INAUGURAL - DISSERTATION

ZUR

ERLANGUNG DER DOKTORWURDE
DER

NATURWISSENSCHAFTLICH-MATHEMATISCHEN
GESAMTFAKULTAT

DER

RUPRECHT-KARLS-UNIVERSITAT

HEIDELBERG

vorgelegt von
Diplom-Mathematiker Dietmar Volz

aus Baden-Baden






Modeling of light propagation in skin, and

an application to noninvasive diagnostics

Gutachter: Prof. Dr. Dr. h.c. mult. Willi Jager
Prof. Dr. Dr. h.c. Hans-Georg Bock

Tag der miindlichen Prifung:






Preface

Diabetics would greatly benefit from a device capable of providing continuous noninvasive
monitoring of their blood glucose levels. At present, diabetics rely on pricking their finger to
obtain a blood sample which in turn is placed upon a test strip. Life long finger pricking is
often accompanied by chronic infections and pain during the lancets prick. Moreover, to sig-
nificantly reduce longer-term secondary effects of diabetes such as retinopahy, nephropathy
or neuropathy on the one hand and to reduce the risk of unnoticed suffering from hypo-
glycemia on the other hand a more frequent or even continuous monitoring of blood glucose
swings is needed.

In the past decade several attempts have been made to measure the glucose content of blood
in a more compliant fashion. These endeavors will gain importance in the near future. Al-
ready nowadays, diabetes ranges among the top civilization deseases, about 10% of all U.S.
citizens are living with this diagnosis, European citizens will make up in the future.

Many techniques have been suggested for continuous monitoring of glucose, ranging from
implanted electrochemical sensors to noninvasive optical methods. So far none of these meth-
ods have proven to be sensitive or specific enough for commercial use.

The method proposed in this thesis deals with an effect which is based upon changes of the
light scattering coefficient in the upper dermal regions of skin induced by glucose dissolved
in the interstitial fluid. We will focus on the identification of this coefficient in vivo. As we
want to probe our tissue with decoherent light of a single wavelength in the near infrared
regime, the physical process is properly described by the radiative transfer equation.

The modeling has to face the task of mapping a special measurement setting as well as
spatial and temporal varying skin optical properties to a proper boundary value problem
formulation for the radiative transfer equation and an effective solution of the inverse prob-
lem. As we will soon recognize, an effective solution of the forward and more urging of the
inverse problem is necessarily based on approximations of the radiative transfer equation,
especially the diffusion approximation will be treated in detail. Moreover we will have to
excurse to data-driven approaches in order to overcome the limitations of modeling within
partial differential equations which have been revealed to be obvious for this problem.

This thesis resulted from a cooperation between Boehringer Mannheim GmbH respectively
their successor Roche diagnostics GmbH in Mannheim and the Interdiscplinary Center for
Scientific Computing in Heidelberg. It is written in the sense of bringing together sophisti-
cated mathematics with the complexity of an in vivo setting, and is thus completely problem

oriented.
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Introduction

Among other noninvasive monitoring techniques such as ultrasound and magnetic resonance
imaging the use of light in the near infrared regime (NIR) leads to one of the least space
consuming measurement settings known, resulting probe units are portable and easy to
handle. In this regard, about 15 years ago an effect has been found that revealed a correlation
between the light scattering coefficient (LSC) of upper skin tissue and its glucose content.
Some time later, this effect was explained by the optical properties of interstitial fluid (ISF)
which are changing under the soaking influence of glucose. Namely the LSC of skin tissue is
dependent on the refractive index mismatch between the ISF and the cellular membranes,
which can be proven quantitatively by Mie theory if we assume the tissue cells to be given
by geometrical objects of simple shape (e.g. balls or cylinders) [6]. The LSC is therefore a
macroscopic parameter, the correlation to the underlying microscopic cell membrane optical
effects is assumed to be given. The correlation between glucose levels in the ISF and the L.SC
of skin, for the sake of brevity we will refer to it as the glucose effect, has been reproduced in
skin tissue-simulating phantoms [37] and studies with volunteers for the in vivo setting [8].
In order to measure the scattering coefficient of upper skin, different possibilities to fix a
probe unit onto skin are conceivable, such as light transmittance through the earlobe or
reflectance measurements. In the latter case the light is usually radiated perpendicular
into skin and an array of also perpendicular oriented detectors measure the backscattered
photons. In this thesis we deal with a probe unit which consists of a single illuminating fiber
and a dozen collecting fibers arranged for NIR reflectance measurements.

In the past, the problem of identifying the interesting scattering coefficient within the many
other parameters that interfere with the measured signal has been approached by pure data
driven methods, such as neural networks and by parameter estimation algorithms based on
skin models to enter the radiative transfer equation (RTE). Particularly models based on
the diffusion approximation of the RTE have been investigated in detail by several authors.
Within this approximation, the appliance of a fresnel boundary condition on the top of
skin to build a semi-infinite geometry has been asserted to be computationally cheap and
accurate at source-detector distances a few mean free paths apart from the light source.
This in turn is meaningful owing to the demand on portability of the probe and its data
evaluation device on the one hand and the circumstance that we have to evaluate signals

continuously i.e. several times a minute on the other hand.
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Modeling in noninvasive diagnostics therefore has to face the problem of combining a small
computation complexity and the ability of coping with skin optical parameters which vary

spatially and temporaly on different scales as well as between individuals.

In this thesis we embark on the following strategy:

First, we introduce radiative transport theory outlining the Cauchy problem of radiative
transport and related problems that have especially been developed in nuclear reactor theory.
Next, we advance to the diffusion approximation of the RTE and will establish a layered
skin model using the method of images, likewise borrowed from nuclear reactor theory.
Progress and restrictions will be discussed especially concerning models for small layers
(e.g. epidermal), fourier space models, and the use of a gaussian convolution kernel in order
to model the scattering inside the bottom layer of a two-layer model. Furthermore, we will
propose a heuristics to model the light trait in the vicinity of a directed light source within a
proper class of functions, a relation to a fundamental solution of a feasable diffusion equation
and first results for in vivo data.

Using the law of Lambert-Beer, we will derive an algorithm to separate absorption changes,
and present some results for in vivo data. In the last chapter we will have to excurse to data-
driven approaches in order to cope e.g. with drift artefacts that pollute to a great extent our
in vivo experiments. A new higher-order method, namely independent component analysis
(ICA) will be proposed and an implementation issued by the neural network research centre
at Helsinki University of Technology will be applied to in vivo data. Combining a model-
based approach and the ICA approach, we will outline a hybrid method to simultaneously

successfully eliminate absorption artefacts, and an existing drift artefact.



Chapter 1

Medium, Probe Unit

1.1 Skin Tissue: Anatomy, Physiology

We will review the anatomical and physiological properties of skin, provided they affect skin
optical properties and changes thereof. First, we have to speak of skin as a layered medium,
namely we can distinguish three different types of tissue which are called the epidermis,
the dermis and the subcutis layer. The epidermal layer could be further distinguished into
the stratum corneum and the stratum basale. The following picture shows the anatomical
structure of skin including specifications and several substructures like hair, sweat glands

and first of all the capillary loops at the upper dermis:

MAIR
-
STRATUM |~
CORNEUM
(8-204m) \ EPIDERMIS
{50-150 um)
{
e CAPILLARY LOOP
sengt&:g IN PAPILEA
T
' | DERMIS
) {CORIUM)
1“4 mm
HAIR MATRIX

s EXOCRINE (S
{SWEATR

CAFIULARY LOOP.
IN PAPILLA

1 SUBCUTANEOUS
} TISSUE

Figure 1.1: Skin tissue in sectional view, (Source: Roche [48]).
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Figure 1.2 shows a three-dimensional view of an in vivo scan obtained by optical coherence
tomography. The stack of two-dimensional sectional slices was merged to a three-dimensional
picture by an algorithm developed by C. Dartu at the IWR, Heidelberg.

Figure 1.2: Skin tissue in three dimensions, about 500m deep.

The capillary loops are of special importance because they accomplish the exchange of sub-
stances produced or consumed by tissue cells (glucose, oxygen, carbon dioxide etc.). The
exchange of such substances through capillary walls is maintained by diffusion along the con-
centration gradient which in turn causes a time lag between concentration changes of blood
constituents and their counterparts in ISF. Although the statements vary to a great extent,
it turns out that at increasing blood glucose concentrations the time delay is about 5min
and at decreasing blood glucose concentrations it is about 8min [48]. The time delay varies
significantly intra- and inter-individually and may depend on blood flow, tissue structure,
the sensors implantation site, the actual tissue metabolic requirements etc. An ISF glucose
signal corresponds in some sense to a regularized version of the respective blood glucose
signal: sharp glucose peaks provoked e.g. by glucose infusion are mapped to smooth ISF
glucose swings. This fact is of importance if we want to calibrate a noninvasively measured
ISF glucose signal by blood glucose measurements. Figure 1.3 illustrates the difference under
the assumption of a linear correlation between the scattering coeffitient p/, and ISF glucose.
The physiological characteristics of interest are mainly governed by changes in blood flow,

blood consistency, blood volume and water content of skin. Physical changes of interest
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Figure 1.3: Glucose clamps & glucose swings (noisy), (Source: Roche [8]).

concern temperature variations and mechanical impact.

1.2 Skin Optical Parameters

As we are interested in the modeling of skin structure within radiative tranport theory we
have to map the anatomical and physiological facts given above to skin optical parameters
in a meaningful way. In the following we will distinguish between absorption and scattering
properties of the influencing factors as they ensue for NIR or visible light. Additionally, each
layer change defines a certain boundary involving a proper boundary condition. In particular

we get, the following schedule:

i. Epidermis

The main absorbing constituents are water and the skin pigment melanin. Due to its small
thickness (50 — 150um) the specific absorption is small compared to the total absorption
inside skin. The specific scattering is also small with a strong forward orientation. The re-
fractive index ratio between stratum corneum and stratum basale is about n,, ~ 1.51/1.34
, [52].

Because the epidermis has no blood supply there is no direct absorption change due to blood
induced physiological variations. But the epidermis is influenced by temperature changes
and changes of water content, which has a crucial impact on scattering properties as well as

on the boundary structure.

ii. Dermis
The main absorption inside dermis in the range of 600nm to 900nm is caused by haemoglobin

absorption. We distinguish between oxygenated and deoxygenated haemoglobin whose ab-
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sorption spectra are discussed in the excursus below.

As in the introduction stated, the glucose effect has its roots in the difference between the
refractive index of ISF and cell membranes, where the former is altered. More specific: the
refractive indices are n = 1.35 for the ISF and n ~ 1.38 for the membranes [27]. An increase
of glucose in the ISF yields an increase of the refractive index of the ISF and thus decreases
the difference to the index of the membranes with the consequence that the scattering coef-
ficient decreases: the glucose effect is anticorrelated to glucose changes.

We don’t want to forget the collagen fibers which constitute about 20% of the dermis vol-
ume. They make up the so called Langer lines, which give skin a permanent tension. It has
recently been found that they also give light a preferred scattering direction: light scattering
inside dermis is greater perpendicular to those lines than along them [23] [45].

Due to the strong blood circulation especially at the upper dermal regions we can assume
isothermal conditions except for the reason of physiologically induced blood circulation

changes.

Both, epidermal as well as dermal tissue are scatter-dominated media. Specific values for

absorption and scattering coefficients will be given in the next chapter.

iii. Subcutis
The subcutis consists in the main part of fatty connective tissue cells. Both, the scattering

coefficient and the absorption coefficient are smaller than inside the dermis.

1.2.1 Excursus: Measuring Blood Oxygenation

We excurse to a method of noninvasive blood constituent measurement which utilizes the
virtue of having specific absorption spectra. As can be seen in figure 1.4 there is a clear
difference in the absorption spectra of oxygenated to deoxygenated haemoglobin except in
one point. At this isosbestic point at A; = 805nm the extinction coefficients of haemoglobin

and oxyhaemoglobin coincide. The extinction is given by the law of Lambert-Beer:
E=¢-c-d . (1.1)

The extinction E is a product of the pathlength d , the extinction coefficient €, and the
concentration ¢ . It is now possible to track temporal variations in blood oxygenation by
building the quotient F\/E,, . If we assume that the optical path lengths of photons at
both wavelengths are almost equal, we get a measure which correlates to the oxygenation
change [36].

Blood oxygenation is one of the few well understood and controllable physiological pa-
rameters. Unfortunately the situation for glucose is much less specific: The absorption
coefficient for glucose in the diagnostic window lies between 1072 and 1072cm~! . In the
visible and NIR range, absorption is thus clearly dominated by other blood constituents

and consequently there is no possibility to track glucose changes by utilization of absorption
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Figure 1.4: Absorption spectra of different blood

constituents, (Source: Klotzer [36]).

spectra only.

Summary and Annotations

#  Skin is organized in layers which are heterogeneous in themselves on different scales.
They vary in tissue compartimentation, skin appendages, organization and distri-

bution of blood vessels, regional differences in tissue structure etc.

#  Variations of blood volume, blood flow and haemoglobin oxygenation are mostly
responsible for absorption changes in skin tissue thus interfering with noninvasive

ISF glucose monitoring.

# It is virtually impossible to eliminate the influence of most of the interfering pro-
cesses on glucose determination by keeping them constant, at least under normal life
conditions since the underlying regulation mechanisms are very complex, strongly
linked to each other, and essential for maintaining the viability of the human body.
Therefore interfering processes have to be eliminated by algorithms applied to the
devices signal.
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1.3 The Probe Unit

The probe used for the measurements consists of a linear array of optical fibers with a core
diameter of 200pum. There are two types of fibers, namely one illuminating fiber (source) and
a dozen collecting fibers at distances ranging from 0.8 to 10mm from the illuminating point.
The source light is switchable between different single wavelengths in the NIR range and
power stabilized in direct current (DC) mode. Both, the illuminating fiber and the collecting
fibers are oriented perpendicular to the skin surface. The source light has the characteristics
of a pencil beam and is thus anisotropic. The paths of the photons arriving at the detector
fibers are characterized by multiple reflections and backscattering. Summarizing, we speak
of spatially-resolved reflectance measurements in DC mode.

A crucial point in noninvasive measurements is the connection of the probe to the skin
surface. We assume that the connection prevents the probe from slipping on the skin and
that the interface material provides stable optical conditions between the probe and the skin
surface. Especially the interface material has almost no scattering and almost no absorption.
Figure 1.5 shows a sectional view of the probe in original size and the decreasing reflectance
dependent on the source-detector distance. Contrary to the suggestion of figure 1.5, the

light source
detectors

probe unit

} t + + 140
2 4 6 8 10
source-detector distance [mm] T 120 =

T 80

T 60

140

intensity [ nA/mm®]

T 20

scattered photons

Figure 1.5: The NIT 1.37 probe unit, scattered photons in upper

skin and a characteristic reflection profile, (Source: Roche [36]).

distance between the skin surface and the probe surface is exclusively dependent on the
thickness of the interface material which amounts to about several tenth of a millimeter.
However, all modeling proposed in this thesis assumes the fibers to be placed directly above

the epidermis i.e. the top boundary of skin.



Chapter 2

Modeling within Radiative Transport
Theory

2.1 Analysis of the RTE

We start our considerations with an equation that describes the dynamics of light in
a scatter-dominated medium. In the following, we assume that the phase relations of
photons vanish after a few scattering events. Accordingly, the Maxwell equations which
are convenient to describe the wave character of light can be replaced by an equation that
describes gas dynamics which in turn is comparable in a very high accuracy to photon
dynamics [31]. If we assume the unique velocity of light ¢, we get in the monochromatic

case the radiative transfer equation (RTE) which is a linear equation in the NIR regime [10]:

1
g% +0 - Vu(z,0,t) + pu(x)u(z,0,t) = py(z) / n(0- 0\ u(z, 0, t)do' + q(z,0,t) , (2.1)
5‘2

for (z,0,t) € R* x S x R" |

with the angle-, space-, and time-dependent radiation intensity u, and source ¢. In skin
tissue the attenuation coefficient pi(r) = ps(r) + po(r) almost equals the scatter coefficient
its ~ 15 which is about 1000 times bigger than the absorption coefficient p, ~ 0.01. The

integral kernel n known as phase function is normalized:

/ n(0.0)d0 =1
S2
and fulfills the symmetry conditions:

77(9’0,) = 77(_9’_9/) )
77(0,79) = 77(979l)

9
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Two possibilities of fulfilling these conditions are given by:

const,. isotropic scattering,
0(0,8') = P(cos ) :{ D g °

47 (1492 —2gcos a)3/2

Henyey-Greenstein scattering.

To go more into detail, the phase function P is expanded into spherical harmonics:

N

Z%—i— ymy Ly (cosa) (2.2)
k=0

1

P(cosa) = —
( " 4n
where the L;’s are the Legendre polynomials of the order k. Following the Henyey-Greenstein
interpretation of anisotropic scattering, the components m; are expressed by constant ex-

ponentials m; = ¢* and N = 2 . The parameter g is called the anisotropy parameter. Tt is
defined as the average cosine of the scattering angle a [54]:

 J52(0-9")P(cos a)dt
o [5> P(cos ar)do’

, a=/(6,0"

The Henyey-Greenstein phase function is commonly used in tissue optics and has been
proven to fit experimental data for a wide range of tissue types, where g ~ 0.9 which stands
for a strong forward direction of scattering [50] [54].

2.1.1 The Cauchy Problem of Radiative Transport

We will sketch one possibility of putting up a boundary structure and initial values for
equation 2.1 to yield the Cauchy problem of the transport equation. We will outline some
existence and uniqueness results concerning this problem and refer to the book of R. Dautray
and J. L. Lions [15] for further details and proofs.

The Cauchy problem of the time-dependent RTE is formulated as follows:

Problem 2.1 Find a solution u(z,0,t) for equation 2.1, and (v,0,t) € IR* x S?x]0,7[

with the initial condition u(z,0,0) = up(z,0) in VxOCIR xS% Vcompact |,
and the boundary condition w(z,0,t) =b(z,0,t) on T_ = {(z,0) €V xO;n-0 <0},

where n denotes the outward normal to OV at x.
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Remark 2.1 We mention two special types of Cauchy problems that have been considered in
the past especially to model the neutron dynamics inside nuclear reactors. The one problem
is called the reactor problem which is characterized by the lack of sources and reflecting
boundaries (no neutrons come from outside into the reactor), V is hereby relative-compact,
open and convex in IR®. The other problem is called the scattering problem and is defined on
whole IR®. Both problems are given initial values wy. The interested reader is e.q referred to
the work done by Choulli & Stefanov [11]. They utilized the scattering problem to investigate
tissue media by extension of the restricted scattering area V by a vacuum area IR*\ 'V so
that there are no interactions of the photons inside IR* \ V with the surrounding area. We
stress that the results obtained in nuclear physics are hardly transferable to the much more

complex case of living tissue.

To treat the general Cauchy problem, we first define the function space LP(V x ©), p €
[1,00[ to be the space of all functions f which are measurable in respect to the product

measure dxdf such that

1/p
| fllzrve)y = </ |f(a:,9)|pd:r;d9> < 00
VxO

We want to search for solutions in the spaces LP(V x ©) . A kind of natural choice would be
to take the LP(V x ©) with p = 1 due to the interpretation of the total current of photons

N(t) at time ¢ in configuration space:
lullivre = / w(w, 0, 1)dzdd = N(t) < 0o
Vx©

In analogy to the LP(V x ©) spaces, we define the LP?(V x ©x]0, 7[) spaces and the sobolev
spaces WP(V x ©x]0, 7[) to be those spaces of functions f such that f and its distributional

derivatives D*f of order |s| = > |s;| < k all belong to LP?(V x ©x]0,7[) . W? is a normed
=1
linear space, for further details on those spaces see e.g. [58]. We are now able to formulate

theorems of existence and uniqueness for problem 2.1 in the homogeneous case b =0 .

Theorem 2.1 For

a(x,0) e L*(Vx0O) , a>0
and
/ n(z,0',0)du(d) < Cy V(z,0) eV x 0O

S2
/ (2,0, 0)du(@) < C V@, 0) €V x O
S2

with positive constants C1, Cy , and

g € PVxexor) . pelloo |
Uy € LP(VX(“)) ,
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problem 2.1 with b = 0 has a unique solution in WP .
Theorem 2.2 If further the following consistency condition is fulfilled:

f-Vuy € LP(VX(‘)) , U0|1"7:0
g € CY[0,7];L"(V x @) ,

then w is a strong solution of 2.1; it satisfies:

u € CY[0,7]; L*(V x ©))
0-Vu € C°0,7]; L*(V x ©)) ,
ul)p. = 0 , Vtelo,r]

If ¢ > 0, then ug > 0 implies u > 0.

In the case of an inhomogeneous boundary condition b € L? # 0 we have an existence and
uniqueness result in a weak sense as stated in [15] and also the positivity result: If b, uy and

q are positive then the solution u of the inhomogeneous problem is also positive.

Remark 2.2 The previous theorems inclose the fact that transport problems as opposed
to related diffusion problems do not have a reqularizing effect to their solutions. Both in
the homogeneous and the inhomogeneous case u can be discontinuous even for ug € C,
especially if the domain has ’holes’ [15].

Analoguous existence and uniqueness results are given for the stationary RTE as can be seen
in the references [9] [15].

2.1.2 The Inverse Scattering Problem

If we look at transport equation 2.1 and assume that the scattering integral is identical to
zero, we are in a regime were the attenuation coefficient u:(x) is uniquely determined by
boundary data '. The algorithm which performs this inversion is called an inverse Radon
transform and all reconstruction techniques in X-ray tomography are based on this transfor-
mation. It is now an interesting question as to what rate it is possible to reduce the energy
of X-ray photons thus leading a scattering integral # 0 until in the NIR regime at least parts
of the medium are scatter-dominated. Choulli & Stefanov [11] as well as Antyufeev & Bon-
darenko [7] have proven existence and uniqueness results of an inverse problem to equation
2.1 in the case of given boundary data, i.e. the possibility of reconstructing the attenuation
coefficient under certain conditions on p;(z) and n and -unfortunately- in the case of weak
scattering. This is due to the fact that one applies a Radon transform to the singular struc-

tures of the solutions and therefore to the maximally once scattered photons: E. W. Larsen

Lwithin a class of appropriate regularizations [42)]
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has proven that such singular structures exist in L*(V x ©) and that those terms are due to
unscattered or maximally once scattered photons, the portion of all other photons has been
proven to be describable by regular integrals [38]. But in the scatter-dominated case it is
impossible to measure unscattered or once scattered photons separately from other photons:
the probability for a photon to get through tissue of the thickness 10mm unscattered is about
exp(—100). Existence and uniqueness results are obsolete a few mean free paths (mfp) apart
from the light source in the diffusion regime as we will see in chapter 4. Therefore, clas-
sical reconstruction techniques are not applicable in scatter-dominated media. Correction
of scattering artefacts as well as the identification of a scattering-dependent parameter will

depend on the accuracy of a model used for parameter estimation.

2.2 Discretizations of the RTE

2.2.1 Monte-Carlo Simulation

An easy to handle and very intuitive way to discretize transport problems is the Monte-Carlo
method which in opposition to the demanding and usually sophisticated PDE solvers based
on finite-differences is mainly used when only qualitative influences of e.g. measurement
settings on the reflectance profile have to be investigated. Contrary to finite-difference
methods there is no error control depending on the discretizing demands of local structures
of the medium, the error is only asymptotically controllable with unknown constants, i.e. the
quality of the simulation depends on the number of photon runs which are usually in the
range of 107 —10%. Due to the very slow convergence, the computation costs are respectively
high and amount from several hours to days on a usual workstation. A very useful and often
used implementation is the MCML code of Wang & Jacques [47] which is public domain and
covers most of everydays demands on probe simulation, skin phantom specification as well
as the verification of physiologically motivated skin optical effects in vivo, for examples we
refer e.g. to [23] [32].

2.2.2 Finite-Difference Methods

For the sake of completeness we want to mention finite-difference methods and their most
important representative the finite-element methods. Due to the utilization of the so-called
galerkin orthogonality, the latter methods obtain optimal error control contrary to Monte-
Carlo simulations.

Concerning a priori and a posteriori estimates for galerkin and petrov-galerkin methods as
well as several acceleration schemes like crosswind diffusion, streamline diffusion and the
whole endeavors made in adaptive grid refinement we want to mention the research team

of R. Rannacher et al. at Heidelberg University and some of their publications [18] [31] for
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further investigations. An overview of the methods has been given e.g. by the book of Lewis
& Miller,Jr. [40].

2.3 Evaluation

The attempts to solve the RTE in the case of scatter-dominated media leads to computation
costs which are preferentially settled on large non-portable computing devices. Especially
research teams who have focussed on the development of NIR imaging algorithms which yield
a spatially resolved three-dimensional parameter space (usually the attenuation coefficient)
are subject to this circumstance. We mention the research teams of A. Hielscher at SUNY
downstate medical center, Brooklyn, and of S. Arridge at King’s Colledge, London. Both
teams raise the claim of identifying the attenuation coefficient within NIR datasets in three
dimensions. They confirm that in most cases it is still impossible at the moment to even
state whether those endeavors for all kind of tissues will succeed [4].

In general, theoretical motivated benchmarking as well as the formulation of existence and
uniqueness results for complex geometries remain open. At the moment it seems that the
search for some kind of "Radon transform for scattering media” will produce no results and
most likely will never do, at least for scatter-dominated media.

Having this in mind, the strategy of solving an inverse boundary value problem for the RTE
several times an hour on a portable device has to be thought over. Therefore in the following

two chapters we try to handle the problem on the basis of an approximation.



Chapter 3
The Diffusion Approximation

The motivation to take the diffusion approximation of the RTE is due to the fact that
skin is a scatter-dominated medium, and therefore the dynamics of photons a few mfp
apart from a directed light source is describable by a diffusion process. On the basis of
this approximation, multi-layer models will be formulated in order to meet skin optical
properties. Due to the regularizing effect of diffusion processes, the solutions of those
models all are in C*°. We do not have to weaken the topology of our function spaces to
Sobolev spaces. Additionally, a heuristics to treat the characteristics of light propagation in
the vicinity of a directed light source will be proposed. The models are usually formulated
in three space dimensions and time domain (DC mode if stated). We repeat the RTE of

chapter 2 to write:

10u

o + 0 - Vu(x,0,t) + p(x)u(z,0,t) = py () / n(0 -0 u(x, 0 t)dd + q(z,0,t)  (3.1)

52

for (z,0,t) = (r,2,0,t) € IR* x R x S®> x R"

It is transformed to a continuity equation by integrating over all solid angles and using the
definitions of the fluence rate ® and the flux J:

%% +VJ(x,t) = —pa®(x,t) + Q(z,t) (3.2)
where
O(z,t) = /u(x,ﬁ,t)dﬁ , (3.3)
T 1) = / 0. u(z,0,)d0 | (3.4)
Qe t) = /52q(x,9,t)d9

15
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If we assume Fick’s diffusion law:

J(z,t) := — D(z)-VP(z,t)

we arrive at the diffusion approrimation of the RTE:

10®(z,t)

—V - D(@)V®(x,t) + . P(x,t) + T = Qz,t) , (z.t)e R*x R" , (3.5)
using the definitions:

Q(z,t)  isotropic source, (3.6)

D(z) = 1/3(pe(z) + p(x))  diffusion coefficient!, (3.7)

wo(x) = (1 — g)us(x)  reduced scattering coefficient . (3.8)

(3.9)

In the definition of the reduced scattering coefficient, the parameter g corresponds to the
anisotropy parameter defined in chapter 2.

A solution of 3.1 also satisfies equation 3.5 if (see also [15]):

i. the light sources are isotropic,

ii.  the solution is considered far from boundaries and far (3.10)

from zones where the medium parameters vary strongly,

iii.  the medium is scatter-dominated (p5 >> f1,).

Remark 3.1 If condition i holds, then for source-detector distances greater than two to
three mfp a solution of equation 3.1 behaves as if assumption i would hold. In tissue media,
we therefore assume that the characteristics of the light trait remains constant for distances

greater than two to three mfp from the source.

Exact estimates for the applicability of the diffusion approximation exist for very simple
geometries only. In section 3.1.4 we will sketch a result given in [15] for the Cauchy problem.
The extension to complex geometries of tissue optics is a subject of permanent -principally
phenomenological- research. For comparisons to Monte-Carlo simulations see e.g. [49], and

for comparisons to two-layer models see e.g. [1] [23].

!Some authors argue that D(x) = 1/3us(x) is the right definition of the diffusion coefficient. For a

contribution to the discussion see e.g. [3] [16]
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3.1 Boundaries - The Semi-Infinte Medium

In the next step in skin modeling within the diffusion approximation we will map the layer
structure of skin to a proper boundary setting. For simplicity, we assume that skin layers
are connected by parallel oriented planes applying translationally invariant boundaries with
a proper boundary condition. We begin our considerations with the simplest case: the semi-
infinite medium consisting of a scatter-dominated medium at bottom and vacuum on top.
The proper boundary condition is assumed to be a Fresnel boundary condition which gives
the amount of reflected and transmitted light at a smooth boundary dependent on the ratio

of refractive indices.

3.1.1 Fresnel Reflection

r boundary

skin

Figure 3.1: Fresnel reflection at the surface in sectional view.

Vectors Q" and €2 give the directions of upcoming and reflected light ® respectively. Fresnel’s

law of reflection states that on the boundary we have:

Oz, t) .m0 = R(OV)B(2, Y 1), (2.t)=(r,z,t) ER*xRT , Q,Q €85 |
(3.11)

where R(€') is the reflection function given in Fresnel’s law (in the case of unpolarized light)

1
R(QY) == — 3.12
(&) 2 + 2 | Ny, cos B + n, cos b, ’ (3.12)

2 2
Ny, COS B, — 1, cos @ 1 [n,, cos@ —n,cosb,
Ny COS B, + N,y cos 0

where n,,, and n, are the refractive indices of medium and vacuum respectively, 0,0 are the
polar angles of direction €2, resp. and 6, depends on #' by Snell’s law:

sinf, n,

sin 6’ Ny
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Remark 3.2 For practical situations, function 3.12 can sufficiently be approximated by the

piecewise constant function

1 0.<0<
R () = : (3.13)
Ry 0<6 <4,

ME]

with the critical angle of total reflection 6. = arcsin g—; .

Applying an idea of Marshak [43], we are able to get the Fresnel condition making the ansatz:

/ Bz, Q1) Vi (Q)dQ = / R(Y)®(z, Y, 1) Yy (Q)dY (3.14)

52/2 52/2

We expand the product ® - Y} ; with the spherical harmonics Y} ; to the first order and get

the approximation:

1
O*(z,Qt) ~ 4—<I>(x,t) + %J(w,t) -Q

7

Thus we can write both sides of 3.26 as

P(x,t t
/ O*(z, Q, t)dQ ~ (Z’ )+ J(Z’ ) ,

52/2

and
O(x,t)

4

J(x,t)
2 )

/ R(Q)®* (2,9, 1)dY ~ R, _ R
52/2
where
/2
R, = /2sinﬁcos OR(0)do
0
/2
R; = / 3sin 6 cos® OR(0)do

0

Finally, ansatz 3.26 reduces to
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O (z,t) N J(z,t)

—R; 1
. 1—|—Rj
or O(zr,t) = 1—R¢( 2J(z,t))

3.1.2 The Extrapolated Boundary

The boundary condition we just derived, represents the fresnel law at a boundary in the
diffusion approximation. It has the form of a mixed boundary condition. Using the method
of images, we can easily transform this condition to a Dirichlet boundary condition above
the physical boundary at a so called extrapolated boundary [17]. We assume that on the
physical boundary we have ®(z,t)|.—o > 0. If we further assume the light source @ to be
positioned inside the medium (see also the next subsection) we can infer that ®'(x,t)|,—o =
2®(x,t)].=0 < 0. We are thus able to extrapolate ®(z) above the physical boundary by a

distance A such that we have:
O(z,t)],—ao =0 , A= —T17— (3.16)

Substituting 3.15 into 3.16 and using Fick’s law we get:

L+ R o 1+R; 2

A=2 = [ 3.17

where /4, = Imfp , A is called the extrapolation length.

3.1.3 Source Considerations

Following remark 3.1, a directed point source situated at the top of skin in tissue optics is
usually substituted by an isotropic point source located at zy = Imfp inside skin, called a

virtual scattering light source:

Q(r,2,0,t)],—.c0 = Q()0(2)0(0 —0y) —  Q(r,2,t)]r—0.——2 = Q) (x — 2p)
(3.18)

The advantage of replacing the directed source is that in the latter case we have a fundamen-
tal solution for equation 3.5 if we set the diffusion coefficient constant. It is simply written
as:

|z ?

4Dct

O(|z],t) = exp(— — pact) ,  (z,t) € R* x RY . (3.19)

(nDet)3?
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To get the DC mode, the time derivative in equation 3.5 is set to zero, the resulting funda-

mental solution in this case reads:

1 e
O(|z]) = =D -exp(—’/ﬁ z)) , e R (3.20)

To fulfill the extrapolated boundary condition, we have to simply add a negative virtual

scattering light source at a distance 2 - (A 4 zg) above the physical boundary. In DC mode

we get the model function:
O () = P(x — 20) — P(z + 25) (3.21)

with
zp=2-(A+2) ,20=1 ,

where @ is the fundamental solution 3.20 .

Haskell et al. proposed a modification of model function 3.21 which takes into account that
on the physical boundary the detected signal has contributions from the fluence ® and the
flux J = 22, [21]. The total signal is then given by:

1- R,
1

1-R; 0

: (I)tot z= "5
(#)]e=0 + 2 0z

(I)tot (-T)|z:0 ) (322)

@Haskell (I) |Z:0 =

where the precise linear combination of fluence and flux is a function of the numerical
aperture of the fiber. For applications of this method we refer to [17] [21] [33] [46].

3.1.4 Estimates

In order to justify the diffusion approximation of the RTE, we give a pointwise, i.e. L*
estimate. Therefore, we consider the stationary counterpart of the Cauchy problem as
given in chapter 2. The following theorem compares a solution of the stationary transport
problem in the case of a scaled medium with a solution of the appropriate stationary

diffusion problem. Again, we refer to [15] for further details and proofs.

Theorem 3.1 We assume the following reqularity conditions:

ps(r) € C**(V), and q(z), po(z) € CH*,  V C IR*open, bounded',
then the unique solution u. in L>(V x S?) of the stationary transport problem.:
1 1 1 , o
;evuf(x79) + ua($)+€_2/j’8($) ue(xae) = 6_2Ms($) 77(99)%(3779)519 +q($a0) )
5'2
for (2,0) eV xS* and wulpr. =0 ,!

'In the case where V is unbounded, we need a further condition at infinity: | llim q=0.
T|—>00
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and the unique solution w in L (V') of the stationary diffusion problem:

_aii <D($)agg)> + pa(@)u(z) = q(x)

for €V and ulspy =0

satisfy:
e — wl|po(vxszy <€ Cy

with a positive constant C,, depending on q.

We emphasize the fact that the previous theorem assumes the Dirichlet boundary condition
to be fulfilled at direct neighbourhood of the scattering medium. A virtual scattering light
source, as constructed previously would therefore approach the extrapolated boundary in
the case € — 0, if we would transfer this theorem to the case of an extrapolated boundary
condition. However, a consistent formal framework for this case would need a two-scaled
medium, thus leading to € — oo in the vacuum area between the physical boundary and the

extrapolated boundary.

3.2 Two-Layer Models

We will consequently improve the halfspace model of the preceding section and introduce
two-layer models in order to simulate the dermis-subcutis structure of skin 2. This structure
is mainly given by a distinct pair of (g, p)) for each of the layers. Additionally, some
models allow a refractive index mismatch between the layers if suited. There are roughly
two methods distinguishable: fourier space models and models in real space; both will be

proposed in the following.

3.2.1 A Fourier Space Model

The fourier space model of Kienle et al. is of great importance in the imaging community
to model the dermis-subcutis structure in the refractive index matched case. In addition,
this model serves as a basis for hybrid methods which include Monte-Carlo simulations in
order to improve the accuracy of the model in the vicinity of a directed light source [1]
[2] [34] [35]. Our starting point is diffusion equation 3.5 transformed to DC mode, in the
inhomogeneous case for a virtual scattering light source situated in the top layer, and in the

homogeneous case for the bottom layer:

dr—2z) 0>z>1
—V -DVO(z) + p,P(z) = : (3.23)
0 >z

2We recall that: T := {(x,0) € 9V x S?;n -0 < 0}.
2“two-layer” means one layer and a halfspace beneath.



22 CHAPTER 3. THE DIFFUSION APPROXIMATION

for z € IR* and layer-thickness |I|.
Assuming translational invariance, these equations are transformed to ordinary differential

equations using a two-dimensional Fourier transform:
b(s,z) = / / O (z,y, z) expli(siz + s2y)|dzdy. (3.24)
—00 —00

We apply transformation 3.24 to equation 3.23 and obtain

0? 1
@051(8, 2) —aigi(s,z) = Bé(z — 2p), 0>2>1, (3.25)
2
@@(Saz) — a3pa(s,2) = 0, 1>z
where D2
a? = (tsD#M) , st = 8% + 8% , ¢ =1,2 indicating the layers.

The following boundary conditions are applied:

i. o(s,A) = 0, extrapolated boundary condition ,
ii. (s, —o0) = 0, boundary condition at infinity,
(3.26)
iii. 3282 = 1, continuity of the fluence,
iv. Dlwpzl = DQWLZZ, continuity of flux.

Conditions iii. and iv. apply at the boundary between the layers and are fulfilled in the
matched refractive index case only [20]. Applying boundary conditions 3.26, the solution of
equation 3.25 at the top boundary is given by (see also [30]):

sinh(aq (A + 29)) Dy cosh(ag (I — 2)) + Daag sinh(ay (I — 2))
Dlal) D1041 Cosh(a1 (l + A)) + DgOég sinh(al (l —+ A))

d(8,2)|=0 = (3.27)

sinh(ay (29 — 2))
Dlal

We now have to transform solution 3.27 back to real space. As we assume cylinder symmetry,
the two-dimensional fourier transform can be written as a Hankel transform, which in our
case is given by:
o0
B(r, 2) |y = % / b(s, 2)sJo(s7)ds | (3.29)

0
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where J; is the Bessel-function of zeroth order.

The evaluation of this integral is a crucial step in solving this two-layer model, several
authors have focussed on it [41] [59]. Another relevant point of fourier-space models in
general is the number of detectors which in our case amounts to 12, which yields oscillating
solutions in space for the forward problem. To have smooth solutions, several hundered
widespread detectors are needed as it is e.g. the case for the SCATTI imager described in
[23]. For the inverse problem, this raises the computation costs of calculating the Hankel
transform to several hours on a usual workstation. G. Alexandrakis (HRCC, Hamilton,
Canada) proposed in his PhD thesis a hybrid approach based on this two-layer model and
Monte-Carlo simulations to handle short source-detector distances [2]. In a discussion, he
clearly stated that his experiences concerning calculation times confute effectivity for the in

vivo setting.

3.2.2 Models in Real Space

In section 3.1, a halfspace model has been constructed adding a negative light source to the
positive one. Consequently it is possible to add on further boundary conditions by adding
further virtual light sources.

To do this, we define two operators R; and R, which map light sources ® given by the

time-dependent fundamental solution 3.19 and situated at & = (0, Z) to their images:

B(0,2,1) = Ra®(0,5,1) = — &(0,25(A, 5), 1) (3.29)

B(0,2,1) = RB0,5,8) = (G+d)(0,25(A,5),1) . (3.30)

R, is known to fulfill a Dirichlet condition at an extrapolated boundary situated at A
with the arising image source situated at zg(A,Z), as needed to construct a semi-infinite
medium.

The convolution operator R, is needed to fulfill a second boundary condition in order to
represent a second layer. In analogy to the light source created by the operator R, whose
position is dependent on two degrees of freedom (A, Z), the light source created by the
operator R, is dependent on (A’ Z). We propose two useful boundary conditions fulfilled at

A’, dependent on the actual medium setting:
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i. Index mismatched case: the medium beneath the second boundary is not
scattering (turbid slab geometry). A’ in this case fixes the position of a second

extrapolated boundary situated beneath the second physical boundary:

G = —0(x— z)

ii. Index matched case: the medium beneath the second boundary is scattering.
We assume continuity of flux and fluence at A’, as proposed in 3.26. A’ in this case
serves as a parameter which is related to the scattering properties of the bottom

halfspace:

G'= Gaussian kernel (proposed)

Figure 3.2 shows a coordinate system with notations for the extrapolated boundaries as well

as the positions of the light sources situated on the z-axis.

d
A
zb +
A— — — 4 —_——_— =
=
r
z0 +
A — e —_ — —
zb' 4

Figure 3.2: Physical boundary (r-axis) as well
as extrapolated boundaries and positions of light

sources.

To take into account the simultaneous presence of the Dirichlet boundary condition at
the top boundary and one of the former conditions, we have to iterate the application of

boundary conditions and therefore of the operators. One gets the following expression for
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the light intensity at the top boundary (see also [53]):

o0

L+ (14 Ry) > (R4R.)"

n=1

(I)tot(xa t)|z:0 — {

(1+ Rd)cb} (z,t) , (v,t) € R*x R'

(3.31)

To reduce computation costs, the series is usually truncated after n = 2. Case i. corresponds
to the models of Wang [55] or Contini et al. [13] to model turbid slabs. Case ii. is related to
a model of Tualle et al. [53] extended by the proposition of the Gaussian convolution kernel.
It is also possible to merge cases i. and ii. to a model that provides two index mismatches

and scattering inside the bottom halfspace, which is left here.

Remark 3.3 Reasons for taking the Gaussian in case ii.

At first, it is not clear which convolution kernel should be used in case ii. and whether such
a computation could be done analytically, or numerically and therefore time consuming. In
order to overcome this awkwardness we propose the following strateqy:

It is a classical result that the solution of a time-dependent diffusion process with no absorp-
tion is given by a Gaussian function with increasing variance in time. In the case of skin
tissue where we have almost no absorption in comparison to scattering, the approximation
i = 0 is therefore conceivable. As the convolution in 3.30 performs further scattering inside
the bottom halfspace of already scattered light coming from the top layer, translation to arith-
metics of Gaussian functions therefore yields the convolution of a Gaussian by a Gaussian
which is nothing but a spreading of a Gaussian. The operator R. in this case just substitutes

a variance by a greater variance.

We have to annotate that our measurement setting works in DC mode. Therefore, the
proposition of remark 3.3 is not of practical benefit for our studies. Nevertheless, it may
be significant for noninvasive measurements in general: it is not yet fully clarified how the
model of Tualle et al. motivates the use of a certain convolution kernel in the ii. case and
how the degrees of freedom of the numerous virtual light sources are mapped to skin optical

properties.

3.3 Anisotropic Diffusion - a Heuristics

In the preceding sections we dealt with some possibilities of properly applying boundary
conditions within the diffusion approximation. We now want to present a heuristics to
model the trait of a directed light source introducing a proper class of functions detached
from the framework of fundamental solutions. This class of functions is constructed replacing

the diffusion constant D in equation 3.20 by a symmetric positive definite diffusion tensor
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D € IR . In this way, we are able to change the trait of a light source to be a rotational
ellipsoidal in space (in [56] this type is called anisotropic diffusion for the case of absent
absorption). In our application, we have to assume that the ellipsoidal trait of the source
will change fast in space to become a spheroidal trait. The assumption that isosurfaces of
light intensity change in this characteristic manner is motivated by experiments where light
is radiated obliquely into skin and resulting isolines of the reflected light on the boundary
are egg-shaped i.e. the isolines eccentricity in direction of the light source differs from the
eccentricity in the opposite direction. Moreover, this difference vanishes a few mfp apart
from the source; more findings concerning probes with an oblique light source are treated in
the PhD thesis of Marcus Hermann (Roche diagnostics GmbH) (to be published).

We model this behaviour by setting D dependent on the distance from the source:

. . D1(|x|) 0 0
D=D(k) == | 0 D) 0 . Dilla)) = Doflal) . (332
0 0 Ds(|z])

In DC mode we arrive at the following expression:

—1/2

. Dy (|a]) - 2

————-exp | =/Ha D;1/2(|$|) - Ty , &= (21,2,23)" € R®
—-1/2

| D3(z]) - 3

O(|z]) =

(3.33)

Figure 3.3 illustrates a plot of isosurfaces for ® dependent on different ratios of D; 5/ Dj.
As we are interested in the light intensity at an array on the top of skin, expression 3.33

reduces to:

[t
() ——— |)-|x|) CreR (3.34)

1
——————exp |~/ =
Am Dy (|x])]x] ( Dy (|
To answer the question, which is the functional behaviour of D;(|z|), we have to put up
a heuristics: Since D;(|z|) is influenced by scattering events and since the radiation gets

isotropic after a few of them it is proximate to take the function:
Di(lz)=D[1—a-b-exp(—a-|z])] , abelR . (3.35)

This function corresponds to the seceding probability of a photon being still unscattered as
it travels through the medium (we leave out the 1/|x|?*-factor for reasons of consistency and
get the limit of isotropic diffusion for a = 0). The anisotropy parameters a and b have to
be estimated using in vivo or skin phantom measurements, a respective fit result is given in
appendix A.

We emphasize that a space-dependent diffusion coefficient is incompatible with the funda-

mental solution of equation 3.5 and its steady-state counterpart for the case Q(z) = d(z).
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Figure 3.3: Isosurfaces of ® for anisotropic diffusion

(arbitrary units in (x1, z2, r3)-space).

However the function class given by 3.33 is a solution of equation 3.5 with an extended source

Q(z):
—V - D(lz)Ve(|z|) + pa®(|z]) = Q(z) ., zeR® . (3.36)

In appendix A we give the appropriate expression for Q(z). In this way, we simulate light
propagation issued by a sharp, directed light source in a homogeneous medium by a spatially

varying medium (via the virtual diffusion tensor D(|z])) and a virtual, extended light source

Q(x).
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3.4 Evaluation

The diffusion approximation of the RTE has been treated in detail in order to construct
layered boundary models of skin. We summarize the advantages and disadvantages of this
approach:

The diffusion equation has a very simple fundamental solution whose applicability is
restricted to an infinite medium at first. Building linear combinations of such fundamental
solutions, it is possible to meet fresnel boundary conditions in order to construct a halfspace,
or, if we take infinitely many terms, to represent a multi-layer setting. Alternatively, it is
possible to transform the diffusion equation to fourier space, meet a boundary condition
there and to numerically back-transform the solution to real space leading to difficulties
concerning e.g. calculation times.

Each of the multi-layer models suggested treats incoherent boundary scattering only. This
means that no phase relations are induced by multiple scattering between boundaries.
Therefore, the layer thickness for each of the multi-layer models has to be greater than at
least 1mfp. This fact has to be taken into account if one tries to model boundary scattering
within the epidermis whose thickness is below 1mfp. A layered model of the epidermis
is necessary because the optical properties of the epidermis are supposed to be strongly
varying during a measurement period which in turn causes partly strong artefacts. The
applicability of the proposed models is therefore restricted.

It is of course an interesting question why we treat the diffusion approximation of the
RTE exclusively. Especially at small source-detector distances in DC mode and at small
times in the time-domain the diffusion approximation is inaccurate as comparisons to
Monte-Carlo simulations reveal [1] [23]. Therefore, an improvement of the light propagation
model is desired. The interested reader may take a look at certain attempts to model
light scattering in tissue using higher approximations of the RTE. Concerning the next
higher approximation (P3;) we refer to the article [49] and the diploma thesis [57] that
was motivated by Boehringer Mannheim GmbH. The latter title clearly stated the result
that it is not possible to effectively solve the related inverse problem of identifying the
optical parameters (fi,, 1) within the P; approximation applying mixed Fresnel/vacuum
boundary conditions in three space dimensions in less than a week on a usual workstation.
This negative result has been confirmed in a discussion with the author. However to our
knowledge, a rigorous development of error estimates for the P3; approximation in the case

of mixed Fresnel /vacuum boundary conditions remains open.



Chapter 4

Implementation

Sensitivity matrices are introduced in order to assess a skin model in respect of its ability to

map reflectance changes to specific parameter changes.

4.1 Sensitivity Analysis

The sensitivity of a function y(r, P) = y(z, P)|.—o at a source-detector distance r with respect
to a parameter p; € P C IR™ , P a vector of parameters, is defined by:

O(y(r, P))
Ip;
We discretize the distance r to the vector r = (ry,79,...) € IR" and get a sensitivity matrix

S e R" xR

Sp;(r, P) == — , y(r,Pyect . (4.1)

SPI(T]-?P) Spm(rlvp)
S = ' ' : (4.2)
Sp (T, P) -+ Sy, (rn, P)

In the following we distinguish between the sensitivity S; of a measured signal with respect to

a parameter p and the sensitivity S;f of a proposed model with respect to a model parameter.

4.1.1 TIll-Posedness, Optimal Probes and Killing Factors

We follow the treatment of Hadamard to define well-posedness [42]:
Definition 4.1 Regard a mapping A : X +— Y between topological spaces X and Y
respectively. The problem (A, X,Y) is called well-posed if

i. Af=g¢g , Vg€ Yhas a solution

1.  this solution is unique

1i.  the solution depends continuously on the data

if one of these conditions fails the problem is called ill-posed.

29
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Therefore, a homeomorphism between topological spaces defines a well-posed forward and
inverse problem which is expressed by the demands on continuity and uniqueness in the
previous definition. An ill-posed problem therefore weakens the topology of a parameter
space to the topology of a signal space: the information content of the parameter space is
not represented by the measured signal.

The only way to get back a homeomorphism is to weaken the toplogy of the parameter space,
which is also called a reqularization of the problem. Important examples of regularizations
are given e.g. for the Radon transform which is an ill-posed problem at first but yields very
useful results after applying regularization filters to the data [42].

As already stated, diffusion processes which arise in scatter dominated media are char-
acterized by a strong weakening effect on the topology of their solution!, furthermore all

solutions are in C'*°.
Excursus: Singular Values

Due to the regularizing effect of diffusion processes, the differentiability in 4.1 can be
assumed concerning model equations based on the diffusion approximation. Resulting
sensitivity matrices S® and their singular value decompositions are thus defined.

In the case where we have as many detectors as parameters in a model equation, the value
of the determinant of S® gives a measure of how good signal changes 0I are assignable to
single parameter changes 01|s,, . Orthogonal column vectors in S® therefore represent the
optimal case: the value of the determinant is maximized.

In the case where we have more detectors than parameters, the determinant is replaced by
the product of singular values of S®. Based on a specific model an optimal probe design
therefore maximizes the product of singular values of S® with regard to optimal source
detector distances, a valid model provides such an optimization to be done successfully.
Furthermore, an artefact p* which is correctly modeled by ® having a sensitivity function
S;ii (r) that is linear dependent to SE’,S (r) in S% is denotable a killing factor leading to the
consequence that this artefact is not separable from scattering by the given probe design
having the distance vector r = (ry,rs,...). In this case, a new probe design would have
to be established. Separability of parameters is therefore strongly related to the notion
of well-posedness: the topology of the parameter space has to be strong enough to isolate
scattering from artefacts. It is dependent on the distance vector r which constitutes the

probe design.
Non-Uniqueness in Diffusion-Based Tomography

If we apply fundamental solution 3.20 to 4.2 it is obvious that both Sl‘fa (7, fhq, pt) and
S:f,s (r, tta, pt;) are given by linear functions. Therefore Sy (r, fiq, pt) and S:f,s (7, fha, p1) are

linear dependent columns of the matrix 4.2; a transport model assuming conditions 3.10 is

'In [42] those problems are assigned their own class: They are called ezponentially ill-posed
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thus not a valid model to separate i, and p 2. In the following section, we will develop a

heuristics to overcome this negative result in the vicinity of a directed light source.

4.2 A Simple In Vivo Data Evaluation Heuristics

The task of parameter separation is placed as a nonlinear parameter estimation problem:

Problem 4.1 For given parameters P = (piq, pt, ...)T € IR™, a model function ®(ry, P) ,

r € IR" and measured signals I(r), a tupel P* of parameters has to be found such that

n

I(r) = @(r, P)|* = Y ly(ry) = ®(rs, PP, &(r,P) = B(z, P) .

k=1
18 minimaized.

If we assume that every ®(r, P) is continuously differentiable, problem 4.1 can be expressed
as a sequence of linear minimization problems [51]. Therefore, we consider the functional
matrix D®(rg, P) € IR" x IR™ . Then we have:

®(r, P*) = ®(r, P) + D®(r, P) - (P* = P)+h ,  [[h]| = of|]|P* = P|)
and the following optimization problem [51]:

Problem 4.2
[I(r) — ®(r, P) — D®(r, P) - (P* = P)|?

min
P*

A solution of problem 4.2 therefore fits a model based reflectance vector optimally to a
measured reflectance vector.

If we consider a time series of measurements instead of spot measurements, we can take
advantage of this fact, if we regard the parameter dependent counterpart I(ry, P(t),t) of
I(rg,t). The mapping I(ry, P(t),t) — I(rg, P(t +1),¢t + 1) is then expressible by:

I(re, P(t+1),t 4+ 1) = I(rg, P(t),t) + D®(ry, P(t),t) - (P(t+1) — P(t))

A temporal reflectance change (relative change) is therefore assigned the following linear
form:

m

A (g, P(),1) == Sy (rp, P(t), 1) - AP(t) (4.3)

Jj=1

and the related inverse problem:

2Similar results are given by [5] and [44] in a more technical manner.
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Problem 4.3
AP(t) o= (ST)71 NI (ry, P(2), 1) (4.4)

The solution to this inverse problem is now simply a matrix inversion or singular value decom-
position (SVD), whether S® is square and full rank or not. Hereby any model information

enters the problem via the time and parameter dependent sensitivity matrix S®(P(t),t).

4.2.1 Applications

If we assume that in the vicinity of a directed light source the law of Lambert-Beer holds
(i.e. that upper skin behaves like a cuvette) then we have S! (r) = const - r . If we further
assume that SI,S is not correctly represented by model equation 3.20 and thus Sl{,s (r) #
const-r , then problem 4.3 is easily modified to simultaneously eliminate absorption changes
and changes of source light intensity (common mode changes) with S%,,(r) = const.

Taking the second spatial difference of A;I(rg, P(t),t) in equation 4.3 und summing up over

all time intervals, we get an algorithm producing the signal Al:

Algorithm 4.1
Al (r},, P, T) : ZA A (ry, P(1),1) (4.5)

which is insensitive with respect to p, and common mode changes. In the following,
!

we consider the vector of signals Al(r},...,7,), p = n —2 . The near distance vector
= (0.8,1.2,1.6,2.0,2.4,2.8) [mm] of probe NIT 1.37 is therefore mapped to the vector
r’ = (1.2,1.6,2.0,2.4) [mm], with A?I(r) := I(r — 1) — 2I(r) + I(r +1). We regard the
values of Al to be arbitrary units for simplicity. If suited, the values are transformable to
physical units applying an appropriate model to calculate values for e.g. AfS:f,s (r', P). In
appendix B the function AfSE,S (r', P) is plotted assuming the semi-infinite diffusion model
given in 3.22.
Applications of algorithm 4.1 to continuous in vivo measurements show very encouraging
results with respect to the absorption separating properties. Even if we know that the law
of Lambert-Beer is not exactly fulfilled in skin tissue (e.g. due to the boundary structure)
it seems that the power expansion of the function S} (r,P) = Y2 ar(P)r* is clearly
dominated by the second coefficient. Also interesting is the fact that the sensitivity of
signal Al with respect to glucose changes is nearly exponentially decreasing for increasing
source-detector distances r’. This finding agrees with calculations using model 3.22 (see also
appendix B) and underpins model equation 3.20 to gain applicability apart from a directed

light source (and despite the influence of boundaries).
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4.2.2 Drift

Apparently converse to common mode and absorption whose sensitivity function expan-
sions are dominated by the first and second coefficient respectively, are artefacts concerning
boundary changes. Evaluations using algorithm 4.1 in some experiments show amplifications
of e.g. drift artefacts. The drift artefacts are supposed to result from epidermal imbuance
caused by the probe cover (which in turn would change refractive indices inside and above
the epidermis). This finding emphasizes the fact that algorithm 4.1 treats absorption and
common mode artefacts only and neglects e.g. boundary changes that also have a crucial
effect on noninvasive measured signals. Using Al signals, the need to treat drift artefacts is

therefore fortified. We have to face this fact in the following.

4.2.3 Some Examples

First, we present some examples of a unique 5-hour in vivo experiment where glucose has
been varied by an oral glucose drink after the (nearly diabetic) volunteer has been demure
for several hours (so called OGT experiment). The glucose impact amounts to an amplitude
of 130mg/dl and it was the goal of this run to show the impact of small glucose amplitudes
on the scattering coefficient [22] .

Successively, the plots show the same experiment, first applying the fit algorithm N4 based
on the semi-infinite halfspace diffusion model 3.22 implemented by M. Hermann [23] and
S. Nickell [45] for Boehringer Mannheim GmbH (Fig.4.1). We see the reduced scattering
coefficient 1!, at 805nm and the interpolated reference glucose (taken by invasive spot mea-

surements):

OGT WeG2709a

glucose [mgsdl]

— Algohd_IE05_mus # glucoss kapil blood Algoh4 [1:12] 1.4 805nm

Figure 4.1: Fit result using a semi-infinte halfspace model.
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Figures 4.2 to 4.5 plot the same experiment, but evaluated with algorithm 4.1 (calibrated
to absolute glucose values). The Al(r’) signals show a more balanced behaviour which is
typical for this algorithm. In order to reduce a drift artefact which is present during the
whole measurement period, plots 4.3 to 4.5 have been subtracted by an exponential function
whose parameters have been estimated using four reference glucose values. The use of an
exponential function as drift model has been motivated by in-house (Roche) refractometer
experiments where the refractometer has covered the epidermis for several hours. The half-
life period of the refractometer experiments are comparable to the ones of most of the drifting
OGT experiments (which amount to about 50% of the total) and lie in the range of 3 to
5 hours. Plots 4.3 to 4.5 are given the same half-life period that was estimated utilizing
signal Al(r]). They confirm the finding that the sensitivity for glucose changes decreases

monotonically for increasing distances ' = (1.2,1.6,2.0,2.4) [mm)].
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Figure 4.2: The signal Al(r]) applied to the same data.

OGT WEGETDEa

250

r 200

-
tn
(=]

—
=]
[=}

ghucose [mgddl]

n
=]

(=]

g.0o0 g:00 10:00 1100 12:00 1300

Figure 4.3: Al signal (drift removed) in direct vicinity of the

source: Al(r}).
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Figure 4.4: Al signal (drift removed) more distant from the

source: Al(r}).
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Figure 4.5: Al signal (drift removed) even more distant from the source:
Al(r).

In opposition to the preceding OGT experiment where the probe temperature has been
held constant, the following experiment shows the impact of a temperature change which
has been triggered outside skin by heating and cooling the probe. In figure 4.6 we see crude
signals (relative signal changes AI(ry,t)) at the first four distances r = (0.8,1.2,1.6,2.0)
[mm)] of the NIT 1.37 probe using arbitrary units, and bold on top the absolute temper-
ature T at the probes temperature sensor. The plot clearly shows that the sensitivity
SI.(r) = Bul(Temp Dlatemp. of the measured signal with respect to temperature changes

Temp. ATemp.
doesn’t have to be constant: the signal response at r = (1.2,1.6,2.0) [mm]| changes sign in

the second temperature swing.
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Temp. exp. WBF1805a , 805 nm
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Figure 4.6: Difference in signal response at consecutive temperature

variations (0.8mm thin line on top to 2.0mm on bottom).

4.3 Evaluation

The implementation of sensitivity based methods, especially findings concerning algorithm

4.1 give rise to the following statements:

1. It is possible to improve crude signal changes by the very simple evaluation al-
gorithm 4.1 in a way that short time artefacts which are supposed to be dominated
by absorption changes can be reduced significantly. Comparisons to classical fit al-
gorithms like N4/N5 ([23] [45]) show more balanced results. Furthermore algorithm
4.1 gives a vector of time-dependent signals instead of a single p,(¢)-signal and thus
can serve as a basis for further e.g. data driven evaluation procedures in order to
reduce drift artefacts.

2. The results of algorithm 4.1 partly show strong drift artefacts. A comparison to
the associated crude signal changes give rise to the presumption that sensitivities
of the underlying boundary effects are dominated by coefficients of higher order
(concerning their power expansion) and that drifts are therefore amplified by taking
the second spatial difference. Due to the great variety of possible physiological
impacts of imbuance inside and above the epidermis, it is not realistic to have
a simple functional description of sensitivity functions with respect to boundary
changes. For the sake of an effective problem-handling, we therefore have to excurse

to data driven approaches in the next chapter.
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3. Concerning temperature artefacts the situation is more complicated: the sensi-
tivities of glucose induced scattering changes and drift artefacts have to be assumed
to be nearly constant during usual measurement periods (several hours) which is
confirmed by the fact that calibration coefficients remain unchanged during these
periods. In opposition to this, we have to assume that in some cases it is im-
possible to eliminate temperature artefacts by a linear transformation of detector
signals with a constant coefficient in time. Therefore, we have to assume that
Stemp. (1) = Stemp. (7,t) and thus, an elimination of temperature artefacts by simply
adding a multiple of the temperature sensor signal AT to the signal won’t work.
An overview of several other artefacts occuring in noninvasive measurements such as
changes of the water content of skin, body movements, oxygenation changes etc. and
their impact on noninvasive signals has been given in the PhD thesis of H.-M. Klotzer
(Roche diagnostics GmbH) [36].

4. It is hardly possible to give any statistical warranty for those of the above state-
ments that need to be confirmed by appropriate investigations. This is mostly due to
the fact that physiological side conditions differ significantly between the experimen-
tal runs, making the volunteers and therefore the experiments hardly comparable.
Moreover, the total number of in vivo experiments under consideration amounts to
about 100. This number may lie in the range of the number of more or less differing
parameters triggered by anatomy or physiology. We therefore won’t try to apply an
according statistical framework.
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Chapter 5

Excursus: Data-Driven Approaches

In this chapter, we will excurse to data-driven approaches in order to evolve our data eval-
uation possibilities. Recently, a new method for ’blind” data evaluation has been proposed,
namely independent component analysis [12] which will be treated in detail. To motivate
the technique, we will give a summarizing overview of the papers of A. Hyvérinen [25] and
T.-W. Lee et al. [39]. First, we put up the so-called linear mizing problem of the hidden
parameter changes A;P(t) € IR™ that have to be reconstructed from the observed signals
AyI(t) € IR" (see also equation 4.3), i.e
Ay, = Ity ~ dritiey zm: o Api(ty) . Ay, € R X R
i ripj ) itk

[thk —

at 7 discrete time points ¢, or in short form:
vt Al =S-AP , SeR'xR"™ |, (5.1)

where the mixing matrix S is assumed to be constant over time.

5.1 Second-Order Methods

Contrary to the inverse problem 4.3, we now want to estimate matrix S without having a
skin model to provide for S®. One popular approach to find a linear transform S in 5.1 is
second-order methods with important derivatives like principal component analysis (PCA),
sometimes called the (discrete) Karhunen-Loéve transform or factor analysis. Both methods
put an orthogonal basis inside the observed data space, thus minimizing an error functional
based on mean squares. A SVD decomposition of A;I(r,t) = UXVT accomplishes this task
easily, leading to a PCA subspace U and the appropriate factor loadings contained in V7. If
we drop principle components belonging to small singular values contained in ¥, we speak

of a biased method, otherwise it is called unbiased.
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5.2 Higher-Order Methods

We want to strengthen the requirement of uncorrelatedness of data arising from second-order

methods to the notion of statistical independence.

Statistical independence

Denote by uy, us, ..., t,, some random variables with joint density f(u1, ..., ). The variables

u; are (mutually) independent if the density function can be factorized:

fug, ooy um) = fir(ug) fo(ua) .. fon(tm) (5.2)

where f;(u;) denotes the marginal density of u;. An equivalent formulation of independence
states that:

E{91(ui)g2(u;) } — E{gr(wi)} E{ga(u;)} = 0, fori #j (5.3)

for any measurable functions g; and ¢». This property is sometimes called statistical inde-

pendence, as compared to uncorrelatedness which is defined by:

It follows that independence is a sufficient but not a necessary condition for uncorrelatedness.
But both qualtities coincide in the case when uy, ..., u,, have a joint Gaussian distribution.
Due to this property, the concept of statistical independence is not advantageous for Gaussian

variables.

5.2.1 Independent Component Analysis

We state two definitions of independent component analysis (ICA) that are somehow inverse
to each other. In the following, the observed n-dimensional signal vector is denoted by
Al = (AL, ...,AL,)T. First we give a definition that states the principle of TCA:

Definition 5.1 ICA of a signal vector AI € IR" consists of finding a linear transform AP =
W-AI, W € IR" x IR™ so that the parameters AP; € IR™ are as independent as possible,

in the sense of mazimizing some function F(APy,...,AP,,) that measures independence.

This definition just says that if a measure of independence exists, ICA provides for the
appropriate linear transform, no additional assumptions on the data are made. In this
regard, a section below we will have to deal with contrast functions providing for manageable
measures of independence for the AP;. The following definition reproduces our mixing

problem 5.1:
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Definition 5.2 (Jutten and Hérault [29]) ICA of a signal vector AI € IR" consists of

estimating the following generative model for the sensor data:
vt Al=S-AP , SeR'"xR" |,
again S is assumed to be constant in time.

It can be shown [12] that if the data does follow the generative model in definition 5.2,
definitions 5.1 and 5.2 become asymptotically equivalent in a weak topology of matrix classes

for certain F'.

Identifiability of the ICA Model

We refer to the treatment of identifiability in [12] and [25]. For simplicity, occurance of
(weak) Gaussian noise in the data will be treated like an additional independent (Gaussian)
component and measured signals are assumed to be 0-1 normed. The identifyability of a class
of independent components within the ICA model, where independent components inside
a certain class are unique up to a permutation and scaling, can be assured if the following

restrictions are imposed:
i. At most, one source is normally distributed.

ii. The number of sensors n must be at least as large as the number
of parameters m, i.e. n > m .

iii. ¥ ¢: The parameter changes AP(t) are mutually independent.

Referring to our mixing problem, the parameters are exactly recovered when W is the inverse

of S up to a permutation and scale change:
P=R-D=W.-S§5 |

where R is a permutation matrix and D is a scaling matrix.

5.2.2 Applications of ICA
Contrast Functions

The notion of statistical independence between random variables yields practical results if
we transfer it to equivalent concepts like information maximation and negentropy mazrima-
tion. Without going into detail, we want to briefly review the basic definition of mutual

information:

Definition 5.3 The mutual information I(u) of a measured signal vector u is given by the
Kullback-Leibler (KL) divergence D(-||-) of the multivariate density f(u) and the density

written in product form:

) = [ f(u)log%dxﬂ(f(u)||HiN_1fi<ui>> S Iws0 . (55)
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Thomas and Cover [14] showed that I(u) is zero iff the components u; are statistically
independent. Again the concept of mutual information is easily adapted to the notion of
negentropy which is defined as the KL divergence between the density f(u) of variable u and
a Gaussian distribution fg with the same mean and covariance as f(u). Finally, Girolami
[19] showed that minimizing the mutual information of the components of a random vector
is identical to maximizing their negentropy.

The task of finding a measure of statistical independence is now transferred to the task of
finding a feasible measure of negentropy, in turn giving a measure of non-Gaussianity of a

density f(u) using the following definition of negentropy:

Definition 5.4 The measure
J() = Heo— H(w) . J@)>0 , with H() = — / F(u)log f(u)du |

is called negentropy.

Due to the fact that a Gaussian variable has the largest entropy among all random variables
of equal variance [14], measure 5.4 is always positive. As the exact value of f(u) is usually
unknown, simpler approximations of negentropy have to be considered. Jones & Simon [28]
as well as Comon [12] utilized an Edgeworth expansion of 5.5 truncated at fourth-order to
approximate the mutual information by:

J(u) = 11—2E{u3}2+ 4i8ku1rt(u)2 : (5.6)

where the kurtosis is defined by:
kart := E{u'} — 3(E{u*})?

In order to overcome non-robustness encountered with fourth-order cumulants in general and
especially kurtosis [26], the framework of cumulants has been overcome. In [24] the following

contrast function thus approximating negentropy has been proposed:
Jo(u) = |EfG(u)} = BEAGW)}" . (5.7)

Je(u) is equipped with a smooth, non-quadratic function G(u) and an exponent p = 1,2
typically. For G(u) = u?, Jg becomes simply the modulus of kurtosis of u, equation 5.7
therefore generalizes the moment-based approximation in 5.6. Equation 5.7 is consistent in
the sense that it is always non-negative and equal to zero if v has a Gaussian distribution.

The following choices of G were proposed in [25] and [26]:
Gi(u) =logcoshaju ,  Go(u) = exp(—asu?/2) (5.8)

where aq,as > 1 are some suitable constants.
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The FastICA algorithm

We will use the MATLAB implementation 'FastICA’, provided by the Neural Network
Research Centre at Helsinki University (www.cis.hut.fi/projects/ica/fastica) which utilizes
usual numerics like e.g. a Newton iteration or Gram-Schmitt orthogonalization. For further
details see e.g. [25]. We applied this algorithm to the OGT experiment of the preceding
chapter at 805nm. Figure 5.1 shows the independent components that ensue after feeding
the first four crude signals at r = (0.8,1.2,1.6,2.0) [mm] to the algorithm. We have chosen
the contrast function G5 given in 5.8. The reduction to three independent components pro-
duces one drift afflicted signal and two noisy and unspecific signals (arbitrary units) given

in figure 5.1.

1st component 2nd component
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Figure 5.1: ICA applied to crude signals: The third component shows a drift afflicted signal.
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ICA Meets Diffusion Theory

The results of ICA become more interesting if we take into account model knowledge which
is e.g. represented by the Al(r) signal, as given by the heuristics of the preceding chapter: we
therefore combine model knowledge with a data driven approach. That way, I[CA provides
for a refinement of a given sensitivity matrix structure. We map the first four Al(r) signals

of the same experiment to three independent components. Figure 5.2 shows the result.

1st component

2nd component
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Figure 5.2: ICA applied to an Al signal.

Obviously the third component of figure 5.2 correlates to the reference glucose. Therefore, the
drift pattern, which is still existent in the third component of figure 5.1 has been separated

successfully.



Summary and Outlook

Summarizing our attempts to identify the light scattering coefficient of skin and its alter-
ations in in vivo datasets, we have to make primarily the following observation: although
we had to weaken our pretension to model light propagation in skin tissue within the RTE
framework, the task of evaluating noninvasive measured signals entailed challenges of its
own type. First, we established multi-layer skin models using the diffusion approximation
of the RTE. For the skin being a scatter-dominated medium, this possibility is certainly
permitted for large source-detector distances. However, skipping to short source-detector
distances, a thorny problem of noninvasive diagnostics has been entered, which in this
thesis has been treated by setting up a heuristics: we first stepped a little bit aside of
the framework of fundamental solutions for the diffusion approximation, but related to it,
constructing an virtual, extended light source thus fulfilling a diffusion equation for a proper
class of functions.

For the sake of usefulness of multi-layer models in noninvasive diagnostics, we proposed a
new convolution kernel to be applied to real space models like the one of Tualle et al. in
time-domain.

Again, the attempt to tackle an important problem of continuous monitoring, this time
occuring as drift artefacts for the in vivo setting, has been avoided within the straight
diffusion theory framework: multi-layer models based on the diffusion approximation
presume layer-thicknesses greater than one mfp, therefore the attempt to map drift artefacts

to suitable optical effects inside or directly above the epidermis has to fail.

Finally, these findings resulted in a change of the solution strategy: the limitations
of modeling within the partial differential equations framework, concerning the RTE or
the diffusion approximation of the RTE, have revealed to be obvious when applied to the
complexity of this special in vivo setting. In other words, it is not advisable to try to handle
the complexity of this in vivo setting opposing a partial differential equation apparatus of
equal complexity plus the use of a big computing device only.

After all, the connection of a simple data evaluation heuristics based on fundamental in-
sights of light propagation in tissue with a data-driven refinement tool, namely independent
component analysis, produced the best results in vivo. It will be the subject of future

research to embark on this strategy. An adaptive refinement of sensitivity matrices or
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qualitative statements about sensitivity matrices has to be investigated. Consequently, a
measurement device which is able to attune to its wearer after a certain wearing period
would result. Methods of 'hard’ computing and ’soft’ computing will therefore be combined

in this strategy.
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Appendix A

The anisotropic diffusion heuristics is applied to the in vivo experiment used in chapter 4, this
time at 660 nm. In figure 6 we have chosen the intensity profile weighted by the square of the
distance r at a single measurement point in the middle of the experiment. For the isotropic
case we take the semi-infinite model as proposed in equation 3.22 (n,..; = 1.4, p, = 0.01) and
modify it to the anisotropic case replacing the diffusion constant D by the space dependent
diffusion coefficient D-[1 —a-b-exp(—a-|z|)]. The fit results for the resulting values D, a,b
and p, are given in the table below.

0 x 10" Profile: Anisotropic diffusion, 660nm
T T

7 ! ! ! ! ! !
0.5 1 1.5 2 2.5 3 3.5 4

Figure 6: Plot of the measured profile I(r)-r? (circles) and the model profile ®(r) - r? for

the case of isotropic and anisotropic diffusion subject to r in mm.
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Fit result using first seven distances of NIT 1.37, r=(0.8,1.2,1.6,2.0,2.4,2.8,4.0)[mm)]:

anisotropic diffusion

isotropic diffusion

fit-error anisotropic diffusion
fit-error isotropic diffusion

resulting error reduction

D[mm] pall/mm] a b
0.2504 0.0124 0.4739 1.9955
0.3213 0.0478 0

1.6411e+4-03

3.7051e+03

55%

The dependency of the profile I(r) - 72 on the anisotropy coefficient a is plotted in figure 7.

14+

Figure 7: Profiles ®(r) -

r? for near distances dependent on a,

(b=2,D = 0.3[mm], y = 0.01[1/mm]).
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Applying expression 3.33 to differential equation 3.36 we get the following MAPLE output:

Q(a1,3: 01,35 D135 fa; T1; 25 23) = Q(al,2;b1,2; D1,2;mas x;y; 2) =

3%4DI* %2422 1 ma D1 %222%4 1 %4 D12 %2>
—D1 %2(= - _

+
4 g g5°? 2 %52 V%3 4 752

N 1 vma % %4 1 vma %4 N 1 ma 2 %4
4 V%5 %322 D12 %22 4 V%5V %3 D1 %2 4 m/%5 %3 D12 %2?

) — D1 %2

(3 %4 D1*%2* 2 1 vma D1 %2y* %4 1 %4 D1%%2? 1 vma y? %4
4 %5 2 %5 V%3 4 1 %52 4 7\/%5 %3** D1 %2*

1 vma %4 N 1 ma y? %4 - %(3 %4 D2* %1* 22
! 1 _ 012
4 V%5 V%3 D1 %2 4 /%5 %3 D12 %2> 4 g y5°?

1 vmaD2%122%4 1 %4 D22 %12 N 1 vma 22 %4
2 1 %5¥2 /%3 4 532 4 1 %5 %3%% D22 %12

_1 vma %4 +1 ma 2% %4 )+1ma%4
4 1 vVA%5V%3ID2 %1 4 n V%5 %3 D22 %12 4 w%5

%1 :=1— a2 b2 02V +2)
%2 := 1 — al bl e~ Ve +2)

$2 y2 Z2
+ + :
D1%2 " D1%2  D2%l

%4 = e(—vma V%3)

)

9

%3 =

%5 = D12 %2% x> + D1% %2% y* + D2% %1° 22

() describes an anisotropic light source except for the case al,2 = 0 (isotropic limit).
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Appendix B

The decreasing sensitivity A,Q,S;f, (r, D) with respect to the distance r dependent on the

diffusion constant D := Di is given in figure 8, the ability of algorithm 4.1 to separate u,
. S (r,d) .
from p!, measured by the ratio A2 S‘;,Si(rd) dependent on the source-detector distance r
Ha \"?
and the separation distance between single detectors d is given in figure 9, both plots utilize

the semi-infinite model as proposed in equation 3.22.

Figure 8: A2S% (r, Di) - zero is on top of plot, (nye = 1.4, p, = 0.01[1/mm]).
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Figure 9: The p,-separation ability decreases with increasing distance r and
d, (npeg = 1.4, pg =0.01[{1/mm] , D = 0.3[mm)]).
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