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Prefa
e

Diabeti
s would greatly bene�t from a devi
e 
apable of providing 
ontinuous noninvasive

monitoring of their blood glu
ose levels. At present, diabeti
s rely on pri
king their �nger to

obtain a blood sample whi
h in turn is pla
ed upon a test strip. Life long �nger pri
king is

often a

ompanied by 
hroni
 infe
tions and pain during the lan
ets pri
k. Moreover, to sig-

ni�
antly redu
e longer-term se
ondary e�e
ts of diabetes su
h as retinopahy, nephropathy

or neuropathy on the one hand and to redu
e the risk of unnoti
ed su�ering from hypo-

gly
emia on the other hand a more frequent or even 
ontinuous monitoring of blood glu
ose

swings is needed.

In the past de
ade several attempts have been made to measure the glu
ose 
ontent of blood

in a more 
ompliant fashion. These endeavors will gain importan
e in the near future. Al-

ready nowadays, diabetes ranges among the top 
ivilization deseases, about 10% of all U.S.


itizens are living with this diagnosis, European 
itizens will make up in the future.

Many te
hniques have been suggested for 
ontinuous monitoring of glu
ose, ranging from

implanted ele
tro
hemi
al sensors to noninvasive opti
al methods. So far none of these meth-

ods have proven to be sensitive or spe
i�
 enough for 
ommer
ial use.

The method proposed in this thesis deals with an e�e
t whi
h is based upon 
hanges of the

light s
attering 
oeÆ
ient in the upper dermal regions of skin indu
ed by glu
ose dissolved

in the interstitial 
uid. We will fo
us on the identi�
ation of this 
oeÆ
ient in vivo. As we

want to probe our tissue with de
oherent light of a single wavelength in the near infrared

regime, the physi
al pro
ess is properly des
ribed by the radiative transfer equation.

The modeling has to fa
e the task of mapping a spe
ial measurement setting as well as

spatial and temporal varying skin opti
al properties to a proper boundary value problem

formulation for the radiative transfer equation and an e�e
tive solution of the inverse prob-

lem. As we will soon re
ognize, an e�e
tive solution of the forward and more urging of the

inverse problem is ne
essarily based on approximations of the radiative transfer equation,

espe
ially the di�usion approximation will be treated in detail. Moreover we will have to

ex
urse to data-driven approa
hes in order to over
ome the limitations of modeling within

partial di�erential equations whi
h have been revealed to be obvious for this problem.

This thesis resulted from a 
ooperation between Boehringer Mannheim GmbH respe
tively

their su

essor Ro
he diagnosti
s GmbH in Mannheim and the Interdis
plinary Center for

S
ienti�
 Computing in Heidelberg. It is written in the sense of bringing together sophisti-


ated mathemati
s with the 
omplexity of an in vivo setting, and is thus 
ompletely problem

oriented.
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Introdu
tion

Among other noninvasive monitoring te
hniques su
h as ultrasound and magneti
 resonan
e

imaging the use of light in the near infrared regime (NIR) leads to one of the least spa
e


onsuming measurement settings known, resulting probe units are portable and easy to

handle. In this regard, about 15 years ago an e�e
t has been found that revealed a 
orrelation

between the light s
attering 
oeÆ
ient (LSC) of upper skin tissue and its glu
ose 
ontent.

Some time later, this e�e
t was explained by the opti
al properties of interstitial 
uid (ISF)

whi
h are 
hanging under the soaking in
uen
e of glu
ose. Namely the LSC of skin tissue is

dependent on the refra
tive index mismat
h between the ISF and the 
ellular membranes,

whi
h 
an be proven quantitatively by Mie theory if we assume the tissue 
ells to be given

by geometri
al obje
ts of simple shape (e.g. balls or 
ylinders) [6℄. The LSC is therefore a

ma
ros
opi
 parameter, the 
orrelation to the underlying mi
ros
opi
 
ell membrane opti
al

e�e
ts is assumed to be given. The 
orrelation between glu
ose levels in the ISF and the LSC

of skin, for the sake of brevity we will refer to it as the glu
ose e�e
t, has been reprodu
ed in

skin tissue-simulating phantoms [37℄ and studies with volunteers for the in vivo setting [8℄.

In order to measure the s
attering 
oeÆ
ient of upper skin, di�erent possibilities to �x a

probe unit onto skin are 
on
eivable, su
h as light transmittan
e through the earlobe or

re
e
tan
e measurements. In the latter 
ase the light is usually radiated perpendi
ular

into skin and an array of also perpendi
ular oriented dete
tors measure the ba
ks
attered

photons. In this thesis we deal with a probe unit whi
h 
onsists of a single illuminating �ber

and a dozen 
olle
ting �bers arranged for NIR re
e
tan
e measurements.

In the past, the problem of identifying the interesting s
attering 
oeÆ
ient within the many

other parameters that interfere with the measured signal has been approa
hed by pure data

driven methods, su
h as neural networks and by parameter estimation algorithms based on

skin models to enter the radiative transfer equation (RTE). Parti
ularly models based on

the di�usion approximation of the RTE have been investigated in detail by several authors.

Within this approximation, the applian
e of a fresnel boundary 
ondition on the top of

skin to build a semi-in�nite geometry has been asserted to be 
omputationally 
heap and

a

urate at sour
e-dete
tor distan
es a few mean free paths apart from the light sour
e.

This in turn is meaningful owing to the demand on portability of the probe and its data

evaluation devi
e on the one hand and the 
ir
umstan
e that we have to evaluate signals


ontinuously i.e. several times a minute on the other hand.

1
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Modeling in noninvasive diagnosti
s therefore has to fa
e the problem of 
ombining a small


omputation 
omplexity and the ability of 
oping with skin opti
al parameters whi
h vary

spatially and temporaly on di�erent s
ales as well as between individuals.

In this thesis we embark on the following strategy:

First, we introdu
e radiative transport theory outlining the Cau
hy problem of radiative

transport and related problems that have espe
ially been developed in nu
lear rea
tor theory.

Next, we advan
e to the di�usion approximation of the RTE and will establish a layered

skin model using the method of images, likewise borrowed from nu
lear rea
tor theory.

Progress and restri
tions will be dis
ussed espe
ially 
on
erning models for small layers

(e.g. epidermal), fourier spa
e models, and the use of a gaussian 
onvolution kernel in order

to model the s
attering inside the bottom layer of a two-layer model. Furthermore, we will

propose a heuristi
s to model the light trait in the vi
inity of a dire
ted light sour
e within a

proper 
lass of fun
tions, a relation to a fundamental solution of a feasable di�usion equation

and �rst results for in vivo data.

Using the law of Lambert-Beer, we will derive an algorithm to separate absorption 
hanges,

and present some results for in vivo data. In the last 
hapter we will have to ex
urse to data-

driven approa
hes in order to 
ope e.g. with drift artefa
ts that pollute to a great extent our

in vivo experiments. A new higher-order method, namely independent 
omponent analysis

(ICA) will be proposed and an implementation issued by the neural network resear
h 
entre

at Helsinki University of Te
hnology will be applied to in vivo data. Combining a model-

based approa
h and the ICA approa
h, we will outline a hybrid method to simultaneously

su

essfully eliminate absorption artefa
ts, and an existing drift artefa
t.



Chapter 1

Medium, Probe Unit

1.1 Skin Tissue: Anatomy, Physiology

We will review the anatomi
al and physiologi
al properties of skin, provided they a�e
t skin

opti
al properties and 
hanges thereof. First, we have to speak of skin as a layered medium,

namely we 
an distinguish three di�erent types of tissue whi
h are 
alled the epidermis,

the dermis and the sub
utis layer. The epidermal layer 
ould be further distinguished into

the stratum 
orneum and the stratum basale. The following pi
ture shows the anatomi
al

stru
ture of skin in
luding spe
i�
ations and several substru
tures like hair, sweat glands

and �rst of all the 
apillary loops at the upper dermis:

Figure 1.1: Skin tissue in se
tional view, (Sour
e: Ro
he [48℄).

3



4 CHAPTER 1. MEDIUM, PROBE UNIT

Figure 1.2 shows a three-dimensional view of an in vivo s
an obtained by opti
al 
oheren
e

tomography. The sta
k of two-dimensional se
tional sli
es was merged to a three-dimensional

pi
ture by an algorithm developed by C. Dartu at the IWR Heidelberg.

Figure 1.2: Skin tissue in three dimensions, about 500�m deep.

The 
apillary loops are of spe
ial importan
e be
ause they a

omplish the ex
hange of sub-

stan
es produ
ed or 
onsumed by tissue 
ells (glu
ose, oxygen, 
arbon dioxide et
.). The

ex
hange of su
h substan
es through 
apillary walls is maintained by di�usion along the 
on-


entration gradient whi
h in turn 
auses a time lag between 
on
entration 
hanges of blood


onstituents and their 
ounterparts in ISF. Although the statements vary to a great extent,

it turns out that at in
reasing blood glu
ose 
on
entrations the time delay is about 5min

and at de
reasing blood glu
ose 
on
entrations it is about 8min [48℄. The time delay varies

signi�
antly intra- and inter-individually and may depend on blood 
ow, tissue stru
ture,

the sensors implantation site, the a
tual tissue metaboli
 requirements et
. An ISF glu
ose

signal 
orresponds in some sense to a regularized version of the respe
tive blood glu
ose

signal: sharp glu
ose peaks provoked e.g. by glu
ose infusion are mapped to smooth ISF

glu
ose swings. This fa
t is of importan
e if we want to 
alibrate a noninvasively measured

ISF glu
ose signal by blood glu
ose measurements. Figure 1.3 illustrates the di�eren
e under

the assumption of a linear 
orrelation between the s
attering 
oeÆtient �

0

s

and ISF glu
ose.

The physiologi
al 
hara
teristi
s of interest are mainly governed by 
hanges in blood 
ow,

blood 
onsisten
y, blood volume and water 
ontent of skin. Physi
al 
hanges of interest
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Figure 1.3: Glu
ose 
lamps & glu
ose swings (noisy), (Sour
e: Ro
he [8℄).


on
ern temperature variations and me
hani
al impa
t.

1.2 Skin Opti
al Parameters

As we are interested in the modeling of skin stru
ture within radiative tranport theory we

have to map the anatomi
al and physiologi
al fa
ts given above to skin opti
al parameters

in a meaningful way. In the following we will distinguish between absorption and s
attering

properties of the in
uen
ing fa
tors as they ensue for NIR or visible light. Additionally, ea
h

layer 
hange de�nes a 
ertain boundary involving a proper boundary 
ondition. In parti
ular

we get the following s
hedule:

i. Epidermis

The main absorbing 
onstituents are water and the skin pigment melanin. Due to its small

thi
kness (50 � 150�m) the spe
i�
 absorption is small 
ompared to the total absorption

inside skin. The spe
i�
 s
attering is also small with a strong forward orientation. The re-

fra
tive index ratio between stratum 
orneum and stratum basale is about n

rel

' 1:51=1:34

, [52℄.

Be
ause the epidermis has no blood supply there is no dire
t absorption 
hange due to blood

indu
ed physiologi
al variations. But the epidermis is in
uen
ed by temperature 
hanges

and 
hanges of water 
ontent, whi
h has a 
ru
ial impa
t on s
attering properties as well as

on the boundary stru
ture.

ii. Dermis

The main absorption inside dermis in the range of 600nm to 900nm is 
aused by haemoglobin

absorption. We distinguish between oxygenated and deoxygenated haemoglobin whose ab-
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sorption spe
tra are dis
ussed in the ex
ursus below.

As in the introdu
tion stated, the glu
ose e�e
t has its roots in the di�eren
e between the

refra
tive index of ISF and 
ell membranes, where the former is altered. More spe
i�
: the

refra
tive indi
es are n = 1:35 for the ISF and n ' 1:38 for the membranes [27℄. An in
rease

of glu
ose in the ISF yields an in
rease of the refra
tive index of the ISF and thus de
reases

the di�eren
e to the index of the membranes with the 
onsequen
e that the s
attering 
oef-

�
ient de
reases: the glu
ose e�e
t is anti
orrelated to glu
ose 
hanges.

We don't want to forget the 
ollagen �bers whi
h 
onstitute about 20% of the dermis vol-

ume. They make up the so 
alled Langer lines, whi
h give skin a permanent tension. It has

re
ently been found that they also give light a preferred s
attering dire
tion: light s
attering

inside dermis is greater perpendi
ular to those lines than along them [23℄ [45℄.

Due to the strong blood 
ir
ulation espe
ially at the upper dermal regions we 
an assume

isothermal 
onditions ex
ept for the reason of physiologi
ally indu
ed blood 
ir
ulation


hanges.

Both, epidermal as well as dermal tissue are s
atter-dominated media. Spe
i�
 values for

absorption and s
attering 
oeÆ
ients will be given in the next 
hapter.

iii. Sub
utis

The sub
utis 
onsists in the main part of fatty 
onne
tive tissue 
ells. Both, the s
attering


oeÆ
ient and the absorption 
oeÆ
ient are smaller than inside the dermis.

1.2.1 Ex
ursus: Measuring Blood Oxygenation

We ex
urse to a method of noninvasive blood 
onstituent measurement whi
h utilizes the

virtue of having spe
i�
 absorption spe
tra. As 
an be seen in �gure 1.4 there is a 
lear

di�eren
e in the absorption spe
tra of oxygenated to deoxygenated haemoglobin ex
ept in

one point. At this isosbesti
 point at �

i

= 805nm the extin
tion 
oeÆ
ients of haemoglobin

and oxyhaemoglobin 
oin
ide. The extin
tion is given by the law of Lambert-Beer:

E = �

�

� 
 � d : (1.1)

The extin
tion E is a produ
t of the pathlength d , the extin
tion 
oeÆ
ient �

�

and the


on
entration 
 . It is now possible to tra
k temporal variations in blood oxygenation by

building the quotient E

�

=E

�

i

. If we assume that the opti
al path lengths of photons at

both wavelengths are almost equal, we get a measure whi
h 
orrelates to the oxygenation


hange [36℄.

Blood oxygenation is one of the few well understood and 
ontrollable physiologi
al pa-

rameters. Unfortunately the situation for glu
ose is mu
h less spe
i�
: The absorption


oeÆ
ient for glu
ose in the diagnosti
 window lies between 10

�3

and 10

�2


m

�1

. In the

visible and NIR range, absorption is thus 
learly dominated by other blood 
onstituents

and 
onsequently there is no possibility to tra
k glu
ose 
hanges by utilization of absorption
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Figure 1.4: Absorption spe
tra of di�erent blood


onstituents, (Sour
e: Kl�otzer [36℄).

spe
tra only.

Summary and Annotations

# Skin is organized in layers whi
h are heterogeneous in themselves on di�erent s
ales.

They vary in tissue 
ompartimentation, skin appendages, organization and distri-

bution of blood vessels, regional di�eren
es in tissue stru
ture et
.

# Variations of blood volume, blood 
ow and haemoglobin oxygenation are mostly

responsible for absorption 
hanges in skin tissue thus interfering with noninvasive

ISF glu
ose monitoring.

# It is virtually impossible to eliminate the in
uen
e of most of the interfering pro-


esses on glu
ose determination by keeping them 
onstant, at least under normal life


onditions sin
e the underlying regulation me
hanisms are very 
omplex, strongly

linked to ea
h other, and essential for maintaining the viability of the human body.

Therefore interfering pro
esses have to be eliminated by algorithms applied to the

devi
es signal.
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1.3 The Probe Unit

The probe used for the measurements 
onsists of a linear array of opti
al �bers with a 
ore

diameter of 200�m. There are two types of �bers, namely one illuminating �ber (sour
e) and

a dozen 
olle
ting �bers at distan
es ranging from 0:8 to 10mm from the illuminating point.

The sour
e light is swit
hable between di�erent single wavelengths in the NIR range and

power stabilized in dire
t 
urrent (DC) mode. Both, the illuminating �ber and the 
olle
ting

�bers are oriented perpendi
ular to the skin surfa
e. The sour
e light has the 
hara
teristi
s

of a pen
il beam and is thus anisotropi
. The paths of the photons arriving at the dete
tor

�bers are 
hara
terized by multiple re
e
tions and ba
ks
attering. Summarizing, we speak

of spatially-resolved re
e
tan
e measurements in DC mode.

A 
ru
ial point in noninvasive measurements is the 
onne
tion of the probe to the skin

surfa
e. We assume that the 
onne
tion prevents the probe from slipping on the skin and

that the interfa
e material provides stable opti
al 
onditions between the probe and the skin

surfa
e. Espe
ially the interfa
e material has almost no s
attering and almost no absorption.

Figure 1.5 shows a se
tional view of the probe in original size and the de
reasing re
e
tan
e

dependent on the sour
e-dete
tor distan
e. Contrary to the suggestion of �gure 1.5, the

Figure 1.5: The NIT 1.37 probe unit, s
attered photons in upper

skin and a 
hara
teristi
 re
e
tion pro�le, (Sour
e: Ro
he [36℄).

distan
e between the skin surfa
e and the probe surfa
e is ex
lusively dependent on the

thi
kness of the interfa
e material whi
h amounts to about several tenth of a millimeter.

However, all modeling proposed in this thesis assumes the �bers to be pla
ed dire
tly above

the epidermis i.e. the top boundary of skin.



Chapter 2

Modeling within Radiative Transport

Theory

2.1 Analysis of the RTE

We start our 
onsiderations with an equation that des
ribes the dynami
s of light in

a s
atter-dominated medium. In the following, we assume that the phase relations of

photons vanish after a few s
attering events. A

ordingly, the Maxwell equations whi
h

are 
onvenient to des
ribe the wave 
hara
ter of light 
an be repla
ed by an equation that

des
ribes gas dynami
s whi
h in turn is 
omparable in a very high a

ura
y to photon

dynami
s [31℄. If we assume the unique velo
ity of light 
, we get in the mono
hromati



ase the radiative transfer equation (RTE) whi
h is a linear equation in the NIR regime [10℄:

1




�u

�t

+ � � ru(x; �; t) + �

t

(x)u(x; �; t) = �

s

(x)

Z

S

2

�(� � �

0

)u(x; �

0

; t)d�

0

+ q(x; �; t) ; (2.1)

for (x; �; t) 2 IR

3

� S

2

� IR

+

;

with the angle-, spa
e-, and time-dependent radiation intensity u, and sour
e q. In skin

tissue the attenuation 
oeÆ
ient �

t

(x) = �

s

(x) + �

a

(x) almost equals the s
atter 
oeÆ
ient

�

s

� 15 whi
h is about 1000 times bigger than the absorption 
oeÆ
ient �

a

� 0:01. The

integral kernel � known as phase fun
tion is normalized:

Z

S

2

�(�; �

0

)d�

0

= 1 ;

and ful�lls the symmetry 
onditions:

�(�; �

0

) = �(��;��

0

) ;

�(�

0

; �) = �(�; �

0

) :

9
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Two possibilities of ful�lling these 
onditions are given by:

�(�; �

0

) = P (
os�) =

(


onst. isotropi
 s
attering;

1

4�

1�g

2

(1+g

2

�2g 
os�)

3=2

Henyey-Greenstein s
attering.

To go more into detail, the phase fun
tion P is expanded into spheri
al harmoni
s:

P (
os�) =

1

4�

N

X

k=0

(2k + 1)m

k

L

k

(
os�) ; (2.2)

where the L

k

's are the Legendre polynomials of the order k. Following the Henyey-Greenstein

interpretation of anisotropi
 s
attering, the 
omponents m

k

are expressed by 
onstant ex-

ponentials m

k

= g

k

and N = 2 . The parameter g is 
alled the anisotropy parameter. It is

de�ned as the average 
osine of the s
attering angle � [54℄:

g :=

R

S

2

(� � �

0

)P (
os�)d�

0

R

S

2

P (
os�)d�

0

; � =

6

(�; �

0

) :

The Henyey-Greenstein phase fun
tion is 
ommonly used in tissue opti
s and has been

proven to �t experimental data for a wide range of tissue types, where g ' 0:9 whi
h stands

for a strong forward dire
tion of s
attering [50℄ [54℄.

2.1.1 The Cau
hy Problem of Radiative Transport

We will sket
h one possibility of putting up a boundary stru
ture and initial values for

equation 2.1 to yield the Cau
hy problem of the transport equation. We will outline some

existen
e and uniqueness results 
on
erning this problem and refer to the book of R. Dautray

and J. L. Lions [15℄ for further details and proofs.

The Cau
hy problem of the time-dependent RTE is formulated as follows:

Problem 2.1 Find a solution u(x; �; t) for equation 2.1, and (x; �; t) 2 IR

3

� S

2

�℄0; � [ ,

with the initial 
ondition u(x; �; 0) = u

0

(x; �) in V � � � IR

3

� S

2

; V 
ompa
t ;

and the boundary 
ondition u(x; �; t) = b(x; �; t) on �

�

= f(x; �) 2 �V � �;n � � < 0g ;

where n denotes the outward normal to �V at x.
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Remark 2.1 We mention two spe
ial types of Cau
hy problems that have been 
onsidered in

the past espe
ially to model the neutron dynami
s inside nu
lear rea
tors. The one problem

is 
alled the rea
tor problem whi
h is 
hara
terized by the la
k of sour
es and re
e
ting

boundaries (no neutrons 
ome from outside into the rea
tor), V is hereby relative-
ompa
t,

open and 
onvex in IR

3

. The other problem is 
alled the s
attering problem and is de�ned on

whole IR

3

. Both problems are given initial values u

0

. The interested reader is e.g referred to

the work done by Choulli & Stefanov [11℄. They utilized the s
attering problem to investigate

tissue media by extension of the restri
ted s
attering area V by a va
uum area IR

3

n V so

that there are no intera
tions of the photons inside IR

3

n V with the surrounding area. We

stress that the results obtained in nu
lear physi
s are hardly transferable to the mu
h more


omplex 
ase of living tissue.

To treat the general Cau
hy problem, we �rst de�ne the fun
tion spa
e L

p

(V � �); p 2

[1;1[ to be the spa
e of all fun
tions f whi
h are measurable in respe
t to the produ
t

measure dxd� su
h that

kfk

L

p

(V��)

:=

�

Z

V��

jf(x; �)j

p

dxd�

�

1=p

<1 :

We want to sear
h for solutions in the spa
es L

p

(V ��) . A kind of natural 
hoi
e would be

to take the L

p

(V � �) with p = 1 due to the interpretation of the total 
urrent of photons

N(t) at time t in 
on�guration spa
e:

kuk

L

1

(V��)

=

Z

V��

u(x; �; t)dxd� = : N(t) <1 :

In analogy to the L

p

(V ��) spa
es, we de�ne the L

p

(V ���℄0; � [) spa
es and the sobolev

spa
es W

p

(V ���℄0; � [) to be those spa
es of fun
tions f su
h that f and its distributional

derivatives D

s

f of order jsj =

n

P

j=1

js

j

j � k all belong to L

p

(V � ��℄0; � [) . W

p

is a normed

linear spa
e, for further details on those spa
es see e.g. [58℄. We are now able to formulate

theorems of existen
e and uniqueness for problem 2.1 in the homogeneous 
ase b = 0 .

Theorem 2.1 For

a(x; �) 2 L

1

(V ��) ; a � 0

and

Z

S

2

�(x; �

0

; �)d�(�) � C

1

8(x; �

0

) 2 V � �

Z

S

2

�(x; �

0

; �)d�(�

0

) � C

2

8(x; �) 2 V ��

with positive 
onstants C

1

, C

2

, and

q 2 L

p

(V ���℄0; � [) ; p 2 [1;1[ ;

u

0

2 L

p

(V ��) ;
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problem 2.1 with b = 0 has a unique solution in W

p

.

Theorem 2.2 If further the following 
onsisten
y 
ondition is ful�lled:

� � ru

0

2 L

p

(V � �) ; u

0

j

�

�

= 0

q 2 C

1

([0; � ℄;L

p

(V � �)) ;

then u is a strong solution of 2.1; it satis�es:

u 2 C

1

([0; � ℄;L

p

(V � �)) ;

� � ru 2 C

0

([0; � ℄;L

p

(V � �)) ;

u(t)j

�

�

= 0 ; 8t 2 [0; � ℄ :

If q � 0, then u

0

� 0 implies u � 0.

In the 
ase of an inhomogeneous boundary 
ondition b 2 L

p

6= 0 we have an existen
e and

uniqueness result in a weak sense as stated in [15℄ and also the positivity result: If b; u

0

and

q are positive then the solution u of the inhomogeneous problem is also positive.

Remark 2.2 The previous theorems in
lose the fa
t that transport problems as opposed

to related di�usion problems do not have a regularizing e�e
t to their solutions. Both in

the homogeneous and the inhomogeneous 
ase u 
an be dis
ontinuous even for u

0

2 C

1

,

espe
ially if the domain has 'holes' [15℄.

Analoguous existen
e and uniqueness results are given for the stationary RTE as 
an be seen

in the referen
es [9℄ [15℄.

2.1.2 The Inverse S
attering Problem

If we look at transport equation 2.1 and assume that the s
attering integral is identi
al to

zero, we are in a regime were the attenuation 
oeÆ
ient �

t

(x) is uniquely determined by

boundary data

1

. The algorithm whi
h performs this inversion is 
alled an inverse Radon

transform and all re
onstru
tion te
hniques in X-ray tomography are based on this transfor-

mation. It is now an interesting question as to what rate it is possible to redu
e the energy

of X-ray photons thus leading a s
attering integral 6= 0 until in the NIR regime at least parts

of the medium are s
atter-dominated. Choulli & Stefanov [11℄ as well as Antyufeev & Bon-

darenko [7℄ have proven existen
e and uniqueness results of an inverse problem to equation

2.1 in the 
ase of given boundary data, i.e. the possibility of re
onstru
ting the attenuation


oeÆ
ient under 
ertain 
onditions on �

t

(x) and � and -unfortunately- in the 
ase of weak

s
attering. This is due to the fa
t that one applies a Radon transform to the singular stru
-

tures of the solutions and therefore to the maximally on
e s
attered photons: E. W. Larsen

1

within a 
lass of appropriate regularizations [42℄
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has proven that su
h singular stru
tures exist in L

1

(V ��) and that those terms are due to

uns
attered or maximally on
e s
attered photons, the portion of all other photons has been

proven to be des
ribable by regular integrals [38℄. But in the s
atter-dominated 
ase it is

impossible to measure uns
attered or on
e s
attered photons separately from other photons:

the probability for a photon to get through tissue of the thi
kness 10mm uns
attered is about

exp(�100). Existen
e and uniqueness results are obsolete a few mean free paths (mfp) apart

from the light sour
e in the di�usion regime as we will see in 
hapter 4. Therefore, 
las-

si
al re
onstru
tion te
hniques are not appli
able in s
atter-dominated media. Corre
tion

of s
attering artefa
ts as well as the identi�
ation of a s
attering-dependent parameter will

depend on the a

ura
y of a model used for parameter estimation.

2.2 Dis
retizations of the RTE

2.2.1 Monte-Carlo Simulation

An easy to handle and very intuitive way to dis
retize transport problems is theMonte-Carlo

method whi
h in opposition to the demanding and usually sophisti
ated PDE solvers based

on �nite-di�eren
es is mainly used when only qualitative in
uen
es of e.g. measurement

settings on the re
e
tan
e pro�le have to be investigated. Contrary to �nite-di�eren
e

methods there is no error 
ontrol depending on the dis
retizing demands of lo
al stru
tures

of the medium, the error is only asymptoti
ally 
ontrollable with unknown 
onstants, i.e. the

quality of the simulation depends on the number of photon runs whi
h are usually in the

range of 10

7

�10

8

. Due to the very slow 
onvergen
e, the 
omputation 
osts are respe
tively

high and amount from several hours to days on a usual workstation. A very useful and often

used implementation is the MCML 
ode of Wang & Ja
ques [47℄ whi
h is publi
 domain and


overs most of everydays demands on probe simulation, skin phantom spe
i�
ation as well

as the veri�
ation of physiologi
ally motivated skin opti
al e�e
ts in vivo, for examples we

refer e.g. to [23℄ [32℄.

2.2.2 Finite-Di�eren
e Methods

For the sake of 
ompleteness we want to mention �nite-di�eren
e methods and their most

important representative the �nite-element methods. Due to the utilization of the so-
alled

galerkin orthogonality, the latter methods obtain optimal error 
ontrol 
ontrary to Monte-

Carlo simulations.

Con
erning a priori and a posteriori estimates for galerkin and petrov-galerkin methods as

well as several a

eleration s
hemes like 
rosswind di�usion, streamline di�usion and the

whole endeavors made in adaptive grid re�nement we want to mention the resear
h team

of R. Ranna
her et al. at Heidelberg University and some of their publi
ations [18℄ [31℄ for
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further investigations. An overview of the methods has been given e.g. by the book of Lewis

& Miller,Jr. [40℄.

2.3 Evaluation

The attempts to solve the RTE in the 
ase of s
atter-dominated media leads to 
omputation


osts whi
h are preferentially settled on large non-portable 
omputing devi
es. Espe
ially

resear
h teams who have fo
ussed on the development of NIR imaging algorithms whi
h yield

a spatially resolved three-dimensional parameter spa
e (usually the attenuation 
oeÆ
ient)

are subje
t to this 
ir
umstan
e. We mention the resear
h teams of A. Hiels
her at SUNY

downstate medi
al 
enter, Brooklyn, and of S. Arridge at King's Colledge, London. Both

teams raise the 
laim of identifying the attenuation 
oeÆ
ient within NIR datasets in three

dimensions. They 
on�rm that in most 
ases it is still impossible at the moment to even

state whether those endeavors for all kind of tissues will su

eed [4℄.

In general, theoreti
al motivated ben
hmarking as well as the formulation of existen
e and

uniqueness results for 
omplex geometries remain open. At the moment it seems that the

sear
h for some kind of "Radon transform for s
attering media" will produ
e no results and

most likely will never do, at least for s
atter-dominated media.

Having this in mind, the strategy of solving an inverse boundary value problem for the RTE

several times an hour on a portable devi
e has to be thought over. Therefore in the following

two 
hapters we try to handle the problem on the basis of an approximation.



Chapter 3

The Di�usion Approximation

The motivation to take the di�usion approximation of the RTE is due to the fa
t that

skin is a s
atter-dominated medium, and therefore the dynami
s of photons a few mfp

apart from a dire
ted light sour
e is des
ribable by a di�usion pro
ess. On the basis of

this approximation, multi-layer models will be formulated in order to meet skin opti
al

properties. Due to the regularizing e�e
t of di�usion pro
esses, the solutions of those

models all are in C

1

. We do not have to weaken the topology of our fun
tion spa
es to

Sobolev spa
es. Additionally, a heuristi
s to treat the 
hara
teristi
s of light propagation in

the vi
inity of a dire
ted light sour
e will be proposed. The models are usually formulated

in three spa
e dimensions and time domain (DC mode if stated). We repeat the RTE of


hapter 2 to write:

1




�u

�t

+ � � ru(x; �; t) + �

t

(x)u(x; �; t) = �

s

(x)

Z

S

2

�(� � �

0

)u(x; �

0

; t)d�

0

+ q(x; �; t) (3.1)

for (x; �; t) = (r; z; �; t) 2 IR

2

� IR� S

2

� IR

+

:

It is transformed to a 
ontinuity equation by integrating over all solid angles and using the

de�nitions of the 
uen
e rate � and the 
ux J :

1




��(x; t)

�t

+rJ(x; t) = ��

a

�(x; t) +Q(x; t) ; (3.2)

where

�(x; t) =

Z

S

2

u(x; �; t)d� ; (3.3)

J(x; t) =

Z

S

2

� � u(x; �; t)d� ; (3.4)

Q(x; t) =

Z

S

2

q(x; �; t)d� :

15
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If we assume Fi
k's di�usion law:

J(x; t) := �D(x) � r�(x; t) ;

we arrive at the di�usion approximation of the RTE:

�r �D(x)r�(x; t) + �

a

�(x; t) +

1




��(x; t)

�t

= Q(x; t) ; (x; t) 2 IR

3

� IR

+

; (3.5)

using the de�nitions:

Q(x; t) isotropi
 sour
e; (3.6)

D(x) = 1=3(�

a

(x) + �

0

s

(x)) di�usion 
oeÆ
ient

1

; (3.7)

�

0

s

(x) = (1� g)�

s

(x) redu
ed s
attering 
oeÆ
ient : (3.8)

(3.9)

In the de�nition of the redu
ed s
attering 
oeÆ
ient, the parameter g 
orresponds to the

anisotropy parameter de�ned in 
hapter 2.

A solution of 3.1 also satis�es equation 3.5 if (see also [15℄):

i. the light sour
es are isotropi
,

ii. the solution is 
onsidered far from boundaries and far (3.10)

from zones where the medium parameters vary strongly,

iii. the medium is s
atter-dominated (�

s

>> �

a

):

Remark 3.1 If 
ondition iii holds, then for sour
e-dete
tor distan
es greater than two to

three mfp a solution of equation 3.1 behaves as if assumption i would hold. In tissue media,

we therefore assume that the 
hara
teristi
s of the light trait remains 
onstant for distan
es

greater than two to three mfp from the sour
e.

Exa
t estimates for the appli
ability of the di�usion approximation exist for very simple

geometries only. In se
tion 3.1.4 we will sket
h a result given in [15℄ for the Cau
hy problem.

The extension to 
omplex geometries of tissue opti
s is a subje
t of permanent -prin
ipally

phenomenologi
al- resear
h. For 
omparisons to Monte-Carlo simulations see e.g. [49℄, and

for 
omparisons to two-layer models see e.g. [1℄ [23℄.

1

Some authors argue that D(x) = 1=3�

s

(x) is the right de�nition of the di�usion 
oeÆ
ient. For a


ontribution to the dis
ussion see e.g. [3℄ [16℄
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3.1 Boundaries - The Semi-In�nte Medium

In the next step in skin modeling within the di�usion approximation we will map the layer

stru
ture of skin to a proper boundary setting. For simpli
ity, we assume that skin layers

are 
onne
ted by parallel oriented planes applying translationally invariant boundaries with

a proper boundary 
ondition. We begin our 
onsiderations with the simplest 
ase: the semi-

in�nite medium 
onsisting of a s
atter-dominated medium at bottom and va
uum on top.

The proper boundary 
ondition is assumed to be a Fresnel boundary 
ondition whi
h gives

the amount of re
e
ted and transmitted light at a smooth boundary dependent on the ratio

of refra
tive indi
es.

3.1.1 Fresnel Re
e
tion

Figure 3.1: Fresnel re
e
tion at the surfa
e in se
tional view.

Ve
tors 


0

and 
 give the dire
tions of up
oming and re
e
ted light � respe
tively. Fresnel's

law of re
e
tion states that on the boundary we have:

�(x;
; t)j

z=0

= R(


0

)�(x;


0

; t)j

z=0

; (x; t) = (r; z; t) 2 IR

3

� IR

+

; 
;


0

2 S

2

;

(3.11)

where R(


0

) is the re
e
tion fun
tion given in Fresnel's law (in the 
ase of unpolarized light)

R(


0

) =

1

2

�

n

m


os �

v

� n

v


os �

0

n

m


os �

v

+ n

v


os �

0

�

2

+

1

2

�

n

m


os �

0

� n

v


os �

v

n

m


os �

0

+ n

v


os �

v

�

2

; (3.12)

where n

m

and n

v

are the refra
tive indi
es of medium and va
uum respe
tively, �; �

0

are the

polar angles of dire
tion 
;


0

resp. and �

v

depends on �

0

by Snell's law:

sin �

v

sin �

0

=

n

m

n

v

:
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Remark 3.2 For pra
ti
al situations, fun
tion 3.12 
an suÆ
iently be approximated by the

pie
ewise 
onstant fun
tion

R

�

(


0

) =

8

<

:

1 �




� �

0

�

�

2

R

0

0 � �

0

� �




; (3.13)

with the 
riti
al angle of total re
e
tion �




= ar
sin

n

v

n

m

.

Applying an idea of Marshak [43℄, we are able to get the Fresnel 
ondition making the ansatz:

Z

S

2

=2

�(x;
; t)Y

k;l

(
)d
 =

Z

S

2

=2

R(


0

)�(x;


0

; t)Y

k;l

(


0

)d


0

: (3.14)

We expand the produ
t � � Y

k;l

with the spheri
al harmoni
s Y

k;l

to the �rst order and get

the approximation:

�

�

(x;
; t) '

1

4�

�(x; t) +

3

4�

J(x; t) � 
 :

Thus we 
an write both sides of 3.26 as

Z

S

2

=2

�

�

(x;
; t)d
 '

�(x; t)

4

+

J(x; t)

2

;

and

Z

S

2

=2

R(


0

)�

�

(x;


0

; t)d


0

' R

�

�(x; t)

4

� R

j

J(x; t)

2

;

where

R

�

=

�=2

Z

0

2 sin � 
os �R(�)d� ;

R

j

=

�=2

Z

0

3 sin � 
os

2

�R(�)d� :

Finally, ansatz 3.26 redu
es to
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�(x; t)

4

+

J(x; t)

2

= R

�

�(x; t)

4

� R

j

J(x; t)

2

; (3.15)

or �(x; t) =

1 +R

j

1� R

�

(�2J(x; t)) :

3.1.2 The Extrapolated Boundary

The boundary 
ondition we just derived, represents the fresnel law at a boundary in the

di�usion approximation. It has the form of a mixed boundary 
ondition. Using the method

of images, we 
an easily transform this 
ondition to a Diri
hlet boundary 
ondition above

the physi
al boundary at a so 
alled extrapolated boundary [17℄. We assume that on the

physi
al boundary we have �(x; t)j

z=0

> 0. If we further assume the light sour
e Q to be

positioned inside the medium (see also the next subse
tion) we 
an infer that �

0

(x; t)j

z=0

=

�

�z

�(x; t)j

z=0

< 0. We are thus able to extrapolate �(x) above the physi
al boundary by a

distan
e � su
h that we have:

�(x; t)j

z=�

= 0 ; � =

�(x; t)j

z=0

�

0

(x; t)j

z=0

: (3.16)

Substituting 3.15 into 3.16 and using Fi
k's law we get:

� = 2

1 +R

j

1� R

�

�D =

1 +R

j

1�R

�

�

2

3

l

tr

; (3.17)

where l

tr

= 1mfp , � is 
alled the extrapolation length.

3.1.3 Sour
e Considerations

Following remark 3.1, a dire
ted point sour
e situated at the top of skin in tissue opti
s is

usually substituted by an isotropi
 point sour
e lo
ated at z

0

= 1mfp inside skin, 
alled a

virtual s
attering light sour
e:

Q(r; z; �; t)j

r=z=0

= Q(t)Æ(x)Æ(� � �

0

) 7�! Q(r; z; t)j

r=0;z=�z

0

= Q(t)Æ(x� z

0

) :

(3.18)

The advantage of repla
ing the dire
ted sour
e is that in the latter 
ase we have a fundamen-

tal solution for equation 3.5 if we set the di�usion 
oeÆ
ient 
onstant. It is simply written

as:

�(jxj; t) =




(4�D
t)

3=2

� exp(�

jxj

2

4D
t

� �

a


t) ; (x; t) 2 IR

3

� IR

+

: (3.19)
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To get the DC mode, the time derivative in equation 3.5 is set to zero, the resulting funda-

mental solution in this 
ase reads:

�(jxj) =

1

4�Djxj

� exp(�

r

�

a

D

� jxj) ; x 2 IR

3

: (3.20)

To ful�ll the extrapolated boundary 
ondition, we have to simply add a negative virtual

s
attering light sour
e at a distan
e 2 � (� + z

0

) above the physi
al boundary. In DC mode

we get the model fun
tion:

�

tot

(x) = �(x� z

0

)� �(x + z

B

) ; (3.21)

with

z

B

= 2 � (� + z

0

) ; z

0

= �

t

;

where � is the fundamental solution 3.20 .

Haskell et al. proposed a modi�
ation of model fun
tion 3.21 whi
h takes into a

ount that

on the physi
al boundary the dete
ted signal has 
ontributions from the 
uen
e � and the


ux J =

��

�z

, [21℄. The total signal is then given by:

�

Haskell

(x)j

z=0

=

1� R

�

4

� �

tot

(x)j

z=0

+

1� R

j

2

�

�

�z

�

tot

(x)j

z=0

; (3.22)

where the pre
ise linear 
ombination of 
uen
e and 
ux is a fun
tion of the numeri
al

aperture of the �ber. For appli
ations of this method we refer to [17℄ [21℄ [33℄ [46℄.

3.1.4 Estimates

In order to justify the di�usion approximation of the RTE, we give a pointwise, i.e. L

1

estimate. Therefore, we 
onsider the stationary 
ounterpart of the Cau
hy problem as

given in 
hapter 2. The following theorem 
ompares a solution of the stationary transport

problem in the 
ase of a s
aled medium with a solution of the appropriate stationary

di�usion problem. Again, we refer to [15℄ for further details and proofs.

Theorem 3.1 We assume the following regularity 
onditions:

�

s

(x) 2 C

2;�

(V ) ; and q(x); �

a

(x) 2 C

1;�

; V � IR

3

open, bounded

1

;

then the unique solution u

�

in L

1

(V � S

2

) of the stationary transport problem:

1

�

� � ru

�

(x; �) +

�

�

a

(x) +

1

�

2

�

s

(x)

�

u

�

(x; �) =

1

�

2

�

s

(x)

Z

S

2

�(� � �

0

)u

�

(x; �

0

)d�

0

+ q(x; �) ;

for (x; �) 2 V � S

2

and u

�

j

�

�

= 0 ;

1

1

In the 
ase where V is unbounded, we need a further 
ondition at in�nity: lim

jxj!1

q = 0.
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and the unique solution u in L

1

(V ) of the stationary di�usion problem:

�

�

�x

i

�

D(x)

�u(x)

�x

j

�

+ �

a

(x)u(x) = q(x) ;

for x 2 V and uj

�V

= 0 ;

satisfy:

ku

�

� uk

L

1

(V�S

2

)

� � C

q

;

with a positive 
onstant C

q

depending on q.

We emphasize the fa
t that the previous theorem assumes the Diri
hlet boundary 
ondition

to be ful�lled at dire
t neighbourhood of the s
attering medium. A virtual s
attering light

sour
e, as 
onstru
ted previously would therefore approa
h the extrapolated boundary in

the 
ase � ! 0, if we would transfer this theorem to the 
ase of an extrapolated boundary


ondition. However, a 
onsistent formal framework for this 
ase would need a two-s
aled

medium, thus leading to �!1 in the va
uum area between the physi
al boundary and the

extrapolated boundary.

3.2 Two-Layer Models

We will 
onsequently improve the halfspa
e model of the pre
eding se
tion and introdu
e

two-layer models in order to simulate the dermis-sub
utis stru
ture of skin

2

. This stru
ture

is mainly given by a distin
t pair of (�

a

; �

0

s

) for ea
h of the layers. Additionally, some

models allow a refra
tive index mismat
h between the layers if suited. There are roughly

two methods distinguishable: fourier spa
e models and models in real spa
e; both will be

proposed in the following.

3.2.1 A Fourier Spa
e Model

The fourier spa
e model of Kienle et al. is of great importan
e in the imaging 
ommunity

to model the dermis-sub
utis stru
ture in the refra
tive index mat
hed 
ase. In addition,

this model serves as a basis for hybrid methods whi
h in
lude Monte-Carlo simulations in

order to improve the a

ura
y of the model in the vi
inity of a dire
ted light sour
e [1℄

[2℄ [34℄ [35℄. Our starting point is di�usion equation 3.5 transformed to DC mode, in the

inhomogeneous 
ase for a virtual s
attering light sour
e situated in the top layer, and in the

homogeneous 
ase for the bottom layer:

�r �Dr�(x) + �

a

�(x) =

8

<

:

Æ(x� z

0

) 0 � z > l

0 l � z

; (3.23)

2

We re
all that: �

�

:= f(x; �) 2 �V � S

2

;n � � < 0g.

2

\two-layer" means one layer and a halfspa
e beneath.
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for x 2 IR

3

and layer-thi
kness jlj.

Assuming translational invarian
e, these equations are transformed to ordinary di�erential

equations using a two-dimensional Fourier transform:

�(s; z) =

1

Z

�1

1

Z

�1

�(x; y; z) exp[i(s

1

x + s

2

y)℄dxdy: (3.24)

We apply transformation 3.24 to equation 3.23 and obtain

�

2

�z

2

�

1

(s; z)� �

2

1

�

1

(s; z) =

1

D

Æ(z � z

0

); 0 � z > l; (3.25)

�

2

�z

2

�

2

(s; z)� �

2

2

�

2

(s; z) = 0; l � z ;

where

�

2

i

=

(D

i

s

2

+ �

ai

)

D

i

; s

2

= s

2

1

+ s

2

2

; i = 1; 2 indi
ating the layers:

The following boundary 
onditions are applied:

i. �(s;�) = 0; extrapolated boundary 
ondition ;

ii. �(s;�1) = 0; boundary 
ondition at in�nity;

iii.

�

1

(s;l)

�

2

(s;l)

= 1; 
ontinuity of the 
uen
e;

iv. D

1

��

1

(s;z)

�z

j

z=l

= D

2

��

2

(s;z)

�z

j

z=l

; 
ontinuity of 
ux:

(3.26)

Conditions iii. and iv. apply at the boundary between the layers and are ful�lled in the

mat
hed refra
tive index 
ase only [20℄. Applying boundary 
onditions 3.26, the solution of

equation 3.25 at the top boundary is given by (see also [30℄):

�(s; z)j

z=0

=

sinh(�

1

(� + z

0

))

D

1

�

1

)

D

1

�

1


osh(�

1

(l � z)) +D

2

�

2

sinh(�

1

(l � z))

D

1

�

1


osh(�

1

(l +�)) +D

2

�

2

sinh(�

1

(l +�))

(3.27)

�

sinh(�

1

(z

0

� z))

D

1

�

1

:

We now have to transform solution 3.27 ba
k to real spa
e. As we assume 
ylinder symmetry,

the two-dimensional fourier transform 
an be written as a Hankel transform, whi
h in our


ase is given by:

�(r; z)j

z=0

=

1

2�

1

Z

0

�(s; z)sJ

0

(sr)ds ; (3.28)
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where J

0

is the Bessel-fun
tion of zeroth order.

The evaluation of this integral is a 
ru
ial step in solving this two-layer model, several

authors have fo
ussed on it [41℄ [59℄. Another relevant point of fourier-spa
e models in

general is the number of dete
tors whi
h in our 
ase amounts to 12, whi
h yields os
illating

solutions in spa
e for the forward problem. To have smooth solutions, several hundered

widespread dete
tors are needed as it is e.g. the 
ase for the SCATTI imager des
ribed in

[23℄. For the inverse problem, this raises the 
omputation 
osts of 
al
ulating the Hankel

transform to several hours on a usual workstation. G. Alexandrakis (HRCC, Hamilton,

Canada) proposed in his PhD thesis a hybrid approa
h based on this two-layer model and

Monte-Carlo simulations to handle short sour
e-dete
tor distan
es [2℄. In a dis
ussion, he


learly stated that his experien
es 
on
erning 
al
ulation times 
onfute e�e
tivity for the in

vivo setting.

3.2.2 Models in Real Spa
e

In se
tion 3.1, a halfspa
e model has been 
onstru
ted adding a negative light sour
e to the

positive one. Consequently it is possible to add on further boundary 
onditions by adding

further virtual light sour
es.

To do this, we de�ne two operators R

d

and R




whi
h map light sour
es � given by the

time-dependent fundamental solution 3.19 and situated at ~x = (0; ~z) to their images:

�(0; ~z; t) 7! R

d

�(0; ~z; t) := � �(0; z

B

(�; ~z); t) (3.29)

�(0; ~z; t) 7! R




�(0; ~z; t) := (G � �)(0; z

0

B

(�

0

; ~z); t) : (3.30)

R

d

is known to ful�ll a Diri
hlet 
ondition at an extrapolated boundary situated at �

with the arising image sour
e situated at z

B

(�; ~z), as needed to 
onstru
t a semi-in�nite

medium.

The 
onvolution operator R




is needed to ful�ll a se
ond boundary 
ondition in order to

represent a se
ond layer. In analogy to the light sour
e 
reated by the operator R

d

, whose

position is dependent on two degrees of freedom (�; ~z), the light sour
e 
reated by the

operator R




is dependent on (�

0

; ~z). We propose two useful boundary 
onditions ful�lled at

�

0

, dependent on the a
tual medium setting:
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i. Index mismat
hed 
ase: the medium beneath the se
ond boundary is not

s
attering (turbid slab geometry). �

0

in this 
ase �xes the position of a se
ond

extrapolated boundary situated beneath the se
ond physi
al boundary:

G = �Æ(x� z

0

B

) :

ii. Index mat
hed 
ase: the medium beneath the se
ond boundary is s
attering.

We assume 
ontinuity of 
ux and 
uen
e at �

0

, as proposed in 3.26. �

0

in this 
ase

serves as a parameter whi
h is related to the s
attering properties of the bottom

halfspa
e:

G=̂ Gaussian kernel (proposed) :

Figure 3.2 shows a 
oordinate system with notations for the extrapolated boundaries as well

as the positions of the light sour
es situated on the z-axis.

Figure 3.2: Physi
al boundary (r-axis) as well

as extrapolated boundaries and positions of light

sour
es.

To take into a

ount the simultaneous presen
e of the Diri
hlet boundary 
ondition at

the top boundary and one of the former 
onditions, we have to iterate the appli
ation of

boundary 
onditions and therefore of the operators. One gets the following expression for
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the light intensity at the top boundary (see also [53℄):

�

tot

(x; t)j

z=0

=

("

1 + (1 +R

d

)

1

X

n=1

(R

d

R




)

n

#

(1 +R

d

)�

)

(x; t) ; (x; t) 2 IR

3

� IR

+

:

(3.31)

To redu
e 
omputation 
osts, the series is usually trun
ated after n = 2. Case i. 
orresponds

to the models of Wang [55℄ or Contini et al. [13℄ to model turbid slabs. Case ii. is related to

a model of Tualle et al. [53℄ extended by the proposition of the Gaussian 
onvolution kernel.

It is also possible to merge 
ases i. and ii. to a model that provides two index mismat
hes

and s
attering inside the bottom halfspa
e, whi
h is left here.

Remark 3.3 Reasons for taking the Gaussian in 
ase ii.

At �rst, it is not 
lear whi
h 
onvolution kernel should be used in 
ase ii. and whether su
h

a 
omputation 
ould be done analyti
ally, or numeri
ally and therefore time 
onsuming. In

order to over
ome this awkwardness we propose the following strategy:

It is a 
lassi
al result that the solution of a time-dependent di�usion pro
ess with no absorp-

tion is given by a Gaussian fun
tion with in
reasing varian
e in time. In the 
ase of skin

tissue where we have almost no absorption in 
omparison to s
attering, the approximation

�

a

= 0 is therefore 
on
eivable. As the 
onvolution in 3.30 performs further s
attering inside

the bottom halfspa
e of already s
attered light 
oming from the top layer, translation to arith-

meti
s of Gaussian fun
tions therefore yields the 
onvolution of a Gaussian by a Gaussian

whi
h is nothing but a spreading of a Gaussian. The operator R




in this 
ase just substitutes

a varian
e by a greater varian
e.

We have to annotate that our measurement setting works in DC mode. Therefore, the

proposition of remark 3.3 is not of pra
ti
al bene�t for our studies. Nevertheless, it may

be signi�
ant for noninvasive measurements in general: it is not yet fully 
lari�ed how the

model of Tualle et al. motivates the use of a 
ertain 
onvolution kernel in the ii. 
ase and

how the degrees of freedom of the numerous virtual light sour
es are mapped to skin opti
al

properties.

3.3 Anisotropi
 Di�usion - a Heuristi
s

In the pre
eding se
tions we dealt with some possibilities of properly applying boundary


onditions within the di�usion approximation. We now want to present a heuristi
s to

model the trait of a dire
ted light sour
e introdu
ing a proper 
lass of fun
tions deta
hed

from the framework of fundamental solutions. This 
lass of fun
tions is 
onstru
ted repla
ing

the di�usion 
onstant D in equation 3.20 by a symmetri
 positive de�nite di�usion tensor
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~

D 2 IR

3�3

. In this way, we are able to 
hange the trait of a light sour
e to be a rotational

ellipsoidal in spa
e (in [56℄ this type is 
alled anisotropi
 di�usion for the 
ase of absent

absorption). In our appli
ation, we have to assume that the ellipsoidal trait of the sour
e

will 
hange fast in spa
e to be
ome a spheroidal trait. The assumption that isosurfa
es of

light intensity 
hange in this 
hara
teristi
 manner is motivated by experiments where light

is radiated obliquely into skin and resulting isolines of the re
e
ted light on the boundary

are egg-shaped i.e. the isolines e

entri
ity in dire
tion of the light sour
e di�ers from the

e

entri
ity in the opposite dire
tion. Moreover, this di�eren
e vanishes a few mfp apart

from the sour
e; more �ndings 
on
erning probes with an oblique light sour
e are treated in

the PhD thesis of Mar
us Hermann (Ro
he diagnosti
s GmbH) (to be published).

We model this behaviour by setting

~

D dependent on the distan
e from the sour
e:

~

D =

~

D(jxj) :=

8

>

>

>

>

>

>

>

>

:

D

1

(jxj) 0 0

0 D

2

(jxj) 0

0 0 D

3

(jxj)

9

>

>

>

>

>

>

>

>

;

; D

1

(jxj) = D

2

(jxj) : (3.32)

In DC mode we arrive at the following expression:

�(jxj) =

1

4�

�

�

�

~

D(jxj)x

�

�

�

� exp

0

B

�

�

p

�

a

�

�

�

�

�

�

�

D

�1=2

1

(jxj) � x

1

D

�1=2

2

(jxj) � x

2

D

�1=2

3

(jxj) � x

3

�

�

�

�

�

�

�

1

C

A

; x = (x

1

; x

2

; x

3

)

T

2 IR

3

:

(3.33)

Figure 3.3 illustrates a plot of isosurfa
es for � dependent on di�erent ratios of D

1;2

=D

3

.

As we are interested in the light intensity at an array on the top of skin, expression 3.33

redu
es to:

�(jxj)j

x

2

=x

3

=0

=

1

4�D

1

(jxj)jxj

� exp

�

�

r

�

a

D

1

(jxj)

� jxj

�

; x 2 IR

3

: (3.34)

To answer the question, whi
h is the fun
tional behaviour of D

1

(jxj), we have to put up

a heuristi
s: Sin
e D

1

(jxj) is in
uen
ed by s
attering events and sin
e the radiation gets

isotropi
 after a few of them it is proximate to take the fun
tion:

D

1

(jxj) = D [1� a � b � exp(�a � jxj)℄ ; a; b 2 IR : (3.35)

This fun
tion 
orresponds to the se
eding probability of a photon being still uns
attered as

it travels through the medium (we leave out the 1=jxj

2

-fa
tor for reasons of 
onsisten
y and

get the limit of isotropi
 di�usion for a = 0). The anisotropy parameters a and b have to

be estimated using in vivo or skin phantom measurements, a respe
tive �t result is given in

appendix A.

We emphasize that a spa
e-dependent di�usion 
oeÆ
ient is in
ompatible with the funda-

mental solution of equation 3.5 and its steady-state 
ounterpart for the 
ase Q(x) = Æ(x).
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Figure 3.3: Isosurfa
es of � for anisotropi
 di�usion

(arbitrary units in (x

1

; x

2

; x

3

)-spa
e).

However the fun
tion 
lass given by 3.33 is a solution of equation 3.5 with an extended sour
e

Q(x):

�r �

~

D(jxj)r�(jxj) + �

a

�(jxj) = Q(x) ; x 2 IR

3

: (3.36)

In appendix A we give the appropriate expression for Q(x). In this way, we simulate light

propagation issued by a sharp, dire
ted light sour
e in a homogeneous medium by a spatially

varying medium (via the virtual di�usion tensor

~

D(jxj)) and a virtual, extended light sour
e

Q(x).
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3.4 Evaluation

The di�usion approximation of the RTE has been treated in detail in order to 
onstru
t

layered boundary models of skin. We summarize the advantages and disadvantages of this

approa
h:

The di�usion equation has a very simple fundamental solution whose appli
ability is

restri
ted to an in�nite medium at �rst. Building linear 
ombinations of su
h fundamental

solutions, it is possible to meet fresnel boundary 
onditions in order to 
onstru
t a halfspa
e,

or, if we take in�nitely many terms, to represent a multi-layer setting. Alternatively, it is

possible to transform the di�usion equation to fourier spa
e, meet a boundary 
ondition

there and to numeri
ally ba
k-transform the solution to real spa
e leading to diÆ
ulties


on
erning e.g. 
al
ulation times.

Ea
h of the multi-layer models suggested treats in
oherent boundary s
attering only. This

means that no phase relations are indu
ed by multiple s
attering between boundaries.

Therefore, the layer thi
kness for ea
h of the multi-layer models has to be greater than at

least 1mfp. This fa
t has to be taken into a

ount if one tries to model boundary s
attering

within the epidermis whose thi
kness is below 1mfp. A layered model of the epidermis

is ne
essary be
ause the opti
al properties of the epidermis are supposed to be strongly

varying during a measurement period whi
h in turn 
auses partly strong artefa
ts. The

appli
ability of the proposed models is therefore restri
ted.

It is of 
ourse an interesting question why we treat the di�usion approximation of the

RTE ex
lusively. Espe
ially at small sour
e-dete
tor distan
es in DC mode and at small

times in the time-domain the di�usion approximation is ina

urate as 
omparisons to

Monte-Carlo simulations reveal [1℄ [23℄. Therefore, an improvement of the light propagation

model is desired. The interested reader may take a look at 
ertain attempts to model

light s
attering in tissue using higher approximations of the RTE. Con
erning the next

higher approximation (P

3

) we refer to the arti
le [49℄ and the diploma thesis [57℄ that

was motivated by Boehringer Mannheim GmbH. The latter title 
learly stated the result

that it is not possible to e�e
tively solve the related inverse problem of identifying the

opti
al parameters (�

a

; �

s

) within the P

3

approximation applying mixed Fresnel/va
uum

boundary 
onditions in three spa
e dimensions in less than a week on a usual workstation.

This negative result has been 
on�rmed in a dis
ussion with the author. However to our

knowledge, a rigorous development of error estimates for the P

3

approximation in the 
ase

of mixed Fresnel/va
uum boundary 
onditions remains open.



Chapter 4

Implementation

Sensitivity matri
es are introdu
ed in order to assess a skin model in respe
t of its ability to

map re
e
tan
e 
hanges to spe
i�
 parameter 
hanges.

4.1 Sensitivity Analysis

The sensitivity of a fun
tion y(r; P ) = y(x; P )j

z=0

at a sour
e-dete
tor distan
e r with respe
t

to a parameter p

j

2 P � IR

m

, P a ve
tor of parameters, is de�ned by:

S

p

j

(r; P ) := �

�(y(r; P ))

�p

j

; y(r; P ) 2 C

1

: (4.1)

We dis
retize the distan
e r to the ve
tor r = (r

1

; r

2

; :::) 2 IR

n

and get a sensitivity matrix

S 2 IR

n

� IR

m

S :=

8

>

>

>

>

>

>

>

>

>

>

>

>

:

S

p

1

(r

1

; P ) � � � S

p

m

(r

1

; P )

� �

� �

S

p

1

(r

n

; P ) � � � S

p

m

(r

n

; P )

9

>

>

>

>

>

>

>

>

>

>

>

>

;

: (4.2)

In the following we distinguish between the sensitivity S

I

p

of a measured signal with respe
t to

a parameter p and the sensitivity S

�

p

of a proposed model with respe
t to a model parameter.

4.1.1 Ill-Posedness, Optimal Probes and Killing Fa
tors

We follow the treatment of Hadamard to de�ne well-posedness [42℄:

De�nition 4.1 Regard a mapping A : X 7! Y between topologi
al spa
es X and Y

respe
tively. The problem (A;X; Y ) is 
alled well-posed if

i. Af = g ; 8g 2 Y has a solution

ii. this solution is unique

iii. the solution depends 
ontinuously on the data

if one of these 
onditions fails the problem is 
alled ill-posed.

29
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Therefore, a homeomorphism between topologi
al spa
es de�nes a well-posed forward and

inverse problem whi
h is expressed by the demands on 
ontinuity and uniqueness in the

previous de�nition. An ill-posed problem therefore weakens the topology of a parameter

spa
e to the topology of a signal spa
e: the information 
ontent of the parameter spa
e is

not represented by the measured signal.

The only way to get ba
k a homeomorphism is to weaken the toplogy of the parameter spa
e,

whi
h is also 
alled a regularization of the problem. Important examples of regularizations

are given e.g. for the Radon transform whi
h is an ill-posed problem at �rst but yields very

useful results after applying regularization �lters to the data [42℄.

As already stated, di�usion pro
esses whi
h arise in s
atter dominated media are 
har-

a
terized by a strong weakening e�e
t on the topology of their solution

1

, furthermore all

solutions are in C

1

.

Ex
ursus: Singular Values

Due to the regularizing e�e
t of di�usion pro
esses, the di�erentiability in 4.1 
an be

assumed 
on
erning model equations based on the di�usion approximation. Resulting

sensitivity matri
es S

�

and their singular value de
ompositions are thus de�ned.

In the 
ase where we have as many dete
tors as parameters in a model equation, the value

of the determinant of S

�

gives a measure of how good signal 
hanges �I are assignable to

single parameter 
hanges �Ij

�p

j

. Orthogonal 
olumn ve
tors in S

�

therefore represent the

optimal 
ase: the value of the determinant is maximized.

In the 
ase where we have more dete
tors than parameters, the determinant is repla
ed by

the produ
t of singular values of S

�

. Based on a spe
i�
 model an optimal probe design

therefore maximizes the produ
t of singular values of S

�

with regard to optimal sour
e

dete
tor distan
es, a valid model provides su
h an optimization to be done su

essfully.

Furthermore, an artefa
t p

�

whi
h is 
orre
tly modeled by

~

� having a sensitivity fun
tion

S

~

�

p

�

(r) that is linear dependent to S

~

�

�

0

s

(r) in S

~

�

is denotable a killing fa
tor leading to the


onsequen
e that this artefa
t is not separable from s
attering by the given probe design

having the distan
e ve
tor r = (r

1

; r

2

; :::). In this 
ase, a new probe design would have

to be established. Separability of parameters is therefore strongly related to the notion

of well-posedness: the topology of the parameter spa
e has to be strong enough to isolate

s
attering from artefa
ts. It is dependent on the distan
e ve
tor r whi
h 
onstitutes the

probe design.

Non-Uniqueness in Di�usion-Based Tomography

If we apply fundamental solution 3.20 to 4.2 it is obvious that both S

�

�

a

(r; �

a

; �

0

s

) and

S

�

�

0

s

(r; �

a

; �

0

s

) are given by linear fun
tions. Therefore S

�

�

a

(r; �

a

; �

0

s

) and S

�

�

0

s

(r; �

a

; �

0

s

) are

linear dependent 
olumns of the matrix 4.2; a transport model assuming 
onditions 3.10 is

1

In [42℄ those problems are assigned their own 
lass: They are 
alled exponentially ill-posed
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thus not a valid model to separate �

a

and �

0

s

2

. In the following se
tion, we will develop a

heuristi
s to over
ome this negative result in the vi
inity of a dire
ted light sour
e.

4.2 A Simple In Vivo Data Evaluation Heuristi
s

The task of parameter separation is pla
ed as a nonlinear parameter estimation problem:

Problem 4.1 For given parameters P = (�

a

; �

0

s

; :::)

T

2 IR

m

, a model fun
tion �(r

k

; P ) ,

r 2 IR

n

and measured signals I(r), a tupel P

�

of parameters has to be found su
h that

kI(r)� �(r; P )k

2

=

n

X

k=1

[y(r

k

)� �(r

k

; P )℄

2

; �(r; P ) = �(x; P )j

z=0

is minimized.

If we assume that every �(r

k

; P ) is 
ontinuously di�erentiable, problem 4.1 
an be expressed

as a sequen
e of linear minimization problems [51℄. Therefore, we 
onsider the fun
tional

matrix D�(r

k

; P ) 2 IR

n

� IR

m

. Then we have:

�(r; P

�

) = �(r; P ) +D�(r; P ) � (P

�

� P ) + h ; khk = o(kP

�

� Pk)

and the following optimization problem [51℄:

Problem 4.2

min

P

�

kI(r)� �(r; P )�D�(r; P ) � (P

�

� P )k

2

A solution of problem 4.2 therefore �ts a model based re
e
tan
e ve
tor optimally to a

measured re
e
tan
e ve
tor.

If we 
onsider a time series of measurements instead of spot measurements, we 
an take

advantage of this fa
t, if we regard the parameter dependent 
ounterpart I(r

k

; P (t); t) of

I(r

k

; t). The mapping I(r

k

; P (t); t) 7! I(r

k

; P (t+ 1); t+ 1) is then expressible by:

I(r

k

; P (t+ 1); t+ 1) = I(r

k

; P (t); t) +D�(r

k

; P (t); t) � (P (t+ 1)� P (t)) :

A temporal re
e
tan
e 
hange (relative 
hange) is therefore assigned the following linear

form:

4

t

I(r

k

; P (t); t) :=

m

X

j=1

S

�

p

j

(r

k

; P (t); t) � 4

t

P (t) ; (4.3)

and the related inverse problem:

2

Similar results are given by [5℄ and [44℄ in a more te
hni
al manner.
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Problem 4.3

4

t

P (t) := (S

�

)

�1

� 4

t

I(r

k

; P (t); t) : (4.4)

The solution to this inverse problem is now simply a matrix inversion or singular value de
om-

position (SVD), whether S

�

is square and full rank or not. Hereby any model information

enters the problem via the time and parameter dependent sensitivity matrix S

�

(P (t); t).

4.2.1 Appli
ations

If we assume that in the vi
inity of a dire
ted light sour
e the law of Lambert-Beer holds

(i.e. that upper skin behaves like a 
uvette) then we have S

I

�

a

(r) = 
onst � r . If we further

assume that S

I

�

0

s

is not 
orre
tly represented by model equation 3.20 and thus S

I

�

0

s

(r) 6=


onst �r , then problem 4.3 is easily modi�ed to simultaneously eliminate absorption 
hanges

and 
hanges of sour
e light intensity (
ommon mode 
hanges) with S

I

CM

(r) = 
onst.

Taking the se
ond spatial di�eren
e of �

t

I(r

k

; P (t); t) in equation 4.3 und summing up over

all time intervals, we get an algorithm produ
ing the signal Al:

Algorithm 4.1

Al (r

0

k

; P; T ) :=

T

X

t=0

4

2

r

4

t

I(r

k

; P (t); t) (4.5)

whi
h is insensitive with respe
t to �

a

and 
ommon mode 
hanges. In the following,

we 
onsider the ve
tor of signals Al(r

0

1

; :::; r

0

p

) ; p = n � 2 . The near distan
e ve
tor

r = (0:8; 1:2; 1:6; 2:0; 2:4; 2:8) [mm℄ of probe NIT 1.37 is therefore mapped to the ve
tor

r

0

= (1:2; 1:6; 2:0; 2:4) [mm℄, with �

2

I(r) := I(r � 1) � 2I(r) + I(r + 1). We regard the

values of Al to be arbitrary units for simpli
ity. If suited, the values are transformable to

physi
al units applying an appropriate model to 
al
ulate values for e.g. 4

2

r

S

�

�

0

s

(r

0

; P ). In

appendix B the fun
tion 4

2

r

S

�

�

0

s

(r

0

; P ) is plotted assuming the semi-in�nite di�usion model

given in 3.22.

Appli
ations of algorithm 4.1 to 
ontinuous in vivo measurements show very en
ouraging

results with respe
t to the absorption separating properties. Even if we know that the law

of Lambert-Beer is not exa
tly ful�lled in skin tissue (e.g. due to the boundary stru
ture)

it seems that the power expansion of the fun
tion S

I

�

a

(r; P ) =

P

1

k=0

a

k

(P )r

k

is 
learly

dominated by the se
ond 
oeÆ
ient. Also interesting is the fa
t that the sensitivity of

signal Al with respe
t to glu
ose 
hanges is nearly exponentially de
reasing for in
reasing

sour
e-dete
tor distan
es r

0

. This �nding agrees with 
al
ulations using model 3.22 (see also

appendix B) and underpins model equation 3.20 to gain appli
ability apart from a dire
ted

light sour
e (and despite the in
uen
e of boundaries).
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4.2.2 Drift

Apparently 
onverse to 
ommon mode and absorption whose sensitivity fun
tion expan-

sions are dominated by the �rst and se
ond 
oeÆ
ient respe
tively, are artefa
ts 
on
erning

boundary 
hanges. Evaluations using algorithm 4.1 in some experiments show ampli�
ations

of e.g. drift artefa
ts. The drift artefa
ts are supposed to result from epidermal imbuan
e


aused by the probe 
over (whi
h in turn would 
hange refra
tive indi
es inside and above

the epidermis). This �nding emphasizes the fa
t that algorithm 4.1 treats absorption and


ommon mode artefa
ts only and negle
ts e.g. boundary 
hanges that also have a 
ru
ial

e�e
t on noninvasive measured signals. Using Al signals, the need to treat drift artefa
ts is

therefore forti�ed. We have to fa
e this fa
t in the following.

4.2.3 Some Examples

First, we present some examples of a unique 5-hour in vivo experiment where glu
ose has

been varied by an oral glu
ose drink after the (nearly diabeti
) volunteer has been demure

for several hours (so 
alled OGT experiment). The glu
ose impa
t amounts to an amplitude

of 130mg/dl and it was the goal of this run to show the impa
t of small glu
ose amplitudes

on the s
attering 
oeÆ
ient [22℄ .

Su

essively, the plots show the same experiment, �rst applying the �t algorithm N4 based

on the semi-in�nite halfspa
e di�usion model 3.22 implemented by M. Hermann [23℄ and

S. Ni
kell [45℄ for Boehringer Mannheim GmbH (Fig.4.1). We see the redu
ed s
attering


oeÆ
ient �

0

s

at 805nm and the interpolated referen
e glu
ose (taken by invasive spot mea-

surements):

Figure 4.1: Fit result using a semi-in�nte halfspa
e model.
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Figures 4.2 to 4.5 plot the same experiment, but evaluated with algorithm 4.1 (
alibrated

to absolute glu
ose values). The Al(r

0

) signals show a more balan
ed behaviour whi
h is

typi
al for this algorithm. In order to redu
e a drift artefa
t whi
h is present during the

whole measurement period, plots 4.3 to 4.5 have been subtra
ted by an exponential fun
tion

whose parameters have been estimated using four referen
e glu
ose values. The use of an

exponential fun
tion as drift model has been motivated by in-house (Ro
he) refra
tometer

experiments where the refra
tometer has 
overed the epidermis for several hours. The half-

life period of the refra
tometer experiments are 
omparable to the ones of most of the drifting

OGT experiments (whi
h amount to about 50% of the total) and lie in the range of 3 to

5 hours. Plots 4.3 to 4.5 are given the same half-life period that was estimated utilizing

signal Al(r

0

1

). They 
on�rm the �nding that the sensitivity for glu
ose 
hanges de
reases

monotoni
ally for in
reasing distan
es r

0

= (1:2; 1:6; 2:0; 2:4) [mm℄.

Figure 4.2: The signal Al(r

0

1

) applied to the same data.

Figure 4.3: Al signal (drift removed) in dire
t vi
inity of the

sour
e: Al(r

0

1

).
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Figure 4.4: Al signal (drift removed) more distant from the

sour
e: Al(r

0

2

).

Figure 4.5: Al signal (drift removed) even more distant from the sour
e:

Al(r

0

3

).

In opposition to the pre
eding OGT experiment where the probe temperature has been

held 
onstant, the following experiment shows the impa
t of a temperature 
hange whi
h

has been triggered outside skin by heating and 
ooling the probe. In �gure 4.6 we see 
rude

signals (relative signal 
hanges �

t

I(r

k

; t)) at the �rst four distan
es r = (0:8; 1:2; 1:6; 2:0)

[mm℄ of the NIT 1.37 probe using arbitrary units, and bold on top the absolute temper-

ature T at the probes temperature sensor. The plot 
learly shows that the sensitivity

S

I

Temp.

(r) =

�

t

I(Temp:;t)j

�Temp.

�Temp:

of the measured signal with respe
t to temperature 
hanges

doesn't have to be 
onstant: the signal response at r = (1:2; 1:6; 2:0) [mm℄ 
hanges sign in

the se
ond temperature swing.
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Figure 4.6: Di�eren
e in signal response at 
onse
utive temperature

variations (0:8mm thin line on top to 2:0mm on bottom).

4.3 Evaluation

The implementation of sensitivity based methods, espe
ially �ndings 
on
erning algorithm

4.1 give rise to the following statements:

1. It is possible to improve 
rude signal 
hanges by the very simple evaluation al-

gorithm 4.1 in a way that short time artefa
ts whi
h are supposed to be dominated

by absorption 
hanges 
an be redu
ed signi�
antly. Comparisons to 
lassi
al �t al-

gorithms like N4/N5 ([23℄ [45℄) show more balan
ed results. Furthermore algorithm

4.1 gives a ve
tor of time-dependent signals instead of a single �

0

s

(t)-signal and thus


an serve as a basis for further e.g. data driven evaluation pro
edures in order to

redu
e drift artefa
ts.

2. The results of algorithm 4.1 partly show strong drift artefa
ts. A 
omparison to

the asso
iated 
rude signal 
hanges give rise to the presumption that sensitivities

of the underlying boundary e�e
ts are dominated by 
oeÆ
ients of higher order

(
on
erning their power expansion) and that drifts are therefore ampli�ed by taking

the se
ond spatial di�eren
e. Due to the great variety of possible physiologi
al

impa
ts of imbuan
e inside and above the epidermis, it is not realisti
 to have

a simple fun
tional des
ription of sensitivity fun
tions with respe
t to boundary


hanges. For the sake of an e�e
tive problem-handling, we therefore have to ex
urse

to data driven approa
hes in the next 
hapter.
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3. Con
erning temperature artefa
ts the situation is more 
ompli
ated: the sensi-

tivities of glu
ose indu
ed s
attering 
hanges and drift artefa
ts have to be assumed

to be nearly 
onstant during usual measurement periods (several hours) whi
h is


on�rmed by the fa
t that 
alibration 
oeÆ
ients remain un
hanged during these

periods. In opposition to this, we have to assume that in some 
ases it is im-

possible to eliminate temperature artefa
ts by a linear transformation of dete
tor

signals with a 
onstant 
oeÆ
ient in time. Therefore, we have to assume that

S

Temp.

(r) = S

Temp.

(r; t) and thus, an elimination of temperature artefa
ts by simply

adding a multiple of the temperature sensor signal �T to the signal won't work.

An overview of several other artefa
ts o

uring in noninvasive measurements su
h as


hanges of the water 
ontent of skin, body movements, oxygenation 
hanges et
. and

their impa
t on noninvasive signals has been given in the PhD thesis of H.-M. Kl�otzer

(Ro
he diagnosti
s GmbH) [36℄.

4. It is hardly possible to give any statisti
al warranty for those of the above state-

ments that need to be 
on�rmed by appropriate investigations. This is mostly due to

the fa
t that physiologi
al side 
onditions di�er signi�
antly between the experimen-

tal runs, making the volunteers and therefore the experiments hardly 
omparable.

Moreover, the total number of in vivo experiments under 
onsideration amounts to

about 100. This number may lie in the range of the number of more or less di�ering

parameters triggered by anatomy or physiology. We therefore won't try to apply an

a

ording statisti
al framework.
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Chapter 5

Ex
ursus: Data-Driven Approa
hes

In this 
hapter, we will ex
urse to data-driven approa
hes in order to evolve our data eval-

uation possibilities. Re
ently, a new method for 'blind' data evaluation has been proposed,

namely independent 
omponent analysis [12℄ whi
h will be treated in detail. To motivate

the te
hnique, we will give a summarizing overview of the papers of A. Hyv�arinen [25℄ and

T.-W. Lee et al. [39℄. First, we put up the so-
alled linear mixing problem of the hidden

parameter 
hanges �

t

P (t) 2 IR

m

that have to be re
onstru
ted from the observed signals

�

t

I(t) 2 IR

n

(see also equation 4.3), i.e.

�

t

I

r

i

t

k

:=

I

r

i

t

k

� I

r

i

t

k�1

I

r

i

t

k

=

m

X

j=1

S

r

i

p

j

��

t

p

j

(t

k

) ; �

t

I

r

i

t

k

2 IR

n

� IR

�

at � dis
rete time points t

k

, or in short form:

8t : �I = S ��P ; S 2 IR

n

� IR

m

; (5.1)

where the mixing matrix S is assumed to be 
onstant over time.

5.1 Se
ond-Order Methods

Contrary to the inverse problem 4.3, we now want to estimate matrix S without having a

skin model to provide for S

�

. One popular approa
h to �nd a linear transform S in 5.1 is

se
ond-order methods with important derivatives like prin
ipal 
omponent analysis (PCA),

sometimes 
alled the (dis
rete) Karhunen-Lo�eve transform or fa
tor analysis. Both methods

put an orthogonal basis inside the observed data spa
e, thus minimizing an error fun
tional

based on mean squares. A SVD de
omposition of �

t

I(r; t) = U�V

T

a

omplishes this task

easily, leading to a PCA subspa
e U and the appropriate fa
tor loadings 
ontained in V

T

. If

we drop prin
iple 
omponents belonging to small singular values 
ontained in �, we speak

of a biased method, otherwise it is 
alled unbiased.

39
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5.2 Higher-Order Methods

We want to strengthen the requirement of un
orrelatedness of data arising from se
ond-order

methods to the notion of statisti
al independen
e.

Statisti
al independen
e

Denote by u

1

; u

2

; :::; u

m

some random variables with joint density f(u

1

; :::; u

m

). The variables

u

i

are (mutually) independent if the density fun
tion 
an be fa
torized:

f(u

1

; :::; u

m

) = f

1

(u

1

)f

2

(u

2

):::f

m

(u

m

) ; (5.2)

where f

i

(u

i

) denotes the marginal density of u

i

. An equivalent formulation of independen
e

states that:

Efg

1

(u

i

)g

2

(u

j

)g � Efg

1

(u

i

)gEfg

2

(u

j

)g = 0; for i 6= j ; (5.3)

for any measurable fun
tions g

1

and g

2

. This property is sometimes 
alled statisti
al inde-

penden
e, as 
ompared to un
orrelatedness whi
h is de�ned by:

Efu

i

u

j

g � Efu

i

gEfu

j

g = 0; for i 6= j : (5.4)

It follows that independen
e is a suÆ
ient but not a ne
essary 
ondition for un
orrelatedness.

But both qualtities 
oin
ide in the 
ase when u

1

; :::; u

m

have a joint Gaussian distribution.

Due to this property, the 
on
ept of statisti
al independen
e is not advantageous for Gaussian

variables.

5.2.1 Independent Component Analysis

We state two de�nitions of independent 
omponent analysis (ICA) that are somehow inverse

to ea
h other. In the following, the observed n-dimensional signal ve
tor is denoted by

�I = (�I

1

; :::;�I

n

)

T

. First we give a de�nition that states the prin
iple of ICA:

De�nition 5.1 ICA of a signal ve
tor �I 2 IR

n


onsists of �nding a linear transform �P =

W ��I ; W 2 IR

n

� IR

m

so that the parameters �P

i

2 IR

m

are as independent as possible,

in the sense of maximizing some fun
tion F (�P

1

; :::;�P

m

) that measures independen
e.

This de�nition just says that if a measure of independen
e exists, ICA provides for the

appropriate linear transform, no additional assumptions on the data are made. In this

regard, a se
tion below we will have to deal with 
ontrast fun
tions providing for manageable

measures of independen
e for the �P

i

. The following de�nition reprodu
es our mixing

problem 5.1:
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De�nition 5.2 (Jutten and H�erault [29℄) ICA of a signal ve
tor �I 2 IR

n


onsists of

estimating the following generative model for the sensor data:

8t : �I = S ��P ; S 2 IR

n

� IR

m

;

again S is assumed to be 
onstant in time.

It 
an be shown [12℄ that if the data does follow the generative model in de�nition 5.2,

de�nitions 5.1 and 5.2 be
ome asymptoti
ally equivalent in a weak topology of matrix 
lasses

for 
ertain F .

Identi�ability of the ICA Model

We refer to the treatment of identi�ability in [12℄ and [25℄. For simpli
ity, o

uran
e of

(weak) Gaussian noise in the data will be treated like an additional independent (Gaussian)


omponent and measured signals are assumed to be 0-1 normed. The identifyability of a 
lass

of independent 
omponents within the ICA model, where independent 
omponents inside

a 
ertain 
lass are unique up to a permutation and s
aling, 
an be assured if the following

restri
tions are imposed:

i. At most, one sour
e is normally distributed.

ii. The number of sensors n must be at least as large as the number

of parameters m, i.e. n � m .

iii. 8 t: The parameter 
hanges �P (t) are mutually independent.

Referring to our mixing problem, the parameters are exa
tly re
overed whenW is the inverse

of S up to a permutation and s
ale 
hange:

P = R �D = W � S ;

where R is a permutation matrix and D is a s
aling matrix.

5.2.2 Appli
ations of ICA

Contrast Fun
tions

The notion of statisti
al independen
e between random variables yields pra
ti
al results if

we transfer it to equivalent 
on
epts like information maximation and negentropy maxima-

tion. Without going into detail, we want to brie
y review the basi
 de�nition of mutual

information:

De�nition 5.3 The mutual information I(u) of a measured signal ve
tor u is given by the

Kullba
k-Leibler (KL) divergen
e D(�k�) of the multivariate density f(u) and the density

written in produ
t form:

I(u) :=

Z

f(u) log

f(u)

�

N

i=1

f

i

(u

i

)

dx = D( f(u) k�

N

i=1

f

i

(u

i

) ) ; I(u) � 0 : (5.5)
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Thomas and Cover [14℄ showed that I(u) is zero i� the 
omponents u

i

are statisti
ally

independent. Again the 
on
ept of mutual information is easily adapted to the notion of

negentropy whi
h is de�ned as the KL divergen
e between the density f(u) of variable u and

a Gaussian distribution f

G

with the same mean and 
ovarian
e as f(u). Finally, Girolami

[19℄ showed that minimizing the mutual information of the 
omponents of a random ve
tor

is identi
al to maximizing their negentropy.

The task of �nding a measure of statisti
al independen
e is now transferred to the task of

�nding a feasible measure of negentropy, in turn giving a measure of non-Gaussianity of a

density f(u) using the following de�nition of negentropy:

De�nition 5.4 The measure

J(u) := H

Gauss

�H(u) ; J(u) � 0 ; with H(u) := �

Z

f(u) log f(u)du ;

is 
alled negentropy.

Due to the fa
t that a Gaussian variable has the largest entropy among all random variables

of equal varian
e [14℄, measure 5.4 is always positive. As the exa
t value of f(u) is usually

unknown, simpler approximations of negentropy have to be 
onsidered. Jones & Simon [28℄

as well as Comon [12℄ utilized an Edgeworth expansion of 5.5 trun
ated at fourth-order to

approximate the mutual information by:

J(u) :=

1

12

Efu

3

g

2

+

1

48

kurt(u)

2

; (5.6)

where the kurtosis is de�ned by:

kurt := Efu

4

g � 3(Efu

3

g)

2

:

In order to over
ome non-robustness en
ountered with fourth-order 
umulants in general and

espe
ially kurtosis [26℄, the framework of 
umulants has been over
ome. In [24℄ the following


ontrast fun
tion thus approximating negentropy has been proposed:

J

G

(u) := jE

u

fG(u)g � E

�

fG(�)gj

p

: (5.7)

J

G

(u) is equipped with a smooth, non-quadrati
 fun
tion G(u) and an exponent p = 1; 2

typi
ally. For G(u) = u

4

, J

G

be
omes simply the modulus of kurtosis of u, equation 5.7

therefore generalizes the moment-based approximation in 5.6. Equation 5.7 is 
onsistent in

the sense that it is always non-negative and equal to zero if u has a Gaussian distribution.

The following 
hoi
es of G were proposed in [25℄ and [26℄:

G

1

(u) = log 
osh a

1

u ; G

2

(u) = exp(�a

2

u

2

=2) ; (5.8)

where a

1

; a

2

� 1 are some suitable 
onstants.
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The FastICA algorithm

We will use the MATLAB implementation 'FastICA', provided by the Neural Network

Resear
h Centre at Helsinki University (www.
is.hut.�/proje
ts/i
a/fasti
a) whi
h utilizes

usual numeri
s like e.g. a Newton iteration or Gram-S
hmitt orthogonalization. For further

details see e.g. [25℄. We applied this algorithm to the OGT experiment of the pre
eding


hapter at 805nm. Figure 5.1 shows the independent 
omponents that ensue after feeding

the �rst four 
rude signals at r = (0:8; 1:2; 1:6; 2:0) [mm℄ to the algorithm. We have 
hosen

the 
ontrast fun
tion G

2

given in 5.8. The redu
tion to three independent 
omponents pro-

du
es one drift a�i
ted signal and two noisy and unspe
i�
 signals (arbitrary units) given

in �gure 5.1.

0 200 400 600
−2

−1

0

1

2

3
1st component

0 200 400 600
−2

−1

0

1

2
2nd component
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1

2
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0 200 400 600
50

100

150

200

250
reference glucose

Figure 5.1: ICA applied to 
rude signals: The third 
omponent shows a drift a�i
ted signal.
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ICA Meets Di�usion Theory

The results of ICA be
ome more interesting if we take into a

ount model knowledge whi
h

is e.g. represented by the Al(r) signal, as given by the heuristi
s of the pre
eding 
hapter: we

therefore 
ombine model knowledge with a data driven approa
h. That way, ICA provides

for a re�nement of a given sensitivity matrix stru
ture. We map the �rst four Al(r) signals

of the same experiment to three independent 
omponents. Figure 5.2 shows the result.
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Figure 5.2: ICA applied to an Al signal.

Obviously the third 
omponent of �gure 5.2 
orrelates to the referen
e glu
ose. Therefore, the

drift pattern, whi
h is still existent in the third 
omponent of �gure 5.1 has been separated

su

essfully.



Summary and Outlook

Summarizing our attempts to identify the light s
attering 
oeÆ
ient of skin and its alter-

ations in in vivo datasets, we have to make primarily the following observation: although

we had to weaken our pretension to model light propagation in skin tissue within the RTE

framework, the task of evaluating noninvasive measured signals entailed 
hallenges of its

own type. First, we established multi-layer skin models using the di�usion approximation

of the RTE. For the skin being a s
atter-dominated medium, this possibility is 
ertainly

permitted for large sour
e-dete
tor distan
es. However, skipping to short sour
e-dete
tor

distan
es, a thorny problem of noninvasive diagnosti
s has been entered, whi
h in this

thesis has been treated by setting up a heuristi
s: we �rst stepped a little bit aside of

the framework of fundamental solutions for the di�usion approximation, but related to it,


onstru
ting an virtual, extended light sour
e thus ful�lling a di�usion equation for a proper


lass of fun
tions.

For the sake of usefulness of multi-layer models in noninvasive diagnosti
s, we proposed a

new 
onvolution kernel to be applied to real spa
e models like the one of Tualle et al. in

time-domain.

Again, the attempt to ta
kle an important problem of 
ontinuous monitoring, this time

o

uring as drift artefa
ts for the in vivo setting, has been avoided within the straight

di�usion theory framework: multi-layer models based on the di�usion approximation

presume layer-thi
knesses greater than one mfp, therefore the attempt to map drift artefa
ts

to suitable opti
al e�e
ts inside or dire
tly above the epidermis has to fail.

Finally, these �ndings resulted in a 
hange of the solution strategy: the limitations

of modeling within the partial di�erential equations framework, 
on
erning the RTE or

the di�usion approximation of the RTE, have revealed to be obvious when applied to the


omplexity of this spe
ial in vivo setting. In other words, it is not advisable to try to handle

the 
omplexity of this in vivo setting opposing a partial di�erential equation apparatus of

equal 
omplexity plus the use of a big 
omputing devi
e only.

After all, the 
onne
tion of a simple data evaluation heuristi
s based on fundamental in-

sights of light propagation in tissue with a data-driven re�nement tool, namely independent


omponent analysis, produ
ed the best results in vivo. It will be the subje
t of future

resear
h to embark on this strategy. An adaptive re�nement of sensitivity matri
es or

45



qualitative statements about sensitivity matri
es has to be investigated. Consequently, a

measurement devi
e whi
h is able to attune to its wearer after a 
ertain wearing period

would result. Methods of 'hard' 
omputing and 'soft' 
omputing will therefore be 
ombined

in this strategy.
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Appendix A

The anisotropi
 di�usion heuristi
s is applied to the in vivo experiment used in 
hapter 4, this

time at 660 nm. In �gure 6 we have 
hosen the intensity pro�le weighted by the square of the

distan
e r at a single measurement point in the middle of the experiment. For the isotropi



ase we take the semi-in�nite model as proposed in equation 3.22 (n

rel

= 1:4 ; �

a

= 0:01) and

modify it to the anisotropi
 
ase repla
ing the di�usion 
onstant D by the spa
e dependent

di�usion 
oeÆ
ient D � [1� a � b � exp(�a � jxj)℄. The �t results for the resulting values D; a; b

and �

a

are given in the table below.

0.5 1 1.5 2 2.5 3 3.5 4
7

8

9

10

11

12
x 10

4 Profile: Anisotropic diffusion, 660nm

0.5 1 1.5 2 2.5 3 3.5 4
7

8

9

10

11

12
x 10

4 Profile: Isotropic diffusion, 660nm

Figure 6: Plot of the measured pro�le I(r) � r

2

(
ir
les) and the model pro�le �(r) � r

2

for

the 
ase of isotropi
 and anisotropi
 di�usion subje
t to r in mm.
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Fit result using �rst seven distan
es of NIT 1.37, r=(0.8,1.2,1.6,2.0,2.4,2.8,4.0)[mm℄:

D[mm℄ �

a

[1=mm℄ a b

anisotropi
 di�usion 0.2504 0.0124 0.4739 1.9955

isotropi
 di�usion 0.3213 0.0478 0 -

�t-error anisotropi
 di�usion 1.6411e+03

�t-error isotropi
 di�usion 3.7051e+03

resulting error redu
tion 55%

The dependen
y of the pro�le I(r) � r

2

on the anisotropy 
oeÆ
ient a is plotted in �gure 7.

Figure 7: Pro�les �(r) � r

2

for near distan
es dependent on a,

(b = 2;D = 0:3[mm℄; �

a

= 0:01[1=mm℄).
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Applying expression 3.33 to di�erential equation 3.36 we get the following MAPLE output:

Q(a

1;3

; b

1;3

;D

1;3

;�

a

; x

1

; x

2

; x

3

) := Q(a1; 2; b1; 2;D1; 2;ma; x; y; z) =

�D1 %2(

3

4

%4D1

4

%2

4

x

2

�%5

5=2

+

1

2

p

ma D1 %2 x

2

%4

�%5

3=2

p

%3

�

1

4

%4D1

2

%2

2

�%5

3=2

+

1

4

p

ma x

2

%4

�

p

%5%3

3=2

D1

2

%2

2

�

1

4

p

ma%4

�

p

%5

p

%3D1 %2

+

1

4

ma x

2

%4

�

p

%5%3D1

2

%2

2

)� D1 %2

(

3

4

%4D1

4

%2

4

y

2

�%5

5=2

+

1

2

p

ma D1 %2 y

2

%4

�%5

3=2

p

%3

�

1

4

%4D1

2

%2

2

�%5

3=2

+

1

4

p

ma y

2

%4

�

p

%5%3

3=2

D1

2

%2

2

�

1

4

p

ma%4

�

p

%5

p

%3D1 %2

+

1

4

ma y

2

%4

�

p

%5%3D1

2

%2

2

)� D2 %1(

3

4

%4D2

4

%1

4

z

2

�%5

5=2

+

1

2

p

ma D2 %1 z

2

%4

�%5

3=2

p

%3

�

1

4

%4D2

2

%1

2

�%5

3=2

+

1

4

p

ma z

2

%4

�

p

%5%3

3=2

D2

2

%1

2

�

1

4

p

ma%4

�

p

%5

p

%3D2 %1

+

1

4

ma z

2

%4

�

p

%5%3D2

2

%1

2

) +

1

4

ma%4

�

p

%5

;

%1 := 1� a2 b2 e

(�a2

p

x

2

+y

2

+z

2

)

;

%2 := 1� a1 b1 e

(�a1

p

x

2

+y

2

+z

2

)

;

%3 :=

x

2

D1 %2

+

y

2

D1 %2

+

z

2

D2 %1

;

%4 := e

(�

p

ma

p

%3)

;

%5 := D1

2

%2

2

x

2

+D1

2

%2

2

y

2

+D2

2

%1

2

z

2

:

Q des
ribes an anisotropi
 light sour
e ex
ept for the 
ase a1; 2 = 0 (isotropi
 limit).
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Appendix B

The de
reasing sensitivity �

2

r

S

�

�

0

s

(r;D) with respe
t to the distan
e r dependent on the

di�usion 
onstant D := Di is given in �gure 8, the ability of algorithm 4.1 to separate �

a

from �

0

s

, measured by the ratio �

2

r

�

S

�

�

0

s

(r;d)

S

�

�

a

(r;d)

�

dependent on the sour
e-dete
tor distan
e r

and the separation distan
e between single dete
tors d is given in �gure 9, both plots utilize

the semi-in�nite model as proposed in equation 3.22.

Figure 8: �

2

r

S

�

�

0

s

(r;Di) - zero is on top of plot, (n

rel

= 1:4 ; �

a

= 0:01[1=mm℄).
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Figure 9: The �

a

-separation ability de
reases with in
reasing distan
e r and

d, (n

rel

= 1:4 ; �

a

= 0:01[1=mm℄ ; D = 0:3[mm℄).
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