dx = D( f(u) k�

N

i=1

f

i

(u

i

) ) ; I(u) � 0 : (5.5)
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Thomas and Cover [14℄ showed that I(u) is zero i� the omponents u

i

are statistially

independent. Again the onept of mutual information is easily adapted to the notion of

negentropy whih is de�ned as the KL divergene between the density f(u) of variable u and

a Gaussian distribution f

G

with the same mean and ovariane as f(u). Finally, Girolami

[19℄ showed that minimizing the mutual information of the omponents of a random vetor

is idential to maximizing their negentropy.

The task of �nding a measure of statistial independene is now transferred to the task of

�nding a feasible measure of negentropy, in turn giving a measure of non-Gaussianity of a

density f(u) using the following de�nition of negentropy:

De�nition 5.4 The measure

J(u) := H

Gauss

�H(u) ; J(u) � 0 ; with H(u) := �

Z

f(u) log f(u)du ;

is alled negentropy.

Due to the fat that a Gaussian variable has the largest entropy among all random variables

of equal variane [14℄, measure 5.4 is always positive. As the exat value of f(u) is usually

unknown, simpler approximations of negentropy have to be onsidered. Jones & Simon [28℄

as well as Comon [12℄ utilized an Edgeworth expansion of 5.5 trunated at fourth-order to

approximate the mutual information by:

J(u) :=

1

12

Efu

3

g

2

+

1

48

kurt(u)

2

; (5.6)

where the kurtosis is de�ned by:

kurt := Efu

4

g � 3(Efu

3

g)

2

:

In order to overome non-robustness enountered with fourth-order umulants in general and

espeially kurtosis [26℄, the framework of umulants has been overome. In [24℄ the following

ontrast funtion thus approximating negentropy has been proposed:

J

G

(u) := jE

u

fG(u)g � E

�

fG(�)gj

p

: (5.7)

J

G

(u) is equipped with a smooth, non-quadrati funtion G(u) and an exponent p = 1; 2

typially. For G(u) = u

4

, J

G

beomes simply the modulus of kurtosis of u, equation 5.7

therefore generalizes the moment-based approximation in 5.6. Equation 5.7 is onsistent in

the sense that it is always non-negative and equal to zero if u has a Gaussian distribution.

The following hoies of G were proposed in [25℄ and [26℄:

G

1

(u) = log osh a

1

u ; G

2

(u) = exp(�a

2

u

2

=2) ; (5.8)

where a

1

; a

2

� 1 are some suitable onstants.
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The FastICA algorithm

We will use the MATLAB implementation 'FastICA', provided by the Neural Network

Researh Centre at Helsinki University (www.is.hut.�/projets/ia/fastia) whih utilizes

usual numeris like e.g. a Newton iteration or Gram-Shmitt orthogonalization. For further

details see e.g. [25℄. We applied this algorithm to the OGT experiment of the preeding

hapter at 805nm. Figure 5.1 shows the independent omponents that ensue after feeding

the �rst four rude signals at r = (0:8; 1:2; 1:6; 2:0) [mm℄ to the algorithm. We have hosen

the ontrast funtion G

2

given in 5.8. The redution to three independent omponents pro-

dues one drift a�ited signal and two noisy and unspei� signals (arbitrary units) given

in �gure 5.1.
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Figure 5.1: ICA applied to rude signals: The third omponent shows a drift a�ited signal.
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ICA Meets Di�usion Theory

The results of ICA beome more interesting if we take into aount model knowledge whih

is e.g. represented by the Al(r) signal, as given by the heuristis of the preeding hapter: we

therefore ombine model knowledge with a data driven approah. That way, ICA provides

for a re�nement of a given sensitivity matrix struture. We map the �rst four Al(r) signals

of the same experiment to three independent omponents. Figure 5.2 shows the result.
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Figure 5.2: ICA applied to an Al signal.

Obviously the third omponent of �gure 5.2 orrelates to the referene gluose. Therefore, the

drift pattern, whih is still existent in the third omponent of �gure 5.1 has been separated

suessfully.



Summary and Outlook

Summarizing our attempts to identify the light sattering oeÆient of skin and its alter-

ations in in vivo datasets, we have to make primarily the following observation: although

we had to weaken our pretension to model light propagation in skin tissue within the RTE

framework, the task of evaluating noninvasive measured signals entailed hallenges of its

own type. First, we established multi-layer skin models using the di�usion approximation

of the RTE. For the skin being a satter-dominated medium, this possibility is ertainly

permitted for large soure-detetor distanes. However, skipping to short soure-detetor

distanes, a thorny problem of noninvasive diagnostis has been entered, whih in this

thesis has been treated by setting up a heuristis: we �rst stepped a little bit aside of

the framework of fundamental solutions for the di�usion approximation, but related to it,

onstruting an virtual, extended light soure thus ful�lling a di�usion equation for a proper

lass of funtions.

For the sake of usefulness of multi-layer models in noninvasive diagnostis, we proposed a

new onvolution kernel to be applied to real spae models like the one of Tualle et al. in

time-domain.

Again, the attempt to takle an important problem of ontinuous monitoring, this time

ouring as drift artefats for the in vivo setting, has been avoided within the straight

di�usion theory framework: multi-layer models based on the di�usion approximation

presume layer-thiknesses greater than one mfp, therefore the attempt to map drift artefats

to suitable optial e�ets inside or diretly above the epidermis has to fail.

Finally, these �ndings resulted in a hange of the solution strategy: the limitations

of modeling within the partial di�erential equations framework, onerning the RTE or

the di�usion approximation of the RTE, have revealed to be obvious when applied to the

omplexity of this speial in vivo setting. In other words, it is not advisable to try to handle

the omplexity of this in vivo setting opposing a partial di�erential equation apparatus of

equal omplexity plus the use of a big omputing devie only.

After all, the onnetion of a simple data evaluation heuristis based on fundamental in-

sights of light propagation in tissue with a data-driven re�nement tool, namely independent

omponent analysis, produed the best results in vivo. It will be the subjet of future

researh to embark on this strategy. An adaptive re�nement of sensitivity matries or

45



qualitative statements about sensitivity matries has to be investigated. Consequently, a

measurement devie whih is able to attune to its wearer after a ertain wearing period

would result. Methods of 'hard' omputing and 'soft' omputing will therefore be ombined

in this strategy.
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Appendix A

The anisotropi di�usion heuristis is applied to the in vivo experiment used in hapter 4, this

time at 660 nm. In �gure 6 we have hosen the intensity pro�le weighted by the square of the

distane r at a single measurement point in the middle of the experiment. For the isotropi

ase we take the semi-in�nite model as proposed in equation 3.22 (n

rel

= 1:4 ; �

a

= 0:01) and

modify it to the anisotropi ase replaing the di�usion onstant D by the spae dependent

di�usion oeÆient D � [1� a � b � exp(�a � jxj)℄. The �t results for the resulting values D; a; b

and �

a

are given in the table below.

0.5 1 1.5 2 2.5 3 3.5 4
7

8

9

10

11

12
x 10

4 Profile: Anisotropic diffusion, 660nm

0.5 1 1.5 2 2.5 3 3.5 4
7

8

9

10

11

12
x 10

4 Profile: Isotropic diffusion, 660nm

Figure 6: Plot of the measured pro�le I(r) � r

2

(irles) and the model pro�le �(r) � r

2

for

the ase of isotropi and anisotropi di�usion subjet to r in mm.
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Fit result using �rst seven distanes of NIT 1.37, r=(0.8,1.2,1.6,2.0,2.4,2.8,4.0)[mm℄:

D[mm℄ �

a

[1=mm℄ a b

anisotropi di�usion 0.2504 0.0124 0.4739 1.9955

isotropi di�usion 0.3213 0.0478 0 -

�t-error anisotropi di�usion 1.6411e+03

�t-error isotropi di�usion 3.7051e+03

resulting error redution 55%

The dependeny of the pro�le I(r) � r

2

on the anisotropy oeÆient a is plotted in �gure 7.

Figure 7: Pro�les �(r) � r

2

for near distanes dependent on a,

(b = 2;D = 0:3[mm℄; �

a

= 0:01[1=mm℄).
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Applying expression 3.33 to di�erential equation 3.36 we get the following MAPLE output:

Q(a

1;3

; b

1;3

;D

1;3

;�

a

; x

1

; x

2

; x

3

) := Q(a1; 2; b1; 2;D1; 2;ma; x; y; z) =

�D1 %2(

3

4

%4D1

4

%2

4

x

2

�%5

5=2

+

1

2

p

ma D1 %2 x

2

%4

�%5

3=2

p

%3

�

1

4

%4D1

2

%2

2

�%5

3=2

+

1

4

p

ma x

2

%4

�

p

%5%3

3=2

D1

2

%2

2

�

1

4

p

ma%4

�

p

%5

p

%3D1 %2

+

1

4

ma x

2

%4

�

p

%5%3D1

2

%2

2

)� D1 %2

(

3

4

%4D1

4

%2

4

y

2

�%5

5=2

+

1

2

p

ma D1 %2 y

2

%4

�%5

3=2

p

%3

�

1

4

%4D1

2

%2

2

�%5

3=2

+

1

4

p

ma y

2

%4

�

p

%5%3

3=2

D1

2

%2

2

�

1

4

p

ma%4

�

p

%5

p

%3D1 %2

+

1

4

ma y

2

%4

�

p

%5%3D1

2

%2

2

)� D2 %1(

3

4

%4D2

4

%1

4

z

2

�%5

5=2

+

1

2

p

ma D2 %1 z

2

%4

�%5

3=2

p

%3

�

1

4

%4D2

2

%1

2

�%5

3=2

+

1

4

p

ma z

2

%4

�

p

%5%3

3=2

D2

2

%1

2

�

1

4

p

ma%4

�

p

%5

p

%3D2 %1

+

1

4

ma z

2

%4

�

p

%5%3D2

2

%1

2

) +

1

4

ma%4

�

p

%5

;

%1 := 1� a2 b2 e

(�a2

p

x

2

+y

2

+z

2

)

;

%2 := 1� a1 b1 e

(�a1

p

x

2

+y

2

+z

2

)

;

%3 :=

x

2

D1 %2

+

y

2

D1 %2

+

z

2

D2 %1

;

%4 := e

(�

p

ma

p

%3)

;

%5 := D1

2

%2

2

x

2

+D1

2

%2

2

y

2

+D2

2

%1

2

z

2

:

Q desribes an anisotropi light soure exept for the ase a1; 2 = 0 (isotropi limit).
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Appendix B

The dereasing sensitivity �

2

r

S

�

�

0

s

(r;D) with respet to the distane r dependent on the

di�usion onstant D := Di is given in �gure 8, the ability of algorithm 4.1 to separate �

a

from �

0

s

, measured by the ratio �

2

r

�

S

�

�

0

s

(r;d)

S

�

�

a

(r;d)

�

dependent on the soure-detetor distane r

and the separation distane between single detetors d is given in �gure 9, both plots utilize

the semi-in�nite model as proposed in equation 3.22.

Figure 8: �

2

r

S

�

�

0

s

(r;Di) - zero is on top of plot, (n

rel

= 1:4 ; �

a

= 0:01[1=mm℄).
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Figure 9: The �

a

-separation ability dereases with inreasing distane r and

d, (n

rel

= 1:4 ; �

a

= 0:01[1=mm℄ ; D = 0:3[mm℄).
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