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Abstract

Motivated by the ischaemic brain stroke research, this work is devoted to the description of
the osmotic swelling of a brain cell due to the absorption of the extracellular fluid during the
formation of the cytotoxic (cellular) oedema.
A physically motivated mathematical model describing the interaction between a single swelling
cell and the extracellular fluid surrounding it is developed. In particular, the dynamics of the
interaction is approximated by the coupled Biot-Stokes equations, resulting in a free boundary
interaction problem. The Biot equations derived using homogenization techniques are considered
and it is shown, that for the relevant data range, the temporal pressure derivative term of the
Biot equations is negligible. Filtering effects of the cell membrane and the driving force of the
transmembrane osmotic pressure difference are reflected in the Biot-Stokes coupling condition
relating the normal fluid flux to the total pressure difference across the membrane.
The analysis of the relevant experimentally obtained data for the considered biological system
suggests that certain effects and processes included into the developed general coupled model can
be neglected. As a result, a simpler (reduced) mathematical model is obtained and numerically
implemented.
The reduced Biot-Stokes coupled problem is discretized using FEMs (in space) and the implicit
Euler scheme (in time), and solved following an operator-splitting approach. The numerical
implementations of the (pure) Biot problem are verified by comparing the analytic and numerical
solutions, and are available for two and three dimensions. The simulation results for the reduced
mathematical model parametrized with the estimated experimental parameters showed good
agreement with the experimental observations. The sensitivity of the Biot problem solution
to the variations of the key parameters and domain geometry, as well as the overall effect of
the Stokes domain solution on the solution of the coupled Biot-Stokes problem are tested and
analysed.





Zusammenfassung

Diese Arbeit ist ein Beitrag zur Forschung and ischämischen Schlaganfällen und widmet sich
der Beschreibung osmotisch bedingter Schwellungen von Gehirnzellen durch Absorption extra-
zellulärer Flüssigkeit.
Ein physikalisch motiviertes mathematisches Modell zur Beschreibung der Interaktion zwischen
einer einzelnen Zelle und der sie umgebenden extra-zellulären Flüssigkeit wird präsentiert. Deren
dynamischen Beziehungen werden durch eine gekoppelte Form der Biot-Stokes Gleichungen auf
zeitlich veränderlichen Geometrien beschrieben. Unter Betrachtung einzelner Zwischenresultate
der Herleitung der Biot-Gleichungen durch Homogenisierung wird gezeigt, dass die zeitlichen
Ableitungen des Drucks für den problem-relevanten Parameterraum vernachlässigbar klein sind.
Filter-effekte der Zellmembran sowie osmotische Druck, werden in den Biot-Stokes Kopplungs-
bedingungen abgebildet, welche den transmembranen Fluss mit dem Gesamtdruckunterschied
an der Zellmembran in Beziehung setzen.
Basierend auf einer Analyse relevanter Experimente zu dem betrachteten biologischen System
wird eine Auswahl der wichtigsten physikalischen Prozesse getroffen, um daraus ein vereinfachtes
(reduziertes) mathematisches Modell zu erhalten, welches einer numerischen Lösung zugänglich
ist.
Die vereinfachten gekoppelten Biot-Stokes Gleichungen werden mit finiten Elementen im Raum
und mit impliziter Euler-Integration in der Zeit diskretisiert und schließlich unter Zuhilfenahme
von Operator-Splitting gelöst. Die numerische Implementierung des (reinen) Biot-Systems wird
durch Vergleich mit analytischen Lösungen in zwei und drei Dimensionen verifiziert. Die Ergeb-
nisse der Simulation des vereinfachten mathematischen Modells, welches mit experimentell bes-
timmten Parametern vervollständigt wurde, zeigen eine gute Übereinstimmung mit den exper-
imentell zugänglichen Observablen des realen Systems. Die Sensitivität des Biot-Teilsystems
auf einige Schlüsselparameter sowie der Einfluss der Kopplungseffekte der Lösung im Stokes-
Teilsystems werden getestet und analysiert.
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Introduction

Background & motivation
Ischaemic brain stroke as well as the related processes that affect brain tissue and cells are a
subject of past, recent and current studies. Occlusion of one of the cerebral arteries followed
by ischaemia-induced pathological processes lead to the development of life-threatening brain
oedema. On the tissue scale, brain oedema formation is characterised by substantial leakage of
various substances across the blood-brain barrier. Consequent brain tissue swelling may result
in the increase of intracranial pressure and in many cases leads to death.
Due to the dominant effect of hypoxia on cells, first malignant changes of the brain condition
are observable at the stage of cytotoxic (cellular) oedema, which is characterized by swelling
of different types of brain cells and consequent constriction of the extracellular space in the
ischaemic areas of the brain tissue. Under the conditions of hypoxia, the energy required for the
healthy functioning of the cell membrane is not available, leading to the failure of energy requir-
ing channels (pumps). The resulting rapid accumulation of sodium ions within cells generates
an osmotic force that drives extracellular water into the cell in order to maintain osmotic equi-
librium. Cytotoxic oedema alone does not require the participation of the intravascular space
constituents and does not cause the increase of the brain tissue volume. However it creates
conditions for the formation and development of ionic and vasogenic oedemas, which do lead to
tissue swelling.

Unless the cell membrane is compromised, cytotoxic swelling does not necessarily lead to per-
manent damage and may be reversed. Therefore estimating the rate of swelling and the overall
condition of the brain cells is important for the treatment of the ischaemia-affected tissue.

While the original motivation of this research is related to the brain stroke and its complica-
tions, the formation of cytotoxic oedema can be observed during other malignant processes,
such as traumatic or hypoxic brain injury, cancer, brain inflammation, etc. More generally, os-
motic swelling of living cells can be observed in multiple other circumstances, when the energy
necessary for the healthy activity of the membrane is not available.

Goal & approach
The objective of this thesis is to develop a mathematical model describing the progression of
cytotoxic oedema in damaged but not dead cells, i.e. until their rupture, such that this model
satisfies the following requirements:

• it includes the description of the significant processes that affect the swelling, such that the
available experimental data can be incorporated, and thus the impact of the considered
effects distinguished and estimated;

• it can be implemented numerically, such that the approximation of the swelling behaviour
can be evaluated by comparing the results of the numerical simulations with the available
experimental observations;
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• it either allows a direct up-scaling to the tissue level, or gives clear indication to a simpler
cell swelling approximation that can be used as the basis for the approximation of the
processes occurring on the tissue level.

In order to give a detailed description of the processes that take place during the formation
of cytotoxic ischaemia, swelling of a single brain cell surrounded by some amount of
extracellular fluid is studied. The above listed goals are approached in several steps, namely:

• The cell and extracellular fluid are approximated by physically motivated mathematical
models and coupled at the interface with the help of appropriate interface conditions.
The characteristics of the considered domains and materials allow the overall system to
be described using continuum mechanics models, which for 2- or 3-dimensional problems
would involve the use of partial differential equations. More specifically, the dynamics of
the system is approximated as a Biot-Stokes interaction free boundary problem, and
the driving force of the transmembrane osmotic pressure difference is modelled as a pure
interface effect.

• The experimental measurements of the characteristics of the relevant biological materi-
als and osmotic cell swelling processes available in the literature are analysed. The results
of this analysis are reflected in the choice of the parameters and initial, boundary and
interface conditions of the developed model and are also used to estimate the importance
of some of the considered effects or subprocesses of the general problem. While some of
the values can be found from experimental measurements, other quantities are estimated
based on the introduced assumptions or approximated using mathematical models. Fur-
thermore, several types of experimental settings are distinguished, and their differences are
reflected in the choice of the respective characteristic values, initial, boundary or interface
conditions.

• The resulting dynamical system is discretized in space and time and simulated numer-
ically. The space-time discretization is realized by an operator splitting method adapted
to the specific requirements of the moving meshes approximating the respective time de-
pendent physical domains. The implemented simulations are used to demonstrate the
approximation of the osmotic cell swelling behaviour by the developed model, as well as
to further the analysis and estimation of the modelled effects and processes.

State of the art

While biological cells are very complex systems, they share many characteristics with vesicles
(closed lipid bilayers enclosing a liquid) that have much simpler structure. Vesicles and lipid
membranes have been extensively studied from the experimental, theoretical and numerical
perspectives, see e.g. [1], [2], [3], [4], [5], [6], [7], and certain obtained research results can
be used for the development of models approximating the processes that occur to living cells.
Thus the lipid bilayer membrane is commonly modelled as a two dimensional incompressible
fluid, such that the fluid–structure interaction problem of the vesicle system features jump in
the stress tensor at the membrane, which is determined by the properties of the bilayer. In
particular, in [7], the stress discontinuity is modelled as a combination of the mechanical tension
and bending, where the latter is obtained from the first variation of the Canham–Helfrich energy,
[8], [9].
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The intracellular space, membrane or whole living cell are often modelled as a hydrogel using the
general equations of mixture theory (MT), see e.g. [10], [11], [12], [13]. Thus in [12], the cell
is approximated as a fluid-filled membrane, where the membrane is described by the mixture
theory equations. The MT equations are then reduced to the case of a thin membrane and
compared to the classical Kedem–Katchalsky model for the solute and solvent fluxes through a
semipermeable filter. Further in [11], the cell is represented as a hydrated gel surrounded by a
semipermeable membrane, such that now the spherical gel is described using the mixture theory
framework.

In the studies dedicated to the (experimental) estimation of some specific mechanical effects, also
when the material parameters of a cell or its components are evaluated, simplified elasticity
or viscoelasticity models relating the response of the sample to the applied deformation
(stress) are often used, [14], [15], [16], [17].

The data related to the ischaemic (or more generally, osmotic) swelling of living cells can
be found in numerous works. The experimental measurements that are relevant for the model
developed in this thesis are referenced in Section 3. It is worth mentioning, that while most of the
parameters characterising physical properties of the considered materials can be determined with
some exactness, certain characteristics show strong dependence on the measurement techniques
and/or conditions of the experiment. Thus the magnitudes of some material parameters are
estimated within a considerably wide range, see e.g. [16], [18], [19], [20], [21].

While the Biot type equations were originally derived for soils, they have also been used
for the modelling of biological tissues, see e.g. [22], [23], [24], [25], [26], [27], [28]. Since the
appearance of the original research of Terzaghi (1925) and Biot (1941) on the consolidation of
soils under loading followed by the development of the theory of Biot in 1955, there have been
suggested approaches employing homogenization techniques, in which the macroscale poroelas-
ticity equations are rigorously derived from the microscale equations describing each phase of
the medium individually, see e.g. [29], [30], [31] and references therein.

Analytical results for some applications of the Biot equations are available in the existing lit-
erature. Thus in [32], the existence and uniqueness of the (two-dimensional) variational problem
corresponding to an initial-boundary value problem of the Biot model for the consolidation of
clays is shown and some error estimates are introduced. Further research results can be found
in e.g. [33], [34], [35].

Fluid-poroelastic media interaction problems approximated by a coupled system of the Biot and
Navier-Stokes equations have also been studied and solved numerically, see e.g. [36], [37].
Thus in [36], a semi-implicit monolithic method for the Navier–Stokes&Biot system is employed,
and domain decomposition techniques are extended to the fluid-poroelastic structure interaction
problem.

Results & contributions
Based on the discussion, assumptions and conclusions drawn from the analysis of the properties
of the media and processes occurring during cytotoxic swelling, a mathematical model describing
osmosis-driven swelling of a brain cell is developed.
For the approximation of the intracellular space, the Biot poroelasticity equations derived from
the microscale using homogenization techniques are chosen. As it is important to develop a
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mathematical model that can be numerically simulated, such that the available experimental
data can be exploited, it is shown, how the coefficients of the rigorously derived Biot equations
can be related to the data obtained experimentally. It is also shown, that for the considered
physical data range, the temporal pressure derivative term in the rigorously derived Biot equa-
tions can be neglected, considerably simplifying the numerical implementation of the developed
model.
The Biot-Stokes coupled system is closed by the Kedem-Katchalsky type equations relating the
solvent flux to the hydraulic and osmotic pressure difference across a semipermeable membrane,
such that the filtering effects of the membrane are reflected in the coefficient of the interface
condition.

Numerical results include the simulations of two general problems: poroelastic cell swelling (Pure
Biot) and interaction of a swelling poroelastic cell with the extracellular fluid, i.e. poroelasticity-
free fluid (Biot-Stokes) free boundary interaction problem. The following points deserve to be
mentioned:

• The results of the numerical simulations of the Biot poroelasticity model are shown to
agree with the analytic solutions for the Biot equations on spherically (3D) and rotationally
(2D) symmetric domains. Furthermore, the convergence rate is optimal with regard to the
approximation properties of the employed finite element spaces.

• Parametrization of the numerical models (for both the Biot-Stokes interaction and Pure
Biot problems) with the relevant experimental data resulted in a good agreement with the
swelling cell behaviour as observed in experimentally controlled environments.

• The sensitivity of the simulated systems to the key parameters (such as the porosity, elas-
ticity moduli, membrane and intracellular space permeabilities) of the model is evaluated
and discussed. In particular, it is shown, that the variation of the membrane filtration
coefficient results in a strong response of the Biot problem solution, while the variation of
the intracellular permeability parameter has almost no effect. The sensitivity of the Biot
problem solution to the variations of the elasticity coefficients is shown to be relatively
low.

• Analysis of the numerical solutions of the Pure Biot problem (where the parameters and
conditions are so chosen as to correspond to the experimental observations) on the domains
with different geometries indicate, that (within reasonable limits) the geometry of the cell
does not have a strong influence on the character of the solution of the Biot problem.

Outline

Chapter 1 is devoted to the detailed description of the considered applied problem. Thus the
processes occurring during cytotoxic swelling, as well as the properties of the considered media
that are relevant for the purposes of this work are discussed.
In Chapter 2, a mathematical model for osmotic swelling of a single cell surrounded by ex-
tracellular fluid is developed. Interacting cell and extracellular space are approximated as a
Biot-Stokes coupled system, where the simplified (as mentioned above) Biot equations are used.
The Biot-Stokes coupling is complemented by the filtering effects of the separating membrane
and by the influence of the transmembrane osmotic pressure difference, such that the transport
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equations for the molar concentrations of the diluted osmotically active substances are included
into the general interaction model.
In Chapter 3, the relevant physical parameters of the living cell and its extracellular environment
as well as the data corresponding to various experimental settings are analysed. Using the
obtained data, the importance of certain processes and effects is estimated.
Chapter 4 is devoted to a numerical treatment of the developed mathematical model. The
coupled problem is discretized using FEMs (in space) and the implicit Euler scheme (in time). A
series of numerical simulations for the pure Biot and coupled Biot-Stokes problems is presented.
The numerical implementation of the Biot problem is verified by comparing the analytic and
numerical solutions.
A summary of the results of the thesis as well as a discussion of further research directions are
offered in the Summary and outlook.
Additional information on the derivation of the modelling equations and the mechanisms of
ischaemic brain cell swelling, as well as an explanation of the osmotic phenomenon and its
modelling can be found in the Appendix A.
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Nomenclature

Here the notations and abbreviations introduced in Chapters 1, 2 are listed. The description
of the symbols introduced in Chapter 3 and related to the analysis of the relevant data can be
found in the tables of Section 3.3.

Symbols

d dimension of the problem, = {2, 3}
(0, T ) observation time interval
Ω overall domain
Ωb extracellular fluid domain; bulk fluid
Ωc cell
Ωp poroelastic cell interior, ⊂ Ωc

Ωin fixed inclusions of the cell, ⊂ Ωc

Ωfp fluid part of Ωp

Ωsp solid part of Ωp

Γi interface between Ωb and Ωp, the membrane
Γbw outer fixed walls of Ωb

Γb,0 outer impermeable fixed walls, ⊆ Γbw
Γb,in outer inflow side fixed walls, ⊂ Γbw
Γb,out outer outflow side fixed walls, ⊂ Γbw
Γpin inner fixed walls of Ωp

T pt mapping between the reference and deformed configurations of Ωp

F s deformation gradient tensor corresponding to T pt
Js determinant of F s
T bt mapping between the reference and deformed configurations of Ωb

F b deformation gradient tensor corresponding to T bt
Jb determinant of F b

usp solid phase displacement of Ωp

vfp interstitial (pore) velocity of the fluid in Ωp

vsp solid phase velocity in Ωp

pp hydraulic (pore) pressure in Ωp

πp osmotic pressure in Ωp

σp total stress tensor in Ωp

σeff effective (linear elastic) stress in Ωp

ub domain displacement in Ωb

vb bulk fluid velocity in Ωb

wb velocity of the bulk fluid domain displacement
pb hydraulic bulk fluid pressure in Ωb

πb osmotic bulk fluid pressure in Ωb
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σb bulk fluid stress tensor in Ωb

σb,visc viscous part of the fluid stress tensor σb

jp solvent (water) flux from the ICS side
jb solvent (water) flux from the ECS side
np outward-pointing unit normal vector to the boundary of Ωp

nb outward-pointing unit normal vector to the boundary of Ωb

ρs physical density of the solid phase Ωsp

ρf physical density of the fluids
γf porosity of Ωp

γs solidity of Ωp

λs Lame’s first parameter (elasticity parameter)
µs shear modulus (elasticity parameter)
K permeability tensor of a poroelastic medium
k permeability function (constant) of a poroelastic medium
µf fluid dynamic shear viscosity
Ef fluid bulk modulus
R gas constant
Υ temperature
Cosm osmotic pressure model coefficient (constant)
Dp diffusion coefficient for the solute in the ICF
Db diffusion coefficient for the solute in the ECF
D averaged diffusion coefficient for the solute in the ECS and ICS
Lp (L) permeability of the membrane to water

afp amount of substance of the solute in the ICF
ab amount of substance of the solute in the ECF
cfp osmolarity (molar concentration) in the ICF
cb osmolarity (molar concentration) in the ECF
jc flux of osmolytes

p∆ transmembrane hydraulic pressure difference
π∆ transmembrane osmotic pressure difference
a∆ transmembrane amount of substance difference

V volume of Ω
V p volume of Ωp

V sp volume of Ωsp

V fp volume of Ωfp

V b volume of Ωb
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Lower indices

• "0" denotes the initial value;
• "n" denotes the normal component as defined in (2.50);
• "τ " denotes the tangential component as defined in (2.50).

Abbreviations

ALE Arbitrary Lagrangian-Eulerian (formulation or mapping)
CDE(s) Convection-Diffusion Equation(s)
CSF CerebroSpinal Fluid (also cytosol)
ECF ExtraCellular Fluid (also bulk or free fluid)
ECS ExtraCellular Space
FEM Finite Element Methods
HTPD Hydraulic Transmembrane Pressure Difference
ICF IntraCellular Fluid (also pore fluid)
ICS IntraCellular Space (also cell interior)
ICS-ECS IntraCellular Space – ExtraCellular Space (interaction problem)
KK Kedem-Katchalsky equation
OCD One Cell Domain
OTPD Osmotic Transmembrane Pressure Difference
2P Two Parameter (formalism)
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1 Description of the problem
The primary goal of this work is to derive a physically motivated mathematical model describ-
ing the formation of cytotoxic oedema. In order to approach this aim, the relevant processes
occurring during the oedema formation as well as the properties of the considered medium
must be well understood. Then based on the discussion, assumptions and conclusions drawn
from the analysis of the related processes and of the properties of the media, the most suitable
mathematical approximations can be chosen.
A number of assumptions will have to be made. There are two rather clear reasons for that:
firstly, due to the complexity of the problem, certain information is not available. Secondly, the
most exact representation may be not the best choice for the purposes of this work, as the idea
is not only to provide a correct description, but also to derive a mathematically feasible model,
i.e. a model which is amenable to either analysis or numerical simulations.
In this section not a single equation is derived or referenced. Instead, the modelling problem is
defined, and then the domains of interest and significant processes that influence cytotoxic cell
swelling (i.e. the driving forces) are described.
Descriptions of brain stroke, ischaemia, hypoxia, cytotoxic swelling and related effects can be
found in e.g. [38], [39], [10], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55]; in vitro tissue and cell swelling experiments descriptions can be found in e.g. [10],
[41], [56].

1.1 Problem definition
Acute cerebral ischaemia causes failure of energy requiring ion transporters leading to the rapid
accumulation of sodium ions within cells and consequent inflow of water needed to maintain
osmotic equilibrium. Swelling of brain cells occurs minutes after the development of hypoxia and
causes a constriction of the extracellular space, since at the stage of cytotoxic oedema formation
the blood-brain barrier does not yet allow penetration of substances from the surrounding tissues
and vessels, and thus the overall volume of the brain is conserved.

Two classes of the human brain cells – neurons and glial cells – have in general different functions
and properties. Moreover, within the same class, two different cells may differ in size and per-
formance due to multiple factors, such as, for instance, the age, development stage or condition
of the surrounding medium. Despite the differences, during cytotoxic oedema formation, as well
as under artificially induced hypoxic conditions in in vitro studies, the cells that are situated
within the oxygen-deprived area follow similar swelling patterns, [51], [43], [44], [41]. Variations
in the swelling behaviour of cells are noticeably linked to the variations in the availability of
oxygen within the area of observation, i.e. the position of the cell with respect to the location
of the vessel blockage in in vivo studies and the distribution (or source) of oxygen supply within
the sample in in vitro experiments, [55], [43], [51], [10], [48], [41], [56]. In this thesis an average
ischaemic behaviour of an average brain cell is described.
Neurons and astrocytes often have singular (e.g. stellate in neurons) shapes. A brain cell can
roughly be described as consisting of a body (soma in neurons) and narrower, possibly branching
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1 Description of the problem

Figure 1.1 Localization of the problem.
Arbitrary brain tissue sample (a) contains cells of various types and geometries, which are in
general non-uniformly distributed. It can be approximated as a homogeneous brain tissue (b),
i.e. a tissue consisting of identical, uniformly distributed cells. Within the homogenized tissue,
one cell surrounded by an appropriate amount of extracellular fluid (c) is distinguished.

(a) brain tissue (b) homogenized brain tissue (c) one cell domain (OCD)

extensions (e.g. dendrites and the axon in neurons). For the modelling purposes, the cell will
be assumed to have a regular, near-spherical shape.

In order to describe the process of local cytotoxic swelling, one cell surrounded by some amount
of extracellular fluid (ECF), in particular, a one cell domain (OCD) comprising of a cell
and extracellular space (ECS) is considered, see Fig. 1.1.

1.1.1 Extracellular space (ECS)

The cerebrospinal fluid that fills the extracellular space is a solution consisting of water, os-
motically active substances (most numerous of which are sodium and potassium ions) and some
other chemicals. Water is the dominant component of the ECF, [57], such that under both
healthy or ischaemic conditions, the diluted substances do not influence the principal dynamic
behaviour of the solution, their effects being reflected only in some slight deviations in the ma-
terial parameters of the solution (e.g. viscosity, density) from the ones of water, see Section 3.1
for details.

Note: The extracellular space may also contain elastic solid structures known as the ex-
tracellular matrix, and the solid-state biopolymeric scaffold to which cells adhere, [58]. In
this thesis their effect is neglected.

Further in the text, the ECF is also referred to as the bulk or free fluid, since in contrast to
the below defined pore fluid contained within the intracellular space, it occupies the ECS fully,
i.e. without obstacles, and thus forms a continuous, bulk medium.

12



1.1 Problem definition

1.1.2 Intracellular space (ICS)

The constituents1 of any brain cell can be categorized into three general parts: organelles,
intracellular fluid (cytosol) and a phospholipid membrane. For the reasons given below in
Section 1.1.3, in this work, the membrane is treated as a special, individual object. The cell
without its membrane, i.e. a mixture of the organelles and intracellular fluid, constitutes the
intracellular space (ICS).
The organelles of a cell split into multiple classes being diverse in shape, size, function and
components from which they are made. According to their size, structure and geometry, the
organelles can be subdivided into three groups:

1. large but few (nucleus, Golgi apparatus, rough and smooth endoplasmic reticulum);
2. small but many (mitochondria, ribosomes, transport vesicles, etc.);
3. thin (fine), branched, elastic, soft (cytoskeletal structures).

The large organelles can roughly be represented as spacious rigid objects of regular smooth
shapes that are situated centrally within the cell. As suggested in Section 3.1, the diameter of
the largest organelle is in average an order of magnitude smaller than the diameter of the cell.
In order to fix the position of the cell in space, the structure formed by the large organelles is
assumed to be immobile (fixed). In addition, it is assumed to be impermeable to any substances
from the surrounding medium. Thus the group of large organelles can be "cut out" of the
cell, defining an internal impermeable and fixed boundary of the deforming cell. Therefore
in the following, when referring to the intracellular space, the mixture of small organelles,
cytoskeleton and intracellular fluid is meant.

Most of the organelles of the second type have a spherical or oval shape and are either vesicles,
or contain fluid and are surrounded by a lipid bilayer. The smallest organelles of this group
are only nanometres in size, and the diameter of the largest of them (mitochondrion) does not
normally exceed 1 µm, which is over 50 times smaller than the diameter of an average brain cell,
[60], [61], [62], [63], [64], [41].

Note: Similarly to the cell itself, interactions of the organelles of the first two types with
different substances and objects may vary due to multiple (healthy or unhealthy) exchange
processes, [61], [44]. The variations of the fluid content within the organelles and the effects
on the activity of the organelles on the concentrations of osmolytes in either normal or
ischaemic state are neglected in this work.

The cytoskeleton is a structure consisting of fine, long, connected filaments outstretched over
the whole area of the cell. It is responsible for the shape and geometry of the cell, however
while providing support to the organelles, the cytoskeleton is soft and mobile enough to allow
deformations. Experiments suggest, that under moderate stresses, the brain cell demonstrates
some kind of elastic behaviour, mostly due to the properties of the cytoskeleton and membrane,
[56], [16], [65], [19].

Although different in size, structure and properties, cell organelles are made up from similar
"building" materials (lipid bilayers, water, filaments, etc.), most of which can be assumed to be
incompressible, [56], [16], [19].

1 Some general information on the constituents of a biological cell and their physical properties can be found in
e.g. [59].
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1 Description of the problem

The cytosol is a mixture of water and ions that constitutes the intracellular fluid (ICF), [66]. It
may differ from the cerebrospinal (extracellular) fluid mainly in the concentrations of the diluted
substances, such that the physical parameters of the intracellular fluid can be assumed to be
identical to the ones of the extracellular fluid.

In contrast to the extracellular space (i.e. bulk fluid), the mathematical (physical) description
of the ICS is not apparent. In particular, the inner cell geometry determined by the distribution
of the organelles is very complex and is thus a great challenge for numerical simulations. In the
absence of the structures, intracellular fluid, being physically almost identical to the extracellular
fluid, could be described similarly. Yet the number and geometry of the organelles make them
substantial obstacles to the intracellular fluid flow, therefore the overall effect of the structures
should be considered.
In order to characterize the intracellular medium consisting of the small organelles, cytoskeleton
and cytosol, and to clarify the modelling assumptions, the following properties are noted:

• more than one medium can be distinguished, i.e. solid and fluid parts;
• the fluid part (cytosol) is considered to be connected;
• the solid part, consisting of the small organelles and cytoskeleton, is distributed over the

whole domain;
• the sizes of the solid obstacles (i.e. the diameters of the small organelles, the thickness of

the cytoskeletal filaments) are small compared to the size of the mixture.

These observations suggest, that such medium can be treated as an incompressible (due to the
incompressibility of the components) saturated (the two parts – solid and fluid – take up all
space, i.e. there are no voids) porous medium that combines features of the solid and fluid
components. Since the solid structures are not only deformable, but owing to the properties
of the cytoskeleton can be assumed to have elastic properties, the intracellular medium can be
considered to be poroelastic.

The intracellular poroelastic medium is in general anisotropic and inhomogeneous. Yet due to
the mentioned above geometrical complexity of the solid skeleton, an accurate description of
the material and structural singularities may be excessively complex. Thus in order to obtain a
working (i.e. that can be solved either analytically or numerically, or mathematically analysed)
model describing the dynamics of the ICS, the solid part is assumed to be isotropic, homogeneous
and uniformly distributed within the cell, such that the intracellular poroelastic medium itself
can be considered to be isotropic and homogeneous.

1.1.3 Cell membrane: mechanical properties

Consisting of similar materials, the membrane could in principle be seen as a part of the solid
structures of the ICS. Yet the membrane’s singular geometry, topology, filtering properties and
other effects that may determine or affect some of the most important features of both normal
and malignant cell behaviour suggest, that the membrane deserves an individual consideration.
A biological cell membrane is a soft, curved thin layer separating the intracellular and extra-
cellular spaces. Membranes of animal cells in general, and of human brain cells in particular, are
attached to the cytoskeleton of the cell and are composed of a phospholipid bilayer with multiple
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1.1 Problem definition

Figure 1.2 Evolution of the cell representation.
(a) cell surrounded by extracellular fluid (ECS) is a single object;
(b) within the cell, the intracellular space (ICS) is distinguished from the membrane;
(c) large immobile organelles are excluded from the ICS, the thickness of the membrane is
neglected.

(a) (b) (c)

ECS

cell

ECS

ICS

membrane

ECS

ICS

fixed inner
boundary membrane

types of proteins embedded in it, where the latter serve as transporters of various substances
across the membrane, [56].
Membranes play a great role in the processes of living cells owing to their unique properties.
In the framework of this thesis, only the filtering and mechanical features of the brain cell
membrane are of interest.

One of the most prominent mechanical properties of the membrane consists in the so-called
surface incompressibility of the cell: during a continuous swelling process and until the cell
has reached a spherical shape, the membrane tends to preserve its surface area. At the same
time, the rigidity of the membrane is very low, such that its flexible structure allows relatively
large cell deformations without introducing any significant constraints to the movement.

Note: It has been shown, that under the stresses acting on the membrane of a cell swollen
into a sphere, the membrane may slightly stretch, i.e. increase its surface area, [56], yet the
swelling process is modelled up to the final spherical state, so this effect can be neglected.

The ability of the membrane to preserve its (and consequently the cell’s) surface area relies on
the mechanical properties of a closed phospholipid bilayer, which are clearly different from the
properties of the intracellular organelles, since the latter do not in general form closed layers
encompassing large areas of the cell. It means that in the absence of the membrane (assuming
that the ICS "holds together" on its own), the surface area of the cell would not necessarily be
preserved, but would rather continuously grow, proportionally to the rate of swelling.
It is also important to point out, that the thickness of the phospholipid membrane is only
a few nanometres, [56], [62], [4], [67], and thus the membrane can not be modelled as a three
dimensional domain using the equations of continuum mechanics. In addition to the scale related
restrictions, the membrane thickness is several orders of magnitude smaller than the size (radius)
of the ICS, and such great size difference becomes a problem for the numerical simulations of
the considered problem.
Thus in this work, the membrane is treated as a two dimensional object (i.e. a surface), such
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1 Description of the problem

that its thickness is neglected on the macroscale (i.e. on the scale of the modelling). As the
membrane is not mixed with the organelles, but lies strictly on the surface of the intracellular
medium, it defines (coincides with) an interface between the intracellular and extracellular
spaces.
In addition, it is assumed in this work, that the membrane is folded on the microscopic level
as shown in Fig. 1.3b. Therefore while on the microscopic level its surface area is conserved, on
the macroscopic level a stretching effect is observed, Fig. 1.4a, 1.4b.

Figure 1.3 Microscopic membrane deformation types: unfolding and stretching.
Consider a cell Ωc swelling from its initial configuration Ωc

0 into a deformed (swollen) config-
uration Ωc

1, such that points a0, b0 on the surface of the reference cell Ωc
0 are deforming into

the points aT , bT on the swollen cell surface. Both initially and at time t = 1 the cell has a
symmetric spherical shape, and thus on the macroscopic level, the increase of the surface area of
the cell is observed. For an arbitrary microscopic surface segment S deforming from S0 into S1,
the following types of the microscale deformation can be considered: (a) the membrane contains
fluid and solid parts, such that its length increases due to the increase of the pore size (i.e. fluid
content); (b) the membrane is "folded", such that the lengths of the initial and deformed surface
elements S0, S1 are equal; (c) the membrane conserves its volume, such that when stretched,
the surface element S becomes longer and thinner.

Ωc
0 Ωc

1

S0

S1

a0

b0

a1

b1

a0

b0

a1

b1

(a) increasing pore space (b) unfolding (c) volume-preserving
stretching

S0

S1

S0

S1

S0

S1
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1.1 Problem definition

Figure 1.4 Cell swelling with respect to the surface area conservation.
On the pictures below, a cell Ωc in its initial (reference) configuration Ωc

0 and deformed (swollen)
state Ωc

T is shown. Points a0, b0 on the surface of the reference cell Ωc
0 are deforming into the

points aT , bT on the swollen cell surface. The total initial surface area is denoted by A0, and
the surface area of the swollen cell – by AT . The following types of cell swelling are considered:

(a) Unconstrained radial swelling (deformation) of an initially spherical cell: the surface is
stretching.

Ωc
0 Ωc

T

a0

b0

aT

bTa0 b0
aT bT

A0 < AT

(b) Unconstrained swelling of a non-spherical (non-symmetric) cell: the surface is stretching.

a0

b0
aT

bT
a0 b0

aT bT

Ωc
0 Ωc

T A0 < AT

(c) Swelling of the cell constrained by the membrane forces: the surface is unfolding, not stretch-
ing.

Ωc
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T
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A0 = AT
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1 Description of the problem

1.2 Osmosis and osmotic pressure
Osmosis is essential in biological systems providing the primary means by which water is
transported in and out of cells, since the membranes of living cells can act as semipermeable
filters. In particular, osmotic pressure gradients across the cell membranes are the driving
force of the cytotoxic swelling of brain cells during ischaemic stroke, [51], [68], therefore osmotic
pressure effects must enter the modelling equations.

Def.: Osmolarity is the molarity (molar concentration) of the substances that contribute
to the osmotic pressure of the solution.

While the principles of osmotic pressure modelling and the dependence of osmotic pressure on
certain factors are still disputed, it has been established, that osmosis relies on the ability of
the membrane to passively transmit water while allowing only selective passage of osmotically
active substances, such that the osmotic pressure difference at the membrane is proportional to
the difference of the osmolarities of the separated solutions.

In the framework of the considered problem, the substances most significantly contributing to
the magnitudes of the ICS and ECS osmotic pressures (or their differences) are the ions of
sodium Na+, potassium K+, chloride Cl− and the negatively charged macromolecules (amino
acids in proteins, nucleic acids) which are trapped ("fixed") within the intracellular space, [69],
[52], [51], [43], [10]. As osmotic pressure is a colligative property, which means that it depends
on the osmolarity of the solution but not on the size or type of the solute particles, the osmotic
pressure of a solution containing distinct osmotically active chemicals is determined by the total
osmolarity of the diluted osmolytes, [70], [71].
More information on the osmotic phenomenon in general and on the role of osmosis in ischaemia
can be found in Appendix A.5.

1.2.1 Membrane filtration
Intracellular and extracellular spaces contain multiple types of substances that cross the mem-
brane of the cell during both healthy and ischaemic cell activities: biological membranes are
impermeable to large molecules, such as proteins, but allow passage of non-polar hydrophobic
molecules (lipids), small molecules and some ions. For the purposes of this work however, it is
only relevant to consider the filtration of two classes of substances:

• water, i.e. the solvent of the extracellular and intracellular solutions that is responsible
for the increase of the cell volume during swelling;

• osmotically active substances (osmolytes), i.e. the solute mixture dissolved in the ex-
tracellular and intracellular solutions.

Def.: Solution is a mixture, in which some amount of substance of a solute is diluted
(dissolved) within much greater volume of a different substance, known as the solvent. For
instance, in a saline water solution, the salt is the solute and the water the solvent.

Depending on the length of the chosen observation time, severity of condition and speed of
swelling, the cell membrane can be considered to be either strictly or leaky semipermeable.

Def.: Strictly semipermeable membrane is the membrane, that is permeable only to the
solvent and impermeable to the solute; in case the membrane is also partially permeable
to the solute, it is called leaky semipermeable, see Fig. 1.5.

18



1.2 Osmosis and osmotic pressure

In particular, during cytotoxic swelling observations, the membrane can be assumed to be strictly
semipermeable (the case denoted as Ms), such that the exchange of the osmolytes can be
neglected, in the following cases:

• the shift in concentrations at each time step and over the observation time in total is too
small to influence the magnitude of the transmembrane osmotic pressure gradient;

• most of the energy deprivation induced redistribution of the osmolytes between the ICS and
ECS is achieved in the very beginning of the observation, and further osmolyte exchange
is negligible;

• the transmembrane exchanges of different substances compensate one another at each time
point.

In all other cases, i.e. when the membrane is clearly acting as a leaky semipermeable filter (the
case denoted as Ml), its osmolyte transmitting properties must be considered.

Unlike in industrial filters, the distribution of channels in biological membranes is not generally
uniform (periodic). In addition, with regard to the filtering properties, the complex geometry of
the protein channels may be not as important as such factors as2:

• the electrochemical interactions between the channel proteins and transmitted substance;
• the characteristics of the chemical itself (i.e. its size, solubility, charge, etc.);
• the performance of the channels and the overall condition of the membrane;
• the availability of energy (ATP);
• the saturation of the surrounding media with other chemicals (mostly oxygen, calcium and

glutamate): their concentrations or transmembrane concentration differences;
• the physical characteristics of the environment (e.g. the temperature).

Therefore in a changing environment, the membrane permeability may change correspondingly.
It can then be concluded, that the ability of the membrane to transmit substances should in
general depend on both space and time.

Note: The structure of the channels (transmitters) is such, that their geometry is not
explicitly affected by the deformations caused by the swelling of the cell, thus the per-
meability of the membrane to water and osmolytes can be assumed not to vary with the
deformation of the swelling cell.

The flow of water across the membrane is primarily realized via water channels or aquaporins
(AQPs): small transporting proteins embedded in the phospholipid bilayer, which are approxi-
mately of the size of the water molecule (≈ 10Å). Irrespectively of the condition of the membrane
and surrounding media, normally no other particles can pass through the AQPs, [73], [75].
Ionic membrane channels can be subdivided into energy requiring pumps and passive (or leaky)
channels. While during a healthy brain cell activity, the pumps – and thus their transmitting
properties – are of great importance, during hypoxia, the necessary energy is not available,
and therefore the performance of passive channels becomes more significant, [51]. Different
channels responsible for the passage of different types of chemicals may vary in their properties
and transmitting capacities. Yet since osmotic pressure is a colligative property, such that the

2 Descriptions of the membrane (water or solute) transmitting channels and their activity in either healthy or
ischaemic condition, can be found in e.g. [51], [72], [43], [44], [73], [55], [74].
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1 Description of the problem

total concentration of the diluted osmolytes is of ultimate interest, for simplicity, the membrane
permeability is chosen to reflect the characteristics of an average ionic channel.

Note: It has been suggested (in e.g. [72], [41]), that with respect to the ionic exchange
between the inra- and extracellular spaces, cytotoxic swelling of brain cells is strongly influ-
enced by the permeability of the membrane to sodium that depends on the concentrations
of oxygen and glutamate.

In this work it is assumed, that the spatial distribution of the transmitting channels is uniform,
and the influence of the environmental factors on the membrane water and osmolyte permeabil-
ities during the observed swelling is neglected, such that the water filtration and the osmolyte
permeability (or solute reflection) functions can be approximated as constants.

Note: In some brain cells, the distribution of channels is such, that certain areas of the
membrane contain significantly larger number of channels than the other areas, [76]. In
order to approximate strong differences in the distribution of channels, different filtering
permeabilities can be chosen for different parts of the membrane.

Figure 1.5 Leaky and strictly semipermeable membranes.
(a) t = 0 (reference state): there exists concentration difference between the domains separated
by a semipermeable membrane;
(b) t > 0, strictly semipermeable membrane: osmosis-driven solvent (water) flow through the
membrane is observed;
(c) t > 0, leaky semipermeable membrane: osmosis-driven solvent (water) flow and the flow of
osmolytes through the membrane are observed.

(a) reference
condition

(b) strictly semipermeable
membrane

(c) leaky semipermeable
membrane

osmolytes

osmolyte flow

solvent flow

1.3 Effects of the surrounding media

Brain cell swelling can be studied and analysed under diverse conditions. The obtained results
must naturally vary depending on the settings of the experiment. In particular, the type and
behaviour of the medium surrounding the One Cell Domain determines the choice of the bound-
ary conditions at the outer walls of the OCD. In this work, the following observation types are
distinguished:
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1.3 Effects of the surrounding media

E1 in vivo observations of an ischaemic brain tissue area;

E2 in vitro experiments on a brain tissue sample;

E3 in vitro experiments on a single cell, when a brain cell is placed into a large tank (the
boundaries of the tank are far away from the cell) filled with a fluid identical or similar to
the ECF (often physiological solution);

E4 in vitro experiments on a single isolated cell, when a brain cell is placed into a small tank
filled with a fluid identical or similar to the ECF, such that the boundaries of the tank
define the outer boundary of the OCD.

For simplicity, the outer boundaries of the OCD are considered to be fixed for all types of
experiments. Then as the observed processes are such, that the matter gets neither created nor
destroyed, and the materials making up the domains are assumed to be incompressible, the total
volume of the OCD must be conserved over the observation time.

While the brain cells are relatively densely packed (the extracellular fluid takes only up to 20%
of the total brain space), it can be assumed, that the extracellular space of the brain tissue
is connected and the bodies of the cells do not touch. It then follows, that not only in the
single cell experiments, but also within a tissue sample, the cells do not exert stresses on each
other and can be considered to be completely surrounded by the extracellular fluid. Thus for
all considered experiments, the cell can be assumed to be be situated within the OCD such that
it does not intersect the outer boundaries, and thus the outer boundary of the OCD coincides
with the outer boundary of the ECS.

Note: Under the experimental in vitro conditions E4, the cell may touch the walls of
the container, or it may be necessary to fix the cell along a part of its surface. Also,
as mentioned earlier in Section 1.1.1, within the brain tissue (E1, E2 ), the cells may be
supported by the extracellular matrix. Therefore in the general mathematical cell swelling
model, the outer boundary of the overall domain should in principle be shared by the ECS
and ICS walls, such that the ICS outer boundary is either empty or consists of the points
that are in contact with external objects, depending on the chosen settings. In this work
however, the cell is for simplicity assumed to be fixed at its inner boundary and completely
surrounded by the ECF from the outside.

In the areas of the brain tissue that are affected by the cytotoxic processes, the ECS shrinks
(due to the outflow of water into the cells), thus there may be created global ECS concentration
gradients across some part of the brain tissue, which would result in the flow of water and/or
osmolytes down their concentration gradients.

Note: In this work, the global processes are defined on the tissue level, in contrast to the
local processes, that take place on the cellular level.

Therefore in case E1, apart from the processes occurring at the membrane of the cell, the
movement of osmolytes and water within the extracellular fluid domain can be influenced by the
global gradients that are reflected through the corresponding inflow-outflow boundary conditions.
Depending on the severity of ischaemia and on the length of the chosen observation time, the
speed of the global flow can be negligible or non-existent, allowing to assume that the OCD is
surrounded by a stationary fluid. In the latter case, the flow of the fluid is caused only by the
activity of the cell.
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1 Description of the problem

Figure 1.6 Environment of the OCD depending on the experiment type.
(a) In type E1, E2 experiments, the OCD is contained in a brain tissue sample, such that
the outer boundaries of the OCD are defined some distance away from the cell within the
extracellular space.
(b) In type E3 experiments, the cell is observed in a container filled with fluid, such that it can
be assumed, that the walls of the container have no influence on the boundaries of the OCD.
(c) In type E4 experiments, the outer boundaries of the OCD are fixed and impermeable.

(a) E1, E2 (b) E3 (c) E4

A brain cell in the ischaemic region (E1, E2 ) is surrounded by other cells that also absorb water
and exchange osmolytes with the extracellular solution. Thus throughout the observed process,
the overall domain can be influenced by the swelling behaviour of the surrounding cells, which
– just as the behaviour of the modelled cell – is not in general known. Therefore a simplified
description of the environmental effects is used instead. In particular, considering that the cells
within a small area of the given brain tissue sample do not to vary in size or properties, such
that their swelling behaviours are approximately identical, periodic boundary conditions for both
water and osmolyte fluxes can be assumed. In this case, the total solute concentration is kept
constant within the overall domain and the influence of the flow created by the movement of
the surrounding cells is somewhat taken into account.
When only one cell is studied, and the tank containing the cell is so large, that the influence
of its walls on the neighbourhood of the cell is negligible (E3 ), it would be natural to define
infinitely remote outer boundaries of the OCD and thus prescribe conditions on infinity. Yet as
a model defined on an infinitely large domain can not be implemented numerically, in case E3,
the outer boundaries of the OCD are chosen sufficiently far away from the surface of the cell,
such that their influence on the cell swelling processes is negligible.
The conditions of an isolated cell experiment (E4 ) require that the outer walls of the OCD must
be impermeable, thus homogeneous Dirichlet conditions can be prescribed.

1.4 Summary: considered domains and effects

Here the descriptions of the considered domains and processes are summarised and comple-
mented by the notations for the described domains. Thus over the observation time interval
(0, T ), the following domains and boundaries are distinguished within the OCD (or the overall
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domain) Ω(t) ∈ Rd × (0, T ), d ∈ {2, 3}:

• the extracellular space (ECS) Ωb(t) ∈ Rd × (0, T ): filled with an incompressible viscous
extracellular (bulk or free) fluid (ECF) and deforming (shrinking) during the observation
time;

• the intracellular space (ICS) Ωp(t) ∈ Rd× (0, T ): occupied by an incompressible saturated
poroelastic medium, which is composed of the solid and fluid phases (Ωsp, Ωfp respec-
tively); the phases can be distinguished from one another only on the microscale, such
that on the scale of the problem (macroscale) each point (x, t) ∈ Ωp(t) × (0, T ) has both
the fluid and solid components. The swelling and so the deformations of the cell are caused
by the inflow of the ECF;

• the cell membrane Γi(t) ∈ Rd−1 × (0, T ): geometrically coincides with the interface sepa-
rating the intracellular and extracellular spaces; exhibits filtering properties with respect
to both water and osmolytes;

• the outer boundaries of the OCD coincide with the outer ECS boundaries Γbw ∈ Rd−1

(bulk fluid walls): fixed, may or may not allow fluxes of water and osmolytes depending
on the chosen type of experiment (E1–E4 ); in case the flow of water and/or osmolytes is
allowed, the inflow Γb,in, outflow Γb,out and impermeable Γb,0 boundaries are distinguished
within Γbw;

• the inner boundary Γpin ∈ Rd−1 (porous internal walls): fixed and impermeable to both
water and osmolytes;

Figure 1.7 Overall domain Ω = Ωb(t) ∪ Ωp(t) ∈ Rd, d ∈ {2, 3}, t ∈ (0, T ).

Ωb

Ωp

ΓiΓpin

Γb,0(Γbw)

Γb,0 (Γbw)

Γb,in
(Γbw)

Γb,out
(Γbw)

Ω(t) = Ωb(t) ∪ Ωp(t)
= Ωb(t) ∪ Ωp(t)∪
∪ Γi(t) ∪ Γbw ∪ Γpin,

∂Ω := Γbw,
Γi(t) := Ωb(t) ∩ Ωp(t),

∂Ωp(t) = Γi(t) ∪ Γpin,
∂Ωb(t) = Γi(t) ∪ Γbw,

Γbw = Γb,in ∪ Γb,out ∪ Γb,0.

Osmosis is the driving force of the cell swelling since the extracellular space Ωb and the fluid
phase Ωfp of the intracellular domain Ωp contain osmotically active substances while the ICS
and ECS are separated by an (in general leaky) semipermeable membrane.

23



1 Description of the problem

1.4.1 List of assumptions
Developing a precise mathematical description of the behaviour of a swelling brain cell would
be a great challenge as many of the processes taking place during of a living cell swelling are
either not well known or very complex. Therefore in order to obtain a working model that can
be either mathematically analysed or numerically solved (or both), a number of assumptions
with regard to the characteristics of the domains and/or processes of the considered problem
are made. In particular, it is assumed that at all times:

• the processes are isothermal;
• all considered materials are incompressible;
• the ECF and the fluid phase of the intracellular medium are viscous, incompressible and

homogeneous;
• the solid phase of the ICS is elastic, incompressible, homogeneous and isotropic;
• the poroelastic intracellular medium is saturated, homogeneous, isotropic and has a peri-

odic structure;
• the deformations of the swelling cell are small compared to its size;
• the effect of gravity (and other possible body forces) can be neglected;
• the osmolytes are contained only in the fluids and they do not react with the constituents

of the solid phase of the cell;
• the total volume of the overall domain is conserved over the observation time;
• the solid and fluid phases Ωsp, Ωfp do not exchange matter, such that the ICS is growing

only due to the increase of the volume of the intracellular fluid Ωfp;
• on the scale of the model, the thickness of the membrane can be neglected.
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2 Mathematical Model

This chapter is organized such, that the mathematical modelling of the cell swelling problem is
done incrementally, in the following steps:

1 the intracellular and extracellular spaces (ICS and ECS) are described and directly coupled
through the interface conditions;

2 the osmotic pressure difference at the ICS-ECS interaction boundary is modelled, such
that the corresponding transport equations for the molarities are added to the modelling
equations; the interface conditions of the pure ICS-ECS interaction problem are modified
as to include the osmotic pressure effects and cell membrane filtering properties.

2.1 ICS-ECS interaction problem: Biot-Stokes model

In this section, a mathematical model for the pure (i.e. not influenced by either the membrane
or osmosis) intracellular-extracellular space (ICS-ECS) interaction problem is derived. First,
the sets of equations describing the behaviour of the extracellular Ωb and intracellular Ωp spaces
are suggested. Then the ICS and ECS interaction is coupled through the interface conditions.
For each of the experimental conditions described in Section 1.3, corresponding boundary and
initial conditions are prescribed.

2.1.1 Extracellular space: the Stokes equations

Material parameters (viscosity, density) of the extracellular fluid filling the ECS Ωb, together
with the physical and dynamical characteristics of the swelling process (i.e. the values of the
velocity, temperature, pressure, etc., see Section 3.1) suggest, that the motion of the bulk fluid
within the ECS can be described by the incompressible Navier-Stokes equations for an isotropic
viscous Newtonian fluid.
The Navier-Stokes equations defined on the deforming extracellular space domain Ωb(t) have
the following general form in the Eulerian coordinates:

∇ · σb = ρf∂tv
b + ρf (vb · ∇)vb in Ωb(t)×(0, T ), (2.1)

σb := −pbI + σb,visc = −pbI + 2µf
(
∇vb + (∇vb)T

)
in Ωb(t)×(0, T ), (2.2)

where ρf is the density, µf – dynamic viscosity of the ECF at a given temperature, vb(x, t) –
fluid flow velocity, pb(x, t) – hydraulic fluid pressure and σb – total stress tensor of a Newtonian
fluid. Adding the incompressibility constraint

∇ · vb = 0 in Ωb(t)×(0, T ) (2.3)
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2 Mathematical Model

to the linear momentum balance (2.1), (2.2), a system of equations describing the motion of an
incompressible Newtonian fluid is obtained:−∇p

b + µf∆vb = ρf
(
∂tv

b + (vb · ∇)vb
)

∇ · vb = 0
in Ωb(t)×(0, T ). (2.4)

Low value of the Reynolds number Re estimated in Section 3.2.2 for the flow of the extracellular
fluid during cytotoxic swelling indicates, that the Navier (non-linear inertial) terms can be
neglected, such that the system (2.4) can be transformed into the Stokes equations:

Re� 1 ⇒
{
−∇pb + µf∆vb = ρf∂tv

b

∇ · vb = 0
in Ωb(t)×(0, T ). (2.5)

Note: As the magnitude of the estimated Strouhal (St) number is such, that the StRe
product is also much smaller than 1, see (3.90), the linear inertial term in (2.5) may be
dropped as well, such that the ECF flow is then approximated by the stationary Stokes
equations. However for technical reasons, the algebraic (mass) term corresponding to
the linear inertial effects is kept in the numerical implementation, therefore the Stokes
equations (2.5) are not further reduced.

Some general information on the analysis, derivation and applicability of the Navier-Stokes
equations can be found in e.g. [77], [78], [79], [80], [81], [82]. A derivation of the Navier-Stokes
equations on the basis of the Reynolds Transport Theorem is outlined in the Appendix (Sections
A.1, A.3).

2.1.2 Intracellular space: the Biot poroelasticity equations
As suggested in Section 1.1.2, the swelling interior of the cell can be approximated as a saturated,
homogeneous, isotropic, deformable porous medium undergoing small deformations, thus the
mathematical model describing the ICS Ωp can be based on the Biot poroelasticity equations.
The Biot equations is a well known and widely accepted system describing the motion of slightly
deforming porous media. The research on flow in deformable porous materials originates from
the works of Terzaghi (1925) and Biot (1941) on the consolidation of soils under loading, such
that in 1955 the theory of Biot was developed, [83]. Since then there have been suggested ap-
proaches employing homogenization techniques, in which themacroscale poroelasticity equations
are rigorously derived from the microscale equations that describe each phase of the medium
individually, see e.g. [29], [30], [31], and references therein.

Note: While originally derived for soils, the Biot type equations have also been used in
the modelling of biological tissues, see e.g. [22], [23], [24], [25], [26], [27], [28].

In the following fragment, the description of the Biot equations according to the authors of [31],
and the estimates of the coefficients of the Biot equations with respect to the data discussed
in Section 3.1 are presented. While appealing to the equations and coefficients derived in [31],
for the sake of coherence, the original notations of [31] are used. Then the Biot problem on
the intracellular domain (2.34) is formulated in the notations corresponding to the style of this
work.
The porous medium considered in [31] consists of the connected, homogeneous, isotropic linear
elastic solid phase and connected, viscous, slightly compressible fluid phase, and is assumed
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2.1 ICS-ECS interaction problem: Biot-Stokes model

to have a periodic structure (matrix). In the development of the poroelasticity equations, the
inertial terms of the phase equations are dropped, the fluid-solid interaction is linearised, and the
pressure is considered to be the dominant part of the fluid stress. Effective diphasic quasi-static
two-scale equations for a poroelastic medium are rigorously derived from the first principles
(consolidation theory). Then introducing auxiliary problems and separating the scales, the
following three-dimensional Biot poroelasticity equations (more generally, an initial-boundary
value problem) for

{
u, p0} on a single (slow) scale are obtained:

−divx
{
AHex(u)

}
+ divx

{
(|Yf |I −BH)p0

}
= ΨF(x, t) in Ω1×(0, T ), (2.6)

M∂tp
0 + divx

{
K(ψfF−∇xp0) + (|Yf |I −BH)∂tu

}
= 0 in Ω1×(0, T ), (2.7)

where u is the solid phase displacement, p0 – pore pressure; x – first (or slow) scale, (0, T )
– observation time interval, Ω1 – poroelastic domain of unit size, such that Ω1 and the given
(original) poroelastic domain ΩL of the characteristic size Lobs are related as ΩL := LobsΩ1; |Yf |
is the porosity, |Ys| – solidity (Yf is the open, connected, Lipschitz boundary fluid part of the
unit cell Y = [0, 1], Ys = Y \Yf is the solid part of the unit cell Y ); e(u) is the strain tensor
for the deformation u:

(e(u))ij := 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, i, j = 1, 2, 3, (2.8)

such that for an isotropic linear elastic material, the stress tensor σ is defined as:

σ(u) := Ae(u) = λs (∇ · u) I + 2µse(u), (2.9)

where the the elasticity coefficient tensor A is determined by the Lame coefficients λs, µs;
F is the forcing term, also including the contributions of the non-homogeneous non-essential
boundary conditions; Ψ, ψs, ψf are the forcing terms defined as:

Ψ := |Yf |ψf + |Ys|ψs,
ψs := ρs

F0L
2
obs

lΛ ,

ψf := ρf
F0L

2
obs

lΛ ,

(2.10)

where ρs, ρf are the solid and fluid phase densities respectively, F0 – characteristic value of the
forcing term F, l – pore size and Λ is the Young’s modulus of the linear elastic skeleton; M is a
combined porosity and compressibility of the fluid and solid, defined as:

M := |Yf |Kco +M0, (2.11)

M0 := −
∫

Ys
divyw0(y)dy =

∫
Ys
Aey(w0) : ey(w0)dy > 0, (2.12)

where Kco := Λ
ρfEf

, Ef is the fluid bulk modulus, and w0 ∈ H1(Ys)3,
∫
Ys
w0(y)dy = 0, is a

1-periodic vector valued solution to the auxiliary problem

−divy
{
Aey(w0)

}
= 0 in Ys, (2.13)

Aey(w0)n = −n on ∂Ys\∂Y ; (2.14)
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AH – dimensionless effective coefficient tensor (Gassman’s tensor), BH – effective coefficient
tensor, K – effective permeability tensor:

AHklij :=
(∫

Ys
A

(
ei ⊗ ej + ej ⊗ ei

2 + ey(wij)
)
dy

)
kl

, (2.15)

BH :=
∫

Ys
Aey(w0)dy, Kij :=

∫
Yf

qji (y)dy, (2.16)

where w0 as is defined above, wij ∈ H1(Ys)3,
∫
Ys
wij(y)dy = 0, is a 1-periodic vector valued

solution to the auxiliary problem:

−divy

{
A

(
ei ⊗ ej + ej ⊗ ei

2 + ey(wij)
)}

= 0 in Ys,

A

(
ei ⊗ ej + ej ⊗ ei

2 + ey(wij)
)
n = 0 on ∂Ys\∂Y ;

(2.17)

and qi is a solution to the flow auxiliary problem:

−∆qi +∇πi = ei in Yf ,

divyqi = 0 in Yf ,

qi = 0 on ∂Yf\∂Y ;
(2.18)

such that
{
qi, πi

}
is 1-periodic.

Note: While the introduced (rigorously derived by homogenization) effective Biot equa-
tions are quasi-stationary, in some works, e.g. [84], [36], there have also been proposed
and used the Biot equations including inertial effects (namely, the linear inertial term) of
the elastic matrix. In particular, in [84], the Biot equations are written in the following
form:

∇ · {Aex(u)} − c0∇p = ρ∂ttu + f
c1∂tp−∇ · {K∇p− c0∂tu} = 0

in Ω×(0, T ). (2.19)

Within the settings of the cell model, the linear inertial term is shown to be negligible, see
Section 3.2.3, thus in this work, the quasi-stationary Biot equations are used.

Applied to the problem considered in this work, certain estimates for the coefficients and terms
of the effective Biot equations (2.6), (2.7) can be made. The parameters chosen for the cell
swelling problem are discussed in Section 3.1, such that here only their magnitudes are used.

Forcing term F
In the formulation of the Biot problem on the intracellular space Ωp, it is assumed that apart
from the forces produced by the interacting solid and fluid phases of the poroelastic cell interior,
the effect of other body forces (such as e.g. gravity) on Ωp is negligible, and the boundary forces
(e.g. osmotic pressure) are explicitly reflected in the boundary (interface) conditions for the
Biot equations. Therefore the forcing term F in the RHS of (2.6) is taken to be 0.

Note: With the dimensions and parameters chosen for the considered problem, in order
for the forcing term coefficient Ψ to be of order O(1), the characteristic value F0 of the
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2.1 ICS-ECS interaction problem: Biot-Stokes model

term F must be large, as follows from (2.10) using the values listed in Section 3.3:

Ψ = F0L
2
obs

lΛ
(
|Yf |ρf + |Ys|ρs

)
< 10−3F0. (2.20)

Coefficient M
The solution (almost water) filling the pore space of the cell can be considered almost incom-
pressible, thus its fluid bulk modulus Ef is very high (i.e. of the order 109 Pa, [85]). Therefore
using the values of the porosity, elasticity coefficients and fluid density estimated in Section
3.1.1, the first component of the RHS of (2.11) is found to be negligible:

0 < |Yf |Kco = |Yf |Λ
ρfEf

< 10−7 � 1. (2.21)

Obtaining an estimate for the second summand of the RHS of (2.11), M0, is slightly more
challenging. First, for convenience, a bilinear form m(v,w) is defined:

m(w,v) :=
∫

Ys
Aey(w) : ey(v)dy, (2.22)

such that M0 ≡ m(w0,w0). The bilinear form m(w0,w0) can be estimated as:

0 < m(w0,w0) ≤ ‖A∇w0‖L2‖∇w0‖L2 ≤ ‖A‖op‖∇w0‖2L2 ≤ ‖A‖op‖∇w
0‖2H1 ≤

≤ λmax‖∇w0‖2H1 ,
(2.23)

where ‖A‖op is the operator norm of A and λmax is its largest eigenvalue. It should be noted,
that from the definition of A given in (2.9) it follows, that the coefficient matrix A is diagonal-
izable, and its eigenvalues are of the order of the elasticity coefficients λs, µs. Since under the
assumptions of the cell model λs is of the same order as µs (see Section 3.1.1.2), and A describes
an isotropic medium, the ratio between the largest λmax and smallest λmin eigenvalues of A can
be estimated as:

λmax
λmin

= O(1). (2.24)

Since w0 ∈ H1(Ys)3, such that
∫
Ys
w0(y)dy = 0, is defined as a solution of the elliptic Neumann

boundary problem (2.13), (2.14), the following estimate for the norm of its gradient applies:

‖∇w0‖H1 ≤
1
c
‖g‖L2 , (2.25)

where c is a coercivity constant for m(w0,w0):

c : m(w0,w0) ≥ c‖w0‖2H1 , (2.26)

and g ∈ H1(Ys), such that g|∂Ys = −n, |g| ≤ 1, denotes an arbitrary function which fulfils
the Neumann conditions of the problem (2.13), (2.14). The proof of the estimate (2.25) can be
found in e.g. [86] (Sec. 4.6 ).
Using the condition (2.14), ‖g‖L2 is estimated as:

‖g‖L2 ≤ |Ys|1/2 < 1. (2.27)
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Thus using (2.25), (2.27), the estimate (2.23) can be rewritten as:

m(w0,w0) < λmax
c2 . (2.28)

In order to determine constant c, the bilinear form m(w0,w0) is estimated from below as:

m(w0,w0) ≥ λmin‖∇w0‖2L2 = λmin

(
1

1 + Cp
‖∇w0‖2L2 + Cp

1 + Cp
‖∇w0‖2L2

)
≥

≥ λmin

(
1

1 + Cp
‖∇w0‖2L2 + 1

1 + Cp
‖w0‖2L2

)
= λmin

1 + Cp
‖∇w0‖2H1 ,

(2.29)

where Cp is the constant of the Poincaré inequality:

‖w0‖2L2 ≤ Cp‖∇w
0‖2L2 .

As the domain Ys is considered to be regular enough, the Poincaré constant can be related to
the size of the domain, such that taking into account (2.27), it can be assumed that Cp < 1,
and therefore from (2.26) and (2.29) it follows that the coercivity constant can be chosen as:

c := λmin. (2.30)

Combining (2.24), (2.28) and (2.30) for the elasticity parameters of the considered problem (i.e.
µs ≈ 104), the bilinear form m(w0,w0) and thus M0 are estimated to be small:

M0 ≡ |m(w0,w0)| < λmax
λ2
min

(2.24)
<

10
λmin

≈ 10
µs
� 1. (2.31)

Thus from (2.21), (2.31) it can be deduced, that the coefficient M is much smaller than 1:

0 < M := |Yf |Kco +M0 � 1, (2.32)

and therefore the first summand of (2.7), i.e. the time derivative of the pore pressure term, can
be neglected.

In a similar fashion, using the definitions (2.15), (2.16)1, and relating to the properties of the
auxiliary problems (2.17), (2.13)&(2.14), the pressure storage coupling coefficient |Yf |I −BH

(also referred to as the Biot-Willis constant in e.g. [84]) can be shown to be of order O(1), and
the Gassman tensor AH can be reduced to the elasticity tensor A as defined in (2.9).

Permeability tensor K
The elements of the permeability tensor K(x, t) depend on the local (directional) properties of
the medium. Assuming that the ICS preserves its isotropy during the time of observation, tensor
K can be reduced to a diagonal matrix, such that:

K := k(x, t)I, (2.33)

where k is a permeability function and I is the identity matrix, [87], [88].
There have been derived various heuristic laws suggesting the dependence of the permeability
function on the deformation, microscopic geometry of the porous medium and other factors, see
e.g. [28], [27], [22], [88]. In slightly deforming media however, the change of the permeability
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can be neglected, which is also indicated by the analysis of the permeability-displacement law
considered in Section 3.1.2.3. Therefore as the medium is also assumed to be homogeneous,
in the following, the permeability of the ICS can be assumed to be constant in both time and
space, i.e. equal to the initial permeability k0:

k(x, t) := k0 , k ∀(x, t) ∈ Ωp(t)×(0, T ),

and thus treated as a parameter.

Note: Flow problem (2.18) is formulated such, that tensor K in (2.7) may also include the
characteristics of the pore fluid. In this work, the classical porous medium permeability
k ([k] = [m2]), that reflects the properties of the matrix (but not the fluid) is considered,
thus the fluid dynamic viscosity µf appears in (2.34) explicitly.

Summarizing the above statements, the Biot equations describing a poroelastic behaviour of
the intracellular space Ωp can be written (in the Eulerian coordinates) as:

∇ · σp := ∇ ·
(
µs
(
∇usp + (∇usp)T

)
+ λs∇ · uspI

)
−∇pp = 0

∇ ·
(
∂tu

sp − k

µf
∇pp

)
= 0

in Ωp(t)×(0, T ), (2.34)

where usp denotes the deformation of the solid phase, pp is the pore pressure exerted by the
fluid, k is the permeability, µf is the dynamic viscosity of the fluid and σp is the total stress
within the porous medium which is determined by the pore fluid pressure tensor ppI and the
effective stresses σeff produced by the isotropic linear elastic solid skeleton, such that:

σp := σeff − ppI =

= µs
(
∇usp + (∇usp)T

)
+ λs∇ · uspI − ppI

in Ωp(t)×(0, T ), (2.35)

where the shear modulus µs and Lame’s first coefficient λs are the elastic moduli of the skeleton.
The Biot poroelasticity equations (2.34) are written for the unknown displacement and pore
pressure (usp, pp). While the behaviour of the pore fluid velocity vfp may be not of any direct
interest, its definition is nonetheless convenient, since the fluid velocity naturally appears in
some of the physically motivated equations developed below (e.g. the boundary and interface
conditions, transport equations for the molarities).
Pore fluid velocity vfp can additionally be found from the obtained solutions for the displacement
and pressure gradient using the modified (generalized) Darcy law, [89], [90], i.e. the Darcy
law modified with respect to the displacement of the solid phase:

vfp := ∂tu
sp − k

γfµf
∇pp in Ωp(t)×(0, T ), (2.36)

where γf is the porosity of Ωp. As the ICS Ωp is fully saturated at all times, the porosity γf
and solidity γs relate to one another through the saturation condition:

γf (x, t) + γs(x, t) = 1 ∀(x, t) ∈ Ωp(t)×(0, T ). (2.37)

Porosity and solidity are generally defined with respect to the representative elementary volume
(REV) of the porous medium, and are thus in general both space and time (in case of deforming
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media) dependent functions (see Appendix A.4). Since the poroelastic ICS Ωp is considered to
be homogeneous at all times, the solidity (and porosity) must be independent of the spatial
variables. At the same time, as the intracellular medium is swelling, such that the volume of the
solid skeleton is assumed to remain constant while the volume of the intracellular fluid increases,
the amount (percentage) of fluid in the REV must respectively increase. Thus the porosity and
solidity change in time.
Using the definition of solidity, the conservation of the total volume of the solid phase Ωsp can
be written as:

0 = d

dt

∫
Ωsp(t)

dV = d

dt

∫
Ωp(t)

γsdV. (2.38)

Then treating the solidity as a time dependent continuous function γs(t) defined over Ωp and
applying the Reynold’s transport theorem (see Appendix A.1) to the RHS of (2.38), the following
conservation law is derived:

∂tγ
s +∇ · (γsvs) = 0 in Ωp(t)×(0, T ),

where vsp := dtu
sp is the velocity of the solid phase of Ωp. As the solidity is assumed to be

spatially independent, the condition reduces to:

∂tγ
s + γs∇ · (∂tusp) = 0 in Ωp(t)×(0, T ), (2.39)

and the porosity can simply be found from the saturation condition (2.37).
Other porosity-displacement relations can be found in e.g. [23], [28], [26].
It is shown in Section 3.2.3, that in case of small enough deformations, the second term on the
LHS of (2.39) is proportionally small, such that the porosity and solidity can be assumed to be
constant, i.e. equal to their initial values. For the sake of generality however, in this chapter,
the porosity equation is kept as a part of the extended system of the Biot equations.

2.1.3 Lagrangian and ALE formulations
Both the Stokes and Biot equations are derived in their original form in the Eulerian coordinates,
such that the unknowns of the systems depend on the current coordinates, i.e. the coordinates
of the deformed configurations Ωb(t), Ωp(t). However due to the movement of the interface
between the ECS and the ICS, the actual configurations Ωb(t), Ωp(t) at times t ∈ (0, T ) are not
generally known. In fact, the movement of the Biot domain is determined by the solution of
the Biot problem for the deformation usp. In order to overcome this problem, the modelling
equations can be rewritten with respect to some fixed configurations. A standard choice for the
fixed frames would be the initial, undeformed configurations Ω̂b, Ω̂p. Then defining mappings
between the undeformed and deformed configurations, the necessary coordinate transformations
can be made, [82].

Since the displacement of the elastic solid phase of the ICS defines the deformation of the entire
medium, mapping T̂ pt between the reference Ω̂p and deformed Ωp(t) configurations of the ICS is
defined by the displacement usp:

T̂ pt : Ω̂p → Ωp(t)
usp(x, t) = ûsp(x̂(x, t), t) = x(x̂, t)− x̂

∀t ∈ (0, T ). (2.40)
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Then with the help of the deformation gradient tensor F̂ s and its determinant Ĵs defined as:

F̂ s := ∇̂T̂ p = I + ∇̂ûsp ,
Ĵs := det(F̂ s) ,

(2.41)

the Eulerian formulation of the Biot equations can be transformed into the Lagrangian for-
mulation, such that the poroelasticity equations would be written with respect to the reference
configuration Ω̂p (see Appendix A.2 for further details). Since the deformations are small, the co-
ordinate transformation terms can be neglected, see Section 3.2.1, and therefore the Lagrangian
formulation of the Biot equations describing the movement of the ICS takes the following form:

∇̂ ·
(
µs
(
∇̂ûsp + (∇̂ûsp)T

)
+ λs∇̂ · ûspI

)
− ∇̂p̂p = 0

∇̂ ·
(
∂tû

sp − k

µf
∇̂p̂p

)
= 0

in Ω̂p×(0, T ), (2.42)

v̂fp = ∂tû
sp − k

(1− γ̂s)µf ∇̂p̂
p

0 = ∂tγ̂
s + γ̂s∇̂ · (∂tûsp)

in Ω̂p×(0, T ). (2.43)

While the Lagrangian frame is a natural choice for the elasticity or Biot equations, it would
not be a valid option when describing the movement of the shrinking Stokes domain Ωb, as the
displacement of the points of the fluid enclosed in the Ωb does not describe the deformation of
the domain.
Thus a mapping T̂ b between the reference Ω̂b and deformed Ωb(t) Stokes domain configurations,

T̂ bt : Ω̂b → Ωb(t) ∀t ∈ (0, T ), (2.44)
ub(x, t) = ûb(x̂(x, t), t) = x(x̂, t)− x̂
wb(x, t) := ∂tu

b(x, t) 6= vb(x, t)
∀(x, t) ∈ Ωp(t)×(0, T ), (2.45)

as well as the corresponding domain displacement ub(x, t) and the velocity of the domain move-
ment wb functions, are in principle arbitrary with the only constraint that the mapping T̂ bt has
to track the boundary, i.e. at the fixed walls Γbw, the displacement must be zero, and at the
moving interface Γi, it must coincide with the displacement of the ICS:

ûb = 0 at Γ̂bw×(0, T ),
ûb = ûsp at Γ̂i×(0, T ).

(2.46)

The transformation T̂ bt defined in this fashion is called an Arbitrary Lagrangian Eulerian
(ALE) transformation, and the resulting formulation – an ALE formulation.
The ALE mapping can be defined through an equation for the displacement. In order to impose
some smoothness, here the displacement function is chosen to satisfy the Laplace equation:

∆̂ûb = 0 in Ω̂b×(0, T ). (2.47)

Note: In some cases, the bi-harmonic operator would be preferable, [82]. For the purposes
of this work however, the harmonic operator is sufficiently smooth.

As before, the transformation terms containing the deformation gradient tensor F̂ b and its
determinant Ĵb are negligible under the assumption of small displacements, and thus the above
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described ALE formulation of the Stokes equations on the reference domain Ω̂b is in its form
identical to the original Eulerian formulation on the moving domain Ωb(t):{

−∇̂p̂b + µf ∆̂v̂b = ρf∂tv̂
b

∇̂ · v̂b = 0
in Ω̂b×(0, T ). (2.48)

Thus the knowledge of the domain displacement ûb is not needed in order to solve the Stokes
equations on a fixed domain. Yet as the deformation of the ECS domain may still be of interest,
e.g. in order to estimate volume changes or to determine the deformation of the ECS mesh
in the numerical experiments, the displacement equation (2.47) is added to the system of the
modelling equations.

As mentioned above, the use of the fixed frame coordinate transformations is motivated by the
dependence of the coordinates of the computation domain on the solution of the considered
equations. Since the use of the Lagrangian and ALE transformations solves this problem, they
are often employed when fluid-structure interaction problems are studied.
However from the perspective of numerical implementation, the problem of determining the
actual configuration of the deforming computational domain can be overcome by choosing an
appropriate time stepping scheme. Thus the numerical solution approach described in Section
4.4 implies that the computational domain is moved with the solution for the displacement at
each time step, allowing to solve the equations on the updated meshes.
Therefore in this work, the Eulerian configurations of the modelling equations are considered
for further analysis and numerical implementation. The transformations into the Lagrangian or
ALE coordinates are provided only for the sake of completeness and generality.

2.1.4 Initial and boundary conditions

Since the Stokes and Biot systems contain time derivatives, the corresponding initial values are
prescribed:

vb(x, 0) = vb0(x) in Ωb
0,

usp(x, 0) = usp0 (x),
γs(0) = γs0

in Ωp
0. (2.49)

In case there assumed to exist flow through the ECF domain Ωb (experiment E1 ), initial velocity
function vb0(x) is chosen as to reflect the character of the flow. Otherwise it can be assumed, that
before the observation starts, the ICS-ECS system is at rest and therefore the initial velocity vb0
and displacement usp0 are equal to zero.

Note: Analogously to the spatial Stokes and Biot equations, the initial, boundary and in-
terface conditions are initially derived in the Eulerian coordinates, and can be transformed
into the fixed (ALE or Lagrangian) coordinates.

The following notations for the normal and tangential components of a vector v and tensor σ
will be used:

σn := σ · nT , σnn := σn · n, στ := σn − σnnn,
vn := v · n, vnn := vnn, vτ := v− vnn ,

(2.50)
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where n = n(x, t) is a unit vector normal to the boundary. The outward-pointing unit nor-
mal vectors np, nb are defined at the boundaries of the respective domains Ωp, Ωb, and for
convenience, vector n is defined:

n(x, t) ,


np (≡ −nb) x ∈ Γi,
np x ∈ Γpin,
nb x ∈ Γbw.

(2.51)

Independently of the considered cell swelling experiment1, the outer boundaries of the overall
domain Ω coincide with the outer ECS walls Γbw and are fixed; the internal intracellular space
boundary Γpin is fixed and impermeable, and the ICS skeleton is attached to it (clamped bound-
ary) at all times. From this information, the following boundary conditions are immediately
available:

ub := 0 at Γbw,
usp := 0
vfp := 0
γs := γs0

at Γpin. (2.52)

In case the walls Γbw allow flow of fluid through the extracellular fluid domain Ωb, velocity
values at the inflow boundary Γb,in and the normal stresses at the outflow boundary Γb,out can
be prescribed:

E1:
vb := vbin at Γb,in ,
σbn := σbw at Γb,out ,

(2.53)

where vbin, σbw are some appropriate values, and the subscript "n" denotes the normal component
of the corresponding function as defined in (2.50).
As suggested in Section 1.3, in case the considered cell is observed in vitro within a tissue sample
(E2 ), some appropriate periodic boundary conditions can be set.
For the experiments in which the considered domain is surrounded by a large amount of sta-
tionary fluid, such that it can be assumed that there exists no externally created convective flow
through the boundaries of the ECS, normal stresses can be prescribed a constant value along
the walls:

E3: σbn = σbw at Γbw . (2.54)

Finally, if the fixed ECS walls are impermeable to water, the no-slip condition is applied:

E4: vb = 0 at Γbw . (2.55)

2.1.5 Biot-Stokes coupling: interface conditions
In this section it is assumed, that the intracellular porous medium Ωp and the bulk fluid Ωp are
directly sharing a common boundary Γi, thus a coupling between the Biot and Stokes equations
is considered. Normal and tangential components, as well as the normal vector n are denoted
and defined as in (2.50), (2.51).

1 All experimental settings are described in Section 1.3.
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Figure 2.1 Deformation and fluid flux on the microscopic level.
uniformly swelling
poroelastic domain

microscopic
unit element

poroelastic
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γf

direction of the deformation

direction of the fluid flow

By the definition of the Stokes domain displacement (2.46), the displacements are continuous
at the interface:

ub = usp at Γi. (2.56)

Since there exist neither sinks nor sources of water at the interface, it must be required that the
fluid leaving the extracellular space enters the intracellular space without any loss of its total
volume, and so the normal fluxes must be continuous at the interface. As the interface is moving
with the velocity vsp := ∂tu

sp, the (normal) fluid fluxes jbn, jpn (leaving or entering the ECS and
ICS domains respectively) can be defined as:

jbn := (vb − ∂tub)n = (vb − vsp)n at Γi, (2.57)

jpn := γf (vfp − vsp)n
(2.36)=

(
− k

µf
∇pp

)
n

at Γi. (2.58)

Thus the continuity of normal fluxes can be written as:

jbn = jpn ⇒
(
γfvfp + γsvsp

)
n

= vbn at Γi, (2.59)

which naturally implies, that at the interface, the normal bulk fluid velocity vbn is determined
by the average of the normal pore fluid and solid phase velocities vfpn , vspn , which are scaled with
the porosity and solidity respectively, see Fig. 2.1. Using the modified Darcy equation (2.36),
the flux condition (2.59) can also be written as:

vbn =
(
vsp − k

µf
∇pp

)
n

at Γi. (2.60)

From the momentum conservation it follows, that in the absence of forces produced by the
interface, the total stresses must be continuous across the interaction boundary. Splitting for
convenience the total stresses into their normal and tangential components, the stress continuity
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conditions are written as:

σpnn = σbnn,

σeffτ = σb,viscτ

at Γi(t)×(0, T ). (2.61)

According to the Beavers–Joseph–Saffman (BJS) condition, [91], [92], the tangential component
of the viscous stress σb,visc of the free (bulk) fluid is proportional to the slip rate (i.e. the
tangential component of the total fluid flux as defined in (2.57)). In the notations of this work,
the BJS condition can be written as:

σb,viscτ = β√
k

(vbτ − ∂tuspτ ) at Γi(t)×(0, T ),

where β is the slip rate coefficient. It should be noted, that the BJS condition is normally
considered when a lateral flow interacting with a poroelastic medium is studied. However in
the absence of a constrainig membrane and in case the global (created on the tissue scale)
convective ECF fluxes are not dominant, the direction of the Stokes fluid flow in Ωb is primarily
determined by the direction of the osmotic pressure gradient across the interface Γi, and is
therefore orthogonal to the surface of the cell, see Fig. 2.2a. Thus as the cell is assumed to
absorb water continuously, such that the deformations are occurring only when the external
fluid flow is directed into the cell, the tangential velocities (and thus the tangential stresses)
of both the free fluid and poroelastic skeleton are assumed to be negligible:

vbτ = ∂tu
sp
τ := 0 at Γi(t)×(0, T ). (2.62)

Note: The cell constrained by the membrane tends to preserve its surface area, such that
due to the influence of the membrane, the tangential displacements and velocities at the
interface may be no longer negligible, see Fig. 2.2b. Yet due to the molecule-scale size of
the membrane water channels (see Section 1.2.1), in terms of continuum mechanics, there
exists no fluid-fluid interaction and thus no slip in the tangential velocities at the interface.
Therefore even if the convective fluxes across the extracellular fluid domain are significant,
the tangential velocity of the free fluid can be taken to be equal to the tangential solid
phase velocity:

vbτ = ∂tu
sp
τ at Γi(t)×(0, T ).

In the existing literature, there have been suggested several ways of closing the set of coupling
conditions at the interface between free fluid and poroelastic medium. Two examples of such
coupling conditions are considered below.
In [84], the flow of free viscous fluid parallel to a poroelastic fully saturated medium with a
flat interaction boundary is considered. It is then assumed, that the Darcy flow across the
interface is proportional to the difference between the total normal stress of the free fluid and
pore pressure:

σb,viscnn − pb + pp := αγf
(
vfp − vsp

)
n

at Γi(t)×(0, T ), (2.63a)

where α ≥ 0 is the fluid entry resistance constant.
The author of [37] studies normal flow of a Newtonian fluid through a flat three dimensional
porous layer (filter) with regular structure, such that the channels of the filter are uniformly
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Figure 2.2 Displacement of the cell surface.

(a) Radial uniform swelling of an initially spherical cell: the displacement of the points of the
surface is orthogonal to the surface of the cell.

direction of the deformation

(b) Surface area preserving swelling: the surface of the cell is unfolding, such that the displace-
ment of a surface point is influenced by the tangential forces.

direction of the deformation

distributed and have straight flat walls. Pressure jump condition is developed considering the
effects of the microscopic geometry of the porous medium on the change of the fluid pressure at
the inflow and outflow interfaces, resulting in the following equations:

pp = pb + ρf (vbx)2

2

(
1− 1

β2
inC

2
c

)
at inflow boundary,

pp = pb − Ceρ
f (vfpx )2

2
(
1− β2

out

)
at outflow boundary.

(2.63b)

where βin, βout are the porosities of the medium at the inflow and outflow interfaces correspond-
ingly, Ce and Cc are the geometrical parameters that relate the size of a pore at the interface to
the width of the corresponding external/internal fluid "channel" determined by the streamlines
of the inflow/outflow. Equations (2.63b) are briefly derived on the microscopic level for a single
porous medium channel of the considered geometry and are then assumed to be valid on the
macroscale as well.

In this work, a flux condition similar to the Darcy flow equation (2.63a) is considered. As
the effect of the viscous stresses is shown to be small compared to the transmembrane pressure
difference, see Section (3.2.5), the normal flux condition (2.63a) can be rewritten with respect
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to the normal component of the fluid flux, such that:

jb · n := L
(
pp − pb

)
at Γi(t)×(0, T ), (2.64)

where in contrast to the fluid entry resistance α, a permeability coefficient L is used. Further
in Section 2.2.5, the flux condition (2.64) is modified such that the filtering properties of the
membrane and osmotic pressure difference effects are taken into account, and the obtained
equation can then be used as an interface condition for the full ICS-ECS interaction problem.

At last, for simplicity, the solidity is assumed to remain constant at the interface:

γs := γs0 at Γi(t)×(0, T ). (2.65)

Regarding the development and/or use of the interface conditions between a porous or poroelastic
medium and free fluid, the following works can be referenced: porous medium interacting with
fluid flow: [93], [94], [30], [95], [96]; poroelastic medium interacting with fluid flow: [31], [84],
[36]; Beavers-Joseph-Saffman condition: [91], [92], [93], [97], [98], [84].

2.2 Osmotic pressure
As referenced in Section 1.2, osmotic pressure attributed to a solution is found to depend on
the molar concentration (molarity) of the diluted osmotically active substances (osmolytes),
thus a model relating osmotic pressure to the molarity, and therefore the transport (advection-
diffusion) equations for the intracellular and extracellular molarities2 are introduced. Osmosis
is considered to be a pure boundary effect, such that the osmotic pressure difference at the
interface between the ICS and ECS is of ultimate interest as a forcing term entering the fluid
flux interface condition.

2.2.1 Osmotic pressure model

There exist several well-established osmotic pressure models that suggest different ways of finding
the osmotic pressure of a solution through its molar concentration. The best known formula
relating the osmotic pressure to the solute molar concentration was derived by Jacobus Henricus
van ’t Hoff in 1885 and later improved by Harmon Northrop Morse, [99]. The Van ’t Hoff
formula states that the dependence of the osmotic pressure on the osmolarity is linear, such
that:

π := Cosmc,

Cosm := iRΥ,
(2.66)

where π is the osmotic pressure, R – Gas constant, Υ – absolute temperature, Cosm – osmotic
pressure coefficient, c – molarity and i – van ’t Hoff factor of the solution. For the cell swelling
model, i is taken to be equal to 1, meaning that the electrolytes of the solute neither dissociate nor
associate in the solution. The derivation of the Van ’t Hoff formula is based on the assumptions
of the virial theorem, the details of which can be found in Appendix A.5.1.

2 Unless specified otherwise, in this work, the terms osmolarity, molarity and concentration are used as synonyms
and refer to the molar concentration of the diluted osmolytes.

39



2 Mathematical Model

Since the considered swelling processes are assumed to be isothermal (see Section 3.1.1.1), co-
efficient Cosm is a constant, therefore the osmotic pressures πb, πp of the intracellular and
extracellular solutions depend only on the behaviour of the corresponding molarities cb, cfp.

2.2.2 Transport equations for the molarities
Under suitable physical conditions (which are assumed to be satisfied for all processes considered
in this work), the transport of the molar concentration c(x, t) of a substance diluted in a volume
Ψ can be described by the convection-diffusion equations (CDEs) that take the following
general form in the Eulerian coordinates:

∂tc+∇ · (cv −D∇c) = 0 in Ψ(t)×(0, T ), (2.67a)

where v(x, t) is the convective velocity of the flow (i.e. solvent velocity) and D is the diffusivity
coefficient that reflects the ability of the diluted chemical to diffuse within the solvent. Assuming
that the domain boundary ∂Ψ splits into the Dirichlet ΓD and Neumann ΓN parts, such that
∂Φ = ΓN ∪ ΓD, the following boundary conditions can be prescribed:

c := cD at ΓD(t)×(0, T ),
∇c · n := fN at ΓN (t)×(0, T ),

(2.67b)

for some given values (functions) cD, fN , were n denotes the outward pointing unit normal
vector at the boundary.
It can be shown (see e.g. [100], [101] and [82], [102]), that with the coordinate transformation
terms neglected (due to the small deformations assumption, see Section 3.2.1), an ALE formu-
lation for the CDE (2.67a) defined on a domain that deforms from its reference configuration Ψ̂
into a current configuration Ψ(t) with a deformation velocity w takes the following form:

∂̂tĉ+ ∇̂ ·
(
ĉ(v̂ − ŵ)−D∇̂ĉ

)
= 0 in Ψ̂×(0, T ), (2.67c)

such that the movement of the domain is now reflected in the increment to the convective term.

The transport equations for the molarity cb diluted in the ECF domain Ωb take the form of the
general equations (2.67a):

∂tc
b +∇ ·

(
cbvb −Db∇cb

)
= 0 in Ωb(t)×(0, T ). (2.68)

As suggested in [103], [104], [105] and related works, the terms of the transport equations for the
substances that are diluted in the fluid phase of a porous medium get scaled with the porosity
of the medium. thus the following equations describe the transport of the molarity cp diluted in
the intracellular fluid of Ωp:

∂t(γfcfp) + γf∇ ·
(
cfpvfp −Dp∇cfp

)
= 0 in Ωp(t)×(0, T ), (2.69)

where the assumption on the spatial independence of the porosity γf was used. In case the
porosity is also considered to be constant in time, the transport equation (2.69) takes the classical
form of the CDE:

∂tc
fp +∇ ·

(
cfpvfp −Dp∇cfp

)
= 0 in Ωp(t)×(0, T ). (2.70)
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Note: Although the osmotically active chemicals are assumed to be present only in the
fluid part Ωfp of the intracellular space, following the porous media concept, molarity cfp
is defined over the whole domain Ωp.

As the diffusion coefficients for the osmolytes contained in the mixtures cp, cfp are similar, see
Section 3.1.1.1, it is possible to consider transport equations for the mixtures of substances. In
addition, under the conditions of the cell swelling problem, diffusion coefficients Db, Dp can be
assumed to be constant and taken to be equal (see Section 3.1.1.1):

D , Dp := Db. (2.71)

Analogously to the equations describing the dynamics of the poroelastic intracellular space Ωp

and bulk extracellular space Ωb, the original transport equations (2.68), (2.70) are written in the
Eulerian coordinates. For the reasons mentioned above, the poroelasticity and the bulk fluid
systems may need to be transformed into fixed configurations. As the transport equations must
be solved simultaneously with the flow equations, the CDEs (2.68),(2.70) should then also be
transformed into the Lagrangian (on Ωp) and ALE (on Ωb) frames. Thus according to (2.67c),
under the assumptions of small deformations, the ALE formulation of (2.68) and the Lagrangian
formulation of (2.69) on the corresponding reference domains Ω̂b, Ω̂p read:

∂̂tĉ
b + ∇̂ ·

(
ĉb(v̂b − ∂̂tûb)−D∇̂ĉb

)
= 0 in Ω̂b×(0, T ), (2.72)

∂̂t(γ̂f ĉfp) + γ̂f ∇̂ ·
(
ĉfp(v̂fp − v̂sp)−D∇̂ĉfp

)
= 0 in Ω̂p×(0, T ). (2.73)

Boundary, interface and initial conditions
Since the fixed ICS walls Γpin are assumed to be fully (to both solvent and solute) impermeable,
the total normal fluxes must be zero at this boundary:(

cfpvfp −D∇cfp
)
· n = 0 at Γpin(t)×(0, T ). (2.74)

The type of the ECF domain boundary Γbw as well as the prescribed boundary values depend on
the considered experimental settings described in Section 1.3. The in vivo cell swelling may be
influenced by the global convective flow of fluid through Ωb, thus a Dirichlet value at the inflow
boundary Γb,in and homogeneous Neumann condition at the outflow Γb,out and impermeable
Γb,0 boundaries are prescribed:

E1:
cb = cbD at Γb,in(t)×(0, T ),

∇cb · n = 0 at
(
Γb,out(t) ∪ Γb,0(t)

)
×(0, T ).

(2.75a)

When the cell is studied in a tissue sample, such that the influence of the global extracellular
fluid fluxes can be neglected (case E2 ), periodic boundary conditions are set.
For the experiments in which the cell is placed into a comparatively large fluid tank, a constant
Dirichlet condition is chosen:

E3: cb = cbD at Γbw(t)×(0, T ). (2.75b)

For the experiments in which the walls Γbw are assumed to be impermeable, the total fluxes are
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set to zero:

E4:
(
cbvb −D∇cb

)
· n = 0 at Γbw(t)×(0, T ). (2.75c)

Note: Conditions (2.75a), (2.75b) are physically justified if the boundary Γbw is defined
far enough from the ICS-ECS interface.

As the substances leaving or entering the ICS do not get suspended, accumulated, created
or destroyed while passing the membrane, the osmolyte fluxes must be continuous across the
common interface:

γf
(
cfpvfp −D∇cfp

)
· n =

(
cbvb −D∇cb

)
· n := jc at Γi(t)×(0, T ), (2.76)

where jc is the flux function that needs to be prescribed in order to formulate a well-posed
coupled transport problem. Some ideas for the transmembrane osmolyte flux modelling are
suggested in Section 3.1.5.
Finally, the initial values are prescribed:

cb := cb0 in Ωb(0),

cfp := cfp0 in Ωp(0).
(2.77)

The choices for the boundary and initial values cbD, cb0, c
fp
0 are discussed in Section 3.1.3.

In Section 3.2.4 it is shown, that the Peclet numbers Peb, Peb estimated over the ECS and ICS
domains are much smaller than 1. Thus the convective terms in the above derived convection-
diffusion equations can be dropped, such that the diffusion equations are assumed to approx-
imate the transport of the diluted osmolytes:

∂tc
b −D∆cb = 0 in Ωb(t)×(0, T ),

∂t(γfcfp)− γfD∆cfp = 0 in Ωp(t)×(0, T ),

γf
(
cfpvfp −D∇cfp

)
· n =

(
cbvb −D∇cb

)
· n := jc at Γi(t)×(0, T ),

∇cfp · n = 0 at Γpin(t)×(0, T );

(2.78a)

E1: cb = cbD at Γb,in×(0, T ), (2.78b)

∇cb · n = 0 at
(
Γb,out ∪ Γb,0

)
×(0, T ),

E2: cb is periodic at Γbw×(0, T ), (2.78c)
E3: cb = cbD at Γbw×(0, T ), (2.78d)
E4: ∇cb · n = 0 at Γbw×(0, T ), (2.78e)

with the initial conditions (2.77).

2.2.3 Initial equilibrium relations
Assuming that the initial conditions of the considered cell swelling experiment correspond to
the settings of a healthy brain tissue, the requirements that insure the electrochemical balance
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between the intracellular and extracellular solutions must be fulfilled. These requirements con-
sist in two conditions specifying the relations between the positively and negatively charged
substances, [106], [107], [108], [109].
The electro-neutrality condition states that positively and negatively charged particles of the
intracellular and extracellular spaces are balanced within their corresponding domains:

cb0,+ − cb0,− = 0 in Ωb
0,

cfp0,+ − c
fp
0,− − c

fp
fc = 0 in Ωfp

0 ,
(2.79)

where c+, c− denote the sums of concentrations of positively (index ” + ”) and negatively (index
”− ”) charged osmolytes that are able to travel through the membrane and cfpfc is the molarity
of the fixed charges trapped within the intracellular fluid. Since the fixed charges are known
to bear a negative charge, the molarity cfpfc enters the balance equation (2.79)2 with a negative
sign.

Note: The electro-neutrality of the ICS and ECS is only an approximation, which is
however suitable when considering the magnitudes of the osmolarities of the intracellular
and extracellular spaces.

Knowing the concentration of the fixed charges, the overall osmolarities of the intracellular and
extracellular solutes can then be expressed through the concentrations of either of the charges:

cb0 = 2cb0,+ = 2cb0,− in Ωb
0,

cfp0 = 2cfp0,+ − c
fp
fc = 2cfp0,− + 2cfpfc in Ωfp

0 .
(2.80)

The second, Donnan equilibrium condition requires that the osmolarities of the free charges
must be proportional:

cb0,+c
b
0,− = cfp0,+c

fp
0,−. (2.81)

Thus from (2.80) and (2.81) it follows, that the initial concentrations are coupled in the following
way:

cb0,+ =
√
cfp0,+

2
− cfp0,+c

fp
fc , (2.82)

such that given the osmolarities of the fixed charges and positively charged substances, the total
initial osmolarities cb0, c

fp
0 can be found.

2.2.4 Fast diffusion model

In case the diffusion of the solutes is so fast, that at each t ∈ (0, T ) it can be assumed that the
osmolytes are in spatial equilibrium within their respective domains, i.e.

cb(x, t) = cb(t) ∀(x, t) ∈ Ωb(t)×(0, T ),
cfp(x, t) = cfp(t) ∀(x, t) ∈ Ωp(t)×(0, T ),
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the spatially independent osmolarities cb, cfp can be found through algebraic relations:

cb(t) = ab(t)
V b(t) , cfp(t) = afp(t)

V fp(t)
∀t ∈ (0, T ), (2.83)

where V b(t), V fp(t) are the extracellular and intracellular fluid volumes respectively:

V b(t) =
∫

Ωb(t)
dV, V fp(t) =

∫
Ωp(t)

γf (t)dV,

and ab(t), afp(t) are the corresponding amounts of substance of the diluted osmolytes.
Since the outer and inner boundaries Γbw, Γpin are assumed to be fixed, and the constituents
of Ω are incompressible, the volume V of the overall domain Ω remains constant, such that the
variations in the volumes V b(t), V fp(t) are caused exclusively by the transmembrane solvent
exchange between the ICS and ECS:∫

Ω(t)
dV = V =

∫
Ω̂
dV̂

V b(t) + V p(t) = V

∀t ∈ (0, T ), (2.84)

such that since the amounts of substance are constant, the extracellular fluid gets more concen-
trated proportionally to the dilution of the intracellular solution.
Within the settings of the considered problem, the volume of the skeleton V sp(t) is assumed to
be constant at all times. It can be shown (see e.g. [28]), that if the volume of the solid phase of
a deforming swelling porous medium remains constant, the volume of the overall medium can
be found as an integral of the determinant Ĵs of the domain deformation gradient tensor F̂ s in
the Lagrangian coordinates:

V sp(t) = V sp
0 ⇒ V p(t) =

∫
Ω̂p
Ĵs(t)dV̂ ∀t ∈ (0, T ). (2.85)

The time dependent fluid volumes V b(t), V fp(t) can then be found through the cell volume
V p(t) as:

V b(t) = V − V p(t) = −
∫

Ω̂p
ĴsdV̂ + V

V fp(t) = V p(t)− V sp
0 =

∫
Ω̂p
ĴsdV̂ − γs0V

p
0

∀t ∈ (0, T ). (2.86)

Another way of finding the ECF and ICF volumes is to use the concept of porosity and solidity:

V b(t) = V − V p(t) = V − 1
γs(t)V

sp
0

V fp(t) = γf (t)V p(t) = γf (t)
γs(t)V

sp
0 =

( 1
γs(t) − 1

)
V sp

0

∀t ∈ (0, T ). (2.87)

In the preceding sections, based on the small deformation assumption, the determinant of the
deformation gradient Js is approximated by 1 and the solidity γs(t) of the ICS domain Ωp(t)
is approximated by its initial constant value. Such approximations used in either (2.85) or
(2.87) would imply that the volumes V b(t), V fp(t) remain constant during the entire swelling
time, therefore (as follows from (2.66), (2.83)) the effect of solvent exchange between the ICS
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2.2 Osmotic pressure

and ECS on the osmotic pressure difference across the membrane is not considered. Thus in
order to include the effect of the osmotic pressure difference change over time into the modelling
equations, either the dependence of Js on the displacement usp, (2.41), or the conservation law
for the solidity γs(t), (2.39), must be used. Alternatively, the change in the fluid volume can be
computed numerically, e.g. as suggested in Section 4.6.

In case the membrane can be assumed to be strictly semipermeable, and either the extracellular
fluid walls Γbw are impermeable (E4 ) or the net inflow/outflow of the substances ab through
the walls Γbw can be neglected (E2 ), the amounts of substance ab(t), afp(t) can be assumed to
remain equal to their initial values. Otherwise, given the initial and terminal values ab0, a

fp
0 , abT ,

afpT , see Section 3.1.3, the dependence of functions ab(t), afp(t) on time can be approximated as
suggested in Section 3.1.5.

2.2.5 Modified flux interface conditions

It is rather natural to assume, that if two domains containing fluids are separated by a filtering
membrane, the magnitude of the normal fluid flux at the membrane is proportional not only to
the pressure gradient across the membrane, but also to the permeability of the interface which is
determined by the characteristics of the water transmitting channels. In fact, the poroelasticity-
fluid flux interface condition (2.64), in which the poroelastic boundary filtration is reflected in
the permeability coefficient L (or fluid entry resistance α), clearly follows this principle.
The well-known Kedem-Katchalsky (KK) equation for the solvent volume flux jw through an
in general leaky selectively permeable membrane reflects the dependence of the fluid normal flux
across the membrane on the hydraulic (p∆) and osmotic (π∆) pressure differences across the
membrane, [110], [111], [112], [12], [113]. The condition reads:

jw · n = Lp
(
p∆ + σπ∆

)
, (2.88)

where Lp is the water filtration coefficient and σ is the solute reflection coefficient of the mem-
brane. Coefficient Lp characterizes the ability of the membrane to transmit the solvent. Reflec-
tion coefficient σ is determined by the solute transmitting properties of the membrane. It varies
between 0 and 1, such that if the membrane is strictly semipermeable (i.e. there is no leakage
of the solute across the interface), coefficient σ must be equal to 1. In this case, as it follows
from equation (2.88), the osmotic pressure difference contributes to the value of the flux at the
same rate as the hydraulic pressure. If the passage of the osmolytes through the membrane is
free, σ equals 0, and consequently osmosis is not participating in the fluid exchange between the
domains.
It has been shown, that for the bilipid membranes that transport solvent and solute through
distinct channels, the KK formalism can be simplified by eliminating the solute reflection co-
efficient σ – the approach known as the two parameter (2P) formalism, [113], [114]. Since the
aquaporins can be assumed to transmit only water molecules (see Section 1.2.1), the KK solvent
flux condition transforms into:

jw · n = Lp
(
(pb − pp) + (πb − πp)

)
. (2.89)

Note: A concept similar to the above described ones is also employed on the scale of the
brain tissue oedema formation and is known as the Starling’s principle. According to the
principle, under normal and pathological conditions, the flow of fluid through the capillary
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endothelial cells depends on the hydraulic and osmotic pressure differences scaled with the
filtering permeabilities of the blood-brain barrier, [51].

The 2P equations are derived for a system comprising of two domains filled with bulk solutions
and separated by a (leaky) semipermeable membrane. In this work it is assumed, that compared
to the filtering effect of the membrane, the transition effect induced by the porous medium is
negligible, such that the permeability coefficient of the membrane alone accounts for the filtering
of the fluid flux. Thus the ICS-ECS interaction is approximated by the 2P equation, such that:

jb · n (2.59)= jp · n := Lp
(
(pb − pp) + (πb − πp)

)
at Γi(t)×(0, T ). (2.90)

2.3 Summary: general conceptual model

The mathematical description of the considered problem developed in this chapter is shortly
summarized below. Following the arguments given in the end of Section 2.1.3, the modelling
equations are written in the Eulerian coordinates, e.g. with respect to the deformed configura-
tions Ωp(t) or Ωb(t) respectively.

Figure 2.3 Overall domain Ω = Ωb(t) ∪ Ωp(t) ∈ Rd, d ∈ {2, 3}, t ∈ (0, T ).
Ωp(t) – deforming poroelastic intracellular space, Ωb(t) – deforming bulk (free) extracellular
fluid, Γi(t) := ∂Ωb(t) ∩ ∂Ωp(t) – moving interface, Γpin – fixed impermeable inner wall, Γbw :=
Γb,0 ∪ Γb,in ∪ Γb,out – fixed outer (extracellular fluid) walls, where the inflow Γb,in, outflow Γb,out
and impermeable Γb,0 boundaries can be distinguished.

Ωb

Ωp

ΓiΓpin

Γb,0(Γbw)

Γb,0 (Γbw)

Γb,in
(Γbw)

Γb,out
(Γbw)

Extracellular fluid: Stokes domain Ωb

Stokes eq.: ∇ · σb = ρf∂tv
b in Ωb(t)×(0, T ), (2.91a)

∇ · vb = 0 in Ωb(t)×(0, T ), (2.91b)
Transport eq.: ∂tc

b −D∆cb = 0 in Ωb(t)×(0, T ), (2.91c)
Domain displacement eq.: ∆ub = 0 in Ωb(t)×(0, T ), (2.91d)
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2.3 Summary: general conceptual model

where vb is the fluid velocity, pb – hydraulic fluid pressure, ub – domain displacement, ρf – fluid
density, cb – molar concentration of the diluted osmolytes, D – diffusion coefficient for cb in Ωb,
and σb is the fluid stress tensor consisting of the pressure term and purely viscous stress σb,visc:

σb := −pbI + σb,visc = −pbI + 2µf
(
∇vb + (∇vb)T

)
, (2.91e)

where µf is the dynamic fluid viscosity. The deformed configuration coordinates x(t) ∈ Ωb(t)
are related to the reference state coordinates x̂ ∈ Ω̂b through the artificially constructed ALE
displacement ub:

x(x̂, t) := ub(x, t) + x̂ ∀x ∈ Ωb(t)×(0, T ),
∂tu

b(x, t) 6= vb(x, t).
(2.91f)

Intracellular space: Biot domain Ωp

Biot eq.: ∇ · σp = 0 in Ωp(t)×(0, T ), (2.92a)

∇ ·
(
∂tu

sp − k

µf
∇pp

)
= 0 in Ωp(t)×(0, T ), (2.92b)

Transport eq.: ∂t(γfcfp)− γfDp∆cfp = 0 in Ωp(t)×(0, T ), (2.92c)

where usp is the domain displacement, pp – hydraulic pore pressure, k – Darcy fluid permeability,
µf – dynamic fluid viscosity, cfp – molar concentration of the diluted osmolytes, D – diffusion
coefficient for cfp in Ωp and σp is the poroelasticity stress tensor consisting of the pore fluid
term and effective stress tensor σeff :

σp := −ppI + σeff = −ppI + µs
(
∇usp + (∇usp)T

)
+ λs∇ · uspI, (2.92d)

where the shear modulus µs and Lame’s first coefficient λs are the elastic moduli of the skeleton.
The coordinates of the deformed configuration Ωp are related to the coordinates of the reference
configuration Ω̂p through the displacement usp:

x(x̂, t) := usp(x, t) + x̂ ∀x ∈ Ωp(t)×(0, T ).

The pore fluid velocity vfp and solidity γs := γs(t) can additionally be found as:

Modified Darcy law: vfp = ∂tu
sp − k

(1− γs)µf∇p
p in Ωp(t)×(0, T ), (2.92e)

Solidity eq.: ∂tγ
s + γs∇ · (∂tusp) = 0 in Ωp(t)×(0, T ). (2.92f)

Initial conditions

vb(x, 0) = vb0(x) in Ωb(0), (2.93a)
cb(x, 0) = cb0 in Ωb(0), (2.93b)

usp(x, 0) = 0 in Ωp(0), (2.93c)
γs(0) = γs0 in Ωp(0), (2.93d)

cfp(x, 0) = cfp0 in Ωp(0), (2.93e)

where vb0, cb0, c
fp
0 , γs0 are some given values.
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Boundary conditions (fixed walls)
The internal cell boundary Γpin is assumed to be fixed and impermeable:

usp = 0,
vfp = 0,
γs = γs0,

∇cfp · n = 0

at Γpin×(0, T ). (2.94a)

The conditions at the external Stokes domain boundaries Γbw := Γb,0 ∪ Γb,in ∪ Γb,out depend on
the type of the considered experimental settings E1–E4 :

E1:

ub = 0 at Γbw×(0, T ),
cb = cbD at Γb,in×(0, T ),

∇cb · n = 0 at
(
Γb,out ∪ Γb,0

)
×(0, T ),

vb = 0 at Γb,0×(0, T ),
vb = vbin at Γb,in×(0, T ),
σbn = σbw at Γb,out×(0, T );

(2.94b)

E2: ub = 0, vb, cb are periodic at Γbw×(0, T ), (2.94c)
E3: ub = 0, σbn = σbw, cb = cbD at Γbw×(0, T ), (2.94d)
E4: ub = 0, vb = 0, ∇cb · n = 0 at Γbw×(0, T ), (2.94e)

where vbin, cbD, σbw, are some given values.
Boundaries Γbw, Γpin are fixed, thus at any t ∈ (0, T ) they coincide with their reference config-
urations.

Interface conditions

ub = usp at Γi(t)×(0, T ), (2.95a)
γs = γs0 at Γi(t)×(0, T ), (2.95b)

vbn =
(
vsp − k

µf
∇pp

)
n

at Γi(t)×(0, T ), (2.95c)

σpnn = σbnn at Γi(t)×(0, T ), (2.95d)
vbτ = ∂tu

sp
τ at Γi(t)×(0, T ), (2.95e)

jp · n = jb · n = Lp
(
p∆ + π∆

)
at Γi(t)×(0, T ), (2.95f)

∇cb · n = (1− γs)∇cfp · n = jc(x, t) at Γi(t)×(0, T ), (2.95g)

where jb, jp are the fluid fluxes defined at the boundaries of the Stokes and Biot domains
respectively:

jb · n := (vb − ∂tub) · n
(2.95a)= (vb − vsp) · n at ∂Ωb(t)×(0, T ), (2.95h)

jp · n := (1− γs)(vfp − vsp) · n (2.92e)=
(
− k

µf
∇pp

)
· n at ∂Ωp(t)×(0, T ), (2.95i)

jc(x, t) is the solute flux function modelled in Section 3.1.5, Lp is the membrane permeability
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2.3 Summary: general conceptual model

to water, p∆, π∆ are respectively the hydraulic and osmotic pressure differences across the
interface:

p∆ := pp − pb at Γi(t)×(0, T ),

π∆ := Cosmc
∆ = Cosm

(
cb − cfp

)
at Γi(t)×(0, T ),

(2.95j)

and Cosm is the osmotic pressure coefficient. Due to the continuity of the displacements (2.95a),
the configuration of the deforming interface Γi(t) can be found through either of the solutions
usp, ub.

The parameters µf , D, γs, k, µs, λs, Lp, Cosm, initial values vb0(x), cb0, c
fp
0 , γs0, and boundary

values vbin, σbw, cbD, are discussed and specified in Chapter 3.

It should be noted, that the above presented equations constitute a general derived model
describing an interaction between a swelling poroelastic cell and extracellular fluid, while for nu-
merical implementation and simulations, a reduced model described in Section 4.1 is considered.
Thus under the assumptions of fast diffusion, neither of the transport equations 2.91c, 2.92c is
implemented in Chapter 4.
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3 Data and dimensional analysis

In this chapter, the values of the parameters as well as the initial, boundary and characteristic
values of the variables entering the modelling equations developed in the previous chapter are
estimated. The obtained data is used to estimate the coefficients of the non-dimensionalized
modelling equations, such that the dominating effects and the relative relevance of the terms of
the equations can be determined.
Some of the values may vary depending on the set of the chosen modelling assumptions. In
particular, different results may be obtained depending on:

• the experimental settings E1–E4 ;

• the membrane permeability: membrane is assumed to be either strictly (Ms) or leaky (Ml)
semipermeable;

Thus where necessary, different values of the same parameter or function corresponding to
different settings are specified.

3.1 Data: parameters and characteristic values

For a given function f , the following lower index notations will be used:

• subscript "t" indicates, that the function is assumed to be only time (and not space)
dependent, such that subscripts "0", "T " are used to denote the initial and final (terminal)
values:

ft , f(t), t ∈ (0, T );
f0 , f(t), t = 0,
fT , f(t), t = T ;

• characteristic values are denoted by lower index "c", i.e. fc is the characteristic value of
the variable f .

• when it is necessary to distinguish the healthy and reference (t = 0) states of the system,
the values that correspond to the healthy state are denoted by an H, i.e. fH is the value
of the variable f in the healthy state of the system.

The parameters, initial, terminal and characteristic values of the variables that are chosen for the
considered cell swelling problem split into the primary and secondary values. When determining
the primary values, only the experimental settings and physical characteristics of the considered
physical problem are relevant. The secondary values depend not only on the problem settings,
but also on the primary values.
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3 Data and dimensional analysis

In particular, the primary values are the temperature, dynamic fluid viscosity, diffusivity coeffi-
cient, mass densities, elasticity coefficients, lengths (sizes) of the domains and initial transmem-
brane hydraulic pressure difference:

Υ, µf , D, ρs, ρf , µs, λs, lp0, lb0, l
p
T , p

∆
0 . (3.1a)

The secondary values are the permeability coefficients, characteristic and terminal hydraulic
pressure jumps, characteristic porosity (solidity), initial, terminal and characteristic osmotic
pressure and molarity jumps, characteristic velocities, observation and diffusion times.
The choices for the primary values as well as actual dependences of the secondary values on the
primary values and problem settings are motivated and developed below. Thus the following
dependences are either considered or derived in this chapter:

γsc := γsc (l
p
0), (3.1b)

uspc := uspc (lp0, l
p
T ), (3.1c)

lpc := lpc (l
p
0, l

p
T ), (3.1d)

lbT := lbT (lb0, uspc ) = lbT (lb0, l
p
0, l

p
T ), (3.1e)

lbc := lbc(lb0, lbT ) = lbc(lb0, l
p
0, l

p
T ), (3.1f)

Lp := Lp(Υ), (3.1g)
k0 := k0(γsc ) = k0(lp0), (3.1h)
π∆
H := π∆

H(p∆
0 ), (3.1i)

p∆
T := p∆

T (lp0, l
p
T , µ

s, λs), (3.1j)
p∆
c := p∆

c (lp0, l
p
T , µ

s, λs), (3.1k)

tD,bc := tD,bc (lbc, D) (3.1f)= tD,bc (lb0, lbT , D), tD,pc := tD,pc (lpc , D) (3.1d)= tD,pc (lp0, l
p
T , D), (3.1l)

c∆
H := c∆

H(Υ, π∆
H) (3.1i)= c∆

H(Υ, p∆
0 ), (3.1m)

π∆
T := π∆

T (p∆
T ) (3.1j)= π∆

T (lp0, l
p
T , µ

s, λs), (3.1n)

c∆
T := c∆

T (Υ, π∆
T ) (3.1n)= c∆

T (Υ, lp0, l
p
T , l

b
0, µ

s, λs), (3.1o)

c∆
0 := c∆

0 (c∆
T , c

∆
H , l

b
0, l

p
0, l

p
T ) (3.1m),(3.1o)= c∆

0 (Υ, µs, λs, p∆
0 , l

b
0, l

p
0, l

p
T ), (3.1p)

c∆
c := c∆

c (c∆
T , c

∆
H , l

b
0, l

p
0, l

p
T ) (3.1m),(3.1o)= c∆

c (Υ, µs, λs, p∆
0 , l

b
0, l

p
0, l

p
T ), (3.1q)

π∆
c := π∆

c (Υ, c∆
c ) (3.1p)= π∆

c (Υ, µs, λs, p∆
0 , l

b
0, l

p
0, l

p
T ), (3.1r)

vspc := vspc (Lp, p∆
c , π

∆
c ) (3.1g),(3.1k),(3.1r)= vspc (Υ, µs, λs, p∆

0 , l
b
0, l

p
0, l

p
T ), (3.1s)

vbc := vbc(γs, vspc ) (3.1s)= vbc(Υ, µs, λs, p∆
0 , l

b
0, l

p
0, l

p
T ), (3.1t)

tc := tc(uspc , vspc ) (3.1c),(3.1s)= tc(Υ, µs, λs, p∆
0 , l

b
0, l

p
0, l

p
T ). (3.1u)

While the parameters, characteristic and some initial values are of direct interest for either the
actual numerical simulations or estimation of the terms of the modelling equations, the terminal,
healthy state or initial values of some of the variables need to be considered in order to determine
the respective values that are of direct interest.

3.1.1 Material properties and parameters

3.1.1.1 Temperature, viscosities, diffusion coefficients, densities

For the in vitro experiments on osmotic swelling of living cells (e.g. swelling of endothelial cells,
[115], brain tissue swelling, [10], glial cell swelling, [41]), the temperature is commonly maintained
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at 37 ℃, that corresponds to the normal brain temperature, [116]. The temperature of the living
mammalian brain may drop (spontaneously or externally induced) by several degrees following
ischaemia, [44], [117], and is measured to be slightly elevated in acutely ischaemic human brain,
[116], [40]. Since for the purposes of this work the magnitude of those measured temperature
variations is not significant, it is assumed that all considered experiments E1–E4 are isothermal
throughout the entire observation time, and are conducted at the normal brain temperature
Υ = 37 ℃ ≈ 310 K.

Note: experiments aimed at measuring certain material properties of the cells may be
conducted at lower temperatures (e.g. permeability measurements in [118], [119]). Yet
the temperature related variations in the measured coefficients appear to be insignificant
regarding the purposes of this work.

The mass density of the cerebrospinal fluid, [120], as well as the densities of soft living cell
structures (such as lipid membranes, [121], and actin layers, [122]), are found to be approximately
the same as of pure water. Thus the densities ρf , ρs of the fluid and solid parts composing the
OCD are assumed to be equal, such that ρf ≈ ρs ≈ 103 kg/m3.

At the considered temperature Υ = 37 ℃, the dynamic (apparent) viscosity of the cytoplasm
(cerebrospinal fluid) is measured to be similar (slightly higher) to the viscosity of water at the
same temperature, [123], [124], [125], [126], [66], [127]. In this work the fluid viscosity is chosen
as µf ≈ 10−3 kg/m s.

Sodium and potassium (as well as many other ions or small molecules) diluted in pure water
at temperatures close to 37 ℃ have diffusion coefficients of order 10−9 m2/s, [128]. Due to
the presence of multiple macromolecules, the diffusion of osmolytes in the cerebrospinal fluid is
somewhat slower than in pure water, yet generally not more than by an order of magnitude,
[129], [125]. Inside the cell, the diffusion of ions may be additionally impeded by the large
number of organelles, yet their influence on the magnitude of the diffusion coefficient is also
relatively benign, [130]. Therefore the diffusion coefficients Dp, Db of the intracellular and
extracellular fluids are taken to be equal, such that D , Dp ≈ Db ≈ 10−10 m2/s.

3.1.1.2 Elasticity coefficients

Solid phase Ωsp of the poroelastic cell interior Ωp consists of the membrane bound organelles and
cytoskeleton – an elastic deformable network composed of various types of filamentous proteins,
[20], [21]. Owing to the distribution of the constituents and to the structure of the cytoskeletal
networks, the elastic medium Ωsp is in general non-homogeneous and anisotropic. Additionally,
advanced studies of the cytoskeletal filament networks suggest, that with the increase of applied
stresses, the response of the cytoskeletal structures can be highly non-linear, with some networks
exhibiting stress-stiffening and some – stress-softening behaviour, [20], [65].
While the non-linearity, inhomogeneity and anisotropy effects may influence the response of the
cell to the applied stresses, these, as well as other effects that may affect the mechanics and
dynamics of the swelling cell (e.g. some chemicals can influence stiffening or softening of the
cytoskeleton, [21]) will not be considered in this work due to the excessive complexity of the
implied modelling. Instead, the material is considered to be homogeneous and isotropic, such
that under the stresses induced by swelling, its response is linear elastic. Then the shear modulus
µs and Lame’s first parameter λs of the cell skeleton can be found through any pair of elasticity
coefficients using the well known conversion formulae (e.g. (3.2)), see e.g. [131].
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Owing to the above mentioned factors, elasticity coefficients (Young’s, shear, bulk moduli, etc.)
of the cytoplasmic structures may not be related to one another according to the standard
conversion formuli, such that measured individually, they may differ from one another by orders
of magnitude, [16], [20], [21]. Considering the type of deformation the cell undergoes and
the physical meanings of the elasticity coefficients for which experimental measurements are
available, Young’s modulus and Poisson’s ratio appear to be most suited for the description of
the material response of the intracellular structures.
In literature, experimental estimates for the elastic coefficients of the cytoskeletal filaments,
bilipid membranes and hydrogels vary significantly, such that depending on the particular type
of material, measurement type and experimental conditions, the values of the shear and Young’s
moduli are estimated to be in the range of 103–106 Pa, [16],[18], [19], [20], [21].

Note: In addition, cytoskeletal filaments are often treated as viscoelastic objects, thus the
moduli of viscoelasticiy are evaluated as in e.g. [21], [20].

Following [16], where the total elasticity (elastic properties of the cell cortex and cytoplasmic
structures) of the cell is estimated, Young’s modulus E is chosen to be of order 104 Pa.
The values of the Poisson’s ratio ν for gels, hydrogels, lipid membranes and cellular constituents
are considered to be in the range of 0.3-0.5, [58], [132], [133], [18], [16]. While when considering
the components of the cell to be perfectly incompressible, Poisson’s ratio is taken to be 0.5, [18],
[16], in order to allow certain material flexibility (as in [16]) and avoid numerical complications,
here Poisson’s ratio is chosen as ν = 0.4.
Then using conversion formulae for elastic moduli of homogeneous isotropic linear elastic ma-
terials, the shear modulus µs and Lame’s first parameter λs of the cell skeleton are found
as:

E := 104 Pa, µs = E

2(1 + ν) ≈ 3.6 · 103 Pa ,

ν := 0.4, λs = Eν

(1 + ν)(1− 2ν) ≈ 1.4 · 104 Pa ,

λs

µs
= 2ν

(1− 2ν) = 4 . (3.2)

3.1.1.3 Membrane filtration coefficient

Numerous experimental measurements of various water permeability coefficients for lipid (phos-
pholipid) membranes taken under diverse conditions (including living cell settings) are available
in literature. The transport of water molecules is passive, and is either purely diffusive, or is
driven by osmotic pressure gradients [43], [55], [134], [135]. Correspondingly, the diffusional and
osmotic filtering properties of the water channels are distinguished. Osmotic and diffusional
water permeabilities Pf , Pd are found to be in the range of 10−6–10−4 m/s, [134], [136], [118],
[75], [113], [135], [137], [119].

Note: During cytotoxic cell swelling, the transport of water across the membrane is pri-
marily driven by osmosis, and since the diffusional permeability quantifies the exchange of
water molecules irrespectively of the transmembrane osmotic pressure gradients, it is not
of interest in this work. The membrane permeability to water is therefore characterised
by only the osmotic transmitting properties of the aquaporins.

Mechanical filtration coefficient (i.e. membrane water permeability in the context of this work)
Lp that enters the flux condition (2.89) is related to the osmotic water permeability Pf through
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the following formula, [134], [113]:

Lp := Pf
Vw
RΥ , (3.3)

where Vw is the partial molar volume of water, Vw = 1.8 · 10−5 m3/mol, [138], R – the Gas
constant, R ≈ 8.3 J/Kmol, and Υ – the temperature of the medium. Taking an average value
for the osmotic water permeability, e.g. Pf := 10−5, the filtration coefficient Lp is found from
(3.3) to be around 10−13 m2s/kg. This magnitude agrees with the values suggested in [113],
[137], [114].
Water (as well as solute) permeability coefficients show dependence on such factors as the tem-
perature and some of the concentrations of the solutions, [118], [75], [113], [137], [139]. The
variations in the obtained values are however very small compared to the magnitudes of the
coefficients, and are therefore not considered, such that Lp is assumed to be constant and to
have the same value regardless of the considered experimental conditions.

3.1.2 Biot-Stokes problem

3.1.2.1 Lengths and displacements

The nucleus of a biological cell is centrally located and has a smooth, rounded shape, [63]. Thus
for simplicity, the cell is approximated as either a spherical nearly-spherical object, within which
the immobile structures (see Section 1.1.2) are assumed to form a continuous sphere and are
centrally located.

Note: Brain cells are generally diverse in shapes and sizes, and may have very complex
geometries due to their branching extensions (e.g. stellate cells and astrocytes), [140],
[141], [59]. Here only the central, rounded cell bodies (soma for a neuron) are considered.

The shape of the overall domain Ω can be chosen arbitrarily. For convenience, domain Ω is
taken to be either a cube or a sphere, such that the cell is situated in the center of the overall
domain, see Pic.1.7. As the ICS and ECS domains Ωp, Ωb are chosen to be (approximately)
axially symmetric, the characteristic lengths lpc,i, lbc,i, i ∈ {1...dim} of those domains can be
assumed to be equal in all directions:

lpc,i = lpc,j =: lpc
lbc,i = lbc,j =: lpc

∀i, j ∈ {1...dim}.

The modelled swelling processes influence the entire volumes of the domains (and not only
some local parts), therefore the characteristic lengths lbc, lpc will be defined with respect to the
diameters (lengths) of the corresponding domains.

The body of a healthy brain cell ranges from less than 10−5 m to over 10−4 m in diameter,
[140], [141], [142], [143], [59], [62]. The sizes of the centrally located organelles are normally
proportional to the size of the cell, [63], such that the diameter of the largest organelle – the
nucleus – is roughly an order of magnitude smaller than the diameter of the cell, [62], [144].
Thus the radius rc0 of the reference (not swollen) cell Ωc

0 and the radius rin of the fixed, constant

55



3 Data and dimensional analysis

in size inclusion are chosen as:

rc0 ≈ 5 · 10−5 m, (3.4)
rin ≈ 0.5 · 10−5 m. (3.5)

The characteristic length lpc of the poroelastic domain (ring) Ωp is chosen to correspond to the
initial size rp0 of Ωp, and is thus equal to the difference between the initial radius of the whole
cell and the radius of the inclusion:

lpc := lp0 = rc0 − rin ≈ 4.5 · 10−5 m. (3.6)

The maximum size that a swelling cell can achieve is restricted by the volume of the available
extracellular fluid. In a healthy brain, extracellular fluid is estimated to occupy from 12–19%,
[51], to 20%, [55], [43], of the total brain tissue volume. It has been observed, that cytotoxic
swelling causes an average reduction of the extracellular space from the physiological ∼20% to
5-10% of the brain volume, [55], [43]. Therefore assuming that the extracellular space shrinks
to the average 7%, such that the cells in a tissue sample grow from 80% to 93%, the average cell
growth ratio gc is found as:

gc := V c
T

V c
0

= 93
80 ≈ 1.16, (3.7)

where V c
0 is the initial and V c

T is the final (total) cell volume.

Note: The swollen cell may in principle become considerably larger than the healthy one.
For instance astrocytes, being more prone to pathological swelling than neurons, [43], are
able to swell several times their size, [55]. Also in some in vitro experiments, where the
ratio between the extracellular and total volumes is greater, larger swelling rates may be
observed for some hypotonic baths, [41], [56]. However larger deformations (i.e. the defor-
mations comparable to the size of the domain) would require modifications to the modelling
equations in the ALE coordinates (see Section 2.1.3), introducing non-linearities. There-
fore for all considered experiments, irrespective of the size of the extracellular domain, the
growth ratio (3.7) is taken.

Assuming that the final shape of the cell Ωc is a sphere, the terminal cell radius rcT and the
characteristic (total) displacement uspc := uspT , defined as the difference between the terminal rcT
and the initial rc0 cell radii, are found as:

rcT = 3

√
3

4πV
c
T

(3.7)= 3

√
3

4πg
cV c

0 = 3√gc rc0 ≈ 5.25 · 10−5 m , (3.8)

uspc := uspT = rcT − rc0 =
(

3√gc − 1
)
rc0 ≈ 2.53 · 10−6 m. (3.9)

As the displacements are continuous at the interface (2.46), the characteristic displacement ubc
of the bulk fluid domain Ωb is considered to be equal to uspc :

ubc = uspc =: uc. (3.10)

The sizes and shapes of the total Ω and extracellular Ωb domains can be estimated with regard
to the considered experiment:

• Brain tissue experiments E1, E2.
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As mentioned above, initially (in a healthy tissue) the extracellular fluid takes around
20% of the total domain volume V . Therefore in case the modelled cell is assumed to be
surrounded by other cells (i.e. in brain tissue experiments E1, E2 ), the total volume V
and the reference volume V b

0 of the domain Ωb can be found through the reference cell
volume V c

0 as:

f c0 := V c
0
V

= 0.8 ⇒ V = V c
0
f c0

; V b
0 = V − V c

0 .

In such case, the overall domain Ω can not be defined as a cube, as even the initial cell Ωc
0

would not fit into it:

5 · 10−5 = rc0 > rcube = 1
2

3√
V ≈ 4.34 · 10−5.

Instead, the overall domain Ω can be defined as a sphere of radius rΩ:

E1, E2: rΩ := 3

√
3

4πV = rc0
3
√
f c0
≈ 5.38 · 10−5 m.

• Single cell experiments E3, E4.

In the single cell experiments, the extracellular fluid to the cell proportions can be chosen
arbitrarily, however with the restriction that the domain Ω is large enough to allow un-
compromised swelling (and can be defined as a cube for convenience), yet not so large that
the difference between the sizes of the cell and the overall domain would involve numerical
complications. Here the half-size (i.e. half of the length of the edge) rΩ of the one cell
domain Ω will be taken 3 times larger than the radius of the cell:

E3, E4: rΩ := 3rc0 ≈ 1.5 · 10−4 m.

Characteristic length lbc of the bulk fluid domain Ωb, chosen as the initial size rb0 of Ωb, can
be found as the difference between the half-size (or radius) of the overall domain rΩ and the
reference cell radius rc0:

lbc := rb0 = rΩ − rc0,

E1, E2: lbc =
( 1

3√f c
− 1

)
rc0 ≈ 3.8 · 10−6 m,

E3, E4: lbc = 2rc0 ≈ 10−4 m.

Note: The thickness hm of the phospholipid cell membrane is estimated to be around
5 · 10−9 m, [62], [121], which is much smaller than the size of either of the domains Ωb, Ωp:

hm

lpc
<
hm

lbc
< 10−2 (E1, E2), hm

lbc
<
hm

lpc
< 10−3 (E3, E4),

therefore it appears to be reasonable to neglect the thickness of the membrane and to
approximate it as a two dimensional surface.
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Figure 3.1 Lengths of the domains.

(a) Initial configuration, t = 0. (b) Final (terminal) configuration, t = T .
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The ratios Rbc, Rpc between the characteristic displacements in the extracellular and intracellular
domains Ωb, Ωp and their respective lengths are then estimated as:

Rpc ,
uspc
lpc
≈ 0.056, Rbc ,

ubc
lbc

≈ 0.66 (E1, E2),
≈ 0.025 (E3, E4).

(3.11)

As follows from (3.11), for the choice of the extracellular domain size corresponding to the brain
tissue settings E1, E2, the domain deformation ubc = uc is large compared to the size of the
domain, therefore the small deformation assumptions would no longer be valid in such case.
Thus in this work, the cell to the extracellular space proportions are chosen to correspond to
the ones of the single cell experiments E3, E4 :

rΩ := 3rc0 = 1.5 · 10−4 m, (3.12)
lbc := rb0 = rΩ − rc0 = 2rc0 ≈ 10−4 m. (3.13)

3.1.2.2 Cell porosity

Water is measured to account for around 70% of the total living cell volume, [145], [124], yet
the proportion of the unbound fluid is found to be somewhat lower, [146], such that depending
on the cell type, the cytosol (i.e. intracellular unbound fluid) occupies 20% to 55% of the total
cell volume, [147], [148]. In this work, the intracellular fluid is assumed to occupy 50% of the
total healthy cell volume V c

0 , thus:

φfc0 ,
V fp

0
V c

0
:= 0.5,
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where V fp
0 is the reference volume of the intracellular fluid Ωfp. As the volume of the membrane

is neglected, the remaining part must be shared by the organelles Ωsp that form the skeleton
of the porous medium Ωp

0, and the immobile organelles. Assuming that that the cytosol is
uniformly distributed within the cell, the initial porosity γf0 can be found as the fraction of the
cytosol Ωfp

0 within the reference poroelastic space Ωp
0:

γf0 := V fp
0
V p

0
= φfc0 V

c
0

V c
0 − V in

= φfc0 (rc0)3

(rc0)3 − (rin)3 ≈ 0.50, (3.14)

where V p
0 is the initial volume of the ICS Ωp

0, and V in is the volume of the inclusions. From the
saturation condition (2.37) it follows that the initial porosity γf0 and solidity γs0 are approximately
equal:

V sp

V p
0

=: γs0
(2.37)= 1− γf0 ≈ 0.50 (3.14)⇒ γf0 ≈ γ

s
0 =: γ0, (3.15)

where V sp is the (constant) volume of the solid phase of Ωp.
The terminal porosity and solidity are found to deviate from their initial values by only around
13.3%:

γsT := V sp
T

V p
T

= V sp
0
V p
T

= γs0V
p

0
V p
T

≈ 0.867γs0 ≈ 0.433,

γfT ≈ 0.567,
(3.16)

thus the characteristic porosity and solidity are chosen to be equal to their initial values:

γsc = γfc := γc := γ0. (3.17)

In the reduced model considered for the numerical simulations, the change in the porosity is
neglected, such that γf (t), γs(t) are considered to be constant and are denoted by γ:

γf (t) := γs(t) := γ0 , γ ∀t ∈ (0, T ). (3.18)

3.1.2.3 Intracellular (Darcy) permeability to water

Estimating the permeability of the interior of a biological cell experimentally, or verifying mod-
elling approximations of the permeability coefficient is a challenging task. As the constituents
of the cell do not hold together in the absence of the membrane, it would be very hard to con-
duct experiments aiming at the estimation of the permeability of the intracellular medium. In
the experiments on the membrane-bound cells, the permeability of the membrane can strongly
influence the fluid flow and therefore the experimental measurements. At the same time the sig-
nificant differences between the microscopic geometries of the membrane and ICS do not allow to
simply assume that their permeabilities are equal. Additionally, unlike the membrane, a swelling
cell increases its porosity during the observation, and the deformations may introduce changes
to the microscopic geometry of the skeleton, and thus influence the permeating properties of the
medium.
As an alternative to experimental data, mathematical (heuristic) models will be employed in
order to estimate the permeability k0 of the reference configuration of the intracellular space
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Ωp
0, and the dependence of the permeability k(t) on the porosity γ(t) or displacement usp(x, t)

of the intracellular space.

There exist several ways of estimating the permeability of a porous medium from the information
on its microscopic structure (some of the models are listed in e.g. [149], [150], [151]). One of
the most widely used formulae is the Kozeny-Carman (KC) equation, various forms of which
are described in e.g. [152], [149], [153], [154]. The KC equation can be used to model the
permeability of a fixed porous medium if the processes and geometry of the medium satisfy the
following requirements:

• the medium is homogeneous and isotropic with regular structure;

• the flow of the fluid is laminar; the pore velocity can be found from an equation of Hagen-
Poiseuille type, and the Darcy equations hold on the domain.

The first condition is fulfilled due to the assumptions made on the geometry of the cell. Assuming
also, that until the beginning of the swelling the structure of the cell is fixed, the KC equation
can be used to determine the reference (initial) permeability k0 of the ICS.

Derivation of the Kozeny-Carman equation for Ωp
0.

Combining the Hagen-Poiseuille and the Darcy equations on a fixed porous domain, the perme-
ability k0 can be expressed through the microstructural tortuosity τ , hydraulic diameter dh and
dimensionless shape factor s:

− d2
h

16sµfτ = vfp

∇pp
= − k0τ

µfγf
⇒

k0 = γfd2
h

16sτ2 .

(3.19)

In order to simplify the computations of the geometric characteristics, it is further assumed
that the reference porous medium Ωp

0 is composed of N ε identical elementary volumes V ε that
are cubes with side length ε, such that in each elementary volume the solid phase (grain) is
surrounded by the fluid and defines a sphere of radius rεs, surface area Aεs and volume V εs.
Then the necessary coefficients are found as described below.

• Dimensionless shape factor s is estimated to be of order O(1) for various grain shapes
(around 2 for spherical grains), see e.g. [155], [156], [37].

• Tortuosity τ , which in this context is understood as a ratio between the length of the
path that a fluid particle travels from one point to another in a porous medium and the
length of a straight line connecting these two points. For the type of the considered porous
medium, τ can be assumed to be of order O(1), [157], [158].

• Hydraulic diameter dh is defined through the porosity γf , solidity γs and the ratio R
between the total solid-fluid phase interface area Asf and the total solid grain volume V s

as:

dh := 4γf0
Rγs0

, R := Asf

V s
.
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The solid grains do not touch and are all equivalent, therefore the ratio R can be found
through the microscale quantities:

R := Asf

V s
=
∑
Nε Aεs∑
Nε V εs

= N εAεs

N εV εs
= Aεs

V εs
= 4π(rεs)2

4
3π(rεs)3 = 3

rεs
.

The diameter of the largest among the small organelles (i.e. the ones that are assumed to
constitute the skeleton) does not normally exceed 1µm, [60], [63], thus the radius of the
ε-grain is chosen as rεs := 5 · 10−7 m.

Putting the obtained expressions into (3.19), the permeability k0 is found to be proportional to
the square of the solid grain size rεs, such that the proportionality coefficient Cεs reflects the
structural characteristics of the porous medium Ωp

0:

Cεs :=

(
γf0

)3

9sτ2
(
1− γf0

)2

s:=2
τ :=1.5≈

(
γf0

)3

40
(
1− γf0

)2 ≈ 0.01,

k0 = Cεs(rεs)2 ≈ 2.5 · 10−15 m2.

(3.20)

Since the swelling cell deforms, growing due to the inflow of water, the permeability of the porous
medium Ωp may change. In a series of works (e.g. [28], [23], [27], [26] [88] ) an exponential de-
pendence of the permeability function on the spatial deformation derivatives has been suggested
and tested. Following [23], for the given initial permeability k0 and material parameter m, the
permeability of a deforming medium can be expressed as:

k(x, t) = k0exp (m∇ · usp(x, t)) . (3.21)

Material parameter m is found to be in the range of 0 to 10, [28], [23], and the displacement
gradients are estimated to be small (see Section 3.2), therefore k(x, t) is expected to be of the
order of the initial permeability k0,

k(x, t)
k0

= exp (m∇ · usp(x, t)) ∼ O(1),

and thus the permeability of the intracellular porous medium Ωp
t is assumed to be constant:

k(x, t) = k0 , k.

It should be noted, that permeability models are normally developed and used regarding the
specific type of the considered porous medium and are not in general universal. Thus the
exponential model (3.21) is used in [28], [23], [27], [26], where biological tissues are considered.

3.1.2.4 Hydraulic pressures

Normal intracranial pressure (ICP) is measured to be in average ± 1300 Pa for an adult in
the supine ("+") or vertical ("–") position respectively, with the critical value of normal ICP
considered to be around 3300 Pa (25 mmHg), [53], [159]. ICP strongly depends on the volume of
intracranial liquids and tissues (the relationship being described by the Monro-Kellie hypothesis,
[160], [161]), such that the accumulation of fluid within brain tissue may lead to significant
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increases in ICP, [159], [42]. During normal brain activity, also for some moderate increases
in the intracranial volume, the ICP remains low and stable, [53]. Therefore as it is assumed
that within the chosen observation time the effects of vasogenic processes are either negligible or
non-existent, the extracellular fluid pressure pb(x, t) and its gradients in the in vivo experiments
can be considered to depend only on the processes taking place within the one cell domain Ω.
Then if there (pre)exists flow through the extracellular domain Ωb, pressure gradient across the
domain, and so the inflow and outflow pressure values, are considered to preserve their initial
values. Thus when considering the experiments E1, the normal stresses at the outflow boundary
are assumed to be constant:

E1: σbn(x, t) := σbw = const (x, t) ∈ Γb,out. (3.22)

The considered in vitro experiments are such, that the pressures in the domain Ω can also be
assumed to take no influence from the environment, thus:

E3: σbn(x, t) := σbw = const (x, t) ∈ Γbw. (3.23)

Intracellular pressure pp0 of a healthy living cell is in general not equal to the pressure pb0 of
the surrounding fluid, such that the initial hydraulic pressure difference p∆

0 can be computed
through Laplace’s law:

p∆
0 := pp0 − p

b
0 = 2τ0

rc0
≈ 5 Pa, (3.24)

where τ0 ≈ 10−4 N/m is the reference cell cortex tension, [16]. Values obtained using Laplace’s
law show agreement with measurements, see e.g. [162], [163].
The cell swells until the material resistance forces created by the solid components of the cell
are balanced by the driving forces of the swelling. In order to estimate the terminal pressure
difference across the membrane, a simplified stress-pressure jump relation is considered. Namely,
with the viscous stresses neglected1, the continuity of normal stresses interface condition (2.61)
written in polar (r, θ) or spherical (r, θ, φ) coordinates, where for simplicity it is assumed that
the domain is symmetric and the stresses are uniform, becomes (see Section 4.3):

2D : (2µs + λs)∂ruspr + λs
uspr
r
− pp = −pb, (3.25)

3D : (2µs + λs)∂ruspr + 2λsu
sp
r

r
− pp = −pb, (3.26)

where uspr is the r-coordinate of the displacement usp and ∂r is the partial r-derivative. Assuming
further that the equilibrium (t = T ) solution is spatially linear,

uspr := αr = lpT − l
p
0

lpT
r = uspT

lpT
r, (3.27)

where uspT = uspc is the final displacement and lp0, l
p
T are the initial and terminal lengths of the

porous domain Ωp, then substituting relation (3.27) into (3.25) and (3.26), the following estimate

1 It is in fact suggested in Section 3.2, (3.121), that with the chosen characteristic and parametric values, the
viscous stress contribution to the continuity of normal stresses is negligible.
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for the terminal hydraulic pressure difference p∆
T is obtained:

p∆
T := ppT − p

b
T =Muspc

lpT
, (3.28)

M :=
{

2(λs + µs) in 2D,
(3λs + 2µs) in 3D.

(3.29)

Substituting the values for λs, µs, uspc , lpc into (3.28), the pressure difference p∆
T is estimated as:

p∆
T ≈

[
1.87 · 103 in 2D,
2.62 · 103 in 3D.

(3.30)

Note: Here and in the following, the default pressure units are
[
kg/m s2

]
≡
[
Pa
]
in 3D

and
[
kg/s2

]
in 2D.

The characteristic transmembrane pressure difference p∆
c is estimated through the scaling of the

dimensionalized continuity of normal stresses interface condition (3.120), and as expected (from
the nature of the cell deformation and the approach chosen for the evaluation of the terminal
pressure), is similar to the average in time value:

0.2 · 103 Pa
(3.122)
≈ p∆

c ≈ p∆
avg := 1

2
(
p∆
T − p∆

0

)
≈
[

0.94 · 103 in 2D,
1.31 · 103 in 3D.

(3.31)

3.1.3 Osmotic pressures and molar concentrations

As discussed in Section 2.2.1, for isothermal processes, osmotic pressure difference π∆ across the
semipermeable membrane separating solutions Ωα, Ωβ depends on the concentration difference
c∆ := cα − cβ at the interface:

π := Cosmc,

π∆ := πα − πβ = Cosmc∆,
Cosm := RΥ ≈ 2.58 · 103 kgm2/s2mol , (3.32)

where the proportionality coefficient Cosm is computed for the chosen domain tmeperature
Υ = 310 K. In order to estimate healthy, initial and terminal osmotic pressure (and therefore
concentration) jump across the interface, the flux condition (2.89) is employed.

Note: When discussing concentrations and osmotic pressures, healthy conditions do not
necessarily correspond to the reference state: in case the membrane is assumed to be
strictly semipermeable (i.e. if the osmolytes can not cross the membrane during the
observed process), the unhealthy osmotic pressure jump that would lead to cell swelling
must be a pre-existing (therefore initial) condition.

In particular, assuming that at the healthy state there exists no water flux through the mem-
brane, i.e. jpH · n = jbH · n =: jH · n = 0, the healthy state osmotic pressure jump across the
interface can be found as:

0 = jH · n = Lp
(
p∆
H + π∆

H

)
⇒ π∆

H = p∆
H at Γi(0), (3.33)
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where the healthy state hydraulic pressure difference p∆
H is equivalent to the initial pressure

difference, i.e. p∆
H = p∆

0 . Also, since it is assumed, that at the end of the observation time the
cell achieves its maximum (or near maximum) volume, such that the inflow of water reduces to
zero, from the flux condition (2.89) it follows, that at t = T the hydraulic and osmotic pressures
are again in equilibrium:

0 = jT · n = Lp
(
p∆
T + π∆

T

)
⇒ π∆

T = p∆
T at ΓiT . (3.34)

Thus since p∆
T 6= 0, while in the end of the observation there still exists osmotic pressure jump

across the interface of the cell, the elastic stress of the membrane and cytoskeleton would not
allow further cell expansion.
From (3.32), (3.33) and (3.34), using the initial and terminal hydraulic pressure difference values
(3.24), (3.30), the osmotic pressure π∆

H , π∆
T and concentration c∆

H , c∆
T differences are found as:

π∆
H = p∆

0
(3.24)
≈ 5, c∆

H := cfpH − c
b
H = π∆

H

Cosm
≈ 1.9 · 10−3, (3.35)

π∆
T = p∆

T

(3.30)
≈

[
1.87 · 103 (2D),
2.62 · 103 (3D),

c∆
T := cfpT − c

b
T = π∆

T

Cosm
≈
[

0.73 (2D),
1.01 (3D).

(3.36)

Note: Here and in the following, the default concentration units are
[
mol/md

]
for d =

{2, 3}.

Molar concentrations of osmotically active substances diluted in the cytosol of a cell and cere-
brospinal fluid of a healthy brain tissue are found to be around 290–300 mol/m3, [56], [41],
[164]. As the healthy state transmembrane concentration difference (3.35) is found to be small,
the intracellular and extracellular concentrations cfpH , cbH in a healthy state are taken to be
approximately equal (for d = {2, 3}):

cbH := 300, cfpH := c∆
H + cbh ≈ 300.002 ⇒

cfpH ≈ c
b
H =: cH ≈ 300,

such that using (as in (2.2.4)) the algebraic relations for the spatially constant concentrations,

cfpt = afpt

V fp
t

, cbt = abt
V b
t

,

the amounts of substance afpH , abH corresponding to the healthy concentrations cfpH , cbH respec-
tively can be found as:

afpH := cfpH V
fp

0 = cHγ0V
p

0 , abH := cbHV
b

0 = cHV
b

0 . (3.37)

Under ischaemic conditions, the distribution of substances between the intracellular and extra-
cellular spaces changes due to the accumulation of the osmolytes within the cell. Thus if the
total amount of substance aΩ diluted in the fluid parts of Ω can be assumed to be conserved over
time, e.g. if the external walls Γbw of the overall domain Ω are impermeable to the osmolytes
(case E4 ), or if the outer boundaries are periodic (case E2 ), the amounts of substance in the
ICF (afpt ) and ECF (abt) can be related to each other and to the healthy state values afpH , abH in
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the following way:

E2, E4:
afpt = afpH + asht

abt = abH − asht

aΩ := afpt + abt = const

asht := afpt − a
fp
H ≡ a

b
H − abt

t ∈ (0, T ),

where asht is the increase (shift) of the intracellular amount of substance. The total amount of
substance aSH that is needed to realize the osmosis driven swelling and the terminal concentra-
tions cfpT , cbT can be found through (3.36) as:

E2, E4:
c∆
T = cfpT − c

b
T = afpH + aSH

V fp
T

− abH − aSH

V b
T

⇒

aSH = c∆
T V

fp
T V b

T + abHV
fp
T − a

fp
H V

b
T

V b
T + V fp

T

,

E2, E4:
cfpT = afpH + aSH

V fp
T

≈
[

300.101 (2D),
301.015 (3D),

cbT = abH − aSH

V b
T

≈
[

299.375 (2D),
300.000 (3D).

Further on, in case the membrane is assumed to be impermeable to the solutes during swelling,
i.e. the membrane is strictly semipermeable (assumption Ms), the shift aSH in the amounts of
substance leading to the osmotic inflow of water and consequent increase of intracellular fluid
volume to V fp

T must pre-exist, such that the intracellular amount of substance afpt is constant
at all times:

(E2, E4) Ms:
afpt = afp0 = afpH + aSH

abt = ab0 = abH − aSH
∀t ∈ (0, T ). (3.38)

It follows that the concentration jump c∆
t has its maximum value in the beginning of the obser-

vation,

(E2, E4) Ms (2D):
cfp0 = afp0

V fp
0
≈ 375.982,

cb0 = ab0
V b

0
≈ 296.408,

c∆
0 := cfp0 − c

b
0 ≈ 79.58,

π∆
0 := Cosmc

∆
0 ≈ 2.05 · 105,

(3.39)

(E2, E4) Ms (3D):
cfp0 = afp0

V fp
0
≈ 395.889,

cb0 = ab0
V b

0
≈ 299.053,

c∆
0 := cfp0 − c

b
0 ≈ 96.84,

π∆
0 := Cosmc

∆
0 ≈ 2.50 · 105,

(3.40)

such that the concentration cfpt decreases in time only due to the inflow of water. Then the
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characteristic concentration and osmotic pressure jumps are chosen as average in time values:

(E2, E4) Ms:
c∆
c := 1

2(c∆
0 + c∆

T ) ≈ 1
2c

∆
0 ≈

[
40.15 (2D),
48.93 (3D),

π∆
c := Cosmc

∆
c ≈

[
1.036 · 105 (2D),
1.262 · 105 (3D).

(3.41)

Note: In the above considered case, the initial osmotic pressure difference π∆
0 is not equal

to the healthy osmotic pressure difference π∆
H , thus as follows from (3.35), the osmotic and

hydraulic pressure differences are not equal at the beginning of observation:

(E2, E4) Ms: π∆
0 6= π∆

H
(3.35)= p∆

0 . (3.42)

which is reflected in the non-zero initial values of the corresponding velocities (3.54).

In case the substances move through the membrane during the swelling process, i.e. the mem-
brane is leaky semipermeable (assumption Ml), it can be assumed that the intracellular con-
centration cfpt and amount of substance afpt initially correspond to their healthy state values,
such that the total shift aSH is achieved only after some time Tj ≤ T (or at the end of the
observation):

(E2, E4) Ml: asht =
{

0 t = 0, t > Tj ,

aSH t = T ;
(3.43)

cfp0 = cfpH ≈ 300, cb0 = cbH ≈ 300. (3.44)

The characteristic values c∆
c , π∆

c are then found as:

(E2, E4) Ml:
c∆
c := 1

2(c∆
0 + c∆

T ) ≈ 1
2c

∆
T ≈

[
0.36 (2D),
0.51 (3D),

π∆
c := Cosmc

∆
c ≈ π∆

T ≈
[

0.936 · 103 (2D),
1.311 · 103 (3D).

(3.45)

Exchange of the osmolytes across the membrane (i.e. osmolyte flux function jc) for a leaky
membrane is modelled below in Section 3.1.5 .

Note: It is assumed here, that changes in the molarities (and thus osmotic pressures) over
time are not strongly deviating from linear behaviour, thus average values are chosen for
the characteristic values of the molar concentrations.

In case the outer walls Γbw are considered to be permeable to the osmolytes, such that it can be
assumed that an average in space value of the extracellular molarity c̃b(t) is constant in time
and is equal to the healthy initial ECF concentration (cases E1, E3 ),

E1, E3:
c̃bt = cb0 = cbT := cH ≈ 300,

cfpT := c∆
T + cbT

(3.36)
≈ 301,

similar results can be obtained in 2D and 3D. Thus for both the strictly semipermeable mem-
branes:
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(E1, E3) Ms (3D):
afp0 = afpT ⇒ cfp0 = afp0

V fp
0

= afpT
V fp

0
= cfpT V

fp
T

V fp
0

≈ 393.85,

c∆
0 := cfp0 − c

b
0 ≈ 93.85,

π∆
0 := Cosmc

∆
0 ≈ 2.42 · 105,

(E1, E3) Ms (3D):
c∆
c := 1

2(c∆
0 + c∆

T ) ≈ 1
2c

∆
0 ≈ 47,

π∆
c := Cosmc

∆
c ≈ π∆

0 ≈ 1.21 · 105,
(3.46)

and leaky semipermeable membranes,

(E1, E3) Ml (3D):
cfp0 = cfpH ≈ 300,

c∆
0 = cfp0 − c

b
0 ≈ 0,

(E1, E3) Ml (3D):
c∆
c := 1

2(c∆
0 + c∆

T ) ≈ 1
2c

∆
T ≈ 0.5,

π∆
c := Cosmc

∆
c ≈ π∆

T ≈ 1.29 · 103,
(3.47)

the transmembrane osmotic pressure jumps (3.47), (3.47) are found to be almost identical to
the values (3.41), (3.45) obtained for the experiments E2, E4.

3.1.4 Times and velocities

3.1.4.1 Velocities and their relations

In the considered cell swelling problem, the fluid flowing into the cell is not leaving the domain
Ωp, i.e. there exists no flow through the porous medium. Instead, the inflow of fluid causes the
growth of the intracellular space Ωp, such that the movement of the fluid phase is volumetrically
compensated by the movement of the solid phase, i.e.

Afpεvfpc · nε = −Aspεvspc · nε, (3.48)

where Afpε, Aspε are the cross-sectional areas of the fluid and solid phases within an elementary
volume V ε and nε is a unit vector normal to the surface. Dividing both sides of the equation by
the total area Aε = Aspε ∪ Aspεc and assuming that the phase to the total area ratios Aspε/Aε,
Aspε/Aε are equal to the corresponding volumetric ratios, i.e.

Aspε

Aε
,
V spε

V ε
=: γsc ,

Afpε

Aε
,
V fpε

V ε
=: γfc ,

the characteristic (average) fluid phase velocity vfpc is found to relate to the solid phase velocity
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vspc in the following way:

γfc v
fp
c · n = −γscvspc · n ⇒

vfpc · n = − γ
s
c

γfc
vspc · n

(3.17)= −vspc · n.
(3.49)

In case the outer walls of the overall domain Ω are impermeable (experiments E4 ) or the
influence of the surrounding media on the fluid flow is assumed to be negligible (E2, E3 ), the
fluid velocity vb within the extracellular domain Ωb exists only due to the outflow of the fluid
and the corresponding movement of the interaction interface Γi. Due to the incompressibility of
the fluid and continuity of fluxes at the interface (2.59), the bulk fluid velocity created by the
outflow and interface deformation is in average zero (see Fig. 2.1):

vbavg := γscv
sp
c + γfc v

fp
c = 0,

which does not however reflect the pointwise behaviour of the moving bulk fluid, unless dic-
tated by the symmetry arguments. Instead, the characteristic bulk fluid velocity is chosen to
correspond to the pore fluid velocity vfp:

vbc := vfpc = −vspc , vc. (3.50)

Note: For the in-vivo brain tissue experiments (E1 ), if the velocity vglobal of the global
extracellular fluid flow through the one cell domain is either much smaller, or of the order
of the velocity associated with the interface movement, the characteristic velocity vbc can
be chosen as in (3.50). Otherwise, the bulk fluid flow velocity would be dominated by the
global flow, and thus vbc is chosen such that vbc := vglobalc . In the absence of global ECF
velocity measurements, it is assumed in this work that an average magnitude of the global
flow velocity is approximately equal to the value of the bulk fluid velocity created by the
activity at the interface, thus (3.50) is assumed to hold in all experiments.

Using the definition of the characteristic normal interface flux jbc · n, the characteristic normal
velocity values can be estimated from the flux interface condition (2.89):

jb · n
(2.57)
:= (vb − vsp) · n (3.50)⇒ jbc · n = 2vc · n ⇒

vc · n = 1
2j

b
c · n

(2.89)= 1
2L

p(p∆
c + π∆

c ), (3.51)

vc · n ≈

[
Lpπ∆

c ≈ 5 · 10−9 m/s Ms
9 · 10−11 m/s Ml

(2D),
[
Lpπ∆

c ≈ 6 · 10−9 m/s Ms
7 · 10−11 m/s Ml

(3D),
(3.52)

where the values of p∆
c and π∆

c for assumptions Ms, Ml can be found in (3.122) and (3.41),
(3.45) correspondingly.
It should be stressed, that the characteristic velocity values can be estimated through the values
of the velocities at the moving interface Γi, since there assumed to exist no other (external)
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effects that may significantly contribute to the magnitudes of the velocities.

In case the membrane is considered to be leaky semipermeable (assumption Ml), the initial
condition of the cell is assumed to correspond to the healthy state in all aspects. As the healthy
cell is assumed to be in a stable equilibrium, the initial velocities in such settings are taken to
be zero:

Ml: vb0 = 0 ⇒ vfp0 = vsp0 = 0. (3.53)

When the membrane is assumed to be strictly semipermeable (assumption Ms), the initial
velocities can be estimated through the flux condition (2.89):

Ms: (vb0 − v
sp
0 ) · n = jb0 · n = Lp(p∆

0 + π∆
0 ) ≈ Lpπ∆

0 ≈
[

20 · 10−9 m/s (2D),
25 · 10−9 m/s (3D),

(3.54)

where p∆
0 , π∆

0 for the case Ms are given in (3.24), (3.40). Thus for the assumption Ms, the initial
normal velocities are found to correspond to the characteristic values (3.51)1.

3.1.4.2 Observation time

Cytotoxic oedema develops several minutes after the onset of ischaemia in the living brain
and persists for hours, [47], [45], [43]. During this period, living ischaemic brain is normally
also affected by other processes that contribute to the swelling behaviour of the cells, [51].
In particular, in most cases, cytotoxic and vasogenic oedemas occur (almost) simultaneously,
[38], [47], [48], such that cytotoxic processes are influenced by the inflow of substances from
the adjacent tissues into the brain tissue, [48], [50], [51]. It has however been noticed, that
cytotoxic oedema dominates in the early phase of ischaemic stroke, [45], [47], [48], [55], therefore
for sufficiently short observation times (i.e. minutes rather than hours), it can be assumed
that living cell swelling is close enough to pure cytotoxic swelling and the other effects can be
neglected.
The in vitro experiments on cytotoxic osmotic swelling of mammalian cells suggest, that after
exposure to hypotonic (i.e. of lower concentration) solutions, cells swell either immediately or
over a short time (seconds to minutes), such that the speed and the rate of swelling naturally
depend on the tonicity (i.e. relative concentration) of the extracellular solution, as well as on
the amount of oxygen and certain other substances diluted in the solution, [10], [41], [56].
Since the characteristic value of the solid phase velocity vsp := ∂tu

s can naturally be defined as
a ratio between the characteristic displacement uc and time tc:

vspc := uc
tc
, (3.55)

using the values (3.10), (3.51) estimated for uspc , vspc , the characteristic observation time tc is
found as:

Ms: tc := uc
vspc
≈
[

4.8 · 102 s (2D),
4.0 · 104 s (3D),

(3.56)

Ml: tc := uc
vspc
≈
[

2.7 · 102 s (2D),
3.4 · 104 s (3D).

(3.57)
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Thus the observation time (3.56) for assumption Ms agrees with the above mentioned experi-
mental time estimates. The leaky membrane time estimate (3.57) is although significantly larger,
yet still within the acceptable limits. Moreover, osmotic pressure jump (3.45) and time (3.57)
are estimated for the osmolyte exchange that takes place during the entire observation time, e.g.
Tj = T in (3.43). Choosing a shorter time interval (0, Tj) would lead to shorter time estimates,
such that it can be easily shown that in the limit Tj → 0, observation time shortens to (3.56).

3.1.4.3 Diffusion time

Diffusion time tDc defined as an approximate time required for solute particles to diffuse within
certain volume, can be estimated as:

tDc := l2c
2D,

where lc is the characteristic length of the domain and D is the diffusivity of the solute diluted
in the given solvent. Using this definition, the diffusion times tD,pc , tD,bc for the intracellular and
extracellular solutes respectively,

tD,bc = (lbc)2

2D ≈ 50 s, (3.58)

tD,pc = (lpc )2

2D ≈ 10 s, (3.59)

are found to be comparable to the observation time (3.56) estimated with the assumption that
the membrane is strictly semipermeable (Ms), but significantly smaller than the time (3.57)
estimated for the leaky semipermeable membrane assumption (Ml). The relations between the
diffusion and observation times are further discussed in Section 3.2.4.

3.1.5 Molarity flux models

Solute (substance) flux jc,i through a leaky semipermeable membrane can be described by the
equations of the 2P (two parameter) or KK (Kedem-Katchalsky) formalism:

jc,i = wiRTc∆,i = P isc
∆,i, (3.60)

where wi, P is := wiRT are the membrane permeability coefficients for the substance i, and
c∆,i is the transmembrane concentration difference of the chemical, [113], [134]. In living cells,
equation (3.60) can be used to describe equilibration of concentrations across the membrane
or the movement of chemicals down their concentration gradients for each substance type (e.g.
potassium, sodium, chloride ions) individually. However if a mixture c :=

∑
i c
i of i chemicals is

considered, flux equation (3.60) may be no longer suitable in case it is not possible to determine
an (averaged) permeability coefficient Ps for the mixture. Moreover, even if the concentrations
of principle osmolytes are treated individually, depending on the experimental conditions, mem-
brane thickness and type of the considered cell, P is are estimated to range from 10−14 to 10−7

[m/s] for the sodium and potassium ions, [165], [166], [167], [168], and it is not exactly clear
how the permeability coefficient should be chosen, such that it reflects the substance exchange
during abnormal ischaemic processes when some of the transporters are not able to function
properly.
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In addition, at some point (at the end of experiment or at time Tj < T , see Section 3.1.3),
the exchange of substances must stop, which in case equation (3.60) is used (assuming that the
permeabilities P is are constant), would be possible only if the concentration difference is zero.
Yet as shown in Section 3.1.3, due to the elastic stresses of the membrane and cell skeleton,
transmembrane molarity difference does not vanish at the end of observation.
Therefore here an alternative approach to the derivation of the flux function jc(x, t) will be
taken.

Molarity (concentration) flux jc(x, t) defined at an interface Γ(t) separating two solutions is a
measure of how much substance passes through the interface at each (x, t) ∈ Γ(t)×(0, Tj), where
(0, Tj) is the time interval within which molarity flux exists, i.e. jc 6= 0. In particular, jc(x, t)
can be expressed in the following way:∫ t

0
jc(x, t)A(t)dt = ash(x, t) at Γ(t),

where A(t) is the area of the interface and ash(x, t) is the amount of substance that has crossed
the interface in the time interval (0, t). Since the cell is assumed to be able to exchange the
osmolytes only at the membrane Γi, and assuming for simplicity that the flux jc is spatially
uniform at all times, i.e., jc(x, t) = jc(t), the molar flux integral equation for the one cell
problem reads: ∫ t

0
jctA

c
tdt = afp0 − a

fp
t at Γi(t), (3.61)

where Act is the surface area of the cell (i.e. the area of the membrane) and afp is the amount of
substance of the osmolytes diluted in the intracellular fluid Ωfp. Applying partial time derivative
to both sides of (3.61), an ordinary differential equation for afp is obtained:

jctA
c
t = −∂tafpt at Γi(t). (3.62)

In case the membrane is assumed to stretch during cell swelling (assumptionAg), the cell surface
area Act must depend on time through the deformation usp(x, t) of the domain Ωp(t). In order
to avoid the use of the primary variables of the Biot-Stokes system in the modelling of the flux
functions, some assumptions on the surface area growth need to be made. For instance, one of
the following possibilities can be considered:

• linear growth of the cell radius rct :

rct = rcT − rc0
T

t+ rc0 ⇒
2D: Act = 2πrc = 2π

(
rcT − rc0
T

t+ rc0

)
,

3D: Act = 4π(rct )2 = 4π
(
rcT − rc0
T

t+ rc0

)2
;

(3.63)

• linear growth of the cell area Act :

Act = AcT −Ac0
T

t+Ac0; (3.64)
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• linear growth of the cell volume V c
t :

V c
t = V c

T − V c
0

T
t+ V c

0 ⇒
2D: Act = 2

√
π
√
V c
t = 2

√
π

(
V c
T − V c

0
T

t+ V c
0

)1/2
,

3D: Act = 36π (V c
t )2/3 = 36π

(
V c
T − V c

0
T

t+ V c
0

)2/3
.

(3.65)

As the amount of substance function afpt is in general not known, in order to find the molar flux
jct from (3.62), either afpt or the dependence of jct on a

fp
t can be modelled, such that in the latter

case, the flux is found through the solution of an ODE. Thus based on the assumptions made
with regard to the dynamics of the substance exchange, several models are suggested below.

Flux model 1 (F1): assume that the flow of the osmolytes through the membrane is uniform
during the entire observation. Then the extracellular amount of substance function afpt must
change linearly in time:

afpt := afpT − a
fp
0

T
t+ afp0 , (3.66)

where afp0 , afpT are the initial and terminal values of afpt . Substituting (3.66) into (3.62) and
differentiating afpt , the flux is found as:

jct = ∂ta
fp

Act
= afpT − a

fp
0

TAct
, (3.67)

where it is assumed that either the surface area is constant (as on Fig. 2.2b):

F1-Ac: jct = afpT − a
fp
0

TAc0
, (3.68)

or the membrane stretches following the growth of the cell (as on Fig. 2.2a), such that the
dependence of Act on time can be expressed through one of the suggested approximations (3.63)–
(3.65). Thus for the linear in time area growth (3.64):

F1-Ag: jct = afpT − a
fp
0

(AcT −Ac0)t+Ac0T
. (3.69)

Flux model 2 (F2): assume that the flux function jt depends (linearly) on the transmembrane
concentration difference of osmolytes:

jct = α
(
cfpt − cbt

)
, (3.70)

where α is a proportionality coefficient that has to be determined using the available information.

Note: Equation (3.70) is in its form identical to the 2P (or KK) flux equation (3.60)
written for the mixture of osmolytes. Thus the coefficient α can be regarded as the
osmolyte permeability coefficient of the membrane.

Considering that the extracellular molarity cbt remains constant, i.e. cbt := cb0 ∀t ∈ (0, T ) (exper-
iments E1, E3 ), and substituting the flux model (3.70) into (3.62), the following ODE for the
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amount of substance afpt is obtained:

E1, E3: ∂ta
fp = −αAct

(
afpt

V fp
t

− cb0

)
. (3.71)

The explicit dependence of the fluid phase volume V fp
t on time can be approximated analogously

to the modelling of the surface area growth (3.63)–(3.65). Assuming for simplicity that the
surface area is conserved, i.e. Act := Ac0 ∀t ∈ (0, T ) (assumption Ac), and that the intracellular
fluid volume V fp

t increases uniformly in time, i.e.

V fp
t := V fp

T − V
fp

0
T

t+ V fp
0 := C2t+ C3,

C2 := V fp
T − V

fp
0

T
,

C3 := V fp
0 ,

(3.72)

where the initial V fp
0 and final V fp

T volumes are given in Tables 3.3, the solution of the differential
equation (3.71) is found as:

F2-Ac (E1, E3):
∂ta

fp
t

(3.62)= −jctAc0
(3.70)= −αAc0

(
afpt

C2t+ C3
− cb0

)
,

afpt = c1 (C2t+ C3)−A
c
0α/C2 + αAc0c

b
0
C2t+ C3
αAc0 + C2

,

(3.73)

where c1 is the integration constant. Then substituting the obtained solution for the amount of
substance function afpt back into (3.62) and differentiating it, the solute flux function is found:

F2-Ac (E1, E3): jct
(3.62)= − 1

Ac0
∂ta

fp
t

(3.73)= αc1 (C2t+ C3)−A
c
0α/C2−1 − αcb0C2

αAc0 + C2
,

such that using the initial and terminals values afp0 , afpT estimated in Section 3.1.3, the integration
constant c1 and the coefficient α can be determined:

F2-Ac (E1, E3):
(t = 0) afp0 = c1C

−Ac0α/C2
3 + αAc0c

b
0C3

αAc0 + C2
,

(t = T ) afpT = c1 (C2T + C3)−A
c
0α/C2 + αAc0c

b
0
C2T + C3
αAc0 + C2

.

(3.74)

In case the interface stretches following the growth of the cell, Act must be growing as the area
of a sphere (in 3D) or the circumference of a circle (in 2D), thus the surface area and the total
volume V c

t of the cell are related in the following way:

Ag:
3D : Act = 3√36π (V c

t )2/3 ,

2D : Act = 2
√
π (V c

t )1/2 ,
(3.75)

where the total cell volume V c
t consists of the fluid phase volume V fp

t and constant volume Ṽ p:

V c
t = V fp

t + Ṽ p.

Assuming as in (3.72) that the fluid phase volume grows linearly in time and considering the
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relations (3.75), the surface area to fluid phase volume ratio is then found as:

Ag:
3D : Act

V fp
t

=
3√36π

(
V fp
t + Ṽ p

)2/3

V fp
t

=
3√36π (C2t+ C4)2/3

C2t+ C3
,

2D : Act

V fp
t

=
2
√
π
(
V fp
t + Ṽ p

)1/2

V fp
t

= 2
√
π (C2t+ C4)1/2

C2t+ C3
,

C4 := Ṽ p + C3.

Then substituting the obtained relations into (3.71), solving the resulting ODE and determining
the integration constant and α through the initial and final values afp0 , afpT (as is done above),
the amount of substance afpt and then molar flux jct can be found for the assumption set F2-Ag
(E1, E3).

Assuming that the total amount of substance aΩ diluted in the extracellular and intracellular
fluids of the overall domain Ω is conserved (E2, E4 ), and using the total volume conservation
assumption, the flux equation (3.70) can be written as:

E2, E4: ∂ta
fp = −αAct

(
afpt

V fp
t

− abt
V b
t

)
= −αAct

(
afpt

V fp
t

− aΩ − afpt
V − Ṽ p − V fp

t

)
,

where V , V b
t are respectively the volumes of the domains Ω, Ωb(t), and Ṽ p is the volume of the

solid components of the cell, which (the volume) remains constant during the entire observed
process.

Note: Coefficient α in (3.74) can not be expressed as an algebraic function, and also for
some of the above considered assumption sets, the solutions of the corresponding ODEs
do not have closed forms. In those cases, numerical approximations of the corresponding
coefficients or functions can be used.

As mentioned above in Section 1.2.1, the membrane (osmolyte) permeability may depend on
multiple factors, which are however a challenge to account for in the modelling of the filtration
parameters. In this work, the construction of the osmolyte flux function models is such, that
the averaged transmitting properties of the membrane are implicitly reflected in the choice of:

• the duration of the substance exchange,
• (the change of) the surface area of the cell,
• the initial and terminal values of the intracellular and extracellular molarities or amounts

of substance.

3.2 Dimensional equations
Now when the parameters and characteristic values are determined, the model equations can be
written in a dimensionless form. For an original quantity z having the characteristic value zc,
the corresponding dimensionless coordinate [z] and its partial time derivative [∂tz] are defined
as:

[z] := z

zc
, [∂tz] = tc

zc
∂tz, (3.76)
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where tc is the characteristic time of the considered problem. Assuming that the characteristic
lengths lbc,i l

p
c,i of the domains Ωb, Ωp are equal in all directions i ∈ {1, .., dim}, the original

coordinates of the domains xi relate to the dimensionless coordinates [xi] as:

xi = lbc[xi], xi ∈ Ωb, [Ωb] = {{[xi]} : 0 < [xi] < 1}
xi = lpc [xi], xi ∈ Ωp, [Ωp] = {{[xi]} : 0 < [xi] < 1}

i = {1, .., dim}. (3.77)

Then the partial spatial derivatives of a variable z transform into dimensionless coordinates,
such that:

∂iz := ∂z

∂xi
= zc
lc

[∂iz], ∂2
ijz := ∂2z

∂x2
i

= zc
l2c

[∂2
ijz] i, j ∈ {1...dim}. (3.78)

Problem variables, their dimensionless counterparts and characteristic values are related in the
following way:

ub = ubc[ub], vb = vbc[vb], γf = γfc [γf ], cb = cbc[cb], πb = πbc[πb],
usp = uspc [usp], vfp = vfpc [vfp], γs = γsc [γs], cfp = cfpc [cfp], πp = πpc [πp].

(3.79)

Since the spatial modelling equations include pressure gradients, the characteristic pressure gra-
dients pb∆, pp∆ reflecting the characteristic pressure difference across the domain2 are considered:

∇pb = pb∆
lbc

[∇pb], ∇pp =
pp∆
lpc

[∇pp]. (3.80)

When considering interface conditions (2.61), (2.89), pressure difference across the interface is
estimated as a whole, and the notion of the characteristic transmembrane pressure difference p∆

c

is employed:

p∆ := pp − pb, (3.81)
p∆ = p∆

c [p∆]. (3.82)

For the one cell problem, the characteristic pressure gradients pb∆, pp∆ and pressure difference
p∆
c will be determined with the help of dimensional analysis.

Other quantities, such as the temperature Υ, dynamic fluid viscosity µf , fluid and solid densities
ρf , ρs, diffusion coefficientD, elasticity coefficients µs, λs, water filtration coefficient Lp, porosity
and solidity γf , γs and Darcy permeability k are assumed to be constant. As suggested in Section
3.1, the following relations hold:

λs = 4µs, γfc = γsc =: γ0, ubc = uspc =: uc,

ρs = ρf =: ρ, vbc = vfpc = − γ
s

γf
vspc = −vspc = −uc

tc
.

(3.83)

2 For instance in a pipe flow experiment, where constant pressures applied at the inflow and outflow boundaries
a and b are driving the flow, characteristic pressure gradient p∆ can be chosen as the difference between the
pressure boundary values, p∆ := p(a) − p(b).
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3 Data and dimensional analysis

In this section some of the well known dimensional coefficients (numbers) will be used, namely:

Strouhal Number (St) = lc
tcvc

, EulerNumber(Eu) = pc
ρv2
c

,

Reynolds Number (Re) = ρlcvc
µ

, Peclet Number (Pe) = lcvc
D

.

Reynolds and Strouhal numbers are used to determine the relative magnitudes of inertial terms in
the Navier-Stokes equations. With the help of Reynolds number, the dominating effects (viscous,
inertial or both) can be identified. Low Reynolds numbers indicate that the pressure gradients
are primarily caused by the dominant viscous effects, and at high Reynolds numbers the inertial
effects become crucial instead. The Peclet number determines the ratio of convection to diffusion
in transport equations: in case the Peclet number is much smaller than 1, transport may be
modelled considering diffusion only. The other way around, at high value of Pe, the transport
is considered to be driven mainly by convection (which does not however mean that diffusion
can be neglected). More details on the dimensionalization approaches and above mentioned
dimensionless numbers can be found in, e.g. [169], [97], [170].

3.2.1 ALE transformation terms

Deformation gradients defined on the poroelastic and bulk fluid domains Ωp, Ωb (Ω̂p, Ω̂b) are
estimated to be considerably smaller than unity:

∇̂ûsp = uc
lpc

[
∇̂ûsp

]
,

uc
lpc
≈ 0.056,

[
∇̂ûsp

]
∼ O(1),

∇̂ûb = uc
lbc

[
∇̂ûb

]
,

uc
lbc
≈ 0.025,

[
∇̂ûb

]
∼ O(1),

(3.84)

therefore in this work the transformation tensors F̂ sp, F̂ b are reduced to the identity matrix and
their determinants – to 1:

F̂ sp := I + ∇̂ûsp ≈ I, Ĵsp := det(F̂ sp) ≈ 1, (3.85)
F̂ b := I + ∇̂ûb ≈ I, Ĵb := det(F̂ b) ≈ 1 . (3.86)

It then follows, that the ALE formulations of the modelling equations can be significantly sim-
plified, see Section 2.1.3.

3.2.2 Incompressible Navier-Stokes equations

In order to justify the choice of the Stokes equations for the modelling of the bulk fluid motion
in Ωb, the Navier-Stokes equations as a general description for an incompressible flow of a
Newtonian fluid are considered:

µf∆vb −∇pb = ρf∂tv
b + ρf (vb,∇)vb in Ωb(t)×(0, T ), (3.87)

∇ · vb = 0 in Ωb(t)×(0, T ). (3.88)
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3.2 Dimensional equations

Writing the momentum balance equation (3.87) in a dimensionless form,

µfvbc
(lbc)2 [∆vb]− pb∆

lbc
[∇pb] = ρfvbc

tc
[∂tvb] + ρf (vbc)2

lbc
[(vb,∇)vb] in [Ωb],

and then dividing the obtained equation by the coefficient that appears at the viscous term,
gives the following result:[

∆vb
]
− EubReb[∇pb] = Stb Reb [∂tvb] +Reb[(vb,∇)vb] in [Ωb], (3.89)

where the Euler Eub, Strouhal Stb and Reynolds Reb numbers for the fluid flow in Ωb are defined
as:

Stb := lbc
tcvbc

= − l
b
c

uc
, Eub := pb∆

ρf (vbc)2 ,

Reb := ρfvbcl
b
c

µf
= −ρucl

b
c

µf tc
, EubReb := pb∆l

b
c

µfvbc
= pb∆l

b
ctc

µfuc
,

StbReb = ρ(lbc)2

µf tc
.

Both Stb and StbReb are found to be very small for either of the time scales (Ms, Ml):

Reb < 10−6 � 1, StbReb < 10−4 � 1, (3.90)

therefore the inertial terms are negligible due to the dominance of the viscous effects, and so the
Navier-Stokes equations in Ωb can be reduced to the stationary Stokes equations.
Choosing the characteristic pressure difference pb∆ such that the coefficient at the dimensionless
pressure gradient [∇pb] is equal to unity (i.e. viscous scaling):

EubReb = pb∆l
b
ctc

µfuc
, 1 ⇒ pb∆ := µfuc

lbctc
≈
{

10−6 Pa (Ms),
10−8 Pa (Ml),

the following dimensionless bulk fluid flow equations are obtained:[
∆vb

]
− [∇pb] = Stb Reb [∂tvb] in [Ωb], (3.91)

[∇ · vb] = 0 in [Ωb], (3.92)

where for the reasons mentioned in Section 2.1.1, the linear inertial term on the RHS of (3.91)
is kept.

3.2.3 Biot equations

The extended set of the Biot equations on the poroelastic intracellular domain Ωp including the
solidity equation and the modified Darcy law describing the dependence of the relative (to the
movement of the skeleton) fluid flow velocity on the pressure gradient take the following form
in dimensionless coordinates:
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3 Data and dimensional analysis

µsuspc
(lpc )2 [∇] ·

[
∇usp + (∇usp)T + λs

µs
∇ · uspI

]
−
pp∆
lpc

[∇pp] = ρsγscu
sp
c

(tc)2 [γs∂ttusp] in [Ωp] , (3.93)

uspc
lpc tc

[∇ · ∂tusp]−
kpp∆

µf (lp)2 [∆pp] = 0 in [Ωp] , (3.94)

γsc
tc

[∂tγs] + γscu
sp
c

tcl
p
c

[γs∇ · (∂tusp)] = 0 in [Ωp] , (3.95)

vfpc

[
vfp
]
− uspc

tc
[∂tusp] = −

kppp∆
γfc µf l

p
c

[
γf∇pp

]
in [Ωp] , (3.96)

where following (2.19), the linear inertial term enters the RHS of the momentum balance equa-
tion (3.93). Using the relations (3.83), the dimensionalized equations (3.93)-(3.96) can be sim-
plified to:

µsuspc
(lpc )2

(
5
[
∇ · (∇usp)T

]
+ [∆usp]

)
−
pp∆
lpc

[∇pp] = ργ0u
sp
c

(tc)2 [γs∂ttusp] in [Ωp] , (3.97)

uspc
tc

[∇ · ∂tusp] =
kpp∆
µf lpc

[∆pp] in [Ωp] , (3.98)

[∂tγs] + uspc
lpc

[γs∇ · (∂tusp)] = 0 in [Ωp] , (3.99)

uspc
tc

([
vfp
]

+ [∂tusp]
)

=
kppp∆
γ0µf l

p
c

[
γf∇pp

]
in [Ωp] . (3.100)

The second term of the porosity equation (3.99) is scaled with the displacement to the domain
length ratio, which in this work is assumed to be sufficiently small, therefore (3.99) can be
reduced to:

[∂tγs] = 0 in [Ωp] , (3.101)

and so the solidity can be considered to be constant and equal to its initial value:

γf (x, t) = γs(x, t) := γ0, (3.102)
[γs] := 1.

Assuming that the dimensionless sum of velocities
[
vfp
]

+ [∂tusp] in the Darcy equation (3.100)
is still of order O(1), the characteristic pressure gradient pp∆ is chosen such that the coefficients
on the LHS and RHS of (3.100) are equal:

uc
tc

,
kppp∆
γ0µf l

p
c

⇒ pp∆ := γ0µ
f lpcuc
kptc

≈
{

10−1 Pa (Ms),
10−3 Pa (Ml).

(3.103)

In order to determine the relations between the elastic and inertial effects, the momentum
balance equation (3.97) is divided by the dimensionless elasticity coefficient µsuc/(lpc )2 resulting
in: (

5
[
∇ · (∇usp)T

]
+ [∆usp]

)
− Pp[∇pp] = ργ0(lpc )2

µs(tc)2 [∂ttusp] in [Ωp] , (3.104)
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3.2 Dimensional equations

where Pp is the dimensionless pressure gradient coefficient,

Pp :=
pp∆l

p
c

µsuc
, (3.105)

which for the chosen pressure scaling (3.103) is found as:

Pp :=
pp∆l

p
c

µsuc
≈
{

10−3 Pa (Ms),
10−5 Pa (Ml).

(3.106)

The magnitude of the dimensionless coefficient on the RHS of (3.104) is very low, also compared
to the pressure coefficient Pp:

ργ0(lpc )2

µst2c
< 10−14 � 1, (3.107)

and therefore the linear inertial effects of the considered type can be neglected.
Eventually, the dimensionalized extended Biot system reduces to:(

5
[
∇ · (∇usp)T

]
+ [∆usp]

)
− Pp[∇pp] = 0 in [Ωp] , (3.108)

[∇ · ∂tusp] = γ0 [∆pp] in [Ωp] , (3.109)[
vfp
]

+ [∂tusp] = [∇pp] in [Ωp] . (3.110)

3.2.4 Convection–diffusion equations

The convection-diffusion equations (2.68), (2.70) for the molar concentrations cb, cfp of osmot-
ically active substances diluted in the bulk fluid Ωb and in the fluid phase of the poroelastic
domain Ωp take the following forms in dimensionless coordinates:

cbc
tc

[∂tcb]−
Dcbc
(lbc)2 [∆cb] + vbcc

b
c

lbc
[∇ · (vbcb)] = 0 in [Ωb], (3.111)

cfpc
tc

[∂tcfp]−
Dcfpc
(lpc )2 [∆cfp] + vspc c

fp
c

lpc
[∇ · (vfpcfp)] = 0 in [Ωp]. (3.112)

Each of the equations (3.111), (3.112) is divided by the coefficient standing at the corresponding
diffusion term:

T b[∂tcb]− [∆cb] + Peb[∇ · (vbcb)] = 0 in [Ωb],
T p[∂tcfp]− [∆cfp] + Pep[∇ · (vfpcfp)] = 0 in [Ωp],

(3.113)

such that coefficients T b, T p and Peclet numbers Peb, Pep are defined:

T b := (lbc)2

Dtc

(3.58)= 2tD,bc

tc
, T p := (lpc )2

Dtc

(3.59)= 2tD,pc

tc
, (3.114)

Peb := vbcl
b
c

D
= −ucl

b
c

tcD
, Pep := vfpc l

p
c

D
= −ucl

p
c

tcD
, (3.115)
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3 Data and dimensional analysis

where tD,bc , tD,pc are the diffusion times estimated in Section 3.1.4.3. For either of the assumptions
on the membrane permeability to the osmolytes (Ms or Ml), the Peclet numbers are found to
be much smaller than 1:

Peb < 10−2 � 1, P ep < 10−2 � 1, (3.116)

and so as noted above, the convective terms of the ICS and ECS equations (3.113) can be
neglected:

T b[∂tcb]− [∆cb] = 0 in [Ωb],
T p[∂tcfp]− [∆cfp] = 0 in [Ωp].

(3.117)

Note: Since the velocity of the convective flux and the deformations and closely related,
also on the scale of the diffusion time (i.e. setting tc := tD,bc in Ωb, tc := tD,pc in Ωp), the
Peclet number is found to be of the order of the deformation to the domain length ratio
(usp/lpc or usp/lpc ), which is assumed to be small.

As observed in Section 3.1.4.3, the diffusion and total observation times for the strictly semiper-
meable membrane experiments are comparable, thus in case Ms, the time derivative is an im-
portant term in each of the diffusion equations (3.117).
On the scale of the leaky semipermeable membrane (Ml) observation time (3.57), coefficients
T b, T p are found to be very small, thus diffusion can be assumed to be instantaneous, and so
the molarities cfp, cb – spatially constant at each time step (point). Then instead of solving
the diffusion equations (3.117), the molar concentrations cfp(t) ∈ Ωp, cb(t) ∈ Ωb, changing in
time due to the flow of water and osmolytes across the interface Γi (and if applicable, other
boundaries) can be found through the fast diffusion model described in Section 2.2.4.

3.2.5 Interface conditions

Continuity of normal fluxes condition (2.60) takes the following form in dimensionless coordi-
nates,

vbc[vb]n = uspc
tc

[∂tusp]n −
kpp∆
µf lpc

[∆pp]n at [Γi],

such that owing to the choice of the pressure gradient scaling (3.103) and relations between the
fluid phase, solid phase, bulk fluid velocities (3.83), it reduces to:

[vb]n + [∂tusp]n = γ0 [∆pp]n at [Γi]. (3.118)

In the continuity of normal stresses condition (2.61) written with respect to the dimensionless
coordinates, the pressure difference across the interface is treated as a single variable as suggested
in (3.81):

µsuspc
lpc

(
[∇usp] + [(∇usp)T ] + λs

µs
[∇ · usp]I

)
n

=

2µfvbc
lbc

(
∇vb + (∇vb)T

)
n

+ p∆
c

[
pp − pb

]
· n

at [Γi]. (3.119)
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3.2 Dimensional equations

Dividing (3.119) by the elasticity coefficient µsuspc /lpc and employing (3.83),(
[∇usp] + [(∇usp)T ] + 4[∇ · usp]I − 2µf lpc

µstclbc

(
∇vb + (∇vb)T

))
n

=

lpcp
∆
c

µsuc

[
pp − pb

]
· n

at [Γi], (3.120)

it can be shown, that the viscous stress term is negligible compared to the elasticity terms:

2µf lpc
µstclbc

< 10−8. (3.121)

It then follows, that the transmembrane pressure difference is almost entirely balanced by the
increase of the elastic stresses following the growth of the cell, and thus the characteristic pressure
difference value p∆

c is chosen such that the RHS of (3.120) is of the same order as its LHS,

lpcp
∆
c

µsuc
:= 1 ⇒ p∆

c := µsuc
lpc
≈ 0.2 · 103 Pa. (3.122)

The obtained value shows agreement with the average transmembrane pressure difference p∆
avg

(3.31) estimated in Section (3.1.2.4).
Using (3.50), the normal flux interface condition (2.89) in dimensionless coordinates can be
written in the following way:

vspc

(
[vb]n + [vsp]n

)
= jbc [jb]n = Lp

(
p∆
c [p∆] + π∆

c [π∆]
)

⇒

[vb]n + [vsp]n = Lpπ∆
c

vspc

(
p∆
c

π∆
c

[p∆] + [π∆]
)

at [Γi]. (3.123)

Since the characteristic bulk fluid flow velocity vbc was chosen through the flux condition for the
characteristic transmembrane pressure differences p∆

c , π∆
c , see Section 3.1.4.1, the dimensionless

coefficient on the RHS of (3.123) reduces to unity for either of the assumptions Ms, Ml:

Lpπ∆
c

vspc
≈ 1 (Ms, Ml), (3.124)

and the dimensionless flux condition (3.123) takes form:[
vb
]
n

=
(
Πc[p∆] + [π∆]

)
at [Γi], (3.125)

where coefficient Πc is defined and estimated as:

Πc := p∆
c

π∆
c

≈
{

10−2, Ms,
1, Ml.

(3.126)

It then follows, that in case the membrane is assumed to be strictly semipermeable, i.e. imperme-
able to the osmolytes, the hydraulic pressure difference at the interface is in average dominated
by the osmotic pressure differences. For the leaky permeable membranes however, the effects of
the osmotic and hydraulic transmembrane pressure differences are (in average) comparable.
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3 Data and dimensional analysis

3.3 Summary: data tables
The values given below are introduced and discussed in Sections 3.1, 3.2, and in columns "Ref.",
the (sub)sections (or equations) in which the meaning, derivation or choice of the values is
explained, are referenced.

Table 3.1 Parameters (in SI units).

Unit Value Ref.

Temperature Υ K 3.1 · 102 3.1.1.1
Density of the fluid ρf kg/md 1.0 · 103 3.1.1.1
Density of the solid ρs kg/md 1.0 · 103 3.1.1.1
Dynamic viscosity of the fluid µf kg/md−2s 1.0 · 10−3 3.1.1.1
Diffusivity in Ωb, Ωp D m2/s 1.0 · 10−10 3.1.1.1
Shear modulus of Ωsp µs kg/md−2s2 3.6 · 103 3.1.1.2
Lame’s 1st parameter of Ωsp λs kg/md−2s2 1.4 · 104 3.1.1.2
Ratio λs/µs λµ – 4.0 3.1.1.2
Membrane permeability to water Lp md−1s/kg 1.0 · 10−13 3.1.1.3
Permeability of Ωp to water k m2 2.5 · 10−15 (3.20)
Osmotic pressure coefficient Cosm kg m2/s2mol 2.58 · 103 (3.32)

Table 3.2 Domain dimensions (in SI units).
The measured lengths of the domains are depicted on Fig. 3.1.

Unit Value Ref.

Size (half side length) of Ω rΩ m 15 · 10−5 (3.12)
Initial outer radius of the cell rc0 m 5 · 10−5 (3.4)
Constant inner radius of the cell rin m 0.50 · 10−5 (3.5)
Initial size of Ωp lp0 m 4.5 · 10−5 (3.6)
Initial min. size of Ωb lb0 m 10 · 10−5 (3.13)
Initial porosity of Ωp γf0 – 0.5 (3.15)
Initial solidity of Ωp γs0 – 0.5 (3.15)

Terminal outer radius of Ωp rcT m 5.25 · 10−5 (3.8)
Total displacement in Ωp uspT m 0.253 · 10−5 (3.9)
Total displacement in Ωb ubT m 0.253 · 10−5 (3.10)
Terminal solidity of Ωp γsT – 0.433 (3.16)
Terminal porosity of Ωp γfT – 0.567 (3.16)

Characteristic length of Ωp lpc m 4.5 · 10−5 (3.6)
Characteristic length of Ωb lbc m 10 · 10−5 (3.13)
Characteristic displacements uc m 0.253 · 10−5 (3.10)

Diffusion time in Ωb
t tD,bc s 50 (3.58)

Diffusion time in Ωp
t tD,pc s 12 (3.59)

Ratio uc/lpc Rpc − 0.056 (3.11)
Ratio uc/lbc Rbc − 0.025 (3.11)
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3.3 Summary: data tables

Table 3.3 Description of further symbols.
The following abbreviations are used below: HTPD – hydraulic transmembrane pressure differ-
ence, OTPD – osmotic transmembrane pressure difference, V. – volume, C. concentration, AoS
– amount of substance. ch. – characteristic.

Time of observation tc
Ch. velocities in Ωb

t , Ωp
t vc

Initial velocities in Ωb
0, Ωp

0 v0

Ch. HTPD at Γit p∆
c

Initial HTPD at Γi0 p∆
0

Terminal HTPD at ΓiT p∆
T

Ch. OTPD at Γit π∆
c

Initial OTPD at Γi0 π∆
0

Terminal OTPD at ΓiT π∆
T

AoS in Ωp
0 afp0

AoS in Ωp
T afpT

AoS in Ωb
0 ab0

AoS in Ωb
T abT

AoS shift at Γi aSH

V. of Ω V
V. of Ωc

0 V c
0

V. of Ωc
T V c

T

V. of Ωin V in

V. of Ωp
0 V p

0
V. of Ωp

T V p
T

V. of Ωfp
0 V fp

0
V. of Ωfp

T V fp
T

V. of Ωb
0 V b

0
V. of Ωb

T V b
T

C. in Ωp
0 cfp0

C. in Ωp
T cfpT

C. in Ωp
0 cb0

C. in Ωb
T cbT

Ch. C. difference at Γi c∆
c

C. difference at Γi0 c∆
0

C. difference at ΓiT c∆
T

Table 3.4 Times, velocities and pressures (in SI units).
The descriptions of the symbols are given in Table 3.3. Where necessary, the values estimated
with the strictly semipermeable ("Ms") and leaky semipermeable membrane ("Ml") assumptions
are distinguished and listed in respectively denoted columns.

Unit d = 3 d = 2 Ref.

p∆
c kg/md−2s2 0.2 · 103 0.939 · 103 (3.122)
p∆

0 kg/md−2s2 5.0 5.0 (3.24)
p∆
T kg/md−2s2 2.618 · 103 1.873 · 103 (3.30)
π∆
T kg/md−2s2 2.618 · 103 1.873 · 103 (3.36)

Ms Ml Ms Ml
tc s 4.00 · 102 3.35 · 104 4.84 · 102 2.69 · 104 (3.56)/(3.57)
vc m/s 6.32 · 10−9 7.55 · 10−11 5.22 · 10−9 9.34 · 10−11 (3.51)
v0 m/s 25 · 10−9 0.0 20 · 10−9 0.0 (3.54)/(3.53)
π∆
c kg/md−2s2 1.26228 · 105 1.311 · 103 1.036 · 105 0.936 · 103 (3.41)/(3.45)
π∆

0 kg/md−2s2 2.49836 · 105 5.0 2.053 · 105 5.0 (3.40)/(3.24)
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Table 3.5 Volumes, amounts of substance and concentrations (in SI units).
The values of the volumes of the domains are computed according to the relations (3.127);
concentration and amount of substance values are discussed in Section 3.1.3. Where necessary,
the values estimated with the strictly semipermeable ("Ms") and leaky semipermeable membrane
("Ml") assumptions are distinguished and listed in respectively denoted columns.
Volume units: [md], concentration units: [mol/md], amount of substance units: [mol].
The descriptions of the symbols are given in Table 3.3.

d = 3 d = 2

V 27 · 10−12 90 · 10−9

V c
0 5.23599 · 10−13 7.8539 · 10−9

V c
T 6.07171 · 10−13 8.6689 · 10−9

V in 5.23599 · 10−16 7.8539 · 10−11

V p
0 5.23075 · 10−13 7.7754 · 10−9

V p
T 6.06647 · 10−13 8.5903 · 10−9

V fp
0 2.61538 · 10−13 3.8877 · 10−9

V fp
T 3.43969 · 10−13 4.8707 · 10−9

V b
0 264.769 · 10−13 82.2246 · 10−9

V b
T 263.934 · 10−13 81.4096 · 10−9

afpT 1.0354 · 10−10 1.46171 · 10−6

abT 7.918 · 10−9 24.372 · 10−6

aSH 2.50785 · 10−11 0.2954 · 10−6

cfpT 301.015 300.101
cbT 300 299.375
c∆
T 1.01507 0.726232

Ms Ml Ms Ml
afp0 1.0354 · 10−10 7.84613 · 10−11 1.46171 · 10−6 1.16632 · 10−6

ab0 7.918 · 10−9 7.94308 · 10−09 24.3772 · 10−6 24.6674 · 10−6

cfp0 395.889 300.002 375.982 300.002
cb0 299.053 300 296.408 300.000

c∆
0 96.8357 0.002 79.5747 0.002
c∆
c 48.9254 0.508506 40.1505 0.364085

V p
0 = V c

0 − V in

V b
0 = V − V p

0

V p
T = V c

T − V in

V b
T = V − V p

T

V fp
0 = γf

0 V
p
0

V fp
T = γf

TV
p

T

3D :

V =
(
2rΩ)3

V in = 4π
3
(
rin
)3

V c
0 = 4π

3 (rc
0)3

V c
T = 4π

3 (rc
T )3

2D :

V =
(
2rΩ)2

V in = π
(
rin
)2

V c
0 = π (rc

0)2

V c
T = π (rc

T )2

(3.127)
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Table 3.6 Data in the units of the numerical implementation.
Below the parameters, characteristic (ch.), initial and terminal values that are used in the
numerical implementations of the considered problems are listed. The data is translated from
the SI units

[
m, kg, s, mol

]
into

[
µm, mg, min, mol

]
units as indicated in (3.128). Where

necessary, the values estimated with the strictly semipermeable ("Ms") and leaky semipermeable
membrane ("Ml") assumptions are distinguished and listed in respectively denoted columns.
The descriptions of the symbols are given in Tables 3.1, 3.3.

Unit

rΩ µm 150
rc0 µm 50
rin µm 5
rcT µm 52.5
uc µm 2.53

Cosm mg µm2/min2mol 9.288 · 1024

γf – 0.5
k µm2 2.5 · 10−3

d = 3 d = 2
Lp µmd−1min/mg 1.67 · 10−9 1.67 · 10−15

µf mg/µmd−2 min 6 · 10−2 6 · 104

µs mg/µmd−2 min2 1.3 · 107 1.3 · 1013

λs mg/µmd−2 min2 5.1 · 107 5.1 · 1013

p∆
0 mg/µmd−2 min2 1.8 · 104 1.8 · 1010

p∆
T mg/µmd−2 min2 9.43 · 106 6.745 · 1012

π∆
T mg/µmd−2 min2 9.43 · 106 6.745 · 1012

Ms Ml Ms Ml
π∆

0 mg/µmd−2 min2 8.994 · 108 1.8 · 104 7.391 · 1014 1.8 · 1010

tc min 6.67 557.78 8.13 740.2
vc µm/min 0.38 4.53 · 10−3 0.31 3.42 · 10−3

1[m] = 106[µm], 1[kg] = 106[mg], 1[s] = 1/60 [min] ≈ 1.67 · 10−2[min] (3.128)
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4 Numerics and simulations

This chapter is devoted to a numerical treatment of the mathematical model for osmotic swelling
of a brain cell. In the first section of the chapter, the reduced mathematical models, in particular,
the coupled Biot-Stokes and pure Biot problems that are considered for the numerical simulations
are formulated. The summary of the considered reduced problems is followed by the variational
formulations for the Stokes and Biot problems.
The discretizations of the Biot and Stokes problems in space and time are described in Section
4.2. In particular, following the method of lines, both problems are spatially discretized using
FEMs, and for the temporal discretization, the implicit Euler scheme is chosen.
An analytic solution of the stationary Biot problem defined on a rotationally or spherically
symmetric domain is derived in Section 4.3, such that it can be later used in Section 4.6 in order
to verify the obtained numerical results.
Section 4.4 summarizes the considered problems, outlines the time stepping scheme and the
operator splitting approach implemented in the following section.
Some of the software related implementation aspects are mentioned in Section 4.5.
Section 4.6 contains the results of numerical simulations for the Biot and Biot-Stokes problems.

4.1 Considered reduced problems
While certain assumptions allowing to derive a comprehensive model for the osmosis driven
swelling of a brain cell have been made, the resulting mathematical model summarized in Sec-
tion 2.3 is still very complex. Therefore certain further assumptions are made, such that less
elaborated problems can be formulated for numerical implementation.
In particular, the change of porosity and permeability, as well as the mechanical constrains
introduced by the membrane are neglected. Also, it is assumed here, that the diffusion of the
osmolytes is very fast compared to the transmembrane water flow; then as suggested in Section
2.2.4, the modelling of the osmotic pressure difference across the membrane can be simplified,
and the transport equations can be dropped. These assumptions result in the reduction of the
full One Cell Model formulated in the previous chapter to a quasi-stationary Biot-Stokes coupled
problem influenced by osmotic pressure, where the latter one is modelled as a boundary force.
In addition to the coupled system describing the behaviour of both the cell and the extracellular
space, an isolated or pure Biot problem describing the movement of the poroelastic cell interior
is also formulated below.

4.1.1 Biot-Stokes problem

The coupled Biot-Stokes problem is formulated on a bounded domain Ω ∈ Rd, d ∈ {2, 3},
consisting of subdomains Ωb(t), Ωp(t) deforming over time t ∈ (0, T ), which are separated by
a common interface Γi(t) := ∂Ωb(t) ∩ ∂Ωp(t). Domain Ωb(t) is filled with an incompressible
Newtonian fluid described by the Stokes equations, and is bounded by the interface Γi(t) and
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the fixed walls Γbw. Depending on the chosen set up, Ω is either surrounded by stationary bulk
fluid, or there can be distinguished impermeable Γb,0, inflow Γb,in and outflow Γb,out boundaries,
such that Γbw := Γb,0 ∪ Γb,in ∪ Γb,out. Domain Ωp(t) is occupied by a fully-saturated poroelastic
matrix described by the Biot equations, and is bounded by the interface Γi(t) and the fixed
impermeable inner boundary Γpin, see Fig. 4.1.

Stokes domain Ωb(t), t ∈ (0, T ) (extracellular fluid):

∇ ·
{
−pbI + µf

(
∇vb + (∇vb)T

)}
= 0, (4.1)

∇ · vb = 0, (4.2)
∆ub = 0, (4.3)

where vb – fluid velocity, ρf – fluid density, ub – fluid domain displacement, µf – dynamic fluid
viscosity, pb – fluid pressure.

Biot domain Ωp(t), t ∈ (0, T ) (cell interior):

∇ ·
{
−ppI + µs

(
∇usp + (∇usp)T

)
+ λs∇ · uspI

}
= 0, (4.4)

∇ ·
(
vsp − k

µf
∇pp

)
= 0, (4.5)

vsp − ∂tusp = 0, (4.6)

where usp – solid phase displacement, vsp – solid phase velocity, pp – pore fluid pressure, ρs (ρf )
– solid (fluid) density, γs (γf ) – solidity (porosity), µf – dynamic fluid viscosity, k – permeability.
Pore fluid velocity vfp can be found from the solution of (4.4)-(4.6) through the modified Darcy
law:

vfp = vsp − k

γfµf
∇pp (4.6)= ∂tu

sp − k

γfµf
∇pp. (4.7)

Assuming that before the beginning of the observation there exisits no movement of the solid
phase, the initial conditions can be written as:

usp = 0 in Ωp(0). (4.8)

The inner boundary Γpin of the porous intracellular space Ωp(t) is assumed to be impermeable
to the intracellular fluid and fixed, i.e. Γpin(t) ≡ Γpin(0), ∀t ∈ (0, T ), such that the solid matrix
of the medium is attached to it:

usp = 0 at Γpin×(0, T ), (4.9)
vfp = 0 at Γpin×(0, T ). (4.10)

While the condition (4.10) reflects the physical impermeability constraint, the intracellular ve-
locity does not enter the Biot system (4.4)-(4.6), thus for the numerical implementation of either
the Biot-Stokes or pure Biot problems, the condition on the flow velocity is equivalent to the
pressure gradient condition:

∇pp = 0 at Γpin×(0, T ), (4.11)
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as follows from:

− k

γfµf
∇pp (4.9)= ∂tu

sp − k

γfµf
∇pp (4.7)= vfp

(4.10)= 0 at Γpin×(0, T ).

External extracellular fluid boundary Γbw is also fixed, thus:

ub = 0 at Γbw×(0, T ). (4.12)

Depending on the chosen experimental set up, Γbw can be split into impermeable Γb,0, inflow
Γb,in and outflow Γb,out boundaries, such that:

vb = 0 at Γb,0×(0, T ),
vb = vbin at Γb,in×(0, T ),
σbn = pbout at Γb,out×(0, T ).

(4.13)

For all implemented problems (as presented in Section 4.6), the normal fluid stress is set to zero
along the entire Γbw:

σbn = 0 at Γbw×(0, T ), (4.14)

thus corresponding to the conditions of the experimental settings E3.

As suggested in the previous chapter, the Biot and Stokes domains are coupled at the interface
Γi(t), t ∈ (0, T ), according to the following laws:

jbn = jpn ⇒ vbn =
(
vsp − k

µf
∇pp

)
n
, (4.15)

vbτ = 0, (4.16)
ub = usp, (4.17)

σp · n = σb · n, (4.18)

jp · n = Lp
(
pb − pp + π∆

)
, (4.19)

where σb, σp are the fluid and poroelastic stress tensors correspondingly:

σb := −pbI + µf
(
∇vb + (∇vb)T

)
,

σp := −ppI + µs
(
∇usp + (∇usp)T

)
+ λs∇ · uspI,

(4.20)

jbn, jpn are the normal fluid fluxes defined at the boundaries of the Stokes and Biot domains
respectively:

jbn := (jb · n)n, jb · n := (vb − ∂tub) · n at ∂Ωb(t)×(0, T ), (4.21)

jpn := (jp · n)n, jp · n := γf (vfp − vsp) · n (4.7)= − k

µf
∇pp at ∂Ωp(t)×(0, T ), (4.22)

Lp is the membrane water permeability and π∆ in (4.19) is the osmotic pressure difference across
the interface. Some ways of modelling (approximating) the transmembrane osmotic pressure
difference π∆ without solving transport equations for the solute concentrations are suggested in

89



4 Numerics and simulations

Section 4.6.

Figure 4.1 Overall domain Ω = Ωb(t) ∪ Ωp(t) ∈ Rd, d ∈ {2, 3}, t ∈ (0, T ).
Ωp(t) – poroelastic Biot domain, Ωb(t) – Stokes fluid domain,
Γi(t) := ∂Ωb(t) ∩ ∂Ωp(t) – moving interface, Γpin – fixed impermeable inner wall,
Γbw (:= Γb,0 ∪ Γb,in ∪ Γb,out) – fixed extracellular fluid walls.

Ωb

Ωp

ΓpinΓi

Γb,0(Γbw)

Γb,0 (Γbw)

Γb,in
(Γbw)

Γb,out
(Γbw)

4.1.2 Pure Biot problem

The pure Biot problem is formulated on a domain Ωp(t) ∈ Rd, d ∈ {2, 3}, deforming over time
t ∈ (0, T ) and occupied by a fully-saturated poroelastic medium bounded by a moving (free)
boundary Γi(t) and fixed impermeable inner wall Γpin, see Figure 4.2.

∇ ·
{
−ppI + µs

(
∇usp + (∇usp)T

)
+ λs∇ · uspI

}
= 0 in Ωp(t)×(0, T ), (4.23)

∇ ·
(
vsp − k

µf
∇pp

)
= 0 in Ωp(t)×(0, T ), (4.24)

vsp − ∂tusp = 0 in Ωp(t)×(0, T ), (4.25)

where usp – solid phase displacement, vsp – solid phase velocity, pp – pore fluid pressure, ρs (ρf )
– solid (fluid) density, γs (γf ) – solidity (porosity), µf – dynamic fluid viscosity, k – permeability.
Pore fluid velocity vfp can be additionally found from the solution of (4.23)-(4.25) through the
modified Darcy law:

vfp = vsp − k

γfµf
∇pp in Ωp(t)×(0, T ). (4.26)

Inner boundary Γpin is assumed to be fixed and impermeable:

∇pp = 0 at Γpin×(0, T ) (4.27)
usp = 0 at Γpin×(0, T ) (4.28)

where the pressure gradient boundary condition is derived in (4.11).
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As in the coupled Biot-Stokes system, the Pure Biot problem is supposed to approximate move-
ment of a swelling cell, therefore the conditions at the outer moving boundary Γi(t) would
be chosen such as to mimic the influence of the extracellular fluid. Thus choosing to prescribe
the normal flux jpn and normal stresses σpn, and then selecting the corresponding equations from
the coupling interface conditions (4.15)-(4.19), the conditions for the pure Biot problem at the
outer boundary read:

jpn := Lp
(
pb − pp + π∆

)
σp · n := σb · n

at Γi(t)×(0, T ),

which (using the definition of flux (4.22) and estimate (3.121) allowing to neglect the viscous
fluid stress) can be rewritten as:

k

µf
∇pp · n = Lp

(
pp − pb − π∆

)
at Γi(t)×(0, T ), (4.29){

µs
(
∇usp + (∇usp)T

)
+ λs∇ · uspI

}
· n = (pp − pb) · n at Γi(t)×(0, T ), (4.30)

where π∆ is the osmotic pressure difference across Γi(t), and pb is a given function reflecting the
extracellular hydraulic pressure. Assuming that the extracellular pressure remains constant, pb
can be chosen as:

pb := pb0 (or pbc) (4.31)

where pb0, pbc are the initial and characteristic bulk fluid pressure values estimated in Section
3.1.2.4 and listed in Tables 3.3.

Assuming that before the beginning of the observation, the intracellular domain is at rest, the
initial conditions can be written as:

usp = 0 in Ωp
0. (4.32)

Figure 4.2 Pure Biot domain Ωp(t) ∈ Rd, d ∈ {2, 3}, t ∈ (0, T ).
Γi(t) – moving boundary, Γpin – fixed impermeable inner wall.

Ωp

ΓiΓpin
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4.1.3 Variational formulations

The variational formulation of the Stokes problem formulated on the extracellular bulk fluid
domain Ωb(t) bounded by Γb(t) := ∂Ωb(t), t ∈ (O, T ), consists of finding (vb, pb, ub) ∈ V b×Qb×
V b, such that for all (φb, ψb, ηb) ∈ V b ×Qb × V b the following equalities hold:(

µf
(
∇vb + (∇vb)T

)
− pbI,∇φb

)
Ωb(t)

=
〈(
µf
(
∇vb + (∇vb)T

)
− pbI

)
· nb, φb

〉
Γb(t)

,

(∇ · vb, ψb)Ωb(t) = 0 ,(
∇ub,∇ηb

)
Ωb(t)

=
〈
∇ubnb, ηb

〉
Γb(t)

,

(4.33)

where for the mapping T̂ bt : Ω̂b → Ωb(t), see (2.44), the corresponding functional spaces are
defined as:

V b(t) := {v : Ωb(t)→ Rd, v(x, t) = T̂ bt (v̂), v̂ ∈ H1(Ω̂b)d} ⊂ H1(Ωb(t))d,
Qb(t) := {q : Ωb(t)→ R, q(x, t) = T̂ bt (q̂), q̂ ∈ L2(Ω̂b)} ⊂ L2(Ωb(t)),

d = {2, 3}.

The variational formulation of the Biot problem formulated on the deformable porous medium
Ωp(t) bounded by Γp(t) := ∂Ωp(t), t ∈ (O, T ), consists of finding (usp, pp, vsp) ∈ Up ×Qp × Up,
such that for all (ξp, ψp, ηp) ∈ Up ×Qp × Up the following equations hold:(

µs(∇usp + (∇usp)T ) + λs∇ · uspI,∇ξp
)

Ωp(t)
−
(
pp,∇ · ξp

)
Ωp(t)

=〈 (
µs(∇usp + (∇usp)T ) + (λs∇ · usp − pp)I

)
· n, ξp

〉
∂Ωp(t)

,(
∇ · vsp, ψp

)
Ωp(t)

+ k

µf

(
∇pp,∇ψp

)
Ωp(t)

=

k

µf

〈
∇pp · n, ψp

〉
∂Ωp(t)

,(
vsp, ηp

)
Ωp(t)

=
(
∂tu

sp, ηp
)

Ωp(t)
,

(4.34)

where for the mapping T̂ pt , see (2.40), the corresponding functional spaces are defined as:

Up(t) = {w : Ωp(t)→ Rd, w(x, t) = T̂ pt (ŵ), ŵ ∈ H1(Ω̂p)d} ⊂ H1(Ωp(t))d,
Qp(t) = {q : Ωp(t)→ R, q(x, t) = T̂ pt (q̂), q̂ ∈ H1(Ω̂p)} ⊂ H1(Ωp(t)),

d = {2, 3}.

4.2 Discretisation

In this chapter, the Biot and Stokes problems are numerically discretized in space and time
following the method of lines. For the spatial discretization, the Finite Element Method
(FEM) techniques – in particular, the standard Galerkin method – are chosen. The time
discretization is done using the θ-scheme approach, namely, the implicit backward Euler
method.
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4.2 Discretisation

4.2.1 Spatial discretization
In order to outline the finite element discretization scheme and to introduce the general concepts
that are repeatedly addressed, first a general time dependent system of equations is considered.
In particular, for a variable v(x, t) defined on a moving domain domain Ω(t) ∈ Rd × (0, T ),
d ∈ {1, 2, 3} being the dimension of the problem, with boundary Γ(t) := ∂Ω(t), consider the
following boundary value problem:

O(v(x, t)) = f(x, t), x ∈ Ω(t)×(0, T ), (4.35)
(4.36)

where O is a first or second order partial differential operator and f(x, t) is some algebraic
function. Multiplying equation (4.35) by weighting (test) functions w ∈ (W (t))d, where (W (t))d
is some suitable continuous trial function space (as a rule chosen such that the Dirichlet values
are zero), then integrating the equation over the domain Ω(t) and applying integration by parts
to the terms containing second order derivatives, the following variational formulation of the
original equation (4.35) is obtained:

o(v, w)Ω(t) = − (f, w)Ω(t) + os〈v, w〉Γ(t) ∀w ∈ (W (t))d, (4.37)

where o, os are spatial and boundary operators resulting from applying integration by parts to
the higher order terms of the operator O, i.e.:

(O(v), w)Ω(t) := os〈v, w〉Γ(t) − o(v, w)Ω(t) ∀w ∈ (W (t))d.

Thus the original problem reduces to finding a solution v ∈ (V (t))d that satisfies (4.37), where
(V (t))d is a space of lower (than the original) differential order due to the reduction of the order
of the operator O.

For the problem (4.37) to be solved numerically, the infinite dimensional trial (or admissi-
ble) (V (t))d and test (W (t))d function spaces are approximated by appropriate finite dimen-
sional subspaces (Vh(t))d, (Wh(t))d (with (Vh(t))d ⊂ (V (t))d corresponding to a conforming
finite element method), such that the continuous problem (4.37) is reformulated into finding
an approximate solution vh(x, t) ∈ (Vh(t))d tested against a finite number of test functions
wh ∈ (Wh(t))d.
In case variable v is a scalar function, the finite subspaces Vh(t), Wh(t) can be defined through
some basis (nodal) functions {{νih(x, t)}Ni=1, {ωih(x, t)}Ni=1} in the following way:

Vh(t) = span{νih(x, t)}Ni=1, Wh(t) = span{ωih(x, t)}Ni=1,

where N is the dimension of the finite subspaces or the number of the degrees of freedom. Then
the approximate solution vh(x, t) can be represented through the basis of the finite trial space
{νih(x, t)}Ni=1 with some coefficients {vi(t)}Ni=1:

vh(x, t) =
N∑
i=1

vi(t)νih(x, t). (4.38)

It should be noted, that while it is convenient to choose the coefficients vi and the basis functions
νih according to the principle of variable separation (i.e. such that νih := νih(x), vi := vi(t)), such
approach is not acceptable for problems defined on moving domains, since the basis functions
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must reflect temporal changes. The coefficients vi however can be chosen to depend only on
time, in which case spatial derivatives applied to vh(x, t) would relate only to the basis functions
νih:

∇vh(x, t) :=
N∑
i=1

vi(t)∇νih(x, t).

For a vector function v, vector trial space (Vh(t))d, d = {2, 3}, t ∈ (0, T ), can be defined through
the corresponding vector basis functions {νnh (x, t)}d×Nn=1 :

νnh (x, t) =
[
νnh,1(x, t), ..., νnh,d(x, t)

]
, n = 1...d×N,

such that

(Vh(t))d = Vh(t)× (Vh(t))d−1, (Vh(t))d = span{νnh (x)}d×Nn=1 .

The components of the vector valued function vh ∈ (Vh(t))d are scalar functions vh,k ∈ Vh(t),
k = 1...d, that as described above, can be represented by the basis functions {νih}Ni=1 ∈ Vh(t)
with coefficients {vik}Ni=1:

vh,k(x, t) =
N∑
i=1

vik(t)νih(x, t), k = 1...d, (4.39)

and therefore the vector valued function vh can be written as:

vh(x, t) =
d∑

k=1

N∑
i=1

vik(t)νih(x, t)ek, (4.40)

where {ek}dk=1 are d-dimensional Cartesian unit vectors. Thus for N nodal basis functions
{νih}Ni=1, the set of basis vector functions is defined as:

νnh (x, t) = νmh (x, t)eα,
m = [(n− 1)modN ] + 1,
α := [(n− 1)/N ] + 1.

(4.41)

Choosing the basis {ωih}Ni=1 for the test space (Wh(t))d to correspond to the trial basis {νih}Ni=1,
such that:

ωih ≡ νih ∀ i = 1...N ⇒ (Wh(t))d ≡ (Vh(t))d,

corresponds to the so-called (Bubnov-)Galerkin method or classical Galerkin method.

Thus eventually the original problem (4.35) reduces to finding a weak approximate solution
vh ∈ (Vh(t))d tested against a finite number of basis (vector) functions νih ∈ (Vh(t))d:

o(vh,νih)Ω(t) = −
(
fh,ν

i
)

Ω(t)
+ os〈vh,νih〉Γ(t) ∀νih ∈ (Vh(t))d, i = 1...N. (4.42)

In order to define the trial and test spaces (Vh(t))d, (Wh(t))d, a triangulation of the domain Ω
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into Ne open non-overlapping subregions (also called elements or cells) Ωh,e is introduced:

Ωh :=
Ne⋃
e=1

Ωh,e,

Ω = Ωh ⊆ Ω,
Ωh,i ∩ Ωh,j = ∅, i 6= j. (4.43)

The mesh Ωh is said to be structurally regular, if the closures of two distinct elements Ωh,i,
Ωh,j can either have no intersections, or share a common vertex, edge or face, and shape regular,
if its geometry does not degenerate. In this work, the meshes are constructed such that these
regularity conditions are fulfilled. In particular, the computational domain is approximated by
a mesh consisting of simplexes (triangles in 2D and tetrahedra in 3D).
On the mesh Ωh, a space of continuous piecewise polynomial functions is defined:

Pr(Ωh) :=
{
φ : Ωh → R

∣∣∣ φ ∈ C(Ωh), φ ∈ P r(Ωh,e)
}
, (4.44)

where on each element Ωh,e, e = 1...Ne, space P er (Ωh,e) is defined as as a space of polynomials
of maximum order r:

P er (Ωh,e) := span

{(
xγ1

1 , ..., x
γd
d

)∣∣∣ 0 ≤
d∑

k=1
γk ≤ r, x := (x1, ..., xd) ∈ Ωh,e

}
.

Choosing a set of No Lagrangian nodal points xj (or simply nodes; not to be confused with the
mesh vertices, see Figure 4.3) on each element Ωh,e that sum up to N nodes xj , j = 1...N , over
the entire mesh Ωh, a continuous Lagrangian nodal basis

{
νih
}d×N
i=1 is defined as:

Pr(Ωh) := span
{
νih

}d×N
i=1

,

νnh (x) := νmh (x)eα, ∀n = 1...d×N, m = [(n− 1)modN ] + 1, α := [(n− 1)/N ] + 1,

such that on each nodal point xj , j = 1...N , exactly one basis function is non-zero and is equal
to 1, and the set of functions

{
νih
}N
i=1 defines a partition of unity:

νih(xj) = δij ∀i, j =1...N,
N∑
i=1

νih(x) = 1 ∀x ∈Ωh,

where δij is the Kronecker delta function.
Then the scalar basis functions {νih}, i = 1...N , can be used to interpolate the approximate
solution vh over the entire domain:

vh(x, t) =
d∑

k=1

N∑
i=1

vik(t)νih(x, t)ek ∀x ∈ Ωh, d = {1, 2, 3}, (4.45)

where vik(t) are the nodal coefficients:

vik(t) := vh,k(xi, t), i = 1...N, k = 1...d.

The simplest examples for the choice of space (4.44) include P1 – piecewise linear functions,
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and P2 – piecewise quadratic functions. Thus in order to define a linear basis over a triangular
element, the nodal points No can be chosen to coincide with the vertices of the element, i.e. in
two dimensions each element contains 3 nodal points, and in three dimensions – 4 points. For
the definition of a quadratic basis, No := 6 is chosen for d = 2 and No := 10 – for d = 3, see
Figure 4.3.

Note: The (initially regular) mesh is moving, thus its regularity must be ensured at all
times. Yet the deformations considered in this work are sufficiently small, thus no special
measures in order to preserve shape regularity of the moving mesh are needed to be applied.

Regarding the operators that are relevant for the Biot-Stokes problem, the following bilinear
forms on vectors v, w or/and scalars p, q are defined:

m(v,w)Ω := (v,w)Ω(t), (4.46)

a(v,w)Ω := (∇v,∇w)Ω(t), â(v,w)Γ := (∇v,nw)Γ(t),

a′(v,w)Ω := ((∇v)T ,∇w)Ω(t), â′(v,w)Γ := ((∇v)T ,nw)Γ(t)

a′′(v,w)Ω := ((∇ · v)I,∇w)Ω(t), â′′(v,w)Γ := ((∇ · v)I,nw)Γ(t),

(4.47)

b(v, p)Ω := (∇ · v, p)Ω(t), b(p, v)Ω := (∇p, v)Ω(t), b̂(v, p)Γ := (n · v, p)Γ(t), (4.48)

where n is the unit normal vector to the boundary Γ(t), I is the identity matrix and AT denotes
the transposed matrix A.

Figure 4.3 Nodal points of P1, P2 simplex elements in dimensions d = {2, 3}.

(a) P1, d = 2, No = 3: (b) P2, d = 2, No = 6:

(c) P1, d = 3, No = 4: (d) P2, d = 3, No = 10:
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4.2.1.1 Stokes problem

Following the construction of the Lagrangian nodal basis described in the previous section, a
triangulation Ωb

h of the domain Ωb(t) into N b
e elements Ωb

h,e is introduced:

Ωb
h :=

Nb
e⋃

e=1
Ωb
h,e,

Ωb = Ωb
h ⊆ Ωb,

Ωb
h,i ∩ Ωb

h,j = ∅, i 6= j, (4.49)

For each of the variables, on the Stokes domain mesh Ωb
h, a number of Lagrangian points is

chosen, i.e., N b,v nodes for vb, N b,p nodes for pb, N b,u nodes for ub, and thus corresponding
vector or scalar finite dimensional Lagrangian nodal bases are defined:{

φb,nh (x, t)
}d×Nb,v

n=1
, φb,nh (x, t) = φb,mh (x, t)eα,

m := [(n− 1)mod N b,v] + 1, α := [(n− 1)/N b,v] + 1,{
ψb,ih (x, t)

}Nb,p

i=1
,{

ξb,nh (x, t)
}d×Nb,u

n=1
, ξb,nh (x, t) = ξb,mh (x, t)eα,

m := [(n− 1)mod N b,u] + 1, α := [(n− 1)/N b,u] + 1,

where
{
φb,ih

}Nb,v

i=1
,
{
ξb,ih

}Nb,u

i=1
are scalar basis functions used to define the corresponding vector

basis functions. Then the approximate solution
{
vbh(x, t), pbh(x, t),ubh(x, t)

}
can be represented

through the basis functions
{
φb,ih (x, t), ψb,ih (x, t), ξb,ih (x, t)

}
as:

vbh(x, t) =
d∑

k=1

Nb,v∑
i=1

vb,ik (t)φb,ih (x, t)ek,

ubh(x, t) =
d∑

k=1

Nb,u∑
i=1

ub,ik (t)ξb,ih (x, t)ek,

pbh(x, t) =
Nb,p∑
i=1

pb,i(t)ψb,ih (x, t), (4.50)

where
{
vb,ik (t), pb,i(t),ub,ik (t)

}
are the nodal coefficients for the corresponding functions.

Using the bilinear forms notations (4.46)-(4.48), the continuous variational formulation (4.33)
for the Stokes problem on Ωb(t) can be rewritten in finite dimensions in the following way:
find (vbh, pbh,ubh) ∈ V b

h (t)×Qbh(t)× V b
h (t) such that for all (φb, ψb, ξb) ∈ V b

h (t)×Qbh(t)× V b
h (t):

µfa(vbh,φ
b,n
h )Ωb

h
+ µfa′(vbh,φ

b,n
h )Ωb

h
− b(φb,nh , pbh)Ωb

h
−

µf â〈vbh,φ
b,n
h 〉Γbh + µf â′〈vbh,φ

b,n
h 〉Γbh − b̂〈φ

b,n
h , pbh〉Γb

h
= 0 ∀φb,nh ∈ V

b
h (t),

b(vbh, ψ
b,i
h )Ωb

h
= 0 ∀ψb,ih ∈ Q

b
h(t),

a(ubh, ξ
b,n
h )Ωb

h
− â〈ubh, ξ

b,n
h 〉Γbh = 0 ∀ξb,nh ∈ V

b
h (t)

(4.51)

for some finite element spaces V b
h (t), Qbh(t).

There exist some well-known stable element pairs for the approximation of the Stokes solution.
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In particular, the Stokes velocity can be approximated by piecewise quadratic, and the Stokes
pressure – by piecewise linear functions, i.e. V b

h := P2(Ωb
h), Qbh := P1(Ωb

h).

4.2.1.2 Biot problem

In much the same way as for the Stokes problem, a triangulation Ωp
h of the Biot domain Ωp(t)

into Np
e elements Ωp

h,e is introduced:

Ωp
h :=

Np
e⋃

e=1
Ωp
h,e,

Ωp = Ωp
h ⊆ Ωp,

Ωp
h,i ∩ Ωp

h,j = ∅, i 6= j. (4.52)

On the Biot domain mesh Ωp
h, Np,u local nodes for the displacement usp, Np,p local nodes for the

pressure pp and Np,w local nodes for the solid phase velocity vsp are chosen, and the following
vector and scalar finite dimensional Lagrangian nodal bases are correspondingly defined:

{
ξp,nh (x, t)

}d×Np,u

n=1 , ξp,nh (x, t) = φp,mh (x, t)eα,
m := [(n− 1)mod Np,u] + 1, α := [(n− 1)/Np,u] + 1,{

ψp,ih (x, t)
}Np,p

i=1
,{

ηp,nh (x, t)
}d×Np,w

n=1 , ηp,nh (x, t) = ηp,mh (x, t)eα,
m := [(n− 1)mod Np,w] + 1, α := [(n− 1)/Np,w] + 1,

where
{
ξp,ih

}Np,u

i=1
,
{
ηp,ih

}Nb,w

i=1
are scalar basis functions used to define the corresponding vector

basis functions. Then the approximate solution
{
usph (x, t), pph(x, t), vsph (x, t)

}
can be represented

through the basis functions
{
ξp,ih (x, t), ψp,ih (x, t), ηp,ih (x, t)

}
as:

usph (x, t) =
d∑

k=1

Np,u∑
i=1

usp,ik (t)ξp,ih (x, t)ek,

vsph (x, t) =
d∑

k=1

Np,w∑
i=1

vsp,ik (t)ηp,ih (x, t)ek,
pbh(x, t) =

Np,p∑
i=1

pb,i(t)ψb,ih (x, t), (4.53)

where {usp,ik (t)}, {pp,i(t)}, {vsp,ik (t)} are the nodal coefficients for the corresponding functions.

Using the notations (4.46)-(4.48), the continuous variational formulation (4.34) for the Biot
problem on Ωp(t) can be rewritten in finite dimensions in the following way:
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find (usph , p
p
h, v

sp
h ) ∈ Uph(t)×Qph(t)×Uph(t), such that for all (ξp, ψp,ηp) ∈ Uph(t)×Qph(t)×Uph(t):

µsa(usph , ξ
p,n
h )Ωp

h
+ µsa′(usph , ξ

p,n
h )Ωp

h
+ λsa′′(usph , ξ

p,n
h )Ωp

h
− b(ξp,nh , pph)Ωp

h
=

µsâ〈usph , ξ
p,n
h 〉Γph + µsâ′〈usph , ξ

p,n
h 〉Γph + λsâ′′〈usph , ξ

p,n
h 〉Γph − b̂〈ξ

p,n
h , pph〉Γph , ∀ξp,nh ∈ Uph(t),

b(vsph , ψ
p,n
h )Ωp

h
+ k

µf
a(pph, ψ

p,n
h )Ωp

h
=

k

µf
â〈pph, ψ

p,n
h 〉Γph , ∀ψp,nh ∈ Qph(t),

m(vsph ,η
p,n
h )Ωp

h
= m(∂tusph ,η

p,n
h )Ωp

h
, ∀ηp,nh ∈ Uph(t)

(4.54)

for some finite element spaces Uph(t), Qph(t). The Biot displacement and pore pressure are chosen
to be approximated by piecewise linear functions, i.e. Uph := P1(Ωp

h), Qph := P1(Ωp
h).

4.2.2 Temporal discretization
As the problems of interest contain time derivatives of maximum first order, for the purpose of
introducing the chosen time discretization method, the following general initial value problem
for a function u(t) ∈ Ω× [0, T ] is considered:

∂tu(t) = f(u(t), t) t ∈ (0, T ),
u(x, 0) = u0,

(4.55)

where f is some (sufficiently smooth) function.
In order to discretise any given time dependent problem in time, a subdivision of the total time
interval [0, T ] into I discrete time-steps (ti, ti+1] of sizes t∆i is introduced:

0 = t0 < t1 < ... < ti < ti+1 < ... < tI = T, t∆i+1 := ti+1 − ti,

(0, T ] =
I−1⋃
i=0

(ti, ti+1], t∆ := max
i∈{0...I−1}

t∆i .
(4.56)

When using the basic θ-scheme method, the value of u at time point ti+1 (denoted as ui+1) is
expressed through the value of the operator at the previous time step, i.e. ui, in the following
way:

ui+1 = ui + t∆i+1 (θf(ui+1, ti+1) + (1− θ)f(ui, ti)) , (4.57)

where θ ∈ [0, 1] is a fixed parameter of the method. For instance, some of the well-known θ
schemes include implicit (backward) Euler scheme for θ := 1, explicit Euler scheme for θ := 0
and trapezoidal rule for θ = 0.5. Thus from (4.57) it follows, that an implicit scheme reads:

ui+1 − ui = t∆i+1f(ui+1, ti+1). (4.58)

The discretizations of the common time interval (0, T ) into sets of subintervals for the Stokes
and Biot problems are chosen to be identical and in form equivalent to (4.56). Then the implicit
Euler time discretizations of the Biot and Stokes spatially discretized problems (4.51), (4.54)
on the time interval (ti−1, ti) read:
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Stokes problem:

µfa(vbh,i,φ
b,n
h,i )Ωb

h,i
+ µfa′(vbh,i,φ

b,n
h,i )Ωb

h,i
− b(φb,nh,i , p

b
h,i)Ωb

h,i
=

µf â〈vbh,i,φ
b,n
h,i 〉Γbh,i + µf â′〈vbh,i,φ

b,n
h,i 〉Γbh,i − b̂〈φ

b,n
h,i , p

b
h,i〉Γb

h,i
∀φb,nh,i ∈ V

b
h,i,

b(vbh,i, ψ
b,i
h,i)Ωb

h,i
= 0 ∀ψb,ih,i ∈ Q

b
h,i,

a(ubh,i, ξ
b,n
h,i )Ωb

h,i
− â〈ubh,i, ξ

b,n
h,i 〉Γbh,i = 0 ∀ξb,nh,i ∈ V

b
h,i.

(4.59)

Biot problem:

µsa(usph,i, ξ
p,n
h,i )Ωp

h,i
+ µsa′(usph,i, ξ

p,n
h,i )Ωp

h,i
+ λsa′′(usph,i, ξ

p,n
h,i )Ωp

h,i
− b(ξp,nh,i , p

p
h,i)Ωp

h,i
=

µsâ〈usph,i, ξ
p,n
h,i 〉Γph,i + µsâ′〈usph,i, ξ

p,n
h,i 〉Γph,i − λ

sâ′′〈usph,i, ξ
p,n
h,i 〉Γph,i − b̂〈ξ

p,n
h,i , p

p
h,i〉Γph,i ∀ξp,nh ∈ Uph,i,

b(vsph,i, ψ
p,n
h,i )Ωp

h,i
+ k

µf
a(pph,i, ψ

p,n
h,i )Ωp

h,i
=

k

µf
â〈pph,i, ψ

p,n
h,i 〉Γph,i ∀ψp,nh,i ∈ Q

p
h,i,

t∆i m(vsph,i,η
p,n
h,i )Ωp

h,i
=

m(usph,i,η
p,n
h,i )Ωp

h,i
−m(usph,i−1,η

p,n
h,i )Ωp

h,i
∀ηp,nh ∈ Uph,i,

(4.60)

where the second lower index (i−1 or i) denotes the corresponding time step, e.g. usph,i := usph (ti),
ξp,nh,i := ξp,nh (ti), Uph,i := Uph(ti), etc.
It should be noted, that as the Stokes problem is quasi stationary on the given domain, its
solution adapts instantaneously to the change of the domain geometry. However, the stationary
problem must still be solved in each time step to account for the change in the domain geometry.
This idea becomes more illustrative when the time stepping scheme is developed, see Section
4.4.

4.3 Analytic solution of the Biot problem

The best way to verify a numerical implementation of a problem is to compare it with an
analytic solution. While it would be quite a challenge to attempt to find an analytic solution
of the strongly coupled Biot-Stokes problem, under certain assumptions, an analytic solution to
the pure Biot problem is possible to obtain. Thus in this section, a solution to the stationary
Biot problem defined on a spherically or rotationally symmetric domain is derived.
In particular, the mathematical problem is formulated as follows: find an analytic solution to the
stationary Biot problem (obtained from (4.23), (4.24), (4.26) by dropping the time derivatives):

∇ ·
{
−ppI + µs

(
∇usp + (∇usp)T

)
+ λs∇ · uspI

}
= 0 in Ωp, (4.61)

∆pp = 0 in Ωp, (4.62)

vfp = − k

γfµf
∇pp in Ωp, (4.63)

with boundary conditions:
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Figure 4.4 Rotationally symmetric Biot domain Ωp.

Ωp

Γpin

Γi

0 a b
r

usp := uspa at Γpin,
pp := ppa at Γpin,

(4.64)
usp := uspb at Γi,
pp := ppb at Γi,

(4.65)

where the domain Ωp is rotationally (in 2D) or spherically (in 3D) symmetric with inner radius
a and outer radius b, see Fig. 4.4.
The idea behind finding a solution to (4.61)-(4.63) consists in transforming the equations into
polar/spherical coordinates, reducing the multidimensional system of equations to a one dimen-
sional problem depending on the radius r (which is possible due to the symmetry of the domain),
and then integrating the resulting ODEs. Further details on the solution of the stationary and
instationary Biot consolidation equations can be found in e.g. [171], [23].

4.3.1 2D: polar coordinates

In two dimensions, the rectangular (x1, x2) and polar (r, θ) coordinates are related to one another
in the following way:

x1 = rcosθ,

x2 = rsinθ.

In the case of rotational symmetry, the gradient of a scalar function q, the divergence and
Laplace operators of a vector function q = (qr, qθ) reduce to:

∇q = ∂rq, ∇ · q = 1
r
∂r(rqr),

∆q = 1
r
∂r (r∂rq) = 1

r
∂rq + ∂rrq, ∆q = ∂2

rqr + 1
r
∂rqr −

qr
r2 .

(4.66)

Then the stationary Biot equations in polar coordinates reduce to a system of one dimensional
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equations:

(λs + 2µs)∂r
(1
r
∂r(ruspr )

)
− ∂rpp = 0, (4.67)

∂r(r∂rpp) = 0, (4.68)

vfpr = − k

γfµf
∂rp

p. (4.69)

Pressure pp and its derivative ∂rpp can be directly found from (4.68) by integrating the equation
over r:

∂rp
p = Cp1

r
, (4.70)

pp = Cp1 ln(r) + Cp2 , (4.71)

where Cp1 , C
p
2 are integration constants. Substituting (4.70) into (4.69), the fluid velocity vfp is

found as:

vfpr = − k

γfµf
Cp1
r
. (4.72)

Integrating (4.67), then substituting the solution for pressure (4.71) into the obtained relation,

(λs + 2µs)1
r
∂r(ruspr ) = pp + Cu01

(4.71)= Cp1 ln(r) + Cu02,

and solving the resulting differential equation for uspr , gives a general solution for the displace-
ment:

uspr = Cp1
2(λs + 2µs)rln(r) + 2Cu01 − C

p
1

4(λs + 2µs)r + Cu2
r

=

= Cp1
2(λs + 2µs)rln(r) + Cu1 r + Cu2

r
,

(4.73)

where Cu1 , Cu2 are some integration coefficients.
The four integration coefficients Cp1 , C

p
2 , Cu1 , Cu2 are evaluated through the boundary conditions:

uspa =: usp(a) = aln(a)
2(λs + 2µs)C

p
1 + aCu1 + Cu2

a
,

ppa =: pp(a) = Cp1 ln(a) + Cp2 ,

uspb =: usp(b) = bln(b)
2(λs + 2µs)C

p
1 + bCu1 + Cu2

b
,

ppb =: pp(b) = Cp1 ln(b) + Cp2 ,

(4.74)

Cp1 = ppa − p
p
b

ln(a/b) , Cu1 = (auspa − bu
sp
b )

a2 − b2
− (a2ln(a)− b2ln(b))

2(λs + 2µs)(a2 − b2)
(ppa − p

p
b)

ln(a/b) ,

Cp2 = ln(a)ppb − ln(b)ppa
ln(a/b) , Cu2 = (buspa − au

sp
b )ab

b2 − a2 −
a2b2(ppa − p

p
b)

2(λs + 2µs)(b2 − a2) .
(4.75)
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4.3.2 3D: spherical coordinates

In three dimensions, the rectangular (x1, x2, x3) and spherical (r, φ, θ) coordinates are related to
one another in the following way:

x1 = rcosφ sinθ,

x2 = rsinφ sinθ,

x3 = rcosθ.

In the case of spherical symmetry, the gradient of a scalar function q, the divergence and Laplace
operators of a vector function q = (qr, qφ, qθ) reduce to:

∇q := ∂rq, ∇ · q := 1
r2∂r

(
r2qr

)
,

∆q := 1
r2∂r

(
r2∂rq

)
, ∆q = 1

r
∂rr(rqr)−

2
r2qr.

(4.76)

Then the stationary Biot equations in spherical coordinates reduce to a system of one dimensional
equations:

(λs + 2µs)∂r
( 1
r2∂r

(
r2uspr

))
− ∂rpp = 0, (4.77)

∂r(r2∂rp
p) = 0, (4.78)

vfpr = − k

γfµf
∂rp

p. (4.79)

As in the case of rotational symmetry, general solutions for the pressure pp can be directly
found from the continuity equation (4.78), for the velocity vfpr – from (4.79) using the obtained
pressure solution:

∂rp
p = Cp1

r2 , (4.80)

pp = −C
p
1
r

+ Cp2 , (4.81)

vfpr = − k

γfµf
Cp1
r2 , (4.82)

where Cp1 , C
p
2 are integration constants. Substituting (4.81) into the integrated momentum

balance (4.77),

(λs + 2µs) 1
r2∂r

(
r2uspr

)
= pp + Cu01 = −C

p
1
r

+ Cu1 ,

a general solution for the displacement uspr is obtained:

uspr = − Cp1
2(λs + 2µs) + Cu1 r + Cu2

r2 , (4.83)

where Cu1 , Cu2 are integration constants.
Using the boundary conditions (4.64), (4.65), the integration coefficients Cp1 , C

p
2 , Cu1 , Cu2 are
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determined: 

uspa =: usp(a) = − Cp1
2(λs + 2µs) + Cu1 a+ Cu2

a2 ,

ppa =: pp(a) = −C
p
1
a

+ Cp2 ,

uspb =: usp(b) = − Cp1
2(λs + 2µs) + Cu1 b+ Cu2

b2
,

ppb =: pp(b) = −C
p
1
b

+ Cp2 ,

(4.84)

Cp1 = (ppa − p
p
b)ab

(a− b) , Cu1 = a2uspa − b2u
sp
b

a3 − b3
+ ab(a+ b)(ppa − p

p
b)

2(λs + 2µs)(a3 − b3) ,

Cp2 = ppaa− p
p
bb

(a− b) , Cu2 = a2b2

(b3 − a3)

(
buspa − au

sp
b −

(ppa − p
p
b)ab

2(λs + 2µs)

)
.

(4.85)

4.4 Solution approach: operator splitting
There can generally be distinguished two approaches to solving coupled interaction problems:
a monolithic approach, i.e. when all equations of the system are solved simultaneously, and a
partitioned approach, when the sub-problems of the coupled problem are treated individually.
There exist advantages and disadvantages to both approaches. Monolithic approach is often used
for solving strongly coupled problems, for which operator splitting may entail minuscule time
steps. However, if coupling is weak enough, the application of operator splitting is advantageous,
since it results in two smaller algebraic systems for each time step. Thus in this work, the coupled
Biot-Stokes problem is solved in a partitioned (or operator splitting) way.

Subdividing the total observation time interval [0, T ] into I time steps as in (4.56), namely:

(0, T ] = (0, t1] ∪ (t1, t2] ∪ ... ∪ (ti, ti+1] ∪ ... ∪ (tI−1, T ] (4.86)

for each time step i ∈ {1, ..., I}, t ∈ (ti−1, ti], the corresponding reference mesh configurations
Ωb
h,i−1, Ωp

h,i−1 and deformed mesh configurations Ωb
h,i, Ωp

h,i are defined. Then within each time
step i ∈ {1, ..., I}, the coupled one cell problem is solved in the following operator splitting way:

1. Solve the Biot poroelasticity problem (4.4)–(4.6) on Ωp
h,i−1 with the initial, interface and

boundary conditions (4.28)–(4.32) for the the displacement, pore pressure and solid phase
velocity (usp, pp, vsp):

∇ ·
{
µs
(
∇usp + (∇usp)T

)
+ λs∇ · uspI − ppI

}
= 0 in Ωp

h,i−1, (4.87)

∇ ·
(
vsp − k

µf
∇pp

)
= 0 in Ωp

h,i−1, (4.88)

vsp − ∂tusp = 0 in Ωp
h,i−1, (4.89)
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usp := 0 in Ωp
h,0, (4.90)

k

µf
∇pp · n := Lp

(
pp − pb − π∆

)
at Γih,i−1, (4.91){

µs
(
∇usp + (∇usp)T

)
+ λs∇ · uspI

}
· n := (pp − pb) · n at Γih,i−1, (4.92)

usp := 0 at Γpinh,i−1, (4.93)

∇pp := 0 at Γpinh,i−1, (4.94)

where Γpinh,j ≡ Γpinh,0 for all j ∈ {1, ..., I} is the fixed inner boundary. The values of the
parameters (µs, λs, k, µf , Lp) are listed in Table 3.1, the value of the extracellular pressure
pb on the RHSs of (4.91), (4.92) is taken from the Stokes solution for time step ti−1:

pb := pb(ti−1),

which is available from step 4 of the previous cycle. The transmembrane osmotic pressure
difference π∆ on the RHS of (4.91) is approximated as specified in (4.108).

If necessary, the intracellular fluid velocity vfp at the time step ti can be evaluated from
the solution of the Biot problem (4.87)-(4.94) using the relation (4.7):

vfp = vsp − k

γfµf
∇pp in Ωp

h,i−1. (4.95)

2. Solve the Stokes domain deformation equation (4.3) with the interface and boundary
conditions (4.17), (4.12):

∆ub = 0 in Ωb
h,i−1, (4.96)

ub := usp at Γih,i−1, (4.97)
ub := 0 at Γbwh,0, (4.98)

where usp on the RHS of (4.97) is the solution of (4.87)-(4.94) for the displacement obtained
in step 1:

usp := usp(ti−1). (4.99)

3. Update (move) the interface and the nodes (coordinates) of the grids (meshes) Ωp
h, Ωb

h of
the Biot and Stokes domains with the corresponding displacements usp, ub:

Ωp
h,i :=

{
xpi = xpi−1 + usp(xpi−1, ti−1)

∣∣∣ xpi−1 ∈ Ωp
h,i−1

}
,

Ωb
h,i :=

{
xbi = xbi−1 + usp(xbi−1, ti−1)

∣∣∣ xbi−1 ∈ Ωb
h,i−1

}
.

(4.100)

4. Solve the Stokes equations (4.1)–(4.2) with the boundary and interface conditions (4.14),
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(4.15) for the fluid velocity and hydraulic pressure (vb, pb):

∇ ·
{
−pbI + µf

(
∇vb + (∇vb)T

)}
= 0 in Ωb

h,i, (4.101)

∇ · vb = 0 in Ωb
h,i, (4.102)

vbn :=
(
vsp − k

µf
∇pp

)
n

at Γih,i, (4.103)

σbn =
(
−pbI + µf

(
∇vb + (∇vb)T

))
n

:= 0 at Γbwh,i, (4.104)

where Γbwh,j ≡ Γbwh,0, ∀j ∈ {1, ..., I}, are the external fixed extracellular walls. In the RHS of
(4.103), vsp, pp are the solid phase velocity and pore fluid pressure solutions of the Biot
problem that were obtained in step 1:

vsp := vsp(ti−1),
pp := pp(ti−1).

Notice that (4.104) is a homogeneous Neumann boundary condition. If the derivatives of
the bulk fluid velocity vb disappear in the vicinity of Γbw, then this condition corresponds
to a pressure boundary condition, i.e.

(4.104) ⇔ pb := 0 at Γbwh,i.

4.5 Software related aspects
All simulations presented in this thesis were implemented based on the Distributed and Unified
Numerics Environment (DUNE), [172], a powerful C++ library for the solution of PDEs in
the context of high-performance computing. In particular, the external discretisation module
dune-pdelab, [173], was used for the implementation of both the Stokes and Biot equations;
dune-multidomaingrid module developed by Steffen Müthing, [174], was used as the founda-
tion for the multi-domain coupling. Significant parts of the technically challenging aspects of
the coupling terms and local operators of the coupled Biot-Stokes problem simulations were
implemented by Dr. Felix Heimann (former researcher at the IWR, Heidelberg University), who
also assisted in conducting and evaluating these simulations.

The algebraic systems which resulted from the discretisation of the weak problem formulation
were solved with the direct solver SuperLU, [175]. For the rather simple and restricted geometries
considered in this thesis, this approach provided acceptable run-times. On the platform Intel(R)
i3-3217U CPU 1.80GHz, none of the presented simulations required more than 8 hours for the
3D-simulations and 1 hour for the 2D-simulations of the coupled problem. It should be noted,
that there are various ways in which the run-time of the numerical solution of the presented
Biot-Stokes problem could be improved, and that simulations with significantly higher numbers
of degrees of freedom are certainly feasible.
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4.6 Numerical implementation

The implemented problems and corresponding numerical simulation results presented in this
work can be subdivided into four general groups and are thus discussed in detail in their respec-
tive sections. In order to verify the numerical implementation of the Biot problem, the analytic
and numerical solutions of the Pure Biot problem are compared in Section 4.6.1. In Section
4.6.2, the swelling of a spherically (d = 3) and rotationally (d = 2) symmetric ICS (Pure Biot
problem) with the estimated parameters, initial and boundary values is simulated. Then the
sensitivity of the Pure Biot problem solution to the variations of some of the physical parameters
is tested and analysed. In Section 4.6.3, the swelling of a rotationally symmetric (i.e. circular
for d = 2) poroelastic cell surrounded by extracellular bulk fluid (Coupled Biot-Stokes problem)
is simulated. The obtained solution for the Biot sub-problem is compared with the solution for
the Pure Biot problem described in Section 4.6.2. In Section 4.6.4, the Coupled Biot-Stokes
problem, where the geometry of the Biot domain is non-trivial, is simulated and the effect of
the Biot domain geometry on the solution of the Coupled Biot-Stokes problem is analysed.

In the simulations that are described in Sections 4.6.2, 4.6.3, 4.6.4, the parameters characterising
the physical living cell and extracellular environment, as well the data corresponding to the
experimental settings are used. The values discussed in Section 3.1 (further referred to as the
estimated values) are obtained in the SI units. In order to equilibrate the numerical residual
and achieve a numerically stable computation of the residual Jacobian matrix using the method
of numerical differentiation, alternative units were employed. In particular, the SI units [m, kg,
s, mol] are translated into the units [µm, mg, min, mol]1 and are listed in Table 3.6.
Some of the values estimated in Section 3.1 (i.e. osmotic pressures, velocities, times) vary de-
pending on the assumption on the osmolyte permeability of the membrane. In particular, the
membrane is assumed to be either strictly (not permeable to the osmolytes) or leaky (perme-
able to the osmolytes) semipermeable, thus the strict and leaky membrane assumptions are
distinguished. Simulation results shown in Section 4.6.2 are available for both assumptions; in
Sections 4.6.3, 4.6.4, the membrane is assumed to be strictly semipermeable.

Volumes
At each t ∈ (0, T ), the ICS volume V p is computed through the sum of the volume integrals
over the mesh cells; the intracellular fluid volume V fp(t) is then evaluated using the porosity
concept, i.e. V fp := γfV p. As the total volume V is constant, the extracellular fluid volume
V b(t) can be found as the difference: V b := V − V p.
Volumetric transmembrane fluid flux jΣ is defined as the surface integral of the transmembrane
Neumann flux (4.91). Then the volume V Σ(t) of the transmembrane fluid that has crossed the
interface of the ICS Ωp by the time t is computed as:

V Σ(t) :=
∑

t∈(0,T )
jΣ(t). (4.105)

Osmotic transmembrane pressure difference (OTPD)
As mentioned above, the intracellular and extracellular concentrations cfp, cb are assumed to be

1 In this thesis, these units are referred to as the numerics units.
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spatially constant at all times. Thus at each time step t, the OTPD is computed as:

π∆(t) := Cosmc
∆(t) = Cosm

(
cfp(t)− cb(t)

)
= Cosm

(
afp(t)
V fp(t) −

ab(t)
V b(t)

)
, (4.106)

where Csom is the osmotic pressure model coefficient, afp, ab are the intracellular and extra-
cellular amounts of substance and V fp, V b are the intracellular and extracellular fluid volumes
respectively. In the strict membrane case, the amounts of substance afp, ab are constant and
equal to their initial values. For the leaky membrane assumption, the transmembrane exchange
of osmolytes is assumed to be linear in time, such that:

afp(t) = afp0 + a∆(t),
ab(t) = ab0 − a∆(t),

a∆(t) := a∆
T − a∆

0
T

t+ a∆
0 , (4.107)

where the initial and terminal values a∆
0 , a∆

T as well as the swelling time T correspond to their
estimated values discussed in Section 3.1, in particular, T := 558 min for d = 3, T := 740 min
for d = 2. The implications of such choice of the amount of substance exchange function are
discussed in the context of the analysis of the Pure Biot with leaky semipermeable membrane
problem implementation results in Section 4.6.2.
Using (4.107) and the above described volume relations, (4.106) can be found as:

π∆(t) := Cosm

(
afp(t)
γfV p(t) −

ab(t)
V − V p(t)

)
. (4.108)

4.6.1 Verification of the Biot problem implementation
Problem: Pure Biot problem (4.23)-(4.25) (or (4.60)) for the solid phase displacement, pore
pressure and solid phase velocity (usp, pp, vsp). At the inner and outer boundaries Γpin, Γi(t),
pure Dirichlet conditions (4.64), (4.65) for the displacement usp and pressure pp are prescribed.

Domain: Ωp(t) ∈ Rd, d = {2, 3}, – spherically (d = 3) or rotationally (d = 2) symmetric with the
inner radius r = a at Γpin and outer radius r = b at Γi(t), see Fig. 4.4. The 2- and 3-dimensional
meshes approximating the Pure Biot domain are shown in Fig. 4.5.

The dimensions of the domain, parameters, initial and boundary conditions are chosen as:

a := 0.5, b := 1;
λs := 573, µs := 230, µf := 0.02, k := 10−6;

usp(x, 0) := 0 ∀x ∈ Ωp
0;

d = 2 : usp(a) := 0.01, usp(b) := 0.02, pp(a) := 100, pp(b) := 200 ∀t ∈ (0, T ),
d = 3 : usp(a) := 0.1, usp(b) := 0.2, pp(a) := 10, pp(b) := 100 ∀t ∈ (0, T ).

The above described instationary Pure Biot problem is solved on coarse and refined (finer) fixed2

meshes for a number of time steps until it reaches a stationary equilibrium. In Fig. 4.6, the

2 In this context, the term "fixed" means that the reference mesh is not updated (i.e. moved with the computed
displacement) after each time step.
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equilibrium numerical solution for the displacement usp (Fig. 4.6a, 4.6b) and hydraulic pressure
pp (Fig. 4.6c, 4.6d) obtained on the coarsest mesh level (Fig. 4.5) is compared to the analytic
solution of the stationary Biot problem derived in Section 4.3 (i.e. (4.71), (4.73) for d = 2,
(4.81), (4.83) for d = 3). In Table 4.1, an L2-convergence is shown by computing L2-errors
(Err2) between the analytic solution and numerical solutions computed on a series of refined
meshes. Thus for a quantity q defined over Ωp, such that qa, qn are the analytic and numerical
solutions of the Biot problem respectively, Err2 is defined as:

Err2(q) :=
(∫

Ω
(qa(x)− qn(x))2 dx

)1/2
. (4.109)
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Figure 4.5 Pure Biot problem meshes.
On the pictures below, computation meshes for the 2- and 3-dimensional Pure Stokes problem
considered in Section 4.6.1 are shown on the coarsest mesh level.

Table 4.1 Comparison between numerical and analytic Biot problem solutions.
The tables below show convergence behaviour of the discrete 2- and 3-dimensional Biot problem
solution for the deformation usph and hydraulic pressure pph on a sequence of refined meshes. For
each refinement level, the numbers of nodes, cells, degrees of freedom (DOF), as well as the
L2-errors (Err2 defined in 4.109) between the analytic and numerical solutions are given.

d = 2

Err2

Level Nodes Cells DOF usp pp

0 1000 1840 5000 6.25e-05 7.15e-02
1 3840 7360 19200 1.61e-05 1.80e-02
2 15040 29440 75200 4.11e-06 4.52e-03
3 59520 117760 297600 1.03e-06 1.13e-03
4 238800 471040 1184000 2.60e-07 2.83e-04

d = 3

Err2

Level Nodes Cells DOF usp pp

0 552 1777 13980 4.08e-03 1.49e+01
1 3372 14216 92394 1.09e-03 4.76e+00
2 22930 113728 662932 2.91e-04 1.37e+00
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Figure 4.6 Numerical vs analytic Biot problem solution.
On the pictures below, the numerical equilibrium solutions of the 2- and 3-dimensional Biot
problem (described above in Section 4.6.1) for the deformation usph and hydraulic pressure pph
on the coarsest mesh level are compared to the analytic solutions usp, pp of a stationary Biot
problem. Finer level solutions look very much the same and are thus not shown.

(a) Displacement, d = 2:

usph (numerical solution) usp (analytic solution)

0.00767

0.01 0.014 0.018

0.02

(b) Displacement, d = 3:

usph (numerical solution) usp (analytic solution)

0.0962

0.1 0.14 0.18

0.2
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Figure 4.6

(c) Hydraulic pressure, d = 2:

pph (numerical solution) pp (analytic solution)

0.00767

0.01 0.014 0.018

0.02

(d) Hydraulic pressure, d = 3:

usph (numerical solution) usp (analytic solution)

0.0962

0.1 0.14 0.18

0.2
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4.6.2 Pure Biot problem with the estimated data. Parameter sensitivity

Problem: pure Biot problem (4.23)-(4.25) (or (4.60)) for the solid phase displacement, pore
pressure and solid phase velocity (usp, pp, vsp). At the boundaries, Dirichlet and Neumann
conditions (4.28), (4.30) for the displacement usp and Neumann conditions (4.27), (4.29) for the
pore pressure pp are prescribed. The parameters, initial and boundary conditions correspond to
the estimated data written in the numerics units, see Section 3.3.

Domain: Ωp(t) ∈ Rd, d = {2, 3}, – spherically (d = 3) or rotationally (d = 2) symmetric with
the inner radius r = a at Γpin and outer radius r = b at Γi(t), see Fig. 4.4.

It should be noted, that while in this section only the Biot problem is simulated, the conditions
at the outer boundary of the Biot domain are chosen as to mimic the most significant effects of
the extracellular Stokes domain. In particular, at Γi, the hydraulic extracellular pressure pb is
assumed to remain constant, i.e. pb := 0, and the osmotic pressure difference π∆ is computed
according to (4.108), (4.107).

4.6.2.1 Simulations with the estimated data

The equilibrium (terminal swollen state) is assumed to be achieved, when the fluid flow and
solid phase velocities, as well as the deformation and volume growth (change) are zero. As can
be seen on Fig. 4.7, the cell approaches its equilibrium state at times t ≈ 10 min (d = 3), t ≈ 15
min (d = 2) for the strict membrane assumption, and t ≈ 585 min (d = 3), t ≈ 780 min (d = 2)
for the leaky membrane assumption. In order to demonstrate the behaviour of the numerical
solution, the simulation times are terminated at t = 30 min and t ≈ 590 min (d = 3), t ≈ 785
min (d = 2) for the strict and leaky membrane assumptions respectively.

The results of the simulations show good agreement with the estimates made in
Section 3.1. In particular, using the physical parameters, initial domain dimensions, initial
and terminal amounts of substance from the Tables 3.5, 3.6 as the input values for the numerical
implementation, the obtained growth characteristics (i.e. deformations, volumes, etc.), average
(characteristic) velocities and equilibration times are found to be reasonably close to the corre-
sponding estimated values, see Table 4.2. It is also shown (see Table 4.2, Fig. 4.7) that with
mesh refinement, the simulation results get (slightly) closer to the estimated values. The general
improvement of the numerical solution to the Biot problem with mesh refinement is shown in
Section 4.6.1, where the numerical and analytic Biot problem solutions are compared.
As shown in Fig. 4.8, the numerical solution of the Biot problem with the estimated data for
the displacement usp is smooth and radially monotonous.

As described in Section 3.1, in case the membrane is assumed to be strictly semipermeable,
the initial transmembrane concentration (and thus osmotic pressure) difference is highest in
the beginning of the observation and falls to its estimated terminal (equilibrium) value due
to the outflow of water from the extracellular into the intracellular space. Thus on the strict
membrane assumption plots (Fig. 4.7a, 4.7b), the transmembrane fluid flux jΣ and solid velocity
vsp gradually decrease to zero, while the deformation usp and ICS volume V p smoothly converge
to their equilibrium values.
In case the membrane is assumed to be leaky semipermeable, the transmembrane osmotic pres-
sure difference is initially much lower, yet over time it changes not only due to the flow of water,
but also because of the ICS-ECS exchange of the osmolytes, as prescribed in (4.107). Due to
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the choice of the amount of substance exchange function a∆, the magnitudes of the OTPD at
each time step are so small, that the Biot system is close to its equilibrium at each t ∈ (0, T ).
Therefore as soon as a∆ reaches its terminal value (at a pre-determined time T ), the ultimate
equilibrium state of the Biot system is rapidly achieved. Thus as shown in Fig. 4.7c, 4.7d, under
the leaky membrane assumption, abrupt transitions of the measured quantities from t = 0 to
t > 0 and then from t ≈ T into their equilibrium values for t > T are observed. For the ap-
proximation of a∆ by a function that smoothly decreases to zero, the evolution of the numerical
solution into its equilibrium can naturally be expected to be smoother.

The algorithm that realises the movement of the mesh nodes is verified through the computation
of the numerical volume growth error V p

err, which is defined as the absolute value of the relative
difference between the cell volume growth V p

∆ := V p
T −V

p
0 and the volume V Σ of the fluid crossing

the interface of the cell:

V p
err :=

∣∣∣∣∣V
p

∆ − V
Σ

V p
∆

∣∣∣∣∣ =
∣∣∣∣∣V

p
T − V

p
0 − V Σ

V p
∆

∣∣∣∣∣ . (4.110)

The magnitude of V p
err is found to be small, which is demonstrated in Table 4.2.
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Table 4.2 Pure Biot problem simulations with the estimated data.
The data given below was obtained for the 2- and 3-dimensional Biot problem simulations with
the (estimated) parameters and initial values (from table 3.6) for the strict and leaky membrane
assumptions on mesh refinement levels 0, 1 (denoted as L0, L1). The following quantities are
evaluated: uT – final (terminal) displacement, Ap0 – initial surface area of in the ICS Ωp, Ap0 –
final surface area of the ICS Ωp, π∆

0 – initial transmembrane osmotic pressure difference, π∆
T –

final transmembrane osmotic pressure difference, V p
0 – initial volume of the ICS Ωp, V p

T – final
volume of the ICS Ωp, V p

∆ := V p
T − V

p
0 – increase (growth) of the ICS volume, V p

err – numerical
volume growth error defined in (4.110). As discussed above in Section 4.6.2, the simulations are
terminated at T := 30 min for the strict membrane assumption and at T := 780 min (d = 2),
T := 585 min (d = 3) for the leaky membrane assumption. All initial values are computed
(given) at t = 0, final values – at t = T .

Strictly semipermeable membrane assumption

d = 2 d = 3
Unit L0 L1 L0 L1

T min 30.0 30.0 30.0 30.0
uT µm 5.475 5.490 4.626 4.667
V p

0 µmd 7732 7770 4952e2 5151e2
V p
T µmd 9543 9588 6471e2 6731e2
V p

∆ µmd 1810 1818 1519e2 1579e2
V p
err – 2.51e-3 1.13e-3 7.15e-3 3.00e-3
Ap0 µmd−1 344.27 344.65 307.55e2 314.13e2
ApT µmd−1 378.766 379.161 367.06e2 374.88e2
π∆

0 mg/µmd−2min2 7.425e14 7.389e14 9.436e8 9.070e8
π∆
T mg/µmd−2min2 1.357e13 1.397e13 1.531e7 1.536e7

Leaky semipermeable membrane assumption

d = 2 d = 3
Unit L0 L1 L0 L1

T min 780.0 780.0 585.0 585.0
uT µm 5.487 5.505 4.627 4.668
V p

0 µmd 7732 7770 4952e2 5151e2
V p
T µmd 9547 9594 6471e2 6731e2
V p

∆ µmd 1815 1823 1519e2 1579e2
V p
err – 7.16e-5 3.29e-5 1.57e-4 8.23e-5
Ap0 µmd−1 344.27 344.65 307.55e2 314.13e2
ApT µmd−1 378.841 379.259 367.06e2 374.89e2
π∆

0 mg/µmd−2min2 3.044e10 3.029e10 1.051e4 1.010e4
π∆
T mg/µmd−2min2 1.283e13 1.284e13 1.529e7 1.528e7

115



4 Numerics and simulations

Figure 4.7 Pure Biot problem simulations with the estimated data.
The plots below show the 2- and 3-dimensional Pure Biot problem simulation results on mesh
refinement levels 0, 1, for such quantities as the ICS volume V p (Volume, [µmd]), volumetric
transmembrane fluid flux jΣ (Water flux, [µmd/min]), maximum value (over mesh cells) of the
ICS deformation usp (Max. Deformation, [µm]), max. value of the ICS deformation velocity
vsp(t) := ∂tu

sp(t) (Max. Solid velocity, [µm/min]). All quantities are shown to develop over
time t ∈ (0, T ), [min], where T := 30 min for the strict membrane assumption and T := 585 min
(d = 3), T := 780 min (d = 2) for the leaky membrane assumption.

(a) Strictly semipermeable membrane assumption, d = 3:
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Figure 4.7

(b) Strictly semipermeable membrane assumption, d = 2:
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Figure 4.7

(c) Leaky semipermeable membrane assumption, d = 3:
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Figure 4.7

(d) Leaky semipermeable membrane assumption, d = 2:
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Figure 4.8 Pure Biot problem simulations with the estimated data: deformation
solution.
On the pictures below, the initial and terminal magnitudes of the deformation function usp over
the ICS Ωp are shown for the 2- and 3-dimensional Pure Biot problem simulations with the
estimated parameters (from Table 3.6, strict membrane assumption) on mesh refinement level 1.
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4.6.2.2 Parameter sensitivity

The parameters chosen for the sensitivity analysis are the porosity (solidity) γf (γs), elasticity
coefficients λs, µs, membrane water permeability Lp and ICS (Biot domain) permeability k.
The reference parameters correspond to the estimated (physical living cell) parameter values
that are listed in the numerics units in Table 3.6, namely:

d = 3 : γf := 0.5, Lp := 1.67 · 10−9, λs := 51.0 · 106, µs := 13.0 · 106; (4.111)
d = 2 : γf := 0.5, Lp := 1.67 · 10−15, λs := 51.0 · 1012, µs := 13.0 · 1012, (4.112)

where the parameter units are:[
γf
]

= [–] , [Lp] =
[
µmd−1min/mg

]
, [λs] , [µs] =

[
mg/µmd−2min2

]
, d = {2, 3} . (4.113)

For each parameter, the results of the simulations obtained for the reference parameter set are
compared to the simulation results in which the chosen parameter is varied, while the other
parameters preserve their reference values.
The simulation results given in this section are obtained for the 2- and 3-dimensional Biot
problem under the strict membrane assumption. In order to compare the equilibration times,
the characteristic growth time tgc, i.e. the time by which approximately (1−1/e) ·100% (≈ 63%)
of the total ICS volume growth is reached, is defined:

tgc : V p
tgc − V

p
0 := (1− 1/e) · (V p

T − V
p

0 ) . (4.114)

The interdependence of the Biot problem quantities can be reflected through the following
general laws and conditions:

• Normal flux interface (boundary) condition (4.91),

γf (vfp − vsp) · n =: jp · n = Lp
(
p∆ + π∆

)
at Γi(t)×(0, T ), (4.115)

relates the normal flux jpn (and so the permeability γf , normal fluid and solid phase
velocities vfpn , vspn ), membrane permeability Lp, osmotic and hydraulic transmembrane
pressure differences π∆, p∆. From this condition it follows, that at the equilibrium state,
the osmotic and hydraulic pressure differences must be equal.

• Continuity of normal stresses condition (4.30), that following (3.28), at the equilibrium
state can be approximated as:

p∆
T =MuspT

lp
, M :=

{
2(λs + µs) d = 2,

(3λs + 2µs) d = 3,
(4.116)

relates the equilibrium deformation uspT , domain size lp, elasticity coefficients µs, λs and
equilibrium hydraulic transmembrane pressure difference p∆

T .

• As indicated in Chapter 3, under the swelling cell conditions, the admissibility condition
leads to the following relation between the absolute values of the normal fluid and solid
phase velocities vfpn , vspn of the poroelastic Biot domain:

|vfpn | ≈ |vspn |. (4.117)
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Porosity γf
Porosity of a porous medium defines the relative volume of fluid contained in the medium. Thus
as follows from (4.108), for given fixed intracellular and extracellular amounts of substance afp,
ab and ICS volume V p, the transmembrane osmotic pressure difference is inversely proportional
to the porosity. As suggested by (4.115), (4.115)&(4.117) and (4.115)&(4.116), the fluid flux jp,
normal solid phase velocity vspn , ICS deformation usp (and thus the ICS volume V p) can also
be expected to be inversely proportional to the porosity. It should be noted, that due to the
non-trivial dependence of the OTPD on the porosity and intracellular fluid volume, the rates of
change of the above mentioned quantities should not be expected to coincide with the rates of
change in the porosity.
The simulation results for the variation of the porosity by 20% shown in Table 4.3 and Fig.
4.9a, 4.9b agree with the expected response in the values of deformation usp, ICS volume V p,
volumetric transmembrane flux jΣ and solid phase velocity vsp. Thus as shown in Table 4.3 and
Fig. 4.9a, 4.9b, for the 20% increase/decrease of the porosity, the ICS deformation usp decreases
by ≈86.3%/increases by 95.6% respectively (d = 3).

Elasticity coefficients λs, µs
Since the shear modulus and Lame’s first coefficient are related (through the linear elasticity
formula (3.2)), the elasticity coefficients are varied simultaneously. The effect of the ICS elasticity
on the equilibrium displacement (volume) of the domain is reflected through the conditions
(4.115)&(4.116):

jpT = 0 ⇒ π∆
T = p∆

T ⇒ π∆
T =MuspT

lpT
. (4.118)

Condition (4.118) however does not suggest an immediate estimate for the elasticity effect on
the displacement due to the dependence of the osmotic pressure difference π∆ on the domain
volume (and thus the displacement).
The variation of the elasticity coefficients results in a very dampened and non-symmetric re-
sponse of the measured quantities, see Table 4.3 and Fig. 4.9c, 4.9d. Increasing the coefficients
by an order of magnitude results in a decrease of the final deformation by less than 15% percent;
at the same time, the corresponding decrease of the elasticity has no noticeable influence on any
of the measured quantities. These observations are particularly noteworthy, since (as indicated
in Section 3.1) the experiments aimed at estimating the characteristic elastic properties of the
cellular structures are difficult to perform and thus the available results may entail large mea-
surement errors. However the obtained simulation results indicate, that the overall impact of
such errors is partially compensated by a correspondingly low system sensitivity.

Membrane permeability Lp
Since the ICS deformation (and consequently the ICS volume) depend on the elastic properties of
the ICS skeleton and transmembrane pressure difference, but not on the membrane permeability,
their equilibrium values should not be affected by the variations in Lp. As follows from the flux
condition (4.115), the membrane permeability coefficient Lp is the proportionality coefficient
relating the total transmembrane pressure difference to the transmembrane fluid flux. Thus for
the fixed pressure difference and deformation, the change in Lp should result in the proportional
change of the fluid flux, thus (as follows from condition (4.117)) solid phase velocity, thus the
equilibration times.
The simulation results for the variation of the membrane permeability by 50% shown in Table
4.3 and Fig. 4.9e, 4.9f agree with the expected response of the above mentioned quantities.
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4.6 Numerical implementation

ICS Permeability k
Sensitivity tests for the ICS permeability k lead to ambiguous results. For the 2D simulation,
the variation of the parameter by up to 5 orders of magnitude shows no influence on the solution
of the Biot problem, up to what could be caused by numerical errors. In order to obtain results
for the strong permeability reduction, the time step size has to be reduced dramatically, as the
numerical computation becomes unstable for lowered values of k. For the reduction of more
than 5 orders of magnitude, numerical oscillations can no longer be controlled by the time step
size.
Such low sensitivity indicates that the flow of intracellular fluid relative to the cell solid structure
is negligible with regard to the overall system dynamics.
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Table 4.3 Pure Biot problem simulations: parameter sensitivity.
The data below shows sensitivity of the Biot domain Ωp simulations (with the estimated pa-
rameters) to the variations of the porosity (solidity) γf (γs), elasticity coefficients {µs, λs},
membrane permeability Lp. The simulation data is available for dimensions d = 3, d = 2; the
membrane is assumed to be strictly semipermeable. The following quantities are evaluated:
uspmax – maximum value (over mesh cells) of the ICS deformation usp, V p

T – final volume of the
ICS, jΣ

max – max. value of the volumetric transmembrane fluid flux, vspmax – max. value of the
ICS solid phase velocity (vsp(t) := ∂tu

sp(t)), tgc – time by which approximately (1− 1/e) · 100%
of the total growth of the ICS is reached; the total time T is chosen as T := 30 min. The values
are first found for the Biot domain simulations with reference parameters, then one of the tested
parameters is varied, while all other ones preserve their reference values. Reference parameter
values and parameter units are given in (4.111), (4.113).

d=3

uspmax, V p
T jΣ

max vspmax tgc
[µm]

[
µm3] [

µm3/min
]

[µm/min] [min]
Reference parameter set 4.627 647.145e3 49.18e3 1.604 2.4 - 2.8
Varied∗ Value

γf
0.4 8.620 800.939e3 102.34e3 3.253 2.4 - 2.8
0.6 0.202 501.289e3 15.23e3 0.506 2.4 - 2.8

Lp
0.835e-9 4.593 645.955e3 24.31e3 0.802 5.6 - 6.0
3.340e-9 4.627 647.148e3 100.64e3 3.209 0.8 - 1.2

{λs, µs} {51.0e5, 13.0e5} 4.708 650.077e3 49.291e3 1.604 2.4 - 2.8
{51.0e7, 13.0e7} 3.950 623.194e3 48.091e3 1.604 2.0 - 2.4

d=2

uspmax, V p
T jΣ

max vspmax tgc
[µm]

[
µm2] [

µm2/min
]

[µm/min] [min]
Reference parameter set 5.476 9.544e3 392.11 1.241 4.0 - 4.4
Varied∗ Value

γf
0.4 11.050 11.581e3 848.72 2.707 4.0 - 4.4
0.6 1.231 8.124e3 82.40 0.263 4.0 - 4.4

Lp
0.835e-15 5.268 9.471e3 194.46 0.620 8.0 - 8.4
3.340e-15 5.481 9.545e3 777.82 2.481 1.6 - 2.0

{λs, µs} {51.0e11, 13.0e11} 5.574 9.578e3 392.72 1.241 4.0 - 4.4
{51.0e13, 13.0e13} 4.654 9.260e3 388.91 1.241 3.2 - 3.6
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4.6 Numerical implementation

Figure 4.9 Pure Biot problem simulations: parameter sensitivity.
The plots below demonstrate the sensitivity of the ICS Ωp simulations to the variations of the
porosity γf , elasticity coefficients {λs, µs}, membrane permeability Lp and ICS permeability
k over time t ∈ (0, T ), where following the arguments given in Section 4.6.2, the simulations
are terminated at T = 30 min. The simulation data is available for dimensions d = 3, d =
2, the membrane is assumed to be strictly semipermeable. More detailed descriptions of the
plotted quantities are given in Table 4.3. Results corresponding to the simulations with reference
parameters are plotted in red.

(a) Porosity γf , d = 3:
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Figure 4.9

(b) Porosity γf , d = 2:
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4.6 Numerical implementation

Figure 4.9

(c) Elasticity coefficients λs, µs, d = 3:
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Figure 4.9

(d) Elasticity coefficients λs, µs, d = 2:
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Figure 4.9

(e) Membrane permeability Lp, d = 3:
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Figure 4.9

(f) Membrane permeability Lp, d = 2:
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4.6.3 Coupled Biot-Stokes problem with circular Biot domain
Problem: coupled Biot-Stokes problem (4.59), (4.60) for the solid phase displacement usp, pore
pressure pp, solid phase velocity vsp, bulk fluid velocity vb, bulk fluid pressure pb and fluid
domain displacement ub. The parameters, initial, interface and boundary values correspond
to the estimated data values from Tables 3.5, 3.6. The coupled problem is solved following
the operator splitting scheme (4.87)-(4.104). Boundary, initial and interface conditions are as
described in Section 4.4.

Domain: Ω := Ωb(t) ∪ Ωp(t) ∈ Rd, d = {2, 3}, where the Biot domain Ωp(t) is rotationally
symmetric with the inner radius r = a at Γpin and outer radius r = b at Γi(t), ∂Ωp(t) :=
Γpin ∪ Γi(t), located centrally within Ω and completely surrounded by the Stokes fluid Ωb(t),
∂Ωb(t) := Γbw ∪ Γi(t). The geometry of the coupled problem is as shown in Fig. 4.12a.

Here it is shown, that for the coupled Biot-Stokes problem where the Biot domain is rotationally
symmetric (circular), the Stokes fluid velocity is essentially zero and so the Stokes hydraulic
pressure is essentially constant up to numerical fluctuations. Thus the solution of the Pure Biot
problem with appropriate boundary conditions (as described in the beginning of Section 4.6.2)
is almost identical to the solution of the Coupled Biot problem, i.e. the Biot problem solved as
a part of the coupled Biot-Stokes problem.

In Table 4.4, the values of a (one-dimensional) quantity q obtained from the Pure and Coupled
Biot problem solutions (denoted as qp, qc respectively) are compared through the computation
of the L2 and L∞ errors (denoted as Err2 and Errmax respectively), such that:

Err2(q) :=
(∫ T

0
(qp(t)− qc(t))2 dt

)1/2

,

Errmax(q) := max
t

{
|qp(t)− qc(t)| : t ∈ (0, T )

}
.

(4.119)

Relative errors Err∆
2 , Err∆

max are defined as a ratio between the errors Err2, Errmax and the
maximum value of the quantity, i.e. for the quantity q:

Err∆
2 (q) := Err2(q)

qmax
, Err∆

max(q) := Errmax(q)
qmax

. (4.120)

The plots of the Pure and Coupled Biot problem simulation results for certain quantities are
compared in Fig. 4.10a. In Fig. 4.10b, 4.10c, the difference between the Coupled Biot problem
simulation results obtained on mesh refinement levels 0, 1 and Pure Biot problem simulation
results on level 1 is plotted.
The magnitudes of the numerical solutions for the hydraulic pressures, Biot solid phase velocity
and Stokes bulk fluid velocity at several time steps are shown in Fig. 4.11. As expected, the
hydraulic pressure difference between the domains increases in time and the Stokes fluid velocity
is (close to) zero.
Further results for the simulations of the Coupled Biot problem with circular Biot domain can
be found in Section 4.6.4.
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Table 4.4Coupled Biot-Stokes vs Pure Biot problem: circular Biot domain geometry.
Below, the simulation results for the 2-dimensional Pure Biot problem (as described in Section
4.6.2) and Coupled Biot problem (i.e. the Biot problem solved as a part of the coupled Biot-
Stokes problem), where the Biot domains have circular (as shown in Fig. 4.12a) geometry, are
compared on mesh refinement levels 0, 1. In particular, L2 and L∞ errors Err2, Errmax, as well
as the relative errors Err∆

2 , Err∆
max (defined in (4.119), (4.120)) are computed between the Pure

Biot and Coupled Biot simulation results for the terminal ICS volume (V p
T ,
[
µm2]), maximum

value of the volumetric transmembrane fluid flux (jΣ
max,

[
µm2/min

]
), max. ICS deformation

(uspmax, [µm]) and max. ICS deformation velocity (vspmax, [µm/min]). In the implementation of
the pure and coupled problems, the estimated parameters and initial values (from Table 3.6) for
the strictly semipermeable membrane assumption were used.

Level 0 Level 1

Err2 Err∆
2 Errmax Err∆

max Err2 Err∆
2 Errmax Err∆

max

V p
T 3.000e+01 3.14e-3 4.487e+01 4.70e-3 6.538e+00 6.82e-4 7.120e+00 7.42e-4
jΣ

max 5.226e+00 1.33e-2 2.049e+01 5.23e-2 1.168e-01 2.98e-4 2.200e-01 5.66e-4
usp

max 7.807e-02 1.43e-3 1.599e-01 2.92e-3 1.413e-03 2.57e-4 2.020e-03 3.68e-4
vsp

max 2.677e-02 2.16e-2 1.306e-01 1.05e-1 2.748e-04 2.22e-4 1.250e-03 1.01e-3
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Figure 4.10 Coupled Biot-Stokes vs Pure Biot problem: circular Biot domain geom-
etry.
Below, the simulation results for the 2-dimensional Pure Biot problem (as described in Sec-
tion 4.6.2) and Coupled Biot problem (i.e. the Biot problem solved as a part of the coupled
Biot-Stokes problem), where the Biot domains have circular (as shown in Fig. 4.12a) geom-
etry, are compared on mesh refinement levels 0, 1. In particular, the following quantities are
plotted: the ICS volume V p (Volume,

[
µm2]), volumetric transmembrane fluid flux jΣ (Water

flux,
[
µm2/min

]
), maximum value (over mesh cells) of the ICS deformation usp (Max. Deforma-

tion, [µm]), max. value of the ICS deformation velocity vsp(t) := ∂tu
sp(t) (Max. Solid velocity,

[µm/min]). In the implementation of the pure and coupled problems, the estimated parameters
and initial values (from Table 3.6) for the strictly semipermeable membrane assumption were
used. All quantities are shown to develop over time t ∈ (0, T ), [min], where T := 30 min.

(a) Coupled and Pure Biot problem simulations.
The reference plot (in green) corresponds to the pure Biot problem simulations; the results of
the Coupled Biot problem simulations on mesh refinement levels 0, 1 are plotted in blue and
red respectively.
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Figure 4.10

(b) Difference between the Pure and Coupled Biot problem simulation results.
The difference between the simulation results for the Pure Biot problem on mesh refinement
level 1 and Coupled Biot problem on level 0 is plotted in blue; between the Pure and Coupled
Biot problems on level 1 – in red.

0 10 20 30
60

40

20

0

20

V
o
lu

m
e

Level 0
Level 1

0 10 20 30
10

0

10

20

30

W
a
te

r 
Fl

u
x

Level 0
Level 1

0 10 20 30
0.1

0.0

0.1

0.2

M
a
x
. 
D

e
fo

rm
a
ti

o
n

Level 0
Level 1

0 10 20 30

Time

0.05

0.00

0.05

0.10

0.15

M
a
x
. 
S
o
lid

 V
e
lo

ci
ty

Level 0
Level 1

134



4.6 Numerical implementation

Figure 4.10

(c) Difference between the Pure and Coupled Biot problem simulation results on level 1.
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Figure 4.11 Coupled Biot-Stokes problem: circular Biot domain geometry.
On the pictures below, the magnitudes of the hydraulic pressures pp, pb, Biot solid phase velocity
vsp and Stokes fluid flow velocity vb defined on the ICS Ωp and ECS Ωb respectively are shown
at several time steps t ∈ (0, T ), T := 30 min, for the simulations of the 2-dimensional coupled
Biot-Stokes problem (described in the beginning of the section) with the estimated parameters
(strict membrane assumption) on mesh refinement level 1.

(a) Hydraulic pressures pp ∈ Ωp, pb ∈ Ωb:

t = 0 min t = 0.2 min t = 6.2 min t = 30 min

1.3e136.5e120

pp, pb
[
mg/min2]

(b) Biot deformation velocity vsp ∈ Ωp and Stokes fluid flow velocity vb ∈ Ωb:

t = 0 min t = 0.2 min t = 6.2 min t = 30 min

1.240.930.620.310

vsp, vb [µm/min]
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4.6.4 Coupled Biot-Stokes problem with non-trivial Biot domain geometry
Problem: coupled Biot-Stokes problem (4.59), (4.60) for the solid phase displacement usp, pore
pressure pp, solid phase velocity vsp, bulk fluid velocity vfp, bulk fluid pressure pb and fluid
domain displacement ub; boundary and interface conditions are as given in Section 4.4. The
parameters, initial, interface and boundary values correspond to the estimated data values from
Tables 3.5, 3.6. The coupled problem is solved following the operator splitting scheme (4.87)-
(4.104).

Domain: Ω := Ωb(t)∪Ωp(t) ∈ Rd, d = {2, 3}, where the Biot domain Ωp(t), ∂Ωp(t) := Γpin∪Γi(t),
is completely surrounded by the Stokes fluid Ωb(t), ∂Ωb(t) := Γbw ∪ Γi(t). The considered Biot
domain is topologically equivalent to the circular Biot domain described in Section 4.6.3, but
has a non-trivial geometry. In particular, the following two geometry types are considered:

• Variant 0 geometry: four-pointed star with short, wide, smooth (rounded) edges, where
the bounding radius is 51.89 µm, inner radius of the outer boundary – 42.85 µm, and from
the center of which a circle of radius 5 µm is cut out, see Fig. 4.12b.

• Variant 1 geometry: four-pointed star with elongated smooth (rounded) edges, where
the bounding radius is 76.12 µm, inner radius of the outer boundary – 32.95 µm, and from
the center of which a circle of radius 5 µm is cut out, see Fig. 4.12c.

Simulation results for the coupled Biot-Stokes problem for three different geometry types Biot
domain, i.e. Circular, Variant 1, Variant 2 as shown in Fig. 4.12, are compared in Table 4.5
and Fig. 4.13.
In Fig. 4.14a, 4.15a, 4.15b, the magnitudes of the Biot and Stokes domain displacements usp,
ub, and Stokes fluid flow velocity vb are shown at several time steps t ∈ (0, T ) for different
geometries. It can be observed, that while the Stokes velocity appears to reach higher values
with the increase of the Biot domain anisotropy, the observed difference is in fact small. The
chaotic behaviour of the Stokes velocity field at t = 0.01 in Fig. 4.15a is caused by numerical
oscillations, which are rapidly (i.e. max. three time steps) resolved.

Pure and Coupled Biot problem simulation results for the Variant 0, Variant 1 Biot domain
geometries are compared in Table 4.6 and Fig. 4.16. Thus in Table 4.6, the errors Err2, Errmax
and relative errors Err∆

2 , Err∆
max defined in (4.119), (4.120) are computed. In 4.16, several

quantities are plotted.
From these comparisons it follows, that also for the considered less trivial geometries, the sim-
ulation results obtained for the Pure and Coupled Biot problems are almost identical.
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Figure 4.12 Biot-Stokes problem meshes.
On the pictures below, computation meshes for the Biot-Stokes problem with different geometry
types of the Biot and Stokes domains are shown. The Biot domain mesh Ωp

h is depicted in red,
and the Stokes domain mesh Ωb

h – in black.

(a) Circular Biot domain:

level 0 level 1

(b) Variant 0 geometry:

level 0 level 1

(c) Variant 1 geometry:

level 0 level 1 level 2
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Table 4.5 Coupled Biot-Stokes problem simulations: comparison between different
cell geometries.
The data given below was obtained for the 2-dimensional coupled Biot-Stokes problem simu-
lations with physical (estimated) parameters and initial values (given in Table 3.5, 3.6, strict
membrane assumption) on mesh refinement levels 0, 1, 2 (denoted as L0, L1, L2). The results
are compared for three different geometry types of the ICS (Biot domain): Circular, Variant 1,
Variant 2, as shown in Fig. 4.12. The following quantities are evaluated: uT – final (terminal)
displacement, V p

0 – initial volume of the ICS Ωp, V p
T – final volume of the ICS Ωp, V p

∆ := V p
T −V

p
0

– increase (growth) of the ICS volume, V p
err – numerical volume growth error (defined in (4.110)),

Ap0 – initial surface area of the ICS Ωp, ApT – final surface area of the ICS Ωp, π∆
0 – initial trans-

membrane osmotic pressure difference, π∆
T – final transmembrane osmotic pressure difference.

As discussed in Section 4.6.2, the simulations are terminated at T := 30. The total number of
the mesh cells (in both Ωp

h, Ωb
h) is denoted by N .

Circular Variant 0 Variant 1
Unit L0 L1 L0 L1 L0 L1 L2

N – 788 3224 972 3706 1074 3888 14644
uT µm 5.47 5.49 5.79 5.82 7.71 8.35 8.38
V p

0 µm2 7732.9 7764.8 7744.0 7770.7 7735.6 7770.6 7778.1
V p
T µm2 9543.6 9581.7 9558.1 9590.1 9549.1 9592.2 9601.4
V p

∆ µm2 1810.7 1816.9 1814.1 1819.4 1813.6 1821.6 1823.3
V p
err – 8.19e-2 4.08e-2 8.67e-2 4.35e-2 12.69e-2 6.37e-2 3.19e-2
Ap0 µm 313.6 314.0 333.4 335.9 489.2 493.9 494.8
ApT µm 348.1 348.5 370.2 372.9 543.3 548.5 549.
π∆

0 mg/min2 7.42e14 7.34e14 7.41e14 7.39e14 7.42e14 7.39e14 7.38e14
π∆
T mg/min2 1.36e13 1.40e13 1.33e13 1.36e13 1.28e13 1.28e13 1.28e13
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4 Numerics and simulations

Figure 4.13 Coupled Biot-Stokes problem simulations: comparison between different
cell geometries.
The plots below show results for the 2-dimensional coupled Biot-Stokes problem simulations
with the estimated parameters and initial values (given in Tables 3.5, 3.6, strict membrane
assumption) on mesh refinement level 1. The results are compared for three different geometry
types of the ICS (Biot domain): Circular, Variant 1, Variant 2 as shown in Fig. 4.12. The
compared quantities are the ICS volume V p (Volume,

[
µm2]), volumetric transmembrane fluid

flux jΣ (Water flux,
[
µm2/min

]
), maximum value (over the mesh cells) of the ICS deformation

usp (Max. Deformation, [µm]), max. value of the ICS deformation velocity vsp(t) := ∂tu
sp(t)

(Max. Solid velocity, [µm/min]). All quantities are shown to develop over time t ∈ (0, T ), [min],
where T := 30 min.
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4.6 Numerical implementation

Figure 4.14 Coupled Biot-Stokes problem: Circular, Variant 0, Variant 1 geome-
tries.
On the pictures below, the magnitudes of the Biot and Stokes domain displacements usp, ub
and Stokes fluid flow velocity vb are shown at several time steps t ∈ (0, T ), T := 30 min, for the
simulations of the 2-dimensional Biot-Stokes problem (described in the beginning of the section)
with the estimated parameters (strict membrane assumption) on mesh refinement level 1.

(a) Deformations usp ∈ Ωp, ub ∈ Ωb:

t = 0 min t = 6 min t = 12 min t = 6 min
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Figure 4.15

(a) Stokes fluid flow velocity vb ∈ Ωb:

t = 0.01 min t = 6 min

0 0.02 0.04

vb [µm/min]

0 0.11 0.22

vb [µm/min]
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4.6 Numerical implementation

Figure 4.15

(b) Stokes fluid flow velocity vb ∈ Ωb:

t = 12 min t = 18 min

0 0.11 0.22

vb [µm/min]

0 0.005

vb [µm/min]
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Table 4.6 Coupled Biot-Stokes vs Pure Biot problem: non-trivial Biot domain ge-
ometries.
Below, the simulation results for the 2-dimensional Pure Biot problem (as described in Section
4.6.2) and Coupled Biot problem (i.e. the Biot problem solved as a part of the coupled Biot-
Stokes problem), where the Biot domains have non-trivial (variant 0 and variant 1 as shown
in Fig. 4.12b, 4.12c) geometries, are compared on mesh refinement levels 0, 1, 2. In particu-
lar, L2 and L∞ errors Err2, Errmax as well as the relative errors Err∆

2 , Err∆
max (defined in

(4.120)) are computed between the Pure Biot and Coupled Biot simulation results for the termi-
nal ICS volume (V p

T ,
[
µm2]), maximum value of the volumetric transmembrane fluid flux (jΣ

max,[
µm2/min

]
), max. ICS deformation (uspmax, [µm]) and max. ICS deformation velocity (vspmax,

[µm/min]). In the implementation of the pure and coupled problems, the estimated parameters
and initial values (from Table 3.6) for the strictly semipermeable membrane assumption were
used.

Variant 0 geometry

Level 0 Level 1

Value Err2 Err∆
2 Errmax Err∆

max Err2 Err∆
2 Errmax Err∆

max

V p
T 9590.2 4.635e1 4.83e-3 7.787e1 8.12e-3 1.296e1 1.35e-3 3.067e1 3.20e-3
jΣ

max 416.28 1.392e1 3.34e-2 6.878e1 1.65e-1 4.436e0 1.07e-2 2.423e1 5.82e-2
usp

max 5.820 5.535e-1 9.51e-2 6.760e-1 1.16e-1 6.316e-2 1.09e-2 1.580e-1 2.71e-2
vsp

max 1.399 7.478e-2 5.34e-2 1.940e-1 1.39e-1 2.624e-2 1.88e-2 6.558e-2 4.69e-2

Variant 1 geometry

Level 0 Level 1

Value Err2 Err∆
2 Errmax Err∆

max Err2 Err∆
2 Errmax Err∆

max

V p
T 9601.4 4.635e1 4.83e-3 7.787e1 8.11e-3 1.296e1 1.35e-3 3.067e1 3.19e-3
jΣ

max 611.973 1.392e1 2.27e-2 6.878e1 1.12e-1 4.436e0 7.25e-3 2.423e1 3.96e-2
usp

max 8.386 5.535e-1 6.60e-2 6.760e-1 8.06e-2 6.316e-2 7.53e-3 1.580e-1 1.88e-2
vsp

max 2.961 7.478e-2 2.53e-2 1.940e-1 6.55e-2 2.624e-2 8.86e-3 6.558e-2 2.21e-2

Level 2

Value Err2 Err∆
2 Errmax Err∆

max

V p
T 9601.4 < 1e-2 < 1.04e-6 < 1e-2 < 1.04e-6
jΣ

max 611.973 8.780e-2 1.43e-4 4.160e-1 6.80e-4
usp

max 8.386 8.535e-5 1.02e-5 4.115e-4 4.91e-5
vsp

max 2.961 5.700e-6 1.93e-6 < 2.0e-5 < 6.75e-6
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4.6 Numerical implementation

Figure 4.16 Coupled Biot-Stokes vs Pure Biot problem: non-trivial Biot domain
geometries.
Below, the simulation results for the 2-dimensional Pure Biot problem (as described in Section
4.6.2) and Coupled Biot problem (i.e. the Biot problem solved as a part of the coupled Biot-
Stokes problem), where the Biot domains have non-trivial (Variant 0 and Variant 1 as shown
in Fig. 4.12b, 4.12c) geometries, are compared for mesh refinement levels 1 (Variant 0 ) and 2
(Variant 1 ) respectively. In particular, the following quantities are plotted: the ICS volume V p

(Volume,
[
µm2]), volumetric transmembrane fluid flux jΣ (Water flux,

[
µm2/min

]
), maximum

value (over the mesh cells) of the ICS deformation usp (Max. Deformation, [µm]), max. value
of the ICS deformation velocity vsp(t) := ∂tu

sp(t) (Max. Solid velocity, [µm/min]). In the
implementation of the pure and coupled problems, the estimated parameters and initial values
(from Table 3.6) for the strictly semipermeable membrane assumption were used. All quantities
develop over time t ∈ (0, T ), [min], where T := 30 min. The plots corresponding to the Pure
Biot simulation results are shown in red and purple, the Coupled problem results are plotted in
blue and green.
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Summary and outlook

Summary of the work

This work is devoted to the description of the osmotic swelling of a brain cell due to the absorp-
tion of the extracellular fluid during the formation of the cytotoxic oedema. The description of
the considered problem involves:

• development of a physically motivated mathematical model;
• analysis of the relevant experimental data and its integration into the developed model;
• numerical implementation and simulations of the resulting system.

The dynamics of a system comprising of a single swelling cell and surrounding extracellular fluid
is approximated by the coupled Biot-Stokes equations. It is shown, that for the considered data
range, the temporal pressure derivative term of the Biot equations derived from the microscale
is negligible. A set of coupling interface conditions is suggested. The driving force of the
transmembrane osmotic pressure difference and the filtering effects of the cell membrane are
reflected in a coupling condition relating the normal fluid flux to the total pressure difference
across the membrane. The general osmotic pressure model implies the use of the transport
equations for the molar concentrations of the osmotically active substances diluted in the bulk
extracellular fluid and in the fluid phase of the poroelastic intracellular space.
The data characterising the properties of the considered media and the conditions of the ex-
perimental settings is analysed. It then follows, that certain effects and processes included into
the developed general coupled model can be neglected, leading to the formulation of a simpler
(reduced) mathematical model.
The reduced coupled interaction problem is discretized using the FEMs (in space) and the
implicit Euler scheme (in time) and solved following an operator-splitting approach, that results
in apparently stable numerical solutions. The numerical implementations of the two and three
dimensional (pure) Biot problem are verified by comparing the analytic and numerical solutions.
The sensitivity of the Biot problem solution to the variations of (a) the key parameters and (b)
the domain geometry is tested and analysed. The results obtained for the coupled Biot-Stokes
problem indicate, that under the assumptions of the developed model, the influence of the Stokes
domain over the Biot domain solution is small.

Further challenges

In this work, the mechanical properties of the membrane are considered to be a sub-scale effect
and are therefore not explicitly modelled, but incorporated into the elasticity model and its
parametrisation. For certain types of living cell however, the mechanical effects that may influ-
ence the character of cell deformation, such as the ability of the bilipid membrane to preserve
its surface area, may have a significant impact on the dynamics of the cell, and would need to
be considered explicitly.
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4 Numerics and simulations

The works devoted to the modelling and numerical treatment of the bilipid membranes and
their interaction with the surrounding fluids are briefly discussed in the Introduction. However
the modelling approximations of the effects of the membrane and their numerical treatment
described in [7] indicate, that such approach may introduce a new level of complexity into
the already sophisticated model developed in this thesis. Therefore finding a simpler way of
incorporating the effect of the membrane incompressibility into the poroelasticity model may be
greatly advantageous.

The results obtained in this thesis for a singe cell can naturally be viewed as a step in the direction
of approximating the processes that occur on a larger scale – namely, for the description of the
brain tissue. Swelling of the cells influences the overall characteristics of the affected tissue and
contributes to the advancement of the (cerebral) oedema formation. Thus cytotoxic oedema
largely contributes to the creation of the necessary conditions for the development of a volume-
occupying brain tissue oedema, when the extracellular constituents are joint by the substances
from the intravascular space.
Possible approaches to approximating the behaviour of a swelling tissue include homogenization
or averaging techniques, where the equations describing the processes occurring on a microscale
are used as a basis for the development of the macroscale equations. The analysis of the data
and numerical results for the cell swelling model derived in this thesis allows to determine the
dominant effects of the cytotoxic swelling, giving an idea about the key characteristics that need
to be included when developing a tissue model.

Owing to the great complexity of the coupled Biot-Stokes free boundary interaction problem,
its mathematical analysis remains an open and challenging problem.

148



A Appendix

A.1 Reynolds transport theorem and its applications

The derivation of balance laws describing the motion of fluid or an elastic object is based on the
Reynolds transport theorem (or General transport theorem), [176]. Thus consider the following
general problem: an arbitrary domain Ω is moving from its initial configuration Ω̂ := Ω(0) into
a deformed (or current) configuration Ω(t) over time interval (0, T ) under a deformation Xt,
t ∈ (0, T ), such that:

Xt : Ω̂→ Ω(t) ∀t ∈ (0, T ),
x(x̂, t) = Xt(x̂) ∀x ∈ Ω(t)× (0, T ),

where the variables defined on the reference domain and with respect to the reference coordinates
are denoted by "hats": Ω̂ := {x̂}, f̂ := f̂(x̂). For all t ∈ (0, T ) the motion is considered to be
isothermal, and during the observed processes, the mass is neither created nor destroyed.
In the domain Ω(t) consider an arbitrary volume Ωa(t) ⊂ Ω(t), such that its boundary ∂tΩa(t)
is moving with velocity wa(x, t). In case the deformations are such, that no mass is transported
across the boundary of the element Ωa(t), and the surface velocity wa coincides with the particle
(or flow) velocity v(x, t) of the domain Ω(t), such volume is referred to as a material volume (or
material element) and will be denoted as Ωm(t).
Reynolds transport theorem states, that for a function f(x, t) integrated over an (in general
changing in time) arbitrary volume Ωa(t), the following derivation rule applies:

d

dt

∫
Ωa(t)

f(x, t)dV =
∫

Ωa(t)
∂tfdV +

∫
∂tΩa(t)

wa · nfdA.

Ostrogradsky divergence theorem applied to the boundary integral in the RHS of the equation
allows to rewrite the statement of the Transport theorem in a more familiar (commonly used)
form:

d

dt

∫
Ωa(t)

f(x, t)dV =
∫

Ωa(t)
∂tfdV +

∫
Ωa(t)

∇ · (waf)dV. (A.1)

Physical balance laws are commonly derived on the volume conserving domains using the concept
of the material volume. Yet as the problems considered in this thesis involve exchange of mass
(volume) between the domains, the derivations of the balance equations for the problems defined
on in general moving, growing or shrinking domains are described below. It is thus important
to note, that the Reynolds’ theorem is applicable to any arbitrary volume Ωa(t) and is not
restricted to material volumes only. In particular, for a material volume Ωm(t), equation (A.1)
reads:

d

dt

∫
Ωm(t)

f(x, t)dV =
∫

Ωm(t)
∂tfdV +

∫
Ωm(t)

∇ · (vf) dV. (A.2)
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Then for all arbitrary domains Ωa(t) that coincide with the material element Ωm(t) at time
t ∈ (0, T ), one has: ∫

Ωm(t)
∂tfdV =

∫
Ωa(t)

∂tfdV,

and the following relationship between the material derivatives over the material and arbitrary
domains can be derived, [177]:

d

dt

∫
Ωa(t)

f(x, t)dV := d

dt

∫
Ωm(t)

f(x, t)dV +
∫

Ωa(t)
∇ · [f(x, t)(wa(x, t)− v(x, t)]dV. (A.3)

The applications of the Reynolds theorem are described in multiple works, see e.g. [178], [179],
[82]. Below, the derivations of the conservation equations that are used in this work are given. It
should be noted, that the Transport theorem equations are written with respect to the deformed
configuration Ω(t), and so the balance laws are originally obtained in the Eulerian coordinates
(formulation).

Volume of the domain
The transport theorem can be used to find the domain volume change V ∆(t) over time (0, t).
In particular, taking Ωa(t) := Ω(t) and setting f(x, t) := 1 in (A.1) results in:

V ∆(t) , d

dt

∫
Ω(t)

dV
(A.1)=

∫
Ω(t)
∇ · w(x, t)dV, (A.4)

where w is the velocity of the boundary of Ω. Then at each t ∈ (0, T ) the volume of the domain
Ω(t) can be found as:

V (t) ,
∫

Ω(t)
dV := V (0) + V ∆(t),

where V (0) is the initial volume of Ω.

Mass balance law
The conservation of mass equation is obtained by taking the material derivative of mass ma(t)
enclosed in an arbitrary control volume Ωa(t) ⊂ Ω(t) and then applying the Reynolds’ theorem
(A.3):

dma(t)
dt

,
d

dt

∫
Ωa(t)

ρ(x, t)dV (A.3)= d

dt

∫
Ωm(t)

ρ(x, t)dV +
∫

Ωa(t)
∇ · (ρ(x, t)(wa(x, t)− v(x, t)) dV,

where ρ(x, t) is the mass density of the enclosed substance. Since there exists no flow through
the boundary of the material volume, mass mm contained in Ωm(t) must remain constant,

dmm(t)
dt

,
d

dt

∫
Ωm(t)

ρ(x, t)dV = 0,

therefore the mass balance equation reads:

d

dt

∫
Ωa(t)

ρ(x, t)dV (A.3)=
∫

Ωa(t)
∇ · (ρ(x, t)(wa(x, t)− v(x, t)) dV. (A.5)
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The definition of a homogeneous material implies that the density ρ(x, t) does not depend on
the spatial variable x, thus:

ρ(x, t) = ρ(t) ∀x ∈ Ω(t), t ∈ (0, T ).

A homogeneous material is said to be incompressible, if and only if its density ρ(t) is constant
throughout the observed process:

ρ(t) = ρ(0) = const ∀t ∈ (0, T ).

Then for a homogeneous incompressible material the mass balance (A.5) can be simplified as:

d

dt

∫
Ωa(t)

dV =
∫

Ωa(t)
∇ · [wa(x, t)− v(x, t)]dV. (A.6)

Since the above equations are assumed to hold on any arbitrary domain Ωa(t) ⊂ Ω(t), com-
bining (A.6) and the volume change relation (A.4), the classical mass conservation law for an
incompressible flow is obtained:

∇ · v(x, t) = 0
ρ(x, t) = const

∀x ∈ Ω(t), t ∈ (0, T ). (A.7)

Momentum balance laws
Forces applied to volume Ω(t) can be categorized as either volume forces f that act on each
point of the domain, or boundary forces σ · n applied at the boundary of the domain, such that
σ is a stress tensor and n is an outward pointing vector normal to the boundary of Ω(t). From
the First Newton’s law it follows, that the acting forces result in the change of linear momentum
LM , and therefore for each material volume:

LM ,
∫

Ω(t)
ρv dV,

d

dt
LM := d

dt

∫
Ωm(t)

ρv dV =
∫

Ωm(t)
ρf dV +

∫
∂tΩm(t)

σ · n dA,
(A.8)

where A is the area element, ρ is the mass density of the material and n is an outward pointing
vector normal to the boundary of Ω(t). Reynolds’ theorem applied to each scalar component of
vector ρv :=

{
ρvi
}
gives:

d

dt

∫
Ωm(t)

ρvdV
(A.2)=

∫
Ωm(t)

∂t(ρv)dV +
∫

Ωm(t)
∇ · [ρv ⊗ v]dV. (A.9)

Transforming the last term of (A.8) into the volume integral and combining equations (A.8) and
(A.9), the following relation is obtained:∫

Ωm(t)
∂t(ρv)dV +

∫
Ωm(t)

∇ · [ρv ⊗ v]dV =
∫

Ωm(t)
ρf dV +

∫
Ωm(t)

∇ · σ dV.

The equation above is valid for any Ωm(t) ⊂ Ω(t); then for a homogeneous and incompressible
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material (ρ = const), the linear momentum conservation law reads:

ρ∂tv(x, t) + ρ∇ · (v ⊗ v) = ρf +∇ · σ ∀x ∈ Ω(t)× (0, T ). (A.10)

The angular momentum conservation together with the above law implies the symmetry of the
stress tensor σ:

σ = σT . (A.11)

A.2 Structure dynamics: elasticity equations

Conservation Laws
Derivation of the equations describing the motion of an elastic body Ωs(t) ∈ Rn×(0, T ) deforming
from its reference configuration Ω̂s into the current frame Ωs(t) is based on the conservation
principles described above, and consequently the elasticity equations are initially written in the
Eulerian coordinates on the deformed domain Ωs(t). Thus for the deformation mapping T st ,
displacement us(x, t) and deformation velocity vs(x, t) defined as:

T̂ st : Ω̂s → Ωs(t),
T̂ st (x̂) = x(x̂, t),

us := x− x̂ = ûs

vs := dtu
s = ∂tû

s = v̂s,
x ∈ Ωs(t), x̂ ∈ Ω̂s,

the body motion equations for an incompressible material, corresponding to the momentum and
mass conservation laws (A.10), (A.11), (A.7), read:{

∇ · σs + ρsg = ρs∂tv
s

ρs = const
in Ωs(t)×(0, T ), (A.12)

where the volume forces ρsg are assumed to be produced by gravitation g only, ρs is the density
of the material and σs is the (symmetric) Eulerian stress tensor representing the surface forces
acting on Ωs(t).
As the domain is moving, the coordinates of the current configuration Ωs(t) are not known, and
so system (A.12) is incomplete. Moreover, the principle variable of the system is the deformation
us that determines the movement of the domain, and so the coordinates of Ωs(t) depend on the
unknowns of the system. The most intuitive solution to this problem is to rewrite equations
(A.12) with respect to some fixed configuration Ω̃s. Since the domain is actually moved by the
deformation us, the arbitrary domain Ω̃s can be chosen to coincide with the reference undeformed
configuration Ω̂s:

Ω̃s ≡ Ω̂s,

such that the mapping T̂ st defines a Lagrangian transformation of the domain.
In order to rewrite equations (A.12) with respect to the reference coordinates, deformation
gradient tensor F̂ s and its determinant Ĵs are introduced:

F̂ s := ∇̂T̂ st = I + ∇̂ûs,
Ĵs := det(F̂ s).
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It can be shown, that the conservation equations (A.12) transformed into the Lagrangian coor-
dinates take the following form:

∇̂ ·
(
Ĵsσ̂s(F̂ s)−T

)
+ Ĵsρsg = Ĵsρs∂tv̂

s in Ω̂s×(0, T ). (A.13)

The derivation of the relations between the Lagrangian and Eulerian systems is purely technical;
an interested reader can find further details in e.g. [82], [102], and references therein.

Stress Modelling. Hooke’s Law
In case the solid material can be assumed to be elastic, a symmetric Lagrangian stress tensor
σ̂s is found via an elasticity law M s, that relates σ̂s to the non-linear strain tensor Ês:

σ̂s = M s(Ês),

where Ês is defines as

Ês = 1
2((F̂ s)T F̂ s − 1) = 1

2
(
∇̂ûs + (∇̂ûs)T + ∇̂ûs(∇̂ûs)T

)
.

Assuming further, that the stress of the considered elastic material can be approximated by a
linear material law, and that the material is also homogeneous and isotropic, the stress-strain
relation takes the form of the Hooke’s law:

σ̂s = 2µsÊs + λstr(Ês)I,

where the shear modulus µs and Lame’s first coefficient λs are the material parameters of the
medium, that are related to the Poisson’s ratio ν and Young’s modulus E as:

µs := E
2(1 + ν) , λs := Eν

(1 + ν)(1− 2ν) .

St. Venant Kirchhoff materials must also satisfy

3λs + 2µs > 0, µs > 0, ν > 0, E > 0.

Small deformations: linear strain tensor
From the definitions of deformation gradient F̂ s and determinant Ĵs, it follows that in case for
all t ∈ (0, T ) the deformations are small compared to the size of the domain, the deformation
gradient is expected to be small, such that F̂ s can be approximated by the identity matrix, such
that Ĵs ≈ 1:

‖ûs‖ � ‖x̂‖ ∀t ∈ (0, T ) ⇒ ‖∇̂ûs‖ � 1 ⇒ F̂ s := I + ∇̂ûs ≈ I, Ĵs ≈ 1. (A.14)

Therefore the strain and stress elasticity tensors reduce to:

Ês = ε̂ := 1
2
(
∇̂ûs + (∇̂ûs)T

)
,

σ̂s = µs
(
∇̂ûs + (∇̂ûs)T

)
+ λs∇̂ · ûsI, (A.15)
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and so the motion equations formulated on the reference domain for a linear homogeneous
isotropic elastic material undergoing small deformations can be written as:

∇̂ ·
(
µs
(
∇̂ûs + (∇̂ûs)T

)
+ λs∇̂ · ûsI

)
+ ρ̂sg = ρ̂s∂ttû

s in Ω̂s. (A.16)

Further details on the derivation and applicability of the linear elasticity equations can be found
in e.g. [131], [180], [82].

A.3 Fluid Dynamics

Conservation Laws
Assume that some amount of incompressible fluid is moving within (flowing through) a volume
Ωf (t) with velocity vf (x, t), where Ωf (t) is an in general deforming domain. The conservation
laws (A.7), (A.10) written for an incompressible homogeneous fluid flow through Ωf (t) read:

ρf∂tv
f + ρf (vf · ∇)vf = ρfg +∇ · σf in Ωf (t)×(0, T ), (A.17)

∇ · vf = 0 in Ωf (t)×(0, T ), (A.18)

where g is the volume force density corresponding to gravity, mass density ρf is constant, and
stress tensor σf is symmetric.

Stress Modelling. Stokes Equations
Assuming that the material filling Ωf (t) can be modelled as a Stokes fluid, the stress tensor
σf can be represented as the sum of a spherically symmetric tensor σfsph and a shear tensor σfsh:

σf := σfsph + σfsh,

such that the spherical part of the tensor σf is proportional to the hydraulic fluid pressure pf
and the shear stress is linked to the strain rate tensor Ef via a material law Mf :

σfsph := −pfI,

σfsh := σfsh
T

= Mf (Ef ),

where the strain rate tensor is proportional to the velocity gradient:

Ef := 1
2
(
∇vf + (∇vf )T

)
.

Assuming that the material law of the isotropic fluid is linear, i.e.

σfsh = 2µfEf + λf tr(Ef )I (A.19)

for the material constants µf , λf (µf is the dynamic fluid viscosity, λf is the bulk viscosity),
and noticing that the last term in (A.19) cancels due to the incompressibility condition (A.18):

tr(Ef ) = ∇ · vf = 0,
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a law for the Newtonian fluid stress tensor is obtained:

σf =− pfI + 2µf
(
∇vf +∇vf T

)
.

Incompressibility condition can also be used when applying the divergence operator to the stress
tensor in (A.17):

∇ · σf = −∇pf + µf (∆vf +∇(∇ · vf )) = −∇pf + µf∆vf ,

and so the conservation equations for the flow of an isothermal incompressible Newtonian fluid
take the form of the Navier-Stokes equations:−∇p

f + µf∆vf + ρfg = ρf
(
∂tv

f + (vf · ∇)vf
)

∇ · vf = 0
in Ωf (t)× (0, T ). (A.20)

Deforming domain: ALE formulation
The above formulated equations are written in the Eulerian coordinates on the current domain
Ωf (t). Fluid flow problems are often formulated on fixed domains, such that the coordinates
of the deformed configuration Ωf (t) coincide with the reference frame, i.e. Ωf (t) ≡ Ω̂f for all
t ∈ (0, T ), and are therefore known. However in case the domain is deforming, the position
of Ωf (t) and therefore the Eulerian coordinates {x} are unknown. Therefore a law (mapping)
describing the evolution of the domain Ωf (t) must be provided:

T̂ ft : Ω̂f → Ωf (t) ∀t ∈ (0, T ),

such that T̂ ft maps each point x̂ of the reference domain into the deformed domain, and the
domain displacement function ûf (x̂, t) as well as the domain deformation velocity ŵf (x̂, t) can
be defined for all x̂ ∈ Ω̂f as:

T̂ ft (x̂) = x(x̂, t),
ûf (x̂, t) = uf (x, t) = x(x̂, t)− x̂,

ŵf := ∂tT̂
f
t = ∂tû

f ,
x ∈ Ωf (t), x̂ ∈ Ω̂f .

It should be noted, that the domain deformation velocity wf is in general not related to the flow
velocity v, and so v(x, t) 6= w(x, t).
Unless T̂ f or ûf are explicitly given, they need to be constructed. Apart from being sufficiently
regular, domain displacement ûf must satisfy the conditions at the moving boundaries:

ûf = û at Γ̂f×(0, T ), (A.21)

where û is the displacement of the domain boundaries. In other regards T̂ f can be chosen
arbitrarily. A mapping that fulfils the above requirements is called an Arbitrary Lagrangian-
Eulerian transformation.
In case the domain boundaries are smooth enough (i.e. there are no sharp edges), mapping T̂ f
can be chosen such that the displacement ûf satisfies Laplace’s equation:

∆̂ûf (x̂(x, t)) = 0 in Ω̂f×(0, T ). (A.22)

If the boundary deformation û is known for all t ∈ (0, T ), Laplace’s equation (A.22) with the
boundary conditions (A.21) can be solved for the displacement ûf independently of the fluid
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problem. Then the deformed configuration is found through the solution of (A.22), (A.21):

x(x̂, t) = x̂+ ûf ∀x ∈ Ωf (t).

The settings of the interaction problems considered in this work are however such, that û(x̂, t) is
a solution of the equations describing the movement of a domain Ωi(t) that borders Ωf (t), and
the equations on Ωf (t) and Ωi(t) can not be solved independently due to the coupling conditions
at the common interface. Deformation û does depend on the solution of the fluid flow equations
as a result of interaction between Ωf (t) and Ωi(t) exerting stresses on each other.
As noted in Section A.2, the equations including the domain deformation function as an unknown
must be solved on a fixed (reference) domain, therefore the fluid flow equations (being a part of
an interaction problem) must be written with respect to fixed coordinates. It can be shown (see
e.g. [82]), that the conservation equations (A.12) take the following form in ALE coordinates:

∇̂ ·
(
Ĵf σ̂f (F̂ f )−T

)
+ Ĵfρfg =

ρf Ĵf
(
∂tv̂

f +
[
(F̂ f )−1(v̂f − ŵf ) · ∇̂

]
v̂f
)

∇̂ · (Ĵf (F̂ f )−1v̂f ) = 0

in Ω̂f×(0, T ), (A.23)

σ̂f := µf
(
∇̂v̂f (F̂ f )−1 + (F̂ f )−T (∇̂vf )T

)
− p̂fI

where F̂ f is the ALE deformation gradient tensor and Ĵf – its determinant:

F̂ f := ∇̂T̂ f = I + ∇̂ûf ,
Ĵf := det(F̂ f ).

Small deformations
The Navier-Stokes equations (A.23) formulated in an ALE configuration are highly non-linear
and are thus a challenge to solve. However as noted before in Section A.2 (A.14), if during the
time of observation the displacements remain small compared to the size of the domain, the
gradient of the displacement is also expected to be small, and thus the ALE transformation
terms can be significantly simplified:

‖ûf‖ � ‖x̂‖ ∀t ∈ (0, T ) ⇒ ‖∇̂ûf‖ � 1 ⇒ F̂ f := I + ∇̂ûf ≈ I, Ĵf ≈ 1.

such that the Navier-Stokes equations formulated in ALE coordinates on the reference domain
can be significantly simplified, such that: ∇̂ · σ̂

f + ρfg = ρf
(
∂tv̂

f +
[
(v̂f − ŵf ) · ∇̂

]
v̂f
)

∇̂ · v̂f = 0
in Ω̂f×(0, T ).

σ̂f := µf
(
∇̂v̂f + (∇̂vf )T

)
− p̂fI

A.4 Poroelasticity equations: Mixture Theory approach
Porous medium Ωp is defined as a superposition of two distinct continuous media: solid skeleton
Ωsp and pore fluid Ωfp. This means that each point x ∈ Ωp of the porous domain contains both
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solid and fluid parts and traces the evolution of both phases.
Treating a porous medium as a continuum, it is in general possible to derive the governing equa-
tions for Ωp(t) using the conservation laws in the spirit of the fluid flow or elasticity equations.
Thus as described above, for a homogeneous, incompressible medium, the mass and momentum
balance laws can be written as:

∇ · σp + ρpf = ρp∂tv
p(x, t) + ρp∇ · (vp ⊗ vp)

∇ · vp = 0
∀x ∈ Ωp(t)× (0, T ),

where f are the body forces, σp is the stress tensor, vp is the velocity and ρp is the density
of the porous medium. However unlike in case of fluid flow or solid deformation problems, the
meanings or definitions of σp, vp, ρp are not clear. In addition, the material parameters for an
arbitrary porous medium are not in general known, since even very moderate changes of the
fluid content may influence the physical characteristics of the medium significantly.
A rigorous derivation of the Biot poroelasticity equations is described in Section 2.1.2. Here a
simpler, but possibly more intuitive derivation of the poroelasticity equations based on a more
straightforward combining of the effects the fluid and solid phases is outlined.

In the derivation of the conservation laws for a poroelastic material outlined below, the notion of
a representative elementary volume (REV) Φ(t), which is defined as the smallest volume in Ωp(t)
on which the poroelasticity equations for the overall medium hold, is used. On the microscale
level, Φ(t) can be split into solid and fluid parts, such that Φ(t) = Φf (t) ∪ Φs(t), and on the
macro scale, it reduces to a point x ∈ Ωp(t) that carries information from the microscale.

Porosity and Solidity
Porosity γf (x, t) is defined as a relation between the local volume of the fluid content dV fp(x, t)
and the overall volume dV p(x, t) in a REV Φ(t)(x):

γf (x, t) = dV fp(x, t)
dV p(x, t) .

Analogously, solidity γs(x, t) is defined as

γs(x, t) = dV sp(x, t)
dV p(x, t) ∀(x, t) ∈ Ωp(t)× (0, T ),

where dV sp(x, t) is the local volume of solid grains. In case the porous medium does not contain
other phases, the saturation condition reads:

γf (x, t) + γs(x, t) = 1 ∀(x, t) ∈ Ωp(t)×(0, T ), (A.24)

and therefore for each Φ(t) ⊂ Ωp(t), the following volume integral transformations can be writ-
ten: ∫

Φ(t)
dV p =

∫
Φf (t)

dV f +
∫

Φs(t)
dV s =

∫
Φ(t)

γfdV p +
∫

Φ(t)
γsdV p. (A.25)

Porous material is said to be homogeneous, if the volume fractions of the fluid and solid phases are
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the same in each elementary volume, and so the local and global phase volumes are proportional:

dV fp(x, t)
dV p(x, t) = V fp(t)

V p(t)
dV sp(x, t)
dV p(x, t) = V sp(t)

V p(t)

∀(x, t) ∈ Ωp(t)×(0, T ),

where V fp(t), V sp(t), V p(t) are respectively the fluid phase, solid phase and total porous medium
volumes at time t ∈ (0, T ).
Thus in a homogeneous porous medium, porosity γf (x, t) does not depend on the spatial variable:

γs(x, t) := γs(t),
γf (x, t) := γf (t),

∀(x, t) ∈ Ωp(t)×(0, T ).

Incompressibility Constraint
In case the considered porous medium is growing (swelling) due to the inflow of fluid only, the
porosity and solidity must change in time. Assuming that the medium remains homogeneous
during the swelling, it can be concluded that the proportions of the solid and fluid parts in any
fixed elementary volume Φ would change in time:

0 = d

dt

∫
Φ
dV = d

dt

∫
Φs(t)

dV s + d

dt

∫
Φf (t)

dV f ,

d

dt

∫
Φs(t)

dV s 6= 0, d

dt

∫
Φf (t)

dV f 6= 0.
(A.26)

This means that the volume of solid "pressed out" of Φ is equal to the volume of fluid flowing
into the element, see Fig. A.1.

Figure A.1 Change of fluid and solid phase proportions in a representative volume.
t = 0 t = T

Φs
0

Φf
0

Φs
T

Φf
T

Following (A.25), the fluid and solid domain integrals in (A.26) are transformed into integrals
over Φ, then the Reynolds’ theorem is applied to each of the terms, resulting in:∫

Φ

(
∂tγ

f + γf∇ · vfp
)
dV +

∫
Φ

(∂tγs + γs∇ · vsp) dV = 0. (A.27)

The considered porous medium is assumed to be fully saturated, (A.24), thus the sum of the
porosity and solidity time derivatives in (A.27) reduces to zero:

∂t(γf + γs) = ∂t1 = 0,
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and since (A.27) holds on any Φ ⊂ Ωp(t), the following equation is obtained:

∇ · (γfvfp + γsvsp) = 0 in Ωp(t) (A.28)

Equation (A.28) corresponds to the incompressibility condition for the porous media, where the
velocity vp of Ωp(t) is defined as

vp := γfvfp + γsvsp.

It can be observed, that while the volume of Φ is fixed, the mass within it is not conserved if
the densities of the fluid and solid phases are not equal, since the proportions of the volume
fractions change:

d

dt

∫
Φf (t)

ρfdV + d

dt

∫
Φs(t)

ρsdV = d

dt

∫
Φ

(γfρf + γsρs)dV 6= 0.

This effect reflects the change of material properties of the medium due to swelling or shrinking.

Momentum conservation
The conservation of the linear momentum equation (or equilibrium relation) is obtained in a way
that is similar to the derivation of the incompressibility constraint (A.28). Linear momentum of
the porous medium LMp is created by the momenta of its phases, thus the temporal variation
of LMp reads:

d

dt
LMp := d

dt

∫
Φf (t)

ρfvfpdV f + d

dt

∫
Φs(t)

ρsvspdV s = d

dt

∫
Φ(t)

(ρfγfvfp + ρsγsvsp)dV

=
∫

Φ(t)

{
ρf∂t(γfvfp) + ρfγf∇ · (vfp ⊗ vfp) + ρs∂t(γsvsp) + ρsγs∇ · (vsp ⊗ vsp)

}
dV.

Assuming that the deformations are small (as in (A.14), (A.14)), such that the porosity and
solidity can be considered to remain constant and the non-linear inertial terms can be neglected,
the expression for the variation of the linear momentum reduces to:

d

dt
LMp =

∫
Φ(t)

(γfρf∂tvfp + γsρs∂tv
sp)dV.

As stated in (A.8), the change of linear momentum results from the volume (g) and surface (σp)
forces acting on the media:∫

Φ(t)
(ρfp∂tvfp + ρsp∂tv

sp)dV =
∫

Φ(t)
ρpgdV +

∫
∂tΦ(t)

σp · ndS, (A.29)

and since (A.29) holds on any Φ(t) ⊂ Ωp(t), applying the Ostrogradsky divergence theorem to
the boundary term, an equilibrium relation on Ωp(t) undergoing small deformations is obtained:

∇ · σp + ρpg = γfρf∂tv
fp + γsρs∂tv

sp. (A.30)

Stress Modelling
In a porous medium, the phases interact exerting stresses on each other, such that some of the
effects dominate the other ones. Thus according to the Terzaghi’s principle, the total stress
σp in a porous medium is equal to the sum of the effective stress σeff and pore fluid pressure
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tensor −ppI, [181]:

σp := σeff − ppI.

It is assumed that the effective stress is supported by the solid skeleton only. Since the material
composing the skeleton Ωsp satisfies the equations of linear elasticity, the effective stresses in the
porous medium written in the Eulerian and Lagrangian coordinates are defined as:

σeff := σsp = Js(F s)−1
(
µs
(
∇usp + (∇usp)T

)
+ λs∇ · uspI

)
(F s)−T ,

σ̂eff := σ̂sp = (Ĵs)−1F̂ s
(
µs
(
∇̂ûsp + (∇̂ûsp)T

)
+ λs∇̂ · ûspI

)
(F̂ s)T ,

such that if the medium is undergoing small deformations, the coordinate transformation terms
Js(F s)−1, (F s)−T , (Ĵs)−1F̂ s, (F̂ s)T can be neglected as in (A.16). Then the total stress tensor
of the poroelastic medium can be approximated as:

σp = µs
(
∇usp + (∇usp)T

)
+ λs∇ · uspI − ppI in Ωp(t)× (0, T ),

σ̂p = µs
(
∇̂ûsp + (∇̂ûsp)T

)
+ λs∇̂ · ûspI − p̂pI in Ω̂p × (0, T ).

The derivation of the poroelasticity equations outlined above follows the ideas of the Consoli-
dation (or Mixture Theory) models considered or developed in [182], [183], [184], [22], [24], [23],
[185], [26], [107], [97], [28] and further works.

Modified Darcy’s Law
The balance laws derived above contain the pore fluid velocity vfp as an unknown. Therefore in
order to complete the system of poroelasticity equations, an additional equation describing the
evolution of vfp is needed.
Stokes equations written for the fluid phase of the medium on the pore scale and then homoge-
nized over the domain, transform into Darcy’s filtration law that relates the rate of flux (or
seepage velocity) q to the pressure gradient across the domain:

µfq = −K∇pp,

where µf is the dynamic viscosity of the fluid and K is the permeability tensor. In a deforming
medium, the rate of flux q is defined through the relative (with respect to the solid phase velocity)
fluid phase velocity vfp − vsp as:

q := γf (vfp − vsp).

Thus the filtration law for a deforming isotropic porous medium allows to express the pore fluid
velocity vfp through the principle unknowns of the Biot equation, i.e. the displacement usp and
pore pressure pp:

vfp = ∂tu
sp − k

γfµf
∇pp. (A.31)

Equations (A.28) and (A.30), where the fluid velocity vfp is substituted using expression (A.31),
constitute the Biot poroelasticity equations for an incompressible, homogeneous, isotropic
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medium undergoing small deformations:
∇ · σp + ρpg − (γsρs + γfρf )∂ttusp + ρfk

µf
∂t(∇pp) = 0

∇ ·
(
∂tu

sp − k

µf
∇pp

)
= 0

in Ωp(t)×(0, T ). (A.32)

A.5 Osmosis and osmotic pressure

Assume that initially (at time t0) solutions A and B of concentrations cA and cB respectively,
are separated by a strictly semipermeable membrane M (a membrane that is permeable to the
solvent only). If the concentrations are such that cA > cB, and the hydrostatic pressures acting
on both solutions are equal, then after some time ∆t an increase of volume VA(t) due to the
inflow of solvent from B is observed, see Fig. A.2. This process is known as osmosis and the
force that drives the flow of solvent is referred to as osmotic pressure.

Figure A.2 Osmosis in communication vessels.

A
t = t0

B

M

A
t = t0 + ∆t

B

M

Osmosis in brain tissue
The ionic exchange processes of a healthy brain cell can be roughly described in the following
way:

• The macromolecules can not leave the cell unless it ruptures (the molecules are said to be
fixed within the cell), and their concentration is much higher within the cell than in the
ECS.

• Potassium ions are pumped into the cell through the ATP-dependent exchanger Na+/K+,
and so sodium ions get concentrated in the extracellular space in order to counter-balance
the concentration of the fixed negative charges.

• The outflow of cations creates a negative membrane potential (60 − 80 mV ), also called
transmembrane voltage, since the diffusion of ions occurs only in the vicinity of the mem-
brane.

Thus although the chemical compositions of the intra- and extracellular fluids are different and
there exist individual ionic concentration gradients, the healthy cell mechanisms ensure osmotic
balance across the membrane in order to keep the volume of the cell constant.
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Note: Depending on multiple factors, cells can in general change their volume at different
moments of their healthy activity. However the healthy variations of the cell volume are
not significant compared to the swelling rates of ischaemic cells.

One of the major causes of the ischaemic cell swelling is the increase of membrane permeability
to Na+, [41]. The ions of sodium diffuse into the cell along their concentration gradients, and
since during ischaemia the energy is not available, sodium ions accumulate within the cell due
to the failure of Na+/K+ pump. Membrane failure allows the flow of potassium ions out of
the cell, but the total inflow of Na+ dominates the outflow of K+. The membrane depolarizes,
the accumulation of sodium within the cell leads to the jump in the total intracellular and
extracellular concentrations across the membrane and the consequent (osmosis-driven) swelling
of the cell.
Further details on the healthy and ischaemic distributions of the chemicals diluted in the intra-
cellular and extracellular spaces can be found in e.g. [69], [52], [51], [10], [43].

A.5.1 Virial theorem (osmotic pressure model)

There exist multiple ways of explaining osmosis. On the macroscopic level, the flow of water
through the membrane is observed, but in order to give an accurate description (and so to write
an accurate model) the process needs to be understood on the molecular level. Following [186],
[187], the derivation of the osmotic pressure model (van ’t Hoff formula) based on the virial
theorem is described below.

Assume that the solution is diluted, and so the solute molecules do not interact with each other;
the temperature and concentration are constant. The connection between fluid pressure pw
enclosed in a volume V and molecular interactions is demonstrated by the virial theorem,
which for pure solvent (water) reads:

pwV = 2
3
[
Ekw

]
+ 1

3

 Nw∑
i,j=1

F (wi, wj)

 ,
where F (wi, wj) is the interaction force between molecules wi, wj , Nw is the number of water
molecules, Ek is the kinetic energy of the molecules, and square brackets "[ ]" denote the time
average. Note that if the particles are far away from each other, the interaction forces become
negligible, since they depend on the distance between molecules, and therefore the formula
reduces to the ideal gas law.
In a diluted solution, apart from the "water-water" molecular type of interaction, the interaction
of water molecules with the solute must also be considered. As the solute molecules si are
assumed to not interact with each other, the following relations for solute pressure pss and
solvent pressure psw contained in the solution V are obtained:

pssV = 2
3[Ekss] + 1

3

i=Ns,j=Nw∑
i,j=1

F (si, wj)

 ,
pswV = 2

3[Eksw] + 1
3

∑
i,j

F (wj , si)

 ,+1
3

∑
i,j

F (wi, wj)

 ,
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where N s is the number of the solute molecules and the solute-solvent interaction forces are
related such that: ∑

i,j

F (si, wj)

 ≡ −
∑
i,j

F (wj , si)

 .
Considering that the kinetic energies of pure water and water in the solution are equal, it can
be deduced that the difference in the pressures of pure solvent and diluted solution occupying
the same volume can be found as:

(pw − psw − pss)V = 2
3
(
[Ekw]− [Eksw]− [Ekss]

)
= −2

3[Ekss]. (A.33)

The average kinetic energy of the solute molecules diluted in a much larger amount of solvent
can be found through the ideal gas law written for the pressure psi that the solute would exert
in the volume V in the absence of solvent:

N skT = psiV = 2
3
[
Ekss

]
, (A.34)

where k is the Boltzmann constant and T is the temperature.
Combining (A.33) and (A.34), the following relation for the fluid pressure of the solution ps is
obtained:

ps := pss + psw = pw + psi.

The fluid pressure of a solution is thus equal to the sum of the pressure of a pure solvent, pw,
and osmotic pressure π:

ps = pw + π,

such that the osmotic pressure π can be seen as a measure of the deviation of ps from pw, that
corresponds to the pressure psi of an ideal gas, that the molecules of the solute would exert
within the volume V in the absence of solvent:

π := psi
(A.34)= N skT

V
. (A.35)

Passing from the molecular to the continuum scale in (A.35), the following osmotic pressure
model is obtained:

π = N skT

V
= N sNAkT

V
= nRT

V
= cRT,

where n := N s/NA is the amount of substance of the solute, NA is Avogadro’s constant, R is
the gas constant and c is the molar concentration (or the molarity) of the solute diluted in the
volume V :

c := n

V
.

Note, that the volumes of the solution and of the solvent can be considered equal, since the
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solute volume is negligible:

V = Vsw + Vss ≈ Vsw.
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